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Resumo
Em escoamentos carregados de partículas, é essencial modelar a interação fluido-partícula.
Porém, a depender de efeitos como atração e atrito entre partículas, propriedades superfi-
ciais e colisões, as partículas podem se aglomerar, formando novas partículas de formatos
irregulares. Tal fenômeno tem sua importância, visto que sua geometria altera diretamente
a dinâmica do escoamento. Uma maneira de avaliar a forma como a partícula interfere no
escoamento é utilizando a força de arraste. No desenvolvimento teórico de equipamentos, tal
força é levada em consideração, sendo representada pelo coeficiente de arraste e é altamente
dependendente de duas variáveis: geometria da partícula e velocidade do escoamento. Na
literatura, são observadas diversas correlações, obtidas tanto experimentalmente quanto
numericamente, utilizando técnicas de fluidodinâmica computacional (CFD). A vantagem
do uso de métodos numéricos se dá na facilidade de se variar a velocidade do escoamento,
bem como no cálculo do coeficiente de arraste a partir dos campos de pressão. Porém, a
maioria destes utilizam métodos de formulação transiente, obtendo resultados com elevados
níveis de detalhamento, mas de alto custo computacional, que aumenta exponencialmente
quanto maior o número de Reynolds. Deste modo, tais modelos são obtidos, em geral,
para valores de Reynolds inferiores a 300 e extrapolados para valores elevados ao serem
implementados em códigos de CFD. Assim, neste estudo foram propostas tanto uma
maneira alternativa de abordar o problema, utilizando simulações de formulação estaci-
onária, reduzindo o custo computacional, quanto uma nova correlação de coeficiente de
arraste simples e unificada, capaz de abranger amplas faixas de escoamento, do laminar ao
turbulento, aplicável a partículas irregulares, e de fácil implementação em códigos de CFD.
Utilizando-se de CFD com validação experimental, foi possível obter a curva característica
de coeficiente de arraste ao longo de uma ampla faixa de números de Reynolds (0,1 ≤ Re
≤ 3500) para aglomerados de esferas, que representavam partículas de formatos irregulares.
Ao simular individualmente o escoamento de um fluido ao redor de tais aglomerados,
variando as geometrias e velocidade do escoamento, foi possível propor a nova correlação de
cálculo de coeficiente de arraste capaz de se ajustar às curvas características obtidas. Em
linhas gerais, os resultados obtidos mostraram que o uso de uma formulação estacionário é
capaz de obter bons resultados, desde que a malha seja corretamente refinada e o modelo
de turbulência seja capaz de representar corretamente o escoamento. A nova correlação,
aliada ao uso do achatamento como parâmetro de caracterização geométrica, mostrou-se
eficaz em representar a curva de arraste, apresentando desvios máximo, mínimo e médio
de 10,78 %, -7,62 % e 3,79 %, respectivamente, em relação aos resultados simulados, e
14,36 %, -12,36 % e 9,6 % em relação aos resultados experimentais.

Palavras-chave: Material particulado, Aglomerados de partículas, Partículas de formatos
irregulares, Coeficiente de arraste, Fluidodinâmica computacional



Abstract
In particle-laden flows, it is essential to model the fluid-particle interaction. However,
depending on effects such as friction and attraction, surface properties, and collisions,
particles can agglomerate, generating new irregularly-shaped particles. Such phenomenon is
relevant since the geometry directly interferes with the flow dynamics. One way to evaluate
how the particle will interfere is through the drag force. In the theoretical development of
equipment, this force is taken into account and represented by the drag coefficient and is
highly dependent on two variables: particle geometry and flow velocity. In the literature,
several correlations are observed, obtained both in the experimental field or numerical
field, using computational fluid dynamics (CFD). The advantage of using CFD lies in the
ease of varying the flow velocity and in obtaining the drag coefficient from the pressure and
velocity fields. However, most of these methods employ transient formulations, resulting in
highly detailed but computationally expensive outcomes. This cost increases exponentially
as the Reynolds number of the flow increases, making the study of turbulent flows infeasible.
Consequently, these models are generally obtained for Reynolds numbers below 300 and
then extrapolated to higher values when implemented in CFD codes. Thus, this study
proposes an alternative approach to the problem by using steady formulation simulations,
aiming to reduce computational costs and proposing a new, simple, and unified correlation
for the drag coefficient capable of encompassing a wide range of flows, from laminar to
turbulent, applicable to irregularly shaped particles and easily implementable in CFD
codes. Using CFD simulations with experimental validation, it was possible to obtain the
characteristic drag coefficient curve over a wide range of Reynolds numbers (0.1 ≤ Re ≤
3500) for agglomerates of spheres representing irregularly-shaped particles. By individually
simulating the flow around these agglomerates while varying the geometries and flow
velocities, a new correlation for calculating the drag coefficient was proposed, capable of
fitting the obtained characteristic curves. In general, the results showed that the use of
a steady formulation can yield good results provided that the mesh is properly refined
and the turbulence model accurately represents the flow. The new correlation, combined
with the use of flatness as a geometric characterization parameter, proved effective in
representing the drag curve, with maximum, minimum, and average deviations of 10.78 %,
-7.62 %, and 3.79 %, respectively, compared to simulated results, and 14.36 %, -12.36 %,
and 9.6 % compared to experimental results.

Keywords: Particulate matter, Particle agglomerates, Irregularly-shaped particles, Drag
coefficient, Computational fluid dynamics



List of figures

Figure 1 – Example of the behavior of the drag coefficient curve along a wide range
of Reynolds numbers. Source: Loth (2008). . . . . . . . . . . . . . . . . 21

Figure 2 – Example of the lateral view of the interior of the computational domains
simulated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 3 – From left to right: Isometric view of the particle agglomeration of three,
four and five particles and a scheme of the flow direction. . . . . . . . . 34

Figure 4 – From left to right and top to bottom: velocity streamlines for Re =
1000 in the agglomerate of three particles using the RNG k-ε, RSM,
Langtry-Menter, Spalart-Allmaras and SST k-ω turbulence models. . . 46

Figure 5 – From left to right and top to bottom: velocity streamlines for Re =
1000 in the agglomerate of four particles using the RNG k-ε, RSM,
Langtry-Menter, Spalart-Allmaras and SST k-ω turbulence models. . . 47

Figure 6 – From left to right and top to bottom: velocity streamlines for Re =
1000 in the agglomerate of five particles using the RNG k-ε, RSM,
Langtry-Menter, Spalart-Allmaras and SST k-ω turbulence models. . . 48

Figure 7 – Comparison between predictions of the experimental drag models tested
and the simulations data using different turbulence models for agglome-
rates of: (a) three particles, (b) four particles, and (c) five particles. . . 49

Figure 8 – From left to right and top to bottom: deviations of simulated data from
the Tran-Cong model for the agglomerate of three, four and five particles. 51

Figure 9 – Scheme of the experimental apparatus. . . . . . . . . . . . . . . . . . . 59
Figure 10 – Isometric view of the three conformations of the particle agglomerates

studied and a scheme of the flow direction. . . . . . . . . . . . . . . . . 59
Figure 11 – Scheme of a generic body in free fall and the forces acting on it. . . . . 60
Figure 12 – Example of the lateral view of the interior of the computational domains

simulated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 13 – Example of a lateral view of the finest mesh generated for the particle

agglomerate of four spheres. . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 14 – Example of an isometric view of the mesh surrounding the particle

agglomerate of four spheres. . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 15 – Grid independence test for the drag coefficient of the particle agglome-

rates for simulations performed at terminal velocity in water. . . . . . . 64
Figure 16 – From top to bottom: streamlines of the flow of water surrounding the

agglomerates of three, four and five particles. . . . . . . . . . . . . . . 68
Figure 17 – Example of the lateral view of the interior of the computational domains

simulated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



Figure 18 – Example of a lateral view of the finest mesh generated for the particle
agglomerate of four spheres. . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 19 – Example of an isometric view of the finest mesh surrounding the particle
agglomerate of four spheres. . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 20 – Isometric view of the three conformations of the particle agglomerates
studied and a scheme of the flow direction. . . . . . . . . . . . . . . . . 78

Figure 21 – Scheme of the experimental apparatus. . . . . . . . . . . . . . . . . . . 78
Figure 22 – Comparison between the numerical results and the fits using the new

correlation (Equation 5.16) and experimental data for the agglomerate
of three particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 23 – Comparison between the numerical results and the fits using the new
correlation (Equation 5.16) and experimental data for the agglomerate
of four particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Figure 24 – Comparison between the numerical results and the fits using the new
correlation (Equation 5.16) and experimental data for the agglomerate
of five particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



List of tables

Table 1 – General setup of the numerical methods used. . . . . . . . . . . . . . . . 25
Table 2 – Mesh quality for the three agglomerates studied. . . . . . . . . . . . . . 35
Table 3 – Percentage of elements of the meshes attending to the criteria of the

quality coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 4 – Inlet velocity of the flow for the Reynolds numbers tested. . . . . . . . . 38
Table 5 – Root-mean-square error of the turbulence models compared to drag

coefficient models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 6 – Properties of the fluids obtained experimentally. . . . . . . . . . . . . . 60
Table 7 – Mesh quality for the three particle agglomerates studied. . . . . . . . . . 65
Table 8 – Experimentally measured terminal velocities for each particle agglomerate

for the four fluids studied. . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 9 – Comparative between experimental (Cexp

D ) and CFD (Csim
D ) results. . . . 66

Table 10 – Inlet velocity of the flow for the Reynolds numbers tested. . . . . . . . . 77
Table 11 – From left to right: density and viscosity of the fluids and terminal

velocities of particle agglomerates of three, four and five spheres. . . . . 80
Table 12 – Details of the meshes for the independence study for drag coefficient of

terminal velocity in water. . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 13 – Mesh quality for the three particle agglomerates studied. . . . . . . . . . 86
Table 14 – Comparison between numerical and experimental drag coefficient for each

particle agglomerate at the boundary conditions obtained experimentally. 87
Table 15 – Fitting parameters of the new correlation for each geometric parameter

tested. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 16 – Relative deviations between the correlation fits and simulated data

according to the geometric parameter tested. . . . . . . . . . . . . . . . 92
Table 17 – Relative deviations between the correlation fits and experimental data

according to the geometric parameter tested. . . . . . . . . . . . . . . . 92



List of symbols

Latin

A,B,C,D Parameters of the Haider and Levenspiel drag model [ − ]

Amp Maximum projected area de máxima projeção [ m2 ]

Ab Body’s area [ m2 ]

Ap Projected area [ m2 ]

Aps Particle surface area [ m2 ]

Asph Surface area of the volume-equivalent sphere [ m2 ]

Aws Windward surface area [ m2 ]

A.R. Aspect ratio [ − ]

c Circularity [ − ]

cS Surface circularity [ − ]

CD Drag coefficient [ − ]

Ccorr
D Drag coefficient estimated by correlations [ − ]

Cexp
D Drag coefficient obtained experimentally [ − ]

Csim
D Drag coefficient estimated by correlations simulations [ − ]

C1, C2, C3, C4 Fit parameters of the new drag correlation proposed [ − ]

C5, C6, C7, C8

dA or dS Surface-equivalent sphere diameter [ m ]

deq or dn Volume-equivalent sphere diameter [ m ]

f Flatness [ − ]

FB Buoyancy [ N ]

FD Drag [ N ]

FW Weight [ N ]

g Gravitational acceleration [ ms−2 ]



k Turbulence kinetic energy [ m2 s−2 ]

K Fluctuation kinetic energy [ m2 s−2 ]

kN Newton’s parameter [ − ]

kS Stokes’ Parameter [ − ]

Lx Streamwise length [ m ]

mp Particle’s mass [ kg ]

N Total data in the sample studied or number of grid points [ − ]

Pc Perimeter of the circle equivalent to the particle [ m ]

maximum projection

PD Dynamic pressure [ kg m−1s−2 ]

Pk Production of turbulence kinetic energy [ m2s−2 ]

Pmp Maximum projected perimeter [ m ]

Re Reynolds number [ − ]

R̃eθt Transition momentum thickness Reynolds number [ − ]

SD Standard deviation [ % ]

t Time [s]

u Velocity vector [ ms−1 ]

uf Fluid velocity [ ms−1 ]

up Particle velocity [ ms−1 ]

ut Terminal velocity [ ms−1 ]

U∞ Freestream velocity [ ms−1 ]

Vb or Vp Volume of the particle in free fall [ m3 ]

x Position vector [ − ]

x̂i Value of the i-th data obtained by correlations [ − ]

xi Value of the i-th data obtained by simulations [ − ]



Greek

γ Intermittency [ − ]

δ Relative error or percent deviation [ % ]

ε Turbulence dissipation rate [ m2s−3 ]

ν Kinematic viscosity [ m2s−1 ]

νt Turbulent kinematic viscosity [ m2s−1 ]

ν̃ Spalart-Allmaras variable [ m2s−1 ]

µ Dynamic viscosity [ kg m−1s−1 ]

ρf Fluid’s density [ kg m−3 ]

ρp Particle’s density [ kg m−3 ]

τij Reynolds stress tensor [ kg m−1s−1 ]

ϕ Sphericity [ − ]

ϕW Sphericity of Wadell [ − ]

ϕ⊥ Crosswise sphericity [ − ]

ϕ∥ Lengthwise sphericity [ − ]

Ψ Generic geometry parameter [ − ]

ω Specific turbulence dissipation [ s−1 ]

Subscript

i Cartesian coordinate

j Cartesian coordinate

Mathematical operators

∇ Gradient

∇· Divergence

∂ Partial derivative

Σ Summation sign



List of abbreviations and acronyms

CAD Computer Aided Design

CFD Computational Fluid Dynamics

DNS Direct Numerical Simulation

LBM Lattice-Boltzmann Method

LES Large-Eddy Simulation

PISO Pressure-Implicit with Splitting of Operators

PRESTO ! PREssure STaggering Option

RANS Reynolds-Averaged Navier-Stokes

RMS Root-mean-square

RMSE Root-mean-square error

RSM Reynolds Stress Model

SIMPLE Semi-Implicit Method for Pressure-Linked Equations

SST Shear Stress Transport

URANS Unsteady Reynolds-Averaged Navier-Stokes



Table of contents

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.1 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2 Context and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3.1 Main Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3.2 Specific Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1 Numerical methods and convergence criteria . . . . . . . . . . . . . . 25
2.2 Experimental methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 PROPOSITION OF THE MODELLING . . . . . . . . . . . . . . . . 28
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.1 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.1.1 Design and mesh generation . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.1.2 Meshes statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.1.3 The governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.1.4 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.1.5 Turbulence closure models . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.2 Drag coefficient correlation modelling . . . . . . . . . . . . . . . . . . . . 41
3.2.2.1 Haider & Levenspiel model . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.2.2 Ganser model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.2.3 Tran-Cong model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.2.4 Hölzer & Sommerfeld model . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.2.5 Bagheri & Bonadonna model . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.1 Grid refinement near the agglomerate walls . . . . . . . . . . . . . . . . . 43
3.3.2 Statistical analysis of results – Comparison between simulations and empirical

correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.3 Analysis of the turbulence models . . . . . . . . . . . . . . . . . . . . . . 45
3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 EXPERIMENTAL VALIDATION OF THE MODELLING . . . . . . 55
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



4.2.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.1.1 Experimental drag estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.2 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.2.1 Design and mesh generation . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.2.2 Numerical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.2.3 Numerical drag estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3 Mathematical modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.1 The governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4.1 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.1.1 Grid independence study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.1.2 Mesh quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.2 Comparison of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 PROPOSAL OF THE NEW DRAG COEFFICIENT CORRELATION 70
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2.1 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.1.1 Domain and mesh generation . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.2 Mathematical modelling – model setup and governing equations . . . . . . 75
5.2.3 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.4 Experimental methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.4.1 Experimental procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.4.2 Statistical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2.5 Drag correlation equations . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2.5.1 Formulation of a new drag correlation . . . . . . . . . . . . . . . . . . . . . 81
5.2.5.2 New drag correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2.5.3 Shape parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3.1 Grid independence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3.2 Verification and validation of the steady formulation . . . . . . . . . . . . . 86
5.3.2.1 Choosing the geometric parameter . . . . . . . . . . . . . . . . . . . . . . . 87
5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 GENERAL CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . 94

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96



17

1 Introduction

1.1 Structure of the thesis
The study presented in this thesis was divided into three stages, using the methodo-

logy commonly employed in conducting studies that utilize Computational Fluid Dynamics
(CFD) as the main tool. These stages are as follows:

1. Study of mathematical formulation and numerical methods;

2. Verification and experimental validation of the results;

3. Study of cases aiming to propose new hypotheses.

Throughout the development of this work, scientific articles were written, which
were submitted and/or published in international journals. Thus, in order to make the
reading of this text more dynamic, the thesis is presented in chapters as the articles were
developed. Therefore, the chapters of this thesis are presented in the following sequence:

• chapter 1 – contextualization and research motivation, including a brief literature
review and the study objectives;

• chapter 2 – a brief summary of the numerical methods and experimental methodology
used;

• chapter 3 – a literature review and the numerical methodology proposed to reduce
the computational effort to estimate the drag coefficient;

• chapter 4 – a literature review, the experimental methodology used and the experi-
mental validation of the numerical approach proposed in chapter 3;

• chapter 5 – a literature review and the proposal of a new correlation to estimate the
drag coefficient;

• chapter 6 – main conclusions of the work.
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1.2 Context and motivation
In the design of equipment involving particle-laden flows, it is essential to model

the interaction between the two phases in order to obtain consistent results, for both
laboratory and industrial scales. The interaction forces between fluid and particles are
directly related to the characteristics of the particles, such as size, shape, elasticity, and
roughness, which play a crucial role in the performance of equipment (WANG; GE; LI,
2008; HARTGE et al., 2009; NIKOLOPOULOS et al., 2010; WANG; WU; WEI, 2017).

Generally, in models simulating such equipment, the drag force is related to the
solid fraction of the flow, assuming that particles are homogeneously distributed (WEN;
YU, 1966; GIDASPOW, 1994; HILL; KOCH; LADD, 2001a; HILL; KOCH; LADD, 2001b;
HOEF; BEETSTRA; KUIPERS, 2004). However, depending on the attraction and friction
between the particles, the type of collision, and their physical, surface, and mechanical
characteristics, irregular agglomerate formation and distribution can occur, altering the
flow dynamics through pressure oscillations (SENIOR; BRERETON, 1992; KUWAGI;
TAKANO; HORIO, 2000).

The phenomenon of agglomeration is observed in various situations, whether in
natural phenomena such as sedimentation and flocculation of fine agglomerates in rivers
and lakes or in equipment used in industrial processes, such as chemical mixing, mineral
processing, stirred tanks, dust sintering, and manufacturing processes involving phase
changes (TRAN-CONG; GAY; MICHAELIDES, 2004; DEGLON; MEYER, 2006; LANE,
2017; DELACROIX et al., 2021). Therefore, the behavior of particle agglomerates in
different arrangements requires attention.

For many cases, a relevant aspect in the design and optimization of processes and
equipment is the determination of the particle’s terminal velocity. Since this velocity is
strongly influenced by the drag coefficient of the body, the study of this topic becomes
significant. In turn, drag is dependent on the contact area; thus, agglomerate formation
reduces drag and, consequently, reduces pressure drop (CLIFT; GRACE; WEBER, 1978;
GERHART; GERHART; HOCHSTEIN, 2016). Therefore, the formation of such arran-
gements becomes desirable, adding relevance in industrial application on the study of
drag.

Fluid dynamics for a wide range of Reynolds numbers is described by the Navier-
Stokes equations, which do not have an analytical solution, particularly for cases involving
immersed three-dimensional bodies or turbulence. Therefore, empirical or numerical studies
are currently necessary to obtain a correlation between the drag coefficient and the Reynolds
number. In order to facilitate the understanding of the phenomenon, studies are typically
experimental, with Läpple & Shepherd (1940) being pioneers in the field. They published
a historical series of 17 works, conducting a study of mean values and presenting a drag
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coefficient curve for particles over a wide range of Reynolds numbers. The average curve
presented, known as the Standard Drag Curve (SDC), continues to be used as a reference
in studies on this topic (SCHLICHTING; GERSTEN, 2017).

Recent studies dealing with particle-laden flows consider the particles as perfect
spheres, making it possible to estimate the individual drag coefficient through analytical
solutions for low Reynolds number values, in the region known as the Stokes regime.
In order to obtain estimates that better represent empirical data, equipment has been
developed over the decades to describe and quantify particle shape characteristics, such as
shape, circularity, roughness, and sphericity (CLIFT; GRACE; WEBER, 1978; GERHART;
GERHART; HOCHSTEIN, 2016).

Due to the lack of a general solution, the literature presents various empirical
correlations developed to predict the drag coefficient of both spherical and non-spherical
particles, associated with different ranges of validation and precision (CLIFT; GRACE;
WEBER, 1978; LEITH, 1987; HAIDER; LEVENSPIEL, 1989; GANSER, 1993; HÖLZER;
SOMMERFELD, 2008; BAGHERI; BONADONNA, 2016). However, these correlations
have some disadvantages. One of the main drawbacks is that early studies were predo-
minantly based on experiments with regularly-shaped particles, such as cubes, cylinders,
and disks, which deviate from one of the main characteristics of flow in agglomerates:
the chaotic behavior of the flow as it passes through the agglomerates (CLIFT; GRACE;
WEBER, 1978).

For the evaluation of the drag coefficient of isolated groups of packed spheres
moving through non-Newtonian fluids, Tran-Cong, Gay & Michaelides (2004) conducted a
laboratory study, leading to a correlation with a good fit for a limited range of Reynolds
numbers and body dimensions. However, this correlation covers most irregularly-shaped
particles in practical engineering applications. This work has become a reference in the field
due to the innovation of proposing the use of surface circularity as a geometric parameter
for correcting the correlation of Clift & Gauvin (1971), as well as the proposal of sphere
agglomeration to emulate irregular bodies.

With the increase in computational capabilities, the field of simulation studies
continues to expand. In the literature, there are studies employing the lattice-Boltzmann
method (LBM), Large-Eddy Simulation (LES), and Direct Numerical Simulation (DNS)
to evaluate the drag coefficient of particles. For industrial-scale problems, such approaches
are impractical due to the high computational effort, especially for high Reynolds numbers.
Simulations are performed in a transient formulation with very small time steps and highly
refined grids to respect the Kolmogorov scales (POPE, 2000; HEINZ, 2020). However, in
the subgrid-scale field, such approaches are highly useful to understand the influence of
turbulence on micro-scale vortices, owing to their high resolution of the study object.

LBM has proven to be a valuable computational fluid dynamics (CFD) method
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for understanding particle flows due to the simplicity of the algorithm and use of explicit
methods. Initial studies using LBM have shown a correlation between the drag coefficient
and gas-solid interaction, not only with Reynolds number and solid volume fraction, but
also with the geometry of the agglomerate (CHEN; DOOLEN, 1998; HILL; KOCH; LADD,
2001a).

For instance, Beetstra, Hoef & Kuipers (2006) compared experimental data obtained
by Tran-Cong, Gay & Michaelides (2004) with results from simulations using the lattice-
Boltzmann method under the same conditions, aiming to extend the influence of geometry
on fluidized bed disturbances. They concluded that the drag force on each particle also
depends on the variation in distance between particles. The results highlighted how
neglecting the agglomeration effect can lead to deviations in the simulated behavior of
equipment, both in terms of the expected and experimentally obtained values.

However, LBM is primarily applied in the study of gas-particle interactions, leading
to errors when attempting to extrapolate equations proposed in such studies to cases
involving liquid-particle interactions. Hence, there is a demand for simulation studies using
DNS or LES, such as high-resolution works, or simulations that model turbulence, such as
Reynolds-Averaged Navier-Stokes (RANS) or Unsteady Reynolds-Averaged Navier-Stokes
(URANS) formulations of the Navier-Stokes equations (LUNA et al., 2017).

DNS simulations have proven to be a crucial tool for accurately estimating cor-
relations for transport coefficients in microscales, one of the essential parameters for
coarse-grained modeling of fluid-particle systems (DEEN et al., 2012). To understand fluid-
particle mass transfer in randomly arranged particle configurations, Mehrabadi, Murphy
& Subramaniam (2016), for instance, employed DNS in a homogeneous flow to isolate the
phase interaction effect in a particle agglomerates. They developed a gas-solid drag law
for particle agglomerates based on the observation that particle agglomerates reduce drag.

A review of literature on drag coefficient models proposed using computational
methods and unsteady formulations indicates that these studies are predominantly focused
on low Reynolds numbers, mainly for values below 300 (KE et al., 2018). Such models are
applied to industrial-scale problems, extrapolating them to situations where the Reynolds
number significantly exceeds the proposed flow range.

The use of extrapolation as an initial approximation is a recurring method. However,
when aiming for higher precision, this approach can lead to significant deviations, as these
models are proposed for a range where the drag coefficient generally does not reach its
minimum value. Consider, for example, a classic profile of drag coefficient behavior for a
Newtonian fluid flowing around a spherical particle, as shown in Figure 1.

It can be observed that the value continues to decrease until Reynolds numbers
around 2000, reaching drag coefficient values up to 50% lower than those observed for
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Figure 1 – Example of the behavior of the drag coefficient curve along a wide range of
Reynolds numbers. Source: Loth (2008).

values near 300. It is also noticeable that once the minimum value is reached, the coefficient
starts to increase again, making it insufficient to model the curve for values limited to 300.

Figure 1 illustrates the drag coefficient behavior observed across a wide range of
Reynolds numbers for simple spheres. However, it can be used as an example to present
results for all flow profiles of a Newtonian fluid around a particle. As Reynolds number
varies, a different velocity field profile is observed. Altogether, six different profile types
are observed as the influence of inertial effects on the flow increases. The expected drag
coefficient curve for irregular bodies, although maintaining the same general shape, differs
in the Reynolds number ranges where the various flow types are observed (BAGHERI;
BONADONNA, 2016).

There is no consensus on the exact ranges at which transitions between types
of Newtonian fluid flows occur, as the shape of the body alters pressure and velocity
fields, as well as vortex formation. This behavior becomes quite evident, especially in the
transition to turbulence range, where small perturbations, even due to particle geometry,
generate vortices that alter the flow. However, there is a widely accepted approximation
in the literature for flow around irregular particles (GOOSSENS, 2019), where profiles are
classified into six ranges:

- Re ≤ 20 – perfect laminar flow

For flows with Re ≤ 20, the motion is smooth and undisturbed. Despite the predomi-
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nance of inertial forces over viscous forces, it is still not sufficient for boundary layer
detachment to occur, so the fluid tends to flow following the shape of the particle
walls.

- 20 ≤ Re ≤ 210 – steady axisymmetric flow regime

For Re ≥ 20, a flow detachment is observed near the stagnation point in the rear
region, forming an axially symmetric recirculating zone where the von Kármán vortex
street begins to form and continues until Reynolds values close to 200.

- 210 ≤ Re ≤ 270 – steady planar-symmetric flow regime

As Reynolds numbers increase, there is an increase in the separation angle of the
flow, shifting the region where the recirculating zone begins and consequently leading
to an elongation of the wake.

- 270 ≤ Re ≤ 400 – unsteady planar-symmetric regime

In this Reynolds range, a transition to turbulence is observed, where the flow
transitions from forming a symmetric and stationary wake to an asymmetric and
time-dependent wake.

- 400 ≤ Re ≤ 1000 – unsteady asymmetric flow regime

Starting from this range, the flow loses its full symmetry and becomes time-dependent.
It is possible to clearly observe the formation of large-scale vortices occurring cyclically
in an irregular fashion.

- 1000 ≤ Re ≤ 380000 – turbulent wake regime

For Reynolds numbers above 1000, the flow around the particle is considered turbulent.
Starting from values around 2000, the effects of vorticity become evident in the
wake region, with smaller and more chaotic scales as Reynolds number increases.
For values up to 200,000, it still remains at subcritical condition, where a laminar
separation region and a turbulent wake are observed.

Now, if we consider a practical perspective, there exists a connection between
the use of empirical correlations and their implementation in CFD codes, which aims at
engineering applications involving simulation and optimization of industrial equipment.
Taking the main commercial CFD codes as an example, many drag coefficient correlations
are already implemented as subroutines. However, these correlations are quite generic
and largely applicable to perfect spheres, lacking an application for specific cases where
particles have irregular geometries. As a result, such codes allow for the implementation
of custom subroutines.
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In the Fluent’s theory guide, for instance, we will find that most of the correlations
follows two classic models for drag coefficient calculation (ANSYS, INC, 2012):

CD = Λ1

Re
+ Λ2√

Re
+ Λ3 (1.1)

CD = 24
Re

(
1 + A ·ReB

)
+ C

1 + D
Re

(1.2)

which, initially, seem to be a simple adjustment of data and straightforward implementation
in a code. However, upon consulting the primary source, we see that these models exhibit
a certain level of implementation complexity, as the terms Λ or A, B, C, and D are not
constants.

The Morsi & Alexander (1972) model, as implemented in the Fluent code, for
instance, is based on Equation 1.1. However, the values of Λ are parameters that vary
according to the Reynolds range, making the correlation actually a set of 8 equations,
dependent on the Reynolds range. Another model implemented in Fluent, designed for
irregular particles, is the Haider & Levenspiel (1989) model, which is based on Equation
1.2. However, the terms A, B, C, and D are, in fact, functions that vary with sphericity
and Reynolds number.

From this brief contextualization, two questions remain unanswered: is it possible
to simulate the drag coefficient in particles using a mathematical modeling that requires
less computational resources in order to propose new correlations? And if feasible, is such
modeling reliable enough to allow us to propose a unified and simple correlation that is
robust enough to encompass flow ranges from fully laminar to fully turbulent?

Therefore, the objective of this study is to investigate these inquiries by evaluating
whether a steady formulation, featuring turbulence modeling, can accurately predict the
drag coefficient. Additionally, based on a comprehensive review of the literature, the goal
is to propose a novel, simple, and unified correlation to calculate the drag coefficient. This
correlation should be easily implementable in CFD codes and capable of encompassing a
wide range of subcritical flow conditions, specifically Re < 2 · 105. The overarching aim is
to provide practical engineering applications for equipment involving particle-laden flows
with irregularly-shaped agglomerates.

1.3 Objectives

1.3.1 Main Objective
In general lines, the study aims to propose a new correlation capable of estimating

the drag coefficient for irregularly-shaped particles that encompass all six flow profiles.
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1.3.2 Specific Objectives
To accomplish the primary aim of this study, it was necessary to divide the work

into four stages:

• Propose the steady formulation approach to estimate the drag coefficient, as less
computational effort formulation without losing quality of numerical results;

• Experimentally obtain the drag coefficient for particle agglomerates to validate
simulations using CFD;

• Numerically obtain the drag coefficient for experimental agglomerates across flow
ranges between 0.1 ≤ Re ≤ 3500;

• Propose a new unified correlation capable of accurately representing the drag coeffi-
cient for all flow profiles around particles.
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2 Methods

The work was divided into two stages. Initially, a computational less expensive
approach to simulate the flow around particle agglomerates was proposed. Thus, a numerical
methodology was initially introduced through CFD study. In this initial stage, hypothetical
geometries were proposed, serving as tests for the simulations. The second stage involves
the study under real, experimentally observed conditions, aiming to validate the numerical
methodology. Therefore, configurations of sphere agglomerates were proposed to represent
irregularly-shaped particles.

2.1 Numerical methods and convergence criteria
In general terms, the numerical methods employed in the simulations are presented

in Table 1. As various turbulence models were tested in this study, the type of spatial
discretization varies according to the model used. Since these models involve the Reynolds-
Averaged Navier-Stokes equations (RANS), they all share a similar modeling approach.
Large-Eddy Simulations (LES) were also conducted as an evaluation criterion for the
transient model’s ability to estimate drag coefficients. The methods used in LES simulations
are further detailed in subsection 5.3.2.

Table 1 – General setup of the numerical methods used.

Numerical methods

Formulation Steady
Transient First Order Implicit

Pressure-velocity
Coupling PISO

Spatial discretization
Gradient Least-Square Cell-Based
Pressure PRESTO !

Momentum Second Order Upwind

Turbulence closure equations

Spalart-Allmaras

Second Order Upwind
RNG k-epsilon
SST k-omega

Langtry-Menter
Reynolds Stress Model

For all the cases studied, regardless of the turbulence model, the convergence
criterion used was a root-mean-square (RMS) error of cell residuals lower than 10-9 for
both continuity and the variables modeled by the closure equations of the turbulence
model employed. The details regarding the geometry, mesh, and boundary conditions of



Chapter 2. Methods 26

the computational domain are presented in the methods sections of the chapters containing
the articles (subsection 3.2.1, subsection 4.2.2, and subsection 5.2.1).

2.2 Experimental methods
Three geometries of agglomerates consisting of Acrylonitrile Butadiene Styrene

(ABS) spheres were proposed, and using super glue, the spheres were agglomerated into a
stable configuration.

To determine the drag coefficient of the agglomerate, the terminal velocity method
for a submerged body was employed. In order to calculate the drag coefficient over a wide
range of Reynolds numbers, water-glycerin solutions were utilized, varying the volume
fraction of glycerin from 0 to 1. The viscosities of the fluids were measured using a
Ford viscosity cup from the brand Tech Vision Ltda., with tests conducted in triplicate.
Density measurements were performed using specific gravity densimeters for ranges between
0.9 and 1.3 g/cm3, always considering the experimental uncertainties provided by the
manufacturers.

In order to eliminate bubbles during the agglomerate’s free fall, the agglomerates
were immersed and randomly released in free fall in the solution multiple times before
starting tests with a new fluid. The agglomerates were stored in a beaker containing a
sample of the solution used in the experimental setup of the conducting essays.

To prevent any interference in the results when switching fluids, the agglomerates
were washed multiple times using distilled water and left to dry on paper towels overnight.
Subsequently, the bubble elimination procedure was repeated for the new fluid.

Using a high-speed camera, the agglomerates were recorded in free fall using a
SONY RX-110 IV camera at a resolution of 3840 x 2160 pixels and a frame rate of 960
frames per second. Consequently, multiple essays were conducted to obtain as many data
points as possible for each tested condition.

Using the Tracker 6.10 software, it was possible to determine the terminal velocity
of each essay, as well as the agglomerate’s falling angle. Therefore, essays in which the
agglomerate displayed falling angles below 89° or above 91° at any moment during the fall
were discarded.

In order to reduce experiment uncertainty, the values from the 7 experiments that
were closest to a normal fall to the bottom plane of the tank were adopted. Subsequently,
Tukey’s fence for outlier removal was applied, to improve the accuracy of the results
(TUKEY, 1977).

The methodology employed in conducting the experiments is further detailed in
subsection 5.2.4, which presents a scheme of the experimental setup, sphere characteristics,
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as well as the arrangement in which they were bonded to form the agglomerates, the flow
direction, and details of the laboratory’s ambient conditions.
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3 Proposition of the modelling

This chapter is dedicated to presenting the first part of the thesis: analyze the steady
formulation as an alternative way to study the drag coefficient in particle agglomerates that
requires less computational effort. The study in this chapter resulted in an article entitled
Numerical study of turbulence on drag coefficient determination for particle agglomerates,
published in the journal Chemical Industry & Chemical Engineering Quarterly, (available
at: 10.2298/CICEQ221206021O).

The focus of this stage was to evaluate an alternative approach to the study of
drag coefficient calculation, aiming for a reduction in computational cost. In the field of
numerical simulations, the most common way to calculate the drag coefficient is through
the use of unsteady formulations. Recurrent use is observed for simulations such as LES,
DNS, and lattice-Boltzmann (KE et al., 2018), which, with a high level of flow detail,
can obtain highly accurate results for pressure and velocity fields, and consequently, high
precision for the drag coefficient.

However, two problems are observed in the unsteady approach: high computational
cost, which increases with increasing turbulence intensity due to the generation of smaller
vortices (CHOI; MOIN, 2012), limiting the models to flows with Reynolds numbers
generally below 300; and low geometric complexity, given the difficulty of generating
homogeneous meshes around complex bodies.

The mesh generation limitation does not apply to the lattice-Boltzmann method.
Still, to accurately represent the flow from the smallest vorticity scales, the method requires
time steps of magnitude O(-6) (DIETZEL; SOMMERFELD, 2013), thereby maintaining
the flow restriction to Reynolds values below 100 (KE et al., 2018).

The limitation due to high computational cost results in a condition where studies
being conducted provide only a few simulation-obtained data points and are restricted to a
very limited range of Reynolds numbers, where correlations are extrapolated, compromising
the reliability of the results obtained. Thus, the proposal of this stage is, as an initial
study, to assess the ability of a steady-state formulation to provide reliable results in the
calculation of drag coefficient for particle agglomerates, once the correct turbulence model
is employed.

To achieve this, Reynolds-Averaged Navier-Stokes (RANS) turbulence models
were tested based on the criterion of using wall functions to model the regions around
the agglomerate surfaces. Therefore, the RNG k-ε and Reynolds Stress Model with the
standard wall function in Fluent 14.5 (ANSYS, INC, 2012) were chosen, along with the
Spalart-Allmaras, SST k-ω, and Langtry-Menter models, as they do not use wall functions.

https://doi.org/10.2298/CICEQ221206021O
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It was observed that the turbulence models followed a trend of results similar
to the behavior of the drag coefficient curve over a range of Reynolds numbers. When
compared with literature correlations for calculating drag coefficient in agglomerates,
it was noticed that, in general, the results followed the curve predicted by the Tran-
Cong, Gay & Michaelides (2004) model. This trend was statistically confirmed using the
root-mean-square error method.

It was also observed that turbulence models without wall functions generally better
represented the behavior of the drag coefficient curve along the Reynolds number, with
the Spalart-Allmaras and SST k-ω models being the closest to the curve predicted by the
Tran-Cong, Gay & Michaelides (2004) model.
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3.1 Introduction
In the design of equipment involving particle-laden flows, it is essential to correctly

model the interaction between the two phases to obtain consistent results. The forces
of fluid-particle interaction are directly related to the characteristics of the particles,
such as size, shape, elasticity, and roughness, which are determining in the performance
of equipment such as the fluidized bed (WANG; GE; LI, 2008; HARTGE et al., 2009;
NIKOLOPOULOS et al., 2010; WANG; WU; WEI, 2017). Usually, in models that simulate
fluidized bed reactors, the drag force is related to the porosity of the bed, assuming that the
particles are distributed homogeneously (GIDASPOW, 1994; HILL; KOCH; LADD, 2001a;
HILL; KOCH; LADD, 2001b; HOEF; BEETSTRA; KUIPERS, 2004). However, depending
on their physical, superficial, and mechanical characteristics, the collision, attraction,
and friction between the particles can lead to the formation and irregular distribution of
agglomerates, therefore altering the flow dynamics through pressure oscillations (SENIOR;
BRERETON, 1992; KUWAGI; TAKANO; HORIO, 2000).

Indeed, the behaviour of particle agglomeration in different arrangements deserves
attention, as it occurs in almost all forms, whether naturally or artificially. One can find
such kind of irregularly shaped particles in many applications, such as sedimentation
and flocculation of fine particle aggregates in rivers and lakes, chemical mixing, mineral
processing, stirred tanks, powder sintering, and manufacturing with phase change processes
(TRAN-CONG; GAY; MICHAELIDES, 2004; DEGLON; MEYER, 2006; LANE, 2017).
For several of these processes, determining the terminal velocity of the particle is an
important stage for the design and optimization of processes and equipment. Since this
velocity is straightly dependent on the drag coefficient of the body, such kind of study is
important to simulate the movement of such particles.

Due to the lack of an analytical solution, the literature presents several empirical
correlations designed to predict the drag coefficient of spherical and non-spherical particles
associated with different ranges of validity and precision (CLIFT; GRACE; WEBER, 1978;
LEITH, 1987; HAIDER; LEVENSPIEL, 1989; GANSER, 1993; HÖLZER; SOMMERFELD,
2008; BAGHERI; BONADONNA, 2016). To obtain predictions that better represent the
empirical observations, shape descriptors have been developed in recent decades to quantify
aspects such as shape, circularity, roughness, and sphericity. However, the correlations
present some disadvantages, such as the fact that the first studies are, mainly, based on
experiments with regularly-shaped particles such as cubes, cylinders, and disks, which
reduces the level of detail and accuracy in the description of the local scale phenomena
(BEETSTRA; HOEF; KUIPERS, 2006; DEEN et al., 2012).

For the evaluation of the drag coefficient of isolated groups of ordered packed
spheres moving through Newtonian fluids, Tran-Cong, Gay & Michaelides (2004) conducted
laboratory measurements, leading to a correlation with good agreement over a limited



Chapter 3. Proposition of the modelling 31

range of Reynolds numbers and body dimensions, but covering most of the irregularly
shaped particles in engineering applications. Beetstra, Hoef & Kuipers (2006) compared
these experimental data with lattice-Boltzmann simulations for the same conditions,
aiming to expand the field of the influence of the geometry on the disturbance of fluidized
beds, stating that, indeed, the drag force on each particle is strongly dependent on the
inter-particle distance variation. The results showed how the omission of the agglomeration
effect can cause deviations between the simulated behaviour of equipment and experimental
results.

Literature presents studies using the lattice-Boltzmann method (LBM) and Direct
Numerical Simulation (DNS) to evaluate the drag coefficient in particles. For industrial-
scale problems, these approaches are considered impractical, due to the high computational
effort, mainly for high Reynolds numbers, since the simulations must be carried out in a
transient formulation with small timesteps and the mesh must be fine enough, to respect
the Kolmogorov scales (POPE, 2000; HEINZ, 2020). However, in the field of sub-grid scale,
they are very useful to understand the influence of turbulence in small-scale vortices. The
LBM showed to be a useful method for CFD to understand the flow in particles, due to
the algorithm simplicity and explicit methods (CHEN; DOOLEN, 1998). Since the method
presents a high resolution of the domain, the studies present better accuracy, as observed
in studies such as Dietzel & Sommerfeld (2013), that used the LBM to investigate complex
geometry with a high discretization around the agglomerate and obtained deviations lower
than 10% for lower values of Reynolds, where deviations are generally by the order of 20%
(DIETZEL; SOMMERFELD, 2013).

DNS showed to be an important tool to estimate with accuracy correlations for the
micro-scale transport coefficients, one of the essential parameters for coarse-grained models
of fluid-particle systems (DEEN et al., 2012). To understand the fluid-particle mass transfer
in random arrays of particles, Mehrabadi, Murphy & Subramaniam (2016) performed
DNS in a homogeneous flow, aiming to isolate the effect of interphase interactions on
a particle agglomerate, developing a gas-solid drag law for clustered particles based on
the conclusion that particle clusters lead to a drag reduction. Another recent example of
this method is the study of Chen, Chen & Fu (2022), where the drag and lift in particle
agglomerates were studied for different orientations and sizes of particles and presented
deviations between 2 and 4%. However, due to the constraints of the method, the study
focused on understanding the hydrodynamic on agglomerates for a range of Reynolds
below 100, where highly dependent on the projected area (DIETZEL; SOMMERFELD,
2013).

In contrast to the large number of empirical correlations to predict the drag
coefficient of irregular particles, there is a scarcity of studies in which specific correlations
have been proposed to determine drag forces acting on particle agglomerates. The literature
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in the computational field using the unsteady formulation, such as LES and DNS, focuses
on analyzing simple bodies – such as regularly-shaped single bodies –, due to the difficulty
in generating uniform meshes around complex bodies, as well as limited to low Reynolds
flows, generally below 250, due to the computational demands associated with higher
Reynolds numbers (POPE, 2000). The use of LBM eliminates the difficulty of mesh
generation, so we observe studies on more complex and arbitrary bodies (DIETZEL;
SOMMERFELD, 2013), with an agglomeration of several spheres, but the method is still
limited for low Reynolds flows, since the forces acting on walls inside the flow are directly
calculated in the smaller scales (CHEN; DOOLEN, 1998; BEETSTRA; HOEF; KUIPERS,
2006; DEEN et al., 2012; DIETZEL; SOMMERFELD, 2013; MEHRABADI; MURPHY;
SUBRAMANIAM, 2016; CHEN; CHEN; FU, 2022).

Because of the lack of studies for higher Reynolds flows, and since the high
computational cost needed to perform transient simulations, we focus on proposing a
methodology, using the steady formulation, to simplify the problem of calculating the drag
coefficient in complex bodies, which allowed the investigation of the flow for a wide range
of Reynolds numbers. Since turbulence plays an important role in the flow profile as we
increase the velocity of the fluid, we focused on how its modelling interferes with the drag
estimation in particle agglomerates. So, the present paper evaluates the drag coefficient
of three different conformations of irregularly shaped particle agglomerates, composed
of spherical particles, surrounded by a water flow, varying the turbulence model tested.
The models were compared using steady RANS turbulence models to investigate their
robustness to predict the drag acting in particle agglomerates for different conformations,
to reduce computational costs of unsteady simulations, such as URANS, LES, DNS or
LBM.

3.2 Methods
This study was carried out in the theoretical field, using CFD simulations to obtain

the flow profile of water around particle agglomerates. The drag coefficient of the particles
was calculated by CFD simulations, using five different turbulence models. The results
were compared with five empirical correlations for estimation of the drag coefficient in
irregularly-shaped particles present in literature, to find which is robust enough to represent
the trend of the results of drag coefficient in particle agglomerates obtained by simulations.

The drag coefficient for spheres, in the theoretical field, is simple to calculate, since
it depends on a balance of forces. This balance leads to Equation 3.1

CD = − FD
1
2ρfA |up − uf | (up − uf ) (3.1)

where FD is the drag force. The drag depends on the fluid, particle and flow characteristics,
i.e. fluid density and velocity, ρf and uf , respectively, and the particle velocity and reference
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area, up and A, respectively. The particle in the domain of the present study is fixed,
leading to a particle velocity equal to zero, so the fluid flow profile and the drag coefficient
are given exclusively by the behaviour of the fluid flow around the particle.

To determine which correlation better follows the trend observed in the drag
coefficient obtained by CFD, we must define some criteria to compare the simulations with
the correlations. The first consideration was the analysis and comparison of the flow profile
for each of the five turbulence models with the behaviour expected by the literature. This
step is important to understand if the results obtained for the drag coefficient are reliable.

Since a quantitative analysis is crucial, we also chose to evaluate the percent
deviation between simulations and correlations, estimated by the Equation 3.2.

δ = 100 · C
corr
D − Csim

D

Ccorr
D

(3.2)

where Ccorr
D and Csim

D are the drag coefficients obtained by the correlation and the simulation
respectively. Another quantitative analysis considered was the root-mean-square error,
RMSE, given by

RMSE =
√∑N

i=1 (x̂i − xi)2

N
(3.3)

where x̂i is the value of the ith data of a parameter estimated by the correlation, xi is the
value of the ith data of the parameter obtained by simulation – i.e. the drag coefficient –
and N is the total data in the sample studied.

3.2.1 Numerical simulations
The numerical simulations were carried out using the software ANSYS 14.5. The

computational domain and numerical meshes of the particle agglomerates in this study
were generated using the software ANSYS Design Modeler and Meshing 14.5. The software
ANSYS Fluent 14.5 was used to solve the model equations, and to analyze the fluid flow
profile and the drag coefficient we used the software CFD-Post.

3.2.1.1 Design and mesh generation

Simulations were carried out for three different computational domains, varying the
geometry of the agglomerates, containing three, four, and five particles, where the radius
of each particle in the agglomerate measures 0.5 cm. The domain generated corresponds
to a parallelepiped with a height and width of 0.1 m and a length of 0.2 m.

Aiming the generation of well-structured meshes, the domain was divided into
two cubes, as presented in Figure 2. The cube on the left side, close to the inlet, was
subdivided into seven smaller parts, for better control of the quality of the elements around
the agglomerate of spheres. Six of them are pyramidal-shaped, connected to an inner cube,
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surrounding the agglomerate of spheres, and positioned in the center of the major cube.
For the second cube, on the right side and close to the outlet, there was no need to divide
into smaller parts. Figure 2 also shows a cut of the lateral view of the computational
domain using the agglomerate of five spheres as an example, while Figure 3 shows the
isometric view of the geometry of the three agglomerates.

Figure 2 – Example of the lateral view of the interior of the computational domains
simulated.

Figure 3 – From left to right: Isometric view of the particle agglomeration of three, four
and five particles and a scheme of the flow direction.

3.2.1.2 Meshes statistics

Before running simulations, it is important to analyze the quality of the mesh,
by verifying the elements according to their shape and criteria for several mesh quality
parameters. In this study, we chose to evaluate its aspect ratio, orthogonality, and skewness.
To obtain easier convergence stability and better accuracy, it is ideal to have elements
exclusively hexahedral. However, due to the complexity of the geometry of the agglomerates,
hybrid meshes were generated. These meshes contain elements with shapes referred to as
tetrahedral, six-node wedge, five-node pyramid, and hexahedral.

To avoid distorting the mean values and standard deviations, the values are
presented separately according to two regions: the inner cube around the agglomerate
(Figure 2), referred to as Subdomain, and the whole computational domain, referred to
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as Total domain. Table 2 shows the values of minimum, maximum, mean, and standard
deviation of the three parameters for the tested meshes, detailed for the subdomain and
the total domain.

Table 2 – Mesh quality for the three agglomerates studied.
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The minimum value possible for the aspect ratio is 1, where the quality is considered
excellent for values lower than 20 (ANSYS, INC, 2012; FERZIGER; PERIĆ, 2002). For both
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total domain and subdomain, the maximum values obtained were above 20, however, their
average values are lower than 1.2 with standard deviations lower than 0.48%. Analyzing
the aspect ratio of the three meshes, presented in Table 3, we find a high number of
elements with values below 5, so that they are considered excellent for this criterion.

The orthogonality varies from 0 to 1, where values above 0.8 are considered excellent
(ANSYS, INC, 2012; FERZIGER; PERIĆ, 2002). Even though some elements present
poor quality, the mean value for each proposed domain was above 0.94, with a standard
deviation lower than 0.1%, where elements with orthogonality above 0.8 correspond to
at least 94% of the elements, as seen in Table 3. This occurs due to the high quantity
of hexahedrons, which tend to have higher orthogonality. This effect is also present in
skewness. Analyzing the skewness, where elements have excellent quality for values between
0 to 0.2 and good quality for values between 0.2 and 0.4, we observe that the mean values
do not exceed 0.07 and the standard deviations do not exceed 0.12% for any mesh. The
low value is a direct result of the high quantity of hexahedrons with good and excellent
quality.

Pyramidal shapes, such as tetrahedrons and five-node pyramids are expected to
have lower orthogonality and higher skewness (FERZIGER; PERIĆ, 2002). Table 3 shows
that the influence of such shapes to the quality of the meshes was not significant, as
consequence of the low number of pyramidal elements – representing less than 2.5% of the
elements of the subdomain and less than 0.5% of the total domain for all meshes.

It is relevant to emphasize the predominance of hexahedral elements for both
subdomain and total domain in all meshes. The agglomerate of three spheres presented
percentages of hexahedral elements above 83% in the subdomain and 93% in the total
domain. In the meshes of agglomerates of four and five spheres, these percentages were
above 92% in the subdomain and 95% in the total domain. Also, analyzing the meshes
statistics for three main parameters, the elements have good or excellent quality, so the
meshes are expected to behave with convergence stability and obtain accurate results.

3.2.1.3 The governing equations

The time-averaged conservation equations for the steady incompressible isothermal
turbulent flow in the three-dimensional model, neglecting body force, can be expressed by
the equations of continuity and motion (POPE, 2000).

The closure equations for the RANS approach depend on the turbulence model used.
In this study, we investigated the effects of five turbulence models. The models are classified
according to the number of transport equations used to close the modelling of the problem.
The models tested are the one-equation based Spalart-Allmaras, the two-equation based
RNG k-ε and SST k-ω, the four-equation based Langtry-Menter, and the six-equation
Reynolds stress model. The modelling of its closure equations and coefficients are better
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Table 3 – Percentage of elements of the meshes attending to the criteria of the quality
coefficients.

A
sp

ec
t

ra
tio

O
rt

ho
go

na
lit

y
Sk

ew
ne

ss

R
eg

io
n

A
gg

lo
m

er
at

e
N

um
be

r
of

el
em

en
ts

Be
lo

w
5

(%
)

A
bo

ve
0.

8
(%

)
Be

lo
w

0.
4

(%
)

Su
bd

om
ai

n
3

sp
he

re
s

12
40

97
0

99
.9

9
96

.2
4

96
.3

9
4

sp
he

re
s

10
64

25
5

99
.9

6
94

.2
5

94
.5

9
5

sp
he

re
s

13
28

01
5

99
.9

7
94

.2
1

94
.4

1

To
ta

ld
om

ai
n

3
sp

he
re

s
52

34
90

7
99

.9
9

98
.6

7
98

.6
4

4
sp

he
re

s
50

01
75

3
99

.9
9

97
.8

9
98

.1
7

5
sp

he
re

s
52

20
32

0
99

.9
8

97
.9

8
97

.8
7

detailed in the literature (LAUNDER; REECE; RODI, 1975; SPALART; ALLMARAS,
1992; YAKHOT et al., 1992; MENTER, 1994; LANGTRY; MENTER, 2009).

3.2.1.4 Simulation setup

The fluid properties were set up for an isothermal operation condition of 25 °C,
obtaining water density and viscosity of 998.2 kg/m3 and 1.003·10-3 Pa·s, respectively. As
a boundary condition, the inlet velocity of the water was set as an injection normal to
the inlet surface. Since the drag experienced by particles flowing in a Newtonian fluid
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can be divided in six main flow regimes according to its Reynolds number, we varied the
velocities of the flow to obtain Reynolds numbers between 1 and 1500, to assure that we
will observe how the turbulence model interferes on the estimation of the drag coefficient
in all the regimes, from laminar to turbulent wake flow regimes (LOTH, 2008; GOOSSENS,
2019). The velocities varied from 5·10-5 to 0.10501 m/s, as presented in Table 4, according
to the agglomerate, to obtain the range of Reynolds numbers proposed, calculated by
Equation 3.4.

Re = ρ · u · deq

µ
(3.4)

where ρ, u, and µ are the density, relative velocity, and viscosity of the fluid, and deq is
the diameter of the sphere equivalent to the agglomerate, i.e. with the same volume. At
the higher Reynolds number, we also carried out unsteady simulations, to compare the
difference between the drag coefficients. Despite presenting the unsteady turbulent wake
profile, the drag coefficient obtained did not present significant deviations, so, to reduce
computational efforts, we chose the steady simulations. The boundary conditions were set
to the no-slip condition for the sphere walls and specified-shear for the domain walls.

Table 4 – Inlet velocity of the flow for the Reynolds numbers tested.

Reynolds
[ - ]

Velocity [ m/s ]
3 spheres 4 spheres 5 spheres

1 0.000070 0.000064 0.000059
5 0.000350 0.000318 0.000295
10 0.000700 0.000636 0.000590
30 0.002100 0.001907 0.001770
50 0.003500 0.003178 0.002950
80 0.005600 0.005085 0.004720
100 0.007000 0.006356 0.005900
300 0.021002 0.019069 0.017702
500 0.035003 0.031781 0.029503
800 0.056005 0.050849 0.047205
1000 0.070007 0.063562 0.059006
1300 0.091009 0.082631 0.076708
1500 0.105010 0.095343 0.088509

Despite the SIMPLE-based algorithms present lower computational effort (DOOR-
MAAL; RAITHBY, 1983), we chose the PISO algorithm, since it presents greater stability,
requiring less iterations, generating a faster convergence, and, as consequence, less process-
ing time (VERSTEEG; MALALASEKERA, 2007; TUKOVIĆ; PERIĆ; JASAK, 2018).

The spatial discretization was set to the least-squares cell-based method for gradi-
ents, PRESTO! scheme for pressure and second-order upwind scheme for energy, momen-
tum, and turbulence equations, to solve the problem of underestimation of turbulent kinetic
energy and its dissipation rate, as suggested in previous studies (DEGLON; MEYER,
2006; LANE, 2017).
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3.2.1.5 Turbulence closure models

The choice of the turbulence models was based on their characteristics and ability
to solve specific problems presented by the complex geometry of the meshes generated.
Since one of the focuses in the present study stands on analyzing the drag coefficient in
an agglomerate of particles, predicting the flow in the boundary layer is essential. The
Spalart-Allmaras model, a one-equation based model, fits in this type of flow since it was
developed to study the flow in the boundary layers of airfoils (SPALART; ALLMARAS,
1992). Two other models that were also developed to represent this zone are the transition
models SST k-ω and the Langtry-Menter k-ω (POPE, 2000). The first one is a two-equation
based model that solves the equation of the turbulent kinetic energy, k, for the flow far
from the wall and, for the boundary layer, weights the influence of the turbulent kinetic
turbulence and the specific turbulence dissipation rate, ω, using blending functions. The
second is based on the k-ω, however, implements two transport equations, one to solve the
intermittency, γ, and one to solve the transition momentum-thickness Reynolds number,
R̃eθt, to better represent profiles with strong adverse pressure gradients (MENTER, 1994;
LANGTRY; MENTER, 2009; WILCOX, 2004).

We also tested turbulence models that were developed to represent wide ranges of
Reynolds numbers. The k-ε model was developed to solve several engineering in a wide
range of Reynolds numbers, with a low computational cost (LAUNDER; SHARMA, 1974).
This model has the characteristic of modelling the near-wall region and solve the transport
equation for the outer region of the boundary layer. We chose to use the RNG k-ε, an
improvement of the k-ε developed to solve problems where the flow presents a highly
swirling profile (YAKHOT et al., 1992). Another model tested in this study, with similar
characteristics, but more robust was the Reynolds stress model. The main difference
in this seven-equation-based model that leads to its robustness is the addition of six
transport equations, one for each of the independent Reynolds stress, to the solution for
the dissipation equation, ε, and its anisotropic treatment (LAUNDER; REECE; RODI,
1975). The following items enumerated are reserved for the modelling of the transport
equations of each turbulence model presented.

i. Spalart-Allmaras model

The Spalart-Allmaras is a one-equation model which solves the transport equa-
tion for a viscosity-like variable ν̃, also referred as the Spalart-Allmaras variable.
The model is given by the Equation 3.5

∂ν̃

∂t
+ ∂ (uj ν̃)

∂xj

= 1
σ

∂

∂xj

[
(ν + ν̃) ∂ν̃

∂xj

]
+ cb2

σ

∂ν̃

∂xj

∂ν̃

∂xj

+ cb1S̃ν̃ − cw1fw

(
ν̃

d

)2
(3.5)

where S̃ is the production of turbulent viscosity, cb1, cb2, cw1, fw and σ are closure
coefficients and auxiliary relations of the model, better described by Spalart &
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Allmaras (1992).

ii. RNG k-ε model

The RNG k-ε model uses the renormalization group theory to improve the Stan-
dard k-ε model, which models the turbulence kinetic energy, k, and the turbulence
dissipation rate, ε, given by Equations 3.6 and 3.7, respectively,

∂k

∂t
+ ∂ (uik)

∂xi

= ∂

∂xj

[(
ν + νt

σk

)
∂k

∂xj

]
+ Pk − ε (3.6)

∂ε

∂t
+ ∂ (uiε)

∂xi

= ∂

∂xj

[(
ν + νt

σε

)
∂ε

∂xj

]
+ C1ε

ε

k
Pk − C∗

2ε

ε2

k
(3.7)

where Pk is the production term of the turbulent kinetic energy (YAKHOT et al.,
1992).

iii. SST k-ω model

The SST k-ω model implements modifications for low-Reynolds number effects,
compressibility, and shear flow spreading. The model is based on modelling transport
equations for turbulence kinetic energy and the specific dissipation rate, given by
the Equations 3.8 and 3.9, respectively.

∂k

∂t
+ ∂ (ujk)

∂xj

= ∂

∂xj

[
(ν + σkνt)

∂k

∂xj

]
+ Pk − β∗kω (3.8)

∂ω

∂t
+ ∂ (ujω)

∂xj

= ∂

∂xj

[
(ν + σωνt)

∂ω

∂xj

]
+ αS2 − βω2 +

2 (1 − F1)σω2
1
ω

∂k

∂xi

∂ω

∂xi

(3.9)

where F1 is the blending function, α, β and σ refers to closure coefficients of the
model (MENTER, 1994).

iv. Langtry-Menter SST k-ω model

Modelled similarly to the SST k-ω model, presented previously, the Langtry-
Menter model implements two transport equations, to solve the intermittency and the
turbulent transition Reynolds number, given by Equations 3.10 and 3.11, respectively.

∂γ

∂t
+ ∂ (ujγ)

∂xj

= ∂

∂xj

[(
ν + νt

σf

)
∂γ

∂xj

]
+ Pγ1 − Eγ1 + Pγ2 − Eγ2 (3.10)

∂R̃eθt

∂t
+
∂
(
ujR̃eθt

)
∂xj

= ∂

∂xj

[
σθt (ν + νt)

∂R̃eθt

∂xj

]
+ Pθt (3.11)

where Pγ1 and Eγ1 are the transition sources, Pγ2 and Eγ2 are the destruction sources
and Pθt is a source term (LANGTRY; MENTER, 2009).
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v. Reynolds Stress model

The RSM consists on modelling the Reynolds stresses, represented by the tensor
τ , and the turbulence dissipation rate, ε (POPE, 2000). The exact transport equation
of the Reynolds stresses, in tensorial notation, is given by Equation 3.12

∂τij

∂t
+ uk

∂τij

∂xk

= ∂

∂xk

(
νt

σk

∂

∂xk

τij

)
−
[
τik
∂uj

∂xk

+ τjk
∂ui

∂xk

]
−

C1
ε

K

[
τij − 2

3δijK
]

− C2

[
Pij − 2

3δijP
]

− 2
3δijε (3.12)

where the turbulence production terms Pij are given by

Pij = −
[
τik
∂uj

∂xk

+ τjk
∂ui

∂xk

]
(3.13)

with P being the fluctuation kinetic energy production and νt the turbulent kinematic
viscosity.

The transport equation for turbulence dissipation rate, ε, is given by

∂ε

∂t
+ uj

∂ε

∂xj

= ∂

∂xj

[(
ν + νt

σε

)
∂ε

∂xj

]
− Cε1

ε

K
τij
∂ui

∂xj

− Cε2
ε2

K
(3.14)

where K = 1
2u

′
iu

′
i is the fluctuation kinetic energy (LAUNDER; REECE; RODI,

1975).

3.2.2 Drag coefficient correlation modelling
For several applications in industry, the drag force is the main acting force on a

particle in the opposite direction of the particle motion.

To estimate the drag coefficient, studies generally take into account the most
influential parameters, i.e. the particle Reynolds number, shape, orientation, particle-
to-fluid density ratio. Also, parameters considered secondary, such as secondary mo-
tions, turbulence and particle/fluid acceleration, are the focus of studies (TRAN-CONG;
GAY; MICHAELIDES, 2004; HAIDER; LEVENSPIEL, 1989; GANSER, 1993; BEET-
STRA; HOEF; KUIPERS, 2006; ISAACS; THODOS, 1967; CLIFT; GAUVIN, 1971;
MARCHILDON; GAUVIN, 1979; CHHABRA; AGARWAL; SINHA, 1999).

The present study took into account five correlations observed in the literature that
consider only the main parameters, as follow. Four of them consider the Reynolds number
and shape parameters, such as the sphericity, circularity and flatness of the agglomerate
(TRAN-CONG; GAY; MICHAELIDES, 2004; HAIDER; LEVENSPIEL, 1989; GANSER,
1993; BAGHERI; BONADONNA, 2016), while one of them uses the orientation of the
agglomerate to estimate two different shape parameters (HÖLZER; SOMMERFELD,
2008).
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3.2.2.1 Haider & Levenspiel model

The study of Haider & Levenspiel (1989) was the first to propose that the drag
coefficient is a function of the Reynolds number and sphericity for both spherical and
nonspherical particles. Also, the Reynolds number should be calculated using an equivalent
diameter, deq, corresponding to the diameter of a sphere with the same volume of the
particle tested. They proposed that drag correlations could be written as

CD = 24
Re

(
1 + A ·ReB

)
+ C

1 + D
Re

(3.15)

where A, B, C and D are parameters given as function of the sphericity ϕ, and is applicable
for Re < 2.5 · 104 for isometric particles (HAIDER; LEVENSPIEL, 1989) such as the
proposed in the present study.

3.2.2.2 Ganser model

The model proposed by Ganser (1993) adapts the Haider & Levenspiel model,
introducing two other shape-dependent parameters: the Newton’s and Stokes’ parameters,
kN and kS, respectively and is given by Equation 3.16

CD =
(

24 · kS

Re

)1 + 0.1118
(
Re · kN

kS

)0.6567
+ 0.4305 · kN

1 + 3305
Re kN/kS

(3.16)

where kN and kS are functions of the sphericity, ϕ, and the model is applicable for Re
< 3 · 105 if kN and kS are known. Literature presents several proposals to estimate these
parameters, such as the Tran-Cong, Gay & Michaelides (2004), Hölzer & Sommerfeld
(2008) and Bagheri & Bonadonna (2016), tested in this study and presented in sections
3.2.2.3 to 3.2.2.5, respectively.

3.2.2.3 Tran-Cong model

The model proposed by Tran-Cong, Gay & Michaelides (2004) considers that the
drag coefficient is a function not only of the Reynolds number, but also the ratio between
the surface-equivalent-sphere diameter, dA, and the volume-equivalent-sphere diameter,
deq, referred as flatness, and the circularity, c. The correlation is given by Equation 3.17.

CD = 24
Re

dA

deq

1 + 0.15√
c

(
dA

deq

Re

)0.687
+ 0.42 (dA/deq)2

√
c
[
1 + 4.25 · 104 (dA/deq Re)−1.16

] (3.17)

for the ranges of variables 0.15 < Re < 1500, 0.80 < dA/deq < 1.50 and 0.4 < c < 1.0
(TRAN-CONG; GAY; MICHAELIDES, 2004).

3.2.2.4 Hölzer & Sommerfeld model

The drag coefficient can also be modeled using the theoretical and experimental
correlation for drag in the Stokes region (LEITH, 1987), as the one proposed by Hölzer &
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Sommerfeld (2008). Their model has its base on the proposal of Leith (1987) and Ganser
(1993) for CD in the Stokes region, including shape and orientation-dependent terms, and
Reynolds number of the particle. The correlation is given by Equation 3.18

CD = 8
Re

1√
ϕ||

+ 16
Re

1√
ϕ

+ 3√
Re

1
ϕ3/4

+ 0.4210.4(−log ϕ)0.2 1
ϕ⊥

(3.18)

where the sphericity, ϕ, represents the ratio between the surface area of the volume-
equivalent-sphere and that of the particle, the crosswise sphericity, ϕ⊥, is the ratio between
the cross-sectional area of the volume-equivalent-sphere and the projected cross-sectional
area of the particle and the lengthwise sphericity, ϕ||, is the ratio between the cross-sectional
area of the volume-equivalent-sphere and the difference between half the surface area and
the mean projected longitudinal cross-sectional area of the particle. The correlation is
applicable over the entire range of Reynolds numbers up to the critical Reynolds number
(HÖLZER; SOMMERFELD, 2008).

3.2.2.5 Bagheri & Bonadonna model

This model is also derived from the Ganser model, however, accounts for more
accurate and easier shape descriptors, rather than sphericity (BAGHERI; BONADONNA,
2016). Here, the form factors, FS and FN are functions of the volume-equivalent-sphere,
and three size parameters, which are the longest, the intermediate and the shortest lengths
of the particle, L, I and S, respectively. The correlation is given by Equation 3.19

CD = 24
Re

kS

1 + 0.125
(
Re

kN

kS

)2/3
+ 0.46 · kN

1 + 5330
(Re kN/kS)

(3.19)

where the drag corrections, kN and kS, are functions of the form factors, FN and FS.

3.3 Results and discussion

3.3.1 Grid refinement near the agglomerate walls
To analyze if the turbulence models are applicable, it is important to evaluate the

y+, since the flow near the walls is a relevant region in the study of the drag coefficient.
Turbulence models that do not use wall functions need better refinement near walls since
its y+ shall be lower than 1 (WILCOX, 2004), whereas turbulence models that use wall-
function, the value depends on the type of function treatment. For values as low as 3 it is
recommended to use the Enhanced-Wall functions (ANSYS, INC, 2012). Since the value
of y+ increases as the velocity of the flow increases, it is necessary to analyze only the
highest velocity, i.e. for Reynolds number of 1500.

Simulations presented good results. In general, the y+ were below 1 for over 99.5%
of the elements in the walls of the agglomerates. Worst values were obtained by the RNG
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k-ε simulations, where the percentage of elements below 1 varied between 97 and 98%. The
values confirm that the meshes are fine enough near the agglomerates and it is reasonable
to use the Enhanced-Wall functions for the RSM and RNG k-ε turbulence models and
fine enough to use k-ω-based models and the Spalart-Allmaras model.

However, wall functions are approximations for zones near the walls, leading
the RSM and RNG k-ε turbulence models to lower efficiency on representing the flow
surrounding the agglomerate as well as models without wall functions. Also, it is expected
that RSM and RNG k-ε turbulence models correctly represent the flow far from the
agglomerates, like the models without wall functions.

3.3.2 Statistical analysis of results – Comparison between simulations and
empirical correlations

In Figure 7 we observe three models that present promising curves where simulations
are correlated: the Haider and Levenspiel model, the Bagheri and Bonadonna model and
the Tran-Cong model. However, it is important to statistically confirm which model better
fits the results obtained in the simulation. The criterion used was the method known as
the root-mean-square error (RMSE), calculated by Equation 3.3 and which values are
presented in Table 5.

Table 5 – Root-mean-square error of the turbulence models compared to drag coefficient
models.

Agglomerate Drag coefficient model
Turbulence model

RSM RNG
k-ε

SST
k-ω

Langtry-
Menter

Spalart-
Allmaras

3 spheres

Haider & Levenspiel 1.818 1.513 1.557 1.539 1.240
Ganser 2.604 2.306 2.328 2.319 2.001
Tran-Cong et al. 2.435 2.150 2.150 2.148 1.819
Hölzer & Sommerfeld 2.389 2.089 2.112 2.103 1.781
Bagheri & Bonadonna 2.409 2.116 2.154 2.138 1.856

4 spheres

Haider & Levenspiel 0.724 0.664 0.770 0.921 0.722
Ganser 1.094 1.064 1.117 1.380 1.038
Tran-Cong et al. 0.317 0.338 0.311 0.249 0.370
Hölzer & Sommerfeld 0.804 0.784 0.821 1.128 0.738
Bagheri & Bonadonna 0.545 0.538 0.557 0.347 0.615

5 spheres

Haider & Levenspiel 1.694 1.639 1.741 1.714 1.527
Ganser 2.444 2.394 2.484 2.467 2.244
Tran-Cong et al. 1.061 1.046 1.080 1.078 0.836
Hölzer & Sommerfeld 1.970 1.944 1.994 1.984 1.737
Bagheri & Bonadonna 1.051 0.994 1.101 1.081 0.906

Here, we observe that, in most cases, the Tran-Cong model presents lower RMSE
for the agglomerates of four and five spheres. An exception is observed for the agglomerate
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of three spheres, where the Haider and Levenspiel model presented the lower RMSE for
all turbulence models tested.

Now, still analyzing Figure 7 we observe lower deviations of the Haider and
Levenspiel model for Reynolds numbers between 1 and 100. For this range, the drag
coefficient presents higher values, which interferes the most in the RMSE, compared to
the drag values for Reynolds above 100. This behavior generates the distortion that leads
to statistical inferring that the Haider and Levenspiel model can better represent the drag
coefficient in the agglomerate of 3 spheres. Now, considering the range between 1 and 1500,
the plot shows that the Tran-Cong model presents the best agreement with simulation
data, while the Haider and Levenspiel presents good agreement only for lower Reynolds
numbers.

3.3.3 Analysis of the turbulence models
To understand the influence of the turbulence models on the drag coefficient

prediction, we first observed the behaviour of the streamlines of the flow surrounding the
agglomerate to determine which one better represent three relevant regions of the flow:
the boundary layer, the flow far from the walls of the particle and the wake region in the
rear of the agglomerates. To infer if the simulation results are consistent, we compared
with correlations of the literature, to observe if simulations follow a trend. At last, we
compared the results of the turbulence models with the correlation that better represented
the trend of the simulations, to find which turbulence model presents lower deviations
from the predicted by the correlation.

Before analyzing the drag results, it is relevant to observe if the flow profile
corresponds to the expectations from the literature. Militzer et al. (1989) stated that the
aspect ratio of a particle substantially interferes on where the separation begins and on
the size of the recirculation wake. According to them, particles with similar aspect ratios
present similar flow profile. The flow profile past a sphere is well-known and, since the
particle agglomerates are composed of spheres, it is expected that the flow profile behaves
similarly (OUCHENE, 2020). To compare the velocity profiles, we chose the inlet velocity
to reach Re = 1000, where the flow is turbulent and the vortex street in the rear of the
agglomerate is considered fully turbulent (BAGHERI; BONADONNA, 2016; GOOSSENS,
2019; OUCHENE, 2020). Figures 4 to 6 present the velocity streamlines for agglomerates of
three, four and five particles, respectively, according to the turbulence models. Comparing
the models with wall functions, due to its anisotropic treatment, the RSM is more capable
of representing the velocity in the rear of the particle agglomerates in the wake region than
the RNG k-ε. However, both of them do not represent the profile as well as the turbulence
models without wall functions. Such behaviour confirms the expectation since they model
the boundary layer zone to represent it, instead of solving the transport equations around
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the particle.

(a) (b)

(c) (d)

(e)

Figure 4 – From left to right and top to bottom: velocity streamlines for Re = 1000 in
the agglomerate of three particles using the RNG k-ε, RSM, Langtry-Menter,
Spalart-Allmaras and SST k-ω turbulence models.

The velocity streamlines obtained by the SST k-ω model, seen Figures 4e, 5e and 6e,
better represent the flow profile near the agglomerate walls, i.e. the viscous effects ahead
the particle becoming less important than the inertial effects (BAGHERI; BONADONNA,
2016; GERHART; GERHART; HOCHSTEIN, 2016). Such behaviour leads to a separation
of the flow from the particle at the so-called separation location and the fluid’s inertia is
large enough so that the fluid cannot follow the path around the rear of the particle. This
effect results in a separation bubble after the particle (OUCHENE, 2020), in a region that
the boundary layer thickens rapidly in rising pressure, generating a backflow.

In the moderate Reynolds number range, e.g. the tested in this study, as the
Reynolds number increases, the backflow profile increases in the rear of the particle to
regions far from the particle. The SST k-ω model better represented the recirculating
profile in the rear of the agglomerates for all the particle agglomerates. However, for
larger Reynolds numbers, by the order of Re = 105, the separation is not so clear, since it
occurs together with the wake region (GERHART; GERHART; HOCHSTEIN, 2016). As
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(a) (b)

(c) (d)

(e)

Figure 5 – From left to right and top to bottom: velocity streamlines for Re = 1000 in
the agglomerate of four particles using the RNG k-ε, RSM, Langtry-Menter,
Spalart-Allmaras and SST k-ω turbulence models.

consequence, the results of the drag coefficient estimated by simulations using such model
tends to obtain, in general, lower deviations from the empirical model of drag coefficient,
as presented in Figure 8.

To find a correlation that better represents the trends of the drag coefficient es-
timated by simulations, we compared the results of the five turbulence models tested
with five drag coefficient correlations present in the literature (TRAN-CONG; GAY;
MICHAELIDES, 2004; HAIDER; LEVENSPIEL, 1989; GANSER, 1993; HÖLZER; SOM-
MERFELD, 2008; BAGHERI; BONADONNA, 2016). The comparisons are presented in
Figure 7.

In a first analysis, one can infer that the simulations are better correlated to the
Tran-Cong, Gay & Michaelides (2004) model for the three agglomerates along the range
of Reynolds numbers tested. An exception occurs in the agglomerate of three particles,
as seen Figure 7a, where the Haider & Levenspiel (1989) model has a slightly better
representation for Reynolds numbers lower than 10 and a significant better representation
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(a) (b)

(c) (d)

(e)

Figure 6 – From left to right and top to bottom: velocity streamlines for Re = 1000 in
the agglomerate of five particles using the RNG k-ε, RSM, Langtry-Menter,
Spalart-Allmaras and SST k-ω turbulence models.

for Reynolds numbers between 10 and 100. Since the range of Reynolds numbers is wide,
the logarithm scale distorts the perception of the deviations.

To reduce the distortion, the relative deviations along the Reynolds number were
plotted for the Tran-Cong, Gay & Michaelides (2004) model, to analyze if the model
indeed represents the simulations, and find the turbulence model that presents lower
deviations from the correlation. Analyzing the plot of the deviations for the agglomerate
of three particles (Figure 8a), the range from 1 to 100 is not so distant from the error
of 12% observed in the literature (TRAN-CONG; GAY; MICHAELIDES, 2004). Also,
considering the wide range of Reynolds numbers to which the models are applicable,
deviations between ± 25% are considered low.

For lower velocities, the flow still follows the curvature of the particle and, con-
sequently, the path around the rear of the particle, for all turbulence models, presented
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(a)

(b)

(c)
Figure 7 – Comparison between predictions of the experimental drag models tested and

the simulations data using different turbulence models for agglomerates of: (a)
three particles, (b) four particles, and (c) five particles.



Chapter 3. Proposition of the modelling 50

a similar flow profile, leading to similar values for the drag coefficient. As the velocity
increases, the edge of the boundary layer gets far from the particle, the boundary layer
separation location gets far from the stagnation point and the turbulence models that
use wall functions present difficulties on representing the backflow and wake regions after
the particles. Consequently, the RNG k-ε and RSM do not follow the trends observed by
the other three turbulence models. The RSM is closer to the trends observed due to its
robustness, compared to the RNG k-ε, but in Figures 4 to 6 we observe that the RSM
also does not represent so well the velocity profile expected.

Figure 8 shows the deviation of the drag coefficient obtained by simulations
compared to the correlation of Tran-Cong, Gay & Michaelides (2004) for the agglomerates
in the applicable range of Reynolds number of the model. The figure shows a trend for all
agglomerates, where the deviation slight and negatively increases as the Reynolds number
increases in the range of low Reynolds numbers, from 1 to 100, and for the moderate
Reynolds numbers range, from 100 to 1500, the deviation slope is positive and higher.

For Reynolds numbers between 1 and 100, turbulence models presented similar
deviations for each of the three agglomerates studied, since it corresponds to the laminar
regime presenting unseparated flow. The variation between the models is a consequence
of the different values of the closure constants present in each turbulence model. The
deviations begin to diverge for Re ≥ 300, where the flow is in the transition to turbulence
region and the vortices are becoming present. Figure 8 shows that the values obtained are
lower than the predicted by equations, by the magnitude of -25%, -10% and -18% for the
agglomerates of three, four and five particles, respectively.

As the velocity increases, the gradient of the deviations is positive. However, the
slope of the curves for Spalart-Allmaras and SST k-ω models are smoother and, for
Reynolds numbers above 1000, the deviations for the SST k-ω presents a trend to converge
to a value between ± 5%, according to the agglomerate studied. This is explained by
the increase of kinetic turbulence, so turbulence models that better capture effects in
the boundary layer and the outer layer can better estimate the drag force acting in the
agglomerate. The streamlines presented in Figures 4 to 6 show that the SST k-ω better
represents these effects, followed by the Spalart-Allmaras model, confirming the ability of
these model to estimate the drag coefficient in particle agglomerates.

For Reynolds numbers between 10 and 100 the deviations are constant or close
to constant – in the case of the agglomerate of four particles. This corresponds to the
range where the von Kármán vortex street starts to appear in a laminar flow, depending
on the shape of the body and the kinematic viscosity of the fluid. The deviations varied
from -13 to -28% in the agglomerate of three particles, -6 to -14% in the agglomerate of
four particles and -13 to -20% in the agglomerate of five particles. However, simulations
with Reynolds numbers below 10 results in drag coefficients closer to the estimated by the
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(a)

(b)

(c)
Figure 8 – From left to right and top to bottom: deviations of simulated data from the

Tran-Cong model for the agglomerate of three, four and five particles.
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correlation.

The symmetry of the agglomerate is a very important variable to consider in the
analysis. In numerical simulations, symmetric geometries are easier to generate meshes
with good refinement quality in the boundary layer separation region, leading to better
results, reducing errors of pressure and velocity fields, mainly near walls, where the drag
and lift are computed. The capacity to predict the flow profile and the adverse pressure
gradient is correlated with the geometry since the interference of the effect between the
spheres of each agglomerate of particles is reduced as the symmetry of the agglomerate
increases. Physically, it means that symmetric geometries tend to generate symmetric
streamlines, which are easier to be calculated by turbulence models. Such behaviour is
well presented in Figure 8, where the agglomerate of four particles has lower deviations,
since its symmetry is closer to a single sphere – the most symmetrical shape for spheric
particle agglomerates – followed by the agglomerate of five and three particles.

Still analyzing the geometry of the agglomerates, it is possible to see that they
generate curvature in the streamlines as we increase the velocity, which directly affects the
turbulence and, consequently, the flow profile. The curvature effect can highly decrease the
Reynolds stress normal to the wall as the ratio between the boundary layer thickness and
the radius increases. Such decrease reaches up to 50% for a ratio of 0.03 (THOMPSON;
WHITELAW, 1985). The simulations confirmed the expectations of better results when the
curvature effects are considered, by using the Spalart-Allmaras and both SST k-ω-based
models (DAVIDSON, 1995).

Since the geometry in the agglomerate of four particles is closer to a single sphere,
the deviations are lower for the turbulence models that do not use wall functions. Turbulence
models such as the RSM and RNG k-ε are accurate to compute the field far from the
agglomerate, however, the near-wall regions and boundary layers are not correctly presented,
with difficulties to represent the adverse pressure gradient of the agglomerate in a greater
area, lacking the quality to compute the drag coefficient, increasing the deviation. This is
related to the fact the wall-functions effects are more influential in the turbulence model
than the curvature effects present in a sphere so that the pressure and velocity fields are
not well represented near the walls as in the others turbulence models.

The results of this study demonstrate that the utilization of the steady formulation
approach yields accurate estimations of the drag coefficient. Furthermore, it is evident that
the turbulence model plays a crucial role in effectively modeling the problem, not only for
estimating the drag coefficient, but also for accurately predicting the flow profile in regions
characterized by separation and recirculating wakes, particularly in flows with higher
Reynolds numbers. The implementation of RANS turbulence models that calculate the flow
field near the particles instead of relying on wall-function modeling exhibited robustness in
representing the presented problem. Moreover, these models exhibited a closer agreement
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with experimental correlations for drag estimation in particle agglomerates.

The simplifications proposed in this study offer a significant advantage, primarily
through the reduction of computational time required to obtain results. Consequently, this
reduction allows for an increased number of simulations to be conducted, facilitating a
more detailed presentation of the drag coefficient curve and enabling the proposal of new
correlations. By incorporating these findings into future research, it is possible to advance
the understanding of drag coefficient estimation and develop improved correlations for
industrial-scale problems.

3.4 Conclusions
The present study carried out steady simulations of three irregularly-shaped particle

agglomerates, composed of spherical particles, surrounded by water. The drag coefficient at
different inlet conditions were obtained for five different turbulence models and compared
with five correlations in the literature to predict the drag coefficient in agglomerates to
understand which numerical setup better represents the flow. The methodology proposed
presented good agreement with experimental correlations of drag coefficient estimation,
showing to be useful to reduce the time and computational efforts required to numerically
obtain the drag acting in particle agglomerates and robustness to estimate the drag
coefficient in higher Reynolds numbers. Main observations were

1. Steady RANS turbulence models showed good agreement with the literature to
estimate the drag coefficient on particle agglomerates, without the drawback of high
computational cost seen in unsteady simulations, such as URANS, LES, DNS or
LBM.

2. The turbulence closure equations present lower influence in the evaluation of flow
fields for 1 ≤ Re ≤ 100, so the drag coefficients estimated for each turbulence model
are very similar.

3. The flow profile is better represented using turbulence models with no wall functions.
Both Spalart-Allmaras and SST k-ω models were able to represent the flow near the
particle agglomerates and far from its walls, however, the second one showed to be
more robust.

4. The use of steady formulation with SST k-ω turbulence model is able to represent
the flow for a wide range of Reynolds numbers with less computational effort.

5. Despite presenting a best agreement with the Tran-Cong model, the numerical results
presented relative deviations by magnitude of -20%, mainly for lower Reynolds
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numbers, representing a good agreement, since the average error of the empirical
correlation is 10%.

6. Reduced computational costs makes it possible to obtain more data, so that further
studies can focus on elaborating new accurate correlations to, eventually, be scaled-up
for industry-scale problems.

7. The numerical methodology proposed showed to be useful for initial test and for
experimental validation.
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4 Experimental validation of the modelling

This chapter is dedicated to presenting the second part of this thesis: experimentally
validate the new approach proposed in the previous chapter. The study in this chapter
resulted in an article, entitled Drag coefficient on particle agglomerates: A CFD study
with experimental validation, published in the journal Journal of the Brazilian Society of
Mechanical Sciences and Engineering (available at: 10.1007/s40430-023-04366-9).

In this chapter, an experimental methodology is presented to obtain the terminal
velocity of real particle agglomerates to assess the robustness of the methodology proposed
in Chapter 3, comparing numerically obtained results with results experimentally obtained
in the laboratory. To achieve this, three arrangements of Acrylonitrile Butadiene Styrene
(ABS) sphere agglomerates were proposed, containing three, four, and five spheres.

The agglomerates consist of ABS spheres glued together with super glue in the
most stable arrangement and in three different arrangements, aiming to obtain the drag
coefficient for irregularly-shaped particles from the terminal velocity. The method of
obtaining terminal velocity is the most recurrent in the literature, used since the XVII
century when Sir Isaac Newton measured the terminal velocity of spheres: a body submersed
in a fluid is released in free fall, and its velocity is measured (FAN; SU; YANG, 2022).

In the case of this study, which aims to propose a unified correlation capable of
estimating the drag coefficient for particles flowing from a fully laminar to a fully turbulent
range, validation of the flow is necessary for Reynolds numbers ranging from below 1 to
above 1000. Thus, for this article, the terminal velocity was measured from tests conducted
in glycerin-water solutions ranging from 0 to 100% water.

Therefore, the water fraction in the glycerin solution was varied into four concen-
trations, so that the particle agglomerates exhibited Reynolds numbers ranging from 0.1
to 3500. So, the numerical methodology was put to test under 12 different conditions,
where one of them showed a higher deviation, underestimating the value by -19%.

https://doi.org/10.1007/s40430-023-04366-9
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4.1 Introduction
In industrial processes particle-laden flows, such as pipeline transportation of

biomass feedstock, mineral processing, powder sintering, fluidized bed reactors, and stirred
tanks (DEGLON; MEYER, 2006; LANE, 2017) it is recurring the effect of agglomeration
of particles. Such effect occurs due to collision, attraction and friction, and generates a
specific kind of irregularly-shaped particle known as particle agglomerate. A consequence
of the formation of these agglomerates is the modification of the behavior of the flow
dynamics, which is directly affected by the particle properties and characteristics - e.g.
density, roughness, diameter, and shape - and, consequently, interferes in fundamental
variables to the design of these equipment (SENIOR; BRERETON, 1992; KUWAGI;
TAKANO; HORIO, 2000).

The drag force experienced by the particles as consequence of a variation in motion
generated by the particle-fluid interaction is directly affected by these characteristics. This
force, given by the surface integral of both normal and shear stresses acting in the particles,
is used to calculate a dimensionless quantity known as drag coefficient. The drag coefficient
of spherical particles is a function of dimensionless fluid dynamics numbers, such as the
Mach number, the Reynolds number, and Knudsen number. In cases of irregularly-shaped
particles, such as particle agglomerates, some parameters related to the body, such as its
shape and orientation, have to be taken into account. For incompressible fluids where only
inertia and friction are observed the dependent variables to estimate the drag coefficient
in particle reduces to two: the Reynolds number and a shape parameter (BEETSTRA;
HOEF; KUIPERS, 2006; DEEN et al., 2012; GOOSSENS, 2019).

Despite some properties of the particulate material, such as the elasticity, density,
and roughness of the particle agglomerate, directly interfere in the behavior of the flow,
two parameters not related to the material must be taken into account: size and shape
(WANG; GE; LI, 2008; NIKOLOPOULOS et al., 2010; WANG; WU; WEI, 2017). In fact,
these parameters exert the most influence on how the fluid behaves around the particle,
so it is important to focus on these parameters by studying the particle agglomeration for
different arrangements to predict the drag acting on them, as a relevant variable for the
design and optimization of processes equipment (TRAN-CONG; GAY; MICHAELIDES,
2004; DEGLON; MEYER, 2006).

Since the drag force acting in a body is strongly related to the velocity, the most
used method to evaluate it is to experimentally estimate the drag coefficient by measuring
the body’s terminal velocity. A recurring method to obtain it is to release the body
into free-fall, to estimate the terminal velocity of particles, and consider the area of the
windward surface as the projected area of the agglomerate to obtain the drag coefficient
(HAIDER; LEVENSPIEL, 1989; GANSER, 1993; TRAN-CONG; GAY; MICHAELIDES,
2004; HÖLZER; SOMMERFELD, 2008; BAGHERI; BONADONNA, 2016).
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The study of particle agglomerates in the theoretical field presents difficulties, mostly
related to its complex geometry, which makes it infeasible to obtain analytical equations
to estimate the drag coefficient, so that, literature presents several empirical studies in
this field (BAGHERI; BONADONNA, 2016). The experimental field also experiences
difficulties related to the complexity of the geometry, as it is difficult to accurately measure
the area of the windward surface of agglomerates. In order to simplify the problem,
experimental studies focused on the analysis of regularly-shaped geometries, such as cones
and cylinders (MARCHILDON; CLAMEN; GAUVIN, 1964; JAYAWEERA; MASON,
1965; LASSO; WEIDMAN, 1986), cubes and disks (MCKAY; MURPHY; HILLIS, 1988;
WILLMARTH; HAWKS; HARVEY, 1964), polyhedrons (PETTYJOHN; CHRISTIANSEN,
1948; HAIDER; LEVENSPIEL, 1989), or parallelepipeds (HEISS; COULL, 1952), with
lower details for the shape.

Another solution observed in the literature is to prepare particle agglomerates, using
spheres and super glue, to emulate irregularly-shaped particles (LASSO; WEIDMAN, 1986).
By hand-making the particle, one can better control the shape of the particle, to improve
the details of the study of the geometry influence (TRAN-CONG; GAY; MICHAELIDES,
2004). However, as the number of spheres in the agglomerate increases, the complexity
to calculate the area of the windward surface of the agglomerate increases (HAIDER;
LEVENSPIEL, 1989; TRAN-CONG; GAY; MICHAELIDES, 2004; BEETSTRA; HOEF;
KUIPERS, 2006; DEEN et al., 2012; BAGHERI; BONADONNA, 2016). So, measuring
the area is still a difficulty in the experimental field and, up to now, most of the studies
simplify the problem by considering the agglomerate as a single sphere with the same
volume as the agglomerate and estimating its projected area using the equivalent-volume
diameter (LASSO; WEIDMAN, 1986; HAIDER; LEVENSPIEL, 1989; GANSER, 1993;
TRAN-CONG; GAY; MICHAELIDES, 2004; HÖLZER; SOMMERFELD, 2008; WANG;
GE; LI, 2008; BAGHERI; BONADONNA, 2016; WANG; WU; WEI, 2017; FAN; SU;
YANG, 2022; ROOSTAEE; VAEZI, 2022).

These approaches lead to deviations from the phenomena studied and lower accuracy.
However, in a computational fluid dynamics approach, the use of CAD software makes it
easier to accurately estimate the projected area of a sketch of the agglomerate. So that,
the use of computational fluid dynamics can strengthen the level of details of the shape
in the study, being a powerful tool to extrapolate the information, once the model is
experimentally validated for complex geometries (DEEN et al., 2012).

Such behavior is also applicable to non-spherical and irregularly-shaped parti-
cles, such as the agglomerate of spheres (LOTH, 2008). So, in this study, we aim to
validate simulations of the drag coefficient on three different conformations of particle
agglomerates with experimental assays in four different flow regimes: the perfect laminar
and Stokes’ regime, the unsteady asymmetric flow and the turbulent wake regime. The
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terminal velocities of the agglomerates were measured in four different fluids: water and
three different glycerin solutions, varying the concentration to obtain different viscosities
and, consequently, different flow regimes. The experiments were used to compare with
computational fluid dynamics (CFD) simulations, aiming to validate the simulations and
assess their capability to estimate the drag coefficient in particle agglomerates. Once the
simulations are experimentally validated, CFD can be used as a powerful tool to study the
drag in several conformations and to propose new drag correlations for complex bodies,
such as irregularly-shaped particles.

4.2 Methods
The study was carried out in two fields: experimental and numerical. In the first

one we performed assays to obtain the density and viscosity of the fluids tested and the
particle agglomerates’ terminal velocities for each fluid. Then, we performed simulations at
the experimental conditions observed to compare the results and observe if the simulations
are capable to represent the flow and correctly estimate the drag coefficient.

4.2.1 Experimental setup
The experiments were performed in an acrylic tank with dimensions (20x30x50)

cm filled with 28 L of fluid at 25 °C. To vary the Reynolds number of the flow and
obtain different flow regimes, the terminal velocities of the particle agglomerates were
experimentally obtained in four fluids: water and three different glycerin-water solutions
(0.40, 0.80, and 1.0 volume fraction of glycerin).

Figure 9 shows a scheme of the experimental apparatus. The particle agglomerate,
initially immersed in the fluid, is released using a lever. To avoid the generation of bubbles
due to presence of air in the wholes between the spheres, which interfere the flow, the
agglomerates were immersed in the fluid for 4 h and randomly released several times. To
avoid the effect of disturbances of the fluid, the agglomerate was fixed in the lever in the
position to be released for 10 min, to ensure that the fluid was initially steady.

The experiment was performed for three different conformations of particle ag-
glomerates, as presented in a CAD representation in Figure 10, composed by spheres of
Acrylonitrile Butadiene Styrene (ABS) with diameter of 5.95 mm and density of 1822
kg/m3, to obtain their terminal velocities. The agglomerates were released on its most
stable conformation, to avoid oscillations due to fluctuations of the turbulent flow, reducing
measurement errors.

As a consequence of fluctuations, the agglomerate oscillates during the free fall,
leading to variations in the velocity. So, using a high-speed camera and aided by the
software Tracker 6.10.0, we could measure the velocity of the particle agglomerate and its
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Figure 9 – Scheme of the experimental apparatus.

Figure 10 – Isometric view of the three conformations of the particle agglomerates studied
and a scheme of the flow direction.

angle during the free fall. We considered only the assays falling in the angle close to the
normal, so, assays out of the range between 89 and 91° were discarded. Once we observe
that the acceleration is close to zero mm/s2 (generally with less than 1 cm of free fall), we
consider that the agglomerate reached the terminal velocity and take an average of the
velocities during the free fall.

For both terminal velocities and fluid properties the assays were performed seven
times, in order to reduce experimental errors. Densities and viscosities were obtained with
densimeters and Ford viscosity cup, adopting the uncertainty given by the manufacturer.
Table 6 shows the density and dynamic viscosity of the fluids, ρf and µ, respectively and
its corresponding experimental uncertainty.

4.2.1.1 Experimental drag estimation

The experimental determination of the drag coefficient in a body in free fall comes
from a balance of forces acting on it: the weight, FW , drag, FD and buoyancy, FB, forces.
A scheme of a body in free fall is shown in Figure 11 to better represent the forces.
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Table 6 – Properties of the fluids obtained experimentally.

Fluid ρf µ
(kg/m3) (Pa · s) x 103

Water 998 ± 1 1.003 ± 0.030
Glycerin 1 1118 ± 1 4.260 ± 0.128
Glycerin 2 1234 ± 2 111.069 ± 3.332
Glycerin 3 1257 ± 2 585.498 ± 17.565

Figure 11 – Scheme of a generic body in free fall and the forces acting on it.

Once the body reaches the terminal velocity, the sum of the forces is zero and the
balance is given by the Equation 4.1 (CIMBALA; ÇENGEL, 2000).

FW = FD + FB (4.1)

which can be expanded as

ρp · Vb · g = 1
2 · CD · AP · ρf · u2

t + Vb · ρf · g (4.2)

where ρp and ρf are, respectively, the densities of the particle and the fluid, Vb is the
volume of the body, AP is the projected area, g is the gravity and ut is the terminal
velocity of the body, obtained experimentally (see subsection 4.2.1).

Now, isolating the drag coefficient, we obtain

Cexp
D = ρp − ρf

ρf

· Vb

AP

· 2g
u2

t

(4.3)

where Cexp
D is the experimentally-obtained drag coefficient.

4.2.2 Numerical simulations
In the numerical part of the study, simulations were carried out to predict the drag

coefficient for four different conditions of fluid flows surrounding three different particle
agglomerates. The computational domain and numerical meshes were generated using
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the ANSYS 14.5 packages Design Modeler and Meshing, respectively. To solve the model
equations we used ANSYS Fluent 14.5, and the analysis of the fluid flow was carried out
in the software CFD-Post.

4.2.2.1 Design and mesh generation

Simulations were carried out for three different computational domains, varying
the geometry of the agglomerates containing three, four and five particles of 5.95 mm of
diameter, such as in the experimental step. Differently from the experimental setup, where
the particle falls in a static fluid, in CFD simulations the agglomerates were statically set
in a position and the fluid flows around it. The domain corresponds to a parallelepiped
with a height and width of 40 mm and a length of 180 mm, to ensure that the flow profile
before, near, and after the agglomerate is fully developed.

To better control the quality of the elements near the walls of the particles, the
domains were divided into a cube-shaped subdomain, near the inlet, surrounding the
particle agglomerate. Figure 12 shows a cut of the lateral view of the computational domain
of four spheres as an example of the domains simulated and the setup of its boundaries.

Figure 12 – Example of the lateral view of the interior of the computational domains
simulated.

To better observe the refinement of the meshes, we present as example the finest
mesh tested for the domain shown in Figure 12. Figure 13 presents the lateral cut of the
mesh in the center of the domain, while Figure 14 presents an isometric view of the mesh
surrounding the particle agglomerate.

Figure 13 – Example of a lateral view of the finest mesh generated for the particle agglom-
erate of four spheres.
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Figure 14 – Example of an isometric view of the mesh surrounding the particle agglomerate
of four spheres.

Before comparing the experimental and simulated results, we carried out a grid
independence study, better detailed in the subsection 4.4.1.1.

4.2.2.2 Numerical setup

Simulations were carried out in a steady-state formulation of isothermal fluids at
25 °C. As boundary condition, the inlet velocities were set as an injection normal to the
surface using the fluid properties and terminal velocities presented in Tables 6 and 8,
respectively.

Despite SIMPLE-based algorithms present low computational effort, we chose
the PISO algorithm, due to its greater stability, requiring less number of iterations and
faster convergence, leading to less processing time (DOORMAAL; RAITHBY, 1983;
TUKOVIĆ; PERIĆ; JASAK, 2018). The spatial discretization was set to the least-square
cell-based method for gradients, PRESTO! scheme for pressure and second-order upwind
scheme for energy, momentum and turbulence closure equations, to solve the problem
of underestimation of turbulent kinetic energy and its dissipation rate, as suggested in
previous studies (DEGLON; MEYER, 2006; LANE, 2017).

4.2.2.3 Numerical drag estimation

For CFD simulations, we calculate the drag coefficient, Csim
D , using its definition.

The drag force can be specified as (CIMBALA; ÇENGEL, 2000)

FD ∝ PDAb (4.4)

where Ab is the body’s area – generally simplified as the projected area, AP , of the
body studied –, where the fluid exerts a dynamic pressure, PD. The Equation 4.4 can
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be re-written by expanding the dynamic pressure due to the kinetic energy of the fluid
experiencing relative flow velocity u, obtaining

FD ∝ 1
2 · ρf · u2 · AP (4.5)

In order to change the proportionality to equality, we must include a proportionality
constant, in this case, the drag coefficient, CD, leading to

FD = CD · 1
2 · ρf · u2 · AP (4.6)

As the drag obtained by CFD is a theoretical value, we can assume

Csim
D = CD = FD

1
2 · ρf · AP · u2 (4.7)

where the drag force is obtained by the pressure fields obtained by CFD simulations.

4.3 Mathematical modelling

4.3.1 The governing equations
The time-averaged conservation equations for the three-dimensional, incompressible,

isothermal, and steady flow in this study is modelled by the Navier-Stokes equations (POPE,
2000), as follows

∇ · u = 0 (4.8)

ρ (u · ∇u) = −∇p+ µ∇2u + ρg (4.9)

The closure equations for the Reynolds-Averaged Navier-Stokes equations depends
on the turbulence model. In this study, we chose the SST k-ω model, which solves the
transport equations for the turbulence kinetic energy and the specific dissipation rate,
given by Equation 4.10 and Equation 4.11, respectively

∂ (ujk)
∂xj

= ∂

∂xj

[
(ν + σkνt)

∂k

∂xj

]
+ Pk − β∗kω (4.10)

∂ (ujω)
∂xj

= ∂

∂xj

[
(ν + σωνt)

∂ω

∂xj

]
+ 2 (1 − F1)σω2

1
ω

∂k

∂xi

∂ω

∂xi

+ αS2 − βω2 (4.11)

where F1 is the blending function, α, β and σ are closure coefficients of the model
(MENTER, 1994; WILCOX, 2004).

4.4 Results
The validation of the simulation was performed by comparing the drag coefficient

obtained experimentally, by the measure of the terminal velocity of the particle agglomerate,
and simulations at the same conditions of the experiments.
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4.4.1 Numerical results
Before comparing results, it is important to analyse if the results obtained by

simulations are reliable. So, we first analyse if the mesh is fine enough to obtain the
converged result and the accuracy of the mesh used.

4.4.1.1 Grid independence study

To assure that the results obtained by simulations are grid independent, we tested
three different sizes of meshes for each particle agglomerate, using the same pattern of
refinement for each geometry. To observe the meshes convergence, we chose the results of
drag obtained for the highest Reynolds number. The trend is presented in the Figure 15,
showing that the increase of the refinement results in a convergence to the value of the
variable tested for each geometry. It is possible to observe that no further refinement is
necessary, since the increase of the number of elements between the intermediate to the
finest mesh increased the computational effort without significant gain of precision – lower
than 0.9%. So, we chose to use the meshes of 5679637, 7176887 and 8673271 elements for
the agglomerates of three, four and five spheres, respectively.

Figure 15 – Grid independence test for the drag coefficient of the particle agglomerates
for simulations performed at terminal velocity in water.
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4.4.1.2 Mesh quality

It is also relevant to evaluate the mesh accuracy, by analysing some mesh quality
parameters. In this study, we chose to evaluate the aspect ratio, the orthogonality and the
skewness. The average value of each quality parameter for each particle agglomerate is
presented in Table 7.

Table 7 – Mesh quality for the three particle agglomerates studied.

Agglomerate Number of
elements

Statistic
variable Aspect ratio Orthogonality Skewness

3 spheres 5679637 Average 1.165 0.950 0.056
SD (%) 0.570 0.088 0.134

4 spheres 7176887 Average 1.171 0.949 0.058
SD (%) 0.452 0.089 0.137

5 spheres 8673271 Average 1.176 0.948 0.060
SD (%) 0.458 0.090 0.139

The minimum value for the aspect ratio is 1 and the element is considered excellent
for values lower than 20, while orthogonality and skewness varies from 0 to 1, where the
element is considered excellent for values higher than 0.8 for orthogonality and lower
than 0.2 for skewness (FERZIGER; PERIĆ, 2002). As presented in Table 7, each mesh
presented average values lower than 1.18 for the aspect ratio, higher than 0.94 for the
orthogonality and lower than 0.06 for the skewness. So, quality of the elements of the
meshes can be considered excellent, assuring a better convergence.

4.4.2 Comparison of results
The experimentally measured terminal velocity for the agglomerates of three, four

and five spheres, ut,3, ut,4 and ut,5, and their corresponding experimental uncertainties are
presented in Table 8, while Table 9 shows the drag coefficient obtained for both numerical
and experimental assays and the corresponding relative deviation between them. The
results show lower deviations for lower Reynolds numbers. Since laminar flows do not
develop eddies around the walls of the agglomerate, the particle tends to stay in the initial
orientation of the release, with a stable fall, i.e. without oscillating (GRAF, 1971). So,
experimentally, it is easier to perform the assay in the same orientation of the design
performed in simulations for lower Reynolds.

It is relevant to emphasize that the most accurate way to study the phenomena
in the flow studied, i.e. the drag coefficient and the velocity field, is using the Direct
Numerical Simulation (DNS). The method eliminates the difficulty of modelling turbulence
by resolving the whole range of spatial and temporal scales of turbulence. However,
this method presents two major difficulties: the generation of uniform meshes around
complex bodies and the high computational effort. For wall-bounded problems, the formula
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Table 8 – Experimentally measured terminal velocities for each particle agglomerate for
the four fluids studied.

Fluid ut,3 ut,4 ut,5
(cm/s) (cm/s) (cm/s)

Water 30.004 ± 0.108 31.045 ± 0.267 32.487 ± 0.082
Glycerin 1 22.702 ± 0.168 27.118 ± 0.125 25.504 ± 0.113
Glycerin 2 8.513 ± 0.040 9.735 ± 0.047 10.661 ± 0.054
Glycerin 3 2.130 ± 0.023 2.858 ± 0.024 3.145 ± 0.049

Table 9 – Comparative between experimental (Cexp
D ) and CFD (Csim

D ) results.

Agglomerate Fluid Reynolds
[ - ]

Cexp
D

[ - ]
Csim

D

[ - ]
δ

[ % ]

3 spheres

Glycerin 3 0.39 77.075 79.335 2.932
Glycerin 2 8.09 5.158 5.172 0.271
Glycerin 1 511.27 0.951 0.884 -7.016

Water 2570.20 0.709 0.733 3.389

4 spheres

Glycerin 3 0.57 56.253 61.444 9.229
Glycerin 2 10.08 5.286 4.802 -9.154
Glycerin 1 672.2 0.875 0.836 -4.543

Water 2918.19 0.819 0.714 -12.732

5 spheres

Glycerin 3 0.68 44.337 50.524 13.955
Glycerin 2 12.04 4.101 4.079 -0.522
Glycerin 1 680.99 0.944 0.882 -6.604

Water 3289.49 0.763 0.611 -19.923

N = (U∞Lx/ν)37/14 – where U∞ is the freestream velocity, Lx is the streamwise length, and
ν is the kinematic viscosity – is accurate to estimate the magnitude of grid points to
resolve the Kolmogorov length scale (CHOI; MOIN, 2012). Despite being proposed for a
flow in flat-plate, the formula is useful to observe that for the cases of the agglomerates in
Glycerin 1 and Water, presented in Table 9, the meshes would need a magnitude of O(8)
elements to correctly calculate the smaller scales.

Particles settling under turbulent wake regime, i.e. Re ≥ 1000, present different
orientations during the free fall, as a consequence of the oscillations, leading to different drag
coefficients. Such oscillatory behavior is related to the eddies observed in the flow, reducing
the stability, due to the irregular vortex loops that eliminate the planar symmetry for
complex bodies (GOOSSENS, 1987), such as the agglomerates of four and five spheres. The
effect of oscillations during the free fall is not considered in simulations, as the orientation
of the particle in free fall in CFD was fixed in the most stable conformation. Experimentally,
we consider the drag coefficient of each assay based on an averaged-terminal velocity to
obtain an average of the drag coefficient.

The agglomerate of three spheres has less areas to generate the eddies, reducing the
instability generated by the oscillations, leading to lower deviations between experimental
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and simulation data. The opposite is observed in the agglomerates with four and five
spheres: the increase of the area generates more eddies and, consequently, presents a most
complex wake region in the rear of agglomerate, as seen in Figure 16. As consequence the
oscillations increase the instability, making it difficult to obtain accurate experimental
results, leading to greater deviations. Such behavior is confirmed by the results presented
in Table 9, where agglomerates with four and five spheres falling in water presented the
higher deviations, however, they were lower than 20%, which can be considered good for
validation of the simulations.

The drag experienced by a sphere flowing in a Newtonian fluid can be divided
in seven main flow regimes - that were also observed in literature for irregularly-shaped
particles -, classified according to the Reynolds number (GOOSSENS, 2019). The perfect
laminar flow, where Re ≤ 20, has a particular condition, known as Stokes’ regime. By
omitting the non-linear inertial term, Stokes analytically obtained the relation called
Stokes’ law, experimentally validated for Re ≤ 1 (LOTH, 2008). Analyzing the Table 9,
we observe that both the laminar and the Stoke’ regime were obtained and simulations
presented low deviations from the experimental data. The agglomerate of five spheres
presented the higher deviation, reaching 13.95%, mainly due to experimental difficulties,
such as releasing the agglomerate in the correct angle.

For 20 ≤ Re ≤ 210 the flow is known as steady axisymmetric flow regime, where
the flow separates from the sphere close to the rear stagnation point and a recirculating
wake occurs in the rear of the sphere in an axisymmetric vortex ring. As the Reynolds
number increases the flow reaches the transition region, that varies from 210 ≤ Re ≤ 400
and present two different profiles. In the first one, the separation angle and the length of
the wake increases until reach the steady planar-symmetric flow, observed in the range 210
≤ Re ≤ 270, consisting of two streamwise vortical tails with equal strength and opposite
sign. For 270 ≤ Re ≤ 400 it is observed the unsteady planar-symmetric regime, where
occurs a transition between a steady and time-dependent symmetric wake.

However, due to the difficulties of the mathematical modelling of the transition
flow we chose to avoid experiments in this regime and perform them in two regimes that
present larger influence of turbulence. The first one occurs for 400 ≤ Re ≤ 1000, presenting
an unsteady asymmetric flow and the second, for 1000 ≤ Re ≤ 380000, presenting the
fully turbulent wake regime. The main characteristics observed are the lost of a planar
symmetry due to the irregular vortex loops and, as the Reynolds number increases, the
drag coefficient tends to converge to a constant value (LÄPPLE; SHEPHERD, 1940). In
these regimes we observe less than 10% of deviation between simulations and experiments,
but a higher deviation is observed in the fully turbulent flow of the agglomerates of four
and five spheres, due to the difficulties of reducing the oscillations.
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(a)

(b)

(c)
Figure 16 – From top to bottom: streamlines of the flow of water surrounding the agglom-

erates of three, four and five particles.

4.5 Conclusions
In the present study we performed experiments to estimate the drag coefficient of

three conformations of particle agglomerates, composed of spherical particles. The drag
coefficient was calculated using the terminal velocity of the agglomerates in free fall using
different fluids to vary the Reynolds number. The results obtained were used to validate
CFD simulations carried out in a steady state. Main observations were
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1. Simulations presented a good agreement with experimental results. For lower terminal
velocities the flow presented less fluctuations, generating less oscillations on the
agglomerate during the fall, leading to lower deviations.

2. Despite presenting higher deviations flowing in water, results were lower than 20%.

3. The angle of the symmetry plane of the agglomerate with three spheres during the
free-fall presents the most stable conformation, compared with the other agglomerates.
Fluctuations due to the wake region in the rear, as a consequence of the turbulent
flow, generated less oscillations, leading to the lower deviations observed for particles
falling in the water.

4. The free-fall of agglomerates with four and five particles did not present the same
stability of the agglomerate of three spheres, due to its asymmetric shape.

5. Results show that CFD simulations were able to not only reproduce with fidelity the
flow but also to determine the drag coefficient in particle agglomerates, showing to
be a feasible tool to propose new correlations to estimate the drag acting in complex
bodies.
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5 Proposal of the new drag coefficient corre-
lation

This chapter is dedicated to presenting the third part of this thesis: propose a new
correlation for prediction of drag coefficient on particle agglomerates using CFD.

In this stage, the study of the drag coefficient is conducted on real particle agglom-
erates using both numerical and experimental approaches. The experimental methodology
presented in Chapter 4 is employed to obtain another terminal velocity value for each
agglomerate, aiming to validate the simulations for another one of the six flow profiles
described in Chapter 1. To once again confirm the efficiency of the numerical methodology
proposed in Chapter 3, the experimental results were compared with results obtained
through LES simulations, which, among the commonly used transient models in the
literature, has the lowest computational cost and greater stability.

The challenge in proposing a unified equation in this type of problem arises from
the wide range of flow conditions, encompassing various flow profiles, and the drag curve
exhibiting four different behaviors: a rapid linear decay, a rapid nonlinear decay, a smooth
and nonlinear rise, and finally, a nearly constant value.

Another significant challenge is the variation in drag coefficient values across the
Reynolds range, spanning from fully laminar to fully turbulent flows. In the context of
this study, where Reynolds numbers range from 0.1 to 3500, the drag coefficient varies
approximately between 0.5 and 400, with the curve showing non-monotonic behavior for
values above 2000.

If we consider the proposed correlation as an individual case study of a particle,
treating it as an academic investigation, the flatness and sphericity of the agglomerates
presented, in general, lower deviations from the ideal curve, with values between the range
of ± 10%. However, since the flatness was applicable over a broader range of geometric
parameter values, the fit using flatness proves more useful for potential engineering
applications.

The other parameters yielded good results but with deviations within the ± 20%
range. An exception was observed in the fit for circularity, which encountered some difficulty
in representing turbulent flows in clusters of three and four spheres, showing deviations
beyond the ± 20% range.

Nevertheless, if we approach the work from an engineering perspective, extrapolating
to applications in industrial equipment, where deviations of approximately ± 20% are often
accepted, the correlation exhibited good results for the six tested geometric parameters.



Chapter 5. Proposal of the new drag coefficient correlation 71

Thus, it is feasible to implement a simple subroutine, where the user can input the
particle’s flatness, and the CFD code uses the input value in the proposed correlation for
flatness. Alternatively, a more complex, yet easily implementable, subroutine could allow
the user to provide the values of all six geometric parameters, and the code itself selects
the most appropriate correlation for the simulated case.
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5.1 Introduction
In particle-laden flows, such as mineral processing, powder sintering, stirred tanks,

Venturi scrubber, cyclone separator, pipeline transportation, fluidized bed reactors, or
multi-phase chemical reactors, it is essential to understand the interaction between the
phases before modelling the flow. The forces related to this interaction mainly depend
on the characteristics of particles, such as size, shape, roughness, and elasticity, which
determine the equipment’s performance (TRAN-CONG; GAY; MICHAELIDES, 2004;
NIKOLOPOULOS et al., 2010; WANG; WU; WEI, 2017; OLIVEIRA; GUERRA; LOPES,
2019; DELACROIX et al., 2021; XIA et al., 2023). However, another interaction also
relevant occurs between the particles, where three major effects are observed: collision,
attraction, and friction. These effects produce a secondary effect known as particle ag-
glomeration, which generates irregularly-shaped particles and changes their physical
characteristics, such as diameter, roughness, and shape. These changes interfere in the
flow through velocity and pressure fluctuations, in a phenomenon known as turbulence
modulation and, consequently, in relevant variables in the design and optimization of
industrial equipment (SENIOR; BRERETON, 1992; KUWAGI; TAKANO; HORIO, 2000;
DEGLON; MEYER, 2006; WANG; GE; LI, 2008; HARTGE et al., 2009; LANE, 2017;
ZHAO et al., 2021; LIN et al., 2022).

The particle-fluid interaction generates the drag, a force experienced by particles
due to the dynamic pressure exerted by the fluid, which varies according to the flow
velocity. The force is given by the surface integral of the stresses acting on the particle, so
it is dependent not only on the motion but also on the shape of the particle (CIMBALA;
ÇENGEL, 2000). For simple bodies, such as single sphere, and low Reynolds, it is simple
to obtain an analytical solution. For Reynolds numbers up to 1 the Stokes’ law is the
analytical solution, which by taking the inertia terms in the Navier-Stokes equations,
was extended, increasing the applicability of the solution to Reynolds numbers up to 5
(GERHART; GERHART; HOCHSTEIN, 2016).

However, at higher Reynolds or complex geometries, it does not present an analyt-
ical solution or becomes infeasible to obtain it. Since the drag force is strongly related
to the velocity, the most common solution is to obtain the drag coefficient, by exper-
imentally measuring the terminal velocity of the particle. This methodology is widely
used, and numerous experimental correlations are obtained from it for various ranges
of subcritical flow and tested for several types of geometries (ISAACS; THODOS, 1967;
CLIFT; GAUVIN, 1971; CLIFT; GRACE; WEBER, 1978; MARCHILDON; GAUVIN,
1979; GOOSSENS, 1987; LEITH, 1987; HAIDER; LEVENSPIEL, 1989; GANSER, 1993;
CHHABRA; AGARWAL; SINHA, 1999; TRAN-CONG; GAY; MICHAELIDES, 2004;
LOTH, 2008; BAGHERI; BONADONNA, 2016). This method is based on the fact that, at
terminal velocity, the gravitational, drag, and buoyancy forces are in equilibrium, leading



Chapter 5. Proposal of the new drag coefficient correlation 73

to:
mp · g = FD + ρf · gVp (5.1)

where mp, g, FD, ρf and Vp are the particle mass, gravitational acceleration, drag force,
and particle volume, respectively, and the drag force is given by

FD = 1
2 · ρf · CD · Aws · u2

t (5.2)

where Aws and u2
t are the windward surface area and the terminal velocity, respectively.

The studies of the drag coefficient are divided in two, according to the shape
of the particle: spherical and non-spherical particles, where non-spherical particles can
assume regular or irregular shapes. Regular shapes are easier to describe and, along
time, many studies focused on understand the physics of flow around the simple bodies -
i.e. spheres, disks, cones, parallelepipeds, polyhedrons, or cubes (HEISS; COULL, 1952;
MARCHILDON; CLAMEN; GAUVIN, 1964; JAYAWEERA; MASON, 1965; LASSO;
WEIDMAN, 1986; MCKAY; MURPHY; HILLIS, 1988; HAIDER; LEVENSPIEL, 1989;
GANSER, 1993; CHHABRA; AGARWAL; SINHA, 1999; BEETSTRA; HOEF; KUIPERS,
2006; HÖLZER; SOMMERFELD, 2008; BAGHERI; BONADONNA, 2016; KE et al.,
2018) - and estimate the drag force acting on it, proposing correlations in the numerical
or experimental fields.

However, irregularly-shaped particles present several difficulties to be studied for
both fields. In the experimental field we have the problem of difficulties to measure the
windward surface area of the particle. To avoid this difficulty, most of studies approach is to
assume that the windward surface is the same of the projected area of an equivalent-volume
sphere (FAN; SU; YANG, 2022), leading to equation

CD = 4gdeq (ρp − ρf )
3ρfu2

t

(5.3)

where deq is the diameter of the sphere with the same volume of the irregularly-shaped
particle studied. On the other hand, for CFD simulations we have difficulties such as
generating stable and homogeneous meshes and the high computational costs (HOEF;
BEETSTRA; KUIPERS, 2004; BEETSTRA; HOEF; KUIPERS, 2006; HÖLZER; SOM-
MERFELD, 2008; RICHTER; NIKRITYUK, 2012; KRAVETS et al., 2019; FAN; SU;
YANG, 2022).

Since the present study is in the numerical field, we can use another method to
obtain the drag coefficient, which is to calculate the actual windward surface area. By
combining Eq. (5.1) and (5.2), we obtain

CD = 2Vpg (ρp − ρf )
Awsρfu2

t

(5.4)

where the windward surface area can be estimated using a CAD software.
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In the numerical field, we observe that most of studies use DNS (WEN; JOG,
2005; RICHTER; NIKRITYUK, 2012; RICHTER; NIKRITYUK, 2013; HE; TAFTI;
NAGENDRA, 2017) or LBM (HILL; KOCH; LADD, 2001a; HILL; KOCH; LADD, 2001b;
HOEF; BEETSTRA; KUIPERS, 2004; BEETSTRA; HOEF; KUIPERS, 2006; HÖLZER;
SOMMERFELD, 2008; KE et al., 2018) and, in some cases, LES (JONES; CLARKE,
2008; MOHAMMAD et al., 2018). Due to their high resolution, the results obtained are
very accurate. However, these methods require high number of grid points of the meshes,
unsteady formulation and low time-step, which leads to a high computational cost and
limits the studies to low Reynolds numbers, generally for Re ≤ 300 (KE et al., 2018), so that
the correlation is extrapolated for higher values and becoming less accurate for turbulent
flows (DIETZEL; SOMMERFELD, 2013; CHENG, 2009; KALMAN; MATANA, 2022;
ROOSTAEE; VAEZI, 2022). Using such methodology, the correlations are not modeled
for three relevant flow regimes: the unsteady planar-symmetric regime (270 ≤ Re ≤ 400),
the unsteady asymmetric flow regime (400 ≤ Re ≤ 1000) and the turbulent wake regime
(1000 ≤ Re ≤ 200000) (GOOSSENS, 2019; FAN; SU; YANG, 2022). In contrast, empirical
correlations present a wider range, but are more complex to implement in CFD codes,
since the correlations are, generally, piecewise functions, which can lead to numerical
instabilities in the transition between the sub-functions. Also, they present lower accuracy
for turbulent flows, from 60% (BAGHERI; BONADONNA, 2016) or 180%(CHHABRA;
AGARWAL; SINHA, 1999) up to 400% (HAIDER; LEVENSPIEL, 1989; GANSER, 1993).

Aiming to propose a new, simple and unified drag correlation for irregularly-shaped
particles, applicable for a wide range of Reynolds numbers and particle shapes, in this study
we conducted CFD simulations with experimental validations. To assess the applicability
of the numerical formulation proposed across a wide range of Reynolds numbers, steady
simulations were performed using the SST k-ω turbulence model, as proposed in previous
studies (OLIVEIRA; ZANATA; LOPES, 2023; OLIVEIRA; LOPES, 2023), and the results
were compared with turbulent flows utilizing Large Eddy Simulation as well as the
experimental data. Once the formulation was validated, steady simulations were carried
out within the Reynolds number range of 0.1 to 3500, and a new drag correlation was
proposed to effectively represent the observed numerical results and, finally compared to
experimental data, for validation.

5.2 Methodology
The study was carried out in two fields: experimental assays and numerical simula-

tions. The first part consists on measuring the terminal velocity of three different particle
agglomerates in five fluids, to validate the simulations. Once the model is validated, we
can use it to simulate the flow for several inlet velocities and propose a new correlation to
estimate the drag coefficient.
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5.2.1 Numerical simulations
The numerical simulations were carried out using the software ANSYS 14.5. The

computational domains and numerical meshes were generated using the software Design
Modeler and Meshing 14.5, respectively. The code Fluent 14.5 was used to solve the model
equations to analyze the fluid dynamics and estimate the drag force acting on the particles.

5.2.1.1 Domain and mesh generation

Simulations were carried out in three different computational domains, according
to the agglomerate studied. The domain is composed of a major parallelepiped with height
and width of 40 mm and a length of 180 mm, to assure that the velocity profile of the fluid
surrounding the agglomerates and at their rear are fully developed. Figure 17 shows an
example of the lateral view of the interior of the computational domain and the boundary
conditions of the simulations, while Figures 18 and 19 show, respectively, the lateral and
zoomed isometric views of the mesh, to show the high level of detail of the flow surrounding
the particle agglomerate.

Figure 17 – Example of the lateral view of the interior of the computational domains
simulated.

Figure 18 – Example of a lateral view of the finest mesh generated for the particle agglom-
erate of four spheres.

5.2.2 Mathematical modelling – model setup and governing equations
The present study’s focus is the fluid flow past on particle agglomerates at a

constant temperature of 25 °C. The time-averaged conservation equations for the three-
dimensional, incompressible, isothermal, and steady flow in this study are modelled by the
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Figure 19 – Example of an isometric view of the finest mesh surrounding the particle
agglomerate of four spheres.

Navier-Stokes equations (POPE, 2000), as follows

∂ui

∂xi

= 0 (5.5)

∂ui

∂t
+ uj

∂ui

∂xj

= −1
ρ

∂p

∂xi

+ ν
∂2ui

∂xj∂xj

− ∂τij

∂xj

(5.6)

The closure equations for the Reynolds-Averaged Navier-Stokes equations depends
on the turbulence model. In this study, we chose the SST k-ω model, which solves the
transport equations for the turbulence kinetic energy and the specific dissipation rate,
given by Eqs. (5.7) and (5.8), respectively

∂k

∂t
+ ∂ (ujk)

∂xj

= ∂

∂xj

[
(ν + σkνt)

∂k

∂xj

]
+ Pk − β∗kω (5.7)
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+ ∂ (ujω)
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= ∂

∂xj

[
(ν + σωνt)

∂ω

∂xj

]
+ 2 (1 − F1)σω2

1
ω

∂k

∂xi

∂ω

∂xi

+ αS2 − βω2 (5.8)

where F1 is the blending function, α, β and σ are closure coefficients of the model
(MENTER, 1994; WILCOX, 2004).

5.2.3 Simulation setup
For validation, the simulations were carried out using the fluids’ properties and

terminal velocities previously presented in Table 11, while the simulations to propose a
new correlation were carried out considering the water properties (see Table 11) varying
the inlet velocity, as presented in Table 10, to obtain the drag coefficient curve.

For higher values of Reynolds, the flow presents a time-dependent profile, so a
pseudo-transient under-relaxation scheme was applied using the PISO pressure-velocity
coupling algorithm. The spatial discretization was set to the least-squares cell-based
method for gradients and second-order upwind scheme for energy, momentum, pressure,
and turbulence. The convergence criterion for advancing in time was that the RMS
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Table 10 – Inlet velocity of the flow for the Reynolds numbers tested.

Reynolds
[ - ]

Velocity [ cm/s ]
3 spheres 4 spheres 5 spheres

0.1 0.0012 0.0011 0.0010
1 0.0117 0.0106 0.0099
5 0.0585 0.0532 0.0494
10 0.1171 0.1064 0.0988
25 0.2927 0.2660 0.2469
50 0.5855 0.5319 0.4938
75 0.8782 0.7979 0.7407
100 1.1709 1.0638 0.9876
250 2.9273 2.6596 2.4690
500 5.8546 5.3192 4.9379
750 8.7819 7.9789 7.4069
1000 11.7092 10.6385 9.8759
1250 14.6365 13.2981 12.3449
1500 17.5637 15.9577 14.8138
2000 23.4183 21.2769 19.7518
2500 29.2729 26.5962 24.6897
3000 35.1275 31.9154 29.6277
3500 40.9821 37.2347 34.5656

residuals were less than 10-9. For lower values of Reynolds, the time-dependent term
does not interfere in the flow profile, so we used the steady-state formulation to reduce
computational costs.

5.2.4 Experimental methods
The first part of the study consists of experimentally obtaining the terminal velocity

of the particle agglomerates to calculate the drag coefficient. The particle agglomerates
were made from spheres of Acrylonitrile Butadiene Styrene (ABS) with a diameter of
5.95 mm and density of 1822 kg/m3. The particles were glued together in three different
conformations and released at the most stable angle, as presented in the scheme in
Figure 20, to reduce the oscillations due to fluctuations of turbulent flows, which increases
measurement errors.

5.2.4.1 Experimental procedures

The experiment was carried out in an acrylic tank of dimensions (20x30x50) cm
filled with 28 L of fluid at 25 °C. To obtain different terminal velocities and, consequently,
different flow regimes, the experiment was repeated in five different fluids: water and four
different glycerin-water solutions. Figure 21 shows a scheme of the experimental apparatus.



Chapter 5. Proposal of the new drag coefficient correlation 78

Figure 20 – Isometric view of the three conformations of the particle agglomerates studied
and a scheme of the flow direction.

Figure 21 – Scheme of the experimental apparatus.

The preparation for the assays to obtain the terminal velocities were conducted
according to the following procedures:

1. Bubble elimination – To avoid the generation of bubbles during the fall, the
agglomerates were stored in the apparatus filled with the fluid. Before performing
the assays, the agglomerates were randomly released several times in the fluid, to
ensure that the air inside the holes were eliminated.

2. Disturbance elimination – To reduce the effects of the recurring disturbances in
the fluid, e.g. waves generated when fixing the particle in the lever, present in fluids
with low viscosity, the agglomerate was fixed in the lever, immersed in the fluid in
the position to be released, for 10 minutes, to ensure that the fluid becomes steady.

3. Ambient conditions – The experiments were performed at atmospheric pressure
and a steady room temperature of 25 °C controlled by air conditioning, to ensure that
the properties of the fluids remained constant during the assays. Also, a thermometer
was immersed in the fluid, to confirm that the temperature was steady.
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4. Tracking setup – Particles were tracked by recording their fall using a SONY
RX-110 IV camera set to 3840 x 2160 pixels per frame and a recording rate of 960
frames per second. To reduce measurement errors, the camera’s angle was adjusted
using a digital level. To facilitate the recording, a LED spotlight was placed on the
left of the lever and a blue card stock was fixed as a background of the tank.

Once the criteria were attended, the assays were performed. The camera was fixed
on a tripod in front of the tank. A ruler was fixed and aligned with the lever, to use as a
scale during the measure. To reduce the amount of frames recorded before reaching the
terminal velocity and before reaching the region where the fluid slows down the particle,
the camera was focused on capturing 15 cm of fall after 5 cm of fall.

5.2.4.2 Statistical methods

Using the software Tracker 6.0.10 we could not only obtain the terminal velocity,
but also the angle of inclination of the particle during the free-fall and discard data
obtained from assays falling out of the range of 89 and 91°. To reduce the experimental
uncertainties, both terminal velocities and fluid properties were measured seven times.
Using Tukey’s fences for outlier removal (TUKEY, 1977), we observed no outlier points
and good accuracy of the assays. Densities were obtained with densimeters, adopting
the manufacturer’s uncertainty. Table 11 shows the fluids properties and the terminal
velocities of the agglomerates with their corresponding experimental uncertainties.

Once we observe that the acceleration is close to zero mm/s2 - generally with less
than 1 cm of free fall -, we consider that the agglomerate reached the terminal velocity
and take an average during the free fall. For less viscous fluids, we observe higher Reynolds
numbers and, as a consequence of the fluctuations, the agglomerate oscillates along the
free fall, leading to variation of the terminal velocity and drag coefficient.

5.2.5 Drag correlation equations
Literature presents several equations used as base to formulate new correlations

to estimate the drag coefficient. Most of them are applicable for simple bodies, but very
effective, once adaptations are made, such as implementing geometry shape descriptors.
Clift, Grace & Weber (1978) proposed a correlation widely used as base for important
studies along time, such as Haider & Levenspiel (1989), Ganser (1993), Loth (2008) or
Bagheri & Bonadonna (2016). However, we opted to use a simpler model, also frequently
adapted in the literature (MORSI; ALEXANDER, 1972; YOW; PITT; SALMAN, 2005;
HÖLZER; SOMMERFELD, 2008; RICHTER; NIKRITYUK, 2012; KALMAN; MATANA,
2022), proposed by Kaskas (1964).
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Table 11 – From left to right: density and viscosity of the fluids and terminal velocities of
particle agglomerates of three, four and five spheres.
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5.2.5.1 Formulation of a new drag correlation

Kaskas (1964) proposed a simple and accurate equation to estimate the drag
coefficient:

CD = Λ1

Re
+ Λ2√

Re
+ Λ3 (5.9)

where Λ1, Λ2 and Λ3 are parameters obtained by regression. This equation has been
widely used as an initial test to propose correlations, due to its simplicity and robustness.
Khan & Richardson (1987) presented a review showing that this correlation presents good
agreement for spherical particles for 0.1 ≤ Re ≤ 10000.

However, the drag is strongly dependent on the shape of the particle, so, the
parameters of the regression are, in fact, shape-dependent and such variable must be
included in the equation. After analyzing studies taking into account the sphericity, Yow,
Pitt & Salman (2005) proposed an improvement given by

CD = C1

Re
+ C2√

Re
+ C3 (5.10)

where C1, C2 and C3 are parameters calculated by fitting correlations given as functions
of the sphericity.

Since the drag is shape-dependent, Richter & Nikrityuk (2012) proposed that, in
fact, the correlation could be improved as

CD = C1

Re
ΨC2 + C3√

Re
ΨC4 + C5 ΨC6 (5.11)

where C1 to C6 are fitted by regression and Ψ is a generic shape descriptor. After analyzing
five shape descriptors. the best fit was obtained using the aspect ratio, leading to

CD = C1

Re
ARC2 + C3√

Re
ARC4 + C5 AR

C6 (5.12)

Despite presenting good results, the equation presented by Richter & Nikrityuk
(2012) was proposed for a restricted range of low Reynolds flows (10 ≤ Re ≤ 250). However,
the study was relevant, since it presented an improved generic equation (Eq. 5.11).

5.2.5.2 New drag correlation

The proposal in this study is to present a new drag correlation for irregularly-shaped
particles applicable for a wide range of Reynolds numbers. The correlation is based on the
Eq. 5.11, which can be simplified as the following series,

CD =
N∑

i=1

C2i−1

Re (3 − i)/2
ΨC2i (5.13)

which, for N = 3, is well validated for low Reynolds numbers (KE et al., 2018).
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The behavior of the drag coefficient curve as a function of the Reynolds number is
well known. At subcritical conditions, the flow is divided into three regions: Stoke’s regime,
the intermediate regime, and Newton’s regime. For Stokes’ regime (Re ≤ 1), we observe a
linear decrease as the Reynolds number increases. In the intermediate regime, its behavior
shows a non-linear decrease of the drag coefficient as the Reynolds number increases until,
for Reynolds close to 2000, it reaches a minimum. As soon as the drag coefficient reaches
its minimum, we observe Newton’s regime, where the increase of velocity slightly increases
the drag coefficient until it reaches a maximum – by the order of 20% higher than of the
minimum – and becomes constant, i.e., independent of the Reynolds number.

Now, a trivial solution to present a new correlation is expand the Eq. 5.13 to the
fourth term, which leads to

CD = C1

Re
ΨC2 + C3√

Re
ΨC4 + C5 ΨC6 + C7 ΨC8

√
Re (5.14)

which is a potential solution to represent the turbulent region.

However, if we analyze the fourth term in the right-hand side of Eq. 5.14, we
observe that the function rapidly varies, since the term

√
Re rapidly increases as the

Reynolds number increases. So, according to the signal of the fitting parameter C7, the
correlation presented in Eq. 5.14 will increasingly underestimate or overestimate the drag
at the turbulent range.

So, we propose that the new correlation shall present a closure function to describe
the curve, instead of simply expanding the series, as follow

CD = C1

Re
ΨC2 + C3√

Re
ΨC4 + C5 ΨC6 + f(Ψ, Re) (5.15)

where the term f (Ψ, Re) corresponds to a closure function to fit the values in the turbulent
region. To solve the problem of rapidly underestimation/overestimation, we chose to use
the natural logarithm function, which presents a rapid increase for lower values of Reynolds
numbers but slightly increases for higher values, obtaining the following correlation

CD = C1

Re
ΨC2 + C3√

Re
ΨC4 + C5 ΨC6 + C7ΨC8 lnRe (5.16)

where Ψ is a geometric parameter and the constants C1 to C8 are obtained by regressions
aiming to minimize the residuals of the errors between the simulation’s results and the
fitted equation’s results.

5.2.5.3 Shape parameters

For non-spherical particles, several shape parameters can be used in particle
characterization. Literature presents several methods to obtain shape parameters of non-
spherical particles, generally using size parameters (CLIFT; GRACE; WEBER, 1978). One
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of the most relevant size parameter, defined by Wadell (1932), is the nominal diameter,
corresponding to the volume-equivalent-sphere diameter, given by Eq. (5.17)

dn = 3
√

6Vp/π (5.17)

where Vp is the total volume of the non-spherical particle studied. This size parameter
is widely used in the characterization of particles and bubbles, for both estimation of
some shape factors and, mainly, to estimate the Reynolds number of the particle (CLIFT;
GRACE; WEBER, 1978).

Another size parameter widely used, with a similar definition, is the surface-
equivalent-sphere diameter, based on the projected area of the particle, given by Eq.
(5.18)

dA =
√

4Ap/π (5.18)

where Ap is the projected area of the non-spherical particle.

Defining these size parameters is crucial since most of the shape parameters used
to characterize the particles are dependent on some size parameter.

I. Sphericity

The sphericity is a geometric parameter used to estimate how spherical an object is.
The literature presents several ways to calculate it, however, the definition proposed
by Wadell (1932) is one of the most used. It is proposed that the sphericity is given
by the ratio between the surface area of the volume-equivalent-sphere and the actual
surface area of the particle, as presented by Eq. (5.19)

ϕW = Asph/Aps (5.19)

where Asph is the surface area of the volume-equivalent sphere and Aps is the particle
surface area. In the present study, the values varied from 0.59 to 0.71.

II. Circularity

Studying the shape of particles, Dellino & LaVolpe (1996) showed that circularity
is effective to characterize the roundness of particles. For the present study, such
property is relevant, since the more round the particle, the more the flow around it
behaves like a single sphere and it can explain the deviations in the drag curve for the
new correlation. The circularity is a parameter dependent on the maximum projected
perimeter and the perimeter of the circle equivalent to the particle’s maximum
projection area, as follows

c = Pmp

Pc

= Pmp√
4πAmp

(5.20)

where Pmp is the maximum projected perimeter, Pc is the perimeter of the circle
equivalent to the particle maximum projection area and Amp is the maximum
projection area. In the present study, the values varied from 1.23 to 1.52.
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III. Surface circularity

The surface circularity, as observed in Tran-Cong, Gay & Michaelides (2004), is
given by the ratio between the perimeter of the surface-area equivalent sphere and
the maximum projection perimeter, as given by Eq. (5.21)

cs = πdS/Pmp (5.21)

where dS is the surface-area-equivalent sphere’s diameter and Pmp is the maximum
projection perimeter. In the present study, the values varied from 1.30 to 1.84.

IV. Flatness

Heiss & Coull (1952) showed that flatness can be represented by a simple ratio
between the surface-area-equivalent-sphere’s diameter and the volume-equivalent-
sphere’s diameter, as follows

f = dS/dn (5.22)

where dS can be obtained by CAD software, while dn is obtained by Eq. (5.17).
This parameter is a useful correction factor when experimental results diverge from
theoretical if estimated using the area-equivalent-sphere diameter to calculate the
drag coefficient (TRAN-CONG; GAY; MICHAELIDES, 2004). In the present study,
the values varied from 1.08 to 1.29.

V. Shape factor

Despite presenting good results, literature shows that the sphericity presents some
difficulties to describe particles with a very irregular contour that interferes with the
flow profile. Büttner et al. (2002) observed that circularity is a parameter sensible to
such irregularities. So, to insert an equilibrium to sphericity, the shape factor was
proposed as follows

ψ = ϕW/c (5.23)

aiming to better describe irregular particles using a simple and compact descriptor
(DELLINO et al., 2005). In the present study, the values varied from 0.45 to 0.54.

VI. Aspect ratio

We use the aspect ratio as the ratio between the minimum and maximum distance
of the particle agglomerate in the XYZ axis.

A.R. = min(X, Y, Z)/max(X, Y, Z) (5.24)

considering the centroid of the agglomerate fixed at the origin and the agglomerates
disposed as presented in Figure 20. In this proposal, the values varied from 0.50 to
0.91.
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5.3 Results and discussion
This study was carried out in two fields: experimental and CFD simulations.

Experiments were used to validate the simulations and the new correlation proposed by
fitting the CFD results.

5.3.1 Grid independence analysis
A grid independence study was performed for the drag coefficient, to assure that

the obtained results are grid independent. Three levels of grid density were tested for each
particle agglomerate, varying from 665609 to 8673271 cells, as presented in Table 12, for
the inlet velocity corresponding to a Reynolds number of 1000 for each the agglomerate.

Table 12 – Details of the meshes for the independence study for drag coefficient of terminal
velocity in water.

Agglomerate
Number

of
elements

Csim
D

( - )

Relative
difference a

( % )

Relative
difference b

( % )

3 spheres
665609 0.7565

- 4.4339 - 0.00541421504 0.7307
5679637 0.7306

4 spheres
826421 0.7330

- 2.6711 - 0.89041782503 0.7199
7176887 0.7134

5 spheres
984887 0.6270

- 2.5717 - 0.79102150878 0.6156
8673271 0.61075

a Percentage difference between the coarse and fine meshes.
b Percentage difference between the intermediate and fine meshes.

Analyzing the Table 12, we observe that the results can be considered converged,
since the relative difference between the intermediate meshes and the fine meshes presented
and improvement of less than 0.9% in the trend of the result. So, further refinements
will increase the computational cost without presenting significant improvement on the
accuracy of the results obtained.

To qualitatively study the meshes and predict the accuracy and reliability of the
results, we analyzed three mesh quality parameters. In this case, as presented in Table 13,
we opted to observe the aspect ratio, the orthogonality and the skewness of the meshes.

For the aspect ratio and orthogonality of the grid element, the closer to 1, the
better, while for skewness, the closer to zero, the better is the quality. For aspect ratio,
values below 20 are considered excellent, while orthogonality and skewness are considered
excellent for values greater than 0.8 and lower than 0.2, respectively (FERZIGER; PERIĆ,
2002). We observe in Table 13 that the mesh quality presented results close to the ideal for
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Table 13 – Mesh quality for the three particle agglomerates studied.

Agglomerate Number of
elements

Statistic
variable Aspect ratio Orthogonality Skewness

3 spheres 5679637 Average 1.165 0.950 0.056
SD (%) 0.570 0.088 0.134

4 spheres 7176887 Average 1.171 0.949 0.058
SD (%) 0.452 0.089 0.137

5 spheres 8673271 Average 1.176 0.948 0.060
SD (%) 0.458 0.090 0.139

all the parameters taken into account, showing that the simulations will tend to present
accurate results, converging with low numerical instabilities.

5.3.2 Verification and validation of the steady formulation
The verification and validation of the modelling is useful to reduce the computational

efforts. In order to see if steady RANS formulation is proper to estimate the drag coefficient,
the results of simulations were compared with the experimental results. To assay if LES is
feasible in this problem, we performed an initial test in the experimental conditions that
presented time-dependent flow profile, for higher Reynolds numbers. For these conditions,
we opted to use the boundary conditions of the particle flowing in water.

Jones & Clarke (2008) presented an extensive and detailed work on flow simulations
around spheres using the FLUENT code with LES turbulence modelling for time-dependent
flows. The study focused not only on the numerical methods, but also the size of the meshes
and time-step to carry out the simulations. So, based on their statements, LES simulations
in the present study were carried out using the PISO algorithm for pressure-velocity
coupling, PRESTO! and QUICK methods for the pressure and momentum discretization,
and the Smagorinsky-Lilly as the subgrid-scale model (LILLY, 1992). The finest meshes
presented in the Table 12 attend the requirement of number of grid-points the Chapman’s
estimation (CHOI; MOIN, 2012). To observe a complete profile we chose to perform LES
simulations for 8 seconds of physical time with a timestep of 0.005 seconds.

As the velocity of the flow decreases, the physical time to be simulated increases, but
the size of the smaller vortices increases, which allows for increasing the timestep, leading
to a moderate increase of computational costs. However, for LES there is a limitation to
the maximum size of timestep acceptable when calculating the drag coefficient (JONES;
CLARKE, 2008). So, the physical time simulated increases as the velocity decreases, but
when the timestep reaches its maximum size, it must stay constant, the computational
cost rapidly increases. By testing the LES, we observed that the case with less physical
time to be simulated required approximately 30 times the time using SST k-ω, 140 hours
for LES against 4.5 hours for SST k-ω, with no significant gains in the quality of results.
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So, carrying out simulations for all the cases presented in Table 10 becomes infeasible.

Now, before carrying on the CFD study for a wide range of Reynolds numbers, it is
necessary to observe if the mathematical modelling proposed indeed presents reliable results
for the flow profiles observed in the range proposed. So, we performed the simulations
at the boundary conditions of all the experimental data presented in Table 11 using the
steady SST k-ω model, aiming to validate the numerical methods. So, an analysis of the
relative deviation between the results was performed, assuming that the correct value is
given by the result obtained experimentally, estimated by the Eq. 5.25

δ = Csim
D − Cexp

D

Cexp
D

· 100 (5.25)

Table 14 shows the deviation between numerical and experimental results. Most
of the results presented a good agreement with experimental data, showing deviations
lower than ±10%, Results for Glycerin 2, where the Reynolds numbers are close to the
transition range, presented high deviations for all particle agglomerates. Such behavior is
expected, due to the difficulties of modelling the vortices in a transition range.

Table 14 – Comparison between numerical and experimental drag coefficient for each
particle agglomerate at the boundary conditions obtained experimentally.

Agglomerate Fluid
Water Glycerin 1 Glycerin 2 Glycerin 3 Glycerin 4

3 spheres
Csim

D ( - ) 0.737 0.884 1.363 5.172 79.335
Cexp

D ( - ) 0.712 0.951 1.142 5.158 77.075
δ ( % ) 3.42 - 7.02 19.34 0.27 2.93

4 spheres
Csim

D ( - ) 0.714 0.836 1.223 4.802 61.442
Cexp

D ( - ) 0.860 0.875 1.029 5.189 56.253
δ ( % ) - 16.98 - 4.54 18.82 - 7.46 9.23

5 spheres
Csim

D ( - ) 0.611 0.747 1.126 4.080 50.524
Cexp

D ( - ) 0.659 0.844 0.978 4.101 44.337
δ ( % ) - 7.30 - 11.49 15.23 - 0.52 13.96

Despite presenting some high deviations, we observe that most of simulations
presented relative deviations lower than ± 10%, and all of them presented deviations lower
than ± 20%, which is acceptable when validating CFD simulations.

5.3.2.1 Choosing the geometric parameter

To understand how the geometric parameter interferes with the correlation, we
used a genetic algorithm to optimize the parameters C1 to C8 by reducing the root-square
error (RSE) between the results obtained by CFD and the fit, given by

RSE =
N∑

i=1

√
(xi − x̂i)2 (5.26)
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where xi is the ith value obtained by CFD, x̂i is the ith value obtained by the fit and N
is the N th value to be compared. To cover all the ranges of experimental data - between
0.39 to 3289 -, we simulated the drag coefficient for a range between 0.1 and 3500, as
previously presented in the Table 10. By reducing the error, we obtained the best fit of
the correlation for each of the geometric parameters proposed in the subsection 5.2.5.3, as
presented in the Table 15, to estimate which presents the lower deviations.

Table 15 – Fitting parameters of the new correlation for each geometric parameter tested.

Geometric
parameter

Fitting parameter
C1 C2 C3 C4 C5 C6 C7 C8

A.R. 36.396 0.237 - 10.638 30.999 1.497 0.100 - 0.105 0.226
c 40.890 - 0.623 - 1.466 0.837 1.769 0.464 - 0.155 0.394
csurf 27.497 0.416 4.844 - 7.254 1.292 0.019 - 0.077 0.089
f 23.239 1.477 7.811 - 5.446 0.939 - 1.016 - 0.032 - 3.972
ϕW 23.970 - 0.672 2.318 0.048 1.062 0.758 - 0.015 0.326
ψ 46.024 0.397 - 0.854 0.333 1.712 0.130 - 0.091 - 0.302

To choose the best geometric parameter, we have to observe the behavior of the
correlation of all the fits along the simulated data. An easy way to do it is to plot the
drag coefficient obtained numerically and the calculated by the correlation, as presented
in Figures 22 to 24. In an initial analysis, we observe that, in general, all the parameters
presented good agreement with simulated data. Most of the fit results presented deviations
between ± 10%, which shows that the new correlation is able to predict the drag coefficient
for laminar to turbulent flows.

Now, with a focus on identifying the optimal correlation, our objective is to find a
fit that demonstrates a greater number of data points closely aligned with a perfect fit.
It is evident that sphericity was the sole parameter that consistently exhibited a good
agreement across the simulated range, with all results showing deviations within the range
of ± 10%. Similarly, the flatness parameter demonstrated numerous results that closely
approached a perfect fit, with only three points slightly exceeding a deviation of 10%, as
observed in Figure 24d. To conclude which parameter yields the most favorable outcomes,
it is crucial to present some statistical analysis. So, in Table 16 we present the deviations
between the correlations and the numerical simulation data, while in Table 17 shows the
deviations between the correlations and the experimental data.

Table 17 not only confirms the statement from graphical observations but also can
be used as experimental validation of the correlation, where the flatness and sphericity
fits presented deviations between ±20% for experimental data (Table 17). Flatness and
sphericity presented similar deviations for both experimental and simulated data. However,
we have to consider the range of geometries for which the correlations are applicable. Based
on the values of the shape parameters presented in subsection 5.2.5.3, the correlation using
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(a) Drag comparison for the range between
0.1 ≤ Re ≤ 1.

(b) Drag comparison for the range between
5 ≤ Re ≤ 50.

(c) Drag comparison for the range between
75 ≤ Re ≤ 750.

(d) Drag comparison for the range between
1000 ≤ Re ≤ 3500.

(e) Drag comparison for the range between 0.1 ≤ Re ≤ 3500.

Figure 22 – Comparison between the numerical results and the fits using the new corre-
lation (Equation 5.16) and experimental data for the agglomerate of three
particles.
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(a) Drag comparison for the range between
0.1 ≤ Re ≤ 1.

(b) Drag comparison for the range between
5 ≤ Re ≤ 50.

(c) Drag comparison for the range between
75 ≤ Re ≤ 750.

(d) Drag comparison for the range between
1000 ≤ Re ≤ 3500.

(e) Drag comparison for the range between 0.1 ≤ Re ≤ 3500.

Figure 23 – Comparison between the numerical results and the fits using the new cor-
relation (Equation 5.16) and experimental data for the agglomerate of four
particles.
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(a) Drag comparison for the range between
0.1 ≤ Re ≤ 1.

(b) Drag comparison for the range between
5 ≤ Re ≤ 50.

(c) Drag comparison for the range between
75 ≤ Re ≤ 750.

(d) Drag comparison for the range between
1000 ≤ Re ≤ 3500.

(e) Drag comparison for the range between 0.1 ≤ Re ≤ 3500.

Figure 24 – Comparison between the numerical results and the fits using the new cor-
relation (Equation 5.16) and experimental data for the agglomerate of five
particles.
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Table 16 – Relative deviations between the correlation fits and simulated data according
to the geometric parameter tested.

Geometric
parameter

δmin

( % )
δmax

( % )
δave

( % )
S.D.
( % )

A.R. - 7.789 14.570 4.576 6.119
c - 21.107 15.851 5.947 8.008

csurf - 6.937 13.538 4.302 5.682
f - 7.617 10.786 3.799 5.062
ϕW - 7.814 9.181 4.007 4.769
ψ - 14.312 11.399 4.906 6.159

Table 17 – Relative deviations between the correlation fits and experimental data according
to the geometric parameter tested.

Geometric
parameter

δmin

( % )
δmax

( % )
δave

( % )
S.D.
( % )

A.R. - 24.766 18.938 10.094 12.576
c - 28.662 28.181 12.617 16.719

csurf - 20.484 17.402 9.938 12.048
f - 18.367 14.367 9.601 11.115
ϕW - 18.492 13.361 9.318 10.902
ψ - 23.383 17.954 11.268 13.398

the flatness is applicable for a broader range of geometries.
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5.4 Conclusions
In the present study we performed experiments to estimate the drag coefficient of

three conformations of particle agglomerates, composed of spherical particles. The drag
coefficient was calculated using the terminal velocity of the agglomerates in free fall using
different fluids to vary the Reynolds number for a range between 0.1 and 3500, focusing
on obtaining results for different types of flow profile.

The experimental results obtained were used for verification and validation of
CFD simulations carried out for both steady and unsteady states, using the SST k-ω and
LES turbulence modelling, respectively. Once the formulation showed to be applicable,
simulations were carried out to estimate the drag coefficient for 18 Reynolds numbers
between 0.1 and 3500, to propose a new drag correlation applicable in particle-laden
flows from laminar to turbulent conditions carrying irregularly-shaped particles. The new
correlation was fitted for the simulated results using six geometry descriptor parameters,
to observe which one can better represent the drag coefficient curve. Main observations
were

1. The use of steady formulation using the SST k-ω presented good agreement with
experimental data, presenting, for most of the conditions, deviations lower than ±
10%.

2. For all particle agglomerates the simulations presented difficulties to estimate the
drag coefficient for the solution of Glycerin 2, where the Reynolds is in a transition
range. However, the values were between 15 and 19%, which can still be considered
good for CFD validation.

3. The fits using flatness and sphericity presented the best results, with all deviations
between -8 and 10% for simulated data, with exception of three points at the
turbulent region for five spheres, where flatness presented deviations between 10.37
and 10.79%.

4. Despite the sphericity presented a maximum deviation lower than the flatness,
reaching 9.18%, the average deviation were similar, 9.31% and 9.60%, respectively.

5. Since the fit using flatness presents deviations similar to the sphericity but is
applicable for a wider range of geometries, we can state that the correlation using
flatness presents the best results.
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6 General conclusions

This work aimed to propose a new correlation to estimate the drag coefficient in
irregularly shaped particles, such as particle clusters. For this purpose, three agglomeration
conformations of spheres were proposed to cover different ranges of geometric parameters
used in particle characterization.

After reviewing the literature, it was observed that there was a lack of studies
using a steady formulation in the study of the drag coefficient in particles. Therefore, in
order to fill this gap, a numerical study of turbulence models was conducted, as turbulence
significantly affects pressure and velocity fields, and consequently, the drag coefficient
results.

To conduct this study, simulations were performed on clusters of hypothetical
geometries using five RANS (Reynolds-Averaged Navier-Stokes) turbulence models, and
the obtained drag coefficient values were compared with correlations present in the literature.
The geometries were proposed to cover the range of application of such correlations for
both the geometric parameter characterizing the particle and the Reynolds ranges for
which the drag models were proposed. The SST k-ω and Spalart-Allmaras turbulence
models showed the best results for calculating the drag coefficient, but the SST k-ω model
better represented the flow profile in the wake region after the cluster.

A fundamental part of the verification and validation step of using the steady
formulation was the comparison between LES (Large Eddy Simulation) and steady simula-
tions using the SST k-ω model. However, in this step, experimental results were necessary
to validate the turbulence model. When analyzing the results, it was observed that LES
simulations presented relatively high relative deviations, reaching values higher than 20%
compared to the experimental data in fully turbulent flow conditions. In contrast, steady
simulations using the SST k-ω model showed values very close to the experimental ones,
with nine points having deviations within ± 5% and only two of the fifteen points showing
higher deviations, close to -19%.

Once the physical coherence of the simulations was confirmed and experimental
validation was carried out, the use of computational fluid dynamics became a powerful
tool for extrapolating the studied phenomenon. With the simulations validated for the
laminar, transitional, and turbulent flow profile ranges, simulations were then performed
for the Reynolds range between 0.1 and 3500, covering fully laminar to fully turbulent
flow conditions. From the numerically obtained data, a new adjustment correlation was
proposed to accurately represent the behavior of the drag coefficient curve as a function
of the Reynolds number. Since drag is highly dependent on the particle’s geometry, the
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correlation was adjusted for six relevant geometric parameters observed in the literature.

Both the flattening and Wadell sphericity as geometric parameters showed good
results, with relative deviations below ± 10% for all adjusted points. However, the flattening
proved to be a better option, as it presented a lower average relative deviation, only 0.23%,
and a standard deviation of 5.06%, in addition to being applicable to a wider range
of geometries. Another advantageous aspect of using the flattening was the range of
geometries to which the model applies, ranging from 1.08 to 1.28, whereas the sphericity,
in this study, ranged from 0.59 to 0.71.

Comparing the new correlation with experimental values, it can be observed that
the new proposal was robust for all flow ranges. The use of the flattening as a geometric
parameter in the correlation was crucial for the adjustment. Regarding the experimental
data, the values obtained by simulation generally showed relatively higher deviations than
the values obtained by adjusting the new correlation using the flattening. Despite the
deviation for the solution of glycerin flowing through three spheres presenting a relative
deviation of -18.37%, it still improved compared to the simulated value, which deviates
19.54% from the experimental one.

Considering that the drag coefficient curve as a function of the Reynolds number
presents four significantly different behaviors, the complexity of presenting a model that
fits these conditions is high. Also, considering the wide flow range studied, with a range of
drag coefficient values from 0.5 to 400, it can be stated that the new proposal proved to be
quite efficient. With a maximum relative deviation of 10.78% and a minimum of -7.61%,
the new correlation achieves the objectives of this study: a model of simple implementation
in CFD codes, unified, capable of covering a wide range of flows, thus showing potential
for application in equipment simulations.
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