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A cobertura florestal e o tipo ambiental moldam a diversidade funcional de aves 

insetívoras na Mata Atlântica do sudeste Brasileiro 

RESUMO 

As aves que se alimentam de artrópodes são um grupo heterogêneo, com diferentes níveis de 

sensibilidade ambiental e diversas respostas à degradação do habitat. Neste trabalho, testamos 

os efeitos da paisagem sobre a diversidade funcional de aves insetívoras na Mata Atlântica 

brasileira. Prevemos que (I) a composição das espécies e a diversidade funcional são 

moldadas pelo turnover e aninhamento em diferentes habitats, e (II) o gradiente da cobertura 

florestal tem um efeito positivo na composição das espécies de aves e na diversidade 

funcional. Foram utilizados dados de 22 paisagens de Mata Atlântica na região da Cantareira-

Mantiqueira (Brasil), dentro de buffers de raio de 1 km, sobrescrevendo três tipos de 

ambientes (ou seja, florestas, pastagens e pântanos). Os componentes da diversidade β-

funcional foram calculados utilizando-se o par beta e beta multifuncional para cada tipo de 

ambiente, e os efeitos do gradiente de cobertura florestal e do tipo de ambiente foram testados 

utilizando modelos lineares e GLMM, respectivamente. Nossos resultados mostraram que o 

gradiente de cobertura florestal e o tipo de ambiente tiveram um efeito negativo sobre os 

índices de diversidade funcional, contrariando nossas expectativas. Pastagens e pântanos 

foram suscetíveis à rotatividade e nidificação, respectivamente. A diversidade beta das 

florestas foi influenciada tanto pela nidificação quanto pela rotatividade das espécies. Os 

fragmentos florestais nativos regionais são geralmente de pequeno porte e em estágios iniciais 

de sucessão, o que poderia explicar os padrões que encontramos. A presença de florestas 

secundárias pode ter afetado o padrão esperado de diversidade funcional, portanto, é preciso 

cautela ao interpretá-la, uma vez que a forma como a dinâmica compensatória pode não 

envolver uma compensação funcional real. 

Palavras-chave: Aves insetívoras, Cobertura florestal, Diversidade funcional beta, 

Diversidade funcional, Mudança na paisagem. 

  



Forest cover and environmental type shape functional diversity of insectivorous birds in 

Atlantic Forest of southeastern Brazil 

ABSTRACT 

Arthropod-eating birds are a heterogeneous group, with different levels of environmental 

sensitivity and diverse responses to habitat degradation. In this paper, we tested the effects of 

landscape on the functional diversity of insectivorous birds within the Brazilian Atlantic 

Forest. We predict that (I) species composition and functional diversity are shaped by 

turnover and nestedness across different habitats, and (II) the gradient of forest cover has a 

positive effect on bird species composition and functional diversity. We used data from 22 

landscapes of the Atlantic Forest in the Cantareira-Mantiqueira region (Brazil), within buffers 

of 1 km radius, surrogating three types of environments (i.e., forests, pastures, and marshes). 

The components of β-functional diversity were calculated using the beta pair and beta multi-

function for each type of environment, and the effects of the forest cover gradient and 

environment type were tested using linear models and GLMM, respectively. Our results 

showed that the forest cover gradient and the type of environment had a negative effect on the 

indices of functional diversity, contrary to our expectations. Pasturelands and marshes were 

susceptible to turnover and nestedness, respectively. The beta diversity of forests was 

influenced by both species nestedness and turnover. The regional native forest fragments are 

generally small-sized, and in early successional stages, which could explain the patterns we 

found. The presence of secondary forests may have affected the expected pattern of functional 

diversity, therefore, caution is needed when interpreting this, since the way in which 

compensatory dynamics may not involve real functional compensation. 

Key words: Beta functional diversity, Forest cover, Functional diversity, Insectivorous birds, 

Landscape change. 
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Forest cover and environmental type shape functional diversity of insectivorous birds in 

Atlantic Forest of southeastern Brazil 

1. INTRODUCTION 

Occupying 8% of all South America, the Atlantic Forest extends along the entire Brazilian 

coastline, including the restinga and inland regions, occurring from Pernanbuco to Rio Grande 

do Sul (SICK; BARRUEL, 1984; TABARELLI et al., 2005).  The Atlantic Forest is home to 

60% of the Brazilian fauna and flora threatened with extinction. This biome provides shelter 

for several species, especially birds, with nearly 900 species (~30% of the Neotropical 

avifauna). The region boasts an almost incomparable species richness (REZENDE et al., 

2018; STOTZ et al., 1996). Despite enormous richness, only 28% of the original vegetation of 

the biome remained standing, most of it in the southern region.  However, only a third of the 

remaining vegetation is legally protected; the remaining vegetation is small and isolated 

fragments (ORME et al., 2019; et al., 2018; RIBEIRO et al., 2009). 

Agroecosystems, urban sprawl, and human needs for natural resources have converted pristine 

ecosystems into fragmented and anthropogenic landscapes (JOHNSON et al., 2017). In the 

Atlantic Forest the predominant commodity crops are sugarcane (~5.2 Mha), eucalyptus (~5.8 

Mha) and soy, corn, and coffee (~14.4 Mha together). Their recent expansion over pastures 

may have shifted these activities to steeper regions, eagerly for deforestation as well (ROSA 

et al., 2023). Indeed, one of the main components driving forest loss across the Earth is 

deforestation for commodity extraction, silviculture, shifting agriculture (i.e., conversion of 

forest lands to agriculture, that may later be abandoned followed by subsequent forest 

regrowth) and forest fires (CURTIS et al., 2018; DINIZ et al., 2022).  

Environmental changes have led to a reduction in the size and connectivity of native 

vegetation, boosting edge effects and isolation between patches (FAHRIG, 2003). This 

ultimately a result in both local extinctions and communities declines, mainly for the most 

sensitive species, leading to biodiversity losses, environmental homogenization (CHACE; 

WALSH, 2006; GREEN et al., 2005; TILMAN, 2001), depletion in the maintenance and 

integrity of ecological functions (GRIMM et al., 2008; TYLIANAKIS; TSCHARNTKE; 

LEWIS, 2007; ULRICH et al., 2016) and the provision of ecosystem services (DE COSTER; 

BANKS-LEITE; METZGER, 2015; DUARTE et al., 2018).  

The landscape mosaics are composed mainly by anthropogenic matrix (i.e., pasture, 

agriculture, planted forest, etc.) and native forest remnants, which can be unique refuges for 

biodiversity (ŞEKERCIOḠLU et al., 2002). Shape, size, and location of these native habitats, 
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and the structure and composition of the surrounding land cover (HAILA, 2002; KUPFER; 

MALANSON; FRANKLIN, 2006), are central for defining the structure and composition of 

biological composition.  Studies on how habitat reduction and fragmentation have been 

affecting the arrangement of biological communities (ecological drift) and species responses 

(environmental filtering) have become increasingly common (ADORNO et al., 2021; 

BOESING; NICHOLS; METZGER, 2017; MORANTE-FILHO et al., 2015; PARDINI; 

NICHOLS; PÜTTKER, 2017). However, the role of anthropogenic landscape matrix as a 

modifying agent of community assemblies still unclear, and the results of habitat loss in 

communities composition, ecological functions, and ecosystem services provision are barely 

known (BARROS et al., 2019a; KUPFER; MALANSON; FRANKLIN, 2006; BOESING et 

al., 2022; MEDEIROS et al., 2019; PARDINI; NICHOLS; PÜTTKER, 2017). A landscape 

perspective is required to understand the effects of agriculture land use on the biodiversity and 

ecological processes (e.g., arthropod predation; DE SOUZA LEITE et al., 2022; 

TSCHARNTKE et al., 2005; TURNER; DONATO; ROMME, 2013).  

Intensification of agricultural practices has led to the homogenization of the landscapes 

(DUDLEY; ALEXANDER, 2017), and it is assigned as one of the main factors leading to the 

decline of arthropods (SÁNCHEZ-BAYO; WYCKHUYS, 2019). This is a result derived 

from the loss of natural habitats and/or use of toxic pesticides (defined as the concentrations 

of polyunsaturated fatty acids) that modify the abundance, availability, and quality of aerial 

insects (ATTWOOD et al., 2008; BELLAVANCE et al., 2018; GÉNIER et al., 2021; 

PAQUETTE et al., 2013; TWINING; SHIPLEY; WINKLER, 2018). The decline in the 

availability of nutritious aquatic insects can negatively affect both birds' nestling growth, and 

fledging success (TWINING et al., 2016; TWINING; SHIPLEY; WINKLER, 2018). 

Since bird communities are highly susceptible to modifications in agroecosystems (BERG, 

2002; CATARINO et al., 2016; HERRERA et al., 2016), it is to be expected that 

modifications to the landscape will alter the composition of the local fauna and flora. These 

modifications result in either turnovers in species composition (i.e., dissimilarity among 

species composition across an environmental gradient) ;(BASELGA, 2010), or in nestedness 

(i.e., loss or gain of species, creating a subgroup of the original community); (BASELGA; 

BONTHOUX; BALENT, 2015; POLLOCK et al., 2020). In this sense, when one community 

is not identical to another, they can be described by both processes above, since the only 

requirement to generate them is the species replacement and the loss (or gain) of species. 
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Despite the importance of forests, another ecosystem globally degraded by agriculture are the 

marshes (REIS et al., 2017; Ramsar Convention on Wetlands 2018). These environments 

perform central functions such as regulating water flows and dampening floods; modifying 

and controlling water quality, controlling erosion and siltation; supplying of food and 

breeding sites for aquatic fauna, and refuge for terrestrial fauna (SALATI, 2000; REIS et al., 

2017). More than half of wetlands had been affected in the last 60 years due to agricultural 

soil drainage and other processes (DAHL 2014; WATMOUGH et al., 2017) in the USA. A 

critically endangered Neotropical bird species (IUCN, 2022), the São Paulo Antwren 

(Formicivora paludicola), had severe feeding restrictions caused by the loss of quality of 

flooded environments, its exclusive habitats. The rapid-growth of the invasive species 

Hedychium coronarium interrupted the natural flow of water and, consequently, the 

maintenance of the marshes ((DEL-RIO et al., 2017). 

 Landscape modifications usually tend to result in changes in ecological assemblages, 

modifying the composition of communities (NEWBOLD et al., 2015) leading to 

homogenization at any level of organization, whether genetic, taxonomic, or functional 

(OLDEN; ROONEY, 2006), as species diversity is reduced and replaced by widespread 

species (CLAVERO; BROTONS, 2010; GÁMEZ-VIRUÉS et al., 2015). Bird diversity is 

shaped by a range of human activities; however, the effect of changes in land use (e.g., 

decline in native forest cover) is arguably one of the more effective (FULLER; BURSLEM; 

PINARD, 2012). Studies at the landscape scale have found evidence for a threshold of forest 

cover; below this level, the response of communities and species changes dramatically 

(BETTS; FORBES; DIAMOND, 2007; MARON et al., 2012; MORANTE-FILHO et al., 

2015, 2018; SWIFT; HANNON, 2010). Determining the impacts of shifts in forest cover is 

important because certain regions are home to many endemic species or species of high 

conservation interest (CORKERY et al., 2020). 

Native forests are responsible for the provision of several ecosystem services (e.g., pest 

control, pollination, and seed dispersal) (DUARTE et al., 2018; WENNY et al., 2011), and 

the reduction of these vegetation can be critical within agroecosystems (TSCHARNTKE ET 

AL., 2016).  Indeed, vegetation fitness is strongly dependent on the arthropod control 

provided by insectivorous vertebrates (e.g., birds and bats) due to the cascade effects (KARP; 

DAILY, 2014; MÄNTYLÄ; KLEMOLA; LAAKSONEN, 2011). Nearly 8-15% of world 

production of wheat, rice, potatoes, soybeans, cotton, and maize is damaged by arthropods, 

which would range from 9-37% without any biological control and pesticides (OERKE, 
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2006). There are estimates that the consumption of foliage-gleaning arthropods breaks ~13% 

of all potential crop production in the US (~US$ 33 billion; PIMENTEL; ZUNIGA; 

MORRISON, 2005). Without the ecosystem services provided by native species that prey on 

these arthropods, the estimated damage would reach ~US$ 4.5 billion higher (LOSEY, 2009). 

The decline in species richness has been widely observed (CORRELL et al., 2019; JIGUET et 

al., 2010) and is often related with changes in land cover. Until the 1990s, ecological theory 

investigated which processes determined species abundance and richness in space and time 

(SILVA et al., 2022). However, species richness alone could not reveal the whole story about 

the biodiversity of an area; actually, this only provides an estimate of the species number 

(HAN et al., 2021). The more explicit use of species traits (i.e., morphological, physiological, 

and phenological characteristics, that may affect fitness, rates of growth, reproduction and 

survival; VIOLLE et al., 2007) as a central idea to explain their distribution and how they 

would affect the ecosystems, only started in the 2000s (DÍAZ; CABIDO, 2001; MCGILL et 

al., 2006); this shift in the focus of ecology became known as the "biodiversity revolution" 

(CERNANSKY, 2017). From then on, diversity measures started to be represented not only 

by differences in species number and quantity, yet also by differences and similarities of 

functional traits. Thus, the difference in the degree of expression of these functional traits 

across populations, communities, or ecosystems, is defined as functional diversity 

(GARNIER; NAVAS; GRIGULIS, 2016). Therefore, the trait-based approach assumes that 

changes in functional trait composition across different landscapes are more predictable than 

using species composition alone (FUKAMI et al., 2005). 

Studies that combine the relationships between traits and the environment have been related to 

environmental or habitat filters (BELLO et al., 2021). This idea is based on "filtering" species 

from a regional pool into local communities according to their traits (DÍAZ; CABIDO; 

CASANOVES, 1998; KEDDY, 1992; MACARTHUER; WILSON, 1967). In short, within a 

geographically defined space (i.e., either communities or assemblages), a series of 

hierarchical filters determine the traits that provide the best performance within the specific 

ecological conditions; therefore, which species are most likely to coexist within that space. 

Focusing only on taxonomic and phylogenetic diversity may pose a risk to biodiversity 

conservation, since these strategies may not ensure high functionality (MAZEL et al., 2018).  

Distinct patterns of taxonomic and functional diversity had been described in response to 

environmental changes (PRESCOTT et al., 2016). Although many studies focus on the effects 

of anthropogenic changes on biodiversity, they are still limited to patterns found on either 
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species richness (GIBSON et al., 2011) or taxonomic diversity metrics (NAEEM et al., 2012). 

Because the structuring of bird guilds and their species composition varies spatially 

(HOLMES; BONNEY JR.; PACALA, 1979; HOLMES; RECHER, 1986), as they prefer to 

live in heterogeneous landscapes to better suit nesting, roosting, and foraging (AGGARWAL; 

SAHI; WANI, 2008; BERG, 2002; VEECH; SMALL; BACCUS, 2011). Knowledge related 

to the habitat preferences of avian species is vital for analyzing their responses to habitat 

changes and their conservation policies (LAWTON et al., 1998; SEKERCIOGLU, 2006). 

Furthermore, the association of birds with environmental heterogeneity helps to decipher the 

influence of biotic interactions on the distribution of bird species (JANKOWSKI et al., 2013) 

and functional traits (SPAKE et al., 2020). 

In this paper, we tested the effects of landscape on the functional diversity of insectivorous 

birds within the Brazilian Atlantic Forest. We investigate whether there would be a 

correlation between the environmental variables of the type of environments (i.e., pasture, 

native forest, and marsh) and forest cover and the indices of bird functional diversity and 

species composition. We hypothesize that the environment type and native forest cover 

gradient filter the functional traits and - thereby - the functional diversity of insectivorous 

birds in the context of the Atlantic Forest. We predict that (1) species composition and 

functional diversity are shaped by species turnover and nestedness across different types of 

environments.  Environments under the influence of human disturbance as pasturelands, 

dominance of generalist species having increased dispersion ability, and greater nestedness 

effect are expected, arising in a reduced biodiversity due to homogenized landscape mosaics 

(KARP et al., 2012). The species turnover effect would be more associated with 

heterogeneous environment characteristics with different successional backgrounds 

(ARROYO-RODRÍGUEZ et al., 2013). We also predict that (2) the gradient of percentage of 

relict native vegetation cover has significant and positive effects on the composition of 

insectivorous bird assemblages and on functional diversity. Areas having higher forest cover 

would support greater functional diversity, which may also be related to a greater complexity 

of the forest habitats (e.g., vertical structure; MORELLI et al., 2018). 

2. METHODS  

2.1.  Study site 

The study was conducted in the ecological corridor of Cantareira-Mantiqueira (Fig. 1), which 

is located ~50 km far from the metropolitan region of São Paulo, and where long-term 

ecological research (LTER CCM) has been conducted since 2014. The Corridor of Cantareira-
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Mantiqueira is in the southeastern of the Atlantic Forest (dense rain rainforest), in an area of 

~700,000 ha, with elevation ranging from 700 to 1,700 m. a.s.l, connecting two large forest 

blocks, the Cantareira State Park and the Serra da Mantiqueira (BOSCOLO et al., 2017). The 

Atlantic Forest has key interest for biological conservation, and is considered as a biodiversity 

hotspot mainly for birds, due to the high species richness and endemic species (620 species; 

MYERS et al., 2000). 

 

Fig. 1 Landscapes where soundscape data were collected using autonomous audio recorders within the 

Long-Term Ecological Research of Ecological Corridor Cantareira-Mantiqueira (LTER CCM or 

PELD CCM), São Paulo, Brazil between October 2016 and January 2017 (Gaspar 2021) 

The region comprises landscape mosaics having a wide gradient of forest losses and large 

heterogeneity of land use, and most of the forest remnants are small (i.e., <100 ha) and 

isolated fragments, composed by second-growth forests in early to medium stages of 

succession (METZGER et al., 2009; RIBEIRO et al., 2009). These forest remnants are 

surrounded by multiple land use systems, including several agroecosystems, such as pasture, 

small scale agriculture, forestry, regenerating forests, and urban areas (BARROS et al., 

2019b). Köeppen climate classification for this region is Cwa, that is, humid subtropical with 

dry winters and hot summers (ALCARDE ALVARES et al., 2013). 
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2.2. Selection of landscapes 

We used data derived from 22 landscapes sites that were selected in the LTER CCM region 

(Fig. 1). Forest cover data for each landscape consisted of buffers at scales of 100m, 200m, 

500m, 1km and 2km radius, arbitrarily chosen based on the theory of sound transmission in 

different environments (FARINA; PIERETTI; PICCIOLI, 2011; SCARPELLI; RIBEIRO; 

TEIXEIRA, 2021). For this study, we used only data from the 2 km radius scale, relying on 

previous evidence from multiscale analysis of bird responses to landscape structure 

(ADORNO et al., 2021; BARROS et al., 2019a). These landscapes represent a gradient of 

forest cover varying between 1% and 97%, in a radius of 1 km around the centroid of each 

landscape. 

Within each landscape, three different types of habitats (~100 meters distant from each other) 

were sampled: forests, pastures, and marshes. The pastures were mostly for raising cattle, and 

marshes (i.e., defined as wetlands frequently or continually inundated with water) (KEDDY, 

2010), were typical lower portions of the relief (GASPAR, 2021). The position of the forest 

sampling points were at least 50 meters away from any forest edge. The total data sampling 

time for all landscapes was 90 days, 30 days for each environment site and then switched to 

the next type of environment in the same landscape. Habitats were sampled between October 

2016 and January 2017, starting with forest sites, sampled from October to November; then 

marshes, between November and December, and finally pastures, sampled between December 

and January. The breeding season for most birds in the southern hemisphere occurs during 

this time of year (DEVELEY; PERES, 2000). 

 

2.3.  Sound records and bird data 

Sound data were collected in three environments per landscape (66 sampling points) in each 

of the 22 landscapes sites. Data were collected using 22 Song Meter Digital Field Recorders 

(SM3; Wildlife Acoustics. Inc. Massachusetts) equipment. They were attached to tree trunks 

1.5 m above the ground at the center of each landscape site. The recorders were equipped with 

two omnidirectional microphones (frequencies between 20 Hz and 20 kHz) and were 

configured for a sampling rate of 44.1 kHz, 16 bits and mono mode to save space and 

equipment battery (GASPAR, 2021). 

We used a subset of the recordings that was organized by Gaspar (2021). They were 

organized by following four steps: (1) five 25-minutes files were selected in the periods of 

greater bird activity (05:00 am, 05:45 am, 06:30 am, 07:15 am, and 08:00 am) per day (9,151 

files with 228,775 minutes); (2) two minutes were randomly extracted from each file, thus 
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totaling 18,594 minutes; (3) these minutes were grouped into nine random packages of 300 

minutes each (2,700 minutes total), with 100 minutes for each landscape (forest, marsh and 

pasture) per package; (4) the nine packets were sent to bird experts, and the occurrence of 

species was cataloged every minute. Finally, 10,437 bird vocalizations were classified, 9,437 

at the species level, 192 at the genus level and 808 unidentified (distant or doubtful calls), 

which were excluded. Each species was cataloged only once per minute, regardless of the 

number of times it vocalized in the recording. 

2.4.  Bird selection and traits 

Bird species were classified according to seven traits (diet, biomass, bill and wing length, 

foraging environmental strata, migratory status, and habitat preference). Only bird species 

whose diet consisted mainly of invertebrates (≥60%) were considered in this paper, according 

to the classification proposed by Wilman et. al. (2014). The wing length (mm) and bill size 

(mm) were extracted from Tobias et al (2022). Migratory status and habitat preference were 

based on a nationwide reference (SOMENZARI et al., 2018; IUCN 2022).  

The total wing length is related to movement capacity and tolerance to habitat loss and 

fragmentation, foraging, seed dispersion, and nutrient cycling (RODRIGUES et al., 2019). 

The ability to perform long-distance movements and, consequently, the potential to colonize 

isolated habitats (BARBOSA et al., 2020) is associated with the trait of migratory strategies 

(SOMENZARI et al., 2018). Diet composition and foraging strata provide a deep 

understanding of how species occupy specific niches, retrieve food resources (Petchey and 

Gaston 2006), and the ecosystem functions they perform; in this case, arthropod population 

control (SEKERCIOGLU, 2012). Preference for a specific habitat is related to the bird's 

sensitivity and the liability of persisting in specific habitats, where the resource supply is 

adequate. The ability of these birds to capture their food and the use of habitats and 

microhabitats (LUCK et al., 2012) are also related to beak length (RODRIGUES et al., 2019). 

All traits can be checked on TABLE 1. 

Table 1: Birds traits used to calculate functional diversity metrics (see WILMAN et al., 2014; MELO 

et al., 2021). 

Trait Range Definition 

Diet 0-100% 

Corresponding to the percentage of each item in the diet (e.g., invertebrates, 

endothermic and ectothermic vertebrates, unknown vertebrates, fish, seeds, 

nectivores, plants, and fruits)  

Biomass (g) 3-1200 The weight (g) of each species 

Foraging 

strata 
0-100% 

Percentage of each level of forage stratum (in this case, water around the 

surface, soil, mid, canopy, and aerial) used by the species 

Bill length 

(mm) 
8-152 Beak size, in millimeters, of each bird species 
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Wing length 

(mm) 
42-400 Wing size, in millimeters, of each bird species 

Migratory 

status 
0-1 Classification of species as non-migrant (0) and migrants (1)  

Habitat 

preference 
1-7 

The habitat in which each bird species prevails, such as: 1 - Forest (tall trees-

dominated vegetation, closed canopy, including palm forest); 2 - Wetland ( 

wide range of freshwater aquatic habitats including lakes, marshes, marshes 

and reedbeds); 3 - Non Forest (includes Grassland, open dry to moist grass-

dominated landscapes, at all elevations, Shrubland, low stature bushy 

habitats, included thorn scrub, thorny or arid savanna, caatinga, xerophytic 

shrubland and coastal scrub); and Human modified (urban landscapes, 

intensive agriculture, gardens); 4 - Forest + Wetland; 5 - Forest + Non Forest; 

6 - Wetland + Non Forest; 7 - Forest + Wetland + Non Forest 

 

 

 

2.5. Beta diversity and functional diversity indexes 

To calculate the functional diversity indexes, we perform the following steps (LALIBERTÉ; 

LEGENDRE, 2010; MELO et al., 2021). First, the functional distance between each pair of 

species was continuous, according to their trait values using the method of Pavoine et al 

(2009), as we use functional traits with different natures (i.e., categorical, quantitative, and 

fuzzy variables). The generated distance matrix was then subjected to a Principal Coordinate 

Analysis (aka PCoA) to obtain a subset of PCoA axes, later used as new "traits" (Paradis and 

Schliep 2019). Finally, the new traits were used to calculate the functional diversity indices 

(functional richness, evenness, divergence and dispersion) using the 'dbFD' function of the FD 

package (LALIBERTÉ; LEGENDRE, 2010; LALIBERTÉ; LEGENDRE; SHIPLEY, 2014). 

Values of functional richness (FRic) represent the volume of multidimensional space 

occupied by biological communities within the functional space and the number of unique 

traits; low indices indicate that several resources may not be used, while high indices suggest 

greater use of the available environmental resources (VILLÉGER et al., 2008). The functional 

divergence (FDiv) is a measurement of divergence in the distribution of species records in the 

volume of functional traits. It represents the degree of niche variation in biological 

communities, which increases as more species with unique functional traits emerge (i.e., 

specialized species). Finally, functional evenness (FEve), represents how regularly the 

abundance of functional traits is distributed within the multidimensional niche space 

(VILLÉGER et al., 2008). FEve values decrease when abundance is less evenly distributed or 

if functional distances between species are less regular (VILLÉGER et al., 2008). FDis is a 

multivariate measure of the dispersion of species in multidimensional niche space and reflects 

both the volume of occupied functional space and the distribution of species abundances 

within this space (LALIBERTÉ; LEGENDRE, 2010). It represents the mean distance of 
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individual species to the centroid of all species. Higher values of FDis show a greater 

potential for functional complementarity. 

Beta functional diversity was also considered in the analysis. It represents a measure of 

comparison of composition and variation of species functional traits between two or more 

sites (SILVA et al., 2022). Therefore, we calculate (1) the total beta diversity of the functional 

traits and their partitions into (2) turnover, a measure of species and trait replacement between 

sites, and (3) nestedness, representing the loss of species and traits between sites along a 

gradient (BASELGA, 2010; VILLÉGER; GRENOUILLET; BROSSE, 2013). For this 

purpose, the functions "functional.beta.pair" and "functional.beta.multi" were used, available 

in the betapart package of R software (BASELGA; ORME, 2012; R CORE TEAM 2022).   

2.6. Data analysis  

To test the effect of the forest gradient on the components of functional diversity, we first 

calculated the Functional Divergence (FDiv), Functional Evenness (FEve), Functional 

Richness (FRic) and Functional Dispersion (FDis) matrices. Then we created the linear 

models to compare the effect of forest cover gradient on the matrices, as shown in the 

Appendix 1. Finally, we performed their diagnosis through an Analysis of Variance 

(ANOVA). 

Then for our model analysis, we initially tested whether there was spatial autocorrelation 

within the components of functional diversity, to incorporate spatial components in the effects 

on response variables (FORTIN; DALE, 2005). For this, we used the function that computes 

the Moran's I autocorrelation index, available in the "ape" package. Posteriorly, we performed 

a Variance Inflation Factor (VIF) test to check for collinearity in our explanatory variables, 

available using the "usdm" package. After these steps we construct the candidate models. 

The generalized mixed models (GLMM; ZUUR et al., 2009) used the landscape ID as random 

factors. The response variables were the functional richness, functional divergence and 

functional evenness. The explanatory variables were forest cover (%) and type of environment 

(forest, pasture or marshes). We also used a model selection approach, with competing 

models (Appendix 2). 

We start by testing the spatial correlation of the global model residuals with a latitude and 

longitude framework in those models with spatial autocorrelation (BROOKS et al., 2017). 

Next, we repeated Moram’s I tests for the global models, followed by an ANOVA to verify 

the similarity between the models; when similar (p>0,05), we proceeded with the analyzes 

using the residuals. 
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Then, a list of competing models was evaluated for the explanatory variable (i.e., different 

Generalized Linear Mixed Models; GLMM) to explain the variation in functional diversity 

using the Akaike Information Criterion (AICc). A total of 12 models were composed to 

evaluate the random effect with the isolated effect of forest cover and environment type, and 

also the combined effect of forest cover with environment type. Models with ΔAICc < 2.0 

were considered equally plausible to explain the patterns (BURNHAM; ANDERSON, 2004); 

however, the model average was calculated among all models assigned as equally plausible to 

determine which, among them, was the best. The weight of evidence (wAICc) for each 

competing model, which is the sum of the weights of the models in which the variable 

appears (BARBOSA et al., 2017; BURNHAM; ANDERSON, 2004), was also calculated. All 

analyzes were performed using the software RStudio (RSTUDIO TEAM, 2021). 

3. RESULTS 

3.1. Bird species and habitats 

A total of 201 bird species were recorded within the landscapes, and 108 meet our criteria and 

were assigned as arthropod-consuming species; they represent 34 families and 11 orders. 

Some species were found exclusively in a given landscape (16 exclusives to pasture sites, 10 

in forest, and 9 in marsh areas (Appendix 3).  

 

3.2. β-Functional diversity 

The PCoA revealed for groups. The first one grouped mostly species that use marsh sites; the 

second one is related to more generalist species, regarding the use of the environment; the last 

two clusters include forest- and non-forest species (Fig. 2). The results of the partition 

analysis (fun_beta_multi()) indicate that 54.6% (0.063 / 0.116) of the variation in beta 

diversity is explained by the substitution component, while 45.39% (0.052 / 0.116) by the 

nestedness component. The distance matrices from the pairwise analysis (fun_beta_pair()) 

stress the relationship between environmental gradients and functional beta diversity (Fig. 3). 
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Fig. 2 PCoA for traits of bird species, where each dot represents a species in the trait space. Green dots 

represent the bird species within the functional trait space. 
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Fig. 3 Relationship between partition components of functional diversity (beta) in corridor Cantareira-

Mantiqueira, where the yellow dot represents pasture areas, the green dot represents forest areas and 

the blue dot marsh areas 

3.3.  Linear models and GLMM 

The analyzes of the relationship between the functional composition and the forest cover 

gradient, adjusted by linear models with their diagnoses (Fig. 4), indicate that the forest cover 

gradient has no effect on the divergence and functional evenness (FMOD1 = 0.1075, pMOD1 = 

0.7441; TABLE 2; FMOD2 = 0.2503, pMOD2 = 0.6186). However, forest cover has negatively 

affected the functional richness and functional dispersion (FMOD3 = 8.0265, pMOD3 = 0.006184; 

FMOD4 = 8.9582, pMOD4 = 0.003942). The forest cover gradient has a negative effect on 

functional richness and dispersion (pMOD3 = 0.00618; pMOD4 = 0.003942; TABLE 2). 

Table 2: Analysis of Variance for the linear models for the effects of the forest cover gradient on the 

Functional Diversity indices, being a) ANOVA for Functional Richness; b) Functional Evenness; c) 

Functional Divergence and d) Functional Dispersion. 

Functional Richness 

 Df Sum Sq Mean Sq F value Pr(>F) 

Forest Cover 1 8198 8198.4 8.0265 0.006184 

Residuals 63 64349 1021.4     

Functional Evenness 

 Df Sum Sq Mean Sq F value Pr(>F) 

Forest Cover 1 0.000725 0.000725 0.2503 0.6186 
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Residuals 63 0.182473 0.002896     

Functional Divergence 

 Df Sum Sq Mean Sq F value Pr(>F) 

Forest Cover 1 0.000091 9.06E-05 0.1075 0.7441 

Residuals 63 0.053065 8.42E-04     

Functional Dispersion 

 Df Sum Sq Mean Sq F value Pr(>F) 

Forest Cover 1 8198 8198.4 8.0265 0.006184 

Residuals 63 64349 1021.4     

 

 

Fig. 4 Relationship between the functional composition and the forest cover gradient, adjusted by 

linear models with their diagnoses. The yellow dots represent pasture sites; the blue dots represent 

marsh sites, and the green dots, forest sites 

The selection of models and the inference of multi models suggest that the forest cover (M1) 

is the predictor variable that best explains the values found for functional richness (ΔAIC = 

0.00; wAIC = 0.35; AIC = -64.7; TABLE 3a). However, the Forest Cover + Environment 

Type (M3) and Environment Type (M2) models were also insightful as plausible to explain 

the patterns (ΔAIC = 0.2, wAIC = 0.32; ΔAIC = 1.3, wAIC = 0.18; TABLE 3a; respectively). 

In this last case, when performing the full model average, forest cover percentage is the only 
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variable to explain nonrandom variation of functional richness, with a negative relation (pM1 = 

0.046087; TABLE 4a; Fig. 5).  

Table 3: Most parsimonious Generalized Linear Mixed Models of insectivorous bird functional 

diversity and taxonomic diversity. For the best models (ΔAICc < 2.0), AICc – Akaike Information 

Criterion corrected for small sample sizes was used (Burnham and Anderson 2004), ΔAIC and weight 

of evidence (wAIC). 

Response Variable Model  AICc    ΔAICc df weight 

a) Functional 

Richness 

~ Forest Cover - 2km -64.7 0 5 0.35 

~ Forest Cover - 2km + Environment Type -64.5 0.2 7 0.32 

~ Null -63.4 1.3 4 0.18 

~ Environment Type -62.9 1.8 6 0.14 

b) Functional 

Evenness 

~ Null -232.2 0 4 0.495 

~ Forest Cover - 2km -230.7 1.5 5 0.238 

~ Environment Type -230.1 2.1 6 0.177 

~ Forest Cover - 2km + Environment Type -228.7 3.4 7 0.089 

c) Functional 

Divergence 

~ Null -255 0 3 0.583 

~ Forest Cover - 2km -253 2 4 0.215 

~ Environment Type -252.2 2.7 5 0.148 

~ Forest Cover - 2km + Environment Type -250.2 4.7 6 0.054 

d) Functional 

Dispersion 

~ Forest Cover - 2km + Environment Type 97 0 6 0.67 

~ Environment Type 98.4 1.4 5 0.33 

~ Forest Cover - 2km 118 21 4 <0.001 

~ Null 119.4 22.5 3 <0.001 

 

Table 4: Full model-averaged parameter estimates and significance values for models of insectivorous 

birds’ functional diversity with cumulative Akaike weight summed to 0.95, calculated by multiplying 

the estimates for individual models which contain parameters by their weights. Relative importance is 

the sum of the AICc weights across these models. 

Model Average 

    Estimate Std. Error Adjusted SE z value Pr(>|z|) 

Functional Richness 

cond((Int)) 0.24808 0.06698 0.06786 3.656 0.000256 

cond(Flo_2km) -0.25505 0.12527 0.12789 1.994 0.046113 

cond(envMarsh) 0.06848 0.03673 0.03751 1.826 0.067913 

cond(envPasture) 0.0548 0.03838 0.0392 1.398 0.162083 

Functional Evenness 
cond((Int)) 0.82521 0.01216 0.01236 66.786 <2e-16 

cond(Flo_2km) 0.02782 0.03798 0.03876 0.718 0.473 

Functional Divergence 

cond((Int)) 0.702281 0.006823 0.006955 100.979 <2e-16 

cond(Flo_2km) 0.000623 0.024432 0.024927 0.025 0.98 

cond(envMarsh) 0.010548 0.00982 0.010022 1.052 0.293 

cond(envPasture) 0.002277 0.009705 0.009905 0.23 0.818 
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Functional Dispersion 

(Intercept) 4.301 0.1995   21.563 < 2e-16 

Flo_2km -0.7878 0.4127  -1.909 0.0563 

envMarsh 0.7276 0.1305  5.575 2.48E-08 

envPasture 0.5289 0.1288   4.108 4.00E-05 

 

The best model suggested by the GLMM for functional dispersion was the combined effects 

of forest cover and type of environment (ΔAIC = 0.0, wAIC = 0.67; TABLE 3d). On the other 

hand, the selection of models for them pointed to null (M0) and forest cover (M1) as plausible 

explanations for both functional evenness (for the M0, ΔAIC = 0.0, wAIC = 0.495; for the M1 

ΔAIC = 1.5, wAIC = 0.238; TABLE 3b) and functional divergence (for the M0, ΔAIC = 0.0, 

wAIC = 0.583; for the M1, ΔAIC = 2, wAIC = 0.215; TABLE 3c). However, when 

performing the model average, referring to functional divergence and evenness, no significant 

variable was found to explain the data (p > 0.05; TABLE 4b and 4c). Finally, the best model 

for functional dispersion and functional richness were plotted and can be visualized in Fig. 5. 

 

Fig. 5 Graphics generated for the best GLMM models. A) Influence of forest cover on functional 

richness; B) Influence of forest cover and environment type on functional dispersion 
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4. DISCUSSION 

Our findings reveal an effect of the forest cover gradient on the components of functional 

diversity, although not related to the type of environment. Specifically, the GLMM showed 

that there was a marginal effect of forest cover on functional richness (TABLE 4a); however, 

contrary to our hypothesis, we found no effect of forest cover on functional divergence and 

functional evenness (TABLE 4b; TABLE 4c). Our data also support a turnover effect on the 

sampled communities; but there is also a nested effect associated with it (Fig. 3). Finally, 

contrary to what we had predicted, the percentage of forest cover has a negative effect on the 

functional richness (Fig. 4, Fig. 5, TABLE 4a). 

4.1. Species configuration in the landscape - What does forest cover gradient tell 

us about functional diversity? 

Functional traits represent environmental tolerance; thus, lower values of functional richness 

indicate that some specialists would be missing under specific conditions (i.e., habitat 

limitation for species with restrictive fundamental niche (MASON et al., 2005). This may lead 

to a decrease in the communities’ tolerance levels to environmental fluctuations (TILMAN, 

1996), affecting resistance to biological invasions, by creating gaps in the niche volume to be 

exploited by other species (DUKES, 2001). 

The functional richness represents the volume of the multidimensional space occupied by a 

biological community within the functional space (VILLÉGER; MASON; MOUILLOT, 

2008). Therefore, low values of functional richness indicate that part of the resources 

available to the community in each environment is wasted (Mason et al., 2005). This would 

lead to a loss of productivity (PETCHEY; GASTON, 2006). The relationship between the 

reduction in functional richness and the increase in forest cover (Fig. 4, Fig. 5) was previously 

reported (MATUOKA; BENCHIMOL; MORANTE-FILHO, 2020; MORANTE-FILHO et 

al., 2015, 2018). This is associated with the pattern of species composition; forest and non-

forest species tend to respond differently to anthropogenic disturbances (BREGMAN et al., 

2016) because they present different response patterns, distinct traits, and therefore, 

sensitivity to human disturbances (CLAVEL; JULLIARD; DEVICTOR, 2011; GARDNER et 

al., 2009). These patterns may be linked with a lower quality of resources available in second-

growth forests in early to medium stages of succession, as our study area (METZGER et al., 

2009; RIBEIRO et al., 2009). The nearby presence of cattle may also increase the 

proliferation of non-forest species (MORANTE-FILHO; ARROYO-RODRÍGUEZ; FARIA, 

2016). 
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As previously mentioned, functional dispersion measures the dispersion of species in 

multidimensional niche space, which may represent the functional space occupied and the 

distribution of abundance within this space (LALIBERTÉ; LEGENDRE, 2010). Such species 

dispersion occurs from the average individual distance in relation to the centroid of all 

species. Higher values of functional dispersion indicate a greater potential for functional 

complementarity (i.e., larger range of traits that allow different ecological niches to be 

occupied; MELO et al., 2021; WONG; DOWD, 2021). This may increase the partition of 

resources, enabling the coexistence of species, culminating in an increase in the ecosystem 

functioning (LOREAU; HECTOR, 2001; TILMAN et al., 1997). 

The groups of species that are furthest from the centroid of the functional space are composed 

by species of generalist habit with great dispersive capacity (see Fig. 2) (LALIBERTÉ; 

LEGENDRE, 2010), being related to the decrease of functional dispersion with the increase 

of forest cover (Fig. 4 and Fig. 5) since such species are not found in areas of dense 

forest.This expansion pattern of functional traits is probably caused by species with traits 

related to habitat preference and wing size, in this case species such Myiarchus swainsoni, 

Stelgidopteryx ruficollis, Progne chalybea and Vanellus chilensis. A clearer decrease in the 

values of functional dispersion in marsh and pasture environments is notable when compared 

to the forest ones (Fig. 4). This may be a consequence of a retention of some taxa with low 

dispersion capacity traits, while they also receive an influx of highly vagile taxa (BREGMAN 

et al., 2016). In short, these results suggest that the effects of forest cover on functional 

diversity are (I) specific to the different functional groups within the community; and (II) 

might have been impacted by the early succession stages in which the regional forest 

fragments are (JOHNSTONE et al., 2016; THORN et al., 2020). 

4.2. Beta functional diversity: effects of turnover and nestedness  

Our study revealed a distinct pattern of beta functional diversity for each type of environment 

(Fig. 3). Bird assemblies were more nested in the pasturelands, while a turnover effect was 

more notable in marsh sites, and both turnover and nesting effects were detected in the forest 

sites. The massive presence of second-growth forests in early to medium stages of succession 

may explain these forest results (METZGER et al., 2009; RIBEIRO et al., 2009). Bird 

assemblies are a set of an original species pool (i.e., derived from a set of species present in 

the original primary forest); as ecological succession advances, generalist species would be 

replaced by specialists, caused by directional turnover along secondary forest successions 

(BLAKE; LOISELLE, 2001; ROBINSON; TERBORGH, 1997). In addition, the age of the 
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secondary forests is also related to the recovery of specialist forest species (ACEVEDO-

CHARRY; AIDE, 2019). The accelerated recovery of species composition and forest 

specialists among the different successional successes may be also related to their greater 

dispersal capacity (DOBROVOLSKI et al., 2012), characteristic intrinsically related to some 

traits we used in this study, such as wing size and migratory strategy. 

We also found that communities of insectivorous birds in the pasturelands are more 

functionally nested because they were probably part of the native original forest pool in this 

region. These results contrast with what was described in Dias et al (2017) and Barros et al 

(2019b), given the functional traits addressed in their study and local habitat characteristics of 

the pastures sampled can decisively facilitate a wide spectrum of bird traits (mainly body size 

and social system), which likely led to an increase in functional diversity values in pastures 

based on turnover processes, comparable to those of adjacent forests. In this case, nestedness 

may be reflecting a non-random process of species loss (e.g., differences in species sensitivity 

to a widespread environmental disturbance), and also might be linked to the selection of 

functional traits, which may largely determine the functional metrics (PETCHEY; GASTON, 

2006). 

Our results also pointed to a greater turnover effect for the functional beta diversity of marsh 

environments, since the presence of water attracts specific birds to this type of habitat (e.g., 

Aramides saracura, Theristicus caudatus, Donacobius atricapilla, Gubernetes yetapa, 

Mustelirallus albicollis). In contrast, the results found by Li et al. (2022), Si et al. (2016), and 

Villéger et al. (2013) suggested that the turnover process is associated with taxonomic beta 

diversity where species are functionally redundant where different environmental conditions 

in marsh areas must be acting as an environmental filter, thus leading to a directional survival 

of the species, resulting in a functional convergence within the communities of these studies 

(LOGEZ; PONT; FERREIRA, 2010). Thus, our higher turnover values than nestedness for 

marsh areas suggests that the changes in the functional composition of marsh birds were 

caused by a functional substitution rather than by a loss of functional diversity. 

5. CONCLUSIONS 

Our study provides insights that evaluating multiple aspects of functional diversity, through 

different indices, leads to a more accurate understanding of the effects of the loss of forest 

cover on the functioning of the ecosystem performed by insectivorous birds – a key ecological 
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guild that plays an important ecological function, the control of invertebrate populations. We 

highlight two main implications to be considered in future studies.  

First, we show that the greater species dispersion in the functional space (i.e., larger 

functional dispersion and functional richness) in deforested areas (in this case pasturelands) 

are not followed by increased functional divergence and functional evenness. Therefore, when 

considering only the dispersion and richness indexes, it is possible to an erroneous conclusion 

that functional diversity will be greater in deforested sites, and that the functioning of the 

ecosystem in these environments would be improved. Thus, we strongly emphasize the use of 

different functional indices in future studies to evaluate the effects of anthropogenic 

disturbances on biodiversity patterns.  

The presence of secondary forests may have influenced the pattern of functional diversity we 

found. Hence, caution is needed with these findings, mainly because forest and non-forest 

bird species present different functional responses (MATUOKA et al 2020). For example, 

deforested landscapes should reduce the availability of niches for forest species, while 

increasing for non-forest species. Therefore, the behavior of forest communities in deforested 

environments can be severely affected, since compensatory dynamics may not involve real 

compensation within the functional perspective, as some specific functions will be lost or 

damaged (DE COSTER; BANKS-LEITE; METZGER, 2015; DOS ANJOS et al., 2019). 

Finally, a possible limitation of our work is that we did not evaluate the specific abundance, 

since the data come from automatic recordings. Environmental disturbances cause distinct 

effects on the abundance of species (MAC NALLY, 2007), and those having higher 

ecological restrictions, and usually with low population density, may be extinct early, or have 

their abundance reduced in order to become functionally extinct (GALETTI et al., 2013; 

TOBIAS et al., 2013). We therefore suggest that these analyzes be incorporated into future 

studies. 
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APPENDIX 

 

Appendix 1: Models used for our linear model analysis  

MOD1: FDiv ~ forest cover 

MOD2: FEve ~ forest cover 

MOD3: FRic ~ forest cover 

MOD4: FDis ~ forest cover 

 

Appendix 2: Models used for our GLMM analysis where “y” represents Functional Richness, 

Functional Evenness, Functional Divergence and Functional Dispersion. 

M0: y ~ 1 | random (Landscape ID) = null model (no effect) 

M1: y ~ Forest Cover | random (Landscape ID) 

M2: y ~ Type of Environment | random (Landscape ID) 

M3: y ~ Forest Cover + Type of Environment | random (Landscape ID) 

 

Appendix 3: Bird species sampled and the number of records by type of environment. 

Taxon Environment 

  Pasture Marsh Forest 

Pelecaniformes    

Threskiornithidae    

Mesembrinibis cayennensis 1 2 4 

Theristicus caudatus 2 1 0 

Gruiformes    

Rallidae    

Aramides saracura 1 5 8 

Laterallus melanophaius 1 2 0 

Mustelirallus albicollis 0 1 0 

Pardirallus nigricans 0 3 0 

Charadriiformes    

Charadriidae    

Vanellus chilensis 13 15 7 

Cuculiformes    

Cuculidae    
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Dromococcyx pavoninus 1 0 0 

Piaya cayana 1 0 6 

Tapera naevia 11 4 5 

Caprimulgiformes    

Caprimulgidae    

Lurocalis semitorquatus 2 0 1 

Apodiformes    

Apodidae    

Chaetura meridionalis 1 0 0 

Trogoniformes    

Trogonidae    

Trogon surrucura 1 1 1 

Galbuliformes    

Galbulidae    

Galbula ruficauda 2 0 0 

Bucconidae    

Malacoptila striata 1 4 3 

Piciformes    

Picidae    

Celeus flavescens 4 3 5 

Colaptes campestris 17 9 7 

Colaptes melanochloros 2 1 0 

Dryocopus lineatus 1 0 2 

Veniliornis spilogaster 1 0 4 

Cariamiformes    

Cariamidae    

Cariama cristata 10 7 9 

Passeriformes    

Thamnophilidae    

Batara cinerea 0 0 1 

Drymophila ferruginea 0 1 2 

Drymophila malura 1 0 0 

Drymophila ochropyga 0 1 1 

Dysithamnus mentalis 13 7 16 

Herpsilochmus rufimarginatus 6 5 13 

Hypoedaleus guttatus 6 5 7 

Mackenziaena severa 1 0 1 

Myrmoderus squamosus 0 0 7 

Pyriglena leucoptera 5 3 12 

Thamnophilus caerulescens 13 8 16 

Thamnophilus doliatus 1 0 0 

Thamnophilus ruficapillus 1 1 0 

Conopophagidae    

Conopophaga lineata    
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Grallariidae    

Grallaria varia    

Rhinocryptidae    

Psilorhamphus guttatus 0 0 2 

Scleruridae    

Sclerurus scansor 0 0 2 

Dendrocolaptidae    

Campylorhamphus falcularius 1 0 0 

Lepidocolaptes angustirostris 1 0 0 

Sittasomus griseicapillus 5 3 7 

Xiphorhynchus fuscus 0 0 2 

Xenopidae    

Xenops rutilans 2 0 7 

Furnariidae    

Anabazenops fuscus 1 0 0 

Automolus leucophthalmus 4 1 9 

Certhiaxis cinnamomeus 0 3 2 

Cranioleuca pallida 5 5 3 

Dendroma rufa 0 1 0 

Furnarius figulus 0 0 1 

Furnarius rufus 14 14 9 

Heliobletus contaminatus 0 0 2 

Lochmias nematura 5 3 6 

Phacellodomus ferrugineigula 0 6 0 

Synallaxis frontalis 2 1 1 

Synallaxis ruficapilla 2 3 8 

Synallaxis spixi 17 12 9 

Tityridae    

Pachyramphus validus 5 6 4 

Pachyramphus viridis 0 1 0 

Platyrinchidae    

Platyrinchus mystaceus 3 1 11 

Rhynchocyclidae    

Corythopis delalandi 1 0 5 

Hemitriccus diops 0 0 1 

Leptopogon amaurocephalus 3 1 12 

Phylloscartes ventralis 0 0 1 

Poecilotriccus plumbeiceps 5 2 1 

Todirostrum cinereum 4 1 0 

Todirostrum poliocephalum 8 4 9 

Tolmomyias sulphurescens 10 8 19 

Tyrannidae    

Attila rufus 0 0 2 

Camptostoma obsoletum 13 14 11 
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Colonia colonus 3 2 0 

Empidonomus varius 5 7 4 

Gubernetes yetapa 0 1 0 

Hirundinea ferruginea 1 0 0 

Lathrotriccus euleri 3 1 13 

Machetornis rixosa 1 4 0 

Megarynchus pitangua 7 9 3 

Myiarchus swainsoni 10 8 12 

Myiarchus tyrannulus 7 7 3 

Myiopagis caniceps 1 0 1 

Myiopagis viridicata 1 0 2 

Myiophobus fasciatus 11 10 1 

Phyllomyias griseocapilla 1 0 0 

Serpophaga subcristata 3 1 0 

Tyrannus melancholicus 18 15 10 

Tyrannus savana 2 0 0 

Vireonidae    

Cyclarhis gujanensis 19 15 20 

Hylophilus poicilotis 1 0 0 

Vireo chivi 19 16 22 

Corvidae    

Cyanocorax chrysops 7 3 6 

Hirundinidae    

Progne chalybea 0 1 0 

Progne tapera 2 0 0 

Pygochelidon cyanoleuca 4 0 0 

Stelgidopteryx ruficollis 3 0 0 

Troglodytidae    

Troglodytes aedon 19 16 7 

Donacobiidae    

Donacobius atricapilla 0 1 0 

Turdidae    

Turdus albicollis 7 2 12 

Turdus leucomelas 18 12 17 

Mimidae    

Mimus saturninus 3 3 0 

Parulidae    

Basileuterus culicivorus 16 12 22 

Myiothlypis flaveola 1 1 2 

Myiothlypis leucoblephara 7 4 19 

Setophaga pitiayumi 11 5 11 

Icteridae    

Molothrus bonariensis 0 2 0 

Thraupidae    
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Conirostrum speciosum 6 4 10 

Saltator fuliginosus 1 0 0 

Saltator similis 9 5 11 

Tachyphonus coronatus 12 12 14 

Cardinalidae    

Habia rubica 2 1 7 

 

 


