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ABSTRACT$

Understanding$how$biodiversity$and$ecosystem$functioning$will$respond$to$changes$in$the$

environment$is$fundamental$to$avoid$the$loss$of$species$and$ecosystem$function.$In$realistic$

scenarios,$ the$ biodiversity6ecosystem$ functioning$ pathway$ may$ account$ for$ only$ a$ small$

share$of$all$factors$determining$ecosystem$function.$.$In$the$last$chapter,$we$described$how$

the$ use$ of$ latent$ variables$ and$ structural$ equation$ models$ could$ be$ a$ useful$ tool$ for$

environmental$ research.$ In$ the$ second$ chapter,$ we$ investigated$ the$ strength$ to$ which$

variations$ in$ environmental$ characteristics$ in$ a$ Neotropical$ savanna$ affected$ functional$

diversity$ and$ litter$ decomposition.$ We$ sought$ an$ integrative$ approach,$ using$ structural$

equation$modelling$to$connect$ fire$ frequency,$soil$ fertility,$exchangeable$aluminium,$water$

availability,$functional$diversity$of$woody$plants,$and$litter$decomposition$rates$in$a$causal$

chain.$By$expressing$these$hypotheses$simultaneously,$we$revealed$a$number$of$direct$and$

interactions.$We$found$significant$effects$of$soil$nutrients,$water$availability,$and$aluminium$

on$functional$diversity$and$litter$decomposition.$Fire$did$not$have$a$significant$direct$effect$

on$ functional$ diversity$ or$ litter$ decomposition.$ However,$ fire$ was$ connected$ to$ both$

variables$ through$ soil$ fertility.$ In$ the$ third$ chapter,$ we$ tested$ if$ we$ could$ predict$ local$

abundances$ using$ a$ pool$ of$ species$ and$ traits.$ To$ test$ if$ traits$ improved$ the$ predictions$

generated$ by$ the$ information$ present$ in$ the$ pool,$ we$ used$ maximum$ entropy$ models$

coupled$ with$ permutation$ tests.$ We$ could$ accurately$ predict$ local$ abundances$ of$ the$ 73$

species$in$the$pool.$Dispersal$ limitation$was$the$main$factor$assembling$communities$at$all$

the$ scales$ we$ studied,$ but$ the$ importance$ of$ stochasticity$ increased$ in$ local$ scales.$ Traits$

explained$ little$ of$ the$ uncertainty$ present$ in$ local$ abundances,$ but$ coupled$ with$ pool$

frequencies$ they$ yielded$ large$ coefficients$ of$ determination.$ In$ the$ fourth$ chapter,$ we$

showed$how$fire$and$soil$fertility$influence$different$sets$of$traits$in$different$ways,$which,$in$

turn,$influence$community$composition$and$density.$

Keywords:$ cerrado,$ community$ assembly,$ community$ functioning,$ structural$ equation$

modelling.$ $
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RESUMO$

Entender$ como$ a$ biodiversidade$ e$ o$ funcionamento$ dos$ ecosistemas$ vão$ responder$ às$

mudanças$ nas$ condições$ ambientais$ é$ essencial$ para$ a$ manutenção$ das$ interações$ que$

influenciam$as$propriedades$dos$ecossistemas.$Os$sistemas$ecológicos$respondem$à$mudanças$

nas$condições$ambientais$não$apenas$por$meio$da$interação$direta$com$essas$condições,$mas$

também$ de$maneira$ indireta,$ via$ organismos.$No$ primeiro$ capítulo,$ descrevemos$ o$ uso$ de$

variáveis$ latentes$e$modelos$de$equações$estruturais$ em$ecologia.$No$segundo$capítulo,$nós$

investigamos$ como$ variações$ em$ características$ ambientais$ resultam$ em$ variações$ na$

diversidade$funcional$e$funcionamento$de$uma$comunidade$de$arbustos$e$árvores$de$cerrado$

no$ Parque$Nacional$ das$ Emas$ (GO).$Nós$ usamos$modelagem$de$ equações$ estruturais$ para$

quantificar$os$efeitos$da$fertilidade$do$solo,$alumínio,$disponibilidade$de$água$e$diversidade$

funcional$na$decomposição$de$serapilheira.$Nós$encontramos$efeitos$diretos$entre$nutrientes$

do$ solo,$ disponibilidade$ de$ água$ e$ alumínio$ na$ diversidade$ funcional$ e$ funcionamento$ da$

comunidade.$O$fogo$não$teve$um$efeito$direto,$mas$sim$caminhos$indiretos$pelos$quais$o$fogo$

influencia$a$diversidade$ funcional$ e$o$ funcionamento.$No$ terceiro$ capítulo,$nós$procuramos$

identificar$ a$ importância$ de$ processos$ determinísticos$ e$ estocásticos$ na$ composicão$ da$

comunidade$ vegetal$ do$ cerrado$ em$ Emas.$Nós$ testamos,$ por$meio$ de$modelos$ de$máxima$

entropia$e$testes$de$permutação,$se$os$traços$das$espécies$adicionariam$informação$relevante$

para$a$previsão$das$abundâncias$além$da$ informação$ já$presente$no$ repositório$de$espécies.$

Nossos$modelos$tiveram$alto$poder$de$previsão$para$as$73$espécies$do$repositório.$Limitação$

de$ dispersão$ foi$ o$ principal$ processor$ compondo$ as$ comunidades.$ Processos$ estocásticos$

também$tiveram$grande$importância,$principalmente$na$escala$local.$Sem$a$informação$prévia$

sobre$as$frequências$das$espécies,$modelos$com$os$traços$tiveram$pouco$poder$de$explicação.$

Entretanto,$ ao$ combinarmos$ traços$ e$ frequências$ no$ repositório,$ nossos$modelos$ resultaram$

em$ altos$ coeficientes$ de$ determinação.$ No$ último$ capítulo,$ nós$ mostramos$ como$ fogo$ e$

fertilidade$do$solo$influenciam$diferentes$grupos$de$traços$e$como$esses$traços$influenciam$na$

composição$e$densidade$das$comunidades.$$

PalavrasJchave:*assembleia$de$comunidades$vegetais,$cerrado,$funcionamento$da$

comunidade,$modelos$de$equações$estruturais.
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I$6$INTRODUÇÃO$GERAL
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INTRODUÇÃO$GERAL$

Prever$ como$ a$ biodiversidade$ e$ o$ funcionamento$ dos$ ecossistemas$

responderão$ às$ mudanças$ nas$ condições$ ambientais$ é$ essencial$ para$ a$

manutenção$ das$ propriedades$ dos$ ecossistemas$ e$ dos$ serviços$ que$ eles$

provêm$ (Loreau$ et' al.$ 2001).$ Em$ comunidades$ vegetais,$ tal$ entendimento$

pode$ levar$ à$ políticas$ de$ conservação$mais$ efetivas,$ especialmente$ aquelas$

que$ referem6se$ ao$ manejo$ de$ agentes$ de$ perturbação,$ como$ o$ fogo,$ para$

minimizar$ a$ perda$ de$ espécies$ e$ serviços.$ Vários$ estudos$ tiveram$ como$

objetivo$investigar$as$interações$entre$fatores$abióticos,$diversidade$biológica$

e$ funcionamento$ dos$ ecossistemas$ (Tilman$ et' al.$ 1997;$ Hooper$ et' al.$ 2005).$

Entretanto,$ a$maioria$desses$estudos$analisou$as$ relações$entre$apenas$dois$

dos$ componentes$ mencionados,$ desconsiderando,$ principalmente,$ a$

influência$ de$ variações$ do$ ambiente$ na$ interação$ entre$ biodiversidade$ e$

funcionamento$dos$ecossistemas$(Tilman$et'al.$1997;$Hooper$&$Vitousek$1997;$

Hector$et'al.$1999).$

Os$ sistemas$ ecológicos$ respondem$ às$ mudanças$ nas$ condições$ ambientais$

não$apenas$por$meio$de$ interação$direta,$mas$ também$de$maneira$ indireta,$

via$ organismos$ (Chapin$ et' al.' 1997;$ Cardinale$ et' al.$ 2000).$ Dessa$ forma,$ ao$

considerarmos$as$relações$diretas$e$indiretas$entre$ambiente,$biodiversidade$

e$funcionamento,$teremos$dado$um$importante$passo$rumo$à$identificação$e$

quantificação$das$vias$que,$ultimamente,$ influenciam$nas$propriedades$dos$

ecossistemas$(Srivastava$&$Vellend$2005).$A$investigação$das$interações$entre$

organismos$e$funcionamento$em$condições$ambientais$flutuantes$é$uma$das$

questões$ da$ ecologia$ de$ ecossistemas$ que$ necessita$ de$ mais$ atenção$$

(Srivastava$&$Vellend$2005).$

Os$ mecanismos$ pelos$ quais$ o$ ambiente$ determina$ quais$ espécies$ ocorrem$

nas$ comunidades$ têm$ recebido$atenção$dos$pesquisadores$há$muito$ tempo$

(Macarthur$ &$ Levins$ 1967;$ Connel$ &$ Slatyer$ 1977).$ Principalmente,$ dois$
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grupos$ de$ teorias$ procuram$ explicar$ o$ processo$ de$ formação$ de$

comunidades$à$partir$de$um$repositório$de$espécies$(Chase$et'al.$2005):$o$da$

teoria$ neutra,$ segundo$ a$ qual$ fatores$ aleatórios$ governam$ a$ formação$ de$

comunidades,$ uma$ vez$ que$ todas$ as$ espécies$ do$ repositório$ regional$ são$

funcionalmente$equivalentes,$ou$seja,$sneutrass$(Hubbell$2005,$2006)$e$o$das$

teorias$ baseadas$ nos$ nichos$ das$ espécies,$ segundo$ as$ quais$ fatores$

determinísticos$ são$ os$ principais$ responsáveis$ pela$ composição$ das$

comunidades$(Weiher$et'al.$1998).$

Nos$ modelos$ de$ formação$ de$ comunidades$ baseados$ em$ nichos,$ vários$

mecanismos$ de$ exclusão$ de$ espécies$ foram$ propostos.$ Um$ desses$

mecanismos$é$dos$filtros$ambientais,$segundo$o$qual$fatores$abióticos$como$$

fertilidade$ do$ solo$ e$ fogo$ determinam$ que$ espécies$ possuem$ as$

características$ necessárias$ para$ sobreviverem$ em$ um$ determinado$ local$

(Keddy$ 1992).$ De$ maneira$ semelhante,$ o$ processo$ de$ limitação$ da$

similaridade$ de$ nichos,$ causada$ principalmente$ pela$ interação$ entre$ as$

espécies$de$uma$comunidade,$ também$deixa$uma$marca$nas$comunidades.$

Por$exemplo,$espécies$com$atributos$semelhantes$têm$mais$chance$de$terem$

alta$sobreposição$de$nichos,$o$que$faz$com$que$elas$tenham$que$competir$por$

recursos$(Fridley$2001;$Kraft$et'al.$2008;$Cornwell$&$Ackerly$2009).$Porém,$a$

competição$ por$ recursos$ faz$ com$que$ as$ espécies$ limitem$ sua$ similaridade$

para$que$tenham$menor$sobreposição$de$nichos,$atuando$em$direção$oposta$

aos$filtros$ambientais.$

Os$ organismos$ influenciam$ taxas$ e$ processos$dos$ ecossistemas$de$diversas$

formas$ (Loreau$ et' al.$ 2001;$ Hooper$ et' al.$ 2005).$ Por$ exemplo,$ quanto$ mais$

espécies$ em$ uma$ comunidade,$ maior$ a$ chance$ de$ que$ espécies6chave$ de$

algum$processo$estejam$presentes$nessa$comunidade$(Loreau$2000).$Porém,$

uma$ vez$ que$ as$ espécies$ podem$ ter$ papéis$ semelhantes$ para$ o$

funcionamento$dos$ecossistemas,$muitas$vezes$a$riqueza$não$é$o$índice$mais$

adequando$ para$ investigar$ a$ relação$ entre$ biodiversidade6funcionamento$

(Wardle$ et' al.$ 1997;$ Hooper$ et' al.$ 2005).$ Dessa$ forma,$ os$ ecólogos$ têm$
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procurado$ por$ outras$ formas$ de$ medir$ a$ diversidade$ das$ comunidades$ e$

melhor$entender$como$os$organismos$respondem$ao$ambiente$e$influenciam$

no$ funcionamento$dos$ ecossistemas$ (Petchey$&$Gaston$ 2002;$ Pavoine$ et' al.$

2011).$Uma$maneira$alternativa$de$se$medir$a$biodiversidade$é$olhando$para$

a$ diversidade$ de$ traços$ funcionais$ de$ uma$ comunidade.$ Foi$ sugerido$ que$

comunidades$ com$ maior$ diversidade$ de$ traços$ funcionais$ operam$ de$

maneira$mais$eficiente$devido$à$maior$complementaridade$de$nichos,$o$que$

leva$ ao$ particionamento$ de$ recursos$ (Díaz$ &$ Cabido$ 2001;$ Hooper$ et' al.$

2005).$ Ainda,$ a$ diversidade$ funcional$ pode$ abordar$ diferentes$ facetas$ do$

funcionamento$das$comunidades,$uma$vez$que$é$medida$por$meio$de$vários$

traços$funcionais$das$espécies$(Cadotte$2011).$Petchey$&$Gaston$(2002,$2006)$

propuseram$ um$ índice$ de$ diversidade$ funcional$ (FD)$ que$ estima$ a$

complementaridade$ de$ traços$ funcionais$ em$ comunidades.$ Maiores$

diferenças$ nos$ traços$ indicam$ maior$ complementaridade.$ Posteriormente,$

uma$ extensão$ do$ índice$ para$ levar$ em$ conta$ a$ variação$ intraespecífica$ foi$

proposta$(Cianciaruso$et'al.$2009).$

Prever$as$abundâncias$das$espécies$que$podem$ocorrer$em$uma$comunidade$

sob$ certas$ condições$ ambientais$ é$ um$ dos$ objetivos$ mais$ frequentes$ na$

ecologia$ (Laughlin$ et'al.$ 2012).$Caso$ fatores$determinísticos,$ como$os$ filtros$

ambientais$ e$ interações,$ tenham$ papel$ importante$ na$ formação$ das$

comunidades,$ é$ esperado$ que$ a$ distribuição$ dos$ traços$ funcionais$ dessa$

comunidade$ indique$ a$ ação$ de$ processos$ determinísticos$ (Kraft$ et' al.'2008;$

Mayfield$ &$ Levine$ 2010).$ Por$ outro$ lado,$ caso$ fatores$ aleatórios,$ como$ a$

estocasticidade$demográfica,$sejam$os$principais$responsáveis$pela$formação$

das$ comunidades,$ a$ distribuição$ dos$ traços$ nessas$ comunidades$ não$ será$

diferente$ daquela$ esperada$ pelo$ acaso$ (Shipley$ et' al.' 2012).$ Ainda,$mesmo$

que$ processos$ determinísticos$ deixem$ uma$ marca$ significativa$ na$

distribuição$de$traços$de$uma$comunidade,$fatores$aleatórios$também$podem$

responder$por$uma$proporção$significativa$da$capacidade$dos$pesquisadores$

de$prever$bem$as$abundâncias$das$espécies$(Tilman$2004;$Chase$2005;$Gravel$
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et'al.$2006;$Stokes$&$Archer$2010).$A$identificação$dos$processos$por$trás$da$

formação$ das$ comunidades$ é$ uma$ das$ questões$ centrais$ da$ ecologia$

(Sutherland$et'al.$2013).$

No$cerrado,$a$fertilidade$do$solo,$baixo$pH,$altas$concentrações$de$alumínio$e$

incidência$ de$ queimadas$ se$ apresentam$ como$ possível$ fatores$ ambientais$

que$ limitam$ a$ ocorrência$ de$ espécies.$ Dessa$ forma,$ filtros$ ambientais$

provavelmente$governam$a$ocorrência$de$plantas$em$áreas$de$cerrado.$Por$

exemplo,$ é$ notável$ a$ variação$ na$ densidade$ de$ plantas$ na$ vegetação$ do$

cerrado,$ indo$ desde$ fisionomias$ campestres,$ mais$ abertas,$ até$ fisionomias$

mais$fechadas,$com$alta$densidade$de$indivíduos$arbóreos.$Teorias$clássicas$$

sugeriram$que$o$cerrado$é$um$gradiente$de$fertilidade.$Assim,$a$densidade$

de$indivíduos$acompanharia$a$fertilidade$do$solo$(Goodland$&$Pollard$1973).$

Estudos$ recentes$ tanto$ corroboraram$ (Amorim$ &$ Batalha$ 2008;$ Silva$ &$

Batalha$2008),$quanto$não$corroboraram$(Ruggiero$et'al.$2002)$essas$ teorias.$

Além$do$solo,$o$fogo$tem$sido$indicado$como$fator$ambiental$que$influencia$

a$ diversidade$ fenotípica$ (Batalha$ et' al.' 2011;$ Cianciaruso$ et' al.$ 2012)$ e$

filogenética$ (Silva$&$Batalha$ 2010;$Cianciaruso$ et' al.$ 2012)$ da$ vegetação$do$

cerrado.$

Nós$coletamos$os$dados$que$utilizamos$nos$ trabalhos$desta$ tese$no$Parque$

Nacional$ das$ Emais,$ Goiás.$ O$ Parque$Nacional$ das$ Emas$ é$ uma$ das$mais$

importantes$reservas$de$cerrado$do$Brasil,$com$aproximadamente$133,000$ha.$

No$ parque,$ a$ vegetação$ de$ cerrado$ vai$ desde$ o$ campo$ limpo,$ onde$

predomina$ o$ componente$ herbáceo,$ até$ o$ cerrado$ sensu' stricto,' onde$

predominam$ os$ indivíduos$ arbustivo6arbóreos.$ O$ solo$ e$ a$ topologia$ do$

parque$ apresentam$ grande$ variação,$ contribuindo$ para$ estudos$ que$

relacionam$ ambiente$ e$ vegetação,$ como$ este.$ Além$ disso,$ o$ histórico$ de$

queimadas$no$Parque$Nacional$das$Emas$mostra$uma$configuração$parecida$

com$ um$ mosaico.$ A$ fragmentação$ causada$ por$ aceiros$ e$ estradas$ de$

manutenção$ faz$com$que$mesmo$áreas$próximas$ tenham$históricos$de$ fogo$



 14$

diferentes,$ contribuindo$ para$ a$ importância$ do$ parque$ nos$ estudos$ de$

formação$e$funcionamento$de$comunidades$vegetais.$

No$primeiro$capítulo$da$tese,$nós$investigamos$os$papéis$direto$e$indireto$do$

fogo$ e$ do$ solo$ na$ diversidade$ funcional$ e$ funcionamento$ de$ uma$

comunidade$de$espécies$arbóreas$de$cerrado$no$Parque$Nacional$das$Emas.$

Nós$ buscamos$ uma$ abordagem$ integrada,$ quantificando$ todas$ as$ relações,$

diretas$ e$ indiretas,$ entre$ os$ fatores$ abióticos,$ bióticos$ e$ funcionamento.$

Assim,$ propusemos$ um$ modelo$ de$ equações$ estruturais$ com$ uma$

representação$plausível$de$como$as$variáveis$de$interesse$se$relacionam.$

No$segundo$capítulo$da$tese,$utilizamos$modelos$de$máxima$entropia$para$

prever$ a$ abundância$ das$ espécies$ arbóreas$ de$ cerrado$ no$ Parque$Nacional$

das$ Emas$ por$ meio$ de$ alguns$ de$ seus$ traços$ funcionais.$ Fazendo$ isso,$

pudemos$particionar$a$importância$de$processos$determinísticos$e$aleatórios$

formação$ dessas$ comunidades.$ Ainda$ nesse$ capítulo,$ determinamos$ quais$

foram$ os$ traços$ mais$ contribuiram$ para$ as$ previsões,$ indicando,$ assim,$

aqueles$traços$que$mais$influenciam$as$abundâncias.$

No$ terceiro$ capítulo,$ procuramos$ explicar$ a$ riqueza$ e$ a$ densidade$ de$

indivíduos$arbóreos$no$Parque$Nacional$das$Emas$por$meio$da$relação$entre$

traços$ fisiológicos$ e$ de$ resposta$ e$ o$ histórico$ de$ fogo$ e$ disponibilidade$ de$

nutrientes$no$solo.$

Finalmente,$ no$ quarto$ capítulo,$ descrevemos$ o$ uso$ da$ modelagem$ de$

equações$ estruturais$ nas$ ciências$ ambientais,$ focando$ no$ uso$ de$ variáveis$

latentes,$ ainda$ pouco$ utilizadas.$ Procuramos$ apresentar$ os$ conceitos$ mais$

importantes$ da$ técnica,$ suas$ premissas,$ como$ estimar$ parâmetros$ e$

interpretar$os$resultados.$

Escolhemos$apresentar$a$tese$em$capítulos,$que$formatamos$de$acordo$com$

as$normas$das$revistas$científicas$a$que$foram$submetidos.$Como$as$revistas$

que$ escolhemos$ para$ publicá6los$ exigem$ a$ sua$ redação$ em$ inglês,$ nossos$

capítulos$foram$escritos$nesse$idioma.$O$primeiro$capítulo$foi$submetido$ao$

periódico$Methods'in'Ecology'and'Evolution,$o$segundo$capítulo$foi$submetido$
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ao$ periódico$ Oecologia,' o$ terceiro$ capítulo$ será$ submetido$ ao$ periódico$

Community' Ecology' e$ o$ último$ capítulo$ foi$ submetido$ ao$ periódico$ Biology'

Letters.$ A$ divisão$ em$ capítulos$ se$ justifica,$ porque$ torna$ a$ publicação$ dos$

artigos$ científicos$ menos$ trabalhosa$ e$ mais$ rápida,$ ainda$ que$ repetições$

sejam$ muitas$ vezes$ inevitáveis$ devido$ à$ independência$ dos$ capítulos.$$
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Summary 1 

The statistical methods ecologists commonly use to analyse their data are often unsuitable for 2 

testing hypotheses were variables could act as cause and effect. Also, most of these methods do 3 

not take into account the multidimensionality of some common concepts in ecology, such as 4 

biodiversity and body size. Structural equation modelling (SEM) provides the means to 5 

quantitatively test hypotheses that represent alternative causal structures of any level of 6 

complexity. SEM allows researchers to analyse their data from a system perspective, with less 7 

emphasis on bivariate relationships and more focus on the system of interacting variables. 8 

Theoretical variables, such as biodiversity, are included in structural models as latent variables. 9 

Latent variables cannot be directly measured, but arise from the variance shared by a set of 10 

observed variables called indicators. Latent variable modelling also takes into account our 11 

imperfections in taking measurements and the effects of variables not included in our models on 12 

those included. These are modelled as error variances and measurement error in SEM and help 13 

on building more faithful mathematical translations of our hypotheses. SEM, thus, yields a 14 

powerful tool for gleaning knowledge on ecological theories, but requires a lot of attention from 15 

users to render trustworthy results. From model specification to fit, passing through data 16 

collection and screening, the researcher using SEM has to mind a number of assumptions. In this 17 

article, we explain the basic concepts and assumptions of SEM analysing worked data, focusing 18 

on avoidance of the common pitfalls. When used with the required caution, SEM is a powerful 19 

set of tools that can be used to generate models about the functioning of a system and, ultimately, 20 

reproduce, corroborate, and fine-tune these frameworks to generalise our knowledge and 21 

increase our understanding of such systems. 22 
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Introduction 1 

Ecologists commonly use standard univariate (for example, ANOVA, regression, GLMs) and 2 

multivariate (such as principal component analysis, cluster analysis, and canonical 3 

correspondence analysis) methods to analyse their data. These methods are often unsuitable for 4 

testing hypotheses in which a variable can act as cause and effect, and hypotheses about chains 5 

and networks of causation (Fig. 1). Furthermore, standard methods usually give estimators of net 6 

effects instead of causal relationships and cannot accommodate theoretical ideas that are not 7 

directly measurable (Kline 2010). Structural equation modelling (SEM), in contrast, provides the 8 

means to quantitatively test hypotheses that represent alternative causal structures, be them 9 

simple, with only a handful of variables, or more complex, with several variables, some of which 10 

being both causes and effects. The hypotheses that can be tested via SEM are often described 11 

using diagrams that describe the causal assumptions of the researcher regarding a set of variables 12 

(Fig. 1). SEM allows researchers to look at their data from a systems perspective, with less 13 

emphasis on bivariate relationships and more focus on the system of interacting variables (Kline 14 

2010).  15 

Sewall Wright proposed the first type of SEM in the beginning of the 20th century 16 

(Wright 1918, 1921, 1937). At that time, Pearson’s school of statistics and correlation 17 

dominated: causation was seen as a useless concept (Shipley 2000). Critics of Wright’s proposal 18 

thought he was trying to infer causation from correlations (Niles 1922). Wright, however, was 19 

trying to estimate the strength of associations between variables in a system that may include 20 

causal knowledge and beliefs (Wright 1921). A few years later, Sir Ronald Fisher developed 21 

methods for inferring causation based on randomisation and experimental control (Fisher 1925). 22 

Fisher’s methods became dominant, and Wrights methods were relatively forgotten. 23 
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SEM has recently gained popularity, especially in the social sciences where it is now well 1 

established. In ecology and evolution, SEM is less established, even though studies show its 2 

efficacy for gleaning knowledge about the prior causal relationship assumed to result in observed 3 

data. It has been used to analyse causes of, for example, plant species richness (Grace & Pugesek 4 

1997), plant species succession (Vile et al. 2006), the abundance of rabbits and track numbers of 5 

Iberian lynx and Egyptian mongoose (Palomares et al. 1998), and the overnight survival of house 6 

sparrows (Pugesek & Tomer 1996). Furthermore, several books and papers provide excellent 7 

guides to the philosophy, principles, and methods involved with SEM (Grace 2006, Kline 2010, 8 

Schumacker & Lomax 2004, Shipley 2000). 9 

Unfortunately, SEM can be complex and has numerous pitfalls. Possible source of 10 

problems go from not respecting the underlying assumptions of the method to failure to properly 11 

report results. Some of the common pitfalls have serious impacts on the validity and 12 

reproducibility of the analyses. Here we provide an overview to the basic concepts of SEM, 13 

focused on avoidance of the common and likely pitfalls. This overview we illustrate with 14 

reference to a worked example, with data and complete R code available as a supplement. We 15 

regularly indicate sources of the more in depth topics that we cannot cover. 16 

Overview of the method 17 

SEM emphasises estimating the strengths of causal effects between variables through path 18 

coefficients (Grace et al. 2010). A deeper discussion about causation can be found in Shipley 19 

(2000), where he suggests that the common adage that ‘correlation does not imply causation’ 20 

should be revised to ‘correlation implies an unknown causative structure’. Pearl (2000) further 21 

explains causality, its statistical foundations, and its link with SEM. He also presents the 22 
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technique of causal diagrams for testing causal assumptions from correlations. Here we use the 1 

term ‘causal assumptions’ as a reference to all the prior knowledge a researcher has about certain 2 

phenomena. Accordingly, we use ‘causal effects’ or simply ‘effects’ as the strength of such 3 

causal assumptions. The purpose of SEM is not to establish cause from association. Instead, it 4 

provides ways of statistically testing the strength of support for causal assumptions. 5 

The first step in SEM is model specification: formulation of a hypothesis about the causal 6 

relationships among the variables of interest (for instance, Fig. 1), with each causal relationship 7 

representing a plausible ecological process. The variables might be directly observable or 8 

unmeasured theoretical variables (see below). Similarly to more standard analyses, hypotheses 9 

are ideally created before data collection. The second step in SEM is model identification, 10 

whereby one examines if the specified model can be solved. The third step is checking the 11 

requirements of the observed data, including examination of sample size, distribution, 12 

collinearity, and outliers in and among variables. The fourth step is estimation of model (= 13 

hypothesis) fit and parameter values. Model fit informs about how well the proposed model 14 

explains the observed data and can be used to assess the support among a set of causal structures. 15 

Parameter values indicate how much response variables change with changes in explanatory 16 

variables. 17 

Throughout this article, we focus on maximum likelihood estimation (MLE) to estimate 18 

parameter values and maximum likelihood chi-squared (MLχ2) to assess model fit. Used this 19 

way, SEM gives estimates of how well the models proposed explain the observed relationships 20 

among variables, of the direct and indirect effects of one variable on another, and of how much 21 

of the variances and covariances are not explained by the model. 22 
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If models are not specified in advance, SEM can assist in data exploring by searching for 1 

a causal structure (model) that best explains the data. The usual dangers associated with 2 

exploratory analyses apply and interpretations of data produced by exploratory SEM should be 3 

tested using new, independent data (Schumacker & Lomax 2004). 4 

SEM Software 5 

A number of statistical software packages are capable of implementing structural equation 6 

models. Some of the most popular packages include LISREL (Jöreskog & Sörbom 2006), EQS 7 

(Bentler 1995), Mplus (Muthén & Muthén 1998-2010), R (R Development Core Team 2012), 8 

and SPSS Amos (Arbuckle 1995-2009). The software is quite user-friendly and can analyse 9 

models of varying complexity using different techniques to assess model fit and to estimate 10 

parameters (Schumacker & Lomax 2004). The R environment for statistical analysis provides a 11 

few choices of SEM package. OpenMX (Boker et al. 2011) is one of the most actively 12 

developed. It has fewer parameter estimators than commercial packages, but is perfectly capable 13 

in most usage scenarios and can be expanded to include more estimators. Other SEM packages 14 

for R include sem (Fox et al. 2012) and lavaan (Rosseel 2012). lavaan is quite new, but already 15 

offers several different types of estimation methods and is, feature-wise, on a par with 16 

commercial packages. It also has useful supporting functions, including bootstrapping and 17 

simulation of data, and is one of the easiest to use. The package sem has fewer features, but was 18 

the first package to offer SEM support for R and was recently rewritten. Due to the popularity of 19 

R, we have chosen it and the lavaan package to present a step-by-step guide to performing 20 

structural equation modelling (supplementary files). The package stremo (Carvalho et al. 2011) 21 
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for R has a few published datasets that can be used alongside lavaan and is a good starting point 1 

for those who wish to learn SEM in R. 2 

Model specification 3 

Specification of the structural part of an structural equation model 4 

Translating previous knowledge, theories, ideas, and hypotheses into a causal structure to be 5 

tested using SEM is probably the most difficult part of using the method. The researcher can do 6 

this translation by starting with variables and then identifying hypotheses, theories, or processes 7 

that might connect them. This initial step is greatly aided by drawing the causal structure in a 8 

graphical representation (Fig. 1). In such a drawing, arrows (hypothetical causal effects) connect 9 

variables (shapes) to give a causal structure to the model. Variables in rectangles are termed 10 

observed variables because they are directly measurable. For instance, Shannon diversity 11 

(shannon rectangle), and nitrogen content (nitrogen rectangle) are observed variables because 12 

they are directly measurable. A structural equation model may contain only directly measurable 13 

variables. Grace (2006) argues that path analysis (structural equation model with only directly 14 

measurable variables) considers only one level of the theory being tested, the relationships 15 

between the components of interest, as they do not account for error variances and variables that 16 

cannot be directly measured (i.e., latent variables). Thus, latent variables add a powerful 17 

dimension to structural equation models. 18 

Biodiversity can be represented as a latent variable, for example, since it is a 19 

multidimensional concept that cannot be reduced to a single value (Purvis & Hector 2000). 20 

Concepts that are not directly measurable (latent variables, constructs or factors) are graphically 21 

represented by ellipses (soil fertility, biodiversity, and community functioning in Fig. 1). Since 22 
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latent variables cannot be measured, we use other variables as their indicators or proxies. Each 1 

indicator variable can be seen as a dimension of a multidimensional concept. In Fig. 1, 2 

biodiversity has three indicators: shannon, which corresponds to Shannon’s diversity index 3 

values; FD, a functional diversity index (Cianciaruso et al. 2009); and phylodiversity, a 4 

phylogenetic diversity index (Allen et al. 2009). Each of these indicators represents a different 5 

facet of biological diversity. Shannon diversity takes into account the identity and proportions of 6 

the species in a given sample, FD accounts for the trait variation among individuals, and 7 

phylodiversity is a measure of the phylogenetic diversity in a community. The two other latent 8 

variables in Fig. 1, soil fertility and community functioning, each have indicators that correspond 9 

to aspects of the hypothesised construct. 10 

After drawing the causal network, some variables will have arrows only going out 11 

(termed an exogenous variable, e.g., soil fertility in Fig. 1), some will have arrows going in and 12 

some will have arrows going in an out of them. The latter two are termed endogenous variables 13 

(e.g., biodiversity and community functioning in Fig. 1). 14 

Any two variables can be directly (e.g., soil fertility and biodiversity in Fig. 1) or 15 

indirectly connected (soil fertility and community functioning through biodiversity). Variables 16 

are sometimes both directly and indirectly connected (soil fertility and community functioning). 17 

Variables only indirectly linked are fully mediated whereas variables with both direct and 18 

indirect causal paths are partially mediated. The absence of causal links between two variables is 19 

a very strong assumption. When causally connected, the path linking two variables is usually free 20 

to take on any value during estimation. However, if two variables are not causally connected, the 21 

researcher imposes a fixed path coefficient of zero. This will lead to a predicted bivariate 22 

covariance equal to zero if there are also no indirect paths between them. 23 
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Incorrectly translating previous knowledge into a model may lead to rejection of the 1 

proposed model due to its poor fit. In SEM, making as few as one parameter fixed or free can 2 

cause drastic changes in fit. The directionality of the paths is equally influential. Models where 3 

all variables are only at one end of a causal chain (for instance, ! → ! → !) are called recursive. 4 

Models where a given causal chain can have the same variable at its both ends (for instance, 5 

! → ! → ! → !) are called nonrecursive. Nonrecursive models often arise from uncertainty 6 

about directionality leading to inclusion of bi-directional causality or covariances between 7 

endogenous variables. Nonrecursive models require special attention and tend to be problematic, 8 

so they are best avoided unless the nonrecursiveness is strongly backed by theory, which is 9 

seldom the case. 10 

Careful translation of theory and previous knowledge into a structural equation model at 11 

this step is crucial since everything following assume that the model is correct (Kline 2010). 12 

Sometimes the knowledge driving the specification of a model provides room for alternative 13 

causal structures. This can be accommodated with the specification of competing models or with 14 

a list of possible modifications of the causal paths to improve model fit later on. It is important to 15 

come up with competing equivalent models at this point to make sure that theory and not an 16 

exploratory search for the model with the best fit is driving specification. In cases where 17 

exploratory latent variable analysis is indeed the aim of the researcher, he or she must make the 18 

rationale behind this choice very clear. 19 

Finally, more often than not data will already have been collected before model 20 

specification and identification. In this situation, the researcher has to be extra careful and 21 

propose models that are consistent with theory instead of trying to arrange the variables in a way 22 

that looks plausible enough and hope for the best. Here, we create data and specify a very simple 23 
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yet plausible model to use as example. Thus, it is not our intention to thoroughly test theories 1 

regarding causal links between the environment, biological diversity, and community 2 

functioning. A very detailed discussion on the specification of ecological structural equation 3 

models can be found in Grace et al. (2010). Shipley (2000) and Grace (2006) also address this 4 

topic in great detail. 5 

Specifying the measurement part of structural equation model 6 

The measurement model consists of the latent variables and their indicators (Fig. 2). Indicators of 7 

latent variables are also known as manifest variables. The arrows pointing from a latent variable 8 

to its indicators are termed loadings. This terminology arises from the idea that the immeasurable 9 

latent variable loads or manifests itself on the indicators, thus causing them. 10 

A latent variable arises from the variance shared by its indicators. Take, for example, the 11 

measurement model in Fig. 2a. The grey area in Fig. 2b represents the latent variable in Fig. 2a. 12 

Variance not shared by indicators (unshaded areas in Fig. 2b) does not go into the definition of 13 

the latent variable. This unique variability, which is represented by the Greek letter epsilon (ε, 14 

Fig. 1, 2, and 4), is referred to as measurement error. Measurement error may represent random 15 

error and imprecisions during data collection and also the effects of omitted variables that have 16 

some effect on the indicators. The same omitted variable can affect multiple indicators, making 17 

error terms correlated. Researchers can include this correlation by linking variables with two-18 

headed arrows (δ1, δ2, and δ3 in Fig. 2). Explicitly thinking about and modelling these error terms 19 

provides SEM a very important advantage over other methods. 20 

Latent variables also have error terms. For exogenous latent variables (e.g., soil fertility 21 

in Fig. 1), they are called variance and are represented by a two-headed arrow beginning and 22 

ending at the latent variable. The variance of an exogenous latent variable is a proxy for the 23 
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influence of all the omitted variables, much like the error of an indicator. Error associated with 1 

an endogenous latent variable (biodiversity and community functioning in Fig. 1) is termed 2 

disturbance and is the amount of factor variance not explained by the model. Disturbances often 3 

are represented by the letter D (Fig. 1 and 2a). 4 

Take, for instance, the latent variable biodiversity in Fig. 1. It is well acknowledged that 5 

there is no single number that serves as a perfect measure of the biological diversity of a sample 6 

(Purvis & Hector 2000). Instead, ecologists rely on several indices to represent the 7 

multidimensionality of this concept. So, we used three indices as indicators of biodiversity, each 8 

representing a dimension. The values we get for the indices cannot be fully explained by the 9 

latent variable though. This unaccounted indicator variance is known as measurement error in 10 

SEM jargon. As an example, an index of phylogenetic diversity does not perfectly explain the 11 

phylogenetic relationships between the species of a community. These method imperfections 12 

(e.g, poorly resolved phylogenies) are modelled as measurement error in SEM. 13 

Careful consideration of measurement error and of the distinction between latent and 14 

observed variables may contribute to the refinement and maturation of ecological theories. 15 

Instead of including biodiversity as a latent variable, we might have included only Shannon 16 

diversity. This would have resulted in loss of information about the multidimensionality of the 17 

concept of biodiversity, and loss of information about our imprecisions in measuring this 18 

concept. Both losses would result in a less realistic mathematical translation of current theory. 19 

Since we assume indicators to be caused by the latent variable, all bivariate correlations 20 

between indicators are expected to be somewhat high. Indicators with too little or too much 21 

shared variance are likely to be improper and ought to be reconsidered. The number of indicators 22 

of each latent variable is also of great importance. Models with latent variables with fewer than 23 
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three indicators are more prone to problems during identification and estimation. When possible, 1 

structural equation models should include at least three indicators for each latent variable. If a 2 

latent variable has only one indicator, the error variance of the single indicator is not modelled. 3 

Unless the error variance is pre-set due to previous knowledge, measurement error is not 4 

considered. Finally, contrarily to manifest variables, latent variables do not have scales. To set a 5 

scale to a latent variable, the researcher has to fix either the variance of the latent variable or one 6 

of the loadings. This choice does not affect model fit. 7 

Model identification 8 

A model is identifiable if it is possible, in theory at least, to identify a unique solution (i.e, one 9 

best set of parameter estimates). The maximum number of free parameters in a model is given by 10 

the t-rule: ! = !(! + 1)/2, where ! is the number of observed (i.e., not latent) variables. The 11 

model in Fig. 1 has nine observed variables, thus ! = 9(9+ 1)/2 = 45 . The number of 12 

parameters to be estimated is the number of arrows without fixed values. The model in Fig. 1 has 13 

21 arrows (the variance of soil fertility and the loadings of shannon and leaf N are fixed to 1 to 14 

set the scales of the latent variables), and therefore 21 free parameters. The number of degrees of 15 

freedom of a model is the maximum number of free parameters that could be estimated minus 16 

the number that will be estimated. Thus, the model in Fig. 1 has 45 – 21 = 24 degrees of 17 

freedom. When a model has a positive number of degrees of freedom, it is under-identified, 18 

meaning that the covariance matrix provides more information than the model needs. A just-19 

identified model has zero degrees of freedom, so it is saturated. Saturated models always have 20 

perfect fit to the data, which makes them often pointless. Over-identified models have negative 21 

number of degrees of freedom, no unique solution, and cannot be tested. 22 
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Positive number of degrees of freedom does not guarantee identifiability. Empirical under-1 

identification (Kline 2010) arises during parameter estimation and can be caused by problems in 2 

data. For instance, two highly correlated variables reduce the amount of information available in 3 

the data. Specification issues may also lead to an under-identified model, but these are hard to 4 

predict beforehand. When such problem arises, one has to make small changes to the model to 5 

narrow the source of under-identification. Kline (2010) provides further guidance for models 6 

with identifications problems, including empirical under-identification. For example, one might 7 

fix the variances and covariances of all exogenous variables in a model, freeing up degrees of 8 

freedom and possibly solving identification problems. 9 

Checking data requirements 10 

SEM with MLE compares an observed covariance matrix with a model-implied one. The smaller 11 

the differences between the two matrices, the better the model. When using MLE, data can be 12 

provided as a correlation matrix (upper triangle in Table 1) with standard deviations (diagonal in 13 

Table 1), as a covariance matrix (lower triangle in Table 1), or raw (a matrix with sample units in 14 

rows and variables in columns). Even though covariances are used in the modelling, the raw data 15 

must not deviate from the following assumptions: 16 

Type 17 

MLE requires normally distributed, and therefore continuous variables. Other types of data 18 

common in ecology, like categorical and count data, can be estimated with alternative estimators, 19 

especially from the weighted least squares family. Most introductory books give guidance when 20 

models have non-continuous variances. 21 
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Sample size 1 

SEM needs large samples to provide accurate standard errors of parameter estimates. As a rule of 2 

thumb for MLE, sample size should be > x20 the number of free parameters. A model with 15 3 

parameters to be estimated ideally would have 300 cases. Bentler (1995) suggests that the 4 

minimum sample size is x5 the number of free parameters (100 for a model with 20 free 5 

parameters). For a small discussion on the implications of samples of different sizes on 6 

parameter estimates, see Shipley (2000). In situations where it is not possible to collect a 7 

sufficient amount of data for MLE, the researcher can resort to MLE coupled with bootstrapping 8 

methods to generate unbiased standard errors of parameter estimates (Shipley 2000). 9 

Collinearity 10 

As usual, redundant variables are problematic and they should be eliminated or combined. The 11 

same applies for variables with strong bivariate correlations. Scatterplots are useful for 12 

identifying strong correlation. Multivariate collinearity is harder to spot. Kline (2010) suggests 13 

building several multiple regression models, each with a different variable as the response and all 14 

other variables as explanatory variables. A high coefficient of determination is an indication of 15 

multicollinearity. Another way to detect multicollinearity in linear models is by using the 16 

variance inflation factor (VIF; Fox & Monette 1992). VIF values greater than 10 suggest that 17 

there is multicollinearity (Quinn & Keough 2002). Multicollinearity is dealt with very much the 18 

same way as bivariate collinearity. One can either remove one of the variables that contribute to 19 

the issue or combine related variables into a composite one. 20 

Normality 21 

MLE requires normally distributed variables in multivariate space. Univariate normality can be 22 

measured by the skewness and kurtosis of the distribution, can be viewed with histograms and 23 
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density plots, and can be tested for with Kolmogorov-Smirnov test of goodness-of-fit or the 1 

Shapiro-Wilk test (Legendre & Legendre 1998). Univariate normality does not guarantee 2 

multivariate normality (Legendre & Legendre 1998). The generalised Shapiro-Wilk’s test 3 

proposed by Villasenor Alva & Estrada (2009) can check for multivariate normality. 4 

Highly skewed or kurtotic data can be transformed. See Zar (2009) for further 5 

information. Alternatively, one can use robust maximum likelihood estimators (e.g., Satorra & 6 

Bentler 1994), asymptotic distribution-free estimators, or bootstrapping. Shipley (2000) 7 

discusses the issue of non-normality in biological datasets and provides guidance to alternative 8 

estimation methods. 9 

Outliers 10 

Outliers can cause problems during parameter estimation. Identifying them and their cause is 11 

often useful, therefore. Bivariate scatterplots, boxplots, and dotplots help find outliers. Another 12 

method is calculation of z-scores (!! = ! (!!− !!)/!), where ! is the raw score to be standardised, 13 

! is the mean of the sample, and ! is the standard deviation of the sample) for each variable in 14 

the set. In a normal distribution, 0.27% of the absolute standard scores are expected to have 15 

values greater than 3.00. Deviations from this expected frequency (for instance, 1 when n = 370) 16 

indicate the presence of possible outliers. MLE requires unstandardised data, so z-scores should 17 

be used only to detect outliers. 18 

Multivariate outliers are not necessarily outliers in the univariate frequency distributions. 19 

When data are normally distributed in multivariate space, robust multivariate Mahalanobis 20 

distances are expected to follow a !!"!  distribution (Filzmoser et al. 2005). Data that fall outside 21 

of the expected distribution may be outliers. 22 
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If outliers are present, one should carefully consider their source (sampling from a 1 

different population, wrong data entry, etc) and then take action, such as data transformation, 2 

outlier removal, or alternative estimators. 3 

Covariance matrix 4 

The covariance matrix used as input in SEM software must be positive-definite. If you are passed 5 

a covariance matrix or are using one published in the literature, it is well worth checking this.  6 

Some of the characteristics of positive-definite matrices are: 1) all covariances and correlations 7 

are within bounds; 2) all eigenvalues (λn) are positive; and 3) the determinant of the matrix is 8 

positive. These requirements are related to the iterative process during MLE, where the matrix is 9 

inverted several times.  10 

Please see the supplementary files for more information on how to detect and deal with 11 

data related problems. Grace (2006) and Shipley (2000) further discuss the common issues posed 12 

by biological data in the context of SEM.  13 

Model estimation, fit, interpretation, and modification 14 

At this point, the model is specified and identified, there are sufficient data, and it meets the 15 

assumptions of the estimator (here MLE). The next step is to pass to the estimation software the 16 

covariance matrix and the proposed model structure. Although some software accept a 17 

correlation matrix, the analysis of correlations requires constraints in the model and should be 18 

avoided whenever possible. If raw data are available, it is best to analyse covariances. 19 
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Testing the measurement model using CFA 1 

Instead of immediately estimating the full structural equation model (one-step method), it is best 2 

to follow a multi-step approach. Multi-step approaches can help in finding sources of poor fit. 3 

We present the two-step method proposed by Anderson & Gerbing (1988). The first step is 4 

testing the measurement part of the structural equation model with a confirmatory factor analysis 5 

(CFA) (e.g, Fig. 3). CFA is a type of SEM that focuses on the relationships between latent 6 

variables and their indicators. In a CFA, all factors, that is are normally free to covary (e.g, two-7 

headed arrows between latent variables in Fig. 3). The objective of this step is to find an 8 

adequate measurement model before moving on to the structural model, so re-specification due 9 

to poor fit is justified. A CFA indicates the need for model re-specification when indicators have 10 

low standardised loadings, which may lead to poor fit with data. 11 

One of the most important steps in parameter estimation is choosing adequate starting 12 

values of free parameters. If the programme is given bad starting values, even the most robust 13 

routines will fail to converge to an acceptable solution. Most software will automatically propose 14 

adequate starting values. When this automation fails, it is up to the researcher to analyse each 15 

causal relationship and to try to guess a plausible starting estimates. Kline (2010) gives 16 

information on a way of manually guessing an adequate set of starting values. 17 

From the starting parameter values, the estimator selects a set of close-by parameter 18 

guesses, builds the expected covariance matrix, (!) and compares it to the observed covariance 19 

matrix (!, Table 1). Programmes make this comparison by feeding both matrices to a fitting 20 

function. For MLE, the fitting function is !!" = ln ! − ln ! + tr !!!! − !(!" + !"), where 21 

!"  is the number of observed exogenous variables and !"  is the number of observed 22 

endogenous variables. The closer S and ! are, the lower is the value of !!". When the estimator 23 
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finds the set of estimates that gives the minimum value of !!" , it stops and returns the 1 

parameters. 2 

The standard error of each parameter estimate is calculated using a Hessian matrix (a by- 3 

product of the iterative fitting process). Standard errors provide access to the significance of each 4 

estimate with simple t-tests. The value of fitting function !!" provides the MLχ!, which is a 5 

measure of model fit with data. MLχ! = !×!!" where N is the number of observations in the 6 

dataset.  7 

When a model has adequate fit, the value of MLχ! has a P value greater than 0.05: the 8 

observed and model-implied covariance matrices are not statistically different. The model in Fig. 9 

3 had a non-significant MLχ! value (n = 210, MLχ! = 22.98, ! = 0.52, and !! = 24). 10 

Before testing the structural part of the model, it is sensible to compare observed and 11 

model implied bivariate correlations via the residual matrix (Table 2), obtained by subtracting 12 

the observed correlation matrix (!) from the model implied one (!). Too large absolute 13 

differences [Kline (2010) suggests a threshold of 0.10] indicate that the model does not properly 14 

accommodate certain bivariate correlations, and can occur even when the MLχ! statistic suggests 15 

good fit with data. In such cases, re-specification is warranted. 16 

If the model does not have an acceptable fit, the researcher can consider alternative 17 

models by freeing or setting some parameters. However, significant changes to the structure of 18 

the model following poor fit should be reported in detail and supported by sound theory, as it is 19 

easy to obtain good fit by adding or removing causal paths.  20 

Following a satisfactory CFA, one should interpret the coefficients and assess latent 21 

variable validity. Indicator loadings are interpreted as regression coefficients. For instance, in 22 

Fig. 3, the unstandardised loading of the latent variable on the indicator phosphorus is 2.470, so 23 
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an increase of 1 standard deviation in the latent construct will cause an expected 2.470 standard 1 

deviation increase in the indicator. Unstandardised path coefficients may not be easily compared 2 

due to differences in the scales of variables. Standardised effects, on the other hand, are more 3 

easily compared since they are all in the same scale. Path coefficients can be either positive or 4 

negative, indicating the nature of the relationships between two variables. Negative error 5 

variances and disturbances are, however, an indication of Heywood cases, in which the software 6 

converges to a solution without any apparent problems, but closer inspection reveals 7 

interpretable results such as negative error variances. Possible causes of Heywood cases include 8 

outliers, misspecification, nonidentification, poor starting values, and small sample size in 9 

combination with too few indicators per latent variable (Kline 2010). 10 

In the model in Fig. 3, only the covariance between soil fertility and community 11 

functioning was not significantly different from zero (P < 0.05). Since we were interested only in 12 

testing factor loadings before fitting the structural model, we left the non-significant parameter in 13 

the model. If we were interested in this relationship, two routes are available: keeping the 14 

parameter or removing it to try to improve model fit. However, non-significant parameters are 15 

often best left, because even though they are not statistically different from zero, they contribute 16 

to lower bivariate correlational residuals, rendering better fit with data (Kline 2010). 17 

In the measurement model, in addition to the significance of each loading, one should 18 

examine the reliability of the indicators: the amount of indicator variance explained by the latent 19 

variable. For instance, the reliability of the variable phosphorus is given by one minus its 20 

standardised error variance (1 – 0.375 = 0.625; Fig. 3). Thus, soil fertility accounts for 62.5% of 21 

the variance of the manifest phosphorus. Reliability of an indicator is can also be calculated by 22 

squaring its standardised loading. One should always consider all reliabilities in a model and 23 
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weigh up if the amount of variance explained is consistent with the theory driving the 1 

specification. When reliability is low, one should reconsider one’s choice of latent or manifest 2 

variables. See Grace (2006) and Grace et al. (2010) for more on reliability in ecological models. 3 

Fitting the structural equation model 4 

Following a satisfactory CFA, one proceeds to solving the structural equation model proposed. 5 

The only difference between the CFA and the structural equation model is the relationships 6 

between latent variables: the causal relations are used. Model fit and parameter estimates are 7 

calculated and interpreted similarly. Any changes made to the measurement model resulting 8 

from the CFA should be incorporated into the full structural equation model in the second step. 9 

Since our CFA model was adequate, we did not make any changes to our measurement model. 10 

The structural equation model in Fig. 1 had good fit with data (! = 210, MLχ! = 22.98, 11 

! = 0.52, and !" = 24; Fig. 4). All parameters except the regression of soil fertility on 12 

community functioning (! = −0.06 , ! = 0.66 ; Fig. 4) were significant. Removing this 13 

parameter from the model (i.e., setting its value to zero) only marginally increases the value of 14 

the MLχ!  statistic (n = 210, MLχ! = 23.17, ! = 0.57, and !" = 25). Thus, nested models, 15 

which are models with the same set of variables but different causal configurations, can be 16 

compared by subtracting the value of the MLχ! statistic of the more restrictive model from the 17 

MLχ!  of the less restrictive model, with significance assessed in χ! . In our case, the less 18 

restrictive model is the one in Fig. 1, since the path between soil fertility and community 19 

functioning is free (in the more restrictive model, the value of this parameter is fixed at zero). 20 

The χ!  difference in our case was χ! = 23.17− 22.98 = 0.19, for one degree of freedom 21 

(!" = 25− 24). The P value associated with this difference is 0.66. Thus, both models have 22 

essentially the same fit with data. Analysis of residuals also suggested the absence of any 23 
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noteworthy differences between models. We retained the nonsignificant parameter since it makes 1 

the model more consistent with previous knowledge, and possibly more generalisable to other 2 

datasets. 3 

Good fit is an indication that the model is capable of reproducing observed bivariate 4 

relationships (Kline 2010), but does not necessarily indicate explanation of a large amount of the 5 

variability of endogenous variables. For instance, the model in Fig. 4 explains only about 3% of 6 

the variance of the latent variable biodiversity (!! = 1− 0.966 = !0.03; Fig. 4). The !! of an 7 

endogenous variable is given by subtracting its standardised variance from 1. Such low explained 8 

variance suggests that soil fertility alone is not a major cause of biodiversity. If we are interested 9 

in explaining biodiversity, we should revisit the literature and include more predictors of 10 

biodiversity. All other variables had a high amount of their variances explained by the model 11 

(!! > 0.5). 12 

The models in Fig. 3 and 5 are equivalent models. In the context of SEM, equivalent 13 

models are models with the same set of variables but with different path directionality. The main 14 

characteristic of equivalent models is that they produce the same value of fit statistics. For 15 

instance, the difference between the models in Fig. 3 and 5 is the paths between latent variables. 16 

The choice between mathematically equivalent models is, thus, based purely on theory and one 17 

should thoroughly explain motives behind this decision. 18 

Alternative measures of fit 19 

The MLχ! statistic is a test of the exact-fit hypothesis between the observed and predicted 20 

covariance matrices. Measures of approximate fit describe the degree of discrepancies between 21 

model and data. The rationale for reporting approximate fit measures is that the power of the chi-22 

square statistics increases with large sample size, resulting in even the slightest deviations 23 
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between observed and predicted covariance matrices causing failure to fit statistics. Shipley 1 

(2000) suggests that approximate fit measures are used after a model has failed exact-fit tests, to 2 

show how close the rejected model is from a baseline model that fully reproduces observed data. 3 

He adds that a major problem with these tests is the lack of evidence for the underlying 4 

assumption that small specification problems translate into small deviations between data and 5 

model-implied covariances. Also, there are no statistical tests to determine the cut-off values of 6 

approximate fit measures. Researchers have to rely on the results of simulations as thresholds of 7 

how “approximate” the model is from a correctly specified model.  8 

Conclusion 9 

When used with the required caution, SEM yields a powerful set of tools that can be used to 10 

generate models about the functioning of a system and, ultimately, reproduce, corroborate, and 11 

fine-tune these frameworks to generalise our knowledge and increase our understanding of such 12 

systems (Grace et al. 2010).  13 
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Table 1. Covariances (lower triangle), correlations (upper triangle, bold), and variances (diagonal) of the simulated observed variables 1 

of the structural equation model in Fig. 1. The dataset was normally distributed in multivariate space. phosphorus = soil phosphorus 2 

(mg kg-1), nitrogen = soil nitrogen (mg kg-1), carbon = soil carbon (mg kg-1), shannon = Shannon’s diversity index, FD = functional 3 

diversity index, phylodiversity = phylogenetic diversity index, leaf N = leaf nitrogen content (mg g-1), decomp rates = decomposition 4 

rates of recently shed leaves, and biomass = live tissue biomass estimate (g m2). 5 

 phosphorus nitrogen carbon shannon FD phylo 
diversity leaf N decomp 

rates biomass 

phosphorus 9.81 0.57 0.55 0.08 0.12 0.03 0.00 0.03 0.01 

nitrogen 4.51 6.47 0.49 0.12 0.12 0.05 0.10 0.04 0.11 

carbon 2.58 1.85 2.24 0.20 0.20 0.13 0.13 0.14 0.09 

shannon 0.42 0.49 0.48 2.61 0.66 0.62 0.35 0.42 0.42 

FD 1.14 0.97 0.92 3.27 9.50 0.71 0.47 0.54 0.51 

phylodiversity 0.25 0.32 0.46 2.34 5.08 5.42 0.49 0.55 0.52 

leaf N -0.04 0.78 0.60 1.67 4.30 3.43 8.93 0.61 0.59 

decomp rates 0.35 0.37 0.79 2.50 6.17 4.73 6.77 13.71 0.66 

biomass 0.11 0.75 0.36 1.79 4.17 3.20 4.65 6.43 6.93 

  6 
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Table 2. Residual correlations (observed correlation matrix minus model-implied correlation matrix for the CFA model in Fig. 3). 1 

Values within the interval [-0.10, 0.10] indicate that the model adequately predicted all bivariate correlations. 2 

 phosphorus nitrogen carbon shannon FD phylo 
diversity leaf N decomp 

rates biomass 

phosphorus 0.00         

nitrogen 0.01 0.00        

carbon 0.00 -0.01 0.00       

shannon -0.02 0.02 0.10 0.00      

FD -0.01 0.01 0.09 0.02 0.00     

phylodiversity -0.09 -0.05 0.02 0.00 -0.01 0.00    

leaf N -0.07 0.05 0.08 -0.06 -0.01 0.03 0.00   

decomp rates -0.04 -0.02 0.08 -0.05 0.00 0.03 0.00 0.00  

biomass -0.06 0.05 0.03 -0.02 0.00 0.02 0.00 0.00 0.00 

 3 
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Figure 1. Graphical representation of a structural equation model with hypothesised abiotic and 1 

biotic controls on community functioning. Parameters fixed at 1 set the scale of the latent variables. 2 

Variables in boxes are indicators of the latent variables in ellipses. phosphorus = soil phosphorus 3 

(mg kg-1), nitrogen = soil nitrogen (mg kg-1), carbon = soil carbon (mg kg-1), shannon = Shannon’s 4 

diversity index, FD = functional diversity index, phylodiversity = phylogenetic diversity index, leaf 5 

N = leaf nitrogen content (mg g-1), decomp rates = decomposition rates of recently shed leaves, and 6 

biomass = live tissue biomass estimate (g m-2).  7 
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Figure 2. Conceptual scheme of measurement error in structural equation modelling. (a) A latent 1 

variable (L1) with three indicators (X1, X2, and X3) and their respective error terms (εX1, εX2, and 2 

εX3). All errors are correlated (δ1, δ2, and δ3); (b) circles represent the variances of each indicator. 3 

The intersection between all variances (grey area) defines the latent variable L1. All areas outside 4 

this intersection are the errors of the indicators, which consist of measurement error and unique 5 

variance due to the effects of omitted variables. 6 

7 
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Figure 3. Confirmatory factor analysis to test the measurement model for the structural equation 1 

model proposed in Fig. 1. Variables in boxes are indicators (see Table 1 for variable names) of the 2 

latent variables in ellipses. Solid lines indicate significant paths. Dashed lines indicate not 3 

significant paths. n = 210; MLχ! = 22.97; ! = 0.52; !" = 24.  4 
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Figure 4. Estimates of the structural equation model proposed in Fig. 1. Variables in boxes are 1 

indicators (see Table 1 for variable names) of the latent variables in ellipses. Solid lines indicate 2 

significant paths. Dashed lines indicate not significant paths. n = 210; MLχ2 = 22.97; ! = 0.52; 3 

!" = 24.4 
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Summary 1 

1. Understanding how biodiversity and ecosystem functioning respond to changes in 2 

the environment is fundamental to the maintenance of ecosystem function. In 3 

realistic scenarios, the biodiversity-ecosystem functioning pathway may account for 4 

only a small share of all factors determining ecosystem function 5 

2. Here, we investigated the strength to which variations in environmental 6 

characteristics in a Neotropical savanna affected functional diversity and 7 

decomposition. We sought an integrative approach, testing a number of pairwise 8 

hypotheses about how the environment, biodiversity, and functioning were linked.  9 

3. We used structural equation modelling to connect fire frequency, soil fertility, 10 

exchangeable aluminium, water availability, functional diversity of woody plants, 11 

and litter decomposition rates in a causal chain 12 

4. We found significant effects of soil nutrients, water availability, and aluminium on 13 

functional diversity and litter decomposition. Fire did not have a significant direct 14 

effect on functional diversity or litter decomposition. However, fire was connected to 15 

both variables through soil fertility. 16 

5. The mediated effects that emerged from pairwise interactions (e.g., biodiversity-17 

ecosystem functioning effects) are encouraging for predicting the functional 18 

consequences of changes in environmental variables and biodiversity, but also 19 

caution against predictions based on only environmental or only biodiversity change. 20 

6. Synthesis. This study showed that soil fertility, aluminium, and water availability had 21 

significant direct effects on functional diversity and litter decomposition rates. Soil 22 

fertility mediated the indirect effects of fire on functional diversity and litter 23 

decomposition rates. By simultaneously considering the pairwise effects between our 24 

variables, we uncovered a number of indirect effects, which often acted in opposition 25 

to direct ones.  26 
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Introduction 1 

Understanding how organisms respond to changing environmental conditions could help to 2 

develop more effective management policies, especially regarding how disturbances and other 3 

abiotic factors should be dealt with to reduce the loss of biodiversity and function (Loreau et al. 4 

2001). A great amount of research on the interactions between the components of the triad of 5 

abiotic factors, biological diversity, and ecosystem functioning exist, with much of this research 6 

focusing on the relationships between two components at a time (Tilman, Lehman & Thomson 7 

1997; Hooper et al. 2005). For instance, several studies on the relationships between biological 8 

diversity and ecosystem functioning (hereafter BEF) did not quantitatively consider the influence of 9 

abiotic factors in BEF components (Tilman, Lehman & Thomson 1997; Hooper & Vitousek 1997; 10 

Hector et al. 1999). Ecosystem functioning likely responds to changes in environmental conditions 11 

not only via effects on biological diversity (Chapin et al. 1997; Cardinale, Nelson & Palmer 2000), 12 

but also via more direct pathways of effect (Grace et al. 2007; Jonsson & Wardle 2010). For 13 

example, these more direct pathways can be modulated by abiotic controls, such as resource 14 

availability, which influence ecosystem properties (Hooper et al. 2005). In realistic scenarios, the 15 

BEF pathway may account for only a small share of all factors determining ecosystem properties 16 

and function (Srivastava & Vellend 2005; Grace et al. 2007; Jonsson & Wardle 2010). 17 

Incorporating the effects of the environment in BEF research in natural communities goes one step 18 

further with the unveiling of the relative importance of all factors that contribute to ecosystem 19 

functioning, not only biodiversity (Grace et al. 2007; Jonsson & Wardle 2010). Such knowledge of 20 

the strength of the direct and indirect effects of the environment on the interaction between 21 

organisms and ecosystem properties and functioning may aid efforts to protect biodiversity and 22 

services in fluctuating conditions and has been tagged as one of the areas that need attention in BEF 23 

research (Srivastava & Vellend 2005). 24 

In niche-based models of assembly, several non-exclusive mechanisms of species sorting 25 

have been identified. One of these mechanisms is environmental filtering, where abiotic forces, 26 
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such as nutrient availability, water availability, and fire, filter species with certain trait values that 1 

give them the ability to overcome the limitations imposed by the environment (Keddy 1992). 2 

Limiting similarity, another well-studied mechanism, is determined by the interactions between 3 

species, such as competition (MacArthur & Levins 1967, Fridley 2001). For instance, species with 4 

similar trait values are likely to have overlapping positions in niche space and may, thus, compete 5 

for the same resources (Fridley 2001; Kraft, Valencia & Ackerly 2008; Cornwell & Ackerly 2009). 6 

These interactions prevent the coexistence of species with too similar trait attributes and often 7 

operate with the environment to shape the distribution of traits in a community. Thus, the stronger 8 

the pressure of the environment on individuals the lower the expected diversity of functional traits 9 

(Díaz & Cabido 2001). 10 

Species can influence ecosystem functioning in a variety of ways (Loreau et al. 2001; 11 

Hooper et al. 2005). Increasing the number of species increases the likelihood that key species for 12 

ecosystem functioning are present in the community in a process known as the selection effect 13 

(Loreau 2000). For instance, in boreal forests, plant richness and composition drive litter 14 

decomposition rates and net primary productivity, respectively (Jonsson & Wardle 2010). However, 15 

since some species may have similar roles or contribute little to ecosystem functioning, often the 16 

number of species is not a good predictor of ecosystem functioning (Wardle, Bonner & Nicholson 17 

1997; Hooper et al. 2005). A meta-analysis including savannas, meadows, prairies, and grasslands 18 

has shown that richness seldom explains the variation in plant biomass (Grace et al. 2007). Similar 19 

results were reported for manipulated polycultures (Petchey, Hector & Gaston 2004). One 20 

alternative approach is to look into the diversity of functional traits. It has been suggested that 21 

communities with higher diversity of functional traits have a tendency to operate more efficiently 22 

due to higher niche complementarity, which leads to more efficient partitioning of resources (Díaz 23 

& Cabido 2001; Petchey & Gaston 2002; Hooper et al. 2005; Petchey & Gaston 2006). Also, 24 

functional diversity is expected to account for multiple ecosystem functions as it is measured from 25 

multiple functional traits (Cadotte 2011). 26 
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Home to at least 1,000 woody species (Castro et al. 1999), the Brazilian cerrado is under 1 

constant threat as it is being destroyed to give place to commercial cultures, such as soybean, 2 

sugarcane, and African grasses for cattle ranching (Ratter, Ribeiro & Bridgewater 1997; Durigan, 3 

Siqueira & Franco 2007). Cerrado soils are usually acidic Oxisols, with very low concentrations of 4 

plant nutrients (Motta, Curi & Franzmeier 2002). The concentrations of aluminium, on the other 5 

hand, are often very high (Goodland & Pollard 1973). Early investigators proposed that the higher 6 

the concentration of plant nutrients and the lower the concentration aluminium, the higher the 7 

density of woody individuals (Goodland & Pollard 1973). According to this classical theory, the 8 

cerrado is a fertility gradient, with different physiognomies occurring under soils with different 9 

concentrations of plant nutrients. However, even if nutrients play an important role in the 10 

establishment of woody individuals, it is unlikely that they are the sole responsible for the striking 11 

heterogeneity of the cerrado vegetation. Some studies on soil-vegetation relationships in cerrado 12 

areas failed to corroborate the fertility gradient theory (Ruggiero et al. 2002), indicating that other 13 

soil characteristics, such as water availability (Ferreira et al. 2007; Assis et al. 2011), may be of 14 

greater importance. Evidence shows that nutrients and plant available water can, thus, act as 15 

environmental filters, favouring a limited range of trait values. For example, nutrient-poor soil 16 

favours species with sclerophyllous leaves and drought favours deep-rooted trees (Coutinho 1990). 17 

Abiotic factors are also expected to affect decomposition. For instance, soil moisture can alter the 18 

dynamic of mass loss of litter (Gartner & Cardon 2004). Climate has also been shown to explain the 19 

variation in litter decomposition rates and carbon mineralisation (Anderson 1991; Berg et al. 1993; 20 

Madritch & Cardinale 2007). 21 

In the cerrado, as in other savannas, fire plays an important role in determining the 22 

composition of species (Bond & Keeley 2005; Silva & Batalha 2010). Cerrado plant species 23 

evolved with fire and are adapted to it (Coutinho 1990). For example, woody species have thick 24 

barks and subterranean meristems that insulate internal tissues from the high temperatures and 25 

allow resprouting after burnings (Gottsberger & Silberbauer-Gottsberger 1996). Fire has been 26 
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shown to act as an environmental filter, promoting clustering of functional traits in woody species 1 

(Silva & Batalha 2010). Also, areas where fires are more frequent have lower total biomass than 2 

areas with less frequent fires (Cianciaruso, Silva & Batalha 2010). Burning events have important 3 

impact on nutrient cycling and availability in the cerrado (Coutinho 1990; Silva & Batalha 2008). 4 

After a fire, nutrients that were in the vegetation are either deposited in the soil as ashes or lost by 5 

volatilisation (Coutinho 1990). Consequently, areas where fire events are frequent have more 6 

organic matter and nitrogen when compared to areas protected from fire (Silva & Batalha 2008). 7 

Here, we investigated the strength to which variations in abiotic factors in the cerrado affect 8 

the functional diversity of woody individuals and ecosystem functioning, directly and indirectly. 9 

We sought an integrative approach, analysing how disturbance, water availability, and soil nutrients 10 

influence the association between the diversity of functional traits and decomposition. We proposed 11 

a structural equation model (Fig. 1) that we believed was a plausible representation of the current 12 

knowledge on how our variables of interest are connected. We answered the following questions: 13 

(1) is the variation in the frequency of burnings related to the variation in the fertility of the area? 14 

(2) Is the variation in the frequency of burnings related the variation in the functional diversity of 15 

woody individuals? (3) Is the variation in the functional diversity woody individuals related to the 16 

variation in litter decomposition? (4) Is the variation in soil aluminium contents related to the 17 

variation in the functional diversity of woody individuals? (5) Is the variation in slope and altitude, 18 

which are related to the water availability, related to the variations in nutrient availability, 19 

functional diversity of woody individuals, and litter decomposition? 20 

Materials and methods 21 

Site 22 

Covering about 133,000 ha of the Brazilian Central Plateau (17°49’-18°28’S and 52°’39’-23 

53°10’W), Emas National Park (ENP) is one of the largest cerrado reserves. ENP is under tropical 24 
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and humid climate, with a wet summer (September to May) and dry winter (June to August). 1 

Annual rainfall and mean temperature lie around 1,745 mm and 24.6°, respectively. The cerrado 2 

vegetation in the park goes from open (68.1% of its area) to closed physiognomies (25.1%). Other 3 

vegetation types, such as wet grasslands, riparian forests, and semideciduous forests cover the 4 

remaining 6.8% of the area (Ramos-Neto & Pivello 2000). ENP is one of the most important sites 5 

containing the fauna, flora, and key habitats that characterise the cerrado.  6 

Since the prohibition of cattle farming inside the park in 1984, a fire exclusion policy was 7 

instituted. However, the accumulation of dry biomass led to the occurrence of uncontrolled 8 

wildfires every 3-4 years, burning on average 80% of ENP’s total area (França, Ramos-Neto & 9 

Setzer 2007). In 1994, a catastrophic fire burned about 95% of the park. Since then, precautions to 10 

avoid similar burnings have been taken. Preventive firebreaks are burned annually in the dry season 11 

and a fire brigade stays in ENP during this period to prevent anthropogenic fires (França, Ramos-12 

Neto & Setzer 2007). Nevertheless, even with these precautions, in August 2010 an anthropogenic 13 

fire burned 93% of the park’s area. 14 

Sampling 15 

We randomly placed 100 plots, each one with 25m2, in all tangible areas of ENP. In each 16 

plot, we collected five soil samples at 5 cm depth to determine the following soil variables (see 17 

Silva & Batalha 2008 for details on chemical and physical analyses): pH, organic matter, available 18 

phosphorus, total nitrogen, exchangeable potassium, exchangeable calcium, exchangeable 19 

magnesium, exchangeable aluminium, sum of bases, base saturation, aluminium saturation, cation 20 

exchange capacity, sand content, silt content, and clay content. Since most variables presented high 21 

bivariate correlation, we kept exchangeable aluminium, total nitrogen, available phosphorus, and 22 

cation exchange capacity for subsequent analyses, reducing model complexity. These variables are 23 

commonly regarded as important for plant growth, whilst exchangeable aluminium is toxic to 24 

plants. We also measured altitude and slope as rough surrogates of water availability: in ENP, the 25 

higher the altitude and the lower the slope, the lower the water availability in deep soil layers. Even 26 



 66#

though we could have used variables that represent soil texture, like sand content, as surrogates of 1 

water availability, these variables were highly correlated with altitude. We decided to keep altitude 2 

as it is a continuous measure and, thus, easier to include in the model. We determined mean interval 3 

between fire events for each plot from 1984 to 2009 based on satellite images and in-field 4 

observations. We inverted this variable by multiplying it by minus one to make interpretation 5 

easier. Thus, larger values indicate more frequent burnings. 6 

In each plot, we identified and tagged all individuals with at least 3 cm of stem diameter at 7 

the soil level. From September 2009 to January 2010, for each sampled individual, we collected the 8 

values of 10 functional traits that are relatively easy and inexpensive to measure (Cornelissen et al. 9 

2003; Pausas & Paula 2005). These traits are surrogates of important responses of plants to 10 

environmental conditions, such as nutrient availability, water availability, and fire, and of impacts 11 

of plants on ecosystem functioning (Cornelissen et al. 2003; Pausas & Paula 2005). The traits we 12 

measured were: (1) basal area, related to space occupation, resource uptake, total biomass, and 13 

reproductive capability; (2) height, associated with competitive vigour, fecundity, and growth after 14 

disturbance; (3) bark thickness, related to resistance to disturbance; (4) wood density, related to the 15 

capacity to store carbon and growth after disturbance; (5) leaf toughness, associated with resistance 16 

to abiotic and biotic mechanical damage; (6) leaf size, related to resistance to environmental stress; 17 

(7) specific leaf area, associated with growth and maximum photosynthetic rate, and (8-10) leaf 18 

nitrogen, phosphorus, and potassium concentration, related to maximum photosynthetic rates and 19 

nutrient stress. We used trait values for each individual to calculate an individual-based measure of 20 

functional diversity (iFD; Cianciaruso et al. 2009). Instead of taking into account mean trait values 21 

for each species, iFD considers actual trait values for all individuals sampled. Despite the increasing 22 

awareness that trait variation within populations is important for ecological processes (Crutsinger et 23 

al. 2006; Cadotte, Carscadden & Mirotchnick 2011), few functional diversity indices can 24 

accommodate intraspecific trait variation (Schleuter et al. 2010). iFD can, thus, detect plastic 25 

responses of individuals to environmental conditions instead of assuming that all individuals of a 26 
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given species are equal regarding their traits. In the cerrado, some traits can vary more within than 1 

between species (Dantas et al. 2012). Thus, selecting a measure of functional diversity that could 2 

account for this source of variability would give us a better representation of niche width and 3 

overlap. We calculated iFD values for each plot using the “treedive” function from the “vegan” 4 

package (Oksanen et al. 2010) for the R environment (R Development Core Team 2011). We 5 

standardised the trait matrix to zero mean and unit variance before all calculations. 6 

As a surrogate of ecosystem functioning, we used litter decomposition, which is one of the 7 

key functions for the maintenance of communities (Sulkava & Huhta 1998) and regulates the cycle 8 

of matter (Clark et al. 2001). In cerrado sites, decomposition rates vary according to vegetation 9 

structure, increasing from open to closed cerrado physiognomies (Cianciaruso et al. 2006; Valenti, 10 

Cianciaruso & Batalha 2008). Overall, litter decomposition is very slow in the cerrado. In each plot, 11 

at the corners, we placed four sets of five decomposition bags made with 1.0 mm2 mesh. So, we had 12 

2,000 litter bags in total. To prepare the bags, we collected recently shed leaves from woody 13 

individuals of all species occurring nearby the plots, cleaned them with a soft brush, and oven-dried 14 

them at 80°C for 24 hours. After that, we placed all leaves in a bag and thoroughly mixed them. We 15 

put 5 g of mixed dried leaves in each decomposition bag, placed them in the plots in the middle of 16 

the rainy season (January 2010), collected them 6 months later, cleaned them with a soft brush, and 17 

weighed them. When we designed the litter decomposition experiment, we planned to collect one 18 

set of bags from each plot after 1, 3, 6, 9, and 12 months to calculate decomposition rates. However, 19 

a fire burned almost all the vegetation in the park about 8 months into the experiment and we lost 20 

two sets of litter bags from each plot. Them, we considered the differences between masses after 6 21 

months and initial masses as an indicator of community functioning for each plot. Large differences 22 

between final and initial masses indicate faster decomposition and higher functioning. 23 

Analysis 24 

We proposed a structural equation model (Shipley 2000) with our causal assumptions 25 

regarding the following variables (Fig. 1): (1) inverted mean interval between fire events; (2) 26 
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exchangeable aluminium (3-5) total nitrogen, available phosphorus, and cation exchange capacity 1 

as indicators of soil fertility; (6) altitude; (7) slope; (8) iFD; and (9) litter decomposition times. 2 

Before testing our model, we screened our data for outliers and deviations from normality in uni- 3 

and multivariate space using robust Mahalanobis distances (Filmozer, Garret & Reimann 2005). 4 

When data are normally distributed in multivariate space, distances are expected to follow a chi-5 

square distribution (Filmozer, Garret & Reimann 2005). Then, we log-transformed all variables 6 

except total nitrogen and available phosphorus to minimise the effects of deviations from uni- and 7 

multivariate normality. After this, we screened data for variables with high multivariate collinearity 8 

by fitting several multiple regression models, each with one of our measured variables as the 9 

response and all other variables as predictors. Models with a R2 > 0.85 indicated multivariate 10 

collinearity. Then, we assured that the scales of our variances were uniform by multiplying them to 11 

constants, which helped avoiding ill-scaled covariance structures and consequent problems during 12 

estimation (Kline 2010). With data thus screened for possible sources of problems during 13 

estimation, we generated a covariance matrix from our data (Table 1). We assured that the 14 

covariance matrix was positive-definite and all variances and covariances were within bounds 15 

(Kline 2010).  16 

To estimate the free parameters and access the fit of the structural equation model we 17 

proposed, we used maximum likelihood estimation (MLE) and maximum likelihood chi-square 18 

(MLχ2), respectively. Ultimately, MLE and MLχ2 provide estimates of effects, variances and 19 

disturbances, and of how well a proposed model explain the covariance structure generated from 20 

observed data. The covariance matrix, the sample size (in our case, 100 plots), and one or a few 21 

previously specified model are all that is needed to apply structural equation modelling using MLE. 22 

We used the covariance matrix and proposed model as input in the package ‘lavaan’ (Rossel 2011) 23 

for the R environment (R Development Core Team 2011). When the differences between observed 24 

and model-implied covariance structures are small, the model has good fit (small MLχ2). Otherwise, 25 

the model has poor fit (large MLχ2), which means that the model does not properly explain how 26 
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variables interact in the system. After estimation and fit, we searched for Heywood cases in the 1 

results (Kline 2010), that is, inadmissible and not interpretable solutions (for example, negative 2 

variance estimates). Finally, we repeated the analysis passing different starting values to the 3 

estimator to assure that it would converge to the same set of parameter estimates and model fit 4 

statistic every time. We fixed the variances of all exogenous variables to their observed values. 5 

Previous screening indicated linear relationships between the variables in our model. 6 

When considering parameter estimates that were not significantly different from zero, we 7 

looked at the corresponding bivariate residual correlation to determine whether to remove these 8 

parameters or not. We expected that some parameters would not be significant as the model we 9 

presented was complex and the hypotheses behind some of the parameters are not very well 10 

established yet. 11 

Results 12 

We sampled 531 woody individuals belonging to 55 species. Fabaceae and Myrtaceae were 13 

the richest families, with 10 and 9 species, respectively. The ranges of the traits were as follows: 1) 14 

basal area: 0.004-0.147 m2; 2) height: 0.12-5.65 m; 3) bark thickness: 0.11-29.6 mm; 4) wood 15 

density: 0.006-0.943 mg mm-3; 5) leaf toughness: 0.09-8.84 N; 6) leaf size: 542-13010 mm2; 7) 16 

specific leaf area: 0.004-20.507 mm2 mg-1; 8) leaf nitrogen content: 7.32-44.85 mg g-1; leaf 17 

phosphorus content: 0.21-2.60 mg g-1; and 9) leaf potassium content: 1.53-24.74 mg g-1. Please 18 

refer to Batalha et al. (2011) for trait means for each sampled species. Environmental variables 19 

ranged within the following values: 1) altitude: 709-884 m; 2) slope: 0.3-8.7 º; 3) available 20 

phosphorus: 1-13 mg kg-1; 4) total nitrogen: 1019-2746 mg kg-1; 5) cation exchange capacity: 33-21 

387.8 mmol kg-1; 6) exchangeable aluminium 5-38 mmol kg-1; and 7) mean interval between fires: 22 

1.18-8 years. 23 

The initial model (Fig. 1) had good fit with data (MLχ2 = 17.244; P = 0.243; df = 14; Fig. 2). 24 

Even though this model had acceptable fit, not all parameters were significant (Fig. 2). For instance, 25 
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the effects of fire on functional diversity and decomposition were not significantly different from 1 

zero. Likewise, altitude did not seem to have an effect on any of the variables of our proposed 2 

model. This model resulted in some high residuals (Table 2), so we went ahead and removed all the 3 

non-significant parameters from the model (Fig. 3). Removing these parameters yielded a model 4 

with much better fit (MLχ2 = 10.289; P = 0.741; df = 14) and lower residuals (Table 3). In this final 5 

model, altitude was not significantly connected to any other variables, so we removed it (Fig. 3). 6 

Fire had a positive effect on the latent variable fertility (fire ! fertility = 0.404; Fig. 3). This 7 

result suggested that frequent burnings were related to higher nutrient availability. Fire did not 8 

directly affect iFD and decomposition; however, both variables were indirectly influenced by fire 9 

through fertility and iFD. The signals of these indirect effects were different though: larger intervals 10 

between fire events were related to less fertile soil, which increased iFD (fire ! fertility ! iFD = -11 

0.172); thus, more fires resulted in lower iFD values. Furthermore, frequent burnings resulted in 12 

more fertile soils, which, in turn, resulted in quicker decomposition; thus, more fires resulted in 13 

faster decomposition (fire ! fertility ! decomposition = 0.225). Contrastingly, we found a 14 

negative effect of fire on decomposition through both fertility and iFD (fire ! fertility ! iFD ! 15 

decomposition = -0.048). 16 

The coefficients describing the direct relationships of aluminium with fertility (Al "! 17 

fertility = 0.706; Fig. 3), iFD (Al ! iFD = 0.454; Fig. 3), and decomposition (Al ! decomposition 18 

= -0.672; Fig. 3) were significant. The path coefficient connecting aluminium and fertility was 19 

positive (Al ! fertility = 0.704; Fig. 3). Similarly, our model suggested that higher aluminium 20 

content increased iFD values when considering the direct path between them. There was also an 21 

indirect pathway connecting aluminium and decomposition through iFD (Al ! iFD ! 22 

decomposition = 0.129; Table 4). 23 

The effects of altitude on iFD and decomposition were non-significant, so we removed 24 

altitude from the final model. Slope had a significant effect on iFD (slope ! iFD = 0.212) and an 25 
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indirect effect on decomposition through iFD (slope ! iFD ! decomposition = 0.065; Table 4). 1 

Plots with higher slopes had higher iFD values and faster decomposition. 2 

Finally, iFD had a positive effect on decomposition (iFD ! decomposition = 0.768). Plots 3 

with higher functional diversity presented quicker decomposition. 4 

Discussion 5 

Our model integrating the variables we assumed to be the major drivers of assembly and 6 

functioning in ENP and other cerrado areas offered support for most of our pairwise causal 7 

assumptions. Furthermore, combining these hypotheses in a structural equation model enabled us to 8 

reveal indirect effects between the variables representing the environment, biodiversity, and 9 

ecosystem functioning. Frequently, indirect effects acted in opposition to direct effects. Our results 10 

allowed us to quantify the strength at which alterations in one variable cause alterations in all other 11 

variables in the system, providing us with a more realistic mathematical translation of current 12 

theories of how this ecosystem works. The approach we chose also permitted us to include not only 13 

variables that are generally regarded as major drivers of assembly and functioning, but also those 14 

that are specific to the cerrado. According to our model, fire was positively related to soil fertility in 15 

ENP. Fire was also related to iFD and decomposition, although indirectly. Aluminium seemed to 16 

have an influence on several aspects of the ecosystem, including complementarity of functional 17 

traits and decomposition. The slope of the plots, which is rough estimate of water availability to 18 

plants, had a significant effect on iFD. Functional diversity, in turn, was directly related to the speed 19 

of decay in litter. Our whole hypothesized causal structure had good fit with data as indicated by the 20 

MLχ2 statistic (Fig. 3). We were able to demonstrate that by simultaneously considering the 21 

pairwise hypotheses of how the variables in the system were directly connected, we were able to 22 

reveal the strength and sign of indirect relationships (Fig. 3). 23 

The effect of fire on fertility met with our predictions. Sites that burned more frequently had 24 

more plant nutrients in the soil (fire ! fertility in Fig. 3). Fire transfers nutrients from the burned 25 
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vegetation to the upper soil layer as ash deposition (Coutinho 1990). Moreover, during burnings, 1 

woody individuals shed their leaves, including young ones, which are then deposited around trees 2 

as litter (Rodrígues et al. 2009). Young leaves have higher nutrient concentrations than mature 3 

leaves, so premature leaf shedding and decomposition are likely to increase nutrient availability. 4 

Several nutrients have fast turnover times in the cerrado (Pivello & Coutinho 1992) and, so, even 5 

though some chemical elements are lost by volatilisation or as particles in smoke, deposition 6 

usually compensates for this loss in 1-3 years (Coutinho 1979). Pivello & Coutinho (1992) 7 

estimated that 3-year intervals between burnings would be optimal to avoid impoverishment of the 8 

soils and maintain nutrient cycling. Slight increases in nutrients availability up to one year after 9 

moderate fires were also found in African savannas (Jensen, Michelsen & Gashaw 2001) and in the 10 

cerrado (Silva & Batalha 2008). Despite the fact that we found higher nutrient availability in the 11 

soil with increasing fire frequencies, the relationships between fire, nutrients, and the vegetation are 12 

still unclear, since contrasting results have been found, even in the cerrado (Kauffman, Cummings 13 

& Ward 1994; Moreira 2000; Pivello et al. 2010). Aluminium and plant nutrients are likely 14 

introduced in the soil by some of the same processes (e.g. weathering), thus the observed 15 

correlation between fertility and aluminium (fertility " ! Al in Fig. 3). 16 

Contrarily to our expectations, the fire ! iFD path was not significant. Low and moderate 17 

fire frequencies might have not been strong enough environmental filters to leave an imprint in 18 

functional diversity (Cianciaruso et al. 2012). Thus, the apparent absence of functional structuring 19 

in sites with few burnings might have decreased the strength of the path between fire and iFD, 20 

rendering it statistically non-significant. Also, fire might have caused a turnover of species without 21 

causing loss of functional diversity or ecosystem function in a process known as the insurance 22 

hypothesis (Yachi & Loreau 1999; Loreau 2001). Our model might have supported the path 23 

connecting fire and iFD if we had used a different set of traits (Cianciaruso et al. 2012). However, 24 

even in the absence of a direct effect, there was a small indirect effect of fire on iFD through soil 25 

fertility (Table 4). More frequent fires promoted faster nutrient cycling which, in turn, were 26 



 73#

associated with less trait complementarity and lower iFD. Absence of trait structuring in sites with 1 

different occurrence of burnings in ENP also suggests that fire might be filtering species at the 2 

regional level, so the species we sampled were already selected and local filtering by fire was not 3 

strong enough determine the distribution of trait-states (Dantas et al. 2012).  4 

Variations in soil chemical elements triggered a response in iFD (fertility ! iFD and Al ! 5 

iFD paths in Fig. 3) and decomposition (fertility ! decomposition and Al ! decomposition in Fig. 6 

3). We observed a negative relationship between fertility and iFD (fertility ! iFD path in Fig. 3) 7 

and a positive one between aluminium and iFD (Al ! iFD path in Fig. 3). These findings strongly 8 

support the hypotheses represented in the structural equation model, and highlight the importance of 9 

nutrients and aluminium for plant functional diversity and ecosystem decomposition rates. In the 10 

cerrado, soil characteristics have been regarded as promoters of trait clustering through 11 

environmental filtering (Batalha et al. 2011). Areas with low nutrient availability may promote 12 

competitive exclusion, limiting the similarity of individuals (Stubbs & Wilson 2004). This process 13 

decreases the overlap in niche occupation, which might lead to higher iFD. Although low nutrient 14 

availability can promote trait clustering, competition for limited resources contributes to the 15 

selection of specialised nutrient and nutrient uptake requirements, imposing a force in the opposite 16 

direction. Similarly, plants have several ways of circumventing the toxic effects of aluminium 17 

(Kochian 1995). Thus, high concentrations of exchangeable aluminium might increase trait 18 

diversity and iFD. Also, high concentrations of exchangeable aluminium are related to acidic soils, 19 

which are reported to have low bacterial diversity when compared to neutral soils (Fierer & Jackson 20 

2006). Low bacterial biota might have led to slower decomposition. Moreover, ants can change soil 21 

properties near their nests (Wagner, Brown & Gordon 1997; Frouz, Michal & Kalčík 2003). Areas 22 

with ant nests nearby have more soil nutrients (Wagner, Brown & Gordon 1997; Frouz, Michal & 23 

Kalčík 2003) and higher pH (Frouz, Michal & Kalčík 2003), due to ant activity, so the positive link 24 

between fertility and decomposition and the negative link between aluminium and decomposition in 25 

our model might be related to the presence of ants. Our data did not include information on ant 26 
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activity in plots, so we could not explicitly consider and this activity in the model. Including other 1 

trophic levels into future models will certainly help clarify some of the associations in BEF research 2 

(Hooper et al. 2005, Srivastava & Vellend 2005) 3 

In ENP, hilly terrain seemed to increase functional diversity (slope ! iFD path in Fig. 3), 4 

which supported the theory that water availability is one of the most important determinants of 5 

vegetation structure in the cerrado (Ferreira et al. 2007; Assis et al. 2011). In ENP’s flatland, the 6 

water table is deep enough to prevent even shallow-rooted woody individuals to reach it. Hilly 7 

areas, however, have shallow water table that favours the establishment of those woody individuals 8 

incapable of reaching deep soil layers (Cole 1986; Franco 2002). Sites on flatlands, on the other 9 

hand, have less available water, limiting the occurrence of individuals to those with deep root 10 

systems. Thus, in sites where there is less water available, environmental filtering might be a much 11 

stronger force than competition on the distribution of trait attributes, leading to lower functional 12 

diversity. In spite of altitude also being related to the depth of the water table in ENP, it was not one 13 

of the variables in our model with best fit. In hilly areas, the water table might be shallow enough to 14 

allow some woody individuals to overcome hydraulic limitations. 15 

Changes in iFD led to variations in decomposition (iFD ! decomposition path in Fig. 3). 16 

Functional traits can have great influence on ecosystem fluxes, pools, and function (Hooper et al. 17 

2005). Higher biodiversity, especially when considering the functional component, can increase 18 

complementarity in patterns of resource use (Tilman, Lehman & Thomson 1997; Petchey & Gaston 19 

2002), which results in more efficient functioning. Moreover, soil biota may be influenced by plant 20 

functional diversity and, as a consequence, influence litter decomposition (Collins 1981; Chapman, 21 

Whittacker  & Heal 1988). Fire, on the other hand, did not have a direct effect on decomposition. In 22 

the cerrado, arthropods are fundamental agents of litter breakdown. The communities of several 23 

leaf-litter arthropods slightly decrease in number of individuals following a fire, but they are able to 24 

quickly recover and resume litter breakdown (Vasconcelos et al. 2009). Thus, the litter-dwelling 25 

activities of these arthropods might not have been significantly affected by burnings, which 26 
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supressed any possible direct effects of fire on decomposition. Even though fire was not directly 1 

related to functioning, there were two indirect pathways connecting these variables. There was a 2 

path linking fire to decomposition through soil fertility and another one through both soil fertility 3 

and iFD (please refer to Table 4 for net effects). Interestingly, the indirect effects of fire on 4 

decomposition were antagonistic: the relationship was positive when mediated only by soil fertility 5 

and negative when mediated by both soil fertility and iFD. We found the same pattern of opposite 6 

relationships in links between fertility and decomposition. The direct path between these variables 7 

was positive, but the indirect one mediated by iFD was negative. Functional diversity seemed to act 8 

as a buffer, controlling the strength of the links between environment and function. Evidence from 9 

other studies suggests similar patterns of ecosystem function buffering by biodiversity (Balvanera et 10 

al. 2006). 11 

Several aspects of the environment might alter the strength of the relationship between iFD 12 

and decomposition, both directly and indirectly and through different pathways. We were able to 13 

identify and quantify some of the multiple paths that causally connect the environment, 14 

biodiversity, and ecosystem functioning. The causal links that are thought to be the most important 15 

for determining the BEF relationship can be complex. For instance, we could not identify a direct 16 

influence of fire on iFD. Fire did have, however, a strong link to soil fertility, which, in turn, helped 17 

shaping the distribution of iFD values in our plots. Similarly, we identified at least two ways in 18 

which fire affects decomposition in ENP, even though we did not find a significant direct 19 

connection. Having a better understanding of how abiotic factors interact with each other and with 20 

biodiversity and function can uncover critical paths for the conservation of biological diversity and 21 

ecosystem function (Grace et al. 2007; Jonsson & Wardle 2010; Srivastava & Vellend 2005). If we 22 

had analysed the effects of fire on biodiversity directly, we would probably have found a non-23 

significant relationship. However, considering soil fertility as a mediator of the fire ! iFD path, we 24 

were able to uncover a strong link between these variables. Interestingly, we also demonstrated that 25 

the sign of the associations between two variables might change depending on which variables are 26 



 76#

functioning as mediators (e.g. fire and decomposition through fertility and through both fertility and 1 

iFD). Moreover, the net effects of the multiple ways in which the effects of disturbances can 2 

propagate in a causal network can be large even without the presence of a direct connection 3 

between disturbance and biodiversity (Table 4) and the pathways connecting two variables can have 4 

opposite signs (e.g., aluminium and fire on decomposition). 5 

Soil chemical elements and water availability were the most important direct causes of 6 

change to the iFD-decomposition relationship. We detected direct effects of fertility (fertility ! 7 

iFD and fertility ! decomposition in Fig. 3), aluminium (Al ! iFD and Al ! decomposition in 8 

Fig. 3), and slope (slope ! iFD in Fig. 3) on iFD and decomposition. Our results also suggest that 9 

fire has an important role on the BEF relationship through soil nutrients. The absence of a 10 

significant path between fire and iFD indicate that fire might be selecting traits at the regional level. 11 

Interestingly, iFD seemed to regulate the influence of the environment on decomposition by 12 

controlling the strength of the direct links between environment and decomposition. It is important 13 

to note that this study was cross-sectional, so we did not try to model the feedback mechanisms of 14 

biodiversity and functioning on abiotic factors. Long-term studies with data on the fluctuations of 15 

biotic and abiotic factors in different seasons might shed light on these feedbacks. Also, modelling 16 

the multidimensionality of the biodiversity and functioning components by including more diversity 17 

indices and other ecosystem properties will yield even more adequate models. Structural equation 18 

models with latent variables are appropriate tools for modelling these multidimensional concepts 19 

(for instance, fertility in Fig. 1). Here we considered one aspect of biodiversity and functioning. 20 

Furthermore, different ecosystem fluxes and properties might be affected by different sets of trait 21 

attributes, possibly changing the strength of the BEF pathway as models become more realistic. 22 

Ecosystem functioning research must address all these uncertainties to propose BEF models that are 23 

more relevant to the conservation of biodiversity and services (Hooper et al. 2005; Srivastava & 24 

Vellend 2005).  25 
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In conclusion, we presented an initial framework of how the abiotic factors interact with the 1 

components of the BEF relationship in a neotropical savanna. We showed that several aspects of the 2 

environment had great influence on functional diversity and ecosystem properties through direct 3 

and indirect pathways. Different fire frequencies resulted in propagation of effects on iFD and 4 

decomposition through soil fertility. Fertility and aluminium were also major drivers of assembly 5 

and functioning in ENP. Thus, we were able to unveil the strength of some of the links connecting 6 

abiotic factors and how they interact with biodiversity and ecosystem functioning. It is, therefore, of 7 

major importance to conservation efforts that management policies take into account the several 8 

ways in which variables interact to regulate the functioning of ecosystems. 9 
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Table 1. Variances (diagonal), covariances (upper triangle; boldface), and correlations (lower triangle) of the variables in our model (Fig. 1). We log-1 

transformed all variables except N and P. N = total nitrogen (mg kg-1), P = available phosphorus (mg kg-1), CEC = cation exchange capacity (mmol kg-2 

1), Al = exchangeable aluminium (mmol kg-1), slope (degrees), altitude (m), fire = inverted mean time between burnings (years), iFD = individual-3 

based functional diversity, decomp = 6-month litter mass loss (g). 4 

 
N P CEC Al slope altitude fire iFD decomp 

N 0.11 0.27 0.05 0.05 -0.03 0.00 0.03 -0.06 0.01 

P 0.47 3.02 0.14 0.13 -0.09 0.03 0.17 0.00 0.01 

CEC 0.57 0.31 0.07 0.04 -0.01 0.00 0.01 -0.02 0.00 

Al 0.59 0.28 0.51 0.07 -0.02 0.00 -0.01 0.04 -0.02 

slope -0.15 -0.08 -0.03 -0.12 0.44 -0.01 -0.03 0.17 0.01 

altitude 0.29 0.32 0.05 0.23 -0.22 0.00 0.01 -0.01 0.00 

fire 0.31 0.30 0.11 -0.09 -0.15 0.40 -0.11 -0.08 0.02 

iFD -0.16 0.00 -0.05 0.14 0.24 -0.18 0.22 1.22 0.03 

decomp 0.06 0.02 -0.03 -0.26 0.04 0.00 -0.24 0.10 0.07 

  5 
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Table 2. Standardised residuals for the model in Fig. 3. N = total nitrogen (mg kg-1), P = available phosphorus (mg kg-1), CEC = cation exchange 1 

capacity (mmol kg-1), Al = exchangeable aluminium (mmol kg-1), slope (degrees), fire = inverted mean time between burnings (years), iFD = 2 

individual-based functional diversity, decomp = 6-month litter mass loss (g). 3 

 

N P CEC Al slope fire iFD decomp 

N 0.00 

       P 0.02 0.00 

      CEC 0.00 -0.01 0.00 

     Al -0.01 -0.06 0.08 0.00 

    slope -0.02 -0.01 0.06 0.00 0.00 

   fire 0.00 0.13 -0.10 0.00 0.00 0.00 

  iFD -0.02 0.08 0.04 0.00 0.00 -0.01 0.00 

 decomp 0.01 -0.01 -0.07 0.00 -0.02 -0.05 0.00 0.00 

  4 
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Table 3. Predicted covariances for the model in Fig. 3. N = total nitrogen (mg kg-1), P = available phosphorus (mg kg-1), CEC = cation exchange 1 

capacity (mmol kg-1), Al = exchangeable aluminium (mmol kg-1), slope (degrees), fire = inverse of the mean time between burnings (years), iFD = 2 

individual-based functional diversity, decomp = 6-month litter mass loss (g). 3 

 

N P CEC Al slope fire iFD decomp 

N 0.11 

       P 0.26 2.99 

      CEC 0.05 0.14 0.07 

     Al 0.05 0.15 0.03 0.07 

    slope -0.03 -0.09 -0.02 -0.02 0.44 

   fire 0.03 0.10 0.02 -0.01 -0.03 -0.11 

  iFD -0.05 -0.15 -0.03 0.04 0.17 0.08 1.20 

 decomp 0.00 0.01 0.00 -0.02 0.01 -0.02 0.03 0.07 

 4 
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Table 4. Standardised net effects (combined estimates of direct and indirect effects) between the 1 

variables in Fig. 3. fire = inverse of the mean time between burnings (years), fertility = latent 2 

variable representing soil fertility, Al = exchangeable aluminium (mmol kg-1), slope (degrees), iFD 3 

= individual-based functional diversity, and decomp = 6-month litter mass loss (g). 4 

effect direct indirect total 

fire ! iFD 0.000 -0.172 -0.172 

fire ! decomp 0.000 0.176 0.176 

fertility ! iFD -0.422 0.000 -0.422 

fertility ! decomp 0.555 -0.120 0.435 

Al ! iFD 0.454 0.000 0.454 

Al ! decomp -0.672 0.129 -0.543 

slope ! iFD 0.229 0.000 0.229 

slope ! decomp 0.000 0.065 0.065 

  5 
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 1 

Fig 1. Structural equation model connecting fire, soil fertility, aluminium, water availability, 2 

functional diversity, and decomposition in Emas National Park, Brazil. Each arrow without a fixed 3 

value represents a parameter to be estimated. Rectangles represent directly measurable variables 4 

(for example, fire). Ovals represent theoretical concepts called latent variables (for example, 5 

fertility. Variables in green represent the environment, iFD represents biodiversity (blue), and 6 

decomposition (yellow) represents ecosystem functioning. N = total nitrogen (mg kg-1), P = 7 

available phosphorus (mg kg-1), CEC = cation exchange capacity (mmol kg-1), Al = exchangeable 8 

aluminium (mmol kg-1), slope (degrees), altitude (m), fire = inverse of the mean time between 9 

burnings (years), iFD = individual-based functional diversity, decomp = 6-month litter mass loss. 10 

We fixed the disturbance of the latent variable fertility to set the scale. We also fixed the variance of 11 

all exogenous variables to their observed values. 12 
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 1 

Fig 2. Unstandardised parameter estimates, followed by standard errors in parenthesis and 2 

standardised estimates of the model in Fig. 1. Solid lines indicate significant parameters (α = 0.05), 3 

whilst dashed lines indicate parameters not significantly different from 0. Except for the indicators 4 

of fertility, line weights indicate the strength of the relationship. Variables in green represent the 5 

environment, iFD represents biodiversity (blue), and decomposition (yellow) represents ecosystem 6 

functioning. We fixed the disturbance of fertility to set the scale of the latent variable. We also fixed 7 

the variance of all exogenous variables to their observed values. The model had good fit with data 8 

(MLχ2 = 17.244; P = 0.243; df = 14). N = total nitrogen (mg kg-1), P = available phosphorus (mg 9 

kg-1), CEC = cation exchange capacity (mmol kg-1), Al = exchangeable aluminium (mmol kg-1), 10 

slope (degrees), altitude (m), fire = inverse of the mean time between burnings (years), iFD = 11 

individual-based functional diversity, decomp = 6-month litter mass loss.  12 
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 1 

Fig 3. Unstandardised parameter estimates, followed by standard errors in parenthesis and 2 

standardised estimates of the model in Fig. 2 refitted without the non-significant parameters. Except 3 

for the indicators of fertility, line weights indicate the strength of the relationship. Variables in 4 

green represent the environment, iFD represents biodiversity (blue), and decomposition (yellow) 5 

represents ecosystem functioning. We fixed the disturbance of fertility to set the scale of the latent 6 

variable. We also fixed the variance of all exogenous variables to their observed values. The model 7 

had good fit with data (MLχ2 = 10.289; P = 0.741; df = 14). N = total nitrogen (mg kg-1), P = 8 

available phosphorus (mg kg-1), CEC = cation exchange capacity (mmol kg-1), Al = exchangeable 9 

aluminium (mmol kg-1), slope (degrees), fire = inverse of the mean time between burnings (years), 10 

iFD = individual-based functional diversity, decomp = 6-month litter mass loss.11 
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Abstract 1 

Identifying the relative importance of deterministic and stochastic factors to the 2 

assembly of local communities has been tagged as one of the fundamental questions 3 

ecologists need to answer. Niche-based theories predict that the subset of species from 4 

the regional pool that occur in a local community presents a trait distribution that has 5 

been shaped by biotic and abiotic factors. The neutral theory, on the other hand, 6 

predicts that the species that compose the regional pool are functionally equivalent. 7 

Local communities formed from stochastic processes would, thus, present abundances 8 

not significantly different from those in the species pool. We collected traits on all 9 

woody individuals in 100 25m2 quadrats to test if we could predict local abundances 10 

using a pool of species and traits. We combined plots into large scale, intermediate 11 

scale, and fine scale samples. We used random sampling, spatial distance, soil 12 

characteristics, and fire to assemble species in different scales and environmental 13 

gradients. In the Brazilian cerrado, fire and nutrient-poor soils are likely promoters of 14 

habitat filtering. To test if traits improved the predictions generated by the 15 

information present in the pool, we used maximum entropy models coupled with 16 

permutation tests. We could accurately predict local abundances of the 73 species in 17 

the pool. Dispersal limitation was the main factor assembling communities at all the 18 

scales we studied, but the effects of stochasticity became more important as the scale 19 

became local. Traits explained little of the uncertainty present in local abundances, 20 

but coupled with pool frequencies they yielded large coefficients of determination.  21 

Keywords: maxent, savanna, species pool, cerrado, traits  22 
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Introduction 1 

Unveiling the processes that drive community composition is one of the most pursued 2 

goals in ecology. Niche-based theories assume that the attributes of the species in the 3 

regional pool are key to determine which species are more likely to coexist 4 

(Silvertown 2004). Contrastingly, the neutral theory (Bell 2000, Hubbell 2001) carries 5 

a null assumption of functional equivalence between the species in the pool. Where 6 

there is strong biotic or environmental pressure, trait filtering will likely influence the 7 

assembly of plant communities (Kraft et al. 2008). However, in neutral communities, 8 

dispersal limitation and demographic stochasticity determine species occurrence, as 9 

all species in the pool are assumed functionally equivalent. Thus, species with higher 10 

frequencies in the regional the pool have more chance of dispersal and establishment 11 

into local assemblages, even though the per capita probabilities of immigration are 12 

assumed equal (Hubbell 2001, Shipley et al. 2012). Local species abundances should, 13 

therefore, closely match the abundances in the regional pool, with deviances being 14 

caused by ecological drift and trait differences playing a minimal role in the 15 

coexistence of species. 16 

If deterministic forces like environmental filtering or competition are shaping the 17 

abundance distributions of local communities, co-occurring plants are expected to be 18 

either more similar or more different in their attributes than expected by chance (Kraft 19 

et al. 2008, Mayfield and Levine 2010). Regardless of the scenario, including traits in 20 

models of assembly where habitat filtering is expected to occur should allow us to 21 

identify whether deterministic or stochastic forces are contributing the most to species 22 

establishment and increase predictive power (Shipley et al. 2012). This is a 23 

fundamental step towards the goal of predicting species abundances based on their 24 

characteristics and on the environment and will render more accurate models on the 25 
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impacts of a changing world on the distribution of plants. In addition, identifying the 1 

relative importance of deterministic and stochastic factors to assembly has been 2 

tagged as one of the fundamental questions ecologists still need to tackle (Sutherland 3 

et al. 2013). 4 

Initially, studies of community assembly assumed both niche and neutral theories to 5 

be mutually exclusive, especially because the resistance against neutral assembly has 6 

always been strong (Wennekes et al. 2012). However, efforts towards unified 7 

frameworks have been appearing in the literature (Tilman 2004, Chase 2005, Gravel 8 

et al. 2006, Stokes and Archer 2010). In these frameworks, niche structuring, 9 

dispersal limitation, and demographic stochasticity are assumed either to act 10 

simultaneously or subsequently to shape communities. The importance of each driver 11 

of assembly, either deterministic or stochastic, is expected to differ given the strength 12 

of the environmental filter and interactions. For instance, according to the continuum 13 

hypothesis (Gravel et al. 2006), niche and neutral sorting form ends from 14 

deterministic to stochastic exclusion in a continuum. Where interactions are strong, 15 

competition may pull species apart, creating a community with higher 16 

complementarity of functional traits (Cavender-Bares et al. 2004, Kraft et al. 2007). 17 

At the other end of the continuum, where competition is less intense, dispersal 18 

limitation and random demographic events will be the main forces driving assembly 19 

and local communities will be neutral (Graves et al. 2006). 20 

Besides biotic and abiotic factors, the scale of the sampling area is also crucial when 21 

investigating assembly rules (Harrison and Cornell 2008, Kraft and Ackerly 2010, 22 

Chase and Myers 2011, Yuan et al. 2011, Götzenberger et al. 2012). Whereas 23 

environmental filters are expected to be the dominant deterministic force sorting 24 

species at broader scales, local competitive interactions also influence colonisation 25 
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(Laliberté et al. 2009, Kooyman et al. 2010, Mokany and Roxburgh 2010, Lambers et 1 

al. 2012). Environmental factors acting as habitat filters at multiple scales will likely 2 

narrow the range of trait values in local communities. Competition between 3 

neighbours, on the other hand, limits trait similarity, acting as a disruptive force 4 

selecting traits. 5 

In the Brazilian cerrado, low nutrient availability, high aluminium content, low pH, 6 

seasonal drought, and fire set the stage for trait-structured communities (Eiten 1972, 7 

Motta et al. 2002). Thus, habitat filtering is expected to be a major force governing 8 

the co-occurrence of plant species in local cerrado assemblages. Indeed, classical 9 

theories proposed by early investigators predicted that the higher the concentration of 10 

plant nutrients and the lower the concentration aluminium, the higher the density of 11 

woody individuals (Goodland & Pollard 1973). Therefore, according to these theories, 12 

the cerrado is a fertility gradient, with distinct physiognomies and subsets of species 13 

occurring under soils with distinct nutrient and aluminium concentrations. Using 14 

different mixtures of traits, Cianciaruso et al. (2012) observed fire-induced phenotypic 15 

structuring in some of the assemblages they studied. Silva & Batalha (2010) found 16 

phylogenetic overdispersion across a high number of woody cerrado species, whilst 17 

Silva et al. (2010) observed random structuring and trait clustering along gradients of 18 

fire frequency in a cerrado area. Although there is substantial evidence of trait 19 

clustering in cerrado communities, a question that remains largely unanswered: can 20 

we use traits to predict which subset of species from the pool are more likely to occur 21 

in areas under certain environmental conditions? 22 

In this study, we built a pool with some of the species occurring within the boundaries 23 

of a conservation unit in Brazil, measured a few of their traits, and tried to answer the 24 

following questions: 1) how well can we predict species abundances over different 25 
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spatial scales and environmental gradients using a species pool and community 1 

weighed traits?; 2) if traits are important for predicting local assemblages, which traits 2 

are the most important? These questions are important because, to our knowledge, this 3 

is the first study attempting to predict local species-specific abundances in the 4 

Brazilian cerrado. To assess abundances as well as the shared influence of 5 

deterministic (traits) and stochastic (dispersal limitation and demographic 6 

stochasticity) processes in shaping local assemblages, we used a maximum entropy 7 

framework (Shipley 2009, 2012). This framework has shown potential to be a 8 

powerful tool for predicting specific abundances under a variety of spatial scales, in 9 

current (Sonnier et al. 2010, Laughlin et al. 2011, Shipley 2012, Frenette-Dussalt et 10 

al. 2012) and future scenarios (Frenette-Dussalt et al. 2012). 11 

Material and methods 12 

Study area 13 

We conducted this study in Emas National Park (ENP), Central Brazil. ENP is one of 14 

the largest and most important cerrado reserves in Brazil, with an area of around 15 

133,000 ha and containing key elements that characterise the fauna, flora, and habitats 16 

of the cerrado. The cerrado vegetation in the park goes from open (68.1% of its area) 17 

to closed physiognomies (25.1% of its area). Other vegetation types, such as wet 18 

grasslands, riparian forests, and semideciduous forests cover the remaining 6.8% of 19 

the area (Ramos-Neto and Pivello 2000). The climate in ENP is tropical and humid, 20 

with a wet season between September and May and a dry season extending from June 21 

to late August. Annual rainfall and mean temperature lie around 1,745 mm and 24°C, 22 

respectively. 23 
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Sampling 1 

We randomly placed 100 25m2 quadrats in alongside the maintenance roads that cross 2 

ENP. In each quadrat, from September 2009 to January 2010, we identified all woody 3 

individuals with at least 3 cm of stem diameter at the soil level. On all identified 4 

individuals, we measured the values of six functional traits that are surrogates of 5 

important responses of plants to environmental conditions, such as nutrient 6 

availability, water availability, and fire (Cornelissen et al. 2003; Pausas and Paula 7 

2005): (1) basal area (m2), related to space occupation, resource uptake, total biomass, 8 

and reproductive capability; (2) height (m), associated with competitive vigour, 9 

fecundity, and growth after disturbance; (3) bark thickness (mm), related to resistance 10 

to disturbance; (4) wood density (mg mm-3), related to potential carbon storage and 11 

growth after disturbance; (5) leaf size (mm2), related to resistance to environmental 12 

stress and (6) specific leaf area (mm2 mg-1), associated with growth and maximum 13 

photosynthetic rate. Next, we calculated mean trait values per species and 14 

standardised the trait matrix to unit variance. Even though we had data on each plant 15 

we sampled in all plots, individual-based values were not appropriate for the 16 

statistical analyses we used. Thus, with the species-based trait matrix, we calculated 17 

community-weighted trait means (Shipley et al. 2012), , for each trait 18 

(j) in each local community (k) using the local abundances (ra) for the ith species 19 

present the local community. Community-weighted trait means give more weight to 20 

the traits of the most abundant species and are related to the biomass ratio hypothesis, 21 

according to which the traits of the dominant species will contribute the most to 22 

ecosystem properties (Grime 1998).  23 

t jk = raiktiji=1

S
∑
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Species pool 1 

To construct the pool of species, we combined the frequencies we found in 2009 with 2 

the frequencies from another study conducted in ENP in 2006 (see Silva and Batalha 3 

2009 for details). Our pool consisted of 3,529 individuals of 73 species, around half of 4 

all cerrado woody species that occur in ENP (Batalha and Martins 2002). 5 

Environmental variables 6 

We collected five soil samples from each quadrat at 0-5 cm depth to organise plots in 7 

a gradient of soil fertility, toxicity, and water availability. We measured the following 8 

environmental variables from the soil samples: pH, organic matter, available 9 

phosphorus, total nitrogen, exchangeable potassium, exchangeable calcium, 10 

exchangeable magnesium, exchangeable aluminium, sum of bases, base saturation, 11 

aluminium saturation, cation exchange capacity, sand content, silt content, and clay 12 

content (see Silva and Batalha 2008 for details on chemical and physical analyses). 13 

These variables are commonly regarded as important for plant establishment and 14 

development. We also measured the altitude and slope of each plot as rough 15 

surrogates of water availability: in ENP, the higher the altitude and the lower the 16 

slope, the lower the availability of water in deep soil layers. To position our plots in a 17 

gradient of soil fertility, we used soil nutrient availability, aluminium, and the 18 

surrogates of water availability to construct a matrix of plots per environmental 19 

variables. Next, we standardised all variables to zero mean and unit variance and 20 

calculated a distance matrix using Euclidean distances. We used the environmental 21 

distance matrix as input in a principal coordinate analysis (PCoA). Finally, we 22 

ordered our plots according to their scores in the first PCoA axis to position them in 23 

the gradient. 24 
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Since the prohibition of cattle farming inside the park in 1984, a fire exclusion policy 1 

was instituted. However, the accumulation of dry biomass led to the occurrence of 2 

uncontrolled wildfires every 3-4 years, burning on average 80% of ENP’s total area 3 

(França et al. 2007). In 1994, a catastrophic fire burned about 95% of the park. Since 4 

then, precautions to avoid similar burnings have been taken. Managers burn 5 

preventive firebreaks annually in the dry season and a fire brigade stays in ENP 6 

during this period to prevent anthropogenic fires (França et al. 2007). Nevertheless, 7 

even with these precautions, in August 2010, an anthropogenic fire burned 93% of the 8 

park’s area. Preventive firebreaks, maintenance roads, and heterogeneous fuel 9 

availability make the fire map of ENP resemble a mosaic, with different plots possibly 10 

having very distinct fire histories, even if they are not distant from each other. Using 11 

in-field observations and satellite images, we could determine the fire history of each 12 

of our plots tracing back to 1984. We built a binary fire matrix with plots as rows and 13 

years as columns. We did a PCoA using the fire matrix and placed plots in the fire 14 

gradient following the order of their scores in the first PCoA axis. 15 

Statistical analyses 16 

To determine the relative importance of traits, dispersal limitation, and demographic 17 

stochasticity for the assembly of local communities, we used community assembly 18 

through trait selection (CATS) models developed by Shipley (2006, 2009, 2010). 19 

These models use the maximum entropy formalism (maxent) proposed by Shipley 20 

(2006, 2009) coupled with a permutation test (Shipley 2010) to estimate the relative 21 

importance of traits, dispersal limitation, and both dispersal limitation and traits to the 22 

assembly of communities. In sum, we first used the CATS models to predict local 23 

abundances and assess model fit through coefficients of determination. We used pool 24 

abundances and traits in this step. Next, we decomposed the coefficients of 25 
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determination to remove model bias and determine how much of the explained 1 

variance in predictions was due to traits, dispersal limitation, and ecological drift, 2 

excluding biologically irrelevant uncertainty. 3 

The first step to fit the CATS models was to calculate local predicted abundances with 4 

the 'maxent' function in the 'FD' library (Laliberté and Shipley 2011) for the R 5 

environment (R Core Team 2012). Maxent models are Bayesian models that use the 6 

frequencies in the pool to predict local abundances. Then, the permutation tests assess 7 

the amount of information gained when the traits of the species in the pool are 8 

included in the model. If traits do not explain a significant amount of the uncertainty 9 

in predicted abundances, local communities are a sample of the pool and traits do not 10 

influence these frequencies. This is an indication that the environment and 11 

interactions between the regional and local scales are not enough to leave patterns in 12 

the distribution of traits. However, if traits do provide significantly better predictions, 13 

both dispersal limitation and niche-based assembly can contribute to the formation of 14 

communities. As input in the 'maxent' function, we used community-weighted trait 15 

means as the macroscopic constraints, species-level trait means as the states, and 16 

regional abundances as the prior frequencies. We assessed the significance of model 17 

predictions using the function 'maxent.test' from the 'FD' library (Laliberté and 18 

Shipley 2011) with 999 randomisations. Hence, we could test if observed probabilities 19 

of each species in the pool and predicted local probabilities, estimated from the CATS 20 

models, were significantly similar. 21 

We tested if traits significantly improved the information present in the pool by fitting 22 

CATS models for 2 groups of plots (large scale, 50 plots in each group), 5 groups of 23 

plots (intermediate scale, 20 plots in each group), and 10 groups of plots (fine scale, 24 

10 plots in each group). We combined plots randomly, spatially, to account for 25 
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possible significant factors we did not measure, and by their position in the soil 1 

fertility and fire gradients. We considered each of these groups as a local community. 2 

We had, thus, four CATS models for each local community in each grouping factor. 3 

So, we were able to test the joint effects of abiotic filters and spatial scale on 4 

frequency distributions. The coefficients of determination of CATS models included 5 

model bias, that is, biologically irrelevant uncertainty. To determine the amount of 6 

biologically relevant variation in local species abundances predicted by each CATS 7 

model, we followed the method developed by Shipley et al. (2012). The first CATS 8 

model we fitted for each group had permuted community-weighted trait means and a 9 

maximally uninformative prior, which consisted of a uniform pool where all species 10 

had the same abundances. By doing this, we removed any association between 11 

frequencies of the species in the pool, traits, and local abundances. All information 12 

present in the coefficient of determination given by this model [R2(uniform)] was due 13 

to model structure and was removed from subsequent models. The second CATS 14 

model we fitted for each group of plots had observed pool abundances as the prior and 15 

permuted community-weighted trait means. So, this model returned a coefficient of 16 

determination [R2(dispersal)] with only the contribution of dispersal limitation, that is, 17 

the frequencies in the pool, to local abundances. In this second CATS model, any 18 

contribution of traits to assembly was removed after we permuted the trait matrix. We 19 

fitted the third CATS model using observed community-weighted trait means and a 20 

maximally uninformative prior. By doing this, we removed the contribution of 21 

regional abundances to the coefficient of determination and retained only the 22 

information contributed by species traits [R2(uniform, traits)]. Finally, we estimated 23 

the variation jointly explained by the pool and traits using the observed prior and 24 

observed community-weighted trait means [R2(neutral, traits)]. 25 
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To remove model bias, that is, to decompose the coefficients of determination to leave 1 

only biologically relevant information, we followed Shipley et al. (2012). This 2 

decomposition can be further divided into proportions explained uniquely by 3 

dispersion limitation, uniquely by traits, jointly by dispersal and traits, and 4 

unexplained but relevant biological information. 5 

The proportion of biologically relevant information explained uniquely by the neutral 6 

prior (the abundances in the pool of species) is: 7 

  (1) 8 

With this equation, we discounted the effects of traits and bias to local communities. 9 

The proportion of biologically relevant information explained by local traits only is:10 

 
 

(2) 11 

This decomposition removes the effects of dispersal limitation and model bias from 12 

the local uncertainty explained by traits. The proportion of biologically relevant 13 

information explained by both local traits and dispersal limitation is as follows: 14 

 
 

 (3) 15 

Finally, the proportion of biologically relevant uncertainty (demographic 16 

stochasticity) not explained by either dispersal or traits is as follows:17 

 
 

(4) 18 

To determine the direction and strength of trait selection, we followed the procedures 19 

proposed by Sonnier et al. (2012). The method consists of fitting several multiple 20 

regression models with predicted probabilities as the response variables and 21 

standardised trait means as the explanatory variables. These coefficients are 22 

R2 (neutral, traits)− R̂2 (uniform, traits)
1− R̂2 (uniform)

R2 (neutral, traits)− R̂2 (neutral)
1− R̂2 (uniform)

R̂2 (neutral)+ R2 (uniform, traits)− R̂2 (neutral, traits)− R̂2 (uniform)
1− R̂2 (uniform)

1− R2 (neutral, traits)
1− R̂2 (uniform)
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calculated during estimation in maxent models and are known as Lagrange multipliers 1 

(λjk). Lagrange multipliers quantify the strength of the relationship between each trait 2 

and predicted local abundances. λjk > 0 indicates that species with larger values for 3 

trait j in community k will become more abundant if all other traits are held constant. 4 

λjk < 0 indicates the opposite, species with larger values for trait j will become less 5 

abundant if all other traits are held constant. Finally, λjk = 0 indicates that trait j does 6 

not influence predicted abundances. We calculated Lagrange multipliers only for 7 

scenarios of pure trait selection as they provided us with sufficient information to 8 

answer our questions regarding the importance of traits for abundance predictions. 9 

Results 10 

Models with observed pool abundances and traits combined had the highest 11 

coefficients of determination when considering the total information present in local 12 

abundances, prior to bias removal (Table 1). At the larger scale, traits added 13 

significantly better information to that already present in the pool for all models (Fig. 14 

1). At the intermediate scale, all but one model including traits and regional 15 

abundances were significant. Finally, at the finer scale, two joint-effect models were 16 

significant and two were not. 17 

At the large scale, prior to removal of model bias, trait-only models explained around 18 

28-29% of the uncertainty in species abundances for all grouping factors (‘traits’ 19 

column in Table 1). All coefficients of determination were significant, indicating that 20 

traits added valuable information to the maximally uninformative species pool. Using 21 

observed abundances in the pool and randomised traits in models explained about 62-22 

65% for all grouping factors (‘dispersal’ column in Table 1). Including both observed 23 

traits and pool frequencies in models resulted in coefficients of determination ranging 24 

between 70-72% of explained uncertainty for all grouping factors (‘both’ column in 25 
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Table 1). We saw similar results at the intermediate scale, with traits explaining 24-1 

26% of uncertainty in predictions with the maximally uninformative species pool 2 

(‘traits’ column in Table 1). Dispersal limitation explained 55-58% (‘dispersal column 3 

in Table 1) and both traits and dispersal explained 60-64% (‘both’ column in Table 1). 4 

Traits added significant information to the frequencies in the observed species pool in 5 

all but spatially grouped assemblages. Finally, at the fine scale, traits explained 23-6 

24% of the uncertainty for all grouping factors, dispersal limitation accounted for 47-7 

52% of this uncertainty, and both traits and dispersal limitation explained 53-56% of 8 

the variation in predictions. Traits did not add significant information to observed 9 

pool frequencies in assemblages constructed randomly and by fire occurrence. Thus, 10 

traits and pool frequencies had lower explanatory power as the scale became local. 11 

By decomposing the coefficients of determination to remove biologically irrelevant 12 

information, we observed that dispersal limitation and demographic stochasticity 13 

explained most of the uncertainty in local communities, regardless of how we grouped 14 

our plots (Table 2). Again, how we grouped plots had very little impact on how well 15 

traits, dispersal, both, and stochasticity were able to explain local observed 16 

abundances (Table 2). However, as we further divided plots into more groups, 17 

narrowing the scale of local communities, the role of chance events (demographic 18 

stochasticity) assembling these communities became more important. For instance, 19 

for all four ways we used to sort plots into groups, demographic stochasticity 20 

explained more than 30% of the uncertainty when we arranged plots into two groups 21 

and about 50% when we separated plots into 10 groups (Table. 2). Thus, biologically 22 

relevant uncertainty became higher as the scale of the communities became local. 23 

Bark thickness was the trait that had the greatest influence on most local abundances 24 

(Appendix 3). We observed positive effects on frequency predictions in all 25 
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communities, despite of spatial scale and biotic factor we used to group plots. The 1 

effects of wood density on abundances were also mainly positive, although much 2 

smaller than the effects of bark thickness (Appendix 3). Thus, species with thicker 3 

barks and higher wood densities were favoured. Oppositely, basal area and height had 4 

negative effects on abundances in most assemblages. Thinner and shorter individuals 5 

had larger predicted frequencies. Leaf size and specific leaf area had negative effects 6 

on most communities, with individuals with smaller and thinner leaves being more 7 

abundant. 8 

Discussion 9 

Using maximum entropy models with broad scale species frequencies and a few traits, 10 

we could accurately predict local abundances of the 73 species in the pool. Dispersal 11 

limitation was the main factor assembling communities at all the scales we studied. 12 

Pure trait models explained some of the uncertainty in species abundances, but most 13 

of it was explained when we added trait information to pool frequencies in maxent 14 

models. When we decomposed the coefficients of determination to account for model 15 

bias, an interesting pattern emerged: the importance of traits and dispersal limitation 16 

and traits became smaller at finer scales, whereas the importance of demographic 17 

stochasticity became greater. We also quantified the importance of some traits 18 

(Lagrange multipliers) to species abundances. For instance, species co-occurrence in 19 

this Neotropical savanna was greatly influenced by bark thickness. Species with 20 

thicker barks had higher local frequencies.  21 

In all maxent models where we used a maximally uninformative prior, the inclusion 22 

of observed community-weighed trait means rendered significantly better predictions 23 

of local abundances. This was expected since there is empirical evidence of niche-24 

based assembly in tropical communities (Karst et al. 2005, Kraft et al. 2008, Shipley 25 
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et al. 2012), including the cerrado (Silva and Batalha 2010, Batalha et al. 2011a, 1 

Cianciaruso et al. 2012). Even though most pure-trait models were significant, they 2 

accounted for a relatively low amount of the uncertainty present in predictions for all 3 

scales and environmental gradients, as shown in their small coefficients of 4 

determination, especially after partitioning. It appears that we either could not detect 5 

the environmental cause of trait structuring since different grouping factors rendered 6 

models with similar predictions or did not include important response traits. For 7 

instance, water is a key resource in the cerrado and likely an important source of niche 8 

partitioning in its plant communities (Oliveira et al. 2005). Additionally, fire 9 

occurrence influence soil characteristics in the cerrado, so fire and soil gradients 10 

should have some degree of overlapping. Including more accurate measurements of 11 

soil water availability might shed some light on the factors causing local trait 12 

structuring in this Neotropical savanna. Using the same framework we used in this 13 

study and meta-community trait means, Shipley et al. (2012) found results similar to 14 

ours, with pure-trait models accounting for a small proportion of the assembly of 15 

tropical communities in French Guiana. An attempt to disentangle the importance of 16 

niche and spatial processes in a Canadian temperate forest yielded contrasting results, 17 

though (Laliberté et al. 2009). In this temperate forest, niche partitioning was the most 18 

important cause of the distribution of tree seedling abundances. 19 

Dispersal limitation was the main factor influencing community structuring in our 20 

study area. Prior to bias removal, pool abundances explained at least half of the 21 

variation in local abundances and this percentage was higher at broader scales. This is 22 

an indication that traits are being weakly filtered within ENP, especially at narrower 23 

scales. A review of community assembly publications estimated that 18% niche-based 24 

assembly studies did not find evidence of trait distribution different from random 25 
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(Götzenberger et al. 2012), so the low importance of traits for assembly we found here 1 

was not surprising. Since our pool included only species found in the cerrado 2 

vegetation in ENP, they already had gone through regional environmental filtering 3 

and had the appropriate attributes to establish and grow in the park (Batalha et al. 4 

2011a). Local abundances should, thus, reflect abundances in the environmental 5 

conditions in the landscape (Shipley et al. 2012). However, models with dispersal 6 

limitation and community-weighted trait means rendered significantly better 7 

predictions, accounting for as much as 73.5% of local abundances. Therefore, even if 8 

environmental filtering is not greatly sorting attributes at finer scales, there is some 9 

deterministic mechanism shaping local trait distributions. This needs further 10 

investigation since spatial distance, soil characteristics, and fire as grouping factors 11 

yielded similar coefficients of determination. Alternatively, we may have overlooked 12 

important response traits and some of their contribution to community sorting could 13 

be emerging through their correlations with the traits we did measure. 14 

Decomposing coefficients of determination to leave only biologically relevant 15 

information showed that cerrado assemblages in ENP were sensitive to stochastic 16 

processes. The importance of demographic stochasticity to assembly increased with 17 

increasing spatial scales. Indeed, these patterns were in accordance with theoretical 18 

predictions (Chase and Myers 2011). Moreover, the patterns that emerged from 19 

information decomposition in this study were in agreement with those from a previous 20 

one (Shipley et al. 2012). Niche and scale partitioning in a temperate forest also 21 

resulted from sharing effects of both deterministic and stochastic events (Laliberté et 22 

al. 2009). Similarly, stochastic events were the main process determining the 23 

establishment of species and, afterwards, interactions among individuals further 24 

shaped a parkland community (Stokes and Archer 2010). Thus, growing evidence 25 
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indicates that both types of processes simultaneously shape communities from 1 

different vegetation types, including this Neotropical savanna, at different spatial 2 

scales. 3 

Bark thickness was the trait that most contributed to abundance predictions according 4 

to Lagrange multipliers. The cerrado vegetation in ENP suffers from recurring 5 

burning events, thus it is expected that species with thicker barks would have more 6 

individuals. In general, basal area, height, leaf size, and specific leaf area were 7 

negatively related to predicted abundances. Smaller and thinner species were more 8 

abundant, which may be caused by recurrent fires imposing a difficulty for 9 

individuals to grow (Batalha et al. 2011b). Species with smaller leaves and lower 10 

specific leaf area were also more abundant. Since Lagrange multipliers are partial 11 

regression coefficients, it is hard to evaluate their unique impact on predictions in the 12 

presence of other traits. High correlation between them could be an important 13 

confounding factor (Sonnier et al. 2012). Investigating the causal relations between 14 

traits with structural equation modelling prior to maxent fitting could provide 15 

guidance to accommodate trait covariance (Sonnier et al. 2012). However, since 16 

maxent models heavily rely on Lagrange multipliers, including structural equation 17 

models in their structure would require careful consideration and is beyond the scope 18 

of this article. 19 

In conclusion, we showed that it is possible to predict cerrado species in local 20 

assemblages with great accuracy combining pool abundances and trait data. Also, the 21 

environmental variables we assumed to be possible environmental filters yielded very 22 

similar predictions. Researchers can easily extend the framework we used to predict 23 

the outcome of local and broad environmental changes to species occurrence, making 24 

it a powerful tool for conservationists. Moreover, we were able to unveil the traits that 25 
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contribute the most to species abundances. Future studies could identify which species 1 

from the regional pool can become invasive and predict the outcome of this invasion. 2 

Since researchers can use maxent models with virtually any measure of biological 3 

diversity, future studies could map invasive grasses occurrence and predict the fate of 4 

native species, especially rare ones, under different management scenarios. Finally, as 5 

previously noted, including more species in the pool, measuring more traits and, and 6 

more accurately assessing other possible sources of environmental variation, such as 7 

water availability, may render even better predictions and aid conservation efforts. 8 
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Table 1. Estimated coefficients of determination (R2) of the total information in 1 

assemblages of woody species in Emas National Park, Brazil. * indicates R2 from 2 

models where adding trait data significantly improved predictions. 'traits' refer to 3 

pure-trait models, 'dispersal' to pure-neutral models, 'both' to the information 4 

explained jointly by traits and dispersal. We divided the sampling area into groups of 5 

50 (large scale), 20 (intermediate scale), and 10 (fine scale) plots. We arranged plots 6 

into groups randomly, according to spatial proximity, to a gradient of soil nutrient, 7 

aluminium, and water availability, and to a fire frequency gradient. Boldface indicates 8 

significant coefficients.9 

 Large scale Intermediate scale Fine scale 

Random 
traits dispersal both traits dispersal both traits dispersal both 

0.294 0.624 0.709 0.253 0.581 0.642 0.230 0.501 0.564 

Space 
traits dispersal both traits dispersal both traits dispersal both 

0.280 0.656 0.725 0.248 0.553 0.603 0.237 0.475 0.538 

Soil 
traits dispersal both traits dispersal both traits dispersal both 

0.286 0.624 0.706 0.263 0.551 0.630 0.246 0.497 0.568 

Fire 
traits dispersal both traits dispersal both traits dispersal both 

0.288 0.623 0.706 0.253 0.562 0.627 0.234 0.520 0.564 
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Table 2. Decomposition of the biologically relevant information from coefficients of determination. 'traits' refer to pure-trait models, 'dispersal' 1 

to pure-neutral models, 'both' to the information explained jointly by traits and dispersal, and 'stochasticity' to the biologically relevant 2 

uncertainty that could not be explained by traits, dispersal limitation, or both. We divided the sampling area into groups of 50 (large scale), 20 3 

(intermediate scale), and 10 (fine scale) plots. We arranged plots into groups randomly, according to spatial proximity, to a gradient of soil 4 

nutrient, aluminium, and water availability, and to a fire frequency gradient. 5 

6 
 Large scale Intermediate scale Fine scale 

Random 
traits dispersal both stochasticity traits dispersal both stochasticity traits dispersal both stochasticity 

0.077 0.484 0.099 0.339 0.051 0.451 0.082 0.416 0.029 0.400 0.051 0.520 

Space 
traits dispersal both stochasticity traits dispersal both stochasticity traits dispersal both stochasticity 

0.078 0.522 0.077 0.322 0.040 0.420 0.069 0.471 0.039 0.355 0.058 0.547 

Soil 
traits dispersal both stochasticity traits dispersal both stochasticity traits dispersal both stochasticity 

0.074 0.487 0.097 0.341 0.065 0.428 0.075 0.433 0.039 0.382 0.068 0.511 

Fire 
traits dispersal both stochasticity traits dispersal both stochasticity traits dispersal both stochasticity 

0.072 0.486 0.100 0.342 0.046 0.436 0.082 0.435 0.032 0.399 0.040 0.529 
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Figure 1. Predicted vs. observed abundances in communities along a fire gradient 1 

over different scales. The solid line represents the 1:1 line. Large scale: R2=0.70, P < 2 

0.05. Intermediate scale: R2=0.63, P < 0.05. Fine scale: R2=0.56, P > 0.05.3 
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Appendix 1. Pool species with abundances and average trait values. BA = basal area (m2), H = height (m), Brk = bark thickness (mm), Woo = 1 

wood density (mg mm-3), LSz = leaf size (mm2), SLA = specific leaf area (mm2 mg-1). 2 

Family Species Abundance BA H Brk Woo LSz SLA 

Fabaceae Mimosa amnis-atri Barneby 486 0.002 1.074 4.315 0.583 7690.353 10.623 

Sapotaceae Pouteria ramiflora (Mart.) Radlk. 454 0.004 1.950 11.138 0.435 9964.381 7.308 

Sapotaceae Pouteria torta (Mart.) Radlk. 303 0.003 1.343 7.497 0.449 8709.128 6.798 

Fabaceae Stryphnodendron adstringens (Mart.) Coville 255 0.004 1.842 7.170 0.471 51890.161 7.169 

Myrtaceae Psidium laruotteanum Cambess. 234 0.002 1.105 10.586 0.560 3290.758 5.621 

Asteraceae Eremanthus erythropappus (DC.) MacLeish 218 0.004 1.209 12.527 0.466 3012.500 9.048 

Ochnaceae Ouratea acuminata (DC.) Engl. 210 0.003 1.513 11.622 0.462 3232.800 6.388 

Bignoniaceae Tabebuia ochracea A.H. Gentry 149 0.002 1.003 8.873 0.441 24108.000 5.486 

Ochnaceae Ouratea spectabilis (Mart. ex Engl.) Engl. 148 0.007 2.616 12.120 0.494 5070.800 5.018 

Connaraceae Rourea induta Planch. 126 0.001 0.750 9.520 0.223 1997.000 6.200 

Asteraceae Piptocarpha rotundifolia (Less.) Baker 102 0.004 1.574 7.099 0.508 9672.211 5.889 

Ebenaceae Diospyros hispida A.DC. 100 0.003 1.430 6.529 0.348 19711.375 4.683 

Annonaceae Annona crassiflora Mart. 84 0.006 1.314 5.861 0.258 7618.196 6.127 

Fabaceae Anadenanthera falcata (Benth.) Speg. 77 0.008 1.676 9.452 0.475 23616.427 6.681 
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Family Species Abundance BA H Brk Woo LSz SLA 

Fabaceae Acosmium dasycarpum (Vogel) Yakovlev 52 0.002 0.821 8.871 0.436 10697.083 6.983 

Erythroxylaceae Erythroxylum suberosum A.St.-Hil. 49 0.003 1.398 11.524 0.525 2864.882 8.164 

Dilleniaceae Davilla elliptica A.St.-Hil. 45 0.002 1.185 7.218 0.560 3663.833 7.734 

Connaraceae Connarus suberosus Planch. 42 0.004 1.390 12.059 0.429 13160.595 5.972 

Arecaceae Allagoptera leucocalyx (Drude) Kuntze 36 0.002 0.839 6.453 0.248 191166.886 4.114 

Fabaceae Dimorphandra mollis Benth. 32 0.007 1.949 10.700 0.438 33899.000 8.504 

Malvaceae Eriotheca gracilipes (K.Schum.) A.Robyns 26 0.006 2.312 10.820 0.359 30491.500 4.508 

Erythroxylaceae Erythroxylum campestre A.St.-Hil. 24 0.001 1.135 12.365 0.493 2555.000 6.919 

Calophyllaceae Kielmeyera coriacea Mart. & Zucc. 21 0.006 1.785 15.136 0.283 8908.438 5.898 

Solanaceae Solanum lycocarpum A. St.-Hil. 20 0.007 1.380 12.880 0.486 6925.000 8.875 

Rubiaceae Palicourea rigida Kunth 19 0.004 1.380 9.465 0.228 16986.500 5.201 

Myrtaceae Eugenia piauhiensis O. Berg 17 0.006 2.042 9.195 0.357 3265.805 7.133 

Melastomataceae Miconia albicans (Sw.) Steud. 17 0.001 1.742 5.870 0.607 4985.750 4.922 

Fabaceae Anadenanthera peregrina (L.) Speg. 15 0.010 2.603 16.021 0.579 16813.000 7.390 

Malpighiaceae Byrsonima coccolobifolia Kunth 15 0.008 2.768 9.304 0.441 7494.400 8.802 

Caryocaraceae Caryocar brasiliense A.St.-Hil. 15 0.007 2.900 11.930 0.400 51227.000 9.081 

Bignoniaceae Tabebuia aurea (Silva Manso) Benth. & Hook.f. ex S.Moore 15 0.002 1.267 13.600 0.235 45682.000 3.851 
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Family Species Abundance BA H Brk Woo LSz SLA 

Anacardiaceae Anacardium humile A.St.-Hil. 11 0.003 0.445 0.308 0.680 8822.463 4.369 

Salicaceae Casearia sylvestris Sw. 11 0.002 1.725 7.365 0.482 1200.750 8.667 

Malvaceae Eriotheca pubescens (Mart. & Zucc.) Schott & Endl. 8 0.001 1.050 6.340 0.257 59792.000 4.943 

Myrtaceae Myrcia bella Cambess. 7 0.004 1.301 12.701 0.498 908.714 7.330 

Asteraceae Vernonia bardanoides Less. 7 0.001 0.783 0.473 0.328 8657.146 7.875 

Proteaceae Roupala montana Aubl. 6 0.002 2.065 6.270 0.541 7738.500 4.577 

Myrtaceae Eugenia punicifolia (Kunth) DC. 5 0.003 1.880 14.105 0.544 874.500 10.183 

Lythraceae Lafoensia pacari A. St.-Hil. 5 0.006 2.200 6.370 0.551 2718.000 13.230 

Fabaceae Machaerium acutifolium Vogel 5 0.010 4.080 17.110 0.563 16743.500 7.280 

Vochysiaceae Qualea grandiflora Mart. 5 0.019 3.337 10.601 0.416 8875.862 4.468 

Myrtaceae Eugenia aurata O.Berg 4 0.002 1.130 11.030 0.435 2087.500 10.200 

Euphorbiaceae Manihot tripartita (Spreng.) Müll.Arg. 4 0.001 0.407 0.173 0.613 1414.595 7.700 

Styracaceae Styrax ferrugineus Nees & Mart. 4 0.023 4.025 12.390 0.484 2229.250 5.186 

Malpighiaceae Byrsonima basiloba A.Juss. 3 0.050 2.083 4.923 0.551 8648.000 5.066 

Asteraceae Chromolaena squalida (DC.) R.M.King & H.Rob. 3 0.0007 0.816 0.101 0.608 1010.143 8.741 

Fabaceae Diptychandra aurantiaca Tul. 3 0.002 1.560 11.420 0.563 12617.667 14.715 

Fabaceae Hymenaea stigonocarpa Hayne 3 0.003 1.603 2.423 0.523 22160.667 7.937 
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Family Species Abundance BA H Brk Woo LSz SLA 

Annonaceae Duguetia furfuracea (A.St.-Hil.) Saff. 2 0.0005 0.745 0.125 0.352 4418.803 4.821 

Myrtaceae Myrcia camapuanensis N.Silveira 2 0.002 0.980 6.610 0.704 6382.500 4.072 

Vochysiaceae Qualea parviflora Mart. 2 0.008 5.150 9.190 0.399 2888.000 12.127 

Fabaceae Sclerolobium aureum (Tul.) Baill. 2 0.003 1.915 5.710 0.414 31410.500 7.874 

Lamiaceae Aegiphila lhotzkiana Cham. 1 0.009 2.822 7.861 0.279 7046.156 6.431 

Fabaceae Albizia niopoides (Benth.) Burkart 1 0.001 1.790 6.470 0.553 11511.000 13.330 

Apocynaceae Aspidosperma tomentosum Mart. 1 0.002 0.830 11.170 0.413 5681.000 7.228 

Fabaceae Bauhinia rufa (Bong.) Steud. 1 0.0007 1.366 0.618 0.734 6661.036 6.739 

Malpighiaceae Byrsonima verbascifolia (L.) Rich. ex Juss. 1 0.008 3.210 14.660 0.463 10873.000 7.615 

Myrtaceae Campomanesia pubescens (Mart. ex DC.) O.Berg 1 0.0005 0.681 0.396 1.074 1611.874 5.925 

Asteraceae Chresta sphaerocephala DC. 1 0.0002 0.447 0.079 0.493 2721.754 5.849 

Araliaceae Didymopanax macrocarpus (Cham. & Schltdl.) Seem. 1 0.003 0.594 1.244 0.321 50857.153 3.757 

Erythroxylaceae Erythroxylum tortuosum Mart. 1 0.002 0.890 7.670 0.487 5180.000 6.199 

Myrtaceae Eugenia bimarginata DC. 1 0.005 1.560 11.630 0.445 4026.000 8.492 

Nyctaginaceae Guapira noxia (Netto) Lundell 1 0.007 0.680 5.700 0.205 12436.000 10.518 

Apocynaceae Hancornia speciosa Gomes 1 0.011 2.760 2.600 0.361 3150.000 10.468 

Apocynaceae Himatanthus obovatus (Müll.Arg.) Woodson 1 0.001 0.690 2.014 0.211 14465.307 5.726 
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Family Species Abundance BA H Brk Woo LSz SLA 

Melastomataceae Miconia ferruginata DC. 1 0.010 1.754 5.924 0.474 31426.604 3.635 

Melastomataceae Mouriri elliptica Mart. 1 0.002 0.970 9.870 0.543 5567.000 6.504 

Myrtaceae Myrcia guianensis (Aubl.) DC. 1 0.001 0.710 7.910 0.743 4691.000 3.874 

Myrtaceae Myrcia lasiantha DC. 1 0.005 1.540 15.230 0.261 936.000 6.375 

Myrtaceae Myrcia obovata (O.Berg) Nied. 1 0.004 1.130 6.610 0.560 4087.000 9.135 

Celastraceae Plenckia populnea Reissek 1 0.011 5.370 11.210 0.449 4079.000 15.755 

Araliaceae Schefflera malmei (Harms) Frodin 1 0.002 3.930 3.010 0.401 12199.000 3.809 

Fabaceae Sclerolobium sp1. Vogel 1 0.013 3.361 2.655 0.523 28092.070 5.500 
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Appendix 2. Correlations between average trait values. BA = basal area (m2), H = 1 

height (m), Brk = bark thickness (mm), Woo = wood density (mg mm-3), LSz = leaf 2 

size (mm2), SLA = specific leaf area (mm2 mg-1). 3 

 BA H Brk Woo LSz SLA 
BA 1.000      
H 0.184 1.000     
BRK -0.132 0.347 1.000    
Woo -0.099 -0.064 -0.192 1.000   
LSz 0.099 -0.068 -0.048 -0.309 1.000  
SLA -0.249 0.277 0.148 0.081 -0.242 1.000 

  4 
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Appendix 3. Lagrange multipliers of pure-trait models. Grey shading represents 1 

significant values. BA = basal area (m2), H = height (m), Brk = bark thickness (mm), 2 

Woo = wood density (mg mm-3), LSz = leaf size (mm2), SLA = specific leaf area 3 

(mm2 mg-1). 4 

Grouping Scale BA H Brk Woo LSz SLA 

Random 

Large 
-0.0037 -0.0025 0.0074 0.0016 -0.0014 -0.0017 
-0.0038 -0.0034 0.0077 0.0002 -0.0003 -0.0022 

Intermediate 

-0.0042 -0.002 0.0071 0 -0.0011 -0.0027 
-0.0036 -0.0037 0.0083 0.001 -0.0007 -0.0021 
-0.0036 -0.0023 0.0082 0.0004 -0.0005 -0.001 
-0.0037 -0.0033 0.0076 0.002 -0.0009 -0.0023 
-0.0036 -0.0035 0.0066 0.001 -0.0012 -0.0017 

Fine 

-0.0037 -0.004 0.0066 0.0001 -0.0017 -0.0022 
-0.0037 -0.0024 0.0095 0.0025 -0.0012 -0.003 
-0.0026 -0.0062 0.0109 -0.0003 -0.0002 -0.0006 
-0.0026 -0.0057 0.0064 0.0033 0.0009 0.0008 
-0.0038 -0.0025 0.0068 -0.0001 -0.001 -0.0011 
-0.0048 0.0007 0.0087 0.0011 -0.0017 -0.0045 
-0.0041 -0.003 0.0082 0.0001 -0.002 -0.0037 
-0.0047 -0.0009 0.0067 0.0011 0.0005 -0.0035 
-0.0043 0.0004 0.0026 0.0025 -0.0008 0.0005 
-0.0036 -0.0039 0.007 -0.0008 -0.003 -0.0019 

Space 

Large 
-0.0043 -0.0019 0.0059 0.0017 -0.0017 -0.003 
-0.0034 -0.0037 0.0089 0.0001 -0.0016 -0.0017 

Intermediate 

-0.005 -0.0003 0.0049 0.0011 -0.001 -0.0038 
-0.0035 -0.0036 0.0062 0.0025 -0.0016 -0.0015 
-0.003 -0.0047 0.0086 0.0015 0.0008 -0.0004 
-0.0034 -0.0029 0.0081 0.0001 -0.0017 -0.0011 
-0.0038 -0.0029 0.0094 0.0001 -0.0015 -0.003 

Finer 

-0.0027 -0.0037 0.0104 0.0026 -0.0028 -0.0014 
-0.0037 -0.003 0.0102 0.0012 0.0001 -0.0029 
-0.0045 -0.0026 0.007 -0.0012 -0.0035 -0.0047 
-0.0038 -0.0019 0.0089 0.0008 -0.0007 -0.0022 
-0.0044 -0.0035 0.0056 -0.0002 -0.0002 -0.0031 
-0.0049 -0.0017 0.0028 -0.002 0.0003 -0.0016 
-0.004 -0.0008 0.0055 0.0018 0 -0.0001 
-0.0033 -0.0047 0.006 0.0002 0.0018 0.0007 
-0.0048 0.0004 0.0042 0.002 -0.0018 -0.0027 
-0.0021 -0.0064 0.0106 0.0033 -0.0001 -0.0001 

Soil Large 
-0.0037 -0.0029 0.0079 0.0004 -0.0006 -0.0017 
-0.0038 -0.0028 0.0072 0.0015 -0.0012 -0.0022 
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1 

Intermediate 

-0.0041 -0.0011 0.0078 0.0005 -0.0009 -0.0018 
-0.0035 -0.005 0.0083 -0.0004 0.0001 -0.0019 
-0.0031 -0.0046 0.0053 0.002 -0.0007 0.0003 
-0.0046 -0.0017 0.0059 0.0003 -0.0017 -0.0036 
-0.0032 -0.003 0.01 0.0028 -0.001 -0.002 

Fine 

-0.0043 -0.0003 0.008 0.0003 -0.0022 -0.0029 
-0.0034 -0.0032 0.0073 0.0009 0.0022 0.0008 
-0.0034 -0.0053 0.009 -0.0017 -0.0019 -0.0025 
-0.0036 -0.0046 0.0075 0.001 0.0022 -0.0012 
-0.0032 -0.0037 0.0071 0.0023 -0.0013 -0.0009 
-0.0029 -0.0057 0.0033 0.0017 -0.0001 0.0017 
-0.0045 -0.0013 0.007 0.0003 -0.0028 -0.0041 
-0.0046 -0.0022 0.0046 0.0002 -0.0005 -0.003 
-0.0028 -0.0045 0.0104 0.0037 -0.0025 -0.0027 
-0.0035 -0.0021 0.0097 0.0022 0 -0.0015 

Fire 

Large 
-0.0038 -0.003 0.0073 0.0002 -0.0012 -0.0019 
-0.0037 -0.0028 0.0078 0.0016 -0.0006 -0.002 

Intermediate 

-0.00353 -0.00458 0.00786 -0.00096 -0.00145 -0.00195 
-0.00401 -0.00231 0.00754 0.00102 -0.00008 -0.00226 
-0.00332 -0.00341 0.00782 0.00094 -0.00204 -0.00118 
-0.00365 -0.00204 0.00817 0.00296 0.00035 -0.00154 
-0.00427 -0.00233 0.00625 0.00012 -0.00148 -0.00284 

Fine 

-0.0027 -0.0051 0.0096 -0.0013 -0.0033 -0.0005 
-0.0043 -0.0041 0.0063 -0.0006 0.0002 -0.0033 
-0.0038 -0.0015 0.0061 0.002 -0.0003 -0.0007 
-0.0042 -0.0033 0.0092 -0.0002 0.0002 -0.0041 
-0.0039 -0.0015 0.0059 0.0007 -0.0026 -0.0012 
-0.0026 -0.0058 0.0103 0.0012 -0.0013 -0.0011 
-0.0028 -0.003 0.0086 0.0049 0.0013 0.0005 
-0.0047 -0.0008 0.0076 0.0005 -0.0009 -0.0042 
-0.0034 -0.0036 0.0095 -0.0002 -0.0018 -0.0021 
-0.005 -0.0012 0.0033 0.0004 -0.0011 -0.0035 
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Abstract 1 

Environmental filtering prevents species without certain attributes to occur in local 2 

communities. Traits respond differently to different abiotic factors, assembling 3 

communities with varying composition along environmental gradients. Here, we 4 

measured proxies of soil fertility, disturbance by fire, response and physiological 5 

traits to assess how these variables interact to determine woody species richness and 6 

density in a Neotropical savanna. We explicitly incorporated our assumptions about 7 

how different abiotic filters influence different subsets of traits into a statistical test 8 

using structural equation modelling, yielding a more accurate representation of 9 

assembly process. Fire had an effect on resistance traits, whereas soil fertility 10 

influenced physiological traits. Resistance traits explained both the richness and 11 

density of plots, whereas physiological traits explained only the density. Fewer fire 12 

events lead to richer and denser plots. Similarly, areas with lower cation exchange 13 

capacity assembled less dense communities. Furthermore, we showed that structural 14 

equation modelling allowed us to better represent the interactions of distinct 15 

environmental filters with different subsets of traits. 16 

Keywords: cerrado, community assembly, savanna, structural equation modelling, 17 

traits.  18 
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Introduction 1 

Environmental filtering prevents species without certain trait values to occur in local 2 

communities. Distinct abiotic factors can filter species at different spatial scales and 3 

points in time (Lambers et al. 2012). Thus, assemblages are likely formed by multiple 4 

sources of trait filtering (Lambers et al. 2012). Accordingly, subsets of traits respond 5 

differently to different abiotic factors, assembling communities with varying 6 

composition along environmental gradients (Keddy 1992, Lavorel and Garnier 2002). 7 

Since some traits are more relevant to certain ecosystem processes than others 8 

(Petchey and Gaston 2006), incorporating their functional relevance in models of 9 

assembly will render more realistic translations of how the environment and 10 

organisms interact to shape communities and rates of ecosystem processes. 11 

In savannas, soil fertility and fire are important promoters of trait filtering (Gignoux 12 

et al. 1997, Batalha et al. 2010), determining which species from the regional pool are 13 

able to co-occur locally (Keddy 1992, Lambers et al. 2012). In the Brazilian cerrado, 14 

studies have indicated that soil characteristics (Goodland and Pollard 1973) and 15 

disturbance caused by fire (Moreira 2000, Silva and Batalha 2010, Batalha et al. 16 

2010) play a majour role in the composition of communities, influencing the 17 

distribution of traits, richness, and density of woody individuals. Indeed, patches of 18 

forest formations within the cerrado domain indicate that both vegetations share the 19 

same climate requirements. However, not all functional traits respond similarly to soil 20 

fertility and fire in the cerrado. For instance, only half of the functional traits 21 

measured by Dantas et al. (2013) in a cerrado area had distributions correlated with 22 

fire frequency. Likewise, the effects of fire on functional diversity are dependent on 23 

the subset of traits used to calculate the index (Cianciaruso et al. 2012). Even though 24 

there is a building amount of research relating fire and the distribution of traits in the 25 
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Brazilian cerrado, it is still uncertain how traits mediate the interaction between 1 

abiotic factors and richness and density of plants. The role of different subsets of 2 

functional traits in this mediation also remains to be addressed. 3 

Here, we measured proxies of soil fertility, disturbance by fire, response and 4 

physiological traits to assess how these variables interact to determine woody species 5 

richness and density, while describing how structural equation modelling with latent 6 

variables can improve assembly models. To our knowledge, this is the first study to 7 

quantify the joint effects of soil fertility and fire on traits and, consequently, the 8 

effects of traits on community composition in a Neotropical savanna. 9 

Material and methods 10 

We conducted this study in Emas National Park, Central Brazil. Emas is one of the 11 

most important cerrado reserves in Brazil, with an area of around 133,000 ha. The 12 

cerrado vegetation in the park presents a striking variation in the density of woody 13 

individuals. We randomly placed 100 25 m2 quadrats in the park and, on each of the 14 

531 woody individuals that occurred in the quadrats, measured the values of six 15 

functional traits that represent responses of plants to environmental conditions, such 16 

as nutrient availability and fire (Cornelissen et al. 2003): (1) basal area (m2), related to 17 

space occupation, resource uptake, total biomass, and reproductive capability; (2) 18 

height (m), associated with competitive vigour, fecundity, and growth after 19 

disturbance; (3) bark thickness (mm), related to resistance to disturbance; (4) leaf 20 

nitrogen (mg g-1), related to maximum photosynthetic rates and nutrient stress; (5) 21 

specific leaf area (mm2 mg-1), associated with growth and maximum photosynthetic 22 

rate; and (6) leaf toughness (N), associated with resistance to herbivore and leaf 23 

lifespan. 24 
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Fire is a major source of disturbance in Emas (França et al. 2007). Preventive 1 

firebreaks, maintenance roads, and heterogeneous fuel availability make the fire map 2 

of Emas resemble a mosaic, with nearby plots possibly having very distinct fire 3 

histories. Using in-field observations and satellite images, we counted the number of 4 

fire events between 1984 and 2010 as a proxy for the disturbance caused by burnings. 5 

As an indicator of soil fertility, we used cation exchange capacity. To measure this 6 

variable, we collected five soil subsamples from each plot, combined them into one 7 

sample, and sent them for chemical analysis. 8 

We used structural equation modelling with robust estimators (Shipley 2000) to test 9 

two competing models of the causal connections between abiotic factors, traits, and 10 

community composition. Structural equation models provide the means to test 11 

hypotheses that represent alternative causal structures of any level of complexity, 12 

allowing researchers to analyse their data from a system perspective. If appropriate, 13 

researchers can include theoretical concepts in structural models as latent variables, 14 

which are expected to express themselves in the shared covariance between observed 15 

variables called indicators (for instance, leaf nitrogen content and basal area in Fig. 16 

1a). We proposed two a priori structural equation models (Fig. 1). In the first model 17 

(Fig. 1a), all traits are caused by only one latent variable. In the second model (Fig 18 

1b), observed traits are further divided into resistance and physiological traits. Each 19 

trait value in our proposed models was the average of that trait for all individuals in a 20 

quadrat. We had, thus, 100 observations for each trait. We determined density as the 21 

number of woody individuals per square meter. Prior to testing the full structural 22 

equation models, we did two confirmatory factor analyses (Shipley 2000) to assess 23 

the validity of the latent variables and their indicators in both structural equation 24 

models. Poor fit in these confirmatory models indicated that our choice of latent 25 
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variables was not appropriate, that is, the shared variance between subsets of traits did 1 

not accurately represent a theoretical variable, in this case, the role of the traits in the 2 

interaction between plants and the environment. We did all analyses using the 'lavaan' 3 

package (Rosseel 2012) for R (R Core Team 2012). 4 

Results 5 

The causal structure with all traits represent by one latent variable had poor fit with 6 

data (χ2 = 79.296, df = 26, p = 0). A confirmatory factor analysis of the latent variable 7 

in this model also showed poor fit (χ2 = 53.249, df = 9, p = 0). The factor analysis 8 

indicated that all the traits we measured were not caused by a single latent variable, 9 

since bark thickness, basal area, and height had non-significant path coefficients, 10 

whereas leaf nitrogen content, specific leaf area, and leaf toughness had significant 11 

coefficients. Separating traits into two latent variables yielded a confirmatory factor 12 

model with a much better fit (χ2 = 7.304, df = 8, p = 0.50). All indicators of the two 13 

factors were significant. 14 

The structural equation model with two sets of traits represented by two latent 15 

variables quickly converged to a solution and fitted the data well (Fig. 2, χ2 = 38.284, 16 

df = 28, p = 0.093). The loadings of both latent variables were significant. Of all paths 17 

we initially considered plausible, the estimates of the effects of fire on physiological 18 

traits, cation exchange capacity on resistance traits, physiological traits on richness, 19 

and the covariance between physiological and resistance traits were non-significant. 20 

Fire had a high influence on resistance traits and a non-significant one on 21 

physiological traits. Similarly, the path coefficient connecting cation exchange 22 

capacity and physiological traits was significant, whilst the estimate of the effect of 23 

cation exchange capacity on resistance traits was not. Richness was explained mainly 24 
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by resistance traits, whereas the density of woody individuals was explained by both 1 

resistance and physiological traits. 2 

Discussion 3 

Our results offered support to our expectation that separating functional traits into 4 

latent variables better representing their functional roles would render more accurate 5 

models of how the environment and traits interact. The structural equation model with 6 

one latent variable representing all traits had poor fit with data, indicating that even if 7 

all measured traits are influenced by habitat filtering, different subsets of traits are 8 

subjected to different levels of trait filtering. Furthermore, including subsets of traits 9 

as latent factors according to their main role in the interaction between plants and the 10 

environment allowed us to more acuratelly represent the importance of different traits 11 

for community assembly. Finally, models with latent variables account for the 12 

covariance between traits and our imprecision in measuring them, leading to more 13 

reliable estimates (Shipley 2000). 14 

The use of confirmatory factor analyses prior to full model estimation provided 15 

evidence for our assumptions about the concepts each subset of traits represented. 16 

Indeed, as we expected, resistance and physiological traits were indeed better 17 

represented by distinct latent variables. This approach could be useful even in studies 18 

where structural equation modelling is not used, as it provides a statistical test of the 19 

assumptions researchers make in studies involving functional traits. Ecologists often 20 

rely on methods that do not involve statistical analyses to choose which traits are 21 

important for a given system (Petchey and Gaston 2006). However, by using 22 

confirmatory factor analysis and structural equation modelling, one can test whether 23 

subsets of traits indeed represent a given concept. Moreover, this method can 24 
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incorporate causal connections between traits, helping with the identification of 1 

redundancy. 2 

Our model corroborated the observation that careful selection of traits will have an 3 

impact on models of community assembly (Petchey et al. 2004, Cianciaruso et al. 4 

2012). Instead of simply removing or doing individual statistical analysis for each 5 

subset of traits based on their functional roles, we incorporated these roles in the 6 

analysis by using latent variables. Indeed, we were able to corroborate that fire did 7 

influence resistance traits, as previously described (Silva and Batalha 2010, 8 

Cianciaruso et al. 2012), but not physiological traits. Physiological and resistance 9 

traits were correlated in the confirmatory factor analysis, although they were not 10 

correlated in the structural equation model, indicating that the inclusion of fire and 11 

cation exchange capacity accounted for most of the variation between the latent 12 

variables. 13 

We showed that plots that burn less have, on average, taller and thicker individuals, 14 

with thicker barks, which is in line with previous findings (Batalha et al. 2011, Dantas 15 

et al. 2013). High number of fires led, via the indirect effects of fire on richness and 16 

density through resistance traits, to plots with fewer species and individuals, probably 17 

due to recurrent top-killing (Higgins et al. 2007). Fire suppression has been shown to 18 

assemble richer and denser communities (Moreira 2000) and our results corroborated 19 

this. 20 

The path coefficient connecting cation exchange capacity and resistance traits was not 21 

significant. Physiological traits, on the other hand, were significantly influenced by 22 

cation exchange capacity. Plots with higher fertility had individuals with higher leaf 23 

nitrogen content and specific leaf area and softer leaves. Physiological traits did not 24 

have a significant effect on richness. They did have, however, a significant negative 25 
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effect on plant density. Higher cation exchange capacity led to less dense plots via 1 

physiological traits. Thus, our results unveiled a significant negative path between soil 2 

fertility and density. Previous findings either described positive (Goodland and 3 

Pollard 1973) or not significant (Moreira 2000, Ruggiero et al. 2002) relationships 4 

between soil nutrient availability and the density of woody plants.  5 

In conclusion, we showed that explicitly incorporating theoretical concepts about the 6 

functional roles of plant traits into assembly models could indeed yield more realist 7 

representations of the how communities respond to abiotic filters and the 8 

consequences of these responses to patterns of diversity. 9 
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Figure 1. Competing causal models relating disturbance, traits, richness, and density 1 

of woody individuals in a Neotropical savanna. In the first model (a), we consider all 2 

measured traits to be caused by a unique latent variable, whereas in the second model 3 

(b), we incorporate trait multidimensionality by further dividing traits into two latent 4 

variables. Fire = number of fire events between 1984 and 2010. CEC = cation 5 

exchange capacity (mmol kg-1), Brk = bark thickness (mm), BA = basal area (m2), H 6 

= height (m), N = leaf nitrogen content (mg g-1), SLA = specific leaf area (mm2 mg-1), 7 

Tgh = leaf toughness (N).  8 
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Figure 2. Standardised estimates of the model with best fit with data (χ2 = 38.284, df = 1 

28, p = 0.093). Solid arrows indicate significant paths. Dotted arrows indicate paths 2 

not significantly different from 0. See the electronic supplementary material for error 3 

estimates and robust standard errors and Fig. 1 for details on the variables.  4 
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Appendix 1. Confirmatory factor analysis with standardised estimates of the model 1 

with traits separated into two latent variables (χ2 = 7.304, df = 8, p = 0.50). All 2 

estimates were significant. Brk = bark thickness (mm), BA = basal area (m2), H = 3 

height (m), N = leaf nitrogen content (mg g-1), SLA = specific leaf area (mm2 mg-1), 4 

Tgh = leaf toughness (N). 5 
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Appendix 2. Standardised estimates of the model with best fit with data (χ2 = 38.284, 1 

df = 28, p = 0.093). Solid arrows indicate significant paths. Dotted arrows indicate 2 

paths not significantly different from 0. Fire = number of fire events between 1984 3 

and 2010. CEC = cation exchange capacity (mmol kg-1), Brk = bark thickness (mm), 4 

BA = basal area (m2), H = height (m), N = leaf nitrogen content (mg g-1), SLA = 5 

specific leaf area (mm2 mg-1), Tgh = leaf toughness (N). We estimated the errors of 6 

endogenous variables and fixed the errors of fire and CEC to their observed standard 7 

deviations. 8 
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VI$)$CONCLUSÃO$GERAL$
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CONCLUSÃO$GERAL$

Neste$ trabalho,$nós$mostramos$que$diversos$aspectos$do$ambiente$ tiveram$

grande$influência$na$diversidade$funcional$de$espécies$arbóreas$de$cerrado$e$

no$ funcionamento$ da$ comunidade,$ tanto$ por$ meio$ de$ caminhos$ causais$

diretos$quanto$indiretos.$Vimos$também$que$o$efeito$do$fogo$na$diversidade$

funcional$e$no$funcionamento$foi$indireto,$via$seus$efeitos$nas$características$

do$ solo.$ A$ fertilidade$ do$ solo$ e$ o$ alumínio$ também$ foram$ fatores$

importantes$para$a$ formação$e$ funcionamento$das$comunidades$no$Parque$

Nacional$ das$ Emas.$ Portanto,$ pudemos$ identificar$ e$ quantificar$ as$ formas$

com$que$o$ ambiente$ interage$ com$a$biodiversidade$ e$ como$a$ relação$ entre$

esses$dois$componentes$influencia$o$funcionamento$da$comunidade.$

Ainda,$ conseguimos$ prever$ as$ abundâncias$ locais$ das$ espécies$ utilizando$

frequências$observadas$em$escalas$maiores$e$alguns$traços.$Concluimos$que$

os$ traços$possuem$ importância$ significativa$na$ formação$das$ comunidades$

locais,$ mas$ que$ a$ maioria$ das$ espécies$ é$ filtrada$ na$ escala$ regional.$

Mostramos$ também$ que$ diferentes$ fatores$ ambientais$ agem$ de$ forma$

distinta$ sobre$ diferentes$ conjuntos$ de$ traços$ ambientais.$ O$ fogo$ influencia$

traços$ de$ resistência,$ enquanto$ fertilidade$ do$ solo$ influencia$ traços$

fisiológicos.$Assim,$maior$frequência$de$queimadas$leva$à$áreas$com$menor$
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riqueza$ e$ densidade$ de$ indivíduos$ lenhosos,$ enquanto$ solos$ mais$ férteis$

levam$à$$comunidades$com$menor$densidade$de$indivíduos$lenhosos.$


