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Resumo—This work aims to demonstrate a practical way to
model Photonic Molecules (PMs), using tools often used in control
theory. It is shown here how it is possible to model systems
composed of coupled electromagnetic resonators using a graph
representation. Furthermore, it is shown the application of this
modeling method for different photonic systems and how the
response predicted by this method does agree with the response
expected by the coupled oscillators theory, and how this tool
predicts the transition between dark states and quasi-dark states
when the system’s symmetry is broken.

Index Terms—Photonic Molecules, Dynamical Systems, Cou-
pled Oscillators, Microcavities, Graph Theory.

I. INTRODUCTION

Integrated photonics has experienced essential developments
in the past few decades. In addition to showing itself as a
candidate tool to solve the problem of the increasing data
demand, research on integrated photonics has introduced re-
markable advances in areas such as biosensing [1], [2], on-chip
optomechanics [3], [4], and on-chip quantum computing [5],
[6].

Many applications of integrated photonics are based on
fundamental construct blocks, in which micro resonators ring-
shaped or disk-shaped are widely present, being almost ubiq-
uitous.

Fig. 1. Example of a ring resonator coupled to a waveguide. This example
shows a device constructed over an SOI platform (Silicon Over Insulator),
in which the width and the height of the waveguides are represented by
W and h, respectively. From: BAREA [7].

Figure 1 shows an example of one of these ring resonators
coupled to a bus waveguide, this figure also shows an example
of the construction of these devices over platform silicon
over insulator (SOI) one of the most important platforms
for photonics. In a device like this, the input wave travels
through the bus waveguide until it reaches the coupling region
between the optical oscillator (microring resonator) and the

bus waveguide. Currently, one portion of the light continues
traveling through the bus waveguide while the other portion is
coupled to the resonator. After one turn over the resonator, the
wave will experience interference over itself. This interference
will be constructive if the length of the resonator is an integer
multiple of the wave’s wavelength. In this case, there will also
be a destructive interference between the light coming out from
the resonator which is re-coupling to the bus waveguide. In
such a situation (resonant case) there is no output power at the
end of the bus waveguide, and therefore the wave is completely
confined within the resonator.

Although these components can store light in small vol-
umes, being able to generate high-Q resonances, when they are
used alone their performance is limited due to their intrinsic
dependence between the cavity’s radius (R), free spectral
range (FSR), and the Q factor. [7]. The dependence between
the radius of the cavity and the FSR (the interval between
two consecutive resonances) is explicit and comes from the
constructive interference condition. This means that the larger
the cavity’s length the smaller the FSR, as is shown in equation
1.

FSR =
λ2

nL
(1)

In the equation 1, n is the refractive index of the cavity and
L represents the cavity’s length, λ is the wavelength of the
resonant wave.

The Q factor dependence on the cavity’s radius comes from
the intrinsic loss mechanisms of the cavity, in which the
dominant effect is the light scattering in the cavity’s edges due
to its roughness. This means that a bigger radius implies higher
Q factors, which is a limiting relation in applications where
the area of these devices is critical, as indeed is in integrated
applications on chips. The equation 2 shows the dependence
between the Q factor and the length of the device.

Q =
nL

λ

FSR

FWHM
=

λ

FWHM
(2)

On the equation 2 FWHM is the full width at half
maximum of the resonances.

Figure 2 shows an example of the intrinsic dependencies
discussed above.

By looking at Figure 2 it is possible to see when the
cavity has a bigger radius the resonances appear sharper i.e



Fig. 2. Illustrative example of two spectral responses from cavities with
different radii. From: Author

the FWHM is reduced, which is a consequence of higher Q
factors, on the other hand, the FSR was reduced.

To overcome this problem, researchers have proposed the
use of coupled resonators instead of one single cavity, which
was called Photonic Molecules (PMs). The use of PMs in
photonic systems gives the system more degrees of freedom.
This versatility allows one to do spectral engineering over
the system, manipulating its degrees of freedom to obtain
spectral responses impossible to get with one single oscillator
[7], which has led the use of photonic resonators to new
applications [2], [8], [9]. Figure 3 shows two examples of PMs
formed by coupled resonators embedded in a main microring
resonator which is coupled to a bus waveguide.

Fig. 3. Examples of coupled resonators. From: BAREA [7].

On the other hand, this method of coupling cavities inside
or outside a main ring allows the observation of new effects
that depend on the position of the coupled cavities, such
as the emergence of dark states and quasi-dark states [10].
Therefore, correctly describing the behavior of these devices
is very important for research in this field of knowledge as well
as taking advantage of the best spectral engineering allowed
by these PMs. For this reason, in this work, it will be shown
how it is possible to model such PMs using graph theory,
a mathematical tool that proves to be exceptionally practical
for this application. Furthermore, the formulation shown here
may help future students or researchers to start their work with
these compact building blocks for integrated photonics.

II. METODOLOGY

A. Current main tools

Nowadays, most of the articles in the literature present
the modeling of systems composed of microring resonators
using two distinct methods: Transfer Matrix Method (TMM)
[11] and Coupled Mode Theory (CMT) [12]. The CMT is
a perturbative method, based on the formalism of coupled
oscillators, widely studied in classical physics. As a perturba-
tive formalism, its predictions are restricted to weakly coupled
systems with low losses [10].

A general formulation of CMT is shown in [13]. Using
this formulation, a photonic system’s dynamical and stationary
response can be found starting from a system of first order
differential equations. For a system composed of the same
number of ports and optical oscillators, these equations are
shown on 3 and 4.

da⃗

dt
= (jΩ− Γ) · a⃗+ I ·K · S⃗in (3)

⃗Sout = S⃗in +K · a⃗ (4)

On equations 3 and 4, a⃗ represents the amplitude of the
optical mode in each oscillator, so if the system is composed
of N resonators, a⃗ will have N components. The matrix ΩN×N

represents the resonant frequencies of the bare system in its
diagonal terms, while the off-diagonal terms represent the
coupling between the oscillation modes. The system’s losses
are accounted for in the ΓN×N matrix, which represents
both intrinsic losses and the decay due to the coupling.
S⃗in and ⃗Sout represent the N input and output ports of the
system. K is the coupling vector representing the coupling
between the input/output waves and the system’s modes. Thus
obtaining the response of a PM is very straight with the CMT
formalism, and it is done just by solving a first-order ordinary
differential equation (ODE) system. This formalism also has
the advantage that it allows one to obtain the normal modes of
the system using linear algebra techniques over the Ω matrix.
The eigenfrequencies are the eigenvalues of Ω while the
eigenvectors represent the system’s resonant modes. Although
this formalism provides a simple formulation for coupled-
resonators systems, it has some limitations, for example on
the prediction of quasi-dark-states, as shown in [10].

TMM, on the other hand, is a formalism based on the
combined interference of light coming from the multiple
optical paths allowed in a photonic system [10]. To model PMs
using this tool it is necessary to account for the waves’ phase
shift and decay when passing through the system’s elements
(which can be bus waveguides or microring resonators). That
can be done using the following equation:

Sout = e(jω−α)T = AejωT (5)

In the equation 5, the decay term e−αT was represented
in a compact notation by the coefficient A. ω is the angular
frequency of the light and T represents the time taken by the
light to travel over an element, and it is given by the equation:



T =
Lneff

c
(6)

L and neff are respectively the length and the effective
refraction index of the element, and c is the speed of light at
vacuum.

The coupling between the elements is modeled using the
transfer matrices equations, which are represented by equa-
tions 7 and 8. These equations represent the coupling between
two and three parallel bus waveguides, respectively.[

E2

E4

]
=

[
t jk
jk t

]
·
[
E1

E3

]
(7)
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The vectors present in equations 7 and 8 represent, partic-
ularly, the coupling ports of the device shown in figure 4. In
this figure, E1 is the input port of the PM, and E2 is the output
port. The full device is composed of three race-track-shaped
resonators. This shape allows better control of the coupling,
represented in equations 7 and 8 by the coupling coefficient
k. It is important to notice that both transfer matrices are
unitary, which guarantees that the input power is conserved,
as a consequence, the equation k2+ t2 = 1 is satisfied, where
t is called the transmission coefficient.

Fig. 4. An illustrative example of a photonic molecule containing two
different types of coupling (between two parallel waveguides and between
three parallel waveguides). (i) shows the full picture of the device while
(ii) and (iii) show the coupling regions in more detail. From: Author

To obtain the relation between the output and the input
ports of the system (i.e E2

E1
) it is necessary to solve the matrix

equations 7 and 8, considering the wave’s propagation through
the full device, which clearly demands cumbersome algebraic
work, more complex than in the CMT method. However, the
TMM formalism has the advantage of having no limitations on
modes’ predictions and it is not limited to weakly coupled with
low losses systems [10]. Therefore, a way to apply the TMM
formalism without such hard algebraic work is very suitable

for modeling PMs, that is where the system’s representation
using directional graphs shows up as an easy and practical
tool.

B. Graphs representation method
The graph representation method applied to resonators was

introduced by Rezende [14]. In this method, due to the
system’s linearity, it is possible to represent the system as a
block diagram or as an equivalent directional graph diagram,
in which the system’s ports are represented by vertices, and
the relations between them are represented by the graph’s
edges. An example of a simple system’s graph representation
is illustrated in figure 5, for a single cavity coupled to a bus
waveguide.

Fig. 5. Single cavity coupled to a waveguide and its graph representation.
The highlighted area (1) is the coupling region, where a1 represents
an incoming wave, E1 and E2 represent the input and output ports
respectively. From: Author

In the system presented in figure 5 both the coupling
relations given by TMM, as well as the propagation terms
are represented in the graph, which is the great advantage of
the graph’s representation. It includes all the relations in the
system, allowing one to apply Mason’s rule [15] to obtain the
direct connection between any two arbitrary ports. Mason’s
rule is a tool often used in control systems to simplify block
diagrams, i.e, obtain the equivalent relation (gain) of two
arbitrary points in the diagram.

The most practical way to apply Mason’s rule to the photon-
ics systems shown in this work is to use it in its matrix form.
To do this it is necessary to construct the adjacency matrix
of the graphs, which shows how a given vertex described
in column n depends on another vertex described in line m.
For the system of figure 5 the adjacency matrix is shown in
equation 9. In this representation, an element in the line m and
column n represents the relation between the port En and Em

(the arrow pointing from Em to En). This means for example
that the element A14 is the relation between E1 and E4, which
is jk as shown in equation 7 and by the arrow in the system
of 5, connecting E1 and E4.

A4x4 =


0 t 0 jk
0 0 0 0
0 jk 0 t
0 0 AejωT 0

 (9)



As described in [15], the transfer function between the
system’s ports Em and En is given by the element Mmn of
the matrix M :

M = (I −Amxn)
−1 (10)

In the equation 10, I is the identity matrix. Performing the
operations shown in equation 10, the matrix M is represented
by:

M =


1 t−AejωT (k2+t2)

1−AtejωT
jkAejωT

1−AtejωT
jk

1−AtejωT

0 1 0 0

0 jk
1−AtejωT

1
1−AtejωT

t
1−AtejωT

0 jkAejωT

1−AtejωT
AejωT

1−AtejωT
1

1−AtejωT

 (11)

For the system described here, the transfer function E2

E1
is

desired, once it gives the relation between the output and the
input of the system. Then, following Mason’s rule, the element
M12 of the matrix is taken. Considering the conservation of
energy, given by k2 + t2 = 1, the transfer function between
the input and output port is:

E2

E1
=

t−AejωT

1−AtejωT
(12)

The equation 12 is the same provided by pure TMM
formalism, as can be found in [7], [11], [16]. The application
of this method is easily done on more complex systems, as
it is shown below, proving the advantage of its use to predict
the spectral response of complex PMs.

Considering now a PM with two coupled resonators, as
shown in figure 6 with its graph representation.

Fig. 6. PM composed of two coupled resonators and its graph representa-
tion. The highlighted area (1) is the coupling region between the bigger
cavity and the bus waveguide, while area (2) highlights the coupling
region between the coupled cavities. From: Author

In this device, there are two different coupling regions, and
thus different coupling and transmission coefficients repre-
sented by k1, k2, t1, and t2. Furthermore, the two cavities
also have different lengths, so the wave’s phase shift and decay
due to its propagation will not be the same for each resonator.

These propagation effects are represented in the graph by Q,
related to wave propagation in half of the larger cavity, and
R, related to wave propagation along the smaller cavity. These
parameters are given by:

Q = A
1
2
1 e

jω
T1
2 (13)

R = A2e
jωT2 (14)

In these equations, Ti and Ai represent the time taken
by light to travel the entire cavity i and its decay after its
propagation, respectively.

The adjacency matrix of this system is:

A =



0 t1 0 jk1 0 0 0 0
0 0 0 0 0 0 0 0
0 jk1 0 t1 0 0 0 0
0 0 0 0 Q 0 0 0
0 0 0 0 0 t2 0 jk2
0 0 Q 0 0 0 0 0
0 0 0 0 0 jk2 0 t2
0 0 0 0 0 0 R 0


(15)

Applying Mason’s rule (equation 10) with the assistance of a
symbolic computation software, as Mathematica or the Sympy
package for python, on equation 15, the device’s transfer
function can be found. The equation 16 is the simplified
transfer function of the device, obtained using the software
Mathematica.

E2

E1
=

t1 +Q2(R− t2)−Rt1t2
1 + t1Q2(R− t2)−Rt2

(16)

Another device with an interesting configuration is the one
shown in figure 7. This device has three cavities with different
lengths and coupling strengths (k1, k2, and k3). The topology
of this device is called serial because the wave does not couple
on both smaller cavities at the same time, but sequentially.

Fig. 7. PM composed of three coupled resonators and its graph
representation, the highlighted areas show the coupling regions. This
topology is called serial. From: Author

As can be seen in the graph of figure 7, this device has
three propagation terms, each one for each resonator. While
Q and R are the same terms shown in equations 13 and 14,
and P is given by:



P = A3e
jωT3 (17)

The adjacency matrix is twelve lines vs twelve columns
matrix, represented in equation 18, which shows how it would
be more cumbersome to model this device using just TMM’s
manual algebraic work.

A =



0 t1 0 jk1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 jk1 0 t1 0 0 0 0 0 0 0 0
0 0 0 0 Q0.5 0 0 0 0 0 0 0
0 0 0 0 Q t2 0 jk2 0 0 0 0
0 0 0 0 0 0 0 0 Q 0 0 0
0 0 0 0 Q jk2 0 t2 0 0 0 0
0 0 0 0 0 0 R 0 0 0 0 0
0 0 0 0 0 0 0 0 0 t3 0 jk3
0 0 Q0.5 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 jk3 0 t3
0 0 0 0 0 0 0 0 0 0 P 0


(18)

Applying the equation 10 over the equation 18, and taking
the M12 term, with assistance of Mathematica, the following
transfer function is obtained:

E2

E1
=

PQ2(R− t2) + t1(R ∗ t2 − 1) +Q2(t2 −R)t3 + Pt1(1−Rt2)t3

Rt2 +Qt1(t2 −R)t3 + P (Qt1(R− t2) + t3 −Rt2t3)− 1
(19)

To simplify the equation 19 it is possible to consider that
both smaller cavities have the same length and coupling
strengths, which means that P = R and t2 = t3. This
simplification leads to:

E2

E1
=

Q2(R− t2)
2 − t1(Rt2 − 1)2

Q2t1(R− t2)2 − (Rt2 − 1)2
(20)

The last device modeled in this work is shown in figure 8.
This PM has two resonators arranged in parallel, and although
the coupling between the three resonators is equal, they can
have different lengths. Now, the coupling region (2) makes use
of the equation 8. The adjacency matrix of this PM takes the
form shown in equation 21.

Fig. 8. PM composed of three coupled resonators and its graph
representation, the highlighted areas show the coupling regions, the region
(1) is a simple coupling between two waveguides while the region (2)
highlights the coupling between three parallel waveguides. This topology
is called parallel. From: Author

A =



0 t1 0 jk1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 jk1 0 t1 0 0 0 0 0 0
0 0 0 0 Q 0 0 0 0 0

0 0 0 0 0 t2 0 −j k2√
2

0 −j k2√
2

0 0 Q 0 0 0 0 0 0 0

0 0 0 0 0 −j k2√
2

0 t2+1
2 0 t2−1

2

0 0 0 0 0 0 R 0 0 0

0 0 0 0 0 −j k2√
2

0 t2−1
2 0 t2+1

2

0 0 0 0 0 0 0 0 P 0


(21)

On the equation 21, the terms P , Q, and R are the same
propagation terms present in equations 17, 13, and 14.

Again, applying Mason’s rule on equation 21, using the
software Mathematica, the equation 22 is obtained as the
device’s transfer function.

E2
E1

=
PQ(1−2R+t2)+Q(R+(R−2)t2)−t1(R+Rt2−2)+Pt1((2R−1)t2)−1

2−2Qt1t2+R(Qt1−1)(1+t2)+P (2Rt2+Qt1−1−t2(1−2R+t2))

(22)
The above equation is very long and it can be simplified to

the equation 23 if it is considered that both parallel cavities
have the same length.

E2

E1
=

RQ+ t1 − (Q+Rt1)t2
1 +RQt1 − (R+Qt1)t2

(23)

The features of each one of the equations obtained in this
section, as well as the spectral response of the devices they
describe, are shown in the results section.

III. RESULTS AND DISCUSSION

A. Spectral response

In this section it is shown how the spectral response given
by the equations obtained in the previous section does agree
with the response expected by the coupled oscillators theory
presented in any undergraduate classical mechanics book [17],
which allows one to make an analogy between optical coupled
resonators systems and coupled mass-spring systems. It is
also shown how the devices’ symmetry and topology have
an influence over their transmission spectrum.

The first transmission spectrum is the one from the device
with two cavities (equation 16 and figure 6). To calculate its
spectral response the following parameters were considered:

• A1 = A2 = 0.95
• k1 = 0.312
• neff1 = neff2 = 3.15
• L1 = 150µm and L2 = 75µm

Using these parameters ensures that the resonances of both
cavities are on the same wavelength. This is a key condition
to show the main characteristics of this PM topology.

The normalized power transmission is calculated by taking
the transfer function and multiplying it by its complex con-
jugate. Doing these calculations for equation 16, considering
input waves with variable wavelengths in a range between
1.562 µm and 1.567 µm, the following spectra are obtained
for two different coupling strengths:
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Fig. 9. Two transmission spectra for different values of coupling between
the two cavities. The top image shows the resultant spectrum for a
coupling coefficient K2 = 0.5, while the bottom image shows the
transmission for k2 = 0.8. From: Author

In the spectra shown in figure 9, it is possible to see
two resonances. These two resonances appear because, even
though the system has two cavities with the same resonance
frequency, these cavities are coupled, and as in any system
composed of coupled oscillators there is a change in the
frequency of the resonant modes [17], this means that the
resonances are ”split” and the separation between the resultant
resonances is governed by the coupling strength of the system,
as can be seen on the figure 9. When the coupling factor is
increased, the splitting of resonances also increases.

The next study is from the series device (represented in
figure 7). For this device, the following parameters were
considered, in which again, the resonant frequency of all
cavities was the same.

• A1 = 0.95 and A2 = A3 = 0.99
• k1 = 0.312 and k2 = k3
• neff1 = neff2 = neff3 = 3.15
• L1 = 150µm and L2 = L3 = 75µm

Considering the spectral range from 1.562 µm to 1.567 µm
and two different coupling strengths, one for k2 = 0.3 and the
other for k2 = 0.8, the spectra shown in figure 10 are obtained.

The same effect of resonance splitting is observed in figure
10, but in this case, the resonance frequency is split into
three resonances, as was expected for a system composed
of three coupled resonators. Again, as the coupling strength
has increased the separation between the resonances and the
extinction factor of the central resonance increases. The central
resonance of this spectrum is called a quasi dark-state, and as
it is shown on [10] the CMT method is not able to predict this
resonant mode without using a correction.

The last study is the spectral analysis obtained by equation
22 (which refers to the parallel device, shown in figure 8),
using the following parameters:

• A1 = 0.95 and A2 = A3 = 0.95
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Fig. 10. Two transmission spectra for different values of coupling between
the bigger cavity and smaller cavities. The top image shows the resultant
spectrum for a coupling coefficient K2 = k3 = 0.5, while the bottom
image shows the transmission for k2 = k3 = 0.8. From: Author

• k1 = 0.312 and k2 = 0.5
• neff1 = neff2 = 3.15
• L1 = 150µm and L2 = L3 = 75µm

With the parameters shown above all three cavities of the
PM has the same resonance frequency. Instead of considering
two values for the coupling strength (k2) in this case, it was
considered two different values for the refractive index of one
of the parallel cavities. Since they have the same length and
coupling coefficient, these cavities become identical when the
refractive index of the parallel cavities is the same, and then,
the system has symmetry. This situation is shown in the top
image of figure 11.

In the spectrum cited in the previous paragraph (top spec-
trum of figure11 ), it is seen just two resonances rather than
three, which would be expected for a three-oscillator system as
shown in figure 10. The lack of central resonance observed in
the transmission spectrum is called a dark state, and this effect
appears due to the system’s symmetry. As the two parallel
cavities have the same parameters, they have the same impact
as they were just one cavity, which is equivalent to reducing
the degrees of freedom of the system for an equivalent one
composed of two resonators as the one shown in figure 6. It’s
possible to observe that this spectrum is the same present on
the top image of figure 9.

When the symmetry of the system is broken, which was
done in this case by adding a perturbation on the refractive
index of one of the parallel cavities, the dark state is also
broken, and a central resonance appears on the spectrum. It
happens because in the case of a slight perturbation in one
of the cavities they are not exactly equal as before, then they
behave as two different cavities. In any case, the graph theory
presented here adequately describes the spectral response for
both situations.
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Fig. 11. Two transmission spectra for different values for the refractive
index of one of the smaller cavities. The top image shows the resultant
spectrum for a refractive index of neff3 = 3.150, while the bottom
image shows the transmission considering neff3 = 3.151. From: Author

IV. CONCLUSION

This work showed how it is possible to model PMs in
a practical and easy way using the graph method, which
considers the coupling relations given by TMM. With the
modeling tool shown here, it is possible to model complex
photonic systems composed of many coupled resonators with
the assistance of symbolic computation software, which will
be in charge to calculate the matrix operations. This work
also showed how the symmetry of coupled optical resonators
system has an effect on the resultant spectra, being possible
to tune between dark states and quasi-dark states by adding
small perturbations to the coupled system.
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