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Abstract
This manuscript is concerned with a mechanism for explaining the mass spectrum of
the charged leptons within (5 + 1)-dimensional braneworlds. As a preliminary objective,
new two co-dimensional thick braneworlds ought to be proposed and investigated. By
considering a twofold-warp factor constructed from two intersecting warp factors and
scalar fields that generates the extra dimension defect, an alternative bulk configuration
is examined. With the brane localization thus driven by two crossing scalar fields, the
possible solvable models obtained from such a two co-dimensional setup are systematically
discussed. The obtained solutions are classified into two subsets, string and intersecting-like.
The intersecting-like models are sorted in six different models organized into two subsets
for which some of their physical properties are evaluated. For models I and II, in the
first subset, Einstein equation solutions are rigidly defined, up to some arbitrary constant.
For models III, IV , V and V I, in the second subset, an additional degree of freedom not
constrained by Einstein equations is admitted. For all intersecting-like models, gravity and
standard matter fields are shown to be localized in the vicinity of the brane. Finally, by
studying the zero modes of leptons, which are localized by the inclusion of a non-trivial
gauge field, over asymmetric versions of the classified braneworlds, one is able to model
the masses of the electron, muon and tauon based on two parameters: the gauge field
strength and the ratio between the sizes of the co-dimensions.

Palavras-chave: Higher Dimensions, Braneworlds, Lepton Masses.
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Figure 3 – Warp factor e−2ÂIV of model IV as a function of ϕ, for n = 1 (black
line), n = 2 (black dashed line), n = 3 (red line) and n = 4 (red dashed
line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
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1 Introduction

In the last decades, inspired by the modern attempts of unifying all interactions,
the idea of extra dimensions has been currently scrutinized [1]. Admitting the possibility
of extra dimensions playing some role in physics requires a deeper understanding of the
evinced observation of three space dimensions [1]. A naive explanation for the (3 + 1)-
dimensional universe is based on the idea that extra dimensions can be compactified with
a tiny radius of the order of the Planck length (≈ 10−33 cm) [1]. In this scenario, all the
effects due to additional dimensions would be hidden to experimental measurements [1]. In
such a context, Arkani-Hamed–Dimopoulos–Dvali (ADD) [2] and Randall–Sundrum (RS)
[3, 4] seminal papers diffused the possibility of implementing large extra dimensions into
realistic phenomenological contexts [1]. In particular, as suggested by the ADD model [2],
one of the most inspiring motivations for pursuing large extra dimensions in physics is the
possibility of resolving the hierarchy problem [2] in quantum field theories [1]. While the
ADD model was performed on a flat space, Randall-Sundrum (RS) models [3, 4] assume
that the brane should gravitate, being spatially localized by an extra dimension warping
effect so as to explain the field hierarchy [1].

In order to motivate further studies in higher-dimensional braneworld models,
it is relevant to provide a minimal review of the RS models, that exemplifies some of
braneworlds main ideas. The RS models can be broken down into two contrasting models,
by the different topologies one can couple to a one-dimensional co-space, R or S1. For the
first RS model [3] the metric is assumed to satisfy the ansatz

g = e−2A(ϕ)ηµνdxµ ⊗ dxν + r2dϕ⊗ dϕ, (1.1)

where ϕ ∈ S1, r is the radius of S1 and A is the so called warp factor, and to obey the
action

SRS =
∫

dx5√−g
(
2M3R− Λ

)
−
∫

dx5√−g [−δ (ϕ) Λ + δ (ϕ− π) Λ] , (1.2)

where it is understood that one has two branes; one with energy −Λ at ϕ = 0, called the
hidden brane, and the other with energy Λ at ϕ = π, called the TeV brane. All Standard
Model (SM) fields are thus assumed to be confined to the TeV brane.

Varying Eq. (1.2) with respect to g and solving for the warp factor, A, gives

A = ±r
√
− Λ

12M3ϕ = ±rkϕ. (1.3)

Imposing mirror symmetry, ϕ ∈ S1/Z2, the metric of space-time is thus

g = e−2rk|ϕ|ηµνdxµdxν + r2dϕ2. (1.4)
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With the RS setup at hand, one can finally investigate the physical scales of matter
fields that are confined on the TeV brane. Relevant to the hierarchy problem, consider the
action of the Higgs field,

SH =
∫

dx4√−gTeV
[
gµνTeVH

†
,µH,ν + µ2H†H − λ

(
H†H

)2
]

=
∫

dx4
[
e−2rkπηµνH†,µH,ν + µ2e−4rkπH†H − λe−4rkπ

(
H†H

)2
]
. (1.5)

After canonical normalization, H = erkπH̃, one finds

SH =
∫

dx4
[
ηµνH̃†,µH̃,ν + µ2e−2rkπH̃†H̃ − λ

(
H̃†H̃

)2
]
, (1.6)

which is the action of an ordinary Higgs field, but with a vacuum expectation value (v.e.v.)
that is exponentially suppressed,

veff = µe−rkπ√
λ

= e−rkπv. (1.7)

Since all the mass parameters of the SM are set by the v.e.v. of the Higgs field, then every
mass scale admits a exponential suppression on the TeV brane.

On the other hand, the gravitational scale of gravity is calculated differently. Gravity
is not bound to the branes, thus its gravitational scale is calculated by the integration on
the new dimensions. Consider that a particle of mass M is included in the configuration,
this will induce perturbations to the gravitational background and one will be able to read
the gravitational strength from the perturbed action. The gravitational portion of the
perturbed action thus takes the form

Sg = 2M3
∫ π

−π
dϕe−2rk|ϕ|

∫
dx4

√
−g(4)R(4)

= 2M
3

k

(
1− e−2rkπ

) ∫
dx4

√
−g(4)R(4), (1.8)

which corresponds to the four-dimensional action, with an effective gravitational scale
given by

Mpl
2 = M3

k

(
1− e−2rkπ

)
. (1.9)

The gravitational scale is weakly dependent on the size of the new dimension, if r is very
large.

Every mass scale is exponentially suppressed by large values of r, while the gravity
scale is mostly independent of it. Therefore if the bare value of the Higgs mass is of the
order of the fundamental Planck scale, then the four-dimensional effective Higgs mass is
exponentially suppressed to the weak scale. While the effective value of the gravitational
scale is almost unaffected by the size of the new dimensions and should be close in value
to the Planck scale. As a consequence, the RS model warped metric admits an elegant
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alternative explanation to the hierarchy problem, in contrast to the ADD compactification
[3].

The second RS model can be build from the the first one. Resuming from Eqs.
(1.2) and (1.4), but taking the TeV brane to infinity, implies in a single brane setup with
an infinitely extended extra dimension, and the metric

g = e−2rk|y|ηµνdxµdxν + dy2, (1.10)

where y ∈ R. In such a scenario, the curvature of space engenders a localization mechanism
which admits a suppression of the higher-dimensional terms, thus recovering, within certain
limits, the Newton’s gravitation theory in the brane even when the additional dimensions
are of infinity extent. This is in direct contrast to the ADD models, which requires the
additional dimensions to be compactified in a torus.

Higher dimensional theories by themselves have also supported braneworld scenarios
driven by topological defects [5] where the fields of the SM are hypothetically confined by
brane-like regions of space [2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1]. Given that RS models
rely on thin branes, and the standard model fields are confined in a thin slice of space, a
more realistic framework suggests that the matter fields ought to be smeared over extra
dimensions. The novel paradigm thus led to several spin-off models, including the now
so-called thick braneworlds, where the thin brane is replaced by a topological defect,
an equivalent structure to those ones introduced for describing domain walls [5, 1]. The
thick brane framework has thus been considered as an engendering tool for obtaining
the configuration to the RS model, by admitting some lump-like (non-topological) defect
solution for the warp factor [1]. In this case, the non-topological nature of curvature begets
the same localization mechanism of the RS models for gravitational and matter fields in
the brane, which may host some internal structure [15, 16, 17, 18, 19, 20, 21, 22, 23, 1].

Besides working as a platform for the resolution of the hierarchy problem, thick
braneworlds in (4 + 1)-dimensions [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 1] have include the dark scalar field dynamics into their formulation.
Notwithstanding the ferment in this field, theoretical and phenomenological connections
with cosmology and astroparticle physics have also been evaluated [35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 1]. More recently,
in the strict theoretical front, the possibility of traversable wormholes in RS models [61]
has also been suggested [1].

Regardless of the lack of experimental verification, the study of higher-dimensional
theories is a promising theoretical front, because this framework allows the connection
between two phenomena, that initially seem to be uncorrelated. Apart from having played
a prominent role in our understanding of the hierarchy problem, higher dimensions have
also been proposed as a means to unifying gravity and electromagnetism by the seminal
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Kaluza-Klein models [62]. Our ultimate goal with this manuscript is to include another
one of this correlations. Based on the existence of a six-dimensional thick braneworld
model, a mechanism for explaining the charged lepton mass spectrum is proposed, and, as
a consequence, the existence of three lepton generations is justified.

As a preliminary objective, six-dimensional thick braneworlds ought to be con-
structed, classified and investigated. Particularly, the separable solutions of thick braneworlds
are classified into two contrasting set of models, the string and intersecting-like. String-like
have already been widely investigated [63, 64, 65, 66, 67, 68]. On the other hand, the
intersecting-like consists on a novel kind of solution and can be broken into six analytical
models, for which the physical and localization properties shall be evaluated.

This manuscript is thus organized as follows. Ch. 2 presents the elementary intro-
duction to the (5 + 1)-dimensional setup and provides a classification of separable solutions
that will serve as a background for every construction in following chapters. Ch. 3 addresses
the localization of the gravitational and the stability of the configurations, providing the
conditions for each one of the models of Ch. 2 to be physically acceptable. Ch. 4 is
devoted to the localization of matter fields, establishing the foundations of six-dimensional
fermionic matter. Ch. 5 presents the main result of the manuscript: a higher-dimensional
mechanism for explaining the masses of the leptons. Our conclusions are drawn in Ch. 6
pointing out the most relevant features of the proposed models.

It is important to emphasize that: the content of Ch. 2 is a strict reproduction
of the content of the manuscript “(5+1)-Dimensional Analytical Brane-World Models:
Intersecting Thick Branes” [1], the content of Ch. 3 is a strict reproduction of the content
of the manuscript “Gravity Localization on Intersecting Thick Braneworlds” [69], and the
content of Ch. 5 is a strict reproduction of the content of the manuscript “Asymmetrical
braneworlds and the charged lepton mass spectrum” [70], all from the author, all of them
with some sufficient literary adaptations in order to establish a cohesive timeline for this
thesis content.
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2 Six-Dimensional Braneworlds

With the ultimate proposal of enlarging the phenomenology alternatives for thick
brane scenarios, the present chapter intents to investigate six-dimensional braneworlds,
an idea already explored through different facets which include, for instance, thin branes
and string-like defects [63, 64, 65, 66, 67, 68, 71, 72, 73, 74, 75, 76, 77, 1]. However,
instead of considering string-like defects as they are typically engendered from thick brane
1-dim warping mechanisms, the possibility of a larger classification of solution is here
admitted. By considering a twofold-warp factor which is separable into two intersecting
warp factors respectively driven by two intersecting scalar fields, several novel solutions
for thick braneworld models are obtained and the possible construction are classified [1].
In fact, with respect to the featured compact internal structure, some of the resulting
constructions here admitted shall contrast with the second RS model. Otherwise, the
involved scalar fields and self-gravity mechanisms shall consistently resemble the well-
succeeded thick braneworld models in admitting lump-like defect solutions for the warp
factors [1]. Considering the eventual complexity of some (5 + 1)-dimensional metrics,
this chapter is constrained to finding and classifying classical solutions that define the
corresponding braneworld scenarios so as to prepare the clean framework for describing
the localization of gravitational and matter fields in following chapters [1].

By placing braneworlds over some novel topological spaces append the possibility
of some new physics. While five-dimensional setups have only two manifolds, R and S1,
for the topology of the internal one-dimensional space, six-dimensional braneworlds may
exhibit a wide range of topologies from the two-dimensional space [1]. Due to the compact
features of S2, our straightforward proposal lies in constructing the total space from a
priori internal space S2, where, in particular, it is not regarded as the sphere, but as a set
with a space topology homeomorphic to the sphere [1]. Considering a departing topological
manifold with a defined metric, and that S2, as a coupled structure, intrinsically carries
several different metrics, models over two distinct geometries of S2, the sphere and the
spheroid, can be solved and evaluated [1].

A more specialized summary of the above procedure is provided by a departure
metric given by σ = e−2fdu ⊗ du + e−2hdv ⊗ dv, which is nothing but the conformally
flat metric [78] σ = e−2B (du⊗ du+ dv ⊗ dv) for any (pseudo-) Riemannian space of two
dimensions, (B2,σ), although it is written in terms of different coordinates [1]. Despite
dealing with braneworld models with two co-dimensions, the choice of the coordinates
implying into the conformally flat form of the metric is too restrictive. For the purpose of
finding Einstein equation solutions for the warp factor A, the conformally flat approach
would be intractable. When considering separable solutions one assumes a twofold-warp
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factor A, A = Ã(u) + Â(v), and separable metric components, i.e. f = f̃(u) + f̂(v) and
h = h̃(u) + ĥ(v), where Ã and Â depend on two different variables with independent
warping characteristics [1]. The setup for the corresponding brane is provided by two
scalar fields, φ and ζ, which also depend on the same two different variables, evidently
with φ,v = ζ,u = 0 [1]. The separable solutions can thus be classified in two different sets;
the set of string-like solutions that are driven by a single scalar field ζ (φ = 0), and the
set of intersecting-like solutions that are driven by two intersecting scalar fields, φ and
ζ. The intersecting-like result into two subset of sorted analytical solutions composing of
six different models: from I to V I, for which the physical properties and the reducibility
to (4 + 1) scenarios shall be evaluated. At the intersection of the sets of string and
intersecting-like one finds trivial-like solutions that will also be evaluated.

The chapter is thus organized as follows. Sec. 2.1 presents the elementary introduc-
tion to the (5 + 1)-dimensional setup driven by two scalar fields and sets the equations to
be solved. Sec. 2.3 is devoted to separable solutions and its classification. In particular, the
case of intersecting-like thick branes is discussed, to which the solutions for the so-called
models from I to V I are obtained. Considering that only for models I and II, in the
above-mentioned first subset, Einstein equation solutions are rigidly defined, and that,
for models III, IV , V and V I, in the above-mentioned second subset, an additional
degree of freedom, related to the coupled fields that are not constrained by Einstein
equations, is admitted, and fixing the geometry of the internal space is mandatory for
definitely determining all the fields. Such aspects and their complete understanding are
thus evaluated in Sec. 2.4.3. Finally, In Sec. 2.2, a simple initial consistency check for the
Newtonian gravitational constant is provided.

2.1 Six-Dimensional Braneworlds from Scalar fields
The space-time is postulated to be a six-dimensional manifold (E6, g) that is, as

a set, equivalent to the product space M4 × B2, where (M4,ω) is some four-dimensional
pseudo-Riemannian manifold and (B2,σ) is some two-dimensional Riemannian manifold.
The geometry of E6 is represented by the metric,

g = e−2Aωµνdxν ⊗ dxµ + σijdxi ⊗ dxj, (2.1)

where A is the warp factor, ω is the metric of the space-time M4 (ω : M4 → T (0,2)M4)
and σ is the metric of the internal space B2 (σ : B2 → T (0,2)B2). Here A : B2 → R, which
means that A = A(u, v), with u = x4 and v = x5; ωµν : M4 → R; and σij : B2 → R.
Clarifying the notation, Greek indices (µ, ν,...) are valued in the set {0, 1, 2, 3}, uppercase
Latin indices (M , N ,...) are valued in {0, 1, 2, 3, 4, 5}, lowercase Latin indices (m, n, i,
j,...) are valued in {4, 5} (and represent the bulk co-dimensions) and the labels x4 = u and
x5 = v, represent the choice of coordinates for the co-dimensions (B2); the use of notation
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T45 ≡ Tuv whenever suited, indicates that ”4” = ”u” and ”5” = ”v”; derivatives, whenever
suited, will be represented by a comma, i.e. f,µ := ∂f/∂xµ; finally, tensors when being
referred to its (abstract) entirety will be in boldface, as g, but its components will be cast
in regular font, as gµν .

Suppose that matter in this space are of scalar nature and it corresponds to two
canonical real scalar fields minimally coupled to gravity [1]. The action for gravity is the
usual Einstein-Hilbert action in six dimensions so as to have

S = SEH + Sφ, (2.2)

SEH =
∫

d6x
√
−g 2M4R, (2.3)

and
Sφ = −

∫
d6x
√
−g

(
gMN

2 φ,Mφ,N + gMN

2 ζ,Mζ,N + V
)
, (2.4)

where φ : B2 → R (φ≡φ(u, v)), ζ : B2 → R (ζ≡ζ(u, v)), V is some function of φ and ζ,
and g = det (gMN). Varying SEH and Sφ with respect to the metric, g, one finds

δSEH = 2M4
∫

d6x δ (gMN)
√
−g

(
gMN

2 R−RMN

)
, (2.5)

and

δSφ =
∫

d6x δgMN

√
−g

[
gMPgNK

2 (φ,Kφ,P + ζ,Kζ,P )− gMN

2

(
φ,Kφ,K

2 + ζ ,Kζ,K
2 + V

)]
,

(2.6)
which results into the usual Einstein equations,

GMN = RMN −
1
2gMNR = TMN

4M4 , (2.7)

where one defined

TMN := φ,Mφ,N + ζ,Mζ,N − gMN

(
φ,Kφ,K

2 + ζ ,Kζ,K
2 + V

)
. (2.8)

On the other hand, the equations of motion of the scalar fields can be determined
by varying Sφ with respect to both scalar fields,

δSφ|φ =
∫

d6x δφ
[(√
−g gMNφ,M

)
,N
−
√
−gV,φ

]
, (2.9)

δSφ|ζ =
∫

d6x δζ
[(√
−g gMNζ,M

)
,N
−
√
−gV,ζ

]
, (2.10)

which implies in

�φ = 1√
−g

[√
−g gMNφ,N

]
,M

= V,φ, (2.11)

�ζ = 1√
−g

[√
−g gMNζ,N

]
,M

= V,ζ , (2.12)
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For the configurations considered here, eqs. (2.11) and (2.12) will be completely
redundant, since the solutions of (2.7) will already determine the scalar fields φ and ζ [1].
This can be straightforwardly proven by first noting that the conservation of the stress
energy tensor implies

(∇MT )MN = 0 ⇐⇒ (∇MG)MN = 0, (2.13)

which, for the two scalar fields, results into

(∇MT )MN = φ,N (�φ− V,φ) + ζ ,N (�ζ − V,ζ) = 0. (2.14)

In the following sections, the accomplishment of the intersecting thick brane scenario shall
admit scalar fields, φ = φ(u) and ζ = ζ(v), regarded as independent quantities one from
each other, with φ,v = ζ,u = 0 [1]. From such an assumption one has

(∇MG)MN = 0 ⇐⇒

�φ− V,φ = 0,

�ζ − V,ζ = 0.
(2.15)

This means that any solution of Eq. (2.7) also satisfies Eqs. (2.11) and (2.12) for the scalar
fields. Nevertheless, this is only true for very particular configurations, which include the
case φ,v = ζ,u = 0. Therefore, in this case, the redundancy of the scalar field Eqs. (2.11)
and (2.12) are clear1 [1].

More generically, to realize the field equations one first writes down the components
of the Einstein tensor through a straightforward – even if long and tedious – process. To
simplify the following steps, a rescaling of the metric given by g = e−2Aĝ can be used to
remove the conformal factor, where one defines

ĝ = ωµνdxµ ⊗ dxν + σ̂ijdxi ⊗ dxj, (2.16)

and σ̂ = e2Aσ. Notice that the metric ĝ is factorable since ωµν : M4 → R and σ̂ij : B2 → R,
and the calculations that follow can be easily extended to any dimension [1].

One can now write the relation between the operators compatible with g and ĝ:
the connection, the Riemann and the Einstein tensors compatible with g, calling it ∇,
RM

NPQ and GMN , respectively, and those ones compatible with ĝ, calling it ∇̂, R̂M
NPQ

and ĜMN , respectively.

The Levi-Civita connections, Ricci tensors and Ricci scalars compatible with metrics
g and ĝ are related by the equations

ΓPMN = Γ̂PMN − A,NδPM − A,MδPN + A,S ĝ
PS ĝMN , (2.17)

1 The analytical solutions must not only define the metric, but also the scalar fields as functions of u
and v, which does not necessarily implies into identifying V explicitly in terms of the scalar fields, i.e.
V = V(φ, ζ).
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RMN = R̂MN + 4∇̂M∇̂NA+ ĝMN�̂A+ 4∇̂MA∇̂NA− 4 ĝMN∇̂PA∇̂PA, (2.18)

and
R = e2A

[
R̂ + 25�̂A− 20∇̂PA∇̂PA

]
, (2.19)

respectively.

The Einstein equations are thus re-defined in terms of the metric ĝ rather than g.
Meanwhile, the Einstein tensor of the metric g can be recast in terms of the metric ĝ and
A, in the form of

GMN = ĜMN + 4 ∇̂M∇̂NA+ 4 ∇̂MA∇̂NA− 4 ĝMN�̂A+ 6 ĝMN∇̂PA∇̂PA. (2.20)

To compute ĜMN in order to obtain the equations of motion, one firstly notices
that the Riemann tensor R̂ is factorable,

R̂ = R̂ρ
αµν(xκ)

∂

∂xρ
⊗ dxα ⊗ dxν ⊗ dxν + R̂j

klc(xs)
∂

∂xj
⊗ dxk ⊗ dxl ⊗ dxc

= Rρ
αµν(xκ)

∂

∂xρ
⊗ dxα ⊗ dxν ⊗ dxν + Σ̂j

klc(xs)
∂

∂xj
⊗ dxk ⊗ dxl ⊗ dxc, (2.21)

where R̂ρ
αµν encodes de curvature of (M4,ω), and which has been labeled by Rρ

αµν , and
R̂j

klc encodes de curvature of (B2, σ̂), which has been labeled by Σ̂j
klc [1]. From here on R

and ∆ are the curvature and covariant derivative compatible with ω. Analogously, Σ and
4 are compatible with σ, with Σ̂ being compatible with σ̂. Also, a shortened notation
given in terms of ∆ := ωµν∆µ∆ν and 42 := σij4i4j shall be useful in the following steps
[1].

From the Riemann tensor, the set of expressions for Ricci tensors and Riccis scalar
are given by

R̂µν = R̂M
µMν = R̂κ

µκν = Rκ
µκν (xρ) = Rµν (xρ) , (2.22)

R̂ij = R̂M
iMj = R̂m

imj = Σ̂m
imj

(
xl
)

= Σ̂ij

(
xl
)
, (2.23)

and
R̂ = ĝMN R̂MN = ωµνRµν + σ̂ijΣ̂ij = R+ Σ̂, (2.24)

which can be re-introduced into Eq. (2.20) so as to return

Gµν = Rµν −
1
2ωµνR−

1
2ωµνΣ̂− 4ωµν4̂2A+ 6ωµν σ̂ijA,iA,j, (2.25)

and

Gij = Σ̂ij −
1
2 σ̂ijΣ̂−

1
2 σ̂ijR+ 4 4̂i4̂jA+ 4A,iA,j − 4 σ̂ij4̂2A+ 6 σ̂ijσ̂mnA,nA,m. (2.26)



26 Chapter 2. Six-Dimensional Braneworlds

Finally, by substituting the above expressions into Einstein field equations decoupled from
Eq. (2.7), one finds

Rµν−
1
2ωµνR = ωµν

[
1
2Σ̂ + 44̂2A− 6σ̂ijA,iA,j −

e−2A

4M4

(
φ,Kφ,K

2 + ζ ,Kζ,K
2 + V

)]
, (2.27)

and

Σ̂ij −
1
2 σ̂ij

(
R+ Σ̂

)
+ 4 4̂i4̂jA+ 4A,iA,j − 4 σ̂ij4̂2A

+ 6 σ̂ijσ̂mnA,nA,m = 1
4M4

φ,iφ,j + ζ,iζ,j − e−2Aσ̂ij

(
φ,Kφ,K

2 + ζ ,Kζ,K
2 + V

). (2.28)

Since Rµν and R are functions of space-time, M4, and Σ̂ij and Σ̂ are functions of the
internal space, B2, then one may separate variables at Eqs. (2.27) and (2.28). Through a
more familiar notation, one chooses a separation constant which can be interpreted as the
so-called cosmological constant Λ [1]. After some mathematical manipulations, one thus
obtains

Rµν = Λωµν , (2.29)

1
2Σ̂ + 44̂2A− 6σ̂ijA,iA,j −

e−2A

4M4

(
φ,lφ,l

2 + ζ ,lζ,l
2 + V

)
= −Λ, (2.30)

and

Σ̂ij −
1
2 σ̂ij

(
4Λ + Σ̂

)
+ 4 4̂i4̂jA+ 4A,iA,j − 4 σ̂ij4̂2A

+ 6 σ̂ijσ̂mnA,nA,m = 1
4M4

[
φ,iφ,j + ζ,iζ,j − e−2Aσ̂ij

(
φ,lφ,l

2 + ζ ,lζ,l
2 + V

)]
. (2.31)

From a geometrical perspective, Eqs. (2.30) and (2.31) clearly illustrate why the
two co-dimensional problem is circumstantially more complicated then one co-dimensional
analysis [1]. The existence of curvature for the internal space B2 increases the complexity
of the equations to be solved. For a one co-dimension problem, the equations are, up to
some constants, equivalent, but the curvature is null. In addition, the complexity that
arises solely from topological considerations is evinced: while for one co-dimension there
are only two possible topologies, R1 or S1, for two co-dimensions a vaster scenario can be
explored [1].

2.1.1 The Geometry of the Brane

From the above results, Eq. (2.29) defines the geometry of space-time (M4,ω), and
one can readily obtain some solutions summarized by [1]

1. if Λ = 0, a solution is a Minkowski space, ω = η;
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2. if Λ > 0, a solution is a de Sitter space of four dimensions (dS4), ω = ω+;

3. if Λ < 0, a solution is an anti-de Sitter space of four dimensions (AdS4); ω = ω−;

4. there are also FRW space-times solutions of these equations for all values of Λ [36].

Therefore one may fit each of these (3 + 1) solutions in the model construction
that follows. Again, to simplify the notation, whenever one is dealing with a space-time
M4 where Λ = 0, its metric will be labeled η, while either for Λ > 0 or for Λ < 0, it will
be labeled either by ω+ or by ω−, respectively. Eq. (2.29) does not completely determine
the curvature of space-time, since the Riemann tensor is not completely specified. In later
chapters, one will restrict the brane to be of constant curvature, i.e. the Riemann tensor

Rδµρν = Λ
3 (ωδρωµν − ωδνωµρ) , (2.32)

this will lead to significant simplifications to the equations, specially when dealing with
gravitational perturbations.

2.1.2 The Geometry of The Internal Space

Hence the subsequent steps can be resumed by obtaining the solutions for Eqs. (2.30)
and (2.31), which define the geometry of the internal space (B2, σ̂) [1]. However, since they
are still expressed in terms of σ̂, it should be simpler to work with the started geometry
preliminarily resumed by σ. Turning back to such a departure metric, one firstly writes

Ξ̂l
ij = Ξl

ij + A,jδ
l
i + A,iδ

l
j − A,sσlsσij, (2.33)

Σ̂ij = Σij − σij42A, (2.34)

Σ̂ = e−2A
[
Σ− 242A

]
, (2.35)

and
4̂i4̂jA = 4i4jA− 2A,iA,j + σlsσijA,lA,s, (2.36)

which, once substituted into Eqs. (2.30) and (2.31), after some straightforward manipula-
tions, leads to

V
4M4 = 2Λe2A + 242A− 8A,mA,m, (2.37)

and

Σij − σijΛe2A + 44i4jA− σij42A+ 4σijA,mA,m − 4A,iA,j = φ,iφ,j + ζ,iζ,j
4M4 , (2.38)

from which one can notice that some coordinate degree of freedom is still present [1].
Eqs. (2.37) and (2.38) encode the needed information to determine the geometry of space
(B2,σ), the warp factor, A, and the scalar fields, φ and ζ. Turning back to the systematic
procedure for solving Eqs. (2.37) and (2.38), one can state the following theorem [78],
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Theorem 1 Every two-dimensional (pseudo-) Riemannian space (B2,σ) is conformally
flat.

This means that, without loss of generality, one can consider the metric of the
space of co-dimensions to be conformally flat, i.e.

σ = e−2B(u,v) (du⊗ du+ dv ⊗ dv) . (2.39)

As previously argued, one has made a previous choice for the coordinates so as to
be able to write the resulting expression for the metric. However, since Eq. (2.38) may not
be analytically solvable, it would be counterproductive to keep that expressed in terms
of conformal coordinates [1]. A more treatable set coordinates for solving the resulting
differential equations, that do not result in a conformally flat metric, can be identified by
rewriting the system in terms of the following metric,

σ = e−2f(u,v)du⊗ du+ e−2h(u,v)dv ⊗ dv. (2.40)

This is not the most general metric choice2, but it does allow for some leeway when solving
the equations [1]. Naturally, this is equivalent to the conformally flat form, since one has
just used a different set of coordinates. By substituting the metric choice from (2.40) into
the field Eqs. (2.37) and (2.38), it is straightforward to write

V
8M4 = Λe2A + e2f

(
A,uu + A,uf,u − A,uh,u − 4A,u2

)
+ e2h

(
A,vv + A,vh,v − A,vf,v − 4A,v2

)
, (2.41)

φ,u
2 + ζ,u

2

4M4 = e2h−2f
(
f,vv + f,vh,v − f,v2 + 4A,v2 − 3f,vA,v − A,vv − A,vh,v

)
+ h,uu + f,uh,u − h,u2 + 3A,uu + 3f,uA,u + A,uh,u − Λe2A−2f , (2.42)

φ,v
2 + ζ,v

2

4M4 = e2f−2h
(
h,uu + f,uh,u − h,u2 + 4A,u2 − 3h,uA,u − A,uu − A,uf,u

)
+ f,vv + f,vh,v − f,v2 + 3A,vv + 3h,vA,v + A,vf,v − Λe2A−2h, (2.43)

and
φ,uφ,v + ζ,uζ,v

4M4 = 4A,uv + 4f,vA,u + 4h,uA,v − 4A,uA,v. (2.44)

From Eqs. (2.41)-(2.44) one can determine the warp factor and scalar fields, and
consequently obtaining the defect that generates the thick brane. From this point, different
techniques must be employed for solving Eqs. (2.41)-(2.44) analytically [1]. One may
separate the techniques into two opposite categories:
2 The most general one would allow non-diagonal terms.



2.2. The Newtonian Gravitational Constant 29

1. Starting from a predetermined internal space (B2,σ), which in some other words
correspond to the preliminary knowledge of f and h, one can thus calculate the warp
factor A;

2. Starting with no knowledge of the geometry of the internal space (B2,σ), i.e. of f
and h, one thus assume some simplifying hypothesis so as to solve the equations in
order to find A, f and h.

Our focus will be on the second technique, which can be later connected to the first
one by using their solutions to fit them into predetermined geometries. Looking at the
second technique, the equations will necessarily determine the metric, but the topology
of B2 will still remain undetermined. This fact is true, since the metric does not have,
in general, enough information to define the topological properties of space, with the
exception of some of the compact characteristics of the latter, which is only possible
because of the bulk geometry3 [1]. Besides this special topological invariant, not many
topological statements can be extracted about the spaces here within, unless it is imposed
a priori. Such an indeterminacy will be advantageous to the model building, since the
same solution may fit different topologies and thus configure distinctive space-times [1].

2.2 The Newtonian Gravitational Constant
For any braneworld model to be physically acceptable it must recover a finite

four-dimensional gravitational coupling strength, which can be calculated directly from
the one in the bulk by applying a simple procedure. Substituting the ansatz for the bulk
metric, Eq. (2.1), into the gravitational action and isolating the terms that specify the
curvature of the brane,

Sg =
∫
E6

d4x dy2√−g 2M4R ∼ 2M4
∫
B2

dy2√σe−2A
∫
M4

d4x
√
−ωR+ ..., (2.45)

from which one can read the gravitational field strength (or Planck Scale) for the brane,

Mpl
2 = M4

∫
B2

dy2√σe−2A, (2.46)

where GN ∼Mpl
−2. Eq. (2.46) establishes the first condition for a braneworld model to be

physically acceptable, and also serves as the first consistency check for the linear approach:
if the Planck scale calculated from this procedure does not coincide with the one associated
with the linear approach, then the model in question is inconsistent. Fortunately, for any
braneworld model the Planck scale coincides in every approach, as shall be presented
in Ch. 3. For the present chapter, this will be the only condition imposed for physical
acceptable solutions. However, in Ch. 3, the stability and effective Newtonian theory will
also be be imposed and addressed for each one of the intersecting-like models.
3 According to Refs. [79, 80], one can extract out of Einstein equations whether or not the space B2 is

non-compact.
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2.3 Classification of Separable Solutions
Solving Eqs. (2.42)-(2.44) in general is not a straightforward task, but there is a

particularly interesting way in which the separable solutions of Eqs. (2.41)-(2.44) can be
classified. By separable solutions we mean the ones that satisfy

φ = φ(u), ζ = ζ(v), A = Â(v) + Ã(u), f = f̂(v) + f̃(u) and h = ĥ(v) + h̃(u), (2.47)

which allows one to apply a separation of variables technique to Eqs. (2.41)-(2.44). Excep-
tionally, Eq. (2.44) implies into

f̂,vÃ,u + h̃,uÂ,v − Ã,uÂ,v = 0, (2.48)

which can be solved under two independent hypothesis [1].

Firstly, when either Â,v or Ã,u are set equal to zero, thus one has either f̂,v = 0,
if Â,v = 0, or h̃,u = 0, if Ã,u = 0, – consequently, the most simplified scenario [1]. For
instance, with Â = 0, and arbitrarily setting ĥ = 0, the resulting metric would be cast in
the form of

g = e−2Ãωµνdxµ ⊗ dxν + e−2f̃du⊗ du+ e−2h̃dv ⊗ dv, (2.49)

which leads to a string-like defect for the warp factor [1]. If the coordinates are chosen
such that f̃ = h̃, then the warp factor and scalar fields satisfy the field equations,

V
8M4 = Λe2Ã + e2h̃

(
Ã,uu − 4Ã,u2

)
, (2.50)

φ,u
2

4M4 = h̃,uu + 3Ã,uu + 4h̃,uÃ,u − Λe2Ã−2h̃, (2.51)

and
ζ,v

2

4M4 = h̃,uu + 4Ã,u2 − 4h̃,uÃ,u − Ã,uu − Λe2Ã−2h̃ = C, (2.52)

where C is some constant. Generically C = 0 and ζ = 0, otherwise ζ = Cv, which is not
allowed by the boundary conditions, since the solutions have to fit topologies4 like the
ones shown in Figs. 1a and 1b.

These set of solutions have already been widely investigated [63, 64, 65, 66, 67, 68]
even when they are not driven by scalar fields. Considering our more general interest,
such constructions will not be further pursued. However, it is worth to mention that
several models that shall be more deeply understood also have, as limiting cases, string-like
solutions for the warp factor.

Furthermore, solutions like Eq. (2.49) do not necessarily entail in string-like defects,
since the latter requires specific topological impositions. Generally, solutions like the
4 Note that the variable v will generally be interpreted as an angular variable in this set of solutions,

otherwise there be no other way of localizing standard fields in this configurations.
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previous can fit many kinds of topologies, particularly R2 leads to string-like defects, like
Fig. 1a. But solutions like Eq. (2.49) over R × S (Fig. 1b), T2 and S2 are also possible,
yet they do not engender string-like defects because they constrain either u or v to be
compactified. Regardless, throughout this work, every metric like Eq. (2.49) shall be
labeled a string-like solution.

(a) (b)

Figure 1 – (a) A string-like defect example for the warp factor. (b) A non-string-like
example for the warp factor.

Within the string-like solutions there is a particular subset that will be of interest
later. These are constructed by enforcing h̃ = Ã, leading to the metric

g = e−2Ã (ωµνdxµ ⊗ dxν + dv ⊗ dv + du⊗ du) , (2.53)

where the warp factor and scalar fields satisfy the field equations:
V

8M4 = Λe2Ã + e2Ã
(
Ã,uu − 4Ã,u2

)
, (2.54)

φ,u
2

4M4 = 4Ã,uu + 4Ã,u2 − Λ, (2.55)

and
ζ,v

2

4M4 = −Λ, (2.56)

which lead to equivalent, up to some constants, models to the seminal five-dimensional
braneworld models constructed previously in the literature. Thus, in this work, any metric
like Eq. (2.53) shall be labeled trivial-like, because they are trivially deduced from five-
dimensional models. Generically, the scalar field ζ and the cosmological constant have to
be null, otherwise the scalar would not fit the topology of spaces like Figs. 1a and 1b.

Secondly, the most promising scenario emerges from considering non-vanishing
values for both components, Ã,u and Â,v [1]. Following a simplified stratagem, from
Eq. (2.48), one may write f̂ = pÂ and h̃ = (1− p) Ã, where p ∈ R, while ĥ and f̃ are
mapped by an aleatory correspondence with the coordinates u and v [1]. In this case, the
metric is recast in the form of

g = e−2Âe−2Ãωµνdxµ ⊗ dxν + e−2pÂe−2f̃du⊗ du+ e−2ĥe−2(1−p)Ãdv ⊗ dv, (2.57)
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which leads to a novel class of solutions which indeed is not covered by the metric from
(2.49) [1]. From now on, solutions like Eq. (2.57) shall be labelled intersecting-like, because
the different components of the two-fold warp factor, Â and Ã, are associated with the
intersecting defects of the scalar fields φ and ζ, respectively.

The separable solutions can thus be classified into two distinct sets:

1. The set of string-like solutions, St, defined by Eq. (2.49);

2. The set of intersecting-like solutions, In, defined by Eq. (2.57).

At the intersection of St with In one finds the set of trivial-like solutions Tr,
defined by metric Eq. (2.53), i.e. In ∩ St = Tr.

2.4 Intersecting Braneworlds
As argued before both the metrics of string and trivial-like solutions, Eqs. (2.49)

and (2.53), are a consequence of a defect generated by a single scalar field, φ, since ζ
is, generically, null. On the other hand, for branes regarded as the intersection between
the defects generated by φ, such that φ,v = 0, and by ζ, such that ζ,u = 0, which are
achieved through an appropriate choice of coordinates, u and v, one can follow the strong
supposition that the warp factor A and the functions f and h will all be separable functions
of u and v [1], i.e. they satisfy Eq. (2.47).

As implicitly mentioned, from the metric Eq. (2.57), one can realize that the
exchange of coordinates u↔ v (as well as f ↔ h), does not modifies the space-time, which
is just re-labeled in terms of u↔ v. This means that a model with p = p1 is equivalent to a
model with p = 1− p1, which can be mathematically expressed in terms of the equivalence
relation, ∀ p ∈ R : p ∼ 1 − p, i.e. for any p value there is an equivalent model with p

replaced by 1 − p [1]. Thus, the algorithm for solving the equations of motion can be
constrained by choosing, for instance,

p ∈ R/∼= {p ∈ R | p ≥ 1/2} ,

such that the equations to be solved, (2.41)-(2.43), can be resumed by

V
8M4 =e2pÂe2f̃

[
(p− 5) Ã,u2 + f̃,uÃ,u + Ã,uu

]
+ e2ĥe2(1−p)Ã

[
ĥ,vÂ,v − (p+ 4) Â,v2 + Â,vv

]
+ Λe2Âe2Ã, (2.58)

e2(p−1)Ãe2f̃φ,u
2

4M4 =e2(p−1)Ãe2f̃
[
p (1− p) Ã,u2 + (4− p) f̃,uÃ,u + (4− p) Ã,uu

]
− Λe2pÃe2(1−p)Â

+ e−2pÂe2ĥ
[(

4− 3p− p2
)
Â,v

2 + (p− 1) ĥ,vÂ,v + (p− 1) Â,vv
]
, (2.59)
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and

e−2pÂe2ĥ

4M4 ζ,v
2 =e−2(1−p)Ãe2f̃

[
p (5− p) Ã,u2 − pf̃,uÃ,u − pÃ,uu

]
− Λe2pÃe2(1−p)Â

+ e−2pÂe2ĥ
[
p (1− p) Â,v2 + (3 + p) ĥ,vÂ,v + (3 + p) Â,vv

]
. (2.60)

Notice that Eq. (2.58) just defines the potential as a function of u and v [1]. Unless
one imposes to the potential V its analytical dependence on φ and/or ζ, which would
suppress some degrees of freedom from Eqs. (2.59) and (2.60), Eq. (2.58) is redundant
to the solutions from Eqs. (2.59) and (2.60) when they are used to obtain V. Otherwise,
the analytical solutions for Eqs. (2.59) and (2.60) can be obtained under the following
constraints [1].

1. When Λ = 0, thus the brane is flat;

2. When Λ 6= 0, but p = 0 (or p = 1).

This happens because the term with the cosmological constant will necessarily contribute
to a function that depends on both variables, unless p = 0 (or p = 1) or the brane is flat
(Λ = 0).

2.4.1 The Flat Brane Case (Λ = 0)

After applying the separation of variables technique, Eqs. (2.59) and (2.60) are
written as

(4 + p)Â2
,v − ĥ,vÂ,v − Â,vv = C1

1− pe
2pÂe−2ĥ, (2.61)

φ,u
2

4M4 − (4− p) f̃,uÃ,u − p (1− p) Ã2
,u − (4− p) Ã,uu = C1e

−2f̃e2(1−p)Ã, (2.62)

(5− p) Ã2
,u − f̃,uÃ,u − Ã,uu = C2

p
e−2f̃e2(1−p)Ã, (2.63)

and
ζ,v

2

4M4 − (3 + p) ĥ,vÂ,v − p (1− p) Â2
,v − (3 + p) Â,vv = C2e

−2pÂe2ĥ, (2.64)

where Ci ∈ R, i ∈ {1, 2}, are the separation constants. To find solutions of Eqs. (2.61)-(2.64)
one needs to separate the p = 0 (or p = 1) case from the p 6= 0 (or p 6= 1).

2.4.1.1 The p 6= 0 (or p 6= 1) Case (Models I and II)

Essentially, the above introduced sequence of steps for preparing the equations of
motion to be solved corresponds to some kind of suppression of unnecessary degrees of
freedom [1]. Looking at Eqs. (2.61)-(2.64), the coordinate freedom are represented by ĥ
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and f̃ . Again, the coordinate constraints, ĥ = pÂ and f̃ = (1− p) Ã, are chosen in order
to simplify the equation manipulability. With the metric in the form of

g = e−2Ãe−2Âηµνdxµ ⊗ dxν + e−2(1−p)Ãe−2pÂ (du⊗ du+ dv ⊗ dv) (2.65)

corresponds to the singular configuration for which a conformally flat approach simplifies
the equation resolutions. From Eqs. (2.61) and (2.63), the solutions obtained are expressed
by

Â = Â0 −
1
4 ln

{
cosh

[
2cv

(
v + v0

)]}
, (2.66)

and

Ã = Ã0 −
1
4 ln

{
cosh

[
2cu

(
u+ u0

)]}
, (2.67)

where, without loss of generality, one set the boundary conditions as given by Â0 = Ã0 = 0,
with

cv
2 = − C1

p− 1 and cu2 = C2

p
, (2.68)

where cv, cu ∈ C, but either Im(ci) = 0 or Re(ci) = 0, since C1, C2 and p are real constants.

To develop models which can “localize” fields on the brane, one may break this
solution into two different configurations, one for p > 2 and Im(cu) = 0, and another for
p ≤ 2 and Re(cu) = 0. They correspond to the models that shall be further explored in
appendix A.

Starting with p > 2 (Im(cu) = 0), which is now labeled model I, one finds the
metric (u0 = v0 = 0),

gI =
√

cosh (2cuu)
∣∣∣∣cos

(
nϕ

2

)∣∣∣∣ηµνdxµ ⊗ dxν +

√√√√√
∣∣∣cos

(
nϕ
2

)∣∣∣p
coshp−1 (2cuu)

(
du⊗ du+ r2dϕ⊗ dϕ

)
.

(2.69)

Scalar fields and potential are resumed by

VI = −8M4 sech(1−p)/2 (2cuu) secp/2
(
nϕ

2

)(
cu

2 − n2

16r2

)
, (2.70)

φI = ±2M2√aφ

u√1 + bφ −

√
bφ

2cu
arcsinh

[√
bφ tanh (2cuu)

]

−

√
1 + bφ

4cu
ln


√

1 + bφ

√
1 + bφ tanh2

(
2cuu

)
+ 1− bφ tanh

(
2cuu

)
√

1 + bφ

√
1 + bφ tanh2

(
2cuu

)
+ 1 + bφ tanh

(
2cuu

)

, (2.71)
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and

ζI = ±M2 cos
(
nϕ

2

) 4r√2aζ
√

1− bζ tan2
(
nϕ
2

)
n
√

1− bζ + (1 + bζ) cos (nϕ)

√1 + bζ arcsin
[√

1 + bζ sin
(
nϕ

2

)]

+
√
−bζ arctanh

 √
2
√
−bζ sin

(
nϕ
2

)
√

(bζ + 1) cos (nϕ)− bζ + 1

, (2.72)

where the following constants have been defined,

aφ = − (1− p) n2

16r2 + (p− 4) cu2, bφ = (5− 2p) cu2

aφ
, (2.73)

aζ = p cu
2 + (3 + p) n2

16r2 and bζ = −(3 + 2p)n2

16r2aζ
, (2.74)

through which the constraints aφ ≥ 0, bφ ≥ −1, aζ ≥ 0 and bζ ≤ 0 are sufficient and
necessary conditions for obtaining real scalar fields, φ and ζ (cf. Eqs. (2.71) and (2.72)).

Besides the singularities exhibited by the scalar field ζI , the behavior of the variable
u suggests that an infinite amount of energy to achieve model I configuration is required
(see appendix A) [1]. The Planck scale for model I is

M I
pl

2 = M4rπ

cu

Γ
(
p+3

4

)
Γ
(
p+5

4

) Γ
(
p−2

4

)
Γ
(
p
4

) , (2.75)

and model I presents the structure capable of localizing the gravitational field.

To avoid such a shortcoming, the model II, with p ≤ 4 and Re(cu) = 0, can be
introduced. In this case, the metric can be stated as (u0 = v0 = 0),

gII =

√√√√∣∣∣∣∣cos
(
lθ

2

)
cos

(
nϕ

2

)∣∣∣∣∣ηµνdxµ ⊗ dxν +

√√√√√√
∣∣∣cos

(
nϕ
2

)∣∣∣p∣∣∣cos
(
lθ
2

)∣∣∣p−1

(
ρ2dθ ⊗ dθ + r2dϕ⊗ dϕ

)
.

(2.76)
The Planck scale associated with metric Eq. (2.76) will be singular if p ≥ 4, as can be seen
in Sec. 2.2. The scalar fields and potential for such a configuration are as follows,

VII = M4sec(1−p)/2
(
lθ

2

)
secp/2

(
nϕ

2

)(
l2

2ρ2 + n2

2r2

)
, (2.77)

φII = ±M2 cos
(
lθ

2

) 4ρ√2aφ
√

1− bφ tan2
(
lθ
2

)
l
√

1− bφ + (1 + bφ) cos (lθ)

√1 + bφ arcsin
[√

1 + bφ sin
(
lθ

2

)]

+
√
−bφ arctanh

 √
2
√
−bφ sin

(
lθ
2

)
√

(bφ + 1) cos (lθ)− bφ + 1

, (2.78)
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and

ζII = ±M2 cos
(
nϕ

2

) 4r√2aζ
√

1− bζ tan2
(
nϕ
2

)
n
√

1− bζ + (1 + bζ) cos (nϕ)

√1 + bζ arcsin
[√

1 + bζ sin
(
nϕ

2

)]

+
√
−bζ arctanh

 √
2
√
−bζ sin

(
nϕ
2

)
√

(bζ + 1) cos (nϕ)− bζ + 1

, (2.79)

where one identifies the following constants,

aφ = − (1− p) n2

16r2 − (p− 4) l2

16ρ2 , bφ = −(5− 2p) l2
16ρ2aφ

, (2.80)

aζ = −p l2

16ρ2 + (3 + p) n2

16r2 and bζ = −(3 + 2p)n2

16r2aζ
. (2.81)

In this case, aφ ≥ 0, bφ ≤ 0, aζ ≥ 0 and bζ ≤ 0 are the sufficient and necessary
conditions for assuring real scalar fields. The Planck scale for model II is

M II
pl

2 = 4M4ρrπ
Γ
(

3+p
4

)
Γ
(

5+p
4

) Γ
(

4−p
4

)
Γ
(

6−p
4

) , (2.82)

and model II presents the structure capable of localizing the gravitational field.

The scalar fields exhibit several singularities, depending on the values for n and l.
These singularities explains the number of cusps in the warp factor. In order to realize
physically consistent solutions, the required energy to achieve their internal structure
must be finite [1]. Even though model II exhibits several singularities as depicted by the
scalar fields, the total energy necessary to accomplish model II is finite (see appendix
A). This is an evinced advantage with respect to the model I [1]. Although model II has
finite total energy, one may still argue against its physical significance, due to its recurrent
singularities, a shortcoming that must be considered in the following model issues [1].

2.4.1.2 The p = 0 (or p = 1) Case (Model III)

The third option of analytical models with flat branes, with two scalar fields and
p = 0, starts from setting f̂ = 0 and h̃ = Ã, which leads to the subsequent metric,

g = e−2Âe−2Ãωµνdxµ ⊗ dxν + e−2f̃du⊗ du+ e−2ĥe−2Ãdv ⊗ dv. (2.83)

Again, from Eqs. (2.58)-(2.60), after separation of variables and some straightforward
manipulations, one finds the following system of equations,

V
8M4 = e2f̃

(
−5Ã,u2 + f̃,uÃ,u + Ã,uu

)
+ Ce2Ã, (2.84)

φ,u
2

4M4 = 4f̃,uÃ,u + 4Ã,uu − Ce2Ãe−2f̃ , (2.85)
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C = −e2ĥ
(
4Â,v2 − Â,vĥ,v − Â,vv

)
, (2.86)

and
ζ,v

2

4M4 = 3ĥ,vÂ,v + 3Â,vv, (2.87)

where C ∈ R is some separation constant. Here one can interpret Eqs. (2.84) and (2.85)
as defining the potential and the scalar field φ, respectively, and one can actually solve
Eqs. (2.86) and (2.87). By choosing ĥ = 0 straightforwardly implies into the solution

ÂIII = Â0 −
1
4 ln

∣∣∣cos
[
2
√
C (v + v0)

]∣∣∣ , (2.88)

and
ζIII = ±2

√
3M2 arctanh

{
sin

[
2
√
C (v + v0)

]}
, (2.89)

which, from now on, shall be called model III and for which, without loss of generality,
one can set Â0 = 0 and v0 = 0 [1].

Given the periodicity of ÂIII , one departs from the choice of v = rϕ, where ϕ ∈ S1

and r is the radius of S1. Since the metric must be continuous in S1 one must have that
e−2Â must also be continuous in S1, which means that

∣∣∣cos
(
2
√
Cr2π

)∣∣∣ = |cos(0)| = 1 =⇒ C = n2

16r2 , n ∈ N.

Therefore one may write the metric, with Â0 = 0 and v0 = 0, as

gIII =
√∣∣∣∣cos

(
nϕ

2

)∣∣∣∣e−2Ãηµνdxµ ⊗ dxν + e−2f̃du⊗ du+ r2e−2Ãdϕ⊗ dϕ, (2.90)

which expresses a setup with a Minkowski brane (Λ = 0) with two scalar fields [1]. Both
the scalar field ζIII and warp factor ÂIII are, up to some constant, equivalent in form
to those ones from model I, as depicted in Figs. 31a and 32b. Considering the possible
values of n, only n = 1 configuration does not require the modulus in

√
|cos (nϕ/2)|, since

cos (ϕ/2) is strictly positive in this region [1]. The Planck scale for model III is

M III
pl

2 = 2
√
πM4r

Γ
(

3
4

)
Γ
(

5
4

) ∫ due−f̃e−3Ã, (2.91)

and model III presents the structure capable of localizing the gravitational field.

In this case, one may be tempted to interpret each of the cusps of the warp factor
as forming different branes [1]. However, since the unique localizing parameter in this
model is the radius r of S1, it is better to interpret such a configuration as a single brane
with some internal structure as the same is true for models I and II [1].
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In this case, before evaluating metric gIII , scalar field φ and potential configurations,
one should turn the attention to the associated stress energy tensor [1]. For p = 0 models,
from Eqs. (2.84) and (2.85), the total stress energy tensor can be separated as follows,

TMN = T ζMN + T φMN , (2.92)

T ζMN = ζ,Mζ,N − gMN
ζ ,Kζ,K

2 , (2.93)

and
T φMN = φ,Mφ,N − gMN

(
φ,Kφ,K

2 + V
)
. (2.94)

which allows one to focus on the stress energy tensor driven by the scalar field ζ (2.93),

T ζ
III

µν = −3M4n2ηµν
2r2

∣∣∣∣sec
(
nϕ

2

)∣∣∣∣3/2 . (2.95)

which is depicted Fig. 2. Of course, Fig. 2 evinces that the T ζIIIµν singularities shall support a
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Figure 2 – Stress energy tensor T ζIII∗µν = −r2T ζ
III

µν /3M4n2ηµν as a function of ϕ, for n = 1
(black line), n = 2 (black dashed line), n = 3 (red line) and n = 4 (red dashed
line).

number of cusps in the warp factor. From the perspective of the bulk, the energy necessary
to achieve such a configuration can be computed in terms of

EζIII

µν =
∫
E6
T ζ

III

µν

√
−gd6x ∝

∫ π

−π

∣∣∣∣sec
(
nϕ

2

)∣∣∣∣1/2 dϕ,
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where the last integral converges for all values of n [1]. Therefore, the energy of these
models, as far as ζ is concerned, is finite. Although the energy needed for this configuration
is finite, one may still argue against the physical significance of this model, due to the
number of singularities in the stress energy tensor [1].

To complete the model one now only lacks the dependence of the warp factor to
the u coordinate related to Ã, to the scalar field φ, as well as to the potential V [1]. For
model III these fields must satisfy Eqs. (2.84) and (2.85). Notice here that while V , φ and
Ã are still undetermined, f̃ is a mere choice of coordinates. Therefore one has complete
freedom for choosing one of such fields, as long as further analytical integration is allowed
for the other two fields. This means that a multitude of solutions can be find as to fit such
a building procedure. As will be presented later a similar set of equations for Ã, φ and V
will be found for different solutions of Â and ζ, this is to be expected since the equations
are separated in the variables u and v. Later a couple of examples will be proposed, all of
which start by assuming Ã. This is simply to achieve an intended geometry for (B2,σ),
which shall lead to a common solution set for Ã, φ and V for all the models with p = 0 [1].

To resume, model III also contains a trivial extension of well known models of
(4 + 1)-dimensional braneworlds. Looking at Eqs. (2.84) and (2.85), one should notice
that, for f̃ = n = 0 (which is nothing but a choice of coordinates and C = 0), exactly
the same equations, up to some constants, are obtained from such a five-dimensional
case [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]. These models contain, which is
nothing surprising, trivial extensions of the five-dimensional braneworld models so deeply
considered in the previously quoted works. One may call it trivial because the metric takes
the form,

g = e−2Ã
(
ηµνdxµ ⊗ dxν + r2dϕ⊗ dϕ

)
+ du⊗ du, (2.96)

which is nothing but the same metric of five-dimensional setup with an additional co-
dimensional compactified structure as S1, and with the defect generated by the scalar field
φ and potential V (ζ = 0) [1].

2.4.2 The Bent Brane Case (p = 0, Λ 6= 0)

Considering the bent brane case, Eqs. (2.58)-(2.60) with Λ 6= 0 and p = 0, no
preliminary assumption about the curvature of M4 (i.e. about Λ 6= 0) is required [1].
Departing from the metric Eq. (2.83), and after some straightforward manipulations
involving Eqs. (2.58)-(2.60) (for p = 0), they can be cast in the form of

C = Λe2Â − e2ĥ
(
4Â,v2 − Â,vĥ,v − Â,vv

)
, (2.97)

and
ζ,v

2

4M4 = 3ĥ,vÂ,v + 3Â,vv − Λe2Âe−2ĥ, (2.98)
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where C ∈ R is the separation constant. Again, the expressions defining the potential V
and the scalar field φ are given by Eqs. (2.84) and (2.85), which correspond to the flat
brane model with p = 0. To solve Eq. (2.97), one can set: i) either ζ,v = 0 (ζ = 0); ii) or
C = 0, but ζ,v 6= 0 [1].

It means that only when two scalar fields are present and the brane is not flat
that some additional supposition (C = 0) about the solution must be made, in all other
cases one can generally solve these equations [1]. The last possible construction, i.e. C 6= 0
and ζ,v 6= 0, leads to a highly enhanced equation that is not of straightforward analytical
solution. Regardless, an implicit method can be applied to generally solve the equations,
but the solutions will not be of straightforward interpretation.

In particular, the first case, with ζ = 0, is the most interesting one [1]. It corresponds
to a model with a single scalar field which drives a smooth behavior with no singularities
in the stress energy tensor, which are ingrained in the other configurations (I, II and III)
[1].

2.4.2.1 The Single Scalar Field Case (Model IV )

Starting from the constraint imposed by ζ = 0, model IV is resumed by the
behavior of a single scalar field [1]. To solve Eqs. (2.97) and (2.98) one can set ĥ = 0 in
order to obtain some simplifications. Thus, combining Eqs. (2.97) and (2.98), one can
write

Λ
3 e

2Â − Â,v2 = C

4 ⇐⇒
∫ dÂ√

Λ
3 e

2Â − C
4

= ± (v + v0) , (2.99)

which exhibits three different solution which depends on the values of Λ and C, i.e.

Â = ln
( √

3√
Λ |v + v0|

)
, if C = 0 and Λ > 0, (2.100)

Â = − ln
2

√√√√ |Λ|
3 |C| cosh


√
|C|
2 (v + v0)

 , if C,Λ < 0, (2.101)

and

ÂIV = − ln
2
√

Λ
3C

∣∣∣∣∣cos
[√

C

2 (v + v0)
]∣∣∣∣∣
 , if C,Λ > 0, (2.102)

which are all consistent with Eqs. (2.97) and (2.98) [1].

Clearly, the solutions from (2.100) and (2.101) do not depict RS-like features:
gravity is not localized along the corresponding extra dimension, unless one could force v
to be periodic [1]. Nevertheless, the warp factors (2.100) and (2.101) are not periodic and
no thin brane can supply the required boundary conditions. Gravity can be localized only
by setting C = Λ = 0, which leads to constraining Â(v) = Â0 (Â0 ∈ R), and by supposing
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v = rϕ, with ϕ ∈ S1. In this case, one has the same trivial case from Eq. (2.96), which
corresponds to a trivial extension of five-dimensional braneworlds [1].

On the other hand, looking at solution (2.102), which is periodic, i.e. with v = rϕ,
where ϕ ∈ S1, one does find more appealing localization features, which emerge from its
compact characteristic [1]. Since one expects the metric to be continuous, then the warp
factor e−2Â shall also be periodic and continuous in S1, i.e. (for v0 = 0),

cos2
(√

C

2 r2π
)

= cos2 (0) = 1 =⇒ C = n2

r2 , n ∈ N+, (2.103)

where one should notice that n 6= 0, since the warp factor is ill defined for n = 0 [1].

Since the peculiarities related to the solutions from Eqs. (2.100) and (2.101) have
already been discussed, one should pay more attention to the solution from Eq. (2.102) [1].

In this case, the related metric, with v0 = 0, is written as

gIV = 4r2Λ
3n2 cos2

(
nϕ

2

)
e−2Ãω+

µνdxµ ⊗ dxν + e−2f̃du⊗ du+ r2e−2Ãdϕ⊗ dϕ, (2.104)

which corresponds to the most appealing solutions once some physical conditions are
imposed [1]. In particular, it only works either for a de Sitter brane (Λ > 0) or, at least,
for a space with positive constant curvature. Clearly, since no scalar field ζ is effective, the
energy to achieve such a configuration is finite. Fig. 3 depicts the form of the warp factor
e−2ÂIV , which explains why this model should be more relevant then models I, II and III:
there are no cusps in the warp factor. This corresponds to a straightforward consequence
of no singularities in the stress energy tensor [1]. The Planck scale for model IV is

M IV
pl

2 = M4 4r3Λ
3n2 π

∫
du e−f̃e−3Ã, (2.105)

and model IV presents the structure capable of localizing the gravitational field.

Even with singularities eliminated from the stress energy tensor, this model still
exhibits curvature singularities. Whenever cos2 (nϕ/2) = 0 the warp factor is null and the
metric would have vanishing components. This could be an effect of a badly defined choice
of coordinates, and represent some form of horizon [1]. In this context, the Kretschmann
scalar for model IV reads,

K =RMNPQRMNPQ (2.106)

=e4Ã

3n2

r2 sec2
(
nϕ

2

) [
n2

r2 tan2
(
nϕ

2

)
+ 4Ã,u2

]
+ 5n4

2r4

+ e−4ÃK(u) + 16Ã,uu2 + 40Ã,u4 − Ã,u2

, (2.107)

which results into curvature singularities, since this scalar invariant is singular whenever
cos2 (nϕ/2) = 0 [1].
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Another interesting property of model IV is the constant 4Λ/3C that multiplies
the warp factor. This constant can not be removed from the warp factor, otherwise it
will not be a solution of Eqs. (2.97) and (2.98). Yet if one increases the value of C, the
warp factor becomes not only more localized, but also exhibits a decreasing amplitude
[1]. In fact, one could expect the maximum value of the warp factor to be one, thus one
could impose 4Λ/3C = 1. For Λ assuming tiny values, one should have tiny values for
C. Therefore, the warp factor would not be exceptionally localized. Here, no concerns to
such relation between C and Λ will be made, then C will be regarded as a completely
independent value [1].
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Figure 3 – Warp factor e−2ÂIV of model IV as a function of ϕ, for n = 1 (black line),
n = 2 (black dashed line), n = 3 (red line) and n = 4 (red dashed line).

One again only lacks the dependence of the warp factor on the u coordinate related
to Ã, to the scalar field φ, as well as to the potential V . In this case, the involved fields must
satisfy Eqs. (2.84) and (2.85), with C = n2/r2 for model IV . Therefore, the dependence
of these quantities on u is equivalent to that obtained for the flat brane model III, with
metric (2.76), and with the distinction being only due to the value of C: for model III,
the constant C = n2/16r2, n ∈ N, while for model IV , the constant C = n2/r2, n ∈ N+.
Eqs. (2.84) and (2.85) will be solved in a redundant way, for models III, IV and V in
section 2.4.3.
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2.4.2.2 The C=0 Case (Model V )

So far one has built models over a flat and de Sitter branes, the whole spectrum of
possible values of Λ can be filled by anti-de Sitter brane solutions [1].

To realize analytical solutions of Eq. (2.97) when two scalar fields are present and
the brane is bent, i.e. the space-time curvature of M4 is non null, one must constrain C to
0. Other values of C do not allow strict analytical calculations [1]. A simplified scenario is
accomplished by setting ĥ = Â so as to reduce Eqs. (2.97) and (2.98) for the warp factor
Â and ζ, respectively, to the now called model V , for which

ÂV = Â0 −
1
3 ln

∣∣∣∣cos
[√

3 |Λ| (v + v0)
]∣∣∣∣ , (2.108)

and
ζV = ±4M2

√
3

arctanh
{

sin
[√

3 |Λ| (v + v0)
]}
, (2.109)

with Λ < 0. The solution Â for positive values of Λ does not exhibit RS-like features [1].
Due to the periodicity of ÂV , one is able to choose v = rϕ, where ϕ ∈ S1. Since the metric
must be continuous, one must also have e−2Â continuous in S1, therefore

[
cos

(√
3 |Λ|r2π

)]2/3
= 1 =⇒ r = n

2
√

3 |Λ|
, n ∈ N+, (2.110)

where simplified expressions are yielded from choosing Â0 = 0 and v0 = 0. For such a
completely contrasting result, obviously there is no relation between C and the radius r
of S1, as well as Λ is a free parameter. In fact, the radius r of S1 is constrained by the
value of the cosmological constant Λ one chooses for the space-time M4, and the metric is
written as

gV = cos2/3
(
nϕ

2

)
e−2Ãω−µνdxµ⊗dxν+e−2f̃du⊗du+r2 cos2/3

(
nϕ

2

)
e−2Ãdϕ⊗dϕ, (2.111)

which expresses a compactified setup for an anti-de Sitter brane (Λ < 0) scenario at M4,
with constant negative curvature and two scalar fields. In Fig. 4a the form of the warp
factor is exhibited for different values of n. The form of the scalar field is exactly the same
as the one depicted in Fig. 32b [1]. But the scalar field now depends on the ϕ coordinate,
which is different from that one considered in model I. The Planck scale for model V is

MV
pl

2 = 4rM4
∫

du e−f̃e−3Ã, (2.112)

and model V presents the structure capable of localizing the gravitational field.

Fig. (4b) depicts the stress energy tensor, T ζµν , for the scalar field ζ,

T ζ
V

µν = −
4M4n2ω−µν

3r2 sec2
(
nϕ

2

)
, (2.113)
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Figure 4 – (a) The warp factor e−2ÂV of model V0 as a function of ϕ. (b) The stress energy
tensor T ζ∗µν = −T ζµν3r2/4M4n2ω−µν of model V as a function of ϕ. The plots are
for n = 1 (solid black line), n = 2 (black dashed line), n = 3 (solid red line)
and n = 4 (red dashed line).

which evidently exhibit singularities correlated to the number of cusps exhibited by the
warp factor. Again, from the perspective of the bulk, one has the finite formation energy
given by

EζV

µν =
∫
E6
T ζ

V

µν

√
−gd6x ∝

∫ π

−π
sec1/3

(
nϕ

2

)
dϕ. (2.114)

To complete the model, one notices that the fields must satisfy Eqs. (2.84) and
(2.85) with C = 0, such that

V
8M4 = e2f̃

(
−5Ã,u2 + f̃,uÃ,u + Ã,uu

)
, (2.115)

and
φ,u

2

4M4 = 4f̃,uÃ,u + 4Ã,uu. (2.116)

By choosing coordinates such that f̃ = 0, one recovers the same equations, up to
some constants, as in the five-dimensional thick braneworlds with a single scalar field. It
means that, one more time one has a non-trivial extension of the usual five-dimensional
braneworld models, which can be ratified by setting f̃ = n = 0 into Eqs. (2.111), (2.108)
and (2.109) [1].

2.4.2.3 The General Bent Brane (Model V I)

Eqs. (2.97) and (2.98) can be generally solved by proposing an implicit method;
we assume coordinates such that Â is a linear function and solve Eqs. (2.97) and (2.98)
for ĥ, instead of Â. This assumption can be understood by the metric

g = e−2Âe−2Ãωµνdxµdxν + e−2Ãe−2ĥdÂ2 + e−2f̃du2 (2.117)
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where coordinates have been chosen such that the coordinate v, in metric (2.57), coincides
with Â. Eqs. (2.97) and (2.98) can then be written as

C = Λe2Â − 4e2ĥ + e2ĥĥ,Â, (2.118)

and
ζ,Â

2

4M4 = 3ĥ,Â − Λe2Âe−2ĥ. (2.119)

Eq. (2.118) is integrable and has the solution

ĥ = 1
2 ln

Cbe8Â + Λe2Â

3 − C

4

 , (2.120)

Therefore, the metric of space-time takes the implicit form

g = e−2Âe−2Ãωµνdxµdxν + e−2Ã dÂ2

Cbe8Â + Λe2Â
3 − C

4

+ e−2f̃du2, (2.121)

which is the analytical solution of Eqs. (2.97) and (2.98), but it is given in an implicit
form, since the components of the metric are functions of the warp factor. On the other
hand, the scalar field is a solution of

ζ,Â
2

4M4 = 12be8Â

be8Â + Λe2Â
3C −

1
4

, (2.122)

which is real valued as long as b ≥ 0.

It is still possible to evaluate the localization features of metric (2.121), but, ideally,
it would be interesting to find the solution for coordinates such that5 ĥ = 0, i.e. are flat
with relation to v.

In flat coordinates v, the warp factor Â is a solution of the equation

dÂ2

Cbe8Â + Λe2Â
3 − C

4

= dv2 ⇐⇒ Â,v = ±
√
Cbe8Â + Λe2Â

3 − C

4 , (2.123)

Thus the implicit method has reduced Eq. (2.97), which is a second order non-linear
differential equation, to Eq. (2.123), which is a first order non-linear equation. Although
some simplification was achieved, Eq. (2.123) is still not integrable, unless b = 0, which
simply leads to model IV 6. Even if one is not able to solve Eq. (2.123) one can now
evaluate the localization properties of this space-time, which was not possible with only
Eq. (2.97).

The solutions of Eq. (2.123) can present RS features if and only if they present a
finite effective volume. This is generally achieved if the warp factor asymptotes to zero and
5 In this coordinates the metric would take the form g = e−2Âe−2Ãωµνdxµdxν + e−2Ãdv2 + e−2f̃du2.
6 The same is true when C = 0, but, to integrate, coordinates have to be chosen in order to achieve the

metric component as e−2Âdv2.



46 Chapter 2. Six-Dimensional Braneworlds

- 3
4

- 1
2

- 1
4

0 1
4

1
2

3
4

0.7

0.8

0.9

1.0

1.1

1.2

Λ

C

C
1
4
M
plV
I

M
2


ⅇ
-
f∼

ⅇ
-
3
A∼

ⅆ
u

Figure 5 – The Planck scale, 4
√
CMVI

pl /M
2
√∫
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presents a global maximum. If the global maximum is located at v = 0, then a necessary
condition for RS features is

Â,v
∣∣∣
v=0

= 0 and Â
∣∣∣
v=0

= 0 ⇐⇒ b = 1
4 −

Λ
3C ≥ 0, (2.124)

which is a necessary condition for localizing gravity and other fields. The Planck scale for
model V I is

MV I
pl

2 = M4
∫ ∞

0

e−2ÂdÂ√(
C
4 −

Λ
3

)
e8Â + Λ

3 e
2Â − C

4

∫
du e−f̃e−3Ã. (2.125)

The profile of MV I
pl

2 is described as a function of Λ in Fig. 5, from which one can conclude
that model V I presents the structure capable of localizing the gravitational field.

The equation for the scalar field ζ can also be evaluated in this flat coordinate
system,

ζ,v = ±2M2
√

12Cbe4Â, (2.126)

which is likely singular at the boundary, since eÂ diverges at v →∞. This singular behavior
is clearly avoidable if b = 0, but the model reduces to model IV . Even if the scalar field is
divergent, the resulting energy density is well behaved for the entire configuration.

To realize that the effective volume of metric (2.121) is finite, and, therefore,
presents RS features, it is simpler to assume a system of coordinates such that

Â = ln [cosh (y)] , (2.127)
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which implies in the metric

g = e−2Ã

sech2 (y)ωµνdxµdxν + tanh2 (y) dy2

C
4

[
cosh8 (y)− 1

]
+ Λ

3 cosh2 (y)
[
1− cosh6 (y)

]
+e−2f̃du2.

(2.128)
It is straightforward to notice that metric (2.128) is well behaved at the center of the
configuration and presents a finite effective volume. Yet the curvature will most likely be
singular at the boundary, this will not be explored further. On the other hand, the scalar
field is then a solution of

ζ,y
2

4M4 = 12b tanh2 (y)
b+ Λ sech6(y)

3C − sech8(y)
4

. (2.129)

Eq. (2.129) is clearly not easy to integrate, but one can find its asymptotic behavior,

ζ,y
2M2 → ±

√
12 tanh (y) =⇒ ζ → ±2

√
12M2 log [cosh (y)] , (2.130)

which necessarily diverges at y →∞, therefore singularities at the boundary for the scalar
fields are unavoidable in this model. But, as mentioned before, the energy density will be
well behaved at the entirety of the configuration.

2.4.3 Setups From Predetermined Internal Spaces

In the previous sections, a first subset of models I and II for intersecting thick
branes was obtained and discussed in terms of the model degenerate dependence on a
single co-dimensional coordinate v ↔ u. A second subset, for models III, IV , V and V I,
which include a split dependence between v and u and admit some additional freedom in
the choice of the field parameters Ã, φ, and V , has also been evaluated [1]. In this section,
the hypothesis of constraining such additional degree of freedom by imposing a geometry
for (B2, σ) shall be considered [1].

As previously argued, Eqs. (2.84) and (2.85) form a common set of equations for
all the p = 0 models. These two equations involve three field parameters Ã, φ, and V . Due
to the remnant degree of freedom, Eqs. (2.84) and (2.85) can be recast in to a first order
configuration (see [81]) to be solved [1]. Given that p = 0, one finds that the metric of the
internal space B2 takes the form of

σ = e−2f̃du⊗ du+ e−2Ãe−2ĥdv ⊗ dv. (2.131)

Thus the choice of Ã and f̃ fixes the geometry of B2, since ĥ is nothing but a choice of
coordinates which has been previously specified for each model. That makes choosing
the field Ã a better option than fixing either φ or V, in manner that one can achieve an
intended geometry [1]. For this reason, these spaces have a predetermined geometry, since
one does not determine it from the field equations, but chooses Ã and f̃ such that an
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expected geometry is achieved. As long as one is able to cast the metric of the internal
space as (2.131), the geometrical interpretation that follows is straightforward [1]. The
tricky thing here is finding a combination of Ã and f̃ that allows for the integration at
Eq. (2.85). In the following subsections, solutions to these equations will be provided by
a choice of the metric of the internal space B2 that allows for the respective analytical
integration of Eq. (2.85).

In particular, when ĥ = 0 and the coordinate v is compactified as S1 (models III
and IV ) one is able to cast the metric (2.131) in a particular fashion so that the internal
space could be a sphere or spheroid (subsecs. 2.4.6 and 2.4.7). Since models III and IV
have the same common geometry and topology for the internal space, the solutions that
follow are common to both of them [1]. Model V can also share these specific solutions
for Ã, φ and V , but the applied geometrical interpretation shall not be valid in the latter
cases [1].

2.4.4 Solving Eqs. (2.84) and (2.85)

When one chooses coordinates such that f̃ = 0, Eqs. (2.84) and (2.85) are similar
in structure to the equations that define five-dimensional bent braneworlds [81, 82, 83],
reminded that there are some constraints imposed by the separation constants, Λ and C.
Therefore, a departure solution as, for instance, due to Ref. [82],

Ã = − ln
∣∣∣∣ cos

[
a (u+ u0)

]∣∣∣∣, (2.132)

can be considered. Notice that one is able to choose a (u+ u0) = θ, with θ ∈ [−π/2, π/2],
as long as one allows for the singularities at ±π/2 for the scalar field. Thus one is able to
consider u to be compactified as S1, just imposing a = 1/2r, where r is the radius of S1. It
allows one to run θ from −π to π. As an example, for the sphere models that follow, one
regards a = 1/r, u0 = −rπ/2, and thus u ∈ [0, rπ] [1].

From Eqs. (2.84) and (2.85), scalar field, φ, and potential, V , are cast as

φς = ±2M2

√
4− C

a2 arctanh
{

sin
[
a (u+ u0)

]}
, (2.133)

and

Vς = 8M4a2

5−
(

4− C

a2

)
sec2

[
a (u+ u0)

]. (2.134)

which, in this case, allows for an explicit correspondence given by

Vς = 8M4a2

5−
(

4− C

a2

)
cosh2

[
aφ

2M2
√

4a2 − C

]. (2.135)

When C = 4a2 the scalar field φς is null and the potential Vς is a constant, thus
one either has either a single scalar field ζ, as for models III and V , or no scalar field, as
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for model IV . For model IV , since no scalar field is present, ζ = φ = 0, the potential is a
constant. Once returning to Einstein equations, one then finds GMN = −5CgMN/2, and
thus E6 is nothing but a de Sitter space of six dimensions (dS6) written in some unusual
system of coordinates. The form of the scalar field φς can be seen in Fig. 32b, while the
potential Vς is depicted in Fig. 6.
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Figure 6 – Potential V∗ς = Vς/32M4a2 as a function of the scalar field φ∗ς = φς/4M2.
The plots are for C = 0 (solid black line), C = a2/4 (dotted black line),
C = a2 (dashed black line), C = 2a2 (solid red line), C = 3a2 (dotted red line),
C = 7a2/2 (dashed red line).

The corresponding metric of such configuration is given by

gJς = cos2
[
a (u+ u0)

]
e−2ÂJωµνdxµ ⊗ dxν + cos2

[
a (u+ u0)

]
e−2ĥJdv ⊗ dv + du⊗ du.

(2.136)
where the index J in gJς , ÂJ and ĥJ refers to one of the models III, IV or V (i.e.
J = III, ÂJ = ÂIII , refers to the warp factor of model III). See that the warp factor
from Eq. (2.136) exhibit the same pattern as for model IV (2.104) cf. Fig. 3 [1].

Other configurations can also be achieved by choosing f̃ to be non-null, thus even if
the warp factor given by Eq. (2.132), the configuration would be different. As an example,
one may consider the following choice of f̃ ,

f̃ = −1
2 ln

{
1− κ cos2

[
a (u+ u0)

]}
, (2.137)

where κ is a constant such that κ ∈ (0, 1). For κ = 0, one recovers the metric from
(2.136). As it shall be clarified in the following subsection, this choice corresponds to a
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reduction of the spheroid model, for which

gJε = cos2 [a (u+ u0)]
(
e−2ÂJωµνdxµdxν + e−2ĥJdv2

)
+
{

1− κ cos2
[
a (u+ u0)

]}
du2, (2.138)

where ÂJ and ĥJ could be any of the functions determined in models III, IV or V .

Analytical solution for Eq. (2.85) are constrained by the choice of C = 4a2, i.e.
with J = III and IV at (2.138). In this cases, upon an integration of Eq. (2.85), one has

φε
4M2 = ∓

√
1− κ arctanh


√
κ sin

[√
C(u+u0)

2

]
√

1− κ cos2
[√

C(u+u0)
2

]
 , (2.139)

and

Vε
2CM4 =

5 (1− κ)− 4κ (1− κ) cos2
[√

C(u+u0)
2

]
{

1− κ cos2
[√

C(u+u0)
2

]}2 , (2.140)

and no longer does the scalar field shall exhibit singularities at ±π/2. It is straightforward
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Figure 7 – (a) Scalar field φ∗ε = φε/4M2 as a function of θ = a (u+ u0). (b) Potential
V∗ε = (1− κ)Vε/2CM4 (5− 4κ) as a function of φ∗ε = φε/4M2√1− κ. The
plots are for κ = 0.1 (solid black line), κ = 0.2 (dashed black line), κ = 0.4
(dotted black line), κ = 0.6 (solid blue line), κ = 0.8 (dashed blue line), κ = 0.9
(dotted blue line), κ = 0.99 (solid red line) and κ = 0.999 (dashed red line).

to invert the expression for φ so as to write the potential V as a function of φ. After some
forthright manipulations one finds,

Vε = 2CM4

1 + 4 (1− κ) cosh2
(

φε
4M2√1−κ

)
(1− κ) cosh4

(
φε

4M2√1−κ

)
 , (2.141)

from which scalar field and potential forms are depicted in Fig. 7.
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The warp factor for the metric (2.138) is exactly the same as in (2.136), but due
to the contribution from guu, the u coordinate has a different meaning. Thus it would be
interesting to change coordinates to be able to better compare how the metric (2.138)
fares against the one from (2.136). To this end, one chooses a new coordinate y, with such
luck that

dy =

√√√√1− κ cos2

[√
C

2 (u+ u0)
]
du, (2.142)

upon which, after an integration, one finds

y = 2
√

1− κ√
C

E

(√
C

2 (u+ u0)
∣∣∣∣ κ

κ− 1

)
, (2.143)

where E (x |m) is the elliptic integral of second kind. The inverted expression results into
√
C

2 (u+ u0) = E−1
( √

Cy

2
√

1− κ

∣∣∣∣ κ

κ− 1

)
, (2.144)

where E−1 is the inverse function of the elliptic integral of second kind. Then one may
write the metric (2.138) in the term of the coordinate y as

gJε = cos2
[
E−1

( √
Cy

2
√

1− κ

∣∣∣∣ κ

κ− 1

)] (
e−2ÂJωµνdxµdxν + e−2ĥJdv2

)
+ dy2. (2.145)

Finally, the warp factor e−2Ã and the scalar field φ as functions of y can be seen in Fig. 8.
Clearly, from Fig. 8, as κ gets closer to 1, the warp factor becomes more localized, and in
the limit of κ going to 1, a thin brane is recovered [1]. Hence κ is the localizing parameter
in this model: as it gets closer to 1, the brane should be closer to a thin brane and the
matter distribution in this model should look more like a cusped function, which can only
be realized by looking at metric (2.145). Otherwise, one generally prefers to work with
(2.138) since a straightforward geometrical interpretation is achieved when one applies
this geometry to S2.

Note that the setup from Eq. (2.138) could also be considered in the five-dimensional
context, since the equations are, up to some constant, equivalent. From the previous choice
of f̃ , one can thus construct some novel models of bent branes in five dimensions, since
the metric is just given by

g = cos2


√
|Λ|
2 (u+ u0)

ωµνdxµdxν +
1− κ cos2


√
|Λ|
2 (u+ u0)

 du2, (2.146)

where Λ is the curvature of space-time (M4,ω).

2.4.5 The Geometry of S2

This section is dedicated to demonstrating some of the possible geometry one can
couple to S2. One starts by first considering a general geometry for S2, namely an ellipsoid.
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Figure 8 – (a) Warp factor e−2Ã as a function of y∗ =
√
Cy/2. (b) Scalar field φ∗ε = φε/4M2

as a function of y∗ =
√
Cy/2. The plots are for κ = 0.1 (solid black line), κ = 0.2

(dashed black line), κ = 0.4 (dotted black line), κ = 0.6 (solid blue line), κ = 0.8
(dashed blue line), κ = 0.9 (dotted blue line), κ = 0.99 (solid red line) and
κ = 0.999 (dashed red line).

In this context an ellipsoid is S2, but with a particularly distorted metric. This metric can
be determined from its immersion7 in

(
R(3),γ

)
, where γ is the usual Euclidean metric.

For a triaxial ellipsoid, the immersion8 is a map Φ : S2 → R3, where it is defined by

(θ, ϕ) 7→ Φ(θ, ϕ) := (a cos (ϕ) sin (θ) , b sin (ϕ) sin (θ) , c cos (θ)) , (2.147)

with a, b and c being the three radii that define ellipsoid. Then, from Φ, it is possible to
define a pull-back Φ∗ of T (0,2)R3:

Φ∗ : T (0,2)R(3) → T (0,2)S2, (2.148)

according to
γ 7→ ε (X, Y ) := (Φ∗γ) (X, Y ) ≡ γ (Φ∗X,Φ∗Y ) , (2.149)

where Φ∗ is the push-forward on TM induced by Φ, which is defined by

(Φ∗X)i = Xa∂ (xi ◦ Φ)
∂ya

, (2.150)

where, finally, x and y are the coordinate chart maps for R3 and S2, respectively, also
with i ∈ {1, 2, 3} and a ∈ {1, 2}. Substituting the above expressions back, one finds the
components of the metric ε of S2,

εab = γij
∂ (xi ◦ Φ)
∂ya

∂ (xj ◦ Φ)
∂yb

, (2.151)

which leads to the metric,

ε =
[
a2 cos2 (ϕ) cos2 (θ) + b2 sin2 (ϕ) cos2 (θ) + c2 sin2 (θ)

]
dθ2

+ a− b
2 sin (2ϕ) sin (2θ) dϕdθ +

[
a2 sin2 (ϕ) + b2 cos2 (ϕ)

]
sin2 (θ) dϕ2. (2.152)

7 The map is considered to be an immersion since the first derivatives of the map must be injective.
8 An immersion of a compact space, such as S2, is also an embedding.
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This is a triaxial set-up. It is a bit complicated, and even if one could find coordinates
such that the off diagonal terms are null, which is always possible, one would end up with
an extremely enhanced metric which can be simplified by making assumptions about the
radii a and b into a spheroid configuration or a diaxial ellipsoid, i.e. a = b = r and c = ρ,
which would return the metric

ε =
[
r2 cos2 (θ) + ρ2 sin2 (θ)

]
dθ ⊗ dθ + r2 sin2 (θ) dϕ⊗ dϕ. (2.153)

This result removes the off-diagonal terms, which turn the procedure into simpler analytical
calculations, which should be still simpler for r = ρ, as it returns

ς = r2dθ ⊗ dθ + r2 sin2 (θ) dϕ⊗ dϕ. (2.154)

Metrics from (2.153) and (2.154) are exactly the metrics used in sec. 2.4.3.

2.4.6 The Sphere Models

An interesting application of the models constructed in previous sections is con-
cerned with the possibility of constructing braneworlds over S2.

The sphere models, for instance, starts with the assumption that the internal space
(B2,σ) is a sphere, or in other words, (B2,σ) ≡ (S2, ς), where ς is given by Eq. (2.154).
In this case, one has chosen u ≡ rθ, f̃ ≡ 0 and Ã ≡ − ln [sin (θ)], as well as ϕ ∈ [−π, π]
and θ ∈ [0, π] [1]. This choice corresponds to exactly the same as the one from Eq. (2.132),
where now one choses u0 = π/2r, a = 1/r and u only takes values at the subinterval
[0 , rπ]. See that this choice for f̃ and Ã is also allowed for model V , which however does
not have the internal space metric as from Eq. (2.154) [1]. For this reason, model V will
be disregarded in this section.

Turning to the point from Eq. (2.154), Eqs. (2.84) and (2.85) are easily solved so
as to return the quantities

V = 8M4

r2

[
5− 4

(
1− Cr2

4

)
csc2 θ

]
, (2.155)

and

φ = ±4M2

√
1− Cr2

4 ln
[
tan

(
θ

2

)]
, (2.156)

such that the potential as a function of φ is given by

V = 8M4

r2

5−
(
4− Cr2

)
cosh2

 φ

4M2
√

1− Cr2

4

 . (2.157)

For φ read as a real scalar field, one has

1− Cr2

4 ≥ 0 ⇐⇒ C ≤ 4
r2 , (2.158)

from which, for models III and IV , the constraints over C restrict the number of possible
models to its dependence on the value of n,
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1. CIII = n2/16r2 =⇒ n ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8};

2. CIV = n2/r2 =⇒ n ∈ {1, 2}.

Thus one can have, for model III, nine different configurations for the scalar field
and potential, each for different values of n. Meanwhile, for model IV , there are only two
different configurations [1].

When C = 4/r2 (n = 8 for model III or n = 2 for model IV ) one finds a vacuum:
the scalar field φ is null and the potential V is a constant. For model IV , this configuration
turns out to be dS6. In Fig. 9a the scalar, warp factor and potential, for different values
of C, are presented. The potential as a function of φ can be seen in Fig. 7b. For models
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Figure 9 – (a) Scalar field φ∗ = φ/4
√

1− C/4 (thick black line), warp factor Ã (thick
black dashed line) and potential V∗ = V/4. (b) The θ dependence of the stress
energy tensor T φµν , T φ

∗
µν = − sin2 θ T φ

µ
ν/8. The plots are for C = 0 (thin

black line), C = 1/16 (thin black dotted line), C = 1/4 (thin black dashed
line), C = 9/16 (thin black dot-dashed line), C = 1 (thin red line), C = 25/16
(thin red dotted line), C = 9/4 (thin red dashed line), C = 49/16 (thin red
dot-dashed line) and C = 4 (thick black solid line), with M = r = 1.

III and IV the complete metric can be written in the form,

gIII =
√∣∣∣∣cos

(
nϕ

2

)∣∣∣∣ sin2 θ ηµν dxµ ⊗ dxν + r2 dθ ⊗ dθ + r2 sin2 (θ) dϕ⊗ dϕ, (2.159)

gIV =4r2Λ
3n2 cos2

(
nϕ

2

)
sin2 θ ω+

µν dxµ ⊗ dxν + r2 dθ ⊗ dθ + r2 sin2 (θ) dϕ⊗ dϕ. (2.160)

Figs. 10 and 11 depict the warp factor e−2A of models III and IV for various values of n.
Finally, using the definition from Eq. (2.94), the stress energy tensor of the scalar field φ
can be obtained for different models. Redundantly, the explicit form of T φµν is common
to all models (III and IV ) and is only a function of θ,

T φ
µ
ν = 8M4

r2 δµν

[
3
(

1− Cr2

4

)
csc2 (θ)− 5

]
. (2.161)
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Figure 10 – Warp factor e−2A of model III in a spherical plot, with r = Λ = 1. The top
figures are for n = 0, 1, 2, 3 and 4 (from left to right) and the bottom ones
are for n = 5, 6, 7 and 8 (from left to right).

Figure 11 – Warp factor e−2A of model IV for n = 1 (left figure) and n = 2 (right figure)
in a spherical plot, with r = Λ = 1.

Despite exhibiting some singularities, T φµν is localized and non-singular, since once it is
multiplied by the warp factor it becomes well behaved [1]. In Fig. 9b, the θ dependence of
T φµν is depicted for several values of C. Clearly the total energy in these models, as far
as φ is concerned, is finite, given that the stress energy tensor is localized. In fact, for all
these scenarios, the total stress energy tensor is given by

T IIIµν = −24M4ηµν
r2

√∣∣∣∣cos
(
nϕ

2

)∣∣∣∣
[
n2

8 sec2
(
nϕ

2

)
+
(

5
3 sin2 θ − 1 + n2

64

)]
, (2.162)

T IVµν = 32M4Λ
n2 ω+

µν cos2
(
nϕ

2

) [
1− n2

4 −
5
3 sin2 (θ)

]
. (2.163)

So far these models have been presented in spherical coordinates, the introduction
of stereographic coordinates, i.e.

u = r cot
(
θ

2

)
cos (ϕ) , (2.164)
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and
v = r cot

(
θ

2

)
sin (ϕ) , (2.165)

allows one to rewrite the metrics of models III and IV as

gIII = 4r2 (u2 + v2)
(r2 + u2 + v2)2


√√√√∣∣∣∣∣cos

[
n

2 arccos
(

u√
u2 + v2

)]∣∣∣∣∣ηµνdxµdxν + du2 + dv2

, (2.166)

and

gIV = 4r2 (u2 + v2)
(r2 + u2 + v2)2

4r2Λ
3n2 cos2

[
n

2 arccos
(

u√
u2 + v2

)]
ω+
µνdxµdxν + du2 + dv2

,
(2.167)

respectively.

One can thus notice the advantage of choosing the initial metric of B2 as from
Eq. (2.40) if, on the other hand, one had started with a conformally flat form. As can be
seen from expressions (2.166) and (2.167), it would not be straightforward finding these
solutions, since the warp factor is, most notably, not separable in u and v [1]. Moreover,
one could express all the warp factors without the use of arccos and so on. In this case,
the warp factor of models III and IV for all the allowed values of n can be depicted as
they appear in Figs. 12 and 13.
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Figure 12 – Warp factor e−2A of model III in stereographic coordinates. The top figures
are for n = 0, 1, 2, 3 and 4 (from left to right) and the bottom ones are for
n = 5, 6, 7 and 8 (from left to right).

From Figs. 12 and 13 it is clear the localization of the warp factor, even when the
space goes to infinity. Therefore these models give rise to thick branes over the sphere where
the only adjustable localization parameter is the radius r of the sphere. This corresponds
to a detriment to the model since it would be interesting to have a parameter to make the
brane thiner while maintaining the radius of the sphere fixed [1].
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Figure 13 – Warp factor e−2A of model IV for n = 1 (left figure) and n = 2 (right figure),
in stereographic coordinates.

2.4.7 The Spheroid Models

Departing from the model over the sphere, one may consider that the ground
space (B2,σ) is a spheroid. In some other words, (B2,σ) ≡ (S2, ε), where ς is given by Eq.
(2.153). The difference between sphere and spheroid models is simply due to the geometry
represented by the metric ε. The spheroid built here is a di-axial ellipsoid, with radii r
and ρ. In this case, the setup variables are

u = rθ, (2.168)

f̃ = −1
2 ln

{[
1− κ sin2 (θ)

]}
, (2.169)

and
Ã ≡ − ln [sin (θ)] , (2.170)

where κ = 1− ρ2/r2. Setting κ = 0, one recovers the model over the sphere. See that this
is mapped by the metric from Eq. (2.138) where one just imposes u0 = π/2r, a = 1/r.
Thus, through Eqs. (2.84) and (2.85), one can determine the potential and scalar field as

V
4M4 = 2

r2 [1− κ sin2 (θ)]

[
1− κ

1− κ sin2 (θ) − 4 cot2 (θ)
]

+ 2C csc2 (θ) , (2.171)

and
φ,θ

2

4M4 = 4 (1− κ)
1− κ sin2 (θ) +

(
4− Cr2

)
cot2 (θ)− (1− κ)Cr2, (2.172)

In this case, if C > 4/r2 then the left side of equation (2.172) is not necessarily positive
for all θ values. Notice that as θ approaches π/2 the term with cot(θ) goes to infinity,
while the other terms remain finite [1]. This means that φ would necessarily be imaginary
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for some value of θ, which is not allowed. Therefore, one has C ≤ 4/r2. In fact, one can
not solve (2.172) in general. It can only be solved analytically when C = 4/r2, which is
translated into choosing n = 8 for model III or n = 2 for model IV [1]. Henceforward up
to the end only this cases will be considered. For C = 4/r2, the scalar field Eq. (2.172) is
easily integrated,

φ = ∓4M2√1− κ arctanh
 √

κ sin (θ)√
1− κ cos2 (θ)

 , (2.173)

and, if κ = 1 or κ = 0, one finds a vacuum solution. From Fig. 14a the profile of the scalar
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Figure 14 – (a) Scalar field φ∗ = φ/4M2 as a function of θ. (b) The θ dependence of the
stress energy tensor T φµν , T φ

∗
µν = − sin2 θ T φ

µ
ν(1− κ)/8(5− 3κ). The plots

are for κ = 0.1 (solid black line), κ = 0.2 (dashed black line), κ = 0.4 (dotted
black line), κ = 0.6 (solid blue line), κ = 0.8 (dashed blue line), κ = 0.9
(dotted blue line), κ = 0.99 (solid red line) and κ = 0.999 (dashed red line).

field can be read as a topological or kink-like defect. The potential V in terms of φ is
exactly as given by Eq. (2.141) (cf. Fig. 7b), and the stress energy tensor of φ, which is
common to all models, is given by

T φ
µ
ν = −δµν

8M4 (1− κ) [5− 3κ sin2 (θ)]
r2 [1− κ2 sin2 (θ)]2

. (2.174)

Differently from the sphere models, these models possess another localizing param-
eter other than the radius r. As κ approaches 1 the stress energy tensor becomes more
and more localized, from Fig. 14b one can notice such a behavior. Consequently, these
models give rise to thick branes that are even more interesting than the spherical ones, as
one chooses κ closer to 1 the thinner the distribution of matter becomes [1].

To more appropriately present the localizing effect that κ has on the model, it is
convenient to show how it can affect the warp factor. To do this, the change of coordinates
as given by (2.143) is preeminent. By writing

dy =
√

1− κ sin2 (θ) dθ, (2.175)
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thus one must choose y = E (θ |κ), where E (θ |κ) is the elliptic integral of second kind.
The inverse is simply expressed abstractly by θ = E−1 (y |κ), where E−1 (y |κ) is the
inverse function of the elliptic integral of second kind. Then one is able to express the
metric and the scalar field in terms of the coordinate y by

gJ = e−2ÂJ sin2
[
E−1 (y |κ)

]
ωµν dxµdxν + r2 sin2

[
E−1 (y |κ)

]
dϕ2 + r2dy2, (2.176)

and

φ = ∓4M2√1− κ arctanh

√
κ sin [E−1 (y |κ)]√

1− κ cos2 [E−1 (y |κ)]

 , (2.177)

where both quantities are valued in the domain [E (0 |κ) = 0, E (π |κ)], i.e. y ∈ [0, E (π |κ)].
The warp factor e−2Ã and the scalar field φ, in terms of y, are depicted in Fig. (15). From
Fig. (15) one can notice that the closer κ gets to 1 the more the thick brane looks like
a thin brane, thus the more localized is the model. One had already depured it from
the stress energy tensor pattern, but the above analysis paints a better picture of the
localization of the model. Of course, express the same quantities in terms of θ instead of y,
turns back the expected analytical form.
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Figure 15 – (a) Scalar field φ∗ = φ/4M2 as a function of θ. (b) The θ dependence of the
stress energy tensor T φµν , T φ

∗
µν = − sin2 θ T φ

µ
ν(1− κ)/8(5− 3κ). The plots

are for κ = 0.1 (solid black line), κ = 0.2 (dashed black line), κ = 0.4 (dotted
black line), κ = 0.6 (solid blue line), κ = 0.8 (dashed blue line), κ = 0.9
(dotted blue line), κ = 0.99 (solid red line) and κ = 0.999 (dashed red line).

Finally one can express the metric for models III and IV by

gIII =
√
|cos (4ϕ)| sin2 (θ) ωµν dxµdxν + r2

[
1− κ sin2 (θ)

]
dθ2 + r2 sin2 (θ) dϕ2, (2.178)

gIV = r2Λ
3 cos2 (ϕ) sin2 (θ) ωµν dxµdxν + r2

[
1− κ sin2 (θ)

]
dθ2 + r2 sin2 (θ) dϕ2, (2.179)

with the warp factor being essentially the same as in the C = 4/r2 spherical model, as
depicted in Figs. 10 and 11. In this fashion one can realize that the spherical models with
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C = 4/r2 represent a braneworld model in a vacuum for φ, while the spheroid models
represent a topological defect that alternate between two vacuums like depicted in Fig. 14a
(or 15b).

Unfortunately, it is not so simple to find stereographic coordinates for the spheroids
as it was for the sphere. It is feasible to analytical calculations, but the expressions are
too complicated for a meaningful analysis. Here no appeal to a different set of coordinates
will be made to discuss the properties of these models.
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3 Gravity Localization

Additional dimensions introduces a novel problem: Why have the co-dimensions
not been measured before? Here we point to the simple fact that we observe the universe
through light, then there should be no way of knowing if new dimensions do exist if light is
confined to the brane (or at least at the vicinity of the brane). The new dimensions could be
“invisible” to electromagnetism for all we know. But this is not the case for gravity. Gravity
is space-time itself, therefore it should perceive the new dimensions and corrections to its
interactions should follow. But experiments severely restricts the gravitational interaction
to be very similar, up to a sensible limit, to the Newtonian one. Therefore any realistic
brane model must be required to satisfy:

1. The brane is stable;

2. Four-dimensional Newtonian gravity is recovered.

Both are checked by perturbing the bulk metric, by adding a test particle of mass M
inside the brane, that perturbs the gravitational interaction, one hopes that it resembles
Newtonian gravity to a certain degree.

Considering that any braneworld model should recover standard four-dimensional
physics, at least within reasonable limits [7], and assuming that all physical fields must
be localized in a brane-like region of space, it is natural to suppose that the braneworld
solutions classified in the previous chapter admit the localization of gravity for all configu-
rations [69]. Besides the inherent classical aspects, from systematic metric perturbations
over the braneworld [3, 4], which renders a linearized formulation that encompass non-
linear aspects of gravity, the equations for the metric fluctuations can be reduced to time
independent Schrödinger-like equations [3, 4, 22, 71, 82], which are then subjected to
some separation of variables technique that results into the quantum mechanical analogue
problem [69].

The quantum mechanical aspects will then be further extended to the interpretation
of the associated wave functions, solutions of such Schrödinger-like equation, which are
not only relevant for the localization on the brane, but also for identifying the Newtonian
limit [69]. Recovering the Newtonian gravity in the brane, up to a sensitive limit, is indeed
an important test for braneworld models. One may determine the Newtonian limit by
assuming that perturbations of the metric are generated by a particle of massM [69]. As
a first approach, the effective coupling between the massive particle with gravity becomes
dependent on the normalization of the graviton modes and on its value at the position
of the particle (which is generically placed at the maximum of the wave functions of the
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zero mode) [69]. However, a more realistic description would consider any particle to be
smeared over the co-dimensions [71, 84], in contrast to a Dirac delta localization. In this
case, the gravitational constant would no longer depend on the value of the graviton
modes at the position of the particle, but would be determined by an average value of the
matter distribution with the graviton modes [69]. For the proposal considered here, the
simplified stratagem of a Dirac delta distribution is enough, since one can at least determine
the correct gravitational constant, even if failing to ascertain the correct gravitational
interaction1 [69].

Broadly speaking, the pertinence of considering six-dimensional braneworlds resides
in obtaining Schrödinger-like linearized equations for a two (and not only one) dimensional
curved background [69]. For string and trivial-like solutions the inherited Schrödinger-like
equations always allows for a further separation of the co-dimensional variables. On one
hand, intersecting-like branes allow for a further separation of the co-dimensional variables
for a subset of our models (from III to V I). On the other hand, for another subset
(models I and II), the variables are not separable unless the graviton mass is null [69].
Furthermore, for one of the intersecting-like models, IV , the Schrödinger-like equations
solutions are analytically defined for the entire spectrum of gravitons [69]. In particular,
this provides a wide range for the mass spectrum. For models I, II, III and V I, however,
only zero modes can be analytically extracted, while from model V one can extract some
of the massive modes. Regardless, some remarkable features are still accomplished from
the Newtonian limit for all these models, from I to V I, as they shall be scrutinized along
this chapter [69].

The chapter is thus organized as follows. Sec. 3.1 is devoted to determine the
equations for the gravitational perturbations and the effective for a general background.
One also defines the condition for localization. Subsecs. 3.1.3 and 3.1.5 presents the
straightforward mapping of the perturbed equations to the quantum mechanical analogue
problem that describes the localization and spectrum of the graviton modes for the proposed
classification. Finally, in Sec. 3.2, the Schrödinger equation for each of intersecting-like
braneworld model is yielded and their corresponding spectrum of gravitons as well as their
Newtonian limits are obtained.

3.1 Gravitational Fluctuations

A basic requirement of any braneworld model is that it reproduces, up to a sensible
limit, Newtonian gravity [3, 4, 22, 71, 82, 69]. The Newtonian limit of any braneworld
model can be studied within the framework of linearized gravity, where it is assumed
1 Generically, the Newtonian limit of some braneworld should append some modifications to the

gravitational interaction. To avoid contradictions with experimental data one expects the corrections
to be insignificant above some scale, thus recovering Newtonian gravity.
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that the spacetime can be described by small fluctuations about a given background
[69]. Following similar arguments as outlined by [71]2, tensorial perturbations of (2.1) are
written as

ḡ = e−2A (ĝMN +$MN) dxMdxN = e−2A [ωµν +$µν ] dxµdxν + σijdyidyj, (3.1)

where $µν are functions such that $µν : M4 × B2 → R (i.e. $µν(xρ, u, v)), and $ij = 0
[69]. Several objects are now necessary to determine the perturbations of the Einstein
tensor, including the inverse metric and the connections compatible with ḡ [69]. The
inverse metric can be assumed to be

ḡ−1 = e2A
[
ĝMN +

(
$−1

)MN
]
∂M ⊗ ∂N , (3.2)

where ($−1)MN refers to the inverse of $, while $MN refers to $MN with indexes raised
by ĝ. Since $MN and ($−1)MN are small perturbations then one finds

δAB = ḡAN ḡNB = δAB + ĝAN$NB +
(
$−1

)AN
ĝNB +O($2), (3.3)

which implies in (
$−1

)MN
= −$MN = −$AB ĝ

AM ĝBN , (3.4)

and the inverse metric can be written as

ḡ−1 = e2A(u,v) (ωµν −$µν) ∂µ ⊗ ∂ν + σij∂i ⊗ ∂j, (3.5)

On the other hand, the connections compatible with ḡ can be expressed in terms of the
connections compatible with ĝ, to first order in $, as

Γ̄PMN = Γ̂PMN−A,NδPM−A,MδPN+A,S ĝPS ĝMN+A,S ĝPS$MN−A,S$PS ĝMN+(δΓ)PMN , (3.6)

where (δΓ)PMN is a true tensor, since it is the difference between two connections. The
components (δΓ)PMN can be determined by noting that

∇̄P ḡMN ≡ 0 ⇐⇒ ∇̂P$MN = ĝMKδΓKNP + ĝNKδΓKMP , (3.7)

permuting some of the indexes and summing in a particular order implies3 in

δΓPMN = 1
2 ĝ

PK
(
∇̂N$MK + ∇̂M$KN − ∇̂K$MN

)
. (3.8)

2 Extending this line of reasoning in order to account for a curved four-dimensional space [85].
3 Actually, the following result is true for any difference between two connections (not only for small

perturbations) that is compatible with some metric.
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With this results in hand the Einstein tensor (ḠMN ) compatible with ḡ is then expressed,
up to the first order in $µν , by

ḠMN =GMN + δGMN

=GMN + 1
2 ĝ

PK∇̂P ∇̂N$MK + 1
2 ĝ

PK∇̂P ∇̂M$KN −
1
2�̂$MN −

1
2 ĝ

PK∇̂M∇̂N$PK

− 1
2$MN R̂ + 1

2 ĝMN$PKR̂
PK − 1

2 ĝMN ĝ
SDĝPK∇̂P ∇̂S$KD + 1

2 ĝMN ĝ
SD�̂$SD

− 2 ĝPK
(
∇̂N$MK + ∇̂M$KN − ∇̂K$MN

)
A,P + 6$MN ĝ

PS A,SA,P

+ 2ĝMN ĝ
PK ĝSD

(
∇̂K$PD + ∇̂P$KD − ∇̂D$PK

)
A,S − 4$MN�̂A

− 6ĝMN ĝ
PDĝSJ$DJ A,SA,P + 4 ĝMN ĝ

PS ĝKD$SD∇̂P ∇̂KA, (3.9)

where ĝMN = e2AgMN and ∇̂ is a covariant derivative compatible with ĝ. Introducing
the assumed constraints, $Mi = A,µ = 0, fixing the gauge ∇̂M$MN = ĝMN$MN = 0,
noticing the commutation properties of the covariant derivatives4 and considering that5

$ρκR̂
ρκ = 0, one obtains the first order perturbed Einstein tensor in the form of

δGMN =1
2 ĝ

ζδ$ζ(M R̂N)δ −$δρR̂δMρN −
1
2�̂$MN

+ 2 σ̂ijA,i∇̂j$MN +$MN

(
6σ̂ij A,iA,j − 4 �̂A− 1

2R̂
)
, (3.10)

where t(MN) = tMN + tNM .

One would also expect perturbations in the configuration of the scalar fields (A,
φ and ζ), but the scalar and tensorial perturbations are completely decoupled one from
each other when linear perturbations are considered [71] (see Sec. 3.1.1 for further details)
[69]. For this reason, when dealing with the dynamics of the gravitational field, one can
disregard the perturbations of the scalar fields [69].

The perturbation of the scalar fields are completely dissociated from the tensorial
perturbations, yet the stress energy tensor will still be perturbed in this configurations,
since the metric fluctuations induce perturbations in the stress energy tensor [69]. In
particular, in the context of our analysis, only stress energy tensors constructed out of
scalar fields shall be considered. The stress energy tensor calculated out of metric ḡ is
then given by

T̄MN = TMN − e−2A$MN

(
gKSφ,Sφ,K

2 + gKSζ,Sζ,K
2 + V

)
. (3.11)

Following the same stratagem from Ref. [71], one finds that

$MPT
P
N = −$MN

(
gKSφ,Sφ,K

2 + gKSζ,Sζ,K
2 + V

)
, (3.12)

4 ĝPK∇̂P ∇̂N$MK = ĝPK∇̂N ∇̂P$MK − ĝSDĝPK$SKR̂DMPN + ĝSD$MSR̂DN .
5 Which is true whenever one assumes the gauge condition ĝMN$MN = 0.
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which can be used to derive the perturbations of the stress energy tensor,

δTMN = 4M4ĝρζ$MρR̂ζN + 4M4$MN

(
6ĝijA,iA,j − 4�̂A− 1

2R̂
)
. (3.13)

Finally, equalizing the first order contributions, δGMN and δTMN , from Eqs. (3.10) and
(3.13), through the Einstein equation, one finds

−1
2�̂$MN + 2 σ̂ijA,i∇̂j$MN = 1

2 ĝ
ζδ$ζ[M R̂N ]δ +$δρR̂δMρN , (3.14)

where t[MN ] = tMN−tNM . The above result be simplified by noticing that ∇̂j$MN = $MN,j ,
since Γ̂NjM = 0 and that ĝ is factorable. One thus has

R̂ = Rρ
αµν(xκ)

∂

∂xρ
⊗ dxα ⊗ dxν ⊗ dxν + Σ̂j

klc(xs)
∂

∂xj
⊗ dxk ⊗ dxl ⊗ dxc, (3.15)

with Rρ
αµν and Σ̂j

klc encoding the curvature of (M4,ω) and (B2, σ̂), respectively (cf. [1]).
To summarize, one can still write the equation for the perturbation of the gravitational
field for general bent branes,

�̂$µν − 4 σ̂ijA,i$µν,j = ωζδ$ζ[νRµ]δ − 2$δρRδµρν , (3.16)

and notice that, for solutions (2.69), (2.76), (2.90), (2.104), (2.111) and (2.121), only
the Ricci tensor is written as Rµν = Λωµν . For further simplifications, a maximally
symmetric spacetime (M4,ω) can be assumed, i.e. Rδµρν = (ωδρωµν − ωδνωµρ) Λ/3, such
that Eq. (3.16) is thus simplified into the form of

�̂$µν − 4 σ̂ijA,i$µν,j = 2Λ
3 $µν , (3.17)

which describes the tensorial perturbation in the bulk [69].

3.1.1 The Decoupling Between Scalar and Tensorial Perturbations

In Sec. 3.1, the perturbations were cast form of Eq. (3.1). Just as a preliminary
consideration, the general form from Eq. (3.1) should involve perturbations of the warp
factor, yet this can be disregarded because the latter can always be encompassed by $µν ,
as follows,

ḡ =e−2Ā (ωµν +$µν) dxµdxν + σijdyidyj

=e−2A (ωµν +$µν − 2δAωµν) dxµdxν + σijdyidyj, (3.18)

where Ā = A+ δA and δA is the perturbation of the warp factor [69]. In which concerns
the scalar perturbation related to δA, every calculation of Sec. 3.1 follows straightforwardly
from defining $̃µν = $µν − 2δAωµν .
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Of course, to clear up the above statement, from a more explicit approach, once that
one assumes the metric to be (3.18), the gravitational portion of the action, if expanded
up to the second order in the perturbative parameters, can be written as

S̄g =2M4
∫

d6x
√
−ḡ R̄

=2M4
∫

d6xe−2Ā√−ωσ
[
R+ e−2Ā

(
Σ− 242Ā− 20Ā,iĀ,i

)
+ 10�̂Ā

−20Ā,µĀ,µ −$µνRµν − 20$µνA,µĀ,ν
]

+ 2M4
∫

d6xe−2A√−ωσ

∇̂S

(
ĝSN$µν∇̂N$µν − ĝSη$µν∇̂ν$µη

)
− 20$µ

κ$
κνA,µA,ν −

1
4$

µν$µνR̂ + 10$µ
κ$

κν∇̂µ∇̂νA

− 1
4∇̂

K$µν∇̂K$µν −
5
2$

µν$µν�̂A+ 5$µν$µνA
,PA,P

+ 1
2∇̂

ν$µκ∇̂κ$µν +$µ
κ$

κνRµν + 5ĝSJ$µν
(
2∇̂ν$µJ − ∇̂J$µν

)
A,S

. (3.19)

The only terms that can exhibit some coupling between the tensorial, $µν , and warp
factor, δA, perturbations are6 e−2Ā$µνRµν and e−2Ā$µνA,µĀ,ν . By construction, these
terms are null, since A,µ = φ,µ = ζ,µ = 0. Therefore, there is no coupling between $µν and
δA, such that neither $µν nor δA do affect one each other.

Likewise, the effects of the scalar fields (φ and ζ) on the localization of gravitational
fields can also be evaluated. For the metric described by Eq. (3.1), the action of the scalar
fields is written as

S̄φ̄,ζ̄ =−
∫

dx6√−ḡ
[
ḡMN

2 φ̄,M φ̄,N + ḡMN

2 ζ̄,M ζ̄,N + V
(
φ̄, ζ̄

)]

=−
∫

dx6√−g
(

1− 1
4$

MN$MN

) [
ḡMN

2 φ̄,M φ̄,N + ḡMN

2 ζ̄,M ζ̄,N + V
(
φ̄, ζ̄

)]

=1
4

∫
dx6√−g $MN$MN

[
gMN

2 φ,Mφ,N + gMN

2 ζ,Mζ,N + V (φ, ζ)
]

−
∫

dx6√−g
[
gMN

2 φ̄,M φ̄,N + gMN

2 ζ̄,M ζ̄,N

+$
MN

2 φ̄,M φ̄,N + $MN

2 ζ̄,M ζ̄,N + V
(
φ̄, ζ̄

)]
, (3.20)

6 There are also $MN ∇̂M ∇̂NδA and $MN ĝ
MN ĝAB∇̂A∇̂BδA, which are ei-

ther null
(
$MN ĝ

MN ĝAB∇̂A∇̂BδA = 0
)

or contribute only as a boundary term(
$MN ∇̂M ∇̂NδA = ∇̂M

(
$MN ∇̂NδA

))
in the transverse traceless gauge (∇̂M$MN = ĝMN$MN =

0) [69]. Therefore, one has a vanishing contribution from
(
∂µ∂ν − 1

4ωµνω
αβ∂α∂β

)
δA, i.e. the

fluctuations of the scalar contributions are completely decoupled from the transverse traceless
gravitational fluctuations, which is consistent with preliminary results in six-dimensional models [71].
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where φ̄ = φ + δφ and ζ̄ = ζ + δζ. The only relevant terms for the coupling between
tensorial and scalar perturbations are $MN φ̄,M φ̄,N and $MN ζ̄,M ζ̄,N , which once again are
evidently null since $MNφ,M = $MNζ,M = 0.

Hence, to summarize, the tensorial fluctuations, $µν , are completely decoupled
from the scalar perturbations, i.e. δA, δφ and δζ, and the action that drives the dynamics
of $µν can be cast in the form of (3.40), as pointed out in Ref. [71]. In the above context,
one can disregard the perturbations of the scalar fields when dealing with the dynamics
of gravity [69]. Note that the decoupling of scalar perturbations only happen because
we assumed $ij to vanish, in general tensorial perturbations can only couple with scalar
perturbations by terms alike $ijφ̄,iφ̄,j.

3.1.2 The Perturbed Action

In Sec. 2.2, the action for gravity was presented to the zero-th order in $. But to
determine the dynamical portion of the perturbations one needs to determine the action
to the second order in $. The gravitational portion of the action is given by

S̄g = 2M4
∫
R̄
√
−ḡd6x, (3.21)

where ḡ = det (g). Thus one is required to calculate the Ricci scalar, R̄, and the metric
determinant, ḡ, both to second order in $. To achieve one must determine the inverse of
the metric and the connections to second order. The inverse metric can be written as

ḡ−1 = e2A
(
ĝMN −$MN + δ2gMN

) ∂

∂xM
⊗ ∂

∂xN
, (3.22)

which satisfies

ḡMDḡ
DN = (ĝMD +$MD)

(
ĝDN −$DN + δ2gDN

)
= δNM , (3.23)

therefore one must have that
δ2gMN = $M

D$
DN (3.24)

The connections on the other hand is given by

Γ̄PMN =Γ̂PMN − A,NδPM − A,MδPN + A,S ĝ
PS ĝMN

+ A,S ĝ
PS$MN − A,S$PS ĝMN + (δΓ)PMN + δ2ΓPMN , (3.25)

where δΓ are δ2Γ are tensor fields. The condition of compatibility between the metric and
the covariant derivative then implies

∇̄P ḡMN = 0 =⇒

∇̂P$MN = ĝMKδΓKNP + ĝNKδΓKMP ,

ĝMKδ
2ΓKNP + ĝNKδ

2ΓKMP = −$MKδΓKNP −$NKδΓKMP .
(3.26)
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The first equation is exactly (3.7), and from it we have already isolated δΓPMN ,

δΓPMN = 1
2 ĝ

PK
(
∇̂N$MK + ∇̂M$KN − ∇̂K$MN

)
. (3.27)

From equation (3.26), one now isolates δ2ΓPMN by summing the permutations in a particular
order to find

δ2ΓPMN = 1
2
(
$−1

)SK (
∇̂N$MD + ∇̂M$DN − ∇̂D$MN

)
. (3.28)

All the previous can be substituted in the expression of the Ricci scalar, to find it to
second order in $,

R̄ =e2A
{
R̂−$PKR̂

PK +$M
D$

DN R̂MN + ∇̂S

[
∇̂M$

SM − ĝMN∇̂S$MN

−ĝMN$SD∇̂N$MD + ĝSN$PD∇̂N$PD − ĝSN$PD∇̂D$PN + ĝMN$SD∇̂D$MN

]
− 1

4 ĝ
MN ĝPS∇̂K$PS∇̂K$MN + 1

2∇̂
K$MN∇̂N$MK −

1
4∇̂

K$MN∇̂K$MN

+10
[
�̂A− 1

2 ĝ
SJ ĝPK

(
2∇̂K$PJ − ∇̂J$PK

)
A,S −$PK∇̂P ∇̂KA+$P

J$
JK∇̂P ∇̂KA

+1
2 ĝ

SJ$PK
(
2∇̂K$PJ − ∇̂J$PK

)
A,S + 1

2 ĝ
PK$SJ

(
2∇̂K$PJ − ∇̂J$PK

)
A,S

]
− 20

[
ĝPKA,PA,K −$PKA,PA,K +$P

J$
JKA,PA,K

] }
, (3.29)

On the other hand, the determinant of the metric is given by
√
−ḡ = e−6A

√
− det [ĝMN +$MN ] = e−6A

√
− det [ĝSN ] det [δSM + ĝSP$PM ]

= e−6A
√
−ĝ
√

1 +$M
M −

1
2$

MN$MN + 1
2$

M
M$N

N

= e−6A
√
−ĝ

(
1 + 1

2$
M
M −

1
4$

MN$MN + 1
8$

M
M$

N
N

)
(3.30)

Substituting Eqs. (3.29) and (3.30) in action (3.21), then introducing the assumed con-
straints, $Mi = A,µ = 0, fixing the gauge ∇̂M$MN = ĝMN$MN = 0 and discarding
boundary terms, leads to the gravitational perturbed action

Sg = 2M4
∫

d6x
√
−gR, (3.31)

and

δSg = 2M4
∫

d6xe−4A
√
−ĝ

− 1
4∇̂

K$µν∇̂K$µν −
1
4$

µν$µνR̂−
5
2$

µν$µν�̂A

+ 5$µν$µνA
,iA,i + 1

2∇̂
κ$µν∇̂ν$µκ +$µ

δ$
δνR̂µν − ĝij$µν∇̂j$µνA,i

, (3.32)

where Sg represents the zero-th order term, and from it the Planck scale was determined
in Sec. 2.2. It is δSg that contains the dynamical portion of the perturbations. But to
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realize the complete formalism one still needs to determine the action for the matter fields,
to second order in $, which is given by

S̄M =
∫

d6x
√
−ḡ

(
− ḡ

MN

2 φ,Mφ,N −
ḡMN

2 ζ,Mζ,N − V
)

=
∫

d6xe−6A
√
−ĝ

(
1− 1

4$
MN$MN

)−e2A
(
ĝMN −$MN +$MD$N

D

)
2 φ,Mφ,N

−
e2A

(
ĝMN −$MN +$MD$N

D

)
2 ζ,Mζ,N − V


=
∫

d6xe−6A
√
−ĝ

(
1− 1

4$
MN$MN

) [
−g

MN

2 φ,Mφ,N −
gMN

2 ζ,Mζ,N − V
]

= SM + δSM , (3.33)

where one defines

SM =
∫

d6x
√
−g

[
−g

MN

2 φ,Mφ,N −
gMN

2 ζ,Mζ,N − V
]
, (3.34)

and

δSM =
∫

d6xe−6A
√
−ĝ1

4$
MN$MN

[
gMN

2 φ,Mφ,N + gMN

2 ζ,Mζ,N + V

]
. (3.35)

The perturbed portion of the matter action can be better expressed if one employs that

$MJ$D
MTJD = −e−2A$MN$NM

(
φ,Kφ,K

2 + ζ ,Kζ,K
2 + V

)
, (3.36)

and

$MJ$D
M
TJD
4M4 = $µκ$δ

µĜκδ − 4$µν$µν�̂A+ 6$µν$µν ĝ
ij A,iA,j. (3.37)

Substituting in the perturbed matter action leads to

δSM = −M4
∫

d6xe−4A
√
−ĝ

(
$µκ$δ

µĜκδ − 4$µν$µν�̂A+ 6$µν$µν ĝ
ij A,iA,j

)
. (3.38)

Resuming from the total action,

S̄ = S̄g + S̄M = Sg + SM + δSg + δSM = S + δS, (3.39)

substituting Eqs. (3.32) and (3.38), imposing a constant curvature space7, and discarding
boundary terms, one finds the total perturbed action as

δS =2M4
∫

d6xe−4A
√
−ĝ

− 1
4∇̂

K$µν∇̂K$µν − ĝij$µν∇̂j$µνA,i

+$µν$µν

(
2A,iA,i −

Λ
6 −

1
2�̂A

), (3.40)

which will later select the localized solutions of Eq. (3.17), which namely describe the
four-dimensional gravity. Varying action (3.40) with respect to $MN reduces to Eq. (3.17),
as expected.
7 Rεµνκ = Λ

3 (ωενωµκ − ωεκωµν).
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3.1.3 The Quantum Mechanical Analogy

Eq. (3.17) can be readily refined by assuming a separation of variables algorithm,

$µν =
∑
m∈I

Φm(u, v)$̃m
µν(xρ), (3.41)

which implies into two equations, (
∆−m2

)
$̃m
µν = 0, (3.42)

and
4̂2Φm − 4σ̂ijA,iΦm,j =

(
2Λ
3 −m

2
)

Φm, (3.43)

where ∆ = ωαβ∇̂α∇̂β, 4̂2 = σ̂ij∇̂i∇̂j and m2 is a separation constant.

A simpler form of Eq. (3.43) can be achieved by rescaling the field Φm = e2Aχm,
so as to give

−4̂2χm + 2
(
2σ̂ijA,iA,j − 4̂2A

)
χm =

(
m2 − 2Λ

3

)
χm, (3.44)

which shall be identified with a time independent Schrödinger-like equation in curved space
(B2, σ̂), with the energy EQM = m2 − 2Λ/3 and the “quantum mechanical” potential

VQM(u, v) = 2
(
2A,iA,i − 4̂2A

)
= 2

[
2σ̂ijA,iA,j −

1√
σ̂

(√
σ̂σ̂ijA,i

)
,j

]
. (3.45)

A “flat” Schrödinger-like equation is indeed solely justified for a conformally flat
metric (f̄ = h̄ = 0 ⇐⇒ σ̂ = γ), with γ = diag (1, 1) [69]. Otherwise the curvature of
(B2, σ̂) is completely arbitrary, and the curvature intricacies introduce the possibility of
some additional localization aspect [69].

The set I is populated by the eigenvalues of Eq. (3.44), which give the masses of
the gravitational fluctuations [69]. If I does not contain any tachyonic states, i.e. states
with imaginary masses (m2 < 0), then the brane model is stable by tensorial perturbations.
Otherwise, the configuration may present instabilities.

3.1.4 On the Stability of the Scalar Fields

As identified in previous sections, the scalar field perturbation is completely decou-
pled from tensorial ones, thus it be addressed separately. If the potential for the scalar fields
do not present a local minima, occurrence of instabilities is not discarded [69]. However,
the dynamics of the scalar field is not only governed by the potential, but also by the
curvature of space, i.e. A, h and f . Thus, even if there not being local minima from V,
stable configurations are possible under particular conditions [69]. As an example, consider
models III, IV and V [1]. The scalar field φ follows a similar structure to the ones found
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in five-dimensional models [81, 82, 83, 1], thus should be stable by extension. Since model
IV only presents one scalar field (φ) it should be stable [69]. On the other hand, scalar
field ζ could exhibit instabilities in models III and V , since potential V is independent on
ζ [69]. But the existence of curvature implies in the constraint equation,

� (ζ + δζ) = 0 =⇒ �̂ (δζ)− 4 σ̂ijA,i (δζ),j = 0. (3.46)

Therefore, the scalar field ζ satisfies the same stability equation (with Λ = 0) as the
gravitational field (cf. Eq. (3.17)), and should be stable if the gravitational field is8 [69]. The
stability of braneworld models is thus completely determined by the tensorial perturbations
[69].

3.1.5 The Effective Action and Localization

The quantum mechanical analogy can be further extended by determining the
effective action and analyzing its properties [69]. Following the same algorithm from
Eq. (3.41), the action for the perturbations can be written as

δS = 2M4 ∑
m1,m2∈I

∫
d6xe−4A

√
−ĝ

− 1
4Φm1Φm2∇̂κ ($̃m1)µν ∇̂κ ($̃m2)µν

− 1
4 ($̃m1)µν ($̃m2)µν ∇̂

iΦm1∇̂iΦm2 − σ̂ijΦm1 ($̃m1)µν ($̃m2)µν ∇̂jΦm2A,i

+ Φm1Φm2 ($̃m1)µν ($̃m2)µν
(

2A,iA,i −
Λ
6 −

1
2�̂A

), (3.47)

where one has employed the fact that ∇̂i

[
Φmj

(
$̃mj

)µν]
=
(
$̃mj

)µν
∇̂iΦmj , which is true

because ĝ is factorisable and Γ̂νjµ vanishes. After some straightforward simplifications, Eq.
(3.47) can be reduced to

δS = 2M4 ∑
m,m̃∈I

∫
d2x
√
σ̂e−4AΦm̃Φm

∫
d4x
√
−ω

− 1
4∇̂

κ ($̃m)µν ∇̂κ ($̃m̃)µν

− m2

4 ($̃m)µν ($̃m̃)µν

, (3.48)

and after rescaling the scalar field by Φm = e2Aχm, one finds

δS = −M
4

2
∑

m,m̃∈I

∫
d2y
√
σ̂χm̃χm

∫
d4x
√
−ω

(
∇̂κ$̃µν

m ∇̂κ$̃
m̃
µν +m2$̃µν

m $̃
m̃
µν

)
, (3.49)

which corresponds to the same problem driven by Eq. (3.42), if and only if the gravitational
modes are
8 Similarly, the stability analysis for models I and II is more intricate, since the potential depends on

both φ and ζ.
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1. Normalizable, i.e. 0 <
∫

d2y
√
σ̂χm

2 6=∞, ∀m ∈ I;

2. Orthogonal, i.e.
∫

d2y
√
σ̂χm̃χm = 0 if m 6= m̃.

When the above conditions are satisfied, for operators compatible with ω, the
action reads

δS = −M
4

2
∑
m∈I

∫
d2y
√
σ̂χm

2
∫

d4x
√
−ω

(
∆κ$̃µν

m ∆κ$̃
m
µν +m2$̃µν

m $̃
m
µν

)
, (3.50)

which does not provide a coupling between the different states $̃mi . In this scope, variations
of action (3.50) lead to the Eq. (3.42). In particular, in higher-dimensional theories there
should be as many massive gravitons as can be fit in the set I, which contains the
normalizable states of the Schrödinger equation (3.44) [69].

The requirement of normalizability again ratifies the quantum mechanical analogy.
The gravitational modes χm must satisfy a Schrödinger-like equation and be normalized in
the curved space (B2, σ̂), and the localization of gravity at the vicinity of the brane now
becomes contingent on the “quantum mechanical” problem described by Eqs. (3.44) and
(3.50) [69]. The problem of locality is then reduced to solving the “quantum mechanical”
problem described by Eq. (3.44) according to the normalization condition from Eq. (3.50)
[69].

One can also note that the gravitational strength of the gravitation perturbation is
directly related to such normalizability,

M4

2

∫
d2y
√
σ̂χm

2, (3.51)

here this value is of no importance, what really matters is that
∫

d2x
√
σ̂χm

2 is finite, or
in other words, each of the states χm are normalizable in the curved space (B2, σ̂). One
can understand this condition as follows. If the χm were not normalizable the effective
gravitational strength G, of such mode, would be zero, then no four-dimensional effective
gravitational interaction would happen in the brane, since gravity would not couple to
four-dimensional matter, gravity would not look four-dimensional and the graviton would
not be “localized” in the brane.

3.1.6 The Newtonian Limit

Rigorously, for thick braneworlds, matter fields should be smeared over the bulk
[69]. But, for the sake of simplicity, the gravitational potential will be generated by a
point-like source of mass9 M. From a general standpoint, one may write the action of
matter fields as

SM =
∫

d6x
√
−ḡLM(Φ, ḡ), (3.52)

9 This same strategy was employed by Ref. [71].
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where Φ represents all matter fields. If ḡ = g +$, where $ is a perturbation, then the
matter action to first order in $ takes the form

SM =
∫

d6x
√
−gLM (Φ, g) +

∑
m∈I

∫
d6xe−6A

√
−ĝ χm ($̃m)µν

T µν

2 , (3.53)

where T µν is the stress energy tensor calculated out of LM(Φ, g). On the other hand, if
the matter is regarded as a point-like particle of massM, then the stress energy tensor is,

Sp =M
∫

dτ
√
−gMNvMvN =⇒ TMN(xQ) = Mδ(xQ − xP )vM(xP )vN(xP )√

−g
. (3.54)

Therefore, the action of a point-like particle, after substituting (3.54) into (3.53),
up to the first order in $, is written as

δSp = −M2
∑
m∈I

∫
d6x χmδ(xQ − xP )$̃m

µνvµvν . (3.55)

where v represents the velocity of the particle in space-time and xP is the position in E6.
After a re-parameterization of the proper time so to satisfy ωµνvµvν = −1, for a particle
at yi0, the total action, to the leading order in $, becomes

δS =−
∑
m∈I

[
M4

2

∫
d2y
√
σ̂ χm

2
∫

d4x
√
−ω

(
∆κ$̃µν

m ∆κ$̃
m
µν +m2$̃µν

m $̃
m
µν

)
+M2 e2A(yi0)χm(yi0)

∫
dx4δ(xµ − xα)$̃m

µνvµvν
]
, (3.56)

where xα and yi0 represent the position of the point-like particle in M4 and B2, respectively.
Varying with respect to $ leads to the equations of motion

(
∆2 −m2

)
$̃m
µν = Me2A(yi0)χm(yi0)

2M4
∫

d2y
√
σ̂ χm

2

vµvνδ(xµ − xα)√
−ω

. (3.57)

Hence, the Newtonian limit is obtained through the 00 component of Eq. (3.57),
with v1 = v2 = v3 = 0 and v0 = 1/

√
−ω00, for a static particle [69]. Also supposing that

the particle finds itself at the center of a system of coordinates (r = 0), the configuration
has been stabilized, i.e. with $̃ independent of time, and the space displacements for
identifying the Newtonian potential are not of cosmological scale (r ∼ 1/

√
Λ) [69]. It allows

for setting the approximation ω ≈ η so to simplify the equations of motion into the form
of (

∇2 −m2
)
$̃m

00 = Me2A(yi0)χm(yi0)
2M4

∫
d2y
√
σ̂χm

2
δ(r), (3.58)

with the direct solution10

$̃m
00 = Me2A(yi0)χm(yi0)

8πM4
∫

d2y
√
σ̂χm

2

e−mr

r , (3.59)

10 The solution is true for as long as m ∈ R, otherwise, i.e. m ∈ C (Re(m) = 0), one would find cos(mr)
r

instead of e
−mr

r .
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so to obtain the Newtonian potential,

φN(r) = $00(yi0, r)
4 =

∑
m∈I

Me4A(yi0) [χm(yi0)]2

32πM4
∫

d2y
√
σ̂χm

2

e−mr

r (3.60)

which can be considered in order to make the connection with the phenomenology of
braneworlds [69].

3.2 The Quantum Analogue Problem for Separable Solutions
The prescription of the preceding subsections can be readily particularized to

separable solutions. For the geometries described by Eq. (2.47), the quantum problem,
Eq. (3.44), is characterized by the equation

− ef̃−h̃
(
ef̃−h̃χm,u

)
,u
− eĥ−f̂

(
eĥ−f̂χm,v

)
,v

+ 2
[
2e2f̃−2h̃Ã,u

2 − ef̃−h̃
(
ef̃−h̃Ã,u

)
,u

]
χm

+ 2
[
2e2ĥ−2f̂ Â,v

2 − eĥ−f̂
(
eĥ−f̂ Â,v

)
,v

]
χm = e2Ã−2h̃e2Â−2f̂

(
m2 − 2Λ

3

)
χm. (3.61)

A separation of variables technique, with χm = e
f̂−ĥ

2
∑
k∈K χ̃k(u)χ̂km(v), can be applied to

Eq. (3.61) if:

1. m =
√

2Λ/3 (i.e. the zero mode);

2. h̃ = Ã or f̂ = Â.

If h̃ 6= Ã and f̂ 6= Â the solutions of Eq. (3.61) are not separable unless m =
√

2Λ/3,
which always has the solution χ0 = be−2A, as can be seen from Eq. (3.43) [71]. On the
other hand, whenever h̃ = Ã the variables are separable and Eq. (3.61) is reduced to two
equations

−ef̃−Ã
(
ef̃−Ãχ̃mk,u

)
,u

+ 2
[
2e2f̃−2ÃÃ,u

2 − ef̃−Ã
(
ef̃−ÃÃ,u

)
,u

]
χ̃mk = k2χ̃mk, (3.62)

and

− χ̂mk,vv +
[
4Â,v2 − 2

(
ĥ− f̂

)
,v
Â,v − 2Â,vv −

1
2
(
f̂ − ĥ

)
,vv

+1
4
(
f̂,v − ĥ,v

)2
+ e2f̂−2ĥk2

]
χ̂mk = e2Â−2ĥ

(
m2 − 2Λ

3

)
χ̂mk. (3.63)

The normalization of the gravitational modes is fixed by∫ √
σ̂χm

2dudv =
∑
k∈K

∫
eÃ−f̃ χ̃k

2du
∫
e2Â−2ĥχ̂mk

2dv <∞. (3.64)

Eq. (3.62) and the normalization condition for χ̃k are precisely the same as in five
dimensions11 [69]. However, Eq. (3.63) represents a distinct problem12, as it shall be
discussed in the following.
11 Since coordinates can always be chosen such that f̃ = Ã.
12 Unless f̂ = Â, which is the case of trivial-like models.
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3.2.1 Intersecting-like Models

Following the same procedure, a separation of variables technique can be applied
to intersecting-like models if:

1. m =
√

2Λ/3 (i.e. the zero mode);

2. p = 0 (or p = 1) (i.e. for models III, IV , V and V I).

Models I and II will not present separable solutions, thus we will only be concerned with
the zero modes for these models. On the other hand, the Schrödinger-like equation for
models III to V I will be separable, but one will not always be able to solve the resulting
equations. Solely model IV will have its full massive spectrum determined analytically.

3.2.1.1 Intesecting Branes: Models I and II

As argued before, for the p 6= 0 constructions, i.e. models I and II, one can merely
determine the zero modes as, respectively,

χI0 = BI

√
cosh (2cuu)

∣∣∣∣cos
(
ϕ

2

)∣∣∣∣, (3.65)

and

χII0 = BII

√√√√∣∣∣∣∣cos
(
θ

2

)
cos

(
ϕ

2

)∣∣∣∣∣, (3.66)

where BI and BII are normalization constants. Wave functions (3.65) and (3.66) are
normalizable, since

∫ √
σ̂
(
χI0
)2

dudv =
r
(
BI
)2

2cu
πΓ

(
p+3

4

)
Γ
(
p−2

4

)
Γ
(
p+5

4

)
Γ
(
p
4

) , (3.67)

and
∫ √

σ̂
(
χII0

)2
dudv = rρ

(
BII

)2 πΓ
(

4−p
4

)
Γ
(
p+3

4

)
Γ
(

6−p
4

)
Γ
(
p+5

4

) . (3.68)

Additional massive modes are not straightforwardly obtained, thus the corrections
to the Newtonian gravity cannot be evaluated. The associated Planck scale Mpl is depicted
in Fig. 16.

Ordinarily, for brane models, the gravitational scale is controlled by the parameters
cu and cv. In contrast, the strength of gravity for models I and II can be set by choosing
the parameter p, which can take widely different values when p & 2, for model I, or p . 4,
for model II [69]. This is relevant when addressing the hierarchy problem, because a large
Planck scale can be achieved for any value of cu and cv. Unfortunately, model I is plagued
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Figure 16 – The Planck scale M∗
pl = 2Mpl

√
cucv/M

2√π as a function of p. The plots are
for model I (red line) and II (black line).

by several modeling issues: the stress energy tensor has singularities and the total defect
energy formation is infinite. Model II on the other hand only presents singularities [69].

Even though models I and II are constructed from the same solution, the transition
from one to the other involves redefining cu from completely real, for model I, to completely
imaginary, for model II [69]. This transition will imply in a discontinuous behavior for any
physical constant, as exhibited by the discontinuity depicted in Fig. 16 at the boundary
between models I and II [69]. Except for when p = 3, in this case the transition is not
discontinuous.

3.2.1.2 Intesecting Branes: Model III

Eq. (3.63) for model III (represented by metric (2.90)) is expressed by

−χ̂IIImk,vv −
[
C − k2 + C sec2

(
2
√
Cv
)]
χ̂IIImk = m2χ̂IIImk√

cos
(
2
√
Cv
) . (3.69)

For the general massive case, Eq. (3.69) cannot be straightforwardly integrated,
and the unique immediate solution is the zero mode, which is proportional to the warp
factor when k = 0 [69]. For any k, the zero mode can be written as

χ̂III0k = BIII
0k

√
cos

(
2
√
Cv
)

2F1

1
4

1−
√

1− k2

C

 , 1
4

1 +
√

1− k2

C

 ; 1; cos2
(
2
√
Cv
) .

(3.70)
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The hypergeometric component, 2F1 (α, β; γ; z), have arguments such that γ−α−β = 1/2,
thus a discontinuity of the first derivatives, at v = 0, is only avoidable if either α or β is a
non-positive integer −j, j ∈ N (see Appendix B for further details) [69]. Otherwise, an
unphysical discontinuity is identified for the stress energy tensor of the perturbations, since
the latter depends on the first derivatives of (3.83) [69]. Therefore, the allowed values of l
are given by l = −j or l = j+1/2, both implying into the same results. The first derivative
of (3.70) is necessarily discontinuous at v = 0, unless the first or second argument of the
hypergeometric function, 2F1, is a non-positive integer −j, j ∈ N, or k2 = −8Cj(2j + 1)
[69]. This means that k = 0 should represent the zero mode for model III, since Eq. (3.62)
is of similar structure to the quantum problem of five-dimensional models and thus be
expected that k2 ≥ 0. Regardless, some of the “possible” degeneracies of the zero mode,
for model III, are depicted in Fig. 17 [69].
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Figure 17 – The degeneracies of the zero mode of model III as functions of ϕ = 2
√
Cv for

j = 0 (full line), j = 1 (dashed line), j = 2 (dotted line) and j = 3 (dot-dashed
line).

Eq. (3.69) can be still more simplified if one makes C = 0 and v = rϕ, leading to a
trivial extension of five-dimensional models [1],

−χ̂IIImk,ϕϕ = r2
(
m2 − k2

)
χ̂mk, (3.71)

which results into

χ̂IIImk = B cos (nϕ) , (3.72)
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where m2 = n2/r2 + k2, B is a normalization constant and one assumes boundary
conditions13 such that χ̂IIImk = 0 at ϕ = ±π [69]. This trivial solution will be important for
the sphere models, where one will be able to compare trivial constructions with a more
sophisticated configuration, namely that one engendered by model IV [69].

3.2.1.3 Intesecting Branes: Model IV

To simplify the analysis that follows, it is more convenient to work with coordinates
such that

v = 2√
C

arcsin
[
tanh

(√
Cy

2

)]
, (3.73)

which, from Eq. (2.104), implies into the metric IV recasted as

gIV = 4Λ
3C sech2

(√
Cy

2

)
e−2Ãωµνdxµdxν + e−2Ãdu2 + e−2Ã sech2

(√
Cy

2

)
dy2. (3.74)

and the Schrödinger-like equation (3.63) becomes a Pöschl-Teller equation [86],

−χ̂IVmk,zz − λ (λ− 1) sech2 (z) χ̂IVmk = E χ̂IVmk, (3.75)

where λ = 2
√

1− k2

C
+ 1

2 , E = 3m2

Λ −
17
4 and z =

√
Cy/2. The general solution of Eq. (3.75)

is

χ̂IVmk =B1 coshλ (z) 2F1

[
α, β; 1

2;− sinh2 (z)
]

+B2 coshλ (z) sinh (z) 2F1

[
α + 1

2 , β + 1
2; 3

2;− sinh2 (z)
]
, (3.76)

with the parameters α = 1
2

(
λ−
√
−E

)
and β = 1

2

(
λ+
√
−E

)
. If 0 ≤ λ ≤ 1 (i.e. k2 ≥

15C/16) or E > 0 (i.e.m2 > 17
12Λ) the above solutions correspond to propagating modes [69].

The existence of singularities at the boundaries of model IV makes the propagating modes
not unitary [82, 87, 69]. Otherwise, imposing unitary boundary conditions [82, 87, 69]
suppresses all propagating modes. In this case, the unitary spectrum shall be composed
uniquely of bound states14 [69].

The normalization condition for χ̂mk, in terms of conformal coordinates (3.73),
reads

0 <
∫ ∞
−∞

(
χ̂IVmk

)2
dy 6=∞. (3.77)

Therefore, normalizable modes will exist for λ > 1 and negative E, where

χ̂IV+
jk = B+

jk cosh2
√

1− k2
C

+ 1
2 (z) 2F1

1
2 + j, 2

√
1− k2

C
− j; 1

2;− sinh2 (z)
 (3.78)

13 With the intent of discarding the sin (nϕ) terms.
14 Because they do not generate any flux into the singularities at the boundaries of space.
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represents normalizable even eigenstates, with mass eigenvalues

mIV+
jk =

√√√√√√Λ
3

17
4 −

2
√

1− k2

C
− 1

2 − 2j
2
, 0 ≤ j <

√
1− k2

C
− 1

4; (3.79)

and

χ̂IV−lk = B−lk cosh2
√

1− k2
C

+ 1
2 (z) sinh (z) 2F1

3
2 + l, 2

√
1− k2

C
− l; 3

2;− sinh2 (z)
 (3.80)

represents normalizable odd eigenstates, with mass eigenvalues

mIV−
lk =

√√√√√√Λ
3

17
4 −

2
√

1− k2

C
− 3

2 − 2l
2
, 0 ≤ l <

√
1− k2

C
− 3

4; (3.81)

where j and l are natural numbers, and B±jk are normalization constants. Some normalizable
modes are depicted in Fig. 18. The masses, as described by Eqs. (3.79) and (3.81), are
strictly real valued as long as 0 ≤ k2 < 15C/16, while for imaginary values of k some
tachyonic states are allowed [69].

The constant k is defined out of the eigenvalue spectrum of Eq. (3.62), which
is exactly the same Schrödinger-like equation, with energy k2, of the well known five-
dimensional braneworld models [3, 4, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 82]. If the warp factor Ã leads to a stable braneworld configuration,
then the eigenvalues of Eq. (3.62) are positively valued, i.e. k2 ≥ 0, and model IV will be
a stable configuration [69].

Interestingly, model IV does not have a singular Ricci scalar15, but it exhibits
a mass gap between the zero and massive modes [69]. This is noteworthy because one
would expect that a mass gap would imply in singularities of the Ricci scalar, which
always happens for five-dimensional models [87]. Thus, one may conjecture that mass gaps
and naked singularities are connected, but the singularity might be related with scalar
invariants other than the Ricci scalar [69].

3.2.1.4 Intesecting Branes: Model V

Finally, once applied to model V , Eq. (3.63) is cast into the form of

−χ̂Vmk,yy +
[
−1

4 sec2 (y) + cos 2
3 (y) e−2Â k2

3 |Λ|

]
χ̂Vmk =

(
m2

3 |Λ| + 17
36

)
χ̂Vmk, (3.82)

where y = v
√

3 |Λ|. Fixing k = 0 transforms the above result, from Eq. (3.82), into a
trigonometric Pöschl-Teller equation, with the straightforward solution identified by

χ̂Vm0 = c1

√
cos(y) 2F1

1
4 +

√
12m2 + 17 |Λ|

12
√
|Λ|

,
1
4 −

√
12m2 + 17 |Λ|

12
√
|Λ|

; 1; cos2(y)
 , (3.83)

15 The singularities at the edges of space are associated with the Kretschmann scalar.
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Figure 18 – Normalized gravitational wave functions χ̂IV for model IV as functions of
z = v

√
C/2, for k2/C = 7/16 (black lines), k2/C = 0 (blue lines), k2/C =

−9/16 (red lines) and k2/C = −33/16 (brown lines). The full, dashed and
dot-dashed lines represent j = 0, l = 0 and j = 1, respectively.

The hypergeometric component, 2F1 (α, β; γ; z), have arguments such that γ−α−β = 1/2,
thus a discontinuity of the first derivatives, at v = 0, is only avoidable if either α or β
is a non-positive integer −j, j ∈ N (see Appendix B for further details) [69]. Otherwise,
an unphysical discontinuity is identified for the stress energy tensor of the perturbations,
since the latter depends on the first derivatives of (3.83) [69]. Therefore, the allowed values
of m are given by

m =
√

2 |Λ|
3
√

18j2 + 9j − 1 , (3.84)

The normalized profile of the wave function, Eq. (3.83), for several values of j is depicted
in Fig. 19 [69]. The zero mode presents a negative eigenvalue, m2 = −

√
2|Λ|

3 , and therefore
points to a possible instability of model V .

3.2.1.5 Intesecting Branes: Model V I

The last intersecting braneworld, model V I, presents a enhanced Schrödinger-like
equation16,

−χmk,vv +
[(
k2 − 15C

16

)
e−2Â − 3

4

(3C
4 − Λ

)
e6Â

]
χmk =

(
m2 − 17Λ

12

)
χmk, (3.85)

16 Coordinates are chosen such that ĥ = Â.
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Figure 19 – Normalized gravitational wave functions χ̂V for model V as functions of
y = v

√
3 |Λ|, for j = 0 (black lines), j = 1 (blue lines), j = 2 (red lines), j = 3

(brown lines) and j = 4 (purple lines). The full, dashed and dot-dashed lines
represent j = 0, l = 0 and j = 1, respectively.

which is not of straightforward integration. Yet, the zero mode χV I0 = BV Ie
−2A is a

normalizable solution, since
∫ √

σ̂
(
χV I0

)2
dudv = BV I

2
∫ ∞

0

e−2ÂdÂ√(
C
4 −

Λ
3

)
e8Â + Λ

3 e
2Â − C

4

∫
du e−f̃e−3Ã (3.86)

is finite, where BV I is a normalization constant. Massive modes are not straightforwardly
obtained, and the corrections to Newtonian theory cannot be determined. The associated
Planck scale Mpl is depicted in Fig. 5.

3.2.2 The S2 Models

The sphere models based on models III and IV [1] are achieved by assuming that
Ã = − ln (sin θ), f̃ = 0, u = rθ and v = rϕ [69]. Therefore, Eq. (3.62) can be written as

−

[
sin (θ) χ̃ζk,θ

]
,θ

sin (θ) +
[

4 + kr2

sin2 (θ) − 6
]
χ̃ζk = 0, (3.87)

which has the solution

χ̃ζk = B1kP
√
kr2+4

2 (cos (θ)) +B2kQ
√
kr2+4

2 (cos (θ)) , (3.88)

where B1k and B2k are normalization constants.
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To avoid singularities and trivial null solutions (which would be non-normalizable),
expression (3.88) restricts the possible values of k [69]. More precisely, normalizable modes
are exclusively achieved for k = −3/r2 or k = 0, which are both depicted in Fig. 20.
However, the constant B2k must be fixed to zero, since Q

√
kr2+4

2 is non-normalizable in this
space for all k.
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Figure 20 – Normalized gravitational wave functions χ̃ζk for the sphere models, for k = 0
(full black line) and k = −3/r2 (black dashed line).

3.2.2.1 Model III (C = 0)

Let the sphere models be constructed out of model III, with C = 0, which is
supported by the metric

gIIIζ = sin2 (θ)
(
ηµνdxµdxν + r2dϕ2

)
+ r2dθ2. (3.89)

The gravitational massive modes are then identified by

χIII√
n2+3
r

= Bn1 cos (nϕ) cos (θ) sin (θ) , n 6= 1; (3.90)

χIIIn
r

= Bn2 cos (nϕ) sin2 (θ) , n 6= 2; (3.91)

and
χIII2
r

= B22 cos (2ϕ) sin2 (θ) +B11 cos (ϕ) cos (θ) sin (θ) . (3.92)
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In this case, a point-like source, placed at (θ = π/2, ϕ = 0), produces a Newtonian
potential17 of the form

φIIIN (r) = 3M
28π2r2M4

1
r

(
1 + 2

e
r
r − 1

)
≈



3M
28π2r2M4

1
r , if r� r

3M
27π2rM4

1
r2 , if r� r

. (3.93)

Thus, in the region r� r, the corrections to the Newtonian potential are exponen-
tially suppressed, and one recovers the ordinary Newtonian theory [69]. Likewise, whenever
r� r, the result from (3.93) is dominated by the higher-dimensional term, thus gravity
behaves as if the universe was five-dimensional [69]. In summary, the Newtonian potential
behaves exactly like in a five-dimensional ADD model [2, 69]. On the other hand, the
Newtonian gravitational constant is

GIII
N = 3

28π2r2M4 , (3.94)

which is similar to the Newtonian constant as determined from a six-dimensional ADD
model [2, 69].

3.2.2.2 Model IV

Model IV with a spherical internal space is characterized by the metric

gIVnζ = 4r2Λ
3n2 cos2

(
nϕ

2

)
sin2 (θ)ω+

µνdxµdxν + r2dθ2 + r2 sin2 (θ) dϕ2, (3.95)

where n ∈ {1, 2} and represents two distinct configurations of spherical models, which
shall be labeled IV1 and IV2, for n = 1 and n = 2, respectively [69].

Correspondently, two normalizable graviton modes are identified,

χIV1
2Λ
3

= B1 cos2
(
ϕ

2

)
sin2 (θ) , (3.96)

and
χIV1

4Λ
3

= B2 sin
(
ϕ

2

)
cos2

(
ϕ

2

)
sin2 (θ) , (3.97)

where B1 and B2 are normalization constants, and χIV1
2Λ
3

and χIV1
4Λ
3

represent gravitons of

mass m =
√

2Λ/3 and m = 2
√

Λ/3, respectively. The Newtonian potential associated with
model IV1 is

φIV1
N (r) = 9M

29r4Λ π2M4
e−
√

2Λ
3 r

r ≈ 9M
29r4Λ π2M4

1
r , (3.98)

17 Here one assumes that B11 = 0 for simpler equations.
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where the last approximation reinforces our choice of displacements much smaller than the
cosmological scale, i.e. r� 1/

√
Λ. Therefore, as far as the approximations here considered,

model IV1 implies, precisely, in Newton’s theory, with the gravitational constant

GIV1
N = 9

29r4Λ π2M4 , (3.99)

which is dependent upon the cosmological constant Λ and the radius r of S2.

On the other hand, a spherical model with n = 2 (IV2) implies into two normalizable
gravitational modes:

χIV2
2Λ
3

= B1 cos2 (ϕ) sin2 (θ) , (3.100)

and
χIV2

4Λ
3

= B2 sin (ϕ) cos2 (ϕ) sin2 (θ) +B3 cos (ϕ) sin (θ) cos (θ) , (3.101)

where B1, B2 and B3 are normalization constants.

The Newtonian potential for such a configuration is expressed by

φIV2
N (r) = 9M

27π2M4r4Λ
e−
√

2Λ
3 r

r ≈ 9M
27π2M4r4Λ

1
r , (3.102)

where, once again, displacement are not of cosmological scale. Therefore model IV2 also
implies in Newtonian theory, with the gravitational constant

GIV2
N = 9

27π2M4r4Λ , (3.103)

which is a similar result to that one from model IV1.

Had one proposed a more realistic model for matter18, then Eqs. (3.97) and (3.101)
would have significant effects in both the gravitational constant and Newtonian potential,
which could imply into significant phenomenological differences between models IV1 and
IV2 [69]. The same is true for model III: in a more realistic description, Eq. (3.90) would
modify Eqs. (3.93) and (3.94).

Just to conclude, considering that the grounds for the above discussed intersecting
braneworld models have been established, the localization of scalar, gauge and spinor fields
shall be in the core of the subsequent chapter.

18 Which is outside the scope of the present manuscript.
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For any braneworld model to be physically acceptable it ought to recover standard
four dimensional physics, at least within reasonable limits [7], and all physical fields must
thus be localized in a brane-like region of space. Considering that the grounds for both the
classical and quantum gravitational analysis of separable braneworld models have been
established, the localization of scalar, gauge and spinor fields shall be in the core of our
investigations in this chapter.

Starting from an ordinary six-dimensional action for scalar, gauge and spinor fields,
the problem of localization will be reduced to evaluating a quantum analogue problem;
the physical fields will present co-dimensional profiles that are normalizable and are
solutions of a Schrödinger-like equation, i.e. they constitute wave functions. From the
perspective of an observer who believes the universe to be four-dimensional, the now so
called four-dimensional observer, the action of six-dimensional fields must be minimized
as if they were four-dimensional. Therefore the wave function of any physical field will
only contribute to the coupling constants of this four-dimensional effective field theory.

If a physical field wave function is not normalizable, then the effective coupling, after
canonical normalization, with other forms of matter would be zero and no coupling would
happen in the brane. Since a non-normalizable field does not couple to four-dimensional
matter, it would not look four-dimensional and be “localized” in the brane. This idea can
be stated precisely by the subsequent definition:

Definition 1 Let Ψ be a field on the space (E6, g). We say that Ψ is “localized” in the
3-Brane (M4,ω) if it can be described by a four-dimensional effective field theory, i.e. the
scale of Ψ in the 3-Brane is finite.

In other words, if the setup predicts the scale of a field to be non-finite, i.e. non-normalizable,
then it is not localized in the Brane and can not be described effectively in four dimensions.
From a physical point of view, a four-dimensional observer will model six-dimensional
fields by the localizable modes, and their physical scale determined by the normalization
of its associated wave function. For the final objective of this manuscript, the leptons of
the SM will be identified with the zero modes of Weyl spinors, and their masses will be
determined from their wave functions.

For braneworld models in general, the inherited quantum problem for scalar fields
will be of similar nature to the gravitational one, and every conclusion drawn in Ch. 3
can be extended to scalar fields. Gauge fields on the other hand are notoriously difficult
to evaluate in a six-dimensional setup. The full massive spectrum is achievable if some
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exceptional assumptions are to be made, with the exception of the zero mode which can
be determined in more general terms.

Working with (5 + 1)-dimensions indeed is not only constrained to model building,
but also to localizing spin 1/2 particles without introducing additional fields, i.e. through
the same warp factor features that results into the gravity localization [64, 66, 67, 73]. In
some sense, this is not admitted in (4 + 1)-dimensions where some additional generating
mass field mechanisms are required to achieve localization [15, 16, 24, 29, 88, 89, 90, 91, 92].
With the exception of string-like solutions, which are not our main concern, non-interacting
Weyl spinors can not be localized in the vicinity of the braneworld. In particular, for Weyl
spinors with a charge associated to a gauge field, model IV and trivial-like models are
shown to give rise to localizable modes.

The chapter is thus organized as follows. In Sec. 4.1, the localization of scalar
fields and their similarities to the gravitational field are discussed. Sec. 4.2 is devoted to
the localization of gauge fields. Finally, in Sec. 4.3 the localization aspects of fermionic
fields are described, and Weyl spinors are shown to be localizable, for intersecting-like
braneworlds, if an interacting gauge field is included with a non-trivial co-dimensional
profile.

4.1 Scalar Fields
The simplest form of matter is given by a scalar field, but the latter, as shall be

argued as follows, satisfies the same equations for localization as the gravitational field.
Starting from massless Klein-Gordon field, which is described by the action

SKG = 1
2

∫
d6x
√
−g Φ,MΦ,M , (4.1)

and satisfies the equation

1√
−g

[√
−g gMNΦ,N

]
,M

= 0. (4.2)

Eq. (4.2) can be readily refined by a rescaling by e2A and applying a separation of variables
algorithm,

Φ(xµ, u, v) = e2A ∑
m∈I

φm (xµ) ξm (u, v) , (4.3)

which implies into two equations,[√
−ωωµνφ,µ

]
,ν√

−ω
= m2φ, (4.4)

and
−4̂2ξ +

(
4σ̂ijA,iA,j − 24̂2A

)
ξ = m2ξ. (4.5)
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where 4̂2 = σ̂ij∇̂i∇̂j and m2 is a separation constant. Following the same algorithm from
Eq. (4.3), the Klein-Gordon action can be written as

SKG = 1
2

∑
m1,m2∈I

∫
d2x
√
σ̂ξm1ξm2

∫
d4x
√
−ω

(
ωµνφm1 ,µφm2 ,ν +m2φm1φm2

)
. (4.6)

From Eqs. (4.5) and (4.6) it is clear that scalar fields satisfy the same quantum
mechanical analogue problem, with the identificationm2−2Λ/3→ m2, as gravity. Therefore
the results provided in Ch. 3 faithfully represent the localization aspects of massless Klein-
Gordon fields1, and no further analysis is needed.

4.2 Gauge Fields
The massive modes of gauge fields in six dimensional braneworlds are notoriously

difficult to determine, unless some exceptional assumptions are made. On the other hand,
the localization of zero modes is of straightforward analysis. Starting from the action of a
U(1) gauge field in six dimensions,

SE = −1
4

∫
d6x
√
−g F2, (4.7)

it follows the field equations
∇MFMN = 0, (4.8)

where F2 = FMNFMN , FMN = ∇[M BN ] = BN,M − BM,N and BM is the electromagnetic
potential. Eq. (4.8) can be broken into two equations, which after some manipulations are
given by

∆νFνµ + 1√
σ

[√
σσ̂jiωµνFiν

]
,j

= 0, (4.9)

and
σ̂ij√
−ω

[√
−ωωµνFνj

]
,µ

+ 1√
σ

[√
σσ̂lkσ̂ijFkj

]
,l

= 0. (4.10)

The usual quantum mechanical analogy can be applied to gauge fields, but Eqs. (4.9) and
(4.10) still lack some refinements that are specific to the type of mode one is describing.

4.2.1 The Zero Mode

A zero mode is thus defined by the solutions of Eqs. (4.9) and (4.10) that satisfies
∆νFνµ = 0 and Bi,µ = 0, otherwise the zero mode would not describe an ordinary four
dimensional gauge field. Therefore, by definition, the zero mode is described by the
equations

1√
σ

[√
σσ̂jiωµνBν,i

]
,j

= 0, (4.11)

1 Massive Klein-Gordon field could also be considered, but the results are similar to the massless case.
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and
σ̂ij√
−ω

[√
−ωωµνBν,j

]
,µ

+ 1√
σ

[√
σσ̂lkσ̂ijFkj

]
,l

= 0. (4.12)

A straightforward solution of Eq. (4.11) is Bν = Bν (xµ). Finally, the zero mode of a gauge
field is thus described by

∆νF
νµ = 0 and 1√

σ

[√
σσ̂lkσ̂ijFkj

]
,l

= 0, (4.13)

which is equivalent to two gauge fields each one living in a four and two dimensional
spaces, respectively. One could also include currents JN to the action, and the same would
be true for zero modes.

The normalization of the zero mode is thus a trivial endeavor, since the space-time
components of the gauge field Bµ are independent from the co-dimensions, and the effective
action is given by

SE = −1
4

∫
d2y
√
σ̂e−2A

∫
d4x
√
−ω F 2, (4.14)

where F 2 = ωµαωµβFµνFαβ and Fµν = ∆µBν −∆νBµ. For all braneworlds models build
in Ch. 2, the co-dimensional portion of the integral in Eq. (4.14) converges, and the zero
mode of gauge fields are localizable.

4.2.2 The Massive Modes

The spectrum of massive modes require an even large refinement: one must assume
that the co-dimensional components of the gauge field vanish. Eqs. (4.9) and (4.10) can
thus be written as

∆νFνµ + 1√
σ

[√
σσ̂jiωµνBµ,i

]
,j

= 0, (4.15)

and
− σ̂ij√
−ω

[√
−ωωµνBν,j

]
,µ

= 0. (4.16)

Eq. (4.16) can be trivially satisfied by the gauge fixing ∇MBM = 0, and after a separation
of variables technique,

Bµ = eA
∑
m

φmB
m
µ , (4.17)

Eq. (4.15) is reduced to two equations,

∆νF
νµ
m = m2ωµνBm

ν , (4.18)

and
−4̂2φm +

(
σ̂jiA,jA,i − 4̂2A

)
φm = m2φm, (4.19)

which shall be identified with a time independent Schrödinger-like equation in curved
space (B2, σ̂), with the energy EQM = m2 and the “quantum mechanical” potential

VQM(u, v) = σ̂jiA,jA,i − 4̂2A. (4.20)
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On the other hand, the action for the gauge field, once the Eq. (4.17) is applied,
can be written as

SE = −1
4

∫
dy2
√
σ̂φm

2
∫

d4x
√
−ω F 2 − 1

2

∫
d6x
√
−g FµiFµi, (4.21)

thus the normalization is fixed by ∫
dy2
√
σ̂φm

2 <∞. (4.22)

The localization of gauge fields now becomes contingent on the quantum mechanical
problem described by Eqs. (4.19) and (4.22). This prescription can be readily particularized
to separable solutions. The Schrödinger-like equation, Eq. (4.19), for the geometries
described by Eq. (2.47) is characterized by the equation

− ef̃−h̃
(
ef̃−h̃φm,u

)
,u
− eĥ−f̂

(
eĥ−f̂φm,v

)
,v

+
[
e2f̃−2h̃Ã,u

2 − ef̃−h̃
(
ef̃−h̃Ã,u

)
,u

]
φm

+
[
e2ĥ−2f̂ Â,v

2 − eĥ−f̂
(
eĥ−f̂ Â,v

)
,v

]
φm = e2Ã−2h̃e2Â−2f̂m2φm. (4.23)

A separation of variables technique, with φm = e
f̂−ĥ

2
∑
k∈K φ̃k(u)φ̂mk(v), can be applied to

Eq. (4.23) if h̃ = Ã or f̂ = Â. Whenever h̃ = Ã the variables are separable and Eq. (4.23)
is reduced to two equations

−ef̃−Ã
(
ef̃−Ãφ̃k,u

)
,u

+
[
e2f̃−2ÃÃ,u

2 − ef̃−Ã
(
ef̃−ÃÃ,u

)
,u

]
φ̃k = k2φ̃k, (4.24)

and

− φ̂mk,vv +
Â,v2 − Â,vv −

(
ĥ− f̂

)
,v
Â,v −

 f̂ − ĥ
2


,vv

+ 1
4
(
f̂,v − ĥ,v

)2
+ k2e2f̂−2ĥ

φ̂mk = e2Â−2ĥm2φ̂mk, (4.25)

where k2 is a separation constant. On the other hand, the normalization is resolved by∑
k∈K

∫
du eÃ−f̃ φ̃k2

∫
dv e2Â−2ĥφ̂mk

2 <∞. (4.26)

Finally, the quantum mechanical problem, Eq. (4.25), for model2 IV , with coordi-
nate (3.73), is given by the Pöschl-Teller equation,

−φ̂mk,zz − λ (λ− 1) sech2 (z) φ̂mk = εφ̂mk. (4.27)

where z =
√
Cy/2, λ =

√
1− 4k2

C
+ 1

2 and ε = 3m2

Λ −
1
4 . If ε > 0 (m2 > Λ

12) or 0 ≤ λ ≤ 1(
k2 ≥ 3C

16

)
then the solutions of Eq. (4.27) describe propagating modes. Otherwise, the

solutions of Eq. (4.27) describe bound states, which are given by

φmk = Cmk sechλ−j−1 (y) 2F1

(
−j, 2λ− j − 1;λ− j; e

−y sech (y)
2

)
, (4.28)

2 We neglect other intersecting-like models because of their lesser physical appeal.
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with the associated eigenvalues

m2 = Λ
3

1
4 −

√1− 4k2

C
− 1

2 − j
2
 . (4.29)

Therefore gauge fields in model IV posses a unique degenerate3 bound state, for
j = 0, with mass m = 0, since λ ≤ 3/2. A mass gap, ∆m2 = Λ

12 , between the zero and
massive modes is identified.

4.3 Fermionic Fields
The localization of bulk fermionic matter is usually investigated by considering

that the D-dimensional Dirac algebra is realized by the objects ΓM = eMN̄ΓN̄ , where eMN̄

denotes a D-dimensional vielbein, ΓM satisfy the Clifford relation
{

ΓM ,ΓN
}

= 2gMNIj,
Ij is the j × j, with j = 2D/2, unitary matrix, and ΓN̄ are the gamma matrices in D-
dimensional flat space-time, i.e. they satisfy the Clifford relation

{
ΓM̄ ,ΓN̄

}
= 2ηMNIj.

Particularly, in a six dimensional space-time the Dirac matrices are 8× 8 (j = 8), and the
following representation is assumed4

Γµ̄ =
04 γµ

γµ 04

 , Γ4̄ = −
04 γ5

γ5 04

 , and Γ5̄ = i

04 −I4

I4 04

 , (4.30)

where γµ are the usual four dimensional Dirac matrices in the chiral representation, which
in the signature {−,+,+,+} satisfy {γµ, γν} = 2ηµνI4, and

γ5 = iγ0γ1γ2γ3 =
I2 02

02 −I2

 (4.31)

is the usual four dimensional chirality matrix. Here the γµ are associated with a metric of
signature {−,+,+,+}, and thus are related to γ̄µ, which are associated with a metric of
signature {+,−,−,−}, by the relation γµ = iγ̄µ. Therefore, in the chiral representation,
the gamma matrices are as follows

γ0 = i

02 I2

I2 02

 and γk = i

 02 σk

−σk 02

 (4.32)

In the (4.30) representation the six dimensional chirality matrix is diagonal

Γ7̄ =
∏
M

ΓM̄ =
I4 04

04 −I4

 , (4.33)

therefore the representation (4.30) is also a chiral representation.
3 The zero mode presents some degeneracies associated to the separation constant k.
4 The equations that follow are simpler in the representation (4.30).
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To realize the Clifford relation in curved space time one defined ΓM = eMN̄ΓN̄ , for
which

{
ΓM ,ΓN

}
= 2gMNIj. Thus the gamma matrices in curved space time are written

in terms of the frame basis, for which

gMN = eM
P̄ eN

Q̄ηP̄ Q̄, (4.34)

where the barred symbols, P̄ , refer to the frame basis, eP̄ , and the non-barred refer to
the coordinate basis, ∂P . The non-barred symbols are raised and lowered by the metric
g, while the barred symbols are raised and lowered by the Minkowski metric η. For the
metrics in the proposed classification, Eq. (2.1), one is able to also define the vielbein
associated with a factorizable metric,

ĝ = êM
P̄ êN

Q̄ηP̄ Q̄ (4.35)

where eP̄ = eAêP̄ , such that eMP̄ = e−AêM
P̄ and eMP̄ = eAêMP̄ . Supposing that the only

non-vanishing components of êP̄ are êµ
ν̄ and êj

ī, which is allowed for a metric like Eq.
(2.1), then one is able to define

ωµν = aµ
µ̄aν

ν̄ηµ̄ν̄ (4.36)

σij = bi
ībj

j̄γīj̄ (4.37)

where aµ
µ̄ = êµ

ν̄ and bi
ī = e−Ab̂j

ī = e−Aêj
ī = ej

ī represent the frame basis vectors
components in the coordinate basis ∂µ and ∂i, respectively, and γ = diag{1, 1}.

4.3.1 Six-Dimensional Weyl Spinors

The action of a massless spinor in six dimensions can be expressed as

Sd =
∫

d6x
√
−gΨ(6)ΓM∇MΨ(6), (4.38)

where Ψ(6) = Ψ†(6)Γ0̄. Here Ψ(6) is an eight component spinor and may be treated as,

Ψ(6) =
Ψ+

Ψ−

 = Ψ+
(6) + Ψ−(6),

where Ψ±(6) are six dimensional Weyl spinors of different chirality. Varying the action Sd
with relation to Ψ(6) implies in Dirac equation for 6-dimensional curved space-time,

ΓM∇MΨ(6) = 0. (4.39)

The operator ∇M is a covariant derivative and acts on spinors as

∇MΨ(6) = (∂M + CM) Ψ(6) (4.40)
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where CM is the spinor connection of (E6, g) and is determined by

CM = 1
4C

M̄N̄
M ΓM̄ΓN̄ = 1

4

{
−1

2eM
T̄ eTR̄eQS̄∂[T eQ]T̄ + 1

2e
S[R̄∂[M eS]

S̄]
}

ΓR̄ΓS̄, (4.41)

one can now identify the different components of spin connections of E6 with the spin
connection constructed from M4 and B2, as follows,

Cµ = Aµ −
1
4A,iê

ij̄ êµ
ν̄
(
Γν̄Γj̄ − Γj̄Γν̄

)
, (4.42)

and
Ci = 1

4Γr̄Γs̄
{
−1

2bi
j̄bkr̄bls̄∂[kbl]j̄ + 1

2b
j[s̄∂[jbi]

r̄]
}

= Bi, (4.43)

where Aµ is the spin connection related to space-time (M4,ω),

Aµ = 1
4

{
−1

2aµ
τ̄aτ ρ̄aηκ̄∂[τ aη]τ̄ + 1

2a
κ[ρ̄∂[µaκ]

κ̄]
}

Γρ̄Γκ̄, (4.44)

and Bi is the spin connection related to the internal space (B2,σ). Substituting Eqs. (4.42)
and (4.43) in to Eq. (4.39) implies in(

êµν̄Γν̄∇̂µ +DīΓī
)

Ψ(6) = 0, (4.45)

where one defines the operators

Dū = e−Aef
(
∂u − 2A,u −

1
2h,u

)
and Dv̄ = e−Aeh

(
∂v − 2A,v −

1
2f,v

)
. (4.46)

Since Eq. (4.45) does not provide a mass for the spinors, then one can separate the
equations in the different chiralities,(

êµν̄γ
ν̄∇̂µ −Dūγ5 + iDv̄

)
Ψ+ = 0, (4.47)

and (
êµν̄γ

ν̄∇̂µ −Dūγ5 − iDv̄
)

Ψ− = 0. (4.48)

One can apply chiral splitting and a separation of variable technique,

Ψ± =
∑
m

L±m(u, v)ψLm±(xµ)
R±m(u, v)ψRm±(xµ)

 =
∑
m

[
L±m(u, v) ΨL

m±(xµ) +R±m(u, v) ΨR
m±(xµ)

]
, (4.49)

to Eqs. (4.47) and (4.48), implying in

γ̂µ∇̂µΨL
m± = m±ΨR

m± and γ̂µ∇̂µΨR
m± = m±ΨL

m±, (4.50)

and for the co-dimensional components

m±R
±
m −DūL±m ± iDv̄L±m = 0, (4.51)

and
m±L

±
m +DūR±m ± iDv̄R±m = 0. (4.52)
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The positive and negative expressions in Eqs. (4.51) and (4.52) are exactly the same, one
just needs to identify m = m+ = m−, Rm = R+

m = L−m and Lm = L+
m = −R−m. Therefore,

one needs to solve either the positive or the negative version of Eqs. (4.51) and (4.52). A
Schrödinger-like equation can be thus accomplished for the left and right-handed modes
of spinors5, respectively, as

m2Rm +DūDūRm + i
[
Dū,Dv̄

]
Rm +Dv̄Dv̄Rm = 0, (4.53)

and
m2Lm +DūDūLm − i

[
Dū,Dv̄

]
Lm +Dv̄Dv̄Lm = 0, (4.54)

where [Dū,Dv̄] = DūDv̄ −Dv̄Dū, which generally doest not vanish.

On the other hand, the action for spinors is given by

Sd =
∫

d6x
√
−gΨ(6)ΓM∇MΨ(6)

=
∫

d6x
√
−ω
√
σ̂e−5AΨ†−γ 0̄

(
êµν̄∇̂µγ

ν̄Ψ− −D4̄γ5Ψ− − iD5̄Ψ−
)

+
∫

d6x
√
−ω
√
σ̂e−5AΨ†+γ 0̄

(
êµν̄∇̂µγ

ν̄Ψ+ −D4̄γ5Ψ+ + iD5̄Ψ+
)
. (4.55)

Applying chiral splitting, a separation of variables techniques, Eq. (4.49), and Eqs. (4.51)
and (4.52) implies in

Sd =
∑
m̃

∑
m

∫
d2y
√
σ̂e−5ARm̃+Rm+

∫
d4x
√
−ωΨR

m̃+

(
γ̂µ∇̂µΨR

m+ −m±ΨL
m+

)
+
∑
m̃

∑
m

∫
d2y
√
σ̂e−5ALm̃+Lm+

∫
d4x
√
−ωΨL

m̃+

(
γ̂µ∇̂µΨL

m+ −m±ΨR
m+

)
+
∑
m̃

∑
m

∫
d2y
√
σ̂e−5ARm̃−Rm−

∫
d4x
√
−ωΨR

m̃−

(
γ̂µ∇̂µΨR

m− −m±ΨL
m−

)
+
∑
m̃

∑
m

∫
d2y
√
σ̂e−5ALm̃−Lm−

∫
d4x
√
−ωΨL

m̃−

(
γ̂µ∇̂µΨL

m− −m±ΨR
m−

)
, (4.56)

where Ψ = Ψ†γ 0̄. Action (4.56) corresponds to the same problem driven by Eq. (4.50) if
and only if the modes are orthonormal, i.e.∫

d2y
√
σ̂e−5ARm̃Rm = δm̃m and

∫
d2y
√
σ̂e−5ALm̃Lm = δm̃m, (4.57)

with weight
√
σ̂e−5A. When the above condition is satisfied the effective action reads

Sd =
∑
m∈I

∫
d4x
√
−ω

[
Ψ+
m

(
γ̂µ∇̂µΨ+

m −mΨ+
m

)
+ Ψ−m

(
γ̂µ∇̂µΨ−m −mΨ−m

)]
. (4.58)

Therefore each one of the six dimensional Weyl spinors, Ψ±(6), can be reduced to several
four dimensional Dirac spinors with mass m ∈ I. So far no charge with relation to some
gauge field has been included to six dimensional spinors, therefore no difference between
5 For the zero modes one does not need any refinement, Eqs. (4.51) and (4.52) can be solved as presented.
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the different chiral fermions have arisen. Eqs. (4.53), (4.54) and (4.57) establishes the
quantum mechanical analogue problem for Weyl spinors. One now apply Eqs. (4.53), (4.54)
and (4.57) to separable solutions, and to each one of the sets in the proposed classification
of Ch. 2.

For separable solutions the quantum mechanical analogue problem, after a rescaling
of the wave functions Rm = e

3
2Ae

f+h
2 Rm and Lm = e

3
2Ae

f+h
2 Lm, and choosing coordinates

such that f̃ = Ã and ĥ = Â, is summarized by the equations

m2Rm + e2f̂−2ÂRm,uu + e2h̃−2ÃRm,vv + i

(
eh̃−Ã

)
,u

eÂ−f̂
Rm,v − i

(
ef̂−Â

)
,v

eÃ−h̃
Rm,u = 0, (4.59)

m2Lm + e2f̂−2ÂLm,uu + e2h̃−2ÃLm,vv − i

(
eh̃−Ã

)
,u

eÂ−f̂
Lm,v + i

(
ef̂−Â

)
,v

eÃ−h̃
Lm,u = 0, (4.60)

and ∫
d2yRm̃Rm = δm̃m and

∫
d2yLm̃Lm = δm̃m. (4.61)

A separation of variables technique can solely be applied to Eqs. (4.59) and (4.60) if either
h̃ = Ã or f̂ = Â. Suppose a model for which h̃ = Ã, which is true for most sets of the
classification, then Eqs. (4.59) and (4.60) become

m2Rm + e2f̂−2ÂRm,uu +Rm,vv − i
(
ef̂−Â

)
,v
Rm,u = 0, (4.62)

and
m2Lm + e2f̂−2ÂLm,uu + Lm,vv + i

(
ef̂−Â

)
,v
Lm,u = 0. (4.63)

Clearly there is not potential to localize the wave functions in the u direction, therefore
one must assume it to be compactified as a circle, such that u = rθ, where θ ∈ S1. Finally
one can apply a separation of variables,

Rm =
∑
k

eikθR̂mk (v) , (4.64)

and
Lm =

∑
k

eikθL̂mk (v) , (4.65)

which after substitution in Eqs. (4.62) and (4.63) implies in the Schrödinger-like equations

−R̂mk,vv +
[
e2f̂−2Âk

2

r2 −
(
ef̂−Â

)
,v

k

r

]
R̂mk = m2R̂mk, (4.66)

and
−L̂mk,vv +

[
e2f̂−2Âk

2

r2 +
(
ef̂−Â

)
,v

k

r

]
L̂mk = m2L̂mk. (4.67)

The previous equations do not intrinsically have the needed structure to localize spinors,
even if the space-time has the RS structure. None of the intersecting and trivial-like models
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have the needed structure to localize spinors. String-like solutions could lead to localization,
but will contradict with the localization of other fields. Model IV as an example leads to
the equation

−R̂mk,vv +
[
k2

r2 sech2 (y)− sech (y) tanh (y) k
r

]
R̂mk = 3m2

Λ R̂mk, (4.68)

which does not have localizable solutions. But Weyl spinors are the simplest form of
fermions and it is possible that massive or charged fermions could lead to a localization
mechanism, the next subsection will propose that the inclusion of a gauge field leads to
the localization of fermionic matter.

4.3.2 Six-Dimensional Charged Weyl Spinors

Weyl spinors fail to be localizable in intersecting-like models, thus additional
interacting terms must be included if spinors ought to be localizable in the brane. Suppose
that a Weyl spinor interacts with some (0, q)-tensor field, with an associated interacting
term

Lint = αΨ̄TM1M2...MqΓM1ΓM2 ....ΓMqΨ. (4.69)

The equations of motion for Weyl spinors thus become[
êµν̄Γν̄∇̂µ +DīΓī + αTM1M2...MqΓM1ΓM2 ....ΓMq

]
Ψ = 0,

Suppose that q is an even number or zero, thus the interacting term contributes necessarily
as

ΓM1ΓM2 ....ΓMqΨ = ΓM1ΓM2 ....ΓMq

Ψ+

Ψ−

 =
(...)Ψ+

(...)Ψ−

 . (4.70)

On the other hand, the dynamical terms in the differential equation contributes as

(
êµν̄Γν̄∇̂µ +DīΓī

)
Ψ =

(
êµν̄Γν̄∇̂µ +DīΓī

) Ψ+

Ψ−

 =
(...)Ψ−

(...)Ψ+

 . (4.71)

Therefore there will be a coupling between Ψ+ and Ψ−, and, after chiral splitting,
one finds four coupled differential equations for R+, R−, L+ and L−, which will necessarily
lead to fourth order differential equations. To avoid having to solve such an enhanced
problem, one must restrict q to be odd, which necessarily decouples Ψ+ and Ψ−, thus
leading to second order differential equations for R+, R−, L+ and L−.

The simplest tensorial interaction, for odd q, is with a U(1) gauge field BM . The
gauge field can thus be interpreted as a curvature to which the fermions couple, exactly
like the curvature of space-time. Suppose now a Weyl spinor coupled to a gauge field, BM ,
whose dynamics is governed by the action

Sd =
∫

d6x
√
−gΨ̄ΓMDMΨ, (4.72)
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where DM = ∇M − iBM . If the gauge field finds itself in a zero mode, i.e. Bµ = Bµ (xν)
and Bi = Bi (yj), the calculations to achieve the localization of charged Weyl spinors are
similar to the ones performed in Subsec. 4.3.1, and, after applying a separation of variables
technique and chiral splitting, one finds the equations

m±R
±
m −D

ū
L±m ± iD

v̄
L±m = 0, (4.73)

and
m±L

±
m +DūR±m ± iD

v̄
R±m = 0. (4.74)

where it is defined
Dū = e−Aef

(
∂u − 2A,u −

1
2h,u − iBu

)
, (4.75)

and
Dv̄ = e−Aeh

(
∂v − 2A,v −

1
2f,v − iBv

)
. (4.76)

To solve Eqs. (4.73) and (4.74) a separation of variables technique will generally be
necessary, which is only achievable if one assumes that Bv = 0 and Bu = Bu (v). The
zero modes can thus be straightforwardly determined from Eqs. (4.73) and (4.74) for any
braneworld model. Take coordinates such that f = h and apply a separation of variables
technique to find

R±0 = e2Ae
f
2
∑
k

C±k e
ikue∓kve±

∫
Budv (4.77)

and
L±0 = e2Ae

f
2
∑
k

D±k e
ikue±kve∓

∫
Budv (4.78)

The normalization condition for the zero modes reads∫
d2y
√
σ̂e−5AR

±
0 R
±
0 =

∑
k,l

C̄±l C
±
k

∫
du
∫

dvei(k−l)ueA−fe±(l+k)ve±2
∫

Budv = 1, (4.79)

and∫
d2y
√
σ̂e−5AL

±
0 L
±
0 =

∑
k,l

D̄±l D
±
k

∫
du
∫

dvei(k−l)ueA−fe±(l+k)ve∓2
∫

Budv = 1, (4.80)

which can be satisfied at the same time by either R+
0 and L−0 , or R−0 and L+

0 if the integral
of Bu leads to a localized function. Therefore zero modes must take one of two forms,

Ψ0 =


L+

0 ψ
L
0+

0
0

R−0 ψ
R
0−

 or Ψ0 =


0

R+
0 ψ

R
0+

L−m ψ
L
0−

0

 . (4.81)

On the other hand, massive modes are not so straightforward and more assumptions
will be necessary to achieve a separation of the co-dimensional variables for Eqs. (4.73)



4.3. Fermionic Fields 97

and (4.74). Once applied the identification m = m+ = m−, Rm = R+
m = L−m and

Lm = L+
m = −R−m, Eqs. (4.73) and (4.74) can be combined to achieve two Schrödinger-like

equations,
m2Rm +DūDūRm + i

[
Dū,Dv̄

]
Rm +Dv̄Dv̄Rm = 0, (4.82)

and
m2Lm +DūDūLm − i

[
Dū,Dv̄

]
Lm +Dv̄Dv̄Lm = 0, (4.83)

Informed by the previous results in Sec. 4.3.1, one chooses coordinates such that f̃ = Ã

and ĥ = Â, and a separation of the co-dimensional variables is thus achievable if h̃ = Ã or
f̂ = Â. Choosing the first, h̃ = Ã, and applying a separation of variables technique,

Rm =
∑
k

eikθR̂mk (v) , (4.84)

and
Lm =

∑
k

eikθL̂mk (v) , (4.85)

leads to two Schrödinger-like equations,

−R̂mk,vv +
e2f̂−2Â

(
Bu −

k

r

)2

−
(
ef̂−Â

)
,v

k

r
+
(
ef̂−ÂBu

)
,v

 R̂mk = m2R̂mk, (4.86)

and

−L̂mk,vv +
e2f̂−2Â

(
Bu −

k

r

)2

+
(
ef̂−Â

)
,v

k

r
−
(
ef̂−ÂBu

)
,v

 L̂mk = m2L̂mk, (4.87)

where u = rθ, and θ ∈ S1. Eqs. (4.86) and (4.87) can finally be applied to the models
previously categorized, with the exception of models I and II that do not satisfy the
condition h̃ = Ã.

4.3.2.1 Trivial-like Models

Once applied to trivial-like models, Eqs. (4.86) and (4.87) are cast as

−R̂mk,vv +
(Bu −

k

r

)2

+ Bu,v

 R̂mk = m2R̂mk, (4.88)

and

−L̂mk,vv +
(Bu −

k

r

)2

− Bu,v

 L̂mk = m2L̂mk. (4.89)

To realize a simple quantum mechanical potential, the gauge field is assumed to be

Bu = b tanh (Cv) , (4.90)

which once applied to Eqs. (4.88) and (4.89) implies in two Morse-Rosen equations,

−Rmk,yy +
[
−λ (λ− 1) sech2 (y)− ks tanh (y)

]
Rmk = εRmk, (4.91)
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and
−Lmk,yy +

[
−λ (λ+ 1) sech2 (y)− ks tanh (y)

]
Lmk = ε Lmk, (4.92)

where y = Cv, λ = b
rC
, s = 2λ

rC
, ε = m2

C2 − k2s2

4λ2 − λ2 and b is a real valued constant.
The quantum mechanical potential associated with left and right-handed spinors are,
respectively,

UR =
[
−λ (λ− 1) sech2 (y)− ks tanh (y)

]
, (4.93)

and
UL =

[
−λ (λ+ 1) sech2 (y)− ks tanh (y)

]
. (4.94)

The potentials UR and UL, Eqs. (4.93) and (4.94), have an associated global
minima6 if λ > 1 and 2λ (λ− 1) > s |k|, and λ > 0 and 2λ (λ+ 1) > s |k|, respectively.
Thus creating the conditions for producing bound states for all real valued s and integer k.
The quantum mechanical potential, Eqs. (4.93) and (4.94), of the left and right-handed
equations are depicted in Fig. 21.
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Figure 21 – (a) The quantum mechanical potential associated with right-handed spinors,
UR, for λ = 4 (solid lines), λ = 3 (dashed lines) and λ = 2 (dotted lines). (b)
The quantum mechanical potential associated with left-handed spinors, UL,
for λ = 4 (solid lines), λ = 3 (dashed lines), λ = 2 (dot-dashed lines) and
λ = 1 (dotted lines). The plots are for k = 0 (blue lines), k = 1 (black lines)
and k = −1 (red lines), with s = 2.

The general solution of Eqs. (4.91) and (4.92) are, respectively,

Rmk =c1 sechq (y) epy2F1

(
q + 1− λ, λ+ q; q − p+ 1; e

−y sech(y)
2

)

+ c2 sechp (y) eqy 2F1

(
−λ+ p+ 1, λ+ p; p− q + 1; e

−y sech(y)
2

)
, (4.95)

6 It is assumed that λ > 0.
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and

Lmk =d1 sechq (y) epy2F1

(
q − λ, λ+ 1 + q; q − p+ 1; e

−y sech(y)
2

)

+ d2 sechp (y) eqy 2F1

(
−λ+ p, λ+ 1 + p; p− q + 1; e

−y sech(y)
2

)
, (4.96)

where q =
√√

ε2−k2s2−ε√
2 and p = sign (k)

√
−ε−
√
ε2−k2s2√
2 . If ε ≥ − |k| s or m ≥

∣∣∣λ− |k|
rC

∣∣∣ then
Eqs. (4.95) and (4.96) correspond to the propagating modes. Otherwise, for ε < − |k| s,
the solutions (4.95) and (4.96) leads to the bound states

Rmk = c1 sechλ−j−1 (y) e
ksy

2(λ−j−1) 2F1

(
−j, 2λ− j − 1;λ+ ks

2 (λ− j − 1) − j;
ey sech(y)

2

)
,

(4.97)
and

Lmk = d1 sechλ−j−1 (y) e
ksy

2(λ−j−1) 2F1

(
−j − 1, 2λ− j;λ+ ks

2 (λ− j − 1) − j;
ey sech(y)

2

)
,

(4.98)
both associated with the mass eigenvalues

m = C

√
(j + 1) (2λ− j − 1)

2λ (λ− j − 1)

√
4λ2 (λ− j − 1)2 − k2s2, (4.99)

where7 j is a natural number. In this way there is always a mass gap between the zero
and massive modes, be it the discrete or continuous modes.

4.3.2.2 Intersecting-like Models: Model IV

To readily employ Eqs. (4.86) and (4.87) to model IV it is convenient to work with
coordinates such that

v = 2√
C

arcsin [tanh (z)] , (4.100)

which, from Eq. (2.104), implies into the metric IV recasted as

gIV = 4Λ
3C sech2 (z) e−2Ãωµνdxµdxν + e−2Ãdu2 + 4

C
sech2 (z) e−2Ãdz2. (4.101)

A simple quantum mechanical potential is realized if

Bz = B0 sinh (z) , (4.102)

and Eqs. (4.86) and (4.87) can thus be written as

− Rmk,zz +
{ [
k2b2 − a (a− 1)

]
sech2 (z)

+ kb (1− 2a) sech (z) tanh (z)
}
Rmk =

(
3m2

Λ − a2
)

Rmk, (4.103)

7 With the exception of the zero mode that is constructed from Eq. (4.98) with j = −1.
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and

− Lmk,zz +
{ [
k2b2 − a (a + 1)

]
sech2 (z)

− kb (1 + 2a) sech (z) tanh (z)
}
Lmk =

(
3m2

Λ − a2
)

Lmk, (4.104)

where a = 2eB0√
C

and b = 2
%
√
C
. The quantum mechanical potential associated with left and

right-handed spinors are, respectively,

UR =
[
kb (1− 2a) sech (z) tanh (z)− a (a− 1) sech2 (z) + k2b2 sech2 (z)

]
, (4.105)

and

UL =
[
−kb (1 + 2a) sech (z) tanh (z)− a (a + 1) sech2 (z) + k2b2 sech2 (z)

]
. (4.106)

The potentials UR and UL have an associated global minima for a > 1 and a > 0,
respectively, and they create the conditions for producing bound states for all real valued b
and integer k. The quantum mechanical potential, Eqs. (4.105) and (4.106), of the left and
right-handed equations are depicted in Fig. 22. If 3m2 ≥ a2Λ the solutions of Eqs. (4.103)
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Figure 22 – (a) The quantum mechanical potential associated with right-handed spinors,
UR, for a = 4 (solid lines), a = 3 (dashed lines) and a = 2 (dotted lines). (b)
The quantum mechanical potential associated with left-handed spinors, UL,
for a = 4 (solid lines), a = 3 (dashed lines), a = 2 (dot-dashed lines) and a = 1
(dotted lines). The plots are for k = 0 (blue lines), k = 1 (black lines) and
k = −1 (red lines), with b = 4.

and (4.104) correspond to propagating modes, otherwise they are described by bound
states. For k = 0, Eqs. (4.103) and (4.104) become a Posch-Teller equation, and the bound
states can be straightforwardly determined. The general case requires a more intricate
analysis. After returning to the departure coordinate v, from Eq. (4.100), thus recasting the
metric as (2.104), and rescaling the wavefunctions, Rmk = e

Â
2 R̂km and Lmk = e

Â
2 L̂km, the

Schrödinger-like equations, Eqs. (4.103) and (4.104), become a trigonometric Morse-Rosen



4.3. Fermionic Fields 101

equation,

−R̂km,yy +
 l (l − 1)

4 cos2
(
y
2

) − kb
(

a− 1
2

)
tan

(
y

2

)
+ k2b2 − 1

4

(
a− 1

2

)2
 R̂km = 0, (4.107)

and

−L̂km,yy +
 l (l − 1)

4 cos2
(
y
2

) − kb
(

a + 1
2

)
tan

(
y

2

)
+ k2b2 − 1

4

(
a + 1

2

)2
 L̂km = 0, (4.108)

where l =
√

a2 − 3m2

Λ + 1
2

(
or m =

√
Λ
3

√
a2 −

(
l − 1

2

)2
)
and y =

√
Cv. The general solution

of Eqs. (4.107) and (4.108) are, respectively,

R̂k =c1
(
ei
y
2
)a+2ikb− 1

2 +l
cosl

(
y

2

)
2F1

(
a + l − 1

2 , l + 2ikb; a + 2ikb + 1
2;−eiy

)
+ c2

(
ei
y
2
)l−a−2ikb+ 1

2 cosl
(
y

2

)
2F1

(
l + 1

2 − a, l − 2ikb; 3
2 − a− 2ikb;−eiy

)
,

(4.109)

and

L̂k =d1
(
ei
y
2
)−a−2ikb− 1

2 +l
cosl

(
y

2

)
2F1

(
l − 1

2 − a, l − 2ikb; 1
2 − a− 2ikb;−eiy

)
+ d2

(
ei
y
2
)a+2ikb+ 1

2 +l
cosl

(
y

2

)
2F1

(
a + l + 1

2 , 2ikb + l; a + 2kbi+ 3
2;−eiy

)
.

(4.110)

The asymptotic behavior of expressions (4.109) and (4.110) at y approaching ±π
can be cast as

R̂k → c1
(
ei
y
2
)a+2ikb− 1

2 +l
 cosl

(
y
2

)
Γ (1− 2l) Γ (2l)

Γ (2ikb + 1− l) Γ
(
a + 1

2 − l
)

−
(
ei
y
2
)1−2l 21−2l cos1−l

(
y
2

)
Γ (1− 2l) Γ (2l)

Γ
(
a + l − 1

2

)
Γ (l + 2ikb)


+ c2

(
ei
y
2
)−a−2ikb+ 1

2 +l
 cosl

(
y
2

)
Γ (1− 2l) Γ (2l)

Γ (1− 2ikb− l) Γ
(

3
2 − a− l

)
−
(
ei
y
2
)1−2l 21−2l cos1−l

(
y
2

)
Γ (1− 2l) Γ (2l)

Γ
(
l + 1

2 − a
)

Γ (l − 2ikb)

 ,
(4.111)
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and

L̂k → d1
(
ei
y
2
)−a−2ikb− 1

2 +l
 cosl

(
y
2

)
Γ (1− 2l) Γ (2l)

Γ (1− l − 2ikb) Γ
(

1
2 − a− l

)
−
(
ei
y
2
)1−2l 21−2l cos1−l

(
y
2

)
Γ (1− 2l) Γ (2l)

Γ
(
l − 1

2 − a
)

Γ (l − 2ikb)


+ d2

(
ei
y
2
)a+2ikb+ 1

2 +l
 cosl

(
y
2

)
Γ (1− 2l) Γ (2l)

Γ (1 + 2ikb− l) Γ
(
a + 3

2 − l
)

−
(
ei
y
2
)1−2l 21−2l cos1−l

(
y
2

)
Γ (1− 2l) Γ (2l)

Γ
(
a + l + 1

2

)
Γ (2ikb + l)

 , (4.112)

respectively. Thus, the bound states of Eqs. (4.107) and (4.108) are, respectively, the ones
for which8 l = a− j − 1

2 and c1 = 0, and l = 1
2 + a− j and d2 = 0, where j ∈ N. Otherwise,

expressions (4.109) and (4.110) will not be normalizable, since the components with
cos1−l

(
y
2

)
of expressions (4.111) and (4.112) will always imply in divergent integrands9 for

the normalization. Explicitly, the eigenstates of Eqs. (4.107) and (4.108) are, respectively,

R̂kj = ckjekby−ij y2 cosa−j− 1
2

(
y

2

)
2F1

(
−j, a− j − 1

2 − 2ikb; 3
2 − a− 2ikb;−eiy

)
, (4.113)

and

L̂kj = dkje[kb− i(j+1)
2 ]y cosa−j− 1

2

(
y

2

)
2F1

(
−j − 1, a− j − 1

2 − 2ikb; 1
2 − a− 2ikb;−eiy

)
,

(4.114)
with mass eigenvalues

m =
√

Λ
3
√
j + 1

√
2a− j − 1. (4.115)

where a > j+1. A normalizable zero mode is solely achieved for the left-handed expression,
from Eq. (4.114) with10 j = −1. Notice that there are left and right-handed normalizable
zero modes, because Lm = L+

m = −R−m. Thus, a zero mode can be localized for the positive
left-handed spinors, while the right-handed can only be localized for negative ones11.

Finally, returning to the coordinate z, from Eq. (4.100), and rescaling the wave
functions, one achieves the bound states of Eqs. (4.103) and (4.104):

Rkj =ckje2kb arcsin[tanh(z)] [sech (z)− i tanh (z)]j secha−j−1 (z)×

× 2F1

(
−j, a− j − 1

2 − 2ikb; 2a− 2j − 1; 1 + [sech (z) + i tanh (z)]2
)
, (4.116)

8 It is assumed that a > 0.
9 This is true because the normalization in this coordinates involve cos−2 (y

2
)
as an integration weight.

10 To achieve Eq. (4.114) the integer j was redefined to include −1 in its spectrum, thus j ∈
{−1, 0, 1, 2, ...}.

11 The zero modes can be expressed by Ψ =


Lψ+

L

0
0
0

 or Ψ =


0
0
0

Lψ−R

.
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and

Lkj =dkje2kb arcsin[tanh(z)] [sech (z)− i tanh (z)]j+1 secha−j−1 (z)×

× 2F1

(
−j − 1, a− j − 1

2 − 2ikb; 2a− 2j − 1; 1 + [sech (z) + i tanh (z)]2
)
.

(4.117)

Some of the normalizable modes, from Eqs. (4.116) and (4.117), are depicted in
Figs. 23, 24, 25 and 26. The eigenvalues of Eqs. (4.103) and (4.104) are the same as a
Posch-Teller system, however the eigenstates are not symmetrical with respect to the
center of the configuration, which is justified by the shape and depth of the potentials UR
and UL, as presented in Fig. 22.
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Figure 23 – The normalized zero modes with a = b = 4, for k = 0 (solid blue line), k = 1
(solid red line), k = 2 (solid black line), k = 3 (solid brown line), k = −1
(dashed red line), k = −2 (dashed black line) and k = −3 (dashed brown
line).
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Figure 24 – (a) The normalized right-handed bound states. (b) The normalized left-handed
bound states. The plots are for k = 0 (solid blue line), k = 1 (solid red line),
k = 2 (solid black line), k = 3 (solid brown line), k = −1 (dashed red line),
k = −2 (dashed black line) and k = −3 (dashed brown line), with a = b = 4
and j = 0.
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Figure 25 – (a) The normalized right-handed bound states. (b) The normalized left-handed
bound states. The plots are for k = 0 (solid blue line), k = 1 (solid red line),
k = 2 (solid black line), k = 3 (solid brown line), k = −1 (dashed red line),
k = −2 (dashed black line) and k = −3 (dashed brown line), with a = b = 4
and j = 1.
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Figure 26 – (a) The normalized right-handed bound states. (b) The normalized left-handed
bound states. The plots are for k = 0 (solid blue line), k = 1 (solid red line),
k = 2 (solid black line), k = 3 (solid brown line), k = −1 (dashed red line),
k = −2 (dashed black line) and k = −3 (dashed brown line), with a = b = 4
and j = 2.
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5 Asymmetrical Branes and the Charged Lep-
ton Spectrum

Within the Standard Model (SM), the masses and mixings of the quarks and
leptons originates from their interactions with the Higgs field. Even though such inter-
actions have been experimentally confirmed, the interaction coupling constants are free
parameters and the generating mechanism of the relations between them is still unveiled.
Notwithstanding the well-defined mass spectrum exhibited by the three families of charged
leptons, an explanation for the mass values and their relative gaps is indeed an open
problem. Phenomenological approaches [93, 94] have been proposed through empirical
relations among the fermion masses, as an attempt of uncovering some of its underlying
physics1.

In a parallel context, extra dimensions have played a prominent role in our under-
standing of the hierarchy between the Planck and weak scales [2, 3]. Thus, it is natural
to assume that other properties of the SM could also be understood from such paradigm.
The mass spectrum of fermions should be no different. The most promising higher-
dimensional scenarios are based on braneworld models with non-factorizable geometries
[3, 4, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 1, 69, 95],
where a Z2-symmetric brane is mostly assumed2. Nevertheless, generalization of these
models are obtained by relaxing the mirror symmetry across the brane [33, 51, 55, 98,
99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110]. The term “asymmetric” brane
refers to any braneworld model for which the mirror symmetry is not required. Here, an
asymmetric brane model will be an essential feature for realizing the spectrum of the
fermions.

In this chapter, a braneworld mechanism for explaining the charged lepton mass
spectrum is evaluated. Modeling the fermion spectrum through extra dimensions is
indeed not a new idea. It has been addressed in the literature through different contexts
[111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121]. However, instead of either considering
that the distinct chiralities are differently placed over the extra dimensions [111, 112] or
relying on a non-trivial higher-dimensional Higgs and several other fields [113, 114, 115,

1 For instance, the so-called Koide’s mass formula [93, 94],

K = me +mµ +mτ(√
me +√mµ +√mτ

)2 = 2
3 , (5.1)

provides such a speculative relation which can be translated as a weaker condition for the fractions
mµ/me ≈ 207 and mτ/mµ ≈ 17, here me, mµ and mτ .

2 Since they are generally motivated by the Horava-Witten model [96, 97].
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116, 117, 118, 119, 120, 121], a simpler mechanism shall be here admitted. By considering
a six-dimensional braneworld constructed from an asymmetric conformally flat metric, a
non-trivial bulk profile for the gauge boson and a dark3 scalar field, a single six-dimensional
charged spinorial field, whose dynamic is driven by an ordinary SU(2)× U(1) action, is
shown to give rise to several massive four-dimensional spinors. In particular, for the right
choice of the parameters, the number of massive spinors becomes exactly three, and their
mass spectrum shall coincide with that for the charged leptons.

Without a supporting action, i.e. without knowing the equations of motion, to
drive the dynamics of the leptons, one can construct some general ideas of how the leptons
masses might be realized for higher-dimensional models. First, assume a six-dimensional
model, be it a braneworld model or not, for which one of the additional dimensions is
compactified in a circle. Secondly, assume that a zero mode of leptons can be localized,
taking the form

Ψ(6)
0 =

∑
k


L+

0k(θ, y)ψL+
0k (xµ)

0
0

R−0k(θ, y)ψR−0k (xµ)

 , (5.2)

where θ ∈ S1, y is the other additional dimension and k ∈ Z. Thirdly, suppose that the
masses of the leptons is driven by an interaction with the Higgs field, i.e.

Sm = m0

∫
dx6√−gΨ(6)HΨ(6), (5.3)

where H = φ (θ, y)H (xµ) is a zero mode of the Higgs.

The mass term is determined by substituting Eq. (5.2) in action (5.3) and employing
canonical normalization, leading to

Sm = m0

∫
dx6√−gΨ(6)HΨ(6)

= m0
∑
k,l

∫
dx6√−g

[
L+

0k ψ
L+†
0k 0 0 R−0k ψ

R−†
0k

]  0 γ0

γ0 0

H


L+

0l ψ
L+
0l

0
0

R−0l ψ
R−
0l



= m0
∑
k,l

∫
dy2e−4Ae−2BL+

0kR
−
0l φ

∫
dx4√−ω ψkHψl√∫

dy2e−3Ae−2B
∣∣∣L+

0k

∣∣∣2√∫ dy2e−3Ae−2B
∣∣∣R−0l∣∣∣2 , (5.4)

where ψk = ψ†kγ
0, ψk =

ψL+
0k

ψR−0k

 and it is assumed that the right and left-handed mass

terms are the same.
3 Dark is used here to describe physical fields that only exist in the bulk, and are not perceived directly

by four dimensional observers.
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After breaking the gauge symmetry, the Higgs field acquires a vacuum expectation
value v, and the mass matrix observed by a four-dimensional observer becomes

mkl = m0v√
2
∑
k,l

∫
dy2e−4Ae−2BL+

0kR
−
0l φ√∫

dy2e−3Ae−2B
∣∣∣L+

0k

∣∣∣2√∫ dy2e−3Ae−2B
∣∣∣R−0l∣∣∣2 . (5.5)

Note that the inclusion of the interacting term (5.3) is assumed to be irrelevant when
determining the wave functions of zero modes, for this reason one is able substitute Eq.
(5.2) in action (5.3) and realize Eq. (5.5). One can justify this in two ways:

1. One just assumes that the interacting term, Eq. (5.3), is a perturbation, therefore
not affecting the wave functions, and that the SM leptons are the zero modes;

2. One does not assume the interacting term to be a perturbation, but still defines that
the SM particles are the consequence of zero modes.

For the conclusions we wish to draw from this manuscript both of the previous options
are equivalent. We shall generally refer back to the first, since from it the massive modes
can be determined. Any other solution, besides the zero modes, should account for beyond
SM physics.

From Eq. (5.5) there are thus three approaches one can follow to achieve the masses
of the fermions of the SM, which here shall be referred by:

1. The left/right-handed chiral approach;

2. The non-trivial bulk Higgs approach;

3. Or the non-trivial curvature approach.

The first technique, the left/right-handed chiral approach, constructs the spectrum
of the fermions by assuming that the left and right handed bulk components, L+

0k and R−0l,
are localized at distinct positions, and their overlap generates the different masses of the
SM. An illustration of this method is shown in Fig. 27a.

The second one relies on the existence of a non-trivial bulk profile for the Higgs, i.e.
one assumes that φ is some complicated function of θ and y, and its overlap with the wave
functions of the fermions leads to their masses. An illustration of this method is shown in
Fig. 27b.

The third and last method relies on a non-trivial profile for the warp, A, and
conformal, B, factors, which after overlapping with the wave functions of the fermions
leads to their masses. This shall be explored further, but some asymmetry on the metric
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(a) (b)

Figure 27 – (a) The left/right-handed chiral approach. The solid red and black lines
represent the left, right-handed wave functions, while the dashed black line
represents the overlap between them. (b) The non-trivial bulk Higgs approach.

Figure 28 – The non-trivial curvature approach. The solid black line represents the warp
factor A (here A ≡ B). The solid red, blue and brown represent the normalized
wave functions of the tauon, muon and electron, respectively. The dashed red,
blue and brown lines represent the overlap between the wave functions of
tauon, muon and electron with the warp factor, respectively.

shall be an essential feature of this method. An illustration of this method is shown in Fig.
28.

The first two techniques were investigated by [111, 112, 113, 114, 115, 116, 117,
118, 119, 120, 121], while the third is a novel approach proposed by this manuscript, which
will shall label the asymmetrical mechanism. There are two main advantages of this novel
approach: the three charged leptons are a consequence of single six-dimensional spinorial
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field, and their masses can be analytically determined.

5.1 The Asymmetrical Mechanism
The setup for the proposed mechanism comes from a six-dimensional braneworld

E6 that is, as a set, equivalent to the product space M4 × R × S1, where M4 is some
four-dimensional pseudo-Riemannian manifold, R is the real line and S1 is the circle. The
following ansatz is assumed for the metric of E6,

g = e−2A(y)
(
ηµνdxµdxν + r2dθ2 + ρ2dy2

)
, (5.6)

where A is the warp factor, ηµν is the Minkowski metric4 of the space-time M4, θ ∈ S1, r
is the radius of S1, y ∈ R and ρ is the brane model scale. An asymmetry of the braneworld
is achieved by imposing that e−A = f+ + f−, where f+ and f− are even and odd non-null
functions, respectively, and f+ ≥ |f−| for all y.

5.1.1 The Mechanism for a U(1) Model

To illustrate the mechanism we consider first a U(1) abelian gauge theory, and
present the basic features necessary for the charged lepton spectrum. In a later section,
the mechanism shall be extended to a SU(2)L × U(1)Y theory.

In conformally flat metrics, like (5.6), fermionic fields can not be localized at the
vicinity of the brane. Thus the proposal will also rely on the existence of an abelian gauge
field5 B = BMdxM , defined by the zero mode

Bµ = Bµ (xν) , Bθ (y) = − r

2ρe
F,y
F

and By = 0, (5.7)

where F is some positive even function of y, e is the electronic charge, and the subscript
index “,” stands for partial derivatives. The gauge field (5.7) drives the localization of
ferminonic modes [73]. The fermions are thus represented by the action

Sd =
∫

d6x
√
−gΨ(6)ΓMDMΨ(6) −m0

∫
d6x
√
−gΨ(6)Ψ(6), (5.8)

where DM := ∂M + CM − ieBM is the covariant derivative and CM is the spin connection
of (E6, g). The parameter m0 sets the scale of the charged lepton masses, which is much
smaller than the brane model scale 1/ρ, and is treated as a perturbation of the system.
Therefore the m0 scale does not affect the co-dimensional wave functions, which are
4 Clarifying the notation, Greek indices (µ, ν,...) are valued in the set {0, 1, 2, 3}, uppercase Latin

indices (M , N ,...) are valued in {0, 1, 2, 3, 4, 5}, lowercase Latin indices (m, n, i, j,...) are valued in
{4, 5} (and represent the bulk co-dimensions) and the labels x4 = θ and x5 = y, represent the choice
of coordinates for the co-dimensions (B2); finally, tensors when being referred to its (abstract) entirety
will be in boldface, as g, but its components will be cast in regular font, as gµν .

5 Alternatively, one could also consider a scalar field φ = φ(y) as the localization mechanism [122].
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determined as if the fermions were massless. The zero modes are thus described by the
equation

ΓiDi Ψ(6)
0 = 0. (5.9)

Following a separation of variables technique, Eq. (5.9) is reduced to a Schrödinger-like
equation and the fermionic zero modes are described by6

Ψ(6)
0 = e

5A
2



∑
k L

+
0k(θ, y)ψL+

0k (xµ)
0
0∑

k R
−
0k(θ, y)ψR−0k (xµ)

 , (5.10)

where
R−0k = L+

0k = Cke
ikθe

kρy
r F

1
2 (5.11)

represent the fermionic co-dimensional wave functions, k ∈ Z and the Ck are integration
constants. The existence of the perturbation m0 breaks the degeneracy of the zero modes,
implying in a tower of spinors with varying masses driven by integer values, k.

The SM leptons are thus represented by the localizable zero modes and a four-
dimensional observer will model them by an effective action, which follows from substituting
Eq. (5.10) into Eq. (5.8),

Seff =
∑
k

∫
d4x

(
Ψkγ

µDµΨk −mkΨkΨk

)
, (5.12)

where7 Ψk =
ψL+

0k

ψR−0k

 and

mk =
m0

∫
dy e−AL+

0kR
+
0k√∫

dy
∣∣∣L+

0k

∣∣∣2√∫ dy
∣∣∣R+

0k

∣∣∣2 =
m0

∞∫
−∞

dy (f+ + f−)Fe
2ρk
r
y

∞∫
−∞

dy Fe
2ρk
r
y

. (5.13)

Eq. (5.13) gives the effective masses as perceived by a four-dimensional observer. The
mechanism to achieve the charged leptons masses can finally be explained. By assuming
F = secha (y), which is concomitant to

Bθ = ar
2ρe tanh (y) , (5.14)

6 The components Ψ(6)
0 =

∑
k


0

R+
0k(θ, y)ψL+

0k (xµ)
L−0k(θ, y)ψR−0k (xµ)

0

 are non-normalizable, since R+
0k = L−0k =

Bke
−ikθe

5A
2 e

kρy
r e

ρe
r

∫
Bθdy.

7 In a six-dimensional notation Ψ(6)
k =


ψL+

0(k)
0
0

ψR−0(k)

.
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and that a/2 ≤ 2ρ/r < a, solely three normalizable fermionic zero modes can be identified,
each of them associated with k = −1, k = 0 and k = 1, which are now to be labeled,
respectively, as the electron, tauon and muon, i.e. m−1 = me, m0 = mτ and m1 = mµ.
After some straightforward manipulations one finds

mµ

me

=

∞∫
−∞

dy secha (y) e2 ρ
r
y (f+ + f−)

∞∫
−∞

dy secha (y) e−2 ρ
r
y (f+ + f−)

, (5.15)

and

mτ = (mµ +me)
Γ
(

a− 2ρ
r

2

)
Γ
(

a+ 2ρ
r

2

) ∞∫
−∞

dy secha (y) f+

2Γ
(

a
2

)2
∞∫
−∞

dy secha (y) cosh
(

2ρ
r
y
)
f+

. (5.16)

The largeness of the tauonic mass is an effect of canonical normalization and it is indepen-
dent from the space-time asymmetry. If a is larger but of similar value to 2ρ/r, then the
wave functions of the electron and muon, which are not localized at the center, become
spread out, while the wave function of the tauon gets localized at the center of the system
of coordinates. After canonical normalization, the electronic and muonic masses pickup a
very small term when compared with the tauonic term, thus explaining the largeness of the
tauon mass. In this way, charged lepton mass constraints can be straightforwardly attained
regardless of the asymmetry, since the tauon mass can be made as large as necessary,
albeit not correctly valued. On the other hand, the relation between the electron and muon
masses relies on the asymmetry of the warp factor. The wave functions of the electron and
muon are a mirror of one each other, and the overlap between each and an asymmetric
warp factor leads to different masses. Yet, not all asymmetric warp factors can conclude
the correct masses, since a very light electron is only realized when f+ − f− goes to zero
much faster than f+ + f− for positive y. It is noteworthy that the co-dimensional wave
functions that represent the fermionic fields are not gauge invariant, but the normalization
condition and the masses as calculated here are gauge invariant. This is clear since the
latter are calculated directly from the action, which is gauge invariant.

In a following section a choice for the metric will be made to exemplify the
mechanism in a more explicit, and parametrized, way.
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5.1.2 The Complete Lepton Sector

The complete lepton sector can be constructed from the action, following the
notation of [123],

SSU(2)L×U1 =
∫

d6x
√
−g

L(6)ΓM
(
∇M − igτaWa

M + i

2g′BM

)
L(6)

+ e(6)
− ΓM (∇M + ig′BM + ζ,M) e(6)

− + ν
(6)
− ΓM (∇M − b ζ,M) ν(6)

−

−m0

(
L

(6)H e(6)
− + e(6)

− H† L(6)
), (5.17)

where ∇M := ∂M + CM , CM is the spin connection of (E6, g), ζ is some dark scalar field,
BM is the hypercharge gauge boson, Wa

M are the SU(2) gauge bosons, g and g′ are the

SU(2) and U(1) couplings, τa = σa/2 are the SU(2) generators, H =
H+

H0

 is the Higgs

doublet, b is a real constant, and m0 is the coupling constant with the Higgs field. The
left-handed leptons pair up to transform under SU(2),

L(6) =
ν

(6)
+

e(6)
+

 , (5.18)

where

ν
(6)
+ =


ΨL+
ν

ΨR+
ν

0
0

 and e(6)
+ =


ΨL+

e

ΨR+
e

0
0

 (5.19)

represent the left-handed charged leptons and neutrinos, respectively. While

e(6)
− =


0
0

ΨL−
e

ΨR−
e

 and ν(6)
− =


0
0

ΨL−
ν

ΨR−
ν

 (5.20)

represent the right-handed charged leptons and neutrinos, which are uncharged under
SU(2).

The charged lepton masses are a consequence of the existence of a Higgs field,
which is driven by the action

SH =
∫

dx6√−g


[(
∇M − igτaWa

M −
i

2g′BM

)
H
]† (
∇M − igτ bWM

b −
i

2g′BM
)

H

− ζ ,Mζ,MH†H + V (H)
, (5.21)

where V (H) = µ2H†H− λ
(
H†H

)2
.
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For conformally flat metrics (cf. (5.6)), fermionic fields can not be localized at the
vicinity of the brane. Hence, the proposal thus relies on the existence of a non-trivial bulk
profile for the hypercharge gauge boson B = BMdxM and the scalar field8 ζ, each defined
by

Bµ = Bµ (xν) , Wa
µ = Wa

µ (xν) , By = Wa
i = 0, Bθ = r

ρg′
F,y
F

and ζ = 1
2 ln (F ) , (5.22)

where F is some positive even function of y and the subscript index “,” stands for partial
derivatives. Gauge and scalar fields defined in Eq. (5.22) drive the localization of ferminonic
modes9 [73, 122], and can be interpreted as background fields.

The parameters µ2, λ and m0 set the scale of the charged lepton masses, which are
much smaller than the brane model scale 1/ρ or 1/r, and are treated as a perturbation of
the system. This can be justified directly from the action

S =
∫

d6x
√
−g

[
L(6)

(
ΓµDµ + 1

ρ
ΓyDy + 1

r
ΓθDθ

)
L(6)

+e(6)
−

(
ΓµDµ + 1

ρ
ΓyDy + 1

r
ΓθDθ

)
e(6)
− −m0

(
L(6)

He(6)
− + e(6)

− H
†L(6)

)]
, (5.23)

which implies that the co-dimensional portion of the action is of the order of 1/r or 1/ρ,
while the rest is of the order of m0. Therefore the terms µ2, λ and m0 do not affect the
co-dimensional wave functions, which are determined as if the fermions were massless and
V (H) vanished. The zero modes of leptons are thus described by the equations

Γi
(
∇i + ig′12Bi

)
L(6)

0 = 0, (5.24)

Γi (∇i + ig′Bi + ζ,i) e(6)
−0 = 0, (5.25)

and
Γi (∇i − b ζ,i) ν(6)

−0 = 0. (5.26)

Following a separation of variables technique, Eqs. (5.24), (5.25) and (5.26) are reduced
to a Schrödinger-like equations and the localizable leptonic zero modes are described by10

L(6)
0 =

ν
(6)
+0

e(6)
+0

 , ν(6)
+0 = e

5A
2
∑
k

L+
0k


ψL+
ν0k(xµ)

0
0
0

 , e(6)
+0 = e

5A
2
∑
k

L+
0k


ψL+

e0k(xµ)
0
0
0

 , (5.27)

8 The scalar field is not essential for the mechanism, however, simpler expressions and more elegant
properties are obtained for the reduced resulting effective four-dimensional action in that case.

9 With the exception of ζ ,Mζ,MH†H, which serves the purpose of achieving a trivial bulk profile for the
Higgs, as shall be presented later.

10 The components Ψ(6)
0 = e

5A
2
∑
k


0

R+
0k(θ, y)ψL+

0k (xµ)
L−0k(θ, y)ψR−0k (xµ)

0

 are non-normalizable, since L−0k =

Ake
−ikθe

kρy
r F−

3
2 and R+

0k = Bke
−ikθe

kρy
r F−

1
2 .
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e(6)
−0 = e

5A
2
∑
k

R−0k


0
0
0

ψR−e0k (xµ)

 and ν(6)
−0 = e

5A
2 F

b−1
2
∑
k

R−0k


0
0

ψL−ν0k(xµ)
ψR−ν0k(xµ)

 , (5.28)

where
L+

0k = Cke
ikθe

kρy
r F

1
2 and R−0k = Dke

ikθe
kρy
r F

1
2 , (5.29)

represent the fermionic co-dimensional wave functions, k ∈ Z, Ck and DK are integration
constants.

On the other hand, the zero mode of the Higgs field satisfies the equation

∇i∇iH− i
g′
r2 BθH,θ = 0, (5.30)

which after a rescaling and a separation of variables technique, with H = ∑
k e

ikθe2Aφ̂kHk (xµ),
reduces to

φ̂k,vv + 2
(
A,vv − 2A,v2

)
φ̂k + k

g′
r2 Bθφ̂k = k2

r2 φ̂k. (5.31)

The zero mode of scalar fields are generally like φ̂0 = c e−2A, which is the solution of Eq.
(5.31) for11 k = 0, implying in a trivial bulk profile for the Higgs field,

H = cH0 (xµ) = c

φ+ (xµ)
φ0 (xµ)

 , (5.32)

where c is an integration constant. The existence of the perturbation m0 breaks the
degeneracy of the zero modes, implying in a tower of spinors with varying masses driven
by integer values, k. The SM leptons are thus represented by the localizable zero modes
and a four-dimensional observer will model them by an effective action, which follows from
substituting Eqs. (5.27), (5.28) and (5.32) into Eq. (5.17) and canonically normalizing,

SEff =
∑
k

∫
d4x

 Lk γµ
(
∇µ − igτaWa

µ + i

2g′Bµ

)
Lk + eRkγµ

∇µ + ig′Bµ

eRk

+ ν−k γ
µ∇µν

−
k −mk

(
LkH0 eRk + eRkH†0 Lk

) , (5.33)

where

Lk =
νLkeLk

 , νLk =
ψL+

ν0k

0

 , eLk =
ψL+

e0k

0

 , ν−k =
ψL−ν0k

ψR−ν0k

 , eRk =
 0
ψR−e0k

 (5.34)

and

mk =
m0

∫
dy e−AL+

0kR
+
0k√∫

dy
∣∣∣L+

0k

∣∣∣2√∫ dy
∣∣∣R+

0k

∣∣∣2√∫ dy φ̂2
0

=
m0

∞∫
−∞

dy (f+ + f−)Fe
2ρk
r
y

∞∫
−∞

dy Fe
2ρk
r
y

√√√√√ ∞∫
−∞

dy (f+ + f−)4

. (5.35)

11 Other values of k necessarily imply in a massive mode.
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Analogously, a four-dimensional observer will model the Higgs field by an effective
action, which follows from substituting Eq. (5.32) into Eq. (5.21),

S
(4)
H =

∫
dx4

{[(
∇µ − igτaW µ

a −
i

2g′Bµ
)
H0

]† (
∇µ − igτbW b

µ −
i

2g′Bµ

)
H0 + Veff (H0)

}
,

(5.36)
where Veff (H0) = µ2

effH
†
0H0 − λeff

(
H†0H0

)2
, with

µ2
eff = µ2

∞∫
−∞

dye−6A

∞∫
−∞

dye−4A

and λeff = λ

∞∫
−∞

dye−6A

 ∞∫
−∞

dye−4A

2 . (5.37)

After breaking the gauge symmetry, the Higgs field acquires a vacuum expectation value
(v.e.v), driven by µeff and λeff , as

v = µeff√
λeff

= µ√
λ

√√√√√ ∞∫
−∞

dy (f+ + f−)4, (5.38)

and mk = mkv/
√

2, from Eqs. (5.35) and (5.38), gives the effective masses as measured by
a four-dimensional observer,

mk = µm0√
2λ

∞∫
−∞

dy (f+ + f−)Fe
2ρk
r
y

∞∫
−∞

dy Fe
2ρk
r
y

. (5.39)

Eq. (5.39) is exactly the same as Eq. (5.13), with the substitution m0 → µm0/
√

2λ.
Therefore, Eq. (5.39) leads to the same mechanism, for a SU(2)L × U(1) model, that was
discussed previously for an U(1) model.

5.1.3 The Asymmetry Parametrized

To exemplify the mechanism in effect we propose a model for which f+ =
sechl (y) cosh (oy) and f− = sechl (y) sinh (oy), which, after substitution into Eq. (5.6),
leads to

g = sech2l (y) e2oy
(
ηµνdxµdxν + r2dθ2 + ρ2dy2

)
. (5.40)

The fractions of the charged lepton masses associated with the metric (5.40),
calculated from Eqs. (5.15) and (5.16), become

mµ

me

=
Γ
(
l−o+a− 2ρ

r

2

)
Γ
(
l+o+a+ 2ρ

r

2

)
Γ
(
l+o+a− 2ρ

r

2

)
Γ
(
l−o+a+ 2ρ

r

2

) , (5.41)
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and

mτ

mµ

=
Γ
(

a− 2ρ
r

2

)
Γ
(

a+ 2ρ
r

2

)
Γ
(
l+a−o

2

)
Γ
(
l+a+o

2

)
Γ
(

a
2

)2
Γ
(
l+a− 2ρ

r
−o

2

)
Γ
(
l+a+ 2ρ

r
+o

2

) . (5.42)

If o is an integer and l − o is an even integer, then Eqs. (5.41) and (5.42) become
polynomial equations. Particularly, for o = 2 and l = 4 one can solve Eqs. (5.41) and
(5.42) analytically to find a = 34.9562 and a − 2ρ/r = 0.28488. In fact, there are many
combinations of o and l for which the lepton spectrum is achievable. Fig. 29 depicts the
values of l, a and a− 2ρ/r with fixed l− o for which the proper fractions of the masses and
Koide’s formula are realized for the metric Eq. (5.40). Correspondently, Fig. 30 depicts
the values of l, l− o and a− 2ρ/r with fixed a for which the proper fractions of the masses
and Koide’s formula are realized for the metric Eq. (5.40). The intersection of the curves
in both Figs. 29 and 30 are identified according to the parameter values that lead to the
charged lepton mass spectrum.
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Figure 29 – (a) The charged lepton mass spectrum associated with the metric (5.40) for
l − o = 1. (b) The charged lepton mass spectrum associated with the metric
(5.40) for l− o = 2. The solid black, solid red and dashed black lines represent
the equations mµ/me = 206.768, mτ/mµ = 16.817 and K = 2/3, respectively.
Results are for triple intersecting points at l = 6, 7, 8, and 9.

5.1.4 Beyond The Standard Model

The last important aspect to realizing realistic models is achieving a mass gap
between the zero and massive modes. Being the SM particles represented by the zero modes,
the massive modes are thus associated with beyond SM physics. From a phenomenological
point of view, it is important to realize models that allow for the existence of a mass gap
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Figure 30 – (a) The charged lepton mass spectrum associated with the metric (5.40) for
a = 1. (b) The charged lepton mass spectrum associated with the metric
(5.40) for a = 2. The solid black, solid red and dashed black lines represent
the equations mµ/me = 206.768, mτ/mµ = 16.817 and K = 2/3, respectively.
Results are for triple intersecting points at l = 3, 4, 5, and 6.

[87], between the zero and massive modes, in the spectrum of leptons. Then the energy
scale at which the massive modes can be excited is fixed by this gap, and its existence
is relevant for distinguishing the footprints of the massless modes, identified with stable
four-dimensional SM particles, from those coming from the massive modes, either discrete
or continuous. When no mass gap is present, then there exist several massive modes with
masses small to the point of being indistinguishable from the massless ones.

5.1.4.1 Massive Modes: The Charged Leptons

To realize the massive modes of the charged leptons, the six-dimensional braneworlds
Dirac equation must be evaluated, which is given by(

Γ̂µDµ +DīΓī
)

Ψ(6) = 0, (5.43)

Following the same arguments as outline in Subsecs. 4.3.1 and 4.3.2, one finds four equations

m2L+
m +D4̄

+D4̄
+L

+
m − i

[
D4̄

+,D5̄
+

]
L+
m +D5̄

+D5̄
+L

+
m = 0, (5.44)

m2R+
m +D4̄

+D4̄
+R

+
m + i

[
D4̄

+,D5̄
+

]
R+
m +D5̄

+D5̄
+R

+
m = 0, (5.45)

m2L−m +D4̄
−D4̄
−L
−
m + i

[
D4̄
−,D5̄

−

]
L−m +D5̄

−D5̄
−L
−
m = 0, (5.46)

and
m2R−m +D4̄

−D4̄
−R
−
m − i

[
D4̄
−,D5̄

−

]
R−m +D5̄

−D5̄
−R
−
m = 0, (5.47)
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that define the massive modes of the leptons, where it is defined

D5̄
+ = 1

ρ

[
∂y −

5
2A,y + i

2g′By

]
, D5̄
− = 1

ρ

[
∂y + ζ,y −

5
2A,y + ig′By

]
, (5.48)

D4̄
+ = 1

r

[
∂θ −

5
2A,θ + i

2g′Bθ

]
and D4̄

− = 1
r

[
∂θ + ζ,θ −

5
2A,θ + ig′Bθ

]
. (5.49)

Substituting Eqs. (5.14) and (5.22) into Eqs. (5.44), (5.45), (5.46) and (5.47), after
a rescaling of the wave functions L+

m = e5A/2∑
k e

ikθL+
mk and L−m = e5A/2e−ζ

∑
k e

ikθL−mk
(the same is true for R+

m and R−m), implies in four Morse-Rosen equations,

−L+
mk,yy +

[
−λ2

(
λ

2 + 1
)

sech2 (y)− ks tanh (y)
]

L+
mk = ε+L+

mk, (5.50)

−R+
mk,yy +

[
−λ2

(
λ

2 − 1
)

sech2 (y)− ks tanh (y)
]

R+
mk = ε+R+

mk, (5.51)

−L−mk,yy +
[
−λ (λ− 1) sech2 (y)− 2ks tanh (y)

]
L−mk = ε−L−mk, (5.52)

and
−R−mk,yy +

[
−λ (λ+ 1) sech2 (y)− 2ks tanh (y)

]
R−mk = ε−R−mk. (5.53)

where λ = g′ρq
r
, s = ρλ

r
, ε+ = m2ρ2− k2s2

λ2 − λ2

4 , ε− = m2ρ2− k2s2

λ2 −λ2 and q is a real valued
constant. Eqs. (5.50), (5.51), (5.52) and (5.53) are equivalent to Eqs. (4.91) and (4.92),
therefore their eigenvalue spectrum follows from Eq. (4.99). In this way there is always a
mass gap between the zero and massive modes, be it the discrete or continuous modes.

In conclusion, for configurations with a non-trivial profile for the gauge and scalar
field, like Eq. (5.14), the fermionic massive modes are solutions of Morse-Rosen equations,
for which a discrete set of eigenstates can be identified, each associated with the mass
eigenvalues

m+
jk = 2

ρ

√
(j + 1) (a− j − 1)
|a− 2j − 2|

√(a
2 − j − 1

)2
− k2ρ2

r2 , (5.54)

and

m−jk = 1
ρ

√
(j + 1) (2a− j − 1)
|a− j − 1|

√
(a− j − 1)2 − k2ρ2

r2 , (5.55)

where j is an integer, 0 ≤ j < a/2− 1 and m±jk references the discrete masses of positive
and negative components of spinors, respectively. While continuous modes are related to
masses

m+ ≥ 1
2ρ

∣∣∣∣∣a− 2ρ |k|
r

∣∣∣∣∣ and m− ≥ 1
ρ

∣∣∣∣∣a− ρ |k|
r

∣∣∣∣∣ , (5.56)

therefore, a mass gap between the zero and massive modes is found whenever the zero
modes are normalizable.

For metric (5.40) the lepton mass gap, between the continuous and massless
modes, is m ∼ 10−2/ρ. A realistic mass gap, for small values of l, is thus achievable for
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ρ � 10−18 m, since m0v/
√

2 ≈ mτ = 1.7GeV . On the other hand, for large values of l,
tiny values of 1 − o/l and a of the order of unity, a realistic mass gap is achievable for
ρ� 2lΓ(a)/

[
la/2Γ(a/2)

]
10−16m, since m0v/

√
2 ≈ la/2Γ(a/2)/

[
2lΓ(a)

]
GeV . Therefore, for

l ∼ 50 the mass gap is achievable for ρ� 1 m.

5.1.4.2 Massive Modes: The Higgs Field

In the same line of reasoning, the Higgs field must also have a mass gap between
the zero and massive modes. But the massive modes of the Higgs depends upon the choice
of metric. Particularly, for the metric considered in this manuscript,

g = sech2l (y) e2oy
(
ηµνdxµdxν + r2dθ2 + ρ2dy2

)
. (5.57)

and the gauge boson is once again

Bθ = −q tanh (y) , (5.58)

the bulk profile of the Higgs field follows from the equation

−φ,yy +
[
−2l (2l + 1) sech2 (y)− (8ol − ks) tanh(y) + 4l2 + 4o2 + k2s2

λ2

]
φ = m2ρ2φ,

(5.59)
where λ = g′ρq

r
and s = λρ

r
. The general solution of Eq. (5.59) takes the form

φkj =c1 sechq (y) epy2F1

(
q − 2l, 2l + 1 + q; q − p+ 1; e

−y sech(y)
2

)

+ c2 sechp (y) eqy 2F1

(
p− 2l, 2l + 1 + p; p− q + 1; e

−y sech(y)
2

)
, (5.60)

where q =

√√
ε2−(8ol−ks)2−ε
√

2 , p = |8ol−ks|
2q and ε = m2ρ2−4l2−4o2− k2s2

λ2 . If ε ≥ − |8ol − ks|
then Eq. (5.60) corresponds to the propagating modes. Otherwise, for ε < − |8ol + ks|,
the solution (5.60) leads to the bound states

φkj(y) = ce
|8ol−ks|
2(2l−j) y sech2l−j (y) 2F1

(
−j, 4l + 1− j; 2l + 1− j − |4ol − ks|2l − j ; e

−y sech (y)
2

)
.

(5.61)
both associated with the mass eigenvalues

m2ρ2 = 4l2 + 4o2 + k2s2

λ2 − (2l − j)2 − (8ol − ks)2

4 (2l − j)2 , (5.62)

where j is a natural number. In this way there is always a mass gap between the zero
and massive modes, be it a discrete or continuous mode. The mass gap for the Higgs field
follows similar patterns to the ones found for the leptons.
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5.1.5 Neutrino Masses

So far only the charged leptons have been included in the mass generation mecha-
nism, but neutrinos should also present a mass. In this subsection, a speculation of how
the neutrinos may acquire mass is postulated in this six-dimensional setup. First assume
that the neutrinos interact with the Higgs as follows,

Sν =−
∫

d6x
√
−g mνφ

[
L

(6)H̃ ν(6)
− + ν

(6)
− H̃†L(6)

]
, (5.63)

where H̃ = iσ2H∗, mν is the neutral lepton coupling constant with the Higgs field and φ is
some dark real scalar field that is a function of only θ. The scalar field φ is important to
establish the interaction between the different flavors of neutrinos. Secondly, take φ to be
the most general scalar field one can fit in S1, i.e.

φ (θ) =
∑
j

cje
ijθ. (5.64)

A four-dimensional observer will thus model the neutrino interaction with the Higgs,
which follows from substituting Eqs. (5.27), (5.28), (5.32) and (5.64) in Eq. (5.63) and
canonically normalizing, by an effective term

Sν = −
∑
k,j

mkj

∫
d4x

(
LkH̃0 ν

−
j + ν−k H̃

†
0Lj

)
, (5.65)

where

mkj = µmν√
2λ

ck−j2l
√

Γ (a) Γ (ba) Γ
(
l+ ab+a

2 −o−
(k+j)ρ
r

2

)
Γ
(
l+ ab+a

2 +[o+ (k+j)ρ
r ]

2

)
Γ
(
l + ab+a

2

)√
Γ
(

a− 2jρy
r

2

)
Γ
(

a+ 2jρy
r

2

)√
Γ
(

ba− 2kρy
r

2

)
Γ
(

ba+ 2kρy
r

2

) . (5.66)

The full asymmetrical lepton model has nine parameters: c−2/c0, c−1/c0, c1/c0, c2/c0,
a, ρ/r, b, mν and m0. If metric (5.40) is to be assumed then there are two parameters defin-
ing the braneworld model: l and o. While the SM with the Pontecorvo–Maki–Nakagawa–Sakata
(PMNS) matrix has ten parameters12 [123]: θ12, θ13, θ23, δ, m1, m2, m3, me, mµ and mτ .
The correct mass matrix for the neutrinos could be achievable with (5.66). Considering
that the parameters a and ρ/r are fixed by the charged lepton mass fractions, then one
can choose the cj such that the mixing angles, θ12, θ13 and θ23, and Dirac phase, δ, of the
PMNS matrix are exactly like the experimentally verified. The parameters mν , b, l and
o that are left should be enough to fix the neutrino masses m1, m2 and m3, such that
they satisfy the constrictions imposed by Solar and atmospheric neutrino oscillations. The
complete analysis of the values of the parameters that fix the correct PMNS matrix is
outside the scope of the present work, and is left for future work.
12 It is assumed that the neutrinos masses do not contain a Majorana term.
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5.2 For Other Sets of the Classification

So far the proposed mechanism has been presented for trivial-like solutions, thus this
section is dedicated to exploring the mechanism along the other sets in the classification. It
is straightforward to extend the proposed mechanism to string-like solutions. From action
(5.17), and the same assumptions about the gauge and scalar fields, one can achieve the
following expression for the masses, after the Higgs field has broken the gauge symmetry
and acquired a v.e.v,

mk = µm0√
2λ

∫
dy e−BL+

0kR
+
0k√∫

dy eA−B
∣∣∣L+

0k

∣∣∣2√∫ dy eA−B
∣∣∣R+

0k

∣∣∣2 . (5.67)

Thus, assuming that

g = (f+ + f−)2 ηµνdxµdxν +Q2 (f+ + f−)2
(
ρ2dy2 + r2dθ2

)
, (5.68)

which is equivalent to

e−B = Q (f+ + f−) and eA−B = Q(y), (5.69)

where Q is some even function of y, implies in the masses

mk = µm0√
2λ

∫
dy (f+ + f−)QFe2k ρ

r√∫
dy QFe2k ρ

r

√∫
dy QFe2k ρ

r

. (5.70)

Therefore, Eq. (5.70) is equivalent to Eq. (5.35), if one substitutes F → QF , and the same
conclusions drawn in Secs. 5.1.1, 5.1.2 and 5.1.3 are also valid for string-like solutions13.

For the intersecting-like models, solely the ones for which p = 0 (or p = 1) can
comport the mechanism, i.e. models III, IV , V and V I. The other two models, I and II,
do not posses the possibility of an asymmetry in the warp factor, since it is symmetrical
with respect to the center of the configuration. For models III, IV , V and V I one can
achieve an asymmetry by imposing that Ã be asymmetrical. Regardless, this section shall
only address the mechanism for model IV , since it has been confirmed in previous chapters
to correspond to the most physically significant one.

To realize the mechanism for model IV , a new dark scalar field must be introduced
to the formalism, this is to achieve the localization of spinors not only in the direction of

13 A brief caveat is needed here: It is important that while QF is a “localized” function, QF−1 must
diverge at infinity, which guarantees that the internal components of the six-dimensional spinors, i.e.
R+ and L−, are not-localized.
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y, but also of ϕ. To this end, one specifies the action for spinors as

SSU(2)L×U1 =
∫

d6x
√
−g

L(6)ΓM
∇M − igτaWa

M + i

2g′BM + φ,M

L(6)

+ e(6)
− ΓM

∇M + ig′BM + ζ,M + φ,M

e(6)
− −m0

[
L

(6)H e(6)
− + e(6)

− H†L(6)
],
(5.71)

where the scalar field φ = φ(ϕ) has been included to guarantee that the zero modes of
spinors are localized, all other fields will be equivalent to the ones previously introduced
in Subsec. 5.1.2. The zero modes of the leptons are similar to the ones at Subsec. 5.1.2,
but the inclusion of the scalar leads to

L(6)
0 =

ν
(6)
+0

e(6)
+0

 , ν(6)
+0 = e

5A
2
∑
k

L+
0k


ψL+
ν0k(xµ)

0
0
0

 , e(6)
+0 = e

5A
2
∑
k

L+
0k


ψL+

e0k(xµ)
0
0
0

 , (5.72)

and

e(6)
−0 = e

5A
2
∑
k

R−0k


0
0
0

ψR−e0k (xµ)

 , (5.73)

where

L+
0k = Cke

ikϕe−φe
kρy
r F

1
2 and R−0k = Dke

ikϕe−φe
kρy
r F

1
2 . (5.74)

Relevant to the leptons masses is the normalization of the lepton wave functions, which
are given by

∫
dy2 eA−BL

+
0lL

+
0k =

∫ π

−π
dϕeÂei(k−l)ϕe−2φ

∫ ∞
−∞

dy e
(l+k)ρy

r F, (5.75)

the right-handed wave function also follows the same integration. The simplest way for
integral (5.75) to be finite is when φ coincides with Â/2, therefore implying in

∫
dy2 eA−BL

+
0lL

+
0k = δlk

∫ ∞
−∞

dy e
(l+k)ρy

r F. (5.76)

which is finite within this formalism. Essentially the scalar field for model IV satisfies

e−2φ = cos
(
nϕ

2

)
. (5.77)
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To finally find the masses one must now look into the Higgs field. To achieve the
correct masses one must impose the action for the Higgs as

SH =
∫

dx6√−g


[(
∇M − igτaWa

M −
i

2g′BM + 2φ,M
)

H
]†

×
(
∇M − igτ bWM

b −
i

2g′BM + 2φ,M
)

H

− ζ ,Mζ,MH†H + V (H)
, (5.78)

where the Higgs also couples to the scalar field φ. The zero modes of the Higgs with the
inclusion of the scalar field φ are simply

H = ce−2φH (xµ) = c cos
(
nϕ

2

)
H (xµ) . (5.79)

Finally, the mass matrix of the leptons is given by the equation

mkl =µm0√
2λ

∫
dy2 e−B cos

(
nϕ

2

)
L+

0kR
+
0l√∫

dy2 eA−B
∣∣∣L+

0k

∣∣∣2√∫ dy2 eA−B
∣∣∣R+

0k

∣∣∣2

=µm0√
2λ

2r
n

√
Λ
3

∫ π

−π
dϕ cos2

(
nϕ

2

)
ei(k−l)ϕ

∫ ∞
−∞

dy e−Ãe
(l+k)ρy

r F√∫ ∞
−∞

dy e
kρy
r F

√∫ ∞
−∞

dy e
lρy
r F

, (5.80)

The mass matrix (5.80) is not always diagonal, and therefore does not in general lead to
the charged lepton mass spectrum. In fact, as long as n > 2, n ∈ N+, the mass matrix is
diagonal and leads to the same conclusions derived in Sec. 5.1. Thus the asymmetrical
mechanism, as described in Sec. 5.1, can be trivially extended to model IV if n > 2.

One could attempt to further extend the mechanism for model IV to include n = 1
or n = 2 by changing the coupling constant of the Higgs with the scalar field φ from 2 to
some real α. But, it is straightforward to conclude that the mass matrix is diagonal if and
only if n > 2 and α is some even natural positive number, which excludes model IV when
n = 1 or n = 2 independently on the choice of α.

A similar procedure could be employed for models III and V , but one would have
to fine tune the choice of α, i.e. the coupling between the Higgs and the scalar field φ,
to achieve a diagonal mass matrix for the charged leptons. Aside from this fine tuning
problem, the asymmetrical mechanism can be straightforwardly achieved for these models.
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6 Conclusion

Some old and novel solutions of braneworld models in (5 + 1)-dimensions were
classified and explored. Such braneworld models were thus employed in a mechanism for
explaining the masses of the charged leptons. In the following, a specialized summary and
discussion of the main results is presented.

6.1 On the Six-dimensional Braneworld Models
As a preliminary proposal, braneworlds generated by two scalar fields were obtained

as solutions depending solely on a single coordinate of the co-dimensions, therefore constitut-
ing an intersection of two thick branes, where the adopted procedure involved constraining
the metric components to be separable functions of the co-dimensions. Braneworlds on
top of two different geometries of S2, the sphere and spheroid, were also constructed, and
trivial and non-trivial extensions of the well known (4+1)-dimensional brane-world models
were identified. All the results implied into six different models, where two of them were
strictly defined (models I and II) up to some constant p, and the other four (models III,
IV , V and V I) have maintained some degree freedom not specified by the field equations.

In the first subset, models I and II constituted strictly defined models, determined
from a flat brane where the separation constant p was set different from 1 (or 0) so as
to strictly determine all the involved quantities from the Einstein field equations. The
intrinsic difference between such models emerges from the choice of a constant parameter
cu: for real cu one finds model I, and imaginary cu one finds model II. For model I one
identifies a metric with a non-RS-like warp factor, but still noticing that the effective finite
volume of the bulk allows for localizing fields in the brane. The biggest complication of
model I is its requirement of an infinite amount of energy to achieve the localized gravity
configuration, which induces one to regard it as unphysical. Model II is significantly more
interesting in the sense that where several singularities may be identified, its total defect
formation energy is finite. Nevertheless, due to the singularities in the stress energy tensor,
one may regard model II also as an unphysical configuration.

In the second subset, models III, IV , V and V I consisted in braneworld configu-
rations with some degree of freedom not strictly specified by Einstein field equations. They
were constructed by assuming that the auxiliary constant is set p = 0 such that one is able
to obtaining solutions for the whole range of possible values of the cosmological constant Λ
(= 0, > 0 or < 0). All the solutions contain extensions of some well-known five-dimensional
braneworlds when the separation constant introduced for solving the coupled Einstein
equations is set as C = 0, being it either a trivial or non-trivial extension. More relevantly,
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some solutions for the sphere and spheroid geometries, where model IV seems to be of
particular interest to physics, have been scrutinized.

In particular, model III was constructed upon a flat brane model with two scalar
fields, for which the solution implies into some singularities where the warp factor exhibits
cusped profile. Overall, the fields that constitute model III have similar behavior to the
ones in model II. The above-mentioned model IV seems to be the most relevant solution
here depicted. This model consists in a de Sitter brane with a single scalar field with a
consistently and smoothly well behaved warp factor. No cusps are found in the warp factor
and the so ingrained singularities in the stress energy tensor, which emerge with other
models, are avoided. Regardless, after evaluating the Kretschmann scalar, for model IV ,
curvature singularities are still encountered. Model IV also eventually discards the role of
the scalar field φ, since one could assume any generic form for the stress energy tensor as
long as T uu(u), T µν(u) = δµνT

v
v(u) and Tuv = 0. Thus model IV may be found into other

applications other than those for thick branes generated by scalar fields. For completeness,
considering the whole spectrum of possible values for the cosmological-like constant Λ,
model V was considered upon an anti-de Sitter brane with two scalar fields, where the
separation constant has been set as C = 0. It resulted into model V possessing similar
features to model III, which essentially exhibits the same singularities and cusps of the
latter.

It is also worth to mention that, for models III, IV , V and V I, from the second
subset, the Einstein equations do not define all fields. The scalar field φ, the warp
factor Ã and the potential V of are not strictly defined from field equations and one
thus still has some freedom in choosing such quantities. This opened the possibility for
considering predetermined geometries for the internal space. By choosing Ã and f̃ with
predetermined geometry, one is able to achieve two setups that allow for the integration
of the corresponding metric Eq. (2.85). From such choices of Ã and f̃ , one is able to
accomplish a solution over the sphere and spheroid for models III and IV . For the sphere
models, two solutions for model IV and nine solutions for model III were achieved, one
for each possible value of a discrete degree of freedom n. In particular, for model IV , for
n = 1, one has found a solution for which the stress energy tensor is smoothly well-behaved,
even if the scalar φ exhibit some singularities. On the other hand, the n = 2 model depicts
a dS6 space, since there are no scalar fields, only the vacuum. Likewise, the spheroid seems
to enjoy the most interesting features of the S2 models. Constructed for model IV , with
n = 2, one is able to achieve several interesting configurations for the warp factor and
the scalar field, which guarantees the localization of gravity. Also, the spheroid solution
pointed to a new solution for (4 + 1)-dimensional models, represented by metric (2.146),
where the actual localization parameter are given in terms of an arbitrary constant, κ.

The gravitational fluctuations and phenomenological implications of intersecting-
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like braneworlds have also been explored. For the so-called models I, II, III and V I, zero
modes have been computed, for model IV , the entire spectrum of graviton modes were
analytically identified, and for model V , only some could be computed. In addition, the
implications of spherical internal spaces have been investigated for models III and IV .

Generically, in contrast to ordinary five-dimensional models, six-dimensional models
rely on a more intricate quantum mechanical two-dimensional analogue problem, where
the assessment of the localization of gravity is driven by the curved space co-dimensional
variables, (B2, σ̂), rendering a Schrödinger-like equation for each co-dimension, from which
localization modes have been identified.

Despite the reiterated physical appealing limitations of models I and II (cf. Ref. [1]),
the profile of the gravitational constant GN has been obtained, at least, as a pedagogical
exercise. Results from models I and II attest that the gravitational strength may be as
small as one wishes by setting the parameter p close to 2 or 4, instead of reflecting some
usual brane “radius” (parameters cu and cv) tuning effect. -

More problematically, model III implied into a Schrödinger-like equation whose
massive states are not straightforwardly determined, with the exception for a trivial
extension of five-dimensional models (C = 0), for which massive states are similar to flat
compactified models.

The most physically appealing intersecting braneworld, model IV , revealed a
Schrödinger-like equation with a Pösch-Teller potential, admitting a finite and discrete
number of gravitons, whose masses are bounded from above by an interplay between
the separation constant k and the cosmological constant1 Λ. Any propagating mode was
summarily discarded after imposing unitary boundary conditions, thus rendering the
singularities at the boundaries of space harmless. It is also noteworthy that model IV
presents a mass gap between the zero and massive modes, all the while retaining a smooth
Ricci scalar but a singular Kretschmann scalar. This is in contrast to five-dimensional
models, where mass gaps and a singular Ricci scalar are directly connected [87]. Thus we
conjectured that the existence of a mass gap in higher-dimensional braneworlds, other
than five, may be connected to naked singularities of other scalar invariants besides the
Ricci scalar.

The unique model constructed out of an anti-de Sitter brane, model V , has alluded
to a Schrödinger-like equation with a trigonometric Pösch-Teller potential and a discrete
set of gravitational modes. Unfortunately, model V presents a tachyonic graviton mode,
which points to an instability of the configuration.

Finally, concerning some technicalities pointed out in Sec. 2.4.6, through models
III and IV , one could also construct braneworld models whose internal space are spheres.

1 For instance, if k is non-positive one can find at most two massive gravitons.
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The spherical models constructed out of model III, but with C = 0, rely on a trivial
extension of five-dimensional braneworlds. Remarkably, such trivial extensions imply into
a gravitational interaction that behaves like a five-dimensional ADD model, while the
gravitational constant behaves like a six-dimensional one. On the other hand, sphere
models constructed out of model IV implied in two normalizable modes and the usual
Newtonian interaction, with the gravitational constant being determined by a combination
of the cosmological constant (Λ) and the radius of S2 (r).

The localization of matter fields have also been investigated. Scalar fields generally
follow the same quantum mechanical problem as the gravitational one, and every conclusion
for gravity could be extended to them. Gauge fields are more complicated, their zero
modes localization follow straightforwardly from the equations of motion, but the massive
modes required some extraordinary assumptions. Concerning strictly model IV , the full
spectrum of massive gauge modes was determined, with a unique mode being localized,
the zero mode.

Differing from gauge and scalar fields, fermionic matter required a more intricate
analysis. Contrasting to the results of other matter fields, Weyl spinors can not be localized
for the intersecting-like branes. Thus the localization of spinorial fields supported by a
gauge field was investigated. In the trivial-like case, the localization becomes independent
from warp factor, being solely determined from the gauge. In particular, fixing the co-
dimensional components of the gauge field to be By = 0 and Bθ = b tanh (y), transformed
the Schrödinger-like into a Morse-Rosen equation, and its entire spectrum of modes was
evaluated.

At last, for what concerns model IV , a new Schrödinger-like equation, that is dual
to a trigonometric Morse-Rosen equation, was introduced after a special choice for the
gauge field. The eigenvalues are exactly the same as a Posch-Teller system, for which the
deepness of the potential well is controlled by the gauge field strength, but the eigenstates
differ considerably. It is shown that there are finitely many, but degenerate, localized
states, being the continuous modes separated from the bound states by a mass gap.

6.2 On the Lepton Masses

From a classical perspective, fermions are localized at the vicinity of an asymmetric
conformally flat brane by the inclusion of a non-trivial bulk profile for the hypercharge
gauge boson and a dark scalar field; and the proper mass fractions are a consequence of
canonical normalization and the overlap between the fermionic wave functions with the
asymmetric warp factor. A mechanism for explaining the spectrum of the charged lepton
masses was therefore build for both a U(1) and SU(2)L × U(1) models, and upon two
parameters: the gauge field strength, a, and the ratio between the co-dimensional sizes,
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ρ/r.

In particular, from a model represented by metric Eq. (5.40), which was proposed
for the sole reason of achieving analytical expressions, the proper fractions between the
electron, muon and tauon masses were obtained, solely requiring that a− 2ρ/r be tiny.
Even when a is of the order of unity, the correct fractions for the masses can be realized
when the warp factor presents a large asymmetry, which for Eq. (5.40) is achievable when
1− o/l is tiny.

Furthermore, other asymmetric warp factors, in principle, also have the necessary
structure to realize the needed mass spectrum, but an adjustment of the parameter values
would be necessary. Even if surprising simple integrals have emerged when one assumed
the metric as Eq. (5.40), other setups may not be so treatable as for finding analytical
values for the masses. These results can also be trivially extended to other elements of the
proposed classification, i.e. for string and intersecting-like braneworlds.

In this matter, relevant for next investigations, the same mechanism could also be
employed for describing neutrino and quark mass hierarchy problems, since their diagonal
masses should satisfy a similar spectra. Of course, specific features related to neutrino
and quark interactions, and their implications for the mass generation mechanism, turn
the problem sufficiently more complex for such a preliminary analysis. In particular, the
neutrino mass matrix can be straightforwardly determined, but evaluating the individual
neutrino masses and their mixing angles is an intricate problem.





133

Bibliography

1 GAUY, H. M.; BERNARDINI, A. E. ( 5+1 )-dimensional analytical braneworld
models: Intersecting thick branes. Phys. Rev. D, American Physical Society (APS), v. 105,
n. 2, p. 024068, jan 2022. Citado 43 vezes nas páginas 17, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49, 51, 53, 54, 55, 56,
57, 58, 65, 70, 71, 77, 81, 107, and 129.

2 ARKANI-HAMED, N.; DIMOPOULOS, S.; DVALI, G. The hierarchy problem and
new dimensions at a millimeter. Phys. Lett. B, v. 429, n. 3, p. 263–272, 1998. ISSN
0370-2693. Citado 4 vezes nas páginas 17, 19, 83, and 107.

3 RANDALL, L.; SUNDRUM, R. Large mass hierarchy from a small extra dimension.
Phys. Rev. Lett., American Physical Society, v. 83, p. 3370–3373, Oct 1999. Citado 6
vezes nas páginas 17, 19, 61, 62, 79, and 107.

4 RANDALL, L.; SUNDRUM, R. An alternative to compactification. Phys. Rev. Lett.,
American Physical Society, v. 83, p. 4690–4693, Dec 1999. Citado 5 vezes nas páginas 17,
61, 62, 79, and 107.

5 RUBAKOV, V. A.; SHAPOSHNIKOV, M. E. Do we live inside a domain wall? Phys.
Lett. B, v. 125, n. 2, p. 136–138, 1983. ISSN 0370-2693. Citado na página 19.

6 SUNDRUM, R. Effective field theory for a three-brane universe. Phys. Rev. D,
American Physical Society, v. 59, p. 085009, Mar 1999. Citado na página 19.

7 ANTONIADIS, I. et al. New dimensions at a millimeter to a fermi and superstrings at
a tev. Phys. Lett. B, v. 436, n. 3, p. 257–263, 1998. ISSN 0370-2693. Citado 3 vezes nas
páginas 19, 61, and 85.

8 KAKUSHADZE, Z.; Henry Tye, S.-H. Brane world. Nucl. Phys. B, v. 548, n. 1, p.
180–204, 1999. ISSN 0550-3213. Citado na página 19.

9 NUSSINOV, S.; SHROCK, R. Some remarks on theories with large compact dimensions
and tev-scale quantum gravity. Phys. Rev. D, American Physical Society, v. 59, p. 105002,
Mar 1999. Citado na página 19.

10 SHIU, G.; TYE, S.-H. H. Tev scale superstring and extra dimensions. Phys. Rev. D,
American Physical Society, v. 58, p. 106007, Oct 1998. Citado na página 19.

11 DONINI, A.; RIGOLIN, S. Anisotropic type i string compactification, winding modes
and large extra dimensions. Nucl. Phys. B, v. 550, n. 1, p. 59–76, 1999. ISSN 0550-3213.
Citado na página 19.

12 ARKANI-HAMED, N.; DIMOPOULOS, S.; DVALI, G. Phenomenology, astrophysics,
and cosmology of theories with submillimeter dimensions and tev scale quantum gravity.
Phys. Rev. D, American Physical Society, v. 59, p. 086004, Mar 1999. Citado na página
19.



134 Bibliography

13 CULLEN, S.; PERELSTEIN, M. Sn 1987a constraints on large compact dimensions.
Phys. Rev. Lett., American Physical Society, v. 83, p. 268–271, Jul 1999. Citado na
página 19.

14 LUKAS, A. et al. Universe as a domain wall. Phys. Rev. D, American Physical
Society, v. 59, p. 086001, Mar 1999. Citado na página 19.

15 BERNARDINI, A. E.; ROCHA, R. da. Matter localization on brane-worlds generated
by deformed defects. Adv. High Energy Phys., Hindawi Limited, v. 2016, p. 3650632, 2016.
Citado 5 vezes nas páginas 19, 39, 79, 86, and 107.

16 ALMEIDA, C. A. S. et al. Fermion localization and resonances on two-field thick
branes. Phys. Rev. D, American Physical Society, v. 79, p. 125022, Jun 2009. Citado 5
vezes nas páginas 19, 39, 79, 86, and 107.

17 BAZEIA, D.; FURTADO, C.; GOMES, A. R. Brane structure from a scalar field
in warped spacetime. J. Cosmol. Astropart. Phys., IOP Publishing, v. 2004, n. 02, p.
002–002, feb 2004. Citado 4 vezes nas páginas 19, 39, 79, and 107.

18 DZHUNUSHALIEV, V.; FOLOMEEV, V.; MINAMITSUJI, M. Thick brane solutions.
Rep. Prog. Phys., IOP Publishing, v. 73, n. 6, p. 066901, may 2010. Citado 4 vezes nas
páginas 19, 39, 79, and 107.

19 BAZEIA, D.; LOSANO, L.; MALBOUISSON, J. M. C. Deformed defects. Phys. Rev.
D, American Physical Society, v. 66, p. 101701, Nov 2002. Citado 4 vezes nas páginas 19,
39, 79, and 107.

20 DEWOLFE, O. et al. Modeling the fifth dimension with scalars and gravity. Phys.
Rev. D, American Physical Society, v. 62, p. 046008, Jul 2000. Citado 4 vezes nas páginas
19, 39, 79, and 107.

21 AHMED, A.; GRZADKOWSKI, B. Brane modeling in warped extra-dimension. J.
High Energy Phys., Springer Science and Business Media LLC, v. 2013, n. 1, jan 2013.
Citado 4 vezes nas páginas 19, 39, 79, and 107.

22 GREMM, M. Four-dimensional gravity on a thick domain wall. Phys. Lett. B, Elsevier
BV, v. 478, n. 4, p. 434–438, apr 2000. Citado 6 vezes nas páginas 19, 39, 61, 62, 79,
and 107.

23 CHINAGLIA, M.; BERNARDINI, A. E.; ROCHA, R. da. Braneworld scenarios from
deformed defect chains. Int. J. Theor. Phys., Springer Science and Business Media LLC,
v. 55, n. 10, p. 4605–4619, jun 2016. Citado 4 vezes nas páginas 19, 39, 79, and 107.

24 KEHAGIAS, A.; TAMVAKIS, K. Localized gravitons, gauge bosons and chiral
fermions in smooth spaces generated by a bounce. Phys. Lett. B, Elsevier BV, v. 504,
n. 1-2, p. 38–46, apr 2001. Citado 5 vezes nas páginas 19, 39, 79, 86, and 107.

25 KOBAYASHI, S.; KOYAMA, K.; SODA, J. Thick brane worlds and their stability.
Phys. Rev. D, American Physical Society, v. 65, p. 064014, Feb 2002. Citado 4 vezes nas
páginas 19, 39, 79, and 107.

26 BRONNIKOV, K. A.; MEIEROVICH, B. E. A General thick brane supported by a
scalar field. Gravitation Cosmol., v. 9, p. 313–318, 2003. Citado 4 vezes nas páginas 19,
39, 79, and 107.



Bibliography 135

27 BAZEIA, D.; GOMES, A. R.; LOSANO, L. Gravity localization on thick branes: a
numerical approach. Int. J. Mod. Phys. A, World Scientific Pub Co Pte Lt, v. 24, n. 06, p.
1135–1160, mar 2009. Citado 4 vezes nas páginas 19, 39, 79, and 107.

28 BARBOSA-CENDEJAS, N. et al. Mass hierarchy, mass gap and corrections to
newton’s law on thick branes with poincaré symmetry. Gen. Relativ. Gravit., Springer
Science and Business Media LLC, v. 46, n. 1, dec 2013. Citado 4 vezes nas páginas 19,
39, 79, and 107.

29 ZHANG, X.-H.; LIU, Y.-X.; DUAN, Y.-S. Localization of fermionic fields on
braneworlds with bulk tachyon matter. Mod. Phys. Lett. A, World Scientific Pub Co Pte
Lt, v. 23, n. 25, p. 2093–2101, aug 2008. Citado 4 vezes nas páginas 19, 79, 86, and 107.

30 MELFO, A.; PANTOJA, N.; SKIRZEWSKI, A. Thick domain wall spacetimes with
and without reflection symmetry. Phys. Rev. D, American Physical Society, v. 67, p.
105003, May 2003. Citado 3 vezes nas páginas 19, 79, and 107.

31 BAZEIA, D. et al. Braneworld models of scalar fields with generalized dynamics.
Phys. Lett. B, Elsevier BV, v. 671, n. 3, p. 402–410, jan 2009. Citado 3 vezes nas páginas
19, 79, and 107.

32 KOLEY, R.; KAR, S. A novel braneworld model with a bulk scalar field. Phys. Lett.
B, Elsevier BV, v. 623, n. 3-4, p. 244–250, sep 2005. Citado 3 vezes nas páginas 19, 79,
and 107.

33 BAZEIA, D.; MENEZES, R.; ROCHA, R. da. A note on asymmetric thick branes.
Adv. High Energy Phys., Hindawi Limited, v. 2014, p. 276729, 2014. Citado 3 vezes nas
páginas 19, 79, and 107.

34 BERNARDINI, A. E.; BERTOLAMI, O. Equivalence between born–infeld tachyon
and effective real scalar field theories for brane structures in warped geometry. Phys. Lett.
B, Elsevier BV, v. 726, n. 1-3, p. 512–517, oct 2013. Citado 3 vezes nas páginas 19, 79,
and 107.

35 HALL, L. J.; SMITH, D. Cosmological constraints on theories with large extra
dimensions. Phys. Rev. D, American Physical Society, v. 60, p. 085008, Sep 1999. Citado
na página 19.

36 AHMED, A.; GRZADKOWSKI, B.; WUDKA, J. Thick-brane cosmology. J. High
Energy Phys., Springer Science and Business Media LLC, v. 2014, n. 4, apr 2014. Citado
2 vezes nas páginas 19 and 27.

37 CSÁKI, C. et al. General properties of the self-tuning domain wall approach to the
cosmological constant problem. Nucl. Phys. B, Elsevier BV, v. 584, n. 1-2, p. 359–386, sep
2000. Citado na página 19.

38 RUBAKOV, V.; SHAPOSHNIKOV, M. Extra space-time dimensions: Towards a
solution to the cosmological constant problem. Phys. Lett. B, Elsevier BV, v. 125, n. 2-3,
p. 139–143, may 1983. Citado na página 19.

39 BINÉTRUY, P. et al. Brane cosmological evolution in a bulk with cosmological
constant. Phys. Lett. B, Elsevier BV, v. 477, n. 1-3, p. 285–291, mar 2000. Citado na
página 19.



136 Bibliography

40 BINÉTRUY, P.; DEFFAYET, C.; LANGLOIS, D. Non-conventional cosmology from
a brane universe. Nucl. Phys. B, Elsevier BV, v. 565, n. 1-2, p. 269–287, jan 2000. Citado
na página 19.

41 CLINE, J. M.; GROJEAN, C.; SERVANT, G. Cosmological expansion in the presence
of an extra dimension. Phys. Rev. Lett., American Physical Society, v. 83, p. 4245–4248,
Nov 1999. Citado na página 19.

42 CSÁKI, C. et al. Cosmology of one extra dimension with localized gravity. Phys. Lett.
B, Elsevier BV, v. 462, n. 1-2, p. 34–40, sep 1999. Citado na página 19.

43 CSÁKI, C. et al. Cosmology of brane models with radion stabilization. Phys. Rev. D,
American Physical Society, v. 62, p. 045015, Jul 2000. Citado na página 19.

44 FLANAGAN, E. E.; TYE, S.-H. H.; WASSERMAN, I. Cosmological expansion in the
randall-sundrum brane world scenario. Phys. Rev. D, American Physical Society, v. 62, p.
044039, Jul 2000. Citado na página 19.

45 KANTI, P. et al. Single-brane cosmological solutions with a stable compact extra
dimension. Phys. Rev. D, American Physical Society, v. 61, p. 106004, Apr 2000. Citado
na página 19.

46 KANTI, P. et al. Cosmological 3-brane solutions. Phys. Lett. B, Elsevier BV, v. 468,
n. 1-2, p. 31–39, nov 1999. Citado na página 19.

47 BAZEIA, D.; BRITO, F. A.; COSTA, F. G. First-order framework and domain-
wall/brane-cosmology correspondence. Phys. Lett. B, Elsevier BV, v. 661, n. 2-3, p.
179–185, mar 2008. Citado na página 19.

48 GEORGE, D. P.; TRODDEN, M.; VOLKAS, R. R. Extra-dimensional cosmology
with domain-wall branes. J. High Energy Phys., Springer Science and Business Media
LLC, v. 2009, n. 02, p. 035–035, feb 2009. Citado na página 19.

49 KADOSH, A.; DAVIDSON, A.; PALLANTE, E. Slinky evolution of domain wall
brane cosmology. Phys. Rev. D, American Physical Society, v. 86, p. 124015, Dec 2012.
Citado na página 19.

50 KIM, H. B.; KIM, H. D. Inflation and gauge hierarchy in randall-sundrum
compactification. Phys. Rev. D, American Physical Society, v. 61, p. 064003, Feb 2000.
Citado na página 19.

51 BOWCOCK, P.; CHARMOUSIS, C.; GREGORY, R. General brane cosmologies and
their global spacetime structure. Classical Quantum Gravity, IOP Publishing, v. 17, n. 22,
p. 4745–4763, oct 2000. Citado 2 vezes nas páginas 19 and 107.

52 GUHA, S.; BHATTACHARYA, P. Five-dimensional warped product space-time with
time-dependent warping and a scalar field in the bulk. Gravitation Cosmol., Pleiades
Publishing Ltd, v. 24, n. 3, p. 274–284, jul 2018. Citado na página 19.

53 MUKOHYAMA, S.; SHIROMIZU, T.; MAEDA, K.-i. Global structure of exact
cosmological solutions in the brane world. Phys. Rev. D, American Physical Society, v. 62,
p. 024028, Jun 2000. Citado na página 19.



Bibliography 137

54 CHUNG, D. J. H.; FREESE, K. Cosmological challenges in theories with extra
dimensions and remarks on the horizon problem. Phys. Rev. D, American Physical Society,
v. 61, p. 023511, Dec 1999. Citado na página 19.

55 IDA, D. Brane-world cosmology. J. High Energy Phys., Springer Science and Business
Media LLC, v. 2000, n. 09, p. 014–014, sep 2000. Citado 2 vezes nas páginas 19 and 107.

56 CHUNG, D. J. H.; FREESE, K. Can geodesics in extra dimensions solve the
cosmological horizon problem? Phys. Rev. D, American Physical Society, v. 62, p. 063513,
Aug 2000. Citado na página 19.

57 MUKOHYAMA, S. Brane-world solutions, standard cosmology, and dark radiation.
Phys. Lett. B, v. 473, n. 3, p. 241–245, 2000. ISSN 0370-2693. Citado na página 19.

58 MERSINI, L. RADION POTENTIAL AND BRANE DYNAMICS. Mod. Phys. Lett.
A, World Scientific Pub Co Pte Lt, v. 16, n. 24, p. 1583–1595, aug 2001. Citado na
página 19.

59 BERNARDINI, A. E.; CAVALCANTI, R. T.; ROCHA, R. da. Spherically symmetric
thick branes cosmological evolution. Gen. Relativ. Gravit., Springer Science and Business
Media LLC, v. 47, n. 1, p. 1840, dec 2014. Citado na página 19.

60 CASADIO, R.; OVALLE, J.; ROCHA, R. da. Black strings from minimal geometric
deformation in a variable tension brane-world. Classical Quantum Gravity, IOP Publishing,
v. 31, n. 4, p. 045016, feb 2014. Citado na página 19.

61 MALDACENA, J.; MILEKHIN, A. Humanly traversable wormholes. Phys. Rev. D,
American Physical Society, v. 103, p. 066007, Mar 2021. Citado na página 19.

62 DUFF, M. J. Kaluza-Klein Theory in Perspective. [S.l.]: arXiv, 1994. Citado na
página 19.

63 KOLEY, R.; KAR, S. Braneworlds in six dimensions: new models with bulk scalars.
Classical Quantum Gravity, IOP Publishing, v. 24, n. 1, p. 79–94, nov 2006. Citado 3
vezes nas páginas 20, 21, and 30.

64 GHERGHETTA, T.; SHAPOSHNIKOV, M. Localizing gravity on a stringlike defect
in six dimensions. Phys. Rev. Lett., American Physical Society, v. 85, p. 240–243, Jul 2000.
Citado 4 vezes nas páginas 20, 21, 30, and 86.

65 PARK, D. K.; KIM, H. Single 3-brane brane-world in six dimension. Nucl. Phys. B,
Elsevier BV, v. 650, n. 1-2, p. 114–124, feb 2003. Citado 3 vezes nas páginas 20, 21,
and 30.

66 PARAMESWARAN, S. L.; RANDJBAR-DAEMI, S.; SALVIO, A. Gauge fields,
fermions and mass gaps in 6d brane worlds. Nucl. Phys. B, v. 767, n. 1, p. 54–81, 2007.
ISSN 0550-3213. Citado 4 vezes nas páginas 20, 21, 30, and 86.

67 SINGLETON, D. Gravitational trapping potential with arbitrary extra dimensions.
Phys. Rev. D, American Physical Society, v. 70, p. 065013, Sep 2004. Citado 4 vezes nas
páginas 20, 21, 30, and 86.



138 Bibliography

68 MULTAMAKI, T.; VILJA, I. Warped and compact extra dimensions: 5d branes in 6d
models. Phys. Lett. B, Elsevier BV, v. 545, n. 3-4, p. 389–402, oct 2002. Citado 3 vezes
nas páginas 20, 21, and 30.

69 GAUY, H. M.; BERNARDINI, A. E. Gravity localization on intersecting thick
braneworlds. Physical Review D, American Physical Society (APS), v. 106, n. 8, p. 084003,
oct 2022. Citado 24 vezes nas páginas 20, 61, 62, 63, 64, 65, 66, 67, 70, 71, 72, 73, 74, 75,
76, 77, 78, 79, 80, 81, 82, 83, 84, and 107.

70 GAUY, H. M.; BERNARDINI, A. E. Asymmetrical braneworlds and the charged
lepton mass spectrum. Physics Letters B, Elsevier BV, v. 846, p. 138205, nov 2023.
Citado na página 20.

71 CSáKI, C. et al. Universal aspects of gravity localized on thick branes. Nucl. Phys. B,
v. 581, n. 1, p. 309–338, 2000. ISSN 0550-3213. Citado 9 vezes nas páginas 21, 61, 62, 63,
64, 66, 67, 72, and 74.

72 ARKANI-HAMED, N. et al. Infinitely large new dimensions. Phys. Rev. Lett.,
American Physical Society, v. 84, p. 586–589, Jan 2000. Citado na página 21.

73 LIU, Y.-X.; ZHAO, L.; DUAN, Y.-S. Localization of fermions on a string-like defect.
J. High Energy Phys., Springer Science and Business Media LLC, v. 2007, n. 04, p.
097–097, apr 2007. Citado 4 vezes nas páginas 21, 86, 111, and 115.

74 DZHUNUSHALIEV, V. et al. Thick brane in 7d and 8d spacetimes. Gen. Relativ.
Gravit., Springer Science and Business Media LLC, v. 41, n. 1, p. 131–146, jun 2008.
Citado na página 21.

75 DZHUNUSHALIEV, V.; FOLOMEEV, V.; MINAMITSUJI, M. Thick de sitter brane
solutions in higher dimensions. Phys. Rev. D, American Physical Society, v. 79, p. 024001,
Jan 2009. Citado na página 21.

76 GREGORY, R. Nonsingular global string compactifications. Phys. Rev. Lett.,
American Physical Society, v. 84, p. 2564–2567, Mar 2000. Citado na página 21.

77 COHEN, A. G.; KAPLAN, D. B. Solving the hierarchy problem with noncompact
extra dimensions. Phys. Lett. B, Elsevier BV, v. 470, n. 1-4, p. 52–58, dec 1999. Citado
na página 21.

78 D’INVERNO, R. Introducing Einstein’s Relativity. [S.l.]: Oxford University Press,
1992. ISBN 0198596863. Citado 2 vezes nas páginas 21 and 28.

79 GIBBONS, G. W.; KALLOSH, R.; LINDE, A. D. Brane world sum rules. J. High
Energy Phys., v. 01, p. 022, 2001. Citado na página 29.

80 LEBLOND, F.; MYERS, R. C.; WINTERS, D. J. Consistency conditions for brane
worlds in arbitrary dimensions. J. High Energy Phys., Springer Science and Business
Media LLC, v. 2001, n. 07, p. 031–031, jul 2001. Citado na página 29.

81 AFONSO, V. I.; BAZEIA, D.; LOSANO, L. First-order formalism for bent
brane. Phys. Lett. B, v. 634, n. 5, p. 526–530, 2006. ISSN 0370-2693. Disponível em:
<https://www.sciencedirect.com/science/article/pii/S0370269306001808>. Citado 3
vezes nas páginas 47, 48, and 71.

https://www.sciencedirect.com/science/article/pii/S0370269306001808


Bibliography 139

82 GREMM, M. Thick domain walls and singular spaces. Phys. Rev. D, American
Physical Society, v. 62, p. 044017, Jul 2000. Citado 6 vezes nas páginas 48, 61, 62, 71, 78,
and 79.

83 SASAKURA, N. A de-sitter thick domain wall solution by elliptic functions. J. High
Energy Phys., Springer Science and Business Media LLC, v. 2002, n. 02, p. 026–026, feb
2002. Citado 2 vezes nas páginas 48 and 71.

84 BRANDHUBER, A.; SFETSOS, K. Non-standard compactifications with mass gaps
and newton's law. J. High Energy Phys., Springer Science and Business Media LLC,
v. 1999, n. 10, p. 013–013, oct 1999. Citado na página 62.

85 ISAACSON, R. A. Gravitational radiation in the limit of high frequency. i. the linear
approximation and geometrical optics. Phys. Rev., American Physical Society (APS),
v. 166, n. 5, p. 1263–1271, feb 1968. Citado na página 63.

86 FLüGGE, S. Practical Quantum Mechanics. [S.l.]: Springer Berlin Heidelberg, 1998.
ISBN 3540650350. Citado 2 vezes nas páginas 78 and 151.

87 HERRERA-AGUILAR, A. et al. ASPECTS OF THICK BRANE WORLDS: 4d
GRAVITY LOCALIZATION, SMOOTHNESS, AND MASS GAP. Mod. Phys. Lett. A,
World Scientific Pub Co Pte Lt, v. 25, n. 24, p. 2089–2097, aug 2010. Citado 4 vezes nas
páginas 78, 79, 119, and 129.

88 PAL, S.; KAR, S. de sitter branes with a bulk scalar. Gen. Relativ. Gravit., Springer
Science and Business Media LLC, v. 41, n. 5, p. 1165–1179, oct 2008. Citado na página
86.

89 MENDES, W. M.; ALENCAR, G.; LANDIM, R. R. Spinors fields in co-dimension one
braneworlds. J. High Energy Phys., Springer Science and Business Media LLC, v. 2018,
n. 2, feb 2018. Citado na página 86.

90 LIU, Y.-X. et al. Fermions on thick branes in the background of sine-gordon kinks.
Phys. Rev. D, American Physical Society, v. 78, p. 065025, Sep 2008. Citado na página
86.

91 LIU, Y.-X. et al. Localization and mass spectra of fermions on symmetric and
asymmetric thick branes. Phys. Rev. D, American Physical Society, v. 80, p. 065020, Sep
2009. Citado na página 86.

92 LIU, Y.-X. et al. Localization of gravity and bulk matters on a thick anti–de sitter
brane. Phys. Rev. D, American Physical Society, v. 84, p. 044033, Aug 2011. Citado na
página 86.

93 KOIDE, Y. Fermion-boson two-body model of quarks and leptons and cabibbo
mixing. Lettere al Nuovo Cimento, Springer Science and Business Media LLC, v. 34, n. 8,
p. 201–205, jun 1982. Citado na página 107.

94 SUMINO, Y. Family gauge symmetry and koide’s mass formula. Physics Letters B,
Elsevier BV, v. 671, n. 4-5, p. 477–480, feb 2009. Citado na página 107.



140 Bibliography

95 ROSA, J. L.; BAZEIA, D.; LOBÃO, A. S. Effects of cuscuton dynamics on braneworld
configurations in the scalar–tensor representation of $$f\left( r,t\right) $$ gravity. The
European Physical Journal C, Springer Science and Business Media LLC, v. 82, n. 3, mar
2022. Citado na página 107.

96 HORAVA, P.; WITTEN, E. Heterotic and type i string dynamics from eleven
dimensions. Nuclear Physics B, v. 460, n. 3, p. 506–524, 1996. ISSN 0550-3213. Citado
na página 107.

97 HORAVA, P.; WITTEN, E. Eleven-dimensional supergravity on a manifold with
boundary. Nuclear Physics B, v. 475, n. 1, p. 94–114, 1996. ISSN 0550-3213. Citado na
página 107.

98 KRAUS, P. Dynamics of anti-de sitter domain walls. Journal of High Energy Physics,
v. 1999, p. 011–011, 1999. Citado na página 107.

99 DERUELLE, N.; DOLEŽEL, T. Brane versus shell cosmologies in einstein and
einstein-gauss-bonnet theories. Physical Review D, American Physical Society (APS),
v. 62, n. 10, p. 103502, oct 2000. Citado na página 107.

100 PERKINS, W. B. Colliding bubble worlds. Physics Letters B, v. 504, p. 28–32, 2001.
Citado na página 107.

101 CARTER, B. et al. Simulated gravity without true gravity in asymmetric brane-world
scenarios. Classical and Quantum Gravity, IOP Publishing, v. 18, n. 22, p. 4871–4895, nov
2001. Citado na página 107.

102 GERGELY, L. A. Generalized friedmann branes. Physical Review D, v. 68, p. 124011,
2003. Citado na página 107.

103 APPLEBY, S. A.; BATTYE, R. A. Regularized braneworlds of arbitrary codimension.
Phys. Rev. D, American Physical Society, v. 76, p. 124009, Dec 2007. Citado na página
107.

104 SHTANOV, Y.; VIZNYUK, A.; GRANDA, L. N. ASYMMETRIC EMBEDDING IN
BRANE COSMOLOGY. Modern Physics Letters A, World Scientific Pub Co Pte Lt,
v. 23, n. 12, p. 869–878, apr 2008. Citado na página 107.

105 CHARMOUSIS, C.; GREGORY, R.; PADILLA, A. Stealth acceleration and
modified gravity. Journal of Cosmology and Astroparticle Physics, IOP Publishing,
v. 2007, n. 10, p. 006–006, oct 2007. Citado na página 107.

106 KOYAMA, K.; PADILLA, A.; SILVA, F. P. Ghosts in asymmetric brane gravity
and the decoupled stealth limit. Journal of High Energy Physics, Springer Science and
Business Media LLC, v. 2009, n. 03, p. 134–134, mar 2009. Citado na página 107.

107 GUERRERO, R.; RODRIGUEZ, R. O.; TORREALBA, R. de sitter and double
asymmetric brane worlds. Physical Review D, American Physical Society (APS), v. 72,
n. 12, p. 124012, dec 2005. Citado na página 107.

108 GERGELY, L. A.; MAARTENS, R. Asymmetric brane-worlds with induced gravity.
Phys. Rev. D, American Physical Society, v. 71, p. 024032, Jan 2005. Citado na página
107.



Bibliography 141

109 PADILLA, A. Cosmic acceleration from asymmetric branes. Classical and Quantum
Gravity, IOP Publishing, v. 22, n. 4, p. 681–694, jan 2005. Citado na página 107.

110 PADILLA, A. Infra-red modification of gravity from asymmetric branes. Classical
and Quantum Gravity, IOP Publishing, v. 22, n. 6, p. 1087–1104, mar 2005. Citado na
página 107.

111 ARKANI-HAMED, N.; SCHMALTZ, M. Hierarchies without symmetries from extra
dimensions. Physical Review D, American Physical Society (APS), v. 61, n. 3, p. 033005,
jan 2000. Citado 2 vezes nas páginas 107 and 110.

112 ARKANI-HAMED, N. et al. Neutrino masses from large extra dimensions. Physical
Review D, American Physical Society (APS), v. 65, n. 2, p. 024032, dec 2001. Citado 2
vezes nas páginas 107 and 110.

113 DVALI, G.; SHIFMAN, M. Families as neighbors in extra dimension. Physics Letters
B, Elsevier BV, v. 475, n. 3-4, p. 295–302, mar 2000. Citado 2 vezes nas páginas 107
and 110.

114 KAPLAN, D. E.; TAIT, T. M. Supersymmetry breaking, fermion masses and a small
extra dimension. Journal of High Energy Physics, Springer Science and Business Media
LLC, v. 2000, n. 06, p. 020–020, jun 2000. Citado 2 vezes nas páginas 107 and 110.

115 HUBER, S. J.; SHAFI, Q. Fermion masses, mixings and proton decay in a
randall–sundrum model. Physics Letters B, Elsevier BV, v. 498, n. 3-4, p. 256–262, jan
2001. Citado 2 vezes nas páginas 107 and 110.

116 FRÈRE, J.-M.; LIBANOV, M. V.; TROITSKY, S. V. Neutrino masses with a single
generation in the bulk. Journal of High Energy Physics, Springer Science and Business
Media LLC, v. 2001, n. 11, p. 025–025, nov 2001. Citado 2 vezes nas páginas 107 and 110.

117 FRÈRE, J.-M.; LIBANOV, M.; TROITSKY, S. Three generations on a local vortex
in extra dimensions. Physics Letters B, Elsevier BV, v. 512, n. 1-2, p. 169–173, jul 2001.
Citado 2 vezes nas páginas 107 and 110.

118 FRÈRE, J.-M. et al. Fermions in the vortex background on a sphere. Journal of High
Energy Physics, Springer Science and Business Media LLC, v. 2003, n. 06, p. 009–009, jun
2003. Citado 2 vezes nas páginas 107 and 110.

119 FRÈRE, J.-M. et al. Neutrino hierarchy and fermion spectrum from a single family
in six dimensions: realistic predictions. Journal of High Energy Physics, Springer Science
and Business Media LLC, v. 2013, n. 8, aug 2013. Citado 2 vezes nas páginas 107
and 110.

120 LIBANOV, M.; TROITSKY, S. Three fermionic generations on a topological defect
in extra dimensions. Nuclear Physics B, Elsevier BV, v. 599, n. 1-2, p. 319–333, apr 2001.
Citado 2 vezes nas páginas 107 and 110.

121 LIBANOV, M.; NOUGAEV, E. Towards the realistic fermion masses with a single
family in extra dimensions. Journal of High Energy Physics, Springer Science and Business
Media LLC, v. 2002, n. 04, p. 055–055, apr 2002. Citado 2 vezes nas páginas 107 and 110.



142 Bibliography

122 LIU, Y.-X. et al. New localization mechanism of fermions on braneworlds. Phys. Rev.
D, American Physical Society (APS), v. 89, n. 8, p. 086001, apr 2014. Citado 2 vezes nas
páginas 111 and 115.

123 SCHWARTZ, M. D. Quantum field theory and the standard model. [S.l.]: Cambridge
University Press, 2013. Citado 2 vezes nas páginas 114 and 122.



Appendix





145

APPENDIX A – Details of models I and II

From solutions (2.66) and (2.67), one is able to write the metric in the form

g =
√

cosh
[
2cu

(
u+ u0

)]
cosh

[
2cv

(
v + v0

)]
ηµνdxµdxν

+

√√√√√√√ coshp
[
2cv

(
v + v0

)]
coshp−1

[
2cu

(
u+ u0

)] (du2 + dv2
)
, (A.1)

from which it is indeed not so clear whether gravity is localized in the brane. One should
notice that if Re(cv) 6= 0, since p ≥ 1/2, there would be no way of “localizing” fields in the
“direction of v”, since both conformal factors which multiply ηµνdxµ ⊗ dxν and dv ⊗ dv
“increase with v”. Thus one is constrained to assume Re(cv) = 0 to achieve an acceptable
physical solutions, which means that the v coordinate can be compactified into a circle S1,
or in some other words, v = rϕ, where r is the radius of S1 and ϕ ∈ S1. Since the metric
must be continuous in S1, the e−2Â factor must be continuous in S1, i.e.

|cos (2 |cv| r 2π)| = |cos(0)| = 1 =⇒ |cv| =
n

4r , n ∈ N.

Likewise, one still needs to verify the localization along the “direction of u”, which can be
achieved in two different ways.

For instance, when Im(cu) = 0, if one sets p large enough (i.e. at least p ≥ 3), the
effective volume associated with B2 becomes finite. Even though the warp factor does not
have a RS-like profile, because the volume of B2 is finite, one can still possibly “localize”
gravity and other fields. Otherwise, when Re(cu) = 0, in a similar fashion to the content
discussed for coordinate v, the space coordinate u can be compactified as a circle S1. In
this case, one must impose 1/2 ≤ p ≤ 3, otherwise the effective volume is not finite (this
is clearer when observing the metric from (A.1) for p < 3). Therefore, it is imperative to
choose either Im(cu) = 0 for models with p ≥ 3 or Re(cu) = 0 for models with p ≤ 3 in
order to obtain consistent solutions with localized gravity.

Even if one is able to localize fields in the brane, the configuration may still not
be physical. If the total energy associated with the configuration is infinite, then one can
argue that the solutions are not physical ones. Therefore, to realize the total energy of the
system one thus writes the stress energy tensor as

Tµν = −ηµν

√√√√√ coshp (2cuu)∣∣∣cos
(
nϕ
2

)∣∣∣p−1

[
(φ,u)2

2 + (ζ,ϕ)2

2r2 + V
]
. (A.2)
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As claimed above, the energy density which is computed from √−gTµν must be finite,
otherwise the total energy in this configuration will not be finite. One thus has

Tµν
√
−g = −r2ηµν

[
(φ,u)2 + (ζ,ϕ)2

r2 + 2V
] ∣∣∣∣cos

(
nϕ

2

)∣∣∣∣3/2 cosh3/2 (2cuu) , (A.3)

from which it can be noticed that, if Im(cu) = 0, since ζ = ζ(v), the integration of
Eq. (A.3) throughout space will necessarily be infinite. Therefore one may claim that the
Im(cu) = 0 configurations requires an unphysical infinite amount of energy to be realized.
Following a similar analysis, from Eq. (A.3), no conclusive assertion about the choice of
Re(cu) = 0 instead of Im(cu) = 0 can be performed. However, as a matter of completeness,
the calculations will be carried out for both configurations.

A.1 Model I
Model I is resumed by expressions (2.69), (2.70), (2.71) and (2.72) and the de-

pendence on ϕ for the warp and conformal factors are depicted in Figs. 31a and 31b.
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Figure 31 – (a) Warp factor e−2Â of model I as a function of ϕ, for n = 1 (solid black
line), n = 2 (dashed black line), n = 3 (solid red line) and n = 4 (dashed
red line). (b) Conformal factor e−2BI of model I as a function of ϕ, for p = 3
(black), p = 4 (red) and p = 5 (blue), the solid and dashed lines correspond to
n = 1 and n = 2, respectively.

In particular, for bφ = bζ = −1, one has cu = |cv| = n/4r. In this case, since aφ ≥ 0
one realizes that p ≥ 5/2, which is a tautology since p ≥ 3. For this choice, one finds the
scalar fields and potential in the following form,

VI = 0, (A.4)

φI = ±
√

2p− 5M2 arcsin
[
tanh

(
nu

2r

)]
, (A.5)

ζI = ±
√

3 + 2pM2 arctanh
[
sin

(
nϕ

2

)]
. (A.6)
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The scalar fields are depicted in Fig. 32. The structure of the scalar field ζI , as given by
(A.6), shall recurrently appear as a driver for (5 + 1)-dimensional thick brane-worlds. As
it shall be noticed in the following models, the scalar field dependence on the angular-like
variables in much sense reproduce the behavior depicted in Fig. 32. Interestingly, the scalar
field φI is zero when p = 5/2, implying into a singular configuration with a single scalar
field ζI , with VI = 0.
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Figure 32 – The scalar fields of model I: (a) φ∗I = φI/
√

2p− 5M2; (b) ζ∗I =
ζI/
√

3 + 2pM2. The plots are for n = 1 (solid black line), n = 2 (dashed
black line), n = 3 (solid red line) and n = 4 (dashed red line).

Finally, the stress energy tensor for model I is simply written as

Tµν = M4n2ηµν
8r2

(5− 2p)sech2
(
nu
2r

)
− (2p+ 3) sec2

(
nϕ
2

)
√

sechp
(
nu
2r

) ∣∣∣cos
(
nϕ
2

)∣∣∣p−1
, (A.7)

where its several singularities are consistent with the numerous cusps exhibited by the
warp factor. Also, an infinite amount of energy is necessary to achieve such configuration,
as one can check after integrating the previous expression throughout space coordinates.

A.2 Model II

Model II can be summarized by expressions (2.76), (2.77), (2.78) and (2.79). The
soft shortcoming of model II is concerned with not being possible to rewrite V as function
of φ and ζ, since the expressions for (2.78) and (2.79) are not invertible. It would be
advisable since one had started with the assumption that V = V(φ, ζ). The shape of the
scalar fields, φ and ζ, and of the potential V are presented in Figs. 33 and 34, respectively.
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Figure 33 – Scalar fields of model II for p = 1/2 (black) and p = 2 (red): (a) φ∗II = φII/M2

as a function of θ; (b) ζ∗II = ζII/M2 as a function of ϕ. The plots are for
n = l = 1 (solid lines), n = 2, l = 1 (dashed lines) and n = l = 2 (dotted
lines).
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Figure 34 – Potential VII of model II as a function of (θ, ϕ), for p = 1/2 (a) and p = 2
(b).

Analogously, the stress energy tensor is expressed by

T IIµν =− 2M4ηµν

√√√√√√
∣∣∣cos

(
lθ
2

)∣∣∣p∣∣∣cos
(
nϕ
2

)∣∣∣p−1

{
aφ

[
1− bφ tan2

(
lθ

2

)]

+aζ
[
1− bζ tan2

(
nϕ

2

)]
+

√√√√√√
∣∣∣cos

(
lθ
2

)∣∣∣p−1∣∣∣cos
(
nϕ
2

)∣∣∣p
(
l2

4ρ2 + n2

4r2

) . (A.8)

which exhibits several singularities, depending on the values for n and l. In fact, for n = 1
and l = 1 it has 2 singularities, one at ϕ = π (or −π) and another one at θ = π (or −π).
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These singularities explains the number of cusps in the warp factor. In order to realize
physically consistent solutions, the required energy to achieve their internal structure must
be finite. From the perspective of the bulk, such a required energy is given by

EII
µν =

∫
E6
T IIµν
√
−gd6x

∝
∫ π

−π

∫ π

−π

aφ
[
1− bφ tan2

(
lθ
2

)]
+ aζ

[
1− bζ tan2

(
nϕ
2

)]
+
√
|cos( lθ2 )|p−1

|cos(nϕ2 )|p
(
l2

4ρ2 + n2

4r2

)
∣∣∣sec

(
lθ
2

)∣∣∣3/2 ∣∣∣sec
(
nϕ
2

)∣∣∣3/2 dθdϕ,

(A.9)

with last integral converging for several values of n, l and p1. Therefore, even though model
II exhibits several singularities as depicted by the stress energy tensor, the total energy
necessary to accomplish model II is finite. This is an evinced advantage with respect
to the model I. The form of the energy density for model II (T IIµν

√
−gII) is depicted in

Fig. 35. Although model II has finite total energy, one may still argue against its physical
significance, due to its recurrent singularities, a shortcoming that must be considered in
the following model issues.
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Figure 35 – Energy density −T IIµν
√
−g of model II as a function of (θ, ϕ), for p = 1/2 (a)

and p = 2 (b).

1 For instance, when n = l = 1 and p = 1/2, it integrates to

2πΓ
( 9

8
)2

Γ
( 13

8
)2 + 33π3

28Γ
( 7

4
)4 .
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APPENDIX B – On the Smoothness of
Hypergeometric Functions

Assume a general wave function of the form

χ = cosl (y) 2F1
[
α, β; γ; cos2 (y)

]
, (B.1)

its first derivative is simply

χ,y = −l cosl−1 (y) sin (y) 2F1
[
α, β; γ; cos2 (y)

]
− 2 sin (y) cosl+1 (y) 2F

′
1

[
α, β; γ; cos2 (y)

]
.

(B.2)
The derivatives of hypergeometric functions follow the rule

2F
′
1 [α, β; γ; z] = d 2F1 [α, β; γ; z]

dz = αβ

γ
2F1 [α + 1, β + 1; γ + 1; z] . (B.3)

Substituting into χ,y one finds

χ,y = cosl−1 (y) sin (y)
{
− l 2F1

[
α, β; γ; cos2 (y)

]
− 2 cos2 (y) αβ

γ
2F1

[
α + 1, β + 1; γ + 1; cos2 (y)

] }
. (B.4)

Let the parameters α, β and γ satisfy γ−α−β = 1/2, then 2F1 [α + 1, β + 1; γ + 1; cos2 (y)]
will not converge at cos2 (y) = 1. To analyze this divergence further one uses the following
property of hypergeometric functions [86]:

2F1 (α, β; γ; z) = Γ(γ)Γ(γ − α− β)
Γ(γ − α)Γ(γ − β)2F1 (α, β;α + β − γ + 1; 1− z)

+ Γ(γ)Γ(α + β − γ)
Γ(α)Γ(β) (1− z)γ−α−β 2F1 (γ − α, γ − β; γ − α− β + 1; 1− z) , (B.5)

thus the first derivative satisfy

χ,y =− l cosl−1 (y) sin (y) 2F1
[
α, β; γ; cos2 (y)

]
− 2 cosl+1 (y) sin (y) αβ

γ

Γ(γ + 1)Γ(−1/2)
Γ(γ − α)Γ(γ − β)2F1

[
α + 1; β + 1, 3/2; sin2 (y)

]
− 2 cosl+1 (y) sign [sin (y)] αβ

γ

Γ(γ + 1)Γ(1/2)
Γ(α + 1)Γ(β + 1)2F1

[
γ − α, γ − β; 1/2; sin2 (y)

]
,

(B.6)

and at the vicinity of y = 0 it behaves like

χ,y

∣∣∣∣
y→0

= −2 sign [sin (y)] αβ
γ

Γ(γ + 1)Γ(1/2)
Γ(α + 1)Γ(β + 1) , (B.7)

leading to a discontinuity unless α or β is a non-positive integer −j, j ∈ N.
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