
U
N

IV
ER

SI
D

A
D

E 
D

E 
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e 

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e 
Co

m
pu

ta
çã

o

New families of linear and partially linear quantile regression
models under reparameterized Marshall-Olkin distributions

Isaac Esteban Cortés Olmos
Tese de Doutorado do Programa Interinstitucional de Pós-Graduação em
Estatística (PIPGEs)





SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP

Data de Depósito:

Assinatura: ______________________

Isaac Esteban Cortés Olmos

New families of linear and partially linear quantile regression
models under reparameterized Marshall-Olkin distributions

Thesis submitted to the Institute of Mathematics and
Computer Science – ICMC-USP and to the Department
of Statistics – DEs-UFSCar – in accordance with the
requirements of the Statistics Interagency Graduate
Program, for the degree of Doctor in Statistics. FINAL
VERSION

Concentration Area: Statistics

Advisor: Prof. Dr. Mário de Castro Andrade Filho

USP – São Carlos
September 2023



Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi 
e Seção Técnica de Informática, ICMC/USP, 

com os dados inseridos pelo(a) autor(a)

                                       Bibliotecários responsáveis pela estrutura de catalogação da publicação de acordo com a AACR2: 
                                       Gláucia Maria Saia Cristianini - CRB - 8/4938 
                                       Juliana de Souza Moraes - CRB - 8/6176

C828n
Cortés, Isaac Esteban
   New families of linear and partially linear
quantile regression models under reparameterized
Marshall-Olkin distributions / Isaac Esteban
Cortés; orientador Mário  de Castro Andrade Filho. -
- São Carlos, 2023.
   128 p.

   Tese (Doutorado - Programa Interinstitucional de
Pós-graduação em Estatística) -- Instituto de Ciências
Matemáticas e de Computação, Universidade de São
Paulo, 2023.

   1. Quantile regression. 2. Global influence. 3.
Local influence. 4. Residual analysis. 5. P-
splines. I. de Castro Andrade Filho, Mário ,
orient. II. Título. 



Isaac Esteban Cortés Olmos

Novas famílias de modelos de regressão quantílica linear e
parcialmente linear sob distribuições Marshall-Olkin

reparametrizadas

Tese apresentada ao Instituto de Ciências Matemáticas
e de Computação – ICMC-USP e ao Departamento de
Estatística – DEs-UFSCar, como parte dos requisitos
para obtenção do título de Doutor em Estatística
– Programa Interinstitucional de Pós-Graduação em
Estatística. VERSÃO REVISADA

Área de Concentração: Estatística

Orientador: Prof. Dr. Mário de Castro Andrade Filho

USP – São Carlos
Setembro de 2023





UNIVERSIDADE FEDERAL DE SÃO CARLOS

Centro de Ciências Exatas e de Tecnologia
Programa Interinstitucional de Pós-Graduação em Estatística

Folha de Aprovação

Defesa de Tese de Doutorado do candidato Isaac Esteban Cortés Olmos, realizada em 31/07/2023.

Comissão Julgadora:

Prof. Dr. Mário de Castro Andrade Filho (USP)

Profa. Dra. Katiane Silva Conceição (USP)

Prof. Dr. Francisco José de Azevedo Cysneiros (UFPE)

Prof. Dr. Fernanda de Bastiani (UFPE)

Profa. Dra. Larissa Avila Matos (UNICAMP)

O Relatório de Defesa assinado pelos membros da Comissão Julgadora encontra-se arquivado junto ao Programa
Interinstitucional de Pós-Graduação em Estatística.





ACKNOWLEDGEMENTS

First, I want to thank the only true God, Jesus Christ, for giving me the strength and
intelligence to develop this dissertation. I’d also like to express my gratitude to my brothers in
Christ, along with my family, who have been my true support throughout both good and bad
times.

My heartfelt thanks to my supervisor, Mário de Castro, for the countless suggestions
provided during the development of this dissertation. I would also like to express my gratitude to
Professor Diego Gallardo for his valuable input on the dissertation topic.

I would like to thank: Francisco Csyneiros, Katiane Silva Conceição, Fernanda de
Bastiani and Larissa Avila Matos for their suggestions in this dissertation work.

Finally, I would like to express my gratitude to my colleagues and classmates at the
university. Without their tremendous help, companionship, and patience, I would not have been
able to complete this academic journey.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior - Brasil (CAPES) - Finance Code 001





RESUMO

CORTÉS, I. E. Novas famílias de modelos de regressão quantílica linear e parcialmente
linear sob distribuições Marshall-Olkin reparametrizadas. 2023. 130 p. Tese (Doutorado em
Estatística – Programa Interinstitucional de Pós-Graduação em Estatística) – Instituto de Ciências
Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2023.

Nesta tese, propomos famílias de modelos de regressão quantílica linear e parcialmente linear,
onde a variável resposta segue uma distribuição Marshall-Olkin reparametrizada com suporte na
reta real. Esta distribuição apresenta uma grande flexibilidade que surge ao aplicar a metodologia
Marshall-Olkin as distribuições da família de locação-escala, logo reparametrizando o parâmetro
de locação em função do quantil. Por esse motivo, o nome da nova distribuição é Marshall-Olkin
reparametrizada, que contém parâmetros de quantil, escala e assimetria. A primeira família
tem uma estrutura semelhante aos modelos lineares generalizados, que permite a utilização do
método da máxima verossimilhança. Consequentemente, calculamos as expressões do vetor
escore e da matriz de informação observada para realizar a inferência estatística. A adequação
dos modelos e observações discrepantes são estudadas por meio de três tipos de resíduos. Para
avaliar a sensibilidade das estimativas são desenvolvidas medidas de influência global e local. A
segunda família é uma extensão da primeira família por adicionar a descrição da relação não
linear entre os quantis da variável resposta e uma variável contínua por meio de B-splines. Nesta
família as ferramentas de inferência estatística são baseadas na função de log-verossimilhança
penalizada. Também, analogamente à primeira família são apresentados os resíduos e as medidas
de influência global e local. São considerados dois exemplos de aplicações que ilustram a
utilidade das famílias propostas para conjuntos de dados na área de saúde e nutrição.

Palavras-chave: Regressão quantílica, Estimadores de máxima verossimilhança, Influência
global, Influência local, Análise residual, Estimadores de máxima verossimilhança penalizada,
P-splines.





ABSTRACT

CORTÉS, I. E. New families of linear and partially linear quantile regression models
under reparameterized Marshall-Olkin distributions. 2023. 130 p. Tese (Doutorado em
Estatística – Programa Interinstitucional de Pós-Graduação em Estatística) – Instituto de Ciências
Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2023.

In this dissertation, we propose families of linear and partially linear quantile regression models,
where the response variable follows a reparameterized Marshall-Olkin distribution with support
on the real line. This distribution presents great flexibility and arises from applying the Marshall-
Olkin methodology to distributions of the location-scale family and then reparameterizing the
location parameter as a function of the quantile. For this reason, the new distribution’s name is
reparameterized Marshall-Olkin, which contains quantile, scale and skewness parameters. The
first family has a structure similar to the generalized linear models that enable the use of the
maximum likelihood method. Consequently, we calculate the expressions of the score vector and
the observed information matrix to perform the statistical inference. The adequacy of models and
outlier observations are studied through three types of residuals. In order to assess the sensitivity
of the estimates, measures of global and local influence are developed. The second family is an
extension of the first family by adding the description of the nonlinear relationship between the
quantiles of the response variable and a continuous variable through B-splines. In this family,
statistical inference tools are based on the penalized log-likelihood function. Also, analogously
to the first family, the residuals and measures of global and local influence are presented. Two
examples of applications are considered that illustrate the usefulness of the proposed families for
data sets in the areas of health and nutrition.

Keywords: Quantile regression, Maximum likelihood estimators, Global influence, Local
influence, Residual analysis, Penalized maximum likelihood estimators, P-splines.
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CHAPTER

1
INTRODUCTION

Regression analysis describes the linear relationship between the conditional mean of
a response variable and a set of predictor variables. The fit and modeling of the conditional
mean have been done using simple linear regression, multiple linear regression, and regression
with heteroscedastic errors. These regressions employ weighted least squares and maximum
likelihood (ML) methods to estimate the parameters. Draper and Smith (1998) and Gordon
(2015) have illustrated how important it is to use these tools in disciplines like Economics,
Business Administration and the Social Sciences. However, studying only the conditional mean
has its limitations, as the three relevant limitations mentioned by Hao and Naiman (2007).

The first limitation of traditional regression is that it does not allow for the analysis of
noncentral locations of the response variable to address specific issues of interest. For instance, in
studies of economic inequality, there is an interest in modeling the extremes of income, including
the poor (lower tail) and the wealthy (upper tail). Another example from the health field involves
the study of individuals with low weight (lower tail) and obesity (upper tail) using the body mass
index (BMI).

The assumptions of the traditional regression is the second limitation. These assumptions
in real life are difficult to satisfy. For example, homoscedasticity does not occur often. Addition-
ally, the response variable commonly has heavier tails than the normal distribution. Finally, the
conditional mean is strongly influenced by outliers that make the mean an inappropriate measure.

Finally, the third limitation of traditional regression is that it does not allow us to cover
investigations that focus on studying beyond how predictor variables affect the location and
scale parameters of the response variable. It is currently necessary to analyze the effects of the
predictor variables on the skewness and, if possible, the kurtosis of the response variable.

Quantile regression (QR) models introduced by Koenker and Jr (1978) allow specifying
the changes of the conditional quantiles by a set of linear predictors. In this way, its flexibility
helps to a great extent to solve problems such as economic inequality and the body mass index
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mentioned above. Two of its outstanding advantages are its robustness to the influence of outlier
observations (HUNTER; LANGE, 2000) and the ability to provide a complete description of the
conditional distribution of the response (DAVINO; FURNO; VISTOCCO, 2013).

Recently, some authors have studied alternative distributions to perform QR. For example,
in the context of positively supported responses, Noufaily and Jones (2013) and Sánchez et

al. (2021) studied the generalized gamma and Birnbaum-Saunders distributions, respectively.
Korkmaz and Korkmaz (2023), Mazucheli et al. (2020) and Jodra and Jimenez-Gamero (2020)
investigated the unit log-log, unit-Weibull and exponential-geometric distributions with support
in the unit interval, respectively. In addition, Morales et al. (2017) and Gallardo et al. (2020)
proposed an asymmetric family of distributions and the power skew-normal, both with support
in the real line, respectively. The structure of these models has the advantage of the easy
interpretation of the parameters that allow the application of the ML methodology to obtain the
estimates and carry out analysis of global and local influence.

In this dissertation, we propose new families of linear and partially linear QR models for
distributions with quantile, scale and skewness parameters, named reparameterized Marshall-
Olkin (RPMO) distributions (CORTÉS; CASTRO; GALLARDO, 2023). These distributions
with support on the real line arise by applying the Marshall-Olkin methodology (MARSHALL;
OLKIN, 1997) to the family of location-scale distributions and then reparameterizing the location
parameter in terms of the quantile. The family of linear QR models can be used to deal with the
three limitations of traditional regression. Its structure is similar to generalized linear models
(GLM) (NELDER; WEDDERBURN, 1972). Therefore, the ML method allows for obtaining
estimates and developing global and local diagnostics.

The family of partially linear QR models is an extension of the linear QR models. They
are useful in situations where predictors have linear effects on the quantiles of the response
variable while another variable has a nonlinear effect. Thus, the models allow the capture of
more complex data viewed in Astronomy, Biology, Medicine, Economics, and Finance, among
others.

Cai and Xiao (2012), in different contexts, note that nonparametric and semiparametric
regression models (which are a general case of partially linear models) have garnered the attention
of researchers due to their greater flexibility compared to linear QR models. Some important
references that illustrate the points mentioned include Cai (2002), Gooijer and Zerom (2003)
and Cai, Gu and Li (2009).

The main contribution of this dissertation is to develop the process of estimation and
statistical inference on the parameters for the families of linear and partially linear QR models
under RPMO distributions. Moreover, to adopt techniques of global and local influence for the
same families.
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This dissertation is structured into six chapters as follows. Chapter 2 introduces the
RPMO family of distributions and analyzes their skewness and kurtosis. It then formulates
the linear QR model and discusses the ML methodology for estimating the model parameters.
Moreover, it adopts three types of residuals, two methods of global influence, and three schemes
of methods of local influence. In Chapter 3, the behavior of ML estimators is assessed through
simulation studies and presents an application example. Chapter 4 proposes a family of partially
linear QR models for RPMO distributions. This chapter is also devoted to performing statistical
inference on parameters and extending measures of local and global influence. Chapter 5
studies the properties of penalized ML estimators through simulation. Additionally, this chapter
illustrates the methodologies investigated in Chapter 4. Finally, in Chapter 6, we provide some
final comments on the main results and some ideas for future work.

1.1 Preliminaries

Marshall and Olkin (1997) propose a widely used method for generating new probability
distributions. This method involves introducing a new parameter to an existing distribution and
includes the original distribution as a particular case. The resulting distribution offers greater
flexibility in modeling various types of data.

The cumulative density function resulting from the application of the Marshall-Olkin
(MO) methodology is given by

G(y;α) =
F0(y)

α +(1−α)F0(y)
, y ∈ R,α ∈ R+, (1.1)

where F0 represents the baseline cumulative distribution function and α the new parameter. It is
evident that Equation (1.1) provides a means to derive new parametric distributions. Consequently,
the probability density function corresponding to Equation (1.1) can be expressed as

g(y;α) =
α f0(y)

[α +(1−α)F0(y)]
2 , y ∈ R,α ∈ R+, (1.2)

with f0 representing the baseline probability density function. In the literature, some interesting
specific cases of (1.2) discussed involve taking f0 to be normal (GARCÍA; GÓMEZ-DÉNIZ;
VÁZQUEZ-POLO, 2010), Cauchy (JACOB; JAYAKUMAR, 2012) and other distributions
belonging to the location-scale family (RUBIO; STEEL, 2012).
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CHAPTER

2
REPARAMETERIZED MARSHALL-OLKIN

REGRESSION MODELS

This chapter presents the family of RPMO distributions for modeling data with support
on the real line. Subsequently, an analysis of the skewness and kurtosis of these distributions is
conducted. Additionally, the QR model is formulated, defining a structure similar to that of GLM.
This formulation naturally leads us to employ ML methodology for deriving the score vector,
ML estimators, and the observed information matrix in order to perform statistical inferences.

Furthermore, diagnostic analysis methods for the QR model of the RPMO family are
developed. First, three types of residuals are adopted. Secondly, the expressions of likelihood
displacement and generalized Cook’s distance are proposed as global influence. Third, three
perturbation schemes in the model or data are specified as local influence.

2.1 Reparameterized Marshall-Olkin distributions

This section defines the probability density function (pdf) of the RPMO family of
distributions. Then, some properties are studied, such as the cumulative distribution function
(cdf) and the quantile function (qf).

Definition 2.1. We will say that a random variable Y has a RPMO distribution if its pdf is given
by

g(y;ξq,σ ,α) =
α f0(uq)

σ
[
α +(1−α)F0(uq)

]2 , y ∈ R, (2.1)

where

uq =
y−ξq

σ
+F−1

0

(
αq

1+qα−q

)
,
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ξq ∈ R, σ ∈ R+ and α ∈ R+ are the q-quantile, scale and skewness parameters, respectively.
Also, f0 and F0 are the baseline pdf and cdf belonging to the location-scale family. We denote it
by Y ∼ RPMO(ξq,σ ,α, f0).

The set of distributions with a pdf given in Equation (2.1) is referred to as the RPMO
family. Consequently, Table 1 displays the expressions of f0 and F0 for the family members,
along with their corresponding notations. It’s worth noting that the logistic distribution, which
belongs to the location-scale family, is not included in the table. This omission is due to the
Arnold-Groeneveld skewness measure being zero for any value of α , as discussed in Rubio and
Steel (2012). This indicates that the α parameter does not modify the skewness of the logistic
distribution and, as a result, it is excluded from the RPMO family.

Table 1 – Expressions of f0 and F0 of the baseline models and their respective notations in the RPMO
family.

Baseline Model f0(uq) F0(uq) New Model

Gumbel exp
(
−uq− exp

(
−uq

))
exp
(
−exp

(
−uq

))
RPMOG

Student’s-t
Γ

(
ϑ+1

2

)
√

πϑΓ

(
ϑ

2

)(1+
u2

q
ϑ

)−ϑ+1
2 1

2 +
uqΓ

(
ϑ+1

2

)
√

πϑΓ

(
ϑ

2

)2F1

(
1
2 ,

ϑ+1
2 ; 3

2 ,−
u2

q
ϑ

)
RPMOT

Normal 1√
2π

exp
(
−u2

q
2

)
0.5
[
1+ erf

(
uq√

2

)]
RPMON

Cauchy 1
π(1+u2

q)
0.5+ arctan(uq)

π
RPMOC

Note: ϑ , erf and 2F1 denote the degrees of freedom, error function and hypergeometric function,
respectively.

One of the advantages of the RPMO family is that its pdf has closed form expressions,
which reduce computational costs. Another advantage is that it can be useful for modeling data
with support on the real line. Additionally, if α = 1 in Equation (2.1), we have the reparameterized
pdf of the location-scale family.

Figure 1 illustrates the behavior of the distributions within the RPMO family for σ = 1,
q = 0.5 and different values of α and ξq. We have highlighted the particular case when α = 1
with a red line in the plots. It’s worth noting that these distributions exhibit greater flexibility
compared to their specific cases. As expected, the family can be used to fit skewed and unimodal
data.

Properties 2.1. Let Y ∼ RPMO(ξq,σ ,α, f0), then the cdf of Y is given by

G(y;ξq,σ ,α) =
F0(uq)

α +(1−α)F0(uq)
, (2.2)

where
uq =

y−ξq

σ
+F−1

0

(
αq

1+qα−q

)
.



2.1. Reparameterized Marshall-Olkin distributions 29

The expression in Equation (2.2), like that of the pdf, has a closed form. Figure 2
illustrates the behavior of the cdf for σ = 1, q = 0.5 and different values of ξq and α . It can be
observed that for α values smaller than 1 (particular case), the cdf converges more rapidly to 1 ,
while for α values greater than 1, the CDF converges more slowly to 1.

Properties 2.2. Let Y ∼ RPMO(ξq,σ ,α), then the qf of Y is expressed as

Q(p;ξq,σ ,α) = σ

[
F−1

0

(
α p

1+ pα− p

)
−F−1

0

(
αq

1+qα−q

)]
+ξq, (2.3)

where p∈ (0,1) and q∈ (0,1). Note that if p = q, then Q(p;ξq,σ ,α) = ξq. Algorithm 1 presents
a scheme that generates random numbers to distributions belonging to the RPMO family using
the inversion method.

Figure 1 – Plots of the pdfs of the distributions belonging to the RPMO family with σ = 1, q = 0.5 and
different values of ξq and α .
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Algorithm 1 – Generation of a random numbers from the distribution RPMO(ξq,σ ,α, f0)

1: Set the values of the probability q and the parameters ξq, σ and α .
2: Generate random numbers Ui ∼U(0,1), where Ui denotes the unitary uniform distribution.
3: Evaluate

yi = σ

[
F−1

0

(
Uiα

1+αUi−Ui

)
−F−1

0

(
αq

1+qα−q

)]
+ξq.

4: Repeat (2)-(3) for i = 1, . . . ,n.

Figure 2 – Plots of the cdfs of the distributions belonging to the RPMO family with σ = 1, q = 0.5 and
different values of ξq and α .
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2.2 Skewness and Kurtosis

In this section, we analyze the skewness and kurtosis measures of the distributions
through respective plots.

Let Y ∼ RPMO(ξq,σ ,α, f0), we can assess its skewness behavior numerically using
Fisher’s skewness coefficient, defined in this family as

µ̃3 =
E
[
(Y −E[Y ])3]

(E [(Y −E[Y ])2])
3/2 , where E[Y k] =

∫
∞

−∞

yk g(y;ξq,σ ,α)dy. (2.4)

However, the RPMOC distribution lacks finite moments. Therefore, we suggest using Bowley’s
skewness coefficient, denoted by

Sk =
Q(0.75;ξq,σ ,α)+Q(0.25;ξq,σ ,α)−2Q(0.5;ξq,σ ,α)

Q(0.75;ξq,σ ,α)−Q(0.25;ξq,σ ,α)
, (2.5)

where Q(p;ξq,σ ,α) is the qf defined in Equation (2.3).

Figure 3 shows the skewness coefficients in the distributions for σ = 1 and ξq = 0
as a function of α ∈ (0,50]. Another plot within the figure specifies an interval of α values
specifically for the RPMOT distribution. The red line highlights the case when α = 1. In this
figure, it is evident that the distributions exhibit both negative and positive skewness, except
for the RPMOG distribution, which shows only positive skewness. Furthermore, the behavior
of the skewness measure in the RPMOG distribution is decreasing, in contrast to the RPMOC
distribution. The RPMOT distribution with ϑ = 15 is not monotonic. All figures indicate that
the distributions within the family offer higher flexibility than their particular cases.

To assess the kurtosis of the RPMO family, we utilize the Pearson kurtosis coefficient
defined by

µ̃4 =
E
[
(Y −E[Y ])4]

(E [(Y −E[Y ])2])
2 . (2.6)

On the other hand, we propose the Moors kurtosis coefficient for the RPMOC distribution,
denoted as

Kk =

[
Q(7/8;ξq,σ ,α)−Q(5/8;ξq,σ ,α)

]
+
[
Q(3/8;ξq,σ ,α)−Q(1/8;ξq,σ ,α)

]
Q(6/8;ξq,σ ,α)−Q(2/8;ξq,σ ,α)

, (2.7)

where Q(p;ξq,σ ,α) is the qf defined in Equation (2.3).

Figure 4 displays the kurtosis coefficient for σ = 1 and ξq = 0 as a function of α ∈ (0,50].
The red line highlights the case when α = 1. In the figure, we can observe that the coefficients
in the RPMON, RPMOC and RPMOT (with ϑ = 15) distributions exhibit similar behavior.
Furthermore, the RPMOG distribution demonstrates a high kurtosis and its coefficient decreases
as α increases. All figures indicate that the distributions within the family have higher kurtosis
than their particular cases.
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Figure 3 – Plots of the skewness coefficient in the RPMO family of distributions against α parameter.
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Figure 4 – Plots of the kurtosis coefficient in the RPMO family of distributions against α parameter.
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2.3 Quantile regression model

This section formulates the QR model for the RPMO family of distributions.

Let Y1, . . . ,Yn be independent random variables, where each Yi, i = 1, . . . ,n, follows the
pdf given in Equation (2.1) with q-th quantile ξiq, scale σiq, and skewness αiq parameters. Then,
considering the probability q ∈ (0,1) fixed, the RPMO model parameters have the following
systematic components

ξiq = η1iq = x>1iβββ q, log(σiq) = η2iq = x>2iνννq and log(αiq) = η3iq = x>3iτττq, (2.8)

where βββ q = (β1q, . . . ,βtq)
>, νννq = (ν1q, . . . ,νrq)

> and τττq = (τ1q, . . . ,τmq)
> are vectors of un-

known regression coefficients with (t + r+m)< n; η1iq, η2iq and η3iq are the linear predictors;
and x1i = (x1i1, . . . ,x1it)

>, x2i = (x2i1, . . . ,x2ir)
> and x3i = (x3i1, . . . ,x3im)

> are observations on
t, r and m known regressors, for i = 1, . . . ,n.

In addition, we will assume the following aspects: y = (y1, . . . ,yn)
> is the vector of

observed responses; βββ q ∈ Rt , νννq ∈ Rr and τττq ∈ Rm are functionally independent; and the
covariate matrices X1 = (x>11, . . . ,x

>
1n)
>, X2 = (x>21, . . . ,x

>
2n)
> and X3 = (x>31, . . . ,x

>
3n)
> have

ranks t, r and m, respectively.

2.4 Maximum likelihood estimation

This section mainly derives the score vector, ML estimators, observed information matrix
and asymptotic confidence intervals to perform statistical inference.

Let Y1, . . . ,Yn be independent random variables such that Yi ∼ RPMO(ξiq,σiq,αiq, f0),
then the log-likelihood function for θθθ q = (βββ>q ,ννν

>
q ,τττ

>
q )
> can be written as

`(θθθ q) =
n

∑
i=1

`i(ξiq,σiq,αiq), where (2.9)

`i(ξiq,σiq,αiq) = log(αiq)+ log( f0(uiq))− log(σiq)−2log(αiq +(1−αiq)F0(uiq)),

uiq = (yiq−ξiq)/σiq +F−1
0 (αiqq/(1+qαiq−q)),

for i = 1, . . . ,n and q ∈ (0,1) fixed. The score vector of dimension (t + r +m) is given by
U(θθθ q) = (U>

βββ q
,U>νννq

,U>τττq
)> = ∂`(θθθ q)/∂θθθ q whose components are

Uβββ q
=

∂`(θθθ q)

∂βββ q
= X>1 W1A1, (2.10)

Uνννq =
∂`(θθθ q)

∂νννq
= X>2 W2A2 and (2.11)

Uτττq =
∂`(θθθ q)

∂τττq
= X>3 W3A3, (2.12)
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with

W1 =
[
biq δi j

]
, W2 =

[
eiq δi j

]
, W3 =

[
diq δi j

]
,

A1 = ( ˙̀
ξ1q

, . . . , ˙̀
ξnq)
>, A2 = ( ˙̀

σ1q, . . . ,
˙̀
σnq)

> and A3 = ( ˙̀
α1q , . . . ,

˙̀
αnq)

>,

where

biq =
∂ξiq

∂η1iq
= 1, eiq =

∂σiq

∂η2iq
= exp

(
η2iq

)
, diq =

∂αiq

∂η3iq
= exp

(
η3iq

)
,

δi j is the Kronecker delta with i, j = 1, . . . ,n and q ∈ (0,1) fixed. Finally, the elements of the
vectors are given by

˙̀
ξiq =

∂`i(ξiq,σiq,αiq)

∂ξiq

= 2ψ1iq

[
f0(uiq)(1−αiq)

αiq +(1−αiq)F0(uiq)

]
−ψ1iq

[
f ′0(uiq)

f0(uiq)

]
, (2.13)

˙̀
σiq =

∂`i(ξiq,σiq,αiq)

∂σiq

= 2ψ1iqψ2iq

[
f0(uiq)(1−αiq)

αiq +(1−αiq)F0(uiq)

]
−ψ1iq−ψ1iqψ2iq

[
f ′0(uiq)

f0(uiq)

]
(2.14)

and

˙̀
αiq =

∂`i(ξiq,σiq,αiq)

∂αiq

= ψ3iq +uαiq

[
f ′0(uiq)

f0(uiq)

]
−2
[

1−F0(uiq)+(1−αiq) f0(uiq)uαiq

αiq +(1−αiq)F0(uiq)

]
, (2.15)

where

ψ1iq =
1

σiq
, ψ2iq =

(yi−ξiq)

σiq
, ψ3iq =

1
αiq

, uαiq =
Ψ0q(1−q)

(1+qαiq−q)2

and

Ψ0 = 1/ f0(F−1
0 (αiqq/(1+qαiq−q))) for i = 1, . . . ,n and q ∈ (0,1) fixed.

The first derivative of f0(uiq), denoted by f ′0(uiq) in Equations (2.13)-(2.15), depends on the
distribution in the family. Table 2 provides the expression for f ′0(uiq) in each member of the
RPMO family.

Note that in Equations (2.10)-(2.12), the ML estimators of βββ q, νννq and τττq do not have
a closed form. Therefore, the ML estimates denoted by β̂ββ q, ν̂ννq and τ̂ττq, can be obtained by
numerical maximization of the log-likelihood function. To solve this numerical maximization,
we adopt the RS algorithm from the gamlss package (STASINOPOULOS et al., 2017) in the R
programming language (R Core Team, 2022).
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Table 2 – Expression of the first derivative f ′0(uiq) for each member of the RPMO family.

Distribution f ′0(uiq)

RPMOG
[
exp(−uiq)−1

]
f0(uiq)

RPMOT −uiq f0(uiq)
(

ϑ+1
ϑ

)(
1+

u2
iq

ϑ

)−1

RPMON −uiq f0(uiq)

RPMOC −2 f0(uiq)
(

uiq

1+u2
iq

)

2.4.1 RS algorithm

The RS algorithm (STASINOPOULOS; RIGBY, 2008) consists of an outer iteration that
maximizes the log-likelihood function, as expressed in Equation (2.9), with respect to β̂ββ q, ν̂ννq

and τ̂ττq. Additionally, there is an inner iteration to fit a model for each distribution parameter
individually while keeping the other parameters fixed at their current values. For the RS algorithm,
the quantities needed are

• the score functions

sss1q =( ˙̀
ξ1q

b1q, . . . , ˙̀
ξnqbnq)

>, sss2q =( ˙̀
σ1qe1q, . . . , ˙̀

σnqenq)
> and sss3q =( ˙̀

α1qd1q, . . . , ˙̀
αnqdnq)

>;

• the diagonal matrices of iterative weights

W11 = diag(sss1q ◦ sss1q), W22 = diag(sss2q ◦ sss2q) and W33 = diag(sss3q ◦ sss3q),

where ◦ is the Hadamard element by element product;

• and the adjusted dependent variables

zzz1q = ηηη1q +W−1
11 sss1q, zzz2q = ηηη2q +W−1

22 sss2q and zzz3q = ηηη3q +W−1
33 sss3q,

where

ηηη1q = X1βββ q, ηηη2q = exp
(
X2νννq

)
and ηηη3q = exp

(
X3τττq

)
.

Let j represent the iteration index of the outer cycle and i represent the iteration index of
the inner cycle. The algorithm is described as follows:

Step 1: Initialize fitted values for distributional parameter vectors of length n: ξξξ
(1,1)
q , σσσ

(1,1)
q and

τττ
(1,1)
q , respectively. In this context, consider the outputs of the skew-normal, skew-t

type I and reverse Gumbel parametric regression models as suggested initial values, with
τττ
(1,1)
q = 111. Then, evaluate the initial linear predictors: ηηη

(1,1)
1q = ξξξ

(1,1)
q , ηηη

(1,1)
2q = exp

(
σσσ

(1,1)
q
)

and ηηη
(1,1)
3q = exp

(
τττ
(1,1)
q
)
.
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Step 2: Start the outer cycle j = 1,2, . . . until convergence.

(a) Start the inner cycle i = 1, . . . ,n until convergence.

(i) Evaluate the current sss( j,i)
1q , W( j,i)

11 and zzz( j,i)
1q .

(ii) Regress the current zzz( j,i)
1q against design matrix X1 using iterative weights W( j,i)

11 to

obtain the updated parameters βββ
( j,i)
q .

(b) End the inner cycle on convergence of βββ
( j,·)
q and set βββ

( j+1,1)
q = βββ

( j,·)
q , ηηη

( j+1,1)
1q = ηηη

( j,·)
1q

and ξξξ
( j+1,1)
q = ξξξ

( j,·)
q ; otherwise update i and continue the inner cycle.

(a’) Start the inner cycle i = 1, . . . ,n until convergence.

(i) Evaluate the current sss( j,i)
2q , W( j,i)

22 and zzz( j,i)
2q .

(ii) Regress the current zzz( j,i)
2q against design matrix X2 using iterative weights W( j,i)

22 to

obtain the updated parameters ννν
( j,i)
q .

(b’) End the inner cycle on convergence of ννν
( j,·)
q and set ννν

( j+1,1)
q = ννν

( j,·)
q , ηηη

( j+1,1)
2q = ηηη

( j,·)
2q and

σσσ
( j+1,1)
q = σσσ

( j,·)
q ; otherwise update i and continue inner cycle.

(a”) Start the inner cycle i = 1, . . . ,n until convergence.

(i) Evaluate the current sss( j,i)
3q , W( j,i)

33 and zzz( j,i)
3q .

(ii) Regress the current zzz( j,i)
3q against X3 using iterative weights W( j,i)

33 to obtain the

updated parameters τττ
( j,i)
q .

(b”) End the inner cycle on convergence of τττ
( j,·)
q and set τττ

( j+1,1)
q = τττ

( j,·)
q , ηηη

( j+1,1)
3q = ηηη

( j,·)
3q and

ααα
( j+1,1)
q = ααα

( j,·)
q ; otherwise update i and continue inner cycle.

Step 3: End the outer cycle if the change in the log-likelihood is less than 0.001; otherwise, update
j and continue the outer cycle.

2.4.2 Observed information matrix

The observed information matrix for θ̂θθ q = (β̂ββ
>
q , ν̂νν

>
q , τ̂ττ

>
q )
> is calculated from the second

partial derivative of `(θθθ) relative to all model parameters. Thus, the matrix for the RPMO family
is denoted by

῭(θ̂θθ q) =−
∂ 2`(θθθ q)

∂θθθ q∂θθθ
>
q

∣∣∣
θθθ q=θ̂θθ q

=

− ῭
βββ qβββ q

− ῭
βββ qνννq

− ῭
βββ qτττq

− ῭
νννqνννq − ῭

νννqτττq

− ῭
τττqτττq

 ,
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with

῭
βββ qβββ q

=
∂ 2`(θθθ q)

∂βββ q∂βββ
>
q

∣∣∣
θθθ q=θ̂θθ q

= X>1 W4X1,

῭
βββ qνννq

=
∂ 2`(θθθ q)

∂βββ q∂ννν>q

∣∣∣
θθθ q=θ̂θθ q

= X>1 W5X2,

῭
βββ qτττq

=
∂ 2`(θθθ q)

∂βββ q∂τττ>q

∣∣∣
θθθ q=θ̂θθ q

= X>1 W6X3,

῭
νννqνννq =

∂ 2`(θθθ q)

∂νννq∂ννν>q

∣∣∣
θθθ q=θ̂θθ q

= X>2 W7X2,

῭
νννqτττq =

∂ 2`(θθθ q)

∂νννq∂τττ>q

∣∣∣
θθθ q=θ̂θθ q

= X>2 W8X3 and

῭
τττqτττq =

∂ 2`(θθθ q)

∂τττq∂τττ>

∣∣∣
θθθ q=θ̂θθ q

= X>3 W9X3,

where

W4 = [( ῭
ξiq b2

iq + ˙̀
ξiq biq b′iq)δi j], W5 = [( ῭

ξiqσiq biq eiq) δi j],

W6 = [( ῭
ξiqαiq biq diq)δi j], W7 = [

( ῭
σiq e2

iq + ˙̀
σiq eiq e′iq

)
δi j],

W8 = [( ῭
σiqαiq eiq diq)δi j], W9 = [( ῭

αiq d2
iq + ˙̀

αiq diq d′iq)δi j],

and

b′iq =
∂biq

∂ξiq
= 0, e′iq =

∂eiq

∂σiq
= 1, d′iq =

∂diq

∂αiq
= 1,

for i, j = 1, . . . ,n and q ∈ (0,1) fixed. Lastly, the other elements of the matrices are

῭
ξiq =

∂ 2`i(ξiq,σiq,αiq)

∂ 2ξ 2
iq

(2.16)

= ψ
2
1iq

[
f ′′0 (uiq)

f0(uiq)
−

f ′20 (uiq)

f 2
0 (uiq)

]
+2ψ

2
1iq

[
f0(uiq)(1−αiq)

αiq +(1−αiq)F0(uiq)

]2

−2ψ
2
1iq

[
f ′0(uiq)(1−αiq)

αiq +(1−αiq)F0(uiq)

]
,

῭
ξiqσiq =

∂ 2`i(ξiq,σiq,αiq)

∂ξiq∂σiq
(2.17)

= ψ
2
1iq

[
f ′0(uiq)

f0(uiq)

]
+ψ

2
1iqψ2iq

[
f ′′0 (uiq)

f0(uiq)
−

f ′20 (uiq)

f 2
0 (uiq)

]
−2ψ

2
1iq

[
f0(uiq)(1−αiq)

αiq +(1−αiq)F0(uiq)

]
+2ψ

2
1iqψ2iq

[
f0(uiq)(1−αiq)

αiq +(1−αiq)F0(uiq)

]2

−2ψ
2
1iqψ2iq

[
f ′0(uiq)(1−αiq)

αiq +(1−αiq)F0(uiq)

]
,
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῭
ξiqαiq =

∂ 2`i(ξiq,σiq,αiq)

∂ξiq∂αiq
(2.18)

= 2uαiqψ1iq

[
f ′0(uiq)(1−αiq)

αiq +(1−αiq)F0(uiq)

]
−uαiqψ1iq

[
f ′′0 (uiq)

f0(uiq)
−

f ′20 (uiq)

f 2
0 (uiq)

]
−2ψ1iq

[
f0(uiq)(1−αiq)

αiq +(1−αiq)F0(uiq)

][
1−F0(uiq)+(1−αiq) f0(uiq)uαiq

αiq +(1−αiq)F0(uiq)

]
−2ψ1iq

[
f0(uiq)

αiq +(1−αiq)F0(uiq)

]
,

῭
σiq =

∂ 2`i(ξiq,σiq,αiq)

∂ 2σ2
iq

(2.19)

= ψ
2
1iq +2ψ

2
1iqψ2iq

[
f ′0(uiq)

f0(uiq)

]
−4ψ

2
1iqψ2iq

[
f0(uiq)(1−αiq)

αiq +(1−αiq)F0(uiq)

]
−2ψ

2
1iqψ

2
2iq

[
f ′0(uiq)(1−αiq)

αiq +(1−αiq)F0(uiq)

]
+2ψ

2
1iqψ

2
2iq

[
f0(uiq)(1−αiq)

αiq +(1−αiq)F0(uiq)

]2

+ψ
2
1iqψ

2
2iq

[
f ′′0 (uiq)

f0(uiq)
−

f ′20 (uiq)

f 2
0 (uiq)

]
,

῭
σiqαiq =

∂ 2`i(ξiq,σiq,αiq)

∂σiq∂αiq
(2.20)

= 2uαiqψ1iqψ2iq

[
f ′0(uiq)(1−αiq)

αiq +(1−αiq)F0(uiq)

]
−uαiqψ1iqψ2iq

[
f ′′0 (uiq)

f0(uiq)
−

f ′20 (uiq)

f 2
0 (uiq)

]
−2ψ1iqψ2iq

[
f0(uiq)(1−αiq)

αiq +(1−αiq)F0(uiq)

][
1−F0(uiq)+(1−αiq) f0(uiq)uαiq

αiq +(1−αiq)F0(uiq)

]
−2ψ1iqψ2iq

[
f0(uiq)

αiq +(1−αiq)F0(uiq)

]
,

and

῭
αiq =

∂ 2`i(ξiq,σiq,αiq)

∂ 2α2
iq

(2.21)

= u2
αiq

[
f ′′0 (uiq)

f0(uiq)
−

f ′20 (uiq)

f 2
0 (uiq)

]
+uαiqαiq

[
f ′0(uiq)

f0(uiq)

]
−2uαiqαiq

[
f0(uiq)(1−αiq)

αiq +(1−αiq)F0(uiq)

]
+4
[

f0(uiq)uαiq

αiq +(1−αiq)F0(uiq)

]
−2u2

αiq

[
f ′0(uiq)(1−αiq)

αiq +(1−αiq)F0(uiq)

]
−ψ

2
3iq

+2
[

1−F0(uiq)+(1−αiq) f0(uiq)uαiq

αiq +(1−αiq)F0(uiq)

]2

,

where

uαiqαiq =
q(1−q)

(1+qαiq−q)2

[
Ψ
′
0−

2qΨ0

(1+qαiq−q)

]
, Ψ

′
0 =

q(q−1)Ψ1Ψ3
0

(1+qαiq−q)2

and

Ψ1 = f ′0

(
F−1

0

(
αiqq

1+qαiq−q

))
for i = 1, . . . ,n and q ∈ (0,1) fixed.
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The expression of the second derivative of f0(uiq), written as f ′′0 (uiq) within Equations (2.16)-
(2.21), is shown in Table 3 for each member of the RPMO family.

Table 3 – Expression of f ′′0 (uiq) for each member of the RPMO family.

Distribution f ′′0 (uiq)

RPMOG f0(uiq)
[
exp(−2uiq)−3exp(−uiq)+1

]
RPMOT − f0(uiq)

(
ϑ+1

ϑ

)(
1+

u2
iq

ϑ

)−1[
1− 2u2

iq
ϑ

(
1+

u2
iq

ϑ

)−1
−
(

ϑ+1
ϑ

)
u2

iq

(
1+

u2
iq

ϑ

)−1]
RPMON f0(uiq)

[
u2

iq− f0(uiq)
]

RPMOC
2(3u2

iq−1) f0(uiq)

(1+u2
iq)

2

2.4.3 Confidence intervals

Under regularity conditions and a large sample size n, the asymptotic distribution of
(θ̂θθ q−θθθ q) is N(0,I−1(θ̂θθ q)), where I(θ̂θθ q) is the Fisher’s information matrix. Since it is not easy
to obtain the analytical expression of this matrix, we use the inverse of the observed information
matrix, denoted by ῭−1(θ̂θθ q), to approximate I−1(θ̂θθ q). Then, the estimated standard errors (SE)
of the ML estimators of θθθ are obtained by calculating the square root of the diagonal elements
of ῭−1(θ̂θθ q).

The asymptotic confidence interval for the j-th element of θ̂θθ q, denoted by θ̂ jq, is con-
structed using the following expression(

θ̂ jq− zζ/2

√
῭−1
j j (θ̂q), θ̂ jq + zζ/2

√
῭−1
j j (θ̂q)

)
, (2.22)

where zζ/2 represent the quantile of the standard normal distribution leaving a probability to
the right tail with ζ/2 for 0 < ζ < 1/2 and ῭−1

j j (θ̂q) is the j-th element of the main diagonal of
῭−1(θ̂θθ q) for j = 1, . . . ,(t + r+m) and q ∈ (0,1) fixed.

2.5 Residuals

This section proposes three types of residuals in the QR model of the RPMO family:
normalized quantile residual (NQR), generalized Cox-Snell residual (GCSR) and martingale-type
residual (MTR). The main idea is to study the adequacy of the model and detect outliers.

2.5.1 Normalized quantile residual

Here, we adopt the NQRs proposed by Dunn and Smyth (1996). In our case, this residual
is given by

r̂(1)iq = Φ
−1(Ĝ(yi; ξ̂iq, σ̂iq, α̂iq)

)
, (2.23)
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where Φ−1 is the inverse cdf of the standard normal distribution, Ĝ is the estimated cdf of G

defined in Section 2.2, for i = 1, . . . ,n and q ∈ (0,1) fixed. The NQRs have approximately a
standard normal distribution if the model is correctly specified. Note that these residuals can be
easily calculated for the QR models of the RPMO family.

Furthermore, we present Scheme 2 to build envelopes for the NQRs. For each observation
in the dataset, a random sample of size B based on the known distribution is simulated. Then, the
2.5-th and 97.5-th percentiles (confidence bands) are calculated to draw lines. If the distribution
fits the data perfectly, all points are within the confidence bands.

Scheme 2 – Steps to build envelopes for NQRs.

1: Generate random numbers y(b)i ∼ RPMO(ξ̂iq, σ̂iq, α̂iq, f0) by using Equation (2.3), for b =
1, . . . ,B and q ∈ (0,1) fixed.

2: Evaluate y(b)i in Equation (2.23), that is, compute the residuals

r̂(1)(b)iq = Φ
−1
(

Ĝ(y(b)i ; ξ̂iq, σ̂iq, α̂iq)
)
, for b = 1, . . . ,B.

3: Obtain the 2.5-th and 97.5-th percentiles for the set of B r̂(1)(b)iq .
4: Repeat (1)-(3) for i = 1, . . . ,n.
5: Draw a line joining all 2.5-th and 97.5-th percentiles obtained, respectively.

2.5.2 Generalized Cox-Snell residual

Cox and Snell (1968) studied the GCSR, whose expression in the QR model of the
RPMO family is

r̂(2)iq =− log
(
1− Ĝ(yi; ξ̂iq, σ̂iq, α̂iq)

)
, (2.24)

for i = 1, . . . ,n and q∈ (0,1) fixed. If the model is correctly specified, r̂(2)iq follows approximately
an exponential distribution with a rate parameter equal to one, Exp(1). One advantage of these
residuals is their low computational cost in the R language. Scheme 3 displays how to build the
envelopes for the GCSR.

Scheme 3 – Steps to build envelopes for GCSR.

1: Generate random numbers y(b)i ∼ RPMO(ξ̂iq, σ̂iq, α̂iq, f0) by using Equation (2.3), for b =
1, . . . ,B and q ∈ (0,1) fixed.

2: Evaluate y(b)i in Equation (2.24), that is, compute the residuals

r̂(2)(b)iq =− log
(
1− Ĝ(y(b)i ; ξ̂iq, σ̂iq, α̂iq)

)
, for b = 1, . . . ,B.

3: Obtain the 2.5-th and 97.5-th percentiles for the set of B r̂(2)(b)iq .
4: Repeat (1)-(3) for i = 1, . . . ,n.
5: Draw a line joining all 2.5-th and 97.5-th percentiles obtained, respectively.
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2.5.3 Martingale-type residual

The third residual, considered by Therneau, Grambsch and Fleming (1990) in the context
of survival models, can be written in terms of the GCSR. For this reason, its calculation and
implementation have a low computational cost. In our case, the residual is defined as

r̂(3)iq = sign(1− r̂(2)iq )
{
−2
[
1− r̂(2)iq + log

(
r̂(2)iq
)]}0.5

, (2.25)

where sign(·) denotes the sign function, for i = 1, . . . ,n and q ∈ (0,1) fixed. r̂(3)iq follows approx-
imately a standard normal distribution, N(0,1), if the model is correctly specified. Analogously
to Sections 2.5.1 and 2.5.2, the steps for the construction of envelopes are presented in Scheme 4
.

Scheme 4 – Steps to build envelopes for MTRs.

1: Generate random numbers y(b)i ∼ RPMO(ξ̂iq, σ̂iq, α̂iq, f0) by using Equation (2.3), for b =
1, . . . ,B and q ∈ (0,1) fixed.

2: Evaluate y(b)i in Equation (2.25), that is, compute the residuals

r̂(3)(b)iq = sign(1− r̂(2)(b)iq )
{
−2
[
1− r̂(2)(b)iq + log

(
r̂(2)(b)iq

)]}0.5
, for b = 1, . . . ,B.

3: Obtain the 2.5-th and 97.5-th percentiles for the set of B r̂(3)(b)iq .
4: Repeat (1)-(3) for i = 1, . . . ,n.
5: Draw a line joining all 2.5-th and 97.5-th percentiles obtained, respectively.

2.6 Global influence

This section introduces two popular measures of case deletion: the likelihood displace-
ment (LD) and the generalized Cook’s distance (GCD). These measures allow us to analyze the
impact of removing an observation from the dataset on the ML estimates of the parameters.

2.6.1 Likelihood displacement

Here, we study a measure of case deletion that has been defined by Cook and Weisberg
(1982) in the context of normal regression models. The expression from this measure is

LD(i)q = 2[`(θ̂θθ q)− `(θ̂θθ (i)q)], (2.26)

for i = 1, . . . ,n and q ∈ (0,1) fixed, where `(θ̂θθ q) and `(θ̂θθ (i)q) are the log-likelihood functions of
the complete dataset and without the i-th observation, respectively. If θ̂θθ (i)q is far from θ̂θθ q the i-th
observation is potentially influential, where θ̂θθ (i)q denotes the ML estimate of θθθ q when the i-th
observation is dropped.
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2.6.2 Generalized Cook’s distance

The second case deletion measure considered is a standardized norm of θ̂θθ (i)q− θ̂θθ q, known
in the literature as GCD (COOK; WEISBERG, 1982). In the QR model of the RPMO family, it
is denoted by

GCD(i)q = (θ̂θθ (i)q− θ̂θθ q)
> ῭−1(θ̂θθ q)(θ̂θθ (i)q− θ̂θθ q), (2.27)

where ῭−1(θ̂θθ q) is the inverse of the observed information matrix, θ̂θθ (i)q is the ML estimate of
θθθ q when the i-th observation is dropped, for i = 1, . . . ,n and q ∈ (0,1) fixed. Large values of
GCD(i)q indicate that the i-th observation is potentially influential.

2.7 Local Influence

According to Ferreira (2008), by using differential geometry, local influence analysis
compares parameter estimates before and after perturbing the data or the model. The methodology
can be useful for identifying influential observations by examining the effect of introducing
small perturbations into the model or data using an appropriate influence measure.

Here, we perturb the model using a vector ωωω of dimension (n×1) restricted to some open
subset of Ω⊂Rn. Also, let `(θθθ q|ωωω) be the log-likelihood function corresponding to the perturbed
model and assuming there is a non-perturbation vector ωωω0 ∈Ω such that `(θθθ q|ωωω0) = `(θθθ q) for
all θθθ q, we evaluate the influence of perturbation ωωω on the ML estimator θ̂θθ q.

Cook (1986) suggests studying the behavior of the likelihood displacement LD(ωωω) =

2[`(θ̂θθ q)− `(θ̂θθ ωωω)] around ωωω = ωωω0, where θ̂θθ ωωω denotes the ML estimator under `(θθθ q|ωωω). Then,
Cook (1986) considers selecting a unit direction d ∈Ω (||d||= 1) and plot LD(ωωω0 +ad) against
a, where a ∈ R. Therefore, the normal curvature for θθθ q in the direction of d is given by

Cd(θθθ q) = 2|d>∆∆∆
>
q

῭−1(θθθ q)∆∆∆qd|, (2.28)

where ∆∆∆q is the matrix of dimension (t + r+m)×n with elements

∆ ji =
∂ 2`(θθθ q|ωωω)

∂θ j∂ωi

∣∣∣
θθθ q=θ̂θθ q,ωωω=ωωω0

(2.29)

for j = 1, . . . ,(t + r+m), i = 1, . . . ,n and ῭−1(θθθ q) is the inverse of the observed information
matrix defined in Section 2.4.2. It is also recommended by Cook (1986) to examine the eigenval-
ues of the matrix ∆∆∆

>
q

῭−1(θθθ q)∆∆∆q to detect those cases that strongly influence on LD(ωωω). For this
reason, we study the total local influence of the i-th case, expressed as Ci =Cdi(θθθ q), where di is
an (n×1) vector of zeros with one in the i-th position.

Next, we present three perturbation schemes, introducing small modifications ωωω in the
log-likelihood, response variable and skewness parameter. Each scheme shows the development
of the calculations of the derivatives to obtain the matrix ∆∆∆q.
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2.7.1 Case-weight

In order to identify the individuals that generate a high impact on the ML estimates, the
case-weight perturbation scheme is considered. Here, ωωω = (ω1, . . . ,ωn)

> and ωωω0 = (1, . . . ,1)>

are vectors of dimension (n×1) with 0 ≤ ωi ≤ 1 for i = 1, . . . ,n. Furthermore, the perturbed
log-likelihood function has the form

`(θθθ q|ωωω) =
n

∑
i=1

ωi `i(ξiq,σiq,αiq), where (2.30)

`i(ξiq,σiq,αiq) = log(αiq)+ log( f0(uiq))− log(σiq)−2log(αiq +(1−αiq)F0(uiq)),

uiq = (yi−ξiq)/σiq +F−1
0 (αiqq/(1+qαiq−q)),

for i = 1, . . . ,n and q ∈ (0,1) fixed. Consequently, the matrix ∆∆∆q is expressed as

∆∆∆q =


X>1 W1 M1

X>2 W2 M2

X>3 W3 M3

 ,
where M1 =

[ ῭
ξiqωi δi j

]
, M2 =

[ ῭
σiqωi δi j

]
and M3 =

[ ῭
αiqωi δi j

]
, with ῭

ξiqωi =
˙̀
ξiq , ῭

σiqωi =
˙̀
σiq

and ῭
αiqωi =

˙̀
αiq , for j = 1, . . . ,n. The elements ˙̀

ξiq , ˙̀
σiq and ˙̀

αiq , together with the matrices W1,
W2 and W3, are those defined in Section 2.4.

2.7.2 Response variable

This perturbation scheme allows us to evaluate the sensitivity of the ML estimates when
small perturbations to the response vector are introduced. Thus, let ωωω = (ω1, . . . ,ωn)

> and
ωωω0 = (0, . . . ,0)> be vectors of dimension (n× 1), yi(ωi) = yi +ωisy, where sy is the sample
standard deviation of y and ωi ∈ R for i = 1, . . . ,n. Therefore, the perturbed log-likelihood
function is given by

`(θθθ q|ωωω) =
n

∑
i=1

`i(ξiq,σiq,αiq,ωi), (2.31)

`i(ξiq,σiq,αiq,ωi) = log(αiq)+ log( f0(u∗iq))− log(σiq)−2log(αiq +(1−αiq)F0(u∗iq)),

u∗iq = (yi(ωi)−ξiq)/σiq +F−1
0 (αiqq/(1+qαiq−q)),

for i = 1, . . . ,n and q ∈ (0,1) fixed. Hence, the matrix ∆∆∆q can be written as

∆∆∆q =


X>1 W1 M4

X>2 W2 M5

X>3 W3 M6

 ,



2.7. Local Influence 45

where M4 =
[ ῭

ξiqωi δi j
]
, M5 =

[ ῭
σiqωi δi j

]
and M6 =

[ ῭
αiqωi δi j

]
, whose elements are

῭
ξiqωi =

∂ 2`i(ξiq,σiq,αiq,ωi)

∂ξiq∂ωi

= 2ψ8iq

[
f ′0(u

∗
iq)(1−αiq)

αiq +(1−αiq)F0(u∗iq)

]
−2ψ8iq

[
f0(u∗iq)(1−αiq)

αiq +(1−αiq)F0(u∗iq)

]2

−ψ8iq

[
f ′′0 (u

∗
iq)

f0(u∗iq)
−

f ′20 (u∗iq)

f 2
0 (u
∗
iq)

]
,

῭
σiqωi =

∂ 2`i(ξiq,σiq,αiq,ωi)

∂σiq∂ωi

= 2ψ8iq

[
f0(u∗iq)(1−αiq)

αiq +(1−αiq)F0(u∗iq)

]
−ψ8iq

[
f ′0(u

∗
iq)

f0(u∗iq)

]
−2ψ9iq

[
f0(u∗iq)(1−αiq)

αiq +(1−αiq)F0(u∗iq)

]2

−ψ9iq

[
f ′′0 (u

∗
iq)

f0(u∗iq)
−

f ′20 (u∗iq)

f 2
0 (u
∗
iq)

]
+2ψ9iq

[
f ′0(u

∗
iq)(1−αiq)

αiq +(1−αiq)F0(u∗iq)

]
,

῭
αiqωi =

∂ 2`i(ξiq,σiq,αiq,ωi)

∂αiq∂ωi

= 2ψ7iq

[
f0(u∗iq)

αiq +(1−αiq)F0(u∗iq)

]
−2ψ7iqu∗αiq

[
f ′0(u

∗
iq)(1−αiq)

αiq +(1−αiq)F0(u∗iq)

]

+2ψ7iq

[
f0(u∗iq)(1−αiq)

αiq +(1−αiq)F0(u∗iq)

][
1−F0(u∗iq)+(1−αiq) f0(u∗iq)u

∗
αiq

αiq +(1−αiq)F0(u∗iq)

]

+ψ7iqu∗αiq

[
f ′′0 (u

∗
iq)

f0(u∗iq)
−

f ′20 (u∗iq)

f 2
0 (u
∗
iq)

]
,

where

ψ7iq =
sy

σiq
, ψ8iq =

sy

σ2
iq
, ψ9iq =

(yi(ωi)−ξiq)sy

σ3
iq

, u∗αiq
=

Ψ0q(1−q)
(1+qαiq−q)2

and Ψ0 = 1/ f0(F−1
0 (αiqq/(1+qαiq−q))) for j = 1, . . . ,n.

2.7.3 Perturbation of the skewness parameter

Following the idea proposed by Sánchez et al. (2021), the skewness parameter is per-
turbed as αiq(ωi) = αiq/ωi with ωi > 0 for i = 1, . . . ,n and q fixed. Hence, the perturbed
log-likelihood function is

`(θθθ q|ωωω) =
n

∑
i=1

`i(ξiq,σiq,αiq(ωi)) (2.32)

`i(ξiq,σiq,αiq(ωi)) = log(αiq)+ log(ωi)+ log( f0(uiq))− log(σiq)−2log(ρi(uiq)),

ρi(uiq) = αiq +(ωi−αiq)F0(uiq),
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where uiq = (yi−ξiq)/σiq+F−1
0 (αiqq/(ωi+qαiq−qωi)). Taking derivatives of Equation (2.32)

with respect to αiq and ωi, the matrix ∆∆∆q assumes the form

∆∆∆q =
[
X>3 W3 M7

]
,

where M7 =
[ ῭

αiqωi δi j
]
, whose elements are

῭
αiqωi = uαiqωi

[
f ′0(uiq)

f0(uiq)

]
+uαiquωi

[
f ′′0 (uiq)

f0(uiq)
−

f ′20 (uiq)

f 2
0 (uiq)

]
+2
[

f0(uiq)uωi− f0(uiq)uαiq

αiq +(ωi−αiq)F0(uiq)

]
−2
[
(ωi−αiq) f ′0(uiq)uωiuαiq

αiq +(ωi−αiq)F0(uiq)

]
−2
[
(ωi−αiq) f0(uiq)uαiqωi

αiq +(ωi−αiq)F0(uiq)

]
+2
[

1−F0(uiq)+(ωi−αiq) f0(uiq)uαiq

αiq +(ωi−αiq)F0(uiq)

][
F0(uiq)+(ωi−αiq) f0(uiq)uωi

αiq +(ωi−αiq)F0(uiq)

]
,

with

uωi =
Ψ0αiqq(q−1)

(ωi +qαiq−qωi)2 , uαiq =
Ψ0ωiq(1−q)

(ωi +qαiq−qωi)2 , Ψ0 =
1

f0(F−1
0 (qαiq/(ωi +qαiq−qωi)))

,

and

uωiαiq =
[

ωiαiqq2(q−1)2

(ωi+qαiq−qωi)4

]
Ψ3

0 f ′0(F
−1
0 (qαiq/(ωi +qαiq−qωi)))+Ψ0(q−1)q

[
(ωi−qωi−qαiq)

(ωi+qαiq−qωi)3

]
,

for i = 1, . . . ,n and q fixed. In this scheme ωωω0 = (1, . . . ,1)> is the non-perturbation vector.

2.8 Final comments

This chapter introduces the family of RPMO distributions that contain three parameters:
quantile, scale and skewness. The family has arisen by applying the MO methodology to the
location-scale family and then a quantile parameterization. One of the aspects to highlight
about the family is that the expressions of the pdf, cdf and qf are closed, which helps to
calculate probabilities simply and simulate random numbers directly through the inversion
method. Additionally, the skewness and kurtosis coefficients are analyzed using plots, where we
observe that the distributions are most flexible compared to the reparameterized location-scale
family.

We formulate the QR model for the RPMO family of distributions with a framework
similar to generalized linear models. Based on the log-likelihood function, the expressions of the
score vector and the observed information matrix to perform inference were derived. The RS
algorithm was adopted to obtain the ML estimates due to its low computational cost.

Furthermore, three types of residuals and their envelopes were adopted to detect outliers
and study the adequacy of the models. Then, two measures of case deletion were presented
as tools of global influence to identify influential observations. For the same purpose, three
perturbation schemes were developed as tools of local influence. All of the above mathematical
expressions have a simple structure to be implemented in any mathematical or statistical software.
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CHAPTER

3
SIMULATION STUDIES AND DATA ANALYSIS

FOR LINEAR QUANTILE REGRESSION
MODELS

In this chapter, we present simulation studies to assess the behavior of the ML estimators
in the QR model of the RPMON, RPMOG and RPMOT (ϑ = 15) distributions. Furthermore,
we illustrate the methodologies proposed in Chapter 2 to a National Health and Nutrition
Examination Survey (NHANES) dataset.

3.1 Simulation studies

In order to carry out the studies in this section, we generated 3000 random samples using
the qf of Equation (2.3) considering n ∈ {100,150,200, . . . ,5000} and q ∈ {0.1,0.5,0.9}. The
ML estimates were obtained using the RS algorithm of the gamlss package in the R language.
Moreover, three scenarios were considered, whose structures are as follows:

ξiq = η1iq = 2.086+0.318x1i2 +0.650x1i3,

log(σiq) = η2iq = 0.782+0.008x2i2, (I)

log(αiq) = η3iq = 0.5x3i1−2x3i2;

ξiq = η1iq = 1.347+0.322x1i2 +0.858x1i3,

log(σiq) = η2iq = 0.189+0.006x2i2, (II)

log(αiq) = η3iq = 0.013x3i1 +0.903x3i2; and

ξiq = η1iq =−1.240+0.306x1i2 +0.699x1i3,

log(σiq) = η2iq = 0.521+0.009x2i2, (III)

log(αiq) = η3iq =−0.2x3i1 +0.75x3i2,
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where x1i2∼N(100,3), x1i3∼Bern(0.5), x2i2∼N(0,1), x3i1∼Logis(0,1) and x3i2∼Bern(0.7),
for i= 1, . . . ,n. Also, Bern(p) denotes Bernoulli distribution and Logis(0,1) denotes the standard
logistic distribution. Scenarios I, II and III were developed in RPMON, RPMOG and RPMOT
(ϑ = 15) distributions, respectively. However, the scenario for the RPMOC distribution is not
included because Equation (2.13) has multiple roots that generate problems in finding the ML
estimates. The repository <https://github.com/isaaccortes1989/RPMO-GAMLSS-FAMILY>
contains the structure of the gamlss. f amily distributions necessary for reproducing and fitting
the RPMO family.

Figures 5-9 show the mean of the relative bias (RB), standard deviation (SD), the root of
the mean square error (RMSE), mean of the asymptotic standard error (SE) and the coverage
probability (CP) of the 95% asymptotic confidence intervals for the components of the vector θ̂θθ q

in the RPMON model (Scenario I) according to sample sizes. From Figures 5-8, we note that as
the sample size n increases, the RBs, SDs, RMSEs and SEs decrease as expected in standard
asymptotic theory. Specifically, in Figure 5, it can be seen that the ML estimators associated with
β1q and ν2q are less precise than the others, with a lower performance at q = 0.1. Finally, Figure
9 displays that the CPs converge to the nominal values as the sample size n increases.

On the other hand, Figures 32-36 from Appendix A present the plots for the same five
measures in Scenario II. It can be seen in Figures 32-35 that the asymptotic behavior of RBs,
SDs, RMSEs and SEs is similar to Scenario I. But in this scenario, the ML estimators associated
with β1q, ν2q and τ1q are less precise than the others, with a lower performance for q = 0.5.
Moreover, the CPs in Figure 36 are close to the nominal values used for their construction as n

increases.

The plots of the five measures in Scenario III are shown in Figures 37-41 of Appendix A.
From the first four figures, we note that the asymptotic behavior of the measures is similar to
Scenario II, i.e., the quantities decrease as the sample size n increases. Also, β1q, ν2q and τ1q are
the ML estimators that are less precise. In addition, the CPs from Figure 41 indicate that a much
larger sample size is required than Scenarios I and II to be close to nominal values.

To observe the behavior of the mean SE in all the parameters as a function of the sample
size, we present the plots of SEi/SEi+1 and

√
ni+1/ni rates for i = 1, ...,98 correspondent to

n ∈ {100,150,200, . . . ,5000}. These plots for the three scenarios can be seen in Figures 42-50
(Appendix A) and indicate that the behavior of the mean SE decreases according to

√
ni+1/ni

rate, as expected in the standard asymptotic theory.

https://github.com/isaaccortes1989/RPMO-GAMLSS-FAMILY
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Figure 5 – Mean of the RB on the 3000 estimates of the components β̂ββ q, ν̂ννq and τ̂ττq obtained in the
RPMON model under different sample sizes.
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Figure 6 – SD on the 3000 estimates of the components β̂ββ q, ν̂ννq and τ̂ττq obtained in the RPMON model
under different sample sizes.
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Figure 7 – RMSE on the 3000 estimates of the components β̂ββ q, ν̂ννq and τ̂ττq obtained in the RPMON model
under different sample sizes.
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Figure 8 – Mean of the asymptotic SE on the 3000 estimates of the components β̂ββ q, ν̂ννq and τ̂ττq obtained
in the RPMON model under different sample sizes.
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Figure 9 – 95% CP of the components β̂ββ q, ν̂ννq and τ̂ττq obtained in the RPMON model under different
sample sizes.
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3.2 Data analysis

In this section, we analyze a subset of the data from NHANES (2017-2018) to illus-
trate potential applications of the RPMO family. Specifically, we focused on 1743 people
who self-identified as American-Mexican. Repository <https://github.com/isaaccortes1989/
Data-Chapter-3> contains the data file in CSV format. The purpose of this analysis is to investi-
gate the relationship between body mass index (BMI), expressed in kg/m2 and other covariates
using QR models under RPMO distributions. So, we consider waist circumference (Waist) in
centimeters, gender (Gender) and age (Age) in years as covariates.

3.2.1 Descriptive analysis

First, we conducted a descriptive analysis of the BMI variable. The sample skewness
coefficient, kurtosis coefficient, mean and median are respectively 0.68, 3.85, 25.15 and 24.80.
Furthermore, the minimum and maximum values are 12.71 and 71.72, respectively. Then, we
expect the RPMO family to present a good performance in the fit of these data.

Figure 10 shows the histogram of BMI and the scatter plots of BMI and each one of
the covariates, where we observe the following aspects. First, from Figure 10(a), the BMI has
a unimodal empirical distribution with positive skewness and light tails. Second, in Figures
10(b) and 10(c), we can assume that the relationships between BMI and the covariates are linear.
Additionally, observations #264, #1267 and #1425 have an atypical behavior in the population.
In addition, we calculate Spearman’s correlation coefficient between Waist and Age, which is
equal to 0.77. The result indicates a strong linear relationship between Waist and Age.

3.2.2 Fitting of the quantile regression models

To study in detail BMI, we fit the QR model from RPMO family. Then, the q-th quantile
ξiq, scale σiq and skewness αiq have the following systematic components

ξiq = η1iq = β1q +β2qWaisti +β3qGenderi,

log(σiq) = η2iq = ν1q +ν2qGenderi +ν3qAgei and (3.1)

log(αiq) = η3iq = τ1qWaist+ τ2qGenderi,

where Waisti, Genderi and Agei denote the waist circumference, gender and age of the i-th
observation for i = 1, . . . ,1743. Also, θθθ q = (β1q,β2q,β3q,ν1q,ν2q,ν3q,τ1q,τ2q)

> is the vector of
unknown parameters for q ∈ {0.1,0.25,0.5,0.75,0.9}. The Waist and Gender variables were
selected based on a classification from the National Heart, Lung, and Blood Institute (<https:
//www.nhlbi.nih.gov/health/educational/lose_wt/BMI/bmi_dis.htm>). On the other hand, the
Age variable was selected for exploratory purposes. In order to avoid collinearity problems, the
variables Age and Waist do not interact together.

https://github.com/isaaccortes1989/Data-Chapter-3
https://github.com/isaaccortes1989/Data-Chapter-3
https://www.nhlbi.nih.gov/health/educational/lose_wt/BMI/bmi_dis.htm
https://www.nhlbi.nih.gov/health/educational/lose_wt/BMI/bmi_dis.htm
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Figure 10 – Histogram of BMI (a), scatter plot for BMI and Waist (b) and scatter plot for BMI and Age
(c).

(a) (b) (c)

We have also included the fits of a generalized class of skew densities (SKD) (MORALES
et al., 2017) to compare its results with those of the RPMO family. In addition, the particular
cases of the RPMO family are added, such as when αiq = 1 and when σiq = σ (homogeneity of
variance) and αiq = 1 for all i = 1, . . . ,1743. The codes of the fits of the SKD class and RPMO
family were developed using the lqr (GALARZA et al., 2022) and gamlss packages in the R

language (<https://github.com/isaaccortes1989/Fits-Chapter-3>). Specifically, in the lqr package,
we use the best.lqr function that indicates which distribution best fits in the class SKD: the
Normal, Student-t, Laplace, Slash and Contaminated Normal distributions.

Table 4 displays the values of the Akaike information criterion (AIC) (AKAIKE, 1974)
and Bayesian information criterion (BIC) (SCHWARZ, 1978) for all fitted models. From this
table, we note that the Slash distribution has a better fit in the SKD class. Also, this distribution
generally has a better fit compared to the RPMOC distribution and, some cases, better than the
RPMON distribution (when αiq = 1 and σiq = σ ). Furthermore, we highlight that the values
from both criteria are smaller in the RPMOG distribution when modeling scale and skewness,
especially in the extreme quantiles. To summarize, the RPMOG is the best distribution for
explaining the quantiles, scale and skewness of BMI.

From now on, the study will focus on the 90-th percentile because it is interesting to
study which variables affect obese people, i.e., people whose BMI is greater than or equal to
thirty (<https://www.nhlbi.nih.gov/health/educational/lose_wt/risk.htm>). Then, after using the
backward elimination method in Equation (3.1), the RPMOG model is reduced as follows:

ξiq = η1iq = β1q +β2q Waisti +β3q Genderi,

log(σiq) = η2iq = ν1q +ν3q Agei and (3.2)

log(αiq) = η3iq = τ1q Waist+ τ2q Genderi,

for i= 1, . . . ,1743 and q= 0.9. In this model, θθθ q = (β1q,β2q,β3q,ν1q,ν3q,τ1q,τ2q)
> is the vector

of unknown parameters and its ML estimates, SEs with their respective z-values and p-values,

https://github.com/isaaccortes1989/Fits-Chapter-3
https://www.nhlbi.nih.gov/health/educational/lose_wt/risk.htm


56 Chapter 3. Simulation studies and data analysis for linear quantile regression models

can be seen in Table 5. From there, we note that all p-values are less than 0.05, indicating that all
coefficients are significant at a 5% level.

Table 4 – AIC and BIC criteria for different QR models.

AIC criterion

RPMO family considering RPMO family considering RPMO family considering
αiq = 1 σiq = σ and αiq = 1 σiq and αiq

RPMOT RPMOT RPMOT
q Slash RPMON RPMOC RPMOG (ϑ = 15) RPMON RPMOC RPMOG (ϑ = 15) RPMON RPMOC RPMOG (ϑ = 15)

0.10 8,064.9 7,986.5 8,207.1 7,788.3 7,818.3 8,013.3 8,252.9 7,841.8 7,826.8 7,787.5 8,148.6 7,582.6 7,668.0
0.25 7,815.2 7,964.7 8,248.9 7,730.0 7,801.1 8,013.3 8,252.9 7,841.8 7,826.8 7,759.7 8,220.5 7,670.8 7,773.1
0.50 7,790.6 7,906.8 8,226.9 7,667.0 7,752.4 8,013.3 8,252.9 7,841.8 7,826.8 7,698.9 8,195.5 7,637.1 7,717.4
0.75 8,153.5 7,855.1 8,185.5 7,629.7 7,706.6 8,013.3 8,252.9 7,841.8 7,826.8 7,642.7 8,148.2 7,598.8 7,663.9
0.90 8,663.3 7,829.3 8,152.2 7,618.1 7,681.5 8,013.3 8,252.9 7,841.8 7,826.8 7,603.8 8,106.9 7,577.1 7,631.8

BIC criterion

RPMO family considering RPMO family considering RPMO family considering
αiq = 1 σiq = σ and αiq = 1 σiq and αiq

RPMOT RPMOT RPMOT
q Slash RPMON RPMOC RPMOG (ϑ = 15) RPMON RPMOC RPMOG (ϑ = 15) RPMON RPMOC RPMOG (ϑ = 15)

0.10 8,086.8 8,019.3 8,239.9 7,821.0 7,851.0 8,035.2 8,274.7 7,863.6 7,848.6 7,831.2 8,192.3 7,626.3 7,711.7
0.25 7,837.1 7,997.5 8,281.7 7,762.8 7,833.9 8,035.2 8,274.7 7,863.6 7,848.6 7,803.5 8,264.2 7,714.5 7,816.8
0.50 7,812.5 7,939.6 8,259.7 7,699.8 7,785.2 8,035.2 8,274.7 7,863.6 7,848.6 7,742.6 8,239.2 7,680.8 7,761.1
0.75 8,175.4 7,887.9 8,218.3 7,662.5 7,739.4 8,035.2 8,274.7 7,863.6 7,848.6 7,686.4 8,191.9 7,642.5 7,707.6
0.90 8,685.2 7,862.1 8,184.9 7,650.9 7,714.3 8,035.2 8,274.7 7,863.6 7,848.6 7,647.5 8,150.6 7,620.8 7,675.5

Table 5 – ML estimate, SE, z-value and p-value for the indicated parameter fitted with the QR model
under RPMOG distribution, considering q = 0.9.

β̂1q β̂2q β̂3q ν̂1q ν̂3q τ̂1q τ̂2q

Estimate 0.592 0.319 0.817 0.179 0.007 0.012 0.869
SE 0.235 0.003 0.120 0.037 0.001 0.002 0.227
z-value 2.524 119.106 6.817 4.821 13.056 5.232 3.822
p-value 0.012 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

3.2.3 Identifying outliers and studying model adequacy

Here, we investigate the behavior of the residuals with their corresponding envelopes
(see Sections 2.5.1, 2.5.2 and 2.5.3) to detect outlier observations. These residuals are presented
graphically in Figure 11, where observations #264, #1267, and #1425 are detected as outliers
because they are outside the envelopes. Additionally, we use the Kolmogorov-Smirnov test to
verify that the residuals follow a standard normal, exponential and standard normal distribution,
respectively. The results in Table 6 show that the null hypotheses are not rejected at a 5%
significance level. Furthermore, these results confirm the fact that the response variable follows
an RPMOG distribution.

Table 6 – Results of the Kolmogorov-Smirnov tests on the NQRs, GCSRs and MTRs.

NQRs GCSRs MTRs

Statistic 0.017 0.020 0.018
p-value 0.687 0.493 0.625
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Figure 11 – QQ-plot with envelopes for NQRs (a), GCSRs (b) and MTRs (c) under the RPMOG model
considering q = 0.9.
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3.2.4 Identifying influential observations

The likelihood displacement and generalized Cook’s distance from Sections 2.6.1 and
2.6.2, respectively, are used to detect potentially influential observations on the vector θ̂θθ q. Figure
12 displays these two measures and indicates that observations #1267, #1297 and #1348 exert
the greatest influence on θ̂θθ q. In addition, the observations that exert a moderate influence are
#78, #264 and #1425.

Figure 12 – GCD (a) and LD (b) in the RPMOG model, considering q = 0.9
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Now, we present the index plots of Ci for the schemes: case-weight, response variable
perturbation and skewness parameter perturbation described in Sections 2.7.1, 2.7.2 and 2.7.3,
respectively. These plots will be used to detect potentially influential observations and assess the
sensitivity of the ML estimates of θθθ q, βββ q, νννq, and τττq.

Figure 13 shows the index plots of Ci(θ̂θθ q), Ci(β̂ββ q), Ci(ν̂ννq) and Ci(τ̂ττq) for the RPMOG
model under the case-weight perturbation scheme. In Figure 13(a), observations #78, #1267 and
#1297 are indicated to have a strong influence on θ̂θθ q. Furthermore, Figures 13(b), 13(c), 13(d)
indicate that there is a strong influence on β̂ββ q, ν̂ννq and τ̂ττq by observations #78, #1297 and #1348.
Note that observation #78 is also detected as atypical according to the residual analysis.
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Figure 13 – Index plots of Ci for θθθ q (a), βββ q (b), νννq (c) and τττq (d) under case-weight perturbation, using
NHANES dataset with the RPMOG model and q = 0.9.
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The index plots Ci(θ̂θθ q), Ci(β̂ββ q), Ci(ν̂ννq) and Ci(τ̂ττq) of the RPMOG model under the
perturbation scheme of the response variable (Section 2.7.2) are shown in Figure 14. From there,
Figures 14(a), 14(b) and 14(d) highlight observations #78, #1297 and #1348 with more influence
on θ̂θθ q, β̂ββ q and τ̂ττq. On the other hand, the observations more influential on ν̂ννq are the following:
#78, #1297 and #1299. Finally, note that observations #78, #1297 and #1348 are also detected as
more influential in the case-weight scheme.

Finally, Figure 15 presents the index plots Ci for τττq under the skewness parameter
perturbation scheme. From there, observations #78, #1297 and #1348 are detected as potentially
influential. Note that the same observations are potentially influential in the case-weight and
response perturbation schemes on τττq.

In summary, observations #78, #264, #1267, #1297, #1299, #1348 and #1425 are po-
tentially influential. Table 7 provides a classification of overweight, obesity class and risk of
diseases such as type 2 diabetes, hypertension and heart disease based on those observations.
From the table, we note that observations #78, #1299 and #1348 do not have a disease risk and a
normal weight but a large waist circumference. Furthermore, observation #1297 is classified as a
person who is overweight and has a high risk of disease. Finally, observations #264, #1267 and
#1425 show an extremely high risk of disease and extreme obesity.
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Figure 14 – Index plots of Ci for θθθ q (a), βββ q (b), νννq (c) and τττq (d) under response perturbation, using
NHANES dataset with the RPMOG model and q = 0.9.
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Figure 15 – Index plots of Ci for τττq under skewness parameter perturbation, using NHANES dataset with
the RPMOG model and q = 0.9.
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Table 7 – Classification of overweight, obesity class, and associated diseases risk according to BMI, waist
circumference, and gender for the potential influential observations.

Observation Gender BMI (in kg/m2) Waist (in cm) Classification of overweight Obesity class Disease risk

78 Male 24.09 95.2 Normal - -
264 Female 48.45 115.8 Extreme obesity III Extremely high
1267 Female 71.72 132.3 Extreme obesity III Extremely high
1297 Female 25.87 102.3 Overweight - High
1299 Male 23.33 101.8 Normal - -
1348 Female 19.69 81.8 Normal - -
1425 Male 57.93 147.5 Extreme obesity III Extremely high
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3.2.5 Confirmatory analysis

Now, a confirmatory analysis is realized by refitting the model (3.2) without the po-
tentially influential observations to assess the impact on the estimates of parameters β1q, β2q,
β3q, ν1q, ν3q, τ1q and τ2q. The values presented in Table 8 correspond to the changes relative
percentages in the estimates, asymptotic standard errors and p-values when we eliminate an
observation or the set of all observations, denoted by I. From the results, we observe that the
largest percentage variations in the estimates and standard errors occur when we eliminate
observations #1297, #1348 and all simultaneously. However, those variations produce no change
in inferences.

Table 8 – Percentage relative changes in the estimates and standard errors of the RPMOG model consider-
ing q = 0.9.

I β1q β2q β3q ν1q ν3q τ1q τ2q

78 Estimate 5.523 0.155 0.776 0.117 3.609 8.869 7.003
SE 0.188 0.167 0.572 1.207 1.577 1.742 0.168
p-value 0.017 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

264 Estimate 0.938 0.057 0.764 2.324 0.124 1.726 0.003
SE 0.303 0.269 0.407 0.331 0.067 0.106 0.242
p-value 0.011 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

1267 Estimate 1.465 0.098 0.999 8.673 0.496 7.210 1.999
SE 1.081 0.873 1.504 2.026 0.378 0.179 1.826
p-value 0.012 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

1297 Estimate 6.530 0.233 0.103 6.821 0.783 7.492 11.336
SE 0.732 1.145 1.185 2.435 1.411 0.675 5.458
p-value 0.019 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

1299 Estimate 6.173 0.101 1.367 8.244 3.110 7.213 0.031
SE 0.771 0.555 1.029 1.127 0.251 1.234 2.251
p-value 0.008 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

1348 Estimate 1.583 0.043 0.811 5.668 0.260 4.264 11.100
SE 0.260 0.205 0.983 1.450 1.177 0.287 4.031
p-value 0.010 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

1425 Estimate 1.894 0.106 0.511 2.821 0.013 1.278 1.820
SE 0.366 0.330 0.455 0.335 0.119 0.096 0.419
p-value 0.010 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

All Estimate 13.992 0.110 0.190 8.288 1.473 6.997 6.254
SE 1.489 0.583 0.940 0.422 0.629 1.848 5.532
p-value 0.027 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
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3.3 Final comments

This chapter presents simulation studies to assess the behavior of the ML estimators in the
RPMON, RPMOG and RPMOT models in small, medium and large samples. In the R language,
we use the RS algorithm from the gamlss package to obtain the estimates and asymptotic standard
errors of the parameters. The studies show that the behavior of the parameters is consistent in
the three models. Nonetheless, it has been observed that there exists a significant variance in
the estimates (in small and medium samples) of the parameters associated with the intercept of
quantile and scale, as well as the parameters associated with the discrete variable of skewness.
Also, the estimators present a reasonable asymptotic convergence to normality in the three
models. However, the RPMOT model requires the largest sample size for this convergence
compared to other models.

Also in this chapter, we illustrate the applicability of RPMO models to a dataset in the
area of health and nutrition. For this reason, the fits of the RPMO family and the SKD class were
compared. The results indicated that the RPMOG model has a better fit to explain the quantiles,
scale and skewness of the BMI. Then, the outliers and influential observations were detected by
using the residuals and measures of global and local influence. In practical terms, these analyses
allow us to identify those people who are at extremely high risk of dangerous diseases such as
cardiovascular diseases. Finally, we note that the RPMOG model shows robustness to outliers
and influential observations in a dataset that presents positive skewness and high kurtosis.
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CHAPTER

4
PARTIALLY LINEAR QUANTILE REGRESSION

MODEL

This chapter extends the QR model formulated in Chapter 2. This extension involves
incorporating a nonparametric function in an additive form into the systematic component of
the parameter associated with the quantile. The purpose is to enhance the model’s flexibility in
capturing the nonlinear effects of a covariate on the quantiles of the response variable. We then
derive the expressions for the penalized score vector and the penalized observed information
matrix. Additionally, we determine the effective degrees of freedom required for model selection.

Furthermore, we introduce the following measures for global diagnostic: generalized
Cook’s distance and penalized likelihood displacement. Subsequently, we present the expressions
for normalized quantile residuals, generalized Cox-Snell residuals and martingale-type residuals.
Finally, three different schemes of perturbation are developed for the models.

4.1 Partially linear quantile regression model

This section presents the partially linear QR (PLQR) model for the RPMO family of
distributions.

Let Y1, . . . ,Yn be independent random variables such that Yi ∼ RPMO(ξiq,σiq,αiq, f0) for
i = 1, . . . ,n, q∈ (0,1) fixed and yyy = (y1, . . . ,yn)

> be a vector of observed responses of dimension
(n× 1). Then, the q-quantile ξiq, scale σiq and skewness αiq for the PLQR model under the
RPMO distributions satisfy the following functional relations

ξiq = η1iq = x>1iβββ q + sq(zi), log(σiq) = η2iq = x>2iνννq and log(αiq) = η3iq = x>3iτττq, (4.1)

where βββ q = (β1q, . . . ,βt1q)
>, νννq = (ν1q, . . . ,νrq)

> and τττq = (τ1q, . . . ,τmq)
> are vectors of un-

known regression coefficients assumed functionally independent, sq(zi) is a continuous smooth
function of the observed values zi; η1iq, η2iq and η3iq are the linear predictors; and x1i =
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(x1i1, . . . ,x1it1)
>, x2i = (x2i1, . . . ,x2ir)

> and x3i = (x3i1, . . . ,x3im)
> are observations on t1, r and

m known regressors. In model (4.1), we consider the βββ q vector without an intercept coefficient.
Note that when sq(zi) = 0, the model (4.1) is reduced to the linear QR model presented in Chapter
2. Finally, if βββ q = 0, model (4.1) will be referred to as the nonparametric QR model, where 0 is
a vector of zeros with dimension (t1×1).

Similarly to Cardozo, Paula and Vanegas (2022), we will assume that the smooth function
can be approximated by B-splines (BOOR, 1978), i.e. sq(z) = ∑

t2
j=1 N j,k(z)γ j, where

N j,0(z) =

1 z0
j ≤ z < z0

( j+1)

0 otherwise

and

N j,k(z) = ϖ j,k(z)N j,(k−1)(z)+ [1−ϖ( j+1),k(z)]N( j+1),(k−1)(z)

ϖ j,k(z) = (z−z0
j)/(z

0
( j+k)−z0

j), with N j,k(z) denotes the B-spline basis functions of degree k and
γ j are coefficients to be estimated, while m1 = t2 + k+1 denotes the number of internal knots,
namely a < z0

1 < .. . < z0
m1

< b, for j = 1, . . . , t2 and k = 1,2,3 . . .. So, following the notation
of Cardozo, Paula and Vanegas (2022), we consider k = 3 (cubic B-splines) and simplify the
notation sq(z) = ∑

t2
j=1 N j(z)γ j with N j(z) = N j,3(z).

Consequently, the model (4.1) can be written in matrix form as follows:

ξξξ q = ηηη1q = X1βββ q +Nγγγq, log(σσσq) = ηηη2q = X2νννq and log(αααq) = ηηη3q = X3τττq, (4.2)

where X1 = (x>11, . . . ,x
>
1n)
>, X2 = (x>21, . . . ,x

>
2n)
> and X3 = (x>31, . . . ,x

>
3n)
> are the design ma-

trices that incorporate the linear additive terms in the model, N is a B-spline basis matrix of
dimension (n× t2) and γγγq is an (t2×1) vector of B-spline parameters; ηηη1q = (η11q, . . . ,η1nq)

>,
ηηη2q = (η21q, . . . ,η2nq)

> and ηηη3q = (η31q, . . . ,η3nq)
> are the predictors of the vectors ξξξ q, σσσq

and αααq of dimension (n×1).

4.2 Inference

This section is devoted to inferences on the parameters of the PLQR models. Specifically,
we derive the penalized score vector to describe the RS algorithm. Next, we calculate the
expression of the penalized observed information matrix to obtain confidence intervals and
confidence bands. Finally, we present the selection criteria of the models, including total effective
degrees of freedom.

4.2.1 Penalized score vector

Let θθθ q = (βββ q
>,γγγ>q ,ννν

>
q ,τττ

>
q )
> be the vector of parameters to be estimated. Then, the

log-likelihood function that satisfies the functional relations given in Equation (4.1) can be
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expressed as

`(θθθ q) =
n

∑
i=1

`i(ξiq,σiq,αiq), where (4.3)

`i(ξiq,σiq,αiq) = log(αiq)+ log( f0(uiq))− log(σiq)−2log(αiq +(1−αiq)F0(uiq)),

uiq = (yiq−ξiq)/σiq +F−1
0 (αiqq/(1+qαiq−q)),

for i = 1, . . . ,n and q ∈ (0,1) fixed. The direct maximization of `(θθθ q) may cause overfitting and
non identification of γγγq. To solve this problem, we consider as a penalty the integral of square
of the second derivative of sq(z) (CARDOZO; PAULA; VANEGAS, 2022), which leads to the
following penalized log-likelihood function

`p(θθθ q,λq) = `(θθθ q)−0.5λq

∫ b

a
[s′′q(z)]

2dz, (4.4)

where λq > 0 is the smoothing parameter. If λq tends to 0, it implies data interpolation, while if
λq tends to infinity, it leads to a linear approximation of sq(z).

According to Wood (2017) the penalization in Equation (4.4) can be written as

∫ b

a
[s′′q(z)]

2dz = γγγ
>
q Kqγγγq,

where Kq is a positive semidefinite penalty matrix of dimension (t2× t2). Eilers and Marx (1996)
showed that the integrated of the square of the k1-th derivative of sq(z) can be well approximated
by a penalty on finite differences of the coefficients γγγq with less computational effort, that is,

∫ b

a
[s′′q(z)]

k1dz∼=
t2

∑
j=k1+1

[
∇

k1γ j

]2
= γγγ

>
q (∇∇∇

k1)>∇∇∇
k1γγγq,

where ∇∇∇
k1 is a (t2− k1)× t2 difference matrix of order k1. This approach is named P-spline

smoothing (CARDOZO; PAULA; VANEGAS, 2022). Consequently, the penalized log-likelihood
has the form

`p(θθθ q,λq) = `(θθθ q)−0.5λqγγγ
>
q Kqγγγq. (4.5)

Considering q ∈ (0,1) fixed, the (t1 + t2 + r+m)×1 penalized score vector is expressed
as

Up(θθθ q) =
∂`p(θθθ q,λq)

∂θθθ q
= (U>

βββ q
,U>γγγq

,U>νννq
,U>τττq

)>,

where ∂`p(θθθ q,λq)/∂θθθ q represents the first partial derivative of the penalized log-likelihood
function associated with the vector θθθ q. In particular, the components of the penalized score
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vector are given by the following equations

Uβββ q
(θθθ q) =

∂`p(θθθ q,λq)

∂βββ q
= X>1 W1A1, (4.6)

Uγγγq
(θθθ q) =

∂`p(θθθ q,λq)

∂γγγq
= N>W1A1−λqKqγγγq, (4.7)

Uνννq(θθθ q) =
∂`p(θθθ q,λq)

∂νννq
= X>2 W2A2 and (4.8)

Uτττq(θθθ q) =
∂`p(θθθ q,λq)

∂τττq
= X>3 W3A3, (4.9)

with

W1 =
[
biq δi j

]
, W2 =

[
eiq δi j

]
, W3 =

[
diq δi j

]
,

A1 = ( ˙̀
ξ1q

, . . . , ˙̀
ξnq)
>, A2 = ( ˙̀

σ1q, . . . ,
˙̀
σnq)

> and A3 = ( ˙̀
α1q, . . . ,

˙̀
αnq)

>,

where

biq =
∂ξiq

∂η1iq
= 1, eiq =

∂σiq

∂η2iq
= exp

(
η2iq

)
, diq =

∂αiq

∂η3iq
= exp

(
η3iq

)
,

δi j is the Kronecker delta with i, j = 1, . . . ,n. Finally, the elements of vectors A1, A2 and A3 are
as follows

˙̀
ξiq =

∂`i(ξiq,σiq,αiq)

∂ξiq

= 2ψ1iq

[
f0(uiq)(1−αiq)

αiq +(1−αiq)F0(uiq)

]
−ψ1iq

[
f ′0(uiq)

f0(uiq)

]
, (4.10)

˙̀
σiq =

∂`i(ξiq,σiq,αiq)

∂σiq

= 2ψ1iqψ2iq

[
f0(uiq)(1−αiq)

αiq +(1−αiq)F0(uiq)

]
−ψ1iq−ψ1iqψ2iq

[
f ′0(uiq)

f0(uiq)

]
(4.11)

and

˙̀
αiq =

∂`i(ξiq,σiq,αiq)

∂αiq

= ψ3iq +uαiq

[
f ′0(uiq)

f0(uiq)

]
−2
[

1−F0(uiq)+(1−αiq) f0(uiq)uαiq

αiq +(1−αiq)F0(uiq)

]
, (4.12)

where

ψ1iq =
1

σiq
, ψ2iq =

(yi−ξiq)

σiq
, ψ3iq =

1
αiq

, uαiq =
Ψ0q(1−q)

(1+qαiq−q)2

and

Ψ0 = 1/ f0(F−1
0 (αiqq/(1+qαiq−q))) for i = 1, . . . ,n.
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The expressions f0(uiq) and f ′0(uiq) presented in Equations (4.10)-(4.12) are the same as those
shown in Table 2 of Chapter 2.

Note that in Equations (4.6)-(4.9), the penalized ML estimators βββ q, γγγq, νννq and τττq do
not have a closed form. Therefore, the penalized ML estimates denoted by β̂ββ q, γ̂γγq, ν̂ννq and τ̂ττq

can be obtained by numerical maximization of the penalized log-likelihood function. Thus, we
adopt the RS algorithm presented by Rigby and Stasinopoulos (2014) in the R (R Core Team,
2022) programming language. It is important to highlight that the algorithm also deals with the
problem of estimating the smoothing parameter λq at a low computational cost.

4.2.2 RS algorithm

In this section, we present an automatic method for obtaining the penalized ML estimate
of θθθ q and addressing the problem of estimating the smoothing parameter λq. The RS algorithm
fits ξξξ q, σσσq and τττq in one cycle, also known as an outer cycle, until convergence. Within the ξξξ q

parameter fitting, there is a fitting of the linear terms, followed by a fitting of the smoothing terms.
When this refit converges the iterative working variable and iterative weights are updated. This
process is referred to as the backfitting algorithm. Then, within the remaining two parameters,
the linear terms are fitted, and when they converge, the iterative working variable and iterative
weights are updated.

Similar to Section 2.4.1, we will describe the quantities needed to develop the RS
algorithm for PLQR models under RPMO distributions. These quantities are as follows:

• the score functions

ΓΓΓ1q =( ˙̀
ξ1q

b1q, . . . , ˙̀
ξnqbnq)

>, ΓΓΓ2q =( ˙̀
σ1qe1q, . . . , ˙̀

σnqenq)
> and ΓΓΓ3q =( ˙̀

α1qd1q, . . . , ˙̀
αnqdnq)

>;

• the diagonal matrices of iterative weights

W11 = diag(ΓΓΓ1q ◦ΓΓΓ1q), W22 = diag(ΓΓΓ2q ◦ΓΓΓ2q) and W33 = diag(ΓΓΓ3q ◦ΓΓΓ3q);

• and the adjusted dependent variables

ρρρ1q = ηηη1q +W−1
11 ΓΓΓ1q, ρρρ2q = ηηη2q +W−1

22 ΓΓΓ2q and ρρρ3q = ηηη3q +W−1
33 ΓΓΓ3q,

where

ηηη1q = X1βββ q +Nγγγq, ηηη2q = exp
(
X2νννq

)
and ηηη3q = exp

(
X3τττq

)
.

In the backfitting algorithm, specifically when fitting γγγq, we assume the following internal
random effects model: e ∼ Nn(0,σ2

e W−1
11 ), b1 = ∇k1γγγq ∼ Nt2−k1(0,D1) where D1 = σ2

b1
It2−k1

and ∇k1γγγq is a difference matrix of order k1. The objective is to represent the smoothing term
in the quantiles as a random effects term and then estimate the parameters using a penalized
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quasi-likelihood (PQL) estimation. This procedure is studied in theoretical and computational
aspects by Rigby and Stasinopoulos (2014) in the context of GAMLSS models.

Let j represent the iteration index of the outer cycle and i represent the iteration index of
the inner cycle. The algorithm is described as follows:

Step 1: Initialize fitted values for distributional parameter vectors of length n: ξξξ
(1,1)
q , σσσ

(1,1)
q and

τττ
(1,1)
q , respectively. In this context, consider the outputs of the RPMON, RPMOT and

RPMOG PLQR models using the gamlss function, taking into account the pb func-
tion. Then, evaluate the initial linear predictors ηηη

(1,1)
1q = ξξξ

(1,1)
q , ηηη

(1,1)
2q = exp

(
σσσ

(1,1)
q
)

and

ηηη
(1,1)
3q = exp

(
τττ
(1,1)
q
)
.

Step 2: Start the outer cycle j = 1,2, . . . until convergence.

(a) Start the inner cycle i = 1, . . . ,n until convergence.

(i) Evaluate the current ΓΓΓ
( j,i)
1q , W( j,i)

11 and ρρρ
( j,i)
1q .

(ii) Compute εεε( j,i) = ρρρ
( j,i)
1q −Nγγγ

( j,i)
q . Then, regress the current εεε( j,i) against design matrix

X1 using iterative weights W( j,i)
11 to obtain the updated parameters βββ

( j,i)
q .

(iii) Compute εεε( j,i) = ρρρ
( j,i)
1q −X1βββ

( j,i)
q .

(iv) Perform the following calculations until the convergence of λq and γγγq:

(1) γγγ( j,i) = (N>W( j,i)
11 N+λqKq)

−1N>W( j,i)
11 εεε( j,i)

(2) υ = tr((N>W( j,i)
11 N+λqKq)

−1N>W( j,i)
11 N)

(3) υ1 = tr((N>W( j,i)
11 N+λqKq)

−1λqKq)

(4) ê = εεε( j,i)−Nγγγ
( j,i)
q

(5) σ̂2
e = 1

(n−υ) ê
>W( j,i)

11 ê

(6) σ̂2
b1
= 1

(t2−υ1−k1)
γ̂γγ
>
q Kqγ̂γγq

(7) λ̂q = σ̂2
e /σ̂2

b1

(b) End the inner cycle on convergence of βββ
( j,·)
q and γγγ

( j,·)
q . Set βββ

( j+1,1)
q = βββ

( j,·)
q , γγγ

( j+1,1)
q =

γγγ
( j,·)
q , ηηη

( j+1,1)
1q =ηηη

( j,·)
1q and ξξξ

( j+1,1)
q = ξξξ

( j,·)
q ; otherwise update i and continue the inner

cycle.

(a’) Start the inner cycle i = 1, . . . ,n until convergence.

(i) Evaluate the current ΓΓΓ
( j,i)
2q , W( j,i)

22 and ρρρ
( j,i)
2q .

(ii) Regress the current ρρρ
( j,i)
2q against design matrix X2 using iterative weights W( j,i)

22 to

obtain the updated parameters ννν
( j,i)
q .

(b’) End the inner cycle on convergence of ννν
( j,·)
q and set ννν

( j+1,1)
q = ννν

( j,·)
q , ηηη

( j+1,1)
2q = ηηη

( j,·)
2q and

σσσ
( j+1,1)
q = σσσ

( j,·)
q ; otherwise update i and continue inner cycle.
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(a”) Start the inner cycle i = 1, . . . ,n until convergence.

(i) Evaluate the current ΓΓΓ
( j,i)
3q , W( j,i)

33 and ρρρ
( j,i)
3q .

(ii) Regress the current ρρρ
( j,i)
3q against X3 using iterative weights W( j,i)

33 to obtain the

updated parameters τττ
( j,i)
q .

(b”) End the inner cycle on convergence of τττ
( j,·)
q and set τττ

( j+1,1)
q = τττ

( j,·)
q , ηηη

( j+1,1)
3q = ηηη

( j,·)
3q and

ααα
( j+1,1)
q = ααα

( j,·)
q ; otherwise update i and continue inner cycle.

Step 3: End the outer cycle if the change in the log-likelihood is less than 0.001; otherwise, update
j and continue the outer cycle.

4.2.3 Penalized observed information matrix

Let q ∈ (0,1) fixed, the penalized observed information matrix of dimension (t1 + t2 +

r+m)× (t1 + t2 + r+m) associated with θ̂θθ q = (β̂ββ
>
q , γ̂γγ

>
q , ν̂νν

>
q , τ̂ττ

>
q )
> is expressed as

῭p(θ̂θθ q, λ̂q) =−
∂ 2`p(θθθ q,λq)

∂θθθ q∂θθθ
>
q

∣∣∣
θθθ q=θ̂θθ q,λq=λ̂q

=


− ῭

βββ qβββ q
− ῭

βββ qγγγq
− ῭

βββ qνννq
− ῭

βββ qτττq

− ῭
γγγqγγγq

− ῭
γγγqνννq − ῭

γγγqτττq

− ῭
νννqνννq − ῭

νννqτττq

− ῭
τττqτττq

 , (4.13)

where ∂ 2`p(θθθ q,λq)/∂θθθ q∂θθθ
>
q represents the partial derivatives of the penalized log-likelihood

function. The elements of the penalized observed information matrix are the following

῭
βββ qβββ q

=
∂ 2`p(θθθ q,λq)

∂βββ q∂βββ
>
q

∣∣∣
θθθ q=θ̂θθ q,λq=λ̂q

= X>1 W4X1,

῭
βββ qγγγq

=
∂ 2`p(θθθ q,λq)

∂βββ q∂γγγ>q

∣∣∣
θθθ q=θ̂θθ q,λq=λ̂q

= X>1 W4N,

῭
βββ qνννq

=
∂ 2`p(θθθ q,λq)

∂βββ q∂ννν>q

∣∣∣
θθθ q=θ̂θθ q,λq=λ̂q

= X>1 W5X2,

῭
βββ qτττq

=
∂ 2`p(θθθ q,λq)

∂βββ q∂τττ>q

∣∣∣
θθθ q=θ̂θθ q,λq=λ̂q

= X>1 W6X3,

῭
γγγqγγγq

=
∂ 2`p(θθθ q,λq)

∂γγγq∂γγγ>q

∣∣∣
θθθ q=θ̂θθ q,λq=λ̂q

= N>W4N−λqKq,

῭
γγγqνννq =

∂ 2`p(θθθ q,λq)

∂γγγq∂ννν>q

∣∣∣
θθθ q=θ̂θθ q,λq=λ̂q

= N>W5X2,
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῭
γγγqτττq =

∂ 2`p(θθθ q,λq)

∂γγγq∂τττ>q

∣∣∣
θθθ q=θ̂θθ q,λq=λ̂q

= N>W6X3,

῭
νννqνννq =

∂ 2`p(θθθ q,λq)

∂νννq∂ννν>q

∣∣∣
θθθ q=θ̂θθ q,λq=λ̂q

= X>2 W7X2,

῭
νννqτττq =

∂ 2`p(θθθ q,λq)

∂νννq∂τττ>q

∣∣∣
θθθ q=θ̂θθ q,λq=λ̂q

= X>2 W8X3 and

῭
τττqτττq =

∂ 2`p(θθθ q,λq)

∂τττq∂τττ>

∣∣∣
θθθ q=θ̂θθ q,λq=λ̂q

= X>3 W9X3,

where

W4 = [( ῭
ξiq b2

iq + ˙̀
ξiq biq b′iq)δi j], W5 = [( ῭

ξiqσiq biq eiq) δi j],

W6 = [( ῭
ξiqαiq biq diq)δi j], W7 = [

( ῭
σiq e2

iq + ˙̀
σiq eiq e′iq

)
δi j],

W8 = [( ῭
σiqαiq eiq diq)δi j], W9 = [( ῭

αiq d2
iq + ˙̀

αiq diq d′iq)δi j],

and

b′iq =
∂biq

∂ξiq
= 0, e′iq =

∂eiq

∂σiq
= 1, d′iq =

∂diq

∂αiq
= 1,

for i, j = 1, . . . ,n. Finally, the expressions of the elements ῭
ξiq , ῭

ξiqσiq , ῭
ξiqαiq , ῭

σiq , ῭
σiqαiq and ῭

αiq

are detailed in Appendix C.

4.2.4 Confidence intervals

Analogously to the parametric case, the variance-covariance matrix of θ̂θθ q can be ap-
proximated by the inverse of the penalized Fisher’s information matrix (IBACACHE-PULGAR;
PAULA; GALEA, 2012). Thus, V̂arapprox(θ̂θθ q) = I−1

p (θ̂θθ q, λ̂q), where Ip(θ̂θθ q, λ̂q) is the penalized
Fisher’s information matrix.

However, the analytical expression of Ip(θ̂θθ q, λ̂q) is not easy to obtain, so we use the
penalized observed information matrix for that approximation. In consequence, the asymptotic
confidence interval for the j-th element of θ̂θθ q, denoted by θ̂ jq, is constructed using the following
expression (

θ̂ jq−ρζ/2

√
῭−1
p j j(θ̂q, λ̂q), θ̂ jq +ρζ/2

√
῭−1
p j j(θ̂q, λ̂q)

)
, (4.14)

where ρζ/2 represent the quantile of the standard normal distribution leaving, a probability to the
right tail with ζ/2 for 0 < ζ < 1/2 and ῭−1

p j j(θ̂q, λ̂q) is the j-th element of the main diagonal of
῭−1
p (θ̂θθ q, λ̂q) for j = 1, . . . ,(t1 + t2 + r+m) and q ∈ (0,1) fixed.

Another interesting statistical inference is the construction of asymptotic confidence
bands (CARDOZO; PAULA; VANEGAS, 2022) for the function vector sq(z)= (sq(z1), . . . ,sq(zn))

>.
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These bands, also called pointwise confidence bands (VANEGAS; PAULA, 2016), can be ap-
proximated in the following way(

sq(z)−ρζ/2

√
ϒϒϒ,sq(z)+ρζ/2

√
ϒϒϒ

)
(4.15)

where ϒϒϒ is the vector (n×1) that contains the elements of the main diagonal of N V̂arapprox(γ̂γγq)N>.

4.2.5 Model selection

In this section, we adopt AIC and BIC criteria as well as Rigby and Stasinopoulos (2005)
for the selection of PLQR model under RPMO distributions. Therefore, the expressions of the
criteria are as follows

AIC =−2`(θ̂q)+2df BIC =−2`(θ̂q)+ log(n)df

where `(θ̂θθ q) is described in Equation (4.3), df = tr(A−1B) denotes the total effective degrees of
freedom used in the model, and n is the sample size. The matrix A is defined as

A =


X>1 W11X1 X>1 W11N X>1 W12X2 X>1 W13X3

N>W11X1 N>W11N+λqKq N>W12X2 N>W13X3

X>2 W12X1 X>2 W12N X>2 W22X2 X>2 W23X3

X>3 W13X1 X>3 W13N X>3 W23X2 X>3 W33X3

 ,
where

W11 = [ ˙̀
ξiq

˙̀
ξiq δi j], W12 = [ ˙̀

ξiq
˙̀
σiq exp(η2iq) δi j],

W13 = [ ˙̀
ξiq

˙̀
αiq exp(η3iq) δi j], W22 = [ ˙̀

σiq
˙̀
σiq exp(2η2iq) δi j],

W23 = [ ˙̀
σiq

˙̀
αiq exp(η2iq) exp(η3iq) δi j], W33 = [ ˙̀

αiq
˙̀
αiq exp(2η3iq) δi j],

with ˙̀
ξiq , ˙̀

σiq and ˙̀
αiq described in Section 4.2, for i, j = 1, . . . ,n and q ∈ (0,1) fixed. Finally,

matrix B is similar to matrix A, only the set of elements N>W11N+λqKq must be replaced by
N>W11N.

4.3 Residual analysis

To detect atypical observations and study the adequacy of the model, the residuals
described in Sections 2.5.1, 2.5.2 and 2.5.3 are considered. For this reason, we only present the
expressions of the residuals that are as follows:

r̂(1)iq = Φ
−1(Ĝ(yi; ξ̂iq, σ̂iq, α̂iq)

)
, (4.16)

r̂(2)iq =− log
(
1− Ĝ(yi; ξ̂iq, σ̂iq, α̂iq)

)
, (4.17)

r̂(3)iq = sign(1− r̂(2)iq )
{
−2
[
1− r̂(2)iq + log

(
r̂(2)iq
)]}0.5

, (4.18)
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where Φ−1 is the inverse cdf of the standard normal distribution, Ĝ is the estimated cdf of G

defined in Section 2.2, sign(·) denotes the sign function, for i = 1, . . . ,n and q ∈ (0,1) fixed.
Recently, the NQRs have been studied by Ramires et al. (2019) and Prataviera et al. (2022) in
the context of semiparametric models.

4.4 Global influence

Following the idea of Vasconcelos, Cordeiro and Ortega (2022) in the context of semi-
parametric regression models, we identify possible influential cases through a global influence
analysis. Thus, two measures from case deletion are proposed.

The first proposed measure is the generalized Cook’s distance, which can be written as

GCDi = (θ̂θθ (i)q− θ̂θθ q)
> ῭−1

p (θ̂θθ q, λ̂q)(θ̂θθ (i)q− θ̂θθ q) (4.19)

where θ̂θθ (i)q denotes the penalized ML estimate of θθθ q without the i-th observation and ῭−1
p (θ̂θθ q, λ̂q)

is the inverse of the penalized observed information matrix defined in Section 4.2.3.

On the other hand, the second proposed measure is the penalized likelihood displacement,
defined as

LDi = 2[`p(θ̂θθ q, λ̂q)− `p(θ̂θθ (i)q, λ̂(i)q)], (4.20)

where `p(θ̂θθ q, λ̂q) and `p(θ̂θθ (i)q, λ̂(i)q) are the penalized log-likelihood functions of the complete
dataset and without the i-th observation, respectively.

4.5 Local Influence

Similarly to Section 2.7, the model is perturbed by a vector ωωω of dimension (n× 1)
restricted to some open subset of Ω⊂ Rn. In addition, the perturbed penalized log-likelihood
function is denoted by `p(θθθ q,λq|ωωω) and assumes that there is a non-perturbation vector ωωω0 ∈Ω

such that `p(θθθ q,λq|ωωω0) = `p(θθθ q,λq). In this way, the influence of the perturbation ωωω on the
penalized ML estimator θ̂θθ q is evaluated.

Here, the normal curvature for θθθ q in the direction of d is given by

Cd(θθθ q) = 2|d> ∆∆∆
>
p

῭−1
p (θθθ q,λq) ∆∆∆pd|, (4.21)

where ∆∆∆p is the matrix of dimension (t1 + t2 + r+m)×n with elements

∆ ji =
∂ 2`p(θθθ q,λq|ωωω)

∂θ j∂ωi

∣∣∣
θθθ q=θ̂θθ q,λq=λ̂q,ωωω=ωωω0

(4.22)

for j = 1, . . . ,(t1 + t2 + r +m), i = 1, . . . ,n, and ῭−1
p (θθθ q,λq) is the inverse of the penalized

observed information matrix defined in Section 4.2.3. Consequently, we will study the total local
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influence of the case i, calculated by Ci =Cdi(θθθ q), where di is a vector of zeros with one in the
i-th position.

Now, we present three perturbation schemes in the same way as linear QR models,
detailing the calculation of derivatives necessary to obtain the matrix ∆∆∆p.

4.5.1 Case-weight

In this scheme, the perturbed penalized log-likelihood function is expressed as

`p(θθθ q,λq|ωωω) =
n

∑
i=1

ωi `i(ξiq,σiq,αiq)−0.5λqγγγ
>
q Kqγγγq, with (4.23)

`i(ξiq,σiq,αiq) = log(αiq)+ log( f0(uiq))− log(σiq)−2log(αiq +(1−αiq)F0(uiq)),

uiq = (yi−ξiq)/σiq +F−1
0 (αiqq/(1+qαiq−q)),

where ωωω = (ω1, . . . ,ωn)
> and ωωω0 = (1, . . . ,1)> are vectors of dimension (n×1), 0≤ ωi ≤ 1 for

i = 1, . . . ,n and q ∈ (0,1) fixed. Hence, the matrix ∆∆∆p is given by

∆∆∆p =


X>1 W1 M1

N> W1 M1

X>2 W2 M2

X>3 W3 M3

 ,

where M1 =
[ ῭

ξiqωi δi j
]
, M2 =

[ ῭
σiqωi δi j

]
and M3 =

[ ῭
αiqωi δi j

]
, with ῭

ξiqωi =
˙̀
ξiq , ῭

σiqωi =
˙̀
σiq

and ῭
αiqωi =

˙̀
αiq , for i = 1, . . . ,n and j = 1, . . . ,n. Thus, the matrices W1, W2 and W3 together

with the elements ˙̀
ξiq , ˙̀

σiq and ˙̀
αiq are those defined in Section 4.2.

4.5.2 Response variable

Here, we consider yi(ωi) = yi +ωisy to perturb the response variable values, where sy

is the sample standard deviation of y and ωi ∈ R for i = 1, . . . ,n. Consequently, the perturbed
penalized log-likelihood function has the form

`p(θθθ q|ωωω) =
n

∑
i=1

`i(ξiq,σiq,αiq,ωi)−0.5λqγγγ
>
q Kqγγγq, where (4.24)

`i(ξiq,σiq,αiq,ωi) = log(αiq)+ log( f0(u∗iq))− log(σiq)−2log(αiq +(1−αiq)F0(u∗iq)),

u∗iq = (yi(ωi)−ξiq)/σiq +F−1
0 (αiqq/(1+qαiq−q)),

for i = 1, . . . ,n and q ∈ (0,1) fixed. In this case, ωωω = (ω1, . . . ,ωn)
> and ωωω0 = (0, . . . ,0)> are,

respectively, the vectors of perturbation and no perturbation, both of dimension (n×1). Then,



74 Chapter 4. Partially linear quantile regression model

differentiating Equation (4.24) with respect to θθθ q and ωωω leads to the following matrix

∆∆∆p =


X>1 W1 M4

N> W1 M4

X>2 W2 M5

X>3 W3 M6

 ,

where M4 =
[ ῭

ξiqωi δi j
]
, M5 =

[ ῭
σiqωi δi j

]
and M6 =

[ ῭
αiqωi δi j

]
for i, j = 1, . . . ,n. The elements

of those matrices are as follows:

῭
ξiqωi =

∂ 2`i(ξiq,σiq,αiq,ωi)

∂ξiq∂ωi

= 2ψ8iq

[
f ′0(u

∗
iq)(1−αiq)

αiq +(1−αiq)F0(u∗iq)

]
−2ψ8iq

[
f0(u∗iq)(1−αiq)

αiq +(1−αiq)F0(u∗iq)

]2

−ψ8iq

[
f ′′0 (u

∗
iq)

f0(u∗iq)
−

f ′20 (u∗iq)

f 2
0 (u
∗
iq)

]
,

῭
σiqωi =

∂ 2`i(ξiq,σiq,αiq,ωi)

∂σiq∂ωi

= 2ψ8iq

[
f0(u∗iq)(1−αiq)

αiq +(1−αiq)F0(u∗iq)

]
−ψ8iq

[
f ′0(u

∗
iq)

f0(u∗iq)

]
−2ψ9iq

[
f0(u∗iq)(1−αiq)

αiq +(1−αiq)F0(u∗iq)

]2

−ψ9iq

[
f ′′0 (u

∗
iq)

f0(u∗iq)
−

f ′20 (u∗iq)

f 2
0 (u
∗
iq)

]
+2ψ9iq

[
f ′0(u

∗
iq)(1−αiq)

αiq +(1−αiq)F0(u∗iq)

]
,

῭
αiqωi =

∂ 2`i(ξiq,σiq,αiq,ωi)

∂αiq∂ωi

= 2ψ7iq

[
f0(u∗iq)

αiq +(1−αiq)F0(u∗iq)

]
−2ψ7iqu∗αiq

[
f ′0(u

∗
iq)(1−αiq)

αiq +(1−αiq)F0(u∗iq)

]

+2ψ7iq

[
f0(u∗iq)(1−αiq)

αiq +(1−αiq)F0(u∗iq)

][
1−F0(u∗iq)+(1−αiq) f0(u∗iq)u

∗
αiq

αiq +(1−αiq)F0(u∗iq)

]

+ψ7iqu∗αiq

[
f ′′0 (u

∗
iq)

f0(u∗iq)
−

f ′20 (u∗iq)

f 2
0 (u
∗
iq)

]
,

where

ψ7iq =
sy

σiq
, ψ8iq =

sy

σ2
iq
, ψ9iq =

(yi(ωi)−ξiq)sy

σ3
iq

, u∗αiq
=

Ψ0q(1−q)
(1+qαiq−q)2

and Ψ0 = 1/ f0(F−1
0 (αiqq/(1+qαiq−q))) for i = 1, . . . ,n and q ∈ (0,1) fixed.
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4.5.3 Perturbation of the skewness parameter

Consider now perturbing the skewness parameter αiq(ωi) = αiq/ωi with ωi > 0 for
i = 1, . . . ,n and q ∈ (0,1) fixed. Then, under this scheme, the perturbed penalized log-likelihood
function is given by

`p(θθθ q,λq|ωωω) =
n

∑
i=1

`i(ξiq,σiq,αiq(ωi))−0.5λqγγγ
>
q Kqγγγq, with (4.25)

`i(ξiq,σiq,αiq(ωi)) = log(αiq)+ log(ωi)+ log( f0(uiq))− log(σiq)−2log(ρi(uiq)),

ρi(uiq) = αiq +(ωi−αiq)F0(uiq),

where uiq = (yi−ξiq)/σiq +F−1
0 (αiqq/(ωi +qαiq−qωi)). Consequently, taking derivatives of

Equation (4.25) with respect to θθθ q and ωωω , the matrix ∆∆∆p is expressed as

∆∆∆p =
[
X>3 W3 M7

]
,

where M7 =
[ ῭

αiqωi δi j
]
, whose elements are

῭
αiqωi = uαiqωi

[
f ′0(uiq)

f0(uiq)

]
+uαiquωi

[
f ′′0 (uiq)

f0(uiq)
−

f ′20 (uiq)

f 2
0 (uiq)

]
+2
[

f0(uiq)uωi− f0(uiq)uαiq

αiq +(ωi−αiq)F0(uiq)

]
−2
[
(ωi−αiq) f ′0(uiq)uωiuαiq

αiq +(ωi−αiq)F0(uiq)

]
−2
[
(ωi−αiq) f0(uiq)uαiqωi

αiq +(ωi−αiq)F0(uiq)

]
+2
[

1−F0(uiq)+(ωi−αiq) f0(uiq)uαiq

αiq +(ωi−αiq)F0(uiq)

][
F0(uiq)+(ωi−αiq) f0(uiq)uωi

αiq +(ωi−αiq)F0(uiq)

]
,

with

uωi =
Ψ0αiqq(q−1)

(ωi +qαiq−qωi)2 , uαiq =
Ψ0ωiq(1−q)

(ωi +qαiq−qωi)2 , Ψ0 =
1

f0(F−1
0 (qαiq/(ωi +qαiq−qωi)))

,

and

uωiαiq =
[

ωiαiqq2(q−1)2

(ωi+qαiq−qωi)4

]
Ψ3

0 f ′0(F
−1
0 (qαiq/(ωi +qαiq−qωi)))+Ψ0(q−1)q

[
(ωi−qωi−qαiq)

(ωi+qαiq−qωi)3

]
,

for i = 1, . . . ,n and q ∈ (0,1) fixed. Note that for this scheme, ωωω = (ω1, . . . ,ωn)
> and ωωω0 =

(1, . . . ,1)> are the vectors of perturbation and no perturbation, respectively.
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4.6 Final comments

The main contribution of this chapter is to present the PLQR models that extend the
QR models in the RPMO family of distributions. Its great advantage is that it can be used to
model the quantiles with nonparametric effects of one covariate and parametric effects of another
set of covariates. From the penalized log-likelihood function, we calculate the penalized score
functions and the penalized observed information matrix to perform statistical inference. The RS
algorithm is proposed to simultaneously obtain the penalized ML estimates and the smoothing
parameter estimate. Moreover, the AIC and BIC criteria are suggested for the selection of models.

This chapter also provides expressions for NQR, GCSR and MTR to study outlier
observations and the adequacy of PLQR models under RPMO distributions. The generalized
Cook’s distance and the penalized likelihood displacement are presented as measures of global
influence to identify the influential observations on the parameter vector estimated in the models.
Thus, the perturbation schemes addressed are case-weight, response variable and skewness
parameter. All the resulting expressions and matrices have a closed form that allows them to be
implemented in any statistical-mathematical software at a low computational cost.
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CHAPTER

5
SIMULATION STUDIES AND DATA ANALYSIS

FOR PARTIALLY LINEAR REGRESSION
MODELS

This chapter presents simulation studies to assess the statistical properties of penalized
ML estimators in nonparametric QR models under RPMON and RPMOG distributions. Subse-
quently, we illustrate the process of estimation, statistical inference, residual analysis, global and
local influence methods on another dataset belonging to NHANES.

5.1 Simulation studies

In order to carry out the simulation studies, a total of 500 random samples were generated
by utilizing the qf function of Equation (2.3) with sample size n ∈ {200,400, . . . ,4000} and
probabilities q ∈ {0.1,0.5,0.9}. Penalized ML estimates were obtained using the RS algorithm
described in Section 4.2.2 with the R programming language. The initial values for ξiq, σiq

and αiq are the outputs of the nonparametric QR models under the RPMON and RPMOG
distributions using the gamlss package from R.

The statistical properties of the penalized ML estimators are evaluated using two scenar-
ios. The structure of the scenarios is as follows:

ξiq = η1iq = sq(zi),

log(σiq) = η2iq =−1.2+0.15x2i2, (I)

log(αiq) = η3iq =−0.5x3i1; and

ξiq = η1iq = sq(zi),

log(σiq) = η2iq =−1.2+0.15x2i2, (II)

log(αiq) = η3iq = 2.7x3i1,
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where sq(zi)= 0.45sin(πzi) with zi∼U(0,2.5), x2i2∼N(0,1), x3i1∼Logis(0,1) for i= 1, . . . ,n.
Scenario I and Scenario II were developed under the RPMON and RPMOG distributions,
respectively. Finally, the function sq(zi) is approximated by P-splines with 22 internal knots and
a difference penalty term of order 3 (k1 = 3).

Under the nonparametric QR model of the RPMON distribution, Figures 16-19 display
the empirical RB, SD, RMSE, and mean of the asymptotic SE for the penalized ML estimates of
ν1q, ν2q, and τ1q, respectively. From the figures, we observe that as the sample size n increases,
the quantities decrease, as expected in the standard asymptotic theory. Note also from Figure 16
that the estimates of the τ1q parameter have a high bias in medium samples. On the other hand,
Figure 20 shows the CPs of the 95% confidence intervals for the nonparametric QR model. Based
on this figure, it can be seen that the CPs are close to the nominal values, with an approximate
minimum value of 92% when the sample size is larger than 400.

On the other hand, the five measures for the nonparametric QR model under the RPMOG
distribution are shown in Figures 51-55 from Appendix B. The results indicate that as the sample
size n increases, the first four quantities decrease. However, we highlight that the penalized ML
estimates of the τ1q parameter have a high bias in medium samples. Figure 55 displays that the
CPs are close to the nominal values used for their construction as n increases. These values are
higher than 90% for the three parameters.

The behavior of the mean of the nonparametric function vectors from the nonparametric
QR model under the RPMON distribution in different sample sizes is presented graphically in
Figures 21-23. Thus, we note that as the sample size n increases, the mean of the nonparametric
function vectors captures in a better way the trend of the true function (solid black line). Can be
seen the same pattern in the plots of the nonparametric QR model under the RPMOG distribution
(Figures 56-58 of Appendix B).

To observe the behavior of the mean SE in ν̂1q, ν̂2q and τ̂1q as a function of the sample
size, we present the plots of SEi/SEi+1 and

√
ni+1/ni rates for i = 1, ...,19 correspondent to

n ∈ {200,400, . . . ,4000}. These plots can be seen in Figures 59-60 from Appendix B. From
these plots, we note that the behavior of the mean SE decreases according to

√
ni+1/ni, as

expected in the standard asymptotic theory in both models.
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Figure 16 – Mean of the RB on the 500 estimates of the components ν̂ννq and τ̂ττq obtained in the RPMON
model under different sample sizes.
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Figure 17 – SD on the 500 estimates of the components ν̂ννq and τ̂ττq obtained in the RPMON model under
different sample sizes.
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Figure 18 – RMSE on the 500 estimates of the components ν̂ννq and τ̂ττq obtained in the RPMON model
under different sample sizes.
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Figure 19 – Mean of the asymptotic SE on the 500 estimates of the components ν̂ννq and τ̂ττq obtained in the
RPMON model under different sample sizes.
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Figure 20 – 95% CP of the components ν̂ννq and τ̂ττq obtained in the RPMON model under different sample
sizes.
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Figure 21 – Smooth function mean on the 500 estimates obtained in the RPMON model under different
sample sizes and q = 0.1.
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Figure 22 – Smooth function mean on the 500 estimates obtained in the RPMON model under different
sample sizes and q = 0.5.
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Figure 23 – Smooth function mean on the 500 estimates obtained in the RPMON model under different
sample sizes and q = 0.9.
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5.2 Data analysis

This section analyzes a dataset from NHANES (1999-2000) that pertains to 4077 in-
dividuals. The purpose is to illustrate the methodologies described in Chapter 4. The primary
objective of this study is to assess the association between estimated fat-free mass (EFFM) in
kilograms and upper arm length (UAL) in centimeters. The first measurement represents the
portion of body mass comprising muscles, bones, organs, and other non-fat tissues. Its estimation
holds significance in various fields, including nutrition, sports medicine, and health research,
as it provides valuable insights into body composition and can be employed to evaluate an
individual’s health and physical condition, as well as to tailor dietary and training programs.
The second measurement pertains to the length of the arm from the shoulder to the elbow. In
the medical and health context, upper arm length serves to determine the appropriate sizing
of medical devices such as blood pressure monitors or cuffs. The data file in CSV format is
available in the repository at <https://github.com/isaaccortes1989/Data-Chapter-5>.

5.2.1 Descriptive analysis

A descriptive summary of EFFM and UAL that includes minimum (Min), maximum
(Max), the sample mean, median, standard deviation (SD), coefficient of variation (CV), skewness
coefficient (CS), and kurtosis coefficient (CK) is provided in Table 9. Then, we add the histogram
of EFFM and the scatter plot between EFFM and UAL in Figure 24.

Based on Table 9 and the histogram of Figure 24(a), we observe that EFFM has an
empirical distribution unimodal with positive skewness. In Figure 24(b), it can be seen that
the nonlinear relation between EFFM and UAL indicates that the nonparametric QR models
are a good alternative to modeling the quantiles, scale and skewness of the EFFM. Addition-
ally, observations #270, #312, #822 and #2787 with atypical behavior in the population are
highlighted.

Figure 24 – Histogram of EFFM (a), and scatter plot of EFFM and UAL (b).

(a) (b)

https://github.com/isaaccortes1989/Data-Chapter-5
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Table 9 – Descriptive statistics of the variables in the NHANES dataset.

Variable Mean Median SD CS CK CV Min Max

EFFM 45.19 43.4 15.11 0.45 2.83 0.33 14.2 101.7
ARML 35.26 35.7 3.58 -0.46 3.16 0.10 22.5 45.7

5.2.2 Fitting of the nonparametric quantile regression models

To analyze the data, we propose using the nonparametric QR model. In this model, the
q-th quantile ξiq, scale σiq and skewness αiq are given by

ξiq = η1iq = sq(UALi), σiq = η2iq = ν1q +ν2qUALi and log(αiq) = η3iq = τ1qUALi, (5.1)

where sq(·) is a continuous smooth function approximated by using B-splines, and UALi de-
notes the upper arm length in centimeters of the i-th person for i = 1, . . . ,4077. The parameters
ν1q, ν2q and τ1q are unknown, while q ranges from the set {0.10,0.25,0.50,0.75,0.90}. Fur-
thermore, we assume that the response variable EFFM follows an RPMO distribution, i.e.,
yi ∼ RPMO(ξiq,σiq,αiq, f0). For comparison purposes, we also include the following mod-
els: nonparametric QR models considering σiq = σq and αiq = 1, linear QR models with
ξiq = η1iq = β1q +β2qUALi in Equation (5.1), and finally, the class of SKD distributions.

Table 10 reports the values of the AIC and BIC criteria presented in Section 4.2.5.
Notably, the following aspects can be observed: linear QR models under the RPMOG, RPMON,
and RPMOT (with ϑ = 15) distributions exhibit a better fit than the class of SKD distributions.
Additionally, the nonparametric QR models under the RPMO distributions display a better fit
than their particular cases, with the RPMOG distribution being the most suitable for analyzing
EFFM.

Table 10 – AIC and BIC criteria for different QR models.

AIC criterion

Nonparametric QR models considering
Linear QR models σiq = σ and αiq = 1 Nonparametric QR models

q SKD class RPMOG RPMON RPMOC RPMOT RPMOG RPMON RPMOC RPMOT RPMOG RPMON RPMOC RPMOT

0.10 29987.5 28928.8 29040.2 30329.3 29110.4 29440.7 29677.1 30809.5 29686.5 28790.1 28893.9 30235.4 28980.1
0.25 29523.5 28985.3 29093.9 30461.3 29169.7 29440.7 29677.1 30809.5 29686.5 28788.5 28904.2 30191.1 28989.9
0.50 29672.6 29048.3 29145.0 30534.4 29226.6 29440.7 29677.1 30809.5 29686.5 28800.3 28895.8 30191.3 29001.4
0.75 30590.0 29102.9 29190.6 30604.0 29274.8 29440.7 29677.1 30809.5 29686.5 28793.5 28903.8 30214.1 28979.8
0.90 31806.1 29144.9 29231.4 30676.0 29314.8 29440.7 29677.1 30809.5 29686.5 28791.6 28907.9 30361.4 28987.9

BIC criterion

Nonparametric QR models considering
Linear QR models σiq = σ and αiq = 1 Nonparametric QR models

q SKD class RPMOG RPMON RPMOC RPMOT RPMOG RPMON RPMOC RPMOT RPMOG RPMON RPMOC RPMOT

0.10 30,006.5 28,960.3 29,071.8 30,360.8 29,141.9 29,474.1 29,724.1 30,828.4 29,705.4 28,881.4 28,971.9 30,304.1 29,055.6
0.25 29,542.4 29,016.8 29,125.4 30,492.9 29,201.2 29,474.1 29,724.1 30,828.4 29,705.4 28,881.0 28,976.8 30,276.2 29,060.2
0.50 29,691.5 29,079.9 29,176.6 30,566.0 29,258.2 29,474.1 29,724.1 30,828.4 29,705.4 28,873.0 28,984.8 30,281.7 29,071.4
0.75 30,609.0 29,134.4 29,222.2 30,635.6 29,306.4 29,474.1 29,724.1 30,828.4 29,705.4 28,877.6 29,000.4 30,307.2 29,068.9
0.90 31,825.1 29,176.5 29,263.0 30,707.6 29,346.4 29,474.1 29,724.1 30,828.4 29,705.4 28,885.6 28,997.2 30,450.3 29,088.0
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The penalized ML estimates of ν1q, ν2q and τ1q, along with their respective 95% confi-
dence intervals, can be seen graphically in Figure 25. We observe in the figure that the estimates
of the three parameters exhibit an almost linear behavior and are significant for all q values.
Additionally, we include the graphs of the nonparametric vector sssq(z) along with their respective
confidence bands for different q values in Figure 26. The figure shows that the nonparametric
vector sssq(z) captures the nonlinear trend between UAL and the EFFM quantiles very effectively
and significantly for all values of q. In practical terms, model 5.1 enables the explanation of
the nonlinear relationship between UAL and the EFFM quantiles through a smooth function, as
well as the relationship between UAL and the variability of EFFM, and finally, the relationship
between UAL and the skewness of EFFM.

Figure 25 – Penalized ML estimates (center line) and their 95% confidence intervals for parameters in the
nonparametric QR model with the RPMOG distribution at different probabilities.
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The subsequent analyzes will be carried out using the nonparametric QR model with the
RPMOG distribution and q = 0.1. As a result, Table 11 displays the penalized ML estimates,
approximate standard errors, z-values, and their respective p-values for the fit. From this table,
we can observe that all the coefficients are statistically significant at the 5% level.

Table 11 – Penalized ML estimate, approximate standard error, z-value and p-value for the specified
parameter fitted in the NHANES dataset under RPMOG distribution with q = 0.1.

ν̂1q ν̂2q τ̂1q λ̂q

Estimate -1.313 0.087 0.030 0.350
SE 0.125 0.004 0.004
z-value -10.482 24.496 7.446
p-value < 0.001 < 0.001 < 0.001
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Figure 26 – Estimates of the nonparametric vector sq(z) (center line) and their confidence bands fitting
the nonparametric QR model with the RPMOG distribution at different probabilities.

20 25 30 35 40 45

2
0

4
0

6
0

8
0

1
0

0

Upper arm length (in cm)

E
s
ti
m

a
te

d
 f
a
t−

fr
e
e
 m

a
s
s
 (

in
 k

g
)

(a) q = 0.1
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(b) q = 0.25
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(c) q = 0.5
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(d) q = 0.75
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(e) q = 0.90

5.2.3 Identifying outliers

Figures 27(a), 27(b) and 27(c) present the plots of the NQR, GCS and MTR residuals
with envelopes generated, respectively. It can be seen in 27(a) and 27(b) that observations #312
and #2787 lie outside the envelopes. These observations were identified with atypical behavior in
the scatter plot. Figure 27(c) shows that only observation #312 is outside the envelopes. However,
it does not appear to be inadequate to assume that the response variable follows an RPMOG
distribution.

5.2.4 Identifying influential observations

In Figures 28(a) and 28(b), the generalized Cook’s distance and the penalized likelihood
displacement are shown graphically to detect potentially influential observations on the vector
θ̂θθ q. Both measures described in Section 4.4. The first figure indicates that observations #108,
#2158 and #2440 are potentially influential. In the second figure, observations #270, #312 and
#2787 are identified as more potentially influential.
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Figure 27 – QQ-plot with envelopes for NQRs (a), GCSRs (b) and MTRs (c) in the nonparametric QR
model, considering RPMOG distribution and q = 0.1.
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Figure 28 – Generalized Cook’s distance (a) and the penalized likelihood displacement (b) in the nonpara-
metric QR model, considering RPMOG distribution and q = 0.1
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The index plots of Ci(θ̂θθ q), Ci(γ̂γγq), Ci(ν̂ννq) and Ci(τ̂ττq) under the case-weight perturbation
scheme are presented in Figures 29(a), 29(b), 29(c) and 29(d), respectively. The observations
revealed as potentially influential in the figures are #270, #312, #1788, #1879, #2787, #3449,
#3782 and #3866. It is important to note that observations #270, #312 and #2787 were identified
with atypical behavior in the scatter plot of the descriptive analysis.

Figure 30 displays the index plot of Ci, considering the scheme of perturbation of the
response for the fitted model. Observations #114, #1788 and #3449 are detected as potentially
influential in Figures 30(a) and 30(b). Furthermore, Figures 30(c) and 30(d) jointly show that ob-
servations #997, #1879, #2152, #2530, #3782 and #3866 are potentially influential. In summary,
only observations #114, #997, #2152 and #2530 were not identified as potentially influential in
the scheme of case-weight perturbation.
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Figure 29 – Index plots of Ci for θθθ q (a), γγγq (b), νννq (c) and τττq (d) under case-weight perturbation, fitting
the nonparametric QR model under the RPMOG distribution with q = 0.1.
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Figure 30 – Index plots of Ci for θθθ q (a), γγγq (b), νννq (c), and τττq under response perturbation, fitting the
nonparametric QR model under the RPMOG distribution with q = 0.1.
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Finally, Figure 31 presents the index plot of Ci for τττq under the scheme of the skewness
parameter perturbation. From there, observations #108, #1879 and #3782 are indicated as
potentially influential. Only observation #108 is not presented in the two previous schemes.

Figure 31 – Index plots of Ci for τττq under skewness parameter perturbation, fitting the nonparametric QR
model under the RPMOG distribution with q = 0.1.
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Table 12 provides the EFFM and UAL measures for the observations that are potentially
influential. From the table, we can see that observations #114, #997, #1788, #2152, #2530, and
#3449 have a low value of EFFM. Additionally, it can be observed that observations #114, #1788,
and #2152 have a low value of UAL.

Table 12 – Estimated fat-free mass and upper arm length for potentially influential observations.

Observation Estimated fat-free mass (in kg) Upper arm length (in cm) Observation Estimated fat-free mass (in kg) Upper arm length (in cm)

108 35.2 40 2158 35.1 39.6
114 15.6 23 2440 47.2 42.5
270 76.8 30.8 2530 14.2 25.5
312 64.4 30.8 2787 68.8 31.1
997 14.4 26 3449 14.8 23

1788 14.8 22.5 3782 25.1 35.8
1879 28.4 37 3866 27.6 36.5
2152 15.7 27.8

5.2.5 Confirmatory analysis

We now investigate the impact on model inference when observations identified as
potentially influential in the diagnostic analysis are removed. Table 13 reports the percentage
RCs of the penalized ML estimates, asymptotic standard errors and p-values of ν1q, ν2q and
τ1q when we eliminate an observation or the set of all observations, denoted by I. When all
potentially influential observations are removed, the largest relative changes occur, but no
change in inferences is observed. Consequently, the nonparametric QR model under the RPMOG
distribution showed robustness to outliers and influential observations.
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Table 13 – Percentage relative changes in the estimates and standard errors fitting the nonparametric QR
model under the RPMOG distribution and q = 0.1.

I ν1q ν2q τ1q I ν1q ν2q τ1q

108 Estimate 0.762 0.276 1.336 2158 Estimate 0.464 0.153 1.164
SE 0.386 0.353 0.013 SE 0.277 0.252 0.078
p-value < 0.001 < 0.001 < 0.001 p-value < 0.001 < 0.001 < 0.001

114 Estimate 0.351 0.145 0.132 2440 Estimate 1.172 0.519 0.258
SE 0.051 0.027 0.051 SE 0.231 0.228 0.153
p-value < 0.001 < 0.001 < 0.001 p-value < 0.001 < 0.001 < 0.001

270 Estimate 1.154 0.629 2.370 2530 Estimate 0.569 0.234 0.137
SE 0.034 0.056 0.638 SE 0.367 0.371 0.028
p-value < 0.001 < 0.001 < 0.001 p-value < 0.001 < 0.001 < 0.001

312 Estimate 1.586 0.547 1.781 2787 Estimate 1.586 0.541 1.840
SE 0.056 0.151 0.141 SE 0.076 0.175 0.158
p-value < 0.001 < 0.001 < 0.001 p-value < 0.001 < 0.001 < 0.001

997 Estimate 0.887 0.377 0.225 3449 Estimate 0.341 0.139 0.078
SE 0.338 0.347 0.029 SE 0.098 0.103 0.418
p-value < 0.001 < 0.001 < 0.001 p-value < 0.001 < 0.001 < 0.001

1788 Estimate 0.245 0.100 0.132 3782 Estimate 0.033 0.055 1.523
SE 0.089 0.061 0.092 SE 0.121 0.081 0.069
p-value < 0.001 < 0.001 < 0.001 p-value < 0.001 < 0.001 < 0.001

1879 Estimate 0.331 0.109 1.254 3866 Estimate 0.553 0.218 1.227
SE 0.063 0.042 0.325 SE 0.061 0.032 0.412
p-value < 0.001 < 0.001 < 0.001 p-value < 0.001 < 0.001 < 0.001

2152 Estimate 0.676 0.297 0.352 All Estimate 3.515 1.529 5.554
SE 0.343 0.374 0.091 SE 2.106 1.890 0.607
p-value < 0.001 < 0.001 < 0.001 p-value < 0.001 < 0.001 < 0.001



92 Chapter 5. Simulation studies and data analysis for partially linear regression models

5.3 Final comments

This chapter presents simulation studies of the nonparametric QR models under the
RPMON and RPMOG distributions in medium and large samples. The results indicate that the
estimated nonparametric functions accurately capture the trend of the true function. Furthermore,
the expected empirical values of the linear coefficients for the scale and skewness parameters are
close to the true values of the parameters. However, for medium sample sizes, the estimates cor-
responding to the linear coefficients associated with the skewness parameter show a considerable
bias. In addition, the coverage probabilities of the 95% confidence intervals are fairly close to
the nominal values. Therefore, it is reasonable to assume that the empirical distributions of the
estimates are close to the normal distribution.

From the results obtained in the application, we observed that the nonparametric QR
models under the RPMOG distribution were a better fit than the other classes of QR models. The
outlier observations were identified by utilizing the three distinct residuals proposed. Furthermore,
influential observations are exposed by global and local influence tools. Finally, it is shown that
the model is robust to the presence of outliers and influential observations through confirmatory
analysis.



93

CHAPTER

6
CONCLUDING REMARKS

This dissertation proposes families of linear and partially linear quantile regression mod-
els where the response variable follows a reparameterized Marshall-Olkin (RPMO) distribution.

The RPMO distributions arise from applying the Marshall-Olkin transformation to
distributions belonging to the location-scale family and then reparameterizing the location
parameter as a function of the quantiles. These distributions presented closed forms of the pdf,
cdf and qf. Studies on the skewness and kurtosis coefficients have shown that the distributions
are flexible, especially in RPMON and RPMOG models. Based on these results, we formulate
regression models that relate the q-th quantile, scale and skewness of the response variable to
linear predictors using appropriate link functions.

From the log-likelihood function, were calculated the expressions of the score vector and
the observed information matrix. The ML estimators do not have a closed form, which requires
numerical maximization of the log-likelihood function. For this reason, the RS algorithm was
adapted for obtaining ML estimates. Furthermore, the NQR, GCSR and MTR were used for
studying the adequacy of the models and atypical observations. To detect influential observations,
we presented measures of case deletion, such as likelihood displacement and generalized Cook’s
distance. Diagnostic techniques are developed to assess the sensitivity of the estimates in three
perturbation schemes: case-weight, response variable and skewness parameter.

Subsequently, we introduce the partially linear QR models that are an extension of
linear QR models. In order to approximate the nonparametric function, we use B-splines with
the penalty criterion of difference matrices. Then, the penalized log-likelihood function was
formulated to obtain the penalized score vector and the penalized observed information matrix.
The estimation of the parameters, including the smoothing parameter, was carried out using the
RS algorithm. Furthermore, we detail the selection of the models and the total effective degrees
of freedom. Similar to linear QR models, the same three types of residuals, two measures of
global influence, and three perturbation schemes as local influence techniques are adopted.
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Also, the theory discussed during the dissertation is applied to two datasets from the area
of health and nutrition. According to the descriptive analysis of both datasets, the relationship
between the response variable and the covariates can be studied using linear and partially linear
QR models. By means of the model selection criteria, the fits of the proposed QR model families
are compared with their respective particular cases and other models. The best fit is observed
when the response variable is assumed to follow an RPMOG distribution. In a particular quantile,
the adequacy of the models was verified, and outlier observations were identified through residual
analysis. Then, potentially influential observations were identified using techniques of global
and local influence. The respective confirmatory analyses show that the inferences do not change
if potentially influential observations are removed. Therefore, both families of models are robust
to the presence of outliers and influential observations.

6.1 Computational aspects

In this dissertation, the expressions of pdf, cdf, qf, generator of random numbers,
score vector and observed information matrix of the RPMO distributions were implemented
as GAMLSS family distributions in the R language. Thus, the RS algorithm within the gamlss

function was used to estimate the set of parameters of the family of linear QR models under
the RPMO distributions. The great advantage was the optimization in programming, such as a
few lines of code. However, one issue was finding good initial values for the RS algorithm to
converge, especially for the RPMOG distribution. The reason is the high flexibility, demonstrated
by the skewness and kurtosis coefficients, which rule out many outputs of other distributions as
initial values.

The RS algorithm for the PLQR models was implemented manually in the R program-
ming language. The initial values for the quantile, scale and skewness are the computational
outputs of the gamlss function, specifying the RS algorithm, pb() function and RPMO family as
options. This last function has the difficulty of not retrieving the smoothing parameter and the
estimate of the vector B-spline, which is the reason for manually implementing the RS algorithm.

On the other hand, the residuals and methods of global and local influence were imple-
mented in the R programming language with few lines of code. The expressions of the residuals
and their envelopes require statistical and mathematical calculations such as the inverse cdf of
the standard normal distribution, logarithm function and sign function found in any version of
the software. The penalized likelihood displacement and the generalized Cook’s distance have
expressions that are often slow to calculate if the sample size is large because they require cycles.
Finally, the three perturbation schemes that depend on the inverse of the penalized observed
information matrix require low computational effort because the expressions of vectors and
matrices are easy to calculate in the software.
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6.2 Future works

A first prospect for future work is related to proposing bias-corrected estimators for
the family of linear QR models under RPMO distributions. Recently, Magalhães, Gallardo and
Bourguignon (2021) mentioned that efforts to improve the estimators continue to be well-received
in the statistical literature. For example, Magalhães et al. (2020) presented a method to obtain
estimators with a reduced bias for the parameters of extended Marshall-Olkin distributions. Palm,
Bayer and Cintra (2020) introduced bias-adjusted estimators tailored for the Rayleigh regression
model. Magalhães, Gallardo and Bourguignon (2021) and Barreto-Souza and Vasconcellos
(2011) developed bias correction schemes for reparameterized inverse gamma regression model
with varying precision and general extreme-value regression model, respectively.

Most of the works mentioned use the general expression given by Cox and Snell (1968),
the bias adjustment given by Firth (1993), or bootstrap-based Efron (1992) bias adjustment.
The results show that correcting for bias makes the corrected ML estimates better than the ML
estimates without correction, even in small samples.

A second perspective of work is to extend the partially linear QR model to the class
of semiparametric additive QR models. This class allows modeling the effects of covariates
that contribute in a parametric and nonparametric way to the quantiles of the response variable.
However, the approximation to the smooth functions would be through by using natural cubic
splines (ncs). Some authors, such as Vanegas (2015) and Ibacache-Pulgar, Paula and Cysneiros
(2013), have worked with ncs in semiparametric additive models and shown through illustrations
its high flexibility.
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APPENDIX

A
COMPLEMENTARY RESULTS OF SIMULATION

STUDIES

This appendix shows the plots of the simulation studies on the linear QR models in the
RPMO distributions mentioned in Section 3.1.
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Figure 32 – Mean of the RB on the 3000 estimates of the components β̂ββ q, ν̂ννq and τ̂ττq obtained in the
RPMOG model under different sample sizes.
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Figure 33 – SD on the 3000 estimates of the components β̂ββ q, ν̂ννq and τ̂ττq obtained in the RPMOG model
under different sample sizes.
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Figure 34 – RMSE on the 3000 estimates of the components β̂ββ q, ν̂ννq and τ̂ττq obtained in the RPMOG
model under different sample sizes.
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Figure 35 – Mean of the asymptotic SE on the 3000 estimates of the components β̂ββ q, ν̂ννq and τ̂ττq obtained
in the RPMOG model under different sample sizes.
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Figure 36 – 95% CP of the components β̂ββ q, ν̂ννq and τ̂ττq obtained in the RPMOG model under different
sample sizes.
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Figure 37 – Mean of the RB on the 3000 estimates of the components β̂ββ q, ν̂ννq and τ̂ττq obtained in the
RPMOT model under different sample sizes.
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Figure 38 – SD on the 3000 estimates of the components β̂ββ q, ν̂ννq and τ̂ττq obtained in the RPMOT model
under different sample sizes.
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Figure 39 – RMSE on the 3000 estimates of the components β̂ββ q, ν̂ννq and τ̂ττq obtained in the RPMOT model
under different sample sizes.
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Figure 40 – Mean of the asymptotic SE on the 3000 estimates of the components β̂ββ q, ν̂ννq and τ̂ττq obtained
in the RPMOT model under different sample sizes.
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Figure 41 – 95% CP of the components β̂ββ q, ν̂ννq and τ̂ττq obtained in the RPMOT model under different
sample sizes.
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Figure 42 – SEi/SEi+1 and
√

ni+1/ni rates for the parameters indicated in the linear QR model under
RPMON distribution, considering q = 0.1.
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Figure 43 – SEi/SEi+1 and
√

ni+1/ni rates for the parameters indicated in the linear QR model under
RPMON distribution, considering q = 0.5.
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Figure 44 – SEi/SEi+1 and
√

ni+1/ni rates for the parameters indicated in the linear QR model under
RPMON distribution, considering q = 0.9.
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Figure 45 – SEi/SEi+1 and
√

ni+1/ni rates for the parameters indicated in the linear QR model under
RPMOG distribution, considering q = 0.1.
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Figure 46 – SEi/SEi+1 and
√

ni+1/ni rates for the parameters indicated in the linear QR model under
RPMOG distribution, considering q = 0.5.
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Figure 47 – SEi/SEi+1 and
√

ni+1/ni rates for the parameters indicated in the linear QR model under
RPMOG distribution, considering q = 0.9.
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Figure 48 – SEi/SEi+1 and
√

ni+1/ni rates for the parameters indicated in the linear QR model under
RPMOT distribution (ϑ = 15), considering q = 0.1.
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Figure 49 – SEi/SEi+1 and
√

ni+1/ni rates for the parameters indicated in the linear QR model under
RPMOT distribution (ϑ = 15), considering q = 0.5.
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Figure 50 – SEi/SEi+1 and
√

ni+1/ni rates for the parameters indicated in the linear QR model under
RPMOT distribution (ϑ = 15), considering q = 0.9.
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APPENDIX

B
COMPLEMENTARY RESULTS OF SIMULATION

STUDIES II

This appendix shows the plots of the simulation studies on the nonparametric QR models
in the RPMO distributions mentioned in Section 5.1.

Figure 51 – Mean of the RB on the 500 estimates of the components ν̂ννq and τ̂ττq obtained in the RPMOG
model under different sample sizes.
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Figure 52 – SD on the 500 estimates of the components ν̂ννq and τ̂ττq obtained in the RPMOG model under
different sample sizes.
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Figure 53 – RMSE on the 500 estimates of the components ν̂ννq and τ̂ττq obtained in the RPMOG model
under different sample sizes.
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Figure 54 – Mean of the asymptotic SE on the 500 estimates of the components ν̂ννq and τ̂ττq obtained in the
RPMOG model under different sample sizes.
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Figure 55 – 95% CP of the components ν̂ννq and τ̂ττq obtained in the RPMOG model under different sample
sizes.
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Figure 56 – Smooth function mean on the 500 estimates obtained in the RPMOG model under different
sample sizes and q = 0.1.
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Figure 57 – Smooth function mean on the 500 estimates obtained in the RPMOG model under different
sample sizes and q = 0.5.
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Figure 58 – Smooth function mean on the 500 estimates obtained in the RPMOG model under different
sample sizes and q = 0.9.
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Figure 59 – SEi/SEi+1 and
√

ni+1/ni rates for the parameters indicated in the nonparametric QR model
under RPMON distribution.
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Figure 60 – SEi/SEi+1 and
√

ni+1/ni rates for the parameters indicated in the nonparametric QR model
under RPMOG distribution.
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APPENDIX

C
PENALIZED OBSERVED INFORMATION

MATRIX

This appendix shows the calculations of elements ῭
ξiq , ῭

ξiqσiq , ῭
ξiqαiq , ῭

σiq , ῭
σiqαiq and ῭

αiq

presented in Section 4.2.3 of Chapter 4.

The remaining elements of the penalized observed information matrix of the PLQR
model are as follows:

῭
ξiq =

∂ 2`i(ξiq,σiq,αiq)

∂ 2ξ 2
iq

(C.1)

= ψ
2
1iq

[
f ′′0 (uiq)

f0(uiq)
−

f ′20 (uiq)

f 2
0 (uiq)

]
+2ψ

2
1iq

[
f0(uiq)(1−αiq)

αiq +(1−αiq)F0(uiq)

]2

−2ψ
2
1iq

[
f ′0(uiq)(1−αiq)

αiq +(1−αiq)F0(uiq)

]
,

῭
ξiqσiq =

∂ 2`i(ξiq,σiq,αiq)

∂ξiq∂σiq
(C.2)

= ψ
2
1iq

[
f ′0(uiq)

f0(uiq)

]
+ψ

2
1iqψ2iq

[
f ′′0 (uiq)

f0(uiq)
−

f ′20 (uiq)

f 2
0 (uiq)

]
−2ψ

2
1iq

[
f0(uiq)(1−αiq)

αiq +(1−αiq)F0(uiq)

]
+2ψ

2
1iqψ2iq

[
f0(uiq)(1−αiq)

αiq +(1−αiq)F0(uiq)

]2

−2ψ
2
1iqψ2iq

[
f ′0(uiq)(1−αiq)

αiq +(1−αiq)F0(uiq)

]
,

῭
ξiqαiq =

∂ 2`i(ξiq,σiq,αiq)

∂ξiq∂αiq
(C.3)

= 2uαiqψ1iq

[
f ′0(uiq)(1−αiq)

αiq +(1−αiq)F0(uiq)

]
−uαiqψ1iq

[
f ′′0 (uiq)

f0(uiq)
−

f ′20 (uiq)

f 2
0 (uiq)

]
−2ψ1iq

[
f0(uiq)(1−αiq)

αiq +(1−αiq)F0(uiq)

][
1−F0(uiq)+(1−αiq) f0(uiq)uαiq

αiq +(1−αiq)F0(uiq)

]
−2ψ1iq

[
f0(uiq)

αiq +(1−αiq)F0(uiq)

]
,
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and

῭
σiq =

∂ 2`i(ξiq,σiq,αiq)

∂ 2σ2
iq

(C.4)

= ψ
2
1iq +2ψ

2
1iqψ2iq

[
f ′0(uiq)

f0(uiq)

]
−4ψ

2
1iqψ2iq

[
f0(uiq)(1−αiq)

αiq +(1−αiq)F0(uiq)

]
−2ψ

2
1iqψ

2
2iq

[
f ′0(uiq)(1−αiq)

αiq +(1−αiq)F0(uiq)

]
+2ψ

2
1iqψ

2
2iq

[
f0(uiq)(1−αiq)

αiq +(1−αiq)F0(uiq)

]2

+ψ
2
1iqψ

2
2iq

[
f ′′0 (uiq)

f0(uiq)
−

f ′20 (uiq)

f 2
0 (uiq)

]
,

῭
σiqαiq =

∂ 2`i(ξiq,σiq,αiq)

∂σiq∂αiq
(C.5)

= 2uαiqψ1iqψ2iq

[
f ′0(uiq)(1−αiq)

αiq +(1−αiq)F0(uiq)

]
−uαiqψ1iqψ2iq

[
f ′′0 (uiq)

f0(uiq)
−

f ′20 (uiq)

f 2
0 (uiq)

]
−2ψ1iqψ2iq

[
f0(uiq)(1−αiq)

αiq +(1−αiq)F0(uiq)

][
1−F0(uiq)+(1−αiq) f0(uiq)uαiq

αiq +(1−αiq)F0(uiq)

]
−2ψ1iqψ2iq

[
f0(uiq)

αiq +(1−αiq)F0(uiq)

]
,

῭
αiq =

∂ 2`(ξiq,σiq,αiq)

∂ 2α2
iq

(C.6)

= u2
αiq

[
f ′′0 (uiq)

f0(uiq)
−

f ′20 (uiq)

f 2
0 (uiq)

]
+uαiqαiq

[
f ′0(uiq)

f0(uiq)

]
−2uαiqαiq

[
f0(uiq)(1−αiq)

αiq +(1−αiq)F0(uiq)

]
+4
[

f0(uiq)uαiq

αiq +(1−αiq)F0(uiq)

]
−2u2

αiq

[
f ′0(uiq)(1−αiq)

αiq +(1−αiq)F0(uiq)

]
−ψ

2
3iq

+2
[

1−F0(uiq)+(1−αiq) f0(uiq)uαiq

αiq +(1−αiq)F0(uiq)

]2

,

where

uαiqαiq =
q(1−q)

(1+qαiq−q)2

[
Ψ
′
0−

2qΨ0

(1+qαiq−q)

]
, Ψ

′
0 =

q(q−1)Ψ1Ψ3
0

(1+qαiq−q)2

and

Ψ1 = f ′0

(
F−1

0

(
αiqq

1+qαiq−q

))
for i = 1, . . . ,n and q ∈ (0,1) fixed.

Note that the expression of the second derivative of f0(uiq), denoted by f ′′0 (uiq) within Equations
(C.1)-(C.6) is shown in Table 3 of Chapter 2.
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