

UNIVERSIDADE FEDERAL DE SÃO CARLOS CAMPUS LAGOA DO SINO CENTRO DE CIÊNCIAS DA NATUREZA

CURSO DE GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS

TRABALHO DE CONCLUSÃO DE CURSO

OCORRÊNCIA E DISTRIBUIÇÃO GEOGRÁFICA DA BIODIVERSIDADE DE GAFANHOTOS DA SUBFAMÍLIA MELANOPLINAE (ORTHOPTERA: ACRIDIDAE) NO BRASIL

Paulo Felipi Lopes dos Santos

BURI/SP Março/2023

UNIVERSIDADE FEDERAL DE SÃO CARLOS CENTRO DE CIÊNCIAS DA NATUREZA

CURSO DE GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS

TRABALHO DE CONCLUSÃO DE CURSO

OCORRÊNCIA E DISTRIBUIÇÃO GEOGRÁFICA DA BIODIVERSIDADE DE GAFANHOTOS DA SUBFAMÍLIA MELANOPLINAE (ORTHOPTERA: ACRIDIDAE) NO BRASIL

Paulo Felipi Lopes dos Santos

Trabalho de Conclusão de Curso apresentado ao Centro de Ciências da Natureza, Universidade Federal de São Carlos, como exigência para a obtenção do título de Bacharel em Ciências Biológicas e avaliação obrigatória da atividade curricular Trabalho de Conclusão de Curso.

Orientação: Prof. Dr. Marcos Gonçalves Lhano

BURI/SP Março/2023 Santos, Paulo Felipi Lopes dos

Ocorrência e distribuição geográfica da biodiversidade de gafanhotos da subfamília Melanoplinae (Orthoptera: Acrididae) no Brasil / Paulo Felipi Lopes dos Santos -- 2023.

37f.

TCC (Graduação) - Universidade Federal de São Carlos, campus Lagoa do Sino, Buri Orientador (a): Marcos Gonçalves Lhano Banca Examinadora: Giulianna Rondineli Carmassi, André Pereira da Silva Bibliografia

1. Entomologia. 2. Biogeografia. 3. Caelifera. I. Santos, Paulo Felipi Lopes dos. II. Título.

Ficha catalográfica desenvolvida pela Secretaria Geral de Informática (SIn)

DADOS FORNECIDOS PELO AUTOR

Bibliotecário responsável: Lissandra Pinhatelli de Britto - CRB/8 7539

FUNDAÇÃO UNIVERSIDADE FEDERAL DE SÃO CARLOS

COORDENAÇÃO DO CURSO DE CIÊNCIAS BIOLÓGICAS - CCCBio-LS/CCN

Rod. Lauri Simões de Barros km 12 - SP-189, s/n - Bairro Aracaçu, Buri/SP, CEP 18290-000 Telefone: (15) 32569030 - http://www.ufscar.br

DP-TCC-FA nº 30/2023/CCCBio-LS/CCN

Graduação: Defesa Pública de Trabalho de Conclusão de Curso Folha Aprovação (GDP-TCC-FA)

FOLHA DE APROVAÇÃO

PAULO FELIPI LOPES DOS SANTOS

OCORRÊNCIA E DISTRIBUIÇÃO GEOGRÁFICA DA BIODIVERSIDADE DE GAFANHOTOS DA SUBFAMÍLIA MELANOPLINAE (ORTHOPTERA: ACRIDIDAE) NO BRASIL

Trabalho de Conclusão de Curso

Universidade Federal de São Carlos - Campus Lagoa do Sino

Buri, 04 de abril de 2023

ASSINATURAS E CIÊNCIAS

Cargo/Função	Nome Completo
Orientador	Marcos Gonçalves Lhano
Membro da Banca 1	Giulianna Rondineli Carmassi
Membro da Banca 2	André Pereira da Silva

Documento assinado eletronicamente por **Marcos Goncalves Lhano**, **Docente**, em 04/04/2023, às 19:18, conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do <u>Decreto nº 8.539, de 8 de outubro de 2015</u>.

Documento assinado eletronicamente por **Giulianna Rondineli Carmassi**, **Docente**, em 05/04/2023, às 08:29, conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do <u>Decreto nº 8.539, de 8 de outubro de 2015</u>.

Documento assinado eletronicamente por **Andre Pereira da Silva**, **Técnico(a) de Laboratório**, em 05/04/2023, às 15:15, conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do <u>Decreto nº 8.539, de 8 de outubro de 2015</u>.

A autenticidade deste documento pode ser conferida no site https://sei.ufscar.br/autenticacao, informando o código verificador **1000400** e o código CRC **9A4DCEEB**.

Referência: Caso responda a este documento, indicar expressamente o Processo nº 23112.010273/2023-03

SEI nº 1000400

Modelo de Documento: Grad: Defesa TCC: Folha Aprovação, versão de 02/Agosto/2019

DEDICATÓRIA

Dedico este trabalho às pessoas que tornaram possível sua elaboração, minha família, minha mãe Flávia, meu padrasto Luiz Cláudio e aos meus irmãos Paola Gabrielle, André Luiz e Luiz Cláudio Júnior.

AGRADECIMENTO

Gostaria de agradecer à Universidade Federal de São Carlos *campus* Lagoa do Sino e a todos os professores que me moldaram nessa jornada.

Agradeço ao meu orientador e professor Dr. Marcos Gonçalves Lhano.

Agradeço à minha família que sempre esteve ao meu lado e me proporcionou apoio para concluir esta etapa em minha vida.

Agradeço aos meus amigos e colegas de sala João Pedro Leroux e Camila Moreira.

"Esvazie sua mente. Seja sem forma, sem formato. Como a água! Se você coloca água em um copo, ela se torna o copo. Se você coloca água em uma garrafa ela se torna a garrafa. Se você a coloca em uma chaleira, ela se torna a chaleira.

A água pode fluir, mas também pode se chocar.

Seja água, meu amigo!

(Bruce Lee).

SANTOS, PAULO FELIPI LOPES dos. Ocorrência e distribuição geográfica da biodiversidade de gafanhotos da subfamília Melanoplinae (Orthoptera: Acrididae) no Brasil. Bacharelado em Ciências Biológicas. Trabalho de Conclusão de Curso - Universidade Federal de São Carlos, campus Lagoa do Sino. Buri, 2023.

Resumo. O trabalho teve como objetivo a revisão bibliográfica das espécies de gafanhotos da subfamília Melanoplinae (Orthoptera: Acrididae) por meio do levantamento de dados secundários e compará-las com estudos semelhantes de registros de gafanhotos. A partir deste levantamento, foi elaborado tabelas de modo a apresentar as informações de gênero, subespécie, espécie, localização, coordenadas especificas no território brasileiro e endemismo. Em seguida, foram confeccionados mapas contendo a localidade de registro de cada espécie, com o intuito de analisar a ocorrência desta subfamília no Brasil. Ao todo foram registrados 15 gêneros, 104 espécies e 2 subespécies, a maior ocorrência se deram nas regiões do sul, centro-oeste e sudeste. Os estados com maiores registros foram Rio Grande do Sul (RS), Mato Grosso (MT) e Minas Gerais (MG) respectivamente.

Palavras Chaves: Insecta, Biogeografia, Diversidade, Caelifera.

SANTOS, PAULO FELIPI LOPES dos. Occurrence and geographic distribution of grasshopper biodiversity of the Melanoplinae subfamily (Orthoptera: Acrididae) in Brazil. Degree Requirement Monograph – Universidade Federal de São Carlos, campus Lagoa do Sino, Buri, 2023.

Abstract. The aim of this study was to review the literature on locust species of the subfamily Melanoplinae (Orthoptera: Acrididae) by collecting secondary data and comparing them with similar studies of locust records. From this survey, tables were prepared in order to present the information of genus, subspecies, species, location, specific coordinates in the Brazilian territory and endemism. Then, maps were made containing the locality of registration of each species, with the intention of analyzing the occurrence of this subfamily in Brazil. Altogether, 15 genera, 104 species and 2 subspecies were recorded, the highest occurrence occurred in the southern, midwestern and southeastern regions. The states with the highest records were Rio Grande do Sul (RS), Mato Grosso (MT) and Minas Gerais (MG), respectively.

Key Words: Insecta, Biogeography, Diversity, Caelifera.

SUMÁRIO

1.	. INTRODUÇÃO E REVISÃO DA LITERATURA	1
2.	. OBJETIVOS	3
	2.1 Objetivo geral	3
	2.2 Objetivos específicos	3
3.	. MATERIAL E MÉTODOS	4
4.	. RESULTADOS E DISCUSSÕES	4
	. CONSIDERAÇÕES FINAIS	
	. REFERÊNCIAS BIBLIOGRÁFICAS	

LISTA DE TABELAS

Tabela 1 - Locali	zação de registro	o da ocorrência d	e gafanhotos da	a subfamília Mel	anoplinae no
Brasil (coordenad	las em UTM), de	e acordo com os d	lados dos exem	plares-tipo das	espécies 6

Tabela 2 - Lista de espécies de Melanoplinae (Orthoptera, Acrididae) endêmicas do Brasil ... 17

LISTA DE FIGURAS

Figura 1 - Distribuição dos gafanhotos da subfamília Melanolpinae no Brasil, a partir das	
localidades dos exemplares-tipos das espécies válidas	. 14
Figura 2 - Riqueza de espécies da subfamília Melanoplinae nos biomas brasileiros, a partir d	as
localidades dos exemplares-tipo das espécies válidas.	. 16

1. INTRODUÇÃO E REVISÃO DA LITERATURA

Os gafanhotos correspondem a ordem Orthoptera (Arthropoda: Hexapoda), apresentam ampla distribuição geográfica, possuindo cerca de 26.000 espécies descritas, destas 1.480 estão distribuídas no Brasil (NUNES-GUTJAHR; BRAGA, 2015) sendo um dos grupos mais antigos da Classe Insecta (COSTA; CARVALHO, 2007).

Conforme novas espécies foram descobertas, surgiu a necessidade de agrupar táxons em novos gêneros, subfamílias, famílias e subordens, e desta maneira, atualmente a ordem Orthoptera compreende a subordem Caelifera, que abrange os gafanhotos, e a subordem Ensifera, a qual inclui os grilos, esperanças e paquinhas (GODÉ *et al.* 2015)

Atualmente a subordem Caelifera corresponde a 11.567 espécies agrupadas em 2.507 gêneros, 35 famílias e 11 superfamílias (CIGLIANO *et al.*, 2021). As superfamílias estão organizadas nas infraordens Tridactylidea, com 230 espécies descritas, Acrididea que apresenta a maioria das espécies de gafanhotos. E abrange, Tetrigoidea com 1.676 espécies e o grupo Acridomorpha que compreende as superfamilias: Eumastacoidea, Pneumoroidea, Pyrgomorphoidea, Tanaoceroidea, Trigonopterygoidea, Acridoidea e Locustopsoidea (DOMENICO, 2012).

Melanoplinae é uma importante subfamília de gafanhotos dentro da família Acrididae, com cerca de 900 espécies distribuídas pela Eurásia e América juntas, sendo grande parte das espécies generalistas. Em virtude do hábito de vida e alimentar de algumas espécies dessa subfamília, são consideradas como pragas nos plantios de milho, fumo e soja, por exemplo (OTTE, 1995).

Os representantes da subfamília Melanoplinae possuem estruturas morfológicas diferenciadas das outras subfamílias de Acrididae, porte pequeno a médio e se alimentam também de pastagens e dicotiledôneas (DEMARI *et al*, 2021). Grande parte das espécies que compõem essa subfamília são modelos de estudos biogeográficos devido aos seus padrões de dispersão e especiação (CIGLIANO, 2007). Em ambas fases de vida (ninfa e fase adulta) possuem um espinho cônico e cilíndrico distinto localizado em suas pernas dianteiras, as ninfas em geral são verdes, esbeltas e ativas, a frente do rosto das adultas aponta para baixo, perpendicular ao longo do eixo do corpo (DEBREY, BREWER & LOCKWOOD, 1993) (LUTINSKI, 2008).

Esta subfamília é amplamente distribuída, habitando uma gama de diferentes tipos de ambientes, geralmente são dominantes em números de espécies e de indivíduos em estudos de comunidades de gafanhotos além de possuírem grande importância econômica

na América do Sul, onde são conhecidos 43 gêneros e 232 espécies descritas, com registros das espécies em países como Brasil, Argentina, Uruguai e Paraguai. A sistemática deste grupo pode ser controversa com diferentes autores reconhecendo diferentes números de tribos (CHINTAUAN-MARQUIER *et al.*, 2011; CIGLIANO, 2007).

Lawrence Bruner (1913) e James A.G Renh (1906) elaboraram as primeiras listas de espécies de gafanhotos presentes na América do Sul, o que impulsionou para que levantamentos de ortópteros para este continente fossem alavancados por autores como Liebermann (1955), Amédégnato & Poulain (1974, 1987), Carbonell (1977), Marinoni & Dutra (1991), Lecoq & Magalhães (2006), Barbola, Nascimento & Milléo (2007), Lutinski, C. L. Garcia, Costa & Lutinski, J. A. (2009), Carvalho (2010), Guerra (2011), Bittar (2013), Gontijo, Carneiro & Pereira (2014), Silva (2014), Braga (2015) e Cigliano *et al.* (2021).

A elaboração desses estudos contribuem para o conhecimento da composição dos ortópteros, bem como o registro de suas localidade, auxiliando para o controle fitossanitário, demonstrado em um trabalho desenvolvido por Guerra (2011) no qual, em uma pesquisa realizada em Chapada dos Parecis no estado de Mato Grosso, foi registrado 13 subfamílias, dentre elas, para a subfamília Melanoplinae obteve-se o registro de 10 espécies as quais têm emergido como potenciais pragas na região e no estado em virtude da expansão de cultivos agrícolas. O conhecimento e registro destes indivíduos, bem como compreender sua dinâmica populacional, tornam-se ferramentas fundamentais para tomadas de decisões, uma vez que o controle fitossanitário seja necessário (GUERRA, 2011). Green (1998) observou que poucas espécies de gafanhotos são classificadas como pragas, e por este fator, consequentemente são poucos estudadas.

Análises faunísticas de gafanhotos são dados essenciais, como demonstrado por Lutinski *et al.* (2011) na floresta de Chapecó, Santa Catarina, onde foram definidas coletas em áreas de mata nativa, área de eucalipto e de pinus, e deste modo obteve-se o registro de 10 subfamílias, entre elas a subfamília Melanoplinae, a qual demonstrou predominância nas áreas de matas nativas e eucalipto, obtendo-se 128 espécimes para *Dichroplus misionensis* Carbonell, 1968, 74 para *Ronderosia bergii* (Stål, 1878), 24 para *Dichroplus elongatus* Giglio-Tos, 1894 e 1 para *Scotussa lemniscata* (Stål, 1861) para a área de mata nativa e 210 espécimes na área de eucalipto, sendo eles 172 para a espécies *D. elongatus*, 130 para *R. bergii* e 7 para *S. lemniscata*. Contudo, a subfamília Melanoplinae apresentando espécies com elevada representatividade de espécimes para

todas as áreas deste estudo, está relacionada a estes indivíduos serem considerados como pragas de grande potencial, possuindo grande capacidade de dispersão (DEBEREY *et al.*, 1993).

Cigliano, Noriega e Scatattolini (2020) analisaram padrões de biodiversidade para os gafanhotos da subfamília Melanoplinae no Brasil e na América do Sul baseando-se nas suas distribuições e associando estas ao desenvolvimento de asas, pois embora seja comum em sua grande maioria gafanhotos voarem, os braquípteros (indivíduos com asas reduzidas) demonstraram ser comum em grande parte das espécies e têm sido tipicamente associado com habilidades de dispersão. Pode-se concluir que a maior concentração de espécies de Melanoplinae ocorre em Mata Atlântica, Pampas e Cerrado respectivamente.

É notória a lacuna existente no que diz respeito aos materiais disponíveis que exploram esta temática, o presente trabalho busca compilar, compreender, conhecer e catalogar uma das subfamílias mais dominantes e generalistas da ordem Orthoptera. Tais dados são fundamentais para embasar ações que possam mitigar danos econômicos, tendo em vista sua facilidade de dispersão, hábitos alimentares e de vida. Ainda que haja informações de grande parte das espécies da subfamília Melanoplinae, atualmente na literatura não há números consideráveis de estudos e pesquisas compilando suas ocorrências em território brasileiro. Tais dados contendo gênero, espécie, sua localização, preferência por determinado clima e tipo de vegetação podem auxiliar para o controle correto e eficiente destes indivíduos e contribuir para a preservação ambiental (LECOQ & MAGALHÃES, 2006; BARBOLA, NASCIMENTO & MILLÉO, 2007; GONTIJO, CARNEIRO & PEREIRA, 2014).

2. OBJETIVOS

2.1 Objetivo geral

Por meio da revisão bibliográfica e levantamento de dados secundários, este trabalho possui como objetivo descrever a ocorrência de espécies de gafanhotos da subfamília Melanoplinae no Brasil por meio das informações disponíveis para este grupo.

2.2 Objetivos específicos

- Levantar dados de ocorrência de gafanhotos da subfamília Melanoplinae no Brasil;
- Conhecer a composição da biodiversidade de Melanoplinae em território

brasileiro;

- Elaborar tabelas com a riqueza de espécies de Melanoplinae no Brasil;
- Elaborar mapas com os registros de ocorrência de Melanoplinae no Brasil;
- Comparar os resultados obtidos de acordo com a literatura disponível;
- Analisar os resultados baseados nos biomas brasileiros:
- Verificar a ocorrência de espécies endêmicas para o Brasil.

3. MATERIAL E MÉTODOS

O presente estudo foi desenvolvido mediante revisão de literatura, através de materiais referentes aos registros de ocorrência das espécies de gafanhotos pertencentes a subfamília Melanoplinae descritas para o Brasil, agrupando informações como modo de vida, sinônimos, sua distribuição no Brasil e informações taxonômicas. A pesquisa foi realizada por meio de dados disponíveis na Rede BHL - SciELO (Rede Global Biodiversity Heritage Library e a Rede Scientific Electronic Library Online), publicações, revistas científicas, teses e dissertações disponíveis online. Os termos utilizados para as pesquisas foram "Acrididae", "Insecta", "Melanoplinae", "Orthoptera", "Caelifera" e "Gafanhotos".

Após o levantamento das informações gerais, foi efetuada a comparação dos dados disponíveis com aqueles constantes na base de dados online Orthoptera Species Files (http://orthoptera.speciesfile.org), agrupando as informações disponíveis para as espécies desta subfamília, bem como sua distribuição geográfica. Os dados foram organizados em forma de tabela utilizando o software Excel® e preenchidos de acordo com as informações disponíveis.

Por meio do software QGIS e com os dados dos territórios brasileiros fornecidos pelo IBGE (2020) foram confeccionados mapas com os estados brasileiros, elucidando visualmente a ocorrência dos gafanhotos, relacionando também essa ocorrência pelos biomas.

4. RESULTADOS E DISCUSSÕES

As espécies representantes desta subfamília são consideradas de interesse econômico pelo seu potencial de dispersão, aliado ao fato de serem pragas para a

agricultura. Há também registros de espécies com elevada representatividade para os países da América do Sul, como Paraguai, Uruguai e Argentina (CIGLIANO, 2021). Para o Brasil, portanto, a Figura 1 apresenta a ocorrência obtida desses ortópteros.

Com os dados obtidos, elaborou-se uma tabela com as espécies da subfamília Melanoplinae com ocorrência de registro no Brasil contendo espécie, subespécie, localização com coordenadas em UTM e região, totalizando 15 gêneros, 105 espécies e 2 subespécies (Tabela1).

Tabela 1 - Localização de registro da ocorrência de gafanhotos da subfamília Melanoplinae no Brasil (coordenadas em UTM), de acordo com os dados dos exemplares-tipo das espécies.

Espécie / Subespécie	Coordenadas(y)	Coordenadas(x)	UF	Região
Atrachelacris olivaceus (Bruner, 1911)	-18,75719173	-44,4622	MG	Sudeste
Atrachelacris olivaceus (Bruner, 1911)	-31,78251334	-52,36711073	RS	Sul
Atrachelacris olivaceus (Bruner, 1911)	-27,76651486	-52,80142146	RS	Sul
Atrachelacris unicolor Giglio-Tos, 1894	-18,75719173	-44,4622	MG	Sudeste
Baeacris pseudopunctulata (Ronderos, 1964)	-27,41104074	-51,22186246	SC	Sul
Baeacris pseudopunctulata (Ronderos, 1964)	-29,26709235	-50,29972146	RS	Sul
Baeacris pseudopunctulata (Ronderos, 1964)	-21,77921567	-46,55188927	MG	Sudeste
Baeacris pseudopunctulata (Ronderos, 1964)	-28,65238814	-50,64078927	RS	Sul
Baeacris punctulata (Thunberg, 1824)	-4,37683046	-70,05093219	AM	Norte
Baeacris punctulata (Thunberg, 1824)	-15,52909841	-40,9201	BA	Nordeste
Baeacris punctulata (Thunberg, 1824)	-13,4282739	-40,4378	BA	Nordeste
Baeacris punctulata (Thunberg, 1824)	-22,68503665	-43,37307855	RJ	Sudeste
Chlorus attenuatus Cigliano & Lange, 2007	-18,96599491	-49,74941073	MG	Sudeste
Chlorus attenuatus Cigliano & Lange, 2008	-17,79688466	-50,8994	GO	Centro-Oeste
Chlorus attenuatus Cigliano & Lange, 2009	-19,02749333	-57,67016438	MS	Centro-Oeste
Dichromatos corupa Carbonell & Mesa,2011	-29,1830513	-51,73306673	RS	Sul
Dichromatos corupa Carbonell & Mesa, 2012	-27,52191425	-52,8939	RS	Sul
Dichromatos corupa Carbonell & Mesa, 2013	-25,51670482	-49,20001073	PR	Sul
Dichromatos lilloanus (Liebermann, 1948)	-27,35581428	-52,7673	RS	Sul
Dichromatos lilloanus (Liebermann, 1948)	-27,18331809	-52,38333301	SC	Sul
Dichromatos lilloanus (Liebermann, 1948)	-27,52191425	-52,8939	RS	Sul
Dichromatos montanus Carbonell & Mesa, 2011	-22,53324208	-45,2497088	MG	Sudeste

Cont. Tabela 1 - Localização de registro da ocorrência de gafanhotos...

Dichromatos schrottkyi (Rehn, 1918).	-24,6332756	-54,1167	PR	Sul
Dichromatos schrottkyi (Rehn, 1918)	-25,43331452	-51,45	PR	Sul
Dichromatos schrottkyi (Rehn, 1918)	-25,11669513	-53,86671073	PR	Sul
Dichroplus elongatus Giglio-Tos, 1894	-29,99911528	-50,16523689	RS	Sul
Dichroplus fuscus (Thunberg, 1815)	-22,70350493	-47,63822146	SP	Sudeste
Dichroplus fuscus (Thunberg, 1815)	-22,98538447	-43,33344259	RJ	Sudeste
Dichroplus mantiqueirae Ronderos, Carbonell & Mesa, 1968	-22,53324208	-45,2497088	MG	Sudeste
Dichroplus misionensis Carbonell, 1968	-29,26709235	-50,29972146	RS	Sul
Dichroplus obscurus Bruner, 1900	-29,26709235	-50,29972146	RS	Sul
Dichroplus paraelongatus Carbonell, 1968	-27,35581428	-52,7673	RS	Sul
Dichroplus robustulus (Stål, 1878)	-28,65238814	-50,64078927	RS	Sul
Dichroplus robustulus (Stål, 1878)	-29,26709235	-50,29972146	RS	Sul
Digamacris amena (Stål, 1878)	-23,45028522	-45,093769	SP	Sudeste
Digamacris amoena (Stål, 1878)	-22,97451153	-43,42350222	RJ	Sudeste
Digamacris amoena (Stål, 1878)	-22,97730905	-43,26164019	RJ	Sudeste
Digamacris fraterna (Carl, 1916)	-19,78327475	-41,8	MG	Sudeste
Digamacris fraterna (Carl, 1916)	-19,39997469	-40,06672146	ES	Sudeste
Digamacris fraterna (Carl, 1916)	-21,4500033	-41,56670748	RJ	Sudeste
Eurotettix brevicerci Cigliano, 2007	-22,72406165	-48,40308326	SP	Sudeste
Eurotettix bugresensis Cigliano, 2007	-15,07401553	-57,16867855	MT	Centro-Oeste
Eurotettix carbonelli Assis-Pujol, Santos & Guerra, 2001	-17,87002552	-51,73561073	GO	Centro-Oeste
Eurotettix carbonelli Assis-Pujol, Santos & Guerra, 2001	-18,96595433	-49,74944292	MG	Sudeste
Eurotettix carbonelli Assis-Pujol, Santos & Guerra, 2001	-17,58551533	-53,11704292	GO	Centro-Oeste
Eurotettix concavus Cigliano, 2007	-17,94553382	-54,75287329	MS	Centro-Oeste
	•			•

Cont. Tabela 1 - Localização de registro da ocorrência de gafanhotos...

Eurotettix latus Cigliano, 2007	-17,31624608	-53,20614636	GO	Centro-Oeste
Eurotettix monnei Assis-Pujol, Santos & Guerra, 2001	-20,49371506	-55,7635	MS	Centro-Oeste
Eurotettix procerus Cigliano, 2007	-15,84584827	-58,46292415	MT	Centro-Oeste
Eurotettix raphaelandrearum Assis-Pujol, Santos & Guerra, 2001	-17,58551533	-53,11704292	GO	Centro-Oeste
Eurotettix robustus Bruner, 1911	-19,62599493	-43,87972146	MG	Sudeste
Eurotettix robustus Bruner, 1911	-19,80877287	-43,91008927	MG	Sudeste
Eurotettix robustus Bruner, 1911	-15,42093382	-55,771233	MT	Centro-Oeste
Eurotettix similraphael Cigliano, 2007	-13,56356679	-48,2220937	GO	Centro-Oeste
Leiotettix flavipes Bruner, 1906	-27,35581428	-52,7673	RS	Sul
Leiotettix flavipes Bruner, 1906	-27,76651486	-52,80142146	RS	Sul
Leiotettix pulcher Rehn, 1913	-27,76651486	-52,80142146	RS	Sul
Leiotettix pulcher Rehn, 1913	-25,46399891	-51,95462029	PR	Sul
Leiotettix pulcher Rehn, 1913	-27,35581428	-52,7673	RS	Sul
Leiotettix pulcher Rehn, 1913	-31,78251334	-52,36711073	RS	Sul
Leiotettix pulcher Rehn, 1913	-28,50951412	-50,9133	RS	Sul
Leiotettix pulcher Rehn, 1913	-15,42093382	-55,771233	MT	Centro-Oeste
Leiotettix pulcher Rehn, 1913	-27,76651486	-52,80142146	RS	Sul
Leiotettix sanguineus Bruner, 1906	-15,42093382	-55,771233	MT	Centro-Oeste
Leiotettix sanguineus Bruner, 1906	-24,60001127	-51,61672416	PR	Sul
Leiotettix viridis Bruner, 1906	-15,42093382	-55,771233	MT	Centro-Oeste
Leiotettix viridis Bruner, 1906	-27,76651486	-52,80142146	RS	Sul
Leiotettix viridis Bruner, 1906	-20,48154521	-43,71348927	MG	Sudeste
Neopedies acutifrons Ronderos, 1991	-29,26709235	-50,29972146	RS	Sul
Neopedies acutifrons Ronderos, 1991	-27,88405731	-53,28962146	RS	Sul

Cont. Tabela 1 - Localização de registro da ocorrência de gafanhotos...

Neopedies matogrossensis Ronderos, 1991	-22,24916817	-54,80118824	MS	Centro-Oeste
Neopedies orientalis Ronderos, 1991	-27,85001421	-53,7833	RS	Sul
Neopdies orientalis Ronderos, 1991	-27,88405731	-53,28962146	RS	Sul
Neopedies riograndensis Ronderos, 1991	-27,76651486	-52,80142146	RS	Sul
Neopedies riograndensis Ronderos, 1992	-25,43331452	-51,45	PR	Sul
Parascopas atratus Ronderos, 1982	-14,40516801	-56,448063	MT	Centro-Oeste
Parascopas brevicauda Ronderos, 1976	-25,22878654	-51,00546492	PR	Sul
Parascopas cantralli Ronderos, 1976	-15,95700515	-54,9662	MT	Centro-Oeste
Parascopas chapadensis Rehn, 1909	-15,42093382	-55,771233	MT	Centro-Oeste
Parascopas dubius Ronderos, 1982	-16,49240513	-54,64757855	MT	Centro-Oeste
Parascopas exertus Ronderos, 1982	-17,58551533	-53,11704292	GO	Centro-Oeste
Parascopas falcatus Ronderos, 1982	-21,779395	-46,55192146	MG	Sudeste
Parascopas flavipes Ronderos, 1982	-17,58551533	-53,11704292	GO	Centro-Oeste
Parascopas mesai Ronderos, 1982	-16,49240513	-54,64757855	MT	Centro-Oeste
Parascopas mesai Ronderos, 1982	-15,42093382	-55,771233	MT	Centro-Oeste
Parascopas mesai Ronderos, 1982	-16,26037424	-56,608	MT	Centro-Oeste
Parascopas monnei Ronderos, 1982	-18,73569875	-54,81160327	MS	Centro-Oeste
Parascopas peltarius Ronderos, 1982	-16,49240513	-54,64757855	MT	Centro-Oeste
Parascopas peltarius Ronderos, 1982	-15,42093382	-55,771233	MT	Centro-Oeste
Parascopas robertsi Ronderos, 1976	-20,56694834	-45,10031655	MG	Sudeste
Parascopas seabrai Ronderos, 1982	-20,49371506	-55,7635	MS	Centro-Oeste
Propedies aequalis Ronderos & Sánchez, 1983	-19,96838645	-44,08422365	MG	Sudeste
Propedies auricularis auricularis Ronderos & Sánchez, 1983	-21,779395	-46,55192146	MG	Sudeste
Propedies auricularis auricularis Ronderos & Sánchez, 1984	-21,355162	-47,81647404	SP	Sudeste

Cont. Tabela 1 - Localização de registro da ocorrência de gafanhotos...

Propedies auricularis auricularis Ronderos & Sánchez, 1985	-18,96595433	-49,74944292	MG	Sudeste
Propedies auricularis prasinus Ronderos & Sánchez, 1983	-17,58551533	-53,11704292	GO	Centro-Oeste
Propedies caliginosus Ronderos & Sánchez, 1983	-22,23159502	-55,7176	MS	Centro-Oeste
Propedies caliginosus Ronderos & Sánchez, 1984	-15,42093382	-55,771233	MT	Centro-Oeste
Propedies castaneum Ronderos & Sánchez, 1983.	-20,49371506	-55,7635	MS	Centro-Oeste
Propedies cerasinus Ronderos & Sánchez, 1983	-20,49371506	-55,7635	MS	Centro-Oeste
Propedies christianeae Ronderos & Sánchez, 1983	-20,49371506	-55,7635	MS	Centro-Oeste
Propedies dilatus Ronderos & Sánchez, 1983	-15,82587247	-55,13189292	MT	Centro-Oeste
Propedies eurycercis Ronderos & Sánchez, 1983	-18,73569875	-54,81160327	MS	Centro-Oeste
Propedies geniculatus (Bruner, 1911)	-17,94553382	-54,75287329	MS	Centro-Oeste
Propedies geniculatus (Bruner, 1911)	-15,95700515	-54,9662	MT	Centro-Oeste
Propedies geniculatus (Bruner, 1911)	-15,42093382	-55,771233	MT	Centro-Oeste
Propedies geniculatus (Bruner, 1911)	-22,23159502	-55,7176	MS	Centro-Oeste
Propedies gracilis Ronderos & Sánchez, 1983	-20,49371506	-55,7635	MS	Centro-Oeste
Propedies hebardi Costa Lima, 1941	-21,96280496	-46,7803	SP	Sudeste
Propedies hebardi Costa Lima, 1941	-20,751605	-48,8975	SP	Sudeste
Propedies juani Ronderos & Sánchez, 1983	-17,87002552	-51,73561073	GO	Centro-Oeste
Propedies juani Ronderos & Sánchez, 1983	-17,58551533	-53,11704292	GO	Centro-Oeste
Propedies lacertosus Ronderos & Sánchez, 1983	-17,58551533	-53,11704292	GO	Centro-Oeste
Propedies lacertosus Ronderos & Sánchez, 1983	-17,14796663	-52,99338927	GO	Centro-Oeste
Propedies lineaalba Ronderos & Sánchez, 1983	-16,49240513	-54,64757855	MT	Centro-Oeste
Propedies lineaalba Ronderos & Sánchez, 1983	-22,23159502	-55,7176	MS	Centro-Oeste
Propedies lobipennis Ronderos & Sánchez, 1983	-17,79688466	-50,8994	GO	Centro-Oeste
Propedies martini Ronderos & Sánchez, 1983	-17,14796663	-52,99338927	GO	Centro-Oeste
		1		·

Cont. Tabela 1- Localização de registro da ocorrência de gafanhotos...

Propedies matogrossensis Ronderos & Sánchez, 1983	-15,18159232	-56,26842043	MT	Centro-Oeste
Propedies matogrossensis Ronderos & Sánchez, 1983	-20,48381557	-55,76816438	MS	Centro-Oeste
Propedies matogrossensis Ronderos & Sánchez, 1983	-17,94553382	-54,75287329	MS	Centro-Oeste
Propedies mulleus Ronderos & Sánchez, 1983	-15,82587247	-55,13189292	MT	Centro-Oeste
Propedies mutinus Ronderos & Sánchez, 1983	-15,42093382	-55,771233	MT	Centro-Oeste
Propedies mutinus Ronderos & Sánchez, 1983	-20,49371506	-55,7635	MS	Centro-Oeste
Propedies oculeus Ronderos & Sánchez, 1983	-18,75719173	-44,4622	MG	Sudeste
Propedies oculeus Ronderos & Sánchez, 1983	-17,33562559	-44,89746782	MG	Sudeste
Propedies oculeus Ronderos & Sánchez, 1983	-17,33562559	-44,89746782	MG	Sudeste
Propedies paraensis Ronderos & Sánchez, 1983	-8,562305669	-54,52892695	PA	Norte
Propedies pseudogeniculatus Ronderos & Sánchez, 1983	-16,26037424	-56,608	MT	Centro-Oeste
Propedies quadripunctatus Ronderos & Sánchez, 1983	-16,49507427	-47,61444292	GO	Centro-Oeste
Propedies quadripunctatus Ronderos & Sánchez, 1983	-16,61671541	-56,8167	MT	Centro-Oeste
Propedies rehni Ronderos & Sánchez, 1983	-16,61671541	-56,8167	MT	Centro-Oeste
Propedies roppai Ronderos & Sánchez, 1983	-17,58551533	-53,11704292	GO	Centro-Oeste
Propedies rubripennis Ronderos & Sánchez, 1983	-17,87002552	-51,73561073	GO	Centro-Oeste
Propedies rubripes (Bruner, 1911)	-19,02749333	-57,67016438	MS	Centro-Oeste
Propedies viridis Ronderos & Sánchez, 1983	-15,42093382	-55,771233	MT	Centro-Oeste
Propedies viriosus Ronderos & Sánchez, 1983	-19,02749333	-57,67016438	MS	Centro-Oeste
Pseudoscopas agustinae Ronderos, 1987	-27,85001421	-53,7833	RS	Sul
Pseudoscopas campestris Ronderos, 1987	-30,66567257	-52,99870714	RS	Sul
Pseudoscopas curticerci Ronderos, 1987	-31,78251334	-52,36711073	RS	Sul
Pseudoscopas elegans Ronderos, 1987	-29,99911528	-50,16523689	RS	Sul
Pseudoscopas elegans Ronderos, 1987	-31,78251334	-52,36711073	RS	Sul
	•			

Cont. Tabela 1 - Localização de registro da ocorrência de gafanhotos...

Pseudoscopas elegans Ronderos, 1987	-29,41671779	-53,00002805	RS	Sul
Pseudoscopas furcatus Ronderos, 1987	-25,43331452	-51,45	PR	Sul
Pseudoscopas henryi Ronderos, 1987	-31,78251334	-52,36711073	RS	Sul
Pseudoscopas henryi Ronderos, 1987	-25,22878654	-51,00546492	PR	Sul
Pseudoscopas nigrigena (Rehn, 1913)	-25,46399891	-51,95462029	PR	Sul
Pseudoscopas nigrigena (Rehn, 1913)	-24,60001127	-51,61672416	PR	Sul
Pseudoscopas nigrigena (Rehn, 1913)	-27,76651486	-52,80142146	RS	Sul
Pseudoscopas nigrigena (Rehn, 1913)	-24,75896588	-51,77991073	PR	Sul
Pseudoscopas onsageri Ronderos, 1987	-29,1830513	-51,73306673	RS	Sul
Pseudoscopas ottei Ronderos, 1987	-28,66097645	-50,44323219	RS	Sul
Pseudoscopas ottei Ronderos, 1987	-29,26709235	-50,29972146	RS	Sul
Pseudoscopas paranaensis Ronderos, 1987	-30,16668607	-53,48333219	RS	Sul
Ronderosia bergii (Stål, 1878)	-28,19303852	-51,53693219	RS	Sul
Ronderosia bergii (Stål, 1878)	-29,1830513	-51,73306673	RS	Sul
Ronderosia bergii (Stål, 1878)	-22,53324208	-45,2497088	MG	Sudeste
Ronderosia cinctipes (Bruner, 1906)	-15,42093382	-55,771233	MT	Centro-Oeste
Ronderosia cinctipes (Bruner, 1906)	-15,42093382	-55,771233	MT	Centro-Oeste
Ronderosia dubia (Bruner, 1906)	-27,76651486	-52,80142146	RS	Sul
Ronderosia forcipata (Rehn, 1918)	-27,76651486	-52,80142146	RS	Sul
Ronderosia forcipata (Rehn, 1918)	-17,58551533	-53,11704292	GO	Centro-Oeste
Ronderosia forcipata (Rehn, 1918)	-28,19303852	-51,53693219	RS	Sul
Ronderosia gracilis (Bruner, 1911)	-15,42093382	-55,771233	MT	Centro-Oeste
Ronderosia ommexechoides Carbonell & Mesa, 2006	-22,16788508	-47,90543219	SP	Sudeste
Ronderosia paraguayensis (Bruner, 1906)	-29,99911528	-50,16523689	RS	Sul
	•			

Cont. Tabela 1- Localização de registro da ocorrência de gafanhotos...

-27,76651486	-52,80142146	RS	Sul
-28,50951412	-50,9133	RS	Sul
-28,50951412	-50,9133	RS	Sul
-28,66097645	-50,44323219	RS	Sul
-15,95700515	-54,9662	MT	Centro-Oeste
-25,59006579	-49,4262	PR	Sul
-22,70350493	-47,63822146	SP	Sudeste
-22,53324208	-45,2497088	MG	Sudeste
-27,18331809	-52,38333301	SC	Sul
-29,26709235	-50,29972146	RS	Sul
-25,46399891	-51,95462029	PR	Sul
-28,50951412	-50,9133	RS	Sul
-31,78251334	-52,36711073	RS	Sul
-19,3536788	-43,60335965	MG	Sudeste
-22,97730905	-43,26164019	RJ	Sudeste
	-28,50951412 -28,50951412 -28,66097645 -15,95700515 -25,59006579 -22,70350493 -22,53324208 -27,18331809 -29,26709235 -25,46399891 -28,50951412 -31,78251334 -19,3536788	-28,50951412 -50,9133 -28,50951412 -50,9133 -28,66097645 -50,44323219 -15,95700515 -54,9662 -25,59006579 -49,4262 -22,70350493 -47,63822146 -22,53324208 -45,2497088 -27,18331809 -52,38333301 -29,26709235 -50,29972146 -25,46399891 -51,95462029 -28,50951412 -50,9133 -31,78251334 -52,36711073 -19,3536788 -43,60335965	-28,50951412

Fonte: Autor.

PA AM MA TO RO GO PE 250 500 km

Figura 1 - Distribuição dos gafanhotos da subfamília Melanolpinae no Brasil, a partir das localidades dos exemplares-tipos das espécies válidas.

Fonte: Autor.

As maiores ocorrência se deram no estado de Rio grande do Sul com 52 registros correspondendo a 28% dos registros em território brasileiro seguido por Mato Grosso com 31 registros (17,1%) e Minas Gerais com 22 registros (12,1%). Os três estados juntos correspondem à 58% do total de registros de gafanhotos da subfamília Melanoplinae para o Brasil. Não foi encontrado registros desta subfamília para os estados do Acre, Roraima,

Rondonia, Mauá, Piauí, Amapá Ceara, Rio Grande do Norte, Pernambuco, Paraíba e Alagoas, tal resultado pode ser corroborada por fatores como a preferência por um determinado bioma, clima, competição e até mesmo o baixo esforço amostral e pesquisas para estas regiões, sendo imprescindível estudos nos estados supracitados para confirmar tais constatações. A figura 2 elucida estes resultados, observando essa riqueza de espécies nos biomas brasileiros.

Na literatura observa-se o registro de ortópteros com ocorrência em regiões neotropicais em países como Peru, México, Uruguai, Argentina, Bolívia, Paraguai, a ocorrência no Brasil contempla a região dos Pampas até a região Amazônica (CARBONELL, CIGLIANO & LANGE, 2021). Gontijo, Carneiro & Pereira (2014) elucidam sobre os padrões geográficos em relação ao número de espécies de gafanhotos, bem como a biomassa vegetal das plantas hospedeiras de uma determinada área, onde a diversidade de comunidades de ortópteros está diretamente ligada aos micros habitats, tipo de vegetação e clima. Para as espécies da subfamília Melanoplinae no Brasil podese constatar uma relação semelhante (Figura 2).

0 71 76 25 **Biomas** Amazônia Caatinga Cerrado Mata Atlântica Pampa 250 500 km **Pantanal**

Figura 2 - Riqueza de espécies da subfamília Melanoplinae nos biomas brasileiros, a partir das localidades dos exemplares-tipo das espécies válidas.

Fonte: Autor.

Os biomas com a maior riqueza de representantes desta subfamília são Mata Atlântica com 76 espécies, seguido pelo Cerrado com 71 espécies e Pampa com 25 espécies. Não houve registros de espécies da subfamília Melanoplinae apenas em um bioma, a Caatinga.

A ocorrência levantada para estes gafanhotos em território brasileiro, é explicada por Cigliano, Noriega & Scatattolini (2020) tendo em vista as características dos biomas de Mata Atlântica e Cerrado, a maior concentração de espécies diferentes de gafanhotos são encontradas para estas vegetações, além de corroborar com a hipótese da

sazonalidade, ou seja, o clima da região e a heterogeneidade ambiental sendo propício para as espécies, demonstrada por um menor registro de ocorrência para os outros biomas, podendo levantar a hipótese de preferência de biomas e tipo de clima por parte destes gafanhotos, havendo a necessidade de estudos nas áreas para poder concluir tal hipótese. Para Joern (2005) a diversidade vegetal bem como a predação favorecida para áreas abertas pode ser um dos fatores que explicam a ocorrência elevada para a região de cerrado, um bioma hotspot de biodiversidade além de explicar a baixa ou nula ocorrência para os outros biomas.

Para as espécies endémicas no Brasil, nota-se o mesmo padrão de predominância nos biomas de Mata Atlântica, Cerrado e Pampa as quais se mantém proporcionais quando comparamos com todas as espécies ocorrentes na América do Sul. A tabela 2 apresenta as espécies endêmicas no Brasil, ou seja, espécies que possuem sua distribuição geográfica limitada em território brasileiro que estão restritas em uma determinada área ou região. Alguns fatores que explicam o endemismo são o isolamento geográfico, os recursos ambientais, tipo de vegetação, clima entre outros (LAS-CASA, 2000).

Tabela 2 - Lista de espécies de Melanoplinae (Orthoptera, Acrididae) endêmicas do Brasil.

Dichromatos corupa Carbonell & Mesa, 2011

Dichromatos montanus Carbonell & Mesa, 2011

Dichroplus mantiqueirae Ronderos, Carbonell & Mesa, 1968

Digamacris amoena (Stål, 1878)

Digamacris fraterna (Carl, 1916)

Eurotettix brevicerci Cigliano, 2007

Eurotettix bugresensis Cigliano, 2007

Eurotettix carbonelli Assis-Pujol, Santos & Guerra, 2001

Eurotettix concavus Cigliano, 2007

Eurotettix latus Cigliano, 20007

Eurotettix monnei Assis-Pujol, Santos & Guerra, 2001

Eurotettix procerus Cigliano, 2007

Eurotettix raphaelandrearum Assis-Pujol, Santos & Guerra, 2001

Eurotettix robustus Bruner, 1911

Eurotettix similraphael Cigliano, 2007

Neopedies acutifrons Ronderos, 1991

Neopedies matogrossensis Ronderos, 1991

Neopedies riograndensis Ronderos, 1991

Parascopas atratus Ronderos, 1982

Parascopas cantralli Ronderos, 1976

Parascopas chapadensis Rehn, 1909

Parascopas dubius Ronderos, 1982

Parascopas exertus Ronderos, 1982

Cont. Tabela 2 - Lista de espécies de Melanoplinae...

Parascopas falcatus Ronderos, 1982

Parascopas flavipes Ronderos, 1982

Parascopas mesai Ronderos, 1982

Parascopas monnei Ronderos, 1982

Parascopas peltarius Ronderos, 1982

Parascopas robertsi Ronderos, 1976

Parascopas seabrai Ronderos, 1982

Propedies aequalis Ronderos & Sánchez, 1983

Propedies auricularis auricularis Ronderos & Sánchez, 1983

Propedies auricularis prasinus Ronderos & Sánchez, 1983

Propedies caliginosus Ronderos & Sánchez, 1983

Propedies castaneum Ronderos & Sánchez, 1983

Propedies cerasinus Ronderos & Sánchez, 1983

Propedies christianeae Ronderos & Sánchez, 1983

Propedies dilatus Ronderos & Sánchez, 1983

Propedies geniculatus (Bruner, 1911)

Propedies gracilis Ronderos & Sánchez, 1983

Propedies hebardi Costa Lima, 1941

Propedies juani Ronderos & Sánchez, 1983

Propedies lacertosus Ronderos & Sánchez, 1983

Propedies lineaalba Ronderos & Sánchez, 1983

Propedies lobipennis Ronderos & Sánchez, 1983

Propedies martini Ronderos & Sánchez, 1983

Propedies matogrossensis Ronderos & Sánchez, 1983

Propedies mulleus Ronderos & Sánchez, 1983

Propedies mutinus Ronderos & Sánchez, 1983

Propedies oculeus Ronderos & Sánchez, 1983

Propedies paraensis Ronderos & Sánchez, 1983

Propedies pseudogeniculatus Ronderos & Sánchez, 1983

Propedies quadripunctatus Ronderos & Sánchez, 1983

Propedies rehni Ronderos & Sánchez, 1983

Propedies roppai Ronderos & Sánchez, 1983

Propedies rubripennis Ronderos & Sánchez, 1983

Propedies rubripes (Bruner, 1911)

Propedies viridis Ronderos & Sánchez, 1983

Propedies viriosus Ronderos & Sánchez, 1983

Pseudoscopas agustinae Ronderos, 1987

Pseudoscopas campestris Ronderos, 1987

Pseudoscopas curticerci Ronderos, 1987

Pseudoscopas elegans Ronderos, 1987

Pseudoscopas furcatus Ronderos, 1987

Pseudoscopas henryi Ronderos, 1987

Pseudoscopas onsageri Ronderos, 1987

Pseudoscopas ottei Ronderos, 1987

Pseudoscopas paranaensis Ronderos, 1987

Ronderosia ommexechoides Carbonell & Mesa, 2006

Tijucella polychroma Amédégnato & Descamps, 1979

TOTAL: 15 gêneros, 69 espécies e 2 subespécies.

Há o registro de 43 gêneros e 232 espécies de gafanhotos da subfamília Melanoplinae na América do Sul, em comparação ao número de espécies endêmicas, o Brasil representa uma porcentagem de 29%, estas espécies estão distribuídas respectivamente na região sul, centro-oeste e sudeste, apresentando um valor expressivo o qual pode se tornar um ponto de partida para estudos voltados a estes indivíduos em território nacional, tendo em vista sua importância econômica e ambiental (CHINTAUAN-MARQUIER *et al*, 2011; CIGLIANO, 2007).

5. CONSIDERAÇÕES FINAIS

No Brasil, foi constatada uma grande concentração de espécies com ocorrência em biomas de Mata Atlântica, Cerrado e Pampa como apresentado na literatura, porém um fator que pode influenciar neste resultado é a escassez de estudos para as áreas com menor ocorrência de registro desses gafanhotos. Para que possa de fato ser demonstrada a ocorrência desta subfamília para os outros biomas brasileiros no país como um todo, tornam-se necessários novos estudos de amostragem em campo.

É evidente a lacuna para esta área do conhecimento na região da américa do sul e para o Brasil. O presente estudo reúne de uma forma objetiva os registros destes ortópteros em território brasileiro, trazendo informações dos biomas de ocorrência mais dominante, bem como levantar questões para os biomas com pouco ou até mesmo sem registro destes gafanhotos. Auxilia também, por meio da localização em coordenadas em UTM de modo a facilitar a visualização destes indivíduos e compreender sua distribuição, tanto para os endêmicos quanto para os que também ocorrem em países vizinhos ao Brasil

É imprescindível o incentivo e apoio para pesquisas voltadas para esta subfamília, pois desta maneira podem auxiliar para a preservação dos habitats os quais os gafanhotos habitam. A elaboração de tais pesquisas corroboram para gerar informações para o controle fitossanitário para as espécies que são consideradas pragas, além de embasamento para as políticas de conservação.

6. REFERÊNCIAS BIBLIOGRÁFICAS

AMÉDÉGNATO, Christiane. Les d'acridiens néotropicaux, leur classification par familles, sous familles et tribus. Acrida 3. 1974. p. 193-204.

AMÉDÉGNATO, Christiane; POULAIN, Stephanie. Les acridiens néotropicaux. I: Proctolabinae Amazoniens (Orthoptera: Acridoidea). Annales de la Société Entomologique de France 23,1987, p. 399-434.

BARBOLA, Ivana *et al.* In: GUIMARÃES. **A Fauna de Insetos dos Campos Gerais**, / Editado Por Mário Sérgio de Melo; Rosemeri Segecin Moro; Gilson Burigo. Ponta Grossa: Editora UEPG, 2007. p. 143-149. Disponível em: http://ri.uepg.br:8080/riuepg/bitstream/handle/123456789/459/CAP%c3%dTULO15_Fa unaInsetosCampos.pdf?sequence=1. Acesso em: 12 fev. 2023.

BITTAR, Ana Cristina. Populações e danos de gafanhoto desfolhador (Acrididae) em helicônias sob diferentes níveis de sombreamento em Santo Antônio de Pádua, RJ. 70 p. Dissertação (Mestrado Profissional em Agricultura Orgânica). Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro em parceria com a Embrapa Agrobiologia, Seropédica, 2013. Disponível em: https://tede.ufrrj.br/jspui/bitstream/jspui/3562/2/2013%20%20Ana%20Cristina%20Bitt ar.pdf. Acesso em: 01 mar. 2023.

BRAGA, Carlos. Estrutura de comunidade e taxonomia de gafanhotos acridoidea (Orthoptera: Caelifera) em uma floresta primária na flona de Caxiuanã, Pará, Brasil. Programa de Pós-graduação em Entomologia, Instituto Nacional de Pesquisas da Amazônia, Manaus: INPA, 2015. Disponível em: https://repositorio.inpa.gov.br/handle/1/12339. Acesso em: 01 fev. 2023.

CARBONELL, Carlos. **Origin, Evolution, and Distribution of the Neotropical Acridomorph Fauna (Orthoptera): A Preliminary Hypothesis**. Revista de la Sociedad Entomológica Argentina, v. 36, n. 1-4, 1977. Disponível em: https://www.biotaxa.org/RSEA/article/view/41780. Acesso em: 01 mar. 2023.

CARBONELL, Carlos; CIGLIANO, Maria Marta & LANGE, Carlos. Acridomorph (Orthoptera) Species From Argentina and Uruguay. 2021. Disponível em: https://biodar.unlp.edu.ar/acridomorph. Acesso em: 15 mar. 2023.

CARVALHO, Nathália. Análise faunística de gafanhotos (Orthoptera, Acridoidea: Acrididae, Romaleidae e Proscopiidae), no município de São Sepé, RS. Dissertação (Mestrado) Universidade Federal de Santa Maria, Centro de Ciências Rurais, Programa de Pós-Graduação em Agronomia. Santa Maria, 2010. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/5025/CARVALHO%2C%20NATHALIA%20LEAL%20DE.pdf?sequence=1&isAllowed=y. Acesso em: 12 mar. 2023.

CHINTAUAN-MARQUIER, Ioana *et al.* Evolutionary history and taxonomy of a short-horned grasshopper subfamily: The Melanoplinae (Orthoptera: Acrididae). Molecular Phylogenetics and Evolution, v. 58, n. 1, p. 22-32, 2011.

CIGLIANO, Maria Marta, BRAUN, Holger; EADES, David; OTTE, Daniel.

Orthoptera Species File. Version 5.0/5.0. 2021. Disponível em: http://orthoptera.speciesfile.org>. Acesso em: 20 de janeiro de 2023.

CIGLIANO, María. Review of the South American genus Eurotettix Bruner (Orthoptera, Acridoidea, Melanoplinae). Systematic Entomology, v. 32, n. 1, p. 176-195, 2007.

COSTA, Maria Kátia; FERRARI, Augusto; CARVALHO, Gervásio. **Análise cladística e biogeográfica dos gêneros do grupo Sitalces (Orthoptera, Acrididae, Abracrini).** 2007. 9 f. Faculdade de Biociências, Laboratório de Entomologia, PUCRS, Porto Alegre, 2007. Disponível em:

https://www.scielo.br/j/isz/a/bpdvpj9d5CVb4x44PxwRhQQ/?format=pdf&lang=pt. Acesso em: 01 fev. 2023.

DEBREY, Larry; BREWER, Michael; LOCKWOOD, Jeffrey. **Rangeland Grasshopper Management.** Agricultural Experiment Station. College of Agriculture. University of WYOMING. Grasshoppers of Wyoming and the West Home Page. June 1993. Disponível em: http://www.uwyo.edu/entomology/grasshoppers/rgmanage.html. Acesso em 10 mar. 2023.

DEMARI, PETER; CARVALHO, GERVÁSIO SILVA; ZEFA, EDISON. Pseudoscopas carbonelli n. sp. (Orthoptera: Acrididae: Melanoplinae) from southern Brazil, including chromosome complement. **Zootaxa**, v. 4975, n. 1, p. 127-140, 2021.

DOMENICO, Fernando. **Estudo filogenético da família Ommexechidae (Orthoptera, Caelifera, Acridomorpha)**. Tese (Doutorado) - Instituto de Biociências da Universidade de São Paulo, departamento de Zoologia, São Paulo, 2012. Disponível em: https://teses.usp.br/teses/disponiveis/41/41133/tde-01052013-092953/pt-br.php. Acesso em: 08 fev. 2023.

GODÉ, Laurent; ZEFA, Edison; COSTA, Maria Kátia; CHAMORRO-RENGIFO, Juliana. **Grilos, Gafanhotos e Esperanças (Orthoptera) da Reserva Biológica de Pedra Talhada.** In: Studer, A., L. Nusbaumer & R. Spichiger (Eds.). Biodiversidade da Reserva Biológica de Pedra Talhada (Alagoas, Pernambuco - Brasil). Boissiera 68: 251-265, 2015.

GONTIJO, Alexandre; CARNEIRO, Marco Antônio; PEREIRA, Marcelo. Efeitos da altitude e do substrato sobre a riqueza de espécies de gafanhotos em campos rupestres. Lab. Padrões de Distribuição Animal, Depto. de Ciências Biológicas - ICEB, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, 2014. Disponível em:

https://www.researchgate.net/profile/AlexandreGontijo2/publication/237489911_Efeitos_daaltitude_e_do_substrato_sobre_a_riqueza_de_especies_de_gafanhotos_em_campos_rupestres/links/0deec5295dcae7a7c6000000/Efeitos-daaltitude-e-do-substrato-sobre-a-riqueza-de-especies-de-gafanhotos-em-camposrupestres.pdf. Acesso em: 01 mar. 2023.

GREEN, S. V. The taxonomic impediment in orthopteran research and conservation. **Journal of Insect Conservation**, v. 2, p. 151-159, 1998.

GUERRA, Wanderlei. Composição de gafanhotos (Orthoptera, Acridoidea) em

áreas de cerrados e lavouras na Chapada dos Parecis, Estado de Mato Grosso, Brasil. Revista Brasileira de Entomologia 56. Brasília, 2011 v. 2, p. 228-239. Disponível em:

https://repositorio.unb.br/bitstream/10482/10183/1/2011_WanderleiDiasGuerra.pdf. Acesso em: 11 mar. 2023.

JOERN, Antony. **Disturbance by fire frequency and bison grazing modulate grasshopper assemblages in tall grass prairie.** Ecological Society of America, v. 86, Issue 4, April, p. 861-873, 2005. Disponível em: https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/04-0135. Acesso em: 12

jan. 2023.

LAS-CASAS, Flor. Endemismo de aves. Aves da Mata Atlântica: riqueza, composição, status, endemismos e conservação. 2000.

LECOQ, Michel; MAGALHÃES, Bonifácio. **Bioinseticida e Gafanhoto-Praga.** Relatório Final do Projeto de Desenvolvimento de Bioinseticidas Para Controle de Gafanhotos-Praga no Brasil, EMBRAPA: Brasília, 2006.

LIEBERMANN, José. **Primeira relação sistemática dos Acridoideos do Brasil.** Memórias do Instituto Oswaldo Cruz, Buenos Aires, 1955. Disponível em: https://www.scielo.br/j/mioc/a/FDgq4tNwvvbpqrL5jRXTzvq/?format=pdf&lang=pt. Acesso em: 11 fev. 2023.

LUTINSKI, Cladis *et a*l. **Flutuação populacional de gafanhotos na Floresta Nacional de Chapecó, Santa Catarina.** Ciência Rural, Santa Maria, v.39, n.2, p.555-558, 2009. Disponível em:

http://www.scielo.br/scielo.php%3Fscript%3Dsci_arttext%26pid%3DS0103-84782009000200038&ved=2ahUKEwjrwrvo2PPoAhXyL7kGHQ_kC5kQFjAAegQIBx AC&usg=AOvVaw2xn1e2WTRUCeMINdMnS VR. Acesso em: 12 fev. 2023.

LUTINSKI, Cladis *et al.* Análise faunística de gafanhotos (Orthoptera: Acridoidea, Tridactyloidea, Tetrigoidea) e flutuação populacional na floresta nacional de Chapecó-SC. Chapecó – SC, 2008. Disponivel em: https://www.scielo.br/j/cr/a/smvxhshSBy47wMtR45tVyQw/?lang=pt. Acesso em: 19 mar. 2023.

LUTINSKI, Cladis Juliana *et al.* Análise faunística de gafanhotos na Floresta Nacional de Chapecó, Santa Catarina. **Pesquisa Florestal Brasileira**, v. 31, n. 65, p. 43-43, 2011.

MARINONI, Renato; DUTRA, Renato. Levantamento da fauna entomológica no Estado do Paraná. I. Introdução. Situações climática e florística de oito pontos de coleta. Dados faunísticos de agosto de 1986 a julho de 1987. Revista Brasileira de Zoologia, v. 8, p 31-73. 1991 Disponível em:

https://www.scielo.br/j/rbzool/a/VpNfgXNDZSW5FvSDfc6QfmJ/?format=pdf&lang=pt. Acesso em: 20 mar. 2023.

NUNES-GUTJAHR, Ana Lúcia; BRAGA, Carlos Elias. Análise faunística de gafanhotos Acridoidea da Volta Grande do Rio Xingu, área de influência direta da Hidrelétrica Belo Monte, Pará, Brasil. Ciência Rural. v. 45, n. 7, p. 1220-1227, 2015.

Disponível em:

https://www.scielo.br/j/cr/a/8HT9HBzJCmkbwyFqB3ZjBnh/?format=html&lang=pt. Acesso em: 01 fev. 2023.

OTTE, Daniel. **Orthoptera species files**. The Orthopterists Society and The Academy of Natural Sciences of Philadelphia, Philadelphia, PA. 1995.

SCATTOLINI, María Celeste; LIRA-NORIEGA, Andrés; CIGLIANO, María Marta. **Species richness, range size, and wing development in South American melanopline grasshoppers (Orthoptera, Acrididae).** Ecological Entomology, v. 45, n. 4, p. 840-853, 2020.

SILVA, Daniela. **Gafanhotos (orthoptera: acrididea) em áreas de conservação no corredor central da mata atlântica, brasil**. Dissertação (Mestrado) - Universidade Federal do Recôncavo da Bahia, Centro de Ciências Agrárias, Ambientais e Biológicas, 2014. Disponível em: http://localhost:8080/handle/123456789/884. Acesso em: 02 fev. 2023.