
T E S E D E D O U T O R A D O

UNIVERSIDADE FEDERAL DE SÃO CARLOS

CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA

PROGRAMA DE PÓS-GRADUAÇÃO EM

CIÊNCIA DA COMPUTAÇÃO

“A REFERENCE ARCHITECTURE
FOR DESIGNING ADM-BASED

MODERNIZATION TOOLS”

ALUNO: Bruno Marinho Santos
ORIENTADOR: Prof. Dr. Valter Vieira de Camargo

São Carlos
Fevereiro/2023

CAIXA POSTAL 676
FONE/FAX: (16) 3351-8233

13565-905 - SÃO CARLOS - SP
BRASIL

UNIVERSIDADE FEDERAL DE SÃO CARLOS
CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

A REFERENCE ARCHITECTURE

FOR DESIGNING ADM-BASED

MODERNIZATION TOOLS

BRUNO MARINHO SANTOS

ORIENTADOR: PROF. DR. VALTER VIEIRA DE CAMARGO

São Carlos - SP

Fevereiro/2023

UNIVERSIDADE FEDERAL DE SÃO CARLOS
CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

A REFERENCE ARCHITECTURE

FOR DESIGNING ADM-BASED

MODERNIZATION TOOLS

BRUNO MARINHO SANTOS

Doctoral dissertation submitted to the Graduate

Program in Computer Science at the Federal

University of São Carlos, as part of the

requirements for obtaining the title of Doctor of

Computer Science.

Concentration Area: Software Engineering.

Advisor: Prof. Ph.D. Valter Vieira de Camargo

São Carlos - SP

February/2023

UNIVERSIDADE FEDERAL DE SÃO CARLOS

Centro de Ciências Exatas e de Tecnologia
Programa de Pós-Graduação em Ciência da Computação

Folha de Aprovação

Defesa de Tese de Doutorado do candidato Bruno Marinho Santos, realizada em 17/02/2023.

Comissão Julgadora:

Prof. Dr. Valter Vieira de Camargo (UFSCar)

Prof. Dr. Fabiano Cutigi Ferrari (UFSCar)

Prof. Dr. Daniel Lucrédio (UFSCar)

Profa. Dra. Maria Istela Cagnin Machado (UFMS)

Prof. Dr. Glauco de Figueiredo Carneiro (UFS)

O Relatório de Defesa assinado pelos membros da Comissão Julgadora encontra-se arquivado junto ao Programa de
Pós-Graduação em Ciência da Computação.

To my husband, mother, father, sister and brother.

We stand undefined
Can’t be drawn with a straight
line
This will not be our ending
We are alive...
Don’t you dare surrender”

Imperfection, Evanescence

Acknowledgements

First, I thank God for all the opportunities and for the people that have been placed in
my life. To my husband André for being a loving supporter and strength.

To my family, especially my mother Magaly, my father, my sister Tayana and my
brother Julio Cezar.

To my cousins Cristiano and Isabela.
To my friends who always held hands with me (Nair, Matheus, Mirela, André, Jullyane,

Joyce).
To my advisor, Valter Vieira de Camargo, for his dedication, help, professionalism and

guidelines.
To my psychiatrist Dr. Leonardo and psychologist Beatriz for the mental support.
CNPQ for financial support.
I thank everyone who, directly or indirectly, contributed to my formation.

Abstract

Software systems are constantly changing and this process generally makes
it increasingly difficult for organizations to maintain. To help in this context,
Object Management Group (OMG) proposed Architecture-Driven Moderniza-
tion (ADM) that defends the realization of reengineering processes following
the model-oriented architecture. One of ADM’s main contributions is its
sets of metamodels and its conceptual architecture. The construction of
modernization tools that use the concepts of ADM have a greater chance of
being interoperable. However, there are not many works in the literature that
help in the construction of modernization tools based on ADM. Thus, the
main objective of this Ph.D. research was to develop a Reference Architecture
(RA) that supports the creation and evolution of modernization tools that
are based on ADM’s concepts and standards. The RA is formed by a set of
diagrams representing architectural visions. For the creation of the RADM
that is our Reference Architecture for ADM-based Modernization Tools,
ProSA-RA was used, a process that systematizes the design, representation
and evaluation of reference architectures. This Ph.D. research was evaluated
through a questionnaire with ADM specialists (software developers and
researchers) and software architects whose main objective was to obtain feed-
backs on the acceptance of the Reference Architecture that was developed.
The questionnaire that was applied brought as main results the following
conclusions: (i) 100% of the participants agreed that the RA is clear and
well described and (ii) 75% agreed that the RA is useful for create instances
of different types of modernization tools.

Keywords: Architecture-Driven Modernization, Modernization Tool,
Reference Architecture, Taxonomy, ProSA-RA.

8

Resumo

Sistemas de software estão em constante mudanças e esse processo geralmente
faz com que se tornem cada vez mais dif́ıceis de serem mantidos pelas orga-
nizações. Para ajudar nesse contexto a Object Management Group (OMG)
propôs a Architecture-Driven Modernization (ADM) que defende a realização
dos processos de reengenharia seguindo o padrão da arquitetura dirigida a
modelos. Uma das principais contribuições da ADM são seus conjuntos de
metamodelos e sua arquitetura conceitual. A construção de ferramentas de
modernização que se utilizam dos conceitos da ADM possuem uma maior
chance de serem interoperáveis. Contudo, não existem muitos trabalhos
na literatura que auxiliam na construção de ferramentas de modernização
baseadas em ADM. Dessa forma, o principal objetivo desta pesquisa foi de-
senvolver uma Arquitetura de Referência (AR) que apoia a criação e evolução
de ferramentas de modernização que são baseadas nos conceitos e padrões
da ADM. A AR é formada por um conjunto de diagramas representando
visões arquiteturais. Para a criação da RADM que é nossa Arquiterura
de Referência para ferramentas de modernização baseadas em ADM, foi
utilizado o ProSA-RA, um processo que sistematiza o projeto, representação
e avaliação de arquiteturas de referência. Este doutorado foi avaliado por
meio de um questionário com especialistas em ADM (desenvolvedores de
software e pesquisadores) e arquitetos de software que teve como principal
objetivo obter comentários sobre a aceitação da Arquitetura de Referência
que foi desenvolvida. O questionário que foi aplicado trouxe como principais
resultados as seguintes conclusões: (i) 100% dos participantes afirmaram que
a AR é clara e bem descrita e (ii) 75% concordaram que a AR é útil para
criar instâncias de diferentes tipos de ferramentas de modernização.

Palavras-chave: Architecture-Driven Modernization, Ferramenta de Mon-
dernização, Arquitetura de Referência, Taxonomia, ProSA-RA.

9

List of Figures

1.1 Main scenario for using the results of this Ph.D research. 5

2.1 General structure of ADM . 10
2.2 Architecture-Driven Modernization Blueprint. 12
2.3 Layers, packages and separation of concerns in KDM (Adapted from KDM

(2011)). 14
2.4 KDM domains and compliance levels KDM (2011). 16
2.5 Reference Architecture Composition . 19
2.6 Quality attributes for a Software product 20
2.7 Steps to create an RA in a way that the checklist can be applied 22

3.1 KDM-RE’s architecture (Durelli, 2016). 29
3.2 Approach to business process recovery - MARBLE (Pérez-Castillo et al.,

2011a). 31
3.3 Approach to transforming legacy systems to the cloud - CloudMig (Frey e

Hasselbring, 2011). 31
3.4 Workflow of refactorings proposed by Einarsson e Neukirchen (2012). . . . 33
3.5 RACOoN plug-in’s architecture (Van Der Straeten et al., 2007). 34
3.6 Overview of the use case refactoring tool proposed by Ren et al. (2004). . . 36
3.7 Refactoring workflow proposed by Moghadam e Cinneide (2012). 37

4.1 Modernization Tools Taxonomy - Conceptual Diagram 59
4.2 Methodology to establish a Taxonomy . 61

5.1 MVC view . 71
5.2 Internal Components view . 72
5.3 ADM Pipes and Filters Architectural Overview 75
5.4 Reverse Engineering view . 76
5.5 General Activity Diagram View . 77
5.6 Instance Manager Activity Diagram View 78
5.7 Flaws Detector Activity Diagram View . 79
5.8 Metamodel Instance Discoverer View . 81

10

5.9 Metric Calculator Activity Diagram View 82
5.10 Reverse Engineering Component Diagram View 83
5.11 Restructuring view . 84
5.12 General Activity Diagram View . 84
5.13 Instance Manager Activity Diagram View 85
5.14 Refactoring Activity Diagram View . 86
5.15 Restructuring Component Diagram View 88
5.16 Forward Engineering View . 88
5.17 General Activity Diagram View . 89
5.18 Metamodel Instance and Source Code Discovery View 90
5.19 Metric and Measurement Calculation View 91
5.20 Forward Engineering Component Diagram View 92

11

List of Tables

2.1 Quality attributes of a Software . 21
2.2 Stages, Number of questions and Evaluation Topics of the FERA checklist 24
2.3 Classification of model transformations . 26

4.1 Modernization Scenarios . 58
4.2 Comparison between MT’s type . 60
4.3 Concepts elicited from Step T-1 . 61
4.4 Classification of Computational Support for Software Modernization 66

5.1 Requirements . 96
5.2 Acceptance of the Reference Architecture views 98
5.3 Overall acceptance of the Reference Architecture 98

12

List of Abbreviations and Acronyms

ADM Architecture-Driven Modernization
ADM-TF Architecture-Driven Modernization Task Force
AEP Automated Enhancement Points
AFP Automated Function Points
ASTM Abstract Syntax Tree Metamodel
ATAM Architecture Tradeoff Analysis Method
ADM-MT ADM-Modernization Tools
Common-MT Common Modernization Tools
RA Reference Architecture
FRA Futuristic Reference Architecture
PRA Practical Reference Architecture
CEM Cloud Environment Model
CIM Computing Independent Model
DLs Description Logics
FERA Framework for Evaluation of Reference Architecture
MT Modernization Tool
KDM Knowledge Discovery Metamodel
KDM-MT KDM Modernization Tools
KDM-RE Knowledge Discovery Model - Refactoring Environment
OMG-MT OMG Modernization Tools
M2M Model-to-Model Transformations
MDA Model Driven Architecture
MOF Meta Object Facility
OCL Object Constraint Language
OMG Object Management Group
PIM Platform Independent Model
PSM Platform Specific Model
QVT Query/View/Transformation
QVTO QVT Operational Mappings
SAAS Software as a Service
SBVR Semantics for Business Vocabulary and Rules

13

SMM Structured Metrics Metamodel
SOA Service-Oriented Architecture
SM Systematic Mapping
UML Unified Modelling Language
SRM Structured Refactoring Metamodel

14

Contents

1 Introduction 1
1.1 Context . 1
1.2 Problem Statement . 3
1.3 Contributions . 4
1.4 Usage Scenario . 5
1.5 AdvanSE Group Research . 6
1.6 Research Roadmap . 6
1.7 Outline . 6

2 Background 8
2.1 Software Modernization . 8
2.2 Architecture-Driven Modernization . 9
2.3 Knowledge Discovery Metamodel . 13

2.3.1 KDM Compliance and Domains . 15
2.4 Reference Architectures . 17

2.4.1 Reference Architecture Types . 18
2.4.2 Reference Architecture Attributes 19
2.4.3 Reference Architecture Evaluation 21

2.5 Model Refactoring . 24
2.6 Final Considerations . 26

3 Related Works and Systematic Mappings 28
3.1 Modernization tools that use ADM standards 28
3.2 Tools that apply refactorings in UML . 32
3.3 Systematic Mapping . 39

3.3.1 Systematic Mapping on ADM . 39
3.3.1.1 Group 1 - Discussions around ADM papers 41
3.3.1.2 Group 2 - Modernization Tools papers 43

3.3.2 Systematic Mapping on Code and Model Refactoring tools 47
3.4 Final Considerations . 53

15

4 A Taxonomy for Classifying Modernization Tools in ADM Context 54
4.1 Initial Considerations . 54
4.2 The Taxonomy . 55
4.3 Methodology for Building the Taxonomy 62

4.3.1 Step T-1: Information Source Investigation 62
4.3.2 Step T-2: Artifacts Analysis and Categorization 63
4.3.3 Step T-3: Taxonomy Establishment 64
4.3.4 Step T-4: Taxonomy Evaluation . 64

4.4 Threats to validity . 67
4.5 Final Considerations . 67

5 A Reference Architecture for ADM-Based Modernization Tools 68
5.1 Initial Considerations . 68
5.2 The Reference Architecture . 68
5.3 Structural Views . 70

5.3.1 MVC View . 70
5.3.2 Internal Components View . 72

5.4 Data Flow View . 74
5.4.1 Pipes and Filter View . 74

5.5 Dynamic Views . 76
5.5.1 Reverse Engineering Views . 76

5.5.1.1 General Activity Diagram View 76
5.5.1.2 Instance Manager Activity Diagram View 78
5.5.1.3 Flaws Detector Activity Diagram View 79
5.5.1.4 Metamodel Instance Discoverer View 80
5.5.1.5 Metric Calculator Activity Diagram View 80
5.5.1.6 Reverse Engineering Component Diagram View 82

5.5.2 Restructuring Views . 83
5.5.2.1 General Activity Diagram View 83
5.5.2.2 Instance Manager Activity Diagram View 85
5.5.2.3 Refactoring Activity Diagram View 85
5.5.2.4 Restructuring Component Diagram View 87

5.5.3 Forward Engineering Views . 87
5.5.3.1 General Activity Diagram View 88
5.5.3.2 Metamodel Instance and Source Code Discovery View . . 89
5.5.3.3 Metric and Measurement Calculation View 91
5.5.3.4 Forward Engineering Component Diagram View 92

5.6 RA usage Guidelines . 92
5.7 Methodology Employed . 93

5.7.1 Information Source Investigation 94
5.7.2 Architectural Analysis and Requirements 95

5.8 Evaluation . 97
5.8.1 Evaluating the RA Acceptance . 97
5.8.2 Evaluating the RA Overall acceptance 98

16

5.8.3 Evaluating Discussions . 99
5.9 Threats to Validity . 99
5.10 Final Considerations . 100

6 Conclusions 101
6.1 Contributions . 101
6.2 Limitations . 103
6.3 Future Work . 103
6.4 List of Publications . 103
6.5 Next Publications . 105

Bibliography 106

A Details of Systematic Mapping on ADM 116
A.1 Final selected papers: . 116

A.1.1 Group 1: Discussions around ADM papers 116
A.1.2 Group 2 - Modernization Tools papers 118

A.2 ADM Search String: . 122

B Details of Systematic Mapping on Code and Model Refactoring Tools 123
B.1 Final selected papers: . 123

C Taxonomy’s Evaluation Strategy 127

17

Chapter

1
Introduction

1.1 Context

Software reengineering is theme that always will be of some importance in software

engineering field (Ulrich e Newcomb, 2010a). This happens because as the time passes,

any system become legacy; making the maintenance very difficult, the integration with

modern systems hard and the productivity of the team low. However, although the topic

of software reengineering has been researched for several years, some studies shows that

the number of reengineering projects that fails is still high (Kiran Mallidi et al., 2021;

Wolfart et al., 2021). Other studies presented by the Standish group also reveals that

many companies suffer with legacy systems whose maintenance costs are extremely high

(StandishGroup., 2014).

With this in mind, two main alternatives appear. The first is the complete replacement

of the system with a new one and the second is the conduction of a reengineering process

with the objective of modernizing the existing system and making maintenance and

evolution tasks go back to acceptable levels of cost and effort (Arnold, 1993; Ludewig e

Lichter, 2023).

Software Modernization (aka Software Reengineering) is an alternative for extending

the life of the system - it involves three main processes: reverse engineering, restructuring

and forward engineering. With the help of these three processes, it is possible to recover

1

1.1 Context

knowledge from the existing legacy system, performing refactorings and optimizations,

and finally, obtaining an improved version of the same system, preserving the knowledge

and business rules (Chikofsky e Cross, 1990).

In 2003, theObject Management Group (OMG) created a task force called Architecture-Driven

Modernization Task Force (ADM-TF) to investigate the large number of failures in reengi-

neering/modernization projects. According to ADM-TF, the main problem is the lack

of a standard model for representing systems to be modernized. Without this standard,

companies need to develop their own modernization solutions (like Modernization Tools

and algorithms) that only act over their proprietary models, making the sharing of these

solutions a very difficult task among tools. The problem with proprietary solutions is that

the knowledge around modernization is not captured, shared and largely disseminated.

For example, so that a modernization tool can import refactoring algorithms for applying

them in their own projects, these algorithms must have been developed in such a way that

it know/recognize a common structure (a standard model), which must be also known

internally by the tool.

In order to solve the standardization problem in the representation of existing system,

the OMG task force proposed a metamodel called Knowledge Discovery Metamodel (KDM).

KDM was created in order to be able to represent all the characteristics of a software

system, encompassing both low-level implementation details (source code and system

actions) and high-level concepts (architectural modules, conceptual elements , business

processes and infrastructure). The main objective is to make this metamodel the most

disseminated standard for representing systems in modernization tools. In other words,

if researchers and professionals develop modernization solutions (mining and analysis

algorithms, transformations, analytical tools, metrics and others) that know and act over

KDM-represented systems instead of proprietary metamodels or specific languages, these

solutions could be more easily reused/shared among all tools that recognize the KDM

metamodel as their main form of representation (OMG, 2016).

Although OMG advocates adopting KDM as the base metamodel in modernization

tools, it is not clear in the literature how KDM can be used in tools. To date, there is no

knowledge available in the literature on how modernization tools should be designed in the

context of ADM. What one can find are modernization tool architectures that are built

without an explicit architectural model to guide (KDMAnalytics, 2017; Pérez-Castillo et

al., 2011a).

A possible solution for this lack of guidelines is through the use of Reference Architec-

tures (RA) (Bodziony e Wrembel, 2021; Martin et al., 2021; Rutledge e Italiaander, 2021;

Tummers et al., 2021). A RA is formed by a set of artifacts that help in the development

2

1.2 Problem Statement

of software solutions that aim to solve a given problem. With the help of an RA, it is

possible to develop solutions to recurring problems in a standardized way, thus avoiding

rework in the elaboration and design of a software system (Eickelmann e Richardson, 1996;

Nakagawa et al., 2011). RA can be developed based on existing software solutions and/or

knowledge of the literature, thus forming a set of practices and design decisions that assist

in the development of new tools and in the modernization of existing solutions (Nakagawa

et al., 2013).

As RA serve to assist in the development of systems in a given domain and to solve

a specific problem. Research around RA usually involve the publication of guidelines,

diagrams that provide architectural views and other artifacts that can contribute to the

body of knowledge of the domain. A given RA may involve a set of quality attributes

that are directly linked to the problem to be solved. These attributes are fundamental

for choosing or not a RA and may vary from usability to performance of the generated

system. RA have built-in knowledge from other works that have already been carried out

and also rely on the help of domain expert knowledge, that is, one of the main benefits of

their use is that it minimizes the incidence of problems that a developer may have when

preparing a solution to the problem we are facing (Eickelmann e Richardson, 1996; Galster

e Avgeriou, 2011).

1.2 Problem Statement

The main motivation for this thesis is the lack of guidelines on how to employ KDM, and

other ADM metamodels, inside modernization tools. The problem of not having these clear

and well-specified guidelines lead companies and researchers to develop modernization tools

that only know and manipulate proprietary models, constraining the reuse of solutions

that work with these models. Failure to reuse existing solutions can lead to the failure of

systems modernization projects, such as the cases presented in research by Sneed (2005);

StandishGroup. (2014); Ulrich e Newcomb (2010a).

One of the reasons why creating new ADM-based MT is challenging comes from the fact

that it involves several modernization processes and each one of them has its peculiarities

such as the model abstraction level, the purpose of the MT and how the components

should behavior internally to provide an interoperability that could make possible its reuse.

Therefore, this doctoral research aims to answer the following question: How do to

design interoperable and modularized ADM-based modernization tools that incorporate

modernization solutions? A study that demonstrates how to use KDM (and other ADM

metamodels) in modernization tools is important to increase the adoption by academic

3

1.3 Contributions

research and business environments. The creation of tools that are concerned with concepts

such as reuse and interoperability, defended by ADM, have more chances of being used

by several researchers and practitioners and consequently would contribute to update the

state of the art.

Therefore, we have proposed a reference architecture for building ADM-based modern-

ization tools that is composed of i) Diagrams about MT structure/architecture and ii) A

taxonomy that supports the MT classification.

1.3 Contributions

The main contribution of this Ph.D. research are two.

Contribution 1. RADM - a Reference Architecture for ADM-based Modernization

Tools:

Several modernization tools were proposed in the literature, however, the publications

that presented this kind of tool did not aim to systematize their development process. This

scenario results in the lack of organization in the designing process. Aiming to mitigate this

research problem, we developed a reference architecture for ADM-based MTs that gathers

the knowledge of official ADM content and the knowledge presented in the literature in

order to systematize the way that modernization tools are designed and developed. We

propose a set of conceptual findings and diagrams containing the expected flows of each

process of a modernization tool in the different categories that it can be applicable. This

contribution is reported in Chapter 5 and in paper (Santos et al., 2019b).

Contribution 2. A Taxonomy for Software Modernization Tools:

Along the development of this project, we have noticed a lack of consensus about

several terms involving software modernization. Therefore, another contribution of this

thesis is a taxonomy to help in classifying modernization tools. A study was carried out

in order to categorize knowledge regarding tools that were intended to support any of

the stages of the modernization process. As a main result of this study, a taxonomy for

modernization tools was developed whose main objective is to help the understanding of

modernization tools and how they can be categorized according to the stage they support.

This contribution was reported in Chapter 4 and an initial discussion about modernization

tools in (Santos et al., 2018).

4

1.4 Usage Scenario

1.4 Usage Scenario

In this section, we describe a possible usage scenario for the reference architecture developed

in this thesis. In Figure 1.1, the usage scenario is from the perspective of the Modernization

Engineer. In this scenario, the engineer uses the reference architecture to develop his own

modernization tool. The RA has all the necessary knowledge to make this new tool to

have the selected quality attributes, such as interoperability and co-existence. Another

important point is that using this same RA, a modernization engineer can also restructure

an existing modernization tool, simply following the RA artifacts. At this level of use it

is also possible to be the beneficiary of existing tools, since existing modules from other

reusable tools are more easily reused as they follow the same base structure.

Software Engineer

Reference Architecture

* Usage Scenario

MT1

MT2

MT3

MTn

Modernization
Tools

Modernization Environment

+

Modernization Engineer

MT3

Modernization Tool
(RA Instance)

Documentation

Views

* Usage Example

Uses

Builds

Uses

Legacy System Modernized System
Input Output

Figure 1.1: Main scenario for using the results of this Ph.D research.

In the second part of Figure 1.1 we present a possible applicability from the result

of using our RA to build modernization tools. It is possible to see from the perspective

of a Software Engineer how a modernization environment that was designed according

to our reference architecture could benefit. In this usage example the software engineer

uses a set of modernization tools to modernize a Legacy System into a Modernized

System. As the RA can be used to support the creation of several MTs and usually

the software engineer needs to use more than one MT we claim that these MT are part

of a Modernization Environment, in which we could see several tools with specific roles

supporting the modernization/reengineering projects. In this usage example, the RA is

5

1.5 AdvanSE Group Research

behind the architectural concepts that were used to build the modernization environment,

enabling an interoperability between the involved MTs.

1.5 AdvanSE Group Research

The AdvanSE group (http://advanse.dc.ufscar.br/), which is part of the computing depart-

ment of the Federal University of São Carlos, has advanced considerably in the ADM/KDM

subject and so far, works of Metrics have been proposed for KDM (Honda, 2014), Light

and Heavy KDM Extensions (Santos, 2014), KDM Instance Mining (Santibáñez, 2013),

KDM Refactorings (Durelli, 2016), Architectural Compliance Checking for KDM (Chagas,

2016), Cloud Computing API Constraint Analysis Algorithm for KDM (COSTA, 2017),

KDM model to PSM model Transformation Engines (Angulo et al., 2018), DSL to Specify

Planned Architectures of Adaptive Systems (San Mart́ın e Camargo, 2021) and Architec-

tural Conformance Checking (Landi et al., 2021). Other themes, such as the one contained

in this proposal, are being researched in order to continue the studies already completed

by the group. Thus, it is intended that this work can contribute to the state of the art in

the subject1.

1.6 Research Roadmap

Understand the state of the art in ADM. TODO

1.7 Outline

In addition to this chapter, this Ph.D. research is organized as follows:

• In Chapter 2, the main concepts related to system modernization advocated by the

Architecture-Driven Modernization and its main metamodel Knowledge Discovery

Metamodel are presented. This chapter also presents the refactoring for models and

the concepts of reference architecture.

• In Chapter 3, we present the literature review of this Ph.D. research, including the

executed systematic mappings.

• In Chapter 4, we present a discussion about modernization tools and a taxonomy for

modernization tools.

1The complete list of publications can be seen in http://lattes.cnpq.br/6809743774407662

6

1.7 Outline

• In Chapter 5, a reference architecture for ADM-based modernization tools is presented.

In this chapter we discus about the architectural views to build these kind of tools.

• Chapter 6 concludes this thesis, stating its main contributions, the publications

generated during this work, and points out different opportunities for future work.

7

Chapter

2
Background

In this chapter we present the foundations of this PhD. research and how they are related

to support the development of this thesis. In section 2.2, we discuss software modernization,

presenting the main concepts related to this chapter. In the following sections, the main

concepts that involve the most recent practices in systems modernization and reference

architectures are shown. In Section 2.3 the Architecture-Driven Modernization is explained

and in section 2.4 we discuss model refactoring. In Section 2.5 we present the main

concepts of Reference Architecture. The Final Consideration are presented in Section 2.6.

2.1 Software Modernization

There is a huge variety of software system solutions spread across the most diverse sectors

of industry and commerce, and they are used for the most diverse purposes. It is possible to

say that every system, at some point, will need corrections, updates and improvements to

continue meeting the needs of its users, a fact that opens up a wide variety of modernization

tasks (Ulrich e Newcomb, 2010a). These technologies that are necessary for IT professionals

to carry out these upgrades are available for use in projects and yet, new approaches that

support this process are still emerging (Neubauer et al., 2017; Park et al., 2017).

Some technologies are made available through licensed or even free tools while others

are controlled by service providers, which are the cases where companies provide their

8

2.2 Architecture-Driven Modernization

own modernization service. In this case, these companies identify and drive modernization

technologies and services that are critical to the success of a system modernization process

(Gotti e Mbarki, 2016; Ulrich e Newcomb, 2010a).

When planning a modernization project, IT professionals can choose to use different

approaches, such as hiring companies to carry out all or part of the process, using licensed

or free tools and even developing their own tools. In practice, companies that need to

modernize their systems do not have a modernization strategy, that is, they are often able

to identify that they need to modernize, but they do not know how to conduct it. This is

due to the fact that there is a lack of knowledge about the modernization process and its

related techniques (Ulrich e Newcomb, 2010a).

Currently, one of the most used modernization methodologies and which has a solid base

of concepts and approaches to modernization of existing systems is the Architecture-Driven

Modernization. ADM has been available for a while and has faced many challenges as

it has already been deployed and redeployed in many organizations (Ulrich e Newcomb,

2010a). These challenges are directly linked to standardization, more specifically, the

lack of it. When a company implements ADM and is faced with a problem of lack of

standardization, several other problems are generated and this has a direct influence on

the rate of adoption of a given set of solutions that the company could use. However, as

the very purpose of ADM is to create this standardization, several metamodels were and

continue to be developed to solve this type of problem.

In parallel, the modernization of software could also benefit from reference architec-

tures concepts that could provide ways of building systematized tools that deals with

modernization processes.

2.2 Architecture-Driven Modernization

In 2003, the ADM Task Force was created and it was composed of several large companies,

including large hardware vendors, system integrators, independent software vendors, and

other organizations. ADM-TF built and issued a multi-stage modernization roadmap that

laid out a blueprint for a series of modernization patterns (OMG, 2021).

OMG’s focus was on creating a standard way of viewing unified information or metadata

that a given tool would gather, manipulate and share with other tools. Within the context

of modernization, this means defining a unified view of all artifacts involving existing

systems, since every modernization tool gathers and stores information about existing

systems in different ways (OMG, 2021).

9

2.2 Architecture-Driven Modernization

The participation of these companies in the foundation of ADM was very important,

since these companies had case knowledge, that is, they had experience of what worked and

especially of what still required an effort to be solved regarding modernization of legacy

systems. It is worth remembering that ADM is an approach that is constantly evolving

and this is due to the fact that even today, several large companies have partnerships with

OMG and offer products and services in the area of systems modernization (OMG, 2021).

ADM is a trend involving software reengineering processes and considers the use of

standardized metamodels and Model Driven Architecture (MDA) concepts in its processes.

The high number of failures in modernization projects (Berinato, 2003; Koch, 2002), was

one of the main motivational factors for the creation of ADM. According to the OMG,

the main reason for this problem was the lack of standardization, thus hindering the

productivity of development teams, preventing the reuse of algorithms and techniques,

and finally compromising the interoperability between modernization tools from different

vendors.

Te
ch

ni
ca

l
A
rc

hi
te

ct
ur

e
A
pp

lic
at

io
n/

D
at

a
A
rc

hi
te

ct
ur

e
B
us

in
es

s
A
rc

hi
te

ct
ur

e

Existing Architecture Target Architecture

Abstract Syntax Tree Metamodel (ASTM)

Knowledge Discovery Metamodel (KDM)

Structured Metrics
Metamodel (SMM)

Other OMG
Standard Metadmodels

Business Architecture
 Standards

Figure 2.1: General structure of ADM (Adapted from KDM (2011)).

In Figure 2.1 we present several OMG patterns between the business and IT domains.

At the technical level, refactorings are applied in order to change and update the technology

that the system is built on. At the application level, the refactorings aim to restructure the

application in order to improve some of the quality attributes, for example: maintenance,

modularization and reuse. And at the business level, refactorings are more focused on

making changes to system functionality, whether they are adding, removing or adapting

10

2.2 Architecture-Driven Modernization

business rules. The output is a new target model without the problems that were identified

earlier, which can be called a “modernized model”. In the forward engineering phase,

models are once again subjected to a set of transformations with the aim of reaching the

source code level again (Pérez-Castillo et al., 2011a).

Several standards support the evolution and transformation of existing business and

IT architecture to target business and IT architectures. Each of these metamodels is

responsible for reflecting different views of an architecture. The Abstract Syntax Tree

Metamodel (ASTM) pattern is tied to the technical architecture of existing solutions and

provides a more granular view of the architecture and supports automated transformations

from existing languages and platforms to target languages and platforms. The pattern

is a metamodel that aims to represent all aspects of an existing system (source code,

configuration files, database and so on). KDM is an information exchange metamodel that

facilitates interoperability between tools for any tool that captures or uses information

about IT architecture. Even though it is possible to use information from an ASTM

instance through KDM, both are metamodels that have different purposes and applicability.

OMG also provides other standards to support the system modernization process that

are complementary to KDM as they serve different purposes and support modernizations

regarding the architecture and data of an existing system. Such is the case of the Structured

Metrics Metamodel (SMM), which is a metamodel for defining, representing and exchanging

metric and measurement information related to any structured information model, such as

the OMG standard Meta Object Facility (MOF) (OMG, 2021).

Business modeling patterns support the mapping between business architectures and

systems architectures. Thus, it is possible to establish relationships between views from

the KDM metamodel and views from the OMG Semantics for Business Vocabulary and

Rules (SBVR) metamodel, since the KDM metamodel has metaclasses that can outline

business views of a system. The SBVR defines business semantics and the rules associated

with semantics and is able to represent other elements to provide a more complete view of

the business model, being able to represent elements such as: business units, capabilities,

processes, customers, partners and value chains, along with semantics and rules. So, even

though it is possible to sketch business elements with KDM, it is only possible to get a

complete picture through the use of the specific business patterns that lie in the business

architecture layer.

As mentioned before, the modernization flow supported by ADM has three phases and

it has the shape of a horseshoe, which are: Reverse Engineering, restructuring and forward

engineering, as can be seen in Figure 2.2.

11

2.2 Architecture-Driven Modernization

Reestructuring

Target
Solution

Recovery

Abstract

Abstract Refine

Refine

Generate

Target
CIM

Model

Knowledge Discovery
Metamodel (KDM)

F
o

rw
a
rd

 E
n

g
in

e
e
rin

g
R

e
v
e
rs

e
 E

n
g

in
e
e
ri

n
g

T

A

B

T

A

B

B
u
sin

ess
A
rch

itectu
re

A
p
p
lication

 an
d

D
ata A

rch
itectu

re
Tech

n
ical

A
rch

itectu
re

Shorter
Journey / Lesser

Impact

Longer
Journey / Greate

Impact

Target
PIM

Model

Target
PSM

Model

Source
CIM

Model

Source
PIM

Model

Existing
Solution

Source
PSM

Model

Figure 2.2: Architecture-Driven Modernization Blueprint.

Starting from the reverse engineering in the bottom left corner, the knowledge is

extracted from an existing solution and a Platform Specific Model (PSM) is generated.

In PSM there are meta-data related to a specific platform and programming language.

This abstraction level is also known as technical architecture and platform migration and

language-to-language conversion are examples of modernization that could be performed

in this architecture level.

The source PSM can also serve as a base to the creation of a Platform Independent

Model (PIM). The PIM has a higher abstraction level if compared to PSM because there

are no specific platform or language information. Also known as Application and Data

Architecture, in the PIM level is possible to perform modernization of the type: Service

Oriented Architecture Transformation and Data Architecture Migration, for example.

The Computing Independent Model (CIM) is generate from a PIM and it is the highest

abstraction level in a modernization process. In this level the business rules of a software

system can be represented as a computer independent way. The CIM level is also known

as Business Architecture, thus Data Warehouse Deployment and Application Portfolio

Management are examples of the modernization scenarios that can be performed in this

abstraction level.

12

2.3 Knowledge Discovery Metamodel

In restructuring phase refactorings can be performed in the software system in order

to get an improved version of the software system structure always preserving its original

behavior. Refactorings are model transformations that can improve the design, maintenance

and reuse of existing software systems (Durelli, 2016). According to Pérez-Castillo et al.

(2011a) and Sadovykh et al. (2009) the restructuring phase can occur in any abstraction

level (PSM, PIM and CIM) and the higher the abstraction level the greater the impact of

changes in the software system.

The forward engineering phase is triggered when the refactorings were performed. It

consists in a set of transformations to reach the source code level again.

2.3 Knowledge Discovery Metamodel

KDM is an ISO standard (Pérez-Castillo et al., 2011a) and it is the first of a series

of specifications related to ADM activities. KDM assists in projects involving existing

software systems facilitating interoperability and data exchange between tools produced

by different vendors.

A common feature of many tools that deal with ADM challenges is that they analyze

artifacts from existing systems (e.g. source code modules, database descriptions, and so

on) to gain explicit knowledge of some software system (Ulrich e Newcomb, 2010a).

KDM metamodel provides a unified ontology and information exchange format that

facilitates the exchange of information contained within tool models representing existing

software. This metamodel is able to represent physical and logical software artifacts as

well as their relationships at the most varied levels of abstraction. The primary objective

of KDM is to enable a universal exchange format that allows interoperability between

modernization tools, services and their respective intermediate representations. This

metamodel also allows developing neutral content for different vendors (standards, rules,

metrics, etc.) to be used in modernizations based on the KDM standard instead of

proprietary intermediate representations of software systems (Ulrich e Newcomb, 2010a).

Using this representation, it is possible to exchange systems representation between

platforms and languages in order to analyze, standardize and transform existing software

systems (OMG, 2021). The KDM metamodel is formed by 12 (twelve) packages, organized

in four layers: infrastructure, program elements, runtime resources and abstractions.

In Figure 2.3 we present the KDM architecture, and shows how the layers are related,

which packages belong to each layer and the separation of interests in KDM. Each layer

builds on the previous layer, so they are organized into packages that define a set of

metamodel elements, whose purpose is to represent a specific and independent interest

13

2.3 Knowledge Discovery Metamodel

Figure 2.3: Layers, packages and separation of concerns in KDM (Adapted from KDM
(2011)).

of knowledge related to legacy systems (Pérez-Castillo et al., 2011a). The infrastruc-

ture layer, which is at the lowest level of abstraction, defines a set of concepts used

throughout the KDM specification, providing a common core for all other packages. The

program elements layer provides a broad set of metamodel elements in order to provide

a language-independent intermediate representation for various constructs defined by

common programming languages. This layer represents implementation-level program

elements and their associations, so the program elements layer represents the logical view

of a legacy system (Pérez-Castillo et al., 2011a).

The runtime resource layer allows the representation of high value knowledge about

legacy systems and their operating environment, that is, it focuses on what is not contained

in the source code. The runtime resources layer represents the resources managed by the

runtime platform, providing abstract resource actions to manage the other resources. Each

package in this layer defines specific entities and containers to represent legacy system

resources and also specific structural relationships between resources. The abstraction

layer defines a set of elements capable of representing abstractions of specific domains and

applications, as well as artifacts related to the process of building the existing system.

Abstraction layer metamodel elements provide various containers and groups for other

metamodel elements (Pérez-Castillo et al., 2011a).

Finally, the micro KDM package aims to refine the semantics defined in the KDM

ontology. The micro KDM package is mainly applied to the action elements, found in the

action package. Micro KDM is a set of compliance rules, additional guidelines for building

and interpreting high-fidelity KDM views, suitable for performing (Pérez-Castillo et al.,

2011a) static analysis.

14

2.3 Knowledge Discovery Metamodel

2.3.1 KDM Compliance and Domains

KDM is a metamodel with a wide scope that covers many applications, platforms and

programming languages, however, not all of its capabilities are equally applicable for all

platforms, applications or program languages. The main objective of KDM is to offer

the ability to exchange information between models of different tools and thus facilitate

cooperation between tool providers so that it is possible to reuse different solutions in

different projects. To achieve interoperability and integration of information from different

tools is that the KDM metamodel specification defines several levels of compliance, in this

way, it increases the probability that two or more compatible tools will be able to work

together. KDM follows the principles of separation of concerns to allow the selection of

only those parts of the metamodel that are of interest for the development of a specific tool.

This separation of concerns can also be called KDM domains (KDM, 2011; Pérez-Castillo

et al., 2011a).

A system is composed of several interests and each one of them has relevant information

about a certain domain, each domain can be represented by a different KDM domain,

as can be seen in Figure 2.4. Each KDM domain defines an architectural point of view.

Each point of view of a domain is defined by its own KDM package, which has specific

metaclasses to represent the system elements corresponding to a given point of view. The

metaclasses defined by all KDM packages constitute an ontology for describing existing

systems. For example, the Code and Action packages define the point of view for the source

code domain that represents source code elements of a system, such as variables, procedures,

and declarations. The Structure package defines the viewpoint for the structure domain

that represents architectural elements of the system, such as subsystems and components.

The package Conceptual corresponds to the business rules domain and defines the point of

view to represent behavioral elements of a system, such as characteristics and business

rules (KDM, 2011; Pérez-Castillo et al., 2011a).

Since the same system can have different points of view, it may be necessary to

maintain a traceability between them, so that a better understanding and control of the

representation in KDM can be obtained. In this way, KDM formally allows traceability

between domains, that is, it is possible to represent the existing links between different

domains natively, without the need to use other methods/metamodels outside KDM (KDM,

2011).

As you can see in Figure 2.4, there are 8 domains in the KDM metamodel, which

are: Code, Build, Structure, Data, Business Rules, UI, Event, Platform and micro KDM.

Please notice that the Code domain contemplates all L0 KDM packages: Core, kdm,

15

2.3 Knowledge Discovery Metamodel

Build Structure Data Conceptual UI Event Platform Micro
KDM

Core + kdm + Source + Code + Action

Build
Domain

Structure
Domain

Data
Domain

Business
Rules

Domain

User
Interface
Domain

Event
Domain

Platform
Domain

Analysis
Domain

All KDM domains

L0

L1

L2

Compliance Levels

Compliance Domains

Figure 2.4: KDM domains and compliance levels KDM (2011).

source, code and action. These domains represent the basis for building KDM compliance

levels. On the other hand, these levels of compliance mean that you only need to worry

about the parts of KDM that are necessary to carry out your activities. Each domain is

self-sufficient to represent a certain point of view of the system, if another domain is needed

to represent a different point of view, there will be no major impacts on the representation

that already exists. Consequently, if the intention is to develop a tool that only involves

the Structure domain, for example, it is not necessary to have full knowledge of the KDM

metamodel to use it efficiently. However, most of the KDM domains were partitioned into

multiple increments, that is, each one is responsible for adding more knowledge to the

previous domain, in such a way that they are complementary to each other (KDM, 2011;

Pérez-Castillo et al., 2011a).

This division into domains aims to make it easier to learn and to use the KDM

metamodel. However, these domains do not necessarily mean that each one represents a

level of compliance, as this would generate an excessive number of levels of compliance and

it would complicate the interoperability between the tools that would implement these

domains. Still in Figure 2.4, the three levels provided for in the formal specification of

KDM (KDM, 2011) are represented.

Compliance level L0 has the following KDM packages: Core, kdm, Source, Code and

Action. This level provides an entry level of knowledge discovery capability, that is, it

16

2.4 Reference Architectures

represents a common denominator that can serve as a basis for interoperability between

different categories of tools that use KDM. For a tool to be considered at compliance level

L0, it is important that it fully support all metaclasses of packages mentioned at this level

(Pérez-Castillo et al., 2011a).

The L1 compliance level supports all L0 packages and adds the following Build,

Structure, Data, Conceptual, UI, Event, Platform, and MicroKDM packages. This level

represents the layers in which modernization tools can be complementary as long as their

focus is on different interests. For example, it is possible to have a modernization tool

that supports the Level 0 packages and also the Structure package and another tool

that also supports the L0 packages and the Conceptual package. As these tools support

different KDM interests and are based on L0, we claim that they are complementary

and interoperable. For a tool to be considered Level 1 conformance for a given domain

(KDM metamodel package), the tool must fully support all metaclasses defined by the

package for that domain and satisfy all semantics and constraints specified by the domain

(Pérez-Castillo et al., 2011a).

The L2 compliance level is basically the union of levels 1 for all KDM domains, that

is, for a modernization tool to be at the L2 level of compliance, it must fully support all

packages and metaclasses of the KDM metamodel (Pérez-Castillo et al., 2011a).

2.4 Reference Architectures

A Reference Architecture is a structure that provides a software system functionalities

characterization from the perspective of technology, application or problem of a specific

domain. A RA can be used in three different contexts: (I) to help in the development of new

systems‘s concrete architecture, (II) to help in evolution/modernization of software systems

that are from the same domain, or (III) to help in the standardization and interoperability

of software systems (Galster e Avgeriou, 2011).

Thereby a RA can be used as a guide to improve the chances of successfully develop a

software system, it also can be considered as the first essential step to the development of

application frameworks. Application frameworks are standard structures which aim to

support the software systems development (Nakagawa et al., 2014a).

The proposal of a RA to a specific domain is not a trivial task because it requires a

deep knowledge about this specific domain. Thus, the creation process of a RA involves

several steps and it demands the analysis of several artifacts like software systems, concrete

architectures, scientific papers, technical reports and other documents that have embed

knowledge about the specific domain of the RA that will be built. The reuse of these

17

2.4 Reference Architectures

artifacts when used together with the domain experts knowledge are one of the success

keys to the development of a RA (Galster e Avgeriou, 2011; Nakagawa et al., 2014a).

2.4.1 Reference Architecture Types

The creation of a reference architecture, can be started after the identification of an

architecture problem. However, is not always possible to have or use systems that help in

this analysis. Thus, in this way, we can drive the architecture creation in two main types:

Futuristic Reference Architecture (FRA) and Practical Reference Architecture (PRA)

(Angelov et al., 2008b).

Futuristic Reference Architectures are defined with the help of existing research that

does not have practical experiences of concrete architectures, that is, it is when systems are

not available to extract knowledge from a specific domain. Thus, We can imply that these

reference architectures are oriented to research and it are mainly based on existing reference

models and architectural patterns. The objective of this type of reference architecture is

an attempt to “look to the future” in a way that it is possible to foresee some important

principles that may be part of the design of a concrete architectures for a domain (Angelov

et al., 2008b). Examples of FRA can be seen in Angelov e Grefen (2008), Norta (2007)

and Wu (2002).

Practical Reference Architectures are guided by practical experiences in which concrete

architectures represent the main sources of information. PRAs, in general, consider the

legacy systems in their project and/or creation. Usually it is developed by organizations

responsible for standardization to facilitate development within a specific domain or

by groups of large companies operating in the same domain to establish or enforce

standards (Angelov et al., 2008b). Examples of PRA can be seen in Zimmermann (1980),

Hollingsworth et al. (2004) and Grefen e de Vries (1998).

Besides this division proposed by Angelov et al. (2008b), it is more common to find

reference architectures that consider both types. As can be seen in the work of Nakagawa

et al. (2014b), any form of knowledge extraction can be used for the elaboration of a

reference architecture. Even in cases where there is a lack of legacy systems in the domain,

it is possible to investigate systems from nearby domains in order to extract patterns that

can assist in the creation process. In Figure 2.5 the union between the main methods of

information extraction used in both types are represented.

In Figure 2.5 we can see that concrete architectures are part of the main elements of the

knowledge present in a reference architecture, as well as reference models and architectural

patterns, thus reinforcing what is proposed by Nakagawa et al. (2014b).

18

2.4 Reference Architectures

Reference
Model

Architectural
Standard

Reference
Architecture

Concrete
Architecture

Contributes

Generates
Contributes

Contributes

Figure 2.5: Reference Architecture Composition (Adapted from Angelov et al. (2008b)).

2.4.2 Reference Architecture Attributes

Nowadays, there is a wide variety of systems available on the market and in the scientific

community. These systems have wide spread business rules and functionalities, being used

in different areas. To meet the requirements for these systems, it is necessary to choose the

quality attributes that best satisfy its demand. Quality attributes can be considered like a

system requirements and when a system meets these attributes they can be considered as

high quality systems (ISO/IEC25010, 2011; Nakagawa, 2006).

In the context of Reference Architectures (RA), quality attributes are fundamental

because their definition can be considered as decisive factor for their creation and/or

adoption. RA that have a certain set of quality attributes, in short, transmit these

characteristics to the systems that are developed based on their guidelines.

A quality model is formed by a set of quality attributes, this set is the basis for assessing

the quality of a system. The quality attributes chosen for the model is responsible for

determining which attributes will be taken into account when assessing a determined

system. Thus, the quality of a system corresponds to the degree to which a system meets

the needs established by its target audience/model (ISO/IEC25010, 2011).

ISO/IEC 25010 is an ISO standard available since 2011 for software product quality.

This standard defines models for assessing the quality of software and systems. The

use of ISO/IEC 25010 has a fundamental importance in the elaboration of a Reference

Architecture, once it provides a consistent terminology for the specification, measurement

and quality evaluation of systems. Some of the main benefits when we use/apply a quality

model in our software can include (ISO/IEC25010, 2011):

• easiness during the requirements discovery;

• validation of the scope of a requirement;

• identification of the design objectives;

19

2.4 Reference Architectures

• identification of the test objectives;

• identification of quality control criteria as part of quality assurance;

• identification of the acceptance criteria;

• definition of measures for quality attributes.

ISO/IEC 25010 emerged as a proposal to replace the ISO/IEC 9126 standard. The

25010 has as main novelties the addition of two new features, ”security” and ”compatibility”

(ISO/IEC25010, 2011). In Figure 2.6 are presented all 8 quality attributes and their

sub-attributes related to the quality of the software product based on ISO/IEC 25010.

*Functional
Completeness

*Functional
Correctness

*Functional
Appropriateness

*Time Behaviour

*Resource Utilization

*Capacity

*Co-existence

*Interoperability

*Appropriateness Recognizability

* Learnability

* Operability

* User Error Protection

* User Interface Aesthetics

* Accessibility

*Maturity

*Availability

*Fault Tolerance

*Recoverability

*Confidentiality

*Integrity

*Non-repudiation

*Authenticity

*Accountability

*Modularity

*Reusability

*Analysability

*Modifiability

*Testability

*Adaptability

*Installability

*Replaceability

Functional Suitability

Performance Efficiency

Compatibility

Usability

Reliability

Security

Maintainability

Portability

Software Product Quality

Figure 2.6: Quality attributes for a Software product (Adapted from ISO/IEC25010
(2011).

Each quality attribute has a set of other attributes inside it, here we will call them

as sub-attributes, as we can see in Figure 2.6. When all sub-attributes within a specific

attribute are met, it is possible to state that the system has this quality attribute. For

example, if a system is able to coexist (Coexistence sub-attribute) and is interoperable

(Interoperability sub-attribute) with other systems, it can be said that it is a system

compatible with others (Compatibility quality attribute).

There are cases in which not all sub-attributes are met. For these cases, it can be

said that the attribute has been partially met, however the sub-attributes it meets is

part of its knowledge. For instance, it is possible that a system is partially portable

(Portability quality attribute) and meets only the Adaptability sub-attribute. This means

20

2.4 Reference Architectures

that only the Adaptability was evaluated in the context of this system. In the specification

of ISO/IEC25010 (2011) the term “degree” is used to assist in the description of all 8

attributes, as can be seen in Table 2.1.

Table 2.1: Quality attributes of a Software (Adapted from ISO/IEC25010 (2011))

Attribute Description

Functional Capacity
Degree of attendance with the needs of the product/system when used under certain

conditions.

Performance Efficiency
Degree of performance relative to the amount of resources that are used under established

conditions.

Compatibility

Degree of exchanging of information between products, systems or components, and/or

perform its functions as required, while sharing the same hardware or software

environment.

Usability
Degree of a product/system to be used by specific users to achieve specific objectives with

effectiveness, efficiency and satisfaction during a specific using context.

Reliability
Degree of a product/system to performs specific functions under specific conditions, for a

specific period of time.

Assuredness

Degree of a product/system to protects information and data in a way that the

communication with other products/systems have the same degree of data access

appropriate to their types of authorization levels.

Maintainability
Degree of effectiveness and efficiency with which a product/system can be modified to be

improved, fixed or adapted to changes in environment and in the requirements.

Portability
Degree of effectiveness and efficiency with which a product/system can be transferred

from one hardware, software or other operational environment to another one.

The term degree present in Table 2.1 can be understood as a measure that represents

a specific level of satisfaction that a given system has in relation to a specific quality

attribute. It is important to understand the purpose of each quality attribute, as well as

its sub-attributes, for the correct adoption in a given architecture.

2.4.3 Reference Architecture Evaluation

In the process of creating a RA all stages are essential, however, the evaluation stage

requires a greater effort. In this stage that it is possible to identify the strengths and,

especially, the weaknesses of the architecture. The consistent evaluation of an RA increases

the chances of its use by researchers and system developers. In other words, a well-planned

assessment of a reference architecture is an incentive for its wide adoption.

In the context of evaluating a reference architectures, several authors have used

assessment approaches for common software architectures, making adaptations so that

they can be applied in a RA. Babar e Gorton (2004) compare four evaluation methods for

21

2.4 Reference Architectures

scenario-based architectures using an assessment framework. This framework considers

each method from four points of view, that are context, domain experts, structure and

reliability.

Angelov e Grefen (2008) adapted an existing method for evaluating concrete architec-

tures and quality attributes (such as applicability, usability, feasibility and automation).

They use classic techniques of logic, such as comparisons between functionalities, elabora-

tion of scenarios based on experts feedback and the use of methods for evaluating a set of

qualities (Architecture Trade-off Analysis Method - ATAM).

Evaluating a reference architecture has not been a trivial step when considering methods

that are not specific for this purpose. Using classic techniques employed in the evaluation

of software architectures in reference architectures requires adaptations as well as a greater

effort.

The methodology proposed by Santos et al. (2013) is called Framework for Evaluation

of Reference Architecture (FERA) and is dedicated exclusively to evaluate reference

architectures, regardless of the domain. This methodology can be used either alone or

in conjunction with other evaluation methodologies. Since the checklist approach can

be considered simple, cheap, flexible and it is still capable of carrying out a high-level

assessment. It also can save a good amount of resources and time by discovering defects

and clearing doubts in a early stage of the reference architecture life cycle. In order to

have its effect maximized, it is recommended applying it during the preparation of RA, as

at this stage the defects can be identified and corrected before obtaining a final version.

An example can be seen in Figure 2.7.

Step RA-3:
Architectural

Synthesis

Step RA-4:
Architectural
Assessment

Evaluation
Results

Legenda:

Step

Information/Artifact Flow

Process flow

Checklist

Checklist

Figure 2.7: Steps to create an RA in a way that the checklist can be applied (Adapted
from Santos et al. (2013)).

According to Santos et al. (2013), when using the FERA checklist it is possible to

obtain a set of information about the reference architecture being developed, like:

22

2.4 Reference Architectures

• the RA is adequately represented, that is, the RA provides general information about

potential risks, limitations and scope;

• the RA has an appropriate set of architectural views to its representation;

• the documentation of the RA has important information, such as architectural deci-

sions, best practices/guidelines, policies/rules, international standards and interfaces

between modules;

• the RA considers the quality attributes related and important to its domain;

• it is easy to create/instantiate a system based on the RA; and

• what could be changed on any topic like documentation to get a better RA informa-

tion.

The results of this evaluation can be used to improve the architectural documentation

of reference architectures. The checklist proposed by FERA consists of 93 multiple-choice

questions whose answers can range from ”completely satisfactory”to ”totally unsatisfactory”.

Each question has a field for adding comments from those who are evaluating the RA.

This questionnaire must be answered by a set of people who represent the interested

parties, which can be architects, domain experts, analysts, software project manager,

designers/developers, testers and other parties interested in guarantee the quality of the

RA (Nakagawa et al., 2014b).

The FERA checklist is structured in four stages, which are: (1) General Information;

(2) Raising Discussions; (3) Conclusion of the General Analysis; and (4) Domain Specific

Questions. The stages 1 and 4 are divided into two more groups, where each group has

specific questions that are targeted to a specific audience. The complete layout of the

stages, groups, questions and subjects covered can be seen in Table 2.2 (Santos et al.,

2013).

Based on Table 2.2, it is possible to extract information about what information each

question group is responsible for evaluating. For example, in the first group of the first

stage there are nine questions that evaluate the overall information, the points of view,

the views, the models, the stakeholders and the concerns. In the second group of the first

stage, there are 16 questions regarding legal regulation, questions related to ISO 420101,

1ISO/IEC/IEEE 42010:2011 addresses the creation, analysis and support of system architectures
through the use of architectural descriptions. This standard defines a conceptual model for the architecture
description, specifies the content required for the description, and also specifies the content necessary for
architectural views, architectural frameworks and architectural description languages.

23

2.5 Model Refactoring

Table 2.2: Stages, Number of questions and Evaluation Topics of the FERA checklist
(Adapted from Santos et al. (2013)).

Stage Group Questions Group Evaluation Topics

1
1 9 Overview information, points of view, views, models, stakeholders and interests.

2 16
Legal regulation, compliance with ISO 42010, design/development issues,

domain specific issues, artifact compliance and quality attributes.

2 1 52 Specific questions for stakeholders.

3 1 3 Overall analysis conclusion.

4
1 11 Specific questions related to hardware.

2 3 Specific questions related to software

design/development problems, domain specific issues, artifacts compliance and quality

attributes.

2.5 Model Refactoring

The main mechanism used to materialize the modernization process advocated by ADM

are the transformations from legacy software metamodel instances into modernized ones.

These transformations can also be understood as Refactorings which are transformations

used to improve the structure of a system, in such a way that its behavior is preserved even

after successive (Van Der Straeten et al., 2007) transformations. Refactorings allow you

to restructure, realign, modularize, that is, redo the source code and the way an existing

tool is used, thus, refactorings can be understood as a process that aims to redistribute

functionality to improve an existing system.

According to Opdyke (1992), refactorings can be understood as a set of transformations

that, when applied to an existing system, enable its restructuring in order to improve its

design, evolution and reuse. Refactorings are important allies in the process of restructuring

a system, however, it is important to keep in mind that the changes made do not impact

the behavior of the system’s functionalities. Chikofsky e Cross (1990) state that the

restructuring process consists of altering a system in such a way that its internal structure

is improved, however, the external behavior of the source code should not be modified.

The use of refactorings can bring a number of benefits to a system. These benefits

will depend on the type of change you want to make, for example, in the maintenance

stage of a system it is possible to apply refactorings that help the source code to become

more readable or make the interests of the system to be modularized (Pérez-Castillo

et al., 2011a). Several authors have proposed sets of refactorings that can range from

domain-specific to more generic refactorings. One of the best known refactoring catalogs

24

2.5 Model Refactoring

is the one proposed by Fowler e Beck (1999), it proposes source code refactorings for the

object-oriented paradigm.

Refactorings provide assistance in the modernization of systems, since through them

it is possible to perform business rules extraction, cross-platform migrations and other

modernization scenarios (Pérez-Castillo et al., 2011a). In the context of ADM, refactorings

are performed at the model level, as ADM uses the MDA concepts (OMG, 2021). Model

refactorings have the same goals as a source code refactoring, the main difference being

the level of abstraction.

Model refactorings can be understood as model transformations and its main objective

is to improve the model’s structure, as well as to preserve its internal characteristics, that

is, it does not differ from other types of refactorings (Einarsson e Neukirchen, 2012; Van

Der Straeten et al., 2007). However, refactorings applied to models have a greater challenge,

since there is greater diversity in relation to the level of abstraction that refactorings can be

applied. Thus, if a refactoring for models was developed to act at one level of abstraction,

it cannot be applied at another level without undergoing an adaptation. Another problem

is that when refactorings are developed to be applied to a model coming from a proprietary

metamodel, the chances of reusing this refactoring are drastically reduced. This fact

reinforces the importance of adopting standard metamodels, since the refactoring developer

itself can benefit from the reuse of existing refactorings.

Authors such as Mens (2008), Mohamed et al. (2010) and Mens et al. (2007) state that

model transformation plays a fundamental role in approaches that use MDA principles,

as it allows model manipulation in an automatic way. Transformations consist of the

automatic generation of a target model, based on a source model, in such a way that this

transformation is defined by means of a set of transformation rules (Mens e Van Gorp,

2007). According to Mens e Van Gorp (2007), there are three possible classifications for

model transformations, which are: Vertical or Horizontal, Endogenous or Exogenous and

Bidirectional.

In Table 2.3, transformations between source and target models can happen at one or

more abstraction levels and there are cases in which more than one classification can be

used at the same time, that is, they can be complementary. For example, when there is a

refactoring capable of transforming a PIM model represented in KDM into a CIM target

model also in KDM and this refactoring is capable of doing the opposite process, that is,

transforming the CIM model into PIM, both in KDM, we can affirm that this refactoring

is vertical, endogenous and bidirectional.

25

2.6 Final Considerations

Table 2.3: Classification of model transformations (Adopted from Durelli (2016))

Classification Name Description

1
Vertical

In the vertical transformation, there is a change in the level of
abstraction in the models and this change can be either to increase
or to decrease the level of abstraction.

Horizontal
A horizontal transformation keeps source and target models at
the same level of abstraction.

2
Endogenous

In endogenous transformations, the models involved are expressed
in the same modeling language .

Exogenous
In exogenous transformations, the models that participate in the
transformation are from different languages.

3 Bidirectional
A bidirectional transformation can either generate target
models using source models as a basis, or generate source
models using target models.

According to Mens e Tourwe (2004), performing the refactoring process for models

is quite complex and involves a series of activities that must be performed so that a

refactoring can be considered to serve its purposes.

The first activity is to select an appropriate model for applying refactoring (Selecting

a Model). The second activity is to select an appropriate model transformation system

to specify the model and transformation rules for the refactoring (Model Transformation

System). The third activity is to identify excerpts within the model that need to be

refactored (Model Smells2). The fourth activity is to select the appropriate refactorings

that can be applied to the stretches that were identified in the previous activity (Selection

of Model Refactorings). The fifth activity is to verify if the model’s behavior will be

preserved right after the refactorings are applied (Knowledge Preservation). The sixth

activity is to apply refactorings (Application of Refactorings) and the seventh is to assess

the effects of refactorings on software quality (Assessment of Refactoring Effects). The

eighth and final activity is to check whether the consistency between the refactored model,

other software models and source code has been preserved (Model Synchronization) Mens

e Tourwe (2004).

2.6 Final Considerations

A Reference Architecture is a structure that provides a software system functionalities

characterization from the perspective of technology, application or problem of a specific

domain. A RA can be used in three different contexts: (I) to help in the development of new

systems‘s concrete architecture, (II) to help in evolution/modernization of software systems

2Model Smells represent indications that there may be problems that need to be addressed in a model
and that it is necessary to review it (Fowler e Beck, 1999).

26

2.6 Final Considerations

that are from the same domain, or (III) to help in the standardization and interoperability

of software systems (Galster e Avgeriou, 2011).

Thereby a RA can be used as a guide to improve the chances of successfully develop a

software system, it also can be considered as the first essential step to the development of

application frameworks. Application frameworks are standard structures which aim to

support the software systems development (Nakagawa et al., 2014a).

The proposal of a RA to a specific domain is not a trivial task because it requires a

deep knowledge about this specific domain. Thus, the creation process of a RA involves

several steps and it demands the analysis of several artifacts like software systems, concrete

architectures, scientific papers, technical reports and other documents that have embed

knowledge about the specific domain of the RA that will be built. The reuse of these

artifacts when used together with the domain experts knowledge are one of the success

keys to the development of a RA (Galster e Avgeriou, 2011; Nakagawa et al., 2014a).

27

Chapter

3
Related Works and Systematic

Mappings

This section presents the works we consider the most related to our research and those

that have colaborated in some degree to the RA we have developed. Up to this moment

there are no reference architectures specifically devoted to assist in building neither

general modernization tools nor ADM-based modernization tools. So we present some

initiatives that have worked around modernization tools since these papers usually present

contributions around the architecture of these tools.

3.1 Modernization tools that use ADM standards

The first related work is the tool presented by Durelli (2016) which is an approach to

perform model refactorings based on the catalog of refactorings from Fowler e Beck (1999).

The Knowledge Discovery Model-Refactoring Environment (KDM-RE) tool supports

modernization processes and it uses internally the Unified Modeling Language (UML), the

KDM and the Structured Refactoring Metamodel (SRM) metamodels.

Durelli (2016) approach’s has the following steps:

28

3.1 Modernization tools that use ADM standards

Figure 3.1: KDM-RE’s architecture (Durelli, 2016).

• initially, the software engineer must convert the system to be modernized to an

instance of KDM metamodel;

• the KDM instance should be converted to an instance of the UML metamodel;

• the UML instance can then be visualized through the UML class diagram, which is

used as a graphical interface during the modernization process;

• the software engineer can then interact with the class diagram and choose a set of

refactorings to be applied;

• after choosing a refactoring, the engineer must provide information for the correct

execution of the refactoring. This information is sent to a transformation language

that is responsible for performing the refactoring in KDM instance.

The tool’s architecture can be seen in Figure 3.1. The first layer of the KDM-RE

tool groups Eclipse IDE resources and It counts with the help of other plug-ins available

in the literature for the creation of the three main modules of the tool. The KDM-RE

layer has three main modules, Refactoring, SRM and Synchronization. The Refactoring

Module is responsible for applying refactorings transparently in to KDM instances, the

SRM Module is responsible for instantiating and to reusing the SRM metamodel, and the

Synchronization Module is responsible for keeping consistent and propagating changes

after applying refactorings to instances of the KDM metamodel. The last layer is called

UI and is responsible for the tool’s graphical interface.

29

3.1 Modernization tools that use ADM standards

Based on a systematic mapping conducted by our research group (Durelli et al., 2014),

we have identified two main works that present contributions related to tool support. The

first is the work of Pérez-Castillo et al. (2011b); Pérez-Castillo et al. (2011a) and the

second is the related work is from Frey e Hasselbring (2011); Frey et al. (2013). Both of

these works are described next.

Pérez Castillo et al., (2011a, 2011b) present a tool-supported approach for recovering

business processes from existing systems. As these authors employ KDM in their tool, the

proposed approach is interesting from the point of view of this work. However, notice that

the approach is concentrated only in the reverse engineering phase, not covering all phases

of a complete modernization process.

The tool-supported approach proposed involves a set of three-phase transformations:

• The first set involve transformations that take into account artifacts of the legacy

system. In this phase, it was used a specific metamodel for each artifact. Traditional

reverse engineering techniques were used here, such as static analysis, dynamic

analysis and formal concept analysis.

• The second set of transformations were developed to get a KDM instance from the

model instances generated in the first step.

• The third, and last, set of transformations is responsible for obtaining the model

representing the business processes. These transformations were based on a set of

business patterns.

In Figure 3.2 we can see the complete business discovery process. Level 0 (L0) represents

real-world legacy system artifacts, level 1 (L1) represents instances of PSM models, level 2

(L2) represents PIM models, and level 3 (L3) the CIM.

To transition from level 0 to 1, the approach provides a semi-automatic technique based

on dynamic analysis combined with static analysis to analyze source code and generate

an event log model. To transition from level 1 to 2, a set of model transformations is

performed to transform the event log model into an instance of the KDM metamodel

to describe the legacy system information, taking into account the runtime view, which

can be used in most modernization projects. Finally, level 3 (L3) represents the end of

the discovery process, that is, obtaining the system’s business process model that was

retrieved from the legacy source code. This model represents a CIM and conforms to the

specifications of the BPMN metamodel.

Another work related to ours was proposed by Frey e Hasselbring (2011) and Frey et al.

(2013). The proposal is a tool-supported approach called CloudMIG whose main objective

30

3.1 Modernization tools that use ADM standards

Figure 3.2: Approach to business process recovery - MARBLE (Pérez-Castillo et al.,
2011a).

is to support the migration of legacy systems to Software as a Service (SaaS) in a semi-

automatic way. This approach comprises six main steps (Figure 3.3), which are:

Figure 3.3: Approach to transforming legacy systems to the cloud - CloudMig (Frey e
Hasselbring, 2011).

31

3.2 Tools that apply refactorings in UML

1. Extraction (A1): The extraction of the KDM architecture and models from the legacy

system is included;

2. Selection (A2): An appropriate cloud environment model (Cloud Environment Model -

CEM) is selected according to the characteristics of the system;

3. Generation (A3): A target architecture and a mapping model are generated;

4. Adaptation (A4): The adaptation activity allows an engineer to manually adjust the

target architecture, performing changes where It was necessary;

5. Evaluation (A5): Static analyzes and runtime simulations of the target architecture are

carried out;

6. Transformation (A6): The actual transformation of an existing system is carried out

based on the target architecture that was generated to act in the cloud environment

(A6 is not represented in the Figure, as it represents the system itself).

3.2 Tools that apply refactorings in UML

The second group of research are those that propose tools that apply refactorings in UML

instances. The architectures of these tools contributed to the body of knowledge of our

RA.

The work of Misbhauddin e Alshayeb (2015) was identified, in which a systematic review

was performed in order to identify and to classify papers that propose refactorings for

UML metamodel. The primary studies selected were grouped into six categories, namely:

(1)Model Transformation Systems, (2)Model Smell Detection Strategies, (3)Support for

UML Diagrams, (4)Model Behavior, (5)Model Quality and (6)Tooling Support.

The working group that will contribute to the development of the RA are the ones that

provide Tooling Support for refactorings in the UML metamodel. The work of Misbhauddin

e Alshayeb (2015) selected a total of 63 primary studies, in which 39 have some type of

tooling support. Among the information that was extracted from this systematic review

are the types of tools, the modeling environment and the level of automation.

Among these works, Einarsson e Neukirchen (2012) presents an approach to perform

synchronous refactorings between an UML diagram and an UML model through trans-

formations between models (Model-to-Model Transformations - M2M). According to

Einarsson e Neukirchen (2012), a model is completely independent of its visualization,

since in the model there is no information about the layout of the diagram. The proposed

32

3.2 Tools that apply refactorings in UML

Figure 3.4: Workflow of refactorings proposed by Einarsson e Neukirchen (2012).

approach uses an existing API that allows the representation of UML diagrams for Eclipse

called Papyrus. Papyrus is able to interpret an UML model (*.uml) and represent it as an

UML diagram (*.notation). The complete approach has 6 (six) steps, which are:

1. Start transformation: The user selects the refactorings to be applied with the help

of Papyrus and activates the Invocation library mechanism.

2. Get input models: At this moment, the invocation library (Invocation library)

retrieves the *.uml file that contains the UML model and the *.notation file that

contains the UML diagram and sends them to the next step;

3. Invoke transformation: These models are sent to the transformations module QVT

Operational Mappings (QVTO) which selects the necessary transformation rules to

perform the chosen refactorings;

33

3.2 Tools that apply refactorings in UML

4. Call blackboxing operations : This step is optional and can be invoked by the QVTO

transform module, which can choose whether or not to call blackbox functions1

(black-box);

5. Return output : In this step, the QVTO transformations were applied to the models

and returned to the Invocation library module;

6. Save output : Finally, after executing the transformations, the invocation library

saves the refactored models, replacing the original models, so that Papyrus can redo

the reading of the models.

In the work of Van Der Straeten et al. (2007) mathematical formalisms are proposed

for the preservation of behavior between sequence and state machine diagrams and their

refactored versions. The approach was implemented through a plug-in called RACOoN

and was developed to be used in an environment of tools that apply refactorings to UML

models. In Figure 3.5 it is possible to see the architecture of the RACOoN tool and the

other tools that make up the refactoring environment.

Figure 3.5: RACOoN plug-in’s architecture (Van Der Straeten et al., 2007).

The Poseidon tool has a set of queries that look for and identify inconsistencies between

UML models. The RACOoN tool was developed to serve as a plug-in to the Poseidon

tool and It assists in the behavior preservation process. The RACER Tool is used in

1A blackbox function allows complex algorithms to be encoded in any programming language, since
some algorithms are difficult to be implemented by constraint specification languages such as Object
Constraint Language (OCL).

34

3.2 Tools that apply refactorings in UML

the approach to formally specify and to detect inconsistencies in UML models, with the

support of a concepts collection and logic description functions (Description Logics - DLs2),

which is a formal approach to perform consistency checks of behavior inheritance.

The RACOoN plugin has five main components to help preserve the behavior of

refactored UML diagrams, which are:

• User Interface: Allows you to choose and perform detection of specific inconsistencies

in UML models. It also allows the user to configure the tool and to load logic

descriptions from UML metamodel in to RACER tool;

• Extractor : It has two functionalities, translate user-defined templates into Abox

statements and load these statements into the RACER tool;

• Inconsistency Detector : It can be used for both detecting inheritance inconsistencies

and detecting violations of preservation properties;

• Inconsistency Resolution: These are algorithms that aim to correct the inconsistencies

that were identified in the verification process;

• Interface to RACER: It handles the communication between the components of the

RACOoN tool and the RACER tool.

The work of Ren et al. (2004) describes a prototype tool for applying refactorings to

use case models. In Figure 3.6 is represented the overview of the refactoring tool for use

cases. The tool is composed of two subsystems, Refactoring Framework and Prototype tool.

The Refactoring Framework subsystem is responsible for conducting the entire refactoring

process, where each refactoring has a pre-condition that is a requirement of the condition

package (Condition). At the beginning of a refactoring the precondition is checked by

the CodeModel package which analyzes the use case model and determines whether the

precondition is satisfied or not. If it is met, the Refactoring package applies the refactorings

to the use-case model and triggers the Change package which is responsible for notifying

the CodeModel package that the changes have been made and returns a backup, in case

the changes have to be undone. The Tool Interface package is used to communicate with

the Prototype Tool subsystem.

The subsystem Prototype Tool is used to evaluate the refactoring framework, through

two main packages. The Refactoring Tool GUI package allows the user to start a refactoring

2DLs can be understood to be formalisms of the knowledge base and each DL consists of a pair of
Tbox and Abox. A Tbox is used to introduce names for a complex concept and a Abox represents a set of
individuals that are instances of concepts or represent the population of a given role in a formalism.

35

3.2 Tools that apply refactorings in UML

Figure 3.6: Overview of the use case refactoring tool proposed by Ren et al. (2004).

by providing corresponding input information. Afterwards, this package sends the require-

ments to the Tool Interface package of the Refactoring Framework subsystem to complete

the refactoring. After applying the refactorings, the user can see the results through the

Use Case Diagrammer package, which is responsible for showing the refactorings made in

the use case diagram.

The approach proposed by Moghadam e Cinneide (2012) consists of refactoring systems

based on both a desired project (target project) and an existing source code. The first

step of the approach is to create the desired system design, based on the existing design,

using a UML class model. Then the source code is refactored using the target system

design. The source code resulting from these refactorings should have the same behavior

as the unrefactored version, but the system design should be closer to the planned design.

In Figure 3.7 it is possible to see the main steps of the refactoring process proposed

by Moghadam e Cinneide (2012). The approach is divided into two phases, the detection

phase (Detection Phase) and the reification phase3 (Reification Phase). The detection

phase involves activities related to structural detection of differences between the two

versions of the system and identification of the refactorings that will be used. Initially, an

UML class model is extracted from the original source code (Fact Extractor) and is called

3Reification is a process that consists of transforming abstract concepts into concrete realities.

36

3.2 Tools that apply refactorings in UML

Figure 3.7: Refactoring workflow proposed by Moghadam e Cinneide (2012).

the original project. A second template, named project desired, is an updated version

of the original that has been modified by a domain expert so that this system can meet

new demands or simply fix identified issues. These two models are then compared by a

differentiation algorithm (UMLDiff) and thus a relation of the differences that were found

between the original version and the target version (Detected Differences) is generated.

37

3.2 Tools that apply refactorings in UML

These differences are then automatically categorized as detected refactorings (Detected

Refactorings) through a set of predefined queries (Refactoring Extractor).

The reification step includes activities related to refactoring the source code of the

original system based on the refactorings that were detected. The original source code is

refactored using a heuristics approach based on detecting refactorings in order to get as

close to the desired design. The initial step is to extract an abstract syntax tree (Abstract

Syntax Tree) from the source code that contains all the necessary information for the

transformation process. Then, the refactoring process is repeated until all the refactorings

that were detected have been processed or there are no more refactorings that satisfy the

requirements of the search technique. After applying the last possible refactoring, the

abstract syntax tree is transformed into a refactored source code (Refactored Source Code).

The papers that were presented in this section characterize approaches that deal with

instances of UML metamodel in the refactoring process. Many of these refactorings cannot

be applied in other contexts outside the UML, however, the way these tools are structured,

how the internal modules communicate with each other or among other tools are important

for the construction of our RA. For instance, Einarsson e Neukirchen (2012) presents

an example of how two models representing the same system can be refactored at the

same time and how they can be manipulated. This paper also presents an alternative on

how to proceed when it is necessary to develop black-box algorithms that are related to

refactorings.

The paper of Van Der Straeten et al. (2007) presents an approach to preserve the

behavior of refactored systems. The authors demonstrate through the tool architecture

how the synergy can be made between tools that work together to solve a single problem.

Thus, an important point is to know how to specify and design the input and output of

each tool.

The paper of Ren et al. (2004), which presents an approach on how to apply refactorings

to use case models, demonstrates the importance of providing a view of the changes caused

by the refactorings and how these changes can be reversed if the user chooses to perform

this process.

Finally, the paper of Moghadam e Cinneide (2012) demonstrates a complete modern-

ization process, based on UML class diagrams, in which an improved/modernized system

can be obtained from a legacy source code through the use of models .

Each of these works has different proposals and objectives, however, they are all

related because they are dealing with model refactorings and because their approaches are

complementary. The other publications found by Misbhauddin e Alshayeb (2015) were also

38

3.3 Systematic Mapping

analyzed in order to identify architectural decisions that can contribute to the development

of the RA proposed in Chapter 5.

3.3 Systematic Mapping

The starting point on collecting information to elaborate our reference architecture was the

analysis of a systematic mapping (SM) on ADM presented by Durelli et al. (2014). Thus,

in order to collect the recent papers about ADM we created a new systematic mapping

based on the systematic mapping presented in (Durelli et al., 2014). We incremented the

search string with new synonyms and new words. Also, we adjusted the protocol to include

a broader range of papers, mainly by including other digital libraries and new research

questions.

In addition, refactorings applied on metamodel instances play an important role when

considering the modernization of software systems. Thus, we performed another systematic

mapping to gather some of the existing refactoring tools in the literature to classify the

approaches. In the following section, we present both systematic mappings.

3.3.1 Systematic Mapping on ADM

In this section, we present the research conducted in order to find relevant papers that

present ADM related approaches. We followed the processes presented in Figure 3.8.

Defining of
research
Question

Conduct
Search

Screening of
Papers

Data Extraction
and Mapping

Process

Defining of
Research

Defining of
research
Question

Identified
Papers

Relevant
Papers

Systematic
Mapping

Research
Parameters

Process Steps

Outcomes

Figure 3.8: The systematic mapping process (Adapted from Durelli et al. (2014)).

Defining the Research. In this step, the definition of the systematic mapping protocol

was elaborated, and the main produced artifact is the protocol which contains all the

information needed to delimit the SM scope. The main information in our protocol are the

Research Questions (RQs), the search string, the source list, the study selection criteria

(inclusion and exclusion), and the data extraction form field.

39

3.3 Systematic Mapping

Table 3.1: Search string for ADM Systematic Mapping.

(“Abstract Syntax Tree Metamodel” OR “Architecture-Driven Modernization” OR

“Model-Driven Modernization” OR “Knowledge Discovery Metamodel” OR “Structured
Metrics Metamodel” OR “Automated Enhancement Points” OR “Automated Function
Points” OR “Structured Assurance Case Metamodel” OR “Structured Patterns Metamodel
Standard”)

In this SM we elaborated research questions that could provide an overview of what is

being studied in the literature from 2014 till 2018. Our RQs are as follows:

• RQ1 – What kind of study is being presented in research that involves ADM?

• RQ2 – What are the main functionalities/modules of the modernization tools pre-

sented in the papers?

• RQ3 - Which metamodels appear in publications?

• RQ4 - What are the focus area of these modernization tools (Reverse Engineering,

Restructuring and Forward Engineering)?

• RQ5 – What are the main input and output artifacts presented?

In order to answer these questions we structured a search string broad enough to return

the maximum ADM related papers as possible and it is represented in Table 3.1.

Conducting the Search. We applied the search string (Table 3.1) in electronic databases

that are deemed as the most relevant scientific sources and therefore likely to contain impor-

tant primary studies. We selected the following electronic databases: ACM, Engineering

Village, IEEE Explorer, Scopus and Web of Science.

For this new SM, we considered only papers that were not presented in (Durelli et

al., 2014) since they were already analysed in the context of this Ph.D. thesis. We also

included new OMG modernization standards4 to check if they were being somehow used in

ADM context and two new digital libraries when comparing with (Durelli et al., 2014). In

Table 3.1 we only presented the main keywords used for this search. The search strategy

can be seen in Appendix A.2 - ADM Search String.

Screening of Papers. In order to determine which primary studies are relevant to answer

our research questions, we applied a set of inclusion and exclusion criteria. The inclusion

criterion applied was:

4Automated Enhancement Points (AEP); Automated Function Points (AFP); Structured Assurance
Case Metamodel (SACM) and Structured Patterns Metamodel Standard (SPMS)

40

3.3 Systematic Mapping

(i) It presents any kind of ADM-based approach or mention; and (ii) It uses any ADM

metamodel.

Our exclusion criteria were:

(i) Already included in the last systematic mapping; (ii) Do not present enough

information (Short papers); (iii) Introductory papers for books and workshops; (iv) It is

not an ADM-based approach; (v) Not in English, Spanish or Portuguese; and (vi) This is

not a paper.

We initially recovered 432 papers. Among them, 224 were identified as duplicated

papers, and 159 were rejected by one of our exclusion criteria. We selected 49 papers to

be classified and they were divided into two groups. The first group was composed of

14 papers that presented researches that involved ADM in general discussions or other

applications that were not related about modernization tools. The second group was

composed of 35 papers that presented modernization tools. The complete list of selected

papers can be seen in Appendix A.1 - Final selected papers. The data extraction form

field was composed of five fields:

• (i) What are the Focus Area (Modernization Phases) presented in the studies?

• (ii) What are the main functionalities/modules of the modernization tools?;

• (iii) What are the Metamodels employed in the study? and

• (iv and v) What are the main input and output artifacts presented?

Data Extraction and Mapping Process. As we divided the selected papers into two

groups, we describe the data extractions and mapping processes of these two groups in the

following sections.

3.3.1.1 Group 1 - Discussions around ADM papers

In this section we aim to respond RQ1 that is related to the studies that are being

conducted about ADM that is not related to modernization tools.

In the 14 papers analysed we could see discussions about KDM extensions, analysis

about KDM metamodel and also about ADM modernization involved processes. In

following paragraphs we provide a short summary of each paper of this group.

Arcelli Fontana et al. (2017) takes KDM and other four metamodels that support

reverse engineering process and their extensions available in the literature in order to

describe and compare them. The main goal is to discuss about this kind of metamodels

41

3.3 Systematic Mapping

in order provide a scenario where a software engineers could understand and choose the

metamodel that better suit their need.

Santos et al. (2018) explore the refactoring process by displaying how this process is

employed in the ADM modernization process. This paper also provides some examples and

discussions about refactoring modernization tools available in the literature and industry.

Sabiri e Benabbou (2017) propose a new metamodel to support the migration of legacy

software systems to the cloud to be used in the modernization process proposed by ADM.

This metamodel is composed of three viewpoints (business, data and implementation,

and infrastructure) that support engineers in the preliminary feasibility analysis of the

migration process.

Durelli et al. (2014) present a Systematic Mapping on ADM. This paper was used as a

starting point of the SM presented in this section and it was included as a parameter to

ensure that our search string was retrieving all the papers we needed from digital libraries.

Pires e e Abreu (2018) present an approach to allow the generation of Unit tests by

means of model transformations that uses KDM as intermediate representation for existing

software systems.

Akodadi (2016) present a study that compare existing cloud migrations method that

are model-driven. The final outcomes are a table displaying the pros and cons of each

approach and the authors propose their own approach that considers the modernization

processes based on ADM.

Mansurov e Campara (2004) present a development approach called Managed Archi-

tecture that is focused on evolution of existing software assets. This paper employs the

concepts of ADM and it also raises a discussion about why UML is not the best metamodel

to be used on Managed Architectures and why KDM is the chosen metamodel for this

goal.

Alawneh e Hamou-Lhadj (2009) present a discussion about the software systems runtime

representations. A survey of existing metamodels for software system representation is

displayed and a proposal of KDM extension for representing execution traces is presented.

The next three papers discuss about KDM extensions. In Jácome e De Lara (2018)

work is presented a tool to support metamodel extensions, including OMG standards

such as KDM and Diagram Definition (DD). In Durak (2015) work is presented a KDM

extension for representing existing simulation software to enable the ADM processes in this

domain. And in Santos et al. (2019a) work we can see two approaches for KDM extensions

to represent aspect-oriented source code in KDM instances. The first approach is the

lightweight one that add the new representations by means of stereotypes/annotations

on the existing KDM metaclasses and the other approach is the heavyweight that is

42

3.3 Systematic Mapping

materialized by adding new metaclasses on the existing KDM metamodel. The common

point of these approaches is that the authors claim that KDM lack of specific domain

representations that could be solved with extensions on the referred metamodel.

This final set of papers is about Structured Assurance Case Metamodel (SACM). As

mentioned before, we included other software representation metamodels from OMG to

check if any author was using them in ADM context and if they could be used to support

KDM. However, the three identified papers (de La Vara et al., 2017; Muram et al., 2018;

de la Vara, 2014) are not the case and we decided to include them here only for register

this finding.

3.3.1.2 Group 2 - Modernization Tools papers

In this section we aim to respond RQ2, RQ3, RQ4 and RQ5 that are related to the

modernization tools that were analysed in the selected studies.

In Figure 3.9 we present the main functionalities identified in the modernization tools

analysed. Not all the approaches presented an existing modernization tool, some of them

was just a proposal. However, we decided to include them in this research since the main

point of our reference architecture is to point out the architectural decisions.

Number of Occurrences

Code/Model Discoverer

Refactoring Executor

Measurement
Comparator

Metric Calculator

Model Visualizer

Refactoring Propagator

Repository

0 10 20 30 40

Functionalities/Modules

Figure 3.9: Modernization Tools main Functionalities/Modules.

We created standard modules names in order to group the functionalities/modules iden-

tified. For instance, the Code/Model Discoverer module is composed of any functionality

that involved knowledge discovery, either in reverse engineering or in forward engineer-

43

3.3 Systematic Mapping

Number of Occurrences

AST
ASTM (ADM Standard)

ATLM
BPMN

CMS
CWM
FOM

HFSM
ISM

KDM (ADM Standard)
SBVR
SMiLe

SMM (ADM Standard)
SPEM

SRM
TFM
UML
Xcos

Xcos Refactoring
ZCPM

0 5 10 15 20

Metamodel

Figure 3.10: Metamodels identified in the modernization tools.

Number of Occurrences

Reverse Engineering

Forward Engineering

Restructuring, Reverse
Engineering

Forward Engineering,
Restructuring, Reverse

Engineering

0 5 10 15

Focus Area

Figure 3.11: Focus Area of the analysed modernization tools.

ing. Another example is Measurement Comparator that grouped any functionality that

evaluated measurements in order to support changes in software refactoring functionalities.

In Figure 3.9 all the MT analysed presented a Code/Model Discoverer step. This is a

logical finding, since the knowledge discovery is a crucial process in ADM and this is a

starting point of any other process inside a modernization project. We also could notice

that Model Visualizer, Refactoring Executor and Metric Calculator functionalities followed

Code/Model Discoverer functionality and presented the highest number of occurrences.

44

3.3 Systematic Mapping

Number of Occurrences

AST Model
ASTM Model

ASTM PHP Model
BPMN Model

Business Model
C/C++ Code

C++ Code
CMS Model

COBOL Code
Configuration files

Cube Model
CWD Model

Database schema
Deployment Model
Dimension Model

DW Code
FOM Model

Fortran Code
GUI Model

HAXE Model
IEC 61131-3 languages Code

Implementation and Data Model
Java Code

KDM Model
KDM model
LHS Model

LIS Code
LMS Code

MATLAB Code
NooJ Code

Octave Code
PHP Code

PL/SQL Code
RHS Model

Roles Configuration Model
SBVR Model

Service Model
SMM Model

Technical Model
UML Model

Unspecified Code
Xcos Model
ZCP Code

ZCP general PIM Model
ZCP PSM Model

0 5 10 15 20

Input Artifacts

Figure 3.12: Modernization Tool’s Input Artifacts.

Thus, Figure 3.9 summarizes the main functionalities/modules in the MT in order to

answer RQ2.

In Figure 3.10 we present a list of all the identified metamodels in the MT analysed.

Some of the occurencies were identified as standard metamodels, such as UML, BPMN

and KDM. However, we added a tag ADM standard to mark the standard metamodels

advocated by ADM, which are: KDM, SMM and ASTM. Our main goal was to identify

how they were employed in modernization tools. KDM metamodel had the highest

number of occurrences and it was used in two main contexts: (i) main metamodel in the

tool supporting the refactorings; and (ii) auxiliary metamodel to support other higher

abstraction level metamodels. KDM and UML had the highest number of occurrences,

45

3.3 Systematic Mapping

Number of Occurrences

Android Code
AST Java Model

AST Model
ASTM Model

ASTM PHP Model
BPMN Model

Business Model
C++ Code

CMS Model
Cube Model
CWD Model

Deployment Model
Dimension Model

FOM Model
Graph Model
HAXE Model
HTML Model

Implementation and Data Model
iOS Code

Java Code
JavaScript Model

Jimple Code
KDM Model
LHS Model
LMS Code

NooJ Code
Reports

RHS Model
Roles Configuration Model

SBVR Model
SECDW Model
Service Model
SMiLe Model

SMM Model
SoaML Model

Technical Model
TFM Model
UML Model

Undefined Code
Windows Phone Code

Xcos Model
xslt script Code

ZCP general PIM Model
ZCP PSM Model

0 5 10 15 20

Output Artifacts

Figure 3.13: Modernization Tool’s Output Artifacts.

20 and 13 respectively, and we notice that UML was mainly used for supporting the

refactorings visualization. Figure 3.10 answers RQ3 by displaying the metamodels used in

the modernization tools of group 2.

RQ4 aims to discover what are the main focus area of the modernization tools analysed.

In Figure 3.11 It is possible to see that 25 of the tools displayed approaches to discovery

knowledge from code or model by means of Reverse Engineering. This is the result of

Reverse Engineering count(12) with Restructuring, Reverse Engineering count(13).

Since ADM is mainly focused on software modernization, we claim that restructuring

tools need at least an initial model representation to start the modernization process. This

explains that the highest occurrences involves Restructuring and Reverse Engineering in

the same tool. Only 9 of the MTs displayed a full cycle of the modernization processes

of ADM and only one tool proposed an approach to support the Forward Engineering

process.

46

3.3 Systematic Mapping

Finally, In Figure 3.12 and 3.13 we display the main input and output identified in

order to answer RQ5. In both we could notice that KDM has the highest occurrences.

Some tools only uses KDM as an input to generate other metamodel instance and other

tools could generate the KDM instance and transform this instance in an improved one.

The other occurrences are fragmented since each MT has one purpose and we analysed all

the inputs and outputs from each modernization process involved in the tool. The process

of identifying the inputs and outputs of each MT was scattered through the paper since

sometime we could only retrieve these information in case study, conclusions or related

works sections. This analysis gave us an overview of how KDM could be used in different

modernization scenarios and how interoperable KDM is when used together with other

metamodels.

3.3.2 Systematic Mapping on Code and Model Refactoring tools

In this section, we present the research conducted in order to find relevant papers that

present refactoring tools in models or code. We followed the processes presented in Fig-

ure 3.8.

Defining the Research. In this step, we produced systematic mapping protocol artifact

with all the information needed to delimit the SM scope. Here we present the Research

Questions (RQs), the search string, the source list, the study selection criteria (inclusion

and exclusion), and the data extraction form field.

The RQs guide the conduction of the research and impact directly the whole SM since

the analysis aims to answer such questions. Our RQs are as follows:

• RQ1 – What are the main functionalities/modules of the refactoring tools?

• RQ2 - How the refactoring tools are presented in the papers and how they are

classified?

• RQ3 - Which metamodels appear in publications?

• RQ4 – What are the main input and output artifacts presented?

In order to answer these questions we structured a string broad enough to return the

maximum related papers as possible and it is represented in Table 3.2.

Conducting the Search. We applied the search string (Table 3.2) in electronic databases

that are deemed as the most relevant scientific sources and therefore likely to contain

47

3.3 Systematic Mapping

Table 3.2: Search string for code and model refactoring.

(“model refactoring” OR “code refactoring”) AND “tool”

important primary studies. We selected the following electronic databases: ACM, IEEE

XPLORE, Scopus and Springer.

Screening of Papers. In order to determine which primary studies are relevant to answer

our research questions, we applied a set of inclusion and exclusion criteria. The inclusion

criterion applied was: the paper presents a refactoring tool. Our exclusion criteria were:

(i) paper not written in English or Spanish; (ii) the focus is not in the refactoring tool; (iii)

the paper does not present a refactoring tool, and; (iv) not enough information about the

tool.

We initially recovered 398 papers. Among them, 35 were identified as duplicated papers,

and 284 were rejected by one of our exclusion criteria. We read all the titles, abstracts,

and keywords of the 79 papers. This was the first selection phase.

In the second selection phase, we read all the 79 selected papers to identify the papers

that provided the tool with more relevant architectural information. The final selected set

is composed of 30 papers5. The other 49 papers were excluded since their focus was not on

the tool or there was insufficient information to extract based on our research questions.

The data extraction form field was composed of six fields:

• (i) What are the main functionalities/modules of these tools;

• (ii) How the tools are presented;

• (iii) The classification;

• (iv) Metamodels employed; and

• (v and vi) What are the main input and output artifacts presented.

Data Extraction and Mapping Process. After reading and extracting all relevant data

from the accepted papers we normalized the data in order to present them into graphics.

In Figure 3.14 we present the functionalities identified by our mapping in the tools.

Since the main acceptance criterion was to be a refactoring tool, all 30 tools presented a

Refactoring Executor module. The second most identified module was the Code/Model

Discoverer. We claim that this is a crucial module when talking about refactoring tools

5The complete list of selected papers can be seen in Appendix B

48

3.3 Systematic Mapping

Number of Occurrences

Behavior Preservation

Blackboxing Executor

Code/Model Discoverer

Flaws Detector

Metric Calculator

Refactoring Executor

Model Visualizer

Quality Assessment

Refactoring Propagator

Repository

0 10 20 30

Functionalities/Modules

Figure 3.14: Main Functionalities/Modules.

because before applying refactorings in a source code or a metamodel instance, we need

to either transform it from source code to model or transform model-to-model and/or

apply some logic to analyze the as-is situation to decide the refactorings to be applied.

Thus, in the category Code/Model Discoverer, we grouped functionalities that involved

transformations among different abstraction levels and code/model analysis. Any tool that

provided modules for refactorings or analysis visualizations were grouped in the Model

Visualizer Module. Another example of grouping depicted in Figure 3.14 is the Repository

that groups all tools’ components that were responsible for storing transformation rules,

source code, metamodel instances, or any other artifact. Thus, Figure 3.14 helps us answer

RQ1 by displaying the main identified functionalities/modules in the analyzed tools.

In Figure 3.15 we show how the authors presented their tools in the papers. We

concluded that most of the tools were presented as a set of tools, meaning that in some

cases the author described a tool to perform a refactoring on a model, and also described

a tool to visualize the result of the refactoring. In other cases, the authors described tools

that worked together to achieve the goal. When more than one tool could be identified,

we categorized the availability of these tools as a set. Also, there were papers that the

functionalities were described as a mathematical or computational formalism. In this case,

the authors claimed that there was a tool, but the focal point of the paper was to show

how the refactorings could be mathematical or computational proved. Most of the tools

were classified “as a set of tools” and “as an eclipse plug-in”, followed by “as an algorithm”

classification.

49

3.3 Systematic Mapping

Number of Occurrences

as a formalism

as a formalism, as a set of tools

as a formalism, as an algorithm

as a library

as a set of tools

as a set of tools, as an eclipse
plug-in

as a stand-alone application

as a stand-alone application, as
an algorithm

as an algorithm

as an algorithm, as an eclipse
plug-in

as an eclipse plug-in

0 2 4 6 8 10

Availability

Figure 3.15: Classification about the tool’s availability.

Number of Occurrences

Code-based

Model-based

Both

0 5 10 15 20

Classification

Figure 3.16: Tool’s Classification regarding their abstraction level.

Still focusing on RQ2, in Figure 3.16 we also analyzed how the tools could be classified

when considering the abstraction level of where the refactorings were applied. To do

this classification, we considered as code-based tools the refactorings that were applied

on a Platform-Specific Model such as Java Model, Abstract Syntax Trees (ASTs), and

others. Model-based tools were considered when the abstraction level was higher than

PSM, platform, or computation independent models, such as UML models, proprietary

metamodels, and others. Thus, we concluded that 17 of the analyzed tools are model-based,

11 are code-based, and 2 are both code and model-based since refactoring is applied in

different abstraction levels.

In Figure 3.17 we present the list of metamodels used in the tools. The most used

representation is the AST model. We claim that code-based tools only need to use an

50

3.3 Systematic Mapping

Contagem de Metamodel

Wrapperized PRiSm

Abstract Architectural

AST

BPMN

EMF

Feature

Graph

Graph, Ecore

Not mentioned

T-model; Graph

UML

UML, OCL

WebML

XML-based language DRL

0 2 4 6 8 10 12

Metamodel

Figure 3.17: Metamodels identified in the refactoring tools.

AST representation, explaining why this is the metamodel with the highest occurrence.

However, since ASTs are platform-specific representations, these ASTs are not compatible

with each other since we could find C, C++, Java, and other ASTs representations.

We also noticed that standard metamodels appeared in model-based tools like EMF,

UML, and BPMN. Nonetheless, we notice several other metamodel instances that will

probably not be interoperable due to their particularities on representing the software

systems to be refactored. Thus, answering RQ3, we have the predominance of AST models,

and we could also see Graph, EMF, UML, BPMN, among other representations.

In Figures 3.18 and 3.19 we present the input and output artifacts from the analyzed

tools. In Figure 3.18, answering RQ4, the most common inputs are Java code, Graph

Notation, and UML model. In Figure 3.19, we observe the same pattern. Regarding

the refactoring tools that we selected in this SM, we claim that they can represent

how refactoring tools usually are not concerned about interoperability, as we observe in

Figures 3.18 and 3.19. The authors appeared to be more concerned with the refactorings

themselves than regarding how the tool could be reused in different contexts (languages and

scopes). Another discussion we could point out is that when developing a refactoring tool,

the researcher has to think about the refactorings to be performed and other modules that

will support the refactorings. At the same time, they have to forget to design the tool’s

51

3.3 Systematic Mapping

Number of Occurrences

BP Model
C Code

C/C++ Code
C++ Code

CSS/HTML Code
DRL Model

Ecore Model, Graph
EMF Model

Executable Jar
Feature Model

Graph
Java Code

Java Code; XML files
Java/C++ Code

JavaScript Code
Makefile Code

Scala compiler plugins
TTCN;3 Code

UML Model
VHDL-AMS Code

WebML Model
AMM Model

0 1 2 3 4 5

Input Artifacts

Figure 3.18: Refactoring Tool’s Input Artifacts.

Number of Occurrences

AspectSM Model.
BP Model

C Code
C/C++ Code

C++ Code
CSS/HTML Code

DRL Model
Ecore Model

EMF Model
Feature Model

Graph
Graph; T-Model; Makefile Code

Java Code
Java Code; XML files

Java Model
JavaScript Code

Reports
Reports; Graph

Scala compiler plugins
Scription Logic Statements

TTCN;3 Code
UML Model

UML Model; Reports
VHDL-AMS Code

WebML Model
AMM Model

0 1 2 3

Output Artifacts

Figure 3.19: Refactoring Tool’s Output Artifacts.

52

3.4 Final Considerations

architecture considering a bigger picture where this tool could be reused or interoperable

with other tools.

3.4 Final Considerations

In this chapter, the main groups of works related to this research were presented, which

are the works that involved refactorings for UML metamodel and the works that use the

concepts of ADM and KDM metamodels. These related works contributed directly to

the development of the proposed RA, since they contributed with the theoretical basis to

assist the RA construction process.

The approaches presented in section “Modernization tools that use ADM standards”

contributed to the elaboration of this Ph.D. research since they all presented relevant

descriptions about the modernization flow and how they are organized in their architecture.

In summary, they all:

• Utilize ADM’s modernization principles;

• Use the standard ISO KDM metamodel;

• Use a metamodel to view the information contained in a KDM instance;

• Apply transformations to models.

The approaches presented in section“Tools that apply refactorings in UML”contributed

with their architecture and modules/functionalities. This set of tools contains three main

common characteristics that are relevant to building our RA:

• The transformations are applied on metamodel instances level;

• They use at least one standard metamodel in the core of its algorithm (UML); and

• The transformations flow provided in theirs architecture has similar components to

those expected in ADM-based modernization tools.

In addition, we claim that the systematic mappings on ADM and on code and model

refactoring tools played a crucial part on the elaboration of our RA not only in the modules

and functionaries but also in the architectural views elaboration presented in Chapter 5.

In Chapter 4, a taxonomy for modernization tools based on ADM is shown, which

was also elaborated through the bibliographic survey carried out and described in this

chapter.

53

Chapter

4
A Taxonomy for Classifying

Modernization Tools in ADM Context

4.1 Initial Considerations

This chapter presents a taxonomy for classifying tools that are used in modernization

contexts. The intention is to establish terms that really express the type of the tools,

making the comprehension easier, as well as the knowledge sharing among developers and

practitioners.

Although there are other works in the past that have already presented taxonomies

and terminologies around the theme of software reengineering (Bourque e Abran, 1994;

Chikofsky e Cross, 1990; M. Klein, 1994), there is a need for a taxonomy more focused

on the current advances of software modernization, particularly focused on the ADM

concepts. Therefore, our taxonomy has not the intention of competing with those other

works, but just provide a conceptual framework so that software engineers can talk about

modernization tools, in the ADM context, using the same vocabulary.

The proposed taxonomy is useful for classifying modernization tools considering their

purposes, used metamodels, abstraction level, etc. Therefore, software and modernization

engineers that work with modernization tools can have a better view of the existing types

of tools they are working with.

54

4.2 The Taxonomy

We have detected only three works that have some relation with our taxonomy; the

work of Bourque e Abran (Bourque e Abran, 1994), the work of Chikofsky (Chikofsky e

Cross, 1990) and the work of Klein (M. Klein, 1994).

The work of Chikovsky, which is one of the first in this field, present basic definitions

on reengineering, redocumentation, design recovery, reverse engineering and reestructuring.

It is not focused on classifying tools for this context as is our case. Besides, at that time,

tools for assisting reengineering project were very scarce.

The work of Bourque and Abran (M. Klein, 1994) are the closest to ours, since they

present a taxonomy for software reengineering tools. The difference is that all the thirteen

categories presented by them are devoted to the functional goal of the tool. For example,

one cay say that a specific tool is a Design Recovery Tool or that another specific tool is

a Impact Analysis Tool. We do not have this kind of classification in our taxonomy, but

this can be considered in future works. The work of Klein (M. Klein, 1994) present six

categories for reengineering tools but all the categories are very high-level. The difference is

that is that our taxonomy is focused on classifying internal properties such as metamodels,

abstraction level, and purpose, which can be applied in all sets of modernization tools.

4.2 The Taxonomy

Figure 4.1 presents a diagram that graphically represent our taxonomy. As we are

using a class diagram, the known concepts of inheritance, aggregation, abstract classes,

multiplicities, associations and reading direction in relationships are being used. The white

rectangles are the terms of the taxonomy and the gray ones are the classification labels

that acts as classifiers.

Regarding the terms, we have two main ones: Modernization Environment (ME) and

Modernization Tool (MT), which are stereotyped as main in the diagram. MEnv and

MTs are the most used terms, since they classify tools in this context.

As can be seen in the diagram, we consider a Modernization Environment

as an aggregation of one of more Modernization Tools.

Computational Support (CompSu) is an abstract term, which in fact, are being used

as the highest level term, i.e., both Modernization Environments and Modernization Tools

are Computational Supports. Since CompSu is just representing the link between ME and

MT, this is not a crucial term here.

55

4.2 The Taxonomy

Modernization Tool (MT) is the central term and also acts as a family of terms, as it

is the root of a hierarchy. It is a concrete term because one can use it to designate a tool,

for example, saying that “a specific reverse engineering tool is a Modernization Tool”. It

also acts as a family because it is the root of more specialized terms. Below one can find

our definition for this term.

Modernization tools are tools that provide some level of automation

for any of the steps of the modernization cycle .

As example, a MT can automatize (i) the generation of metamodel instances, (ii) the

process of calculating metrics from legacy systems, and also (iii) the execution of model

transformations/refactorings.

In the second hierarchy level of the MT, there are two subtypes: Common Modern-

ization Tools (Common-MT) and ADM-Modernization Tools (ADM-MT or ADM-based

Modernization Tools). The difference is that ADM-MTs employ ADM metamodels in their

architecture but Common-MT do not. From an usage point of view, a Common-MT has

the same functionality and goals of any other ADM-MT. However, they do not necessarily

concern with the usage of standard metamodels. The works of Mercier et al. (2017)

and Madisetti et al. (1999) can be cited as examples of Common-MT.

In the third level of the hierarchy one can find other two subtypes of ADM-MT that are

OMG Modernization Tools and KDM Modernization Tools. The KDM-MT use KDM

internally for representing systems to be modernized. However, OMG-MT are tools that

use any other OMG metamodel internally. Examples of ADM-MT can be seen in the

works: Canovas e Molina (2010); Son e Kim (2016); Ulrich e Newcomb (2010a).

The term Modernization Environment was created to represent a wider computational

support, providing a set of functionalities that assist along a modernization process.

Therefore, a modernization environment is usually composed of a number of modernization

tools that support the entire modernization process, from reverse engineering to obtaining

the modernized target system. In other words, a modernization environment has several

tools that work together to perform a complete modernization. For example, reverse

engineering tools, data mining and analysis, restructurings, and source code generation

from modernized models.

For instance, MoDisco (Brunelière et al., 2014) is a MEnv that supports the reverse

engineering phase by allowing the knowledge discovery of java source code into different

metamodel instances. With MoDisco it is possible to recover, for instance, UML and KDM

models. MoDisco is composed of several discoverers that can be understood as MTs, and

each discoverer deals with a specific metamodel.

56

4.2 The Taxonomy

Regarding the classification labels (gray rectangles), there are the following five ones: i)

Type of the tool; ii) Purpose of the tool; iii) Modernization Scenario in which the tool is

applicable; iv) Metamodel used by the tool and v) the abstraction level of the metamodel

used.

The label Type is used for differentiate Modernization Tool from Modernization

Environment.

Please notice that in Figure 4.1 we have some notations, which are: a) {incomplete} -

indicates that the generalization set is not covering all possible instances; b) {complete} -

indicates that the generalization set is covering all possible instances.

As previously said, our taxonomy involves five classification labels. Two labels are only

applicable for Modernization Tools, which are: Metamodel and Metamodel Abstraction

Level. The remainder ones (Type, Purpose and Modernization Scenario) are applicable

for MTs and also for Modernization Environment.

The classification label Modernization Scenario aims at representing the scenarios in

which MEnvs and MTs can be used. Modernization Scenarios are scenarios that show

where and how a software system could be modernized, and they also help modernization

teams on how to plan a modernization project (Ulrich e Newcomb, 2010b). MScens can

act in three different architectural levels, which are: Technical, Application/Data, and

Business Architecture. These architectural levels are important to define not only the set

of MEnvs and MTs to be used but also the set of metamodels and their abstraction level

that will be employed in the tools.

For instance, Language-to-Language Conversion is a Technical MScen responsible for

converting a software system from one language to another. The main motivations for

this scenario could be the obsolescence of a language, the existence of a requirement to

enhance a functionality not supported in the current language, etc.

Purpose is another important classification level of our taxonomy. As purpose comes

from Type, it represents that as Modernization Tools as Modernization Environments

can have one or more purposes, which correspond to the classical phases of reengineering

processes, which are: Reverse Engineering, Restructuring, and Forward Engineering.

57

4.2 The Taxonomy

Table 4.1: Modernization Scenarios (Adapted from Ricardo Pérez-Castillo e Piattini
(2010))

Modernization
Scenario

Description

Application
Portfolio
Management

This scenario aims to mine and represent metadata for all artifacts involved in
an enterprise system. Legacy systems generally do not have much documentation
and this scenario addresses this gap and can be applied in the process of
modernizing applications/data or businesses.

Application
Improvement

This scenario aims to improve the robustness, integrity, quality, consistency
and/or performance of applications, but does not involve an effort to transform
the architecture. This scenario is applied in the technical modernization processes.

Language-to-
Language
Conversion

This scenario deals with the conversion of one or more information systems
from one programming language to another. This scenario does not involve a
redesign of the system’s functionalities and is applied in the technical
modernization processes.

Platform
Migration

This scenario moves systems from one platform to another due to platform
obsolescence or to standardize the system to an organizational standard.
This scenario is usually performed in conjunction with a language conversion
and is also applied in technical modernization processes.

Non-Invasive
Application
Integration

This scenario is triggered when there is a need to bring legacy user interfaces to
end users, replacing legacy front-ends with other front-ends, such as web-based
interfaces, keeping system functionality intact. This scenario is applied in
technical modernization processes.

Service Oriented
Architecture
Transformation

This scenario takes into account legacy systems that generally incorporate their
functionality in a monolithic way and wish to migrate their functionality to
Service-Oriented Architecture (SOA). This scenario can be applied to
applications/data modernization processes.

Data Architecture
Migration

This scenario moves one or more data structures to another, for example, moving
from a non-relational file or database to the relational data architecture.
This scenario can be applied to applications/data modernization processes.

System and Data
Architecture
Consolidation

This scenario is motivated by the need to build a single system from multiple
autonomous systems that perform the same basic functions. It can be combined
with other scenarios, such as model-oriented transformation, language change or
platform migration. This scenario is applied to all applications/data modernization
processes.

Data Warehouse
Deployment

This scenario creates a common repository or data warehouse for business
data, as well as the different ways to access that data. This scenario is
usually realized in the processes of modernization of applications/data, but it
can also be applied in the processes of business modernization.

Application
Package
Selection and
Deployment

This scenario defines how legacy systems must be removed, integrated or
configured to work with a specific component. This scenario is applied
exclusively in the processes of modernization of applications/data.

Reusable Software
Assets /
Component Reuse

This modernization scenario helps to identify, capture and prepare functionalities
and information resources of legacy systems for reuse. This scenario
is also applied in the processes of modernization of applications/data.

Model-Driven
Architecture
(MDA)
Transformation

This scenario converts a non-model driven environment to a model driven
environment. Moving to MDA requires transforming legacy systems into a set
of models that can be used to generate replacement systems. This scenario is
applied in application/data modernization processes.

Software
Assurance

This scenario aims to measure reliability in relation to the established business
and security objectives. This scenario can be applied within application/data
or technical update processes.

58

4.2
T
h
e
T
ax

on
om

y
has

1..*1..*

employs

{complete}

1..*1..* has

Modernization Environment (MEnv)

Modernization Tool (MT)

Restructuring (R)

Reverse Engineering (RE) Forward Engineering (FE)

ADM UML BPMN

ASTMKDM SMM

Modernization Scenario (MScen)

SACM SPMS

{incomplete}

Computational Support (CompSu)

0..*

{complete}

1..*

1..* is employed in

Platform Independent (PI)

Platform Specific (PS) Computation Independent (CI)

Metamodel's Abstraction Level

Purpose

has

Technical Architecture (TA)

Application/Data Architecture (ADA)

Business Architecture (BA)

Code-level Model-level

{complete}

MT's Metamodel

{complete}

OMG

{incomplete}

{incomplete}

Type

Other ADM standard

Other OMG standard

OMG-MT KDM-MT

{incomplete}

{incomplete}

Common-MT ADM-MT

<<main>>

<<main>>

Figure 4.1: Modernization Tools Taxonomy - Conceptual Diagram

59

4.2 The Taxonomy

The classification label MT’s Metamodel (grey concept) is used to classify MTs

according to the metamodels used internally. There are two subgroups: OMG and ADM .

When a MT uses an OMG standard metamodel, it is possible to classify the tools as being

<OMG>-MTs. For instance, if a tool has algorithms that operate with BPMN, the MT

will be classified as BPMN-based MT, which means that this BPMN-based MT is prone

to be interoperable with other BPMN-based MTs from other MEnvs.

Another possible classification for MT considers the group of standard metamodels

proposed by ADM, which are the ADM-based MTs. These tools use at least one of

the standard ADM metamodels. Thus, the classification of tools that use this kind of

metamodel is <ADM-> MT. For instance, a KDM-based MT is a tool that uses the

KDM metamodel in its internal mechanisms.

Another classification label is the Metamodel’s Abstraction Level (grey concept).

Knowing that MTs employ algorithms to process metamodel instances, it is possible to

classify the tools according to the abstraction level in which the MTs operate. The three

possible abstraction levels, according to MDA, are Platform Specific, Platform Independent,

and Computation Independent. Classifying the Metamodel’s Abstraction Level of a MT is

directly linked to the metamodels that are being employed in the tool. Thus, it is possible

to have more than one Metamodel’s Abstraction Level in a single MT.

Since platform-specific models act at the source code level, we could also claim that these

models are code-level. Now, considering the platform-specific and the computation-independent

models, they act in higher model levels if compared to source code, where some fine-grained

details can be omitted to provide a more abstract point of view of the same software

system. Thus, we claim that they are model-level.

Table 4.2: Comparison between MT’s type

MT
Uses
Metamodel

Use ADM
Standards

Uses OMG
Standards

Uses KDM
Standard

Common-MT �
ADM-MT � � �
OMG-MT � �
KDM-MT � � � �

In Table 4.2, we have a comparison between the MT’s types regarding the use of

metamodels and in this table we can see the main difference in each type of modernization

tool of our taxonomy. It is important to notice that in this comparison we are showing that

a Common-MT is a MT that do not use any of the ADM/OMG standards but this tool

can still be considered as part of an ADM modernization process, since the transformations

can be applied in metamodel instances. This differentiation is important to identify the

60

4.2 The Taxonomy

level of interoperability that this tool could provide. Roughly speaking, we could state that

a Common-MT would be a tool with lower chances of interoperability and a KDM-MT

would be a tool with greater chances of interoperability when picturing about the complete

modernization process.

Table 4.3: Concepts elicited from Step T-1

Concept Name Source (Derived from...)
C1 Reengineering Set 1 and 2 of Step T-1
C2 Reverse Engineering C1
C3 Restructuring C1
C4 Forward Engineering C1
C5 Model Driven Architecture Set 1 and 2 of Step T-1
C6 PSM C5
C7 PIM C5
C8 CIM C5
C9 Modernization Tools Set 1 and 2 of Step T-1
C10 Modernization Scenarios Set 2 of Step T-1
C11 Standard Metamodel Set 1 and 2 of Step T-1
C12 Proprietary Metamodel Set 2 of Step T-1
C13 Modernization Environment C9 and C10
C14 Code-level C5 and C6
C15 Model-level C5, C7 and C8
C16 ADM-based metamodels C11
C17 Computational Support C9 and C13
C18 Technical Architecture c10
C19 Application/Data Architecture c10
C20 Business Architecture c10
C21 Architecture-Driven Modernization Set 1 of Step T-1

Legend:

Step Flow of information/artifact Process flowInvolved people

Step T-1:
Information Source

Investigation

Step T-2:
Artifacts Analysis

and Categorization

Step T-3:
Taxonomy

Establishment

Step T-4:
Taxonomy
Evaluation

Domain
Information

Group of Concepts
and Terminologies Taxonomy

Evaluation
Results

Evaluated
Taxonomy

Domain Ontologies

Publications
Software
Systems

Domain Experts
and

System Analysts

Figure 4.2: Methodology to establish a Taxonomy

61

4.3 Methodology for Building the Taxonomy

4.3 Methodology for Building the Taxonomy

4.3.1 Step T-1: Information Source Investigation

The first step to establishing our taxonomy was to identify the sources of information to

be used in the elicitation of concepts and terminologies. Different sources were considered,

mainly related to the ADM domain. These sources can be classified into two sets: Set

1 - Formal specifications, glossaries, and white papers about ADM; Set 2 - Existing

Modernization Tools identified in the literature.

In order to identify the concepts and terminologies about modernization tools available

in the literature, we carried out a deep search on the OMG website1 website, more

specifically in the ADM part. In addition, a systematic mapping was considered to identify

information sources (Durelli et al., 2014). Following, each set of information sources is

described in detail:

• Set 1 - Formal specifications, glossary and white papers about ADM: An important

source of information is the set of artifacts provided by OMG about ADM blueprint.

We analyzed the ADM website, 4 white papers, 1 glossary, and formal specifications

about software modernization2. As a result, we identified that since ADM involves

the concepts of software reengineering and MDA3, we should consider the terms: (i)

Reverse Engineering; (ii) Restructuring; (iii) Forward Engineering; (iv) Platform

Specific Model (PSM); (v) Platform Independent Model (PIM); and (vi) Computation

Independent Model (CIM). We considered these terms as concepts associated with

software modernization in the context of ADM to help us build out taxonomy.

• Set 2 - Existing Modernization Tools identified in the literature: In order to see how

the concepts of ADM were being implemented in the real world, we analyzed existing

modernization tools in the literature and industry. We analyzed the modernization

tools presented in a systematic mapping on ADM (Durelli et al., 2014), and two

books (Pérez-Castillo et al., 2011b; Ulrich e Newcomb, 2010b). The OMG/ADM

1Object Management Group (OMG) is dedicated to bringing together its international membership
of end-users, vendors, government agencies, universities and research institutions to develop and revise
standards as technologies change throughout the years. https://www.omg.org/

2This page provides a summary of OMG specifications that have either been for-
mally published or are in the finalization process about software modernization:
https://www.omg.org/spec/category/software-modernization

3Model Driven Architecture (MDA) is an approach to software design, development, and implementation
spearheaded by the OMG that provides guidelines for structuring software specifications that are expressed
as models.

62

4.3 Methodology for Building the Taxonomy

makes available a list of vendors4 that somehow employs the ADM concepts in its

tools or that supported the OMG/ADM in its consolidation process. We analyzed

these tools to understand their behavior and their role in the modernization process to

support our taxonomy. As a result, we identified that modernization tools are directly

related to the usage of the metamodel not only to representing legacy knowledge

through reverse engineering but also metamodels that support the analysis of source

codes and the other steps of software modernization advocated by ADM. Another

important concept found by analyzing the books is the concept of Modernization

Scenarios taken into consideration while composing our taxonomy.

4.3.2 Step T-2: Artifacts Analysis and Categorization

In this step, we analyzed all the information sources found in Step T-1, and as a result, we

elicited the concepts presented in Table 4.3. These concepts represent the terms that are

the basis of our taxonomy, but not all of them are explicit in the diagram that represents

our taxonomy presented in Section 4.3.3. Model Driven Architecture, Standard Metamodel,

Proprietary Metamodel, Code-level and Model-level are the concepts that are not explicit

in the taxonomy, however they are incorporated in the other concepts. Model Driven

Architecture, Code-level and Model-level are related to Metamodel’s Abstraction Level.

Standard Metamodel and Proprietary Metamodel are related to MT’s Metamodel.

Based on the analysis performed in order to find the concepts in the previous step, we

also elicited a set of constraints to help us in the taxonomy elaboration:

• Constraint 1 - Purpose: Modernization Tools should be categorized regarding the

Reengineering (C1) step that it represents, i.e., its purpose that could be Reverse

Engineering (C2), Restructuring (C3), or Forward Engineering (C4);

• Constraint 2 - Abstraction Level: Modernization tools should also be categorized

regarding their abstraction level according to MDA (C5), which could be represented

by PSM (C6) or Code-level (C14) and also PIM/CIM (C7 and C8) or Model-level

(C15);

• Constraint 3 - Modernization Concepts: It should be specified in the taxonomy how

the modernization concepts (Tool and Scenario) presented in Table 4.3 are related

to each other;

4https://www.omg.org/adm/directory.htm

63

4.3 Methodology for Building the Taxonomy

• Constraint 4 - ADM standards: While considering standard metamodels (C11), it

should be implicit that there are specific metamodels that OMG designed to work

with the ADM blueprint (C16).

While formulating and organizing these constraints, we identified the need for a concept

that could involve modernization tools (C9) and modernization scenarios (C10). Thus, we

created the Modernization Environment (C13) and Computational Support (C17) that

encapsulate these two terms.

Note that several of these concepts are well known in software reengineering and MDA

fields. The main reason to include them in our taxonomy is that they are related to software

modernization and are also important concepts while characterizing modernization tools.

In general, the Step T-2 Artifacts Analysis and Categorization was important not

only to identify the required concepts, but also to guide the study during the creation of

our taxonomy, since we had to check if all constraints and concepts were being fulfilled,

correctly represented, and described.

4.3.3 Step T-3: Taxonomy Establishment

In this step we gathered all concepts and constraints acquired in Steps T-2 in order to build

the taxonomy of Modernization Tools that was presented in Section 4.2 - The Taxonomy.

4.3.4 Step T-4: Taxonomy Evaluation

In order to evaluate our taxonomy, we selected a set of papers presenting modernization

tools, and then applied our taxonomy in order to classify the tools presented by those

papers.

Our main goal in this initial evaluation was to check if some of the tools identified in

chapter 3 could be categorized according to our RA taxonomy. The paper criteria selection

was: 1 - the paper present a tool that uses KDM; 2 - the paper presents enough information

about its architecture; 3 - tools that act in different modernization scenarios and purposes.

About 1, we wanted to investigate KDM-based tools to check if out taxonomy could cover

the different abstraction levels of KDM. About 2, in order to categorize correctly the tool

we would need information about the main modules, input and outputs sources, internal

behavior and main functionalities. About 3, to cover most of the possiblem categorization

concepts we would need to get different modernization scenarios.

Table 4.4 presents nine (9) computational supports and their classifications according

to our taxonomy. The first column contains the Name of the computational support,

64

4.3 Methodology for Building the Taxonomy

and the second column has a short Description of each CompSu. The third, fourth and

fifth columns classify computational supports according to their Modernization Scenario,

Type and Purpose, respectively. Regarding Modernization Scenario, the valid values are:

Business Architecture (BA), Application and Data Architecture (ADA) and Technical

Architecture (TA). Regarding Type the valid values are: Modernization Tools (MT) and

Modernization Envirionment (ME). Regarding Purpose the valid values are: Reverse

Engineering (RE), Restructuring (R) and Forwards Engineering (FE).

The last three columns classify more internally the Composee MTs. The sixth column

was added to provide more information about the MT’s Function in order to facilitate

the understanding of the classification provided in the seventh and eighth columns. The

seventh column contains the classification of the tools that uses OMG standards: MT’s

Metamodels. Finally, the eighth column classifies the MT’s Metamodels according to

their abstraction level: Metamodel’s Abstraction Level. The valid values of this field are:

Platform-Specific (PS), Platform-Independent (PI) and Computation-Independent (CI).

According to Table 4.4, KDM-RE acts in the application/data architecture MScen as a

modernization environment with the purpose of restructuring. KDM-RE is composed of

three modernization tools that uses OMG standards, two KDM-based and one UML-based,

which are PI and CI, and PI, respectively.

An important discussion here is on how to classify these CompSu as being MTs or

MEnvs. To classify a CompSu it is necessary to understand how it works internally

according to its metamodels and its functionalities. For instance, in Table 4.4 we have

Arch-KDM (d. S. Landi et al., 2017), that works only with KDM metamodel and a DCL for

KDM. The approach that Arch-KDM is inserted has several steps and functionalities such

as Planned Architecture Specification, Current Architecture Extraction, and Architecture

Comparison that return the found architectural drifts. Thus, we classify Arch-KDM as a

MEnv since it involves more than one functionality.

The author of MoDisco (Brunelière et al., 2014) mentions this tool as being “a

model-driven reverse engineering framework”. This is due to the fact that MoDisco

has several discoverers that act independently according to user usage. In this sense, each

discoverer acts as an independent tool, but the set of discoverers/tools are encapsulated

and interoperable in a MEnv that they call as being a model-driven framework. Thus,

according to the proposed taxonomy, MoDisco is a MEnv that is composed of several MTs,

and that has the purpose of reverse engineering.

Some MTs support completely a specific MEnv’s purpose, such as CloudMIG and

RUTE-K2J, and others that support partially, such as KDM-AO. Thus, we claim that

CloudMIG and RUTE-K2J are MEnv composed of MTs and KDM-AO is a MT that can

65

4.3 Methodology for Building the Taxonomy

Table 4.4: Classification of Computational Support for Software Modernization

N
am

e

Description

Classification according to

MScen Type Purpose

Composee MTs

MT’s Function
MT’s
Metamodel

Metamodel’s
Abstraction
Level

K
D
M

-R
E

It implements the Fowler’s
refactoring catalog and
allow modernization
engineers to apply them in
KDM instances.

ADA MEnv R

Refactoring
Application

KDM-based PI and CI

Refactoring
Propagator

KDM-based PI and CI

As-is visualize UML-based PI

R
U
T
E
-K

2
J

It takes a KDM instance as
input and automatically
generates a Java model
from it.

ADA
and
BA

MT FE

Transform
KDM in-
stances in
Java model

KDM-based PI and CI

M
o
D
is
c
o

It is able to retrieve
information from legacy
source code and
databases and represent
them as KDM and other
metamodel instances.

TA
and
ADA

MEnv RE

ASTM Discov-
erer

ASTM-based PS

UML Discov-
erer

UML-based PI

Metrics Appli-
cation

SMM-based PS, PI and CI

KDM Discov-
erer

KDM-based PI and CI

G
A
F
E
M

O

It is a framework for the
modernization of legacy
systems using a
model-driven and
service-oriented approach
using the features provided
by gap-analysis techniques.

TA,
ADA
and
BA

MEnv
RE, R
and FE

Acquisition of
logical model

ASTM-based PS

Refinement of
logical model

KDM-based PI and CI

Refinement
of business
model

SBVR-based CI

C
lo
u
d
M

IG

It supports a
semi-automatic legacy
systems migration to cloud

TA
and
ADA

MEnv RE

Metrics Calcu-
lation

SMM-based PS, PI and CI

Recovers
KDM in-
stances

KDM-based PI and CI

M
A
R
B
L
E It retrieves the business

processes from existing
systems using a set of
model transformations.

TA,
ADA
and
BA

MEnv RE

Recovers
KDM in-
stances

KDM-based PI and CI

Recovers
BPMN in-
tances

BPMN-based CI

C
C
K
D
M

It identifes crosscutting con-
cerns in KDM instances. To
do so the tool uses a combi-
nation of a concern library
and a modified clustering al-
gorithm.

ADA MT RE
Analyzes and
marks KDM
instances

KDM-based PI and CI

K
D
M

-A
O It implements a light and a

heavyweight extensions that
enables the instantiation of
aspect-oriented concepts in
KDM instances.

ADA MT RE

Enables the
aspect
oriented
concepts
instantiation

KDM-based PI and CI

A
rc
h
-K

D
M It helps in the conduction of

Architecture-Conformance
Checking (ACC) employing
exclusively the KDM.

ADA MEnv RE

Planned Archi-
tecture Specifi-
cation

KDM-based PI and CI

Current Ar-
chitecture
Extraction

KDM-based PI and CI

Architecture
Comparison

KDM-based PI and CI

be a composee of a MEnv, since only by itself, it has no power to perform completely at

least one of the MEnv’s purposes, such as: Reverse Engineering, Restructuring or Forward

Engineering.

On the other hand, it is completely possible to have a MEnv composed of MTs and

other MEnvs for different purposes. For instance, we could have a MEnv composed of

66

4.4 Threats to validity

MoDisco, KDM-RE, and RUTE-K2J that would fulfill a complete modernization process

with all three CompSu purposes.

4.4 Threats to validity

In this section we present the threat to validity of our preliminary taxonomy evaluation.

The first point is that the selection and classification was performed by the author of this

thesis and this could lead to a doubt about the categorization results that was made. We

claim that even with all the information present in the taxonomy, these concepts could

lead to some doubts in the categorization process. By providing this set of tools already

categorized by the taxonomy´s creator we could support a second step of the evaluation

process that will be performed by software engineers and modernization engineers that

could use this initial evaluation as a reference.

4.5 Final Considerations

We claim that the general understanding of Modernization Tools is the key concept when

talking about modernization with ADM, once all the standards that they advocate ground

one of its main advantage, which is the interoperability. In this chapter, we presented

a discussion about MT that aimed to improve the general comprehension and the main

features that permeate MT.

In chapter 5, we present a reference architecture for software modernization tools that

are based on ADM, in which we use the concepts presented in Chapter 4.

67

Chapter

5
A Reference Architecture for

ADM-Based Modernization Tools

5.1 Initial Considerations

In this chapter we present RADM, which is the Reference Architecture we have developed

for supporting the designing of ADM-based Modernization Tools. RADM is composed of

21 views, divided into Structural View, Data-Flow View and Dynamic Views. The primary

purpose of these views is to serve as a basis for the structure of specific modernization

tools. The main benefit of them is to show the main abstraction that must exist in these

tools.

RADM is also composed of a set of activity and component diagrams that provide the

inside dynamics of the subcomponents presented in the Structural and Data-Flow views.

5.2 The Reference Architecture

One of the major contribution of our reference architecture is to cover two vertents. The

first one is to provide for software architects the main abstractions that must exist in

ADM-based modernization tools. By identifying these abstractions, software architects can

68

5.2 The Reference Architecture

design an architecture creating concrete modules that represent these abstractions. When

these abstractions become evident in the source code, the evolution and maintenance will

be facilitated. We also provide the relationships we believe are the most suitable among

these abstractions, which can materialize themselves in concrete relations in the source

code.

The another vertent is regarding the dynamics of the internal components. Our

reference architecture also delivers activity diagrams that details the execution steps of

the main components. Allowing software architects to understand the main steps of how

their modernization tools should work.

In this section we provide an overview of the Reference Architecture we have created.

We have organized this section in three main views:

• Structural View: MVC and Internal Components View;

• Data Flow Views: Pipes and Filters View; and

• Dynamic Views: Activities and Components Views.

The architectural views and its descriptions are presented here to provide a documen-

tation of how the RA could be used. In the following sections we present a conceptual

overview of the reference architecture that represents the complete Modernization Tool

Architecture.

The Pipes and Filters view supports modernization engineers in the design process of

modernization tools by enabling to understand the context, the main processes and input

and output sources of the tool that is going to be developed. The MVC view provides an

overview of the modernization environment. This view supports modernization engineers

by providing two main sides, the user and the application, and also provides the main

layers and how the communication could be established between the layers. And the

Internal Components view that presents the components of the layers in the modernization

application side. In this view we present the main components/functionalities of each

modernization process and it is useful when the modernization engineer wants to design

the functionalities of a modernization tool.

For the Dynamic views we will find a specific view for each one of the main components

of our RADM. Here we will find the Reverse Engineering, Restructuring and Forward

Engineering Views composed by their components, layers and repositories.

In order to represent these views we choose our own notation, that were based on the

architectures found on the literature review, since it provide us a more free way of drawing

69

5.3 Structural Views

architectural views. However, the elements presented are based on KDM (Pérez-Castillo

et al., 2011a).

5.3 Structural Views

This set of view aims to represent the structure of our RA by presenting a general view of

modernization tools architecture. The two views of this set are:

• The Abstract Layered view (Figure 5.1) provides an overview of the modernization

environment. This view supports modernization engineers by providing two main

sides, the user and the application, and also provides the main layers and how the

communication could be implemented between the layers of the two sides.

• The Concrete Layered view (Figure 5.2) presents the components of the layers in the

modernization application side. In this view we present the main components/func-

tionalities of each modernization process and it is useful when the modernization

engineer wants to design the functionalities of a modernization tool.

5.3.1 MVC View

This view represents (Figure 5.1) how the layers communicate internally and how they

should be designed. First of all, this view follows the Model-View-Controller (MVC)

architectural pattern this is due to most of the existing modernization tools found in the

literature followed a layered architecture and since MVC is a well-known and structured

architectural pattern we claim that this is the one that should be considered while

instantiating modernization tools. MVC framework supports an asynchronous technique

that allows the execution of modernization tools to load very quickly models and to

execute other components. In addition, MVC allows that modification in one specific

component/layer does not affect the entire model.

In this view we considered two sides, the user side and the tool side. The user side is

the environment that the modernization engineer are going to access the functionalities of

the modernization tool that could either by a web browser or an Integrated Development

Environment (IDE). The modernization application side is responsible for processing the

requests of the user side. In this side, the front and back-end implementation should

be stored. The functionalities should be grouped according to its purpose (Reverse

Engineering, Restructuring or Forward Engineering) and it should be implemented as

a component. The persistence layer should be separated from the model so each layer

70

5.3 Structural Views

REVERSE
ENGINEERING
COMPONENTS

T
O

O
L
 S

ID
E

U
S

E
R

 S
ID

E

Legend

State
Query

State
Change

Notification Layer

CONTROLLER

VIEW

RESTRUCTURING
COMPONENTS

FORWARD
ENGINEERING
COMPONENTS

MODEL

PERSISTENCE

IDEBrowser

Figure 5.1: MVC view

could be responsible for implementing only its concern. The view layer is responsible for

presenting the functionalities to the user and the controller layer is responsible for manage

the requests from view layer.

In the legend of Figure 5.1 we present three notations to represent the relationship

between layers. State Query change represents an action of a component in a layer that

changes the current stage of another component. The State query represents a request

to retrieve the current status of a component. Finally, the Notification represents a

message exchange between layers and components that do not change the current state of

a component.

Related requirements: G-4; G-8; and G-91.

1Please notice that these requirements are presented in Table 5.1

71

5.3 Structural Views

5.3.2 Internal Components View

A concrete view of modernization application side based on Figure 5.1, can be seen on

Figure 5.2. In this view it is possible to see the components of each layer and how they

communicate with each other.

R
E
V

E
R

S
E

E
N

G
IN

E
E
R

IN
G

C

O
M

P
O

N
E
N

T
S

Metric Creator

Model Visualizer

Metric Calculator

Blackboxing Executor

Code/Model Discoverer
Code/Model Creator

Flaws Detector
Flaws Creator

Instance Manager

R
E
S

T
R

U
C

T
U

R
IN

G

C
O

M
P

O
N

E
N

T
S

Model VisualizerBlackboxing Executor

Refactoring Executor
Behavior Preservation Refactoring Propagator

Instance Manager

Refactoring Creator

F
O

R
W

A
R

D

E
N

G
IN

E
E
R

IN
G

Measurement Comparator Model Visualizer

Metric Calculator
Blackboxing Executor

Model/Code Discoverer
Model/Code Creator Instance Manager

Metric Creator

M
O

D
E
L

C
O

N
T
R

O
L
L
E
R

Controller

V
IE

W

View

Legend

State Query

State Change

Notification

Layer

Component

Repository

Specific
Component

Model MetricSource code Blackboxing

Persistence Manager

Flaws

Transformation
Rules Refactoring Behavior

Preservation
Refactoring
Propagation Measurement

P
E
R

S
IS

T
E
N

C
E

Figure 5.2: Internal Components view

Following we present the description of each layer.

• View Layer: Responsible for providing the user interface where a software engineer

is going to perform one or more steps of the modernization process.

72

5.3 Structural Views

• Controller Layer: Responsible for processing the requests from the view layer and

to redirect to the correct component in the model layer.

• Model Layer: It contains all the layers of the modernization tool that is organized

in three main layers: Reverse Engineering; Restructuring; and Forward Engineering.

• Reverse Engineering Components Layer: It contains all components that support

the Reverse Engineering process. Inside the Reverse Engineering layer there are

the components Instance Manager(G-7 and RE-2), Flaws Detector (RE-3) and the

Code/Model Discoverer that has components responsible for discover knowledge from

source code (RE-1). The other components are the Blackboxing Executor (G-11),

Metric Calculator (RE-4), Metric Creator (RE-5) and Model Visualizer (G-1)2.

Please, notice that the gray components are specific components, meaning that they

should exist only inside that particular layer. In the other hand, white components

can be implemented in any of the three possible layers (Reverse, Restructuring and

Forward).

• Restructuring Components Layer: It contains all components that support the

Restructuring process. The component Refactoring Executor (R-1, R3 and R-4) is

the main component that is responsible for the refactorings in model instances. The

components Behavior preservation (R-5) and Refactoring Propagator (R-5) support

the modernization process by improving the results of the performed refactorings.

The Refactoring Creator (R-2) component allows the creation of new refactorings

that will be applied in the model intances.

• Forward Engineering Components Layer: It contains all components that support

the Forward Engineering process. The Metric Calculator (FE-3), Measurement

Comparator (FE-4) and Metric Calculator supports the analysis of software modern-

ization. The Model/Code Discoverer is responsible to convert model instances in to

modernized source code (FE-1, FE-2 and G7).

• Persistence Layer: This layer can only be accessed by the model layer and it is

responsible for managing all the persistence that the components may require. The

repositories should be organized as follows: i)Model - stores all model instances that

were obtained during the execution of the components of the different Components

Layer; ii) Metric - stores all the metrics and model measurement results; iii) source

code - store the legacy source code and the target source code; iv) Blackboxing -

2The information in parentheses () represent the requirement described in Table 5.1

73

5.4 Data Flow View

stores the blackboxing algorithms that are going to be used in the modernization

tool implementation; v) Refactoring - stores the model transformations needed for

performing a refactoring; vi) Flaws - stores the algorithms to detect the flaws and

the model instances annotated with the detected flaws; vii) Transformation Rules

- stores all transformation rules that are used by the components; viii) Behavior

Preservation - stores the algorithms and transformation rules to apply behavior

preservation; and ix) Measurement - stores the measurements that were discovered

in the modernization process.

Related requirements: G-1; G-3; G-4; G-8; G-8.1; G-9; G-11; RE-1; RE-2; RE-3; RE-4;

RE-5; R-1; R-2; R-3; R-4; R-5; FE-1; FE-2; FE-3; and FE-4.

5.4 Data Flow View

This view aims to represent the data flow of our RA by presenting the execution simulation

of a modernization process.

• The Pipes and Filters view (Figure 5.3) supports modernization engineers in the

designing process of modernization tools by enabling to understand the context,

the main processes and input and output sources of the tool that is going to be

developed.

5.4.1 Pipes and Filter View

First of all, Architecture-Driven Modernization blueprint provide us a horseshoe view that

enable to see how the different modernization processes (Reverse Engineering, Restructuring

and Forward Engineering) interact with each other, and pipes and filter architectural style

could represent the ADM’s horseshoe blueprint. This architectural view can be seen in

Figure 5.3. Each filter can act independently and they do not need to know or inform

status to another filter. This view enable to understand the architectural data flow by

showing that each filter has a purpose and specific input and output formats. The main

reason we choose pipes and filters to represent this data flow is that this architecture

pattern allows the processing modules of a MT to be break down in to a set of independents

steps, representing each step of the software reengineering. In addition, it also provides

the flexibility to reorder the processing steps of the MT that allows the modernization

engineer to add and remote processing steps inside each one of the filters.

74

5.4 Data Flow View

A
B

C

Source

C++

ADA

Reverse
Engineering

Filter

Legacy
Software System

Metamodel
Instances

KDM

BPMN ASTM

UML Java
Model

A
B

C

A
B

C

.NET

Cobol

Java

Restructuring
Filter

Forward
Engineering

Filter

Modernized
Software SystemDatabase

Config.

Figure 5.3: ADM Pipes and Filters Architectural Overview

Input files are provided to filter by means of pipes that accept specific types of files,

for instance, the Reverse Engineering Filter has a purpose of abstracting knowledge from

existing source files3 in order to transforms this input in metamodel instances that are

going to be consumed by another filter.

The Restructuring filter receive metamodel instances from Reverse Engineering filter

to perform model transformations in order to improve and to fulfill the modernization

goals. The restructuring filter output could serve as input to the reverse engineering

filter or to the forward engineering filter. Usually, the reverse engineering filter consumes

the output of the restructuring when another improvement should be performed in a

different abstraction level4. When consumed by forward engineering filter the goal is to

transform the modifications performed in restructuring filter in source code, completing

the modernization process.

The Pipes and Filters view completes the MVC view since it is possible to see how

each filter behave internally.

Related requirements: G-5; G-9 and G-10.

3Source files in modernization context could be represented by all files that composes a software system,
such as: source code, configuration files, databases, and interfaces.

4There are three main abstraction level according to Model Driven Architecture: Platform Specific,
Platform Independent and Computation Independent.

75

5.5 Dynamic Views

5.5 Dynamic Views

In this section we concentrate on the dynamic aspects of the Reverse Engineering, Re-

structuring; and Forward Engineering mentioned initially in Figure 5.2. In the following

sections we present details of each modernization flow which are represented by a set of

activity and a component diagram. Each activity diagram corresponds to a component in

Figure 5.2.

5.5.1 Reverse Engineering Views

In Figure 5.4 is presented the Reverse Engineering view composed by its components,

layers and repositories.

R
E
V

E
R

S
E

E
N

G
IN

E
E
R

IN
G

C

O
M

P
O

N
E
N

T
S

Metric Creator

Model Visualizer

Metric Calculator

Legend

State Query

State Change

Notification

Layer

Component

Repository

Specific
Component

C
O

N
T
R

O
L
L
E
R

Controller

M
O

D
E
L

P
E
R

S
IS

T
E
N

C
E

Model MetricSource code Blackboxing

Blackboxing Executor

Persistence Manager

V
IE

W

View

Flaws
Transformation

Rules

Code/Model Discoverer
Code/Model Creator

Flaws Detector
Flaws Creator

Instance Manager

Figure 5.4: Reverse Engineering view

5.5.1.1 General Activity Diagram View

The first activity diagram is about the general flow of RE. As can be seen in Figure 5.5, the

flow starts with the process of loading legacy source code in order to discover metamodel

instances of it to finally store these information in the correspondent repository. The

Discovery Instance activity can be executed as many times as needed until the desired

abstraction level of the model instance is achieved. After the discovery instance activity the

MT should store the discovered instance as a backup or to be reused by other algorithm.

The modernization engineer can decide the better way of working with these instances

and the load instance activity can be skipped if it is decided to use the current model that

was recently discovered.

76

5.5 Dynamic Views

The RE process involves two other main functionalities that are flaws detection and

metric calculation.

Figure 5.5: General Activity Diagram View

Flaws detection is the process of analysing an existing metamodel instance in order

to detect bad code signs about specific concerns. To detect the flaws it is necessary to

load the metamodel instance (Load Instance), load the existing flaws detector algorithms

(Load Flaws), choose the one that better fits its purpose (Choose Flaw) and then apply it

in the instance (Detect Instance’s Flaws). After applying the flaw algorithm, the result

should be stored (Store Marked Instance) and present to the software engineer the results

(View Marked Instance Results).

Regarding metric calculation, it is the process of measure the software system con-

sidering a specific metric. To calculate a metric it is necessary to load the metamodel

77

5.5 Dynamic Views

instance (Load Instance), load the metrics available in the tool (Load Metric), select a

metric (Choose Metric) and apply the metric in the metamodel instance (Calculate Metric).

After applying the metric algorithm, the result should be stored (Store Measurement) and

present to the software engineer the results (View Metric Results).

The followings activity diagrams present detailed information about the flow presented

in Figure 5.5.

5.5.1.2 Instance Manager Activity Diagram View

This view presents the way that the instances and source codes should be handled in a RE

modernization tool and can be seen in Figure 5.6.

Figure 5.6: Instance Manager Activity Diagram View

Regarding metamodel instances there are two possible actions, load or store (Identify

Request Parameters). The ”Load” request receives the instance parameters (name of the

instance and corresponding repository) that will be loaded in order to redirect the request

to the corresponding repository. The ”Store” request receives the name, the instance itself

and the corresponding repository information to record in the corresponding repository.

Regarding the source code management, the first step is to import the files in the tool

(Select Legacy System). The files should be validated in order to ensure that the user is

importing the correct files (Validate Files). After the validation the source code repository

should be accessed and the files should be stored.

78

5.5 Dynamic Views

5.5.1.3 Flaws Detector Activity Diagram View

In a RE modernization tool it is possible to detect flaws in metamodel instances. However,

there are cases that the tools is responsible not only for the detecting process but also for

creating the algorithms that are going to perform the flaws detection. We are considering

that the flaws detected in metamodel instances are marked in the instance itself to be

processed later on for restructuring tools.

The flow to detect flaws is as follows and can be seen in Figure 5.7. First, the instance

that will be analysed should be loaded and then the existing flaws detector algorithms are

loaded. The software engineer will decide which algorithm will be applied, however the

needed flaw detector could not be available/exists then it could be created (explained in

the following paragraph). If the wanted flaw algorithm is available, the flaw is selected

(Choose Flaw) and then applied in the metamodel instance (Detect Instance’s Flaws). The

following steps are to store the marked instance and to view the marked instance results.

Figure 5.7: Flaws Detector Activity Diagram View

79

5.5 Dynamic Views

The flow to ”create flaws” is as follows. The first step is to design what should be

detected and how the algorithm to detect the flaw should behave. Sometimes it is possible

to reuse an existing algorithm/tool to avoid rework, then the modernization engineer

should design how this algorithm will be integrated in the tool. When the flaws detector

algorithm is created, it should be stored in order to be available.

5.5.1.4 Metamodel Instance Discoverer View

The main functionality in the Reverse Engineering process is the metamodel instance

discover process. The basic flow to create a discoverer tool can be started in two ways

(Figure 5.8). The first one is by discovering an instance from source code and the second

way is by discovering and instance from another instance. The discovery process for

both are very similar an can be synthesized as follows. The fist step is to load source

code/instance and the existing transformation rules. If the transformation rules needed do

not exists it could be created, as presented in the following paragraph. After choosing the

right transformation rules, they should be applied in order to get the needed metamodel

instance. As metamodel instances are not meant to be processed by humans, the tool

could provide ways to visualise according to a given context. The final step is to store the

instance in its corresponding repository.

The flow to create a discoverer is as follows. The first step is to design how the

algorithm to discover instances should behave and the metamodels that will be handled.

Sometimes it is possible to reuse an existing algorithm/tool to avoid rework, then the

modernization engineer should design how this algorithm will be integrated in the tool.

The discovery process need two metamodels as input, one for the source instance (Select

Source Metamodel) and another to get the target instance (Select Target Metamodel).

A mapping should be developed in order to create the transformation rules. This step

is responsible for specifying which element in the target metamodel corresponds to the

source metamodel. This mapping enables the transformation rules development. The last

step is to store the transformations rules to be used by the metamodel instance discoverer.

5.5.1.5 Metric Calculator Activity Diagram View

In a RE modernization tool it is possible to calculate metrics in metamodel instances. The

flow to calculate metric is as follows (Figure 5.9). First, the instance that will be analysed

should be loaded and then the existing metrics are loaded.

The software engineer will decide which algorithm will be applied, however the needed

metric could not be available/exists then it could be created (explained in the following

80

5.5 Dynamic Views

Figure 5.8: Metamodel Instance Discoverer View

paragraph). If the wanted metric is available, the metric is then selected (Choose Metric)

and then applied in the metamodel instance (Apply Metric). The following steps are to

store the measurement and to view the measurement results.

The flow to create a metric algorithm is as follows. The first step is to design the metric

and how the algorithm to calculate the metric should behave. Sometimes it is possible to

reuse an existing algorithm/tool to avoid rework, then the modernization engineer should

design how this algorithm will be integrated in the tool. When the metric algorithm is

created, it should be stored in order to be available.

81

5.5 Dynamic Views

Figure 5.9: Metric Calculator Activity Diagram View

5.5.1.6 Reverse Engineering Component Diagram View

In Figure 5.10 we present the component diagram view of the reverse engineering view.

The creation process of this diagram took in consideration the SOLID principles5 (Martin

et al., 2003). For instance, we covered the Single-responsibility principle by creating one

component for each functionality so each one of them could have only one responsibility. we

covered the Liskov substitution principle by creating one interface for each main component

(Flaws Detector, Code/Model Discovery and Metric Calculator) so the controller component

could use the reverse engineering components without knowing the inside content of each

component.

The main point of this diagram is to present the idea of how the source code should

be structured and how the components should communicate. In the figure we could

5Proposed by Robert C. Martin, SOLID is a set of principles that establishes best practices for
developing software systems aiming to contribute by avoiding code smells, successfully refactoring code,
and other advantages.

82

5.5 Dynamic Views

see that components should communicate though interfaces and not directly access each

other. Another point is that components should not access the repository directly to

standardize the way of accessing the repositories. By sending all the store requests to

a Instance manager component we simplify the way we call this functionality inside the

main components.

Regarding the reverse engineering component diagram in Figure 5.10 we display three

main components: Flaws Detector, Code/Model Discovery, and Metric Calculator. Each

one of these components has its own concern, i. e., should be self contained in the

component.

Flaws Detector component clusters the functionalities that are related to the process

of analysing/detecting flaws in model instances. The Code/Model Discovery is responsible

for clustering the components that aim to support the conversion of source code or models

for the reverse engineering. The Metric Calculator component is responsible for clustering

all components that support the analysis of the software systems metrics data.

Figure 5.10: Reverse Engineering Component Diagram View

5.5.2 Restructuring Views

The diagrams set presented in this section is related to the restructuring step of the

modernization flow. In Figure 5.11 is presented the Restructuring view composed by its

components, layers and repositories.

5.5.2.1 General Activity Diagram View

In Figure 5.12 is represented the general flow of the restructuring process. The flow starts

at loading the metamodel instance in order to execute the existing refactorings. One

important validation after executing refactorings is to ensure that the behavior of the

83

5.5 Dynamic Views

R
E
S

T
R

U
C

T
U

R
IN

G

C
O

M
P

O
N

E
N

T
S

Model Visualizer

Legend

State Query

State Change

Notification

Layer

Component

Repository

Specific
Component

C
O

N
T
R

O
L
L
E
R

Controller

M
O

D
E
L

P
E
R

S
IS

T
E
N

C
E

Model Refactoring Blackboxing

Blackboxing Executor

Persistence Manager

V
IE

W

View

Refactoring Executor
Behavior Preservation Refactoring Propagator

Instance Manager

Refactoring Creator

Behavior
Preservation

Refactoring
Propagation

Figure 5.11: Restructuring view

refactored system is preserved, thus the modernization engineer has to execute a behavioral

preservation algorithm.

Figure 5.12: General Activity Diagram View

When the software system represented as a metamodel instance has more than one

abstraction level, there might be needed a propagation of the changes to the others

levels. After the propagation the tool should store the refactored instance and display the

refactoring results to the user.

84

5.5 Dynamic Views

5.5.2.2 Instance Manager Activity Diagram View

This view presents the way that the instances should be handled in a Restructuring

modernization tool. Regarding metamodel instances (Figure 5.13) there are two possible

actions, load or store (Identify Request Parameters).

Figure 5.13: Instance Manager Activity Diagram View

The ”Load” request receives the instance parameters (name of the instance and corre-

sponding repository) that will be loaded in order to redirect the request to the corresponding

repository. The ”Store” request receives the name, the instance itself and the corresponding

repository information to record in the corresponding repository.

5.5.2.3 Refactoring Activity Diagram View

In Figure 5.14 is displayed the complete restructuring flow of restructuring process. This

view is composed of four flows: refactoring executor, refactoring creator, behavioral

preservation and refactoring propagator creator.

The flow starts at loading the instance that is going to be refactored. The next step

is to load the existing refactoring that could be applied in the software system instance.

In this step, the tool could allow the implementation of a new refactoring. So, the flow

named as Refactoring Creator (A1) represents the steps needed to create a new refactoring.

After choosing the refactoring, the algorithm should apply it in the instance. The flow

triggers two other flows, one allowing the user to see the refactorings results and the other

one executing the behavioral preservation of the instance to ensure that the refactoring is

not changing any implementation logic of the software system.

Regarding the behavioral preservation, each refactoring should have its behavioral

preservation algorithm, since it is expected when dealing with refactorings. In this step, the

85

5.5 Dynamic Views

Figure 5.14: Refactoring Activity Diagram View

tool could allow the implementation of a new behavioral preservation. This new behavior

preservation could be represented by means of transformation rules that would be applied

in the refactored model instance to validate some specific behavior the modernization

86

5.5 Dynamic Views

engineer wants to preserve. So, the flow named as Behavioral Preservation Creator (B1)

represents the steps needed to create a new refactoring. After choosing the corresponding

behavioral preservation, the algorithm should apply it in the instance and in the end it

should display the results.

There are cases that the instance contains more than one architectural view of the same

software system, in that case, the changes performed by the refactoring algorithms should

be propagated to the other architectural views in order to keep the instance consistently

updated. To do so, the tool should support the propagation mechanism that is triggered by

the propagation instance refactoring. In this step, the tool could allow the implementation

of a new Refactoring Propagator. So, the flow named as Refactoring Propagator Creator

(C1) represents the steps needed to create a new refactoring propagator. After choosing

the corresponding refactoring propagator, the algorithm should apply it in the instance

and in the end it should display the results and also store the the propagated instance.

Refactoring Creator (A1), Behavioral Preservation Creator (B1) and Refactoring

Propagator Creator (C1) have the same implementation flow. First of all, the operating

logic should be designed, which will evaluate if there is any existing algorithm/tool could

be incorporated to then implement/create the complete operating logic. The final step of

these flows is to store the service/tool/algorithm in a specific repository.

5.5.2.4 Restructuring Component Diagram View

In Figure 5.15 we show thee main components: Behavior Preservation, Refactoring,

and Propagation. As mentioned before, each component should be self contained and

also should be accessed only through its interface. Behavior Preservation component is

responsible for clustering all components related to supporting the behavioral preservation

logic. Refactoring component clusters all components related to applying refactoring to

model instances, and Propagation component is related to all logic that aims to propagate

the changes performed in the refactoring component.

5.5.3 Forward Engineering Views

In Figure 5.16 is presented the Forward Engineering view composed by its components,

layers and repositories.

87

5.5 Dynamic Views

Figure 5.15: Restructuring Component Diagram View

F
O

R
W

A
R

D

E
N

G
IN

E
E
R

IN
G

Measurement Comparator Model Visualizer

Metric Calculator

Legend

State Query

State Change

Notification

Layer

Component

Repository

Specific
Component

C
O

N
T
R

O
L
L
E
R

Controller

M
O

D
E
L

P
E
R

S
IS

T
E
N

C
E

Model MetricSource code Blackboxing

Blackboxing Executor

Persistence Manager

V
IE

W

View

Measurement
Transformation

Rules

Model/Code Discoverer
Model/Code Creator Instance Manager

Metric Creator

Figure 5.16: Forward Engineering View

5.5.3.1 General Activity Diagram View

In Figure 5.17 is presented the general flow of Forward Engineering process. The flow starts

at loading the metamodel instance in which two main functionalities can be performed:

Metric Calculation and instance/source code discovery.

Regarding metric calculation, it is the process of measure the software system consider-

ing a specific metric. To calculate a metric it is necessary to load the metrics available in

the tool, select a metric (Choose Metric) and apply the metric in the metamodel instance

(Calculate Metric). After applying the metric algorithm, the result should be stored (Store

Measurement) and present to the software engineer the results (View Metric Results).

88

5.5 Dynamic Views

Figure 5.17: General Activity Diagram View

As Forward Engineering flow is the last one in the reengineering process, some metric

calculation could have previously being performed in reverse engineering flow. Thus, as

another functionality of FE flow, the software engineer could also perform a measurement

comparison in order to extract some information about the refactoring that were performed.

For this, the tool should load the measurements, execute the algorithm to compare the

two metric results and present the comparison results.

After the measurement comparison, the tool should display the option of calculate

another metric or perform instance/source code discovery. The instance/source code

discovery consists in the process of analyse existing instances in order to discover lower level

instances until it reaches the source code level. In the end of this flow the instances/source

code discovered should be stores in its corresponding repository.

The followings activity diagrams present detailed information about the flow presented

in Figure 5.16.

5.5.3.2 Metamodel Instance and Source Code Discovery View

The main functionality in the Forward Engineering process is the metamodel instance/-

source code discover process. The basic flow to create a discoverer tool can be started in

two ways and can be seen in Figure 5.18.

89

5.5 Dynamic Views

Figure 5.18: Metamodel Instance and Source Code Discovery View

The first one is by discovering source code from an instance and the second way is by

discovering an instance from another instance. The discovery process for both are very

similar an can be synthesized as follows. The fist step is to load the instance and the

existing transformation rules. If the transformation rules needed do not exists it could be

created, as presented in the following paragraph. After choosing the right transformation

rules, they should be applied in order to get the needed metamodel instance. The final

step of the discovery algorithm is to store the instance in its corresponding repository. As

an optional action, the tool could offer a functionality to visualize the instance/source

code.

The flow to create a discoverer is as follows. The first step is to design how the

algorithm to discover instances should behave and the metamodels that will be handled.

Sometimes it is possible to reuse an existing algorithm/tool to avoid rework, then the

modernization engineer should design how this algorithm will be integrated in the tool.

The discovery process need two metamodels as input, one for the source instance (Select

Source Metamodel) and another to get the target instance (Select Target Metamodel).

A mapping should be developed in order to create the transformation rules. This step

is responsible for specifying which element in the target metamodel corresponds to the

90

5.5 Dynamic Views

source metamodel. This mapping enables the transformation rules development. The last

step is to store the transformations rules to be used by the metamodel instance discoverer.

5.5.3.3 Metric and Measurement Calculation View

In a FE modernization tool it is possible to calculate metrics in metamodel instances. The

flow to calculate metric is as follows and can be seen in Figure 5.19.

Figure 5.19: Metric and Measurement Calculation View

First, the instance that will be analysed should be loaded and then the existing metrics

are loaded. The software engineer will decide which algorithm will be applied, however the

needed metric could not be available/exists then it could be created (explained in the last

paragraph). If the wanted metric is available, the metric is then selected (Choose Metric)

and then applied in the metamodel instance (Apply Metric). The following steps are to

store the measurement and to view the measurement results.

If the software engineer wants to compare measurements from reverse engineering and

forward engineering flows a new algorithm should be called. Measurement comparator

starts at choosing the metrics that are going to be considered and then the RE and FE

measurements are loaded so the Comparator Measurement algorithm could analyze and

show the results.

The flow to create a metric algorithm is as follows. The first step is to design the metric

and how the algorithm to calculate the metric should behave. Sometimes it is possible to

91

5.6 RA usage Guidelines

reuse an existing algorithm/tool to avoid rework, then the modernization engineer should

design how this algorithm will be integrated in the tool. When the metric algorithm is

created, it should be stored in order to be available.

5.5.3.4 Forward Engineering Component Diagram View

Figure 5.20: Forward Engineering Component Diagram View

In Figure 5.20 is represented the component diagram of Forward engineering. This

diagram has two main components: Code/Model Discovery and Metric Calculator. The

Code/Model Discovery is responsible for clustering the components that aim to support

the conversion of source code or models for the forward engineering. The Metric Calculator

component is responsible for clustering all components that support the analysis of the

software systems metrics data.

5.6 RA usage Guidelines

The views presented in previous section summarize our RA by displaying the main layers,

components, relationship and activities that should be present in a modernization tool.

In this section we present some guidelines to help modernization engineers and software

architects on the process of creating new interoperable modernization tools.

The first step on building a new modernization tool is to understand how it will

be use, if by means a service request/Browser or by existing IDEs through plugins.

This decision should not impact in MT architecture, however it will impact on how the

service/functionality results of your tool will be delivered.

The second step is to understand where the purpose of your tools is focuses, if reverse

engineering, restructuring or forward engineering. To support this understanding we have

our taxonomy proposed on Chapter 4 and Figures 5.1, 5.2 and 5.3 in which software

architects and modernization engineers can have a global view of the environment needed

92

5.7 Methodology Employed

to support the MT. Depending on the MT’s purpose, more than one layer is impacted,

thus, identifying the correct layers and components will support not only the correct design

but also modularization and interoperability.

The third step is to determine which components and repositories will be part of the

new MT’ architecture. For instance, if a MT aims to perform a Language-to-Language

Conversion (Modernization scenarios - Table 4.1) and the focus in only on the reverse

engineering part, there is no need to create the other layers. However, if the focus is

on the language-to-language transformation rules at least the restructuring and reverse

engineering layers should exist, even if the mechanism used in the reverse engineering part

already exists.

After deciding which layers and components will be part of the architecture, the fourth

step is to identify the operations that each component will be responsible to execute. Each

layer has its own set of activity diagram view that displays the main operations needed to

execute the flow of a component. In an activity diagram view, all the activities represent

actions/functionalities that could be translated in to methods/functions in the source code

implementation.

Finally, the fifth step is adjust the selected components in to the specific component

diagram view. These views can help modularize the source code that will be produced in

step 4. The structure of these views could be translated in to the package structure of the

source code or how each component could be available as a service.

5.7 Methodology Employed

In this section we present the methodology of RADM that is a Reference Architecture

for ADM-based Modernization Tools. This RA aims to help modernization engineers

in the process of building modernization tools that perform modernizations in ADM

context. It is important to mention that the taxonomy presented in Chapter 4 provided

the basic knowledge and naming convention for our RA and also supported the views with

the expected flow for each component, as we had to analyze all possible modernization

scenarios to build the taxonomy. The architectural views and its descriptions are presented

in this chapter to provide a documentation of how the RA could be used.

The Family-Architecture Assessment Method (FAAM) and Architecture Trade-off Anal-

ysis Method (ATAM) are examples of evaluation methodologies for reference architecture

(Angelov et al., 2008a). These methodologies rely on questioning techniques that take in

consideration domain specialists and in ATAM we also have measuring techniques that

support quantitative measurement in order to support the architecture’s evaluation. In

93

5.7 Methodology Employed

order to establish our RADM, we adapted a methodology followed by Nakagawa et al.

(2014a). The PROSA-RA methodology not only supports the evaluation step of a RA

but also its creation contemplating the source investigation, architectural analysis of the

sources and the evaluation itself. The following sections present the result of each step to

the RADM creation.

5.7.1 Information Source Investigation

Following the approach proposed by Nakagawa et al. (2014a) in Step 1 (Information

Source Investigation) we have collected official ADM papers, publications, and existing

tools to help building our RA. Different sources were considered, mainly related to ADM

domain. These sources can be classified into three sets: I) ADM publications; II) Existing

Modernization Tools; and III) Existing Model and Code Refactoring Tools.

The analysis of publications concentrated on primary studies that presented any kind of

modernization tool. The main goal was to extract which were the main functionalities and

how this kind of tool behave while supporting the modernization process. In addition, we

also have used a systematic mappings on architecture-driven modernization (Durelli et al.,

2014) and a systematic review on UML model refactoring (Misbhauddin e Alshayeb, 2015).

Another point to mention is that in order to identify the main architectural requirements

about modernization tools available in the literature we also carried out a search on OMG

website, more specifically in the ADM part.

Following, each set of information sources is described in more details.

• Set I - ADM publications: An important source of information is the set of artifacts

provided by OMG about ADM blueprint. We analyzed the ADM website, 4 white papers,

1 glossary, 1 formal specifications about software modernization6; and the ISO/IEC

25010 (ISO/IEC25010, 2011). As a result, we extracted the architecture styles of ADM

blueprint by means of its main concepts which are software Reengineering and Model

Driven Architecture (MDA) which are pipes and filters; and layered architecture.

• Set II - Existing modernization tools: In order to see how ADM concepts were

being implemented in researches and at the same time performing the identification of

technical requirements we analyzed existing modernization tools in the literature and in

the industry. We analyzed tools from a systematic mapping on ADM (Durelli et al.,

2014), and two ADM books (Pérez-Castillo et al., 2011b; Ulrich e Newcomb, 2010b).

6This page provides a summary of OMG specifications about software modernization.
https://www.omg.org/spec/category/software-modernization

94

5.7 Methodology Employed

We also extended the systematic mapping on ADM (Durelli et al., 2014) to consider

publications till 2019. The OMG/ADM make available a list of vendors7 that somehow

employs the ADM concepts in its tools or they supported the ADM in its consolidation

process. We analysed these tools in order to understand their behavior and their roles

in the modernization process to extract common properties and requirements. As a

result, we rise a set of architectural requirements to support the creation of our reference

architecture. Another result is that based on this investigation we developed a Taxonomy

for Software Modernization Tools to help in the classification of modernization tools

and it will also be helpful to instantiate the RADM.

• Set III - Existing Model and Code Refactoring Tools: The restructuring phase of ADM

blueprint is the most crucial when considering the modernization process. To help the

building process of the architectural views of this phase, we performed a systematic

mapping that took in consideration existing refactorings tools in the literature to provide

a classification of the approaches and to extract the main functionalities of these tools.

Another set of tools used here was a systematic review on UML model refactoring

(Misbhauddin e Alshayeb, 2015). As a result, we complemented the requirements found

in Set II specifically in the restructuring phase.

5.7.2 Architectural Analysis and Requirements

Based on the previous investigation, all the artifacts collected in Step 1 were analyzed

in order to elicit the architectural requirements of software modernization tools. We

created our reference architecture in a way that instances of it, i.e., modernization tools

generated with its support, met some requirements. The identified set of requirements

are distributed in five kinds: Global (G), Reverse Engineering (RE), Restructuring (R),

Forward Engineering (FE), and Quality Attributes (QA). In table 5.1 are presented the

requirements, in the first column we have an identifier (ID) and in the second column the

description of each requirement.

The requirements that are common to all types of modernization tools are presented

as Global, this set represents common requirements to the four other groups, this is, it is

applicable to FE, R, QA and FE. The RE, R, and FE requirements are specific to each

modernization tool domain which means that they only should be implemented if it fulfills

the modernization tool that are going to be instantiated. The quality attributes (QA) can

be understood as characteristics of a concrete architecture that will be created based on

our RA. Our set of quality attributes (QA-1, QA-2 and QA-3 in Table 5.1) come from

7https://www.omg.org/adm/directory.htm

95

5.7 Methodology Employed

Table 5.1: Requirements

Requirement Group - Quality Attributes (QA), Global (G),
Forward Engineering (FE), Restructuring (R) and Forward Engineering (FE)

ID Description

QA-1

The RA must guarantee a good Reusability level in its instances. This means the effort to
reuse modules from on modernization tool into another should be facilitated and intuitive. This
requirement seeks to make the building of modernization tools easier and also that better quality
is reached by reusing existing modules.

QA-2
The RA must ensure Interoperability between the modernization tools generated with its support.
This means that a modernization tool is able to process the output generated by another one.

QA-3

The RA must ensure the modernization tools generated with its support have a good level of
Modularity. This means that the main concerns of these tools keep evident in the design. This
requirements seeks to guarantee that maintenance actions are well localized and confined in
specific modules.

G-1
The RA should provide a Visualization module. This module is responsible for presenting
metamodel instances and results to the software engineer.

G-3
All the functionalities should be developed considering the concept of component and modules
to guarantee the requirements QA-3 and QA-1.

G-4
The RA should follow the layered architectural style. This style can facilitates the maintenance
and mainly the implementation of different types of visualizations and the requirements QA-3
and QA-1. In addition, this architectural style had the most occurrence on our literature review.

G-5
The architecture between the RE, R and FE modules should consider the pipes and filters
architectural style since they have a specific architectural flow that matches with this style.

G-8
The RA should provide a module to manage all data persistence of the other modules to facilitate
QA-3 and QA-1 by avoiding the persistence spread in other functionalities.

G-8.1
The RA should have separated repositories to the different artifacts in order to group only similar
artifacts.

G-9
The RA should present the whole modernization process and how they communicate with each
other.

G-10 The RA should present the the possible input and output files in each modernization process.

G-11
The RA should allow the usage of blackboxing algorithms. These algorithms have implementation
in which their content is not explicit known, however the modernization engineer wants to integrate
them in the tool.

RE-1
The RA should provide a module to perform model discovery, that is the process of discovering
a model from source code.

RE-2
The RA should provide a module to perform model understanding, that is the process of discover
new models from a current model.

RE-3
The RA should provide a module to perform flaws detection in instances to mark possible
snippets candidates to be restructured.

RE-4 The RA should allows the metrics calculation in metamodels instances.

RE-5 The RA should allows the creation of metrics to be applied in metamodels instances.

R-1
The RA should provide a module to load metamodel instances that were analysed and marked
in Flaws Detection Module (RE-3) in order to prepare them for the refactorings.

R-2
The RA should allow the creation of module that supports the creation of refactorings and how
the new refactorings should be stored.

R-3
The RA should provide a module to execute existing refactorings (transformations rules) in
metamodel instances.

R-4 The RA should provide a functionality to verify the behavior preservation of the refactorings.

R-5
The RA should provide a module to propagate the changes performed by the refactoring in the
different metamodel instances viewpoints.

FE-1
The RA should provide a module to perform model discovery, that is the process of discovering
a model from source code.

FE-2
The RA should provide a module to perform model understanding, that is the process of discover
new models from a current model.

FE-3 The RA should allows the application of metrics in metamodels instances.

FE-4
The RA should provide a module to show the comparison of the metrics that were applied
in reverse engineering and forward engineering modules in order to provide an analysis of the
software system, represented in metamodel instances, after and before the restructuring phase.

96

5.8 Evaluation

mainly by the information from Set I, more specifically from ADM blueprint and ISO/IEC

25010 (ISO/IEC25010, 2011). These quality attributes also surfaced as we looked at the

set of related papers and tools, as when we checked for reusability we often concluded

that the tools were not reusable as they were not modular and interoperable enough to be

reused. In general, this analysis and requirement elaboration was important not only to

identify the concepts but also to guide us during the creation of our reference architecture

once we had to check if all constraints and concepts were being fulfilled and correctly

represented.

Next section we present the Architectural Synthesis which contains the architectural

views that were developed to integrate the Reference Architecture.

5.8 Evaluation

Following the approach proposed by Nakagawa et al. (Nakagawa et al., 2014a) we evaluate

our reference architecture performing a survey with ADM experts (software developers

and researchers) and software architects. The evaluation had two mains stages(Shull et al.,

2007): (i) Reading of the technical report about the RA; and (ii) Answering the questions

in an on-line form8 . The group had eight participants, two software architects with more

than ten years of experience and six ADM experts that have worked directly with ADM;

either by conducting research or developing ADM-based tools. The results obtained from

the survey were divided in (a) Acceptance; and (b) Overall acceptance. The first one was

focused on evaluate specific parts of the RA and the second one was focused on the content

in general.

5.8.1 Evaluating the RA Acceptance

In order to evaluate the acceptance of our RA we wanted to know from the participants if

the architectural views provided in the technical report were understandable and if they

were able to fulfill its purpose. We proposed four affirmations and the participants has to

answer using the following options: Strongly Agree (SA), Agree (A), Tend to Agree (TA),

Neutral (N)9, Tend to Disagree (TD), Disagree (D), and Strongly Disagree (SD).

The four affirmations were: AF1 - “The Pipes and Filters view provides an architectural

overview of ADM blueprint”; AF2 - “The Abstract Layered view is enough to understand

how the architectural layers communicate with each other”; AF3 - “The Abstract Layered

8Available at: https://www.dropbox.com/s/4m53smjnew87jet/ra-evaluation.pdf?dl=0
9A Neutral answer means that the participant does not feel confident to accept or deny a specific

affirmation.

97

5.8 Evaluation

view is enough to understand how a modernization tool should be designed”; and AF4 -

“The Concrete Layered view provides a complete overview of how the components should

be designed inside of each layer”.

In Table 5.2 we present the answers for each affirmation. In AF1, 100% agree that the

pipes and filter view provides an architectural overview of ADM blueprint. About AF2,

87,5% agree that the abstract layered view is enough to understand how the architectural

layers communicate with each other and only 12,5% tends to disagree about this affirmation.

In AF3, 87,5% of the participants agree that is enough to understand how a modernization

tool should be designed and 12,5% disagree about this affirmation. Finally, in AF4, 100%

of the participants agree that the concrete layered view provides a complete overview of

how the components should be designed inside of each layer.

Table 5.2: Acceptance of the Reference Architecture views

ID SA A TA N TD D SD

AF1 37,5% 62,5% 0% 0% 0% 0% 0%
AF2 12,5% 75% 0% 0% 12,5% 0% 0%
AF3 25% 25% 37,5% 0% 0% 12,5% 0%

AF4 25% 62,5% 12,5% 0% 0% 0% 0%

5.8.2 Evaluating the RA Overall acceptance

In order to evaluate the overall acceptance of our RA we wanted to know from the

participants if the quality of the technical report was acceptable and if they believe that

the RA was broad enough to help the creation of different modernization tool. The two

affirmations were: AF1 - “I believe the reference architecture is clear and well-described”;

and AF2 - “I believe the reference architecture is useful for instantiating different types of

modernization tools”.

In Table 5.3 we present the answers for each affirmation. In AF1, 100% agree that

the reference architecture is clear and well-described. About AF2, 75% agree that the

reference architecture is useful for instantiating different types of modernization tools and

25% of the participants were neutral about this affirmation.

Table 5.3: Overall acceptance of the Reference Architecture

ID SA A TA N TD D SD

AF1 25% 37,5% 37,5% 0% 0% 0% 0%

AF2 25% 12,5% 37,5% 25% 0% 0% 0%

98

5.9 Threats to Validity

5.8.3 Evaluating Discussions

The main focus of this evaluation was to get a perspective from people about the reference

architecture. We opted for choosing a small group of highly qualified people in order

to increase the chances of getting a trustful feedback since we were sure they had the

necessary knowledge to evaluate the RA. As a result, we got a list of issues that are going

to help us in the RA improvement process. For instance, some participants claimed that

in some architectural views more information/explanation were needed in order to increase

the understanding. For instance, one participant stated that the Structural views do

not displayed how each component would communicate internally with each other. To

mitigate this point we created two more views, Activity and Component diagrams, which

are focused on displaying how each component can interact with other in order to complete

the modernization process. The other comments we reflected in the improvement of the

views and requirements descriptions.

Another interesting issues pointed out was that some participants suggested to add

constraints on the architectural views in order to provide some guidelines on what should

not be performed to ensure the quality of the architectural instances.

It is important to remember that since we are proposing a RA, it is out of our scope

providing some lower level implementation details. Thus, the architectural views are not

supposed to suggest how the layers and components should be implemented or which

technologies should be used. The RA should be used as a reference guide to understand

and to design modernization tools.

5.9 Threats to Validity

In this section we present the points that could affect the conclusion of our preliminary

evaluation.

Internal Validity - refers to whether there is sufficient evidence to support our conclu-

sions. We claim that the RA can support the designing of MT. However, in this thesis

we were not able to instantiate our RA to create a concrete MT. The point is that in the

context of our research group we had several opportunities to design and build several

MTs and the knowledge contained in the RA and Taxonomy has a summarized version of

the required information we needed back then in order to build our tools. We claim that if

this kind of knowledge already existed we would not face some of the issues during our

development, or at least the RA could facilitate and speed up the MT creation.

99

5.10 Final Considerations

External validity - refers to the generalizibility of the treatment/condition outcomes.

Our evaluation was carried out with eight participants that contemplated masters and

PhD students with experience in ADM and some software architects. The evaluation

considered only two of the three main set views (Structural view, Data flow view and

Dynamic views). Thus, it is not possible to affirm that the overall acceptance we got from

the evaluation can be applied to the entire RA. In order to mitigate this we claim that the

Dynamic views set is a derivation of the other views and the main activities inside were

already presented in the requirements table that was also shared with the participants. In

addition, we proposed in section 6 in Future Works section an extension/improvement of

our RA evaluation.

5.10 Final Considerations

Reference architectures are architectural proposals with the objective of solving a problem

in a specific domain area, that take into consideration existing/current work. Our RA pre-

sented in this chapter contains both architectural information from existing modernization

tools and the knowledge available in the scientific literature.

The architectural views presented here contemplate the complete modernization pro-

cesses described by ADM, in which they represents an specific point of view that aims

to support modernization engineers in the process of creating new modernization tools.

Our evaluation main focus was to provide an overview of professionals and academic

researcher’s general acceptance in order to validate the architectural views here provided.

In Chapter 6 we present our conclusions, contributions, list of publications, and future

works.

100

Chapter

6
Conclusions

In this Ph.D. research, the focus was on the development of a reference architecture

that supports modernization engineers on building and designing modernization tools.

Specifically, we presented two main contributions that is discussed in the following section.

This chapter is organized as follows. Section 6.1 states the main contributions of this

thesis. Section 6.2 presents the main limitations of this thesis. Section 6.3 lists the future

works we envision. Section 6.4 summarizes the list of publications resulted from this Ph.D.

research and related works. Finally, in Section 6.5 we present the next publications we are

working on.

6.1 Contributions

The development of this thesis resulted in two main contributions: i) the taxonomy for

Modernization Tools and ii) the reference architecture.

The taxonomy aims at classifying the concepts arround modernization tools and how

to use this information. As stated in Chapter 4, we have noticed a lack of consensus

in this area and the existence of a taxonomy can guide modernization engineers in the

understanding process of modernization tools needs.

101

6.1 Contributions

The reference architecture is the main product of this thesis. As presented in Chapter

5, it consists in three main views where each one concentrates on a specific part of the MT

architecture.

Other more specific and parallel contributions were published in papers. For example,

in paper Santos et al. (2018), published in IEEE Software, we present an overview of

software modernization, providing modernization tools examples and some refactoring

guidance. And in paper Santos et al. (2019c), published in SBES, we present an snippet

of our reference architecture and a preliminary evaluation on the first two sets of views.

Another aspect that it is important to raise up is regarding the evaluation. The

evaluation of a reference architecture is a big challenge. Although we had no resources for

conducting a more complete evaluation, the evaluation performed was enough for giving

us a first impression on the quality of the RA, in Future Work section we present the next

steps to improve our RA evaluation.

As a general contribution of this Ph.D. research consists in a set of artifacts regarding

modernization tools that helps the understanding and development of MT according to three

main software engineering concepts: Model-Driven Architecture, Software Reengineering

and Architecture-Driven Modernization.

We claim that the technical documentation provided in this thesis can clarifies the

main characteristics of the development of modernization tools makes the creation process

more planned, also supports the interoperability between these tools derived from our RA.

We are also able to say that when creating modernization tools with the support of a

documentations that has the relevant information about modernization area in a single

place the modernization engineers can focus much more in what should be developed

and less effort on how it should be developed. By “what should be developed”we mean

the process of building the algorithms of the MT’s components. By “how it should be

developed”, we mean the process on how the architecture of the tools should be planned

and developed.

Recapping our research question from Chapter 1: “How do to design interoperable and

modularized ADM-based modernization tools that incorporate modernization solutions?”

we claim that our contributions support our thesis that modernization tools would be more

easily designed if supported by a set of artifacts that summarizes all knowledge involving

this domain. In this thesis we did not cover the creation of a modernization tool with the

support of our RA. However, from previous works we already have experience designing

and building this kind of tools and the main obstacle was to design MT having in mind

all possible involved concepts and yet build in such way the MT could interoperate with

other MTs.

102

6.2 Limitations

6.2 Limitations

As main limitations we can mention the following topics:

• A more profound evaluation to investigate if the level of details provided in the

architectural views of our RA are enough to support the creation of new MTs;

• An evaluation of the proposed taxonomy to check if the artifacts contain enough

information to understand the modernization tools field;

• Since we do not create new MT by using our RA and Taxonomy, we should perform

experiments to check if the taxonomy and the RA are enough to design new MT;

6.3 Future Work

This section aims at mitigating the limitations raised in Section 6.2. As future works we

envision the following opportunities:

• Apply the Delphi Method and Focus group using academic researchers and pro-

fessionals working in the IT area for evaluating the proposed Taxonomy and the

Reference Architecture. An initial methodological strategy is already in development,

as can be seen in Appendix C.

• Submit the proposed reference architecture to a reference architecture specialist and

modernization engineers in order to get feedback to improve the our research results.

• Implementation of modernization tools based entirely on the proposed Reference

Architecture.

• Update the systematic mapping on ADM to update, if necessary, our reference

architecture.

6.4 List of Publications

1. LANDI, A.; MARTÍN, D. S.; SANTOS, B. M..; CUNHA, W.; DURELLI, R.;

CAMARGO, V. Architectural conformance checking for KDM-represented systems.

Journal of Systems and Software, p. 1-29, 2021. Dispońıvel em: https://www.

sciencedirect.com/science/article/pii/S0164121221002132

103

https://www.sciencedirect.com/science/article/pii/S0164121221002132
https://www.sciencedirect.com/science/article/pii/S0164121221002132

6.4 List of Publications

2. SANTIBANEZ, D. G. S. M. ; ANGULO, G. C. ; SANTOS, B. M.; HONDA,

RAPHAEL; CAMARGO, VALTER V. DE . Specification and Use of Concern Met-

rics for Supporting Modularity-Oriented Modernizations. SOFTWARE QUALITY

JOURNAL, v. 1, p. 1-1, 2020.

3. SANTOS, B. M.; DE SOUZA LANDI, ANDRÉ ; DE GUZMÁN, IGNACIO

GARCÍA-RODRÍGUEZ ; PIATTINI, MARIO ; de Camargo, Valter Vieira . Towards

a Reference Architecture for ADM-based Modernization Tools. In: the XXXIII

Brazilian Symposium, 2019, Salvador. Proceedings of the XXXIII Brazilian Sympo-

sium on Software Engineering - SBES 2019. New York: ACM Press, 2019. p. 114-1.

(Santos et al., 2019c)

4. SANTOS, B. M.; SANTIBANEZ, D. G. S. M. ; HONDA, RAPHAEL ; CAMARGO,

VALTER V. DE . Concern Metrics for Modularity-Oriented Modernizations. In:

12th International Conference on the Quality of Information and Communications

Technology, 2019, Ciudad Real. QUATIC, 2019. v. 1. p. 1-1.

5. SANTOS, B. M.; LANDI, ANDRÉ DE S. ; SANTIBÁÑEZ, DANIEL S. ; DURELLI,

RAFAEL S. ; DE CAMARGO, VALTER V. . Evaluating the Extension Mecha-

nisms of the Knowledge Discovery Metamodel for Aspect-Oriented Modernizations.

JOURNAL OF SYSTEMS AND SOFTWARE, v. 1, p. 1, 2018.

6. SANTOS, B. M.; DE GUZMAN, IGNACIO GARCIA-RODRIGUEZ ; DE CA-

MARGO, VALTER V. ; PIATTINI, MARIO ; EBERT, CHRISTOF . Software

Refactoring for System Modernization. IEEE SOFTWARE, v. 35, p. 62-67, 2018.

7. ANGULO, G.; MARTÍN, D. SAN; SANTOS, B. M.; FERRARI, F. C.; DE CA-

MARGO, V. V.. An Approach for Creating KDM2PSM Transformation Engines in

ADM Context. In: the VII Brazilian Symposium on Software Components, Archi-

tectures, and Reuse, 2018, São Carlos. Proceedings of the VII Brazilian Symposium

on Software Components, Architectures, and Reuse on - SBCARS ’18, 2018. p. 92.

8. LANDI, ANDRE DE S. ; CHAGAS, FERNANDO ; SANTOS, B. M.; COSTA,

RENATO S. ; DURELLI, RAFAEL ; TERRA, RICARDO ; CAMARGO, VALTER

V. DE . Supporting the Specification and Serialization of Planned Architectures in

Architecture-Driven Modernization Context. In: 2017 IEEE 41st Annual Computer

Software and Applications Conference (COMPSAC), 2017, Turin. 2017 IEEE 41st

Annual Computer Software and Applications Conference (COMPSAC), 2017. p.

327.

104

6.5 Next Publications

9. SANTOS, B. M.; CAMARGO, V. V. . A Reference Architecture for KDM-based

Modernization Tools. In: VI Workshop de Teses e Dissertações do CBSoft, 2016,

Maringá - PR. VI Workshop de Teses e Dissertações do CBSoft (WTDSoft 2016),

2016. p. 1-9.

10. PAULA, M. H. ; SERIKAWA, M. A. ; LANDI, A. S. ; SANTOS, B. M.; COSTA, R.

S. ; CAMARGO, V. V. . SARAMR: Uma Arquitetura de Referência para Facilitar

Manutenções em Sistemas Robóticos Autoadaptativos. In: IV Workshop on Software

Visualization, Evolution and Maintenance, 2016, Maringá - PR. IV Workshop on

Software Visualization, Evolution and Maintenance, 2016. p. 1-8.

6.5 Next Publications

We are working on two new papers, which are:

• A Taxonomy for Modernization Tools. This paper aims at presenting our taxonomy

and display some usage scenarios, as can be seen in Chapter 4.

• A Reference Architecture for Designing Modernization Tools. This paper aims at

presenting a more complete view of our RA, including the Dynamic views that were

not covered in Santos et al. (2019c).

In addition, we are also planning other papers derived from the new evaluations yet to

be executed, as can be seen in Appendix C.

105

Bibliography

Akodadi, K. A survey of cloud migration methods: A comparison and proposition,

p. 1–7. 2016.

Alawneh, L.; Hamou-Lhadj, A. Execution traces: A new domain that requires the

creation of a standard metamodel. In: International Conference on Advanced Software

Engineering and Its Applications, Springer, p. 253–263, 2009.

Angelov, S.; Grefen, P. An e-contracting reference architecture. J. Syst. Softw.,

v. 81, n. 11, p. 1816–1844, 2008.

Angelov, S.; Trienekens, J. J.; Grefen, P. Towards a method for the evaluation

of reference architectures: Experiences from a case. In: Software Architecture: Second

European Conference, ECSA 2008 Paphos, Cyprus, September 29-October 1, 2008

Proceedings 2, Springer, p. 225–240, 2008a.

Angelov, S.; Trienekens, J. J. M.; Grefen, P. Towards a method for the evaluation

of reference architectures: Experiences from a case Berlin, Heidelberg: Springer Berlin

Heidelberg, p. 225–240, 2008b.

Angulo, G.; Mart́ın, D. S.; Santos, B.; Ferrari, F. C.; de Camargo, V. V.

An approach for creating kdm2psm transformation engines in adm context: The rute-k2j

case. In: Proceedings of the VII Brazilian Symposium on Software Components,

Architectures, and Reuse, p. 92–101, 2018.

Arcelli Fontana, F.; Raibulet, C.; Zanoni, M. Alternatives to the knowledge

discovery metamodel: An investigation. International Journal of Software Engineering

and Knowledge Engineering, v. 27, n. 07, p. 1097–1128, 2017.

106

Bibliography

Arnold, R. S. Software reengineering. IEEE Computer Society Press, 1993.

Babar, M. A.; Gorton, I. Comparison of scenario-based software architecture

evaluation methods. In: 11th Asia-Pacific Software Engineering Conference, p. 600–607,

2004.

Berinato, S. A rash of it failures. 2003.

Dispońıvel em http://www.cio.com/archive/061503/tl_health.html

Bodziony, M.; Wrembel, R. Reference architecture for running large scale data

integration experiments. In: International Conference on Database and Expert Systems

Applications, Springer, p. 3–9, 2021.

Bourque, P.; Abran, A. An innovative software reengineering tools workshop—a

test of market maturity and lessons learned. SIGSOFT Softw. Eng. Notes, v. 19, n. 3,

p. 30–34, 1994.

Dispońıvel em http://doi.acm.org/10.1145/182824.182829

Brunelière, H.; Cabot, J.; Dupé, G.; Madiot, F. Modisco: A model driven

reverse engineering framework. Information and Software Technology, v. 56, n. 8,

p. 1012 – 1032, 2014.

Dispońıvel em http://www.sciencedirect.com/science/article/pii/

S0950584914000883

Canovas, J.; Molina, J. An architecture-driven modernization tool for calculating

metrics. IEEE Software, v. 27, n. 4, p. 37–43, 2010.

Chagas, F. B. Checagem de conformidade arquitetural na modernização orientada a

arquitetura. MSc Dissertation, UNIVERSIDADE FEDERAL DE SÃO CARLOS, 2016.

Chikofsky, E. J.; Cross, J. H. Reverse engineering and design recovery: A taxonomy.

IEEE software, v. 7, n. 1, p. 13–17, 1990.

Chikofsky, E. J.; Cross, J. H. Reverse engineering and design recovery: a taxonomy.

IEEE Software, v. 7, n. 1, p. 13–17, 1990.

COSTA, R. S. Uma Abordagem para Identificação de Violações Arquiteturais em

Processos de Migração de Plataformas de Nuvem. MSc Dissertation, UNIVERSIDADE

FEDERAL DE SÃO CARLOS, 2017.

107

http://www.cio.com/archive/061503/tl_health.html
http://doi.acm.org/10.1145/182824.182829
http://www.sciencedirect.com/science/article/pii/S0950584914000883
http://www.sciencedirect.com/science/article/pii/S0950584914000883

Bibliography

Durak, U. Extending the knowledge discovery metamodel for architecture-driven

simulation modernization. Simulation, v. 91, n. 12, p. 1052–1067, 2015.

Durelli, R. S. Uma abordagem para criação, reúso e aplicação de refatorações no

contexto da modernização dirigida a arquitetura [online]. PhD Thesis, Instituto de Ciên-

cias Matemáticas e de Computação, Universidade de São Paulo. Tese de Doutorado em

Ciências de Computação e Matemática Computacional. [acesso 2017-07-12]. Dispońıvel

em: <http://www.teses.usp.br/teses/disponiveis/55/55134/tde-29092016-145938/>,

São Carlos, 2016.

Durelli, R. S.; Santibáñez, D. S. M.; Marinho, B.; Honda, R.; Delamaro,

M. E.; Anquetil, N.; de Camargo, V. V. A mapping study on architecture-driven

modernization. In: Proceedings of the 2014 IEEE 15th International Conference on

Information Reuse and Integration (IEEE IRI 2014), p. 577–584, 2014.

Eickelmann, N. S.; Richardson, D. J. An evaluation of software test environment

architectures. In: Proceedings of the 18th International Conference on Software

Engineering, Washington, DC, USA: IEEE Computer Society, p. 353–364, 1996 (ICSE

’96, v.1).

Dispońıvel em http://dl.acm.org/citation.cfm?id=227726.227798

Einarsson, H. T.; Neukirchen, H. An approach and tool for synchronous refactoring

of uml diagrams and models using model-to-model transformations. In: Proceedings of

the Fifth Workshop on Refactoring Tools, New York, NY, USA: ACM, p. 16–23, 2012

(WRT ’12, v.1).

Dispońıvel em http://doi.acm.org/10.1145/2328876.2328879

Fowler, M.; Beck, K. Refactoring: improving the design of existing code.

Addison-Wesley Professional, 1999.

Frey, S.; Hasselbring, W. An extensible architecture for detecting violations of a

cloud environment’s constraints during legacy software system migration. In: 2011 15th

European Conference on Software Maintenance and Reengineering, p. 269–278, 2011.

Frey, S.; Hasselbring, W.; Schnoor, B. Automatic conformance checking for

migrating software systems to cloud infrastructures and platforms. Journal of Software:

Evolution and Process, v. 25, n. 10, p. 1089–1115, 2013.

Galster, M.; Avgeriou, P. Empirically-grounded reference architectures: a proposal.

In: Proceedings of the joint ACM SIGSOFT conference–QoSA and ACM SIGSOFT

108

http://dl.acm.org/citation.cfm?id=227726.227798
http://doi.acm.org/10.1145/2328876.2328879

Bibliography

symposium–ISARCS on Quality of software architectures–QoSA and architecting critical

systems–ISARCS, ACM, p. 153–158, 2011.

Gotti, Z.; Mbarki, S. Gui structure and behavior from java source code analysis. In:

2016 4th IEEE International Colloquium on Information Science and Technology (CiSt),

p. 251–256, 2016.

Grefen, P.; de Vries, R. R. A reference architecture for workflow management

systems. Data & Knowledge Engineering, v. 27, n. 1, p. 31–57, 1998.

Hollingsworth, D.; et al. The workflow reference model: 10 years on. In: Fujitsu

Services, UK; Technical Committee Chair of WfMC, Citeseer, 2004.

Honda, R. R. Modelagem e cômputo de métricas de interesse no contexto de modern-

ização de sistemas legados. MSc Dissertation, UNIVERSIDADE FEDERAL DE SÃO

CARLOS, 2014.

ISO/IEC25010 International organization for standardization. iso/iec 25010:2011.

systems and software engineering – systems and software quality requirements and

evaluation (square) – system and software quality models. 2011.

Jácome, S.; De Lara, J. Controlling meta-model extensibility in model-driven

engineering. IEEE Access, v. 6, p. 19923–19939, 2018.

KDM Object management group (omg), knowledge discovery meta-model (kdm) version

1.3. 2011.

Dispońıvel em http://www.omg.org/spec/KDM/1.3/

KDMAnalytics KDM Analytics - Prioritize, Measure and Quantify CyberSecu-

rity Risk. Dispońıvel em http://kdmanalytics.com/, especificação dispońıvel

em http://kdmanalytics.com/resources/standards/kdm/technical-overview/

kdm-1-0-annotated-reference/front-matter/, 2017.

Kiran Mallidi, R.; Sharma, M.; Singh, J. Legacy digital transformation: Tco

and roi analysis. International journal of electrical and computer engineering systems,

v. 12, n. 3, p. 163–170, 2021.

Koch, C. Supply chain: Hershey’s bittersweet lesson. 2002.

Dispońıvel em http://www.cio.com/article/31518/Supply_Chain_Hershey_s_

Bittersweet_Lesson

109

http://www.omg.org/spec/KDM/1.3/
http://kdmanalytics.com/
http://kdmanalytics.com/resources/standards/kdm/technical-overview/kdm-1-0-annotated-reference/front-matter/
http://kdmanalytics.com/resources/standards/kdm/technical-overview/kdm-1-0-annotated-reference/front-matter/
http://www.cio.com/article/31518/Supply_Chain_Hershey_s_Bittersweet_Lesson
http://www.cio.com/article/31518/Supply_Chain_Hershey_s_Bittersweet_Lesson

Bibliography

de La Vara, J. L.; Génova, G.; Álvarez-Rodŕıguez, J. M.; Llorens, J. An

analysis of safety evidence management with the structured assurance case metamodel.

Computer Standards & Interfaces, v. 50, p. 179–198, 2017.

Landi, A.; Mart́ın, D. S.; Santos, B.; Cunha, W.; Durelli, R.; Camargo, V.

Architectural conformance checking for kdm-represented systems. Journal of Systems

and Software, p. 1 – 29, 2021.

Dispońıvel em https://www.sciencedirect.com/science/article/pii/

S0164121221002132

Ludewig, J.; Lichter, H. Software engineering: Grundlagen, menschen, prozesse,

techniken. dpunkt. verlag, 2023.

M. Klein, M. Reengineering methodologies and tools a prescription for enhancing

succes. Information Systems Management - ISM, v. 11, p. 30–35, 1994.

Madisetti, V. K.; Jung, Y. K.; Khan, M. H.; Kim, J.; Finnessy, T. Reengineering

legacy embedded systems. IEEE Design Test of Computers, v. 16, n. 2, p. 38–47, 1999.

Mansurov, N.; Campara, D. Managed architecture of existing code as a practical

transition towards mda. In: International Conference on the Unified Modeling Language,

Springer, p. 219–233, 2004.

Martin, D.; Kühl, N.; Schwenk, M. Towards a reference architecture for future

industrial internet of things networks. arXiv preprint arXiv:2109.00833, 2021.

Martin, R. C.; Newkirk, J.; Koss, R. S. Agile software development: principles,

patterns, and practices, v. 2. Prentice Hall Upper Saddle River, NJ, 2003.

Mens, T. Introduction and roadmap: History and challenges of software evolution. In:

Software evolution, Springer, p. 1–11, 2008.

Mens, T.; Taentzer, G.; Müller, D. Challenges in model refactoring. In: Proc.

1st Workshop on Refactoring Tools, University of Berlin, p. 1–5, 2007.

Mens, T.; Tourwe, T. A survey of software refactoring. IEEE Transactions on

Software Engineering, v. 30, n. 2, p. 126–139, 2004.

Mens, T.; Van Gorp, P. A taxonomy of model transformation. Electronic Notes in

Theoretical Computer Science, v. 152, p. 125–142, 2007.

110

https://www.sciencedirect.com/science/article/pii/S0164121221002132
https://www.sciencedirect.com/science/article/pii/S0164121221002132

Bibliography

Mercier, D.; Chawdhary, A.; Jones, R. dynstruct: An automatic reverse engineering

tool for structure recovery and memory use analysis. In: 2017 IEEE 24th International

Conference on Software Analysis, Evolution and Reengineering (SANER), p. 497–501,

2017.

Misbhauddin, M.; Alshayeb, M. Uml model refactoring: A systematic literature

review. Empirical Softw. Engg., v. 20, n. 1, p. 206–251, 2015.

Dispońıvel em http://dx.doi.org/10.1007/s10664-013-9283-7

Moghadam, I. H.; Cinneide, M. O. Automated refactoring using design differencing.

In: 2012 16th European Conference on Software Maintenance and Reengineering, p.

43–52, 2012.

Mohamed, M.; Romdhani, M.; Ghédira, K. Classification of model refactoring

approaches. Journal of Object Technology, v. 8, n. 6, p. 121–126, 2010.

Muram, F. U.; Gallina, B.; Rodŕıguez, L. G. Preventing omission of key evidence

fallacy in process-based argumentations. In: 2018 11th International Conference on the

Quality of Information and Communications Technology (QUATIC), IEEE, p. 65–73,

2018.

Nakagawa, E. Y. Uma Contribuição ao Projeto Arquitetural de Ambientes de Engen-

haria de Software. PhD Thesis, Instituto de Ciências Matemáticas e de Computação -

Universidade de São Paulo (ICMC/USP), 2006.

Nakagawa, E. Y.; Antonino, P. O.; Becker, M. Exploring the use of reference

architectures in the development of product line artifacts. In: Proceedings of the 15th

International Software Product Line Conference, Volume 2, New York, NY, USA: ACM,

p. 28:1–28:8, 2011 (SPLC ’11, v.1).

Dispońıvel em http://doi.acm.org/10.1145/2019136.2019168

Nakagawa, E. Y.; Becker, M.; Maldonado, J. C. Towards a process to design

product line architectures based on reference architectures. In: Proceedings of the

17th International Software Product Line Conference, New York, NY, USA: ACM, p.

157–161, 2013 (SPLC ’13, v.1).

Dispońıvel em http://doi.acm.org/10.1145/2491627.2491651

Nakagawa, E. Y.; Guessi, M.; Maldonado, J. C.; Feitosa, D.; Oquendo,

F. Consolidating a process for the design, representation, and evaluation of reference

111

http://dx.doi.org/10.1007/s10664-013-9283-7
http://doi.acm.org/10.1145/2019136.2019168
http://doi.acm.org/10.1145/2491627.2491651

Bibliography

architectures. In: 2014 IEEE/IFIP Conference on Software Architecture, Sydney, NSW,

Australia: IEEE, p. 143–152, 2014a.

Nakagawa, E. Y.; Guessi, M.; Maldonado, J. C.; Feitosa, D.; Oquendo,

F. Consolidating a process for the design, representation, and evaluation of reference

architectures. In: 2014 IEEE/IFIP Conference on Software Architecture, p. 143–152,

2014b.

Neubauer, P.; Bill, R.; Wimmer, M. Modernizing domain-specific languages with

xmltext and intelledit. In: 2017 IEEE 24th International Conference on Software

Analysis, Evolution and Reengineering (SANER), p. 565–566, 2017.

Norta, A. H. Exploring dynamic inter-organizational business process collaboration.

2007.

OMG Knowledge Discovery Meta-model (KDM). Dispońıvel em http://www.omg.

org/technology/kdm/, especificação dispońıvel em http://www.omg.org/spec/KDM/,

2016.

OMG Object management group (omg) - architecture-driven modernization. 2021.

Dispońıvel em https://www.omg.org/adm/

Opdyke, W. F. Refactoring object-oriented frameworks. 1992.

Park, G.; Chung, L.; Khan, L.; Park, S. A modeling framework for business

process reengineering using big data analytics and a goal-orientation. In: 2017 11th

International Conference on Research Challenges in Information Science (RCIS), p.

21–32, 2017.

Pérez-Castillo, R.; de Guzmán, I. G.-R.; Piattini, M. Knowledge discovery

metamodel-iso/iec 19506: A standard to modernize legacy systems. Comput. Stand.

Interfaces, v. 33, n. 6, p. 519–532, 2011a.

Dispońıvel em http://dx.doi.org/10.1016/j.csi.2011.02.007

Pérez-Castillo, R.; de Guzmán, I. G.-R.; Piattini, M.; Weber, B.; Places,

A. S. An empirical comparison of static and dynamic business process mining. In:

Proceedings of the 2011 ACM Symposium on Applied Computing, New York, NY, USA:

ACM, p. 272–279, 2011b (SAC ’11, v.1).

Dispońıvel em http://doi.acm.org/10.1145/1982185.1982249

112

http://www.omg.org/technology/kdm/
http://www.omg.org/technology/kdm/
http://www.omg.org/spec/KDM/
https://www.omg.org/adm/
http://dx.doi.org/10.1016/j.csi.2011.02.007
http://doi.acm.org/10.1145/1982185.1982249

Bibliography

Pires, J. P.; e Abreu, F. B. Knowledge discovery metamodel-based unit test

cases generation. In: 2018 IEEE 11th International Conference on Software Testing,

Verification and Validation (ICST), IEEE, p. 432–433, 2018.

Pérez-Castillo, R.; Fernández-Ropero, M.; d. Guzmán, I. G. R.; Piattini,

M. Marble. a business process archeology tool. In: 2011 27th IEEE International

Conference on Software Maintenance (ICSM), p. 578–581, 2011a.

Pérez-Castillo, R.; Guzmán, I. G. R. d.; Piattini, M. Architecture-driven

modernization p. 75–103, 2011b.

Ren, S.; Butler, G.; Rui, K.; Xu, J.; Yu, W.; Luo, R. A prototype tool for use

case refactoring. 2004.

Ricardo Pérez-Castillo, I. G. R. d. G.; Piattini, M. Modern software engi-

neering concepts and practices: Advanced approaches: Advanced approaches. chapter 4 -

architecture-driven modernization. IGI Global, 2010.

Rutledge, L.; Italiaander, R. Toward a reference architecture for traceability

in sbvr-based systems. In: Proceedings of the Seventh International Workshop on

Controlled Natural Language (CNL 2020/21), 2021.

d. S. Landi, A.; Chagas, F.; Santos, B. M.; Costa, R. S.; Durelli, R.; Terra,

R.; d. Camargo, V. V. Supporting the specification and serialization of planned

architectures in architecture-driven modernization context. In: 2017 IEEE 41st Annual

Computer Software and Applications Conference (COMPSAC), p. 327–336, 2017.

Sabiri, K.; Benabbou, F. A legacy application meta-model for modernization. In:

Proceedings of the 2nd international Conference on Big Data, Cloud and Applications,

p. 1–6, 2017.

Sadovykh, A.; Vigier, L.; Hoffmann, A.; Grossmann, J.; Ritter, T.; Gomez,

E.; Estekhin, O. Architecture driven modernization in practice #150; study results.

In: 2009 14th IEEE International Conference on Engineering of Complex Computer

Systems, p. 50–57, 2009.

San Mart́ın, D.; Camargo, V. A domain-specific language to specify planned archi-

tectures of adaptive systems. In: 15th Brazilian Symposium on Software Components,

Architectures, and Reuse, SBCARS ’21, New York, NY, USA: Association for Computing

Machinery, p. 41–50, 2021 (SBCARS ’21, v.).

Dispońıvel em https://doi.org/10.1145/3483899.3483903

113

https://doi.org/10.1145/3483899.3483903

Bibliography

Santibáñez, D. G. S. M. Mineração de interesses no processo de modernização dirigida

a arquitetura. MSc Dissertation, UNIVERSIDADE FEDERAL DE SÃO CARLOS,

2013.

Santos, B. M. Estensões Do Metamodelo Kdm Para Apoiar Modernizações Orientadas

a Aspectos De Sistemas Legados. MSc Dissertation, UNIVERSIDADE FEDERAL DE

SÃO CARLOS CENTRO, 2014.

Santos, B. M.; de Guzmán, I. G.-R.; de Camargo, V. V.; Piattini, M.; Ebert,

C. Software refactoring for system modernization. IEEE Software, v. 35, n. 6, p. 62–67,

2018.

Santos, B. M.; Landi, A. d. S.; Santibanez, D. S.; Durelli, R. S.; de Camargo,

V. V. Evaluating the extension mechanisms of the knowledge discovery metamodel for

aspect-oriented modernizations. Journal of Systems and Software, v. 149, p. 285–304,

2019a.

Santos, B. M.; de Souza Landi, A.; de Guzmán, I. G.-R.; Piattini, M.; de Ca-

margo, V. V. Towards a reference architecture for adm-based modernization tools.

In: Proceedings of the XXXIII Brazilian Symposium on Software Engineering, New York,

NY, USA: Association for Computing Machinery, p. 114–123, 2019b (SBES 2019, v.1).

Dispońıvel em https://doi.org/10.1145/3350768.3350792

Santos, B. M.; de Souza Landi, A.; de Guzmán, I. G.-R.; Piattini, M.; de Ca-

margo, V. V. Towards a reference architecture for adm-based modernization tools.

In: Proceedings of the XXXIII Brazilian Symposium on Software Engineering, New York,

NY, USA: Association for Computing Machinery, p. 114–123, 2019c (SBES 2019, v.1).

Dispońıvel em https://doi.org/10.1145/3350768.3350792

Santos, J. F. M.; Guessi, M.; Galster, M.; Feitosa, D.; Nakagawa, E. Y.

A checklist for evaluation of reference architectures of embedded systems (s). In:

International Conference on Software Engineering & Knowledge Engineering - SEKE, p.

1–6, 2013.

Shull, F.; Singer, J.; Sjøberg, D. I. Guide to advanced empirical software engi-

neering. Berlin, Heidelberg: Springer-Verlag, 2007.

Sneed, H. M. Estimating the costs of a reengineering project. Proceedings - Working

Conference on Reverse Engineering, WCRE, v. 2005, p. 111–119, 2005.

114

https://doi.org/10.1145/3350768.3350792
https://doi.org/10.1145/3350768.3350792

Bibliography

Son, H. S.; Kim, R. Y. C. A method of handling metamodel based on xml database

for sw visulization. In: 2016 International Conference on Platform Technology and

Service (PlatCon), p. 1–3, 2016.

StandishGroup. The standish group report - chaos summary 2014. 2014.

Dispońıvel em https://www.projectsmart.co.uk/white-papers/chaos-report.

pdf

Tummers, J.; Tobi, H.; Catal, C.; Tekinerdogan, B. Designing a reference

architecture for health information systems. BMC Medical Informatics and Decision

Making, v. 21, n. 1, p. 1–14, 2021.

Ulrich, W. M.; Newcomb, P. Information systems transformation:

Architecture-driven modernization case studies. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc., 2010a.

Ulrich, W. M.; Newcomb, P. H., eds. . The MK/OMG Press. Boston: Morgan

Kaufmann, 419 - 429 p., 2010b.

Dispońıvel em http://www.sciencedirect.com/science/article/pii/

B9780123749130000251

Van Der Straeten, R.; Jonckers, V.; Mens, T. A formal approach to model

refactoring and model refinement. Software & Systems Modeling, v. 6, n. 2, p. 139–162,

2007.

Dispońıvel em https://doi.org/10.1007/s10270-006-0025-9

de la Vara, J. L. Current and necessary insights into sacm: An analysis based on past

publications. In: 2014 IEEE 7th International Workshop on Requirements Engineering

and Law (RELAW), IEEE, p. 10–13, 2014.

Wolfart, D.; Assunção, W. K.; da Silva, I. F.; Domingos, D. C.; Schmeing, E.;

Villaca, G. L. D.; Paza, D. d. N. Modernizing legacy systems with microservices:

A roadmap. In: Evaluation and Assessment in Software Engineering, p. 149–159, 2021.

Wu, H. A reference architecture for adaptive hypermedia applications. Technische

Universiteit Eindhoven, 2002.

Zimmermann, H. Osi reference model–the iso model of architecture for open systems

interconnection. IEEE Transactions on communications, v. 28, n. 4, p. 425–432, 1980.

115

https://www.projectsmart.co.uk/white-papers/chaos-report.pdf
https://www.projectsmart.co.uk/white-papers/chaos-report.pdf
http://www.sciencedirect.com/science/article/pii/B9780123749130000251
http://www.sciencedirect.com/science/article/pii/B9780123749130000251
https://doi.org/10.1007/s10270-006-0025-9

Appendix

A
Details of Systematic Mapping on ADM

A.1 Final selected papers:

A.1.1 Group 1: Discussions around ADM papers

1. Arcelli Fontana, Francesca, Claudia Raibulet, and Marco Zanoni.“Alternatives to

the knowledge discovery metamodel: An investigation.” International Journal of

Software Engineering and Knowledge Engineering 27.07 (2017): 1097-1128.

2. Durak, Umut. “Extending the Knowledge Discovery Metamodel for architecture-driven

simulation modernization.” Simulation 91.12 (2015): 1052-1067.

3. de la Vara, Jose Luis. “Current and necessary insights into SACM: An analysis

based on past publications.” 2014 IEEE 7th International Workshop on Requirements

Engineering and Law (RELAW). IEEE, 2014.

4. Jácome, Santiago, and Juan De Lara. “Controlling meta-model extensibility in

model-driven engineering.” IEEE Access 6 (2018): 19923-19939.

5. Santos, Bruno M., et al. “Software refactoring for system modernization.” IEEE

Software 35.6 (2018): 62-67.

116

A.1 Final selected papers:

6. Muram, Faiz UL, Barbara Gallina, and Laura Gómez Rodŕıguez. “Preventing

omission of key evidence fallacy in process-based argumentations.” 2018 11th Inter-

national Conference on the Quality of Information and Communications Technology

(QUATIC). IEEE, 2018.

7. Sabiri, K., and F. Benabbou. “A Legacy Application Meta-model for Modernization.”

Proceedings of the 2nd international Conference on Big Data, Cloud and Applications.

2017.

8. Durelli, Rafael S., et al. “A mapping study on architecture-driven modernization.”

Proceedings of the 2014 IEEE 15th international conference on information reuse

and integration (IEEE IRI 2014). IEEE, 2014.

9. Pires, Joao Paulo, and Fernando Brito e Abreu. “Knowledge discovery metamodel-based

unit test cases generation.” 2018 IEEE 11th International Conference on Software

Testing, Verification and Validation (ICST). IEEE, 2018.

10. Sabiri, Khadija, et al. “A survey of cloud migration methods: a comparison and

proposition.” International Journal of Advanced Computer Science and Applications

7.5 (2016): 598-604.

11. Santos, Bruno M., et al. “Evaluating the extension mechanisms of the knowledge

discovery metamodel for aspect-oriented modernizations.” Journal of Systems and

Software 149 (2019): 285-304.

12. de La Vara, Jose Luis, et al. “An analysis of safety evidence management with the

Structured Assurance Case Metamodel.” Computer Standards Interfaces 50 (2017):

179-198.

13. Alawneh, Luay, and Abdelwahab Hamou-Lhadj. “Execution traces: A new domain

that requires the creation of a standard metamodel.” International Conference on

Advanced Software Engineering and Its Applications. Springer, Berlin, Heidelberg,

2009.

14. Mansurov, Nikolai, and Djenana Campara. “Managed architecture of existing code

as a practical transition towards MDA.” International Conference on the Unified

Modeling Language. Springer, Berlin, Heidelberg, 2004.

117

A.1 Final selected papers:

A.1.2 Group 2 - Modernization Tools papers

1. Durelli, Rafael S., et al. “Improving the structure of KDM instances via refactorings:

An experimental study using KDM-RE.”Proceedings of the 31st Brazilian Symposium

on Software Engineering. 2017.

2. Chagas, Fernando, et al. “KDM as the Underlying Metamodel in Architecture-Conformance

Checking.” Proceedings of the 30th Brazilian Symposium on Software Engineering.

2016.

3. Landi, André de S., et al. “Supporting the specification and serialization of planned

architectures in architecture-driven modernization context.” 2017 IEEE 41st annual

computer software and applications conference (COMPSAC). Vol. 1. IEEE, 2017.

4. Márquez, Luis, et al. “A framework for secure migration processes of legacy systems to

the cloud.” International Conference on Advanced Information Systems Engineering.

Springer, Cham, 2015.

5. Durak, Umut. “Pragmatic model transformations for refactoring in Scilab/Xcos.”

International Journal of Modeling, Simulation, and Scientific Computing 7.01 (2016):

1541004.

6. Gotti, Zineb, et al. “NooJ App Optimization.”International Conference on Automatic

Processing of Natural-Language Electronic Texts with NooJ. Springer, Cham, 2018.

7. Trias, Feliu, et al. “Migrating traditional web applications to CMS-based web

applications.” Electronic Notes in Theoretical Computer Science 314 (2015): 23-44.

8. de Lima Mariano, Thiago, et al. “A Parser and a Software Visualization Environment

to Support the Comprehension of MATLAB/Octave Programs.” ICEIS (2). 2018.

9. Lavazza, Luigi. “Automated function points: Critical evaluation and discussion.”2015

IEEE/ACM 6th International Workshop on Emerging Trends in Software Metrics.

IEEE, 2015.

10. Khamal, Adil, et al. “An approach based on ADM for the generation of a meta-model

modernized for LMS platforms.” 2014 International Conference on Next Generation

Networks and Services (NGNS). IEEE, 2014.

11. Sabiri, Khadija, et al. “Towards a cloud migration framework.” 2015 Third World

Conference on Complex Systems (WCCS). IEEE, 2015.

118

A.1 Final selected papers:

12. Grimmer, Andreas, et al. “Supporting program analysis for non-mainstream lan-

guages: experiences and lessons learned.” 2016 IEEE 23rd International Conference

on Software Analysis, Evolution, and Reengineering (SANER). Vol. 1. IEEE, 2016.

13. Ovchinnikova, Viktoria, and Erika Asnina. “The algorithm of transformation from

UML sequence diagrams to the Topological Functioning Model.” 2015 International

Conference on Evaluation of Novel Approaches to Software Engineering (ENASE).

IEEE, 2015.

14. Fleck, Günter, et al. “Experience report on building astm based tools for multi-language

reverse engineering.” 2016 IEEE 23rd International Conference on Software Analysis,

Evolution, and Reengineering (SANER). Vol. 1. IEEE, 2016.

15. Angulo, Guisella, et al. “An approach for creating kdm2psm transformation engines

in adm context: The rute-k2j case.” Proceedings of the VII Brazilian Symposium on

Software Components, Architectures, and Reuse. 2018.

16. Mamouni, Abdelaziz, and Abdelaziz Marzak. “ZCP Modernization by Recovering

ZCM Models from Existing Platforms.” Proceedings of the International Conference

on Compute and Data Analysis. 2017.

17. López-Sanz, Marcos, et al. “Modernization of Information Systems at Red. es:

An Approach Based on Gap Analysis and ADM.” International Conference on

Service-Oriented Computing. Springer, Cham, 2017.

18. Tu, Zhiying, Gregory Zacharewicz, and David Chen. “Building a high-level ar-

chitecture federated interoperable framework from legacy information systems.”

International Journal of Computer Integrated Manufacturing 27.4 (2014): 313-332.

19. Martinez, Liliana, Claudia Pereira, and Liliana Favre. “Migrating c/c++ software to

mobile platforms in the adm context.” (2017).

20. Son, Hyun Seung, and R. Young Chul Kim. “A Method of Handling Metamodel

Based on XML Database for SW Visulization.” 2016 International Conference on

Platform Technology and Service (PlatCon). IEEE, 2016.

21. Ellison, Martyn, Radu Calinescu, and Richard F. Paige. “Towards Platform Inde-

pendent Database Modelling in Enterprise Systems.” Federation of International

Conferences on Software Technologies: Applications and Foundations. Springer,

Cham, 2016.

119

A.1 Final selected papers:

22. Santibáñez, Daniel San Mart́ın, Rafael Serapilha Durelli, and Valter Vieira de

Camargo. “A combined approach for concern identification in KDM models.” Journal

of the Brazilian Computer Society 21.1 (2015): 1-20.

23. Rabelo, Luiz A. Pacini, et al. “An approach to business process recovery from

source code.” 2015 12th International Conference on Information Technology-New

Generations. IEEE, 2015.

24. Durelli, Rafael S., et al. “Towards a refactoring catalogue for knowledge discov-

ery metamodel.” Proceedings of the 2014 IEEE 15th International Conference on

Information Reuse and Integration (IEEE IRI 2014). IEEE, 2014.

25. Normantas, Kestutis, and Olegas Vasilecas. “Extracting term units and fact units

from existing databases using the Knowledge Discovery Metamodel.” Journal of

information science 40.4 (2014): 413-425.

26. Bagnato, Alessandra, and Jérôme Rocheteau. “Towards green metrics integration in

the MEASURE platform.”MeGSuS@ ESEM. 2018.

27. Dahab, Sarah A., Stephane Maag, and Xiaoping Che. “A software measurement

framework guided by support vector machines.” 2017 31st International Conference

on Advanced Information Networking and Applications Workshops (WAINA). IEEE,

2017.

28. Martinez, Liliana, Claudia Pereira, and Liliana Favre. “Recovering sequence diagrams

from object-oriented code: An ADM approach.” 2014 9th International Conference

on Evaluation of Novel Approaches to Software Engineering (ENASE). IEEE, 2014.

29. Limyr, Andreas, et al. “Semaphore–a model-based semantic mapping framework.”

International Conference on Business Process Management. Springer, Berlin, Heidel-

berg, 2006.

30. Reus, Thijs, Hans Geers, and Arie van Deursen. “Harvesting software systems for

MDA-based reengineering.”European Conference on Model Driven Architecture-Foundations

and Applications. Springer, Berlin, Heidelberg, 2006.

31. Sadovykh, Andrey, et al. “REMICS-REuse and Migration of legacy applications to

Interoperable Cloud Services.” European Conference on a Service-Based Internet.

Springer, Berlin, Heidelberg, 2011.

120

A.1 Final selected papers:

32. Blanco, Carlos, et al. “Towards a modernization process for Secure Data Warehouses.”

International Conference on Data Warehousing and Knowledge Discovery. Springer,

Berlin, Heidelberg, 2009.

33. Rástočný, Karol, and Andrej Mlynčár. “Automated change propagation from source

code to sequence diagrams.” International Conference on Current Trends in Theory

and Practice of Informatics. Edizioni della Normale, Cham, 2018.

34. Sadovykh, Andrey, et al. “On study results: round trip engineering of space systems.”

European conference on model driven architecture-foundations and applications.

Springer, Berlin, Heidelberg, 2009.

35. Mazón, Jose-Norberto, and Juan Trujillo. “A model driven modernization approach

for automatically deriving multidimensional models in data warehouses.”International

Conference on Conceptual Modeling. Springer, Berlin, Heidelberg, 2007.

121

A.2 ADM Search String:

A.2 ADM Search String:

*Some synonyms we added as keywords
Digital libraries used in the SM from 2014: ACM, Engineering Village, IEEE Explorer,
Scopus and Web of Science (From 2014* to 2018)
(“Abstract Syntax Tree Metamodel” OR “Abstract Syntax Tree Meta-model” OR

“Architecture-Driven Modernization” OR “Architecture Driven Modernization” OR “Model
Driven Modernization” OR “Model-Driven Modernization” OR “Model-driven software
modernization” OR “Knowledge Discovery Metamodel” OR “KDM Metamodel” OR

“KDM Meta-model” OR “KDM standard” OR “Knowledge Discovery Meta-model” OR

“Knowledge-Discovery Metamodel” OR “Knowledge-Discovery Meta-model” OR “Structured
Metrics Metamodel” OR “Software Metrics Metamodel” OR “Software Metrics Meta-model”
OR “Structured Metrics Metamodel”) OR (ADM OR OMG) AND (KDM OR ASTM OR

SMM)

*New modernization standards creation
Digital libraries included in the SM: ACM, Engineering Village, IEEE Explorer, Scopus
and Web of Science (From 2014* to 2018)
(“Automated Enhancement Points” OR “Automated Function Points” OR “Structured
Assurance Case Metamodel” OR “Structured Patterns Metamodel Standard”) OR (ADM
OR OMG) AND (SACM OR SPMS OR AEP OR AFP)
Digital libraries included in the new SM: Science Direct and Springer (From 2003 to
2018)
(“Abstract Syntax Tree Metamodel”) OR “Abstract Syntax Tree Meta-model” OR

“Architecture-Driven Modernization” OR “Architecture Driven Modernization” OR “Model
Driven Modernization” OR “Model-Driven Modernization” OR “Model-driven software
modernization” OR “Knowledge Discovery Metamodel” OR “KDM Metamodel” OR

“KDM Meta-model” OR “KDM standard” OR “Knowledge Discovery Meta-model” OR

“Knowledge-Discovery Metamodel” OR “Knowledge-Discovery Meta-model” OR “Structured
Metrics Metamodel” OR “Software Metrics Metamodel” OR “Software Metrics Meta-model”
OR “Structured Metrics Metamodel” OR “Automated Enhancement Points” OR “Automated
Function Points” OR “Structured Assurance Case Metamodel” OR “Structured Patterns
Metamodel Standard” OR (ADM OR OMG) AND (KDM OR ASTM OR SMM OR SACM
OR SPMS OR AEP OR AFP)
Since acronyms usually returns wider results we had to link them in this new and separated
string.

122

Appendix

B
Details of Systematic Mapping on Code

and Model Refactoring Tools

B.1 Final selected papers:

1. Khan, Muhammad Uzair, Muhamamd Zohaib Iqbal, and Shaukat Ali. “A heuristic-based

approach to refactor crosscutting behaviors in uml state machines.” 2014 IEEE In-

ternational Conference on Software Maintenance and Evolution. IEEE, 2014.

2. Sherwany, Amanj, Nosheen Zaza, and Nathaniel Nystrom. “A refactoring library

for scala compiler extensions.” International Conference on Compiler Construction.

Springer, Berlin, Heidelberg, 2015.

3. Punt, Leonard, Sjoerd Visscher, and Vadim Zaytsev. “A Tool for Detecting and

Refactoring the A? B* A Pattern in CSS.” 2016 IEEE International Conference on

Software Maintenance and Evolution (ICSME). IEEE, 2016.

4. Dotzler, Georg, Ronald Veldema, and Michael Philippsen. “Annotation support for

generic patches.” 2012 Third International Workshop on Recommendation Systems

for Software Engineering (RSSE). IEEE, 2012.

123

B.1 Final selected papers:

5. Moghadam, Iman Hemati, and Mel Ó. Cinnéide. “Automated refactoring using

design differencing.” 2012 16th European Conference on Software Maintenance and

Reengineering. IEEE, 2012.

6. Tanhaei, Mohammad, Jafar Habibi, and Seyed-Hassan Mirian-Hosseinabadi. “Au-

tomating feature model refactoring: A model transformation approach.” Information

and Software Technology 80 (2016): 138-157.

7. Pretschner, Alexander, and Wolfgang Prenninger. “Computing refactorings of behav-

ior models.” International Conference on Model Driven Engineering Languages and

Systems. Springer, Berlin, Heidelberg, 2005.

8. Fernández-Ropero, Maŕıa, Ricardo Pérez-Castillo, and Mario Piattini. “Improving

Business Process Model after Reverse Engineering.” International Conference on Eval-

uation of Novel Approaches to Software Engineering. Springer, Berlin, Heidelberg,

2013.

9. Ghaith, Shadi, and Mel Ó Cinnéide. “Improving software security using search-based

refactoring.”International Symposium on Search Based Software Engineering. Springer,

Berlin, Heidelberg, 2012.

10. Chen, Nicholas, and Ralph E. Johnson. “JFlow: Practical refactorings for flow-based

parallelism.” 2013 28th IEEE/ACM International Conference on Automated Software

Engineering (ASE). IEEE, 2013.

11. Cruz, Luis, Rui Abreu, and Jean-Noël Rouvignac. “Leafactor: Improving energy

efficiency of android apps via automatic refactoring.” 2017 IEEE/ACM 4th Inter-

national Conference on Mobile Software Engineering and Systems (MOBILESoft).

IEEE, 2017.

12. Schuster, Christopher, Tim Disney, and Cormac Flanagan. “Macrofication: Refactor-

ing by reverse macro expansion.” European Symposium on Programming. Springer,

Berlin, Heidelberg, 2016.

13. Ghannem, Adnane, Ghizlane El Boussaidi, and Marouane Kessentini. “Model

refactoring using interactive genetic algorithm.” International Symposium on Search

Based Software Engineering. Springer, Berlin, Heidelberg, 2013.

14. Winetzhammer, Sabine, and Bernhard Westfechtel. “Model refactorings for and

with graph transformation rules.” International Conference on Software Technologies.

Springer, Cham, 2014.

124

B.1 Final selected papers:

15. König, Harald, Michael Löwe, and Christoph Schulz. “Model transformation and

induced instance migration: a universal framework.” Brazilian Symposium on Formal

Methods. Springer, Berlin, Heidelberg, 2011.

16. Hamioud, Sohaib, and Fadila Atil. “Model-driven java code refactoring.” Computer

Science and Information Systems 12.2 (2015): 375-403.

17. Kimura, Shuhei, et al. “Move code refactoring with dynamic analysis.” 2012 28th

IEEE International Conference on Software Maintenance (ICSM). IEEE, 2012.

18. Winetzhammer, Sabine, and Bernhard Westfechtel. “Propagating model refactorings

to graph transformation rules.” 2014 9th International Conference on Software

Paradigm Trends (ICSOFT-PT). IEEE, 2014.

19. Zeng, Kaiping, and Sorin A. Huss. “RAMS: a VHDL-AMS code refactoring tool

supporting high level analog synthesis.” IEEE Computer Society Annual Symposium

on VLSI: New Frontiers in VLSI Design (ISVLSI’05). IEEE, 2005.

20. Zeiss, Benjamin, et al. “Refactoring and metrics for TTCN-3 test suites.”International

Workshop on System Analysis and Modeling. Springer, Berlin, Heidelberg, 2006.

21. Garrido, Alejandra, and Ralph Johnson. “Refactoring C with conditional compi-

lation.” 18th IEEE International Conference on Automated Software Engineering,

2003. Proceedings.. IEEE, 2003.

22. Marković, Slavǐsa, and Thomas Baar. “Refactoring OCL annotated UML class

diagrams.” Software & Systems Modeling 7.1 (2008): 25-47.

23. Romanovsky, Konstantin, Dmitry Koznov, and Leonid Minchin. “Refactoring the doc-

umentation of software product lines.” IFIP Central and East European Conference

on Software Engineering Techniques. Springer, Berlin, Heidelberg, 2008.

24. Rüegg, Michael, and Peter Sommerlad. “Refactoring towards seams in c++.” 2012

7th International Workshop on Automation of Software Test (AST). IEEE, 2012.

25. Rodŕıguez-Gracia, Diego, et al. “Runtime adaptation of architectural models: an

approach for adapting user interfaces.” International Conference on Model and Data

Engineering. Springer, Berlin, Heidelberg, 2012.

26. Luecke, Kenn R., et al. “Software code base conversions.” 2007 IEEE/AIAA 26th

Digital Avionics Systems Conference. IEEE, 2007.

125

B.1 Final selected papers:

27. Straeten, Ragnhild Van Der, Viviane Jonckers, and Tom Mens. “Supporting model

refactorings through behaviour inheritance consistencies.” International Conference

on the Unified Modeling Language. Springer, Berlin, Heidelberg, 2004.

28. Tamrawi, Ahmed, et al. “SYMake: a build code analysis and refactoring tool for

makefiles.” 2012 Proceedings of the 27th IEEE/ACM International Conference on

Automated Software Engineering. IEEE, 2012.

29. Wimmer, Manuel, Nathalie Moreno, and Antonio Vallecillo. “Systematic evolution

of WebML models by coupled transformations.” International Conference on Web

Engineering. Springer, Berlin, Heidelberg, 2012.

30. Giese, Holger, and Leen Lambers. “Towards automatic verification of behavior preser-

vation for model transformation via invariant checking.” International Conference on

Graph Transformation. Springer, Berlin, Heidelberg, 2012.

126

Appendix

C
Taxonomy’s Evaluation Strategy

127

Taxonomy’s Evaluation Strategy

Bruno Santos

February 24, 2022

1 Methodology

We intent to perform the focus group evaluation presented in Figure 1. The
following step is to perform the delphi method evaluation presented in Figure
2.

The focus group are going to provide a qualitative evaluation to the tax-
onomy and ,in summary, the process will consists in a set of questions about
the taxonomy to a subject group composed by industry software engineers
and graduate students.

The discussion in this focus group intends to refine the technical report
in order to prepare it to be evaluated by the delphi method.

The delphi method, in summary, intends to evaluate the taxonomy using
a questionnaire containing qualitative and quantitative questions that are
going to be evaluated by industry software engineers, graduate students and
professors of software engineer/software architecture.

The next section presents a draft of the methodology we intend to ap-
ply. We followed the guidelines proposed in [1] (Full paper included as an
attachment in the e-mail).

2 Focus Group – Methodology Draft

Figure 1 presents a five stage methodology to perform a focus group valida-
tion that is a qualitative approach. Stage 1 is responsible for defining the
purpose of the validation. Stage 2 is responsible for defining the method-
ology to be applied in stage 3, which is the stage where the subjects along
with the focus group team (team responsible for the conduction of the study)

1

Figure 1: Qualitative Evaluation - Focus Group.

discuss about the taxonomy. Stage 4 is where the focus group team perform
the analysis of the data collected in stage 3 in order to elaborate a report in
stage 5.

The following sections presents additional information of the stages pre-
sented in Figure 1.

2.1 Study Purpose

The purpose of this is study is to perform an evaluation of a taxonomy for
classifying modernization tools.

2.2 Methodology

2.2.1 Population:

• Software engineers that could use the taxonomy to classify moderniza-
tion tools. These professionals could also use the taxonomy to com-
municate while talking about modernization tools. Another usage is to
design in a clearer way the modernization tools architecture.

• Graduation Researchers that could use the taxonomy to contextualize,
to understand and to develop new modernization tools.

2

2.2.2 Subject’s criterion selection:

• Knowledge in Model-Driven Architecture;

• Knowledge in Reengineering;

• Minimum with master’s degree or at least one year of course.

2.2.3 Sample:

• 3 Software engineers

• 3 Graduate students

• Is is possible to have a group in spain?

2.2.4 Questions

• What do you think of a taxonomy for classifying modernization tools ?

• Do you think the way the taxonomy is presented (as a class diagram)
assist in its use ?

• What would you change in the proposed taxonomy?

• Do you think that the concepts presented in the taxonomy are enough
for representing modernization tools? Why?

• What were the main challenges while reading the taxonomy’s technical
report?

• ???

2.2.5 Elaborate Logistics

To be described

2.2.6 Elaborate the Script

To be described

3

Figure 2: Quantitative and Qualitative Evaluation - Two Round Delphi
Method.

2.2.7 Elaborate Consent Form

To be described

2.3 Facilitation

To be described

2.4 Analysis

To be described

2.5 Reporting

To be described.

4

References

[1] Barry Nagle and Nichelle Williams. Methodology brief: Introduction to
focus groups. Center for Assessment, Planning and Accountability, (1-
12), 2013.

5

	Introduction
	Context
	Problem Statement
	Contributions
	Usage Scenario
	AdvanSE Group Research
	Research Roadmap
	Outline

	Background
	Software Modernization
	Architecture-Driven Modernization
	Knowledge Discovery Metamodel
	KDM Compliance and Domains

	Reference Architectures
	Reference Architecture Types
	Reference Architecture Attributes
	Reference Architecture Evaluation

	Model Refactoring
	Final Considerations

	Related Works and Systematic Mappings
	Modernization tools that use ADM standards
	Tools that apply refactorings in UML
	Systematic Mapping
	Systematic Mapping on ADM
	Group 1 - Discussions around ADM papers
	Group 2 - Modernization Tools papers

	Systematic Mapping on Code and Model Refactoring tools

	Final Considerations

	A Taxonomy for Classifying Modernization Tools in ADM Context
	Initial Considerations
	The Taxonomy
	Methodology for Building the Taxonomy
	Step T-1: Information Source Investigation
	Step T-2: Artifacts Analysis and Categorization
	Step T-3: Taxonomy Establishment
	Step T-4: Taxonomy Evaluation

	Threats to validity
	Final Considerations

	A Reference Architecture for ADM-Based Modernization Tools
	Initial Considerations
	The Reference Architecture
	Structural Views
	MVC View
	Internal Components View

	Data Flow View
	Pipes and Filter View

	Dynamic Views
	Reverse Engineering Views
	General Activity Diagram View
	Instance Manager Activity Diagram View
	Flaws Detector Activity Diagram View
	Metamodel Instance Discoverer View
	Metric Calculator Activity Diagram View
	Reverse Engineering Component Diagram View

	Restructuring Views
	General Activity Diagram View
	Instance Manager Activity Diagram View
	Refactoring Activity Diagram View
	Restructuring Component Diagram View

	Forward Engineering Views
	General Activity Diagram View
	Metamodel Instance and Source Code Discovery View
	Metric and Measurement Calculation View
	Forward Engineering Component Diagram View

	RA usage Guidelines
	Methodology Employed
	Information Source Investigation
	Architectural Analysis and Requirements

	Evaluation
	Evaluating the RA Acceptance
	Evaluating the RA Overall acceptance
	Evaluating Discussions

	Threats to Validity
	Final Considerations

	Conclusions
	Contributions
	Limitations
	Future Work
	List of Publications
	Next Publications

	Bibliography
	Details of Systematic Mapping on ADM
	Final selected papers:
	Group 1: Discussions around ADM papers
	Group 2 - Modernization Tools papers

	ADM Search String:

	Details of Systematic Mapping on Code and Model Refactoring Tools
	Final selected papers:

	Taxonomy's Evaluation Strategy

