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ABSTRACT

Context: Software testing plays a crucial role in ensuring the quality of software, but

developers often disregard it. The use of automated testing generation is pursued

with the aim of reducing the consequences of overlooked test cases in a software

project.

Problem: In the context of Java programs, several tools can completely automate

generating unit test sets. Additionally, there are studies conducted to offer evidence

regarding the quality of the generated test sets. However, it is worth noting that these

tools rely on machine learning and other AI algorithms rather than incorporating the

latest advancements in Large Language Models (LLMs). Solution: This work aims to

evaluate the quality of Java unit tests generated by an OpenAI LLM algorithm, using

metrics like code coverage and mutation test score. Method: For this study, 33

programs used by other researchers in the field of automated test generation were

selected. This approach was employed to establish a baseline for comparison

purposes. For each program, 33 unit test sets were generated automatically, without

human interference, by changing Open AI API parameters. After executing each test

set, metrics such as code coverage, mutation score, and success rate of test

execution were collected to evaluate the efficiency and effectiveness of each set.

Summary of Results: Our findings revealed that the OpenAI LLM test set

demonstrated similar performance across all evaluated aspects compared to

traditional automated Java test generation tools used in the previous research. These

results are particularly remarkable considering the simplicity of the experiment and

the fact that the generated test code did not undergo human analysis.

Keywords: software testing, experimental software engineering, automated test

generation, coverage testing, mutation testing, testing tools
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1 INTRODUCTION

In recent years, the field of artificial intelligence (AI) has witnessed remarkable

advancements, largely attributed to the emergence of Large Language Models

(LLMs) like ChatGPT. These models have revolutionized various domains by

demonstrating an exceptional ability to comprehend and generate human-like text.

One significant area that has gained traction within the AI community is software

testing, a critical process that ensures the quality and reliability of software systems.

With the advent of LLMs, the potential to automate certain aspects of software testing

has become a subject of exploration. This undergraduate thesis delves into the

intriguing realm of software testing by focusing on the unit test generation capability

of ChatGPT. The study's findings were presented as an article at VIII Simpósio

Brasileiro de Teste de Software Sistemático e Automatizado2 and are expounded

upon in the subsequent chapters.

2 CONTEXT

Unit testing is an essential practice in software development aimed at ensuring

the correctness and robustness of individual code units. These tests, typically written

by developers, play a crucial role in identifying defects and validating the expected

behavior of software components. DevOps pipelines are strongly based on the

quality of unit tests. However, manually generating comprehensive unit tests can be a

challenging and time-consuming task, often requiring significant effort and expertise.

To address these challenges, researchers have explored automated approaches for

test generation (ABDI; DEMEYER, 2022) (FERNANDES, 2022), leveraging

advanced techniques and tools.

In this work, we focus on evaluating the quality of Java unit tests generated by

an OpenAI Large Language Model (LLM), which has demonstrated remarkable

capabilities in generating tests across various domains (YUAN et al, 2023)

(SCHWEIKL et al, 2022) (SIDDIQ et al, 2023). Our evaluation will utilize three key

2 https://cbsoft2023.ufms.br/sast

https://cbsoft2023.ufms.br/sast
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quality parameters: code coverage, mutation score, and build and executing success

rate of test sets. Code coverage quantifies the extent to which the tests exercise

different parts of the code, indicating the thoroughness of the test suite. On the other

hand, the mutation score measures the ability of the tests to detect and kill mutated

versions of the code, providing insights into the fault-detection capability

(ANDREWS; BRIAND; LABICHE, 2005). Finally, the build and success execution

rate measures the reliability of the generated tests.

In order to conduct a thorough and comprehensive analysis, this study will

compare the quality of the unit tests generated by the selected LLM with those

produced by other prominent Java test generation tools, such as EvoSuite3. This

comparative evaluation aims to determine if the LLMs can outperform state-of-the-art

Java test generation tools and will leverage relevant data from (ARAUJO; VINCENZI,

2020) research to provide a meaningful benchmark for comparison. By assessing the

effectiveness and performance of the LLMs against established tools, we can gain

valuable insights into their capabilities and potential advantages in generating

high-quality unit tests for Java programs.

Therefore, we can summarize these paper's contributions:

● To provide evidence of the quality of LLMs in generating unit test sets for Java

programs with respect to their efficiency and efficacy;

● To evaluate the improvements a combination of test sets can achieve over

individual test sets with respect to efficiency and efficacy;

● To collect data for supporting further comparison of different LLMs on

generating Java unit test sets;

● To develop and to make available a set of artifacts for easing the

experimentation for different sets of programs.

The structure of the rest of this paper is as follows: We outline the essential

subjects for comprehension of this paper in section 3. In section 4, we touch on other

studies that are related to ours and highlight the differences. The design of our

experiment, along with our choices of programs and tools, is detailed in Section 5. In

Section 6, we display the data we've gathered and the subsequent analysis. A

discussion of the outcomes derived from the collected data is provided in Section 7.

3 https://www.evosuite.org/
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We then discuss potential risks that may affect our experiment results in Section 8.

Finally, in Section 9, we wrap up the paper by indicating possible future research

directions informed by this study and the data collected.

3 BACKGROUND

This section will explain software testing, automatic test data generation, and

large language models so that the rest of the paper can be understood.

3.1 SOFTWARE TESTING

In the sphere of software development, it is crucial to ensure the robustness

and reliability of a program. A primary technique used for this goal is software testing,

which is a systematic process that checks the functionality and accuracy of a

software application. However, with software systems growing increasingly complex

and versatile, covering a broadening range of use cases and inputs, makes software

testing an arduous task.

To analyze the effectiveness of a test set, various criteria come into play, two

of which are lines of coverage and mutation testing (ROPER, 1994). Code coverage

entails analyzing the extent to which the test suite exercises the internal structure of

a software product like its statements or conditions. The goal is to achieve complete

or near-complete coverage to ensure that each statement or each branch in the code

has been executed at least once during testing.

On the other hand, mutation testing evaluates the test suite ability to identify

and “kill” mutated versions of the software (DeMILLO; LIPTON; SAYWARD, 1978).

Mutation testing can be seen as a fault model representation (ANDREWS; BRIAND;

LABICHE, 2005). These mutations involve making small syntax changes to the code

to simulate potential faults. A successful mutation test is one in which the test suite

effectively detects these mutations, highlighting its proficiency in identifying

vulnerabilities and potential issues within the software. Both code coverage and

mutation testing are used in this study as metrics to measure the reliability and
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thoroughness of the automatically generated test sets. Moreover, these are

traditional metrics used in other studies, like the one developed by Araujo and

Vincenzi (2020) which we will use as a baseline.

3.2 TRADITIONAL AUTOMATIC TEST DATA GENERATION

The automatic generation of test data poses an undecidable problem from a

computational perspective. While random testing or search-based strategies are

commonly employed, other research has shown that the problem remains unsolved

when using traditional tools that rely on these approaches (VINCENZI et al, 2016)

(ARAUJO; VINCENZI, 2020). The shortcomings of traditional test data generators

become apparent when attempting to achieve all testing objectives, such as

complete code coverage or eliminating all mutants (ABDI; DEMEYER, 2022).

Consequently, the pursuit of comprehensive and efficient test data generation

techniques continues to be an ongoing challenge in the dynamic field of software

testing.

Even considering the state-of-the-art unit testing generation for Java,

(FRASER; ARCURI, 2014), the resultant test set reaches low mutation scores in

traditional competitions (VOGL et al, 2021) (SCHWEIKL et al, 2022). Other tools

have been discontinued, like Palus (ZHANG, 2011) and JTExpert (SAKTI et al,

2015), which also employed search-based algorithms. And there are also tools that

employ a random generation approach like Randoop (PACHECO; ERNST, 2007) but

are still being improved.

3.3 LLM AND SOFTWARE ENGINEERING

LLMs, like ChatGPT4, are state-of-the-art language models based on the

Transformer architecture (VASWANI et al, 2017). They are designed to process and

understand human language, enabling machines to generate coherent and

contextually relevant text. These models have been trained on vast amounts of

language data, allowing them to capture intricate patterns and relationships in

4 https://chat.openai.com/
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language usage. As a result, they demonstrate impressive capabilities in tasks such

as text generation, translation, question-answering, and even software-related

activities.

Ma et al (2023) conduct a comprehensive exploration of ChatGPT's

applicability and its potential in the software engineering field. The authors examine

various tasks, including code generation, code summarizing, bug detection, and code

completion, to evaluate the performance of ChatGPT. Through a rigorous

investigation and comparison with existing software engineering tools and

techniques, the study reveals both the strengths and limitations of ChatGPT in

different software engineering scenarios. The findings provide valuable insights into

the capabilities of ChatGPT and offer guidance for leveraging its potential to improve

software development practices while also highlighting areas where further

advancements are needed.

White et al (2023) also explore the potential applications of ChatGPT in

various software engineering tasks. The researchers introduce a collection of prompt

patterns specifically designed to leverage ChatGPT's language generation

capabilities for code quality improvement, refactoring, requirements elicitation, and

software design tasks. Through experiments and case studies, they demonstrate the

effectiveness of using ChatGPT with these prompt patterns in aiding developers and

software engineers in their day-to-day activities. The article highlights the versatility

of ChatGPT as a tool for supporting software engineering practices and fostering

better code development and design.

3.4 LLM FOR AUTOMATIC TEST DATA GENERATION

The related work section explores the possibility of leveraging LLMs for

automatic test data generation. These studies involved exploratory investigations into

the use of LLMs for generating test data across different testing phases, ranging from

unit testing to end-to-end testing. Notably, the context provided to the LLM was the

only aspect that changed during these experiments.



18

In the case of unit testing, the LLM was presented with code snippets as input

(LI et al, 2023) (YUAN et al, 2023) (SIDDIQ et al, 2023) (XIE et al, 2023). For

instance, a prompt could be formulated as follows:

“Given the code snippet provided, please generate test cases to cover all possible

scenarios and branches within the code.''

The LLM then utilized its language generation capabilities to produce

comprehensive test data sets that catered to various testing scenarios. On the other

hand, for end-to-end testing, the LLM was supplied with a description of the system's

functional specifications (RIBEIRO, 2023) or a GUI (LI et al, 2023). The prompt may

have asked the LLM to:

“Generate test cases that validate the entire system's functionality based on the

provided functional specification.''

The results of these exploratory studies demonstrated the promising potential

of LLMs in automating the test data generation process, streamlining testing efforts,

and enhancing software quality. By tailoring the input context to the LLM's

capabilities, it was possible to obtain effective test cases for different testing phases,

further showcasing the versatility and adaptability of LLMs in software testing.

4 RELATED WORK

The field of test generation has witnessed significant advancements in recent

years, with researchers exploring innovative approaches to automate the process

and enhance software quality assurance practices. Among these emerging

techniques, one notable area of exploration is the use of LLMs for test generation.

This section provides a comprehensive overview of the existing literature

investigating the application of these powerful tools in test generation.

Li et al (2023) introduce a novel approach to detecting failure-inducing test

cases using ChatGPT. By leveraging the model's ability to understand natural
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language and generate coherent responses, the researchers propose an interactive

debugging technique that allows developers to converse with ChatGPT to identify

test cases that are likely to trigger failures. Through experiments on real-world

software projects, they demonstrate the effectiveness of their approach in improving

fault localization and aiding in the debugging process, highlighting its potential to

enhance software quality assurance practices.

Yuan et al (2023) explore the application of ChatGPT for automating unit test

generation. The researchers evaluate the performance of ChatGPT in generating

meaningful and effective unit tests by comparing them with existing test-generation

tools. They also propose a novel approach to enhance ChatGPT's ability to generate

high-quality unit tests by incorporating reinforcement learning techniques. Through

rigorous experimentation and evaluation of various code bases, the authors

demonstrate the potential of ChatGPT as a promising tool for automating the

labor-intensive task of unit test generation, highlighting its ability to improve software

testing efficiency and accuracy.

Siddiq et al (2023) investigate the efficacy of LLMs, specifically GPT-3, in the

generation of unit tests for software programs. The study explores the ability of

GPT-3 to understand the requirements of software functionalities and generate

relevant test cases. The authors analyze the quality, diversity, and coverage of the

generated unit tests through experiments conducted on real-world projects,

comparing them with manually written tests. The findings highlight the potential of

large language models in automated unit test generation but also reveal certain

limitations and challenges that need to be addressed for more effective and reliable

results. The research contributes to understanding the capabilities and limitations of

large language models in the context of unit testing and provides insights for further

advancements in this area.

Xie et al (2023) present ChatUniTest, an automated unit test generation tool

that leverages ChatGPT. The tool allows developers to interact with ChatGPT in a

conversational manner to generate unit tests for their code. By formulating test

generation as a dialogue-based problem, developers can provide natural language

prompts to ChatGPT, which then responds with relevant test case suggestions. The

authors discuss the implementation details of ChatUniTest and evaluates its

effectiveness through experiments on open-source projects. The results demonstrate
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that ChatUniTest successfully generates meaningful unit tests, assisting developers

in improving software quality and productivity. The study highlights the potential of

ChatGPT in the context of automated unit test generation and presents an innovative

approach for facilitating the software testing process.

Liu et al (2023) explore the application of GPT-3 for automated GUI testing in

the context of mobile applications. The study proposes an innovative approach where

GPT-3 is utilized as a conversational agent to interact with mobile apps and generate

test cases. A series of experiments conducted on various real-world mobile apps

demonstrate the feasibility of GPT-3 in performing human-like GUI testing. The

approach achieves high code coverage and successfully detects critical issues,

showcasing the potential of leveraging GPT-3 for efficient and effective automated

GUI testing of mobile applications. The findings highlight the capabilities of GPT-3 in

the domain of mobile app testing, opening avenues for further advancements in

automated testing techniques.

Considering the studies carried out so far, the majority explores the use of

ChatGPT in interactive mode. We intend to investigate the ChatGPT test generation

capability fully automated, without human intervention, interacting, or correcting test

cases, considering a possible scenario of no-touch testing (ABDI, 2022)

(FERNANDES, 2022).

The next section presents our experiment design to perform this initial

investigation.

5 EXPERIMENT DESIGN

This paper presents an evaluation of the quality of automatically generated

test sets by an LLM. A set of Java programs was carefully selected to accomplish

this, and multiple JUnit5 test sets were generated using the LLM. We use the OpenAI

API6 (Application Programming Interface) and develop a Python script for interacting

with the model via API. The generated test sets will be evaluated based on code

coverage, mutation score, and build and execution success rate using selected tools.

6 https://openai.com/blog/openai-api
5 https://junit.org/
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The collected data will be summarized and analyzed using simple statistics to

compare test sets generated by the LLMs with the ones generated by other

automated test-generation tools. Figure 1 illustrates the experiment workflow and the

steps involved in the evaluation process.

Figure 1: Experiment design diagram

Source: prepared by the author (2023)

Each dashed arrow indicates the input for the subsequent step. Initially, in the

first step, we compute some static metrics from the Java source code using

JavaNCSS7 metric tool.

In the second step, we provide the Python script with a personalized prompt

with a program under testing and a “temperature”' parameter, considering the OpenAI

gpt-3.5-turbo model. This step results in the generation of 33 test sets per program, 3

for each temperature.

Subsequently, a program and its test sets are submitted to the PITest tool in

the third step. The PITest tool generates all its mutants for the program under testing

7 https://javancss.github.io/
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and executes each test set against its set of mutants, producing a comprehensive

report that includes the mutation score and code coverage for each test set.

Below we comment on some decisions for experiment execution.

5.1 LLM SELECTION

The field of large language models has witnessed remarkable progress, with

new ones being developed almost daily. OpenAI, one of the leading organizations in

the domain, has been at the forefront of LLM development. In this paper, we choose

to leverage the power of OpenAI's gpt-3.5-turbo model due to its availability as a free

model and its association with ChatGPT, making it the most used model by final

users.

It is worth mentioning that OpenAI had previously introduced a code

generation-focused model named davinci-code. However, this model has been

discontinued, making gpt-3.5-turbo the preferable option for code-related tasks in our

study (OPENAI, 2023).

An important thing about OpenAI API is the temperature parameter. It is a

feature that allows users to control the level of randomness and creativity in the

generated text. The temperature value can be adjusted when using the API to

influence the output's diversity and exploration.

Higher temperatures, such as 1.0, encourage more randomness in the

generated text, resulting in imaginative and varied responses. On the other hand, a

lower temperature, like 0.2, produces more focused and deterministic output,

favoring predictable and conservative responses. By adjusting the temperature

parameter, users can fine-tune the balance between generating creative and

coherent text, enabling them to obtain the desired level of output for their specific

application or task.

We conducted the experiment using the range of temperature values to

investigate the variation in the results we will obtain. By exploring the entire spectrum

of available temperature values, we aimed to identify the most suitable setting that

would yield the best results for our specific test generation requirements. Because of

the randomness of the model, especially with higher temperature values, we chose to

generate 3 test sets for each temperature value and use the average results.
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5.2 PROGRAM SELECTION

We decided to use the results from Araujo and Vincenzi (2020)'s work as a

baseline. They used a set of 33 Java programs and conducted an experiment

investigating the capability of four different automatic testing generators (EvoSuite,

Palus, JTExpert, and Randoop) for Java on covering code and killing mutants using

PITest as the mutation tool.

Therefore, we selected the same set of programs to perform our experiment8.

By comparing the test sets produced by GPT-Turbo-3.5 with those generated by

these tools, our research aims to provide valuable insights into the effectiveness and

efficacy of LLMs in automated unit test generation. Table 1 shows the selected

programs and their characteristics.

8 We would like to thank Araujo and Vincenzi for making the set of programs, scripts, and data
available to ease the comparison.
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Table 1: Static information of the Java programs

Source: adapted from Araujo and Vincenzi (2020)

For each program Araujo and Vincenzi (2020) computed the following metrics:

● Non-Commenting Source Statements (NCSS);

● Cyclomatic Complexity Number (CCN);

● Cyclomatic Complexity Average (CCA);

● Number of test cases on each test set: EvoSuite (E), JTExpert (J), Palus (P)

and Randoop (R);
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● Number of requirements demanded to cover statement coverage (Req); and

● Number of generated mutants considering all mutation operators available in

PITest (Mut).

As can be observed, they are not complex programs but once we are working

at unit testing levels, we understand that each program provides units with sufficient

complexity, equivalent to units present in other real programs. In terms of lines of

code, the average size is around 40, and cyclomatic complexity is around 4.9.

To simplify the experiment we make the assumption that all programs are

correct, and any mutations on the source code generates an incorrect version (with

the exception of equivalent mutants). Therefore, if a mutation breaks a test, we infer

that the mutant is killed, avoiding the oracle problem.

5.3 TOOLS SELECTION

To evaluate the results, we used JUnit as a unit testing framework, which is

widely recognized as the industry standard for testing and generating comprehensive

reports. Another noteworthy aspect is the utilization of JUnit in the study of Araujo

and Vincenzi (2020), which is a valuable reference point for comparing our results.

By employing the same testing framework, we establish a meaningful basis for

comparison, enabling us to analyze and assess the effectiveness of our

LLM-generated tests in relation to their findings. The same logic was used to select

PITest9 as our mutation tool. All the mutation operators of PITest10 were selected to

cover every possible change in the source code.

Therefore, Table 2 summarizes the tools and versions we used, which we kept

the same as the ones adopted by Araujo and Vincenzi (2020) to minimize threats.

We present the data we collected and some analysis we carried out so far.

10 https://pitest.org/quickstart/mutators/
9 https://pitest.org/

https://pitest.org/quickstart/mutators/
https://pitest.org/
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Table 2: Tools version and purpose

Source: adapted from Araujo and Vincenzi (2020)

6 DATA COLLECTION AND ANALYSIS

The initial step involved creating a centralized repository storing all the

selected programs, scripts, and experimental results. To achieve version control and

facilitate seamless collaboration, we opted for GitHub as our hosting platform11. Once

we selected the programs from Araujo and Vincenzi (2020) the static metrics from

their work were used without recomputing it. Table 1 presents such data about the

programs. Subsequently, we proceeded with the test set generation using the

gpt-3.5-turbo model. To accomplish this, we formulated a specific base prompt

designed to request the model's assistance in generating JUnit unit tests tailored for

a program. The first prompt version is as follows:

Figure 2: Prompt version 1 for test set generation

Generate test cases just for the {cut}

Java class in one Java class file with

imports using JUnit 4 and Java 8:

{code}

Source: prepared by the author (2023)

In the prompt above, {cut} is a variable that represents the name of the class

under testing, and {code} is a variable containing the code of the class under testing

and its dependencies.

11 https://github.com/vitor0x5/initial-investigation-chatgpt-unit-tests

https://github.com/vitor0x5/initial-investigation-chatgpt-unit-tests
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To automate the process, we developed a Python script (generate-chatgpt.py),

which sends the request to the OpenAI API. Upon receiving the response from the

API, the script removes any natural language comments that the LLM model added

before or after the generated code. Additionally, the script ensured that the Java test

class name matched the file name, following a pattern to enhance test data

organization. As an output, the script generates 33 Java test classes for every

selected program, with 3 test classes for each LLM temperature value, as mentioned

in Section 5.1.

Then, with all tests generated for every program, we build and run them using

Maven. To automate this process, we developed another Python script

compile-and-test-chatgpt.py. However, at this stage, we encountered an issue where

some tests generated by the model do not build successfully due to problems such

as syntax errors and missing imports. The script discards any test set with failing test

cases.

The script moves all test files to a directory outside the project, copies one test

file at a time to the project's test directory, and then builds and runs the test for that

specific file. In this manner, any build issues or errors in one test won't affect the

others, ensuring a smoother and more effective testing process.

Finally, we developed the last Python script reports-chatgpt.py for extracting

coverage and mutation score from PITest reports. It generates one CSV file for each

Java program, including all test results that are executed successfully. Tables 3 and 4

present parts of the collected data.

Considering the first prompt version, presented in Figure 3, Table 3 presents

average data for each temperature value we investigate.
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Table 3: Average test data for each temperature parameter -- Prompt version 1

Source: prepared by the author (2023)

Observe that the average results in Table 3 show that from a possible total of

99 test sets for each temperature (3 for each of 33 programs), the temperature most

effective on generating successful test sets is 0.6. With this temperature, 52 out of 99

test sets run correctly with no errors, with a successful rate of 52.5%.

Table 3 also shows that quantity does not mean high-quality tests.

Temperature 0.7 reaches 36.4% of the successful rate of test sets, around 16% less

than temperature 0.6, but with 36 test sets, the average coverage and mutation score

are the highest: 88.9 and 54.8, respectively.

Although we consider these results impressive due to the simplicity of the

prompt, we analyzed the errors produced by the test sets and the parts of the source

code not covered by the tests, and we tried to improve the prompt to mitigate some

problems found. Figure 3 shows the prompt's second version.

Observe that in the prompt presented in Figure 3, {cut}, {clazz} and {code}

have the same meaning, the name of the class under testing and the source code of

the class under testing and its dependencies. We were more incisive regarding how

we wanted the test set. Including mandatory dependencies, timeout, throws

Exception, test set name, and also the calling of void methods and default

constructors. We also enforce two testing criteria: decision coverage and boundary

values.
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Figure 3: Prompt version 2 for test set generation

I need functional test cases to cover all decisions in the methods of the class under

testing.

All conditional expressions must assume true and false values.

Tests with Boundary Values are also mandatory. For numeric data, always use

positive and negative values.

All tests must be in one Java class file.

Include all necessary imports.

It is mandatory to throws Exception in all test method declarations.

It is mandatory to include timeout=1000 in all @Test annotations.

It is mandatory a test for the default constructor.

Each method in the class under test must have at least one test case.

Even simple or void methods must have a test calling it with valid inputs.

@Test(expected= must be used only if the method under testing explicitly throws

an exception.

Test must be in JUnit 4 framework format.

Test set heather package and import dependencies:

package ds;

import org.junit.Test;

import org.junit.Before;

import static org.junit.Assert.*;

import ds.*;

The class under testing is { clazz }.

The test class must be { cut }Test.

Class under testing

*******************

{code}

Source: prepared by the author (2023)

After this prompt upgrade, we rerun all scripts to generate new test sets,

check their quality, and measure coverage and mutation scores. Table 4 presents the
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average data per temperature. The new prompt improved the test set's successful

execution by more than 12%, observing temperature 0.2, 64 out of 99 test sets

executed without failures, a successful rate of 64.6%. We also improved coverage

and mutation scores to an average of 93.5% and 58.8%, respectively.

Table 4: Average Data for Each Temperature Parameter -- Prompt version 2

Source: prepared by the author (2023)

Based on this data, we decided to detail the analysis per program and

temperature to verify if each temperature has similar behavior for each program.

Table 5 presents the data. The first thing we observed in the last two lines of the table

is that, in general, the lower the temperature value, the greater the number of

programs without successful test sets.

In the worst case, for temperature 0.0, 12 programs out of 33 (36,4%) have no

test set running successfully. In the best case, temperature 1.0, 3 out of 33 programs

(9.1%) have no test set running successfully. We tried to investigate the reasons,

especially for these three programs, why it fails to generate successful runnable test

sets. The general observation is that, for these specific programs, they define an Item

interface and a MyItem class implementing the interface, but this class did not

override compareTo and equals methods from Object class in Java. Nevertheless,

ChatGPT seems to assume they are available for object comparison once several

tests make use of object comparison, but they check reference equality and not

object field contents, failing the test cases. This is the main reason all tests for

programs 10, 18, and 19 have no test set available, independently of the

temperature's parameter.
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Table 5: Number of successful tests per temperature per project

Source: prepared by the author (2023)

Also inspired by Araujo and Vincenzi (2020), who observed that by merging

test sets from EvoSuite, Palus, JTExpert, and Randoop, the resultant merged test set

performs better than any other individual test set in terms of coverage and mutation

score, we decided to create a merged test set considering the test sets provided by

different temperatures. Moreover, in our case, by merging all test sets, only 3 out of

our 33 programs will remain without valid tests. The last column of Table 5 presents

the number of valid tests for each program. Only for two programs (9 - Mergesort and
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31 - ExactMatch) we got the maximum number of 33 valid tests, 3 for each different

temperature value.

Then, we use the JUnit test suite to create a test suite corresponding to all

successful test sets. Figure 4 presents an example of a JUnit test suite, considering

the 10 successful test sets for program 1 - Max. We built a ds.All.java test suite file

for each program and used it to collect coverage and mutation scores for all

programs. The collected data is shown in Table 6.

Figure 4: Example of JUnit test suite for Max program.

1

2

3

4

5

6

7

package ds;

import org.junit.runner.RunWith;

import org.junit.runners.Suite;

@RunWith(Suite.class)

@Suite.SuiteClasses({MaxTest2.class,MaxTest5.class, MaxTest8.class,

MaxTest9.class, MaxTest10.class, MaxTest14.class, MaxTest18.class,

MaxTest20.class, MaxTest22.class, MaxTest27.class })

public class All { }

Source: prepared by the author (2023)

In the two last columns of Table 6, we present the best results that Araujo and

Vincenzi (2020) obtained considering the merged test set in their experiment. We will

refer to our merged test set as LLM Suite and Araujo and Vincenzi (2020)'s merged

test set as Baseline Suite. We highlight in gray the cells with the best values with

respect to the coverage or mutation score of each merged test set.

Regarding code coverage, LLM Suite did not reach Baseline Suite results in 6

out of 33 programs (10, 18, 19, 21, 23, and 26). As already mentioned, for three of

these 6 programs (10, 18, and 19), ChatGPT was unable to create runnable

without-fail tests, and we got zero coverage. For all the other programs, both suites

covered all program source code. On average, LLM Suite coverage is 90.2% and

Baseline Suite coverage is 99.5%. If we remove programs 19, 18, and 19 from the

analysis, Baseline Suite keeps the same coverage of 99.5%, but LLM Suite coverage

reaches 99.2%, almost the same.
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The biggest surprise occurred with the mutation score. As can be observed,

for 14 out of 33 programs, LLM Suite overcomes the mutation score of Baseline

Suite, and in some cases, it improves by more than 20% the mutation score, like in

programs 1, 20, and 30. On the other hand, Baseline Suite reaches better scores for

17 out of 33 programs, and for two programs, 6 and 7, we have a tie. On average,

the average mutation score for Baseline Suite reaches 78.5%, and for LLM Suite, it is

70.5%. Again, removing programs 10, 18, and 19 from our analysis, we got very

similar mutation scores of 77.6 and 79.5 for LLM and Baseline suites, respectively.

7 DISCUSSION

The idea for this work was just investigate the capability of LLM chats,

ChatGPT in our experiment, on generating unit test sets but, when we got the first

results from these interactions using the very simple prompt presented in Figure 2,

we decided to investigate its potential with more emphasis.

The final results presented in Table 6 suggest that these prompts have a very

good potential, if not to be used as a single way for unit testing generation, its

combination in a coordinated way with traditional automatic testing generators can be

very promising. Testing will always be a challenging activity, as many useful tools we

have to automate this process better.

Prompts also show us huge flexibility in asking for test cases considering

specific testing criteria or asking for test cases to reach a specific objective, like

covering a specific statement or killing a specific mutant. In this work, we decided

only on a standard predefined prompt, as shown in Figure 2, to use the generated

unit testing fully automated, i.e., without interacting with the chat asking for additional

testing or testing corrections.

We do not think LLMs will solve all testing problems automatically. We believe

a good automated testing strategy now gained important support from LLMs. Our

intention is to observe the limits of LLM for unit testing generation. If some important

testing requirement is missing, having time and people available for testing, it is

possible to develop specialized prompts to solve and generate specific test cases

with human support to check and correct possible mistakes. This is especially true
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once it is difficult to maintain software testing generators. For instance, considering

the ones used by Araujo and Vincenzi (2020), two of them (Palus and JTExpert) are

not available or did not work with new versions of Java.

On the other hand, LLMs just need a huge amount of data to work and can be

easily personalized to meet different testing objectives. A possible alternative to

improve the LLM capabilities, considering Java programs, for instance, is to use

EvoSuite to start the test set generation and, later, to provide to the LMM the source

code of the class under testing and also a previously generated EvoSuite test sets. In

this way, we suppose the prompt can better understand the test case style, which

may reduce the test case failures generated by LLMs.
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Table 6: All LLM test sets versus baseline test sets.

Source: prepared by the author (2023)
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Another point is that we decided to provide the class under testing source

code to LLM and asked it to generate tests for the entire class. Although, we believe

if you ask for a test only for a specific method inside a class, we will get better results

once the scope is reduced, and LLM will create more tests for each specific method.

Finally, we explore a single OpenAI API model called gpt-3.5-turbo, but

OpenAI offers a variety of models, each with different capabilities. Deciding which

one is more suitable for each situation demands additional experimentation.

Moreover, there are also a lot of new LLMs available like Bing12, Bard13 and LLaMa14

which may also demand more investigation with respect to their capacity on

automatic generating unit testing for specific languages.

8 THREATS TO VALIDITY

There are several potential threats in this paper. One possible threat is

sampling bias, which means that the selection of programs and tools used in the

experiment may not accurately represent the entire software development landscape.

This could lead to biased results that may not be applicable to other contexts. To

minimize this threat, we tried to use tools and programs already explored in other

experiments. Moreover, especially for the automated test generator, at least EvoSuite

is a tool used in a vast number of experiments both in academia (VOGL et al, 2021)

(SCHWEIKL et al, 2022) and in industry (FRASER; ARCURI, 2014) and is also

integrated into professionals' integrated development environments (ARCURI;

FRASER, 2016).

Another threat is the limited generalizability of the findings. The study's

conclusions may only be relevant to a specific set of programs and tools and may not

be applicable to different scenarios. Additionally, there is a risk of measurement bias,

where the metrics used to measure the effectiveness of the generated test data may

not fully capture its quality and comprehensiveness. In this way, we manually revise

the Python scripts and check the collected data for some programs to ensure the

information is accurate. Coverage and mutation score are traditional metrics for

14 https://labs.perplexity.ai/
13 https://bard.google.com
12 https://www.bing.com

https://labs.perplexity.ai/
https://bard.google.com
https://www.bing.com
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evaluating software testing quality. Mutation is confirmed to be an excellent fault

model to evaluate the quality of test sets (ANDREWS; BRIAND; LABICHE, 2005)

(JIA; HARMAN, 2011) (JUST et al, 2014). Although we work with Java programs on

this initial investigation, other studies in the course also explore the LLM test

generation capabilities for programs written in other languages like Python and C, for

instance.

In Section 2.4.2, we presume the correctness of all programs, as they are

basic and known algorithms. However, there remains the possibility of bugs that

could potentially result in inaccurate mutation scores and failure to run correct tests.

The use of large language models for automatic test data generation may

have limitations or biases that could impact the quality and comprehensiveness of

the generated test sets. Using baseline results obtained from traditional automated

test case generators (ARAUJO;VINCENZI, 2020) to confront the results obtained

from test sets generated from LLM aims to minimize this threat. Moreover, we only

used an LLM engine and model in this experiment, which may not represent the

results for other LLMs or models. We intend to extend the experiment for a large

number of programs, LLM engines, and models in further studies.

9 CONCLUSION

In this work, we presented an initial investigation of the use of OpenAI API,

considering the LLM named gpt-3.5-turbo, for unit test generation in a fully

automated way, i.e., with no human interaction for test case correction after prompt

return. The idea was to detect to which extent the test cases will run directly, with no

errors, for testing a set of Java programs.

Basically, we developed a prompt to ask test sets via API, only varying the

code of the class under testing and the “temperature'' parameter of the gpt-3.5-turbo

model. We asked for three test sets for each one of the eleven different temperature

values (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0) for each program, resulting,

in the best case, in a total of 33 test sets per program.

Our results show that not for all temperatures the API was able to produce

useful test sets which run automatically with no error without human intervention. In
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this way, we discarded these test sets in our experiment. For 3 out of 33 programs,

the model was not able to generate useful test sets for any temperature, especially

due to the non-overriding of traditional Java methods for object comparison like

equals() and compareTo() for the application under testing.

We observed interesting results by keeping only test sets that run

automatically and comparing our results with those obtained by other researchers

that used traditional automated test set generators Araujo and Vincenzi (2020). We

considered that, besides the simplicity of the prompt, asking for testing to the LLM,

the results in terms of code coverage were very similar to the ones obtained in the

baseline. Moreover, with respect to mutation score, we observed complementary

aspects between LLM Suite and Baseline Suite. They complement each other.

Further work intends to investigate the best way to use a traditional automated

testing generator together with LLM prompts to obtain better results than when using

isolated tools.

Moreover, this initial investigation raised more questions than produced

answers. To answer the raised questions more experimentation is necessary. A few

of them are:

● Do the other OpenAI models produce similar or complementary results?

● Does the language used in the prompt influence the results?

● Does the language of the product under testing influence the results?

● How do other LLMs prompts perform the automation of unit testing

generation?

● Does the LLM perform better by asking testing for a method instead of a

class?
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