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Abstract
This thesis presents a brief compilation of the works developed during my doctorate, and
can be divided basically into three main parts. In the first one, we show the changes
caused by considering long-range interactions mediated by light in the phenomenon of
electromagnetically induced transparency (EIT). We also show how these interactions
can negatively impact population transfer through a stimulated Raman adiabatic passage
(STIRAP) process, which may imply a technical limitation for EIT-based quantum memo-
ries, as the density and optical thickness of the samples have been increasing in recent
experiments to obtain better efficiencies. In the second part, we propose two new schemes
to generate highly entangled states in a system of two non-degenerate qubits coupled to a
common bosonic mode, in both of which we use an EIT analogue to better understand
and interpret the physics of the system. The first method relies on the injection of energy
into the mode through a coherent pump to prevent the mode from decaying to vacuum,
and under a certain parameter regime, we show that it is possible to obtain a maximally
entangled steady state. In the second method, we transfer the population to the maximally
entangled state through a STIRAP-like process. In the third and last part, we present a
new idea for single-shot measurements of Fock states using the Autler-Townes effect, where
two methods are proposed: both a destructive and a non-destructive one. The results
presented were obtained from the experimental implementation of this scheme in a system
of trapped ions, for measurements of phonon number states.

Keywords: Electromagnetically Induced Transparency, Stimulated Raman Adiabatic
Passage, Quantum Memories, Entanglement, Single-shot phonon number measurements,
Trapped Ions.





Abstract
Esta tese é um breve compilado dos trabalhos desenvolvidos durante meu doutorado,
podendo ser dividida basicamente em três partes principais. Na primeira, mostramos as
mudanças causadas quando consideramos interações de longo alcance mediadas por luz no
fenômeno da transparência eletromagneticamente induzida (EIT). Além disso, mostramos
como essas interações podem impactar negativamente a transferência de população através
de um processo STIRAP, o que pode implicar em uma limitação técnica para memórias
quânticas baseadas em EIT, já que a densidade e a espessura óptica das amostras vêm
sendo cada vez mais aumentadas em experimentos recentes, a fim de obter melhores
eficiências. Na segunda parte da tese, propomos dois novos esquemas para gerar estados
altamente emaranhados em um sistema de dois qubits não-degenerados acoplados a um
modo bosônico comum, sendo que em ambos os métodos, usamos um análogo de EIT
para uma melhor compreensão e interpretação física do que está acontecendo no sistema.
O primeiro método baseia-se na injeção de energia no modo bosônico através de um
bombeio coerente para evitar que o modo decaia para vácuo, e sob um determinado
regime de parâmetros mostramos ser possível obter um estado estacionário maximamente
emaranhado. No segundo método, transferimos a população para o estado maximamente
emaranhado através de um processo do tipo STIRAP. Por fim, na terceira e última parte
da tese, apresentamos uma nova ideia para medições de estados Fock usando o efeito
Autler-Townes, onde são propostos dois métodos: um destrutivo e um não destrutivo.
Os resultados apresentados foram obtidos a partir da implementação experimental deste
esquema em um sistema de íons aprisionados, para medidas de estados de números de
fônons.

Palavras-chave: Transparência Eletromagneticamente Induzida, STIRAP, Memórias
Quânticas, Emaranhamento, Medições de Números de Fônons, Íons Aprisionados.
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1 Overview

In the present manuscript, I will present the main results obtained during the last
years in my doctoral project, under the supervision of Celso Jorge Villas-Bôas.

Since my master’s degree, I have sought to specialize in the field of quantum
optics, studying radiation-matter interaction focusing specially on the phenomenon of
electromagnetically induced transparency (EIT) and its analogues. Therefore, I believe
that the works that I will present here reflect some of this.

The initial idea for the project, to study how long-range interactions mediated by
light affect the EIT phenomenon, emerged during an internal seminar session of the group,
where each one presented a little of their work, when Celso suggested that alongside Carlos
Eduardo Máximo, who was a postdoc specialist in multiple scattering, I should tackle this
issue. This collaboration proved to be very fruitful, and I was able to learn a lot from
Carlos about his research area, resulting in a publication in Physical Review A [1], entitled
“Sensitivity of electromagnetically induced transparency to light-mediated interactions”,
which will be discussed in details over chapter 3.

In this work, we develop a new model taking into account light-mediated long-range
interactions while considering two incident fields and a sample of three-level atoms. With
this, we were able to study the changes in the EIT and CPT (coherent population trapping)
phenomena, as well as the decrease in the efficiency of adiabatic population exchange
by a STIRAP (stimulated Raman adiabatic passage) process, due to collective effects.
The derivation of this new model opens doors for future studies of scattering in nonlinear
optics.

In the meantime, Prof. Celso was contemplated with a collaboration project between
Brazil and Sweden (CAPES-STINT), for a partnership with two very accomplished
experimental groups from the University of Stockholm, led by Ana Predojević and Markus
Hennrich. From this project came the opportunity of an exchange PhD, for which I am
extremely grateful, especially to Celso, for the trust placed in me. From October 2019 to
September 2020, I had the opportunity of working side by side with these two experimental
groups, being responsible for the theory and numerical simulations related to the works
developed during this period. It was an incredible experience. Everyone welcomed me with
open arms and made me feel at home, also providing an excellent working environment,
where I feel I have learnt a lot and developed myself professionally.

During my stay there, Celso and Romain Bachelard visited the University of
Stockholm on a project-related work trip. During two weeks, we had the opportunity to
have several face-to-face discussions that generated two main ideas for possible works,
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both theoretical and experimental.

One of them arose from a discussion about the experimental system of coupled
quantum dots, which are generally asymmetrical due to their production. Celso then had
the idea of using this “technical issue” in favor of generating entangled states. In the
work originating from this idea, we approached a system of two non-degenerate two-level
systems coupled to a common bosonic mode. From there, we proposed two ways to generate
entangled states in this system: in one of them, we produce an entangled steady state and
in the other, we adiabatically transfer the population of the system to the entangled state.
We believe that this is a versatile system and could be applied to a range of experimental
platforms, and the dynamics and results can be easily interpreted with an EIT analogy. I
would like to thank the authors of this work, which has been accepted by Physical Review
A [2]: Gerard Higgings, Chi Zhang, Ana Predojević, Markus Hennrich, Romain Bachelard
and Celso Jorge Villas-Bôas.

The second idea also emerged initially from a cavity EIT analogy, where the effective
coupling of one of the transitions has an explicit dependence on the number of excitations
of the field state. After much investigation into the feasibility of the proposal, the group
led by Markus did an amazing job implementing the model in the trapped ions experiment
and measuring in two ways, one destructive and one non-destructive, the Fock state of
the phonon mode. I would like to thank the authors of this work: Marion Mallweger,
Robin Thomm, Harry Parke, Natalia Kuk, Gerard Higgins, Romain Bachelard, Celso Jorge
Villas-Bôas and Markus Hennrich.

This thesis is divided into four main parts. In the first part, we have a quick but
fundamental theoretical background, presenting the basics of the interaction Hamiltonian
and the EIT phenomenon in free space and in optical cavities. In the following three
chapters, the three works mentioned above are presented, with each chapter having its
own introduction and conclusions. Finally, we have an appendix presenting some details
or accounts spared from the main text.



23

2 Theoretical background

The purpose of this chapter is to touch on some essential points for the understand-
ing of the works that will be presented later. In it, we will address simple cases, indicating
the essential steps to obtain the radiation-matter interaction Hamiltonian, as well as the
system’s dynamics considering incoherent processes, mentioning important steps, such as
the approximations used and their respective validity. By the end, we should be able to
understand the mechanisms behind EIT in free space and in cavities.

2.1 Jaynes-Cummings model
Let’s start by studying one of the simplest systems of light-matter interaction, a

two-level atom (or N non-interacting atoms), with ground state |g⟩ and excited state |e⟩,
trapped inside an optical cavity. The atomic transition |g⟩ ↔ |e⟩ is resonantly coupled by
a single quantized electromagnetic mode with vacuum Rabi frequency g and frequency ω,
as depicted in Fig.1.

Figure 1 – Level scheme. A two-level atom, with ground and excited states |g⟩ and |e⟩,
respectively, is coupled resonantly to a quantized mode of Rabi frequency g
and frequency ω.

The total Hamiltonian that describes this system can be written as Ĥ = Ĥ0 + Ĥint,
with

Ĥ0 = ωgσ̂gg + ωeσ̂ee + ωâ†â, (2.1)

being the free energy Hamiltonian, considering ℏ = 1. The terms ωn correspond to the
respective frequency of atom’s bare states, and σ̂nn = |n⟩⟨n| are the atomic population
operators, for n = e, g. The operators â† and â are the creation and annihilation operators,
respectively, acting on the mode.

The other part of the total Hamiltonian, Ĥint, is where we effectively take into
account the interaction between the atom and the field. Here, we will retain the description
of the interaction to the dipole approximation, which is valid when the wavelength (λ)
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of the incident radiation is much larger than the atomic dimensions (λ ≫ r0, being r0

the atomic radius). In that case, we can consider the field uniform throughout atomic
extension, and the interaction between the atom and the field can be written as

Ĥint = −qer.Ê, (2.2)

where qe is the electron charge, r is the electron’s position vector and Ê is the electromag-
netic field operator. Doing some manipulation, we can rewrite part of this expression as

qer =
∑
n,m

qe |n⟩⟨n| r |m⟩⟨m| =
∑
n,m

dnmσ̂nm, (2.3)

being dnm = qe⟨n|r|m⟩ the dipole matrix element of the transition |g⟩ ↔ |e⟩, and
σ̂nm = |n⟩⟨m| the raising/lowering atomic operator, for n, m = e, g being n ̸= m.

Next, we use the quantized electric field operator, calculated at the position of the
atom in the dipole approximation [3]

Ê = E0
(
â + â†

)
, (2.4)

where
E0 =

√
ω

2ϵ0V
k̂, (2.5)

and V is the cavity volume, ϵ0 is the electrical permittivity of the vacuum, and ω and k̂
are the frequency and unit vector of the electromagnetic field, respectively. Once more, â†

and â represent the creation and annihilation operators, which act on the bosonic mode.

Finally, applying the rotating wave approximation (RWA), which is valid when
the cavity mode and atomic transition frequencies are much higher than the atom-field
coupling strength, i.e. ω ≫ g, we get

Ĥint = g
(
âσ̂eg + â†σ̂ge

)
, (2.6)

where g is given by

g = −
√

ω

2ϵ0V
k̂.dge. (2.7)

So, the total Hamiltonian describing this system reads

Ĥ = ω0

2 σ̂z + g
(
âσ̂eg + â†σ̂ge

)
+ ωââ†, (2.8)

being the relative frequency ω0 = (ωe − ωg) and the atomic operator σ̂z = σ̂ee − σ̂gg.
The Hamiltonian from Eq. (2.8) is the so called Jaynes-Cummings Hamiltonian [4, 5]. It
describes the coherent interaction between a qubit and a single quantized mode, being the
basis for understanding the more complex models we are going to discuss.
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2.2 Electromagnetically induced transparency

2.2.1 Model

Our goal here is to briefly discuss the fundamentals and mechanisms behind the
electromagnetically induced transparency (EIT) phenomenon, which has already been
substantially studied, in more detail, over the last decades [6]. The system that we will
discuss in this section is composed of a three-level atom in a configuration of energy levels
called Λ, as shown in Fig. 2, on which we shine two electromagnetic fields: a probe field of
frequency ωP coupling the transition |1⟩ ↔ |3⟩ and Rabi frequency ΩP , and a second field,
which we will call the control field, coupling the other atomic transition |2⟩ ↔ |3⟩ with
frequency ωc and Rabi frequency Ωc.

Figure 2 – Energy level diagrams. (a) Energy levels of a three-level atom in the Λ config-
uration in free space and in the presence of classical fields. (b) Effect of the
control field on the atom, where the strong coupling of the transition |2⟩ ↔ |3⟩
causes a splitting of |3⟩ and |2⟩ into two symmetric dressed states |a±⟩.

The Hamiltonian that describes this system can also be divided into two parts,
such as Ĥ = Ĥ0 + Ĥint. The first one, Ĥ0 is a free Hamiltonian simply related to the energy
levels of the bare atomic states, which can be written as

Ĥ0 = ω2σ̂22 + ω3σ̂33, (2.9)

where σ̂ii = |i⟩⟨i| are atomic operators, which give us information about the populations of
the atomic states. Here, for simplicity, we assume ℏ = 1 and that the ground state |1⟩ is
at our zero energy. The second part, Ĥint, describes the semi-classical interaction between
two classic fields and the quantized atomic structure, given by

Hint = −Ωp

2 σ̂31e
−iωpt − Ωc

2 σ̂32e
−iωct + H.c. , (2.10)

where σ̂ij = |i⟩⟨j| is the atomic raising/lowering operator, taking the system from |j⟩ to
|i⟩ and H.c. is the Hermitian conjugate.
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For a better understanding of the system, it is convenient to go to the interaction
representation. For this, we apply a unitary transformation Û0 = e−iĤ0t in the interaction
Hamiltonian Ĥint, resulting in

ĤI = −Ωp

2 σ̂31e
i∆1t − Ωc

2 σ̂32e
i∆2t − H.c. , (2.11)

where ∆1 = ω3 − ωp and ∆2 = ω3 − ω2 − ωc = ω32 − ωc.

In order to eliminate the time dependence in this Hamiltonian, we apply a second
unitary transformation given by U1 = ei[∆1σ33−(∆1−∆2)σ22]t, so that

ˆ̃HI = ∆1σ̂33 + (∆1 − ∆2)σ̂22 −
(

Ωp

2 σ̂31 + Ωc

2 σ̂32 + H.c

)
. (2.12)

2.2.2 Dark state

The time independent Hamiltonian in the interaction picture in Eq. (2.12) can also
be written in its matrix form, for ∆ = ∆1 = ∆2, as

ˆ̃HI = −1
2


0 0 Ωp

0 0 Ωc

Ωp Ωc −2∆

 , (2.13)

in the basis b = {|1⟩ , |2⟩ , |3⟩}. Then, we can easily obtain the eigenenergies

E0 =0,

E± =1
2
[
∆ ±

√
∆2 + Ω2

p + Ω2
c

]
, (2.14)

and the respective eingenstates of the system

E+ → |a+⟩ = sin(θ) sin(ϕ) |1⟩ + cos(θ) sin(ϕ) |2⟩ + cos(ϕ) |3⟩ ,

E0 → |a0⟩ = cos(θ) |1⟩ − sin(θ) |2⟩ ,

E− → |a−⟩ = sin(θ) cos(ϕ) |1⟩ + cos(θ) cos(ϕ) |2⟩ − sin(ϕ) |3⟩ , (2.15)

being

tan(θ) =Ωp

Ωc

,

tan(2ϕ) =

√
Ω2

p + Ω2
c

∆ . (2.16)

It is worth noting that the eigenstate |a0⟩ from Eq. (2.15), which has eigenenergy
E0 = 0, for any regime of Ωc and Ωp, is written solely in terms of the bare fundamental
states |1⟩ and |2⟩, with no component related to the excited state |3⟩. This means that if
the system is in the |a0⟩ state the probability of emission or absorption is zero, so this
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state is called the dark state. The other two symmetric eigenstates |a±⟩ are often called
Autler-Townes doublet.

Next, we can proceed with an analysis where we consider two different parameter
regimes, comparing the intensities of the classical fields ΩP and Ωc. When |ΩP | ≈ |Ωc| we
are in the coherent population trapping (CPT) regime while when |ΩP | ≪ |Ωc| we are
working in the EIT regime.

In the CPT regime, on resonance (∆ → 0), we have tan θ ≈ 1, i.e, sin θ ≈ cos θ,
being θ ≈ π/4 and tan(2ϕ) → ∞, in a way that ϕ = π/4. Thus, the eigenstates become

|a0⟩ = 1√
2

(|1⟩ + |2⟩) ,

|a±⟩ = 1√
2

[
1√
2

(|1⟩ + |2⟩) ± |3⟩
]

. (2.17)

Now, in a resonant case of the EIT regime, we have tan(θ) ≈ 0 and tan(2ϕ) → ∞, resulting
in

|a0⟩ = |1⟩ ,

|a±⟩ = 1√
2

(|2⟩ ± |3⟩) . (2.18)

Note that when the control field is very strong, the system is driven to the ground
state |1⟩, which is exactly the dark state when ∆ ≈ 0. As discussed before, this state
does not absorb or emit photons, so the system is transparent to the radiation around
the resonance. It is also worth mentioning that in the EIT regime next to the resonance,
the eigenenergies of |a±⟩ (dressed states), are equal to E± = ±Ωc/2, where the absorption
maxima are, which means that the a strong control field coupling the transition |1⟩ ↔ |3⟩
gives rise to an energy splitting proportional to its Rabi frequency, i.e, E+ − E− = Ωc.

2.2.3 Optical response

The macroscopic polarization of a medium can be approximated to a linear response
to an external electromagnetic field, as

P = χeE, (2.19)

being χe the linear electrical susceptibility coefficient. Once we obtain an expression for
this coefficient, we will be able to analyse the absorption and refractive index behaviors of
the atomic medium through its imaginary and real parts, respectively [6].

In terms of the dipole moments d, the expectation value of the polarization reads

⟨P ⟩ =
N∑

i=1

⟨d⟩
V

= N

V
Tr(ρ̂d), (2.20)
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where N is the number of atoms in the sample contained inside a volume V , and ρ̂ is the
density matrix of the system, which can be written in a general form as

ρ̂ = ρ̂11σ̂11 + ρ̂22σ̂22 + ρ̂33σ̂33

+
(
ρ̂21e

−iω21tσ̂21 + ρ̂31e
−iω31tσ̂31 + ρ̂32e

−iω32tσ̂32 + H.c.
)

. (2.21)

Given that the only dipole allowed transitions are |1⟩ ↔ |3⟩ and |2⟩ ↔ |3⟩, Eq. (2.20)
becomes

⟨P ⟩ = N

V

(
d13ρ31e

−iω31t + µ23ρ32e
−iω32t + H.c.

)
. (2.22)

To continue our analysis, we must find an expression for each density matrix
element in the steady state, i.e., for ˙̂ρ = 0. The system’s dynamics is obtained using a
master equation [7], which is derived under some approximations that can be summarized
in physical arguments as:

• Initial separability: there can be no correlation between the system and environment
at t = 0, which means that the total density matrix can be written as a tensor
product such as ρ̂tot(0) = ρ̂sys(0) ⊗ ρ̂env(0);

• Born approximation: assumes a weak coupling between the system and the environ-
ment, in a way that the environment state will not change due to the interaction with
the system and the total density matrix remains separable thought the evolution
time, i.e, ρ̂tot = ρ̂sys ⊗ ρ̂env;

• Markov approximation: often refereed to as "short-memory environment", which
assumes that the environment’s correlation time is much shorter than the relevant
system time scale;

• Zero temperature: assumes that the temperature is at T = 0K, which can be a
reasonable approximation if we are working in the optical regime, where the mean
number of thermal photons is negligible.

The master equation considers, besides the coherent evolution, the dissipative terms
of the system, such as the spontaneous decay rate Γij from the level |i⟩ to the |j⟩ and the
dephasing rate γi related to the atomic state |i⟩. The master equation we are using in this
case reads

dρ̂

dt
= − i[ ˆ̃H, ρ̂] +

∑
l=1,2

Γ3l

2 (2σ̂l3ρ̂σ̂3l − σ̂33ρ̂ − ρ̂σ̂33)

+
∑

j=2,3

γj

2 (2σ̂jj ρ̂σ̂jj − σ̂jj ρ̂ − ρ̂σ̂jj). (2.23)

Calculating every element ρ̇ij = ⟨i| ˙̂ρ|j⟩ for i, j = 1, 2, 3, and setting them individu-
ally to zero, we end up with an algebraic system of equations, which we can solve for the
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steady state density matrix elements. In the EIT regime, i.e., considering Ωc ≫ Ωp, all
the population is asymptotically driven to the dark state |a0⟩ = |1⟩, making ρ11 ≈ 1 and
ρ22 = ρ33 ≈ 0 good approximations for this regime. After some manipulation, we end up
with

ρ31 ≈ iΩp(γ21 − 2i(∆2 − ∆1))ei∆1t

(2i∆1 + γ31)[γ21 − 2i(∆2 − ∆1)] + Ω2
c

, (2.24)

ρ32 ≈
−iΩ2

pΩce
i∆2t

(2i∆2 + γ32)(−2i∆1 + γ31)[γ21 + 2i(∆2 − ∆1)] + Ω2
c

, (2.25)

where γ31 = Γ + γ1, γ32 = Γ + γ2 + γ3, and γ21 = γ2, with Γ = Γ31 + Γ32 being the total
spontaneous decay rate from the excited state.

Substituting the results of Eqs. (2.24) and (2.25) into Eq. (2.22), we can rewrite
the polarization as

⟨P ⟩ ≈ N

V

iµ13Ωp(γ21 − 2iδ)eiωpt

(2i∆ + γ31)[γ21 − 2iδ] + Ω2
c

+ N

V

−iµ23Ω2
pΩce

iωct

(2i(∆ − δ) + γ32)(−2i∆ + γ31)[γ21 + 2iδ] + Ω2
c

+ H.c. , (2.26)

where we have defined ∆ = ∆1 and δ = ∆2 −∆1. According to Eq. (2.19), if we consider the
total electric field to be the sum of the probe and control fields, i.e., E = Epe−iωpt+Ece−iωct,
the linear optical response term related to the probe field should be proportional to the
oscillating term e±iωpt. Thus, defining Ωp = d13Ep/ϵ0, the linear electrical susceptibility
reads

χe = |d13|2N
ϵ0V

i(γ21 − 2iδ)eiωpt

(2i∆ + γ31)[γ21 − 2iδ] + Ω2
c

. (2.27)

Figure 3, shows the effect of the control field in a three-level system within the EIT
regime, where we can clearly see the drastic change in the optical properties caused by the
EIT phenomenon, especially around the resonance. In the absorption spectrum, Fig. 3(a),
we see a transparency window for the three-level system where in the two-level case we
had maximum absorption.

EIT is a quantum interference phenomenon between the excitation paths of the
system, and although it is defined in a regime where Ωc ≫ Ωp, as mentioned before, this
is a necessary but not sufficient condition. In addition, we must also take into account the
width of the excited level, so that if we have Ωc ≫ Γ3, the absorption spectrum observed in
an analyse similar to Fig.2 would simply be the absorption spectrum of an Autler-Townes
process.

Figure 3(b) shows the dispersion spectrum, where we observe, instead of a smooth
curve, an abrupt variation of the refractive index. It is because of this steep derivative, for
example, that we are able to observe a reduction in the group velocity of light propagating
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Figure 3 – Optical response. a) Normalized absorption as a function of the detuning for
a two-level atom and a three-level atom in the EIT regime. b) Refraction
index of a two-level atom and a three-level atom in the EIT regime. The black
dashed curves refer to the two-level system atom while the blue filled ones
to the three-level system. The system parameters were set to Ωp = Γ31/50,
γ2 = γ3 = 0. For the 2-level atom curves the additional parameters were set to
Γ32 = 0 and Ωc = 0. For the 3-level atom EIT curves these parameters were
chosen as Γ32 = Γ31 and Ωc = Γ31/5.

in an EIT medium [8]. This is the building block for a wide range of applications such as
EIT based quantum memories [9, 10, 11].

2.2.4 Exact solution for the steady state

While obtaining the steady state solution, we assumed that Ωc ≫ Ωp(EIT regime),
which enabled us to make the approximations ρ11 ≈ 1 and ρ22 = ρ33 ≈ 0 and solve the
problem in a simple way. However, we are also able to obtain an exact solution to the
problem, i.e., the system of algebraic equations that arise from solving Eq. 2.23 in the
steady state ( ˙̂ρ = 0), for any parameter regime. Despite the extensive and complicated
expressions for the ρij , the expressions for the optical susceptibilities of order n = 1, 3 and
5, with γ2 = γ3 = ∆2 = 0 are given by [12]

χ(1)
e = 2∆

2∆ (2∆ − iΓ) − Ω2
c

, (2.28)

χ(3)
e =

4∆2
(

Γ2Γ32
Ω2

c
− iΓΓ32

2∆ + 3Γ − Γ31 + Γ31Ω2
c

2∆2

)
Γ31 (Ω2

c − 2i∆Γ − 4∆2) (Ω2
c + 2i∆Γ − 4∆2)2 , (2.29)

χ(5)
e =

2∆
(−16Γ4Γ2

32∆4

Ω4
c

+ 8Γ2Γ32∆3

Ω2
c

A + 4∆2B + 2∆CΩ2
c − 3Γ2

31Ω4
c

)
Γ2

31 (−2iΓ∆ − 4∆2 + Ω2
c)

2 (2iΓ∆ − 4∆2 + Ω2
c)

3 , (2.30)
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with

A = (iΓΓ32 − 10Γ∆ + 2Γ31∆) (2.31)
B = Γ2

(
Γ2

31 − 2Γ31Γ32 − Γ2
32

)
+ 4∆2

(
−6Γ2 + 3ΓΓ31 + Γ31Γ32

)
+ 4iΓ2Γ32∆, (2.32)

C = −2∆(3Γ(Γ + 3Γ31) + Γ31(Γ32 − 2Γ31)) + iΓΓ32(Γ + Γ31). (2.33)

2.3 Cavity electromagnetically induced transparency

2.3.1 Model

For this section, let us consider a system composed by a three-level atom trapped
inside an optical cavity. The atom is in a Λ-level configuration, just like the one studied
in the previous section, with two ground states |1⟩ and |2⟩, and an excited state |3⟩, as
represented in Figure 4. The transition |1⟩ ↔ |3⟩ is coupled by the quantized mode of
radiation inside the cavity with vacuum Rabi frequency 2g and frequency ω, while the
second transition |2⟩ ↔ |3⟩ is coupled by a classical control field with Rabi frequency 2Ωc

and frequency ωc. In addition, we have a probe field with strength ε and frequency ωp

injecting energy into the cavity mode.

Figure 4 – (a) Level scheme of a three-level atom in a Λ configuration trapped inside an
optical cavity. A classical control field with frequency ωc and Rabi frequency
2Ωc, couples one of the atomic transitions. The other atomic transition is
coupled by the cavity mode of frequency ω and vacuum Rabi frequency 2g.
We also consider a probe field with strength ε and frequency ωP . (b) Pictorial
representation of the experimental observation of the EIT phenomenon with
a probe and a control fields, both focusing on a trapped atom inside a linear
optical cavity, and a properly positioned detector, in order to measure the
transmission.

The process for obtaining the total Hamiltonian of this system is very similar to
what we have been doing for the last sections, in a sense that it can also be written as a
sum of the free Hamiltonian given by

Ĥ0 = ω3σ̂33 + ω2σ̂22 + ωâ†â, (2.34)
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which refers to the free energy of the atomic states and the electromagnetic field, very
similar to Eq. 2.1, where we are considering an energy in which the ground state |1⟩ is at
zero energy.

Since we have both quantum and classical fields in the system, it is convenient
to calculate the interaction of each one with the atom separately. For the interaction
Hamiltonian of the classical control field, which we will call Hclass

int , we assume that the
control field can be written in an oscillatory manner as E(t) = E0 cos(ωct) and that it
only couples the transition |2⟩ ↔ |3⟩. Thus

Hclass
int = Ωc(σ̂32e

−iωct + σ̂23e
iωct), (2.35)

where Ωc = d23.E0 the Rabi frequency coupling the respective transition with the dipole ma-
trix element d23. It is worth mentioning that here we used the rotating wave approximation
(RWA), which is valid when ωc ≫ Ωc.

On the other hand, the other part of the interaction Hamiltonian, referring to the
quantized mode interacting with the transition |1⟩ ↔ |3⟩, which we will call Hquan

int , is given
by

Ĥquan
int = g

(
âσ̂31 + â†σ̂13

)
, (2.36)

just like the interaction in Eq. 2.6.

Finally, the Hamiltonian of the probe field Hp, in the rotating wave approximation
(valid for ωp ≫ ε), contributes to the total Hamiltonian as

Ĥp = ε(âeiωpt + â†e−iωpt). (2.37)

Therefore,substituting these expressions in the total Hamiltonian

Ĥ = Ĥ0 + Ĥclass
int + Ĥ

quan+Ĥp

int , (2.38)

and applying the consecutive unitary transformations Û0 = e−iĤ0t and Û1 = e−iĤ1t, with
Ĥ1 = −∆1σ̂33 − (∆1 − ∆2) σ̂22 − ∆P σ̂11 + ∆P â†â we end up with the time-independent
Hamiltonian in the interaction picture

ĤI = ∆1σ̂33 + (∆1 − ∆2)σ̂22 + ∆P σ̂11 − ∆P â†â + (gâσ̂31 + Ωcσ̂32 + εâ + H.c.) , (2.39)

where ∆1 = ω3 − ω and ∆2 = (ω3 − ω2) − ωc are the detunings between the atomic
transition frequencies and the respective fields and ∆P = ω − ωP the detuning between
the cavity mode and the probe field frequencies.

2.3.2 Dark state

The Hamiltonian in Eq. (2.39) can be written in a matrix form in the complete
basis b = {|1, n⟩ , |2, n − 1⟩ , |3, n − 1⟩}, where |j, m⟩ = |j⟩ ⊗ |m⟩ for j = 1, 2, 3 and |m⟩
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being the cavity mode Fock state with m photons. In the absence of a probe field and
considering complete resonance, i.e., ε = 0 and ∆1 = ∆2 = ∆p = 0, this Hamiltonian reads

ĤI =


0 0 g

√
n

0 0 Ωc

g
√

n Ωc 0

 , (2.40)

which, in turn, have three eigenenergies

E0 =0,

E± = ±
√

ng2 + Ω2
c , (2.41)

with their respective eingenstates being

E0 → |a0⟩ = N0

(
|1, n⟩ − g

√
n

Ωc

|2, n − 1⟩
)

,

E± → |a±⟩ = N±

±

 g
√

n√
ng2 + Ω2

c

|1, n⟩ + Ωc√
ng2 + Ω2

c

|2, n − 1⟩

+ |3, n − 1⟩

, (2.42)

where N0 and N± are normalization constants.

Proceeding to an analysis for the different parameter regimes, like in the previous
section, we now define the cavity coherent population trapping (CCPT) regime as Ωc ∼ g

√
n

and the cavity electromagnetically induced transparency (CEIT) regime as Ωc ≫ g
√

n.

The eigenstates for the CCPT regime are almost identical of those in the previous
section

|a0⟩ = 1√
2

(|1, n⟩ − |2, n − 1⟩),

|a±⟩ = 1√
2

[
± 1√

2
(|1, n⟩ + |2, n − 1⟩) + |3, n − 1⟩

]
, (2.43)

where the dark state remains a superposition of the ground states.

The same occurs for the CEIT regime, where the eigenstates can be written as

|a0⟩ = |1, n⟩ ,

|a±⟩ = 1√
2

(|3, n − 1⟩ ± |2, n − 1⟩), (2.44)

which are completely analogous to those obtained for the free space setup. The darkstate
continues to have only a component in the ground atomic state |1⟩, and the Autler-Townes
doublet remains a superposition of the atomic states |2⟩ and |3⟩, being energetically
separated by E+ − E− = 2Ωc. However, despite all the similarities, it is important to note
that by exchanging a free-space probe field by a quantized cavity mode, we give rise to an
effective coupling, between |1, n⟩ and |3, n − 1⟩, that directly depends on the cavity mode
Fock state excitation number geff =

√
ng2 + Ω2

c . It is from this explicit dependence that
came the initial idea for the proposal of a Fock state detector, used in the work presented
in section 5.
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2.3.3 Transmission

The dynamics of this system, including dissipation, is obtained through the following
master equation

dρ̂

dt
= − i[ĤI , ρ̂] + κ

2
(
2âρ̂â† − â†âρ̂ − ρ̂â†â

)
+

N∑
k=1

∑
l=1,2

Γ3l

2
(
2σ̂

(k)
l3 ρ̂σ̂

(k)
3l − σ̂

(k)
33 ρ̂ − ρ̂σ̂

(k)
33

)

+
N∑

k=1

∑
j=2,3

γj

2
(
2σ̂

(k)
jj ρ̂σ̂

(k)
jj − σ̂

(k)
jj ρ̂ − ρ̂σ̂

(k)
jj

)
, (2.45)

where Γ3l is the spontaneous decay rate from the excited state |3⟩ to the ground state |l⟩
for l = 1, 2 and γj is the dephasing of the level |j⟩, for j = 2, 3.

The transmission spectrum of the probe field is proportional to the expected mean
number of photons inside the cavity, so that the normalized transmission can be defined
here as T =

〈
â†â

〉
/|2ε/κ|2.

Figure 5 – Transmission spectrum. The dashed blue curve represents the empty cavity
situation, with maximum transparency at ∆p = 0 and FWHM = κ. The
dotted red curve refers to the case of a two-level atom inside the cavity, with
transmission peaks located exactly at ∆p = ±g. The solid black curve shows the
CEIT transmission spectrum with maximum transparency at resonance, just
like the empty cavity, but with much narrower FWHM. It is also possible to
observe peripheral peaks, which appear at the Autler-Townes doublet resonance
at ∆p = ±

√
g2 + Ω2

c . CEIT parameters: g = 5κ, Ωc = 2κ, ε =
√

0.01κ,
∆1 = ∆2 = 0 and Γ31 = Γ32 = 0.5κ. For the empty cavity curve Ωc = 0, and
for the two-level atom Ωc = 0 and Γ32 = 0.

The steady-state transmission, calculated numerically through Eq. (2.45) for ˙̂ρ = 0,
can be seen in Fig.5. The CEIT system, just like the empty cavity, presents a maximum
at resonance, however, with a much narrower transmission windows full width at half
maximum (FWHM) [13, 14]. In addition to the central transparency window, it also
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has two peripheral peaks, which are resonant to the Autler-Townes doublet around
∆p = ±

√
g2 + Ω2

c .
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3 Sensitivity of electromagnetically induced
transparency to light-mediated interactions

3.1 Introduction

Electromagnetically Induced Transparency (EIT) [15] is a quantum interference
phenomenon in which an initially opaque ensemble of three-level atoms becomes transparent
to a probe field due to the influence of a second field, known as the control field. The
existence of a dark state in the atomic system is the reason why the absorption ceases
when the probe field is tuned at resonance with a given atomic transition. In particular,
when probe and control fields are of the same magnitude, such a dark state becomes a
superposition of two atomic ground states, which gives origin to a Coherent Population
Trapping (CPT) in the steady-state regime [16, 17].

EIT and CPT phenomena have been receiving substantial attention thanks to
their vast list of applications [6]. For example, EIT is useful for the reduction of the
group velocity of a light pulse which propagates through an atomic medium [8], for the
narrowing of the transmission linewidth of optical cavities [13, 14], and for quantum
memory implementations, where photonic states can be mapped and stored in single
atoms trapped inside optical cavities [9, 10], or in an atomic ensemble [11]. For the latter,
it has been theoretically demonstrated that the efficiency of quantum memory devices
increases with the sample optical thickness [18, 19]. Indeed high efficiency (> 90%) in
retrieving quantum information has been achieved in cold-atom platforms only for high
optical thickness [20, 21, 22], a regime where multiple scattering of light becomes relevant.
This leads us to the unexplored question of how coherent collective scattering of light
would affect EIT and CPT transparency windows and, consequently, all corresponding
applications. The purpose of the present letter is to shine a light on this question.

In light scattering by cold atoms, effective light-mediated interactions emerge
between all scatterers [23, 24, 25] owing to a strong suppression of the Doppler broadening
by laser cooling techniques. Such optical dipole-dipole interactions give origin to several
collective effects, such as superradiance [26, 27, 28], subradiance [29, 30, 31, 32, 33],
coherent backscattering of light [34, 35], and cooperative Lamb shifts [36, 28], and cover
long ranges in a similar fashion as Rydberg atomic interactions. Yet Rydberg interactions
are Hamiltonian interactions that do not depend on light scattering to remain active,
being even able to totally destroy EIT [37, 38, 39, 40]. On the other hand, light-mediated
interactions are a consequence of the collective scattering of light in the atomic sample, so
that any population of a dark state naturally reduces the atomic cooperation to some extent.
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This is the reason why purely optical interactions should induce more subtle modifications
in transparency windows, and it is not clear yet to which extent the EIT/CPT applications
are affected.

Figure 6 – A cylindrical and homogeneous cold cloud of N disordered three-level atoms
scatters probe and control fields to the free space. The atomic levels are in
a Λ configuration, as schematically shown on the left. The radius R of the
cylindrical surface is much larger than its thickness L, measuring the probe
field transmission in a disk of radius smax < R. Taken from Ref. [1].

In order to detect collective modifications on EIT/CPT phenomena, here we
derive a microscopic coupled-dipole model that describes the multiple scattering of probe
and control fields by cold ensembles of three-level atoms. Such a model represents a
significant extension of the linear-optics coupled-dipole model [23, 24, 25, 41]. In the
limit where polarization effects can be neglected, namely the dilute regime, we show
that light-mediated interactions narrow the width of the transparency window at its
Full Width at Half Maximum (FWHM). Furthermore, we analyse the Stimulated Raman
Adiabatic Passage (STIRAP) to get a prospect of the multiple scattering effect on the
fore-mentioned quantum memory applications. This EIT-based dynamical technique is
a fundamental ingredient in writing and retrieving protocols for quantum memories [42].
While considering a complete vectorial description, we demonstrate that the efficiency of
such a STIRAP process, in which the population is exchanged between the two ground
states of the Λ-system, is substantially reduced by collective scattering of light even in the
dilute regime. As our model combines long-range interactions mediated by light with two
distinct incident fields, it opens a new route for the study of collective effects in nonlinear
optics.
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3.2 Microscopic model

We consider an ensemble of N point-like three-level atoms at zero temperature,
with random positions rj = (xj, yj, zj), for j = 1, ..., N , decaying to the vacuum modes of
the radiation field. Their Λ energy-level scheme is composed of two ground states, |1⟩ and
|2⟩, and one excited state |3⟩, as represented in Fig. 6. A probe field, of angular frequency
ω1 and Rabi frequency Ω1, pumps the transition |1⟩ ↔ |3⟩, of frequency ω31, whereas
a control field, of angular frequency ω2 and Rabi frequency Ω2, drives the transition
|2⟩ ↔ |3⟩, of frequency ω32. Both fields are plane waves propagating in the direction of the
wave vectors k1 and k2, respectively. The light-matter Hamiltonian that describes this
system reads (ℏ = 1):

Ĥ =
∑
k,s

νk

(
â†

k,sâk,s + 1
2

)
+

N∑
j=1

[ 3∑
n=1

ωnnσ̂j
nn

+
2∑

n=1

∑
k,s

g
(n)
k,s

(
σ̂j

n3 + σ̂j
3n

) (
â†

k,se
−ik·rj + âk,se

ik·rj

)

+
2∑

n=1

Ωn

2
(
σ̂j

n3e
iωnt−ikn·rj + σ̂j

3ne−iωnt+ikn·rj

)]
, (3.1)

where σ̂j
n3 = |n⟩⟨3|j (σ̂j

3n = |3⟩⟨n|j) are the lowering (raising) atomic operators, and
σ̂j

nn = |n⟩⟨n|j are the atomic population operators. Each vacuum mode is characterized
by its wave vector k, polarization vector s, and angular frequency νk, where â†

k (âk) is
the corresponding creation (annihilation) operator. The exchange of photons between the
atoms and the environment takes place with coupling strength g

(n)
k,s = s · dn

√
νk/2ϵ0Vk,

for dn, ϵ0 and Vk, respectively, the dipole matrix elements of the transitions, the vacuum
permittivity and the mode volumes.

The explicit time dependence on the laser terms, appearing in the last line of
Eq.(3.1), can be removed by applying two consecutive unitary transformations. First, we
move to the interaction picture by applying Û0 = e−iĤ0t, with

Ĥ0 =
N∑

j=1

3∑
n=1

ωnnσ̂j
nn +

2∑
n=1

∑
k,s

νnk

(
â†

k,sâk,s + 1
2

)
(3.2)

representing the sum of the free energy terms, which results in the time dependent
interaction Hamiltonian that can be written as

ĤI = 1
2

N∑
j=1

2∑
n=1

Ωn

(
σ̂j

n3e
i∆nt−ikn·rj + σ̂j

3ne−i∆nt+ikn·rj

)

+
N∑

j=1

2∑
n=1

∑
k,s

g
(n)
k,s

(
σ̂j

n3â
†
k,se

i∆−
nkt−ikn·rj + σ̂j

3nâk,se
−i∆−

nkt+ikn·rj

+σ̂j
3nâ†

nkei∆+
nkt−ikn·rj + σ̂j

n3ânke−i∆+
nkt+ikn·rj

)
, (3.3)
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where we have defined the detunings ∆n = ωn − ω3n and ∆±
nk = νnk ± ω3n. After that, we

apply the unitary transformation Û1 = e
−i

[∑
j
(∆1−∆2)σ̂j

22+∆1σ̂j
33

]
t, finally obtaining

Ĥ =
N∑

j=1

[
(∆1 − ∆2) σ̂j

22 + ∆1σ̂
j
33

]
+ 1

2

N∑
j=1

2∑
n=1

Ωn

(
σ̂j

n3e
−ikn·rj + σ̂j

3neikn·rj

)

+
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(n)
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â†

k,se
iνkt−ik·rj + âk,se

−iνkt+ik·rj

)
. (3.4)

Note that the time dependence was transferred to the interaction between atoms and
vacuum modes, which is the required expression for the next steps.

In order to obtain the expectation values dynamics for the atomic operators, we
first evolve atom and photon operators in the Heisenberg representation, according to the
Hamiltonian (3.4), ending up with

dâk,s

dt
= −i

2∑
n=1

N∑
j=1

g
(n)
k,s

(
σ̂j

n3e
−iωnt + σ̂j
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)
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for n = 1, 2.

Then, we can formally solve for the photon operator by integrating Eq. (3.5), where
we neglect the vacuum fluctuation terms âk,s (0), obtaining

âk,s (t) = −i
2∑

n=1

N∑
j=1

g
(n)
k,s

∫ t

0
dt′
(
σ̂j

n3e
−iωnt + σ̂j

3neiωnt
)

eiνnkt−ik·rj . (3.10)
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Substituting Eq. (3.10) in the dipole equations Eqs.(3.6)-(3.9) [24, 43, 36], in the
the Markov approximation, where we consider σ̂l

mn (t − τ) ≈ σ̂l
mn (t), assuming that the

photon-transit time is much shorter than the decay time (slow decay) [44], and also
neglecting fasting oscillating terms proportional to e2iωnt, we finally obtain the following
reduced dynamics:

dσ̂j
nn

dt
= Γn

2 σ̂j
33 + 1

2
(
σ̂j
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, (3.11)
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for m, n = 1, 2 with m ̸= n, where we define the effective field operators

F̂ j
n ≡ i1̂Ωneikn·rj +

∑
l ̸=j

σ̂l
n3G

jl
n + Noise, (3.14)

and the effective light-mediated interactions

Gjl
n ≡ 2

∫ ∞

0
dτeiωnτ

∑
k,s

∣∣∣∣g(n)
k,s

∣∣∣∣2 (e−iνkτ+ik·rjl − c.c.
)

. (3.15)

In Eqs. (3.11)-(3.13), the decay rates that determine the time scale of the problem are
Γn ≡ Re (Gjj

n ), with Γ ≡ Γ1 + Γ2. Whereas in Eq. (3.15), we have defined rjl ≡ rj − rl as
the relative position between atoms j and l. Note that the upper limit of the time integral
in Eq. (3.15) is now the infinity since the vacuum modes dynamics are much faster then
the population dynamics.

Going to the spherically symmetric continuous integration
∑

k
→ V

(2π)3

∫ ∞

0
k2dk

∫ π

0
sin θdθ

∫ 2π

0
dϕ, (3.16)

which covers all possible wave vectors k [23, 24, 25], we end up with effective long-range
interactions,

Gjl
n = 3

2
Γneiknrjl

iknrjl
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knrjl

− 1
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nr2
jl

−
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zjl
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− 3
k2

nr2
jl

) , (3.17)

that decay with the euclidean distance rjl = |rjl| between atomic pairs. Here, we have
defined zjl = zj − zl, where zj is the position of the j-th atom along the cylinder’s
longitudinal axis. For the derivation of the interactions Gjl

n , one takes into account the
polarization of all vacuum modes in the radiation-matter Hamiltonian [36]. This is the
reason of the name “vectorial” for the corresponding scattering model. However, dilute
atomic clouds (ρ/k3

1 < 0.01) are well described by the scalar approximation [45, 24]

Gjl
n ≈ Γneiknrjl

iknrjl

, (3.18)
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which can be obtained by not taking into account the polarization vectors s in the initial
Hamiltonian Ĥ. In this work, we consider the scalar model for the calculation of the
transparency window, while both models are compared in the collective STIRAP analysis.

Returning to Eqs. (3.11)-(3.13), we now obtain the dynamical equations for the
expectation values ⟨ · ⟩ of the dipole operators σ̂j

nn. We consider that the total density
matrix of the system can be approximated by the tensor product between the individual
density matrices of each subsystem

(
ρ̂ = ρ̂1 ⊗ ρ̂2 ⊗ ... ⊗ ρ̂N

)
, which in our case is a good

approximation for incident fields such that Ωn < Γn [46]. As a result, we can neglect
the correlations between different dipoles ⟨σ̂j

nmσ̂l
n′m′⟩ ≈ ⟨σ̂j

nm⟩⟨σ̂l
n′m′⟩, for j ̸= l, while still

keeping single-atom correlations ⟨σ̂j
nmσ̂j

n′m′⟩. This type of semiclassical approximation leads
us to the following system of equations:

d
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for m, n = 1, 2 with m ̸= n. Note that the contribution from noise operators disappears in
the semiclassical approximation since

〈
âk,s (0)

〉
= 0 for a white noise reservoir. As another

consequence of the semiclassical approximation, the expectation values〈
F̂ j

n

〉
= iΩneikn·rj +

∑
l ̸=j

Gjl
n

〈
σ̂l

n3

〉
(3.22)

act like mean fields exciting the atomic transitions. The first contribution comes from the
incident fields, while the second contribution represents the influence of all the other atoms
on a given atom j, described by the light-mediated interactions from Eq. (3.17) [47, 36].

Finally, we point out that the optical interactions Gjl
n are the main ingredient that

distinguish Eqs. (3.19)-(3.21) from those that describe independent three-level atoms. Note
that it couples the transition |1⟩ ↔ |3⟩ of a given atom to the transition |2⟩ ↔ |3⟩ from
another atom. An effect neglected in single-scattering models but that here is essential for
our many-atom analyses, as can be seen in the following.

3.3 Collective Transparency Window
The procedure adopted in most experiments to investigate the transparency prop-

erties of a medium relies on light transmission measurements [15, 6, 37, 38, 39]. In this
context, the total scalar electric field operator [48, 24, 25],

Ê (r, t) = 1̂E1e
ik1·r − Γ1

2d1

N∑
j=1

σ̂j
13 (t) eik1|r−rj |

k1 |r − rj|
, (3.23)
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is investigated around the transition frequency ω31, within the spectral range where
the contribution of the control field can be neglected. In Eq.(3.23), the probe field, of
amplitude E1 ≡ Ω1/d1, interferes with its associated scattered field, and generates an
intensity profile I (r, t) ∝

〈
Ê† (r, t) Ê (r, t)

〉
over the whole three-dimensional space. The

symbol 1̂ represents the identity operator of the atomic Hilbert space. To keep the
consistence of our procedure, we also consider the semiclassical approximation for the
intensity:

I (r, t) ∝
∣∣∣〈Ê (r, t)

〉∣∣∣2 + Γ2
1

4d2
1

N∑
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〈
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33 (t)
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−
∣∣∣〈σj

13 (t)
〉∣∣∣2

k2
1 |r − rj|2

, (3.24)

where only quantum correlations between different dipoles were again neglected.

In our simulations, probe and control fields propagate along the longitudinal axis
of a cylinder with thickness L and radius R, where the random positions of the atoms are
homogeneously distributed with a given average density ρ = N/LπR2 (see Fig. 6) [49].
We then obtain the transmission T by numerically integrating the steady-state solution
of Eq.(3.24) in a disk of area A = πs2

max, at the observation point z0, for a radius of
integration smax. The result is divided by the incident power E2

1πs2
max, as in the following:

T = 1
E2

1πs2
max

∫
d2sI (s, z0, t → ∞) . (3.25)

To minimize the power losses by diffraction effects around the cylinder edges, we chose
R ≫ L and smax < R [50]. Given that most experiments are carried out in the optical
regime and the specific range of parameters we are adopting, the fundamental lengths L

and R would be in the scale of µm. We calculate many realizations of the EIT transmission
spectrum as a function of the probe field detuning ∆1, keeping the radius R constant for
different values of the density ρ and the sample thickness L, and take the average to reduce
the fluctuations. The number of realizations can vary from dozens to thousand, depending
on the number of scatterers, and it is increased until one sees no significant changes in the
transmission curves. We focus on densities ρ ≤ 0.01k3

1 and optical thicknesses b < 1 (see
Appendix A), where multiple scattering orders are already required to describe coherent
light scattering by cold atoms [47]. Our goal is to show that EIT and applications are
sensitive to coherent light-mediated interactions even for optically dilute regimes.

Figure 7 displays the transmission spectrum as a function of the sample density and
thickness, in the limits where the scalar model remains a good approximation (ρ ≲ 0.01k3

1)
[45]. In particular, Figs. 7(a) and 7(b) were obtained for Ω2 ≫ Ω1, a regime usually named
as the “EIT regime”, while (c) and (d) for Ω1 ∼ Ω2, the “CPT regime” [6]. Note that
the transparency at the resonance line (∆1 = 0) remains unchanged for EIT and CPT
regimes, so light-mediated interactions are not able to reduce the transparency maximum
as Rydberg interactions do. [37, 38, 39, 40]. Such a difference arises from the very nature
of the interactions: Rydberg interactions do not depend on how the atoms scatter light,
whereas optical interactions totally disappear when the system reaches a dark state [6].
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Figure 7 – Transmission spectrum as a function of the probe field detuning. (a) and (c)
were calculated in the EIT regime (Ω2 = 0.5Γ ≫ Ω1 = 0.1Γ), while (b) and (d)
were obtained for the CPT regime (Ω2 = Ω1 = 0.5Γ). In (a) and (b) we see the
changes in the transmission spectrum for different values of the atomic density
ρ, for a fixed cylinder thickness k1L = 40. While for (c) and (d) we vary k1L
for a fixed density ρ/k3

1 = 0.01. In panels (a) and (b), the number of atoms N
ranged from 314 to 3140 and, in panels (c) and (d), from 785 to 2335. For all
plots we set ∆2 = 0 and k1R = 50. Taken from Ref. [1].

Outside the resonance line, but still within the transparency window, we show that
the FWHM is affected by collective effects for a not-so-low densities (ρ < 0.01k3

1), a regime
where recent works sought high efficiencies in quantum memories [20, 21, 22]. In Fig. 8,
we exhibit the FWHM for EIT and CPT transparency windows, as a function of the
sample density ρ and thickness L. We confront the results obtained from the full system
of equations (3.19)-(3.21), where the multiple scattering of light is preserved, with those
of totally independent atoms (Gjl

n = 0). The latter model predicts only single-scattering
events, with no communication between the dipoles. Nevertheless, the scattered fields
from each individual atom still interfere, thus being equivalent to highly rarefied atomic
sample [51, 52]. As can be clearly noted in Figs. 8 (a-d), both models converge for very
small densities and sample thickness (single-scattering regime), where weak incident fields
(Ω1, Ω2 ≪ Γ1, Γ2) leads to the limit FWHM ∝ (Ω2

1 + Ω2
2) /Γ [53]. Yet, as the density

increases for a fixed thickness (and vice-versa), a substantial disagreement appears between
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both models. The single-scattering model predicts a slow linear increment of EIT and CPT
FWHM, while a practically linear narrowing of the transparency window is predicted by
the complete interacting model even over the range where atomic clouds are still considered
dilute (ρ ≲ 0.01k3

1). In particular, Figs. 8(a) and 8(c), obtained for the EIT regime, show
narrowings of 34.2% and 27.8%, respectively, at the largest point of the horizontal axis. In
the CPT regime (Figs. 8(b) and 8(d)), the narrowings are considerable smaller: 21.5% and
17.0%, respectively. Our results point out that higher-order scattering events are relevant
for the calculation of the narrowing of the transparency window [47].

Figure 8 – FWHM as a function of ρ and L for models with and without interacting terms.
The full black curves are obtained by solving the full system of Equations (3.19)-
(3.21), whereas dashed orange curves by turning off all dipole interactions. (a)
and (c) were calculated in the EIT regime (Ω2 = 0.5Γ ≫ Ω1 = 0.1Γ), while
(b) and (d) were obtained for the CPT regime (Ω2 = Ω1 = 0.5Γ). In (a) and
(b) we see the changes in the FWHM by varying the atomic density ρ, for
a fixed cylinder thickness k1L = 40, while for (c) and (d) we vary k1L for a
fixed density ρ/k3

1 = 0.01. For all plots we set ∆2 = 0 and k1R = 50, and the
maximum number of atoms in the cloud in the simulations was N = 3142.
Taken from Ref. [1].

We would like to highlight that narrowing of the EIT FWHM have been already
estimated empirically from Beer-Lambert’s law [54, 6], where many physical processes,
as for instance, Doppler effect and collisions, contribute to this spectral narrowing. In
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these previous works, one deduces the scaling of the FWHM with the density from a
naive extrapolation of the susceptibility for an ideal EIT non-interacting medium, where a
Gaussian ansatz for the near-resonance transmittivity is considered [54, 6]. Our microscopic
model, instead, predicts by first-principles the narrowing of the transparency window
provided by multiple-scattering effects (non-ideal medium), with no empirical assumptions
for the transmission spectrum.

In the transmission profile, we have detected an asymmetry between positive and
negative detunings (a little higher transmission for positive detunings). Such asymmetric
behavior has been observed since the first experimental realization of the EIT phenomenon
[55] and was wrongly attributed to several different effects, as Fano Interference and
noninterfering photoionization channels [55]. However, the origin of such asymmetry relies
on the interference that emerges between incident and scattered fields, whose mathematical
term is proportional to the detuning ∆1 [56]. This feature is not unique to three-level
systems.

Looking at the valleys of the transmission curves, we can see that minimum
transmission Tmin (around ∆1 = ±

√
Ω2

1 + Ω2
2/2) gets drastically reduced for increasing ρ

and L. Figures 9(a) and 9(c), obtained for the EIT regime, show a reduction of 42.9%
and 33.4% in the minimum transmission, respectively, for the last points of the horizontal
axis. Whereas Figs. 9(b) and 9(d), obtained for the CPT regime, show a smaller variation:
13, 3% and 10%, respectively. We infer that Tmin is weakly affected by atomic interactions
since the single-scattering model describes qualitatively well the reduction of the minimum
transmission, over the regime where FWHM is incorrectly described by the same model.
In other words, multiple scattering affects the FWHM even for not-so-high densities. The
valleys of the transmission curves are actually modified for independent atoms when
varying macroscopic parameters (ρ,L) because the incident intensity I0 is kept constant
over the detection area A at the same time that the number of absorbers changes.

3.4 Collective STIRAP

Now let us study how light-mediated interactions affect a coherent population
transfer between the two ground states |1⟩ → |2⟩ via STIRAP [42], a key process for many
quantum information applications, e.g., quantum memories [6]. To this goal, any slight
probability of finding atoms in state |1⟩ is deleterious for the process. Therefore, taking
care of precision, henceforward we compare the predictions from scalar and full vectorial
models. Initializing the system with all atoms in the ground state |1⟩, we consider both
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Figure 9 – Minimum value of transmission as a function of ρ and L. The full black curves
are obtained by solving the full system of dynamical equations, whereas dashed
orange curves by turning off all dipole interactions. (a) and (c) were calculated
in the EIT regime (Ω2 = 0.5Γ ≫ Ω1 = 0.1Γ), while (b) and (d) were obtained
for the CPT regime (Ω2 = Ω1 = 0.5Γ). In (a) and (b) we see the changes in
the FWHM by varying the atomic density ρ, for a fixed cylinder thickness
k1L = 40, while for (c) and (d) we vary k1L for a fixed density ρ/k3

1 = 0.01.
For all plots we set ∆2 = 0 and k1R = 50, and the maximum number of atoms
in the cloud in the simulations was N = 3142. As a result of the asymmetry
discussed in the text, we obtain different values of Tmin for opposite detunings,
around ∆1 = ±

√
Ω2

1 + Ω2
2/2, so Tmin refers to the lowest value between the two.

Taken from Ref. [1].

fields varying in time as

Ω1 (t) = Ωmax

{
θ (t − tf ) + sin

(
πt

2tr

)
[θ (t − t0) − θ (t − tf )]

}
, (3.26)

Ω2 (t) = Ωmax

{
1 − θ (t − t0) + cos

(
πt

2tr

)
[θ (t − t0) − θ (t − tf )]

}
, (3.27)

where Ωmax represents the maximum value of the Rabi frequency of the fields, t0 is the
STIRAP process starting time, tr is the time it takes for the sine (cosine) to reach its
maximum (minimum), tf = t0 + tr is the instant where the variations in the fields end,
and θ (x) is the Heaviside step function. The adiabaticity criterion is then fulfilled when
Ω1, Ω2 ≫ π/2tr, and the population for independent atoms should be totally transferred
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coherently to the ground state |2⟩ without ever populating the leaky excited state |3⟩. In
the previous section, we have studied the system’s optical response in the steady state
for a fixed ratio Ω1/Ω2, which leads the system to the stationary dark state |1⟩. In the
STIRAP, however, this ratio changes from 0 to ∞. Now we initially prepare the system in
|1⟩, with the typical EIT configuration Ω1 ≫ Ω2, and vary the parameters until we reach
Ω1 ≪ Ω2. This is the same regime as before but now with swapped roles for the two fields.
The adiabatic theorem [57, 58] tells us that if the process is adiabatic, the system will now
be at the new dark state |2⟩.

Figure 10 – STIRAP process in a cold cloud of three-level atoms. Panel (a) shows how the
Rabi frequencies of the probe and control field change in time, starting in a
condition where Ω1 ≪ Ω2 and adiabatically reaching a regime where Ω1 ≫ Ω2.
Panel (b) shows how the average ground state population of the state |1⟩
behaves for different densities. For all plots we set Ωmax = 0.5Γ, t0 = 10Γ,
tr = 60Γ, ∆1 = ∆2 = 0, k1L = 60 and k1R = 40. The number of atoms N
ranges from 1005 to 3015. Taken from Ref. [1].

Panel (a) of Figure 10 shows the time variation of both fields, whereas painel (b)
shows the average population ⟨σ11⟩ of the ground state |1⟩ throughout the process, for
different values of density. Note that, after the STIRAP is over, the average population
probability ⟨σ11⟩ remains for both scalar and vectorial models over much longer times than
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the noninteracting prediction. In particular, the vectorial model (represented by markers)
shows a deviation around 1% (⟨σ11⟩ ≈ 10−2) for ρ/k3

1 = 0.01, two orders of magnitude
higher than that from the scalar model (⟨σ11⟩ ≈ 10−5). One could argue that such an
error is not relevant. However, since the long-range interactions cannot be eliminated, they
pose a fundamental limit for STIRAP based applications. For instance, from the results
showed in Figure 10, a qualitative estimation of the efficiency loss in the writing process
of a quantum memory can be made. If the long-range interactions reduce the capacity of
storing a photonic state in the atomic basis with high fidelity, in a quantum algorithm
where the memory has to be accessed thousands of times [59], these errors will propagate
and it is expected to drastically reduce the practical overall information retrieval efficiency
of the quantum memory device. Our result points out that the efficiency can be even worse
for increasing densities.

3.5 Conclusion
In conclusion, we have derived a model that describes the light scattering by a

cold ensemble of three-level atoms. In the scalar regime, we were able to investigate how
light-mediated long-range interactions influence EIT and CPT phenomena, by simulating
the light transmission spectrum. This analysis demonstrates that optical dipole-dipole
interactions considerably narrow the transparency window for sufficiently dense and large
atomic clouds, which can be useful for applications such as high-resolution spectroscopy.
We have demonstrated that collective scattering also modifies a STIRAP process, showing
that it spoils the population transfer between two atomic states. Although a propagating
pulse model is required to infer a quantitative influence of these interactions on quantum
memories, our microscopic analysis recreates the basic writing process of such devices and
poses fundamental limitations to quantum memories.

Finally, we believe that our coupled-dipole model for three-level atoms, with control
and probe fields, is useful for the study of many other situations. For example, it can
be employed to investigate how nonlinear-optics effects [6, 60] are modified by collective
scattering of light, as well as to understand if probe intensity profiles in space can be
controlled by a control field. We can also investigate the modification of the efficiency for
writing and generation of single photons in three-level systems via DLCZ protocol [61] for
increasingly atomic densities.
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4 Steady-state entanglement generation for
non-degenerate qubits

4.1 Introduction

Entanglement is the clearest nonclassical signature of quantum physics. A composite
system is considered to be entangled when the quantum state that describes it is inseparable,
i.e., it is impossible to write it as a product of the states of each subsystem [62]. In the last
decades, entangled states have been the subject of great interest, presenting themselves as
a resource for several quantum schemes and applications such as quantum communication
[63, 64, 65], quantum computation [66], metrology [67] and quantum sensing [68].

The success of the aforementioned applications and tests often depends on the
ability to generate long-lived entangled states. However, in a realistic situation, the system
will interact with the environment. This will inevitably lead to the deterioration of the
entangled state, which is sensitive to decoherence [62]. For this reason, entanglement
preservation schemes have gained great prominence. Among the proposed methods to
minimize unwanted decoherence, we should mention the use of decoherence-free subspaces
[69, 70], quantum error correction codes [71, 72], weak measurements [73, 74] and the
quantum Zeno effect [75, 76].

Instead of aiming to prevent decoherence, a different strategy involves engineering
the system-environment interaction to generate entangled states, these are called dissipation-
assisted entanglement generation methods [77, 78, 79]. Since this idea was presented,
numerous implementations have been proposed and experimentally realized using several
physical platforms, such as cavity QED [80, 81, 82, 83, 84], superconducting qubits
[85, 86, 87, 88], macroscopic atomic ensembles [89, 90], Rydberg atoms [91, 92, 93] and
trapped ions [94, 95, 96, 97, 98, 99]. Another widely studied approach is the creation of
long-lived entangled states via stimulated Raman adiabatic passage (STIRAP) [100, 42],
since it offers robustness against decoherence by not populating lossy states.

In this chapter we propose two new schemes for producing highly-entangled states
in a system of two non-degenerate qubits. It is known that, in some systems, it is possible
to manipulate the degree of entanglement between two qubits via Stark shifts of their
electronic levels [101, 82, 102]. Here, however, we show that the symmetry in the energy
shifts between the emitters with respect to the bosonic mode actually allows us to achieve
a stronger entanglement. By considering their effective interaction through a bosonic mode,
such as an optical cavity or a motional mode, we are able to achieve a stronger coupling
between the qubits without needing to place the qubits particularly close together. This
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interaction with the quantized mode provides a coupling regime strong enough so that the
time scales of the effective interactions are much faster than the qubit relaxation, leading
to higher degrees of entanglement. This shows that the distinguishability between the
quantum emitters can be an advantage in the quest for the production highly-entangled
states. We are able to achieve a maximally entangled steady state, which is maintained by
injecting power via a pump field.

We show that the dynamics leading to the highly-entangled two-qubit state can
be understood by comparison with the electromagnetically induced transparency (EIT)
regime [103]. In that same analogy, but restricting ourselves to the subspace of just a single
excitation, we are able to drive the system into an entangled state via a STIRAP-like
process.

4.2 Model
Let us consider a system of two qubits, with different resonance frequencies ω(1)

e

and ω(2)
e , which are coupled to the same bosonic mode with frequency ωm, as illustrated in

Fig. 11(a). Here, the bosonic mode is symmetrically detuned from each of the qubits, so
that ω(1)

e = ωm −∆ and ω(2)
e = ωm +∆. In the Schrödinger picture, the system Hamiltonian

reads (ℏ = 1):

Ĥ = ω(1)
e σ̂(1)

ee + ω(2)
e σ̂(2)

ee + ωmâ†â + g
[
â
(
σ̂

(1)
+ + σ̂

(2)
+

)
+ h.c.

]
, (4.1)

where σ̂
(k)
+ = |e⟩⟨g|, σ̂

(k)
− = |g⟩⟨e| and σ̂(k)

ee = |e⟩⟨e| are the raising, lowering and excited-
state population operators, respectively, acting on the k-th qubit (with k ∈ {1, 2}). Without
loss of generality, we define the ground state energy to be zero. â (â†) is the annihilation
(creation) operator of the bosonic mode, g is the coupling strength between the bosonic
mode and each of the qubits, and h.c. stands for the Hermitian conjugate.

For convenience, we move to the interaction picture, make the rotating wave
approximation, and move to a rotating referential of relative coordinates in which both
qubits are stationary, thus eliminating the Hamiltonian time dependence. Then, Eq. (4.1)
becomes

Ĥ = ∆
(
σ̂(1)

ee − σ̂(2)
ee

)
+ g

[
â
(
σ̂

(1)
+ + σ

(2)
+

)
+ h.c.

]
. (4.2)

To account for decoherence, we consider our system to be in a weak system-
environment coupling regime, which allows us to use the Lindblad master equation [7] at
temperature T = 0 K. The assumption of zero temperature is reasonable since we work
within the optical regime, where the number of thermal photons remains negligible even
for room temperatures. Thus, we obtain the dynamical equations for the density matrix ρ̂

˙̂ρ = −i
[
Ĥ, ρ̂

]
+ L̂ (1)

q + L̂ (2)
q + L̂m, (4.3)



4.2. Model 53

Figure 11 – a) Two non-degenerate qubits, with both ground states coupled to the bosonic
mode of frequency ωm, detuned by ±∆. b) Level scheme of the same system,
but now in the basis up to one excitation: |G⟩ ⊗ |0⟩, |E⟩ = |G⟩ ⊗ |1⟩, and
|Ψ±⟩ = |Φ±⟩ ⊗ |0⟩, where |G⟩ = |g, g⟩ and |Φ±⟩ = (|e, g⟩ ± |g, e⟩) /

√
2. Here,

g promotes transitions from |E⟩ to |Ψ+⟩, while ∆ from |Ψ+⟩ to |Ψ−⟩. We
consider a pump field, of strength ε, continuously injecting energy into the
mode to combat decay from the mode with rate κ. The inset in b) shows the
entangled steady state partial density matrix, where the bosonic mode has
been traced out. Taken from Ref. [2].

where

L̂ (k)
q = Γ

(
2σ̂

(k)
− ρ̂σ̂

(k)
+ − σ̂(k)

ee ρ̂ − ρ̂σ̂(k)
ee

)
(4.4)

is the Lindblad term that accounts for the spontaneous decay from the excited state of
the k-th qubit, with k ∈ {1, 2} and Γ is the qubit decay rate, here assumed the same for
both qubits. The Lindblad term

L̂m = κ
(
2âρ̂â† − â†âρ̂ − ρ̂â†â

)
(4.5)

accounts for the decay of the bosonic mode, where κ is the decay rate.
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4.3 Steady state entanglement production
To describe the main mechanism responsible for the generation of entanglement,

we restrict ourselves, for the moment, to the single-excitation subspace, which is composed
of the following three states: |E⟩ = |G⟩ ⊗ |1⟩ and |Ψ±⟩ = |Φ±⟩ ⊗ |0⟩, where |G⟩ = |g, g⟩
and |Φ±⟩ = (|e, g⟩ ± |g, e⟩) /

√
2. |Φ±⟩ are maximally entangled two-qubit states. In this

subspace, the reduced Hamiltonian is:

ˆ̄H = ∆|Ψ−⟩⟨Ψ+| +
√

2g|Ψ+⟩⟨E| + h.c. . (4.6)

In analogy with the typical three-level Λ systems, we consider that |E⟩ and |Ψ−⟩ play the
roles of the two ground states, while |Ψ+⟩ is the excited state, as depicted in Fig. 11(b).
According to Eq. (4.6), the transitions |E⟩ ↔ |Ψ+⟩ and |Ψ−⟩ ↔ |Ψ+⟩ have effective
coupling strengths

√
2g and ∆, respectively. The Hamiltonian in Eq. (4.6) has a dark

eigenstate (an eigenstate without a |Ψ+⟩ component) given by

|D⟩ = − ∆√
∆2 + 2g2 |E⟩ +

√
2g√

∆2 + 2g2 |Ψ−⟩. (4.7)

Just as in other three-level systems [103], when the condition g ≫ ∆ is fulfilled, the dark
state |D⟩ transforms to |Ψ−⟩, which is our maximally entangled target state.

A significant difference between our system and a typical three-level Λ-system is the
fact that neither |E⟩ nor |Ψ−⟩ are actually ground states. Because of this, the system keeps
spontaneously decaying to the true zero energy ground state |G⟩ ⊗ |0⟩. For this reason,
the analogy becomes more accurate as the mode dissipation rate κ and the spontaneous
decay rate Γ become negligible (κ, Γ ≪ g, ∆). Then the system effectively remains in the
one-excitation subspace. One way to circumvent the decay and maintain the system in the
one-excitation subspace is to keep injecting energy into the mode. We consider this energy
injection as an additional term

Ĥpump = ε
(
â† + â

)
(4.8)

of the system’s Hamiltonian, where ε is the pump strength.

To characterize the steady-state entanglement between the qubits, we choose the
monotone quantifier concurrence [104, 105]. We numerically simulate the full system
dynamics,considering the decoherence and also higher excited states. The concurrence is
derived from the steady-state density matrix, which we obtain using the Quantum Toolbox
in Python (QuTiP) [106], after the bosonic mode is traced out.

As shown in Fig. 12(a), we obtain a strong entanglement within a large region of
parameters ∆ and g for ε = κ. Moreover, we see that satisfying the EIT condition g ≫ ∆
is a necessary but not sufficient condition to reach our maximally entangled target state.
We have chosen four sets of parameters to illustrate the system dynamics: A shows the
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situation where g ≪ ∆ and the population is led to the respective dark state, which has
a |G⟩ character [see Eq. (4.7)], and no entanglement is observed; in B, we have g = ∆
which leads to a weakly entangled dark state given by a mixture of |g, g⟩ and |Φ−⟩; in
C we have an interesting situation where the EIT condition g ≫ ∆ is fulfilled, the dark
state assumes a |Φ−⟩ character, but the detuning is so small that it takes too long to
populate |Φ−⟩, and since the system keeps decaying to the true ground state |G⟩ ⊗ |0⟩,
the entanglement is affected; D shows a near-optimal situation, with g ≫ ∆ and ∆ ≫ Γ,
driving approximately all the population to the dark state |Φ−⟩.

In a similar way, Fig. 12(b) shows a map of concurrence in the steady state as
a function of g and ε, with the constraint ∆ = 0.1g. This ratio between g and ∆ was
chosen to obtain maximum concurrence based on the results shown in Fig. 12(a). We
can see that for the adopted spontaneous decay rate, for small and large values of ε the
concurrence tends to zero, but in between those limits, it presents a maximum plateau for
g > κ. The value ε = κ is close to the point where it is possible to obtain a high degree of
entanglement even for weak coupling strengths (g ≲ κ).

In Fig. 12(c) we show the behavior of the concurrence as a function of the detuning
for a fixed value of g = κ. We observe that the concurrence decreases significantly when we
move away from the optimal point ∆ ≈ 0.1g. This finding is in accordance with what was
previously discussed for the parameters sets A and C. This optimal ratio between g and
∆ is influenced by the system’s decay rate Γ. A reduced value of Γ allows us to achieve
entanglement for smaller detunings. For Γ = 0, even an infinitesimal detuning would
eventually take the system to |Φ−⟩. Figure 12(c) shows that the spontaneous decay reduces
the entanglement even for the optimal case D; the concurrence decreases exponentially for
Γ > 5 × 10−4κ.

Focusing on the entanglement dynamics, we show in Fig. 12(d) the concurrence over
time for the cases A, B, C and D, where we observe different time scales to achieve the
maximum entanglement for each curve, respectively. We also include a visual representation
of the time evolved partial density matrix, where the bosonic mode has been traced out,
showing that we achieve the maximally entangled target state |Φ−⟩ for the near-optimal
set of parameters D.

So far, we have adopted a generic description of the system, since our scheme
proves to be quite versatile in terms of how many experimental platforms it could be
implemented: optical cavities with neutral atoms coupled to the same cavity mode [107, 108],
superconducting artificial atoms coupled to waveguides [109, 110], and ions trapped in the
same harmonic potential, coupled via laser with Jaynes-Cummings type interaction and
interaction with a collective vibrational mode [111].
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Figure 12 – Entanglement generation using the steady-state method. (a) Colormap showing
the concurrence of the steady state as a function of ∆/κ and g/κ. Points A
to D are referred to in panel (d). Colormap showing the concurrence of the
steady state as a function of g, ∆ (given the constraint ∆ = 0.1g) and ε. (c)
Concurrence as a function of the spontaneous decay rate Γ of each of the two
qubits (top x-axis) and as a function of the detuning (bottom x-axis). (d)
Concurrence as a function of time for different parameter sets, given in panel
(a). The concurrence generally grows and then stabilises. The insets in panel
(d) show the steady state partial density matrix of each curve, where the mode
has been traced out. For all panels except (b), the pump strength was set
to ε = κ. The spontaneous decay rate of each qubit was fixed at Γ = 10−5κ,
except for the red dashed curve in (c). The constant parameters at (c) are
given by point D in panel (a). Taken from Ref. [2].
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4.4 Adiabatic process
Inspired by the schemes to counteract decoherence developed for multilevel atoms,

we propose a STIRAP-like process to efficiently populate the entangled state |Ψ−⟩. For the
sake of clarity and simplicity, during this section we will restrict ourselves to the physical
system of trapped ions.

To this end, let us consider the case of two ions confined in a harmonic potential,
as depicted in Fig. 13(a). In addition, let us also consider that two electronic levels of the
ions are driven by a monochromatic laser close to resonance. The ions are subjected to a
magnetic field gradient, thus allowing them to experience different energy shifts of their
excited states, resembling the system illustrated in Fig. 11(a). The bosonic mode is formed
by the external degrees of freedom of the ions. For simplicity, we will only consider the
collective center-of-mass motional mode described by a harmonic oscillator of frequency
ωm. Absorption and stimulated emission of photons due to the interaction with the laser
lead to electronic transitions, but due to the momentum of the absorbed and emitted
photon may also change the ions’ motional state, thus coupling the internal electronic and
the external phonon dynamics of the ions [112, 113, 114]. In the Lamb-Dicke regime, the
laser can be tuned in frequency to be either directly in resonance to the atomic transition,
where the motional state is preserved, or in resonance to a blue or red sideband, where a
phonon is generated or annihilated upon absorption of a laser photon. When tuned the
red motional sideband resonance, we recover a Hamiltonian in the form of Eq. (4.2).

To perform the adiabatic population transfer between the two dark states of the
one-excitation subspace (see Eq. (4.7)), the system must be initially prepared in the state
|E⟩, which consists of the two ions in the ground state and the motional state with one
excitation; the latter can be prepared by exciting one of the ions and then by letting it
exchange energy with the vibration mode via a red sideband interaction. The initial state
|E⟩ corresponds to the dark state when ∆ ≫ g. By reversing this condition to g ≫ ∆
the dark state adiabatically transforms to |Ψ−⟩. In the proposed implementation, we can
manipulate both the coupling strength g and the detuning ∆ by changing the power of a
laser resonant to the red sideband transition and by varying the magnetic field gradient,
respectively. To illustrate, we here consider the time variation of g and ∆ as

g (t) = gmax

2 [1 + tanh λ(t − t0)] , (4.9)

∆ (t) = ∆max

2 [1 − tanh λ(t − t0)] , (4.10)

where gmax and ∆max are respectively the maximum values of the coupling constant and
the detuning. The parameter t0 is the time at which this function reaches its respective
half maximum value ∆max/2. The adiabaticity of the process is controlled by λ, which
determines the time scale of the parameter swap and, consequently, how fast the parameters
are changed. The specific choice of function is not crucial to the method, as long as it
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guarantees an near-adiabatic inversion of parameters. The parameter swap previously
described by Eqs. (4.9) and (4.10) is shown in Fig.13(c).

Figure 13 – Entanglement generation - adiabatic method with tunable g and ∆. (a) Two
two-level ions are trapped in a harmonic potential and coupled to the same
phonon mode. The ions are subjected to a magnetic field gradient, which
promotes different energy shifts to their excited states, recovering the system
illustrated in Fig. 11(a). (b) Pictorial representation of the energy shifts in
the ions excited states due to a magnetic field gradient, as a function of their
position in the trap. (c) Time evolution of the parameters g (t) and ∆ (t) as
described in Eq. (4.9) and (4.10), with the corresponding populations changes
in (d). We considered for all simulations. Adopted parameters: Γ = 10−3κ,
gmax = ∆max = 2 × 104κ, t0 = 4 × 10−3κ, λ = 103κ. Taken from Ref. [2].

In Fig. 13(d), we can see how the populations in the three states of the single
excitation subspace evolve through time, showing that we coherently transfer the population
from |E⟩ to |Ψ−⟩ (⟨|Ψ−⟩⟨Ψ−|⟩ > 0.99) before the mode dissipation starts to be relevant.

This scheme can also be applied to other experimental platforms. However, these
might not allow a perfect control over both parameters at the same time, e.g., a fixed g and
a tunable ∆ as observed in systems where the coupling constant sometimes is an intrinsic
value, such as in superconducting circuits. It is important to mention that the parameter
swap we are proposing, although very similar to the ones observed in Raman chirped
adiabatic passages (RCAP), does not involve any changes in the fields frequencies during
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Figure 14 – Entanglement generation - adiabatic method. (a) Time evolution of g and ∆,
with ∆ varying accordingly to Eq. (4.10) and a constant g. (b) Population
changes over time. We considered Γ = 10−3κ, ∆max = 2×105κ, g = 2.5×103κ,
t0 = 4 × 10−3/κ, λ = 5 × 102κ. Taken from Ref. [2].

the process. With that being said, in order to show that even in this situation we can
achieve a high degree of entanglement, we assume g to be constant and we vary ∆ in time,
according to (4.10) as shown in Fig. 14(a). Setting the value of g that ensures the initial
and final conditions ∆ ≫ g and g ≫ ∆, respectively, we make the parameter swapping
as smooth as possible. On the other hand, the lack of control over g restricts the time
scale of the population transfer to maintain the adiabaticity during the parameter swap.
Nevertheless, one can still perform a STIRAP-like process, obtaining a highly entangled
final state, as shown in 14(b), with a negligible population of the state |Ψ+⟩.

4.5 Conclusion
In conclusion, here we presented two novel strategies for producing maximally

entangled states in a system of two non-degenerate qubits coupled to a single bosonic
mode. In both cases, we use a direct analogy with ordinary three-level atomic systems in
the Λ-configuration and the EIT phenomenon, which allows us to draw a parallel with the
processes of optical pumping and adiabatic population transfer.

In the first proposed scheme, we show, that it is possible to generate steady state
entanglement with concurrence C > 0.99. Moreover, we show that the symmetry between
the qubits with respect to the bosonic mode is beneficial for the generation of entanglement.
As for the second scheme, we generate a highly entangled state by means of an adiabatic
process, and we achieve a population over 99% in the state |Ψ−⟩. We emphasize that this
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was done even considering non-ideal situations, where there is no complete control over
g and ∆. In ideal cases, where both parameters can be controlled simultaneously, the
adiabatic process can be controlled more efficiently, which leads to a perfectly coherent
transfer of populations.

The results presented in this work, besides indicating new ways to generate highly
entangled states in a simple way, have potential application in several experimental
platforms, such as trapped ions and quantum dots molecules coupled to a cavity mode.
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5 Single-shot measurements of phonon num-
ber states using the Autler-Townes effect

5.1 Introduction

The motional degree of freedom is intrinsic to many trapped ion experiments: The
paradigmatic approach to trapped ion quantum information processing uses electronic
states to store information while the motional modes shared by a chain of ions enable
entangling operations between ion qubits [115]. In other experiments, however, the motional
modes can play a more active role. For instance, in a recent experiment the motional degree
of freedom was used for storing quantum information [116], allowing trapped ions to be
used for continuous variable quantum information processing. The motional modes can also
be a very important tool for the development of technological applications and for studying
the fundamentals of general physics: in quantum logic spectroscopy [117], which is key to
the workings of the most precise atomic clocks [118], the collective motion serves as a bus.
Trapped ion motion also acts as the working medium in studies of thermodynamics in small
systems [119, 120, 121]. Moreover, non-classical states of ion motion offer metrological
advantages [122, 123, 124]. Investigations of the dynamics of phonon pair creation after
drastic trap potential changes are a possibility to simulate particle creation, thus creating
a link between quantum information processing and cosmology [125]. Other works also
looked into measurements of local phonons and their tracking which would broaden the
possibilities of quantum simulations [126, 127].

Various schemes exist to measure trapped ion motion [128, 129, 130, 119, 131,
132, 126, 133], yet efficient measurement schemes are sought after. Some techniques are
maximally efficient, but suffer from additional limitations: The method using the cross-Kerr
nonlinearity [132, 134, 135] only works within a narrow range of trapping parameters. The
method using composite pulse sequences [126] requires multiple coherent rotations on a
phonon-number-changing transition, and runs into problems when the phonon number is
nine or higher 1.

Schemes for resolving Fock states have been proposed in superconducting circuits
[136, 137], where a qubit is coupled to a bosonic mode in a strong dispersive interaction
regime. The AC Stark shift resulting from the coupling splits the qubit spectrum, turning
it into an anharmonic ladder where the dressed states energies are proportional to the
dispersive coupling rate and, consequently, to the number of photons in the system. Fock

1 This difficulty arises because the blue sideband coupling strengths for the transition from 0 → 1 quanta
and the transition from 8 → 9 quanta are related by an integer multiple (

√
9 = 3)
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states have also been measured in a non-demolition detection scheme using the AC Stark
shift of the transition of Rydberg atoms when interacting with photons in a cavity [138].

In this work, we introduce a new technique based on the Autler-Townes effect [139]
to measure a motional mode in the number (Fock) basis in a single shot. The technique
also allows quantum non-demolition measurements of Fock states of a particular motional
mode and can be used to determine the phonon distribution. We demonstrate the workings
of the method using a single trapped 88Sr+ ion in a linear Paul trap.

5.2 Autler-Townes effect caused by coupling on a phonon-number-
changing transition
The Autler-Townes effect arises in three-level systems (denoted in this work as

{|S⟩ , |D⟩ , |D′⟩}, see Fig. 15). The coupling of two levels ({|S⟩ , |D′⟩}) by, e.g., a laser field,
is described by the Hamiltonian

H = ℏ
2

 0 ΩC

ΩC −2∆C

 , (5.1)

where ΩC is the coupling strength and ∆C = ω0 − ωL is the detuning of the resonance
ω0 from the laser field frequency ωL. When the coupling field is resonant (∆C = 0) the
dressed eigenstates are (|S⟩ ± |D′⟩) /

√
2, and their eigenenergies are ±ℏΩC/2, respectively.

The spectral resonance for the transition from level |D⟩ to level |S⟩ is split into a
doublet if |S⟩ is strongly coupled to the level |D′⟩. Each of the doublet peaks corresponds
to the excitation of dressed eigenstates (|S⟩ ± |D′⟩) /

√
2 when ∆C = 0. This is called

the Autler-Townes effect [139], and it is sketched in Fig. 15 for a coupling to the blue
sideband (BSB) transition of the radial mode. The splitting behaviour is the same when
coupling to a radial red sideband (RSB) transition. The splitting between the doublet
peaks is proportional to the strength of the |S⟩ ↔ |D′⟩ coupling, ΩC . When |S⟩ ↔ |D′⟩
is a phonon-number-changing transition, ΩC becomes sensitive to the population of the
respective motional mode [140]. This allows us to use the Autler-Townes doublet to probe
the phonon number.

We demonstrated this by preparing a single trapped 88Sr+ ion in electronic state
|D⟩ with one of its radial motional modes in a number state with n quanta. We then
probed the |D, n⟩ ↔ |S, n⟩ carrier resonance while strongly coupling the BSB transition,
|S, n⟩ ↔ |D′, n + 1⟩. The resultant spectrum displays an Autler-Townes doublet with a
phonon-number dependent splitting which scales as

√
n + 1, see Fig. 16(c).

The experiment was repeated, but this time the strong coupling field was applied
to a RSB transition |S, n⟩ to |D′, n − 1⟩. The resultant spectrum again displays an Autler-
Townes doublet, however in this case the splitting increases as

√
n, see Fig. 16(b). For
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Figure 15 – The Autler-Townes effect. Left: The |D⟩ ↔ |S⟩ resonance is weakly probed
while levels |S⟩ and |D′⟩ are strongly coupled on a BSB transition. The splitting
principles are the same for a RSB transition, solely the coupling strength
dependency on the phonon number changes. Right: The system described in
terms of dressed states. The splitting between the dressed states reveals the
|S⟩ ↔ |D′⟩ coupling strength ΩC .

both experiments the excitation amplitude of the Autler-Townes doublet decreases with
an increasing phonon number because it also leads to coupling strength changes of the
probe. Next, we extracted the doublet splittings from Figs. 16(a) and (b) by fitting the
experimental data, and we confirm the respective

√
n + 1 and

√
n scalings in Fig. 16(c).

The scalings of the doublet splittings are the same as the ones of the strengths of the
phonon-number changing transitions for a typical laser-ion interaction [115]. For both the
coupling to the RSB and the BSB transition the scaling of the splitting is proportional to
the initial coupling strength Ω0. In Fig. 16, the splitting of the RSB scaling reaches larger
values for increasing phonon number because of the higher value of Ω0 for this scan.

5.3 Pulse sequence to efficiently measure ion motion in the number
state basis

For the measurements presented we employed states |D⟩ ≡
∣∣∣42D5/2 , mJ = −1

2

〉
,

|S⟩ ≡
∣∣∣52S1/2 , mJ = −1

2

〉
, |S ′⟩ ≡

∣∣∣52S1/2 , mJ = 1
2

〉
and |D′⟩ ≡

∣∣∣42D5/2 , mJ = −3
2

〉
. To

prepare phonon number states we cooled an ion to its motional ground state of |S⟩ before
iteratively applying π pulses on first the BSB to state |D⟩ and then the carrier transitions
back to state |S⟩, as described in [128]. Before the experimental sequence, a a last π

pulse is applied to initializes the ion in state |D⟩. To achieve high fidelity preparation of
phonon number states we also included multiple state-dependent fluorescence detection
steps, performed on the |S⟩ ≡ 52S1/2 , mJ = −1

2 transition, during the phonon number
preparation, as described in the supplemental material of ref. [141]. Finally, a π pulse
was applied on the transition from |D′⟩ to |S ′⟩ to increase the signal strength from the
S manifold. This last pulse is needed since after the Autler-Townes splitting the ion is
in a combination of state |S⟩ and |D′⟩, however the fluorescence detection only shows
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Figure 16 – Splitting of the Autler-Townes doublet. When the coupling field is resonant to a
phonon-number-changing transition the splitting of the Autler-Townes doublet
depends on the number of phonons in the system. (a) The coupling field was
resonant to a BSB transition and the splitting scales with the phonon number
n as

√
n + 1. (b) The coupling field was resonant to a RSB transition and the

splitting scales with
√

n. Error bars represent quantum projection noise (68%
confidence intervals). (c) The blue and red data points were extracted from
the doublet splitting in (a) and (b) via a fit (with the amplitude as a fitting
parameter), and are described by

√
n + 1 and

√
n scalings, respectively.

a signal if the ion is initialized in the S manifold. Fluorescence detection was used to
distinguish population in |S⟩ and |S ′⟩ from population in |D⟩ and |D′⟩. In this way, the
method can be used to test whether a trapped ion system has a particular phonon number
in a particular mode with almost unit efficiency. The pulse sequence is shown in Fig. 17(a).

Using the same pulse scheme as in Fig. 17(a) one can detect the ion’s motional
state by keeping the probe beam to a fixed frequency. Figure 17(b) shows the results
when we prepared the ion in different phonon number states, between 0 and 8, and then
tested whether or not the ion has a particular number of phonons in this range. For these
measurements the coupling beam was resonant to the BSB transition. Each particular
test relies on a priori knowledge of the expected peak positions, which can come from,
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e.g., spectra as in Fig. 16 or by measuring the frequency of Rabi oscillations on the BSB
transition for a ground-state-cooled ion.

The method can be repeatedly applied in a single experimental run until the phonon
number is determined. The method tests whether the system has a particular phonon
number by controlling the detuning of the probe field. If the result is negative, the ion
remains undisturbed in |D, n⟩ and thus the method may be repeated to test for other
phonon numbers until a positive result is achieved.

In the method described thus far, fluorescence indicates a positive result, and
because fluorescence detection involves scattering many photons, the method corresponds
to a destructive (demolition) measurement. By changing the transfer step to a π-pulse on
the |S⟩ ↔ |D⟩ carrier transition, lack of fluorescence indicates a positive result, as shown
by the experimental data in Fig. 17(c). This alternate method enacts a non-demolition
measurement in the phonon-number basis, and can be used to prepare ions in phonon
number states. Usually after each BSB π pulse for the phonon preparation a postselection
is performed. This method can be used with just one postselection step after the excitation
via the Autler-Townes splitting, thus making it more efficient.

When the ion is in a particular Fock state, it is reflected by Autler-Townes splitting
with the coupling strength depending on the phonon number. However, if we now look at
a thermal distribution, the ion has multiple motional modes. Each motional mode leads to
a different splitting for the Autler-Townes doublet. The thermal state manifests as not just
one set of symmetric peaks but multiple at the different coupling strengths. The heights
of the different Autler-Townes peaks can then be used to determine the probability of the
motional mode, and thus the phonon distribution of the thermal sate can be characterized
as shown in Fig. 18.

The thermal distribution in Fig. 18 was created by shortening the cooling cycle
before the Autler-Townes splitting scan, such that the ion did not reach its motional
ground state. With shorter cooling cycles, it is more likely to populate higher motional
modes, leading to a higher average phonon number. Four Gaussians on each side of the
Autler-Townes splitting are detected in Fig. 18, with the peak position defining the phonon
number and the peak height corresponding to its population.

5.4 Limitations of the technique

The resolving power of our technique is determined by the resonance linewidths (see
Appendix B.3) and by the splitting between resonances. The splitting between neighbouring
resonances decreases as ∼ n−1/2, making the technique less powerful for larger n. This
drawback is common to other phonon measurement methods [128, 129, 130, 119, 131, 132,
126, 133]. Larger splittings can be achieved by using a stronger coupling field, though
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Figure 17 – (a) Measurement sequence: The ion is initialised in |D⟩ with phonon number
n. First a π pulse on the |D⟩ ↔ |S⟩ carrier transition is attempted while a
phonon-number-changing transition is strongly coupled (in the figure a BSB
trasition is shown). During this step the probe field is detuned such that
the |D⟩ → |S⟩ transfer only occurs if n equals the test value m. Then any
population in |D′⟩ is transferred to |S ′⟩ before both S states are coupled to
the fluorescing state |f⟩. Finally, detection of fluorescence indicates n = m.
(b) Experimental demonstration of the sequence in (a). The ion was prepared
in different Fock states, and when the probed Fock state matched the detection,
the prepared Fock state fluorescence was detected. (c) Experimental results
when the transfer step used the |D⟩ ↔ |S⟩ carrier transition instead, enabling
a non-destructive measurement of the ion motion in the Fock basis.

this can also cause a higher background signal due to unwanted excitations of other
levels. Furthermore, as the strength of the coupling field is increased, the AC-Stark shifts
increase due to coupling to other levels and coupling field intensity fluctuations cause
larger broadening of the resonances [142]. This effect can be mitigated by using another
field with the opposite detuning from the resonance [143].

The spectral linewidth may be limited by the laser linewidth, magnetic field noise
or Fourier broadening. Longer probe times are required to reduce Fourier broadening, but
this comes at the expense of increasing the sensitivity to anomalous heating which changes
the ion’s motional state [144].

A further point to note is that the first-order description of the coupling strength
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Figure 18 – Phonon number distributions. For a thermal distribution the Autler-Townes
splitting shows multiple peaks at the different motional modes. The peak
position is defined by the phonon number and the amplitude by the population
probability of this mode. By scanning the Autler-Townes spectrum one can
obtain therefore the thermal distribution of the ion.

scaling ∼
√

n + 1 for BSB transitions and ∼
√

n for RSB transitions breaks down when
η2(2n+1) ̸≪ 1, where η is the Lamb-Dicke parameter. In this regime the coupling strengths
are best described using Bessel functions [122].

However, an advantage of our method for resolving Fock states in comparison to
the ones already proposed for superconducting circuits [136, 137] might be the applicability
in systems with weaker couplings. Schemes in superconducting circuits often require an
ultra-strong coupling, due to the large detuning ∆ with g2/∆ ≫ κ, Γ, where g = iηΩP , in
order to dispersively resolve single photons. The decay rate is defined as Γ and the field
dissipation by κ. The strong coupling used in our scheme is achievable even in cavity QED
systems [145], requiring only that g2 ≫ κ, Γ.

5.5 Conclusion

We introduced and demonstrated a method to measure trapped ion motion in the
number basis. It relies on the Autler-Townes effect where the splitting is dependent on
the motional mode when coupling to a phonon number changing transition. We showed
the expected scaling depending on BSB or RSB coupling and demonstrated that this
method can be used to create Fock states. The method can be repeatedly applied in a
single experimental run until a positive result is achieved. Otherwise the method can enact
a non-demolition measurement, and prepare trapped ions in phonon number states. A
scan of the Autler-Townes spectrum allows one to determine the probabilities of individual
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modes of a thermal distribution. If the individual excitation efficiency of the Autler-Townes
doublet is high enough, one could also use the Autler-Townes effect to create a Fock state
from a thermal distribution. The motional mode which should be excited then defines the
frequency detuning of the laser from the Autler-Townes doublet of the motional ground
state. As shown, it scales as

√
n + 1 for coupling of a BSB transition and

√
n for coupling

to a RSB transition. The method requires a system in which a quantum harmonic oscillator
can be coupled to a three-level quantum system. It can therefore also be applied to other
systems such as superconducting qubits.
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6 Outlook

During this thesis, we have reviewed the main results achieved during this doctoral
project. As stated in the overview, these results are divided into three works, which were
presented in this document as chapters, with each one approaching a different topic in
quantum optics. So, in this outlook, let us summarize the main results from each individual
work, state some final considerations, and possible extensions.

In the first work we have discussed here, we have derived a microscopic model
that describes the EIT phenomenon in the multiple scattering regime. With this model in
hands, we considered a scalar description of the scattering to show that the light-mediated
long-range interactions that emerge between the dipoles narrow the EIT transparency
window for increasing densities and sample sizes. And using a vectorial description, we
showed that near-field interacting terms can critically affect the atomic population transfer
in a STIRAP process. This result points out that standard STIRAP-based quantum
memories in cold atomic ensembles would not reach high enough efficiencies for quantum
information processing applications even in dilute regimes.

This result, however, only provides a qualitative glimpse of how much the inter-
actions would actually affect the efficiency of these quantum memory devices. A direct
extension of this work consists of considering a light pulse propagating through the sample
and simulating an actual writing and reading process. However, this would require taking
into account retardation terms in the operators of the system, making the numerical
solution of the system even more computationally demanding.

Following that, we presented a scheme to dissipatively produce steady-state entan-
glement in a two-qubit system, via an interaction with a bosonic mode. The system is
driven into a stationary entangled state, while we compensate for the mode dissipation by
injecting energy via a coherent pump field. We also presented a scheme which allows us to
adiabatically transfer all the population to the desired entangled state.

As stated in the conclusion of the chapter where we present these results, we
hope that this process has potential application in several systems, such as trapped ions
and quantum dots. A next step for this work may be the application of these schemes
in a specific experimental platform. In the numerical results we presented, the system
parameters were adjusted to maximize the degree of entanglement. However, we can see
that it is possible to obtain a high degree of entanglement even when we relax these
parameters. In fact, during my stay at the University of Stockholm, we had already
discussed the feasibility of using these ideas to obtain entangled states in the trapped ion
system, but at that time, the coherence time of the system would be a limiting factor to the
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efficiency of the process. Hopefully with future upgrades to the experimental system, our
colleagues from the University of Stockholm will be able to perform these measurements.

Finally, we presented a single-shot method to measure Fock states in the number
basis, which relies on probing an Autler-Townes splitting that arises when two levels are
strongly coupled via a phonon-number changing transition. The method was implemented
using a single trapped ion, where it can be used in a non-demolition fashion to prepare
specific phonon number states, and we have showed that the Autler-Townes splitting can
be used to measure phonon number distributions. A possible extension to this work that
we have already discussed among the authors would be engineering, using carrier and
phonon-number changing pulses, generalized NOON states in a system of multiple trapped
ions.

So, we truly believe that the value of these works lies not only on their results
themselves but also on the range of possible extensions and future studies that can be
derived from them to answer unexplored questions.
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APPENDIX A – Scattering cross section and
optical depth for a Λ three-level atom

In order to estimate the optical thickness for three-level atoms, we consider the
main dynamical equations Eqs. (3.19)-(3.21) for the particular case of a single atom:

d ⟨σ̂nn⟩
dt

= Γn

2 ⟨σ̂33⟩ − i

2Ωn (⟨σ̂n3⟩ − ⟨σ̂3n⟩) , (A.1)

d ⟨σ̂12⟩
dt

= −i (∆1 − ∆2) ⟨σ̂12⟩ + i

2Ω1 ⟨σ̂32⟩ − i

2Ω2 ⟨σ̂13⟩ , (A.2)

d ⟨σ̂n3⟩
dt

= −
[

(Γ1 + Γ2)
2 + i∆n

]
⟨σ̂n3⟩ − i

2Ωn (⟨σ̂nn⟩ − ⟨σ̂33⟩) − i

2Ωm ⟨σ̂12⟩ , (A.3)

for m, n = 1, 2, with m ̸= n. In the steady state, the expectation value of the excited state
population is given by

⟨σ33⟩ss = 4Γ∆2
1Ω2

1Ω2
2

Γ2Ω2
1A + Ω2

2B
, (A.4)

where

A = 4Γ2∆2
1 +

(
Ω2

1 + Ω2
2

)
2, (A.5)

B = Γ1
(
4∆2

1

(
Γ2 − 2Ω2

2

)
+ 16∆4

1 +
(
Ω2

1 + Ω2
2

)
2
)

+ 8Γ∆2
1Ω2

1. (A.6)

Expression (A.4) allows us to obtain the scattering cross section σsc = Psc/I0,
where Psc represents the scattered power, and I0 ∝ (Ω1/d1)2 the incident field intensity.

In order to obtain Psc, we consider the scalar scattered field (3.23) in the far-field
approximation:

E(far)
sc (r, k̂) ≈ − Γ1

2d1

eik1r

k1r
σ̂13e

−k̂.r0 , (A.7)

where r0 is the position of the atom, and k̂ a unitary vector of observation in spherical
coordinates. Since the scattered intensity is proportional to Isc ∝ ⟨E†

scEsc⟩, we then obtain

Isc (r) ∝
(

Γ1

2d1k1r

)2

⟨σ̂33⟩ss . (A.8)

The integration of this intensity over an spherical shell results in the scattered power

Psc ∝
(

Γ1

2d1k1

)2

⟨σ̂33⟩ss

∫ 2π

0

∫ π

0
sin(θ)dθdϕ (A.9)

∝ π

(
Γ1

d1k1

)2

⟨σ̂33⟩ss . (A.10)
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Consequently, the scattering cross section for this three-level Λ system can be expressed
as

σsc = π

(
Γ1

k1Ω1

)2

⟨σ̂33⟩ss , (A.11)

with ⟨σ̂33⟩ss given by Eq. (A.4). Finally, we can calculate the optical thickness for this
system integrating the density over the cylinder propagation direction [146, 35]

b = σsc

∫ L/2

−L/2
ρ (0, 0, z) dz (A.12)

= σscρL (A.13)

=
(

Γ1

Ω1

)2

⟨σ̂33⟩ss

N

k2
1R2 , (A.14)

where we used the fact that the average density ρ = N/πR2L is constant over space
[147, 148, 146]. Therefore, when varying L for a fixed homogeneous density, we are
changing the optical thickness. Around the FWHM (∆1 = 0.125Γ), we obtain b ≈ 0.36
for ρ = 0.01k3

1 and k1L = 40, in the EIT regime: Γ1/Γ = Γ2/Γ = 0.5, Ω1 = 0.1Γ and
Ω2 = 0.5Γ.
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APPENDIX B – Fock state detector

B.1 Experimental setup

The 88Sr+ ion is trapped in a linear Paul trap. During a single experimental cycle
the ion is first Doppler cooled using the 52S1/2 ↔ 52P1/2 transition. Afterwards, sideband
cooling on the radial modes is applied to reach the motional ground state. After these steps
the ion is in the state |S⟩ ≡

∣∣∣52S1/2 , mJ = −1
2

〉
. Before the sequence of the Autler-Townes

splitting, the ion is initialized in |D⟩ ≡
∣∣∣42D5/2 , mJ = −1

2

〉
via a π-pulse on the carrier

transition.

For the weak probe, a laser beam at 45° angle to the longitudinal trapping axis was
used. The remaining pulses on the qubit transition were performed with a beam coming
from the radial direction (at a 90° to the trap axis). The fluorescence light is detected with
a photomultiplier tube (PMT) mounted above the trap chamber. A sketch of the setup is
shown in Fig. 19. The fluorescence detection is done via the 52S1/2 ↔ 52P1/2 transition.
Photons are therefore only detected if the ion is in state |S⟩.

B.2 Experimental parameters

For scans involving the Autler-Townes splitting, a probe time of 700 µs was used.
For the strong coupling pulses, in both cases, one of the two radial motional modes was
used.

For the Autler-Townes scheme in which the coupling was performed on a blue
sideband (BSB) transition the Lamb-Dicke parameter was η = 0.0609. The radial sideband
which was used for the coupling was detuned from the carrier transition by ∆ = 2π ·
1.3433 MHz and the coupling strength was ΩC = 2π · 10.05(11) kHz.

The Lamb-Dicke parameter for the scans with red sideband (RSB) coupling was
η = 0.0605. The radial sidband was detuned by −2π · 1.36 MHz from the carrier transition
and the coupling strength was ΩC = 2π · 11.08(11) kHz in this case.

To create the thermal distribution of phonons in Fig. 4 in the main text, the length
of the sideband pulse in the cooling sequence was reduced. The optimized cooling on the
RSB transition was set to be at 2500 µs. For the scan with nth = 1.13(6) the cooling time
was reduced to 400 µs. The thermal distribution with nth = 4.4(3) was produced by cooling
only for 200 µs.
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Figure 19 – The ion is trapped using a linear Paul trap. The cooling, repump laser and
the weak probe beam are under a 45° angle to the trap axis. The remaining
lasers for operations on the qubit transition are applied from the radial as
well as then angled direction. Detection was done with a photomultiplier tube
(PMT) mounted at the top of the experiment.

B.3 Autler-Townes line shape
Consider a three-level atomic system in a V level configuration, with a ground

state |S⟩ and excited states |D⟩ and |D′⟩. A probe field with Rabi frequency ΩP and
frequency ωP couples the transition |S⟩ ↔ |D⟩ while a control field of Rabi frequency ΩC

and frequency ωC couples the transition |S⟩ ↔ |D′⟩. The Hamiltonian that describes this
system can be written as H = H0 + Hint, with

H0 = ωD′σD′D′ + ωDσDD + νa†a (B.1)

the term related to the atom’s internal degrees of freedom and the free energy of the
motional mode. ωD and ωD′ are the frequencies of the states |D⟩ and |D′⟩, respectively,
and ν is the motional mode frequency. The second term of the total Hamiltonian,

Hint = ΩP (σSD + σDS)
[
ei(ωP t+ϕP ) + e−i(ωP t+ϕP )

]
+ΩC (σSD′ + σD′S)

{
ei[η(a†+a)−ωCt+ϕC] + e−i[η(a†+a)−ωCt+ϕC]

}
(B.2)

is the one containing all the interacting terms, where σii, with i = D, D′ representing
the population operators and σmn = |m⟩⟨n| the lowering and raising atomic operators,
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which promote transitions from state |m⟩ to |n⟩, for m ̸= n and m, n = S, D, D′. η is
the Lamb-Dicke parameter, ϕP and ϕC are the phases of the probe and control fields,
respectively, and a†(a) represents the creation (annihilation) operator acting on the Fock
space. Here we have considered that the classical probe field does not couple the motional
degrees of freedom of the atom.

For convenience, we move to the interaction picture using the unitary transformation
U0 = e−iH0t. Then, applying the Rotating Wave Approximation (RWA), in the Lamb-Dicke
and low excitation regimes, i.e. η ≪ 1 and η

√
⟨(a† + a)2⟩ ≪ 1, the Hamiltonian reads

HI = ΩCσSD′ei(∆Ct+ϕC)
[
1 + iη

(
a†eiνt + ae−iνt

)]
+ ΩP σSDei(∆P t−ϕP ) + H.c., (B.3)

where H.c. represents the Hermitian conjugate.

Choosing a particular phase and considering a resonant probe field, the Hamiltonian
becomes

HI = ΩCσSD′ei∆Ct
[
1 + iη

(
a†eiνt + ae−iνt

)]
+ ΩP σSD + H.c. , (B.4)

where we notice that there are three possible resonances for the coupling field: ∆C = 0,
which leads to a carrier transition where the number of excitations in bosonic mode is
not affected by the control field, ∆C = −ν, that couples to the first red sideband (RSB)
transition, and ∆C = ν, coupling the first blue sideband (BSB) transition.

Next we obtain the lineshape for both the RSB and BSB transitions. It is important
to stress that the linewidths predicted in this appendix are nothing more than a prediction
for an ideal case. During the experiment, other sources of noise are present, such as
fluctuations in laser intensity, pulse lengths, and motional heating. These noise sources
cannot be neglected, and are generally predominant in the determination of the lineshapes.

B.3.1 Red-sideband (RSB)

Considering ∆C = −ν , the Hamiltonian in Eq.B.4 can be rewritten as

H = ΩP σSD + ga†σSD′ + H.c., (B.5)

with g = iηΩC . In the basis of n excitations in the bosonic mode b = {|S, n − 1⟩, |D, n − 1⟩, |D′, n⟩}
the three eigenvalues of this Hamiltonian are E

(n)
0 = 0 and E

(n)
± = ±

√
g2n + Ω2

P , which
means that the system has a dark state with zero eigenenergy, and two symmetric eigen-
states energetically separated by 2

√
g2n + Ω2

P . In a general form, these eigenstates can be
written as

|a(n)
0 ⟩ = Na0

n

[
|D, n − 1⟩ − ΩP

g
√

n
|D′, n⟩

]
,

|±(n)⟩ = N±
n

|S, n − 1⟩ ±

 ΩP√
g2n + Ω2

P

|D, n − 1⟩ + g
√

n√
g2n + Ω2

P

|D′, n⟩

 , (B.6)
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with ND
n and N±

n being normalization factors.

In the regime where the control field is much stronger than the probe field, i.e.,
g
√

n ≫ ΩP , these eigenenergies and eigenstates become

E
(n)
0 = 0 : |a(n)

0 ⟩ = |D, n − 1⟩, (B.7)

E
(n)
± = ±g

√
n : |±(n)⟩ = 1√

2
(|S, n − 1⟩ ± |D′, n⟩) , (B.8)

in accordance with the dressed state representation of the system. In this dressed state
representation, the system is composed by |D, n⟩ and the two symmetric states |±(n)⟩,
with probe resonance at ∆P = ±g

√
n.

The lineshape width can be obtained, for a system with n excitations in the Fock
space by calculating the total decay rate from one of the dressed states |±(n)⟩ using Fermi’s
golden rule, with the respective collapse operators. Concerning the spontaneous decay
processes in the system, the total decay rate is obtained considering the collapse operator
√

2ΓSD′σSD′ , resulting in

Γatom =
∣∣∣∣⟨S, n − 1|

√
2ΓSD′σSD′ |+(n)⟩

∣∣∣∣2
= ΓSD′ . (B.9)

For the contribution of the motional mode dissipation and heating in the lineshape
width, we consider the collapse operators

√
2κ (nth + 1)a and

√
2κntha†, with nth being

the mean thermal phonon number. So the total contribution is given by

κT =
∣∣∣∣⟨S, n − 2|

√
2κ (nth + 1)a|+(n)⟩

∣∣∣∣2 +
∣∣∣∣⟨D′, n − 1|

√
2κ (nth + 1)a|+(n)⟩

∣∣∣∣2
+
∣∣∣⟨S, n|

√
2κntha†|+(n)⟩

∣∣∣2 +
∣∣∣⟨D′, n + 1|

√
2κntha†|+(n)⟩

∣∣∣2
= κ [2n (2nth + 1) − 1] . (B.10)

Then, the spectral lineshape is fully characterized, with resonances located at
∆P = ±g

√
n and with the FWHM = ΓSD′ + κ [2n (2nth + 1) − 1].

B.3.2 Blue sideband (BSB)

In the case when the control field is resonant with the first blue sideband transition,
i.e., ∆C = ν, the Hamiltonian from Eq.B.4 becomes

H = ΩP σDS + gaσSD′ + H.c.. (B.11)

In the basis of n excitations in the phonon mode b = {|S, n⟩, |D, n⟩, |D′, n + 1⟩},
we obtain, in the regime where g

√
n + 1 ≫ ΩP , the eigenvalues E

(n)
0 = 0 and E

(n)
± =
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±g
√

n + 1, and their respective eigenstates:

|a(n)
0 ⟩ = |D, n⟩, (B.12)

|±(n)⟩ = 1√
2

(|S, n⟩ ± |D′, n + 1⟩) , (B.13)

where the only difference from the RSB transition is the effective coupling strength being
now g

√
n + 1. Consequently, this will also alter the Autler-Townes splitting.

The total spontaneous decay rate, considering the same collapse operator
√

2ΓSD′σSD′ ,
is given by

Γatom =
∣∣∣∣⟨S, n + 1|

√
2ΓSD′σSD′|+(n)⟩

∣∣∣∣2
= ΓSD′ , (B.14)

while the contribution from the dissipation of the phonon mode, obtained with the collapse
operators

√
2κ (nth + 1)a and

√
2κntha†, is

κT =
∣∣∣∣⟨S, n − 1|

√
2κ (nth + 1)a|+(n)⟩

∣∣∣∣2 +
∣∣∣∣⟨D′, n|

√
2κ (nth + 1)a|+(n)⟩

∣∣∣∣2
+
∣∣∣⟨S, n + 1|

√
2κntha†|+(n)⟩

∣∣∣2 +
∣∣∣⟨D′, n + 2|

√
2κntha†|+(n)⟩

∣∣∣2
= κ [2n (2nth + 1) + 4nth + 1] . (B.15)

This means that in the case of a BSB transition, the spectral lineshape is character-
ized by resonances located at ∆P = ±g

√
n + 1 and a FWHM = ΓSD′+κ [2n (2nth + 1) + 4nth + 1].
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