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ABSTRACT 

The Simplified Drum-Buffer-Rope (S-DBR) is a system that encompasses the planning, 

scheduling, production control, and control inventory replenishment in the supply chain. S-

DBR offers distinct approaches for make-to-order and make-to-stock manufacturing 

environments. For this research, we focus on the method applicable to make-to-stock 

environments, known as Make-To-Availability (MTA) in S-DBR. MTA commits to ensuring 

high product availability. To adapt to merchandise distribution environments, the MTA has 

been expanded by incorporating new rules. While this expansion isn't considered a new method 

by its original authors, we refer to it as Distribution-To-Availability (DTA) to differentiate it 

from MTA. Our previous studies on S-DBR revealed operational challenges with both MTA 

and DTA. Therefore, this research aims to propose enhancements for these two methods, which 

are supported by four specific objectives. The first objective (i) is to conduct a systematic 

literature review to identify suggestions and proposed improvements for S-DBR and its 

predecessor, DBR. The review uncovered that the previously identified problems have yet to 

be addressed, and studies are scarce on S-DBR compared to DBR. One of the difficulties 

encountered by MTA is effectively managing manufacturing environments with sequence-

dependent setup time. The second (ii) and third (iii) objectives are dedicated to tackling this 

challenge. Objective (ii) involves identifying dispatch rules suitable for MTA, while objective 

(iii) focuses on proposing a solution for MTA in sequence-dependent setup time environments. 

In the case of DTA, the challenge lies in planning the replenishment of stock buffers within the 

supply chain, particularly in the distribution network. S-DBR emphasizes the need for frequent 

inventory allocation but does not offer a solution that effectively balances transport costs and 

inventory maintenance costs. Consequently, the specific objective (iv) aims to propose a 

solution that enables DTA to address the trade-off between transportation costs and inventory 

maintenance costs, ensuring both product availability and profitability. The research results 

demonstrate that utilizing different dispatch rules can enhance the performance of MTA. 

Furthermore, our proposed solution for sequence-dependent setup time environments has 

improved the performance of MTA. Regarding DTA, the proposed solutions effectively ensure 

inventory supply in the distribution network by striking a balance between transport and 

inventory maintenance costs, thereby maintaining product availability and profitability.   

Keywords: Theory of Constraints, Simplified Drum-Buffer-Rope, Make-to-Availability, 

Distribution-to-Availability. 
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RESUMO 

O Simplified Drum-Buffer-Rope (S-DBR) é um sistema para o planejamento, programação e 

controle da produção, que também pode controlar a reposição de inventários na cadeia de 

suprimentos. O S-DBR propõe métodos diferentes para ambientes de manufatura make-to-order 

e make-to-stock. Nesta pesquisa, estamos interessados no método para ambientes make-to-

stock, que no S-DBR é chamado de Make-To-Availability (MTA) porque assume o 

compromisso de garantir alta disponibilidade de produtos e oferece mecanismos específicos 

para tal. O MTA foi ampliado para se adequar a ambientes de distribuição de mercadorias, com 

a adição de novas regras. Embora essa extensão não tenha sido considerada um novo método 

pelos seus autores, decidimos chamá-la de Distribution-To-Availability (DTA) para distingui-

la do MTA. Em nossos estudos anteriores sobre o S-DBR identificamos alguns problemas no 

modo de operação do MTA e do DTA. O objetivo desta pesquisa é propor melhorias para os 

dois métodos, que desdobramos em quatro objetivos específicos. O primeiro objetivo específico 

é (i) identificar as adaptações e melhorias propostas ao S-DBR e em seu precursor, DBR, 

através de uma revisão sistemática da literatura. Foi constatado pela revisão da literatura, que 

os problemas identificados anteriormente ainda não haviam sido tratados, além de haver poucos 

estudos sobre o S-DBR em comparação ao DBR. Uma das dificuldades do MTA é lidar com 

ambientes de manufatura onde há tempo de setup dependente da sequência. O segundo e 

terceiro objetivos específicos foram dedicados a esse problema. O segundo objetivo específico 

(ii) é identificar regras de despachos adequadas ao MTA. Esse estudo embasou o estudo 

relacionado ao terceiro objetivo específico, (iii) que é propor uma solução para o MTA voltada 

a ambientes com de tempo de setup dependente da sequência. No DTA, o problema está no 

planejamento da reposição dos buffers de estoque espalhados pela cadeia de suprimentos, mais 

especificamente na rede de distribuição. O S-DBR prega que a reposição de inventário deve ser 

frequente, porém não aponta uma solução que lide com o trade-off entre os custos de transporte 

e o custo de manutenção de inventário. Relacionado a isso, o objetivo específico (iv) é propor 

uma solução que habilite o DTA a enfrentar o trade-off entre os custos de transporte e os custos 

de manutenção de estoques, além de planejar a reposição de inventário para garantir tanto alta 

disponibilidade de produtos quanto lucratividade. Os resultados da pesquisa mostraram que o 

uso de diferentes regras de despacho pode melhorar o desempenho do MTA. Além disso, o 

desempenho do MTA melhorou com a solução que propomos para ambientes com tempo de 

setup dependente da sequência. Em relação ao DTA, as soluções propostas mostraram-se 



 

 

 

 

capazes de planejar a reposição de inventário na rede de distribuição equilibrando os custos de 

transporte e de manutenção de inventário, mantendo a disponibilidade dos produtos e o lucro. 

Palavras-chave: Teoria das Restrições, Simplified Drum-Buffer-Rope, Make-to-Availability, 

Distribution-to-Availability. 
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1 INTRODUCTION 

1.1 Context and fundaments 

Supply chains are currently experiencing significant transformations, including the 

pursuit of greater resilience, the rise of e-commerce, the adoption of omnichannel sales, the 

diversification of distribution channels, market pressures to reduce delivery times, and the 

introduction of new types of vehicles for transporting goods. Within this context, managing the 

production and distribution of goods while maintaining business profitability and a high service 

level has become increasingly challenging. To address these challenges, businesses are turning 

to management and decision-making tools, such as the Theory of Constraints-based system 

known as Simplified Drum-Buffer-Rope (S-DBR) (SCHRAGENHEIM; DETTMER; 

PATTERSON, 2009). This research is dedicated to studying S-DBR and proposing solutions 

that contribute to its wider adoption. The fundamental principles of S-DBR will be present in 

the following sections.  

1.1.1 Theory of Constraints 

The S-DBR emerged from the Drum-Buffer-Rope (DBR), a system based on the 

Theory of Constraints (TOC) (GOLDRATT; COX, 1984; GOLDRATT, 1986; 

SCHRAGENHEIM, 2010). The notion of constraint is fundamental to understanding TOC and 

its applications. Cox et al. (2012, 28), editors of the Theory of Constraints International 

Certification Organization (TOCICO) Dictionary, define constraint as the factor that ultimately 

limits the performance of a system or organization. The factor that, if the organization were 

able to increase it, that is more fully exploit it or more effectively subordinate to it, would result 

in achieving more of the goal (IKEZIRI et al., 2018).  

Conceived by Israeli physicist Dr. Eliyahu Moshe Goldratt, the TOC is based on the 

application in organizations of experimental science concepts (IKEZIRI et al., 2018). Its roots 

go back to the 70s, when Goldratt and his team developed a finite programming software for 

the optimization of production systems, called Optimized Production Technology (OPT) (COX; 

SCHLEIER, 2010). In 1984 the book The Goal was published, which presents a series of 

concepts focused on explaining certain phenomena that govern manufacturing and proposed a 

process of continuous improvement and decision-making support for organizations 

(GOLDRATT; COX, 1984). Since then, its application has broadened into various areas, such 
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as production, supply chain, projects, accounting, distribution, and retail. Thus, the primary 

focus of TOC has moved on from factory bottlenecks, production planning, control, and 

scheduling techniques to becoming a global management philosophy focused on leveraging 

performance and offering decisive competitive advantages to organizations (de Souza and Pires 

2010; Goldratt 1990a).  

1.1.2 Theory of Constraints and manufacturing – Drum-Buffer-Rope 

The implementation of the Theory of Constraints (TOC) in a manufacturing 

environment has significant implications for the evaluation of workstation performance 

(GOLDRATT; COX, 2003). According to Schragenheim (2010), the factory control systems 

used in the late 1970s and early 1980s rewarded individual workstation efficiency, leading to 

excessive inventory between stations. As a result, the Drum-Buffer-Rope (DBR) system 

emerged, focusing on workflow management rather than capacity. The DBR maximizes 

production line flow to generate company revenue while minimizing work-in-progress (WIP) 

in the production process (SCHRAGENHEIM, 2010). This approach prevents dispersion and 

ensures that the entire process operates at a pace that supports the slowest resource in the 

system. 

Dettmer (2000) considers the Drum-Buffer-Rope (DBR) as one of Goldratt's most 

renowned constraint management tools. Goldratt and Cox (2003) explain the DBR mechanism 

using an analogy of scouts walking in a line, where the slowest scout has a rope tied to their 

waist, and the other scouts follow at the same pace. The drum sets the rhythm for the slowest 

scout, while the rope prevents the scouts from dispersing and establishes a buffer, which 

represents the maximum distance. In the manufacturing environment, the drum is considered a 

capacity constraint resource (CCR) (SAIF; YUE; AWADH, 2022). The flow of the 

manufacturing line is limited by the CCR.  

1.1.3 Simplifying the Drum-Buffer-Rope 

Despite the numerous successful implementations of the DBR around the world, the 

presence of an internal CCR is assumed even in situations in which this assumption does not 

hold (LEE et al., 2010a). For this type of situation, Schragenheim and Dettmer (2000) proposed 

a new approach based on the DBR but with relevant simplifications, naming the approach the 

Simplified Drum-Buffer-Rope.  
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In the comparison between simplified drum-buffer-rope (S-DBR) and DBR, it is 

important to understand why S-DBR is considered even simpler. Both approaches require a 

"drum" representing the rate of demand from the market, a "buffer" to protect the drum, and a 

"rope" to signal the release of materials for new orders. So, what sets S-DBR apart as "simple"? 

The simplicity of S-DBR arises from the elimination of two types of buffers, namely the 

capacity-constrained resource (CCR) buffer and the assembly buffer. Additionally, S-DBR 

employs a market-driven master production schedule instead of the CCR (or drum) schedule, 

resulting in clearer and more streamlined shop floor control.  

Schragenheim (2010) explains that S-DBR does not rely on a detailed schedule 

specifically for the CCR, even when the CCR is active within the system. Instead, the 

production line's overall load is controlled through the planned load mechanism. Planned load 

encompasses all orders that have been released but have not yet been processed by the CCR. 

By controlling the planned load, S-DBR effectively maintains capacity control without the need 

for a detailed CCR schedule. This approach safeguards production against variabilities and 

helps prevent issues such as lateness or stockouts. Overall, S-DBR offers a simpler yet effective 

means of managing the shop floor and ensuring efficient production processes.    

The book "Manufacturing at Warp Speed: Optimizing Supply Chain Financial 

Performance" (SCHRAGENHEIM; DETTMER, 2000) introduces the concept of S-DBR and 

explores the integration and coordination of manufacturing, marketing, sales, purchasing, and 

finance to maximize sales revenue by effectively managing inventories and indirect costs. The 

book equips readers with the necessary tools to implement this strategy. 

While S-DBR makes manufacturing management easier, it is not always the best 

choice. DBR is well-suited for situations where demand consistently exceeds the plant's 

capacity. On the other hand, S-DBR recognizes that demand may not always utilize the entire 

production capacity, particularly for certain companies (SOUZA; BAPTISTA, 2010). This 

concept is depicted in Figure 1.1, where the dashed line represents the plant's capacity. 

Companies can experience seasonal peaks in demand, while others may have smoother 

demand patterns. In either case, during periods of high demand, production capacity may fall 

short of meeting the requirements. Managers are always faced with the challenge of aligning 

demand and capacity (SCHRAGENHEIM; DETTMER; PATTERSON, 2009). One of the 

assumptions made by S-DBR is that market demand always acts as a constraint, which may be 

disguised by occasional demand peaks that introduce constraints into the system for a short 

duration (SCHRAGENHEIM; DETTMER, 2000). 
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Figure 1.1 - Demand Variations on Production Capacity 

  

Source: Schragenheim, Dettmer and Patterson (2009) 

In other words, companies often have idle capacity for most of the time, and therefore, the 

market must always be seen as a constraint within the system. Consequently, it is crucial to 

explore the market to increase sales and profitability. When idle capacity exists, the potential 

gain becomes limited by the level of demand. 

Looking at it in this light, it makes more sense to tie the rope to market demand rather 

than consider the uses of production resources. Furthermore, by accepting that the market is 

always a constraint on the system, one is asserting that it is part of the system whose purpose 

is, among other things, to make more money. Capacity constraints, therefore, must be 

understood as interactive constraints on the main market constraint, weakening the system. 

Recognizing that market demand is the constraint of the system, it is important to 

maintain excess capacity in the CCR and, consequently, in all other resources. The system 

should not be fully loaded, even if demand requires greater capacity to meet it. The reason is 

that when a production process approaches 100% load, queues for orders, replenishment orders, 

and WIP start to increase exponentially, in addition to creating delays in deliveries to customers 

(SCHRAGENHEIM; DETTMER; PATTERSON, 2009). Figure 1.2 illustrates this 

phenomenon. 

Market demand fluctuates and there is always a risk of placing a large burden on the 

RRC. For this reason, its cargo must be carefully monitored, and market commitments must be 

limited (SCHRAGENHEIM; DETTMER, 2000). However, Souza and Baptista (2010), quoting 

Goldratt and Cox (2003), state that there must be only one restriction in the system. As demand 
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must be understood as a permanent constraint, some excess capacity must be guaranteed in the 

CCR. This excess is called Protective Capacity (SCHRAGENHEIM; DETTMER, 2000). 

Invariably, a CCR can also be considered a constraint on demand, as it also limits the 

supply of products to the market. 

Figure 1.2 - Evolution of production time versus increased demand 

 

Source: Adapted from Schragenheim, Dettmer, and Patterson (2009) 

1.1.4 Simplified Drum-Buffer-Rope for make-to-stock 

In 2009 was launched the book "Supply Chain Management at Warp Speed: 

Integrating the System from End to End" (SCHRAGENHEIM; DETTMER, 2009), amplified 

the S-DBR. The main objective of this book is to show how the Theory of Constraints (TOC) 

can be integrated with the distribution of finished products, the acquisition of raw materials, 

and the manufacturing process, and present the concept of make-to-availability (MTA). When 

the TOC-based planning system was rethought, it was realized that the make-to-stock (MTS) 

environment needed different principles (SCHRAGENHEIM, 2010), and thus born the concept 

of MTA.   

According to Schragenheim (2010), the DBR does not see the difference between MTS 

and MTO strategies. At the time DBR was developed in the 1980s, there was no dispute over 

the assumption that there was no difference between servicing MTO and MTS environments. 

However, when Goldratt was dealing with the MTS theme and verifying the differences 

between this form of production and the MTO, one of his findings gave rise to the term MTA, 

where more marketing information was added to the operational meaning of MTS: “we assume 

a commitment with the market chosen by us to maintain a correct availability of a group of 
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specific final products in a specific warehouse”. Thus, the objective of the MTA system is to 

offer a commercial opportunity to the company, allowing it to offer and guarantee immediate 

deliveries to customers. In some markets, this value offered to customers becomes a competitive 

advantage. 

DBR and S-DBR are still best applied in MTO production environments, particularly 

in small and medium enterprises. They get better results with MTO. This does not happen with 

large companies, which often sell their products to retail chains, which in turn are served by 

distribution centers. So, production is always going into a warehouse somewhere. These 

industries are part of a long and complex supply chain. For this reason, the creation of an             

S-DBR approach for MTS environments was an important and natural evolution 

(SCHRAGENHEIM; DETTMER; PATTERSON, 2009). 

1.1.5 Simplified Drum-Buffer-Rope for distribution 

The book titled "Supply Chain Management at Warp Speed: Integrating the System 

from End to End" (SCHRAGENHEIM; DETTMER; PATTERSON, 2009) introduces the 

extension of S-DBR to distribution environments. According to the authors, merely 

manufacturing products does not guarantee sales, even if the products are in high demand. The 

decision of whether to deliver products directly to end users or store them in warehouses is an 

obvious one. Without sales to consumers, finished goods inventories remain untouched, and 

future production of those products eventually ceases. This is where distribution networks play 

a crucial role in assisting producers, especially in the case of consumer products. 

This approach takes advantage of the fact that relative variation in demand is 

significantly smaller for the manufacturer compared to typical retailers. While there may be 

less stock in the system, the availability of the product to the retailer is increased through 

frequent deliveries. Essentially, this process applies DBR principles throughout the supply 

chain (SCHRAGENHEIM; DETTMER; PATTERSON, 2009). 

In the TOCICO Dictionary, the distribution/replenishment solution in the Theory of 

Constraints (TOC) is defined as a pull-based method that involves determining stock buffer 

sizes and replenishing inventory within the supply chain based on actual consumption by end-

users rather than forecasts. Each link in the supply chain maintains stock levels that 

accommodate the maximum expected demand within the average replenishment time, 

accounting for the level of unreliability in replenishment time. Generally, each link receives 
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what was shipped or sold, with adjustments made when buffer management detects changes in 

demand patterns (SULLIVAN et al., 2007). 

To maintain optimal inventory levels in each link, the TOC distribution solution relies 

on the continuous replenishment of consumed stocks from stock buffers. In this research, we 

referred to this solution as distribution-to-availability (DTA). 

1.2 The S-DBR literature 

The S-DBR is discussed in a few numbers of studies. The first one was realized by 

Chang and Wen-Tso (2011). They proposed a weighted layer production buffer and weighted 

production buffer to monitor the status of the buffer deviation in a re-entrant flow shop operated 

by S-DBR. Soon after, Chang and Huang (2011) proposed a solution to operate a re-entrant 

manufacturing environment with S-DBR. According to the authors, the S-DBR is not prepared 

to operate in these environments, due to its dispatching rule. Hence, they proposed the layer 

production buffer to monitor the buffer status and sequence orders according to it. Chang and 

Huang (2013) used the S-DBR to enhance a model for a re-entrant flow shop (RFS) 

environment. In the model, job processing times are generated from a discrete uniform 

distribution and machine breakdowns are subject to an exponential distribution. Improvements 

were made to the due-date assignment method, the order release, and the dispatching rules. An 

alternative method that enhances the S-DBR system performance was developed by J.-H. Lee 

et al. (2010). The new S-DBR approach presents rules for the operation of a fluctuating make-

to-order environment with interactive or multiple CCRs, as well as rules for the inclusion of 

urgent orders.  

Ikeziri et al. (2019) extensively reviewed the literature on the Theory of Constraints 

and showed that the S-DBR has received little attention from researchers. Recently, Govoni et 

al. (2021) compared the performance of a production system managed by make-to-availability 

under the action of different methods of continuous improvement. Finally, Ikeziri et al. (2021) 

evaluated the effectiveness of the Dynamic Buffer Management (DBM) method, which is 

responsible for adjusting the target level over time. 

1.3 Research questions 

In their book "Supply Chain Management at Warp Speed," Schragenheim, Dettmer, 

and Patterson (2009) indicate potential solutions to implement MTA and DTA methods. 

However, they do not support critical decision-making in real-world settings, nor do they offer 
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empirical evidence to substantiate the effectiveness of these approaches or validate the 

anticipated benefits. To address the gaps left by Schragenheim, Dettmer, and Patterson (2009), 

we initiated this study by conducting a comprehensive literature review on S-DBR to identify 

solutions and evidence. To direct our inquiry, we formulated the following research question: 

RQ1: What adaptations and improvements have already been proposed to the Drum-

Buffer-Rope and Simplified Drum-Buffer-Rope systems? 

To address this inquiry, we conducted a systematic literature review (SLR), the 

findings of which are outlined in Chapter 3. The outcomes revealed that the previously 

identified issues remained unresolved. Subsequently, the next phase of the study involved 

selecting the problems to be tackled. Among them, two were chosen and are elaborated upon 

below. 

1.3.1 Make-To-Availability research questions 

One notable issue within the MTA that has captured our attention is the detrimental 

impact of sequence-dependent setup time on availability. This challenging situation introduces 

significant variability in replenishment time, resulting in a sluggish and unreliable system. To 

mitigate this, production orders must be processed in a specific sequence to minimize setup 

time. Deviating from this sequence leads to wastage of workstation/machine capacity 

(SCHRAGENHEIM; DETTMER; PATTERSON, 2009). Conversely, adhering strictly to the 

sequence can result in excessively long replenishment times, hindering prioritization based on 

buffer status and ultimately affecting availability commitment (SCHRAGENHEIM; 

DETTMER; PATTERSON, 2009). If an urgent production order is placed at the end of the 

processing queue, the risk of stock depletion becomes significant. Thus, a tradeoff arises: either 

minimizing setup time and expediting the flow time of all orders or streamlining the order with 

higher urgency while delaying the remaining orders in the queue. 

There are at least two ways to solve this problem: increasing inventory or increasing 

production capacity to reduce replenishment lead time. We must consider that the increase in 

stock generates the need to increase physical space and maintenance costs in addition to the 

cost of the stock itself. Inventories also decrease if production capacity is increased to reduce 

replenishment lead time. In any case, the dependent setup time negatively impacts the MTA as 

it requires some investment. 
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The systematic literature review showed that no proposed solution mitigates the impact 

of dependent setup time on MTA performance, even though this may be a common problem 

for companies that adopt it.  

In the MTA, the sequencing of production orders occurs machine-to-machine, guided 

by the logic of Prioritization by Buffer Status (PBS) (SCHRAGENHEIM; DETTMER; 

PATTERSON, 2009) when selecting the next order for processing. PBS can be viewed as a 

dispatch rule (DR) utilized in production scheduling to prioritize tasks within workstation 

queues (HEGER et al., 2016; NGUYEN, 2017). Unlike optimization methods, DRs make 

decisions based on real-time information when machines are idle and tasks are in the queue, 

rather than pre-determined by an algorithm (NGUYEN, 2017). This mechanism enables DRs 

to leverage up-to-date system data and make decisive choices (NGUYEN, 2017). DRs are easy 

to implement and generally offer faster results, presenting a significant advantage 

(FRAMINAN; FERNANDEZ-VIAGAS; PEREZ-GONZALEZ, 2019).  

Given the resemblance between PBS and dispatching rules, we opted to explore 

potential solutions within the realm of dispatching rules. This led us to two research questions: 

RQ2: Which dispatch rules are suitable to be adopted by Make-To-Availability? 

RQ3: What solution can be adopted by Make-To-Availability to lead with sequence-

dependent setup time environments? 

1.3.2 Distribution-To-Availability research question 

Supply chains are undergoing significant changes, such as the search for more 

resilience, growth of e-commerce, omnichannel sales, diversification of distribution channels, 

market pressure to reduce delivery times, and new types of vehicles to transport goods. These 

changes have made the distribution of goods more complex, and increasingly challenge the 

management distribution of goods. The challenges include managing multi-sites distribution 

chain coordinate and synchronization, and the control inventory of multiple distribution centers, 

regional warehouses, and retailers.   

To overcome these challenges, the companies can use systems such as Vendor-

Managed Inventory (VMI), Collaborative Planning, Forecasting and Replenishment (CPFR), 

Just-in-time (JIT), and DTA. Vendor-Managed Inventory (VMI) is a system in which the 

supplier takes responsibility for managing inventory levels at the customer's location 

(GOVINDAN, 2013). Another system is Collaborative Planning, Forecasting, and 

Replenishment (CPFR), which involves collaboration between trading partners in the supply 
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chain to develop a shared understanding of demand and inventory requirements (HOLLMANN; 

SCAVARDA; THOMÉ, 2015). CPFR includes joint planning, demand forecasting, and 

inventory replenishment. Just-in-time (JIT) is a policy of ordering stock in needed quantities 

only when needed (GOLHAR; STAMM, 1991). On the other hand, DTA seeks to improve the 

availability of items at all points of consumption (end users) based on the constant 

replenishment of consumed stocks from strategically positioned stock buffers in the supply 

chain (COX; SCHLEIER, 2010).  

Another challenge in distributing goods is balancing cost, profit, and service level. In 

this sense, there is a vast literature that discusses the logistics tradeoffs. One of the most 

important and discussed is the tradeoff between transportation costs and inventory holding costs 

(CARDÓS; GARCÍA-SABATER, 2006; CHOUDHARY; SHANKAR, 2013; MOSCA; 

VIDYARTHI; SATIR, 2019; QIU et al., 2022; SARKAR et al., 2019; TURKENSTEEN; VAN 

DEN HEUVEL, 2023). If the replenishment frequency is increased, transportation costs 

increase too, and inventory holding costs are reduced. On the other hand, decreasing the 

frequency of replenishment reduces transportation costs, which require higher inventory levels 

at upstream nodes of the network, increasing inventory holding costs. The ideal is to keep costs 

low enough to ensure the desired profit and level of service.  

DTA is not yet able to handle this trade-off due to the way it makes decisions about 

inventory replenishment. As DTA does not use demand forecasting techniques, the pressure on 

the stock replenishment function is high, as it is responsible for making all decisions about 

what, when, and how much to restock (SCHRAGENHEIM; DETTMER; PATTERSON, 2009). 

Theoretically, whenever a single unit of inventory is consumed at a distribution network node, 

an action to replenish that item should be initiated immediately. Stock replenishment involves 

a series of resources from collecting products from the warehouse to delivering them to the final 

customer or point of sale. 

It is vital to plan resupply to optimize resource usage and balance cost, profit, and 

service level as discussed earlier. Although it is essential to plan the replenishment, DTA does 

not have a planning solution, according to a systematic review of the literature (chapter 3). 

Schragenheim, Dettmer, and Patterson (2009) argue that frequent replenishments keep 

inventories low and buffers full, but do not point to a tool for making replenishment decisions 

considering the costs involved. Therefore, DTA is not able to resolve the tradeoff between 

transportation costs and inventory holding costs. 
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Deciding when to replenish stock buffers is a difficult task that requires much more 

than a policy; tools are needed. For companies that intend to implement DTA, it is vital to have 

a tool that balances availability and profitability. The lack of this tool motivated us and led us 

to the following research question:  

RQ4: How to replenish stock buffers in a distribution network managed by DTA, 

protecting the availability of products and the business's profit? 

To answer this question, we propose a mixed integer programming (MIP) and 

computational heuristic solution based on the studies of Fachini and Armentano (2020) and Koç 

et al. (2015). We intend to contribute to the literature on S-DBR, logistics, and supply chain 

literature. We also hope to contribute to companies that need alternative solutions to the 

distribution of goods. 

1.3.3 Objectives 

Based on the above considerations, the main objective of this research is to propose 

improvements for S-DBR system methods, make-to-availability, and distribution-to- 

availability. For this, the following specific objectives need to be achieved: 

Specific objective 1 (RQ 1): Identify the proposed adaptations and improvements for 

the DBR and S-DBR systems and understand the reasons that led to them. 

Specific objective 2 (RQ 2): Evaluate the S-DBR/MTA behavior incorporating 

different dispatching rules. 

Specific objective 3 (RQ 3): Develop a dispatching method for S-DBR/MTA to 

sequence dependent-setup time environments. 

Specific objective 4 (RQ 4):  Propose a solution to the S-DBR/DTA capable of 

planning the replenishment of stocks to guarantee the availability of the products and 

the business’s profit.  

Each objective will be studied in a chapter, namely: specific objective one is studied 

in Chapter 3 through a systematic literature review; objective 2 is studied in Chapter 4, objective 

three in Chapter 5, and objective four in Chapter 6. 

1.4 Contributions and ineditism 

The S-DBR encompasses manufacturing and distribution environments, unlike other 

systems that focus only on manufacturing. It has emerged more recently, and few scientific 
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works are dedicated to S-DBR, different of Kanban, CONWIP, and POLCA. Its main literature 

is composed by Lee et al. (2010), Chang and Wen-Tso (2011), Chang and Huang (2011), Chang 

and Huang (2013), Ikeziri et al. (2019), Govoni et al. (2021) and Ikeziri et al. (2021). Little is 

known about S-DBR, and little has been studied by science. However, this thesis contributes to 

the advancement and expands the scientific literature of the S-DBR. For companies and 

practitioners, the research points to solutions to practical problems that can help improve 

financial results, while maintaining or increasing service levels. 

The originality of the thesis is based on the results of a systematic literature review, 

that confirms that there are no answers in the scientific literature to research questions RQ2, 

RQ3 and RQ4. 

1.5 Research Method 

This research has two stages: i) identification of the literature on DBR and S-DBR and 

ii) proposition of improvements in S-DBR. The first stage meets objective 1 and uses a 

systematic literature review. At this stage the studies are classified according to the mechanisms 

affected - Drum, Buffer, or Rope. The motivations that led to these adaptations were analyzed giving 

rise to a set of research avenues. The second stage meets objectives 2, 3 and 4, using discrete event 

simulation and computational experiments to evaluate solutions.  

A systematic review seeks to identify, select, and critically evaluate relevant research. 

When included in the review, significant data are collected and analyzed in each study to 

generate a better understanding of the subject. The systematic review uses the method of 

Tranfield, Denyer and Smart (2003), which suggests the following steps: 

a) Topic selection and subject definition. 

b) Explore publications and databases of publications. 

c) Create an organization and classification of each publication. 

d) Classify documents and make a structure for the topic. 

e) Analyze and criticize obtained structure. 

f) Show results and future research. 

 

Objective 2 was pursued by employing computational simulation to evaluate the 

performance of S-DBR/MTA operations under various dispatching rules. In the selection 

process of dispatching rules, it was considered that S-DBR/MTA does not assign deadlines or 

completion dates to tasks, making such information unnecessary for the rules. The evaluation 
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of dispatching rules was conducted using a simulation model of a flow shop production line 

implemented in Python 3.5, utilizing the SimPy library version 3.0.10. The production line 

configurations were adopted from Nguyen et al. (2015) and Thürer and Stevenson (2018). For 

each rule, a simulation scenario was created and replicated 50 times to gather data. The analysis 

of the scenario results was based on the average values of service level (S), average system 

stock (�̅�), average flow time (�̅�), and the inventory rate as a percentage of the service level 

(𝐶̅). Descriptive statistics and box plot graphics were employed for the analysis. 

To address objective 3, a solution based on the Particle Swarm Optimization (PSO) 

metaheuristic was developed. To evaluate the performance of the PSO in relation to the MTA 

dispatch rule, simulations were conducted with thirty replications and scenarios involving 

variations in the position of the bottleneck workstation. The results were analyzed using 

descriptive statistics, percent deviation, and the boxplot plot for the mean values of mean flow 

time, mean setup time, work in process, fill rate, target level, and machine utilization rate 

indicators. 

Objective 4 involves addressing an inventory replenishment planning problem, which 

entails making decisions regarding what items to replenish, how much to replenish, where to 

replenish them, and how to route the delivery vehicles. Two solutions were proposed, drawing 

from the works of Fachini and Armentano (2020) and Koç et al. (2015). The first solution is a 

Mixed Integer Programming (MIP) model that integrates all decision-making aspects. To 

further enhance the planning process, a second solution was devised, which follows a two-step 

approach. In the first step, a MIP model is utilized to determine the replenishment details, 

including what items, how much, and where to replenish. In the second step, a metaheuristic 

algorithm is employed to optimize the vehicle routing. Both solutions were implemented using 

Python 3.8 and Cplex 20.1.0, executed on a computer with 8 gigabytes of RAM and an Intel 

Core i5 2.40 GHz CPU. These solutions were applied to 18 instances, and the computational 

performance was evaluated in terms of CPU time. The results obtained from the instances were 

analyzed using descriptive statistics and percentage deviation techniques. 

1.6 Thesis structure 

The thesis consists of six chapters, in addition to Chapter 1. Chapter 2 provides a 

comprehensive explanation of the MTA (Make-to-Availability) and DTA (Demand-Driven 

Adaptive Enterprise) concepts, which are crucial for understanding the research undertaken. In 

Chapter 3, the systematic literature review findings are presented, including an analysis of 
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studies proposing adaptations and enhancements for the DBR (Drum-Buffer-Rope) and S-DBR 

(Simplified Drum-Buffer-Rope) methodologies. Additionally, research gaps are identified and 

discussed. Chapter 4 focuses on evaluating the impact of different dispatching rules on the 

behavior of S-DBR/MTA systems. The results of this research were presented at the 51st 

Brazilian Symposium on Operational Research in 2019, and the paper has been accepted for 

publication in the European Journal of Industrial Engineering, scheduled for 2023. Chapter 5 

outlines the steps taken to develop a dispatching method specifically tailored for S-DBR/MTA 

systems operating in environments with sequence-dependent setup times. The findings of this 

work were announced in the Journal of Intelligent Manufacturing in 2020. Chapter 6 is 

dedicated to the development of solutions for replenishment planning for the DTA. The results 

of this research will be submitted to a journal in the future. Lastly, Chapter 7 offers concluding 

remarks and presents overall insights derived from the research conducted.   
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2 BACKGROUND 

This chapter explains the principles, concepts, and way of working of the MTA and 

DTA methods that fundament this research. 

2.1 Make-to-availability 

On the manufacturing management side, S-DBR works as a production planning and 

control (PPC) system (PEETERS; VAN OOIJEN, 2020). PPC activities aim to define what, 

how much, and when to produce, buy, and deliver so that the company can match manufacturing 

performance with customer demands (BUENO; GODINHO FILHO; FRANK, 2020). The PPC 

function is responsible for making decisions regarding planning, starting, controlling, 

monitoring, scheduling, and reprogramming of production planning, and ensuring the delivery 

of the products of a manufacturing company (BONNEY, 2000).  

Two key guidelines sustain the tactical aspect of the MTA approach 

(SCHRAGENHEIM, 2010): 

1) Production needs to focus on flow, making the orders flow as quickly as possible 

through the factory, until reaching the warehouse for finished products. 

2) Unless there is a good reason to believe demand has changed or will change, a 

simple and direct way to react to any sale is to replenish whatever was sold.  

Figure 2.1 illustrates the operation of the MTA, which meets demand through stock 

buffers supplied by the factory.  

 

Figure 2.1 - MTA mechanisms 

 

 

Source: Proposed by the author 
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MTA operates in cycles divided into four stages (SCHRAGENHEIM; DETTMER; 

PATTERSON, 2009): 

3) The beginning of the cycle occurs with customer orders' arrival, which is served 

by stock buffers.  

4) A stock replenishment request is sent to the factory as soon as products are 

removed from the buffer. The demand (orders arrival frequency) dictates the 

manufacturing pace, which is called a drum. 

5) Replenishment requests become production orders at the factory, managed by 

the planned load, which represents the rope. The purpose of the rope is to avoid 

overloading production resources and align demand with production resources 

capacity. According to the planned load, production orders are released - 

workload on the slowest production resource or constraint capacity resource 

(CCR). The planned load is the sum of production orders that are in progress 

and have not yet been processed by CCR. The orders are released until the 

planned load reaches 80% of the average replenishment time, to avoid 

overloading the CCR. Replenishment time is the period between the sale of an 

item from the stock buffer and the replacement of that item. 

6) The cycle ends with the fulfillment of production orders and the arrival of 

products to the stock buffer. 

 

Defining the right size of inventory is very important to MTA. The “right” size of any 

inventory is determined primarily by two variables: demand and supply response time 

(SCHRAGENHEIM; DETTMER; PATTERSON, 2009). Demand includes average 

consumption and its fluctuation range. Replenishment time refers to the time from inventory 

consumption until replacement. Shorter replenishment times reduce the need for clients to hold 

large inventories (SCHRAGENHEIM; DETTMER; PATTERSON, 2009). However, 

fluctuations in demand must also be considered. 

Five principles guide an effective planning and control process to support MTA and 

minimize the risk of damage from understock or overstock. They are (SCHRAGENHEIM; 

DETTMER; PATTERSON, 2009): 

 

1. Inventory and replenishment time are closely correlated: shorter replenishment times 

lead to smaller inventories, ensuring availability and reducing lost sales. They also enable more 
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accurate demand projections. On the other hand, longer replenishment times require larger 

volumes of finished stock to maintain availability. The stock level should be sufficient to cover 

potential demand during the time required for replenishment. As replenishment times increase, 

more inventory is needed to guarantee sales and mitigate demand fluctuations. Therefore, 

minimizing finished stock levels requires shortening production time as much as possible. 

 

2. Work-in-process supplements protection of availability: protecting product availability 

involves not only maintaining finished inventory but also considering production orders in 

progress. Work-in-process inventory is necessary to ensure availability alongside finished 

stock. The rationale is that while work-in-process may not be immediately available, much of 

it is close to completion. To ensure availability, a fixed amount of stock, known as the target 

level (TL), is maintained in both finished goods and the production pipeline. Although actual 

finished stock may fluctuate, the overall system remains stable. As finished inventory is 

consumed, completed production orders replenish it to prevent stock-outs while avoiding 

excessive accumulation of finished inventory. 

 

3. Tomorrow will be like today: the short-term forecast relies on established stock targets to 

ensure availability, considering both demand and supply. Unless there is a clear indication of a 

trend change, the current stock target is assumed to be correct for short-term availability. Each 

item produced should have a target level of units in either finished inventory or the production 

pipeline. Consumption of finished inventory triggers the generation of new production orders 

to maintain a relatively constant total stock in the system. The goal is to respond quickly to 

consumption, minimize replenishment time, and maintain stock stability. 

 

4. Status of finished inventory dictates production floor priorities: the prioritization of work 

orders in production is determined by the deviation from target levels for each item. Three basic 

priorities are defined: 

a. Green: If finished inventory exceeds two-thirds of the target level, it is considered higher 

than necessary. Replenishment is not urgent, and it may indicate excess finished goods 

inventory. Work-in-process for items with "green" finished inventory has low priority 

compared to other orders. 
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b. Yellow: If on-hand finished inventory is between one-third and two-thirds of the target level, 

it is considered normal. A yellow status implies no urgency or excessive inventory. Yellow 

status orders take priority over green orders but do not require management intervention. 

c. Red: When finished inventory falls below one-third of the target level, the risk of stock-outs 

increases. Immediate action is needed to restore red inventory to yellow or green. Management 

intervention may be required for red orders. 

 

These prioritization categories help determine the urgency of replenishment and guide decision-

making in production to maintain optimal inventory levels and availability. Figure 2.2 

demonstrate these concepts: 

Figure 2.2 - The regions of a Stock Buffer 

 

Source: Proposed by the author 

 

5. Stagnation is undesirable: while items may occasionally fall into the red or green zones, 

prolonged residence in either condition indicates the need to adjust the inventory target level. 

If an item consistently stays in the red zone, it suggests a high risk of stock-outs, necessitating 

an increase in the inventory target level. Conversely, if an item consistently remains in the green 

zone, it indicates excess inventory, and the target level should be decreased. Regular monitoring 

and adjustments of the inventory target levels help maintain a balanced and efficient inventory 

management approach. 

2.1.1 Make-to-availability operation 

I) Determining the appropriate inventory 

The concept of replenishing consumed items or products has implications for 

maintaining a fixed inventory in the shop. This fixed inventory encompasses both finished 

goods and work-in-process throughout the shop floor. It means that the necessary parts and 
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assemblies required to fulfill committed availability may exist at different stages of completion. 

The total fabricated inventory represents the quantity needed for committed availability 

(SCHRAGENHEIM, 2010). 

While it is ideal to have a fixed stock of finished goods, this is impractical as demand 

depletes the inventory, necessitating replenishment. Therefore, the concept of a "stock buffer" 

is introduced as a protective mechanism to ensure availability. The stock buffer consists of the 

total amount of finished goods and work-in-progress (WIP), serving as a straightforward 

approach to implement the appropriate protection mechanism (SCHRAGENHEIM, 2010). 

The stock buffer, referred to as the target level, plays a crucial role in maintaining 

availability from the time an item is sold until its replenishment arrives at the finished-goods 

warehouse. The average time required to replenish an item is known as the replenishment time. 

The target level should not only consider the average demand within the replenishment time 

but also account for potential sales and situations where replenishment might take longer than 

the average replenishment time (SCHRAGENHEIM, 2010). 

Schragenheim (2010) proposes two approaches for determining the target levels. One 

approach involves multiplying the above-average demand within the replenishment time by a 

"paranoia factor" to incorporate sales peaks and production disruptions. A minimum paranoia 

factor of 1.5 (50% above the average) is recommended when there are no sequence-dependent 

setups, prioritizing rapid workflow. In cases of high demand fluctuations and frequent flow 

disruptions, a factor of 2 should be used. 

Another approach examines the maximum sales over the past 6 to 12 months within a 

defined reliable replenishment time. The reliable replenishment time ensures that items can be 

safely obtained within that timeframe when they are urgently needed. 

It's important to note that the determination of the target level based on the criteria 

serves as an initial inventory setting. Future adjustments to the target levels, whether increasing 

or decreasing them, are made using a specialized algorithm that monitors the actual behavior 

of the finished-goods stock. 

II) Buffer Management in MTA 

Once the target level is operational, replenishment orders are initiated based on the 

previous consumption. The MTA replenishment policy is like the base-stock policy, a 

continuous-review inventory system (KEGENBEKOV; JACKSON, 2021). The particularity of 
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base-stock policies is that a replenishment order to restore the base-stock level S is made 

whenever the inventory position is below S, as described by Kouki et al. (2020). Therefore, the 

reorder point is S-1, and the policy is commonly referred to as a (S -1, S) policy in inventory 

literature. The base-stock concentrate just on inventory replenishment, but the MTA goes ahead 

and determines the priorities on the shop floor using buffer status. It is the percentage of the 

penetration into the stock buffer – stock withdrawn from the buffer –, calculated as shown 

equation 1: 

 𝐵𝑆 =
(𝑇𝐿−𝐹𝐺𝐼−𝑊𝐼𝑃)

𝑇𝐿
   (1)  

where BS is the buffer status, TL is the Target Level, FGI is the finished goods inventory (on-

hand stock) and WIP is the Work-In-Process (stock in the pipeline plus the production orders 

waiting to release). The production orders do not have a due date as in MRP. 

Schragenheim, Dettmer and Patterson (2010) define the state of the stock buffer when 

containing two-thirds or more of the target level as green. In other words, one-third or less of 

the buffer is not in the FGI, but somewhere on the way. In a similar fashion, when the FGI 

contains between one-third and two-thirds of the target level, as shown in Figure 2.3, they call 

that state yellow. When the on-hand stock, the inventory at the finished-goods warehouse, is 

less than one-third, meaning more than two-thirds are not at the warehouse, then the state is red. 

Figure 2.3 - Illustrate of the stock buffer 

 

     Source: Proposed by the author 

At any given point in time, the stock buffer is divided into the part that exists as 

finished goods on-hand and available for immediate sale (FGI), and the stock that complements 

the previous part to the full target level (WIP). Assuming we keep the target level intact, then 

the latter part is in the form of all the product components required for the finished goods to be 
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equal to the target level. The part of the buffer that is not in the finished goods is called 

“penetration into the buffer” because that stock has not yet completed manufacturing and 

therefore is not currently available for immediate shipment.  

To calculate the priority of an order on the floor, we should use the equation 2 

(SCHRAGENHEIM, 2010): 

 𝐵𝑆 𝑜𝑓 𝑎 𝑃𝑂 =  
(𝑇𝐿−𝐷𝑊𝐼𝑃−𝐹𝐺𝐼)

𝑇𝐿
   (2) 

where 𝐵𝑆 𝑜𝑓 𝑎 𝑃𝑂 is the Buffer Status of a PO, TL is the Target Level, DWIP is the work-in-

process concerning open PO located downstream from the PO for which want to know the BS, 

and FGI is the finished goods inventory. The priority of the orders depends on what lies 

downstream of the production order. The BS of a PO is the real indication of how urgent it is.  

In Table 2.1, an example illustrates a target level inventory buffer for a product called 

P1. The scenario involves a production order of 200 units for P1 somewhere on the shop floor, 

with 100 units currently in the finished-goods stock. The desired target level, representing 

optimal availability, is set at 500 units. It is crucial to have the entire target level within the 

production system, whether in finished goods or at various stages of completion on the shop 

floor. Presently, only 20 percent of the target level resides in the finished-goods inventory, 

indicating an urgent need to replenish it. Notably, the size of Order 1 (200 units) does not 

determine the urgency. Instead, urgency is determined by the amount in the finished stock 

downstream from Order 1. To indicate order priority, a color code is used: green, yellow, or 

red. Order 1 is considered urgent and falls under the red buffer status. Order 2 is upstream from 

Order 1 and has 300 units (60 percent of the target inventory) downstream from it, resulting in 

a yellow buffer status. Order 3, which is for an additional 100 units, has 80 percent downstream 

from it, representing 80 percent of the target, and is classified under the green buffer status. 

Table 2.1 - Availability targets and priority status of orders for a buffer target of five hundred 

Inventory and 

Production Orders 
Quantity 

Percentage of target in 

front of order 

(downstream) 

Buffer status (priority) 

Finished goods 100   

Order 1 200 20 Red 

Order 2 100 60 Yellow 

Order 3 100 80 Green 

Target level 500   

Source: Proposed by the author 
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III) Generating production orders and the state of capacity 

The order generation process, triggered by the reduction of stock buffers due to 

demand, can lead to the overloading of production resources within the system. This becomes 

more pronounced when setups are required, as it accelerates the consumption of resource 

capacity. However, a consequence of longer replenishment times is the increased likelihood of 

more products being classified as "red" in terms of their order status. When the number of red 

orders exceeds 20 percent, the effectiveness of the entire priority maintenance scheme 

diminishes, resulting in a significant number of shortages (SCHRAGENHEIM, 2010). 

In the context of manufacturing, various challenges such as seasonality and dependent 

setups exist. To ensure availability, stricter control over production resources is necessary. This 

additional load control must account for both system instability and sudden shifts in priorities 

(SCHRAGENHEIM; DETTMER; PATTERSON, 2009). As a result, the manufacturing 

throughput accounting (MTA) approach requires a certain level of protective capacity. The 

concept of "protective capacity" refers to the threshold where the lack of immediate available 

capacity starts to cause tangible damage. The loss of protective capacity can occur due to 

excessive total demand or an excessive number of setups. Two approaches can be employed to 

address this issue (SCHRAGENHEIM; DETTMER; PATTERSON, 2009): 

1. Setting a minimum production batch: The minimum batch size is separate from the target 

level and is added on top of it. When the combined inventory in the pipeline and on-hand falls 

below the target level, a production order is generated. However, the size of this order is set to 

be at least equal to the minimum batch quantity. It is possible that the total inventory exceeds 

the target level, but it should still be less than the target level plus the minimum batch. 

 

2. Managing the capacity of the capacity-constrained resource (CCR): New production 

orders are released only when it is reasonable to expect that the CCR will be able to work on 

them soon. This responsibility falls under the purview of "planned load." 

 

These elements contribute to the effective implementation of DBR and help maintain 

a balance between production and capacity utilization. The drum-buffer-rope (DBR) approach 

involves the management of planned load, which includes regular planned load (RPL) and full 

planned load (FPL). RPL is the total load on the capacity-constrained resource (CCR) from all 

released production orders that have not yet been processed by the CCR. FPL includes all 

required replenishments, even those that have not been released (SCHRAGENHEIM, 2010). 
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To maintain control over the release of new orders, the release is limited based on the RPL. 

Orders are released until the regular planned load approaches a predetermined limit. Each 

released order updates the regular planned load, and once it exceeds the limit, the release of 

orders is halted. After reducing the load, the remaining orders in the queue can be released 

(SCHRAGENHEIM; DETTMER; PATTERSON, 2009). For example, if the replenishment 

time is five days with 16 hours of CCR time per day (80 hours in total), a natural limit for the 

regular planned load would be 80 percent of the replenishment time, which is 64 hours. This 

limit ensures that the replenishment time is maintained, considering only 80 percent of the 

available time (SCHRAGENHEIM; DETTMER; PATTERSON, 2009). This approach 

considers the time required for operations downstream of the CCR, as those typically take less 

time compared to reaching the CCR and being processed. By following this release procedure, 

excessive work-in-process (WIP) on the shop floor can be avoided. Suppose the planned load 

reaches 50 hours on a given day, while the limit is 64 hours. In this scenario, up to 14 hours of 

work can be released. However, there is a need to release 19.3 hours, slightly exceeding the 

limit. In such cases, the orders are released based on priority, starting from the highest priority 

(e.g., P10, P3, P1, P7, P5, P8). The total time for these orders equals 13.2 hours. The decision 

to release the next order, such as P9, which would surpass the 14-hour limit, should be made 

by the person responsible for production, considering their judgment (SCHRAGENHEIM, 

2010). It is important to note that orders P6, P2, and P4 would have to wait for at least one 

additional day in this scenario. 

Table 2.2 - List of the orders in the queue awaiting release 

Product Quantity to 

replenish 

Target level Priority (%) Total time on 

CCR (hours) 

P1 13 120 10.83 1.5 

P2 3 95 3.16 0.8 

P3 120 1000 12 2 

P4 45 3000 1.5 0.8 

P5 24 400 6 3.2 

P6 114 3500 3.26 2.5 

P7 100 1000 10 1.5 

P8 100 2000 5 2 

P9 33 750 4.4 2 

P10 50 400 12.5 3 

   Total: 19.3 hours 

Source: Proposed by the author 
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When implementing the drum-buffer-rope (DBR) approach, it is crucial to consider 

the minimum batch size as well as the load on the capacity-constrained resource (CCR) 

(SCHRAGENHEIM, 2010). The determination of priority considers the quantity needed to 

replenish to the target level and the batch size. For instance, if the target level is 100 units and 

there are 49 units on-hand and 50 units in the pipeline (across multiple unfinished production 

orders), only one unit is required to replenish to the target level. However, if the minimum batch 

size is 25 units, the priority for releasing the next replenishment order is calculated as 1 × 

100/100 = 1%. Meanwhile, the time required on the CCR must consider the processing of a 

batch of 25 units, potentially affecting the release of other orders scheduled for the same day, 

as the CCR's capacity is planned based on the load of 25 units (SCHRAGENHEIM, 2010). 

Considering both the minimum batch size and the load on the CCR ensures effective planning 

and sequencing of orders in the DBR system, considering quantity requirements and resource 

capacity constraints. 

IV) Monitoring the Target Level Size – Dynamic Buffer Management 

The planning stage of target levels in the drum-buffer-rope (DBR) approach requires 

feedback to ensure adequacy and accommodate changes in demand or supply 

(SCHRAGENHEIM, 2010). The behavior of the on-hand stock provides valuable insights into 

the appropriateness of specific target levels. To recommend adjustments to target levels based 

on finished-goods stock behavior patterns, Dynamic Buffer Management (DBM) algorithms 

are employed (SCHRAGENHEIM, 2010). 

Maintaining excessively high inventory levels can lead to unnecessary replenishments 

and capacity implications during peak times (SCHRAGENHEIM, 2010). Buffer targets 

consistently in the green zone for extended periods indicate an excessive buffer size. 

Schragenheim, Dettmer, and Patterson (2010) suggest reducing the target level when an item 

spends a continuous period in the green region, known as the "green check period." The default 

duration for the green check period is twice the replenishment time. 

Conversely, a high frequency of red points in the buffer signal that the target level is 

too low (SCHRAGENHEIM, 2010). Spending significant time near the top of the red zone may 

indicate that the buffer is insufficient to prevent shortages. An increase in the buffer is 

recommended when there is a penetration into the red zone, with the depth of the penetration 

considered as a relevant signal. If the cumulative depth of penetrations within the replenishment 

time exceeds the size of the red level, increasing the buffer is advised. 
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When the target level is increased, the item enters the red zone, and a new 

replenishment production order is released. It takes time for the new buffer size to stabilize, so 

decisions to further increase the buffer should be postponed until the impact of the previous 

increase is observed. A cooling period, equivalent to one replenishment time, is recommended 

before re-evaluating penetrations into the red zone. 

Schragenheim (2010) recommends increasing buffers by 20 percent and decreasing 

them by 15 percent. Manufacturing environments with relatively stable demand allow for 

smaller buffer adjustments to align with trends. It is crucial to analyze both demand and flow 

in the production shop floor, identifying critical changes in behavior and potential material 

shortages, to make informed decisions regarding finished-goods stock buffers. 

While DBM assesses the combination of demand and supply, Schragenheim (2010) 

emphasizes the importance of conducting focused analyses of demand and flow within the 

production shop floor. These analyses quickly identify critical changes and potential material 

shortages, guiding decisions in manufacturing environments. However, it is worth noting that 

these analyses are currently not integrated into the known Theory of Constraints (TOC) solution 

for manufacturing to availability (MTA) (SCHRAGENHEIM, 2010). 

2.1.2 Overcoming complications in using MTA 

There are limitations to Synchronous Drum-Buffer-Rope (S-DBR) in handling highly 

complex production processes (SCHRAGENHEIM; DETTMER; PATTERSON, 2009). It is 

essential to investigate various complicated factors to assess their potential to hinder a 

successful implementation of S-DBR. These are some complicating factors: 

1. Multiple simultaneous Critical Chain Resources (CCRs). 

2. "Wandering" bottlenecks. 

3. Sequence-dependent setups. 

I) Multiple Capacity-Constrained Resources (CCRs) 

When multiple work centers with comparable capacities act as the "weakest links" on 

the shop floor, it presents a situation where one capacity-constrained resource (CCR) feeds 

another (SCHRAGENHEIM; DETTMER; PATTERSON, 2009). In such cases, when options 

for overtime, extra shifts, or outsourcing are limited, Schragenheim, Dettmer, and Patterson 

suggest implementing control measures. This involves having adequate protective capacity and 
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establishing a single focal point for planning and control, which is the CCR 

(SCHRAGENHEIM; DETTMER; PATTERSON, 2009). 

II) Wandering Bottlenecks 

Bottlenecks can arise from changes in the product mix, as different product families 

may dominate at different times (SCHRAGENHEIM; DETTMER; PATTERSON, 2009). 

When a particular product family becomes dominant, a specific machine or work center 

becomes the clear weakest link. However, if the product mix shifts and another product family 

starts heavily utilizing a different work center or machine, that work center or machine may 

become the new constraint. 

During phases when bottlenecks act as interactive constraints, the overall ability to 

control reliability deteriorates (SCHRAGENHEIM; DETTMER; PATTERSON, 2009). The 

capacity-constrained resource (CCR) alternates between the two, creating an interactive state 

without providing early warning. In such cases, it is crucial to carefully monitor one CCR to 

prevent overloading the other. 

III) Dependent Setups in MTA 

The Simplified Drum–Buffer–Rope (S-DBR) approach operates on the assumption 

that the sequence of work on the capacity-constrained resource (CCR) does not significantly 

impact its capacity (SCHRAGENHEIM; DETTMER; PATTERSON, 2009). If this assumption 

holds, scheduling based on market demand priorities and monitoring the load on the CCR using 

planned load is sufficient to ensure high production floor reliability. 

In the presence of sequence-dependent setups, the setup time at a resource depends on 

the previous setup nature (SCHRAGENHEIM; DETTMER; PATTERSON, 2009). In such 

cases, production planning aims for a "preferred sequence" that minimizes the total number of 

setups. However, following the preferred sequence becomes challenging when it consumes 

excessive capacity and prevents order expediting, which could pose issues for the S-DBR 

methodology (SCHRAGENHEIM; DETTMER; PATTERSON, 2009). 

Deviation from the preferred sequence results in significant wasted capacity, 

potentially turning the constrained resource into a bottleneck. Moreover, maintaining the 

preferred sequence may lead to replenishment time equaling the entire cycle time, 
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compromising availability. Changing the preferred sequence to expedite an urgent order is only 

possible in extreme cases. 

Managing sequence-dependent setups requires higher target levels to account for the 

need to respond quickly in a system that can be slow at times. This encourages the creation of 

stock to ensure prompt availability when needed (SCHRAGENHEIM; DETTMER; 

PATTERSON, 2009). 

2.2 Distribution-to-availability 

The Theory of Constraints (TOC) provides guidelines for distribution management. It 

emphasizes reporting buffer status daily and ensuring frequent transportation (COX; 

SCHLEIER, 2010). The solution comprises some basic rules.  

Firstly, aggregating stock at higher levels, such as manufacturer and central 

warehouses, helps centralize control and streamline operations. Determining appropriate buffer 

sizes for each location in the supply chain requires careful analysis of demand patterns, supply 

availability, and replenishment lead time. Increasing replenishment frequency helps avoid 

stockouts and maintain optimal inventory levels, ensuring timely product availability. Buffers 

play a crucial role in managing inventory flow, absorbing fluctuations in demand and supply. 

Dynamic Buffer Management (DBM) optimizes buffer sizes based on demand and lead time 

variability. Setting replenishment priorities based on urgency and criticality aligns with 

strategic objectives and customer demands, improving stock management and customer 

satisfaction. 

Implementing these strategies, along with tools like DBM, enables businesses to gain 

better control over their supply chains, reduce costs, enhance customer service levels, and 

achieve operational success. The integration of the Simplified Drum–Buffer–Rope (S-DBR) 

production operation with the distribution end of the supply chain ensures products reach 

customers efficiently (SCHRAGENHEIM; DETTMER; PATTERSON, 2009). However, 

managing distribution becomes complex due to the large number of decisions involved in 

determining stock levels for each item and location. Uncertainty in demand, production, and 

replenishment time further complicates the decision-making process (SCHRAGENHEIM; 

DETTMER; PATTERSON, 2009). 

The TOC approach addresses these challenges by considering the impact of supply 

and demand to determine appropriate stock levels throughout the supply chain, while being 

mindful of cash and space limitations (SCHRAGENHEIM; DETTMER; PATTERSON, 2009). 
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The objective is to ensure high availability of items at all consumption points while constantly 

renewing consumed stocks from strategically placed stock buffers (COX; SCHLEIER, 2010). 

This approach optimizes distribution and replenishment, considering the dynamic nature of 

market demand (SULLIVAN; REID; CARTIER, 2007). 

“(a) pull distribution method that involves setting stock buffer sizes and then monitoring and replenishing 

inventory within a supply chain based on the actual consumption of the end user, rather than a forecast. 

Each link in the supply chain holds the maximum expected demand within the average replenishment time, 

factored by the level of unreliability in replenishment time. Each link generally receives what was shipped 

or sold, though this amount is adjusted up or down when buffer management detects changes in the demand 

pattern.” 

 

The solution is comprised of six steps (COX; SCHLEIER, 2010): 

1) Aggregate stock at the highest level in the supply chain: the Plant 

Warehouse/Central Warehouse (PWH/CWH). 

2) Determine stock buffer sizes for all chain locations based on demand, supply, 

and replenishment lead time. 

3) Increase the frequency of replenishment. 

4) Manage the flow of inventories using buffers and buffer penetration. 

5) Use Dynamic Buffer Management (DBM). 

6) Set manufacturing priorities according to urgency in the PWH stock buffers.  

2.2.1 Aggregate Stock at the Highest Level in the Supply Chain: The Plant/Central 

Warehouse (PWH/CWH) 

The TOC solution suggests aggregating inventory at the supplying source, where 

stocks can be utilized to serve multiple destinations, and implementing a pull replenishment 

mechanism triggered by sales at the consumption point (SCHRAGENHEIM; DETTMER; 

PATTERSON, 2009). This approach, aligned with statistical principles, ensures a more stable 

and responsive system compared to maintaining large inventories at individual consumption 

points or shops (SCHRAGENHEIM; DETTMER; PATTERSON, 2009).  

2.2.2 Determine Stock Buffer Sizes for All Chain Locations Based on Demand, Supply, 

and Replenishment Lead Time 

The stock buffer size represents the maximum quantity of inventory held at a specific 

location within the supply chain to safeguard against demand fluctuations. Determining the 



29 

 

 

 

appropriate stock buffer size is influenced by two distinct factors (SCHRAGENHEIM; 

DETTMER; PATTERSON, 2009): 

7) Demand rate—demand is the need for an item while the demand rate represents 

the amount demanded per period (day, week, month, etc.). 

8) Supply responsiveness—how quickly the consumed units can be replenished. 

The main factor here is the TOC replenishment (lead) time (RLT), which is 

defined in the TOCICO Dictionary (SULLIVAN; REID; CARTIER, 2007) as 

“the time it takes from when a product is sold until a replacement is available 

at the point of sale/use.”  

2.2.3 Increase the frequency of replenishment 

The TOC distribution/replenishment solution emphasizes the importance of frequent 

replenishment to maintain low stock levels. According to Schragenheim, Dettmer, and 

Patterson (2009), the potential increase in shipping costs from more frequent shipments is 

outweighed by the boost in sales. They argue that there exists a tradeoff between investing in 

higher shipment frequency and the cost of lower availability. Increasing the frequency of 

deliveries improves availability while raising shipping costs. On the other hand, reducing the 

frequency leads to lower availability or necessitates higher inventory levels to accommodate 

demand variations. The authors assert that although transportation costs may rise, the reduction 

in inventory investment frees up cash that can be utilized to diversify product offerings from 

the same supplier. 

To achieve the desired stock levels, a purchase order must be generated for each 

replenishment, ensuring that the available stock reaches the designated target level. The 

purchase quantity is determined based on the available inventory and issued purchase orders 

that are yet to be received. The combined total of available stock and pending purchase orders 

must align with the target level. 

2.2.4 Manage the Flow of Inventories Using Buffers and Buffer Penetration 

The Theory of Constraints (TOC) applies the concepts of buffer and buffer penetration 

to effectively manage inventories in the distribution process. The stock buffer size refers to the 

desired quantity of a specific SKU maintained at each stock location to safeguard against 

demand fluctuations. Schragenheim, Dettmer, and Patterson (2009) provide an example where 
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a stock buffer size of 100 units is established for an SKU, and currently, 40 units are available 

on hand. This indicates that 60 units either need to be ordered or are in the process of being 

ordered from the supplying location. If the 60 units are not already on order or en-route, a 

replenishment order of 60 units should be immediately issued. 

Buffer penetration is calculated by dividing the number of missing units from the 

buffer by the stock buffer size and expressing it as a percentage. The quantity of units missing 

from the buffer is determined by subtracting the available stock and the units already ordered 

from the stock buffer size. In the previous example, the buffer penetration for the stock at that 

site is 60 percent (100 - 40)/100). Like Material Time Analysis (MTA), the buffer size is divided 

into three equal regions, and the color of the buffer is assigned based on the buffer penetration: 

▪ Green: Buffer penetration less than 33 percent 

▪ Yellow: Buffer penetration between 33 and 67 percent 

▪ Red: Buffer penetration between 67 and 100 percent 

▪ Black: 100 percent buffer penetration (stockout situation) 

 

The color of the buffer penetration indicates the urgency of replenishing the stock. 

Each color zone is associated with specific actions: 

▪ Green: Inventory at the consumption point is sufficient for the time being. 

Action required: Order a replenishment amount (prioritize based on production 

capacity if replenishing from a plant). 

▪ Yellow: Inventory at the consumption point is adequate. Additional units need 

to be ordered from the upstream supply chain. Action required: Order the 

replenishment amount (order even if there is a capacity shortage, addressing 

the capacity issue on the production floor if necessary). 

▪ Red: Inventory at the consumption point is at risk of stockout. Units in transit 

or in manufacturing should be expedited, and an urgent replenishment order 

must be placed with the supplying source if no units are currently en route. 

Action required: Investigate, order, and possibly expedite. 

▪ Black: The stock has completely depleted at the consumption point, resulting 

in potential lost sales opportunities. Swift resolution is crucial, particularly for 

downstream links in the supply chain where the ability to respond to 

replenishment and buffer changes diminishes. Action required: Expedite and 

order immediately. 
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Schragenheim, Dettmer, and Patterson (2009) illustrate the placement of buffers and 

the utilization of color-coded regions for prioritization in Figure 2.4. The figure demonstrates 

that each location has distinct buffers for the same item, which are managed separately. For 

instance, the buffer at the Plant Warehouse/Central Warehouse (PWH/CWH) has a size of 600 

units, and currently, it has a buffer penetration of 20 percent (480 units out of 600). Therefore, 

the buffer is assigned a green priority color. Similarly, at Shop 1, the buffer size for the item is 

60 units, with only 24 units currently available, resulting in a buffer penetration of 60 percent 

and a yellow priority color. This arrangement determines the placement of buffers and their 

prioritized replenishment at upstream links. However, this prioritization alone may not suffice 

as stock can be present at the location and in transit simultaneously. 

Multiple perspectives of the same buffer are valuable and can be obtained. The Theory 

of Constraints (TOC) has introduced the concept of Virtual Buffer Penetration (VBP) to 

determine the priority of stock at any given point in the supply chain based on the status of 

downstream links (SCHRAGENHEIM; DETTMER; PATTERSON, 2009). However, this 

priority is only relevant until the next stocking point. For instance, the VBP for an SKU at the 

PWH/CWH considers only the physical stock available there, while the VBP for a shipment 

considers stock from previous shipments and the target location. 

In Figure 2.4, the retailer's stock buffer size for a specific SKU is set at 100 units, with 

25 units currently available and a shipment of 25 units en-route from the PWH/CWH to the 

shop. The Virtual Buffer figures are displayed above each stock along the way to the retailer. 

The VBP considers the combined stock from in-transit and downstream stocking points. The 

SKU's priority is determined by the Virtual Buffer Penetration of the next downstream stock 

location (as shown in Figure 2.5). This concept of VBP provides a highly effective tool, 

enabling complete visibility across the supply chain and offering a clear and straightforward 

priority mechanism for decision-makers at various stock points within the supply chain. Figure 

2.4 serves as a demonstration of this supply chain management concept (SCHRAGENHEIM; 

DETTMER; PATTERSON, 2009). 

In Figure 2.5, the warehouse manager (or shop manager) can easily discern that the 

priority of this SKU is marked as red with a 75 percent buffer penetration. With a buffer size 

of 100 units and 25 units already at the shop, there is a shortage of 75 units. Therefore, the shop 

must promptly determine how to acquire more stock for this SKU. 
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Figure 2.4 - Item stock buffer sizes and buffer penetrations across the pull supply chain 

 

            Source: Adapted from Schragenheim, Dettmer and Patterson (2009) 

Figure 2.5 - Virtual buffer concept applied to a shop item and in-transit shipments to this shop 

 

     Source: Adapted from Schragenheim, Dettmer and Patterson (2009) 



33 

 

 

 

The translation of the current information for various supply chain links for this 

example is (SCHRAGENHEIM; DETTMER; PATTERSON, 2009): 

▪ The transportation manager is responsible for determining the priority of 

shipments, particularly those that require expedited handling. In this specific 

scenario, there is a need to expedite the shipment of 25 units for this SKU. The 

decision is based on a buffer penetration of 75 percent, which aligns with the 

Virtual Buffer Profile (VBP) observed by the plant warehouse manager. The 

virtual buffer for the PWH/CWH manager is calculated by combining the shop 

buffer with the transportation shipments. If the virtual buffer status indicates a 

red alert, the transportation manager must investigate the expected arrival time 

of the order at the shop. If there are any delays, immediate action should be 

taken to expedite the shipment. 

▪ The warehouse manager is responsible for establishing the replenishment 

priority for this SKU. The virtual buffer considers the current stock levels both 

in transit and at the shop for this SKU. In this case, there is a need to replenish 

50 percent of the buffer size for this item in the PWH/CWH, which amounts to 

50 units. The replenishment shipment is assigned a priority status of yellow 

based on a buffer penetration of 50 percent. The buffer size for this SKU is set 

at 100 units, with 25 units currently available on-site and an additional 25 units 

en-route, resulting in a shortage of 50 units. 

2.2.5 Use Dynamic Buffer Management 

Dynamic Buffer Management (DBM) is a proactive approach that adjusts stock buffer 

sizes based on real-time usage data (SCHRAGENHEIM, 2010). By monitoring the buffer 

penetration of each SKU, DBM assesses whether the designated buffer size is appropriate. The 

core idea is to evaluate the combined impact of incoming supply and outgoing demand at the 

stocking point. Through this monitoring and adjustment process, DBM enables managers to 

determine the optimal stock buffer level necessary to meet demand while considering delivery 

capabilities. 

The DBM mechanism provides two distinct warnings to managers: one for an 

excessively large buffer size and the other for a buffer size that is too small 

(SCHRAGENHEIM, 2010). To identify an oversized buffer, the actual stock of a specific SKU 

is compared to the target over an extended period. In the Theory of Constraints (TOC), a buffer 
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is deemed too large if the buffer penetration consistently remains in the green zone for three 

consecutive replenishment periods. However, relying solely on replenishment time for buffer 

size analysis can be risky, especially when it exhibits significant variability. Factors such as 

multiple vendors with varying replenishment times for an SKU or different replenishment times 

for each SKU can contribute to this variability. 

In cases where a SKU's buffer size has remained in the green zone for an extended 

period, the default recommendation is to decrease the buffer size. The general guideline 

suggests reducing the buffer size by 33 percent, although this recommendation is subject to 

several factors (SCHRAGENHEIM, 2010): 

▪ The speed desired to lower inventories. 

▪ The risk/importance placed on this SKU. 

▪ The risk/importance of this stock location. 

 

A similar mechanism is employed to determine whether the buffer size is set too low 

(SCHRAGENHEIM, 2010). This involves assessing whether the inventory for a particular SKU 

remains in the red zone after replenishment. In other words, it examines whether, based on the 

stock buffer size, the actual stock level remains in the red zone following sequential 

replenishments. The algorithm determines whether an SKU remains in the red zone for multiple 

days, typically using the replenishment time as a parameter. To address this situation, the 

guideline suggests increasing the buffer level by 33 percent (SCHRAGENHEIM, 2010). The 

definition of "too long" in a zone and the specific adjustments for increasing or decreasing the 

stock buffer level may vary among SKUs. These parameters serve as useful rules of thumb for 

establishing the system. 

Following the buffer adjustment, the SKU undergoes a "cooling period" during which 

no further buffer changes are recommended to allow the system to adapt to the revised buffer 

size. The cooling period should be long enough for the adjustment to take effect (ensuring that 

the newly ordered quantities arrive at the stock location), but short enough to prevent any 

sudden market demand changes from going unnoticed (SCHRAGENHEIM, 2010). Typically, 

for an increased buffer, the cooling period is set to the full replenishment time, while for a 

decreased buffer, the cooling period involves waiting for the inventory at the location to 

transition from above the buffer size level to the green zone (as reducing the buffer size likely 

resulted in the current inventory exceeding the buffer size level) (SCHRAGENHEIM, 2010). 



35 

 

 

 

 

3 A SYSTEMATIC LITERATURE REVIEW ON 

THE EVOLUTION OF DRUM-BUFFER-ROPE 

AND SIMPLIFIED DRUM-BUFFER-ROPE 

SYSTEMS 

3.1 Introduction 

The Drum-Buffer-Rope (DBR) system, which originated from the Theory of 

Constraints (TOC), was developed to control production flow based on TOC principles. The 

original version of this system was introduced in the books "The Goal" (GOLDRATT; COX, 

1984) and "The Race" (GOLDRATT, 1986). A simplified version called Simplified Drum-

Buffer-Rope (S-DBR) emerged in 2000, as outlined in the book "Manufacturing at Warp Speed: 

Optimizing Supply Chain Financial Performance" authored by Schragenheim and Dettmer 

(2000). 

Both DBR and S-DBR methods require the release of raw materials to the shop floor 

following resource constraints. The drum mechanism sets the production pace, the buffer 

safeguards the constraints against variability, and the rope regulates the release of work orders 

to production based on the drum's guidance. Buffer management determines the prioritization 

of production orders. 

In the case of S-DBR, the primary constraint is market demand. The term "simplified" 

refers to the presence of only one buffer, which is the shipping buffer for make-to-order (MTO) 

environments (SCHRAGENHEIM; DETTMER, 2000), or the stock buffer for make-to-

availability (MTA) environments (SCHRAGENHEIM; DETTMER; PATTERSON, 2009). 

MTA is a type of make-to-stock environment that aims to ensure product availability without 

relying on demand forecasts. Only in S-DBR is there a mechanism called Planned Load (PL), 

which controls the load on the capacity-constrained resource (CCR) and supports the rope's 

functioning. PL identifies situations where new production orders should not be released to the 

factory floor due to CCR overload. 

Numerous aspects have been studied in the context of DBR/S-DBR, including their 

applications (DARLINGTON et al., 2015; UMBLE; UMBLE; MURAKAMI, 2006; 
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WALKER, 2002), performance comparisons with other systems (THURER et al., 2017; 

GILLAND, 2010; WATSON; PATTI, 2008), and attempts to understand and explain their 

mechanisms (BLACKSTONE JR; COX III, 2002; GUPTA; KO, MIN, 2002; 

SCHRAGENHEIM; COX; RONEN, 1994). 

Several studies have proposed modifications to the original DBR and S-DBR systems 

to adapt them to various organizational environments. These studies are valuable as they 

provide advancements, new application possibilities, and practical contributions. However, 

they are still limited in scope. To the best of our knowledge, no comprehensive comparative 

literature study has been conducted. Addressing this research gap is the primary objective of 

the present study. To achieve this, the article conducts a systematic literature review based on 

Tranfield, Denyer, and Smart's (2003) methodology, focusing on changes made to DBR/S-DBR 

systems. The main contribution of this study is to present the current state of adaptations to 

these systems and propose new avenues for research in this field. 

The remainder of this article is structured as follows: Section 2 describes the research 

methodology, Section 3 presents the results, and Section 4 draws conclusions.  

3.2 Research method 

The systematic literature review (SLR) conducted in this study adhered to the 

methodology proposed by Tranfield, Denyer, and Smart (2003). It encompassed three distinct 

stages outlined in Table 3.1, to guarantee a comprehensive and thorough analysis of the existing 

literature. 

Table 3.1 - Systematic literature review stages 

I. Planning the review II. Carrying out the review III. Reporting and disseminating 

it 

Research questions 

definition. 

Protocol review definition. 

 

Identification of studies. 

Selection of studies by reading 

full text. 

Data extraction of studies; 

Results and discussions 

Future research suggestion. 

 

Source: Proposed by the author 

I) Planning the review 

The SLR was driven by three research questions: 

RQ1: How DBR and S-DBR are being changed to better deal with practical 

requirements? 

RQ2: Why these changes are being required? 

RQ3: What are news research avenues concerning these changes? 
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The SLR was conducted by the protocol in Table 3.2.  

Table 3.2 - Parameters of SLR 

Parameters Values 

Databases Web of Science, Compendex and Scopus 

Keyword “Drum-buffer-rope” 

Fields All 

Document type Articles published in journals 

Language English 

Inclusion criteria The study should propose some adaptation in the original DBR or 

S-DBR systems. 

Data extracted Article title, authors, date of publication date, adaptation proposed, 

affected DBR mechanism, and proposal evaluation. 

  Source: Proposed by the author 

The SLR was limited to journal articles to ensure the high quality of the research.  

II) Carrying out the review 

The papers were identified in the databases using string searches based on the 

parameters defined in Table 3.1, including databases, keywords, document type, and language. 

Table 3.2 provides an overview of the search strings used. The results of the search, along with 

the consultation records for each database, are presented in Table 3.3. Initially, 637 articles 

were retrieved, out of which 175 were duplicates. The remaining 462 papers were carefully 

analyzed by reading their full texts, resulting in the selection of 32 papers that met the inclusion 

criteria. The database search was conducted on June 17, 2022. 

Table 3.3 - Databases consulting register 

Database Consult date Search string 
Number of 

articles found 

Scopus 17-06-2022 

 

ALL ( "drum-buffer-

rope" )  AND  ( LIMIT-

TO ( DOCTYPE ,  "ar 

" ) )  AND  ( LIMIT-

TO ( LANGUAGE ,  "English 

" ) )  AND  ( LIMIT-

TO ( SRCTYPE ,  "j" ) )  

451 

Web of 

Science 

17-06-2022 TOPIC:("drum-buffer-rope") 

Refined by: DOCUMENT TYPES: ( 

ARTICLE ) AND LANGUAGES: ( 

ENGLISH ) 

Timespan: All years. Indexes: SCI-

EXPANDED, SSCI, A&HCI, CPCI-S, 

CPCI-SSH, ESCI. 

97 

Compendex 17-06-2022 (((("drum-buffer-rope") WN ALL)) 

AND (({ja} WN DT) AND ({english} 

WN LA))) 

89 

  Total 637 

  Papers after removing duplicates 462 

    Source: Proposed by the author 
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Some topics studied in the excluded articles were DBR applications – e.g., Darlington 

et al. 2015; Umble, Umble, and Murakami 2006; Walker 2002 –, comparisons of DBR 

performance with that of other systems – e.g., Thürer et al. 2017; Gilland 2010; Watson and 

Patti 2008 – or about understanding and explaining DBR mechanisms – e.g., Blackstone Jr and 

Cox III 2002; Gupta, Ko, and Min 2002; Schragenheim, Cox, and Ronen 1994.  

From 32 studies selected, we extracted the title, authors, publication date, adaptation 

proposed, affected DBR mechanism and proposal evaluation. Section 3 presents the results of 

the SLR with information about publication period, publication sources as well as a 

classification scheme for such studies.  

III) Reporting and disseminating it 

The results, discussions and future researchers are presented in subsequent sections. 

3.3 Results analysis 

The analysis of the results begins with a quantitative exploration, aiming to provide an 

overall perspective of the collected data. Out of the 462 articles obtained from the database 

search, approximately 7% focused on proposing modifications to either DBR or S-DBR. It is 

important to note that most studies concentrated on a single mechanism within DBR/S-DBR, 

and thus they were classified accordingly. Table 3.4 presents this classification, with the rows 

representing the affected mechanisms, and the columns differentiating between DBR and S-

DBR studies. The frequency of studies for each mechanism is presented in terms of absolute 

and relative frequency. The studies that encompass all mechanisms are indicated in the DBR 

and S-DBR columns. 

Table 3.4 - Papers classification 

  DBR S-DBR 
Absolute 

Frequency 

Relative 

Frequency 

Buffer 9 2 11 34,38% 

Rope 8 0 8 25,00% 

Drum 5 0 5 15,63% 

DBR 4 0 4 12,50% 

S-DBR 0 2 2 6,25% 

Drum-Buffer 1 0 1 3,13% 

Drum-Rope 1 0 1 3,13% 

Buffer-Rope 0 0 0 0,00% 

Total 28 4 32 100,00% 

% Total 87,50% 12,50% 100,00%   
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S-DBR received significantly less attention compared to DBR, with only 12.50% of 

the studies focusing on it. The data indicates that the Buffer was the most extensively 

investigated aspect. Furthermore, studies proposing improvements for both DBR and S-DBR 

accounted for only 18.75% of the total. A substantial number of investigations concentrated 

solely on specific components of the system. In terms of application domains, manufacturing 

environments garnered the attention of 93.7% of the studies, while one study was dedicated to 

business processes and another focused-on container loading. The subsequent section presents 

an overview of the modifications proposed by each study. 

3.3.1 Changes on DBR and S-DBR 

The papers are divided into three parts. Part I detailed the papers that modified one of 

the follow mechanisms: drum, buffer, or rope. Part II detailed the papers that modified two of 

these three mechanisms, and Part III is dedicated to papers that modified the whole system. 

I) Only one mechanism change 

a) Drum 

This section presents the 5 (15,63%) studies that propose changes to the drum 

mechanism and its operations – identification, scheduling, constraint exploitation, and work 

orders sequencing.  

Table 3.5 presents the studies grouped by operation and exposes the proposition of 

each one, indicating the testing procedure used. No studies relating to S-DBR focus on changes 

to the drum. 

Urban (2019) contributes to production management theory by proposing a new 

method for TOC implementation and a method for constraint identification that considers the 

irregularities in processes’ capacity utilization. Khalil, Stockton, and Fresco (2008) also 

proposed a constraint identification method. According to the authors, the effectiveness of DBR 

in systems with high throughput levels is threatened by high levels of variability, which can 

cause constrained resources to shift to different stages of the manufacturing processes. The 

authors approach this issue by developing a methodology for measuring the variability of 

manufacturing processes by combining the variability originating from various sources. 

Concerning constraint exploitation, Wu and Liu (2008) created a solution that can 

allow marketing personnel to establish realistic order promise dates by observing the system 

capacity over a planning horizon. The authors proposed a capacity available-to-promise 
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(CATP) model for DBR systems. The model was developed based on the drum to help the DBR 

users improve the due date promise and to exploit the constraint. By using this model, the CATP 

model provides a detailed and time-phased diagram of unused production capacity and allows 

marketing personnel to establish realistic order promise dates and concentrate on selling idle 

capacity in the future. 

Table 3.5 - Studies that affected the drum 

DRUM 

operation 

affected 

Reference Changes 
Evaluation 

method 

Constraint 

Identification   
Urban (2019) 

A new method of bottleneck identification is 

elaborated in this study. 
Not tested 

 
Khalil, Stockton, 

and Fresco (2008) 

Method to identify the constraint by measuring 

variability levels of each manufacturing process. 
Simulation 

Constraint 

Exploitation 

Wu and Liu 

(2008) 

A capacity available-to-promise model for 

constraint exploitation. 

Numerical 

example 

Constraint 

Identification 

and 

Exploitation    

Lizarralde-

Aiastui, De Eulate 

e Media Villa-

Guisasola (2020) 

An adaptation of the DBR is suggested for 

bottleneck selection and exploitation by a 

systematic decision-making process based on 

resource-based view (RBV) and practice-based 

view (PBV). 

Real application 

Work order 

Sequence 

Gonzalez-R, 

Framinan, and 

Ruiz-Usano 

(2010) 

A method to obtain a robust dispatching rule. Simulation 

  Source: Proposed by the author 

Lizarralde-Aiastui, De Eulate e Media Villa-Guisasola (2020) proposed a systematic 

process for deploying the selection and exploitation of the production system constraint by 

integrating a strategic perspective. The systemic process was based on the seminal work from 

Goldratt’s TOC (GOLDRATT; COX, 2003) and included critical aspects from theories on 

strategy, such as the resource-based view (RBV) and practice-based view (PBV). The RBV and 

PBV argue the importance of resources and practices in achieving competitive advantage and/or 

improved firm performance. A case study was used to present this adaptation, in which the 

researchers actively participated. The results show a reduced lead time of 10%, reduced WIP 

by 20%, reduced the volume of semi-finished material in progress by 40%, reduced quality-

related incidents by 20%, and increased service levels from 50% to 70%. 

Gonzalez-R, Framinan, and Ruiz-Usano (2010) highlighted the impact of dispatching 

rules on the performance of DBR in multiproduct manufacturing environments where order 

sequencing is constrained. According to the authors, no single dispatching rule universally 
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outperforms others in all environments. Consequently, they proposed a methodology to derive 

a robust dispatching rule from a preselected set of rules based on specific performance measures 

sought by managers. The chosen dispatching rules included Shortest Process Time (SPT), 

Shortest Remaining Processing Time (SRPT), Shortest Imminent Operation (SI), Longest 

Processing Time (LPT), Earliest Due Date (EDD), Least Slack (LS), Critical Ratio (CR), First-

Come-First-Served (FCFS), and Slack per Remaining Operation (SRO). To assess the 

robustness of the dispatching rules, an initial experimental design was conducted, incorporating 

various sources of variability observed in real manufacturing environments, such as stochastic 

processing times, unbalanced production lines, machine breakdowns, and setup times. 

Simulation techniques were employed to calculate performance measures, including average 

tardiness, maximum tardiness, and average work in process. The global performance of each 

dispatching rule was then evaluated across different scenarios using Taguchi's robustness 

concepts. The findings revealed that, for environments without setups, the most robust 

dispatching rules for constrained systems were EDD, SI, and FCFS. In scenarios involving 

setups, FCFS and SI emerged as the most robust rules. 

b) Buffer  

This section presents 11 studies (34.38% of the total) that proposed changes related to 

the buffer mechanism, specifically focusing on buffer sizing and buffer management. Table 3.6 

provides an overview of these studies, categorizing them by operation, presenting their 

propositions, and indicating the testing procedures employed. Among these eleven studies, two 

specifically address S-DBR. 

Wang et al. (2015) introduced a buffer sizing method for hospital inventory 

management, implementing DBR. The proposed approach, known as "dynamic drum-buffer-

rope" (DDBR), adopts a demand-pull replenishment strategy to overcome the limitations of 

existing re-order point approaches commonly used in this domain. The DDBR approach 

determines the most appropriate buffer size and replenishment amount. 

Radovilsky and Frankel (2013) aimed to identify the optimal buffer size using a model 

based on a finite multi-server queue. Their novel modeling approach calculates the ideal number 

of units waiting in line (i.e., the optimal buffer size) in front of a multi-server CCR (Constrained 

Capacity Resource). The goal is to maximize the net profit derived from the CCR's throughput 

while preventing the constrained resource from becoming idle. 
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Furthermore, Fallah et al. (2011) developed a buffer sizing method based on the 

principles of factory physics. Their proposed method enhances overall protection by 

determining buffer sizes based on the variability of constraint predecessor stations. 

Table 3.6 - Studies that affected the buffer 

BUFFER 

operation 

modified 

References Adaptations 
Evaluation 

method 

Buffer sizing 

Wang, Cheng, 

Tsen and  Liu . 

(2015) 

An approach to determine the most appropriate buffer 

size and replenishment amount. 

Real 

application 

 
Radovilsky and 

Frankel (2013) 

A modeling approach of identifying the optimal buffer 

size in front of a CCR with parallel processes. 

Numerical 

example 

 Fallah et al. (2011) 
An approach for buffer sizing based on the principles of 

factory physics.  

Numerical 

examples 

 
Louw and Page 

(2004) 

An open queuing network modelling approach to 

estimate the buffer size in production systems. 
Simulation 

Buffer 

management 

Georgiadis and 

Politou (2013) 
A dynamic time-buffer control mechanism. Simulation 

 

Lenort, Klepek, 

aWhicher and 

Besta  (2013) 

A method for determination and control of buffers to 

protect the floating constraints. 
Case Study 

 
Yung-Chia 

Chang (2011) 

A weighted layer production buffer and weighted 

production buffer to monitor the status of the buffer 

deviation in re-entrant flow shop with S-DBR. 

Simulation 

 
Chang and 

Huang (2011) 

A layer production buffer to monitor the buffer status in 

S-DBR. 
Simulation 

 
Hadas, Cyplik, and 

Fertsch (2009) 

A dedicated planning system and shop floor control for 

manufacturing high-power marine engines. 
Simulation 

 
Woo, Park, and 

Fujimura (2009) 
A real-time buffer management method. Simulation 

 
Riezebos, Korte, 

and Land (2003) 

An integration of workload control principles to 

improve a DBR buffering approach. 

Real 

application 

  Source: Proposed by the author 

A queuing network model for estimating buffer size in production systems was created 

by Louw and Page (2004). The length of the time buffer is determined by utilizing the average 

flow time and standard deviation flow time of a production network modeled as GI/G/m queues. 

In the realm of buffer management, Georgiadis and Politou (2013) devised a dynamic 

time-buffer control mechanism. They acknowledged that the challenge with the DBR approach 

lies in maintaining constant time buffers throughout the planning horizon. However, real-world 

manufacturing systems are subjected to variations in key factors such as demand and production 
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times, making constant throughput impractical. To address this, the authors proposed a dynamic 

time-buffer control mechanism for short- to medium-term Production Planning and Control. 

Their approach incorporates an adaptive response to demand changes and ensures robustness 

in both internal and external shop environments. Additionally, they developed a system 

dynamic model to support decision-making on production time-buffer policies, integrating the 

proposed mechanism into a flow shop system. 

Lenort, Klepek, and Whicher (2013) designed a method for determining and 

controlling buffers that protect floating bottlenecks from capacity losses resulting from the 

transfer of the constraint to another manufacturing stage. 

To monitor the buffer deviation in a re-entrant flow shop operated by S-DBR, Chang, 

and Wen-Tso (2011) introduced the concept of a weighted layer production buffer and weighted 

production buffer. 

Chang and Huang (2011) proposed an alternative approach for re-entrant 

manufacturing environments. They argued that S-DBR's dispatching rule is limited in such 

environments. To address this limitation, they introduced the layer production buffer to monitor 

buffer status and sequence orders accordingly. 

In the context of high-power marine engine production, Hadas, Cyplik, and Fertsch 

(2009) emphasized the significance of reducing manufacturing lead time to decrease work-in-

progress inventory and capital employed. They proposed a dedicated planning system and shop 

floor control method for buffering critical resources in complex make-to-order manufacturing. 

Their approach included buffer management procedures, system disruption compensation, and 

feedback protection based on the influence of "wandering bottlenecks." 

Woo, Park, and Fujimura (2009) proposed a real-time buffer management method to 

address a limitation of DBR. They noted that DBR only manages a buffer based on the arrival 

status of raw materials or products at the constraint, without considering their position. To 

overcome this issue, they introduced a real-time buffer management method that extends the 

concept of a buffer using DBR scheduling techniques in response to real-time information. This 

method incorporates updated information, such as changes in the schedule made by the operator 

and real-time progress updates of the process. 

Riezebos, Korte, and Land (2003) conducted research aimed at improving the lead-

time performance of a small packaging manufacturer that had implemented the Theory of 

Constraints (TOC). As part of their approach, they integrated the principles of Workload 

Control into DBR to manage the buffer system. 
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c) Rope 

This section presents the 8 (25%) studies that propose changes to the rope mechanism, 

relative to the constraint scheduling, present in Table 3.7. 

Table 3.7 - Studies that affected the rope 

ROPE 

operation 

affected 

Reference Changes 
Evaluation 

method 

Constraint 

Scheduling  
Yue et al. (2022) 

A heuristic based on the DBR method is proposed 

for order scheduling and multi-item scheduling 

problem considering capacity constrained 

resources (CCR). 

Simulation 

 
Qiao and Wu 

(2013) 
A layered constraint scheduling algorithm.  Case study 

 

Kasemset and 

Kachitvichyanukul 

(2010) 

A method to schedule constraints in a job-shop 

environment with a bi-level multi-objective 

mathematical model. 

Numerical 

example 

 
Wu,Chen, Tsai 

and Yangl. (2010) 

A DBR customized algorithm for constraint 

scheduling on TFT-LCD cell plants. 

Numerical 

example 

 Guan et al. (2008) 
An algorithm for constraint scheduling which 

minimizes the maximum tardiness time. 
Not tested 

 
Wu and Yeh 

(2006) 

Algorithm to sequencing constraint operations of 

re-entrant flows.  

Numerical 

example and real 

application 

 
Chen and Lee 

(2001) 

A two-stage exhaustive constraint-based group 

scheduling procedure (BGSP) to improve cells 

with load imbalance. 

Simulation 

 Onwubolu (2001) 
A tabu search heuristic to optimize the product 

mix on multiple constraint scheduling. 
Simulation      

  Source: Proposed by the author 

Yue et al. (2022) conducted research on order scheduling and the multi-item 

scheduling problem considering capacity-constrained resources (CCR). They proposed a 

heuristic based on the DBR method for a multi-item production environment. The heuristic was 

utilized to schedule customer order deliveries in each planning horizon and determine the 

release sequence of production orders for upstream resources in the production system. The 

proposed heuristic was tested on various real-life problems, and the results demonstrated its 

superiority over other heuristics discussed in the literature, yielding more significant outcomes. 

To schedule the constraint in a job-shop environment, Kasemset and 

Kachitvichyanukul (2010) formulated a bi-level mathematical model based on the DBR system. 

The first level aimed to generate an initial schedule that minimizes idle time at the bottleneck. 
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The second-level model further optimized the schedule to meet multiple objectives while 

adhering to the constraints that dictate the job sequence froze at the bottleneck obtained from 

the first level. Simultaneous management of other resources was carried out at this level to 

ensure maximum utilization of the constraint. 

In the context of constraint scheduling in thin-film transistor liquid crystal display 

(TFT-LCD) cell imaging, Wu et al. (2010) developed a customized DBR solution that 

specifically addressed schedule constraints. The proposed DBR algorithm calculated ruins - 

ideal production schedules for all batches at the constraint station - for each batch and allocated 

these batches to machines. 

Guan et al. (2008) proposed minimizing the maximum tardiness in constraint 

scheduling as their objective. They developed an algorithm for group scheduling on the 

constraint, aiming to minimize the maximum tardiness time. The algorithm grouped products 

based on similar manufacturing processes and performed sequencing within each group. 

Chen and Lee (2001) presented a solution for constraint-based scheduling in cellular 

manufacturing. Their approach involved a two-stage exhaustive bottleneck-based group 

scheduling procedure (BGSP) integrated with the DBR system to improve cells with load 

imbalance. 

Onwubolu (2001) pointed out that the traditional TOC algorithm is not effective in 

maximizing profit returns in systems with multiple constraints. As a solution, he developed a 

tabu search-based TOC product mix heuristic to identify optimal or near-optimal product mix 

when multiple constrained resources are present. 

Addressing the challenge of implementing DBR in the presence of re-entrant process 

constraints, Wu and Yeh (2006) developed an algorithm to ensure a more suitable sequencing 

of constraint operations and provide sufficient time between adjacent constraint operations 

within a batch. Similarly, Qiao and Wu (2013) investigated re-entrant manufacturing systems, 

which are recognized as highly complex. They proposed a DBR-based programming approach 

for re-entrant manufacturing of layered parts, incorporating a layered scheduling algorithm 

(LSA).  
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II) Two mechanisms changed 

Two studies focused on two mechanisms, as shown in Table 3.8. Daniel and Guide 

(1997) targets the Drum and Buffer and Pass and Ronen (2003) aims on the Drum and Rope 

mechanisms. There is no study on the S-DBR that has changed the two mechanisms. 

Regarding dispatching rules and buffer sizing, Daniel and Guide (1997) propose a 

change to the drum and the buffer. They highlight that there have been no formal examinations 

to best support DBR on what priority dispatching rules should be used at non-constraint work 

centers. Furthermore, a few researchers studied the effectiveness of DBR in the 

remanufacturing environment. Therefore, the authors carried out a study to exam some priority 

dispatching rules in combination with DBR under a variety of utilization levels, via a simulation 

model of a remanufacturing facility. 

Table 3.8 - Studies that affected two mechanisms 

Changed 

mechanisms 
Reference Adaptations 

Evaluation 

method 

Drum and 

Buffer 

Daniel and Guide 

(1997) 

Application of dispatching rules and a change in the 

buffer size determination. 
Simulation 

Drum and 

Rope 

Pass and Ronen 

(2003) 
Rules for scheduling and control of the jobs. Not tested 

   Source: Proposed by the author 

To schedule the manufacturing according to the market constraint in the Hi-Tech 

industry, Pass and Ronen (2003) created a systematic approach. It is argued that in a market-

constrained environment, the marketing and sales department together with the research and 

development department are Permanent Constraints and need to be managed as such. The 

authors modify the Theory of Constraint’s five focusing steps to accommodate the market 

constraint, which affected the constraint scheduling (drum) and release of jobs (rope). 

III) Three mechanisms changed 

The studies about three mechanisms affected were divided into two groups – one that 

studied DBR and another group that studied the S-DBR, as can be seen in Table 3.9.  

Saif et al. (2019) developed a production planning and scheduling method, based on 

DBR, that can be utilized in Industry 4.0. They proposed a DBR-based heuristic algorithm 

(DBR-HA) for multi-level planning considering shifting bottleneck resource to make an 

efficient schedule in a rolling horizon in a mixed model production environment and utilize 

capacity constraint resource (CCR) at maximum. According to the authors, the DBR-HA 
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identifies the drum, i.e., CCR, makes an efficient schedule on it in each lower-level scheduling 

period and utilizes a feedback method to update customer orders in each medium level planning 

horizon. The proposed method is useful to implement Industry 4.0 in mixed model industries 

and update their plan and schedule in real time. The performance of the proposed DBR-HA 

algorithm is measured and compared with the performance of the basic scheduling rules used 

in the Case Company based on a Case Company problem data. Results indicate that the 

proposed method is significant to reduce the gap between medium level planning and lower-

level schedules and gives an efficient medium level plan and lower-level schedule in each 

planning horizon as compared to the other methods. 

Table 3.9 - Studies that affected the drum, buffer and rope 

Changed 

system 
Reference Adaptations Evaluation method 

DBR 
Saif et al. 

(2019) 

This research proposed a DBR-based 

heuristic algorithm (DBR-HA) for multi-

level planning considering shifting 

bottleneck resource to make efficient 

schedule in rolling horizon in mixed 

model production environment and 

utilize capacity constraint resource 

(CCR) at maximum. 

Simulation 

 

Rhee, Cho, 

and Bae 

(2010) 

A method to enhance the efficiency of 

business processes. 
Simulation 

 

Liu, Tian and 

Sawaragi 

(2007) 

A heuristic algorithm for solving 

container loading problems using the 

five-focusing steps, based on the DBR of 

the TOC and the multi-agent cooperative 

negotiation model.    

Simulation 

 

Sirikrai and 

Yenradee 

(2006) 

A Modified drum-buffer-rope (MOD-

DBR) for a non-identical parallel 

machine flow-shop environment. 

Simulation 

S-DBR 
Chang and 

Huang (2013) 

An enhanced S-DBR model to be applied 

in a re-entrant flow shop (RFS) 
Simulation 

 
J.-H. Lee et al. 

(2010) 

A new S-DBR approach with rules for 

the operation of make-to-order 

environments with multiple or interactive 

CCR, as well as rules for the inclusion of 

urgent orders. 

Numerical examples 

Source: Proposed by the author 

A method to enhance business processes was proposed by Rhee, Cho, and Bae (2010). 

The method, based on the DBR, was created to enhance the efficiency of business processes 

execution by controlling task allocation. 
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The DBR was applied to solve the container loading problem (CLP) and two-row 

pattern by Liu, Tian and Sawaragi (2007). CLP is a real-world problem arising from the centers 

of physical distributions, manufactories, and warehouses. In the two-row pattern all cargoes are 

considered rectangular parallelepipeds of known sizes and weights, where each cargo is 

positioned parallel to the side walls of a container - hence the use of the term two lines. To solve 

this problem, they proposed a heuristic algorithm based on the DBR, five-step focusing process 

and the cooperative negotiation strategy. The goal is to improve the positioning packing in the 

container, exploiting the constraints: First-In-Last-Out (FILO) packing ordering, the total load 

capacity of the container and the loading of all packing in containers. 

A modified scheduling mechanism for non-identical parallel machine flow shop 

environment was created by Sirikrai and Yenradee (2006), called Modified Drum-Buffer-Rope 

(MOD-DBR).  The MOD-DBR aims to combine the DBR scheduling mechanism with the 

finite-capacity loading mechanism and replace the buffer and rope mechanisms by the 

backward loading and scheduling procedure.  

Next, S-DBR studies are commented on.  Chang and Huang (2013) applied the S-DBR 

to enhance a model for a re-entrant flow shop (RFS) environment. In the model, job processing 

times are generated from a discrete uniform distribution and machine breakdowns are subject 

to an exponential distribution. Improvements were made to the due-date assignment method, 

and the order release and the dispatching rules. 

An alternative method that enhances the S-DBR system performance was developed 

by J.-H. Lee et al. (2010). The new S-DBR approach presents rules for the operation of a 

fluctuating make-to-order environments with interactive or multiple CCRs, as well as rules for 

the inclusion of urgent orders.  

3.3.2 Motivations for changes on DBR and S-DBR 

Out of the fifteen studies, which account for 46% of the total, the motivation was the 

evolution of DBR or S-DBR rather than a specific industry requirement. These studies proposed 

advancements in the identification of floating and multiple constraints(KASEMSET; 

KACHITVICHYANUKUL, 2010; KHALIL; STOCKTON; FRESCO, 2008; LEE et al., 

2010b; NOWOTARSKI; PASLAWSKI, 2017; URBAN, 2019; WANG; LI, 2011; YANG; 

TSAI; LIU, 2008), scheduling of constraints (ONWUBOLU, 2001; WU; LIU, 2008), buffer 

time sizing (GEORGIADIS; POLITOU, 2013; LOUW; PAGE, 2004; WOO; PARK; 

FUJIMURA, 2009), dispatch rules (GONZALEZ-R; FRAMINAN; RUIZ-USANO, 
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2010a)(GONZALEZ-R; FRAMINAN; RUIZ-USANO, 2010), and Industry 4.0 

implementation (SAIF et al., 2019). 

Urban (2019) proposed a method to identify constraints based on a DBR 

implementation in a manufacturing system with multiple floating constraints. Z. W. Wang and 

Li (2011a) developed a method to identify floating constraints arising from variations in product 

mix and processing times at individual workplaces. Khalil, Stockton, and Fresco (2008) devised 

another method to identify constraints due to the compromised effectiveness of DBR caused by 

high levels of variability, which can lead to the shifting of constraint resources and ineffective 

scheduling, buffer positions, and sizes. Lee et al. (2010) modified S-DBR to handle 

environments where constraints are not located in the middle of the routing, as assumed in S-

DBR, and to identify multiple constraints. 

Onwubolu (2001) proposed a method for scheduling multiple constrained resources, 

considering the product mix. Wu and Liu (2008) implemented a new mechanism in DBR to 

enable available-to-promise since the DBR scheduling algorithm only considers firm orders. 

Georgiadis and Politou (2013) developed a method for dynamic buffer time sizing to 

accommodate changes in demand and stochastic production times. Louw and Page (2004) 

provided a solution for time buffer sizing aimed at reducing production lead time and gaining 

a competitive advantage by meeting market demand. Woo, Park, and Fujimura (2009) 

addressed the supervision of product progression through the production process, which, 

according to the authors, can confuse production. 

Due to DBR having only one dispatch rule, Gonzalez-R, Framinan, and Ruiz-Usano 

(2010) tested several alternative dispatching rules to improve DBR performance. Saif et al. 

(2019) developed a DBR-based production planning and control system for Industry 4.0, driven 

by the lack of intelligent systems in this new context. 

Eight studies (27%) customized DBR or S-DBR for specific environments. Wu et al. 

(2010) adapted DBR for thin film transistor liquid crystal display (TFT-LCD) manufacturing, 

acknowledging the need for customization based on the unique characteristics and requirements 

of different manufacturing environments. Chen and Lee (2001) proposed changes to DBR for 

cellular manufacturing, recognizing that DBR does not adequately address the complexity of 

cellular manufacturing. Guan et al. (2008) modified DBR to balance and stabilize production 

lines in high-mix, low-volume environments with diverse customer requirements and 

uncertainty. Wang, Cheng, Tsen, and Liu (2015) modified DBR to address inventory 

management challenges in hospitals, aiming to guarantee the availability of medical and 
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surgical supplies at the lowest cost. Hadas, Cyplik and Fertsch (2009) focused on the production 

of high-power marine engines, where the production process is expensive and lengthy, requiring 

changes in DBR to reduce work in progress and capital employed. Riezebos, Korte, and Land 

(2003) adapted DBR to meet the peculiarities of a small packaging manufacturer in the 

Netherlands. Daniel and Guide (1997) developed a new version of DBR for remanufacturing, 

as few established scheduling systems for this environment were reported in the literature. Pass 

and Ronen (2003) customized DBR for the Hi-Tech industry. 

Another eight studies (27%) customized DBR for specific manufacturing processes. 

DBR cannot establish the Rope for a non-identical parallel machine flow-shop environment, 

leading Sirikrai and Yenradee (2006) to propose changes to DBR. Wu and Yeh (2006), Qiao 

and Wu (2013), Yung-Chia Chang (2011), and Chang and Huang (2013) addressed the 

challenges of implementing DBR in re-entrant flows present in manufacturing systems. Rhee, 

Cho, and Bae (2010), Liu, Tian, and Sawaragi (2007), Radovilsky and Frankel (2013), and 

Fallah et al. (2011) did not explicitly state their motivation for changing DBR. 

3.3.3 Research avenues 

Based on the studies presented here, we recommend some research avenues. 

Regarding DBR, new studies can be developed with case studies. Also, new research can be 

developed on the programming of the interactive CCRs - where one CCR feeds others - and the 

floating CCRs. Studies on shipping and assembly buffers are also required.  

Studies can be performed about the S-DBR / MTO and S-DBR / MTA, since they have 

been studied little so far. We recommend an integration between S-DBR / MTO and S-DBR / 

MTA, since they have different rules, but can be applied together in hybrid environments. 

Capacity management in these hybrid environments is quite challenging. It may also be 

interesting to study the adaptations made to the S-DBR during its implantation in the 

companies, through case studies. Further studies may improve the method of production control 

and sequencing based on buffer status for both S-DBR / MTO and S-DBR / MTA. It is also 

interesting to carry out investigations and propositions about the algorithm conventionally used 

for dynamic dimensioning of the buffers in S-DBR. 

New research could be carried out about shifting DBR to S-DBR, where DBR is 

already implemented. Other studies may also apply the proposed adaptations to the DBR on S-

DBR. Studies addressing S-DBR could focus on planned load with floating, multiple, or non-

existent active RRCs. Stock buffer management, in the case of the MTA, integrated with the 
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distribution and production is another opportunity not covered by current literature. The S-DBR 

can also be adapted to consider the limitation of space for work in process and stock of finished 

products. Studies that present S-DBR applications in real environments and the adaptations 

made can be a great contribution. These are just a few suggestions from the many possible 

studies on S-DBR. 

The S-DBR simplifies the DBR that assumes new rules to manage make-to-stock 

environments and inventories of the distribution networks. Therefore, the S-DBR is a vast field 

of research little explored. Complications exposed by Schragenheim, Dettmer, and Patterson 

(2009) imposed by manufacturing environments can inspire future research. Know what they 

are: 

▪ Multiple Operations of the CCR: there are two distinct situations in which a 

resource must perform multiple operations (in some sequence) in the same 

order.  

▪ Multiple Capacity-Constrained Resources (CCRs): there are two or more work 

centers with approximately equal capacity, and those work centers are the 

“weakest links” of the shop floor.  

▪ Wandering Bottlenecks: a situation where bottleneck moves between 

workstations that mix changes can cause.  

▪ Dependent Setups in S-DBR: Simplified Drum–Buffer–Rope operates on the 

underlying assumption that the actual sequence of work on the CCR (or other 

resources, for that matter) does not adversely affect capacity in any significant 

way. Sequence-Dependent setups break this assumption. 

 

There is at least one unanswered question concerning the S-DBR mode for managing 

inventories of the distribution networks. It is supposed to frequently replenish inventories. 

Schragenheim, Dettmer, and Patterson (2009) argue that frequent replenishments maintain low 

inventories and the buffers full, but they did not point to a tool that supports the decision-making 

regarding when to replenish. This is not an easy decision; future research can deal with this 

question. 

3.4 Conclusions 

This study utilizes a systematic literature review approach to identify research that 

proposes adaptations to DBR and S-DBR, as well as research gaps relevant to the thesis. Many 
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studies have focused on individual system activities, such as buffer sizing, buffer management, 

constraint scheduling, identification, and exploitation. These studies were primarily motivated 

by the need for system evolution or adaptation to address the specific characteristics of different 

manufacturing environments. 

It is worth noting that there is a relatively low number of research studies specifically 

dedicated to S-DBR, indicating that it remains less known and studied compared to DBR. While 

DBR gained attention among executives and entrepreneurs in the '80s through the book "The 

Goal" (GOLDRATT; COX, 2003), S-DBR only emerged in 2000. 

In the section discussing research avenues, we highlight gaps identified in the book 

"Supply Chain Management at Warp Speed," which provides insights into how S-DBR 

functions in make-to-stock production environments and manages inventory within distribution 

networks (SCHRAGENHEIM; DETTMER; PATTERSON, 2009). The authors of the book 

point out that S-DBR faces challenges when managing production lines with multiple 

operations of the CCR, multiple capacity-constrained resources, wandering bottlenecks, and 

dependent setups. Additionally, they note that inventory management for distribution networks 

in S-DBR is incomplete. 

The review of existing literature did not yield a specific solution for the identified 

problems, such as dependent setups and inventory replenishment planning in goods distribution 

networks. Therefore, we have identified these as research gaps for the thesis. Given that these 

problems are common in factories and logistics companies, they deserve further attention and 

investigation. 
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4 EVALUATING DISPATCHING RULES FOR 

MAKE-TO-AVAILABILITY UNDER 

SIMPLIFIED DRUM-BUFFER-ROPE: A 

COMPUTATIONAL EXPERIMENT 

4.1 Introduction 

Make-to-availability (MTA) is a make-to-stock production method within 

the simplified drum-buffer-rope (S-DBR) production planning and control 

system (SCHRAGENHEIM; DETTMER; PATTERSON, 2009), which, in turn, is an evolution 

of the drum-buffer-rope (DBR) system (GOLDRATT, 1986) whose purpose is to guarantee the 

availability of finished products to meet demand through stock buffers (SCHRAGENHEIM, 

2010; SCHRAGENHEIM; DETTMER; PATTERSON, 2009). DBR emerged from the Theory 

of Constraints (TOC) (GOLDRATT; COX, 1984; SCHRAGENHEIM; DETTMER; 

PATTERSON, 2009), conceived in the 1970s by Eliyahu M. Goldratt as a programming 

algorithm that became a broader concept of production planning and control (SIMONS; 

SIMPSON, 2009). The DBR is a programming mechanism consisting of a drum, buffer, and 

rope mechanisms, that controls the release of tasks to the system according to the production 

bottleneck (or constraint) (HUNG; HUANG; YANG, 2022; THÜRER; STEVENSON, 

2018b). The drum sets the production pace, the buffer protects the drum against system 

variability, and the rope controls the release of materials to the factory floor. In the MTA 

method, the drum is the market demand, the buffer is the stock of each product – the sum of 

the finished goods inventory (FGI) plus the stock or work in process (WIP) –, and the 

rope controls the workload on the production line and releases the production orders (OP) to 

the shop floor (SCHRAGENHEIM, 2010). Production must quickly replenish the units sold to 

keep the buffer full; therefore, the production lead time must be reduced (BARCO; FILHO, 

2021). Lead time reduction depends on the dispatching rule (DR) adopted. Dispatch rules are 

used in production scheduling to prioritize tasks in workstation queues (HEGER et al., 2016; 

NGUYEN; ZHANG, 2017a). 

Some studies found in the literature and commented hereafter show that changes in the 

DR can improve production performance. Heger et al. (2016) proposed a hybrid approach that 
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combined global information based on offline simulations with local adaptive decision rules, 

reducing the average delay by approximately 9%. El-Bouri and Nairy (2011) proposed a 

cooperative dispatch (CD) rule, showing that it reduced the average flow time compared with 

other rules. Huang and Chen (2018) created a mixed dispatch rule that assigned priorities to 

tasks in two stages. The created rule proved to be more effective in terms of on-time deliveries 

than the shortest processing time (SPT), least work remaining (LWKR), and total weighted 

processing time (TWPT) strategies. Nasiri et al. (2017) developed a DR composed of other DRs 

to minimize the average waiting time for tasks in an open-shop environment. The results 

indicated that the proposed DR was superior to the first-in-first-out (FIFO), last-in-first-out 

(LIFO), longest processing time (LPT), and SPT rules. The S-DBR/MTA method has a rule 

called prioritizing by buffer status (PSP), which prioritizes tasks considering the inventory level 

of finished products and processes (SCHRAGENHEIM; DETTMER; PATTERSON, 2009). In 

this study, we created a rule derived from the PSP one, which we call PSP1, by removing the 

variable WIP. As in other studies, we wanted to evaluate a set of dispatching rules to improve 

the production performance in an environment managed by an S-DBR/MTA system. 

Therefore, this study aims to evaluate the performance of S-DBR/MTA by 

incorporating other DRs. Four literature rules (FIFO, SPT, arrival time (AT), and Shortest 

remaining processing time (SRPT), two S-DBR/MTA rules (PSP and PSP1), and six 

combinations of the above (PSP-AT, PSP-SPT, PSP-SRPT, PSP1-AT, PSP1-SPT, and PSP1-

SRPT) were applied. Because S-DBR/MTA does not assign deadlines or completion dates to 

tasks, we chose the SPT, SRPT, AT, and FIFO rules, which do not use such information. We 

collected data through simulation, and the results were evaluated in terms of service level (S), 

average stock in the system (�̅�), average flow time (�̅�), and rate of inventory by the percentage 

of service level (𝐶̅).      

The rest of the article has the following structure: Section 4.2 presents the notation 

used; Section 4.3 presents details on the operation of the MTA method, as well as the 

dispatching rules evaluated; Section 4.4 presents the configuration and results of the computer 

simulation; and finally, Section 4.5 presents the conclusions of the study. 

4.2 Notation 

The notation used in this work is as follows: 

𝑃𝑖𝑟   priority assigned to task i for product r using the dispatch rule. 

𝐸𝐴𝑟  target level of product buffer r. 
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𝑁𝑃𝑟  buffer stock level r. 

𝑊𝐼𝑃𝑟  work-in-process of product r. 

𝐹𝐺𝐼𝑟  finished goods inventory of product r. 

𝑡𝑖𝑚  processing time of task i on machine m. 

𝑇𝑖  time of arrival of task i to the system. 

𝐹𝑖𝑚  time of arrival of task i to the queue of machine m. 

𝜏  moment when the dispatch takes place. 

𝑂𝑖  remaining processing time for task i in the system. 

𝑆𝑃𝑖𝑟     buffer status of task i for product r. 

4.3 Theoretical background 

4.3.1 Make-to-availability 

The purpose of the S-DBR/MTA system is to replenish the units sold without requiring 

an accurate sales forecast process (SCHRAGENHEIM; DETTMER; PATTERSON, 2009). The 

system consists of three components: a drum, buffer, and rope. The drum is the market demand, 

which dictates the pace of production by consuming stock items and triggers the tasks for 

replenishing the stock (SCHRAGENHEIM; DETTMER; PATTERSON, 2009). Each product 

has its buffer, which is the sum of the FGI plus the WIP and aims to protect deliveries against 

variations in demand and supply (SCHRAGENHEIM; DETTMER; PATTERSON, 2009). The 

target level (TL) limits the buffer calculated for each product (SCHRAGENHEIM, 2010). 

Production must keep stocks close to the TL. To control the buffers, the S-DBR/MTA system 

uses dynamic buffer management (DBM), responsible for adjusting the TL as spare time and 

demand change (SCHRAGENHEIM, 2010; SCHRAGENHEIM; DETTMER; PATTERSON, 

2009). The rope controls the release of tasks to the shop floor (SCHRAGENHEIM; DETTMER; 

PATTERSON, 2009). 

When the sum of the FGI and WIP for a given product is below the established TL, a 

production order (SCHRAGENHEIM; DETTMER; PATTERSON, 2009) that goes to the 

release queue on the shop floor is generated. A planned load (PL) releases tasks while limiting 

the load on the resource with the least capacity on the production line called the capacity 

constraint resource (CCR) (SCHRAGENHEIM, 2010; SCHRAGENHEIM; DETTMER; 

PATTERSON, 2009). Therefore, tasks are released only when the load on the CCR is below a 

pre-established limit (SCHRAGENHEIM, 2010; SCHRAGENHEIM; DETTMER; 
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PATTERSON, 2009). The first task to be released is that with the highest percentage of the 

buffer that needs to be filled – penetration into the buffer – as indicated by: 

𝑆𝑃𝑖𝑟 =
(𝐸𝐴𝑟− (𝑊𝐼𝑃𝑟+ 𝐹𝐺𝐼𝑟))

𝐸𝐴𝑟
   (1) 

 

Figure 4.1 helps understand the S-DBR/MTA process, with enumerated circles 

showing the sequence of activities from the consumption of buffer items until their 

replenishment. A dispatching rule operates in the queues at the workstations, as shown in the 

figure. 

Figure 4.1 - Make-to-availability operation 

 
              Source: Proposed by the author 

 

 

The consumption of the FGI triggers the manufacturing process under the S-

DBR/MTA (1). The withdrawal of products from the FGI generates production orders (2) to a 

queue in the factory, where they are prioritized (3) according to equation 1. Prioritized orders 

wait to be released to the shop floor (4) until the planned load signals that there is capacity at 

the workstations (5) for processing. Finished production orders replenish the FGI (6). This cycle 

repeats continuously to keep the FGI close to the TL. 

4.3.2 Dispatching rules  

This section begins by briefly considering the dispatch rules used in the 

study. Dispatch rules are used in production scheduling to prioritize tasks in workstation queues 

(HEGER et al., 2016; NGUYEN, 2017). Unlike optimization methods, DRs decide when there 

are tasks in the queue and idle machines, instead of being determined in advance by an 

algorithm (NGUYEN, 2017). This mechanism allows DRs to use updated system information 

and make bold decisions (NGUYEN, 2017). DRs are generally fast and can be quickly 

implemented, which is a significant advantage (FRAMINAN; FERNANDEZ-VIAGAS; 
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PEREZ-GONZALEZ, 2019). However, there is no DR that is good for all production 

environments (GONZALEZ-R; FRAMINAN; RUIZ-USANO, 2010). 

4.3.3 The make-to-availability dispatch rule       

The S-DBR/MTA dispatch rule is called prioritization by buffer status 

(PSP) (SCHRAGENHEIM et al., 2009) and is expressed as: 

𝑃𝑖𝑟 =
(𝑇𝐿𝑟− (𝐷𝑊𝐼𝑃𝑟+ 𝐹𝐺𝐼𝑟))

𝑇𝐿𝑟
   (2) 

           
The PSP equation (Equation 2) is like the one used to release the tasks (Equation 1). 

The only difference is the replacement of parameter 𝑊𝐼𝑃𝑟 by 𝐷𝑊𝐼𝑃𝑟. We also derived a PSP 

expression, which we call PSP1, by removing the 𝐷𝑊𝐼𝑃𝑟 variable: 

𝑃𝑖𝑟 =
𝑇𝐿𝑟−𝐹𝐺𝐼𝑟

𝑇𝐿𝑟
         (3) 

      

The idea is to use PSP1 to determine whether the use of WIP in prioritization improves 

or worsens the performance of S-DBR/MTA. 

4.4 Computational experiments 

After implementing a model based on Nguyen et al. (2015) and Thürer and Stevenson 

(2018), simulation experiments were conducted under 12 scenarios that contemplate the 

following DRs: PSP, PSP1, FIFO, AT, SPT, SRPT, PSP-AT, PSP-SPT, PSP-SRPT, PSP1-AT, 

PSP1-SPT, and PSP1-SRPT. The simulation model was implemented in the programming 

language Python 3.5, using the SimPy library, version 3.0.10. A PC with an Intel Core i5-6200U 

2.3 GHz processor and 8 GB RAM was used to run the experiments. The warm-up time and the 

time to collect statistical data corresponded to the completion of 1000 and 5000 tasks, 

respectively, according to Nguyen et al. (2015). Each scenario was replicated 50 

times (NGUYEN et al., 2015). 

4.4.1 Simulation setup 

The simulated system consisted of a non-permutational flow-shop production line with 

seven stations composed of a single machine (LADJ; TAYEB; VARNIER, 2021; THÜRER; 

STEVENSON, 2018a) and ten different products. As presented in Section 4.3.1, the S-

DBR/MTA was implemented without the target stock adjustment mechanisms and the planned 

load, so they did not influence the results. Table 4.1 lists the target levels used in the simulation, 
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together with the average times between the arrival of the demands simulated by the exponential 

distribution. Each demand is equivalent to the buffer unit of a product as well as for each 

task. The processing times of the products in the machines follow a uniform distribution 

according to the lower and upper bounds listed in Table 4.2. With these configurations, the 

production line utilization was approximately 90% under the PSP rule. 

Table 4.1 - Target stock units and the time between demands (in time units) 

 Products 

 1 2 3 4 5 6 7 8 9 10 

Target 

level 

29 36 46 41 54 30 33 36 33 30 

Time 

between 

demands 

16.00 12.65 9.84 11.24 8.43 15.46 14.05 12.50 14.05 15.46 

          Source: Proposed by the author 

 

Table 4.2 - Processing times (in units of time) 

 Machines 

Products 1 2 3 4 5 6 7 

1 1.0; 1.5 0.3; 0.8 2.2; 2.7 1.1; 1.3 0.6; 1.1 0.7; 1.2 1.0; 1.5 

2 0.5; 1.5 2.2; 2.7 0.5; 1.0 0.4; 0.9 0.5; 1.0 0.8; 1.3 3.9; 3.4 

3 0.1; 0.5 0.5; 1.0 2.6; 3.1 0.7; 1.2 0.8; 1.3 2.0; 2.5 0.3; 0.8 

4 2.0; 2.5 0.1; 0.3 0.3; 0.5 0.2; 0.4 3.3; 3.5 0.5; 1.0 0.5; 1.0 

5 1.0; 1.5 0.2; 0.7 0.8; 1.3 2.9; 2.4 0.1; 0.6 2.5; 3.0 0.1; 0.5 

6 1.2; 1.7 0.3; 0.6 0.5; 1.0 2.0; 2.5 0.1; 1.7 0.4; 0.6 1.3; 1.8 

7 0.1; 0.5 0.9; 1.4 0.5; 1.5 2.1; 2.6 1.0; 1.5 0.7; 1.3 0.1; 0.6 

8 0.5; 1.0 2.0; 2.5 0.1; 0.6 1.0; 1.5 1.3; 1.8 0.5; 1.5 1.5; 2.0 

9 0.1; 0.6 0.9; 1.1 2.0; 2.5 0.3; 0.8 1.0; 1.5 0.3; 0.8 1.0; 2.0 

10 0.5; 1.0 1.2; 1.7 1.3; 1.8 0.6; 1.1 0.5; 1.0 0.6; 1.1 0.1; 0.6 

   Source: Proposed by the author 

4.4.2 Selected and combined rules 

The instruction derived from a DR depends on the production objective that must be 

met, such as minimizing the average flow time or average delay. In the S-DBR/MTA system, 

the most appropriate rules are those that minimize the average flow time because they increase 

the frequency of product replenishment, although rules that are not based on deadlines or dates 

can also be applied. Considering these assumptions, we selected the following DRs: 

1) First-in-first-out (FIFO): the highest priority is given to the task that first 

arrived at the queue (RAJENDRAN; HOLTHAUS, 1999). Priority 

equation: 𝑃𝑖=𝐹𝑖𝑚.     
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2) Arrival time (AT): it prioritizes the task that arrived earlier in the 

system (RAJENDRAN; HOLTHAUS, 1999). Priority equation: 𝑃𝑖=𝜏-𝑇𝑖.     

3) Shortest processing time (SPT): it is efficient in minimizing both the average 

flow time and average delay on a highly loaded shop floor (GONZALEZ-R; 

FRAMINAN; RUIZ-USANO, 2010). It prioritizes the task with the least 

processing time. Priority equation: 𝑃𝑖=𝑇𝑖𝑚.     

4) Shortest remaining processing time (SRPT): seeks to minimize the average flow 

time (GONZALEZ-R; FRAMINAN; RUIZ-USANO, 2010). It prioritizes the 

task with the least remaining processing time. Priority equation: 𝑃𝑖=𝑂𝑖.     

 

S-DBR/MTA rules use stock, whereas rules selected from the literature consider time 

data. We consider that rules combining both data can better balance the need to replenish the 

buffer’s items with a higher percentage of penetration and speed of replenishment, increasing 

the service level. 

These are the combined rules: 

1) PSP-AT: chooses the task with the highest priority 𝑃𝑖 = (𝜏-𝑇𝑖)*𝑃𝑆𝑃. 

2) PSP-SPT: chooses the task with the lowest priority 𝑃𝑖 = 𝑇𝑖𝑚/𝑃𝑆𝑃. 

3) PSP-SRPT: chooses the task with the lowest priority 𝑃𝑖 = 𝑂𝑖/𝑃𝑆𝑃. 

4) PSP1-AT: chooses the task with the highest priority 𝑃𝑖 = (𝜏-𝑇𝑖)*𝑃𝑆𝑃1. 

5) PSP1-SPT: chooses the task with the lowest priority 𝑃𝑖 = 𝑇𝑖𝑚/𝑃𝑆𝑃1. 

6) PSP1-SRPT: chooses the task with the lowest priority 𝑃𝑖 = 𝑂𝑖/𝑃𝑆𝑃1. 

4.4.3 Performance indicators 

To evaluate the performance of the S-DBR/MTA when using different DRs, the 

following indicators were computed: 

1) Service Level (S): fraction of the demand immediately from stock in the long 

run. It indicates the effectiveness of the system to ensure availability. Its 

registration occurs at the end of each replication and is calculated by:       

𝑆 =
𝐼𝐴𝐸

𝑇𝐼𝐷
     (4) 

where 𝐼𝐴𝐸 is the total number of items served by the FGI, and 𝑇𝐼𝐷 is the total 



60 

 

 

 

number of items demanded.  

2) Average inventory in the system (�̅�): sum of the averages of the WIP and FGI. 

The value record occurs every time an item enters or leaves the FGI, or a task 

enters or leaves the production line, which changes the WIP. At the end of each 

replication, the average was calculated according to: 

�̅� =
∑ 𝑊𝐼𝑃𝑖 𝑀

𝑖=1

𝑀
 +

∑ 𝐹𝐺𝐼𝑖  𝑁
𝑖=1

𝑁
    (5) 

where 𝑊𝐼𝑃 is the sum of all stocks in the process at time i, 𝑀 is the number of 

entries and exits of the tasks on the production line during the replication, 𝐹𝐺𝐼 

is the sum of the stocks of the finished products of all products, and 𝑁 is the 

number of records 𝐹𝐺𝐼 made throughout replication. 

3) Average flow time (�̅�): average time a task remains in production. At the end of 

each replication, the average was calculated according to: 

�̅� =
∑ 𝐹𝑖 𝑁

𝑖=1

𝑁
    (6) 

where 𝐹𝑖 is the flow time of task i, and N is the total number of tasks passed 

through the production line.  

4) Inventory rate per service level percentage (𝐶̅): indicates how many inventory 

units are required for each service level percentage. It identifies the rule that best 

balances the stock level with the service level. It was calculated as follows: 

𝐶̅ =
�̅�

𝑆
     (7) 

where �̅� is the average stock measure in the system and S is the service-level 

measure. 

4.5 Results 

In this section, we analyze the survey results summarized in Table 4.3. Starting with 

the service level indicator (S), the best performances are observed for the PSP-SPT and PSP1-

SPT rules, as can be seen in Figure 4.2. The combination of PSP and PSP1 with SPT increased 

the service level by 21%, which improved product availability. The PSP-SRPT rule achieved a 

similar result, with a 19% increase in service level compared to the PSP. 
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Table 4.3 - Rules performance 

 S �̅� �̅� 

Rule Average 
Std. 

Dev. 
Average 

Std. 

Dev. 
Average 

Std. 

Dev. 

PSP 0.73  0.10 301.81 23.87 379.38 36.54 

PSP1 0.69  0.08 301.55 25.19 393.84  40.27 

FIFO 0.70  0.08 304.85 24.44 387.19  38.20 

AT 0.74  0.09 292.21 26.51 367.44  40.54 

SPT 0.81  0.03 135.80*  5.33 140.12*   8.56 

SRPT 0.83  0.05 139.29* 15.98 117.91*  16.92 

PSP-AT 0.79  0.11 282.55 32.77 352.74  49.20 

PSP-SPT 0.88*  0.04 228.93 20.92 272.94  31.56 

PSP-SRPT 0.87* 0.04 269.41 22.35 335.27  36.01 

PSP1-AT  0.75  0.08 295.19 24.83 372.65 38.47 

PSP1-SPT  0.88*  0.05 220.70* 22.90 260.78* 34.04 

PSP1-SRPT  0.84  0.04  271.64 21.23 333.13 31.24 

                     Source: Proposed by the author 

    *Better results 

Figure 4.2 - Service level boxplot S 

 

                                                    Source: Proposed by the author 

 

Regarding the mean flow time (�̅�), the SPT and SRPT rules obtained the lowest 

averages, 69%, and 63% respectively, compared to the PSP, as shown in Figure 4.3. The PSP-

SPT and PSP1-SPT rules, which demonstrated the highest service levels, reduced the average 

flow time by 31% and 28% respectively. Both rules are recognized for their effectiveness in 

reducing the average production flow time. The Shortest Processing Time (SPT) rule prioritizes 

tasks based on their shortest processing time, ensuring that the shortest jobs are completed first. 

This approach decreases wait time in the system as these jobs spend less time in the queue 

waiting for processing to begin. By minimizing the wait time, job completion is accelerated, 

resulting in a decrease in throughput time (KOULAMAS; KYPARISIS, 2007). Something 

similar happens with the Shortest Remaining Processing Time (SRPT) rule, which prioritizes 
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the task with the shortest remaining processing time, ensuring that the task closest to completion 

is processed first. This dynamic prioritization strategy effectively minimizes flow time by 

promptly completing the most imminent jobs (BECCHETTI; LEONARDI, 2001; HUNG; 

CHANG, 2002). 

Figure 4.3 - Boxplot of mean flow time �̅� 

 

                                                 Source: Proposed by the author 

 

When it comes to the system's average stock (�̅�), Figure 4.4 clearly shows that both 

the SPT and SRPT rules achieved significant reductions compared to the other rules. The SPT 

rule reduced the stock by 55%, while the SRPT rule reduced it by 54% when compared to the 

PSP rule. This information is illustrated in Figure 4.4.  

Figure 4.4 - Boxplot of the average stock in the system �̅� 

 

                                                Source: Proposed by the author 
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Figure 4.5 makes clear that a decrease in inventory is closely related to a reduction in 

work-in-process (WIP). The WIP decrease, in turn, is attributed to a decrease in the average 

throughput time (�̅�). This interesting phenomenon can be explained by Little's law, which states 

that, in a stationary system, the average long-term throughput is equal to the ratio of the average 

total work in process (WIP) to the average flow time (FT) (LITTLE, 1961). 

 

Figure 4.5 - Boxplot of average WIP in the system 

 
     Source: Proposed by the author 

 

The increase in production speed resulting from the SPT and SRPT rules led to a higher 

level of finished goods inventory (FGI), as shown in Figure 4.6. However, it's important to note 

that having more FGI didn't give these rules an advantage in terms of service level, as depicted 

in Figure 4.2. This can be attributed to not considering inventory levels when prioritizing tasks. 

To illustrate, let's consider a scenario where a job with low inventory and a long processing 

time must wait for a significant duration until other jobs are processed. During this waiting 

period, the FGI for that job diminishes. Consequently, the service level performance is 

negatively impacted. Due to this phenomenon, it is noteworthy that the PSP rule outperformed 

the SPT and SRPT rules in terms of service level, as illustrated in Figure 4.2, despite having a 

lower level of finished goods inventory (FGI).  

The service level is the principal indicator of the performance of the S-DBR/MTA 

system; however, there must be a balance between it and the system's average stock. Without 

this balance, the application of S-DBR/MTA may become unfeasible, owing to the increased 

inventory costs. Therefore, S-DBR/MTA must work to ensure availability while keeping 

inventory levels low. This measure was used to determine which rule had the best balance. 
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Table 4.4 shows the results thus obtained. The classification in Table 4.4 shows that the SPT 

and SRPT rules provided the best results, with SRPT showing an advantage because of its best 

service level. The PSP rule was only in the 10th position. 

Figure 4.6 - Boxplot of average FGI in the system 

 

 
                                            Source: Proposed by the author 

 

 

Table 4.4 - Inventory rate by percentage of service level 

Classification Rule �̅� S(%) E/S(%) 

1 SRPT 139.29 83% 1.68 

2 SPT 135.8 81% 1.68 

3 PSP1-SPT 220.7 88% 2.51 

4 PSP-SPT 228.93 88% 2.60 

5 PSP-SRPT 269.41 87% 3.10 

6 PSP1-SRPT 271.64 84% 3.23 

7 PSP-AT 282.55 79% 3.58 

8 PSP1-AT 295.19 75% 3.94 

9 AT 292.21 74% 3.95 

10 PSP 301.81 73% 4.13 

11 FIFO 304.85 70% 4.36 

12 PSP1 301.55 69% 4.37 

                                Source: Proposed by the author 

 

4.6 Conclusions 

This study aims to compare the performance of the PSP dispatching rule to other 

already known rules (FIFO, SPT, AT, and SRPT) and create a PSP-based rule called PSP 1, 

which disregards the DWIP parameter. In the study, were created combinations of such rules. 

The rules were evaluated in a simulation of a flow shop line operated by the MTA.   



65 

 

 

 

The results show that the PSP and PSP 1 did not outperform the other rules in any of 

the four performance indicators: service level, the average stock in the system, average flow 

time, and inventory rate by the service percentage level. The PSP 1 was no better than the PSP, 

which reduced the service level by 4% and increased the average streaming time by the same 

proportion.  

In ranking inventory rate by the service level percentage, which shows the most 

efficient rules and what needs less inventory to reach the service level, PSP 1 had the worst 

result. Therefore, it is not advisable to disregard the DWIP parameter. This changes when PSP 

and PSP 1 are combined with the SPT rule, called PSP-SPT and PSP 1-SPT. Both presented 

the same service level in this case, but the PSP1-SPT obtained 5% less average flow time. In 

the ranking of the rate of inventory by the percentage of service level, the PSP1-SPT obtained 

third place and the PSP-SPT fourth place. It is advisable to withdraw the PSP DWIP when 

combined with the SPT rule, which can compensate for the increase in average flow time 

generated by the withdrawal of the DWIP. 

In ranking the inventory rate by service level percentage, the SRPT and SPT rules were 

tied for the first position, and the PSP1-SPT was in the third position. The SRPT had a 2% 

service level advantage compared to the SPT. Among the three, the PSP1-SPT achieved the 

best level of service. PSP and PSP 1 only obtained the penultimate ante and last positions. 

The experiments showed that the PSP rule may not be the best for the MTA, at least 

in environments like the one studied, and that other rules should be considered to improve the 

system's performance. This study contributes to the S-DBR literature showing that the proposed 

production sequencing, the PSP, should be revised. It is important to note that advancing a task 

whose finished goods inventory is closer to the end can harm the stock of other products. This 

contribution can be extended to practice as a warning to companies that use S-DBR and those 

that intend to implement it.  

Further research is required to confirm the evidence presented. To achieve this, it is 

recommended to conduct experiments that test the activated mechanisms of dynamic buffer 

management and prioritization in releasing tasks based on buffer status and seasonal demand, 

while considering the prevailing trends and high degree of uncertainty. Additionally, a new 

study could be conducted to examine the stability of the rules results when applied to different 

systems with varying characteristics, such as an increased number of products and a larger 

quantity of machines. This analysis would offer valuable insights into the consistency of the 

results and whether the rules apply consistently across different production systems. It is 
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important to emphasize that the findings of this study cannot be generalized to other types of 

production systems. Therefore, future studies should encompass diverse production line 

arrangements, including job shop, assembly, and cellular manufacturing, to obtain a 

comprehensive understanding of the topic. 

In the context of the thesis, this study is complementary to the study of specific 

objective 3 - develop a dispatching method for S-DBR/MTA to dependent setup.   
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5 DISPATCHING METHOD BASED ON 

PARTICLE SWARM OPTIMIZATION FOR 

MAKE-TO-AVAILABILITY 

5.1 Introduction 

Some structural keystones are required to design a manufacturing system; one of the 

most important is identifying how the enterprise will deliver products to clients. This is known 

as the fulfill demand strategy. Two main strategy branches for fulfilling the demand of 

production systems are widely adopted in manufacturing systems: the first is referred to as 

make-to-order, which produces goods according to a set of client orders. The existence of client 

orders is a common premise in production scheduling literature, as seen in the study by 

(BAKER; TRIETSCH, 2018). The second is based on maintaining or establishing the stock 

levels of produced goods and is used a premisse for lot-sizing planning approaches (DREXL; 

KIMMS, 1997; JANS; DEGRAEVE, 2008). This strategy is known as make-to-stock. 

The make-to-availability (MTA) strategy is derived from make-to-stock and aims to 

ensure the availability of products by providing rapid stock replenishement, without a formal 

method of demand forecasting. The MTA was proposed whilst developing the simplified drum 

buffer rope (S-DBR), a production control system based on the foundations of the theory of 

constraints (TOC). The TOC has been used extensively to tackle manufacturing issues 

(GHORBANI et al., 2014; PANIZZOLO, 2016; URBAN; ROGOWSKA, 2020). Urgan and 

Rogowska (2020) designed a method for identifying a bottleneck in manufacturing system 

managed by TOC. Panizzolo (2016) conducted an empirical study of the relationship between 

TOC production and operational performance in manufacturing plants. Ghorbani et al. (2014) 

applied the TOC thinking process to determine the critical factors in a cellular manufacturing 

system. 

Contrary to production planning approaches (that can be found, for example, in the 

scheduling literature of Baker and Trietsch (2009), and Zhang and Roy (2019) and the S-DBR 

operates at the control level of the manufacturing process. Thus, the S-DBR aims to react to 

inventory levels changes,  instead of generating a set detailed resource allocation plan.  This 

continuously updates a  production  plan, according to a set of well-established rules 

(SCHRAGENHEIM; DETTMER; PATTERSON, 2009). Similar behavior can be observed in 
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production control techniques, such as Kanban and CONWIP (AL-TAHAT; DALALAH; 

BARGHASH, 2012; GAURY; PIERREVAL; KLEIJNEN, 2000; KHOJASTEH-GHAMARI, 

2012). 

Thus, in S-DBR, production orders (POs) are prioritized, both at the time of production 

release and in workstations. The S-DBR is based on the following elements. The buffer status 

(BS) defines the degree of importance of each PO (SCHRAGENHEIM; DETTMER; 

PATTERSON, 2009). The buffer is the sum of stock in the form of finished goods inventory 

(FGI) and the work-in-process (WIP) (SCHRAGENHEIM; DETTMER; PATTERSON, 2009). 

The dispatching PO logic of the MTA, referred to as prioritization by buffer status (PBS), does 

not consider dependent setup time, thereby increasing the mean flow time, and delaying the 

replenishment of the stock that was consumed by demand. 

The simplified behavior of the S-DBR is illustrated in Figure 5.1. In this figure, five 

POs initially arrive at the manufacturing system. The production priority of these orders is set 

as [5, 1, 3, 4, 2] owing to the adopted dispatching method. After some time, PO 5 is produced 

and stored in the FGI, and orders 1 and 3 are still in the system. This stage is illustrated in Figure 

5.1a. At this point, PO 6 arrives in the system. The dispatching method re-prioritizes the 

remaining POs to [4, 6, 2]. This is presented in Figure 5.1b. 

As presented in Figure 5.1, the choice of a proper dispatching method is a vital element 

for implementing the S-DBR. There are many studies that have present interesting results in 

terms of solving the dispatching problem with metaheuristics, such as particle swarm 

optimization (PSO) (MARICHELVAM; GEETHA; TOSUN, 2020; NGUYEN; ZHANG, 

2017b; WANG et al., 2016), genetic algorithms (HABIB ZAHMANI, 2017; ROLF et al., 2020; 

TEPPAN; DA COL, 2020), tabu search (ALI; TELMOUDI; GATTOUFI, 2019; LEE; YU; 

LEE, 2013; SHAHZAD; MEBARKI, 2016), simulated annealing (BEKTUR; SARAÇ, 2019; 

PRATA; DE ABREU; LIMA, 2020; VITAL-SOTO; AZAB; BAKI, 2020), and ant colony 

(KORYTKOWSKI; WIŚNIEWSKI; RYMASZEWSKI, 2013). 

However, during our initial review of the literature, we found no studies that presented 

a solution for S-DBR to effectively incorporate sequence-dependent setup time into its 

production order prioritization logic. 
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Figure 5.1 - Example of the operation of an S-DBR system 

 

 

              Source: Proposed by the author 

 

Thus, this study aims to develop a dispatching method for S-DBR/MTA to dependent-

setup time environments. To achieve this, we use the continuous optimization found by the 

particle swarm optimization (PSO) to adjust the production orders prioritization, thereby 

minimizing the mean flow time and total setup time in environments with a dependent setup 

time, named particle swarm optimization for Sequence (PSO-S). Although there are further 

optimization methods that can be applied, we believe that PSO has interesting, documented 

results, which makes it a good candidate for this problem and has been successfully applied to 

solve various optimization problems (LIANG; CUEVAS JUAREZ, 2016; MARICHELVAM; 

GEETHA; TOSUN, 2020).  The advantages of the PSO algorithm are its simple structure, ease 

of implementation, speed in obtaining solutions, and robustness, as demonstrated in the 

literature. (TASGETIREN et al., 2007). 

To evaluate the performance of the new dispatching method, we used a computational 

simulation to compare this method and the MTA dispatching logic. The results demonstrated 

that PSO-S achieved better performance, reducing the mean flow time, setup time, and stock 

level. 
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The remainder of this paper is structured as follows: Section 2 presents the literature 

related to MTA and PSO; Section 3 presents the problem; Section 3.2 describes the method 

proposed to solve it; Section 4 describes the simulation implementation details and presents the 

results; and Section 5 draws the concluding remarks of this paper, including suggestions for 

future research.  

5.2 Background 

5.2.1 Make-To-Availability 

MTA is a subtype of make-to-stock, which aims to guarantee the availability of 

final pro ducts to the selected market (SCHRAGENHEIM; DETTMER; PATTERSON, 2009). 

This definition differs from traditional make-to-stock, in which no firm commitment to 

availability is given (SCHRAGENHEIM; DETTMER; PATTERSON, 2009). Two key 

guidelines maintain the tactical aspect of the MTA approach (GOLDRATT, 2009; 

SCHRAGENHEIM; DETTMER; PATTERSON, 2009):  

1) Production needs to focus on maximizing the flow of orders through the 

warehouse, until they reach the finished product warehouse.  

2) Unless there is a good reason to believe that demand has changed, or will change, 

a simple and direct way to react to any sale is to replenish all the sold stock.  

The procedure to operate a production system in the MTA mode comprises of four 

steps (SCHRAGENHEIM; DETTMER; PATTERSON, 2009): 

Step 1: Definition of the initial stock target levels: 

In MTA, the quantity of stock in the factory or system must remain fixed for each 

product. This quantity is called the target level (TL) and consists of the average demand during 

the replenishment time (RT). The RT it is the time needed to replenish items that have been 

consumed, weighted by a factor of demand variability during the RT period. To ensure 

availability with low stock levels, the RT must be as short as possible. This TL is an initial and 

conservative value and is adjusted dynamically according to the behavior profile over time of 

the finished good inventory (FGI) available for delivery (SCHRAGENHEIM, 2002; 

SCHRAGENHEIM; DETTMER; PATTERSON, 2009). 

 

 



71 

 

 

 

Step 2: Production order generation: 

As stated previously, POs are created according to rules based on stock levels. In this 

case, a production order is generated when the total stock level of certain items (considering 

both the WIP and the FGI) is below the TL. To avoid the inconvenience of small production 

orders across the production system, Schragengheim, Dettmer and Patterson (2009) suggested 

a derived policy that sets each order release priority according to the BS. In this policy, a PO is 

enabled when the level of (WIP + FGI) is lower than the TL. The set of enabled orders are 

sorted by the value of BS, 𝐵𝑆 =
𝑇𝐿−𝑊𝐼𝑃−𝐹𝐺𝐼

𝑇𝐿
. 

Step 3: Buffer Management 

The role of buffer management (BM) is to allocate appropriate priorities and notify 

operators when an extraordinary effort is required to move specific orders forward. 

The principal protection for immediate delivery is the FGI. The TL buffer can be 

divided into three equal zones. The status of the buffer (FGI+WIP) is considered to be green, 

yellow, or red when it is equal to or greater than 66.7%, between 33.3% and 66.7%, or less than 

33.3% of the TL, respectively. The green and yellow status form the buffer penetration zone. 

Figure 5.2 illustrates this concept. 

Figure 5.2 - Three zones of the TL 

 

                                                   Source: Adapted from Schragenheim (2010) 

Another key concept of the MTA is the BS of a PO, defined by Schragenheim (2010) 

in equation (1). In this equation, the BS is given as a measurement of the deviation between the 

stock TL and the existing stock, considering both the downstream work In process (DWIP) and 

the FGI. Each order receives a priority according to the value of BS: for the range 100%-66%, 

the PO has a high priority; for 𝐵𝑆𝑃𝑂 = [66% − 33%], a medium priority; and if an order has a 

BS bellow 0.33%, it receives a low priority. 

 𝐵𝑆𝑃𝑂 =
𝑇𝐿−𝐷𝑊𝐼𝑃−𝐹𝐺𝐼

𝑇𝐿
 (1) 
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Step 4: Maintaining the correct TL 

The frequency and intensity of penetrations in the green and red regions in a period 

demonstrate the effects of the TL (SCHRAGENHEIM, 2010). The FGI levels trigger changes 

in the TL; if FGI stays on the green zone for a specified amount of time, the TL decreases; 

similarly, the TL increases if the FGI stays in the red zone for too long. 

5.3 Problem description and dispatching method 

As described in Section 4.1, one of the main issues of the MTA method is its difficulty 

in responding to the dynamics of the system, such as the changes caused by sequence-dependent 

setup times. The dependent setup time can influence the system flow time and, consequently, 

increase the stock levels. Thus, this study aims to develop a more suitable algorithm for 

controlling a manufacturing shop-floor. We assume that the arrival of the orders is not known 

in advance and the processing times are stochastic. As a testing environment, we adopt  three 

simulation models inspired by the work of Thurer et al.  (2017). These models are non-

permutational flowshops, with 7 stations.  The arrivals are ordered according to an Earlang 

distribution. Each order is composed of their processing times at each stage. The simulation 

runs until 30 replications and 10,000 time units have been completed for each order. The goal 

is to minimize the  mean flowtime plus setup time, according to equation (2). We also analyze 

the stock levels of the final solution. More details regarding the specifics of the simulation 

model are given in  Section 4. 

 𝐹𝑆𝑇(𝑆𝜋) = (
∑𝑛

𝑗=1 𝐶𝑗

𝑁
) + ∑𝑛

𝑗=1 𝑆𝑇𝑗,𝑗−1 (2) 

Where:   

• 𝐹𝑆𝑇: Value of the fitness;  

• 𝑆𝜋: A solution (particle) represents a sequence of production orders; each one contains 

a value of 𝐶𝑗 and 𝑆𝑇(𝑗,𝑗−1);  

• 𝑁: Total number of production orders in the queue;  

• 𝐶𝑗: Estimation of completion time of production order 𝑗;  

• 𝑆𝑇(𝑗,𝑗−1): Setup time of production order 𝑗, dependent on production order 𝑗 − 1;  
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5.4 The Particle Swarm Optimization 

PSO is a metaheuristic proposed by Kennedy and Eberhart in 1995 (CHOPARD; 

TOMASSINI, 2018). PSO emulates the foraging behaviors of birds and fish schooling by 

moving agents named "particles" through a search space (CHEN et al., 2018; XIA et al., 2019). 

The position 𝑋𝑖 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑑 , … , 𝑥𝑖𝐷], 𝑥𝑖𝑑 ∈ [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥] of each particle i represents a 

viable solution to the problem with D dimensions. A particle also contains a dynamically 

adjusted velocity vector 𝑉𝑖 = [𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝑑 , … , 𝑣𝑖𝐷],  𝑣𝑖𝑑 ∈ [𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥] to allow exploration 

of the search space. Each particle also contains a dynamically adjusted velocity vector V to 

allow exploration of the search space and two acceleration coefficients (c1 and c2). Algorithm 

1 presents the pseudo-code of the PSO. Mathematically, the particle velocity and position are 

updated according to the following equations (TIAN; SHI, 2018): 

𝑣𝑖𝑑(𝑡 + 1) = 𝜔 ⋅ 𝑣𝑖𝑑(𝑡) + 𝑐1 ⋅ 𝑟1[𝑝||𝑖𝑑(𝑡) − 𝑥𝑖𝑑(𝑡)] + 𝑐2 ⋅ 𝑟2[𝑝𝑔𝑑(𝑡) − 𝑥𝑖𝑑(𝑡)] (3) 

𝑥𝑖𝑑(𝑡 + 1) = 𝑥𝑖𝑑(𝑡) + 𝑣𝑖𝑑(𝑡 + 1)                              

(4)   

where: 

• 𝑐1 and 𝑐2 are acceleration coefficients reflecting the weight of the stochastic acceleration 

terms, which pull each particle toward the local best (𝑝𝑏𝑒𝑠𝑡) and global best (𝑔𝑏𝑒𝑠𝑡) 

positions, respectively.  

• 𝑟1 and 𝑟2 denote two random numbers, uniformly distributed in the range (0,1).  

• 𝜔 is the inertia weight used for balancing the global and local search. In general, a large 

inertia weight facilitates global exploration, whereas a small inertia weight tends to 

facilitate local exploration.  

• The best previous position (the position that yields the best fitness value) of the 𝑖𝑡ℎ 

particle is recorded as 𝑝𝑏𝑒𝑠𝑡 and denoted by 𝑃𝑖 = [𝑝𝑖1, 𝑝𝑖2, . . . , 𝑝𝑖𝑑, . . . , 𝑝𝑖𝐷], whereas 

the global best position of the entire swarm achieved so far is recorded as 𝑔𝑏𝑒𝑠𝑡 and 

indicated as 𝑃𝑔 = [𝑝𝑔1, 𝑝𝑔2, . . . , 𝑝𝑔𝑑, . . . , 𝑝𝑔𝐷].  

The pseudo-code of the PSO metaheuristic is presented in Algorithm 1. 
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The PSO algorithm has been used for a wide range of applications, such as logistics 

(SHIMIZU; IKEDA, 2010; SHIMIZU; SAKAGUCHI; MIURA, 2014), scheduling (NOUIRI 

et al., 2018), among others (LIU et al., 2019; XU et al., 2020). 

5.4.1 Proposed dispatching method based on PSO 

The objective of PSO-S is to sequence the production orders to be processed by a 

single machine with dependent setup time, minimizing mean flow time plus setup time, 

according to Eq. 5. The PSO-S is described in detail in Algorithm 2. The following notation is 

adopted to algorithm: 

• 𝑑𝑝
(𝑡+1)

: percentage deviation from actual position 𝑋𝑖
𝑡 to the best particle position 𝑃𝑖, used 

in the next iteration 𝑡 + 1;  

• 𝑑𝑔
(𝑡+1)

: percentage deviation from actual position 𝑋𝑖
𝑡 to the best global position 𝑃𝑔, used 

in the next iteration 𝑡 + 1;  

• 𝑑𝑝𝑔
(𝑡+1)

: mean of percentage deviation 𝑑𝑝
(𝑡+1)

 and 𝑑𝑔
(𝑡+1)

;  

• 𝑣𝑖
(𝑡+1)

: new particle velocity, used to update the particle position, for the next iteration 

𝑡 + 1. This value is the number of swaps that occur in the update of the position between 

the POs contained in the particle;  

• 𝐷 = dimensions of the particle;  

• 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑: Indicates whether 𝑔𝑏𝑒𝑠𝑡 has improved in the iteration.  

𝐹𝑆𝑇(𝑆𝜋) = (
∑𝑛

𝑗=1 𝐶𝑗

𝑁
) + ∑𝑛

𝑗=1 𝑆𝑇𝑗,𝑗−1 (5) 

where   
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• 𝐹𝑆𝑇: Value of the fitness;  

• 𝑆𝜋: A solution (particle) represents a sequence of production orders; each one contains 

a value of 𝐶𝑗 and 𝑆𝑇(𝑗,𝑗−1);  

• 𝑁: Total number of production orders in the queue;  

• 𝐶𝑗: Estimation of completion time of production order 𝑗;  

• 𝑆𝑇(𝑗,𝑗−1): Setup time of production order 𝑗, dependent on production order 𝑗 − 1;  

The PSO-S algorithm initializes the swarm (𝑋𝑖), randomizing initial particles (𝑋0), 

which have a sequence of production orders (see lines 6 and 9). From line 9, the algorithm finds 

the sequence that minimize the mean flowtime plus total setup time, executing various 

interactions on swarm (𝑋𝑖). Each interaction passes by all the particles (line 12), applying the 

following logic: 

1) Updating 𝑝𝑏𝑒𝑠𝑡 (lines 14 and 15): the best particle position (𝑝𝑏𝑒𝑠𝑡) is updated 

if its fit (𝐹𝑆𝑇(𝑋𝑖)) is less than the fit of the actual best particle position 

(𝐹𝑆𝑇(𝑋𝑖)). 

2) Updating 𝑔𝑏𝑒𝑠𝑡 (lines 16 and 17): the best global position (𝑔𝑏𝑒𝑠𝑡) is updated if 

its fit (𝐹𝑆𝑇(𝑋𝑖)) is less than the fit of the actual best global position 

(𝐹𝑆𝑇(𝑔𝑏𝑒𝑠𝑡)). 

3) Percentage deviation calculation of 𝑑𝑝
(𝑡+1)

 and 𝑑𝑝
(𝑡+1)

 (lines 19, 20, and 21): if 

the actual best global position (𝑔𝑏𝑒𝑠𝑡) is not updated, the algorithm calculates 

the percentage deviation from the particle fit (𝐹𝑆𝑇(𝑋𝑖)) to the best particle fit 

(𝐹𝑆𝑇(𝑝𝑏𝑒𝑠𝑡)), and from the particle fit (𝑑𝑝
(𝑡+1)

) to the best global fit 

(𝐹𝑆𝑇(𝑝𝑏𝑒𝑠𝑡)) - 𝑑𝑝
(𝑡+1)

 and 𝑑𝑝
(𝑡+1)

, respectively. Subsequently, the mean of them 

(𝑑𝑝𝑔(𝑡+1)) is calculated to determine the particle velocity of movimentation. 

4) Particle velocity updating (𝑣𝑖) (lines from 23 to 26): the velocity (𝑣𝑖) is the 

number of swaps between the production orders (𝑥𝑖𝑑) into particle 𝑖, calculated 

by multiplying the partricle length (𝐷) by 𝑑𝑝𝑔(𝑡+1). 

5) Particle position updating (lines from 28 to 33): at the position update, the 

algorithm passes through 𝑣𝑖 positions and swaps production order 𝑥𝑖𝑑 (posterior) 

by 𝑥𝑖𝑑+1 (previously). The swap occurs if it minimizes the sum of the process 

time (𝑀𝑃) and dependent setup time (𝑆). 
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6) Iteration validation (lines 34 ad 35): the iteration is valid denpending on the 

global best (𝑔𝑏𝑒𝑠𝑡) is improved or not. Thus, the algorithm is executed until it 

can no longer improve the result. 

5.5 Computational Experiments 

5.5.1 Simulation  

To analyze the performance of the PSO-S, we implemented the MTA described in the 

previous section in Python 3.5. Based on Thurer et al. (2017), the simulation model was 

implemented using the SimPy v. 3.0.10 library. Three different methods were used to sequence 

the POs in production: first-in-first-out (FIFO), PBS, and PSO-S. This model was executed on 

a single core of a PC i7. The simulated manufacturing environment is based on the work of 

based on Nguyen et al. (2015) and Thürer and Stevenson (2018), composed of a non-

permutational flow shop, which contains 7 stations, where each station is a single machine. 

This model was validated by replicating the configuration described by Thurer et al. 

(2017), and performing the following procedure: three different simulation models were 

implemented, altering only the position of the single bottleneck station to stations 1, 4, and 7. 

For each instance, there is one product, and the operation processing times follow a truncated 

2-Erlang distribution, with a mean of one time unit after truncation and a maximum of four time 

units. The maximum processing time was reduced by 20% in the non-bottleneck stations, from 

4 time units to 3.2 time units. The inter-arrival time of the POs follows an exponential 

distribution, with a mean of 1.111 time units, which results in a utilization level of 90% at the 

bottleneck. The orders were released onto the shop floor immediately upon arrival at the system. 

The mean flow time was the baseline used to validate the simulation model. For each model 30 

replications were executed. Table 5.1 shows that there is only a 5% difference between the 

results from Thurer et al (2017) and the algorithm proposed in this study. 

Table 5.1 - Comparison of the results of mean flow time with the results of Thürer (2017) 

The position of 

the bottleneck 

station 

Results from 

Thürer et al. 

(2017) 

Results found by 

the implemented 

model 

Deviation in 

absolute 

numbers (1 - 2) 

Deviation in 

percent (1 - 2) 

First 12.83 12.37 0.46 3.60% 

Center 12.85 12.38 0.47 3.70% 

Last 12.96 12.44 0.52 4.00% 

                   Source: Proposed by the author 
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The original simulation model was adapted by modifying the following elements. It 

included ten products, and all machines had dependent setup time for all products. Three 

different models were implemented on the MTA: FIFO, PBS, and PSO-S. The FIFO was 

adopted as a comparison parameter to demonstrate the difference between sequencing POs by 

PSO-S and without changing the sequence. 

There is a stock buffer for each product in the modified simulation model. The inter-

arrival time of the demands that consume the buffers follows an exponential distribution, and 

the mean for each product is shown in Table 5.2. Each demand consumes one item from the 

FGI. The processing time of the machines follow the Erlang distribution, and Table 5.3 contains 

the values of the scale parameter. The shape parameter of the Erlang is equal to 2 for all products 

and machines.  Table 5.4 presents the dependent setup time matrix, which is the same for all 

machines. The general simulation, PSO-S parameters, and MTA parameters are given in Table 

5.5, Table 5.6, and Table 5.7, respectively. 

The parameters from Table 5.5 were defined as replications, warmup time, and 

simulation time, following the findings of Thurer et al (2017). The parameters defined using 

previous simulations were: number of particles (𝑁𝑝) and number of iterations (𝑁𝑡). It can be 

observed from the results that PSO approach can provide better results than the other analyzed 

methods. 

Table 5.2 - Mean values (expressed in time unit) of inter-arrival time of products demands 

Products 1 2 3 4 5 6 7 8 9 10 

Mean value 0.5 1 1.5 2 2 2.5 3.5 2.5 3.5 3 

Source: Proposed by the author 

 

Table 5.3 - Processing time (expressed in time unit) matrix of each product expressed 

Machines Products 

1 1 2 3 4 5 6 7 8 9 10 

2 0.2 0.2 0.3 0.5 0.7 0.1 0.7 0.1 0.7 0.7 

3 0.3 0.3 0.1 0.7 0.8 0.6 0.9 0.7 0.1 0.9 

4 0.4 0.4 0.5 0.6 0.9 0.1 0.2 0.2 0.6 0.8 

5 0.5 0.5 0.1 0.8 0.3 0.2 0.3 0.1 0.2 0.3 

6 0.6 0.6 0.7 0.2 0.4 0.2 0.4 0.3 0.9 0.6 

7 0.7 0.7 0.1 0.3 0.5 0.4 0.5 0.1 0.4 0.1 

8 0.8 0.1 0.2 0.4 0.6 0.4 0.6 0.4 0.3 0.5 

  Source: Proposed by the author 
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Table 5.4 - The matrix of dependent setup time (expressed in time unit) of each product 

Products 1 2 3 4 5 6 7 8 9 10 

1 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 

2 0.1 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

3 0.9 0.1 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

4 0.8 0.9 0.1 0.0 0.2 0.3 0.4 0.5 0.6 0.7 

5 0.7 0.8 0.9 0.1 0.0 0.2 0.3 0.4 0.5 0.6 

6 0.6 0.7 0.8 0.9 0.1 0.0 0.2 0.3 0.4 0.5 

7 0.5 0.6 0.7 0.8 0.9 0.1 0.0 0.2 0.3 0.4 

8 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.0 0.2 0.3 

9 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.0 0.2 

10 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.0 

Source: Proposed by the author 

 

Table 5.5 - General simulation parameters 

Parameter Value 

Replications 30 times 

Warmup time 3,000 time unit 

Simulation time 10,000 time unit 

Order production 

size 

10 units of the 

products 

                         Source: Proposed by the author 

 

Table 5.6 - PSO-S parameters 

Parameter Value 

Number of 

particles (𝑁𝑝) 

20 

Number of 

iterations (𝑁𝑡) 

20 

                      Source: Proposed by the author 

 

Table 5.7 - MTA parameters 

Parameter Value 

One day 10.0 time unit 

Initial Replenishment Time (RT) 5.0 days 

Initial CCR station 7 

Initial Mean of Setup time on CCR 1 

Initial Mean of Process time on CCR 1 

Initial Target Level Multiplication of diary demand by RT 

parameter. 

                          Source: Proposed by the author 

 

The MTA parameters in Table 5.7 were updated every 100 time units. Upon updating, 

the "Initial CCR Station" received the number of the most-utilized machine in that period. The 

"Initial Mean of Process Time on CCR" was updated according to the mean process time for 

each job on the CCR, and the "Initial Mean of Setup Time on CCR" was updated in the same 
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way. The "Initial Replenishment Time (RT)" was updated according to the mean RT for each 

PO. 

The measures used to compare the performance of the dispatching solutions were mean 

FT, ST, mean WIP, FR, mean TL, and mean UT. The FT was registered on completion of the 

PO, by subtracting the PO completion time entered in the production line. The ST registration 

occurred in any machine, for any product. The WIP level was measured when a PO entered or 

left the production line. The TL was registered when there was a new adjustment to its level by 

the BM. The FR was registered at the end of each replication. The demands delivered with the 

FGI stock (DS), were summed during the replication. Ultimately, the total of the DS was 

divided by the demand total number of items. The UT was the mean of the utilization time of 

all machines at the end of the replication. 

At the end of each replication, the mean of each measure was calculated. The values 

registered were summed and divided by the number of registrations. 

5.5.2 Results 

The results are the mean of the 30 replications. To present the general performance of 

the dispatching methods, the results were normalized according to the percentage deviation 

(𝑃𝐷 =
(𝑥𝑑𝑚−𝑚𝑖𝑛)

𝑚𝑖𝑛
), where xdm is the result of the dispatching method (FIFO, or PBS, or PSO-

S) and min is the minimum value found. These results are shown in Figure 5.3. 

Figure 5.3 makes clear that the PSO-S achieved the best results for most fitness 

measurements; the PBS only achieved the best results in the FR but the difference was not 

significant. It is noteworthy that the PSO-S reduced the FT and ST considerably. The PSO-S 

minimized the mean flow time and setup time proving its effectiveness. Due to the reduction of 

the FT and ST, the WIP drastically reduced. The FIFO and PBS methods needed a higher TL 

to ensure product availability, which also increased the WIP. In the UT measure, the PSO-S 

had a smaller gain. 

The results of the simulations of all analyzed methods are found in Table 5.8. The first 

three columns presents the absolute values, and the last present the deviation of the FIFO and 

PBS methods the results of the PSO algorithm. According to the data presented, there was a 

reduction in FT of 31% and 35%, compared to FIFO and PBS, respectively. Furthermore, the 

PSO presented lower standard deviation values. Despite the ST, there was a reduction of 11% 

and 9% compared to FIFO and PBS, respectively. The standard deviation was the same for all 

measures. 
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Figure 5.3 - Percentage deviation of all dispatching methods 

 

                    Source: Proposed by the author 

 

Table 5.8 - Results found by all the methods 

 

 FIFO (1)  PBS (2)  PSO-S (3)  (3) vs. (1)  (3) vs. (2) 

Mean flow 

time      (FT) 

Avg   64.70   69.31   44.89   -31%   -35% 

Std dev   13.79   17.04   3.76   -73%   -78% 

Setup time    

(ST) 

Avg   0.45   0.44   0.40   -11%   -9% 

Std dev   0.003   0.003   0.003   0%   0% 

Work-in-

Process 

(WIP) 

Avg   227.74   236.30   151.82   -33%   -36% 

Std dev   28.42   40.56   4.03   -86%   -90% 

Target 

Level (TL) 

Avg   44.70   44.40   35.96   -20%   -19% 

Std dev   4.37   6.51   0.90   -79%   -86% 

Utilization 

(UT) 

Avg   83.47   83.17   80.34   -4%   -3% 

Std dev   0.55   0.47   0.37   -33%   -21% 

Fill rate  

(FR) 

Avg   0.99   0.99   0.99   0%   0% 

Std dev   0.008   0.003   0.003   -62%   0% 

Source: Proposed by the author 
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Thus, the adoption of these methods provides the lowest range of PO flow time. With 

this result, it can be acknowledged that for the instances analyzed, the proposed PSO-S allows 

the practitioner to better estimate the completion time of the POs. The PSO-S reduced the WIP 

by 33% and 36% with FIFO and PBS, respectively. The low standard deviation of PSO-S 

indicates that it can maintain WIP stability, with a 20% and 19% reduction, compared to FIFO 

and PBS, respectively. The decrease in work-in-progress (WIP) can be attributed to the 

reduction in setup time, resulting in a decrease in the average flow time. This intriguing 

phenomenon can be elucidated by Little's law, which establishes that, in a steady-state system, 

the average long-term throughput is equivalent to the ratio of the average total work in process 

(WIP) to the average flow time (FT) (LITTLE, 1961). Furthermore, the PSO-S caused minor 

variation, in the TL, which can be verified by the low standard deviation. 

For UT and FR there was a small difference between the dispatching methods, thus 

demonstrating that the PSO-S does not need more capacity to produce with a lower flow time 

and achieve a similar FR. Although the PSO-S has been designed to minimize FT and ST, other 

important indicators for the MTA, such as WIP and TL, have also been improved. 

5.6 Conclusions 

The objective of this study was to develop a dispatch method, denominated PSO-S, to 

enhance the performance of the S-DBR/MTA in environments with sequence-dependent setup 

time. Inspired by the Particle Swarm Optimization metaheuristic, PSO-S was evaluated using 

a simulation of a flow shop line managed by the MTA, considering sequence-dependent setup 

times on all machines for all products. The performance of PSO-S was compared to the PBS 

rule and FIFO rule, assessing indicators such as mean flow time, mean setup time, mean work-

in-process, mean target level, mean machines utilization, and mean fill rate (service level). 

The results demonstrate significant improvements achieved by PSO-S compared to the 

other dispatch rules. PSO-S reduced the average setup time by a minimum of 9%, resulting in 

a decrease of at least 33% in the average work-in-process and 31% in the average flow time. 

Additionally, it led to a reduction of at least 19% in the target level and 3% in machine 

utilization. No significant difference was observed in fill rate performance. The effectiveness 

of PSO-S lies in its capability to minimize setup time, thereby reducing work-in-process 

inventory and target levels, which can ultimately contribute to cost reduction. 

Further experimentation with PSO-S is encouraged to explore its potential across 

different shop-floor structures. Although this study validated the proposed method based on 
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existing literature, investigating diverse control systems like Workload Control, Kanban, and 

POLCA could provide valuable insights and expand upon the proposed method. 

The promising results obtained through the PSO algorithm warrant further exploration 

and application of metaheuristics in production control scenarios. Additionally, future research 

can delve into alternative control systems beyond the S-DBR/MTA framework to further 

enhance production control strategies. 
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6 INVENTORY REPLENISHMENT IN THE 

SIMPLIFIED DRUM-BUFFER-ROPE SYSTEM: 

A SOLUTION PROPOSAL BASED ON 

HEURISTICS AND MIXED INTEGER 

PROGRAMMING 

6.1 Introduction 

Supply chains are undergoing significant changes, such as the search for more 

resilience, growth of e-commerce, omnichannel sales, diversification of distribution channels, 

market pressure to reduce delivery times, and new types of vehicles to transport goods. These 

changes have made the distribution of goods more complex, and increasingly challenge the 

management distribution of goods. The challenges include managing multi-sites, distribution 

chain coordinate and synchronization, the control inventory of multiple distribution centers, 

regional warehouses, and retailers.   

To overcome these challenges, the companies use systems such as Vendor-Managed 

Inventory (VMI), Collaborative Planning, Forecasting and Replenishment (CPFR), Just-in-time 

(JIT), and DTA. The Vendor-Managed Inventory (VMI) is a system in which the supplier takes 

responsibility for managing inventory levels at the customer's location (GOVINDAN, 2013). 

Another system is Collaborative Planning, Forecasting, and Replenishment (CPFR), which 

involves collaboration between trading partners in the supply chain to develop a shared 

understanding of demand and inventory requirements (HOLLMANN; SCAVARDA; THOMÉ, 

2015). CPFR includes joint planning, demand forecasting, and inventory replenishment. Just-

in-time (JIT) is a policy of ordering stock in needed quantities only when needed (GOLHAR; 

STAMM, 1991). On the other hand, DTA seeks to improve the availability of items at all points 

of consumption (end users) based on the constant replenishment of consumed stocks from 

strategically positioned stock buffers in the supply chain (COX; SCHLEIER, 2010).  

The DTA approach addresses these challenges by considering the impact of supply 

and demand to determine appropriate stock levels throughout the supply chain while being 

mindful of cash and space limitations (SCHRAGENHEIM; DETTMER; PATTERSON, 2009). 

The objective is to ensure the high availability of items at all consumption points while 
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constantly renewing consumed stocks from strategically placed stock buffers (COX; 

SCHLEIER, 2010). This approach optimizes distribution and replenishment, considering the 

dynamic nature of market demand (SULLIVAN; REID; CARTIER, 2007). 

“(a) pull distribution method that involves setting stock buffer sizes and then monitoring and replenishing 

inventory within a supply chain based on the actual consumption of the end user, rather than a forecast. 

Each link in the supply chain holds the maximum expected demand within the average replenishment time, 

factored by the level of unreliability in replenishment time. Each link generally receives what was shipped 

or sold, though this amount is adjusted up or down when buffer management detects changes in the demand 

pattern.” 

 

Like other systems, the Distribution and Transportation Analysis (DTA) also 

encounter challenges in effectively balancing cost, profit, and service level during the planning 

and distribution of goods. Extensive literature delves into the discussion of logistics tradeoffs, 

with one of the most significant and widely debated being the tradeoff between transportation 

costs and inventory holding costs (CARDÓS; GARCÍA-SABATER, 2006; CHOUDHARY; 

SHANKAR, 2013; MOSCA; VIDYARTHI; SATIR, 2019; QIU et al., 2022; SARKAR et al., 

2019; TURKENSTEEN; VAN DEN HEUVEL, 2023). Increasing the frequency of 

replenishment leads to a rise in transportation costs but a reduction in inventory holding costs. 

Conversely, decreasing the replenishment frequency lowers transportation costs but 

necessitates higher inventory levels at upstream nodes of the network, subsequently increasing 

inventory holding costs. The goal is to strike a balance where costs remain sufficiently low to 

ensure the desired profit and service level. 

DTA is not yet able to handle this trade-off due to the way it makes decisions about 

the inventory replenishment. As DTA does not use demand forecasting techniques, the pressure 

on the stock replenishment function is high, as it is responsible for making all decisions about 

what, when, and how much to restock (SCHRAGENHEIM; DETTMER; PATTERSON, 2009). 

The basic rule of the DTA is whenever a single unit of inventory is consumed at a distribution 

network node, an action to replenish that item should be initiated immediately.  

Currently, DTA cannot effectively address this trade-off due to its decision-making 

approach concerning inventory replenishment. Since DTA does not utilize demand forecasting 

techniques, there is increased pressure on the stock replenishment function, which assumes 

responsibility for all decisions regarding what, when, and how much to restock 

(SCHRAGENHEIM; DETTMER; PATTERSON, 2009). The fundamental principle of DTA is 

to trigger an immediate replenishment action whenever a single unit of inventory is consumed 

at a distribution network node. 
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Inventory replenishment encompasses a range of activities, from retrieving products 

from the warehouse to delivering them to the final customer or point of sale. Efficient planning 

of resupply is crucial to optimize resource utilization and strike a balance between cost, profit, 

and service level, as previously discussed. However, a systematic literature review (Chapter 3) 

indicates that DTA currently lacks a planning solution. Schragenheim, Dettmer, and Patterson 

(2009) argue that frequent replenishments help maintain low inventories and full buffers but do 

not provide guidance on making replenishment decisions that consider associated costs. 

Consequently, DTA is unable to effectively address the tradeoff between transportation costs 

and inventory holding costs. 

Deciding when to replenish stock buffers is a difficult task that requires much more 

than a policy; tools are needed. For companies that intend to implement DTA, it is vital to have 

a tool that balances availability and profitability. The lack of this tool motivated us and led us 

to the following research question:  

RQ4: How to replenish stock buffers in a distribution network managed by DTA, 

protecting the availability of products and the business's profit? 

The DTA problem can be seen as a specific instance of the Inventory Routing Problem 

(IRP), which combines inventory and transportation management challenges. To model the 

DTA problem, we have adapted the basic IRP model presented by Coelho et al. (2014). As a 

solution approach, we propose a mixed integer programming (MIP) model and a computational 

heuristic based on the studies conducted by Fachini and Armentano (2020) and Koç et al. 

(2015). We aim to make contributions to the literature on S-DBR, logistics, and supply chain 

management. Additionally, we hope that our work can provide alternative distribution solutions 

for companies in need. 

The paper is structured as follows: Section 6.2 presents the inventory replenishment 

process in Distribution-To-Availability; Section 6.3 describes the problem and presents the MIP 

solution; the hybrid evolutionary algorithm solution is presented in Section 6.4; Section 6.5 

describes the setup of the computational experiment; Section 6.6 presents the outcomes and 

discussions; and Section 6.7 concludes the research. Because of the size limit, part of the paper 

is presented in Appendix A. 

6.2 Inventory replenishment in Distribution-To-Availability  

DTA is a pull distribution method that operates by establishing stock buffer sizes and 

monitoring and replenishing inventory within a supply chain based on actual consumption by 
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end-users, rather than relying on forecasts. Stock buffers serve to safeguard product availability 

against variations in replenishment and demand timelines. Figure 6.1 provides an illustration of 

a stock buffer, where the stock buffer size denotes the maximum inventory quantity held at a 

specific location within the supply chain. The target level represents the highest stock keeping 

unit (SKU) level permitted at each site, resulting in potential variations in SKU stock buffer 

sizes across different locations. The buffer status (BS), indicated by color, represents the 

urgency of replenishing the stock and is calculated as the number of missing units from the 

buffer divided by the target level (COX; SCHLEIER, 2010): 

▪ Green (buffer status is less than 33%): The inventory at the consumption point is high, 

providing more than enough protection for now.  

▪ Yellow (buffer status is between 33 and 67%): The inventory at the consumption point is 

adequate. There is a need to order more units from the upstream supply chains.  

▪ Red (buffer status between 67 and 100): The inventory at the consumption point is at risk 

of stocking out.  

▪ Black (buffer status is 100%): The stock has run out at the consumption point; every hour 

that passes at this stage means (potential) lost sales opportunities.  

 

Figure 6.1 - Stock buffer 

 

      Source: Adapted from Schragenheim, Dettmer and Patterson (2009) 

 

A higher buffer status indicates a greater urgency for replenishment, with the black 

buffer status being assigned the highest priority and the green buffer status the lowest. When 

the buffer status is black, the ready rate measure determines the fraction of time following 

replenishment that the buffer experiences stockouts. 

DTA employs Dynamic Buffer Management (DBM) as a mechanism for managing 

buffers in a dynamic environment. In this approach, DTA does not rely on any forecasting 
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models but instead dynamically measures the actual usage of stocks and readjusts the target 

level accordingly. For further insights into DBM, please refer to Ikeziri et al. (2021).  

The buffer can exist in three different system positions: planning at a supplier, in 

transit, or at the point of sale (POS) as on-hand inventory. The sum of all the items across these 

positions should be equal to the target level. For instance, if a stock buffer has a target level of 

100 units for a specific product, and there are currently 40 units on hand and 20 units in transit, 

then there will be 40 units in planning. The number of units that are missing in the buffer can 

be calculated as the target level minus the inventory in transit, which in this case would be 40 

units (100 - 60). Consequently, the buffer status of the stock would be 40 percent ((100 - 

60)/100). The buffer status is determined based on the items in hand and those in transit.  

As stated previously, inventories are independently controlled. Figure 6.2 illustrates 

an example of a buffer of a single product type in one distribution center and five points of sale. 

Note that each buffer has a different status.  

Figure 6.2 – Buffers in distribution network 

 

Source: Adapted from Schragenheim, Dettmer and Patterson (2009) 

 

In Figure 6.2, the management of buffers is depicted as separate entities. For example, 

if the buffer at the plant warehouse/central warehouse (PWH/CWH) has a capacity of 600 units 

and currently has 20% buffer penetration (with 480 units out of the total 600), it is represented 
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by green to indicate its priority level. Similarly, in Shop 1, the buffer for the same item has a 

buffer status of 60%, but only 24 units are present, resulting in a yellow priority color. 

The supplier must continuously monitor the downstream buffers and determine when 

to transfer items. This decision is complex and critical due to various factors such as costs, 

profitability, and transportation considerations. A distribution network typically comprises 

numerous geographically dispersed buffers that can be transferred in multiple ways. 

Literature suggests that the DTA stock replenishment policy is insufficient when it 

comes to handling complex and large-scale problems that demand more advanced tools. 

Moreover, the focus solely revolves around quickly replenishing stock and ensuring high 

availability, with little consideration for the profitability of the overall operation. 

6.3 Formal problem description 

The DTA problem is a specific instance of the Inventory Routing Problem (IRP), 

which involves the integration of inventory management and transportation (CAMPBELL et 

al., 1998). The objective of the Inventory Routing Problem (IRP) is to minimize the total cost 

of inventory distribution while meeting the demand of each customer (Coelho et al., 2014). The 

inventory replenishment plan is subject to a set of constraints outlined by Coelho et al. (2014), 

including the following: 

1. The inventory level for each customer must not exceed its maximum capacity. 

2. Inventory levels must not go below zero. 

3. The supplier's vehicles are limited to one route per period, starting and ending at the 

supplier. 

4. Vehicle capacities must not be exceeded. 

 

For the DTA problem, constraint 1 is analogous to the Target Level, while constraint 

2 remains applicable. Since DTA operates in continuous time, constraint 3 needs to consider 

time as a continuous variable rather than discretized intervals. Constraint 4, on the other hand, 

remains entirely relevant to the DTA. 

In the basic Inventory Routing Problem (IRP), the solution to the problem involves 

determining the following (COELHO; CORDEAU; LAPORTE, 2014): 

1. Which customers to serve in each period. 

2. Which vehicles belonging to the supplier to utilize. 

3. The quantity of goods to deliver to each customer that is visited. 
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4. The specific delivery routes to take for each vehicle.  

 

On DTA, the time is continuous and not discrete, as in the basic IRP. However, it is 

not planning more than one period at once. The basic IRP is NP-hard because it subsumes the 

classical VRP (COELHO; CORDEAU; LAPORTE, 2014).  

According to Coelho et al. (2014), the basic IRP is defined on a graph 𝐺 = (𝑉, 𝐴), 

where 𝑉 = {0, … , 𝑛} is the vertex set and 𝐴 = {(𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗} is the arc set. Vertex 0 

represents the supplier, and the vertices of 𝑉′ = 𝑉\{0}  represent customers. 

Both the supplier and customers face unit inventory-holding costs (ℎ𝑖 per period). 

Additionally, each customer has a maximum inventory capacity (𝐶𝑖). The planning horizon 

spans periods, and in each period 𝑡 ∈ 𝑇 = {1, … , 𝑝}, the supplier 𝑟𝑡 makes available a quantity 

of product. We assume that the supplier has sufficient inventory to meet all demand throughout 

the planning horizon and that inventories cannot be negative. The variables 𝐼0
𝑡  and 𝐼𝑖

𝑡 represent 

the inventory levels at the end of period t for the supplier and customer 𝑖, respectively. At the 

beginning of the planning horizon, the decision-maker possesses knowledge of the current 

inventory levels of the supplier and all customers (𝐼0
0 and 𝐼𝑖

0 for 𝑖 ∈ 𝑉′) and is fully aware of 

the demand 𝑑𝑖
𝑡 from each customer 𝑖 for each period 𝑡. A set of vehicles 𝐾 = {1, … , 𝐾} with 

capacities 𝑄𝑘 is available. Each vehicle can execute one route per period to deliver products 

from the supplier to a subset of customers. A routing cost 𝑐𝑖𝑗 is associated with the arc (𝑖, 𝑗) ∈

𝐴. 

For this study, an adaptation and expansion of the basic model of the IRP was made to 

represent the particularities of the DTA. The set of period time 𝑡 ∈ 𝑇 = {1, … , 𝑝} was 

eliminated, and the variables’ dependents on this set. The IRP for DTA is defined as a complete 

graph 𝐺(𝑁, 𝐸), where the node set 𝑁 = {0, 1, … , 𝑛} consists of the depot (node 0) and the set 

of 𝑛 clients/points of sale 𝐶 = 𝑁\{0}, while the set 𝐸 = {(𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗} represents the 

arcs between nodes. A heterogeneous fleet of vehicles is positioned at the depot with different 

vehicle capacities to serve (QIN et al., 2021). The set 𝐾 = {1, … , 𝑙} represents the 𝑙 distinct 

types of vehicles available at the depot, each with capacity 𝑄𝑘, an associated fixed cost 𝑓𝑘 and 

a cost 𝑐𝑘 for the unit distance traveled. For each arc (𝑖, 𝑗) ∈ 𝐸, a symmetric travel distance 𝑑𝑖𝑗 =

𝑑𝑗𝑖, is provided. 𝑅𝑘 = (𝑟1, 𝑟2, … , 𝑟|𝑅|) is the route for a 𝑘 ∈ 𝐾 with 𝑟1 = 𝑟|𝑅| = 0, where 𝑅 =

 (𝑅1, 𝑅2, … , 𝑅𝑙) is the set of routes. Each route 𝑅𝑘 starts and ends at the depot, and the 

remaining components define the sequence of points of sale visited by vehicle 𝑘. The cost of 



91 

 

 

 

route 𝑅𝑘 is the sum of the travel costs ∑ ∑ 𝑑𝑟𝑖𝑟(𝑖+1)
∙  𝑐𝑘 𝑝 ∈ 𝑃

|𝑅|−1
𝑟𝑖=1 , referred to as the route 

variable cost, and the fixed cost 𝑓𝑘 of associated vehicle 𝑘 ∈ 𝐾, as expressed in Equation 1. 

𝑅𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡
𝑘 = [∑ ∑ 𝑑𝑟𝑖𝑟(𝑖+1)

∙  𝑐𝑘 𝑝 ∈ 𝑃
|𝑅|−1
𝑟𝑖=1 ] +  𝑓𝑘                                          (1) 

The set 𝑃 = {1, … , 10} represents the 10 distinct types of products available at each 

node 𝑖 ∈ 𝑁, with 𝑄𝑝 being the capacity required to transport one item of the product 𝑝 ∈ 𝑃. 

Each pair of type of product 𝑝 ∈ 𝑃 and node 𝑖 ∈ 𝑁, has an associated stock buffer 𝐵𝑝
𝑖 , a target 

level 𝑡𝑙𝑝
𝑖 , a holding cost 𝑐𝑡𝑝

𝑖 , a price of sale 𝑝𝑟𝑝
𝑖, an inventory level 𝑠𝑝

𝑖  (on hand plus in transit), 

a buffer status 𝑏𝑠𝑝
𝑖 , and a ready rate 𝑟𝑝

𝑖. For all products 𝑝 ∈ 𝑃 the price of sale 𝑝𝑟𝑝
𝑖 in depot is 

0. The holding cost of the points of sale is the value paid by the depot for the sale of products. 

Points of sale do not involve buying products. Stock buffer 𝐵𝑝
𝑖  is composed of 𝑡𝑙𝑝

𝑖 , 𝑠𝑝
𝑖 , 𝑟𝑝

𝑖 and 

𝑏𝑠𝑝
𝑖 . The buffer status of a distinct 𝐵𝑝

𝑖  is given by Equation 2. 

𝑏𝑠𝑝
𝑖   =  

𝑡𝑙𝑝
𝑖 − 𝑠𝑝

𝑖

𝑡𝑙𝑝
𝑖

                                                                       (2) 

The first decision in the replenishment process concerns the number of items 𝐷𝑝
𝑖  to 

replenish in each stock buffer 𝐵𝑝
𝑖 . This is a typical product-mix selection problem. Following 

Schragenheim, Dettmer, and Patterson’s (2009) definition, the buffer status 𝑏𝑠𝑝
𝑖  determines the 

selection of stock buffers for replenishment. The higher the buffer status 𝑏𝑠𝑝
𝑖  of the stock buffer 

𝐵𝑝
𝑖 , the higher the priority. However, this study aims to propose a solution for the policy of 

replenishment stock buffers that guarantees the availability of products for demand and business 

profitability. Profit is the difference between the revenue from the replenished items and the 

costs of holding and transport. The profit from one item of stock buffer 𝐵𝑝
𝑖  is calculated as the 

difference between the sale price and the inventory holding costs, represented by Equation 3: 

𝜑𝑝
𝑖  =  𝑝𝑟𝑝

𝑖  −  𝑐𝑡𝑝
0  −  𝑐𝑡𝑝

𝑖                                                                (3) 

where 𝑐𝑡𝑝
0 is the inventory holding cost at the depot and 𝑐𝑡𝑝

𝑖  is the inventory holding cost of the 

product 𝑝 ∈ 𝑃 at the point of sale 𝑖 ∈ 𝐶.  

To balance availability and profitability, we propose applying the buffer status 𝑏𝑠𝑝
𝑖  and 

the inverse of the ready rate 𝑟𝑝
𝑖 as weight on item profit 𝜑𝑝

𝑖 , as represented by Equation 4. 

𝛾𝑝
𝑖 = 𝜑𝑝

𝑖 ∙ (1 + (1 −   𝑟𝑝
𝑖 )) ∙ 𝑏𝑠𝑝

𝑖                                                     (4) 
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Thus, stock buffers 𝐵𝑝
𝑖  with lower inventory levels (buffer status in black or red region) 

and high profitability may receive higher priority. The bigger the stock buffer 𝑏𝑠𝑝
𝑖  and the 

inverse of ready rate (1 + (1 −  𝑟𝑝
𝑖 )) for a stock buffer 𝐵𝑝

𝑖 , the higher the item profit weighted 

by buffer status 𝛾𝑝
𝑖 . 

The number of items to be replenished is determined by the 𝑍1 MIP model, which is 

composed of Equations (5) – (9). 

max  ∑ ∑ 𝐷𝑝
𝑖 ∙ 𝛾𝑝

𝑖

𝑝 ∈ 𝑃

 

𝑖 ∈ 𝐶

 (5) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  

∑ ∑ 𝐷𝑝
𝑖 ∙ 𝑄𝑝

𝑝 ∈ 𝑃𝑖∈𝐶

≤ ∑ 𝑄𝑘

𝑘 ∈ 𝐾

 (6) 

𝐷𝑝
𝑖 ≤ 𝑡𝑙𝑝

𝑖 −  𝑠𝑝
𝑖    ,  ∀ 𝑖 ∈ 𝐶;  𝑏 ∈ 𝑈 (7) 

∑ 𝐷𝑝
𝑖

𝑖 ∈ 𝐶

≤ 𝑠𝑝
0   ,  ∀ 𝑏 ∈ 𝑈 (8) 

𝐷𝑝
𝑖 ∈ ℤ+  ∀ 𝑝 ∈ 𝑃;  𝑖 ∈ 𝐶 (9) 

 

 

The objective function (5) expresses the maximization of the total item profit weighted 

by the buffer status and inverse of the ready rate. Constraint (6) imposes the total vehicle 

capacity  ∑ 𝑄𝑘𝑘 ∈ 𝐾  as an upper bound to the necessary capacity ∑ ∑ 𝐷𝑝
𝑖 ∙ 𝑄𝑝𝑝 ∈ 𝑃𝑖∈𝐶  to transport 

the items. Constraint (7) imposes the number of missing items (𝑡𝑙𝑝
𝑖 −  𝑠𝑝

𝑖 ) on the stock buffer 

𝐵𝑝
𝑖  as an upper bound to 𝐷𝑝

𝑖  for all 𝑖 ∈ 𝐶 and 𝑝 ∈ 𝑃. Constraint (8) prevents the total number of 

items for replenishing the product 𝑝 ∈ 𝑃 from exceeding the number of items 𝑠𝑝
0 available in 

the depot.  

The number of items 𝐷𝑝
𝑖  returned by model 𝑍1 is a parameter used for taking the second 

decision, which is fleet routing for delivery.  

The cost of each route 𝑅𝑘 is limited to a predefined percentage 𝑡 of the total profit of 

the route to control transport costs and avoid routes without financial viability, as represented 

in Equation 10:  

𝑡 ∙ ( ∑ ∑ 𝜑𝑝
𝑖 ∙ 𝐷𝑟𝑖𝑝

𝑘

𝑝 ∈ 𝑃

|𝑅|−1

𝑟𝑖=2

 )  ≤  𝑅𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡
𝑘                                       (10) 
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where parameter 𝑡 is the maximum percentage of the 𝑅𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡
𝑘  over the total profit, and 𝐷𝑟𝑖𝑝

𝑘  

denotes the number of items delivered by vehicle 𝑘 ∈ 𝐾 to a given stock buffer 𝐵𝑝
𝑖 . We assume 

that more than one vehicle 𝑘 ∈ 𝐾 can visit a point of sale 𝑖 ∈ 𝐶. 

The fleet routing is given by MIP model Z2, composed of Equations (11)– (24), 

adapted from Fachini and Armentano (2020). 

max  ∑ ∑ ∑ 𝐷𝑖𝑝
𝑘 ∙ 𝛾𝑝

𝑖

𝑝 ∈ 𝑃

 

𝑖 ∈ 𝐶𝑘∈𝒦

− ∑ ∑ 𝑥𝑖𝑗
𝑘 . 𝑐𝑘. 𝑑𝑖𝑗

𝑖𝑗 ∈ ℰ𝑘∈𝒦

− ∑ (𝑓𝑘 . 𝑦0
𝑘)

𝑘∈𝒦

 (11) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  

  ∑ ∑ 𝐷𝑖𝑝
𝑘 ∙ 𝑄𝑝

𝑝 ∈ 𝑃𝑖∈𝐶

≤ 𝑄𝑘 ∙ 𝑦0
𝑘;  ∀ 𝑘 ∈ 𝒦 (12) 

𝑦0
𝑘 − ∑ ∑ 𝐷𝑖𝑝

𝑘

𝑝 ∈ 𝑃𝑖∈𝐶

≤ 0 ,  ∀ 𝑘 ∈ 𝒦 (13) 

𝑀 ∙ 𝑦𝑖
𝑘 − ∑  𝐷𝑖𝑝

𝑘

𝑝 ∈ 𝑃

≤ 0 ,  ∀ 𝑘 ∈ 𝒦;  𝑖 ∈ 𝐶 (14) 

∑ 𝐷𝑖𝑝
𝑘

𝑘∈𝒦

≤ 𝐷𝑖𝑝,  ∀ 𝑖 ∈ 𝐶;  𝑝 ∈ 𝑃 (15) 

∑ 𝑥𝑖𝑗
𝑘

𝑖 ∈ 𝒩

− 𝑦𝑗
𝑘 = 0,    ∀ 𝑘 ∈ 𝒦;  𝑗 ∈ 𝒩;  𝑖 ≠ 𝑗 (16) 

∑ 𝑥𝑖𝑗
𝑘

𝑗 ∈ 𝒩

−  𝑦𝑖
𝑘 = 0,    ∀ 𝑘 ∈ 𝒦;  𝑖 ∈ 𝒩;  𝑖 ≠ 𝑗 (17) 

∑ 𝑥𝑗𝑖
𝑘

𝑗 ∈ 𝒩

− ∑ 𝑥𝑖𝑗
𝑘

𝑗 ∈ 𝒩

= 0,    ∀ 𝑘 ∈ 𝒦;  𝑖 ∈ 𝒩;  𝑖 ≠ 𝑗 (18) 

∑ ∑ 𝑥𝑖𝑗
𝑘

𝑗 ∈ 𝑆𝑖 ∈ 𝑆

≤ |𝑆| − 1,    ∀ 𝑘 ∈ 𝒦; 𝑆 ⊂ 𝐶;  𝑖 ≠ 𝑗 (19) 

(𝑡 ∙ ∑ ∑ 𝜑𝑝
𝑖 ∙ 𝐷𝑖𝑏

𝑘  

𝑝 ∈ 𝑃𝑖 ∈ 𝐶

) −  ∑ ∑ 𝑥𝑖𝑗
𝑘 . 𝑐𝑘. 𝑑𝑖𝑗

𝑖𝑗 ∈ ℰ𝑘∈𝒦

− ∑ (𝑓𝑘 . 𝑦0
𝑘)

𝑘∈𝒦

 ≥ 0  ∀ 𝑘 ∈ 𝒦 (20) 

𝐷𝑖𝑝
𝑘 ∈ ℤ+  ∀  𝑝 ∈ 𝑃;   𝑖 ∈ 𝐶;  𝑘 ∈ 𝐾 (21) 

𝑥𝑖𝑗
𝑘  ∈  {0, 1}  ∀  𝑖𝑗 ∈ ℰ; 𝑘 ∈ 𝐾; 𝑖 ≠ 𝑗 (22) 

𝑦𝑖
𝑘 ∈  {0, 1}  ∀  𝑖 ∈ 𝑁;  𝑘 ∈ 𝐾 (23) 

0 ≤ 𝑡 ≤  1 (24) 

 

 

The objective function (11) maximizes the weighted net profit, which is the difference 

between the total item profit weighted by buffer status ∑ ∑ ∑ 𝐷𝑖𝑝
𝑘 ∙ 𝛾𝑝

𝑖
𝑝 ∈ 𝑃  𝑖 ∈ 𝐶𝑘∈𝒦 , total variable 

transport cost ∑ ∑ 𝑥𝑖𝑗
𝑘 . 𝑐𝑘. 𝑑𝑖𝑗𝑖𝑗 ∈ ℰ𝑘∈𝒦  and total fixed transport cost ∑ (𝑓𝑘 . 𝑦0

𝑘)𝑘∈𝒦 .  
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Constraint (12) avoids that capacity of a vehicle 𝑘 ∈ 𝒦 is exceed by the total capacity 

∑ ∑ 𝐷𝑖𝑝
𝑘 ∙ 𝑄𝑝𝑝 ∈ 𝑃𝑖∈𝐶  necessary to transport the items. If a vehicle 𝑘 ∈ 𝒦 is designated to a 

delivery ∑ ∑ 𝐷𝑖𝑝
𝑘

𝑝 ∈ 𝑃𝑖∈𝐶 , constraint (13) activated it at depot 𝑦0
𝑘.   

For each vehicle 𝑘 ∈ 𝒦 and each point of sale 𝑖 ∈ 𝐶, constraint (14) designates a 

vehicle 𝑘 ∈ 𝒦 for a given point of sale 𝑖 ∈ 𝐶 if there are items to deliver. For each 𝑖 ∈ 𝐶 and 

each 𝑝 ∈ 𝑃, constraint (15) limits the quantity of a product items to delivery to a point of sale 

according to determining the model Z1. Constraint (16) and (17) creates an arc 𝑥𝑖𝑗
𝑘  for each 𝑘 ∈

𝒦 and 𝑗 ∈ 𝒩, when 𝑦𝑗
𝑘 = 1 or 𝑦𝑖

𝑘 = 1. Constraint (18) ensures that a node 𝑖 ∈ 𝒩 receive a 

vehicle 𝑘 ∈ 𝒦 and send to another node 𝑗 ∈ 𝒩, for each 𝑘 ∈ 𝒦, 𝑖 ∈ 𝒩 and 𝑖 ≠ 𝑗. Whenever a 

route 𝑅𝑘 designated to a vehicle 𝑘 ∈ 𝒦 yields a subtour, constraint (19) is a feasibility cut for 

𝑍2, for each 𝑘 ∈ 𝒦, each subtour 𝑆 ⊂ 𝐶 and 𝑖 ≠ 𝑗. This constraint was implemented in Cplex 

and Python using lazy constraint callback (see the code in Appendix A, Figure 1). The validity 

of cut (19) is easily seen because it corresponds to a subtour elimination constraint (DANTZIG; 

FULKERSON; JOHNSON, 1954). Similarly, whenever route 𝑅𝑘 designated to a vehicle 𝑘 ∈

𝒦 yields an impracticable cost, constraint (20) is a feasibility cut for 𝑍2. Constraint (20) 

corresponds to Equation 3, which limits the total transport cost of a route for each vehicle 𝑘 ∈

𝒦. Equations (21) – (24) indicate the domain of the model variables. 

The complete declaration of the mathematical notation of the problem description and 

the following sections are in Appendix A, section 1.  

6.4 A Hybrid Evolutionary Algorithm solution  

Koç et al. (2015) introduced a hybrid evolutionary algorithm (HEA) designed to 

solving vehicle routing problems with time windows involving heterogeneous fleets. The 

primary objective of their approach is to minimize both the fixed vehicle costs and the 

distribution costs, which can be defined in terms of en-route time or distance. The HEA 

demonstrates success by integrating various metaheuristics and introducing advanced and 

efficient procedures specifically tailored to address the complexities associated with 

heterogeneous fleets. To incorporate the particularities of the DTA we adapted the HEA. 

6.4.1 The general framework of the HEA 

The hybrid evolutionary algorithm (HEA) combines two state-of-the-art metaheuristic 

concepts and a clustering algorithm that has proven highly successful for a variety of vehicle 
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routing problem: adaptive large neighborhood search (ALNS) (BREKKÅ et al., 2022; 

FONTAINE, 2022; MALLADI et al., 2022), population-based search (CHAGAS et al., 2022; 

KOÇ et al., 2015; VIDAL, 2022; WANG et al., 2022) and K-means (FATEMI-ANARAKI et 

al., 2022; WANG et al., 2021, 2022). 

The ALNS heuristic aims to derive best new solutions by iteratively removing and 

reinserting ordered nodes in a solution by destroying and repairing operators (BREKKÅ et al., 

2022). The K-means algorithm is a typical clustering method for grouping data into k clusters 

and minimizing inter-cluster similarities (WANG et al., 2021). 

Algorithm 1 presents the general structure of HEAs. The K-means algorithm and 

ALNS operators are combined to generate the initial population (Line 1). Two parents are 

selected (Line 4) through a binary tournament, following which the crossover operation (Line 

5) generates a new offspring, 𝑂𝐹𝐹. The advanced SPLIT algorithm is applied to the offspring 

𝑂𝐹𝐹, which segments the giant tour 𝐺 (the sequence of all points of sale to be visited) by 

choosing the vehicle type for each route. If offspring 𝑂𝐹𝐹 is infeasible, the education procedure 

(Line 8) uses ALNS operators to make offspring 𝑂𝐹𝐹 feasible. The insertion and removal 

operators used by ALNS are explained in Section 2 of Appendix A. The adaptive weight 

adjustment procedure (AWAP) updates the probabilities associated with the operators and 

penalty parameters used in the education procedure (Line 9). AWAP is explained in Section 3 

of Appendix A. Elite solutions are subjected to an intensification procedure based on the ALNS 

algorithm (Line 10) to improve their quality.  

If, at any iteration, the population size 𝑛𝑎 reaches 𝑛𝑝 + 𝑛𝑜, then a survivor selection 

mechanism is applied (Line 11). The population size, shown by 𝑛𝑎, changes during the 

algorithm as new offspring are added, but is limited by 𝑛𝑝 + 𝑛𝑜, where 𝑛𝑝 is a constant denoting 

the size of the population initialized at the beginning of the algorithm and 𝑛𝑜 is a constant 

indicating the maximum allowable number of offspring that can be inserted into the population.  

The mutation is applied to a randomly selected individual from the population with 

probability 𝑝𝑚 at each iteration of the algorithm. If there are no improvements in the best-

known solution for several consecutive iterations 𝑖𝑡𝑟, the entire population undergoes 

regeneration (Line 12). The population POP is ranked by weighted net profit (see Equation 11) 

(Line 13), and the first individual is set to the best solution BESTSOL. HEA terminated when 

the elapsed time reached the time limit (Line 15). 
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Algorithm 1 - The general framework of the HEA 
Initialization: initialize the population POP (Algorithm 1 in Appendix A). 1 
BESTSOL = ∅; 2 
While elapsed time < limit time do: 3 

Parent selection: Select parent solutions P1 and P2 from POP by binary tournament. 4 
Crossover: Apply two-point crossover from P1 and P2 to giant tour 𝐺 and fleet 𝐹 to generate offspring 5 
𝑂𝐹𝐹; 6 
Split tour: Apply algorithm 3 (Appendix A) to 𝑂𝐹𝐹 to generate an individual 𝐼𝑁𝐷𝑖 and add it to POP. 7 

 Education: Educate 𝐼𝑁𝐷𝑖 applying ALNS algorithm 4 (Appendix A); 8 
 AWAP: Update probabilities of the ALNS operators. 9 
 Intensification: Intensify elite solutions applying ALNS algorithm 5 (Appendix A). 10 

Survivor selection: If the population size 𝑛𝑎 reaches 𝑛𝑝 + 𝑛𝑜, then select survivors. 11 
 Diversification: Diversify the population with MUTATION or REGENERATION procedures. 12 
              Best solution: Ranking population 𝑃𝑂𝑃 by weighted net profit (Equation 11) and setting the best 13 
 individual 𝐼𝑁𝐷1 to the best solution BESTSOL. 14 
End while. 15 
Return best solution BESTSOL16 

 

6.4.2 Initialization 

Two steps divide the procedure to generate the initial population, as shown in Algorithm 1, 

explained in Section 4 of Appendix A. Step 1 obtains the product mix and creates routes for clusters 

of points of sale using K-means algorithm 2, as explained in Section 4 of Appendix A. The outcome 

is a viable solution that has not yet been optimized. In Step 2, the ALNS algorithm generates the 

population from the initial solution given in Step 1.   

6.4.3 Split Tour 

The split tour procedure aims to create delivery routes from the product mix, giant tours, and 

vehicle fleets. The split tour logic is represented by Algorithm 3 (Appendix A) which is like the K-

means algorithm (Algorithm 2 in Appendix A) and allows more than one vehicle to visit a point of 

sale. Until the capacity limit is reached, or there are no more products to allocate, each iteration 

allocates the products of the points of sale on the giant tour to a fleet vehicle. For more details, see 

Section 5 in Appendix A. 

6.4.4 Education 

The education procedure is applied to each offspring to make it feasible. The ALNS 

algorithm educates HEA by applying destroy and repair operators and removing some nodes in each 

iteration. According to equation (20), a feasible solution is one that is financially viable. For more 

details, refer to Algorithm Education in Section 6 of Appendix A.   
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6.4.5 Parent Selection 

To yield offspring, the HEA selects two parents through a binary tournament. The selection 

process randomly chooses two individuals from the population and maintains one with the best 

weighted net profit (Equation 11). 

6.4.6 Crossover 

The OX crossover operator is well-suited for cyclic permutations, and the giant tour 

encoding, and vehicle fleet sequence allow recycling crossovers designed for the vehicle routing 

problem. Initially, two positions, 𝑖 and 𝑗 are randomly selected in the first parent, 𝑃1. Subsequently, 

substrings (𝑖, … , 𝑗) are copied to the first offspring 𝑂1 at the same positions. The second parent 𝑃2  is 

swept cyclically from position 𝑗 + 1 onwards to fill the empty positions in 𝑂1. This procedure is like 

giant tour and fleet vehicle sequences. Two offspring are obtained from the original OX version. 

However, in the HEA group, we randomly selected one offspring. 

6.4.7 Intensification 

We introduced a two-phase aggressive intensification procedure to improve the quality of 

elite individuals. This procedure intensifies the search for promising regions in the solution space. 

Section 7 of Appendix A details the pseudocode for this method.  

6.4.8 Survivor Selection 

Avoiding premature convergence is a key challenge in population-based metaheuristics. 

Ensuring the diversity of the population, in other words, searching for a different location in the 

solution space during the algorithm in the hope of being closer to the best known or optimal solutions, 

constitutes a significant trade-off between solutions in a population. This procedure eliminates 

individual clones from the population and individuals with the worst weighted net profits (Equation 

11). Only 𝑛𝑝 individuals remain, so that the offspring can be generated from the best solutions. 

6.4.9 Diversification 

Efficient management of feasible solutions plays a significant role in population diversity. 

After education, the mutation procedure improved HEA performance.  

Over iterations, individuals tend to become more similar, making it challenging to avoid premature 

convergence. To overcome this difficulty, we introduce a new scheme to increase population 
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diversity. The diversification stage includes two procedures: regeneration and mutation, as explained 

in Section 8 of Appendix A. 

6.5 Computational Experiments  

This section presents the setup and results of the computational experiments performed to 

assess the performance of the MIP and HEA. The HEA implementation was in Python 3.8 and that 

of the MIP was in Cplex 20.1.0 on a computer with 8 gigabytes of RAM and a CPU Intel Core i5 

2.40 GHz processor. First, we describe the parameters and instances used in the solutions. The results 

are presented below. 

6.5.1 Data Sets and Experimental Settings 

The localization datasets for the point-of-sale were adapted from the R1 instance of Solomon 

(1987), while the vehicle fleet dataset was adjusted based on the Liu and Shen (1999) instances. The 

R1 dataset consists of random Cartesian coordinates, where the depot is located at the center and 

customers are scattered throughout. The specific coordinates can be found in the Supplementary 

Material files. Liu and Shen (1999) introduced five types of vehicles with varying costs and 

capacities. We have incorporated the variable costs, which represent the costs per unit distance 

traveled. In Appendix A, Table 2, the vehicle parameters are summarized. Additionally, we have 

included ten types of products with different transport capacities and unit holding costs at the depot, 

as indicated in Table 3 of Appendix A. 

The experiment ran into a 3600 s limit time. For instances which do not return a solution 

into this limit, it was extended to 28,800 s. Cplex was parameterized as follows: workmen = 4000, 

tree memory = 10,000, strategy files = 2. For the HEA, we initially used the parameters suggested by 

Koç (2015) which were adjusted in experiments of test to improve solution performance. All instances 

used the following parameter values: 𝑖𝑡𝑡 = 500, 𝑖𝑡𝑟 = 50, 𝑖𝑡𝑤 = 100, 𝑛𝑒 = 5, 𝑝𝑚 ∈ [0.4,0.6], 

[𝑏𝑙
𝑖, 𝑏𝑢

𝑖 ] = [0.3,0.8], [𝑏𝑙
𝑒 , 𝑏𝑢

𝑒] = [0.1,0.16], [𝑏𝑙
𝑚, 𝑏𝑢

𝑚] = [0.1,0.16], 𝜎1 =3, 𝜎2 = 2, 𝜎3 = 0, 𝑟𝑝 = 0.1, 

𝑡 = 0.05. The values of parameters 𝑛𝑝 and 𝑛𝑜 equal the number of instance of points of sale. 

6.5.2 Instances 

The instances used in this study are characterized by the number of points of sale, either 25 

or 50, and the inventory level available at the depot. Additionally, the total capacity of the fleet is 

classified as low, balanced, or high. The low level allows for replenishment of up to 50% of the 

required items to complete stock buffers, the balanced level enables replenishment of up to 100% of 
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the items, and the high-level permits replenishment of up to 200% of the items. These different levels 

were chosen to evaluate solutions under varying resource constraints. The supplementary files 

provide detailed product data for the points of sale, including target levels, inventory levels, ready 

rates, holding costs, and prices. For instances with 75 and 100 points of sale, the MIP (mixed integer 

programming) approach did not yield a viable solution within the timeout limit of 28,800 seconds. 

As a result, the MIP approach was ruled out for these instances. Appendix A, Table 4, summarizes 

these instances. The fleet available at the depot for transportation is heterogeneous and consisted of 

five types of vehicles, namely A, B, C, D, and E. The composition of the fleet for each instance is 

provided in Table 5 of Appendix A. 

Table 6.1 shows the distribution of the buffer regions by the number of points of sale. The 

column "gross profit" is the profit (price minus holding costs) if all items to achieve the target level 

are replenished and sold. 

Table 6.1 - The initial buffers regions and gross profit 

 Buffer regions  

#Points 

of sale 
Black Green Yellow Red Gross profit 

25 77 58 56 59 2,638,684.36 

50 171 108 113 108 5,313,452.67 

75 245 179 165 161 7,764,848.21 

100 320 250 226 204 10,106,613.92 

 

6.6 Outcomes and Discussions  

6.6.1 Analysis of Computational Performance  

The computational performance of the MIP and HEA is evaluated using CPU time as the 

measure. MIP outperforms HEA in instances 1-10, achieving faster computational times. However, 

for instances with 50 points of sale (11-18), the CPU time required by MIP exceeds the limit of 3600 

seconds, whereas HEA successfully finds a solution within the time limit. Figure 6.3 illustrates the 

disparities between the solutions obtained by MIP and HEA. Additionally, Figure 6.4 makes this 

difference even more evident with the % deviation from the HEA to the MIP, according to equation 

7. 

 𝑃𝐷 =
(𝐻𝐸𝐴−𝑀𝐼𝑃)

𝑀𝐼𝑃
× 100                                                             (7)  

 

 



89 

 

 

 

Figure 6.3 - CPU time (s) 

 

 

Figure 6.4 – % Deviation 

 

 

Instances 1 to 10 show a positive percentage deviation, indicating that MIP outperforms 

HEA in these cases. Specifically, instances 1, 2, 3, 4, 7, and 10 demonstrate an advantage for MIP, 

with the HEA requiring 7% to 27% more time to find the optimal solution. However, instances 11 to 

18 reveal a different scenario, with HEA surpassing MIP. In these instances, HEA exhibits 

significantly better performance, completing the optimization process with 51% to 89% less time than 

MIP. These results indicate that for larger instances, HEA outperforms MIP in terms of computational 

efficiency. 
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6.6.2 Comparative Analysis 

The performance evaluation of MIP and HEA was conducted based on three key aspects: 

the selection of buffer regions for replenishment, transport outcomes, and financial considerations. 

Table 6.2 presents the percentage of selected buffers categorized by the regions outlined in Table 6.1. 

Notably, the solutions yielded similar results as both utilized the 𝑍1 model. 

Across the buffer regions, the black region had the highest average percentage of selected 

buffers for replenishment, followed by the red, yellow, and green regions. In instances where product 

availability was low (1, 2, 3, 10, 11, 12), all selected buffers belonged to the most critical regions 

(black and red). Surprisingly, the choice of buffer was not influenced by the fleet capacity. 

Table 6.2 – Buffers selected percentage 

# Instances POS Black Red Yellow Green 

1 25 90,79% 37,70% 0,00% 0,00% 

2 25 90,79% 37,70% 0,00% 0,00% 

3 25 90,79% 37,70% 0,00% 0,00% 

4 25 86,84% 83,61% 43,86% 12,50% 

5 25 100,00% 100,00% 100,00% 100,00% 

6 25 100,00% 100,00% 100,00% 98,21% 

7 25 86,84% 83,61% 43,86% 12,50% 

8 25 100,00% 100,00% 100,00% 100,00% 

9 25 100,00% 100,00% 100,00% 98,21% 

10 50 89,35% 26,13% 0,00% 0,00% 

11 50 89,35% 26,13% 0,00% 0,00% 

12 50 89,35% 26,13% 0,00% 0,00% 

13 50 84,62% 69,37% 49,15% 13,73% 

14 50 100,00% 100,00% 100,00% 99,02% 

15 50 100,00% 100,00% 100,00% 99,02% 

16 50 84,62% 72,07% 49,15% 13,73% 

17 50 100,00% 100,00% 100,00% 99,02% 

18 50 100,00% 100,00% 100,00% 99,02% 

 Mean 93,52% 72,23% 54,78% 46,94% 

 

In instances with balanced and high transport capacity (5, 6, 14, and 15) and balanced 

product availability (4-6 and 13-15), both MIP and HEA solutions successfully served 100% of the 

instances. For instances with low transport capacity (4 and 13), buffers were selected from all four 

regions, representing approximately 85% for the black region, 69% for the red region, 49% for the 

yellow region, and 14% for the green region. Similar patterns were observed for instances with high 

product availability (7-9 and 16-18). Table 6.3 provides a visual representation of the percentage of 

buffer regions receiving replenishment. These percentages were calculated based on the quantities of 
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items provided by the 𝑍1 model. Notably, no buffers remained in the black region, while only a few 

were present in the red or yellow regions. Most of the buffers were in the green region. 

Instances with low product availability and 25 points of sale (1-3) exhibited the highest 

percentage in the red region and the lowest percentage in the yellow and green regions. Similar trends 

were observed for instances with 50 points of sale (10-12). Interestingly, the transport capacity did 

not significantly impact these instances, as the results remained consistent across all three capacity 

levels. 

Table 6.3 – Buffer region position with the replenish 

# Instances POS Black Red Yellow Green 

1 25 0,00% 5,43% 1,09% 93,48% 

2 25 0,00% 5,43% 1,09% 93,48% 

3 25 0,00% 5,43% 1,09% 93,48% 

4 25 0,00% 0,00% 0,67% 99,33% 

5 25 0,00% 0,00% 0,00% 100,00% 

6 25 0,00% 0,00% 0,00% 100,00% 

7 25 0,00% 0,00% 0,67% 99,33% 

8 25 0,00% 0,00% 0,00% 100,00% 

9 25 0,00% 0,00% 0,00% 100,00% 

10 50 0,00% 2,22% 1,67% 96,11% 

11 50 0,00% 2,22% 1,67% 96,11% 

12 50 0,00% 2,22% 1,67% 96,11% 

13 50 0,00% 0,00% 0,68% 99,32% 

14 50 0,00% 0,00% 0,00% 100,00% 

15 50 0,00% 0,00% 0,00% 100,00% 

16 50 0,00% 0,34% 0,68% 98,98% 

17 50 0,00% 0,00% 0,00% 100,00% 

18 50 0,00% 0,00% 0,00% 100,00% 

 

In instances with balanced availability (4-6 and 13-15), the HEA solution maintained less 

than 1% of the buffers in the red region of instance 4, where the transport capacity level was low. 

There was no buffer in the red region for the other instances of this group in either solution. For 

instances with low transport capacity (4 and 13), less than 1% of the buffers remained in the yellow 

region. In instances where transport capacity was balanced or high (5, 6, 14, and 15), 100% of the 

buffers were in the green region, and more than 99% in instances 4 and 13. The instances with high 

availability (7- 9 and 16-18) had similar results, except for 16, in which less than 1% of the buffers 

remained in the red region. Table 6 in Appendix A lists the absolute routing results. 

Table 6 of Appendix A shows that MIP and HEA achieved very different routing 

performances. In Table 6.4, the percentage deviation in the number of vehicles and route distance 

indicates the deviation of the HEA from the MIP. In five instances (4, 5, 7, 13, and 16), MIP and 

HEA used the same number of vehicles: four with a low transport capacity, and one with a balanced 
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level. In another five instances (3, 6, 11, 12, and 18), MIP used fewer vehicles than HEA, four of 

which (3, 6, 12, and 18) had a high level of transport capacity and one (11) had a balanced level. In 

eight instances (1, 2, 8, 9, 10, 14, 15, and 17), HEA used fewer vehicles, with two (1 and 10) having 

low transport capacity, four (2, 8, 14, and 17) having balanced capacity, and only two (9 and 15) 

having high capacity. 

Table 6.4 – Routing results 

 % Deviation Fleet utilization Distance mean per vehicle 

# Instances Number of vehicles Route distance MIP HEA MIP HEA 

1 -30,00% 0,06% 100% 70%          56,00           80,04  

2 -8,33% 37,93% 60% 55%          50,32           75,71  

3 56,25% 65,71% 42% 66%          47,37           50,24  

4 0,00% 21,70% 100% 100%          56,42           68,66  

5 0,00% 0,00% 90% 90%          57,11           57,11  

6 20,83% 25,10% 63% 76%          51,14           52,94  

7 0,00% 19,57% 100% 100%          56,42           67,46  

8 -11,11% 1,49% 90% 80%          56,87           64,94  

9 -4,17% 10,52% 63% 61%          50,20           57,89  

10 -5,56% -45,39% 95% 89%        133,57           77,24  

11 13,04% -48,47% 61% 68%        124,23           56,63  

12 29,03% -44,50% 42% 55%        127,66           54,91  

13 0,00% -81,69% 100% 100%        410,53           75,16  

14 -2,94% -51,60% 89% 87%        131,41           65,53  

15 -23,91% -64,75% 61% 47%        116,70           54,06  

16 0,00% -67,98% 100% 100%        226,85           72,63  

17 -2,86% -59,24% 88% 85%        158,14           66,35  

18 10,87% -50,21% 61% 68%        121,64           54,63  

 

Regarding the route distance, HEA resulted in greater distances for eight of them, and one 

with a distance equal to the MIP in instances with 25 POS. In instances with 50 POS, the MIP 

presented a greater distance for all of them. The same was true for the average distance traveled per 

vehicle. 

Table 7 in Appendix A presents the financial results, and Table 5 shows the percentage 

deviation based on the results. In Table 6.5, the weighted net profit % deviation is less than 1%, with 

a slight advantage for MIP. The gross profit of the MIP has an advantage of 6.84% and 3.53% in two 

instances with 25 points of sale (3-6), and a more significant advantage in four instances with 50 

points of sale: of 30.15% (11), 17.74% (12), 46.72% (15), and 16.69% (18). The performance of MIP 

on total cost transport was superior for instances with 25 points of sale. In instances with 50 points of 

sale, the HEA solution was superior. The difference in net profit was approximately 1% in 12 

instances. In six instances, MIP exhibited a superior performance between 3% and 47%. 
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Table 6.5 – Financial results deviation 

 # 

Instances 

 Weighted 

Net Profit 

(%Dev) 

Gross 

Profit  

(%Dev) 

Transport 

Total 

Cost 

(%Dev) 

Product 

Total 

Cost 

(%Dev) 

Net 

Profit 

(%Dev) 

1 -0,0006 -0,0002 0,0988 -0,0002 -0,0008 

2 -0,0011 -0,0002 0,2611 -0,0002 -0,0014 

3 -0,0088 -0,0684 1,3534 -0,0822 -0,0742 

4 -0,0013 -0,0002 0,3253 -0,0002 -0,0013 

5 -0,0007 0 0 0 0 

6 -0,0052 -0,0353 0,7067 -0,037 -0,0385 

7 -0,0013 -0,0002 0,3217 -0,0002 -0,0013 

8 -0,0007 -0,0002 0,0969 -0,0002 -0,0007 

9 -0,0009 -0,0003 0,172 -0,0002 -0,001 

10 0,0019 -0,0002 -0,3153 -0,0002 0,0027 

11 -0,0007 -0,3015 -0,2294 -0,2982 -0,3021 

12 -0,0045 -0,1774 -0,1203 -0,1832 -0,1779 

13 0,0097 -0,0002 -0,7045 -0,0002 0,011 

14 0,0031 -0,0002 -0,3633 -0,0002 0,0032 

15 0,0015 -0,4672 -0,651 -0,4713 -0,4656 

16 0,0043 -0,0002 -0,5183 -0,0002 0,0049 

17 0,0039 -0,0002 -0,4205 -0,0002 0,0041 

18 -0,0005 -0,1669 -0,2811 -0,1649 -0,1659 

 

6.7 Conclusions 

This study aims to propose a solution to the S-DBR/DTA capable of planning the 

replenishment of stocks to guarantee the products' availability and the profitability of the business. 

We propose two solutions to fill this gap: one based on MIP model and the other based on a hybrid 

evolutionary algorithm (HEA).  

The first stage of the MIP solution (model 𝑍1) determines the number of items to be 

replenished, respecting the fleet transport capacity to maximize the total item profit weighted by the 

buffer status and inverse of the ready rate. The second stage (model 𝑍2) determines financially viable 

routes that maximize the weighted net profit - the difference between the total item profit weighted 

by buffer status, total variable transport cost, and total fixed transport cost. 

The first stage of the HEA determines the number of items to be replenished using model 

𝑍1. In the second stage, to determine the financial viability of fleet routing, an initial solution is 

established using the K-means clustering algorithm, and, posteriorly, the solution is optimized by a 

hybrid algorithm using ALNS and Genetic Algorithm. 
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The experiments showed that model  𝑍1 selected the black region with a higher average 

percentage of buffers for replenishment, followed by the red, yellow, and green regions. In instances 

with low product availability and low, balanced, or high fleet capacity (1, 2, 3 and 10, 11, 12), only 

buffers from the most critical regions (black and red) were selected. Therefore, the model prioritizes 

the buffers that most need replacement, regardless of fleet capacity. The 𝑍1  will meet approximately 

100% of buffers of the instances where product availability is balanced and high if the transport 

capacity is also balanced and high (5, 6, 8, 9, 14, 15, 17, and 18). 

For instances with a low level of transport capacity and balanced or high levels of products 

availability (4, 7, 13, and 16), the model indicated the replenishment of buffers in the four regions, 

being that in the green region, the percentage was the lowest and in red the biggest. In this case, the 

model balanced the need for replacement, failing to replace the buffers with lower profitability, even 

in the red region. 

More than 90% of the selected buffers will raise their level to the green region if they receive 

the number of items suggested by the model. Therefore, it tries to reach the target level by determining 

the amounts to be replenished. 

In the second stage, MIP and HEA use the same number of vehicles, for instances with low 

transport capacity (4, 5, 7, 13, and 16). For instances with high transport capacity (3, 6, 11, 12, and 

18), MIP used fewer vehicles than HEA. In instances (1, 2, 8, 9, 10, 14, 15, and 17), HEA used fewer 

vehicles, with two instances (1 and 10) having low transport capacity, four (2, 8, 14, and 17) having 

balanced capacity, and only two (9 and 15) having high capacity. The vehicle utilization performance 

of both was the same, 78%. The HEA outperformed the MIP in the average distance traveled per 

vehicle. In MIP, vehicles travel on average 112 km, and in HEA, the average distance traveled is 64 

km, 43% less. Therefore, HEA can result in shorter travel times and more trips as vehicles return to 

the warehouse sooner. 

Regarding the financial results, the difference in weighted net profit % deviation was less 

than 1%, with a slight advantage for MIP. It can be assumed that the objective function's result is the 

same for both. For other indicators, HEA achieved 7% less than MIP in gross profit, 1.5% less in total 

transportation cost, and 7% less in total product cost and net profit. HEA was unable to allocate all 

products to vehicles, so it had a drop in net income.  

Overall, the MIP achieved better computational performance in instances with 25 POS and 

HEA in instances with 50 POS. MIP also outperforms HEA performance in terms of routing and 

financial results, but not computational performance, which can provide the HEA some advantage in 

practice. 
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This study contributes to the literature of the S-DBR/DTA and practitioners by proposing 

methods for distribution planning and alternative solutions for goods distribution. Other studies could 

repeat the experiments using larger instances or develop improvements and adaptations for specific 

problems. We also suggest comparative studies with consolidated stock replenishment policies.   
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7 FINAL CONSIDERATIONS 

This research was motivated by a few studies and deficiencies in the operating mode of the 

Simplified Drum-Buffer-Rope. Furthermore, empirical assumptions and principles extracted from the 

DBR and the Theory of Constraints without validation by scientific methods supported the emergence 

of the S-DBR. The main objective of the research was to propose improvements to the MTA and 

DTA methods of S-DBR. For the MTA, solutions were proposed for prioritizing production orders 

in environments with and without dependent setup time. For the DTA, solutions were proposed for 

planning the replacement of stock buffers. 

To answer the first research question, a computational experiment was conducted, simulating 

a flow shop production environment, to evaluate the impact of replacing and combining the 

prioritization by buffer status rule with previously known rules. Table 3.4 in chapter 3 shows that the 

results indicate a performance improvement when combining the prioritization by buffer status with 

the STP and SRPT rules, denominated PSP-SPT, and PSP-SRPT. Replacing the prioritization by 

buffer status rule with the SPT and SRPT rules also yielded promising results, although the service 

level was lower than the PSP-SPT and PSP-SRPT combinations. However, the average level of 

inventory in the system was lower. In the prioritization by buffer status, the downstream work in 

process was removed from its calculation, generating the PSP1 rule, which provoked exciting results 

in combination with the SPT rule (PSP1-SPT). In practice, the advantage of this adaptation is that we 

don’t need to collect information from production orders in advance. 

Regarding the second research question, we can say that for flow shop environments, the 

SRPT rule proved to be the most efficient in terms of inventory units per service level, which means 

it needs less inventory to guarantee product availability. If the objective is to increase the level of 

service, and if a higher inventory cost is accepted, then the PSP1-SPT rule is the best option. The 

prioritization by buffer status rule only obtained the third worst result regarding the rate of inventory 

units per percentage of service level. An important finding is that prioritizing production orders by 

looking only at buffer status can lead to undesired results. Other factors are also essential, such as the 

moment the order arrives on the production line, the processing time, and the remaining time to be 

completed. Furthermore, the use of information from the production orders in advance did not 

improve availability, as seen in the results of rule PSP1. 

To answer the third research question, a dispatch method was proposed, which was based on 

the Particle Swarm Optimization metaheuristic, to minimize the average flow time and total setup 

time, called PSO for Sequence (PSO-S) which was presented in chapter 4. Results showed that PSO-

S can overcome prioritization by buffer status in flow shop environments with time-dependent setup. 
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Although both have achieved the same level of service, the PSO-S requires less inventory because it 

reduces the average throughput time. Furthermore, PSO-S reduced the standard deviation in all 

performance measures showing that it can keep the production system more stable and predictable. 

Once again, there is evidence that prioritizing production orders by looking only at buffer status can 

lead to undesired results. In this case, it is essential to adjust the prioritization of orders according to 

the characteristics of the environment.  

In response to the fourth research question, a solution was developed for planning the stock 

buffers replenishment located in the goods distribution network, according to chapter 5. The concern 

was to propose a solution that sought to ensure the high availability of products and profitability of 

the business when planning the replenishment of point-of-sale stock buffers from a distribution 

center. The solutions proposed were a MIP model and a hybrid evolutionary algorithm (HEA). MIP 

outperformed HEA in computational performance on instances with 25 points of sale. In instances 

with 50 points of sale, the MIP performance dropped considerably, while the HEA performance was 

maintained. 

Regarding availability, the two solutions had very similar results, as well as financial results. 

The most significant difference is in the routing, where the HEA surpassed the MIP in the indicator 

of average distance traveled by a vehicle. That is, HEA is better than MIP for creating delivery routes. 

When looking more closely at the results, it was possible to see that HEA presents better results in 

instances with 50 points of sale. Both MIP and HEA can be adopted to manage the replenishment of 

buffers in the distribution network. The main factor in deciding which solution to adopt is the 

network's number of nodes and the vehicle fleet's size, which impacts computational performance. 

The results generated were promising. Therefore, we believe this presents a necessity for further 

research that suggests other improvements to S-DBR. 

Fulfilling the research objective contributes to the advancement of S-DBR and expands the 

scientific literature on it. For companies and practitioners, the research points to solutions for practical 

problems that can help improve bottom-line results while maintaining or increasing service levels.  

There is a limitation in the literature review in chapter 2, which only covered studies that proposed 

changes to the DBR and S-DBR systems. Exploring the literature of all articles related to these 

systems may be more interesting from a scientific point of view and may increase the stimulus for 

further research. 

Regarding the study evaluating dispatch rules for the MTA in chapter 3, we cannot 

generalize the results to other manufacturing arrangements than flow shop. Therefore, further studies 

are needed that address, for example, arrangements of the job shop type, cellular manufacturing, and 

assembly points. In the study that points out a solution to the MTA problem with dependent setup 
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times, in chapter 4, the limitation refers to comparing the PSO-S only with the buffer status 

prioritization rule and the FIFO rule. Other rules can be applied to validate the results that indicate 

PSO-S is a good solution. In addition, other production environments can be studied, e.g., when there 

are tasks with time-dependent setup, time-independent setup, and no setup. A possible shortcoming 

of the PSO-S is the lack of consideration of the time that a task is waiting in the queue or inside the 

system, which can generate unavailability of products since production orders can stay for a long time 

stopped at a workstation. 

A suggestion for future studies related to MTA is to investigate its behavior or propose 

solutions to common problems in production environments, such as dynamic scaling of lots of 

production and transfer, and resource constraints, namely raw material, storage space, time, people, 

and cost control. Another suggestion is to investigate environments with a hybrid strategy, MTA and 

MTO, in which the challenge is to complete the orders on the promised date and ensure product 

availability.  

Two problems pointed out to the MTA by the literature also can motivate an investigation: 

the existence of multiple Capacity-Constrained Resources (CCRs) and wandering bottlenecks. The 

S-DBR literature points both out as challenging for the MTA. Concerning the DTA, further research 

is needed that proposes improvements and shows that it can bring good results to companies through 

its mechanisms that seek to guarantee high availability. 

To evaluate the DTA solutions in chapter 5, instances with only 25 and 50 points of sale 

were adopted. However, solutions need to be tested with more significant instances, a greater number 

of products, different types of transport modes, and a more significant number of distribution centers. 

Other solutions can be proposed, not only for planning the replenishment of stock buffers, but also 

for managing the dynamic buffer. Finally, the integration between MTA and DTA can also be the 

subject of study. 
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APPENDIX A – CHAPTER 6 SUPPLEMENTARY MATERIAL 

1. Mathematical Notation 

Table 1 – Mathematical notation 
 Symbol Meaning 

Sets 

𝑁 Set of nodes {0, 1, … , 𝑛} encompassing depot (node 0) and 𝑛 clients/points of sale. 

𝐶 Set of 𝑁\{0} nodes encompassing 𝑛 clients/points of sale. 

𝐸 Set of edges {(𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗}.  

𝐺(𝑁, 𝐸) Graph associated to distribution network. 

𝐶𝑖(𝑥𝑖 , 𝑦𝑖) Cartesian coordinate for a node 𝑖 ∈ 𝑁. 

Θ Set of nodes coordinates {𝐶0, 𝐶1, … , 𝐶𝑛}. 

𝐾 Set of {1, … , 𝑙} distinct 𝑙 types of vehicles that compose the fleet available at the depot. 

𝐺 The route of all points of sale to be visited in each solution, named giant tour. 

𝐶𝑣𝑖𝑠𝑖𝑡𝑠 Points of sale {𝑖: 𝑖 ∈ 𝐶} to be visit given to the initial solution of the Hybrid Heuristic Algorithm. 

𝐶𝑣𝑖𝑠𝑖𝑡𝑠
𝑘  Cluster composed by points of sale 𝑖 ∈ 𝐶𝑣𝑖𝑠𝑖𝑡𝑠 to be visited by vehicle 𝑘 ∈ 𝐾 

𝐷 Set of number of items {𝐷𝑝
𝑖 : 𝑖 ∈ 𝐶, 𝑝 ∈ 𝑃, 𝐷𝑝

𝑖 > 0} given to the initial solution of the Hybrid Heuristic 

Algorithm, where 𝐷𝑝
𝑖  is the decision variable for the of number of items destinated to a stock buffer 𝐵𝑝

𝑖 . 

𝐹 Fleet of vehicles for a give solution of the Hybrid Heuristic Algorithm. 

𝐼𝑁𝐷𝑖 An individual of a population of the Hybrid Heuristic Algorithm, composed by set of number of items 𝐷, 

giant tour 𝐺, set of routes 𝑅 and fleet 𝐹. 
𝑃𝑂𝑃 Population composed by individual 𝐼𝑁𝐷𝑖. 

𝐴 Set of centroids {𝜏𝑘: 𝑘 = {1,2, … , |𝐹|}} for K-means algorithm, 𝜏𝑘 is a centroid associated to a vehicle 𝑘 ∈

𝐹. 

Parameters 

𝑑𝑖𝑗 Euclidian distance between nodes i ∈ 𝑁 and 𝑗 ∈ 𝑁. 

𝑄𝑘 Capacity for each 𝑘 ∈ 𝐾. 

𝑓𝑘 Fixed cost 𝑓𝑘 for each 𝑘 ∈ 𝐾.  

𝑐𝑘 Cost by one unit distance traveled for each 𝑘 ∈ 𝐾. 

𝑅𝑘 Route of a vehicle 𝑘 ∈ 𝐾 composed by sequence of visited nodes (𝑟1, 𝑟2, … , 𝑟|𝑅|), starting and ending at 

depot (𝑟1 = 𝑟|𝑅| = 0). 

Φ𝑘 Centroid associated to a vehicle 𝑘 ∈ 𝐾. 

𝑅 Set of routes (𝑅1, 𝑅2, … , 𝑅𝑙). 

𝑃 Represents the set {1, … , 10} of 10 distinct types of products available at each node 𝑖 ∈ 𝑁. 

𝑄𝑝 Capacity required to transport an item of a product 𝑝 ∈ 𝑃. 

𝐵𝑝
𝑖  Stock buffer for a product 𝑝 ∈ 𝑃 warehoused in a node 𝑖 ∈ 𝑁. 

𝑡𝑙𝑝
𝑖  Target level for a stock buffer 𝐵𝑝

𝑖 . 

𝑐𝑡𝑝
𝑖  Holding cost for a product 𝑝 ∈ 𝑃 warehoused at node 𝑖 ∈ 𝑁. 

𝑝𝑟𝑝
𝑖 Price of sale for a product 𝑝 ∈ 𝑃 warehoused at node 𝑖 ∈ 𝑁. 

𝑠𝑝
𝑖  Inventory level (on hand plus in transit) for a stock buffer 𝐵𝑝

𝑖 . 

𝑏𝑠𝑝
𝑖  Buffer status for a stock buffer 𝐵𝑝

𝑖 . 

𝑟𝑝
𝑖 Ready rate measure for a stock buffer 𝐵𝑝

𝑖 .  

𝜏𝑘(𝑥, 𝑦) Coordinate (𝑥, 𝑦) associated for each centroid 𝜏𝑘 ∈ 𝐴. 

𝑛𝑎 Size of a population at Hybrid Heuristic Algorithm. 

𝑛𝑝 Number of initial individuals in a population for Hybrid Heuristic Algorithm. 

𝑛𝑜 Maximum number of offspring in a population for Hybrid Heuristic Algorithm. 

[𝑏𝑙
𝑖 , 𝑏𝑢

𝑖  ] A lower and an upper bound of removed nodes as percentage of the total number of nodes in an instance, 
used in initialize Hybrid Heuristic Algorithm. 

[𝑏𝑙
𝑒, 𝑏𝑢

𝑒] A lower and an upper bound of removed nodes as percentage of the total number of nodes in an instance, 

used in education procedure of the Hybrid Heuristic Algorithm. 

[𝑏𝑙
𝑚, 𝑏𝑢

𝑚] A lower and an upper bound of removed nodes as percentage of the total number of nodes in an instance, 
used in diversification procedure of the Hybrid Heuristic Algorithm. 

𝑡 Percentual limit of transport cost of a route 𝑅𝑘over total profit of the route. 

Decision 

Variables 

𝐷𝑝
𝑖  Positive integer decision variable for the number of items destinated to a stock buffer 𝐵𝑝

𝑖 . 

𝐷 Set {𝐷𝑝
𝑖 : 𝑖 ∈ 𝐶, 𝑝 ∈ 𝑃; 𝐷𝑝

𝑖 ≥ 0} containing optimal values of the decision variable 𝐷𝑝
𝑖 . 

𝐷𝑖𝑝
𝑘  Positive integer decision variable for the number of items to delivery by vehicle 𝑘 ∈ 𝐾 to a stock buffer 

𝐵𝑝
𝑖 . 

𝑦𝑖
𝑘 This binary decision variable is set to 1 if the vehicle 𝑘 ∈ 𝒦 is designated to visit point of sale 𝑖 ∈ 𝐶, 

otherwise, is set to 0. 

𝑥𝑖𝑗
𝑘  This binary decision variable is set to 1 if vehicle 𝑘 ∈ 𝒦 is designated to edge (𝑖, 𝑗) ∈ ℰ, otherwise, is set 

to 0. 
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2. ALNS Operators 

2.1 Removal Operators 

The destroy phase of the educational procedure uses three removal operators, as described 

in detail below. 

1. Random removal (RR): The RR operator randomly selects node 𝑗 ∈ 𝑁\{0}\𝐿𝑟 and removes 

it from the solution. 

2. Worst distance removal (WDR): The purpose of the WDR operator is to choose the number 

of expensive nodes according to their distance-based cost. The cost of node 𝑗 ∈ 𝑁\{0}\𝐿𝑟  is 

dependent on its distance from its predecessor 𝑖 and its distance from its successor 𝑘. The 

WDR operator iteratively removes node 𝑗∗
 from the solution, where 𝑗∗ =

arg max𝑗∈𝑁\{0}\𝐿𝑟
{𝑑𝑖𝑗 + 𝑑𝑗𝑘}. 

3. Neighborhood removal (NR): In a given solution with a set 𝑅 of routes, the NR operator 

calculates an average distance �̅�(𝑅) = ∑ 𝑑𝑖𝑗/|𝑅|(𝑖,𝑗)∈𝑅  for each route 𝑅𝑘 ∈ 𝑅, and selects a 

node 𝑗∗ = arg max(𝑅𝑘∈𝑅;𝑗∈𝑅𝑘){�̅�(𝑅) − 𝑑𝑅\{𝑗}}, where 𝑑𝑅\{𝑗}  denotes the average distance of 

route 𝑅 excluding node 𝑗. 

2.1 Insertion Operators 

The repair phase of the education procedure uses two insertion operators. 

1. Greedy insertion (GI): The aim of this operator is to find the best possible position for 

insertion for all the nodes in 𝐿𝑟. For node 𝑖 ∈ 𝑁\𝐿𝑟  that succeeded in the solution destroyed 

by 𝑁\{0}\𝐿𝑟, and node 𝑗 ∈ 𝐿𝑟 we define 𝛾(𝑖, 𝑗) = 𝑑𝑖𝑗 + 𝑑𝑗𝑘 − 𝑑𝑖𝑘. We find the least-cost 

insertion position for 𝑗 ∈ 𝐿𝑟 using 𝑖∗ = arg min𝑖∈𝑁\𝐿𝑟
{𝛾(𝑖, 𝑗)}. This process is iteratively 

applied to all the nodes in 𝐿𝑟. 

2. Greedy insertion with noise function (GINF): The GINF operator is based on the GI operator 

but extends it by allowing a degree of freedom in selecting the best place for a node. This is 

done by calculating the noise cost 𝑣(𝑖, 𝑗) = 𝛾(𝑖, 𝑗) + 𝑑𝑚𝑎𝑥𝑝𝑛𝜖 where 𝑑𝑚𝑎𝑥 is the maximum 

distance between any two nodes, 𝑝𝑛  is a noise parameter used for diversification and is set 

equal to 0.1, and 𝜖 is a random number [−1,1].  

3. Adaptive Weight Adjustment Procedure (AWAP) 

Each removal and insertion operator has a certain probability of being chosen in each 

iteration. A roulette-wheel mechanism based on the historical performance of every operator 

calibrated the selection criterion. 
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The probability is recalculated for each operator after 𝑖𝑡𝑤 iterations of roulette wheel 

segmentation according to its total score. Initially, the probabilities of each removal and insertion 

operator are equal. Let 𝑝𝑖
𝑡

 be the probability of operator 𝑖 in the last 𝑖𝑡𝑤  iterations, 𝑝𝑖
𝑡+1 =

𝑝𝑖
𝑡(1 − 𝑟𝑝𝜋𝑖/𝜏𝑖), where 𝑟𝑝  is the roulette wheel probability for operator 𝑖; in the last segment, 𝜋𝑖  is the 

score, and 𝜏𝑖 is the number of times. The scores of all operators were zero at the start of each segment. 

The scores are changed by 𝜎1  if a best new solution is found, by 𝜎2  if the new solution is better than 

the current solution, and by 𝜎3  if the new solution is worse than the current solution. 

4. Initialization 

The procedure used to generate the initial population consists of two steps, as shown in 

Algorithm 1. Step 1 obtains the product mix and creates routes for clusters of points of sale using the 

K-means algorithm. In Step 2, the ALNS algorithm generates the population from the initial solution 

given in Step 1. 

In Step 1, model 𝑍1 establishes the buffers that will be replenished (Line 2). With this, the 

points of sale that will be visited are defined. K-means uses these data to create clusters using 

Algorithm 3 (Line 4). Each cluster has a set of information: vehicle, group of points of sale to be 

visited, and number of items of each product to be delivered (Line 5). A cluster is a travelling 

salesman problem routed through the 2-opt heuristic to minimize route distance (Line 7). A list of the 

sequence of visits of all vehicles, named the giant tour, is used along with the HEA to build 

combinations of routes (Line 9). The output of step 1 is the initial solution composed of the number 

of products destined for points of sale, a set of routes, a giant tour, and a fleet of vehicles (Line 10). 

The ALNS algorithm generates a population from the initial solution given in Step 1. New 

individuals are created by applying the initial solution operators based on random removals and 

greedy insertions with a noise function (see Sections 4.3.1 and 4.3.2) to the giant tour to alternate 

points of sale positions (Lines 16-18), until the initial population size reaches 𝑛𝑝. We select these two 

operators to diversify the initial population. Several nodes, calculated as a percentage of the total 

number of nodes in an instance, are removed randomly, from the initialization interval [𝑏𝑙
𝑖 , 𝑏𝑢

𝑖  ] which 

is defined by a lower and upper bound. Algorithm 4 performs the split tour of the updated giant tour 

in new routes with split deliveries (Line 20). The split-tour procedure is explained in Section 4.2. The 

individual is added to the initial population if the routes are feasible; otherwise, the position of the 

vehicle responsible for the infeasible route is changed with that of another vehicle in the fleet. In this 

case, the individual is again subjected to ALNS until the algorithm achieves a feasible solution (Lines 

21-27). A feasible solution in financial terms is given according to Equation (20). 
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The algorithm ends when the population achieved a size 𝑛𝑝 (Line 31). Finally, the algorithm 

returns the initial population (Line 32). 

Algorithm 1 – Initialize population based on K-means and ALNS algorithm 
Step 1 – Initial solution

Buffer selection: get product mix 𝐷 = {𝐷𝑝
𝑖 : 𝑖 ∈ 𝐶, 𝑝 ∈ 𝑃, 𝐷𝑝

𝑖 > 0} and points of sale to be visited 𝐶𝑣𝑖𝑠𝑖𝑡𝑠 =1 
{𝑖: 𝑖 ∈ 𝐶} from model 𝑍1; 2 
Clusters of points of sales: Points of sale 𝐶𝑣𝑖𝑠𝑖𝑡𝑠 are clustering through K-means algorithm (Algorithm 3). 3 
Let 𝐶𝑣𝑖𝑠𝑖𝑡𝑠

𝑘  be the cluster composed of points of sale 𝑖 ∈ 𝐶𝑣𝑖𝑠𝑖𝑡𝑠 to be visited by vehicle 𝑘 ∈ 𝐾 and 𝐷𝑖𝑝
𝑘  the number 4 

of items of a product 𝑝 ∈ 𝑃 to be delivered by a vehicle 𝑘 ∈ 𝐾 to a point of sale 𝑖 ∈ 𝐶𝑣𝑖𝑠𝑖𝑡𝑠; 5 
Routes: A cluster 𝐶𝑣𝑖𝑠𝑖𝑡𝑠

𝑘  is a travelling salesman problem, which is improved by a 2-opt heuristic to establish the 6 
set of routes 𝑅 = {𝑅𝑘: 𝑘 ∈ 𝐹} with minimal financial costs. 7 
Giant tour: Create giant tour 𝐺 through routes 𝑅; 8 
Initial solution: Let S(𝐷, 𝑅, 𝐺, 𝐹) be the initial solution;  9 
Step 2 – Generates the population from initial solution 10 
Let 𝐼𝑁𝐷1 =  S(𝐷, 𝑅, 𝐺, 𝐹) be the first individual of population 𝑃𝑂𝑃:  11 
𝑃𝑂𝑃 = ∅ 12 
While population 𝑃𝑂𝑃 size ≤  𝑛𝑝 do: 13 
 𝐿𝑟 = ∅; 14 
 Apply a random removal operator to 𝐼𝑁𝐷𝑖 giant tour 𝐺 to remove a set of nodes and add them to 𝐿𝑟; 15 

Apply greedy insertion noise operator to 𝐼𝑁𝐷𝑖  of the partially destroyed giant tour 𝐺 to insert the nodes 16 
of 𝐿𝑟; 17 

 Let �̂� be the new giant tour obtained by applying the insertion operator; 18 
 Apply split tour to 𝐷, �̂�, 𝐹 through Algorithm 3; 19 
 Let �̂� and �̂� new split deliveries and set of routes; 20 
 If routes �̂� are feasible then: 21 
  𝐼𝑁𝐷𝑖 = new solution 𝑆(�̂�, �̂�, �̂�, 𝐹); 22 
  Add new feasible solution 𝐼𝑁𝐷𝑖 into population 𝑃𝑂𝑃; 23 
 Else: 24 
  For each infeasible route 𝑅𝑘 ∈ �̂� do: 25 
   Change the position of vehicle k associated with route 𝑅𝑘 on individual 𝐼𝑁𝐷𝑖   26 
    fleet 𝐹 with another vehicle at a random position. 27 
  Let �̂� be the new fleet; 28 
  𝐼𝑁𝐷𝑖 =  (�̂�, �̂�, �̂�, �̂�); 29 
 End if;  30 
End while; 31 
Return initial population 𝑃𝑂𝑃;32 
 

 

The clustering of points of sales (Line 3 of Algorithm 2) is given by K-means, as in 

Algorithm 3. The K-means algorithm is a typical clustering method for grouping data into k 

different clusters connected to centroids and minimizing inter-cluster similarities while 

maximizing intra-cluster similarities (WANG et al., 2021). The objective function minimizes 

the sum distance between the points of sale and clustering center. In the classical K-means 

algorithm, distance is a standard metric for similarity estimation (WANG et al., 2021).  

K-means clustering consists of two separate phases. The first phase randomly defines 

the centroids, and the second phase assigns each element to the nearest centroid according to 

the Euclidean distance. This process is carried out until the function criterion (e.g., distance) 
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reaches a minimum (SÁNCHEZ et al., 2022). The K-means algorithm randomly places the 

centroids and then moves them at each stage to minimize distance. 

Each vehicle is a centroid, and the objective of the K-means algorithm is to allocate a 

group of points of sale to each centroid. Deliveries are divided among vehicles when one vehicle 

cannot service a point of sale alone. Therefore, a point of sale may belong to more than one 

centroid. For this, we designed algorithm 2 using a two-step algorithm. 

Algorithm 2 – Clustering points of sale by K-means and split delivers
Input: 𝐴, 𝐶𝑣𝑖𝑠𝑖𝑡𝑠 , 𝐷, 𝐹; 1 
Step 1 - Clustering points of sale by K-means 2 
Let the set of centroids 𝐴 = {𝜏𝑘: 𝑘 = {1,2, … , |𝐹|}}, 𝜏𝑘(𝑥, 𝑦) be the coordinate associated with each 𝜏𝑘 ∈ 𝐴 3 
randomly selected from points of sale coordinates 𝛩; 4 
While coordinate positions (𝑥, 𝑦) of the centroids 𝜏𝑘 ∈ 𝐴 are changed do:  5 
 Calculate the Euclidean distance from each point of sale 𝑖 ∈ 𝐶𝑣𝑖𝑠𝑖𝑡𝑠  to each centroid 𝜏𝑘 ∈ 𝐴; 6 

Connect each 𝐷𝑝
𝑖 ∈ 𝐷 to the closest centroid 𝜏𝑘 that has sufficient free capacity at associated vehicle  7 

𝑘 ∈ 𝐹 to transport all items, respecting the limit capacity; otherwise, include 𝐷𝑝
𝑖  to �̂�; 8 

 Let 𝐶𝑣𝑖𝑠𝑖𝑡𝑠
̅̅ ̅̅ ̅̅ ̅̅    be the set of clusters 𝐶𝑣𝑖𝑠𝑖𝑡𝑠

𝑘 ;  9 
 Let �̅� = {𝐷𝑖𝑝

𝑘 : 𝑝 ∈ 𝑃, 𝑘 ∈ 𝐹, 𝑖 ∈ 𝐶𝑣𝑖𝑠𝑖𝑡𝑠
𝑘 } be the set of number of items 𝐷𝑖𝑝

𝑘  of products 𝑝 ∈ 𝑃 to be 10 

delivered by a vehicle 𝑘 ∈ 𝐹 to points of sale 𝑖 ∈ 𝐶𝑣𝑖𝑠𝑖𝑡𝑠
𝑘 ; 11 

 For each centroid, 𝜏𝑘 ∈ 𝐴 define a new coordinate (𝑥, 𝑦) by the arithmetic mean of the point-of-sale 12 
 coordinates associated with the respective cluster {𝐶𝑖(𝑥𝑖 , 𝑦𝑖): 𝑖 ∈ 𝐶𝑣𝑖𝑠𝑖𝑡𝑠

𝑘 }; 13 
End while; 14 
Step 2 – Split 𝑫𝒑

𝒊 ∈ �̂� between the remaining capacity of the vehicles 𝒌 ∈ 𝑭. 15 
For each 𝐷𝑝

𝑖 ∈ �̂� do: 16 
 Rank 𝐴 centroids from closest to farthest from the 𝐷𝑝

𝑖  point of sale;  17 
 For each centroid 𝜏𝑘 ∈ 𝐴 do: 18 
  Allocate the maximum number of items 𝐷𝑝

𝑖  in the free capacity of vehicle 𝑘 ∈ 𝐹 associated 19 
  with 𝜏𝑘;  20 
  Subtract from 𝐷𝑝

𝑖  the number of items allocated to the vehicle of the 𝜏𝑘; 21 

  Set 𝐷𝑝
𝑖  the number of items allocated to 𝐷𝑖𝑝

𝑘
; 22 

  Include 𝐷𝑖𝑝
𝑘

 in �̅�; 23 

   Include 𝑖 in 𝐶𝑣𝑖𝑠𝑖𝑡𝑠
𝑘 ; 24 

  If 𝐷𝑝
𝑖 = 0 then: 25 

   Exit For loop; 26 
  End if; 27 
 End for; 28 
Return �̅�, 𝐶𝑣𝑖𝑠𝑖𝑡𝑠

̅̅ ̅̅ ̅̅ ̅̅29 
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Step 1 of Algorithm 3 starts by defining for each centroid the initial coordinate (x, y), 

extracted randomly from the coordinates of the points of sale (Line 3). At each iteration (Line 

5), the Euclidean distance between each point of sale and centroids is calculated. The points of 

sale are then incorporated into the nearest centroid (Lines 6-7). The incorporation procedure 

allocates products from each point of sale to the vehicle's capacity limit (Lines 6-7). All items 

are allocated to a vehicle if they have a sufficient capacity to receive them. Otherwise, the 

product is left out to be divided between the vehicles in the second step of the algorithm. Next, 

for each centroid, the new coordinate is defined using the average coordinates of the 

incorporated points of sale (Line 14). The first phase ends when none of the centroid coordinates 

change from one iteration to another (Line 5). 

In the second phase, the product items are divided among vehicles with a free capacity 

if not incorporated into centroids, going from the closest to the furthest centroid (Lines 18-29). 

The output of the algorithm is the mix of products that each vehicle must deliver and the 

delivery routes (Line 30). 

5. Split Tour 

The split tour procedure aims to create delivery routes from the product mix, giant 

tours, and vehicle fleets. The split tour logic is represented by Algorithm 3, which is like the K-

means algorithm (Algorithm 2) and allows more than one vehicle to visit a point of sale. Each 

iteration allocates the products of the points of sale on the giant tour to a fleet vehicle until the 

limit capacity is reached or until there are no more products to allocate (Lines 4-5). If the vehicle 

has the capacity for all product items, the algorithm allocates it (Lines 6-10); otherwise, it 

allocates enough items to occupy all free capacity (Lines 12-14). The point of sale is added to 

the route when the vehicle no longer has free capacity (Lines 16-18). There is no change to 

another product or to the next point of sale until all the items of a product are allocated (Lines 

20-29). After this procedure, the vehicle route is added to the route set (Line 31), and the 

algorithm moves to the following vehicle (Line 4). The output of the algorithm is a mix of 

products that each vehicle must deliver and the delivery routes (Line 34). 
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Algorithm 3 – Split Tour
Input: 𝐷, 𝐺, 𝐹 1 
Let 𝐴𝐶𝑇𝑈𝐴𝐿_𝑖 be the first point of sale of giant tour 𝐺; 2 
Let 𝐴𝐶𝑇𝑈𝐴𝐿_𝐷𝑝

𝑖  be the number of items of the first product from point of sale 𝐴𝐶𝑇𝑈𝐴𝐿_𝑖; 3 
For each 𝐴𝐶𝑇𝑈𝐴𝐿_𝑘 ∈ 𝐹 do: 4 
 While 𝐴𝐶𝑇𝑈𝐴𝐿_𝑘 has free capacity and ACTUAL_𝐷𝑝

𝑖 ≥ 1 do: 5 
  If vehicle 𝐴𝐶𝑇𝑈𝐴𝐿_𝑘 has the capacity to accept all items ACTUAL_𝐷𝑝

𝑖  then: 6 

   𝐷𝑖𝑝
�̂� = 𝐴𝐶𝑇𝑈𝐴𝐿_𝐷𝑝

𝑖 ; 7 
   Allocate 𝐴𝐶𝑇𝑈𝐴𝐿_𝐷𝑝

𝑖  at 𝐴𝐶𝑇𝑈𝐴𝐿_𝑘 and reduce its free    8 
   capacity; 9 
   𝐴𝐶𝑇𝑈𝐴𝐿_𝐷𝑝

𝑖 = 0; 10 
  Else: 11 

Let 𝐷𝑖𝑝
�̂�  be the number of items from 𝐴𝐶𝑇𝑈𝐴𝐿_𝐷𝑝

𝑖  enough to occupy the 𝐴𝐶𝑇𝑈𝐴𝐿_𝑘 12 
free capacity. 13 

   𝐴𝐶𝑇𝑈𝐴𝐿_𝐷𝑝
𝑖 = 𝐴𝐶𝑇𝑈𝐴𝐿_𝐷𝑝

𝑖 − 𝐷𝑖𝑝
�̂�  14 

  End if; 15 
  Add 𝐷𝑖𝑝

�̂�  to set �̂�. 16 
  If 𝐴𝐶𝑇𝑈𝐴𝐿_𝑘 has no free capacity then: 17 
   Include 𝐴𝐶𝑇𝑈𝐴𝐿_𝑖 in route 𝑅𝑘; 18 
  End if; 19 
 20 
  If 𝐴𝐶𝑇𝑈𝐴𝐿_𝐷𝑝

𝑖 = 0 then: 21 
   If ACTUAL_𝐷𝑝

𝑖  is not the last product from 𝐴𝐶𝑇𝑈𝐴𝐿_𝑖 then: 22 
    Let ACTUAL_𝐷𝑝

𝑖  the number of items of the next product 𝑝  23 
    from the point of sale 𝐴𝐶𝑇𝑈𝐴𝐿_𝑖; 24 
   Else if 𝐴𝐶𝑇𝑈𝐴𝐿_𝑖 is not the last one point of sale in 𝐺: 25 
    Let 𝐴𝐶𝑇𝑈𝐴𝐿_𝑖 be the next point of sale 𝑖 ∈ 𝐺; 26 
    Let 𝐴𝐶𝑇𝑈𝐴𝐿_𝐷𝑝

𝑖  be the number of items of the first product  27 
    from the point of sale 𝐴𝐶𝑇𝑈𝐴𝐿_𝑖; 28 
   End if; 29 
  End if; 30 
 End while; 31 
 Include 𝑅𝑘 in �̂�; 32 
End for; 33 
Return �̂�, �̂�; 34 

 

6. Education 

The education procedure is applied to each offspring to make it feasible. The ALNS 

algorithm educates HEA by removing insertion operators and changing the positions of some 

nodes in each iteration.   

Algorithm 4 details the educational procedure. The removal procedure (Line 4) runs 

for 𝑛′ iterations, removes 𝑛′ customers from the solution, and adds them to the removal list 𝐿𝑟, 

where 𝑛′
 is in the interval of removable nodes 𝑛′[𝑏𝑙

𝑒 , 𝑏𝑢
𝑒]. An insertion operator is selected to 

iteratively insert the nodes into the partially destroyed solution, starting from the first customer 

of 𝐿𝑟, until 𝐿𝑟  is empty (Line 5). The removal and insertion operators were randomly selected 

according to past performance and a certain probability, as explained in Section 4.3.3. The 
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vehicles responsible for infeasible routes change positions with another vehicle in the fleet 

(Lines 8-11). 

A solution is feasible if it is financially viable according to Equation (20). The split 

tour procedure is applied to the product mix, new giant tour, and new fleet sequence (Line 13). 

The individual is updated if the split tour generates feasible routes; otherwise, the individual is 

again subjected to iteration (Line 2). This procedure is repeated when there is an infeasible route 

(Line 19). 

 

Algorithm 4 – Education through ALNS algorithm

Input: 𝐼𝑁𝐷𝑖 = {𝐷, 𝑅, 𝐺, 𝐹}; 1 
While there are infeasible routes in 𝑅 do: 2 
 𝐿𝑟 = ∅; 3 
 A removal operator is selected and applied to individual 𝐼𝑁𝐷𝑖  giant tour 𝐺 to remove a set of nodes and 4 
 add them to 𝐿𝑟; 5 
 Select an insertion operator and apply it to individual 𝐼𝑁𝐷𝑖  partially destroyed giant tour 𝐺 to 6 
 insert the nodes of 𝐿𝑟; 7 
 Let �̂� be the new giant tour obtained by applying the removal and insertion operator; 8 
 For each infeasible 𝑅𝑘 ∈ 𝑅 do: 9 
  Change the position of vehicle k associated with route 𝑅𝑘 with another    10 
 vehicle in a random position in fleet 𝐹; 11 
 End for; 12 
 Let �̂� be the new fleet; 13 
 Apply split tour to 𝐷, �̂�, �̂� (Algorithm 4); 14 
 Let 𝐷𝑖𝑝

�̂�  and �̂� be the new split deliveries and set of routes, respectively; 15 
 If routes in �̂� are feasible then: 16 
  Update 𝐷𝑖𝑝

�̂� , �̂�, �̂� and �̂� for individual 𝐼𝑁𝐷𝑖; 17 
 End if; 18 
End while; 19 
Return feasible solution 𝐼𝑁𝐷𝑖20 
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7. Intensification 

We introduced a two-phase aggressive intensification procedure to improve the quality 

of elite individuals. This procedure intensifies the search for promising regions in the solution 

space. Algorithm 5 details the pseudocode of this method. 

Algorithm 5 – Intensification by ALNS algorithm

Initialize: 𝐿𝑒= {𝐼𝑁𝐷𝑖 : 𝐼𝑁𝐷𝑖 ∈ 𝑃𝑂𝑃, 𝑖 = {1,2, … , 𝑛𝑒}};  𝑖 =1; 1 
While 𝑖 ≤ 𝑛𝑒 do: 2 
 Step 1 3 
 While the 𝐼𝑁𝐷𝑖 weighted net profit is improved and routes 𝑅 of 𝐼𝑁𝐷𝑖 are not infeasible do: 4 
  𝐿𝑟 = ∅; 5 
  Select a removal operator and apply to individual 𝐼𝑁𝐷𝑖 giant tour 𝐺 to remove a set of nodes 6 
  and add them to 𝐿𝑟; 7 
  Select an insertion operator and apply it to individual 𝐼𝑁𝐷𝑖  partially destroyed giant tour 𝐺 to 8 
  insert the nodes of 𝐿𝑟; 9 
  Let �̂� be the new giant tour obtained by applying the insertion operator; 10 
  Apply split tour to 𝐷𝑝

𝑖 , �̂�, 𝐹 (Algorithm 3); 11 

  Let 𝐷𝑖𝑝
�̂�  and �̂� be the new split deliveries and set of routes, respectively; 12 

  13 
  For each infeasible 𝑅𝑘 ∈ �̂� do: 14 
   Change the position of vehicle k associated with route 𝑅𝑘 in individual 𝐼𝑁𝐷𝑖 fleet 𝐹 15 
    to another vehicle at a random position. 16 
  End for;  17 
  Let �̂� be the new fleet; 18 
  If 𝐼𝑁𝐷𝑖  weighted net profit is improvement and routes �̂� are feasible then: 19 
   Update 𝐷𝑖𝑝

�̂� , �̂�, �̂� and �̂� for individual 𝐼𝑁𝐷𝑖; 20 
  End if; 21 
 End while; 22 
 Step 2 23 
              While the 𝐼𝑁𝐷𝑖 weighted net profit is improved and routes 𝑅 of 𝐼𝑁𝐷𝑖  are not infeasible do: 24 
  𝐿𝑟 = ∅; 25 
  Apply a random removal operator to individual 𝐼𝑁𝐷 giant tour 𝐺 to remove a set of nodes and 26 
  add them to 𝐿𝑟; 27 

Apply a greedy insertion operator to an individual 𝐼𝑁𝐷 partially destroyed giant tour 𝐺 to 28 
insert the nodes of 𝐿𝑟; 29 

  Let �̂� be the new giant tour obtained by applying insertion operator; 30 
  Apply split tour to 𝐷𝑝

𝑖 , �̂�, 𝐹 (Algorithm 3); 31 

  Let 𝐷𝑖𝑝
�̂�  and �̂� be the new split deliveries and set of routes, respectively; 32 

  For each infeasible 𝑅𝑘 ∈ �̂� do: 33 
Change the position of vehicle k associated with route 𝑅𝑘 in the individual 𝐼𝑁𝐷 fleet 34 
𝐹 with another vehicle at a random position. 35 

  End for; 36 
  Let �̂� be the new fleet; 37 
  If 𝐼𝑁𝐷𝑖  weighted net profit is improved and the routes �̂� are feasible then: 38 
   Update 𝐷𝑖𝑝

�̂� , �̂�, �̂� and �̂� for individual 𝐼𝑁𝐷𝑖; 39 
  End if; 40 
 End while; 41 
 𝑖 =  𝑖 + 1  42 
End while43 

The algorithm starts with an elite list of solutions 𝐿𝑒, which takes the best 𝑛𝑒 

individuals from the main population as measured by the weighted net profit (Equation 11). 
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Step 1 is like the primary education procedure (Section 4.3). Step 2 explores different regions 

of the search space using the RR operator, intensifying this area by applying the GI operator to 

a partially destroyed solution, like Step 2 of Algorithm 1. 

8. Diversification 

Efficient management of feasible solutions plays a significant role in population 

diversity. The performance of the HEA was improved by applying a mutation after the 

educational procedure. Over iterations, individuals tend to become more similar, making it 

challenging to avoid premature convergence. To overcome this difficulty, we introduced a new 

scheme to increase population diversity. The diversification stage includes two steps: 

regeneration and mutation. 

Regeneration occurs when the maximum allowable number of iterations for 

regeneration 𝑖𝑡𝑟  is reached without improvement in the value of the best solution. In this 

procedure, the 𝑛𝑒  elite individuals are preserved and transferred to the next generation. The 

remaining 𝑛𝑝 − 𝑛𝑒  individuals, which are ranked according to their weighted net profit (Equation 

11), are subjected to the RR and GINF operators to create new individuals, like Step 2 of 

Algorithm 2. Only 𝑛𝑝  new individuals are kept in the population at the end of the procedure. 

The mutation procedure is applied with a probability 𝑝𝑚. This procedure randomly 

selects an individual 𝐼𝑁𝐷𝑖 that differs from the best solution. Two randomized structure-based 

ALNS operators, RR and GINF, are then used to change the positions of a specific number of 

nodes, which are chosen from the interval [𝑏𝑙
𝑚, 𝑏𝑢

𝑚] of removable nodes in the mutation 

procedure. 

9. Tables 

Table 2 – Vehicles parameters 

Vehicles types Capacity Fixed cost Variable cost 

A 30 50 1.5 

B 50 80 2.5 

C 80 140 4 

D 120 250 6 

E 100 300 5 
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Table 3 – Products parameters 

Products types 

Capacity 

needed for 

transport 

Unit holding cost 

in depot 

P1 0.009 4.60 

P2 0.005 9.10 

P3 0.011 0.32 

P4 0.010 8.37 

P5 0.009 5.55 

P6 0.014 6.08 

P7 0.026 9.80 

P8 0.001 5.81 

P9 0.009 9.41 

P10 0.0022 8.25 

 

Table 4 – Instances for experiment 

# Points of sale 
Level of products 

availability in depot* 

Level of fleet total 

capacity * 
 

1 25 Low Low  

2 Balanced  

3 High  

4 Balanced Low  

5 Balanced  

6 High  

7 High Low  

8 Balanced  

9 High  

10 50 Low Low  

11 Balanced  

12 High  

13 Balanced Low  

14 Balanced  

15 High  

16 High Low  

17 Balanced  

18 High  

                * Necessary to full stock buffers 
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Table 5 – Fleet composition 

Instances Fleet 

1, 4, 7 𝐴2, 𝐵2, 𝐶2, 𝐷2, 𝐸2 

2, 5, 8 𝐴4, 𝐵4, 𝐶4, 𝐷4, 𝐸4 

3, 6, 9 𝐴8, 𝐵8, 𝐶8, 𝐷7, 𝐸7 

10, 13, 16 𝐴4, 𝐵4, 𝐶4, 𝐷4, 𝐸3 

11, 14, 17 𝐴7, 𝐵7, 𝐶8, 𝐷8, 𝐸8 

12, 15, 18 𝐴14, 𝐵14, 𝐶15, 𝐷15, 𝐸15 

 

 

Table 6 – Routing results 

 Fleet* Number of Vehicles used Routes distance 

Instanc

e 
MIP HEA 

Vehicles 

available 
MIP HEA MIP HEA 

1 𝐴2, 𝐵2, 𝐶2, 𝐷2, 𝐸2 𝐴0, 𝐵2, 𝐶2, 𝐷2, 𝐸1 10 10 7 559,95 560,26 

2 𝐴4, 𝐵4, 𝐶4, 𝐷0, 𝐸0 𝐴3, 𝐵4, 𝐶4, 𝐷0, 𝐸0 20 12 11 603,78 832,82 

3 𝐴8, 𝐵8, 𝐶0, 𝐷0, 𝐸0 𝐴8, 𝐵8, 𝐶8, 𝐷1, 𝐸0 38 16 25 757,91 1255,9 

4 𝐴2, 𝐵2, 𝐶2, 𝐷2, 𝐸2 𝐴2, 𝐵2, 𝐶2, 𝐷2, 𝐸2 10 10 10 564,2 686,63 

5 𝐴4, 𝐵4, 𝐶4, 𝐷4, 𝐸2 𝐴4, 𝐵4, 𝐶4, 𝐷4, 𝐸2 20 18 18 1027,98 1027,98 

6 𝐴8, 𝐵8, 𝐶8, 𝐷0, 𝐸0 𝐴8, 𝐵8, 𝐶8, 𝐷5, 𝐸0 38 24 29 1227,36 1535,37 

7 𝐴2, 𝐵2, 𝐶2, 𝐷2, 𝐸2 𝐴2, 𝐵2, 𝐶2, 𝐷2, 𝐸2 10 10 10 564,2 674,62 

8 𝐴4, 𝐵4, 𝐶4, 𝐷4, 𝐸2 𝐴3, 𝐵4, 𝐶4, 𝐷4, 𝐸1 20 18 16 1023,73 1038,96 

9 𝐴8, 𝐵8, 𝐶8, 𝐷0, 𝐸0 𝐴8, 𝐵8, 𝐶7, 𝐷0, 𝐸0 38 24 23 1204,73 1331,51 

10 𝐴4, 𝐵4, 𝐶4, 𝐷4, 𝐸2 𝐴4, 𝐵4, 𝐶3, 𝐷4, 𝐸2 19 18 17 2404,23 1313,01 

11 𝐴7, 𝐵7, 𝐶8, 𝐷1, 𝐸0 𝐴7, 𝐵7, 𝐶8, 𝐷4, 𝐸0 38 23 26 2857,37 1472,32 

12 𝐴14, 𝐵14, 𝐶3, 𝐷0 , 𝐸0 𝐴14, 𝐵14, 𝐶12, 𝐷0 , 𝐸0 73 31 40 3957,41 2196,42 

13 𝐴4, 𝐵4, 𝐶4, 𝐷4, 𝐸3 𝐴4, 𝐵4, 𝐶4, 𝐷4, 𝐸3 19 19 19 7800 1428,05 

14 𝐴7, 𝐵7, 𝐶7, 𝐷8, 𝐸5 𝐴7, 𝐵7, 𝐶7, 𝐷8, 𝐸4 38 34 33 4467,96 2162,38 

15 𝐴15, 𝐵13, 𝐶15, 𝐷3 , 𝐸0 𝐴15, 𝐵15, 𝐶5, 𝐷0 , 𝐸0 75 46 35 5368,12 1892,15 

16 𝐴3, 𝐵3, 𝐶4, 𝐷4, 𝐸4 𝐴3, 𝐵3, 𝐶4, 𝐷4, 𝐸4 18 18 18 4083,23 1307,3 

17 𝐴8, 𝐵8, 𝐶8, 𝐷8, 𝐸3 𝐴7, 𝐵8, 𝐶8, 𝐷8, 𝐸3 40 35 34 5534,96 2255,98 

18 𝐴15, 𝐵14, 𝐶15, 𝐷2 , 𝐸0 𝐴15, 𝐵15, 𝐶15, 𝐷6 , 𝐸0 75 46 51 5595,61 2786,11 

*The letters represent the type of vehicle with the number of vehicles at the exponent  
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Table 7 – Finantial results 

  Weighted Net Profit Gross Profit 
Transport Total 

Cost 
Products Total Cost Net Profit 

Instances MIP HEA MIP HEA MIP HEA MIP HEA MIP HEA 

1 788703,2 788192,06 603467,35 603341,83 3410,32 3747,3 739809,83 739661,89 600057,03 599594,52 

2 789484,48 788629,36 603467,35 603339,6 2629,03 3315,5 739809,83 739652,75 600838,31 600024,1 

3 789653,86 782725,02 603467,35 562179,57 2459,65 5788,49 739809,83 679030,75 601007,7 556391,08 

4 1057301,31 1055968,91 961369,72 961191,07 3363 4457,05 1227629,45 1227413,99 958006,72 956734,02 

5 1160555,37 1159764,76 1151480,61 1151480,61 5825,41 5825,42 1487153,98 1487153,98 1145655,19 1145655,2 

6 1161455,48 1155380,22 1151454,18 1110828,47 4922,23 8400,56 1487125,42 1432156,55 1146531,95 1102427,9 

7 1057301,31 1055966,21 961369,72 961184,09 3363 4444,88 1227629,45 1227403,65 958006,72 956739,2 

8 1160555,39 1159763,91 1151474,52 1151220,23 5825,39 6390,04 1487143,4 1486841,59 1145649,13 1144830,19 

9 1161493,92 1160398,95 1151484,72 1151183,78 4886,87 5727,34 1487161,96 1486796,02 1146597,86 1145456,44 

10 1630001,03 1633141,18 1229260,13 1228987,31 11129 7619,84 1505613,21 1505291,2 1218131,1 1221367,47 

11 1630963,57 1629895,78 1229257,85 858676,77 10166,5 7834,28 1505603,38 1056697,38 1219091,36 850842,49 

12 1630722,11 1623303,68 1229253,55 1011164,75 10408 9156,38 1505606,07 1229813,65 1218845,6 1002008,37 

13 2060004,58 2079984,65 1846954,85 1846624,99 28960,9 8556,9 2357955,01 2357560,95 1817994 1838068,09 

14 2376200,88 2383585,09 2309291,29 2308827,6 21513,4 13698,43 3004033,88 3003441,29 2287777,93 2295129,16 

15 2377517,55 2381016,07 2309274,84 1230280,33 20198,2 7049,65 3004005,53 1588095,75 2289076,66 1223230,68 

16 2081543,81 2090533,9 1860169,82 1859820,05 18206 8769,81 2372903,22 2372494,72 1841963,78 1851050,24 

17 2374351,83 2383711,2 2309265,99 2308804,01 23363,9 13539,12 3003997,9 3003395,14 2285902,09 2295264,9 

18 2377744,75 2376609,07 2309316,15 1923991,26 19971 14356,65 3004064,01 2508597,53 2289345,17 1909634,61 
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Table 8 – MIP gaps 

# Points of sale 
Level of products 

availability in depot* 

Level of fleet total 

capacity * 
Gap (%) 

 

1 25 Low Low 0.01  

2 Balanced 0.01  

3 High 0.01  

4 Balanced Low 0.01  

5 Balanced 0.01  

6 High 0.02  

7 High Low 0.01  

8 Balanced 0.01  

9 High 0.01  

10 50 Low Low 0.01  

11 Balanced 0.01  

12 High 0.01  

13 Balanced Low 0.84  

14 Balanced 0.01  

15 High 0.13*  

16 High Low 0.01*  

17 Balanced 0.02*  

18 High 0.01  
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Figure 1 – Lazy constraint call-back for subtour elimination using Dantzig method 

 

 


