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ABSTRACT

Plant biomass and productivity are ecological properties that affect community functioning.
The belowground biomass of cerrado is underestimated and, therefore, it is important that we
know how it is related to biotic and abiotic variables. In the first chapter, we tested for the
relationship between different diversity indices and above- and belowground biomass.
Species diversity and functional divergence positively affected the aboveground biomass, but
not the belowground biomass, both in the cerrado and in the seasonal forest. Resource use
complementarity led to a better community functioning, but did not predict all the community
biomass production, as it disregarded the belowground component. Inclusion of
environmental variables and functional traits, in the second chapter, was important to
generate models that predicted the belowground biomass. The models were significant, even
tough they showed low explanatory power for the cerrado. Foraging for limiting nutrients,
altitude, and functional traits related to disturbance were selected in the models predicting
the belowground biomass. In the third chapter, we separated fine and coarse roots in two
depths. We used structural equation modeling to test for the effects of environmental
variables on the belowground biomass in each root category and each depth. We identified
soil fertility causing less fine root biomass and recent fire causing less coarse root in the deep
soil layer. Shallow root biomass was not caused by any of the ecological processes we studied.
Also, aluminum content led to low soil fertility and recent fire caused higher soil fertility, as
we expected. The carbon stock of the cerrado and the seasonal forest is large and should not
be neglected when estimating the impacts caused by climate and land-use changes.

Keywords: carbon, functional diversity, ingrowth core, root, tropical seasonal forest



RESUMO

A biomassa e a produtividade das plantas sdo propriedades ecoldgicas importantes para o
funcionamento das comunidades. A biomassa hip6gea do cerrado é subestimada, por isso, é
importante sabermos sua dimensdo e como ela se relaciona com fatores bidticos e abidticos.
No primeiro capitulo, testamos a relacao entre indices de diversidade e as biomassas epigea e
hipdgea. A diversidade de espécies e a divergéncia funcional estiveram relacionadas com a
biomassa epigea, mas nao com a biomassa hipdgea, tanto no cerrado quanto na floresta
estacional. A complementaridade no uso dos recursos levou a um melhor funcionamento das
comunidades, mas ndo explicou toda a producdo de biomassa vegetal. A inclusdo de variaveis
ambientais e tracos funcionais, no segundo capitulo, gerou modelos que explicaram a alocagao
da biomassa e produtividade hipégeas. Os modelos foram significativos, apesar de terem
baixo poder preditivo no cerrado. O forrageamento por nutrientes, a altitude e os tragos
funcionais relacionados aos disturbios foram selecionados nos modelos prevendo a biomassa
hipdgea. No terceiro capitulo, separamos as raizes em finas e grossas e em dois estratos de
profundidade. Usamos modelos de equagdes estruturais para testar os efeitos das variaveis
ambientais na biomassa das raizes de cada estrato. Identificamos a fertilidade do solo
causando menor biomassa de raizes finas e fogos recentes levando a menor biomassa de
raizes grossas profundas. A biomassa das raizes superficiais nao foi causada por nenhum dos
processos ecologicos estudados e deve estar relacionada a interagdes bidticas. HaA também
relacdo entre a quantidade de aluminio e menor fertilidade do solo, e fogos recentes causaram
maior fertilidade do solo. O estoque de carbono no cerrado e na floresta estacional
semidecidual sdao grandes e nao devem ser ignorados quando estimamos o impacto causado
por mudancas climaticas e no uso da terra.

Palavras-chave: anéis de crescimento, carbono, diversidade funcional, floresta estacional

semidecidual, raizes
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INTRODUCAO GERAL

A biomassa acumulada e a produtividade anual das plantas, ou seja, a produgdo de tecido
vegetal que sustenta toda a cadeia alimentar, sdo propriedades ecoldgicas importantes para
os ciclos biogeoquimicos e para o funcionamento das comunidades (Tilman et al. 2001).
Diferencas na quantidade de biomassa das plantas representam mudangas no estoque de
carbono das comunidades, determinando se elas funcionardo como fonte ou sumidouro de
dioxido de carbono (Fearnside 2000, Tilman et al. 2001). Se as areas protegidas forem
convertidas para uso antrépico, o carbono acumulado nos tecidos vegetais serd emitido para a
atmosfera, aumentando os efeitos do aquecimento global e a velocidade das mudangas
climaticas (Castro & Kauffman 1998). Portanto, é importante que tenhamos medidas precisas
da quantidade e da produtividade anual de biomassa das comunidades vegetais, e como essas
medidas estdo relacionadas a fatores bidticos e abidticos, para prevermos os impactos no
estoque de carbono causados pelas atuais mudancas ambientais (Fearnside & Laurance
2004).

A biomassa epigea das arvores é bem estudada e existe uma variedade de estimativas que
podemos usar para prever a quantidade de carbono estocada acima do solo nas comunidades
(Chave et al. 2005, Delitti et al. 2006). Na porcao subterranea, no entanto, as medidas de
biomassa e produtividade sao dificeis de serem obtidas, dificultando a avaliacdo do papel das
comunidades vegetais no ciclo do carbono (Johnson & Matchett 2001). A base de dados de
biomassa de raizes e o tamanho do estoque de carbono no subsolo permanece impreciso e é,
provavelmente, subestimado (Robinson 2007). Em muitos trabalhos, o nimero de parcelas
usado para estimar a biomassa subterranea é pequeno ou os métodos ndo sdo bem
detalhados, fazendo com que o levantamento de dados seja inadequado ou inverificavel
(Mokany et al. 2006). A quantidade e a produtividade da biomassa vegetal subterranea devem
ser mais acuradas para que sejam consideradas na modelagem global do carbono (Hui &
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Jackson 2006).

No cerrado, a subestimativa da biomassa subterranea é ainda mais evidente, uma vez que
algumas espécies apresentam raizes mais profundas se comparadas as de plantas de outras
vegetacoes (Canadell et al. 1996). O cerrado ficou conhecido nas palavras do escritor Carmo
Bernardes como ‘floresta de cabecga para baixo’, porque sua biomassa hipégea é maior do que
a biomassa epigea (Abdala et al. 1998). Algumas espécies vegetais do cerrado tém raizes que
permitem o acesso a dgua estocada profundamente no solo, importantes para a sobrevivéncia
durante a estacao seca (Meinzer et al. 1999, Oliveira et al. 2005). Além disso, as raizes das
plantas de cerrado podem funcionar como estratégia de resisténcia as altas frequéncias de
fogo (Pausas & Keeley 2009). ()rgéos e estruturas subterraneos, como bulbos, rizomas, e
xilopddios, ficam protegidos das altas temperaturas, e armazenam carboidratos e nutrientes
usados apds a queimada para reconstruir a biomassa epigea consumida pelo fogo (Coutinho
1990). Por isso, a vegetacdo do cerrado tem uma importante biomassa subterranea,
relativamente maior do que a de outras vegetagdes.

Um dos fatores que pode influenciar a biomassa das comunidades vegetais é a diversidade
das espécies que as compdem (Tilman et al. 1997, Ruiz-Jaen & Potvin 2010). Comunidades
mais diversas podem conter espécies complementares no uso dos recursos e devem ter um
melhor funcionamento e maior producao de biomassa (Tilman et al. 1997, Cardinale et al.
2006). A alta diversidade de espécies reduz a variagao na produtividade de biomassa ao longo
do tempo, promovendo um efeito de tamponamento e aumentando o desempenho geral
(Yachi & Loreau 1999). No entanto, a maior parte dos trabalhos que testaram a relagdo entre
diversidade de espécies e biomassa foram desenvolvidos em florestas ou campos temperados,
em casas de vegetacdo ou em experimentos com diversidade controlada (Balvanera et al.
2006). Os altos valores nos indices de diversidade de espécies nem sempre resultam em
aumento na biomassa das comunidades, e esse efeito foi menos frequentemente testado em

comunidades naturais tropicais (Balvanera et al. 2006). O efeito e a for¢a dessa relacao
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dependem da diversidade inicial, do desenho experimental e do distirbio que afeta a area
estudada (Balvanera et al. 2006).

As diferencgas interespecificas no requerimento de recursos mudam a amplitude do efeito
da diversidade na produtividade da comunidade (Tilman et al. 1997). Dado que as espécies
ndo tém efeitos iguais sobre o funcionamento das comunidades, é importante levar em
consideracao os tracos funcionais das espécies (Loreau 1998, Mouchet et al. 2010). Espécies
funcionalmente distintas, ou seja, com tracos funcionais diferentes entre si, devem usar
diferentes espectros dos recursos e afetar o funcionamento da comunidade (Petchey & Gaston
2006). Dessa forma, maiores indices de diversidade funcional devem afetar os processos e
propriedades ecolégicas, aumentando, por exemplo, a biomassa e produtividade das plantas
(Diaz & Cabido 2001). Assim, no primeiro capitulo desta tese, testamos se o aumento da
diversidade de espécies e da diversidade funcional leva a um aumento das biomassas epigea e
hip6gea e da produtividade anual de raizes finas em comunidades de cerrado.

Além de estar relacionada a medidas de diversidade, a produ¢do de biomassa das plantas
esta relacionada a imprevisibilidade e a complexidade ambientais (Fridley 2001). A
fertilidade do solo, por exemplo, é um fator que afeta a produtividade da biomassa das
plantas. Raizes finas, com menos de 2 mm de diametro, sdo as principais responsaveis pela
absorc¢do de nutrientes e dgua do solo, recursos muito importantes para as espécies de plantas
do cerrado (Oliveira et al. 2005). Se os nutrientes e a agua sao limitados, a comunidade pode
investir em alta producao de biomassa hip6gea, aumentando a captagdo dos recursos (Tateno
et al. 2004). De acordo com outros trabalhos, no entanto, solos mais ricos em nutrientes
podem apresentar alta produtividade de biomassa de raizes (Casper & Jackson 1997, Fridley
2002). Logo, a disponibilidade de recursos, como nutrientes e agua disponiveis no solo devem
alterar a producdo de raizes das espécies de cerrado.

Outro fator ambiental particularmente importante é o fogo, um processo importante na
composicdo e distribuicdo das comunidades (Bond et al. 2005). As savanas, como o0 sao a
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maior parte das fisionomias de cerrado, convivem com o fogo por pelo menos 20 milhdes de
anos (Bond et al. 2003). O fogo altera a estrutura da vegeta¢do savanica e a eficiéncia no uso
dos nutrientes do solo (Bond et al. 2005). Além disso, os regimes de fogo mudam os tipos
funcionais presentes nas comunidades, de arbustos e arvores com raizes profundas para
gramineas com raizes superficiais, alterando a estabilidade dos estoques de agua e
diminuindo o estoque de carbono potencial (Pausas & Keeley 2009). O fogo associado com a
expansao da agricultura afeta os reservatorios de carbono, liberando uma grande quantidade
de carbono na combustao de arvores, arbustos e gramineas (Mouillot & Field 2005, Pausas &
Keeley 2009). Dessa forma, entender como a biomassa hipégea responde a diferentes
frequéncias de fogo é essencial para entender a dindmica do estoque de carbono no cerrado.
Considerando a biomassa subterranea, o fogo pode tanto aumentar o crescimento das raizes
(Johnson & Matchett 2001), quanto diminuir a biomassa subterranea em sitios queimados
frequentemente (Delitti et al. 2001).

No segundo e no terceiro capitulos, incluimos variaveis ambientais, como qualidade
nutricional do solo, variaveis topograficas como medidas de acesso a agua nas parcelas, e
frequéncia e ultima ocorréncia de queimadas, para testar quais fatores influenciam a
biomassa hipégea no cerrado. No segundo capitulo, buscamos construir modelos que melhor
explicassem a alocacdo da biomassa hipégea e a produtividade anual de raizes finas tanto no
bioma savanico quanto no florestal. No terceiro capitulo, separamos as raizes em finas e
grossas, com o critério de 2 mm de diametro, e em estratos de profundidade, superficial e
profundo, com o critério de 20 cm. Usamos modelos de equagdes estruturais para testarmos
os efeitos das varidveis ambientais na alocacdo de biomassa das raizes em cada uma dessas
fracdes.

Coletamos os dados usados nesta tese no Parque Nacional das Emas (PNE), Goias. O PNE é
uma importante reserva de cerrado no Brasil, com aproximadamente 133.000 ha. O PNE

possui histérico detalhado de imagens de satélite das queimadas nos ultimos 30 anos, o que
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permitiu que incorporassemos a variabilidade das frequéncias de fogo nas nossas analises
(Franga et al. 2007). O parque foi criado em 1961, porém sua regulariza¢dao fundiaria so
aconteceu em 1984, levando a exclusdo da criacao de gado no interior do parque e o inicio da
politica de prevencdo do fogo (Franga et al. 2007). O PNE possui relevo suave e altitudes que
variam de 800 a 900 m (Franca et al. 2007). Os solos sdo dos tipos latossolo vermelho-escuro
distrofico e latossolo vermelho-amarelo distréfico. O clima no parque é estacional tropical,
com temperatura média anual de 24,6°C e a pluviosidade anual esta entre 1200 e 2000 mm,
distribuidos heterogeneamente ao longo do ano (Ramos-Neto & Pivello 2000). Os meses mais
secos sdo junho, julho e agosto, quando a precipitagdo é inferior a 60 mm (Franga et al. 2007).
A vegetacdo no interior do parque vai desde o campo limpo, com o predominio do
componente herbaceo, até o cerrado sensu stricto, onde predomina o componente arbustivo-
arboreo. Ha ainda dreas menores de campos umidos, veredas de buritis e florestas estacionais
semideciduais (Franca et al. 2007).

Amostramos a biomassa hipdgea até a profundidade de 100 cm. Extraimos os primeiros 40
cm de solo com um monolito com 40 cm de lado, separados em dois horizontes de 20 cm de
profundidade cada (Castro & Kauffman 1998). Para extrairmos os monolitos com precisao,
fundimos uma barra de ferro a uma placa afiada também de ferro e usamos uma marreta para
inserirmos a barra no solo, cortando as raizes (Figura 1). De 40 cm a 100 cm de profundidade,
extraimos o solo usando uma perfuratriz movida a gasolina e uma broca com 30 cm de
didmetro (Castro & Kauffman 1998). Usamos uma peneira de 2 mm de didmetro para separar
as raizes do solo coletado. As raizes retidas na peneira foram levadas ao laboratério, onde
foram lavadas em agua corrente, colocadas na estufa a 70°C durante 48 h e pesadas.

Para amostrarmos a produtividade anual das raizes finas, instalamos anéis de crescimento
circulares com 20 cm de diametro (Milchunas et al. 2005). No entanto, o método proposto por
(Milchunas et al. 2005) instalava os anéis com a ajuda de um trator, procedimento pouco
vidvel para ser aplicado em parques nacionais no Brasil. Dessa forma, instalamos os anéis com
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a ajuda de um cilindro afiado de ferro, refor;cado com uma barra de suporte, que cortava o
solo na medida exata dos anéis de crescimento (Figura 2).

De posse dos dados de biomassa total das raizes e produtividade anual das raizes finas,
respondemos as seguintes perguntas: (i) comunidades com maior indice de diversidade de
espécies ou maior diversidade funcional apresentam maior biomassa epigea e hipogea?; (ii)
podemos prever a biomassa hipogea do cerrado e da floresta estacional semidecidual usando
a qualidade nutricional do solo, variaveis topograficas, frequéncia de queimadas das parcelas
e tragos funcionais das espécies?; (iii) a disponibilidade de recursos no solo e os distirbios
afetam diferentemente a biomassa de raizes finas e grossas, em diferentes profundidades de
solo?

Apresentamos a tese em forma de capitulos, que estdo formatados de acordo com as
normas das revistas cientificas a que foram ou serdo submetidos. Os artigos estdo redigidos
em inglés, de acordo com a exigéncia dos periddicos. O primeiro capitulo foi formatado para
ser submetido ao peridédico Oecologia; o segundo capitulo foi submetido ao periédico Forest
Ecology and Management; o terceiro capitulo foi formatado para ser submetido ao periédico

Austral Ecology.
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Figura 1 - Placa de ferro e marreta usadas para cortar o monolito de solo com exatos 40 cm
de lado. Apo6s o corte do solo e das raizes, o monolito foi extraido e o solo, peneirado, para

separarmos as raizes coletadas.

Figura 2 - Cilindro de ferro afiado na base, usado para a instalacdo dos anéis de crescimento

de forma manual.
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Abstract

High diversity should increase complementarity in resource use among species and increase
biomass production in plant communities. We tested whether species diversity and functional
diversity, depicted as functional richness, evenness, and divergence, were related to higher plant
biomass and root productivity, and whether the relationships were similar above- and belowground
in savanna and seasonal forest. We estimated the aboveground biomass and sampled the root
biomass and productivity in 100 plots in savanna and 20 plots in seasonal forest, in Central Brazil.
We used 12 functional traits to calculate the functional diversity indices and general linear
regression models to test our hypothesis. Aboveground standing biomass could be partially
predicted by both species diversity and functional divergence, but not by functional richness and
functional evenness. However, differences in aboveground diversity indices were not related to root
biomass or productivity. More efficient use of resources due to niche complementarity may be a
mechanism affecting aboveground plant biomass, but to estimate belowground carbon pool, the

inclusion of abiotic variables might be necessary.

Keywords: biomass, cerrado, divergence, evenness, richness
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Introduction

Currently, the functional role of diversity affecting the community processes is being studied in
depth, and diversity is expected to be a good estimator of plant biomass production (Sala et al.
2000; Cardinale et al. 2006). High diversity could allow a better use of limiting resources as a result
of high complementarity among species and, therefore, be related to highly productive communities
(Tilman et al. 1997; Cardinale et al. 2006). However, most studies on diversity affecting plant
biomass production were conducted on grasslands or short-lived model systems, and only few in
natural tropical areas where species diversity is high (Cardinale et al. 2011; Scherer-Lorenzen
2013). Moreover, because results on species diversity affecting community functioning are
controversial regarding the initial diversity of the site studied, the experimental design, the type of
disturbance, and the vegetation type analysed, there is no consensus on whether biodiversity
influence plant biomass under natural communities (Balvanera et al. 2006). Strong effects of
diversity on ecological properties were found under experimental conditions, such as greenhouses
or field experiments, with rather homogeneous site conditions (Balvanera et al. 2006; Cardinale et
al. 2011).

In tropical plantations, the link between the carbon pools and fluxes become stronger when the
diversity is higher (Potvin et al. 2011). Studies in non-controlled, natural communities are less
common and show a weaker effect of diversity on plant biomass when compared with controlled
experiments (Balvanera et al. 2006; Scherer-Lorenzen 2013). If we take into account natural
communities with high diversity indices, data on plant biomass, especially belowground, are not
accurate (Mokany et al. 2006). Savannas and tropical forests are among the less understood
communities concerning plant biomass, particularly root biomass, due to the lack of replicates and
unverifiable sampling methods (Mokany et al. 2006). In Brazil, savannas and tropical seasonal
forest occur within the Cerrado domain, a large area which originally occupied about 25% of the

Brazilian territory and represents a major share of the global carbon pool (Ratter et al. 1997). With
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high richness and high degree of endemism, the Cerrado domain is considered one of the world’s
hotspots for biodiversity conservation (Myers et al. 2000). Nonetheless, only a small portion of the
Cerrado is protected, about 2.2% of its total area, and the loss of plant biomass is a main problem
for climate change mitigation (Marris 2005; Scherer-Lorenzen 2013)

To understand better the effects of biodiversity on biomass allocation pattern, we might consider
not only traditional diversity measures based on taxonomic units but also functional diversity
indices (Petchey et al. 2004; Hooper et al. 2005). High functional differences among species may
positively affect ecological processes and properties, such as plant biomass and productivity (Diaz
and Cabido 2001). High functional diversity leads to coexistence of species with different niche
requirements and higher complementarity on the use of resources, and therefore to high
productivity of plant communities (Tilman et al. 1997). For example, functional diversity impacts
aboveground productivity and the decomposability of organic matter in grasslands (Klumpp and
Soussana 2009). Functional diversity can be divided into primary components that might affect
ecological processes (Mason et al. 2005). Each component describes an aspect of functional
diversity, identifying niche filtering, limiting similarity, and neutral assembly (Mouchet et al. 2010)
Thus, decomposing functional diversity might unravel its role on community functioning, and the
influence of biotic interactions and abiotic filters on the structure of plant communities (Villéger et
al. 2008).

A commonly used system distinguishes among functional richness, evenness, and divergence
(Mason et al. 2005; Villéger et al. 2008). These different components vary independently and may
affect plant biomass and productivity (de Bello et al. 2006; Mouchet et al. 2010). Functional
richness represents the functional space filled by the community, and variations in this functional
volume reflect changes driven by environmental pressure (Cornwell et al. 2006; Schleuter et al.
2010). Functional evenness describes the regularity with which the functional space is filled by
species, weighted by their abundances, whereas functional divergence is related to how abundances

are distributed within the volume of functional trait space occupied by species (Villéger et al. 2008).
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Shifts in the distribution of species abundances within the functional space, assessed through
functional evenness and functional divergence, result from shifts in the intensity of competitive
interactions (Mason et al. 2007, 2008). Instead of using a general index of functional diversity,
these functional components should be considered separately to clarify the relation of each aspect of
functional diversity with community properties, as above- and belowground plant biomass
(Schleuter et al. 2010)

In this study, we asked whether diversity predicts above- and belowground plant biomass, as
well as root productivity, of savannas and tropical forests. Specifically, we tested whether higher
Shannon index of species diversity and higher functional diversity, depicted as functional richness,
evenness, and divergence, were related to higher plant biomass and root productivity, and whether
the relationships had similar strength above- and belowground. We expected that because high
diversity is related to high complementarity in resource use, that is, better use of limiting resources,
high diversity should be associated with above- and belowground standing biomass and root

productivity, both in the savanna and in the seasonal forest.

Methods

We carried out this study in Emas National Park, central Brazil, at 17°49°-18°28’S and 52°39°-
53°10°W. The park has 132,941 ha (Franga et al. 2007) and an Aw climate of dry winters and rainy
summers (Koppen 1931). Most of the park is covered by cerrado vegetation, prevailing savannas
with different tree densities (Franga et al. 2007). Other vegetation types, such as riparian forest,
semideciduous seasonal forest, and floodplain grassland, also occur. In the savanna, we placed 100
5 m x 5 m plots using a stratified random sampling design (Krebs 1998), comprising 10 categories
of fire frequency. The fire categories went from absence of fire to annual fire in the last 16 years. In
the semideciduous seasonal forest, as there was no variation in fire frequency, we established

systematically 20 5 m x 5 m plots, separated 50 m from each other (see Dantas et al. 2013 for
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details).

On each plot, we identified all tree species with stem diameter at soil level equal to or larger than
3 cm. On each individual, we measured 12 performance and functional traits related to nutrition,
growth, and resistance to disturbance: basal area, height, bark thickness, wood density, specific leaf
area, leaf size, leaf toughness, leaf nitrogen content, leaf phosphorous content, and leaf potassium
content (Pérez-Harguindeguy et al. 2013). We also included top kill as a functional trait, defined as
stem mortality driven by fire, followed by resprouting from the root system (Hoffmann et al. 2009).
Higher top kill rates should be related to lower aboveground biomass, which is directly consumed
by the fire, and to higher belowground biomass, used to store carbohydrates and resprout after fire
(Hoffmann et al. 2009; Paula and Pausas 2011). We also calculated tortuosity, the length:height
ratio of the main branch up to the first bifurcation, indicative of fire resistance (Higgins et al. 2007).
The straighter the tree, the safer it is from surface fires, the most common type of fire in the
cerrado. So we expected low tortuosity to be related to higher plant biomass and root productivity
(Franga et al. 2007).

We used species identities and abundances in each plot to calculate species diversity using the
Shannon index (Magurran 2004) Moreover, we used functional traits to calculate functional
richness (Petchey and Gaston 2006), functional evenness (Villéger et al. 2008), and functional
divergence (Rao 1982) of each plot, following Schleuter et al. (2010). Functional evenness and
divergence take into account the species abundances in the plots (Villéger et al. 2008).

We estimated the aboveground biomass of each plot summing up the biomass of all individuals
within it. In the savanna, we used an allometric equation developed for cerrado trees (Delitti et al.
2006):

AGB = 28.77 x d* x h, in which AGB is the aboveground biomass (g), d is the diameter (cm) and
h is the height of the tree (m).

In the seasonal forest, we estimated the aboveground biomass with an equation developed for

dry tropical forests (Chave et al. 2005):
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In AGB=-2.68+1.805In(d)+1.038In(h)+0.377In(w) , in which AGB is the
aboveground biomass (kg), d is diameter (cm), 4 is height (m), and w is wood density (g cm™) of
the tree.

We sampled the total root biomass of each plot to the depth of 100 cm, which comprises more
than 80% of the root biomass in savannas and tropical forests (Jackson et al. 1996; Castro and
Kauffman 1998). We extracted the soil in the upper 40 cm of soil with a monolith of 40 cm width
(Castro and Kauffman 1998). Then, we used an auger of 30 cm diameter to extract the soil from 40
to 100 cm deep (Castro and Kauffman 1998). We sieved all soil sampled using a 2 mm mesh to
separate the roots and we eliminated the remaining soil particles washing the roots individually. We
dried the root samples in the oven at 70°C for 48 hours to constant mass and weighted them. We
assessed fine root productivity, those roots with less than 2 mm diameter, with an ingrowth core
method (Milchunas et al. 2005). The cores had 20 cm diameter, 40 cm deep, and an area of 2.5 cm
wide used to grow the roots (Milchunas et al. 2005). We placed the cores before the rainy season
and measured the root biomass produced inside the core after one year.

We used a general linear regression model to test whether diversity indices were positively
related to above- and belowground biomass and root productivity. As explanatory variables, we
used the Shannon index, functional richness, functional evenness, and functional divergence. To
avoid circularity, we excluded from the analysis of the functional diversity indices used to be
related to the aboveground biomass, the traits used to estimate the aboveground biomass— diameter,
height, and wood density. We used all traits to calculate the functional indices used to predict the
belowground biomass. Data were log-transformed when necessary to reach normality in the

residuals. We did all analyses in R using the ‘stats’ package (R Development Core Team 2012).

Results

In the 100 savanna plots, we sampled 531 individuals belonging to 55 species and, in the 20
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forest plots, we sampled 185 individuals belonging to 43 species. Estimated aboveground biomass
was 20.15 + 16.26 Mg ha' for the savanna and 125.84 + 122.22 Mg ha™ for the seasonal forest
(mean =+ standard deviation). Root biomass to one-meter deep in the savanna was 29.78 + 21.74 Mg
ha™ and 38.33 + 28.37 Mg ha™' in the seasonal forest. Fine root productivity was 98.9 + 41.55 g m™
year'1 in the savanna and 71.41 + 26.65 g m? year'1 in the seasonal forest. Root:shoot ratio in the
savanna was 1.51 and 0.30 in the seasonal forest.

In the savanna, aboveground tree biomass was positively related to the Shannon index (R* =
0.25, P < 0.001, Fig. 1a) and to functional divergence (R* = 0.13, P < 0.001, Fig. 1b), but there was
no relationship between aboveground biomass and functional richness or functional evenness. In the
seasonal forest, aboveground tree biomass was also related to functional divergence (R* = 0.24, P =
0.03, Fig. 1c¢), but not to species diversity, functional richness, or functional evenness. Root biomass
and root productivity were not related to species diversity, nor to any of the three components of
functional diversity, neither in the savanna nor in the seasonal forest (all P > 0.05, graphs not

shown).

Discussion

Aboveground standing biomass in the savanna and the seasonal forest could be partially
predicted by both species diversity and functional divergence, but not by functional richness and
functional evenness. Results were stronger than expected by the literature to controlled experiments
and to tropical forests in which species richness and species diversity indices were used as
predictors (Balvanera et al. 2006; Ruiz-Jaen and Potvin 2010). Some mechanisms may underlie this
trend, such as facilitation between co-occurring species (Brooker et al. 2008), sampling effect, when
diverse communities are dominated by highly productive species (Cardinale et al. 2006), and
negative soil feedbacks that reduce the biomass in low diversity mixtures (Santiago et al. 2005;

Scharfy et al. 2010). However, high values of functional divergence suggest mechanisms of limiting
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similarity among co-occurring species (Grime 2006; Ricotta and Moretti 2011). More divergent
communities might have higher complementarity among species and better use of limiting
resources, leading to high biomass production (Tilman et al. 1997; Cardinale et al. 2006). In the
savanna and in the seasonal forest, more divergent communities were the most productive,
suggesting a high degree of resource differentiation caused by shifts in biotic interactions (Mouchet
et al. 2010). We postulate that more efficient use of resources due to niche complementarity may be
a mechanism affecting aboveground plant biomass production in these vegetation types.

Functional richness and functional evenness, however, were not related to aboveground plant
biomass. Both larger and more evenly distributed functional volumes did not result in better use of
resources and higher plant biomass production, contrary to our expectation (Mason et al. 2005;
Petchey and Gaston 2006). Functional richness and functional evenness may not be related to plant
biomass due to the sensitivity of those indices to the species richness of the plots sampled (Mouchet
et al. 2010). In communities with less than 30 species, as in all our sampling plots, functional
richness and evenness have a low performance in detecting assembly rules, and might be less
effective in detecting changes in community functioning (Mouchet et al. 2010). Thus, functional
divergence seems to be a more robust measure and more able to detect community functioning
patterns (Mouchet et al. 2010; Pakeman 2013).

The savanna and the seasonal forest had different results relating diversity indices and
aboveground biomass. Aboveground biomass was more strongly related to species diversity in the
savanna, whilst functional divergence was more important in the seasonal forest. Both indices
suggest a better use of limiting resources in communities, but functional divergence assumes
causation by shifts in biotic interactions (Mason et al. 2005, 2007). In the savanna, environmental
filtering for species composition of the plots — as poor soils, water stress, and fire (Gottsberger and
Silberbauer-Gottsberger 2006) — is stronger than in the seasonal forest. In tropical forests, biotic
interactions, such as competition among species, is expected to be the main ecological force

determining community processes (Gottsberger and Silberbauer-Gottsberger 2006). Our results
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indicate that biotic interactions played a major role in the seasonal forest, determining aboveground
biomass of trees, even though better use of resources also increased tree biomass production in the
savanna.

There are few studies testing the effect of diversity on biomass production in natural tropical
communities, especially considering belowground biomass and productivity (Balvanera et al. 2006;
Cavanaugh et al. 2014). A considerable amount of the biomass in the savanna and in the seasonal
forest is allocated belowground and should not be neglected when assessing the carbon pool and
productivity of these communities. However, our results suggest that differences in aboveground
diversity indices did not affect belowground carbon pool or root productivity. Belowground
communities might have up to twice the aboveground plant species richness and different functional
diversity indices than aboveground (Hiiesalu et al. 2012), which we did not consider in our
analyses. Because sampling belowground diversity and functional traits of plant species is
expensive and time-consuming (Milchunas 2009), they might not be widely applied to estimate
vegetation biomass and carbon stocks of tropical communities (Mokany et al. 2006). Belowground,
plant communities are expected to be driven mainly by abiotic processes (Price et al. 2012), even
though root competition and facilitation between species play an important role (Ludwig et al.
2004). Abiotic variables, as soil nutrient availability and fire frequency, might be related to root
biomass production and are easier to sample than belowground diversity indices (Milchunas 2009;
Price et al. 2012).

In conclusion, diversity was positively related to aboveground plant biomass in the savanna and
in the seasonal forest, and testing for multiple diversity indices revealed stronger effect than
expected by the literature (Balvanera et al. 2006). Species diversity and functional divergence
explained a large amount of the variance of aboveground plant biomass (Balvanera et al. 2000).
Increasing complementarity among species and the use of limiting resources might be the
underlying mechanism affecting increased aboveground biomass production with increasing plant

diversity (Tilman et al. 1997; Loreau and Hector 2001). Belowground biomass was an important
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share of the total carbon pool and should not be neglected when estimating the impacts caused by
climate and land-use changes. Nonetheless, aboveground species or functional diversity indices
showed to be inappropriate for estimating the belowground carbon pool, as they were not related to
root biomass. Environmental variables might be strongly related to belowground biomass
allocation, and their association with diversity indices might be the best tool to estimate the above-

and belowground carbon pool in tropical communities.
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375  Fig. 1 (a) General linear regression of species diversity (Shannon index) and aboveground biomass
376  in the savanna; (b) General linear regression of functional divergence (FDgq, Rao 1982) and

377  aboveground biomass in the savanna; and (c) General linear regression of functional divergence and
378  aboveground biomass in the seasonal forest. Graphs show data before log transformation and

379  outliers removal. Aboveground tree biomass was estimated using allometric equations developed

380  for cerrado and dry tropical forests (Delitti et al. 2006; Chave et al. 2005).
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Abstract

Accurate measures of plant biomass and productivity are important to predict the impacts caused
by current anthropogenic changes in the carbon pool. Changes in in the carbon pool may be
decisive whether plant communities act as sinks or sources for carbon dioxide. However, there are
not accurate assessments of savanna and seasonal forest biomass, particularly belowground, which
is essential to evaluate their carbon stock. We tested whether we could use soil variables, fire
frequency, topography, and functional traits to build simple models to predict the belowground
system in savanna and seasonal forest. In Central Brazil, we collected root biomass up to 100 cm
deep and root productivity in the top 40 cm of soil with an ingrowth core, in 100 plots in savanna
and 20 plots in seasonal forest. We used increasing complexity general linear modeling to find the
models predicting the root biomass and productivity. We found significant models in all cases, even
though the explanatory power for the savanna was low. The main ecological forces affecting the
root system were soils poor in nutrients, foraging for potassium in the savanna and for nitrogen in
the forest, drought, resistance to disturbance, and niche complementarity. Reliable estimates of root
biomass might be used to replace direct but laborious excavation methods. The carbon stock of
savanna and seasonal forest are large and should not be neglected when estimating the impacts

caused by climate and land-use changes.

Keywords: carbon, cerrado, drought, fire, soil, root
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1. Introduction

Plant biomass and net primary production, that is, the build-up of plant biomass that feeds the
entire community food web, are ecological properties important for biogeochemical cycles
(Balvanera et al. 2006). Changes in plant biomass and, thus, in the carbon pool, may be decisive
whether plant communities act as sinks or sources for carbon dioxide (Fearnside 2000; Tilman et al.
2001). On the one hand, deforestation releases a large amount of carbon to the atmosphere (Castro
and Kauffman 1998). On the other hand, plant communities may mitigate climate change through
carbon sequestration and enhance carbon storage in the short term (Myneni et al. 2001). In the long
term, residence time of the carbon and, thus, community dynamics will be determining to the
carbon storage in plant biomass (Korner 2003). Thus, accurate measures of plant biomass and
productivity are important to predict the impacts caused by current anthropogenic changes in the
carbon pool (Fearnside and Laurance 2004).

A considerable part of the plant biomass, and consequently a large amount of the carbon pool, is
allocated to the root system (Jackson et al. 1996, Robinson 2007). Thus, it is important to obtain
information on root biomass to predict the effect of deforestation on global warming (Fearnside and
Laurance 2004). However, root biomass is often underrepresented in vegetation studies due to the
difficulty in obtaining belowground data (Johnson and Matchett 2001; Mokany et al. 2006). Not
only are studies on root biomass lacking, but also on root productivity, which accounts for 75% of
the total net primary production and has a great impact on the carbon cycle (Gill and Jackson 2000;
Finér et al. 2011). Root productivity is a prerequisite for nutrient foraging and water uptake, also
providing a primary input of organic carbon and nutrients to the soil via root turnover (Pértel et al.
2012; Price et al. 2012). The main parts of the root system responsible for nutrient and water uptake
are fine roots, those with less than 2 mm diameter, which occur in greater density than coarse roots
(Casper and Jackson 1997).

Two of the most unknown biomes concerning root biomass due to lack of replicates or
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unverifiable sampling methods are savannas and tropical forests (Mokany et al. 2006). These
biomes occur side by side within the Brazilian Cerrado domain, one of the hotspots for biodiversity
conservation in the world (Myers et al. 2000). The Cerrado domain comprises the cerrado
vegetation, which ranges from grassland to tall woodland, but most of its physiognomies fit the
definition of savanna (Gottsberger and Silberbauer-Gottsberger 2006; Batalha 2011). Other
vegetation types occur within the Cerrado domain, including tropical forests, such as the
semideciduous seasonal forest, which grows on richer soils (Gottsberger and Silberbauer-
Gottsberger 2006). Since the Cerrado domain originally occupied more than 2 million km?, an area
larger than, for example, Mexico, climate and land-use changes in that domain may cause a global
impact on carbon cycling (Ratter et al. 1997). For instance, high deforestation rates of the cerrado in
the last 50 years have been diminishing dramatically the amount of carbon stored in plant biomass,
releasing it to the atmosphere (Ratter et al. 1997; Castro and Kauffman 1998).

In savannas and tropical forests, 80% of the root biomass is concentrated in the top 100 cm of
the soil (Jackson et al. 1996; Castro and Kauffman 1998). According to the few data available,
savannas have root biomass of about 15 Mg ha™ and root:shoot ratio of 0.7 (Jackson et al. 1996). In
the cerrado, the savanna physiognomies have particularly high root biomass, between 30 and 53 Mg
ha™' (Castro and Kauffman 1998; Lilienfein et al. 2001), and root:shoot ratio ranges from 0.6 to 2.9
(Ribeiro et al. 2011), that is, in some areas, most biomass is allocated belowground. In tropical
forests, root biomass is about 40 Mg ha™ and root:shoot ratio is lower than in savannas, from 0.2 to
0.3 (Jackson et al. 1996). In savannas, root productivity ranges from 4 to 8.3 Mg ha™ y'1 (Pandey
and Singh 1992), whereas, in tropical forests, it goes from 1.7 to 7.6 Mg ha™' y' (Aragdo et al. 2009;
Girardin et al. 2013).

The lack of information on the root system is partly caused by the difficulty in obtaining data
(Gill et al. 2002; Milchunas 2009). In savannas, the difficulty to estimate root biomass is higher
than in other biomes, because plant species invest more in deep root allocation (Canadell et al.

1996). Different approaches have been suggested to assess belowground biomass and productivity,
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and most of them include excavation or costly methods, as isotope decay and minirhizotron
(Milchunas 2009). Even though all approaches have their limitations, the accuracy and precision of
carbon pool estimates of the different vegetation communities have been increasing (Robinson
2007). Instead of excavating and directly measuring root biomass and productivity, one might
estimate root biomass in large areas using regression models with commonly available abiotic and
biotic variables (Gill et al. 2002; Diaz et al. 2007).

In the cerrado, environmental filters, such as nutrient-poor soils, high fire frequencies, and low
water availability, limit species occurrences and biomass production (Gottsberger and Silberbauer-
Gottsberger 2006). The savanna physiognomies of the cerrado vegetation occur on more acid,
poorer, and better drained soils when compared to the semideciduous seasonal forest (Ruggiero et
al. 2002; Brauer et al. 2012). Less fertile soils, with less organic matter and nutrient content, should
be related to higher root biomass, increasing the nutrient uptake and lowering the effect of the
environmental filters (Tateno et al. 2004). Also, fire is a recurrent event impacting the species
composition, distribution, and biomass production (Bond and Keeley 2005; Pausas and Keeley
2009). Most cerrado species have subterranean organs that allow them to resist and survive fires
(Coutinho 1990). Hence, frequently burned sites might host greater belowground biomass, due to
the coarse root organs used to resprout. Topography affects water availability, changing the depth
of the ground water level (Oliveira-Filho and Ratter 2002; Rossatto et al. 2012). Ground water
approaches the surface in lower areas, increasing water availability during the dry season, but
decreasing the volume of soil available to root growth (Rossatto et al. 2012). In the Cerrado
domain, poorer soils, higher fire frequencies, and lower water availability are expected to be related
to higher root biomass and productivity.

Besides the environmental filters, biotic features may also be related to the biomass produced by
plant communities (Diaz et al. 2007). For instance, species functional traits may change plant
fitness and survival, affecting biomass productivity (Tilman et al. 1997). In the cerrado, plant

functional traits that allow better use of limiting soil resources, higher degree of fire resistance, and
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higher water uptake from the water table during the dry season should allow higher biomass
production (Tilman et al. 1997; Cardinale et al. 2006). Moreover, higher functional diversity may
be related to different strategies of resource use, leading to higher productivity (Tilman et al. 1997,
Ricotta and Moretti 2011). Indeed, functional diversity has been shown to impact several
community processes, such as aboveground productivity and decomposability of organic matter
(Klumpp and Soussana 2009).

We aimed to improve the record of root biomass and productivity of savanna and tropical
forests, two of the most unknown biomes concerning the belowground system. Not only did we use
environmental variables, but also functional traits related to stress resistance and plant fitness to test
whether we could build a general and simple model to predict root biomass and productivity in the

Cerrado domain, avoiding, thus, excavation methods.

2. Material and methods

We carried out this study in Emas National Park, central Brazil, at 17°49°-18°28’S and 52°39’-
53°10°W, from October 2009 to December 2011. The park has a total area of 132,941 ha (Franca et
al. 2007) and its climate can be classified as Aw according to Koppen’s system (1931), with dry
winters and rainy summers. Average rainfall ranges from 1,200 to 2,000 mm year™, concentrated
between September and March, and annual mean temperature is 24.6°C (Ramos-Neto and Pivello
2000). Soils are mostly Oxisols and the bedrock is composed of a variety of Pre-Cambrian gneisses
and granites (Franca et al. 2007). The vegetation in the park is dominated by savanna
physiognomies, with varying tree density (Franca et al. 2007). Other vegetation types, such as
semideciduous seasonal forest, occur in small patches within the reserve. In the savanna
physiognomies, we established 100 5 m x 5 m plots using a stratified random sampling design
(Krebs 1998). The sampling comprised 10 categories of fire occurrence, with 10 plots in each

category, capturing the variation in fire frequency within the park, from the absence of fire to
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annual fire in the last 16 years. In the semideciduous seasonal forest, due to the small size of the
patches and to the absence of fire, we did not use a stratified random sampling, but placed 20 5 m x
5 m plots, 50 m apart one from the other, in a regular grid.

We sampled root biomass to the depth of 100 cm, including roots from trees, shrubs, and grasses.
In the upper 40 cm, we extracted soil monoliths of 40 x 40 cm. From 40 to 100 cm deep, we
extracted a core using an auger of 30 cm diameter (Castro and Kauffman 1998). We sieved the soil
with a mesh size of 2 mm and washed the roots to eliminate soil particles. We dried the root
samples in the oven at 70°C for 48 hours and weighed them. We extrapolated root biomass to one
hectare to make it comparable with other studies. We assessed root productivity for fine roots (< 2
mm diameter) in the upper 40 cm with an ingrowth core method (Milchunas et al. 2005), placing 96
cores in the savanna and 16 in the seasonal forest. We established the cores between November and
December 2010 and measured the root biomass produced after one year. The cores had 20 cm
diameter, 40 cm deep, and the area inside the cores where root ingrowth occurred were 2.5 cm wide
(Milchunas et al. 2005). The soil samples used to fill the cores were taken from the same plot, and
the original horizons were kept intact. The mesh limiting the outside part of the cores was made of
rigid plastic with holes of 2 mm x 2 mm, restricting the growth to fine roots (Milchunas et al. 2005).

In each plot, we collected soil samples in the top 5 cm of soil, the layer most correlated to the
vegetation structure and physiognomic variation in the Cerrado domain (Ruggiero et al. 2002;
Amorim and Batalha 2006). For each soil sample, we measured: pH, organic matter, total nitrogen,
phosphorus, potassium, calcium, magnesium, aluminum, sum of bases, cation exchange capacity,
base saturation, aluminum saturation, and the proportions of clay, silt, and sand. Soil analyses
followed the procedures described by Raij et al. (1987). We included two variables to assess fire
history, based on satellite images, from 1984 to 2010: years elapsed since last fire and mean interval
between fires in each plot. As surrogates for water availability, we measured two topographic
variables, altitude with an altimeter and slope with an inclinometer. In Emas National Park, the

higher and the flatter the area, more distant is the groundwater (Rossatto et al. 2012).
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Within each plot, we identified all woody individuals with stem diameter at soil level larger than
or equal to 3 cm. At the individual level, we sampled performance and functional traits, hereafter
called ‘functional traits’ (Cornelissen et al. 2003). The functional traits, related to plant nutrition
and growth and indicative of disturbance levels (Pérez-Harguindeguy et al. 2013), were: basal area,
tree height, bark thickness, wood density, specific leaf area, leaf size, leaf toughness, leaf nitrogen
content, leaf phosphorous content, and leaf potassium content. Basal area, tree height, bark
thickness, and specific leaf area are related to disturbance and are expected to differ according to
fire regimes (Dantas et al. 2013). Wood density and leaf size are responsive to disturbance and soil
nutritional content, indicating competitive strength (Cornelissen et al. 2003). Leaf toughness is
related to nutritional quality and acts as defence against herbivores (Agrawal et al. 2006). Leaf
nutrients are also related to disturbance and assess nutrient limitation to plant growth (Cornelissen
et al. 2003). Additionally, we included top kill and tortuosity of the main branch as measures of
resprout ability and fire resistance (Higgins et al. 2007). Top kill is a binary trait, present when the
aboveground part of the tree died with fire and resprouted from the root system (Hoffmann et al.
2009). Tortuosity is the length:height ratio up to the first bifurcation and describes how straight the
main stem of the tree is. High tortuosity is a plant response to high disturbance level, as fire and
drought (Eiten 1972). For each of the 12 functional traits sampled, we assessed the community
weighted mean value, which is the mean of the trait accounting for species abundances (CWM,
Garnier et al. 2004) and the divergence of the single traits, using Rao’s quadratic diversity index
(FDq, Rao 1982; Ricotta and Moretti 2011).

We followed a two-stage method suggested by (Diaz et al. 2007) to obtain predictive models to
root biomass and productivity using abiotic and biotic variables (Fig. 1), but not including species
abundance and discontinuous effects of abiotic and biotic variables, as originally proposed. We
added the variables in an increasing complexity general linear model, which reduces the uncertainty
in predicting ecological processes (Diaz et al. 2007). We excluded from the analyses soil variables

that were highly correlated to others (Pearson’s r > |0.7|), maintaining as few variables as
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possible. Functional traits were not highly correlated among them or to the soil variables, so we
kept them all in the analyses. When necessary, data were log-transformed to reach normality.

In the first stage, we tested for the effect of abiotic and biotic factors on root biomass and
productivity separately. In the first step, we tested the effect of the abiotic variables. Soil variables
analysed were pH, organic matter, nitrogen, phosphorus, potassium, calcium, magnesium, and
aluminum content, cation exchange capacity, and the proportions of clay and silt. Also, we included
time since last fire, mean fire interval, altitude, and slope. Then, we tested for the effect of
functional traits, using the community weighted mean (Garnier et al. 2004) and the dispersion of
each functional trait (Rao 1982). In each step, significant factors were identified for the next stage
of the analysis. In the second stage, we combined significant variables, adding and keeping them
when they improved model fitness. We selected the best models by parsimony (Garnier et al. 2001;
Diaz et al. 2007, Fig. 1). We also ran the analysis with standardised values to assess the weight of

each variable in the regression models (see Electronic Supplementary Material).

3. Results

Root biomass in the savanna was 29.8 + 21.7 Mg ha™ and 38.3 + 28.4 Mg ha™ in the seasonal
forest. Fine root productivity was 98.9 + 41.5 g m™ year™ in the savanna and 71.4 + 26.6 g m™~year™
in the seasonal forest. Among the abiotic variables, we excluded from the analysis those soil
variables that were highly correlated to other variables, which were sum of bases, base saturation,
aluminum saturation, and sand proportion. Sum of bases was correlated with potassium (R = 0.71),
calcium (R = 0.91), and magnesium (R = 0.91); base saturation was correlated with calcium (R =
0.88) and magnesium (R = 0.89); aluminum saturation was correlated with calcium (R = 0.93) and
magnesium (R = 0.90); and sand proportion was correlated with silt proportion (R = 0.98). We
measured the functional traits from 531 individuals belonging to 55 species in the savanna and from

185 individuals belonging to 43 species in the seasonal forest. Functional traits were not highly
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correlated among them or to soil variables (R < | 0.7 | in all cases), so all were kept in the analysis.
We found significant models to predict root biomass and productivity in the savanna and in the
seasonal forest (P < 0.05 in all cases). In the first stage of the analysis, we assessed the significant
variables, when taken separately into account (Table 1). In the second stage, we built the final
models, excluding by parsimony some of the significant variables found in the first stage (Table 2).
In the savanna, root biomass was related to low altitude, low tortuosity, low leaf potassium content,
and high divergence of leaf toughness (Rzadj = (.24, Table 2). In the seasonal forest, root biomass
was related to low clay proportion, low bark thickness, and high leaf nitrogen content (Rzadj =0.56,
Table 2). In the savanna, root productivity was related to low clay content, high organic matter, low
leaf potassium content, and high divergence of bark thickness (Rzadj = (.16, Table 2). In the
seasonal forest, fine root productivity was related to leaf nitrogen content and top kill (Rzadj =0.55,
Table 2). The models with standardised variables showed similar contributions of each variable (see

Electronic Supplementary Material).

4. Discussion

In the savanna we studied, we found similar amount of root biomass that were found in the
savanna physiognomies of the cerrado by other authors (Castro and Kauffman 1998; Lilienfein et
al. 2001), which is twice as much as what was reported to other savannas (Jackson et al. 1996).
Root biomass and productivity in the cerrado represents a large share of the total carbon pool and
total productivity, larger than expected by general extrapolation of other savannas in the world
(Jackson et al. 1996; Grace et al. 2006). Hence, the high rates of deforestation, as well as changes in
climate and in land-use in the cerrado, will have greater impact on the global carbon balance than
expected by extrapolation of data from savannas elsewhere (Jackson et al. 1996; Grace et al. 2006).
In the seasonal forest, root biomass and productivity were similar to those found in other tropical

forests (Jackson et al. 1996; Aragao et al. 2009). The rapid deforestation of tropical vegetation is a

52



238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

major source of greenhouse gases (Fearnside and Laurance 2004). In this sense, updating the
expectations of the belowground carbon pool to the savanna and the seasonal forest in the Cerrado
domain will increase the accuracy of estimates of the impacts caused by changes in climate and
land-use (Fearnside 2000). Due to the large amount of biomass stocked underground, the loss of
vegetation in the Cerrado domain will have a great impact on the carbon pool and should not be
neglected (Fearnside 2000; Bustamante et al. 2012).

Root biomass and productivity in the savanna and the seasonal forest could be predicted to
variable extent using abiotic and biotic variables. So, the use of models should be considered if one
wants to predict the belowground system, because it is cheaper and faster than direct excavation
(Milchunas 2009). All of our models were significant, even though they had a lower explanatory
power in the savanna. Excluding functional traits of the herbaceous understory vegetation might
have been the main factor responsible for the reduced power. Savannas have an almost continuous
herbaceous layer, which shares soil occupation with trees and represents more than half of the plant
species (Scholes and Archer 1997; February and Higgins 2010). If we had sampled functional traits
of the herbaceous layer as well, explanatory power of the models could have been increased. In the
semideciduous seasonal forest, where the herbaceous layer is less important than in the savanna,
models were simpler and had a better fit. However, data on functional traits on the herbaceous layer
in tropical vegetation is not widely available, and models including these variables might be less
used to predict the belowground carbon pool in these areas (Gottsberger & Silberbauer-Gottsberger
2006). In some cases, even the identity of the herbaceous layer to species level is not possible
(Loiola et al. 2010). Despite the lower explanatory power of the savanna models, we found
variables related to the root biomass and productivity, suggesting ecological processes underlying
them.

Communities under low disturbances, with better soil quality and with better access to ground
water, were more productive, suggesting that they are controlled by interactions between water and

nutrient availability (Bustamante et al. 2012). Low clay proportion, high organic matter content, and
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low altitude were related to high root biomass and productivity. Extremely clayey soils may
diminish the penetration of nutrients and water to deeper layers, limiting the soil volume available
to root growth, as we found in savanna and seasonal forest (Schenk and Jackson 2002; Rossatto et
al. 2012). Organic matter is an important cation exchanger, and fine roots are the main responsible
for cation uptake (Gottsberger and Silberbauer-Gottsberger 2006; Price et al. 2012). The higher
availability of cations in the soil leads to a larger fine root productivity in the savanna, maximising
cation uptake (Forde and Lorenzo 2001). Soils in the seasonal forest are not expected to be as
limited by nutrient content as in the savanna (Ratter et al. 1997), and organic matter did not limit
root growth in this case. Lower altitude approximates the ground water to the soil surface (Rossatto
et al. 2012), increasing plant access to water during the dry season and, consequently, biomass
production (Oliveira et al. 2005; Sankaran et al. 2005). In this sense, poor soil and drought were the
main abiotic filter limiting root growth in the savanna, whereas poor soil was the only abiotic filter
in the seasonal forest.

Contrary to our expectation, fire frequency did neither affect root biomass nor productivity. Fire
is expected to be an important factor altering carbon and nutrients stocks and fluxes in the Cerrado
domain (Bustamante et al. 2012). However, the belowground carbon stocks are more conservative
in response to fires than the aboveground stock (Bustamante et al. 2012). Frequent fires have been
occurring in the cerrado vegetation for at least 20 million years (Bond and Keeley 2005), and most
species are able to store carbohydrates in the root system and resprout after fire. There is a
functional stability in the root system under different fire frequencies, possibly due to the same
root-growth strategy occurring among most plant species. Functional stability of traits related to fire
resistance was also observed along cerrado herbaceous communities submitted to different fire
frequencies (Loiola et al. 2010). Alternatively, fine and coarse roots might have different responses
to changes in fire frequency. Successive burning promotes tree mortality, decreasing coarse root
biomass, and favours grass cover, increasing fine root biomass (Bustamante et al. 2012). If so, a

different pattern may be found if different root thicknesses are analysed separately.
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Among the biotic variables, some of the functional traits responsive to disturbances were related
to root biomass production. Low tree tortuosity in savanna, low bark thickness, and low top killing
in the seasonal forest were related to higher root biomass or productivity. Tree tortuosity is a
common trait in cerrado species and may be a consequence of frequent fires, nutrient-poor soils, or
low water availability (Eiten 1972). Tortuosity is not commonly measured since it does not appear
in sampling protocols of functional traits related to disturbance (for example, Cornelissen et al.
2003 and Pérez-Harguindeguy et al. 2013). Nonetheless, tree tortuosity was useful to predict
savanna root biomass and should be considered in studies of other savannas. Bark thickness is
responsive to soil nutritional quality and water availability, whereas top killing is related to high fire
frequency (Cornelissen et al. 2003; Hoffmann et al. 2009) and affected negatively root biomass in
the seasonal forest. The occurrence of functional traits responding to low disturbances increased
carbon stock and cycling, as expected (D1 lorio et al. 2011).

Biomass production is affected by leaf element concentrations (Zhang et al. 2012). Indeed, leaf
potassium and leaf nitrogen affected root biomass and productivity in the savanna and in the
seasonal forest, respectively. Even though cerrado species do not have high variability in nutrient
concentration due to strong nutrient limitation in the soil (Cianciaruso et al. 2013), the variability in
leaf potassium and in leaf nitrogen concentrations affected root biomass production. Potassium has
a role in enzyme functioning, controls the water cellular balance, and is highly mobile within the
plant (Prado 2013). Leaf nitrogen is related to relative growth, photosynthetic rate, nutritional
quality of the leaves, and to the nitrogen availability in the environment (Westoby et al. 2002)
(Cornelissen et al. 2003). In the seasonal forest, low leaf nitrogen content resulted in low root
biomass, but high root productivity. Nitrogen limited the total root biomass, as expected (Ladwig et
al. 2011), but increased fine root productivity, the main responsible for foraging and nutrient uptake
(Price et al. 2012). Nitrogen variability affected the belowground biomass investment in the
seasonal forest, with different effects on the carbon pool and on the carbon uptake. Hence,

potassium and nitrogen affected the root production to maximise the uptake of limiting resources
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(Price et al. 2012), and they might be used to estimate root biomass and productivity in the Cerrado
domain.

Additionally, high divergence of two functional traits, leaf toughness and bark thickness, were
positively correlated to root biomass and productivity in the savanna, but not to the root system in
the seasonal forest. High functional divergence is a consequence of extreme values of functional
traits, especially among the most abundant species (Villéger et al. 2008). Functional divergence
shifts due to changes in the intensity of competitive interactions and, thus, in species similarity
(Mason et al. 2007). High competition between species might lead to niche differentiation and thus
high trait complementarity and dissimilar use of resources, increasing biomass production (Tilman
et al. 1997; Villéger et al. 2008). Carbon pool and productivity have been affected by competition-
driven changes in functional traits, besides the effects of abiotic variables (Price et al. 2012). Low
disturbance levels, foraging for potassium in the savanna and for nitrogen in the seasonal forest, and
presumably also greater complementarity among species led to higher root biomass and
productivity in our study.

Our models are applicable to other cerrado areas, because we excluded from our analysis the
fourth step suggested by (Diaz et al. 2007), which tests for the relationship between species
abundances and the ecological properties studied. Some of the species abundances had been related
to root biomass and productivity and their inclusion would have increased model fit (see Electronic
Supplementary Material). Nevertheless, tropical communities have high beta diversity and,
consequently, high species turnover (Gottsberger and Silberbauer-Gottsberger 2006). As one of our
aims was to produce models to estimate the carbon pool and productivity that could be applied to
other sites within the Cerrado domain, we did not include species abundances, since they vary
sharply from site to site (Gottsberger and Silberbauer-Gottsberger 2006). Moreover, we excluded
from our analysis the last step, which search for discontinuous effects of abiotic or biotic effects on
the ecological properties studied, because all our models had been significant (Diaz et al. 2007).

In conclusion, the root system comprises an important share of the carbon pool of the savanna
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and the semidecidous seasonal forest in the Cerrado domain. Its carbon stock is large and should not
be neglected when estimating the impacts caused by climate and land-use changes (Fearnside
2000). Deforestation of tropical vegetation is a major source of greenhouse gases, and the Cerrado
is one of the hotspots of biodiversity conservation in the world (Myers et al. 2000). In this sense,
predicting the belowground stock of carbon in this area is of great importance to estimate and
minimise the impacts caused by deforestation (Bustamante et al. 2012). There are few examples in
the literature combining abiotic and biotic effects to explain ecological processes, especially with
field data and in the Tropics (Balvanera et al. 2006). We found significant models based on field
measurements that are simpler than direct excavation methods. The variance explained by these
models might be improved by including traits of non-woody vegetation, especially in the savannas.
Nevertheless, the approach suggested here is valuable to estimate the root system in savannas and

tropical forests within the Cerrado domain.
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541  Fig. 1 Steps to predict root biomass and productivity in the savanna and in the seasonal forest in

542 Emas National Park, central Brazil, following Diaz et al. (2007). In the first stage, we tested for
543 relationships of each variable separately with root biomass and productivity. In step 1, we used
544 abiotic variables, that is, soil features, fire frequency, and topography. In steps 2 and 3, we used,
545 respectively, community weighted mean (CWM, Garnier et al. 2004) and functional divergence
546 (FDq, Rao 1982) of 12 functional traits related to disturbance resistance. In the second stage, we
547 added significant factors from steps 1-3 and kept them when they improved model fit following
548 Akaike’s criterion.
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Stage |

Step 1. Abiotic factors

Soil quality, fire frequency, and
topography

Step 2. Community weighted trait
mean

Mean values of single functional traits
weighted by species abundances

Stage |l

Step 4. Combining abiotic and
biotic factors

Combining the significant abiotic
and biotic effects on ecological
processes

Step 3. Trait value distribution

Divergence values of single functional
traits
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Table 1 Stage I of the analyses relating abiotic and biotic variables to root biomass and fine root
productivity in savanna and seasonal forest, Emas National Park, central Brazil, following Diaz et
al. (2007). The list of all functional traits analysed is presented in the methods. The + and — signs
indicate whether the correlation was positive or negative. We show only significant relationships (P

< 0.05). OM: organic matter, CWM: community weighted mean.

Stage 1 Step 1: Abiotic variables Step 2: CWM Step 3: Trait divergence
Variable P Variable P Variable P
- altitude 0.01 - tortuosity 0.01 + leaf toughness  0.01
Savanna root biomass
- clay 0.03 - leaf potassium 0.01 - -
- clay 0.04 - leaf toughness 0.01 - -
Forest root biomass - - + leaf nitrogen 0.02 - -

- - - bark thickness 0.04 - -

+OM 0.01 - leaf potassium 0.03 + bark thickness  0.01
Savanna root productivity
- clay 0.01 - - - -

- - - top kill 0.003 - -
Forest root productivity

- - - leaf nitrogen 0.009 - -
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556  Table 2 Final models predicting root biomass and productivity in the savanna and in the seasonal

557 forest, and the variability explained by each model (Rzadj, Diaz et al. 2007). Data were log-
558 transformed when necessary to reach normality. The + and — signs before the variables indicate
559 whether the correlation with root biomass or productivity was positive or negative. All models

560 were significant (P < 0.05).

Response variable Explanatory variables Rzadj

10.65 - 0.05 altitude - 2.95 tortuosity - 0.07 leaf potassium +
In (root biomass savanna) 24
0.05 leaf toughness divergence

In (root biomass seasonal forest) 5.87 - 0.004 clay - 0.24 bark thickness + 0.10 leaf nitrogen 56

1.75 - 0.006 clay + 0.006 OM - 0.02 leaf potassium + 0.11 bark
In (root productivity savanna) 16
thickness divergence

In (root productivity seasonal forest) 3.62 - 0.08 leaf nitrogen - 4.01 top kill 55
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Electronic Supplementary Material

Table 1. Final models predicting root biomass and productivity in the savanna and in the seasonal
forest using standardized variables, and the variability explained by each model (Rzadj, Diaz et al.
2007). Data were log-transformed when necessary to reach normality. The + and — signs before the
variables indicate whether the correlation with root biomass or productivity was positive or

negative. All models were significant (P < 0.05).

Response variable Explanatory variables Rzadj

- 0.31 altitude — 0.18 tortuosity - 0.29 leaf potassium +
In (root biomass savanna) 24
0.15 leaf toughness divergence

In (root biomass seasonal forest) - 5.05 clay - 2.20 bark thickness + 3.37 leaf nitrogen 56

-0.26 clay + 0.26 OM - 0.17 leaf potassium + 0.18 bark
In (root productivity savanna) 16
thickness divergence

In (root productivity seasonal forest) - 0.35 leaf nitrogen - 0.63 top kill 55
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Table 2. Final models predicting root biomass and productivity in the savanna and in the seasonal
forest including the species abundances, and the variability explained by each model (Rzadj, Diaz et
al. 2007). Data were log-transformed when necessary to reach normality. The + and — signs before
the variables indicate whether the correlation with root biomass or productivity was positive or

negative. All models were significant (P < 0.05).

Response variable Explanatory variables Rzadj

10.65 - 0.05 altitude - 2.95 tortuosity - 0.07 leaf potassium +
In (root biomass savanna) 24
0.05 leaf toughness divergence + 0.25 E. suberosum

5.87-0.004 clay - 0.24 bark thickness + 0.10 leaf nitrogen +
In (root biomass seasonal forest) 66
3.06 T. laevigata

1.75 - 0.006 clay + 0.006 OM - 0.02 leaf potassium + 0.11
In (root productivity savanna) 26
bark thickness divergence + 0.21 P. ramiflora

In (root productivity seasonal
3.62 - 0.08 leaf nitrogen - 4.01 top kill 55
forest)

72



IV - CAPITULO 3

Artigo formatado para ser submetido ao periddico Austral Ecology

73



10

11

Disentangling the roles of resource availability and disturbance in fine and coarse root

biomass in savanna

Short title: Roles of resource and disturbance in root

Authors: Priscilla P Loiolal?2, Gustavo H Carvalho3, Michael Scherer-Lorenzen? Marco A
Batalha?
1 Department of Botany, Federal University of Sao Carlos, 13565-905, Brazil;

2 Corresponding author: priscilla.loiola@gmail.com; +55 16 993235488; Fax +55 16 33518308;

3 Departmento of Biological Sciences, State University of Santa Cruz, 45662-900, Brazil;

4Faculty of Biology, Chair of Geobotany, University of Freiburg, D 79104, Germany

74



12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Abstract

Savannas - along with tropical forests and deserts — are among the most unknown biomes
concerning the belowground system. Root biomass might be influenced by the availability of
limiting resources and by the type and intensity of disturbances. Fine and coarse roots should
be affected differently by nutrient availability and disturbance intensity: the former should be
more responsive to resource supplies, whilst the latter should be related to changes in
disturbance frequency. We studied the roles of poor soils, drought, high fire frequencies, and
plant resistance to fire. We sampled the root biomass, environmental variables, and functional
traits of resistance to fire in 100 plots in Central Brazil, and used structural equation modeling
to test our hypothesis. Shallow root biomass, from 0 to 20 cm deep, was not caused by
resource availability or by disturbances, as fire or drought. Biotic interactions were not
considered in our study, but they may impact shallow root biomass. In the deep layer, from 20
to 100 cm deep, we identified soil fertility and recent fires as the main environmental factors
causing changes in fine and coarse root biomass in the cerrado. Lack of nutrients in the soil
caused higher fine root biomass, increasing the uptake of limiting resources, whereas recent
fires lead to less coarse root biomass below 20 cm deep, probably due to the higher
dominance of the herbaceous layer in the plots, with less coarse root biomass. Accordingly to
our expectation, fine roots were mostly affected by nutrient availability in the soil, whereas

coarse roots were more related disturbance, in our case, recent fires.

Keywords: drought, fire, functional traits, soil fertility, structural equation modeling
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Introduction

Savannas have a large belowground system compared to other biomes, accounting for
nearly 40% of total plant biomass in these communities (Jackson et al. 1996; Ribeiro et al.
2011). Nevertheless, data on root biomass are scarce as sampling methods are often
unverifiable and have low number of replicates (Mokany et al. 2006). For this reason,
savannas - along with tropical forests and deserts - are among the most unknown biomes
concerning the belowground system (Scholes and Archer 1997; Mokany et al. 2006). Root
biomass might be influenced by the availability of limiting resources and by the type and
intensity of disturbances (February et al. 2013). Resource availability and disturbance
frequency should support different survival strategies among plant species according to root
investment and, thus, support changes in the belowground carbon pool and uptake (Paula and
Pausas 2011). The impact of limiting resources and disturbances on root biomass is not clear,
especially if we take into account their effects on fine and coarse root biomass separately
(February et al. 2013).

Fine and coarse root biomass contributes to resource uptake and survival after
disturbance, and, therefore, is critical for plant communities (Grime et al. 1986; Malamy
2005). Fine roots, up to 2 mm wide, are the main responsible for water and nutrient uptake,
and might respond strongly to their availability in the soil (Jackson et al. 1997; Forde and
Lorenzo 2001). They are faster to produce than coarse roots and have high turnover rate in
tropical areas, being responsible for most of the carbon uptake in those communities (Gill and
Jackson 2000). Coarse roots are more costly to produce, but they have greater transport
capacity, are less vulnerable to physical damage, and are longer-lived than fine roots (Fitter
1987). Coarse roots have a structural role and might work as resource storage organs used to
resprout after disturbances (Coutinho 1990; Pausas and Keeley 2009). In this sense, fine and

coarse root biomass should be affected differently by nutrient availability and disturbance
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intensity: the former should be more responsive to resource supplies, whilst the latter should
be related to changes in disturbance frequency (Lei et al. 2012; Partel et al. 2012).

We studied the roles of resource distribution and disturbance intensity in fine and coarse
root biomass of savanna physiognomies of the cerrado vegetation, in central Brazil
(Gottsberger and Silberbauer-Gottsberger 2006). The most important environmental filters
affecting the cerrado are poor soils, drought, and high fire frequencies (Gottsberger and
Silberbauer-Gottsberger 2006). These environmental conditions affect plant growth and the
carbon pool and uptake of the vegetation, above- and belowground (Bustamante et al. 2012;
Price et al. 2012). Fine roots should be mostly affected by nutrient availability in the soil,
whereas coarse roots should be more related to drought and fire frequency (Oliveira et al.
2005; Bustamante et al. 2012). Understanding how fine and coarse roots are affected by soil
nutritional quality, water availability, and fire frequency may help to explain community
functioning, species coexistence, and carbon pool allocation in savannas (Paula and Pausas
2011; February et al. 2013).

Availability of nutrients in soil, such as nitrogen, phosphorus, and cation exchange capacity,
is determinant for biomass production, especially in poor soils (February et al. 2013). Soils in
cerrado have low cation availability and high aluminum content, affecting competitive
interactions and limiting plant biomass and productivity (Tilman et al. 1997; Forde and
Lorenzo 2001). Nutrient-rich zones should stimulate the growth of fine roots and increase
nutrient uptake, whereas low nutrient content zones should affect negatively fine root growth
(Price et al. 2012). Nutrient availability is positively related to root ramification, length, and
high fine root biomass of grasses and herbs, but it has no effect on coarse root biomass
(Whiting et al. 2000; Lei et al. 2012). Moreover, in acidic soils, aluminum is solubilised and
represents an important limitation to plant growth, reducing fine root biomass (Delhaize and

Ryan 1995). In this sense, we expected that high nitrogen and phosphorus availability, and
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high cation exchange capacity, a surrogate for soil fertility, along with low aluminum content,
should increase fine root biomass and have no effect on coarse root biomass.

Among the environmental disturbances that might affect biomass production in cerrado
communities, the most important are drought and fire (Gottsberger and Silberbauer-
Gottsberger 2006). Low water availability might overcome the limitation caused by nutrient
deficiency in soil and is related to decrease of plant growth, also belowground (Ladwig et al.
2012). Cerrado tree species can produce deep roots to reach the groundwater, allowing tree
growth and survival during the dry season (Oliveira et al. 2005). Shallow-rooted trees and
grasses that do not reach the groundwater may be benefited by hydraulic lift promoted by
their deep-rooted neighbours (Jackson et al. 1999). In this sense, deep root system at the
community level may help plant communities to overcome the strong limitation caused by
drought. In the cerrado, topography affects water availability, changing the depth of the
groundwater (Oliveira-Filho and Ratter 2002; Rossatto et al. 2012). Deep groundwater
represents larger soil volume available for root growth, and they are found in high altitude
and flat terrain (Rossatto et al. 2012). So, we expected high altitude and flat terrain to be
related with higher deep fine and coarse root biomass at community level, increasing water
uptake and diminishing the impact of drought on plant communities (Rossatto et al. 2012).

Fire is a main disturbance in savanna communities around the world in a long history that
lasts nearly 20 million years, affecting both above- and belowground plant biomass (Bond et
al. 2005). As long as fire frequency is increasing in the last decades due to human activities, it
is important to predict how plant communities and the carbon pool will respond in this new
scenario of frequent fires (Pausas and Keeley 2009). Fire consumes aboveground biomass and
postpones the peak of fine root growth (Grime 1979; Di lorio et al. 2011). Moreover, a
common strategy to survive frequent burning is to resprout after fire, using carbohydrates
stored in the root system, usually coarse roots (Pausas and Keeley 2009). Species able to

resprout should be common in fire-prone communities, and their belowground system are
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expected to be deeper and coarser than in communities protected from fire (Verdaguer and
Ojeda 2002; Paula and Pausas 2011). Consequently, we expected that high fire frequencies
would decrease fine root biomass (Pausas and Keeley 2009; Di lorio et al. 2011). Fire might
also have an indirect effect on root biomass, by increasing soil fertility via nutrients deposited
as ashes (Coutinho 1990; Silva and Batalha 2008).

In fire-prone communities, plants have functional traits that promote fire resistance, such
as the ability to resprout from the root system and the production of a seed bank that
germinates after burning (Pausas et al. 2004). Less resistant plants should be more strongly
impacted by fire and delay their biomass reconstruction, above- and belowground (Zwicke et
al. 2013). Larger values of height, basal area, and bark thickness represent high fire
resistance, as they diminish the damage caused by fire, allowing a fast recovery of the plant
(Gignoux et al. 1997). Height and basal area change fire resistance to surface fires, the most
common type of fire in the cerrado (Gottsberger and Silberbauer-Gottsberger 2006). Taller
and thicker plants preserve their leaves from fire and are better protected from high
temperatures (Bond et al. 2012). Bark thickness insulates the inside living tissues against high
temperatures and avoids death of aboveground organs (Hoffmann et al. 2009). If so, fire-
resistant plants, with higher values of height, basal area, and bark thickness, should be less
damaged by fire and have higher biomass, above- and belowground.

Our goal was to test whether soil quality (assessed through cation and aluminum
availability), water availability (assessed through topographic variables), fire frequency, and
plant resistance to fire (assessed through height, basal area, and bark thickness) would
change fine and coarse root biomass in the cerrado. We tested these relationships for shallow
and deep root biomass, as the distribution of nutrients, water, and roots within the soil is not
uniform. We expected that higher soil quality, higher water availability, lower fire frequency,

and higher plant resistance to fire would increase root biomass, with different effects on fine

79



136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

and coarse root biomass. Fine roots should be more affected by resource availability, whilst

coarse roots should be mostly affected by disturbances, drought and fire in our study site.

Material and methods

We carried out this study in Emas National Park (17°49’-18°28’S and 52°39’-53°10°'W),
central Brazil. With an area of 132,941 ha, the park is among the most important cerrado
reserves. The climate in Emas is Aw (Koppen 1931), with rainy summers and dry winters. The
park lies within the Cerrado domain, mostly covered by savanna physiognomies of the
cerrado vegetation. We placed 100 5 m x 5 m plots in the savanna, following a stratified
random sampling design (Krebs 1998) with ten strata of fire frequency, from the absence of
fire to annual fire from 1984 to 2010, when we started sampling the data. In each plot, we
sampled the root biomass to the depth of 100 cm. We extracted two soil monoliths of 40 cm x
40 cm x 20 cm, until 40 cm deep. From 40 to 100 cm deep, we extracted a core using a 30 cm
diameter auger (Castro and Kauffman 1998). We separated root sample in two layers, shallow
and deep, with the shallow layer comprising the first 20 cm of soil and the deep layer lying
from 20 to 100 cm deep (Castro and Kauffman 1998). We sieved the soil with a 2 mm mesh
and carefully washed the roots to eliminate adherent soil particles. We oven-dried the root
samples at 70°C for 48 hours and weighted them.

We collected soil samples in each plot and assessed nitrogen, phosphorus, cation exchange
capacity, and aluminum content (Raij et al. 1987). We used nitrogen, phosphorus, and cation
exchange capacity as surrogates for soil fertility. As indicators of water availability to plants,
we measured the altitude and inclination of each plot using an altimeter and an inclinometer.
High altitudes and flat terrain are related to deep groundwater and should support larger root
biomass (Castro and Kauffman 1998). We considered the years elapsed since the last fire that

reached each plot, as a measure of recent fire. Moreover, we identified all woody individuals
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with stem diameter at soil level equal to or larger than 3 cm and sampled three functional
traits as surrogates of fire resistance: basal area (m?), tree height (m), and bark thickness
(mm). Each trait value was the average of that trait for all individuals in a plot. The state of
these traits represents the plastic response of plants to fire, and functional traits should differ
among fire regimes (Carvalho and Batalha 2013). We expected that higher values of height,
basal area, and bark thickness should provide better fire resistance to plants (Hoffmann et al.
2009; Bond et al. 2012).

We used structural equation modeling to test a model connecting soil fertility, water
availability, fire frequency, and plant resistance to fine and coarse root biomass. We proposed
one a priori structural equation model (Fig. 1) and tested it to fine and coarse roots biomass
in two different depths: shallow (0 to 20 cm) and deep (20 to 100 cm), using the ‘lavaan’
package (Rosseel 2012) for R (R Core Team 2013). We did a confirmatory factor analysis with
the variables that cause the latent variables (Carvalho and Batalha 2013). To estimate the
parameters and assess the fit of the structural equation model, we used maximum likelihood
estimation (ML). We used a robust estimator of standard errors to account for deviations

from multivariate normality in our data.

Results

The structural equation models to shallow root biomass exhibited a poor fit with the data,
both to fine and coarse root biomass (P < 0.001, figures not shown). The model to deep fine
root biomass was marginally significant (x? = 50.58, df = 35, P = 0.04 , Fig 2). However, the
model to deep coarse root fitted the data well (x? = 44.71, d.f. = 35, P = 0.12, Fig. 3). The latent
variables exhibited strong fit with the data, and all variables showed significant path
coefficients. The paths connecting aluminum content, topographic variables, and fire

resistance to root biomass were non-significant in all cases (P > 0.05). Aluminum content had
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a negative effect on soil fertility in both cases, as we expected (Standardised estimator = 0.04,
P < 0.001 for both deep fine and coarse root models). Also, soil fertility was positively affected
by recent fire in both models (Standardised estimator = 0.02, P < 0.001 for both deep fine and
coarse root models). Soil fertility had a negative effect on fine root biomass (Standardised
estimator = 0.43, P = 0.02) and no effect on coarse root biomass (Standardised estimator =
0.70, P = 0.92). Recent fire had no effect on fine root biomass (Standardised estimator = 0.09,
P = 0.68), but influenced negatively deep coarse root biomass (Standardised estimator = 0.16,
P = 0.02). Fire resistance was not related to recent fire in any case (Standardised estimator =
0.10, P = 0.26 for the deep fine root model; and Standardised estimator = 0.18, P = 0.98 for the

deep coarse root model).

Discussion

Among the resources and disturbances we analysed, soil fertility was the only that affected
fine root biomass below 20 cm deep. Contrary to our expectation, however, cerrado species
increased their fine root biomass in patches with small cation availability, and soil fertility had
no influence on coarse root biomass, as we expected (Forde and Lorenzo 2001). Fine roots are
the main responsible for cation uptake from the soil and, thus, more fine roots should increase
the cation uptake (Forde and Lorenzo 2001). Even though most studies report higher fine
root biomass in rich soil patches (Robinson 1994; Price et al. 2012), different responses might
be given for the same environmental stimulus (Forde and Lorenzo 2001). Belowground fine
root production was reported to increase towards low nitrogen availability (Tateno et al.
2004). In nutrient-limited sites, as the cerrado, abiotic forces might filter species with trait
values that allow them to overcome the limitations imposed by the environment (Keddy

1992; Tateno et al. 2004).
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Additionally, soil fertility was caused by differences in recent fires and aluminum content.
Recent fires caused higher soil fertility, as we expected. The same result was found in studies
in cerrado and in African savannas, with recent fires increasing cation availability (Jensen et
al. 2001; Carvalho et al. 2014). Even though part of the chemicals and particles are lost in the
smoke by volatilisation, part of the nutrients is deposited in the soil as ashes and increases the
cation availability (Coutinho 1990). Furthermore, plants lose young leaves after burning and
litter with high nutrient content accumulates on the soil, increasing soil fertility (Rodriguez et
al. 2009). High aluminum content did not directly affect root biomass but indirectly, as it
decreased soil fertility. Aluminum is related to acidic soils, to low concentration of nutrients in
the soil, and to low density of woody individuals, and is expected to have a negative impact on
root biomass (Goodland and Pollard 1973; Fierer and Jackson 2006). However, many plant
species exhibit variability in aluminum sensitivity that may allow them to resist the toxicity
affecting root growth (Kochian 1995). This might be the case in cerrado communities, as we
did not observe a causal relationship between high aluminum content and low fine or coarse
root biomass.

Differences in water availability also did not affect fine or coarse root biomass in the
cerrado. We expected that deep groundwater, found in high altitude and flat terrains, would
increase the soil volume available to the root system, increasing root growth and water
uptake (Rossatto et al. 2012). In Emas, water availability is determinant of the vegetation
structure, increasing the functional diversity of the plots (Carvalho et al. 2014). When we
considered the entire root system in the analysis, considering both fine and coarse roots, we
found that the altitude of the plots was related to total root biomass. However, this
relationship could not be observed when we sorted root biomass into fine and coarse roots in
two different depths. Even though water availability seems to affect the belowground carbon
pool, it was only revealed when we accounted for the cumulative effect on fine and coarse
root biomass.
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In contrast to the effect of water availability, the effect of fire on root biomass could only be
observed when we separated the fine and the coarse roots. Contrary to what we expected,
recent fires decreased coarse root biomass and had no effect on fine root biomass below 20
cm deep. Even though fire is expected to stimulate belowground storage in coarse root
organs, it might favour grasses, with less coarse root biomass, instead of trees (Bond and
Keeley 2005; February et al. 2013). Additionally, we expected that fire would postpone the
peak of fine root growth, leading to less fine root biomass in communities submitted to recent
fires (Di lorio et al. 2011). However, the effect of disturbances on fine root biomass, as
drought and fire, may be missed as fine roots have high turnover in tropical sites (Gill and
Jackson 2000). The replacement of lost fine roots can happen in the same season that the
disturbance occurred, and leave no trace on the fine root biomass after one year (Partel et al.
2012).

Plant functional resistance, assessed through functional traits related to fire, did not affect
fine or coarse root biomass and was also not related to recent fires. Fire does not seem to act
as an environmental filter leaving a signal in functional traits in cerrado (Carvalho et al.
2014), giving support to the insurance theory, which states that plant species composition
might change without promoting loss of functional diversity or community processes (Yachi
and Loreau 1999; Loreau and Hector 2001). Other studies in cerrado also show that fire is not
related to different functional diversity of the communities, although differences in
aboveground biomass and species composition are related to different fire frequencies
(Cianciaruso et al. 2010, 2012; Carvalho et al. 2014). In the cerrado, plant species seem to be
selected by fire at regional scale, and changes in local fire frequency do not imprint
differences in functional strategies, such as plant resistance to fire.

Shallow root biomass, in the top 20 cm of soil, is a large portion of the carbon pool, near
80% of the total root biomass (Jackson et al. 1996). Contrary to our expectation, shallow root

biomass in cerrado was not caused by resource availability or by disturbances, as fire or
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drought. Even though abiotic factors are expected to be the main determinants of
belowground biomass production (Price et al. 2012), the main abiotic filters of cerrado did
not affect root biomass in the first 20 cm of soil. Biotic interactions, as competition and
facilitation, change species similarity and impact community properties, especially under
nutritional limited sites (Stubbs and Wilson 2004). Biotic interactions were not considered in
our study, but they may impact shallow root biomass. Moreover, the herbaceous layer is
important in cerrado sites, since it contributes to a high amount of biomass and cover in the
cerrado, affecting fire dynamics, nutrient distribution, and decomposition rates (Franca et al.
2007; Carvalho et al. 2014). The herbaceous species composition and functional resistance to
fire might be determinant to the shallow root biomass investment.

To understand how resource availability and disturbance interact with each other and
cause changes in the community functioning might be critical for conservation of diversity,
properties and processes of the natural communities (Srivastava and Vellend 2005; Grace et
al. 2007). Many aspects of the environment may be interconnected through different paths
and affect the carbon pool and cycling (Diaz et al. 2007). Using structural equation modeling,
we were able to identify soil fertility and recent fires as the main environmental factors
causing changes, respectively, in fine and coarse root biomass in the cerrado. Plant response
to the lack of nutrients in the soil increases fine root biomass, increasing the uptake of limiting
resources, whereas recent fires lead to less coarse root biomass below 20 cm deep, probably
due to the higher dominance of the herbaceous layer in the plots. Accordingly to our
expectation, fine roots were mostly affected by nutrient availability in the soil, whereas coarse

roots were more related disturbance, in our case, recent fires.
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444  Fig. 1 - A priori casual model relating soil fertility, topographic variables, fire intensity, and

445 fire resistance to fine and coarse root biomass in cerrado. We considered soil fertility a
446 latent variable causing nitrogen (N) and phosphorus (P) content, and cation exchange
447 capacity (CEC, mmol kg1); fire resistance causing basal area (BA, m2), height (H, m), and
448 bark thickness (Brk, mm). Recent fire is the penultimate fire that occur in the plots before
449 root sampling. This model was used four times, to fine and coarse root biomass (2 mm
450 criteria) and to shallow and deep root biomass (20 cm deep criteria).
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452  Fig. 2 - Final model predicting fine deep root biomass, with less than 2 mm diameter sampled

453 from 20 to 100 cm deep in the soil, with best fit to the data (2 = 50.58, d.f. = 35, P = 0.04).
454 Unstandardised estimates, standardised estimates between parenthesis, and P values of
455 each relationships. Solid arrows indicate significant and positive paths; dashed arrows
456 indicate significant and negative paths; non-significant paths were omitted.
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Fig. 3 - Final model predicting coarse deep root biomass, with 2 mm diameter or more and
sampled from 20 to 100 cm deep in the soil, with best fit to the data (x? = 44.71, d.f. =35, P
= (0.12). Unstandardised estimates, standardised estimates between parenthesis, and P
values of each relationships. Solid arrows indicate significant and positive paths; dashed

arrows indicate significant and negative paths; non-significant paths were omitted.
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V - CONCLUSAO GERAL
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CONCLUSAO GERAL

Neste trabalho, vimos que a biomassa hipégea é um componente importante do estoque de
carbono no cerrado. A diversidade de espécies e a divergéncia funcional estiveram
positivamente relacionadas com a biomassa epigea das arvores, mas ndo com a biomassa
hipégea. Diferencas nas medidas de divergéncia funcional sugerem a existéncia de
mecanismos que limitam a similaridade entre as espécies das comunidades. Comunidades
mais divergentes devem ter maior complementaridade no uso dos recursos, levando a uma
maior biomassa epigea. No entanto, nenhum dos indices de diversidade tiveram relacao com a
biomassa das raizes do cerrado ou da floresta estacional semidecidual. As medidas de
diversidade obtidas acima do nivel do solo ndo foram boas preditoras do estoque total de
carbono das comunidades vegetais, pois nao previram a biomassa hipégea dessas
comunidades.

Dessa forma, o uso de variaveis ambientais e tracos funcionais foi imprescindivel para
prevermos o estoque subterraneo de carbono. Usamos varidveis relacionadas a qualidade
nutricional do solo, varidveis topograficas e medidas de frequéncia de fogo nas parcelas, além
da média e variacdo dos tragos funcionais das espécies, e geramos modelos que previram a
biomassa e produtividade hipégeas no cerrado e na floresta estacional semidecidual. Os
modelos foram significativos, apesar de terem baixo poder explicativo no cerrado. Nossos
modelos mostraram que comunidades com menos distdrbios, melhor qualidade de solo, e
maior acesso a agua foram mais produtivas, sugerindo que elas sdo controladas por
interagdes entre disponibilidade de nutrientes e dgua. Ao contrario do que esperdvamos, a
frequéncia de fogo ndo afetou a biomassa hipogea no cerrado, possivelmente por uma
estabilidade funcional das comunidades, fazendo com que as espécies tenham estratégias
similares de crescimento de raiz. Além disso, maior divergéncia de tracos funcionais nas

parcelas de cerrado, mas nao na floresta estacional, levou a um aumento na biomassa hipdgea,

96



sugerindo diferenciacdo de nicho e maior complementaridade entre os tragos funcionais das
espécies. Menor intensidade de disturbio, forrageamento por potassio no cerrado e nitrogénio
na floresta, e maior complementaridade entre as espécies no cerrado foram os processos
ecologicos que afetaram a biomassa total e produtividade hipdgeas no cerrado e na floresta
estacional semidecidual.

Dividimos a biomassa hipogea do cerrado em raizes finas e grossas e separamos o0s
horizontes superficial e profundo, para entendermos como a disponibilidade de recursos e os
disturbios afetam a biomassa destes componentes. Identificamos a fertilidade do solo
causando menor biomassa de raizes finas e fogos recentes causando menor biomassa de
raizes grossas, abaixo de 20 cm de profundidade no solo. A biomassa de raizes superficiais
ndo esta relacionada a nenhum dos processos ecolégicos estudados, e deve ser causada por
interacdes bidticas entre as espécies, como facilitagdo ou competigao.

Diferente do que esperavamos, a baixa disponibilidade de cations no solo levou as espécies
a investirem mais em raizes finas, aumentando a captacdo dos nutrientes, e permitindo a
sobrevivéncia em solos pobres. Esperdvamos que o fogo causasse aumento na biomassa de
raizes grossas, devido a um maior investimento das espécies vegetais em orgaos de
armazenamento subterraneos usados para rebrotar. No entanto, as queimadas recentes
pareceram substituir a composicao das espécies das comunidades, levando a maior proporg¢ao
de espécies do componente herbaceo-subarbustivo, que possuem menor biomassa de raizes
grossas. As biomassas hipogeas do cerrado e da floresta estacional semidecidual ndo puderam
ser previstas pela diversidade de espécies ou pela diversidade funcional das parcelas, mas
estiveram relacionadas com variaveis ambientais e tragos funcionais das espécies arbdreas, e

esses efeitos foram diferentes sobre a biomassa das raizes finas e grossas.
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