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vários artigos que destrinchamos.

A dona Lı́dia e ao senhor Mozair, pelo acolhimento fraterno regado a boas conversas e pães de
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Resumo

O estudo de campos de vetores suaves por partes (CVSPs) tem se consolidado nos últimos anos

não apenas pela beleza dos resultados teóricos, mas também pela proximidade dessa área com as

ciências aplicadas como mecânica, engenharia, eletrônica e biologia, além das ciências sociais e

econômicas. A principal diferença entre CVSPs e campos de vetores suaves é o fato de que pode não

haver unicidade de trajetória para todo ponto de um CVSP. Com a existência de caos, podemos buscar

maneiras de calcular a entropia topológica, uma vez que entropia estima o quão caótico é o sistema.

Neste trabalho seguimos esta linha de investigação e obtemos um conjunto de trajetórias dos cam-

pos de vetores suaves por partes onde a aplicação de tempo um está bem definida. Deste modo, obte-

mos uma conjugação entre o itinerário de uma trajetória contida neste conjunto e de sequências sobre

um conjunto finito de sı́mbolos. Assim, estudamos alguns aspectos do formalismo termodinâmico,

mais especificamente pressão topológica e, consequentemente, entropia topológica para campos de

vetores suaves por partes, usando conjugação topológica com shifts unilaterais e o Operador de

Ruelle-Perron-Frobenius. Algumas relações entre entropia, dimensão de Hausdorff e dimensão de

Minkowski também são apresentadas. Neste sentido, quando a pressão é zero, podemos usar a teoria

da cadeias de Markov juntamente ao operador de Ruelle-Perron-Frobenius, para calcular o tempo de

relaxação e estimar o tempo de mistura para CVSPs.

Por fim, introduzimos o conceito de conexão deslize-escape para CVSPs e estabelecemos condições

para obter um conjunto de trajetórias que preserva a medida mesmo no caso em que o movimento

de deslize é permitido. Como consequência, resultados clássicos da teoria ergódica de sistemas

dinâmicos podem ser adaptados para o contexto de CVSPs com uma conexão deslize-escape, a saber,

o Teorema de Recorrência de Poincaré e o Teorema Ergódico de Birkhoff.

Palavras-chave: Campos de vetores suaves por partes, Conexão deslize-escape, Pressão topológica,

Shifts unilaterais.

v





Abstract

The study of piecewise smooth vector fields (PSVFs) has been consolidated in recent years not

only because of the beauty of the theoretical results, but also because of the proximity of this area

to applied sciences such as mechanics, engineering, electronics and biology, in addition to social

sciences and economical. The main difference between PSVFs and smooth vector fields is the fact

that there may not be unique the trajectory passing through each point a PSVF. With the existence of

chaos, we can look for ways to calculate the topological entropy, since entropy estimates how chaotic

the environment is system.

In this work we follow this line of investigation and obtain a set of piecewise smooth vector

field trajectories where the application of time one is well defined. In this way, we obtain a con-

jugacy between the itinerary of a trajectory contained in this set and sequences over a finite set of

symbols. Thus, we study some aspects of thermodynamic formalism, more specifically topological

pressure and, consequently, topological entropy for piecewise smooth vector fields, using topological

conjugacy with one-sided shifts and the Ruelle-Perron-Frobenius Operator. Some relations between

entropy, Hausdorff dimension and Minkowski dimension are also presented. In this sense, when

the pressure is zero, we can use the Markov chain theory together with the Ruelle-Perron-Frobenius

operator to calculate the relaxation time and estimate the mixing time for PSVFs.

Finally, we introduce the concept of sliding-escaping connection for piecewise smooth vector

fields and establish conditions in order to obtain a set of trajectories that preserves measure even

in the case where sliding motion is allowed. As consequence, classical results from the ergodic

theory of dynamical systems can be adapted for the context of piecewise smooth vector fields with a

sliding-escaping connection, namely, the Poincaré’s Recurrence Theorem and the Birkhoff’s Ergodic

Theorem.

Keywords: Piecewise smooth vector fields, Sliding-escaping connection, Topological pressure, One-

sided shifts.
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CHAPTER 1

Introduction

The theory of piecewise smooth vector fields (PSVFs) admits the existence of switching manifolds

separating the phase portrait into a finite number of disjoint regions. Then it is defined a vector field

(not necessarily the same) in each of these regions. It means, among other things, that at the boundary

of each region it is defined at least two vector fields in such a way that the global trajectory may not

be smooth. Here it is clear the useful of PSVFs to model applied problems where a kind of “on-off”

situation is considered. This is the case of intermittent treatments of cancer and HIV (see [14, 30]),

intermittent protocols of containment for COVID-19 (see [13]) among others. The terminology that

presents the behavior of trajectories in the switching manifold was presented by Filippov (see [24]).

Some landmarks in the theory of PSVFs are the works [8, 52] and references therein.

At the moment, a strongly explored line of research in PSVFs theory is to verify which results

from the theory of smooth vector fields are still valid for the piecewise smooth scenario. In this di-

rection, some particular results have been obtained over the last few years. It is quite clear that the

Existence and Uniqueness Theorem is not true in the context of PSVFs. On the other hand, under

adequate hypotheses, we already know that Poincaré Index Theorem, Poincaré-Bendixson Theorem

and Peixoto’s Theorem have versions for PSVFs (see [9, 12, 51]). Other works introduce the con-

cepts of invariance, minimality and chaoticity for PSVFs, and they achieve amazing characteristics in

relation to these objects, such as the existence of non-trivial minimal sets and chaotic vector fields in

dimension 2 (see [11, 15, 32]), which does not happens for smooth vector fields.

In Chapter 2, we provide the main ideas and general definitions concerning PSVFs, topologi-

cal pressure, topological entropy, Bernoulli shift spaces, random variables, Markov chains, Perron-

Frobenius theory, Hausdorff measure and Minkowski dimension that we use along this text.

There are several concepts of entropy, among them, Shannon entropy which first appeared in the

1940s for the need of information theory, Kolmogorov-Sinai entropy which arose to solve a funda-

mental problem of ergodic theory in the 1950s and topological entropy for the study of topological

dynamical systems in the 1960s. All these concepts are mathematical measures of uncertainty, whose

3



4 Chapter 1. Introduction

origins come from the classic Boltzmann entropy in thermodynamics. In 1948 Claude Shannon in his

article “A mathematical theory of communication” [47] proposed the notion of entropy to measure

how the information inside a signal can be quantified with absolute precision as the amount of unex-

pected data contained in the message. In 1958, Kolmogorov [34] introduced the concept of entropy

in the dynamical system as a measure-preserving map and studied the concomitant property of com-

pletely positive entropy. Soon after in 1959, his student Sinai [49] formulated the Kolmogorov-Sinai

entropy which is suitable for automorphisms of Lebesgue spaces. The Kolmogorov-Sinai entropy

is equivalent to a generalized version of the Shannon entropy under certain plausible assumptions.

Topological entropy was introduced by R. Adler, A. Konheim and M. McAndrew [1] to describe the

complexity of a single map acting on a compact metric space, we have a metric space. In this way,

the topological entropy is a measure of the “disorder” of the system, that is, it can be thought of as

a quantitative measure of sensitive dependence on initial conditions. So entropy quantitatively mea-

sures how chaotic the system is. In addition, Bowen extended the definition to non-compact spaces,

which is also very useful in applications.

Topological pressure is a weighted version of topological entropy, where the “weights” are deter-

mined by a continuous function called the potential. The idea of pressure was brought from Statistical

Mechanics to Ergodic Theory by the mathematician and theoretical physicist David Ruelle [44], one

of the originators of the differentiable ergodic theory, and was later extended by the British mathe-

matician Peter Walters [55].

In [3], the authors proposed a new way to approach PSVFs through the construction of a metric

space of all possible trajectories. Using this, they defined the topological entropy of a planar PSVFs,

proved the existence of planar PSVFs with positive entropy (finite and infinite) and provided suficient

conditions for a planar PSVF to have infinite entropy, in addition to showing examples of PSVFs

where the entropy is always logr, for a positive integer r. Furthermore, based on this metric space,

in [2] it is proposed a way to combine the dynamics of a planar PSVF with the two-sided shift map

in sequence spaces. This approach is absolutely new in the literature and estates tools of discrete

dynamics that can be used in order to prove results concerning PSVFs.

The fact that the Existence and Uniqueness Theorem of solutions does not apply to PSVFs adds

an extra difficulty when studying invariant measures in this scenario. However, there are ways to deal

with this problem and a necessary condition for this is given by [38]. Our focus will be on natural

invariant measures referring to PSVFs that are absolutely continuous with respect to the Lebesgue

measure and its corresponding density invariant, where density can be considered as a set of initial

conditions. The dynamics action in this case is described by the Perron-Frobenius operator L . In-

variant densities are the sets fixed under the linear operator L , that is, they are eigenfunctions with

eigenvalues 1.

In the present work, we construct the Ruelle-Perron Frobenius operator restricted to a subset of

global trajectories of a PSVF for an expanding and topologically mixing map. Firstly, on this subset
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of global trajectories, we construct a metric making this subset a metric space. The Ruelle-Perron-

Frobenius operator will be obtained through the geometric potential for the time-one map. However,

the time-one map is not well defined in this context, since, after a time t = 1, the same starting point

can be associated with arcs of different trajectories. To deal with this problem, which is the biggest

hurdle to overcome, we consider a quotient space, for which two trajectories are equal if and only if

they have the same itinerary. In addition, the quotient set will also be a metric space with the induced

metric. Thus, time-one map is well defined for the considered PSVFs, and as we will see it will be an

expanding and topologically mixing map.

In Chapter 3 we present our first contributions. Using the time-one map induced in this quotient

space, we build conditions for a subset of trajectories of a PSVF to be associated with a finite-type

subshift through a topological conjugacy. Once this topological conjugacy is established, we actually

show that under certain conditions, there is an ergodic equivalence between the space of shifts with

the Bernoulli measure and the space of the global trajectories of a PSVF with the Lebesgue measure.

Since entropy and topological pressure are preserved via topological conjugacy, we can use such

properties of shift spaces to obtain the entropy and topological pressure for the PSVF. Furthermore,

we present examples of PSVFs whose entropy for a subset contained in the quotient space of all

trajectories of these PSVFs is r, for a positive real number r. Finally, we use the relationship between

topological entropy, Hausdorff dimension and Minkowski dimensions (box dimension) for shifts of

finite type given by Simpson [48] to calculate such quantities for PSVFs.

In stochastic processes we say that π = (π(i))i∈Ξ is a probability distribution over a state space Ξ

if π(i)≥ 0 for all i ∈ Ξ and the sum of π(i) is equal to one. Given a Markov chain, let us denote by πt

the probability distribution at time t. Suppose that the Markov Chain starts with an initial distribution

π0 = π , and that πt = π for all t (discrete or continuous). When this occurs, π is called a stationary

distribution. Now, consider ε > 0, a stationary distribution π̃t and another distribution ˜̃πt . The mixing

time tmix is the first positive number such that the distance between π̃t and ˜̃πt is smaller that ε . In

other words mixing time helps to define a method of measuring how long it takes Markov chains to

converge to their stationary distributions. In the classical theory of discrete dynamical systems, the

relaxation time trel is the rate at which a chaotic system “mixes” the state space and it is related to the

second largest eigenvalue of the Ruelle-Perron-Frobenius operator.

Similar to case of the one-sided shifts, still in Chapter 3, we construct a Markov chain associated

with PSVFs. Therefore, we use Markov chain theory in order to calculate the relaxation time and

estimate the mixing time for PSVFs. In Example 8 and Example 9, we display stationary distributions

associated with the respective PSVFs.

Finally, in Chapter 4 we establish conditions in order to obtain a set of trajectories of PSVFs

that preserves measure even in the case where sliding motion is allowed. In fact, for planar PSVFs,

a sliding region (see the precise definition in Chapter 2) transforms a small open set A ⊂ Rn (with

positive measure) into a line segment (with null measure). However, the escaping region has the
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power to transform this same line segment into a positive measure set. Along this work we deal with

these transformations and we will be particularly interested in the case where the escaping region

produces a set having the same measure of the original set A. In order to do this, we construct an

appropriated set of trajectories and introduce a measure on it.

In addition to the results for entropy and topological pressure, Hausdorff and Minkowski dimen-

sions, obtained in this thesis, the importance of this work lies in studying PSVFs that preserve mea-

sure, which allows us to take an ergodic approach to this class of PSVFs. As far as we know, this

approach is completely new in the literature and constitutes a very powerful tool in the study of PSVFs

that opens a new horizon in the theory.



CHAPTER 2

Preliminary

2.1 Preliminary

2.1.1 Basic Notations on PSVFs

Definition 1. A piecewise-smooth vector field is a triple (M,Σ,Z) where

(i) M is a suitable manifold;

(ii) Σ is formed by a finite union of simple curves Σ = Σ1 ∪̇ · · · ∪̇Σn splitting M into n+1 connected

components regions Ri, where Σi = f−1
i (0) and fi : M → R are smooth functions having 0 as

regular value, i = 1, · · · ,n, (that is, ∇ fi(p) ̸= 0, for p ∈ f−1
i (0));

(ii) Z is a collection of n+1 vector fields of class Cr defined on M, say Z = (X1, · · · ,Xn+1), being

each X i defined on the closure of Ri.

We shall denote a PSVF by Z in stead of the triple (M,Σ,Z) unless there is some confusion on M or

Σ. We call Σ the switching manifold and we notice that Z is multi-valuated on Σ. In particular, every

component X i of Z is a vector field defined on whole M which has been restricted to Ri. Because Z

is multi-valuated on each connected component of Σ, it is necessary to establish some rule describing

how trajectories interact to Σ, switching to one side of Σ to another or even remaining on it. In this

thesis, we adopted the Filippov convention that we will describe below. We will do the case where Σ

is formed by a single curve that separates an open set V ⊂ M into two regions. In addition, we will fix

the notations that we will use from now on. For the general case of Filippov’s convention, in which Σ

is formed by the union of n simple curves see [5, 22].

Let V be an open set of Rn. Consider a manifold Σ ⊂ V of codimension 1 in Rn given by Σ =

f−1(0) = {q ∈V : f (q) = 0}, where f : V → R is smooth having 0 ∈ R as a regular value. Consider

Σ a switching manifold whose boundary separates the regions Σ+ = {q ∈V : f (q)≥ 0} and Σ− =

{q ∈V : f (q)≤ 0}.

7



8 Chapter 2. Preliminary

Call Xr the space of the Cr-vector fields in V ⊂ Rn endowed with the Cr-topology, with r ≥ 1

large enough depending on the need. Call Z r the space of PSVFs Z : V → Rn such that

Z(q) =
{

X+(q) i f q ∈ Σ+

X−(q) i f q ∈ Σ− , (2.1)

where X+ =
(
X+

1 ,X+
2 , · · · ,X+

n
)
, X− =

(
X−

1 ,X−
2 , · · · ,X−

n
)
∈ Xr.

We denote (2.1) simply by Z =(X+,X−) when there is no confusion about the switching manifold.

We equip Z r with the product topology, i.e.,

∥ Z ∥Cr= max
{
| X+ |Cr , | X− |Cr

}
,

where | · |Cr denotes the classical Cr-norm of the smooth vector fields X+ and X− restricted to Σ+ and

Σ−, respectively.

In order to define rigorously the flow of Z passing through a point p ∈V , we distinguish whether

this point is at Σ± \ Σ or Σ. For the first two regions, the local trajectory is defined as being the

one gives by X+ and X− respectively, as usual, but for Σ we rely on the contact between the vector

fields X+, X− and Σ characterized by the Lie derivative X± f (q) = ⟨∇ f (q),X±(q)⟩, where ⟨·, ·⟩ is

the usual inner product. We also use higher order derivatives given by (X±)k f = (X±)((X±)k−1 f ) =〈
∇(X±)k−1 f ,X±〉, with k > 1 a positive integer. Using the Lie derivatives, it appears the following

generic regions on Σ:

• Crossing Region is defined by Σc = {p ∈ Σ | X+ f (q)X− f (q) > 0}; In addition we denote

Σc+ = {p ∈ Σ | X+ f (q)> 0,X− f (q)> 0} and Σc− = {p ∈ Σ | X+ f (q)< 0,X− f (q)< 0};

• Sliding Region : Σs = {p ∈ Σ | X+ f (q)< 0,X− f (q)> 0};

• Escaping Region : Σe = {p ∈ Σ | X+ f (q)> 0,X− f (q)< 0}.
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∇ f ∇ f ∇ f

Σ

(a) Cossing Region

∇ f ∇ f ∇ f

Σ

(b) Sliding Region
∇ f ∇ f ∇ f

Σ

(c) Escaping Region

Any q ∈ Σ such that X+ f (q)X− f (q) = 0 is called a boundary singularity. The boundary singular-

ities can be of two types: (i) an equilibrium of X+ or X− over Σ or (ii) a point where a trajectory of

X+ or X− is tangent to Σ (and it is not an equilibrium of X+ or X−). In the second case, we call q ∈ Σ

a tangential singularity (or tangency point) and we denote the set of these points by Σt . If there exists

an orbit of the vector field X+ |Σ+ (respectively X− |Σ−) reaching q ∈ Σt in a finite time such that the

trajectory continues in Σ+ (respectively Σ−), then such tangency is called a visible tangency for X+

(respectively X−), otherwise we call q an invisible tangency for X+ (respectively X−).

In the case X+ f (p) = 0, the trajectories of X+ are tangent to Σ in p and we say that p is a

tangential singularity of X+. A tangential singularity p ∈ Σ is a fold point of X+ if X+ f (p) = 0, but

(X+)2 f (p) ̸= 0. Moreover, p ∈ Σ is a visible (respectively, invisible) fold point of X+ if X+ f (p) =

0 and (X+)2 f (p) > 0 (respectively, (X+)2 f (p) < 0). Analogously for X− reversing the last two

inequalities. When p is a fold point for both X+ and X−, we say that p is a fold–fold singularity or

two-fold singularity. A two-fold is called

1. visible-visible, if it is a visible tangency for both X+ and X−;

2. invisible-invisible, if it is an invisible tangency for X+ and X−;

3. visible-invisible, whether it is a visible tangency for X+ and an invisible tangency for X− or

vice versa.

The trajectories of a PSVF passing through a crossing point are defined as the concatenation of the

trajectories of X+ and X− by that point since the vector fields X+ and X− point in the same direction.

However, in the sliding and escaping regions, we need to define an auxiliary vector field. So, we

consider the Filippov’s convention [24, 35] to define a new vector field on Σs ∪Σe. This new vector

field, called sliding vector field, is a convex linear combination of X+(p) and X−(p) in such a way

that Zs is tangent to Σ in the cone generated by X+(p) and X−(p). See Figure 2.2

Definition 2. The sliding vector field Zs : Σs ∪Σe → Rn is defined as

Zs(p) = (1−δ )X+(p)+δX−(p),
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where for each p ∈ Σs ∪Σe, the value of δ is chosen such that ⟨∇ f (p),Zs(p)⟩= 0 , i.e.,

δ = δ (p) =
X+ f (p)

X+ f (p)−X− f (p)

provided that the denominator of the previous expression does not vanish.

When Σs ∪Σe ̸= /0, the sliding vector field can be extend to Σs ∪Σe. Note that, δ ∈ (0,1) for all

p ∈ Σs ∪Σe, while δ = 0 implies that X− f (p) = 0, i.e., p is a tangency point of the vector field X−

with the boundary Σ, and δ = 1 implies that X+ f (p) = 0, i.e., p is a tangency point of the vector field

X+ with the boundary Σ. A point p ∈ Σs ∪Σe such that Zs(p) = 0 is called a pseudo equilibrium of

Z.

Σs

∇ f (p)

p

X+(p)

X−(p)

Zs(p)Σ+

Σ−

Figure 2.2: Sliding Vector

Note that that if p ∈ Σs then p ∈ Σe for (−Z). So we can define the escaping vector field Ze on Σe

associated to Z by Ze =−(−Z)s. We will use the notation ZT to both, Zs and Ze.

The following definition establishes the classical convention about the trajectories of a PSVF:

Definition 3. The local trajectory (orbit) φZ(t, p) of a PSVF Z = (X+,X−) through a small neighbor-

hood of p ∈U is defined as follows:

(i) For p ∈ Σ+ \Σ and p ∈ Σ− \Σ the trajectory is given by φZ(t, p) = φX+(t, p) and φZ(t, p) =

φX−(t, p) respectively.

(ii) For p ∈ Σc+ and taking the origin of time at p the trajectory is defined as φZ(t, p) = φX−(t, p)

for t ≤ 0 and φZ(t, p) = φX+(t, p) for t ≥ 0. If p ∈ Σc− the definition is the same reversing the

time;

(iii) For p ∈ Σe and taking the origin of time at p the trajectory is defined as φZ(t, p) = φZs(t, p) for

t ≤ 0 and φZ(t, p) is either φX+(t, p) or φX−(t, p) or φZs(t, p) for t ≥ 0. For p ∈ Σs the definition

is the same reversing the time;

(iv) For p being a tangential singularity and taking the origin of time at p the trajectory is defined

as φZ(t, p) = φ1(t, p) for t ≤ 0 and φZ(t, p) = φ2(t, p) for t ≥ 0, where each φ1,φ2 is either φX+

or φX− or φZT ;
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(v) For p ∈V ⊂ R2 a singular tangency point, φZ(t, p) = p for all t ∈ R.

Definition 4. A global trajectory ΓZ(t, p0) is a concatenation of local trajectories. Moreover, a

maximal trajectory is a global trajectory that can not be extended to any other global trajectories by

joining local ones, that is, if Γ̃Z is a global trajectory containing Γz then Γz = Γ̃Z . In this case, we

call Imax = (τ−(p0),τ
+(p0)) the maximal interval of the solution ΓZ . A global trajectory is a positive

(respectively, negative) global trajectory if t > 0 (respectively, t < 0) and t0 = 0. We will denote by
Λ is the set of all global trajectories of Z.

Remark 1. The maximal interval of the solution may not cover the interval (−∞,∞), that is, τ±(ΓZ, p0)

could be finite values. When there is no danger of confusion, we will prefer use the notation Imax =

(τ−(p0),τ
+(p0)) instead of IΓZ

max = (τ−(ΓZ, p0),τ
+(ΓZ, p0)).

In Chapter 3, we will only consider planar PSVFs. In this case, we say that a tangency point

p ∈ V is singular if p is an invisible-invisible tangency for both X+ and X−. On the other hand, a

tangency point p ∈V is regular if it is not singular.

Definition 5. Consider an n-dimensional PSVF Z ∈ Z r. The set

Sat(A) =
⋃

φZ∈Λ

⋃
p∈A

φZ(t, p) and t ∈ Imax = (τ−(p),τ+(p))

will be called the saturation of the set A ⊂ Rn.

Definition 6. A set A is Z-invariant if for each p ∈ A and any global trajectory ΓZ(t, p) passing

through p it holds ΓZ(t, p)⊂ A.

Definition 7. A set B ⊂ Rn is minimal for a PSVF Z if

(i) B ̸= /0;

(ii) B is compact;

(iii) B is Z-invariant;

(iv) B does not contain proper subset satisfying (i),(ii), and (iii).

Definition 8. A PSVF Z is topologically transitive if given two arbitrary open sets U and V of

A ⊆ Rn, there exist a global trajectory γ connecting these sets.

In our discussion, it is crucial that the volume measure is preserved in PSVFs, which is not

very simple to obtain, however there is a class of piecewise smooth systems satisfying X+ f (p) =

X− f (p), p ∈ Σ, this class constitutes a well-known class of Filippov systems called refractive sys-
tems (see Liouville’s Lemma in [10]). In chapter 3, we work with refractive systems which, in

addition, satisfy div(X±) = 0 in Σ±, in other words, preserves the volume measure in Σ± (see [53]).

Therefore, by Corollary A in [38], the PSVFs preserves the volume measure, that is, the Lebesgue

measure, here denoted by med.
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Definition 9. Let Z = (X+,X−) a PSVF defined over a compact 2-dimensional surface M and Λ =

{γ : global trajectory of Z}. Define ρ : Λ×Λ → R by:

ρ(γ1,γ2) = ∑
i∈Z

1
2|i|

∫ i+1

i
| γ1(t)− γ2(t) | dt,

where | · | denotes the distance between the points γ1(t) and γ2(t).

Remark 2. Note that if p is a pseudo-equilibrium point, the time stop, since γ(t) = φ t
Zs(p) = p, for

all t ∈ Imax.

Proposition 1. The space (Λ,ρ) is a metric space.

Proof. Let γ1,γ2 ∈ Λ. Observe that M being compact, implies |γ(t)− γ2(t)| isuniformly bounded for

all t ∈R, thus the series above converges for any γ1,γ2. If ρ(γ1,γ2) = 0 then
∫ i+1

i |γ1(t)−γ2(t)|dt = 0

for all i ∈ N which implies γ1(t) = γ2(t) for all t ∈ R and therefore by continuity γ1 = γ2. The fact

ρ(γ1,γ2) = ρ(γ2,γ1) follows immediately from |γ1(t)− γ2(t)| = |γ2(t)− γ1(t)|. And, finally, for the

triangle inequality part it is enough to notice that |γ1(t)− γ3(t)| ≤ |γ1(t)− γ2(t)|+ |γ2(t)− γ3(t)| for

all t ∈ R gives the inequality ρ(γ1,γ3)≤ ρ(γ1,γ3)+ρ(γ2,γ3).

Let Ω = {positive global trajectories of Z}. Consider the map:

T : R+×Ω → Ω

(t,γ) 7→ T (t,γ)(·) = γ(·+ t). (2.2)

Then we have the time one map T1(γ) = T (1,γ)(.) = γ(·+1).

Remark 3. Note that (Ω,ρ), with i ∈ N is also a metric space. Furthermore, R+ = {t ∈ R | t ≥ 0}.

Proposition 2. The map T1 : Ω → Ω defined above is continuous.

Proof. Note that∫ i+1

i
| T1(γ1)(t)−T1(γ2)(t) | dt =

∫ i+1

i
| γ1(t +1)− γ2(t +1) | dt =

∫ i+2

i+1
| γ1(t)− γ2(t) | dt.

Using the relation above, we obtain:

ρ (T1(γ1)(t),T1(γ2)(t)) = ∑
i∈N

1
2i

∫ i+1

i
| T1(γ1)(t)−T1(γ2)(t) | dt =

∑
i∈N

1
2i

∫ i+2

i+1
| γ1(t)− γ2(t) | dt = lim

n→+∞

(
n

∑
i=0

1
2i

∫ i+2

i+1
| γ1(t)− γ2(t) | dt

)
=

lim
n→+∞

(
2

n

∑
i=0

1
2i+1

∫ i+2

i+1
| γ1(t)− γ2(t) | dt

)
= lim

n→+∞

(
2

n+1

∑
j=1

1
2 j

∫ j+1

j
| γ1(t)− γ2(t) | dt

)

≤ lim
n→+∞

(
2

n+1

∑
j=1

1
2 j

∫ j+1

j
| γ1(t)− γ2(t) | dt

)
+
∫ 1

0
| γ1(t)− γ2(t) | dt =

2 lim
n→+∞

(
n+1

∑
j=1

1
2 j

∫ j+1

j
| γ1(t)− γ2(t) | dt +

1
2

∫ 1

0
| γ1(t)− γ2(t) | dt

)
= 2ρ(γ1,γ2).

Hence T1 is continuous.
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2.1.2 Random Variables and Markov Chains

Definition 10. A probability space is a set Ξ, together with a family of subsets of Ξ whose elements

are called events. Events satisfy the following closure properties:

(i) Ξ is an event;

(ii) If B1,B2, · · · are all events, then the union
∞⋃

i=1
Bi is also an event;

(iii) If B is an event, so is Ξ\B.

Given a probability space, a probability measure is a non-negative function Prob defined on events

and satisfaying the probability axioms:

(i) Prob(Ξ) = 1;

(ii) For any sequence of events B1,B2, · · · which are mutually disjoint, meaning Bi∩B j = /0 for i, j,

Prob

(
∞⋃

i=1

Bi

)
=

∞

∑
i=1

Prob(Bi).

If Ξ is a countable set, a probability distribution on Ξ is a function π : Ξ → [0,1] so that

∑
ζ∈Ξ

π(ζ ) = 1. For any subset B ⊂ Ξ

π(B) = ∑
ζ∈B

π(ζ ).

The set function B 7→ π(B) is a probability measure.

Given a set Ξ (not necessarily enumerable) with a σ -algebra F , a function g : Ξ → R is called

measurable if g−1(B) is an element of F for all open sets B. If Ξ = D is an open subset of Rn and

g : D → [0,∞) is a measurable function satisfying
∫

D g(x)dx = 1, then g is called a density function.

Given a density function, the set function defined for Borel sets B by

µg(B) =
∫

B
g(x)dx

is a probability measure (here, the integral is the Lebesgue integral and it agrees with the usual Rie-

mann integral wherever the Riemann integral is defined).

Given a probability space (Ξ,F ,Prob), a random variable X is a measurable function defined

on Ξ. We will use the notation {X ∈ A} as an abbreviation for the set

{w ∈ Ξ;X (w) ∈ A}= X −1(A).

The distribution of a random variable X is the probability measure µX on R defined for Borel sets

B by

µX (B) := Prob(X ∈ B) := Prob({x ∈ B}).
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Definition 11. We call a random variable X discrete if there is a finite or countable set S, called the

support of X , such that µX (S) = 1. In this case, the function

πX (a) = Prob(X = a)

is a probability distribution on S.

A set of random variables (Xm)m∈M indexed by a set M, defined in a probability space (Ξ,F ,Prob)

and taking values in a set S, called the state space, is a stochastic process.

A random variable X is called absolutely continuous if there is a density function g on R such

that

µX (A) =
∫

A
g(x)dx.

For A ⊂ Ξ, we define the function 1A : Ξ → R by

1A(x) =
{

1 if x ∈ A
0 if x /∈ A (2.3)

which is called the indicator function of A. 1A is a random variable on (Ξ,F ) if and only if A ∈ F .

We say that a random variable X on (Ξ,F ) is simple if there are A1, · · · ,An ∈ F , Ai ∩A j = /0, i ̸= j,

such that X =
n
∑

i=1
ai1Ai with a1, · · · ,an ∈ R.

We define

E[X ] =
n

∑
i=1

aiProb(Ai).

For a discrete random variable X , the expectation E(X ) can be computed by the formula

E[X ] = ∑
x∈R

xProb(X = x).

For an absolutely continuous random variable X , the expectation is computed by the formula

E[X ] =
∫
R

x ·gX (x)dx.

Definition 12. Let (M,M ,Prob) be a probability space and let F : M → M be a measurable map.

The map F is said to be measure-preserving if for every A ∈ M ,

Prob(F−1(A)) = Prob(A).

The triple (M,M ,Prob,F) is then said to be a measure-preserving system.

Definition 13. A stochastic process (Xm)m∈N have the Markovian property if

Prob(Xm+1 = j | X0 = i0, · · · ,Xm−1 = im−1,Xm = i) = (2.4)

Prob(Xm+1 = j | Xm = i) ,

for m ∈ N and i, j, i0, · · · im−1 ∈ Ak = {0,1, · · ·k−1}.
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Notation 1. The symbol | in Definition 13 reads “such that”.

The Markovian property says that the conditional probability of any future “event”, given “any”

past events and the present state Xm = i, is independent of past events and depends only on the current

state. A sequence of random variables (Xm)m∈N is a Markov chain if it has the Markovian property.

A Markov chain is defined by its transition matrix W = (w(i, j))k×k, where

w(i, j) = Prob(Xm+1 = j | Xm = i) ∀ i, j ∈ Ak and m ∈ N.

In order to compute the n−th transition matrix, we can simply use matrix multiplication to get the

desired result and w(n)
i j will denote the element of row i and column j of W n.

Definition 14. Let (Xn)n∈N be a Markov chain with state space Ak. State j is said to be accessible
from state i if

w(m)
i j = Prob(Xm = i | X0 = j)> 0 for some m ≥ 0.

We say that the states i, j communicate if

w(m)
i j = Prob(Xm = i | X0 = j)> 0 and w(m̃)

i j = Prob(Xm̃ = j | X0 = i)> 0,

for some m, m̃ ≥ 0. A Markov chain is said to be irreducible if all its states communicate.

Now, we will introduce an important property. Suppose Ak = {0,1,2} such that we can only return

to the state 0 in, say, even time. It’s not too hard to believe that this type of chain exists. In this case,

the state 0 presents a very peculiar behavior, the visit time to the state 0 displays a periodicity. Below

we will define this feature rigorously and then we will present examples to improve understanding.

Definition 15. Consider the set W(i) := {n ≥ 1 | w(n)(i, i)> 0} the set of times in the chain in which

it is possible to return to the initial position i. The Period of state i is defined as the greatest common

divisor of the set W(i). For an irreducible chain, the period of the chain is defined to be the period

that is common to all states. The chain will be called aperiodic if all states have period 1. If a chain

is not aperiodic we will call it periodic.

Example 1. Consider the Markov chain represented by the following graph :

2 1

0

1
2

1 1
2

1
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The transition matrix is

W =

0 1
2

1
2

1 0 0
1 0 0

 .

It is not difficult to see that this chain is periodic with period 2 and

W 2n =

1 0 0
1 1

2
1
2

0 1
2

1
2

 , W 2n−1 =

0 1
2

1
2

1 0 0
1 0 0

 .

Proposition 3. Any irreducible Markov chain that has at least one “self-loop” (i.e., one state i for

which Prob(Xn = i|Xn−1 = i)> 0), is aperiodic.

Proof. Suppose state i has a self-loop. From any state j, the chain can eventually get to i (by ir-

reducibility), and use the self-loop any number of times, and then return to j (by irreducibility),

rendering the greatest common divisor of timesteps at which we could have returned to state j to be

1.

Example 2. Consider the Markov chain represented by the following graph :

2 1

0
1
2

1
2

1
2

1
3

1
2

2
3

The transition matrix is

W =

 1
2

1
2 0

0 1
3

2
3

1
2

1
2 0

 .

Note that

W 2 =

 1
4

5
12

1
3

1
3

4
9

2
9

1
4

5
2

1
3

 .

Since each entry of the matrix W 2 is positive, it follows that W is an irreducible matrix, and

therefore the same happens for the Markov chain. The chain is aperiodic since there is a self-loop,

e.g., w11 > 0.
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Definition 16. The probability of first visit at state j after m steps, starting from state i,is:

r(m)
i j = Prob(Xn = j,X1 ̸= j,X2 ̸= j, · · · ,Xm−1 ̸= j | X0 = i).

The expected number of steps to arrive for the first time at state j starting from i is:

hi j = ∑
m>0

m · r(m)
i j .

The probability of a visit (not necessarily for the first time) at state j, starting from state i, is:

fii = ∑
m>0

r(m)
i j .

If fi j < 1 then there is a positive probability that the Markov chain never arrives at state j, so in

this case hi j = ∞. A state i for which fii < 1 (i.e. the chain has positive probability of never visiting

state i again) is a transient state . If fii = 1 then the state is called recurrent. More so, if state i is

recurrent, but hii = ∞ is recurring null. If is recurrent and hii ̸= ∞ is positive recurrent. Every state

is either recurrent or transient.

Example 3. Consider a Markov chain represented by the following graph:

3 1

0

2

1
1
8

2
3

1
2

1
3

1
4

1

1
8

The transition matrix is

W =


1
3

2
3 0 0

1
2

1
8

1
4

1
8

0 0 1 0
0 0 0 1


The probability of starting from 0, moving to 1, staying there for one time step and then moving

back to 0 is:

Prob(X3 = 0,X2 = 1,X1 = 1 | X0 = 0) = w12 ·w22 ·w21 =
2
3
· 1

8
· 1

2
=

1
24

.

The probability of moving from 0 to 0 in two steps is:

w(2)
11 = w11 ·w11 +w12 ·w21 =

1
3
· 1

3
+

2
3
· 1

2
=

4
9
.
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The first visit probability from 0 to 1 in two steps is:

r(2)01 = w11w12 =
1
3
· 2

3
=

2
9
,

while

r(7)01 = (w11)
6(w12) =

(
1
3

)6

· 2
3
=

2
37 ,

and

r(m)
10 = (w22)

m−1(w21) =

(
1
8

)m−1

· 1
2
=

1
33m−2 ,

for m ≥ 1 (since w(0)
21 = 0).

Therefore, the probability of (eventually) visiting state 0 from 1 is:

f01 = ∑
m>0

1
33m−2 =

4
7

and the expected number of steps to move from 0 to 1 is:

h01 = ∑
m>0

mr(m)
01 = ∑

m>0
m(w11)

m−1w12 =
3
2
.

Note that in this example, 0 can only be reached from 1, (the directed graph is not strongly con-

nected) which makes the Markov chain not irreducible.

When the state space of a Markov chain is finite, there is an important result that we present below

Theorem 1. Every irreducible Markov chain with a finite state space is positive recurrent.

Proof. See [45].

Given a discrete distribution π = (π(i))i∈Ak , and define the tail of the π by cm ≡ ∑
i≥m

π(i). A

fundamental result proved in [33] is that there exists a number 0 < θ < ∞ such that the limit

lim
m→∞

1
m
cm

exist and is equal to −θ independent of the states. If the Markov chain in Ak is irreducible, then it is

positive recurrent, with the unique stationary distribution π , exist some constant ηi such that

κ(m)≤ ηie−m·θ∗
(2.5)

for each i ∈ Ak, where 0 < θ ∗ < ∞ is the largest constant for which the inequality (2.5) is satisfied.

Now we will present a simple way to calculate the unique stationary distribution for a Markov

chain on Ak. Let (Xm)m∈N be a finite irreducible aperiodic Markov chain with state space Ak and

transition matrix W, and let πm be the distribution of Xm:

πm(i) = Prob(Xm = i) for all i ∈ Ak.
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By conditioning on the possible predecessors of the (m+1)-st state, we see that

πm+1( j) = ∑
i∈Ak

Prob(Xm = i)w(i, j) = ∑
i∈Ak

πm(i)w(i, j) for all j ∈ Ak. (2.6)

The vectorial form of (2.6) is

πm+1 = πmW, for m ≥ 0. (2.7)

and hence

πm = π0W m for m ≥ 0.

The Convergence Theorem (Theorem 4.9 of [37]) implies that for a sufficiently large time, a finite

irreducible aperiodic Markov chain, with distribution π , satisfies lim
m→∞

w(m)
i j = π( j), where j ∈Ak. So,

lim
m→∞

πm( j) = ∑
i∈Ak

π0(i) lim
m→∞

w(m)
i j = π( j),

since ∑
i∈Ak

π0(i) = 1. Therefore, from (2.7) and the uniqueness of the limit, we obtain that π is station-

ary if and only if π = πW .

Definition 17. The total variation distance between two probability distributions π and π̃ on Ak is

defined as

∥π − π̃∥TV := max
E⊆Ak

| π(E )− π̃(E ) | . (2.8)

This definition is explicitly probabilistic: the distance between π and π̃ is the maximum difference

between the probabilities assigned to a single event by the two distributions.

It is useful to introduce a parameter that measures the time required by a Markov chain so that the

distance to stationarity is small. Thus we present the following definition.

Definition 18. Let W be an irreducible, aperiodic transition matrix on Ak, and π a stationary distri-

bution. Define the distance function for all m ∈ N by:

κ(m) := max
i∈Ak

∥wm(i, ·)−π∥TV .

The mixing time (parameterized by ε) of a Markov chain with transition matrix W is defined as

tmix(ε) := min{m : κ(m)≤ ε}. (2.9)

In the Definition 18 weusually take ε = 1
4 and in this case we write tmix := tmix

(1
4

)
. The choice of

1
4 is rather arbitrary any number strictly smaller than 1

2 would serve. For more details see [37].

Given a Markov chain and a random walk over it, it is interesting to study the cases in which we

can do the “reverse chain”. Before formally defining it, consider the following situation.
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Consider an irreducible Markov chain (Xm)m∈N in finite state space Ak with transition probability

matrix W . Fix a positive integer N and define reversed chain Ym := XN−m for 0,1, · · ·N. Then,

(Y0, · · · ,YN) = (XN , · · · ,X0), so (Ym)
N
m=0 is the sequence of states we observe if, starting at time N,

we run the original Markov chain “backwards”. To justify the name “reversed chain”, we present:

Theorem 2. If the irreducible Markov chain (Xn)n∈N starts from the stationary distribution π, then

the reverse chain (Ym)
N
m=0 is an irreducible Markov chain with transition probabilities

ŵ(i, j) =
π( j)w( j, i)

π(i)
for i, j ∈ Ak.

The stationary distribution for the reverse chain is also π.

Proof. See [37].

The Theorem 2 provides conditions for a Markov chain to “look the same” regardless of whether

we look into the past or into the future. But for the transition probabilities to be the same in both

chains, we need ŵ(i, j) = w(i, j) for all i, j ∈ Ak, or equivalently,

π(i)w(i, j) = π( j)w( j, i) for all i, j ∈ Ak. (2.10)

Definition 19. A Markov chain whose stationary distribution π and transition probability matrix W

satisfy (2.10) is called reversible.

Remark 4. Equation (2.10) is often called the detailed balance.

Proposition 4. If W and π satisfy (2.10), then π is invariant to W.

Proof. See [39].
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Example 4. Consider the Markov chain represented by the following graph :

2 1

0

1
3

2
3

2
3

1
3

1
3

2
3

The transition matrix is

W =

0 2
3

1
3

1
3 0 2

3
2
3

1
3 0


Note that

W 2 =

 4
9

1
9

4
9

4
9

4
9

1
9

1
9

4
9

4
9

 .

Since each entry of the matrix W 2 is positive, it follows that W is an irreducible matrix, and

therefore the same happens for the Markov chain. Note that π = ( 1
3 ,

1
3 ,

1
3 ) is invariant, so by Theorem

2, Ŵ =W T . However, W is not symmetric, and it follows that W ̸= Ŵ , i. e., (2.10) is not satisfied and

therefore this chain is not reversible.

Example 5. Consider the Markov chain with diagram where 0 < p = 1−q < 1. Note that W for this

10 i−1 i i+1 k−2 k−1
p q p p

diagram is irreducible and that the non-zero detailed balance equation reads

π(i)w(i, i+1) = π(i+1)w(i+1, i) for i = 0,1, · · ·k−2.

So a solution is given by

π =

((
p
q

)i

, i = 0,1, · · · ,k−1

)
and this may be normalised to give a distribution in the detailed balance with W. Hence this chain is

reversible.
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Definition 20. (Big-O) g(n) = O(h(n)) means there exists some constant δ such that g(n) ≤ δh(n),

for large enough n (that is, as n → ∞). We say “g of n is Big-O of h of n”.

Definition 21. (Big-Θ) g(n)=Θ(h(n)) means there exists some constants δ1 and δ2 such that δ2h(n)≤
g(n)≤ δ1h(n). We say “g of n is Big-Theta of h of n”.

2.1.3 Some words about symbolic dynamics

Consider a set Ak = {0,1, · · · ,k− 1} with k elements and with the discrete topology. Let π =

(π1, · · · ,πn) be the probability distribution on Ak. Now, consider A N
k , i.e., all the sequences x =

(x j) j∈N, with x j ∈ Ak, for all j ∈ N and the product topology of all discrete topologies.

The σ -algebra B defined on it would be generated by finite unions of cylinder sets where a

cylinder set is a subset of A N
k determined by a finite number of values, such that:

C = {(xn)n∈N : xi = ci,−m ≤ i ≤ n},

where ci is any fixed symbol in the alphabet. Therefore, there exist a unique measure µN
π , called the

Bernoulli measure, such that if C is a cylinder set, then µN
π (C) =

n
∏

i=−m
πci.

Definition 22. Let x = (x j) j∈N and y = (y j) j∈N two elements of A N
k . Define d : A N

k ×A N
k → R by:

d(x,y) = ∑
i∈N

| xi − yi |
2i .

Definition 23. Define σ
+
k : A N

k → A N
k given by σ

+
k ((a j)) = (b j), where b j = a j+1. The map σ

+
k is

called one-sided shift and the discrete flow (A N
k ,σ+

k ) is called one-sided shift system.

The measure space
(
A N

k ,B,µN
π ,σ

+
k

)
will be called the Bernoulli shift space with distribution π .

Remark 5. We will use the notation (M,M ,µ,g), to refer to a system formed by a measure space M

(which can be a probability space), a σ -algebra M on this set, a measure µ (which can be a proba-

bility measure) and a continous map g : M → M. Whenever the measure of the system (M.M ,med,g)

is the Lebesgue measure med, the σ -algebra M considered will be the σ -Lebesgue algebra.

Remark 6. The same construction as above can be done for Z, i.e., all the sequences x = (x j) j∈Z,

with x j ∈ Ak, for all j ∈ Z and then map σk : A Z
k → A Z

k is called a two-sided shift.

In the same way as we did above for a finite type set, we can have shifts on an infinite type set.

Let A∞ ⊂R (usually an interval). Consider A N
∞ the space of all infinite sequences of real numbers

and let σ+
∞ : A N

∞ → A N
∞ be the one-side shift, that is, σ+

∞ ((x j) j∈N) = (y j) j∈N, where y j = x j+1.

It is known that σ+
∞ is measurable with respect to the σ -Borel algebra B∞, defined as the smallest

σ -algebra containing all events {x : xn ∈ B}, where B is a one-dimensional Borel set. If ξ is a Borel
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probability measure in R, then the product measure ξ ∞ in B∞ is the only probability measure such

that

ξ
∞ (B0 ×B1 ×·· ·×Bn ×A∞ ×A∞ ×·· ·) =

m

∏
i=0

ξ (Bi),

for all one-dimensional Borel sets B0,B1, · · · . Furthermore the shift σ+
∞ preserves the product mea-

sure ξ ∞. The existence and uniqueness of such a measure follows from the Caratheodory Extension

Theorem.

Definition 24. The sequence (Xn)n∈N on
(
A N

∞ ,B∞,ξ
∞,σ+

∞

)
is called stationary , if σ+

∞ is a measure-

preserving in
(
A N

∞ ,B∞,ξ
∞,σ+

∞

)
.

A collection of random variables is independent and identically distributed (i.i.d.) if each

random variable has the same probability distribution as the others and all are mutually independent,

i.e., the outcome of one event does not affect the outcome of another.

On the space A N
∞ we consider the same metric from those spaces before, that is, given (x j) j∈N,

(y j) j∈N ∈ A N
∞ the distance between them is the real number d(x,y) = ∑

j∈N

|x j−y j|
2 j .

Definition 25. Given g : M → M and any measure µ in M, we denote by g∗µ and call iterated (or

image) of µ by g, the measure defined by g∗µ(B) = µ(g−1(B)) for each measurable set B ⊂ M. Note

that µ is invariant to g if and only if g∗µ = µ .

Definition 26. Let µ and ν be probability measures invariant under measurable maps g : M → M

and h : N → N, respectively. We say that the systems (M,M,µ,g) and (N,N,ν ,h) are ergodically
equivalent if

(i) One can find measurable sets A ⊂ M and B ⊂ N that are invariant by g and h respectively, i.e.,

g(A)⊂ A and h(B)⊂ B, with µ(A) = 1 and ν(B) = 1;

(ii) There exists a bijection L : M → N such that L and L−1 are measurable, in such a way that,

h∗µ = ν and L◦g = h◦L.

We say that a measurable map g : M → M is a Bernoulli map if (M,M,µ,g) it ergodically

equivalent to
(
A N

k ,B,µN
π ,σ

+
k

)
.

2.1.4 Perron-Frobenius Theory

In probability theory, we call covariance of two random variables, X and Y , the number

C(X ,Y ) = E(X −E[X ])(Y −E[Y ]) = E[X Y ]−E[X ]E[Y ].

Covariance is a statistical measure where you can compare two random variables, allowing you to

understand how they relate to each other. Therefore, given an invariant probability µ of a dynamical
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system g : M → M and given measurable functions j,h : M → R, we will analyze the evolution of the

covariance

Cn(j,h) =C(j◦gn,h)

when time n goes to infinity. If j = χA and h = χB are characteristic functions, then j(x) gives infor-

mation about the position of the initial point x, while h(gn(x)) tells us the position of the n-th iterate

gn(x).

Definition 27. Let g : M → M be a measurable map and let µ be an invariant probability. The

sequence of covariances of two measurable functions j,h : M → R is defined by

C(j,h) =
∫

(j◦gn)hdµ −
∫

jdµ

∫
hdµ ; n ∈ N.

We say that the system (g,µ) is

(i) weakly-mixing if lim
n→∞

Cn(χA,χB) = lim
n→∞

1
n

n−1
∑

i=0
| µ
(
g−i(A)∩B

)
−µ(A)µ(B) |= 0;

(ii) strong-mixing if lim
n→∞

Cn(χA,χB) = lim
n→∞

µ (g−n(A)∩B)−µ(A)µ(B) = 0.

for any measurable sets A,B ⊂ M.

Proposition 5. Let σ+
∞ be the one-sided shift in

(
A N

∞ ,B∞,ξ
∞
)
, where the probability measure ξ ∞ is

the measure of the product such that under ξ the coordinate variables are i.i.d. with distribution ξ .

Then coordinate variables are stationary. Furthermore, σ+
∞ is a strong-mixing, a weakly-mixing, and

therefore ergodic.

Proof. See [42].

We present a topological version of the notion of mixing system.

Definition 28. Assume that M is a topological space. A map g : M → M is topologically mixing, if

given any /0 ̸=U,V ⊂ M, there exists n0 ∈ N such that g−n(U)∩V ̸= /0, for all n ≥ n0.

Definition 29. Let (M,d) be a compact metric space and g : M → M be a continuous map. Let

ψ : M → R be a continous function, which we call potential in M. For the given g and ψ , we

can define a linear operator L = Lg,ψ : C 0(M)→ C 0(M) defined in the C 0(M) space of complex

continuous functions by

L φ(x) = ∑
x∈g−1(y)

ψ(x)φ(x)

for φ in a suitable function space on M. The operator we just defined is called a transfer operator.

If ψ is positive, i.e., ψ(x) > 0 for all x in M, then the operator is a positive operator, this means

that it maps a positive function to a positive function. A positive transfer operator is also called a

Ruelle-Perron-Frobenius (RPF) operator.
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Definition 30. A continuous map g : M → M in a compact metric space (M,d) is an expanding map if

there exist constants δ > 1 and η > 0 such that for every p ∈ M the image of the ball B(p,η) contains

a neighborhood of the closure of B(g(p),η) and

d(g(x),g(y))≥ δd(x,y) for every x,y ∈ B(p,η).

When g : M → M a topological mixing and expanding map, a special case of the RPF operator is

given by taking psi(x) = eΨ(x). Thus, we can redefine the RPF operator as follows:

L φ(y) = ∑
x∈g−1(y)

eΨ(x)
φ(x).

Finally by the Riesz-Markov Theorem (Theorem 0.3.12 of [53]), the dual of the Banach space

C 0(M) is identified with the vector space M (M) of measurements complex borelians. So, the dual

of the RPF operator is the operator linear L ∗ : M (M)→ M (M) defined by∫
M

hd (L ∗(θ)) =
∫

M
L (h)d(θ) for all h ∈ C 0(M) and θ ∈ M (M).

The concept of the generalized RPF operator is analogue of the transfer matrix method of classical

statistical mechanics. In this work we will use a even more particular case of RPF operator, taking

Ψ = −β log | detJµg |, where Jµg is the Jacobian of g with respect to the reference measure µ . So,

Ψ =−β log | detJµg |, is called geometric potential. We will also adopt the Lebesgue measure as a

reference measure associated with the RPF operator.

Theorem A 1. (Perron-Frobenius Theorem) Let W = [wi j] be a irreducible square matrix of order

k.

(i) There is a nonnegative eigenvalue λ such that no eigenvalue of W has absolute value greater

than λ ;

(ii) We have mini

(
∑

k
j=1 wi j

)
≤ λ ≤ maxi

(
∑

k
j=1 wi j

)
;

(iii) Corresponding to the eigenvalue λ there is a nonnegative left (row) eigenvalue u = (u1, · · · ,uk)

and a irreducible right (column) eigenvector vT = (v1 · · ·vk);

(iv) If W is irreducible then λ is a simple eigenvalue and the corresponding eingenvector are strictly

positive (i.e., ui > 0,vi > 0 for all i);

(v) If W is irreducible then λ is the eigenvalue of W corresponding to a irreducible eigenvector.

Proof. See [54].

Lemma 1. Let W be the transition matrix of a finite Markov chain.

(i) If λ is an eigenvalue of W, then | λ |≤ 1;
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(ii) If W is irreducible, the vector space of eigenfunctions corresponding to the eigenvalue 1 is the

one-dimensional space generated by the column vector 1T := (1 · · ·1);

(iii) If W is irreducible and aperiodic, then −1 is not an eigenvalue of W.

Proof. See [37].

By Lemma 1 that the eigenvalues of a transition matrix are in the range [−1,1], so we can name

them as follows 1 = λ0 ≥ λ1, · · ·λk−1 ≥−1.

Definition 31. We call absolute spectral gap the difference ϑ∗ := 1− ρess(W ), where ρess(W ) :=

max{| λ |: is an eigenvalue of W, λ ̸=±1}. And the spectral gap of a reversible chain is defined by

ϑ := 1−λ1. The relaxation time trel of a reversible Markov chain with absolute spectral gap ϑ∗ is

defined as trel := 1
ϑ∗
.

2.1.5 Basic Notation on Topological Pressure

Definition 32. Let A and V be open covers of a compact set M. We define its join, as the collection

of all sets of the form U ∪V , where U ∈ A and V ∈V , and denote it by A∨V. Note that this join is

a refinement of both coverages. This allows us to construct refinements of a single open cover A. For

each n ∈ N, we define

Un :=
n−1∨
i=0

g−i(U),

where g−i(A) := {g−i(U) : U ∈ A} and g : M → M be a continuous map.

Let g : M → M be a continuous map in a compact metric space with metric d and φ : M → R be

a potential. For each n ∈ N, we define φn : M → R by φn(x) = ∑
n−1
i=0 φ(gi(x)) to be the n-th Birkoff

sum evaluated at a point x ∈ M for the potential φ . Furthermore, given any nonempty set O⊂ M, we

denote

φn(O) = sup{φn(x) : x ∈O}.

Definition 33. Let g be a continuous transformation on a compact metric space (M,d). Let φ a

potential, n ∈ N and A be an open cover of M. We denote

Pn(g,φ ,A) := inf

{
∑

U∈V
eφn(x) : V a finite subcover of Un

}
. (2.11)

Since φ is bounded in M by compactness, Pn(g,φ ,A) is the infimum over a subset of bounded real

numbers. Thus Pn(g,φ ,A) < ∞. We define the pressure of the potential φ with respect to g and
the open cover A by
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Ptop(g,φ ,A) := limsup
n→∞

1
n

logPn(g,φ ,A). (2.12)

We want to calculate the pressure as we set the diameter of the cover A to zero. The following

lemma ensures that this limit exists and does not depend on the choice of covers (see [54]).

Definition 34. Let (M,d) be a metric space, we call the diameter of an open cover the sum of the

diameters of its elements.

Lemma 2. Let {An}n∈N be any sequence of open covers of M such that

diam(An)→ 0, when n → ∞.

Then the limit lim
n→∞

Ptop(g,φ ,An) exists in R∪{∞} and does not depend on the choice of the sequence.

Definition 35. Let g be a continuous map on a compact metric space (M,d). Let φ be a potential and

{Ak}k∈N be a sequence of open covers of M such that diam(An) → 0, when n → ∞. We define the
topological pressure of the potential φ with respect to g as

Ptop(g,φ) = lim
n→∞

Ptop(g,φ ,An). (2.13)

We now introduce the concept of pressure through sets separated by (n,ε) and spanning sets which

will be very important throughout this work.

Definition 36. Let g : M → M be a continuous map on the metric space (M,d). A set E ⊂ M is called

(n,ε)−separated for f for n a positive integer and ε > 0 provided that for every pair of distinct points

x,y ∈ E, x ̸= y, there is at least one m with 0 ≤ m < n such that d(gm(x),gm(y))> ε.

Another way of expressing this concept is to introduce the distance

dn,g(x,y) = sup
0≤ j<n

d(g j(x),g j(y)).

Using this distance, a set S ⊂ M is (n,ε)−separated for g provided dn,g(x,y)> ε for every pair of

distinct points x,y ∈ E, x ̸= y.

Definition 37. Let g : M → M be a continuous map on the space M with metric d. Let K ⊂ M be a

subset. For a positive integer r, let

dr,g(w,z) = sup
0≤ j<r

d(g j(w),g j(z))

as we defined above. A set E ⊂ K is said to (n,ε)−spanning K for n a positive integer and ε > 0

provided for each x ∈ K there exists a y ∈ E such that dn,g(x,y)≤ ε.
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Thus, given n ≥ 1 and ε > 0, define

Gn(g,φ ,ε) = inf

{
∑
x∈E

eφn(x) : E is subset (n,ε)− spanning of M

}
and (2.14)

Sn(g,φ ,ε) = inf

{
∑
x∈E

eφn(x) : E is subset (n,ε)− separated of M

}
. (2.15)

Then we can define

G(g,φ ,ε) = lim
n→∞

sup
1
n

logGn(g,φ ,ε) and (2.16)

S(g,φ ,ε) = lim
n→∞

sup
1
n

logSn(g,φ ,ε). (2.17)

Also,

G(g,φ) = lim
ε→0

G(g,φ ,ε) and (2.18)

S(g,φ) = lim
ε→0

S(g,φ ,ε). (2.19)

Proposition 6. Ptop(g,φ) = G(g,φ) = S(g,φ) for all potential φ in M.

Proof. See [53].

Finally, we present some of the properties that the topological pressure satisfies and that will be

necessary for the main results (see [54]).

Proposition 7. Let g be a continuous map on a compact metric space (M,d) and let φ be a potential.

Then:

(i) Ptop(g,0) = htop(g), where htop is topological entropy;

(i) Let (M1,d1) and (M2,d2) compact metric spaces with continuous maps gi : Mi →Mi, for i= 1,2.

If h : M1 → M2 is a surjective continuous map with h ◦ g1 = g2 ◦ h. Then for every potential φ

of M2 we have Ptop(g1,φ ◦h)≥ Ptop(g2,φ). The equality holds if h is a homeomorphism.

Note that, if we consider Y = (X+,X+) then Y is a smooth vector field.

Definition 38. Let Y = (X+,X+) be a vector field, and φY is the flow defined by this field, we define

the time-one map of this field by F1(x) = φY (1,x). And the topological pressure of the flow is defined

by Ptop(Y ) := Ptop(F1,−β log | detJmedF1 |).
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2.1.6 Carathéodory Construction, Hausdorff Measure and Minkowski Dimension

The Carathéodory construction of outer-measures is a general framework with which one can

construct many of the standard geometric outer-measures including the Hausdorff measures.

Definition 39. Let (M,d) be a metric space, F ⊆ P(M) and ζ : F→ [0,∞) (potentially Hausdorff)

such that:

(i) For all δ > 0 there exist {Ai} ⊂ F such that M ⊂ ∪iAi and d(Ai)≤ δ ;

(ii) For all δ > 0 there exist A ∈ F such that ζ (U)≤ δ .

For δ > 0 we define

ψδ : P(M)→ [0,∞], with ψδ (A) = in f {Σiζ (Ai) : A ⊂ ∪iAi, d(Ai)< δ {Ai} ⊂ F} .

By a δ -cover in the context of the Carathéodory construction we mean a countable collection

of sets {Ai} ⊂ F such that ζ (Ai) ≤ δ and d(Ai) ≤ δ . This definition is dependent on F, if this is

ambiguous we will refer to such covers as (F,δ )-covers. For brevity we write ψδ (A) = inf∑
i
ζ (Ai)

where {Ai} is understood to be a (F,δ )-cover of A. In cases where this notation is ambiguous we will

use an appropriately descriptive unambiguous version of the definition above.

Definition 40. Let (M,d) be a metric space, F ⊆ P(M) and ζc(·) = d(·)c, then for each c ∈ (0,∞)

we construct the c-dimensional size δ approximating measures H c
δ

and the c-dimensional Hausdorff

Measure, H c via the Carathéodory construction.

One should note immediately that rather than constructing one outer-measure we are actually

constructing a family of outer-measures parameterized by c ∈ [0,∞). This family has the interesting

property, which will be shown in [56], that each outer-measure provides useful information about a

different family of subsets of M.

Definition 41. The Hausdorff Dimension (or Hausdorff-Besicovitch Dimension) of a set A is the

unique c ∈ [0,∞) such that

H t(A) =
{

∞ f or all 0 ≤ t < c
0 f or all t > c .

We denote the Hausdorff dimension of a set A by dimH (A).

Next we will talk about Minkowski dimension. In our discussion of Minkowski dimension, also

known as box dimension, we only consider compact subsets A of some Euclidean space Rn. The

definitions also make sense in a metric space. Since a manifold M can be embedded in some Euclidean

space Rn, our definitions apply to compact manifolds.
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Definition 42. For ε > 0, consider the subdivision of Rn into boxes or cubes of sides of length ε: for

( j1, · · · , jn) ∈ Zn, let

R j1,··· , jn = {(x1, · · · ,xn) : ji ε ≤ xi < ( ji +1) ε ; 1 ≤ i ≤ n} .

A box of this kind is said to be a box from the ε-grid. Let N(ε,A) be the number of boxes R j among

all the choices of j ∈ Zn such that A∩R j ̸= /0.

Definition 43. For a general compact subset A ⊂ Rn, we define the upper Minkowski dimension of

A, as

dimM(A) = limsup
ε→0

log(N(ε,A))
log(ε−1)

and the lower Minkowski dimension

dimM(A) = liminf
ε→0

log(N(ε,A))
log(ε−1)

.

If the two values agree, the common value is simply called the Minkowski dimension of A and denoted

by dimM(A).

Now, consider the metric d̃, which is compatible with the product topology on A N
k , as follows:

for every x = (xn)n∈N and y = (yn)n∈N

d̃(x,y) =
{

2−m , m = min {i; xi ̸= yi}
0 i f xi = yi ∀ i ∈ N .

Let K ⊂ A N
k be a closed σk-invariant subset. Fustenberg ([29] Proposition III − 1) proved the

following relationship among entropy, Hausdorff and Minkowski dimensions of K with respect to d̃:

dimH(X , d̃) = dimM(X , d̃) = htop(σ
+
k |K ,σk), (2.20)

where htop(σ
+
k |K ,σk) is the topological entropy of (K ,σk).

How we know, d(x,y) = ∑
i∈N

|xi−yi|
2i is also a metric of A N

k . Besides, 1 ≤ d(x,y)≤ 2(k−1).

Lemma 3. The previous metrics d and d̃ are equivalent.

Proof. If x = y there is nothing to do. So, consider any x ̸= y. Take s = 1 and 0 < t ≤ 1
(k−1)2m+1 ,

m = min{i; xi ̸= yi}.
Note that

d̃(x,y) = 2−m ≤ 1 ≤ 1.d(x,y).

Also,

t ≤ 1
(k−1)2m+1 ⇒ 2(k−1)t ≤ 2−m = d̃(x,y)⇒ td(x,y)≤ 2t(k−1)≤ 2−m = d̃(x,y).

So,

td(x,y)≤ d̃(x,y)≤ 1 ·d(x,y),

and it follows that d and d̃ are equivalent.

Therefore, the relationship (2.20) is also valid for K with respect to metric d.
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Topological pressure, Hausdorff dimension,
relation time and mixing time for PSVFs

Before presenting the main results of this work, consider the following construction and its con-

sequences.

Remark 7 (Construction of the “petals”). Consider the PSVF:

Z(x,y) =
{

X+(x,y) = (1,1− x) for y ≥ 0
X−(x,y) = (−1,1− x) for y ≤ 0 , (3.1)

where Σ = {y = 0}. Note that X+ and X− they are symmetric and the point (1,0) is an invisible-

invisible two-fold, and there is a closed trajectory that goes through the origin (0,0). Consider six

rays from the origin (one at each multiple of π

3 ). In that way, the plane is divided into six different

regions. Number each region from 1 to 6, counter clockwise. We define X+ in region 1, and X− in

region 6. Now, define a vector field in each one of these regions, such that in regions 3 and 5 we have

a phase portrait that are rotations (of angles π/3 and 2π/3, respectively) of X+, and in regions 2

and 4 the phase portrait considered are rotations (of angles π/3 and 2π/3, respectively) of X− (see

Figure 3.1). Now there are three closed arcs that goes through the origin. It defines a PSVF Z̃3 with

six different regions such that, apart from three invisible two-folds, and the origin, every other point

is either sewing or crossing, and every trajectory that does not go through the origin is closed.

For a better understanding of the reader, we will reproduce here some details of the previously

mentioned construction made in detail by [3]. Firstly, note that the 6 semi-straight lines (rays) can

be parameterized by

r j =

{(
t · cos

(
jπ
3
,

)
, t · sin

(
jπ
3
,

))
; t ≥ 0

}
j = 0,1,2,3,4,5.

These rays divide the plane into 6 open regions R0,R1,R2,R3,R4,R5 such that each R j is bounded by

r j and r j+1 for j = 0,1,2,3,4 and R5 is bounded by r5 and r0, (see 3.1) whose rotation matrix of the

angle 2π

3 is:

31
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R 2π

3
=

(
−1

2 −
√

3
2√

3
2 −

√
3

2

)
. (3.2)

Thus, in the region R2k we consider the vector field X̃+
k = Rk

2π/3.X
+, with k = 0,1, · · · ,(n−1) and

n−1 = 2 in this case. So,

X̃+
0 = X+ = (1,1− x),

X̃+
1 =

(
1
2
(
√

3(x−1)−1),
1
2
(x+

√
3−1)

)
and

X̃+
2 =

(
1
2
(
√

3(−x)+
√

3−1),
1
2
(x−

√
3−1)

)
.

Analogously, the region R2k+1 we consider the vector field X̃−
k = Rk

2π/3.X
−, with k = 0,1,2. So,

X̃−
0 = X− = (1,1− x),

X̃−
1 =

(
1
2
(
√

3(x−1)+1),
1
2
(x−

√
3−1)

)
and

X̃−
2 =

(
1
2
(
√

3(−x)+
√

3+1),
1
2
(x+

√
3−1)

)
.

I0

I1

I2

r3 r0

r5r4

r2

r1

R0

R1

R2

R3

R4

R5

Figure 3.1: Consider 6 semi-straight lines (rays) highlighted in red is invariant for Z̃3.

Note that, Z̃3 expends a total time t̃ = 4 to get out of an initial condition, travel using one

of the curves I0, I1, I2 and return to this point. A simple reparametrization on time can produce

a new PSVF with an analogous time t̃ = 1. For sake of simplicity on the calculation we keep

Z̃3 = (X̃+
0 , X̃−

1 , X̃+
1 , X̃−

2 , X̃+
2 , X̃−

0 ). The union of the curves I0, I1, I2 is invariant for the PSVF Z̃3 com-

posed by X̃+
0 , X̃−

1 , X̃+
1 , X̃−

2 , X̃+
2 , X̃−

0 . Note that a trajectory of Z̃3 is the amalgamation of these three

different arcs in every possible combination.
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In general, the same construction above can be done for any k∈N, k≥ 2. This way take V =
k−1⋃
n=0

In,

where each arc In is a “petal” (local closed orbit). Our main goal is to prove that there is a conjugacy

between the time-one map of the fields Z̃k restricted to V and a one-sided shift space. But, since a

PSVF does not give uniqueness of trajectory through a point, the a time-one map of Z̃k, Z̃1
k : V → V

such that Z̃1
k (x) = φZ̃k

(1,x), (here φZ̃k
(0,x) = x and φZ̃k

is the flow of Z̃k), is not well-defined, because

it may have more than one image (depending on the flow chosen). One way of avoiding this is to

work with a subset of the space of all possible trajectories in such a way that T1 will be well-defined

when restricted to this subset. So, consider

ϒk =
{

γ | γ is a positive global trajectory of Z̃k with γ(0) ∈ V
}
,

and then we can define the time-one map in ϒk, similarly to what was done before, that is, T1 : ϒk →
ϒk, T1(γ)(·) = γ(·+1).

Remark 8. Note that given γ ∈ ϒk, by the construction of the PSVF Z̃k, for every t ∈ R+, there is a

unique t∗ ∈ [t, t +1) such that γ(t∗) = 0.

Definition 44. Let s : ϒk → A N
k be given by s(γ) = (s j(γ)) j∈N, where :

s j(γ) =

{
n if γ( j) ∈ In
m if γ( j) = 0 and γ

(
j+ 1

2

)
∈ Im

.

The sequence s(γ) is called the itinerary of γ .

Since k ∈ N,k ≥ 2, clearly s is well defined. On the other hand, given γ ∈ ϒk, there are infinitely

many trajectories with the same itinerary as γ , just by changing its initial condition, without modifying

the compartment where it is located. To avoid such a situation, we consider the equivalence relation:

Definition 45. Let γ1,γ2 ∈ ϒk. We say γ1 ∼ γ2 if and only if s(γ1) = s(γ2). Denote ϒk = ϒk/∼.

In fact, for γ1 ∈ ϒk, we have γ1 ∼ γ1 because s(γ1) = s(γ1). Also for all γ1,γ2 ∈ ϒk, if γ1 ∼ γ2,

we have s(γ1) = s(γ2), and in this way, γ2 ∼ γ1. And finally for all γ1,γ2,γ3 ∈ ϒk, if γ1 ∼ γ2, we

have s(γ1) = s(γ2) and if γ2 ∼ γ3, we have s(γ2) = s(γ3), and in this way, s(γ1) = s(γ2) = s(γ3), and

therefore γ1 ∼ γ3.

Remark 9. Observe that, given γ ∈ ϒk, there exists a representative γ∗ ∈ γ such that γ∗(0) = 0,

because if γ(0) = 0, simply take γ∗ = γ , if not, by Remark 8 there are unique t∗ and ε > 0 such that

0 ≤ t∗ < ε such that γ(t∗) = 0. Moreover, if s(γ) = (s j) j∈N, then γ((t∗+ j, t∗+ j+1)) = Is j . Which

implies that γ(( j, j+1)) = Is j and, consequently, γ∗( j+ 1
2) ∈ Is j . Then s(γ∗) = s(γ).

Definition 46. The Hausdorff distance between the sets A and B is given by

dH(A,B) = max

{
sup
x∈A

inf
y∈B

d(x,y),sup
y∈B

inf
x∈A

d(x,y)

}
= max

{
sup
x∈A

d(x,B),sup
y∈B

d(y,A)

}
.
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Definition 47. Now, define ρk : ϒk ×ϒk → R, by

ρk(γ1,γ2) = ∑
i∈N

di(γ1,γ2)

2i ,

where di(γ1,γ2) = dH (γ∗1 ([i, i+1]),γ∗2 ([i, i+1])) , dH is the Hausdorff distance and γ∗1 ,γ
∗
2 are those

representatives given in Remark 9.

To simplify the notation, from now on we refer only to γ ∈ ϒk, as the equivalence class γ with the

representative γ∗ .

Proposition 8.
(
ϒk,ρk

)
is a metric space.

Proof. Let us show that ρk is well-defined, i.e., the series in the previous definition converges. Since

k ∈N,k ≥ 2, there exists M> 0 such that di(γ1,γ2)≤M, for any i ∈N, since γ1([i, i+1]),γ2([i, i+1])

are closed subsets of V which is compact. So ρk(γ1,γ2) ≤ M

(
∞

∑
i=0

1
2i

)
= 2M, i.e., it converges for

any γ1,γ2 ∈ ϒk.

Now, let us show it is a metric. Note that every summand in the definition of ρk is non-negative,

then ρk(γ1,γ2) = 0 if and only if di(γ1,γ2) = 0 for every i ∈ N. Hence γ1([i, i+1]) = γ2([i, i+1]), for

all i ∈ N, then γ1 = γ2. From di(γ1,γ2) = di(γ2,γ1), we obtain ρk(γ1,γ2) = ρk(γ2,γ1). Now, for every

i ∈ N, we get:

di(γ1,γ2)≤ di(γ1,γ3)+di(γ3,γ2)⇒
N

∑
i=0

di(γ1,γ2)

2i ≤
N

∑
i=0

di(γ1,γ3)

2i +
N

∑
i=0

di(γ3,γ2)

2i ∀N ⇒ ρk(γ1,γ2)≤ ρk(γ1,γ3)+ρk(γ3,γ2).

Let T 1 : ϒk → ϒk be the function induced by T1, that is, T 1(γ) = T1(γ). Note that the induced

function does not depends on the representative. In fact if s(γ1) = s(γ2) = (s j) j∈N, then, for all j ∈N
it happens

γ1( j),γ2( j) ∈ Is j ⇒ γ1( j+1),γ2( j+1) ∈ Is j+1 ⇒
T1(γ1)( j),T1(γ2)( j) ∈ Is j+1 ⇒ s(T1(γ1)) = s(T1(γ2)).

Proposition 9. The function T 1 given above is continuous.

Proof. First note that

di
(
T 1(γ1),T 1(γ2)

)
= dH (T1(γ1)([i, i+1]),T1(γ2)([i, i+1])) =

dH (γ1([i+1, i+2]),γ2([i+1, i+2])) = di+1(γ1,γ2).

Now,

ρk
(
T 1(γ1),T 1(γ2)

)
=

∞

∑
i=0

di(T1(γ1),T1(γ2))

2i =
∞

∑
i=0

di+1(γ1,γ2)

2i =
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lim
n→∞

(
n

∑
i=0

di+1(γ1,γ2)

2i

)
= lim

n→∞

(
2

n

∑
i=0

di+1(γ1,γ2)

2i+1

)
= lim

n→∞

(
2

n+1

∑
j=1

d j(γ1,γ2)

2 j

)
≤

lim
n→∞

(
2

n+1

∑
j=1

d j(γ1,γ2)

2 j

)
+d0(γ1,γ2) = 2 lim

n→∞

(
n+1

∑
j=1

d j(γ1,γ2)

2 j +
d0(γ1,γ2)

2

)
= 2ρk(γ1,γ2).

Hence T 1 is continuous.

Now let s : ϒk → A N
k be the function induced by s, that is, s(γ) = s(γ). Note that the induced

function does not depend on the representative, because of the equivalence relation and because it is

one-to-one.

Proposition 10. The map s is a homeomorphism onto its image.

Proof. Put ϖ = min
{

dH(Il, I j) l ̸= l and l, j = 0,1 · · · ,k−1
}

and γ1,γ2 ∈ ϒk. Suppose ρk(γ1,γ2)

< ϖ

2N . Then, for any 0 ≤ i ≤ N : di(γ1,γ2) < ϖ , because, on the contrary, we have ρk (γ1,γ2) =

∑
di(γ1,γ2)

2i ≥ ϖ

2N . Now, di(γ1,γ2) < ϖ ⇒ di(γ1,γ2) = 0 and therefore, γ1((i, i+ 1)) = γ2((i, i+ 1)) im-

plying that si(γ1) = si(γ2), for all 0 ≤ i ≤ N. So,

d(s(γ1),s(γ2)) = ∑
i∈N

| si(γ1)− si(γ2) |
2i = ∑

i∈N
i>N

| si(γ1)− si(γ2) |
2i ≤ k−1

2N−1 .

This proves that s is continuous. The same argument reverses itself in order to show s is open; let

γ1,γ2 ∈ ϒk, and N ∈ N, d(s(γ1),s(γ2)) ≤ 1
2N ⇒ si(γ1) = s(γ2) ∀ 0 ≤ i ≤ N. Then γ1([i, i+ 1]) =

γ2([i, i+1]), for all 0 ≤ i ≤ N. Hence

ρk (γ1,γ2) = ∑
i∈N
i>N

di(γ1,γ2)

2i ≤ N

2N−1 .

Where N> 0, such that diam(V )<N. Therefore s in a homeomorphism over its image.

Finally, we are now in a position to prove the following proposition:

Proposition 11. The function s : ϒk → s
(
ϒk
)

is a conjugacy between T 1 and σ
+
k , i.e., s◦T 1 = σ

+
k ◦s.

Proof. Let γ ∈ ϒk,(a j) j∈N = s(γ) and (b j) j∈N = s(T1(γ)), then :

ϒk

s
��

T 1 // ϒk

s
��

s(ϒk)
σ
+
k // s(ϒk)

b j = r if T 1(γ)( j) ∈ Ir ⇒ b j = r if γ( j+1) ∈ Ir ⇒ b j = a j+1 ⇒ (b j) j∈N = σ
+
k

(
(a j) j∈N

)
.

It remains to show that s
(
ϒk
)

is a subshift. First, s is continuous and ϒk is compact. Then s
(
ϒk
)

is closed in A N
k . And, sice s is a homeomorphism onto its image, there exists s−1 : s

(
ϒk
)
→ ϒk and

it is continuous. By the first part of this proof, we have σ
+
k = s◦T 1 ◦ s−1, which proves the invariant

part. Hence s is a conjugacy between both systems.
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Now, for each k ∈ N, k ≥ 2 consider PSVF

Zk(x,y) =

 X+
k (x,y) =

(
1,P

′
k(x)

)
for y ≥ 0

Xk
−(x,y) =

(
−1,P

′
k(x)

)
for y ≤ 0

, (3.3)

where

Pk(x) =−
(

x+
k−1

2

)(
x− k−1

2

) k−1

∏
i=1

(
x−
(

i− k
2

))2

, k ∈ N, k ≥ 2.

Note that, Pk has 2k roots, being 2 simple roots at r0 =
1−k

2 and r1 =
k−1

2 and k−1 roots of multiplicity

two at p j = j− k
2 for j = 1, · · · ,k−1. Moreover, P

′
k(r0)> 0, P

′
k(r1)< 0, P

′
k(p j) = 0, and P

′′
k (p j)> 0,

for every j = 1, · · · ,k−1. In addition, by Lemma 1 of [2] (r0,0) and (r1,0) are crossing points of Zk,

the points (p j,0) are visible-visible two folds of Zk, j = 1,2, · · ·k−1. For each k ∈N,k ≥ 2, consider

γX+

k = {(x,Pk(x)) | x ∈ [r0,r1]} and γX−
k {(x,−Pk(x)) | x ∈ [r0,r1]}. Define Λk = γX+

k ∪ γX−
k , and note

that Λk is an invariant set for Zk.

Our main goal is to prove the conjugacy between the time-one map of the fields Zk restricted to

Λk and a one-sided shift map. Take the set

Ωk = {γ | γ is a positive global trajectory of Zk with γ(0) ∈ Λk} .

Proposition 12. For any k∈N,k≥ 2 let γ ∈Ωk, then for all t ∈R+, there exists an unique t∗ ∈ [t, t+1)

such that γ(t∗) ∈ {(p j,0) | j = 1, · · · ,k−1}.

Proof. Follows immediately from the expression of Zk and Lemmas 1 and 2 of the reference [2].

The region Λk can be partitioned into arcs that goes from p j to the adjacent ones (p j+1 and p j−1) or

to itself. So, consider k to be fixed and let I0 = {(x,Pk(x)), x ∈ [r0, p1)}∪{(x,−Pk(x)), x ∈ [r0, p1)} ,
the arc from p1 to itself passing through r0. For any j = 1, · · · ,k−2, let I2 j−1 = {(x,Pk(x)), x ∈ (p j,

p j+1)} and I2 j = {(x,−Pk(x)), x ∈ (p j, p j+1)}, the arcs from p j to p j+1 and from p j+1 to p j, respec-

tively. And, I2k−3 = {(x,Pk(x)), x∈ (pk−1,r1]}∪{(x,−Pk(x)), x∈ (pk−1,r1]}. In short, we enumerate

these arcs top to bottom, left to right. See Figure 3.2.

Σ

I0

I1

I2

I3

I4

I5

Figure 3.2: Case k = 4.

Definition 48. Let s : Ωk → A N
2(k−1) be given by s(γ) = (s j(γ)) j∈N, where :

s j(γ) =

{
n if γ( j) ∈ In
m if γ( j) ∈ {(pl,0) |l = 1, · · · ,k−1} and γ

(
j+ 1

2

)
∈ Im

.

The sequence s(γ) is called the itinerary of γ .
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According to Definition 48, given γ ∈ Ωk, there exist infinitely many distinct trajectories with the

same itinerary of γ , simply because the initial conditions belong to the same arc In. In order to avoid

this problem we will consider the following definition:

Definition 49. Let γ1,γ2 ∈ Ωk. We say that γ1 ∼ γ2 if and only if s(γ1) = s(γ2). Denote Ωk = Ωk/∼ .

The relation in Definition 49 is an equivalence relation. The proof is similar to the one made in

the Definition 45.

Proposition 13. Given γ ∈Ωk, there exists a representative γ∗ such that γ∗(0)∈{(p j,0), j = 1,2, · · · ,k−
1}.

Proof. Since, γ ∈ Ωk, there exists a representative γ∗ ∈ γ such that γ∗(0) ∈ {(p j,0), j = 1,2, · · · ,k−
1}, because if γ(0) ∈ {(p j,0), j = 1,2, · · · ,k− 1}, simply take γ∗ = γ , otherwise, by Proposition 12

there are unique t∗ and ε > 0 such that 0 ≤ t∗ < ε such that γ(t∗) ∈ {(p j,0), j = 1,2, · · · ,k − 1}.

Moreover, if s(γ) = (s j) j∈N, then γ((t∗+ j, t∗+ j+ 1)) = Is j . Which implies that γ(( j, j+ 1)) = Is j

and, consequently, γ∗( j+ 1
2) ∈ Is j . Then s(γ∗) = s(γ).

Definition 50. Now, define ρk : Ωk ×Ωk → R, by

ρk(γ1,γ2) = ∑
i∈N

di(γ1,γ2)

2i ,

where di(γ1,γ2) = dH (γ∗1 ([i, i+1]),γ∗2 ([i, i+1])) , dH is the Hausdorff distance and γ∗1 ,γ
∗
2 are those

representatives given in Proposition 13.

For simplicity of notation, again we will refer only to γ ∈ Ωk, meaning the equivalence class γ

with the representative γ∗ given in Proposition 13.

In an entirely analogous way to Proposition 8, (Ωk,ρk) is a metric space. Let T1 : Ωk → Ωk be the

function induced by T1, that is, T1(γ) = T1(γ). Note that the induced function does not depends on the

representative. In fact if s(γ1) = s(γ2) = (s j) j∈N, then, for all j ∈ N it happens

γ1( j),γ2( j) ∈ Is j ⇒ γ1( j+1),γ2( j+1) ∈ Is j+1 ⇒
T1(γ1)( j),T2(γ2)( j) ∈ Is j+1 ⇒ s(T1(γ1)) = s(T1(γ2)).

The map T 1 given above is continuous, the proof is similar to the proof of Proposition 9.

Now let s : Ωk → {0,1, · · · ,2k−3}N be the function induced by s, that is, s(γ) = s(γ). Note that

the induced function does not depend on the representative, because of the equivalence relation and

the fact that it is one-to-one.

From now on we will separate the case k = 2 from the case k ≥ 3. This will be done because as we

will see in the following two propositions, s is a conjugacy between Ω2 and the shift of two symbols

{0,1}N. Now for k ≥ 3 s is a conjugacy between Ωk with a subshift s(Ωk)⊆ A N
k .

Proposition 14. The function s : Ω2 →{0,1}N is a conjugacy between T 1 and σ
+
2 , i.e., s◦T 1 =σ

+
2 ◦s.
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Proof. Let us show that s(Ω2) = {0,1}N. Given (s j) ∈ {0,1}N, construct γ by concatenating the

arcs I0 and I1 according to (s j), so γ is a positive trajectory with γ(0) = p1, and γ((0,1)) = Is0 . Then

γ(1) = p1 and γ((1,2)) = Is1 . In general, for all j ∈N,γ( j) = p1 and γ(( j, j+1)) = Is j . By Definition

4, γ is a positive global trajectory of Z2 and therefore γ ∈ Ω2. Moreover, s(γ) = s(γ) = (s j) j∈N.

Ω2

s
��

T 1 // Ω2

s
��

{0,1}N
σ
+
2 // {0,1}N

Now, for the commutative par γ ∈ Ω2,(a j) j∈N = s(γ) and (b j) j∈N = s(T1(γ)), then:

b j =

{
0 if T 1(γ)( j) ∈ I0
1 if T 1(γ)( j) ∈ I1

=

{
0 if γ( j+1) ∈ I0
1 if γ( j+1) ∈ I1

= a j+1 ⇒

(b j) j∈N = σ
+
2 ((a j) j∈N), i.e., s◦T 1 = σ

+
2 ◦ s.

Proposition 15. The function s : Ωk → s
(
Ωk
)

is a conjugacy between T 1 and σ+
r , (r ≤ 2k− 3) i.e.,

s◦T 1 = σ+
r ◦ s.

Proof. Let γ ∈ Ωk,(a j) j∈N = s(γ) and (b j) j∈N = s(T1(γ)), then :

Ωk

s
��

T 1 // Ωk

s
��

s(Ωk)
σ+

r // s(Ωk)

b j = x if T 1(γ)( j) ∈ Ix ⇒ b j = x if γ( j+1) ∈ Ix ⇒ b j = a j+1 ⇒ (b j) j∈N = σ
+
r
(
(a j) j∈N

)
.

It remains to show that s
(
Ωk
)

is a subshift. First, s is continuous and Ωk is compact. Then s
(
Ωk
)

is closed in A N
k . And, sice s is a homeomorphism onto its image, there exists s−1 : s

(
Ωk
)
→ Ωk and

it is continuous. By the first part of this proof, we have σ+
r = s◦T 1 ◦ s−1, which proves the invariant

part. Hence s is a conjugacy between both systems.

Remark 10. In [2], the authors relate time-one maps of the PSVFs (3.3) and two-sided (sub)shifts.

In the results above, we were inspired by the techniques developed in [2] to relate time-one maps of

the PSVFs (3.3) and unilateral (sub)shifts. In addition we did the same for the PSVFs Z̃k as in the

construction done in Remark 7. This is important in order to conclude that the RPF operator is well

defined, as we will show later.

Definition 51. Let Z = (X+,X−) be a PSVF defined over a compact 2-dimensional surface M and

Ω̃ ⊆ Ω = {γ : positive global trajectory of Z}. We define the topological pressure Ptop of Z on M, as

the topological pressure of the map T 1 in Ω̃ ⊆ Ω, that is,

Ptop(Z) := Ptop
(
T 1
∣∣
Ω̃
,−β log | detJmedT 1 |

)
.
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Remark 11. The pressure is a weighted version of topological entropy, where the “weights” are

determined by the potential, Definition 51 agrees with Definition 4.2 of entropy for PSVF given in

[3].

Before presenting the main results of this thesis, we will make the following very important

lemma.

Lemma 4. Let Z = (X+,X−) be a PSVF defined over a compact 2-dimensional surface M and Ω̃ ⊆
Ω = {γ : positive global trajectory of Z}. Then T 1

∣∣
Ω̃

is an expanding map and topologically mixing.

Proof. It suffices to note that the properties are topological invariant.

3.0.1 Main results

In the following theorem we will use the construction made in Remark 7 and the topological con-

jugacy s : ϒk → s(ϒk), to show that the systems (ϒk,D ,med,T 1) and (A N
k ,B,µN

π ,σ
+
k ) are ergodically

equivalent.

Theorem 3. Given k ∈N, k ≥ 2 there exists a PSVF Z̃k, as in the construction done in Remark 7, with k

petals, such that the system (ϒk,D ,med,T 1) is ergodically equivalent to the system (A N
k ,B,µN

π ,σ
+
k ),

i.e., T 1 : ϒk → ϒk is a Bernoulli map. Furthermore, T 1 is strong-mixing and therefore weakly-mixing

and ergodic.

Now, since σ
+
k : A N

k → A N
k is a topologically mixing and expanding map, we can use this fact

and the Theorem 3, to obtain the following corollary.

Corollary 1. With the hypotheses of the previous theorem, we get that T 1 : ϒk → ϒk is topologically

mixing.

Under these conditions we show that T 1 : ϒk → ϒk is a topologically mixing and expanding. So,

we can define the RPF operator for this map. Therefore we can calculate the topological pressure and

consequently the topological entropy. Furthermore, we can obtain a Markov chain, whose states are

the trajectory arcs of the field Z̃k and use the properties of this chain to define and estimate the mixer

and the relaxation time for these PSVFs.

Corollary 2. Given k ∈ Z, k ≥ 2 there exists a PSVF Z̃k, as in the construction done in Remark 7,

with k petals. Then exist Ω̃ ⊆ ϒk such that:

(i) Ptop(T 1
∣∣
Ω̃
,−β log | detJmedT 1 |) = log(ρ(A)), where A is an irreducible matrix associated

with an oriented graph given by the trajectories of Ω̃.

(ii) If A is a matrix of a Markov chain formed by the arcs of trajectories in Ω̃, irreducible, aperiodic

and reversible, then e−trel = ρess(A).
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(iii) There is a chain of random transposition in arcs composing a global trajectory such that,

tmix ≤ (2+O(1))k logk.

Also for 0 < ε < 1 it happens

tmix(ε)≥
k+1

2
log
(

1− ε

6
k
)
,

for sufficiently large k, where O(1) means that there exists some constant δ such that O(1)≤ δ .

(iv) Suppose that λ ̸= 1 is an eigenvalue for the transition matrix A of an irreducible, reversible and

aperiodic Markov chain. Then

(a) (trel −1) log(2)≤ tmix ≤ trel log
(

4
πmin

)
, where πmin = min

i∈Ak
{π(i)};

(b) tmix = Θ(k logk) and trel = O(k logk).

The next two theorems and their corollaries are analogous to Theorem 3 and its Corollaries 1,

2. But although the results are similar, we have to do them separately, since the nature of piecewise

smooth vector fields are different.

Theorem 4. Consider the PSVF (3.3), with k = 2. Then the system (Ω2,D ,med,T 1) is ergodically

equivalent to the system ({0,1}N,B,µN
π ,σ

+
k ), i.e., T 1 : Ω2 → Ω2 is a Bernoulli map. Furthermore,

T 1 is strong-mixing and therefore weakly-mixing and ergodic.

Corollary 3. With the hypotheses of the previous theorem we get that T 1 : Ω2 → Ω2 is topologically

mixing.

Corollary 4. There exists Ω̃ ⊆ Ω2 such that analogous versions of items (i) and (iii)− subitem(a) of

Corollary 2 are valid.

Theorem 5. Consider the PSVF (3.3). Then, for k ∈ N,k ≥ 3, the system (Ωk,D ,med,T 1) is ergodi-

cally equivalent to the system (A N
k ,B,µN

π ,σ
+
k ), i.e., T 1 : Ωk → Ωk is a Bernoulli map. Furthermore,

T 1 is strong-mixing and therefore weakly-mixing and ergodic.

Corollary 5. With the hypotheses of the previous theorem, we get that T 1 : Ωk → Ωk is topologically

mixing.

Corollary 6. There exists Ω̃ ⊆ Ωk such that analogous versions of items (i)− (iii) of Corollary 2 are

valid.
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In Theorem 6 below, we cannot use the RPF operator to calculate entropy, since the matrix of order

2 that represents the RPF operator has a finite number of possibilities. However, as s : Ω2 → {0,1}N

is a topological conjugacy between T 1 and σ
+
2 , we can use the entropy properties of σ

+
2 in {0,1}N,

to obtain the same properties as T 1 in Ω2.

Theorem 6. Given 1 < α ≤ 2, there are trajectories of Z2 (k = 2 in (3.3)) such that htop(Z2) = logα.

Furthermore for each c ∈ (0, log2] there exists a set Ac such that dimH (Ac) = logα = htop(Z2) =

dimM(Ac).

3.1 Proof of the main results

3.1.1 Proof of Theorem 3

Proof. Let C ⊂ A N
k be measurable and invariant in the σ -algebra B. As every Bernoulli shift is

ergodic, we can assume that µN
π (C) = 1. Note that from Proposition 11 the map s−1 : s(ϒk)→ ϒk is

is a topological conjugacy, i.e., T 1 ◦ s−1 = s−1 ◦σ
+
k .

Taking B = s−1(C)⊂ ϒk, then we have T 1(B) = (s−1 ◦σ
+
k ◦s)(B) = s−1(σ+

k (s(B)))⊂ s−1(C) =

B. As every σ -algebra is also an algebra, it follows from Theorem 1.1 [40] that there are ϒ̂1, ϒ̂2, · · · ∈
D , with ϒ̂i ⊆ ϒ̂i+1 such that D =

∞⋃
i=1

ϒ̂i and med(ϒ̂i)< ∞, for all i. Put µ̂ = s−1
∗ µN

π which is a measure

in ϒk. Since s−1 : s(ϒk)→ ϒk is a bijection, follows that µ̂(ϒ̂i)< ∞ , for all i. Therefore, by Theorem

2.4 [40], we get med = µ̂. In this way it follows that med(B) = s−1
∗ µN

π (B) = µN
π ((s

−1)−1(B)) =

µN
π (s(B)) = µN

π (C) = 1. Therefore, s−1 is a bijection, restricted to a subset of total measure, and both

it and its inverse are measurable.

In this way, T 1 is a Bernoulli map, that is, the systems (ϒk,D ,med,T 1) and (A N
k ,B,µN

π ,σ
+
k ) are

equivalent.

In order to conclude the result, it is enough to show that T 1 is strong-mixing, becuase a strong-

mixing map is also weakly-mixing and all weakly-mixing is ergodic. But, we get that T 1 is strong-

mixing, since σ
+
k is strong-mixing. Indeed, given any measurable sets ΩA,ΩB ∈ D we get

med
(
(T 1)

−n(ΩA)∩ΩB
)
= µ

N
π

(
(s−1)−1 ((T 1)

−n(ΩA)∩ΩB
))

=

µ
N
π

(
(σ+

k )−n(s(ΩA))∩ s(ΩB)
)
→ µ

N
π (s(ΩA))µ

N
π (s(ΩB)) = med(ΩA)med(ΩB),

when n → ∞.

3.1.2 Proof of Corollary 1

Proof. The proof follows directly from the previous Theorem 1 and Proposition 7.1.6 of [53].
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3.1.3 Proof of Corollay 2

Proof. (i) : By Lemma 4 the RPF operator is well defined for T 1
∣∣
Ω̃

. Now, consider a Markov parti-

tion P = {P0, · · · ,Pk−1} in the domain of T 1 such that |P |= k, med
(
P j
)
> 0 ∀ j ∈ {0,1, · · · ,k−1}

and

φZ̃k
(P j) =

⋃
B∈C⊂P

B for all P j ∈ P.

So we will have the matrix that represents RPF operator for the geometric potential given by :

[
L ∗

T 1|Ω̃ ,−β log|detJmedT 1|

]
k×k

:= ai j =


(

med(P j∩φ
−1
Z (Pi))

med(P j)

)β

, med
(
P j ∩φ

−1
Z̃k

(Pi)
)
̸= 0

0, med
(
P j ∩φ

−1
Z̃k

(Pi)
)
= 0

.

In this way we get the following matrix:

A =
[
L ∗

T 1|Ω̃ ,−β log|detJmedT 1|

]
=


pβ

11 pβ

12 · · · pβ

1k
pβ

21 pβ

22 · · · pβ

2k
...

... . . . ...
pβ

k1 pβ

k2 · · · pβ

kk

 , (3.4)

such that ∑
k
i=1 pi j = 1, pi j can be saw as the probability of φZ̃k

(x)∈ I j if x∈ Ii, for all 1≤ i, j ≤ k, where

k is the number of petals. (for a reference, the red curve on Figure 3.1 has 3 petals). Note that each

subset of trajectories Ω̃ ⊂ Ω is associated with a graph and further by Lemma 5.5.1 of [19] (see the

example 9), each graph is associated with a subshift of finite type. Therefore, by the Perron-Frobenius

Theorem A 1 and by the Corollary 2.3 of [18], we get Ptop(T 1
∣∣
Ω̃
,−β log | detJmedT 1 |) = log(ρ(A)).

Furthermore if β = 0, the transfer matrix is an adjacency’s matrix and for β = 1 this matrix is the

stochastic matrix. As this operator admits a finite representation, the topological pressure is given by

Ptop(β ) = logρ

(
L ∗

−β log|detJmedT1|

)
= logρ

(
L−β log|detJmedT1|

)
= log(ρ(A)) .

Moreover, if β = 1, by Perron-Frobenius Theorem A 1, we get ρ(A) = 1 and the topological pressure

is zero.

(ii) : As we saw in the previous item, when β = 1 A is a stochastic matrix, in addition, since A is an

irreducible, aperiodic and reversible matrix, ϑ = ϑ∗ > 0 (see Definition 31). Finally, as the Markov

chain is positive recurrent, then e−trel = ρess(A), that is, ρess(A) characterizes a rate of exponential

decay.

(iii) : Let I0, I1, · · · , Ik−1 be the k trajectory arcs of the PSVF Z̃k. Let γ ∈ ϒk, whose concatenation

of its arcs is given as follows: γ(0) ∈ Ii and there is no repetition in the concatenation of the follow-

ing k− 1 trajectory arcs. In this way, we establish a certain “ordination” for the set formed by the

trajectory arcs. Once this “order” is established, for the next k concatenations, take the trajectory arc

Ii and place it uniformly randomly in some other position (see Figure 3.3), i.e. the set of trajectory
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arcs is the same, however the “order” for the concatenation will change. Thus, from position k to

position 2k− 1 the concatenations will follow this new “order”. By repeating this process, we end

up “shuffling”, the set formed by I0, I1, · · · , Ik−1 and each “shuffling” step establishes how the next k

concatenations should be done. Note that the successive arrangements of the trajectory arcs that form

γ generate a sequence of random variables (Xm)m∈N in the Sk group of k! possible permutations.

We can then estimate how long we should “shuffle” using this method until the formation of γ is

completely random. To do this, let τtop ∈ N be the time of a move after the first occasion on which

the last arc of the original trajectory was “moved” to the beginning. From Proposition 6.1 by [37],

the array formed by the arcs of γ in time τtop, represented by the random variable Xtop has uniform

stationary distribution on the set Sk of all permutations of {1,2 · · · ,k} and, moreover, this time τtop is

independent of Xtop.

It is a well know fact that the number of fixed points in a random permutation on Sk is 1, indepen-

dent of how many elements are being permuted. Thus, let F(ζ ) be the number of fixed points of the

permutation ζ . If ζ is obtained from the identity by applying t random transpositions, then F(ζ ) is at

least as large as the arc number of trajectories that were not touched by any of the transpositions, i.e,

none of these arcs of trajectories have been moved or some that have been moved may have returned

to their original positions. Our “shuffle” chain defines the transpositions by choosing completely in-

dependent and uniformly random pairs of trajectories. In this way, the result is entirely analogous to

the proofs of Proposition 8.4 and Corollary 8.10 of [37].

· · ·
IrI j IkI0Ii

· · ·I j IrI0 Ik Ii

Figure 3.3: Scheme for the shuffling

(iv) The first part follows from Corollary 8.10 and Proposition 8.4 of [37]. The second part

follows directly from item (ii)applied to chain of random transpositions in k trajectory arcs.

3.1.4 Proof of Theorem 4

Proof. Analogous to the proof of Theorem 3.

3.1.5 Proof of Corollary 3

Proof. Analogous to the proof of Corollary 1.

3.1.6 Proof of Corollary 4

Proof. (i) : By Proposition 15, T 1 and σ
+
2 are topologically conjugated by s, exist a subset Ω̃ ⊂ Ω2,

such that T 1
∣∣
Ω̃

the RPF operator is well defined for T 1
∣∣
Ω̃

. See that such the shift is associated to the
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transition matrix:

A =
[
L ∗

T 1|Ω̃ ,−β log|detJmedT 1|

]
=

(
(1− p11)

β pβ

12
pβ

21 (1− p21)
β

)
,

where p11 can be saw as the probability if x ∈ I0 and p21 can be saw as the probability if x ∈ I1.

Again note that A also represents a matrix of an oriented graph, where each entry represents ai j the

Σ

I0 I1

Figure 3.4: PSVF from Theorem 6.

probability that there is a connection (graph edge) between the arc I0 and the arc I1 (vertices of the

graph). Furthermore each oriented graph is conjugated to the finite subshift of two symbols (see [19],

Lemma 5.5.1). So, from the Perron-Frobenius Theorem A 1 and from the Corollary 2.3 of [18], it

follows that Ptop(T 1
∣∣
Ω̃
,−β log | detJmedT 1 |) = log(ρ(A)) .

The items (ii) and (iv)− subitem(a) are entirely analogous to the proof of Corollary 2.

3.1.7 Proof of Theorem 5

Proof. Analogous to the proof of Theorem 3.

3.1.8 Proof of Corollary 5

Proof. Analogous to the proof of Corollary 1.

3.1.9 Proof of Corollary 6

Proof. (i) : By Proposition 15, T 1 and σ+
r are topologically conjugated by s, exist a subset Ω̃ ⊂ Ωk,

such that T 1
∣∣
Ω̃

the RPF operator is well defined for T 1
∣∣
Ω̃

. See that such subshift is associated to the

transition matrix:

A =

[
L ∗

T 1|Ω̃ ,−β log|detJmedT 1|

]
=
[
ai j
]

m×m

=


pβ

11 (1− p11)
β 0 0 · · · 0 0

0 0 pβ

23 (1− p23)
β · · · 0 0

pβ

31 (1− p31)
β 0 0 · · · 0 0

...
...

...
... . . . ...

...
0 0 0 0 · · · pβ

m(m−1) (1− pm(m−1))
β

 ,

such that ∑
m
i=1 pi j = 1, pi j can be saw as the probability of φZk(x) ∈ I j if x ∈ Ii, for all 1 ≤ i, j ≤ m,

where m is the number of trajectory arcs.

Note that A also represents a matrix of an oriented graph, where each entry represents ai j the

probability that there is a connection (graph edge) between the arc Ii and the arc I j (vertices of the
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Σ

I0

I1

I2

I3

Figure 3.5: Case k = 3.

graph). Furthermore each oriented graph is conjugated to a finite subshift (see [19], Lemma 5.5.1)

which in turn is conjugated to the space of all trajectories of the vector field Zk (see [3]). So, from the

Perron-Frobenius Theorem A 1 and from the Corollary 2.3 of [18], it follows that Ptop(T 1
∣∣
Ω̃
,−β log |

detJmedT 1 |) = log(ρ(A)) .

Items (ii), (iii) and (iv) are entirely analogous to the proof of Corollary 2.

3.1.10 Proof of Theorem 6

Before proving Theorem 6 we will prove the following lemma.

Lemma 5. Consider the family of maps

Hα(x) :=
{

αx for 0 ≤ x ≤ 1
2

α(1− x) for 1
2 ≤ x ≤ 1

,

on [0,1]. So for every α ∈ (1,2], the system ([0,1],D ,med,Hα) is ergodically equivalent to the

system ({0,1}N,B,µN
π ,σ

+
2 ), for the probability vector π = (1/α,1−1/α) . This family of maps is

called generalized tent maps.

Proof. We define Φ = (Φn)n∈N : [0,1]→{0,1}N by

Φn(x) :=
{

αx, if 0 ≤ Hn
α(x)≤ 1

2
α(1− x), if 1

2 ≤ Hn
α(x)≤ 1

.

The conclusion of the proof follows from analogous to Example 12.5 by [21].

Proof of Theorem 6. Using Lemma 5 and Theorem 8.2.7 of [19], we conclude that htop(Hα) =

htop(σ
+
2 ). Therefore, from Section 8.3.4 of [19], it follows that if 1 < α ≤ 2 then htop(Hα) = logα.

In this way there is a connection between the “world” of one-sided shift spaces and the “world” of the

generalized tent map. Then, since s : Ω2 → {0,1}N is a topological conjugacy, for every 1 < α ≤ 2

we have subsets Ω̃ ⊆ Ω2 whose entropy htop(Z2) = htop(T1
∣∣
Ω̃
) = logα.

Finally, from Corollary 5.1.18 of [56], for every c ∈ (0, log2] ⊂ [0,1] there exists a set Ac ⊂
(0, log2] such that dimH (Ac) = c. Furthermore, from what we saw in the previous paragraph and by

(2.20), for every c ∈ (0, log2], there is 1 < α ≤ 2 such that c = logα. So it occurs that

dimH (Ac) = logα = htop(Hα) = htop(T1
∣∣
Ω̃
) = dimM(Ac).
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Example 6. In Corollary 2, take α = 4. Let Ω̃⊂ϒ4 be such that Ω̃= {orbits that: fromI0 go to I1, I2, I3

and fromI j only goes to I0, j = 1,2,3}. Note that this subset of trajectories is associated with an ori-

I0

I1

I2

I3

I0 I2

I1

I3

Figure 3.6: Trajectory arcs for Z̃4 and the related graph.

ented graph (see Figure 3.6 ), whose transition matrix is as follows:

A =
[
L ∗

T1|Ω̃

]
=


1 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

 .

For A2 we have ai j > 0. So, it follows that A is an irreducible matrix and in addition the eigen-

values of A are λ1 = 0 with multiplicity 2, λ2 = 1+
√

13
2 and λ3 = 1−

√
13

2 . Therefore htop(T1
∣∣
Ω̃
) =

log(ρ(A)) = log
(

1+
√

13
2

)
.

Remark 12. When A is defined by 1 in the entire first row and in the entire first column, plus all other

entries are null, the shift associated with A is called golden mean shift.

Example 7. In Corollary 6, consider the case k = 3. Then P3(x) = −x6 + 3x4

2 − 9x2

15 + 1
16 with roots

±1 and ±1
2 , where the first three have multiplicity 2 and the last ones are simple. Moreover the PSVF

Z3 is:

Z3(x,y) =

 X+
3 (x,y) =

(
1,−6x5 +6x3 − 9x

8 + 9x2

2

)
for y ≥ 0

X−
3 (x,y) =

(
−1,−6x5 +6x3 − 9x

8 + 9x2

2

)
for y ≤ 0

.

The points p1 = (−1
2 ,0), p2 = (1

2 ,0) are visible-visible fold-folds and the other ones are crossing

points of Z3. The invariant region is the set:

Λ3 = {(x,P3(x))|−1 ≤ x ≤ 1}∪{(x,−P3(x))|−1 ≤ x ≤ 1} ,
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that is partitioned into the arcs

I0 =

{
(x,P3(x))|−1 ≤ x <−1

2

}
∪
{
(x,−P3(x))|−1 ≤ x <−1

2

}
,

I1 =

{
(x,P3(x))|−

1
2
≤ x <

1
2

}
, I2 =

{
(x,−P3(x))|−

1
2
≤ x <

1
2

}
and

I3 =

{
(x,P3(x))|

1
2
≤ x < 1

}
∪
{
(x,−P3(x))|

1
2
≤ x < 1

}
as shows Figure 3.7.

Σ

I0

I1

I2

I3 I0 I3

I1

I2

Figure 3.7: Trajectory arcs for Z3 and the related graph.

Now, Ω3 is the set of all trajectories contained in Λ3 and s : Ω3 → {0,1,2,3}N. If we take Ω3 =

Ω3/ ∼ and the functions s and T 1 as before, we have that s(Ω3) is a subshift of {0,1,2,3}N and s

is a conjugacy between T 1 and the shift σ+
r (r ≤ 3). In fact, it is easy to see that such subshift is

associated to the transition matrix:

A =
[
L ∗

T 1|Ω̃ ,−β log|JmedT 1|

]
=


pβ

11 (1− p11)
β 0 0

0 0 pβ

23 (1− p23)
β

(1− p32)
β pβ

32 0 0
0 0 (1− p44)

β pβ

44

 .

So, when p1 = p11 = p44 and p2 = p23 = p32, it follows that

Ptop
(
T 1
∣∣
Ω̃
,−β log | JmedT 1 |

)
= log

(pβ

1 + pβ

2 )+

√
(pβ

1 − pβ

2 )
2 +4(1− p1)β (1− p2)β

2

 .

When β = 0, the matrix A is given by :

A =
[
L ∗

T 1|Ω̃ ,0

]
=


1 1 0 0
0 0 1 1
1 1 0 0
0 0 1 1

 .

Since ai j > 0 for A2, it follows that A is an irreducible matrix and in addition the eigenvalues of A

are λ1 = 0 with multiplicity 3, λ2 = 2. Therefore htop(T1
∣∣
Ω̃
) = log(ρ(A)) = log2.
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Example 8. Consider in Corollary 2 that the matrix A has the following form A = 1
k B, where B is the

unitary matrix, i.e., all matrix entries are 1. So,

pA(x) =

∣∣∣∣∣∣∣∣∣

(1
k − x

) 1
k · · · 1

k
1
k

(1
k − x

)
· · · 1

k
...

...
...

...
1
k

1
k · · ·

(1
k − x

)
∣∣∣∣∣∣∣∣∣ .

Using elementary operations adding to one row a non-zero multiple of another, the determinate

of the resulting matrix will not change. So we can use this tool to find pA(x). The determinant of the

matrix is equal to the element found in the last row after the matrix has been reduced to echelon form

using the formula

ai j =
arc ·ai j −aic ·ar j

p
,

where r and c are the row and column numbers of the supporting element, and p is the pivot of i in

i-th step of the process. So, we get

pA(x) = (−1)kxk−1(x−1).

Therefore, all eigenvalues of A are λ0 = 1 and λ1 = 0 with multiplicity k−1. As all entries of A are

equal to 1
k , A is symmetric, so A is irreducible, aperiodic and reversible, whose probability distribution

is π(i) = 1/k for all i, moreover, by definition tmix = 0, since κ(m) = 0. Note also that although all

states in this chain are positive recurrent, we do not have exponential decay, since its second largest

eigenvalue is zero. But we can still calculate trel using the Definition 31, i.e., trel =
1

1−ρess(A)
= 1.

When the probability transition matrix A is symmetric the distribution π(i) = 1/k for all i this is

called uniform distribution, that is, the transition matrix A satisfies ∑i pi j = 1 and ∑ j pi j = 1.

Remark 13. Something similar happens if the probabilities of the matrix A of Corollary 4 are equal

to 1
2 .

Example 9. Let Ω̃ ⊂ Ω2 be such that Ω̃ = {orbits that: I0 ↔ I0, I0 ↔ I1}.

Σ

I0 I1
I0 I1

2
3

1
1
3

Figure 3.8: Markov chain for Ω̃ from Corollary 6.

Note that this subset of trajectories is associated with an oriented graph (see Figure 3.8 ), whose

Markov chain transition matrix is as follows:

A =
[
L ∗

T1|Ω̃ ,− log|detJmedT 1|

]
=

(1
3

2
3

1 0

)
.
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Note that for A2 we have ai j > 0, so A is irreducible and aperiodic. Furthermore, A is reversible,

as every irreducible two-state Markov chain is reversible and all its states are positive recurrent.

Calculating the eigenvalues of A we have λ0 = 1 and λ1 =−2
3 .

Since the stationary distribution exists and is unique, we can find it by solving the equation π =

πA, π = (π0 π1), together with π0+π1 = 1. So, we obtain π0 =
3
5 and π1 =

2
5 . Therefore, by Corollary

6,ρess(A) = e−trel ⇒ 2
3 = e−trel ⇔ trel = log

(3
2

)
and then again by Corollary 6,(

log
(

3
2

)
−1
)

log(2)≤ tmix ≤ log
(

3
2

)
log
(

5
3

)
.
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CHAPTER 4

Piecewise smooth vector fields with sliding
motion preserving measures

As we already said, PSVFs with a sliding region can transform certain sets of Rn with positive

measure on a line segment with zero measure. This fact adds extra difficulty when studying invariant

measures. However, the escaping region has the power to transform that same straight line into a set

of positive measures. Therefore, in this chapter we will show that there are PSVFs with Σe ∪Σs ̸= /0

such that the measure is preserved, as long as the regions Σe and Σs are “connected” in some way.

The next definition will be the keypoint in the sequence.

Definition 52. Consider an n-dimensional PSVF Z ∈ Z r presenting a sliding region Σs and an es-

caping region Σe.

(i) Z presents an sliding-escaping connection between Σs
1 and Σe

1 if there exist open connected com-

ponents Σs
1 ⊂ Σs and Σe

1 ⊂ Σe, such that

∀p ∈ Σ
s
1,∃q ∈ Σ

e
1 such that φZ(t, p) = q for some Z-trajectory/flow φZ and some t > 0

and

∀p̃ ∈ Σ
e
1,∃q̃ ∈ Σ

s
1 such that φ̃Z (̃t, p̃) = q̃ for some Z-trajectory/flow φ̃Z and some t̃ > 0.

(ii) When there is an sliding-escaping connection for Z between Σs
1 and Σe

1, we call A = Sat
(
Σs

1
)

a

connecting domain.

Example 10. Consider the PSVF

Z(x,y) =
{

X+(x,y) = (1,−2x) for y ≥ 0
X−(x,y) =

(
−2,−4x3 +2x

)
for y ≤ 0

, (4.1)

presented in [3].
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Σ

y x
p

Figure 4.1: Arc of trajectory γ , such that, γ(0) = x, and γ(ηγ) = y. Both x and y are escape points
from Σe to Σ− to γ .

Let ∆ = {(x,y) ∈ R2;−1 ≤ x ≤ 1 and x4/2− x2/2 ≤ y ≤ 1− x2}. From Proposition 1 of [12] we

know that ∆ is a minimal set of (4.1).

Now consider the following construction:

(i) γ1 an arc of trajectory of X− connecting the point x = γ1(0) ∈ Σe with a point ỹ ∈ Σ;

(ii) γ2 an arc of trajectory of X+ connecting the point ỹ with a point ũ ∈ Σ;

(iii) γ3 an arc of trajectory of X− connecting the point ũ with a point v ∈ Σs;

(iv) γ4 an arc of trajectory of X− connecting the point y = γ1(ηγ1) ∈ Σe with a point x̃ ∈ Σ;

(v) γ5 an arc of trajectory of X+ connecting the point x̃ with a point ṽ ∈ Σ;

(vi) γ6 an arc of trajectory of X− connecting the point ṽ with a point u ∈ Σs.

The gray region is the set bounded by the union of trajectory arcs above, together with the trajectories

of the sliding vector field Zs and the escaping vector field Ze, (see Figure 4.2).
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Σp

A

y x v uỹ x̃ ṽ ũ
Σp

A

γ1

γ2

γ3

γ5

γ4 γ6

Figure 4.2: Connection domain

Note that (v,u) and (y,x) are open connected components of Σs and Σe respectively. Furthermore,

by construction, for every a ∈ (v,u), there exists b ∈ (y,x) such that φ̃Z(t,a) = b for some Z-trajectory

φZ and some t > 0. Analogously, for every ã ∈ (y,x), there is b̃ ∈ (v,u) such that φZ (̃t, ã) = b̃ for some

Z-trajectory φ̃Z and some t̃ > 0. This way, the connection domain is A = Sat((v,u)).

Let T ∈ R fixed and Θ̃ ⊂ Λ a set of global trajectories of the PSVF Z. We denote

Sat(A,T,Θ̃) =
⋃

φZ∈Θ̃

⋃
p∈A

φZ(T, p).

Note that Sat(A,T,Θ̃)⊂ Sat(A).

From now on, we will always work with the Lebesgue measure, which will be denoted by med.

The next result is the main result of this chapter and it will proved in Section 4.1.

Theorem 7. Given an n-dimensional PSVF Z = (X+,X−) ∈ Z r, let A be a connecting domain

between Σs
1 and Σe

1 such that the sets Σs
1 and Σe

1 have the same dimension and the divergent div(X±) =

0. Then for all α ∈ [0,β ], with β > 1, and a subset Λ̃ ⊂ Λ, where Λ is the set of all trajectories of Z,

we have

med(Sat(A,T, Λ̃)) = α.med(A)

for a fixed time T ∈ R such that A ⊂ A \Σ is a compact set, med(A)> 0 and Sat(A,T, Λ̃)∩Σ ̸= /0.

There are a lot of important results that can be obtained as consequences of the previous theorem.

First of all, since α is a positive real number (including zero), it is possible to obtain:

• a suitable set Λ̃ such that Sat(A,T, Λ̃) has null measure (i.e α = 0 in Theorem 7).

• med(Sat(A,T1, Λ̃)) = K1 and, since Sat(A,T1, Λ̃) can be saw like a new set B ⊂ A \Σ, we get

med(Sat(A,T2, Λ̃))=K2 with K1 ̸=K2. When K1 > 1 and K2 < 1, the set Sat(A,T, Λ̃) “expands”

for all T in a suitable interval T1 and Sat(A,T, Λ̃) “contracts” for all T in a suitable interval T2.

This generates a “horse-shoes like” dynamics.
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Let φ t
X be the flow of a smooth vector field X defined over a Riemannian manifold M and µ a

measure in M. We say that a flow φ t
X preserves a measure µ if: for any Borel set A ⊂ M, µ(φ t

X(A)) =

µ(A), ∀t ∈R. However, when we consider Filippov systems, we saw that for a given initial condition

p0 ∈ M, it is possible that there is not an unique solution passing through p0. Consequently, the pre-

vious definition of flow preservation and measurement fails. Therefore, to get around this difficulty,

considering the analogous definition of a preserving measure for flow, we say that Filippov systems

(2.1) preserves the measure med if for T ∈R fixed and Λ̃ ⊂ Λ an specific choice of trajectories of the

PSVF Z if,

med(Sat(A,T, Λ̃)) = med(A). (4.2)

Furthermore we denote

φ
T
Z (p) = φZ(T, p) = Sat(p,T, Λ̃) =

⋃
φZ∈Λ̃

φZ(T, p), ∀p ∈ A. (4.3)

Therefore, from (4.2) and (4.3), we say that a PSVF preserves a measure med if med
(
φ T

Z (A)
)
=

med(A), for any Borel subset A ⊂ M.

Next result provides conditions in order to obtain a set of trajectories of a PSVF preserving mea-

sure.

Corollary 7. With the hypothesis of Theorem 7, there exists a subset Λ̃ of the set of all trajectories Λ

of Z, such that med
(

Sat
(

A,T, Λ̃
))

= med(A).

Proof. It is enough to take α = 1 in the proof of Theorem 7.

Let Z = (X+,X−) be defined over a compact n dimensional surface M ⊆ Rn and, as before,

Λ = {γ | γ is a global trajectory of Z}. Consider the following definition:

Definition 53. Define ρ : Λ×Λ → R by:

ρ(γ1(t),γ2(t)) = ∑
i∈Z

1
2|i|

∫ i+1

i
∥ γ1(t)− γ2(t) ∥ dt,

where ∥ γ1(t)− γ2(t) ∥ denotes the usual distance between the points γ1(t) and γ2(t) for all fixed t.

Proposition 16. The space (Λ,ρ) is a metric space.

Proof. Let γ1,γ2 ∈ Λ. Observe that M being compact, implies ∥ γ1(t)− γ2(t) ∥ is bounded for all t.

Thus, the series above converges for any γ1,γ2. If ρ (γ1,γ2) = 0 then
∫ i+1

i ∥ γ1(t)− γ2(t) ∥ dt = 0 for

all i ∈ Z, which implies γ1(t) = γ2(t) for all t and therefore γ1 = γ2. The proof of ρ(γ1,γ2) = ρ(γ2,γ1)

follows directly from ∥ γ1(t)− γ2(t) ∥=∥ γ2(t)− γ1(t) ∥.

Finally, using the triangular inequality ∥ γ1(t)−γ2(t) ∥≤∥ γ1(t)−γ3(t) ∥+ ∥ γ3(t)−γ2(t) ∥ for all

t, we get the inequality ρ(γ1,γ2)≤ ρ(γ1,γ3)+ρ(γ3,γ2).
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In this space of all global trajectories we can define the action of the group (R,+) on Λ by

T : (R,+)×Λ → Λ, T (t,γ)(·) = γ (·+ t).

Remark 14. Let O = {positive global trajectories of Z}. Note that (O,ρ), is also a metric space,

where in this case, ρ(γ1(t),γ2(t)) = ∑
i∈N

1
2i

∫ i+1
i ∥ γ1(t)−γ2(t) ∥ dt. Additionally, notice that T : R+×

O → O, T (t,γ)(·) = γ (·+ t) is well defined, where R+ = {t ∈ R | t ≥ 0}.

Definition 54. We say that a property is valid at med-almost every point whether it is valid on all A

except possibly on a set of zero measure.

Definition 55. We say that a trajectory γ escapes Σe at a time s0 if γ(s0) ∈ Σe and there is s1 > s0,

such that γ(s) /∈ Σe, for all s0 < s < s1. We may also add that γ escapes to Σ+ or Σ−, depending on

which of these regions the points γ(s) are located in. Alternatively, we may say that γ(s0) is a escape

point of γ .

Let A be a compact invariant set. Consider the set

Ω =
{

γ positive global trajectory of Z |Sat(A,T,Λ̃)

}
.

Remark 15. We get that Ω is not compact, because it is not closed. In fact, consider (γpn)n∈N ⊂ Ω a

sequence of closed simple trajectories through p, such that the period of each n is half of the previous

period. So,
∫ i+1

i ∥ (γpn)− p ∥ dt → 0. Then (γpn)n∈N converges to a fixed trajectory γ̃(t) ≡ p, but

γ̃(t) /∈ Ω.

For each p ∈ Σe there is a (n−1)-dimensional block Bp containing p. Without loss of generality,

we can take such a block as a unitary block B[0,1], because if it is not, there is a family of homeomor-

phisms hi that takes each edge [ai,bi] of Bp on each edge [0,1] of Bp
[0,1]. Furthermore, since Z presents

a sliding-escaping connection, given a trajectory γ ∈ Ω, there exists t > 0 such that γ reaches p.

Put G=
∞

∪
i=0

Bpi
[0,1]. Since every local trajectory intersects it and every point p ∈G reaches p̃ ∈ A in

a finite positive time, we get that every trajectory visits it infinitely many times. Thus, the set G will

play the role of {p j} obtained in Theorem A of [2]. However, we cannot adjust the expression of a

PSVF Z to make the time between visits equal to some constant, as was done in the Theorem A of [2].

In order to deal with this, define the function η : Ω → R+ such that η(γ) = ηγ = min{t > 0 |
γ(t) escapes Σe at p ∈ G}, in other words, the time ηγ is the “next escape time” for γ . Now, define

the map T : Ω → Ω, as T (γ)(·) = γ(·+ηγ).

Remark 16. Given γ ∈Ω, we have T 2(γ)(t) =T ◦T (γ)(t) =T (γ)(t+ηT (γ)) = γ(t+ηT (γ)+ηγ).

So, T n(γ)(t) = T ◦T n−1(γ)(t) = γ(t +ηT n−1(γ)+ · · ·+ηT (γ)+ηγ).

The following Propositions and Lemmas are adaptations and generalizations of results found in

[2].
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Lemma 6. Given a positive global trajectory γ ∈Ω, there exists a infinite increasing sequence (tγ

j ) j∈N

and q∈ Σs
1, such that γq(t

γq
j ) escapes Σe at p=T j(γq)(0)∈G, where γq is a global trajectory passing

through q.

Proof. Since Z presents a sliding-escaping connection, given a trajectory γ ∈ Ω, there exists t > 0

such that γq reaches p. Therefore, to conclude the proof, we just need to show that γq(t
γq
j ) = p. Thus,

for all j > 0, let tγq
j =

j
∑

n=0
ηT n(γq). We get

γq(t
γq
j ) = γq

(
ηγq +ηT (γq)+ · · ·+ηT j−1(γq)

)
= T (γq)

(
ηT (γq)+ · · ·+ηT j−1(γq)

)
=

T 2(γq)
(

ηT 2(γq)
+ · · ·+ηT j−1(γq)

)
= · · ·= T j−1

(
ηT j−1(γq)

)
= T j(γq)(0) = p ∈G.

Lemma 7. Given a positive global trajectory γ ∈ Ω and (tγ

j ) j∈N given above, consider the sequence

(tT (γ)
j ). It holds tT (γ)

j = tγ

j+1 −ηγ .

Proof. In fact, tγ

0 = 0 = ηγ −ηγ = tγ

1 −ηγ .

For j > 0,

tT (γ)
j =

j−1

∑
n=0

ηT n+1(γ) =
j

∑
n=1

ηT n(γ)−ηγ = tγ

j+1 −ηγ .

Remark 17. Sometimes, when we find it necessary, we will use the simplified notation γ(tγ

j ) to refer

to the trajectories that pass through q ∈ Σs and escape through p ∈G.

Definition 56. Consider θ : Σe ∩G→ [0,1] the projection on θ -coordinate that is, θ(y1,y2, · · · ,yθ ,

· · · ,yn−1) = yθ and define the itinerary map b : Ω → [0,1]N, as b(γ) = (b j(γ)) j∈N, where b j(γ) =

θ(γ(tγ

j )). In this way, every single trajectory can be encoded by the θ -coordinates of its beats on G.

Note that b is well-defined and, by construction, it is onto because given a sequence (x j) j∈N ∈
[0,1]N it is possible to construct a trajectory γ ∈ Ω by concatenating the correct arcs in order to get

b(γ) = (x j) j∈N. Furthermore, there are infinitely many trajectories that describes the same curve,

simply by changing the initial condition (a shift in time), and the function b takes all of these to the

same sequence. So, we consider the quotient set Ω = Ω/b, where two trajectories γ1,γ2 are in the

same equivalence class if b(γ1) = b(γ2), i.e., two trajectories are in the same equivalence class if and

only if they have the same itinerary map associated, i.e., they are homeomorphic to the same closed

interval.

In fact, it is an equivalence relation. For γ1 ∈ Ω, we have γ1 ∼ γ1 because b(γ1) = b(γ1). Also for

all γ1,γ2 ∈ Ω, if γ1 ∼ γ2, we have b(γ1) = b(γ2), and in this way, γ2 ∼ γ1. Finally, for all γ1,γ2,γ3 ∈ Ω,

if γ1 ∼ γ2, we have b(γ1) = b(γ2) and if γ2 ∼ γ3, we have b(γ2) = b(γ3). In this way, b(γ1) = b(γ2) =

b(γ3), and therefore γ1 ∼ γ3.
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Definition 57. Let γ1,γ2 ∈ Ω, define ρ : Ω×Ω → R, by

ρ(γ1,γ2) = ∑
i∈N

di(γ
∗
1 ,γ

∗
2 )

2i ,

where di(γ
∗
1 ,γ

∗
2 ) = dH

(
γ∗1 ([t

γ∗1
i , tγ∗1

i+1]),γ
∗
2 ([t

γ∗2
i , tγ∗2

i+1])
)
. That is, at each step i, we take the Hausdorff

distance between the i-th loops of both trajectories.

Proposition 17. (Ω,ρ) is a metric space.

Proof. The function ρ defined above is well-defined, since A is a compact set, which implies there

exists C> 0, such that di(γ
∗
1 ,γ

∗
2 )< C, for all i ∈ N. The proof of those properties for it to be a metric

is analogous to the one given in Proposition 7 of [2].

Let T : Ω → Ω the function induced by T , that is, T (γ) = T (γ). It does not depend on the

representative, for if b(γ1) = b(γ2) = (b j) j∈N, then, for all j ∈N, θ

(
γ1((t

γ1
j ))
)
= θ

(
γ2((t

γ2
j ))
)
= b j.

In fact,

θ

(
T (γ1)(t

T (γ1)
j )

)
= θ

(
γ1(t

T (γ1)
j +ηγ1)

)
= θ

(
γ1(t

T (γ1)
j+1 −ηγ1 +ηγ1)

)
= θ

(
γ1(t

γ1
j+1)

)
= θ

(
γ2(t

γ2
j+1)

)
= θ

(
T (γ2)(t

T (γ2)
j )

)
⇒ b(T (γ1)) = b(T (γ2)).

Proposition 18. The function T : Ω → Ω is continous.

Proof. Note that di (T (γ1),T (γ2)) = dH

(
T (γ1)([t

T (γ1)
i , tT (γ1)

i+1 ]),T (γ2)([t
T (γ2)
i , tT (γ2)

i+1 ])
)

= dH

(
T (γ1)([t

T (γ1)
i+1 , tT (γ1)

i+2 ]),T (γ2)([t
T (γ2)
i+1 , tT (γ2)

i+2 ])
)
= di+1(γ1,γ2).

So,

ρ
(
T (γ1),T (γ2)

)
= ∑

i∈N

di(T (γ1),T (γ2))

2i = ∑
i∈N

di+1(γ1,γ2)

2i .

lim
n→∞

(
n

∑
i=0

di+1(γ1,γ2)

2i

)
= lim

n→∞

(
2

n

∑
i=0

di+1(γ1,γ2)

2i+1

)
=

lim
n→∞

(
2

n+1

∑
j=1

d j(γ1,γ2)

2 j

)
≤ lim

n→∞

(
2

n+1

∑
j=1

d j(γ1,γ2)

2 j

)
+d0(γ1,γ2) =

2 lim
n→∞

(
n+1

∑
j=1

d j(γ1,γ2)

2 j +
d0(γ1,γ2)

2

)
= 2ρ(γ1,γ2).

Hence T is continuous.

Proposition 19. b : Ω → [0,1]N is a homeomorphism.
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Proof. The function b is onto, which implies that b is onto and it is injective because it is defined on

the quotient Ω/b. So, we just have to show the continuity.

Note that ∥ b j(γ1)−b j(γ2) ∥=∥ γ1(t
γ1
j )− γ2(t

γ2
j ) ∥≤ d j(γ1,γ2) for all j ∈ N. Then:

d(b(γ1),b(γ2)) = ∑
j∈N

∥ b j(γ1)−b j(γ2) ∥
2i ≤ ∑

j∈N

d j(γ1,γ2)

2 j = ρ(γ1,γ2).

Thus b is continuous. Now let us show that b−1 is continuous. In order to do it, let us show that b

is open: let γ1,γ2 ∈ Ω, and ε > 0 such that d(b(γ1),b(γ2))< ε. Then di(γ1,γ2)< Iε , where I> 0 is

such that diam(A)< I. Hence

ρ(γ1,γ2) = ∑
i∈N

d j(γ1,γ2)

2i < 3Iε.

Proposition 20. Let σ+
∞ : [0,1]N → [0,1]N be the shift map. Then b◦T = σ+

∞ ◦b.

Proof. Let γ ∈ Ω,(x j) j∈N = b(γ) and (y j) j∈N = b(T (γ)), then :

Ω

b
��

T 1 // Ω

b
��

[0,1]N
σ+

∞ // [0,1]N

y j = b j(T (γ)) = θ

(
T (γ)(tT (γ)

j )
)
= θ

(
T (γ)(tT (γ)

j +ηγ)
)
=

θ

(
T (γ)(tT (γ)

j −ηγ +ηγ)
)
= b j+1(γ) = x j+1.

We say that med is a probability measure if med(A)= 1. As we will only deal with finite measures,

that is, such that med(A)<∞. In this case we can always convert med into a probability measure νmed .

For that, just set

νmed(A) =
med(A)
med(A)

, for each measurable set A⊂ A. (4.4)

We say that med is a measure invariant by T if there exists Ω̃ ⊆ Ω and A such that med(Sat(A,

T,Ω̃)) = med(A) and med(Ω̃) = med(T
−1
(Ω̃)). Furthermore if every A ⊂ A satisfies (4.4), then

νmed is said to be an invariant probability measure.

We will introduce the notion of recurrence, which is very clear in the context of smooth and

discrete dynamical systems, but in the non-smooth scenario it must be clarified to avoid misunder-

standings.
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Definition 58. Given a PSVF Z ∈Z r, we say that a point p ∈V is recurrent by Z if exists Ω̃ ⊂ Ω and

a sequence (tγ

j ) j∈N ∈ Imax such that (tγ

j ) j∈N → τ+(p) in R+ and T (γp)(t
γp
j )→ p when j → ∞, where

γp ∈ Ω̃, is a global trajectory passing through p. A set A ⊂V is recurrent if every p ∈ A is recurrent.

So, we can state the following result:

Theorem 8 (Like-Poincaré’s Recurrence Theorem for PSVFs). Let Z = (X+,X−) be defined over

a compact n dimensional surface M ⊆ Rn that satisfies the Corollary 7, where med is an invariant

measure by T . Then, med-almost every point p ∈ A ⊂ A \Σ is recurrent by Z.

Theorem 8 will be proved in Section 4.1. Now, we can state the following result:

Theorem 9. Let Z be a PSVF satisfying the hypothesis of Corollary 7. If D is a σ -algebra associated

to Ω then the system (Ω,D ,νmed,T ) is ergodically equivalent to the system ([0,1]N,B∞,ξ
∞,σ+

∞ ).

Furthermore, νmed a probability measure invariant by T and T is strong-mixing, therefore weakly-

mixing and ergodic.

Theorem 9 will be proved in Section 4.1.

We call average visit time from p to A ⊂ A ⊆ A \Σ, with the hypothesis of the Corollary 7, the

value

T(A, p) = lim
n→∞

1
n

card
{

0 ≤ j ≤ n;T j(γp)(t) ∈ A
}
, (4.5)

where card, denotes the cardinality of the set.

Note that it is necessary to check if the limit (4.5) exists (we will show the existence later). Call

χY the characteristic function defined in A, we can write the expression on the right hand side of (4.5)

as

lim
n→∞

1
n

n−1

∑
j=0

χY

(
T j(γp)(t)

)
. (4.6)

We will show in the Corollary 8 that there is convergence at νmed-almost every point, for the map

T . In particular, the limit on (4.6) exists and it is well defined for med-almost every point p ∈ A.

The next result also provides a version of a classical result to the context of PSVFs.

Corollary 8. (Like-Birkhoff’s Theorem for PSVFs) Under the hypothesis of the previous theorem, let

(Ω,D ,νmed,T ) be a probability space. Since T : Ω → Ω a measure-preserving map. The following

are equivalent:

(i) T is ergodic;

(ii) For any G ∈ L 1(Ω,D ,νmed,T ) and νmed-almost every γp ∈ Ω,

G̃(γp) = lim
n→∞

1
n

n−1

∑
j=0

G
(
T j(γp)(t)

)
=
∫

Gdνmed.
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Corollary 8 will be proved in the next section. Note that this guarantees that the limit 4.6 exists,

just take G = χY. Thus, the item (ii) above generalizes Equation (4.6) to the case where G is any

integrable function. The limit G̃ is called temporal mean, or orbital mean, of G. The previous result

shows that the average times are constant over trajectories (orbits), at med-almost every point p ∈ A.

4.1 Proof of the main results

Lemma 8. A trajectory of an n-dimensional PSVF Z = (X+,X−) ∈ Z r enters an escaping region Σe

in a tangency point placed at the boundary of Σe.

Proof. It is straightforward since all trajectories of (the open set) Σe are departing from it.

Lemma 9. If A is a connecting domain, A ∩Σs has no pseudo equilibrium points.

Proof. Let p ∈ A ∩Σ be an equilibrium point of Zs, since A = Sat(Σs
1), it follows that p ∈ Σs

1 and in

this case, there should be q ∈ Σe such that φZ(t, p) = q, which does not happen, because p is a pseudo

equilibrium and so φZ(t, p) = p for all t ≥ 0.

Proof of Theorem 7. Given A ⊆ A \Σ we will separate the proof when either

α = 0 or α > 0.

• Consider α > 0. Let Im(A)⊂ Σs be the set where A first intersects Σ.

Since A is compact, there exists a first time t1 > 0 such that φ
−t1
Z (Im(A))∩A ̸= /0 and φ

−t1−h
Z (Im(A))∩

A = /0 for all h > 0.

Σs

Σe

...

choice of
orbits

A

Rn

Pi

Pi
Im(A)

Bi

Li

Li

Sat(Li) = Mi φΣs(tMi,q)

q

Σ ⊆ Rn−1

Figure 4.3: Constuction of the Theorem 7.
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From Lemma 9, there exists a partition P = {P1,P2, · · · ,Pm} of Im(A) such that the boundary

∂Pi of the component Pi is a set of trajectories of the sliding vector field and pieces of the boundary

∂ (Im(A)) of Im(A). Of course, each Pi is a flow-box for the sliding vector field.

Consider j ∈ {1,2, . . . ,m} fixed. We define

P j = {φ
−t
Z
(
∂P j

)
| φ

−t
Z
(
∂P j

)
∩A ̸= /0 for 0 < t ≤ t1}.

With such a construction we obtain, see Figure 4.3, that

A =
m⋃

j=1

P j.

Note that

med(A) = med

(
m⋃

j=1

P j

)
=

m

∑
j=1

med(P j),

since the interior of the subsets P j are mutually disjoint.

Each Pi ⊂ Σs is a flow-box using the flow of the sliding vector field. Let us call Li the transversal

section where the sliding vector field is entering Pi and Li the transversal section where the sliding

vector field is departing from Pi. By construction, Li and Li belongs to ∂ (Im(A)).

The hypothesis that A ⊂ A ensures that Li has an image Mi ⊂ Σe. In order to obtain Mi we have

to consider an specific choice of trajectories. This choice will determine the set Λ̃. Consider tMi the

maximal time such that φZs(t, p) is contained in Σe for all φZs(0, p) = p ∈ Mi and t ∈ [0, tMi].

From the definition of connecting domain, given a fixed point q ∈ Mi, the Zs-flow-box Bi =

Mi ×φZs(tMi,q) has positive measure in Σ, given by mi.

Now, let qi ∈ Bi a fixed point and consider Yqi > 0 the maximal time such that φX+(Yqi, p) ∈
Σ+ for all p ∈ Bi. Take a reparametrization on time hi such that hi(T ) = Yqi (this reparametriza-

tion can be reached using, for example, arc length parameterization). Consider the Z-flow-box

Bi × φX+(hi(T ),qi) and call βi.med(Pi) its measure. The number βi has a limitation according to

the maximum time taken for the points of Bi to reach Σs again (this time is finite according to the

definition of connecting domain).

Consider B =
m⋃

j=1
B j. From the definition of connecting domain, we get A ⊂ B. So,

A ⊂ B = Sat
(

A,T, Λ̃
)
⇒ 0 < med(A)< med

(
Sat
(

A,T, Λ̃
))

⇒

med(B) = med
(

Sat
(

A,T, Λ̃
))

= βmed(A) for some β > 1.

Considering Hi(t) = α

β
hi(t), with α ∈ (0,β ], and the new box B̃i ×φX+(Hi(T ),qi) we have B̃ =

m⋃
j=1

B̃ j and med(B̃) = α

β
med(B) for a new choice of trajectories contained in ˜̃Λ. So,

med
(

Sat
(

A,T, ˜̃Λ))= med(B̃) =
α

β
med(B) =

α

β
.βmed(A) = α.med(A).
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• If α = 0. The hypothesis that A ⊂ A ensures that there exists Mi ⊂ Σe being the image of Li.

However, in order to obtain Mi we have to consider an specific choice of trajectories, that collapses

every flow-box Pi ⊂ Σs and that escape from Σe for every Mi. This choice will determine the set˜̃
Λ. But since Σe is a manifold with codimension one, it has measure zero and consequently, the same

happens for each Mi. In such a case, call B=
m⋃

i=1
Mi and

med
(

Sat
(

A,T, ˜̃Λ))= med (B) =
m

∑
i=1

med (Mi) = 0.

Example 11. Note that it is extremely important that the sliding and escaping regions have the same

dimension, otherwise (e.g. dim(Σs) < dim(Σe) see Figure 4.4) since Z present a sliding-escaping

connection, the Zs-flow-box Bi = Mi × φZs(tMi,q) will have measure zero in Σ, for any choice of

orbits.

Σ ⊆ Rn−1
choice of

orbits

Li Li

Sat(Li) = Mi
φZs(tMi,q)

Rn

Pi
BiΣs

Σe

q

Figure 4.4: Z presents a sliding-escaping and dim(Σs)< dim(Σe).

Proof of Theorem 8 . Consider (U j) j≥1 an enumerable open basis of A. Since med is an invari-

ant measure by T , there are subsets Ω̃ j ⊂ Ω, such that med
(

Sat
(

U j,T,Ω̃ j

))
= med(U j) and

med(Ω̃ j) = med(T
−1
(Ω̃ j)) for every j ≥ 1. Consider the set

Ũ j = {p ∈U j : ∃ t̃ j > 0 such that {T (γp)(t) : | t |> t̃ j andγ ∈ Ω̃ j}∩U j = /0}.

Since Z presents a sliding-escaping connection, there are subsets of trajectories Ω∗
j passing by points

of Ũ j such that med
(

Sat
(

Ũ j,T,Ω∗
j

))
= med(Ũ j) = 0, and then med

(
∞⋃

j=1
Ũ j

)
= 0. To conclude the

proof, we just need to prove that every point p ∈ A\
∞⋃

j=1
Ũ j is recurrent for Z .

For that, take p ∈ A \
∞⋃

j=1
Ũ j. So p /∈ Ũ j for all j ≥ 1. We note that p /∈ Ũ j means that for every

t̃ j > 0 there exists tγp
j > t̃ j such that T (γp)(t

γp
j ) ∈ U j. But given a neighborhood U of p there exists

an open set U j from the basis (U j) j≥1 such that p ∈U j ⊂U . Thus, p ∈U j \Ũ j, that is, p is recurrent

by Z.
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Proof of Theorem 9. From Corollary 7, there is a subset Ω̃ ⊂ Ω such that med(Sat(A,T,

Ω̃) = med(A)< ∞.

Take Y = (Y0,Y1, · · · ,) a stationary sequence of random variables i.i.d. defined on [0,1]N as in

Proposition 5. From Proposition 20, each term Yk of the sequence Y is taken by b in Xn = Yn ◦b,

so we get a sequence X = (X0,X1, · · ·) defined on Ω.

Ω
b //

Xn ""

[0,1]N

Yn
��
R

Furthermore, since the sequence (Y0,Y1, · · ·) is stationary, it follows that Xn has the same distri-

bution with respect to the Borel σ -algebra B∞, and the unique measure of induced probability

νmed = b
−1
∗ ξ

∞.

Now, given x∈R, for each term Yn of the sequence, C =Y −1
n (−∞,x]∈B∞. Since σ+

∞ is measure-

preserving for ξ ∞, we get

ξ
∞((σ+

∞ )−1(C)) = ξ
∞(C).

Furthermore for every B ∈ Ω, we have

νmed(T
−1
(B)) = b

−1
∗ ξ

∞(T
−1
(B)) = ξ

∞((b
−1
)−1(T

−1
(B))) =

ξ
∞(b(T

−1
(B))) = ξ

∞(b(b
−1
(σ+

∞ )−1(b(B)))) = ξ
∞((σ+

∞ )−1(b(B)) =

ξ
∞(b(B)) = b

−1
∗ ξ

∞(B) = νmed(B).

Therefore, νmed is invariant probability measure by T .

Since σ+
∞ is measure-preserving for ξ ∞, there is Ỹ which is stationary. If loss of generality,

take C̃ = Ỹ −1
n ⊂ [0,1]N measurable and invariant on σ -algebra B∞, such that ξ ∞(C̃) = 1. Now put

b(B) = C̃, so

νmed(B) = b
−1
∗ ξ

∞(B) = ξ
∞(b(B)) = ξ

∞(C̃) = 1.

In addition,

T (B) = (b
−1 ◦σ

+
∞ ◦b)(B) = b

−1
(σ+

∞ (b(B))) = b
−1
(σ+

∞ (C̃))⊂ b
−1
(C̃) = B.

Therefore, using Proposition 20, b−1 is a bijection, which restricted to a subset of total measure,

both it and its inverse are measurable. In this way, the systems (Ω,D ,νmed,T ) and ([0,1]N,B∞,

ξ ∞,σ+
∞ ) are equivalent.

In order to conclude the proof, it is enough to show that T is strong-mixing, since a strong-mixing

map is also weakly-mixing and all weakly-mixing is ergodic. But, we get that T is strong-mixing,

since σ+
∞ is strong-mixing. Indeed, given any measurable sets ΩA,ΩB ∈ D we get

νmed
(
(T )−n(ΩA)∩ΩB

)
= ξ

∞

(
(b

−1
)−1 ((T )−n(ΩA)∩ΩB

))
=
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ξ
∞
(
(σ+

∞ )−n(b(ΩA))∩b(ΩB)
)
→ ξ

∞
(
b(ΩA)

)
ξ

∞
(
b(ΩB)

)
= νmed(ΩA)νmed(ΩB),

when n → ∞.

Proof of Corollary 8 . Applying Birkhoff’s Theorem (Theorem 1.6 of [42]) and since σ+
∞ is ergodic,

the system ([0,1]N,B∞,ξ
∞,σ+

∞ ) is ergodic if and only if for any H ∈ L 1([0,1]N,B∞,ξ
∞,σ+

∞ ) and

ξ ∞-almost every (xi)i∈N ∈ [0,1]N,

H̃((xi)i∈N) = lim
n→∞

1
n

n−1

∑
j=0

G
(
(σ+

∞ ) j((xi)i∈N)
)
=
∫

H dξ
∞.

Therefore, from Theorem 9 it follows that (i) and (ii) are equivalent.

4.2 Applications

Example 12. Consider the PSVF of Example 10.

Let Ω = {γ | γ is a positive global trajectory of Z |Sat(A,T,Λ̃)}, where A ⊂ A \Σ ⊂ ∆. And let

Ã = {γ ∈ Ω | ∀ t > 0, we get γ(t) ∈ A and γ scape from Σ
e to Σ

− at t = 0}.

Using the proof of Proposition 6.3 of [3], there is a topological conjugacy between the itinerary

functions of elements of Ã and [0,1]N.

Since div(X±) = 0 and Z has an escape connection, it follows that Z satisfies the assumptions of

Theorem 7. Thus, Corollary 7 ensures that there is Ω̃ ⊂ Ω such that med
(

Sat
(

A,T,Ω̃
))

= med(A).

So, using (4.4), for each measurable set A⊂ A we get νmed(A)≤ 1. Thus, Z satisfies Theorems 8 and

9 and, consequently, the Corollary 8. As consequence, the Like-Poincaré’s Recurrence Theorem and

the Like-Birkhoff’s Theorem for PSVFs are valid in this context.

Example 13. Let us consider the linear vector fields

X+(x,y,z) = (z,0,−x) and X−(x,y,z) =

(
−1

2
(
√

3y+ z),

√
3x
2

,
x
2

)

with (x,y,z) ∈ S2 which is presented in [22]. Let Σ1 and Σ2 be the curves on S2 given by the intersec-

tion of S2 with the planes z = 1/2 and z =−1/2, respectively.

Now, put Z =(X+,X−,X+) be a PSVF with three zones on S2 being X+ defined on R1 = {(x,y,z)∈
S2;z ≥ 1/2} and R3 = {(x,y,z) ∈ S2;z ≤−1/2} and X− defined on R2 = {(x,y,z) ∈ S2; | z |≤ 1/2}.

By Theorem A of [22] it follows that Z is topologically transitive on S2. So, from Theorem B

of [22], Z has a sliding-escaping connection. Also, notice that div(X±) = 0 and Z satisfies the

hypotheses of Theorem 7. In fact the Theorem B of [22] states that

“If Z is a transitive PSVF on S2 having a finite number of tangency points on Σ, then the following

statements hold:
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(i) The sliding and escaping regions are non-empty sets;

(ii) Every sliding and escaping regions are connected by some trajectory of Z. Moreover there are

an uncountable number of trajectories of Z connecting sliding and escaping regions”.

So every PSVF Z that satisfies Theorem B of [22] has a sliding-escaping connection in S2 and if

in addition, div(X±) = 0, satisfies the hypotheses of Theorem 7 .

Now, Corollary 7 ensures that there is Ω̃ ⊂ Ω such that med
(

Sat
(

A,T,Ω̃
))

= med(A). So, the

same analysis done in Example 4.1 can be repeated here and the PSVF (4.1) satisfies Theorems 8 and

9 and, consequently, the Corollary 8. As consequence, the Like-Poincaré’s Recurrence Theorem and

the Like-Birkhoff’s Theorem for PSVFs are valid in this context.
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CHAPTER 5

Concluding Remarks and Future Work

In the course of this work, despite the results obtained and compiled in the preprints [25, 26, 27,

28], we had questions that remain open. Below we present some of them.

In Chapter 3 using the time-one map induced on the quotient space of all positive global trajec-

tories, we construct conditions for a subset of trajectories of a PSVF to be associated with a subshift

of finite type through a topological conjugacy. Once this topological conjugacy is established, we

actually show that, under certain conditions, there is an ergodic equivalence between the space of

displacements with the Bernoulli measure and the space of the global trajectories of a PSVF with

the Lebesgue measure. This allowed us to obtain entropy and topological pressure for PSVFs. Fur-

thermore, we present examples of PSVFs whose entropy is r, for a positive real number r in the

quotient space. In view of this, the first question arises: what happens to the calculations of entropy

and pressure in the space of all trajectories outside the quotient space?

An interesting future work is to verify the validity of the variational principle and spectral theory

for the PSVFs discussed in Chapter 3. Also in this chapter, what is the behavior of a symmetry group

acting in the space of all trajectories of the piecewise smooth vector field Z̃k given by Remark 7 ?

We use the relationship between topological entropy, Hausdorff dimension and Minkowski di-

mensions (box dimension) for displacements of the finite type given by Simpson [48] to calculate

such quantities for PSVFs. However, a question remains: can the concept of Hausdorff dimension

and Minkowski dimension be adapted to the space of all trajectories of PSVFs?

In Chapter 4 we study PSVFs Z that present sliding-escaping connections whose Lebesgue mea-

sure are preserved. In [38] the authors conjecture that if a PSVF admits an invariant measure, then

the set formed by all possible trajectories that contain nonuniqueness solution points has zero mea-

surement. Furthermore, they proved that the conjecture is valid for Lipschitzian differential inclusion.

This fact motivate us to try to prove it when Z present a sliding-escaping connection (see Theorem B

[38]).

67
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