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RESUMO

BRITO, E. S. Análise de confiabilidade de sistemas reparáveis considerando heterogenei-
dade não observada e riscos competitivos. 2023. 185 p. Tese (Doutorado em Estatística –
Programa Interinstitucional de Pós-Graduação em Estatística) – Instituto de Ciências Matemáti-
cas e de Computação, Universidade de São Paulo, São Carlos – SP, 2023.

Em sistemas reparáveis, o processo de falhas definido pela função de intensidade de falhas
pode ser impactado por três características importantes: o tipo de reparo realizado após a
ocorrência das falhas, a causa que provocou a falha (riscos competitivos) e a existência de
fatores não observáveis atuando sobre cada tempo de falha ou sobre o sistema de modo geral
(heterogeneidade não observada). Em particular, a heterogeneidade não observada pode ser
modelada por modelos de fragilidade, bem conhecidos na literatura de confiabilidade. No entanto,
a grande maioria destes trabalhos assume apenas reparos mínimos após as falhas, uma suposição
bastante restritiva e nem sempre aplicável. Há, portanto, uma lacuna teórica a ser explorada
envolvendo modelos de fragilidade considerando sistemas submetidos a reparos perfeitos e
imperfeitos e ainda sujeitos a riscos competitivos. Dessa forma, o principal objetivo deste
trabalho é apresentar novos modelos paramétricos de fragilidade univariada e compartilhada para
múltiplos sistemas reparáveis sob diferentes tipos de reparo e sob estrutura de riscos competitivos.
Os modelos propostos são extensões e generalizações de outros existentes na literatura, pois
consideram reparos perfeitos e todas as possíveis memórias de falha para ambas as classes ARAm

e ARIm de reparo imperfeito. Nesse sentido, são modelos capazes de identificar simultaneamente
o efeito dos reparos realizados e a existência de heterogeneidade não observada entre os tempos
de falha ou entre os sistemas analisados. Essa característica é bastante relevante para situações
do mundo real, pois com maiores informações sobre o processo de falhas de sistemas é possível
aprimorar políticas de manutenção preventiva e diminuir custos referentes aos reparos realizados.
Em todos os modelos propostos, admitimos que a intensidade inicial de falha segue um Processo
de Lei de Potência e que os termos de fragilidade paramétrica associados aos tempos de falha ou
aos sistemas seguem uma mesma distribuição Gama. A abordagem frequentista é utilizada para
a construção da função de verossimilhança de cada modelo e métodos numéricos são sugeridos
para a obtenção dos estimadores de máxima verossimilhança e seus respectivos intervalos
de confiança assintóticos. Ainda propomos o uso de metodologias Bayesianas baseadas em
algoritmo de Monte Carlo e Cadeias de Markov como alternativa ao método frequentista. Estudos
de simulações são realizados para cada modelo proposto e, por fim, os métodos apresentados são
sempre aplicados a conjuntos de dados reais.

Palavras-chave: Sistemas reparáveis, Processo de lei de potência, Modelos de fragilidade,
Heterogeneidade não observada, Riscos competitivos.





ABSTRACT

BRITO, E. S. Reliability analysis of repairable systems considering unobserved hetero-
geneity and competing risks. 2023. 185 p. Tese (Doutorado em Estatística – Programa
Interinstitucional de Pós-Graduação em Estatística) – Instituto de Ciências Matemáticas e de
Computação, Universidade de São Paulo, São Carlos – SP, 2023.

In repairable systems, the failure process defined by the failure intensity function can be impacted
by three crucial characteristics: the type of repair performed after the failures occur, the underly-
ing cause of the failure (competing risks) and the presence of unobervable factors acting on each
failure time or on the system as a whole (unobserved heterogeneity). In particular, unobserved
heterogeneity can be modeled by frailty models, well known in the reliability literature. However,
the majority of existing studies in this domain assume only minimal repairs after failures, which
is a highly restrictive assumption and not always applicable. There is, therefore, a theoretical
gap to be explored encompassing frailty models that consider systems subject to both perfect
and imperfect repairs and still subject to competing risks. The primary objective of this work is
to present new parametric univariate and shared frailty models for multiple repairable systems,
considering different types of repairs and a competing risks framework. These proposed models
extend and generalize those already existing in the literature, as they account for perfect repairs
and all possible failure memories within both the ARAm and ARIm classes of imperfect repairs.
In this sense, they are models capable of simultaneously identifying the effect of the repairs
actions and the presence of unobserved heterogeneity among failure times or among the systems
under analysis. This characteristic holds substantial relevance in real-world situations, as a
deeper understanding of the system’s failure process can lead to improved preventive mainte-
nance policies and reduced repair-related costs. In all proposed models, we assume that the initial
failure intensity follows a Power Law Process and that the parametric frailty terms associated
with failure times or systems follow a Gamma distribution. We employ a frequentist approach to
construct the likelihood function for each model and suggest numerical methods for obtaining
maximum likelihood estimators and their corresponding asymptotic confidence intervals. Addi-
tionally, we propose the use of Bayesian methodologies based on Markov Chain Monte Carlo
algorithms as an alternative to the frequentist method. Simulation studies are conducted for each
proposed model, and, finally, the methods presented are applied to real datasets.

Keywords: Repairable systems, Power law process, Frailty models, Unobserved heterogeneity,
Competing risks.
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CHAPTER

1
INTRODUCTION

In recent decades, reliability studies have gained increasing importance among the main
and most competitive industries and manufacturers of various products. The reason is simple:
among other possibilities, reliability studies provide support for reducing failures in systems and
operations through both preventive and corrective maintenance policies. In particular, corrective
maintenance leads us to systems known as repairable systems and the focus of this work is on
data from these types of systems.

In the reliability literature, a system can be classified as either non-repairable or repairable
and its distinction is totally natural. A system is considered non-repairable if it cannot be repaired
after a failure has occurred. In contrast, a repairable system can undergo a repair procedure
after the failure occurrence, which restores it to working condition, enabling it to perform its
designated activity satisfactorily (ASCHER; FEINGOLD, 1984).

The difference between non-repairable and repairable systems also affects the method-
ological approach required for statistical modeling. Models for repairable systems must account
for the occurrence of several failures over time, as well as the effect of the repair performed after
each failure. In the literature, the theoretical framework used for repairable systems is naturally
related to recurrent events, since successive failures can occur for the same system. Further
details of the recurrent events theory can be found in Cook and Lawless (2007) and Nelson
(2003).

In general, statistical modeling for recurrent events in repairable systems is achieved
through counting processes. This kind of process is completely characterized by the system’s
failure intensity function, which provides the necessary tools to perform the inference and
estimation of the model’s parameters. In the literature of repairable systems, it is commonly
assumed that recurrent failures follow a Non-Homogeneous Poisson Process (NHPP), and, in
particular, one of its most important and widely used parametric forms is the Power Law Process
(PLP). PLP was proposed by Crow (1975) and it is a convenient choice given its flexibility,
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applicability, and the interpretability of its parameters. For a more detailed exploration of NHPP
and PLP, see Rigdon and Basu (2000), Ross (1996) and Hamada et al. (2008).

The effect of the repair performed immediately after the failure is a critical characteristic
in repairable system models and its definition is closely tied to the system’s failure intensity
function. In the majority of literature concerning repairable systems, it is assumed that the repair
effect is minimal, that is, after performing a repair the system returns to the same condition
as it was immediately before the failure. This type of repair is known as minimal repair and
is closely associated with PLP, as these models share the exact same system failure intensity
function. Among the various works with this approach, we can mention Barlow and Hunter
(1960), Engelhardt and Bain (1986), Rigdon and Basu (1989), Park, Jung and Yum (2000) and
Gilardoni and Colosimo (2007).

Barlow and Hunter (1960), in particular, presented a maintenance policy that considers,
in addition to minimal repairs, another type of repair that accounts for more extreme situations
where the system is repaired in order to restore it to the same condition as when it was new. This
type of repair is referred to as perfect repair and can be classified as a renewal process. In this
case, the system intensity function takes into account the previous failure times as it will be
renewed after each occurrence.

While the assumptions of minimal repair or perfect repair can be suitable for certain
scenarios, they may not always reflect reality accurately. Repair procedures can sometimes have
an intermediate effect on a system, meaning that after a repair, the system returns to a better
condition than before the failure but not as good as a new system. Repairs of this type are referred
to as imperfect repairs and were originally introduced by Kijima, Morimura and Suzuki (1988).
These authors introduced the concept of virtual age, which assigns a new age to the system after
each repair is performed, distinct from the real age. In this virtual age model, a crucial parameter
θ ∈ (0,1) is introduced to quantify the impact of the repair.

Subsequently, Doyen and Gaudoin (2004) explored the potential effects of the repair
procedures on the intensity function of a system and defined two important classes for imperfect
repair. The first considers an arithmetic reduction in age (ARA) of the system after repair, while
the second considers an arithmetic reduction in the intensity function (ARI) of the system.
According to the model proposed by the authors, both ARA and ARI classes have a memory m

of failures that takes into account the time of the last m failures of the system, influencing the
current failure intensity. Further details on this type of repair can also be found in Kijima (1989)
and Toledo et al. (2015).

In addition to understanding the effects of repairs performed on a system after the
occurrence of a failure, it is important to consider factors contributing to the failure event. Two
significant aspects concerning the analysis of system failure times come to the forefront: the
cause of the failure and the influence of internal or external factors that can impact the system’s
operation.
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The first point is obvious: generally, a system can fail for multiple reasons. In the
literature, this is commonly referred to as competing risks, where the system is exposed to
various risks that compete with each other to be the cause of failure (CROWDER, 2001).

Methodologies dealing with competing risks have been well established in the reliability
literature and have been addressed in several works. In particular, we can cite the works of
Langseth and Lindqvist (2006) and Doyen and Gaudoin (2006), which addressed problems of
competing risks in repairable systems whose repairs are imperfect. In the first work, the authors
focused on datasets where preventive maintenance does not necessarily need to be perfect, so
they used a version of the imperfect repair models. On the other hand, in the second work the
authors presented a robust theoretical discussion on imperfect maintenance within a broader
framework of generalized competing risks.

The second point mentioned above concerns to factors that can influence a system’s
failure process. From a statistical modeling perspective, these factors can be regarded as covari-
ates and easily incorporated into existing models. However, in practice, it is often challenging
to account for all relevant covariates, leading to what is known in the literature as unobserved

heterogeneity. According to Tomazella (2003) and Wienke (2010), assuming the absence of
unobserved heterogeneity between recurring failures in a system or even between systems within
the same group may not be a realistic assumption. Therefore, it is pertinent to consider the unob-
served heterogeneity when modeling the failure processes of repairable systems. This unobserved
heterogeneity can be estimated using models known in the literature as frailty models. Further
foundational theory on these models can be found in Andersen et al. (2012) and Hougaard
(2012).

As highlighted by Tomazella (2003), the frailty terms can be introduced in an additive or
multiplicative way into the failure intensity function, which can naturally influence the occurrence
of failures over time. Therefore, some authors have explored unobserved heterogeneity in
repairable systems under the assumption of minimal repair, including D’Andrea (2019), Almeida
et al. (2020) and Somboonsavatdee and Sen (2015a). These latter two works also considered
a competing risks framework. Regarding frailty models and imperfect repair, the literature is
relatively sparse; except for the works of Liu et al. (2020) and Junior (2021), with the latter work
also considering a competing risks framework.

By analyzing the timeline of publications concerning repairable systems, we can note
that the development of new methodologies is closely tied to the quest for models capable of
encompassing various data characteristics, whether quantifiable or not. In this context, a common
approach in this type of research has been to analyze an existing model and try to adapt it to a
situation where more information about the data is desired. This is the central idea of the main
results presented in this work.

Based on existing theories about repairable systems under minimal repair, frailty models
and competing risks framework, our proposed methodologies aim to construct models that
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combine and extend these concepts into more general models. The core objective is to provide
models with the capacity to simultaneously discern multiple attributes within the failure processes
of repairable systems and to provide practical interpretations in real-world scenarios.

In essence, our aim is to analyze multiple repairable systems susceptible to failures
stemming from various causes, influenced by unobserved heterogeneity, and that can undergo
to any type of repair following a failure — be it minimal, perfect, or imperfect. In this sense,
we propose models that are extensions and generalizations of existing models, especially when
analyzing the general classes ARAm and ARIm of imperfect repair within the framework of
frailty and competing risks. Below, we list and contextualize our main contributions.

1.1 Thesis Contributions

Although the use of frailty models to detect unobserved heterogeneity in repairable sys-
tems is well established in the reliability literature, there remains a dearth of research considering
systems under repair scenarios beyond minimal repair. To the best of our knowledge, only the
recent works of Liu et al. (2020) and Junior (2021) have initiated discussions on frailty models
for systems undergoing imperfect repairs, as previously highlighted.

Specifically, Liu et al. (2020) presented a shared frailty model only for the classes ARA1

and ARA∞ of imperfect repair, while Junior (2021) introduced a univariate frailty model for
the general ARAm class. There is, therefore, a gap in the field of reliability when it comes to
extending frailty models for perfect repairs and for any class and memory of imperfect repairs.
This discussion is important because assuming only minimal repairs after failures is not realistic
and, on the other hand, the lack of knowledge about the true repair effect on the system implies
the need to evaluate as many possibilities as feasible to make inferences about this impact.

In this sense, the main contributions of this thesis are the proposal of some novel models
that extend and generalize prior models with the goal of furnishing multiple insights related to
the repair effect and the unobserved heterogeneity into observed systems based on their failure
processes. In each of Chapters 3, 4 and 6, we present new models in this regard. These models
have not yet been presented in the literature and have a high potential for applicability in real
problems.

Initially, in Chapter 3, we propose a univariate frailty model for multiple systems under-
going perfect repair. This model is an extension of the frailty models applied to systems under
minimal repair presented by D’Andrea (2019). Here, we assume that the initial intensity function
of the systems is modeled by a PLP and the frailty variables associated with failure times have a
Gamma distribution.

In Chapter 4, our objective is to generalize the shared frailty models presented by Liu et

al. (2020) to encompass any failure memory of the ARAm and ARIm imperfect repair classes,
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and also to extend the univariate frailty model proposed by Junior (2021) to encompass any
failure memory within the ARAm and ARIm classes. Therefore, we propose here four generalized
models: two univariate frailty models for multiple systems undergoing imperfect repairs, each
model considering all possible m failure memories of the ARAm or ARIm class of imperfect
repair; and two additional shared frailty models, again for multiple systems undergoing imperfect
repairs, each encompassing all possible failure memories m within the ARAm or ARIm class. In
all cases, we presuppose that the initial intensity function is modeled by a PLP and the frailty
variables follow a Gamma distribution.

In the context of repairable systems subjected to competing risks, the research gaps
concerning unobserved heterogeneity in systems undergoing imperfect repairs persist. To our
knowledge, only Junior (2021) presented a framework of competing risks (hierarchical, in
this case) combined with univariate frailty and imperfect repairs. In light of this, we propose
novel models that diverges from the author’s approach. Our model centers on shared frailty
between multiple systems and their respective causes of failure, encompassing imperfect repairs
in both ARAm and ARIm classes, and all their possible failure memories. Here, the PLP is
also assumed as initial intensity function and the Gamma distribution as frailty distribution.
These models are presented in Chapter 6 and represent extensions of previous research that
has established competing risk frameworks with imperfect repairs, as well as models that have
explored competing risk frameworks with unobserved heterogeneity considering only minimal
repairs.

1.2 Chapters Organization
The next chapters of this thesis are organized as follows.

• In Chapter 2, an extensive bibliographical and content review is conducted to provide
essential support for the development of the thesis. Section 2.1 introduces key definitions
related to counting processes, particularly focusing on Poisson processes, with an em-
phasis on PLP as a significant parametric case of NHPP. Section 2.2 provides a detailed
exploration of the minimal repair, perfect repair, and the both ARAm and ARIm classes of
imperfect repair, and includes inferential procedures for obtaining the likelihood function
for systems under each type of repair. Section 2.3 introduces fundamental concepts about
frailty models and unobserved heterogeneity, and presents the main algebraic develop-
ments related to parametric Gamma frailty models. In Section 2.4, the competing risks
framework is established, and some inferential constructs are presented to guide future
developments.

• In Chapter 3, a parametric frailty model is proposed for multiple repairable systems under
perfect repair within an intensity function parameterized by a PLP. Section 3.1 presents an
existing model from the literature that considers unobserved heterogeneity in the context
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of minimal repair. Section 3.2 presents the newly proposed model. Section 3.3 offers an
extensive simulation study for the proposed model. Finally, in Section 3.4, the developed
procedures are applied to fit two real datasets.

• In Chapter 4, we propose parametric frailty models for multiple repairable systems under
imperfect repair with an intensity function parameterized by a PLP for both classes ARAm

and ARIm. The discussion in this chapter has been divided into two parts, according
to the type of frailty incorporated in the model. Initially, in Section 4.1, we present a
univariate frailty model, where the frailty variables are associated with each failure time
and the Laplace Transform is used to obtain the intensity functions of the model. In Section
4.2, we present a shared frailty model, where frailty variables are associated with each
system and shared by failure times. In each of these sections, we develop frequentist
inferential procedures, conduct comprehensive simulation studies, and employ a real
dataset to illustrate the application of the proposed models.

• In Chapter 5, we present a Bayesian approach for estimating the parameters of shared
frailty models for multiple repairable systems. In Section 5.1, we present our proposed
Bayesian model framework, which assumes a reparameterization for the PLP and considers
the possibility of individually estimating repair effects for each system. In Section 5.1.1,
we define the prior distributions and outline a hierarchical Bayesian approach to the
problem. In Section 5.1.2, we propose an iterative sampling method based on Markov
Chain Monte Carlo (MCMC) techniques to obtain the posterior density distributions of the
model parameters. In Sections 5.1.3 and 5.1.4, we establish criteria for model selection
and verify chain convergence. Finally, in Section 5.2, we revisit the real datasets previously
presented in this work to demonstrate the application of the Bayesian techniques.

• In Chapter 6, we propose parametric frailty models for multiple repairable systems sub-
jected to competing risks under imperfect repair with an intensity function parameterized
by a PLP for both classes ARAm and ARIm. In Section 6.1.1, we present the models
formulation, defining their intensity functions within the framework of competing risks
combined with imperfect repairs. In Section 6.1.2, we outline frequentist inferential meth-
ods for estimating the parameters of the proposed models. In Section 6.1.3, we discuss
and define reliability prediction functions in the context of competing risks. Section 6.2
features a simulation study to verify the asymptotic properties of the proposed estimators.
Finally, in Section 6.3, we present and utilize two real datasets to illustrate the practical
applicability of the proposed models.

• In Chapter 7, we provide a summary of the main results present in this work. Some future
proposals of our research are also listed.
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1.3 Products of the Thesis
The process of preparing the thesis has yielded one published article, one article that

has already been submitted for consideration, and additional three articles currently in the final
stages of preparation, set to be submitted in the near future. The following is a list of elaborated
texts:

• BRITO, É. S.; TOMAZELLA, V. L.; FERREIRA, P. H. Statistical modeling and reli-
ability analysis of multiple repairable systems with dependent failure times under
perfect repair. Reliability Engineering & System Safety, Elsevier, v. 222, p. 108375, 2022.
(Published article (BRITO; TOMAZELLA; FERREIRA, 2022)).

• BRITO, É. S.; TOMAZELLA, V. L.; FERREIRA, P. H.; LOUZADA, F.; GONZATTO-
JUNIOR, O. A. Reliability analysis of multiple repairable systems under imperfect
repair and unobserved heterogeneity. (This paper is under review in Quality and

Reliability Engineering International.)

• BRITO, É. S.; TOMAZELLA, V. L.; FERREIRA, P. H.; LOUZADA, F. Shared frailty
models for multiple repairable systems under imperfect repair. (Paper related to

Section 4.2, under internal review by the authors.)

• BRITO, É. S.; TOMAZELLA, V. L.; FERREIRA, P. H.; LOUZADA, F. Bayes inference
for repairable systems under imperfect repair and unobserved heterogeneity. (Paper

related to Chapter 5, under internal review by the authors.)

• BRITO, É. S.; TOMAZELLA, V. L.; FERREIRA, P. H.; LOUZADA, F. Frailty models for
general repairable systems in competing risks framework. (Paper related to Chapter 6,

under internal review by the authors.)
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CHAPTER

2
BACKGROUND

In this chapter, we will present some basic ideas that will serve as support for further
discussions. The objective here is to list and review the main concepts known in the literature,
which will be used in the research.

2.1 Counting Process
According to Ross (1996), a stochastic process {N(t), t ∈ T } is a collection of random

variables where, for each t in the index set T , N(t) is a random variable. A point process is
defined by Rigdon and Basu (2000, p. 23) as a stochastic model that describes occurrence of
events in time. Thus, in a point process, if events are occurring randomly in time, the variable
N(t) can represent the number of events that occur in [0, t] and this is the idea of a counting

process, formally defined bellow.

Definition 1. A counting process is a stochastic process {N(t), t ≥ 0} that satisfies the following
conditions:

1. N(t)≥ 0 and N(0) = 0;

2. N(t) is an integer value;

3. t 7→ N(t) is right-continuous;

4. lim
h→0

[N(t +h)−N(t)] = 0.

As a direct consequence of the definition, if s < t then N(s)≤ N(t). In addition, N(s, t] =

N(t)−N(s) is the number of events that occurred in the range (s, t].

In the context of survival analysis and reliability, we are interested in the occurrence of
events over time [0, t], and we will consider that the random variable T represents the time until
failure (occurrence of the event of interest) since the experiment started at t = 0.
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A point process described by a non-decreasing sequence of positive random variables
0 < T1 ≤ T2 ≤ ·· · can also be described by the corresponding counting process N(t) = Nt(υ),
with t ∈ R+, since the random variable Nt(υ) counts the number of points Tk that occur until the
time t, written as

Nt(υ) = ∑
k≥1

I(Tk(υ)≤ t),

where I(·) is the indicator function. Note that for each realization υ , the function Nt(·) is a
non-decreasing right-continuous step function with size jump 1. Furthermore, if we consider the
sequence of times between events Xi = Ti −Ti−1, with i ≥ 1 and T0 = 0, the three specifications
{N(t)}t≥0, {TN(t)}t≥0 and {Xi}i≥1 are equivalent and carry the same information, as seen in
Figure 1.

Figure 1 – Representation of the number of events N(t), times to events Ti, and times between events Xi.

Definition 2. A point process has independent increments if for all n and for all r1 < s1 ≤ r2 <

s2 ≤ ·· · ≤ rn < sn, the random variables N(r1,s1],N(r2,s2], . . . ,N(rn,sn] are independent, that is,

P [N(r1,s1] = k1, . . . ,N(rn,sn] = kn] =
n

∏
i=1

P [N(ri,si] = ki].

In other words, a point process has independent increments if the number of events that
occur in disjoint intervals are independent.

Definition 3. A point process has stationary increments if for all k, P [N(t, t + s] = k] is indepen-
dent of t.

In other words, a point process has stationary increments if the distribution of the number
of events occurring in any interval depends only on the length of the interval, that is, the random
variable N(t1 + s, t2 + s] has the same distribution as N(t1, t2], for all t1, t2 and s > 0.

Other two important initial definitions are the mean function and the rate of occurrence
of failures of a counting process, and they are presented below.
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Definition 4. The mean function of a counting process is the expected number of failures through
time t, that is

Λ(t) = E[N(t)].

Definition 5. The Rate of Occurrence of Failures (ROCOF) of a counting process at time t is

λ (t) = Λ
′(t) =

d
dt
E[N(t)] = lim

∆t→0

E[N(t +∆t)−N(t)]
∆t

.

By the last expression of the definition above, the ROCOF represents the expected
number of failures in the interval (0, t]. Moreover, according to Rigdon and Basu (2000, p. 24, 28),
ROCOF can be interpreted as the instantaneous rate of change in the expected number of failures,
and since the probability of instantaneous failures is zero, it will also be the intensity function of
the counting process.

Definition 6. The complete intensity function of a point process is

λ (t) = lim
∆t→0

P[N(t, t +∆t]≥ 1 | Ht ]

∆t
, (2.1)

where Ht is the history of the process at time t.

Note that the complete intensity function gives the instantaneous probability of an event
occurring at t, conditional on the process history.

If the process is a counting process with independent increments, since the history of
events does not interfere with the occurrence of the next event, we can rewritten the intensity
function as

λ (t) = lim
∆t→0

P[N(t, t +∆t]≥ 1]
∆t

.

In this context, the mean function Λ(t) can be reinterpreted as the cumulative intensity

function of a counting process, and it is given by

Λ(t) =
∫ t

0
λ (u)du. (2.2)

2.1.1 Poisson Process

The Poisson process is a particular case of the counting process that can be used to
model occurrences (and counts) of events over a period of time, when they are not affected by
past occurrences. It is a particular case of a Markov process in continuous time, where the only
possibility of jumping is to the next state of the sequence.

Definition 7. A counting process N(t) is a Poisson Process with intensity λ (t)> 0 if

1. N(0) = 0;
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2. N(t) has independent increments;

3. lim
∆t→0

P[N(t, t +∆] = 1]
∆t

= λ (t);

4. lim
∆t→0

P[N(t, t +∆]≥ 2]
∆t

= 0.

Note that the fourth property precludes the possibility of simultaneous failures.

As seen in Rigdon and Basu (2000, p. 36) and Hamada et al. (2008, p. 166), a consequence
of these conditions is that

P[N(t) = x] =
Λ(t)xe−Λ(t)

x!
,

where Λ(t) =
∫ t

0
λ (u)du, and that means that the number of failures in an interval is a random

variable having a Poisson distribution. In another words, if N(t) is a Poisson process with
intensity λ (t), we have that

N(t)∼ Poisson
(

Λ(t) =
∫ t

0
λ (u)du

)
and

N(a,b]∼ Poisson
(

Λ(b)−Λ(a) =
∫ b

a
λ (u)du

)
.

Depending on the definition of λ (t), we can have two types of Poisson Process: the
Homogeneous Poisson Process (HPP) when λ (t) is constant, and the Non-Homogeneous Poisson
Process (NHPP) otherwise. To formalize these definitions, consider a function o(h) such that

lim
h→0

o(h)
h

= 0.

Definition 8. A homogeneous Poisson process is a counting process {N(t); t ≥ 0} with intensity
λ (t) satisfying:

1. N(0) = 0;

2. N(t) has independent increments;

3. P[N(t +h)−N(t) = 1] = λh+o(h);

4. P[N(t +h)−N(t)≥ 2] = o(h).

The third condition of the definition shows that the intensity function is constant over
time, since it does not depend on t. This means that in a HPP, the intensity function λ (t) = λ

for all t ≥ 0. As a direct consequence, since the number of failures N(a,b] in a Poisson process
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has a Poisson distribution with expected value
∫ b

a
λ (u)du, in a HPP the mean number and the

variance of failures in an interval (a,b] are given by

E[N(a,b]] =Var[N(a,b]] =
∫ b

a
λ (u)du =

∫ b

a
λdu = λ (b−a),

a linear function of λ and the increments are stationary.

In addition, as can be seen in Hamada et al. (2008), in a HPP the times between failures
Xi, i≥ 1, where Xi = Ti−Ti−1, are Independent and Identically Distributed (IID) with exponential
distribution of mean λ−1.

Definition 9. A non-homogeneous Poisson process is a counting process {N(t); t ≥ 0} with
intensity λ (t) satisfying:

1. N(0) = 0;

2. N(t) has independent increments;

3. P[N(t +h)−N(t) = 1] = λ (t)h+o(h);

4. P[N(t +h)−N(t)≥ 2] = o(h).

The third condition establishes the difference between the HPP and the NHPP, since,
in the latter case, the intensity function is not constant over time. In a NHPP, the stationary
increments are not required and therein lies its importance and applicability. An important
difference from HPP is that, in a NHPP, the times between failures are not necessarily independent
or identically distributed.

According to Cook and Lawless (2007), Poisson process models may be nonparametric
or parametric, and for the latter, the intensity function λ (t) is specified as a function of a
finite-dimensional parameter. These authors highlight some possibilities of models such as the
exponential model whose intensity function is given by λ (t | α,β ) = eα+β t , and the power law
process model which will be detailed in the next section and adopted for the development of this
work.

2.1.2 Power Law Process

The Power Law Process (PLP) is a parametric model for the NHPP widely used in the
literature. It is defined as follows.

Definition 10. A NHPP N(t) follows a power law process if it has intensity function of the form

λ (t | β ,η) =
β

η

(
t
η

)β−1

, (2.3)
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where β > 0 is the shape parameter and η > 0 is the scale parameter.

The PLP model was formally introduced and investigated by Crow (1975), where the
author assigned the name “Weibull intensity function” to the intensity function. As pointed out
by Hamada et al. (2008), this nomenclature can be confusing as it suggests that all recurrent
failure times have a Weibull distribution, while in fact this is only the case for the first failure
time. According to Rigdon and Basu (2000), the name PLP derives from the fact that the intensity
function is proportional to the global time t raised to a power.

According to Oliveira, Colosimo and Gilardoni (2013), one of the reasons for the
popularity of the PLP stems from the fact that the form of λ (t) in (2.3) is flexible, as seen in
Figure 2, where we fixed the scale parameter η = 1.

Figure 2 – Intensity function of the PLP with η = 1 and different β values.

Note that if β > 1, the intensity function is increasing, while if β < 1, it is decreasing,
which indicates that the parameter β can be interpreted as a measure of elasticity of the expected
number of failures. Specifically, if β > 1, the failure intensity increases over time, which indicates
that the system is deteriorating, since the probability of failure increases with time. On the other
hand, if β < 1, the failure intensity decreases over time, which indicates that the system is
improving. In the special case that β = 1, the intensity function is constant and, hence, the PLP
becomes an HPP. The scale parameter η , in turn, can be interpreted as the time in which exactly
one failure is expected to occur, that is, E[N(η)] = Λ(η) = 1.

As a direct consequence from Definition 10, the cumulative intensity function of a PLP
is given by

Λ(t | β ,η) =

(
t
η

)β

, (2.4)
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and as seen by Definition 4, this function also represents the expected number of failures up to
time t.

2.1.3 Renewal Process

In this section, we will discuss another type of counting process for recurring events, the
renewal processes.

Definition 11. A counting process {N(t), t ≥ 0} is said a renewal process if the times between
failures X1,X2, . . . are independent and identically distributed, where Xi = Ti −Ti−1, i ≥ 1.

This process is called renewal because after the occurrence of each event or failure, the
probability of recurrence of the failure restarts from zero, that is, the time until the occurrence of
a new event is the same as the time until the occurrence of the first event. In this sense, it is as if
the system were new after the occurrence of each event. Thus, according to Rigdon and Basu
(2000) a renewal process cannot be used to model a system that is deteriorating, because each
failure returns the system to a like-new condition.

The complete intensity function λ (t) given by (2.1) depends only on the history Ht of
the process only though the time since the most recent failure. Then, we can rewrite the intensity
function as

λ (t | Ht) = λ (t −TN(t−)), (2.5)

where N(t−) is the number of failures before the time t, TN(t−) is the time that the N(t−)-th
failure occurred and t −TN(t−) is the elapsed time from the last failure to time t. In this case, the
behavior of the intensity function can be illustrated by Figure 3, where it is clear that after the
occurrence of each failure the intensity function returns to what it was at time t = 0.

Figure 3 – Intensity function of a renewal process, conditioned on failures at times t = 1, 4, 6 and 8.5.
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As said before, the times between the failures in a HPP are IID with exponential distribu-
tion, so this process is a particular case to the renewal process.

The study of renewal processes is justified by the fact that in some complex systems
there is the possibility that the system returns to a state equivalent to the initial state, from the
point of view of probability. In the next sections, we will discuss, for example, repair models
on repairable systems that can be modeled by renewal processes since the repair will return the
system to a new condition.

2.2 Repairable Systems

According to Rigdon and Basu (2000), a repairable system is a system that, when a
failure occurs, can be restored to an operating condition by some repair process without having
to replace the system as a whole. A non-repairable system, in turn, is a system that will be
discarded after the occurrence of the first and only failure.

By the nature of this type of process, a non-decreasing sequence of failure times will
be observed 0 < T1 < T2 < · · · , where Ti is the i-th failure time of the system, measured in a
global time, that is, the time since the initial start up of the system. The sequence of failure
times describe a stochastic point process, so we can consider a counting process {N(t); t ≥ 0},
where N(t) is the number of of failures in the interval (0, t]. As pointed out by Lindqvist et al.

(2006), the implicit assumption is usually that the system is repaired and put into new operation
immediately after the failure, so we can just ignore the possible repair times.

An important point to be considered in the analysis of a repairable system is the end of
the study, that is, the moment when the observation of the system will be finished. This end of
study can be determined in two ways: by a predetermined time or by a predetermined number
of failures to be observed. When the system observation period ends at a predetermined time
t∗, the data is said to be time truncated and can be represented by 0 < t1 < t2 < .. . < tn < t∗,
where tn is the last observed failure time and n is the number of failures in (0, t], that is, N(t) = n.
On the other hand, the data is said to be failure truncated when the system observation window
terminates after a predetermined number of failures n∗, and, in this case, it can be represented by
0 < t1 < t2 < .. . < tn∗ . It is important to highlight that in the case of time truncated system, the
number of failures N(t) is random and this should be taken into account.

When a failure occurs in a repairable system, different repair actions can be performed,
interfering with the reliability of the system after its return to operation. These types of repair
are defined according to the effect that the repair has on the system reliability. In the literature,
we find three main types of repair: the Minimal Repair (MR), the Perfect Repair (PR) and the
Imperfect Repair (IR). More details of each of these three types of repair will be covered below.
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2.2.1 The Minimal Repair Model

The MR occurs when a repair action corrects only the root cause of the system failure,
leaving it in the same operating conditions as the system was immediately before the failure, or
as defined in the literature, As Bad As Old (ABAO).

According to Kijima (1989), the MR assumption seems plausible for systems consisting
of many components each having its own failure mode. Using the MR concept, it is possible to
describe in a simple way the fact that many repairs in real life bring the system to a condition
that is basically the same before the failure.

In a MR model, the process associated with the occurrence of failure can be described
by a NHPP, in which the probability of failure in a short time period does not depend on the
history of failures, but only on the previous failure and thus, the intensity function will depend
only on the age of the system. This means that the conditional intensity of the failure process
immediately after a failure is the same as before the failure and, therefore, is exactly as it would
be if no failure had occurred.

Thus, the MR model is a process whose intensity function is the NHPP intensity itself,
that is, if we denote by λ MR(t) the intensity function of the MR process, we have that

λ MR(t) = λ (t), (2.6)

where λ (t) is the intensity function of a NHPP. As a direct consequence, the cumulative intensity
function of the MR process denoted by ΛMR(t) also will be equal to the cumulative intensity of
a NHPP Λ(t), that is,

ΛMR(t) =
∫ t

0
λ MR(u)du =

∫ t

0
λ (u)du = Λ(t).

Figure 4 shows a typical behavior of the intensity function of a MR model. The vertical
dotted lines indicate the times where system failures and repairs occurred (assuming the repair
occurred instantly after the failure). Note that there is no change in the intensity of failures after
the occurrence of failures throughout the process, that is, the failure intensity of the system
remains the same after the failure in a condition as bad as before the failure.

If the failure intensity function of a repairable system is parametric with a parameter
vector µµµ , a natural issue is to perform inferential methods to obtain the estimates µ̂µµ for the
parameters. From here, we will focus on obtaining the general likelihood function for MR models
with any λ (t) parametric intensity function.

First of all, it is necessary to obtain the joint probability density function of failure
times considering the time truncated and failure truncated cases. In the case of time truncated
observation, it is still necessary to obtain the probability that a number n of failures occur on the
system. All of these functions will be necessary to obtain the likelihood function and perform
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Figure 4 – Intensity function of a MR model, with failures at times t = 2, 6 and 8.

inference on the parameters of the intensity function of the system, both for the case of a single
system and for the case of multiple systems.

Let t j, j = 1, . . . ,n, be the observation of the random variable T , where each t j represents
the j-th failure time of the repairable system and n is the total number of observed failures.

Fist, we will consider the case of time truncated, being t∗ the final observation time. As
said before, the observed failure times and time of truncation are given by 0 < t1 < t2 < .. . <

tn < t∗, and, in this case, the number n of failures is random.

Due to the fact that the MR model is modeled by a NHPP, it has independent increments,
that is, the failure times are conditioned only to the immediately previous failure times. Thus,
the joint density function of the failure times T1, . . . ,Tn is given by

f (t1, . . . , tn) = f (t1) f (t2 | t1) f (t3 | t1, t2) · · · f (tn | t1, t2, . . . , tn−1)

= f (t1) f (t2 | t1) f (t3 | t2) · · · f (tn | tn−1).

Given the failure intensity function λ MR(t) = λ (t), note that the conditional reliability
function of Tj given the observation t j−1 is

R(t j | t j−1) = P[Tj > t j | t j−1] = P[N(t j)−N(t j−1) = 0]

= exp
(
−
∫ t j

t j−1

λ (u)du
)
= exp

(
−Λ(t j)+Λ(t j−1)

)
,

since the fact that N(t j)−N(t j−1) has a Poisson distribution.

Therefore, it follows that

f (t j | t j−1) =
d

dt j
[1−R(t j | t j−1)] =

d
dt j

[1− e−Λ(t j)+Λ(t j−1)]

= λ (t j)e−Λ(t j)+Λ(t j−1),
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and, in addition, R(t1) = P[T1 > t1] = P[N(t1) = 0] = e−Λ(t1), whence it follows that

f (t1) =
d

dt1
[1− e−Λ(t1)] = λ (t1)e−Λ(t1).

Then, we can rewrite the joint density function of the system failure times as

f (t1, . . . , tn) = f (t1)
n

∏
j=2

f (t j | t j−1)

= λ (t1)e−Λ(t1)λ (t2)e−Λ(t2)+Λ(t1) · · ·λ (tn)e−Λ(tn)+Λ(tn−1)

= λ (t1)λ (t2) · · ·λ (tn)e−Λ(tn)

=

(
n

∏
j=1

λ (t j)

)
e−Λ(tn).

Since we are considering a time truncated process, we need to calculate the probability
that up to the truncation time t∗ there have been n failures in the system. This probability is given
by

P[N(t∗) = n | t1, t2, . . . , tn] = P[N(t∗) = n | tn]

= P[N(t∗)−N(tn) = 0] = e−Λ(t∗)+Λ(tn).

Finally, we can determine the likelihood function for the parameter vector µµµ of the
intensity function of a MR model time truncated, taking into account the randomness of the
number n of failures occurring in the system until the time t∗ and the observed failure times
t1, . . . , tn:

LMR(µµµ | t j) = f (t1, . . . , tn,n) = f (t1, . . . , tn)×P[N(t∗) = n | t1, t2, . . . , tn]

=

(
n

∏
j=1

λ (t j)

)
e−Λ(tn)e−Λ(t∗)+Λ(tn)

=

(
n

∏
j=1

λ (t j)

)
e−Λ(t∗).

(2.7)

Considering the case of failure truncated process, the development to obtain the likelihood
function is exactly the same as that performed for the previous case, with the difference that
now there is no randomness in the number of failures n, since this is a fixed and predetermined
number n∗. Then, the likelihood function of the parameter vector θθθ is given by

LMR(µµµ | t j) = f (t1, . . . , tn∗) =

(
n∗

∏
j=1

λ (t j)

)
e−Λ(tn∗). (2.8)

Note that the expression (2.8) obtained considering the failure truncated model can be
directly obtained from the expression (2.7) of the time truncated process, just replacing the
truncation time t∗ with the time of the last observed failure tn.
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2.2.2 The Perfect Repair Model

The PR occurs when a repair action corrects an important component of the system,
leaving it in conditions similar to those at the beginning of the experiment, that is, when the
system had not yet worn out. In the literature, it is said that the system assumes a condition As
Good As New (AGAN) after the repair.

According to Kijima (1989), in practice, the PR assumption may be reasonable for
systems with one unit which is structurally simple. This makes sense since, in general, a PR
occurs when an important component of the system is replaced after the failure, in order to leave
the system as new again.

In this case, the failure process is modeled by a renewal process. As discussed in Section
2.1.3, the renewal process can be defined by the joint distribution of the counting process N(t)

and the probability of failure begins with each repair process. Furthermore, we pointed out that
simplest characterization is through the intervals between times of failure occurrence being IID,
and the intensity function depends on the last observed failure time, as defined by the equation
(2.5).

Therefore, the failure intensity function of a PR model is given by

λ PR(t) = λ0(t −TN(t)), (2.9)

where λ0(t) is the intensity function of a NHPP, N(t) is the number of failures until the time t,
TN(t) is the time until the N(t)-th failure, and (t −TN(t)) is the time until t since the last failure
strictly before t. Figure 5 shows an example of the behavior of the intensity function of a system
under PR.

Figure 5 – Intensity function of a PR model, with failures at times t = 2, 6 and 9.

Figure 5 shows that after the occurrence of each failure, the intensity function returns to
the initial value of zero, since the system assumes a like-new condition. In other words, after
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each failure the intensity function behaves exactly as in the initial process time. Furthermore,
the dotted curve is the curve referring to the MR model, that is, the intensity curve that would
not change after the occurrence of failures and repairs. Note that the MR and PR curves are
equal until the first failure, which allows us to say that λ0(t) is the initial intensity function of the
system and it is exactly the MR intensity function.

From equation (2.9), we can obtain the cumulative intensity function for the PR model,
since this is the integral of the intensity function as indicated in (2.2). But note that the change in
behavior of the intensity function after each failure requires that its integral also be calculated
separately in each of the intervals between two consecutive failure times. Finally, the cumulative
intensity of failure at time t will take into account the cumulative intensity up to the last failure
time prior to t, TN(t). By definition, we have:

ΛPR(t) =
∫ t

0
λ PR(u)du =

∫ t

0
λ0(u−TN(t))du = Λ0(TN(t))+Λ0(t −TN(t)), (2.10)

where Λ0(t) is the initial cumulative intensity function, that is, is the cumulative intensity function
of the MR model.

As in the case of MR, the function λ PR(t) can be a parametric function with vector
parameter µµµ and we can obtain its parameter estimates. We will follow the same steps developed
in Section 2.2.1 for the MR model to build the general likelihood function for the parameters of
the PR model.

Let T1, . . . ,Tn be the failure times of a repairable system under PR process. By the
analysis already carried out previously for the MR case, the joint density function of the failure
times can be written by

f (t1, . . . , tn) = f (t1) f (t2 | t1) f (t3 | t2) · · · f (tn | tn−1).

If the time t ∈ [t j−1, t j), then N(t) = j−1, since there were j−1 failures up to time t,
and consequently, TN(t) = t j−1. Thus, the conditional reliability function of t j given the observed
failure time t j−1 is given by

R(t j | t j−1) = P[Tj > t j | t j−1] = P[N(t j)−N(t j−1) = 0]

= exp
(
−
∫ t j

t j−1

λ PR(u)du
)
= exp

(
−
∫ t j

t j−1

λ0
(
u− t j−1

)
du
)

= e−Λ0(t j−t j−1)+Λ0(t j−1−t j−1) = e−Λ0(t j−t j−1).

(2.11)

We obtain the conditional density function of t j given t j−1, as follows:

f (t j | t j−1) =
d

dt j
[1−R(t j | t j−1)] =

d
dt j

[1− e−Λ0(t j−t j−1)]

= λ0
(
t j − t j−1

)
e−Λ0(t j−t j−1),
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and then, the joint density function of the failure times is given by

f (t1, . . . , tn) =
n

∏
j=1

λ0
(
t j − t j−1

)
e−Λ0(t j−t j−1).

Considering the time truncated case, where t∗ is the time of truncation, the number n of
failures of the system is random and the probability of N(tn) = n should be taken into account in
the likelihood function. Note that if t ∈ [tn, t∗) then N(t) = n, and the desired probability is given
by

P[N(t∗) = n | t1, . . . , tn] = P[N(t∗) = n | tn] = P[N(t∗)−N(tn) = 0]

= e−Λ0(t∗−tn)+Λ0(tn−tn) = e−Λ0(t∗−tn).

Thus, the likelihood function for the vector parameters µµµ in the PR model time truncated is given
by

LPR(µµµ | t j) =

(
n

∏
j=1

λ0
(
t j − t j−1

)
e−Λ0(t j−t j−1)

)
e−Λ0(t∗−tn). (2.12)

By the definitions on (2.9) and (2.10), the general likelihood of the PR model can be
written as

LPR(µµµ | t j) =

(
n

∏
j=1

λ PR
(
t j
)

e−[ΛPR(t j)−ΛPR(t j−1)]

)
e−[ΛPR(t∗)−ΛPR(tn)].

If we consider the failure truncated case with n∗ fixed failure times in a system, we can
obtain the likelihood function by just replacing the term t∗ with tn∗ in the expression (2.12)
obtained for the time truncated case, in a similar way to that observed for the MR model. Thus,
the likelihood function, in this case, is given by

LPR(µµµ | t j) =
n

∏
j=1

λ PR
(
t j
)

e−ΛPR(t j)

=
n

∏
j=1

λ0
(
t j − t j−1

)
e−Λ0(t j−t j−1).

2.2.3 The Imperfect Repair Model

In many situations, the repair actions leave the system at an intermediate level between
AGAN and ABAO, characterizing a situation of IR. In other words, this type of repair does not
return the system to the same conditions as the PR, but leaves it in a better condition than a MR.
As placed by Kijima (1989), in this case the repair actions are more directed to the maintenance
of the system as a whole than to the factor that causes the failure.

Kijima, Morimura and Suzuki (1988) introduced the concept of virtual age to model
periodic maintenance issues without considering minimal or perfect repair. The main idea of
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this concept is that after repair, the system will assume an unreal “new age” that describes the
current condition of the system compared to a new system. The virtual age is a positive function
of the real age and the history of system failures, that is, Vt =V (t | N(t);T1, . . . ,TN(t)), where Vt

represents the virtual age at the time t. A system with virtual age Vt = vt at the time t behaves
exactly like a new system that hasn’t failed until time vt (LINDQVIST et al., 2006).

Definition 12. Let t be a failure time and denote by VN(t) the virtual age of the system at the
time t, where N(t) is the number of failures (and repairs) of the system at time t. If VN(t) = v, the
(N(t)+1)-th time between failures XN(t)+1 of the system works according to

P[XN(t)+1 = x |VN(t) = v] =
F(x+ v)−F(v)

1−F(v)
,

where F(x) is the lifetime distribution of a new system.

Note that Xn can be interpreted as the additional age after the (n−1)-th failure. In the
context of IR, after each repair performed some system malfunctions are alleviated in order to
reduce the additional age Xn, that is, there is an efficiency in these repairs. The virtual age model
inserts a measure an that represents the degree of the repair efficiency of the n-th repair. This
term an must be a number in (0,1) and acts so that after the n-th repair, the additional age Xn

reduces to anXn.

Of course, Tn =
n

∑
i=1

Xi is the real age of the system at the n-th failure and we also can say

that the real age after the n-th failure is Tn = Tn−1 +Xn. Similarly, the virtual age after the n-th
failure (and repair) is Vn =Vn−1 +anXn, since the repair effect reduces the real age increment. If
we assume that each repair produces the same effect, then the degree of repair is constant for

all n, say an = 1−θ , with 0 ≤ θ ≤ 1. Thus, Vn =
n

∑
i=1

θXi, and it is clear that if θ = 1 so Vn = Tn

and in this case the repair returns the system to an ABAO condition. On the other hand, if θ = 0
then Vn = 0 and it means that the system is an AGAN condition.

In the literature, we find two classes of models for IR, the Arithmetic Reduction of Age
(ARA) model and the Arithmetic Reduction of Intensity (ARI) model, defined by Doyen and
Gaudoin (2004). We will describe each of these classes below, but first, we highlight that both
classes are defined by a memory m, where m refers to the maximum number of previous failures
that impact the effect of a repair and, consequently, the failure intensity function, suggesting a
kind of Markovian property (DOYEN; GAUDOIN, 2004). Memory m indicates that each repair
action reduces the system wear that occurs after the last m failures. If m = 1, for example, each
repair action will reduce the wear that occurs only after the last system failure. In this way, the
intensity function of the system will be recalculated after each failure, considering the most
recent failure times.
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2.2.3.1 The ARAm Model

According to Doyen and Gaudoin (2004), the principle of the ARAm class is to consider
that repair rejuvenates the system such that its intensity at time t is equal to the initial intensity at
time Vt , where Vt < t. In other words, the repair effect is expressed by a reduction in the virtual
age of the system, so that the real age of the system will be t, while the virtual age will become
Vt after the repair.

In this sense, the failure intensity of an ARA model can be written as a function of its
virtual age, that is, λ ARAm(t) = λ0(Vt), where λ0(t) is the initial intensity function (that is, the
intensity function until the first failure). Considering the repair effect parameter θ and a memory
m, the failure intensity function for a model of the ARAm class is defined as

λ ARAm(t) = λ0

(
t − (1−θ)

min(m−1,N(t)−1)

∑
p=0

θ
pTN(t)−p

)
. (2.13)

The cumulative failure intensity function is again obtained by the integral of the intensity
function and in this IR model, it is again necessary to calculate the integral in each interval
between two consecutive failure times. Thus, this cumulative intensity function is given by

ΛARAm(t) =
∫ t

0
λ ARAm(u)du

= ΛARAm(TN(t))+Λ0
(
t − (1−θ)S(TN(t))

)
−Λ0

(
TN(t)− (1−θ)S(TN(t))

)
,

where S(To) =
min{m−1,o−1}

∑
p=0

θ
pTo−p.

Note that the expression in the functions argument in (2.13) represents the virtual age Vt

of the system at time t, so that the second term is the reduction of the virtual age in relation to
time t under the conditions of the repair effect θ and the history of m latest failures.

Two important particular (and extreme) cases of the ARAm class are the ARA1 and
ARA∞ models. If m = 1, the failure intensity function for the ARA1 model is given by

λARA1(t) = λ0
(
t − (1−θ)TN(t)

)
,

once min(m−1,N(t)−1)=min(0,N(t)−1)= 0 and the only term of sum
min(0,N(t)−1)

∑
p=0

θ
pTN(t)−p

is such that p = 0, by reducing the θ 0TN(t)−0 = TN(t). As stated before, in this case it is assumed
that the repair effect is to reduce the age increase of the system considering only effect of the last
failure.

On the other hand, in the class ARA∞, it is assumed that each repair reduces the virtual
age of the system by an amount proportional to its age immediately before the repair. In this
case, the failure intensity function is given by

λARA∞
(t) = λ0

(
t − (1−θ)

N(t)−1

∑
p=0

θ
pTN(t)−p

)
.
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The particular class ARA1 corresponds to the virtual age model proposed by Kijima,
Morimura and Suzuki (1988). In the introduction of Section 2.2.3, we said that if θ = 1 or θ = 0
in that virtual age model, the system assumes an ABAO or AGAN condition, respectively. As
direct consequence, it is important to note that the MR and PR models are particular cases of the
ARA1 class models when θ = 1 and θ = 0, respectively, once that:

if θ = 1, so λARA1(t) = λ0
(
t − (1−1)TN(t)

)
= λ0 (t) = λ MR(t);

if θ = 0, so λARA1(t) = λ0
(
t − (1−0)TN(t)

)
= λ0

(
t −TN(t)

)
= λ PR(t).

In the ARAm class, between two consecutive failures, its intensity is horizontally parallel
to its initial intensity. This can be seen from the graph of Figure 6. In this graph, the dashed line
is the graph of the initial intensity function (or MR intensity function), while the other curves are
the graphs of the intensity function for each interval between two consecutive failures. Note that
these graphs are horizontal displacements (and proportional to the size of the interval between
consecutive failures) of the graph of the initial intensity function. In other words, the minimum
point of each new curve starting at failure time t is (t,λ0(vt)), where vt is the virtual age at time
t given by vt = θ mt (DOYEN; GAUDOIN, 2004), and it is offset horizontally in (1−θ)S(TN(t))

to the right of the dotted curve.

Figure 6 – Intensity function of an ARAm model, with failures at times t = 2, 6 and 9.

Once again, the intensity function λ ARAm(t) can be a parametric function and, in this
case, the parameter θ is necessarily in the vector parameter µµµ . Therefore, our goal in this section
will be to obtain the likelihood function of the ARAm model, following the same steps as in
Sections 2.2.1 and 2.2.2.

Let T1, . . . ,Tn be the failure times of a repairable system and assume an IR model with
arithmetic reduction of age and a failure memory m (ARAm model). We will obtain the joint
distribution function in the same way as in the previous MR and PR cases.
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As previously discussed in Section 2.2.2, if t ∈ [t j−1, t j) then N(t)= j−1 and TN(t)= t j−1.
Thus, the conditional reliability function of t j given the observed failure time t j−1 is

R(t j | t j−1) = P[Tj > t j | t j−1] = P[N(t j)−N(t j−1) = 0]

= exp
(
−
∫ t j

t j−1

λ ARAm(u)du
)
=

= exp

(
−
∫ t j

t j−1

λ0

(
u− (1−θ)

min(m−1, j−2)

∑
p=0

θ
pt j−1−p

)
du

)

= e

−Λ0

t j−(1−θ)

min(m−1, j−2)

∑
p=0

θ
pt j−1−p

+Λ0

t j−1−(1−θ)

min(m−1, j−2)

∑
p=0

θ
pt j−1−p


.

Thus, it follows that the conditional density function of t j given t j−1 is given by

f (t j | t j−1) =
d

dt j
[1−R(t j | t j−1)] =

= λ0

(
t j − (1−θ)

min(m−1, j−2)

∑
p=0

θ
pt j−1−p

)
×R(t j | t j−1),

and then, the joint density function of the failure times is given by

f (t1, . . . , tn) = f (t1) f (t2 | t1) f (t3 | t2) · · · f (tn | tn−1)

=
n

∏
j=1

λ0

(
t j − (1−θ)

min(m−1, j−2)

∑
p=0

θ
pt j−1−p

)
×R(t j | t j−1).

Considering the time truncated case at the time t∗, the number n of failures is random
and the probability of N(t∗) = n given all the observed failure times is given by

P[N(t∗) = n | t1, . . . , tn] = P[N(t∗) = n | tn] = P[N(t∗)−N(tn) = 0]

= e

−Λ0

t∗−(1−θ)

min(m−1,n−1)

∑
p=0

θ
ptn−p

+Λ0

tn−(1−θ)

min(m−1,n−1)

∑
p=0

θ
ptn−p


.

So we can write the likelihood function for vector parameter µµµ of the ARAm time
truncated model as

LARAm(µµµ | t j) =
n

∏
j=1

[
λ0

(
t j − (1−θ)

min(m−1, j−2)

∑
p=0

θ
pt j−1−p

)

× e

−Λ0

t j−(1−θ)

min(m−1, j−2)

∑
p=0

θ
pt j−1−p

+Λ0

t j−1−(1−θ)

min(m−1, j−2)

∑
p=0

θ
pt j−1−p

]

× e

−Λ0

t∗−(1−θ)

min(m−1,n−1)

∑
p=0

θ
ptn−p

+Λ0

tn−(1−θ)

min(m−1,n−1)

∑
p=0

θ
ptn−p


,

(2.14)
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or more generally, (2.14) can be written as

LARAm(µµµ | t j) =
n

∏
j=1

[
λ ARAm

(
t j
)

e−[ΛARAm(t j)−ΛARAm(t j−1)]
]
e−[ΛARAm(t

∗)−ΛARAm(tn)]. (2.15)

From now on, to simplify these expressions, we will write s(to) =
min{m−1,o−1}

∑
p=0

θ
pto−p,

and the equation (2.14) can be written as

LARAm(µµµ | t j) =
n

∏
j=1

[
λ0
(
t j − (1−θ)s(t j−1)

)
e−Λ0(t j−(1−θ)s(t j−1))+Λ0(t j−1−(1−θ)s(t j−1))

]
× e−Λ0(t∗−(1−θ)s(tn))+Λ0(tn−(1−θ)s(tn)).

If we consider the failure truncated case with n∗ fixed number of failures to be observed,
the likelihood function is also obtained just replacing t∗ in time truncated case with tn, getting

LARAm(µµµ | t j) =
n

∏
j=1

λ ARAm
(
t j
)

e−ΛARAm(t j)+ΛARAm(t j−1)

=

[
n

∏
j=1

λ0
(
t j − (1−θ)s(t j−1)

)
e−Λ0(t j−(1−θ)s(t j−1))+Λ0(t j−1−(1−θ)s(t j−1))

]
.

2.2.3.2 The ARIm Model

The basic idea of the ARI class model is to consider that each repair reduces not only the
virtual age, but also the intensity of failure, depending on the failure history of the process. In
the ARIm model, it is assumed that the repair reduces the intensity of the failure depending on
the last m failures.

Thus, the failure intensity function of the ARIm model, given the repair effect parameter
θ and the history of the last m observed failures in the system, can be defined as

λ ARIm(t) = λ0(t)− (1−θ)
min(m−1,N(t)−1)

∑
p=0

θ
p
λ0(TN(t)−p), (2.16)

where λ0(t) is the initial failure intensity function of the process.

The cumulative intensity function for ARIm class is given by

ΛARIm(t) =
∫ t

0
λ ARIm(u)du

= ΛARIm(TN(t))+Λ0(t)−Λ0(TN(t))− (t −TN(t))(1−θ)S(TN(t)),

(2.17)

where S(To) =
min{m−1,o−1}

∑
p=0

θ
p
λ0(To−p) and Λ(t) is the initial cumulative intensity function.
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Analogous to the ARA class, in the ARIm model we can consider the existence of two
extreme cases, ARI1 and ARI∞. If m = 1, for the same reasons presented for the ARA1 model,
the failure intensity function for the ARI1 model is given by

λARI1(t) = λ0(t)− (1−θ)λ0(TN(t)).

Chan and Shaw (1993) developed a model that assumes that each repair reduces the
intensity of the failure by a proportional value to the intensity of the current failure, in a
cumulative sense of intensity reduction since the first repair. Doyen and Gaudoin (2004) classified
it as the ARI∞ class, since the reduction in intensity after the occurrence of a failure takes into
account all previous failures. In this case, the failure intensity function is given by

λARI∞
(t) = λ0(t)− (1−θ)

N(t)−1

∑
p=0

θ
p
λ0(TN(t)−p).

In the ARI model class, between two consecutive failures, the failure intensity is vertically
parallel to its initial intensity. It means that after failure, the wear-out speed is the same as before
failure. This behavior can be observed in the graph of Figure 7, where the dashed line is the
graph of the initial intensity function and the other curves are graphs of the intensity function
between two consecutive failures. It is observed that these graphs are vertical displacements of
the graph of the initial intensity function (dashed). In other words, the minimum point of each
new curve starting at failure time t is (t,λ0(t)), and it is offset vertically in (1−θ)S(TN(t)) down
of the dotted curve.

Figure 7 – Intensity function of an ARIm model, with failures at times t = 2, 6 and 9.

Analogously to all the other cases, the intensity function λ ARIm can be a parametric
function with vector parameter µµµ , so we can find the likelihood function to obtain the parameter
estimates of this model. As in the ARA case, here the parameter θ is certainly in the vector
parameter.



2.2. Repairable Systems 53

Let T1, . . . ,Tn be the failure times of a repairable system and assume an IR model with
arithmetic reduction of intensity and a failure memory m (ARIm model). We have already
concluded that the joint density function can be written in general by

f (t1, . . . , tn) = f (t1) f (t2 | t1) f (t3 | t2) · · · f (tn | tn−1).

In a similar way to that discussed for the ARAm class in Section 2.2.3.2, if t ∈ [t j−1, t j)

so N(t) = j−1 and TN(t) = t j−1. It follows that the conditional reliability function of t j given
the previous failure time t j−1 in the ARIm model is given by

R(t j | t j−1) = P[Tj > t j | t j−1] = P[N(t j)−N(t j−1) = 0]

= exp
(
−
∫ t j

t j−1

λ ARIm(u)du
)
=

= exp

(
−
∫ t j

t j−1

[
λ0(u)− (1−θ)

min(m−1, j−2)

∑
p=0

θ
p
λ0(t j−1−p)

]
du

)

= exp

(
−
∫ t j

t j−1

λ0(u)du+
∫ t j

t j−1

(1−θ)
min(m−1, j−2)

∑
p=0

θ
p
λ0(t j−1−p)du

)

= e
−Λ0(t j)+Λ0(t j−1)+(t j−t j−1)(1−θ)

min(m−1, j−2)

∑
p=0

θ
p
λ0(t j−1−p)

Thus, the conditional density function of t j given t j−1 is given by

f (t j | t j−1) =
d

dt j
[1−R(t j | t j−1)] =

=

[
λ0(t j)+(1−θ)

min(m−1, j−2)

∑
p=0

θ
p
λ0(t j−1−p)

]
×R(t j | t j−1).

Considering a time truncated process at the time t∗, the number of failures n of the system
is random and the probability that N(t∗) is n given the observed failures is

P[N(t∗) = n | t1, . . . , tn] = P[N(t∗) = n | tn] = P[N(t∗)−N(tn) = 0]

= e
−Λ0(t∗)+Λ0(tn)+(t∗−tn)(1−θ)

min(m−1,n−1)

∑
p=0

θ
p
λ0(tn−p)

.

We can write the likelihood function for the vector parameter µµµ from ARIm model under
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time truncated process as follows:

LARIm(µµµ | t j) =
n

∏
j=1

[(
λ0(t j)+(1−θ)

min(m−1, j−2)

∑
p=0

θ
p
λ0(t j−1−p)

)

× e
−Λ0(t j)+Λ0(t j−1)+(t j−t j−1)(1−θ)

min(m−1, j−2)

∑
p=0

θ
p
λ0(t j−1−p)]

× e
−Λ0(t∗)+Λ0(tn)+(t∗−tn)(1−θ)

min(m−1,n−1)

∑
p=0

θ
p
λ0(tn−p)

.

(2.18)

Using the expressions (2.16) and (2.17), we can rewrite (2.18) more generally, reordering
the terms and getting

LARIm(µµµ | t j) =
n

∏
j=1

[
λ ARIm(t j)e−[ΛARIm(t j)−ΛARIm(t j−1)]

]
e−[ΛARIm(t

∗)−ΛARIm(tn)]. (2.19)

Once again, to simplify the expressions, we will write s(to) =
min{m−1,o−1}

∑
p=0

θ
p
λ0(to−p)

from now on.The equation (2.18) can be written as

LARIm(µµµ | t j) =
n

∏
j=1

[(
λ0(t j)+(1−θ)s(t j−1)

)
e−Λ0(t j)+Λ0(t j−1)+(t j−t j−1)(1−θ)s(t j−1)

]
× e−Λ0(t∗)+Λ0(tn)+(t∗−tn)(1−θ)s(tn).

Finally, if we consider a failure truncated process with n∗ being the fixed number of
failures to be observed, the likelihood and log-likelihood functions are also obtained, just
replacing t∗ with tn, whence it follows that

LARIm(µµµ | t j) =
n

∏
j=1

[
λ ARIm(t j)e−ΛARIm(t j)+ΛARIm(t j−1)

]

=
n

∏
j=1

[(
λ0(t j)+(1−θ)s(t j−1)

)
e−Λ0(t j)+Λ0(t j−1)+(t j−t j−1)(1−θ)s(t j−1)

]
.

2.3 Frailty Models

In reliability studies, some assumptions about the observations or the absence of ad-
ditional information can lead to analysis errors and distorted conclusions. For example, by
assuming the failure times of individuals in the same group or cluster to be independent, or
even by not observing significant covariates that affect the life behavior of these individuals or
systems.
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In the literature, models that consider the existence of this possible association between
failure times or the existence of unquantified effects are called frailty models or models with
unobserved heterogeneity. The idea of frailty models was introduced by Vaupel, Manton and
Stallard (1979) as an extension of the traditional Cox model proposed by Cox (1972). In this
work, the authors defined frailty (or fragility) as a multiplicative term that modifies the life
expectancy function of individuals at the moment they are born. On the other hand, the authors
also pointed out that there are several ways of thinking about the frailty in a study.

According to Wienke (2010), the basic idea of frailty (or unobserved heterogeneity) is an
unobserved random proportionality factor that modifies the hazard function of an individual or
related individuals. For univariate and independent lifetimes, the frailty can be used to adjust
some unobserved risk factor in a hazard model. On the other hand, for multivariate and dependent
lifetimes, the introduction of a common random effect (the frailty) is a way of modeling the
dependence of event times. More details on these two approaches will be dealt with in Sections
2.3.1 and 2.3.2.

In studies involving repairable systems both approaches can be considered, with different
interpretations. If the systems have the same default behavior and we assume the possibility of
the existence of unobservable effects to which all systems are equally subject, we can think of
univariate frailty models in which these effects directly affect the occurrence of each failure of
these systems globally but that influence their failure behavior individually (JUNIOR, 2021).
On the other hand, in a more classical perspective, the failure times of each system can be
seen as observations of a cluster under the action of the same unobservable effect, taking place
in a shared frailty model (WIENKE, 2010). Furthermore, in the latter case, considering that
repairable systems naturally present recurrent failure events, it is reasonable to assume the
absence of independence between these failure times and shared frailty models can be thought to
verify and quantify this dependence.

In this work, we will consider the multiplicative frailty model, that is, we will introduce
a random effect z that multiplies with the intensity function. This effect is a positive observation
of a latent random variable Z and it can inflate, deflate or preserve the intensity function of the
model on the cases that z > 1, z < 1 and z = 1, respectively.

The functions that characterize the frailty models are defined conditionally to the latent
frailty variable Z. Considering the multiplicative frailty model and the absence of observed
covariates, the failure intensity function of the frailty model is given by

λ (t | z) = zλ (t), (2.20)

where z is the frailty term and λ is the baseline hazard function.

Since the cumulative intensity function is given by (2.2), the cumulative failure intensity
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function for the frailty model is given by

Λ(t | z) =
∫ t

0
λ (u | z)du =

∫ t

0
zλ (u)du = z

∫ t

0
λ (u)du = zΛ(t), (2.21)

where Λ(t) is the baseline cumulative failure intensity function related to the baseline failure
intensity function λ (t).

Now, using the cumulative intensity function given in (2.21), we can obtain the reliability
function for the frailty model

R(t | z) = e−Λ(t|z) = e−zΛ(t) = [R(t)]z , (2.22)

where R(t) is the baseline reliability function related to the baseline failure intensity λ of the
model.

The random frailty effect z can be considered as an realization of a known probability
distribution. This approach is found in several works in the literature, like Lancaster (1979),
Hougaard (1984) and Tomazella (2003), among others, where the idea is to choose a positive,
continuous and time-independent distribution that models the random effect of frailty. Some
candidates with these characteristics present in the literature are the Gamma, log-normal, inverse
Gaussian and Weibull distributions. In addition, frailty models may have identifiability problems,
as shown in Elbers and Ridder (1982). In this work, the authors determine some necessary
conditions so that the random effect of frailty is uniquely determined, where we highlight the
condition that E[Z] must be equal to 1.

2.3.1 Univariate Frailty Models

Although traditionally in the literature repairable systems are analyzed by shared frailty
models, there are recent works that use the univariate approach in this type of problem (JUNIOR,
2021; D’ANDREA et al., 2019). In this case, the interpretation is that the frailty effect is not
constant over time for a system, that is, at different times the probability of system failure can
be impacted by different values of the unobservable effect of frailty. This makes sense when
covariates are not observed and the frailty term has the role of identifying the existence of factors
that act on the reliability of the system. In the context of perfect and imperfect repairs, this
approach makes even more sense, since due to the very structure of models that assume this type
of repair, the system’s failure intensity function changes after each failure.

Let t1, . . . , tn be the observed failure times of a system and z1, . . . ,zn the respective frailty
terms associated with each failure time. The intensity function conditional on the system frailty
term is λ (t j | z j) = z jλ (t j) and the z j terms are i.i.d. observations of a random variable Z, where
j = 1, · · · ,n. The likelihood function of the univariate frailty model for the failure times of this
system is given by (here, just by simplicity, we will consider the MR model whose likelihood
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function is defined on (2.8)):

L(µµµ | t j,z j) =

(
n

∏
j=1

λ (t j | z j)

)
e−Λ(tn|zn) =

(
n

∏
j=1

z jλ (t j)

)
e−znΛ(tn). (2.23)

According to Wienke (2010), the random effect on frailty must be integrated out in (2.23)
to get a likelihood function not depending on unobserved quantities. This same author shows
that, for the univariate frailty model, this integration does not need to be done in the likelihood
function. In this case, the construction of likelihood takes place from the intensity and cumulative
intensity functions not conditional on the frailty term, which in turn are obtained as marginals of
their respective functions conditional on the frailty term.

From the conditional intensity, cumulative intensity and reliability functions previous
listed, our goal is to obtain these respective functions not conditioned to the frailty term z. The
first of them is the reliability function not conditioned to the frailty term, obtained simply by
integrating the expression (2.22) with respect to the term z, as follows:

R f (t) =
∫

∞

0
R(t | z) f (z)dz =

∫
∞

0
e−zΛ(t) f (z)dz. (2.24)

As pointed out by Wienke (2010), this reliability can be easily expressed using the
Laplace transform, since the Laplace transform Q(s) is given by

Q(s) =
∫

∞

0
e−sx fX(x)dx. (2.25)

Therefore, combining the equations (2.24) and (2.25), we can replace s = Λ(t) and x = z

to obtain the following expression for the reliability function not conditional on the frailty term
z:

R f (t) = Q(Λ(t)).

As direct consequence, the cumulative intensity function unconditional on the frailty
term is given by

Λ f (t) =− log(R(t)) =− logQ(Λ(t)), (2.26)

and the failure intensity function unconditional on the frailty term is obtained by deriving the
cumulative intensity function given by (2.26) in relation to time t, as follows:

λ f (t) =
d
dt

Λ(t) =−λ (t)
Q′(Λ(t))
Q(Λ(t))

. (2.27)

With the non-conditional intensity and cumulative intensity functions obtained respec-
tively in (2.27) and (2.26), the unconditional likelihood function to the frailty term is given by
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simply replacing these two functions in (2.8). If we consider k independent systems with the
same baseline intensity function being observed and let ti, j be the j-th failure time of the i-th
system (i = 1, . . . ,k and j = 1, . . . ,ni), all the ideas discussed can be extended to construct the
likelihood function for all these systems, as follows:

L f (µµµ | ti, j) =
k

∏
i=1

(
ni

∏
j=1

λ f (ti, j)

)
e−Λ f (ti,ni). (2.28)

Note that in the parametric context, in addition to the parameters of the baseline intensity
function λ (t), now the likelihood function will also inherit the parameters of the distribution Z

associated with the frailty term.

2.3.2 Shared Frailty Models

The shared frailty model is, in particular, suitable for repairable systems failure times,
once here we can consider each system as a “group” and the recurrent failure times of a system as
“individuals of the same group”. In this context, the interpretation is that there are unobservable
effects that act particularly on a system and are shared by failure times (seen here as individuals
of a group). In addition, when considering multiple systems, shared frailty allows us to compare
the level to which unobservable effects affect the systems, since it is possible to estimate which
of these is more or less susceptible to failures resulting from these effects (WIENKE, 2010).

Consider k independent systems and let ti, j be the j-th observed failure times of the
i-th system, with i = 1, . . . ,k and j = 1, . . . ,ni. Now, there is a unique frailty term zi associated
with each system i and shared by all this system’s failure times. The intensity function of the
system i conditional on its frailty term is λ (ti, j | zi) = ziλ (ti, j), where zi are i.i.d. observations
of a random variable Z. The likelihood function of the shared frailty model for the systems and
their failure times is given by (here again, by simplicity, we will also consider the MR model
whose likelihood function is defined on (2.8) and we take into account that the systems are
independent):

L(µµµ | ti, j,zi) =
k

∏
i=1

(
ni

∏
j=1

λ (ti, j | zi)

)
e−Λ(ti,ni |zi) =

k

∏
i=1

(
ni

∏
j=1

ziλ (ti, j)

)
e−ziΛ(ti,ni). (2.29)

Again, to estimate the model parameters, it is necessary to obtain the non-conditional
likelihood function to the zi frailty terms. As all these terms are observations of the same
distribution, according to Wienke (2010), it is enough to integrate the function (2.29) in relation
to the frailty term zi and obtain the marginal likelihood function:

L(µµµ | ti, j) =
k

∏
i=1

∫
∞

0

( ni

∏
j=1

ziλ (ti, j)
)

e−ziΛ(ti,ni) fZi(zi)dzi

=
k

∏
i=1

( ni

∏
j=1

λ (ti, j)
)∫

∞

0
zni

i e−ziΛ(ti,ni) fZi(zi)dzi

(2.30)
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It is clear that the choice of distribution for the frailty variable Z is essential for obtaining
a closed and tractable form of the function (2.30). In this sense, again the Gamma distribution
is a natural candidate. As we will see in the Section 2.3.3, the integral in equation (2.30) is
easily solved when Z ∼Gamma

( 1
α
, 1

α

)
. However, other distributions could be considered, always

paying attention to the necessary algebraic treatment in order not to make these models even
more complex.

2.3.3 The Gamma Frailty Models

As stated before and pointed out by several authors in the reliability literature, such as
Wienke (2010) and Tomazella (2003), choosing the distribution for the frailty term is not simple
and needs to be done with caution. On the other hand, it is a latent variable, so it is not possible
to deduce a distribution based on observations. In this sense, the guidelines for choosing this
distribution are based on more general characteristics such as positive domain and easy algebraic
treatment.

The Gamma distribution is particularly an attractive choice as the frailty term distribution
as mentioned by Wienke (2010), especially for its algebraic convenience since it has closed-form
expressions of unconditional intensity and reliability functions and closed Laplace Transform
form. According to the author, from a computational and analytical point of view, this distribution
fits reasonably well lifetime models. In Vaupel, Manton and Stallard (1979)’s pioneering work,
for example, the Gamma distribution was chosen to model the frailty introduced by the authors.

Let Z be the random variable of the frailty effect and assume that it has a Gamma
( 1

α
, 1

α

)
distribution, so that E[Z] = 1, satisfying the identifiability condition stated above. The probability
density function of Z is given by

f (z) =

( 1
α

) 1
α

Γ
( 1

α

) z
1
α
−1e−

z
α ,

and, in this case, Var[Z] = α .

By assuming this Gamma distribution for the frailty variable Z, some developments are
directly observed in the univariate and the shared models discussed in Sections 2.3.1 and 2.3.2.
In Sections 2.3.3.1 and 2.3.3.2 that follow, we will present these results separately for each model
since they will be the basis for the models that we propose in the next chapters of this work.

2.3.3.1 Univariate Gamma Frailty Model

The likelihood function for the univariate frailty model (2.28) was built with the intensity
and cumulative intensity functions not conditional on the frailty term Z, which, in turn, were
obtained from the Laplace Transform by the expressions (2.27) and (2.26), respectively.
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Thus, assuming Z ∼Gamma
( 1

α
, 1

α

)
, we will initially obtain the form of its Laplace

Transform by the equation (2.25), as follows:

Q(s) =
∫

∞

0
e−sz

( 1
α

) 1
α

Γ
( 1

α

) z
1
α
−1e−

z
α dz =

( 1
α

) 1
α( 1

α
+ s
) 1

α

∫
∞

0

( 1
α
+ s
) 1

α

Γ
( 1

α

) z
1
α
−1e−(

1
α
+s)zdz

=

( 1
α

) 1
α( 1

α
+ s
) 1

α

= (1+αs)−
1
α .

By the equation (2.26), cumulative intensity function unconditional on the frailty term is
given by

Λ f (t) =− log(R f (t)) =− log
(
[1+αΛ(t)]−

1
α

)
, (2.31)

and the failure intensity function unconditional on the frailty term by equation (2.27) is given by

λ f (t) =−λ (t)
Q′(Λ(t))
Q(Λ(t))

=
λ (t)

[1+αΛ(t)]
, (2.32)

where λ (t) and Λ(t) are the baselines intensity and cumulative intensity functions.

Finally, the likelihood function for k independent systems in (2.28), unconditional to the
frailty terms Zi, j ∼Gamma

( 1
α
, 1

α

)
distributed can be rewritten as

L f (µµµ | ti, j) =
k

∏
i=1

( ni

∏
j=1

λ f (ti, j)
)

e−Λ f (ti,ni) =
k

∏
i=i

( ni

∏
j=1

λ (ti, j)
[1+αΛ(ti, j)]

)
[1+αΛ(t∗i )]

− 1
α .

Note that α ∈ µµµ , that is, α is a new parameter to be estimated by the model. Remember
that α =Var(Z), that is, α quantifies the variability of frailty effects related to system failure
times. In the cases of univariate frailty, the term α indicates the existence of unobserved effects
that can directly affect the intensity function at each failure time, which can cause the frequency
of failures to be higher or lower in different time intervals.

Adapting the result presented in Wienke (2010) for the case where k systems are observed
and ti, j are their failure times (i = 1, . . . ,k and j = 1, . . . ,ni), if α̂ is the estimate for the parameter
α , the individual frailty Ẑi, j related to each failure time ti, j is computed by the expression:

Ẑi, j =
1/α̂ +δi, j

1/α̂ +Λ(ti, j; µ̂µµ)
,

where δi, j = I(i, j) is the indicator function of index i, j, Λ(T ) is the baseline cumulative intensity
function of the model and µ̂µµ is the vector parameter estimates of this model.

2.3.3.2 Shared Gamma Frailty Model

Assuming that the frailty variables Zi have a Gamma
( 1

α
, 1

α

)
distribution (i = 1, . . . ,k),

we can proceed with obtaining the likelihood function non-conditional to these Zi given in (2.30).
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L f (µµµ | ti, j) =
k

∏
i=1

( ni

∏
j=1

λ (ti, j)
)∫

∞

0
zni

i e−ziΛ(ti,ni) fZi(zi)dzi

=
k

∏
i=1

( ni

∏
j=1

λ (ti, j)
)( 1

α

) 1
α

Γ
( 1

α

) ∫ ∞

0
z

ni+
1
α
−1

i e−zi[ 1
α
+Λ(ti,ni)]dzi

=
k

∏
i=1

( ni

∏
j=1

λ (ti, j)
)( 1

α

) 1
α

Γ
( 1

α

) Γ
(
ni +

1
α

)
( 1

α
+Λ(ti, j)

)ni+
1
α

=
k

∏
i=1

αniΓ
(
ni +

1
α

)
∏

ni
j=1 λ (ti, j)

Γ
( 1

α

)(
1+αΛ(ti, j)

)ni+
1
α

,

where λ (t) and Λ(t) are the baselines intensity and cumulative intensity functions.

Once again, α =Var[Z] is a parameter to be estimated by the model. In cases of shared
frailty, the term α indicates the variability of unobservable effects among the failure times in the a
system (in the sense of individuals in the same group). Thus, higher values of α indicate a strong
relationship between the failure times of a system, but greater heterogeneity between different
systems. In this sense, the parameter α can identify whether one system is more susceptible to
failure than another.

Once again adapting the result presented in Wienke (2010) to the case where k systems
are observed, ti, j are their failure times (i = 1, . . . ,k, and j = 1, . . . ,ni), and Zi are their associated
frailty variables with Gamma

( 1
α
, 1

α

)
distribution, the shared frailty Zi of the i-th system can be

calculated by the expression:

Ẑi =

1/α̂ +
ni

∑
j=1

δi, j

1/α̂ +
ni

∑
j=1

Λ(ti, j; µ̂µµ)

, (2.33)

where ni is the number of observed failures in the i-th system.

2.4 Competing Risks
Examining the process of system failure also involves delving into the underlying reasons

behind these failures. It is reasonable to expect that complex systems are subject to failure due to
different causes. Consequently, comprehending the root cause behind a failure can yield pertinent
insights for future modeling endeavors. In the statistical literature, models that address the causes
of failure of an individual or system are referred to as Competitive Risk Models.

According to Crowder (2001), the study of competing risks traces back to Daniel
Bernoulli’s pioneering work (BERNOULLI, 1760), where he dissected the risk of smallpox-
related mortality from other concurrent risks. Subsequently, a number of competing risk works
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emerged in various areas. Pintilie (2006) presents a brief history of the inception of competitive
risk theory, contextualizing its first applications. However, according to Crowder (2001), it is
currently in the field of reliability that the great applicability of competitive risks is found.

According to Pintilie (2006), there are two distinct methodologies prevalent in the
literature for delineating competitive risks. The first approach involves bivariate random variables
where each failure time will be associated with information on the cause of failure that caused it.
Conversely, the second approach delves into latent failure times, where failure times relating to
all causes are considered but only the first of these failures is observed. In the reliability literature,
it is possible to find works under both approaches, such as the works of Somboonsavatdee and
Sen (2015b) that use the first approach and the work of Lindqvist (2006) that uses the second.
However, Pintilie (2006) points out that the approach of latent failures can generate identifiability
issues in the models. Just as we avoided frailty-related identifiability problems in Section 2.3,
here, we will define the use of competing risk models as bivariate random variables for the
development of this work. In this context we assume that the competing risks are independent.
Below we present more details about this approach.

Let us consider a repairable system susceptible to q distinct failure modes, or, in other
words, the system has q competing risks that act to drive the system to failure. Let t be an
observed failure time of the system, we define the indicator of the mode that caused this failure
by δ (t) = r, with r = 1, . . . ,q. Thus, let t1, . . . , tn be a sequence of n system failure times, then
we can define the bivariate data (t1,δ (t1)), . . . ,(tn,δ (tn)) that represents the times and causes
associated with each system failure. To simplify future usage, each element of this sequence will
be written by (ti,δi), where ti represents the i-th time of failure (i = 1, . . . ,n) and δi = δ (ti) = r

represents the cause of the i-th failure, for r = 1, . . . ,q.

Figure 8 below illustrates this failure process associated with competing risks in an
example where n failures are observed up to time t∗ and there are only two failure causes (q = 2
or r = 1,2). This figure indicates, for example, that the first and second failures were caused by
cause 2 while the third failure was caused by cause 1. In the terms previously defined, we could
write the data ((t1,2),(t2,2),(t3,1), . . . ,(tn,1)).

Figure 8 – Observable quantities from failure history of a repairable competing risks system with two
recurrent causes of failure

Note that we can filter the data (ti,δi) from a failure cause-specific r and this procedure
can generate up to q failure processes, each one referring to a failure cause r, with r = 1, . . . ,q.
Let {Nr(t), t ≥ 0} be the counting process relative to the cause-specific r, then by Definition 6,



2.4. Competing Risks 63

the complete r cause-specific intensity function is given by

λr(t;δ ) = lim
∆t→0

P[δ (t) = r,N(t, t +∆t]≥ 1 | Ht,r]

∆t
,

where Ht,r is the history of the process of the cause-specific r at time t.

Assume that {Nr(t), t ≥ 0} is a NHPP and let Nr(t) be the number of observed failures
related to the r-th cause up to time t, then the total number of failures observed in the system up

to time t is then given by N(t) =
q

∑
r=1

Nr(t). As a direct consequence the global counting process

{N(t), t ≥ 0} relative to all system failures can be considered as a superposition of NHPP whose
intensity function is given by:

λ (t) =
q

∑
r=1

lim
∆t→0

P[δ (t) = r,N(t, t +∆t]≥ 1 | Ht,r]

∆t
=

q

∑
r=1

λr(t;δ ).

Finally, the r cause-specific and the global system cumulative intensity functions are
respectively given by

Λr(t;δ ) =
∫ t

0
λr(u;δ )du and Λ(t) =

q

∑
r=1

Λr(t;δ ). (2.34)

Let (t1,δ1), . . . ,(tn,δn) be the observed data of system failure times and its respective
causes. The likelihood function of the competing risks model is given by (here again, just by
simplicity, we will consider the time truncated MR truncated whose likelihood function is defined
on (2.7)):

L(µµµ | t j,δ j) =

(
n

∏
j=1

λ (t jδ j)

)
e−Λ(t∗). (2.35)

Note that t∗ is the truncation time and it is not necessarily a failure time, so it is not related to
any specific failure cause and is defined by its equation in (2.34).

Remember that the counting process {N(t)} related to system failures can be partitioned
into q processes {Nr(t)} related to each cause of failure, with r = 1, . . . ,q. Let nr be the total
number of failures caused by cause r, then the contribution of cause-specific r is given by

Lr(µµµ | t j,δ j = r) =

(
nr

∏
j=1

λr(t j,r)

)
e−Λr(t∗,r)

or equivalently by

Lr(µµµ | t j,δ j = r) =

(
n

∏
j=1

[
λr(t j,δ j)

]I(δ j=r)

)
e−Λr(t∗,r),

where I is the indicator function, for r = 1, . . . ,q.
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Since the failure causes are independent by assumption, then the expression (2.35) can be

re-expressed by L =
q

∏
r=1

Lr and the contribution of each failure time observed in the system will

only be in relation to the cause of its occurrence (CROWDER, 2001). Therefore, the equation
(2.35) can be rewritten as

L(µµµ | t j,δ j) =

(
q

∏
r=1

nr

∏
j=1

λ (t j,r)

)
e−∑

q
r=1 Λr(t∗,r), (2.36)

or equivalently by

L(µµµ | t j,δ j) =

(
q

∏
r=1

n

∏
j=1

[
λ (t j,δ j)

]I(δ j=r)

)
e−∑

q
r=1 Λr(t∗,r), (2.37)

where t∗i is the truncation time for the i-th system.

If k independent systems are observed, all under the same q causes of failure, the equation
(2.36) can be extended as

L(µµµ | ti, j,δi, j) =
k

∏
i=1

(
q

∏
r=1

ni,r

∏
j=1

λ (ti, j,r)

)
e−∑

q
r=1 Λr(t∗i ,r),

where ni,r is the total number of failures of cause r in the i-th system, for i = 1, . . . ,k, and
r = 1, . . . ,q, and the equation (2.37) can be extended as

L(µµµ | ti, j,δi, j) =
k

∏
i=1

(
q

∏
r=1

ni

∏
j=1

[
λ (ti, j,δi, j)

]I(δi, j=r)

)
e−∑

q
r=1 Λr(t∗i ,r),

where ti, j is the j-th failure time of the i-th system, for i = 1, . . . ,k and j = 1, . . . ,ni.

2.5 Concluding Remarks of the Chapter
In this chapter, we presented a bibliographic review necessary for the further development

of the work, containing the main definitions and basic references that will be used.

Initially, in Section 2.1, we presented some basic concepts about Counting Process,
including Non-Homogeneous Poisson Processes, from which we highlighted the Power Law
Process as an important parametric particular case.

In Section 2.2 we presented the general ideas about repairable systems. Each type of
repair was presented in detail, from the most basic conceptions to the development of inferential
processes to obtain the parameter estimators for each model. The intensity and cumulative
intensity functions for each type of repair were presented, as well as the joint probability density
functions of the failure times and their respective reliability functions. Finally, the general form
of the likelihood function was obtained for each type of repair, in order to obtain the MLEs for
each model.
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In Section 2.3 we presented the idea of frailty or unobserved heterogeneity in the context
of repairable systems. We present general definitions for multiplicatively induced frailty in
a risk model and discuss the two possibilities of representing the influence of unobservable
effects on the systems failure time: univariate where the unobservable effects act globally on
the systems but with particular influence at each failure time, or shared where the effects act
particularly on each system and are shared across their failure times. In particular, we highlighted
the parametric frailty considering that the unobserved heterogeneity of the repairable system can
be modeled by a Gamma distribution. We present the basic likelihood functions for repairable
systems considering Gamma frailty in each of the two approaches (univariate and shared), with
the intention of extending them in our models proposed in the next chapters.

Finally, in Section 2.4 we presented the basic ideas of competitive risk models, where
a single system can fail from more than one possible cause. We assume that each risk defines
a function of related intensity and the sum of all of them defines the total failure intensity of a
system. With these assumptions, we build the basic likelihood functions of these models, which
will also be extended later.
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CHAPTER

3
UNOBSERVED HETEROGENEITY FOR

MULTIPLE REPAIRABLE SYSTEMS UNDER
PERFECT REPAIR

As stated in Section 2.3, the failure times of a system can be impacted by unquantified
effects, the so-called frailty effects. The failures of individuals in the same group or the recurrent
failures of the same repairable system can be impacted to different extents by these effects, which
may suggest the existence of an unobserved heterogeneity in the individuals or in the system’s
failure times. This information is latent and, in general, cannot be measured by covariates in a
model or quantified in any way.

If we consider, for example, a set of several repairable systems produced by the same
manufacturer under the same conditions and materials, we expect them to be hypothetically
identical, in the sense of having similar failure histories. However, this does not always occur in
practice, which suggests the existence of unobserved heterogeneity acting on the failure times of
the observed systems. In this sense, we can try to extend the ideas presented in Section 2.3.1 to
multiple repairable systems, assuming a frailty model not only between the failure times of each
system, but between the failure times of all systems analyzed globally.

In the literature, we find some works that developed analysis for frailty models for
multiple repairable systems, such as D’Andrea et al. (2019) and Asfaw and Lindqvist (2015)
that consider a parametric Gamma distribution for the frailty model, and Slimacek and Lindqvist
(2016) that consider a model with non-parametric frailty. All these works consider a minimal
repair modeled by a NHPP process (in particular, a PLP process) to analyze the behavior of
failure times and the existence of unobserved heterogeneity.

Our proposal in this chapter is to present a model capable of identifying frailty effects
in multiple repairable systems submitted to perfect repair after each failure. The assumption
we make is that systems are independent and their frailties related to their failure times are
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parametric and identically distributed with Gamma( 1
α
, 1

α
) distribution. Furthermore, we consider

that the initial intensity function follows a PLP.Our objective is, therefore, to perform classical
inference through the likelihood method to obtain the Maximum Likelihood Estimators (MLE)
for the parameters of the PLP model and the Gamma frailty distribution, and consequently, verify
the existence of unobserved heterogeneity between the systems failure times and analyze the
behavior of these failure times and the systems reliability after a new failure.

First of all, in Section 3.1, we review a literature work to analyze the unobserved
heterogeneity of multiple repairable systems under MR modeled by a PLP. In Section 3.2, we
present the proposed PR model which the initial failure intensity function follows a PLP process
and that considers the possibility of unobserved univariate heterogeneity for multiple repairable
systems. In Section 3.3, we carry out an extensive simulation study for the PR model with frailty
to verify the suitability of the model. Finally, in Section 3.4, we present a real data set to illustrate
the proposed methodology and calculate the model parameter estimates and the reliability for
each system.

3.1 Unobserved Heterogeneity in MR Model

In this section, we will present a discussion about unobserved heterogeneity in multiple
reparable systems under MR modeled by a PLP, as discussed by D’Andrea et al. (2019). In that
work, the authors considered a parametric model to characterize the random effect of frailty and
realized inferential procedures for estimation of the model parameters. This work will support us
to future developments about PR considering unobserved heterogeneity for multiple repairable
systems failure times.

First of all, let us recall what was discussed in Section 2.2 about the observation period
of a repairable system. The observation can be time truncated by a time t∗ or failure truncated
by a number n∗ of failures, but, on inferential procedures, the failure truncated is a particular
case of a time truncated case when t∗ = tn∗ . For this reason, we will adopt the time truncated
observation for all our procedures as this is the most general case.

Suppose that k independent repairable systems are under observation, with k = 1,2, . . .
and let 0 < ti,1 < ti,2 < · · ·< ti,ni be the observed failure times of the i-th system, where ni is the
number of observed failures of the i-th system and ti, j represents the time of the j-th failure in
the i-th system, with i = 1, . . . ,k and j = 1, . . . ,ni.

Since the study is time truncated, each system will be observed up to a predetermined
fixed time t∗i , i = 1, . . . ,ni, which means that the truncation times for each system are not
necessarily the same. Then, for each i = 1, . . . ,k, the observed failure times follow the relation
0 < ti,1 < · · ·< ti,ni < t∗i and the number ni of system failures is random. We will denote by N

the total number of failures observed in k systems, that is, N =
k

∑
i=1

ni.
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Considering that the systems undergo a MR process after the occurrence of each failure
and that the time to carry out the repair is negligible, we are interested in verifying the existence
of unobserved heterogeneity between the systems failure times. Thus, for each system the
intensity function given in (2.20) can be written as

λ (t | z) = zλ (t), (3.1)

with λ (t) being the baseline intensity function of the MR model common to all systems and z

being the observation of the frailty random variable Z.

Following the discussion in Section 2.3, we will assume that Z are independent and has a
Gamma

( 1
α
, 1

α

)
distribution, for all times of all systems. Thus, the failure intensity function not

conditional on the systems’ frailty term is given by

λ f (t) =
λ (t)

[1+αΛ(t)]
. (3.2)

Now, remember that we consider a MR model under a PLP process. From the MR model,
by the equation (2.6), the baseline intensity function λ (t) = λ MR(t) and, because this model
follows a PLP process, this intensity function can be directly defined by the equation (2.3) and
the cumulative intensity function Λ(t) is defined by the equation (2.4). So we can rewrite (3.2)
as the intensity function from MR model with frailty under PLP process:

λ f (t) =

β

η

(
t
η

)β−1[
1+α

(
t
η

)β
] , (3.3)

and consequently, from the equation (2.26), obtain the cumulative intensity function:

Λ f (t) =− log

[1+α

(
t
η

)β
]− 1

α

, (3.4)

and note that these functions are the same for all systems, since they are modeled by the same
PLP model and their frailty variables are identically distributed.

Now that the intensity and cumulative intensity functions are defined for all systems, we
are able to proceed with the inference to obtain estimates for the model parameters. Using the
maximum likelihood method, we want to obtain the MLEs β̂ , η̂ and α̂ of the corresponding
parameters.

All the support procedures for inference on a MR model were presented in Section 2.2.1,
where we obtained the likelihood function (2.7) for a system under minimal repair in a study
truncated by a time t∗. So now, we can rewrite this expression for the i-th system, given by

LMRi(µµµ | t j) =

(
n

∏
j=1

λi(t j)

)
e−Λi(t∗i ),
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where µµµ represents the vector of parameters to be estimated and t j the observed failure times. As
we are now observing k independent repairable systems, the extension of this likelihood function
happens naturally, just by adding a product relative to the systems, as follows:

LMR(µµµ | ti, j) =
k

∏
i=1

(
ni

∏
j=1

λ (ti, j)

)
e−Λ(t∗i ). (3.5)

Replacing the intensity function (3.3) and the cumulative intensity function (3.4) in
(3.5) as discussed in Section 2.3.1, we obtain the likelihood function for the vector parameter
µµµ = (β ,η ,α) of the frailty MR modeled by a PLP, as follows:

L f .MR(µµµ | ti, j) =
k

∏
i=i

{(
ni

∏
j=1

λ (ti, j)
[1+αΛ(ti, j)]−1

)
[1+αΛ(t∗i )]

− 1
α

}

=
k

∏
i=i

{(
ni

∏
j=1

β

ηβ
(ti, j)β−1

[
1+α

(
ti, j
η

)β
]−1)[

1+α

(
t∗i
η

)β
]− 1

α
}
,

(3.6)

and the log-likelihood function is easily obtained given by

l f .MR(µµµ | ti, j) = N[log(β )−β log(η)]+(β −1)
k

∑
i=1

ni

∑
j=1

log(ti, j)

−
k

∑
i=1

ni

∑
j=1

log

(
1+α

(
ti, j
η

)β
)
− 1

α

k

∑
i=1

log

(
1+α

(
t∗i
η

)β
)
.

(3.7)

If the observation of the systems is failure truncated and for the i-th system the desired
number of observed failures is ni, we can proceed as in Section 2.2.1, just by replacing the
truncation time t∗i with the last observed failure time ti,ni of each of the i systems in equations
(3.6) and (3.7) to obtain the likelihood and the log-likelihood for the failure truncated case,
respectively.

It is evident that it is not possible to obtain the MLEs analytically, given the complexity
of the log-likelihood function and the partial derivatives of the respective parameters. Thus,
numerical methods will be needed to obtain the desired estimates, such as Nelder-Mead. Further-
more, we can use asymptotic theory based on the Normal distribution to construct Confidence
Intervals (CI) for the model parameters.

3.2 Unobserved Heterogeneity in PR Model
In this section, we will construct a frailty model for multiple repairable systems under

PR with the PLP initial intensity function. This frailty PR model construction is totally similar
to the one made for the MR. Furthermore, we obtain the estimators for the reliability function
after a failure observation, which allows us to predict the behavior of the failure process from the
estimated model parameters.
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3.2.1 The Frailty PR Model Definition

Under the same conditions listed in Section 3.1, we consider k independent repairable
systems put on time truncated observation. Let ti, j be the j-th failure time of the i-th system and
let t∗i be the truncation time of the i-th system, with i = 1, . . . ,k and j = 1, . . . ,ni.

We will again assume that the frailty variables Z related to the systems’ failure times
are independent and identically distributed with Gamma

( 1
α
, 1

α

)
distribution, so that the intensity

function for each system is given by (3.1).

The differences in relation to the MR model will be based on the baseline intensity
function λ (t), since for the PR model this function is given by (2.9), which can be rewritten
as λ PR(t) = λ0(t −TN(t)). As we are assuming that the initial intensity function λ0(t) follows
a PLP process, the intensity and cumulative intensity functions for the frailty PR model for a
single system can be written, respectively, by

λ f (t) =

β

η

(
t−TN(t)

η

)β−1[
1+α

(
t−TN(t)

η

)β
] (3.8)

and

Λ f (t) =− log

[1+α

(
t −TN(t)

η

)β
]− 1

α

. (3.9)

3.2.2 Inference for Multiple Systems

The objective now is to obtain the likelihood function of the frailty PR model and for
this, we will use the results presented in Section 2.2.2 and follow the same ideas developed in
Section 3.1.

Considering k independent repairable systems, ti, j the observed failure times and t∗i
the systems respective truncated time, we can again extend the likelihood function (2.12) to k

systems, introducing a new product as follows:

LPR(µµµ | ti, j) =
k

∏
i=i

{(
ni

∏
j=1

λ
(
ti, j − ti, j−1

)
e−Λ(ti, j−ti, j−1)

)
e−Λ(t∗i −ti,ni)

}
, (3.10)

where µµµ = (β ,η ,α) is the vector of parameters to be estimated. Considering the univariate
frailty model discussed in Section 2.3.1, we can replace the equations of λ (t) and Λ(t) by (2.27)
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and (2.26), respectively, and rewrite the function (3.10) as

L f .PR(µµµ | ti, j) =
k

∏
i=i

{(
ni

∏
j=1

λ0
(
ti, j − ti, j−1

)
1+αΛ0(ti, j − ti, j−1)

[1+αΛ0(ti, j − ti, j−1)]
− 1

α

)

× [1+αΛ0(t∗i − ti,ni)]
− 1

α

}

=
k

∏
i=i

{(
ni

∏
j=1

λ0
(
ti, j − ti, j−1

)
[1+αΛ0(ti, j − ti, j−1)]

−(1+ 1
α )

)

× [1+αΛ0(t∗i − ti,ni)]
− 1

α

}
.

(3.11)

Finally, using the fact that the initial intensity function follows a PLP process, we replace
the λ0(t) and Λ0(t) in (3.11) by (3.8) and (3.9), respectively, and we obtain the likelihood
function for the vector parameter µµµ = (β ,η ,α) of the frailty PR model with k independent
systems, given by

L f .PR(µµµ | ti, j) =
k

∏
i=i

{(
ni

∏
j=1

β

ηβ

(
ti, j − ti, j−1

)β−1

[
1+α

(
ti, j − ti, j−1

η

)β
]−(1+ 1

α )
)

×

[
1+α

(
t∗i − ti,ni

η

)β
]− 1

α
}
,

(3.12)

and consequently, the log-likelihood function is given by

l f .PR(µµµ | ti, j) = N[log(β )−β log(η)]+(β −1)
k

∑
i=1

ni

∑
j=1

log(ti, j − ti, j−1)

−
(

1+
1
α

) k

∑
i=1

ni

∑
j=1

log

(
1+α

(
ti, j − ti, j−1

η

)β
)

− 1
α

k

∑
i=1

log

(
1+α

(
t∗i − ti,ni

η

)β
)
.

(3.13)

Once again, the likelihood function for the particular case of failure truncated observation
can be easily obtained by replacing the truncation time t∗i to the last observed failure time ti,ni in
(3.12), for each system i.

The complexity of the log-likelihood function makes it again impossible to obtain closed-
form expressions for the MLEs. Then again it will be necessary to use numerical methods, such
as Nelder-Mead, to compute these estimates. As in the MR model, the confidence intervals can
be obtained using the asymptotic theory based on Normal distribution.

3.2.3 Reliability Predictor

In order to estimate the future behavior of repairable systems, we can use the intensity
function of the model to predict the reliability indicators. Assume that the last observed failure
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time for a system is Tn = tn, so our interest is to estimate the time t until the next failure, given
the history up to time Tn = tn. In other words, we want to predict the time t = Tn+1 − tn until the
next failure considering the history Htn until the last observed failure tn.

In general, the reliability prediction function at time t is given by

R(t) = P[Tn+1 − tn > t | Htn] = P[N(tn + t)−N(tn) = 0 | Htn ]

= exp
{
−
∫ tn+t

tn
λ (u)du

}
,

where λ (t) is the intensity function of the model and tn ≤ u ≤ tn + t < Tn+1. Considering,
for example, the intensity function of the frailty model under MR presented in D’Andrea et

al. (2019), where λ (t) = λ0(t) is the PLP initial intensity function, we obtain the reliability
prediction function given by

R f .MR(t) = exp
{
−
∫ tn+t

tn

λ (u)
1+αΛ(u)

du
}
= exp

{
− log[1+αΛ(tn + t)]

1
α + log[1+αΛ(tn)]

1
α

}
= [1+αΛ(tn + t)]−

1
α [1+αΛ(tn)]

1
α =

[
1+α

(
tn + t

η

)β
]− 1

α
[

1+α

(
tn
η

)β
] 1

α

.

(3.14)

To obtain the reliability prediction function for our proposed frailty model under PR, we
replace the baseline intensity function λ (t) in (3.14) by the intensity function in (3.8). Since
u ∈ (tn, tn + t], TN(u) = tn, and using λ0(t) the PLP intensity function, we obtain the reliability
prediction function as follows:

R f .PR(t) = exp
{
−
∫ tn+t

tn

λ0(u− tn)
1+αΛ0(u− tn)

du
}
= exp

{
− log[1+αΛ0(t)]

1
α

}
= [1+αΛ0(t)]−

1
α =

[
1+α

(
t
η

)β
]− 1

α

.

(3.15)

Furthermore, from the reliability prediction function we can obtain the mean time to

failure (MTTF) at the time Tn = tn, that is, the expected time to the next failure occurring after a
time tn for a given system. The MTTF at the time tn is given by

MTTFtn = E[Tn+1 − tn | Htn] =
∫

∞

0
R(t)dt, (3.16)

where R(t) in general is given by (3.14), and specifically for our frailty model under PR, it is
given by (3.15).

3.3 Simulation Study
To evaluate the consistency and efficiency performance of the MLEs for the parameters

of the frailty PR model with PLP initial intensity function for multiple repairable systems, we
proceed with a large simulation study whose results will be discussed in this section.



74 Chapter 3. Unobserved Heterogeneity for multiple Repairable Systems under Perfect Repair

Let t j and t j+1 be two consecutive failures such that t j+1 = t j + x, that is, x is the elapsed
time from j-th to the ( j+1)-th failure. So, the Cumulative Distribution Function (CDF) F(x)

for the variable X is given by F(x) = P[X ≤ x] = 1− P[X > x], and the event {X > x} is
relative to no failures occurring between the j-th and ( j+1)-th failures. Hence, we can rewrite
F(x) = 1−P[N(t j+1)−N(t j) = 0] = 1−P[N(t j +x)−N(t j) = 0], and by the equation (2.11) it
follows that F(x) = e−Λ f (x), where Λ f (t) is the cumulative intensity function of a frailty MR
model (or frailty PLP process) given by (3.4).

Remember from discussed in Sections 2.1.3 and 2.2.2 that the times X between two
consecutive failures of a repairable system under PR are independent and identically distributed.
So, these earlier procedure to obtain F(x), also provides a way to get the elapsed times between
any two consecutive failures, just getting x as a solution to the equation F(x) = u, where u is an
observation of the Uniform(0,1) distribution.

Thus, to obtain a sample {t j} of n failure times of a system under PR, it is just necessary
to generate a sample {u j} of size n from the Uniform(0,1) distribution and solve n times the
equation F(x j) = u j to obtain a sample {x j} of n elapsed times between failures. The failure
times are obtained recursively, that is, the first failure time is t1 = x1 and so, the j-th failure time
is t j = t j−1 + x j.

Note that the construction described above refers to the failure truncated case. If we want
to build a time truncated sample, we just define the truncation time t∗ and generate the elapsed
times as solution of the equation F(x j) = u j until the first failure time obtained is greater than t∗,
say tn+1, and this last time will be excluded from the sample. In this study, we chose only the
time truncated case, since the results of failure truncated case is as a particular case, as already
discussed in Section 2.2. In addition, this process will be repeated for k times, where k is the
number of systems we want to consider in the study.

Different parameter scenarios, truncation times and number of systems were considered
in the simulation study. From the initial PLP intensity function, the chosen values for the
parameter β were (1.1,1.5) while those chosen for the parameter η were (5,20). These values
are chosen based on estimation without frailty effect for the real data applications that will be
presented in the next section (these results are omitted here). Regarding the frailty terms Zi, j,
i = 1, . . . ,k and j = 1, . . . ,ni, we assume that they are independent and identically distributed
with Gamma( 1

α
, 1

α
) distribution and given two values for the parameter α , (0.05,0.2). Two

scenarios with different truncation times t∗ were also considered, (200,1000), in which case we
assume that all k systems will be observed for the same time. Finally, we consider five distinct
possibilities for the amount k of observed systems, (5,15,30,50,100), totaling 80 different
scenarios.

For each combination of parameters, 1,000 samples were generated by Monte Carlo
simulation using the R software (R Core Team, 2021). For each simulated sample, the MLEs for
the parameters and their respective 95% CI were calculated. Some R packages can help us in the
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process of obtaining these estimates and, in this work, we use the optimr(·) function from the
optimr package (NASH, 2019). To summarize the data and evaluate the asymptotic performance
of the estimators, three indicators were computed: the Bias via Mean Relative Estimate (MRE),
the Root of the Mean Squared Error (RMSE) and the Coverage Probability (CP) of the 95% CI,
calculated according to the following expressions:

Bias(µ̂) =
1
M

M

∑
m=1

(µ̂m −µ), RMSE(µ̂) =

√
1
M

M

∑
m=1

(µ̂m −µ)2

and

CP(µ̂)=
1
M

M

∑
m=1

I[µ̂m ∈ (am,bm)] with am = µ̂m−1.96×SE(µ̂m) and bm = µ̂m+1.96×SE(µ̂m),

where µ represents the parameter to be estimated, that is, µ ∈ (β ,η ,α), M is the total of
simulated samples, I is the indicator function, µ̂m is the estimated parameter of the m−th sample,
SE(µ̂m) is the standard error of the m-th estimator µ̂m and, finally, am and bm are the respective
lower and upper bounds of the 95% CI of the m-th estimate.

We expect that with the increase in the number of systems - and consequently the increase
in the number of observed failures - the MRE criterion will be close to one, in the sense that the
estimated parameter value tends to approach the true value. For the same reason, we also expect
the RMSE criterion to approach zero, indicating that the variability inherent in the estimation
becomes less. Finally, since the CIs were produced using the MLE asymptotic normality, the CP
criterion must be close to the nominal value of 0.95. Thus, if these three indicators present good
results, the desired consistency and efficiency properties for the studied MLEs are attested.

Figure 9 – Simulation results for the frailty PR model in scenarios with α = 0.05.
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Summaries of the results are shown in Figures 9 and 10. On all graphs, the solid and
dotted lines indicate the truncation times t∗ = 200 and t∗ =1,000, respectively. In Figure 9, the
parameter α is set to 0.05, while in Figure 10 its value is set to 0.2.

Figure 10 – Simulation results for the frailty PR model in scenarios with α = 0.2.

The number of systems considered impacts the sample sizes, as the more systems are
observed, the greater number of failure times will be obtained. Thus, it is expected that the
behavior of the curves will approach the ideal as the number of units increases.

It is noticeable that the measures of MRE and RMSE present the expected asymptotic
properties of MLEs for all scenarios, since their curves approach one and zero for a larger number
of observed units, respectively. In cases where η = 20, the curves approach more slowly due to
the magnitude and interpretation of this parameter, but still present the expected behavior.

Regarding the CP, we must highlight the difference in the behavior of the curves in
relation to the values of α . In Figure 10, when the variance of the frailty term is α = 0.2, the
CPs of the nominally 95% CIs for all the estimates seem to be satisfactory and converge to
the nominal value. On the other hand, when α = 0.05 in Figure 9, the CP of the parameter α

converges more slowly when η = 20 and t∗ = 200, since in these scenarios the sample size of
observed failure times is smaller.

In general, the simulation study presented the expected results. Exception cases particu-
larly observed in CP will be better investigated in future works. For now, our conclusion is that
the proposed model is adequate to estimate the desired parameters.
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3.4 Real Data Applications

In this section, we use two real data sets to illustrate the methodology developed. The
first example deals with a set of 9 sugarcane harvesters, observed during a fixed period of time,
whose cutting blades failed several times in this interval. The second set deals with failure times
recorded of 5 dump trucks in a mining company’s fleet. Further details about these databases
will be listed in the subsequent subsections.

For each data set, the MLEs for the parameters β , η and α of the frailty MR and
frailty PR models were estimated, as well as their respective 95% confidence intervals. Our
first objective is to verify which of the models best fits each data set and for that, we use the
maximum of the estimated likelihood function, the Akaike Information Criterion (AIC) and the
Bayesian Information Criterion (BIC) (for more details on these criteria, see, e.g., Burnham
and Anderson (2004)). Furthermore, by choosing the best model, we are able to estimate the
reliability prediction for the observed systems.

It is important to highlight that these two data sets differ in relation to the type of
truncation, since the first was obtained from a time truncated observation, while the second was
obtained from a failure truncated observation.

3.4.1 Sugarcane Harvester Data

In this subsection, we analyze the data set related to the failure times of sugarcane
harvesters. More specifically, the data set consists of the failure times of a piece located in
the sugarcane cutting system and the event of interest is the breakage of the Chopper blade
component in the tractors.

The failure times were obtained during the 2014/2015 harvest in the Brazilian states of
São Paulo and Paraná. The Chopper blade is responsible for cutting the cane into small pieces,
which are later taken to the mill. When a blade failure occurs, the harvester needs to be repaired
and the cane harvesting is impaired. Therefore, the failures of this system must be avoided in
order to minimize financial losses for the company due to the harvest.

This data set describes the failure times, in days, of 9 sugarcane harvesters, each having
a different number of repairs, ranging from 11 to 19 failures, totaling 127 blade Chopper failures.
As soon as they fail, these machines are repaired in a short time, so they are up and running
quickly. The observation ended in 200 days, featuring a time truncated case. The data set is
represented in Figure 10, where each row describes a harvester and each point represents a failure
time.

Figure 11 below represents the data set, where each row describes a harvester and each
point represents a failure time.

Using the likelihood and log-likelihood functions (3.6) and (3.7) for the frailty MR



78 Chapter 3. Unobserved Heterogeneity for multiple Repairable Systems under Perfect Repair

Figure 11 – Failure times, in days, for each sugarcane harvester.

model and (3.12) and (3.13) for the frailty PR model, we obtain the estimates β̂ and η̂ for the
parameters β and η of the initial PLP intensity function, and the estimate α̂ for the parameter α

of the frailty term. The MLEs for each parameter and their respective 95% CI are described in
Table 1, as well as the maximum values of the log-likelihood function, the AIC and BIC criteria
values.

Table 1 – Estimation results for frailty MR and frailty PR models applied to sugarcane harvesters data.

β̂ (95% CI
β̂

) η̂ (95% CIη̂ ) α̂ (95% CIα̂ )
MR 1.11 (0.79, 1.55) 14.27 (8.75, 23.28) 0.038 (0.004, 0.364)
PR 1.32 (1.14, 1.53) 15.02 (13.11, 17.20) 5.6 (5.3, 5.9) ×10−7

l̂ AIC BIC
MR -463.26 932.53 941.06
PR -457.36 920.72 929.25

From Table 1, we can see that the estimate l̂ of the maximum log-likelihood function of
the frailty PR model is greater than that of the frailty MR model and, accordingly, the AIC and
BIC criteria have lower values for the frailty PR model than for the frailty MR model. Thus, we
can conclude that the frailty PR model fit is better than the frailty MR model for the harvester
failure time data set.

First of all, note that the estimate α̂ of a frailty PR model and its respective 95% CI
are very close to zero, which indicates that the variance of the frailty random variable Z is
practically null. In other words, it means that there is no evidence of the existence of unobserved
heterogeneity among the failure times of the 9 tractors. In this case, for these systems, it can
be thought that when considering that the repairs performed are perfect the frailty effects are
potentially suppressed, not causing major impacts on their failure processes.
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The parameters β and η of the initial intensity function can be interpreted as in the
usual PLP model as discussed in Section 2.1.2. Since β̂ > 1, the harvesters’ cutting systems are
deteriorating over time. Furthermore, the estimate η̂ indicates that the expected time for a single
failure to occur on one of the systems is approximately 15 days.

In order to have a perception of the quality of the adjustment, we used the graphical
procedures presented in Toledo et al. (2015) for the IR models, since the PR model is a particular
case of the IR model. The idea of the procedure is to compare the empirical Mean Cumulative
Failure (MCF) of the observed failure times with the average of all adjusted MCF, and so, the
goodness-of-fit plot comparison is that the better the fit the closer the empirical MCF will be to
that estimated by the model. The nonparametric estimation of the MCF is obtained based on the
Nelson-Aalen procedure presented in Aalen (1978), while the estimated MCF of each system is
given by the equation (3.9). In the latter case, the obtained parameter estimates and the system
failure times will be plugged in (3.9) for each system, then, the MCF for the process at time t is
the average of the MCF for each system at time t.

The empirical and estimated MCF are presented in Figure 12.

Figure 12 – Empirical and estimated MCF for the harvesters failure time in a frailty PR model.

We can conclude that the fit seems adequate, since the curve estimated for the average of
MCF systems is close to the empirical MCF curve.

Using the equations (3.14) and (3.15), and replacing the respectively obtained estimates
for the frailty models’ parameters under MR and PR given in Table 1, we can obtain the reliability
prediction function and the MTTF at the last observed time for each model, given a specific
harvester. Taking the harvester #5, which had the highest number of failures during the observed
time (19 failures), Figure 13 shows the reliability prediction function for the frailty models under
MR and PR. We can see that the reliability probability for 40 days after the last failure is very
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close to zero, given the entire history of the failure process. Furthermore, considering the PR
model (the best frailty model fitted for the sugarcane harvesters data), we use the equation (3.16)
to calculate the estimated MTTF after the last observed failure and obtain an estimate of 13.8
days for the selected harvester, which means that the expected time to the next failure of this
harvester, after the last observed failure at the time t19 = 196 days, is approximately 14 days.

Figure 13 – Estimated reliability functions at time t19 = 196 days for a specific harvester in the data set,
under the fitted MR and PR frailty models.

3.4.2 Dump Truck Data

The data set analyzed in this section refers to the failure times of 5 dump trucks in the
fleet of a Brazilian mining company. These trucks aid in the mining process and are susceptible
to several failures since they operate in extreme situations at mining sites.

The failure times were collected from July to October 2012, when 129 failures were
observed, each followed by a repair. This observation was failure truncated, which means that
the last observation for each truck corresponds to a failure time.

This data set was presented and studied by Toledo et al. (2015), who performed a
complete inferential analysis considering the imperfect repair models to find the one that best
fits the data.

Figure 14 represents the data set, where each line describes a truck and each point
represents a failure time.

Using the likelihood and log-likelihood functions (3.6) and (3.7) for the frailty MR
model and (3.12) and (3.13) for the frailty PR model adjusted to the failure truncated case, we
get the estimates β̂ , η̂ and α̂ for the respective parameters of both models. The MLEs for each
parameter and their respective 95% CI are described in Table 2, as well as the estimate l̂ and the
AIC and BIC values.

From the results of l̂ and the AIC and BIC criteria presented in Table 2, we can conclude
that the frailty MR model fit is better than the frailty PR model for this data set.
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Figure 14 – Failure times, in days, for each dump truck.

Table 2 – Estimation results for frailty RM and frailty RP models applied to dump truck data.

β̂ (95% CI
β̂

) η̂ (95% CIη̂ ) α̂ (95% CIα̂ )
MR 1.30 (0.91, 1.85) 6.79 (3.92, 11.76) 0.021 (0.002, 0.253)
PR 1.19 (1.04, 1.36) 4.41 (3.78, 5.12) 33×10−6 (31, 37)×10−6

l̂ AIC BIC
MR -306.85 619.71 628.28
PR -310.67 627.35 635.93

Unlike the previous example, the estimate α̂ for the model chosen in this case cannot be
considered to be zero (although the lower limit of the confidence interval is very close to zero).
This value indicates that there is an unobserved heterogeneity related to the failure times of the
analyzed trucks. This means that at certain times of observation, trucks are more likely to fail due
to unobserved external factors. The intensity functions related to the failure times of the trucks
undergo a change (very small, in this case) that describes this greater or lesser susceptibility to
failures at different times.

Regarding the β̂ and η̂ parameter estimates, it is not advisable to use the same interpre-
tation for the PLP process, since the existence of a multiplicative term for frailty impacts the
failure intensity function, distorting the ideas of deterioration and expected time for a failure
occurrence discussed in Section 2.1.2.

In order to have a perception of the quality of the adjustment, we used the same graphical
procedures present in the last example to compare the empirical and estimated MCF of the
process, shown in Figure 15.

We can again conclude that the fit is reasonable, since the empirical and estimated curves
of the MCF are very close.
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Figure 15 – Empirical and estimated MCF for the dump truck failure time in a frailty MR model.

Again using the equations (3.14) and (3.15), and replacing the respectively obtained
estimates for the frailty models’ parameters under MR and PR given in Table 2, we obtain the
reliability prediction function and the MTTF at the last observed time for each model, given
a specific truck. Taking the truck #2, which had the highest number of failures (32 failures),
Figure 16 shows the reliability prediction function for the frailty models under MR and PR. It
is noticeable that the reliability probability for more than 12 days after the last failure is close
to zero, given all the history of the failure process. Considering the MR model (the best frailty
model fitted for the dump truck data), we calculate the MTTF by integrating the reliability
prediction function for the frailty model under MR, that is,

∫
∞

0 RMR(t)dt, where RMR(t) is given
by (3.14). Thus, the estimated MTTF after the last observed failure is 4.00 days for the selected
truck, which means that the expected time to the next failure of this truck, after the last observed
failure at the time t32 = 103.386 days, is approximately 4 days.

Figure 16 – Estimated reliability functions at time t32 = 103.386 days for a specific truck in the data set,
under the fitted MR and PR frailty models.
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3.5 Concluding Remarks of the Chapter
In this chapter, we proposed an extension of the perfect repair model to multiple inde-

pendent repairable systems by introducing a multiplicative frailty term. In situations where it is
known that the repair performed on a system returns it to an AGAN condition, the traditional
PR model is unable to identify unobservable effects that can impact the time of system failures,
that is, in these models the possibility of the existence of unobserved heterogeneity can be
erroneously ignored.

In the proposed frailty PR model, the initial intensity function of the recurring failure
times follows a PLP process and associated to each system failure time, it was assumed that the
frailty terms are independent and have the same Gamma( 1

α
, 1

α
) distribution, where the parameter

α indicates the variance of these random variables. Under a classical framework, we used the
likelihood principle to obtain the model parameters’ MLE and their respective 95% CI by using
asymptotic theory.

An extensive Monte Carlo simulation study was carried out to check the quality of the
estimators obtained and their behavior under different parameter scenarios, number of observed
systems and time of observation. It was noted that results are in agreement with those expected for
MLEs, since the obtained estimates approached the true parameters values with small dispersion
as the number of simulated failures was greater.

As applications for the discussed procedures, we have brought two real data sets and
the frailty PR and MR models were used to adjust each data set in order to verify the existence
of unobserved heterogeneity and identify the most likely type of repair that was performed on
the observed systems. In the first set, which deals with failure times in the cutting blades of
sugarcane harvesters, it was identified that the repairs performed were PRs, but the existence of
unobserved heterogeneity was not observed. In the second set, which deals with the failure times
in dump truck engines, the fit with the MR assumption was superior to the fit with the PR, and,
in this case, the evidence of the existence of non-observed heterogeneity between the trucks was
significant.

The results obtained from theoretical discussions, simulation study and application show
that the model proposed is relevant to the context of repairable systems. First, because it enables
the modeling of failure times in situations where repairable systems are subjected to component
replacement after failures occur, which characterizes a PR. At the same time, the model makes it
possible to identify the existence of non-quantified factors that may interfere with the failure
intensity function of the systems and, consequently, with their operating time.
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CHAPTER

4
UNOBSERVED HETEROGENEITY FOR

MULTIPLE REPAIRABLE SYSTEMS UNDER
IMPERFECT REPAIR

In Chapter 3, we proposed a frailty model for multiple repairable systems considering
the perfect repair as an alternative to the models previously presented in the literature, where
only the minimal repair was considered. At this point, a natural question is the possibility of
including a frailty term in the intensity failure functions of independent systems under imperfect
repair, in a similar way to the other two types of repair discussed before.

In the literature, we find some recent works that deals with this problem, , from different
perspectives. The first, Liu et al. (2020) investigate effects of unobserved heterogeneity in
repairable system failures under imperfect repair, specifically for the ARA1 and ARA∞ classes.
In this work, the authors considered the Gamma( 1

α
, 1

α
) distribution for the frailty term, the PLP

as the initial intensity function of the model and considered the usual shared frailty model for
multiple repairable systems. A second work is that of Junior (2021), who establishes frailty
models for repairable systems hierarchically represented subject to competing risks. In this work
the author also consider the frailty variables Gamma( 1

α
, 1

α
) distributed. ARA class of IR and PLP

initial intensity function, but in this case, the frailty term is induced in the model in a univariate
sense.

Our aim in this chapter is to insert the frailty term in the IR models in two different senses:
considering univariate frailty and shared frailty. As discussed in Section 2.3, univariate frailty
makes sense for imperfect repair models since the failure intensity function of these models
changes after the occurrence of each failure and, in this case, we can consider the possibility
of different random effects related to each of these failure times. In the shared frailty context,
we pretend to extend some of the results presented by Liu et al. (2020), analyzing the effect of
unobserved heterogeneity with Gamma distribution for independent systems under imperfect
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repair of the general classes ARAm and ARIm of IR model.

In this sense, we use the imperfect repair models presented in Section 2.2.3 and include
the parametric frailty term with Gamma distribution as discussed in Sections 2.3.1 and 2.3.2
The likelihood method will be adopted as a classical framework to estimate the PLP’s β and
η parameters, the efficiency parameter θ from IR models and the parameter α which is the
variance of the Gamma distribution. Finally, for each model discussed and based on the estimates
obtained, we define the reliability predictors after the occurrence of a new failure.

In Section 4.1, we present the first proposed models, the univariate frailty IR model,
considering the both ARAm and ARIm classes for all possible memories m and assuming a PLP
as initial intensity. In Section 4.2 we present the proposed shared frailty IR model, with the
same PLP initial intensity and also considering the both ARAm and ARIm classes. In the two
Sections 4.1.1 and 4.2.1 we define the functions models for both ARAm and ARIm classes of IR;
in Sections 4.1.2 and 4.2.2 we present the inference procedures through the construction of the
likelihood functions; and finally, in Sections 4.1.3 and 4.2.3 we present the reliability prediction
functions. For each model, we carry out an extensive simulation study to verify the behavior
of the model estimators that is described and discussed in Sections 4.1.4 and 4.2.4. In Sections
4.1.5 and 4.2.5 we use the same two data sets presented in Section 3.4 to illustrate the proposed
methodologies and calculate the model parameter estimates and the reliability predictions.

4.1 Univariate Unobserved Heterogeneity in IR Models
In this Section we propose univariate frailty models for multiple repairable systems

considering that IR are performed after each failure. In terms of type of repair, these models
are generalizations of the PR frailty models presented in Section 3.2. The idea is to identify the
existence of non-quantifiable effects that impact the occurrence of failures in identical systems
and, at the same time, quantify the effect of repairs performed through the θ parameter of the IR
models. The model’s assumptions consider again that the time to carry out the repair is negligible.

In the next sections we will build the univariate frailty models for the imperfect repair
classes ARAm and ARIm, as well as establish inferential methods for estimating parameters
and predicting reliability for each of these models. As discussed in Sections 2.2.3.1 and 2.2.3.2
for the both ARAm and ARIm classes the failure intensity at a time t is defined in terms of the
memory of the last m failures observed in the system and these failure memories are also taken
into account in our models since they directly impact the reduction of the virtual age (in the
ARAm class) or the intensity (in the ARIm class) of each system.

4.1.1 The Univariate Frailty ARAm and ARIm Models

Our models will again be defined for multiple repairable systems, now subjected to
IR actions after each failure. Consider k independent repairable systems under observation,
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k = 1,2, . . ., and let 0 < ti,1 < ti,2 < · · · < ti,ni be the observed failure times of the i-th system,
where ni is the number of observed failures of the i-th system and ti, j is the time of the j-th failure
in the i-th system, where i = 1, . . . ,k and j = 1, . . . ,ni. Assume that the study is time truncated
for the same reasons listed in the previous sections, that is, each system will be observed up to a
predetermined time t∗i , so that for each i = 1, . . . ,k, the observed failure times follow the relation
0 < ti,1 < · · ·< ti,ni < t∗i and the number of system failures ni is random. Here again, N is the

total number of failures observed on k systems, that is, N =
k

∑
i=1

ni.

As discussed in Section 3.1, if for each failure time ti, j, i = 1, . . . ,k and j = 1, . . . ,ni,
the frailty variables Zi, j = Z are independent and identically distributed with Gamma

( 1
α
, 1

α

)
distribution, and the intensity function and cumulative intensity function related to each failure
time are given by the equations (2.32) and (2.31), respectively. The difference for this case is
given by the definition of the baseline intensity functions λ (t) and the cumulative intensity
function Λ(t), since we must consider the functions related to each class of IR models.

For the ARAm class, the intensity functions are obtained by defining the baseline λ (t)

and Λ(t) functions from the equations (2.32) and (2.31) by λ ARAm(t) and ΛARAm(t) functions
given by (2.13) and (2.14), respectively. Furthermore, assuming the initial failure process follows
a PLP, we can use the PLP intensity functions λ0(t) and Λ0(t) defined by (2.3) and (2.4) to
rewrite the univariate frailty ARAm intensity and cumulative intensity functions, respectively, as

λ f .ARAm(t) =
β

ηβ

(
t − (1−θ)S(tN(t))

)β−1

1+αΛ∗
ARAm(t)

(4.1)

and

Λ f .ARAm(t) =− log
(
[1+αΛ

∗
ARAm(t)]

− 1
α

)
, (4.2)

where

Λ
∗

ARAm(t) = ΛARAm(TN(t))+

(
t − (1−θ)S(tN(t))

η

)β

−
(

TN(t)− (1−θ)S(tN(t))

η

)β

.

In a completely analogous way, we obtain the intensity and cumulative intensity functions
for the ARIm class. Now we define λ (t) and Λ of the equations (2.32) and (2.31) by λ ARIm(t)

and ΛARIm(t), given by (2.16) and (2.17), respectively. Considering again the PLP process as
initial failure process, we can use the equations (2.3) and (2.4), and rewrite the intensity function
and the cumulative intensity function of a univariate frailty ARIm as

λ f .ARIm(t) =

β

ηβ

(
tβ−1 − (1−θ)S˜(tN(t))

)
1+αΛ∗

ARIm(t)
(4.3)

and

Λ f .ARIm(t) =− log
(
[1+αΛ

∗
ARIm(t)]

− 1
α

)
, (4.4)
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where

Λ
∗

ARIm(t) = ΛARIm(TN(t))+

(
t
η

)β

−
(

TN(t)

η

)β

− β

ηβ
(t −TN(t))(1−θ)S˜(tN(t))

and S˜(to) = ∑
min{m−1,o−1}
p=0 θ pT β−1

o−p .

4.1.2 Parameter Estimation for the Univariate Frailty ARAm and
ARIm Models

Our interest now is to perform inference in a classical approach using the likelihood
method, once we have obtained the failure intensity and cumulative failure intensity functions of
the systems for both frailty ARAm and ARIm models.

First, for the frailty ARAm model, the general likelihood function given in (2.15) will
be used, replacing the functions λ ARAm(t) and ΛARAm(t) by the functions λ f .ARAm(t) and
λ f .ARAm(t) obtained in (4.1) and (4.2) (for these last two functions, we will just write λ (t) and
Λ(t), respectively, to simplify the notation). Thus, given the observed failure times ti, j from
the k independent systems and considering the time of truncation t∗i for each system, with
i = 1, . . . ,k and j = 1, . . . ,ni, the likelihood function for the parameter vector µµµ = (β ,η ,θ ,α)

of the univariate frailty ARAm model with PLP initial intensity is obtained as follows:

L f .ARAm(µµµ | ti, j) =
k

∏
i=i

{
ni

∏
j=1

(
λ
(
ti, j
)
e−Λ(ti, j)+Λ(ti, j−1)

)
e−Λ(t∗i )+Λ(ti,ni)

}

=
k

∏
i=i

{
ni

∏
j=1

(
β

ηβ

(
ti, j − (1−θ)s(ti, j−1)

)β−1

×
[
1+αΛ

∗
ARAm(ti, j)

]−(1+ 1
α )
[
1+αΛ

∗
ARAm(ti, j−1)

] 1
α

)

× [1+αΛ
∗

ARAm(ti∗)]
− 1

α [1+αΛ
∗

ARAm(ti,ni)]
1
α

}
.

(4.5)

Thus, the log-likelihood function for the frailty ARAm model is given, by

l f .ARAm(µµµ | ti, j) = N[log(β )−β log(η)]+(β −1)
k

∑
i=1

ni

∑
j=1

log(ti, j − (1−θ)s(ti, j−1))

−
(

1+
1
α

) k

∑
i=1

ni

∑
j=1

log
(
1+αΛ

∗
ARAm(ti, j)

)
+

1
α

k

∑
i=1

ni

∑
j=1

log
(
1+αΛ

∗
ARAm(ti, j−1)

)
− 1

α

k

∑
i=1

log
(

1+αΛ∗
ARAm(ti∗)

1+αΛ∗
ARAm(ti,ni)

)
(4.6)
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Analogously, for the ARIm class, we use the general likelihood function given in
(2.19) and replace the functions λ ARIm(t) and ΛARIm(t) with the equations λ f .ARIm(t) (4.3)
and Λ f .ARIm(t) (4.4) to obtain the desired likelihood function (we again will just write λ (t)

and Λ(t) to simplify the notation). Hence, given the observed failure times ti, j from the k in-
dependent systems and considering the time of truncation t∗i for each system, with i = 1, . . . ,k
and j = 1, . . . ,ni, the likelihood function for the parameter vector µµµ = (β ,η ,θ ,α) of the frailty
ARIm model with PLP initial intensity is given by

L f .ARIm(µµµ | ti, j) =
k

∏
i=i

{
ni

∏
j=1

(
λ
(
ti, j
)
e−Λ(ti, j)+Λ(ti, j−1)

)
e−Λ(t∗i )+Λ(ti,ni)

}

=
k

∏
i=i

{
ni

∏
j=1

(
β

ηβ

(
tβ−1
i, j − (1−θ)s˜(ti, j−1)

)

×
[
1+αΛ

∗
ARIm(ti, j)

]−(1+ 1
α )
[
1+αΛ

∗
ARIm(ti, j−1)

] 1
α

)

× [1+αΛ
∗

ARIm(ti∗)]
− 1

α [1+αΛ
∗

ARIm(ti,ni)]
1
α

}
,

(4.7)

where s˜(ti,o) = ∑
min{m−1,o−1}
p=0 θ ptβ−1

i,o−p.

The log-likelihood function for the frailty ARIm class is given, by

l f .ARIm(µµµ | ti, j) = N[log(β )−β log(η)]+
k

∑
i=1

ni

∑
j=1

log
(

tβ−1
i, j − (1−θ)s˜(ti, j−1)

)

−
(

1+
1
α

) k

∑
i=1

ni

∑
j=1

log
(
1+αΛ

∗
ARIm(ti, j)

)
+

1
α

k

∑
i=1

ni

∑
j=1

log
(
1+αΛ

∗
ARIm(ti, j−1)

)
− 1

α

k

∑
i=1

log
(

1+αΛ∗
ARIm(ti∗)

1+αΛ∗
ARIm(ti,ni)

)
(4.8)

All the results for failure-truncated systems are a particular case of the time-truncated sce-
nario, and their respective likelihood and log-likelihood functions are obtained just by replacing
t∗i with the last observed failure time ti,ni , for each i = 1, . . . ,k.

The equations (4.6) and (4.8) are very complex and therefore, it is not possible to obtain
the MLEs analytically. Thus, numerical methods, such as Nelder-Mead, can be used to obtain
the desired estimates, and the asymptotic theory based on the normal distribution is used again
to build CIs for the model’s parameters.
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4.1.3 Reliability Predictors for Univariate Frailty ARAm and ARIm

Models

In this section we will define the reliability prediction functions for the proposed models,
given the importance of this indicator for the real world of technology companies and factories
for planning their maintenance policies and failure prevention. As discussed in Section 3.2.3, the
idea is to estimate the probability of a new failure occurring in a system in a given time interval
based on its failure history.

Let Tn = tn be the last observed failure time of a system and let t be the time until the
next failure. Our interest is to estimate the time t = Tn+1 − tn until the next failure considering
the history Htn until the last observed failure tn. In general, the reliability prediction function at
time t is expressed as

R(t) = P[Tn+1 − tn > t | Htn] = exp
{
−
∫ tn+t

tn
λ (u)du

}
, (4.9)

where λ (t) is the intensity function of the model and tn ≤ u ≤ tn+ t < Tn+1. Then, we can simply
use the intensity functions of the proposed frailty ARAm and ARIm models in equation (4.9) and
obtain the desired reliability predictors for each model.

For the frailty ARAm model, taking the intensity function presented in (4.1) with the
PLP initial intensity function, we obtain the reliability prediction function R(t) = R f .ARAm(t) as
follows:

R(t) =
[

1+
α

ηβ

(
η

β
ΛARAm(tn)+(tn + t − (1−θ)s(tn))

β − (tn − (1−θ)s(tn))
β
)]− 1

α

× [1+αΛARAm(tn)]
1
α .

(4.10)

Using the same idea for the frailty ARIm model, replacing the intensity function (4.3)
into (3.14), we obtain the reliability prediction function R(t) = R f .ARIm(t) given by

R(t) =
[

1+
α

ηβ

(
η

β
ΛARIm(tn)+(tn + t)β − (tn)β − tβ (1−θ)S˜(tn)

)]− 1
α

× [1+αΛARIm(tn)]
1
α .

(4.11)

Moreover, the mean time to failure (MTTF) at time Tn = tn can be obtained from the
reliability prediction functions as follows:

MTTFtn = E[Tn+1 − tn | Htn] =
∫

∞

0
R(t)dt, (4.12)

where R(t), in general, is given by (4.9), and specifically for our frailty ARAm and ARIm models,
it is given, respectively, by (4.10) and (4.11). In other words, the MTTF is the expected time to
the next failure occurring after a time tn for a given system.
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4.1.4 Simulation Study

In this section, we present the steps and the results of a large Monte Carlo simulation
study, which was carried out in order to analyze the efficiency and consistency performances of
the MLEs related to each of the frailty IR models proposed in the previous sections. We will
analyze separately the proceeded simulation study for the two frailty ARA and ARI models and
their respective results.

For each of the ARA and ARI classes, we used different procedures for data generation,
which will be described apart in the next two subsections. In both cases, time truncation scenarios
were considered, since this is the most general situation as discussed in Section 2.2. Different
scenarios were defined for the simulation study, varying the parameter settings, the number of
considered systems, the truncation times and the failure memories for both univariate frailty
ARA and ARI models.

In both frailty model classes, for each defined scenario, the R software (R Core Team,
2021) was again used to generate 1,000 Monte Carlo samples. For each obtained sample, the
function optim from the stats package was used to calculate the parameters MLEs and their
respective 95% CIs. As in Section 3.3, three indicators were used to summarize the data and
jointly evaluate the asymptotic performance of the proposed estimators: the RMSE, the MRE,
and the CP of the 95% CIs, calculated as follows:

RMSE(µ̂) =

√√√√ 1
B

B

∑
b=1

(µ̂b −µ)2, MRE(µ̂) =
1
B

B

∑
b=1

µ̂b

µ

and

CP(µ̂) =
1
B

B

∑
b=1

I(µ̂b ∈ (cb,db)),

where µ ∈ µµµ = (β ,η ,θ ,α) (is one of the four parameters), µ̂b is the estimate of the respective
parameter µ of the b-th sample, B = 1,000 is the number of samples, I(·) is the indicator function,
cb = µ̂b −1.96×SE(µ̂b) and db = µ̂b +1.96×SE(µ̂b), where SE(µ̂b) is the standard error of
the b-th estimate µ̂b.

It is expected that with the increasing number of systems and observation time (trunca-
tion), the asymptotic properties are achieved since the sample sizes of observed failure times also
tend to increase. More specifically, it is expected that the RMSE criterion approaches zero, the
MRE criterion approaches one, and the CP criterion is close to the nominal value 0.95 defined
for the construction of the CIs. These indicators have been used in the reliability literature and
their use is justified in several works (see, e.g., Junior (2021) and Brito, Tomazella and Ferreira
(2022)).
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4.1.4.1 Simulation Study for the Univariate Frailty ARAm Model

Our interest is to generate, for k different and independent systems, a time-truncated
sample ti,1, . . . , ti,ni of failure times so that ti,ni ≤ t∗i , where t∗i is the truncation time of the system
i, with i = 1 . . . ,k. For the ARAm class we will use the definition of virtual age itself to build
a generator function of failure times. Remember that the virtual age is a function of the real
age and it admits an inverse that is given by V−1

t = t +(1−θ)St . The idea is to use the inverse
virtual age function and the inverse of the cumulative intensity function given in (4.2) to directly
construct the desired sample of failure times.

Let ti, j be the j-th failure time of the i-th system and the elapsed time from j-th failure to
the ( j+1)-th failure be x= ti, j+1−ti, j. So the random variable X represents the time between two
consecutive failures and the event {X > x} refers to the non-occurrence of failures between the
j-th and ( j+1)-th failures. In this sense, P[X > x] = P[N(ti, j + x)−N(ti, j) = 0], and therefore,
the CDF F(x) is given by F(x) = 1− e−Λ f .ARAm(ti, j+x)+Λ f .ARAm(ti, j), where Λ f .ARAm(t) is the
cumulative intensity function for the frailty model in the ARAm class, given by (4.2). As a direct
consequence, we can rewrite

Λ f .ARAm(ti, j + x) = Λ f .ARAm(ti, j)− log(1−F(x)), (4.13)

where 0 ≤ F(x)≤ 1.

Let Vti, j be the virtual age at time ti, j for the i-th system. By the equation (2.14), we can
rewrite ΛARAm(ti, j) and ΛARAm(ti, j + x) as Λ(Vti, j) and Λ(Vti, j+x), respectively. Hence, we can
rewrite the equation (4.13) as Λ(Vti, j+x) = Λ(Vti, j)− log(1−F(x)) and, as a direct result, we can
write the time ti, j+1 = (ti, j + x) as

ti, j+1 =V−1(Λ−1(Λ(Vti, j)− log(1−F(x)))). (4.14)

Considering a failure-truncated process for each system i, with ni observed points for the
i-th system, a sample {ui, j} of size ni from the Uniform(0,1) distribution must be generated and
F(x) must be replaced by ui, j in the equation (4.14) for each j to obtain all the failure times ti, j
of the i-th system under the frailty ARAm class, for j = 1, . . . ,ni. This procedure will be repeated
k times to obtain the failure times sequences for the k independent systems.

Our interest in the simulation study is the time-truncated scenario and just as done in
Section 3.3, it is necessary to make an adjustment so that the simulated times are lower than the
predefined truncation time. We fix the truncation time t∗i for each system i and repeat the previous
process to generate times ti,1, ti,2, . . . until the time t∗i is exceeded. The time that exceeded the
truncation time (say ti,n+1) will be removed from the i-th sample.

Different parameter scenarios, truncation times, number of systems and failure memories
were considered in this simulation study. We separated the presentation of the results based
on the choice of three different memories of the failure process, considering memories m = 1,
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m = 10 and m = 20. As the models’ trend is a stability in relation to the increase of the failure
memory, we opted for the memory m = 20 of failures as an approximation for the case m = ∞,
without loss for comparison of obtained results in the simulation study.

With regard to the parameter of the PLP initial intensity function, we fixed the values:
β = 1.5 and η = 10. For the repair effect parameter θ , we chose two intermediate values,
(0.4,0.8), to try to avoid values close to the extremes 0 and 1, which would approximate the IR
model to the PR model or the MR model. Regarding the frailty terms Zi, j, for i = 1, . . . ,k and
j = 1, . . . ,ni, we consider they are IID with Gamma(1/α,1/α) distribution, and assign the two
values (0.05,0.2) for α . In order to verify the asymptotic properties of the MLEs, we considered
four truncation times t∗ for all systems, (200,1,000,5,000,10,000), since it is expected that more
failures will be observed in longer observation periods, therefore, the generated samples will
be larger. Finally, two amount of observed systems were considered, k = (10,30), totaling 32
different scenarios for each considered memory m. As said before, for each scenario we generate
1,000 Monte Carlo sample s and calculated the RMSE, MRE and CP. The results are summarized
and shown in Figures 17, 18 and 19.

Figure 17 – Simulation results for the frailty ARA model in scenarios with memory m = 1.

On all graphs in Figures 17, 18 and 19, the solid lines indicate that 10 independent
systems were considered, while the dotted lines indicate that 30 systems were considered. The
number of systems impacts the sizes of the generated samples since the more systems are
considered, the more recurrent failures will be observed and this difference is reflected in the
observed results, especially for the RMSE. We can notice that for the three memories considered,
the RMSE values for scenarios with 30 systems are always lower than those for scenarios with
10 systems. However, despite this difference, in both scenarios the expected convergence is
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Figure 18 – Simulation results for the frailty ARA model in scenarios with memory m = 10.

Figure 19 – Simulation results for the frailty ARA model in scenarios with memory m = 20.

observed as the truncated time increases (and, consequently, the size of the observed failure
times samples). This convergence can also be observed for the other two indicators; although it
occurs faster in the scenarios with 30 systems, it can also be clearly observed in the scenarios
with 10 systems. These results indicate that the model works well asymptotically for different
considered quantities of systems.

It is noticeable that the results referring to the MRE indicator are adequate since the
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ratio between the estimated and the nominal values of the parameters are predominantly close to
one for all scenarios, with some small differences occurring only when the samples are smaller
(smaller truncation times and lower α values). Regarding the CP indicator, it is also noticeable
that, in general, its estimates seem to be satisfactory since they are greater or converge to the
nominal value of 0.95 or are very close to the expected value.

Comparing the results obtained by memory, we can see that the addition of memory
impacts mainly on the convergence of RMSE indicators, since this convergence is faster for
cases with memory m = 20. Furthermore, as the memory of the simulations was increased, the
convergences of the indicators became more evident and the non-expected results decreased.

4.1.4.2 Simulation Study for the Univariate Frailty ARIm Model

In order to generate the failure times sample of k independent systems under the univariate
frailty ARIm model discussed in Section 4.1.1, we followed the idea of the algorithm presented
in Toledo (2014), where an approach to generate failure histories for systems under the ARA1

class and PLP initial intensity function was proposed. We generalized that idea to any ARIm

class (considering the last m observed failure times) and adapted the intensity functions for our
case with the univariate frailty model context.

Let ti, j be the j-th failure time of the i-th system and x = ti, j+1 − ti, j be the elapsed time
from j-th to the ( j+1)-th failure. For the same reasons discussed in Section 4.1.4.1, the CDF
for the random variable X is given by

F(x) = 1− e−Λ f .ARIm(ti, j+x)+Λ f .ARIm(ti, j), (4.15)

where Λ f .ARIm(t) is the cumulative intensity function for the frailty ARIm model, given by (4.4).

For each system i a sample {ui, j} of size ni from the Uniform(0,1) distribution will be
generated and F(x) will be replaced by ui, j in the equation (4.15) for each j to obtain all the
failure times ti, j of this system i, with j = 1, . . . ,ni. This procedure will be repeated for all system
i with i = 1, . . . ,k to complete the failure time processes for the k simulated systems. As in the
ARAm case, for the time-truncated case a time of truncation t∗i is defined for the system i and
repeat the previous process to generate times ti,1, ti,1, . . . until to get the first failure time greater
than t∗i (say ti,n+1).

All the parameters chosen for the sample simulations in the ARI case were the same
as in the ARA case in the previous subsection. Once again, in order to verify the asymptotic
properties of the MLEs, we considered four truncation times t∗ for all systems, for the same
reasons presented in the previous subsection. Summaries of the results are shown in Figures 20,
21 and 22.

As in the ARA case, here in the case of the frailty ARI models it is expected that in
the scenarios observed for a longer period of time and with more systems under study, larger
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Figure 20 – Simulation results for the frailty ARI model in scenarios with memory m = 1.

Figure 21 – Simulation results for the frailty ARI model in scenarios with memory m = 10.

samples of failure times will be generated and, consequently, will present better asymptotic
results of consistency and efficiency. In general, we can see that this actually happens, since in all
considered scenarios of parameters and memories, the RMSE of situations with 30 independent
systems (dotted line) were always smaller than those of situations with 10 systems (solid line).
Furthermore, in all scenarios the estimated RMSE approaches the expected value zero as the
observation time increases for all parameters in both situations with 10 or 30 systems (in this
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Figure 22 – Simulation results for the frailty ARI model in scenarios with memory m = 20.

case, with 30 systems approaching faster, as expected ), although for parameter η a discrepancy
is perceived due to the magnitude of the nominal value defined for this parameter.

Regarding the CP indicator, in general the nominal values of 0.95 were reached in
almost all scenarios. The discrepancies are mostly perceived in situations with 10 systems and in
combinations of θ and α parameters that result in the generation of small samples of observed
failure times. However, it is noticeable that in most cases the desired coverage of the 95% CI is
achieved for all parameters in longer observation times. The increase in memory for the ARI
models showed good results in the simulation study for the CP indicator. It is noticeable that for
the memory m = 20 (Figure 22), the nominal values were obtained more quickly than for the
smaller memories (Figures 20 and 21) and without large fluctuations over time. These results
attest to the quality of the asymptotic estimators defined for the model parameters, but it is still
necessary to verify the relationship between the θ and α parameters and how it contributes to
the variation in CP over time observed in some scenarios of Figures 20 and 21.

In all scenarios, the good behavior of the MRE indicator is remarkable, since the ratio
between the estimated value and the nominal value for all parameters converged to the expected
value of 1 without major problems, especially for larger samples.

4.1.5 Real Data Application - Sugarcane Harvester Data Revisited

In this section, we revisited the real data set presented in Section 3.4 to illustrate the
procedures discussed for frailty IR models, that is, the data that describes the failure times of
9 sugarcane harvesters observed for 200 days (time-truncated case). The MLEs for the frailty
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ARAm and ARIm classes were estimated and the estimation was performed considering, for both
classes, all possible memories m, that is, m = 1, . . . ,max{ni}, where ni is number of failures of
the i-th system, for i = 1, . . . ,k.

As a criterion for model selection in each class with different memories, only the
maximum estimated value of the log-likelihood function l̂ was used, since in these cases all
models have the same number of parameters. The best models of the frailty ARAm and ARIm

classes were also compared with the frailty MR and frailty PR models studied in Section 3.4,
and in this case, the AIC and BIC criteria were used to decide the best-fit model for the data set.

The likelihood function (4.5) and log-likelihood function (4.6) for the frailty ARAm

class, and the respective functions (4.7) and (4.8) for the frailty ARIm class of IR models were
maximized using numerical methods to obtain the estimates β̂ , η̂ , θ̂ and α̂ for the desired
parameters considering each class and each memory m.

As the highest number of failures observed among the harvesters was 19 failures, the
estimation was performed for all possible values of m, that is, from 1 to 19. The maximum
estimated value of the log-likelihood function l̂ was used to verify which of these 19 models best
fits the data, since all these models have the same number of parameters. The summary of these
values for both ARAm and ARIm classes is presented in Figure 23.

Figure 23 – Estimated maximum log-likelihood values l̂ per memory m, for the sugarcane harvester data.

By these results, we can conclude that the models that best fit the harvester data set,
among the possible ARAm and ARIm classes, are the models with memory m = 3, for both ARA
and ARI classes, since they have the highest estimate for the maximum of the log-likelihood
function in each context. Note that from memory m = 7 onwards, the log-likelihood of the
models stabilizes for both classes, which was expected since the contribution of information
from very old failures gradually approaches zero, becoming irrelevant for the estimation process.

The MLE results for each parameter of the frailty ARA3 and frailty ARI3 classes and
their respective 95% CI are described in Table 3. For comparison purposes, the results presented
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in Table 1 are also listed in this table for the parameter estimates of the frailty MR and frailty PR
models for this same data set.

Table 3 – MLE results for the frailty MR, PR, ARA9 and ARI3 models applied to sugarcane harvester
data.

β̂ (95% CI
β̂

) η̂ (95% CIη̂ ) θ̂ (95% CI
θ̂

) α̂ (95% CIα̂ )
MR 1.11 (0.79, 1.55) 14.27 (8.75, 23.28) - 0.038 (0.004, 0.364)
PR 1.32 (1.14, 1.53) 15.02 (13.11, 17.20) - 5.6 (5.3, 5.9)×10−7

ARA3 1.71 (1.31, 2.21) 15.44 (11.96, 19.90) 0.25 (0.10, 0.49) 0.047 (0.015, 0.155)
ARI3 1.73 (1.45, 2.07) 13.82 (10.03, 19.04) 0.33 (0.21, 0.47) 0.016 (0.011, 0.024)

As stated before, to choose the model that best fits this data set, the AIC and BIC criteria
of the frailty ARA3 and ARI3 models were calculated and also compared to the obtained values
presented in Section 3.4 referring to the frailty MR and PR models. The results of the information
criteria for the four compared models are shown in Table 4.

Table 4 – AIC and BIC results for the frailty MR, PR, ARA3 and ARI3 models applied to the sugarcane
harvester data.

l̂ AIC BIC
MR -463.26 932.53 941.06
PR -457.36 920.72 929.25

ARA3 -454.15 916.30 927.68
ARI3 -453.61 915.24 926.61

From Table 4, we can conclude that the ARI3 model is the most parsimonious, since its
related AIC and BIC have lower values than the respective values for the frailty MR, PR and
ARA3 models. Therefore, the ARI3 model is the one chosen to adjust the harvesters’ failure
times.

Initially interpreting the results obtained for the parameter α , it can be concluded that
the estimate α̂ and its respective 95% CI are significantly different from zero, since the lower
limit of the CI is minimally distant from zero. Such results indicate that the model captured
the existence of unobserved heterogeneity between the failure times of the observed systems,
since the estimate of the variance of the frailty effect (parameter α) is non-zero. In practice,
this indicates that there are non-quantifiable factors that interfere in the failure process of all
sugarcane harvesters and specifically on each observed failure time.

The existence of unobserved heterogeneity excludes the original interpretability of the
parameter η for models under PLP, since the individual frailties have a multiplicative impact on
the baseline intensity function of the frailty model as described in equation (2.20). On the other
hand, for the parameter β , the original interpretation remains and, in this case, as the estimate
β̂ is greater than 1 (as well as its respective 95% CI does not contain the value 1), it can be
concluded that the machines under study are deteriorating over time.
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Regarding parameter θ , the estimate θ̂ and its respective 95% CI obtained by the frailty
ARI3 model did not approach 1 or 0, which would indicate the particular cases of MR or PR.
This means that the proposed model identified the existence of effects of the repairs performed
and, in addition, it was able to quantify the reduction in the intensity of failures resulting from
these repairs. Note that in Section 3.4 we concluded that the frailty PR model was superior to the
fit of these data compared to the MR model, but here we concluded that both IR models were
superior to the previous two. This result indicates evidence that the repairs carried out on these
harvesters caused some impact, leaving them in an intermediate operating condition between
ABAO and AGAN, as discussed in Section 2.2.3.

As proposed in Section 3.4, the graphical procedure presented in Toledo et al. (2015)
was used to verify the quality of adjustment for the best frailty ARA and ARI class models, but
now, by comparing the empirical MCF of the observed failure times with the average of the
MCFs estimated by the frailty ARA3 and ARI3 models (equations (4.2) and (4.4), respectively)
from each system. The goodness-of-fit plot comparison is shown in Figure 24 with the empirical
and estimated (from frailty ARA3 and ARI3 models) MCFs. It is notable that the curves of the
empirical MCF and the average of systems’ MCFs are close for both the ARA and ARI models
and this behavior attests to the quality of both adjustments.

Figure 24 – Empirical and estimated MCFs for the harvesters’ failure times, in the frailty ARA3 and ARI3
models.

As the fits are reasonable, we are finally able to estimate the predicted reliability for
each sugarcane harvester from its last observed failure, according to the two proposed frailty
models. The reliability curves related to both frailty ARA3 and ARI3 models are drawn from their
corresponding obtained estimates, that is, they are obtained replacing the respective estimates
β̂ , η̂ , θ̂ and α̂ from each frailty ARA3 and ARI3 models in the equations (4.10) and (4.11).
Using the estimates obtained by the frailty ARI3 model (best fitted model), it is also possible
to calculate the MTTF after the last observed failure of each system, in this case, replacing the
parameter estimates in equation (4.12). The resulting predicted reliability graphs and MTTFs are
shown in Figure 25.
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Figure 25 – Estimated reliability functions and MTTFsARI3 at last failure time tn, for each harvester in the
data set, under the fitted frailty ARA3 and ARI3 models.

By Figure 25, it can be seen that for all the sugarcane harvesters, given the entire history
of each failure process, the reliability probability is very close to zero for 40 days onward after
the last failure. Moreover, the harvesters’ MTTFs (from their last observed failure) range from
approximately 13 to 17 days. This information is extremely relevant for the producers who own
these machines, as it allows them to establish preventive and/or corrective maintenance strategies
in order to reduce the financial losses caused by the failures of these machines, especially in high
harvest periods.

4.2 Shared Unobserved Heterogeneity in IR Model

In this section we propose shared frailty models for multiple repairable systems subjected
to IR after each failure. In the reliability literature, shared frailty models are well established for
the analysis of failure times of repairable systems. However, there is still not much attention paid
to models that consider IR even though this type of repair is more plausible than MR and PR in
the real world. As previously mentioned, in his recent work, Liu et al. (2020) presented a shared
frailty model with Gamma distribution for the ARA1 and ARA∞ classes of IR. In this sense, our
objective is to propose a shared frailty model that generalizes the one presented by the authors,
considering a general ARAm class of repairs and similarly establishing the shared frailty model
for the general ARIm class.

The idea of this section is very similar to Section 4.1, that is, we will propose general
shared Gamma frailty models for systems under IR considering both ARAm and ARIm classes
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and all their possible memories m. Here, we will again assume that the frailty variables Zi are
IID with a Gamma

( 1
α
, 1

α

)
distribution, just like in the previous models.

4.2.1 The Shared Frailty ARAm and ARIm Models

In our shared frailty models, the assumptions about the systems are the same defined in
the previous sections: k systems observed for a time t∗i (truncation scenario by time), where ti, j is
the j-th failure time of the i-th system, with i = 1, . . . ,k, j = 1, . . . ,ni and ni being the number
of observed failures of the i-th system. As discussed in Section 2.3.2, in the context of shared
frailty a random variable Zi is multiplicatively associated with the baseline intensity function of
each system and, so that the failure times of a system share this same effect. Just to recall, the
intensity function conditional on the frailty term is given by λ f (ti, j | zi) = ziλ (ti, j), where λ (t) is
the baseline function.

Thus, the shared frailty model considering the ARAm class is obtained by simply assum-
ing that the baseline function λ (t) is given by the intensity function of the ARAm class defined
by (2.13), obtaining the expression

λ f .ARAm(ti, j | zi) = ziλ ARAm(ti, j) = ziλ0

(
ti, j − (1−θ)

min(m−1, j−2)

∑
p=0

θ
pti, j−1−p

)
, (4.16)

where λ0(t) is the initial intensity function. The cumulative intensity function is obtained in
analogous way.

Considering again that the initial function follows a PLP, function (4.16) can be rewritten
as

λ f .ARAm(ti, j | zi) = zi
β

ηβ

(
ti, j − (1−θ)

min(m−1, j−2)

∑
p=0

θ
pti, j−1−p

)β−1

.

The construction of the shared frailty model for the ARIm class is completely similar to
the construction for the ARAm class above, now, using the ARIm intensity function defined by
(2.16) as baseline function. The conditional failure intensity function in the shared frailty ARIm

class context is given by

λ f .ARIm(ti, j | zi) = ziλ ARIm(ti, j) = zi

[
λ0
(
ti, j
)
− (1−θ)

min(m−1, j−2)

∑
p=0

θ
p
λ0
(
ti, j−1−p

)]
, (4.17)

where λ0(t) is the initial intensity function. The cumulative intensity function is obtained in
analogous way.

Once again considering that the initial intensity function follows a PLP process, the
function (4.17) can be rewritten as

λ f .ARIm(ti, j | zi) = zi
β

ηβ

[
tβ−1
i, j − (1−θ)

min(m−1, j−2)

∑
p=0

θ
ptβ−1

i, j−1−p

]
.
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4.2.2 Parameter Estimation for the Shared Frailty ARAm and ARIm

Models

As in Section 4.1.2, our interest now is to obtain the parameter estimates in a classical
approach. Once again, the likelihood method will be adopted and, in this case, it will be
necessary to follow the same steps discussed in Section 2.3.2 to obtain the expression (2.30) of
the likelihood unconditional on the frailty term for both shared frailty ARAm and ARIm models.
The difference will occur in the choice of the general likelihood function, according to the
analyzed model as we will see below.

For the shared frailty ARAm model we use the general likelihood function of the ARAm

model given by (2.15), and then proceed with obtaining the marginal likelihood, as follows:

L f .ARAm(µµµ | ti, j) =
k

∏
i=1

∫
∞

0

( ni

∏
j=1

ziλ ARAm
(
ti, j
)

e−zi[ΛARAm(ti, j)−ΛARAm(ti, j−1)]
)

× e−zi[ΛARAm(t∗i )−ΛARAm(ti,ni)] fZi(zi)dzi

=
k

∏
i=1

( ni

∏
j=1

λ ARAm(ti, j)
)∫

∞

0
zni

i exp
(
− zi

ni

∑
j=1

[
ΛARAm

(
ti, j
)
−ΛARAm

(
ti, j−1

)])
× exp

(
− zi [ΛARAm (t∗i )−ΛARAm (ti,ni)]

)
fZi(zi)dzi

=
k

∏
i=1

( ni

∏
j=1

λ0(ti, j − (1−θ)s(ti, j−1))

)∫
∞

0
zni

i exp
(
− ziW ARAm

)
fZi(zi)dzi,

where

W ARAm =
ni

∑
j=1

[
Λ0
(
ti, j − (1−θ)s(ti, j−1)

)
−Λ0

(
ti, j−1 − (1−θ)s(ti, j−1)

)]
+[Λ0 (t∗i − (1−θ)s(ti,ni)))−Λ0 (ti,ni − (1−θ)s(ti,ni)))]

where λ0(t) and Λ0(t) are, respectively, the initial intensity and cumulative intensity functions.

Now, assuming that the frailty variables Zi have a common Gamma
( 1

α
, 1

α

)
distribution

(i = 1, . . . ,k), similarly to what we did to obtain the equation (2.30), we obtain the following
likelihood function unconditional to the Gamma frailty term:

L f .ARAm(µµµ | ti, j) =
k

∏
i=1

αniΓ
(
ni +

1
α

)
∏

ni
j=1 λ0(ti, j − (1−θ)s(ti, j−1))

Γ
( 1

α

)
(1+αW ARAm)

ni+
1
α

. (4.18)

The equation (4.18) can be rewritten by replacing the initial functions λ0(t) and Λ0(t)

with the PLP model functions given by (2.3) and (2.4), respectively, as done for the models
discussed in the previous sections, obtaining:

L f .ARAm(µµµ | ti, j) =
k

∏
i=1

(
βα

ηβ

)ni
Γ
(
ni +

1
α

)
∏

ni
j=1 (ti, j − (1−θ)s(ti, j−1))

β−1

Γ
( 1

α

)(
1+ α

ηβ
W ∗

ARAm

)ni+
1
α

, (4.19)
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where

W ∗
ARAm =

ni

∑
j=1

[(
ti, j − (1−θ)s(ti, j−1))

β

)
−
(
ti, j−1 − (1−θ)s(ti, j−1))

)β
]

+
[
(t∗i − (1−θ)s(ti,ni)))

β − (ti,ni − (1−θ)s(ti,ni)))
β
]
.

The log-likelihood function is given by

l f .ARAm(µµµ | ti, j) = N[log(β )+ log(α)−β log(η)]+
k

∑
i=1

logΓ

(
ni +

1
α

)
+(β −1)

k

∑
i=1

ni

∑
j=1

log(ti, j − (1−θ)s(ti, j−1))−
k

∑
i=1

logΓ

(
1
α

)

−
k

∑
i=1

(
ni +

1
α

)
log
(

1+
α

ηβ
W ∗

ARAm

)
.

(4.20)

For the shared frailty ARIm model, the likelihood function for the shared frailty ARIm

model is given by replacing equation (2.19) into the equation of unconditional likelihood (2.30),
obtaining:

L f .ARIm(µµµ | ti, j) =
k

∏
i=1

∫
∞

0

( ni

∏
j=1

ziλ ARIm
(
ti, j
)

e−zi[ΛARIm(ti, j)−ΛARIm(ti, j−1)]
)

× e−zi[ΛARIm(t∗i )−ΛARIm(ti,ni)] fZi(zi)dzi

=
k

∏
i=1

( ni

∏
j=1

λ ARIm(ti, j)
)∫

∞

0
zni

i exp
(
− zi

ni

∑
j=1

[
ΛARIm

(
ti, j
)
−ΛARIm

(
ti, j−1

)])
× exp

(
− zi [ΛARIm (t∗i )−ΛARIm (ti,ni)]

)
fZi(zi)dzi

=
k

∏
i=1

( ni

∏
j=1

[
λ0(ti, j)− (1−θ)s(ti, j−1))

])∫ ∞

0
zni

i exp
(
− ziW ARIm

)
fZi(zi)dzi,

where

W ARIm =
ni

∑
j=1

[
Λ0(ti, j)+Λ0(ti, j−1)+(ti, j − ti, j−1)(1−θ)s(ti, j−1)

]
+[Λ0(ti∗)+Λ0(ti,ni)+(ti∗ − ti,ni)(1−θ)s(ti,ni)]

and λ0(t) and Λ0(t) are, respectively, the initial intensity and cumulative intensity functions.

Assuming that the frailty variables Zi have a common Gamma
( 1

α
, 1

α

)
distribution (i =

1, . . . ,k), the likelihood function unconditional to the Gamma frailty term is given by

L f .ARIm(µµµ | ti, j) =
k

∏
i=1

αniΓ
(
ni +

1
α

)
∏

ni
j=1
[
λ0(ti, j)− (1−θ)s(ti, j−1))

]
Γ
( 1

α

)
(1+αW ARIm)

ni+
1
α

.
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Finally, replacing the initial functions λ0(t) and Λ0(t) with the PLP model functions
given by (2.3) and (2.4), respectively, the equation (4.18) can be rewritten as

L f .ARIm(µµµ | ti, j) =
k

∏
i=1

(
βα

ηβ

)ni
Γ
(
ni +

1
α

)
∏

ni
j=1

[
tβ−1
i, j − (1−θ)s˜(ti, j−1)

]
Γ
( 1

α

)(
1+ α

ηβ
W ∗

ARIm

)ni+
1
α

, (4.21)

where

W ∗
ARIm =

ni

∑
j=1

[
tβ−1
i, j + tβ−1

i, j−1 +β (ti, j − ti, j−1)(1−θ)s˜(ti, j−1)

]
+[

tβ−1
i∗ + tβ−1

i,ni
+β (ti∗ − ti,ni)(1−θ)s˜(ti,ni)

]
.

The log-likelihood function is given by

l f .ARIm(µµµ | ti, j) = N[log(β )+ log(α)−β log(η)]+
k

∑
i=1

logΓ

(
ni +

1
α

)
+

k

∑
i=1

ni

∑
j=1

log
(

tβ−1
i, j − (1−θ)s˜(ti, j−1)

)
−

k

∑
i=1

logΓ

(
1
α

)

−
k

∑
i=1

(
ni +

1
α

)
log
(

1+
α

ηβ
W ∗

ARIm

)
.

(4.22)

Note that again, for both ARAm and ARIm classes we construct the likelihood and
log-likelihood functions for the more general case with time truncation. The particular functions
for the failure truncation case are again obtained just by replacing t∗i in equations (4.19), (4.20),
(4.21) and (4.22) by the last observed failure time ti,ni for each system i.

Estimates of the parameters µµµ = (β ,η ,θ ,α) are obtained by maximizing the log-
likelihood functions (4.20) and (4.22) for the ARAm and ARIm models, respectively. Note
that, once again, we obtained very complex functions with equally complex derivatives, which
makes it impossible to obtain an analytical solution to these optimization problems. Therefore,
numerical methods aided by the R statistics software will again be used to obtain the MLEs.
Finally, the interval estimates for the both models parameters will be built using the asymptotic
theory based on the Normal distribution as a direct consequence of MLEs properties.

4.2.3 Reliability Predictors for Shared Frailty ARAm and ARIm Models

In this section, as is Section 4.1.3, we will define the reliability prediction functions for
the proposed shared frailty models. The idea is again to estimate the probability of a new failure
occurring in a system in a given time interval based on its failure history.

Given a system i, let Ti,ni = ti,ni be its last observed failure time and let t be the time until
the next failure. Given the estimate of the frailty term ẑi fo the system i and its failure history
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Hti,ni
until the last observed failure ti,ni , our interest is to estimate the time t = Ti,ni+1 − ti,ni until

the next failure. Remember that the general reliability prediction function at time t is given by
(4.9), which, in this case, can be rewritten as

R(t) = P[Ti,ni+1 − ti,ni > t | Hti,ni
] = exp

{
−ẑi

∫ ti,ni+t

ti,ni

λ (u)du

}
, (4.23)

where λ (t) is the baseline intensity function of the shared frailty model, and ti,ni ≤ u ≤ ti,ni + t <

Ti,ni+1. Due the fact that the frailty variables Zi are assumed to be IID with a Gamma
( 1

α
, 1

α

)
distribution, the estimates ẑi are obtained by the equation (2.33) as presented in Section 2.3.3.
As discussed in Section 4.2.1, we can simply use the intensity functions of the ARAm and ARIm

classes as the baseline function in equation (4.23) to obtain the desired reliability predictors for
each shared frailty model.

For the shared frailty ARAm model, taking the ARAm intensity function presented in
(2.13) and assuming the PLP as initial intensity function (2.3), we obtain the reliability prediction
function R(t) = R f .ARAm(t) as follows:

R(t) = exp

{
−ẑi

∫ ti,ni+t

ti,ni

λ ARAm(u)du

}

= exp
{
− ẑi

ηβ

[
(ti,ni + t − (1−θ)s(ti,ni))

β − (ti,ni − (1−θ)s(ti,ni))
β
]}

.

(4.24)

Using the same idea for the shared frailty ARIm model, replacing the intensity function
(2.16) as the baseline intensity function into (4.23) and again assuming the PLP as initial intensity
function, we obtain the reliability prediction function R(t) = R f .ARIm(t) given by

R(t) = exp

{
−ẑi

∫ ti,ni+t

ti,ni

λ ARIm(u)du

}

= exp
{
− ẑi

ηβ

[
(ti,ni + t)β − (ti,ni)

β − tβ (1−θ)s˜(ti,ni)

]}
.

(4.25)

Finally, the MTTF at time Ti,ni = ti,ni is obtained in the same way as discussed in Section
4.1.3, that is, by equation (4.12). Obviously, for the shared frailty ARAm and ARIm models, the
reliability functions to be substituted in the equation (4.12) are (4.24) and (4.25), respectively.
Thus, we obtain the expected time for the next failure to occur in system i after the last failure
occurred at time ti,ni .

4.2.4 Simulation Study

In this section, we proceed with another large Monte Carlo simulation study with the
objective of verifying the consistency and efficiency performances of the MLEs defined for the
shared frailty IR models. As in Section 4.1.4, the procedures and analyses of the simulations
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referring to each of the shared frailty ARAm and ARIm models will be done differently and pre-
sented separately in Sections 4.2.4.1 and 4.2.4.2, respectively. The definitions for this simulation
study are the same as presented in Section 4.1.4.

The three indicators used to summarize the results obtained were again the RMSE,
the MRE and the CP of the 95% CIs, the same ones defined and used in Section 4.1.4. In
this simulation study for the shared frailty IR models, the increase in the sample of generated
failure times will be given by the increase in the number of observed systems, that is, the more
observed systems, the more total failure times will be generated. As in the other simulation
studies presented so far, it is expected that with the increasing number of systems, the asymptotic
properties are achieved since the sample sizes of observed failure times also tend to increase.

4.2.4.1 Simulation Study for the Shared Frailty ARAm Model

We begin this section by describing the algorithm for generating the failure times ti, j,
with i = 1, . . . ,k and j = 1, . . . ,ni, for k independent systems, assuming that each system i has
a frailty variable Zi associated with it. First of all, for each system i we generate the related
frailty term zi as an observation of the Gamma

( 1
α
, 1

α

)
distribution, as defined at the beginning

of Section 4.2. As already discussed, this generated value zi impacts all failure occurrences of
system i, therefore, it will also impact the generation of all the system’s failure times.

Let ti, j be the j-th failure time of the i-th system, and the elapsed time from j-th
failure to the ( j + 1)-th failure be x = ti, j+1 − ti, j. Based on the discussion already carried
out in Section 4.1.4.1, given zi, x is an observation of a random variable X that represents the
time between two consecutive failures, whose conditional CDF is given by F(x | zi) = 1−
e−Λ f .ARAm(ti, j+x|zi)+Λ f .ARAm(ti, j|zi), where, in this case, Λ f .ARAm(t | zi) is the cumulative intensity
function for the shared frailty ARAm model conditional on zi. From the equation (2.21) we know
that Λ f .ARAm(t | zi) = ziΛ f .ARAm(t) and using the definition of ΛARAm(t) in (2.14), it follows
that

log(1−F(x)) =−zi
[
ΛARAm(ti, j + x)+ΛARAm(ti, j)

]
ΛARAm(ti, j + x) = ΛARAm(ti, j)−

log(1−F(x))
zi

Λ0(ti, j + x− (1−θ)s(ti, j−1)) = Λ0(ti, j − (1−θ)s(ti, j−1))−
log(1−F(x))

zi
,

so

ti, j+1 = (1−θ)s(ti, j−1)+λ
−1
0

(
Λ0(ti, j − (1−θ)s(ti, j−1))−

log(1−F(x))
zi

)
, (4.26)

where Λ0(t) is the initial cumulative intensity function (in this case, a PLP cumulative intensity
function), Λ

−1
0 is its inverse function and 0 ≤ F(x)≤ 1. Note that ti, j+1 = ti, j +x is the ( j+1)-th

failure time of system i, generated directly by expression (4.26).
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The process for generating the failure times ti, j of all i systems, with i = 1, . . . ,k and
j = 1, . . . ,ni, such that ti,ni ≤ t∗i where t∗i is the truncation time for system i, is exactly the same
as that described in Section 4.1.4.1 and will therefore be omitted here.

Different parameter scenarios, truncation times, number of systems and failure memories
were considered in this simulation study. We separated the presentation of the results based on
the choice of three different memories of the failure process, considering memories m = 1, m = 5
and m = 15. Again, memory m = 15 was chosen as an approximation for memory m = ∞ based
on the stability of the model for larger memories, as was done in Section 4.2.4.1.

The parameter settings chosen for this simulation study were: β = 1.5 and η = 10 for
the PLP initial functions; θ = (0.4,0.8) for the imperfect repair effect parameter; α = (0.2,2)
to generate the zi as observations of a Gamma(1/α,1/α) distributed Zi variable; t∗ = (200,500)
as truncation time for all systems; and the number k of systems ranging from 5 to 40 (from 5 to
5). Remember that the asymptotic properties of the estimators will be observed by increasing
the failure time samples due to the increase in the number of systems. For each scenario we
generated 1,000 Monte Carlo samples and calculated the RMSE, MRE and CP. The results are
summarized and shown in Figures 26, 27 and 28.

Figure 26 – Simulation results for the shared frailty ARA model in scenarios with memory m = 1.

As seen in Figures 26, 27 and 28, the estimators show, in general, the expected behaviors.
The greatest discrepancies occur with the RMSE of the parameter η in the particular cases
of small samples and greater frailty variance (α = 2). This behavior is expected and justified
in these scenarios, even more so due to the magnitude of the nominal value of the parameter
η . Except for the observation about the magnitude of the parameter η , the MRE and RMSE
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Figure 27 – Simulation results for the shared frailty ARA model in scenarios with memory m = 5.

Figure 28 – Simulation results for the shared frailty ARA model in scenarios with memory m = 15.

of all parameters in all scenarios converge asymptotically to the expected values of 1 and 0,
respectively. In addition, convergences are a little faster in cases where the truncation time is
longer (t∗ = 500), which is expected since in this scenario the generated failure time samples are
larger.
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Regarding the CP, it is also possible to verify that the nominal values are, in general,
reached or approximated. It is possible to identify some scenarios where the nominal value of
CP is not reached, especially in scenarios where α = 2, which is expected since these scenarios
consider precisely greater variance of the frailty variable. In the scenarios where we consider
models with greater memories of the failure history (m = 5 and m = 15), the convergence of the
CP measurements to the nominal value is faster and more evident, which indicates that models
with greater information of the failure history are more stable in relation to the asymptotic
estimator properties.

4.2.4.2 Simulation Study for the Shared Frailty ARIm Model

The generation of failure times for the shared frailty ARIm model will basically be
done by repeating the procedures previously presented. After generating the frailty terms zi for
each system i, the procedures are the same as those presented in Section 4.1.4.2, as follows.
Let ti, j be the j-th failure time of the i-th system and x = ti, j+1 − ti, j be the elapsed time from
j-th to the ( j + 1)-th failure. The CDF for the random variable X is given by F(x | zi) =

1− e−Λ f .ARIm(ti, j+x|zi)+Λ f .ARIm(ti, j|zi), where Λ f .ARIm(t) is the cumulative intensity function for
the shared frailty ARIm model. Using the equation (2.21) and ARIm cumulative intensity function
given by (2.17), we can rewrite the non-conditional CDF as

F(x) = 1− exp
{
−zi
[
ΛARIm(ti, j + x)+ΛARIm(ti, j)

]}
= 1− exp

{
−zi
[
Λ0(ti, j + x)−Λ0(ti, j)− x(1−θ)s(ti, j−1)

]}
,

(4.27)

where ΛARIm(t) is the ARIm cumulative intensity function given by (2.17) and Λ0(t) is the initial
cumulative intensity function, again a PLP cumulative intensity function.

Note that it is not possible to solve the equation (4.27) analytically in terms of the
elapsed time x as done for the ARAm model in Section 4.2.4.1. As discussed is Section 4.1.4.2,
given a time ti, j, the elapsed time x until the next failure time ti, j+1 will be obtained by solving
the equation (4.27) using computational numerical methods, after substituting F(X) by an
observation u of the Uniform(0,1) distribution. The process for generating the failure times ti, j
of all i systems, with i = 1, . . . ,k and j = 1, . . . ,ni, such that ti,ni ≤ t∗i where t∗i is the truncation
time for system i, is exactly the same as that described in Section 4.1.4.2.

All the parameters chosen for the sample simulations in the shared frailty ARIm model
were the same as in the shared frailty ARAm model in Section 4.2.4.1. We again considered three
distinct memories (m = 1, m = 5 and m = 15) for the same reasons justified for the previous case,
and the other nominal parameters values are: β = 1.5, η = 10, θ = (0.4,0.8) and α = (0.2,2).
The truncation times are also the same t∗ = (200,500) and the number k of systems are also
ranging from 5 to 40 (from 5 to 5) for the same reasons presented in the previous section. For
each scenario we generated 1,000 Monte Carlo samples and calculated the RMSE, MRE and CP.
The results are summarized and shown in Figures 29, 30 and 31.
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Figure 29 – Simulation results for the shared frailty ARI model in scenarios with memory m = 1.

Figure 30 – Simulation results for the shared frailty ARI model in scenarios with memory m = 5.

As in the simulation study of Section 4.2.4, Figures 29, 30 and 31 show that the estimators
behave asymptotically as expected. Observations on discrepancies in the RMSE value of the
parameter η are the same as discussed in the previous study. Again, it is possible to see that the
results and convergences are better for larger failure history memories (m = 5 and m = 15) and
for longer truncation time (t∗ = 500).
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Figure 31 – Simulation results for the shared frailty ARI model in scenarios with memory m = 15.

In scenarios where the frailty variance is smaller, all estimators show excellent results.
However, in scenarios with greater frailty variance (α = 2), we noticed some deviations in the
MRE and CP estimates of parameter α . This is somewhat to be expected, since frailty variability
can generate uncontrolled samples for individual system frailties during the sampling process.

4.2.5 Real Data Application - Dump Truck Data Revisited

In this section we revisit the real dataset presented in Section 3.4.2 to illustrate the
methodology of the shared frailty ARAm and ARIm models presented. Our goal is to fit the both
models to the dataset, obtaining the MLEs for the parameters β , η , θ and α , as well as their
respective 95% CIs. For this, the procedures discussed in Section 4.2.2 will be used for each of
the models. The AIC and BIC criteria will be used to select the best models to fit the data in
terms of the failure memory m. After obtaining the MLEs of the best model and their respective
estimates for the frailty terms zi, it will be possible to estimate the reliability prediction for each
system as discussed is Section 4.2.3. All these procedures are very similar to what was done in
Section 4.1.5.

As previously stated, this database was presented by Toledo et al. (2015), who performed
a complete inferential analysis considering the IR models to find the one that best fits the data.
Here, we will do the same analysis considering the two classes ARAm and ARIm and all their
possible failure memories m. The difference in our work is that here we consider the possibility
of non-quantifiable effects acting on truck failure times. In this sense, in addition to identifying
the efficiency of the repairs carried out through the best model as done by the authors, our model
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allows, at the same time, to capture the existence of unobserved heterogeneity shared between
the trucks.

By maximizing the log-likelihood functions (4.19) and (4.21) for the shared frailty
ARAm and ARIm models, respectively, we obtain the parameter estimates β̂ , η̂ , θ̂ and α̂ for both
models, and this procedure was performed for all possible memories m. As the highest number
of failures among the trucks was 32, the estimation was performed for both ARAm and ARIm

classes considering memories m = 1, . . . ,32, where memory m = 32 is equivalent to memory
m = ∞. The maximum estimated value of the log-likelihood function l̂ was used to verify which
of these 32 models best fits the data for the both classes, since all these models have the same
number of parameters. The summary of these values for both shared frailty ARAm and ARIm

models is presented in Figure 32.

Figure 32 – Estimated maximum log-likelihood values l̂ per memory m, for the dump truck data.

Note that for both models there is a stability in the log-likelihood estimates from a certain
memory, specifically the memory m = 10. This means that considering any shared frailty ARAm

(or ARIm, analogously) models with m ≥ 10, the estimates for the parameters do not differ.
Furthermore, the maximum log-likelihood values for these memories are the highest for the two
models, so we will adopt the shared ARA∞ and ARI∞ models as the best models for the ARA
and ARI classes for this dataset, respectively.

The MLE results for each parameter of the shared frailty ARA∞ and ARI∞ models,
and their respective 95% CIs, are described in Table 5. For comparison, we also estimated the
parameters of the shared frailty MR and PR models (particular cases of ARA1, with θ = 1 and
θ = 0, respectively) and also displayed their results in Table 5.

Quickly, in Table 5, it is possible to see that the shared MR and PR frailty models
did not identify the presence of unobserved heterogeneity between the systems. This result
differs significantly from the other two models, which, in addition to capturing the existence of
unobserved heterogeneity, also captures the effect of the repairs performed. To decide for the
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Table 5 – MLE results for the shared frailty MR, PR, ARA∞ and ARI∞ models applied to dump truck
data.

β̂ (95% CI
β̂

) η̂ (95% CIη̂ ) θ̂ (95% CI
θ̂

) α̂ (95% CIα̂ )
MR 1.13 (0.96, 1.35) 5.92 (3.53, 9.93) - 7.23 (7.21, 7.24) ×10−8

PR 1.18 (1.03, 1.36) 4.25 (3.64, 4.95) - 7.84 (7.83, 7.85) ×10−8

ARA∞ 1.85 (1.40, 2.43) 7.72 (5.43, 10.99) 0.60 (0.40, 0.77) 0.014 (0.009, 0.019)
ARI∞ 1.90 (1.71, 2.11) 7.65 (5.63, 10.16) 0.67 (0.48, 0.81) 0.020 (0.013, 0.029)

best of the four presented models, we will again use the estimated maximum log-likelihood, the
AIC and the BIC criteria, whose results are listed in Table 6.

Table 6 – AIC and BIC results for the shared frailty MR, PR, ARA∞ and ARI∞ models applied to the
dump truck data.

l̂ AIC BIC
MR -307.18 620.36 628.94
PR -305.36 616.72 625.30

ARA∞ -300.21 608.42 619.86
ARI∞ -299.87 607.74 619.18

From Table 6, it is possible to conclude that the ARI∞ model is the one that best fits the
dataset, since it was superior by all three comparison criteria (greater maximum log-likelihood
and smaller AIC and BIC). This will therefore be our chosen model and we will discuss a little
more about its results.

Initially, let us analyze the estimates of the parameters β and η of the initial PLP. As
in the example in Section 4.1.5, here the β̂ parameter estimate indicates that the trucks are
deteriorating over time, since β̂ and its 95% CI limits are greater than 1. In this shared frailty
model, we can perform the usual interpretation of the parameter η , since it is expected that the
average of the individual frailty estimates be equal to 1. In fact, this occurs (as we will discuss
later) and the estimate η̂ , therefore, tells us that the expected time that only one failure occurs on
a truck is approximately 7 days.

An important result rests on the estimation of the parameter θ . In this case, it is possible
to state that there is an effect of the repairs performed on the trucks and, in this case, this effect
proportionally reduces the failure intensity function of these systems by θ̂ = 0.67 after each
repair. Furthermore, the 95% CI obtained indicates a significant difference from the extreme
models of MR or PR.

Finally, as mentioned briefly earlier, the shared frailty ARI∞ model captured the existence
of unobserved heterogeneity through the parameter α . Despite being only slightly greater than
zero, the estimate α̂ obtained can be considered significant since its 95% CI limits are also
slightly greater than zero. This indicates that there are non-quantifiable effects that impact the
failure process of trucks, making some more or less fragile than others. As discussed in Section
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2.3.3, once the estimate α̂ > 0, it is possible to use equation (2.33) to calculate the individual
frailties of each of the systems. These results are listed in Table 7.

Table 7 – Individual frailty for each dump truck, in the shared frailty ARI∞ model.

Frailty Estimate
ẑ1 0.919
ẑ2 1.142
ẑ3 0.934
ẑ4 1.050
ẑ5 0.955

From Table 27 we see that trucks #2 and #4 can be considered more fragile than the
others. As their estimated individual frailties are greater than 1, their failure intensity functions
are greater than the intensity function of a system operating in a hypothetical situation of non-
existence of non-quantifiable effects. The direct mathematical consequence of this is that, with
greater failure intensity, these systems are expected to fail more times in less time. Finally, just
for the record, the average of the 5 estimated individual weaknesses is approximately 1, as
expected by the theoretical model and confirming its applicability.

Once again, we employed the graphical procedure of goodness-of-fit to compare the
empirical and estimated MCFs in the example. The idea is to have a perception of the quality
of the adjustment by the shared frailty ARA∞ and ARI∞ models. The goodness-of-fit plot
comparison is shown in Figure 33. Once again the empirical and estimated curves of the MCFs
(from each frailty ARA∞ and ARI∞ models) are very close to each other, which leads us to
conclude that the both fits are reasonable. But it is still possible to verify a slight superiority of
the ARI∞ model, especially in the interval of 40 to 70 days, where the fit of this model is closer
to the empirical fit than the ARA∞ model.

Figure 33 – Empirical and estimated MCFs for the truck’s failure times, in the shared frailty ARA∞ and
ARI∞ models.
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Finally, the predicted reliability for each dump truck and their respective MTTFs from
their last observed failures were estimated and the results are shown in Figure 34. For the
reliability curves, we considered the respective estimates β̂ , η̂ and θ̂ obtained from each frailty
ARA∞ and ARI∞ models, as well as the individual frailty estimates for all the trucks. The
estimates are replaced in the equations (4.24) and (4.25), respectively. For the MTTFs, we again
only considered the estimates obtained from the best fitted model, in this case the shared frailty
ARI∞ model, and replaced them in equation (3.16).

Figure 34 – Estimated reliability functions and MTTFs (only for the ARI∞ model) at last failure time tn,
for each truck in the data set, under the fitted frailty ARA∞ and ARI∞ models.

The reliability curves presented in Figure 34 reveal that the probability that the trucks
will operate without failure for more than 10 days after their last observed failures is practically
zero. The reliability curves estimated from the frailty ARA∞ and ARI∞ models are quite close in
this case, which was expected due to the proximity of the fit estimates obtained for these two
models, and this attests that either of them could be used to infer about the dataset.

Regarding the MTTFs estimated and presented in Figure 34, given the history of the
dump truck failure process, their mean times to the next failure vary from approximately 3 to
4 days operating in the mine. This result is related to the estimate of the parameter η (in this
case where the individual frailties approach 1 for all systems), since the obtained η̂ close to 7
indicates that a single failure is expected by the model in an average of 7 days.

The information on expected failure times and predicted reliability are important for the
mining company in the sense that they contribute to the proposition of cost reduction strategies
involving repairs of these machines and/or losses resulting from their failures.
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4.3 Concluding Remarks of the Chapter

In this chapter, we proposed an extension of the IR model to multiple independent
repairable systems by introducing a multiplicative term of frailty. In another words, we consid-
ered cases where repairable systems are subjected to an IR whereas there may be unobserved
heterogeneity related to the system failure times or between systems.

As stated for the frailty PR model, ignoring the existence of unobserved heterogeneity
in models that consider multiple systems can lead to the wrong estimation of parameters and,
consequently, to a wrong conclusion about the observed systems, and this justifies the importance
of the model proposed in this chapter.

In the proposed frailty IR models, the initial intensity function of the recurring failure
times follows a PLP process and for each system, it was assumed that the frailty terms are
independent and have the same Gamma( 1

α
, 1

α
) distribution, where the parameter α indicates the

variance of these random variables. Furthermore, our proposed models maintains the ability to
identify and quantify the repair effect through the original θ parameter of the IR models.

We present frailty models from two different perspectives: considering univariate and
shared frailty for repairable systems. This distinction was necessary due to the approaches
present in the literature and the different interpretations and applications that these two scenarios
contemplate. In the first case, our models allow verifying the existence of global effects that act
individually on each failure time of each system, while in the second case, the models verify
the existence of effects that act differently on each system but equally in their respective failure
times.

Under a classical framework, we used the likelihood principle to obtain the model
parameters’ MLEs and their respective 95% CIs by using asymptotic theory. Furthermore, we
established reliability prediction functions for each proposed model.

A simulation study was carried out to check the quality of the estimators obtained and
their behavior under different parameter scenarios, times of the observation truncation, number
of observed systems and failure memories for the univariate and shared ARAm and ARIm models.
We concluded that, in general, the estimates present good asymptotic behavior in terms of Bias
and RMSE, as well as good CP measures.

Finally, we revisited the applications presented in Section 3.4 to use the proposed
univariate and shared frailty IR models, with the both classes ARA and ARI, to adjust each of
the two real datasets. In the first example we used the proposed univariate frailty IR models
and checked the existence of unobserved heterogeneity related to the systems failure times
and the possible repair effect on the virtual age or on the failure intensity function after the
occurrence of each repair. In the second example, we used the proposed shared frailty IR models
and also checked for the existence of a repair effect and, in this case, the existence of unobserved
heterogeneity between the systems. In each example, we have identified the most likely type
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of repair that may have been performed on the systems, as well as the most likely memory of
failures that impact their intensity functions. Finally, we calculated the reliability of each system
from the last observed failure.
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CHAPTER

5
BAYESIAN APPROACH TO FRAILTY

IMPERFECT REPAIR MODELS

In this chapter we present Bayesian methods for the shared frailty models presented
in Chapter 4. The idea is to revisit these models, which were exclusively analyzed using a
frequentist approach, and now explore Bayesian methodologies as an alternative. Furthermore,
we employ hierarchical Bayesian models to capture variations in repair effect parameters across
distinct systems.

As widely recognized in the statistical literature, the Bayesian approach involves assum-
ing a probability distribution for the model parameters (see, for example, Gelman et al. (1995)).
In this context, the primary objective of inference is to characterize this distribution, allowing
us to gain insights into the parameters’ characteristics. Obtaining this distribution, known as
the posterior distribution, relies on prior knowledge about the parameters, incorporated into
the model through another probability distribution called the prior distribution. Additionally, it
incorporates data related to the studied phenomenon through the model’s likelihood function.
Consequently, the general idea is that the collected data contribute to updating and refining the
prior distribution of each parameter.

In our context of reliability and repairable systems, the Bayesian approach proves to be
practical. As discussed in previous chapters, the failure processes of repairable systems can be
modeled as NHPP with parametric initial intensity functions. The parametric form assumed for
the initial intensity function can be chosen so that the parameters make physical meaning, as
discussed earlier in the case of the PLP. In this regard, experts and technicians familiar with the
repairable systems in question can provide valuable technical knowledge, guiding the definition
of consistent priors for problems within this context.

In the reliability literature, we have come across some papers that analyze repairable
systems using a Bayesian approach. As we mentioned earlier, the assumption of MR after
an occurrence of failure, while not ideal, is more commonly found in the repairable systems
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literature. Pievatolo and Ruggeri (2004) proposed Bayesian models to describe the failure process
of repairable systems, considering an NHPP and only minimal repairs after the occurrence of
failures. Oliveira, Colosimo and Gilardoni (2012) also presented Bayesian models in this context,
considering minimal repairs following failures and modeling the intensity function with a PLP.
Additionally, these last authors extended the analysis to encompass multiple systems, each
characterized by different realizations of the same PLP.

A proposal of Bayesian models for repairable systems subjected to IR can be found in
Pan and Rigdon (2009). In this work, the authors explored the ARA and ARI classes of IR defined
by Doyen and Gaudoin (2004) and proposed a hierarchical Bayesian model to analyze multiple
systems sharing the same initial intensity function (modeled by a PLP), but that potentially can
have different repair effects. This work serves as a main reference for our chapter’s studies, and
our aim is to extend it to a frailty models context.

In this regard, we are proposing hierarchical Bayesian models for estimating the pa-
rameters of the shared frailty IR models defined in Section 4.2. Once again, we consider all
possible memories m of the two IR classes ARAm and ARIm. As suggested by Pan and Rigdon
(2009), we assume that the repair effects of the systems may vary, but are modeled by random
variables sharing the same probability distribution. The parameters of these random variables are
also treated as random variables themselves, characterizing the hierarchical nature of the model.
Our contribution to this chapter is twofold: we extend the work of Pan and Rigdon (2009) by
introducing the frailty idea, and we present Bayesian modeling as an alternative approach to the
methods detailed in Section 4.2.

This chapter is structured as follows. In Section 5.1, we introduce the comprehensive
model framework, beginning with the reparameterization of the shared frailty models discussed
in Section 4.2 and incorporating multiple repair effects within this context. In Section 5.1.1, we
present the prior distributions for each model parameter and introduce the idea of a hierarchical
Bayesian approach. In Section 5.1.2, we detail the sampling methodology based on Markov
Chain Monte Carlo (MCMC) techniques for obtaining the posterior density distributions of
each parameter and their respective point estimates. In Section 5.1.3, we discuss a criterion for
selecting models, while in Section 5.1.4 we present some criteria for assessing the convergence
of the chains generated by the MCMC procedures. Finally, in Section 5.2, we revisit the two
datasets previously presented in this work to illustrate and verify the applicability of the Bayesian
procedures discussed.

5.1 Bayesian Model Framework

In this section, we introduce our proposed Bayesian approach for conducting inference
in shared frailty IR models with a PLP initial intensity. First of all, for Bayesian models, we
reparameterize the PLP intensity and cumulative intensity functions presented in (2.3) and (2.4),
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respectively, by

λ (t | β ,ω) = ωβ tβ−1 and Λ(t | β ,ω) = ωtβ .

This parameterization is also usual in the literature and, in particular, is used in works
with Bayesian methodologies, as seen in Pan and Rigdon (2009) and Somboonsavatdee and Sen
(2015b). The parameter β maintains the same interpretation as in the previous parameterization,
while the parameter ω is the scale parameter and can be called the intrinsic failure ratio (obtained
when β = 1) (PAN; RIGDON, 2009). The algebraic effect of this reparameterization on the
functions involving the PLP in Chapter 4 is just by replacing ω = 1/ηβ .

Furthermore, as discussed in the introduction to this chapter, we are assuming that the
systems share the same failure process initial intensity function, but may be subjected to post
failure repair with different effects. In this way, each system i will be associated with a particular
θi, i = 1, . . . ,k, where k is the total number of systems. Therefore, the new vector of parameters
to be estimated is given by µµµ = (β ,ω,α,θi).

Let ti, j be the failure times observed in k independent systems, with i = 1, . . . ,k and
j = 1, . . . ,ni, and let t∗i be the truncation times of each system observation, with ti,ni ≤ t∗i for all
i. Rewritten the equations (4.19) and (4.21), the likelihood functions for the parameter vector
µµµ = (β ,ω,α,θi) of the shared frailty ARAm and ARIm models with reparameterized initial PLP
are, respectively, given by

L f .ARAm(µµµ | ti, j) =
(βωα)N

Γ
( 1

α

)k

k

∏
i=1

Γ
(
ni +

1
α

)
∏

ni
j=1 (ti, j − (1−θi)s(ti, j−1))

β−1

(1+αωW ∗
ARAm)

ni+
1
α

(5.1)

and

L f .ARIm(µµµ | ti, j) =
(βωα)N

Γ
( 1

α

)k

k

∏
i=1

Γ
(
ni +

1
α

)
∏

ni
j=1

[
tβ−1
i, j − (1−θi)s(ti, j−1))

]
(1+αωW ∗

ARIm)
ni+

1
α

, (5.2)

where

W ∗
ARAm =

ni

∑
j=1

[(
ti, j − (1−θi)s(ti, j−1)

)β −
(
ti, j−1 − (1−θi)s(ti, j−1)

)β
]

+
[
(t∗i − (1−θi)s(ti,ni))

β − (ti,ni − (1−θi)s(ti,ni))
β
]

and

W ∗
ARIm =

ni

∑
j=1

[
tβ−1
i, j + tβ−1

i, j−1 +β (ti, j − ti, j−1)(1−θi)s˜(ti, j−1)

]
+[

tβ−1
i∗ + tβ−1

i,ni
+β (ti∗ − ti,ni)(1−θi)s˜(ti,ni)

]
,

with N = ∑
k
i=1 ni being the total number of observed failures across the systems.



122 Chapter 5. Bayesian Approach to Frailty Imperfect Repair Models

5.1.1 Bayesian Hierarchical Approach and Prior Distributions

As commented at the beginning of this chapter and pointed out by Gelman et al. (1995),
in the Bayesian approach, the results of fitting a model to a given dataset are summarized
by a probability distribution over the model parameters. This means that within the Bayesian
framework, the model parameters are treated as random variables and their respective parameters
are called hyperparameters. The goal of Bayesian inference is to obtain the parameter probability
distribution, called the posterior distribution.

The posterior distribution of the parameter of interest is derived by combining the
information gleaned from the data with prior knowledge about this parameter, utilizing Bayes
Theorem. The data’s contribution to this information is conveyed through the model’s likelihood
function, while the prior information about the parameter is incorporated by assuming a prior
distribution that reflects this existing knowledge. In this sense, an important stage of the analysis
in the Bayesian context is the definition of the parameters’ priors.

A relatively simple choice, from an algebraic perspective, is the use of conjugate priors,
where both the prior and posterior distributions belong to the same class of distributions. Thus,
updating the knowledge about the parameter involves only changes in the hyperparameters.
Another possible choice is the objective (or non-informative) priors, which aim to minimize the
impact of prior knowledge on parameter estimation and are obtained using Fisher’s information
measure.

Unfortunately, due to the complexity of the likelihood functions described in equations
(5.1) and (5.2), neither of these two prior choices is applicable to our models. Note that our like-
lihood functions cannot be reformulated as density functions of known probability distributions,
making it impossible to choose conjugate priors. On the other hand, as previously highlighted
in Chapter 4, the derivatives of these functions concerning each parameter are quite complex,
which poses challenges in calculating Fisher’s information measure and, consequently, makes it
impractical to opt for objective priors. In this context, the choice of priors will draw from similar
works in the literature. These priors will be selected to effectively encompass prior knowledge
about the parameters, while maintaining flexibility in cases where prior knowledge is limited or
uncertain.

As previously discussed, we are assuming that the k systems share the same reparam-
eterized initial PLP function, with the same parameters β and ω for all of them. Furthermore,
we presume that these systems deteriorate over time, implying that β > 1. Based on Pan and
Rigdon (2009), we will adopt a Uniform(a,b) prior for the parameter β and a Gamma(c,d) prior
for the parameter ω . In terms of frailty, our models assume that the frailty variables Zi are IID
with Gamma(1/α,1/α) distribution for all systems i = 1, . . . ,k. Consequently, the parameter
α is the same for all systems and here we assume a Gamma(e, f ) prior for it. Note that the
hyperparameters a, b, c, d, e and f can be chosen in order to reflect the knowledge (or not) about
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each of the respective parameters according to the defined prior distribution.

Regarding imperfect repair effects, we will follow the same ideas presented by Pan and
Rigdon (2009). We assume that the parameters θ1, . . . ,θk have a common prior distribution,
characterized by hyperparameters g and h. In this case, we assume that g and h are also random
variables and have an hyperprior distribution p(g,h), thus establishing a hierarchical Bayesian

model. For the θ1, . . . ,θk parameters we assume a Beta(g,h) prior, and for each hyperparameter
g and h we assume a shifted exponential prior with location and scale parameters being 1.

The prior PDFs for all the model parameters are given by

π1(β | a,b) = I(a,b)(β ), π2(ω | c,d) =
dc

Γ(c)
ω

c−1e−dω , π3(α | e, f ) =
f e

Γ(e)
α

e−1e− f α ,

π4,i(θi | g,h) =
Γ(g+h)
Γ(g)Γ(h)

θ
g−1
i (1−θi)

f−1, π5(g) = e−(g−1) and π6(h) = e−(h−1),

where I(·) is the indicator function, a,b,g,h > 1 and c,d,e, f > 0.

Assuming that the model parameters are independent and considering the hierarchy of
the parameter θ and the hyperparameters g and h, the joint prior density is given by

π(β ,ω,α,θi,g,h) = π1(β | a,b)π2(ω | c,d)π3(α | e, f )
k

∏
i=1

π4,i(θi | g,h)π5(g)π6(h). (5.3)

5.1.2 MCMC Solution

Given the joint prior density in (5.3) and the failure times ttt = {ti, j, i = 1, . . . ,k; j =

1, . . . ,ni} of the k systems, the joint posterior density of the model parameters is given by

πpost(β ,ω,α,θi,g,h | ttt) =
L(β ,ω,α,θi)π(β ,ω,α,θi,g,h)∫

· · ·
∫

L(β ,ω,α,θi)π(β ,ω,α,θi,g,h)dβ dω dα dθi dg dh
,

where L represents a likelihood function given by (5.1) or (5.2).

Obviously, this is an analytically intractable expression and iterative computational
methods need to be used to estimate the posterior distribution. In this case, a simulation using
MCMC will be used to obtain the posterior distribution of interest.

According to Gelman et al. (1995), the MCMC simulation is a general method based
on drawing values of the parameters from approximate distributions and then correcting those
draws to better approximate the target posterior distribution. MCMC is an iterative simulation
process where the distribution of the sampled draws (or state) depends on the previous drawn.
The idea is to obtain a sample of the posterior distribution and calculate sample estimates of
characteristics of this distribution.

For multidimensional problems, a particular MCMC algorithm is the Gibbs sampler,
where the transitions between states are performed according to the complete conditional distri-
butions. The complete conditional distribution is just the conditional posterior distribution of
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each parameter given the data (the failure times ttt) and all of the other parameters. Next, we will
present the complete conditional distribution of each parameter based on the previously defined
prior distributions and on the likelihood functions of the shared frailty ARAm and ARIm models.

Shared frailty ARAm model

For the shared frailty ARAm model, the likelihood function is given by (5.1). The
complete conditional distribution of each parameter is obtained as follows:

π(β | ω,α,θi,g,h, ttt) ∝ L f .ARAm(µµµ | ti, j)π1(β | a,b)

∝ β
N

k

∏
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∏
ni
j=1 (ti, j − (1−θi)s(ti, j−1))

β−1

(1+αωW ∗
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ni+
1
α

I(a,b)(β ),

π(ω | β ,α,θi,g,h, ttt) ∝ L f .ARAm(µµµ | ti, j)π2(ω | c,d)

∝ ω
N

k

∏
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∏
ni
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α

ω
c−1e−dω ,

π(α | β ,ω,θi,g,h, ttt) ∝ L f .ARAm(µµµ | ti, j)π3(α | e, f )
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Γ
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α

)k
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∏
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α
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1
α

α
e−1e− f α ,

π(θi | β ,ω,α,g,h, ttt) ∝ L f .ARAm(µµµ | ti, j)π4,i(θi | g,h)

∝

k

∏
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∏
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α
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h−1,

π(g | β ,ω,α,θi,h, ttt) ∝ L fu.ARAm(µµµ | ti, j)π4,i(θi | g,h)π5(g) ∝

k
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i=i

(
θ

g−1
i
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e−(g−1),

π(h | β ,ω,α,θi,g, ttt) ∝ L fu.ARAm(µµµ | ti, j)π4,i(θi | g,h)π6(h) ∝

k

∏
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(
(1−θi)

h−1
)

e−(h−1).

Shared frailty ARIm model

For the shared frailty ARIm model, the likelihood function is given by (5.2) and the
complete conditional distribution of each parameter are defined as follows:
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π(β | ω,α,θi,g,h, ttt) ∝ L f .ARIm(µµµ | ti, j)π1(β | a,b)

∝ β
N

k

∏
i=1

∏
ni
j=1

[
tβ−1
i, j − (1−θi)s˜(ti, j−1))

]
(1+αωW ∗

ARIm)
ni+

1
α

I(a,b)(β ),

π(ω | β ,α,θi,g,h, ttt) ∝ L f .ARIm(µµµ | ti, j)π2(ω | c,d)

∝ ω
N

k

∏
i=1

∏
ni
j=1

[
tβ−1
i, j − (1−θi)s˜(ti, j−1))

]
(1+αωW ∗

ARIm)
ni+

1
α

ω
c−1e−dω ,

π(α | β ,ω,θi,g,h, ttt) ∝ L f .ARIm(µµµ | ti, j)π3(α | e, f )

∝
αN

Γ
( 1

α

)k

k

∏
i=1

Γ
(
ni +

1
α

)
(1+αωW ∗

ARIm)
ni+

1
α

α
e−1e− f α ,

π(θi | β ,ω,α,g,h, ttt) ∝ L f .ARIm(µµµ | ti, j)π4,i(θi | g,h)

∝

k

∏
i=1

∏
ni
j=1

[
tβ−1
i, j − (1−θi)s˜(ti, j−1))

]
(1+αωW ∗

ARIm)
ni+

1
α

θ
g−1
i (1−θi)

h−1,

π(g | β ,ω,α,θi,h, ttt) ∝ L fu.ARIm(µµµ | ti, j)π4,i(θi | g,h)π5(g) ∝
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Note that none of the complete conditional distributions of the both considered models
can be simplified into a known probability distribution. Consequently, direct parameter sampling
from these conditional posteriors is not feasible. In this case, to obtain a sample from the posterior
distribution of the parameters, we will use the Metropolis-Hastings (MH) algorithm, an useful
simulation method for sampling from Bayesian posterior distributions (GELMAN et al., 1995).

Basically, the MH algorithm is an iterative simulation algorithm that uses acceptance/re-
jection rules for each new value generated. In other words, a value is drawn from an auxiliary
distribution and accepted with a given probability. This acceptance/rejection mechanism acts
as a way of correcting the generated values and guarantees the convergence of the chain to the
equilibrium distribution, which in this case is the parameter posterior distribution.



126 Chapter 5. Bayesian Approach to Frailty Imperfect Repair Models

More specifically, suppose that the chain of simulated values of a parameter µ is in
state l, that is, the last generated value was µ(l). A new µ ′ value is drawn from an auxiliary
distribution, called jumping or proposal distribution, say q(µ ′ | µ(l)), which depends on the last
µ(l) generated value in the chain. The new value µ ′ is accepted with probability

R(µ(l),µ ′) = min

(
1,

π(µ ′)q(µ(l) | µ ′)

π(µ(l))q(µ ′ | µ(l))

)
,

where π(µ) is the target distribution. If µ ′ is accepted, then µ(l+1) = µ ′ and we say that the chain
moves. Otherwise µ(l+1) = µ(l), the chain does not move but this still counts as an iteration
in the algorithm. As said before, with this procedure, the sequence of draws converges to the
posterior distribution of the parameter µ .

In this work, for executing the MH algorithm that will be detailed later, and to derive
the complete conditional distributions for all parameters across the both proposed models, we
consider a Normal distribution centered on the last value generated by the chain as the proposal
distribution q(· | ·) (with truncation when necessary). As the Normal distribution is symmetric,
this is considered a Metropolis algorithm and the acceptance probability can be succinctly
expressed as follows:

R(µ(l),µ ′) = min
(

1,
π(µ ′)

π(µ(l))

)
.

By combining the Gibbs sampler with the Metropolis algorithm, the algorithm for
generating a MCMC sample from the posterior distribution of the parameters for the both models
discussed in this chapter is described below. Note that the algorithm is the same for the two
models and for this reason we will present it only once. The adaptation to a specific model is
accomplished by selecting the appropriate complete conditional distributions referring to that
model.

(1) Set values to the hyperparameters a, b, c, d, e and f that reflect the prior knowledge about
the parameters.

(2) Start the algorithm with initial values β = β (0), ω =ω(0), α =α(0), θi = θ
(0)
i (i= 1, . . . ,k),

g = g(0) and h = h(0) and set l = 0.

(3) In the (l + 1)-th iteration, for each i = 1 . . . ,k, generate a θ ′
i from the proposal Normal

distribution centered on the previous θ
(l)
i and compute the acceptance ratio:

Rθi = min

(
1,

π(θ ′
i | β (l),ω(l),α(l),g(l),h(l), ttt)

π(θ
(l+1)
i | β (l),ω(l),α(l),g(l),h(l), ttt)

)
.

(4) Generate random numbers uθi from the Uniform(0,1) distribution, for i = 1, . . . ,k. For
each i, if uθi < Rθi , so θ

(l+1)
i = θ ′

i , otherwise θ
(l+1)
i = θ

(l)
i .
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(5) Generate β ′ from the proposal Normal distribution centered on the previous β (l) and
compute the acceptance ratio:

Rβ = min

(
1,

π(β ′ | ω(l),α(l),θ
(l+1)
i ,g(l),h(l), ttt)

π(β (l+1) | ω(l),α(l),θ
(l+1)
i ,g(l),h(l), ttt)

)
.

(6) Generate a random number uβ from the Uniform(0,1) distribution. If uβ <Rβ , so β (l+1) =

β ′, otherwise β (l+1) = β (l).

(7) Generate ω ′ from the proposal Normal distribution centered on the previous ω(l) and
compute the acceptance ratio:

Rω = min

(
1,

π(ω ′ | β (l+1),α(l),θ
(l+1)
i ,g(l),h(l), ttt)

π(ω(l+1) | β (l+1),α(l),θ
(l+1)
i ,g(l),h(l), ttt)

)
.

(8) Generate a random number uω from the Uniform(0,1) distribution. If uω < Rω , so
ω(l+1) = ω ′, otherwise ω(l+1) = ω(l).

(9) Generate α ′ from the proposal Normal distribution centered on the previous α(l) and
compute the acceptance ratio:

Rα = min

(
1,

π(α ′ | β (l+1),ω(l+1),θ
(l+1)
i ,g(l),h(l), ttt)

π(α(l+1) | β (l+1),ω(l+1),θ
(l+1)
i ,g(l),h(l), ttt)

)
.

(10) Generate a random number uα from the Uniform(0,1) distribution. If uα <Rα , so α(l+1)=

α ′, otherwise α(l+1) = α(l).

(11) Generate g′ from the proposal Normal distribution centered on the previous g(l) and
compute the acceptance ratio:

Rg = min

(
1,

π(g′ | β (l+1),ω(l+1),α(l+1),θ
(l+1)
i ,h(l), ttt)

π(g(l+1) | β (l+1),ω(l+1),α(l+1),θ
(l+1)
i ,h(l), ttt)

)
.

(12) Generate a random number ug from the Uniform(0,1) distribution. If ug < Rg, so g(l+1) =

g′, otherwise g(l+1) = g(l).

(13) Generate a h′ from the proposal Normal distribution centered on the previous h(l) and
compute the acceptance ratio

Rh = min

(
1,

π(h′ | β (l+1),ω(l+1),α(l+1),θ
(l+1)
i ,g(l+1), ttt)

π(h(l+1) | β (l+1),ω(l+1),α(l+1),θ
(l+1)
i ,g(l+1), ttt)

)
.

(14) Generate a random number uh from the Uniform(0,1) distribution. If uh < Rh, so h(l+1) =

h′, otherwise h(l+1) = h(l).
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(15) Set l = l +1.

(16) Repeat the steps (3) to (15) N times and obtain a MCMC sample {(βl,ωl,αl,θi,l,gl,hl), l =

1 . . . ,N}.

If N is sufficiently large, the generated chains (βl,ωl,αl,θi,l,gl,hl) will stabilize and be
approximately distributed from the joint posterior of the models’ parameters. Finally, adopting
the squared error loss for the Bayesian approach, the Bayes Estimator (BE) µ̂ for each parameter
µ is obtained by the mean of the MCMC sample obtained by the previous algorithm (or the
posterior mean), that is,

µ̂ =
1
N

N

∑
l=1

µl.

To compute the Credible Intervals (CIB) of the parameter µ , the sample µ1, . . . ,µN is
ordered as µ(1) < · · ·< µ(N) and the 100(1− γ)% CIB of µ is given by(

µ
(⌊Nγ

2 ⌋),µ(⌊N(1− γ

2 )⌋)

)
,

where ⌊x⌋ is the greatest integer function, that is, the greatest integer that is less than or equal to
x. Finally, it is also possible to define the posterior median of the ordered sample generated for
each parameter, as µMd = µ(⌊N

2 ⌋+1).

5.1.3 Model Selection

In our study, we are introducing Bayesian methodologies for frailty models, taking into
account both IR classes, ARA and ARI, and considering all potential memories for each class.
So, it is necessary to establish a selection criterion to determine the best-fitting model for each
dataset. This is crucial because information by increasing the failure memory can lead to better
or worse models, as observed in the applications of Sections 4.1.5 and 4.2.5.

The model selection criterion used in this work will be the Deviance Information Criterion
(DIC). This measure is related to model predictive accuracy, and, as an information criteria, it
estimates the predictive error of a fitted model (GELMAN et al., 1995). Thus, when used to
compare models, smaller values of DIC indicate better model fitting.

The DIC is an extension of the AIC criterion already used in this work. As they are
information criteria, these two measures are defined based on the bias correction on the predictive
accuracy. While the AIC makes this correction using the number of model parameters, the DIC
uses the effective number of parameters (the average of the parameter estimate over its posterior
distribution). The DIC is especially suitable in complex, hierarchical Bayesian models or whose
posterior distributions are obtained via MCMC, as is totally our case.
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Let {µ̂µµ
(v), v = 1, . . . ,N} be the posterior sample of parameter vectors, obtained by the

MCMC procedure discussed, µ̄µµ be the average of the posterior sample (or the BE) and L(·) be
the model likelihood function. The DIC criterion is defined as (PAN; RIGDON, 2009):

DIC =−2(2l̄ − l̂),

where

l̄ =
1
N

N

∑
v=1

logL(µ̂µµ(v)) and l̂ = logL(µ̄µµ).

5.1.4 Diagnostic Checking

After obtaining an MCMC sample, it is essential to verify if it represents the desired
posterior distribution. This is a well-recognized issue in the literature, and several established
solutions exist. In this section, we will list and comment on some convergence diagnostic criteria
that will be employed in our future applications.

The most direct and intuitive methods for assessing convergence include trace, density,
autocorrelation, and cumulative quantile plots. Here is how each of these methods contributes
to convergence diagnostics: trace plots display how the mean of the chain evolves with each
iteration; stable behavior in a trace plot can indicate the chain’s stability. The posterior density
plots indicate whether the sample aligns with the expected distribution. The cumulative quantile
plots indicate whether the quantiles of the obtained chain converge as iterations progress, which
is the expected behavior. Finally, the autocorrelation plots show the decline in autocorrelation
among sample elements generated over iterations; a rapid decrease in autocorrelation is expected.

All these first procedures are analyzed graphically and plots can be easily obtained using
specific packages available for statistical software. In our study, we used the coda package of the
R software (PLUMMER et al., 2006). However, it is necessary to establish statistical measures
that quantify the diagnosis of convergence, in addition to graphical analyses.

The first formal criterion presented here is the Geweke’s diagnostic criteria (GEWEKE,
1991), which verifies the stationarity of the chain by comparing the mean of elements at the
beginning and at the end of the chain. The final part of the chain is subdivided into smaller
segments and, for each of them, a z-test is performed to compare it with the initial segment. If the
null hypothesis of no difference between the means of these segments is not rejected, it indicates
the stationarity of the chain. When conducting this test with the coda package, the z-scores are
provided, and assuming a significance level of 5%, the absolute values of these z-scores are
expected to be less than 1.96 for the test to pass.

Another criterion presented here is the Heidelberger-Welch diagnostic criterion (HEI-
DELBERGER; WELCH, 1983). This is a convergence test with null hypothesis that the sample
values are derived from a stationary distribution. The test is applied progressively, first to the
whole chain, and then discarding portions of the chain sequentially until either the null hypothesis
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is accepted or it discards 50% of the chain, at which point the null hypothesis is rejected. This
test can also be performed using the coda package and, in this case, the p-value of the test is
returned and the diagnosis whether the convergence passed or failed.

The last criterion we employ is the Gelman-Rubin’s diagnostic criteria (GELMAN;
RUBIN, 1992). This criterion involves observing the behavior of multiple parallel chains, each
starting from different initial values. If the MCMC sampling procedures yield a sample from
the target posterior distribution, then all these chains should eventually reach a steady state,
becoming indistinguishable when compared. The Gelman-Rubin criterion calculates a statistic
called “potential scale reduction” based on the variance of these chains. The coda package
also provides this statistic. If this statistic is close to 1, around 1.1 or even 1.2, there is a good
indication that the chains are converging to a steady state.

5.2 Real Data Applications

In this section, we revisit the two real datasets introduced in Section 3.4 to illustrate
the hierarchical Bayesian methodologies for the shared frailty ARAm and ARIm models, as
discussed in Section 5.1. The goal here is to compute BEs for the parameters of these models
and their respective 95% credible intervals. This is achieved by using the MCMC samples from
the posterior distributions, obtained through a combination of the Gibbs sampler and the MH
algorithm as discussed earlier. The priors used are those defined in the Section 5.1.1, and the
hyperparameters associated with each prior will be determined later.

Each dataset undergoes analysis using the shared frailty model considering both ARA
and ARI classes, as well as different failure memory possibilities. The selection criteria for the
optimal model in each case are based on the DIC, as discussed in Section 5.1.3. Subsequently,
once the best model is selected, we conduct a study on the convergence of the MCMC samples,
using the diagnostic criteria presented in Section 5.1.4 and additional sample characteristics,
which will be elaborated upon.

Before starting the study of each dataset, let us establish some conditions that will be
similar in both cases, according to the definition of our model. Being in the context of shared
frailty, remember that a frailty variable Zi is associated with the intensity function of each
system i, so that Zi are IID with Gamma(1/α,1/α) distribution, where α is the variance of the
random variables Zi, i = 1, . . . ,k, as discussed in Section 4.2. Consequently, the parameter α to
be estimated in the model is the same for all systems.

As discussed at the outset of Section 5.1 and in line with the parametric approach adopted
throughout this work, we assume that the initial failure intensity functions of the systems in
each application are the same for all of them, that is, they are all modeled by a PLP with
equal parameters β and ω for each system. However, within the Bayesian framework, we are
considering the possibility that the effects of the repair performed after each failure are unique to
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each system. In essence, we can have k different parameters θi (i = 1, . . . ,k) that represent the
repair effect on each system. Hence, the vector of parameters to be estimated in these applications
is µµµ = (β ,ω,α,θi), for i = 1, . . . ,k.

Finally, regarding the choice of prior distributions, for both examples the adopted priors
will be the same defined in Section 5.1.1 and, in line with the hierarchical approach discussed
across this chapter, the hierarchy over the θi parameters will be considered. The hyperparameters
used in both examples will be the same, intending to establish vague priors. Specifically, their
values are as follows: a = 1, b = 3, c = 0.01, d = 1, e = 1, f = 1, g = 1 and h = 1.

5.2.1 Sugarcane Harvester Data Revisited

In this section, we will analyze again the dataset of the failure times of the cutting
blades of the sugar cane harvesters presented in Section 3.4.1, but now, under a hierarchical
Bayesian approach of shared frailty ARAm and ARIm models. As this dataset is composed
by the failure times of 9 sugarcane harvesters, the vector of parameters to be estimated is
µµµ = (β ,ω,α,θ1, . . . ,θ9).

As established in the introduction to this section, we analyzed the dataset using all
possible failure memories m for the both shared frailty ARAm and ARIm models. For each
analyzed model, we performed the MCMC methods with 50,000 replications with a burn-in of
the first 5,000 and jumps of 10 for each chain, generating a sample of size N = 4,500 for each
parameter. The burn-in of initial values and the jump between elements of the generated chains
are techniques to ensure the stability state and to avoid high autocorrelation in the chain (more
details about these procedures can be seen in Gelman et al. (1995)).

For each parameter, the corresponding BE was obtained as an average of the chain
elements after the burn-in and jump procedures, as indicated in Section 5.1.2. Furthermore, the
DIC value was calculated after each adjustment to select the best class and memory from among
the possible models. Table 8 displays the DIC results for a selection of the analyzed models (note
that although we conducted the analysis for all possible memories, we will omit some of those
results here).

Table 8 – Estimated DIC values for different memories of the ARA and ARI classes.

ARAm ARIm
m = 1 931.76 938.08
m = 10 923.80 927.87
m = 19 919.07 925.66

Based on the values shown in Table 8, we chose the ARA∞ model (corresponding
to the ARA19) due to its lowest DIC score. Now, we need to check the effectiveness of the
proposed MCMC for this model. For each parameter, the trace, density, autocorrelation, and
cumulative quantile plots of the simulated MCMC samples were obtained using the coda
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package, as discussed in Section 5.1.4. These plots are available in Appendix A.1, in Figures
51-62. Analyzing these plots, it is noticed that the chains of all model parameters converged to
the marginal posterior distribution. To improve the analysis and certify the convergence of the
chains, the formal diagnostic criteria presented in Section 5.1.4 were used and the results are
presented in Table 9.

Table 9 – Diagnostic criteria results for the shared frailty ARA∞ model.

Geweke Heidelberger-Welch Gelman-Rubin
(|z-scores|) (p-values) (point estimation)

β 0.242 0.554 1.001
ω 0.448 0.497 1.003
α 0.375 0.333 1.014
θ1 1.665 0.070 1.001
θ2 0.753 0.819 1.004
θ3 1.111 0.590 1.001
θ4 0.978 0.645 1.001
θ5 0.528 0.081 1.010
θ6 1.874 0.583 1.002
θ7 1.656 0.390 1.001
θ8 1.952 0.629 1.001
θ9 0.777 0.739 1.000

Based on the findings presented in Table 9 and recalling what was discussed in Section
5.1.4, we can assert that the sample generated through our MCMC procedures has successfully
converged to the desired posterior distribution and reached a stable state. All test statistics of the
three criteria used were favorable to the conclusion of convergence for all model parameters. Note
that for the Geweke’s criterion the absolute z-score values for all parameters were consistently
below 1.96, which indicates the non-rejection of the chain’s stationarity hypothesis at a 5%
significance level.

Furthermore, the Heidelberger-Welch’s criterion results, available in Table 9, provide
p-values for the stationarity tests of the generated sample. Once again, all parameters pass this
test at a 5% significance level, as all p-values exceed 0.05.

Finally, considering the Gelman-Rubin’s criterion, we generated another sample with
different initial values and the estimated potential scale reduction statistic is reported in Table 9.
Note that this statistic was close to 1 for all parameters, reinforcing the conclusion of stationarity
of the chain. In Figure 63 of Appendix A.1, we present the plots of the Gelman-Rubin test, which
demonstrate that the test statistics remain below 1.2 for almost all iterations of the process.

After concluding that the iterative process has led to the convergence of the sampled
chain to the posterior distribution, we can obtain the BE for each parameter of the model as
an average of the elements of their respective chains. Furthermore, by analyzing this sorted
sample, it is possible to obtain the estimates of the median and the 95% CI for each parameter, as
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discussed in Section 5.1.2. All of these results for data fitting by the shared frailty ARA∞ model
are shown in Table 10.

Table 10 – Estimation results for the hierarchical Bayesian shared frailty ARA∞ model applied to dump
truck data.

µ̂ BE (Posterior Mean) Posterior Median 95% CIB

β̂ 1.613 1.613 (1.248, 1.962)
ω̂ 0.010 0.008 (0.002, 0.028)
α̂ 0.092 0.057 (0.002, 0.425)
θ̂1 0.209 0.173 (0.008, 0.603)
θ̂2 0.455 0.452 (0.124, 0.796)
θ̂3 0.300 0.280 (0.019, 0.708)
θ̂4 0.354 0.336 (0.031, 0.765)
θ̂5 0.416 0.425 (0.059, 0.777)
θ̂6 0.290 0.272 (0.028, 0.664)
θ̂7 0.214 0.183 (0.014, 0.576)
θ̂8 0.375 0.364 (0.084, 0.734)
θ̂9 0.582 0.593 (0.216, 0.879)

Analyzing the estimates presented in Table 10, in a global way, it is possible to verify
that the model identified the existence of unobserved heterogeneity affecting the systems failure
process (α̂ > 0) and repair effect in all systems. The estimates of the PLP parameters β and ω

(from the reparameterization of the originally adopted η parameter) are in line with expectations
and similar to those obtained in Section 4.1.5, where a similar analysis was performed with the
same dataset.

Focusing specifically on the estimates obtained for the parameters θi, i = 1, . . . ,9, we
reinforce that there is evidence of a repair effect for all observed systems. However, note that
the lower bounds of the 95% CIB are in close proximity to zero. An effective way to improve
this interpretation is to analyze the posterior density distribution of these parameters, which
represents a key advantage of the Bayesian approach we have employed. By analyzing Figures
54-62 of Appendix A.1, it is noticeable that some of the parameters θi are more inclined to
approach zero, such as θ1 and θ7. This suggests that, while the presence of a repair effect is
identified, in these systems, repair tends to approach to PR. Conversely, systems #2 and #9
exhibit a different pattern; for these two systems, the posterior density is concentrated at a certain
distance from zero.

This difference in repair effect posterior density distribution suggests a potential classifi-
cation scheme for systems based on their repair characteristics. Systems with higher θ values are
more poorly maintained, and as a consequence have higher failure rates than other units. Insights
of this type can be very well used in policies for preventing failures and preventive maintenance
politics for complex systems. This shows a clear advantage of using the hierarchical Bayesian
approach within the context of multiple repairable systems.
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Finally, with regard to the estimate for the parameter α , the estimate α̂ enables the
calculation of individual frailty for each system, as discussed in Section 4.2.2. The results of
individual frailty are shown in Table 11 and were obtained using equation (2.33) incorporating
the observed failure times of the system and the obtained estimates.

Table 11 – Individual frailty for each dump truck, in the hierarchical Bayesian shared frailty ARA∞ model.

Frailty Estimate Frailty Estimate
ẑ1 0.823 ẑ6 1.022
ẑ2 0.972 ẑ7 0.779
ẑ3 1.005 ẑ8 0.872
ẑ4 1.026 ẑ9 0.900
ẑ5 1.132

It is worth noting that the zi estimates are closely clustered around 1, which is to be
expected, given that the estimate α̂ is not significantly greater than zero. It is important to
point out that the calculation of individual frailties took into account the unique estimation
of the parameters θi for each system i, which makes the failure process of each system even
more specific. In summary, while these systems share their initial characteristics (modeled by a
common PLP), they diverge as the wear and tear of their own functioning and the influence of
external factors take effect within each of them.

In this sense, to perform the graphical goodness-of-fit analysis in this case, we will use
two approaches: the first, analyzing the MCF of the global failure process of all systems, and the
second, also analyzing the individual fit of each system. As discussed before, in a global way, the
graphical procedure consists in comparing the empirical MCF of the observed failure times with
the average of the MCFs estimated by the shared frailty ARA∞ model from each system. The
general goodness-of-fit plot comparison is shown in Figure 35 and it is notable that the curves of
the empirical MCF and the average of the systems’ MCFs exhibit a close alignment.

Finally, when comparing the individual accumulated failures of each system with the
failures predicted by the proposed model, we can employ the same graphical approach used for
the global analysis to verify the quality of the fit. The graphs resulting from this comparison
are shown in Figure 36 and illustrate that, in general, the model effectively captures the failure
times of the systems. However, there are two discrepant cases with systems #5 and #9: in the
former case, the model underestimates the number of failures, while in the latter, it overestimates
them. These outliers can be attributed to the influence of the parameters β and ω on the fit, since
these parameters are shared by all systems, and the optimization process seeks to balance their
contributions. In conclusion, by combining the analysis of the graphs displayed in Figures 35 and
36, we can conclude that the model offers a good fit to the failure times of the harvesters. This
underscores its suitability for analyzing this dataset and, consequently, for deriving meaningful
interpretations and guiding actions based on this analysis.
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Figure 35 – Empirical and estimated MCF average for the sugarcane harvester data under hierarchical
Baysean analysis for the shared frailty ARA∞ model.

Figure 36 – Empirical and estimated MCF for each sugarcane harvester under hierarchical Bayesian
analysis for the shared frailty ARA∞ model.

5.2.2 Dump Truck Data Revisited

The dump truck failure times dataset presented in Section 3.4.2 will be revisited in
this section. As previously done in the preceding section, our objective here is to illustrate
the methodologies of the hierarchical Bayesian approach applied within our proposed shared
frailty ARAm and ARIm models for modeling this dataset. Remember that this dataset consists
of the failure times of 5 trucks, and therefore, the vector of parameters to be estimated is
µµµ = (β ,ω,α,θ1, . . . ,θ5).
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The procedures for this analysis are exactly the same as those performed in Section 5.2.1.
Therefore, we will skip redundant details already discussed and concentrate only on the results
obtained.

To select the optimal model among those observed, the DIC criterion was used again.
Table 12 displays the results of the DIC estimates for some of these models. In this case, the
selected model is again ARA∞, since it has the lowest DIC. Note that here, the ARA∞ class
corresponds to ARA32, since the highest number of failures observed in a single truck was 32
failures.

Table 12 – Estimated DIC values for different memories of the ARA and ARI classes.

ARAm ARIm
m = 1 619.51 669.69

m = 10 611.91 662.28
m = 32 611.46 661.92

To verify the efficiency of the proposed MCMC methods in terms of chain convergence,
we conducted graphical analyses and utilized the formal criteria discussed in Section 5.1.4. The
trace, density, autocorrelation, and cumulative quantile plots related to each parameter of this
example can be found in Figures 64-71 of Appendix A.2, and their initial analysis indicates
the convergence of all chains. To complete this analysis, the results of the formal convergence
criteria are shown in Table 13.

Table 13 – Diagnostic criteria results for the shared frailty ARA∞ model.

Geweke Heidelberger-Welch Gelman-Rubin
(|z-scores|) (p-values) (point estimation)

β 0.240 0.910 1.020
ω 0.531 0.797 1.028
α 0.477 0.203 1.005
θ1 0.922 0.623 1.024
θ2 0.297 0.739 1.019
θ3 1.743 0.242 1.012
θ4 0.244 0.874 1.002
θ5 1.277 0.663 1.022

The results of the estimates presented in Table 13 indicate that the MCMC samples for
all model parameters successfully converged to a stationary state in the target posterior density
distribution. The plots of Gelman-Rubin test for this application are displayed in Figure 72 of
Appendix A.2.

Table 14 shows the estimates obtained from fitting the shared frailty ARA∞ model to the
truck failure data, using the proposed hierarchical Bayesian methodology.

Upon a brief analysis of the results in Table 14, it is possible to conclude about the
existence of unobserved heterogeneity between the systems and the effect of the repair performed
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Table 14 – Estimation results for the hierarchical Bayesian shared frailty ARA∞ model applied to dump
truck data.

µ̂ BE (Posterior Mean) Posterior Median 95% CIB

β̂ 1.683 1.671 (1.300, 2.159)
ω̂ 0.050 0.043 (0.001, 0.128)
α̂ 0.212 0.117 (0.004, 0.936)
θ̂1 0.459 0.466 (0.088, 0.797)
θ̂2 0.564 0.579 (0.236, 0.816)
θ̂3 0.464 0.466 (0.112, 0.805)
θ̂4 0.591 0.605 (0.247, 0.859)
θ̂5 0.447 0.457 (0.080, 0.790)

after each failure on their failure process. Notably, the estimated value α̂ is significantly higher
than the estimate obtained in the example presented in Section 4.2.5 (which involves the same
dataset), suggesting a substantial impact of observing multiple repair effect parameters θi on its
estimation.

Analyzing the estimates of the parameters θi and their posterior density distributions
presented in Figures 67-71 of Appendix A.2, it is possible to consistently conclude that all
systems are subjected to IR. It is noteworthy that neither the 95% CIB of these parameters nor
their posterior density distributions approach the extremes of the interval (0,1), indicating that
these repairs do not tend towards PR or MR. Furthermore, the BEs of each θi allow for the
categorization of the trucks into two groups with highly similar repair effects: the first group
comprises trucks #1, #3 and #5 (better maintained), while the second consists of trucks #2 and
#4 (poorly maintained).

Utilizing the parameter estimates and the observed failure times, the individual frailty
of each truck are calculated and these results are presented in Table 15. Note that the value of
the estimate α̂ is significantly greater than zero, indicating greater variability in the individual
frailties of these systems compared to the previous example. This suggests that certain systems
are more prone to failure in shorter timeframes due to external and not quantifiable factors
affecting them.

Table 15 – Individual frailty for each dump truck, in the hierarchical Bayesian shared frailty ARA∞ model.

Frailty Estimate Frailty Estimate
ẑ1 0.749 ẑ4 0.851
ẑ2 1.060 ẑ5 0.830
ẑ3 0.773

Finally, we examine the MCF graph for all systems and the cumulative number of failures
graphs for each system to assess the model’s goodness-of-fit. The results are presented in Figures
37 and 38, respectively.

In Figure 37, it is evident that the average curve of the MCF estimated by the model is
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very close to the empirical MCF graph, indicating a reasonable overall model fit. Additionally,
individual assessments in Figure 38 show that the model provides good fits for each system, as
the empirical number of failures for each one are very close to the individual curve estimated by
the model.

Figure 37 – Empirical and estimated MCF average for the dump truck data under hierarchical Bayesian
analysis for the shared frailty ARA∞ model.

Figure 38 – Empirical and estimated MCF for each dump truck under hierarchical Bayesian analysis for
the shared frailty ARA∞ model.

5.3 Concluding Remarks of the Chapter
In this chapter we proposed Bayesian inference for estimating parameters of our proposed

shared frailty models considering repairable systems subjected to IR. This approach offers an
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alternative to the frequentist estimation methods discussed in previous chapters and provides new
avenues for interpreting and applying parameter estimates, as they are now treated as random
variables.

Unlike previous chapters, in this chapter we proposed that each system can have its
individual repair effect, which expands the scope of our previous discussions. As this measure
is often not precisely quantified by those overseeing repairs, it is feasible to assume that each
system can have its individual measure, since the effect of the repair on each system can cause
impacts of different magnitudes on their respective failure processes.

We introduced a hierarchical Bayesian framework to relate the multiple repair effect
parameters and employed MCMC sampling methods, including the Gibbs sampler and the
MH algorithm. In addition, criteria for selecting models and verifying the convergence of the
generated chains were presented. In this sense, we provided a comprehensive summary of all the
techniques and theories used to implement our Bayesian approach.

Finally, we revisited the two datasets previously presented in this work to illustrate our
proposed methodologies. In both applications, our Bayesian estimation approach proves its
adequacy. The chains generated for each parameter converge to the desired posterior distribution,
and the point estimates obtained yield a good fit for each dataset.

In conclusion, the suggested Bayesian inferential methods are suitable for our proposed
shared frailty models. These methods offer more accurate interpretations of individual system
failure process, including the individual repair effects and individual frailty estimation, while also
identifying common characteristics shared across the entire system set. This kind of information
can be extremely relevant when applied to real situations in industries and sectors that operate
complex machines and need to manage maintenance policies for their equipment.
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CHAPTER

6
UNOBSERVED HETEROGENEITY FOR

MULTIPLE REPAIRABLE SYSTEMS
SUBJECTED TO COMPETING RISKS UNDER

IMPERFECT REPAIR

In this chapter we introduce competing risks in the models studied in the previous
chapters. More specifically, the idea is to take into account the fact that a repairable system can
fail due to different causes by adding the possibility that repairs related to these causes may have
distinct effects on the system’s lifetime. Additionally, all these processes of failures and repairs
are subjected to potential influences from unobservable effects. In this sense, our objective is to
propose shared frailty models for multiple repairable systems subjected to competing risks and
whose repairs performed after each failure are considered IR. These models are generalizations of
the models presented in the previous chapters in the sense of extending the previously discussed
models to a context of competing risks. In addition, they are also generalizations of other works
in the literature that present competing risks for systems under IR (such as Lindqvist (2006))
or frailty models for systems under competing risks but considering only MR after each failure
(such as Almeida et al. (2020) and Somboonsavatdee and Sen (2015b)).

These models stand out from others in the existing literature due to their capacity to
facilitate a comprehensive analysis of various inherent characteristics within a system’s failure
process. The more answers about a dataset a model is able to provide, the more insights and
applicability it can provide to stakeholders about the dataset in question. In the context of
repairable systems, collecting the most information about a dataset of times and causes of failure
holds significant relevance. It enables a profound comprehension of the failure processes for
each cause, subsequently facilitating the formulation of maintenance and scrapping strategies for
systems.
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under Imperfect Repair

The assumptions for these new models are based on the same ones previously presented.
In this case, each failure cause r corresponds to a distinct failure process, characterized by an
initial failure intensity governed by a PLP whose parameters are (βr,ηr). The repairs after the
failure occurrence are considered IR with repair effect denoted by θr. Once again, the two classes
ARAm and ARIm proposed by Doyen and Gaudoin (2004) will be considered as candidates
for modeling failure processes with IR. Furthermore, we introduce a random variable Zi with
Gamma

( 1
α
, 1

α

)
distribution associated with the system i and shared by its times and causes of

failure, which is able to capture and quantify unobservable effects that act on the system.

This chapter is organized as follows. In Section 6.1, we present the models and all their
theoretical aspects through its subsections. In Subsection 6.1.1, we define the failure intensity
functions of the models while considering ARA and ARI as potential approaches for an IR model.
In Subsection 6.1.2, we propose inferential procedures and suggest the maximum likelihood
estimation as a parameter estimation method. In Subsection 6.1.3, we present procedures to
obtaining the individual frailties for each system, as well as the formulation of their respective
reliability prediction functions. In Section 6.2, we proceed with a simulation study to verify the
asymptotic properties of the proposed models’ MLEs. Finally, in Section 6.3, we apply two real
data tests to exemplify the discussed theoretical procedures.

6.1 Unobserved Heterogeneity in Competing Risks under
IR Models

In this section, we present our proposed shared frailty models for multiple repairable
systems subjected to competing risks and IR models, and the theory involved in their definition
and parameter estimation. As discussed in Section 2.4, we assume that the competing risks
are independent and each of them defines a failure process with its own intensity function. In
this way, each competing risk r will be associated with an repair effect θr that will act in the
proportional reduction of the virtual age (in the case of the ARA class) or the failure intensity (in
the case of the ARI class) of the cause-specific failure process. Furthermore, when defining a
parametric form for each cause-specific failure intensity function, we will also have a parameter
vector associated with each one of them. On the other hand, given the shared aspect of the
assumed frailty model, the parameter related to the distribution of frailty variables will be the
only parameter shared by all cause-specific failures. These features will be discussed in detail
below.

6.1.1 Model Formulation

Suppose that k independent repairable systems are observed, each one for a time t∗i ,
for k = 1,2, . . . and i = 1, . . . ,k. Each of these systems can fail for q distinct and independent
causes and each system failure is caused by a single cause r, with r = 1, . . . ,q. In this way, we
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define the data
{
(ti, j,δi, j), i = 1, . . . ,k; j = 1, . . . ,ni

}
of the pairs of times and causes of each

failure, where ti, j is the j-th failure time of the i-th system, δi, j is the corresponding failure
cause and ni is the number of failures of system i. Furthermore, for every pair (i, j), δi, j = r for
some r = 1, . . . ,q. As discussed in Section 2.4, for each specific cause r we can define the data{
(ti, j,δi, j = r), i = 1, . . . ,k; j = 1, . . . ,ni,r

}
, where, for all i, the sequences correspond to counting

processes (here, NHPP) fully characterized by an intensity function λr(t), called r cause-specific
intensity function.

Continuing with the assumptions, assume that there may be unobservable factors that
impact the failure times of the systems, but that can interfere in a specific way in the failure
process of each system. As discussed in Section 2.3, these factors can be modeled via frailty
models by inserting a frailty variable Z associated with systems or failure times. In this case, we
will assume that the effects act specifically on each system and are shared by their respective
failure times, that is, we are assuming that the unobserved heterogeneity is shared by the failure
times of each system. Thus, for each system i, we associate a shared frailty variable Zi that will
be multiplied by the baseline intensity function of the system, as discussed in Section 2.3.2. But
note that now systems are subjected to q causes of failure and per the previous discussion, there
are q related intensity functions for each system. Mathematically summarizing this scenario that
aggregates the ideas of competing risks models with frailty models, we can define the intensity
function of the system i conditional on its associated frailty variable Zi, and considering its q

causes of failure, as:

λ f (ti, j,δi, j | zi) = ziλ (ti, j,δi, j) = zi

q

∑
r=1

λ r(ti, j,δi, j = r). (6.1)

In equation (6.1), it is explicit that the frailty variable Zi affects all q intensity functions
related to failure causes. In other words, we can say that the causes of failure also share the same
frailty, or even that they share the same unobserved heterogeneity by system.

Finally, suppose that for each failure cause r, after an occurrence of a related failure, the
repair performed is an IR. So the functions λ0r in (6.1) can still be rewritten by the intensity
functions of the ARAm and ARIm classes of IR defined in (2.13) and (2.16), respectively. But
note that neither the repair effect nor the assumed failure memory for each cause-specific need
to be the same for different causes, which naturally expands the number of parameters in these
models and also the number of possible models as a consequence of combining the failure
memories for the causes. In this case, we will denote by θr the repair effect related to the specific
cause r and by mr the failure memory assumed for this cause, with r = 1, . . . ,q. Making explicit
the intensity functions for this model of shared frailty and competing risks for the ARAm and
ARIm classes of IR, we can rewrite the expression (6.1), respectively, as:

λ f .ARAm(ti, j,δi, j | zi) = zi

q

∑
r=1

λ0,r

(
ti, j − (1−θr)

min(mr−1, j−2)

∑
p=0

θ
p
r ti, j−1−p,δi, j = r

)
(6.2)
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and

λ f .ARIm(ti, j,δi, j | zi) = zi

q

∑
r=1

[
λ0,r(ti, j,r)− (1−θr)

min(mr−1, j−2)

∑
p=0

θ
p
r λ0,r(ti, j−1−p,r)

]
, (6.3)

where λ0,r(t) is the r cause-specific initial intensity function and j = 1, . . . ,ni,r, where ni,r is the
number of failures of system i due to cause r.

As in the models presented in the previous chapters, here we also assume that the initial
intensity function λ0,r(t) follows a PLP defined by equation (2.3) and, therefore, we will deal
with a completely parametric model. But in this case, due to the existence of q intensity functions,
there are also q initial intensity functions with different parameters related to each of the q failure
causes. We will denote by βr and ηr the parameters of the r cause-specific PLP, for r = 1, . . . ,q.
In this way, we can rewrite the expressions (6.2) and (6.3) considering now the PLP as the initial
intensity, as follows:

λ f .ARAm(ti, j,δi, j | zi) = zi

q

∑
r=1

βr

η
βr
r

(
ti, jr − (1−θr)

min(mr−1, j−2)

∑
p=0

θ
p
r ti,( j−1−p)r

)βr−1

(6.4)

and

λ f .ARIm(ti, j,δi, j | zi) = zi

q

∑
r=1

βr

η
βr
r

[
tβr−1
i, jr − (1−θr)

min(mr−1, j−2)

∑
p=0

θ
p
r tβr−1

i,( j−1−p)r

]
, (6.5)

and here we use the notation ti, jr to refer to the observed failure times of system i resulting from
cause r so that jr = 1, . . . ,ni,r, or even, mathematically expressed, λ (ti, j,δi, j) = ti, jr if δi, j = r or
0 otherwise.

Note that in these models, each specific cause r is associated with a vector of parameters
µµµr = (βr,ηr,θr) referring to the PLP and IR failure effect referring to that cause. As previously
stated, we are again assuming that the frailty variables have Gamma(1/α,1/α) distribution, so
that parameter α is shared across all systems and failure causes. Thus, globally these models
are defined by 3q+1 parameters, with the parameter vector given by µµµ = (α,βββ ,ηηη ,θθθ), where
α is the variance of the assumed frailty variable and the other vectors are βββ = (β1, . . . ,βr),
ηηη = (η1, . . . ,ηr) and θθθ = (θ1, . . . ,θr), where (βr,ηr,θr) refers to the r cause-specific parameters,
with r = 1, . . . ,q.

6.1.2 Inference

Let
{
(ti, j,δi, j), i = 1, . . . ,k; j = 1, . . . ,ni

}
be the observed data of failure times and their

respective causes for k independent repairable systems and let t∗i be the i-th system truncation time
of observation. In order to perform inference and obtain estimates for the vector of parameters
µµµ = (α,βββ ,ηηη ,θθθ) for the shared frailty models under competing risks and IR defined by the
intensity functions (6.4) and (6.5) in a classical approach, we will construct the respective
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likelihood functions following all the assumptions previously discussed in Section 6.1.1. To
carry out this construction more generally and without repetition, let us write λ IR(t) and ΛIR(t)

to refer to the intensity and cumulative intensity functions relative to any of the ARAm and
ARIm classes of IR. After defining the general likelihood function, we will separately write the
functions referring to each class.

As discussed in Section 2.2.3, the general likelihood function for the failure times of
a system subjected to IR after each failure (or, equivalently for its failure process {N(t j), j =

1, . . . ,n}) is defined by

LIR(µµµ | t j) =
n

∏
j=1

[
λ IR
(
t j
)

e−[ΛIR(t j)−ΛIR(t j−1)]
]
e−[ΛIR(t∗)−ΛIR(tn)],

so that is going to be the structure of our likelihood function.

Fixing a system i subjected to q failure causes and the action of the frailty variable Zi, the
likelihood contribution of the r-th cause-specific conditioned to zi in the IR structure is given by

Li,r =

( ni,r

∏
j=1

ziλ IRr
(
ti, j,r

)
e−zi[ΛIRr(ti, j,r)−ΛIRr(ti, j−1,r)]

)
e−zi

[
ΛIRr(t∗i ,r)−ΛIRr

(
ti,ni,r ,r

)]
,

where Li,r = Li,r(µµµ | ti, j,δi, j = r,zi), λ IRr(t,r) and ΛIRr(t,r) indicate the intensity functions of a
failure process related to cause-specific r and subjected to IR (with effect θr) after each failure,
and ni,r is the number of failures of system i due to cause r.

As the failure causes are assumed to be independent, the likelihood contribution of a
specific system i conditional to zi is given by

Li =
q

∏
r=1

[( ni,r

∏
j=1

ziλ IRr
(
ti, j,r

)
e−zi[ΛIRr(ti, j,r)−ΛIRr(ti, j−1,r)]

)
e−zi

[
ΛIRr(t∗i ,r)−ΛIRr

(
ti,ni,r ,r

)]]

=
q

∏
r=1

( ni,r

∏
j=1

λ IRr
(
ti, j,r

))
zni,r

i e−zi ∑
ni,r
j=1[ΛIRr(ti, j,r)−ΛIRr(ti, j−1,r)]e−zi

[
ΛIRr(t∗i ,r)−ΛIRr

(
ti,ni,r ,r

)]

=

( q

∏
r=1

ni,r

∏
j=1

λ IRr
(
ti, j,r

))
zni

i e−zi ∑
q
r=1

[
∑

ni,r
j=1[ΛIRr(ti, j,r)−ΛIRr(ti, j−1,r)]+

[
ΛIRr(t∗i ,r)−ΛIRr

(
ti,ni,r ,r

)]]
,

where Li = Li(µµµ | ti, j,δi, j,zi) and ni is the total number of failures of system i.

Given that the k systems are independent, the conditional likelihood function on the
frailty zi is given by

L(µµµ | zi) =
k

∏
i=1

( q

∏
r=1

ni,r

∏
j=1

λ IRr
(
ti, j,r

))
zni

i e−ziW IR ,

where

W IR =
q

∑
r=1

[
ni,r

∑
j=1

[
ΛIRr

(
ti, j,r

)
−ΛIRr

(
ti, j−1,r

)]
+
[
ΛIRr (t

∗
i ,r)−ΛIRr

(
ti,ni,r ,r

)]]
.
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To perform the estimation of the model parameters it is necessary to obtain the non-
conditional likelihood function to the frailty variable zi. To do this, as done in previous chapters,
we just calculate the marginal likelihood function with respect to zi:

L(µµµ) =
k

∏
i=1

( q

∏
r=1

ni,r

∏
j=1

λ IRr
(
ti, j,r

))∫ ∞

0
zni

i e−ziW fZi(zi)dzi. (6.6)

Now, using the fact that the random variables Zi are IID with Gamma(1/α,1/α) distri-
bution, for i = 1, . . . ,k, and following the same ideas presented in Section 2.3.3, the likelihood
function (6.6) can be rewritten as:

L(µµµ) =
k

∏
i=1

αniΓ
(
ni +

1
α

)
∏

q
r=1 ∏

ni,r
j=1 λ IRr

(
ti, j,r

)
Γ
( 1

α

)
(1+αW )ni+

1
α

,

and consequently, the unconditional log-likelihood function is given by

l(µµµ) =
k

∑
i=1

[ q

∑
r=1

ni,r

∑
j=1

logλ IRr
(
ti, j,r

)
+ni log(α)+ logΓ

(
ni +

1
α

)
− logΓ

(
1
α

)
−
(

ni +
1
α

)
log(1+αW IR)

]
.

(6.7)

Finally, we use the expressions (2.13) and (2.14) that define the intensity and cumulative
intensity functions of the ARA class to replace the functions λ IRr(t) and ΛIRr(t) in equation
(6.7), respectively. Furthermore, we also use the assumption that the initial intensity follows a
PLP, whose intensity and cumulative intensity functions are given by (2.3) and (2.4). Note that
here we write ARA instead of ARAm since the failure memories are related to each of the failure
causes and are not necessarily all equal to a single value m. In this way, the explicit log-likelihood
function for the shared frailty model for competing risks under ARA repair effects and initial
PLP is given by

l f .ARA(µµµ) = N log(α)+
k

∑
i=1

logΓ

(
ni +

1
α

)
+

k

∑
i=1

q

∑
r=1

ni,r [log(βr)−βr log(ηr)]

+
k

∑
i=1

q

∑
r=1

ni,r

∑
j=1

(βr −1) log
(
ti, jr − (1−θr)s(ti,( j−1)r)

)
−

k

∑
i=1

logΓ

(
1
α

)

−
k

∑
i=1

(
ni +

1
α

)
log(1+αW ARA),

(6.8)

with

W ARA =
q

∑
r=1

1

η
βr
r

[ ni,r

∑
j=1

[(
ti, jr − (1−θr)s(ti,( j−1)r)

)βr −
(
ti,( j−1)r − (1−θr)s(ti,( j−1)r)

)βr
]

+
[(

ti∗ − (1−θr)s(ti,ni,r)
)βr −

(
ti,ni,r − (1−θr)s(ti,ni,r)

)βr
]]

,
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where N = ∑
k
i=1 ni,r is the total number of failures observed across all systems, jr denotes the

j-th failure occurred by cause r.

In a completely analogous way to ARA class, now using the intensity and cumulative
intensity functions (2.16) and (2.17) of the ARI class, we obtain the explicit log-likelihood
function for the shared frailty model for competing risks under ARI repair effects and initial PLP
as:

l f .ARI(µµµ) = N log(α)+
k

∑
i=1

logΓ

(
ni +

1
α

)
+

k

∑
i=1

q

∑
r=1

ni,r [log(βr)−βr log(ηr)]

+
k

∑
i=1

q

∑
r=1

ni,r

∑
j=1

log
[

tβr−1
i, jr − (1−θr)s˜(ti,( j−1)r)

]
−

k

∑
i=1

logΓ

(
1
α

)

−
k

∑
i=1

(
ni +

1
α

)
log(1+αW ARI),

(6.9)

where

W ARI =
q

∑
r=1

1

η
βr
r

[ ni,r

∑
j=1

[
tβr
i, jr − tβr

i,( j−1)r
−βr(ti, jr − ti,( j−1)r)(1−θr)s˜(ti,( j−1)r)

]
+
[
tβr
i∗ − tβr

i,ni,r
−βr(t∗i − ti,ni,r)(1−θr)s(ti,ni,r)

]]
.

As in the other chapters, the equations (6.8) and (6.9) were constructed for a time
truncation scenario, but can be adapted for the failure truncation scenario again by substituting
the truncation time t∗i for the time of the last observed failure ti,ni,r for all systems i = 1, . . . ,k
and failure causes r = 1, . . . ,q.

And once again, the estimate µ̂µµ =(α̂, β̂ββ , η̂ηη , θ̂θθ) of the vector of parameters µµµ =(α,βββ ,ηηη ,θθθ)

is obtained by maximizing the the equations (6.8) and (6.9) through numerical methods and with
the aid of computational tools, since there is no analytical solution for this optimization problem.
Following the analogies to the previous models, here we also suggest the construction of the CI
according to the asymptotic theory of the Normal distribution.

6.1.3 Reliability Prediction

In this section we proceed with obtaining the reliability prediction functions for the two
models proposed in Section 6.1.1. The reliability prediction is performed after estimating the
parameters according to the inferential methods discussed in Section 6.1.2.

As discussed in Section 4.2.3, the first step in predicting reliability in shared frailty
models is estimating the frailty terms for each system. Remember that we are assuming that the
frailty variables Zi are IID with Gamma(1/α,1/α) distribution and, therefore, an estimate for
each expected value ẑi can be obtained. For this, we use the ideas in Nielsen et al. (1992) to
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adapt the equation (2.33), which can be rewritten as:

Ẑi =

1/α̂ +
q

∑
r=1

ni,r

1/α̂ +
q

∑
r=1

ni,r

∑
j=1

(
ΛIRr(ti, jr ,r)−ΛIRr(ti,( j−1)r ,r)

) , (6.10)

where ni,r is the number of observed failures in the i-th system due to the cause-specific r, for
any system i = 1, . . . ,k.

With the estimated ẑi and knowing the history Hti,ni
of failure processes and their

respective causes for any system i with ni observed failures, it is possible to estimate the
reliability prediction of the system from a last observed failure at time ti,ni . The general reliability
prediction function used in this case is the same given in (4.23), but we can rewrite it with
adaptations for our new context using the intensity function with competing risks under shared
frailty (6.1), as follows:

R(t) = P[Ti,ni+1 − ti,ni > t | Hti,ni
] = exp

{
−ẑi

∫ ti,ni+t

ti,ni

q

∑
r=1

λ IRr(u,r)du

}
, (6.11)

where λ IRr refers to the intensity function of one of the two IR classes ARA or ARI related to
the failure cause r.

Some interesting discussions need to be established in this context where we take
competing risks. Note that in equation (6.11) we purposely denote the last observed failure time
by ti,ni , referring to the last failure time of the system globally, taking into account all possible
causes of failure and not any specific one. This means that, regardless of what was the reason
that caused the last system failure, all risks continue to compete to cause the next failure and,
therefore, all interfere with the reliability prediction. This is obvious from the very definition of
the intensity function of a system under competing risks by equation (6.1) as the sum of the risks
referring to each specific one.

In our context of IR, after the occurrence of a failure due to a certain cause r and its repair,
the reduction of intensity or virtual age occurs only in r cause-specific intensity function. That is,
only the speed of increase in the r cause-specific accumulated intensity decreases, while that of
the others causes continues to increase. This means that after the failure and the repair in time
ti,ni , there is already an accumulation of failure intensity from the accumulated intensities of other
causes that directly impacts the global system reliability. This information is mathematically
explicit in equations (6.12) and (6.12), where it is possible to verify that, when resorting to the r

cause-specific failure history, we look at the times ti,ni,r referring to the last failure caused by the
specific cause r.

Explicitly rewriting the reliability prediction function (6.11) for competing risks model
under shared frailty with initial intensity PLP and ARA class of IR, we obtain the following
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function:

R(t) = exp

{
−ẑi

∫ ti,ni+t

ti,ni

q

∑
r=1

λ ARA,r(u)du

}

= exp

{
−ẑi

q

∑
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∫ ti,ni+t

ti,ni

βr

η
βr
r

(
u− (1−θr)s(ti,ni,r)

)βr−1 du

}
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{
−ẑi

q

∑
r=1

1

η
βr
r

[(
ti,ni + t − (1−θr)s(ti,ni,r)

)βr −
(
ti,ni − (1−θr)s(ti,ni,r)

)βr
]}

.

(6.12)

Using the same idea for the competing risks model under shared frailty with initial
intensity PLP and ARI class of IR, we obtain the following function:

R(t) = exp

{
−ẑi

∫ ti,ni+t

ti,ni

q

∑
r=1

λ ARI,r(u)du

}

= exp

{
−ẑi

q

∑
r=1

∫ ti,ni+t

ti,ni

1

η
βr
r

[
uβr−1 − (1−θr)s˜(ti,ni,r)

]
du

}

= exp

{
−ẑi

q

∑
r=1

1

η
βr
r

[
(ti,ni + t)βr − (ti,ni)

βr − tβr(1−θr)s˜(ti,ni,r)

]}
.

(6.13)

Finally, the MTTF at time Ti,ni = ti,ni is given by

MTTFtn =
∫

∞

0
R(t)dt, (6.14)

where R(t) is given by (6.12) or (6.13) for calculation referred to ARA or ARI class, respectively.
Note that expression (6.14) does not establish any specific cause of failure, which indicates that
all causes are considered in this calculation.

6.2 Simulation Study

In this section, we carry out an extensive Monte Carlo simulation study to validate the
properties of the MLEs within the proposed models. Our objective remains centered on assessing
the efficiency and consistency performance of these estimators. The procedures conducted
in this section are derived from previous simulation studies, particularly of the Section 4.2.4.
Consequently, redundant details will be omitted. The key evaluation metrics for this analysis
will again include the MRE, the RMSE and CP of the 95% CI, all of which have been previously
defined.

The specificity of the failure time sample generation process in this case is that now
we generate failure times referring to each specified cause of failure, departing from the earlier
approach of considering the entire system. However, since the failure causes are assumed to
be independent, it suffices to generate a sample of time failures corresponding to each cause.
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Subsequently, these subsamples compose the failure sample per system, in line with the method
outlined by Somboonsavatdee and Sen (2015a).

Let us consider the scenario where the simulated systems are susceptible to failure due
to q distinct causes. For each system, q independent failure processes will be generated, each
following the procedures elucidated in Sections 4.2.4.1 and 4.2.4.2 for the ARA and ARI classes,
respectively. The ensuing algorithms outline the process of generating samples of failure times
within the framework of competing risks.
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For each scenario of parameters, truncation time and number of systems, 100 Monte
Carlo samples were generated. The R software (R Core Team, 2021) was used for the generation
process and all parameter and metric estimations. For simplicity, for both ARA and ARI classes,
only two failure causes were considered for this study, denoted by causes A and B. The fixed
nominal values for the parameters are:

• For cause A, fixed values: βA = 1.5, ηA = 15 and θA = 0.3;

• For cause B, fixed values: βB = 1.2, ηB −20 and θB = 0.7;

• For the frailty variables variance, three values: α = (0.2,1,2);

• For the truncation time, two values for all systems: t∗ = (200,500);

• For the memories related to causes A e B, three combinations: mA = mB = (1,5,15);

• For the number of systems, five increasing values: k = (5,10,15,20,25).

The results of the MRE, RMSE and CP estimates for the proposed competing risks
under shared frailty ARA model are summarized in Figures 39, 40 and 41, while those for the
respective ARI model are summarized in Figures 42, 43 and 44.

Figure 39 – Simulation results for the competing risks under shared frailty ARA model in scenarios with
memory mA = mB = 1.

Note that the increase in the sample is due to the increase in the number of systems.
As the number of systems increases, we expect the overall number of observed failures and
their respective causes also increase. With the increasing of sample sizes, it is expected the
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Figure 40 – Simulation results for the competing risks under shared frailty ARA model in scenarios with
memory mA = mB = 5.

Figure 41 – Simulation results for the competing risks under shared frailty ARA model in scenarios with
memory mA = mB = 15.

convergence of the MRE and RMSE criteria values to 1 and 0, respectively. Additionally, we
expect the CP values to closely approach the nominal value of 0.95. As can be seen in Figures
39-44, the behavior of each criterion’s measures occurs as expected for the both proposed ARA
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Figure 42 – Simulation results for the competing risks under shared frailty ARI model in scenarios with
memory mA = mB = 1.

Figure 43 – Simulation results for the competing risks under shared frailty ARI model in scenarios with
memory mA = mB = 5.

and ARI models.

In scenarios with higher values for the parameter α the convergence is slightly slower,
particularly for the CP measure. This stems from the heightened variability of Gamma frailty,
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Figure 44 – Simulation results for the competing risks under shared frailty ARI model in scenarios with
memory mA = mB = 15.

therefore it is an expected behavior. The graphs highlight the prominence of RMSE values for
the parameter η in comparison to others, a result consistent with their high nominal magnitudes.

Comparing the performance of estimated measures in relation to the assumed failure
memory for each failure cause, we have observed that scenarios with larger memories yield
better results, since their estimates closely aligning with the expected values and displaying a
quicker convergence. This fact is explained by the increase in information regarding the history
of failures added to the modeling, both in the process of generating samples and estimating the
parameters.

In conclusion, the simulation studies provide compelling evidence for the asymptotic
properties of the MLEs outlined in the proposed models. As a result, these models can be reliably
employed to derive estimates for the failure processes proposed in this work.

6.3 Real Data Applications

To illustrate the proposed models, we consider two sets of real data with failure times
of multiple repairable systems caused by different causes. The first set refers to failure times of
locomotive components of a Brazilian logistics company and the second, already known in the
literature, deals with the failure history of a fleet of cars.

The competing risk models under shared frailty and IR discussed in the previous sections
were used to model the both datasets, considering the PLP as initial intensity, the ARA and
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ARI classes as IR models and all their possible failure memories for each cause-specific. The
objective here is to estimate the model parameters, estimate the individual frailty of each system
and its reliability predictions. As in the other applications previously discussed in this work, the
AIC and BIC criteria were used to select the best models for each application.

The assumptions about the dataset are the same as those discussed in the previous
sections, namely: the failure causes are independent, each failure occurs for a specific cause and
each cause defines a counting process for its related failures. Details of each dataset and the
estimation procedures will be presented and discussed in the follow sections.

6.3.1 Locomotive Components Data

In this section, we analyze a dataset of locomotive components from a Brazilian logistics
company. Specifically, this dataset contains failure times and causes of message boards panels
installed on the locomotives, which are susceptible to failures stemming from various factors.
When these panels fail, the locomotive’s operations must come to a halt until the component is
either repaired or replaced. In this sense, it is crucial to establish reasonable reliability predictions
based on the panels’ failure history in order to minimize the financial losses incurred as a result
of these operational disruptions.

The failure times were collected between 2014 and 2021. Subsequent to a failure, the
affected item is sent to the restoration laboratory where proficient technicians document the
information about the failure. These failure causes have been categorized into two groups:
“Material” (cause A) and “Unidentified” (cause B), where the second cause encompasses all
non-material or non-identifiable causes. Information from four different panels with the same
production and usage specifications were considered. Throughout the observation period, these
items failed between 9 and 13 times. The graph depicted in Figure 45 illustrates the failure times
(in days) leading to failures for each of these components, where each line corresponds to an
individual component and each point represents a specific failure instance, including its cause as
indicated by the color and shape of the point.

Figure 45 – Failure times, in days, for each locomotive component by cause.
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We employed the log-likelihood functions (6.8) and (6.9) corresponding to the ARA and
ARI classes, respectively, to derive parameter estimates for each model. These models were
associated with different failure memory settings for each cause. The parameters to be estimated
are the α of the Gamma(1/α,1/α) frailty variance assumed in the model, as well as (βA,βB)

and (ηA,ηB) of the PLPs for each of the two failure causes, and (θA,θB) referring to the repair
effect linked to each cause. As discussed in Section 6.1.2, the approach involved maximizing
the log-likelihood functions (6.8) and (6.9) through computational methods to obtain the desired
parameter estimates.

The aforementioned process was conducted across all memory combinations, considering
all potential memories for each cause. For cause A, the highest number of observed failures
within a single system was 3, whereas for cause B, this number was 12. Consequently, the
possible memories to establish the model that defines each process of failures referring to these
two causes are mA = 1, . . . ,3 and mB = 1, . . . ,12, resulting in a total of mA ×mB = 36 possible
combinations between these memory choices.

Out of the 36 possible models, each designed to fit the database, any of the criteria such as
AIC, BIC, or the maximum estimated value of the log-likelihood could be employed to identify
the optimal model. Our findings led us to determinate that the best parameter combination
(evidenced by the lowest AIC and BIC values, along with the highest estimated value for the
log-likelihood) for both ARA and ARI classes corresponds to mA = 1 and mB = 12. As discussed
in the application in Section 4.2.5, we also assert mB = ∞, as this represents the maximum
feasible memory for cause B. The parameters estimates for each best model in the both classes
ARA and ARI are presented in Table 16, as well as its respective criteria estimates.

Table 16 – Estimation results for competing risks under frailty ARA and ARI models applied to locomotive
components data.

ARA ARI
α̂ (95% CIα̂ ) 0.266 (0.092, 0.764) 0.088 (0.043, 0.179)

β̂A (95% CI
β̂A

) 10.01 (4.84, 20.69) 5.47 (3.15, 9.49)
η̂A (95% CIη̂A) 3388.7 (3012.6, 3811.8) 3569.8 (2934.2, 4343.1)
θ̂A (95% CI

θ̂A
) 0.72 (0.55, 0.84) 0.19 (0.06, 0.45)

β̂B (95% CI
β̂B

) 3.62 (2.22, 5.91) 2.59 (1.91, 3.51)
η̂B (95% CIη̂B) 1537.0 (1200.0, 1968.4) 1146.2 (1057.6, 1977.6)
θ̂B (95% CI

θ̂B
) 0.87 (0.79, 0.92) 0.83 (0.49, 0.96)

l̂ -311.614 -314.359
AIC 637.228 642.719
BIC 649.874 655.365

By examining Table 16 and applying the same selection criteria as mentioned earlier, we
can decide for the optimal model for this dataset, choosing between the ARA and ARI models
that exhibited superior performance in their respective analyses. Note that all metrics indicate
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the ARA model outperforming the ARI model. Consequently, the ARA model is selected as our
final choice for this dataset.

The interpretations on the parameter estimates are similar to those performed in the
applications outlined in Sections 4.1.5 and 4.2.5, but, in this case, the evaluations are specific to
each failure cause-specific. For both causes A and B, the estimates β̂A and β̂B indicate that the
system’s condition deteriorates progressively over time. The estimates θ̂A and θ̂B quantify the
impact of repair interventions, and their CIs indicate that, for neither of the causes are repairs
close to MR or PR scenarios. Finally, the estimate for the parameter α (α̂ = 0.266) indicates the
existence of unobserved heterogeneity exerting influence on the systems.

In this illustrative case, the estimated variance of the frailty variables is not so close to
zero as seen in the examples presented earlier. This discrepancy suggests a notable disparity
in the role of unobservable effects on the failure processes of each system. This indicates a
significant difference in the action of unobservable effects on the failure processes of each system.
This distinction becomes evident when examining Table 17. This table showcases the individual
frailties of the four studied systems, derived from the parameter estimates and the historical
failure time data linked to each cause, incorporated into equation (6.10). It is evident that systems
#3 and #4 are more fragile compared to the other two systems. We can say that these particular
systems are significantly impacted by factors that are not fully captured by the model.

Table 17 – Individual frailty for each locomotive component, in the competing risks under shared frailty
ARA model.

Frailty Estimate Frailty Estimate
ẑ1 0.571 ẑ3 1.159
ẑ2 0.704 ẑ4 1.683

With all the model estimates in hand, we can once again employ graphical techniques to
assess goodness-of-fit, which involves comparing the empirical MCF against the MCF estimated
by the proposed models. In this instance, we consider both the ARA and ARI models, while taking
into account the memories mA = 1 and mB = 12 associated with causes A and B, respectively.
The justification for constructing and analyzing these graphs is the same as discussed in previous
chapters. The graphical outcomes are shown in Figure 46. Note that both models present a
reasonable fit on average, with a slight advantage in favor of the ARA model, as expected given
its superior performance as indicated by the selection criteria.

Once again, utilizing the parameter estimates, it is possible to project the system’s
reliability starting from a specific time or from the last observed failure. In this scenario, equations
(6.12) and (6.13) are employed for the ARA and ARI models, respectively. The objective is to
calculate the system reliability at a time t after the time tn of the last observed failure. Figure
47 depicts the reliability prediction curves for the four systems, calculated from their respective
last observed failure times. These graphs indicate that the probability of any one of these four
systems not failing in 500 days is practically zero.
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Figure 46 – Empirical and estimated MCFs for the locomotive components times, in the competing risks
under shared frailty ARA model.

Figure 47 also shows the MTTF values attributed to the most fitting ARA model, derived
using equation (6.14). These estimated mean times until the next failure incorporate the influences
of both cause-specifics A and B. Consequently, in this instance, it is not possible to interpret these
values by correlating them directly to the estimates of the parameters ηA and ηB, as was done
in Section 4.2.5. Nevertheless, this information is relevant in itself, as it helps in the protective
maintenance policies of the logistics company responsible for the studied systems.

Figure 47 – Estimated reliability functions and MTTFs at last failure time tn, for each locomotive compo-
nent in the dataset, under the fitted competing risks under shared frailty ARA model.
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6.3.2 Automobile Fleet Data

In this section, we analyze a dataset comprising instances of car failures, introduced by
Somboonsavatdee and Sen (2015a). This dataset encompasses recurrent failure information from
a fleet of 172 vehicles, including general information about the cars (such as make and model),
the mileage at which each failure occurred (relative to “failure time”), and the corresponding
labor code linked to each failure event. These data were extracted from a car warranty claim
database, so it can be concluded that the profound understanding of the car failure process
derived from this dataset holds reaching implications, particularly for insurance companies.

According to Somboonsavatdee and Sen (2015a), these data were observed in a time-
truncation scenario, in this case by a mileage of 3,000 miles. Additionally, the failure causes
have been categorized into three distinct groups based on the rate of failures, denoted as A, B,
and C, each attributed to a specific cause for the failure. The authors also conducted tests to
confirm that the initial failure processes related to each cause-specific can be modeled by a PLP.

Figure 48 illustrates the failure mileage (measured in miles) for each car, organized
row-wise. Each individual point on the graph corresponds to a specific failure mileage, with
differentiation based on the underlying cause of the failure. For each of the causes A, B, and C,
the maximum number of failures per car was 2, 4, and 6, respectively.

Figure 48 – Failure mileage for each car from warranty claims data, by cause.

Somboonsavatdee and Sen (2015a) used this database to illustrate their frailty models
for systems operating under competing risks, along with our proposed model. However, a key
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distinction lies in the fact that these authors only considered MR after each failure. Our models,
in contrast, extend this investigation to encompass the realm of IR following each failure event,
being also able to quantify the effects introduced by the carried out repairs.

The procedures in this example are exactly those outlined in Section 6.3.2 illustration.
However, a distinguishing factor is that our systems now involve three distinct failure causes, thus
giving rise to the definition of three distinct failure counting processes with particular parameters.

For the estimation of parameters in the proposed competing risk models under shared
frailty ARA and ARI models, equations (6.8) and (6.9) were employed, respectively. The
estimation was conduced across all the possible memory combinations for both classes. Based on
the results obtained, our analysis in this example will focus on the ARA models. This decision
stems from the parameter estimates, especially for the β parameter, which does not indicate that
the systems are deteriorating over time (as we will see later, β < 1), and this characteristic causes
problems in the graphical goodness-of-fit analysis for the ARI models. In this way, the maximum
log-likelihood, the AIC and BIC criteria can be used to choose the best memory for the ARA
class of models. Table 18 shows the comparison of the estimates obtained for two ARA models,
represented by ARA1, the model where mA = mB = mC = 1, and by ARA∞, the model where
mA = 2, mB = 4 and mC = 6, which corresponds to m = ∞ for the three causes since mA = 1,2,
mB = 1, . . . ,4 and mC = 1, . . . ,6.

Table 18 – Estimation results for competing risks under frailty ARA1 and ARA∞ models applied to car
warranty data.

ARA1 ARA∞

α̂ (95% CIα̂ ) 0.072 (0.044, 0.119) 0.013 (0.009, 0.018)
β̂A (95% CI

β̂A
) 0.31 (0.24, 0.38) 0.30 (0.24, 0.37)

η̂A (95% CIη̂A) 36619 (15005,89368) 51987 (18587, 145405)
θ̂A (95% CI

θ̂A
) 0.79 (0.57, 0.92) 0.87 (0.71, 0.95)

β̂B (95% CI
β̂B

) 0.44 (0.36,0.54) 0.39 (0.31, 0.49)
η̂B (95% CIη̂B) 14813 (7900, 27778) 21865 (10500,45535)
θ̂B (95% CI

θ̂B
) 0.31 (0.11, 0.63) 0.10 (0.05, 0.18)

β̂C (95% CI
β̂C

) 0.64 (0.52, 0.79) 0.68 (0.56, 0.83)
η̂C (95% CIη̂C) 7263 (4881, 10807) 5830 (4221, 8054)
θ̂C (95% CI

θ̂C
) 0.09 (0.04, 0.19) 0.37 (0.14, 0.67)

l̂ -2499.906 -2497.389
AIC 5019.811 5014.778
BIC 5055.942 5050.909

Based on the results in Table 18 and our established selection criteria, the best model
chosen for this dataset is the ARA∞ model, where mA = 2, mB = 4 and mC = 6. Note that the β

values obtained for all three causes of failure are less than 1, indicating that the model does not
suggest deterioration of the components responsible for the mileage (intervals between failures
are very wide and this impacts the estimation of the β parameter); second, in the IR context the
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repair effect contributes to the maintenance of these components. The second point is even more
evident for causes C and B (mainly), where the repair effect approaches a PR (θ close to zero).
In contrast, the repair effect of cause A leans more toward a MR, although this cause exhibits the
highest estimate for the η parameter, specifically related to the time intervals between failures.

Finally, the model also captured the existence of unobserved heterogeneity among the
systems (α > 0). In this way, utilizing the estimates derived from the ARA∞ model within the
equation (6.10), we obtain estimates of the individual frailties associated with each analyzed
vehicle. Due to the extensive nature of the dataset, in Table 19 we present the result for a subset
of 10 cars, featuring the 5 lowest and 5 highest estimated frailties zi, where i represents the car’s
index in the database.

Table 19 – Individual frailty for ten cars, in the competing risks under shared frailty ARA∞ model.

Frailty Estimate Frailty Estimate
ẑ79 1.0046 ẑ169 1.0594
ẑ148 1.0047 ẑ26 1.0703
ẑ3 1.0048 ẑ129 1.0757

ẑ158 1.0052 ẑ165 1.0807
ẑ132 1.0059 ẑ161 1.0897

An interesting observation from Table 19 is that the five cars with the highest estimated
frailty are precisely the ones that experienced the most failures among the 172 cars. However, it
is worth noting that the car with the highest number of failures (#161) does not necessarily have
the highest estimated frailty. This highlights the nuanced relationship between failure frequency
and estimated frailty, which is evidently impacted by the cause of the failures. Conversely, the
five cars with the lowest estimated frailty all experienced only one failure, and these failures were
attributed to the same cause (C). Since these cars failed later in the observation, it follows that
their estimated frailty is lower. This illustrates how the timing of failures and the specific cause
of failure can influence the estimated frailty values, underscoring the importance of considering
both factors in reliability analysis.

For the assessment of goodness-of-fit, the graphical comparison between the empirical
MCF and the MCF estimated by the ARA∞ model was once again employed. In Figure 49, it is
possible to verify that the model exhibits a good fit to the dataset (for the same reasons that we
have already discussed in similar analyses of the work).

Concluding the analysis, the equations (6.12) and (6.13) were utilized to compute relia-
bility prediction estimates for each vehicle based on the last observed failure mileage. In this
sense, using the equation (6.14), the MTTF can also be calculated. In Figure 50, we display the
reliability curves for six selected cars, the three with the greatest frailties and the three with the
smallest ones. From the reliability graphs shown in Figure 50, it is notable that the three cars
with the highest estimated frailties exhibit lower reliability compared to the other three cars. This
difference becomes even more apparent when examining the MTTF values: these estimates for
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Figure 49 – Empirical and estimated MCFs for the car warranty data in the competing risks under shared
frailty ARA model.

the last three cars, which are characterized by higher frailty, are substantially lower than those of
the first three cars with lower frailty.

Figure 50 – Estimated reliability functions and MTTFs at last failure mileage tn, for six cars in the warranty
data, under the fitted competing risks under shared frailty ARA model.

These reliability graphs provide valuable insights, particularly in terms of calculating the
probability of failure for these cars considering their upcoming mileage of use. This information
is of significant relevance, particularly for insurance companies, as it aids in assessing risk
and making informed decisions about coverage and premiums. Cars with lower reliability and
shorter MTTF values may require more comprehensive insurance coverage or more frequent
maintenance to mitigate potential risks.
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6.4 Concluding Remarks of the Chapter

In this chapter we proposed new models considering multiple repairable systems sub-
jected to failure due to different causes. These models are generalizations of the frailty models
presented earlier in this work and also of models known in the literature, since they admit
competing risks and that repairs carried out after failure are imperfect.

By employing these models, we achieve a multi-faceted analysis. They enable us to
establish the failure process corresponding to each cause within the system, quantify the impact
of repairs executed for each cause, and identify unobservable factors influencing system failure
times. In essence, these models extract a comprehensive spectrum of information about system
failure occurrences.

The models assumptions are in line with similar works in the reliability field. For each
failure cause was associated a PLP as the initial counting process and a repair effect θ that
characterizes the IR performed after the failures. In addition, for each system, a frailty term Z

with Gamma(1/α,1/α) distribution shared between the causes and failure times was assumed.

We defined models encompassing both ARAm and ARIm classes of IR. We considered
all possible failure memories m for each of the causes, which results in an array of model
combinations to fit recurrent failure times within repairable systems. Inferential methods were
suggested based on maximum likelihood estimation and their respective parameter CIs were
constructed using asymptotic theory of Normal distribution. Once again, we computed reliability
prediction functions and the MTTF for the proposed models.

Through an extensive simulation study, we verified the asymptotic properties of the
proposed MLEs. We evaluated samples generated under various parameter scenarios to analyze
the performance. Both the ARA and ARI models showcased favorable outcomes, exhibiting
well-behaved estimates across all chosen analysis metrics.

Finally, two real datasets were used to illustrate the procedures presented and validate
the applicability of the proposed models. In the first example, we considered failure data from
locomotive component failures, caused by two distinct causes. Through the application of our
proposed models, it was possible to verify that the repairs executed for each cause have an effect
on the lifetime of the systems and, in addition, the analysis revealed the presence of unobserved
heterogeneity between the systems, so that two systems are more fragile compared to others. In
the second example, we revisited a well-known car failure dataset in the literature. In this case,
the failures could be attributed to three distinct causes, allowing us to discern the distinctive
impacts of repairs associated with each of these causes. For instance, the analysis identified that
one of the repairs is similar to a PR, a logical finding within this context. Additionally, a slight
unobserved heterogeneity acting on the failure process of the studied cars has been identified.

From all the theoretical discussion, simulation study and real data applications, we can
conclude that these presented models possess both theoretical relevance and strong applicability
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within practical scenarios. With current technological advancements, there are many complex
repairable systems in large industries and companies subjected to failure due to different causes.
In this sense, it is crucial to comprehend the systems’ failure process to establish maintenance
policies and avoid financial losses. In this pursuit of uncovering insights hidden within failure
data, our models offer valuable contributions.
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CHAPTER

7
FINAL REMARKS AND FURTHER RESEARCH

7.1 Final Remarks

In this thesis we proposed new parametric frailty models designed for general repairable
systems. Our main objective was to expand upon existing frailty models from the literature,
which primarily focused on minimal repairs following systems’ failures. In this sense, in our
models we made the assumption that the systems are subjected to either perfect (Chapter 3) or
imperfect (Chapters 4, 5 and 6) repairs. In the case of imperfect repairs, we considered both the
ARAm and ARIm classes known in the literature, for any possible value m of their memory failure
histories. In Chapter 6, in particular, we introduced shared frailty models within the framework
of competing risks, with independent risks that lead to failures whose repairs are imperfect (also
considering the ARAm and ARIm classes). In all of our models, we made the assumption that
the initial failure intensity function follows a PLP and the frailty variables are IID with Gamma
distribution.

For all proposed models, classical inferential methods were presented to obtain the
likelihood function in each. Given the complexity of all expressions found, numerical methods
were suggested to obtain the MLEs and their respective asymptotic confidence intervals. Specially
for the shared IR frailty models, a hierarchical Bayesian methodology based on MCMC sampling
was also proposed (Chapter 5). Furthermore, for each new model, system reliability estimators
were proposed based on their failure history.

For the models under a classical approach (Chapters 3, 4 and 6), Monte Carlo simulation
studies considering several parameter scenarios were carried out with the purpose of verifying the
asymptotic properties of consistency and efficiency of the MLEs and attesting to the suitability
of the proposed models. The results obtained in all of these studies behaved as expected since
they approached the nominal parameters values with small dispersion as the observed failure
samples increased, under different scenarios.
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Throughout the work, four different real datasets were used to illustrate our proposed
methodologies and validate the applicability of our models. The first two datasets that deal
with the failure times of sugarcane harvesters and dump truck engines, are well known in the
literature and were employed to adjust the frailty models encompassing all types of repair,
including minimal and perfect repairs (Chapter 3), as well as imperfect repair (Chapters 4 and
5). In Chapter 6, we turned our attention to two datasets that not only contained system failure
times but also detailed the causes of these failures. The first dataset deals with failure times of
locomotive panels, while the second dataset (also known in the literature) deals with the failure
mileage of fleet of cars; both of these datasets were used to adjust the frailty models within the
context of competing risk scenarios and imperfect repairs. Graphical goodness-of-fit verification
methods were used to compare the empirical MCF with the average of the estimated cumulative
failure functions for each system and all examples indicated favorable results.

Considering the comprehensive theoretical discussions, thorough simulation studies, and
the successful application of our models in real-world examples, we can confidently conclude
that our proposed models hold substantial relevance and contribute to the statistics literature, in
particular, to the reliability field.

From a theoretical perspective, our models fill some gaps in the realm of reliability
literature, especially regarding unobserved heterogeneity in systems undergoing imperfect repairs.
Our contribution lies in the fact that our models are extensions and generalizations of other
existing models, but now accommodate more general and extremely relevant information about
system failure processes or even their causes of failure. From a computational standpoint, a
substantial amount of code was generated during the thesis preparation process. We are committed
to making this code available to the entire research community, promoting transparency and
reproducibility in future studies.

Lastly, from a practical viewpoint, the applications showcased in our work underscore
the versatility and utility of our proposed models. They are capable of simultaneously providing
information on the effect of repairs carried out on a system, as well as the presence or absence
of unobserved heterogeneity related to each failure time or between the observed systems. This
information refines knowledge about the failure processes within the observed systems, or even
the distinct failure processes attributed to each cause of failure (as seen in Chapter 6 within the
competing risk framework). This multi-faceted approach demonstrates the practical value and
effectiveness of our models across various domains.

7.2 Future Works

The field of reliability is inherently expansive and continually evolving, especially in
light of the rapid technological evolution and the widespread dissemination of knowledge that
we are currently experiencing. In this sense, there is still a lot of further contributions to be made
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based on the findings of this thesis.

One avenue of future research involves revisiting the models introduced in this study,
exploring alternative parameterizations of the initial failure process, or considering different
frailty distributions. These investigations are natural extensions and are likely to be central to
upcoming research endeavors. Moreover, the scope of research can be broadened by exploring
additional characteristics associated with repairable systems. This could include delving into
areas such as accelerated test models, degradation models, and repair alert models, which can
further generalize and enhance the models presented in this work.
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APPENDIX

A
PLOTS OF MCMC SAMPLES FROM

APPLICATIONS IN SECTION 5.2

A.1 Section 5.2.1 - Sugarcane Harvester Data

Figure 51 – Plots of MCMC outputs for the parameter β in application of Section 5.2.1
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Figure 52 – Plots of MCMC outputs for the parameter ω in application of Section 5.2.1

Figure 53 – Plots of MCMC outputs for the parameter α in application of Section 5.2.1
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Figure 54 – Plots of MCMC outputs for the parameter θ1 in application of Section 5.2.1

Figure 55 – Plots of MCMC outputs for the parameter θ2 in application of Section 5.2.1
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Figure 56 – Plots of MCMC outputs for the parameter θ3 in application of Section 5.2.1

Figure 57 – Plots of MCMC outputs for the parameter θ4 in application of Section 5.2.1
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Figure 58 – Plots of MCMC outputs for the parameter θ5 in application of Section 5.2.1

Figure 59 – Plots of MCMC outputs for the parameter θ6 in application of Section 5.2.1
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Figure 60 – Plots of MCMC outputs for the parameter θ7 in application of Section 5.2.1

Figure 61 – Plots of MCMC outputs for the parameter θ8 in application of Section 5.2.1
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Figure 62 – Plots of MCMC outputs for the parameter θ9 in application of Section 5.2.1
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Figure 63 – Plots of Gelman-Rubin’s criteria outputs for all the model parameters in application of Section
5.2.1
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A.2 Section 5.2.1 - Dump Truck Data

Figure 64 – Plots of MCMC outputs for the parameter β in application of Section 5.2.2

Figure 65 – Plots of MCMC outputs for the parameter ω in application of Section 5.2.2
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Figure 66 – Plots of MCMC outputs for the parameter α in application of Section 5.2.2

Figure 67 – Plots of MCMC outputs for the parameter θ1 in application of Section 5.2.2



A.2. Section 5.2.1 - Dump Truck Data 183

Figure 68 – Plots of MCMC outputs for the parameter θ2 in application of Section 5.2.2

Figure 69 – Plots of MCMC outputs for the parameter θ3 in application of Section 5.2.2
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Figure 70 – Plots of MCMC outputs for the parameter θ4 in application of Section 5.2.2

Figure 71 – Plots of MCMC outputs for the parameter θ5 in application of Section 5.2.2
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Figure 72 – Plots of Gelman-Rubin’s criteria outputs for all the model parameters in application of Section
5.2.2
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