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O Relatório de Defesa assinado pelos membros da Comissão Julgadora encontra-se ar-

quivado junto ao Programa de Pós-Graduação em Matemática.
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Como tudo que é bom deve ser divulgado e exaltado, coloco aqui o meu especial
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Resumo

Nesta tese, estudamos a função peŕıodo para famı́lias de campos vetoriais diferenciais

suaves por partes com uma reta de descontinuidade. Tais sistemas, chamados indistinta-

mente de descont́ınuos ou não suaves, aparecem em diversas aplicações, incluindo, entre

outras, controle ótimo, mecânica descont́ınua e manipulação robótica. Para uma famı́lia,

utilizando um método baseado em equações de Picard–Fuchs para curvas algébricas, ca-

racterizamos o comportamento global da função peŕıodo. Ou seja, determinamos regiões

no espaço de parâmetros para as quais a função peŕıodo correspondente é monótona ou

possui peŕıodos cŕıticos. Além disso, em outra famı́lia estudamos a bifurcação de peŕıodos

cŕıticos no interior do anel de peŕıodo do centro fraco e do centro isócrono usando o cálculo

do desenvolvimento de Taylor das constantes de peŕıodos próximas ao centro. Adicional-

mente, apresentamos o ińıcio do estudo do comportamento global da função peŕıodo para

os sistemas suaves por partes do tipo linear-linear que contém um anel de peŕıodo no

infinito.

Palavras-chave: sistemas suaves por partes, função peŕıodo, monotonicidade, peŕıodos

cŕıticos, bifurcação de peŕıodos cŕıticos.
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Abstract

In this work, we study the period function for fixed families of piecewise differential

vector fields with a line of discontinuities. These systems, indistinctly called piecewise

or nonsmooth, appear in several applications, including among others optimal control,

nonsmooth mechanics, and robotic manipulation. For one family, by using a method based

upon Picard–Fuchs equations for algebraic curves, we characterize the global behavior of

the period function. That is, we determine regions in the parameter space for which the

corresponding period function is monotonous or it has critical periods. Furthermore, in

one of these families we study the bifurcation of critical periods in the interior of the period

annulus from the weak center and from the isochronous center by using the calculation

of the Taylor developments of the periods constants near the center. We further present

the beginning of the study of the global behavior of the period function for the planar

piecewise linear system that contains a period annulus at infinity.

Keywords: piecewise systems, period function, monotonicity, critical periods, bifurcation

of critical periods.
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Introduction

The measurement of time has been an enormous incentive for the development of

physics and mathematics. Galileo discovered in 1583 that pendulums of the same length

have the same oscillation time, i.e. all periods are the same independently of the initial

angle, this phenomenon became known as the Law of Isochrony. Inspired by this fact,

and realizing the need for an accurate measurement of time, C. Huygens in 1656 created

a pendulum clock which for a long time was the most accurate (see for instance [41]). The

work with period functions goes back at least to 1673 when Huygens observed that the

pendulum clock has a monotone period function, and therefore, oscillates with a shorter

period when the energy is decreasing, that is the clock spring unwinds.

In recent decades, there has been an increasing interest in studying the isochronicity

of vector fields in the plane. We find an overview of the results obtained in the survey of

Chavarriga and Sabatini [15]. However, there are few families of polynomial vector fields

in which a complete classification has been found. Some of the classes of isochronous

systems that have already been studied are the potential Hamiltonian systems ([90, 91]),

quadratic systems ([66]), cubic systems with homogeneous nonlinearities ([83]), Kukles

systems ([25]), and isochronous centers of a linear center perturbed by third, fourth, and

fifth degree homogeneous polynomials ([12, 13, 14]).

Consider a family of planar vector field (x, y) 7→ F(x, y, λ), parametrized by λ ∈ Rm,

where for all λ we have a nondegenerate center at the origin, that is, a center where the

linear part has two pure imaginary eigenvalues (see [11]). Let γ(ρ), ρ ∈ I where I is a real

open interval, be a smooth parametrized continua of periodic orbits. The period function

T (ρ, λ) associated to the parameter λ, is the function that assigns to each ρ the minimal

period of the periodic trajectory through ρ ∈ I. By the Implicit Function Theorem, T it

is analytic. The zeros of its derivative with respect to ρ, denoted by T ′(ρ, λ), are called

critical periods or oscillations and determining them is a key point to know the behavior

of T .

In the last years, the function T has been extensively studied by many authors with

different methods, as in [23, 36, 66, 95]. Mostly, with the interest of determining its qual-

itative behavior ([10, 50, 53, 69, 88]). In [6] the authors state that “the period function

3



4 Introduction

is important to study theoretical properties of planar ordinary differential equation and

their perturbations, see [22]; to understand some mathematical models in physics or ecol-

ogy, see [42, 85, 95] and the references therein; in the description of the dynamics of some

discrete dynamical systems, see [5, 27, 28]; or for counting the solutions of some boundary

value problems, see [19, 20].” There are also many researchers in the area dedicated to

find conditions for the period function to be monotonous, since monotonicity implies exis-

tence and uniqueness for certain boundary value problems, and provides a nondegeneracy

condition for the bifurcation of subharmonic solutions of periodically forced Hamiltonian

systems ([21]).

Another approach considered is finding the maximum number of critical periods that

a period function can have for a n-th degree planar polynomial system by using similar

techniques developed for dealing with the problem of determining the number and location

of their limit cycles (isolated closed orbits of a vector field), known as a particular case of

the second part of Hilbert’s 16th problem ([61]). In other words, there are many works

that intend to establish these values in terms of the degree n, but it remains unsolved if

these numbers are finite, for all n, which would guarantee their existence. However, since

it is believed to be finite, the number of limit cycles is denoted by H(n) (Hilbert number)

and the number of critical periods by C(n). Due to the difficulty of determining exactly

H(n) and C(n), several researchers try to obtain the highest possible lower bound for them.

The best result concerning any configuration of limit cycles provides H(n) ≥ kn2 log(n),

for some k > 0, that is, it grows at least as rapidly as n2 log(n) ([26]). In [30] the author

provides the following lower bound: C(n) ≥ 2[(n − 2)/2], where [·] denotes the integer

part, and from the result of [50] it is known that C(n) ≥ n2/4, that is, it grows as n2/4.

In [10] the lower bound of C(n) becomes n2/2+n−5/2 when n is odd, and n2/2−2 when

n is even. Recently, in [37] this bound has been proved to be n2 − 2 when n is odd, and

n2 − 2n − 1 when n is even. A natural question established by Gasull in [47] is whether

there is a similar result to what has been proved for limit cycles, that is: “Is it true that

C(n) ≥ cn2 log(n), for some c > 0?”

There are only a few families where the global qualitative behavior of T is found, that is

C(n) is found, among them some families of smooth polynomial potential systems. These

families are given by Hamiltonian systems with total energy H(x, y) = y2/2+V (x), where

V (x) is the potential energy. It is well known that for smooth potential systems the set

of all periodic orbits can be parametrized by the energy h and, therefore in this case, we

can introduce the period function T (h), which gives the period of the periodic orbit with

energy h. It can be found in Chow and Sanders ([23]) and Gavrilov ([53]) the study of T (h)

for the case in which the potential energy is given by V (x) = (1/2)x2 + (a/3)x2 + (b/4)x4,
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and in Mañosas and Villadelprat ([69]) the case where V (x) = (1/2)x2+(a/4)x4+(b/6)x6,

with a, b ∈ R and b 6= 0.

In general, the qualitative behavior of T (h) for smooth potential systems is found

by using that it satisfies a second order Picard–Fuchs equation for algebraic curves and

the ellipticity of the level curves of H allows to see that x(h) = T ′(h)/T (h) satisfies a

Riccati equation. Then, instead of this equation, we consider the equivalent polynomial

system on the plane and study its global phase portrait. It is worth mentioning that

Picard–Fuchs equations was already used by many authors to study the number of zeros

of Abelian integrals, because these zeros correspond to limit cycles appearing in non-

conservative perturbations of Hamiltonian, or, more general, integrable systems (see [80,

101] for instance).

Even the global study of the period function for the reversible quadratic center is not

complete. It is well known that this system can be brought to the Loud normal form

ẋ = −y +Bxy,
ẏ = x+Dx2 + Fy2,

(1)

where B,D, F ∈ R. It is also called homogeneous Loud system (see [21]). It is proved

in [49] that if B = 0 then the period function of the center at the origin is monotonous

increasing. Thus the case in which B 6= 0 is the most interesting one and, by a rescaling,

we can only consider family (1) with B = 1, i.e.

ẋ = −y + xy,
ẏ = x+Dx2 + Fy2,

(2)

called dehomogenized Loud family. One of the most famous open problems about critical

periods conjectured by Chicone in 1994 and also listed by Gasull in [47] is the following

question: Is 2 the maximum number of critical periods for family (2)?

Another problem, less intricate, is describing the local behavior of the function T ,

in a neighborhood of an equilibrium point. To this end, there are several papers whose

interest is to provide the maximum number of zeros of T ′ which can bifurcate near a

center for planar autonomous polynomial vector fields of degree n, denoted by C0(n).

The problem of determining C0(n) is called problem of bifurcations of critical periods or

criticality problem. Chicone and Jacobs in [21] solved this problem for analytical quadratic

systems, and they obtained that C0(2) = 2. In particular, they proved that at most one

local critical period can bifurcate from a nonlinear isochronous center and at most two

critical periods bifurcate from the linear isochronous center for the homogeneous Loud

system (1), which is a family with three parameters. The approach for determining C0(n)

in terms of the techniques is similar to that taken to provide the maximum number

of small amplitude limit cycles bifurcating from an elementary center or an elementary
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focus of a planar polynomial system of degree n, denoted by H0(n) ([81]). In other words,

determining C0(n) (resp. H0(n)) is equivalent to solve the local criticality problem (resp.

local cyclicity problem). Clearly, C0(n) < C(n) and H0(n) < H(n).

There are two useful results to get good lower bounds for H0(n), whose statements

and proofs can be found in Christopher ([24]). The first result shows how we can use the

first-order Taylor approximation of the Lyapunov constants. The second result shows how

sometimes we can obtain more limit cycles using high-order Taylor developments of the

Lyapunov constants. In these results, if we replace the concept of Lyapunov constants by

period constants and initially consider an isochronous center, we can use the same method

to get the local criticality of isochronous centers, and this is what was made in [88] for

reversible holomorphic (isochronous) centers. In general, if the number of parameters

is large, the computations can be very hard, with a high computational demand. One

method that can be useful to compute the linear parts of the period constants is the so

called parallelization, which was developed in [63] and allows decreasing both the total

computation time and the memory requirements.

It is worth mentioning that there are also works that study other types of bifurcation

phenomena. For example, there exist several papers which aim to develop tools for the

study of bifurcations of critical points of the period function at the outer boundary (i.e.,

the polycycle) for family (2), see more details in [72, 73, 74, 75, 77, 78]. Other studies

aims to determine the regions of monotonicity by using that (2) can be brought by means

of a coordinate transformation to a potential system. Then the authors can apply the

monotonicity criteria for potential smooth systems, for example the Schaaf’s criterium

([89]), to study the period function of its center ([70, 92, 93]) or even Picard–Fuchs

approach ([99, 100]).

Although there is still much to be done regarding the period function for smooth

systems, our goal is to contribute to the study of the period function for families of

Filippov vector fields. Since many significant dynamical systems, that arise in practice, for

modeling problems raised from mechanics, electrical, engineering, or automation control

contain terms that are non-smooth functions of their arguments, then an unavoidable

issue is the use of non-smooth systems for describing them, see [38]. Many works have

been made to get a characterization of the dynamical behavior that such systems can

exhibit by proceeding in a case-by-case approach, but this study is from being completely

finished. Up to now, most of the results concerning about piecewise differential systems

aimed to either identify conditions for the origin to be a center and an isochronous center

(see [31, 33, 52, 62, 68]), or investigate the cyclicity problem (see [16, 32, 59, 64, 65, 98]).

There exist only few studies in the sense of determining the number of critical periods as
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in [17, 18, 79, 97, 102].

In Chapter 1 we bring some of the definitions and results needed for the reader who

is unfamiliar with the tools we use in this text. There, we make an introduction of

the Filippov system, also called piecewise system. Furthermore, we present definitions

for the study of the period function of a center and a first approach of its bifurcation

theory, including the results presented in [88] for increasing the criticality for families of

isochronous centers.

Chapter 2 is devoted to determine the complete bifurcation diagram of the period

function of the center at the origin for a piecewise continuous planar Hamiltonian system

of ordinary equations with two parameters. This family is the aggregation of two different

polynomial potential systems with a straight line of separation. In order to describe the

period function of the family studied, we use the fact that the period function can be

written as a linear combination of the period functions for the smooth potential systems

that define it. Then, it is enough to determine the behavior of the period in the smooth

case by using Picard–Fuchs approach. The results are presented in the paper: A. C.

Rezende, M. A. S. Santos, J. Torregrosa. Period function for a family of planar piecewise

Hamiltonian systems. Preprint, 2023. In particular, we highlight Theorem 2.13 which we

may say that is the most relevant result of this thesis.

In Chapter 3 we estimate lower bounds of the local criticality for the family of piecewise

quadratic reversible centers. The two systems that define this family are smooth reversible

quadratic systems of the form (1) after a simple coordinate trasformation. We notice

that the results we have obtained are very similar to those ones found in [21], since the

quadratic family studied has six parameters and we have found that at least four local

critical periods can bifurcate from a nonlinear isochronous center, and at most five critical

periods bifurcate from the linear one. This problem can be solved by calculating the Taylor

series of the period function in the neighborhood of the center, and by determining the

order of its first non-constant term. This computation is purely algorithmic and its

advantage is that it provides information about the behavior of the period function in a

neighborhood of the origin. The results we obtained are presented in the manuscript: A.

C. Rezende, M. A. S. Santos, J. Torregrosa. Period function of planar piecewise reversible

quadratic systems. Preprint, 2023.

Chapter 4 is a work in progress that aims to study the period function of a center

at infinity for the lowest degree family for discontinuous system, the one which has the

aggregation of two different linear systems with a straight line of separation, the planar

piecewise linear system, which is also called a linear-linear system. It comes in line with

the large amount of work that has been made in recent years with the aim to understand
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its dynamic behavior, we refer the reader to [7, 8, 9, 43, 45, 82]. Under the hypothesis

of focus-focus dynamic, a reduced canonical form with only five parameters is obtained

and the authors of [44] characterize the centers at infinity, called center-center case and

focus-focus case together with the limit cycles bifurcating from them. Here we try to

determine the global behavior of the period function for these cases, and we believe that

the center-center case has at most one critical period. In the focus-focus case, we found

that there are no oscillations and we classify when the period function is monotonous

decreasing, constant, or monotonous increasing. This study is also presented in: A. C.

Rezende, M. A. S. Santos, J. Torregrosa. Period function for piecewise linear centers at

infinity. Preprint, 2023.

The last chapter contains a brief description of what can still be done in the future,

and also some concluding remarks.

For all the needed calculations we have used the computer algebra system Maple [71].



CHAPTER 1

Preliminaries

1.1 Piecewise differential systems

In this section we introduce the basic concepts of a planar Filippov system, which we

shall often refer as a planar piecewise differential system, necessary for the development

of the next chapters. Basically, we follow the approach introduced in [57].

Let X and Y be smooth vector fields defined in an open set U ⊂ R2 containing

the origin and h : R2 → R be a differentiable function having 0 as a regular value and

Σ = h−1(0) ∩ U a smooth codimension-one submanifold. Denote by Σ− = {(x, y) ∈ U ⊂
R2 : h(x, y) < 0} and Σ+ = {(x, y) ∈ U ⊂ R2 : h(x, y) > 0} the regions having Σ as a

separating boundary. A planar piecewise differential system on R2 is a pair of Cr (with

r ≥ 1) differential systems in R2 separated by the separation manifold Σ, that is

Z(x, y) =

{
X(x, y), if (x, y) ∈ Σ− ∪ Σ,

Y (x, y), if (x, y) ∈ Σ+.
(1.1)

Clearly, an orbit is well defined while it evolves without touching the separation set.

However, we shall assume the Filippov’s convention [40] for the definition of trajectories

arriving at Σ.

The contact between the vector field X (or Y ) and the line of separation Σ is char-

acterized by the Lie derivative of h in the direction of the vector field X and Y , that is

Xh(p) = 〈∇h(p), X(p)〉 and Y h(p) = 〈∇h(p), Y (p)〉, where 〈·, ·〉 is the usual inner prod-

uct in R2. According to the terminology established by Filippov, we can split the line of

separation Σ into the following sets:

(a) Crossing set : Σc := {p ∈ Σ: Xh(p) · Y h(p) > 0};

(b) Sliding set : Σs := {p ∈ Σ: Xh(p) < 0 and Y h(p) > 0};

9
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(c) Escaping set : Σe := {p ∈ Σ: Xh(p) > 0 and Y h(p) < 0}.

The escaping Σe or sliding Σs regions are respectively defined on points in Σ, where

both vector fields X and Y simultaneously point outwards or inwards from Σ, while the

interior of its complement in Σ defines the crossing region Σc (see Figure 1.1). The

complementary of Σc∪Σe∪Σs is the set formed by tangency points, that is, points where

one of the two vector fields is tangent to Σ, which are the points p ∈ Σ where Xh(p) = 0

or Y h(p) = 0. These points are on the boundary of Σc, Σe, and Σs, which we denote by

∂Σc, ∂Σe, and ∂Σs, respectively. This union also contains the equilibrium points of X

and Y at Σ.

Figure 1.1: Crossing, sliding and escaping regions, respectively

In this work, we will assume that the tangency points are isolated in Σ. This happens

when we study low-codimension bifurcations in planar Filippov systems. For simplicity,

the definition of orbit that is established here applies only to Filippov systems with isolated

equilibrium points.

Next, we define a trajectory passing through a point p at Σc, Σe, and Σs following the

Filippov convention. For a point p ∈ Σc, both vector fields X and Y simultaneously point

towards Σ+ and Σ−, since the transversal components of X and Y have the same sign

in p, then it is enough to connect the solutions of X and Y at p. In points p ∈ Σs ∪ Σe

the transversal components of X and Y have opposite signs, i.e. the two vector fields are

pushing in opposite directions, then the state of the system is forced to remain on the

boundary and slide on it. The local orbit of system (1.1) on Σ is given by the vector field

Zs, which is a convex linear combination of X(p) and Y (p), so that Zs(p) is tangent to

the separation manifold Σ, as we can see in Figure 1.2. Such vector field is defined as the

sliding vector field, and it is given by

Zs(p) =
1

Y h(p)−Xh(p)

(
Y h(p)X(p)−Xh(p)Y (p)

)
. (1.2)

This way to define the motion on Σ is the most natural and it is called Filippov convex

method or Filippov convention.

In general, we can formulate the following definition of orbits to Filippov systems with

isolated equilibrium points, where ϕV (t, p) denotes the flow of the vector field V defined
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Figure 1.2: Sliding vector field

in time t ∈ Ip ⊂ R, that is 
d

dt
ϕV (t, p) = V (ϕV (t, p)),

ϕV (0, p) = p,

and Ip is a real interval which depends on the point p and on the vector field V .

Definition 1.1. The local trajectories of the planar Filippov system (1.1) are defined as:

(i) For p ∈ Σ− (resp. p ∈ Σ+) such that X(p) 6= 0 (resp. Y (p) 6= 0), the trajectories

are given by ϕZ(t, p) = ϕX(t, p) (resp. ϕZ(t, p) = ϕY (t, p)), for t ∈ Ip ⊂ R.

(ii) For p ∈ Σc such that Xh(p), Y h(p) > 0 and considering the orbit starting at p

we have that ϕZ(t, p) = ϕY (t, p), for t ∈ Ip ∩ {t ≤ 0}, and ϕZ(t, p) = ϕX(t, p), for

t ∈ Ip ∪ {t ≥ 0}. For Xh(p), Y h(p) < 0, the definition is the same, but reversing

time.

(iii) For p ∈ Σs ∪ Σe such that Zs(p) 6= 0, ϕZ(t, p) = ϕZs(t, p), for t ∈ Ip ⊂ R, where Zs

is the sliding vector field defined in (1.2).

(iv) For p ∈ ∂Σc ∪ ∂Σs ∪ ∂Σe such that the definitions of trajectories for points in Σ in

both sides of p can be extended to p and coincide, then the orbit through p is this

trajectory. We call these points regular tangency points.

(v) For any other point, ϕZ(t, p) = p, for all t ∈ R. This is the case of the tangency

points in Σ which are not regular, called singular tangency points, and the equilib-

rium points of X in Σ+, Y in Σ−, and Zs in Σs ∪ Σe.

Definition 1.2. The local orbit of a point p ∈ U is the set γ(p) = {ϕZ(t, p) : t ∈ I}.

Since we are dealing with autonomous systems, from now on we will use the terms

trajectory and orbit indistinctly.

Thus, the phase portrait of a Filippov system is the union of all orbits in R2 composed

by the sliding phase portrait on the boundary Σ and of the standard phase portraits in

each region. We note that if the orbit has sliding motion, then it can overlap.
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Definition 1.3. The points p ∈ Σs∪Σe that satisfy Zs(p) = 0, i.e. the equilibrium points

of the sliding vector field are called pseudoequilibria of Z.

The equilibrium points of the Filippov system are characterized in the following defi-

nition.

Definition 1.4. Equilibrium points of the planar Filippov system (1.1) are:

(i) p ∈ Σ− (resp. p ∈ Σ+) such that X(p) = 0 or Y (p) = 0, that is, p is an equilibrium

point of X or Y ;

(ii) p ∈ Σs ∪ Σe such that p is a pseudoequilibrium, that is, Zs(p) = 0;

(iii) p ∈ ∂Σc ∪ ∂Σs ∪ ∂Σe, that are regular or singular tangencies, i.e. the points p such

that Xh(p) = 0 or Y h(p) = 0.

The remaining points are called regular points.

In Filippov systems there exist equilibrium points (regular tangency points) which

have an orbit such that γ(p) 6= {p}. For this reason they can be classified as distinguished

equilibrium points, which are points p such that γ(p) = {p}, and non-distinguished equi-

librium points, which are points p ∈ Σ which are regular tangency points and then, even

if they are not regular points, their local orbit is homeomorphic to R.

Definition 1.5. A distinguished equilibrium point of the planar Filippov system (1.1) is

a point p such that γ(p) = {p} and it can be classified as:

(i) p ∈ Σ− (resp. p ∈ Σ+) such that X(p) = 0 or Y (p) = 0, that is, p is an equilibrium

point of X or Y ;

(ii) p ∈ Σs ∪ Σe such that p is a pseudoequilibrium, that is, Zs(p) = 0;

(iii) p ∈ ∂Σc ∪ ∂Σs ∪ ∂Σe, such that p is a singular tangency point.

The vector field X (resp. Y ) can have equilibrium points that do not belong to

Σ− (resp. Σ+). We call these points as virtual equilibrium points or non-admissible

equilibrium points. The equilibrium points of X (resp. Y ) that are in Σ− (resp. Σ+) are

called admissible or real equilibrium points. A special case of pseudoequilibrium points

which are the solutions of X(p) = 0 or Y (p) = 0 and h(p) = 0 are named boundary

equilibrium points.

Analogously, invariant objects (stable and unstable manifolds, periodic orbits) of the

smooth vector fields X and Y not belonging to Σ− and Σ+, respectively, are also referred

to as non-admissible.
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Even if the chosen definition of orbit leads to the uniqueness property, a point p ∈ Σ

may belong to the closure of several other orbits. Taking into account this fact, we can

use the following definition.

Definition 1.6. Given a trajectory ϕZ(t, p) ∈ Σ+ ∪ Σ− and a point p ∈ Σ, we say that

p is a starting point of ϕZ(t, p), if there exists t0 < 0 such that limt→t+0
ϕZ(t, q) = p, and

that it is an arrival point of ϕZ(t, q), if there exists t0 > 0 such that limt→t−0
ϕZ(t, q) = p.

According to Definition 1.1, if p ∈ Σc, p is a starting point of ϕZ(t, p) for any q

belonging to the forward orbit

γ+(p) = {ϕZ(t, p) : t ∈ Ip ∩ {t ≥ 0}},

and is an arrival point of ϕZ(t, p) for any q belonging to the backward orbit

γ−(p) = {ϕZ(t, p) : t ∈ Ip ∩ {t ≤ 0}}.

Namely, the orbit through a point p ∈ Σc is the union of the point and its starting and

arrival orbits, that is, γ(p) = {p} ∪ γ+(p) ∪ γ−(p).

Once we have defined the local orbit through a point, we can state rigorously the

definition of maximal orbit. Depending on the point, it can be either a regular orbit, or

a sliding orbit, or a distinguished equilibrium point.

Definition 1.7. A maximal regular orbit of Z is a piecewise smooth curve γ such that:

(i) γ ∩ Σ− and γ ∩ Σ+ are a union of orbits of the smooth vector fields X and Y ,

respectively;

(ii) The intersection γ ∩ Σ consists only of crossing points and regular tangency points

in ∂Σc;

(iii) γ is maximal with respect to these conditions.

Definition 1.8. A maximal sliding orbit of Z is a smooth curve γ ⊂ Σs ∪ Σe such that

it is a maximal orbit of the smooth vector field Zs.

The previous definitions lead to two relevant results: first, the uniqueness of solutions,

that is, any point p belongs to only one orbit, and second, any neighborhood U of p is

decomposed into a disjoint union of orbits.

We can genaralize the concept of separatrix for planar Filippov systems.

Definition 1.9. An unstable separatrix is either:
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(i) A regular orbit Γ which is the unstable invariant manifold of a regular saddle point

p ∈ Σ− of X or p ∈ Σ+ of Y , that is,

Γ =

{
q ∈ U such that ϕZ(t, q) is defined for t ∈ (−∞, 0) and lim

t→−∞
ϕZ(t, q) = p

}
.

We denote it by W u(p);

(ii) A regular orbit which has a distinguished equilibrium point p ∈ Σ as a starting

point. We denote it by W u
±(p), where the subscript ± means that it leaves p from

Σ±.

In the first case, as it is well known in smooth systems, the trajectory lying on the

separatrix reaches p in infinite time whereas in the second case, it may reach the singularity

in finite time.

Stable separatrices W s(p) and W s
±(p) are defined analogously. If a separatrix is simul-

taneously stable and unstable it is a separatrix connection.

In Filippov system, beyond periodic orbits of X in Σ− and of Y in Σ+, there exist other

regular trajectories of Σ− and Σ+ that have p as an arrival or starting point. Remember

that these orbits reach p in a finite time. The next definition generalizes the concept of

periodic orbit in this context.

Since our goal is to study nonlinear phenomena around Σ, we look for possible periodic

orbits not totally contained in Σ+ and Σ−. These orbits must be of one of the following

two types, depending on the nature of their points on the separation manifold Σ: If the

periodic orbit has sliding points, then it is called a sliding periodic orbit, otherwise we

have a crossing periodic orbit.

Definition 1.10. A regular periodic orbit is a regular orbit γ = {ϕZ(t, p) : t ∈ R},
which therefore belongs to Σ+ ∪ Σ− ∪ Σc (Σc denotes the closure of Σc) and satisfies

ϕZ(t+ T, p) = ϕZ(t, p), for some T > 0, called the period.

The regular periodic orbits are called standard periodic orbits, if they stay in Σ−∪Σ+,

and crossing periodic orbits, if they intersect Σc.

The sliding periodic orbits are the so-called cycles and they are presented in the next

definition.

Definition 1.11. A period cycle is the closure of a finite set of pieces of orbits γ1, . . . , γn

such that γ2k is a piece of sliding orbit, γ2k+1 is a maximal regular orbit and the starting

and arrival points of γ2k+1 belong to γ2k and γ2k+2, respectively. The period of the cycle is

the sum of the periods of time that are spent in each of the pieces of orbit γi, i = 1, . . . , n.
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Definition 1.12. The planar piecewise vector field (1.1) is called continuous if

X(p) = Y (p), for all p ∈ Σc.

Otherwise, it is called discontinuous.

In particular, if Σc = Σ, i.e Σe and Σs are empty sets, the piecewise vector field (1.1)

is continuous if X(p) = Y (p) for all p ∈ Σ.

Example 1.13. Consider the planar piecewise vector field given by

(ẋ, ẏ) =


(
∂H−(x, y)

∂y
,−∂H

−(x, y)

∂x

)
, if (x, y) ∈ Σ−,(

∂H+(x, y)

∂y
,−∂H

+(x, y)

∂x

)
, if (x, y) ∈ Σ+.

This vector field is called planar piecewise Hamiltonian vector field with Hamiltonian

function given by

H(x, y) =

{
H−(x, y), if (x, y) ∈ Σ−,

H+(x, y), if (x, y) ∈ Σ+.

In the case of H−(x, y) = H+(x, y), if (x, y) ∈ Σ, the system is a continuous piecewise

Hamiltonian system.

1.2 Centers and their period functions

The same notion of center and period function for planar vector field are valid for the

planar piecewise differential equation (1.1).

Definition 1.14. An isolated equilibrium point p of (1.1) is a center if and only if there

exists a punctured neighborhood V of p, V ⊂ R2, such that every point in V belongs to a

periodic orbit surrounding p.

The largest connected set V0 covered with periodic orbits surrounding the center p is

called central region.

Definition 1.15. For any center p of a planar differential system, the largest neighbor-

hood of p which is entirely covered by periodic orbits is called the period annulus. It is

denoted by P , and its boundary is denoted by ∂P .

Definition 1.16. A center is a global center when its period annulus is the whole plane,

that is, if every solution of (1.1) is periodic. Otherwise, this equilibrium is called a local

center.
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We consider that the center is at the origin, which we denote it by O.

In what follows the period function is defined over the set of periodic orbits inside its

corresponding period annulus by the following definition.

Definition 1.17. Let O be a center and P its period annulus. The period function is the

map which associates to any periodic orbit γ ∈ P its period.

Remark 1.18. Given a smooth system (ẋ, ẏ) = (P (x, y), Q(x, y)) with a nondegener-

ate center at the origin, that is, a center where the linear part has two pure imaginary

eigenvalues. Let γ(ρ), ρ ∈ I where I is a real open interval, be a smooth parametrized

continua of periodic orbits. The period function T is the function that assigns to each

ρ ∈ I the minimal period of the periodic trajectory through ρ. And can be computed by

the expression

T (ρ) =

∫ T

0

dt =

∫
γ(ρ)

dx

ẋ
=

∫
γ(ρ)

dx

P (x, y)
,

or even by

T (ρ) =

∫ T

0

dt =

∫
γ(ρ)

dy

ẏ
=

∫
γ(ρ)

dy

Q(x, y)
.

Note that a vector field can have several annular regions foliated by periodic orbits.

In this case, for each one of these period annuli, we can consider the corresponding period

function. That is, each period function is defined over the set of periodic orbits inside its

corresponding period annulus.

Definition 1.19. The period function of a center is monotonous increasing (resp. de-

creasing) if for any pair of periodic orbits inside P , say γ1 and γ2 with γ1 ⊂ Int(γ2), we

have that the period of γ2 is greater (resp. smaller) than the one of γ1.

A very special case is the one in which we have a constant period function, according

to the next definition.

Definition 1.20. A center is called isochronous center when all periodic solutions in a

neighborhood of it have a constant period.

The problem of isochronicity is investigated in the same way that the well-known

center problem. Both problems are completely solved only for quadratic vector fields.

For the most interested readers, an excellent text for a first reading about the theory of

centers of planar polynomial systems can be found in [35], and to better understand many

problems about isochronicity for analytic systems we recommend the survey of Chavarriga

and Sabatini [15], already mentioned in the introduction. It is important to note that

the isochronicity problem appears only for nondegenerate centers, that is centers whose

linear part has nonzero imaginary eigenvalues (see [11]), since the period function goes to

infinity near a degenerate center, as in the next example, which can be found in [94].
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Example 1.21. Consider the cubic system given by{
ẋ = y,

ẏ = −2x3,

with a degenerate center at (0, 0). The first integral of this system is given by H(x, y) =

x4 +y2, hence, the integrating curve passing throungh (ρ, 0) can be expressed as y2 +x4−
ρ4 = 0. Thus, y = ±

√
ρ4 − x4 and, by the Remark 1.18, the period function T , which

assigns to the periodic solution γ(ρ), that intersects the x-axis in ρ and −ρ, its minimum

period can be expressed by

T (ρ) =

∫
γ(ρ)

dx

ẋ
= 2

∫ −ρ
ρ

dx

y
= 2

∫ −ρ
ρ

dx√
ρ4 − x4

=
2

ρ

∫ 1

−1

1

1− s4
ds,

where a change of variables x = ρs is applied on the last equality. Therefore,

lim
ρ→0

T (ρ) =∞.

A special case of isochronicity that has been studied in the literature is given in the

next definition, see [34, 51].

Definition 1.22. A center is a uniform isochronous center if the system, in polar coor-

dinates x = r cos θ, y = r sin θ, takes the form ṙ = G(θ, r), θ̇ = k or, equivalently, the

equality xẏ − yẋ = k(x2 + y2) holds, for some k ∈ R \ {0}.

In other words, the angular velocity is the same for all orbits. A system which possesses

this property is also called a rigid system.

As indicated in [31, 87], inside the class of smooth isochronous system there are some

special cases, that are presented in the next definition.

Definition 1.23. Consider the analytic system{
ẋ = −y + p(x, y),

ẏ = x+ q(x, y),

where p and q are analytic functions in a neighborhood of the origin starting with terms

at least of degree two and with an isochronous center at the origin. We say that the

isochronous center is a k-strong isochronous center (k ∈ N∗) if there exist exactly k half-

straight lines (radials) given by L(θi) := {a(cos θi, sin θi) : a > 0} (called, for convenience,

isochronicity radials), θi ∈ (0, 2π), i = 1, . . . , k such that all periodic solutions spend the

time θi to go from the positive x-axis to L(θi), for every i = 1, . . . , k.

The 0-strong isochronous center is referred to the case of no isochronicity radials and

∞-strong isochronous systems to the case of infinite ones. Obviously, a uniformly (or

rigid) isochronous center is the ∞-strong isochronous center.
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1.3 Piecewise systems with a line of discontinuities

Consider the following class of piecewise planar systems of ordinary differential equa-

tions with Σ = {(x, y) : x = 0} given by

(ẋ, ẏ) =

{
(−y + P−(x, y, λ−), x+Q−(x, y, λ−)), if x ≤ 0,

(−y + P+(x, y, λ+), x+Q+(x, y, λ+)), if x > 0,
(1.3)

where λ = (λ−, λ+) ∈ Rm are parameters, P±(x, y, λ±) and Q±(x, y, λ±) are convergent

real series which start at least with quadratic monomials in the variables x and y. We

call the system defined in the left half-plane (x ≤ 0) by the left system, and the system

defined in the right half-plane (x > 0) by the right system. This system has the origin as

a monodromic equilibrium point, that is, there are no orbits tending or leaving the point

with a given direction.

We highlight that we only consider crossing periodic orbits for the piecewise linear

systems (1.3), i.e. the two sides of the periodic orbit crosses transversally the separation

line Σ and, at these crossing points, both vector fields points towards the same half-plane.

Then, these periodic orbits have only isolated points of intersection with the curve of

separation. In particular, when we consider limit cycles for piecewise system we refer to

them as crossing limit cycles.

With the results presented here one may notice that piecewise planar differential equa-

tions have richer dynamics than smooth dynamical systems.

There exist many problems in science where their mathematical models are given by

planar piecewise systems whose phase plane is composed by two “uncoupled” smooth

systems matched by a straight line, as in the following example where h(x, y) = x.

Example 1.24 (Formulation of a Mechanical Problem). Consider the movement without

friction of a ball of mass m on a curve under the action of the gravitational potential.

Assume that this curve is given by the function

y(x) =

{
F (x), if x ≤ 0,

G(x), if x > 0,

where G′(x) = x + O(2), F ′(x) = x + O(2), and F and G are analytic at zero, see

Figure 1.3.

Let s ≥ 0 (resp. s ≤ 0) be the arc length starting at (0, 0) of the curve y(x) = G(x)

(resp. y(x) = F (x)) (see [31, 55]), where the potential energy is the gravitational potential

V (y) = mgy (where m represents the mass and g stands for the gravitational constant).

Then, for the left half-plane (resp. right half-plane) the differential equation governing the
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Figure 1.3: Movement of a ball on a curve

movement of the ball is given by a conservative second order scalar differential equation

with total energy given by the Hamiltonian function

H(s, w) =
m

2
s2 + V (w), with w = ṡ.

Then, the piecewise differential equation governing the movement of the ball is

(ṡ, ẇ) =


(
w,− 1

m

dV (yF (s))

ds

)
, if s ≤ 0,(

w,− 1

m

dV (yG(s))

ds

)
, if s > 0.

It is well-known that the two smooth vector fields (ẋ, ẏ) = (−y + P−(x, y, λ−), x +

Q−(x, y, λ−)) and (ẋ, ẏ) = (−y + P+(x, y, λ+), x + Q+(x, y, λ+)) that determine (1.3)

have the origin as a nondegerenate linear center. In this case, there exists a simple way to

determine if the origin of the planar piecewise system (1.3) is a center by using reversibility

with respect to the separation line.

Definition 1.25. A system (1.3) is reversible with respect to a straight line l through O

if it is invariant with respect to reflection about l and a reversion of the time t.

From Definition 1.25, it follows that if the system is invariant under the change

(x, y, t) 7→ (x,−y,−t) or (x, y, t) 7→ (−x, y,−t) we say that it is time-reversible with

respect to the x-axis or y-axis, respectively. Then, the next proposition is valid.

Proposition 1.26. The planar piecewise system (1.3) has a center at the origin if it is

a reversible system, that is invariant with respect to the change of variables (x, y, t) 7→
(x,−y,−t).

Suppose that a planar smooth system has a conserved quantity E and the origin is

an isolated equilibrium. It is well known that, if the origin is an isolated fixed point and

a minimum local of E, then it is a center. However, for a piecewise system we must also

require that the energy function of the left and right systems coincide on the separation

line as we can see in Proposition 2.1 of [18]. For convenience, we state it below:
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Proposition 1.27 ([18]). If the left system and the right one in (1.3) have first integrals

H−(x, y) and H+(x, y) near O, respectively, and either they are even functions in y or

they verify H−(0, y) ≡ H+(0, y), then the origin O of (1.3) is a center.

Example 1.28. Consider the class of piecewise Hamiltonian systems

(ẋ, ẏ) =

{
(y,−x+ ax2), if x ≤ 0,

(y,−x+ bx2), if x > 0,

where (a, b) ∈ R2. For all (a, b) ∈ R2, the Hamiltonian function is given by

H(x, y) ==


H−(x, y) =

y2 + x2

2
− ax

3

3
, if x ≤ 0,

H+(x, y) =
y2 + x2

2
− bx

3

3
, if x > 0.

Note that O is a nondegenerate center for the left and right systems. Furthermore,

H±(0, y) = H±(0, y) = y2/2, for every (0, y) ∈ Σ, then by Proposition 1.27 the origin

is a center. In addition, from Definition 1.12, it is a continuous piecewise Hamiltonian

system.

Note that it is not so easy, for any type of planar piecewise system, to find a solution for

the center problem, that is, determining conditions for O to be a center is quite different

from the case of analytic systems. For example, in the next system, the origin is a center

even if the systems that define it do not have a center at the origin.

Example 1.29. Consider the following piecewise system

(ẋ, ẏ) =

{
(2y + 4y3, 3x2), if x ≤ 0,

(2y + 4y3,−3x2), if x > 0.
(1.4)

The origin of (1.4) is a center, by Proposition 1.26, because there is invariant by the

change of variables (x, y, t) → (x,−y,−t). However, the phase portrait near the origin

of the left and the right systems are not of center type, as indicated in Figure 1.4 (i)

and (ii), respectively. In fact, the origin is the only singular point of cusp type for both

systems (it can be proved by using the blow-up thecnique). But the origin is a center of

(1.4), as we see in Figure 1.4 (iii).

On the other hand, if the origin is a center for both systems, we cannot ensure that the

piecewise system has a center at the origin. The next two examples (given as propositions

in [68]) reinforce this statement.

Example 1.30 ([68]). Consider the piecewise potential Hamiltonian system given by

(ẋ, ẏ) =

{
(−y, V ′1(x)), if y ≥ 0,

(−y, V ′2(x)), if y < 0,
(1.5)
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Figure 1.4: (i) phase portrait of the left system of (1.4), (ii) phase portrait of the right
system of (1.4), and (iii) phase portrait of (1.4)

where the analytic potentials are V1 = ax2 + O(x2) and V2 = bx2 + O(x2), with a > 0

and b > 0. This system has a center at the origin if and only if there exists an analytic

diffeomorphism g at the origin such that V2 = g(V1).

Example 1.31 ([68]). Let F be an analytic function at 0 with F (0) = F ′(0) = 0 and

|F ′′(0)| < 1. The piecewise potential Hamiltonian system given by

(ẋ, ẏ) =

{
(−y, x+ F ′(x)), if y ≥ 0,

(−y, x− F ′(x)), if y < 0,
(1.6)

is a center if and only if F is even.

In fact, for the piecewise systems (1.5) and (1.6) we need additional properties to

ensure that the origin is a center when considering the union of two systems with a

center.

1.4 Return map and period function

Some efforts were made to the center problem for planar piecewise system with a

separation line (see [16, 31, 33, 52, 62]). This study is usually done, as follows, by finding

the two half-return maps associated with the two smooth differential equations that define

them and the whole return map is the composition of these two maps.

Remark 1.32. In what follows we consider λ− ∈ Rj and λ+ ∈ Rk, so that j + k = m is

the dimension of the parameter space.

Definition 1.33 ([31]). Consider the planar piecewise differential system (1.3).

(i) The function Π− : (0, α) × Rj → R−, where (0, α) ⊂ R+ is an interval on the

semi-axis OY +, which gives, for each point (0, y) ∈ R2 with 0 < y < α and fixed

parameter λ− ∈ Rj, the first intersection, in positive time, of the orbit that passes
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through (0, y) at t = 0 with the semi-axis OY −, is called left half-return map asso-

ciated to (1.3).

(ii) The function Π+ : (β, 0)× Rk → R+, where (β, 0) ⊂ R− is an interval on the semi-

axis OY −, which gives, for each point (0, y) ∈ R2 with β < y < 0 fixed parameter

and λ+ ∈ Rk, the first intersection, in positive time, of the orbit that passes through

(0, y) at t = 0 with the semi-axis OY +, is called right half-return map associated to

(1.3).

Hence, the return map is defined as (ρ, λ) 7→ Π(ρ, λ), where

Π(ρ, λ) = Π+(Π−(ρ, λ−), λ+), see Figure 1.5. (1.7)

Figure 1.5: Return map Π(ρ, λ) for system (1.3)

The displacement function is given by

d(ρ, λ) = Π(ρ, λ)− ρ, (1.8)

where d(0, λ) = 0, for all λ ∈ Rm, since both vector fields that define (1.3) have a

equilibrium at the origin and we are avoiding sliding motion. Therefore, the origin is a

fixed point of d.

It is easy to conclude that the origin is a center of system (1.3) if and only if d(ρ, λ) = 0,

for 0 < ρ � 1. The isolated zeros of d(ρ, λ) = 0 near ρ = 0 correspond to limit cycles

around the origin. The analyticity of P± and Q± implies that the half-return maps Π±

are analytic, for sufficiently small |ρ|, and then the displacement function is analytic and

so it can be expanded as

d(ρ, λ) = V1ρ+ V2ρ
2 + · · · , (1.9)

where Vi is called the i-th Lyapunov constant of the piecewise system (1.3). For k ≥
1, the Lyapunov constant Vk belongs to the ideal 〈V1, V2, V3, . . . , Vk−1〉 over the ring

R{λ1, λ2, . . . , λm}λ0 , for each λ0 ∈ RN . Therefore, when an expression for Vk is given, it
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makes sense only when V1 = V2 = · · · = Vk−1 = 0, and the origin is a center if and only if

all the Lyapunov constants in (1.9) vanish.

Note that as we consider just half-returns for determining the displacement function

(1.8) for nondegenerate equilibrium points of planar piecewise systems, the expressions

found for the Lyapunov constants are even larger than the ones obtained in smooth vector

fields. In fact, in the smooth case there appear some cancellations related to considering

the flow that gives a complete turn around the origin.

It is worth remembering that in planar smooth differential systems the stability of a

nondegenerate weak focus (equilibrium point with complex eigenvalues) is given by the

sign of the trace, if it is different from zero. In planar piecewise systems this stability is

reduced to the computation of the Lyapunov constants (see [3]). Furthermore the first

nonzero constant allows us to find bounds for the maximum number of small periodic

orbits which appear from this equilibrium point via a degenerate Hopf bifurcation.

For smooth systems the first nonzero Vj occurs for odd j, and the order of a weak focus

O is defined as k if the first nonzero Lyapunov constant is V2k+1 (see [2] for instance).

But this is not true for piecewise systems, because this first nonzero constant can be any

natural number. In order to investigate the center-focus and cyclicity problems for (1.3)

we have also to consider the even constants, and the order of a weak focus is defined as

in the following definition.

Definition 1.34. The origin is a weak focus of order k of (1.3) if V1 = V2 = · · · = Vk = 0

and Vk+1 6= 0.

Thus, if we have a weak focus of order k, the displacement function can be expanded

as

d(ρ, λ) = Vk+1ρ
k+1 + Vk+2ρ

k+2 + · · · .

Remark 1.35. The center problem can be investigated by computing the Lyapunov

constants and finding algebraic equalities satisfied by these coefficients, see more details

in [2]. As indicated in [31, 52], at most k limit cycles bifurcate from a focus of order k of

(1.3) and this number can be attained. A difference between (1.3) and a smooth system is

that it is possible to generate k limit cycles only from V1, V2, . . . , Vk+1 while for a smooth

system, V1, V3, . . . , V2k+1 must be used.

According to Remark 1.18, the period function can be defined as T : (0, α) → R+,

where (0, α) is an interval of the semi-axis OY + and for each point (0, ρ) ∈ R2 with

0 < ρ < α, T (ρ) gives the time required for the flow of (1.3) to intercept again the

semi-axis OY +. Then, in order to explicitly determine the period function for planar
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piecewise systems with a separation line given by (1.3), we need to find the two half-

period functions, as follows, associated with the two smooth differential equations that

define them and then consider their sum.

Definition 1.36 ([31]). Consider the planar differential system (1.3) with a fixed param-

eter λ = (λ−, λ+) ∈ Rm.

(i) The function T− : (0, α) × Rj → R−, where (0, α) ⊂ R+ is an interval on the

semi-axis OY +, which gives, for each point (0, y) ∈ R2 with 0 < y < α and fixed

parameter λ− ∈ Rj, the smallest positive time required to the orbit that passes

through (0, y) at t = 0 to reach the semi-axis OY −, is called left half-period function

associated to (1.3).

(ii) The function T+ : (β, 0) × Rk → R+, where (β, 0) ⊂ R− is an interval on the

semi-axis OY −, which gives, for each point (0, y) ∈ R2 with β < y < 0 and fixed

parameter λ+ ∈ Rk, the smallest positive time required to the orbit that passes

through (0, y) at t = 0 to reach the semi-axis OY +, is called right half-period function

associated to (1.3).

Hence the period function is defined as (ρ, λ) 7→ T (ρ, λ), where

T (ρ, λ) = T−(ρ, λ−) + T+(Π−(ρ, λ−), λ+). (1.10)

Figure 1.6: Period function T (ρ, λ)

Remark 1.37. Using the fact that the solution of a differential equation is smoothly

dependent on its initial value and by using the Implicit Function Theorem, it can be

proved that Π−, Π+, T−, and T+ are smooth functions, then Π and T are also smooth.

As in the center problem, the discussion on isochronicity for piecewise systems is more

complicated than those for smooth systems. For example, both systems defined in the two

half-planes can have an isochronous center at the origin, but O may not be an isochronous

center of the piecewise system. The next example can be found in [18].
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Example 1.38. The planar piecewise system given below is non-isochronous

(ẋ, ẏ) =

{
(−y − x2, x− 4xy), if y ≥ 0,

(−y, x), if y < 0,
(1.11)

but the two systems that define it have an isochronous center. In fact, one is the linear

isochronous center and the other is equivalent to the quadratic isochronous center classified

in [15]. And the period function is either equal to π for the system in the lower half-

plane and 4 arctan(ρ +
√

1 + ρ2) (to be proved in the last equality of equation (3.27) of

Section 3.4) for the system in the upper half-plane. Then, the period function is given by

π + 4 arctan(ρ+
√

1 + ρ2), for all ρ in the domain, then the origin is not an isochronous

center of (1.11).

In what follows, we use the symbol f ′(ρ, λ) in order to denote the derivative of a given

function f with respect to the first variable ρ.

Definition 1.39. A ρ0 for which T ′(ρ0, λ) = 0 is called a critical period. In addition,

if ρ0 is a simple zero of T ′, that is T
′′
(ρ0, λ) 6= 0, it is called a simple critical period or

hyperbolic critical period.

For each fixed parameter λ0 = (λ−0 , λ
+
0 ), the period function (1.10) can be indicated

as a power series

T (ρ, λ) = 2π +
∞∑
j=1

Tj(λ)ρj, (1.12)

for |ρ| and |λ − λ0| sufficiently small, where Tj(λ) ∈ R{λ1, λ2, . . . , λm}λ0 , the ring of

convergent power series at λ0, and Tj(λ) are known as the period constants of the center.

These period constants are homogeneous polynomials in the parameters of the systems

([29]), and they can be found by the procedure we shall describe and use in Section 3.1,

together with a computer algebra system.

From [21] one can conclude that the period constants for planar quadratic differential

systems are polynomials in the components of the bifurcation parameter λ. This is also

true for any planar polynomial system for both period and Lyapunov constants, see for

example [29] or [84]. Furthermore, it is well known that for analytic systems the first

nonzero Tj occurs always for even j and the order of a weak center O is defined as k ≥ 0

if the first nonzero period constant is T2k+2. For the piecewise case we will consider the

order of a weak center given by the next definition:

Definition 1.40. The origin is a weak center of finite order k of the system (1.3) for the

parameter λ = λ0 if

T ′(0, λ0) = T ′′(0, λ0) = · · · = T (k)(0, λ0) = 0, but T (k+1)(0, λ0) 6= 0,
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where the derivatives are taken with respect to the first variable of T . If T (k+1)(0, λ0) = 0,

for all k, the origin is a weak center of infinite order.

Note that, if the origin is a weak center of infinite order, we have that T (ρ, λ0) is

constant for all ρ, so the origin is an isochronous center. Actually, a consequence of (1.12)

is the following characterization for isochronicity: the origin is an isochronous center if

and only if Tj = 0, for all j ∈ N. Then, the period constants play the same role when

studying isochronicity as Lyapunov constants when characterizing centers.

1.5 Bifurcation of critical points of the period function

In this section we intend to formalize some definitions and results for the general

piecewise system (1.3) and show how we study the bifurcation of critical points of the

period function ρ 7→ T (ρ, λ) for that piecewise system. That is, roughly speaking, we

deal with the solutions of the equation T ′(ρ, λ) = 0, near ρ = 0, as the parameter λ

varies. We basically present here what was done for smooth vector fields in [21] with

some adaptations.

Before the study of the bifurcation of critical points of T , it is worth remembering

here the next two theorems, which are proved in many textbooks, see for instance [96].

Theorem 1.41 (Implicit Function Theorem). Let fj(x1, . . . , xm, y1, . . . , yn) (1 ≤ j ≤ n)

be smooth functions of the variables indicated, such that at O = (0, . . . , 0) we have each

fj(O) = 0 and the matrix Jyf :=
(
∂fj
∂yk

(O)
)

is nonsingular. Then, in some neighbor-

hood of O, there exist unique functions hj(x1, . . . , xm), with hj(0, . . . , 0) = 0, such that

fj(x1, . . . , xm, y1, . . . , yn) = 0, for each j if and only if yj = hj(x), for each j.

In particular, if f(x, y) is such that f(0, 0) = 0 and ∂f
∂y

(0, 0) 6= 0, there exists a unique

function h(x) with h(0) = 0 such that, in some neighborhood of (0, 0), f(x, y) = 0 if and

only if y = h(x).

Theorem 1.42 (Weierstrass Preparation Theorem). Let F (x, λ) be an analytic function

with x ∈ R and λ ∈ Rn in a neighborhood of the origin. Let k be the smallest natural

number such that

F (0, 0) = 0,
∂F (0, 0)

∂x
= 0, . . . ,

∂k−1F (0, 0)

∂k−1x
= 0,

∂kF (0, 0)

∂kx
6= 0.

Then in some neighborhood |x| < ε, |λ| < δ of the point (0, 0) the function F (x, λ) can be

represented as

F (x, λ) =
(
xk + Ak−1(λ)xk−1 + · · ·+ A1(λ)x+ A0(λ)

)
φ(x, λ),

where φ(x, λ) is an analytic function not equal to zero in the chosen neighborhood and

A1(λ), . . . , Ak(λ) are analytic functions for |λ| < δ.
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From Theorem 1.42, it follows that the equation F (x, λ) = 0, in a sufficiently small

neighborhood of the point (0, 0), is equivalent to the equation

xk + Ak−1(λ)xk−1 + · · ·+ A1(λ)x+ A0(λ) = 0,

whose left-hand side is a polynomial with respect to x. Thus, the Weirstrass Preparation

Theorem reduces the study of zeros of an analytic function F (x, λ) to the study of the

number of zeros of a polynomial of degree k.

Remark 1.43. By Remark 1.37, the period function of (1.3) is an analytic function, and

so is T ′(ρ, λ).

For the analytic function (ρ, λ) 7→ T ′(ρ, λ), we write its expansion in series using the

Taylor series of T in (1.12). Then, near ρ = 0, T ′(ρ, λ) = T1(λ)+2T2(λ)ρ+3T3(ρ, λ)ρ2+· · · ,
where each function λ 7→ Ti(λ) is analytic and, for each λ, the series is convergent in some

neighborhood of ρ = 0. Given a point λ0 where T ′(0, λ0) = 0 (T1(λ0) = 0), we wish to

know how many zeros the function ρ 7→ T ′(ρ, λ) has near ρ = 0 for perturbations λ of λ0.

The bifurcation parameter λ0 has finite order k if the origin is a weak center of order

k for λ = λ0 and, consequently, from Definition 1.40, we have T1(λ0) = · · · = Tk(λ0) = 0

and Tk+1(λ0) 6= 0, and the parameter λ0 has infinite order if the origin is a weak center

of infinite order for λ = λ0, and then Ti(λ0) = 0 for all i ≥ 1.

Definition 1.44. Let (ρ0, λ0) be a critical period which arises from a bifurcation of a

weak center. The period T (ρ0, λ0) is called a local critical period.

It remains, therefore, to single out what it means that there exist k local critical

periods bifurcating from a weak center of finite order at the origin.

Definition 1.45. Consider the vector field (1.3) for which the center at the origin cor-

responding to the parameter value λ0 is a weak center of order k. We say that k local

critical periods bifurcate from the weak center if, for every ε > 0, sufficiently small, there

exists a neighborhood W of λ0 such that, for any λ ∈ W , T (ρ, λ) has at most k critical

points in U := (0, ε). Moreover, any neighborhood W of λ0 contains a point λ1 ∈ W such

that T ′(ρ, λ1) = 0 has k solutions in U.

Remark 1.46. It is clear that we are counting only the positive solutions of T ′(ρ, λ) = 0,

because the nontrivial zeros of T ′ are the positive and negative intersection of the critical

periodic orbit with the y-axis.

Note that the next lemma is an immediate consequence of the Weierstrass Preparation

Theorem (Theorem 1.42).
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Lemma 1.47. Consider the planar piecewise differential system (1.3) with a weak center

at the origin O, corresponding to a parameter value λ0. If the weak center has order k,

then no more than k local critical periods bifurcate from this weak center at the parameter

value λ0.

Proof. If λ0 is a finite parameter of order k, i.e. the origin is a weak center of order k,

then at most k zeros bifurcate from (0, λ0). This is equivalent to the proof for the cyclicity

of limit cycles of finite codimension (see [86]). In this case the period function becomes

T ′(ρ, λ0) = (k + 1)Tk+1(λ0)ρk + O(ρk+1), and it follows from Weierstrass Preparation

Theorem that there exist functions U(ρ, λ), with U(0, λ0) 6= 0 and α0(λ), . . . , αk−1(λ) in

neighborhoods of (0, λ0) and λ0, respectively, such that

T ′(ρ, λ) = U(ρ, λ)

(
ρk +

k−1∑
j=0

αj(λ)ρj

)
.

It follows that the study of zeros of T ′(ρ, λ) = 0 has been changed into the study of the

number of zeros of a polynomial equation of degree k

ρk +
k−1∑
j=1

αj(λ)ρj = 0,

and, consequently, it has at most k zeros. Then, the number of critical periods bifurcating

from a weak center of order k is k.

Remark 1.48. It is worth mentioned that in a piecewise system, we can use the Weier-

strass Preparation Theorem to determine the highest lower bound for criticality, but in

the analytical case the proof has to be performed by using another method, since the ideal

generated by all period constants is equals to the ideal generated only by those period

constants of even orders ([29]).

The case of a weak center of infinite order, i.e. an isochronous center, is much more

delicate and the following remark can be useful for solving the bifurcation problem in a

neighborhood of the isochronous center corresponding to a parameter value λ0.

Remark 1.49. As the coefficients Tk(λ) of the period function (1.12) are in the Noetherian

ring R{λ1, λ2, . . . , λm}λ0 of convergent power series at λ0, the ideal generated by all the

Taylor coefficients, which we will denote by I, is finitely generated. That is,

I = 〈T1, . . . , Tk〉 =

{
k∑
j=1

hjTj : h1, . . . , hk ∈ R[λ1, λ2, . . . , λm]

}
,

for some k. Then, I is called the ideal generated by the polynomials T1, . . . , Tk, which

are called generators or basis. For finding such k generators, these coefficients are tested



1.6. A result on the criticality of isochronous centers 29

successively in order to detect if all element of the sequence is already in the ideal generated

by its predecessors. This can be made, for example, by using mathematical algorithms

for checking ideal membership which rely on the computation of a Gröbner basis for

the ideal, see more details in [84]. In this case the origin has an isochronous center if

T1 = · · · = Tk = 0.

Lemma 1.50. Consider the planar piecewise differential system (1.3) with an isochronous

center at the origin O, corresponding to a parameter value λ0. If all the Taylor coefficients

of the function T ′(ρ, λ0) are in the ideal 〈T1, . . . , Tk〉 over R{λ1, λ2, . . . , λm}λ0, then there

are at most k − 1 local critical periods which bifurcate from the isochronous center at λ0.

Proof. If all the coefficients are generated by 〈T1, T2, . . . , Tk〉, the functions Ti, for i > k,

are written in terms of the functions in these initial segments, i.e. Ti = αi1T1 + αi2T2 +

· · ·+ αikTk, for i > k, and then

T ′(ρ, λ) =
k∑
i=1

Ti(λ)ρi−1
(
1 + φ(ρ, λ)

)
,

where φ(0, λ) = 0, for i = 0, 1, 2, . . . , k. Thus, the bifurcation function behaves as a

polynomial of degree k−1 near λ0 and at most k−1 zeros near ρ = 0 bifurcate for values

of λ near λ0.

Then, the problem of bifurcation from a zero is reduced to obtaining the smallest value

k such that the corresponding initial segment 〈T1, T2, . . . , Tk〉 is a basis for the ideal of all

Taylor coefficients for the expansion of the period function (see Remark 1.49).

Remark 1.51. Note that it is possible to generate k critical periods bifurcating from a

weak center of order k for (1.3) only by using T1, T2, . . . , Tk+1. Now, for smooth systems,

T2, T4, . . . , T2k+2 must be used. This is analogous to the statement made for limit cycles

in Remark 1.35. For example, consider a smooth planar quadratic system. Given a point

λ0 for which T ′(0, λ0) = 0, the maximum number of critical periods that can bifurcate

from (0, λ0) is 2 using T2(λ0), T4(λ0), and T6(λ0), see [21]. While for the piecewise system

(1.3), it is enough to use T1(λ0), T2(λ0), and T3(λ0) in order to obtain the same number of

critical periods bifurcating from the origin. Then, it is expected that the piecewise system

can have the double of the number of local critical periods than in the smooth case.

1.6 A result on the criticality of isochronous centers

Since it is not always possible to determine k such that 〈T1, T2, . . . , Tk〉 is the basis

of all period constants, other techniques for determining the criticality of isochronous
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centers have been developed. In general, these results are based on the results used for

solving the cyclicity problem. That is, fix a class of systems of type (1.3) and determine

the maximum number of limit cycles which bifurcate from the origin under the variation

of the parameters inside this class of systems.

In this section we present the technique that can be used to increase the number of

critical periods with respect to the bounds obtained by linear developments. These results

are introduced in [58] and they are better developed in [54, 56] for studying cyclicity

in families of centers. Such results were applied in [88] to find the highest number of

critical periods in a class of planar smooth systems of polynomial differential equations

for fixed degree having a center.The authors stated and proved the next results. We judge

convenient to write their proofs here for a better understanding of the proofs of the results

presented in Sections 3.3 and 3.4.

We consider a family of isochronous centers with some parameters, and add a pertur-

bation that keeps the center property. The following proposition shows the structure of

the first order terms of the period constants for a perturbed family of isochronous centers.

Proposition 1.52 ([88]). Consider a polynomial family of isochronous centers parame-

trized by A ∈ RP , for some P ∈ N, and add a polynomial perturbation with coefficients

λ ∈ RN , for some N ∈ N, which does not break the center property.

(i) The k-th period constant Tk of the perturbed system is a polynomial on the pertur-

bative parameters of the form

Tk =
N∑
j=1

g
(j)
k (A)λj +O2(λ1, λ2, . . . , λN), (1.13)

where g
(j)
k (A) are polynomials in A which are the coefficients of the linear part of

Tk with respect to λ and O2(λ1, λ2, . . . , λN) denotes a sum of monomials of degree

at least 2 on the parameters.

(ii) The matrix of coefficients of linear parts of the first m period constant is the m×m
matrix Gm(A), whose element in position (i, j) is g

(j)
i (A) in (1.13). If detGN(A)=0

and detGN−1(A) 6= 0, there exists a linear change of variables such that the first

N − 1 first period constants take the form

Tk = uk +O2(u1, u2, . . . , uN), (1.14)

for k = 1, . . . , N − 1, where the linear part of Tk is uk, uN := λN , and we denote

the higher order terms by O2(u1, u2, . . . , uN).
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(iii) Under the assumptions of (ii), the first N + M period constants for some M ∈ N
can be written as

Tk =

{
vk, if k = 1, . . . , N − 1,∑N−1

j=1 g̃
(j)
k (A)vj + fk−N(A)uN +O2(v, uN), if k = N, . . . , N +M,

(1.15)

where v = (v1, . . . , vN−1) are new variables, fk−N(A) and g̃
(j)
k (A) are the correspond-

ing coefficients of v1, v2, . . . , vN−1, uN , which are rational functions in A ∈ RP , and

O2(v, uN) are analytical functions of order two in v1, . . . , vN−1, uN .

Proof. (i) Recall that the period constants are polynomials in the parameters of the

system. Because the parameter A does not break the isochronicity of the system, they

cannot appear isolated, then when considering the power series expansion of the period

constants Tk, its linear part must be a linear combination of the perturbative parameters

λ with the coefficients being polynomials in A.

(ii) Consider the system of N equations
∑N

j=1 g
(j)
k λj = uk. Then, we can write it as a

system with unknowns λ1, . . . .λN−1 of the form

g
(1)
1 (A)λ1 + g

(2)
1 (A)λ2 + · · · + g

(N−1)
1 (A)λN−1 = u1 − g(N)

1 (A)λN ,

g
(1)
2 (A)λ1 + g

(2)
1 (A)λ2 + · · · + g

(N−1)
2 (A)λN−1 = u2 − g(N)

2 (A)λN ,
...

...
. . .

...
...

g
(1)
N−1(A)λ1 + g

(2)
N−1(A)λ2 + · · · + g

(N−1)
N−1 (A)λN−1 = uN − g(N)

N−1(A)λN .

(1.16)

By applying the Cramer’s rule to this system, since detGN−1(A) 6= 0, we have that the

system of equations (1.16) has a unique solution which determines a linear change of

variables that proves (1.14). By using this method, it is clear that the coefficients which

define the change of variables are rational functions in A.

(iii) By using (1.14) define the new variables v1, v2, . . . , vN−1, vN , where

vk = hk(u) := uk +O2(u1, . . . , uN), for k = 1 . . . , N − 1,

hN(u) := uN (then vN = uN) and u = (u1, . . . , uN) (note that hk(u) = Tk). We observe

that these new variables are related to the coordinates u1, . . . , uN−1, uN by the equation

F = 0, where

F (v1, v2, . . . , vN−1, vN , u1, u2, . . . , uN−1, uN)=(h1(u)−v1, . . . , hN−1(u)−vN−1, hN(u)−vN).

The Jacobian matrix of F in every (v̂, û) = (v̂1, v̂2, . . . , v̂N−1, v̂N , û1, û2, . . . , ûN−1, ûN) is

given by

DF (v̂, û) =


−1 . . . 0 0 ∂h1

∂u1
(û) . . . ∂h1

∂uN−1
(û) ∂h1

∂uN
(û)

...
. . .

...
...

...
. . .

...
...

0 . . . −1 0 ∂hN−1

∂u1
(û) . . . ∂hN−1

∂uN−1
(û) ∂hN−1

∂uN
(û)

0 . . . 0 −1 ∂hN
∂u1

(û) . . . ∂hN
∂uN−1

(û) ∂hN
∂uN

(û)

 = [−IN |J ],
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where IN denotes the identity matrix N × N and J is the matrix N × N of the partial

derivatives of the h′ks. Since u1, . . . , uN−1 are independent, then the matrix J has rank N

and the Implicit Function Theorem 1.41 can be applied to write u1, . . . , uN−1 as functions

of v1, . . . , vN−1, vN = v1, . . . , vN−1, uN . That is,

uk = Fk(v1, . . . , vN−1, uN), for k = 1, . . . , N − 1, (1.17)

for some real function Fk and FN(v1, . . . , vN−1, uN) ≡ uN from the uniqueness. Then, by

applying (1.13) from part (i) and (1.14) from part (ii), together with the change given

by (1.17), the period constants take the form (1.15), where g̃
(j)
N+d(A) and fd(A), for d =

0, . . . ,M and j = 1, . . . , N − 1, are the corresponding coefficients of v1, v2, . . . , vN−1, uN ,

respectively, and they are functions of A ∈ RM , and each O2(v, uN) is an analytical

function of order at least two in v1, v2, . . . , vN−1, uN due to the application of the Implicit

Function Theorem. Then, the statement follows.

Now we can present the aforementioned results which are useful to obtain a better

lower bound for the local criticality on a parametrized family of isochronous centers.

Theorem 1.53 ([88]). We consider a polynomial family of isochronous centers parame-

trized by A ∈ RP , for some P ∈ N, and a polynomial perturbation with coefficients λ ∈ N,

for some N ∈ N, which does not break the center property. We denote by Gm(A) the

m×m matrix as defined in Proposition 1.52.

(i) If there exists A∗ ∈ RP such that detGN(A∗) 6= 0, then the linear parts of the first

period constants have rank N and at least N−1 simple critical periods can bifurcate.

(ii) If there exists A∗ ∈ RP such that detGN(A∗) = 0, detGN−1(A) 6= 0, fi(A
∗) = 0, for

i = 0, . . . ,M−1, fM(A∗) 6= 0 (where f0, . . . , fM are those defined in (1.15)) and the

Jacobian determinant satisfies J(A∗) := det Jac(f0,...,fM−1)(A
∗) 6= 0, then M extra

critical periods can bifurcate, which leads to a total of at least N + M − 1 critical

periods.

Proof. (i) By the hypothesis the matrix of the coefficients of the linear parts of the first N

period constants GN(A∗) has determinant nonzero, and we can apply the results obtained

in Proposition 1.52 (ii) to obtain a change of variables of N new independent variables

u1, . . . , uN such that the first period constants are written as

Ti = ui +O2(u1, . . . , uN), i = 1, . . . , N.

Using the Implicit Function Theorem 1.41, it is clear that we can write Ti = vi, for

i = 1, . . . , N . Then, the first N coefficients of the period function are independent and
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this implies the existence of a curve, in the parameter space, of weak centers of order N−1,

or the ideal of all Taylor coefficients for the expansion of the period function has at least

N generators (see Remark 1.49). By applying Weierstrass Preparation Theorem 1.42, as

described in Section 1.5, at least N − 1 critical periods can bifurcate near such a curve.

(ii) About the condition detGN−1(A∗) 6= 0, for some A∗ ∈ RP , we can apply Propo-

sition 1.52 (iii) and write the first N + M period constants as (1.15). If we consider the

problem in the manifold {v1 = v2 = · · · = vN−1 = 0}, the structure becomes

Tk =

 0, if k = 1, . . . , N − 1,∑N−1
j=1 uN

(
fk−N(A) +

∑∞
l=1 f

(l)
k−N(A)ulN

)
, if k = N, . . . , N +M,

for some functions f
(l)
d (A) with d = 0, . . . ,M . As by assumption there exists A∗ ∈ RP

such that the Jacobian determinant J(A∗) 6= 0, the Implicit Function Theorem guarantees

that in a neighborhood of A = A∗ and uN = 0, the following change of variables can be

performed in TN , . . . , TN+M−1:

vN+k = fk(A) +
∞∑
l=1

f
(l)
k (A)ulN , if k = 0, . . . ,M − 1.

As we suppose that fi(A
∗) = 0, for i = 0, . . . ,M − 1, but fM(A∗) 6= 0, we rewrite

TN+k =

 uNvN+k, if k = 0, ...,M − 1,

uN

(
fM(A∗) +

∑∞
l=1 f

(l)
M (A∗)ulN

)
=: uNvN+M , if k = M.

Finally, again by the Implicit Function Theorem, since we have obtained M new indepen-

dent variables, we get the existence of M extra critical periods.

The next corollaries tell us that the same conclusion is also valid when the number of

parameters is bigger than or equal to N.

Corollary 1.54 ([88]). We consider a polynomial family of isochronous centers para-

metrized by A ∈ RP , for some P ∈ N, and a polynomial perturbation with coefficients

λ ∈ Rm, for some m ∈ N where m ≥ N , which does not break the center property. For

each k ≤ m, we denote by Gk(A) the k× k matrix as defined in Proposition 1.52. If there

exists A∗ ∈ RP such that detGk(A
∗) 6= 0, then generically at least k − 1 simple critical

periods bifurcate from the origin.

Proof. The proof is straightforward by following the ideas of the proof of Theorem 1.53. If

detGk(A) is not identically zero, then as it is a polynomial and we have that detGk(A) 6=
0, except for a set of zero Lebesgue measure, which implies that the rank of GN(A) is N

and, therefore, N − 1 critical periods unfold.
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Corollary 1.55 ([88]). Under the same conditions of Corollary 1.54, if there exists A∗ ∈
RP such that detGk(A

∗) = 0, detGk−1(A∗) 6= 0, fi(A
∗) = 0, for i = 0, . . . , l−1, fl(A

∗) 6= 0

(where f0, . . . , fl are those defined in an analogous way as in Proposition 1.52(iii)) and

the Jacobian determinant satisfies J(A∗) := det Jac(f0,...,fl−1)(A
∗) 6= 0, then l extra critical

periods can bifurcate, which leads to a total of k + l − 1 critical periods.

Remark 1.56. We can restrict the analysis to a representative system of family (1.3).



CHAPTER 2

Period function for a family of planar
piecewise Hamiltonian systems

In this chapter we obtain the period function of the center at the origin for the family of

planar piecewise continuous Hamiltonian systems of ordinary differential equations given

by

(ẋ, ẏ) =

{
(y,−x− ax3), if x ≤ 0,

(y,−x− bx3), if x ≥ 0,
(2.1)

associated to the Hamiltonian function

H(x, y) =


1

2
y2 +

1

2
x2 +

a

4
x4, if y ∈ R, x ≤ 0,

1

2
y2 +

1

2
x2 +

b

4
x4, if y ∈ R, x ≥ 0,

(2.2)

with potential energy

V (x) =


1

2
x2 +

a

4
x4, if y ∈ R, x ≤ 0,

1

2
x2 +

b

4
x4, if y ∈ R, x ≥ 0,

(2.3)

where a and b are real numbers. The main tool used is the Picard–Fuchs equations for

algebraic curves that has been used in the study of the period function for smooth vector

field by many authors, see, for example, Chow and Sanders [23].

Remark 2.1. There exists functions that can be written as the integrals of a form over

a basis of cycles, called period integrals. Such functions satisfy a differential equation

known as Picard–Fuchs equation. In the simplest cases such equations has degree two

and the quotient of the derivative of these functions and themselves satisfies a first-order

ordinary differential equation that is quadratic in the unknown function, i.e. an equation

35
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of the form y′(x) = q0(x) + q1(x)y(x) + q2(x)y2(x), where q2 is nonzero, called Riccati

equation.

It is clear that system (2.1) is integrable with the piecewise Hamiltonian function (2.2)

that is known as its piecewise first integral. In other words, the solutions of system (2.1)

are contained in the level curves of (2.2). Furthermore, according to Example 1.13,

H+(x, y) = y2/2 + x2/2 + ax4/4, H−(x, y) = y2/2 + x2/2 + bx4/4, and then H+(0, y) =

H−(0, y), i.e. the level curves of H+ and H− intersect on the y-axis at the same points.

Therefore, from Proposition 1.27, the system (2.1) has a center at the origin.

Because the vector fields are continuous, it is not necessary to consider the classical

definition of Filippov vector fields (see Section 1.1). We remark that there is no sliding

or escaping segments, only crossing points.

Our strategy is to use the symmetries of the piecewise Hamiltonian system (2.1) to

define its period function as a linear combination of the period functions for the right-

system and the left-system. Then, to carry out a study of the period function of (2.1), first

of all we need to know the behavior of the period function for the smooth Hamiltonian

systems that define such a family.

2.1 Analysis of the smooth planar Hamiltonian system

In this section we make an analysis of the potential system associated to the Hamil-

tonian function

H(x, y) =
y2

2
+
x2

2
+
kx4

4
(2.4)

which has potential energy

V (x) =
x2

2
+
kx4

4
, (2.5)

given by {
ẋ = y,

ẏ = −x− kx3.
(2.6)

It is clear that due to a rescaling and a linear change of variables we can consider that

k = 1, if k > 0 or k = −1, if k < 0. In the case k = 1, the origin is a global center, and

if k = −1, the origin is a local center and there exist two saddle points located at (−1, 0)

and (1, 0) with a heteroclinic connection between them, as it can be seeing in Figure 2.1.

In both cases the origin is a center and there exists only one annular region foliated

by periodic orbits called period annulus, denoted by P , and its boundary by ∂P (see

Definition 1.15).

It is clear that system (2.6) is integrable with the Hamiltonian function (2.4) known

as its first integral. Note that H(0, 0) = 0 and that the system has a nondegenerate
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Figure 2.1: Phase portraits for family (2.6) and graphic of V in (2.5) for k = 1,−1

center at the origin. We can show that H(z) 6= 0 for every point z ∈ P different from

the origin ([48]). Thus we shall assume, without loss of generality, that H(z) > 0 for all

z ∈ P \ {(0, 0)}. In this case H(P) = [0, h0), where h0 ∈ R+ ∪ {∞} is the level curve of

the Hamiltonian that contains ∂P . Moreover, if h0 <∞ then P is bounded, otherwise P
is the whole plane and the center is global.

In addition one can prove that the set of all the periodic orbits in the period annulus

can be parametrized by the energy (see [30], for instance). More generally, if the system

is Hamiltonian, the parameter h that parametrize the continuum of periodic orbits of the

system is taken to be its energy. Thus, for each h ∈ (0, h0), we denote the periodic orbit

in P of energy level h by

γh := {(x, y) ∈ R2 : H(x, y) = h}, (2.7)

where H is the Hamiltonian (2.4) and the corresponding period function which assigns to

each value of the parameter h ∈ (0, h0) the period of the corresponding periodic orbit γh

by T (h).

Figure 2.2: Periodic orbit γh
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The period function T : [0, h0) → R+ associated to the Hamiltonian system can be

computed by means of

T (h) :=

∫
γh

dx

y
= 2

∫ x+(h)

x−(h)

dx√
2h− x2 − kx4/2

= 4

∫ x+(h)

0

dx√
2h− x2 − kx4/2

, (2.8)

for each h ∈ (0, h0), where x−(h) and x+(h) are the intersection points of γh with the

x-axis. Obviously, by the symmetry, we get x+(h) = −x−(h) and the last equality holds.

Clearly, T (h) is an analytic function on (0, h0) and, since the center is nondegenerate, it

is well known that it can be extended analytically to h = 0 (see [94]). Therefore, T (h) is

defined in [0, h0).

Remark 2.2. Due to the form of the period function (2.8) we can say that it depends

on k and it would be natural to denote it by Tk(h). However, for simplicity we only write

T (h).

Our goal is to study the monotonicity of the period function T (h) defined in (2.8).

For this, we use that it satisfies a second order Picard–Fuchs equation that will be given

in Lemma 2.3, and x(h) = T ′(h)/T (h) satisfies a Riccati equation, as it will be shown in

Corollary 2.4 (see Remark 2.1).

Lemma 2.3. If T (h) is the period function defined in (2.8) then it satisfies the following

homogeneous second order differential equation

4h(4kh+ 1)T ′′(h) + 4(8kh+ 1)T ′(h) + 3kT (h) = 0, (2.9)

for all h ∈ [0, h0).

Proof. In this case the Hamiltonian function is (2.4) and γh is as in (2.7). First we

define the expression Ij(h) =
∫
γh
xjydx, for j = 0, 1, 2, . . . , and we proceed closely as the

procedure developed in [39].

Since I ′j(h) =
∫
γh

xj

y
dx, we get

Ij(h) =

∫
γh

xjy2

y
dx =

∫
γh

xj
(
2h− x2 − k

2
x4
)

y
dx (2.10)

= 2hI ′j(h)− I ′j+2(h)− k

2
I ′j+4(h).

Differentiating the expression y2/2 + x2/2 + kx4/4 = h with respect to the variable x

we have ydy + (x + kx3)dx = 0. Using such an expression and integrating by parts, we



2.1. Analysis of the smooth planar Hamiltonian system 39

have

Ij(h) =

∫
γh

xjydx =

∫
γh

y

j + 1
dxj+1 = − 1

j + 1

∫
γh

xj+1dy

=
1

j + 1

∫
γh

xj+1

(
x+ kx3

y

)
dx

=
1

j + 1

∫
γh

xj+2 + kxj+4

y
dx

=
1

j + 1
[I ′j+2(h) + kI ′j+4(h)]. (2.11)

By using equation (2.11) we remove I ′j+4(h) of (2.10) and we obtain

(j + 3)Ij(h) = 4hI ′j(h)− I ′j+2(h). (2.12)

Taking j = 0, 1, 2 in expression (2.12), we have:

3I0(h) = 4hI ′0(h)− I ′2(h),
4I1(h) = 4hI ′1(h)− I ′3(h),
5I2(h) = 4hI ′2(h)− I ′4(h).

(2.13)

Note that along γh we have y2dy + (x+ kx3)ydx = 0, hence

0 ≡
∫
γh

(x+ kx3)ydx = I1(h) + kI3(h). (2.14)

Using the derivative of (2.14) and (2.11) with j = 0 we remove I ′3 and I ′4, from (2.13),

and we finally obtain

3I0(h) = 4hI ′0(h)− I ′2(h), (2.15)

4I1(h) = 4hI ′1(h) + (1/k)I ′1(h), (2.16)

(1/k)I0(h) + 5I2(h) = 4hI ′2(h) + (1/k)I ′2(h). (2.17)

We note that I1 and I ′1 do not appear in (2.15) or (2.17). By eliminating (2.16) we

consider the equation(
3 0
1
k

5

)(
I0

I2

)
=

(
4h −1
0 4h+ 1

k

)(
I ′0
I ′2

)
. (2.18)

Differentiating (2.18), we get(
−4h 1

0 4h+ 1
k

)(
I ′′0
I ′′2

)
=

(
1 0
1
k

1

)(
I ′0
I ′2

)
.

Then, we obtain the Picard–Fuchs equation for the algebraic curve y2 = 2h−x2−kx4/2

given by

I ′′0 (h) =
1

δ
(4hI ′0(h)− I ′2(h)), (2.19)

I ′′2 (h) =
1

δ

(
−4h

k
I ′0(h)− 4hI ′2(h)

)
. (2.20)
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where δ = −4h(4kh+ 1)/k.

By using (2.19) and (2.20) we have I ′2(h) and I ′′2 (h) as functions of I0(h) and its

derivatives. Differentiating again (2.19) and replacing I ′2(h) and I ′′2 (h) by the expressions

previously found, after some simplifications, we obtain

4h(4kh+ 1)I
(3)
0 (h) + 4(8kh+ 1)I ′′0 (h) + 3kI ′0(h) = 0.

Note that this proves (2.9) since I ′0(h) = T (h) (see equation (2.8)). Thus I ′′0 (h) = T ′(h)

and I
(3)
0 (h) = T ′′(h), and the lemma is proved.

Following the ideas presented in [53] we have the next corollary.

Corollary 2.4. Let T (h) be the function that satisfies (2.9). Then the function x(h)

defined by T ′(h)/T (h) verifies the Riccati equation

4h(4kh+ 1)x′(h) + 4h(4kh+ 1)x2(h) + 4(8kh+ 1)x(h) + 3k = 0, (2.21)

for all h ∈ [0, h0).

Proof. As T (h) > 0, for all h ∈ [0, h0), the function x(h) takes only finite values and

through direct calculations replacing x(h) = T ′(h)/T (h) and using equation (2.9) we can

prove equation (2.21).

Lemma 2.5. Consider the period function T (h) given in (2.8), for h ∈ [0, h0). Then,

T (0) = 2π, T ′(0) = −3kπ/2, and

T (h) = 2π − 3kπ

2
h+

105k2π

32
h2 − 1155k3π

128
h3 +O(h4) (2.22)

is the Taylor series of T around h = 0.

Proof. We write system (2.6) in polar coordinates x = r cos θ, y = r sin θ and we get

ṙ = kr3 sin θ cos3 θ =: R(r, θ), (2.23)

θ̇ = 1 + kr2 cos4 θ =: Θ(r, θ). (2.24)

Moreover, the ratio rh(θ) of γh given by (2.7) is the unique solution of

dr

dθ
=
R(r, θ)

Θ(r, θ)
,

with initial condition (r, θ) = (x+(h), 0) := (r0, 0), where r0 is the smaller positive root of

x2/2+kx4/4 = h. Then, rh(θ) = r0 +
∑∞

j=2 Uj(θ)r
j
0. Substituting this last expression into
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equation (2.24) we obtain an equation of the form dθ/dt = 1+
∑∞

k=1 Vj(θ)r
j
0 = Θ(rh(θ), θ)

and then dt = dθ/Θ(rh(θ), θ) and we can compute the period of γh by

T (h) := T (rh(θ)) =

∫ 2π

0

1

Θ(rh(θ), θ)
dθ = 2π +

∞∑
j=1

Sj(θ)r
j
0, (2.25)

therefore T (0) = 2π. Every series converges for 0 < θ ≤ 2π and sufficiently small r0 ≥ 0.

If k = 0, then

T (h) =

∫ 2π

0

dθ = 2π,

for all h from the above expression and, hence, the center is isochronous.

Now, for k 6= 0 we can determine the values of T (j)(h) by using the Picard–Fuchs

equation (2.9). In fact, considering h = 0 in (2.9) we obtain T ′(0) = −3kπ/2. Taking

now the derivative of (2.9):

(16kh2 + 4h)T (3)(h) + (64kh+ 8)T ′′(h) + 35kT ′(h) = 0, (2.26)

and by replacing h = 0 and T ′(0) we can show that T ′′(0) = 105k2π/16. Differentiating

equation (2.26) we have

(16kh2 + 4h)T (4)(h) + (96kh+ 12)T (3)(h) + 99kT ′′(h) = 0, (2.27)

and then by replacing h = 0 and T ′′(0) in equation (2.27), we obtain T (3)(0) =

−3465k3π/64. We could continue this inductive procedure to determine all the higher

order derivatives.

Therefore, we can write the Taylor series by T (h) = 2π +
∑∞

j=1 cjh
j where cj =

T (j)(0)/j! and we obtain (2.22).

Lemma 2.6. Assume that k > 0 in system (2.6) and its period function T (h) is given by

(2.8). Then, T (h) goes to 0 as h tends to +∞.

Proof. We can assume, without loss of generality, that k = 1 and that (2.6) can be written

in polar coordinates, as the system given by (2.23) and (2.24). From the expression (2.24)

we have that

Θ(r, θ) > 1, for any (r, θ), consequently
1

Θ(r, θ)
< 1. (2.28)

Note also that the distance of γh to the origin tends to infinity as h → ∞. The proof

of Lemma 2.5 gives us a parametrization of the radius with respect to the angle for any

h, denoted by rh(θ), and that we can compute the period of γh, for each h, by means of

(2.25). On the other hand, note that, since r(θ, h)→∞ as h→∞, for each θ,

lim
h→∞

1

Θ(r(θ, h), θ)
=

{
1, if θ = ±π

2
,

0, otherwise.
(2.29)
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Therefore, by using (2.28), we can apply the Dominate Convergence Theorem and assert

that limh→∞ T (h) = 0.

Aiming to make the complete study on the monotonicity of the period function T (h),

instead of the Riccati equation (2.21), we study the global phase portrait of the equiv-

alent autonomous differential system on the plane. For this system, the phase curve

(h, x(h)) = (h, T ′(h)/T (h)) has the following fundamental geometric property: suppose

that for h = ĥ the periodic solution γĥ vanishes. Then, limh→ĥ T
′(h)/T (h) = x̂ 6= ±∞,

the equilibrium point (ĥ, x̂) is a saddle and the curve (h, x(h)) is a separatrix solution of

(ĥ, x̂). Consequently, after determining this phase curve and the isoclines we can obtain

the behavior of T ′(h) and T ′′(h). This is done in a similar way to the one carried out in

[53, 69].

Lemma 2.7. Consider the period function T (h) given in (2.8). Thus, if k = 0, then T (h)

is constant, if k < 0, then it is monotonous increasing, and if k > 0, then it is monotonous

decreasing. Moreover, for k 6= 0, we have that T ′(h) is monotonous increasing, i.e.

T ′′(h) > 0, for all h ∈ [0, h0).

Proof. If k = 0, by the proof of Lemma 2.5, T (h) = 2π for all h.

For the other cases we can define x(h) = T ′(h)/T (h) which verifies the Riccati equation

(2.21), for all h ∈ [0, h0), by Corollary 2.4. Instead of this equation we study an equivalent

autonomous differential system on the plane, namely{
ḣ = −4h(4kh+ 1),

ẋ = 4h(4kh+ 1)x2 + 4(8kh+ 1)x+ 3k,
(2.30)

where the dot means the derivative with respect to time (i.e. d/dt).

The roots of −4h(4kh + 1) = 0 are h = 0 and h = −1/(4k), and they correspond

to invariant vertical straight lines on the (h, x)-plane. Moreover, p0 = (0,−3k/4) and

p1 = (−1/(4k), 3k/4) are equilibrium points of system (2.30) for each k. The linear parts

of the vector fields at p0 and at p1 are(
−4 0
−87

4
k2 4

)
and

(
4 0

87
4
k2 −4

)
,

respectively. Therefore, they are hyperbolic saddles whose eigenvectors are (1, 87k2/32)

and (0, 1), respectively.

Remember that, for the analytical case, it is sufficient to consider k = −1, for k < 0,

and k = 1, for k > 0. We reproduce here all the computations for both cases, although

the proof follows closely.

Now we describe the idea of the proof. First we show that the graphic of x(h) coincides

with a separatrix of the saddle p0. We denote such a separatrix by Γ and we represent it
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in Figures 2.3 and 2.4 by the dotted line. Then, we identify the horizontal isoclines Pj and

Qj of (2.30) and we analyze the behavior of the vector field in the regions bordered by

them. First, for k = −1, due to the fact that Γ reaches the saddle point with a slope less

than the one of Q1 and due to the behavior of the vector field in the regions determined

by P1 and Q1, it follows that Γ is as on the right in Figure 2.3. Performing a similar

analysis for k = 1, now for P2 and Q2, we can only guarantee that Γ is below P2. So, to

prove that Γ is in the region between P2 and Q2, as represented on the right of Figure 2.4,

we must find a special curve. Then, it is possible to determine the sign of the derivative

of the period function in both cases.

Finally, for the proof of the second statement, it is enough to prove that x′(h) > 0, for

all h ∈ [0, h0), since from Lemma 2.5, T ′′(0) = 105k2π/16 > 0, and we have the following

equivalences

x′(h) > 0⇔ T ′′(h)T (h)− (T ′(h))2

T (h)2
> 0⇔ T ′′(h) >

(T ′(h))2

T (h)
> 0,

that is x′(h) > 0 if and only if T ′′(h) > 0.

Case k = −1: In this case the Hamiltonian differential system associated to the

Hamiltonian function (2.4) has only the period annulus of the center at the origin, which

is bounded (see Figure 2.1). Moreover, T (h) is defined for h ∈ [0, h0), where h0 =

−1/(4k) = 1/4. Then, T (h) → ∞, as h → 1/4, and this implies that T ′(h) assumes

positive values as h→ 1/4.

Since k = −1, the invariant vertical straight lines of (2.30) are h = 0 and h = 1/4,

and the equilibrium points are saddles at p0 = (0, 3/4) and p1 = (1/4,−3/4).

Consider the vertical strip U = {(h, x) : 0 ≤ h ≤ 1/4, x ≥ 0} and notice that there

exists a unique orbit, here denoted by Γ, lying in Int(U) and having the saddle p0 as

an ω-limit point, that is Γ is the stable separatrix of p0 and it is drawn on the right in

Figure 2.3 with dashed line.

We claim that the graphic of x(h) coincides with the stable separatrix Γ. In fact,

first by using the Taylor series obtained in Lemma 2.5 we have that the curve x(h) =

T ′(h)/T (h), for h ∈ (0, h0) = (0, 1/4), is an integral curve of system (2.30) that tends to

3/4 as h→ 0 and this value is the x-component of p0. Then, the statement follows from

the uniqueness of solutions.

Now we can show that T ′(h) > 0 and x′(h) > 0, for all h ∈ [0, 1/4).

For h = 0, we have that x′(0) = 87/32 (this is simply obtained by computing the slope

of the eigenspace at the saddle p0). Now, consider the second equation in (2.30) equals

to 0, then we obtain the points where the vector field is horizontal. This equation defines
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Figure 2.3: Curves P1 (blue) and Q1 (purple) and relative position of Γ

two curves given by

P1(h) =
−8h+ 1 +

√
52h2 − 13h+ 1

h(4h− 1)
and Q1(h) =

−8h+ 1−
√

52h2 − 13h+ 1

h(4h− 1)
,

whose connected components are graphics of functions in h. The curve P1 is drawn in

blue and Q1 is drawn in purple in Figure 2.3. The vector field is transversal to P1 and

Q1.

We now study the position of P1 and Q1 with respect to Γ. The curves P1 and Q1

divide the vertical strip U into two regions where the vector field points upwards on the

top and points downwards on the bottom region (see Figure 2.3).

At p0, the slope of the tangent line to Q1 is equal to 87/16, which is bigger than

the slope x′(0) = 87/32 of Γ at the same point. Then, in a neighborhood of p0, the

separatrix Γ is below Q1. Since the vector field is transversal to Q1 and directed to the

left, the orbit Γ is not allowed to intersect Q1 for t → −∞ and the orbit Γ is always

below Q1. Moreover, Γ is above the h-axis since the vector field points downwards on

(0, 1/4)×{0}, because the second component of the vector field is constant and it is equal

to −3. Therefore, the graphic of x(h), which is the orbit Γ, is entirely located in U. This

implies that x(h) = T ′(h)/T (h) > 0, then T ′(h) > 0, for all h ∈ [0, 1/4). We also have

that x′(h) = (dx/dt)/(dh/dt) > 0, since dx/dt < 0 in the region below Q1 in the vertical

strip U and dh/dt < 0 for all h ∈ (0, 1/4).

Case k = 1: We already know that in this case the planar Hamiltonian differential

system (2.6) associated to the Hamiltonian function (2.4) has only the period annulus of

the center at the origin, which is global (see Figure 2.1). Moreover, the corresponding

period function is defined for h ∈ [0,∞).

Since k = 1, the invariant vertical straight lines of (2.30) are h = 0 and h = −1/4,

and the equilibrium points are saddles at p0 = (0,−3/4) and p1 = (−1/4, 3/4).
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Consider the half-plane U = {(h, x) : h ≥ 0} and notice that there exists a unique

orbit, here denoted by Γ, lying in Int(U) and having the saddle p0 as an ω-limit point,

that is Γ is the stable separatrix of p0 and is drawn on the right in Figure 2.4 with dashed

line.

Figure 2.4: Curves P2 (blue) and Q2 (purple) and relative position of Γ

We claim that the graphic of x(h) coincides with stable separatrix Γ. In fact, first by

using the Taylor series obtained in Lemma 2.5, we have that the curve x(h) = T ′(h)/T (h),

for h ∈ (0,∞), is a integral curve of system (2.30) that tends to −3/4 as h→ 0 and this

value is the x-component of p0. Then, the statement follows from the uniqueness of

solutions.

Now we can show that T ′(h) < 0 and x′(h) > 0, for all h ∈ [0,∞).

For h = 0, we have that x′(0) = 87/32 (this is simply obtained by computing the slope

of the eigenspace at the saddle p0). Now, consider the second equation in (2.30) equals

to 0, then we obtain the points where the vector field is horizontal. This equation defines

two curves given by

P2(h) =
−8h− 1 +

√
52h2 + 13h+ 1

2h(1 + 4h)
and Q2(h) =

−8h− 1−
√

52h2 + 13h+ 1

2h(1 + 4h)
,

whose connected components are graphics of functions in h. The curve P2 is drawn in

blue and Q2 is drawn in purple in Figure 2.4. The vector field is transversal to P2 and Q2

and directed to the left.

We now study the position of P2 and Q2 with respect to Γ. The curves P2 and Q2

divide the half-plane U into three regions where the vector field points upwards on the top

and on the bottom regions and it points downwards on the middle region (see Figure 2.4).

At p0, the slope of the tangent line to P2 is equal to 87/16, which is bigger than the slope
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x′(0) = 87/32 of Γ at the same point. Then, in a neighborhood of p0, the separatrix Γ is

below P2. Since the vector field is transversal to P2 and directed to the left, the orbit Γ

is not allowed to intersect P2 again for t → −∞. The orbit Γ is then entirely located in

U, below P2.

Proving that Γ is above the curve Q2 requires a more accurate analysis. Some calcu-

lations show that

lim
h→0+

P2(h) = −3/4, lim
h→∞

P2(h) = 0, lim
h→0+

Q2(h) = −∞, and lim
h→∞

Q2(h) = 0.

Now notice that any convex combination

Rs(h) = sP2(h) + (1− s)Q2(h),

with s ∈ [0, 1], is a curve that has the following properties: Rs(h) is monotonous increas-

ing, Q2(h) ≤ Rs(h) ≤ P2(h) for all h ∈ [0,∞),

lim
h→∞

Rs(h) = 0, and lim
h→0+

Rs(h) = −∞.

There exists a value s∗ ∈ [0, 1] such that the curve Γ is in the region between the curves

Rs∗ and P2, so that we can conclude that Γ is above the curve Q2. In fact, taking s∗ = 7/8,

then Rs∗(h) = 7P2(h)/8 + Q2(h)/8. Therefore, the graphic of Rs∗ is the zero level curve

of the function

F (h, x) = 2xh(4h+ 1) + 8h+ 1− 3
√

52h2 + 13h+ 1/4,

i.e. (h,Rs∗(h)) := {(h, x) : F (h, x) = 0}.
In the region near the saddle point p0, the curve Rs∗ is below Γ since x(0) = −3/4,

limh→0+Rs∗(h) = −∞, and Rs∗ is monotonous increasing. Moreover, by solving the

equation Rs∗(h) = −3/4, it follows that the curve Rs∗ intersects the line x = −3/4 at the

point (1/3,−3/4).

Note that the gradient of F is given by

∇F =
(

2x
(
4h+ 1

)
+ 8xh+ 8− 3

(
104h+ 13

)
/
(
8
√

52h2 + 13h+ 1
)
, 2h
(
4h+ 1

))
,

and it is always orthogonal to Rs∗ and it is directed upwards. Since

〈∇F, (ḣ, ẋ)〉
∣∣
F=0 =

5

8
(132h2 + 33h+ 5)− 3(8h+ 1)(52h2 + 13h+ 2)

2
√

52h2 + 13h+ 1

is always negative in h ∈ (1/3,∞), because evaluating this scalar product at h = 1

we get
√

66(425
√

66/8 − 1809/4)/33 < 0, and since the polynomial that is obtained by

eliminating the root by squaring has no roots in the interval (1/3,∞), then the angle
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Figure 2.5: Region negatively invariant in gray and curve Rs∗ in red

formed by ∇F and (ḣ, ẋ) is greater than π/2, for all h ∈ (1/3,∞). So the behavior of the

vector field (2.30) along the curve Rs∗ is as presented in Figure 2.5.

Then, the region in gray on the left in Figure 2.5 is a trapping region (negatively

invariant set) for the system (2.30), i.e. solutions that start inside this region (including

on its boundary) stay inside of it, for all negative times. Thus, the curve Γ remains above

the curve Rs∗ for all h ∈ [0,∞), implying that Γ is above Q2.

Therefore, the graphic of x is located below the h-axis, between P2 and Q2. Since

it is below P2, the second component T ′(h)/T (h) < 0, for all h, so T ′(h) < 0, for all

h ∈ [0,∞). Moreover, this implies that x′(h) = (dx/dt)/(dh/dt) > 0, since dx/dt < 0 in

the region between P2 and Q2 and dh/dt < 0 for all h ∈ [0,∞).

2.2 Phase portraits

This section is devoted to determine all topologically different phase portraits for

system (2.1). The key point of this section is the well-known behavior of the continuous

case studied in Section 2.1.

Remember that P and ∂P denote the period annulus and its boundary, respectively,

as in Definition 1.15. In this case, we can also assume that H(z) > 0 for all z ∈ P\{(0, 0)}
and H(P) = [0, h0), where h0 is the level curve of the Hamiltonian (2.2) that contains

∂P .

The next result states that there exist four topologically different phase portraits for

system (2.1), but only three different period annuli, and they are called, respectively,

global center, saddle loop, and two saddle cycle, see Figure 2.6.
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Figure 2.6: Phase portraits for family (2.1) and graphic of V in (2.3)

Proposition 2.8. System (2.1) has a center at the origin and the following statements

hold:

(i) For a ≥ 0 and b ≥ 0, it has only one equilibrium point at the origin which is a global

center (i.e. h0 =∞).

(ii) For a ≥ 0 and b < 0 or a < 0 and b ≥ 0, it has two equilibrium points, which

are a center and a saddle, and ∂P is a finite homoclinic connection in h0 =

max{−1/(4a),−1/(4b)}.

(iii) For a < 0, b < 0 and a 6= b, it has three equilibrium points, which are a center

and two saddles, and ∂P is a finite homoclinic connection in h0 = min{−1/(4a),

−1/(4b)}.

(iv) For a < 0, b < 0 and a = b, it has three equilibrium points, which are a center and

two saddle, and ∂P is a finite heteroclinic connection in h0 = −1/(4a) = −1/(4b).

The phase portraits for each item (i) to (iv) are topologically equivalent, respectively, to

those ones presented in Figure 2.6.

Proof. We have that family (2.1) has a center at the origin from Proposition 1.26 or

even by Proposition 1.27, since their solutions are invariant with respect to the change of

variables (x, y, t)→ (−x, y,−t) and H−(0, y) = H+(0, y).

Before we consider the case-by-case study, we describe the critical levels of the Hamil-

tonian function (2.2).
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In order to determine h0 we study the graphic of V −(x) = x2/2 + ax4/4 for x ≤ 0 and

V +(x) = x2/2 + bx4/4 for x ≥ 0, as it was done in [69] and from equation (2.3) we write

V (x) =

{
V −(x), if x ≤ 0,

V +(x), if x ≥ 0.
(2.31)

We have that the critical levels of (2.2) for x ≤ 0 (resp. x ≥ 0) are the positive zeros

of the discriminant of V −(x)−h (resp. V +(x)−h) with respect to x, that is, the common

solutions of (V −)′(x) = 0 and V −(x) = h (resp. (V +)′(x) = 0 and V +(x) = h). As we

have that such discriminants are equal to −ah(1+4ah)2/4 for V − and −bh(1+4bh)2/4 for

V +, the union of the zeros of the two discriminants is {0} if a and b are zeros, {0, h−, h+},
where h− = −1/(4a) and h+ = −1/(4b), if a and b are nonzero, {0, h+} if a = 0 or {0, h−}
if b = 0.

To completely analyze family (2.1), we study five different cases in terms of the signs of

the parameters a and b. The first three cases are those ones when the two parameters have

the same signs and the last two cases correspond to the cases when the two parameters

have different signs.

Case 1. For a ≥ 0 and b ≥ 0: Note first that in this case both systems of the form (2.6)

associated to the Hamiltonian function given by (2.4) with k = a for the left half-

plane and with k = b for the right half-plane have a global center at the origin.

Then the piecewise system also has a global center at the origin and the graphic of

V and the phase portrait are represented by (i) in Figure 2.6.

Case 2. For a < 0, b < 0 and |a| 6= |b|: In this case the Hamiltonian function given by (2.4)

with k = a (resp. k = b) is a first integral of system (2.6) in the left (resp. right)

half-plane, then there exists one saddle for x ≤ 0 (resp. x ≥ 0) in the level h− (resp.

h+) and a center at the origin. Since |a| 6= |b|, h− 6= h+ are two positive values

and then h0 = min{h−, h+}. Therefore ∂P which is contained in h0 has one saddle

with a finite homoclinic connection. The graphic of V and the phase portrait are

represented by (iii) in Figure 2.6.

Case 3. For a < 0, b < 0 and |a| = |b|: In this case the Hamiltonian function given by (2.4)

with k = a (resp. k = b) is a first integral of system (2.6) in the left (resp. right)

half-plane, then there exists one saddle for x ≤ 0 (resp. x ≥ 0) at the level h−

(resp. h+) and a center at the origin. Since |a| = |b| then h0 = h− = h+. Therefore

system (2.1) has two saddles with a finite heteroclinic connection between them

at level h0. The graphic of V and the phase portrait are represented by (iv) in

Figure 2.6.



50 Chapter 2. Period function for a family of planar piecewise Hamiltonian systems

Case 4. For a < 0 and b ≥ 0: In this case the Hamiltonian function given by (2.4) with

k = a (resp. k = b) is a first integral of system (2.6) in the left (resp. right) half-

plane. Then there exist a center at the origin and a saddle at the level h− for x ≤ 0

and only a center at the origin for x ≥ 0. Therefore, there exists a positive value

h0 = max{h−, h+}. The graphic of V and the phase portrait are represented by (ii)

in Figure 2.6.

Case 5. For a ≥ 0 and b < 0: This case can be obtained by the previous one by using the

change of variables (x, y, t) 7→ (−x, y,−t).

It is clear that Case 1 corresponds to item (i) in Proposition 2.8, Case 2 corresponds

to item (iii), Case 3 to item (iv), and Cases 4 and 5 to item (ii). Moreover, for each case

we can define only one period function, since in all of them there exists just one region

which is entirely covered by periodic orbits.

2.3 Period function and its oscillations

Similarly as what is done in the continuous case, in piecewise Hamiltonian systems

the periodic orbits in the period annulus can be parametrized by the energy. For each

h ∈ [0, h0), we denote by γh the set of points in R2 that verifies H(x, y) = h, where H

is defined by (2.2) (see Figure 2.7). The period function that associates each γh to its

minimum period is also denoted by T (h).

Figure 2.7: Orbit γh

Note that system (2.1) is reversible with respect to both x-axis and y-axis (double

symmetry). In fact, using the transformation (x, y, t) 7→ (−x,−y, t) we obtain this double

symmetry and, therefore, from the expression of the period function of the continuous case

in (2.8) we can conclude that the period function of system (2.1) is described as in the

next lemma.
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Lemma 2.9. The period function of system (2.1) defined in [0, h0) is given by

T (h) =
1

2
(Ta(h) + Tb(h)), (2.32)

where Tk(h) is given by (2.8) (see Remark 2.2).

As we have that T ′(h) =
(
T ′a(h) + T ′b(h)

)
/2 and T ′′(h) =

(
T ′′a (h) + T ′′b (h)

)
/2, from

Lemmas 2.5 and 2.7 we obtain the following result.

Lemma 2.10. Consider the period function T (h) given in (2.32). Then T (0) = 2π,

T ′(0) = −3π(a+ b)/4, and T ′′(h) > 0 for all h ∈ [0, h0).

Although we do not use this fact, in what follows we want to highlight that if we have

two functions such that each of them verifies a Picard–Fuchs equation, then the sum of

these two functions also verifies a Picard–Fuchs equation, but of a higher order.

Lemma 2.11. Consider two functions δ and σ that satisfy the following Picard–Fuchs

equations, respectively,

P2(h)δ′′(h) + P1(h)δ′(h) + P0(h)δ(h) = 0, (2.33)

Q2(h)σ′′(h) +Q1(h)σ′(h) +Q0(h)σ(h) = 0. (2.34)

Then we have that the sum τ = δ + σ verifies a fourth order Picard–Fuchs equation.

Proof. By the identity τ = δ + σ we have

σ = τ − δ, σ′ = τ ′ − δ′, σ′′ = τ ′′ − δ′′. (2.35)

We replace the values of σ, σ′, and σ′′ obtained in (2.35) in (2.34). Then we replace

δ′′ by the expression −
(
P1(h)δ′(h) + P0(h)δ(h)

)
/P2(h) found by means of (2.33) and we

have (
Q2(h)P1(h)−Q1(h)P2(h)

)
δ′(h) +

(
Q2(h)P0(h)−Q0(h)P2(h)

)
δ(h)

+Q2(h)P2(h)τ ′′(h) +Q1(h)P2(h)τ ′(h) +Q0(h)P2(h)τ(h) = 0.
(2.36)

We differentiate expression (2.36) and replace δ′′ by the expression previously found

and we obtain the next combination of τ (and its derivatives up to order three), δ, and δ′(
−Q′1(h)P2(h)−Q1(h)P ′2(h) +Q1(h)P1(h)−Q0(h)P2(h)

+P ′1(h)Q2(h)− P1(h)2Q2(h)/P2(h) + P1(h)Q′2(h) + P0(h)Q2(h)
)
δ′(h)

+
(
Q1(h)P0(h)−Q′0(h)P2(h)−Q0(h)P ′2(h)− P1(h)P0(h)Q2(h)/P2(h)

+P ′0(h)Q2(h) + P0(h)Q′2(h)
)
δ(h) + P2(h)Q2(h)τ (3)(h)

+
(
Q1(h)P2(h) + P2(h)Q′2(h) +Q2(h)P ′2(h)

)
τ ′′(h)

+
(
Q0(h)P2(h) +Q′1(h)P2(h) +Q1(h)P ′2(h)

)
τ ′(h)

+
(
Q′0(h)P2(h) +Q0(h)P ′2(h)

)
τ(h) = 0.

(2.37)
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With equations (2.36) and (2.37) by solving as if they were a system of linear equations

on the variables δ and δ′, we can determine δ, δ′, and δ′′ only in function of τ and its

derivatives. Differentiating again equation (2.37) and replacing δ′′, δ′, and δ by these

expressions we obtain a new equation as a combination of τ (and its derivatives up to

order four). Then we have that the sum τ verifies a fourth order Picard–Fuchs equation.

We do not show the mentioned equation due to its size.

By Lemmas 2.3 and 2.11 the period function T (h) defined in (2.32) verifies the follow-

ing result.

Corollary 2.12. If T (h) is the period function of (2.1) then P4(h)T (4)(h)+P3(h)T (3)(h)+

P2(h)T ′′(h) + P1(h)T ′(h) + P0T (h) = 0 for all h ∈ [0, h0), where

P4(h) = 16h2
(
256a3bh4 + 64a2(a+ 3b)h3 + 48a(a+ b)h2 + 4(3a+ b)h+ 1

)
,

P3(h) = 8h
(
3584a3bh4 + 32(19a+ 75b)a2h3 + 48(8a+ 11b)ah2 + 2(39a+ 19b)h+ 5

)
,

P2(h) = 41472a3bh4 + 64(61a+ 385b)a2h3 + 16(127a+ 284b)ah2 + 4(71a+ 61b)h+ 5,

P1(h) = 8448a3bh3 + 4(71a+ 61b)a2h2 + 88(a+ 7b)ah+ 11(a+ b),

P0(h) = 528a3bh2 + 264a2bh+ 33ab.

As Proposition 2.8 made clear how the domain of the period function is, the following

result gives us information about the monotonicity and the existence of oscillations of

such a function.

Theorem 2.13. The period function of system (2.1) defined in [0, h0) satisfies the fol-

lowing conditions:

(i) For a = b = 0 it is constant.

(ii) For a ≥ 0 and b ≥ 0, not simultaneously zero, it is monotonous decreasing.

(iii) For a < 0 and b < 0, or ab < 0 with |min{a, b}| ≥ max{a, b}, it is monotonous

increasing.

(iv) For ab < 0 with |min{a, b}| < max{a, b}, has one simple critical period, which is a

minimum point.

Proof. First, if a = 0 and b = 0 then the center is isochronous, T is constant and it is

equal to 2π.

As a matter of fact, we can further reduce the number of parameters by one. In other

words, we can assume that there is only one free parameter. To achieve this, as we have

that b 6= 0, we use the following rescaling in system (2.1):

x→ λx, y → λy,
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for λ 6= 0, to obtain a new family given by

(ẋ, ẏ) =


(
y,−x− a

λ2
x3
)
, if x ≤ 0,(

y,−x− b

λ2
x3

)
, if x ≥ 0.

Hence, when b > 0, we consider λ =
√
b and we get the following equivalent system

(ẋ, ẏ) =


(
y,−x− a

b
x3
)
, if x ≤ 0,

(y,−x− x3), if x ≥ 0,

and when b < 0 we consider λ =
√
−b and the family is topologically equivalent to

(ẋ, ẏ) =


(
y,−x+

a

b
x3
)
, if x ≤ 0,

(y,−x+ x3), if x ≥ 0.

Therefore, we can assume that in the right hand side we have b = 1 or b = −1.

For the case a ≥ 0 and b > 0, with a rescaling we obtain a > 0 and b = 1. By (i)

in Proposition 2.8 the origin is a global center and h0 = ∞, then the period function is

defined in [0,∞) and by Lemma 2.10 T ′(0) = −3π(a+1)/4 < 0. Moreover, by Lemma 2.7,

T ′a(h) < 0 and T ′b(h) < 0 for all h ∈ (0,∞). Thus, T ′(h) = T ′a(h) + T ′b(h) < 0, T ′′(h) >

0 from Lemma 2.10, and limh→∞ T (h) = 0 from Lemma 2.6, hence T is monotonous

decreasing, convex and its graphic is as represented in the blue region in Figure 2.8.

In the case that a < 0 and b < 0 we can assume b = −1. The period function is

defined in [0, h0) with h0 = min{−1/(4a), 1/4} by (iii) and (iv) in Proposition 2.8. By

Lemma 2.10, T ′(0) = −3π(a − 1)/4 > 0 and Lemma 2.7 implies that T ′a(h) > 0 and

T ′b(h) > 0 for all h ∈ [0, h0). Thus, T ′(h) = T ′a(h) + T ′b(h) > 0 and T is monotonous

increasing, convex as T ′′(h) > 0 from Lemma 2.10 with a horizontal asymptote in h = h0.

Therefore, the graphic of T is as represented in the green region in Figure 2.8.

Now, if ab < 0 we can assume that we are in the case where a < 0 and b > 0, since

the other case is symmetric. We can rescale and consider b = 1 and a < 0 as our free

parameter. Moreover, by (ii) in Proposition 2.8 the period function is defined in [0, h0),

where h0 = max{−1/(4a),−1/4} = −1/(4a) and by Lemma 2.10

T ′(0) =
−3π(a+ 1)

4
, (2.38)

and T ′′(h) > 0 for all h ∈ [0, h0).

First suppose that |a| > 1, then we have T ′(0) > 0 by equation (2.38), since T ′′(h) > 0,

then T ′(h) > 0 for all h ∈ [0,−1/(4a)) and the period function is monotonous increasing

and the graphic of T is as represented in the green region in Figure 2.8. When a = −1
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Figure 2.8: Bifurcation diagram of the period function of the center at the origin of
system (2.1)

we have T ′(0) = 0 by equation (2.38), T ′(h) > 0 and T ′′(h) > 0 for all h ∈ (0, 1/4).

Consequently the graphic of T is as represented in the red square in Figure 2.8.

Now take |a| < 1, thus we have T ′(0) < 0 by equation (2.38), and since T ′′(h) > 0

for all h ∈ [0,−1/(4a)), the period function has one simple critical period, which is a

minimum point. Furthermore, the derivative T ′ cannot have a horizontal asymptote at 0.

In fact, as a < 0, it is well known that limh→h0 Ta(h) = ∞, where h0 = −1/(4a). Then

limh→h0 T (h) = limh→h0(Ta(h) + Tb(h))/2 = ∞ and therefore T ′(h) > 0 when h → h0.

The later properties proves that the graphic of T is as represented in the purple region in

Figure 2.8.

From Theorem 2.13 we see that the period functions can have at most one simple

critical period for family (2.1).
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Remark 2.14. The piecewise system (2.1) is a special case of asymmetric oscillator,

which is well-known and frequently encountered in physical problems ([60]). As a first

work about the period function of piecewise system, we decide to do an analysis of this

family that has a double symmetry, that is with respect to both axis, which allows us to

find an expression for T in terms of the energy h. Therefore, we established its bifurcation

diagram determining the behavior of T (h). Moreover, it is important to mention that

the period function of the analytic potential vector field that determines the left and

right system of (2.1) have already been studied in Chicone [19] and Gasull, Guillamon,

Mañosa and Mañosas [48]. We find convenient to present in Section 2.1 the study of the

monotonous behavior of the period function for them to establish one of the methods that

can be used.
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CHAPTER 3

Period function of planar piecewise
reversible quadratic systems

In this chapter we study the bifurcation of local critical periods near the origin in

the class of planar piecewise quadratic systems of the form (1.3), which are invariant by

the transformation (x, y, t) 7→ (−x, y,−t), and so they are reversible with respect to the

y-axis. In this way, we intend to present an estimative for the maximum number of zeros

of the derivative T ′ which can bifurcate from the origin in the class of planar piecewise

reversible quadratic system given by

(ẋ, ẏ) =

{
(−y + a1x

2 + a2y
2, x+ a3xy), if y ≥ 0,

(−y + b1x
2 + b2y

2, x+ b3xy), if y < 0,
(3.1)

where ai, bi (i = 1, 2, 3) are real numbers. It is clear that the origin is a center of sys-

tem (3.1) because of the reversibility.

Note that system (3.1) belongs to the class of planar piecewise systems of ordinary

differential equations with the x-axis as its separation line given by

(ẋ, ẏ) =

{
(−y + P+(x, y, λ+), x+Q+(x, y, λ+)), if y ≥ 0,

(−y + P−(x, y, λ−), x+Q−(x, y, λ−)), if y < 0,
(3.2)

where λ = (λ+, λ−) ∈ Rm are parameters, P±(x, y, λ±) and Q±(x, y, λ±) are homogeneous

polynomials of degree 2 in the variables x and y. The system defined in the upper half-

plane (y ≥ 0) is called the upper system and the system defined in the lower half-plane

(y ≤ 0) is called the lower system.

In the planar piecewise system (3.2), where the separation line is the x-axis, the half-

return maps are defined as in Definition 1.33, only changing the y-axis into the x-axis, and

they are called, respectively, positive and negative half-return maps. Also in an analogous

way as in Definition 1.36 we define the positive half-period function T+(ρ, λ+) (resp. the

57
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negative half-period function T−(ρ, λ−)) as the least period of the trajectory of (3.2)

passing through (x, y) = (ρ, 0) on the positive x-axis (resp. on the negative x-axis) to

reach the negative x-axis (resp. the positive x-axis). Hence, for (ρ, λ) where λ = (λ+, λ−)

the Poincaré return map and the period function are defined as (ρ, λ) 7→ Π(ρ, λ) and

(ρ, λ) 7→ T (ρ, λ), where

Π(ρ, λ) = Π−(Π+(ρ, λ+), λ−) and T (ρ, λ) = T+(ρ, λ+) + T−(Π+(ρ, λ+), λ−),

as represented in Figure 3.1.

Figure 3.1: Return map Π(ρ, λ) and period function T (ρ, λ) for system (3.2)

For proving the results of this chapter we use the results of Sections 1.5 and 1.6.

3.1 Lyapunov and period constants

As discussed in the introduction, two interesting problems are determining H0(n) and

C0(n), i.e to solve the local cyclicity problem and local criticality problem. In general, we

can find lower bounds for these numbers using the Taylor coefficients of the expansion of

the Poincaré return map and period function, i.e. determining the Lyapunov constants

and the period constants. Such definitions have already been introduced in Section 1.4.

First, we will present a method developed in [52] that can easily be implemented in a

computer algebraic system for the calculation of the Lyapunov constants for the piecewise

system (3.2). After we will describe a method to find the period constants described in

[18] for (3.2).

Consider the following form of a planar piecewise system

(ẋ, ẏ) =

{
(δ+x− y + P+(x, y, λ+), x+ δ+y +Q+(x, y, λ+)), if y ≥ 0,

(δ−x− y + P−(x, y, λ−), x+ δ−y +Q−(x, y, λ−)), if y < 0,
(3.3)

where λ = (λ+, λ−) ∈ Rm are the parameters, P±(x, y, λ+) and Q±(x, y, λ−) are analytic

functions in x and y starting from at least the second-order terms. Under the polar
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coordinates transformation, x = r cos θ, and y = r sin θ, system (3.3) can be transformed

into

(ṙ, θ̇) =


(
r
(
δ+ +R+(r, θ, λ+)

)
, 1 + Θ+(r, θ, λ+)

)
, for θ ∈ (0, π],(

r
(
δ− +R−(r, θ, λ−)

)
, 1 + Θ−(r, θ, λ−)

)
, for θ ∈ (π, 2π),

(3.4)

where R± (resp. Θ±) are analytic functions in r > 0, sin θ and cos θ starting at least with

first (resp. second) order terms in r > 0, and third order terms in sin θ and cos θ given by

R±(r, θ, λ±) = cos θP±(r cos θ, r sin θ, λ±) + sin θQ±(r cos θ, r sin θ, λ±),

Θ±(r, θ, λ±) =
1

r

(
cos θQ±(r cos θ, r sin θ, λ±)− sin θP±(r cos θ, r sin θ, λ±)

)
.

Eliminating t we obtain the equation of orbits on the phase plane

dr

dθ
=

r
(
δ+ +R+(r, θ, λ+)

)
/
(
1 + Θ+(r, θ, λ+)

)
, for θ ∈ (0, π],

r
(
δ− +R−(r, θ, λ−)

)
/
(
1 + Θ−(r, θ, λ−)

)
, for θ ∈ (π, 2π).

(3.5)

Let r+(ρ, θ, δ+, λ+) and r−(ρ, θ, δ−, λ−) denote the solutions of (3.5) for θ ∈ (0, π) as-

sociated with the initial condition r+(ρ, 0, δ+, λ+) = ρ, and for θ ∈ (π, 2π) associated

with the initial condition r−(ρ, π, δ−, λ−) = ρ, respectively. The positive half-return map

Π+ : R+×R2 → R− and the negative half-return map Π− : R−×R2 → R+ can be defined

respectively by

Π+(ρ, δ+, λ+) = r+(ρ, π, δ+, λ+) and Π−(ρ, δ−, λ−) = r−(ρ, 2π, δ−, λ−).

Then, the return map Π : R+×R2 → R+ for the piecewise system (3.3) can be constructed

by the composition Π(ρ, δ, λ) := Π−
(
Π+(ρ, δ+, λ+), δ−, λ−

)
, where δ = (δ+, δ−) and λ =

(λ+, λ−). As Π± are analytic for |ρ| small enough, Π± can be expanded, respectively, as

Π+(ρ, δ+, λ+) = eπδ
+

ρ+
∑
j≥2

v+
j (δ+, λ+)ρj and Π−(ρ, δ−, λ−) = eπδ

−
ρ+

∑
j≥2

v−j (δ−, λ−)ρj,

where v+
j ’s and v−j ’s are the Taylor’s coefficients. Thus,

Π(ρ, δ, λ) = Π−(Π+(ρ, δ+, λ+), δ−, λ−) = eπ v1(δ,λ)ρ+
∑
j≥2

vj(δ, λ)ρj, (3.6)

for sufficiently small |ρ|, where v1(δ, λ) = δ+ + δ−. This last expression implies that 0

is a center of system (3.3) if and only if Π(ρ, δ, λ) = ρ, for all small ρ, i.e. δ+ + δ− = 0

and vj(δ, λ) = 0, for all j ≥ 2, by (3.6). The j-th Lyapunov constants are defined by

Vj := vj(δ, λ). Hence, the displacement function can be expanded as

d(ρ, δ, λ) = Π(ρ, δ, λ)− ρ = (e2π(δ++δ−) − 1)ρ+
∑
j≥2

Vjρ
j. (3.7)
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Since it is not easy to compute the Lyapunov constants by using (3.6), then Gasull and

Torregrosa in [52] used the following method for the calculation of Lyapunov constants for

the piecewise system (3.2), given by the piecewise system (3.3) with δ = (δ+, δ−) = (0, 0).

Consider the expansion of (3.4) and of equation (3.5) given by

(ṙ, θ̇) =


(∑∞

j=1 ϕ
+
j (θ)rj+1, 1 +

∑∞
j=1 φ

+
j (θ)rj+1

)
, for θ ∈ (0, π],(∑∞

j=1 ϕ
−
j (θ)rj+1, 1 +

∑∞
j=1 φ

−
j (θ)rj+1

)
, for θ ∈ (π, 2π),

(3.8)

and
dr

dθ
=

{∑∞
j=1 R

+
j (θ, λ+)rj, for θ ∈ (0, π],∑∞

j=1 R
−
j (θ, λ−)rj, for θ ∈ (π, 2π),

(3.9)

respectively, where ϕ±j and φ±j are homogeneous polynomials in sin θ and cos θ of degree

j + 2, R±j (θ, λ±) are 2π-periodic functions of θ and the series are convergent for all θ and

for all sufficiently small r > 0. The curve of solutions with r+(ρ, 0, λ+) = r−(ρ, π, λ−) = ρ,

of the upper and lower equations of (3.9) can also be expanded by{
r+(ρ, θ, λ+) = ρ+

∑∞
j=2 u

+
j (θ, λ+)ρj, for θ ∈ (0, π],

r−(ρ, θ, λ−) = ρ+
∑∞

j=2 u
−
j (θ, λ−)ρj, for θ ∈ (π, 2π).

(3.10)

These series are convergent for all θ and all ρ < r∗, for some sufficiently small r∗ > 0.

Then, the positive half-return map is Π+(ρ, λ+) = r+(ρ, π, λ+), the negative half-

return map is Π−(ρ, λ−) = r−(ρ, 2π, λ−), and the complete return map Π can be expanded

as (3.6), where V1 = 0 and Vj := vj((0, 0), λ) := vj(λ), that is

Π(ρ, λ) = ρ+
∑
j≥2

vj(λ)ρj = ρ+
∑
j≥2

Vjρ
j.

In this case the displacement function d(ρ, λ) = Π(ρ, λ)− ρ, given in (3.7), becomes

d(ρ, λ) = V2ρ
2 + V3ρ

3 + · · · . (3.11)

Figure 3.2: Return maps

From (3.6), in order to obtain the constants Vj’s, we need a method to compute

Π+(ρ, λ+) and Π−(ρ, λ−) and afterward to compose them. But, in [52] the authors present

a simpler way to compute the Lyapunov constants by using the difference function,

Π+(ρ, λ+)− (Π−)−1(ρ, λ−) = W2ρ
2 +W3ρ

3 + · · · , (3.12)
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where (Π−)−1(ρ, λ−) is the inverse of the negative half-return map Π−(ρ, λ), see Fig-

ure 3.2(b). We have that (Π−)−1(ρ, λ−) =: Π+
−(ρ, λ+), where Π+

−(ρ, λ−) is the positive

half-return map of the following piecewise system

(ẋ, ẏ) =

{
(−y − P−(x,−y, λ−), x+Q−(x,−y, λ−)), if y ≥ 0,

(−y − P+(x,−y, λ+), x+Q+(x,−y, λ+)), if y < 0,
(3.13)

obtained by the substitution (x, y, t)→ (x,−y,−t) on the system (3.2) (see Figure 3.2(c)).

Thus, to get (3.12) we only need to compute the two positive half-return maps Π+(ρ, λ+)

and Π+
−(ρ, λ−). In this case, for |ρ| small enough, we have the following expansion for

Π+
−(ρ, λ−)

Π+
−(ρ, λ) = ρ+

∑
j≥2

u+
j (λ)ρj,

where u+
j ’s are the Taylor coefficients. Hence, the expansion of the displacement function

becomes

d(ρ, λ) =
∑
j≥2

(v+
j (λ)− u+

j (λ))ρj =
∑
j≥2

Wjρ
j,

Thus, to compute higher order Wj := v+
j (λ)− u+

j (λ) for piecewise system (3.2), we only

need to compute v+
j (λ) and u+

j (λ) for two positive half-return maps.

The conditions Vj 6= 0, Vi = 0, 2 ≤ i ≤ j − 1 of (3.11) are equivalent to Wj 6= 0,

Wi = 0, 2 ≤ i ≤ j − 1 of (3.12), from [52]. Therefore, we can use these new constants to

find the center conditions. However, if the sign of the first nonzero coefficient of the return

map (3.6) is positive (resp. negative) the equilibrium point is repulsive (resp. attractor).

On the other hand, the way we have determined the difference (3.12), the sign of the first

Wj nonzero is the inverse, then we cannot use it to find the stability.

Remark 3.1. Although the calculations of the Lyapunov constants are straightforward,

it is very difficult to solve the center-focus and the cyclicity problems for planar piecewise

systems because it is not easy to find the common zeros of the Lyapunov constants.

Then, some techniques that reduce the computational complexity have been developed

([63]). Furthermore, it is expected that in the piecewise system it can appear the double

of the number of small amplitude limit cycles bifurcating from an elementary center or

an elementary focus rather than in the smooth case. For instance, while for quadratic

systems the maximum number of limit cycles that bifurcate from the origin is three, by

using V1, V3, V5, and V7, since the Lyapunov constants of even order vanish when the

previous Lyapunov constants of odd orders are zeros (see [4]), for piecewise quadratic

systems it is enough to use V1, V2, V3, and V4 in order to generate also three limit cycles.

And six limit cycles can be generated from the origin by using V1, . . . , V7.
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In the following, we describe the method used in [18] to find the period constants

Tj(λ) that determine the expansion of the period function associated with the center at

the origin of the piecewise system (3.2) given by

T (ρ, λ) = 2π +
∞∑
j=1

Tj(λ)ρj, (3.14)

for |ρ| and |λ − λ0| sufficiently small, by using the fact that T (ρ, λ) = T+(ρ, λ+) +

T−(Π+(ρ, λ+), λ−).

Substituting (3.10) into the right hand side of the upper system and the lower system

of (3.4), we have two equations (one with the superscript + and the other with the

superscript −):

θ̇ = 1 +
∞∑
j=1

ξ±j (θ, λ±)ρj.

Rewriting those equations as

dt =
dθ

1 +
∑∞

j=1 ξ
±
j (θ, λ±)ρj

=

(
1 +

∞∑
j=1

φ±j (θ, λ±)ρj

)
dθ,

and integrating, we get

t− θ =
∞∑
j=1

ψ±j (θ)ρj, (3.15)

where

ψ+
j (θ) =

∫ θ

0

φ+
j (s)ds, ψ−j (θ) =

∫ θ

π

φ−j (s)ds,

and the series in (3.15) converges for all θ and sufficiently small ρ ≥ 0.

From (3.15) it follows that the positive half-period of (3.2) passing through (x, y) =

(ρ, 0) on the positive x-axis for ρ 6= 0 that reaches the negative x-axis is given by

T+(ρ, λ+) = π +
∑
k≥1

T+
k (λ+)ρk,

where T+
k (λ+) = ψk(π) =

∫ π
0
φ+
k (s)ds.

The negative half-period from the point (x, y) = (Π+(ρ, λ+), 0) on the negative x-axis

for ρ 6= 0 is given by

T−(Π+(ρ, λ+), λ−) = π +
∑

j≥1 T
−
j (λ−)(Π+(ρ, λ+))j

= π +
∑

j≥1 T
−
j (λ−)

(
r+(ρ, π, λ+)

)j
= π +

∑
j≥1 T

−
j (λ−)

(
ρ+

∑
i≥2 u

+
i (π, λ+)ρi

)j
= π +

∑
j≥1 T̂

−
j (λ+, λ−)ρj,

where T−j (λ−) = ψj(2π) =
∫ 2π

π
φ−j (s)ds, for the second equality we use the expression

obtained in (3.10) and T̂−j (λ−, λ+)’s are the Taylor coefficients of the before expression.
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Thus, the least period of the trajectory of (3.2) passing through (x, y) = (ρ, 0), for

ρ 6= 0, is given by (3.14), where Tj(λ) = T+
j (λ+) + T̂j(λ

+, λ−) is the j-th period constant.

Obviously, the center O of (3.2) is isochronous if and only if all period constants vanish.

Remark 3.2. Note that if the piecewise system (3.2) is reversible with respect to the y-

axis then we have Π+(ρ, λ+) = −ρ and the negative half-period of (3.2) passing through

(−ρ, 0) is simply given by

T−(ρ, λ−) = π +
∑
j≥1

T−j (λ−)ρj,

where T−j (λ−) = ψj(2π) =
∫ 2π

π
φ−j (s)ds and, therefore, the period constants of (3.14) are

of the form Tj(λ) = T+
j (λ+) + T−j (λ−).

But, in general, it is not easy to find the coefficients T̂j(λ
+, λ−) since we need to

know the expression of Π+(ρ, λ+). In order to avoid this, we can use the transformation

(x, y, t)→ (x,−y,−t) in the lower system of (3.2), then the negative half-period function

becomes the positive half-period function of (3.13) which is denoted by T̃−(ρ, λ−) found

in analogous way of T+(ρ, λ+) with expansion in form of series

T̃−(ρ, λ−) = π +
∑
j≥1

T̃j(λ
−)ρj.

Hence, the expansion of the period function becomes

T (ρ, λ+, λ−) = T+(ρ, λ+) + T̃−(ρ, λ−)

= 2π +
∑

j≥1(T+
j (λ+) + T̃−j (λ−))ρj,

and the period constants are Tj(λ) = T+
j (λ+) + T̃−j (λ−).

Remark 3.3. As for j ≥ 1 the period constant Tj belongs to the ideal 〈T1, T2, T3, . . . , Tj−1〉
over the ring R{λ1, λ2, . . . , λm}λ for each λ ∈ Rm, the expression of a period constant Tj(λ)

has only meaning when T1(λ) = · · · = Tj−1(λ) = 0.

The next lemma provides the first six period constants found by the method before

presented for family (3.1) and the other statements follows by using the computer algebra

system Maple. We will not give more details because of the size of their expressions.

Note that in the case of system (3.1) the corresponding period constants can be thought

as Tj(a,b) = T+
j (a) + T−j (b), where a = (a1, a2, a3) and b = (b1, b2, b3).

Lemma 3.4. The period constants Tj for family (3.1) are homogeneous polynomials of

degree j in the parameters. Moreover, they write as Tj = T j(a1, a2, a3)− T j(b1, b2, b3) for
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j = 1, 3, 5 and Tj = T j(a1, a2, a3) + T j(b1, b2, b3) for j = 2, 4, 6 where:

T 1(z1, z2, z3) =
1

3

(
2z1 + 4z2 − 2z3

)
,

T 2(z1, z2, z3) =
π

24

(
4z2

1 + 10z1z2 − 5z1z3 + 10z2
2 − z2z3 + z2

3

)
,

T 3(z1, z2, z3) =
1

405

(
206z3

1 + 624z2
1z2 − 312z2

1z3 + 960z1z
2
2 − 204z1z2z3 + 114z1z

2
3

+640z3
2 + 120z2

2z3 + 12z2z
2
3 − 8z3

3

)
,

T 4(z1, z2, z3) =
π

2304

(
400z4

1 + 1424z3
1z2 − 712z3

1z3 + 2772z2
1z

2
2 − 828z2

1z2z3 + 369z2
1z

2
3

+3080z1z
3
2 + 168z1z

2
2z3 + 126z1z2z

2
3 − 58z1z

3
3 + 1540z4

2 + 700z3
2z3

+21z2
2z

2
3 − 2z2z

3
3 + z4

3

)
,

T 5(z1, z2, z3) =
1

42525

(
26342z5

1 + 107708z4
1z2 − 53854z4

1z3 + 247520z3
1z

2
2 − 90956z3

1z2z3

+35786z3
1z

2
3 + 360640z2

1z
3
2 − 20832z2

1z
2
2z3 + 23772z2

1z2z
2
3 − 8882z2

1z
3
3

+313600z1z
4
2 + 98560z1z

3
2z3 + 3192z1z

2
2z

2
3 − 1604z1z2z

3
3 + 592z1z

4
3

+125440z5
2 + 89600z4

2z3 + 9520z3
2z

2
3 − 56z2

2z
3
3 − 40z2z

4
3 + 16z5

3

)
,

T 6(z1, z2, z3) =
π

2488320

(
578624z6

1 + 2670432z5
1z2 − 1335216z5

1z3 + 6994704z4
1z

2
2

−2964576z4
1z2z3 + 1076988z4

1z
2
3 + 12236840z3

1z
3
2 − 1891308z3

1z
2
2z3

+1121838z3
1z2z

2
3 − 366193z3

1z
3
3 + 14294280z2

1z
4
2 + 2721180z2

1z
3
2z3

+262458z2
1z

2
2z

2
3 − 149091z2

1z2z
3
3 + 46227z2

1z
4
3 + 10210200z1z

5
2

+5825820z1z
4
2z3 + 404250z1z

3
2z

2
3 − 11379z1z

2
2z

3
3 + 1380z1z2z

4
3

−291z1z
5
3 + 3403400z6

2 + 3303300z5
2z3 + 690690z4

2z
2
3 + 11935z3

2z
3
3

−699z2
2z

4
3 + 417z2z

5
3 − 139z6

3

)
.

Additionally, the ideal 〈T1, . . . , T6〉 is not radical, T 2
7 , T

2
8 , T

2
9 ∈ 〈T1, . . . , T6〉 but T7, T8, T9 /∈

〈T1, . . . , T6〉.

Remark 3.5. We decided to present the expressions of the period constants obtained

directly without the simplification commented in Remark 3.3 because they are short.

3.2 Strong isochronicity and discontinuous isochronous
centers

Chen and Zhang in [18] studied the isochronicity of a center in a piecewise Bautin

system and they proved Theorems 3.7 and 3.12 (we present in the following) that give

us conditions for the origin to be a regular isochronous center of (3.2). In order to do

this, they used a modification of two techniques applied for analytic systems, namely

linearizations and finding the associated commuting systems (see [1, 76, 87]), and also

the fact that the separation line plays the role of the isochronicity radial (remember
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Definition 1.23). These results determines how to prove that the conditions found in

Theorem 3.15 of Section 3.4 are sufficient.

Definition 3.6 ([18]). Consider the piecewise system (3.2). We say that the center is

a regular isochronous center if all orbits of the upper system (resp. the lower system)

spend the same time to go from the positive (resp. negative) x-axis to the negative (resp.

positive) x-axis. The other cases are refereed as irregular isochronous centers.

The irregular isochronous centers are more complicated than the regular ones because

we have to compute the period functions for the upper system and the lower system

separately and prove that their sum is constant near O. In the next theorem we introduce

a technique to find regular isochronous centers.

Theorem 3.7 ([18]). Let O be a center of system (3.2). Suppose that one of the following

two conditions holds for the upper system:

(A+) θ̇ ≡ 1 for θ ∈ (0, π) in (3.4);

(B+) O is an isochronous center of the upper system and L(π) is an isochronicity radial

(see Definition 1.23);

and that one of the following two conditions holds for the lower system:

(A−) θ̇ ≡ 1 for θ ∈ (π, 2π) in (3.4);

(B−) O is an isochronous center of the lower system and L(π) is an isochronicity radial.

Then, the center O of system (3.2) is isochronous and regular.

Proof. It follows directly from Definition 1.23 and that the positive half-period function

is T+(ρ, λ+) =
∫ π

0
1/θ̇dθ and the negative half-period function is T−(Π+(ρ, λ+), λ−) =∫ 2π

π
1/θ̇dθ.

Note that, if the condition (A+) (resp. (A−)) holds, we have that the upper (resp.

lower) system of (3.2) has a uniform isochronous center at the origin.

Before we present the next result, we briefly present what it means to say that two

vector fields commute and the existence of a linearization for smooth planar vector fields.

Given two smooth planar vector fields F (x, y) and G(x, y) given by

(ẋ, ẏ) = (F1(x, y), F2(x, y)), (3.16)

and

(ẋ, ẏ) = (G1(x, y), G2(x, y)), (3.17)
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respectively, we denote by φ(t, p) (resp. ψ(s, p)) the solution of (3.16) (resp. (3.17)), such

that φ(0, p) = p (resp. ψ(0, p) = p).

Let A and B be positive real numbers, and let R = [0, A] × [0, B] be the parametric

rectangle.

Definition 3.8. The local flows φ(t, p) and ψ(t, p) commute if, for every parametric

rectangle R such that both φ(t, ψ(s, p)) and ψ(s, φ(t, p)) exist whenever (t, p) ∈ R, then

φ(t, ψ(s, p)) = ψ(s, φ(t, p)).

By a classical result (see [15]), two local flows commute if and only if their Lie bracket

is equal to 0, i.e. [F,G] = 0. Then, F and G commute, or that G is a commutator of F ,

if they satisfy the next equations:(
F1
∂G1

∂x
−G1

∂F1

∂x

)
+

(
F2
∂G1

∂y
−G2

∂F1

∂y

)
≡ 0,(

F1
∂G2

∂x
−G1

∂F2

∂x

)
+

(
F2
∂G2

∂y
−G2

∂F2

∂y

)
≡ 0.

If G1 = F2 and G2 = −F1 we say that such systems are orthogonal to each other.

We recall that F and G, of degrees n and m, are said to be transversal to each other

at a point (x, y) if

F1(x, y)G2(x, y)− F2(x, y)G1(x, y) 6= 0.

Theorem 3.9 ([1]). The smooth system{
ẋ = −y + p(x, y),

ẏ = x+ q(x, y),
(3.18)

where p and q are analytic functions in a neighborhood of the origin starting with terms

at least of degree two, has an isochronous center at the origin O if and only if there exists

a smooth vector field (ẋ, ẏ) = (x + O2(|x, y|2), y + O2(|x, y|2)), defined in a neighborhood

of O such that it commutes with the vector field defined by (3.18) and it is transversal at

nonsingular points.

Also in [76], the authors introduced the linearization criterion for isochronicity of a

center given by the next result.

Theorem 3.10 ([76]). A center of the analytic system (3.18) is isochronous if and only

if there exists an analytic change of coordinates of the form

u = x+O(|(x, y)|),
v = y +O(|(x, y)|),

reducing the system to the linear isochronous system (u̇, v̇) = (−v, u).
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The next definition is important in this context.

Definition 3.11 ([18]). A consistent linearizing transformation of the piecewise sys-

tem (3.2) is a transformation

(u, v) =

{
(x+ V +(x, y), y + yW+(x, y)), if y ≥ 0,

(x+ V −(x, y), y + yW−(x, y)), if y < 0,
(3.19)

where V ±(x, y) and yW±(x, y) are analytic functions starting at least with degree 2 and

V +(x, 0) ≡ V −(x, 0), if the upper transformation and the lower one in (3.19) reduce the

upper system and the lower one in (3.2), respectively, to (u̇, v̇) = (−v, u).

By using the two techniques for analytic systems, linearizations by Theorem 3.10 and

finding commuting systems by Theorem 3.9, the authors of [18] obtained isochronicity

conditions for piecewise systems as follows in Theorem 3.12.

Theorem 3.12 ([18]). The equilibrium point at the origin O for the piecewise system (3.2)

is a regular isochronous center if one of the following conditions is satisfied:

(i) O is a center of system (3.2). Moreover, the upper system (resp. the lower sys-

tem) in (3.2) has either a linearizing transformation of the form (u, v) = (x +

V +(x, y), y + yW+(x, y)) (resp. (u, v) = (x + V −(x, y), y + yW−(x, y))), or a

transversal commuting system of the form (ẋ, ẏ) = (x + F+(x, y), y + yG+(x, y))

(resp. (ẋ, ẏ) = (x+F−(x, y), y+ yG−(x, y))), where V ±(x, y), yW±(x, y), F±(x, y)

and yG±(x, y) are analytic functions starting at least with degree 2.

(ii) System (3.2) has a consistent linearizing transformation of the form (3.19).

3.3 Bifurcation of local critical periods

In this section, we shall prove a result that provides lower bounds for the criticallity

problem that is a limitation of the number of local critical periods that bifurcates from a

weak center of finite order (see Definition 1.44).

Henceforth, we will denote by T
[k]
j the k-th order terms of the period constant Tj.

In order to prove the next theorem, it is convenient to do a change in the parameter

space given by

a1 = (w1 + z1)/2, a2 = (w2 + z2)/2, a3 = (w3 + z3)/2,

b1 = (w1 − z1)/2, b2 = (w2 − z2)/2, b3 = (w3 − z3)/2.
(3.20)

This change is natural, because as the upper system is equal to the lower one, after

the change (a1, a2, a3) → (b1, b2, b3), it is reasonable to think about the case where both
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systems are coincident, then the difference is equal to zero, and the other cases are sums.

Also, note that in Lemma 3.4 the period constants are differences or sums of the same

expression in the three variables depending on whether it is odd or even.

Again we use the period constants found in Lemma 3.4 and consider p1 as T1 after the

change (3.20). Next, for even j ≥ 2, pj is Tj/π after the change of variables reduced with

respect to the ideal 〈p1, . . . , pj−1〉, and for odd j > 2, pj is Tj after the change of variables

reduced with respect to the ideal 〈p1, . . . , pj−1〉 .
Now we state and prove our first result of this section.

Theorem 3.13. For system (3.1) the following families have a weak center of order 5

and the number of local critical periods bifurcating from the origin when perturbing inside

the class of reversible quadratic system is at most 5:

(i) a1 = b1 = −5a2/3, a3 = b3 = −2a2/3, b2 = a2;

(ii) a1 = αa2, a3 = −5(3559α + 4361)a2/(401α + 827), b2 = a2, where α is one of the

two roots of the polynomial p(α) = 2α2 + 15α + 15.

Proof. Using the computer algebra system Maple, we solve p1 = p2 = · · · = p5 = 0 and

we consider the solutions such that p6 6= 0. Then, those ones represent weak centers of

order 5 and are given by:

(1) w1 + 5w2/3 = w3 + 2w2/3 = zi = 0, i = 1, 2, 3;

(2) w1 − αw2 = w3 + 5 (3559α + 4361)w2/2 (401α + 827) = zi = 0 i = 1, 2, 3, where α

is one of the two roots of the polynomial p(α) = 2α2 + 15α + 15;

(3) w1−αw2 = w3−p1(α)w2/p2(α) = z1−
(
q(α)+k1β

2
)
p3(α)w2/p4(α) = z2−k2

(
q(α)+

k1β
2
)
w2 = z3 −

(
q(α) + k1β

2
)
p5(α)w2/p6(α), where α is a real root of a polynomial

r(α) of degree 31, q(α) and pi(α), for i = 1, . . . , 6, are polynomials of degree 30, and

ki is a constant value, for i = 1, 2.

The polynomials in item (3) are not shown here because of their large size: r(α) has

degree 31 in which the coefficients possess at least 34 digits; q(α) has coefficients with at

least 708 digits; p1(α) has coefficients with at least 330 digits; p2(α) has coefficients with at

least 328 digits; p3(α) has coefficients with at least 2189 digits; p4(α) has coefficients with

at least 2177 digits; p5(α) has coefficients with at least 1455 digits; p6(α) has coefficients

with at least 1466 digits; k1 has 682 digits; and k2 = 1/580608000.

The conditions (1) and (2) are, respectively, equivalent to conditions (i) and (ii) of

Theorem (3.13). Now we analyze the bifurcation problem in these cases.
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Under the condition (i), system (3.1) can be written as

(ẋ, ẏ) =

{
(−y − 5a2x

2/3 + a2y
2, x− 2a2xy/3), if y ≥ 0,

(−y − 5a2x
2/3 + a2y

2, x− 2a2xy/3), if y < 0.
(3.21)

It is clear that we only have to consider the case a2 6= 0. Additionally, with the map

(x, y) 7→ (3a−1
2 x, 3a−1

2 y) we transform (3.21) into

(ẋ, ẏ) =

{
(−y − 5x2 + 3y2, x− 2xy), if y ≥ 0,

(−y − 5x2 + 3y2, x− 2xy), if y < 0,
(3.22)

and for this case, by using the period constants found in Lemma 3.4, we have T1 = · · · =
T5 = 0 and T6 = 63π/5. We consider the time-reversible perturbation in terms of the

parameters {e1, e2, e3, e4, e5, e6} in system (3.22):

(ẋ, ẏ) =

{
(−y + (−5 + e1)x2 + (3 + e2)y2, x+ (−2 + e3)xy), if y ≥ 0,

(−y + (−5 + e4)x2 + (3 + e5)y2, x+ (−2 + e6)xy), if y < 0.

Then, the linear development in power series with respect to the perturbative parameters

of the first five period constants is given by

T
[1]
1 =

1

3

(
2e1 + 4e2 − 2e3 − 2e4 − 4e5 + 2e6

)
,

T
[1]
2 =

π

2
e2 +

3π

4
e3 +

π

2
e5 +

3π

4
e6,

T
[1]
3 = 2e1 +

8

5
e2 − 4e3 − 2e4 − 8

5
e5 + 4e6,

T
[1]
4 = −2πe1 + 5πe3 − 2πe4 + 5πe6,

T
[1]
5 =

2966

105
e1 +

524

75
e2 −

27898

525
e3 −

2966

105
e4 −

524

75
e5 +

27898

525
e6,

and the rank of these linear developments with respect to the parameters {e1, e2, e3, e4, e5}
is 5. Then, by using the Implicit Function Theorem, there exists a linear change of

variables in the parameter space, well defined, in a neighborhood of the origin, such that

Tk = vk, for k = 1, . . . , 5 and at least 4 simple critical periods can bifurcate. Furthermore,

as the sixth period constant is not equal to zero, we can apply the Weierstrass Preparation

Theorem to obtain that at most 5 local critical periods bifurcating from this center.

The proof is analogous for the condition (ii) of Theorem 3.15.

Remark 3.14. It can be proved that Theorem 3.13 is not classificatory because there is

another family given by polynomials in which the coefficients are integer numbers between

34 and 2226 digits long. So there would be a lot of numerical work to reach the same

conclusion that have already been obtained through (i) and (ii).



70 Chapter 3. Period function of planar piecewise reversible quadratic systems

3.4 Perturbing piecewise isochronous quadratic systems

In this section we prove a theorem that provides all the conditions in the parameters for

family (3.1) to have an isochronous center at the origin and we study lower bounds for the

criticality of such isochronous centers. From Remark 1.56, we can apply the technique

developed in Section 1.6 for the study of the criticallity of the families of isochronous

centers classified. We shall see that at least 4 local critical periods can unfold in the class

of piecewise reversible quadratic systems using only first order developments. In all the

studied cases, no more critical periods can be found using higher order developments up

to order 4.

It is important to highlight that the problem of isochronicity for analytical quadratic

systems was studied by Loud [66], where he proved that the origin is an isochronous center

if and only if through a linear change of coordinates and a time rescaling the quadratic

system can be written as one of the following systems, denoted by S1, S2, S3, and S4 in

[15]:

S1 :

{
ẋ = −y + x2 − y2,

ẏ = x+ 2xy,
S2 :

{
ẋ = −y + x2,

ẏ = x+ xy,

S3 :

{
ẋ = −y − 4x2/3,

ẏ = x− 16xy/3,
S4 :

{
ẋ = −y + 16x2/3− 4y2/3,

ẏ = x+ 8xy/3.

(3.23)

Note that after applying the change of variables (x, y, t) 7→ (x,−y,−t) in family (3.1),

which we shall denote by η, the upper and the lower systems exchange their equations.

Note that what actually happens is an interchange of parameters

(a1, a2, a3, b1, b2, b3)↔ (−b1,−b2,−b3,−a1,−a2,−a3).

As in the previous section, we denote by p1 the first period constant T1 after the change

presented in (3.20), and denote by pj the constant Tj/π after the change of variables (3.20)

reduced with respect to the ideal 〈p1, . . . , pj−1〉 for even j ≥ 2, and for odd j > 2, the

period constant Tj after the change of variables (3.20) reduced with respect to the ideal

〈p1, . . . , pj−1〉 .

Theorem 3.15. Up to a linear change of coordinates and a time rescaling including the

change η, the origin is an isochronous center of the piecewise quadratic system (3.1) if and

only if either the system is the isochronous linear center or one of the following conditions

holds:

(i) a1 = b1 = 1, a2 = b2 = −1, a3 = b3 = 2;

(ii) a2 = b2 = a3 − a1 = b3 − b1 = 0;
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(iii) a1 = b1 = −1, a2 = b2 = 0, a3 = b3 = −4;

(iv) a1 + 4a2 = a3 + 2a2 = b1 + 4b2 = b3 + 2b2 = 0;

(v) a1 = −1, a2 = 1, a3 = −2, b1 = −1, b2 = 0, b3 = −4;

(vi) a2 = a3 − a1 = b1 + 4b2 = b3 + 2b2 = 0.

Proof. By solving p1 = p2 = · · · = p6 = 0, we get 8 necessary conditions to obtain

isochronous centers which are expressed and separated into their respective types in Ta-

ble 3.1.

Table 3.1: Isochronous conditions

Type Isochronous conditions found by solving p1 = p2 = · · · = p6 = 0
I w1 + w2 = 2w2 + w3 = zi = 0, i = 1, 2, 3

II w1 − w3 = w2 = z1 − z3 = z2 = 0

III w2 = w3 − 4w1 = zi = 0, i = 1, 2, 3

IV w1 + 4w2 = 2w2 + w3 = z1 + 4z2 = 2z2 + z3 = 0

V
(1)w1 + 2w2 = 6w2 + w3 = w2 − z2 = 2w2 − z3 = z1 = 0

(2)w1 + 2w2 = 6w2 + w3 = w2 + z2 = 2w2 + z3 = z1 = 0

VI
(1)w1 + 2w2 − w3 = w1 + 8w2 + z1 = w2 − z2 = w1 + 6w2 + z3 = 0

(2)w1 + 2w2 − w3 = w1 + 8w2 − z1 = w2 + z2 = w1 + 6w2 − z3 = 0

The conditions in type I, type II, type IV, type V, and type VI in Table 3.1 are

respectively equivalent to conditions (i), (ii), (iii), (iv), (v), and (vi), and now we shall

prove that they are sufficient.

Related to list (3.23), systems (i) and (iii) are equivalent to the isochronous quadratic

systems S1 and S3, (ii) is equivalent to S2 if a1 = b1, and (iv) is equivalent to S4, if

a2 = b2. In [18] we find the proof of the conditions for systems (3.1) to have isochronous

centers at the origin in each case: (ii) with a1 6= b1, (iv) with a2 6= b2, (v) and (vi). By

completeness, we reproduce it here by using the definitions and results of Section 3.2.

When condition (ii) holds with a1 6= b1, system (3.1) takes the form

(ẋ, ẏ) =

{
(−y + a1x

2, x+ a1xy), if y ≥ 0,

(−y + b1x
2, x+ b1xy), if y < 0.

(3.24)

After the change of variables (x, y) 7→ (r cos θ, r sin θ), we can transform the upper

and lower systems one in (3.24) into the polar coordinates form and obtain that θ̇ ≡ 1 for

any θ and, by Theorem 3.7, it follows that O is an isochronous center.
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When condition (iv) holds with a2 6= b2, system (3.1) takes the form

(ẋ, ẏ) =

{
(−y − 4a2x

2 + a2y
2, x− 2a2xy), if y ≥ 0,

(−y − 4b2x
2 + b2y

2, x− 2b2xy), if y < 0,
(3.25)

which has a transversal commuting system

(ẋ, ẏ) =

{
(x− 4a2xy + 4a2

2xy
2, y − 3a2y

2 + 2a2
2y

3), if y ≥ 0,

(x− 4b2xy + 4b2
2xy

2, y − 3b2y
2 + 2b2

2y
3), if y < 0.

Thus, by Theorem 3.12, the origin O is an isochronous center of (3.25).

About the condition (v), we have

(ẋ, ẏ) =

{
(−y − x2, x− 4xy), if y ≥ 0,

(−y − x2 + y2, x− 2xy), if y < 0.
(3.26)

For the upper system of (3.26), it is possible to prove that it has an integrating fac-

tor µ(y) = (1 − 4y)−3/2, from which we obtain a first integral H+(x, y) = (1 + 2x2 −
2y)/
√

1− 4y, hence, the integrating curve passing though (ρ, 0) can be expressed as

1 + 2x2− 2y− (1 + 2ρ2)
√

1− 4y = 0. Thus, y = (1 + 2ρ2)
√
ρ2 + ρ4 − x2− 2ρ2− 2ρ4 + x2.

Therefore, the positive half-period function can be computed as

T+(ρ) =

∫
−Π+(ρ)

ρ

dx

ẋ
=

∫
−ρ

ρ

dx

−y − x2

=

∫
−ρ

ρ

dx

2ρ2 + 2ρ4 − 2x2 − (1 + 2ρ2)
√
ρ2 + ρ4 − x2

= 2

∫
0

ρ

dx

2ρ2 + 2ρ4 − 2x2 − (1 + 2ρ2)
√
ρ2 + ρ4 − x2

= 2

∫
0

arcsin

(
1√

1+ρ2

) dα

2ρ
√

1 + ρ2 cosα− (1 + 2ρ2)

= 4 arctan(ρ+
√

1 + ρ2),

(3.27)

where a change of variables x = ρ
√

1 + ρ2 sinα is applied in the fourth line. For the lower

system, we apply the change of variables x = r cos θ and y = r sin θ to transform it into

the polar coordinate form ṙ = −r2 cos θ, θ̇ = 1− r sin θ. Solving the first order differential

equation
dr

dθ
=
−r2 cos θ

1− r sin θ
,

associated to the initial condition r(π) = Π+(ρ) = ρ, we get that

r(θ) = −ρ2 sin θ + ρ

√
ρ2 sin2 θ + 1.
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Thus, the negative half-period function can be computed as

T−(ρ) =

∫
2π

π

dθ

θ̇
=

∫
2π

π

dθ

1 + ρ2 sin2 θ − ρ sin θ
√
ρ2 sin2 θ + 1

=

∫
2π

π

√
ρ2 sin2 θ + 1 + ρ sin θ√

ρ2 sin2 θ + 1
dθ

= π − ρ
∫

2π

π

d cos θ

ρ2 + 1− ρ2 cos2 θ

= π −
∫

1

−1

ds√
ρ1+1
ρ2
− s2

= π − 2 arcsin

(
ρ√

1 + ρ2

)
.

(3.28)

Note that β := 2 arctan
(
ρ+

√
1 + ρ2

)
− arcsin

(
ρ√

1 + ρ2

)
∈ [−π/2, π], and

sin β =
−ρ√
1 + ρ2

1− (ρ+
√

1 + ρ2)2

1 + (ρ+
√

1 + ρ2)2
+

2(ρ+
√

1 + ρ2)

1 + (ρ+
√

1 + ρ2)2

1√
1 + ρ2

≡ 1,

which implies that β = π/2. It follows from (3.27), (3.28), and β = π/2 that T (ρ) =

T+(ρ) + T−(ρ) = π + 2β ≡ 2π. Therefore, O is an isochronous center of (3.26).

When the condition (vi) holds, system (3.1) takes the form

(ẋ, ẏ) =

{
(−y + a1x

2, x+ a1xy), if y ≥ 0,

(−y − 4b2x
2 + b2y

2, x− 2b2xy), if y < 0,
(3.29)

which has a transversal commuting system

(ẋ, ẏ) =

{
(x+ a1xy, y + a1y

2), if y ≥ 0,

(x− 4b2xy + 4b2xy
2, y − 3b2y

2 + 2b2
2y

3), if y < 0.

Thus, by Theorem 3.12, the origin O is an isochronous center of (3.29).

Then, p1 = · · · = p6 = 0 implies that the origin is an isochronous center, since for each

case we do not need the period constant p7 to get the isochronous center condition.

The last results of this chapter aim to investigate lower bounds for the criticality by

adding a reversible perturbation on some isochronous centers obtained in Theorem 3.15

by applying the results presented in Section 1.6.

Proposition 3.16. Consider the isochronous quadratic systems given by condition (i) in

Theorem 3.15. The number of critical periods bifurcating from the origin when perturbing

into the class of piecewise reversible quadratic system is at most 3.
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Proof. We consider the time-reversible quadratic perturbation

(ẋ, ẏ) =

{
(−y + (1 + e1)x2 + (−1 + e2)y2, x+ (−2 + e3)xy), if y ≥ 0,

(−y + (1 + e4)x2 + (−1 + e5)y2, x+ (−2 + e6)xy), if y < 0.

The matrix of T
[1]
1 , T

[1]
2 , T

[1]
3 , and T

[1]
5 with respect to the parameters {e1, e2, e3, e4} is

given by 
2
3

4
3
−2

3
−2

3

−π
2
−π

2
0 −π

2

− 2
15
− 8

15
4
5

2
15

2
35

12
35

−6
7
− 2

35

 (3.30)

and it has rank four since, its determinant is equal to −64π/1575. Then, there exists a

linear change of variables given by

e1 =
1

32π

(
99πu1 − 32u2 + 570πu3 + 455πu4 − 32πu5

)
,

e2 = −27

16
u1 −

105

8
u3 −

175

16
u4 + u5,

e3 = −3

8
u1 −

15

4
u3 −

35

8
u4 + u6,

e4 = − 1

32π

(
45πu1 + 32u2 + 150πu3 + 105πu4 + 32πu5

)
,

(3.31)

where u5 = e5 and u6 = e6, such that T
[1]
1 = u1, T

[1]
2 = u2, T

[1]
3 = u3, T

[1]
5 = u4. Using these

expressions we can rewrite T1, . . . , T5 in terms of these new variables. By the properties

presented in Proposition 1.52 we can simplify the period constant T4 and then we get

T
[1]
4 = 0. Using the simplification u1 = u2 = u3 = 0, we obtain the second order terms of

Tj, for j = 4, 5, which depend on the remaining parameters (u4, u5, u6):

T
[2]
4 =

π

24576

(
385875u2

4 − 53760u4u5 − 26880u4u6 + 4096u2
5 + 4096u5u6 + 1024u2

6

)
,

T
[2]
5 =

u4

480

(
480 + 82215u4 − 12848u5 − 5464u6

)
.

As the solutions of T
[2]
4 = 0 are complex, the only way the fourth period constant to be

zero is u4 = u5 = u6 = 0, so that all the next period constants vanish and, therefore, we

do not obtain more than 3 oscillations.

Proposition 3.17. Consider the isochronous quadratic systems given by conditions (iii),

and (v) presented in Theorem 3.15. The number of critical periods bifurcating from the

origin when perturbing in the class of piecewise reversible quadratic system is at least 4,

using developments up to order 4.

Proof. We present the proof for the condition (iii) and for the other condition the analysis

is carried out in a similar way.
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We consider the time-reversible quadratic perturbation

(ẋ, ẏ) =

{
(−y + (−1 + e1)x2 + e2y

2, x+ (−4 + e3)xy), if y ≥ 0,

(−y + (−1 + e4)x2 + e5y
2, x+ (−4 + e6)xy), if y < 0.

Initially, we compute the first eight period constants and we obtain that the rank of

the linear developments of the first five period constants with respect to the parameters

{e1, e2, e3, e4, e5} is 5. Then, up to a linear change of variables in the parameter space

as in (3.31), we can write T
[1]
j = uj, for j = 1, . . . , 5. Using Proposition 1.52, we can

simplify the next period constants to get T
[1]
j = 0, for j = 6, 7, 8. Applying item (i) of

Theorem 1.53 up to order 1, we get that only four critical periods bifurcate from the

origin. Computing the higher developments up to order 4, and using the simplification

mechanism described in item (ii) of Theorem 1.53, we get that T
[k]
6 = T

[k]
7 = T

[k]
8 = 0, for

k = 2, 3, 4. Then, the result follows up to order 4.

For the case of conditions (ii), (iv), and (vi) presented in Theorem 3.15, we have a

polynomial family of isochronous centers parametrized by two parameters. In the pa-

rameter plane there are some curves for which the rank of the linear parts of the period

constants is not maximal along them. In these more degenerate cases, it would be possible

to obtain a greater number of oscillations by using Theorem 1.53 (ii). Thus, it is possible

to split into cases and some of them are presented in Table 3.2.

Table 3.2: Regions in parameters space

Type Condition
II∗ a1b1(a1 + b1) 6= 0

II∗∗ a1(a1 + b1)(a1 + 2b1) 6= 0

IV∗ a2b2(a2 + b2) 6= 0

IV∗∗ a2(a2 + b2)(a2 + 2b2) 6= 0

IV∗∗∗ a2(4a2 + 5b2)(a2 + 2b2) 6= 0

VI∗ a1b2(a1 − 4b2) 6= 0

VI∗∗ a1 6= 0

Proposition 3.18. Consider the isochronous quadratic systems given by conditions II∗,

IV∗, and VI∗. The number of critical periods bifurcating from the origin when perturbing

in the class of piecewise reversible quadratic system is at least 3, using developments up

to order 4.
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Proof. We shall see why we consider the restriction presented in Table 3.2 for the iso-

chronous center under condition (ii) in Theorem 3.15, for the other cases the study is

analogous.

Consider the time-reversible quadratic perturbation for the isochronous center pre-

sented in condition (ii) of Theorem 3.15

(ẋ, ẏ) =

{
(−y + (a1 + e1)x2 + e2y

2, x+ (a1 + e3)xy), if y ≥ 0,

(−y + (b1 + e4)x2 + e5y
2, x+ (b1 + e6)xy), if y < 0.

Doing a first order analysis, we see that the matrix, as the one presented in (3.30),

corresponding to the linear terms of the first four period constants, with respect to the

parameters {e1, e2, e4, e5}, has determinant equals to −π2a1b1(a1 + b1)4/720. Then, there

exists a linear change, as the one at (3.31), if a1b1(a1 + b1) 6= 0. Therefore, we obtain the

type II∗.

The remaining of the proof is carried out in a similar way as it was done in the proofs

of Propositions 3.16 and 3.17.

Remark 3.19. Under the remaining conditions in Table 3.2 we were unable to obtain a

greater number of oscillations than those ones obtained in the last results and, therefore,

we shall not detail them here.



CHAPTER 4

Period function for piecewise linear
centers at infinity

The analysis of the piecewise linear systems with only two half-planes separated by a

straight line started some years ago. The first and most relevant question about periodicity

in continuous piecewise linear differential systems was given in 1990 ([67]), when Lum and

Chua conjectured that such systems had at most one limit cycle. But, the first proof of

this maximality, together with a more complete study of the dynamics of these piecewise

systems, was given only in 1998 by Freire, Ponce, Rodrigo, and Torres ([43]). In [45]

the authors introduced a Liénard-like canonical form for general piecewise planar systems

with two linear systems separated by a straight line. Recently, in [44] the authors classified

the centers at infinity, that is, when there exists a period annulus at infinity and then

the infinity behaves like a center. Moreover, they studied the limit cycles bifurcating

from these centers when the infinity has dynamics of focus type in both regions called

of monodromic type. Additionally, in [7] it was constructed an integral characterization

of its Poincaré half-maps. For fundamental properties of these Poincaré half-maps and

related studies, we recommend [8, 9].

In this chapter, we present the beginning of the study that we are performing for the

period function for the class of piecewise linear systems with a center at infinity that are

characterized in [44]. Such systems have two equilibrium points, symmetric with respect

to the separation line (y-axis), that can be invisible, visible, or coincident and belong to

this line. For the case where both the left and the right systems have a center, we refer

as the center-center case and we believe that the period function will have at most one

oscillation. The other cases where both systems have a focus, we refer as the focus-focus

case. We will prove that there are no oscillations of the period function and we will

determine the cases in which the period function is monotonous decreasing, constant, and

77
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monotonous increasing. We point out that in this class we have no systems of center-focus

type. We chose to carry out the study only for the centers classified in [44], because the

solution for the center problem for planar piecewise linear system with two zones is not

finished yet.

In this chapter, the period function will be given by the difference T = T− − T+,

where T− is the left flight time with respect to y-axis, obtained going through the orbit

of the left system in the direction of its flow, and T+ is the right flight time with respect

to y-axis obtained considering the opposite direction of the flow of the right system (see

Figure 4.1). In the focus-focus cases classified in [44], we will not get critical periods

because both T− and −T+ have the same monotonic behavior, then T is monotonous

increasing or monotonous decreasing, if T− and −T+ are monotonous increasing or mo-

notonous decreasing. Then, we can expect a more interesting and rich behavior for T only

in the center-center case, since in this case T− and −T+ may have different monotonic

behaviors and it is possible that oscillations arise.

4.1 Preliminaries

Without loss of generality, we assume that the separation line is Σ = {(x, y) ∈ R2 :

x = 0} and the system that we consider is given by

ẋ = F(x) =

{
F−(x) =

(
F−1 (x), F−2 (x)

)T
= A−x + b−, if x ∈ Σ− ∪ Σ,

F+(x) =
(
F+

1 (x), F+
2 (x)

)T
= A+x + b+, if x ∈ Σ+,

(4.1)

where x = (x, y)T , A− = (a−ij), and A+ = (a+
ij) are 2× 2 constant matrices with real coef-

ficients, and b− = (b−1 , b
−
2 )T, b+ = (b+

1 , b
+
2 )T are constant vectors in R2. This system with

F−(0, y) = F+(0, y) has been studied in [43] and the one with no continuity assumption

was investigated in [45].

In this case, the differential function h : R2 → R, having 0 as regular value that

defines Σ, is given by h(x) = x. The Lie derivative of h in the direction of the vector

fields that compose (4.1), F− and F+, on points (0, y) ∈ Σ, are given by F−h(0, y) =〈(
F−1 (0, y), F−2 (0, y)

)
,
(
1, 0
)〉

= F−1 (0, y) and F+h(0, y) =
〈(
F+

1 (0, y), F+
2 (0, y)

)
,
(
1, 0
)〉

=

F+
1 (0, y).

Then, from the definitions presented in Section 1.1, we say that (0, y) ∈ Σ is a crossing

point if F−1 (0, y)F+
1 (0, y) > 0, so the crossing set Σc is defined as follows:

Σc =
{

(0, y) :
(
a−12y + b−1

) (
a+

12y + b+
1

)
> 0
}
. (4.2)

We are interested in the family of such differential systems in which orbits are suf-

ficiently far from the origin and cross the separation line Σ transversally, allowing the
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existence of periodic orbits lying in both half-planes. These orbits are called crossing

periodic orbits and they exist if points (0, y), where y is big enough, are of crossing type.

The condition in (4.2) is equivalent to

a−12a
+
12 > 0, (4.3)

and we will refer to it as the generic condition. In fact, when a−12a
+
12 ≤ 0, it is easy to see

that the crossing set, if it exists, is an open interval of the y-axis, bounded for a−12a
+
12 < 0

and unbounded for a−12a
+
12 = 0. Due to condition (4.3), the points in Σ that cannot be

part of a crossing orbit, i.e. sliding or escaping points, form a bounded set.

The linear-linear system (4.1) has twelve parameters. However, there exists a canon-

ical form with only seven parameters, called Liénard-canonical form obtained in Propo-

sition 3.1 of [45] by making a continuous piecewise linear change of variables such that

the resulting transformation is a homeomorphism, keeping invariant the separation line

Σ and the half-planes Σ− and Σ+. This canonical form is topologically equivalent to the

original system, if one is interested in the dynamics not involving sliding orbits.

Proposition 4.1 ([45]). Under the condition (4.3) the piecewise linear system (4.1) is

reduced to the following Liénard canonical form:

ẋ = G−(x) =

(
TL −1
DL 0

)
x−

(
0
aL

)
, if x ∈ Σ− ∪ Σ,

ẋ = G+(x) =

(
TR −1
DR 0

)
x−

(
−b
aR

)
, if x ∈ Σ+,

(4.4)

where TL (resp. TR) and DL (resp. DR) are the trace and the determinant of the matrix

A− (resp. A+), and

aL = a−12b
−
2 − a−22b

−
1 , b =

a−12

a+
12

b+
1 − b−1 , a+ =

a−12

a−12

(
a+

12b
+
2 − a+

22b
+
1

)
.

For the canonical form (4.4), it is enough to consider b ≥ 0, since it is invariant under

the change of variables (x, y, t)→ (x,−y,−t) and the change of parameters

(DR,DL,TR,TL, aR, aL, b)→ (DR,DL,−TR,−TL, aR, aL,−b),

simultaneously. Therefore, the sliding set of (4.4) is determined by

Σs = {(0, y) : y(y − b) ≤ 0} = {(x, y) : x = 0, 0 ≤ y ≤ b},

that is the segment joining two invisible tangencies at its endpoints: the origin (0, 0) and

the point (0, b). This set becomes repulsive, if b > 0 (the normal component of both
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vector fields points outward from the sliding set), and it shrinks to the origin, if b = 0

(the origin is the single sliding point and it is always a topological focus).

The parameters aL and aR are related to the position of equilibria and the visibility

of the tangencies, and when some of them vanish, we have a boundary equilibrium point.

In fact, by computing the sign of ẍ at the tangency points, we obtain

ẍ|(x,y)=(0,0) = aL, ẍ|(x,y)=(0,b) = aR,

so that the left (resp. right) tangency is called visible or real, if aL < 0 (resp. aR > 0),

and it is invisible or virtual, if aL > 0 (resp. aR < 0), see [43] for details.

From now on, we suppose that a2
L + D2

L 6= 0 and a2
R + D2

R 6= 0, otherwise, there is no

possible return to section Σ. Also assume that b = 0, i.e. Σs = {(0, 0)}, then the first

equation of system (4.4) evaluated on section Σ is reduced to ẋ|Σ = −y. Therefore, the

flow of the system crosses Σ from the right half-plane Σ+ to the left half-plane Σ− when

y > 0, from Σ− to Σ+ when y < 0, and it is tangent to Σ at the origin. Then, the origin is

the unique tangency point of the flow of the piecewise vector field in the separation line.

Under these conditions, system (4.4) becomes

ẋ =

(TLx− y,DLx− aL), if x ∈ Σ−,

(TRx− y,DRx− aR), if x ∈ Σ+.
(4.5)

Now we shall define, in the usual way, the Poincaré half-maps and the respective half-

flight times of system (4.5) corresponding to the section Σ. Namely, the forward Poincaré

half-map (resp. backward Poincaré half-map), denoted by Π− (resp. Π+), and the left

flight time (resp. right flight time), denoted by T− (resp. T+).

Consider a point (0, y0) ∈ Σ with y0 ≥ 0 and let ψ(t, y0) = (ψ1(t, y0), ψ2(t, y0)) be the

orbit of the left system of (4.4) that satisfies ψ(0, y0) = (0, y0). If there exists a value

T−(y0) > 0 such that ψ1(T−(y0), y0) = 0 and ψ1(t, y0) < 0, for every t ∈ (0, T−(y0)), we

say that y1 = ψ2(T−(y0), ρ0) ≤ 0 is the image of y0 by the forward Poincaré half-map,

then y1 = Π−(y0). The value T−(y0) is the corresponding left flight time for the solution

of (4.4) starting at (0, y0) and ending at (0, y1). Considering the solution starting at

(0, y0) we can similarly define the backward Poincaré half-map (Π+(y0)) and right flight

time (T+(y0)), now backward on time, for the right system of (4.4). See Figure 4.1.

As we consider the right flight time in the opposite direction to the flow of the vector

field, then T+(y0) < 0, for all y0 > 0. Then, the complete flight time, denoted by T , is

the left flight time minus the right flight time, i.e. we have the expression

T (y0) = T−(y0)− T+(y0). (4.6)
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Figure 4.1: Forward and backward Poincaré half-maps associated to (0, y0), with y0 > 0

Remark 4.2. In the case in which Π−(0) (resp. Π+(0)) cannot be defined but for every

ε > 0 there exist y0 ∈ (0, ε) and y1 ∈ (−ε, 0) (resp. y2 ∈ (−ε, 0)) such that Π−(y0) = y1

(resp. Π+(y0) = y2), the left (resp. right) Poincaré half-map can be extended with

Π−(0) = 0 (resp. Π+(0) = 0). That is, having an equilibrium point at the origin or an

invisible tangency in the half-plane {x < 0} (resp. {x > 0}).

In Theorem 19 of [7], the authors determine the following integral characterization of

the forward and backward Poincaré half-maps and they use it to obtain the half-flight

times. The left Poincaré half-map or forward Poincaré half-map is the unique function

Π− : IL ⊂ [0,∞)→ (−∞, 0] that, for every y0 ∈ IL, satisfies

PV

{∫ y0

Π−(y0)

−y
WL(y)

}
= cLTL, (4.7)

where WL(y) = DLy
2−aLTLy+a2

L and cL is given, in terms of the parameters, as follows:

(i) cL = 0, if aL > 0,

(ii) cL = π(DL

√
4DL − T2

L)−1 ∈ R, if aL = 0,

(iii) cL = 2π(DL

√
4DL − T2

L)−1 ∈ R, if aL < 0.

When aL = 0 the integral given in (4.7) diverges and the Cauchy principal value at the

origin, which is defined as

PV

{∫ y0

y1

−y
WL(y)

}
= lim

ε→0

(∫ −ε
y1

−y
WL(y)

dy +

∫ y0

ε

−y
WL(y)

dy

)
,

for y1 < 0 < y0 must be used. On the other hand, if aL 6= 0, the integrating function is

continuous and we can just take the value of the integral. Moreover, the corresponding

left flight time is

T−(y0) = 2DLcL +

∫ y0

Π−(y0)

aL
WL(y)

dy. (4.8)
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In an analogous way, the right Poincaré half-map or backward Poincaré half-map is

the unique function Π+ : IR ⊂ [0,∞)→ (−∞, 0] that, for every y0 ∈ IR, satisfies

PV

{∫ y0

Π+(y0)

−y
WR(y)

}
= −cRTR,

where WR(y) = DRy
2−aRTRy+a2

R and cR is given, in terms of the parameters, as follows:

(i) cR = 0, if aR < 0,

(ii) cR = π(DR

√
4DR − T2

R)−1 ∈ R, if aR = 0,

(iii) cR = 2π(DR

√
4DR − T2

R)−1 ∈ R, if aR > 0.

Moreover, the corresponding right flight time is

T+(y0) = −2DRcR +

∫ y0

Π+(y0)

aR
WR(y)

dy. (4.9)

Remark 4.3. The smallest positive root of WL, if it exists, is the right endpoint of

IL, and the greatest negative root of WL, if exists, is the left endpoint of Π−(IL). If

T2
L − 4DL < 0, then the equilibrium point of the left system of (4.4) is either a focus

or a center, and the domain IL and the range Π−(IL) of the Poincaré half-map Π− are

unbounded, and Π−(y0) → −∞ as y0 → ∞. In this case, the intervals are IL = [0,∞)

and Π−(IL) = (−∞, 0], except when the equilibrium point is a focus (i.e. TL 6= 0) and

it is located in the left half-plane Σ− (i.e. aL < 0). In fact, when TL > 0, i.e. in the

unstable focus case, there exists a value ŷ1 such that Π−(0) = ŷ1 and the interval Π−(IL)

is reduced to (−∞, ŷ1] (see Figure 4.2 (a)). Analogously, for TL < 0, i.e. in the stable

focus case, there exists a value ŷ0 such that (Π−)−1(0) = ŷ0 and the interval IL = [ŷ0,∞)

(see Figure 4.2 (b)).

Remark 4.4. An analogous observation as Remark 4.3 is valid for the backward Poincaré

half-map, only with the following change: if the equilibrium point is a focus of the right

system of (4.4), that is T2
R − 4DR < 0, the range Π+(IR) is (−∞, ŷ1], where ŷ1 = Π+(0),

if it is a stable focus, that is TR < 0. The domain IR is the interval [ŷ0,∞), with

ŷ0 = (Π+)−1(0), if it is an unstable focus, that is TR > 0 (see Figure 4.3).

In [44] the authors introduce a symmetric canonical form obtained under the hypothe-

ses T2
Λ − 4DΛ < 0, for Λ ∈ {L,R}, in which both dynamics are of focus type named

Liénard reduced form. In the following we assume, for shortness, that Λ ∈ {L,R}.

Proposition 4.5 ([44]). Assume that TΛ = 2αΛ, DΛ = (αΛ)2 + (ωΛ)2 with ωΛ > 0

in the canonical form (4.4), and introduce the parameters γR = αR/ωR, γL = αL/ωL,
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Figure 4.2: The left Poincaré half-map Π− and its interval of definition IL for the cases:
(a) unstable focus and (b) stable focus

Figure 4.3: The right Poincaré half-map Π+ and its interval of definition IR for the cases:
(a) stable focus and (b) unstable focus

αR = aR/ωR, and αL = aL/ωL. Then, there exists a change of variable that transforms

the canonical form of system (4.4) into the form

(ẋ, ẏ) =

(2γLx− y, (1 + γ2
L)x− αL), if x ≤ 0,

(2γRx− y + b, (1 + γ2
R)x− αR), if x > 0.

(4.10)

Proof. Since we have ωΛ > 0 such that (ωΛ)2 = DΛ−T2
Λ/4 and σΛ = TΛ/2, the eigenvalues

of the matrix ruling the dynamics on the half-plane Σ∓ in (4.4) is σΛ± iωΛ. The canonical

form is obtained by making the change of variables (x, y, t) → (X, Y, τ) := (ωΛx, y, ωΛt)

in each half-plane of (4.4) and after introducing the new parameters given by γL, γR, αL,

and αR.
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There are two equilibrium points of (4.10) of focus type

(xL, yL) = (xL, 2γLxL) =

(
αL

1 + γ2
L

,
2γLαL
1 + γ2

L

)
and

(xR, yR) = (xR, 2γRxR + b) =

(
αR

1 + γ2
R

,
2γRαR
1 + γ2

R

+ b

)
.

The equilibrium points (xL, yL) and (xR, yR) are stable for γL < 0 and γR < 0, unstable

for γL > 0 and γR > 0, and a center if γL = γR = 0. Such equilibria will be real when

αL < 0 or αR > 0, boundary equilibria for αL = αR = 0, and virtual ones when αL > 0

or αR < 0.

Now, in terms of the coordinates of the equilibrium points (xL, yL) and (xR, yR) of

system (4.10), we can rewrite it as follows:

(ẋ, ẏ) =


(
2γL(x− xL)− (y − yL), (1 + γ2

L)(x− xL)
)
, if x ≤ 0,(

2γR(x− xR)− (y − yR), (1 + γ2
R)(x− xR)

)
, if x > 0,

or equivalently

(ẋ, ẏ) =


(
2γLx− y, (1 + γ2

L)(x− xL)
)
, if x ≤ 0,(

2γRx− y + b, (1 + γ2
R)(x− xR)

)
, if x > 0.

(4.11)

Such systems are invariant under the transformations

(x, y, τ, γL, xL, b, γR, xR) 7→ (−x, y,−τ,−γR,−xR,−b,−γL,−xL),

(x, y, τ, γL, xL, b, γR, xR) 7→ (x,−y,−τ,−γL, xL,−b,−γR, xR),

and their composition

(x, y, τ, γL, xL, b, γR, xR) 7→ (−x,−y, τ, γR, xR, b, γL, xL).

Note that the time τ is the one introduced in the proof of Proposition 4.5, that is,

τ = ωLt, for the left system, and τ = ωRt, for the right system.

Remark 4.6. By Remarks 4.3 and 4.4, if xL < 0 (resp. xR > 0) when γL > 0 (resp. γR <

0), the interval Π−(IL) is reduced to (−∞, ŷ1], where ŷ1 = Π−(0) (resp. ŷ1 = (Π+)−1(0)),

and for γL < 0 (resp. γR > 0), IL = [ŷ0,∞) with ŷ0 = (Π−)−1(0) (resp. ŷ0 = Π+(0)),

see Figures 4.2 and 4.3. In fact, the change (x, y, t) → (ωLx, y, ωLt) keeps the origin

unchanged.

The next result, obtained in [44], says that we can restrict ourselves to studying the

family (4.11) with b = 0.
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Theorem 4.7 ([44]). System (4.11) has a center at infinity if and only if it is time-

reversible with respect to x-axis or y-axis. The centers time-reversible with respect to

y = 0 if and only if b = 0 and γL = γR = 0. The centers time-reversible with respect to

x = 0 if and only if b = 0, γL = −γR 6= 0 and either αL = αR = 0 or αL = −αR 6= 0.

The authors of [44] classify the centers at infinity for the family

(ẋ, ẏ) =


(
2γLx− y, (1 + γ2

L)(x− xL)
)
, if x ≤ 0,(

2γRx− y, (1 + γ2
R)(x− xR)

)
, if x > 0.

(4.12)

Consequently, we can use the left Poincaré half-map (4.7) and the left flight time (4.8)

and do the following changes

TL = 2γLωL, DL = (1 + γ2
L)(ωL)2, and aL = (1 + γ2

L)xLωL,

TR = 2γRωR, DR = (1 + γ2
R)(ωR)2, and aR = (1 + γ2

R)xRωR,
(4.13)

on them.

4.2 Study of the flight time

A special case of smooth system is the so called rigid system or uniformly isochronous

system, that is, by using a homeomorphism X = h(x), such that the new system may

be brought into the form θ̇ ≡ 1, for any θ after the polar coordinates transformation

X = r cos θ and Y = r sin θ. By using that the study of the period function is equivalent

to the one in which the system is in its normal form, roughly speaking, we can say that

the half-flight time is the angle with respect to the equilibrium point for rigid systems. In

particular, we have that each linear system which defines equation (4.12) has this property

by the following proposition.

Proposition 4.8. Consider the differential linear system{
ẋ = 2γΛx− y,
ẏ = (1 + γ2

Λ)(x− xΛ),
(4.14)

where γΛ and xΛ are real. The half-period function for the solution of system (4.14)

passing through (0, y0) and (0, y1) is the angle of the sector centered at the equilibrium and

defined by those points (see Figure 4.4).

Proof. By using the translation (x, y) 7→ (x− xΛ, y − 2γΛxΛ) the system becomes{
ẋ = 2γΛx− y,
ẏ = (1 + γ2

Λ)x.
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Figure 4.4: Sector centered at the equilibrium p0 and defined by the points (0, y0) and
(0, y1)

We can apply a linear transformation to the normal form given by

(x, y)→ (y,−(1 + γ2
Λ)x+ γΛy) := (X, Y )

that transforms this system in the Jordan canonical form{
Ẋ = γΛX − Y,
Ẏ = X + γΛY,

where after the polar coordinates transformation, X = r cos θ, and Y = r sin θ we obtain

that θ̇ ≡ 1 for any θ.

This result tells us that the behavior of the half-period function of (4.12) is equal to the

corresponding flying time which in this case is the angle we go along the solution. Then,

in order to study the complete period function, it is enough to determine the behavior of

the angles defined by the equilibrium points of the left and right systems of (4.12).

Now we show a simple and important technical result which will be useful later for

studying the behavior of the period function for the considered cases.

Definition 4.9. Consider a planar differential system with a monodromic equilibrium

point p0 and a straight line `. Then, ` splits the phase plane into two connected compo-

nents, called Σ− and Σ+. Fixed the connected component Σ− (resp. Σ+), when p0 ∈ Σ−

(resp. p0 ∈ Σ+) it is called a visible equilibrium, if p0 ∈ ` is a boundary equilibria, and

when p0 /∈ Σ− (resp. p0 /∈ Σ+), it is an invisible equilibrium.

In the next result, d(·, ·) denotes the Euclidean distance in R2.

Proposition 4.10. Consider a planar differential system with a monodromic equilibrium

point p0 and a straight line `, then p0 ∈ `, or there exists a tangency point p1 of the flow

of the differential system with the straight line `. Fixed the connected component Σ−, if p0
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is visible, we take k0 = d(p1, p2), where p2 is the first intersection of the orbit that passes

through p1 at t = 0 with the straight line `, and k0 = 0, if p0 ∈ `, or p0 is an invisible

point. Since p0 is a monodromic point, for each k ∈ (k0,∞) ⊂ R+, there exist two points

qk0 , q
k
1 ∈ ` with a piece of orbit connecting them such that d(qk0 , q

k
1) = k. The function

which associates each k ∈ [k0,∞) ⊂ R+ to the angle Tk of the sector centered at its focus

and defined by those points qk0 and qk1 in ` contained in Σ− (see Figure 4.5) satisfies the

following conditions:

Figure 4.5: Sector centered at its focus p0 and defined by the points qk0 and qk1 in `

(i) is monotonous decreasing, if p0 is visible;

(ii) is constant, if p0 ∈ `;

(iii) is monotonous increasing, if p0 is invisible.

Proof. When p0 ∈ `, the angle is constant and equals to π. For the other cases, we

consider k1 < k2 and we fix the connected component Σ−. For Σ+ the proof is analogous.

Denote by Γk1 (resp. Γk2) the piece of an orbit that starts at qk10 (resp. qk20 ) and ends at

qk11 (resp. qk21 ), where the points qk10 , qk11 , qk20 , and qk21 are considered as in the statement,

according to Figure 4.6. Note that, if the focus p0 ∈ Σ− (resp. p0 /∈ Σ−), then the angle

determined by it and Γk1 is smaller (resp. greater) than the angle determined by the

equilibrium and Γk2 and the statement follows.

Remark 4.11. If we fix the other connected component Σ+, we have the same conclusions.

The following lemma is a direct consequence of Proposition 4.10.

Lemma 4.12. Suppose we are under the conditions of Proposition 4.10. Then,

(i) if p0 is visible, Tk0 ∈ (π, 2π],

(ii) if p0 ∈ `, k0 = 0 and T0 = π,
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Figure 4.6: The flow, illustration when the equilibrium of focus type p0 ∈ Σ− and p0 /∈ Σ−,
respectively

(iii) if p0 is invisible, k0 = 0 and Tk0 = 0.

Furthermore, if p0 is of center type and visible, k0 = 0 and T0 = 2π (see Figure 4.7).

The last statement of this lemma follows by using that, if a line intersects a circle in

exactly one point, the line is said to be tangent to the circle, as represented in Figure 4.7.

Figure 4.7: The flow, illustration when the equilibrium of center type p0 ∈ Σ− and
p0 /∈ Σ−, respectively

Note that we can do the study of the angle defined by the equilibrium points for the

left and right planar differential systems that define system (4.12) taking ` being the y-

axis. Then, from Proposition 4.8, this is sufficient to determine the behavior of the left

(resp. right) flight time that defines T in (4.6).

Remark 4.13. From Proposition 4.8 for the left (resp. right) system, the angle function

defined by k 7→ Tk, obtained in Proposition 4.10, verifies that, for each k ∈ R+, Tk is

T−(y0) (resp. −T+(y0)), where y0 > 0 and (0, y0) is the point in the y-axis such that

d((0, y0), (0,Π−(y0))) = k (resp. d((0, y0), (0,Π+(y0))) = k).
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Proposition 4.14. Consider the system (4.12), where the left system (resp. right system)

has a monodromic equilibrium point at (xL, yL) (resp. (xR, yR)). The left (resp. minus the

right) flight time T−(y0) (resp. −T+(y0)) with respect to y-axis associated to the period

annulus at infinity, satisfies the following conditions:

(i) if xL < 0 (resp. xR > 0), it is monotonous decreasing,

(ii) if xL = 0 (resp. xR = 0), it is constant,

(iii) if xL > 0 (resp. xR < 0), it is monotonous increasing.

Proof. Under the condition of statement (i), we have a real monodromic visible equilib-

rium in (xL, 2γLxL) (resp. (xR, 2γRxR)). From Proposition 4.10(i), the left (resp. right)

flight time is monotonous decreasing.

Due to the condition (ii) the origin is a boundary equilibrium and the left (resp. right)

flight time is constant from Proposition 4.10(ii).

Regarding statement (iii), the system has a monodromic invisible equilibrium point

(xL, 2γLxL) (resp. (xR, 2γRxR)). From Proposition 4.10(iii), the flight time is monotonous

increasing.

Remark 4.15. In the following, we are considering the angle of the sector centered at

the equilibrium and defined by two points in the separation line when we refer to the left

and right flight times.

From Lemma 4.12, we have the following conditions for the initial values of the left

flight time T− and minus the right flight time −T+.

Lemma 4.16. Suppose we are under the conditions of Proposition 4.14 and the domain

of the left (resp. right) flight time T−(y0) (resp. −T+(y0)) is IL = [ŷ0,∞) (resp. IR =

[ŷ0,∞)). Then,

(i) if xL < 0 (resp. xR > 0), ŷ0 = (Π−)−1(0) (resp. ŷ0 = (Π+)−1(0)) and T−(ŷ0) ∈
(π, 2π] (resp. −T+(ŷ0) ∈ (π, 2π]),

(ii) if xL = 0, ŷ0 = 0 and T−(0) = π (resp. −T+(0) = π),

(iii) if xL > 0, ŷ0 = 0 and T−(0) = 0 (resp. −T+(0) = 0).

Furthermore, if (xL, yL) (resp. (xR, yR)) is of center type and visible, ŷ0 = 0 and T−(0) =

2π (resp. −T+(0) = 2π).

We can also directly study the algebraic expressions in equations (4.8) and (4.9) ob-

tained in [7] for the half-flight times, after the substitutions given in (4.13), to determine

the behavior of T.
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Lemma 4.17. For the systems that define (4.12), with γΛ 6= 0, the half flight times T∓

are given by:

(i) T∓(y0) =
ξ

ωΛ

(
2π + arctan

(
y0 − γΛxΛ

xΛ

)
− arctan

(
Π∓(y0)− γΛxΛ

xΛ

))
, if ξxΛ <

0;

(ii) T∓(y0) =
ξπ

ωΛ

, if xΛ = 0;

(iii) T∓(y0) =
ξ

ωΛ

(
arctan

(
y0 − γΛxΛ

xΛ

)
− arctan

(
Π∓(y0)− γΛxΛ

xΛ

))
, if ξxΛ > 0,

and its first and second derivatives, for all xΛ, are:

(T∓)′(y0) =
ξxΛ(Π∓(y0)− y0)

ωΛ((γΛxΛ − y0)2 + x2
Λ)Π∓(y0)

,

(T∓)′′(y0) = − ξxΛ(Π∓(y0)− y0)Q(y0)

ωΛ((γΛxΛ − y0)2 + x2
Λ)Π∓(y0)3

,

(4.15)

where Q(y0) =
(
(γΛxΛ − Π∓(y0))2 + x2

Λ

)(
Π∓(y0) + y0

)
− Π∓(y0)2

(
Π∓(y0) − y0

)
, Λ = L

and ξ = 1 for the left flight time T−, Λ = R and ξ = −1 for right flight time T+.

Proof. It follows by using the expression given in (4.8) for the left and right flight times

and the substitutions given in equation (4.13).

Lemma 4.18. For the right system of (4.12) with xR = −xL and γR = −γL 6= 0, the

right flight time is given by T+(y0) = − (ωL/ωR)T−(y0). Then, the complete time is

T (y0) = (1 + ωL/ωR)T−(y0).

To study the sign of the second derivative of T−, it is important to determine the sign

of the difference y0 − (−Π−(y0)) that is given in [9] by the next proposition.

Proposition 4.19 ([9]). The following statements hold.

(i) The left Poincaré half-map Π− satisfies sign
(
y0 + Π−(y0)

)
= − sign

(
TL
)
, for y0 ∈

IL \ {0}. In addition, when 0 ∈ IL and Π−(0) 6= 0, or when TL = 0, the identity

also holds for y0 = 0.

(ii) The right Poincaré half-map Π+ satisfies sign
(
y0 + Π+(y0)

)
= sign

(
TR
)
, for y0 ∈

IR \ {0}. In addition, when 0 ∈ IR and Π+(0) 6= 0, or when TR = 0, the identity

also holds for y0 = 0.

From the last proposition and equation (4.13), we have that

sign
(
y0 + Π−(y0)

)
= − sign

(
γL
)

and sign
(
y0 + Π+(y0)

)
= sign

(
γR
)
. (4.16)
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4.3 Series expansions of the Poincaré half-map and the
flight time

In the next propositions the Taylor or Newton–Puiseux series expansion of the forward

Poincaré half-map Π− at the tangency point is presented, as obtained in [8], for the

piecewise system in the Liénard canonical form (4.4), in the different scenarios after the

substitutions given in (4.13).

Proposition 4.20 ([8]). Let xL 6= 0 and 0 ∈ IL. If Π−(0) = 0, then the Taylor expansion

of Π− around the origin is written as

Π−(y0) = −y0 −
4γL

3xL(1 + γ2
L)
y2

0 −
16γ2

L

9x2
L(1 + γ2

L)2
y3

0 +O(y4
0). (4.17)

Lemma 4.21. Under the same conditions of Proposition 4.20, the Taylor expansion of

the left flight time T− around the origin for system (4.12) writes as

T−(y0) =
1

ωL

(
2

xL(γ2
L + 1)

y0 +
4γL

3x2
L(γ2

L + 1)2
y2

0 +
2(5γ2

L − 3)

9x3
L(γ2

L + 1)3
y3

0 +O(y4
0)

)
. (4.18)

Proof. Note that 0 ∈ IL if and only if xL > 0. In order to get (4.18), it is enough to

replace the expansion of Π−(y0) given in (4.17) on the left flight time T−(y0) determined

in Lemma 4.17 (iii), and then consider the Taylor expansion around the origin for the

obtained expression.

Remark 4.22. Note that 0 ∈ IL (resp. 0 ∈ IR) and Π−(0) = 0 if and only if xL > 0

(resp. xR < 0), from Remark 4.3 and equation (4.13).

Proposition 4.23 ([8]). Assume that 0 ∈ IL. If Π−(0) = ŷ1 < 0, then xL < 0, γL > 0,

ŷ1 is the right endpoint of the interval Π−(IL) (see Figure 4.2(a)). The left Poincaré

half-map Π− is a real analytic function in IL and its Taylor expansion around the origin

writes as

Π−(y0) = ŷ1 +
(γLxL − ŷ1)2 + x2

L

2x2
Lŷ1(1 + γ2

L)
y2

0 +
2γL((γLxL − ŷ1)2 + x2

L)

3x3
Lŷ1(1 + γ2

L)2
y3

0 +O(y4
0). (4.19)

Lemma 4.24. Under the same conditions of Proposition 4.23 the Taylor expansion of

the left flight time T− around the origin for system (4.12) writes as

T−(y0) =
1

ωL

(
T−(0) +

1

xL(1 + γ2
L)
y0 −

(γLxL − ŷ1)2 + x2
L

2x2
Lŷ1(1 + γ2

L)2
y2

0

−(γ3
Lx

2
L + 4γ2

LxLŷ1 + γLx
2
L + γLŷ

2
1 − 2xLŷ1)

3x3
Lŷ1(1 + γ2

L)3
y3

0 +O(y4
0)

)
,

(4.20)

where T−(0) = 2π − arctan(γL)− arctan((ŷ1 − γLxL)/xL) ∈ (π, 2π).
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Proof. In order to get (4.20), it is enough to replace the expansion of Π−(y0) given in (4.19)

on the left flight time T−(y0) given in Lemma 4.17 (i), and then consider the Taylor

expansion around the origin for the obtained expression.

Remark 4.25. If the equilibrium point is a visible unstable focus, see the left side of

Figure 4.6, it is not easy to determine the extremes of the interval Π−(IL), i.e. ŷ1 such

that Π−(IL) = (−∞, ŷ1], as we would have to find, by equation (4.7), the solution of the

equation

γL arctan

(
γLxL − ŷ1

xL

)
− γL arctan(γL)

+
ln(γ2

Lx
2
L + x2

L)

2
− ln((γLxL + ŷ1)2 + x2

L)

2
= 2γLπ.

When there exists a point ŷ0 such that Π−(ŷ0) = 0, as illustrated in Figure 4.2(b), the

left Poincaré Π− is a non-analytic function at ŷ0 and so the authors of [8] use that the

inverse function (Π−)−1 is analytic at the origin to get a Newton–Puiseux series expansion

for the left Poincaré half-map Π− around ŷ0 by means of an inversion.

Proposition 4.26 ([8]). Assume that there exists a value ŷ0 > 0 with Π−(ŷ0) = 0. Then,

xL < 0, γL < 0, ŷ0 is the left endpoint of the interval IL, the inverse function (Π−)−1 is

a real analytic function, and the left Poincaré half-map Π− admits the Newton–Puiseux

expansion around the point ŷ0 given by

Π−(y0) =

√
2ŷ0(1 + γ2

L)((γLxL − ŷ0)2 + x2
L)

(γLxL − ŷ0)2 + x2
L

(y0 − ŷ0)1/2

− 4γLxLŷ0

3((γLxL − ŷ0)2 + x2
L)

(y0 − ŷ0) +O((y0 − ŷ0)3/2),

(4.21)

which is valid for y0 ≥ ŷ0.

Lemma 4.27. Under the same conditions of Proposition 4.26, the Newton–Puiseux series

expansion around the point ŷ0 for system (4.12) writes as

T−(y0) =
1

ωL

(
T−(ŷ0) +

(√
2ŷ0

(1 + γ2)((γxL−ŷ0)2 + x2
L)

+
xL

(γxL−ŷ0)2 + x2
L

)
(y0 − ŷ0)1/2

+

(
(γLxL − ŷ0)xL

((γxL − ŷ0)2 + x2
L)2
− 2

3

γLŷ0

(1 + γ2)((γxL − ŷ0)2 + x2
L)

)
(y0 − ŷ0)

+O((y0 − ŷ0)3/2

)
,

which is valid for y0 ≥ ŷ0, where T−(ŷ0) = 2π + arctan(γL) − arctan((γLxL − ŷ0)/xL) ∈
(π, 2π).
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Proof. In order to get (4.27), it is enough to replace the expansion of Π−(y0) given in (4.21)

on the left flight time T−(y0) given in Lemma 4.17 (i), and then consider the Newton–

Puiseux series expansion around the point ŷ0 for the obtained expression.

Remark 4.28. If the equilibrium point is a visible stable focus, see the right side of

Figure 4.6, it is not easy to determine the extremes of interval of IL, i.e. ŷ0 such that

IL = [ŷ0, 0), as we would have to find, by equation (4.7), the solution of the equation

γL arctan(γL)− γL arctan

(
γLxL − ŷ0

xL

)
+

ln((γLxL − ŷ0)2 + x2
L)

2
− ln(γ2

Lx
2
L + x2

L)

2
= 2γLπ.

4.4 Centers at infinity and its period functions

The hypotheses of monodromy at infinity implies that the dynamics is of center-focus

type in both regions which is characterized by T2
Λ − 4DΛ < 0. This allows the existence

of a periodic orbit at infinity. Next proposition provides the classification of the centers

at infinity for the canonical form (4.12).

Proposition 4.29 ([44]). There exists a period annulus at infinity for system (4.12) if

and only if we are in one of the following four cases:

(i) The conditions γL = γR = 0 hold, which imply yL = yR = 0 and the phase plane is

the result of the matching of two linear centers (xL, 0) and (xR, 0), both symmetric

with respect to the x-axis, which can be real or virtual equilibrium. Moreover, the

system is reversible and, if at least one of such equilibrium points is virtual, then

the center is global.

(ii) The conditions γL = −γR 6= 0, and xL = −xR 6= 0, with xL < 0 < xR hold, which

imply yL = yR 6= 0. So, we have two real equilibrium points on (xL, 2γLxL) and

(−xL, 2γLxL). The phase plane exhibits a reversible nonlinear center at infinity.

Such a center is not global ending in a heart-shaped homoclinic orbit to a pseudo-

saddle at the origin, which contains the two foci in its interior.

(iii) The conditions γL = −γR 6= 0, and xL = xR = 0 hold, which imply yL = yR = 0,

and the origin is a boundary focus from both sides, constituting a reversible global

nonlinear center.

(iv) The conditions γL = −γR 6= 0, and xL = −xR 6= 0, with xR < 0 < xL hold (hence

yL = yR 6= 0), then we have two virtual equilibria at (xL, 2γLxL) and (−xL, 2γLxL).

The phase plane exhibits a reversible global nonlinear center at infinity.
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The possible phase portraits and locations of the equilibrium points can be visualized

in [44] and in Figure 4.8.

Remark 4.30. Let Λ = L for the left flight time T−, and Λ = R for the right flight

time T+. When the origin is either a boundary equilibrium point of the center or a

focus type for both systems that define (4.4), i.e. 4DΛ − T2
Λ > 0, it is known that

T∓(y0) = 2π/
√

4DΛ − T2
Λ (see [43]), for any y0 > 0, then the half-period functions can be

extended to the origin with T∓(0) = 2π/
√

4DΛ − T2
Λ.

By using that for the piecewise system (4.1), the period function T (y0) behaves as

the difference of the left flight time and the right flight time, we have the next theorems

that determine the bifurcation diagram of the period function for the planar piecewise

system (4.12) for the centers at infinity presented in the last proposition. Theorem 4.31

presents the behavior of the period function for the center-center case and Theorem 4.32

deals with the focus-focus case.

In the proof of the next result, the two argument function arctan(y, x), for real argu-

ments x, y, computes the principal value of the argument of the complex number x+ iy,

so −π < arctan(y, x) ≤ π.

Theorem 4.31. The period function (4.6) of the planar piecewise system (4.12) with

γL = γR = 0 (condition (i) of Proposition 4.29), where ωL and ωR are given in the proof

of Proposition 4.5 coincide, satisfies the following conditions

(i) if xL = xR, it is constant,

(ii) if xL ≤ 0 and xR ≥ 0, not simultaneously zero, it is monotonous decreasing with

T (0) = 4π,

(iii) if xL ≥ 0 and xR ≤ 0, not simultaneously zero, it is monotonous increasing with

T (0) = 0,

(iv) if xLxR > 0 and xL > xR, it has one simple critical period which is a minimum

point with T (0) = 2π,

(v) if xLxR > 0 and xL < xR, it has one simple critical period which is a maximum

point with T (0) = 2π.

Furthermore, for all the cases, limy0→∞ T (y0) = 2π.

Proof. Under these conditions, the planar piecewise system reduces to

(ẋ, ẏ) =

{
(−y, x− xL), if x ≤ 0,

(−y, x− xR), if x > 0,
(4.22)
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which are defined by systems that are time-reversible with respect to x-axis, and the

half-return maps satisfy Π−(y0) = Π+(y0) = −y0. First, note that, if xL = xR, the

system in (4.22) becomes the analytical system with a linear center and, then, it has an

isochronous center, and (i) follows.

For the other cases, by Proposition 4.8 we need to find the corresponding left and

right flight times in order to obtain the behavior of the period function T (y0).

Consider the parametrized solution of the left planar piecewise system of (4.12)

(x(t), y(t)) = (xL + r cos t, r sin t) .

Let τ0 and τ0 + τ1 be the values of the time such that the solution starts at (0, y0) and

ends at (0, y1). Substituting the values of cos τ0 and sin τ0, from the equations x(τ0) = 0

and y(τ0) = y0 into the equation x(τ0 + τ1) = 0, we obtain that τ1 satisfies fy0(τ1) = 0,

with fy0(τ) = xL − xL cos τ − y0 sin τ . Solving the equation fy0(τ1) = 0, we obtain

τ1 = arctan

(
2xLy0

x2
L + y2

0

,
x2
L − y2

0

x2
L + y2

0

)
.

Note that τ1 is the left flight time T−(y0).

By using the parametrized solution of the equation in Σ+ given by

(x(t), y(t)) = (xR + r cos t, r sin t) ,

with analogous calculations, now for the orbit starting at point (0,−y0), entering the

zone Σ+ until it reaches Σ at the point (0, y0), the time τ2 satisfies gy0(τ2) = 0, for

gy0(τ) = xR − xR cos τ + y0 sin τ . Solving the equation gy0(τ2) = 0, we obtain

τ2 = arctan

(
− 2xRy0

x2
R + y2

0

,
x2
R − y2

0

x2
R + y2

0

)
.

Note that T+(y0) coincides with −τ2.

Then, the complete period function is:

T (y0) = T−(y0)− T+(y0) = τ1 − (−τ2) = τ1 + τ2

= arctan

(
2xLy0

x2
L + y2

0

,
x2
L − y2

0

x2
L + y2

0

)
+ arctan

(
− 2xRy0

x2
R + y2

0

,
x2
R − y2

0

x2
R + y2

0

)
.

By using the first and second derivative of T given by

T ′(y0) = −2(xL − xR)(xLxR − y2
0)

(x2
L + y2

0)(x2
R + y2

0)
,

T ′′(y0) =
4y0(xL − xR)(x3

LxR + x2
Lx

2
R + xLx

3
R + 2x2

Lx
2
Ry

2
0 − y4

0)

(x2
L + y2

0)2(x2
L + y2

0)2
,

(4.23)

we determine the bifurcation diagram for these considered cases.
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Note that, regarding conditions (ii) and (iii), that is if xLxR ≤ 0, in the case where

xL ≤ 0 and xR ≥ 0, not simultaneously zero, we have T ′(y0) < 0 and T ′′(y0) > 0, for all

y0, and if xL ≥ 0 and xR ≤ 0, not simultaneously zero, T ′(y0) > 0 and T ′′(y0) < 0, for all

y0. In fact, in these cases, sign(T ′) = sign(xL − xR) and sign(T ′′) = −sign(xL − xR), as

Y1(y0) = xLxR − y2
0 < 0 and Y2(y0) = x3

LxR + x2
Lx

2
R + xLx

3
R + 2x2

Lx
2
Ry

2
0 − y4

0 < 0, for all

y0, coming from the fact that Y1(0) < 0, Y2(0) < 0 and both has no real roots. Then, T

has no critical periods, since the derivative T ′ has no real root, and T is concave under

condition (ii) and convex for (iii).

Therefore, for (ii) the half-flight times T− and −T+ are monotonous decreasing, from

Proposition 4.14(i), and T−(0) = −T+(0) = 2π, from Lemma 4.16, T ′(y0) > 0, and

T ′′(y0) > 0, for all y0, from the previous discussion. Hence, the sum T is monotonous

decreasing with T (0) = 4π and its graphic is as in region I of Figure 4.8.

On the other hand, with a similar approach, regarding statement (iii), T is monoto-

nous increasing, as sum of T− and T+ which has this monotonic behavior from Propo-

sition 4.14(iii). Furthermore, the period function T satisfies that T (0) = 0 given that

T−(0) = −T+(0) = 0, from Lemma 4.16(iii), T ′(y0) > 0, T ′′(y0) < 0, for all y0, and its

graphic is as in region II of Figure 4.8.

For the cases (iv) and (v), i.e xLxR > 0, we have from Proposition 4.14 that the behav-

ior of one of the half-flight times is monotonous increasing and the other is monotonous

decreasing, then we need to perform a more detailed analysis of these cases and see if

there are period oscillations in this case. From Lemma 4.16, we can already conclude that

T (0) = 2π. In this case we have the aggregation of a system with a visible center and

another with an invisible center.

From the expression of the derivative T ′(y0) in (4.23), if xL 6= xR with xLxR > 0,

we have one critical period given by the positive zero p0 :=
√
xLxR of Y1(y0), i.e. one

oscillation. Furthermore, by using the second derivative in (4.23), we have that the number

of inflection points of T is at most 1. In fact, this number coincides with the number of

positive zeros of Y2(y0) = x3
LxR + x2

Lx
2
R + xLx

3
R + 2x2

Lx
2
Ry

2
0 − y4

0. Hence, as for xLxR > 0

the discriminant of Y2 with respect to y0 is given by

−256x3
Lx

3
R

(
x2
L + xLxR + x2

R

) (
x3
Lx

3
R + x2

L + xLxR + x2
R

)2
,

which is negative in every domain of T , then we have two real roots, one positive and the

other negative, and two complex conjugate roots. So, we have only a positive real root,

q0 :=

√
xLxR +

√
x3
LxR + 2x2

Lx
2
R + xLx3

R,

obtained by solving Y2(y0) = 0. Note that p0 < q0.
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Figure 4.8: Bifurcation diagram of the period function of system (4.22)

Doing a simple analysis of the expressions of the first and second derivative of T given

in (4.23), we have:

sign(T ′) = −sign(xL − xR), for y0 ∈ (0, p0);

sign(T ′) = sign(xL − xR), for y0 ∈ (p0,∞);

sign(T ′′) = sign(xL − xR), for y0 ∈ (0, q0);

sign(T ′′) =−sign(xL − xR), for y0 ∈ (q0,∞).

(4.24)

So, we can conclude that, under the condition (iv), i.e. xL > xR, we have T (0) = 2π,

T ′(y0) < 0, for 0 ≤ y0 < p0, T ′(p0) = 0, T ′(y0) > 0, for y0 > p0, T ′′(q0) > 0, for
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0 ≤ y0 < q0, T ′′(q0) = 0, and T ′′(y0) < 0, for y0 > q0, as sign(xL − xR) = +1, and we

have (4.24). Hence, p0 and q0 are a minimum point and inflection point of T , respectively.

Then, the behavior of T (y0) is as in region III of Figure 4.8. Analogously, under the

condition (v), i.e. xL < xR, we have T (0) = 2π, T ′(y0) > 0, for 0 ≤ y0 < p0, T ′(p0) = 0,

T ′(y0) < 0, for y0 > p0, T ′′(q0) < 0, for 0 ≤ y0 < q0, T ′′(q0) = 0, and T ′′(y0) > 0, for

y0 > q0, as sign(xL − xR) = −1, and we have (4.24). Thus, p0 is a maximum point of T

and q0 is its inflection point. Then the behavior of T (y0) is as in region IV of Figure 4.8.

The last statement follows by using that we can parametrize the radios of the solution

of the left and right system of (4.22), with respect to the angle, for any y0. In fact, fixing

the left system, it writes in polar coordinates asṙ = −xL sin θ =: R(r, θ),

θ̇ = 1 +
xL cos θ

r
=: Θ(r, θ).

(4.25)

Note first that Θ(r,±π/2) = 1, for all r, and Θ(r, θ)→ 1, as r →∞, then

Θ(r, θ) > 1, for r big enough and any θ ⇒ 1

Θ(r, θ)
< 1. (4.26)

Note also that the distance of the solution that starts in (0, y0) to the origin tends to

infinity, as y0 → ∞. Hence, we can parametrize the radius of this solution with respect

to the angle, for any y0. Indeed, it is given by the solution, here denoted by r(θ, y0), of

dr

dθ
=
R(r, θ)

Θ(r, θ)
,

that verifies r(0, y0) = y0. Using this parametrization, we can compute the left flight time,

for each y0, by means of

T−(y0) =

∫ 3π/2

π/2

1

Θ(r(θ, y0), θ)
dθ. (4.27)

Note, on the other hand, that, since r(θ, y0)→∞ as y0 →∞, for each θ,

lim
y0→∞

1

Θ(r(θ, h), θ)
= 1. (4.28)

Therefore, by using (4.26), we can apply the Dominate Convergence Theorem and assert

that limy0→∞ T
−(y0) = π.

For the right system, limy0→∞−T+(y0) = π. The proof is analogous as θ̇ = 1 −
xR cos(θ)/r =: Θ(r(θ, y0), θ) and −T+(y0) =

∫ π/2
−π/2 1/Θ(r(θ, y0), θ)dθ. It follows that

T (y0) = T−(y0)− T+(y0)→ 2π, as y0 →∞.
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Theorem 4.32. The period function of the planar piecewise system (4.12), with γR =

−γL 6= 0 and xR = −xL (conditions (ii), (iii), and (iv) of Proposition 4.29), satisfies the

following conditions:

(i) if xL < 0, it is monotonous decreasing,

(ii) if xL = 0, it is constant,

(iii) if xL > 0, it is monotonous increasing.

Furthermore, for all the cases, limy0→∞ T (y0) = 2π.

Proof. First, note that assuming the conditions γL = −γR and xL = −xR given in (i), (ii),

and (iii), from equations in (4.13), we have ωL = ωR. Then, after a reparameterization, we

can consider ωL = ωR = 1 and T (y0) = (1 + ωL/ωR)T−(y0) = 2T−(y0) (see Lemma 4.18).

In cases (i) and (iii) the planar piecewise system becomes

(ẋ, ẏ) =

{
(2γLx− y, (1 + γ2

L)(x− xL)), if x ≤ 0,

(−2γLx− y, (1 + γ2
L)(x+ xL)), if x > 0,

(4.29)

and we have to consider only two cases, γL < 0 and γL > 0 (see, Proposition 4.29 and

Remark 4.6). For condition (ii), we have

(ẋ, ẏ) =

{
(2γLx− y, (1 + γ2

L)x), if x ≤ 0,

(−2γLx− y, (1 + γ2
L)x), if x > 0,

(4.30)

whose phase portrait is presented in I of Figure 4.9.

For condition (i) with γL < 0, the domain of T is given by [ŷ0,∞), where ŷ0 > 0

satisfies Π−(ŷ0) = 0. Furthermore, we know that T− and T+ are monotonous decreasing,

from Proposition 4.14(i), and T−(ŷ0),−T+(ŷ0) ∈ (π, 2π), from Lemma 4.16(i), then T

is monotonous decreasing with T (ŷ0) ∈ (2π, 4π). Moreover, we have T ′(y0) < 0, and

T ′′(y0) > 0, for all y0 ∈ (ŷ0,∞). In fact, since T (y0) = 2T−(y0), we can analyse the sign

of T ′ and T ′′ by using equations (4.15) and (4.16), for the left flight time T−. Hence, the

period annulus corresponding to γL < 0 and the period function T are depicted on region

I of Figure 4.9.

Now, if we consider γL > 0, the domain of T becomes [0,∞), and it behaviors as the

above case. In fact, we can obtain the previous case with a composition of a symmetry

and a reversibility of the time given by (x, y, τ)→ (x,−y,−τ). Hence, the period function

T (see Remark 4.15) and its phase portrait are depicted in region II of Figure 4.9.

Under the condition (iii) for both cases γL < 0 and γL > 0, the period annulus is

unbounded and the domain of T is given by (0,∞). The situation is analogous to the

condition (ii) and it is enough to consider γL < 0. In this case, T is monotonous increasing
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Figure 4.9: Bifurcation diagram of the period functions for the focus-focus case

by Proposition 4.14(iii), T (0) = 0 from Lemma 4.16(c), and T ′′(y0) < 0 for all y0 ∈ (0,∞)

from equations (4.15) and (4.16). Hence, the period annulus and the period function T

are depicted in region III of Figure 4.9.

Finally, under the condition (ii), that is system (4.30) has a global center at the

origin, by Proposition 4.14(ii), the period is constant. Furthermore, by Lemma 4.16(ii),

T (0) = 2π and, therefore, T (y0) = 2π, for all y0 > 0, and the origin is an isochronous

center and the period function is as depicted in region IV.

The last statement follows by using that the complete time is T (y0) = 2T−(y0), where

T−(y0) has the expressions given in Lemma 4.17 with ωL = 1. Then, T is given by

(i) T (y0) = 2

(
2π + arctan

(
y0 − γLxL

xL

)
− arctan

(
Π−(y0)− γLxL

xL

))
, if xL < 0;

(ii) T (y0) = 2π, if xL = 0;

(iii) T (y0) = 2

(
arctan

(
y0 − γLxL

xL

)
− arctan

(
Π−(y0)− γLxL

xL

))
, if xL > 0.

Therefore, as limy0→∞Π−(y0) = −∞, we simply calculate the limit of the above expres-

sions (i), (ii), and (iii), and we obtain limy0→∞ T (y0) = 2π, for all values of xL.



4.4. Centers at infinity and its period functions 101

Remark 4.33. About the conditions (i), (ii), and (iii) of Theorem 4.32 we have the

focus-focus case invisible, the origin is a boundary equilibrium point of focus type for

both systems, and focus-focus case visible, respectively.

Remark 4.34. About the focus-focus case with xL < 0, |xL| small, we have that the

initial value approaches the value 4π and tends to 2π slower. On the other hand, for |xL|
big, it starts with a smaller and closer value to 2π and tends to 2π faster. If |xL| = 0, then

the period function is constant. For xL > 0 with |xL| small, the period function takes its

first value at 0 with a bigger slope and tends to 2π faster. On the other hand, for |xL|
big, the left flight time T− starts in 0 with a smaller slope and tends to 2π slower.

Remark 4.35. For the center-center case we have only considered the case where ωL =

ωR. We are studying the remaining case where ωL 6= ωR.
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CHAPTER 5

Final considerations

It is important to mention that we are studying how we can determine the total

number of period oscillations for some families of piecewise systems and not just the local

problem, that is, to establish a lower bound for the number of period oscillations around

the center. The advantage of choosing this approach to the problem is that it allowed us

to study different problems and techniques. Furthermore, as this study takes a different

direction from those that before we decided to study the period function, there are still

many possibilities for future works. Although it is an interesting approach it is difficult.

For the first work in Chapter 2, we studied a special case of piecewise potential sys-

tem, also called asymmetric oscillator, already well-known and frequently encountered in

physical problems ([60]). Such a family has a certain symmetry that facilitates to find

an expression for the period function and so we can use the study carried out for the

analytical system that determines our family to obtain its bifurcation diagram. The in-

teresting thing is that we could try to carry out a similar study for piecewise potentials

of any degree as in Chicone [19] and Gasull, Guillamon, Mañosa, and Mañosas [48] for

the analytical case, at first those that have the same symmetry of system (2.1), and later

without this symmetry.

As we have studied the local problem for the planar piecewise reversible quadratic

system in Chapter 3, we could have used the same technique and applied it to study

different types of piecewise systems. For example, try to find a good limitation of the

number of local critical periods that bifurcates from a planar piecewise vector field with

degree n.

Furthermore, as it was seen in the thesis, we could have chosen to work with the

Poincaré map for piecewise systems and establishing the number of limit cycles, since the

tools coincide with those we used for the period function. The preference for studying the

period function in piecewise systems is precisely because there are still not many works

103
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in this direction.

In this context, we can specify some open problems:

1. We point out that, as we studied in Chapter 2, the period function and its oscilla-

tions for the cubic planar Hamiltonian system based on Picard–Fuchs equations for

algebraic curves, we expect that we could do the same approach for other families

of piecewise systems without symmetries, and with higher degree.

2. Given a planar analytic system (ẋ, ẏ) = (f(x, y), g(x, y)), we can write it in complex

coordinates as ż = F (z, z), where z = x+ i y. Moreover, when the origin is a weak

focus, after a constant rescaling of time, it writes as ż = i z + Z(z, z), where Z is

a convergent series which starts with at least quadratic terms. Since holomorphic

systems are isochronous (see [46]), it is interesting to work with the maximum

number of local critical periods that can bifurcate from holomorphic centers. In this

way the authors of [88] studied perturbations of reversible holomorphic isochronous

centers by adding nonholomorphic perturbations which keeps the center property,

more precisely the family of n-th degree reversible system

ż = i z
n−1∏
j=1

(1− ajz),

where n > 1 and aj ∈ R \ {0} are real parameters such that aj 6= ai for every

i, j ∈ {1, . . . , n− 1}, i 6= j. This system is reversible with respect to the horizontal

axis, then we could consider the piecewise systems which are the aggregation of two

of these systems with the y-axis as straight line of separation, namely

ż = i z
n−1∏
j=1

(1− ajz), if Re(z) < 0, ż = i z
n−1∏
j=1

(1− bjz), if Re(z) > 0,

where n > 1 and aj, bj ∈ R \ {0} are real parameters such that aj 6= ai and bj 6= bi,

for every i, j ∈ {1, . . . , n− 1}, i 6= j, which has a center because of the reversibility

and try to find the maximum number of local critical periods which can bifurcate

from the origin. Or even, we could study the global problem for these lower degree

systems.

3. One can also consider the cases of centers for the planar piecewise linear system (4.1)

and try to describe the behavior of the flight time for the remaining cases: saddle-

saddle, node-node, etc.

4. There are still many families of planar piecewise polynomial systems for studying

the criticality problem. By using the same methods that we have presented in
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Chapter 3, we could perform a case-by-case study by starting with lower degree

and, then, increasing the degree.
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[77] D. Maŕın and J. Villadelprat. Asymptotic expansion of the Dulac map and time

for unfoldings of hyperbolic saddles: local setting. J. Differential Equations,

269(10):8425–8467, 2020.
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