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Abstract

With the growth of the world population, the demand for agricultural areas has
reached the limits of sustainability. It is then urgent to increase the efficiency of planta-
tions, producing a more significant amount of crop without increasing the planted areas.
In this context, the area of Precision Farming has emerged, integrating state-of-the-art
technologies into agricultural systems. One of the most demanded cultivars is sugarcane,
used both as food and biofuel. In sugarcane harvesting, the precision of a few centimetres
is required to prevent the cultivars from being crushed by the harvesters. The autonomous
harvesters are guided by satellite positioning systems, whose precision can reach several
meters. One proposed solution is to use unmanned aerial vehicles equipped with cameras
and other sensors capable of providing real-time information to the harvesters. This work
shows the development of image analysis for estimating crop orientation by two heuristic
approach using some well-know processing techniques. To validate the solution architec-
ture, an aerial image set was acquired and labeled by experts. To create a robust ground
truth, a methodology for fusion of experts voting was used. With the ground truth,
the estimating technique was validated, and its implementation was analysed, presenting
performance and quality within the application requirements.

Keywords: Remore Sensing, Crop-row, Sugarcane, Radon Transform, Savitzky-Golay.





Resumo

Com o crescimento da população mundial, a demanda por áreas agrícolas atingiu os
limites da sustentabilidade. Por isso há urgência em aumentar a eficiência das plantações,
produzindo uma quantidade de colheita mais significativa sem aumentar as áreas plan-
tadas. Nesse contexto, surgiu o campo da Agricultura de Precisão, integrando tecnologias
de ponta aos sistemas agrícolas. Uma das cultivares mais demandadas é a cana-de-açúcar,
utilizada tanto como alimento quanto como biocombustível. Na colheita da cana-de-
açúcar, é necessária uma precisão de alguns centímetros para evitar que as cultivares
sejam esmagadas pelas colhedoras. As colheitadeiras autônomas são guiadas por sistemas
de posicionamento por satélite, cuja precisão pode chegar a vários metros. Uma solução
proposta é a utilização de veículos aéreos não tripulados equipados com câmeras e outros
sensores capazes de fornecer informações em tempo real aos colhedores. Este trabalho
mostra o desenvolvimento da análise de imagem para estimar a orientação da cultura por
duas abordagens heurísticas usando algumas técnicas de processamento bem conhecidas.
Para validar a arquitetura da solução, um conjunto de imagens aéreas foi adquirido e ro-
tulado por especialistas. Para criar uma comparação robusta, uma metodologia de fusão
de votos de especialistas foi usada. Com a verdade absoluta mensurada, a técnica de esti-
mação do ângulo de cultivo foi validada e sua implementação foi analisada, apresentando
desempenho e qualidade dentro dos requisitos da aplicação.

Palavras-chave: Sensoriamento Remoto, Linha de colheita, Cana-de-açucar, Transfor-
mada Radon, Savitzky-Golay.
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Chapter 1

Introduction

The recent trajectory of Brazilian agriculture is the result of a combination of factors.
Among these factors, what made the most difference in the last 50 years were investments
in agricultural research. Advances in science, appropriate technologies and innovations
can be called agricultural investment (EMBRAPA, 2018). As can be seen in figure 1, the
planted area did not follow the growth of production, this is due to the lack of land for
the horizontal growth of agriculture in Brazil and in the world. In other words, there are
strong reasons for increasing agricultural production to occur through the intensification
of production systems and not by increasing the area used for growing plants and raising
animals (EMBRAPA, 2018). The recent modernization of Brazilian agriculture is the
main contributor to an intensification of agricultural production without the need for
territorial expansion.

Figure 1 – Production indicators and planted area from 1975 to 2017.

Source: (EMBRAPA, 2018)

With these technological advances, precision agriculture (PA) emerged. Precision
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agriculture can be understood as a set of tools and technologies that allows the producer
to know the entire area for cultivation in a more complete way and work more efficiently.
Precision farming is a holistic and innovative systems approach that assists farmers in
managing crop and soil variability in order to lower costs, improve yield quality and
quantity, and increase farm income (PAUSTIAN; THEUVSEN, 2017), reducing the use of
chemicals to prevent environmental damage and produce high quality products to satisfy
the growing demand for food (MOURHIR et al., 2017) (ONYANGO et al., 2021). PA
applies traditional agricultural practices with new technologies, practices and economic
drivers to increase sustainability in a dynamic balance (BALAFOUTIS et al., 2017).

The use of Unmanned Aerial Vehicles (UAVs) for remote sensing offers the possibility
of acquiring field data in an easy, fast and economical way compared to the methods
mentioned above. The constant evolution of cameras to obtain better image resolution,
together with the fact that UAVs fly at low altitudes, also contributes to better resolutions
in the images obtained, in addition to the high temporal resolution. Furthermore, UAVs
are much simpler to use and also cheaper than manned aircraft. Its use is also more effi-
cient than terrestrial systems, as they promote a field sweep in a short time (TSOUROS;
BIBI; SARIGIANNIDIS, 2019). Unmanned Aerial Systems (UAS) are now used in remote
sensing applications for Precision Agriculture, serving a multitude of purposes such as, for
example, health monitoring and disease detection, growth monitoring and yield estima-
tion, weed management and detection, among others. (ZHANG; KOVACS, 2012) (PURI;
NAYYAR; RAJA, 2017) (MOGILI; DEEPAK, 2018) (YANG et al., 2017) (KULBACKI
et al., 2018).

1.1 Motivation

The concept of linear rows planting is considered a very attractive approach for most
of cultures and farmers. The main advantages is related to maximizing the light exposure
for the plants, providing wind passage along the inter-rows to enhance the gas exchange,
enhancing the movement between plants especially for planting, weeding, pest control and
harvesting operations.

In the recent years, harvesting mechanization experimented huge technological ad-
vances that is related with the increase production of sugarcane which is one of the
most planted crops on the planet (CONAB, 2021). The mechanization of harvesting re-
lies on satellite-based positioning, navigation and timing (PNT) systems, also known as
Global Navigation Satellite System (GNSS). However, location accuracy depends on the
technology used, position errors can range from 9 m to 2.5 cm (KRüGER; SPRINGER;
LECHNER, 1994). Therefore, in agricultural applications, correction systems must be
integrated with GNSS to achieve the highest accuracy, in centimeter order (CELADES-
MARTíNEZ et al., 2020).
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The GNSS-RTK is one of these correction system that provides geographic accuracy,
which has the potential to optimize cropping patterns in agricultural fields. This tech-
nology uses an RTK base that remains in a fixed position and processes the position of
the GNSS signal for a long time to enable the high accuracy of its location. Once this
is done, RTK can reliably compare your current position with the actual GNSS signal
to determine what the current error of the GNSS signal is. Then RTK sends this error
signal to the harvester which receives it and applies the GNSS coordinate compensation,
see figure 2.

One of the disadvantages is that the base signal must reach the harvester via radio
frequency waves. The maximum distance between them can be up to 60 km and natural
or artificial obstacles can interrupt the transmission. In these situations, the autopilot of
the agricultural machine loses the accuracy of the crop line, causing the harvester to pass
over the crop or enter a collision course with the transhipment tractor. Therefore, an
alternative to traditional satellite navigation systems for sugarcane harvesters is needed.

Figure 2 – Representation of the use of the GNSS-RTK system in the harvest..

Source: Author.

1.2 Problem Description

The main goal of this work is the development of a heuristic that allows UAV to identify
the direction of the sugarcane plantation lines to help harvesters in their trajectories in
the future, as illustrated in the figure 3.

There are three possible data processing and communication architectures:

❏ Remote Processing: the UAV captures the images and sends them to a base station
which performs the processing and transmits guidance to the harvesters.
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Figure 3 – Representation of the more complex operation architecture: UAV transmitting
the orientation of the planting rows in real time.

Source: Author.

❏ On-board processing: the UAV captures and processes the images, transmitting
guidance to the harvesters.

❏ Mixed Processing: The UAV captures and preprocesses the images, sending pre-
processed images or feature vectors to the base station, finishing the processing and
sending guidance to the harvesters.

In this text, we will work with the worst case, which is on-board processing. This
means that our goal is to developed an heuristics that can be used as a real-time method
to transmit the guidance of the crop lines to the combine. Thus, the processing time to
find the orientation is decisive for the success of the task. The processing time constraint
requirements for each image are designed based on a combination of cut speed, image
overlap percentage, flight height and camera’s field of view. The other two cases would
be more readily implementable from our study. But before we delve into the specific
objectives, we have to detail these two main challenges involved in growing sugarcane:
Spacing and Density.

At Harvest operations an important element to consider is the spacing of the crop
rows as it allows the optimization of activities such as the intensive use of machines
and harvesting. Planting spacing should vary according to the fertility of the land and
the characteristics of the recommended variety. In the case of sugarcane, the spacing
between furrows can vary from one meter to 1.8 meters. If the harvest is mechanized,
the spacing must be at least 1.5 meters to avoid trampling and compaction of the cane
lines by the machine wheels. For sugarcane, the so-called pineapple spacing is common,
where two rows of sugarcane are planted 0.45 centimeters apart, with a spacing of 1.50
meters between the rows. The total spacing is also 1.80 meters, as shown in figure 4. It
is necessary to distribute at least 12 gems per meter of furrow. For planting in times of
drought, it is necessary to give preference to a density of 15-18 buds per meter. These
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information will be important to define the requirements and acceptance criteria of our
proposal later on.

Figure 4 – Crop rows/carrier/harvester distances

Source: Extracted from Spekken, Salvi e Molin (2014).

As sugarcane can reach a height of up to 2.5 meters and its crowns can blend in
with the neighboring planting row, the orthogonal aerial image is adequate to obtain a
larger area of the region of interest, as well as to capture more details about line segment
patterns, contrasts between soil and plant, as shown in figure 5. As frontal images find
application where the crop culture is planted with wide spacing and/or low height, the use
of frontal images at low heights such as less than 2 meters is not applicable in sugarcane
harvest.

1.3 Objectives and Contributions

The main goal of this work is through image processing and pattern detection tech-
niques to extract from aerial footage of sugar cane plantation its crop orientation angle
which is then compared with ground truth measurements.

To implement the proposal, an image database was captured with a commercial UAV
and by analysis of human experts generated its ground truth. The proposal was im-
plemented and characterized on a portable computer to qualitatively and quantitatively
evaluate the impact of heuristic parameter variations on accuracy and time performance.

This is the summary of the main objectives and other contributions of this work:
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Figure 5 – Dense area of sugarcane with the top of the plant blending in with neighboring
rows.

Source: Author.

❏ A heuristic for detecting and determining the orientation angle of sugarcane crop
rows from orthogonal aerial images. based on vertical projections of accumulations
of green pixels filtered by Savitzky-Golay techniques;

❏ Evaluate the impact of image resolution and algorithms parameters such as scan
angle resolution;

❏ Compare the developed heuristic with related work based on Radon Transform;

❏ A software application for recognition and localization of the crop lines on the images
generating a labeled image database used in our tests;

❏ A methodology for expert analysis fusion based on the sum of independent and
identically distributed random variables.

1.4 Hypothesis

❏ The heuristic is capable of extract the crop orientation from images, i.e, the angle
where the highest sum value of the Savitzky-Golay filter output occurs reveals the
orientation of the cut lines;

❏ The performance of the heuristic reaches the necessary time to guide the harvester
in a suitable line to pass between the rows of the crop;

❏ The heuristic created based on Radon Transform for comparison purpose is capable
of reproducing results similar to those found in the literature.
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1.5 Thesis Organization

❏ In chapter 2 we describe some of relevant state of the art works;

❏ In Chapter 3 we present the theory references used in this work such as of computer
vision, image processing as well as some statistics important to the understanding
of this work;

❏ Chapter 4 states the methodology of this project, including the image acquisition
process and the datasets used and a description of our approach algorithms;

❏ Chapter 5 describes the experimental results obtained for the dataset. Discussions
and comparisons between the results obtained by our approach and literature as
well as the results obtained by the ground truth measurements;

❏ Finally, in Chapter 6 we present the conclusions of this research work, its results,
contributions and future work.



28 Chapter 1. Introduction



29

Chapter 2

Related Work

As already mentioned before, the popularization of UAV allowed authors to solve
several existing problems in agriculture. One of these problems is precisely to identify the
existing crop lines in a region and, consequently, their geolocation, layout, as well as the
distribution of faults and unevenness in the field. In order to figure out some tendencies
and correlation terms used in the recently articles present on Scopus Base in December
2022, a bibliometric analysis was carried out. The analysis consisted of searches with the
keywords: "Remote Sensing", "Detection", and "Crop row".

In the search for heuristic techniques, we found terms such as vanishing point, Hough
transformation, deep learning, coping, neural network. Beside not present on the im-
age 6, we also find other techniques like, Principal Component Analyses (PCA), Radon
Transform. However, most of these approaches either require processing of a crop line at
a time, or focusing on plant counting, or even focus on different crop cultures.

2.1 Hough Transform based heuristics

Literature presents some similar approaches to address this problem by identifying the
crop lines, many of them are commonly based on the Hough Transform (HT) (HOUGH,
U.S. Patent 3 069 654, Dec. 1962), In (BASSO, 2018), the author present a method
for crop row detection based on the Hough transform and prior knowledge about the
number of crop rows and the row structure. Usage of prior knowledge makes the method
tolerant of missing plants and the presence of weeds. In addition, the proposed prior and
posterior processing algorithms were fundamental to achieve enhanced performance in the
Hough Transform that composes the crop row detection algorithm. However, the Hough
transform generates a large number of lines in all directions, it is necessary to filter the
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Figure 6 – Bibliometric results

Source: Author.

lines to find the main crop lines. Also, curved lines is not represented correctly by this
approach, as shown in figure 7.

2.2 Radon Transform based heuristics

Applying evolutionary techniques with genetic algorithms and the Radon transform,
the work of (SILVA, 2020) tries to detect lines of sugarcane plantations, being the work
closest to ours. Using this orientation angle it is possible to analyze how the pixels which
compose the detected areas are distributed along the image and to detect the center of
each crop line in the image. Then, by using the orientation angle of the image and the
center of each crop line the authors were able to reconstruct the crop lines with the same
constant width as used by the expert.

As shown in figure 8, the proposed scheme for crop line reconstruction using Radon
transform: (a) Input image; (b) Matrix obtained with the Radon transform. The red dot
represents the location of the maximum point and the orientation angle of the input image;
(c) Radon transform obtained for the image orientation angle (red line in (b)). Each peak
of the curve corresponds to the center of a line in the input image; (d) Reconstruction of
the lines using the orientation angle and the peaks of the Radon transform for that angle.

To evaluate the effectiveness of the method it is necessary to identify separately the
error on both segmentation and line detection because the segmentation is a critical step
that propagates its mistakes to line identification step. However, the lack of quantitative
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Figure 7 – Steps needed by an heuristic based on Hough Transform.

Source: Extracted from Basso (2018).

Figure 8 – Steps needed by an heuristic based on Radon Transform.

Source: Extracted from SILVA (2020).
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analyses regarding the detection error prevented a detailed comparison with our work.

2.3 Others Techniques

There are learning-based approaches, these methods are carried out through super-
vised and unsupervised learning processes. The training and classification phases are
generally off-line and on-line processes, respectively. In the supervised approach, seen in
(GUERRERO et al., 2012), the support vector machines (SVM) technique was used in
several studies. (BAH; HAFIANE; CANALS, 2018) used a database (knowledge-base)
containing samples previously classified. The performance was evaluated through the cor-
rect classification percentage and Yule coefficient classified weeds and crop by using 14
features which characterize crops and weeds in images.

The fuzzy clustering technique was used by (YU et al., 2021) to separate the green
plants from the soil by applying the famous vegetation indices Excess Green (ExG) defined
by (ZHANG; KOVACS, 2012) to segment regions of interest and to differentiate two types
of plants (crops and weeds), first discriminating plants and soil and then crop and weeds
in the plants (GARCíA-SANTILLáN; PAJARES, 2018).

PCA procedure was used in (HASSANEIN; KHEDR; EL-SHEIMY, 2019) to provide
the ability to detect the dominant direction of a data represented in the Principle Com-
ponent 1 (PC1) along with its perpendicular direction, the Principle Component 2 (PC2).
Generally, for any data, PC1 detect the dominant direction of the data, while PC2 in-
dicate how scattered or the variance of this data. Therefore, with the use of PCA for
the Hue values in the longitudinal section, PC2 can indicate if the pixels in this section
belong to the same type of object or not. This methodology creates different section with
small width at different orientations starting from angle 0 to 180 degrees with small step
of 1 or less degrees. Through comparing the PC2 values of each section, the crop row
orientation theta is detected as the orientation of the section that provided the smallest
value of PC2.

In (CARDOSO; FARIAS; SOARES, 2022), a review on the use of UAVs in sugarcane
cultivation in Brazil is presented. In general, most of the works focused on identifying
gaps in the plantations when the events we try to avoid in our work (crushing of the
plants by agricultural machines) have already occurred.

According to the review by (AMARASINGAM et al., 2022), 40% of the sugarcane
works analysed use standard RGB cameras (usually sold together with UAVs). About 80
% of the works use quadcopters, as they are cheaper and easier to operate than fixed-wing
devices.

(MALDANER et al., 2021) brings an analysis of the use of soil sensors and aerial
images in the location and measurement of faults in sugarcane plantations. An interesting
result to be highlighted is the identification of a temporal window with the plants at
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an age between 31 and 47 days, in which the explored techniques presented their best
results. After this time interval, the growth of the plants obscures the view of the ground,
impairing the identification of faults. A similar time interval is suggested by (JÚNIOR et
al., 2021) (30 to 45 days), with overflights at heights starting at 80 metres, also for the
identification of faults in the plantations.

(SOUZA et al., 2017) proposes a heuristic to detect sugarcane flaws in orthoimages
using object-based analysis. The authors used a S110-NIR camera as input and, in a early
stage of the algorithm, a line detection step was performed. It was achieved by a template
matching between a diverse set of line orientation and width. Compared to our work, the
authors used a more expensive camera (with near infrared detection) to collect data and
the identification is done after all images off the region is collect and the orthomosaic is
done.

The use of the KNN (K-Nearest Neighbor) technique as a classifier is proposed in
(ROCHA et al., 2020) for the detection of faults in the plantation lines. In its heuristics,
the classification step via KNN is followed by segmentation and rotation of the image
to determine the angle of more significant variance. A curve fitting is then performed,
enabling the identification of curved lines, not only straight ones. However, there is no
precise information about identifying the lines, a fact that prevented a direct comparison
with our work.

A corn plantation in the early growth stage is monitored in (GARCÍA-SANTILLÁN
et al., 2017). Images are taken in perspective, and segmentation is done using the Excess
Green technique, similar to the one we used in our work. However, because they are
perspective images, their authors use the Hough Transform to detect lines with the aid
of the image’s vanishing point. Although the pre-processing step is similar to ours, there
is no quantitative analysis about the detection of lines, also making impossible a direct
comparison with our heuristics. In a later work, the authors complement their paper by
adding edges to crop lines and classifiers for (GARCíA-SANTILLáN; PAJARES, 2018)
weed identification.

Maise crops in early growth stages suffer greatly from weed incidence. Using perspec-
tive imaging, (ZHANG et al., 2018) splits the image into rectangular processing blocks,
performs a perspective correction with vertical projection, and finishes with thresholds
determining the potential detection of plants in the rows. The division into rectangular
blocks allows the identification of interpolation points connected by straight lines. Un-
fortunately, this work also does not provide detailed quantitative information to compare
our results more directly.

This was one of the few papers found with quantitative analysis on the accuracy of
line detection. Following the same idea as (ZHANG et al., 2018), the work by (YU et
al., 2021) uses block clustering, but this time with a focus on rice crops. The developed
technique resulted in errors close to 0.01 degrees applied on perspective images. In this
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work, images of the plantation in the early stages of growth were also used.
Deep learning techniques are used in (BAH; HAFIANE; CANALS, 2018) to detect crop

rows in aerial images. Applying CNNs (Convolutional Neural Networks), the training of
the classifiers is done in an unsupervised way, resulting in an accuracy of 1.5% and 6%
in spinach and beans, respectively. We performed some tests with the skeletonisation
techniques for image segmentation, similar to this work, but our images’ results were not
satisfactory.

2.4 Final Considerations

In general, most work in the current literature still focuses on low height crops and/or
widely spaced crop rows with clear distinction between crop rows and soil. In these cases,
the use of the Hough Transform (HT) technique is widely used. One of the disadvan-
tages of using HT is that the shape of the detected object must be previously known
and described, which limits its application. In addition, HT applied to an unstructured
environment such as vegetation generates a large number of lines with different angles,
making it essential to use optimized filters to obtain only possible candidate lines for the
correct orientation.

Another point to highlight is in relation to the type of orientation of the image used
in the works observed. Most use images under perspective projection in relation to the
crop lines with a camera mounted on land vehicles. In our case, as the cane can reach
around 2.5 meters in height at harvest time, it is common for them to be taller than the
harvester itself, making the use of the integrated camera unfeasible. Another fact is that it
is common for plants from different lines to cross each other, making it difficult to correctly
identify the orientation angle of the lines. Choosing low-altitude aerial images (less than
100 meters), which do not require orthorectification to correct perspective errors, is a
reasonable choice in this context. In general, the cut lines can be irregularly shaped as
they follow the terrain, thus creating curves and irregular shapes, but it is assumed that
this can be reduced by keeping the images at low altitudes.

Given this scenario, the work that comes closest to the need for our main objective is
the one used by SILVA (2020), in which the Radon transform is the essence of the method,
so that this work will be used to compare the results obtained by our heuristic. However,
it is worth mentioning that the main objective of SILVA (2020) is to reconstruct the crop
lines for failure counting purposes. Furthermore, from the images observed in this same
work, the sugarcane is not in the harvesting phase, where line detection becomes less
challenging.
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Chapter 3

Fundamentals

3.1 Unmanned Aerial Vehicles

Drone is the popular term for unmanned aircraft, because of the noise they make.
Broadly, current legislation ((AERONAVES. . . , 2019)) defines any unmanned aircraft as:

Any device that can sustain itself in the atmosphere, from reactions of
the air other than the reactions of the air against the earth’s surface,
and which is intended to operate without a pilot on board.

Also by law, we can classify unmanned aircraft by take-off weight: class C1 - for
aircraft over 150 kg, C2 - for aircraft between 150 kg and 25 kg, and C3 for aircraft
weighing less than 25 kg.

Each class has restrictions on registration and access to airspace. The class that will
be focused on in this master’s dissertation will be the C3 class, respecting the flight ceiling
limits (400 feet) and keeping the aircraft in line of sight. Therefore, an authorization in
the SARPAS system of the Department of Airspace Control (DECEA) is sufficient.

Within the C3 class, we can separate unmanned aircraft by the lift method. Fixed-
wing aircraft, as the name implies, have fixed-wing structures, which are responsible for
generating the lift of the entire aircraft in the air, similar to commercial aircraft. These
aircraft can have wingspans of a few centimeters to a few meters, and may have one or more
propellers that serve as thrusters. On the other hand, rotary-wing aircraft are supported
by the thrust force generated by one or more propellers, with the design having a lift
rotor similar to the helicopter, and, an example, with 4 rotors for lift is the quadrirotor.
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3.1.1 Flight range

The flight range of an unmanned aircraft is established in accordance with the legisla-
tion in force in the country where the operation will be carried out, even if the equipment
is able to perform a greater flight range.

According to Brazilian legislation (ICA 100-40)(AERONAVES. . . , 2019), the specifi-
cations of the UAV used and with the request made for flight, the operations carried out
fall within what is called "Operations at very casualties".

Therefore, the flight range established by the same legislation falls under VLOS oper-
ation, in which it limits the flight to a distance that allows the visualization and mainte-
nance of the aircraft. VLOS is the acronym for ”Visual Line of Sight Operation”, which
means that in the operation the remote pilot (who is exclusively responsible for handling
the pilot controls) maintains direct visual contact with the aircraft, without the aid of
lenses or other equipment.

3.2 Computer Vision

3.2.1 Image Acquisition

Image acquisition is the first step of computer vision systems. Its function is to convert
the electronic signals from the detection device, such as images from a camera, into
numerical representations, which will be used in the following steps (ZAREIFOROUSH
et al., 2015) (FILHO; NETO, 1999).

It is commonly called “image acquisition” the process of converting a real 3D scene into
a 2D digital scene. The first step of this conversion is the reduction of dimensionality, being
the most used devices the sensors with solid state load (CCD or CMOS) (NARENDRA;
HAREESH, 2010). The second step of this conversion is digitization. In digitization, the
analog signal obtained from the sensor output is subjected to a spatial and amplitude
discretization in order to convert the sample to the desired format for the following steps
(FILHO; NETO, 1999).

3.2.1.1 Optical camera model

In computer vision studies, cameras are usually modeled from the pinhole (STURM,
2014) camera model. The Pinhole model (translated as pinhole) is based on the camera
obscura principle, where the object’s light enters through a small hole (3) (DIAS, 2015)
(TONINI et al., 2020). The illustration of the Pinhole model can be seen in figure 9
below.
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Figure 9 – Pinhole Model

Source: Extracted from Dias (2015)

This model takes into account a central projection, through the optical center of the
camera (assuming that the center of the camera is the pinhole) and an image plane
(TONINI et al., 2020). In general terms, a 3D object (5) has its 2D projection (2) on
an image plane (1) (DIAS, 2015). The main function of the hole is to capture light into
the camera and project the image. This projection mechanism is similar to the human
eye (DIAS, 2015). In the physical camera, the image is formed mirrored and behind the
camera center, however, the image plane is often represented in front of the camera center
(TONINI et al., 2020).

The pinhole model does not consider that real lenses can produce distortions in the
generated images. Distortions are non-uniform stretches of the image, where the center
and edges are enlarged by different proportions (DIAS, 2015). Among the existing dis-
tortions, the most common is radial distortion, caused by differences in light refraction
together with the spherical shape of the (TONINI et al., 2020) lens. This distortion can
still be classified into three types, which are: Barrel, Pillow and Mustache.

❏ Barrel distortion is usually found in wide-angle lenses, that is, short-range lenses,
but with a large field of view. The characteristic that identifies this type of distortion
is that the center of the image is larger than the edges (DIAS, 2015);

❏ Pincushion distortion is normally found in telephoto lenses, that is, long-range
lenses. The characteristic that identifies this type of distortion is that the edges
of the image are larger than the center (DIAS, 2015);

❏ Mustache distortion is a mixture of barrel and pincushion distortion. The identifica-
tion characteristic of this type of distortion is that the central part of the image has
barrel distortion characteristics and the edges have cushion distortion characteristics
(DIAS, 2015).

3.2.1.2 Image segmentation

The aim of image segmentation is to classify an image into specific regions. In order to
classify between green plants (crops and weeds) and the background (soil, stones, shadows,
etc.), the common method is the application of vegetation indices. Excess Green index
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was selected because of its outstanding performance and simplicity (ZHANG; KOVACS,
2012). In a RGB image, the red, green, and blue values, by default, range from 0 to
255. These values have to be normalized in order to calculate the chromatic levels and,
thus, obtain the normalized spectral r, g and b components in the range of 0–1. Each
pixel can be modified by a mathematical function, so the color of a region of interest can
be accentuated, while the unwanted region will be attenuated. Some functions describe
combinations between color channels and are therefore called color indices.

The Excess green (ExG) is a method that presents good results when applied to
separate plants from the bare soil (HAMUDA; GLAVIN; JONES, 2016). This is because
ExG provides a clear contrast between plants and soil, and this gives an image of near-
binary intensity (MEYER; NETO, 2008). The ExG index has been widely used and
has performed well in separating plants and non-plants (MEYER; HINDMAN; LAKSMI,
1998) (HAMUDA; GLAVIN; JONES, 2016) (MEYER; NETO, 2008). The color index
balance proposed by (WOEBBECKE et al., 1995) is: 2𝑔 − 𝑟 − 𝑏. Where g, r and b are
the chromatic coordinates:

𝑟 = 𝑅′

(𝑅′ + 𝐺′ + 𝐵′)

𝑔 = 𝐺′

(𝑅′ + 𝐺′ + 𝐵′)

𝑏 = 𝐵′

(𝑅′ + 𝐺′ + 𝐵′)

(1)

Where R’, G’ and B’ are the RGB values normalized between 0 and 1, and are calcu-
lated according to the equation below:

𝑅′ = 𝑅

𝑅max

𝐺′ = 𝐺

𝐺max

𝐵′ = 𝐵

𝐵max

(2)

Where R, G and B are the pixel values of the images based on each channel and
Rmax, Gmax and Bmax are each worth 255. The figure 10 shows the effect of Excess Green
in a figure where the objective is to highlight the vegetation from the rest of the other
elements.

3.2.1.3 Binarization

One of the most segmentation techniques is the binarization, which is defined as the
process of converting a RGB or gray-scale image that originally assumed varied color
intensity values. After this conversion, the binarized image will assign only two values
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(a) (b)

Figure 10 – Image segmentation process: (a) Original sugarcane image and (b) Vegetable
index Excess Green extracted from the original image.

that are typically black and white. One of the most common approaches to calculate a
threshold is through the use of Otsu method. This algorithm principally assumes that
the image has two classes of pixels following a bi-modal histogram (background and
foreground). Besides, the ideal threshold is reached by separating the two classes so
that the combined intra-class variation is minimized (OTSU, 1979). There is also image
segmentation that’s grounded on Otsu’s system but iteratively quests for sub regions
of the image for segmentation, rather of treating the full image as a whole region for
processing, as shown in (CAI et al., 2014). The figure 11 shows the effect of binarization
by Otsu on a grayscale figure.

Figure 11 – Image segmentation process: binary image obtained after the first threshold-
ing.

3.3 Image Processing

3.3.1 Down sampling image resolution

The original captured image size is 2716 by 1524 pixels. Usually, with a larger resolu-
tion, the image offers more details of the scene. However, to find the angle it was possible
to use a downsampled image without a significant loss of information. In addition, in this
work application, we used the Gaussian Pyramid function to down sample images as the
crop row angle does not depend on image resolution. We used it also to eliminate small
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high frequency noises while we still had no loss of relevant information. As the first step in
the image processing procedure, Gaussian Pyramid function decreases the computational
cost, which impacts the image processing time.

3.3.2 Morphological operations

After obtaining the initial binary image, an extra morphological dilation process is
applied to expand the segmented plants. The dilation process can fill the gaps in the
plants and the plants appear to comprise a greater number of green pixels (GARCÍA-
SANTILLÁN et al., 2017). First, we perform a morphological closing. The closing op-
eration dilates an image and then erodes the dilated image, using the same structuring
element for both operations. Morphological closing is useful for filling small holes from
an image while preserving the shape and size of the objects in the image. After this, we
perform morphological opening. The opening operation erodes an image and then dilates
the eroded image, using the same structuring element for both operations. Morphological
opening is useful for removing small objects from an image while preserving the shape and
size of larger objects in the image. In Fig. 12 we can see the action of the morphological
operations applied to the binarized image. The kernel shape and size variation indicate
that the image processing techniques are determinant in the crop row orientation mea-
surement exactness. The rectangular kernels have the best results considering the highest
fps rate. The size of kernel was locked in 4x4 pixel for close morphological operation and
1x1 pixel for open operation.

Figure 12 – Image segmentation process: Binary image obtained after the morphological
operation.

3.4 Statistical Descriptors

3.4.1 Skewness

It is the measure of how much your frequency curve deviates from the symmetrical po-
sition or the measure of the lack of symmetry in a given frequency distribution (CUNHA,
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2017). A symmetric distribution is when it presents the same values for the mode, mean
and median (CUNHA, 2017) (OLIVEIRA., 2021).

Skewness can be calculated by Pearson’s coefficient:

𝐴S = �̄� − 𝑀O

𝑆
(3)

Where 𝑥 is the mean, 𝑀O is the mode, and 𝑠 is the standard deviation.
The final value of the Pearson coefficient (𝐴s) indicates the presence of symmetry or

not, and where the asymmetry is found

❏ AS = 0 - Symmetric Distribution;

❏ AS > 0 - Positive Skewed Distribution (right);

❏ AS < 0 - Negative Skewed Distribution (left).

In figure 13 a positive skewed distribution can be observed in 𝐴, in 𝐵 a symmetric
distribution and in 𝐶 a negative skewed distribution

Figure 13 – Shapes for Skewness

Fonte: Extracted from (KITAHARA, 2021).

3.4.2 Kurtosis

Kurtosis is a measure of the concentration (or dispersion) of data values relative to
measures of central tendency of a normal distribution (CUNHA, 2017) (OLIVEIRA.,
2021).

Kurtosis can be calculated by the Kurtosis Coefficient:

𝐾 = 𝑄3 − 𝑄1

2(𝑃 90 − 𝑃 10)
(4)

Where 𝑄1 is the first quartile, 𝑄3 is the third quartile, 𝑃 90 is the 90th percentile, and
𝑃 10 is the 10th percentile.

The final value of the kurtosis coefficient (𝐾) indicates the type of data distribution.

❏ K = 0.263 - Mesokurtic distribution;
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❏ K > 0.263 - Platokurtic Distribution;

❏ K < 0.263 - Leptokutic Distribution.

In figure 14 a Platokurtic distribution can be observed in 𝐴, in 𝐵 a Mesokurtic dis-
tribution and in 𝐶 a Leptokurtic distribution.

Figure 14 – Shapes for Kurtosis

Fonte: Extracted from (KITAHARA, 2021).

3.4.3 Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov (K-S) test is used to decide if a sample comes from a popu-
lation with a specific distribution, as show in (WANG; WANG, 2010). The Kolmogorov-
Smirnov (K-S) test is based on the empirical distribution function (ECDF).

It can be used to approve the null hypothesis that two data populations are drawn
from the same distribution to a certain required level of significance. On the other hand,
failing to approve the null hypothesis shows that they are from different distributions.

In the one sample K-S test, we are given a sequence of i.i.d. real-valued data sam-
ples 𝑧1, 𝑧2, ..., 𝑧𝑁 with the underlying cumulative distribution function (cdf) 𝐹1(𝑧), and a
hypothesized distribution with the cdf 𝐹0(𝑧). The null hypothesis to be tested is

𝐻0 : 𝐹1 = 𝐹0 (5)

The K-S test first forms the empirical cdf from the data samples

̂︁𝐹1(𝑧) .= 1
𝑁

𝑁∑︁
𝑛=1

I(𝑧𝑛 ≤ 𝑧) (6)

An attractive feature of this test is that the distribution of the K-S test statistic itself
does not depend on the underlying cumulative distribution function being tested. Another
advantage is that it is an exact test (the chi-square goodness-of-fit test depends on an
adequate sample size for the approximations to be valid).
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Figure 15 – Comparison between two cumulative probability of distributions.

Source: Extracted from Wikipedia contributors (2022).

3.4.4 Algebraic operations between independent random vari-
ables.

Consider the problem of estimating the common mean of two normal distributions with
independent estimators for variances. The results in (TARABA, 2021) provides sufficient
conditions for the combined estimator to be better than the uncombined estimator in
terms of making its variance smaller.

𝜇𝑛𝑒𝑤 = 𝜎2
2

𝜎2
1 + 𝜎2

2
𝜇1 + 𝜎2

1
𝜎2

1 + 𝜎2
2
𝜇2 (7)

𝜎2
𝑛𝑒𝑤 =

(︃
1
𝜎2

1
+ 1

𝜎2
2

)︃−1

(8)

Combining the second and third models first and then combining the result with
the first model would lead to the same optimal blending parameters. The order of the
combination is inconsequential. In figure 16 shown three variables and its combined
resultant. The combined distribution has a lower standard deviation compared with
smaller of the original distributions.
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Figure 16 – Fusion measurements

3.4.5 Outliers detector

In statistics, the median absolute deviation (MAD) is a robust measure of the vari-
ability of a univariate sample of quantitative data. It can also refer to the population
parameter that is estimated by the MAD calculated from a sample. For a univariate data
set 𝑋1, 𝑋2, ..., 𝑋𝑛, the MAD is defined as the median of the absolute deviations from the
data’s median �̃� = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑋):

𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(| 𝑋𝑖 − �̃� |) (9)

that is, starting with the residuals (deviations) from the data’s median, the MAD is
the median of their absolute values.

For normally distributed data, the scaled MAD is approximately equal to the standard
deviation.

lim
𝑛→∞

𝐸(𝑚(𝑥)) = 𝜎Φ−1(0.75) (10)

where Φ−1(0.75) = 0.6745 is the 0.75𝑡ℎ quantile of the standard normal distribution
and is used for consistency. That is, so that 𝑚(𝑥)/0.6745 is a consistent estimator of the
standard deviation 𝜎.

If you can’t assume normality, you can use the 0.75𝑡ℎ quantile of any other distribution
that is symmetric about some value (not necessarly the mean) standardised to have mean
0 and standard deviation 1. Typically a t-distribution is used if fat-tail are assumed.
(IGLEWICZ; HOAGLIN, 1993) suggest using ±3.5 as cut-off value but this a matter of
choice (±3 is also often used).
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3.5 Savitzky-Golay Filter

As the sinogram generated by the radon transform only shows the accumulation of
pixels projected in a given direction, our method will go further to obtain the variation of
pixel accumulation during rotation. This is because when the cut lines are aligned with
the vertical axis we will have the maximum variation in intensity accumulation. For this,
we will use a widely known filter, the article by Savitzky and Golay is one of the most
cited articles in the journal Analytical Chemistry (LARIVE; SWEEDLER, 2013).

The following equation defines the general filter equation according to Savitzky and
Golay. The particular behavior of the filter can be influenced by choosing appropriate
filter coefficients. Thus one can generate both the moving average filter, the polynomial
fit, and the smoothed derivatives simply by adjusting the coefficients of this equation.

𝑌𝑗 =
𝑚−1

2∑︁
𝑖= 1−𝑚

2

𝐶𝑖 𝑦𝑗+𝑖,
𝑚 − 1

2 ≤ 𝑗 ≤ 𝑛 − 𝑚 − 1
2 (11)

In (SADEGHI; BEHNIA; AMIRI, 2020), Savitzky-Golay is a digital filter that can be
applied to a set of digital data points in order to smooth (or derive from the smoothed
signal) the central point of each data subset, i.e, increasing the accuracy of the data
without distorting the signal trend.

The application that first motivated Savitzky was to localization of maxima and min-
ima in experimental data curves (SAVITZKY, 1989). The first derivative of a function is
zero at a maximum or minimum, also linear interpolation of the first derivative values at
positions either side of the zero-crossing gives the position of the peak maximum.
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3.6 Radon Transform

The Radon Transform is an important mathematical tool in the field of image analysis.
It was proposed by Johann Radon in 1917, and represents projection if a function obtained
in a specific orientation, being considered the basis of classical tomography (SILVA, 2020).

From (RADON, 1986) the Radon Transform of a function 𝑓(x) presuppose that
𝑓(x) = 𝑓(𝑥, 𝑦) is a function that satisfies the three regularity conditions:

1. 𝑓(x) is continuous;

2. the double integral
∫︁∫︁ |𝑓(x)|√

𝑥2 + 𝑦2 𝑑𝑥 𝑑𝑦 extending over the whole plane, converges;
3. for any arbitrary point (𝑥, 𝑦) on the plane it holds that

lim
𝑟→∞

∫︁ 2𝜋

0
𝑓(𝑥 + 𝑟 cos 𝜙, 𝑦 + 𝑟 sin 𝜙) 𝑑𝜙 = 0.

The Radon transform, 𝑅𝑓 , is a function defined on the space of straight lines 𝐿 ⊂ R2

by the line integral along each such line as:

𝑅𝑓(𝐿) =
∫︁

𝐿
𝑓(x)|𝑑x|.

Concretely, the parametrization of any straight line 𝐿 with respect to arc length 𝑧 can
always be written:

(𝑥(𝑧), 𝑦(𝑧)) =
(︂

(𝑧 sin 𝛼 + 𝑠 cos 𝛼), (−𝑧 cos 𝛼 + 𝑠 sin 𝛼)
)︂

where 𝑠 is the distance of 𝐿 from the origin and 𝛼 is the angle the normal vector to 𝐿

makes with the 𝑋. It follows that the quantities (𝛼, 𝑠) can be considered as coordinates on
the space of all lines in R2, and the Radon transform can be expressed in these coordinates
by:

𝑅𝑓(𝛼, 𝑠) =
∫︁ ∞

−∞
𝑓(𝑥(𝑧), 𝑦(𝑧)) 𝑑𝑧

=
∫︁ ∞

−∞
𝑓
(︁
(𝑧 sin 𝛼 + 𝑠 cos 𝛼), (−𝑧 cos 𝛼 + 𝑠 sin 𝛼)

)︁
𝑑𝑧.

The Radon transform data is frequently called a sinogram because the Radon trans-
form of an out-of-center point source is a sinuosity. therefore, the Radon transform of
a number of small objects appears graphically as a number of blurred sine swells with
different amplitudes and phases.
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Chapter 4

Methodology

4.1 Unmanned Aerial Vehicle

The type of unmanned aerial vehicle chosen to be used in the development of this
project was a Fimi X8 SE quad-rotor.

Figure 17 – Drone modelo FIMI X8 SE

Source: Author.

It records 4k HDR videos, has 3-axis gimbal engine, portable design, intelligent track-
ing and flight mode, 8KM signal range, 35 minutes of autonomy flight, visual positioning
system Accurate, rainproof, built-in camera, remote control, real-time GPS.

4.1.1 Technical specifications

The technical information below is according to the official website of the Fimi brand
(FIMI. . . , 2021).

❏ Dimensions: 204 X 106 X 72.6mm;
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❏ Maximum speed: 18m/s;

❏ Flight altitude limit: 500m;

❏ Weight: 765g;

❏ Wind resistance: ≤ 50𝑘𝑝ℎ;

❏ Accuracy:

- ±0.1𝑚 (without the ultrasonic detection range);

- ±0.5𝑚 (with GPS positioning enabled).

4.1.1.1 Stability of Gimbal

❏ Controlled rotation range: 0 ∘ ∼ −90 ∘ Tilt angle;

❏ Angle control precision: ±0.004 ∘;

❏ Stabilization: 3-axis gimbal

4.1.1.2 Integrated camera

As mentioned above the UAV has an integrated camera. Camera specifications are
presented in the subsections below:

❏ Model: The built-in camera type is RGB;

❏ Maximum photo resolution: 4000 * 3000;

❏ Video resolution:

– 3840 x 2160 30/25/24fps;

– 2560 x 1440 60/50/30/25/24fps;

– 1080P 100/60/50/30/25/24fps;

– 720P 200fps.

❏ Image format: JPG; JPG+DNG;

❏ Video format: MP4;

❏ Lens aperture angle:

– Lens: FOV 80 ∘;

– Aperture: f2.0;

– Focal length: 3.54mm;
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– Equivalent focal length: 26mm;

– Sensor: 1/2.6" SONY CMOS;

– Effective pixels: 12M;

– ISO range: 100 - 3200;

– Shutter Speed: 32 ∼ 1/8000𝑠.

The main advantage of using a drone with an integrated camera is the lower cost
compared to adapting another camera. However, the disadvantage is that you are limited
in the type of cameras, not being able to make use, for example, of a multi/hyper-spectral
camera.

4.1.2 Coordinates Systems

With the coordinates of the axes of the points of the lines, it is related to the length
and angle of the vertical lines, which can vary from -90° according to the image. This
is because, the lower axes and tips of the drone work in NED (North, East and Down)
mode. X axis points to north, axis and axis to east and z to tips.

Figure 18 – 3D view of NED coordinates system

Source: Extracted from Giernacki, Goslinski e Espinoza-Fraire (2021).
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Figure 19 – 2D view of NED coordinates system

Source: Author.

4.2 Image acquisition - Dataset

The flights were executed during the month of May 2021 at São Carlos and Monte
Aprazível cities of State of São Paulo - Brazil, with flight height varying between 20 to 40
meters. From those flights, 40 images were selected. It was observed a minor perspective
issue given by terrain declivity. Images with different culture line orientations were cap-
tured in order to provide heterogeneous data in the study. Fig. 20 shows two illustrative
examples in different sugarcane growing environments under conditions comprising (a)
high weed and gaps, and (b) low weed and high height.

The images are free of perspective projection because they are acquired with the
camera in an orthogonal position. Its camera is attached to a 3D gimbals, oriented
orthogonality to the ground with a resolution of 2700 × 1500 pixels.

(a) (b)

Figure 20 – Original images with various sugarcane situations: (a) presence of gaps and
weeds, (b) sugarcane high height.

The weather conditions during the flight can greatly affect the performance of the
drone. Factors such as wind, rain, and fog can make it difficult for the drone to maintain
stable flight and accurately capture images. The terrain over which the drone is flying
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can impact its performance. Rough or hilly terrain can make it more challenging for the
drone to maintain stability and accurately capture images. The flight altitude of the drone
can impact its performance. Flying at higher altitudes can increase the risk of the drone
encountering adverse weather conditions, while flying at lower altitudes can increase the
risk of collision with obstacles such as trees and buildings.

4.3 Programming Language

Founded in 1991 by Dutch developer Guido van Rossum, python is a high-level, dy-
namic programming language. Its versatile features and syntax help programmers to
develop code in fewer steps and in fewer lines compared to Java and C++ language.

The python language has several application possibilities, both in academic and busi-
ness environments. Its advantages over other programming languages are:

❏ Open source;

❏ Libraries: python has large standard libraries already implemented that include
areas such as string operations, internet, web service tools and operating system
interfaces. This means that most programming tasks that are heavily used are
already programmed, which results in shorter code lengths;

❏ Ease of learning and coding;

Its disadvantages include:

❏ Low usage in mobile computing;

❏ Its execution is carried out through an interpreter, while other languages make use
of compilers. This causes it to be slow, depending on the application;

We chose to use this language because there are several ready-to-use modules, such
as the Savitzky-Golay filter, Radon transform, which allowed us to focus on choosing
and testing the best parameters and adjusting them to our application. Below are the
references of the main modules used in this work:

❏ OpenCV (Open Source Computer Vision Library) is a library of programming func-
tions mainly aimed at real-time computer vision. This is the main module that
contains the most common tools in terms of image processing. We used to convert
color, resize image, import and save, rotate, Otsu limit and morphological changes.

❏ There is a function from SciPy library that enables the use of Savitzky-Golay filter.
It is possible to select the length of the filter window, the order of the polynomial
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used to fit the samples, derivative order to calculate among other parameters to gen-
erate the filtered data. SciPy also contains modules for optimization, linear algebra,
integration, interpolation, special functions, FFT, signal and image processing, ODE
solvers and other tasks common in science and engineering.

❏ From Scikit-image library we used the radon function available to forward transform
our images. The input parameter is the number of projection angles we wish to use
to generate the sinogram.

4.4 Ground Truth Generation

In order to evaluate the performance of the developed methodology, it is necessary to
compare the final result with the result of a human expert. The methodology used to
obtain the absolute truth is represented in figure 21 and will be explained below.

To mitigate the biases of a single expert, 5 experts were asked to establish the ground
truth of the dataset, that is, the average orientation of the crop row in each image of the
dataset. In most applications that use the image, the ground truth is unknown before
the scene image, as the scene may contain distinct elements that change the orientation
of the lines, such as weeds, terrain contours, lack of line parallelism, shrouded lines by
vegetation, imperfections in the cultivation line that generate imprecision and uncertainty
in determining the ground truth. In this type of applications, the reality is unknown and
different experts can propose line angles for the scene.

To help with the task of establishing ground truth, a software application was specif-
ically developed to allow lines to be drawn over the available images in the dataset. One
can draw as many lines as possible. At the end of marking, the coordinates of the two
points that represent the limits of the lines are saved as well as the number of marked
lines.

Figure 22 – Software labeling

Source: Author.

With the coordinates of the points, the length and angle of the crop row in relation to
the north vertical axis are calculated, as shown in the image. Lines with a length of less



4.4. Ground Truth Generation 53

Figure 21 – Diagram of the proposed approach to the problem.

Source: Author.
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than 50 pixels are discarded, as they bring about imprecision in the ground truth, since a
good marking of the cultivation line must cover a good part of the image. The mean of the
angles and the standard deviation of the set of marked lines that pass through the filter
are taken. If the standard deviation of the angle between the marked lines for a given
image is greater than 2.5°, it will be marked as a warning flag. The image is not discarded
immediately, as it will be compared with the results of other experts later. In order to
compare the marks of each expert, the average angle and warning flag information of each
image are gathered in a single comma-separated values (csv) file extension.

Since each expert pointed out a different result for the crop row angles, it is difficult
to determine which result to choose, because there is no objective standard of choice. For
that, we need to merge the information from each expert into a single result. We will take
the average of these results. As each result has its own uncertainty (since several lines have
been drawn, a mean value and a standard deviation are generated) and are independent
of each other, we can form a new result, that is, a new distribution by combining the
5 values originated by experts. But before that we need to carry out a preliminary test
to know the equality of variances, that is, whether the experts’ scores follow a normal
or a Gaussian distribution, according to the Kolmogorov-Smirnov (K-S) normality test,
presented in the background section.

The results of the Kolmogorov-Smirnov test confirmed the normal distribution of the
variance of the crop lines pointed out by each of the experts, so we can do some classic
statistical procedures, among them, the average between the 5 distributions of the experts.
The combination of 5 normal distributions follows the equations of shown in Guerrero et
al. (2012)taraba and the Fundamentals chapter. This creates a new mean angle and
standard deviation for each image, and this represents the ground truth of the mean
orientation of the crop lines.

The last step is to apply a filter that eliminates images that are not suitable for the
ground truth. An image is not suitable for the ground truth when the crop lines marked
by experts have a standard deviation greater than 2.5° or when the combined standard
deviation across all experts is greater than 1.5°. The filter logic is represented in figure 21.
If the image is in the warning list by only a single expert, the combined standard deviation
is analyzed, if it is less than 1.5° the image will remain as ground truth, otherwise the
image will be discarded. If the image is on the warning list of two or more experts, the
image is automatically removed from the ground truth.

4.5 Proposed Heuristics

In this section, we will discussed in detail the proposed solution based vertical projec-
tions of accumulations of green pixels filtered by Savitzky-Golay. The figure 23 illustrates
the overall strategy adopted in this work.
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Figure 23 – Diagram of the proposed approach to the problem.

Source: Author.

Image segmentation

As can be observed, Figure 23 divides our algorithm in two parts, Image Segmentation
and Crop rows orientation. The first module of our heuristic consists of a transformation
using the Excess Green Vegetation Index (ExG), as presented in (GARCÍA-SANTILLÁN
et al., 2017). The output of this stage is a grayscale image in which plants (generally
green) are highlighted in contrast with soil, as shown, for instance, in Figure 10(b).

Given the grayscale image after the ExG application, a global threshold method was
applied, to achieve a binary image. The chosen method was the global Otsu threshold,
leading to a black and white image, as seen in Figure 11.

As seen in Figure 12, there are a few pixels scatterd alone in the image, and in places
where should have been only white there are few black dots. Thus, for the binarized
image, a set of morphological operations can refine it.

This step was divided into two parts, a closing operation (dilatation followed by ero-
sion) with a rectangular structural element of 4 by 4 pixels, the a open operation (erosion
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followed by dilatation) of 1 by 1 rectangular kernel. The final result is presented on Figure
12.

Crop Rows Orientation

The second part of our heuristic starts with the projection algorithm, which was
inspired by Rocha et al. (2020). We perform a rotation of the image from −90∘ to 90∘,
with the angular resolution being left as tuning parameter. For each rotation step, the
sum of white pixels is done per column, thus creating a projection vector.

(a) (b)

(c) (d)

Figure 24 – Vertical projection algorithm steps: (a) and (c) image rotated in specific
angle; (b) and (d) respective vertical projection curves

Figure 24 illustrates what happens to the projection vector as the angle of rotation
shifts. Figure 24 (a) and (c) show the result of image rotation and Figure 24 (b) and
(d) its respective projection vectors. When the lines starts to be aligned in the vertical
orientation, the signals presents well-defined peaks and valleys, which characterizes the
plantation line and inter-row exposed soil.

Based on Figure 24d, when the orientation of the crop line is parallel to the vertical
axis, the greatest variation in the vertical projection vector will occur. Now we just need
to identify the rate of change, regardless of the magnitude of the accumulated value. For
this, we will use the Savitzky-Golay filter (SADEGHI; BEHNIA; AMIRI, 2020). It was
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chosen the second order first derivative configuration and the window size was left as a
tuning parameter. After that, a simple threshold is applied to the output vector 𝑌𝑗 to
detect only high variation and then creating an vector z that contains the number of
occurrences of non-zeros values of the output vector. The final angle 𝜃𝑓 is obtained from
the largest elements of z.

The output of the Savitzky-Golay filter reveals the variation of the sum of intensity of
the vertically projected pixels as a function of the image rotation angle. The angle where
the highest value of the filter output occurs reveals the orientation of the cut lines.

As can be seen in the Fig. 25, a maximum peak at 19∘ from all values from array
z. This means that the orientations of the planting lines is aligned with the projection
direction, thus it is possible to visually confirm the method’s assertiveness.

(a)

(b)

Figure 25 – (a)Vector of pixels variances and (b) Sugarcane image with line drawn by
algorithm.
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4.5.1 Heuristic Replication of Literature for Comparison

In this subsection, we present a heuristic based on Radon Transform for reproducing
the technique and results used by SILVA (2020) for the purpose of comparison with the
heuristic created in this work and explained previously. The figure 26 illustrates the
overall strategy adopted to replicated the Radon-based Heuristic.

Figure 26 – Diagram of the proposed approach for Radon Transform heuristic.

Source: Author.

As can be seen, Figure 26 divides the proposal into three parts, image pre-processing,
transformation and orientation discovery. It is important to emphasize that both the
first and the last part of this strategy were not taken from SILVA (2020) work, since his
objective was the reconstruction of crop lines. We also chose to simplify the pre-processing
so that this process has the least influence on the Radon transform which is the essence
of the approach here.
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The first pre-processing step is to apply a classic grayscale conversion given by the
equation below:

𝐺𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒 = 𝑅 + 𝐺 + 𝐵

3 (12)

Then, scaling the image by subtracting all pixels from the average grayscale value of
the image. The results of these steps are shown in the figure 27

(a) (b)

Figure 27 – (a) Image converted to grayscale and (b) Grayscaled image decreased by the
mean.

Source: Author.

In figure 28(a) we can see the image 27(b) applied to the radon transform. Vertical
projections through the crop row image result in an accumulated signal. The sinogram
is generated by collecting many such projections as the crop row image rotates. Here,
intensity is used to highlight the accumulated signal. Note how straight crop row, when
aligned with the projection direction, result in stronger signals.

With the sinogram image generated we have to extract the feature of interest which is
the angle where occurs the maximum intensities which in turn means the crop row angle
orientations of the original image. In order to achieve this we have to apply a simple
absolute average at all of the pixels present in each column of the sinogram to turn it into
a single intensity value per angle. From equation 13 n is the index for each element of
sinogram’s column.

𝐼 =
∑︀𝑛

𝑖=1 |𝑦𝑛|
𝑛

(13)

Applying this intensities formula to each column of sinogram generates a figure shown
in 28(b) where all absolute average intensity values are ordered by angle of occurrence.

We can see a very strong intensity peak at 161∘. This means that the orientations
of the planting lines is aligned with the projection direction. But before we draw a line
with the detect orientation angle on the image we have to convert this angle to our NED
system coordinates.
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(a) (b)

Figure 28 – (a) Sinogram (b) Sinogram’s pixels intensity sum filtered and ordered by
rotation angle.

Source: Author.

4.6 Definition of project requirements

The algorithm must meet the time and accuracy requirements to integrate the harvest
mission. This subsection explains how parameters affect the final result and a correct
choice for them.

4.6.1 Down View

The main design parameter that affects both time and accuracy is the flight height of
the UAV, represented by h in the figure 29. The value of ℎ is the flight height of the drone
and can be obtained both during the flight, through the control interface, and through
the properties of the image obtained.

Figure 29 – Down view

Source: Author.

The greater the height h, the greater the coverage area of the image. So, let’s first
calculate the coverage area of the image as a function of height. Using the Pinhole model,
it is possible to use trigonometry to estimate of the size, in meters, of the sides of the
figure 30. It is known that the sides on the image have side dimensions 𝑥 in 2716 pixels,
and 𝑦 in 1524 pixels.
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Figure 30 – Dimensions of the images obtained by the drone

Source: Author.

To find the value of 𝑑 of figure 29 and 30, it is necessary to assume that the drone
is flying parallel to the ground, so that its height ℎ forms a 90 degree angle with the
ground. Another consideration is the camera lens aperture angle was given in the technical
specifications as being equal to 𝜃, with this information and using basic trigonometry, one
can calculate the angle 𝛼 according to the formula 𝛼 = 𝐹𝑂𝑉/2. Our camera has 𝜃 = 78.8
degrees, this results in a value of 𝛼 = 39.4 degrees.

The relationship between d, 𝛼 e h is given by:

𝑑 = tan(𝛼).ℎ (14)

The length x of figure 30 is twice the distance d. Therefore, x and y respectively
maintain the following relationships with the flight height of the UAV:

𝑥 = 2. tan(𝛼).ℎ (15)

𝑦 = 0.59(𝑥) (16)

Plotting a graph with various values for the height of flight, we see the linear relation-
ship with the lateral dimensions represented by the image.

4.6.2 Minimum flight height

From the graph in the figure, we can establish the first design constraints. From
preliminary tests, it was defined that for the algorithm to have good results in terms of
accuracy in identifying the orientation of crop lines, the image must contain at least 10
crop lines containing at least 15 plants present in each line. According to the information
contained in the introduction, we know that the spacing between cultivation lines can
reach 1.8 meters and the density of cane planted in each line can reach 1.2 linear meters
between each plant. Thus, the minimum dimensions of the sides of the image are:

𝑦 = 15 * 1.2 = 18𝑚
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Figure 31 – Image side dimensions

Source: Author.

𝑥 = 10 * 1.8 = 18𝑚

Minimum dimension values are marked on the chart. The flight height that meets
both requirements will be above 25 meters.

4.6.3 Maximum flight height

The higher the height of the drone, the lower the number of pixels that define the
contrast between the lines of vegetation and the ground, making the algorithm have an
extremely difficult work and carrying inaccuracy of the result. To calculate the UAV’s
maximum flight height, we took into account the physical distance between crop row
spacings, viewed from above. Right after planting the seedlings, the distance is 1.8 meters,
that is, we have 1.8 meters of soil in aerial view. However, as the plant increases in volume,
the view of the ground is obscured, mainly by the leaves of the plantation. In our studies,
we observed that a sugarcane field in the harvesting phase has, on average, only 40 cm of
soil. So we want these 40 cm of soil to be represented by at least 3 pixels in the horizontal
axes. Thus it is possible to calculate the maximum flight height based on the resolution
of 40/3 = 13,3 cm/pixel.

As we can see from the graphic above, with the UAV flying at 55 meters high, it will
meet the horizontal pixel size requirement.

Therefore, once the minimum and maximum flight height is defined, we can consider
this range as valid and refine the optimal flight height based on other requirements of
interest, such as, for example, the overlap and the maximum allowable lateral displacement
of the harvester.
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Figure 32 – Pixel resolution size

Source: Author.

4.6.4 Maximum time processing

In order to define the maximum processing time that each image can consume to
enable the algorithm for the application, a mathematical modeling was developed based
on the application requirements. The main restriction for this application is the speed
of the harvester, which is stipulated at up to 6 km/h in conditions where the terrain
is favorable. It is assumed that the speed of the UAV will be the same as that of the
combine. Another input parameter that does not allow adjustments is the field of view of
the camera used, fixed at 70°. The input parameter ’overlap’ means in percentage the pixel
correspondence between a new image and the previous image. The literature indicates
that more than 80% overlap is considered optimal for computer vision-based trajectory
control applications. This parameter can be adjusted in this range of 80 to 95 according
to application interests. Greater overlap brings greater reliability to the combine path,
but requires processing to be done in a timely manner. Finally, the parameter that we
can adjust according to our needs is the height of the drone. The higher the drone height,
given the same overlap factor, the longer there is to process an image before a new one
queues to be processed.

Also, the higher the UAV, the greater the coverage area per image, increasing the
likelihood that the image will contain several different sugarcane elements or even cut
lines will appear as they follow the curves. level related to the terrain topology. On the
other hand, the lower the height of the UAV, the lower the number of cut lines present
in the image. This causes the algorithm to have little reliability in the final result, in
addition to the noise present in the image having great relevance, bringing inaccuracy.
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Figure 33 – fps processing vs drone height

Source: Author.

Figure 34 – fps processing vs drone height

Source: Author.

4.6.5 Maximum lateral displacement

Once theoretically calculated the minimum and maximum height suitable for the ap-
plication, we will analyze the relationship between the accuracy of the orientation angle
detected with the lateral advance of the harvester. The more imprecise the result of the
algorithm, the greater the advance of the harvester in the neighboring planting lines,
causing kneading, something we want to avoid at all costs. One way to mitigate the risk
of wrinkling given a sporadic inaccuracy of the algorithm is to reduce the detection time,
that is, to reduce the processing time of each image.

4.6.6 Requirements summary

❏ Maximum flight high: 25 meters.

❏ Minimum flight high: 55 meters.



4.6. Definition of project requirements 65

Figure 35 – Effects of MAE

Source: Author.

❏ Maximum image processing time: 4.71 seconds

❏ Maximum lateral displacement: 10 centimeters.
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Chapter 5

Experimental Results

5.1 Experimental Setup

For the proposed tests of crop row orientation detection, it was evaluated 40 images
selected by an specialist where the ground truth of the cutting line orientation was deter-
mined by a manual system based on overlapping bars on the cutting line with referenced
angles.

For the experiments data analysis, we defined two criteria: the median angular error
along with its interquartile range (IQR) and the image processing time, as precision and
processing time are essential for the success of the method.

The table 1 describes the hardware and software specification where the application
was evaluated.

Table 1 – Hardware and software description.

Processor Intel® Core™ i5-4200U CPU @ 1.60GHz
Graphics Mesa DRI Intel® HD Graphics 4400

RAM memory 8 GB
Operational System Linux 5.10.42-1-MANJARO

Python Version Python 3.9.5
OpenCV library 4.5.2

5.2 Ground Truth Measurements

With the combined expert’s labeling which generated an average angle and standard
deviation for each image of our dataset was possible to compare both heuristics created
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as well as possible to indicate if an image was marked as appropriate to be used as ground
truth or not.

Over the 40 images selected for composition of the data set, four of them were discarded
according to the methodology used to generate the ground truth. The figure below shows
the figures that had a high standard deviation in the experts’ scores.

(a) (b)

(c) (d)

Figure 36 – Vertical projection algorithm steps: (a) and (c) image rotated in specific
angle; (b) and (d) respective vertical projection curves

Looking at the image in the figure 36(a), we see that there is a high area of weeds in
the center of the image and the visible crop lines are in terrain with irregular geometry.
In Figure 36(b) and (d) the planting lines follow the contours of the terrain in a curve.
Differently, Figure 36(c) shows an image of sugarcane taken from a higher altitude than
the others and where the perception of crop lines is compromised due to the high density
of vegetation in the area.

Therefore, these 4 images are inappropriate to be used as absolute truth in the results
that will be shown below. The dataset then has 36 qualified images to carry out the
comparative analysis with the results of the experts.



5.3. Heuristic based on column projections 69

5.3 Heuristic based on column projections

Applying our heuristic process to all images of our data set classified by the experts,
returned to us the results described below. The images present in figure 37 are very
interesting and deserve to have a particular algorithm performance analyses.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 37 – Angle orientations detected at crop row images with: (a) an off-road, (b) an
off-road and a car, (c) high sugarcane density (d) weed region on the right
side, (e) weed region at both sides, (f) a big weed area, (g) very constrast
variation and (h) low sugarcane density.

❏ Figure (a): There is an off-road line at the edge of the plantations which does not
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pose a challenge for the algorithm to correctly detect the orientation angle;

❏ Figure (b): Only one quarter of the image area are crop lines. There are three
different kind of noise: An off-road, a car and non-sugarcane area;

❏ Figure (c): There is an area of high density sugarcane where the algorithm can find
a good orientation result;

❏ Figure (d): There is a small weed area on the right side;

❏ Figure (e): There is a small weed area on both side;

❏ Figure (f): There is a relevant part of the image with an area of weeds, around 20%.
This shows the robustness of the algorithm in dealing with this scenario;

❏ Figure (g): Here there is high color variation compared with other images on the
data set;

❏ Figure (h): The algorithm was able to correctly detect the orientation angle even
in a low sugarcane density scenario.

Below, we investigate the impact of of Savitzky-Golay window size, scan resolution
angle and quarter and half image resolution in terms of image processing time and crop
row orientation angle accuracy. Tables 2, 4, and 3 present the summary of results. In
figure 38 there are two box plot graph for mean absolute error data of the detected angles
between the algorithm and the experts’ results. A full factorial design was carried out,
selecting as factors, the Savitzky-Golay window size (7, 15 and 23), resolution step (0.1∘

and 1∘) and image resizing (quarter resolution and half resolution). The description of
the configurations present on the legend of the figure 38 are below:

❏ 01 and 1 before letter. Means 0.1 and 1 degrees for scan angle resolution;

❏ H and Q after scan angle resolution: Means half and quarter resize of original image
resolution respectively;

❏ 7, 15 and 23 after image resolutions: Means the size in pixel of window parameter
for Savitzky-Golay filter.

Table 2 – Average processing time for the different heuristic settings

Image processing time
Scan Angle Resolution 0.1 1

Windows size [pixel] 7 15 23 7 15 23
One-quarter Image processing time [s] 6.555 6.514 8.289 0.871 1.017 0.867

One-half Image processing time [s] 21.78 20.176 20.889 2.221 2.155 2.164



5.3. Heuristic based on column projections 71

(a)

(b)

Figure 38 – (a) Box plot of absolute angle errors for factors Savitzky-Golay window (7,
15, 23) and resolution step (0.1∘ and 1∘) for image in quarter resolution (b)
Box plot of absolute angle errors for factors Savitzky-Golay window (7, 15,
23) and resolution step (0.1∘ and 1∘) for image in half resolution
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We can highlights some of important results in terms of interquartile, outliers, data
distribution and time processing for all results sets:

❏ 01Q15 has the minimum interquartile range: 0.51∘. 01H7 has the maximum: 1.54∘;

❏ 1H15 has the minimum MAE is 0.64∘ and 01H7 the maximum: 5.63∘.

❏ 1Q23 has the maximum amount of outliers: 7 in a 36 samples

❏ 1Q23 has the maximum outlier value: 86.54∘.

❏ 1Q15 has only one outlier of 4.05∘.

❏ 1Q15 has the minimal difference between mean and median and is potentially sym-
metrical by Skewness measured value;

❏ 1Q15 has is normal like tails by Excess Kurtosis;

❏ In table 5 we can see the minimum amount of time was to process 1Q7 and the
maximum to process 0.1H7 configuration as expected.
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The best Configuration and Fulfillment of Requirements

As we cannot see that small scan angle resolution like 0.1∘ doesn’t results in a much
better performance metrics compared with 1∘ and the time processing increase is relevant,
we will just to discard it. Also, we will restrict our selection only at configurations classi-
fied as potentially symmetrical. Our filter selected 1Q15, 1Q23 and 1H23 configurations.
Looking for the lowest MAE and time processing we can see that 1Q15 can be choose as
the best configuration: MAE (0.890∘) and process time (1.017 s). The time processing
should be be carefully considered here because its value is platform-dependent, which
means that this time can change depending of hardware capabilities. Finally, we can take
MAE and time values as input for find out the theoretical lateral displacement showed in
figure 35. The summary of the parameters and theoretical values of the best parameters
for orientation angle detection based on radon transform can fulfill the requirements.

❏ One-quarter of original crop row image;

❏ Algorithm scan angle resolution (1∘);

❏ Mean absolute error (normal distributed): (0.890∘) degrees

❏ Time processing: (1.017 s);

❏ Lateral displacement: < 3cm.

5.4 Heuristic based on Radon Transform

Applying the process to find orientation based on Radon Transform Algorithm de-
scribed in Methodology chapter to all of our data set images results in the results de-
scribed below. The images present in figure 39 are very interesting and deserve to have a
particular algorithm performance analyses.

❏ Figure (a): There is an off-road line at the edge of the plantations which does not
pose a challenge for the algorithm to correctly detect the orientation angle;

❏ Figure (b): Only one quarter of the image area are crop lines. There are three
different kind of noise: An off-road, a car and non-sugarcane area;

❏ Figure (c): There is a high density sugarcane area where the algorithm couldn’t find
a good orientation result;

❏ Figure (d): There is a small weed area on the right side;

❏ Figure (e): There is a small weed area on both side;
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 39 – Angle orientations detected at crop row images with: (a) an off-road, (b) an
off-road and a car, (c) high sugarcane density (d) weed region on the right
side, (e) weed region at both sides, (f) a big weed area, (g) very contrast
variation and (h) low sugarcane density.

❏ Figure (f): There is a relevant part of the image with an area of weeds, around 20%.
This shows the robustness of the algorithm in dealing with this scenario;

❏ Figure (g): Here there is high color variation compared with other images on the
data set;

❏ Figure (h): The algorithm was able to correctly detect the orientation angle even
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in a low sugarcane density scenario.

In order to get a overall statistical analyses of the algorithm performance compared
with expert´s results, the box plot of the figure 40 shows graphically the locality, spread
and skewness groups of mean absolute error data through their quartiles. The box plot
shows six different test results with different settings.

Basically, the different settings used is the resize of the original crop row image res-
olution and the scan angle resolution used by algorithm to rotate the image to take the
projections intensity sum. The tests were performed with one-quarter and one-half of
resolution and scan angle resolution of 0.1∘, 0.5∘ and 1∘ degrees and then performing a
full factorial analyses between them. The description of the configurations present on the
legend of the figure 40 are below:

❏ 01.H is scan resolution of 0.1 degrees for a one half of original image resolution;

❏ 01.Q is scan resolution of 0.1 degrees for a one quarter of original image resolution;

❏ 05.H is scan resolution of 0.5 degrees for a one half of original image resolution;

❏ 05.Q is scan resolution of 0.5 degrees for a one quarter of original image resolution;

❏ 1.H is scan resolution of 1 degrees for a one half of original image resolution;

❏ 1.Q is scan resolution of 1 degrees for a one quarter of original image resolution.

Figure 40 – Box plot of absolute angle errors for image resolution (half and one-quarter)
and scan angle resolution (0.1∘ and 1∘) factors.

All associated statistical results of the box plot of figure 40 are in the table of 5 and
6.
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Table 5 – Average image process time - Radon algorithm

Image processing time
Scan Angle Resolution 0.5 1 0.1

One-quarter Image processing time [s] 1.569 0.800 6.412
One-half Image processing time [s] 5.527 2.910 26.847
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We can highlights some of important results in terms of interquartile, outliers, data
distribution and time processing for all results sets:

❏ All of the median and mean is close each other and near to 0.5∘ of mean absolute
error (MAE);

❏ The minimum interquartile range is 0.385 and the maximum is 0.64;

❏ The maximum MAE is 1.59∘;

❏ The maximum amount of outliers is two in a 34 samples;

❏ The maximum outlier value is 2.39∘;

❏ All tests are potentially symmetrical by Skewness measured value;

❏ All test are normal like tails by Excess Kurtosis;

❏ In table 5 we can see the minimum amount of time was to process 1Q and the
maximum at 0.1H configuration as expected.

The best Configuration and Fulfillment of Requirements

As we cannot see that small scan angle resolution like 0.1∘ doesn’t results in a much
better performance metrics compared with 0.5∘ and 1 1∘, we will just to discard it. Also,
as all results was classified as potentially symmetrical, to select the best configurations
we can looking for the lowest MAE and time processing. We can see that 0.5Q can be
choose as the best configuration: MAE (0.510∘) and process time (1.569 s). The time
processing should be carefully considered here because its value is platform-dependent,
which means that this time can change depending of hardware capabilities. Finally, we
can take MAE and time values as input for find out the theoretical lateral displacement
showed in figure 35. The summary of the parameters and theoretical values of the best
parameters for orientation angle detection based on radon transform that can fulfill the
requirements are:

❏ One-quarter of original crop row image;

❏ Algorithm scan angle resolution (0.5∘);

❏ Mean absolute error (normal distributed): (0.510∘) degrees

❏ Time processing: (1.569 s);

❏ Lateral displacement: < 3cm.
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5.5 Comparison of approaches

In terms of meet requirements both approach can achieve with large advantages of
critical values for timing and accuracy which enables these algorithms to detect crop
row orientations from aerial images in real-time operations. When comparing the results
obtained by both approach can be observed that considering the same scenario - the same
application and same hardware - there is a trade-off between higher image resolution and
rotation resolution angle. The higher the image resolution, the longer the processing time
and accuracy. The larger the rotation resolution angle, the lower processing time and
accuracy.

To assess the average running time for both heuristics, the same common parameter
settings were applied for 50 iterations. As shown in figure 41 the execution time is not
far off, with the projection heuristic averaging 0.818 ± 0.008 and the Radon heuristic
0.796 ± 0.026 seconds.

To determine whether two normal distributions are equivalent, a common method is
to use a two-sample t-test. This test compares the means of the two distributions and
calculates a t-value and a p-value. If the p-value is less than a certain threshold (for
example, 0.05), this suggests that the means of the two distributions are statistically
different, indicating that the distributions are not equivalent.

To simplify our analysis, we will skip the normal distribution characterization test
and apply the two-sample t-test directly. This results in a t-statistic value of 5.555 and
a p-value of 2.379𝑒 − 07. As the p-value is less than a significance level of 5%, the null
hypothesis is validated, which means that these two samples are not equal and so we can
say that the Radon heuristic is slightly faster than the projection.

Figure 41 – Frequency analysis for execution time with one-quarter resolution and scan
angle resolution of 1∘.
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As it can be observed for crop row detection based on vertical projection pixel intensity
accumulation algorithm, neither window size nor step resolution or image size changed
the median significantly, all of the tests were around 0.75∘, with the outliers removed.
The configurations for a quarter image resolution, window size of 15 were the only con-
figurations that did not raised outliers in the errors, being able to classify even the most
difficult scenarios. In the other direction, the configurations for half image resolution,
window size 7, had a really large interquartile range (IQR) and a high number of outliers,
being dependent of the type of image. The main problem for the method of tree segmen-
tation using Excess Green Index is the presence of weeds and other green objects, which
are mixed with the trees of the crop and makes impossible to distinguish the crop.

For crop row angle orientation detection based on Radon Transform Algorithm, neither
scan angle resolution or image size changed the median significantly, all of the tests were
around 0.52∘, with the outliers removed. Image size and resolution did not have much
effect on the final result, being the best result the configuration of 1/4 of the original
image resolution. The scan angle of 0.5 degree resolution can perform balanced results in
terms of timing and accuracy.

The second approach generated much less outliers compared with Algorithm based on
vertical projection pixel intensity accumulation algorithm. From a total of 36 samples,
the Radon Transform based Algorithm generated a maximum of 2 in the worst case, with
a value of 2.36 degrees. The first heuristics generated 7 outliers in the worst case with
values up to 87 degrees of error. In this respect, the Radon approach is more reliable than
the vertical projections with filtered variance. Not least, all configurations tested with
radon generated confirmed normal distributions with excess kurtosis value and skewness.
Differently, most of the configurations used in the vertical projection algorithm generated
asymmetric distributions.

From the images marked as outliers, it was observed that, if the sugarcane was too
dense, given a fix morphological operation kernel, the soil points were filtered out raising
the angle error. When the soil points vanish, the proposed method can not detect any
line.

Overall, after analyzing the performance for all scenarios, it can be concluded that the
proposed crop row orientation, using the Radon based algorithm, kept its high accuracy
even for a different topology of the system. Therefore, the proposed crop row orientation
is more reliable in comparison with the other crop row orientation detectors, considering
that the system can change its topology, as in a condition of different angle lines, for
example. The proposed method also proved to be robust in angle estimation despite the
presence of punctual faults, caused by crushing or weeds (see Fig. 37b).
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Conclusion

Our proposal, a heuristic based on vertical projection pixel intensity accumulation
using only the vegetative index (ExG), morphological operations, and rotations accom-
panied by column projections proved to be able to find the average orientation angle of
the average crop lines. Besides that, the use of the Savitzky-Golay filter of second order
for the first derivative proved to be efficient in finding the points of higher variation in
the projection vector. A suitable configuration was found from a factorial test, reaching a
median absolute error of 0.890∘ and IQR of 0.735∘ with processing time of 1.017 seconds.

A second heuristic was created to compare our approach with the recent state-of-
the-art strategies. By using only the decreased mean from gray-scale image processing
techniques before applying into a Radon transform. A posterior intensity absolute av-
erage filter to find the Crop row angle orientation. The results show that the proposed
reproduced methodology was able to detect the crop rows orientation angle with a median
absolute error of 0.51∘ and IQR of just 0.385∘ with processing time of 1.569 seconds. Even
by changing a few configurations, difficult scenarios were able to be identified given a high
accuracy angle estimation.

Moreover, both proposed methods in the above mentioned configuration was able to
estimate the sugarcane orientation, despite a dense plantation, street presence and weed
and plantation faults. Other advantages in relation to the state of the art are the ability to
detect cut lines in RGB images acquired by the low-cost UAV orthogonal imaging system
in low-altitude flights, without orthorectification or learning-based steps that result in
simple implementation and low computational cost.

However, from the analysis of the results generated by the methodology designed to
generate the absolute truth of the experts, the relief of the terrain and the distortion errors
caused by the camera lens can negatively influence the performance of the algorithm.
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However, these adverse effects are mitigated by maintaining a low flight height, that is,
less than 50 meters in our case.

The contributions of this work are a bank of aerial images of labelled sugarcane plan-
tations, a method for fusing the knowledge of experts using the Kalman Filter and a
heuristic for estimating plantation line angles. The generated database has a diversity
of location, time, plantation quality and growth stage. The normality analysis from the
experts labeling proved to be an essential point for using the Kalman Filter to perform
the fusion of the labeling, creating an accurate background with a standard deviation
smaller than just one expert label.

Moreover, extracting features from images of unstructured environments, such as sug-
arcane fields, can be a challenging task due to several factors. One major challenge is
the complexity of the environment, as the images often contain a large number of objects
with different shapes, sizes, and colors. This makes it difficult to differentiate between
important features, such as the sugarcane plants, and the surrounding vegetation, rocks,
and other clutter.

Another challenge is the variability in the images, as the lighting conditions, camera
angle, and other factors can significantly impact the appearance of the environment. This
can make it difficult to extract consistent and accurate features, as well as to generalize
the results to other images.

Additionally, the large scale of the images can also pose a challenge, as it may not
be feasible to manually annotate all of the important features in the image. Automated
feature extraction algorithms may also struggle with the high degree of variability in the
images, leading to sub optimal results.

To overcome these challenges, it is necessary to employ advanced image processing
techniques, such as deep learning and computer vision algorithms, to extract meaningful
features from the images. These algorithms can be trained on annotated images to learn
how to identify important features, such as the sugarcane plants, and to filter out the
clutter. However, these algorithms also require large amounts of data to train and validate
their results, which can be a significant challenge in itself.

We intend to improve this approach by removing objects, such as roads and trees, in
future work. The image base should be reanalysed, with more markings for unwanted
objects. In addition, more conditions and locations can be added to complement the
bank, which will bring more robustness to the algorithms.

Finally, this work represents a significant milestone for our research group, as it marks
the first study of its kind to be conducted within our organization. This study has
produced a wealth of results that have the potential to be explored in much greater detail
by future researchers. Whether through further study, or by applying these results in
new and innovative ways, there is great potential for future research to make a significant
impact in this field.
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6.1 Publications

A conference paper from this work was published at the 18th IEEE Latin American
Robotics Symposium 2021 (LARS). https://ieeexplore.ieee.org/document/9605401.
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