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RESUMO 

 

A qualidade de um produto pode ser entendida como inversamente proporcional à 

variabilidade presente em seu processo produtivo. Nesse sentido, o gráfico de controle é uma 

ferramenta estatística bem estabelecida para quantificar e analisar a variabilidade de um 

processo com base em informações observadas sobre algumas de suas características 

mensuráveis. Para simplificar a aplicação dos gráficos de controle, alguns pesquisadores e 

usuários assumem que os dados usados para avaliar o processo são exatos. No entanto, visto 

que a construção e a utilização dos gráficos de controle baseiam-se em resultados de medições 

e que nenhum sistema de medição é perfeito, a presença de erros de medição nos dados 

monitorados é inevitável. Estudos recentes indicam que o gráfico de controle do tipo Double 

Sampling pode ser uma alternativa favorável para o monitoramento de processos. No entanto, 

ainda há uma lacuna sobre estudos que investiguem o impacto dos erros de medição sobre 

gráficos Double Sampling voltados para o monitoramento da variância. Com base no exposto, 

o presente trabalho visa estudar como o desempenho do gráfico de controle Double Sampling 

𝑆2  é afetado pela presença dos erros de medição. Inicialmente, propõem-se uma revisão 

sistemática da literatura visando explorar estudos sobre o tema. Como metodologia principal 

de pesquisa tem-se a modelagem matemática e a simulação. Estuda-se a modelagem 

necessária para consideração dos erros de medição no design do gráfico de controle Double 

Sampling 𝑆2 . Por meio de simulação, verifica-se o impacto sobre o número médio de 

amostras até se obter um sinal (ARL) para diferentes valores de erro de medição. Utilizando 

algoritmo genético, propõe-se um estudo de otimização do gráfico de controle Double 

Sampling 𝑆2  para operação com erros de medição. Por fim, um exemplo de simulação é 

apresentado para verificar a utilização do gráfico Double Sampling 𝑆2 com os parâmetros 

otimizados. Os resultados obtidos indicam que a presença do erro de medição deteriora o 

desempenho do gráfico Double Sampling 𝑆2 e que o impacto é maior quanto maior o erro de 

medição. Por meio do estudo de simulação, verificou-se a vantagem de se utilizar o gráfico 

Double Sampling 𝑆2 otimizado, principalmente para erros de medição de maior magnitude. O 

presente estudo contribui com o conhecimento necessário para aplicação prática do gráfico de 

controle Double Sampling 𝑆2 à medida que fornece parâmetros para sua utilização quando na 

presença de erros de medição.  

Keywords: monitoramento de processos; gráfico de controle Double Sampling; erros de 

medição.  



 

 

 

ABSTRACT 

 

Product quality can be understood as inversely proportional to the variability in its production 

process. The control chart is a well-established statistical tool for quantifying and analyzing 

this process' variability based on observed information about some of its measurable 

characteristics. To simplify the control chart application, some researchers and users assume 

that the data used to evaluate the process is accurate. However, since the construction and use 

of control charts are based on measurement and no measurement system is perfect, errors in 

the measured data are inevitable. Recent studies indicate that the Double Sampling control 

chart can be an alternative for process monitoring. However, there is still a lack of studies that 

investigate the impact of measurement errors on Double Sampling control chart to monitor 

process variability. Based on the preceding, the present work aims to study how the 

performance of the Double Sampling 𝑆2 control chart is affected by the presence of 

measurement errors. Initially, a systematic review of the literature is proposed in order to 

explore studies on the subject. The main methodology of the research is mathematical 

modeling and simulation. A design modeling for considering measurement errors in the 

Double Sampling 𝑆2 control chart is proposed. The impact on the average run length (ARL) 

for different measurement error values is verified through simulation. Using a genetic 

algorithm, we propose an optimization study of the Double Sampling 𝑆2 control chart for 

operation with measurement errors. Finally, a simulation example is presented to verify using 

the Double Sampling 𝑆2 chart with the optimized parameters. The results indicate that 

measurement error deteriorates the performance of the Double Sampling 𝑆2 chart, and the 

impact rises as measurement error increases. The simulation analysis showed the advantage of 

using the optimized Double Sampling 𝑆2 chart, particularly for larger measurement errors. 

The present study contributes to the practical application knowledge of the Double Sampling 

𝑆2 control chart, providing parameters for its use in the presence of measurement errors. 

 

Keywords: process monitoring; Double Sampling control chart; measurement errors. 

 

  



 

 

 

GLOSSARY 

 

𝜎̂0
2′

 Estimator for the in-control process variance in ME case 

𝑆𝑌1
2 Sample variance computed for 𝑛1 

𝑆𝑌2
2 Sample variance computed for 𝑛2 

𝑆𝑌𝑝
2 Pooled sample variance 

𝜎̂0
2 Estimator for the in-control process variance 

. ̂ Used to indicate estimation from the sample 

𝐹𝜈(. ) Chi-square cumulative distribution function 

𝐿1 First control limit in the stage 1 of DS chart 

𝐿2 Second control limit in the stage 1 of DS chart 

𝐿3 Control limit of stage 2 of DS chart 

𝑃𝑎1 Probability that the process is in-control at stage 1 

𝑃𝑎2 Probability that the process is in-control at stage 2 

𝑆2 Sample variance 

𝑋̅ Sample mean 

𝑘1 𝐿1 control limit constant 

𝑘2 𝐿2 control limit constant 

𝑘3 𝐿3 control limit constant 

𝑛1 Stage 1 sample 

𝑛2 Stage 2 sample 

𝜇0 In-control process mean 

𝜎0
2 In-control process variance 

𝜎1
2 Out-of-control process variance 

𝜎𝜀
2 Variance of the measurement error term 𝜀 

∗ Used to indicate Phase I 

A Constant that represents the intercept in the measurement error model 

AIB Auxiliary information based  

ARL Average Run Length 

ARL0 In-control Average Run Length 

ASS Average sample size 

ASS0 In-control average sample size 

B Constant that represents the slope in the measurement error model 

BDS Bivariate double sampling 

CL Center line 

CRL Conforming Run Length 

CV Coefficient of variation  



 

 

 

DS Double sampling 

DSATL Double Sampling Adaptive Thresholding LASSO 

EWMA Exponentially weighted moving average  

FAR False alarm rate 

FIR Fast Initial Response 

GA Genetic Algorithm 

HWMA Homogenously weighted moving average 

IC In-control 

LCL Lower Control limit 

MAX-

EWMAMS 

Maximum Exponentially Weighted Moving Average and Mean Squared 

Deviation 

ME Measurement error 

MMS Multivariate multiple sampling  

MRL Median run length 

OOC Out-of-control 

R Range 

RL Run length distribution 

SDANOS Standard deviation of the average number of observations to signal 

SDRL Standard deviation of the run length 

SPC Statistical Process Control 

SSMGRDS Side-sensitive modified group runs double sampling 

TS Triple Sampling 

UCL Upper control limit 

VSI Variable sampling interval 

VSSI Variable sample size and sampling interval 

X True value of the quality characteristic 

Y Observed value of the quality characteristic 

Γ Gamma function 

𝑓(. ) Chi-square probability density function 

𝑚 Number of Phase I samples 

𝑛 Number of items in a sample 

𝛼 Type I error 

𝛽 Type II error 

𝛿 Standard deviation shift 

𝜀 Random error term for measurement imprecision 

𝜈 Degrees of freedom 
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1. INTRODUCTION 

 

This chapter contextualizes the research presenting its motivation, research 

questions, objectives, and the proposed document structure. 

 

1.1. CONTEXTUALIZATION 

 

The quality concept has been studied, defined, and refined over the years. Quality 

specialists such as Shewhart and Taguchi devoted their work to researching ways to improve 

production systems by raising the processes’ quality (WOODALL; MONTGOMERY, 1999). 

To make this enhancement attainable, it is crucial to translate the customer's expect quality 

into practical and measurable terms. In this regard, a useful interpretation of quality to make it 

more quantifiable is to consider it as inversely proportional to variability (MONTGOMERY, 

2013). This definition underscores the importance of studying and reducing process variation 

to improve product quality. 

Walter Shewhart was a pioneer in the field of variability monitoring, studying how to 

lower variation in order to increase industrial process quality, a thought that was not common 

at the time (BEST; NEUHAUSER, 2006). Following Shewhart's ideas about reducing 

variation were some of the greatest names in the Quality Management field, such as W. 

Edwards Deming, Philip B. Crosby, and Joseph M. Juran (ZAIRI, 2013). Deming reportedly 

stated that: “If I had to replace my message to managers to just a few words, I’d say it all had 

to do with reducing variation” (BANK, 1992 cited in ZAIRI, 2013, pg. 659). 

Statistical process control (SPC) is a useful set of tools that seeks to reduce the 

process variation to an acceptable level by identifying the sources of undesired disturbances 

so that they can be removed by appropriate online or offline action (WETHERILL; 

ROWLANDS, 1991). SPC refers to statistics used to monitor and enhance the quality of the 

respective operations and enable appropriate decision-making by collecting data at various 

stages of the process and analyzing it statistically. It ensures that the overall process remains 

controlled, and that the final product satisfies the specified parameters. For this reason, it is 

used extensively by practitioners in academic research and engineering applications 

(GODINA et al., 2018; STATSOFT, 2011). 
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SPC application involves following the processes, identifying problem areas, 

recommending methods to reduce variation and verify that they work, optimizing the process, 

testing the reliability of parts, and performing other analytical operations. Basic and more 

advanced statistical quality control methods can be used in SPC, including control charts, 

Pareto charts, capability analysis, gauge repeatability/reproducibility analysis, design of 

experiments, and reliability analysis (GODINA et al., 2018; STATSOFT, 2011). 

Due to their proven effectiveness, control charts are one of the most used tools in 

Statistical Quality Control. It is a well-established statistical tool for quantifying and 

analyzing process variability. It can be used to monitor a manufacturing process based on 

some measurable quality characteristics from individual items or subgroups (ASLAM et al., 

2021).  

The first control chart was developed by Walter A. Shewhart in the 1920s at the Bell 

Telephone Laboratories, using normal curve's widely known properties to monitor the 

manufacturing process's quality characteristics. Because of their simplicity, versatility, and 

ease of use, Shewhart-type control charts are still among the most essential and widely used 

tools in industrial statistics applications (ALEVIZAKOS; CHATTERJEE; KOUKOUVINOS, 

2021; BRADFORD; MIRANTI, 2019; STOUMBOS et al., 2001). 

The general principle of quality control charting is simple: samples of a specified 

size should be extracted from the ongoing manufacturing process. Then, using line charts to 

represent the variability of those samples, one should examine how close they are to the target 

parameters. If a pattern arises along those lines or samples exceed pre-determined limits, the 

process is considered out-of-control, and actions should be taken to identify the problem's 

source (LEWICKI; HILL, 2006). 

No process or control system is perfect. Regardless of the type of process studied and 

the control system used, a portion of variability will always be present. An important part of 

using control charts is identifying whether or not this variability is acceptable. This variability 

may be due to common causes of variation arising from factors inherent in the process, or 

special causes, representing sporadic deviations in their behavior. A process is considered in-

control (IC) if it operates only in the presence of common causes. If special causes of 

variation are present, it is said that the process is out-of-control (OOC). In this case, the data 

will exhibit non-random behavior, and the chart may also indicate points outside the control 

limits. This occurrence is called an alarm or signaling event (CHAKRABORTI; GRAHAM, 

2018). 
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The control charts' conventional structure generally includes the following three 

elements: Center Line (CL), Upper Control Limit (UCL), and Lower Control Limit (LCL). 

The center line represents the target value, and the control limits represent the boundaries that, 

if trespassed, will result in an out-of-control event. Both are frequently set using the mean and 

standard deviation of a random variable representing the quality characteristic 

(HRYNIEWICZ; KACZMAREK-MAJER, 2018; VACHÁLEK et al., 2021). 

A control chart's performance is evaluated by how well it can discriminate between 

process shifts due to random causes and those due to special causes. It involves its ability to 

detect rapidly process deviations and the ability to not signal when they are not present. 

Aiming to improve the performance of the traditional control chart structure, Daudin (1992) 

proposed a monitoring scheme based on two evaluation stages. He named this scheme a 

Double Sampling (DS) control chart.  In this scheme, a small sample of size 𝑛1 is evaluated in 

the chart’s first stage. Depending on its location in the chart, the process can be considered in-

control, out-of-control, or a new small sample of size 𝑛2 can be collected. Before determining 

if the process is out-of-control, the second sample is evaluated in the chart’s second stage. 

Recent research, such as those proposed by Huang, Yang, and Xie (2020) and Salmasnia, 

Maleki, and Mirzaei (2023), has shown that using Double Sampling strategy in designing 

control charts improves their detection ability without increasing the sample size. 

In addition to the concern with the number of stages used to monitor a process, other 

practical factors must be considered. Generally, an assumption often made to simplify the 

application of control charts is that the data used to evaluate the process is accurate 

(MALEKI; SALMASNIA; YARMOHAMMADI SABER, 2022). However, errors due to 

either the measurement system or operators are inevitable. Even with highly advanced 

measuring systems, a difference between the actual quantities and the measured ones will 

always exist (MALEKI; AMIRI; CASTAGLIOLA, 2017).  

The initial steps for applying control charts include measuring the process and 

analyzing the measurement data (SATO, 2006). Since the data used to monitor the process is 

collected using measurement systems, the effect of measurement errors on control charts' 

performance cannot be neglected. The measurement error can be present both in the data used 

to monitor the process and in the samples collected to calculate the control limits in case of 

unknown parameters. 

Maravelakis (2003) highlighted that measurement error is a factor that can seriously 

affect the performance of a control chart. However, although in most cases the measurements 
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used for monitoring the process are not accurate many of the studies on control charts do not 

make such consideration. For Double Sampling control charts, for example, as can be seen in 

the literature review presented in Chapter 3, less than 5% of studies published in Journals 

investigate the effects of measurement errors on the performance of these charts. Another 

issue is that this small percentage of studies only investigated these effects on one type of 

Double Sampling control chart.  

Considering the potential implications of neglecting measurement error effects on 

control charts performance, this Thesis aims to answer the following research question: How 

can the presence of measurement errors affect the performance of the DS 𝑆2 control chart? 

 

1.2. MOTIVATION 

 

Control charts are still a widely used tool for monitoring industrial processes. In most 

process monitoring practical applications, in order to monitor it, its variables must be 

measured. Aware that no measurement system is perfect, some measurement errors will 

always be present. Neglecting them can directly impact the performance of the control charts 

and, consequently, the monitoring performed.  

Modern production process monitoring involves an increasing number of sensors and 

measuring systems. Knowing that companies are constantly seeking to reduce costs, thinking 

about alternatives that enable the reduction of the number and size of samples collected for 

process monitoring is also an important issue. Thus, it is important to investigate the effects of 

measurement errors on the performance of control charts developed to reduce the sample size, 

such as the Double Sampling control chart. 

Using Double Sampling control charts without considering the impacts of 

measurement errors on their performance can lead to incorrect results, affecting the decision-

making capacity in their use and, consequently, the costs involved in the process. Based on 

searches in the main research databases (Scopus, Science Direct, SciELO and Engineering 

Village) and based on the recent Double Sampling literature review by Motsepa et al. (2021), 

as far as we know, no studies investigate the effect of measurement errors on the Double 

Sampling (DS) chart for process variance monitoring.  
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1.3. RESEARCH OBJECTIVES 

 

The research objective is the formalization of the purpose of the work (MIGUEL et 

al., 2010). This thesis has as general objective: Investigate the effects of measurement errors 

on the Double Sampling S² control chart. 

 For the general objective achievement, this thesis has the following specific 

objectives: 

1. Review the available literature on Double Sampling control charts to highlight 

gaps in the literature; 

2. Investigate how the effect of measurement errors can be considered in the Double 

Sampling 𝑆2 control chart design; 

3. Evaluate the Double Sampling 𝑆2 control charts' performance under the effect of 

measurement errors; 

4. Evaluate optimizing the control chart in the presence of measurement errors; 

5. Propose suggestions for future studies to continue the work in order to contribute 

to the research field. 

 

1.4. METHODOLOGICAL RELEASE 

 

The proposed thesis is classified as normative axiomatic quantitative research using 

modeling and simulation. Axiomatic research yields knowledge about certain model variables' 

behavior based on assumptions about other model variables' behavior. Normative axiomatic 

quantitative research is intended to improve the existing literature results to find an optimal 

solution to a new problem or compare various strategies for addressing a specific issue. 

Mathematical simulation is special analytical modeling in which hypotheses about the model 

parameter values are made to test it (BERTRAND; FRANSOO, 2002; MEREDITH et al., 

1989).  

The first step was a preliminary reading of papers on control charts to find gaps in 

the literature that needed to be studied. Papers that addressed Double Sampling control charts 
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were reviewed. The review aimed to identify what has already been done in the available 

literature and understand best practices, results, and limitations of existing studies. It was 

found that no studies considered the measurement error for the Double Sampling 𝑆2 chart.  

From the initial step, some decisions were made. It was assumed that the developed 

control chart is intended for use in normally distributed processes. The additive model is 

considered to represent the measurement error due to its wide application and ability to 

represent different practical situations. The measurement error is considered a random 

variable following a normal distribution, so the model must account for this randomness and 

extra variability. 

Based on the available literature, parameters such as sample size, control limits 

range, shift size, and measurement error range were defined to evaluate the performance of 

the Double Sampling 𝑆2 control chart under the effect of measurement error. Average run 

length and average sample size are used to evaluate the control charts' performance. 

Simulation studies were performed to analyze measurement error's effect on the control 

chart’s performance. The implementation of computational solutions was done using the R 

programming language. The programming language choice is due to its wide use in statistical 

studies and because it is open source.  

The optimization of the Double Sampling 𝑆2 control chart is also proposed. To solve 

the optimization problem, the genetic algorithm (GA) method was chosen because of its 

effectiveness for optimizing nonlinear models. Genetic algorithms can be considered as a 

multi-directional search method to solve problems. GA is based on the principles of natural 

genetics and natural selection, because the essential aspects of natural genetics — 

reproduction, crossover, and mutation – are applied (ZAINUDDIN; ABD SAMAD, 2020). 

According to Rao (2019), GAs differs from typical optimization approaches in the 

following ways: 

1. Instead of a single design point, the procedure is started using a population of 

points (trial design vectors). When the number of design variables is n, the population size is 

commonly 2n to 4n. GAs are less prone to get trapped at a local optimum since numerous 

points are considered as candidate solutions; 

2. GAs use only the values of the objective function; 

3. In GAs the design variables are represented as strings of binary variables that 

correspond to the chromosomes in natural genetics. Thus, the search method is naturally 
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applicable for solving discrete and integer programming problems. For continuous design 

variables, the string length can be varied to achieve any desired resolution; 

4. The objective function value corresponding to a design vector plays the role of 

fitness in natural genetics; 

5. Each generation gives a fresh collection of strings based on randomized parent 

selection and crossover from the previous one. GAs effectively combines novel combinations 

with the available knowledge to discover a new generation with improved fitness or objective 

function value. 

From the optimization study using a genetic algorithm, a table was created with the 

values of the optimized parameters. Finally, an illustrative simulation study is presented to 

demonstrate the use of optimized parameters. 

 

1.5. THESIS STRUCTURE 

 

This thesis is structured into six chapters. Figure 1 shows the proposed thesis’ 

structure and the alignment of the chapters with the specific objectives of the Thesis. 

Chapter 1 presents the contextualization and research question, research motivation, 

research objectives, and the methodological release.  

Chapter 2 presents the relevant theoretical background. The fundamentals of control 

charts and measurement errors main concepts are presented. An overview of the literature on 

control charts for variability monitoring under the effect of measurement errors is also 

presented.  

Chapter 3 presents the general procedure of the Double Sampling scheme and a 

Systematic Literature Review on Double Sampling control charts. 

Chapter 4 details the implementation of the DS 𝑆2 control chart in the presence of 

measurement errors. Details of the simulations conducted are also presented.  

Chapter 5 presents the proposal for DS 𝑆2  control chart optimization and an 

illustrative simulation example.  

Finally, Chapter 6 summarize this thesis's main contributions and provide 

suggestions for further research involving related topics.  
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Figure 1 –  Thesis’ structure 
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2. THEORETICAL BACKGROUND 

 

This chapter presents the key concepts covered in the study. First, it presents the 

fundamental concepts about control charts and measurement errors and their importance for 

statistical quality control. Following, it presents the previous works on the effect of 

measurement error on control charts for process variability monitoring.  

 

2.1. HISTORY AND FUNDAMENTALS OF CONTROL CHARTS 

 

Control charts are one of the main techniques of statistical process control. Its 

primary objective is to evaluate the quality of a production process (MOYA-FERNÁNDEZ; 

ÁLVAREZ; SKALSKÁ, 2019). The first control chart was invented by Walter Andrew 

Shewhart in 1924 (WILEY, 2011).  

Shewhart (1891–1967) received his bachelor’s and master’s degrees from the 

University of Illinois and a doctorate in physics from the University of California at Berkeley. 

He joined the Western Electric Company in 1918 to work on improving the quality of 

telephone hardware. The Western Electric Company’s major plant was the Hawthorne Plant 

in Chicago. The Bell Telephone Company, which later changed its name to the American 

Telephone and Telegraph Company (AT&T), purchased hardware from Western Electric. 

Shewhart worked at Hawthorne Plant until 1925, when he moved to the Bell Telephone 

Research Laboratories, remaining until his retirement in 1956 (BEST; NEUHAUSER, 2006; 

WILEY, 2011). 

Shewhart is known as the "father of statistical quality control" (XIE; MUKHERJEE, 

2017). He gained notoriety in the statistical community after writing the report “Statistical 

Method from the Viewpoint of Quality Control” in 1937. He also published numerous articles 

while working at Bell Laboratories and the historic memorandum of May 16, 1924, in which 

he proposed the statistical control chart (AMERICAN SOCIETY FOR QUALITY, 2021). 

The Shewhart control chart is a graphical plot used in the investigation of the process 

changes over time. The Shewhart chart, initially used to process mean monitoring, consists of 

three lines that are the lower control limit (LCL), upper control limit (UCL), and center line 

(CL). The LCL is typically plotted 3σ below the CL, while the UCL is typically plotted 3σ 

above the CL (KHOO, 2013).  
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Shewhart control charts visually represent the application of a sequential statistical 

significance test for an out-of-control condition, where control limits are confidence limits on 

the true process mean (NELSON, 1999). The basic structure of a Shewhart chart is shown in 

Figure 2. 

 

Figure 2 –  Shewhart control chart’s general structure 

 

 

 

Shewhart control charts are used to identify the presence of causes that produce 

significant deviations from a process's stable operation. Shewhart (1930) and Deming (1986) 

referred to these causes as "assignable" causes and "special" causes, respectively. When the 

variability of the production process is exclusively produced by common causes, inherent in 

the work system, the process is said to be in-control. However, if the process' variability is 

produced by assignable causes, it is considered to be out-of-control (BAKIR, 2005; MOYA-

FERNÁNDEZ; ÁLVAREZ; SKALSKÁ, 2019; NELSON, 1999). 

About what can be considered a controlled process, Shewhart stated: 

 

“A phenomenon will be said to be controlled when, through the use of past 

experience, we can predict, at least within limits, how the phenomenon will be 

expected to vary in the future. Here it is understood that prediction within limits 

means that we can state, at least approximately, the probability that the observed 

phenomenon will fall within the given limits” (SHEWHART, 1930, pg. 367). 

 

 

Shewhart X-bar, 𝑅 , 𝑆2 , and 𝑆  control charts are among the most popular control 

charts used to process monitoring (DIKO et al., 2017; GANGULY; PATEL, 2014). 
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2.2.1 X-BAR CHART 

Consider that the true value of a quality characteristic is represented by a random 

sample 𝑋𝑖𝑗 of size 𝑗 = 1, 2, … , 𝑛 taken from a process at time 𝑖 = 1,2, … , 𝑚. We can monitor 

this quality characteristic by its sample mean, given by Equation 1. 

Equation 1 

𝑋̅𝑗 =
∑ 𝑋𝑖

𝑛
𝑖=1

𝑛
 , 𝑗 = 1,2, … , 𝑚 

 

Where 𝑋̅𝑗  ~ 𝑁 (𝜇0,
𝜎0

√𝑛
). 

Assuming that 𝑋𝑖𝑗 is independent and identically distributed, and follows a normal 

distribution with known in-control process mean 𝜇0  and known standard deviation 𝜎0 , the 

control limits of the 𝑘-sigma X-bar control chart with subgroups of size 𝑛 are: 

 

Equation 2 

𝑈𝐶𝐿𝑋̅ =  𝜇0 + 𝑘
𝜎0

√𝑛
 

 
Equation 3 

𝐶𝐿𝑋̅ = 𝜇0 

 
Equation 4 

𝐿𝐶𝐿𝑋̅ = 𝜇0 − 𝑘
𝜎0

√𝑛
 

 

 

where 𝑈𝐶𝐿 is the upper control limit, 𝐶𝐿 is the center line, 𝐿𝐶𝐿 is the lower control limit, and 

𝑘 is a constant that represents the distance of the upper or lower control limit from the center 

line in terms of the standard deviation. 𝑘 is typically assumed to be 3 or is chosen to provide a 

nominal in-control average run length such as 370 or 500. 

 In many practical cases, the process statistical parameters are not known. These 

parameters are estimated from samples or subgroups. In this case, the control limits would be 

given by: 
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Equation 5 

𝑈𝐶𝐿̂𝑋̅ =  𝜇̂ + 𝑘
𝜎̂

√𝑛
= 𝑋̿ + 𝑘

𝜎̂

√𝑛
 

Equation 6 

𝐶𝐿̂𝑋̅ = 𝜇̂ = 𝑋̿ 

 
Equation 7 

𝐿𝐶𝐿̂𝑋̅ = 𝜇̂ − 𝑘
𝜎̂

√𝑛
= 𝑋̿ − 𝑘

𝜎̂

√𝑛
 

 

where 𝑋̿ is the grand average of all the 𝑋̅𝑗 values used as an estimator of the process mean and 

𝜎̂ is a chosen estimator of the process standard deviation. 

Although the X-bar control chart is widely used for monitoring the mean of a 

process, as its control limits depend on the standard deviation, its application will only be 

useful if the process variability is also monitored. Therefore, it is recommended that together 

with the X-bar chart, a control chart be used to monitor the process variation. The R, S, and  

𝑆2 control charts are popular options. 

 

2.2.2 R CONTROL CHART 

 

The structure of the R control chart depends upon the sample statistic range (R), 

shown in Equation 8. 

 

Equation 8 

𝑅 = 𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛 

 

 

where 𝑋𝑚𝑎𝑥 and 𝑋𝑚𝑖𝑛 are the maximum and minimum order statistics for the values of the 

quality characteristic of interest, respectively.  

 Let 𝑅1, 𝑅2, … , 𝑅𝑚 be the 𝑚 samples’ range. The average range is given by Equation 9. 

Equation 9 

𝑅̅ =
𝑅1 + 𝑅2 + ⋯ + 𝑅𝑚

𝑚
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There is a well-known relationship between a sample range and the standard deviation 

of a normal distribution given by Equation 10. 

Equation 10 

𝑊 =
𝑅

𝜎
 

 

The random variable W is called the relative range. The parameters of the distribution 

of 𝑊 are functions of the sample size 𝑛 and the mean of 𝑊 is represented by 𝑑2. Values of 𝑑2 

for various sample sizes can be found in Montgomery (2013). Thus, an estimator of  𝜎̂ is 

given by Equation 11. 

Equation 11 

𝜎̂ =
𝑅

𝑑2
 

 

So, if we use the average range of the 𝑚 preliminary samples, we can use: 

Equation 12 

𝜎̂ =
𝑅̅

𝑑2
 

 

as an unbiased estimator of 𝜎.  

 To determine the control limits of the 𝑅 control chart, we need an estimate of the 

standard deviation of 𝑅. Assuming that the quality characteristic is normally distributed, 𝜎̂𝑅 

can be found from the distribution of the relative range. The standard deviation of 𝑊, named 

as 𝑑3, is a known function of 𝑛 (MONTGOMERY, 2013). Thus, since 𝑊 = 𝑅/𝜎, 𝜎̂𝑅 is given 

by: 

 

Equation 13 

𝜎̂𝑅 = 𝑑3

𝑅̅

𝑑2
 

 

Therefore, the control limits for the R control chart are: 

 
Equation 14 

𝑈𝐶𝐿̂𝑅 = 𝑅̅ + 3𝑑3

𝑅̅

𝑑2
= 𝑅̅ (1 + 3

𝑑3

𝑑2
) = 𝐷4𝑅̅ 
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Equation 15 

𝐶𝐿̂𝑅 = 𝑅̅ 

 

 
Equation 16 

𝐿𝐶𝐿̂𝑅 = 𝑅̅ − 3𝑑3

𝑅̅

𝑑2
= 𝑅̅ (1 − 3

𝑑3

𝑑2
) = 𝐷3𝑅̅ 

 

 

where 𝑅̅ is the average range, 𝜎𝑅  is the standard deviation of R, and 𝑑2, 𝑑3, 𝐷3, and 𝐷4 are 

tabled constants that depend on the sample size and can be found in Montgomery (2013). 

 

2.2.3 S² CONTROL CHART 

 

Another way to monitor the process’ variability is to control its variance, which can be 

done based on the unbiased estimator 𝑆2 . The resulting control chart is called 𝑆2  chart. 

Consider that 𝑚 samples are analyzed, each with size 𝑛, and their variances 𝑆1
2, 𝑆2

2, … , 𝑆𝑚
2 

are given by Equation 17. 

 
Equation 17 

𝑆𝑗
2 =

∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1

𝑛 − 1
, 𝑗 = 1,2,3, … , 𝑚 

 

 

It follows that 
(n−1)𝑆2 

𝜎2 ~𝜒2
𝑛−1

, so the control limits for the 𝑆2 control chart, for the 

known parameter case, are exact and given by: 

 

Equation 18 

𝑈𝐶𝐿𝑆2 =
𝜎2 

𝑛 − 1
𝜒2

𝛼
2⁄ ,𝑛−1

 

 
Equation 19 

𝐶𝐿𝑆2 = σ2  

 
Equation 20 

𝐿𝐶𝐿𝑆2 =
𝜎2  

𝑛 − 1
𝜒2

1−(𝛼
2⁄ ),𝑛−1
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where 𝜒2
𝛼

2⁄ ,𝑛−1
 and 𝜒2

1−(𝛼
2⁄ ),𝑛−1

 denote the upper and lower 𝛼 2⁄   percentage points of the 

chi-square distribution with 𝑛 − 1 degrees of freedom 

Since 𝐸(𝑆2) = 𝜎2, 𝑆2  is an unbiased estimator of 𝜎2  (MONTGOMERY, 2013). 

Therefore, the control limits for the 𝑆2 control chart with estimated parameter are: 

 
Equation 21 

𝑈𝐶𝐿̂𝑆2 =
𝑆̅2 

𝑛 − 1
𝜒2

𝛼
2⁄ ,𝑛−1

 

 
Equation 22 

𝐶𝐿̂𝑆2 = 𝑆̅2  

 
Equation 23 

𝐿𝐶𝐿̂𝑆2 =
𝑆̅2 

𝑛 − 1
𝜒2

1−(𝛼
2⁄ ),𝑛−1

 

 

 

where 𝑆̅2 is an average sample variance obtained from the analysis of preliminary data and 

given by Equation 24. 

Equation 24 

𝑆̅2 =
∑ 𝑆𝑗

2𝑚
𝑗=1

𝑚
 

 

 

2.2.4 S CONTROL CHART 

 

Setting up the 𝑆 control chart requires about the same sequence of steps as those for 

the range control chart, except that, for each sample, we must calculate the sample standard 

deviation. Although 𝑆2 is an unbiased estimator of 𝜎2, S is not an unbiased estimator of 𝜎. If 

the underlying distribution is normal, then S estimates 𝑐4𝜎 , where 𝑐4  is a constant that 

depends on the sample size 𝑛 . Furthermore, the standard deviation of S is 𝜎√1 − 𝑐4
2 

(MONTGOMERY, 2013). So, the three-sigma control limits for the S control chart are: 

 

Equation 25 

𝑈𝐶𝐿𝑆 = 𝑐4𝜎 + 3𝜎√1 − 𝑐4
2 
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Equation 26 

𝐶𝐿𝑆 = 𝑐4𝜎 

 
Equation 27 

𝐿𝐶𝐿𝑆 = 𝑐4𝜎 − 3𝜎√1 − 𝑐4
2 

 

If 𝜎 is unknow, then it must be estimated by analyzing past data. Suppose that m 

preliminary samples are available, each of size n, and let 𝑆𝑖 be the standard deviation of the 

ith sample. The average of the m standard deviations is given by Equation 28. 

Equation 28 

𝑆̅ =
∑ 𝑆𝑖

𝑚
𝑗=1

𝑚
 

 

Then, the statistic 𝑆
̅
𝑐4

⁄  is an unbiased estimator of 𝜎. Then, the control limits of the S 

chart are: 

 

Equation 29 

𝑈𝐶𝐿̂𝑆 = 𝐵4𝑆̅ 
 

Equation 30 

𝐶𝐿̂𝑆 = 𝑆̅  
 

Equation 31 

𝐿𝐶𝐿̂𝑆 = 𝐵3𝑆̅ 
 

where 𝐵3 and 𝐵4 are given by Equation 32 and 33, respectively. 

 

Equation 32 

𝐵3 = 1 −
3

𝑐4

√1 − 𝑐4
2 

 
Equation 33 

𝐵4 = 1 +
3

𝑐4
√1 − 𝑐4

2  
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2.2. CONTROL CHARTS’ CLASSIFICATION 

 

As control charts' application spread among companies, new types of control charts 

were developed. Just as important as using control charts correctly is making the right choice 

on which control chart to use. Before deciding on the type of control chart, one must 

investigate several questions concerning the monitored process and collected data. Adams 

(2008) suggests asking the following questions:  

• What type of data is available?  

• How much data is available?  

• Are data associated with long production runs or some other process environment 

such as batch processes or short production runs?  

• Is a single-quality characteristic or multiple quality characteristics being 

considered? If multiple quality characteristics are important, are data values for 

the various key quality characteristics correlated with one another?  

• Are data values for a given quality characteristic correlated over time 

(autocorrelated)?  

• Are the distributional properties of the population reflected by the data? 

• Are common probability distributions, such as the normal, binomial or Poisson 

distributions, useful approximations?  

• Are key output quality characteristics driven by key process input variables? If so, 

do we have data on both inputs and outputs? 

By answering the above questions, one can decide which control chart best suits 

one's monitoring needs. Table 1 shows the main control charts’ classification.  

The control charts’ primary classifications can be made based on the type of data 

monitored and can be described as variable data, attribute data, profile data, and fuzzy data 

(MALEKI; AMIRI; CASTAGLIOLA, 2017). Variable-type data can be understood as 

measurable data, while attribute-type data can be understood as countable data 

(MONTGOMERY, 2013). Some of the main control charts for variable data are the Shewhart 

𝑋̅, 𝑅, 𝑆, and 𝑆2 control charts (CHEN, 1998; GANGULY; PATEL, 2014). Some of the main 

attribute control charts are np, p, c and u charts (WU et al., 2009).   
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Table 1 – Main control charts’ classification 

Classification Type Description 

Data type 

Attribute  
Used for the non-measurable data, such as the 

number of failures or nonconformities. 

Variable 

Used when the quality characteristics are 

measured, such as the workpiece's dimensions or 

mass. 

Profile 

Used when the quality characteristic is better 

represented by a functional relationship between 

a response variable and one or more explanatory 

variables. 

Fuzzy 

Used when the quality characteristic is 

characterized by some vagueness and ambiguity 

and expressed by fuzzy numbers or linguistic 

variables. 

Design 

structure  

Memoryless  
Ignore past sample information, considering only 

current sample information.  

Memory-type  
Consider recent and previous information in the 

given sample. 

Number of 

variables 

monitored 

Univariate Used to monitor a single quality characteristic. 

Multivariate 
Used to monitor several correlated quality 

characteristics. 

Distribution 

Parametric 
Used when a distributional assumption is made 

regarding the process, such as normality. 

Non-parametric 
Used when it is impossible or unjustified to make 

a distributional assumption. 
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Regarding profile monitoring, according to Maleki, Amiri, and Castagliola (2018) 

the main control charts developed use the linear regression model to represent the relationship 

between the response and the explanatory variable, but other types of profiles were also 

explored, such as the polynomial profiles, logistic regression profiles, and nonlinear profiles. 

Regarding Fuzzy data monitoring, if there is uncertainty in the process or if quality 

characteristics are described by human subjectivity, then fuzzy set theory can be used to 

model the process data (PEKIN ALAKOC; APAYDIN, 2018). Fuzzy control charts can be 

subdivided into Type 1 and Type 2 (RAZALI et al., 2020). These control charts are based on 

charts developed for other date types such as Shewhart-type, EWMA, and CUSUM control 

charts. In the Type 1 fuzzy sets, each element has a degree of membership function valued in 

the interval [0,1] and it is two-dimensional (ŞENTÜRK; ANTUCHEVICIENE, 2017). The 

Type 2 fuzzy set theory incorporates foot prints and high level uncertainty models to reflect 

ambiguity associated with the uncertainty of membership functions (RAZALI et al., 2020). 

Control charts can be also divided into memoryless and memory-type categories 

based on the mechanism of the design structure (ALI et al., 2021). The memoryless charts 

focuses on the large shifts while the memory charts address the small shifts (RIAZ, 2015). 

The main memory-less control chart is the Shewhart control chart, proposed by W.A 

Shewhart (1924). The main memory-type control charts are the cumulative sum (CUSUM) 

control chart proposed by Page (1954) and the exponentially weighted moving average 

(EWMA) control chart proposed by Roberts (1959). 

Another possible classification is based on the number of monitored variables. 

Control charts can be classified into univariate or multivariate charts when they monitor one 

or more process quality characteristics, respectively (ASLAM et al., 2020; SAGHIR et al., 

2019). Some of the main univariate control charts are Shewhart-type charts, EWMA chart, 

and CUSUM chart and some of the main multivariate control charts are Hotelling’s T², 

multivariate EWMA (MEWMA) and multivariate CUSUM (MCUSUM) (MALEKI; AMIRI; 

CASTAGLIOLA, 2018). 

Moreover, control charts can be classified according to their distribution as 

parametric or non-parametric (CHAKRABORTI; GRAHAM, 2018). A nonparametric control 

chart is recommended when the distributional assumptions underlying a parametric control 

chart are violated. In this case, the control chart's performance frequently decreases in terms 

of the false alarm rate and its ability to detect a shift (BOONE; CHAKRABORTI, 2012). 
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Nonparametric control charts were developed for Shewhart-type, CUSUM-type, and EWMA-

type, among others (CHAKRABORTI; GRAHAM, 2019). 

 

2.3. CONSIDERATIONS FOR CONTROL CHARTS’ PRACTICAL 

APPLICATION 

 

Determining the control limits, the sample size, and the sampling frequency are 

among the most critical tasks in designing a control chart. Larger samples can help detect 

smaller shifts but are more costly and time-consuming, whereas smaller samples can be 

sufficient if the expected shift is large. In practice, 20 to 30 samples of size 5 are often used 

for variables charts. Also, data collection frequency will be impacted by conditions like time, 

costs, and expected shifts. Typically, to take smaller samples at shorter time intervals or larger 

samples at longer time intervals is preferable (CHAKRABORTI; GRAHAM, 2018).  

Another factor that affects the amount of data collected is whether or not the process 

parameters are known. A fundamental premise for developing control charts is that the 

process parameters are known or estimated. When the parameters are known or specified, this 

is referred as the parameters known case or "Case K", and when parameters are unknown and 

need to be estimated, this is referred as the parameters unknown case or "Case U". 

(MCCRACKEN; CHAKRABORTI, 2013). 

In practice, we rarely know the process parameters. In this case, estimating them 

from a Phase I data set is necessary, but the effect of parameter estimation on control chart 

properties should not be ignored (PATINO-RODRIGUEZ; PÉREZ; MANCO, 2021; TANG 

et al., 2019). Several estimators can be used, the overall sample mean is the typical estimator 

for location, and the sample standard deviation and average range are common estimators for 

dispersion.  

As Jensen et al. (2006) pointed out, when sufficient data are not available in Phase I, 

the resulting charts will often signal more frequently when the process is in control and have a 

reduced ability to detect process changes. To ensure adequate Phase II performance, many 

studies on different control charts recommend a number of Phase I samples much larger than 

previously suggested in the literature (CHENG; SUN; GUO, 2018; EPPRECHT; 

LOUREIRO; CHAKRABORTI, 2015; GHASEMI ESHKAFTAKI; ZEINAL HAMADANI; 

AHMADI YAZDI, 2021; MEIRA; OPRIME; MERGULHÃO, 2022).  
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Regardless of the control chart type, and whether the parameters are known or 

estimated, two main errors can occur in its analysis: the Type І error (𝛼), when the process is 

in-control and the control chart signals the presence of an assignable cause, and the Type II 

error (𝛽), when the process is out-of-control and the control chart cannot detect this status 

(AMIRI; MOSLEMI; DOROUDYAN, 2015; RAMLIE et al., 2021).  

In statistical design, the design variables, such as the sample size (𝑛) and the width of 

control limits (𝑘) are selected in such a way that the two statistical errors, Type I and Type II, 

are kept at minimum values (GANGULY, 2016; GHAFFAR; ALI; AHMED, 2021). In 

practical terms, if it is costly to produce a large number of nonconforming units, Type II error 

should be minimized. On the other hand, if it is more costly to stop the process for 

investigation, then Type I error should be minimized. 

The sooner the control chart signals, the fewer nonconforming items would be 

manufactured. So, it is necessary to evaluate the performance of control charts in terms of 

identifying these signals. Several performance measures have been applied to evaluate the 

statistical properties of control charts. The most common method is to examine the control 

chart performance by evaluating its run length properties such as the average run length 

(ARL), the standard deviation run length (SDRL) or quantile-type metrics like median run 

length (MRL) (PERDIKIS et al., 2021).  

The run length is defined as the number of points plotted before a signaling event. A 

false alarm occurs when the process is declared out-of-control when, in fact, it is not, so the 

probability of a false alarm is referred to as the false alarm rate. 𝐴𝑅𝐿0 measures the average 

time between false alarms when the process is in control, and 𝐴𝑅𝐿1 measures the average 

time between alarms when the process is out-of-control. If the sample size varies from sample 

to sample, it is also important to evaluate control chart performance in terms of average 

sample size (ASS). If the process is out-of-control, the average sample size is called 𝐴𝑆𝑆0, 

and if the process is out-of-control, the average sample size is called 𝐴𝑆𝑆1. The control chart 

is better than the competitors if the 𝐴𝑅𝐿1 (𝐴𝑆𝑆1) is smaller, considering the same shift, and 

the same 𝐴𝑅𝐿0 and 𝐴𝑆𝑆0 values for all control charts (CASTAGLIOLA; OPRIME; KHOO, 

2017; MONTGOMERY, 2013). 

When parameter estimators are used, one can refer to the unconditional run-length 

distribution, obtained by averaging its distributions for a given set of estimators over these 

estimators' distribution. The run-length distribution for a given set of estimators is called the 

conditional distribution. While the unconditional run-length properties are fixed and define 
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the control charts’ average performance, the conditional run-length properties vary based on 

the values of the parameter estimators for a reference sample. As the conditional ARL shows 

the impact of parameter estimation based on the value of the estimator that the users have for 

their particular situation, it facilitates the practical evaluation of the control chart 

(CHAKRABORTI; GRAHAM, 2018; JARDIM; CHAKRABORTI; EPPRECHT, 2019). 

Although ARL is the metric commonly used, an interpretation based on ARL alone 

could be misleading in evaluating the control charts’ performance. Once the distribution of 

run length is geometric, run lengths’ standard deviation is quite large, and the geometric 

distribution is very skewed. Thus, the mean of the distribution is not necessarily a very typical 

value of the run length (MONTGOMERY, 2013). Yeong et al. (2021) highlighted that for 

small shift sizes, the median is smaller than the mean, so more than fifty percent of the time, 

the false alarm will happen before what is indicated by the 𝐴𝑅𝐿0. In this case, practitioners’ 

confidence in the 𝐴𝑅𝐿0  as a performance metric would be lowered. In this sense, some 

authors, such as Rozi et al. (2021), Teoh et al. (2014) and Yeong et al. (2021), recommend 

using the MRL as an alternative once it is less affected by the run length distribution 

skewness. 

Another concern regarding the practical application of control charts is the 

distribution of monitored data. Many of the control charts proposed in the literature are 

developed considering the normality of the data due to its well-established theory. The control 

charting structures based on normality, or some other well-known distributional model, may 

be very efficient but not of high practical significance in many cases. In practice, not always 

the data distribution is known. When the data depart from normality, the performance of the 

many parametric control charts degrades considerably. When it happens, the need for non-

parametric techniques emerges, such as distribution-free control charts, which are not 

dependent on the assumptions about the parent distribution (MABUDE; MALELA-MAJIKA; 

SHONGWE, 2020; RIAZ, 2015). 

Finally, another practical consideration is that, in many applications, the monitored 

data are not accurate. A portion of error due to the measurement system used in data 

collection will always be present. Recent articles, such as those in the literature review 

developed by Maleki, Amiri, and Castagliola (2017), show that the presence of measurement 

errors degrade control charts' performance. As a result, assertiveness in decision-making is 

reduced in cases where the effects of measurement errors are neglected. 
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2.4. MEASUREMENT ERROR FUNDAMENTALS 

 

The International Vocabulary of Metrology (VIM) defines measurement error as the 

measured quantity value minus a reference quantity value, and measurement uncertainty as 

the non-negative parameter characterizing the dispersion of the quantity values being 

attributed to a measurand, based on the information used (BIPM, 2012). Although these terms 

are not always applied correctly, their distinction is essential. Even when all error components 

are studied and their corrections are applied, uncertainty remains on the final measurement 

value, generating doubt on how well this result represents the quantity measured (HACK; 

TEN CATEN, 2012). 

The Error Approach's objective is to estimate the true value that is as close as 

possible to that single true value. The deviation from the true value is composed of random 

and systematic errors. Systematic error is the component of measurement error that remains 

constant or varies predictably in replicate measurements. In contrast, random measurement 

error is the measurement error component that in replicate measurements varies unpredictably 

(BIPM, 2012). Random contributions and systematic errors tend to modify the quality 

characteristic value in two distinct ways. Random contributions increase the variance of the 

measured parameter but do not affect its mean value, while systematic errors displace the 

original data without altering the inherent variability of the process (MACII; CARBONE; 

PETRI, 2003). 

A wide range of factors contributes to the presence of measurement errors. The main 

contributors are the metrological system characteristics, inspection method, imported 

uncertainties, operator skill, sampling concerns, and environmental conditions. Inaccurate and 

imprecise measurement can seriously decrease quality-oriented company profits because it 

affects process variability, leading to possible additional management costs. Consequently, 

the effect of measurement errors and uncertainty on process control techniques needs to be 

carefully investigated  (SMITH, 2016).  

Even though most statistical process monitoring research assumes that the 

measurements are accurate, this is a rare phenomenon in practice. The measurement errors 

can reduce monitoring schemes' performance in detecting out-of-control situations and 

increase the rate of false alarms. Even so, few studies have attempted to present remedial 

approaches to compensate for the effect of measurement errors (ANIS, 2008; MALEKI; 

AMIRI; CASTAGLIOLA, 2017). When measurement error is considered in the statistical 
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process monitoring literature, the prevailing measurement error model used is the additive 

model, shown in Equation 34. 

Equation 34 

𝑌 = 𝐴 + 𝐵𝑋 + 𝜀 

 

 

where 𝑋  is the true value of the quality characteristic, 𝜀  is a random error term for 

measurement imprecision. 𝐴 and 𝐵 are two constants that are fixed, and 𝑌 is the observed 

result of some measurement operation. It is typically assumed for this model that 𝑌 follows a 

normal distribution with mean 𝜇 , and variance 𝜎2 . The variance is partitioned into 

components corresponding to the variability in the quality characteristic and the error present. 

These components are usually denoted as 𝜎2
𝑝 and 𝜎2

𝑚, respectively.  

The relationship between the actual and the observed values of the sampled units can 

also be expressed as a multiplicative model 𝑌 = 𝑋𝜀 , where 𝜀  is an independent random 

variable with a mean value equal to 1 and a given variance. A recent consideration of the 

measurement error, named TCME model, is presented in the form of a two-component 

measurement error:  

 
Equation 35 

𝑌 = 𝐴 + 𝐵𝑋𝑒𝜂 + 𝜀 

 

 

where A and B are the intercept and slope constants, 𝜀 and 𝜂 are additive and multiplicative 

random disturbances, respectively, which are independently normally distributed variables 

with mean equal to zero and a given variance. 

Additionally, Li and Huang (2009) presented a complete consideration of 

measurement errors in the form of a four-component measurement error model: 

Equation 36 

𝑌𝑗 = 𝑏𝑗 + 𝑠𝑗𝑋𝑗 + 𝑐𝑗
𝑇𝑉𝑗 + 𝜀𝑗 

 

This model contains four types of measurement errors in a multivariate case with 𝑝 

correlated variables {𝑋1, … , 𝑋𝑝} . Where 𝑏𝑗  is the measurement error caused by sensor 

setup/calibration bias or drift when sensors are used in harsh environments;  𝑠𝑗  is the 
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measurement sensitivity; 𝑐𝑗  represents the relationship between observed and actual 

quantities, which also depends on the other variables (𝑉𝑗), where 𝑉𝑗 ∈ {𝑋1, … , 𝑋𝑝} but 𝑉𝑗 ∉ 𝑋𝑗; 

and 𝜀𝑗 ∼ 𝑁(0, 𝑣𝑎𝑟(𝜀𝑗)) denotes the sensor noise, the precision of the sensor is reflected by 

𝑣𝑎𝑟(𝜀𝑗). 

In all these models, the error term is considered an independent random variable with 

a given variance. This variance can be assumed to be a constant value, namely 𝜎𝜀
2  or a 

linearly increasing variance. In this last case, 𝜀  is assumed to be a normally distributed 

variable with mean equal to zero and variance 𝐶 + 𝐷𝜇𝑋 , where 𝐶  and 𝐷  are two other 

constants that are fixed. Hence, 𝑌 ∼ 𝑁(𝐴 + 𝐵𝜇𝑋 , 𝐵2𝜎2
𝑋 + 𝐶 + 𝐷𝜇𝑋). 

 

2.5.  SOME PREVIOUS WORKS ON THE EFFECT OF MEASUREMENT 

ERROR ON CONTROL CHARTS FOR PROCESS VARIABILITY 

MONITORING 

 

In one of the first studies on the subject, Kanazuka (1986) evaluates the effect of 

measurement error on the 𝑋̅/𝑅 control chart for the case where the mean and variance change. 

They consider the additive error model and five measurement error values for seven mean 

shifts and three different variance shifts. They found that the 𝑋̅/𝑅 chart has a higher detecting 

power than when the charts are used separately. Also, the larger the measurement error, the 

smaller the detecting power. So, they suggest a large sample size to avoid this problem.  

Mittag and Stemann (1998) also consider the additive measurement error model and 

use the control chart to monitor process location and spread simultaneously. They found that 

if the measurement error is present while the chart is set up, its sensitivity concerning process 

disturbances is reduced. In the case of the subsequent occurrence of measurement error, the 

specified upper bound for the false alarm probability could be lowered. So, they suggested 

ensuring gauge precision before and while applying any control chart. 

Linna and Woodall (2001) considered the effect of measurement error on the 

performance of the 𝑆2  chart using the additive measurement error model with a linear 

covariate between the observed value and the true one. They define the ratio 𝜂 for 𝜎𝑚
2  and 𝐵2, 

where 𝜎𝑚
2  represents the variability in the measurement system's error, and 𝐵 is a constant of 

the linear covariates model. The chart with the lowest 𝜂 value has the greatest power for 

detecting process variance shifts. Also, Shore (2004) developed equations for the 𝑆2 chart that 



41 

 

 

prescribed allowable measurement error bias and standard deviation and investigated how to 

specify measurement error requirements to achieve desirable control chart performance. 

Riaz (2014) investigated how the measurement error in Phase I for the 𝑆2  chart 

influenced Phase II run length performance. He assumed a measurement error in Phase I and 

no measurement error in Phase II. They found that due to measurement error, the control 

limits expand and reduce the control chart detection ability. For a fixed value of shift, the 

ARL increases with the increase of the measurement error, and it is difficult to detect a 

particular shift magnitude. 

Maleki, Maleki, and Dizabadi (2016) investigated the effect of measurement error on 

detecting and diagnosing the performance of the Maximum Exponentially Weighted Moving 

Average and Mean Squared Deviation (Max-EWMAMS) control chart in Phase II for 

simultaneous monitoring of the process mean and variability. They found that measurement 

errors can adversely affect the detecting performance while the effect on diagnosing 

performance is negligible for the Max-EWMAMS chart. Also, Javaid, Noor-Ul-Amin, and 

Hanif (2020) and Saemian, Maleki, and Salmasnia (2023) investigated the effect of 

measurement error on Max-EMWA and Max-HEWMAMS control charts, respectively, for 

simultaneous monitoring process mean and variability. They applied the covariate model and 

then the same model with multiple measurements to reduce the effects of measurement error.  

Sabahno, Castagliola, and Amiri (2020) evaluated the effect of measurement errors 

on an adaptive multivariate control chart for simultaneous monitoring of the process mean and 

variability with measurement errors. They concluded that as the measurement errors increase, 

the chart performance worsens in terms of all the performance measures. They suggested that 

researchers may evaluate the effect of parameter estimation on the proposed chart's 

performance for future studies. 

Thanwane et al. (2021a,  2021b) extended the study of the effect of measurement 

error on the HWMA monitoring scheme with estimated parameters by investigating its 

sensitivity through simulation and incorporating Fast Initial Response (FIR) features. They 

found that the FIR features improve the chart performance compared to the standard no FIR 

feature scheme. 

Yang, Chen, and Lin (2023) proposed an approach to correct measurement error 

effects for monitoring process dispersion by applying the dispersion statistic of the sign chart 

to transform continuous random variables into discrete ones. They develop an exponentially 

weight-moving average variance control chart with measurement error correction to eliminate 
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error effects and provide more reliable control limits for monitoring process dispersion. They 

validated the development through a numerical example and found that the proposed control 

chart effectively handles moderate and large levels of measurement error. 
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3. SYSTEMATIC LITERATURE REVIEW ON DOUBLE SAMPLING CONTROL 

CHARTS 

 

This chapter presents a systematic literature review on Double Sampling control 

charts. It presents a descriptive analysis of the articles reviewed and the previous works on the 

effect of measurement error on Double Sampling control charts.  

 

3.1. DOUBLE SAMPLING CONTROL CHARTS 

 

Double sampling schemes, proposed by Dodge and Romig (1929), are intended to be 

simple and cost-effective to use. The main goal of double sampling is to reduce, on average, 

the number of observations needed to make a decision. This scheme is particularly important 

in experiments involving an expensive inspection or a considerable waiting time between 

observations or inspections (BAR-LEV; BOUKAL, 2000). 

Based on Double Sampling scheme, Croasdale (1974) proposed a monitoring 

procedure named Double Sampling (DS) 𝑋̅ chart to offer better statistical efficiency in terms 

of the average run length than the Shewhart traditional chart. Two separate samples were used 

to create Croasdale's DS chart.  

Later, Daudin (1992) modified the Croasdale’s proposed chart by connecting the first 

and the second sample at the second stage. The procedure shown below is used for building 

the DS 𝑋̅  chart. Figure 3 shows the DS control chart structure. This procedure can be 

extended to other control charts, such as the range, standard deviation, and variance control 

charts. 

 

1) First, take a sample of size 𝑛1 and compute the sample mean 𝑋̅1; 

2) If 𝑋̅1  falls within the two interior limits of the stage one chart (-L1 and L1) the 

process is considered in-control; 

3) If 𝑋̅1 falls outside the two outer limits of the stage one chart (-L2 and L2) the process 

is considered out-of-control; 

4) If  𝑋̅1  falls between the limits -L1 and -L2 or between L1 and L2, a new sample of 

size 𝑛2 is collected and the sample mean 𝑋̅2 is computed; 



44 

 

 

5)  If 𝑋̅2 falls within the limits of stage two chart (-L3 and L3) the process is considered 

in-control, otherwise the process is considered out-of-control, and some action must 

be taken to investigate the special cause. 

Figure 3 –  Double sampling control chart structure 

 
 

Recent researches has shown that using the double sampling scheme strategy in 

designing control charts improves their detection ability without increasing the sample size 

(SALMASNIA; MALEKI; MIRZAEI, 2023). Considering this, an SLR of studies on Double 

Sampling control charts is proposed and aims to answer the following research questions: 

 

• How many studies on Double Sampling control charts have been proposed 

over the years? What are the characteristics of these studies? 

• What types of Double Sampling control charts were studied? 

• Which studies on Double Sampling control charts have considered the effects 

of measurement errors?  
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3.2. REVIEW METHODOLOGY 

 

Systematic literature review (SLR) is a method for finding, evaluating, and 

synthesizing all available research relevant to a specific research question, topic, or 

phenomenon of interest. Is a reliable method to gain clear, accurate, and unbiased information 

on a research topic (VAN DINTER; TEKINERDOGAN; CATAL, 2021). The aim of an SLR 

is to systematically analyze existing literature to answer one or more research questions 

(HINDERKS et al., 2020). 

The PRISMA statement is used to operationalize the research (LIBERATI et al., 

2009). Using checklists like PRISMA enable improvement in the reporting quality and 

provides substantial transparency in the selection process of papers in a systematic review 

(KNOBLOCH; YOON; VOGT, 2011). The proposed research methodology framework is 

shown in Figure 4. 

 

Figure 4 – Literature search overview 

 

The identification phase includes the initial search in the selected databases. Scopus, 

Engineering Village, Science Direct and SciELO databases were considered in the search. 

Articles published in Journals in English and Portuguese were considered. There was no time 
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restriction for the search, the searches were updated until March 2023. The relevant papers are 

gathered via computerized search using the query strings including the terms “double 

sampling” and “control chart”. The software StArt (FABBRI et al., 2016) was used to remove 

duplicate articles.  

In the screening the articles were filtered based on their titles and abstracts, 16 

articles were excluded in this phase. In the Eligibility phase, a preliminary analysis of the 

articles was carried out to ensure that they were qualified for this SLR, using as an exclusion 

criterion the lack of adherence to the theme, for example, when dealing with double sampling 

but not specifically for the study of control charts. After the screening and eligibility phases, 

72 articles were included for full-text review. 

 

3.3. DESCRIPTIVE ANALYSIS 

 

In order to analyze the relevance of the topic, the number of articles published on 

Double Sampling control charts over the years was analyzed. The Figure 5 shows the number 

of publications found in the search. The first study on the subject dates back to 1974. It can be 

seen from the analysis that the number of studies on the subject has been growing in the last 

decade. The year with the most publications was 2017, with ten publications. Considering that 

this review considered only the beginning of 2023, this number can be surpassed. 

 

Figure 5 –  Number of publications over time 
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Figure 6 shows the participation of authors in publications. It is observed that there is 

a relevant collaboration between authors who study the subject, as several of them 

collaborated in three or more publications. The author with the highest number of 

participations is Michael Khoo Boon Chong, professor at the School of Mathematical 

Sciences, Universiti Sains Malaysia, with 17 participations in articles on the subject. 

 

Figure 6 – Participations in articles per author 

 

Research on control charts also proved to be relevant across different countries. 

Figure 7 shows the geographical distribution of the articles considering the place of work of 

the first author of each article. It is observed that there is a distribution of places of action 

across different continents. The country with the highest number of publications was 

Malaysia, with 21 publications, followed by the United States with 9 publications, Taiwan 

with 8, and Brazil and Iran with 6. 

The Double Sampling scheme has been incorporated into many types of control 

charts. Figure 8 shows the most studied DS control charts, with three articles or more 

representing 49 of the 72 articles. The remaining 23 articles deal with control charts with two 

publications or fewer. Among the most studied types, the DS control chart based on the 

traditional Shewhart chart stands out, representing 49% of the articles with more than three 
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publications, followed by DS charts based on variable sampling interval (VSI-type) charts 

with 21%. 

 

Figure 7 – Geographical distribution of the publications 

 

 

Figure 8 – Percentage of articles per DS chart type  

 

Regarding the sources of publications, it is noted that a wide variety of journals 

include publications on Double Sampling control charts. Table 2 shows the frequency of 
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publication in each journal. It is observed that the journals in which there is a higher 

frequency of publication are Quality and Reliability Engineering International, with 9 

publications on the subject, and Communications in Statistics - Simulation and Computation 

and Communications in Statistics - Theory and Methods, with 7 articles each. 

Table 2 – Publication Source 

 

 

Journal Frequency

Quality and Reliability Engineering International 9

Communications in Statistics - Simulation and Computation 7

Communications in Statistics - Theory and Methods 7

International Journal of Production Research 6

International Journal of Production Economics 5

Journal of Applied Statistics 3

Journal of Statistical Computation and Simulation 3

Computers & Industrial Engineering 2

European Journal of Industrial Engineering 2

Mathematics 2

International Journal of Industrial Engineering 1

Compusoft 1

European Journal of Operational Research 1

Expert Systems with Applications 1

Frontiers in Applied Mathematics and Statistics 1

IEEE Access 1

IIE Transactions 1

International Journal for Quality Research 1

International Journal of Advanced Manufacturing Technology 1

International Journal of Applied Engineering Research 1

International Journal of Difference Equations 1

International Journal of Pure and Applied Mathematics 1

Journal of Quality Technology 1

Journal of Engineering and Technological Sciences 1

Journal of Industrial and Production Engineering 1

Journal of Industrial Integration and Management 1

Journal of Probability and Statistics 1

Journal of Testing and Evaluation 1

Pesquisa Operacional 1

Quality Engineering 1

South African Journal of Industrial Engineering 1

Stat 1

Statistical Methodology 1

Stochastics and Quality Control 1

The International Journal of Advanced Manufacturing Technology 1

Transactions of the Institute of Measurement and Control 1
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Table 3 shows the references per type of DS control chart. The main objectives of 

Table 3 are to highlight the number of studies per DS control chart, the variety of DS control 

charts studied, and the studies that were dedicated to investigating the effects of measurement 

errors and on what types of DS control charts this effect was investigated. In the first column 

of Table 3, we have the type of control chart/technique on which the DS chart is based. In the 

second column, we have the articles referring to the study of the respective control chart. In 

the third column, we have the studies found that investigate the effects of errors of 

measurement in this type of DS control chart.  

Regarding the DS control chart type, we have the following: Double Sampling 𝑋̅ 

chart (DS 𝑋̅)  for the process mean monitoring; Double Sampling 𝑆  chart (DS 𝑆)  for the 

standard-deviation monitoring; Double Sampling 𝑆2  chart (DS 𝑆2)  for the variance 

monitoring; Double Sampling 𝑅  chart (DS 𝑅) for the range monitoring; Double Sampling 

control chart for the joint monitoring of the process mean and standard-deviation (DS 𝑋̅ and 

𝑆); Double Sampling control chart based on the exponentially weighted moving average chart 

(DS EWMA); Double Sampling control chart for attribute monitoring (DS np and DS c); 

Double sampling chart based on Hotelling’s T²  chart (DS T²); Double Sampling control chart 

based on the sample generalized variance (DS |𝑆|); Double Sampling chart based on variable 

sampling interval (DS VSI-based); Double Sampling control chart based on multivariate 

multiple sampling (MMS); Double Sampling control charts for bivariate processes (BDS); 

Double Sampling control chart for monitoring the slope of linear profiles under (DS 𝐵̂1); 

Auxiliary information based DS control chart (AIB DS); Side-sensitive modified group runs 

double sampling (SSMGRDS); Gauge-based Double Sampling control chart (wYSYL–DS); 

Double sampling control chart based on process capability index 𝐶𝑝𝑚 (DS 𝐶𝑝𝑚); Distribution-

free Double Sampling control chart (Nonparametric DS); Double sampling control chart for 

Coefficient of variation monitoring (DS CV); Double sampling attribute control chart for 

monitoring processes characterized by classifying the product characteristic into three discrete 

levels (DS three-level); Double Sampling Adaptive Thresholding LASSO (DSATL); and the 

Double Sampling chart based on the synthetic chart (Synthetic DS), which integrates the 𝑋̅ 

and Conforming Run Length (CRL) charts. 
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Table 3 – Articles per DS control chart type 

Control charts Articles that do not consider measurement 

error 

Articles that consider 

measurement error 

DS 𝑋̅-based 

Croasdale (1974), Daudin (1992), Irianto and 

Shinozaki (1998), He, Grigoryan, and Sigh 

(2002), Hsu (2004), Claro, Costa, and Machado 

(2008), Costa and Claro (2008), Torng and Lee 

(2009a, 2009b), Torng et al. (2009), Irianto and 

Juliani (2010), Teoh et al. (2015, 2016), Iziy, 

Gildeh, and Monabbati (2017), Malela-majika, 

Motsepa, and Graham (2021), Khired, Aslam, 

and Dobbah (2021) 

Lee et al. (2019), Khee 

Yong Si et al. (2021), 

Maleki et al. (2023) 

DS 𝑆 
He and Grigoryan (2002, 2003), Hsu (2007), 

Lee and Khoo (2018a) 
- 

DS 𝑆2 
Khoo (2004), Castagliola, Oprime, and Khoo 

(2017) 
- 

DS R Costa (2017) - 

DS 𝑋̅ and 𝑆 He and Grigoryan (2006) - 

DS EWMA Yang and Wu (2017a, 2017b) - 

DS np 

De Araújo Rodrigues, Epprecht, and De 

Magalhães (2011), Chong, Khoo, and 

Castagliola (2014), Zhou et al. (2017), Chong et 

al. (2017), Muñoz, Campuzano, and Mosquera 

(2022), Tuh et al. (2022, 2023) 

- 

DS c 
Inghilleri, Lupo, and Passannanti (2015), 

Campuzano, Carrión, and Mosquera (2019) 
- 

DS T² 
Champ and Aparisi (2008), Faraz, Heuchenne, 

and Saniga (2012) 
- 

DS |𝑆| 
Grigoryan and He (2005), Lee and Khoo 

(2018b) 
- 

DS VSI-based 

Carot, Jabaloyes, and Carot (2002), Torng, 

Tseng, and Lee (2010), Lee, Chang, Torng 

(2012), Lee, Torng, Liao (2012), Torng, Chung, 

and Chen (2014), Noorossana, Shekary, and 

Deheshvar (2015), Joekes, Smrekar, and 

Barbosa (2015), Lee and Khoo (2017a), Katebi 

and Khoo (2021), Katebi and Moghadam (2022) 

- 

MMS He and Grigoryan (2005) - 

BDS 
Costa and Machado (2008), Machado and Costa 

(2008) 
- 

DS 𝐵̂1 
Eizi, Sadeghpour Gildeh, and Ehsan Monabbati 

(2020) 
- 

AIB DS Haq and Khoo (2018, 2019), Umar et al. (2020) - 

SSMGRDS Saha et al. (2018) - 

wYSYL–DS Mosquera and Aparisi (2020) - 

DS 𝐶𝑝𝑚 Tomohiro, Arizono, and Takemoto (2020) - 

Nonparametric 

DS 
Malela-Majika et al. (2021) - 

DS CV Lee et al. (2021) - 

DS three-level Katebi and Rahim (2022) - 

DSATL Salmasnia, Maleki, and Mirzaei (2023) - 

Synthetic DS 

Khoo et al. (2011, 2013a), Lee and Khoo 

(2017b), Woon (2017), You (2018), Malela-

Majika and Rapoo (2019) 

- 
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As can be seen from Table 3, only three articles have been focused on studying the 

effects of measurement errors on Double Sampling control charts, and all three have studied 

only the Double Sampling 𝑋̅ control chart. Due to the focus of this Thesis, the synthesis of the 

articles made in this chapter deals only with the articles developed on the effect of 

measurement error on Double Sampling control charts. For more details on the other studies, 

the reader can refer to the articles cited above and to the review on DS control charts 

developed by Motsepa et al. (2021). 

 

3.4. DS CONTROL CHARTS IN THE PRESENCE OF MEASUREMENT ERROR 

 

Since most process monitoring techniques are based on collecting and analyzing 

measurements from the studied process, and some amount of error will always be present in 

the measurements, several researchers have focused on studying the impact of measurement 

errors on control charts' performance (MALEKI; AMIRI; CASTAGLIOLA, 2017). 

Lee et al. (2019) investigated the effect of measurement error ratio, the effect of the 

B coefficient in the linear covariate error model, and the effect of multiple measurements on 

the performance of the DS 𝑋̅ chart. For the performance comparison, they consider that the 

control charts have the same in-control performance (i.e., 𝐴𝑅𝐿0 = 370 and 𝑛 = 5 or 10) and 

the control chart with the smaller out-of-control average run length (𝐴𝑅𝐿1) performs better. 

They compared the 𝐴𝑅𝐿1 in terms of different measurement error ratios  𝛾2= 0, 0.1, 0.5, and 

1. Where 𝛾2 is the ratio between the variance corresponding to the portion of error present in 

the measurement and the variance corresponding to the variability in the quality characteristic. 

By comparing the performance results, they found that the 𝐴𝑅𝐿1 values without considering 

the measurement errors are smaller than those with measurement errors and that the DS 𝑋̅  

control chart performs better with the smaller measurement error ratio. They also find that the 

negative effect of measurement errors on the performance of the DS 𝑋̅ control chart decreases 

with the increase of the value in 𝐵  and the value of with the increase in the number of 

samples. They finished the study with an illustrative example of a solar wafer manufacturing 

process, with the quality characteristic being maximum open-circuit voltage. This illustrative 

example showed that the out-of-control signal is detected for the case without measurement 

errors. In contrast, there is no out-of-control signal when measurement errors exist. Thus, they 

stated that in the presence of measurement errors, the DS 𝑋̅ chart is slower in detecting shifts 

in the process mean than the case without measurement errors. 
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Khee Yong Si et al. (2021) investigate the economic design of the DS 𝑋̅ chart with 

measurement errors by using the linear covariate error model. The optimal design parameters 

are proposed through the minimization of the cost function. They concluded that the 

measurement error ratio and coefficient 𝐵  in the linear covariate error model affect the 

sampling interval, the number of multiple measurements per item, the in-control average run 

length, and the expected cost per hour. They suggested that the negative effect of 

measurement errors can be economically reduced (i.e., the lower expected cost per hour) by a 

smaller measurement error ratio value or a larger 𝐵 value. 

Maleki et al. (2023) investigated the effect of measurement errors on the 

performance of the DS 𝑋̅ chart, with both constant and linearly increasing variance. They 

compared the performance of the DS 𝑋̅ chart and the classical 𝑋̅ chart regarding average run 

length (ARL) and standard deviation of run length (SDRL). They assumed that the 

measurement error component is a normal variable 𝑁(0, 𝜎𝜀
2). For the performance evaluation, 

they select three values for the variance of the error component, 𝜎𝜀
2= 0.1, 0.2, and 0.3. The 

control limits were selected such that 𝐴𝑅𝐿0 =370. The magnitude of mean shift was 

considered as δ ∈ {0, 0.25, 0.5, 0.75, 1, 1.5}, and the out-of-control average run length 

(𝐴𝑅𝐿1) values were computed based on 25000 simulations. As a result, they found that the 

DS 𝑋̅ chart outperforms the classical one in all out-of-control scenarios. They also stated that 

taking several measurements on each item can effectively reduce the undesired impact of the 

error on the chart’s performance. For future studies, they suggested simultaneous monitoring 

of the process mean and variability in the presence of measurement errors using the double 

sampling strategy. 

 

3.5. REVIEW FINAL CONSIDERATIONS 

 

The present review systematically collects studies on double sampling control charts. 

Its main aim is to assess the current state of the research topic and possible opportunities for 

future studies. From a total of 149 articles, 72 were selected by following the PRISMA 

methodology. The articles' analysis allowed the identification of the control charts employed 

in each case and the frequency of publications on each chart.  

As a result, the study contributes to the knowledge of the double sampling control 

chart scheme. The outcomes showed that there are still many opportunities to study the 

application of double sampling control charts since most of the articles focused on the 
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applying traditional control charts, such as Shewhart-based charts, and most consider that the 

data monitored is accurate. The articles on the effect of measurement errors on the DS charts 

were only carried out to monitor the process mean. Therefore, further studies are needed to 

investigate the effect of the errors on other control charts, such as the range, standard-

deviation, and variance monitoring. 

The review's main limitations are that it only considers articles written in Portuguese 

and English that are also indexed in Scopus, Engineering Village, SciELO, and Science Direct 

databases. A study covering other languages and other databases is encouraged.   
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4. DS S² CONTROL CHART DESIGN 

 

As far as we know and based on the literature review presented, no studies 

investigate the effects of measurement errors on the Double Sampling S² control chart. This 

chapter presents the Double Sampling 𝑆2 control chart in the presence of measurement error. 

 

4.1. DOUBLE SAMPLING S² CHART WITH MEASUREMENT ERROR 

 

Assume that when the process is in-control the quality characteristic of interest 𝑋  

can be described as a normal random variable with mean 𝜇 and variance 𝜎𝑝
2. As it is not 

possible to know the exact value of a measured variable, we consider the linear covariate 

model to express the measured values of the quality characteristic, as shown in Equation 37. 

 

Equation 37 

 

𝑌𝑖𝑗 = 𝐴 + 𝐵𝑋𝑖𝑗 + 𝜀𝑖𝑗 

 

where 𝐴 and 𝐵 are two constant values, with 𝐵 ≥ 1, and 𝜀𝑖𝑗  is the measurement error term 

which is assumed to be independent from 𝑋𝑖𝑗  and follow a normal distribution 𝑁(0, 𝜎𝑚
2). 𝑌𝑖𝑗 

and 𝑋𝑖𝑗 are, respectively, the observed and the true values for the 𝑗th observation of the 𝑖th 

sample. The measured quantity 𝑌 , is then distributed as normal with mean 𝐴 + 𝐵𝜇  and 

variance 𝐵2𝜎𝑝
2 + 𝜎𝑚

2, i.e.,  𝑌𝑖𝑗~𝑁(𝐴 + 𝐵𝜇, 𝐵2𝜎𝑝
2 + 𝜎𝑚

2). 

Given  𝑌 as the observed value of the quality characteristic, we will demonstrate that 

𝑆𝑌
2 is an unbiased estimator for the variance of 𝑌. Equation 38 and 39 show, respectively, the 

expected value and the variance of 𝑌. 

 

Equation 38 

𝐸[𝑌] = 𝐴 + 𝐵𝜇 

 

Equation 39 

𝑉[𝑌] = 𝐵2𝜎𝑝
2 + 𝜎𝑚

2 
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Knowing that the variance for a random variable is the expected value for the 

squared deviations, we will use the following auxiliary results in the demonstration: 

 

Equation 40 

𝑉[𝑌] = 𝐸[(𝑌 − (𝐴 + 𝐵𝜇))2] 

 

Rewriting Equation 40 considering the expected value of 𝑌,  we have: 

Equation 41 

 

𝑉[𝑌] = 𝐸[𝑌2] − (𝐸[𝑌])2 

 

 
Equation 42 

 

𝑉[𝑌] = 𝐸[𝑌2] − (𝐴 + 𝐵𝜇)2 

 

Rearranging the terms of Equation 42: 

 
Equation 43 

𝐸[𝑌2] = 𝑉[𝑌] + (𝐴 + 𝐵𝜇)2 

 

Substituting the variance of 𝑌 given by Equation 39, we have: 

 

 
Equation 44 

𝐸[𝑌2] = (𝐵2𝜎𝑝
2 + 𝜎𝑚

2) + (𝐴 + 𝐵𝜇)2 

 

 

Considering that the variance of the average value of 𝑌 can be written by Equations 

45 and 46: 

Equation 45 

𝑉[𝑌̅] = 𝐸[𝑌̅2] − (𝐸[𝑌̅])2 

 

Equation 46 

𝑉[𝑌̅] = 𝐸[𝑌̅2] − (𝐴 + 𝐵𝜇)2 
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We can find the expected value of the square of the mean value of 𝑌 as: 

 

Equation 47 

𝐸[𝑌̅2] = 𝑉[𝑌̅] + (𝐴 + 𝐵𝜇)2 

 
 

Considering the variance of the average value of 𝑌 can also be found by: 

 

Equation 48 

𝑉[𝑌̅] =
𝐵2𝜎𝑝

2 + 𝜎𝑚
2

𝑛
 

 

Substituting Equation 48 in Equation 47 we have: 

 
Equation 49 

𝐸[𝑌̅2] =
𝐵2𝜎𝑝

2 + 𝜎𝑚
2

𝑛
+ (𝐴 + 𝐵𝜇)2 

 

The above considerations assist in determining the expected value for the squared 

deviations around the population mean (ZIBETTI, [s.d.]).  

Thus, 

 

Equation 50 

𝐸 [∑(𝑌𝑗 − (𝐴 + 𝐵𝜇))2

𝑛

𝑗=1

] = ∑ 𝐸[(𝑌𝑗 − (𝐴 + 𝐵𝜇))2

𝑛

𝑗=1

] 

𝐸 [∑(𝑌𝑗 − (𝐴 + 𝐵𝜇))2

𝑛

𝑗=1

] = ∑ 𝐸[𝑌𝑗
2 − 2𝑌𝑗(𝐴 + 𝐵𝜇) + (𝐴 + 𝐵𝜇)2]

𝑛

𝑗=1

 

𝐸 [∑(𝑌𝑗 − (𝐴 + 𝐵𝜇))2

𝑛

𝑗=1

] = ∑ 𝐸[𝑌𝑗
2]

𝑛

𝑗=1

− 2(𝐴 + 𝐵𝜇) ∑ 𝐸[𝑌𝑗]

𝑛

𝑗=1

+ ∑ 𝐸[(𝐴 + 𝐵𝜇)2]

𝑛

𝑗=1

 

 

 

Making the substitutions considering the auxiliary results above, we have: 
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Equation 51 

 

∑ 𝐸[𝑌𝑗
2]

𝑛

𝑗=1

− 2(𝐴 + 𝐵𝜇) ∑ 𝐸[𝑌𝑗]

𝑛

𝑗=1

+ ∑ 𝐸[(𝐴 + 𝐵𝜇)2]

𝑛

𝑗=1

= 𝑛[(𝐵2𝜎𝑝
2 + 𝜎𝑚

2) + (𝐴 + 𝐵𝜇)2] − 2𝑛(𝐴 + 𝐵𝜇)2 + 𝑛(𝐴 + 𝐵𝜇)2 

 

 

So, we can rewrite Equation 50 as: 

Equation 52 

 

𝐸 [∑(𝑌𝑗 − (𝐴 + 𝐵𝜇))2

𝑛

𝑗=1

] = 𝑛[(𝐵2𝜎𝑝
2 + 𝜎𝑚

2) + (𝐴 + 𝐵𝜇)2] − 2𝑛(𝐴 + 𝐵𝜇)2 + 𝑛(𝐴 + 𝐵𝜇)2 

𝐸 [∑(𝑌𝑗 − (𝐴 + 𝐵𝜇))2

𝑛

𝑗=1

] = 𝑛(𝐵2𝜎𝑝
2 + 𝜎𝑚

2) + 𝑛(𝐴 + 𝐵𝜇)2 − 2𝑛(𝐴 + 𝐵𝜇)2 + 𝑛(𝐴 + 𝐵𝜇)2 

𝐸 [∑(𝑌𝑗 − (𝐴 + 𝐵𝜇))2

𝑛

𝑗=1

] = 𝑛(𝐵2𝜎𝑝
2 + 𝜎𝑚

2) 

Dividing Equation 52 by 𝑛, we have: 

Equation 53 

 

𝐸 [
∑ (𝑌𝑗 − (𝐴 + 𝐵𝜇))2𝑛

𝑗=1

𝑛
] = (𝐵2𝜎𝑝

2 + 𝜎𝑚
2) 

 

 

Using the sample mean 𝑌̅ as an estimator for the population mean, we have that: 

 

Equation 54 

𝑌̅ =
∑ 𝑌𝑗

𝑛
𝑗=1

𝑛
     ∴    ∑ 𝑌𝑗

𝑛

𝑗=1

= 𝑛𝑌̅ 

 

We also consider that: 
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Equation 55 

𝐸 [∑(𝑌𝑗 − 𝑌̅)2

𝑛

𝑗=1

] = ∑ 𝐸[𝑌𝑗
2 − 2𝑌𝑗𝑌̅ + 𝑌̅2]

𝑛

𝑗=1

 

𝐸 [∑(𝑌𝑗 − 𝑌̅)2

𝑛

𝑗=1

] = 𝐸 [∑ 𝑌𝑗
2

𝑛

𝑗=1

− 2𝑌̅ ∑ 𝑌𝑗

𝑛

𝑗=1

+ ∑ 𝑌̅2

𝑛

𝑗=1

] 

𝐸 [∑(𝑌𝑗 − 𝑌̅)2

𝑛

𝑗=1

] = 𝐸 [∑ 𝑌𝑗
2

𝑛

𝑗=1

− 2𝑌̅ ∑ 𝑌𝑗

𝑛

𝑗=1

+ 𝑛𝑌̅2] 

𝐸 [∑(𝑌𝑗 − 𝑌̅)2

𝑛

𝑗=1

] = 𝐸 [∑ 𝑌𝑗
2

𝑛

𝑗=1

− 2𝑌̅(𝑛𝑌̅) + 𝑛𝑌̅2] 

𝐸 [∑(𝑌𝑗 − 𝑌̅)2

𝑛

𝑗=1

] = 𝐸 [∑ 𝑌𝑗
2

𝑛

𝑗=1

− 𝑛𝑌̅2] 

 

Thus, we can rewrite equation 55 as: 

 

Equation 56 

𝐸𝐸 [∑(𝑌𝑗 − 𝑌̅)2

𝑛

𝑗=1

] = ∑ 𝐸[𝑌𝑗
2]

𝑛

𝑗=1

− 𝑛𝐸[𝑌̅2] 

 

 

Making the substitutions in Equation 56 considering the auxiliary results shown 

above, we have: 

Equation 57 

 

𝐸 [∑(𝑌𝑗 − 𝑌̅)2

𝑛

𝑗=1

] = 𝑛[(𝐵2𝜎𝑝
2 + 𝜎𝑚

2) + (𝐴 + 𝐵𝜇)2] − 𝑛 [
𝐵2𝜎𝑝

2 + 𝜎𝑚
2

𝑛
+ (𝐴 + 𝐵𝜇)2] 

𝐸 [∑(𝑌𝑗 − 𝑌̅)2

𝑛

𝑗=1

] = 𝑛(𝐵2𝜎𝑝
2 + 𝜎𝑚

2) + 𝑛(𝐴 + 𝐵𝜇)2 − (𝐵2𝜎𝑝
2 + 𝜎𝑚

2) − 𝑛(𝐴 + 𝐵𝜇)2 

𝐸 [∑(𝑌𝑗 − 𝑌̅)2

𝑛

𝑗=1

] = 𝑛(𝐵2𝜎𝑝
2 + 𝜎𝑚

2) − (𝐵2𝜎𝑝
2 + 𝜎𝑚

2) 
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Thus, Equation 57 can be rewritten as: 

Equation 58 

 

𝐸 [∑(𝑌𝑗 − 𝑌̅)2

𝑛

𝑗=1

] = (𝑛 − 1)(𝐵2𝜎𝑝
2 + 𝜎𝑚

2) 

 

Dividing Equation 58 by (𝑛 − 1), we have: 

 

Equation 59 

𝐸 [
∑ (𝑌𝑗 − 𝑌̅)2𝑛

𝑗=1

(𝑛 − 1)
] = 𝐵2𝜎𝑝

2 + 𝜎𝑚
2 

 

 

Therefore,  

Equation 60 

 

𝑆𝑌
2 =

∑ (𝑌𝑗 − 𝑌̅)2𝑛
𝑗=1

𝑛 − 1
 

 

 

is an unbiased estimator for the variance of 𝑌. 

For the Double Sampling 𝑆2 chart procedure, considering the measurement error, we 

first take a sample of size 𝑛1 and compute the sample variance as: 

 

Equation 61 

 

𝑆𝑌1
2 =

∑ (𝑌1𝑗 − 𝑌1̅)2𝑛1
𝑗=1

𝑛1 − 1
 

 

 

where 𝑆𝑌1
2 indicates that the sample variance was calculated for the observed values at the 

first stage (𝑌1𝑗) and  𝑌1̅ is the sample mean of these observed values.  
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There are three possibilities during the first stage. The first possibility is that 𝑆𝑌1
2 ≤

𝐿1, so the process is in-control (IC). The second possibility is that 𝑆𝑌1
2 > 𝐿2, so the process is 

considered out-of-control (OOC). The third possibility is that 𝐿1 < 𝑆𝑌1
2 ≤ 𝐿2. If it happens, a 

second sample of size 𝑛2 is taken, and the sample variance is computed as: 

 

 

 Equation 62 

𝑆𝑌2
2 =

∑ (𝑌2𝑗 − 𝑌2̅)2𝑛2
𝑗=1

𝑛2 − 1
 

 

 

where 𝑆𝑌2
2 indicates that the sample variance was calculated for the observed values at the 

second stage (𝑌2𝑗) and  𝑌2̅ is the sample mean for these observed values. Then, the pooled 

sample variance 𝑆𝑌𝑝
2 is computed as: 

 

 
 Equation 63 

𝑆𝑌𝑝
2 =

(𝑛1 − 1)𝑆𝑌1
2 + (𝑛2 − 1)𝑆𝑌2

2

𝑛1 + 𝑛2 − 2
 

 

 

Decisions at the second stage are based on 𝑆𝑌𝑝
2. There are two possibilities during 

the second stage. The first possibility is that 𝑆𝑌𝑝
2 ≤ 𝐿3, so the process is in-control (IC), and 

the second possibility is that 𝑆𝑌𝑝
2 > 𝐿3, so the process is considered out-of-control (OOC).   

Considering the presence of measurement error, it will be considered as control 

limits of the first stage: 

 
 Equation 64 

𝐿1 = 𝑘1(𝐵2𝜎𝑝
2 + 𝜎𝑚

2) 

 

and 

 Equation 65 

𝐿2 = 𝑘2(𝐵2𝜎𝑝
2 + 𝜎𝑚

2) 
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And as control limit of the second stage, we have: 

Equation 66 

 

 

𝐿3 = 𝑘3(𝐵2𝜎𝑝
2 + 𝜎𝑚

2) 

 

where 𝑘1, 𝑘2 and 𝑘3 are constants such that 0 < 𝑘1 < 𝑘2 and 𝑘3 ≥ 0, and the decisions are 

made based on the following intervals: 

• Ω1 = [0, 𝐿1] 

• Ω2 = (𝐿1, 𝐿2] 

• Ω3 = (𝐿2, ∞) 

• Ω4 = [0, 𝐿3] 

• Ω5 = (𝐿3, ∞) 

 

Figure 9 shows an example of the DS 𝑆2  control chart, where we can see the 

decision-making areas between the control limits. In Figure 9, the stages are represented in 

separate charts, where the chart in Figure 9 (a) represents Stage 1, and the chart in Figure 9 

(b) represents Stage 2. It can be noted that, in this example, most of the points fell within the 

interval Ω1 . Also, it can be observed that when a point falls in the interval Ω2 , it is 

automatically plotted in the interval Ω4. This scheme continues until a point fall in the interval 

Ω5, as shown in Figure 9 (b). 

Plotting both stages on a single control chart may be preferred for practical use. 

Figure 10 shows a DS 𝑆2 control chart with both stages represented in the same chart. In this 

case, the green and red lines represent the Stage 1 control limits, and the black dashed line 

represents the Stage 2 control limit. A black dot is plotted when a value falls between the 

green and red lines, representing 𝐿1 and 𝐿2, respectively. 

In the example of Figure 9, an out-of-control value was identified in the second 

stage. However, in an alternative scenario, an out-of-control situation could have been found 

even in the first stage if the value was greater than 𝐿2, as shown in the example of Figure 10. 
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Figure 9 – DS S² chart simulation example for stages in separate charts 

 

 

 

Figure 10 – DS S² chart simulation example for both stages in the same chart 

 

 

4.2. SIMULATION STUDY FOR THE DS S² CONTROL CHART IN THE 

PRESENCE OF MEASUREMENT ERROR 

 

This section shows a simulation study to evaluate the effects of measurement errors 

on the DS 𝑆2 control chart. The DS 𝑆2 control chart is analyzed via the run-length distribution 

and the average sample size. Computational simulations were made with the statistical 

language programming R. Figure 11 shows the simulation flowchart. 

According to Chakraborti and Graham (2019), raising the simulation size sufficiently 

can reduce the inaccuracy of a run-length characteristic. Table 4 shows the ARL value and 

time of simulation for different simulation amounts.  

(a) (b) 



64 

 

 

Figure 11 – Simulation flowchart 
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Table 4 – Impact of the number of simulations 

Simulation 

 characteristics 

Simulation 

quantity 
ARL SDRL Simulation 

 time (s) 
 

S² chart 

δ=1 

n = 5 

𝐴𝑅𝐿0 = 200 
  

10 160.70 210.36 0.42  

100 192.12 202.87 3.33  

1000 198.37 200.47 27.94  

10000 202.52 201.27 395.56  

100000 203.34 204.49 3065.91  

 

In this work, we use 10,000 simulations. This choice was due to the average 

simulation time. It is worth noting that this time may vary due to the limitations of the 

computer used. A laptop with Windows 10 operating system, 8 GB RAM, and Intel Core i7 

8th Gen processor was used. 

The first step to the simulation study was choose DS 𝑆2 control chart parameters. 

Based on the work of Khoo (2004), we initially set the parameters of DS 𝑆2 chart as 𝑛1 = 3, 

𝑛2  = 6, 𝐿1  = 3.5, 𝐿2 = 5.75, and 𝐿3  = 2.7, chosen by Khoo (2004) for comparison with a 

traditional 𝑆2 chart for the condition of n = 5 and 𝐴𝑅𝐿0 = 200.  

In the study, 10.000 in-control observations are generated from a normal distribution, 

𝑁(𝜇, 𝜎𝑝
2), 𝜇  = 0 and 𝜎𝑝

2= 1. The error term is considered a normal distributed variable, 

𝑁(0, 𝜎𝑚
2). To generate the out-of-control samples, we consider 𝜎𝑝

′ = 𝛿𝜎𝑝, where 𝛿 denotes 

the shift magnitude. The DS 𝑆2 control chart with and without the influence of measurement 

error is evaluated for 𝛿 ∈ {1.0, 1.1, 1.5} and 𝜎𝑚 ∈ {0, 0.1, 0.3, 0.5, 1.0, 1.5}. Table 5 presents 

the simulation results of the DS S² control chart’s evaluation in the presence of measurement 

error for fixed limits and 𝛿 = 1.0.  

 

Table 5 – DS S² control chart’s evaluation (δ=1.0) 

 
δ 

 
𝜎𝑚 

 DS 𝑆2  

   ARL ASS  

 

1.0 

 0  202.96 3.19  

  0.1  188.31 3.19  

  0.3  118.62 3.25  

  0.5  57.22 3.37  

  1.0  9.33 3.76  

  1.5  3.09 3.21  



66 

 

 

From Table 5 we can see that the ARL value decreases as the magnitude of the  

𝜎𝑚 increases. Considering that for an in-control process, the higher the ARL value the better, 

this result indicates that the performance of the DS 𝑆2 chart is reduced as the measurement 

error increases. Appendix B presents some RL distribution results. 

Figures 12 to 17 show some DS 𝑆2 control charts simulation results for δ=1.0 and 

𝜎𝑚= (0, 0.1, 0.3, 0.5, 1.0, 1.5), respectively. Through the plotted control charts, the impact of 

the measurement error on the number of plotted points can be verified. The increase in the use 

of the second stage of the DS 𝑆2 control chart can also be noted as the measurement error 

increases. 

 

Figure 12 – DS S² control chart for δ=1.0 and 𝜎𝑚= 0 

 

 

Figure 13 – DS S² control chart for δ=1.0 and 𝜎𝑚= 0.1 
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Figure 14 – DS S² control chart for δ=1.0 and 𝜎𝑚= 0.3 

 

Figure 15 – DS S² control chart for δ=1.0 and 𝜎𝑚= 0.5 

  

 

Figure 16 – DS S² control chart for δ=1.0 and 𝜎𝑚= 1.0 
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Figure 17 – DS S² control chart for δ=1.0 and 𝜎𝑚= 1.5 

 

Table 6 shows the DS 𝑆2 control chart’s evaluation considering δ =1.1,  𝑛1 = 3, 𝑛2 = 

6, 𝐿1 = 3.5, 𝐿2 = 5.75, and 𝐿3 = 2.7. 

 

Table 6 – DS S² control chart’s evaluation (δ=1.1) 

 
δ 

 
𝜎𝑚 

 DS 𝑆2  

   ARL ASS  

 

1.1 

 0  69.51 3.33  

  0.1  64.31 3.36  

  0.3  48.69 3.40  

  0.5  28.50 3.51  

  1.0  7.30 3.80  

  1.5  2.75 3.90  

 

From Table 6, we can see that the ARL values decrease compared to the values in 

Table 5, indicating its detection ability. It can be seen that the presence of the measurement 

error can mask the chart’s performance since, for the same shift value, it presents a 

considerable difference for the ARL as the measurement error increases. In addition, the 

average sample size increases as the error magnitude increases. This sample size increase may 

indicate that, in the presence of measurement error, the DS 𝑆2  chart consults the chart's 

second stage more often before indicating that the process is out-of-control. 

Figures 18 to 23 show some DS 𝑆2 control charts simulation results for δ=1.1 and 

𝜎𝑚= (0, 0.1, 0.3, 0.5, 1.0, 1.5), respectively.  
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Figure 18 – DS S² control chart for δ=1.1 and 𝜎𝑚= 0 

 

Figure 19 – DS S² control chart for δ=1.1 and 𝜎𝑚= 0.1 

 

Figure 20 – DS S² control chart for δ=1.1 and 𝜎𝑚= 0.3 
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Figure 21 – DS S² control chart for δ=1.1 and 𝜎𝑚= 0.5 

 

Figure 22 – DS S² control chart for δ=1.1 and 𝜎𝑚= 1.0 

 

Figure 23 – DS S² control chart for δ=1.1 and 𝜎𝑚= 1.5 
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Table 7 shows the DS 𝑆2 control chart’s evaluation considering δ =1.5,  𝑛1 = 3, 𝑛2 = 

6, 𝐿1 = 3.5, 𝐿2 = 5.75, and 𝐿3 = 2.7. 

 

Table 7 – DS S² control chart’s evaluation (δ=1.5) 

 
δ 

 
𝜎𝑚 

 DS 𝑆2   

   ARL ASS   

 

1.5 

 0  7.23 3.82   

  0.1  6.77 3.81   

  0.3  6.20 3.83   

  0.5  5.30 3.86   

  1.0  3.03 3.91   

  1.5  1.78 3.94   

 

 

Comparing results in Tables 6 and 7 we can see that the measurement error has a 

greater impact on the ARL value for δ =1.1 than for δ =1.5. However, the average sample size 

values are larger for δ =1.5. than for δ =1.1 for all 𝜎𝑚 values. Figures 24 to 29 show some DS 

𝑆2 control charts simulation results for δ=1.5 and 𝜎𝑚= (0, 0.1, 0.3, 0.5, 1.0, 1.5), respectively.  

 

Figure 24 – DS S² control chart for δ=1.5 and 𝜎𝑚= 0 
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Figure 25 – DS S² control chart for δ=1.5 and 𝜎𝑚= 0.1 

 

Figure 26 – DS S² control chart for δ=1.5 and 𝜎𝑚= 0.3 

 

Figure 27 – DS S² control chart for δ=1.5 and 𝜎𝑚= 0.5 
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Figure 28 – DS S² control chart for δ=1.5 and 𝜎𝑚= 1.0 

 

 

Figure 29 – DS S² control chart for δ=1.5 and 𝜎𝑚= 1.5 

 

 

Figure 30 presents the ARL percentage difference in relation to the condition without 

the measurement error 𝜎𝑚 = 0. Results in Figure 30 demonstrate the effect of measurement 

errors on the DS 𝑆2  control chart performance. We can notice that the greater the 

measurement error, the greater the percentage difference in the ARL value in relation to the 

condition without the presence of the measurement error. We can also notice that this 

percentage difference is greater for the δ=1.0 and δ=1.1. Considering that most processes are 

expected to operate under control conditions or with low shifts, the effect of measurement 

error is even greater in this condition. 
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Figure 30 – ARL percentage difference for 𝛿 ∈ {1.0, 1.1, 1.5, 2.0} and 𝜎𝑚 ∈
{0.1, 0.3, 0.5, 1.0, 1.5}   

 

 

It is worth mentioning that for the evaluations presented in Tables 5, 6, and 7 the 

parameters 𝑛1, 𝑛2,  𝐿1, 𝐿2, and 𝐿3, necessary to use the DS 𝑆2 control chart, were chosen by 

Khoo (2004) considering the following conditions: 𝐿2 must be higher than the upper control 

limit of a classical 𝑆2 chart; 𝐿1 , must be lower than the classical upper control limit of a 

classical 𝑆2 chart; and the ratio between 𝑛2 and 𝑛1 is about 𝑛2 = 2𝑛1 or 𝑛2= 3𝑛1. As a result, 

different settings for the same parameters may result in different performance outcomes.  

Table 8 shows the ARL and ASS results obtained by changing some of the control 

chart parameters. The first comparison is made by changing only the 𝑛2 value from 6 (Setting 

1) to 4 (Setting 2). For this change, it is observed that the control chart's performance decrease 

in terms of ARL when the process is under control (δ=1) but gains detection ability in the case 

of δ=1.1. It is observed that the difference in the chart's ARLs of Setting 1 to that of Setting 2 

diminishes for measurement errors of greater magnitude (𝜎𝑚=1.0 and 𝜎𝑚=1.5). 

In the last columns of Table 8, we have Setting 3, in which there is a change in 𝑛2 

value to 5 and in the 𝐿2 limit to 6. With the Setting 3, we can observe that the ARL values are 

better than for the Setting 1 for δ=1.1 without experiencing a substantial decline in 

performance in the case where δ=1. 
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Table 8 – DS S² control chart’s evaluation on different simulation settings 

     Setting 1  Setting 2  Setting 3  

 
δ 

 
𝜎𝑚 

 
𝑛1, 𝑛2, 𝐿1, 𝐿2, 𝐿3 

3, 6, 3.5, 5.75, 2.7 

 𝑛1, 𝑛2, 𝐿1, 𝐿2, 𝐿3 

3, 4, 3.5, 5.75, 2.7 

 𝑛1, 𝑛2, 𝐿1, 𝐿2, 𝐿3 

3, 5, 3.5, 6, 2.7 

 

   ARL ASS ARL ASS  ARL ASS  

 

1.0 

 0  202.95 3.19  121.76 3.15  179.91 3.18  

  0.1  188.31 3.20  115.20 3.16  165.45 3.19  

  0.3  118.62 3.25  77.42 3.21  107.82 3.23  

  0.5  57.22 3.37  41.45 3.28  52.28 3.34  

  1.0  9.33 3.76  8.62 3.52  9.46 3.69  

  1.5  3.09 3.21  3.00 3.61  3.11 3.80  

 

1.1 

 0  69.51 3.33  48.12 3.26  61.84 3.32  

  0.1  64.32 3.36  46.58 3.27  59.39 3.32  

  0.3  48.69 3.40  34.64 3.31  43.97 3.38  

  0.5  28.50 3.51  22.29 3.38  26.46 3.47  

  1.0  7.30 3.80  6.51 3.56  7.16 3.74  

  1.5  2.75 3.90  2.78 3.59  2.78 3.79  

 

Table 9 adds to the results presented in Table 8 the values found for the ARL of the 

traditional 𝑆2 control chart for  𝛿 ∈ {1.0, 1.1} and 𝜎𝑚 ∈ {0, 0.1, 0.3, 0.5, 1.0, 1.5}. From Table 

9, comparing the results of the “Setting 1” DS 𝑆2 chart with those of the traditional 𝑆2 chart, 

it is observed that the ARL values found for DS 𝑆2 chart are better for 𝛿 = 1. However, the 

"Setting 1” DS 𝑆2 chart presented worse ARL values for 𝛿 = 1.1  than the 𝑆2 chart. 

Comparing the results for the "Setting 2” DS 𝑆2 chart the ARL results for 𝛿 = 1.1  

are better than for the traditional chart. However, in this case, there is a significant 

performance loss compared to the traditional control chart for 𝛿 = 1.  

Regarding "Setting 3” DS 𝑆2 chart, the ARL results are better than the traditional 

chart 𝛿 = 1.1  for lower measurement error and worse for higher measurement error values 

(𝜎𝑚=0.5 to 𝜎𝑚=1.5). However, the "Setting 3” chart performed better for larger error values 

than the 𝑆2 chart for 𝛿 = 1. It is worth mentioning that the average sample size for all DS 

chart settings was less than 4, while the traditional chart worked with 𝑛 = 5. 
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Table 9 – S² control chart and DS S² control chart’s evaluation on different simulation settings 

     Setting 1  Setting 2  Setting 3  𝑆2 chart  

 
δ 

 
𝜎𝑚 

 

𝑛1, 𝑛2, 𝐿1, 𝐿2, 

𝐿3 

3, 6, 3.5, 5.75, 

2.7 

 𝑛1, 𝑛2, 𝐿1, 𝐿2, 

𝐿3 

3, 4, 3.5, 5.75, 

2.7 

 𝑛1, 𝑛2, 𝐿1, 𝐿2, 𝐿3 

3, 5, 3.5, 6, 2.7 

 

𝑛, 𝐴𝑅𝐿0 

5, 200 

 

   ARL ASS ARL ASS  ARL ASS  ARL  

 

1.0 

 0  202.96 3.19  121.76 3.16  179.91 3.18  201.20  

  0.1  188.31 3.20  115.19 3.16  165.46 3.19  189.18  

  0.3  118.62 3.25  77.42 3.21  107.82 3.23  115.28  

  0.5  57.21 3.37  41.45 3.28  52.28 3.34  53.32  

  1.0  9.33 3.76  8.62 3.52  9.47 3.69  7.59  

  1.5  3.09 3.21  3.00 3.61  3.11 3.80  1.96  

 

1.1 

 0  69.51 3.33  48.12 3.26  61.85 3.32  66.55  

  0.1  64.31 3.36  46.58 3.27  59.39 3.32  59.68  

  0.3  48.68 3.40  34.64 3.31  43.97 3.38  45.14  

  0.5  28.50 3.51  22.29 3.38  26.46 3.47  25.19  

  1.0  7.29 3.80  6.51 3.56  7.16 3.74  5.61  

  1.5  2.75 3.90  2.78 3.59  2.78 3.78  1.71  

 

Figures 31 and 32 show the ARL percentage difference for the 𝑆2 control chart and 

the DS 𝑆2 control (Setting 1, Setting 2, and Setting 3), for  𝛿 = 1 and 𝛿 = 1.1, respectively. 

 

Figure 31 – ARL percentage difference for DS S² control chart and S² chart (𝛿 = 1) 
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Figure 32 – ARL percentage difference for DS S² control chart and S² chart (𝛿 = 1.1) 

 

 

The ARL percentage differences presented in Figures 31 and 32 represent the effects 

of measurement errors on the ARL values. The percentage difference is calculated by 

comparing the ARL results to those without measurement errors (𝜎𝑚=0). It is observed that 

the DS 𝑆2 control chart was more robust to the presence of measurement errors, showing a 

smaller percentage difference for almost all magnitudes of error, both for 𝛿 = 1 and 𝛿 = 1.1.  

The difference between the impact of measurement errors on ARL values is even 

greater when comparing the results from 𝑆2  chart with those from the “Setting 2 DS 𝑆2 

chart”. 

The results in Tables 8 and 9 and Figures 31 and 32 highlight that the DS 𝑆2 chart’s 

ARL varies considerably depending on the parameters used. Thus, investigations that 

optimize the charts’ parameters are necessary to improve the DS 𝑆2  chart application.  
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5. DOUBLE SAMPLING S² CONTROL CHART OPTIMIZATION 

 

The optimization process proposed in this chapter is based on the work of 

Castagliola, Oprime, and Khoo (2017), He and Grigoryan (2002), Khoo (2004), and Torng 

and Lee (2009b).  

Suppose that the process monitored is an in-control state, but 𝑆𝑌1
2 > 𝐿2 or 𝑆𝑌𝑝

2 > 𝐿3. 

So, it will be concluded that a Type I error occurred. Its probability can be calculated by 

Equation 67. 

Equation 67 

 

𝛼 = 𝑃𝑟(𝑆𝑌1
2 > 𝐿2) + 𝑃𝑟 (𝐿1 < 𝑆𝑌1

2 ≤ 𝐿2) × 𝑃𝑟 (𝑆𝑌𝑝
2 > 𝐿3) 

 

 

Starting by analyzing the first term of Equation 67, considering that  

(𝑛1−1)𝑆𝑌1
2

𝐵2𝜎𝑝
2+𝜎𝑚

2 ~𝜒(𝑛1−1)
2   (demonstration in Appendix A), we have that: 

 

Equation 68 

 

Pr(𝑆𝑌1
2 > 𝐿2) = 1 − 𝑃𝑟(𝑆𝑌1

2 ≤ 𝐿2) 

Pr(𝑆𝑌1
2 > 𝐿2) = 1 − 𝑃𝑟(𝑆𝑌1

2 ≤ 𝐿2) = 1 − 𝑃𝑟 ((
𝑛1 − 1

𝐵2𝜎𝑝
2 + 𝜎𝑚

2
) 𝑆𝑌1

2 ≤ (
𝑛1 − 1

𝐵2𝜎𝑝
2 + 𝜎𝑚

2
) 𝐿2)

= 1 − 𝐹𝑛1−1 [(
𝑛1 − 1

𝐵2𝜎𝑝
2 + 𝜎𝑚

2
) 𝐿2] = 1 − 𝐹𝑛1−1[(𝑛1 − 1)𝑘2] 

 

where 𝐹𝑛1−1[. ] is the chi-square distribution function with 𝑛1 − 1 degrees of freedom. 

 

Now, analyzing the second term of Equation 67:  

Equation 69 

 
 

𝑃𝑟 (𝐿1 < 𝑆𝑌1
2 ≤ 𝐿2) × 𝑃𝑟 (𝑆𝑌𝑝

2 > 𝐿3) = 𝑃𝑟 (𝐿1 < 𝑆𝑌1
2 ≤ 𝐿2) × [1 − 𝑃𝑟 (𝑆𝑌𝑝

2 ≤ 𝐿3)] 
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Thus, 

Equation 70 

 

𝑃𝑟 (𝐿1 < 𝑆𝑌1
2 ≤ 𝐿2) × [1 − 𝑃𝑟 (𝑆𝑌𝑝

2 ≤ 𝐿3)] = ∫ [1 − 𝑃𝑟 (𝑆𝑌𝑝
2 ≤ 𝐿3|𝑆𝑌1

2 = 𝑧)]𝑓(𝑧) 𝑑𝑧
Ω2

∗
 

 

where 𝑓(. ) is the probability density function of 𝑆𝑌1
2  and Ω2

∗  = ((𝑛1 − 1)𝑘1, (𝑛1 − 1)𝑘2]. 

The derivation of Ω2
∗ can be seen in Appendix C. 

First, we must find 𝑃𝑟(𝑆𝑌𝑝
2 ≤ 𝐿3|𝑆𝑌1

2 = 𝑧). Since 𝑆𝑌1
2 and 𝑆𝑌2

2 are independent, we 

have that: 

 

Equation 71 

𝑃𝑟(𝑆𝑌𝑝
2 ≤ 𝐿3) = 𝑃𝑟 [

(𝑛1 − 1)𝑆𝑌1
2 + (𝑛2 − 1)𝑆𝑌2

2

𝑛1 + 𝑛2 − 2
≤ 𝐿3]

= 𝑃𝑟[(𝑛1 − 1)𝑆𝑌1
2 + (𝑛2 − 1)𝑆𝑌2

2 ≤ (𝑛1 + 𝑛2 − 2)𝐿3] 

 

 

Given 𝑆𝑌1
2 = 𝑧, so 

Equation 72 

𝑃𝑟(𝑆𝑌𝑝
2 ≤ 𝐿3|𝑆𝑌1

2 = 𝑧) = 𝑃𝑟[(𝑛2 − 1)𝑆𝑌2
2 ≤ (𝑛1 + 𝑛2 − 2)𝐿3 − (𝑛1 − 1)𝑧] 

𝑃𝑟(𝑆𝑌𝑝
2 ≤ 𝐿3|𝑆𝑌1

2 = 𝑧) = 𝑃𝑟 [
(𝑛2 − 1)𝑆𝑌2

2

𝐵2𝜎𝑝
2 + 𝜎𝑚

2
≤

(𝑛1 + 𝑛2 − 2)𝐿3 − (𝑛1 − 1)𝑧

𝐵2𝜎𝑝
2 + 𝜎𝑚

2
] 

𝑃𝑟(𝑆𝑌𝑝
2 ≤ 𝐿3|𝑆𝑌1

2 = 𝑧) = 𝐹𝑛2−1 [
(𝑛1 + 𝑛2 − 2)𝐿3 − (𝑛1 − 1)𝑧

𝐵2𝜎𝑝
2 + 𝜎𝑚

2
] 

𝑃𝑟(𝑆𝑌𝑝
2 ≤ 𝐿3|𝑆𝑌1

2 = 𝑧) = 𝐹𝑛2−1 [(𝑛1 + 𝑛2 − 2)𝑘3 −
(𝑛1 − 1)𝑧

𝐵2𝜎𝑝
2 + 𝜎𝑚

2
] 

 

where 𝐹𝑛2−1(. ) is the chi-square distribution function with 𝑛2 − 1 degrees of freedom. 

Thus, naming Equation 70 as 𝑃𝑎2, give us: 

 



80 

 

 

Equation 73 

 

𝑃𝑎2 = ∫ {1 − 𝐹𝑛2−1 [(𝑛1 + 𝑛2 − 2)𝑘3 −
(𝑛1 − 1)𝑧

𝐵2𝜎𝑝
2 + 𝜎𝑚

2
]} 𝑓(𝑧) 𝑑𝑧

Ω2
∗

 

 

Then, considering the density function of a continuous random variable that follows 

a chi-square distribution, we get: 

 

Equation 74 

 

𝑃𝑎2 = ∫ [1 − ∫
1

Γ (
𝑛2 − 1

2 )
(

1

2
)

(
𝑛2−1

2
)

𝑡(
𝑛2−1

2
)−1𝑒−

𝑡
2 𝑑𝑡

[(𝑛1+𝑛2−2)𝑘3−
(𝑛1−1)𝑧

𝐵2𝜎𝑝
2+𝜎𝑚

2]

0

] 𝑓(𝑧) 𝑑𝑧
Ω2

∗
 

 

 

To find 𝑓(𝑧), we consider that 𝑄 is a random variable, so that 

 

Equation 75 

𝑄 =
(𝑛1 − 1)𝑆𝑌1

2

𝐵2𝜎𝑝
2 + 𝜎𝑚

2
~𝜒(𝑛1−1)

2  

 

where 𝑄  follows a chi-square distribution with (𝑛1 − 1) degrees of freedom and density 

function ℎ(𝑞), so: 

 

Equation 76 

ℎ(𝑞) =
1

Γ (
𝑛1 − 1

2 )
(

1

2
)

(
𝑛1−1

2
)

𝑞(
𝑛1−1

2
)−1𝑒−

𝑞
2 

 

 

Besides, we consider that 

 

Equation 77 

𝑆𝑌1
2 = 𝑔(𝑞) =

(𝐵2𝜎𝑝
2 + 𝜎𝑚

2)𝑄

(𝑛1 − 1)
 

 

So, given that 𝑆𝑌1
2 = 𝑧, we get 
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Equation 78 

 

𝑄 = 𝑔−1(𝑆𝑌1
2) = 𝑔−1(𝑧) =

(𝑛1 − 1)𝑧

𝐵2𝜎𝑝
2 + 𝜎𝑚

2
 

 

We can use the Jacobian transformation for determining the density function of a 

random variable that is a function of another random variable with known probability 

distribution. Knowing that 𝑄 is a random variable that follows a chi-square distribution with 

density function ℎ(𝑞), and 𝑆𝑌1
2 = 𝑧 = 𝑔(𝑞), so: 

 

Equation 79 

 

𝑓(𝑧) = 𝑓(𝑆𝑌1
2 = 𝑧) = ℎ[𝑔−1(𝑧)] |

𝑑

𝑑𝑧
𝑔−1(𝑧)| = ℎ [

(𝑛1 − 1)𝑧

𝐵2𝜎𝑝
2 + 𝜎𝑚

2
] |

𝑑

𝑑𝑧

(𝑛1 − 1)𝑧

𝐵2𝜎𝑝
2 + 𝜎𝑚

2
| 

 

 

So, considering ℎ(. ) given by Equation 76, we have 

 

Equation 80 

 

𝑓(𝑧) =
1

Γ (
𝑛1 − 1

2 )
(

1

2
)

(
𝑛1−1

2
)

(
(𝑛1 − 1)𝑧

𝐵2𝜎𝑝
2 + 𝜎𝑚

2
)

(
𝑛1−1

2
)−1

𝑒
−

1
2

(
(𝑛1−1)𝑧

𝐵2𝜎𝑝
2+𝜎𝑚

2)
(

(𝑛1 − 1)

𝐵2𝜎𝑝
2 + 𝜎𝑚

2
) 

 

Therefore, 

Equation 81 

 

𝑃𝑎2

= ∫ {[1 − ∫
1

Γ (
𝑛2 − 1

2 )
(

1

2
)

(
𝑛2−1

2
)

𝑡
(

𝑛2−1
2

)−1
𝑒−

𝑡
2 𝑑𝑡

[(𝑛1+𝑛2−2)𝑘3−
(𝑛1−1)𝑧

𝐵2𝜎𝑝
2+𝜎𝑚

2]

0

]
Ω2

∗

×
1

Γ (
𝑛1 − 1

2 )
(

1

2
)

(
𝑛1−1

2
)

(
(𝑛1 − 1)

𝐵2𝜎𝑝
2 + 𝜎𝑚

2
)

(
𝑛1−1

2
)−1

𝑧(
𝑛1−1

2
)−1𝑒

−
1
2

(
(𝑛1−1)𝑧

𝐵2𝜎𝑝
2+𝜎𝑚

2)
(

(𝑛1 − 1)

𝐵2𝜎𝑝
2 + 𝜎𝑚

2
)} 𝑑𝑧 

 

 

Thus, from Equation 67, Equation 68, and Equation 81 we have that 
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Equation 82 

 

𝛼

= 1 − 𝐹𝑛1−1[(𝑛1 − 1)𝑘2]

+ ∫ {[1 − ∫
1

Γ (
𝑛2 − 1

2 )
(

1

2
)

(
𝑛2−1

2
)

𝑡(
𝑛2−1

2
)−1𝑒−

𝑡
2 𝑑𝑡

[(𝑛1+𝑛2−2)𝑘3−
(𝑛1−1)𝑧

𝐵2𝜎𝑝
2+𝜎𝑚

2]

0

]
Ω2

∗

×
1

Γ (
𝑛1 − 1

2 )
(

1

2
)

(
𝑛1−1

2
)

(
(𝑛1 − 1)

𝐵2𝜎𝑝
2 + 𝜎𝑚

2
)

(
𝑛1−1

2
)−1

𝑧(
𝑛1−1

2
)−1𝑒

−
1
2

(
(𝑛1−1)𝑧

𝐵2𝜎𝑝
2+𝜎𝑚

2)
(

(𝑛1 − 1)

𝐵2𝜎𝑝
2 + 𝜎𝑚

2
)} 𝑑𝑧 

 

Simplifying Equation 82, we get: 

 

Equation 83 

𝛼

= 1 − 𝐹𝑛1−1[(𝑛1 − 1)𝑘2]

+ 𝑐1 ∫ {[1 − 𝑐2 ∫ 𝑡(
𝑛2−1

2
)−1𝑒−

𝑡
2 𝑑𝑡

[(𝑛1+𝑛2−2)𝑘3−
(𝑛1−1)𝑧

𝐵2𝜎𝑝
2+𝜎𝑚

2]

0

] 𝑧(
𝑛1−1

2
)−1𝑒

−
1
2

(
(𝑛1−1)𝑧

𝐵2𝜎𝑝
2+𝜎𝑚

2)
} 𝑑𝑧

Ω2
∗

 

 

 

where 𝑐1 and 𝑐2 are given by Equations 84 and 85. 

Equation 84 

  

𝑐1 =
1

Γ (
𝑛1 − 1

2 )
(

1

2
)

(
𝑛1−1

2
)

(
(𝑛1 − 1)

𝐵2𝜎𝑝
2 + 𝜎𝑚

2
)

(
𝑛1−1

2
)

 

 

Equation 85 

 

𝑐2 =
1

Γ (
𝑛2 − 1

2 )
(

1

2
)

(
𝑛2−1

2
)

 

 

In case of the process is out-of-control, we consider that the process shifts to a 

certain value 𝜎𝑝
′ = 𝛿𝜎𝑝, where 𝛿 denotes the shift magnitude. Supposing that the process is 
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out-of-control, but 𝑆𝑌1
2 ≤ 𝐿1 or 𝑆𝑌𝑝

2 ≤ 𝐿3, it will be concluded that a Type II error occurred, 

and its probability can be calculated by 

 

Equation 86 

 

𝛽𝛿 = 𝑃𝑟(𝑆𝑌1
2 ≤ 𝐿1) + 𝑃𝑟 (𝐿1 < 𝑆𝑌1

2 ≤ 𝐿2) × 𝑃𝑟 (𝑆𝑌𝑝
2 ≤ 𝐿3) 

 

 

Similar to what was demonstrated before, but now considering that the process is 

out-of-control, we get: 

Equation 87 

 

𝛽𝛿 = 𝐹𝑛1−1 [
(𝑛1 − 1)𝑘1(𝐵2𝜎𝑝

2 + 𝜎𝑚
2)

𝐵2𝛿2𝜎𝑝
2 + 𝜎𝑚

2
]

+ 𝑐3 ∫ {[𝑐2 ∫ 𝑡(
𝑛2−1

2
)−1𝑒−

𝑡
2 𝑑𝑡

[
(𝑛1+𝑛2−2)(𝐵2𝜎𝑝

2+𝜎𝑚
2)𝑘3−(𝑛1−1)𝑧

𝐵2𝛿2𝜎𝑝
2+𝜎𝑚

2 ]

0

]
Ω2

∗∗

× 𝑧(
𝑛1−1

2
)−1𝑒

−
1
2

(
(𝑛1−1)𝑧

𝐵2𝛿2𝜎𝑝
2+𝜎𝑚

2)
} 𝑑𝑧 

 

where Ω2
∗∗ = (

(𝑛1−1)𝑘1(𝐵2𝜎𝑝
2+𝜎𝑚

2)

𝐵2𝛿2𝜎𝑝
2+𝜎𝑚

2
,

(𝑛1−1)𝑘2(𝐵2𝜎𝑝
2+𝜎𝑚

2)

𝐵2𝛿2𝜎𝑝
2+𝜎𝑚

2
). The derivation of Ω2

∗∗ can be seen 

in Appendix C. And 𝑐3 is given by Equation 88. 

 

Equation 88 

 

𝑐3 =
1

Γ (
𝑛1 − 1

2 )
(

1

2
)

(
𝑛1−1

2
)

(
(𝑛1 − 1)

𝐵2𝛿2𝜎𝑝
2 + 𝜎𝑚

2
)

(
𝑛1−1

2
)

 

 

 

As seen in the analysis in Chapter 4, the DS 𝑆2 control chart’s performance will 

depend on the values chosen for its parameters. Thus, it is necessary to use mechanisms that 

seek to optimize these parameters for different scenarios. Optimal design of the DS 𝑆2 control 
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chart involves determining the following parameters: sample size of the first stage (𝑛1 ), 

sample size of the second stage (𝑛2), the limits 𝐿1 and 𝐿2 on the first stage, and the limit 𝐿3 on 

the second stage. To find these parameters, we consider the design as an optimization 

problem.  

For the purpose of optimization, we want to minimize the average sample size. As 

pointed out by Torng and Lee (2009), in Double Sampling control charts it is not 

consequential to add a sample of size 𝑛2 for each sampling. So, considering the probability of 

addition a second sample of size 𝑛2 we can estimate the expected sample size 𝐸0(𝑛) of the 

DS 𝑆2 control chart under in-control processes. 𝐸0(𝑛) is given by: 

Equation 89 

 

𝐸0(𝑛)  = 𝑛1 + 𝑛2𝑃𝑟(𝐿1 < 𝑆𝑌1
2 ≤ 𝐿2) 

𝐸0(𝑁) = 𝑛1 + 𝑛2 {𝐹𝑛1−1 [
(𝑛1 − 1)𝐿2

𝐵2𝜎𝑝
2 + 𝜎𝑚

2
] − 𝐹𝑛1−1 [

(𝑛1 − 1)𝐿1

𝐵2𝜎𝑝
2 + 𝜎𝑚

2
]} 

 

 

Thus, we can rewrite the expected sample size of the DS 𝑆2 control chart under in-

control processes as: 

 

Equation 90 

 

𝐸0(𝑛)  = 𝑛1 + 𝑛2{𝐹𝑛1−1[(𝑛1 − 1)𝑘2] − 𝐹𝑛1−1[(𝑛1 − 1)𝑘1]} 

 

 

Moreover, the expected sample size under an out-of-control process 𝐸𝛿(𝑛) for a shift 

size of 𝛿 is: 

Equation 91 

 

𝐸𝛿(𝑛)  = 𝑛1 + 𝑛2 {𝐹𝑛1−1 [
(𝑛1 − 1)𝑘2(𝐵2𝜎𝑝

2 + 𝜎𝑚
2)

𝐵2𝛿2𝜎𝑝
2 + 𝜎𝑚

2
]

− 𝐹𝑛1−1 [
(𝑛1 − 1)𝑘1(𝐵2𝜎𝑝

2 + 𝜎𝑚
2)

𝐵2𝛿2𝜎𝑝
2 + 𝜎𝑚

2
]} 
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Therefore, based on Torng and Lee (2009), which used the weight method proposed 

by Zadeh (1963), a multi-objective programming method is used for statistical design of the 

DS 𝑆2 control chart. This multi-objective method was chosen because, as pointed out by Hsu 

(2007), the average sample size when the process is in control should not be used as a sole 

criterion for control charts’ performance evaluation.  

It's also crucial to consider the average number of samples to detect a process shift, 

the process shift probability from an in-control to an out-of-control state, and its shift 

magnitude. Thus, we consider the objective to minimize both 𝐸0(𝑛)  and 𝐸𝛿(𝑛) . The 

combined objective function will be given by 

 

Equation 92 

min
𝑛1,𝑛2,𝑘1,𝑘2,𝑘3

𝑈[𝐸0(𝑛)] + (1 − 𝑈)[𝐸𝛿(𝑛)] 

 

where U represents the weight value, which represents the importance degree of the objective 

function, so that the sum of weights of all objective functions will be equal to 1. 

The next step is to define the constraints of the problem. The average run length 

(ARL) is commonly used to assess the statistical performance of control charts. For in-control 

process, the average run length is written as 𝐴𝑅𝐿0 = 1/𝛼.  

When the process is out-of-control, with a shift size of δ, the necessary average 

sampling times for detecting the process shift can be expressed as 𝐴𝑅𝐿1 = 1/(1 − 𝛽𝛿). So, 

the objective function is subject to two main constraints: the probability of concluding that an 

in-control process is out-of-control is less than α (Type I error), and the probability of 

considering that an out-of-control process is in control is less than β (Type II error). These 

two constraints can be rewritten as 

 

Equation 93 

𝐴𝑅𝐿0 ≥ 𝐴𝑅𝐿0
∗ 

 

Equation 94 

 

𝐴𝑅𝐿1 ≤ 𝐴𝑅𝐿1
∗ 
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where 𝐴𝑅𝐿0
∗  is a specified minimal value of the in-control average run length (𝐴𝑅𝐿0) , 

aiming at a tolerable occurrence of false alarms, and  𝐴𝑅𝐿1
∗ is a maximum value specified of 

the out-of-control average run length (𝐴𝑅𝐿1), aiming the faster detecting when process shift 

has occurred.  

In addition to the constraints in Equation 93 and Equation 94, lower and upper 

bounds for the charts’ limits are set up. Lower and upper bounds are imposed on 𝑛1, 𝑛2, 𝑘1, 𝑘2 

and 𝑘3 as lower = (3, 3, 0, 0, 0) and upper = (𝑛, 𝑛+1, 10, 10, 10), respectively. The bounds for 

𝑘1, 𝑘2 and 𝑘3 were chosen  based on the minimum and maximum values found by Castagliola, 

Oprime, and Khoo (2017). Because it is desirable in practical applications to use moderately 

small sample sizes, we restrict the possible outcomes for 𝑛1 and 𝑛2 such that 3 ≤ 𝑛1 ≤ 𝑛  and 

3 ≤ 𝑛2 ≤ 𝑛 + 1, where 𝑛 is some value chosen for the maximum number of observations 

desired for each sample. 

To solve the optimization problem, the genetic algorithm (GA) optimization 

technique was chosen, because of its effectiveness for optimizing nonlinear models. GA 

optimization method has been widely used in recent studies for control chart design, examples 

include the works of Jafarian-Namin et al. (2019), Yang et al. (2021), Yu and Zhang (2021), 

Mirabi, Fatemi Ghomi, and Jolai (2022), and Quintero‐Arteaga et al. (2022). The flowchart 

with the optimization procedure can be seen in Figure 33. 

This work proposes an optimization routine using the R programming language. The 

R language was chosen for its wide range of statistical materials and open-source packages. 

The genetic algorithm package “GA” proposed by Scrucca (2013) was used. The integrations 

in Equation 74 and Equation 78 are computed with numerical integration using Simpson’s 

rule (GERALD; WHEATLEY, 1989; HE; GRIGORYAN, 2003). For validation of the 

integration method used, the results were compared to those found by the mathematical 

software WolframAlpha.  

Table 10 presents the optimal combinations of  𝑛1, 𝑛2, 𝑘1, 𝑘2 , 𝑘3 , for different 

combinations of 𝛿 ∈ {1.0, 1.1, 1.2, 1.3, 1.5, 1.7, 2.0, 2.5}  and 𝜎𝑚 ∈ {0, 0.1, 0.3, 0.5, 0.7} , 

considering 𝐴𝑅𝐿0
∗ = 370.4 , 𝑈 = 0.5 , and 𝑛 = 5 . The values of 𝛿  and 𝜎𝑚  used for the 

optimization will from now on be named as 𝛿𝑜𝑝𝑡 and 𝜎𝑚𝑜𝑝𝑡
, respectively. 
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Figure 33 – Optimization procedure 
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Table 10 – DS S² control chart’s optimized parameters 
            

 
𝛿𝑜𝑝𝑡 

 
𝜎𝑚𝑜𝑝𝑡

 
 

𝑛1 𝑛2 
 

𝑘1 𝑘2 𝑘3 
 

            

 1  0  5 6  0.595 4.063 4.808  

 1  0.1  5 5  0.598 4.063 4.966  

 1  0.3  5 5  0.622 4.063 5.290  

 1  0.5  5 5  0.670 4.063 5.470  

 1  0.7  5 5  0.737 4.063 5.158  

 1.1  0  5 6  0.812 4.093 3.759  

 1.1  0.1  5 5  0.793 4.044 4.158  

 1.1  0.3  5 5  0.811 4.022 3.882  

 1.1  0.5  5 5  0.854 3.980 3.483  

 1.1  0.7  5 5  0.908 4.022 3.121  

 1.2  0  5 6  1.131 5.177 1.375  

 1.2  0.1  5 6  1.133 6.309 1.401  

 1.2  0.3  5 5  1.040 3.844 3.496  

 1.2  0.5  5 5  1.056 3.853 3.302  

 1.2  0.7  5 5  1.112 3.901 3.027  

 1.3  0  5 6  1.137 5.398 1.077  

 1.3  0.1  5 6  1.143 5.106 1.188  

 1.3  0.3  5 6  1.198 5.869 0.498  

 1.3  0.5  5 6  1.382 5.756 1.264  

 1.3  0.7  5 6  1.632 5.965 1.030  

 1.5  0  5 6  1.099 5.473 0.565  

 1.5  0.1  5 6  1.142 5.096 0.947  

 1.5  0.3  5 6  1.218 5.574 0.897  

 1.5  0.5  5 6  1.382 5.665 0.975  

 1.5  0.7  5 6  1.619 8.828 0.977  

 1.7  0  5 6  1.134 5.030 0.689  

 1.7  0.1  5 6  1.152 4.892 0.753  

 1.7  0.3  5 6  1.215 5.958 0.675  

 1.7  0.5  5 6  1.383 5.625 0.526  

 1.7  0.7  5 6  1.631 5.918 0.840  

 2  0  4 5  0.440 4.319 2.720  

 2  0.1  5 6  1.535 4.087 0.479  

 2  0.3  5 6  1.451 4.167 0.702  

 2  0.5  5 6  1.383 5.623 0.540  

 2  0.7  4 5  0.603 4.740 2.036  

 2.5  0  4 5  1.586 4.474 3.182  

 2.5  0.1  4 5  1.579 4.452 3.142  

 2.5  0.3  5 6  2.248 4.065 0.899  

 2.5  0.5  4 5  1.205 4.728 2.721  

 

2.5 

 

0.7 

 

5 5 

 

1.448 3.137 2.462 
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5.1. SIMULATION EXAMPLE 

 

To verify the use of the Double Sampling 𝑆2  control chart with the optimized 

parameters, a simulation example is proposed. 

In this example, 100 thousand data of 𝑋 ∼ 𝑁(0, 𝜎𝑝
′)  and 𝜀 ∼ 𝑁(0, 𝜎𝑚)  were 

simulated, and the observed values of the quality characteristic was calculated using Equation 

34. For the DS 𝑆2 chart, samples for 𝑛1 and 𝑛2 were collected from this database according to 

the process listed in the flowchart in Figure 11. For comparison, the 𝑆2 chart was considered 

for 𝑛 = 5 and 𝐴𝑅𝐿0 = 370.4.   

First, the DS 𝑆2 chart optimized for 𝛿𝑜𝑝𝑡=1 and 𝜎𝑚𝑜𝑝𝑡
= 0 is studied. The ARL and 

E(n) results obtained are presented in Table 11 for the cases with 𝛿 ∈ {1.0, 1.1, 1.5, 2.0} and 

𝜎𝑚 ∈ {0,0.5,1.0}.  

 

Table 11 – DS S² control chart with parameters optimized for 𝛿𝑜𝑝𝑡 = 1 and 𝜎𝑚𝑜𝑝𝑡
= 0 

 

δ 𝜎𝑚 

 
DS S² chart 

  
S² chart 

 

 
 

 
𝑛1, 𝑛2, 𝑘1, 𝑘, 𝑘3 

5, 6, 0.595, 4.063, 4.808 

  
𝑛=5 

 

  ARL E(n)   ARL  

 

1.0 

0  633.87 6.98   385.10  

 0.5  153.97 7.06   88.86  

 1.0  18.44 6.90   10.58  

 

1.1 

0  187.18 7.05   108.50  

 0.5  67.14 7.05   38.52  

 1.0  12.80 6.81   7.36  

 

1.5 

0  12.50 6.81   7.08  

 0.5  8.61 6.70   5.02  

 1.0  3.99 6.42   2.44  

 

2.0 

0  2.34 6.18   1.53  

 0.5  1.95 6.11   1.32  

 1.0  1.34 5.94   0.90  
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Table 11 shows that the DS S² chart expected value for the sample size varied 

between 6 and 7.  From the ARL results, the DS 𝑆2 control chart performed better (highest 

ARL value) for δ = 1 in all evaluated measurement errors, even though it has been optimized 

for 𝜎𝑚𝑜𝑝𝑡
= 0. However, for the cases in which δ = 1.1, 1.5, and 2.0, the 𝑆2 control chart 

operated with a better (lower) ARL in most cases.  

Figures 34, 35, and 36 shows the ARL results of the 𝑆2 and DS 𝑆2 charts for 𝜎𝑚 = 

0.0, 𝜎𝑚 = 0.5, and 𝜎𝑚 = 1.0, respectively. 

 

Figure 34 – ARL for the S² and DS S² control charts (𝜎𝑚 = 0.0) 

 

 

Figures 34, 35, and 36 shows that the most significant difference occurs for δ = 1.0, 

which is aligned with what is expected since the DS 𝑆2 chart, in this case, was optimized with 

𝛿𝑜𝑝𝑡 = 1. It can be seen that the 𝑆2 control chart outperforms the DS 𝑆2 chart for δ = 1.1 and 

that the difference in performance between the two control charts reduces when δ = 1.5 and δ 

=2.0. 
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Figure 35 – ARL for the S² and DS S² control charts (𝜎𝑚 = 0.5) 

 

Figure 36 – ARL for the S² and DS S² control charts (𝜎𝑚 = 1.0) 

 

Figures 37 and 38 presents the ARL percentage difference of ARL in relation to the 

condition without the measurement error (𝜎𝑚  = 0) for the DS 𝑆2 control chart and the 𝑆2 

chart. 
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Figure 37 – ARL percentage difference for the DS S² and S² control charts (𝜎𝑚 = 0.5) 

 

 

Figure 38 – ARL percentage difference for the DS S² and S² control charts (𝜎𝑚 = 1.0) 

 

 

From Figure 37, for the case where 𝜎𝑚 = 0.5, the percentage differences were similar 

for the DS 𝑆2 and 𝑆2 charts. For δ = 1.0, the impact of the measurement inaccuracy seems 

slightly smaller on the DS 𝑆2 chart. As for δ = 1.5 and δ = 2.0, the 𝑆2 chart suffers slightly 



93 

 

 

less from the error effect. From Figure 38, for the case where 𝜎𝑚 = 1.0, both control charts 

perform very similarly for δ = 1.0 and δ = 1.1. The impact of the measurement errors seems 

slightly smaller on the 𝑆2 chart as the shift increases. 

We can also notice from Figures 37 and 38 that the measurement error has a larger 

effect on the performance of the two control charts when the process is in control, the impact 

(ARL percentage difference) becomes smaller as that the magnitude of the shift increases. 

Table 12 shows the comparison of ARL results for the 𝑆2 control chart and three 

settings of the DS 𝑆2 chart: 

• Setting 1: 𝛿𝑜𝑝𝑡 = 1.0 and 𝜎𝑚𝑜𝑝𝑡
 = 0.5; 

• Setting 2: 𝛿𝑜𝑝𝑡 = 1.1 and 𝜎𝑚𝑜𝑝𝑡
 = 0.1; 

• Setting 3: 𝛿𝑜𝑝𝑡 = 1.1 and 𝜎𝑚𝑜𝑝𝑡
 = 0.5. 

The optimal parameters (𝛿𝑜𝑝𝑡 =1.0, 𝛿𝑜𝑝𝑡 = 1.1 , 𝜎𝑚𝑜𝑝𝑡
=0.1, and 𝜎𝑚𝑜𝑝𝑡

=0.5) were 

chosen for this example because, in most practical applications, measurement errors are 

expected to be low and the process is expected to be in an in-control state, or near to it. To 

verify the influence of measurement error, the optimal DS chart 𝑆2 parameters for these 

settings were used. 

Table 12 shows the ARL and E(n) values for the three DS 𝑆2 chart settings. We can 

see that both for the case when the process is in control (𝛿 =1.0) and when the process shifts 

(𝛿 = 1.1, 𝛿 =1.5, and 𝛿= 2.0), the ARL value decreases as the measurement error increases, 

which indicates the occurrence of more false alarms. However, for 𝛿 =1.0, the DS 𝑆2 control 

charts optimized for Settings 1 and 3 suffer much less impact (lower percentage of ARL 

reduction) for measurement errors up to 𝜎𝑚 = 0.5 (value for which they were optimized) than 

when the 𝑆2 control chart is used. This outcome can be seen in Figures 39, 40, and 41, which 

show the ARL percentage difference (for 𝜎𝑚  =0.5) compared to the 𝑆2 chart for the DS 𝑆2 

chart with Settings 1, 2, and 3, respectively. 

From Table 12 it is observed that the DS 𝑆2  chart with Setting 2 has the best 

performance (among the charts tested in the example) since it is close to the values obtained 

for the 𝑆2  chart when operating with shifts 1.1, 1.5, and 2.0 (for all values of 𝜎𝑚 ) and 

performs considerably better for 𝛿 =1.0 (state in which the process is expected to operate most 
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of the time). In this case (𝛿 =1.0), for the DS 𝑆2 chart we have ARL= 608.759, 143.959, and 

16.564, for 𝜎𝑚=0, 0.5, and 1.0, respectively, versus ARL = 385.104, 88.860, and 10.576 of the 

𝑆2 chart. 

Table 12 – ARL results for DS S² control chart with parameters optimized for the effects 

of measurement error 

   Setting 1  Setting 2  Setting 3 
 

S² chart 
 

 
δ 𝜎𝑚 

𝑛1, 𝑛2, 𝑘1, 𝑘, 𝑘3 
5, 5, 0.670, 4.063, 5.470 

 
𝑛1, 𝑛2, 𝑘1, 𝑘, 𝑘3 

5, 5, 0.793, 4.044, 4.158 

 
𝑛1, 𝑛2, 𝑘1, 𝑘, 𝑘3 

5, 5, 0.854, 3.980, 3.483 

 
𝑛=5 

 

 ARL E(n)  ARL E(n)  ARL E(n)  ARL  

 

1.0 

0 791.97 6.67  608.76 6.70  837.5 6.35  385.10  

 0.5 611.87 6.88  143.96 6.86  443.44 6.62  88.86  

 1.0 45.82 6.97  16.56 6.82  29.43 6.84  10.58  

 

1.1 

0 791.33 6.84  179.46 6.84  579.73 6.58  108.50  

 0.5 209.33 6.96  62.63 6.89  153.95 6.75  38.52  

 1.0 45.44 6.98  11.49 6.76  19.34 6.82  7.369  

 

1.5 

0 28.19 6.92  11.08 6.74  18.27 6.82  7.08 

 0.5 19.17 6.86  7.73 6.65  11.82 6.78  5.02 

 1.0 8.22 6.63  3.50 6.40  4.89 6.60  2.44 

 

2.0 

0 4.48 6.39  2.02 6.18  2.72 6.41  1.53 

 0.5 3.84 6.32  1.70 6.11  2.33 6.34  1.32 

 1.0 2.46 6.13  1.20 5.97  1.54 6.18  0.90 

 

 

Figures 42, 43, and 44 show the ARL percentage difference (for 𝜎𝑚 =1.0) for the 𝑆2 

chart and the DS 𝑆2  chart with Settings 1, 2, and 3, respectively. Even though the 

measurement error effect for 𝜎𝑚 = 0.5 is lower in Settings 1 and 3 when the process is under 

control (Figures 39 and 41), for cases in which the process shifts, the DS 𝑆2 control charts 

with Setting 1 and 3 show more vulnerability to the effects of measurement error than the 𝑆2 

chart. This result also holds for larger measurement errors (𝜎𝑚 =1.0), as shown in Figures 42 

and 44. 
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Figure 39 – ARL percentage difference for the S² and DS S² charts (Setting 1: 𝜎𝑚 = 0.5) 

 

 

 

 

 

Figure 40 – ARL percentage difference for the S² and DS S² charts (Setting 2: 𝜎𝑚 = 0.5) 
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Figure 41 – ARL percentage difference for the S² and DS S² charts (Setting 3: 𝜎𝑚 = 0.5) 

 

 
 

 

 

 

Figure 42 – ARL percentage difference for the S² and DS S² charts (Setting 1: 𝜎𝑚 = 1.0) 
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Figure 43 – ARL percentage difference for the S² and DS S² charts (Setting 2: 𝜎𝑚 = 1.0) 

 
 

 

 

Figure 44 – ARL percentage difference for the S² and DS S² charts (Setting 3: 𝜎𝑚 = 1.0) 
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Considering that in practical applications, it may be necessary to monitor a process in 

which data is collected using a measurement system with larger measurement error, an 

example is now proposed that considers the use of a measurement system with 𝜎𝑚 = 0.7.  

Table 13 show the ARL results considering the use of the 𝑆2 control chart, the DS 𝑆2 

control chart optimized for 𝛿𝑜𝑝𝑡 = 1.0 and 𝜎𝑚𝑜𝑝𝑡
=0 (Setting 0), and the DS 𝑆2 control chart 

optimized for 𝛿𝑜𝑝𝑡 = 1.0 and 𝜎𝑚𝑜𝑝𝑡
 = 0.7 (Setting 4). 

 

Table 13 – ARL results for 𝑆2 chart and DS S² control chart (𝜎𝑚𝑜𝑝𝑡
 = 0.7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 45, 46, and 47 show the DS 𝑆2 chart (Setting 0), the S² chart (Setting 4), and 

the 𝑆2chart when process’ data have δ = 1.0 and 𝜎𝑚 = 0.7. Figures 48, 49, and 50 show the 

DS 𝑆2chart (Setting 0), the 𝑆2chart (Setting 4), and the 𝑆2 chart when process’ data have δ = 

1.1 and 𝜎𝑚  = 0.7. Figures 51, 52, and 53 show the DS 𝑆2 chart (Setting 0), the 𝑆2 chart 

(Setting 4), and the 𝑆2 chart when process’ data have δ = 1.5 and 𝜎𝑚 = 0.7. Figures 54, 55, 

and 56 show the DS 𝑆2 chart (Setting 0), the 𝑆2 chart (Setting 4), and the 𝑆2 chart when 

process’ data have δ = 2.0 and 𝜎𝑚 = 0.7.  

  
 

 Setting 0  Setting 4  
 

S² chart 

 
δ 𝜎𝑚  

𝑛1, 𝑛2, 𝑘1, 𝑘, 𝑘3 
5, 6, 0.595, 4.063, 4.808 

 
𝑛1, 𝑛2, 𝑘1, 𝑘, 𝑘3 

5,5,0.737,4.063,5.158 

  
𝑛=5 

 ARL E(n)  ARL E(n)   ARL 

 
1.0 

0.7  63.32 7.47  589.23 6.78   22.90 

 1.0  18.44 6.90  99.68 6.94   10.58 

 
1.1 

0.7  35.50 7.41  247.96 6.88   13.81 

 1.0  12.80 6.81  61.75 6.94   7.37 

 
1.5 

0.7  6.70 6.93  25.92 6.88   3.08 

 1.0  3.99 6.42  13.59 6.76   2.44 

 
2.0 

0.7  1.73 6.30  5.11 6.44   1.29 

 1.0  1.34 5.95  3.77 6.32   0.90 
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From the results in Table 13 and figures 45 to 56, we can clearly see the impact of 

larger measurement errors on the control charts. When the process is in control, both the DS 

𝑆2 chart optimized to operate without measurement errors and the traditional 𝑆2control chart 

show much lower ARL results than the DS 𝑆2 control chart optimized 𝜎𝑚𝑜𝑝𝑡
 = 0.7 (Setting 4). 

For δ = 1.1, 1.5, and 2.0, the Setting 4 DS 𝑆2 control chart shows good detection ability. 

Although the 𝑆2 and DS 𝑆2 charts present lower ARL values for δ = 1.1, 1.5, and 2.0, the cost 

of false alarms when operating in control makes them an unfavorable choice for larger 

measurement error scenarios. 

 

Figure 45 – DS S² chart (Setting 0: δ = 1.0, 𝜎𝑚 = 0.7) 

 

Figure 46 – DS S² chart (Setting 4: δ = 1.0, 𝜎𝑚 = 0.7) 
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Figure 47 – S² chart (δ = 1.0, 𝜎𝑚 = 0.7) 

 

 

Figure 48 – DS S² chart (Setting 0: δ = 1.1, 𝜎𝑚 = 0.7) 

 

Figure 49 – DS S² chart (Setting 4: δ = 1.1, 𝜎𝑚 = 0.7) 
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Figure 50 – S² chart (δ = 1.1, 𝜎𝑚 = 0.7) 

 

Figure 51 – DS S² chart (Setting 0: δ = 1.5, 𝜎𝑚 = 0.7) 

 

Figure 52 – DS S² chart (Setting 4: δ = 1.5, 𝜎𝑚 = 0.7) 
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Figure 53 – S² chart (δ = 1.5, 𝜎𝑚 = 0.7) 

 

Figure 54 – DS S² chart (Setting 0: δ = 2.0, 𝜎𝑚 = 0.7) 

 

Figure 55 – DS S² chart (Setting 4: δ = 2.0, 𝜎𝑚 = 0.7) 
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Figure 56 – S² chart (δ = 2.0, 𝜎𝑚 = 0.7) 

 

 

5.2. FINAL REMARKS 

 

Based on the results presented in chapters 4 and 5, it is observed that the presence of 

measurement errors degrades the performance of the Double Sampling 𝑆2 control chart in 

terms of ARL. For cases where the process operates under statistical control, the presence of 

measurement error tends to reduce the ARL value, with a greater impact as the error value 

increases. For cases where the process shift, the ARL result may be masked by the presence 

of measurement error, indicating a higher number of false alarms as the measurement error 

increases. Furthermore, when measurement errors are present, the DS 𝑆2 control chart tends 

to consult Stage 2 more frequently, increasing the expected value of 𝑛 as the measurement 

error increases. 

It is observed that even small modifications to the control chart parameters 

significantly alter the obtained performance results. Considering the sample size reduction as 

an optimization problem and solving it using the genetic algorithm technique, a parameter 

table is obtained through the proposed optimization that allows using the Double Sampling 𝑆2 

control chart for different measurement error values. The utilization of the parameter table is 

useful for practical applications, particularly for larger measurement error values.  
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6. CONCLUSIONS 

 

As a result of technological advancements, a greater quantity and variety of sensors 

and measuring systems are now being employed in production processes. Therefore, 

discussing the quality of these processes without bringing up their measurement error is 

becoming increasingly impractical. 

One of the ways to quantify the quality of production processes is by controlling 

their variability. In this sense, control charts are an easy-to-use statistical tool that allows 

monitoring of different types of processes. Double Sampling charts have been studied recently 

as an alternative to improve monitoring performance. According to the systematic literature 

review findings, studies are still required to determine how measurement errors affect 

different Double Sampling control charts.  

In this work, we propose to study the impact of measurement errors on the Double 

Sampling 𝑆2 control chart. The present study initially investigated the effects of measurement 

errors for Double Sampling 𝑆2 control charts with fixed limits. The average run length (ARL) 

value is used as the performance measure. It can be seen that the measurement error affects 

the ARL value both while the process is under control and when it shifts. Additionally, it has 

been noted that the measurement effect differs depending on the Double Sampling 𝑆2 chart 

construction parameters. 

Considering such changes in the performance of the DS 𝑆2 control chart caused by 

modifying its parameters, a study of parameter optimization using a genetic algorithm is 

proposed. Through the optimization study, the DS 𝑆2 control chart optimal parameters were 

obtained for different scenarios with and without the presence of measurement errors. 

Through simulation, an illustrative example was proposed to show the use of 

optimized parameters. The simulation example results show that using optimized parameters 

for the measurement error case is beneficial compared to the no measurement error 

optimization. This result is even more expressive when the control chart is used in processes 

with measurement errors of greater magnitude. 

It is worth noting that although results have been presented for the traditional 

𝑆2 chart, the objective of this work is not to make a comparative study of the performance of 

Double Sampling with the 𝑆2 chart but rather to show the impacts of different measurement 

error values on the performance of the DS 𝑆2 chart and to show the advantage of parameter 

optimization when it is not possible to change the measurement system used. 
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6.1. LIMITATIONS AND SUGGESTIONS FOR FUTURE WORK 

 

Many of the studies that use genetic algorithm optimization in the literature use paid 

software, as the present study worked only with R programming language and with the 

researcher's private computer, the simulation time and computer's capacity for simulations 

were a limitation of the study. 

This study was limited to observing the performance of the DS 𝑆2 control chart using 

data simulation. A study that explores the practical application of optimization for a real case 

with known measurement error is suggested. 

As shown in the systematic literature review, the effects of measurement errors and 

the optimization of Double Sampling control charts for the presence of measurement error 

still require further investigation. Expanding the study to other types of Double Sampling 

control charts is suggested, such as the effect of measurement error on the double sampling 

range control chart. 

For this study, a process with known parameters was considered. However, true 

process parameters are rarely known and are usually estimated using retrospective in-control 

data. In practice, the estimates used to set the Phase II control chart limits are calculated based 

on the Phase I data obtained by measurements. Since no measurement is accurate, and the 

measuring system used in Phase I and Phase II are not always the same, the need for further 

investigation of the effects of measurement errors on both Phase I and Phase II measurements 

is evident. It is then suggested that this study be extended to the case in which the parameters 

are unknown. 

Also, it would be interesting to investigate a wider range of sample size variations, 

such as considering a sample of size 𝑛1 = 1 in the first stage and a larger sample in the 

second stage. Additionally, it would be worthwhile to evaluate the chart's performance results 

when measuring each item more than once and assess the variation of measurements for the 

same piece. 
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APPENDIX A - ANALYSIS OF THE DISTRIBUTION OF 𝑺𝒀
𝟐
 

 

Analyzing the distribution of the variable 𝑆𝑌
2 , we will make the following 

considerations: 

 

1) 𝑌~𝑁(𝐴 + 𝐵𝜇, 𝐵2𝜎𝑝
2 + 𝜎𝑚

2) 

2) 𝑍 =
𝑌−(𝐴+𝐵𝜇)

√𝐵2𝜎𝑝
2+𝜎𝑚

2
 

3) 𝑍~𝑁(0,1) 

4) 𝑍2 = (
𝑌−(𝐴+𝐵𝜇)

√𝐵2𝜎𝑝
2+𝜎𝑚

2
)

2

 

5) 𝑍2 =
(𝑌−(𝐴+𝐵𝜇))2

𝐵2𝜎𝑝
2+𝜎𝑚

2  

6) 𝑍2~𝜒(1)
2  

So, let 𝑊 = ∑ 𝑍2𝑛
𝑗=1 , we have that 

𝑊 = ∑ [
(𝑌𝑗 − (𝐴 + 𝐵𝜇))

2

𝐵2𝜎𝑝
2 + 𝜎𝑚

2
]

𝑛

𝑗=1

 

 

So, 𝑊~𝜒(𝑛)
2 , and: 

 

𝑊 = ∑ [
(𝑌𝑗 − (𝐴 + 𝐵𝜇) − 𝑌̅ + 𝑌̅)

2

𝐵2𝜎𝑝
2 + 𝜎𝑚

2
]

𝑛

𝑗=1

 

𝑊 = ∑ [
((𝑌𝑗 − 𝑌̅) + (𝑌̅ − (𝐴 + 𝐵𝜇)))

2

𝐵2𝜎𝑝
2 + 𝜎𝑚

2
]

𝑛

𝑗=1

 

𝑊 = ∑ [
(𝑌𝑗 − 𝑌̅)

2

𝐵2𝜎𝑝
2 + 𝜎𝑚

2
]

𝑛

𝑗=1

+ 2 (
𝑌̅ − (𝐴 + 𝐵𝜇)

𝐵2𝜎𝑝
2 + 𝜎𝑚

2
) ∑(𝑌𝑗 − 𝑌̅)

𝑛

𝑗=1

+ ∑ [
(𝑌̅ − (𝐴 + 𝐵𝜇))

2

𝐵2𝜎𝑝
2 + 𝜎𝑚

2
]

𝑛

𝑗=1
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Since, 

∑(𝑌𝑗 − 𝑌̅)

𝑛

𝑗=1

= ∑(𝑌𝑗)

𝑛

𝑗=1

− ∑(𝑌̅)

𝑛

𝑗=1

 

∑(𝑌𝑗 − 𝑌̅)

𝑛

𝑗=1

= ∑(𝑌𝑗)

𝑛

𝑗=1

− 𝑛𝑌̅ 

 

And,  ∑ 𝑌𝑗
𝑛
𝑗=1 = 𝑛𝑌̅, we have that: 

 

∑(𝑌𝑗 − 𝑌̅)

𝑛

𝑗=1

= 𝑛𝑌̅ − 𝑛𝑌̅ = 0 

 

Thus, 

 

𝑊 = ∑ [
(𝑌𝑗 − 𝑌̅)

2

𝐵2𝜎𝑝
2 + 𝜎𝑚

2
]

𝑛

𝑗=1

+ ∑ [
(𝑌̅ − (𝐴 + 𝐵𝜇))

2

𝐵2𝜎𝑝
2 + 𝜎𝑚

2
]

𝑛

𝑗=1

 

𝑊 =
∑ (𝑌𝑗 − 𝑌̅)

2𝑛
𝑗=1

𝐵2𝜎𝑝
2 + 𝜎𝑚

2
+

𝑛(𝑌̅ − (𝐴 + 𝐵𝜇))
2

𝐵2𝜎𝑝
2 + 𝜎𝑚

2
 

 

Considering the Central Limit Theorem, the sample mean of a random variable is 

normally distributed. So, 

 

𝑌̅~𝑁(𝐴 + 𝐵𝜇, (𝐵2𝜎𝑝
2 + 𝜎𝑚

2)/𝑛) 

𝑍 = (
√𝑛(𝑌̅ − 𝐴 + 𝐵𝜇)

√𝐵2𝜎𝑝
2 + 𝜎𝑚

2
) 

𝑍~𝑁(0,1) 

𝑍2 = (
√𝑛(𝑌̅ − 𝐴 + 𝐵𝜇)

√𝐵2𝜎𝑝
2 + 𝜎𝑚

2
)

2

 

𝑍2 =
𝑛(𝑌̅ − (𝐴 + 𝐵𝜇))

2

𝐵2𝜎𝑝
2 + 𝜎𝑚

2
 



120 

 

 

𝑍2~𝜒(1)
2  

As previously shown, 

 

𝑊 =
∑ (𝑌𝑗 − 𝑌̅)

2𝑛
𝑗=1

𝐵2𝜎𝑝
2 + 𝜎𝑚

2
+

𝑛(𝑌̅ − (𝐴 + 𝐵𝜇))
2

𝐵2𝜎𝑝
2 + 𝜎𝑚

2
 

 

where  

 

𝑊~𝜒(𝑛)
2  , and: 

 

𝑛(𝑌̅ − (𝐴 + 𝐵𝜇))
2

𝐵2𝜎𝑝
2 + 𝜎𝑚

2
~𝜒(1)

2  

 

Therefore, 

 

∑ (𝑌𝑗 − 𝑌̅)
2𝑛

𝑗=1

𝐵2𝜎𝑝
2 + 𝜎𝑚

2
= {

𝑊
~𝜒(𝑛)

2 − {

𝑛(𝑌̅ − (𝐴 + 𝐵𝜇))
2

𝐵2𝜎𝑝
2 + 𝜎𝑚

2

~𝜒(1)
2

 

 

So, 

 

∑ (𝑌𝑗 − 𝑌̅)
2𝑛

𝑗=1

𝐵2𝜎𝑝
2 + 𝜎𝑚

2
~𝜒(𝑛−1)

2  

 

Since, 

 

𝑆𝑌
2 =

∑ (𝑌𝑗 − 𝑌̅)2𝑛
𝑗=1

𝑛 − 1
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Thus, 

 

∑ (𝑌𝑗 − 𝑌̅)
2𝑛

𝑗=1

𝐵2𝜎𝑝
2 + 𝜎𝑚

2
=

(𝑛 − 1)𝑆𝑌
2

𝐵2𝜎𝑝
2 + 𝜎𝑚

2
~𝜒(𝑛−1)

2  

 

 

Reference: ZIBETTI, André. Probabilidade - Estatística: Material de apoio à engenharia. 

Available on: https://www.inf.ufsc.br/~andre.zibetti/. Accessed on: 20/01/2022.  
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APPENDIX B – EXAMPLES OF THE SIMULATION GRAPHS 

 

This appendix shows examples of the RL distribution results from the simulation 

described in Chapter 4. 

 

• RL distributions for simulated data 

 

𝑛1 = 3, 𝑛2 = 6, 𝐿1 = 3.5, 𝐿2 = 5.75,  

𝐿3 = 2.7, 𝜎𝑚 = 0 e 𝛿 = 1 

𝑛1 = 3, 𝑛2 = 6, 𝐿1 = 3.5, 𝐿2 = 5.75,  

𝐿3 = 2.7, 𝜎𝑚 = 0.1 e 𝛿 = 1 

  

𝑛1 = 3, 𝑛2 = 6, 𝐿1 = 3.5, 𝐿2 = 5.75,  

𝐿3 = 2.7, 𝜎𝑚 = 0 e 𝛿 = 1.1 

𝑛1 = 3, 𝑛2 = 6, 𝐿1 = 3.5, 𝐿2 = 5.75,  

𝐿3 = 2.7, 𝜎𝑚 = 0.1 e 𝛿 = 1.1 

  

𝑛1 = 3, 𝑛2 = 6, 𝐿1 = 3.5, 𝐿2 = 5.75,  

𝐿3 = 2.7, 𝜎𝑚 = 0 e 𝛿 = 1.5 

𝑛1 = 3, 𝑛2 = 6, 𝐿1 = 3.5, 𝐿2 = 5.75,  

𝐿3 = 2.7, 𝜎𝑚 = 0.1 e 𝛿 = 1.5 
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𝑛1 = 3, 𝑛2 = 6, 𝐿1 = 3.5, 𝐿2 = 5.75,  

𝐿3 = 2.7, 𝜎𝑚 = 0 e 𝛿 = 2 

𝑛1 = 3, 𝑛2 = 6, 𝐿1 = 3.5, 𝐿2 = 5.75,  

𝐿3 = 2.7, 𝜎𝑚 = 0.1 e 𝛿 = 2 

  

𝑛1 = 3, 𝑛2 = 6, 𝐿1 = 3.5, 𝐿2 = 5.75,  

𝐿3 = 2.7, 𝜎𝑚 = 0.3 e 𝛿 = 1 

𝑛1 = 3, 𝑛2 = 6, 𝐿1 = 3.5, 𝐿2 = 5.75,  

𝐿3 = 2.7, 𝜎𝑚 = 0.3 e 𝛿 = 1.1 

  

𝑛1 = 3, 𝑛2 = 6, 𝐿1 = 3.5, 𝐿2 = 5.75,  

𝐿3 = 2.7, 𝜎𝑚 = 0.3 e 𝛿 = 1.5 

𝑛1 = 3, 𝑛2 = 6, 𝐿1 = 3.5, 𝐿2 = 5.75,  

𝐿3 = 2.7, 𝜎𝑚 = 0.3 e 𝛿 = 2 

  

𝑛1 = 3, 𝑛2 = 6, 𝐿1 = 3.5, 𝐿2 = 5.75,  

𝐿3 = 2.7, 𝜎𝑚 = 0.5 e 𝛿 = 1 

𝑛1 = 3, 𝑛2 = 6, 𝐿1 = 3.5, 𝐿2 = 5.75,  

𝐿3 = 2.7, 𝜎𝑚 = 0.5 e 𝛿 = 1.1 

  

  

  

  

  



124 

 

 

  

𝑛1 = 3, 𝑛2 = 6, 𝐿1 = 3.5, 𝐿2 = 5.75,  

𝐿3 = 2.7, 𝜎𝑚 = 0.5 e 𝛿 = 1.5 

𝑛1 = 3, 𝑛2 = 6, 𝐿1 = 3.5, 𝐿2 = 5.75,  

𝐿3 = 2.7, 𝜎𝑚 = 0.5 e 𝛿 = 2 
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APPENDIX C - INTERVAL STUDIES 

 

Let 𝑧 =
(𝑛1−1)𝑆𝑌1

2

𝐵2𝜎𝑝
′2+𝜎𝑚

2 

 

Since 𝑆𝑌1
2 is in interval Ω2 = (𝐿1, 𝐿2], then 

 

 

𝐿1 ≤  𝑆𝑌1
2  < 𝐿2 =  𝑘1(𝐵2𝜎𝑝

2 + 𝜎𝑚
2) ≤  𝑆𝑌1

2  < 𝑘2(𝐵2𝜎𝑝
2 + 𝜎𝑚

2)  

 

 

For the case there is no shift in the process (𝜎𝑝
′2 = 𝜎𝑝

2), multiplying the both sides by 
(𝑛1−1)

𝐵2𝜎𝑝
2+𝜎𝑚

2
 , give us 

 

 (𝑛1 − 1)𝑘1 ≤  𝑧 < (𝑛1 − 1)𝑘2 

 

Then Ω2
∗ can be written as  

 

Ω2
∗  = ((𝑛1 − 1)𝑘1, (𝑛1 − 1)𝑘2] 

 

Where there is a shift in the process standard deviation, then the interval Ω2
∗∗ can be obtained 

consider 

𝑘1(𝐵2𝜎𝑝
2 + 𝜎𝑚

2) ≤  𝑆𝑌1
2  < 𝑘2(𝐵2𝜎𝑝

2 + 𝜎𝑚
2) 

 

Multiplying the both sides by 
(𝑛1−1)

𝐵2𝜎𝑝
′2+𝜎𝑚

2 , give us 

 

(𝑛1 − 1)𝑘1(𝐵2𝜎𝑝
2 + 𝜎𝑚

2)

𝐵2𝜎𝑝
′2 + 𝜎𝑚

2
≤  𝑧 <

(𝑛1 − 1)𝑘2(𝐵2𝜎𝑝
2 + 𝜎𝑚

2)

𝐵2𝜎𝑝
′2 + 𝜎𝑚

2
 

 

Then Ω2
∗∗ can be written as  

 

Ω2
∗∗  = (

(𝑛1 − 1)𝑘1(𝐵2𝜎𝑝
2 + 𝜎𝑚

2)

𝐵2𝜎𝑝
′2 + 𝜎𝑚

2
,
(𝑛1 − 1)𝑘2(𝐵2𝜎𝑝

2 + 𝜎𝑚
2)

𝐵2𝜎𝑝
′2 + 𝜎𝑚

2
] 

 

 

 

 


