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Abstract
In this Master Thesis, we have investigated basic ingredients of the theory of solid state
transport, namely the Drude like conductivity and the activation of nonequilibrium charge
carriers subjected to a relaxation time, concluding that they are sufficient conditions for a
memristive response. These findings point to the natural emergence of memory that, if
discernible under adequate set of driving inputs, turns to be the rule and not the exception,
with contrasting signatures according to symmetry constraints, either built-in or induced by
external factors. Explicit analytical expressions for conductance and content are presented,
unveiling very concise and accessible correlations between general intrinsic microscopic
parameters such as relaxation times, activation energies, and efficiencies (encountered
throughout various fields in Physics) with external drives: voltage pulses, temperature,
illumination, etc. Four toy models under different applied bias: sinusoidal and triangular,
have been investigated, providing insights about the memory formation, as well as the
expressions mentioned above. The model has also been successfully applied to predict and
explain memory features in samples based on ZnO thin films that were fabricated and
characterized by colleagues, reinforcing its validity. The theory allowed providing values for
the system’s fundamental parameters, such as its relaxation time. Finally, the perspectives
and directions of the forthcoming research tasks, to be continued on a PhD, are presented,
pointing to the extension of the theoretical results by introducing asymmetries in the
model and by exploring the topology of the current-voltage characteristics. The model
can be extended to other physical systems, such as those based on quantum dots, and by
applying the robust mechanism thus far constructed to study, explain, and predict results
in experimental realizations, such as in oxide thin films.

Key-words: Memdevices, memory, memristors, non-equilibrium carriers.
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1 Introduction

Memcomputing is a computational paradigm that combines information processing
and storage on the same physical platform. Key elements for this topic are devices with
inherent memory, namely: memristors, memconductors, and meminductors. The existence
of memristors was first proposed by L. Chua [2], in 1971, as a entirely new class of electronic
devices that should behave like non-linear resistors with memory. Subsequently, the idea
was generalized leading to the concept of Memristive Systems [3], as shown in Fig. 1
(a). The most striking signature of their transport response is a pinched hysteresis loop
in the current-voltage plane and promising applications have appeared ever since in a
wide range of technological fields. The applications vary from emulation of learning rules
of neural networks [4], parallel processing [5, 6], and various computing schemes [7–9].
Concerning the industrial interest in this technology, it can be pointed that in 2021 the
memristive memories are being used as standalone memory and are also embedded in
application-specific integrated circuits for the Internet of Things and their market value
exceeded $621 million. It is also expected a growth in this market up to $5.6 billion by
2026, which will represent 2% of the nearly $280 billion memory market [10]. Besides the
interest in potential applications, the memristive response might become a platform for
the characterization of transport mechanisms in solids and nanoscopic systems.

Memristors have emerged in various physical platforms, such as semiconductor nanowires [11],
organic materials [12], and oxides [13] producing non-volatile [12], volatile responses [14,15],
semi-non-volatile responses [16], or combined dynamics [17]. A variety of models for their
emulation can also be found in the literature [18] ranging from phenomenological simula-
tions [19,20], electro-mechanical analogs [21,22], or purely mathematical protocols [23]. Yet,
such a diverse range of approaches hampers a clear view of common grounds for something
seemingly so pervasive in conductive solids. On these same grounds, the eventual contrast
between memristive responses should be sustained as, for instance, the self-crossing [24] or
not of the pinched hysteresis [25], relevant from the practical perspective and fundamental
from the role played by symmetry constraints.

There are several underlying physical mechanisms of memory formation. Our efforts
are focused on understanding the apparently ubiquitous memory formation mechanism
in conductive solids [1] ascribed to the dynamics of nonequilibrium charge carriers, as
represented in Fig. 1 (b), eventually trapped at interfaces, impurities, and defects. It is
important to emphasize that memristive responses depend not only on the generalized
response functions, that are governed by the underlying physics of each device, but also
on the shape of the driving voltage pulses [18]. Furthermore, time scales play a role for
the emergence of memory so that the voltage pulse frequency can be tuned in order to
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maximize or destroy its effects.

Figure 1 – (a) Symbol used to represent a memristor. (b) Schematics of the transport of carriers thought
several sites that are modelled with energy barriers between them within a conductor. (c)
Representation of a Type-I system and its signatures: a crossing in current-voltage charac-
teristics at zero voltage, and the corresponding double values of conductance at this point.
(d) Representation of a Type-II system and its signatures: the non-crossing current-voltage
characteristics and the single conductance value at zero bias voltage.

These responses can be sorted into two main classes: the Type-I response presents a
self-crossing behavior in the current-voltage characteristic, as displayed in the top panel
of Fig. 1 (c), while Type-II presents a non-crossing one, shown in Fig. 1 (d) [18]. The
existence of these two classes are important because from them, two different patterns of
conductance arise. In Type-I, the conductance-voltage curves present two different values
for the conductance at zero voltage, thus, two different conductive states that can be
resolved in the lower panel of Fig. 1 (c); while Type-II presents only a single value of
conductance at zero voltage, as represented in the lower panel of Fig. 1 (d).

1.1 Motivation
An important motivation for this Master project was the development of compre-

hensive models able to elucidate the nature of these responses. Part of it has already been
provided and recently published as "The Ubiquitous Memristive Response in Solids" [1].
This paper describes a theoretical model that explains the memory formation in conductive



Chapter 1. Introduction 17

solids by carrier generation/trapping dynamics. It deals with sinusoidal voltage pulses
although, in principle, the theory would also allow the implementation of the model for any
type of applied voltages, at least numerically. Analytical expressions for the non-equilibrium
carrier number, that are responsible for the not-Ohmic behavior, are presented. Also, the
conductance’s values of Type-I and II system at zero voltage; and the robustness of the
memory response are presented. Besides, the model provides the analytical values of applied
voltage frequencies able to maximize the memory responses of both Type-I and Type-II
systems. [1] Furthermore, in this thesis we have extended the investigation to explore the
memory aspects that arise when triangular voltage pulses are applied since they are a
common feature in cyclic voltammetry measurements. Analogously to the sinusoidal case,
we have obtained analytical expressions and show how a simple change in the shape of the
applied bias is a sufficient condition for changing the response of the system. The results
of both kinds of voltage inputs are compared, showing that although in general similar,
the responses still present differences. In this way, the study of the memory emergence
under different applied bias voltage provided insights about the memory formation process;
and understanding the contrasts of their responses is a key issue for tuning memristive
response.

This model was also successfully used to explain the memory formation in ZnO thin
films and the effects of temperature, that is also included in this thesis. It resulted in the
publication of the paper "Temperature, detriment, or advantage for memory emergence:
The case of ZnO" in The Journal of Chemical Physics. [26] This work was part of a
collaboration with experimental colleagues that fabricated and characterized the samples
and their transport properties. Thus, this research foresees the development of a grounded
physical model able of describing the memory formation in conductive solids with results
that have been recently proven of value for the experimental characterization of various
devices and systems.

Beyond all that, we have already introduce asymmetries in the model, that could be
present in the energy barriers of its sites, elucidating how intrinsic features of the systems
can affect its response, in contrast of the extrinsic ones (bias voltage: frequency and shape);
and we have also started the investigations of the topology of the crossings in the current-
voltage characteristics. These findings resulted in the publication of the paper "Tuning
the conductance topology in solids" [27] that appeared as a featured paper in the Journal
of Applied Physics. Furthermore, we have also extended the mathematical formulation of
the model to deal with the generation of higher order modes, instead of using just the
first order usually done; we have also introduced the definition of impedance per mode and
we have demonstrated that apparent capacitive or inductive effects naturally emerge in
these system, even in the absence of any magnetic elements. We have demonstrated the
limitations of defining equivalent circuits for these kinds of systems; these results yielded
the publication of the paper "Inadequacy of equivalent circuits in nonlinear systems with



Chapter 1. Introduction 18

inherent memory" [28].

Summarizing, the simple conduction model presented in this thesis proved to be
very efficient in describing the nature of these systems. More than that, the model has
been evolving with our current efforts, moving towards the exploration of topology and
impedance features under a formulation of higher order modes. These topics are still
ongoing and have already presented fruitful results, but are not yet closed topics. Finally,
the model is also being extended, to explore the memory formation in quantum dots
systems and also to explain rich memory features that arise in new ZnO doped thin films
samples.

1.2 Goals and Methods
In this research project we have studied the memristive behavior that emerges in

several devices according to different underlying physics of memory formation processes.
Part of these efforts have been finished and some other continue running in communion
with the specialization in the fabrication of structures and low-dimensional devices within
a network of collaborators that combines theoretical and experimental expertise. The goals
of this project, are:

1. To help developing theoretical models able of explaining the memory formation in
conductive solids via generation/trapping dynamics of non-equilibrium carriers;

2. To provide a consistent description of memory emergence and its properties under
the effect of temperature in ZnO thin films;

3. To perform simulations in order to investigate different voltage input pulses regimes
and the operation of such memristive devices, foreseeing optimal responses.

The method adopted in this research combines studying the state of art of the scientific
literature on this field, as well as the foundations of conductive mechanisms in solids.
Based on the later, a theory has been built that provides clues for the natural memory
emergence in conductive solids by generation or trapping of non-equilibrium carriers. The
theory also provides analytical descriptions for memristive systems under certain limits of
temperature or voltage amplitudes. Numerical calculations of the memory emergence have
been performed in order to provide double checks of the analytical results or to go beyond
the limits of the analytical approximations. The theoretical model has been built in close
connection with experimental collaborators, which is important for attaining accuracy in
describing what is observed in the experiments. Thus, the memory emergence in ZnO thin
films and the temperature effects, unveiled for these structures, have already provided a
good experimental confirmation of our predictions.
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1.3 Thesis Overview
In order to provide a concise and comprehensive guideline of this thesis and to

facilitate the reading through its logical structure and main ideas, we have organized it
in five chapters, being the actual Chapter 1, the Introduction. Then, in the 2º Chapter,
Theoretical Background, we have extended the Drude’s model for conductivity in solids, in
a perturbative way, by introducing and exploring the effects of non-equilibrium carriers
that can be (de)activated, thus providing contributions to the conductivity. Namely, in
Section 2.1, we have worked with the already established Drude’s Theory for conduction in
metals, culminating in the simple Ohmic-expression for the current density and conductivity;
and in Subsection 2.1.1, we have performed all the calculations for modulating the thermal
transport over an energy barrier, yielding expressions for the carrier flux over a barrier.
Finally, in Subsection 2.2, we have indeed introduced the perturbation to the Ohmic-
conductivity and worked on this perturbation term by modelling its dynamics induced by a
generation function that is responsible for adding or subtracting new carriers to the system
(if subjected to certain stimulus) in the presence of a decay term. The latter depends on a
relaxation time and is proportional to the quantity of non-equilibrium carries present there.
As these generation functions are unique for each material and their action mechanisms
rely on the physical nature of the systems, we have also modeled a function that can by
applied to metal-semiconductors-metal junctions (or vice-versa), and that operates by
thermal activation of the carriers. Finally we have applied this function in Chapter 4, in
order to describe the experimental results obtained in zinc oxide thin films experiments.

In Chapter 3, Theoretical Results, we have assessed four different theoretical systems
in order to better understand the memory emergence mechanism and its properties. The
models have been designed with generation functions simply proportional to the applied
voltages (or their absolute values), we used sinusoidal-like or triangular-like pulses, and
we were able to emulated memristive responses of Type I and II. The models have been
organized in sections: 3.1 for the sinusoidal input with its extension beyond analytical
validity regime by numerical methods in Subsection 3.1.1; and Section 3.2, for the triangular
ones. This later being separated into Subsection 3.2.1, for Type-I response; 3.2.2, for Type-
II; and 3.2.2.1, for comparing them. We performed analytical calculations that resulted in
expressions for the non-equilibrium carries, conductance, currents, and content values. All
the calculations have been double-checked by numerical methods. Figures of merit of the
system response have been also presented, including the ones considered as a signature of
memory: the current-voltage hysteresis curves.

In the 4º Chapter, "Experimental confirmations and the effect of temperature in ZnO
thin films", we have applied the model to predict and explain memory features that emerged
in samples based on ZnO thin films, that were fabricated and characterized by colleagues,
reinforcing its validity. It has been organized into two main parts. In Section 4.1 we have
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basically adapted the triangular pulse model, with a generation function proportional to
the voltage, to a new one, proportional to its second power. In Section 4.2, we indeed apply
the model to the experimental results in order to explain them, extract useful intrinsic
information of the system, and to predict its behavior under certain circumstances. Finally,
in Chapter 5, the conclusions of this work, as well as, the perspectives and directions of
the forthcoming research tasks are presented.
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2 Theoretical Background

In this chapter we present the main theoretical concepts that allow describing
conduction mechanism in solids, capable to also encompass the emergence of memory
features. We also show, step by step, how our conduction memory model was built from
basic ingredients. Namely, we have started, preliminarily, from the Drude’s model of
conductivity in solids. Then, by using the density of states, the Fermi Dirac distribution
function in the non-degenerate limit, and assuming thermalized Maxwell fluxes of particles
we have been able to calculate the carrier activation towards conductive states. Being this
activation process the very core of our model able to explain the memory emergence in
conducive solids. All the details and steps to formulate the theory are presented in the
following sections.

2.1 Drude’s Theory and Current Density
In its simplest form, the Drude theory of conduction in metals establishes a model

for conduction based on the presence of a gas of free electrons, which move in a background
of heavy ions. This electron gas is treated as dilute and neutral by using methods of the
kinetic theory. Below, some important considerations about the model are listed:1

1. Each electron is assumed to move in a straight line between collisions, not interacting
with other electrons or ions. And the non-electron-electron interaction represents
the independent electron approximation; whereas the non-electron-ion interaction is
the so-called free electron approximation.

2. Collisions are treated as instantaneous events, as in the kinetic theory, and are
capable of abruptly changing the speed of electrons.

3. Collisions are modeled as happening with a probability given by 1/τ , where τ is
called the scattering time.

4. The thermal equilibrium of electrons with their surroundings is achieved only through
collisions. And it is assumed that, after a collision, the electron acquires a velocity
that depends exclusively on the local temperature.2

We can define the proportionality factor between the applied electric field, E⃗,
and the current density it induces, j⃗, as a characteristic constant of the material, the
1 The assumptions can be seen in Solid State Physics [29], pages 2-5.
2 It is worth of mentioning that alongside this thesis we have adopted the symbol Teff for the temperature,

in order to avoid confusion with the period, represented by T .
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conductivity, σ:
j⃗ = σE⃗. (2.1)

The current density, represents how much charge per unit time crosses perpendicularly a
certain area of the material. Now, by considering a density of ρ electrons per unit volume
and moving with a speed v⃗. Therefore, in dt time, the electrons advance a distance vdt in
the direction of v⃗, so that (n v dtA) electrons cross the area A. Given the charge (−e) of
the electrons, the charge element, dq, that crosses the area A in a time interval dt is given
by dq = −n e v Adt. Therefore, the current density can be written as

j⃗ = −ρev⃗. (2.2)

Note that the speed v⃗ of the electrons represents an average value, which must be
zero in the absence of an electric field. However, the application of an electric field E⃗ forces
the electrons to acquire a non-zero average drift velocity v⃗ that points towards the opposite
direction of the field, and in order to calculate this average speed one must consider that it
does not depends on the speed of the electrons before a collision. Considering an electron
just after a collision, then it will be subject to the electric field E⃗ and must travel a time τ
before the next collision. Thus, the average change in momentum between two consecutive
collisions is given by, −eEτ . Therefore, the drift velocity acquired by the electron at the
end of this process can be written as

v⃗avg = −eE⃗τ

m
. (2.3)

Therefore, from Eq. (2.2) we can write the current density as

j⃗ =
Å
ρe2τ

m

ã
E⃗, (2.4)

and the conductivity of the material is given by

σ = ρe2τ

m
. (2.5)

In the following steps we will consider that ρ in Eq. 2.5, representing a density of carriers per
unit volume, may fluctuate around certain equilibrium value, ρ0, given a non-equilibrium
contribution, δρ, that depends on time. The latter is generated by the activation or
trapping of carriers.

2.1.1 Density of non-equilibrium carriers

The model for non-equilibrium carrier generation considered here consists of a
thermal activation mechanism over energy barriers. They can be part of certain localized
sites that can be related, for instance, to point defects, impurities, interfaces, grain
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boundaries, etc. These sites may, in turn, act as nonequilibrium charge generators or traps
and we will reduce this effect to one dimension in order to model their efficiency in terms
of carriers fluxes in and out. Thus, the first basic ingredient of our model is the calculation
of the flow of carriers through an energy barrier.

Figure 2 – Schematic representation of carriers activation over a barrier. The left panel represents a one
dimensional energy barrier, EB . The quasi Fermi level of the reservoir, located at the left side
of the barrier, is represented by µ. The activated carriers pass over the barrier contributing to
the one dimensional flux Fz. The right panel is a representation to reinforce that the net flux
is calculated along direction z within the spherical coordinate system used in the model.

We can assume that this flow takes place along the z direction, as represented in
Fig. 2. Then the carrier flux can be defined by using the local carrier density and their
average velocity in the z direction as

Fz = ρ⟨vz⟩. (2.6)

The average velocity of the carriers in z direction can in turn be obtained from a distribution
function of speeds.

Although, as Fermions, electrons obey the Fermi-Dirac statistics, here we are going
to assume the non-degenerate limit and approximate the system for the case in which the
electron velocity distribution is given by the Maxwell-Boltzmann function. In this case,
the expected value for the flow in the z direction is given by

Fz =
∫
d3v ρ fMB(v⃗, Teff )vz, (2.7)

where fMB is Maxwell-Boltzmann Distribution Function, given by:3

fMB(v⃗, Teff ) =
Å

m

2πkBTeff

ã3/2
exp
Å

− mv2

2kBTeff

ã
. (2.8)

Now, considering a spherical coordinate system, we can write vz as

vz = v cos(θ), (2.9)

and in this spherical system the expression for Fz can be rewritten as

Fz =
∫ ∞

v=0

∫ π/2

θ=0

∫ 2π

ϕ=0
dϕ dθ dv

(
v2 sin(θ)

)
ρfMB(v) v cos(θ). (2.10)

3 Where Teff represents the effective temperature.
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Note that
∫ π/2

0 dθ sin θ · cos θ = 1
2 ,

∫ 2π
0 dϕ = 2π and by considering the density ρ as

a constant, one obtains

Fz = πρ

Å
m

2πkBTeff

ã3/2 ∫ ∞

v=0
dv v3 exp

Å −mv2

2kBTeff

ã
. (2.11)

Now, we can focus our attention to calculate an expression for the average speed
of the carriers where we have

⟨v⟩ =
∫∫∫

d3v |v|fMB(v), (2.12)

so that,
⟨v⟩ =

∫ ∞

v=0

∫ π

θ=0

∫ 2π

ϕ=0
dϕ dθ dv

(
v2 sin(θ)

)
fMB(v) v, (2.13)

because
∫ π

θ=0 dθ sin(θ) = 2 and
∫ 2π

0 dϕ = 2π, and finally,

⟨v⟩ = 4π
Å

m

2πkBTeff

ã3/2 ∫ ∞

v=0
dv v3 exp

Å −mv2

2kBTeff

ã
. (2.14)

Then, by contrasting Eqs. 2.11 and 2.14 we can write the flux of particles along z direction
as a function of the expected value for their velocity as

Fz = ρ
⟨v⟩
4 . (2.15)

Thus, the next step to be performed consists of solving the integral of the expression for
the expected value of the velocity, that is, solving an expression of the type

In =
∫ ∞

0
xn exp

(
−bx2) dx. (2.16)

Specifically we want to solve the case for n = 3

I3 =
∫ ∞

0
x3e−bx2

dx, (2.17)

and in order to do that we may perform the following change of variables, where α ≡ x2

and dα = 2xdx, yielding
I3 = 1

2

∫ ∞

α=0
αe−bαdα (2.18)

that, integrating by parts leads us to the result,

I3 = 1
2b2 . (2.19)

Then Eq.(2.14), using b = m/2kBTeff , can be rewritten as

⟨v⟩ =
Å8kBTeff

πm

ã1/2
(2.20)

Subsequently, we must find an expression for the volumetric carrier density ρ. For
this, we assume the Fermi-Dirac distribution function, fF D, and the density of state, D(E)
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per unit volume, considering that the carriers available for transport are only those with
energy larger than that of the barrier, EB. So, we can write

ρ =
∫ ∞

E=EB

D(E) fF D(E, µ) dE, (2.21)

with, 
fF D(E, µ) = 1

1 + exp
Ä

E−µ
KBTeff

ä
D(E) = 1

L3
δNδE

δE
= m∗

ℏ3π2

√
2m∗ (E − EB).

(2.22)

(2.23)

This density of states, D(E), was obtained from a quantum formalism for the treatment
of electrons as follows. Considering a parabolic conduction band and the free electron
approximation with an effective mass, m∗, we can set the time-independent Schrodinger
equation, with a constant potential profile as

− ℏ2

2m∗ ∇2ψ⃗(r⃗) = (E − U0) ψ⃗(r⃗). (2.24)

Then, considering periodic boundary conditions (Born-von Karman conditions) we obtain
plane wave solutions for the electrons and a dispersion relation for the energy, which in
the one-dimensional case (for simplicity) would be

ψ = eik·z
√
L

E − U0 = ℏ2k2

2m∗ ,

(2.25)

(2.26)

where L is the length between boundaries. By applying this solution to the Born-von
Karman conditions, we obtain a quantization condition for the allowed values of k, kn = 2π·n

L
.

Taking the limit L → ∞ we can write the difference between two allowed values of k as a
differential element, dk = kn − kn−1 = 2π

L
.

Thus, we can define a density of allowed energy states δN as the number of allowed
values of k, δK, in an interval dk. That is, δN = δk

dk
= L

2π
δk. And taking into account the

spin degeneracy, each value of k represents two energy levels for electrons, so

δN = 2 · δk
dk

= L

π
δk. (2.27)

Now, from the dispersion relation Eq. (2.26), for each k we have two energy values, i.e.
δNδE = 2 · δNδk. And as δE = dE

dk
· δ|k| =

»
2ℏ2

m∗

√
E · δ|k|. Then, the number of states

within δE as a function of energy becomes

δNδE = L

ℏπ

…
2m∗

ℏ
1
E

· δE. (2.28)

For the case in three dimensions, we proceed in a completely analogous way
considering the space isotropy. We have dk = 2π

L
and δN = 2· δ3k

8π3/L3 , with δ3k = 4π|k|2 ·δ|k|,



Chapter 2. Theoretical Background 26

in spherical coordinates. So, δE = ℏ2|k|
m∗ · δ|k|, and we can write the 3D state count as a

function of energy as

δNδE = L3 ·m∗

ℏ3π2

√
2m∗E · δE, (2.29)

and the density of states expression is obtained by taking the ratio of the above expression
per unit energy and unit volume, L3.

Now, returning to the calculation of the number of occupied states, solving Eq.(2.21),
we get

ρ = m∗

ℏ3π2

√
2m∗

∫ E=∞

E=EB

(E − EB)−1/2

1 + exp
Ä

E−µ
kBTeff

ädE, (2.30)

and considering again the nondegenerate limit with the approximation that E − µ >>

kBTeff , we have

ρ = 2
Ç

2πm∗kBTeff

(2πℏ)2

å3/2

· exp
Å

−EB − µ

kBTeff

ã
. (2.31)

From the equations (2.15) and (2.31), we can write the expression for the FLUX in the z
direction as

Fz =
4πm∗k2

BT
2
eff

(2πℏ)3 exp
Å

−EB − µ

kBTeff

ã
(2.32)

Now, to generalize this model, let’s imagine the charge activation process happening on
both sides of a barrier, as represented in Figure 3.

Figure 3 – Schematic representation of a energy barrier. At the left and right side of it, it is depicted
the chemical potentials µL and µR, respectively. The energy barrier EB separates these two
regions, with the chemical potential on the right side given by µR = U + µL and U = −|e|V .
FL represents the carriers flux that goes from the left reservoir to the right one over the barrier;
in an analogous way, FR represents the carrier flux from the right to the left side. In case
we are dealing with electrons, due to its negative charge, if one wants to write their current
densities, they will be represented with a inversion in the direction of their respective fluxes.

See that µR ≡ µL + U , with U modelling a displacement in the energy profile of
the device that is caused by the applied bias voltage, i.e. U = −|e|V . Thus, left and right
fluxes can be written as

FL =
4πm∗k2

BT
2
eff

(2πℏ)3 exp
Å

−EB − µL

kBTeff

ã
,

FR = −
4πm∗k2

BT
2
eff

(2πℏ)3 exp
Å

−EB − µR

kBTeff

ã
.

(2.33)

(2.34)
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and the net flux in z direction, F , obtained by the addition of the previous terms as

F =
4πm∗k2

BT
2
eff

(2ππ)3 exp
Å

−EB − µL

kBTeff

ãï
1 − exp

Å
U

kBTeff

ãò
. (2.35)

Note that Eq.(2.35) models the flux produced by thermal activation between two regions
with different chemical potentials, µL and µR = U + µL, with the presence of an energy
barrier EB between them and a applied bias voltage V .

In order to recap, Eq. 2.35 has been obtained by means of a semiclassical formulation:
while the speed of electrons have been modeled by using the classical Maxwell-Boltzmann
distribution, the Fermi-Dirac function, of quantum mechanics, have been used to calculate
the electron occupation of the energy levels. Besides, the validity of Eq. 2.35 is true for a
high enough energy E of the electrons or, equivalently, for sufficiently low temperatures,
i.e. E−µ

kBTeff
≪ 1.

Now, in the following section 2.2, we use the ideas and the formalism of Eq.(2.35),
that describes thermalized Maxwell fluxes through a single barrier, as the basis for building
a carrier generation mechanism in solid conductors. This mechanism, as it will be seen,
has been modeled by using the fluxes of particles description but now applied to double
barrier regions, that will play the role of generation or trapping sites.

2.2 The model used to study the memory emergence
Under an electric field, E, within the mean free time approximation, τ , and a

wide temperature range, the current density in solids can be described by the Drude like
formalism, where the main contribution is provided by carriers at the Fermi energy. Thus,
the conductivity itself becomes proportional to the carrier concentration: ρ = ρ0 + δρ, like
in Eq. 2.4,

j = e2τ/m∗ (ρ0 + δρ)E. (2.36)

Here we have singled out the perturbative contribuition of nonequilibrium carriers, δρ, that
can be promoted to or removed from conductive states by a combination of photogeneration,
heating, and/or external fields, as represented in Fig. 4 (a) under an applied bias voltage.
In terms of current, I = jA (A- cross-section area), driving voltage V , and number
of nonequilibrium carriers in the volume Ω, δn ≡ δρΩ, Eq. 2.36 can be translated as
I = (G0 + α δn)V , where G0 represents the conductance of the unperturbed system. Then,
given the size, az, of the segments where nonequilibrium charges are generated or trapped,
as displayed in Fig. 2 (a), and the distance between contacts Lz, the local voltage drop at
each generation or trapping site is defined as ηV , with η = az/Lz.

For simplicity, we will consider a single transport channel with just electrons or holes
that can be generalized afterwards to more complex combinations. Then, the fluctuating
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δn under the influence of external perturbations can be emulated by using the relaxation
time approximation

d δn(t)
dt

= g(V ) − δn(t)/τ, (2.37)

with g(V ) being the voltage dependent generation rate and τ - the non-equilibrium carriers
lifetime that rules the relaxation process. One may thus assume that the carrier generation
can be thermally activated and/or induced by light absorption.

Figure 4 – (a) Schematic diagram representing the activation of trapped non-equilibrium carriers under
external voltage and the local bias determined by the efficiency η, that is related with the
density of generation sites in the material, namely: η = Site Length/Total length (b) Diagram
representing trapping site with metal-semiconductor-metal profile and the mechanism of
promoting carriers to the conduction band by thermal excitation.

The effective energy profile, assuming axial symmetry along the transport direction,
has been displayed in Fig. 4 (b), where the nonequilibrium charge dynamics will be driven
by the relative heights of left and right effective barriers that modulate the particle fluxes
at each side of the trapping site, represented by arrows. The incoming (in) and outgoing
(out) components of Maxwell particle fluxes over each side of the barriers can be calculated
(according to Eq. 2.15) as F in(out)

L(R) = δρ
in(out)
L(R) ⟨v⟩/4, where δρout(in)

L(R) is the particle density at
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the given interface4 and ⟨v⟩ is the mean value of the thermal velocity, exactly as discussed
in Section 2.1. [30]

Thus, considering a given carrier effective temperature, Teff [31], and using Equa-
tions. (2.33, 2.34) for the fluxes over a barrier, one obtains

F in
L = F in

R = 4πm∗ (kBTeff )2

(2πℏ)3 exp
Å

− EB

kBTeff

ã
, (2.38)

and

F out
L(R) = 4πm∗ (kBTeff )2

(2πℏ)3 exp
Å

−
EB + µL(R) − µC

kBTeff

ã
. (2.39)

For the cross section, S, and a given number of localization sites along the direction
between contacts, 1/η, the total generation rate of non-equilibrium carriers becomes

g = S

η

(
F out

L − F in
L + F out

R − F in
R

)
. (2.40)

Then, given the lack of any preferential direction or intrinsic gradients within the effective
profile of Fig. 4 (b), we can further impose the symmetry constraint, µR − µC = µC − µL,
that reduces g(V ) to

g(V ) = i0
η

ï
exp
Å

− ηeV

2kBTeff

ã
+ exp

Å
ηeV

2kBTeff

ã
− 2
ò
, (2.41)

with i0 = 4πm∗(kBTeff)2

(2πℏ)3 exp
Ä
− EB

kBTeff

ä
. Note that we have assumed µC as the source of

nonequilibrium carriers. In case µL and µR were the sources, it suffices to invert the sign
of i0 in Eq. (2.41). We may also introduce another generation function that is used for
single junctions or diode-like responses, given by

g(V ) = g0 + i0
η

ï
1 − exp

Å
− ηeV

kBTeff

ãò
. (2.42)

Thus, the combination of these basic ingredients, namely: 1) the existance of non-
equilibrium carriers and 2) their dynamics, that is driven by a generation function and a
decay term; can be proven to be sufficient condition for the emergence of memory in the
transport properties of solids, as it is shown in Chapter 3.

The generation function of Eq. 2.42 was used as inspiration for the construction
of the models that have been presented in Chapter 3. In this Chapter, many insights
of memory emergence features are explored and presented. Finally, in Chapter 4, the
generation function of Eq. 2.41 will serve as the basis for the theory used to describe and
predict results in samples of ZnO thin films that were built and characterized by colleagues.
The good agreement of theory and experiment presented there points to the robustness of
the model.
4 In order to avoid mistakes, note that while δρ is the non equilibrium carrier density, δn represents the

effective non-equilibrium carriers number.
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3 Theoretical results

In this chapter, we have explored the features of our conductance model that is
subjected to distinct generation functions and voltage inputs. This resulted in four cases,
that provided a rich amount of results and insights about the memory formation and its
properties. In all those results, the inspiration for building the generation functions came
from the Diode-like function of Eq. 2.42. By approximating this function up to first order
terms in voltage we have been able to produce compact analytical solutions. This case
yielded a Type-I response as demonstrated in the following section. Extrapolating a little
further, we have also built other model where the generation function, was also taken to
the first order in voltage of but a symmetry was imposed by taking its absolute value. This
later case was used to highlight the memory emergence of a Type-II response.

This Chapter is organized in the following manner: In Section 3.1 we present the
results for systems driven by both cases of generation function, under a periodic sinusoidal
bias voltage. We deduce and explore their properties analytically, comparing the differences
in the responses that arises by the symmetry change of the generation functions. After
that, in Subsection 3.1.1, we extrapolate the analytical results by numerical methods and
assess the strength of the analytical model out of its validity regime.

Subsequently, in Section 3.2 we proceed in a similar way, with the same two kinds
of generation functions, but now studying the response under a triangular voltage input.
The results in this chapter are novel and provide interesting insights about the memory
formation, demonstrating how a simple change in the form of the input can drastically
affect the response of a memristive system (once it is compared with the previous responses
of the sinusoidal section). The triangular Type-I and II models are developed in details in
Subsections 3.2.1 and 3.2.2, respectively; while in 3.2.2.1 the results are compared, and
figures of merit are presented.

3.1 Sinusoidal input
Let us first consider the diode-like generation rate of Eq. 2.42 within the relative

low voltage approximation, when ηeV (t)
kBTeff

<< 1. In this case, and neglecting terms beyond
first order in voltage, Eq. 2.42 reduces to g(V ) = g0 + σV (t), with σ = i0e/kBTeff . Two
basic sets of responses can then be distinguished corresponding to Type-I and II, with
generation rates gI(II)(V ) = g0 + σV I(II)(t). According to the diagrams in Fig. 1: Type-I
corresponds to an asymmetric system, where the nonequilibrium transport contribution
can be activated or deactivated according to the voltage sign, V I(t) = V (t), and Type-II,
which is simply symmetric and thus independent of the voltage polarity, V II(t) = |V (t)|.
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Hence, in the linear response approximation, Eq. 2.37, for each type of dynamics, reduces
to 1

dδnI(II)/dt = g0 − δnI(II)/τ + σV I(II)(t). (3.1)

Solving Eq. 3.1 for sinusoidal voltage pulses we obtain analytical expressions for the carrier
number as a function of time, before and after a steady regime is set.

For the transient response, we can write the solution of the Type-I system (asym-
metric) as a simple equation while, for Type-II (the symmetric one), it can be provided in
a recursive form; namely [1]

δnI(t) =
ñ
δn0 − g0τ + στV0ωτ

1 + (ωτ)2

ô
e−t/τ + g0τ + στV0»

1 + (ωτ)2
sin(ωt− φ)

δnII
j (T) =

ñ
n0

j−1 − g0τ + στV0ωτ

1 + (ωτ)2

ô
e−T/τ + g0τ + στV0»

1 + (ωτ)2
sin(ωT − φ)

(3.2)

(3.3)

where the initial conditions are nI
1(0) ≡ n0 and nII

1 (0) ≡ n0, with φ ≡ arctan(ωτ). Also,
for the case of the Type-II system, the index j = 1, 2, 3, . . . enumerates each voltage
semicycle with the time variable, T, defined within a semiperiod range, T ∈ [0, T/2] with

n0
j = L coth

Å
T

4τ

ãÄ
1 − e−j T

2τ

ä
+ n0e

−j T
2τ , (3.4)

Being L a parameter defined as

L ≡ στV0ωτ/
îÄ

1 + (ωτ)2
ó

(3.5)

By waiting enough time, the first decay terms vanish and a steady state is reached where
the solutions become independent on the initial conditions and can be written, for Type-I
and II systems, as [1] 

nI
∞(t) = g0τ + στV0√

1 + (ωτ)2
sin(ωt− φ),

nII
∞(T) = g0τ + e−T/τ

1 + (ωτ)2
2στ 2ωV0

1 − exp
(
− π

ωτ

)+

στV0√
1 + (ωτ)2

sin (ωT − φ) .

(3.6)

(3.7)

with, T in the range [0, T/2] and

φ ≡ tan−1(ωτ). (3.8)

The resulting time dependence has been displayed in Fig. 5 (a), including the transient
regime. The current for each type of system under the stabilized condition can thus be
calculated as

II(II)
∞ =

î
G0 + α δnI(II)

∞ (t)
ó
V (t). (3.9)

1 Where g0 corresponds to a constant in the generation function, that could be attributed, for instance,
to a light excitation term of non-equilibrium carriers.
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They are displayed, for the steady state regime, as function of time, in Fig. 5 (b) and
as current-voltage I − V characteristics in Figs. 5 (c) and (d). One may note that the
hysteresis of Type-I system is asymmetric, while Type-II shows a symmetric behavior.
The Figures 4 (e) and (f) present the asymptotic functional form of I - V characteristics in
the limit of very slow or fast drives, respectively. They point to the hysteresis collapse for
both systems in the limits of zero (DC pulse) or infinite frequency. The latter yielding
Ohmic responses.
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Figure 5 – Response difference between Type I (black lines) and Type II (red lines): (a) Transient towards

the steady dynamics of nonequilibrium charge carriers under an AC voltage. (b) Current as
a function of time for type I and II systems, in steady state regime. Here, N∞ represents a
sufficiently high number of periods for stability to be achieved. A solid pattern of a period of
the voltage sweeps has been added in the background. (c) Type I current voltage characteristics
after stability. The conductance values, GI

Low and GI
High, at zero bias are indicated by dashed

lines while Su and Sl label the areas of the upper and lower I − V loops, respectively. (d) Type
II current voltage characteristics after stability with a single conductance value, GII

0 , at zero
bias indicated by a dashed line. (e) Stable I − V response under an adiabatic voltage supply
for type I and II systems. (f) Stable I − V response under fast voltage oscillations for Type I
and II systems.

Note, in Fig 6 (a), the sharp contrast between the conductance loops as functions
of applied bias. While Type-I systems present two different values of conductance at zero
voltage, an important feature for memcomputing functionalities; the Type-II systems
present only a single one. This contrast can be tuned with the frequency of the voltage
drive as depicted in Fig. 6 (b). According to this picture, the difference between on (high)
and off (low) conductance states in Type-I systems collapses for low or high frequencies
and it can be explicitly written as

GI
∞,High(ω) −GI

∞,Low(ω)
αστV0

= 2ωτ
1 + (ωτ)2 , (3.10)
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pointing to a maximum on-off difference once ωτ = 1. In turn, for Type-II systems, the
single conductance value at zero voltage is given by

GII
∞,0(ω) −G0

αστV0
= ωτ

1 + (ωτ)2 coth
( π

2ω τ

)
, (3.11)

with a monotonic growth that has also been represented in Fig. 6 (b).

Figure 6 – (a) Conductance as a function of voltage, after reaching stability. (b) Conductance at zero
voltage as a function of normalized angular frequency of the applied voltage within the linear
approximation, under stable cycles, for the high (on) and low (off) conductance states of Type-I
systems, represented in black; and for Type-II systems, in red. (c) Calculated current-voltage
loop areas for both types of systems and (on the inset) expected evolution of the loop area (in
absolute arbitrary units - valid for Type-I and Type-II) with increasing temperature.

Another relevant parameter used for the characterizations of the memristive re-
sponse are the Content Values, that are represented by the areas of semi-loops of the
current-voltage characteristics. It is used to measure the strength of the system memories
properties. The definition of Content for the upper, SI(II)

u , and lower, SI(II)
l , loops are

SI(II)
u =

∫ t′=T/2

t′=0
II(II)

∞ dV and S
I(II)
l =

∫ t′=T

t′=T/2
II(II)

∞ dV. (3.12)

In the case of sinusoidal voltage inputs, explicit expressions can be obtained that become
figures of merit of our model. For Type-I they are

SI
u

(2/3)αστV 3
0

= − SI
l

(2/3)αστV 3
0

= − ωτ

1 + (ωτ)2 , (3.13)
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and for Type-II
SII

u

(2/3)αστV 3
0

= SII
l

(2/3)αστV 3
0

= − ωτ

1 + (2ωτ)2 , (3.14)

depicted in Fig. 6 (c). One can see in Fig. 6 (c) that the memory strength of Type-I and
II systems can be boosted by tuning the values of the applied voltage frequency. In Type-I
systems, the maximal response happens at a higher frequency of applied voltage, namely
ω = 1/τ ; while, a lower frequency of ω = 1/2τ is needed to obtain the maximum area
of Type-II systems. Both Content values, however, increase with increasing temperature
under the current hypothesis, as depicted in the inset of Fig. 6 (c).

3.1.1 Analytical Result Accuracy Beyond its Validity Regime

As mentioned in the beginning of Section 3.1, the validity of the linear approxi-
mation occurs whenever ηeV (t)

kBTeff
≪ 1. But we have also calculated the model response for

conductivity and content numerically beyond the analytical regime. [1] What we want to
show here is that although the model does not yield perfect results outside its validity
regime, as expected, it does provide strikingly useful information for optimal tuning even
outside the analytical approximation, as it can be seen in Figures 7 and 8.
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Figure 7 – This figure shows the normalized conductance as a function of ωτ , for the first two images.
The black color is used to represent the Type-I system, while the red one, the Type-II. Points
are used to indicate the analytical results from the linear approximation and the lines were
obtained by means of numerical calculations. In the third picture the normalized difference
is depicted between the states High and Low conductance of the Type-I system, for different
values of η. Note also that for η = 0.01 (continuous representation) and η = 0.001 (dashed
representation) the curves almost coincide.

In the sequence of images in Figure 7 we have depicted in black the values cor-
responding to Type-I system, and in red, the ones for Type-II. The dots indicate the
analytical solution of the conductance for the first order approximation, while the lines
represent the numerical results. It can be seen, in the first image, that for a very low
η the system obeys the linear approximation regime and the analytical results coincide
with the numerical ones. In the second image, η is not small enough in order to force
the system to operate under the linear approximation, thus the dotted analytical results
differ from the numerical ones. And in the third picture, we have depicted the normalized
difference between the zero conductance states of Type-I system, as a function of ωτ for
different values of η. The remarkable conclusion here is that even beyond the condition
when the first order approximation fails, the position of ωτ that leads to the optimal
memory response does not change drastically. In other words, the linear approximation
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provides strong clues for finding the optimal external tuning parameters (frequency, ω,
in this case), even for large voltage amplitudes or for systems that extrapolate the linear
approximation. Namely, the optimal response for maximizing the on-off ratio of Type-I
conductance occurs at ω = 1/τ . In a similar way, Figure 8 also indicates that even when a
system does not obey the linear approximation regime, the location of their maximum
content values remain around the location expected for the linear analytical result, i.e.,
for the Type-I system, the content is maximized at ω = 1/τ ; while, for the Type-II, for
ω = 1/2τ .

Figure 8 – In the upper image the upper and lower current-voltage areas of Type-I system are depicted for
several values of η, that are represented by lines, while the dots represent the values obtained
from the linear analytical approximation. In a similar way, the lower picture shows the results
for the Type-II symmetrical system. While, in the inset, the expected evolution of the loop area
is represented (in absolute arbitrary units valid for Types-I and II) with increasing temperature.
This Figure were edited from [1].

3.2 Triangular input
In analogy to the sinusoidal voltage input investigations, we consider again a single

transport channel with just electrons or holes, with δn representing the non equilibrium
carriers that appear under external perturbation and are given by a rate equation like
Eq. (2.37). Again, we consider the diode-like generation rate of Eq. (2.42) within the
relative low voltage approximation, when ηeV (t)

kBTeff
<< 1. In this case, and neglecting terms

above first order in voltage, Eq. 2.42 reduces to g(V ) = g0 + σV (t), with σ = i0e/kBTeff .
Two basic sets of responses can then be distinguished corresponding to Type-I and II, with
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generation rates gI(II)(V ) = g0 + σV I(II)(t).

The difference consists is the introduction of a triangular voltage pulses, as repre-
sented in Fig. (9), as used for the cyclic voltammetry measurements. The voltage can be
described as

VT riangular(T) =


4V0

T
T, 0 ≤ T ≤ T/4

2V0

Å
1 − 2T

T

ã
, T/4 ≤ T ≤ 3T/4

4V0

T
(T − T ) , 3T/4 ≤ T ≤ T

, (3.15)

where T is a time variable, namely, a time that starts in the beginning of a cycle and ends
in the end of it. In another words, if t is the usual time variable, so T ≡ Remainder(t/T ).

0 5 1 0 1 5 2 0
- 1 . 0

- 0 . 5

0 . 0

0 . 5

1 . 0

Vo
ltag

e (V
0)

T i m e  ( τ )

 V T r i a n g u l a r

Figure 9 – Voltage VT riangular with a period T = 10 τ .

So, we can rewrite the generation function in a more explicit notation, as

g
I(II)
T ri (VT ri) = σ1(2)V

I(II)
T ri (t), (3.16)

where, for simplicity, we have eliminated contribution of g0 that could be attributed to a
constant generation rate induced by light, for instance. Furthermore, V I

T ri ≡ VT riangular,
while V II

T ri ≡ |VT riangular|, namely

V II
T ri =


4V0

T
T, 0 ≤ T ≤ T/4

2V0

Å
1 − 2T

T

ã
, T/4 ≤ T ≤ T/2

, (3.17)

where the time variable, T, represents in this case the time within each semiperiod T/2,
or T ≡ Remaider(t/(T/2)), and V II

T ri is represented in Fig. (10).
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Figure 10 – Voltage V II
T ri normalized, with a period T = 10 τ in dark cyan, while the corresponding

VT riangular normalized is shaded represented in cyan color.

3.2.1 Type-I System

We look for solutions of the following differential equation

dδn(t)
dt

= −δn(t)
τ

+ σ1V
(I)

T ri(t). (3.18)

In this case we have to solved the system within three different regions, that are defined as

First ≡
ß
T, T ∈

ï
0, T4

ò™
, (3.19)

Second ≡
ß
T, T ∈

ï
T

4 ,
3T
4

ò™
, (3.20)

Third ≡
ß
T, T ∈

ï3T
4 , T

ò™
, (3.21)

with T being the effective time inside each complete cycle i, i.e. T ≡ Remaider(t/T ), or
equivalently, t ≡ i T +T, with i ∈ N, and the index i labels the number of complete cycles,
starting with i = 0.

Before solving the system within each region, in order to simplify the results, lets
define the constant a1 that will appear frequently in the calculations

a1 ≡ 4σ1V0

T
, (3.22)
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thus, solving 3.18 for each region, one obtains

δnF irst
i (T) =

î
δn0, F irst

i + aτ 2
ó
e−T/τ + aτT − aτ 2 (3.23)

δnSecond
i (T) =

ï
δn0, Second

i − aTτ

4 − aτ 2
ò
e−(T−T/4)/τ − aτ (T − T/2) + aτ 2 (3.24)

δnT hird
i (T) =

ï
δn0, T hird

i + aTτ

4 + aτ 2
ò
e−(T−3T/4)/τ + aτ (T − T ) − aτ 2, (3.25)

that corresponds to the solution for the ith voltage cycle, with the following initial
conditions,

δn0, Second
i = δnF irst

i (T = T/4), (3.26)
δn0, T hird

i = δnT hird
i (T = 3T/4). (3.27)

Which yields, rewriting all the expressions in terms of the initial condition of the First
region of the ith cycle

δnF irst
i (T) =

î
δn0, F irst

i + aτ 2
ó
e−T/τ + aτT − aτ 2 (3.28)

δnSecond
i (T) =

î
δn0, F irst

i + aτ 2
ó
e−T/τ − aτ 2

î
2e−(T−T/4)/τ − 1

ó
− aτ (T − T/2) (3.29)

δnT hird
i (T) =

î
δn0, F irst

i + aτ 2
ó
e−T/τ − aτ 2

î
2e−(T−T/4)/τ − 2e−(T−3T/4)τ + 1

ó
+ aτ (T − T )

(3.30)

Now we can get a recursive relation for the initial condition of each cycle, realizing that
the end of a ith, using δnT hird(T), region should be equal to the beginning of the (i+ 1)th

cycle, given by δnF irst(T):

δnF irst
i+1 (T = 0) = δn0, F irst

i+1 = δnT hird
i (T = T ), (3.31)

which yields the following recursive form for the initial condition of the first set of equations:

n0, F irst
i+1 = λ+ n0, F irst

i e−T/τ , (3.32)

where λ is can be written as:

λ ≡ aτ 2
î
e−T/τ − 2e−3T/4τ + 2e−T/4τ − 1

ó
. (3.33)

Now, using the recursive form of Eq. 3.32 and starting at the i = 0, we have

δn0,F irst
i=0 ≡ δn0

0

δn0,F irst
i=1 ≡ δn0

1 = λ+ δn0
0e

−T/τ

δn0,F irst
i=2 ≡ δn0

2 = λ+ λe−T/τ + δn0
0e

−2T/τ

δn0,F irst
i=3 ≡ δn0

3 = λ+ λe−T/τ + λe−2T/τ + δn0
0e

−3T/τ

...

δn0,F irst
i=N = δn0

0 ·
Ä
e−T/τ

äN
+ λ ·

N−1∑
j=0

Ä
e−T/τ

äj
, for i > 0.

(3.34)
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And solving the geometric progression sum, we can write

δn0,F irst
i=N ≡ δn0

N = n0,F irst
i=0 e−NT/τ + λ

1 − e−NT/τ

1 − e−T/τ
, i ≡ N ≥ 0, (3.35)

where we have denoted δn0,F irst
i=N in a more concise form, just as δn0

N . In order to be clear,
n0

0 (N = 0) means that no complete cycle have been achieved yet, while δn0
N indicates that

N complete cycles have been already achieved. So now, the Equations (3.28),(3.29),(3.30)
that described a ith-cycle in terms of the initial conditions of these ith-cycles, can be
rewritten in a more explicit way, in terms of the very initial condition, i.e. the condition
for the i = 0 cycle (δn0

0), just using Eq (3.35) of δn0
N :

δnI,T ri
N (T) =


[δn0

N + aτ 2] e−T/τ + aτT − aτ 2

[δn0
N + aτ 2] e−T/τ − aτ 2 [2e−(T−T/4)/τ − 1

]
− aτ (T − T/2)

[δn0
N + aτ 2] e−T/τ − aτ 2 [2e−(T−T/4)/τ − 2e−(T−3T/4)τ + 1

]
+aτ (T − T )

, (3.36)

with T belonging to the respective intervals: {
[
0, T

4
]
,
[

T
4 ,

3T
4
]
,
[3T

4 , T
]
}.

For a sufficiently high number o cycles N, from Eq. (3.35), we can write the initial
condition for stables cycles as:

n0, F irst
∞ ≡ lim

N→∞
δn0, F irst

N = λ
1

1 − e−T/τ
(3.37)

So, the stable cycle solution for δn(T) can be written as

δnI,T ri
∞ (T) =



2aτ 2

Ç
1 − e−T/2τ

1 − e−T/τ

å
e−(T+T/4)/τ + aτT − aτ 2, 0 ≤ T ≤ T

4

2aτ 2

Ç
1 − e−T/2τ

1 − e−T/τ

å
e−(T+T/4)/τ

−aτ 2 [2e−(T−T/4)/τ − 1
]

− aτ (T − T/2) , T
4 ≤ T ≤ 3T

4

2aτ 2

Ç
1 − e−T/2τ

1 − e−T/τ

å
e−(T+T/4)/τ

−aτ 2 [2e−(T−T/4)/τ − 2e−(T−3T/4)τ + 1
]

+aτ (T − T ) , 3T
4 ≤ T ≤ T.

(3.38)

The current of the system can then be calculated as

II,T ri
∞ =

(
G0 + α δnI,T ri

∞ (T)
)
VT riangular(T), (3.39)

while the conductance is just

GI,T ri
∞ = G0 + α δnI,T ri

∞ (T). (3.40)
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And the conductance values at VT riangular = 0 are given by

G∞,Low(T = 0) =G0 − αaτ 2
ñ
1 − 2

Ç
1 − e−T/2τ

1 − e−T/τ

å
e−T/4τ

ô
(3.41)

G∞,High(T = T

2 ) =G0 + αaτ 2
ñ
1 − 2

Ç
1 − e−T/2τ

1 − e−T/τ

å
e−T/4τ

ô
(3.42)

In turn, the Content values can also be calculated analytically

Sup =
∫ T/2

T=0
I(T)dV, (3.43)

Sdown =
∫ T

T=T/2
I(T)dV, (3.44)

with ST ri,I
up = −ST ri,I

down , yielding

ST ri,I
up = − 4 V 3

max α σ1τ
2

T 3 ·

·

[î(
1 + eT/2τ

)
T 2 − 8

(
−1 + eT/2τ

)
T τ + 32 ·

(
−1 + eT/4τ

)2
τ 2
ó

eT/2τ + 1

]
.

(3.45)

This expression allows finding numerically the optimal period to maximize content
in absolute values as being

T T ri,I
max ≈ 6.754957 τ. (3.46)

Note that the maximum area for the corresponding system with a sinusoidal voltage was,
TSin max = 2πτ ≈ 6.2831τ .

3.2.2 Type-II System

In this case, we look for the solutions of

dδn(t)
dt

= −δn(t)
τ

+ σ2V
(II)

T ri , (3.47)

with V
(II)

T ri given by Eq. (3.17) and we will split the solution in two different regions, that
we call

First ≡
ß
T, T ∈

ï
0, T4

ò™
, (3.48)

Second ≡
ß
T, T ∈

ï
T

4 ,
T

2

ò™
, (3.49)

with T being the effective time inside each semi cycle i, i.e. t ≡ (i− 1)T
2 + T. Now, in a

similar manner, lets define a useful constant

a2 ≡ 4σ2V0

T
, (3.50)
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thus, for the corresponding time intervals, we have

δnF irst
i (T) =

î
δn0, F irst

i + aτ 2
ó
e−T/τ + aτT − aτ 2, (3.51)

δnSecond
i (T) =

ï
δn0, Second

i − aTτ

4 − aτ 2
ò
e−(T−T/4)/τ − aτ (T − T/2) + aτ 2, (3.52)

with,

δn0, Second
i = δnF irst

i (T = T/4) =
î
n0, F irst

i + aτ 2
ó
e−T/4τ + aτ

T

4 − aτ 2, (3.53)

where the index i is now counting semi-periods of the voltage cycles, starting at i = 1 for
the very first cycle.2 Now in order to obtain a relation for the initial condition of each
cycle, note that

δn0, F irst
i+1 = δnSecond

i (T = T/2) , for i ≥ 1, (3.54)

yielding

n0, F irst
i+1 = λ+ n0, F irst

i e−T/2τ , (3.55)

with, λ ≡ aτ 2
î
1 − 2e−T/4τ + e−T/2τ

ó
= aτ 2

Ä
1 − e−T/4τ

ä2
. (3.56)

This recursive relation can be rewritten in a more detailed form (term by term) just like
we did in Eq. (3.34). And in a similar fashion, we can write the N th-half cycle initial
condition (of the first half interval) in terms of the initial condition of the first half-cycle
and of a sum of a geometric progression, as

n0, F irst
i=N = λ

ñ
N−1∑
j=1

Ä
e−T/2τ

äj−1
ô

+ n0, F irst
i=1

Ä
e−T/2τ

äN−1
, (3.57)

for i = N ≥ 2; while for N = 1 (the very first half cycle) we have n0,F irst
i=1 ≡ n0

0.3 The
sum of this geometric progression, with initial term a1 = λ and ratio q = e−T/2τ can be
evaluated, yielding

δn0, First
i=N ≡ δn0

N = λ

Ç
1 − e−(T/2τ)(N−1)

1 − e−T/2τ

å
+ δn0, F irst

i=1 e−(T/2τ)(N−1), for N ≥ 1, (3.58)

with N counting half-cycles, starting at N = 1.

For a sufficiently high number of half-cycles N, we can get the initial condition of
the stables half-cycles, as

n0, F irst
∞ ≡ lim

N→∞
δn0, F irst

N = λ
eT/2τ

eT/2τ − 1 . (3.59)
2 It is worth noting that here, in triangular Type-II system the counting index i is starting at i=1 for

the first count piece and is counting voltage semi-cycles; while, for the previous triangular Type-I
system, the index i starts its counting at i=0, and counts entire voltage cycles

3 Where i or N here (i ≡ N) corresponds to a counting index of the half-cycles and not of the entire
voltage cycles.
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So we can write the solution of the stable half-cycles in the following manner

δnII,T ri
∞ (T) =


aτ 2 {e−T/τ

[
coth( T

4τ
) − csch( T

4τ
) + 1

]
− 1

}
+ a

τ
T, 0 ≤ T ≤ T

4

aτ 2{e−(T−T/2)/τ
[
coth( T

4τ
) − csch( T

4τ
) + 1

]
− 1}

−a

τ
(T − T

2 ), T
4 ≤ T ≤ T

2 .

(3.60)
Now, we make a short break in our logical reasoning before describing the current, in
order to define useful asymptotic expressions that will be suited to evaluate important
expressions later on. For simplicity, lets define the HY (x) function as:

HY (x) ≡ coth(x) − csch(x). (3.61)

Considering HY (x) it is worth noting its asymptotic limits and its first order Taylor
expansion form, respectively 4

lim
x→∞

HY (x) = 1, (3.62)

lim
x→0

HY (x) = 0, (3.63)

HY (x) ∼=
x

2 , (3.64)

where the third one is valid for sufficiently small arguments (x), until its first order.

By applying Eq. (3.62), Eq. (3.63) and Eq. (3.64) to Eq. (3.60), of δnII,T ri
∞ , we

obtain the following asymptotic forms in period for δnII,T ri
∞ (T):

lim
T →0

δnII,T ri
∞ (T) = σ2V0τ

2 (3.65)

lim
T →∞

δnII,T ri
∞ (T) =

 V0σ2τ4χ, for T ≤ T/4; χ ∈ [0, 1/4], with T ≡ χT

V0σ2τ [1 − 4χ], for T ≥ T/4; χ ∈ [0, 1/4], with T ≡ T
4 + χT

(3.66)
Now, once the useful limits of δnII,T ri

∞ (period) have been established, lets return to the
physics and define the current of the system as

III,T ri
∞ =

(
G0 + α δnII,T ri

∞ (T)
)

· VT riangular(T), (3.67)

while the conductance is just given by

GII,T ri
∞ (T) = G0 + α δnII,T ri

∞ (T). (3.68)

Now, calculating the zero point conductance (at VT riangular(T) = 0) for the beginning and
the end of the first and second half-cycles, respectively, we have 5

G i
∞(T = 0) = G i+1

∞ (T = T/2)

= G0 + α

®Å8σ2V0τ
2

T

ã
·
ñ
eT/4τ − 1
eT/2τ − 1

ô
· eT/4τ − 4σ2V0

T
τ 2
´ (3.69)

4 These expressions will be used later on in this text.
5 Which means, the values at the start and the end of a entire cycle, i.e. of two sequential half-cycles.
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which reinforces this system as a Type-II (symmetric type).

We can also calculate the asymptotic forms of the zero-conductance as a function
of period by using the δn limits, given by Eq. (3.65) and Eq. (3.66), and replacing them in
the conductance Eq. (3.68) while setting T = 0, which yields

lim
T →∞

GII,T ri
∞ (T = 0) = G0, (3.70)

lim
T →0

GII,T ri
∞ (T = 0) = G0 + ασ2V0τ

2 . (3.71)

The Content values will be defined as

Sup =
∫ T/2

T=0
I(T)dVT riangular (3.72)

Sdown =
∫ T

T=T/2
I(T)dVT riangular = Sup (3.73)

Specifically, for the upper loop we can write

Sup =
∫ T/4

T=0
I(T)dV +

∫ T/2

T=T/4
I(T)dV, (3.74)

that is

Sup =
∫ T/4

T=0
(G0 + α δnII,T ri

∞ (T))
Å4V0

T
T

ãÅ4V0

T

ã
dT+∫ T/2

T=T/4
(G0 + α δnII,T ri

∞ (T))
Å

2V0 − 4V0

T
T

ãÅ
−4V0

T
T

ã
dT.

(3.75)

Yielding the following explicit formulae for the contents (considering the Type-II symmetric
response of this system):

Sup = Sdown = 64ασ2V
3

max

τ 2

T 3ß
2τ 2 − [HY (T/4τ) + 1]

Å
τ 2 + T

4 τ
ã
e−T/4τ + [HY (T/4τ) − 1]

Å
τ 2 − T

4 τ
ã
eT/4τ − T 2

16

™
(3.76)

Now, by introducing the parameter x ≡ T/4τ , the expression in Eq. (3.76) can be rewritten
equivalently in a simpler way, as

Sup = Sdown = ασ2 V
3

0 τ

ß 2
x2

Å
ex − 1
ex + 1

ã
− 1
x

™
. (3.77)

This can be used to find numerically the optimal period capable of maximizing the content
in absolute values, that is

T II,T ri
max ≈ 12.8489 τ , (3.78)

Note that the maximum for the corresponding system with a sinusoidal voltage was
achieved for: TSin,max = 4πτ ≈ 12.5664 τ
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3.2.2.1 Comparing the Triangular Systems’s Responses

From the equations Eq. (3.36) (for a type-I system); and Eq.(3.51), Eq.(3.52) (for
a type-II system), we can compare the evolution of their non-equilibrium carriers, δnI,II ,
in time. As depicted in Fig. (11).
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Figure 11 – Transient behaviour of δnI and δnII . Parameters are: σ1 = σ2 = 100; τ = 1; T = 10; V0 =
1; n0 = 0; G0 = 1; α = 0.01. After a sufficiently long time the systems reach the stable
regimes.

We can also compare the behavior of the systems, in their stable regimes, looking
at their currents in a time interval of a single voltage cycle, as depicted in Fig (12).
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Figure 12 – Normalized currents and voltage for one stable cycle. Parameters are: σ1 = σ2 = 100; τ =
1; T = 10; V0 = 1; n0 = 200; G0 = 1; α = 0.01.

Note that the discontinuity in the first derivative of the voltage input (at T = T/4
and T = 3T/4) leads to discontinuities in both currents derivatives.

From the equations of current, namely, Eq. (3.39) for Type-I; and Eq. (3.67) for
Type-II; we can compare their I-V characteristics, as depicted in Fig. 13.
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Figure 13 – Current voltage curves for a) Type I system, with maximum in T = 6.75 τ ; and type II, with
maximum in T = 12.85 τ , b).Parameters are: σ1 = σ2 = 100; τ = 1; V0 = 1; n0 = 200; G0 =
1; α = 0.01.

Note also that the period, T , of them is different in these plots, and have been
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chosen in order to maximize the content values of their hysteresis; i.e., for the Type-I
system we have T I

Max ≈ 6.75 τ , while T II
Max ≈ 12.85 τ , for Type-II.

From Eqs. (3.40) and (3.68) we can plot figures of merit of the conductance of the
systems as a function of voltage (VT riangular), as displayed in Fig. 14.
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Figure 14 – Normalized conductance as a function of voltage for a stable cycle. The Type-I system presents
two conductance states at zero voltage, high and low, while Type-II, the symmetric one,
present only one state. The parameters used are: σ1 = σ2 = 100; τ = 1; V0 = 1; n0 =
100; G0 = 1; α = 0.001 and T = 2π.

The discontinuities of the conductance derivatives at extreme left and right po-
sitions are expected because of the discontinuities on the voltage’s derivative functionÅ
d

dT
VT riangular(T)

ã
at these same positions. Also, at zero voltage, the Type-I system

presents two different conduction states (High and Low) while Type-II presents a unique
conduction state, just like for the sinusoidal voltage input.

The conductance states at zero voltage are written in Eqs. (3.41, 3.42) for the
Type-I system and in Eq. (3.69), for the Type-II. These equations can rewritten in the
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following normalized form

GI,T ri,Low
∞,V =0 −G0

σ1ατV0
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ô
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GI,T ri,High
∞,V =0 −G0

σ1ατV0
= + 4

( τ
T

) ñ
1 − 2

Ç
1 − e−T/2τ

1 − e−T/τ

å
e−T/4τ

ô
(3.80)

GII,T ri
∞,V =0 −G0

σ2ατV0
= 8

( τ
T

) ñExp
(1

4
T
τ

)
− 1

Exp
(1

2
T
τ

)
− 1

ô
· Exp

Å1
4
T

τ

ã
− 4

( τ
T

)
(3.81)

The normalized states of conductance at zero voltage, as a function of the period, from
Eqs. (3.79, 3.80, 3.81), are shown in Fig. 15.

1 0 - 4 1 0 - 3 1 0 - 2 1 0 - 1 1 0 0 1 0 1 1 0 2 1 0 3 1 0 4

- 0 . 4

- 0 . 2

0 . 0

0 . 2

0 . 4

0 . 6

(G
-G

0)/(
σα

τV
0)

T  ( τ )

 G  I , T r i ,  L o w
∞,  0

 G  I , T r i ,  H i g h
∞, 0

 G I I , T r i
∞, 0

T  ≈  6 . 0 2 2  τ

Figure 15 – Normalized difference of the zero-conductance states with their unperturbed conductance (G0)
as functions of the period (T ). The two different conductances states of Type-I system are
depicted in black: the dotted line for the higher state and continuous one, for the lower. Also,
the maximum difference between these states is achieved at the period T ≈ 6.022 τ (obtained
numerically). The unique conduction state of the Type-II system is depicted in the red
continuous line and their asymptotic values are in perfect agreement with the equations 3.70
and 3.71. Parameters are: σ1 = σ2 = 100; τ = 1; V0 = 1; n0 = 100; G0 = 1; α = 0.001.

It can be seen, in Fig. (15) , that for high values of period, i.e. very small values of
the frequency ω ≡ T/2π, all the conductance states (for both systems) converge to their
unperturbed value (G0). This phenomenon is expected and can be understood considering
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that the input voltage function changes so slow, that the system has enough time to return
to the unperturbed state, by means of the relaxation time (τ) mechanism.6

For small values of T , i.e. high frequencies ω, the Type-I system still returns to
its unperturbed state (G0) due to the oscillating character between negative and positive
values of voltage of its generation function. In contrast, the Type-II system reaches a kind
of stable conductance state that is different from (G0) and it can be understood if we
note that its generation function dependence with voltage is oscillating very fast but only
in positive values of voltage. Thus, we have a kind of either fast excitation or trapping
mechanism (and not both) and also a relaxation mechanism (driven by τ). Therefore, the
interplay between the very fast generation mechanism and the relaxation one reaches a
steady equilibrium, yielding a conductance value different from (G0).

The normalized upper content values of Eq. (3.45), for Type-I system, and Eq. (3.76),
for Type-II are depicted in Fig. (16).

1 E - 3 0 . 0 1 0 . 1 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0

- 0 . 2 0

- 0 . 1 5

- 0 . 1 0

- 0 . 0 5

0 . 0 0

T  ≈  1 2 . 8 5  τAr
ea 

(ασ
τV

3 0)

T  ( τ )

 T y p e  I
 T y p e  I I

T  ≈  6 . 7 5  τ

Figure 16 – Normalized content values for the upper loops of Type-I and (II) systems. The Type-I,
black curve, presents a higher absolute value of content with a maximum at T ≈ 6.75 τ ;
while the Type-II system, in red, presents its maximum at T ≈ 12.85 τ . Parameters are:
σ1 = σ2 = 100; τ = 1; V0 = 1; n0 = 100; G0 = 1; α = 0.001.

It can be seen that, just like for the sinusoidal input, the triangular pulse induces the
Type-I system to reach a maximum absolute content value greater than the corresponding
one for Type-II case. Also, the Type-I maximum content is attained at lower values of
6 See the differential equations Eq. (3.18) and Eq. (3.47).
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period (i.e. greater values of frequency), compared to Type-II, just like for the sinusoidal
responses. The exact position of the maximum values were obtained numerically from the
equations Eq. (3.45) and Eq. (3.76).

3.3 Optimizing the Systems
In order to summarize how to tune the systems to their optimal regime of operation

of content and displacement between the conductive states High and Low (of Type-I
system), we present Table 1 .

Table 1 – Tuning values of period in units of τ in order to maximze the memory response
of the toy models, regarding the content and the displacement between High
and Low conductivit states of Type-I systems.

∆σI
maxdisplacement - position AreamaxPosition

Type-I Sinusoidal 2πτ ≈ 6.283 τ 2πτ ≈ 6.283 τ
Type-II Sinusoidal - - - 4πτ ≈ 12.57 τ
Type-I Triangular ≈ 6.022 τ ≈ 6.75 τ
Type-II Triangular - - - ≈ 12.58 τ
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4 Experimental confirmations and the effect
of temperature in ZnO thin films

In this chapter we will use the model to explain and predict memory features that
have emerged in samples of ZnO thin films fabricated and characterized by colleagues.
These samples were subjected to triangular voltage pulses and the generating function
that have been used here is that of Eq. 2.41, capable of modelling the carrier activation in
metal-semiconductor-metal sites or vice-versa. Thus, as the generation function applied
in this model is different of those used in the previous Chapter, it is expected that the
conduction model applied here to be slightly different from that ones.

4.1 The Model for Metal-Semiconductor-Metal Sites
Beside internal parameters, the memristive response is also affected both qualita-

tively and quantitatively by the shape of the voltage drive. In this section we have modeled
the system for triangular voltage pulses responses as displayed in the inset of Fig. 17,
that is discussed alongside the experimental results in what follows. If the local voltage
efficiency, η, is sufficiently low, then it is valid to assume that ηeV

2kBTeff
<< 1 and Eq. (2.41)

can be approximated up to second order in voltage reducing Eq. (2.37) to

dδn

dt
= i0η

4

Å
eV

kBTeff

ã2
− δn(t)

τ
. (4.1)

Assuming the presence of just a single channel of n-type carriers, the solution of Eq. (4.1)
under stationary conditions yields, ne

st = πm∗
eητe

(2πℏ)3 (eV )2 exp
Ä
− Ee

B

kBTeff

ä
, that corresponds to

activated electrons above a barrier Ee
B, where the subscript and superscripts (e) were

introduced to label electron related parameters. The conductance at V = 0 can be emulated
for the upward and downward sweeps under stable conditions, corresponding to coincident
conductance values at V = 0 a typical feature of Type-II systems

G(0) = G

Å
T

2

ã
= G0 + αL
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(
− T
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) , (4.2)
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(
− T

2τ
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− λτ 2T exp

(
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)
, and λ = 4ηi0

T 2 ( eV0
kBTeff

)2. From Eq. (3.12),
the Content can be obtained as

Striangular = −α128ηe2V 4
0 i0τ

(kBTeff )2

( τ
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)3 1 − e− T
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[1
3( T

4τ
)2 + T

4τ
+ 1

]
+ 1

3( T
4τ

)2 − T
4τ

1 − e− T
2τ

, (4.3)

with the corresponding analogue for a sinusoidal voltage pulse, written using the same
parameter’s notation of triangular response formalism, being written as
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Ssinusoidal = −α128ηe2V 4
0 i0τ

(kBTeff )2

( π

1024

) (2πτ
T

)
1 +

(4πτ
T

)2 . (4.4)

From the expressions above, it can be demonstrated that, in the case of the approximation
of Eq. 4.1, the maximum absolute value of Content takes place at T/τ ≈ 13.7434 for
triangular pulses while at T/τ = 4π for sinusoidal pulses.

4.2 The experiment
Increasing temperatures can be, in general, detrimental for memory functionali-

ties. [32] However, as discussed in this section, combining experimental and theoretical
analyses we concluded that this is not always true. In particular, the lateral transport in
thin films of zinc oxide tends to have its memory character increased with the temperature
rise. [26]

Thus, in this section, we discuss a practical example where the theory can be
applied to explain and predict several features concerning the memory emergence and also
how temperature affects it. A schematic diagram of this system can be seen in Fig. 17 (a),
where the texture on the film surface represents the presence of defects, that can act as
generation or trapping sites for conductive carriers; while in Fig 17 (b) the pattern of the
triangular voltage input has been represented. This results in the measured hysteresis in
Current-Voltage characteristics as displayed in Fig 17 (b).

Hall effect measurements were performed in a temperature range of 240K to 380K,
revealing an increase of n-type carriers at lower temperatures followed by a subsequent
growth of the presence of holes, culminating in the reversal of the n-type behavior in
favor of p-type transport, at higher temperatures, as can be seen in Fig. 17 (c). During
the Hall effect measurements, the applied bias voltage changed, as depicted in Fig 17
(d), that shows the experimental voltage points and a fitting function. Using this fitting,
the theoretically predicted carrier density as a function of temperature was plotted as a
solid green line in Fig 17 (c), in good agreement with the experimental measurements,
represented as green spheres. This observed interplay between carrier of different types as
temperature changed pointed out to the need of modelling the system considering two
independent conduction channels within this temperature range: one for electrons and
another one for holes.

The dynamic Eq. 4.1 was used to model each channel, implying in a total number
of non-equilibrium carriers (considering both contributions) proportional to

qtotal ∝ (eV )2
ñ
m∗

hτ
h

m∗
eτ

e
e

−
Eh

B
kBTeff − e

−
Ee

B
kBTeff

ô
. (4.5)
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Figure 17 – (a) Schematic representation of the sample with contacts. (b) Measured current-voltage loop
with the corresponding triangular voltage drive plotted in the inset. (c) Charge density as
a function of temperature. (d) Applied longitudinal voltage for each temperature to set the
fixed current condition.

Then, from the number of carriers, we theoretically obtained the zero voltage conductance
values for half-period and full-period, which are given by Eq. (4.2), pointing out to a
Type-II response, as they were found to be equal.

The loop area, over a whole cycle, was extracted from the stable experimental
condition and is shown in Fig. 18 (a), with the theoretically calculated total area of Eq. 4.3,
represented in Fig. 18 (b) that coincides with this functional behavior. The theoretical
value of the hysteresis area collapses at both T/τ → 0 and T/τ → ∞, with a maximum
absolute value at T/τ ≈ 13.7434 and given that the maximum experimental absolute loop
area has been reached for T = 120min, we can estimate the corresponding relaxation time
as being τ = 8.73 min. A comparison between the behavior predicted for a triangular pulse
and the corresponding analogue for the sinusoidal voltage input has also been included
into Fig. 18 (b), pointing to similar functional behaviour but different values for the period
that leads to the the maximum area.

Using the definition, I = (G0 + α δn)V , we can also find a theoretical expression
for the zero voltage resistance taking into account the two active channels with electrons
and holes contributions

Rm
xx =

ñ
G0 + γ

Ç
m∗

hτ
h

m∗
eτ

e
e

−
Eh

B
kBTeff + e

−
Ee

B
kBTeff

åô−1

, (4.6)

where γ is a constant value. This theoretical temperature dependence has been included
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Figure 18 – (a) Measured total area of the current-voltage loop as a function of period. (b) Calculated
total area of the current-voltage loop as a function of period for a triangular and a sinusoidal
pulses. (c) Resistance at V = 0 as function of temperature. (d) Upper and lower loops areas
as function of temperature.

into Fig. 18 (c) alongside the experimental measurements of the resistance. The agreement
between these experimental and theoretical findings indicates that within this temperature
frame it is the charge activation that rules the memory response.

The measurement of upper and lower Content and the precise match of them,
as displayed in Fig. 18 (d) reinforces the previous assertion on the preservation of the
Type-II character of the memristive response. The experiments also showed a decrease
(increase in absolute values) in the Content value with the temperature rise, alongside the
theoretical results as depicted in Fig 18 (d). The theoretical Content Value is obtained
from Eq. 4.3, from which we can prove that Content ∝ −mτ exp[−EB/(kBTeff )], so that
the temperature tuning of the area of a single loop, A/2, combining additive electron and
hole channels, can be reduced to

A/2 ∝ −
Ç
m∗

hτ
h

m∗
eτ

e
e

−
Eh

B
kBTeff + e

−
Ee

B
kBTeff

å
. (4.7)

This theoretical function, is plotted alongside the experimental findings in Fig. 18 (d), and
also defines a monotonic growth in absolute terms, in agreement with the experiments
and reinforcing the dominance of charge activation in boosting these memory traces. Such
a picture is expected to be reversed at much higher temperatures if the decay time, τ , so
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far assumed to be independent on Teff , decreases. Yet, this limit was clearly not reached
within the temperature range of the current analysis.
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5 Conclusion and next steps

Based on the results available thus far, we may conclude that this research into
the memristive response in solids has already been very fruitful. From the outcome of our
investigation it has been possible to model and emulate a pervasive mechanism of memory
emergence in conductive solids, yielding both Type-I and Type-II responses according to
certain symmetry constrains. One may also foresee further success in the application of
our model to various systems and devices.

We have obtained analytical expressions that describe systems driven by a sinusoidal
and triangular bias voltage, with linear antisymmetric generation rate and also for a
symmetrical generation rate. We have presented analytical expressions for he current as a
function of time, for both types of systems, and also for their conductance and Content.
These results indicate how the memory response of these systems could be tuned by
adjusting the bias frequency, amplitude, and temperature. Preliminary discussions on this
matter were published in the paper The Ubiquitous Memristive Response in Solids [1].
We have also obtained experimental confirmations for the model validity employing the
triangular voltage pulse formalism, 1 which were published in the paper Temperature,
detriment or advantage for memory emergence: The case of ZnO [26].

It is also worth noting the many contributions to the author’s formation to become
a Researcher that this Master Program provided. Through the taken courses, the author
have deepened his knowledge on quantum mechanics, electrodynamics, semiconductors
devices and computational methods; being all of them very useful skills. But, the most
positive gains were, by far, acquired through the research process, in the everyday-life of a
researcher, with the challenges and tasks that were presented and with the very frequent
and direct contact with researchers and collaborators.

I am grateful to my advisor for proving me the opportunity to see and be part of
what it were for me, the first time in my life I have ever done real physics research. With
him, I have also learned a simple, but also sometimes underestimated concept: that the
theory and experiment in physics should always walk together; and fortunately, I had the
opportunity to do research following this idea, which were possible just because of the
strong collaboration with other researchers.

By working with my advisor and other very capable researchers, I was able to see
and learn something about the unique way how each of them proceed in doing research. By
means of that I have tried to mimic the best of their methods, adapting it to my style, and
1 The formalism employed in Chapter 4 is slightly different from the corresponding one of the Theoretical

results Chapter. Namely, the g(V ) of Chapter 3 has a first order dependence on voltage; while the one
employed in Chapter 4 depends on the second order of voltage.
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building my personal way of researching (still in development). This, I certainly consider
the most valuable skill/experience that I had during this entire process.

5.1 Next steps
The three proposed goals for this Master Course were successfully accomplished.

Also, beyond the scope of it, other activities have emerged and they became ongoing
research topics to be continued in a PhD. Although some novel extensions of the model
have already been done and have also provided enough material to publish two more
papers: "Tuning the conductance topology in solids" [27] and "Inadequacy of equivalent
circuits in nonlinear systems with inherent memory" [28]; these topics are still under
further investigation; the first, introducing asymmetries to the model and providing the
first step to the study of the topology of current-voltage characteristics crossings; and
the second one, extending the model to mathematically operate with a infinite number of
modes, beyond first or second order, also providing novel interpretation about equivalent
circuits frequently seen and misunderstood in literature. As there are expectations that
innovative results are still to be discovered from them, they were not discussed in this
thesis, becoming material for the forthcoming PhD.

Also, the Author has been working in collaboration with his advisor and Professor
Ovidiu Lipan, of Richmond University, since the beginning of the Master project, on
investigations about memory formation in systems of quantum dots. This is also an
ongoing activity that shall continue. Another ongoing activity worth of mentioning is the
research on ZnO thin films doped with Nq, that presented a very rich amount of different
behaviors under the effect of different atmospheres, and shall become a publishable paper
soon.

And to summarize the rich amount of questions or developments that this research
provided, the six following questions, still open, can precisely describe and guide what is
expected for the forthcoming investigations to be done during a PhD project:

1. Are there universal sufficient conditions for the emergence of memory and can
emergent memory device based on different physical principles be mapped onto each
other based on symmetry principles?

2. Can we define topological distinguishable classes of emergent memory phenomena
and define topological invariants?

3. What are optimal driving configurations of mem-elements and how can one optimize
the figure-of-merit based on internal and external control mechanism for different
sorts of devices?
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4. Can the regularities obtained for continuous models be sustained at the quantum
level for single electron devices with memory?

5. Can the memristive response of coupled quantum dots be sustained in both the
volatile and the non-volatile limits? How would the memory robustness (loop area)
responds to tuning of the input stimuli and intrinsic symmetry constraints?

6. Can a three-phase coupled quantum dot connection be used as a synaptic emulator?
If so, which is the optimal driving configuration for such functionality?

Considering the progress done in this thesis and also in the four published papers,
we are convinced of being able to answer to these questions to the best of our ability in a
forthcoming PhD Thesis.
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