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Abstract

We investigate the existence of positive stationary solutions of Kirchhoff equations

∂2t u−M
(
x,

∫
Ω

|∇u|pdx
)
∆pu = f(x, u, ∂tu,∇u) (x, t) ∈ Ω× [0, T ), (K )

on a bounded domain Ω ⊂ RN , N ⩾ 2, driven by the p-Laplace, p > 1, spatially inhomo-

geneous coefficients M, and sources depending on first order terms with up to the natural

growth. Such solutions satisfy a nonlocal elliptic PDE of the form

−M
(
x,

∫
Ω

|∇u|pdx
)
∆pu = f(x, u,∇u) in Ω. (SK )

Unlike the coercive cases where the operator in (SK ) has a suitable lower order term

or Dirichlet boundary condition is prescribed, a lack of coerciveness takes place if (SK )

is supplied with homogeneous Neumann boundary condition. In this latter setting, we

prove an existence result which play the role of a sub-supersolution principle for positive

solutions of (SK ). As an application, some examples showing the existence of positive

stationary solutions of (K ) satisfying Neumann boundary condition are provided. To

overcome the lack of coerciveness on (SK ), we combine monotonicity and truncation

techniques, with elliptic regularity theory, in order to construct parametric approximate

problems of (SK ) which are coercive, and whose solutions converge, as the parameter

tends to zero, to a positive solution of (SK ).

Keywords: Kirchoff, Neumann boundary, p-Laplace, homogeneous, inhomogeneous,

elliptic partial differential equations, non-coercive, sub-supersolutions principle, positive

solutions.
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Resumo

Neste trabalho, investigamos a existência de soluções estacionárias positivas das equações

de Kirchhoff da forma:

∂2t u−M
(
x,

∫
Ω

|∇u|pdx
)
∆pu = f(x, u, ∂tu,∇u) (x, t) ∈ Ω× [0, T ), (K )

em um domı́nio limitado Ω ⊂ RN , N ⩾ 2, p-Laplaciano com p > 1, M um coeficiente

espacial não homogêneo e f dependendo de termos de primeira ordem com crescimento

até o natural. Tais soluções satisfazem uma EDP eĺıptica não local da forma

−M
(
x,

∫
Ω

|∇u|pdx
)
∆pu = f(x, u,∇u) em Ω. (SK )

Ao contrário dos casos coercivos em que o operador em (SK ) tem um termo de ordem

inferior adequado ou a condição de contorno de Dirichlet, no caso de uma condição de con-

torno homogênea de Neumann, ocorre uma falta de coercividade em (SK ). Neste último

cenário, provamos um resultado de existência que desempenha o papel de um prinćıpio

de sub-supersolução para soluções positivas de (SK ). Como aplicação, são fornecidos

exemplos mostrando a existência de soluções estacionárias positivas de (K ) satisfazendo

a condição de contorno de Neumann. Para superar a falta de coercitividade em (SK ),

combinamos técnicas de monotonicidade e truncamento, com a teoria da regularidade

eĺıptica, a fim de construir problemas aproximados paramétricos de (SK ) que são coer-

civos, e cujas soluções convergem, conforme o parâmetro tende a zero, para uma solução

positiva de (SK ).

Palavras-Chave: Kirchoff, Neumann, p-Laplace, homogêneo, não homogêneo, equações

diferenciais parciais eĺıpticas, não coercivo, métodos de sub-super soluções, soluções pos-

itivas.
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Introduction

General hyperbolic equations with non-local coefficients of the form

∂2t u−M
(
x,

∫
Ω

|∇u|pdx
)
∆pu = f(x, u, ∂tu,∇u) (x, t) ∈ Ω× [0, T ), (K )

supplied with initial and boundary conditions, where ∆p is the p-Laplace, p > 1, Ω ⊂ RN

is an open set, N ⩾ 1, and M ⩾ 0 is a continuous function on Ω × [0,∞), can be seen

as models for several problems studied in the literature. Many results concern the local

case M ≡ 1 with p = 2, with source and dissipation terms acting in Ω, with prescribed

Dirichlet or flux boundary conditions. As a brief citation, Kirchhoff introduced in [59]

the one dimensional equation

ρ
∂2u

∂t2
−

(
P0

H
+

E
2L

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2 dx

)
∂2u

∂x2
= 0,

where ρ,P0,H, E and L are some specific constants, which describes transverse oscillations

of a string by considering the effects of change of its length along the vibration. The first

results about the well-posedness and global existence in higher dimensions seem to go

back to Bernstein [17], Pohožaev [75], J.-L. Lions [68], Arosio & Panizzi [11], D’Ancona &

Spagnolo [31], Gobbino [51], among others. For more recent work dealing with spatially

homogeneous non-local terms M, we refer to the papers of Ghisi & Gobbino [50], Nakao

[73], Autuori, Pucci & Salvatori [13], Zhiji & Yunqing [84], Chueshov [28], see also Pucci &

Rădulescu [76] and its references. The PDE (K ) with spatially inhomogeneous coefficients

M = M(x, ·) can be seen as a model describing the small vertical vibrations of an elastic

string where the density of the material is not constant, as remarked in the works of

J.-L. Lions [68], Ĺımaco, Clark & Medeiros [67], and Figueiredo et al. [44]. The reader

interested in applications or modeling aspects is referred to the monographs of Lasiecka

& Triggiani [60] and Chueshov & Lasiecka [29], and many of the references therein.
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A relevant issue as well is the asymptotic behavior of solutions of (K ), in particular,

the existence of global attractors. In this setting, the stationary or equilibrium solutions

play an important role concerning the long term dynamics of time dependent PDEs with

some dissipation mechanism. The stationary solutions of the Kirchhoff equation (K )

satisfy an elliptic PDE of the form

−M
(
x,

∫
Ω

|∇u|pdx
)
∆pu = f(x, u,∇u) in Ω. (SK )

Results concerning the convergence to stationary solutions or the existence of global at-

tractors for damped wave equations included in the model equation (K ), with M ≡ 1

and f = f(x, u, ∂tu), can be found in the works of Lopes [71], Ghidaglia & Temam [49],

Arrieta, Carvalho & Hale [12], Ball [15], among others. This topic has also been studied in

Lasiecka & Triggiani [60] and Chueshov & Lasiecka [29], besides many references therein.

Another remarkable aspect regarding to hyperbolic equations which are included in the

model (K ) is the source depending on first order terms. Actually, if f = f(x, u, ∂tu,∇u)

additional difficulties impose on the stability issue, since it prevents to derive information

about the influence of the integral
∫
Ω
f(x, u, ∂tu,∇u)∂tu on the associated energy, involv-

ing the norm of (u, ∂tu), or the sign of its derivative. In this setting, the energy is not

necessarily decreasing, and an important ingredient for obtaining the appropriate decay

rates is not available. For related results about such not exhaustively explored class of

problems in the local case M ≡ 1 and p = 2 in (K ), we refer to the works of Caval-

canti, Lar’kin & Soriano [24], Guesmia [53], Liu & Chen [69], Zhang et al. [83], Aassila,

Cavalcanti & Domingos Cavalcanti [1], Cavalcanti & Guesmia [25], and their references.

The effect of non-local terms on elliptic equations, in particular, the stationary so-

lutions of (K ), have recently been studied in several works. Variational methods are

the main tool which many authors have used to obtain existence or multiplicity results

for spatially homogeneous coefficients M and source terms f = f(x, u) in (SK ). For

examples of results in that direction, we refer to Pucci & Rădulescu [76] and most of the

references quoted therein. In the case of coefficients M = M(x, ·) in (SK ) the literature

is less extensive, and the related works, up to our knowledge, only deal with Dirichlet

boundary condition. Such type of spatially inhomogeneous coefficients immerse (SK )

in a non-variational setting no matter the right-hand side is independent on first order

terms. Source terms f = f(x) or f = f(x, u) in (SK ) have been studied, for instance,

in the works of Chipot & Corrêa [26], Delgado et al. [36], Figueiredo et al. [44]. Singular

12



sources have been considered in Santos, Santos & Mishra [78], whereas gradient dependent

source terms in Alves & Corrêa [5] and Huy & Quan [54]. A common feature in most of

the previous papers, with respect to inhomogeneous coefficients, is their results concern

M(x, τ) = a(x) + b(x)τκ, with κ > 0, and a(·), b(·) positive continuous functions over Ω.

It is well known that elliptic PDEs with sources depending on first order terms have

been a topic of intensive research since some decades. Just to quote a few among the

papers which have long been influential on the subject, we refer to the works of Serrin

[79], Deuel & Hess [37], Brézis & Turner [23], Kazdan & Kramer [58], Amann & Crandall

[6], Boccardo, Murat & Puel [22], among others. For more recent results, we quote

the works of Arcoya et al. [8], De Figueiredo, Girardi & Matzeu [34], De Figueiredo

et al. [35], Faria, Miyagaki & Motreanu [42], Figueiredo & Madeira [43], Papageorgiou,

Rădulescu & Repovš [74], Ruiz [77], and their references. Regarding to the connections

with applications, elliptic PDEs involving first order terms appear in stochastic control

problems [61], Hamilton-Jacobi-Bellman equations [64], ergodic limits [61], stationary

solutions in the Kardar–Parisi–Zhang model of growing interfaces [57], and many others.

Elliptic PDEs with natural growth in the gradient of the form

−∆u = c(x)u+ µ(x)|∇u|2 + h(x) in Ω,

u = 0 on ∂Ω,
(1)

with coefficients satisfying certian sign or regularity conditions, have been studied by

several authors. In the coercive case (i.e., c(·) ⩽ c0 < 0 in Ω), the existence of solution

of (1) follows from the work of Boccardo, Murat & Puel [22] and its uniqueness from

the results in Barles et al. [16]. The weakly coercive case (for instance, if c ≡ 0) has

been treated by Abdellaoui, Dall’Aglio & Peral [3], and the so-called limit coercive case

(where c ⩽ 0 a.e. in Ω) has been investigated in Arcoya et al. [8]. The non-coercive case

(c ≩ 0 or c changing sign) seems to be first considered by Jeanjean & Sirakov [56]. More

recent improvements have been reached along the works of Arcoya et al. [8], de Coster &

Fernández [32], de Coster, Fernández & Jeanjean [33], De Figueiredo et al. [35], Jeanjean

& Ramos Quoirin [55], and Souplet [80], among others. In the case of Neumann boundary

condition, the existence of a positive solution of (1) in some situations with the p-Laplace,

p > 1, besides other related problems, is established below in Theorems 2.2, 2.3, 2.6.

Another class of elliptic equations with natural growth combines gradient and singular
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terms of the form 
−∆u = λu+ µ(x)

|∇u|2

uα
+ h(x) in Ω,

u = 0 on ∂Ω.

(2)

Existence, uniqueness or nonexistence of solution of (2) for λ ∈ R and α > 0, assuming

sign and/or regularity conditions on the coefficients µ(·) and h(·), have been considered, for

instance, in the works of Boccardo [20], Giachetti & Murat [47], Arcoya et al. [7], Arcoya &

Moreno-Mérida [9], Arcoya & Segura de Leon [10], Boccardo et al. [21]. Positive solutions

of singular elliptic equations with other growth in the gradient and different structural

hypotheses have been obtained in Faraci, Motreanu & Puglisi [40], Liu, Motreanu & Zeng

[70], Figueiredo & Madeira [43], see also the references therein. Examples showing the

existence of a positive solution of problems involving singular and gradient terms, but

supplied with Neumann boundary condition, can be found below in Theorems 2.4, 2.5.

The literature on elliptic PDEs with gradient terms and Neumann boundary condition

seems less extensive, but interest results have been proved. Actually, set the problem

−∆pu+ λ|u|p−2u+H(x,∇u) = 0 in Ω,

Bu = 0 on ∂Ω,
(3)

where

Bu =

 u (Dirichlet boundary condition)

∂νu (Neumann boundary condition).

For quasilinear operators including the case p = 2, and Hamiltonian H(x, ·) convex, P.-

L. Lions has proven in [63], among various results, that a solution of (3) with Dirichlet

boundary conditions exists if, and only if, a W 1,∞-subsolution exists. In such case, the

solution is unique. This result, among others, have been generalized by P.-L. Lions in [65]

by requiring less smoothness on the Hamiltonian, and many improvements along with

related issues have been obtained by Lasry & P.-L. Lions in [61]. Several of those results

have been extended to the quasilinear case p ∈ (1,∞) in (3) with Dirichlet boundary

conditions by Leonori & Porretta in [62]. If the boundary condition in (3) is of Neumann

type, then for p = 2 and H(x,∇u) = ψ(∇u)−f(x), with ψ of class C1 and f ∈ W 1,∞(Ω),

the existence of a unique solution of (3) has been proved in [63] for λ > 0 and Ω convex, a

hypothesis removed in [65] allowing any regular bounded open set Ω. A similar result for
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p ∈ (1,∞) and Neumann boundary condition has been obtained [62]. The main techniques

adopted in [61, 62, 63, 65] rely on gradient estimates−in the spirit of previous works by

Bernstein, Serrin, Lions, and Barles, see [62]−combined with the construction of suitable

barriers and/or sub-supersolutions. Furthermore, one also emphasizes in [61, 62, 63, 65]

the growth of the Hamiltonian H(x, ·) in (3) may be like an arbitrary positive power.

The existence of solution of Neumann boundary value problems of the form

L u+ α(x)|u|p−2u = g(x, u,∇u) in Ω,

∂νu = 0 on ∂Ω,
(4)

where the coefficient α(·) satisfies the coerciveness condition

α ∈ L∞(Ω), with α ⩾ 0 and α ̸≡ 0, (5)

have been recently studied for some operators L and functions g. For instance, Gasiński

& Papageorgiou have shown in [46] the existence of a positive solution of (4) for L u =

−div (a(u)∇u) and p = 2, where 0 < c1 ⩽ a(·) ⩽ c2 is a Lipschitz coefficient. Motreanu,

Sciammetta, & Tornatore have proven in [72] a sub-supersolution theorem which is used to

show the existence and multiplicity of positive solution of (4) with L u = −div (A(x,∇u)),

including double phase operators like the (p, q)-Laplace and others. The existence of a

positive solution of (4) with g having singular and convective terms has been shown by

Papageorgiou, Rădulescu & Repovš in [74], see also their references. We also refer to the

work of Zeng, Rădulescu & Winkert [82] on double phase multivalued obstacle problems

with convection terms and mixed boundary conditions, and the references therein.

It is worth noticing that, to our knowledge, the only results on the existence of positive

solutions of (4) with α ≡ 0, i.e., in a lack of coerciveness setting, have been obtained by

Guarnotta & Marano in [52] for a elliptic system where L u = −∆pu, p ∈ (1,∞). As a

matter of fact, the proofs of the results in [46, 72, 74, 82] seem to strongly depend on a

hypothesis like (5), which is not assumed in (2.1). Ultimately, the lack of coerciveness is

the main challenge to be overcome in order to establish the existence of a positive solution

of (2.1), and how to accomplish that is the main contribution of this thesis. The material

herein is divided in two parts:

(1) In the first part, we deal with the Neumann problem
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−M

(
x,

∫
Ω

|∇u|pdx
)
∆pu = f(x, u,∇u) in Ω,

|∇u|p−2∂νu = 0 on ∂Ω,

(6)

on bounded domains Ω ⊂ RN , N ≥ 2, p ∈ (1,∞), having smooth boundary ∂Ω with

outward unit normal ν. The source term f : Ω × R × RN → R is a Carathéodory

function (i.e., f(x, ·, ·) is continuous for a.e. x ∈ Ω, and f(·, s, ξ) is measurable for

all (s, ξ) ∈ R× RN) satisfying

(Hf ) |f(x, s, ξ)| ⩽ h(x, s)(1 + |ξ|q) for a.e. x ∈ Ω, ∀(s, ξ) ∈ R× RN ,

where q ∈ [0, p] and h : Ω×R → [0,∞) is a Carathéodory function which is bounded

on bounded sets of R uniformly with respect to the first variable. The coefficient

M is a continuous function satisfying

(HM) There exist m,M > 0 such that m ⩽ M(x, s) ⩽M, ∀(x, s) ∈ Ω× [0,∞).

With these hypothesis we prove the following theorem in Chapter 2:

Theorem 0.1 Assume (Hf ) and (HM) hold. Further, suppose there exist u, u ∈

W 1,∞(Ω) such that 0 ⩽ u ⩽ u a.e. in Ω, and satisfying the following conditions:

(i) f(x, u,∇u) ⩽ 0 ⩽ f(x, u,∇u) a.e. in Ω.

(ii)

∫
Ω

|∇u|p−2∇u∇φdx ⩾
1

M

∫
Ω

f(x, u,∇u)φdx, ∀φ ∈ W 1,p(Ω), φ ⩾ 0 a.e. in

Ω.

(iii)

∫
Ω

|∇u|p−2∇u∇φdx ⩽
1

M

∫
Ω

f(x, u,∇u)φdx, ∀φ ∈ W 1,p(Ω), φ ⩾ 0 a.e.

in Ω.

Then there exists a solution u ∈ C1,γ(Ω), γ ∈ (0, 1), of (2.1) with u ⩽ u ⩽ u a.e.

in Ω.

Examples where Theorem 0.1 is applied to prove existence of a positive solution are

discussed in Theorems 2.2-2.6
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(2) In the second part, we deal with Neumann problems with non-linear boundary

conditions of the form
−M

(
x,

∫
Ω

|∇u|pdx
)
∆pu = f(x, u,∇u) in Ω,

M
(
x,

∫
Ω

|∇u|pdx
)
|∇u|p−2∂νu = g(x, u) on ∂Ω,

(7)

and an interplay between f and g now takes place. The main result we prove is the

following

Theorem 0.2 Assume (Hf ) and (HM) hold. Suppose there exist ū, u ∈ W 1,∞(Ω)

such that 0 ≤ u ⩽ ū a.e. in Ω, satisfying the following conditions:

(i) f(x, u,∇u) ⩾ 0 and g(x, u) ⩾ 0, a.e. in Ω.

(ii)

∫
Ω

|∇u|p−2∇u∇φdx ⩽
1

M

∫
Ω

f(x, u,∇u)φdx+ 1

M

∫
∂Ω

g(x, u)φdHN−1,

∀φ ∈ W 1,p(Ω), φ ⩾ 0 a.e. in Ω.

(iii)

∫
Ω

|∇ū|p−2∇ū∇φdx ⩾
1

Q1

∫
Ω

f(x, ū,∇ū)φdx+ 1

Q2

∫
∂Ω

g(x, ū)φdHN−1,

∀φ ∈ W 1,p(Ω), φ ⩾ 0 a.e. in Ω.

where

(Q1, Q2) =



(M,m), if f(x, ū,∇ū) ⩽ 0 and g(x, ū) ⩾ 0,

(M,M), if f(x, ū,∇ū) ⩽ 0 and g(x, ū) ⩽ 0,

(m,M), if f(x, ū,∇ū) ⩾ 0 and g(x, ū) ⩽ 0.

(8)

Then there exists a solution u ∈ C1,γ(Ω) of (3.1), γ ∈ (0, 1), with 0 ≤ u ⩽ u ⩽ ū

a.e. in Ω.

Examples where Theorem 0.2 is applied to prove existence of positive solutions are

discussed in Theorems 3.2-3.6.

We remark that the requirement of M is bounded from above in (HM) is not essential.

Indeed, to keep the method of proof as free as possible of technicalities we have introduced
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(HM). At the end of each Chapter 2 and 3, we prove a version of Theorems 0.1 and 0.2

for coefficients M which may be unbounded from above.

Finally, the notation adopted along the work is standard. We only mention that w+ =

max(w(x), 0) and w− = max(−w(x), 0) are the positive and negative parts of a function

w, respectively, and “ ⇀ ” denotes the weak convergence of a sequence. Sometimes the

symbol “dx” is omitted from some integrals, but
∫
A
z or

∫
A
z dx denote the same Lebesgue

integral of a measurable function z over a Lebesgue measurable set A ⊂ RN . A constant

“C ” denotes a positive constant which may be different in a same line or line to line.
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Chapter 1

Preliminaries

The purpose of this chapter is to establish the notation used throughout this work,

stating several important classical results which will be also necessary. Unless specified, Ω

is a nonempty open set in the n-dimensional Euclidean space RN , N ≥ 2 and 1 < p <∞.

Definition 1.1 Let u, v ∈ L1
loc(Ω). A function v is the weak partial derivative ∂ju of u

for j = 1, 2, ..., n, if

∫
Ω

u∂jφdx = −
∫
Ω

vφ for all functions φ ∈ C∞
0 (Ω),

where C∞
0 (Ω) is the space of all infinitely differentiable functions with compact support in

Ω. The functions in C∞
0 (Ω) are called test functions. If the weak partial derivative ∂ju

exists, then it is uniquely defined up to a set of Lebesgue measure zero. It is worth noting

that classical derivatives are always weak derivatives, but in general the converse is not

true. The following example demonstrates this case.

Example 1.1 Let Ω = (−1, 1). Let u : Ω → R be defined by u(x) = |x|. Integration by

parts show that, for all φ ∈ C∞
0 (Ω),

∫
Ω

u(x)φ′(x)dx = −
∫
Ω

v(x)φ(x)dx,

19



where

v(x) =


−1, x < 0,

0, x = 0,

1, x > 0.

Hence u(x) has a derivative on (−1, 1) but is not differentiable at x = 0 in classical sense.

We use the notation ∇u = (∂1u, · · · , ∂Nu) to mean the vector whose coordinates are the

weak partial derivatives of u.

Definition 1.2 (Sobolev Spaces) The Sobolev space W 1,p(Ω) Consists of all functions

u ∈ Lp(Ω) such that their distributional gradients ∇u exist and belong to Lp(Ω). The space

W 1,p(Ω) is equipped with the norm

∥u∥W 1,p(Ω)
.
=

(∫
Ω

(|u|p + |∇u|p)dx
) 1

p

Moreover, the Sobolev space W 1,p
0 (Ω) of functions of W 1,p(Ω) with zero boundary values

is the completition of C∞
0 (Ω) in W 1,p(Ω), while a function u is in W 1,p

loc (Ω) if and only if

it belongs to W 1,p(Ω′) for every subset Ω′ ⋐ Ω. As usual, E ⋐ Ω means that the closure

of E, written as E, is a compact subset of Ω.

The Sobolev spaces W 1,p
0 (Ω) and W 1,p(Ω) are Banach spaces.

Theorem 1.2 If Ω ⊂ RN is a closed bounded domain with a C1 boundary then C∞(Ω)

is dense in W 1,p(Ω) in the norm ∥ · ∥W 1,p(Ω).

Proof See [18] p. 99. 2

Proposition 1.1 Suppose Ω ⊂ RN bounded. If f is λ-Hölder continuous in Ω, the it is

Hölder continuous in Ω for every exponent µ < λ

Proof See [41] p. 3. 2

Proposition 1.2 Let the scalar-valued functions f ,g be bounded, the function g being

such that inf |g| > 0. If f, g are λ-Hölder continuous then f/g is λ-Hölder continuous.

Proof See [41] p. 15. 2
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Theorem 1.3 (Continuous Sobolev embedding) Let Ω ⊂ RN be a domain satisfying

the cone condition (i.e, if there exists a finite cone C such that each x ∈ Ω is the vertex

of a finite cone Cx contained in Ω and congruent to C). Then the following embeddings

are continuous

(1) W k+1,p(Ω) ↪→ W 1,q(Ω) ∀1 ≤ q ≤ Np
N−kp

, with kp < N

(2) W k+1,p(Ω) ↪→ W 1,q(Ω) ∀q ≥ 1, with kp = N

Proof See [18] p. 212-213. 2

Theorem 1.4 (Compact Sobolev embedding) The embeddings in Theorem 1.3 are

compact for all 1 ≤ q < Np
(N−kp)

. Moreover, if Ω is of class C0.1 then following embeddings

are also compact

(1) W k+1,p(Ω) ↪→ C1(Ω), with kp > N .

(2) W k+1,p(Ω) ↪→ C1,θ(Ω), where 0 < θ < k − N
p
, with kp > N ≥ (k − 1)p.

Proof See [18] p. 212-213. 2

Theorem 1.5 Let Ω ⊂ RN be a Lipshitz domain. Let 1 ≤ p ≤ N and 1
q
= 1

p
− 1

N
. Then

W 1,p(Ω) ⊂ Lq(Ω),i.e. the identity mapping from W 1,p(Ω) to Lq is bounded.

Proof See [18] p. 213-214. 2

Lemma 1.1 Let u, ū ∈ W 1,p(Ω) satisfying u ⩽ ū, and let T be the truncation operator

defined by

Tu(x) =


ū(x) if u(x) ⩾ ū(x),

u(x) if u(x) ⩽ u(x) ⩽ ū(x),

u(x) if u(x) < u(x).

for all u ∈ W 1,p(Ω). Then T is a bounded continous mapping from W 1,p(Ω)(respectively,

Lp(Ω)) into itself.

Proof See [37]. 2

Lemma 1.2 Let Ω be a Ck,α domain in RN(with k ≥ 1) and let S be a bounded set in

Ck,α(Ω). Then S is precompact in Cj,β(Ω) if j + β < k + α.
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Proof See [48] p. 136. 2

Theorem 1.6 (Chain rule) Let f ∈ C1(R) with f ′ ∈ L∞(R). If u ∈ W 1,p(Ω) with

1 ≤ p <∞ then f ◦ u ∈ W 1,p(Ω), and

∇(f ◦ u) = f ′(u)∇u.

Proof See [18] p. 215. 2

Then if we set now u+
.
= max{u, 0} and u−

.
= max{−u, 0} we can set the following

corollaries:

Corollary 1.7 If u ∈ W 1,p(Ω), with 1 ≤ p < ∞ then u+, u− and |u| ∈ W 1,p(Ω) where

|u| = u+ + u−. Further, if we set

{u > 0} .
= {x ∈ supp u : u(x) > 0}

and

{u < 0} .
= {x ∈ supp u : u(x) < 0}

we have

∇u+ = χ{u>0}∇u and ∇u− = χ{u<0}∇u.

Proof See [18] p. 216. 2

Corollary 1.8 If u, v ∈ W 1,p(Ω) with 1 ≤ p < ∞, then max{u, v} and min{u, v} ∈

W 1,p(Ω).

Proof See [18] p. 216. 2

Corollary 1.9 If (uj), (vj) ⊂ W 1,p(Ω) (1 ⩽ p < ∞) are such that uj → u and vj → v,

then min{uj, vj} → min{u, v} and max{uj, vj} → max{u, v} in W 1,p(Ω), as j → ∞.

Proof See [18] p. 217. 2

Theorem 1.10 (Hölder’s inequality). Assume that f ∈ Lp(Ω) and g ∈ Lq(Ω) with

1 ⩽ p ⩽ ∞ and 1/p+ 1/q = 1. Then fg ∈ L1(Ω) and

∫
Ω

|fg| ⩽ ∥f∥p∥g∥q.
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Proof See [18] p. 92. 2

Theorem 1.11 (Young inequality) Let a, b ⩾ 0 be real numbers and p, q real numbers

with 1/p+ 1/q = 1, Then

ab ⩽
ap

p
+
bq

q
.

Proof See [18] p. 92. 2

Corollary 1.12 Let a, b ⩾ 0 be real numbers. Then

ab ⩽ εa2 +
b2

4ε
,

for all ε > 0.

Proof See [18] p. 92. 2

Theorem 1.13 Let (fn) be a sequence in Lp(Ω) and let f ∈ Lp(Ω) be such that ∥fn −

f∥p → 0. Then there exist a subsequence (fnk
), and a function h ∈ Lp(Ω), such that

(a) fnk
(x) → f(x) a.e in Ω.

(b) |fnk
(x)| ⩽ h(x), ∀k, a.e in Ω.

Proof See [18] p. 94. 2

Theorem 1.14 Lp(Ω) is reflexive for p ∈ (1,∞).

Proof See [18] p. 95. 2

Theorem 1.15 The space Cc(RN) is dense in Lp(RN) for all 1 ⩽ p <∞.

Proof See [18] p. 97. 2

Theorem 1.16 Assume that Ω is a separable measure space. Then Lp(Ω) is separable

for any 1 ⩽ p <∞.

Proof See [18] p. 98. 2

Proposition 1.3 W 1,p(Ω) is a Banach space for every 1 ⩽ p ⩽ ∞. W 1,p(Ω) is reflexive

for 1 < p <∞, and it is separable for 1 ⩽ p <∞.
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Proof See [18] p. 203. 2

Theorem 1.17 (Dominated Convergence Theorem) Let (fn) be a sequence of func-

tions in L1(Ω) satisfying

(a) fn(x) → f(x) a.e in Ω.

(b) there is a function g ∈ L1(Ω) such that for all n, |fn(x)| ⩽ g(x) a.e in Ω.

Then f ∈ L1(Ω), and ∥fn − f∥1 → 0.

Proof See [18] p. 90. 2

Theorem 1.18 (Vazquez Maximum Principle) Let u ∈ L1
loc(Ω) be such that

� ∆pu ∈ L1
loc(Ω) in the sense of distributions in Ω;

� u ⩾ 0 a.e in Ω;

� ∆pu ⩽ β(u) a.e in {x ∈ Ω : 0 < u(x) < c},

where c is a positive constant and β : [0, c] → R is a continuous non decreasing function

with β(0) = 0. Under the assumption that β(S) = 0 for some S > 0 or

∫ 1

0

(β(S)S)−
1
pdS = ∞

if β(S) > 0 for S > 0, then either u ≡ 0 a.e in Ω or u is strictly positive in Ω in the sense

that for every compact K ⊂ Ω there is a constant C(K) > 0 such that u ⩾ C(K) a.e in

K. In particular, if u vanishes a.e in a set of positive measure then it must vanish a.e in

Ω.

Proof See [81]. 2

Lemma 1.3 (Hopf’s Lemma) Let u ∈ C1(Ω) be such that ∆pu ∈ L2
loc(Ω), u ⩾ 0 a.e

in Ω, ∆pu ⩽ β(u) a.e in Ω with β : [0,∞) → R continuous, non-decreasing , β(0) = 0

and either β(s) = 0 for some s > 0 or β(s) > 0 for all s > 0 with

∫ 1

0

(β(S)S)−
1
pdS = ∞

Then if u does not vanish identically on Ω, it is positive everywhere in Ω.
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Moreover, if u ∈ C1(Ω ∪ {x0}) for some x0 ∈ ∂Ω that satisfies an interior sphere

condition and u(x0) = 0, then
∂u(x0)

∂ν
> 0 (1.1)

where ν is the interior normal vector at x0.

Proof See [81]. 2

Definition 1.3 Let E be a Banach space and B : E → E∗ an operator. We say that B

is pseudomonotone if un ⇀ u in E and

lim sup
n→∞

⟨Bun, un − u⟩ ≤ 0, (1.2)

then,

lim inf
n→∞

⟨Bun, un − v⟩ ≥ ⟨Bu, u− v⟩, ∀ v ∈ E. (1.3)

Where ⟨·, ·⟩ denotes the duality between E∗ and E.

Definition 1.4 A function f : Ω× R → R is a Carathéodory function if

� f(·, s) is measurable for each s ∈ R fixed.

� f(x, ·) is continuous in R for a.e x ∈ Ω fixed.

Theorem 1.19 (Minty-Browder) Let E be a reflexive and separable Banach space and

B : E → E∗ an operator satisfying

(i) B is coercive, i.e, lim∥u∥→∞
⟨Bu,u⟩
∥u∥ = +∞;

(ii) B is bounded (i.e, B transforms bounded sets in E into bounded sets in E∗);

(iii) B is pseudomonotone.

Then, B is surjective, that is, B(E) = E∗.

Proof See [19], Theorem 5.5. 2

Lemma 1.4 Let (an)n∈N and (bn)n∈N be two bounded real sequences. If limj→∞ bj = b ∈ R

then

lim inf
j→∞

(aj + bj) = lim inf
j→∞

aj + b and lim sup
j→∞

(aj + bj) = lim sup
j→∞

aj + b
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Lemma 1.5 (Tartar Inequality) If ξ, η ∈ R then

(
|ξ|p−2ξ − |η|p−2η

)
· (ξ − η) ≥

C|ξ − η|p if p ≥ 2

C̃ |ξ−η|2
(|ξ|+|η|)2−p if 1 < p < 2.

Proof See [27] p. 235. 2

Theorem 1.20 (Poincaré-Wirtinger inequality) Let 1 ≤ p < ∞ and Ω ⊂ RN be a

bounded connected open set with a Lipschitz boundary. Then there exists a constant C,

depending only on Ω and p, such that for every function u ∈ W 1,p(Ω) one has

∥u− uΩ∥Lp(Ω) ⩽ C∥∇u∥Lp(Ω),

where

uΩ =
1

|Ω|

∫
Ω

u(s)ds

is the average value of u over Ω, and |Ω| stands for the Lebesgue measure of Ω.

Proof See [38] p. 265. 2

1.1 A regularity result

Consider the elliptic equation in divergence form

−div A(x, u,∇u) = B(x, u,∇u) in Ω, (1.4)

with the Neumann boundary condition

A(x, u,∇u)ν = h(x, u) on ∂Ω. (1.5)

The following assumptions will be assumed.

Assumption (Ak): Let A = (A1, A2, . . . AN) ∈ C(Ω × R × RN ,RN). For every

(x, u) ∈ Ω × R, A(x, u, ·) ∈ C1(RN \ {0},RN), and there exist a nonnegative constant

k ≥ 0, a non-increasing continuous function λ : [0,∞) → (0,∞), and a non-decreasing

continuous function Λ : [0,∞) → (0,∞) such that for all x, x1, x2 ∈ Ω, u, u1, u2 ∈ R,

η ∈ RN \ {0}, and ξ = (ξ1, ξ2, . . . , ξN) ∈ RN , the following conditions are satisfied:
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� A(x, u, 0) = 0,

�

∑
i,j

∂Aj

∂ηi
(x, u, η)ξiξj ⩾ λ(|u|)(k + |η|2)

p−2
2 |ξ|2,

�

∑
i,j

∣∣∣∣∂Aj(x, u, η)

∂ηi

∣∣∣∣ ⩽ Λ(|u|)(k + |η|2)
p−2
2 ,

� |A(x1, u1, η)− A(x2, u2, η)| ≤ Λ(max{|u1|, |u2|})(|x1 − x2|β1 + |u1 − u2|β2)

× [(k + |η|2) p−2
2 + (k + |η|2) p−2

2 ]|η|(1 + | log(k + |η|2)|.

A typical example of the function A satisfying the assumption (Ak) is

A(x, u, ξ) = a(x, u)(k + |ξ|2)
p−2
2 ξ,

where a(x, u) is Hölder continuous in (x, u) and a(x, u) ⩾ δ > 0.

Assumption (B): B : Ω × R × RN → R, where B(x, u, η) is measurable in x and

continuous in (u, η), and

|B(x, u, η)| ≤ Λ(|u|)(1 + |η|p), ∀ (x, u, η) ∈ Ω× R× RN . (1.6)

Definition 1.5 u ∈ W 1,p(Ω), is called a bounded generalized solution of the boundary

value problem (1.4)-(1.5) if u ∈ L∞(Ω) and

∫
Ω

A(x, u,∇u)∇φdx =

∫
Ω

B(x, u,∇u)φdx+
∫
∂Ω

h(x, u)φds (1.7)

∀φ ∈ W 1,p(Ω) ∩ L∞(Ω).

Assumption (M): Suppose that Assumptions (Ak) and (B) are satisfied. There exists

a positive constant M such that for a bounded generalized solution u holds

ess sup
Ω

|u(x)| ≤M. (1.8)

Under the previous conditions, the following result holds

Theorem 1.1 (Fan, Lieberman) Assume Assumptions (Ak), (B) and (M) hold, and

let the boundary ∂Ω of Ω be of class C1,γ. Suppose h ∈ C(∂Ω × R,R) satisfying for
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x1, x2 ∈ ∂Ω, u1, u2 ∈ R,

|h(x1, u1)− h(x2, u2)| ≤ Λ(max{|u1|, |u2|})
(
|x1 − x2|β1 + |u1 − u2|β2

)
, (1.9)

where Λ is as in Assumption (Ak). If u ∈ W 1,p(Ω) ∩ L∞(Ω) is a bounded generalized so-

lution of the boundary value problem (1.4)-(1.5), then u ∈ C1,α(Ω), where α and |u|C1,α(Ω)

depend only on p,N,Λ(K), K, β1, β2, γ, sup |h(∂Ω× [−M,M ])|, and Ω.

Proof See [39, 66]. 2

Remark 1.1 (i) If A(x, u,∇u) = |∇u|p−2∇u, i.e., if the operator in (1.4) is the p-

Laplace, then assumption (Ak) is automatically satisfied.

(ii) Theorem 1.1 holds for variable exponents p = p(x) under appropriate conditions.
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Chapter 2

Positive stationary solutions of

Kirchhoff equations with first order

terms and lack of coerciveness:

homogeneous Neumann boundary

condition

This chapter is addressed to the existence of positive solutions of (SK ) under Neu-

mann boundary conditions. More precisely, we consider non-variational elliptic PDEs

with nonlocal terms of the form
−M

(
x,

∫
Ω

|∇u|pdx
)
∆pu = f(x, u,∇u) in Ω,

|∇u|p−2∂νu = 0 on ∂Ω,

(2.1)

on bounded domains Ω ⊂ RN , N ≥ 2, p ∈ (1,∞), having smooth boundary ∂Ω with

outward unit normal ν. The source term f : Ω×R×RN → R is a Carathéodory function

(i.e., f(x, ·, ·) is continuous for a.e. x ∈ Ω, and f(·, s, ξ) is measurable for all (s, ξ) ∈

R× RN) satisfying

(Hf ) |f(x, s, ξ)| ⩽ h(x, s)(1 + |ξ|q) for a.e. x ∈ Ω, ∀(s, ξ) ∈ R× RN ,

where q ∈ [0, p] and h : Ω × R → [0,∞) is a Carathéodory function which is bounded
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on bounded sets of R uniformly with respect to the first variable. The coefficient M is a

continuous function satisfying

(HM) There exist m,M > 0 such that m ⩽ M(x, s) ⩽M, ∀(x, s) ∈ Ω× [0,∞).

We seek for a positive solution of (2.1) in the following sense.

Definition 2.1 Suppose (Hf ) and (HM) hold. A function u ∈ W 1,p(Ω)∩L∞(Ω) is called

a solution of (2.1) if satisfies

∫
Ω

|∇u|p−2∇u∇φdx =

∫
Ω

f(x, u,∇u)

M
(
x,

∫
Ω

|∇u|pdx
) φdx, ∀φ ∈ W 1,p(Ω). (2.2)

The main result of this chapter on the existence of a positive solution of (2.1) reads as

follows.

Theorem 2.1 Assume (Hf ) and (HM) hold. Further, suppose there exist u, u ∈ W 1,∞(Ω)

such that 0 ⩽ u ⩽ u a.e. in Ω, and satisfying the following conditions:

(i) f(x, u,∇u) ⩽ 0 ⩽ f(x, u,∇u) a.e. in Ω.

(ii)

∫
Ω

|∇u|p−2∇u∇φdx ⩾
1

M

∫
Ω

f(x, u,∇u)φdx, ∀φ ∈ W 1,p(Ω), φ ⩾ 0 a.e. in Ω.

(iii)

∫
Ω

|∇u|p−2∇u∇φdx ⩽
1

M

∫
Ω

f(x, u,∇u)φdx, ∀φ ∈ W 1,p(Ω), φ ⩾ 0 a.e. in Ω.

Then there exists a solution u ∈ C1,γ(Ω), γ ∈ (0, 1), of (2.1) with u ⩽ u ⩽ u a.e. in Ω.

Remark 2.1 (i) Theorem 2.1 can be seen as a sub-supersolution principle for the

inhomogeneous non-local Neumann problem (2.1), which recovers the local case if

M ≡ 1. It is known that comparison and sub-supersolution principles do not hold

in general for stationary Kirchhoff equations, if formulated the same way as in the

local case, unless very specific conditions are fulfilled. This is discussed for Dirichlet

problems in Figueiredo & Suárez [45]. Still under Dirichlet boundary condition,

some versions of sub-supersolution principles for (SK ) with p = 2 can be found in

[4, 26, 45] for homogeneous coefficients M and sources f = f(x, u). The authors in

[5] consider p = 2 and sources f ⩾ 0 depending on first order terms, but assuming the

existence of a family of small functions (in a sense) playing the role of subsolutions.
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(ii) Theorem 2.1 seems to be new in the local case M ≡ 1, i.e., if the operator in (2.1) is

the p-Laplace for all p ∈ (1,∞). Furthermore, in the case of spatially inhomogeneous

coefficients M = M(x, ·) and Neumann boundary condition on (SK ), it seems also

new for sources f = f(x, u) not depending on first order terms.

(iii) The assumption on the coefficient M to be bounded from above is not essential in

Theorem 2.1. Actually, in order to keep the main ideas in evidence, we have stated

and proven Theorem 2.1 assuming (HM). An extension to the case of unbounded

from above coefficients M in (2.1) will be discussed below in Section 2.4.

Regarding to the proof of Theorem 2.1, to overcome the lack of coerciveness due to

the absence of a lower order term like (5) in the equation, besides the homogeneous Neu-

mann boundary condition, we proceed as follows. We introduce parametric ϵ-approximate

problems of (2.1) which are coercive. Combining monotonicity methods, truncation tech-

niques and cutoff functions, similarly as in [37, 63, 5], we obtain W 1,p(Ω)-solutions of

the ϵ-approximate problems. After providing uniform L∞-estimates on the ϵ-approximate

solutions, which in turn lead to C1,γ(Ω)-estimates uniformly on ϵ, it is possible to pass to

the limit on the ϵj-approximate problems for a sequence ϵj → 0, as j → ∞. This limiting

problem recovers the originally truncated problem, giving rise to a solution of (2.1).

Some examples establishing the existence of a positive solution of (2.1) are given in

Section 2.3, where the following source terms, including non-Lipschitz cases, are consid-

ered:

• f(x, u,∇u) = c(x)up−1 − us + a(x)|∇u|q − g(x), with s ∈ (p− 1,∞), q ∈ [0, p], g ⩽ 0;

(semipositone gradient dependent sources)

• f(x, u,∇u) = c(x)ur−us+g(x, u)|∇u|q, with 0 < r < s, q ∈ [0, p], g(x, ·) is continuous;

(sources having gradient terms with continuous coefficients)

• f(x, u,∇u) = c(x)um − us + a(x)
|∇u|q

uα
, with 0 < m < s, α > 0, q ∈ [0, p];

(sources having gradient terms with singular coefficients)

• f(x, u,∇u) = 1

uθ
+ a(x)

|∇u|q

uβ
− c(x)ur, with r, β, θ > 0, q ∈ [0, p];

(sources combining singular and gradient terms with singular coefficients)
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• f(x, u,∇u) = g(x)− λ|u|p−2u− b(x)ψ (∇u) , with ψ(·) ≈ | · |q at infinity, q ∈ [0, p];

(sources arising in stochastic control problems)

where a, b, c, g ∈ L∞(Ω), which may be indefinite sign coefficients in some cases. The

precise statements and proofs are contained in Section 2.3, see Theorems 2.2−2.6.

Let us briefly describe how the chapter is organized. In Section 2.1, we introduce

ϵ-approximate problems of (2.1) which are coercive, and set up the limiting problem, as

ϵj → 0. Theorem 2.1 is proved in Section 2.2. Positive solutions of (2.1) are constructed

in Section 2.3 through examples using the source terms above described. In Section

2.4, an extension of Theorem 2.1 for coefficients M which are unbounded from above is

established.

Finally, the notation adopted along the paper is standard. We only mention that w+ =

max(w(x), 0) and w− = max(−w(x), 0) are the positive and negative parts of a function

w, respectively, and “ ⇀ ” denotes the weak convergence of a sequence. Sometimes the

symbol “dx” is omitted from some integrals, but
∫
A
z or

∫
A
z dx denote the same Lebesgue

integral of a measurable function z over a Lebesgue measurable set A ⊂ RN . A constant

“C ” denotes a positive constant which may be different in a same line or line to line.

2.1 Approximate coercive problems

Let us choose a fixed R0 > 0 satisfying

max
(
∥u∥1,∞, ∥u∥1,∞

)
⩽ R0, (2.3)

where ∥ · ∥1,∞ denotes the usual norm in W 1,∞(Ω). Let TR(τ) = max(−R,min(τ, R)),

∀τ ∈ R, be the truncation function for R ⩾ R0, and define the truncated function

fR(x, τ, ξ)
def
= f(x, τ, TR(ξ1), · · · , TR(ξN)), (2.4)

for a.e. x ∈ Ω, for all (τ, ξ) ∈ R× RN , where ξ = (ξ1, · · · , ξN) ∈ RN . Some properties of

fR which will be used later on are described in the following lemma.

Lemma 2.1 Under the hypotheses in Theorem 2.1 one has for all R ⩾ R0 :

• fR(·, ·, ξ) = f(·, ·, ξ) if |ξ| ⩽ R.
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• fR(·, ·, ·) ⩽ h(·, ·)
(
1 +N qRq

)
.

• fR(·, u,∇u) = f(·, u,∇u) and fR(·, u,∇u) = f(·, u,∇u) a.e in Ω.

• |fR(·, ·, ξ)| ⩽ h(·, ·)(1 + |ξ|q), ∀ξ ∈ RN .

Proof Most of the cases are straightforward from (2.3) and (2.4). We observe that

|TR(s)| ⩽ |s|,∀ s ∈ R, (2.5)

so one has

|fR(x, s, ξ)| ⩽ h(x, s)

1 +( N∑
i=1

|TR(ξi)|2
) q

2

 ⩽ h(x, s)

1 +( N∑
i=1

|(ξi)|2
) q

2

 ⩽ h(x, s)(1 + |ξ|q).

The proof is complete. 2

2.1.1 Coercive parametric ϵ-approximate problem

Tacking into account the lack of coerciveness on the Neumann problem (2.1), we introduce

the parametric ϵ-approximate problem

−∆puϵ + ϵ |uϵ|p−2uϵ = FR(uϵ)−Υ(uϵ) in Ω,

|∇uϵ|p−2∂νuϵ = 0 on ∂Ω,
(2.6)

for all ϵ > 0, where FR : W 1,p(Ω) → (W 1,p(Ω))
∗
, is given by

⟨FR(u), v⟩ =
∫
Ω

fR(x, Tu,∇Tu)

M
(
x,

∫
Ω

|∇u|pdx
) v dx, ∀v ∈ W 1,p(Ω), (2.7)

using the truncation operator

Tu(x) =


ū(x) if u(x) ⩾ ū(x),

u(x) if u(x) ⩽ u(x) ⩽ ū(x),

u(x) if u(x) ⩽ u(x),

(2.8)
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and Υ : W 1,p(Ω) → (W 1,p(Ω))
∗
is given by

⟨Υ(u), v⟩ =
∫
Ω

υ(x, u)

M
(
x,

∫
Ω

|∇u|pdx
) v dx, ∀v ∈ W 1,p(Ω), (2.9)

where υ(·, u) = −(u− u)ℓ+ + (u− ū)ℓ+, with ℓ ∈ (0, p− 1) fixed.

To prove that problem (2.6) has a solution, let Bϵ : W
1,p(Ω) →

(
W 1,p(Ω)

)∗
be given by

⟨Bϵu, v⟩ =
∫
Ω

|∇u|p−2∇u∇v dx + ϵ

∫
Ω

|u|p−2uv dx − ⟨FR(u), v⟩+ ⟨Υ(u), v⟩. (2.10)

for u, v ∈ W 1,p(Ω). We shall apply the surjectivity theorem for pseudo-monotone coercive

operators (see [19], Theorem 5.5) to obtain a solution uϵ ∈ W 1,p(Ω) of (2.6) for all ϵ > 0.

Lemma 2.2 Assume (HM) holds. Then Bϵ is bounded and coercive for all ϵ > 0.

Proof From direct calculations using W 1,p(Ω) ↪→ L1(Ω) (see Theorem 1.3)

|⟨FR(u), u⟩| ⩽ C∥u∥W 1,p(Ω), ∀u ∈ W 1,p(Ω). (2.11)

Further, there exist constants C1, C2 > 0 satisfying

|⟨Υ(u), u⟩| ⩽
∫
Ω

|υ(x, u)u|

M
(
x,

∫
Ω

|∇u|pdx
) dx ⩽

∫
Ω

C1

m
|u|dx+

∫
Ω

C2

m
|u|ℓ+1dx

⩽ C∥u∥W 1,p(Ω) + C∥u∥ℓ+1
W 1,p(Ω), ∀u ∈ W 1,p(Ω). (2.12)

Using previous estimates and (2.10), for some constant C > 0 we have

⟨Bϵu, u⟩ ⩾ ∥u∥p1,p,ϵ − C∥u∥W 1,p(Ω) − C∥u∥ℓ+1
W 1,p(Ω)

for all u ∈ W 1,p(Ω), where ∥ · ∥1,p,ϵ denotes the norm

∥u∥p1,p,ϵ =
∫
Ω

|∇u|p dx+ ϵ

∫
Ω

|u|p dx, (2.13)

which is equivalent to the usual norm ∥ · ∥W 1,p(Ω). Since ℓ ∈ (0, p− 1), one has

⟨Bϵu, u⟩ ⩾ Cϵ∥u∥pW 1,p(Ω) − C∥u∥W 1,p(Ω) − C∥u∥ℓ+1
W 1,p(Ω) −→ ∞,
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as ∥u∥W 1,p(Ω) → ∞. This shows Bϵ is coercive for all ϵ > 0. It is not difficult to infer from

(HM) and the definitions of FR and Υ that Bϵ is bounded (i.e., transforms bounded sets

into bounded sets) for all ϵ > 0. The proof is complete. 2

Lemma 2.3 Assume (HM) holds. Then Bϵ is a pseudo-monotone operator for all ϵ > 0.

Proof Let (uj) ⊂ W 1,p(Ω) satisfying uj ⇀ u in W 1,p(Ω) and lim sup
j→∞

⟨Bϵuj, uj − u⟩ ⩽ 0.

One needs to show that

lim inf
j→∞

⟨Bϵuj, uj − v⟩ ⩾ ⟨Bϵu, u− v⟩ ∀v ∈ W 1,p(Ω). (2.14)

Passing to a not relabeled subsequence satisfying uj → u in Lp(Ω), from (HM) and the

definitions of FR and Υ, it follows that∣∣∣∣ ∫
Ω

1

M
(
x,

∫
Ω

|∇uj|pdx
) fR(x, Tuj,∇Tuj)(uj − u)dx

∣∣∣∣ ⩽ C ∥uj − u∥L1(Ω)
j→∞−→ 0,

∣∣∣∣ ∫
Ω

1

M
(
x,

∫
Ω

|∇uj|pdx
) υ(x, uj)(uj − u)

∣∣∣∣ ⩽ C ∥υ(·, uj)∥
L

ℓ+1
ℓ (Ω)

∥uj − u∥Lℓ+1(Ω)
j→∞−→ 0.

Collecting the information above we have

lim sup
j→∞

⟨Bϵuj, uj − u⟩ = lim sup
j→∞

∫
Ω

|∇uj|p−2∇uj∇(uj − u)dx

= lim sup
j→∞

∫
Ω

(
|∇uj|p−2∇uj − |∇u|p−2∇u

)
∇(uj − u)dx ⩾ 0.

Thus we obtain

∫
Ω

(
|∇uj|p−2∇uj − |∇u|p−2∇u

)
∇(uj − u)dx

j→∞−→ 0,

so (uj) strongly converges to u in W 1,p(Ω) (see [19]). Taking into account that Bϵ is

continuous, we conclude that (2.14) follows. 2

Lemma 2.4 Assume (HM) holds. Then (2.6) has a solution uϵ ∈ W 1,p(Ω) for all ϵ > 0.

Proof From Lemmas 3.1−3.2, all hypotheses of the surjectivity theorem in [19], Theorem

5.5, are fulfilled. Hence Bϵ is surjective, and there exists uϵ ∈ W 1,p(Ω) satisfying Bϵuϵ = 0

for all ε > 0, i.e., uϵ is a solution of (2.6) in accordance with Definition 2.1. 2
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2.1.2 Passing to the limit in (2.6)

We are now in position to pass to the limit in the coercive parametric problem (2.6) as a

final stage before proving Theorem 2.1.

Lemma 2.5 Assume the hypotheses in Theorem 2.1 hold. Then for all sequence ϵj → 0,

as j → ∞, the corresponding sequence (uϵj) of solutions of (2.6) strongly converges in

W 1,p(Ω) to a solution uR ∈ W 1,p(Ω) ∩ L∞(Ω) of the limiting problem

 −∆pu = FR(u)−Υ(u) in Ω,

|∇u|p−2∂νu = 0 on ∂Ω,
(2.15)

where FR and Υ are given by (2.7) and (2.9), respectively.

Proof The proof will be split into some steps.

Step 1: uϵ ⩾ 0 a.e in Ω for all ϵ > 0.

Indeed, recalling (2.13) and taking uϵ− as test function in (2.6), we have

−∥uϵ−∥
p
1,p,ϵ =

∫
Ω

1

M
(
x,

∫
Ω

|∇uϵ|pdx
)[fR(x, Tuϵ,∇Tuϵ)− υ(x, uϵ)

]
uϵ− dx

=

∫
{uϵ⩽u}

1

M
(
x,

∫
Ω

|∇uϵ|pdx
)fR(x, u,∇u)uϵ−dx

+

∫
{uϵ⩽u}

1

M
(
x,

∫
Ω

|∇uϵ|pdx
)(u− uϵ)

ℓ
+uϵ−dx.

Since last two terms in the right-hand side in previous relation are non-negative, we obtain

∥uϵ−∥
p
1,p,ϵ = 0. Hence uϵ = uϵ+ a.e. in Ω for all ϵ > 0, and Step 1 follows.

Step 2: uϵ ⩽ u a.e in Ω for all ϵ > 0.

Taking v = (uϵ − u)+ as test function in (2.6), one has

∫
Ω

[
|∇uϵ|p−2∇uϵ∇(uϵ−u)++ϵ|uϵ|p−2uϵ(uϵ−u)+

]
=

∫
Ω

[
fR(x, Tuϵ,∇Tuϵ)−υ(x, uϵ)

]
M
(
x,

∫
Ω

|∇uϵ|pdx
) (uϵ−u)+.
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From (2.7), (2.9), and (HM), we deduce

∫
Ω

|∇uϵ|p−2∇uϵ∇(uϵ−u)+ dx ⩽
1

M

∫
Ω

f(x, u,∇u)(uϵ−u)+ dx−
∫
Ω

(uϵ − u)ℓ+1
+

M
(
x,

∫
Ω

|∇uϵ|pdx
) dx.

Thanks to hypothesis (ii) in Theorem 2.1, we have

∫
Ω

|∇uϵ|p−2∇uϵ∇(uϵ − u)+ dx ⩽
∫
Ω

|∇u|p−2∇u∇(uϵ − u)+ dx−
∫
Ω

(uϵ − u)ℓ+1
+

M
(
x,

∫
Ω

|∇uϵ|pdx
) dx,

what ensures

0 ⩽
∫
Ω

(
|∇uϵ|p−2∇uϵ − |∇u|p−2∇u

)
∇(uϵ − u)+ dx ⩽ −

∫
Ω

(uϵ − u)ℓ+1
+

M
(
x,

∫
Ω

|∇uϵ|pdx
) dx ⩽ 0.

Hence ∫
Ω

(uϵ − u)ℓ+1
+

M
(
x,

∫
Ω

|∇uϵ|pdx
) dx = 0,

and (uϵ − u)+ = 0 a.e in Ω for all ϵ > 0, so Step 2 follows.

Step 3: ∀ϵj → 0, as j → ∞, (uϵj) strongly converges in W 1,p(Ω) to a solution uR of

(2.15).

Indeed, previous steps ensure (uϵ) is bounded in L∞(Ω) since 0 ⩽ uϵ ⩽ ∥u∥∞ a.e in Ω for

all ϵ > 0. Using uϵ as test function in (2.6), from (2.11) and (2.12) we have

∫
Ω

|∇uϵ|pdx+ ϵ

∫
Ω

|uϵ|pdx ⩽
C

m

∫
Ω

|uϵ|dx+
C

m

∫
Ω

|uϵ|ℓ+1dx ⩽ C(R, ∥u∥∞), (2.16)

where C > 0 does not depend on ϵ > 0, so (uϵ) is bounded in W 1,p(Ω). Thus, by choosing

ϵj → 0, there exists uR ∈ W 1,p(Ω) satisfying

• uϵj ⇀ uR in W 1,p(Ω),

• uϵj → uR in Lp(Ω),

as j → ∞. After using uϵj − u as a test function in (2.6), and following the arguments
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used in (2.16) and Step 2, one infers

∫
Ω

[
|∇uϵj |p−2∇uϵj − |∇uR|p−2∇uR

]
∇(uϵj − uR) dx ⩽ C(m,R, ∥u∥∞)

∫
Ω

|uϵj − uR| dx

Therefore ∫
Ω

|∇(uϵj − uR)|p dx
j→∞−→ 0,

and (uϵj) strongly converges to uR in W 1,p(Ω). Hence it is possible to pass to the limit in

(2.6) (equivalently, in the equation Bϵjuϵj = 0 on
(
W 1,p(Ω)

)∗
, given by (2.10)) to obtain

uR ∈ W 1,p(Ω) ∩ L∞(Ω) is a solution of (2.15). The lemma is proved. 2

2.2 Proof of Theorem 2.1

Proof of Theorem 2.1 From steps 1 and 2 in the proof of Lemma 2.5 we have 0 ⩽

uR ⩽ u a.e. in Ω, where uR satisfies (2.15). We claim that u ⩽ uR a.e. in Ω. Indeed,

using (u− uR)+ as a test function in (2.15), from (2.7) and (2.9) we have

∫
Ω

|∇uR|p−2∇uR∇(u− uR)+ dx =

∫
Ω

fR(x, u,∇u)(u− uR)+ + (u− uR)
ℓ+1
+

M
(
x,

∫
Ω

|∇uR|pdx
) dx.

This implies on the one hand,

∫
Ω

|∇uR|p−2∇uR∇(u− uR)+ ⩾
1

M

∫
Ω

f(x, u,∇u)(u− uR)+ +

∫
Ω

(u− uR)
ℓ+1
+

M
(
x,

∫
Ω

|∇uR|pdx
) ,

and, on the other hand, thanks to hypothesis (iii) in Theorem 2.1,

∫
Ω

|∇uR|p−2∇uR∇(u−uR)+ dx ⩾
∫
Ω

|∇u|p−2∇u∇(u−uR)+ dx+
∫
Ω

(u− uR)
ℓ+1
+

M
(
x,

∫
Ω

|∇uR|pdx
) dx.

But this estimate in turn leads to

∫
Ω

1

M
(
x,

∫
Ω

|∇uR|pdx
)(u− uR)

ℓ+1
+ dx = 0,
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what ensures (u− uR)
ℓ+1
+ = 0 a.e. in Ω. Thus 0 ⩽ u ⩽ uR ⩽ u a.e. in Ω for all R ⩾ R0,

where R0 is given by (2.3). From (2.9) it follows that υ = 0, so, from (2.15), uR is a weak

solution of the elliptic problem


−∆pu =

fR(·, u(·),∇u(·))

M
(
·,
∫
Ω

|∇u|pdx
) in Ω,

|∇u|p−2∂νu = 0 on ∂Ω.

(2.17)

Recall that ∥u∥1,∞ and ∥u∥1,∞ do not depend on R large, and let us denote uR by u.

Since ∥u∥∞ is independent on R ⩾ R0, from Lemma 2.1 we can apply the regularity

results of Lieberman [66] or Fan [39] to ensure that u ∈ C1,γ(Ω), where γ ∈ (0, 1) and

∥u∥C1,γ(Ω) depend on certain ingredients, but are independent on R ∈ [R0,∞). Hence we

have fR = f for all R ∈ [R0,∞), and u is a solution of (2.1). The proof is complete. 2

2.3 Positive solutions of non-coercive BVPs: exam-

ples

We discuss some examples of non-coercive elliptic boundary value problems (BVPs, for

short) as (2.1) having, at least, one positive solution. The source terms included appear in

stochastic control type problems, population genetics or harvesting problems, or involve

continuous or singular coefficients. Those examples extend or complement previous results

in the literature available in the case M ≡ 1 or with Dirichlet boundary conditions in

(2.1).

1) Semipositone or logistic gradient dependent sources. Set the problem
−M

(
x,

∫
Ω

|∇u|pdx
)
∆pu = c(x)up−1 − us + a(x)|∇u|q − g(x) in Ω,

|∇u|p−2∂νu = 0 on ∂Ω,

u > 0 on Ω.

(2.18)

The exponents s, q and the coefficients a(·), c(·), g(·) satisfy, respectively,

(A1) s ∈ (p− 1,∞), q ∈ [0, p].

(A2) a, c, g ∈ L∞(Ω), with g(·) ⩾ 0, c(·) ⩾ c0 > 0 a.e. in Ω.
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Previous assumptions turn (2.18) into a semipositone (or non-positone) problem, since

its right-hand side, given by the function f(x, τ, ξ) = c(x)τ p−1 − τ s + a(x)|ξ|q − g(x) for

(x, τ, ξ) ∈ Ω × [0,∞) × RN , satisfies f(·, 0, 0) ⩽ 0. The existence of positive solutions

of semipositone problems with Neumann boundary condition has been obtained in [2]

(M ≡ 1 and p = 2 with convective terms) with sources not depending on the gradient,

and in [30] (M ≡ 1 and p = 2) for gradient dependent sources, see also their references.

If g ≡ 0 in (2.18), one has the logistic equation plus a convection term, see [5, 43] for the

existence of a positive solution in the case of Dirichlet boundary condition. The result we

will prove regarding to (2.18) is the following:

Theorem 2.2 Assume (A1), (A2) and (HM) hold. Then, for all c0 > 0 sufficiently large,

there exists a solution u ∈ C1,γ(Ω) of (2.18), γ ∈ (0, 1), satisfying u > 0 on Ω. If ∥g∥∞ is

sufficiently small, such solution exists for all c0 > 0.

2) Sources having gradient terms with continuous coefficients. Set the problem
−M

(
x,

∫
Ω

|∇u|pdx
)
∆pu = c(x)ur − us + g(x, u)|∇u|q in Ω,

|∇u|p−2∂νu = 0 on ∂Ω,

u > 0 on Ω.

(2.19)

where the exponents r, s, q, and the coefficient c(·), satisfy

(A3) r, s ∈ (0,∞), with r < s, and q ∈ [0, p].

(A4) c ∈ L∞(Ω), with c(·) ⩾ c0 > 0 a.e. in Ω.

Dirichlet problems involving continuous coefficients have been studied, for instance, in

[3, 6, 16, 22, 23, 34, 35, 37, 42, 43, 58, 77, 79], whereas Neumann problems in [6, 46, 52, 72].

In the case of (2.19), some examples of coefficients g, not necessarily being Lipschitz

functions, are g(x, u) = a(x) sinu, g(x, u) = a(x)|u|κ, g(x, u) = a(x)e|u|
κ
, where κ > 0

and a ∈ L∞(Ω) is an indefinite weight. More generally, g : Ω × R → R in (2.19) may

be any Carathéodory function which is bounded on bounded sets of R uniformly with

respect to the first variable. The existence result we will prove with respect to (2.19) is

the following:
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Theorem 2.3 Assume (A3), (A4), and (HM) hold. Then there exists a solution u ∈

C1,γ(Ω) of (2.19), γ ∈ (0, 1) satisfying u > 0 on Ω.

3) Sources having gradient and singular terms. Neumann problems with first order

and singular terms are contained in next two examples. Actually, we consider convective

terms with singular coefficients of the form
−M

(
x,

∫
Ω

|∇u|pdx
)
∆pu = c(x)um − us + a(x)

|∇u|q

uα
in Ω,

|∇u|p−2∂νu = 0 on ∂Ω,

u > 0 on Ω,

(2.20)

or sources having a combination of convective and singular terms of the form
−M

(
x,

∫
Ω

|∇u|pdx
)
∆pu =

1

uθ
− c(x)ur + a(x)

|∇u|q

uβ
in Ω,

|∇u|p−2∂νu = 0 on ∂Ω.

u > 0 on Ω.

(2.21)

The exponents α, β, θ,m, r, s, q, and the coefficients a(·), c(·) in (2.20) and (2.21), satisfy

(A5) α ∈ (0,∞), and m, s ∈ (0,∞), with m < s.

(A6) r, β, θ ∈ (0,∞).

(A7) q ∈ [0, p] and a, c ∈ L∞(Ω), with c(·) ⩾ c0 > 0 a.e. in Ω.

Positive solutions of Dirichlet problems with sources depending on singular and first order

terms have been studied in [20, 47, 7, 9, 10, 21, 40, 43, 70], where natural growth in the

gradient is included in some works. For Neumann problems, the existence of positive

solutions with sources involving singular and gradient terms has been studied in [74, 52]

for some classes of coercive or non-coercive problems, respectively. Regarding to the

non-coercive problems (2.20) and (2.21) having up to the natural growth in the gradient,

and with right-hand sides which are not Lipschitz functions in some cases, we prove the

following:

Theorem 2.4 Assume (A5), (A7), and (HM) hold. Then there exists a solution u ∈

C1,σ(Ω) of (2.20), σ ∈ (0, 1), satisfying u > 0 on Ω.
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Theorem 2.5 Assume (A6), (A7), and (HM) hold. Then there exists a solution u ∈

C1,ϱ(Ω) of (2.21), ϱ ∈ (0, 1) satisfying u > 0 on Ω.

4) Sources of stochastic control problems type. Let us set the problem


−M

(
x,

∫
Ω

|∇u|pdx
)
∆pu+ λ|u|p−2u+ b(x)ψ (∇u) = g(x) in Ω,

|∇u|p−2∂νu = 0 on ∂Ω,

(2.22)

where p ∈ (1,∞) and λ > 0 is a parameter, assuming the following conditions:

(A8) ψ : RN → R is a continuous function satisfying |ψ(ξ)| ⩽ C(1+ |ξ|p), for all ξ ∈ RN .

(A9) b, g ∈ L∞(Ω), with g(x) ⩾ b(x)ψ(0) for a.e x ∈ Ω.

In the local case M ≡ 1, problems of the form (2.22) appear, under some hypotheses,

as models in stochastic control problems or in the study of some problems involving

Hamilton-Jacobi-Bellman equations, see for instance [63, 64, 65, 61, 62]. The case M ≡ 1

and p = 2 in (2.22) has been studied in [63], assuming b ≡ 1, g ∈ W 1,∞(Ω), ψ ∈

C1(Ω×RN ,R), and Ω convex, but allowing ψ to grow as any arbitrary power. Hamiltonian

terms H more general than H(x, ξ) = b(x)ψ(ξ) in (2.22), also growing as arbitrary powers,

have been considered in [65, 61] (M ≡ 1 and p = 2 with a non-divergence form operator)

and [62] (M ≡ 1 and p ∈ (1,∞)), but requiring H ∈ C1(Ω × RN ,R) and some further

conditions. The result we shall prove with respect to (2.22) is the following:

Theorem 2.6 Assume (A8) and (HM) hold. Further, suppose (A9) holds with g ̸≡ 0 or

b ̸≡ 0 and ψ(0) ̸= 0. Then there exists a solution u ∈ C1,γ(Ω) of (2.22), γ ∈ (0, 1), not

identically zero, satisfying u ⩾ 0 on Ω.

2.3.1 Proofs of Theorems 2.2−2.6

Proof of Theorem 2.2 Set the function f(x, τ, ξ) = c(x)|τ |p−1 − |τ |s + a(x)|ξ|q − g(x),

for (x, τ, ξ) ∈ Ω× R× RN , which satisfies (Hf ) by (A1)− (A2). Note that

f(x, τ, 0) = c(x)τ p−1 − τ s − g(x) ⩾ τ p−1(c0 − τ s−p+1)− ∥g∥∞, ∀τ > 0.

Choosing a constant 0 < τ0 < min
{
1, 1

2
c

1
s−p+1

0

}
, we obtain u = τ0 satisfies (i), (iii) in

Theorem 2.1 provided that c0 is sufficiently large. Further, at this point, one can see the
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same conclusion is achieved without any restriction on c0 > 0 if it is possible to choose

∥g∥∞ sufficiently small. Now, on the other hand, one has

f(x, τ, 0) ⩽ τ p−1(∥c∥∞ − τ s−p+1) + ∥g∥∞, ∀τ > 0.

By choosing u = τ1 > τ0 > 0 sufficiently large, we obtain u satisfies (i), (ii) in Theorem

2.1. Hence Theorem 2.1 ensures the existence of a solution u ∈ C1,γ(Ω), γ ∈ (0, 1), of

(2.18) satisfying τ0 ⩽ u ⩽ τ1 in Ω. The proof is complete. 2

Proof of Theorem 2.3 Let the function f(x, τ, ξ) = c(x)|τ |r − |τ |s + g(x, |τ |)|ξ|q, for

(x, τ, ξ) ∈ Ω× R× RN . From (A3)− (A4), f satisfies (Hf ). Since

f(x, τ, 0) ⩾ τ r(c0 − τ s−r), ∀τ > 0,

it suffices to consider u = τ2 > 0, with τ2 ∈ (0, c
1

s−r

0 ), to have (i), (iii) in Theorem 2.1 to

be satisfied. Analogously, using the estimate

f(x, τ, 0) ⩽ τ r(∥c∥∞ − τ s−r), ∀τ > 0,

we infer that u = τ3 > 0, where τ3 ∈
(
max{τ2, ∥c∥

1
s−r
∞ },∞

)
, will satisfy (i), (ii) in Theorem

2.1. Therefore, from Theorem 2.1, there exists a solution u ∈ C1,γ(Ω), γ ∈ (0, 1), of (2.19)

satisfying τ2 ⩽ u ⩽ τ3 in Ω. This proof is complete. 2

Proof of Theorem 2.4 Let us introduce the approximate problems
−M

(
x,

∫
Ω

|∇un|pdx
)
∆pun = c(x)|un|m − |un|s + a(x)

|∇un|q(
|un|+ 1

n

)α in Ω,

|∇un|p−2∂νun = 0 on ∂Ω,

(2.23)

for all n ⩾ 1, in the weak sense (2.2). Their right-hand sides are given by the functions

fn(x, τ, ξ) = c(x)|τ |m − |τ |s + a(x)
|ξ|q(

|τ |+ 1
n

)α , ∀(x, τ, ξ) ∈ Ω× R× RN , (2.24)

which verify (Hf ) by (A5), (A7), for all n ⩾ 1. Arguing as in the proof of Theorem 2.3,

one obtains constants κ1, κ2 > 0, independent on n, which allow one to apply Theorem

2.1 to ensure the existence of solutions un ∈ C1,γ(Ω), γ ∈ (0, 1), of (2.23) satisfying
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κ1 ⩽ un ⩽ κ2 in Ω. Thus ∥un∥∞ is uniformly bounded with respect to n, and one can

modify the functions in (2.24) to verify a growth condition of the form

|fn(x, s, ξ)| ⩽ C(1 + |ξ|q) for a.e. x ∈ Ω, ∀ξ ∈ RN , (2.25)

for some C > 0 independent on n. From the regularity results in [66, 39], there exists

γ̃ ∈ (0, 1), independent on n, such that ∥un∥C1,γ̃(Ω) is bounded. The compactness of the

imbedding C1,γ̃(Ω) ↪→ C1,σ(Ω) for all σ ∈ (0, γ̃) implies the existence of u ∈ C1,σ(Ω), and

a not relabeled subsequence, satisfying un → u in C1,σ(Ω), as n→ ∞. Hence κ1 ⩽ u ⩽ κ2

in Ω, and we can pass to the limit in the weak formulation of (2.23) (as in (2.2)) to

conclude that u is a solution of (2.20). The proof is complete. 2

Proof of Theorem 2.5 We set the approximate problems
−M

(
x,

∫
Ω

|∇un|pdx
)
∆pun =

1

(|u|+ 1
n
)θ

+ a(x)
|∇un|q

(|un|+ 1
n
)β

− c(x)|un|r in Ω,

|∇un|p−2∂νun = 0 on ∂Ω,

(2.26)

for all n ⩾ 1, where their right-hand sides, which satisfy (Hf ), are given by

fn(x, τ, ξ) =
1

(|τ |+ 1
n
)θ

− c(x)|τ |r + a(x)
|ξ|q

(|τ |+ 1
n
)β
, ∀(x, τ, ξ) ∈ Ω× R× RN . (2.27)

Similarly as in the proof of Theorem 2.4, one obtains constants c1, c2 > 0 independent

on n and, with the help of Theorem 2.1, solutions un ∈ C1,γ(Ω), γ ∈ (0, 1), of (2.26)

satisfying c1 ⩽ un ⩽ c2 in Ω. As a consequence, ∥un∥∞ is bounded, and fn in (2.27) can

be modified to verify an estimate like (2.25) uniformly with respect to n. This enable one

to apply the regularity results in [66, 39] to infer the existence of γ̄ ∈ (0, 1), independent

on n, such that ∥un∥C1,γ̄(Ω) is uniformly bounded. Extracting a subsequence if necessary,

there exists u ∈ C1,ϱ(Ω), with ϱ ∈ (0, γ̄), such that un → u in C1,ϱ(Ω), as n → ∞. So

c1 ⩽ u ⩽ c2 in Ω, and we can pass to the limit in the weak formulation of (2.26) (as in

(2.2)) to obtain u is a solution of (2.21). The proof is complete. 2

Proof of Theorem 2.6 The function f(x, τ, ξ) = g(x)−λ|τ |p−2τ−b(x)ψ(ξ), for (x, τ, ξ) ∈

Ω×R×RN , satisfies (Hf ) from (A8)− (A9). Setting u ≡ 0, one has (i), (iii) in Theorem
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2.1 are satisfied. Furthermore, for τ1 ∈
([

1
λ

(
∥g∥∞ + |ψ(0)| ∥b∥∞

)] 1
p−1 ,∞

)
we have

f(x, τ1, 0) ⩽ ∥g∥∞ + |ψ(0)| ∥b∥∞ − λτ p−1 ⩽ 0,

so (i), (ii) in Theorem 2.1 hold. By applying Theorem 2.1, we obtain a solution u ∈

C1,γ(Ω), γ ∈ (0, 1), of (2.22) satisfying 0 ⩽ u ⩽ τ1 in Ω, which necessarily verifies u ̸≡ 0.

The proof is complete. 2

2.4 Unbounded coefficients M in (2.1)

In this section, we prove a more general version of Theorem 2.1 removing the requirement

on the non-local coefficient M : Ω× [0,∞) → [0,∞) in (2.1) to be bounded from above.

Let us suppose M is a continuous function satisfying

(H̃M) There exists m > 0 such that M(x, τ) ⩾ m, ∀(x, τ) ∈ Ω× [0,∞).

Theorem 2.7 Assume (Hf ) and (H̃M) hold. Suppose there exist u, u ∈ W 1,∞(Ω) such

that 0 ⩽ u ⩽ u a.e. in Ω, and satisfying:

(i) f(x, u,∇u) ⩽ 0 ⩽ f(x, u,∇u) a.e. in Ω.

Furthermore, suppose there exists M0 > 0 such that for all M ⩾M0 one has:

(ii)

∫
Ω

|∇u|p−2∇u∇φdx ⩾
1

M

∫
Ω

f(x, u,∇u)φdx, ∀φ ∈ W 1,p(Ω), φ ⩾ 0 a.e. in Ω;

(iii)

∫
Ω

|∇u|p−2∇u∇φdx ⩽
1

M

∫
Ω

f(x, u,∇u)φdx, ∀φ ∈ W 1,p(Ω), φ ⩾ 0 a.e. in Ω.

Then there exists a solution u ∈ C1,γ(Ω), γ ∈ (0, 1), of (2.1) with u ⩽ u ⩽ u a.e. in Ω.

Proof We set the following truncated problem associated with (2.1)


−Mη

(
x,

∫
Ω

|∇u|pdx
)
∆pu = f(x, u,∇u) in Ω,

|∇u|p−2∂νu = 0 on ∂Ω,

(2.28)

where Mη(·, ·) is the function defined by

Mη(x, s) = min
{
M(x, s), η

}
, ∀(x, s) ∈ Ω× [0,∞), ∀η ∈ (m,∞). (2.29)
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Since Mη is a continuous function with m ⩽ Mη(·, ·) ⩽ η, and (i)−(iii) above hold for

all η ∈
(
max{m,M0},∞

)
, we apply Theorem 2.1 to obtain a solution uη ∈ C1,γ(Ω),

γ ∈ (0, 1), of (2.28) satisfying u ⩽ uη ⩽ u a.e. in Ω. In particular, ∥uη∥∞ is uniformly

bounded with respect to η ∈
(
max{m,M0},∞

)
.

Claim: {uη} is uniformly bounded in W 1,p(Ω) with respect to η ∈
(
max{m,M0},∞

)
.

Indeed, let Λ = sup
{
∥uη∥∞ : η ∈ (max{m,M0},∞)

}
. We consider separately the cases

q ∈ [0, p) and q = p in (Hf ). In the first case, by testing the weak formulation of (2.28)

with φ = uη (as in (2.2)), from Young’s inequality with ε > 0 we have

∫
Ω

|∇uη|p dx ⩽ C + C

∫
Ω

|∇uη|q|uη| dx ⩽ C + Cε

∫
Ω

|∇uη|p dx,

where C = C(m,Ω,Λ, ε) > 0. Choosing ε sufficiently small, the claim follows for all

q ∈ [0, p). For the natural growth case q = p, we shall use a test function inspired on [22].

In fact, setting φs = esu
2
ηuη, s > 0, as a test function in the weak formulation of (2.28),

by a direct computation we have

∫
Ω

esu
2
η(1 + 2su2η)|∇uη|p dx ⩽

C

m
+
C

m

∫
Ω

|∇uη|pesu
2
η |uη| dx,

where C = C(s,Λ,Ω) > 0 is a constant independent on η. For all ε > 0, Young’s inequality

implies ∫
Ω

esu
2
η(1 + 2su2η)|∇uη|p dx ⩽

C

m
+
C

m

∫
Ω

|∇uη|pesu
2
η

[
ε

2
+
u2η
2ε

]
dx.

Now, by choosing ε = C
4sm

, with s > 0 large in a such way that C2

8sm2 < 1, we obtain

(
1− C2

8sm2

)∫
Ω

|∇uη|p dx ⩽
C

m
,

proving the claim. Hence (2.29) and previous claim ensure

Mη0

(
· ,
∫
Ω

|∇uη0|pdx
)
= M

(
· ,
∫
Ω

|∇uη0 |pdx
)

for all η0 > 0 sufficiently large, i.e., u = uη0 is a solution of (2.1). The proof is complete.

2

The examples in Section 2.3 keep holding by assuming (H̃M). Indeed, with the same
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proofs given in Section 2.3, but applying Theorem 2.7 rather than Theorem 2.1, one has

Corollary 2.1 Theorems 2.2− 2.6 remain valid replacing (HM) by (H̃M).
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Chapter 3

Positive stationary solution of

Kirchhoff equations with first order

terms and lack of coerciveness:

nonlinear Neumann boundary

conditions

This chapter is addressed to the existence of positive solutions of (SK ) under Neu-

mann boundary conditions. To be precise, we consider non-variational elliptic PDEs of

the form 
−M

(
x,

∫
Ω

|∇u|pdx
)
∆pu = f(x, u,∇u) in Ω,

M
(
x,

∫
Ω

|∇u|pdx
)
|∇u|p−2∂νu = g(x, u) on ∂Ω,

(3.1)

on bounded domains Ω ⊂ RN , N ≥ 2, having smooth boundary ∂Ω with outward unit

normal ν. The source term f : Ω×R×RN → R is a Carathéodory function (i.e., f(x, ·, ·)

is continuous for a.e. x ∈ Ω, and f(·, s, ξ) is measurable for all (s, ξ) ∈ R×RN) satisfying

(Hf ) |f(x, s, ξ)| ⩽ h(x, s)(1 + |ξ|q) for a.e. x ∈ Ω, ∀(s, ξ) ∈ R× RN ,

where q ∈ [0, p] and h : Ω × R → [0,∞) is a Carathéodory function which is bounded

on bounded sets of R uniformly with respect to the first variable. The boundary source

term g ∈ C0,α(∂Ω×R,R), α ∈ (0, 1), is a Hölder continuous function, and the coefficient
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M ∈ C0,β(Ω× R,R), β ∈ (0, 1) is a Hölder continuous function satisfying

(HM) There exist m,M > 0 such that m ⩽ M(x, s) ⩽M, ∀(x, s) ∈ Ω× [0,∞).

We seek for a solution of (3.1) in the following sense.

Definition 3.1 Suppose (Hf ) and (HM) hold. A function u ∈ W 1,p(Ω) ∩ L∞(Ω) is a

solution of (3.1) if satisfies

∫
Ω

|∇u|p−2∇u∇φdx =

∫
Ω

f(x, u,∇u)

M
(
x,

∫
Ω

|∇u|pdx
) φdx+ ∫

∂Ω

g(x, u)

M
(
x,

∫
Ω

|∇u|pdx
) φdHN−1,

(3.2)

for all φ ∈ W 1,p(Ω). The term HN−1 is the (N − 1)-dimensional Hausdorff measure.

The main result of this chapter reads as follows.

Theorem 3.1 Assume (Hf ) and (HM) hold. Suppose there exist ū, u ∈ W 1,∞(Ω) such

that 0 ≤ u ⩽ ū a.e. in Ω, satisfying the following conditions:

(i) f(x, u,∇u) ⩾ 0 and g(x, u) ⩾ 0, a.e. in Ω.

(ii)

∫
Ω

|∇u|p−2∇u∇φdx ⩽
1

M

∫
Ω

f(x, u,∇u)φdx+ 1

M

∫
∂Ω

g(x, u)φdHN−1,

∀φ ∈ W 1,p(Ω), φ ⩾ 0 a.e. in Ω.

(iii)

∫
Ω

|∇ū|p−2∇ū∇φdx ⩾
1

Q1

∫
Ω

f(x, ū,∇ū)φdx+ 1

Q2

∫
∂Ω

g(x, ū)φdHN−1,

∀φ ∈ W 1,p(Ω), φ ⩾ 0 a.e. in Ω.

where

(Q1, Q2) =



(M,m), if f(x, ū,∇ū) ⩽ 0 and g(x, ū) ⩾ 0,

(M,M), if f(x, ū,∇ū) ⩽ 0 and g(x, ū) ⩽ 0,

(m,M), if f(x, ū,∇ū) ⩾ 0 and g(x, ū) ⩽ 0.

(3.3)

Then there exists a solution u ∈ C1,γ(Ω) of (3.1), γ ∈ (0, 1), with 0 ≤ u ⩽ u ⩽ ū a.e. in

Ω.

Remark 3.1 In the case g(x, ū) ⩾ 0 and f(x, ū,∇ū) ⩾ 0 in Theorem 3.1, an estimate

of the form

∫
Ω

|∇ū|p−2∇ū∇φdx ⩾ c1

∫
Ω

f(x, ū,∇ū)φdx+ c2

∫
∂Ω

g(x, ū)φdHN−1, (3.4)
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with c1,c2 > 0, for all φ ∈ W 1,p(Ω), φ ⩾ 0 a.e. in Ω, can only holds if g(x, ū) ≡

f(x, ū,∇ū) ≡ 0.

Indeed, by taking with φ ≡ 1 in 3.4 one obtains

0 ⩾ c1

∫
Ω

f(x, ū,∇ū)dx+ c2

∫
∂Ω

g(x, ū)dHN−1,

which implies g(x, ū) ≡ f(x, ū,∇ū) ≡ 0 a.e in Ω. Note that this case is already included

in Theorem 3.1.

3.1 Auxiliary Problem

In this section we will work set an auxiliary problem to help with the proof of Theorem

3.1. From now on, fix R0 > 0, large enough such that

max{∥∇ū∥∞, ∥∇u∥∞} ≤ R0

with ū and u set in Theorem 3.1.

For all R ≥ R0, let τR : R → R be the truncation function

τR(t) =

t, if |t| ≤ R,

R t
|t| , if |t| ≥ R,

and truncate f as

fR(x, t, ξ)
.
= f(x, t, τR(ξ1), · · · , τR(ξN)), ∀(x, t, ξ) ∈ Ω×R×RN , ξ = (ξ1, · · · , ξN). (3.5)

Using this definition, we have that exists K ∈ R such that

|fR(x, t, ξ)| ≤ h(x, t)(1 +RℓN ℓ) and |G(x, t)| ⩽ K (3.6)

and

fR(x, t, ξ) = f(x, t, ξ) if |t| ≤ R,

then we conclude

fR(x, ū,∇ū) = f(x, ū,∇ū) and fR(x, u,∇u) = f(x, u,∇u). (3.7)
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3.2 Coercive parametric ε-approximate problem

First of all, we define (as in Lemma 1.1) the truncation operator T : W 1,p(Ω) →

W 1,p(Ω) by

Tu(x) =


ū(x) if u(x) ⩾ ū(x),

u(x) if u(x) ⩽ u(x) ⩽ ū(x),

u(x) if u(x) ⩽ u(x).

(3.8)

Now, ∀ε > 0, we introduce the auxiliary problem on the form

−∆puε + ε |uε|p−2uε = FR(uε)−Ψ(uε) in Ω,

|∇uε|p−2∂νuε = G(u) on ∂Ω.
(3.9)

In (3.9), FR : W 1,p(Ω) → (W 1,p(Ω))
∗
is given by

⟨FR(u), v⟩ =
∫
Ω

fR(x, Tu,∇Tu)

M
(
x,

∫
Ω

|∇u|pdx
) v dx, ∀v ∈ W 1,p(Ω), (3.10)

the function G : W 1,p(Ω) → (W 1,p(Ω))
∗
is given by

⟨G(u), v⟩ =
∫
∂Ω

g(x, Tu)

M
(
x,

∫
Ω

|∇u|pdx
) v dHN−1, ∀v ∈ W 1,p(Ω), (3.11)

and Ψ : W 1,p(Ω) → (W 1,p(Ω))
∗
is given by

⟨Ψ(u), v⟩ =
∫
Ω

ψ(x, u)

M
(
x,

∫
Ω

|∇u|pdx
) v dx, ∀v ∈ W 1,p(Ω), (3.12)

where ψ(·, u) = −(u− u)ℓ+ + (u− ū)ℓ+, and ℓ ∈ (0, p− 1) is fixed. We shall prove now the

existence of a solution for this auxiliary problem (3.9). To do this, we shall use Theorem

1.19.

Let Bε : W
1,p(Ω) →

(
W 1,p(Ω)

)∗
be the operator given by

⟨Bεu, v⟩ = ⟨Iε(u), v⟩ − ⟨FR(u), v⟩+ ⟨Ψ(u), v⟩ − ⟨G(u), v⟩, ∀v ∈ W 1,p(Ω), (3.13)
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where Iε : W
1,p(Ω) →

(
W 1,p(Ω)

)∗
is given by

⟨Iε(u), v⟩ =
∫
Ω

|∇u|p−2∇u∇v dx+ ε

∫
Ω

|u|p−2uv dx, ∀v ∈ W 1,p(Ω). (3.14)

Lemma 3.1 Assume that (HM) and (Hf ) hold. Then Bε is bounded and coercive for all

ε > 0.

Proof By the definition of G, there exists K > 0 satisfying

|⟨G(u), u⟩| ⩽
∫
∂Ω

|g(x, Tu)u|

M
(
x,

∫
Ω

|∇u|pdx
)dHN−1 ⩽

∫
∂Ω

K

m
|u|dHN−1, ∀u ∈ W 1,p(Ω).

Using the Sobolev embedding, we have that W 1,p(Ω) ↪→ L1(∂Ω) so

|⟨G(u), u⟩| ⩽ C∥u∥W 1,p(Ω), ∀u ∈ W 1,p(Ω). (3.15)

Futhermore, there exist K1 > 0 such that

|⟨FR(u), u⟩| ⩽
∫
Ω

|fR(x, Tu,∇Tu)u|

M
(
x,

∫
Ω

|∇u|pdx
)dx, ∀u ∈ W 1,p(Ω).

Since Theorem 1.3 implies W 1,p(Ω) ↪→ L1(Ω), and fR(·, Tu,∇Tu) ∈ L∞(Ω), we have

|⟨FR(u), u⟩| ⩽ C∥u∥W 1,p(Ω), ∀u ∈ W 1,p(Ω). (3.16)

Using Hölder’s inequality, there exists constants K2, K3 > 0 with

|⟨Ψ(u), u⟩| ⩽
∫
Ω

|ψ(x, u)u|

M
(
x,

∫
Ω

|∇u|pdx
) dx ⩽

∫
Ω

K2

m
|u|dx+

∫
Ω

K3

m
|u|ℓ+1dx

⩽ C∥u∥W 1,p(Ω) + C∥u∥ℓ+1
W 1,p(Ω), ∀u ∈ W 1,p(Ω). (3.17)

From these inequalities we obtain

⟨Bεu, u⟩ = ⟨Iε(u), u⟩ −
∫
Ω

fR(x, Tu,∇Tu)− ψ(x, u)

M
(
x,

∫
Ω

|∇u|pdx
) u dx−

∫
∂Ω

g(x, Tu)

M
(
x,

∫
Ω

|∇u|pdx
) u dHN−1

⩾ ∥u∥p1,p,ε − C∥u∥W 1,p(Ω) − C∥u∥ℓ+1
W 1,p(Ω)
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for all u ∈ W 1,p(Ω), where ∥ · ∥1,p,ε denotes the norm

∥u∥p1,p,ε =
∫
Ω

|∇u|p dx+ ε

∫
Ω

|u|p dx, (3.18)

which is equivalent to the usual norm ∥ · ∥W 1,p(Ω). Since ℓ ∈ (0, p− 1) we conclude

⟨Bεu, u⟩ ⩾ Kε∥u∥pW 1,p(Ω) − C∥u∥W 1,p(Ω) − C∥u∥ℓ+1
W 1,p(Ω) −→ ∞,

as ∥u∥W 1,p(Ω) → ∞, This shows that Bε is coercive for all ε > 0, from (3.10), (3.11) and

(3.12), we observe that Bε is also bounded (i.e., transforms bounded sets into bounded

sets) for all ε > 0, proving the lemma. 2

Lemma 3.2 Assume that (HM) and (Hf ) hold. Then the auxiliary problem (3.9) has a

solution uε ∈ W 1,p(Ω), ∀ε > 0.

Proof Let (uj) be a sequence satisfying uj ⇀ u inW 1,p(Ω) and lim sup
j→∞

⟨Bεuj, uj−u⟩ ⩽ 0.

We will show, accordingly definition 1.3, that

lim inf
j→∞

⟨Bεuj, uj − v⟩ ⩾ ⟨Bεu, u− v⟩ ∀v ∈ W 1,p(Ω). (3.19)

Passing to a subsequence, still denoted by (uj), we have by the Compact Sobolev Embed-

ding (see Theorem 1.4) that uj → u in Lp(Ω), uj → u in L1(∂Ω). By (HM), (3.11) and

(3.15), we obtain∣∣∣∣ ∫
∂Ω

g(x, Tuj)(uj − u)

M
(
x,

∫
Ω

|∇uj|pdx
) dHN−1

∣∣∣∣ ⩽ C∥uj − u∥L1(∂Ω)
j→∞−→ 0.

On the one hand, from (HM) and (3.16) we have∣∣∣∣ ∫
Ω

fR(x, Tuj,∇Tuj)(uj − u)

M
(
x,

∫
Ω

|∇uj|pdx
) dx

∣∣∣∣ ⩽ C ∥uj − u∥L1(Ω)
j→∞−→ 0.

On the other hand, since, by (3.12) and (3.17) that exists constants C̃1, C̃2, C̃3 > 0 such
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that

∥ψ(x, uj)∥
ℓ+1
ℓ

L
ℓ+1
ℓ (Ω)

=

∫
Ω

|ψ(x, uj)|
ℓ+1
ℓ dx ⩽

∫
Ω

(C1 + C2|uj|ℓ)
ℓ+1
ℓ dx

⩽ C̃1 + C̃2

∫
Ω

|uj|ℓ+1 ⩽ C̃1 + C̃2∥uj∥Lp(Ω) ⩽ C̃3

by Hölder inequality we obtain∣∣∣∣ ∫
Ω

ψ(x, uj)(uj − u)

M
(
x,

∫
Ω

|∇uj|pdx
)dx∣∣∣∣ ⩽ ∣∣∣∣ ∫

Ω

ψ(x, uj)(uj − u)

m
dx

∣∣∣∣
⩽

1

m
∥ψ(·, uj)∥

L
ℓ+1
ℓ (Ω)

∥uj − u∥Lℓ+1(Ω)
j→∞−→ 0.

So, by using the inequalities above, the convergence of (uj) in L
p and Lemma 1.4 we have

lim sup
j→∞

⟨Bϵuj, uj − u⟩ = lim sup
j→∞

[∫
Ω

|∇uj|p−2∇uj∇(uj − u)dx+ ϵ

∫
Ω

|uj|p−2uj(uj − u)dx

]
= lim sup

j→∞

[∫
Ω

|∇uj|p−2∇uj∇(uj − u)dx

]
= lim sup

j→∞

[∫
Ω

|∇uj|p−2∇uj∇(uj − u)dx+

∫
Ω

|∇u|p−2∇u∇(uj − u)−
∫
Ω

|∇u|p−2∇u∇(uj − u)

]

Since φ 7→
∫
Ω
|∇u|p−2∇u∇φ define a bounded linear functional in W 1,p(Ω) for each u ∈

W 1,p(Ω), and uj ⇀ u weakly in W 1,p(Ω), it follows that

lim sup
j→∞

⟨Bϵuj, uj − u⟩ = lim sup
j→∞

[∫
Ω

(
|∇uj|p−2∇uj − |∇u|p−2∇u

)
∇(uj − u)dx

]
.

Thus Lemma 1.5 implies

∫
Ω

(
|∇uj|p−2∇uj − |∇u|p−2∇u

)
∇(uj − u)dx

j→∞−→ 0. (3.20)

Claim uj → u strongly in W 1,p(Ω), as j → ∞.

Indeed, for p ⩾ 2 we have from (3.20) and Lemma 1.5

C

∫
Ω

|∇uj −∇u|pdx ⩽
∫
Ω

(
|∇uj|p−2∇uj − |∇u|p−2∇u

)
∇(uj − u)dx

j→∞−→ 0.
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If 1 < p < 2, from (3.20), Lemma 1.5, and Hölder’s inequality we have

∫
Ω

|∇(uj − u)|pdx =

∫
Ω

|∇(uj − u)|p (|∇uj|+ |∇u|)
p(2−p)

2

(|∇uj|+ |∇u|)
p(2−p)

2

dx

=

∫
Ω

|∇(uj − u)|p

(|∇uj|+ |∇u|)
p(2−p)

2

(|∇uj|+ |∇u|)
p(2−p)

2 dx

⩽

(∫
Ω

|∇(uj − u)|p

(|∇uj|+ |∇u|)
p(2−p)

2

) 2
p

dx


p
2 [∫

Ω

(
(|∇uj|+ |∇u|)

p(2−p)
2

) −2
p−2

dx

]−(p−2)
2

=

(∫
Ω

|∇(uj − u)|2

(|∇uj|+ |∇u|)2−pdx

) p
2 (∫

Ω

|∇uj|+ |∇u|)p
)−(p−2)

2 j→∞−→ 0

since the last term is bounded. Hence the claim follows, and (uj) strongly converges to

u in W 1,p(Ω). Taking into account that Bε is continuous, we conclude that (3.19) holds.

Now all of the hypotheses of Theorem (1.19) are fulfilled. Then Bε is surjective, what

ensures the existence of uε ∈ W 1,p(Ω) satisfying Bεuε = 0, i.e., uε is a solution of (3.9).

The proof is complete. 2

3.3 Proof of Theorem 3.1

In this section we will prove a lemma on the auxiliary problem which will help us to

obtain a solution for (3.1).

Lemma 3.3 Assume the same hypotheses in Theorem (3.1). Then the family (uε) of

solutions of (3.9) strongly converge in W 1,p(Ω), as ε → 0, to a solution uR ∈ W 1,p(Ω) ∩

L∞(Ω) of the limiting problem

 −∆pu = FR(u)−Ψ(u) in Ω,

|∇u|p−2∂νu = G(u) on ∂Ω,
(3.21)

where FR and Ψ are given by (3.10) and (3.12), respectively.

Proof Let uε = uε+ − uε− , be the sum of its the positive and negative parts of uϵ, and

recalling (3.18), one can take uε− as test function in (3.9) to obtain

−∥uε−∥
p
1,p,ε =

∫
Ω

[
fR(x, Tuε,∇Tuε)− ψ(x, uε)

]
uε−

M
(
x,

∫
Ω

|∇uε|pdx
) dx+

∫
∂Ω

g(x, Tuε)uε−

M
(
x,

∫
Ω

|∇uε|pdx
)dHN−1.
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Now, from the definitions of fR,Ψ, and T we have

−∥uε−∥
p
1,p,ε =

∫
Ω

f(x, u,∇u)uε−

M
(
x,

∫
Ω

|∇uε|pdx
)dx+ ∫

∂Ω

g(x, u)uε−

M
(
x,

∫
Ω

|∇uε|pdx
)dHN−1

+

∫
{uε⩽u}

(u− uε)
ℓ
+uε−

M
(
x,

∫
Ω

|∇uε|pdx
)dx.

Since the terms in the right-hand side are non-negative (see the hypotheses in Theorem

3.1) we have ∥uε−∥
p
1,p,ε = 0, i.e., uε− = 0 a.e in Ω. Hence uε = uε+ ⩾ 0 for all ε > 0. On

the other hand, if we take v = (uε − ū)+ as test function in (3.9) and recalling (3.14), we

obtain

⟨Iε(uε), (uε − ū)+⟩ =
∫
Ω

[
fR(x, Tuε,∇Tuε)− ψ(x, uε)

]
M
(
x,

∫
Ω

|∇uε|pdx
) (uε − ū)+ +

∫
∂Ω

g(x, Tuε)

M
(
x,

∫
Ω

|∇uε|pdx
)(uε − ū)+

=

∫
Ω

[
fR(x, ū,∇ū)− ψ(x, uε)

]
M
(
x,

∫
Ω

|∇uε|pdx
) (uε − ū)+ +

∫
∂Ω

g(x, ū)

M
(
x,

∫
Ω

|∇uε|pdx
)(uε − ū)+.

At this stage (sometimes the symbols dx and dHN−1 will be omitted), in all cases listed

in Theorem 3.1 we have an estimate of the form

∫
Ω

|∇uϵ|p−2∇uε∇(uϵ − ū)+dx ⩽
1

Q1

∫
Ω

f(x, ū,∇ū)(uε − ū)+dx−
∫
Ω

(uε − ū)ℓ+1
+

M
(
x,

∫
Ω

|∇uε|pdx
)dx

+
1

Q2

∫
∂Ω

g(x, ū)(uε − ū)+dHN−1 (3.22)

where

(Q1, Q2) =



(M,m), if f(x, ū,∇ū) ⩽ 0 and g(x, ū) ⩾ 0,

(M,M), if f(x, ū,∇ū) ⩽ 0 and g(x, ū) ⩽ 0,

(m,M), if f(x, ū,∇ū) ⩾ 0 and g(x, ū) ⩽ 0.

(3.23)

Hypothesis (iii) in Theorem 3.1 ensures

1

Q1

∫
Ω

f(x, ū,∇ū)(uε−ū)+dx+
1

Q2

∫
∂Ω

g(x, ū)(uε−ū)+dHN−1 ⩽
∫
Ω

|∇ū|p−2∇ū∇(uϵ−ū)+dx,
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what, combined with (3.22), implies

∫
Ω

|∇uε|p−2∇uε∇(uε − ū)+ dx ⩽
∫
Ω

|∇ū|p−2∇ū∇(uϵ − ū)+dx−
∫
Ω

(uε − ū)ℓ+1
+

M
(
x,

∫
Ω

|∇uε|pdx
)dx.

Therefore

∫
Ω

(
|∇uϵ|p−2∇uϵ − |∇ū|p−2∇ū

)
∇(uϵ − ū)+ dx ⩽ −

∫
Ω

(uϵ − ū)ℓ+1
+

M
(
x,

∫
Ω

|∇uϵ|pdx
) dx ⩽ 0.

Now, using Corollary 1.7 we have

∫
Ω

|∇(uε − ū)+|pdx =

∫
Ω

|∇(uε − ū)χ{uε−ū⩾0}|pdx =

∫
Ω

|∇(uε − ū)|pχ{uε−ū⩾0}dx,

so, from Lemma 1.5, we obtain

0 ⩽
∫
Ω

C|∇(uϵ − ū)|pdx ⩽ −
∫
Ω

(uϵ − ū)ℓ+1
+

M
(
x,

∫
Ω

|∇uϵ|pdx
) dx ⩽ 0.

Hence ∫
Ω

(uϵ − ū)ℓ+1
+

M
(
x,

∫
Ω

|∇uϵ|pdx
) dx = 0,

what shows that (uϵ − ū)+ = 0 a.e in Ω for all ϵ > 0, and we conclude

0 ⩽ uε ⩽ ū a.e. in Ω.

This implies

0 ⩽ uε ⩽ ∥ū∥∞ a.e in Ω, ∀ε > 0,

and (uε) is bounded in L∞(Ω). Using uε as test function in (3.9) and recalling (3.14) −

(3.17), we have

|⟨Iε(uε), uε⟩| ⩽ K̃(R, ∥ū∥∞), (3.24)

where K̃ > 0 does not depend on ε > 0, so (uε) is bounded in W 1,p(Ω). Thus, by choosing

εj → 0, there exists uR ∈ W 1,p(Ω) satisfying

58



• uϵj ⇀ uR in W 1,p(Ω),

• uϵj → uR in Lp(Ω),

as j → ∞. Using v = (uεj − u) as a test function in (3.9), following the arguments used

in (3.24) we infer

∫
Ω

[
|∇uεj |p−2∇uεj − |∇uR|p−2∇uR

]
∇(uεj − uR)dx ⩽

K

m

∫
Ω

|uεj − uR|dx.

Therefore ∫
Ω

|∇(uεj − uR)|pdx
j→∞−→ 0,

so (uεj) strongly converges to uR in W 1,p(Ω). Hence it is possible to pass to the limit in

(3.9) to obtain uR ∈ W 1,p(Ω) ∩ L∞(Ω) is a solution of (3.21), proving the lemma. 2

Remark 3.2 As a consequence of the proof of Lemma 3.3 we have proved that 0 ⩽ uR ⩽ ū

a.e. in Ω, so ∥uR∥∞ does not depend on R.

Lemma 3.4 Assume all the hypotheses in Theorem 3.1. Then u ⩽ uR a.e. in Ω.

Proof Using the test function v = (u− uR)+ in (3.21) gives

∫
Ω

|∇uR|p−2∇uR∇(u− uR)+dx =

∫
Ω

[
fR(x, TuR,∇TuR)−ψ(x, uR)

]
M
(
x,

∫
Ω

|∇uR|pdx
) (u− uR)+dx

+

∫
∂Ω

g(x, TuR)

M
(
x,

∫
Ω

|∇uR|pdx
)(u− uR)+dHN−1.

Thus from (3.7) and (3.12), we have

∫
Ω

|∇uR|p−2∇uR∇(u− uR)+ dx =

∫
Ω

f(x, u,∇u)(u− uR)+ + (u− uR)
ℓ+1
+

M
(
x,

∫
Ω

|∇uR|pdx
) dx

+

∫
∂Ω

g(x, u)

M
(
x,

∫
Ω

|∇uR|pdx
)(u− uR)+dHN−1.
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Then, by using hypothesis (i) in Theorem 3.1, we obtain

∫
Ω

|∇uR|p−2∇uR∇(u− uR)+ dx ⩾
1

M

∫
Ω

f(x, u,∇u)(u− uR)+dx+

∫
Ω

(u− uR)
ℓ+1
+

M
(
x,

∫
Ω

|∇uR|pdx
) dx

+
1

M

∫
∂Ω

g(x, u)(u− uR)+dHN−1.

Now, hypothesis (ii) in Theorem 3.1 implies

∫
Ω

|∇uR|p−2∇uR∇(u−uR)+ dx ⩾
∫
Ω

|∇u|p−2∇u∇(u−uR)+ dx+
∫
Ω

(u− uR)
ℓ+1
+

M
(
x,

∫
Ω

|∇uR|pdx
) dx.

so, from Corollary 1.7 and Lemma 1.5,

0 ⩾
∫
Ω

C|∇(u− uR)+|pdx+
∫
Ω

(u− uR)
ℓ+1
+

M
(
x,

∫
Ω

|∇uR|pdx
) dx ⩾ 0.

Hence ∫
Ω

(u− uR)
ℓ+1
+

M
(
x,

∫
Ω

|∇uR|pdx
) dx = 0,

what ensures (u− uR)
ℓ+1
+ = 0 a.e. in Ω, that is, u ⩽ uR a.e in Ω. 2

Thus 0 ⩽ u ⩽ uR ⩽ ū a.e. in Ω for all R ⩾ R0, so, from (3.12) it follows that ψ = 0,

i.e, from (3.9)-(3.13), uR ∈ W 1,p(Ω) ∩ L∞(Ω) is a, weak solution of the problem



−∆pu =
fR(·, u(·),∇u(·))

M
(
·,
∫
Ω

|∇u|pdx
) in Ω,

|∇u|p−2∂νu =
g(·, u(·))

M
(
·,
∫
Ω

|∇u|pdx
) on ∂Ω.

(3.25)

Now since one has:

� ∥u∥∞ is independent on R large;

�

fR(·, u(·),∇u(·))
M(·,

∫
Ω
|∇u|pdx)

satisfies (Hf ) independently on R(Lemma 2.1 of Chapter 2);

�

g(·, ·)
M(·,

∫
Ω
|∇u|pdx)

∈ C0,min{α,β}(∂Ω× R,R), with α, β independent on R;

The regularity result of Theorem 1.1 ensures u ∈ C1,γ(Ω), with γ and ∥u∥C1,γ(Ω) inde-
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pendent on R ∈ [R0,∞). Hence we can infer fR = f for R ∈ [R0,∞), what allows to

conclude that u is a solution of (3.1). The proof is complete.

3.4 Positive solutions of non-coercive BVPs: exam-

ples

In this section we will list some applications for Theorem 3.1.

1) Example 1: In the first example, we consider a problem with logistic sources of the

form
−M

(
x,

∫
Ω

|∇u|pdx
)
∆pu = ur − us + h(x) + a(x)|∇u|ℓ in Ω,

M
(
x,

∫
Ω

|∇u|pdx
)
|∇u|p−2∂νu + uq = 0 on ∂Ω.

(3.26)

The coefficients satisfy, respectively,

(A1) 0 < r < p− 1 < s <∞, q ∈ (1,∞) and ℓ ∈ [0, p];

(A2) a, h ∈ L∞(Ω) with a(·) ⩾ 0 and h(·) ⩾ 0.

Theorem 3.2 Assume (A1), (A2) and (HM) hold. Then there exists a solution u ∈

C1,γ(Ω), γ ∈ (0, 1), of (3.26), satisfying u ⩾ 0 on Ω. If h ̸≡ 0, then u > 0 on Ω.

2) Example 2: In the example, we consider the problem


−M

(
x,

∫
Ω

|∇u|pdx
)
∆pu = ur − us +

|∇u|ℓ

uθ
in Ω,

M
(
x,

∫
Ω

|∇u|pdx
)
|∇u|p−2∂νu = uq(c(x)− u) on ∂Ω.

(3.27)

The coefficients satisfy

(A3) r, s ∈ (0,∞), r < s, θ ∈ (0,∞), q > 1 and ℓ ∈ [0, p];

(A4) c ∈ C1,α(∂Ω), α ∈ (0, 1), c0 ⩽ c(x) ⩽ c1 ∀x ∈ ∂Ω, c0, c1 > 0.

Theorem 3.3 Assume that (A3), (A4) and (HM) hold. Then there exists a solution

u ∈ C1,σ(Ω) of (3.27), with σ ∈ (0, 1), satisfying u > 0 on Ω.
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3) Example 3: In the example, we consider a problem with singular terms in the bound-

ary condition of the form
−M

(
x,

∫
Ω

|∇u|pdx
)
∆pu = |∇u|ℓ in Ω,

M
(
x,

∫
Ω

|∇u|pdx
)
|∇u|p−2∂νu =

1

uα
− 1

uβ
on ∂Ω,

(3.28)

where the exponents satisfy

(A5) 0 < β < α <∞ and ℓ ∈ [0, p].

Theorem 3.4 Assume (A5) and (HM) hold. Then there exists a solution u ∈ C1,σ(Ω) of

(3.28), with σ ∈ (0, 1), satisfying u > 0 on Ω.

4) Example 4: In the example, we consider a problem with singularity form
−M

(
x,

∫
Ω

|∇u|pdx
)
∆pu = |∇u|ℓ in Ω,

M
(
x,

∫
Ω

|∇u|pdx
)
|∇u|p−2∂νu = λc(x)ur − us on ∂Ω.

(3.29)

(A6) 1 < r < s <∞, λ > 0 and ℓ ∈ [0, p];

(A7) c ∈ C1,α(∂Ω), α ∈ (0, 1), c0 ⩽ c(x) ⩽ c1 ∀x ∈ ∂Ω, c0, c1 > 0.

Theorem 3.5 Assume that (A6),(A7) and (HM) hold. Then there exists a solution u ∈

C1,γ(Ω) of (3.29), with γ ∈ (0, 1), satisfying u > 0 on Ω.

5) Example 5: In this example, we consider a problem with the form
−M

(
x,

∫
Ω

|∇u|pdx
)
∆pu = ur + us + |∇u|ℓ − µ sin(up−1) in Ω,

M
(
x,

∫
Ω

|∇u|pdx
)
|∇u|p−2∂νu = uθ − µ sin(up−1) on ∂Ω.

(3.30)

(A8) 0 < r < s <∞ and ℓ ∈ [0, p];

(A9) 1 < θ <∞ and µ > µ∗

Where µ∗ =
(
5π
2

) r
p−1 +

(
5π
2

) s
p−1 +

(
5π
2

) θ
p−1 .

Theorem 3.6 Assume that (A8),(A9) and (HM) hold. Then there exists a solution u ∈

C1,γ(Ω) of (3.30), with γ ∈ (0, 1), satisfying u > 0 on Ω.
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6) Example 6: In this example, we consider a problem with the form


−M

(
x,

∫
Ω

|∇u|2dx
)
∆u = λu− uq in Ω,

∂νu = u on ∂Ω.

(3.31)

(A10) q > 1 and λ > λ1

M
.

Theorem 3.7 Assume that (A10) and (HM) hold. Then there exists a solution u ∈

C1,γ(Ω) of (3.31), with γ ∈ (0, 1), satisfying u > 0 on Ω.

3.5 Proofs of Theorems 3.2−3.7

Proof of Theorem 3.2: Consider the function f(x, t, ξ) = |t|r − |t|s + h(x) + a(x)|ξ|ℓ,

∀(x, t, ξ) ∈ Ω×R×RN , and g(x, t) = −|t|q. By (A1), (A2) we have that (Hf ) is satisfied.

Choosing u = 0, (i), (ii) in Theorem 3.1 hold. We now choose ū = τ1 > 0 such that

τ s1 ⩾ τ r1 + ∥h(x)∥∞, then

f(x, τ1, 0) = τ r1 − τ s1 + h(x) ⩽ 0 and g(x, τ1) = −|τ1|q ⩽ 0, (3.32)

and condition (iii) in Theorem 3.1 is satisfied. Therefore Theorem 3.1 ensures there exists

a solution u ∈ C1,γ(Ω), γ ∈ (0, 1), with 0 ⩽ u ⩽ τ1 in Ω. Furthermore, by (A2) we have

∆pu+
1

m
us ⩾ ∆pu+

us

M
(
x,

∫
Ω

|∇u|pdx
) =

ur + h(x) + a(x)|∇u|ℓ

M
(
x,

∫
Ω

|∇u|pdx
) ⩾ 0, (3.33)

so, by the maximum principle (see Theorem 1.18), one has u > 0 in Ω, if h ̸≡ 0.

Finally, in the former case, if u(x0) = 0 for some x0 ∈ ∂Ω, by Hopf’s lemma (see

Lemma 1.1) we obtain

0 = −(u(x0))
q = M

(
x0,

∫
Ω

|∇u|pdx
)
|∇u(x0)|p−2∂ν(x0) < 0,

what is impossible. Hence, if h ̸≡ 0, we have u > 0 on Ω, and the proof is complete. 2
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Proof of Theorem 3.3: Consider the sequence of approximate problems
−M

(
x,

∫
Ω

|∇un|pdx
)
∆pun = |un|r − |un|s +

|∇un|ℓ(
|un|+ 1

n

)θ in Ω,

M
(
x,

∫
Ω

|∇un|pdx
)
|∇un|p−2∂νun = |u|qn(c(x)− |un|) on ∂Ω,

(3.34)

for all n ⩾ 1, define the functions

fn(x, t, ξ) = |t|r − |t|s + |ξ|ℓ(
|t|+ 1

n

)θ and gn(x, t) = |t|q(c(x)− |t|) (3.35)

for all (x, t, ξ) ∈ Ω × R × RN . Therefore, from definition and (A3) we have that (Hf ) is

satisfied. Now, choose u = τ0 ⩽ min{1, c0} then we obtain that

fn(x, τ0, 0) = |τ0|r − |τ0|s ⩾ 0 and gn(x, τ0) = |τ0|q(c(x)− |τ0|) ⩾ 0

satisfying (i) and (ii) of Theorem (3.1). Define ū = τ1 ⩾ max{1, c1} such that τ1 ⩾ 1

then

fn(x, τ1, 0) = |τ1|r − |τ1|s ⩽ 0 and gn(x, τ1) = |τ1|q(c(x)− |τ1|) ⩽ 0,

satisfying (iii) of Theorem 3.1 for every n ⩾ 1. Then, we have constants τ0, τ1 > 0,

independent on n, which allow one to apply Theorem 3.1 to ensure the existence of

solutions un ∈ C1,γ(Ω), γ ∈ (0, 1), of (3.34) satisfying τ0 ⩽ un ⩽ τ1 in Ω. Thus ∥un∥∞ is

uniformly bounded with respect to n and one can modify the functions in (3.35) to verify

a growth condition of the form

|fn(x, s, ξ)| ⩽ C(1 + |ξ|ℓ) for a.e. x ∈ Ω, ∀ξ ∈ RN , (3.36)

for some C > 0 independent on n. From the regularity results in [66, 39], there exists

γ̃ ∈ (0, 1), independent on n, such that ∥un∥C1,γ̃(Ω) is bounded. The compactness of the

imbedding C1,γ̃(Ω) ↪→ C1,σ(Ω) for all σ ∈ (0, γ̃) implies the existence of u ∈ C1,σ(Ω), and

a not relabeled subsequence, satisfying un → u in C1,σ(Ω), as n→ ∞. Hence τ0 ⩽ u ⩽ τ1

in Ω, and we can pass to the limit in the weak formulation of (3.34) (as in (3.2)) to

conclude that u is a solution of (3.27). The proof is complete. 2
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Proof of Theorem 3.4: Consider the approximate problems for all n ≥ 1
−M

(
x,

∫
Ω

|∇un|pdx
)
∆pun = |∇un|ℓ in Ω,

M
(
x,

∫
Ω

|∇un|pdx
)
|∇un|p−2∂νun =

1(
|un|+ 1

n

)α − 1(
|un|+ 1

n

)β on ∂Ω,
(3.37)

and, for all (x, t, ξ) ∈ Ω× R× RN , the functions

fn(x, t, ξ) = |ξ|ℓ and gn(x, t) =
1(

|t|+ 1
n

)α − 1(
|t|+ 1

n

)β .

Note that fn satisfy (Hf ). Now we set u = τ0 > 0 such that τ0 < 1, and observe that

fn(x, τ0, 0) ⩾ 0 and gn(x, τ0) =
1(

|τ0|+ 1
n

)α − 1(
|τ0|+ 1

n

)β ⩾ 0,

for all n sufficiently large. Further, (i) and (ii) in Theorem 3.1 are satisfied. Now, to

check (iii) in Theorem 3.1, we choose ū = τ1 such that τ1 > 1, so we have

fn(x, τ1, 0) ⩾ 0 and gn(x, τ1) =
1(

|τ1|+ 1
n

)α − 1(
|τ1|+ 1

n

)β ⩽ 0, ∀n ⩾ 1.

So, we have obtained constants τ0, τ1 > 0, independent on n, which allow one to apply

Theorem 3.1 to ensure the existence of solutions un ∈ C1,γ(Ω), γ ∈ (0, 1), of (3.37)

satisfying τ0 ⩽ un ⩽ τ1 in Ω. Thus ∥un∥∞ is uniformly bounded with respect to n and fn

verify a growth condition of the form

|fn(x, s, ξ)| ⩽ C(1 + |ξ|ℓ) for a.e. x ∈ Ω, ∀ξ ∈ RN , (3.38)

for some C > 0 independent on n. From the regularity results in [66, 39], there exists

γ̃ ∈ (0, 1), independent on n, such that ∥un∥C1,γ̃(Ω) is bounded. The compactness of the

imbedding C1,γ̃(Ω) ↪→ C1,σ(Ω) for all σ ∈ (0, γ̃) implies the existence of u ∈ C1,σ(Ω), and

a not relabeled subsequence, satisfying un → u in C1,σ(Ω), as n→ ∞. Hence τ0 ⩽ u ⩽ τ1

in Ω, and we can pass to the limit in the weak formulation of (3.37) (as in (3.2)) to

conclude that u is a solution of (3.28). The proof is complete. 2
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Proof of Theorem 3.5: First of all, consider the functions

f(x, t, ξ) = |ξ|ℓ and g(x, t) = λc(x)|t|r − |t|s

for all (x, t, ξ) ∈ Ω × R × Rn. From a calculation, (A6) and (A7), we have that (Hf ) is

satisfied. We now set u = τ0 such that τ0 < (λc0)
1

s−r , then by (A6) and (A7) we have

f(x, τ0, 0) ⩾ 0 and g(x, τ0) ⩾ τ r0 (λc0 − τ s−r
0 ) ⩾ 0,

so (i), (ii) in Theorem 3.1 are satisfied. Take now ū = τ1 such that τ1 ⩾ (λc1)
1

s−r , then

τ0 < τ1 and we have by (A6) and (A7) that

f(x, τ1, 0) ⩽ 0 and g(x, τ1) ⩽ τ r1 (λc1 − τ s−r
1 ) ⩽ 0.

Thus (iii) in Theorem 3.1 hold, and the same Theorem implies there exists u ∈ C1,γ(Ω),

γ ∈ (0, 1) such that τ0 ⩽ u ⩽ τ1 and u is a solution of (3.29).

Proof of Theorem 3.6: Consider the functions

f(x, t, ξ) = |t|r + |t|s + |ξ|ℓ − µ sin(|t|p−1) and g(x, t) = |t|θ − µ sin(|t|p−1)

for all (x, t, ξ) ∈ Ω×R×RN . From (A10) and (A11) we have that f satisfy (Hf ). We now

choose u = π
1

p−1 ∈ R then

f(x, π
1

p−1 , 0) = π
r

p−1 + π
s

p−1 ⩾ 0 and g(x, π
1

p−1 ) = π
θ

p−1 ⩾ 0,

and (i),(ii) from Theorem (3.1) are satisfied. Now take ū = (5π
2
)

1
p−1 and observe that

f(x, (
5π

2
)

1
p−1 , 0) =

(
5π

2

) r
p−1

+

(
5π

2

) s
p−1

− µ ⩽ 0 and g(x, (
5π

2
)

1
p−1 ) = (

5π

2
)

θ
p−1 − µ ⩽ 0.

Satisfying the condition (iii), then Theorem (3.1) conclude that exists a positive solution

u ∈ C1,γ(Ω) with γ ∈ (0, 1) for (3.30) with π
1

p−1 ⩽ u ⩽ (5π
2
)

1
p−1 .
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Proof of Theorem 3.7: First of all, consider the eigenvalue problem:

−∆φ1 = λ1φ1 in Ω,

∂νu = φ1 on ∂Ω,
(3.39)

With λ1 ∈ R principal eigenvalue and φ1 the principal auto function associate to λ1,

where φ1 > 0 on Ω and ∥φ1∥∞ = 1

Choose ū = Cφ1, now, let us determine C. We shall use the following case on Theorem

3.1, f(x, ū,∇ū) ⩽ 0 and g(x, ū) ⩾ 0, so

∫
Ω

∇ū∇φ ⩾
1

M

∫
Ω

(λū− ūq)φ+
1

m

∫
∂Ω

ūφ

By the eigenvalue problem 3.39,

Cq

M

∫
Ω

φq
1φ+ Cλ1

∫
Ω

φ1φ− λC

M

∫
Ω

φ1φ+

(
C − C

M

)∫
∂Ω

φ1φ ⩾ 0

Suppose now, m ⩾ 1 with δ0 = minΩ φ1, then the inequality follows as

C

[
Cq−1δq−1

0

M
+ λ1 −

λ

M

] ∫
Ω

φ1φ ⩾ 0

and (iii) of Theorem 3.1 its satisfied for sufficiently large C. Choose now u = ϵφ1 with

ϵ > 0 sufficiently small. With analogous arguments we have (ii) of Theorem 3.1 satisfied.

Then, Theorem 3.1 conclude that exists a positive solution u ∈ C1,γ(Ω), γ ∈ (0, 1), with

ϵφ1 ⩽ u ⩽ Cφ1 on Ω.

3.6 Unbounded coefficients M in (3.1)

In this section we prove a more general version of Theorem 3.1 excluding the requirement

the non-local coefficient M in (3.1) to be bounded above. The proof is reached combining

an updated notion of sub-supersolutions with an additional truncation in (3.1) plus suit-

able estimates, through a close inspection in the arguments used in the proof of Theorem

3.1. Let us assume now the continuous function M : Ω× [0,∞) → [0,∞) satisfies
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(H̃M) There exists m > 0 such that M(x, s) ⩾ m, ∀(x, s) ∈ Ω× [0,∞).

The result we prove in this section is the following

Theorem 3.8 Assume (Hf ) and (H̃M) hold. Suppose there exist ū, u ∈ W 1,∞(Ω) such

that 0 ≤ u ⩽ ū a.e. in Ω, besides that suppose there exists M0 such that for all M ⩾ M0

satisfying the conditions:

(i) f(x, u,∇u) ⩾ 0 and g(x, u) ⩾ 0 a.e. in Ω.

(ii)

∫
Ω

|∇u|p−2∇u∇φdx ⩽
1

M

∫
Ω

f(x, u,∇u)φdx+
1

M

∫
∂Ω

g(x, u)φdHN−1,

∀φ ∈ W 1,p(Ω), φ ⩾ 0 a.e. in Ω.

(iii)

∫
Ω

|∇ū|p−2∇ū∇φdx ⩾
1

Q1

∫
Ω

f(x, ū,∇ū)φdx+ 1

Q2

∫
∂Ω

g(x, ū)φdHN−1,

∀φ ∈ W 1,p(Ω), φ ⩾ 0 a.e. in Ω.

where

(Q1, Q2) =



(M,m), if f(x, ū,∇ū) ⩽ 0 and g(x, ū) ⩾ 0,

(M,M), if f(x, ū,∇ū) ⩽ 0 and g(x, ū) ⩽ 0,

(m,M), if f(x, ū,∇ū) ⩾ 0 and g(x, ū) ⩽ 0.

(3.40)

Then there exists a solution u ∈ C1,γ(Ω) of (3.1), γ ∈ (0, 1), with 0 ≤ u ⩽ u ⩽ ū a.e. in

Ω.

Proof Consider for δ ∈ (m,∞) the following truncated problem associated with (3.1)
−Mδ

(
x,

∫
Ω

|∇u|pdx
)
∆pu = f(x, u,∇u) in Ω,

Mδ

(
x,

∫
Ω

|∇u|pdx
)
|∇u|p−2∂νu = g(x, u) on ∂Ω,

(3.41)

where Mδ(·, ·) is the function defined by

Mδ(x, s) = min
{
M(x, s), δ

}
, ∀(x, s) ∈ Ω× [0,∞). (3.42)

Note that Mδ is a continous function with

m ⩽ Mδ ⩽ δ, ∀δ ∈ (m,∞).
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We are able to reproduce, with the necessary changes, the entire proof of Theorem 3.1,

obtaining a solution uδ such that u ⩽ uδ ⩽ ū for every δ ∈ (m,∞), what implies that

the norm ∥uδ∥∞ is uniformly bounded with respect to δ ∈ (max{m,M0},∞). The goal

now is to determine an estimate to ∥uδ∥W 1,p(Ω) independent on δ. We will first con-

sider the more involved natural growth case q = p in (Hf ). Let Λ = sup
{
∥uδ∥∞ :

δ ∈ (max{m,M0},∞)
}
. Choosing φs = esu

2
δuδ, s > 0, as a test function in the weak

formulation of (3.41), that is,

∫
Ω

|∇uδ|p−2∇uδ∇φs dx =

∫
Ω

f(x, uδ,∇uδ)

Mδ

(
x,

∫
Ω

|∇uδ|pdx
) φs dx+

∫
∂Ω

g(x, uδ)

Mδ

(
x,

∫
Ω

|∇u|pdx
) φs dHN−1.

Now, by (Hf ) and the continuity of G we define

H = sup
(x,s)∈Ω×[0,∥uδ∥∞]

h(x, s) and G = sup
(x,s)∈∂Ω×[0,∥uδ∥∞]

g(x, s)

we have

∫
Ω

esu
2
δ(1 + 2su2δ)|∇uδ|p ⩽

1

m

∫
Ω

|h(x, uδ)|φs +
1

m

∫
Ω

|h(x, uδ)||∇uδ|pφs +
1

m

∫
∂Ω

|g(x, uδ)|φsdHN−1

⩽
H

m

∫
Ω

φsdx+
H

m

∫
Ω

|∇uδ|pφsdx+
G

m

∫
∂Ω

φsdHN−1

⩽ C +
H

m

∫
Ω

|∇uδ|pesu
2
tuδdx

Where C = C(s,Λ, G,H) > 0 is a constant independent on δ. Now, for all ε > 0, Young’s

inequality implies

∫
Ω

esu
2
δ(1 + 2su2δ)|∇uδ|p dx ⩽ C +

H

m

∫
Ω

|∇uδ|pesu
2
δ

[
ε

2
+
u2δ
2ε

]
dx.

Choosing ε = H
4sm

, with s > 0 large enough such that H2

8sm2 < 1, it follows that

(
1− H2

8sm2

)∫
Ω

|∇uδ|p dx ⩽ C.

Thus for the solution uδ of (3.41) it holds that ∥uδ∥W 1,p(Ω) is uniformly bounded with

respect to δ ∈
(
max{m,M0},∞

)
. Hence, for δ0 > 0 sufficiently large, from (3.42) we
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obtain

Mδ0

(
x,

∫
Ω

|∇uδ0|pdx
)
= M

(
x,

∫
Ω

|∇uδ0|pdx
)
, (3.43)

that is, u = uδ0 is a solution of (3.1). For the case q < p, by testing the weak formulation

of (3.41) with φ = uδ (as in (3.2)), from Young’s inequality with ε > 0 we have

∫
Ω

|∇uδ|p dx ⩽ C + C

∫
Ω

|∇uδ|q|uδ| dx ⩽ C + Cε

∫
Ω

|∇uδ|p dx,

where C = C(m,Ω, G,H, ε) > 0. Choosing ε sufficiently small, the claim follows for all

q ∈ [0, p). Thus ∥uδ∥W 1,p(Ω) is bounded uniformly with respect to δ, and (3.43) also holds

for q < p. The theorem is proved. 2

The examples studied in the applications section keep holding by assuming (H̃M). Indeed,

with the same proofs given in there but changing Theorem 3.1 by Theorem 3.8 one has

Corollary 3.1 Theorems 3.26-3.30 remain valid replacing (HM) by (H̃M).
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Acad. Sci. URSS. Sér. Math (Izvestia Akad. Nauk SSSP), 4 (1940), pp. 17–26.

[18] Brezis, H. Functional analysis, Sobolev spaces and partial differential equations.

New York: Springer (2011).

[19] L. Boccardo, G. Croce, Elliptic Partial Differential Equations, De Gruyter,

Berlin, 2014.

[20] L. Boccardo, Dirichlet problems with singular and gradient quadratic lower order

terms, ESAIM: Control Optim. Calc. Var., 14 (2008), pp. 411–426.

[21] L. Boccardo, T. Leonori, L. Orsina, F. Petitta, Quasilinear elliptic equa-

tions with singular quadratic growth terms, Comm. Contemp. Math., 13 (2011),

pp. 607–642.

[22] L. Boccardo, F. Murat, J.-P. Puel, Résultats d’existence pour certains
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