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Resumo

Dados de interação são obtidos por meio da observação e do registro das interações
entre objetos. O uso de dados de interação possibilita a solução de diversos problemas com-
plexos. Atualmente, existem várias maneiras de usar esses dados para produzir soluções,
uma das quais é a previsão de novas interações a partir de interações já conhecidas. Para
realizar essa tarefa, métodos de aprendizado de máquina podem ser usados. O estudo
das interações entre objetos é importante em diversas áreas do conhecimento, como em
sistemas de recomendação, na análise de interação em redes sociais, na indústria farma-
cêutica, e na bioinformática. O aprendizado de máquina é uma sub-área da inteligência
artificial onde são desenvolvidos algoritmos com a capacidade de aprender e realizar tare-
fas automaticamente, por meio do treinamento e da exploração de um conjunto de dados
previamente fornecido. Neste trabalho, desenvolvemos dois métodos baseados em Predic-
tive Bi-Clustering Trees (PBCTs) para a predição de interações em conjuntos de dados de
interações relacionadas as áreas de medicina e bioinformática. Destacamos que métodos
multirrótulo baseados em uma abordagem global como PBCTs, podem prever todas as
interações de um objeto em uma única tarefa de predição e explorar as relações entre os
espaços de objetos. Inicialmente, construímos um modelo de aprendizado híbrido entre
o PBCT e o XGBoost, onde no primeiro estágio o PBCT é usado na geração de par-
tições na matriz de interação e, na segunda etapa, um modelo de aprendizado XGBoost
é induzido em cada uma das partições, visando reduzir o desequilíbrio entre interações
positivas e negativas nas predições resultantes. Dados de interações positivas indicam a
ocorrência de uma interação, e dados de interações negativas indicam a não ocorrência,
enquanto dados de interações desconhecidas (não rotulados) indicam casos onde não se
tem informações sobre as interações. Com o objetivo de aproveitar os dados não rotula-
dos no procedimento de indução do PBCT, propusemos uma adaptação na função split,
transformando o PBCT em um método de aprendizado semi-supervisionado, podendo
assim trabalhar com dados rotulados e não rotulados, com diferentes níveis de supervisão
e desequilíbrio entre dados rotulados e não rotulados. Ambos os métodos introduzidos



tiveram seu desempenho avaliado com base em critérios de avaliação que consideraram
a eficiência preditiva e o desempenho computacional, considerando um estudo compar-
ativo com o PBCT original. Com base nos resultados obtidos mediante procedimento
experimental, ambos os métodos mostraram-se promissores, apresentando contribuições
à literatura e abrindo caminho para o avanço do estado da arte.

Palavras-chave: Aprendizado de Máquina, Predição de Interações, Aprendizado Multi-
rrótulo.



Abstract

Interaction data is obtained by observing and recording interactions between objects.
The use of interaction data makes it possible to solve many complex problems. Currently,
there are several ways to use this data to produce solutions. One of them is to predict
new interactions based on existing interactions. Machine learning methods can be used
to accomplish this task. The study of interactions between objects is essential in several
areas of knowledge, such as recommendation systems, analysis of interactions in social
networks, the pharmaceutical industry, and bioinformatics. Machine learning is a sub-
area of artificial intelligence where algorithms are developed with the ability to learn and
execute automatically through training and exploration of a previously provided dataset.
In this work, we developed two methods based on Predictive Bi-Clustering Trees (PBCTs)
for the prediction of interactions in interactions datasets related to the areas of medicine
and bioinformatics. We highlight that global approach-based multi-label methods such
as PBCTs, can learn and predict all interactions of an object in a single task and explore
the relationships between object spaces. Initially, we build a hybrid learning model be-
tween PBCT and Extreme Gradient Boosting (XGBoost), wherein the first stage PBCT
is used to generate partitions in an interaction matrix. In the second stage, an XGBoost
learning model is induced in each partition to reduce the imbalance between positive and
negative interactions in outcome predictions. Data from positive interactions indicate the
occurrence of an interaction, and data from negative interactions indicate that it did not
occur, while data from unknown (unlabeled) interactions indicate cases where there is no
information about interactions. To take advantage of the unlabeled data in the PBCT
induction procedure, we propose a semi-supervised adaptation in the split function of the
PBCT, thus being able to work with labeled and unlabeled data, with different levels of
supervision and imbalance. Both introduced methods had their performance evaluated
based on evaluation criteria that considered efficiency in predicting interactions and com-
putational performance and through a comparative study with the original PBCT. As
a result, both produced methods showed promising through an experimental procedure,



presenting contributions to the literature and paving the way for the advancement of the
state-of-the-art.

Keywords: Machine Learning, Interaction Prediction, Multi-label Learning.
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Chapter 1

Introduction

The introduction to this work is described in this chapter. The context and motivations
of this research are presented in Sections 1.1 and 1.2. Section 1.3 defines our hypothesis
and objectives with this work, while in Section 1.4, we show our main contributions to
the literature. Finally, in Section 1.5, we present the organization of the other chapters
of this document.

1.1 Context
Information about interactions is obtained by observing interactions between objects.

This information is fundamental in several areas of knowledge and can enable the resolu-
tion of several complex problems. Among the several known applications for interaction
data, we can highlight the Interaction Prediction that infers new interactions between
objects through an inductive procedure with high confidence based on known interactions
data. For example, in the field of biology, various tasks can use interaction informa-
tion, such as Protein-Protein interaction prediction (PPI) and Drug-Target interaction
prediction (DTI).

In interaction prediction between drugs and targets (proteins) (BAGHERIAN et al.,
2020), the specific impacts caused by the interaction between drugs and targets are inves-
tigated, considering that these impacts alter the functions of targets (DING et al., 2013).
Thus, the study of these interactions is fundamental in the investigation of drugs, being
able to facilitate the drug discovery procedure (PLIAKOS; VENS, 2020; LEE; KEUM;
NAM, 2019; EZZAT et al., 2016), assist in the prediction of side effects (ISLAM; HOS-
SAIN; RAY, 2021; GALEANO et al., 2020; PAUWELS; STOVEN; YAMANISHI, 2011),
and the reuse of drugs (CHOI et al., 2020; SWAMIDASS, 2011; MORIAUD et al., 2011).
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In the biological context, there are traditionally three ways to identify interactions
between objects (RAO et al., 2014). In Vitro, interactions observations are carried out in
a controlled environment, external to the living organism, where the experiment is guided
to observe their interactions with other organisms (SILVA et al., 2020; BROWN et al.,
2006); In Vivo, experiments are carried out inside the organism to observe their interac-
tions (XING et al., 2016; SNIDER et al., 2015); In Silico, the observation of interactions
is performed in a computational environment through simulations and estimates (SHAS-
TRY; SANJAY, 2020; HAYES et al., 2016). In Silico interaction analysis is an area of
focus of several recent studies in the literature, which is constantly growing. It has several
methods to observe, identify and predict interactions, among which the machine learning
methods stand out.

Interaction prediction with machine learning is an important focus today. Tradition-
ally, machine learning methods take a dataset of previously known interactions as input
and produce a model based on a learning function. This model can predict interactions
on the same or another dataset in the same format through an inductive procedure. In
this work, the interaction prediction problem was formulated as a multi-label machine
learning problem, i.e., the prediction problem was defined by an interaction matrix that
can be represented bipartite graph. In this context, we focus on a global approach-based
multi-label machine learning method (global multi-label machine learning method), i.e.,
models that comprise the entire interaction matrix in the same learning procedure. Re-
cently, a global multi-label machine learning method has emerged to perform interaction
prediction tasks: the Predictive Bi-Clustering Trees (PBCTs) (PLIAKOS; VENS, 2020;
PLIAKOS; GEURTS; VENS, 2018). This method works with the Bi-Clustering con-
cept (DIAZ; PERES, 2019; PONTES; GIRÁLDEZ; AGUILAR-RUIZ, 2015; MADEIRA;
OLIVEIRA, 2004) using datasets that can be defined by bipartite graphs for learning and
have been shown to be efficient in complex prediction tasks.

1.2 Motivation

The study on interaction prediction using machine learning is currently applied in
several areas of knowledge. Examples are medicine and bioinformatics, where algo-
rithms are used to predict protein functions (RESENDE et al., 2012; CERRI et al.,
2016; WEHRMANN et al., 2017), to predict interactions between proteins (PPI) (DING;
TANG; GUO, 2016; ZAMIL; RAHMAN, 2018; CHEN et al., 2019a; CHEN et al., 2019b;
BELTRAN; VALDEZ; NAVAL, 2019; DEY; MUKHOPADHYAY, 2019; LI et al., 2020),
in Drug-Drug interaction prediction (DDI) (JIMENEZ; MOLINA; MONTENEGRO, 2019),
in Drug-Target interaction prediction (DTI) (FATTAHI; REFAHI; MINAEI-BIDGOLI,
2019; NASUTION; WIJAYA; KUSUMA, 2019) and protein structure classification (WANG
et al., 2008; CHENG; TEGGE; BALDI, 2008; SHAH, 2013; MANIKANDAN; RAMYA-
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CHITRA, 2016; CHRYSOSTOMOU; SEKER, 2016).
Proteins are necessary for most cellular functions, such as DNA transcription and

replication, metabolic cycles, and signaling cascades. In this context, the discovery of
their interactions is fundamental, as it can help to identify their biological attributions
in the cell and clarify their functions since proteins rarely perform their functions in
isolation (DING; TANG; GUO, 2016; YOU et al., 2013).

One of the great advantages of the In Silico interaction prediction in the presented
contexts is that it brings economy and agility in the discovery of new confirmed interac-
tions since this task can be used to induce the experimental procedure In Vitro providing
new interactions with a high possibility of interaction to be tested. Not only does this
significantly reduce the cost of producing new drugs that rely on these interactions, but
it also helps discover new treatments for diseases and understand the general interactions
between proteins in an organism.

Due to current technological advances and the frequency with which new technolo-
gies are developed, there is a great increase in the amount of information collected to be
processed, which is increasingly composed of more detailed data and more complex pat-
terns to be identified (PLIAKOS; GEURTS; VENS, 2018; FATTAHI; REFAHI; MINAEI-
BIDGOLI, 2019; CHEN et al., 2019b; PLIAKOS; VENS, 2020). These advances often
generate new challenges, requiring improvement or the production of new methodologies
for predicting interactions.

Often, three major challenges are noted in the literature (PLIAKOS; GEURTS; VENS,
2018). The first is the increasing scale of the data about the number of stored objects
(cardinality); The second is the number of characteristics or attributes that describe these
objects (dimensionality); The third is the structure used to represent objects (feature
Vectors). In traditional learning problems, each object is represented by a vector of
attributes, but representations with more complex structured data (WANG et al., 2018)
are emerging and often generate the need to modify existing methodologies.

Regarding the learning process, several problems can be observed. One is the imbal-
ance in the data (CHEN et al., 2019a; EZZAT et al., 2016). Some datasets may have few
examples of positive or negative interactions. Unknown (unlabeled) interactions in the
interaction matrix also tend to cause data imbalance, significantly impacting the learn-
ing process, as unknown interactions are often represented in the same way as negative
interactions.

1.3 Hypothesis and Objectives
This work is based on the hypothesis that it is possible to obtain a better perfor-

mance of prediction tasks by improving the Predictive Bi-Clustering Tree with a focus
on improving efficiency and predictive performance or producing applicable variations to
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specific contexts. Nevertheless, the same foundation can be applied to other machine
learning models used during this work.

The main objective of this research is to improve Predictive Bi-Clustering Trees with
a focus on obtaining models with greater predictive performance, more specific to tasks,
or applicable to similar contexts. For this, consolidated methods in the literature or
applicable to similar tasks are the focus of this work. The following are also objectives of
this work:

∙ Transform (Map) parts of the learning problem Bi-Clustering to other learning
models to build a hybrid model with the ability to take advantage of the best
features of both;

∙ Build and model interaction prediction databases using existing datasets to be used
by machine learning algorithms;

∙ Observe which attributes and characteristics of the databases influence the perfor-
mance of the methods;

∙ Check which is the best methods and strategies for modeling datasets based on the
efficiency and predictive performance obtained by the classifiers;

∙ Evaluate efficiency, predictive performance and verify characteristics and limitations
of prediction models;

∙ Use different evaluation metrics, verify their impact on the evaluation results and
establish a comparative benchmark with the traditional models defined in the liter-
ature.

1.4 Contributions
The main contributions of this master’s research were:

∙ The improvement and adaptation of the state-of-the-art Predictive Bi-Clustering
Trees, through the development of hybrid methods, compatible with each other,
with different approaches, and applicable to more specific contexts (i.e., Scenarios
with a high level of imbalance between interaction data or with large amounts of
unlabeled data);

∙ The development of a hybrid method combines features of Predictive Bi-clustering
Trees and XGBoost (PbXGB) for global multi-label interaction prediction in sce-
narios with imbalanced data;
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∙ The development of a hybrid method that combines features of Predictive Bi-
clustering Trees and Semi-Supervised Learning (PbSS) to better take advantage
of a large amount of unlabeled data (i.e., frequently observed in datasets) in the
learning procedure;

∙ The comparative study between the developed methods related to the state-of-the-
art Predictive Bi-Clustering Trees, and other traditional methods considering the
computational and predictive performance, and evaluation criteria referring to the
imbalance present in the predictions (i.e., between positive and negative interactions,
labeled or not).

Publications resulting from this research work:

∙ ALVES, A. H. R.; CERRI, R. A two-step model for drug-target interaction pre-
diction with predictive bi-clustering trees and XGBoost. IEEE 2022 International
Joint Conference on Neural Networks (IJCNN), Jul 2022. (ALVES; CERRI, 2022)

∙ ALVES, A. H. R.; SILVA, P. C. I.; CERRI, R. Semi-supervised hybrid predictive bi-
clustering trees for drug-target interaction prediction. In: Proceedings of the 38th
ACM/SIGAPP Symposium on Applied Computing, Mar 2023. (ALVES; ILIDIO;
CERRI, 2023)

Experiments related to both methods showed promise and presented a competitive
performance in a general context. It is noteworthy that PbXGB performed better in a
significant part of the experiments related to the data imbalance evaluation criteria, which
indicates improved predictive performance on imbalanced partitions. PbSS, on the other
hand, presented statistically significant results in some cases and has the advantage of
switching between supervised and unsupervised.

1.5 Document organization
The remaining of this document will be structured as follows. In Chapter 2, the foun-

dations of the methods used in this work are discussed; Chapter 3 presents the functioning
of the developed methods in this work; Chapter 4 presents the necessary steps to carry
out the experimental procedure, as well as Chapter 5 presents a comparative study of
the results used in the validation of the methods. Finally, Chapter 6 presents this work’s
characteristics, disadvantages, conclusions, and future works. Additionally Appendix A
presents the extended results of this work.



Chapter 2

Theoretical Fundamentation

In this chapter, the Interaction Prediction problem will be discussed from the view-
point of a Machine Learning Problem. Section 2.1 presents our background; In Section 2.2,
information regarding interaction data will be presented; in Section 2.3, possible divisions
of the interaction matrix to work with prediction tasks will be presented; in Section 2.4,
the multi-label machine learning is presented, while in Section 2.5, multi-label machine
learning methods applicable to interaction prediction problems will be described; Finally,
Section 2.6 will present how the Predictive Bi-Clustering Trees works, and Section 2.7
presents the XGBoost classifier.

2.1 Background
The interaction prediction literature has applications in several areas where Machine

Learning methods have been explored. In this work, applications related to medicine and
bioinformatics were considered. Within these areas, we highlight the tasks of Interaction
Prediction between proteins (PPI), Interaction Prediction between drugs (DDI), Inter-
action Prediction between drugs and targets (DTI), and Host-Pathogen Protein-Protein
interaction (HP-PPI). Table 1 presents the most recent work on interaction prediction
problems in medicine and bioinformatics.

Zhao et al. (2017) computationally predicted HIV1-Human Protein-Protein interac-
tion (HH-PPI) between the HIV-1 virus and human proteins based on the hypothesis
that proteins with similar interface architectures share similar interaction partners. The
protein-protein interface was defined as the contact region between two interacting pro-
teins (ZHANG et al., 2010; BASPINAR et al., 2014). Initially, all interfaces extracted
from the complexes described in the dataset were used. To obtain the structural similarity
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Table 1 – Interaction Prediction Related Works
Article Application

(ZHAO et al., 2017) HP-PPI
(ZAMIL; RAHMAN, 2018) PPI
(PLIAKOS; GEURTS; VENS, 2018) PPI
(FATTAHI; REFAHI; MINAEI-BIDGOLI, 2019) DTI
(JIMENEZ; MOLINA; MONTENEGRO, 2019) DDI
(CHEN et al., 2019b) PPI
(DEY; MUKHOPADHYAY, 2019) HP-PPI
(LI et al., 2020) PPI

between the interface architectures, the Protein structure alignment evolution (UniAlign)
method (ZHAO; SACAN, 2015) was used. The Support Vector Machine (SVM) clas-
sifier was inducted and then used to predict the HH-PPIs. During experimentation on
the training data set, a 10-fold Cross-Validation (CV) procedure was used to obtain the
average result on the metrics used, and promising results were obtained. Subsequently,
SVM was trained and used to identify new HH-PPI interactions between HIV-1 and hu-
man proteins, a possible new interaction was discovered, and it was concluded that the
approach could produce promising results in the context of HH-PPI.

Zamil e Rahman (2018) explored several computational techniques of feature extrac-
tion and classification proposed for the prediction of PPIs and observed that several
methodologies used in the prediction of PPIs use different information from proteins and
techniques of classification. However, regardless of the methodology, extracting features
from the data set is essential to improve the performance of the classification model.
Then, they applied the Multi-scale Local Descriptor (MLD) (YOU; CHAN; HU, 2015)
to extract attributes from the protein sequences in the dataset and used several classi-
fiers in the prediction task of PPIs. The methodology showed promising results during
experimentation.

Pliakos, Geurts e Vens (2018) explored the concept of multiple outputs in the Interac-
tion Prediction and proposed a multi-label classification method with a global approach,
where the Interaction Prediction is formulated as a multi-label classification task. This
method uses decision trees with multiple outputs for structuring and predicting interac-
tion data. Experiments were carried out on several sets of heterogeneous data, and better
efficiencies and predictive performances were obtained in the proposed method concerning
the other approaches with evaluated decision trees. It was concluded that the method-
ology obtained promising results and can be used, especially in cases where White Box
interpretable classification models are needed.

Fattahi, Refahi e Minaei-Bidgoli (2019) noted that several approaches introduced for
recognizing drug interactions are applicable, especially in homogeneous networks and
bipartite models. Then, they proposed a methodology for the prediction of DTI, where
the edge2vec (GAO et al., 2019) node embedding algorithm is used to represent the
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heterogeneous biomedical network in a low-dimensional space without loss of information.
Then the SVM classifier is applied in the interaction prediction task. It was concluded
through experimentation and comparison with other methodologies that the methodology
obtains significantly higher performance.

A systematic review of the literature was carried out in the work of Jimenez, Molina
e Montenegro (2019), where drug interactions (DDI prediction task) models and machine
learning approaches employed in extracting drug interactions were observed. The study
focused on the biomedicine area, identified the most used methods, summarized the most
relevant approaches, and explored the outstanding challenges in predicting DDIs.

Chen et al. (2019b) found that although SVMs are often used in PPI tasks, their use is
limited to problems with small datasets and low scalability due to the high computational
cost involved. With this, a more efficient solution for estimating the hyper-parameters is
presented. Furthermore, the classification was performed using GPU, obtaining greater
efficiency and predictive performance.

Dey e Mukhopadhyay (2019) predicted interactions between dengue proteins and hu-
man proteins (HP-PPI prediction task). Initially, they investigated literature studies
and observed that methods based only on the Amino Acid Composition (AAC) (ROY et
al., 2009; RASHID; RAMASAMY; RAGHAVA, 2010; HASHEMIFAR et al., 2018) or on
the Conjoint triad feature (CTF) of protein sequences (SHEN et al., 2007; WANG et al.,
2017; WANG; WU, 2018) are often used in PPI prediction. Then, they proposed an ap-
proach for human-dengue PPI prediction based on protein sequence that combines AAC
and the CTF. For the prediction of PPIs, several classifiers were used, such as SVM, K-
Nearest Neighbors (KNN), and Naive Bayes classifier (NB), where the performance of the
algorithms is evaluated through 10-fold CV procedure. After experimentation, the SVM
was more accurate than the other methods, and it was demonstrated that the concate-
nation of AAC and the CTF produces better prediction results compared to the isolated
use of the AAC or the CTF in the dataset used. It was concluded that the approach is
promising and can be applied to other HP-PPI prediction tasks.

In Li et al. (2020), a computational methodology is proposed based on the Scale-
Invariant Feature Transform (SIFT) algorithm (LOWE, 2004), and on the Weighted Ex-
treme Learning Machine (WELM) (ZONG; HUANG; CHEN, 2013) called SIFT-WELM,
to perform the prediction of PPIs. Initially, protein sequences are selected from the
database and represented as Position Weight Matrix (PWM) (WANG et al., 2017; YI
et al., 2018). Then the SIFT algorithm extracts attributes from the PWM matrix.
Next, the Principal Component Analysis (PCA) (LUO et al., 2010; MORI; KURODA;
MAKINO, 2016) is applied to the resulting data to reduce the scalability, and then the
WELM is used to predict interactions. Experimental results indicated that data extrac-
tion with SIFT is efficient. Compared to methodologies based on SVM, the methodology
can increase accuracy and reduce classification time. It was concluded through experi-
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mentation on several datasets that the methodology is feasible and robust.

2.2 Interaction Prediction
Interaction networks represent interactions between distinct objects (e.g., drugs, pro-

teins, and diseases). A network of interactions can be defined by a graph, where objects
are represented as nodes (vertices), and interactions are represented as edges. Each vertex
can be described by a feature vector referring to the objects (i.e., information related to
the drug, characteristics of the protein, and information about its structure), and each
edge can be described by a feature vector referring to the interaction (i.e., knowledge of
the conditions of interaction, unique behavior characteristics of objects in that interaction,
and information about that interaction in another database).

Networks represented by unipartite or bipartite graphs can be defined by adjacency
or bipartite matrices (Interaction Matrix) where positions denote interactions. Figure 1
illustrates an example of an interaction network where it presents a dataset with two
object sets with a bipartite relationship and their interactions are represented by the
arrows connecting both object sets. In this case, the interest values are the interactions
between represented objects through the binary interaction matrix.

2 6 8 2 4

Objects

Features A B B A C A A

Figure 1 – Example of interaction between two object sets with bipartite relation and
representation in a binary matrix.

In interaction networks, the Interaction Prediction can be defined as an edge inference
problem between vertices, where through a deductive or inductive procedure, interactions
(edges) between objects (vertices) present in the interaction network are inferred. Machine
learning methods can be applied to interaction prediction tasks (SHASTRY; SANJAY,
2020; SARKAR; SAHA, 2019). These methods use the partial knowledge of the network
based on the interaction matrix to experimentally adjust a learning model that, after
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obtaining the desired performance, can be used to predict unknown interactions (i.e., new
interactions) in data of the same format.

In the context of machine learning, datasets may or may not be labeled. Objects in a
labeled set have associated labels in addition to a group of characteristics that represent
them (Features). Labels represent interactions between object pairs in a prediction task
defined by a bipartite set and an interaction matrix. In unlabeled sets, only the features
of the objects are known, not their interactions. Due to the ample representation space
of an interaction matrix, unlabeled data is frequent and defined by object pairs whose
interaction is unknown. Machine learning can be divided into several areas, including
supervised and unsupervised learning (HERRERA et al., 2016a). In supervised learning,
performance depends on partial knowledge of the interaction matrix (i.e., object pairs
labeled as interacting or not). In unsupervised learning, pairs of labeled objects are
unnecessary, as it is part of the method’s operation to find the labels when needed.

Traditionally, two types of interactions are observed, positive and negative. Positive
interactions refer to objects that interact with each other, while negative interactions rep-
resent objects that do not interact. In a binary interaction matrix, positive interactions
are represented by the value 1, and negative or unknown (unlabeled) interactions are rep-
resented by the value 0. Ideally, there should be a balance between positive and negative
interaction data samples in interaction prediction tasks. If the data are imbalanced, the
generalizability of the learning model may be affected.

2.3 Prediction Tasks
Considering a supervised machine learning environment and an interaction matrix

defined by two sets of objects represented by the rows 𝑟 and columns 𝑐, we observe
four possible prediction tasks to evaluate the predictions generated by the learning mod-
els (SCHRYNEMACKERS; KüFFNER; GEURTS, 2013; PLIAKOS; GEURTS; VENS,
2018). Taking 𝐿 as the set of objects included in the learning procedure and 𝑇 as the
set of objects belonging to the test set, we get the following defined configurations: Pre-
dicting interactions (𝐿𝑟 x 𝑇𝑐) between row objects included in the learning set (rows from
learning set 𝐿𝑟) and column objects belonging to the test set, invisible to the learning set
(columns of the test set 𝑇𝑐); The Interaction Prediction (𝑇𝑟 x 𝐿𝑐) between row objects
invisible to the learning set, belonging to the test set (rows from the test set 𝑇𝑟) and
objects of columns included in the learning set (columns from the learning set 𝐿𝑐); The
Interaction Prediction (𝑇𝑟 x 𝑇𝑐) between row and column objects available in the test set,
invisible to the training set; finally, we can define the Interaction Prediction (𝐿𝑟 x 𝐿𝑐)
between row and column objects present in the learning set, which represents the trivial
case where all objects and their interactions are known by the learning method.

Figures 2 and 3 illustrate how these prediction tasks are organized into an interaction
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Figure 2 – Representation of visible and hidden pairs in the interactions matrix. In white
are the nodes visible to the training set, and in gray are the hidden nodes of
the test set to be predicted.

matrix. In particular, Figure 3 denotes the procedure referring to the prediction task 𝑇𝑟

x 𝑇𝑐. Initially, the learning model is fitted on learning data and used to predict columns
A) or rows B). Then, the resulting predictions are aggregated into the learning data to
fit a new learning model to predict the missing interactions. e.g., in this step, in A), the
model is induced on the generated sample and used to predict the row interactions and a
similar procedure is carried out in B) to predict column interactions. Subsequently, the
data resulting from the partial prediction 𝑇𝑟 x 𝑇𝑐 of A) and B) are combined, producing
the final prediction for the task 𝑇𝑟 x 𝑇𝑐.

The Interaction Prediction between invisible objects to the learning procedure (𝑇𝑟

x 𝑇𝑐) is a complex task, as it involves carrying out the inference procedure without the
existence of observations or interactions. As a result, it tends to have a low success rate, as
predictive performance depends on the availability and quality of data about interactions
between available objects in the training set.

Both prediction tasks are common to the literature (SCHRYNEMACKERS;
KüFFNER; GEURTS, 2013; PLIAKOS; GEURTS; VENS, 2018), but in the context of
this work, the study, and gains in predictive performance for prediction tasks such as 𝐿𝑟

x 𝑇𝑐, 𝑇𝑟 x 𝐿𝑐 and 𝑇𝑟 x 𝑇𝑐 may represent contributions to the literature (i.e., especially for
𝑇𝑟 x 𝑇𝑐 due to the difficulty of the task). In this work, disregarding the trivial case, we
focus our contributions on the tasks 𝐿𝑟 x 𝑇𝑐, 𝑇𝑟 x 𝐿𝑐, and 𝑇𝑟 x 𝑇𝑐, excluding the trivial
case 𝐿𝑟 x 𝐿𝑐.
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Figure 3 – Illustrative representation of how the interaction data are considered in the
induction procedure of the learning algorithm. The first step of A) and B)
denotes a simple 𝐿𝑟 x 𝑇𝑐 and 𝑇𝑟 x 𝐿𝑐 learning tasks, while the entire combined
procedure of A) and B) denotes a 𝑇𝑟 x 𝑇𝑐 task.

2.4 Multi-label Machine Learning
As mentioned earlier (see Section 2.2), the machine learning area has several ram-

ifications, including supervised and unsupervised learning (HERRERA et al., 2016b).
Traditionally supervised learning defines a learning model based on a learning function
fitted on data instances of objects that have been known and previously labeled. The
learning model posteriorly can infer new object data instances’ target values (labels), i.e.,
the learning model can use the previously known labeled data information to infer labels
to new data that has never been seen before (HERRERA et al., 2016a).

Traditionally in single-label machine learning, each object is represented by a class
value and a feature vector (Attribute Vector). In classification, the objective is to draw a
hyperplane that separates the data and, through this division, infer to which class (label)
the object belongs (HERRERA et al., 2016a). In regression, an estimation function is
traditionally fitted to the dataset and subsequently used to estimate the values from the
dataset and new data (HERRERA et al., 2016a). Despite their differences, the regression
can also be used for classification, i.e., one way to use regression in this scenario is defining
a threshold, where values above belong to one class and values below to another.
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Different from traditional machine learning, where a single label (class) is assigned
to a given data input (feature vector). In a multi-label machine learning scenario, each
data instance can be simultaneously associated with several labels based on its features.
In multi-label machine learning, the learning model is induced to predict multiple labels
simultaneously, based on each data instance rather than a single class attribute (HER-
RERA et al., 2016b).

In this context, multi-label learning problems can be seen from the perspective of an
extension of traditional problems (e.g., Binary or Multi-Class). However, a fundamental
feature of multi-label learning is the ability to assign multiple labels simultaneously to a
given data input instead of just one label.

These are some key concepts and characteristics of multi-label learning. Multi-label
datasets fundamentally consist of instances of objects feature-composed with their corre-
sponding labels belonging to the label space. Labels are often represented with a binary
value (i.e., 0 or 1), indicating the existence or non-existence of the label. Several methods
can be applied to multi-label learning problems, including converting multi-label prob-
lems into multiple single-label problems through problem transformation, adaptations of
existing learning methods to employ the multi-label functionality on operation and en-
semble learning strategies. Several algorithms have been proposed in the literature and
can be used for multi-label learning, among these.

The Binary Relevance (BR) is a problem transform method that decomposes the
Multi-Label problem into multiple binary classification problems to be solved individually
and later aggregated into the Multi-Label solution (ZHANG et al., 2018). A learning
model is induced for each class of the multi-label dataset, and finally, the Multi-Label
prediction is obtained by aggregating the predictions of the generated learning models.
One of the limitations of this method is that it disregards the relationships between the
labels (i.e., because it works with them isolated), in addition to the high computational
cost that can make the application unfeasible in some cases.

The Classifier Chains (CC) is another problem transform method. It works similarly
to BR decomposing the Multi-Label problem into multiple binary classification prob-
lems (READ et al., 2011; READ et al., 2021). However, the difference is that it works
with a chain of binary classifiers, where each classifier additionally considers the previous
classifier chains predictions as features during the induction procedure. An advantage of
this method is that it tries to capture the dependencies between the labels, thus taking
advantage of their correlations. However, It is sensible to the data quality, data imbalance
rates, and the order of the classifiers in the chain.

The Ensemble Classifier Chains (ECC) is an ensemble method and an extension of CC,
whose objective is to take advantage of the diversity of several classifier chains to improve
the performance of the learning model, considering that each chain can capture different
perspectives and aspects and correlations between labels (READ et al., 2011). It generates



34 Chapter 2. Theoretical Fundamentation

an ensemble of chains whose order of labels is alternated. Its a highlighted advantage
over CC is that it mitigates the bias that can be introduced through the initial order of
labels of an isolated chain. It is also worth highlighting the increase in computational
complexity as a bias and the sensitivity to imbalance in the data.

Predictive Clustering Tree (PCT) is a multi-label decision tree constructed similarly
to Classification and Regression Trees (CART). In Predictive Clustering Trees, the tree
structure is observed from the viewpoint of a hierarchy of clusters, where each tree node
recursively partitions the data into subclusters. It stands out from the standard trees
because it treats the variance and the prototype function as parameters that can be
instantiated according to the learning task (VENS et al., 2008).

Multi-label machine learning is a relevant area with great challenges and constant
evolution. The literature has applications in multiple areas of knowledge, especially in the
biological area in PPI and DTI tasks. Among the adversities faced by multi-label learning
are high dimensionality and label imbalance. They are being relevant to consider that the
choice of algorithm is often linked to the specific characteristics and requirements of the
learning problem. As previously mentioned in Chapter 1, In this research we investigated
variations of the Predictive Bi-Clustering Tree (PBCT) to obtain models that are resilient
to the adversities of multi-label learning (e.g., data imbalance). i.e., in general, the PBCT
expands the concept of PCTs to Bi-Clustering interaction prediction tasks. A more in-
depth description of how Predictive Bi-Clustering Trees (PBCTs) works is presented in
subsequent sections.

2.4.1 Semi-Supervised Learning

Semi-supervised machine learning is an area of machine learning that combines features
of supervised and unsupervised learning to discover patterns in data with scarce labeled
information. One of the main goals of semi-supervised learning is to improve the learning
model’s performance by taking advantage of a large amount of available unlabeled data.

It is considered a case of weak supervision and is conceptually situated between su-
pervised and unsupervised learning (ZHOU, 2021). Weak supervision is based on the
idea of using auxiliary data sources (labeled or not) to produce weak labels (without
human supervision) on a given data set. These weak labels are used in the induction of
a supervised learning model, thus allowing the induction to occur without requiring an
extensive manual data labeling activity (Human Supervision). In general terms, weak
supervision is a set of learning techniques used to reduce the cost and time associated
with data labeling and increase data scalability. Weak supervision methods have several
positive characteristics, such as cost-effectiveness, efficiency, and the ability to use data
sources not limited to labeled datasets in the learning model induction procedure.

Semi-supervised learning is generally designed to work on datasets with significant
rates of imbalance between labeled and unlabeled data. Semi-supervised learning methods
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allow combining large amounts of unlabeled data with labeled data in the induction
procedure. These methods are particularly relevant in cases where labeled data are sparse
or have high rates of imbalance (i.e., between labeled and unlabeled data), as it can be
difficult to induce a reliable learning model (ENGELEN; HOOS, 2019).

Semi-supervised learning is often needed in domains where labeled data is extremely
difficult or costly, such as identifying protein interactions and discovering new drugs. In
these cases, with assumptions about the data distribution, it is possible to take advantage
of the unlabeled data to build a consistent and robust learning model (ENGELEN; HOOS,
2019; CAMARGO; BUGATTI; SAITO, 2020).

Several semi-supervised learning approaches are investigated in the literature. A
salient factor is how to make assumptions about unlabeled data in the semi-supervised
learning model. The way of making assumptions is the basis of a significant part of the
algorithms in this area, and these models often adopt different approaches when making
assumptions, explicitly or implicitly (LI; LIANG, 2019; DING; ZHU; ZHANG, 2015; EN-
GELEN; HOOS, 2019). Among the options observed in the literature, the smoothness
and low-density hypotheses stand out (ENGELEN; HOOS, 2019).

According (ENGELEN; HOOS, 2019), the smoothness assumption states that if two
samples 𝑥, 𝑥′ ∈ 𝑋 are close in the input space, their labels 𝑦, 𝑦′ are likely to be the same.
The low-density assumption assumes that points in dense areas of the input space have
the same label (i.e., due to the similarity). This way, the decision boundary must not pass
through dense areas in the input space (the decision boundary must be in a low-density
area). An advantage of the smoothness assumption in a semi-supervised environment is
that it can be applied transitively to unlabeled data (labels can propagate transitively
through related objects). When the decision threshold passes only in low-density areas,
both assumptions can be satisfied (ENGELEN; HOOS, 2019).

Semi-supervised learning models are often conditional (i.e., they have specific appli-
cation conditions). Concerningly the data, a necessary condition is that the marginal
data distribution 𝑝(𝑥) over the input space contains information about the posterior dis-
tribution 𝑝(𝑦|𝑥). In this case, unlabeled data can be used to obtain information about
𝑝(𝑥) and, consequently, about 𝑝(𝑦|𝑥) (ZHOU, 2021). Otherwise, it may not be possible
to improve the prediction accuracy by adding unlabeled data (ENGELEN; HOOS, 2019).
Fortunately, a wide range of learning problems fit or can be adapted to suit this condition.

As mentioned before, one of the main advantages of semi-supervised learning is com-
bining characteristics of supervised and unsupervised learning in a learning model capable
of working simultaneously with labeled and unlabeled data and producing predictions with
reasonable performance. A semi-supervised learning method can also favor model gener-
alization, reducing overfitting and making it closer to real-world data (i.e., because can
have access to a large amount of unlabeled data). In addition to making it possible to
apply learning models in scenarios where labeling datasets is costly and inefficient.
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However, despite this, several issues must always be considered during the construc-
tion of the learning model, such as how to make the aforementioned assumptions and the
data quality. Some of the main disadvantages of semi-supervised learning are the time
complexity (i.e., due to the need to model labeled and unlabeled data and incorporate
supervised, unsupervised, and semi-supervised techniques into a single learning model);
The learning model’s performance depends on the balance between the quality and quan-
tity of labeled data. (i.e., when labeled data is not comprehensive or representative, the
model produced may have affected predictive performance); Another point refers to the
difficulty in determining the level of supervision and the ideal amount of labeled data to
be used to balance the performance and computational cost of the learning model. Semi-
supervised models have the potential for overfitting in the absence of enough labeled data
to drive unlabeled data; As mentioned earlier, semi-supervised algorithms often rely on
assumptions made about data distribution, and these may not hold in real-world scenar-
ios; The phenomenon of performance degeneration is another issue that makes it a great
challenge to apply semi-supervised learning methods in real environments (LI; LIANG,
2019).

In summary, it is essential to note that semi-supervised approaches are not always
applicable in context, and it is necessary to consider that adding unlabeled data may not
result in performance improvement compared to other methods. Regardless, when applied
in a proper context, a semi-supervised approach can result in a relevant or competitive
performance gain with the advantages mentioned above (i.e., even if can become specific
to the worked context).

2.5 Interaction Prediction as Multi-label Machine
Learning Problem

In the context of Machine Learning, classification and regression can be used for pre-
diction tasks. Considering that when new data are provided, both can infer whether or
not an interaction occurs based on the learning model. As previously mentioned in Sec-
tion 2.4, single-label prediction tasks assume that an object is associated with only one of
two classes (Binary Classification) or more (Multiclass Classification) (SARKAR; SAHA,
2019). More complex problems closer to real life adopt the idea that an object can be-
long to several classes (Labels) simultaneously, i.e., the multi-label (PLIAKOS; GEURTS;
VENS, 2018; HERRERA et al., 2016b; TSOUMAKAS; KATAKIS; VLAHAVAS, 2011;
TSOUMAKAS; ZHANG; ZHOU, 2012) models. As aforementioned in Chapter 1, the
interaction prediction problem is formulated as a Multi-label machine learning global
approach-based problem in this work. In this context, two learning approaches can be
applied, the local approach (SCHRYNEMACKERS; KüFFNER; GEURTS, 2013), and the
global approach (PLIAKOS; GEURTS; VENS, 2018): In summary, the local approach
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consists of dividing the prediction problem into several minor prediction problems, where
each predictor is responsible for deciding the interactions concerning a single object; and
the global approach consists of using or adapting a machine learning algorithm so that the
learning model applies to the entire dataset without the need for divisions. Both learn-
ing approaches are discussed in more detail in sequence, i.e., these approaches mainly
relate to how learning models receive and use the input interaction data in the induction
procedure.

The Local Multiple Output (LMO) approach divides the classification problem into
minor problems corresponding to all or just the interest objects, each defined by a sample
of the learning dataset containing the correlated objects and interactions. After finishing
the prediction task, the results accumulate, producing multiple outputs.

One way to apply this approach is to split the classification problem into two individual
models. The first model is built on a sample of the training set referring to rows 𝑋𝑟 to
predict invisible row objects, and the second model is built on a sample referring to
columns 𝑋𝑐, aiming to predict objects of the hidden column (SCHRYNEMACKERS;
KüFFNER; GEURTS, 2013). Figure 4 (B, C) illustrates this approach, where in B, the
sample of the training set referring to the rows of the interaction matrix is shown, and in
C, the sample referring to the columns is shown. Each object is assigned a Y vector (labels
vector) of size corresponding to all possible interactions in this way. The position 𝑌𝑖 of
this vector receives the value one if the object interacts with another object corresponding
to the position 𝑌𝑖, and zero otherwise.

There are two global-based approaches, each suited to a different context: the Global
Single Output (GSO) approach; and the Global Multiple Output (GMO) approach.
The GSO approach applies a single classification algorithm to the learning sample. For
this, the two feature vectors of the objects 𝑋𝑟 and 𝑋𝑐 of each interaction are concatenated
(Cartesian product), and a Y binary value is added that indicates whether or not there is
an interaction. Then a learning algorithm is inducted considering the entire dataset and
later used to predict new interactions between visible or invisible objects in the learning
process (Figure 4-A illustrates this approach).

The GMO approach consists of adapting or building a new classifier to produce a multi-
output (i.e., multi-label) classification model applicable across the entire learning sample.
The GMO approach has the advantage of not needing any modification to the data (e.g.,
like the Cartesian product) and of considering the correlations between rows and columns
of the dataset’s interaction matrix (i.e., we can see correlated relationships that do not
exist when the learning problem is subdivided). About the LMO approach, it has the
advantage of producing a single learning model, thus improving the interpretability of the
learning procedure (Figure 4-D illustrates this approach).

In the context of this work, both approaches have their own characteristics and can be
adequate to specific scenarios, but the GMO approach can be more flexible as it considers
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Figure 4 – Approaches for supervised Interaction Prediction. A) Global Single Output
Approach; B), C) Local Multiple Output Approach; D) Global Multiple Out-
put Approach. Adapted from (ALVES; CERRI, 2022). 𝑋𝑙 and 𝑋𝑐 respectively
represent the object feature spaces of the rows and columns, and 𝑌 the inter-
actions.

all relationships between objects in the dataset. However, it often requires more time and
computational resources as it performs the entire classification procedure in a single step.

2.6 Predictive Bi-Clustering Trees

Predictive Bi-Clustering Tree (PBCT) (PLIAKOS; GEURTS; VENS, 2018; PLI-
AKOS; VENS, 2020) is a global approach-based multi-label machine learning algorithm.
It expands the concept of Predictive Clustering Trees (PCTs) presented by Vens et al.
(2008) for the application and resolution of Bi-Clustering interaction prediction tasks. It
is based on the structure of a Classification and Regression Trees (CART) constructed by
simultaneously incorporating both label spaces (rows and columns) in the learning proce-
dure. Each tree node contains objects that belong to both label spaces, i.e., partitioning
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the interactions matrix horizontally and vertically.
Considering a dataset 𝑆 composed of an interaction matrix 𝑌 and two object feature

spaces represented by Rows 𝑋𝑟 and columns 𝑋𝑐. Where a feature vector represents each
object belonging to the space of rows or columns so that 𝑖 and 𝑗 represent indices, and 𝑋𝑟𝑖

and 𝑋𝑐𝑗 features, a PBCT tree can be induced as defined below. The detailed functioning
of the PBCT induction algorithm is defined in Algorithm 1, illustrated in Figure 5, and
expanded in sequence (PLIAKOS; GEURTS; VENS, 2018).

Algorithm 1: Predictive Bi-Clustering Tree Induction.
Data: A dataset 𝑆 that consists of 𝑋𝑟, 𝑋𝑐, and 𝑌 ;
Result: A global multi-output tree;

Function GMOT(𝑆):
1 (𝑡*, 𝑃*)← 𝐵𝑒𝑠𝑡𝑇𝑒𝑠𝑡(𝑆)
2 if 𝑡* ≠ 𝑛𝑜𝑛𝑒 then
3 for 𝑛𝑜𝑑𝑒 𝑆𝑘 ∈ 𝑃* do
4 𝑡𝑟𝑒𝑒𝑘 ← 𝐺𝑀𝑂𝑇 (𝑆𝑘)

end
5 return 𝑛𝑜𝑑𝑒(𝑡*,∪𝑘{𝑡𝑟𝑒𝑒𝑘})
6 else
7 return 𝑙𝑒𝑎𝑓(𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒(𝑆))

end
8 return tree

Function BestTest(𝑆):
9 (𝑡*, ℎ*, 𝑃*) = (𝑛𝑜𝑛𝑒, 0,∅)

10 for possible test 𝑡 = 𝑡𝑟 ∪ 𝑡𝑐 do
11 if 𝑡 ∈ 𝑡𝑟 then
12 𝑃 = horizontal partitioning of 𝑆 by 𝑡

else
13 𝑃 = vertical partitioning of 𝑆 by 𝑡

end
14 ℎ =

[︁
𝑉 𝑎𝑟(𝑆)−∑︀

𝑆𝑘∈𝑝
|𝑆𝑘|
|𝑆| 𝑉 𝑎𝑟(𝑆𝑘)

]︁
|𝑆|

𝑆𝑟𝑜𝑜𝑡

15 if ℎ > ℎ* then
16 (𝑡*, ℎ*, 𝑃*) = (𝑡, ℎ, 𝑃 )

end
end

17 return (𝑡*, 𝑃*)
Function Prototype(𝑆):

18 pt1 = columnwise average vector of leaf partition 𝑆
19 pt2 = rowwise average vector of leaf partition 𝑆
20 pt3 = setwise average of leaf partition 𝑆

21 return (𝑝𝑡1, 𝑝𝑡2, 𝑝𝑡3)

As defined in the function GMOT (Algorithm 1), at each tree node, the decision
function BestTest is used in the selection of the label space 𝑋𝑟 or 𝑋𝑐 where the division
of the interaction matrix 𝑌 will occur (split).

This function is based on the impurity reduction gain calculation (i.e., defined in
line 14 of the Algorithm 1), which is performed on both label spaces, and the division
with the best evaluation (highest value) will be selected (i.e., as defined in lines 15 and 16
of Algorithm 1). The tree splits occur top-down to the leaves, where the function indicates
no more impurity reduction gain. In line 14 of Algorithm 1, the 𝑉 𝑎𝑟(𝑆) function (defined
by Equation 1) represents the variances sum of the target variables of the objects in set
(i.e., calculated for all possible tree splits) (PLIAKOS; GEURTS; VENS, 2018; VENS et
al., 2008).
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Figure 5 – An illustrative example of how Predictive Bi-Clustering Tree works. Each leaf
represents a partition, and each tree node denotes a division in the interactions
matrix, 𝜎𝑛 represent space divisions, 𝑐 defines column divisions, 𝑙 row divisions,
and 𝜏𝑛 the thresholds. Adapted from Alves e Cerri (2022).
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𝑉 𝑎𝑟(𝑆) =
𝑇∑︁

𝑖=1
𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦(𝑌𝑖) (1)

In particular, given input data (set of objects) 𝑆, in Equation 1 the 𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦(𝑌𝑖)
in 𝑉 𝑎𝑟(𝑆) function can denote any reasonable impurity measure. As here we are work-
ing with binary labels, the Gini impurity (see Equation 2) was chosen according to the
procedure described by Pliakos, Geurts e Vens (2018), Vens et al. (2008).

𝐺𝑖𝑛𝑖(𝐸, 𝑌 ) = 1−∑︀𝐶
𝑖=1 𝑝𝑖

2 (2)

The Gini impurity can be calculated for input data 𝐸 and a specific target variable
𝑌 as defined in Equation 2 where 𝐶 are the possible values for the class 𝑌 (e.g., In the
binary classification, 𝐶=2, and 𝑝𝑖 is the prior probability of the class 𝑐𝑖). In the impurity
reduction gain function (line 14 of Algorithm 1), considering the number |𝑆| of samples
in the current node and the total number of samples |𝑆𝑟𝑜𝑜𝑡|, the factor |𝑆|

|𝑆𝑟𝑜𝑜𝑡| is used as
split quality score in order to avoid cardinality bias (i.e., Otherwise, partitioning would
tend to always occur in the same direction) (PLIAKOS; GEURTS; VENS, 2018).

In particular, Figure 5 illustrates the tree-growing of PBCT; in step A), we can see
the first split of the tree on interaction matrix, defined by 𝜎𝑐,6 when 𝜎 is a tree split,
and 𝑐, 6 defines a split at the sixth index of the object space of columns, and 𝜏0 defines
the threshold on the split-selected object features. This split results in two partitions,
i.e., defined by 1 and 2 on the interaction matrix. In step B) we can see two more splits
defined by 𝜎𝑙,3 and 𝜎𝑙,7 this time in the object space of rows, producing four partitions
(i.e., 1, 2, 3, and 4) in the interaction matrix. Finally, in step C), we can see one more
split on the rows object space defined by 𝜎1,5 in the place where partition 2 was in step
B), i.e., in this way, dividing the partition space 2 of step B) into two new partitions,
defined in this step by 2 and 3. The fact that partitions 1, 3, and 4 of Step B) did not
produce new partitions in Step C) indicates that there was no additional gain in impurity
reduction. Therefore these partitions are now represented as PBCT leaves.

The partitions (i.e., final samples of the interaction matrix present in the leaves of a
function tree) contain the atomic divisions resulting from the induction procedure neces-
sary for the inference procedure (i.e., prediction of new objects). The interpretation of
partition data will differ depending on the prediction task. However, in both cases, it is
based on the output 𝑝𝑡 (i.e., a single value or a vector of values) produced by a function
𝑓𝑝, considering 𝑝 as the partition data, which will be used to guide the prediction (i.e.
the final prediction value is based on the tree leaf partition data). This procedure can be
seen in lines 18-21 of Algorithm 1 in the Prototype function, when 𝑝𝑡1, 𝑝𝑡2, and 𝑝𝑡3 are
the possible outputs to be used to guide the prediction task.

As defined in Section 2.3, excluding the trivial case (𝐿𝑟 x 𝐿𝑐), there are three prediction
tasks, these being, 𝑇𝑟 x 𝑇𝑐, 𝐿𝑟 x 𝑇𝑐, and 𝑇𝑟 x 𝐿𝑐. Considering Algorithms 1, and 2, the
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approach used in tasks 𝑇𝑟 x 𝑇𝑐 is to calculate the average of the values of the interaction
matrix (i.e., partition) present in the leaf (i.e., setwise average of partition). In tasks, 𝑇𝑟

x 𝐿𝑐, the function 𝑓𝑝 produces the columnwise average vector of partition (i.e., a vector
𝑣 = {𝑎𝑣𝑔(𝑥1), 𝑎𝑣𝑔(𝑥2), ..., 𝑎𝑣𝑔(𝑥𝑛)} containing the average value 𝑎𝑣𝑔(𝑥𝑖) = 1

𝑛

∑︀𝑛
𝑗=1 𝑥𝑖𝑗 of

the 𝑗 values of each partition column 𝑥𝑖, considering 𝑛 as the number of column values),
which is later used to find the prediction values. Tasks 𝐿𝑟 x 𝑇𝑐 are performed in the same
way but with a rowwise average vector of partition (i.e., a similar procedure to that of
columns, but with rows). Notably, Rows and Columns of an interaction matrix define
objects belonging to different spaces but interacting with each other. In this way, a vector
containing the average of the interaction values of one of the objects space defines for each
index the general probability of interaction of this object with the others present in the
partition. Thus, during the prediction, the final value of the prediction resulting from the
selection of the value (i.e., referring to the index of the object defined as the partition cutoff
point) of the vector of means represents the average probability of interaction between
this object and the others in the referred partition.

Algorithm 2: Predictions with a PBCT Global Multi-Output Tree
Data: A global multi-output 𝑇𝑟𝑒𝑒 and an unseen pair of learning set 𝑇𝑒𝑠𝑡𝑃𝑎𝑖𝑟.
Result: A prediction for an unseen pair 𝑇𝑒𝑠𝑡𝑃𝑎𝑖𝑟
Function Predict(𝑇𝑟𝑒𝑒, 𝑇𝑒𝑠𝑡𝑃𝑎𝑖𝑟):

1 𝐿 = leaf node associated with 𝑇𝑒𝑠𝑡𝑃𝑎𝑖𝑟
2 (𝑝𝑡1, 𝑝𝑡2, 𝑝𝑡3) = 𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒(𝐿)
3 if 𝑇𝑒𝑠𝑡𝑃𝑎𝑖𝑟 ∈ 𝐿𝑟× 𝑇𝑐 then
4 𝑗 = row index of 𝑇𝑒𝑠𝑡𝑃𝑎𝑖𝑟 in 𝑝𝑡1
5 return 𝑝𝑡1[𝑗]
6 else if 𝑇𝑒𝑠𝑡𝑃𝑎𝑖𝑟 ∈ 𝑇𝑟× 𝐿𝑐 then
7 𝑗 = column index of 𝑇𝑒𝑠𝑡𝑃𝑎𝑖𝑟 in 𝑝𝑡2
8 return 𝑝𝑡2[𝑗]

else
9 return 𝑝𝑡3

end
end

This procedure is demonstrated in Algorithm 2, where for tasks 𝐿𝑟 x 𝑇𝑐, or 𝑇𝑟 x 𝐿𝑐

the row indices or columns of TestPairs are used together with the average vectors 𝑝𝑡1
or 𝑝𝑡2 in the search for the final prediction task value. The resulting value is assigned as
a prediction result, i.e., the prediction is based on a 𝑇𝑒𝑠𝑡𝑃𝑎𝑖𝑟, composed of two feature
vectors of both objects whose interaction is being predicted. During the prediction step,
a top-down search is performed for the leaf node in the tree corresponding to 𝑇𝑒𝑠𝑡𝑃𝑎𝑖𝑟

(line 1 of the Algorithm 2). The resulting data (line 2 of the Algorithm 2), in turn,
corresponds to the previously defined partition variance and is used to guide the procedure
for obtaining the final result of the prediction task (lines 3-9 of the Algorithm 2).
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2.7 Extreme Gradient Boosting
Extreme Gradient Boosting (XGBoost) (CHEN; GUESTRIN, 2016) is an ensemble,

scalable, supervised machine learning method used for classification and regression tasks.
Ensemble learning strategies combine weak predictors (i.e., learning models) to build

a strong predictor that performs the prediction together (e.g., XGBoost uses a technique
called gradient boosting, which combines several weak decision tree models, creating an
ensemble learning model).

XGBoost works by dividing the data into several subgroups and building a separate
decision tree for each subgroup. Then, the algorithm sequentially builds decision trees
(predictors) to predict residuals or errors of previous predictors (i.e., in order to fix the
errors committed by previous trees). Finally, these predictors are added to the learning
model and considered in the ensemble prediction procedure.

XGBoost applies the concept of boosting with the difference that it uses gradient
descent to minimize the loss function when adding new predictors (CHRISTINELLI et al.,
2021); Uses a set of Gradient Boost Decision Trees (GBDT) to improve performance and
speed (BELTRAN; VALDEZ; NAVAL, 2019); and it is a gradient boosting method that
employs regularization techniques to prevent overfitting and improve generalization, thus
enhancing the performance of the learning model (CHEN; GUESTRIN, 2016); Moreover,
finally, it uses an efficient tree pruning algorithm that reduces the complexity of the model
while maintaining the level of accuracy (CHEN; GUESTRIN, 2016).

It has already been used in several prediction contexts in the literature (CHEN et
al., 2019a; BELTRAN; VALDEZ; NAVAL, 2019) and has been shown to perform well in
classification and regression tasks. In addition, it has been applied to a variety of learning
problems. The works below use XGBoost for interaction prediction tasks in contexts
similar to those studied in this research.

Chen et al. (2019a) investigated in the literature and observed that in the task of
predicting HP-PPIs, there are several challenges related to representation algorithms and
imbalanced datasets, so they proposed a two-layer structured model. In the first layer, the
data imbalance rate is reduced using the XGBoost algorithm (CHEN; GUESTRIN, 2016)
and the Synthetic Minority Over-sampling (SMOTE) (CHAWLA et al., 2002) technique.
In the second layer, the interaction prediction is performed on the balanced produced
dataset in the first layer using the SVM classifier. During the experimental phase, sev-
eral rates of data imbalance and several classification methodologies were tested, and
the results indicated that the methodology performs better compared to other similar
methodologies described in the literature and traditional machine learning models in the
task of HP-PPIs prediction.

Beltran, Valdez e Naval (2019) investigated the classification algorithms frequently
used in the prediction of PPIs, and observed that recent approaches use ensemble to
perform the classification task. Several classifiers are aggregated in Ensemble learning
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to produce a high-performance classifier. So, they proposed an approach using XGBoost
for the interaction prediction. In this approach, interaction data were obtained from
several databases and combined with several feature extraction methodologies frequently
observed in the literature to generate sets of attributes representing interactions between
proteins. Then, considering the data produced by the feature extraction methodologies,
XGBoost is used for the interaction prediction task. Other classification methods were
used during the experiment, demonstrating that the XGBoost approach produced better
results than the other classifiers analyzed in predicting PPIs.

The main advantages of XGBoost are its speed, scalability, and flexibility: it is efficient
and scalable, making it suitable for large-scale machine learning tasks with large real-world
datasets and sparse data (CHEN; GUESTRIN, 2016); Fast, making it possible to train and
test models quickly (CHEN; GUESTRIN, 2016); Furthermore, finally, it demonstrated
significant performance in learning tasks on imbalanced datasets (BELTRAN; VALDEZ;
NAVAL, 2019; CHEN et al., 2019a).

XGBoost has become a popular choice for machine learning applications because of its
scalability and performance. It is an ensemble machine learning method that combines
multiple decision tree models to create a more robust model. In summary, XGBoost is a
promising algorithm that has been shown to be effective in predicting and classifying data.
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Chapter 3

Proposed Methods

This chapter presents the methods proposed in this research. First, in Section 3.1 we
presented a background of these methods. Section 3.2 presents a hybrid learning method,
which combines Predictive Bi-Clustering Trees (PBCTs) and Extreme Gradient Boost-
ing (XGBoost) called PbXGB to solve prediction problems with data imbalance. Then, in
Section 3.3 we present the Semi-Supervised Predictive Bi-Clustering Tree (PbSS), a PBCT
variation that combines supervised and unsupervised learning characteristics to make pre-
dictions considering labeled data and a large amount of unlabeled data simultaneously in
the learning procedure. With the development of these methods, we aim to advance the
state-of-the-art in their respective application areas.

3.1 Background

As previously defined in Section 2.6, PBCT is a machine learning algorithm that
applies a method based on CART to generate partitions in the interaction matrix and,
through them, performs predictive tasks. This algorithm has two fundamental pillars:
the function responsible for performing divisions in the tree based on the sample of the
interactions matrix; and how to use partitions to make predictions (i.e., what directly
influences the learning model’s performance). However, PBCT is sensitive to factors such
as data imbalance, the amount of labeled and unlabeled data, and issues such as high
dimensionality and cardinality. Thus, our work brings contributions on two fronts (i.e.,
in both concepts) through modifications in the tree division function and how partitions
are used during the prediction procedure.



46 Chapter 3. Proposed Methods

3.2 A hybrid model using Predictive Bi-Clustering
Trees and XGBoost

Originally partitions produced by the induction procedure of a PBCT were directly
used as the base for predictions. Despite this, other strategies can be applied. Here we
propose to divide the learning process into two stages. As illustrated in Figure 6, in the
first step, the original PBCT induction model procedure is used to make partitions in the
interactions matrix. In the second step, an XGBoost classifier is fitted on each partition
(i.e., based on the partition’s data) (ALVES; CERRI, 2022).
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Figure 6 – The proposed interaction prediction model (ALVES; CERRI, 2022).

Partitions produced through the PBCT induction procedure are presented in multi-
label interaction matrices format (i.e., the GMO input data format). However, each par-
tition must be mapped to a GSO input data format (PLIAKOS; GEURTS; VENS, 2018)
to be compatible with the XGBoost classifier induction procedure. In this conversion, all
possible rows and columns pairs feature vectors are concatenated, and a binary value is
added as a class indicating whether there is an interaction or not (see Figure 7).

Figure 7 – Mapping a partition to a Global Single Output (GSO) data format. Adapted
from Alves e Cerri (2022).
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In our proposal, we trained XGBoost classifiers using only the training data from
partitions with a high rate of leaf imbalance, cases where the original PBCT can obtain
low predictive performance (using prototype vectors). Density thresholds have been added
to the model as a decision criterion for choosing in which imbalanced partitions XGBoost
are inducted.

As shown in Figure 8, the density 𝐷 represents the defined average value of a partition
and 𝑃 a range between two density values {𝐷𝑚𝑖𝑛 <= 𝑃 <= 𝐷𝑚𝑎𝑥}. Density values range
from 0 to 1. When the density value is close to 0, there are likely to be more negative
interactions on the partition. When the density value is close to 1, we will likely have
more positive interactions in the partition. Thus, when the density value is close to the
limits (0 or 1), we use the original PBCT prediction strategy. However, in this work, we
assume that the farther the density value is from the density limit values (thresholds),
the greater the uncertainty about positive and negative interactions. In this scenario, our
proposal improves predictive performance on leaf partitions with more impure interaction
data that are more difficult to predict (ALVES; CERRI, 2022).

0 0 0 0
0 0 0 0
0 0 0 0

0 0 1 1
0 0 1 1
0 0 1 1

1 1 1 1
1 1 1 1
1 1 1 1

D = 0 D = 0.5 D = 1

P

Figure 8 – Illustrations of the density interval (ALVES; CERRI, 2022).

More specifically with the density limits approach, we evaluated the relationship be-
tween uncertainty and unbalance in the partitions, so that the closer a partition is to the
density limits, the greater the certainty about its label, and the further away, the greater
the uncertainty regarding its label. Thus, density limits become a delicate balancing
factor between predictive performance and computational performance. i.e., inducing
an XGBoost learning model on partitions with higher certainty can degrade computa-
tional performance. It is worth noting that this approach is designed to work especially
on unbalanced partitions, so as mentioned earlier there is a delicate balance between den-
sity limits (i.e., thresholds), e.g., if the density limits (𝐷𝑚𝑖𝑛 or 𝐷𝑚𝑎𝑥) are close to the
limits (like 0 or 1, see Figure 8), they may consider partitions with high certainty about
their label, and with little or no imbalance thus impacting the computational performance
(due the XGBoost induction procedure), if the density limits are close they may disregard
imbalanced partitions, impacting the predictive performance.

Originally, the PBCT induction algorithm could be divided into three main functions,
as seen in Algorithm 1 (see in Section 2.6). The 𝐺𝑀𝑂𝑇 function is responsible for
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Algorithm 3: Proposed algorithm to build leaves with a PBCT Global Multi-
Output Tree

Data: A partition data 𝑆 that consists of 𝑋𝑟, 𝑋𝑐, and 𝑌
Result: An adjusted learning model that consists in (𝑝𝑡1, 𝑝𝑡2, 𝐷) or (𝑐𝑙𝑓 , 𝐷)
Function Prototype(𝑆):

1 𝑃 = partition data
2 𝐷 = setwise average of leaf partition 𝑆
3 if 𝐼𝑙𝑖𝑚 <= 𝐷 <= 𝑆𝑙𝑖𝑚 then
4 (𝑋, 𝑦) ← partition data 𝑃 mapped to a single-label global format
5 𝑐𝑙𝑓 = learn a XGBoost classifier
6 return (𝑐𝑙𝑓 , 𝐷)

else
7 pt1 = columnwise average vector of leaf partition 𝑆
8 pt2 = rowwise average vector of leaf partition 𝑆
9 return (pt1, pt2, 𝐷)

end
end

Algorithm 4: Proposed algorithm for predictions with a PBCT Global Multi-
Output Tree and XGBoost

Data: A global multi-output 𝑇𝑟𝑒𝑒 and an unseen pair of learning set 𝑇𝑒𝑠𝑡𝑃𝑎𝑖𝑟.
Result: A prediction for an unseen pair 𝑇𝑒𝑠𝑡𝑃𝑎𝑖𝑟
Function Predict(𝑇𝑟𝑒𝑒, 𝑇𝑒𝑠𝑡𝑃𝑎𝑖𝑟):

1 𝐿 = leaf node associated with 𝑇𝑒𝑠𝑡𝑃𝑎𝑖𝑟
2 𝐷 = density associated with 𝐿
3 if 𝐼𝑙𝑖𝑚 <= 𝐷 <= 𝑆𝑙𝑖𝑚 then
4 𝑐𝑙𝑓 = learned XGBoost model associated with 𝐿
5 return prediction of 𝑇𝑒𝑠𝑡𝑃𝑎𝑖𝑟 with 𝑐𝑙𝑓 model

else
6 (𝑝𝑡1, 𝑝𝑡2, 𝑝𝑡3) = 𝐿
7 if 𝑇𝑒𝑠𝑡𝑃𝑎𝑖𝑟 ∈ 𝐿𝑟× 𝑇𝑐 then
8 𝑗 = row index of 𝑇𝑒𝑠𝑡𝑃𝑎𝑖𝑟 in 𝑝𝑡1
9 return 𝑝𝑡1[𝑗]

10 else if 𝑇𝑒𝑠𝑡𝑃𝑎𝑖𝑟 ∈ 𝑇𝑟× 𝐿𝑐 then
11 𝑗 = column index of 𝑇𝑒𝑠𝑡𝑃𝑎𝑖𝑟 in 𝑝𝑡2
12 return 𝑝𝑡2[𝑗]

else
13 return 𝑝𝑡3

end
end

end
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building the tree; The 𝐵𝑒𝑠𝑡𝑇𝑒𝑠𝑡 function is responsible for choosing the best tree split;
and the 𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒 function defines the values later used in the prediction.

Algorithm 3 introduces our approach. We mainly modified the original prototype
function of Algorithm 1 (see in Section 2.6). Initially, the partition density 𝐷 is obtained
(i.e., as defined in step 2 of Algorithm 3). Then, if the density is within the specified
limits, lower bound 𝐼𝑙𝑖𝑚 and upper bound 𝑆𝑙𝑖𝑚, an XGBoost classifier is fitted to the leaf
data (i.e., steps 4 to 6 of Algorithm 3). Otherwise (i.e., as seen in Algorithm 3 steps 7 to
9), the original PBCT strategy is used.

The original PBCT function (see Algorithm 2 in Section 2.6) is also modified for
prediction. If the partition density is in the range defined by {𝐼𝑙𝑖𝑚 <= 𝐷 <= 𝑆𝑙𝑖𝑚}
(Steps 2 and 3 of Algorithm 4), the XGBoost classifier 𝑐𝑙𝑓 associated with the leaf will be
used to make predictions (steps 4 and 5 of Algorithm 4); otherwise, the original PBCT
procedure is used (steps 6 to 13 of Algorithm 4).

3.3 Semi-Supervised Predictive Bi-Clustering Tree
In this method, we explore characteristics of semi-supervised learning to take better ad-

vantage of a large amount of unlabeled data present in the datasets to improve the PBCT
divisions (splits) through a method based on the works of Levatić et al. (2017), and Alves,
Ilidio e Cerri (2023), more specifically for scenarios with unlabeled data. Thus, we inves-
tigate the interaction prediction problem additionally from another viewpoint, from the
perspective of an unlabeled data problem, specifically Positive-Unlabeled data (BEKKER;
DAVIS, 2020; HAMMOUDEH; LOWD, 2020). The presented method simultaneously in-
corporates labeled and unlabeled data into the learning procedure. So, more specifically,
we propose a variation of the semi-supervised impurity reduction function (i.e., adapted
to Bi-clustering datasets and the PBCT) to improve the way impurity is evaluated in tree
divisions (Splits) (step 6 from Algorithm 5).

Traditionally, in an interaction matrix, unknown or unlabeled interaction data are
considered negative and represented by the value zero. However, depending on the case
and the data quality, this can add a significant bias, which worsens due to the imbal-
ance between the existing and the produced interactions. In this method, we added an
unsupervised part to the impurity reduction function, similar to the procedure described
by Levatić et al. (2017).

𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦𝑆𝑆𝐿(𝐸) = 𝑤

𝑇
.

𝑇∑︁
𝑖=1

𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦(𝐸𝑙, 𝑌𝑖)⏟  ⏞  
𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑

+ 1− 𝑤

𝐷
.

𝐷∑︁
𝑖=1

𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦(𝐸, 𝑋𝑖)⏟  ⏞  
𝑁𝑜𝑡 𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑

(3)

As noted, Equation 3 references the 𝑣𝑎𝑟 function (see Equation 1 in Section 2.6)
of the PBCT tree splits function (see the step 6 from Algorithm 5), where the impurity



50 Chapter 3. Proposed Methods

Algorithm 5: Predictive Bi-Clustering Tree Splits.
Data: A partition 𝑆 that consists of 𝑋𝑟, 𝑋𝑐, and 𝑌 ;
Result: The best split for tree node;
Function BestTest(𝑆):

1 (𝑡*, ℎ*, 𝑃*) = (𝑛𝑜𝑛𝑒, 0,∅)
2 for possible test 𝑡 = 𝑡𝑟 ∪ 𝑡𝑐 do
3 if 𝑡 ∈ 𝑡𝑟 then
4 𝑃 = horizontal partitioning of 𝑆 by 𝑡

else
5 𝑃 = vertical partitioning of 𝑆 by 𝑡

end
6 ℎ =

[︁
𝑉 𝑎𝑟(𝑆)−∑︀

𝑆𝑘∈𝑝
|𝑆𝑘|
|𝑆| 𝑉 𝑎𝑟(𝑆𝑘)

]︁
|𝑆|

𝑆𝑟𝑜𝑜𝑡

7 if ℎ > ℎ* then
8 (𝑡*, ℎ*, 𝑃*) = (𝑡, ℎ, 𝑃 )

end
end

9 return (𝑡*, 𝑃*)

function has two parts, a supervised part based on the Gini impurity criterion (Equation 4)
(i.e., calculated from similar to the original PBCT algorithm) and an unsupervised part
based on Equation 6. Each part of the equation (e.g., supervised and not supervised part)
has weights to define its relevance (i.e., defined by 𝑤 value).

In the Equation 3, 𝐸 represents the split input data (i.e., containing labeled or un-
labeled examples), 𝐸𝑙 is a sample containing only the labeled examples, 𝑌𝑖 represents
each 𝑇 target attribute, 𝑋𝑖 represents each of the 𝐷 descriptive attributes, and 𝑤 is a
weighting criterion ranging from 0 to 1 to define the relevance of each part (supervised
or unsupervised). When the value is 1, only the supervised part is considered; When the
value is 0, only the unsupervised part is considered; and when the value is between 0 and
1, both parts will be considered according to their relevance.

Considering a labeled set 𝐸𝑙 and the target attributes 𝑌𝑖, the labeled impurity is
calculated as defined in Equation 4, where 𝐸𝑡𝑟𝑎𝑖𝑛

𝑙 represents the labeled dataset from the
root of the tree.

𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦(𝐸𝑙, 𝑌𝑖) = 𝐺𝑖𝑛𝑖(𝐸𝑙,𝑌𝑖)
𝐺𝑖𝑛𝑖(𝐸𝑇 𝑟𝑎𝑖𝑛

𝑙
,𝑌𝑖)

(4)

The unlabeled impurity only applies to the descriptive characteristics of the unlabeled
examples. In this work, the unsupervised term of the semi-supervised impurity function
is calculated once for each tree split (i.e., which brings more computational performance,
since it is used only as a decision option for selecting the split-axis, Vertical or Horizontal).
The unlabeled impurity for a partially labeled dataset 𝐸 and the numerical descriptive
attributes 𝑋𝑖 are calculated as defined in Equation 5.
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𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦(𝐸, 𝑋𝑖) = 𝑉 𝑎𝑟(𝐸, 𝑋𝑖)
𝑉 𝑎𝑟(𝐸𝑇 𝑟𝑎𝑖𝑛, 𝑋𝑖)⏟  ⏞  

𝑁𝑢𝑚𝑒𝑟𝑖𝑐 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠

(5)

Where 𝐸𝑇 𝑟𝑎𝑖𝑛 represents the dataset at the tree’s root. The impurity 𝑉 𝑎𝑟 of the
attribute 𝑖-𝑡ℎ in the set 𝐸 over the descriptive attributes of the feature 𝑋𝑖 is calculated
as defined in Equation 6. When 𝑁 represents the number of values of a given feature
described by 𝑋𝑖.

𝑉 𝑎𝑟(𝐸, 𝑋𝑖) =
∑︀𝑁

𝑗=1(𝑥𝑖𝑗)2− 1
𝑁

.(
∑︀𝑁

𝑗=1 𝑥𝑖𝑗)2

𝑁
(6)

A major advantage of this approach is the supervision control of the impurity function
because both unlabeled data and unsupervised impurity can negatively affect the learn-
ing model’s performance. Therefore, the proposed algorithm can obtain a performance
equal to or better than the state-of-the-art, depending on the value of 𝑤. Thus, in sce-
narios where the semi-supervised impurity negatively affects the learning performance,
we can set 𝑤 = 1 and work only with the supervised part (i.e., similar to the original
PBCT procedure). On the other hand, by setting 𝑤 = 0, we can only work with the
unsupervised impurity, making this a hybrid model between supervised and unsupervised
learning (LEVATIĆ et al., 2017).

3.3.1 Dynamic Weights

Traditionally, we can work with the 𝑤 weight in two ways, inferring values in the range
of 0 and 1 or using a heuristic function. In this work, we also aim at contributions by
determining the level of supervision. In this case, we work in both directions, globally
defining the level of supervision, and through a heuristic function to determine the value
of 𝑤 as defined in Equation 7.

𝑊𝑒𝑖𝑔ℎ𝑡(𝑌 ) = 0.1 + 0.9(
∑︀𝑛

𝑖=1

∑︀𝑚

𝑗=1 𝑌𝑖𝑗

𝑛.𝑚
) (7)

Equation 7 considers an interaction matrix 𝑌 , the number of row objects 𝑛, and the
number of column objects 𝑚. Consider that each partition can represent a different
learning problem, i.e., with different imbalance rates between positive, negative, labeled,
and unlabeled interactions. When determining the 𝑤 value dynamically, we assume a 𝑤

value that automatically adjusts to each training partition. With this, in addition to not
needing to statically assume the value of 𝑤 in each learning problem, we also open an
alternative path for solving learning problems where the static definition of the supervision
criterion 𝑤 tends to present low performance. Note that Equation 7 does not comprise
the value 0. This occurs because labeled examples (i.e., in this case, represented by the
value 1) are necessary for the induction of the proposed semi-supervised model.



Chapter 4

Methodology

This chapter presents the experimental validation of the proposed methods and the
materials, procedures, and methods necessary to carry out the evaluation. Section 4.1
presents the datasets used and their characteristics, while Section 4.2 details the com-
putational environment and the tools used in developing the methods and executing the
experimental procedure. Section 4.3 presents the evaluation measures used and their
characteristics. Finally, Section 4.4 presents the experimental parameters used during the
experimental procedure.

4.1 Datasets

This work focused on interactions in the field of medicine and bioinformatics, and re-
lated datasets were used in the accomplished experiments (PLIAKOS; GEURTS; VENS,
2018; SCHRYNEMACKERS et al., 2015). Table 2 presents the general details and char-
acteristics of the used datasets (i.e., the dataset names, the number of rows and columns
of the interactions matrix, and the percentage of positive and validated interactions).
Below, the datasets are described in detail.

Table 2 – Dataset characteristics

Dataset Rows x Columns Ratio of positive/negative interactions
DPI-N 26 x 54 90/1404 (6.4%)
DPI-G 95 x 223 635/21185 (3%)
DPI-I 204 x 210 1476/42840 (3.4%)
DPI-E 664 x 445 2926/295480 (1%)
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The Gold-Standard Drug–Protein interaction networks defined by Yamanishi et al.
(2008) consists of 4 heterogeneous bipartite drug-protein interaction networks (DPI)1:
Enzymes (DPI-E), ion channels (DPI-I), GPCR (DPI-G), and nuclear receptors (DPI-N).

As noted by Alves e Cerri (2022), enzymes are groups of organic substances, mainly
proteins, that act as biocatalysts, accelerating metabolic reactions in organisms (ROBIN-
SON, 2015). Ion channels are protein molecules that allow the passage of ions between the
extracellular and intracellular environments through membranes (BARKER et al., 2017).
G protein-coupled receptors (GPCRs) are a group of proteins used by cells to detect
extracellular signals and molecules and activate intracellular responses. They mediate
much of our physiological responses to neurotransmitter hormones and, consequently, re-
sponses to sight, smell, and taste signals (ZHAO et al., 2016). Nuclear receptors are
ligand-activated transcription factors involved in many human biological aspects (ZHAO;
ZHOU; GUSTAFSSON, 2019). They regulate vital functions, serving as stimulus sensors
and regulators of molecular events, and often, when deregulated, they are associated with
various diseases (FRIGO; BONDESSON; WILLIAMS, 2021).

For the construction of these datasets, Yamanishi et al. (2008) used several
data sources, among them KEGG BRITE, BRENDA, SUPER TARGET, and Drug-
Bank (THAFAR et al., 2021; PAHIKKALA et al., 2014). Both feature vectors of the
datasets are composed of similarity matrices in both spaces, e.g., we can build similar-
ity matrices in different ways (LIU et al., 2015; DING et al., 2013), between proteins,
one can use the score produced by amino acid sequence alignment algorithms (LIU
et al., 2015), and between drugs, it is possible to assess the similarity between their
chemical composition (LIU et al., 2015; YAMANISHI et al., 2008). In this case, the
similarity of the compounds chemical structure was calculated using the SIMCOMP al-
gorithm (PAHIKKALA et al., 2014; HATTORI et al., 2010; HATTORI et al., 2003), and
the similarity between the target protein sequences was produced using the normalized
version of the Smith-Waterman Score (SSW) (LIU et al., 2015; DING et al., 2013) amino
acids sequence alignment algorithm. Chemical structure data were obtained from the
KEGG LIGAND and KEGG DRUG datasets, and target amino acid sequences were ob-
tained from the KEGG Genes (THAFAR et al., 2021) database. According to Pahikkala
et al. (2014), SIMCOMP represents two-dimensional chemical structures as graphs and
calculates the similarity between compounds based on the size of common substructures
between two graphs using the Jaccard coefficient. Figure 9 illustrates the data composi-
tion in the datasets.

These datasets are comprehensive, have been extensively explored in the litera-
ture (LIU et al., 2015; DING et al., 2013; PAHIKKALA et al., 2014), and represent
a large space of different characteristics and scenarios, including different amounts of

1 Yamanishi et al. (2008) datasets are available at: URL <http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/
drugtarget/> [Accessed 28 04. 2023])

http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/
http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/
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Figure 9 – An illustrative example of the organization of similarity data. The Feature
vectors are each composed of a similarity matrix between the objects of each
domain. Adapted from (PLIAKOS; GEURTS; VENS, 2018; ALVES; ILIDIO;
CERRI, 2023).

interactions, rates of imbalance between interaction data, noise, and data quality (YA-
MANISHI et al., 2008; PAHIKKALA et al., 2014) in addition to having a large amount
of unlabeled data, and can represent a Positive-Unlabeled scenario (BEKKER; DAVIS,
2020; HAMMOUDEH; LOWD, 2020) (i.e., where only positive interactions data have
confirmed labels). The study of DTI in these scenarios can mean significant advances in
discovering new drugs and treating severe diseases.

4.2 Development Environment

Figure 10 presents the development environment designed for this work. As can be
seen, this environment incorporates several factors, such as programming languages, pro-
grams, frameworks, operating systems, and the hardware used. The primary program-
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Figure 10 – The ilustration of our development environment

ming language used throughout this work was Python2 (ROSSUM; DRAKE, 2009), and
all implementations focused on this language. With some exceptions where external
frameworks implemented in Java3 (ARNOLD; GOSLING; HOLMES, 2000) were incor-
porated. Python is a powerful programming language frequently used by the machine
learning community, having an arsenal of related libraries implemented and consolidated
in the literature. On the other hand, Java has been a reference programming language
for several years and has some of the most popular tools in the machine learning area.
Therefore, it was used in the context of this work in some cases where it was necessary
to use external frameworks implemented in that language (e.g., Scikit-Learn4 and Clus5).
The code was implemented in a desktop environment and is available on all platforms
compatible with Python and Java. The experiments were carried out mainly on the
servers of the Bioinformatics and Machine Learning Group (BioMal) and on the Cluster
provided by the Universidade Federal de São Carlos (UFSCar) (special care was taken
with the benchmark data, produced in the same environment, in the BioMal servers). The
hardware used in this work comprises Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz, 94
GB of RAM Memory, with Ubuntu Linux.

4.3 Evaluation Criteria
To evaluate the performance of the predictive models in this work, the K-

Fold CV (GOMEZ; NOBLE; RZHETSKY, 2003; SACCÀ et al., 2014; BELTRAN;
2 Python programming language (Python Software Foundation, Available at: URL <https://www.

python.org/>[Accessed 11 12. 2022]).
3 Java programming language (Oracle, Available at: URL <https://www.java.com/> [Accessed 11 12.

2022]).
4 Scikit-Learn (Python Framework, Available at: URL <https://scikit-learn.org/> [Accessed 28 04.

2023])
5 Clus: A Predictive Clustering System (Java Framework, Available at: URL <https://dtai.cs.kuleuven.

be/clus/> [Accessed 28 04. 2023])

https://www.python.org/
https://www.python.org/
https://www.java.com/
https://scikit-learn.org/
https://dtai.cs.kuleuven.be/clus/
https://dtai.cs.kuleuven.be/clus/
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VALDEZ; NAVAL, 2019), and the Multilabel Stratified K-Fold (MLSKF) CV proce-
dure (SECHIDIS; TSOUMAKAS; VLAHAVAS, 2011) were used. Metrics were used
as evaluation criteria, such as Matthew’s Correlation Coefficient (MCC) (CHICCO;
TöTSCH; JURMAN, 2021; CHICCO; JURMAN, 2020; ZHU, 2020; SARKAR; SAHA,
2019; BOUGHORBEL; JARRAY; EL-ANBARI, 2017) (Equation 8), the Receiver Oper-
ating Characteristic (ROC) curve, and Area Under the Precision-Recall Curve (AUPRC)
(BOYD; ENG; PAGE, 2013). These metrics are widely explored in the literature and were
used in several works, such as (RESENDE et al., 2012; SACCÀ et al., 2014; HUANG et
al., 2015; DEY; MUKHOPADHYAY, 2019; BELTRAN; VALDEZ; NAVAL, 2019; LI et
al., 2020). The MCC is an efficient criterion to evaluate the balanced performance pre-
diction of binary classifiers (i.e., when both classes have the same weight). It considers
the balanced proportions of all prediction results (e.g., TN, FN, TP, and FP) and can
resist and correctly measure imbalanced results (CHICCO; TöTSCH; JURMAN, 2021;
SARKAR; SAHA, 2019). While for a threshold-independent predictive performance rep-
resentation, the Area Under the ROC Curve (AUROC) and AUPRC curves can be per-
formed (SARKAR; SAHA, 2019).

𝑀𝐶𝐶 = 𝑇 𝑃 *𝑇 𝑁−𝐹 𝑃 *𝐹 𝑁√
(𝑇 𝑃 +𝐹 𝑁)*(𝑇 𝑁+𝐹 𝑃 )*(𝑇 𝑃 +𝐹 𝑃 )*(𝑇 𝑁+𝐹 𝑁)

(8)

In Equation 8, True Positive (𝑇𝑃 ) is the number of objects that belong to a class 𝐶𝑖

and were predicted to belong to the class 𝐶𝑖; True Negative (𝑇𝑁) is the number of objects
that do not belong to a class 𝐶𝑖, and were predicted as not belonging to the class 𝐶𝑖;
False Positive (𝐹𝑃 ) is the number of objects that do not belong to a class 𝐶𝑖, and were
predicted as belonging to the class 𝐶𝑖; False Negative (𝐹𝑁) corresponds to the number
of objects that belong to a class 𝐶𝑖, and were predicted as not belonging to the class
𝐶𝑖; Recall is the true positive rate (i.e., the terms in Equation 8 are linked to class, e.g.,
the value of 𝑇𝑃 is linked to the reference class 𝐶𝑖, so it can also be interpreted as 𝑇𝑃𝑖);
Finally, the corresponding AUROC and AUPRC curves will be generated to evaluate the
methodology’s performance.

4.4 Experimental Parameters
As discussed in the Section 2.3, the interaction matrix was divided into three prediction

tasks during the experimental procedure: 𝐿𝑟 x 𝑇𝑐, 𝑇𝑟 x 𝐿𝑐, and 𝑇𝑟 x 𝑇𝑐. These divisions
were performed within a K-Fold Cross-Validation (CV) procedure for both tasks. In
the tasks 𝐿𝑟 x 𝑇𝑐, the CV is applied in the columns, while in the tasks 𝑇𝑟 x 𝐿𝑐, it is
applied in the rows of the interaction matrix. For the 𝑇𝑟 x 𝑇𝑐 task, CV is applied
to rows and columns by excluding a row fold and a column fold from the learning set
and using their combined interactions as a test set (PLIAKOS; GEURTS; VENS, 2018).
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For the experiments, ten folds were considered for the 𝐿𝑟 x 𝑇𝑐 and 𝑇𝑟 x 𝐿𝑐 tasks and
five folds for the 𝑇𝑟 x 𝑇𝑐 task due to the low rate of positive samples in the folds and
the method complexity. Fixed density limits were used by PbXGB in this work, were
{0.02 <= 𝑃 <= 0.98}.

During the XGBoost induction procedure, the same hyperparameters were used for the
tasks 𝑇𝑟 x 𝐿𝑐 and 𝐿𝑟 x 𝑇𝑐, considering number of estimators = 300, learning rate = 0.1
and scale pos weight = 1000. However, due to the complexity of the task 𝑇𝑟 x 𝑇𝑐,
we use a slight variation of these hyperparameters, considering learning rate = 1000
and number of estimators = 10. The hyperparameters used for the induction of PbSS
were minimum number of features = 4, minimum number of samples per leaf = 20, and
maximum level = 10. In the impurity function (see Equations 3 and 4 in Section 3.3),
we consider 𝐸𝑙 = 𝐸, i.e., in this case, all data are considered to be the labeled sample 𝐸𝑙

and unlabeled sample 𝐸 with the main difference that in the unlabeled part the labels are
disregarded. This is mainly attributed to the worked Positive-Unlabeled scenario since
the labeled data is scarce and imbalanced. However, this work also considered a scenario
with a MLSKF CV procedure for both methods (i.e., PbXGB, and PbSS).

A Grid-Search procedure was also used to estimate the hyperparameters in some
scenario. For the Grid-Search procedure, we considered the number of splits = 5 for the
inner CV procedure. The hyperparameters considered for the XGBoost in PbXGB with
Grid-Search procedure for 𝐿𝑟 x 𝑇𝑐 and 𝑇𝑟 x 𝐿𝑐 predicion tasks are number of estimators =
{10, 300, 600}, learning rate = {0.02, 0.1}, and scale pos weight = {10, 100, 1000, 𝑟𝑎𝑡𝑒}.
For 𝑇𝑟 x 𝑇𝑐 prediction task a sight variation of this hyperparameters was used, considering
number of estimators = {5, 10, 20}, and learning rate = {0.02, 0.1, 0.5, 100, 1000}, and
scale pos weight = {100, 1000, 𝑟𝑎𝑡𝑒}. The rate (𝛼) is defined by 𝛼 = max{𝑥,𝑦}

min{𝑥,𝑦} , considering
𝑥 as the number of negative interactions and 𝑦 the number of positive interactions in a
partition, and is a heuristic imbalance measure of the partition of the interaction matrix.

Data referring to the efficiency of the model were recorded during the tests for later
comparison. In particular, the times in seconds related to induction, prediction, and
the entire learning procedure were recorded. Finally, after applying our proposal, the
predictions were evaluated using the AUPRC, AUROC, and MCC evaluation measures.



Chapter 5

Experimental Validation and
Discussion

The present study and proposed methods were evaluated through a comparative anal-
ysis with the state-of-the-art PBCT (i.e., considering that gains in computational perfor-
mance and predictive performance imply advances in the state-of-the-art). Nevertheless,
Appendix A contains more in-depth results (i.e., where the comparative study considers
adjacent methods and methodologies). To evaluate the results, we considered comparative
analyses, predictive performance (i.e., based on the previously mentioned in Section 4.3
evaluation criteria), computational efficiency analysis (i.e., concerning induction and pre-
diction times), and statistical analysis based on the Wilcoxon signed rank test (paired
samples) with Bonferroni Correction. Thus, in Section 5.1, we present the synthesis of
the obtained results from the experimental procedure; In Section 5.2, we present the
predictive performance results; in Section 5.3, we present the comparison between com-
putational efficiency; and finally, in Section 5.4, we present the statistical analysis.

5.1 Development Evolution
As mentioned above, this section presents a synthesis of how the experimental pro-

cedure was conducted, as well as the way tables and figures were built. The figures and
tables mentioned in this section are presented in the respective sections. As presented
and discussed by Alves e Cerri (2022) and arranged in the tables below, the experimen-
tal results from the comparative study between the Original PBCT and the PbXGB are
promising. The performance of PbXGB in this scenario was evaluated according to the
previously established criteria (sections 4.3 and 4.4), these being the predictive perfor-



5.1. Development Evolution 59

mance (i.e., in terms of AUPRC, AUROC, and MCC), computational performance (i.e.,
concerning induction, prediction, and total procedure times of the learning model), and
statistical analysis (i.e., performed using the Wilcoxon signed-rank Test (Paired Sam-
ples) (ROSNER; GLYNN; LEE, 2005; WOOLSON, 2008; REY; NEUHäUSER, 2011;
TAHERI; HESAMIAN, 2012) with Bonferroni correction (NAHLER, 2009), considering
all evaluation criteria, and previously defined prediction tasks).

In this context, Tables 3, 9, and Figure 11 A) present the results obtained by the
method presented by Alves e Cerri (2022). Tables 3 and 9 are presented and discussed
respectively in Sections 5.2 and 5.3, while details regarding Figure 11 A) are presented in
Section 5.4. Nevertheless, a more in-depth study is presented and discussed in this work.
Furthermore, this study considered two additional aspects, considering the application of
a MLSKF CV procedure (SECHIDIS; TSOUMAKAS; VLAHAVAS, 2011) and the Grid-
Search to estimate the XGBoost Hyperparameters in the second stage of the PbXGB
learning procedure. The results produced by these experiments were displayed in Table 4
and Figure 11 B), both discussed in more detail respectively in Section 5.2, and 5.4. An
extended study is presented in Appendix A.2, considering a MLSKF CV procedure with
static XGBoost parameters (see Table 11).

With regard to PbSS, Tables 5 and 6 (discussed in Section 5.2), and Figure 12 (dis-
cussed in the Section 5.4) provide the results that were obtained by (ALVES; ILIDIO;
CERRI, 2023). This study contemplated the application of PbSS in two different sce-
narios, defining the 𝑤 parameter dynamically or assigning the value zero (i.e., evaluating
the impact of the unsupervised part in the learning procedure). The experimental proce-
dure was constructed similarly to PbXGB, considering a comparative study between the
Original PBCT and both variations of PbSS, considering a K-Fold CV evaluation pro-
cedure for all learning tasks and the previously presented evaluation criteria. This work
presents a more comprehensive study, including a MLSKF CV procedure and an analysis
of the model’s computational performance. In this way, Tables 7 and 8 discussed in the
Section 5.2 define the results obtained through an experimental procedure for dynamic
𝑤 (PbSSd) and 𝑤= 0, Table 10 discussed in Section 5.3 presents the computational per-
formance of the models, while Figure 13 discussed in Section 5.4 displays the statistical
analysis for both methods. Nevertheless, an extended study is presented in Appendix A.3,
considering variations of the value of 𝑤 = {0.25, 0.5, 0.75}, and computational perfor-
mance, e.g., being references to Tables 12, 13, and 14 respectively.

In Appendix A, a comprehensive comparative study regarding the Global Single Out-
put (GSO) (Appendix A.4) and Local Multiple Output (LMO) (Appendix A.5) ap-
proaches was also presented. Considering previously established evaluation criteria, the
same scenario was considered for both approaches, with a MLSKF CV procedure for all
learning tasks. In addition, the Grid-Search procedure was performed to establish the
Hyperparameters of the models when valid. Considering GSO, the learning models Clus
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(Table 15), XGBoost (Table 16), Random Forest RF (NANDI; AHMED, 2019; ZAMIL;
RAHMAN, 2018) (Table 17), and the KNN (Table 18). Considering LMO, the learning
models Clus (Table 19), Multilabel K-Nearest Neighbors (MLKNN) (ZHANG; ZHOU,
2005; ZHANG; ZHOU, 2007) (Table 20), and Classifier Chains Ensemble (Random For-
est) (ECCRF) (READ et al., 2011; ROCHA; VAREJÃO; SEGATTO, 2022) (Table 21).

5.2 Predictive Performance
In this section, the predictive performance of the learning methods defined in the

course of this work will be presented. In the presented tables, the fields marked in bold
indicate the best results obtained, the areas indicated with ± represent the standard
deviation, and the fields signalized with (*) indicate statistical difference gains to the
proposed methods concerning the original PBCT (p <= 0.05).

As mentioned, the predictive performance was evaluated according to previously es-
tablished evaluation criteria (AUPRC, AUROC, and MCC) through a comparative study
against the Original PBCT and initially through a K-Fold CV procedure for all prediction
tasks.

Table 3 – Results for Evaluation Measures obtained for compared methods (ALVES; CERRI,
2022), considering PBCT and PbXGB.

Measure Data
𝐿𝑟 x 𝑇𝑐 𝑇𝑟 x 𝐿𝑐 𝑇𝑟 x 𝑇𝑐

PBCT PbXGB (*) PBCT PbXGB (*) PBCT PbXGB

AUPRC
DPI-N 0.203 (± 0.102) 0.398 (± 0.136)* 0.236 (± 0.222) 0.291 (± 0.203) 0.208 (± 0.137) 0.224 (± 0.176)
DPI-I 0.197 (± 0.074) 0.220 (± 0.075) 0.458 (± 0.061) 0.582 (± 0.080)* 0.047 (± 0.022) 0.056 (± 0.022)*
DPI-G 0.184 (± 0.048) 0.237 (± 0.054)* 0.273 (± 0.078) 0.373 (± 0.138)* 0.048 (± 0.021) 0.081 (± 0.040)*
DPI-E 0.169 (± 0.054) 0.196 (± 0.062) 0.614 (± 0.069) 0.587 (± 0.083) 0.018 (± 0.012) 0.011 (± 0.004)

PBCT PbXGB PBCT PbXGB PBCT PbXGB

AUROC
DPI-N 0.575 (± 0.090) 0.661 (± 0.071)* 0.631 (± 0.155) 0.593 (± 0.113) 0.543 (± 0.145) 0.504 (± 0.124)
DPI-I 0.684 (± 0.061) 0.606 (± 0.055) 0.805 (± 0.042) 0.794 (± 0.054) 0.546 (± 0.038) 0.545 (± 0.054)
DPI-G 0.658 (± 0.065) 0.623 (± 0.039) 0.703 (± 0.058) 0.698 (± 0.076) 0.576 (± 0.065) 0.579 (± 0.059)
DPI-E 0.693 (± 0.051) 0.627 (± 0.045) 0.828 (± 0.042) 0.817 (± 0.051) 0.548 (± 0.052) 0.508 (± 0.013)

PBCT PbXGB (*) PBCT PbXGB (*) PBCT PbXGB

MCC
DPI-N 0.117 (± 0.144) 0.318 (± 0.156)* 0.196 (± 0.237) 0.193 (± 0.222) 0.044 (± 0.138) 0.000 (± 0.000)
DPI-I 0.216 (± 0.059) 0.195 (± 0.092) 0.441 (± 0.061) 0.600 (± 0.077)* 0.036 (± 0.029) 0.035 (± 0.041)
DPI-G 0.196 (± 0.068) 0.249 (± 0.053)* 0.243 (± 0.079) 0.426 (± 0.134)* 0.052 (± 0.040) 0.056 (± 0.039)
DPI-E 0.182 (± 0.055) 0.234 (± 0.071) 0.433 (± 0.068) 0.578 (± 0.089)* 0.025 (± 0.026) 0.009 (± 0.013)

Initially, Table 3 presents the results obtained for PbXGB in the study by Alves e
Cerri (2022). The experiment that resulted in this table considered all evaluation criteria
and datasets and showed the results compared to the Original PBCT. As can be noticed,
promising results were obtained by AUPRC and MCC in the tasks 𝐿𝑟 x 𝑇𝑐 and 𝑇𝑟 x 𝐿𝑐, i.e.,
in the context of this work, the AUPRC and MCC evaluation criteria can be considered
as a focus, considering that the objective was to obtain balanced results. Competitive
results were obtained for AUROC, scenarios where PBCT stood out with slight differences
for most tasks. It is noteworthy that for MCC, it is visible that PbXGB obtained a
relevant performance gain for tasks 𝐿𝑟 x 𝑇𝑐 and 𝑇𝑟 x 𝐿𝑐. Significant gains for MCC show
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that XGBoost improved performance on imbalanced partitions produced by the PBCT
induction procedure in this case (ALVES; CERRI, 2022). The robust performance gains
for AUPRC achieved by PbXGB indicate a better balance between accuracy and recall in
predictions (ALVES; CERRI, 2022). Considering tasks 𝑇𝑟 x 𝑇𝑐, it is possible to observe
that competitive results were obtained for most of the evaluation criteria, scenarios where
PBCT stood out more for AUROC and MCC, and PbXGB for AUPRC. Regarding the
standard deviation (i.e., fields marked with ±), in a general context, it is possible to
observe that both methods are in equilibrium (i.e., they present a similar situation, with
slight variation when related in the general context). In a more specific context, it is
possible to highlight that both methods have a high standard deviation rate (i.e., which
can be attributed to several variables, such as the imbalance between positive and negative
interactions in the evaluated cases or data noise), e.g., in this case, the results obtained by
DPI-N, considering all the prediction tasks and the AUPRC and MCC evaluation criteria,
stand out.

Following the same context, this work presents a more comprehensive study. The
Grid-Search is considered to estimate the XGBoost hyperparameters (i.e., applied in the
second stage of PbXGB) and a MLSKF CV procedure for evaluating learning models.
Considering that each partition of the interactions matrix represents a new learning prob-
lem (i.e., with features such as imbalance rate and different data quality), estimating the
XGBoost hyperparameters on each leaf during the learning procedure avoids the need
to use arbitrary and global hyperparameters (i.e., so that all aspects of XGBoost are
partition-adjusted during the induction procedure). The use of the MLSKF CV proce-
dure occurs with a focus on providing a more robust validation method and, at the same
time, providing more balanced folds (i.e., trying to avoid folds with only samples of neg-
ative interactions, which may imply a reduction of the high rate of standard deviation
observed in the results).

Table 4 – Results for Evaluation Measures obtained for compared methods, considering PBCT
and PbXGB with Grid Search and MLSKF CV Procedure.

Measure Data 𝐿𝑟 x 𝑇 𝑐 𝑇 𝑟 x 𝐿𝑐 𝑇 𝑟 x 𝑇 𝑐

PBCT PbXGB (*) PBCT PbXGB (*) PBCT PbXGB

AUPRC
DPI-N 0.247 (± 0.083) 0.433 (± 0.132)* 0.213 (± 0.105) 0.409 (± 0.227)* 0.252 (± 0.179) 0.122 (± 0.127)
DPI-I 0.210 (± 0.071) 0.282 (± 0.076)* 0.474 (± 0.065) 0.580 (± 0.089)* 0.056 (± 0.021) 0.048 (± 0.011)
DPI-G 0.246 (± 0.039) 0.273 (± 0.057) 0.270 (± 0.046) 0.327 (± 0.077) 0.050 (± 0.025) 0.040 (± 0.017)
DPI-E 0.163 (± 0.050) 0.135 (± 0.049) 0.604 (± 0.058) 0.587 (± 0.069) 0.026 (± 0.010) 0.015 (± 0.005)

PBCT PbXGB PBCT PbXGB PBCT PbXGB

AUROC
DPI-N 0.634 (± 0.067) 0.679 (± 0.070) 0.649 (± 0.103) 0.655 (± 0.121) 0.570 (± 0.140) 0.518 (± 0.106)
DPI-I 0.709 (± 0.081) 0.644 (± 0.058) 0.807 (± 0.033) 0.788 (± 0.042) 0.549 (± 0.040) 0.535 (± 0.028)
DPI-G 0.714 (± 0.022) 0.637 (± 0.034) 0.713 (± 0.046) 0.661 (± 0.043) 0.561 (± 0.077) 0.538 (± 0.046)
DPI-E 0.694 (± 0.065) 0.585 (± 0.034) 0.830 (± 0.036) 0.816 (± 0.038) 0.566 (± 0.036) 0.527 (± 0.025)

PBCT PbXGB (*) PBCT PbXGB (*) PBCT PbXGB

MCC
DPI-N 0.217 (± 0.100) 0.364 (± 0.149)* 0.237 (± 0.146) 0.336 (± 0.236) 0.061 (± 0.131) 0.033 (± 0.132)
DPI-I 0.247 (± 0.080) 0.276 (± 0.086) 0.441 (± 0.051) 0.608 (± 0.089)* 0.037 (± 0.031) 0.040 (± 0.031)
DPI-G 0.267 (± 0.026) 0.304 (± 0.070) 0.269 (± 0.066) 0.419 (± 0.089)* 0.045 (± 0.055) 0.040 (± 0.049)
DPI-E 0.185 (± 0.069) 0.168 (± 0.055) 0.452 (± 0.029) 0.595 (± 0.059)* 0.029 (± 0.016) 0.021 (± 0.020)
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Thus, the results of this procedure can be observed in Table 4 (i.e., in these exper-
iments, the MLSKF CV procedure was also considered for the PBCT). Initially, it is
possible to observe that in a general context, the results arranged in Table 4, with some
caveats, do not present a very different scenario from that observed in Table 3. How-
ever, it is worth mentioning that we obtained significant gains for DPI-N 𝑇𝑟 x 𝐿𝑐 for all
evaluation criteria and that the use of MLSKF CV procedure significantly improved not
only the performance of the PbXGB but also made PBCT performance more consistent.
On the other hand, it is also possible to observe that in some cases, the procedure also
reduced the performance of PbXGB, e.g., for almost all 𝑇𝑟 x 𝑇𝑐 tasks (i.e., in this case,
performance gains and losses are also affected by adjusting XGBoost hyperparameters
with Grid-Search). However, it is worth noting that in a general context, the results
remain competitive (i.e., in balance with gains and losses in the learning model perfor-
mance). The same is reflected in the standard deviation of the results, which, except for
some cases (e.g., PBCT DPI-N considering all evaluation criteria for the task 𝑇𝑟 x 𝐿𝑐),
in general, showed no significant increase or decrease.

Regarding PbSS, Tables 5 and 6 present the results obtained in the study by Alves,
Ilidio e Cerri (2023). The experimental scenario considered in this study considered
all previously mentioned evaluation criteria and a K-Fold CV procedure was performed
for each learning task. Furthermore, this study took into account two variations of the
supervision criterion 𝑤 (i.e., 𝑤 = 0, and Dynamic 𝑤), evaluating not only the influence
of the unsupervised part of the semi-supervised impurity function (Table 6) but also
the impact of a 𝑤 heuristic supervision criterion, dynamically defined on each partition
(Table 5).

Table 5 – Results for Evaluation Measures obtained for compared methods (ALVES; ILIDIO;
CERRI, 2023), considering PBCT and PbSSd with dynamic 𝑤.

Measure Data 𝐿𝑟 x 𝑇 𝑐 𝑇 𝑟 x 𝐿𝑐 𝑇 𝑟 x 𝑇 𝑐

PBCT PbSS PBCT PbSS PBCT PbSS

AUPRC
DPI-N 0.216 (± 0.115) 0.302 (± 0.169) 0.259 (± 0.255) 0.360 (± 0.315) 0.162 (± 0.145) 0.139 (± 0.186)
DPI-I 0.202 (± 0.086) 0.176 (± 0.088) 0.456 (± 0.089) 0.555 (± 0.094)* 0.046 (± 0.015) 0.064 (± 0.036)*
DPI-G 0.192 (± 0.051) 0.184 (± 0.047) 0.281 (± 0.074) 0.458 (± 0.186)* 0.069 (± 0.069) 0.055 (± 0.032)
DPI-E 0.166 (± 0.053) 0.153 (± 0.102) 0.603 (± 0.069) 0.314 (± 0.078) 0.016 (± 0.009) 0.022 (± 0.018)

PBCT PbSS PBCT PbSS PBCT PbSS

AUROC
DPI-N 0.589 (± 0.101) 0.655 (± 0.112) 0.659 (± 0.179) 0.640 (± 0.165) 0.428 (± 0.204) 0.494 (± 0.240)
DPI-I 0.688 (± 0.065) 0.584 (± 0.056) 0.796 (± 0.058) 0.772 (± 0.053) 0.546 (± 0.046) 0.573 (± 0.087)
DPI-G 0.673 (± 0.077) 0.613 (± 0.031) 0.715 (± 0.049) 0.743 (± 0.082) 0.571 (± 0.067) 0.571 (± 0.089)
DPI-E 0.687 (± 0.052) 0.623 (± 0.042) 0.826 (± 0.042) 0.689 (± 0.029) 0.539 (± 0.050) 0.560 (± 0.080)

PBCT PbSS PBCT PbSS PBCT PbSS

MCC
DPI-N 0.132 (± 0.153) 0.289 (± 0.178)* 0.221 (± 0.254) 0.243 (± 0.279) -0.011 (± 0.121) 0.048 (± 0.137)
DPI-I 0.221 (± 0.063) 0.210 (± 0.122) 0.436 (± 0.090) 0.542 (± 0.096)* 0.035 (± 0.036) 0.060 (± 0.064)*
DPI-G 0.210 (± 0.076) 0.263 (± 0.060)* 0.257 (± 0.067) 0.425 (± 0.154)* 0.046 (± 0.041) 0.052 (± 0.060)
DPI-E 0.174 (± 0.052) 0.162 (± 0.088) 0.423 (± 0.065) 0.251 (± 0.073) 0.019 (± 0.024) 0.033 (± 0.041)

Regarding the results arranged in Table 5 (i.e., where the Dynamic 𝑤 value was consid-
ered), we can observe competitive results regarding the Original PBCT and PbSS. There
are cases where PbSS stands out, e.g., as for 𝑇𝑟 x 𝐿𝑐 considering AUPRC and MCC,
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and cases where it is possible to observe a slight variation between the results of Original
PBCT and PbSSd. It is noteworthy that PbSSd stood out mainly in the tasks 𝑇𝑟 x 𝐿𝑐

and 𝑇𝑟 x 𝑇𝑐, scenarios where it excelled for almost all datasets for AUPRC and MCC.
Also noteworthy are the results obtained for DPI-E 𝑇𝑟 x 𝐿𝑐, scenario where PbSS had
the worst performance, i.e., the low performance in this scenario is credited mainly to the
size of the data, and the low number of positive interactions (see Table 2 in Section 4.1).
For 𝑇𝑟 x 𝑇𝑐, the results obtained for MCC stand out, a scenario where PbSSd stood out
for all datasets. Finally, it is worth mentioning that although both methods have a high
standard deviation rate, PbSSd stood out in most cases.

Table 6 – Results for Evaluation Measures obtained for compared methods (ALVES; ILIDIO;
CERRI, 2023), considering PBCT and PbSS with 𝑤 = 0.

Measure Data 𝐿𝑟 x 𝑇 𝑐 𝑇 𝑟 x 𝐿𝑐 𝑇 𝑟 x 𝑇 𝑐

PBCT PbSS PBCT PbSS PBCT PbSS

AUPRC
DPI-N 0.216 (± 0.115) 0.288 (± 0.159) 0.259 (± 0.255) 0.371 (± 0.310) 0.162 (± 0.145) 0.101 (± 0.132)
DPI-I 0.202 (± 0.086) 0.203 (± 0.104) 0.456 (± 0.089) 0.581 (± 0.106)* 0.046 (± 0.015) 0.062 (± 0.036)*
DPI-G 0.192 (± 0.051) 0.184 (± 0.045) 0.281 (± 0.074) 0.458 (± 0.186)* 0.069 (± 0.069) 0.056 (± 0.029)
DPI-E 0.166 (± 0.053) 0.167 (± 0.112) 0.603 (± 0.069) 0.315 (± 0.063) 0.016 (± 0.009) 0.018 (± 0.012)

PBCT PbSS PBCT PbSS PBCT PbSS

AUROC
DPI-N 0.589 (± 0.101) 0.657 (± 0.108) 0.659 (± 0.179) 0.639 (± 0.165) 0.428 (± 0.204) 0.489 (± 0.244)
DPI-I 0.688 (± 0.065) 0.606 (± 0.077) 0.796 (± 0.058) 0.792 (± 0.057) 0.546 (± 0.046) 0.552 (± 0.061)
DPI-G 0.673 (± 0.077) 0.612 (± 0.032) 0.715 (± 0.049) 0.744 (± 0.081) 0.571 (± 0.067) 0.576 (± 0.087)
DPI-E 0.687 (± 0.052) 0.636 (± 0.049) 0.826 (± 0.042) 0.687 (± 0.031) 0.539 (± 0.050) 0.523 (± 0.049)

PBCT PbSS PBCT PbSS PBCT PbSS

MCC
DPI-N 0.132 (± 0.153) 0.289 (± 0.178)* 0.221 (± 0.254) 0.235 (± 0.273) -0.011 (± 0.121) 0.045 (± 0.160)
DPI-I 0.221 (± 0.063) 0.171 (± 0.116) 0.436 (± 0.090) 0.544 (± 0.100)* 0.035 (± 0.036) 0.048 (± 0.055)
DPI-G 0.210 (± 0.076) 0.262 (± 0.060)* 0.257 (± 0.067) 0.423 (± 0.155)* 0.046 (± 0.041) 0.057 (± 0.061)
DPI-E 0.174 (± 0.052) 0.169 (± 0.098) 0.423 (± 0.065) 0.248 (± 0.056) 0.019 (± 0.024) 0.013 (± 0.028)

In Table 6, the results represent a case with the value of 𝑤 = 0, where it is possible to
observe a similar scenario (i.e., with slight variation in results) concerning that observed in
Table 5, but with some differences (e.g., for 𝐿𝑟 x 𝑇𝑐 it is observed that PbSS also obtained
gains in DPI-I and DPI-E datasets, considering AUPRC). Despite the subtle variations
observed in the results, the observed competitive performance evidences the relevance of
the unsupervised impurity in calculating the semi-supervised impurity of PbSS.

The results arranged in Tables 7 and 8 present an experimental scenario similar to the
previously presented, considering all the evaluation criteria, but with a MLSKF CV pro-
cedure. This scenario represents a further study regarding Dynamic and Static PbSS with
𝑤 = 0, where the CV procedure tries to guarantee that there are samples of both classes
(i.e., positive and negative interactions) in all folds, as well as evaluating through more
robust validation procedure and also adding to the results the impact of the inexistence
or the low amount of labeled interactions in the learning samples.

Table 7 presents the result of this experimental procedure referring to PbSSd. Initially,
we can highlight that in the general context, competitive results were obtained. Regarding
Table 5, both the PBCT and the PbXGB presented in a general context a slight variation
in the results, and the main variations were observed for 𝑇𝑟 x 𝑇𝑐, task where it is possible to



64 Chapter 5. Experimental Validation and Discussion

Table 7 – Results for Evaluation Measures obtained for compared methods, considering PBCT
and PbSSd with dynamic 𝑤 and MLSKF CV Procedure.

Measure Data 𝐿𝑟 x 𝑇 𝑐 𝑇 𝑟 x 𝐿𝑐 𝑇 𝑟 x 𝑇 𝑐

PBCT PbSS PBCT PbSS PBCT PbSS

AUPRC
DPI-N 0.247 (± 0.083) 0.299 (± 0.093) 0.213 (± 0.105) 0.356 (± 0.285) 0.252 (± 0.179) 0.114 (± 0.113)
DPI-I 0.210 (± 0.071) 0.195 (± 0.067) 0.474 (± 0.065) 0.576 (± 0.101)* 0.056 (± 0.021) 0.066 (± 0.021)
DPI-G 0.246 (± 0.039) 0.231 (± 0.051) 0.270 (± 0.046) 0.474 (± 0.151)* 0.050 (± 0.025) 0.060 (± 0.030)
DPI-E 0.163 (± 0.050) 0.130 (± 0.100) 0.604 (± 0.058) 0.327 (± 0.047) 0.026 (± 0.010) 0.020 (± 0.010)

PBCT PbSS PBCT PbSS PBCT PbSS

AUROC
DPI-N 0.634 (± 0.067) 0.685 (± 0.065) 0.649 (± 0.103) 0.638 (± 0.145) 0.570 (± 0.140) 0.517 (± 0.151)
DPI-I 0.709 (± 0.081) 0.586 (± 0.038) 0.807 (± 0.033) 0.781 (± 0.043) 0.549 (± 0.040) 0.578 (± 0.051)*
DPI-G 0.714 (± 0.022) 0.626 (± 0.030) 0.713 (± 0.046) 0.743 (± 0.072) 0.561 (± 0.077) 0.585 (± 0.064)
DPI-E 0.694 (± 0.065) 0.615 (± 0.050) 0.830 (± 0.036) 0.696 (± 0.031) 0.566 (± 0.036) 0.568 (± 0.092)

PBCT PbSS PBCT PbSS PBCT PbSS

MCC
DPI-N 0.217 (± 0.100) 0.315 (± 0.105) 0.237 (± 0.146) 0.256 (± 0.254) 0.061 (± 0.131) 0.017 (± 0.140)
DPI-I 0.247 (± 0.080) 0.210 (± 0.095) 0.441 (± 0.051) 0.570 (± 0.087)* 0.037 (± 0.031) 0.067 (± 0.046)*
DPI-G 0.267 (± 0.026) 0.295 (± 0.080) 0.269 (± 0.066) 0.443 (± 0.113)* 0.045 (± 0.055) 0.064 (± 0.048)
DPI-E 0.185 (± 0.069) 0.146 (± 0.073) 0.452 (± 0.029) 0.253 (± 0.026) 0.029 (± 0.016) 0.033 (± 0.047)

observe cases where PbSSd excelled (e.g., for AUPRC and AUROC in the DPI-G dataset),
and cases where it did not (e.g., for DPI-N AUROC and MCC, and DPI-E AUPRC). In
a general context, a slight reduction in the standard deviation can also be noted, with
emphasis on 𝐿𝑟 x 𝑇𝑐 considering AUPRC, and 𝑇𝑟 x 𝑇𝑐 for all evaluation criteria).

A similar scenario can be observed in Table 8 when compared to Table 6 (i.e., with
subtle variations in the results obtained). With highlights for the DPI-E dataset consid-

Table 8 – Results for Evaluation Measures obtained for compared methods, considering PBCT
and PbSS with 𝑤 = 0 and MLSKF CV Procedure.

Measure Data 𝐿𝑟 x 𝑇 𝑐 𝑇 𝑟 x 𝐿𝑐 𝑇 𝑟 x 𝑇 𝑐

PBCT PbSS PBCT PbSS PBCT PbSS

AUPRC
DPI-N 0.247 (± 0.083) 0.292 (± 0.100) 0.213 (± 0.105) 0.370 (± 0.277) 0.252 (± 0.179) 0.100 (± 0.081)
DPI-I 0.210 (± 0.071) 0.197 (± 0.124) 0.474 (± 0.065) 0.582 (± 0.090)* 0.056 (± 0.021) 0.076 (± 0.035)*
DPI-G 0.246 (± 0.039) 0.230 (± 0.049) 0.270 (± 0.046) 0.474 (± 0.151)* 0.050 (± 0.025) 0.056 (± 0.028)
DPI-E 0.163 (± 0.050) 0.128 (± 0.089) 0.604 (± 0.058) 0.330 (± 0.033) 0.026 (± 0.010) 0.018 (± 0.015)

PBCT PbSS PBCT PbSS PBCT PbSS

AUROC
DPI-N 0.634 (± 0.067) 0.650 (± 0.040) 0.649 (± 0.103) 0.645 (± 0.142) 0.570 (± 0.140) 0.529 (± 0.124)
DPI-I 0.709 (± 0.081) 0.603 (± 0.070) 0.807 (± 0.033) 0.787 (± 0.044) 0.549 (± 0.040) 0.577 (± 0.035)*
DPI-G 0.714 (± 0.022) 0.625 (± 0.029) 0.713 (± 0.046) 0.743 (± 0.072) 0.561 (± 0.077) 0.580 (± 0.066)
DPI-E 0.694 (± 0.065) 0.625 (± 0.042) 0.830 (± 0.036) 0.698 (± 0.031) 0.566 (± 0.036) 0.515 (± 0.061)

PBCT PbSS PBCT PbSS PBCT PbSS

MCC
DPI-N 0.217 (± 0.100) 0.291 (± 0.087) 0.237 (± 0.146) 0.263 (± 0.241) 0.061 (± 0.131) 0.028 (± 0.119)
DPI-I 0.247 (± 0.080) 0.182 (± 0.123) 0.441 (± 0.051) 0.552 (± 0.071)* 0.037 (± 0.031) 0.076 (± 0.033)*
DPI-G 0.267 (± 0.026) 0.293 (± 0.077) 0.269 (± 0.066) 0.442 (± 0.112)* 0.045 (± 0.055) 0.062 (± 0.048)
DPI-E 0.185 (± 0.069) 0.150 (± 0.057) 0.452 (± 0.029) 0.261 (± 0.031) 0.029 (± 0.016) 0.010 (± 0.035)

ering the task 𝐿𝑟 x 𝑇𝑐 and all the evaluation criteria, a scenario where the PbSS had a
relative loss of performance, and for the task 𝑇𝑟 x 𝑇𝑐 in the DPI-I dataset considering all
evaluation criteria, a scenario where a relatively expressive gain can be observed. There
is also a slight reduction in the standard deviation in general, especially in tasks 𝐿𝑟 x 𝑇𝑐

and 𝑇𝑟 x 𝐿𝑐 for MCC. The smooth performance gains added to the standard deviation
reduction indicate more consistent results, i.e., that the MLSKF CV procedure positively
impacted the experimental procedure, allowing the learning model to better adjust itself
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to the data, reducing the imbalance present in folds (i.e., this indicates that balanced
data, with a higher rate of labeled interactions, can affect the performance of the learning
model in this context).

5.3 Computational Performance
This section will present the results obtained by evaluating the proposed models’ com-

putational performance. The evaluation of the computational performance is carried out
considering a comparative study between the Original PBCT and the proposed methods,
taking into account the Induction time, Test time, and Total execution of the learning
model’s time. It is noteworthy that the experimental procedure was carried out in the de-
velopment environment (Section 4.2) previously defined and established (i.e., a controlled
environment, which replicates the same experimental conditions for both methods).

Table 9 – Run Time Comparison in Seconds for compared methods (ALVES; CERRI, 2022),
considering PBCT and PbXGB.

Data
𝐿𝑟 x 𝑇 𝑐 𝑇 𝑟 x 𝐿𝑐 𝑇 𝑟 x 𝑇 𝑐

PBCT PbXGB PBCT PbXGB PBCT PbXGB

All
DPI-N 0.038 7.642 0.014 9.124 0.089 2.227
DPI-I 1.118 134.392 1.176 131.230 3.232 42.008
DPI-G 0.520 65.899 0.672 65.171 1.312 18.674
DPI-E 24.111 409.514 24.277 397.146 73.531 121.091

Train
DPI-N 0.029 6.554 0.011 7.690 0.030 0.099
DPI-I 1.048 122.282 1.108 119.295 1.344 3.641
DPI-G 0.486 60.375 0.643 59.354 0.550 1.582
DPI-E 23.384 387.188 23.493 373.323 30.385 30.880

Test
DPI-N 0.009 1.088 0.003 1.434 0.009 1.018
DPI-I 0.070 12.110 0.068 11.935 0.206 15.965
DPI-G 0.034 5.524 0.029 5.817 0.087 7.259
DPI-E 0.727 22.326 0.784 23.823 2.497 25.144

The comparative study of the computational performance referring to PBCT and
PbXGB is presented in Table 9. As mentioned earlier, in this context, three scenarios
were considered to estimate the execution times. In Table 9 All represents the total
execution time (i.e., Induction time + Prediction time); Train refers to the training time
of the models, while Test represents the time needed to make predictions. It is possible
to observe that in all the scenarios displayed in Table 9 the execution time of PbXGB
was superior to that of PBCT. This is expected since PbXGB has a second phase (see
Section 3.2) where an XGBoost learning model (see in Section 2.7) is induced on each leaf,
and during the prediction phase, performs the prediction for each sample to be predicted.

Table 10 presents the results of the comparative study concerning PBCT and both
Dynamic (PbSSd) and Statically Defined (PbSS) methods where a scenario similar to that
of Table 9 is observed (i.e., PbSS presented a longer execution time in all evaluated cases).
This is mainly attributed to the semi-supervised impurity function, which significantly
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increases the time complexity of the method by introducing the unsupervised term of the
equation (see Section 3.3).

Table 10 – Run Time Comparison in Seconds for compared methods, considering PBCT,
PbSSd, and PbSS.

Data 𝐿𝑟 x 𝑇 𝑐 𝑇 𝑟 x 𝐿𝑐 𝑇 𝑟 x 𝑇 𝑐

PBCT PbSSd PbSS PBCT PbSSd PbSS PBCT PbSSd PbSS

All

DPI-N 0.011 0.934 0.929 0.010 3.002 3.079 0.035 6.107 6.384
DPI-I 0.478 147.642 302.582 0.472 202.155 152.881 1.647 803.391 536.731
DPI-G 0.189 46.621 46.983 0.205 183.214 183.779 0.686 436.675 430.707
DPI-E 11.866 57230.648 41293.040 11.145 4822.878 4646.302 40.186 118825.243 93198.253

Train

DPI-N 0.008 0.932 0.926 0.008 2.999 3.075 0.012 2.716 2.740
DPI-I 0.455 147.612 302.536 0.448 202.124 152.854 0.666 263.370 245.811
DPI-G 0.178 46.605 46.969 0.194 183.196 183.761 0.287 186.256 194.489
DPI-E 11.607 57230.217 41292.760 10.881 4822.668 4646.107 14.951 44401.755 34748.164

Test

DPI-N 0.003 0.002 0.002 0.002 0.003 0.003 0.003 0.008 0.007
DPI-I 0.024 0.029 0.046 0.023 0.031 0.028 0.078 0.124 0.118
DPI-G 0.011 0.016 0.014 0.011 0.018 0.017 0.037 0.063 0.064
DPI-E 0.259 0.431 0.280 0.263 0.211 0.196 0.943 1.409 1.080

It is noteworthy that even though the induction time (Train) increased significantly,
the test time did not increase in similar proportions (i.e., this occurs because no modifi-
cation was made in the test procedure concerning the original PBCT). It is noteworthy
that the slight increase in the execution time of the test procedure indicates that the
trees were built with greater depth, fitting better to the data. This is expected, since the
semi-supervised impurity simultaneously considers the labeled data and unlabeled, thus
using unlabeled data as a means to find impurity reduction paths in cases where only
the labeled impurity fails. Notably, the unlabeled part of the semi-supervised function is
sensitive to cases where the labeled data have low quality or noise and may present low
performance.

Another observation is that PbSSd presented a better computational performance
for all cases All and Train except for the DPI-E dataset for tasks 𝐿𝑟 x 𝑇𝑐 and 𝑇𝑟 x 𝑇𝑐

against PbSS with 𝑤 = 0 in Table 10. This may indicate that dynamically estimating the
supervision level reduces the size of the generated trees in terms of depth. It is also worth
noting that PbSS obtained a better computational performance for 𝑇𝑟 x 𝐿𝑐 considering
the DPI-E dataset and Test time.

5.4 Statistical Analysis
This section presents the data from the statistical analysis referring to the defined

models (i.e., PbXGB and PbSS). Statistical analysis of the data was performed using
Wilcoxon Signed Rank Test (Paired Samples) with Bonferroni Correction. The statistical
analysis was conducted on the results obtained by each fold of the CV procedure. The
evaluation is done for each prediction task (e.g., 𝑇𝑟 x 𝐿𝑐) and evaluation criterion (e.g.,
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AUPRC). Results are statistically significant when the value of 𝑝 < 0.05 (i.e., when 𝑝 ≤ 𝑦

the results demonstrate statistically significant differences, while 𝑝 = 𝑦 shows cases where
no statistically significant differences were observed).

Figure 11 A) was constructed considering the experimental results of PbXGB used
in the generation of Table 3, and the previously described scenario, where a statistical
analysis was conducted with the Wilcoxon Signed Rank Test (Paired Samples) with Bon-
ferroni Correction considering each of the folds of the CV procedure. Where it is possible
to observe that the PbXGB presented statistically significant differences for the tasks 𝑇𝑟

x 𝐿𝑐 and 𝐿𝑟 x 𝑇𝑐, considering the evaluation criteria AUPRC and MCC, where in some
cases the results obtained for 𝑝 were much smaller than 0.05. Note that a similar scenario
is observed in Figure 11 B), referring to the statistical analysis of the results referring to
Table 4.

A) B)

Figure 11 – Comparative statistical difference analysis of PBCT and PbXGB performances
considering the established scenario. A) is a PbXGB (ALVES; CERRI, 2022), B)
is a PbXGB with Grid-Search and MLSKF CV Procedure.

Figure 12 was built considering a similar scenario to the previous one, however with
experimental data referring to Tables 5 and 6, for the DPI-I, DPI-G, and DPI-N datasets.
Where, in particular, for both definitions of 𝑤, PbSS demonstrated statistically significant
gains for MCC and AUPRC, considering the tasks 𝑇𝑟 x 𝐿𝑐 and the performance obtained
by all folds in almost all datasets (i.e., the DPI-N, DPI-G, and DPI-I datasets), scenarios
where the value of 𝑝 was much less than 0.05. It is possible to observe that the statistical
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performance obtained is in harmony with that observed in Tables 5 and 6 (i.e., both
results are in sync with the predictive performance obtained).

A) B)

Figure 12 – Comparative statistical difference analysis of PBCT and PbSS performances con-
sidering the established scenario (ALVES; ILIDIO; CERRI, 2023), and dynamic 𝑤
(A) and 𝑤 = 0 (B).

A similar scenario can be seen in Figure 13, which refers to the statistical analysis of the
results obtained considering the DPI-I, DPI-G, and DPI-N datasets, and the MLSKF CV
procedure, referring to Tables 7 and 8. Furthermore, it is worth noting that in the statisti-
cal analysis procedure referring to Figures 12, and 13, the DPI-E was disregarded because
it was considered an outlier (see Tables 5, 6, 7, and 8) concerning the other datasets (i.e.,
the Appendix A.1 presents the result of the statistical analysis procedure considering the
DPI-E dataset in both cases). Finally, it is highlighted that the statistically significant
results obtained indicate consolidated gains in predictive performance (i.e., concerning
the Original PBCT in the evaluated cases).

5.5 Discussion
This section aims to raise a discussion of the relevant points referring to the previously

presented results, thus pointing out the positive and negative aspects of each method and
serving as a finalization of this chapter regarding the results obtained in the course of
this work. As a fundamental principle of this work, we work with the hypothesis that it
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A) B)

Figure 13 – Comparative statistical difference analysis of PBCT and PbSS performances con-
sidering the established scenario for DPI-I, DPI-G, and DPI-N datasets, with a
MLSKF CV Procedure. A) is PbSSd with dynamic 𝑤, B) is PbSS with 𝑤 = 0.

is possible to improve Predictive Bi-clustering Trees in terms of predictive performance
and computational efficiency through more specific adaptations and modifications to the
context in the method’s operation (see Section 1.3). More specifically, in this work, we
focus on two specific interaction prediction problems, namely real scenarios of imbalance
between positive and negative interactions and unlabeled data (e.g., Positive-Unlabeled
data scenarios), i.e., this work focuses on scenarios with real data (not directly considering
artificial data). In this way, advances represent contributions and are directly applicable
in their respective areas of the literature. In the context of this work, we can consider
the vast amount of unlabeled data as a case of imbalance, not only between positive and
negative interactions but also between known and unknown interactions. In this context,
both proposed methods aim to treat data imbalance, and each one applies to a specific
problem.

In this context, we developed two approaches: the PbXGB (i.e., suitable for scenarios
with imbalanced data) and the PbSS (i.e., suitable for scenarios with unlabeled data). It
was verified through an experimental procedure that the main positive factor of PbXGB
is its ability to reduce the imbalance in the leaves of the PBCT (i.e., the XGBoost model
induced in the leaf partitions has the potential to produce less imbalanced predictions
during the prediction) making more balanced predictions. In this way PbXGB has the
potential to obtain more consistent predictions even in scenarios with extremely imbal-
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anced data. On the other hand, the main negative factor of PbXGB is related to its
computational performance (i.e., since in the second stage, a learning model is induced
in each tree leaf). This establishes an ideal scenario for applying specific cases with
extremely imbalanced data between positive and negative interactions, scenarios where
computational performance is not the focus but the quality of predictions.

Strengths of PbSS are its ability to work with labeled and unlabeled data and dynam-
ically or statically determine the level of supervision. As negative factors, we have low
computational performance since the time complexity of the model increases significantly
according to the size of the datasets, thus establishing an ideal scenario for applying spe-
cific cases, such as Positive-Unlabeled data when we have a high amount of unlabeled
data. It is also worth mentioning that PbSS is hybrid and can work only with labeled
data when necessary.

Thus, considering the performance of both methods, we can experimentally validate
their contributions in their respective areas of knowledge and literature, advancing the
state-of-the-art in this area and paving the way for new research in the respective areas.
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Chapter 6

Final Considerations and Future
Works

6.1 Work Syntesis

In this work, the prediction of In Silico interactions was approached from the viewpoint
of PBCTs. Two main topics were studied in this context: 1) Extreme Gradient Boost-
ing XGBoost; and 2) Semi-Supervised Machine Learning. The objective was to improve
PBCTs reagarding issues such as Imbalance between positive and negative interactions
and Unlabeled data.

The first proposed algorithm, PbXGB, is a hybrid method between PBCTs and
XGBoost, where PBCT produce partitions in the interactions matrix, and XGBoost is
used to learn from the partition data and make predictions. The method’s performance
was promising through an experimental procedure, indicating that XGBoost can learn
from data from imbalanced partitions and produce balanced predictions, despite being
more computationally expensive.

The second proposed algorithm, PbSS, transforms PBCTs into a semi-supervised
learning method by changing the impurity function for the semi-supervised impurity and
adapting the tree-splitting method to accept labeled and unlabeled data in the learning
procedure. Despite the high computational cost, the experiments demonstrated gains on
the baseline, with the advantage of considering labeled and unlabeled data in the learning
procedure (i.e., which usually represent a significant part of the datasets).
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6.2 Future Works
The algorithms presented in this work (PbXGB and PbSS) were developed considering

context-specific scenarios (i.e., with significant levels of imbalance between positive and
negative interactions and between labeled and unlabeled interactions) and applied to
DTI datasets that replicate a valid real-world scenario. However, the literature defines
an immensity of real-world problems, and a vast way is visible to those who aim at
contributions applicable simultaneously to several real-world problems.

Considering this question, it is possible to consolidate the proposed methods through
extensive application and adaptation to other scenarios with different real-world prob-
lems, e.g., Recommendation Systems (i.e., in recommendation systems, an interaction in
the format defined in this work can be interpreted as a link or recommendation), and
Triclustering Problems (NARMADHA; RATHIPRIYA, 2016; HENRIQUES; MADEIRA,
2019). The way splits are structured in PBCTs indicates that it is possible to induce Tri-
clustering problems through adaptations, thus building trees that simultaneously consider
three Feature Spaces and a Tri-Dimensional Interaction Matrix, including the possibility
of paving the way for the study of N-Clustering problems through the construction and
induction of N-Dimensional trees.

One factor that impacts the computational performance of PbSS is the fact that splits
only occur in the Interaction Matrix (i.e., which means that the Unsupervised Term of
the Semi-Supervised Impurity Function applied to all Features regardless of the depth
of the tree, and even on the leaves). For the solution to this predicament, it is possible
to indicate two solutions. Applying and adapting the Feature Importance approach in
the PbSS induction and prediction procedure (i.e., Feature Importances can be used to
select and propagate groups of features through the tree levels). A similar approach
considers applying and adapting Dimensionality Reduction methods in feature space.
When combined with the appropriate heuristics, both approaches indicate that they have
the potential to provide a way to improve PbSS.

In the context of PbSS, an alternative way can be taken in cases where the data
have a high rate of imbalance (i.e., between Positive and Negative Interactions, Labeled
or Unlabeled), employing anomaly detection methods (e.g., as the Isolation Forest (LIU;
TING; ZHOU, 2008; LIU; TING; ZHOU, 2012; TOKOVAROV; KARCZMAREK, 2022)),
i.e., in this case, we can consider scarce data as anomalies, seeking to filter and heuristically
select other anomalies to balance the data.

In short, after considering the limitations and considering the way for the evolution of
the proposed algorithms based on what is indicated as promising, it is possible to suggest
future works:

∙ Consolidate the proposed learning models through application and adaptation in
broader literature scenarios;
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∙ Improve the computational performance of PbSS by adapting Feature Importance’s
and Dimensionality Reduction methods;

∙ Adapt, or produce a variation of PbSS that works based on anomaly detection in
cases where there is a serious imbalance in the data;

∙ The construction of N-Dimensional PBCT (i.e., Predictive N-Clustering Trees
(PNCTs)) for the induction, investigation, and study of Multi-dimensional N-
Clustering problems (e.g., Tri-clustering), and other Multi-Dimensional problems.
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APPENDIX A

Expanded Results

A.1 The Statistical Difference of PbSS methods con-
sidering all datasets

A) B)

Figure 14 – Comparative statistical difference analysis of PBCT and PbSS performances con-
sidering the established scenario for all datasets, with a MLSKF CV Procedure.
A) is PbSSd with dynamic 𝑤, B) is PbSS with 𝑤 = 0.
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A.2 The PbXGB with MLSKF

Table 11 – Results for Evaluation Measures obtained for compared methods, considering PBCT
and PbXGB with MLSKF CV Procedure.

Measure Data 𝐿𝑟 x 𝑇 𝑐 𝑇 𝑟 x 𝐿𝑐 𝑇 𝑟 x 𝑇 𝑐

PBCT PbXGB PBCT PbXGB PBCT PbXGB

AUPRC
DPI-N 0.247 (± 0.083) 0.419 (± 0.139)* 0.213 (± 0.105) 0.348 (± 0.158)* 0.252 (± 0.179) 0.241 (± 0.154)
DPI-I 0.210 (± 0.071) 0.276 (± 0.066)* 0.474 (± 0.065) 0.586 (± 0.086)* 0.056 (± 0.021) 0.060 (± 0.025)
DPI-G 0.246 (± 0.039) 0.282 (± 0.052) 0.270 (± 0.046) 0.335 (± 0.094) 0.050 (± 0.025) 0.080 (± 0.053)*
DPI-E 0.163 (± 0.050) 0.168 (± 0.073) 0.604 (± 0.058) 0.596 (± 0.053) 0.026 (± 0.010) 0.015 (± 0.005)

AUROC
DPI-N 0.634 (± 0.067) 0.708 (± 0.117) 0.649 (± 0.103) 0.655 (± 0.103) 0.570 (± 0.140) 0.487 (± 0.122)
DPI-I 0.709 (± 0.081) 0.641 (± 0.050) 0.807 (± 0.033) 0.797 (± 0.043) 0.549 (± 0.040) 0.533 (± 0.046)
DPI-G 0.714 (± 0.022) 0.650 (± 0.032) 0.713 (± 0.046) 0.679 (± 0.059) 0.561 (± 0.077) 0.572 (± 0.069)
DPI-E 0.694 (± 0.065) 0.608 (± 0.054) 0.830 (± 0.036) 0.821 (± 0.033) 0.566 (± 0.036) 0.530 (± 0.027)

MCC
DPI-N 0.217 (± 0.100) 0.333 (± 0.152) 0.237 (± 0.146) 0.273 (± 0.151) 0.061 (± 0.131) -0.022 (± 0.114)
DPI-I 0.247 (± 0.080) 0.267 (± 0.082) 0.441 (± 0.051) 0.610 (± 0.083)* 0.037 (± 0.031) 0.025 (± 0.035)
DPI-G 0.267 (± 0.026) 0.305 (± 0.063) 0.269 (± 0.066) 0.397 (± 0.090)* 0.045 (± 0.055) 0.052 (± 0.049)
DPI-E 0.185 (± 0.069) 0.202 (± 0.066) 0.452 (± 0.029) 0.604 (± 0.044)* 0.029 (± 0.016) 0.031 (± 0.027)

A.3 Variations of Static PbSS values of 𝑤

As previously mentioned, here are presented the results for predictive performance
referring to the behavior of the learning model through variations of 𝑤 = 0.25, 0.5, 0.75
for PbSS presented. This study considered a MLSKF CV procedure for all prediction
tasks (e.g., 𝑇𝑟 x 𝐿𝑐, 𝐿𝑟 x 𝑇𝑐, and 𝑇𝑟 x 𝑇𝑐), evaluation criteria 4.3, and datasets (e.g.,
DPI-I, DPI-N, DPI-G, and DPI-E).

Table 12 – Results for Evaluation Measures obtained for compared methods, considering PBCT
and PbSS with 𝑤 = 0.25 and MLSKF CV Procedure.

Measure Data 𝐿𝑟 x 𝑇 𝑐 𝑇 𝑟 x 𝐿𝑐 𝑇 𝑟 x 𝑇 𝑐

PBCT PbSS PBCT PbSS PBCT PbSS

AUPRC
DPI-N 0.247 (± 0.083) 0.300 (± 0.090) 0.213 (± 0.105) 0.356 (± 0.285) 0.252 (± 0.179) 0.114 (± 0.113)
DPI-I 0.210 (± 0.071) 0.195 (± 0.067) 0.474 (± 0.065) 0.576 (± 0.101) 0.056 (± 0.021) 0.066 (± 0.021)
DPI-G 0.246 (± 0.039) 0.231 (± 0.051) 0.270 (± 0.046) 0.474 (± 0.151) 0.050 (± 0.025) 0.060 (± 0.030)
DPI-E 0.163 (± 0.050) 0.130 (± 0.100) 0.604 (± 0.058) 0.327 (± 0.047) 0.026 (± 0.010) 0.020 (± 0.010)

AUROC
DPI-N 0.634 (± 0.067) 0.685 (± 0.065) 0.649 (± 0.103) 0.638 (± 0.145) 0.570 (± 0.140) 0.517 (± 0.152)
DPI-I 0.709 (± 0.081) 0.586 (± 0.038) 0.807 (± 0.033) 0.781 (± 0.043) 0.549 (± 0.040) 0.578 (± 0.051)
DPI-G 0.714 (± 0.022) 0.626 (± 0.030) 0.713 (± 0.046) 0.743 (± 0.072) 0.561 (± 0.077) 0.585 (± 0.064)
DPI-E 0.694 (± 0.065) 0.615 (± 0.050) 0.830 (± 0.036) 0.696 (± 0.031) 0.566 (± 0.036) 0.568 (± 0.092)

MCC
DPI-N 0.217 (± 0.100) 0.315 (± 0.105) 0.237 (± 0.146) 0.256 (± 0.254) 0.061 (± 0.131) 0.017 (± 0.141)
DPI-I 0.247 (± 0.080) 0.210 (± 0.095) 0.441 (± 0.051) 0.570 (± 0.087) 0.037 (± 0.031) 0.067 (± 0.046)
DPI-G 0.267 (± 0.026) 0.295 (± 0.080) 0.269 (± 0.066) 0.443 (± 0.113) 0.045 (± 0.055) 0.064 (± 0.048)
DPI-E 0.185 (± 0.069) 0.146 (± 0.073) 0.452 (± 0.029) 0.253 (± 0.026) 0.029 (± 0.016) 0.033 (± 0.047)



A.4. The Global Single Output obtained Results 89

Table 13 – Results for Evaluation Measures obtained for compared methods, considering PBCT
and PbSS with 𝑤 = 0.5 and MLSKF CV Procedure.

Measure Data 𝐿𝑟 x 𝑇 𝑐 𝑇 𝑟 x 𝐿𝑐 𝑇 𝑟 x 𝑇 𝑐

PBCT PbSS PBCT PbSS PBCT PbSS

AUPRC
DPI-N 0.247 (± 0.083) 0.300 (± 0.090) 0.213 (± 0.105) 0.356 (± 0.285) 0.252 (± 0.179) 0.115 (± 0.114)
DPI-I 0.210 (± 0.071) 0.195 (± 0.067) 0.474 (± 0.065) 0.576 (± 0.101) 0.056 (± 0.021) 0.066 (± 0.021)
DPI-G 0.246 (± 0.039) 0.231 (± 0.051) 0.270 (± 0.046) 0.474 (± 0.151) 0.050 (± 0.025) 0.060 (± 0.030)
DPI-E 0.163 (± 0.050) 0.130 (± 0.100) 0.604 (± 0.058) 0.327 (± 0.047) 0.026 (± 0.010) 0.020 (± 0.010)

AUROC
DPI-N 0.634 (± 0.067) 0.685 (± 0.065) 0.649 (± 0.103) 0.638 (± 0.145) 0.570 (± 0.140) 0.517 (± 0.151)
DPI-I 0.709 (± 0.081) 0.586 (± 0.038) 0.807 (± 0.033) 0.781 (± 0.043) 0.549 (± 0.040) 0.578 (± 0.051)
DPI-G 0.714 (± 0.022) 0.626 (± 0.030) 0.713 (± 0.046) 0.743 (± 0.072) 0.561 (± 0.077) 0.585 (± 0.065)
DPI-E 0.694 (± 0.065) 0.615 (± 0.050) 0.830 (± 0.036) 0.696 (± 0.031) 0.566 (± 0.036) 0.568 (± 0.092)

MCC
DPI-N 0.217 (± 0.100) 0.315 (± 0.105) 0.237 (± 0.146) 0.256 (± 0.254) 0.061 (± 0.131) 0.016 (± 0.138)
DPI-I 0.247 (± 0.080) 0.210 (± 0.095) 0.441 (± 0.051) 0.570 (± 0.087) 0.037 (± 0.031) 0.067 (± 0.046)
DPI-G 0.267 (± 0.026) 0.295 (± 0.080) 0.269 (± 0.066) 0.443 (± 0.113) 0.045 (± 0.055) 0.063 (± 0.049)
DPI-E 0.185 (± 0.069) 0.146 (± 0.073) 0.452 (± 0.029) 0.253 (± 0.026) 0.029 (± 0.016) 0.033 (± 0.047)

Table 14 – Results for Evaluation Measures obtained for compared methods, considering PBCT
and PbSS with 𝑤 = 0.75 and MLSKF CV Procedure.

Measure Data 𝐿𝑟 x 𝑇 𝑐 𝑇 𝑟 x 𝐿𝑐 𝑇 𝑟 x 𝑇 𝑐

PBCT PbSS PBCT PbSS PBCT PbSS

AUPRC
DPI-N 0.247 (± 0.083) 0.298 (± 0.090) 0.213 (± 0.105) 0.356 (± 0.285) 0.252 (± 0.179) 0.115 (± 0.114)
DPI-I 0.210 (± 0.071) 0.195 (± 0.067) 0.474 (± 0.065) 0.576 (± 0.101) 0.056 (± 0.021) 0.066 (± 0.021)
DPI-G 0.246 (± 0.039) 0.231 (± 0.051) 0.270 (± 0.046) 0.474 (± 0.151) 0.050 (± 0.025) 0.060 (± 0.031)
DPI-E 0.163 (± 0.050) 0.130 (± 0.100) 0.604 (± 0.058) 0.327 (± 0.047) 0.026 (± 0.010) 0.020 (± 0.010)

AUROC
DPI-N 0.634 (± 0.067) 0.683 (± 0.068) 0.649 (± 0.103) 0.638 (± 0.145) 0.570 (± 0.140) 0.521 (± 0.145)
DPI-I 0.709 (± 0.081) 0.586 (± 0.038) 0.807 (± 0.033) 0.781 (± 0.043) 0.549 (± 0.040) 0.578 (± 0.051)
DPI-G 0.714 (± 0.022) 0.626 (± 0.030) 0.713 (± 0.046) 0.743 (± 0.072) 0.561 (± 0.077) 0.585 (± 0.065)
DPI-E 0.694 (± 0.065) 0.615 (± 0.050) 0.830 (± 0.036) 0.696 (± 0.031) 0.566 (± 0.036) 0.568 (± 0.092)

MCC
DPI-N 0.217 (± 0.100) 0.310 (± 0.112) 0.237 (± 0.146) 0.256 (± 0.254) 0.061 (± 0.131) 0.019 (± 0.134)
DPI-I 0.247 (± 0.080) 0.210 (± 0.095) 0.441 (± 0.051) 0.570 (± 0.087) 0.037 (± 0.031) 0.067 (± 0.046)
DPI-G 0.267 (± 0.026) 0.295 (± 0.080) 0.269 (± 0.066) 0.443 (± 0.113) 0.045 (± 0.055) 0.063 (± 0.048)
DPI-E 0.185 (± 0.069) 0.146 (± 0.073) 0.452 (± 0.029) 0.253 (± 0.026) 0.029 (± 0.016) 0.033 (± 0.047)

A.4 The Global Single Output obtained Results

This section presents the predictive performance results of the experimental procedure
of GSO correlated approaches in a comparative study with PBCT. Among these are
the Clus, the XGBoost, the RF, and the KNN. This experimental procedure considered
all prediction tasks (e.g., 𝑇𝑟 x 𝐿𝑐) for the DPI-N, DPI-I, and DPI-G datasets (i.e., and
the DPI-E for Clus), evaluation measures 4.3, as well as a MLSKF CV procedure, and the
results in predictive performance is defined in the tables below. i.e., the DPI-E dataset
was disregarded for XGBoost, RF, and KNN since it exceeded the runtime limit (i.e.,
24 hours), or available resources (i.e., in terms of memory and execution time). Finally,
despite the computational cost, the GSO approach methods showed gains in predictive
performance relevant to PBCT in some cases of 𝑇𝑟 x 𝐿𝑐 and 𝐿𝑟 x 𝑇𝑐, these gains are even
reflected in the results obtained for PbXGB and PbSS. However, it should be noted that
these gains were not reflected in predictive performance gains for the 𝑇𝑟 x 𝑇𝑐 task.

These scenarios consider the previously determined experimental settings (see Sec-
tion 4.4), with additional details referring to the Hyperparameters used in the Grid-
Search procedure. For XGBoost we considered the number of estimators = {10, 300, 600},
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Table 15 – Results for Evaluation Measures obtained for compared methods, considering PBCT
and GSO Clus and MLSKF CV Procedure.

Measure Data 𝐿𝑟 x 𝑇 𝑐 𝑇 𝑟 x 𝐿𝑐 𝑇 𝑟 x 𝑇 𝑐

PBCT CLUS PBCT CLUS PBCT CLUS

AUPRC
DPI-N 0.247 (± 0.083) 0.407 (± 0.121) 0.213 (± 0.105) 0.339 (± 0.270) 0.252 (± 0.179) 0.077 (± 0.060)
DPI-I 0.210 (± 0.071) 0.207 (± 0.105) 0.474 (± 0.065) 0.462 (± 0.072) 0.056 (± 0.021) 0.036 (± 0.009)
DPI-G 0.246 (± 0.039) 0.152 (± 0.046) 0.270 (± 0.046) 0.206 (± 0.095) 0.050 (± 0.025) 0.031 (± 0.007)
DPI-E 0.163 (± 0.050) 0.127 (± 0.033) 0.604 (± 0.058) 0.538 (± 0.049) 0.026 (± 0.010) 0.011 (± 0.002)

AUROC
DPI-N 0.634 (± 0.067) 0.650 (± 0.060) 0.649 (± 0.103) 0.587 (± 0.108) 0.570 (± 0.140) 0.480 (± 0.132)
DPI-I 0.709 (± 0.081) 0.606 (± 0.071) 0.807 (± 0.033) 0.741 (± 0.035) 0.549 (± 0.040) 0.494 (± 0.020)
DPI-G 0.714 (± 0.022) 0.574 (± 0.028) 0.713 (± 0.046) 0.598 (± 0.045) 0.561 (± 0.077) 0.496 (± 0.032)
DPI-E 0.694 (± 0.065) 0.586 (± 0.025) 0.830 (± 0.036) 0.800 (± 0.025) 0.566 (± 0.036) 0.503 (± 0.016)

MCC
DPI-N 0.217 (± 0.100) 0.360 (± 0.133) 0.237 (± 0.146) 0.211 (± 0.249) 0.061 (± 0.131) -0.023 (± 0.126)
DPI-I 0.247 (± 0.080) 0.226 (± 0.124) 0.441 (± 0.051) 0.536 (± 0.067) 0.037 (± 0.031) -0.007 (± 0.022)
DPI-G 0.267 (± 0.026) 0.170 (± 0.056) 0.269 (± 0.066) 0.242 (± 0.131) 0.045 (± 0.055) -0.005 (± 0.033)
DPI-E 0.185 (± 0.069) 0.181 (± 0.048) 0.452 (± 0.029) 0.624 (± 0.043) 0.029 (± 0.016) 0.002 (± 0.013)

Table 16 – Results for Evaluation Measures obtained for compared methods, considering PBCT
and GSO XGBoost with Grid Search and MLSKF CV Procedure.

Measure Data 𝐿𝑟 x 𝑇 𝑐 𝑇 𝑟 x 𝐿𝑐 𝑇 𝑟 x 𝑇 𝑐

PBCT XGBoost PBCT XGBoost PBCT XGBoost

AUPRC
DPI-N 0.247 (± 0.083) 0.487 (± 0.161) 0.213 (± 0.105) 0.336 (± 0.202) 0.252 (± 0.179) 0.070 (± 0.056)
DPI-I 0.210 (± 0.071) 0.312 (± 0.109) 0.474 (± 0.065) 0.774 (± 0.070) 0.056 (± 0.021) 0.037 (± 0.011)
DPI-G 0.246 (± 0.039) 0.335 (± 0.081) 0.270 (± 0.046) 0.443 (± 0.104) 0.050 (± 0.025) 0.031 (± 0.009)

AUROC
DPI-N 0.634 (± 0.067) 0.667 (± 0.080) 0.649 (± 0.103) 0.638 (± 0.120) 0.570 (± 0.140) 0.467 (± 0.114)
DPI-I 0.709 (± 0.081) 0.633 (± 0.049) 0.807 (± 0.033) 0.862 (± 0.028) 0.549 (± 0.040) 0.504 (± 0.030)
DPI-G 0.714 (± 0.022) 0.618 (± 0.025) 0.713 (± 0.046) 0.669 (± 0.058) 0.561 (± 0.077) 0.498 (± 0.035)

MCC
DPI-N 0.217 (± 0.100) 0.356 (± 0.141) 0.237 (± 0.146) 0.293 (± 0.249) 0.061 (± 0.131) -0.022 (± 0.144)
DPI-I 0.247 (± 0.080) 0.358 (± 0.102) 0.441 (± 0.051) 0.757 (± 0.056) 0.037 (± 0.031) 0.004 (± 0.027)
DPI-G 0.267 (± 0.026) 0.348 (± 0.067) 0.269 (± 0.066) 0.449 (± 0.097) 0.045 (± 0.055) -0.003 (± 0.035)

learning rate = {0.02, 0.1}, and the scale pos weight = {10, 100, 1000} for all prediction
tasks. For RF, we considered number of estimators = {5, 10, 25, 50, 100, 200, 500}, the
max depth = 5, and bootstrap = {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒}. Finally, for KNN, we considered number
of neighbors = {3, 5, 10, 20}.

Table 17 – Results for Evaluation Measures obtained for compared methods, considering PBCT
and GSO RF with Grid Search and MLSKF CV Procedure.

Measure Data 𝐿𝑟 x 𝑇 𝑐 𝑇 𝑟 x 𝐿𝑐 𝑇 𝑟 x 𝑇 𝑐

PBCT RF PBCT RF PBCT RF

AUPRC
DPI-N 0.247 (± 0.083) 0.377 (± 0.181) 0.213 (± 0.105) 0.360 (± 0.219) 0.252 (± 0.179) 0.085 (± 0.067)
DPI-I 0.210 (± 0.071) 0.165 (± 0.088) 0.474 (± 0.065) 0.437 (± 0.079) 0.056 (± 0.021) 0.038 (± 0.010)
DPI-G 0.246 (± 0.039) 0.180 (± 0.071) 0.270 (± 0.046) 0.252 (± 0.042) 0.050 (± 0.025) 0.031 (± 0.009)

AUROC
DPI-N 0.634 (± 0.067) 0.567 (± 0.044) 0.649 (± 0.103) 0.530 (± 0.064) 0.570 (± 0.140) 0.480 (± 0.131)
DPI-I 0.709 (± 0.081) 0.518 (± 0.020) 0.807 (± 0.033) 0.584 (± 0.023) 0.549 (± 0.040) 0.511 (± 0.030)
DPI-G 0.714 (± 0.022) 0.502 (± 0.006) 0.713 (± 0.046) 0.533 (± 0.011) 0.561 (± 0.077) 0.487 (± 0.042)

MCC
DPI-N 0.217 (± 0.100) 0.286 (± 0.168) 0.237 (± 0.146) 0.098 (± 0.205) 0.061 (± 0.131) -0.012 (± 0.139)
DPI-I 0.247 (± 0.080) 0.115 (± 0.115) 0.441 (± 0.051) 0.384 (± 0.063) 0.037 (± 0.031) 0.009 (± 0.023)
DPI-G 0.267 (± 0.026) 0.006 (± 0.018) 0.269 (± 0.066) 0.220 (± 0.046) 0.045 (± 0.055) -0.008 (± 0.030)

We can highlight that in these GSO scenarios the increase in memory consumption and
computational resources of our computational environment is remarkable (i.e., sometimes
presenting a consumption 10 times higher or greater than the original PBCT). This
memory increase is credited to the complexity of the models involved and the significant
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Table 18 – Results for Evaluation Measures obtained for compared methods, considering PBCT
and GSO KNN with Grid Search and MLSKF CV Procedure.

Measure Data 𝐿𝑟 x 𝑇 𝑐 𝑇 𝑟 x 𝐿𝑐 𝑇 𝑟 x 𝑇 𝑐

PBCT KNN PBCT KNN PBCT KNN

AUPRC
DPI-N 0.247 (± 0.083) 0.477 (± 0.142) 0.213 (± 0.105) 0.314 (± 0.204) 0.252 (± 0.179) 0.071 (± 0.058)
DPI-I 0.210 (± 0.071) 0.323 (± 0.085) 0.474 (± 0.065) 0.801 (± 0.067) 0.056 (± 0.021) 0.037 (± 0.011)
DPI-G 0.246 (± 0.039) 0.325 (± 0.076) 0.270 (± 0.046) 0.600 (± 0.104) 0.050 (± 0.025) 0.031 (± 0.011)

AUROC
DPI-N 0.634 (± 0.067) 0.660 (± 0.059) 0.649 (± 0.103) 0.587 (± 0.071) 0.570 (± 0.140) 0.522 (± 0.129)
DPI-I 0.709 (± 0.081) 0.643 (± 0.063) 0.807 (± 0.033) 0.847 (± 0.030) 0.549 (± 0.040) 0.502 (± 0.023)
DPI-G 0.714 (± 0.022) 0.628 (± 0.027) 0.713 (± 0.046) 0.741 (± 0.084) 0.561 (± 0.077) 0.496 (± 0.046)

MCC
DPI-N 0.217 (± 0.100) 0.431 (± 0.157) 0.237 (± 0.146) 0.281 (± 0.205) 0.061 (± 0.131) 0.014 (± 0.117)
DPI-I 0.247 (± 0.080) 0.327 (± 0.104) 0.441 (± 0.051) 0.737 (± 0.059) 0.037 (± 0.031) 0.002 (± 0.021)
DPI-G 0.267 (± 0.026) 0.330 (± 0.059) 0.269 (± 0.066) 0.566 (± 0.102) 0.045 (± 0.055) -0.003 (± 0.038)

increase in data size in the GSO representation due to the concatenation of features in
object space.

A.5 The Local Multiple Output obtained Results
The predictive performance resulting from the experimental procedure refers to the

comparative study between PBCT and LMO correlated learning methods. The experi-
mental procedure defined here considered all datasets, a MLSKF CV procedure for all pre-
diction tasks (e.g., 𝐿𝑟 x 𝑇𝑐), considering all evaluation measures 4.3, and predictive perfor-
mance results are presented in the tables below. i.e., following the previously determined
Scenario (see Section 4.4) for MLKNN we considered 𝑘 = {2, 3, 5} and 𝑠 = {0.5, 0.7, 1}
for the Grid-Search Procedure, and for ECCRF we consider number of chains = 10, and
number of estimators = 20 for RF.

Table 19 – Results for Evaluation Measures obtained for compared methods, considering PBCT
and LMO Clus with MLSKF CV Procedure.

Measure Data 𝐿𝑟 x 𝑇 𝑐 𝑇 𝑟 x 𝐿𝑐 𝑇 𝑟 x 𝑇 𝑐

PBCT CLUS PBCT CLUS PBCT CLUS

AUPRC
DPI-N 0.247 (± 0.083) 0.335 (± 0.176) 0.213 (± 0.105) 0.411 (± 0.277) 0.252 (± 0.179) 0.116 (± 0.120)
DPI-I 0.210 (± 0.071) 0.137 (± 0.040) 0.474 (± 0.065) 0.461 (± 0.081) 0.056 (± 0.021) 0.044 (± 0.014)
DPI-G 0.246 (± 0.039) 0.167 (± 0.076) 0.270 (± 0.046) 0.254 (± 0.106) 0.050 (± 0.025) 0.047 (± 0.027)
DPI-E 0.163 (± 0.050) 0.118 (± 0.054) 0.604 (± 0.058) 0.321 (± 0.054) 0.026 (± 0.010) 0.017 (± 0.006)

AUROC
DPI-N 0.634 (± 0.067) 0.662 (± 0.116) 0.649 (± 0.103) 0.648 (± 0.266) 0.570 (± 0.140) 0.561 (± 0.143)
DPI-I 0.709 (± 0.081) 0.571 (± 0.040) 0.807 (± 0.033) 0.771 (± 0.051) 0.549 (± 0.040) 0.519 (± 0.024)
DPI-G 0.714 (± 0.022) 0.594 (± 0.037) 0.713 (± 0.046) 0.632 (± 0.068) 0.561 (± 0.077) 0.530 (± 0.049)
DPI-E 0.694 (± 0.065) 0.589 (± 0.053) 0.830 (± 0.036) 0.775 (± 0.054) 0.566 (± 0.036) 0.524 (± 0.019)

MCC
DPI-N 0.217 (± 0.100) 0.334 (± 0.200) 0.237 (± 0.146) 0.481 (± 0.323) 0.061 (± 0.131) 0.047 (± 0.138)
DPI-I 0.247 (± 0.080) 0.173 (± 0.085) 0.441 (± 0.051) 0.590 (± 0.093) 0.037 (± 0.031) 0.023 (± 0.027)
DPI-G 0.267 (± 0.026) 0.233 (± 0.100) 0.269 (± 0.066) 0.321 (± 0.139) 0.045 (± 0.055) 0.035 (± 0.058)
DPI-E 0.185 (± 0.069) 0.211 (± 0.142) 0.452 (± 0.029) 0.581 (± 0.095) 0.029 (± 0.016) 0.025 (± 0.019)

We can highlight that the approach methods LMO considered, in a general context,
showed gains in all predictive tasks. While Clus (19) and MLKNN (20) showed gains
mainly for the prediction tasks 𝑇𝑟 x 𝐿𝑐 and 𝐿𝑟 x 𝑇𝑐, ECCRF (21) also showed gains (i.e.,
concerning the PBCT, PbXGB, and PbSS) on 𝑇𝑟 x 𝑇𝑐 tasks.
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Table 20 – Results for Evaluation Measures obtained for compared methods, considering PBCT
and LMO MLKNN with Grid Search and MLSKF CV Procedure.

Measure Data 𝐿𝑟 x 𝑇 𝑐 𝑇 𝑟 x 𝐿𝑐 𝑇 𝑟 x 𝑇 𝑐

PBCT MLKNN PBCT MLKNN PBCT MLKNN

AUPRC
DPI-N 0.247 (± 0.083) 0.486 (± 0.119) 0.213 (± 0.105) 0.639 (± 0.298) 0.252 (± 0.179) 0.142 (± 0.160)
DPI-I 0.210 (± 0.071) 0.208 (± 0.057) 0.474 (± 0.065) 0.808 (± 0.067) 0.056 (± 0.021) 0.047 (± 0.016)
DPI-G 0.246 (± 0.039) 0.235 (± 0.069) 0.270 (± 0.046) 0.650 (± 0.070) 0.050 (± 0.025) 0.054 (± 0.024)
DPI-E 0.163 (± 0.050) 0.153 (± 0.043) 0.604 (± 0.058) 0.784 (± 0.065) 0.026 (± 0.010) 0.017 (± 0.007)

AUROC
DPI-N 0.634 (± 0.067) 0.714 (± 0.077) 0.649 (± 0.103) 0.701 (± 0.274) 0.570 (± 0.140) 0.547 (± 0.138)
DPI-I 0.709 (± 0.081) 0.625 (± 0.076) 0.807 (± 0.033) 0.875 (± 0.043) 0.549 (± 0.040) 0.544 (± 0.024)
DPI-G 0.714 (± 0.022) 0.631 (± 0.038) 0.713 (± 0.046) 0.788 (± 0.083) 0.561 (± 0.077) 0.547 (± 0.050)
DPI-E 0.694 (± 0.065) 0.632 (± 0.067) 0.830 (± 0.036) 0.877 (± 0.038) 0.566 (± 0.036) 0.531 (± 0.043)

MCC
DPI-N 0.217 (± 0.100) 0.480 (± 0.134) 0.237 (± 0.146) 0.566 (± 0.319) 0.061 (± 0.131) 0.052 (± 0.146)
DPI-I 0.247 (± 0.080) 0.346 (± 0.154) 0.441 (± 0.051) 0.793 (± 0.069) 0.037 (± 0.031) 0.050 (± 0.027)
DPI-G 0.267 (± 0.026) 0.349 (± 0.083) 0.269 (± 0.066) 0.616 (± 0.123) 0.045 (± 0.055) 0.045 (± 0.048)
DPI-E 0.185 (± 0.069) 0.324 (± 0.167) 0.452 (± 0.029) 0.809 (± 0.052) 0.029 (± 0.016) 0.018 (± 0.024)

Table 21 – Results for Evaluation Measures obtained for compared methods, considering PBCT
and LMO ECCRF with MLSKF CV Procedure.

Measure Data 𝐿𝑟 x 𝑇 𝑐 𝑇 𝑟 x 𝐿𝑐 𝑇 𝑟 x 𝑇 𝑐

PBCT ECCRF PBCT ECCRF PBCT ECCRF

AUPRC
DPI-N 0.247 (± 0.083) 0.518 (± 0.173) 0.213 (± 0.105) 0.706 (± 0.282) 0.252 (± 0.179) 0.123 (± 0.161)
DPI-I 0.210 (± 0.071) 0.463 (± 0.128) 0.474 (± 0.065) 0.809 (± 0.061) 0.056 (± 0.021) 0.085 (± 0.024)
DPI-G 0.246 (± 0.039) 0.392 (± 0.104) 0.270 (± 0.046) 0.528 (± 0.079) 0.050 (± 0.025) 0.064 (± 0.049)
DPI-E 0.163 (± 0.050) 0.507 (± 0.064) 0.604 (± 0.058) 0.788 (± 0.055) 0.026 (± 0.010) 0.036 (± 0.030)

AUROC
DPI-N 0.634 (± 0.067) 0.667 (± 0.067) 0.649 (± 0.103) 0.619 (± 0.256) 0.570 (± 0.140) 0.508 (± 0.063)
DPI-I 0.709 (± 0.081) 0.618 (± 0.049) 0.807 (± 0.033) 0.801 (± 0.041) 0.549 (± 0.040) 0.536 (± 0.019)
DPI-G 0.714 (± 0.022) 0.602 (± 0.023) 0.713 (± 0.046) 0.663 (± 0.054) 0.561 (± 0.077) 0.515 (± 0.024)
DPI-E 0.694 (± 0.065) 0.579 (± 0.028) 0.830 (± 0.036) 0.817 (± 0.039) 0.566 (± 0.036) 0.512 (± 0.015)

MCC
DPI-N 0.217 (± 0.100) 0.451 (± 0.137) 0.237 (± 0.146) 0.361 (± 0.333) 0.061 (± 0.131) 0.019 (± 0.110)
DPI-I 0.247 (± 0.080) 0.378 (± 0.134) 0.441 (± 0.051) 0.703 (± 0.086) 0.037 (± 0.031) 0.068 (± 0.033)
DPI-G 0.267 (± 0.026) 0.332 (± 0.078) 0.269 (± 0.066) 0.463 (± 0.095) 0.045 (± 0.055) 0.036 (± 0.057)
DPI-E 0.185 (± 0.069) 0.361 (± 0.073) 0.452 (± 0.029) 0.763 (± 0.072) 0.029 (± 0.016) 0.027 (± 0.032)
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