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Abstract

The Pantanal biome is of inestimable ecological importance, mainly due to its fauna
and flora. However, this biome is constantly threatened by the occurrence and recurrence
of forest fires, which are strongly associated with the regions climatic conditions. Thus,
methods for forecasting and classifying forest fire risk are essential for forest fire prevention
and firefighting planning in the Brazilian Pantanal region. The main fire risk indexes
known in the literature have limitations, such as (1) not adjusting to the characteristics
of each biome; (2) being limited to specific climatic variables; (3) not being able to predict
forest fire risk for a given number of days. This last aspect, in particular, is of utmost
relevance. Addressing it allows for coordinated planning and action by environmental
authorities with adequate anticipation.

Aiming to solve this problem, this study developed a software capable of: (1) Climatic
variables forecasting for a given number of days; and (2) Forest fire risk classification in
the Brazilian Pantanal. For the first objective, different time series prediction algorithms
based on Machine Learning (ML) were tested for climactic variables forecasting. This
prediction is used as input for the second objective, for which different classification
algorithms, also based on ML, were tested. Such software was then improved from a
exhaustive hyperparameters search approach to two different Genetic Algorithms (GAs)
approaches: Traditional and NSGA-II.

Results for both software versions were evaluated based on the average correlation
between forest fire risk classes and hotspots’ observation. The exhaustive search version
demonstrated that the software can outperform the main statistical forest fire indexes
regarding “Null”, “Low”, “High” and “Very High” classes. When it comes to the GA
version, the software was competitive to the forest fire indexes, still with the advantage
of being able to predict the forest fire risk for a given number of days.

Keywords: Supervised machine learning; classification; time series forecasting; genetic
algorithms; forest fire risk.





Resumo (Portuguese Abstract)

O bioma Pantanal tem uma importância ecológica inestimável, principalmente devido
à sua fauna e flora. No entanto, este bioma está constantemente ameaçado pela ocorrência
e recorrência de incêndios florestais, os quais estão fortemente associados às condições
climáticas da região. Deste modo, métodos para previsão e classificação do risco de
incêndio florestal mostram-se essenciais na prevenção e no combate aos incêndios na região
do Pantanal brasileiro. Os principais índices de risco de incêndio utilizados atualmente
possuem limitações, como (1) não se ajustarem às características de cada bioma; (2) serem
limitados a variáveis climáticas específicas; e (3) não serem capazes de prever o risco de
incêndio florestal para um determinado número de dias. Este último aspecto, em especial,
é de suma relevância, uma vez que seu endereçamento permite um planejamento e uma
ação coordenada das autoridades ambientais com devida antecedência.

Visando solucionar este problema, este estudo desenvolveu um software capaz de: (1)
Prever variáveis climáticas para um determinado número de dias; e (2) Classificar risco de
incêndio florestal no Pantanal brasileiro. Para o primeiro objetivo, diferentes algoritmos
de séries temporais, baseados em Aprendizado de Máquina (AM), foram testados para
previsão de variáveis climáticas. A previsão é utilizada como entrada para o segundo
objetivo, para o qual foram testados diferentes algoritmos de classificação, também de AM.
Tal software foi então evoluído de uma abordagem de busca exaustiva por hiperparâmetros
para duas diferentes abordagens de Algoritmos Genéticos (AGs): Tradicional e NSGA-II.

Resultados para ambas as versões do software foram avaliadas com base na correlação
média entre as classes de risco de incêndio florestal e a observação de focos de calor.
A versão de busca exaustiva superou os principais índices de risco de incêndio florestais
para classes “Nulo”, “Baixo”, “Alto” e “Muito Alto”. Já para a versão com base em AGs,
o software foi competitivo com os índices de risco de incêndio florestais, e ainda com a
vantagem de prever o risco para um determinado número de dias no futuro.

Palavras-chave: Aprendizado de máquina supervisionado; classificação; previsão de
séries temporais; algoritmos genéticos; risco de incêndio florestal
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Chapter 1

Introduction

1.1 Contextualization and Motivation

The Pantanal biome is a wetland area covering approximately 150,355 km2, with the
majority of its territory belonging to Brazil but also extending into Bolivia and Paraguay.
The ecological importance of the Pantanal is recognized by United Nations Educational,
Scientific and Cultural Organization (UNESCO), which designates it as a Biosphere Re-
serve. Despite still maintaining approximately 80% of its vegetation cover (ALHO et al.,
2019), the ecosystems of this biome are constantly threatened by anthropogenic activities
as well as the complex seasonal dynamics of its climate.

One of the major threats is the occurrence of forest fires, which is strongly associated
with weather conditions. From June to September, there is a period with very little
rainfall in the Pantanal. This often results in an accumulation of vegetative material,
which serves as fuel for the occurrence and spread of forest fires in the region.

By using meteorological data, it is possible to classify the risk of forest fire occur-
rence and, thus, contribute to its prevention and control. In (SORIANO; DANIEL;
SANTOS, 2015), the efficiencies of five different forest fire risk indexes are compared for
the Brazilian Pantanal: Monte Alegre Formula (from Portuguese, “Fórmula de Monte
Alegre”) (FMA), Modified Monte Alegre Formula (from Portuguese, “Fórmula de Monte
Alegre Modificada”) (FMA+), Telicyn, Angström, and Nesterov. Furthermore, in the
study by (TORRES; RIBEIRO, 2008), the indexes FMA, Telicyn, Nesterov, Cumulative
Precipitation-Evaporation Index (P-EVAP), and Cumulative Evaporation by Precipita-
tion Index (EVAP/P) were applied and compared to each other for forest fire prediction
in Juiz de Fora (MG), Brazil. Among all these indexes, one of the most commonly used
in Brazil is the FMA index, which was developed based on studies in the Araucária region
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(SOARES, 1972), in Brazil. The FMA index is cumulative and its formula includes only
two variables: relative humidity and precipitation. It has been applied in different regions
of Brazil to classify forest fire risk (TETTO et al., 2010; NUNES et al., 2010; ALVARES
et al., 2014), including the Pantanal (SORIANO; DANIEL; SANTOS, 2015; ONIGEMO,
2007).

There is also the SARIPAN system (NARCISO; SORIANO, 2019), which is being
used by environmental authorities to combat forest fire in the Brazilian Pantanal region.
SARIPAN makes use of FMA, FMA+, Nesterov, Telicyn and Angström indexes to identify
forest fire risk.

However, the application of such indexes has limitations, including:

1. Not being adjusted according to the characteristics of each biome;

2. Being limited to specific climatic variables;

3. Not being able to predict the risk of forest fire for a specific number of days.

For the classification of forest fire risk, the use of Machine Learning (ML)-based models
can also be employed. These models have the advantage of considering the characteristics
of the specific region under study, as well as not having limitations on the quantity or
type of variables that can be used to describe the region.

Recent studies have shown that the utilization of algorithms based on Artificial Neu-
ral Network (ANN) can yield good results for forest fire detection (LUO et al., 2018;
AL-ZEBDA et al., 2021; YANG; LUPASCU; MEEL, 2021; GAO; LIN; HU, 2023), in-
cluding in the Brazilian Pantanal (VIGANÓ et al., 2017). The study (RAKSHIT et al.,
2021) evaluated different ML algorithms for classifying particular areas as highly prone,
moderately prone, low prone and no fire prone for forest fire. They evaluated Decision
Trees, K-Nearest Neighbors (KNN)s, Support Vector Machine (SVM)s and Naive Bayes
classifiers, demonstrating better performance when using Decision Trees. Another recent
study, (RUBÍ; CARVALHO; GONDIM, 2023), evaluated different ML models for pre-
diction of both spread and behavior of wildfires in the Brazilian Federal District region
(Cerrado biome). The data included as features the climatic variables, satellite data, and
topographic, hydrographic, and anthropogenic information. Regarding the wildfire spread
prediction, the study found out that AdaBoost model outperforms all others models (such
as Random Forest, ANN and SVM) with 91% accuracy.

However, none of these studies have presented a model capable of predicting the risk
of forest fire for a specific number of days, which would further benefit planning with
sufficient advance notice for coordinated action by the appropriate authorities.

In this regard, it is possible to utilize the knowledge associated with the field of
Time Series (TS) forecasting. A TS consists of data related to the observation of a
phenomenon over time, such as climatic variables. To forecast TS, statistical methods
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based on autocorrelations present in the data can be applied, such as Autoregressive
Integrated Moving Average (ARIMA) and Seasonal Autoregressive Integrated Moving
Average (SARIMA) models (DIMRI; AHMAD; SHARIF, 2020; MURAT et al., 2018;
MUKADI; GONZÁLEZ-GARCÍA, 2021). However, in addition to these, it is also possible
to make use of ML-based models, such as Long Short-Term Memory (LSTM) networks
(ABBES; MAGAGI; GOITA, 2019). In fact, (LIN et al., 2023) applied LSTM for forest
fire prediction in Chongli, China. However, it did not leverage forecasting for more than
one day in the future.

So, it is clear that it is possible to leverage ML models for climatic variables fore-
casting and forest fire risk classification. Nevertheless, given the multitude of algorithms
and approaches available, navigating the vast hyperparameter space and identifying the
optimal solution can be challenging. In that sense, Genetic Algorithm (GA)s offer a com-
putationally efficient alternative that has the potential to yield superior results. In fact,
(GANAPATHY, 2020) proposed using GAs as an automatic tuning method for neural
networks. The GA outperformed a random search of hyperparameters in a task of ma-
chine translation from Japanese to English. In the study of (ALIBRAHIM; LUDWIG,
2021), the authors compared the use of GAs against Grid Search and Bayesian Optimiza-
tion for hyperparameter search, applied to a customer transaction prediction dataset.
Again, the GA outperformed the other methods - it achieved 0.826 Area Under the ROC
Curve (AUC) against 0.792 for Grid Search and 0.789 for Bayesian Optimization.

GA-based models were also proposed in climate and environmental applications. (AMOL,
2020) presented a GA to predict forest fire propagation, based on four parameters: drought
factor, temperature, relative humidity and wind. The model was able to identify the
ranges of values for input parameters that contribute towards the initiation of fire. Based
on the such ranges, the model is accurate in predicting the spread category of the affected
area. The study of (MATOS et al., 2022) applies GA to a forest firefighting resource
scheduling problem. The goal is to obtain the best ordered sequence of actions to be
taken by a firefighting resource in combating forest fire. The data was collected from
Braga, in Portugal, and the results demonstrated the usefulness and validity of the pro-
posed approach.

Still, for the best of our knowledge, there is no study that applied Genetic Algorithms
for selecting the best hyperparameters for climatic variables forecasting and forest fire
risk classification.

1.2 Hypothesis and Objectives

The hypothesis of this Master’s project can be presented as follows:

❏ It is possible to classify the risk of forest fire occurrence in the Brazilian Pantanal
by using historical climatic variables from the region, with a certain number of days
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in advance.

The general objective of this work is to develop software containing ML models that
are capable of:

1. Forecasting climatic variables for a specific number of days; and

2. Classifying the risk of forest fire occurrence in the Brazilian Pantanal.

To achieve the first objective, different time series forecasting algorithms were imple-
mented and evaluated. The output of these algorithms is then used as input for supervised
classification algorithms, which allow for the accomplishment of the second objective.

During this study development, there were incremental experiments that led to two
different software versions:

❏ Exhaustive Search version (v1): The software hyperparameters are searched in an
exhaustive manner;

❏ GA version (v2): The software hyperparameters are chosen based on GA. In this
version, it was tested both a Traditional GA, as well as the Nondominated Sorting
Genetic Algorithm II (NSGA-II) (DEB et al., 2002) – both are detailed in Chapter
5.

Both software versions, presented in details on Chapter 8, proved to be better or
competitive with the main forest fire risk indexes, with the advantage of predicting fire
risk for a given number of days in the future.

1.3 Document Structure

The remainder of this document is organized as follows:

❏ Chapter 2 - Data Pre-Processing: Introduces the main data pre-processing methods,
focusing on scaling and sampling. The described methods are those that were
implemented as part of this project.

❏ Chapter 3 - Machine Learning: Presents basic concepts of ML for data classification,
as well as some of the main paradigms used in the literature and their respective
algorithms. The described algorithms are those that were implemented as part of
this project.

❏ Chapter 4 - Time Series Forecasting: Introduces the concepts of TS, as well as the
main algorithms used in the literature for TS forecasting. The described algorithms
are those that were implemented as part of this project.
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❏ Chapter 5 - Genetic Algorithms: Presents the concept of GA and their different
implementations. The described algorithms are those that were implemented as
part of this project.

❏ Chapter 6 - Forest Fire Risk Indexes: Introduces the main forest fire risk indexes
known in the literature, as well as their applications and limitations.

❏ Chapter 7 - Materials and Methods: Details the data used and the methods applied
to build the software as proposed.

❏ Chapter 8 - Software: Details the software pipelines (training and prediction), the
differences between the two versions (Exhaustive Search and GA) and how both
were implemented.

❏ Chapter 9 - Experiments and Results: This chapter details the experiments we run
for the developed software, along with their results. Those were compared to the
main forest fire risk indexes used in the literature.

❏ Chapter 10 - Conclusion: Discuss the main findings of the proposal, experiments,
and presented results. As well as suggesting possible next steps and future work.
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Chapter 2

Data Pre-Processing

In different Data Science (DS) problems, one of the first and main steps is the Data Pre-
Processing. This step refers to applying different techniques to the adapt and transform
the data, so that it can be later used to feed Machine Learning models (as will be detailed
in Chapter 3).

As exposed by (XIANG-WEI; YIAN-FANG, 2012), data pre-processing is a critical
step to different DS use cases. A well pre-processed data input has the potential not only
to increase the accuracy of the ML models, but also raise their computational efficiency.

In general, the data pre-processing step refers to techniques for data cleaning, data
integration, data transition, data reduction, etc. In our study, we apply mainly two
different data pre-processing techniques: Scaling and Sampling, as detailed below.

2.1 Scaling

Data – or more specifically, “feature” – scaling refers to the data pre-processing method
that updates the range of independent variables of the data. It is usually misunderstood as
meaning the same as “Normalization”. However, normalization is just one of the different
scaling forms.

Some ML algorithms are very sensitive to the data range, specially if there are variables
with very different ranges between each other. So scaling methods play an important role
on the ML models training and data fitting.

The study by (AMBARWARI; ADRIAN; HERDIYENI, 2020) demonstrated that data
scaling methods provide significant improvements on ML algorithms performance, such
as KNN, Naive Bayes, ANN, and SVM. The results revealed that the SVM with scaling
outperformed other algorithms’ performance. (AHSAN et al., 2021) also investigated
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the effects of different scaling methods on ML models performance. Its results show
that algorithm performance varies with different scaling methods. It was not possible to
identify a single scaling method that can be ranked as being the best one among all of all
others, though.

As will be detailed later in Chapter 8, there were investigated the following scaling
methods in this project:

1. Min-Max: Scales each feature such that their values are between 0 and 1;

2. Max-Abs: Scales each feature such that the maximal absolute value of each feature
is 1;

3. Robust: Scales features by removing the median and scaling them according to the
interquartile range;

4. Standard: Scales features by removing the mean and scaling to unit variance.

2.2 Sampling

Unbalanced data is a common occurrence in real-world applications, characterized
by a substantial disparity in proportions between different data classes. For example,
when studying a rare disease and attempting to predict its occurrence, one may observe
a considerably higher number of instances with the negative label (no disease) compared
to the positive label (disease).

Addressing this challenge becomes crucial when developing ML models since they
might struggle to learn the patterns associated with the less frequent class in comparison
to the more prevalent class. In fact, an insufficiently trained model might exhibit a
tendency to consistently classify instances into the more prevalent class, even when it
shouldn’t.

Given this context, it becomes imperative to employ sampling methods that aim to
mitigate the disparities in class proportions within the data. Sampling methods can be
classified into three different categories: Oversampling, undersampling and the combina-
tion between these two (hybrid).

(BUDA; MAKI; MAZUROWSKI, 2018) showed that a model performance may de-
grade as the level of class imbalance increases. The study of (JOHNSON; KHOSHGOF-
TAAR, 2020) evaluated the use of sampling methods when training ANNs with highly
unbalanced data, using AUC as the evaluation measure. The results demonstrated that
oversampling techniques performed significantly better than all undersampling and base-
line methods. The hybrid methods ended up performing as good as the oversampling
methods.
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The different sampling techniques are explained in details in the following sections, as
well as their main algorithms, as applied in this study. To simplify the explanations and
align with the study’s context, we will focus on binary label domains when discussing the
methods.

2.2.1 Oversampling

Oversampling encompasses various sampling techniques designed to address disparities
in class proportions by increasing the number of instances from the less frequent class while
preserving the integrity of the most prevalent class. As a result, the updated dataset
will contain a greater number of examples compared to the original dataset. Figure 1
illustrates the oversampling approach.

Figure 1 – Illustration of Oversampling approach. Adapted from (ALI et al., 2019).

In the literature, the main oversampling methods are:

1. Random Over Sampler: This method increases the number of instances from the
least frequent class by randomly copying samples from such class (JOHNSON;
KHOSHGOFTAAR, 2020). It is a very simple and computational efficient algo-
rithm;

2. Synthetic Minority Oversampling Technique (SMOTE): Proposed by (CHAWLA et
al., 2002), this algorithm works by first drawing an instance for the least frequent
class. Then, it finds the k nearest neighbours from the selected instance. Finally,
it creates synthetic instances by using the line segments from the initially selected
instance and its neighbors;

3. Adaptive Synthetic (ADASYN): Proposed by (HE et al., 2008), it is an extension
of the SMOTE algorithm. It focuses on generating synthetic instances that are
harder to learn. To do so, it considers the distribution density of their k nearest
neighbors, so that it can place more emphasis on the regions that are difficult to
classify correctly;
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4. Borderline SMOTE: Also an extension of the SMOTE algorithm. It focuses on
generating synthetic instances from the leas frequent class instances that are near
the decision boundary. To do so, it first identifies the borderline instances and then
applies the SMOTE algorithm only to those instances (HAN; WANG; MAO, 2005);

5. SVM-SMOTE: This algorithm combines the concepts of SVMs and SMOTE. It
works by first applying an SVM classifier to identify the support vectors (the SVM
algorithm will be detailed later in Section 3.4.3), which are the instances near the de-
cision boundary. Finally, it applies the SMOTE algorithm to generate the synthetic
instances (HAN; WANG; MAO, 2005).

2.2.2 Undersampling

In contrast to the oversampling approach, undersampling aims to decrease the number
of instances from the most prevalent class while preserving the integrity of the less frequent
class. Consequently, the updated dataset will contain a reduced number of examples
compared to the original dataset. Figure 2 illustrates the undersampling approach.

Figure 2 – Illustration of Undersampling approach. Adapted from (ALI et al., 2019).

In the literature, the main undersampling methods are:

1. Random Under Sampler: This method decreases the number of instances from the
most frequent class by randomly discarding samples from such class (JOHNSON;
KHOSHGOFTAAR, 2020). It is a very simple and computational efficient algo-
rithm;

2. Cluster Centroids: This method works by first identifying clusters of the most fre-
quent class making use the K-Means algorithm. Then, it replaces the samples of the
most frequent class with synthetic instances that are representative of each cluster’s
centroid (LEMAITRE; NOGUEIRA; ARIDAS, 2016);

3. Near Miss: Proposed by (ZHANG; MANI, 2003), it refers to a collection of different
methods (NearMiss-1, NearMiss-2 and NearMiss-3) that select the instances to be
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discarded based on the distance of most frequent class instances to least frequent
class instances;

4. Edited Nearest Neighbours (ENN): Based on (WILSON, 1972), this method applies
the KNN algorithm to each instance, checking if the most frequent class from the
instances’s K-nearest neighbor is the same as the instances’s class or not. If they
differ, the instance and its K-nearest neighbor are discarded;

5. Repeated ENN: Extension of the ENN method. As the name suggests, it runs the
ENN multiple times, in order to improve the performance of the undersampling
method;

6. All KNN: Also an extension of the ENN method. It runs the ENN multiple times,
but varying the number of nearest neighbours (LEMAITRE; NOGUEIRA; ARI-
DAS, 2016);

7. One Sided Selection: Based on (KUBAT; MATWIN, 1997), it combiness Tomek
Links technique and the Condensed Nearest Neighbor rule. The Tomek Links is
a data cleaning technique, which works by identifying pairs of instances, one from
the most frequent class and one from the least frequent class, that are the nearest
neighbors of each other. Then it removes the instances from the most frequent class
in these pairs, hence improving the class distribution.

8. Neighbourhood Cleaning Rule: Proposed by (LAURIKKALA, 2001), it applies the
ENN to remove instances from the most frequent class. For each instance, it finds
three nearest neighbors. Then if checks whether the instance belongs to the most
frequent class and if the nearest neighbors is different from the selected class in-
stance. If so and the selected class instance belongs to the least frequent class, then
the nearest neighbors that belong to the most frequent class are removed;

9. Instance Hardness Threshold: Based on (SMITH; MARTINEZ; GIRAUD-CARRIER,
2014), the main idea of this method is to identify instances that are likely to be
misclassified and remove them if they belong to the most frequent class. Theses
instances are identified based on the instance hardness, typically computed using a
measure such as the confidence score.

2.2.3 Hybrid

The hybrid methods apply both oversampling and undersampling techniques, in order
to improve the data balancing. In the literature, the main hybrid methods are:

1. SMOTE-ENN: Combines the SMOTE (oversampling) and ENN (undersampling)
methods, as presented by (BATISTA; PRATI; MONARD, 2004);
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2. SMOTE-Tomek: As proposed by (BATISTA; BAZZAN; MONARD, 2003), this
method applies both the SMOTE (oversampling) and the Tomek Links technique.
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Chapter 3

Machine Learning (ML)

Machine Learning (ML), a field of Artificial Intelligence (AI), studies algorithms that
allow computer programs to automatically improve through experience (MITCHELL,
1997). Therefore, ML aims to replace or assist the practice of programming imposed by
conventional computing (RUSSELL; NORVIG, 2010; ALPAYDIN, 2014). In conventional
computing, solving a particular problem involves: (1) Acquiring knowledge about the
problem domain; (2) Writing algorithms that incorporate business rules, functions, and/or
mathematical models to solve the problem. The limitations involved in this process range
from low adaptability to changes in the problem domain to time and human resource
expenditure. With the use of ML, on the other hand, the steps can be summarized as
follows: (1) Collection and cleaning of data that describe the problem domain; (2) Training
of algorithms such as classifiers and regressors. The learning task is therefore delegated
to the machine (computer). There are different ways to approach a ML problem, which
is typically determined by the data domain. Figure 3 presents the main approaches.

Among the various ML approaches, there is the Supervised Learning. This learning
approach relies on labeled datasets, where the labels can be a set of classes 𝑦 ⊂ 𝑌 , with
𝑌 representing a complete class domain (classification), or a continuous numerical output
(regression).

In the present study, we have a classification problem. The data consists of climatic
variables, and each example is labeled with one of two classes: Fire occurrence (1) or no fire
occurrence (0) (further details about the dataset used will be presented in Chapter 7).
Thus, we aim to find a function 𝑓 capable of mapping the attribute set 𝑥 to a set of
classes 𝑦. This model is built using a training dataset, where the classes are known for
all 𝑛 examples. The model can be represented in various forms, such as a tree, an ANN,
or even a probability table. The model captures the relationships between the attribute
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Machine Learning
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Figure 3 – Machine Learning approaches.

space and the class space, and it is considered capable of correctly classifying an object
(𝑥, 𝑦) if 𝑓(𝑥) = 𝑦 (TAN; STEINBACH; KUMAR, 2005).

Since |𝑌 | = 2, there is a binary domain. If we had |𝑌 | > 2, it would be a multi-class
problem. Multi-class problems with |𝑦| ≥ 2 are referred to as multi-label, meaning that
an object can be assigned to more than one class simultaneously.

In the field of ML literature, conventional classification problems are typically solved
using flat (non-hierarchical) classification methods. This type of classification disregards
the hierarchical relationships between classes and assumes independence among them.

In more complex classification problems, classes are often organized in a hierarchy,
where classes can be divided into subclasses and grouped into superclasses. In such cases,
classifiers take into account the most relevant relationships among the training data for
classification. The classifier 𝑓 must respect the constraints of the hierarchical taxonomy.
This means that when a class is predicted, all its superclasses should also be predicted.
Figure 4 illustrates the difference between flat and hierarchical classification problems.

In the following sections of this chapter, some of the main paradigms of ML and their
respective algorithms that can handle classification problems will be presented. Although
many of these algorithms also perform well as regressors, these applications will not be
detailed as they are not within the scope of this study.

3.1 Symbolic Paradigm

The Symbolic Paradigm is based on symbols that represent concepts from the real
world to create “rules”. These “rules” allow the concrete manipulation of these symbols
and the generalization of knowledge, and they can typically be interpreted in natural
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Figure 4 – Difference between classification problems: (a) Flat; (b) Hierarchical.

language. Examples of algorithms that apply this paradigm are Decision Trees and more
complex algorithms that are based on these trees, such as Random Forests.

3.1.1 Decision Tree

Decision Trees are a category of supervised machine learning algorithms that stand out
in various applications due to their simplicity and interpretability. In these algorithms,
the model is represented as a tree where each node represents a test on an attribute, and
the leaf nodes represent classes. Objects are classified one by one by traversing the tree
from the root to a leaf node. In this process, at each level of the tree, a test is applied
to some attribute to decide which next node to follow. The leaf node represents the final
classification found for that object after traversing the tree. An illustrative example of
a Decision Tree is shown in Figure 5, where the data consists of weather aspects with
attributes such as humidity, temperature, and wind speed. The expected classification in
this example is whether it will rain (“Yes” or “No”).

For example, consider an object with the following attribute values: Humidity =
High, Wind = Weak, Temperature = High, Sky = Cloudy. By traversing the Decision
Tree in Figure 5 according to the attribute values of the object, the class “No” is obtained,
indicating that it will not rain on that day.

There are different algorithms based on Decision Trees proposed in the literature, each
with different methods for model construction and different heuristics. The most well-
known algorithms in the literature are ID3 (QUINLAN, 1986) and its successor, C4.5
(QUINLAN, 1993).

In most examples, the Decision Tree is constructed using a top-down procedure, start-
ing with the root and descending level by level. The first question to be asked is, "Which
attribute should be tested at the root of the tree?" (MITCHELL, 1997). To answer this
question, heuristics are applied to each attribute, and the one that yields the best result
is chosen. The data is then partitioned, with objects that satisfy the heuristic on one side
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Figure 5 – Illustration of Decision Tree. Adapted from (MITCHELL, 1997).

of the node and objects that do not satisfy it on the other side. This is based on binary
splits. It is worth noting that for non-binary splits, the procedure is similar, except that
each node can have more than two children. The procedure is then repeated recursively
until a pre-defined stopping criterion is reached, resulting in a leaf node. The final clas-
sification given by that leaf node considers the majority class of the objects that reached
that node.

One of the main advantages of applying Decision Trees to classification problems is
their interpretability. By constructing and visualizing the tree, it is possible to identify
the most relevant attributes for determining classes at different levels, for example. The
computational cost of Decision Trees is directly related to the heuristics and parameters
chosen, such as the maximum tree depth. Additionally, the presence of a larger number
of continuous attributes in the data increases the complexity of attribute selection and
node splitting calculations. It is worth noting that Decision Trees are highly sensitive to
imbalanced data, and in such scenarios, it is common for the constructed tree to be biased
towards the dominant class.

3.1.2 Random Forest

The Random Forest is an ensemble algorithm that combines multiple Decision Trees
(Section 3.1.1). Ensemble methods construct multiple individual models that are het-
erogeneous in nature to obtain a single final model. This final model is based on the
combination of these individual models, aiming for better generalization and reduced risk
of overfitting (MOYANO et al., 2018). Overfitting in machine learning occurs when the
model fits the training data extremely well but fails to generalize well to unseen test data,
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which is an undesirable behavior.
In a Random Forest, each tree contributes a unit vote for the final class. By combining

these results, the classification outcome is determined based on the majority vote. The
representation of a Random Forest is shown in Figure 6.

Data

Prediction 1 Prediction 2 Prediction N

...

...

Majority Vote

Final Prediction

Figure 6 – Illustration of Random Forest.

In (DIETTERICH, 2000), some reasons are presented as to why an ensemble classifier
can be better than a single classifier, such as: (1) Choosing a single classifier may lead
to a poor choice; (2) A particular algorithm may not always be able to find the optimal
solution, so running the same algorithm multiple times (with different parameters) and
combining the responses can lead to a better approximation of the optimal solution.

However, compared to the Decision Tree algorithm, the Random Forest algorithm is
more computationally expensive in terms of training time, especially for large datasets.
Additionally, the interpretability associated with the Decision Tree algorithm is lost.

3.1.3 XGBoost

The XGBoost algorithm is an ensemble algorithm of Decision Trees (Section 3.1.1)
that utilizes a technique called boosting. It was first introduced by (CHEN; GUESTRIN,
2016). The boosting method aims to construct a "strong" classifier from multiple "weak"
classifiers combined in series. Some algorithms that apply boosting are ADABoost (SCHAPIRE,
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2013), LightGBM (KE et al., 2017) (Section 3.1.4), CatBoost (PROKHORENKOVA et
al., 2018) (Section 3.1.5), and XGBoost itself.

In XGBoost, a specific boosting method called “gradient boosting” is applied. The
objective of this method is to find a function (𝑓) that best describes the data, as well as
to find the optimal parameters (𝑝) of this function. To find 𝑓 , gradient boosting combines
different simple functions. Each function takes as input the gradient of the error with
respect to the predictions of the previous functions. As a result, the functions learn to
“correct” the errors, allowing the combination of simple functions to compensate for each
other’s weaknesses in order to better fit the data.

Thus, considering the different classifiers in series in XGBoost, at each iteration, the
residual errors from the previous classifier are included in the training of the next classifier.
The final classification is given by the weighted sum of all the classifications of the “weak”
classifiers. An illustration of an XGBoost model is shown in Figure 7.

Data

Residuals (r1) Residuals (r2) Residuals (rN)

...

...
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.

.
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Figure 7 – Illustration of XGBoost.

In XGBoost, the trees are built in parallel, and the computational power of this
algorithm has been shown to be superior to many others used in the literature. The
algorithm performs well on both small and large datasets, except in cases where the data
is very sparse or imbalanced. Similar to Random Forest (Section 3.1.2), interpretability
associated with the Decision Tree algorithm is lost when using XGBoost.
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3.1.4 LightGBM

LightGBM, like XGBoost (Section 3.1.3), applies gradient boosting. However, two new
methods are included in the algorithm: (1) Gradient-Based One-Side Sampling (GOSS);
and (2) Exclusive Feature Bundling (EFB). Both methods allow for a significant reduction
in the computational complexity of the model compared to XGBoost (KE et al., 2017).

GOSS is a subsampling method based on the hypothesis that instances with small
error gradients are already well trained. During training, GOSS retains instances with
large gradient errors and randomly samples instances with small errors. By doing so,
GOSS focuses on instances that are not well adjusted (high gradient errors).

On the other hand, EFB aims to reduce the feature space of the problem. This
method is based on the hypothesis that highly sparse data indicates the existence of
mutually exclusive features, i.e., features that never take different values from zero at the
same time. These attributes are combined into "bundles" and treated as a new and unique
attribute.

LightGBM has the same advantages as XGBoost but improves its computational per-
formance while maintaining its predictive performance.

3.1.5 CatBoost

CatBoost, proposed by (PROKHORENKOVA et al., 2018), is also a gradient boosting
method. It focuses on improving the model’s performance when dealing with categorical
features, which are discrete attributes that are not necessarily comparable (examples
include attributes like “name” or “color”). Additionally, the algorithm proposes a new
scheme for calculating leaf node values, which allows for the creation of more balanced
trees and helps reduce overfitting.

For attributes with a small number of distinct categories, CatBoost applies the method
known as One-Hot Encoding. This creates a new binary attribute for each distinct cat-
egory. For other categorical columns, CatBoost uses an efficient encoding method. It is
similar to Target Encoding but with an additional random permutation mechanism aimed
at reducing overfitting. In Target Encoding, the average target value in the training set
of all observations with a particular category is used to encode that category (PARGENT
et al., 2022).

In the study by Prokhorenkova et al. (PROKHORENKOVA et al., 2018), it was
demonstrated that CatBoost outperforms XGBoost and LightGBM in predictive perfor-
mance. However, achieving such performance requires careful optimization of its hyper-
parameters, which can impact the computational training cost in most cases.
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3.2 Example-Based Paradigm

The Example-Based Paradigm is based on the assumption that similar examples be-
long to the same class. Thus, new examples are compared to the known examples, usually
one by one. For this purpose, the known examples need to be stored in memory during
the execution of the classifier, and therefore classifiers of this paradigm are also commonly
referred to as Memory-Based Classifiers (CUNNINGHAM; DELANY, 2020).

3.2.1 K-Nearest Neighbors (KNN)

The operation of the KNN algorithm is intuitive. Simplistically, during the training
phase, the input examples are mapped into a 𝑑-dimensional space, where 𝑑 is the number
of attributes that describe each example. As mentioned earlier, the training examples are
stored in memory to be used during the execution of the classifier. To determine the class
of a test example, it is also mapped into the space constructed during training, and its
class is defined based on the majority class among the 𝑘 nearest neighbors in that space.

Figure 8 illustrates the operation of a KNN classifier with a 2-dimensional space and
𝑘 equal to 3. The class space 𝑌 is 𝑋, 𝑂. In the figure, a test example 𝑞1 is presented
to the classifier and mapped into the space. Then, the three closest examples to 𝑞1 are
identified: all three belong to class 𝑂. Therefore, 𝑞1 is also classified as 𝑂. As for 𝑞2,
among the three nearest neighbors, two belong to class 𝑋 and one belongs to class 𝑂.
Thus, 𝑞2 is classified into the majority class, which is 𝑋.

q1

q2

Figure 8 – Illustration of a 2-dimensional KNN classifier with 2 classes and 𝑘 equal to 3.

Thus, it can be said that the classification process in KNN consists of two phases:
The first phase involves finding the 𝑘 nearest neighbors, and the second phase involves
identifying the majority class among these neighbors.
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For the first phase, different distance calculations can be used, such as Euclidean,
Hamming, Manhattan, and Minkowski distances. The most common one is the Euclidean
distance, described by Equation 1.

𝑑(𝑥, 𝑦) =
⎯⎸⎸⎷ 𝑛∑︁

𝑖=1
(𝑦𝑖 − 𝑥𝑖)2, (1)

where 𝑛 is the number of dimensions from the examples.
For the second phase, different heuristics can be applied. One of them involves assign-

ing a weight to each "vote," with the weight being inversely proportional to the distance
of that neighbor. In the case of continuous outputs, instead of seeking the majority class,
the average of the output values of the 𝑘 neighbors can be calculated.

One of the main problems of KNN is related to its computational complexity, both
in terms of execution and memory. KNN is considered a Memory-Based Classifier, and
as the number of training examples increases, the space complexity also increases (linear
complexity). As for the execution complexity, it is mainly affected by the distance calcu-
lations. In order to find the 𝑘 nearest neighbors, it is necessary to calculate all possible
distances in the problem, i.e., the distances from the test example to each of the training
examples mapped in the feature space. Thus, in Big-O notation, the complexity is equal
to 𝑂(𝑑 · 𝑛), where 𝑑 is the number of attributes describing the example (dimensions) and
𝑛 is the number of training examples.

Given this challenge, it is important to consider the necessary amount of training
examples for KNN and to work with dimensionality reduction techniques in problems
with high dimensions.

3.3 Connectionist Paradigm

The Connectionist Paradigm is strongly inspired by the structure of the human brain,
which consists of interconnected units that exchange signals (synapses) with each other.
It is from this paradigm that ANNs are proposed.

3.3.1 Multi-Layer Perceptron (MLP)

The perceptron is one of the simplest models of an artificial neuron, first described in
Rosenblatt’s seminal work in 1957 (ROSENBLATT, 1957). It is illustrated in Figure 9.

The basic training of a perceptron consists of the following steps:

1. Randomly initialize a weight vector (w = [𝑤0, ..., 𝑤𝑁 ]), where 𝑁 is the number of
inputs to the perceptron;

2. Calculate the estimated output 𝑢𝑗 = w·x𝑗 for a training example x𝑗 = [𝑥𝑗0, ..., 𝑥𝑗𝑁 ];
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Figure 9 – Illustration of Perceptron.

3. Update the output value based on an activation function 𝑓 , typically the sigmoid
or sign function: 𝑦𝑗 = 𝑓(𝑢𝑗);

4. Calculate the error between the predicted output (𝑦𝑗) and the expected output (𝑑𝑗):
𝑒𝑗 = 𝑑𝑗 − 𝑦𝑗;

5. Update the weight vector w according to the formula: Δw = 𝜂 · 𝑒 · x, where 𝜂 is a
predefined learning rate;

6. Repeat steps 2 to 5 until a specified number of epochs is reached or a termination
criterion is satisfied.

The main limitation of the perceptron is its inability to handle non-linearly separable
class domains. This significantly restricts its range of applications. To overcome this
limitation, ANNs were proposed, which are ordered collections of artificial neurons.

One of the most widely used ANN algorithms in the literature is the Multi-Layer Per-
ceptron (MLP). It consists of multiple artificial neurons (perceptrons) organized in dif-
ferent layers, which are interconnected. Signals are transmitted unidirectionally through
the network, from the input layer to the output layer. This architecture is known as a
“feedforward” network and is depicted in Figure 10.

The MLP is trained using the backpropagation algorithm, which was proposed by
(BRYSON; HO, 1969). It focuses on minimizing the error between the network’s output(s)
and the expected output(s). This involves propagating the error signal backward through
the network and updating the weights accordingly (POPESCU et al., 2009).

MLP models are known for their ability to handle complex nonlinear problems and
perform well on both small and large datasets. Additionally, MLPs have a straightforward
architecture compared to other types of artificial neural networks. However, there are
some drawbacks to consider. One is the low interpretability of the model, meaning it may
be difficult to understand the reasoning behind its predictions. Another drawback is the
high computational cost required for training an MLP, which can be a time-consuming
process.
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Figure 10 – Illustration of MLP.

3.4 Statistical Paradigm

In the Statistical Paradigm, the goal is to find a statistical model that provides a good
approximation of the concept to be induced. The general idea of algorithms based on
this paradigm is to explore the functional dependencies within a dataset in order to find
a classifier capable of separating the data into specific classes (CERRI, 2010).

3.4.1 Naive Bayes

Naive Bayes is a probabilistic algorithm widely applied to classification tasks, mainly
due to its simplicity and low computational cost. The algorithm is based on Bayes’ theo-
rem and assumes independence among the attributes, meaning that there is no correlation
between the attributes describing the problem (LEWIS, 1998).

Consider Equation 2, which defines the Conditional Probability of class 𝑦𝑗 ∈ 𝑌 given
a domain of attributes 𝑋.

𝑃 (𝑦𝑗|𝑋) = 𝑃 (𝑦𝑗) · 𝑃 (𝑋|𝑦𝑗)
𝑃 (𝑋) , (2)

where 𝑃 (𝑦𝑗) indicates the probability of class 𝑦𝑗 being present in the training data domain;
𝑃 (𝑋|𝑦𝑗) is the probabilistic distribution of 𝑋 in the space of classes; and 𝑃 (𝑋) is the
sum of the observation probabilities of each attribute.

In practice, the calculation of 𝑃 (𝑋|𝑦𝑗) cannot be computed directly (ZHANG; GAO,
2011). This is where the algorithm becomes “naive”. Independence between attributes is
assumed, so the calculation of 𝑃 (𝑋|𝑦𝑗) can be simplified using Equation 3.

𝑃 (𝑋|𝑦𝑗) =
∏︁

𝑖

𝑃 (𝑥𝑖|𝑦𝑗) (3)

So, the new formula 𝑃 (𝑦𝑗|𝑋) is calculated according to Equation 4.
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𝑃 (𝑦𝑗|𝑋) = 𝑃 (𝑦𝑗) ·
∏︀

𝑃 (𝑥𝑖|𝑦𝑗)
𝑃 (𝑋) (4)

The final class of an attribute vector 𝑥𝑖 ∈ 𝑋 is then the one with the highest proba-
bility, as in Equation 5.

𝑓(𝑥𝑖) = arg max
𝑗

𝑃 (𝑦𝑗|𝑥𝑖) (5)

Despite the assumption that the attributes are independent, which is rarely true,
the algorithm performs surprisingly well in different applications (ZHANG; GAO, 2011;
WEI; VISWESWARAN; COOPER, 2011; CHEN et al., 2021). Additionally, it is easy to
parallelize and has low computational cost in terms of execution time and storage space.
However, its performance can degrade when the class space 𝑌 is very large and the data
is imbalanced. Moreover, it is not ideal for domains where it is known that the attributes
may have significant correlation among them.

3.4.2 Logistic Regression

The Logistic Regression algorithm, similarly to the Linear Regression, explores the
relation between the (independent) variables and the outcome (dependent) variable. In
that sense, the final model is able to describe the outcome variable as a sum of prod-
ucts, each product formed by multiplying the value and coefficient of the independent
variable (PARK, 2013).

The Logistic Regression, in a binary data class domain, may apply the standard logistic
function (also refered as sigmoid function). The logistic regression model can then be
described as in Equation 6.

𝑓w,𝑏(𝑥) = 1
1 + 𝑒−w𝑥+𝑏

, (6)

So, 𝑓(x) may be interpreted as the probability of the 𝑦𝑖 being positive (BURKOV,
2019). To estimate the coefficients (or weights) in the w𝑥 + 𝑏 term, the logistic regression
algorithm maximizes the likelihood function, that is, it applies the maximum likelihood
optimization criterion, as defined in Equation 7.

𝐿w,𝑏 =
∏︁

𝑖=1...𝑁

𝑓w,𝑏(xi)𝑦𝑖(1− 𝑓w,𝑏(xi))(1−𝑦𝑖) (7)

Due to the exponential function used in the model, it is required an adaptation in
order to avoid numeric overflow. So, it is convenient to maximize the log-likelihood
instead (Equation 8) (BURKOV, 2019).

𝑙𝑛(𝐿w,𝑏) =
𝑁∑︁

𝑖=1
[𝑦𝑖 · 𝑙𝑛(𝑓w,𝑏(xi)) + (1− 𝑦𝑖) · 𝑙𝑛(1− 𝑓w,𝑏(xi))] (8)
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In contrast to the Linear Regression, in Logistic Regression there is not a single solution
for the above optimization. It is typically applied the Gradient Descent method, but others
such as the Newton’s Method and the Adaptive Moment Estimation algorithm can also
be tested.

The main advantages of the Logistic Regression algorithm is that it can be quite
efficient, even in high-dimensional feature spaces. Also, it provides interpretability, as the
coefficients provide insights into the influence of each feature on the predicted outcome.
On the other hand, the Logistic Regression requires that the independent variables are
linearly related to the log odds - if not, the model may not be able to generalize based on
the training data. Besides that, it assumes that the Independence between the variables.
If the features are strongly correlated, it can lead to unreliable coefficient estimates.

3.4.3 Support Vector Machine (SVM)

The SVM is also built upon the statistical paradigm. Support vector-based classi-
fiers (CORTES; VAPNIK, 1995; CERRI, 2010) construct hyperplanes that aim to achieve
an appropriate separation of classes in a high-dimensional attribute space (CRISTIAN-
INI; SHAWE-TAYLOR, 2000). The goal of an SVM classifier is to identify a hyperplane
that separates data from different classes while maximizing the margin of separation. In
a binary classification problem, data can be separated with just one hyperplane. In prob-
lems with |𝑌 | classes, where |𝑌 | > 2, the solution of binary classifiers can be utilized.
One approach is to train |𝑌 | binary classifiers, one for each class.

Equation 9 represents a hyperplane and contains two parameters: w is a vector of
real values with the same dimensionality as the attribute vector x, and 𝑏 is a real num-
ber (BURKOV, 2019).

w · x− 𝑏 = 0, (9)

where w · x is the dot product of the two vectors (w and x). Using this, we can predict
the class of an example 𝑖 based on Equation 10.

𝑦𝑖 = 𝑠𝑖𝑔𝑛(w · 𝑥𝑖 − 𝑏) (10)

Thus, to achieve the objective of identifying a hyperplane that separates data from
different classes while maximizing the margin, the algorithm seeks the optimal values of
w and 𝑏. This is done through an optimization algorithm that aims to minimize the
Euclidean norm ||w||.

In this context, support vectors are the data points that are close to the separation
hyperplane and therefore define the position of the hyperplane in the space. They are
the critical examples in the dataset. The larger the separation margin, the greater the
model’s generalization capability.
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Figure 11 illustrates a hyperplane with maximum margin and its support vectors.

Figure 11 – Illustration of a hyperplane separating two classes and its support vectors
highlighted, according to an SVM algorithm. Adapted from (CRISTIANINI;
SHAWE-TAYLOR, 2000).

The definitions presented above consider a linear SVM, where the decision boundary
is a hyperplane. Other more advanced SVM algorithms can incorporate kernels, which
allow for the solution of non-linear problems as well (BURKOV, 2019).

SVMs perform well in domains where classes have a clear margin of separation. They
are also efficient in handling high-dimensional spaces, even when the number of dimensions
is larger than the number of training examples. However, SVM training has a high
computational cost, and the algorithm is extremely sensitive to noise. Therefore, data
cleaning and selection become even more important when dealing with SVMs.
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Chapter 4

Time Series (TS) Forecasting

A TS consists of data related to the observation of a phenomenon over time. Algo-
rithms for time series forecasting can operate in different ways, but the main ones are
capable of identifying patterns and learning from historical data. Once trained, they can
predict data for various future intervals (PARMEZAN; SOUZA; BATISTA, 2019). There-
fore, a time series algorithm should be able to forecast data for a certain number of days
in the future (“forecast horizon”), based on a number of days in the past (“observation
window”).

TS forecasting algorithms range from conventional statistical models, such as ARIMA
and SARIMA, to more complex models based on machine learning, such as the algorithms
described in the following sections.

4.1 Recurrent Neural Network (RNN)

A Recurrent Neural Network (RNN), unlike conventional neural networks (Section
3.3.1), is capable of retaining information. Therefore, it is said that these networks have
"memory" because they use information from previous inputs to influence the current
input and output. This is achieved through loops in their neurons, as illustrated in
Figure 12, and hidden states. The hidden states capture historical information from the
first sequences up to the current moment of the network.

RNNs apply an adapted version of backpropagation called Backpropagation Through
Time (BPTT). One of the problems with traditional RNNs is their inability to retain
information from a long time ago. This is because, during BPTT, they suffer from the
problem of vanishing gradients, where gradients diminish over time and have less and less
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Figure 12 – Illustration of RNN.

influence on learning. LSTM and Gated Recurrent Unit (GRU) networks address this
issue.

4.1.1 Long-Short Term Memory (LSTM)

LSTMs introduce the concept of “gates”, which are internal mechanisms that regulate
the flow of information through the network. These gates maintain the state of a particular
cell in the network and control when information is added to or removed from these cells.
The gates can use either the sigmoid or hyperbolic tangent (𝑡𝑎𝑛ℎ) function to control the
flow. The sigmoid function returns a value between 0 and 1, while 𝑡𝑎𝑛ℎ is used to sustain
the gradient for a longer time, reducing the impact of vanishing gradients.

A simplified LSTM architecture (Figure 13) consists of three parts: the forget gate,
the input gate, and the output gate. The forget gate determines how much of the previous
information should be retained and how much should be forgotten. If the sigmoid function
output is 0, everything is forgotten. If it is 1, nothing is forgotten. The input gate is used
to quantify the importance of the new information presented by the input. Finally, the
output gate determines the value of the next hidden state.

Since they were proposed in 1997, LSTMs have been applied in various fields to solve
a wide range of problems. In (ABBES; MAGAGI; GOITA, 2019), an LSTM was used
to estimate soil moisture. In the work of (AKTER; LEE; KIM, 2021), LSTMs were
studied in the context of energy consumption forecasting. Fourteen years of hourly energy
consumption data were analyzed. LSTMs have also been applied to wind speed prediction.
In (P.; VANITHA; R, 2019), the LSTM model was built using seasonal wind speed data
from four different regions in India. The results demonstrated that seasonal wind speed
prediction using the LSTM model can reduce errors compared to conventional weather
forecasting. Deviation rates were calculated from a wind turbine.
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Figure 13 – Illustration of an LSTM. 𝑐𝑝𝑟𝑒𝑣 represents the previous cell state, ℎ𝑝𝑟𝑒𝑣 repre-
sents the previous hidden state, 𝑐𝑐𝑢𝑟𝑟 represents the current cell state, and
ℎ𝑐𝑢𝑟𝑟 represents the current hidden state. Adapted from (ZHAO et al., 2020).

4.1.2 Gated Recurrent Unit (GRU)

The GRU, similar to the LSTM (Section 4.1.1), addresses the issue of gradient van-
ishing in conventional RNNs. It solves this problem by using two gates: the update gate
and the reset gate. The update gate of the GRU determines how much of the new infor-
mation should be stored and how much should be ignored. The reset gate, on the other
hand, determines how much of the previous information should be retained and how much
should be forgotten. Figure 14 illustrates the architecture of the GRU.

The GRU has fewer operators and gates compared to LSTM and, therefore, can be
considered faster. However, LSTM often performs better in situations where the input
sequence is extensive.

There are several recent studies in the literature that apply GRU for time series
forecasting. In (XU et al., 2021), a GRU combined with a factorization machine (FM-
GRU) was applied for water quality prediction over time. Another study applied GRU
for machinery failure prediction and achieved an accuracy of 87% (ZAINUDDIN; A.; H.,
2021).

4.2 Convolutional Neural Network (CNN)

The Convolutional Neural Network (CNN) is an ANN algorithm, and its basic archi-
tecture consists of three types of layers: (1) Convolutional layer, (2) pooling layer, and (3)
fully connected layer. Each layer plays a different role in the CNN, as described below:



48 Chapter 4. Time Series (TS) Forecasting

cprev

x

ccurr

sig

1-

sig

update gatereset gate

+x

x x

tanh

Figure 14 – Illustration of GRU. 𝑐𝑝𝑟𝑒𝑣 represents the previous state of the cell, 𝑐𝑐𝑢𝑟𝑟 repre-
sents the current state of the cell, and 𝑥 represents the input. Adapted from
(ZHAO et al., 2020).

❏ Convolutional layer: Responsible for feature extraction, it involves linear operations
(convolution) and non-linear operations (activation function) (YAMASHITA et al.,
2018).

– Convolution: Involves applying a kernel, or filter, to an input sequence, also
known as a “tensor”. The kernel transforms the tensor into an output called a
“feature map”. A single convolutional layer can apply multiple kernels to the
tensor, generating more than one feature map.

– Activation function: The outputs from convolution pass through a non-linear
activation function, such as sigmoid or hyperbolic tangent.

❏ Pooling layer: This layer reduces the dimensionality of the feature maps. Different
types of pooling operations exist, such as “max pooling” (selecting the attribute
with the highest value from the feature map) and “average pooling” (calculating
the average value of the feature map).

❏ Fully connected layer: In this layer, the inputs are connected to the outputs of the
convolutional and pooling layers. Classification or regression tasks are performed
using an activation function (such as ReLU).

Although CNNs are primarily used for image classification and natural language pro-
cessing tasks, they have also been applied to time series forecasting. (MEHTAB; SEN;
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DASGUPTA, 2020) applied CNNs to forecast stock prices, and the results showed better
performance compared to LSTMs. In (KOPRINSKA; WU; WANG, 2018), CNNs were
used for forecasting electricity and solar time series. The results were compared with
LSTMs and MLPs, and the CNNs were competitive with MLPs while outperforming
LSTMs.

The CNN implemented in this study is known as CNN-LSTM (Figure 15), as it com-
bines the architecture of a CNN with the architecture of an LSTM (Section 4.1.1). The
conventional CNN layer is responsible for feature extraction from the input data, while
the LSTM layer supports the prediction of time sequences.
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Figure 15 – The CNN-LSTM architecture implemented in this study. Adapted
from (HAMAD et al., 2020).
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Chapter 5

Genetic Algorithm (GA)

GA is a subfield of AI and was introduced in (HOLLAND, 1975), when its theoretical
foundations and initial applications were first presented. The proposal is based upon the
Darwin’s natural selection process. That is, the individuals that fit best to a given envi-
ronment survive, while the ones that fit less don’t. Over time, the surviving individuals
reproduce, generating an even stronger population (GANAPATHY, 2020).

In that sense, GAs are often used as a type of population-based metaheuristic algo-
rithm, in which the goal is to train and evaluate multiple candidate solutions (individuals)
in order to find the solution that optimizes a given (or a set of) complex problem(s) (KA-
TOCH; CHAUHAN; KUMAR, 2021).

The GA field is evolving fast and hence there are different algorithms proposed. The
Traditional GA is the main one, based on the initial proposal. Another algorithm is
the NSGA-II, proposed by (DEB et al., 2002). It has been outperforming in different
multi-objective tasks. Both the Traditional and NSGA-II algorithms are presented in the
following sections.

5.1 Traditional

As discussed in the preceding section, GAs draw inspiration from Darwin’s natural
selection concept. To implement a Traditional GA algorithm successfully, a series of
predetermined parameters and specifications must be set. The initial requirement entails
establishing the makeup of an individual, essentially defining its attributes and how its
quality is assessed. For instance, if we consider employing a genetic algorithm to tackle
a scheduling problem, each individual within the population might represent a distinct
schedule. In this context, an individual’s attributes could encompass task sequencing,
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resource allocation, and overall task completion time. The fitness (evaluation) function
then gauges the schedule’s merit based on specific criteria, such as minimizing completion
time, maximizing resource utilization, or meeting designated deadlines.

Another important requirement is defining the population size, which determines how
many individuals are present in each generation of the algorithm. The population size
can significantly impact the algorithm’s performance, as a larger population may explore
a broader search space but can also require more computational resources.

Moreover, it is imperative to stipulate the genetic operations utilized, including selec-
tion, crossover (recombination) and mutation:

1. Selection: The mechanism by which individuals from the current generation are
chosen to become parents for the next generation. It plays a pivotal role in shaping
the genetic algorithm’s evolutionary dynamics by favoring individuals with higher
fitness values to pass their genetic information to the next generation;

❏ A selection ratio must be defined. That is, the ratio or percentage of the best
ranked individuals from the current population that will be selected and kept
for the next generation;

2. Crossover: Entails combining attributes from two parental individuals to generate
one or more offspring - a new individual or solution that is created through the
process of reproduction;

3. Mutation: Introduces minor random alterations to an individual’s attributes. These
operations govern the transmission of genetic information from one generation to
the subsequent one.

❏ A mutation ratio must be defined. That is, the ratio or probability to which a
mutation will or not occur.

Lastly, we must establish the termination criteria for the algorithm, which could in-
clude a maximum number of generations, a specific fitness threshold, or a time limit.
These criteria help determine when the genetic algorithm should stop searching for a
solution.

In summary, a Traditional GA requires: (1) defining the individual representation,
(2) the fitness (evaluation) function, (3) population size, (4) genetic operators, and (5)
termination criteria as fundamental requirements to guide the evolutionary process toward
finding optimal or near-optimal solutions to a given problem. Algorithm 1 presents the
Traditional GA pseudo-code.

Literature has shown that GAs offer a computationally efficient algorithm for solu-
tions which include lots of hypeparameters. As mentioned in Chapter 1, (GANAPATHY,
2020) proposed using GAs as an automatic tuning method for neural networks. The GA
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Algorithm 1 Traditional GA algorithm.
1: procedure traditional_ga(population_size, nb_epochs, selection_ratio, mutation_ratio)
2: population ← generate_random_initial_population(population_size)
3: ranking ← evaluate_fitness(population)
4:
5: for epoch in nb_epochs do
6: parents ← selection(population, ranking, selection_ratio)
7: offspring ← crossover(parents)
8: offspring ← mutation(offspring, mutation_ratio)
9: population ← parents + offspring

10: ranking ← evaluate_fitness(population)
11: end for
12:
13: return best_individual(population)
14: end procedure

outperformed a random search of hyperparameters in a task of machine translation from
Japanese to English. GA-based approaches have also found application in the fields of
climate and environmental studies. In a study by (AMOL, 2020), a GA was employed to
forecast the propagation of forest fires. The model utilized four key parameters: drought
factor, temperature, relative humidity, and wind. It successfully identified specific pa-
rameter ranges that were indicative of fire initiation, allowing the model to accurately
predict the spread category of affected areas. In a separate investigation conducted by
(MATOS et al., 2022), GA was applied to address the resource scheduling problem in
forest firefighting. The objective was to determine the optimal sequence of actions for
firefighting resources when combating forest fires. Data for this study was collected from
the Braga region in Portugal, and the results demonstrated the effectiveness and validity
of this approach.

5.2 Nondominated Sorting Genetic Algorithm II
(NSGA-II)

The NSGA-II algorithm, proposed by (DEB et al., 2002), is a type of Multi-Objective
Evolutionary Algorithm (MOEA). One of the main differences between the Traditional
GA and NSGA-II is that the last one is able to optimize for multiple objectives at once.
The presence of multiple objectives that one wants optimize for may generate a set of
optimal solutions - also known as Pareto-optimal solutions. A Pareto optimal solution
represents a state in which no individual objective can be improved without at least one
other objective. In other words, it’s a solution that achieves the best possible trade-off
among conflicting objectives without making any one objective better off at the expense
of another, as illustrated in Figure 16.

Before NSGA-II, (SRINIVAS; DEB, 1995) presented the NSGA algorithm. Although
it demonstrated good results, it was widely criticized due to its high computational com-
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Figure 16 – Illustration of a set of Pareto optimal solutions (highlighted in black).

plexity and the lack of elitism. Elitism refers to a strategy where the best individuals from
one generation are directly preserved and carried over to the next generation without any
modification. In other words, the top-performing individuals are not subject to genetic
operations.

Hence, NSGA-II comes as an improved version of the NSGA algorithm. NSGA-II
introduces a more efficient and faster sorting algorithm. It uses a technique called “fast
non-dominated sorting” that reduces the computational complexity of sorting individuals
into fronts. The fast non-dominated sorting works as follows:

❏ Initially, for each solution 𝑝 we calculate the number of solutions that dominates 𝑝.
This is the domination count 𝑛𝑝;

❏ We also calculate 𝑆𝑝, which refers to the set of solutions that 𝑝 dominates;

❏ In the first non-dominated front, are placed all solutions that a domination count
of zero (𝑛𝑝 = 0);

❏ Subsequently, for each solution within this front, we conduct a “tournament” pro-
cess. In this tournament, we randomly select a subset of solutions from 𝑆𝑝 and
decrement the domination count by one for each selected member.

❏ During this process, if the domination count of any member reaches zero, we catego-
rize it into a distinct list. These members now constitute the second non-dominated
front.

❏ We then repeat this procedure for every member in the new list, identifying the
third non-dominated front in the process. This iterative sequence continues until
all the fronts have been identified.
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Notice that the “tournament” step is a critical part of NSGA-II’s selection process, as
it helps maintain diversity among solutions in each front. It does so by considering only
a subset of solutions from 𝑆𝑝 rather than the entire set, which prevents overly dominant
solutions from dominating the entire front. This, in turn, leads to a more balanced and
diverse set of solutions in the final Pareto front.

Another algorithm implemented by NSGA-II is the crowding-distance sorting, which
is a critical component that promotes diversity within the population by assessing how
well solutions are spread out across the Pareto front. The crowding distance measures
the extent to which a solution is surrounded by other solutions in the objective space. To
compute the crowding distance for each solution, NSGA-II considers each of the multiple
objectives separately. First, it sorts the solutions within each front based on a particular
objective. Then, for each solution, it calculates the difference between the objective values
of the nearest neighbors. This difference represents the crowding distance for that solution
in that specific objective dimension. The crowding distances are then summed across all
objectives to obtain an overall crowding distance value for each solution. Solutions with
larger crowding distances are given higher priority during selection, as they are considered
to be more diverse and have not yet been surrounded by other solutions in the objective
space.

Figure 17 represents the overall NSGA-II procedure, where 𝑃 stands for population,
𝑄 stands for the generated offspring, and 𝐹𝑛 is the n’th front. Algorithm 2 presents the
NSGA-II pseudo-code.

Pt

Qt

F1

F2

F3

Pt+1

Non-dominated
sorting

Crowding distance
sorting

Rejected

Figure 17 – Representation of the NSGA-II procedure. Adapted from (DEB et al., 2002).

Since its initial proposal, NSGA-II has been widely applied in different applications. In
(YAHUI et al., 2020), NSGA-II algorithm was used for multi-objective flexible workshop
scheduling, where the objective functions are the processing cycle, the advance/delay
penalty and the processing cost. When compared to the Traditional GA and Particle
Swarm algorithms, NSGA-II presented the best performance in terms of execution time,
at the same time it was able to find the Pareto optimal solutions.
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Algorithm 2 NSGA-II algorithm.
1: procedure nsga_ii(population_size, nb_epochs, selection_ratio, mutation_ratio)
2: population ← generate_random_initial_population(population_size)
3:
4: for epoch in nb_epochs do
5: fronts ← fast_non_dominated_sorting(population)
6: new_population ← null
7: i ← 0
8: while |new_population| + |fronts[i]| <= population_size do
9: crowding_distances ← crowding_distance_assignment(fronts[i])

10: new_population ← new_population + fronts[i]
11: i ← i + 1
12: end while
13: fronts[i] ← crowding_distance_sorting(fronts[i], crowding_distances)
14: new_population ← new_population + fronts[i][population_size −|new_population|]
15: parents ← selection(new_population, selection_ratio)
16: offspring ← crossover(offspring)
17: offspring ← mutation(offspring, mutation_ratio)
18: population ← parents + offspring
19: end for
20:
21: return best_individual(population)
22: end procedure

The study of (LI, 2022) also applied NSGA-II, but for maintenance decision-making
of tunnel structures. It considered the maintenance cost and the structure condition as
decision-making objectives. The NSGA-II was fused with a reverse chaotic map initial-
ization, an adaptive crossover and an adaptive mutation – the authors named this as an
NSGA-II improved version. It used the maximum spread as evaluation metric for repre-
senting the population diversity, and also the generational distance for representing the
algorithm convergence. With a 0.963 maximum spread and a 0.047 generational distance,
the NSGA-II improved version was able to effectively solve the Pareto frontier of the
multi-objective maintenance problem.

In the context of environmental sciences, the NSGA-II has been applied as well. (GAO
et al., 2020) presented an theoretical and experimental comparison of NSGA-II algorithm
versions for sustainable land-use optimization. The study made use of different datasets
regarding the city of Lhasa, Tibet. The three objectives were to maximize the ecological
benefits, the economic benefits, and the spatial compactness. The different NSGA-II al-
gorithms provided distinct solutions and the study discusses the trade-offs between them.
(LIBERATI; RITTENHOUSE; VOKOUN, 2019) applied the NSGA-II for evaluating out-
comes for US wildlife refuge expansion. The ecological objectives included maximizing
total protected habitat, priority habitats, and connectivity between protected properties.
It included economic and social objectives as well, such as minimizing acquisition cost,
town character conflict and loss of areas under high development pressure. The algorithm
identified solutions that met the 90% acquisition goals for the conservation focus areas.
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Chapter 6

Forest Fire Risk Indexes

6.1 Monte Alegre Formula (FMA) and Modified
Monte Alegre Formula (FMA+)

The FMA is the main forest fire risk index developed based on the climatic conditions
of Brazil. This index was initially proposed by (SOARES, 1972) and is based on the
central region of Paraná, in Brazil, known as Monte Alegre. It includes variables such
as relative humidity, which should be measured at 1 PM, and daily precipitation. It is
an accumulative index, meaning it depends on the daily measurement of these climatic
variables. The longer the sequence of days with low relative humidity and no rainfall, the
higher the risk of forest fire. The FMA emphasizes the probability of ignition, that is, the
likelihood of a forest fire starting. Its formula is described in Equation 11.

𝐹𝑀𝐴 =
𝑛∑︁

𝑖=1

100
𝐻𝑖

, (11)

where 𝑛 is the number of days without rainfall (precipitation less than 13 millimeters),
and 𝐻 is the relative humidity (%) measured at 1 PM.

The calculation is subject to adjustments based on the precipitation of the day, ac-
cording to Table 1.

The value obtained through Equation 11 must then be converted to one of the five
forest fire risk classes, which can be obtained from Table 2.

In (NUNES; SOARES; BATISTA, 2006), the FMA+ was proposed, an updated version
of FMA that includes the variable “wind speed” in the index calculation. The main
objective was to create an index that also identifies the potential for the spread of forest
fires, not just ignition. The FMA+ is also an accumulative index, although the “wind
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Daily
Precipitation (mm) Adjustment

≤ 2.4 None.
2.5 to 4.9 Subtract 30% from the FMA calculated the previous day and

add (100/H) of the current day.
5.0 to 9.9 Subtract 60% from the FMA calculated the previous day and

add (100/H) of the current day.
10.0 to 12.9 Subtract 80% from the FMA calculated the previous day and

add (100/H) of the current day.
> 12.9 Stop the summation (FMA = 0) and start over the next day.

Table 1 – Adjustments in the calculation of FMA according to the precipitation. Adapted
from (SOARES; BATISTA, 2007).

FMA Forest Fire Risk

≤ 1.0 Null
1.1 to 3.0 Low
3.1 to 8.0 Medium
8.1 a 20.0 High

> 20.0 Very High

Table 2 – Forest Fire Risk classes according to the FMA. Adapted from (SOARES;
BATISTA, 2007).

speed” variable is not – the wind speed value at 1 PM of each day is used. The index is
subject to the same adjustments presented in Table 1 and can be calculated according to
Equation 12.

𝐹𝑀𝐴+ =
𝑛∑︁

𝑖=1

(︂100
𝐻𝑖

)︂
· 𝑒0,04·𝑣𝑖 , (12)

where 𝑛 is the number of days without rain (precipitation less than 13 millimeters); 𝐻𝑖

is the relative humidity (%) measured at 1 PM; and 𝑣 is the wind speed (𝑚/𝑠) measured
at 1 PM.

The value obtained from Equation 12 should then be converted into one of the five
forest fire risk classes, which can be obtained from Table 3.

6.2 Telicyn

The Telicyn logarithmic index (I) was proposed in (TELICYN, 1970), and its calcu-
lation is described by Equation 13.

𝐼 =
𝑛∑︁

𝑖=1
𝑙𝑜𝑔(𝑇𝑖 − 𝑟𝑖), (13)



6.2. Telicyn 59

FMA+ Forest Fire Risk

≤ 3.0 Null
3.1 to 8.0 Low
8.1 to 14.0 Medium
14.1 to 24.0 High

> 24.0 Very High

Table 3 – Forest Fire Risk classes according to the FMA+. Adapted from (SOARES;
BATISTA, 2007).

where 𝑛 is the number of days without rain (precipitation less than 13 millimeters); 𝑇

is the air temperature (∘𝐶) at 1 PM; and 𝑟 is the dew point temperature, which is the
temperature at which the water vapor present in the air (∘𝐶) changes to liquid state
through condensation.

According to (SOARES; BATISTA, 2007), the dew point temperature (𝑟) can be
obtained from a table that correlates air temperature and relative humidity (Appendix
A).

The calculation is subject to adjustments based on the occurrence of rainfall. These
adjustments are described in Table 4.

Daily
Precipitation (mm) Adjustment

> 2.5 Stop the summation (I = 0) and start over the next day.

Table 4 – Adjustments in the calculation of Telicyn according to the precipitation.
Adapted from (TORRES; RIBEIRO, 2008).

The value obtained through Equation 13 should then be converted to one of the four
forest fire risk classes, which can be obtained from Table 5. Note that, unlike FMA and
FMA+ (Section 6.1), Telicyn does not include the “Very High” risk class.

I Forest Fire Risk

≤ 2.0 Null
2.1 to 3.5 Low
3.6 to 5.0 Medium

> 5.0 High

Table 5 – Forest Fire Risk classes according to the Telicyn. Adapted from (ZICCARDI
et al., 2020).
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6.3 Angström

The fire danger index, or Angström formula (B), was developed in Sweden and is
widely used in parts of Scandinavia (ANGSTROM, 1942). This index is calculated using
Equation 14.

𝐵 =
(︂

𝐻

20

)︂
+

(︂
𝑇 − 27

10

)︂
, (14)

where 𝐻 represents the relative humidity (%) measured at 1 PM and 𝑇 represents the air
temperature (∘𝐶) at 1 PM.

This index does not require any specific adjustments and is not cumulative. The value
obtained through Equation 14 should then be converted into one of the four forest fire
risk classes, which can be obtained from Table 6.

B Forest Fire Risk

< 3.5 Null
3.5 to 3.9 Low
4.0 to 4.2 Medium
4.3 to 4.5 High

> 4.5 Very High

Table 6 – Forest Fire Risk classes according to the Angström. Adapted from (CASAVEC-
CHIA et al., 2019).

6.4 Nesterov

The Nesterov index was originally developed in the former Soviet Union (NESTEROV,
1949). It focuses on the concept of flammability, which provides an indication of the
likelihood of forest fires. This index is based on the summation of “dangerous” days, i.e.,
days with a high saturation deficit. Equation 15 presents the calculation of the Nesterov
index (G).

𝐺 =
𝑛∑︁

𝑖=1
𝑑𝑖 · 𝑇𝑖, (15)

where 𝑛 represents the number of days without rainfall, 𝑑 represents the saturation deficit
(in millibars) at 1 PM, and 𝑇 represents the air temperature (in degrees Celsius) at 1
PM.

The saturation deficit can be obtained using Equation 16.

𝑑 = 𝐸 ·
(︂

1− 𝐻

100

)︂
, (16)
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where 𝐸 represents the maximum vapor pressure (in millibars) and 𝐻 represents the
relative humidity of the air (%). According to (SOARES; BATISTA, 2007), the value
of 𝐸 can be obtained from the table correlating air temperature and maximum vapor
pressure (see Appendix B).

The calculation is subject to adjustments based on precipitation, as it influences the
flammability of vegetation. These adjustments are described in Table 7.

Daily
Precipitation (mm) Adjusment

≤ 2.0 None.
2.1 to 5.0 Subtract 25% from the G calculated the previous day and add

(𝑑 · 𝑡) of the current day.
5.1 to 8.0 Subtract 50% from the G calculated the previous day and add

(𝑑 · 𝑡) of the current day.
8.1 to 10.0 Discard the previous sum of G and start a new calculation.

That is, 𝐺 = (𝑑 · 𝑡) for the current day.
> 10.1 Stop the summation (G = 0) and start over the next day.

Table 7 – Adjustments in the calculation of Nesterov according to the precipitation.
Adapted from (SOARES; BATISTA, 2007).

The value obtained through Equation 15 should then be converted into one of the five
forest fire risk classes, which can be obtained from Table 8.

G Forest Fire Risk

≤ 300 Null
301 a 500 Low
501 a 1000 Medium
1001 a 4000 High

> 4000 Very High

Table 8 – Forest Fire Risk classes according to Nesterov. Adapted from (SOARES;
BATISTA, 2007).

6.5 Comparison of Indexes

The forest fire risk indexes presented earlier in this chapter are limited to one or more
of the following four primary climatic variables: Precipitation (mm), relative humidity
(%), air temperature (∘𝐶), and wind speed (𝑚/𝑠). The relationship of these variables for
each index is described in Table 9.

In addition to these indexes, there are others discussed and applied in the literature,
but they may depend on other primary climatic variables. For example, the P-EVAP and



62 Chapter 6. Forest Fire Risk Indexes

Index Precipitation Relative Humidity Temperature Wind Speed

FMA X X
FMA+ X X X
Telicyn X X X

Angström X X
Nesterov X X X

Table 9 – Required climatic variables for each of the main Forest Fire Risk Indexes.

EVAP/P indexes can be mentioned (SAMPAIO, 1991). Both depend on precipitation (P)
and evaporation (EVAP), in mm.

Another widely used index is the Fire Weather Index (FWI). It was developed in
Canada in the 1970s and has been refined since then (WAGNER, 1987). It has different
components, such as the moisture content of the organic layer and the drought index,
which represents the soil moisture deficit.

In (TORRES; RIBEIRO, 2008), the FMA, FMA+, P-EVAP, and EVAP/P indexes
were applied to data from the Juiz de Fora region (Minas Gerais, Brazil). Data were
collected at different times, and better results were observed when evaluating the relative
humidity and temperature data measured at 3 PM. The indexes showed greater efficiency
in predicting the absence of forest fires compared to predicting their occurrence. The
index that performed best overall for the entire year was the EVAP/P index.

In (TORRES et al., 2017), the FMA, FMA+, P-EVAP, EVAP/P, FWI, Nesterov,
and Telicyn indexes were applied to data from the Viçosa region (Minas Gerais, Brazil).
According to the results, the Telicyn index was the most efficient for the area in question,
followed by the EVAP/P and P-EVAP indexes.

In the study by (TORRES; LIMA, 2019), the uses of the FMA, FMA+, Nesterov,
Telicyn, P-EVAP, EVAP/P, and FWI indexes were evaluated using data from the Serra
do Brigadeiro State Park region (Minas Gerais, Brazil). The P-EVAP and FWI indexes
were the most efficient in predicting forest fire occurrence in the studied region.

Regarding the Brazilian Pantanal region specifically, data from the Pantanal region in
Mato Grosso do Sul were also used in a comparative study of different climatic indexes
in (SORIANO; DANIEL; SANTOS, 2015). The FMA, FMA+, Nesterov, Telicyn, and
Angström indexes were evaluated. For detecting high-risk fire classes (“Very High” and
“High”) in data from 1999 to 2008, the Nesterov index was the most efficient, followed by
the FMA index. Considering all classes, the FMA index had the highest accuracy.

Furthermore, still in the Brazilian Pantanal region there is a continuous effort of the
environmental authorities to forecast and combat forest fires. An example is the SARI-
PAN system (NARCISO; SORIANO, 2019), which makes use of FMA, FMA+, Nesterov,
Telicyn and Angström indexes to identify forest fire risk. SARIPAN can only make pre-
dictions for the same day the climatic variables are collected - i.e., it is not able to forecast
the forest fire risk for a number of days in the future. Also, it doesn’t make use of ML,
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meaning that it can’t learn from historical data neither adapt to environmental changes
in the climate.

The present study considers only the FMA, FMA+, Nesterov, Telicyn, and Angström
indexes. This is due to the fact that the measured climatic variables are limited to precip-
itation, relative humidity, air temperature, and wind speed – as described in Section 7.1.1.
Therefore, the P-EVAP, EVAP/P, and FWI indexes were not considered for comparison
with the results of the developed software.

6.6 Preventive Measures

In (SOARES; BATISTA, 2007), different preventive measures are proposed according
to each forest fire risk class:

1. Null: It can be stated that there is no risk of forest fires occurrence. This period
should be used for personnel training, activity planning, various maintenance tasks,
and equipment review. Preventive surveillance can be demobilized. Command and
surveillance towers do not need to be operational.

2. Low: There is a risk of forest fires, but this risk is low. This period should be
used to intensify personnel training, activity planning, various maintenance tasks,
and equipment review. Preventive surveillance can be reduced. Command and
surveillance towers do not need to be operational.

3. Medium: The risk of forest fires is moderate. Control measures, such as firefighting
teams and various equipment, should be ready and in a state of readiness. Vehicles
and communication equipment should be turned on and tested daily. Command
and surveillance towers begin operation.

4. High: There is a significant risk of forest fires. Control measures, such as fire-
fighting teams and various equipment, should be ready and in a state of readiness.
Agricultural and forestry operations that involve the use of fire should be moni-
tored and restricted. Vehicles and communication equipment should be turned on
and tested at least twice a day. Preventive surveillance should be intensified, which
means extending the operating period of command and surveillance towers.

5. Very High: The risk of forest fires is extremely high. Control measures, such as
firefighting teams and various equipment, should be ready and in a state of readi-
ness. Agricultural and forestry operations that involve the use of fire should be
suspended and prohibited. The population should be notified through communi-
cation channels. First response teams should be on standby for any emergencies.
Preventive surveillance should be intensified, which means extending the operating
period of command and surveillance towers.
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Chapter 7

Materials and Methods

7.1 Datasets

As introduced in Chapter 1, the present study aims to classify the forest fire risk in the
Brazilian Pantanal, using historical climatic variables from the region, and for a certain
number of days in the future. To achieve this objective, two sets of data must be provided
to the software: (1) Climatic Variables and (2) Hotspot Sources. These sets correspond
to the inputs of time series forecasting and classification models, which will be discussed
in detail in Section 8. The Climatic Variables dataset is the one that contains the climatic
attributes for the region. The Hotspot dataset, on the other hand, is the one that contains
the days on which hotspots were identified in the region.

7.1.1 Climatic Variables

The Climatic Variables dataset consists of a 23-year time series (1999-2022) of air
temperature (∘𝐶), relative air humidity (%), daily precipitation (mm), and wind speed
(𝑚/𝑠) data. Air temperature, relative air humidity, and wind speed are measured daily
at 1:00 PM (official Brasilia time, UTC-03). On the other hand, precipitation consists of
the accumulated daily value. In total, the dataset contains 8,766 instances.

The data was collected at the main Climatological Station of Nhumirim (latitude
18°59’21”S, longitude 56°37’25”W, altitude 102 meters), located in the Nhecolândia sub-
region of the southern Mato Grosso Pantanal (SORIANO; DANIEL; SANTOS, 2015).
Table 10 summarizes the Climatic Variables dataset.
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Date Temperature Rel. Humidity Precipitation Wind Speed

Representation Date T RH P WS
Measure - ∘𝐶 % mm 𝑚 · 𝑠−1

Data Type Date Numerical Numerical Numerical Numerical
# Distinct Values 8766 274 112 401 14
Mean - 31.11 57.70 2.97 3.37
Std - 4.71 17.18 9.93 2.52
Min 01/01/1999 9.00 10.00 0.00 0.00
25% - 28.90 45.25 0.00 2.00
50% - 32.10 56.00 0.00 2.00
75% - 34.30 69.00 0.00 4.00
Max 12/31/2022 42.00 100.00 203.60 20.00

Table 10 – Description of the Climatic Variables dataset.

7.1.2 Hotspot

The Hotspot dataset covers the period from January 1, 1999, to December 31, 2022 (23
years) - the same timeframe as the Climatic Variables dataset (Section 7.1.1). The data
was collected from the database provided by the Image Processing Division of the Brazil-
ian National Institute for Aerospace Research (from Portuguese, “Instituto Nacional de
Pesquisas Espaciais”) (INPE) (INPE, 2022). These data were generated by the NOAA12
satellite (up to 2002) and the AQUA_M-T satellite (from 2002).

Hotspots are detectable through spatial resolution elements (pixels) that highlight
high temperatures. These present the lowest gray level values in the images of the ther-
mal infrared region band 3 (3.7𝜇m) of the Advanced Very High Resolution Radiometer
(AVHRR) sensor. This band measures radiant energy emission from the Earth’s sur-
face, in which saturated pixels correspond to a temperature of at least 47∘𝐶, normally
associated with burning targets (SORIANO; DANIEL; SANTOS, 2015).

The data were filtered to eliminate the spots that were outside of the related coverage
area, that is, a radius greater than 100 km and beyond the vertical line near the hills of
the Nhumirim city station. Table 11 presents a snapshot of the mentioned data. From the
hotspot dataset, there are 6059 days where no hotspot was identified (69.11%), against
2708 where it was (30.89%).

7.2 Evaluation Measure

The results were evaluated based on the correlation between the prediction of each
forest fire risk class and the occurrence of heat sources. This correlation can be calculated
according to Equation 17.

𝑐𝑜𝑟𝑟𝐶 = |𝑃𝐶 ∩ 𝐼|
|𝑃𝐶 |

, (17)
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Date Latitude Longitude

01/22/1999 -19.1767 -55.9281
05/14/1999 -18.8581 -55.2281

... ... ...
08/14/2013 -19.357 -55.606
08/14/2013 -18.453 -56.482

... ... ...
12/29/2022 -19.009 -55.667
12/31/2022 -19.448 -56.616

Table 11 – Snapshot of the Hotspot dataset. Each row represents a date and location in
which a hotspot was identified.

where 𝑐𝑜𝑟𝑟𝐶 represents the correlation value of class 𝐶, ranging between 0 and 1; 𝑃𝐶

corresponds to the set of days in which class 𝐶 was predicted; and 𝐼 denotes the set of
days in which one or more heat sources were observed.

It is fair to assume that the lowest the correlation for classes “Null”, “Low” and
“Medium”, the best. As well as it is desired to have the highest possible correlation for
classes “High” and “Very High”.

The review of evaluation measures applied to forest fire risk (SORIANO; DANIEL;
SANTOS, 2015; ZICCARDI et al., 2020; TORRES; RIBEIRO, 2008) shows there is no
consensus on the use of a single evaluation measure. Also, it is not possible to apply the
conventional ML evaluation measures, such as Accuracy and F-Measure, to evaluate our
framework performance. This is because these measures rely on knowing the true values
of the instances. In our study, however, the predictions are the forest fire risk classes,
while the known true values are the occurrence of hotspots.

Given the described scenario and the context of this study, the correlation presented
in Equation 17 was chosen as the evaluation measure, specially due to its simplicity and
interpretability.
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Chapter 8

Proposed Software

To achieve our goal of classifying the risk of forest fire occurrence in the Brazilian
Pantanal, as stated earlier in Section 1.2, we propose the development of a software.
This software may run different data pre-processing methods, as well as incorporate TS
forecasting and classification layers.

The software consists of two main pipelines: Training and Prediction, both described
in the following sections.

8.1 Training Pipeline

The software training pipeline can be described by Figure 18.
Each of these layers represent different software hyperparameters: (1) Scaling method;

(2) Sampling method; (3) Forecasting algorithm; (4) Classification algorithm; (5) “Null”
forest fire risk threshold (𝑡ℎ𝑟𝑛𝑢𝑙𝑙); (6) “Low” forest fire risk threshold (𝑡ℎ𝑟𝑙𝑜𝑤); (7)
“Medium” forest fire risk threshold (𝑡ℎ𝑟𝑚𝑒𝑑𝑖𝑢𝑚); and (8) “High” forest fire risk threshold
(𝑡ℎ𝑟ℎ𝑖𝑔ℎ). There is no “Very High” threshold, because it simply corresponds to 1− 𝑡ℎ𝑟ℎ𝑖𝑔ℎ,
as is explained later in Section 8.1.1.

As presented in Chapters 2, 3 and 4, there are several methods and algorithms that
can be applied to each layer, each with its own advantages and disadvantages. This
wide range of possible software hyperparameters combinations makes it challenging to
empirically and manually select a single combination of software hyperparameters. So,
instead of manually picking a combination, we build the software so that it would choose
the best combination itself. In that sense, there were incremental experiments that led to
two different software versions:



70 Chapter 8. Proposed Software
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Figure 18 – Summary of the software training pipeline, including its different layers.

❏ Exhaustive Search version (v1): The software hyperparameters are searched in an
exhaustive manner;

❏ GA version (v2): The software hyperparameters are chosen based on GA. In this
version, it was tested both a Traditional GA, as well as the NSGA-II.

Table 12 summarizes the main differences between the versions.
Despite each version having its own implementation, they share common steps and

approaches, as described in Section 8.1.1. Each version specificities are detailed in Sections
8.1.2 and 8.1.3.

8.1.1 Common Steps

The first common step between the two software versions refers to how the two datasets
are transformed and merged into a single dataset. The combined dataset contains the
climatic variables and a binary column that indicates whether a hotspot was identified
(1) or not (0) in the corresponding day (Table 13).

Following common step is the data split into 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔, 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 and 𝑡𝑒𝑠𝑡. To
create such subsets, there are two sequential splits: 80% training plus validation
(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔_𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛) and 20% 𝑡𝑒𝑠𝑡). The first is again spllited into 80% 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 and
20% 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛, which leads to a total split of 64%/16%/20% (Figure 19).
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Exhaustive Search (v1) Genetic Algorithm (v2)

Software
Hyperparameters

Scaling Method,
Forecasting Algorithm,

Classification Algorithm,
Risk Class Thresholds

Same as v1,
plus Sampling Method,

Forecaster Batch Size and
Forecaster Number of Units

Approaches for
Software

Hyperparameters
Search

Exhaustive Search GA and NSGA-II

Scaling
Methods

Min-Max, Standard,
Robust, Max-Abs

and None
Min-Max

and Max-Abs

Forecasting
Algorithms

LSTM,
GRU and

CNN-LSTM
Same as v1

Sampling
Methods None

All presented in
Section 2.2,
and None

Classification
Algorithms

MLP, SVM,
KNN, Decision Tree,

Random Forest,
Naive Bayes,

XGBoost, LightGBM
and CatBoost

Same as v1, plus
Logistic Regression

Table 12 – Main differences between the two software versions.

Date T RH P WS hotspot

01/01/1999 29.7 79.0 2.0 0.0 0
01/02/1999 30.7 69.0 3.0 4.0 0

... ... ... ... ... ...
12/30/2022 33.5 61.0 2.0 0.0 0
12/31/2022 33.9 58.0 2.0 0.0 1

Table 13 – Snapshot of the combined dataset.
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Figure 19 – Data split performed by the software.

During software hyperparameter selection, the models are trained upon the 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

subset, and the metrics are obtained based on the 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 subset predictions. Once
the best software hyperparameter combination is selected, the 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 and 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛

subsets are merged together (𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔_𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛) to retrain the final model, and the
results are reported based on the 𝑡𝑒𝑠𝑡 subset predictions. The data is not shuffled, keeping
the historical information ordered to be used by the forecaster later on.

Another common step is how the forest fire risk thresholds are defined. Since the
classifiers outputs can be interpreted as the probability of occurring a hotspot, thresholds
are needed to convert these outputs to one of the 5 forest fire risk classes. Upon applying
the forest fire risk rate class thresholds, the probability for a given instance 𝑖 is converted
to a class 𝐶𝑖 (Equation 18). Then, the correlation measure (Section 7.2) is calculated for
each class (“Null”, “Low”, “Medium”, “High” and “Very High”). This is performed for
each day in the present or future (0 ≤ 𝑛 ≤ 𝑁).

𝐶𝑖 = {If 𝑝𝑟𝑜𝑏𝑖 < 𝑡ℎ𝑟𝑛𝑢𝑙𝑙, 𝑖 ∈ Null or

𝑡ℎ𝑟𝑛𝑢𝑙𝑙 ≤ 𝑝𝑟𝑜𝑏𝑖 < 𝑡ℎ𝑟𝑙𝑜𝑤, 𝑖 ∈ Low or

𝑡ℎ𝑟𝑙𝑜𝑤 ≤ 𝑝𝑟𝑜𝑏𝑖 < 𝑡ℎ𝑟𝑚𝑒𝑑𝑖𝑢𝑚, 𝑖 ∈ Medium or

𝑡ℎ𝑟𝑚𝑒𝑑𝑖𝑢𝑚 ≤ 𝑝𝑟𝑜𝑏𝑖 < 𝑡ℎ𝑟ℎ𝑖𝑔ℎ, 𝑖 ∈ High else

𝑖 ∈ Very High},

(18)

8.1.2 Software’s Exhaustive Search Version (v1)

As mentioned in the beginning of this Chapter, the v1 chooses the best combination
of software hyperparameters by exhaustive search.

For the scaling methods and forecasting algorithms, the software tests all possible
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combinations, and selects the best one based on the lowest error obtained on 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛.
We started experimenting with Mean Absolute Error (MAE) because, when compared
to other often-used error measures, is a more natural measure of average error and is
unambiguous (WILLMOTT; MATSUURA, 2005). It is recommended for dimensioned
evaluations and inter-comparisons of average model-performance errors, which is our case.

Nevertheless, when analysing preliminary results, we found that our Forecaster was
not performing well in the “Precipitation” variable. This is due to the fact that this is a
very sparse time series. In fact, as showed in Table 10, the p75% of the Precipitation value
is equal to 0. In order to try to overcome such sparseness and improve our Forecaster, we
decided to adopt the Mean Squared Logarithmic Error (MSLE) metric instead. The MSLE
tends to penalize underestimates more than overestimates and treats small differences
between small actual and predicted values as well as as big differences between large actual
and predicted values (MASSMANN; HOLZMANN, 2012), which helps in the Precipitation
sparseness.

After choosing the scaling method and forecasting algorithm, the classification algo-
rithm is selected based on the highest F-Score.

The thresholds considered during the Forest Fire Risk Class Thresholds layer are based
on a list of values. To select the best combination of thresholds, a score 𝑆 = 𝑆1+𝑆2

15 is
calculated, with 𝑆1 and 𝑆2 given by Equations 19 and 20, where 𝑐𝑜𝑟𝑟𝑛,𝑐 is the correlation
metric for a given class 𝑐 in day 𝑛. The combination that provides the highest score 𝑆 is
chosen as the selected thresholds.

𝑆1 =
𝑁∑︁

𝑛=0
5 · (1− 𝑐𝑜𝑟𝑟𝑛,𝑛𝑢𝑙𝑙) + 4 · (1− 𝑐𝑜𝑟𝑟𝑛,𝑙𝑜𝑤) + 3 · (1− 𝑐𝑜𝑟𝑟𝑛,𝑚𝑒𝑑𝑖𝑢𝑚) (19)

𝑆2 =
𝑁∑︁

𝑛=0
2 · 𝑐𝑜𝑟𝑟𝑛,ℎ𝑖𝑔ℎ + 1 · 𝑐𝑜𝑟𝑟𝑛,𝑣𝑒𝑟𝑦_ℎ𝑖𝑔ℎ (20)

As can be seen in Equation 19, we considered the difference 1− 𝑐𝑜𝑟𝑟𝑛,𝑐𝑙𝑎𝑠𝑠 for classes
“Null”, “Low” and “Medium”. As explained in Section 7.2, 𝑐𝑜𝑟𝑟𝐶 measures the correlation
between the prediction of class 𝐶 and the occurrence of a hotspot. We thus expect the
lowest correlation possible, since there should be no detected hotposts when classes “Null”,
“Low” and “Medium” are predicted. The opposite is true for classes “High” and “Very
High”.

We can also see in Equation 19 that the correlations for “Null” and “Low” are multi-
plied by higher factors in the weighted average. Thus, they have a higher contribution to
the final score 𝑆. This is because in our application, false negatives are a bigger concern
compared to false positives. False negatives happen when the model predicts there will be
no forest fire in a given day (“Null” and “Low”), but the forest fire occurs. False positives
occur when the model predicts there will be forest fire in a given day (‘High” and “Very
High”), but the forest fire doesn’t occur. It is thus clear that false negatives are a bigger
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issue, since by predicting there will be no forest fire in a given day, the proper authorities
may not be prepared to act upon the forest fire occurrence. This justifies our decision on
weighting the correlations in a decreasing manner.

The general idea of the training pipeline for software Exhaustive Search version is
summarized in Algorithms 3, 4, 5 and 6.

Algorithm 3 Software’s Exhaustive Search version: Training pipeline.
1: procedure train(climate_data, hotspot_data)
2: merged_data ← merge(climate_data, hotspot_data)
3: training, validation, test ← split(merged_data)
4:
5: best_scaler, best_forecaster ← search_scaler_forecaster(training, validation)
6: best_classifier ← search_classifier(best_scaler, training, validation)
7:
8: pred_present ← predict(best_scaler, best_classifier, validation)
9: forescated_features ← predict(best_scaler, best_forecaster, validation)

10: pred_future ← predict(best_scaler, best_classifier, forescated_features)
11:
12: best_thresholds ← search_thresholds(pred_present, pred_future)
13:
14: scaler ← refit(best_scaler, (training + validation))
15: forecaster ← retrain(best_forecaster, (training + validation))
16: classifier ← retrain(best_classificafier, (training + validation))
17:
18: final_pred_present ← predict(scaler, classifier, test)
19: final_forescated_features ← predict(scaler, forecaster, test)
20: final_pred_future ← predict(scaler, classifier, final_forescated_features)
21:
22: return apply(best_thresholds, final_pred_present, final_pred_future)
23: end procedure

Algorithm 4 Software’s Exhaustive Search version: “Search Scaler and Forecaster”
method.
1:
2: procedure search_scaler_forecaster(training, validation)
3: best_msle ← +inf
4: best_scaler ← NULL
5: best_forecaster ← NULL
6: for scaling_method in scaling_space do
7: for forecasting_algorithm in forecasting_space do
8: scaler ← fit(scaling_method, training)
9: forecaster ← train(scaler, forecasting_algorithm, training)

10: curr_msle ← predict(scaler, forecaster, validation)
11: if curr_msle < best_msle then
12: best_msle ← curr_msle
13: best_scaler ← scaler
14: best_forecaster ← forecaster
15: end if
16: end for
17: end for
18: return best_scaler, best_forecaster
19: end procedure
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Algorithm 5 Software’s Exhaustive Search version: “Search Classifier” method.
1: procedure search_classifier(scaler, training, validation)
2: best_fscore ← −inf
3: best_classifier ← NULL
4: for classification_algorithm in 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑠𝑝𝑎𝑐𝑒 do
5: classifier ← train(scaler, classification_algorithm, training)
6: curr_fscore ← predict(scaler, classifier, validation)
7: if curr_fscore > best_fscore then
8: best_fscore ← curr_fscore
9: best_classifier ← classifier

10: end if
11: end for
12: return best_classifier
13: end procedure

Algorithm 6 Software’s Exhaustive Search version: “Search Thresholds” method.
1: procedure search_thresholds(pred_present, pred_future)
2: best_score ← −inf
3: best_thresholds ← NULL
4: for thresholds in 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠_𝑠𝑝𝑎𝑐𝑒 do
5: risk_rates ← apply(thresholds, pred_present, pred_future)
6: correlations ← calculate_correlations(risk_rates)
7: curr_score ← calculate_score(correlations)
8: if curr_score > best_score then
9: best_score ← curr_score

10: best_thresholds ← thresholds
11: end if
12: end for
13: return best_thresholds
14: end procedure

8.1.3 Software’s Genetic Algorithm Version (v2)

The second version of the software applies GAs for searching the software hyperpa-
rameters space. It implements both the Traditional GA and the NSGA-II, so that the
user can select which one to use. They are implemented as described in Algorithms 1
and 2, from Chapter 5. Additionally, the it adds the sampling layer, to handle the class
imbalance.

Regarding the scaling method, for the software GA version we dropped the Standard
and Robust methods. This is because later noticed that we need the features to be scaled
between 0 and 1, so that the forecaster can make predictions (activation function) within
this same range. This can only be achieved via Min-Max and Max-Abs scaling methods
(Section 2.1).

The GA individual share the same hyperparameters between the Traditional GA
and the NSGA-II, which are the same as presented earlier in this Section: (1) Scaling
Method; (2) Forecasting Algorithm; (3) Sampling Method; (4) Classification Algorithm;
(5) “Null” forest fire risk threshold (𝑡ℎ𝑟𝑛𝑢𝑙𝑙); (6) “Low” forest fire risk threshold (𝑡ℎ𝑟𝑙𝑜𝑤);
(7) “Medium” forest fire risk threshold (𝑡ℎ𝑟𝑚𝑒𝑑𝑖𝑢𝑚); and (8) “High” forest fire risk thresh-
old (𝑡ℎ𝑟ℎ𝑖𝑔ℎ). Still, software GA version implements two additional hyperparameters,
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related to the Forecaster architecture: (9) Batch Size and (10) Number of Units.
Also, while analyzing the software Exhaustive Search version preliminary results, we

found that the scoring method initially implemented should be adapted for the software’s
GA version. This is because the score 𝑆, as presented in Equations 19 and 20, benefits
low correlations for “Null” and “Low” classes, which is in fact desired. However, it ended
up picking really low values for 𝑡ℎ𝑟𝑛𝑢𝑙𝑙 and 𝑡ℎ𝑟𝑙𝑜𝑤. So low that there would be almost 0
instances predicted in such classes, leading to a correlation equal to 0 for both.

To overcome this, we updated the score 𝑆 in the software GA version to also consider
the number of instances predicted in each class 𝑐 for a given day 𝑛 (𝑐𝑜𝑢𝑛𝑡𝑛,𝑐). So, score
becomes 𝑆 = 𝑆1 + 𝑆2 + 𝑆3, from Equations 21, 22 and 23.

𝑆1 =
𝑁∑︁

𝑛=0
5 · (1− 𝑐𝑜𝑟𝑟𝑛,𝑛𝑢𝑙𝑙) · (1− 𝑒−1·𝑐𝑜𝑢𝑛𝑡𝑛,𝑛𝑢𝑙𝑙) + 4 · (1− 𝑐𝑜𝑟𝑟𝑛,𝑙𝑜𝑤) · (1− 𝑒−1·𝑐𝑜𝑢𝑛𝑡𝑛,𝑙𝑜𝑤) (21)

𝑆2 =
𝑁∑︁

𝑛=0
3 · (1− 𝑐𝑜𝑟𝑟𝑛,𝑚𝑒𝑑𝑖𝑢𝑚) · (1− 𝑒−1·𝑐𝑜𝑢𝑛𝑡𝑛,𝑚𝑒𝑑𝑖𝑢𝑚) (22)

𝑆3 =
𝑁∑︁

𝑛=0
2·(1−𝑐𝑜𝑟𝑟𝑛,ℎ𝑖𝑔ℎ)·(1−𝑒−1·𝑐𝑜𝑢𝑛𝑡𝑛,ℎ𝑖𝑔ℎ)+1·(1−𝑐𝑜𝑟𝑟𝑛,𝑣𝑒𝑟𝑦_ℎ𝑖𝑔ℎ)·(1−𝑒−1·𝑐𝑜𝑢𝑛𝑡𝑛,𝑣𝑒𝑟𝑦_ℎ𝑖𝑔ℎ)

(23)
As elucidated in Section 5.1, the Traditional GA algorithm requires a fitness function

to enable the ranking of individuals. In software’s GA version, this fitness function takes
the form of the updated score 𝑆: A higher value of 𝑆 means a superior evaluation of the
individual’s quality, yielding to a better ranking position.

For the NSGA-II in the other hand, there is no need to define a single fitness function
(Section 5.2). In fact, it is implemented in way that can handle multi-objective tasks,
such as this one. So, for the NSGA-II implementation, the goal is to keep the correlation
value low for “Null”, “Low” and “Medium” classes, while keeping the instances count
assigned to each class as high as possible. This is taken into consideration to implement
the Crowding Distance and Domination methods of the NSGA-II algorithm, as explained
in Section 5.2. The representation of the GA individual is summarized in Table 14.

8.2 Prediction Pipeline

The prediction pipeline is common between the two different software versions and is
described by Figure 20. It receives as input the climatic variables from the 𝑊 previous
days, with 𝑊 being the observation window (Chapter 4).

Notice that, differently from the training pipeline, there is no sampling layer, as the
class unbalance should only be handled during the classifier training phase.
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Common

Hyperparameters

Scaling Method,
Forecasting Algorithm,

Sampling Method,
Classification Algorithm,

Forest Fire Risk Thresholds,
Forecaster Batch Size, and
Forecaster Number of Units

Traditional GA

Fitness Function 𝑆 = 𝑆1 + 𝑆2 + 𝑆3,
from Equations 21, 22 and 23

NSGA-II

Objectives
(1) Correlations and
(2) Instances Count

per class

Table 14 – Software’s GA version: Representation of the GA individual.
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Climate
Data (W)

(4)
Classifier

Output

(1)
Scaling

(5) - (8)
Forest Fire
Risk Class
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Data
Preparation

Data

Machine
Learning

Result

Figure 20 – Summary of the software prediction pipeline, including its different layers.
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The output is the forecasted climate variables and predicted forest risk rate classes for
the 𝑁 , with 𝑁 being the forecast horizon (Chapter 4).

8.3 Implementation

The software was developed using Python 3 programming language. Version control
was managed using GitHub. Besides that, the software’s GA version was developed so
that it can be run inside a Docker container.

The main libraries used are detailed in Table 15. And the software Ex-
haustive Search version source code is available at <https://github.com/bzamith/
IJCNN2023PantanalFireDetection>. The software GA version source code is not yet
publicly available, as we are expecting to have it published by a journal or conference
soon.

Library Application Source

Pandas Data manipulation
and analysis <https://pandas.pydata.org/>

Imblearn Data
sampling <https://imbalanced-learn.org/stable/>

Sktime Time series
prediction <https://www.sktime.org/en/stable/>

Scikit-Learn Supervised
classification <https://scikit-learn.org/stable/>

Tensorflow Predictive analysis <https://www.tensorflow.org/>

Table 15 – Main libraries used during the software implementation.

https://github.com/bzamith/IJCNN2023PantanalFireDetection
https://github.com/bzamith/IJCNN2023PantanalFireDetection
https://pandas.pydata.org/
https://imbalanced-learn.org/stable/
https://www.sktime.org/en/stable/
https://scikit-learn.org/stable/
https://www.tensorflow.org/
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Chapter 9

Experiments and Results

This chapter details the set of experiments that were run and they respective results.
For all experiments, we evaluated our software regarding its performance in predicting
forest fire risk for up to 3 days in the future (𝑁 = 3). To do so, the forecasting algorithm
is configured to make predictions based on a past 30 days window (𝑊 = 30). These
numbers are arbitrarily chosen, and other values could be tested as well. Given that
currently in Pantanal there are no methods to predict future forest fire risks, we consider
that being able predict 3 days in the future is already an important innovation, at the
same time allowing the proper authorities to become prepared and take actions when
necessary.

Such experiments were executed in 3 different hardware configurations, summarized
in Table 16.

Machine 1 Machine 2 Machine 3

OS Ubuntu Windows 10 macOS Catalina

Processor Intel Core i7
@ 2.80GHz

Intel Core i5
@ 1.70GHz

Intel Core i5
@ 2.30 GHz

RAM 16 Gb 16 Gb 8 Gb

GPU NVIDIA GeForce
GTX 1050

Intel UHD
Graphics

Intel Iris Plus
Graphics 640

Table 16 – Technical specifications of the machines used for the experiments.
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9.1 Software’s Exhaustive Search version

The first set of experiments were regarding the Exhaustive Search version (Section
8.1.2).

9.1.1 Scaling Methods

We considered a space of 5 scaling methods: Min-Max, Standard, Robust, Max-Abs,
and None.

9.1.2 Forecasting Algorithms

We assessed 3 forecasting algorithms: LSTM, GRU, and CNN-LSTM. The imple-
mented Long Short-Term Memory utilizes 4 LSTM layers with 100 units each and a sin-
gle Dense layer employing the sigmoid activation function. Meanwhile, the implemented
Gated Recurrent Unit architecture employs 4 GRU layers, also with 100 units each, and
one Dense layer with the sigmoid activation function. The CNN-LSTM model, adapted
from (HAMAD et al., 2020), incorporates a raw CNN layer for feature extraction (64
filters with ReLU activation) combined with LSTMs to facilitate sequence prediction.

All forecasting algorithms underwent training for a maximum of 250 epochs, with
early stopping activated if no improvements in error were detected within a span of 5
consecutive epochs.

9.1.3 Sampling Methods

For Software’s Exhaustive Search version, no sampling methods were implemented or
subjected to testing.

9.1.4 Classification Algorithms

The classifiers under evaluation encompassed Decision Trees, Random Forests, XG-
Boost, LightGBM, CatBoost, Naive Bayes, KNN, MLP, and SVM. These classification
algorithms underwent training employing a cross-validation approach with 3 folds to fine-
tune classifier hyperparameters.

We opted for a modest fold count to ensure a substantial training dataset size. For
the MLP and SVM algorithms, a maximum of 200 epochs was set as the training limit.

9.1.5 Forest Fire Risk Class Thresholds

In the quest for appropriate thresholds for each fire risk class, the software sys-
tematically assessed all conceivable combinations of values, spanning the range from
0 to 1 in increments of 0.05 (resulting in 21 distinct values). However, to consider
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a combination of thresholds as valid, we required that the following inequality held:
𝑡ℎ𝑟𝑛𝑢𝑙𝑙 < 𝑡ℎ𝑟𝑙𝑜𝑤 < 𝑡ℎ𝑟𝑚𝑒𝑑𝑖𝑢𝑚 < 𝑡ℎ𝑟ℎ𝑖𝑔ℎ, thereby satisfying Equation 18.

9.1.6 Results

We ran the training pipeline 5 times, varying the seeds, in order to get the average
results between executions, and their standard deviations.

A comprehensive execution entails the consideration of 5 scaling methods and 3 fore-
casting algorithms, resulting in a total of 5×3 = 15 combinations. Additionally, it involves
9 classification algorithms and the exploration of 194,481 distinct threshold combinations
(21×21×21×21). This culminates in a grand total of 194,505 iterations (15+9+194, 481).

Table 17 shows the average correlations (Equation 17) across the executions, and in
parallel, Table 18 shows the the count of examples predicted in each class and for each
day, where “Angs.” stands for “Angström” and “Nest.” stands for “Nesterov”. The best
results are highlighted in bold face. Notice that the correlations for the present day for the
Forest Risk Rate Indexes have a standard deviation equal to 0.0. This is expected since the
results for such cases are deterministic - there is not forecasting and the Equations 11 to 15
are applied to the actual climate values.

Software FMA FMA+ Telicyn Angs. Nest.

Present

Null 0.009 ± 0.021 0.055 ± 0.000 0.096 ± 0.000 0.165 ± 0.000 0.288 ± 0.000 0.059 ± 0.000
Low 0.036 ± 0.060 0.144 ± 0.000 0.220 ± 0.000 0.258 ± 0.000 0.125 ± 0.000 0.196 ± 0.000

Medium 0.204 ± 0.114 0.234 ± 0.000 0.290 ± 0.000 0.348 ± 0.000 0.186 ± 0.000 0.117 ± 0.000
High 0.398 ± 0.112 0.292 ± 0.000 0.289 ± 0.000 0.423 ± 0.000 0.191 ± 0.000 0.294 ± 0.000

Very High 0.528 ± 0.044 0.444 ± 0.000 0.419 ± 0.000 - 0.379 ± 0.000 0.403 ± 0.000

1 Day in the Future

Null 0.050 ± 0.112 0.153 ± 0.090 0.108 ± 0.070 0.176 ± 0.099 0.200 ± 0.447 0.141 ± 0.085
Low 0.093 ± 0.142 0.113 ± 0.072 0.112 ± 0.069 0.260 ± 0.146 0.060 ± 0.134 0.093 ± 0.052

Medium 0.196 ± 0.130 0.136 ± 0.079 0.156 ± 0.092 0.253 ± 0.144 0.143 ± 0.086 0.112 ± 0.074
High 0.326 ± 0.191 0.238 ± 0.133 0.210 ± 0.120 0.423 ± 0.057 0.255 ± 0.042 0.179 ± 0.102

Very High 0.397 ± 0.224 0.409 ± 0.061 0.382 ± 0.042 - 0.314 ± 0.176 0.386 ± 0.039

2 Days in the Future

Null 0.000 ± 0.000 0.000 ± 0.000 0.018 ± 0.041 0.183 ± 0.106 0.000 ± 0.000 0.000 ± 0.000
Low 0.087 ± 0.140 0.160 ± 0.124 0.163 ± 0.100 0.223 ± 0.127 0.200 ± 0.447 0.000 ± 0.000

Medium 0.180 ± 0.165 0.160 ± 0.100 0.158 ± 0.104 0.239 ± 0.137 0.209 ± 0.129 0.134 ± 0.101
High 0.326 ± 0.191 0.190 ± 0.111 0.180 ± 0.107 0.392 ± 0.044 0.255 ± 0.041 0.162 ± 0.095

Very High 0.369 ± 0.259 0.388 ± 0.041 0.348 ± 0.026 - 0.334 ± 0.188 0.380 ± 0.035

3 Days in the Future

Null 0.000 ± 0.000 0.000 ± 0.000 0.075 ± 0.103 0.188 ± 0.108 0.200 ± 0.447 0.000 ± 0.000
Low 0.096 ± 0.143 0.097 ± 0.101 0.175 ± 0.104 0.264 ± 0.150 0.050 ± 0.112 0.067 ± 0.149

Medium 0.182 ± 0.167 0.166 ± 0.098 0.156 ± 0.093 0.291 ± 0.174 0.142 ± 0.131 0.042 ± 0.094
High 0.330 ± 0.201 0.226 ± 0.136 0.182 ± 0.121 0.400 ± 0.052 0.265 ± 0.040 0.176 ± 0.102

Very High 0.284 ± 0.179 0.397 ± 0.052 0.363 ± 0.045 - 0.341 ± 0.192 0.391 ± 0.045

Table 17 – Software’s Exhaustive Search version: Correlations between each class and
method.

To conduct a holistic assessment encompassing all days, we computed correlations by
applying a weighted average across each class and aggregating results from all days, both
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Software FMA FMA+ Telicyn Angs. Nest.

Present

Null 34.8 ± 77.8 128.0 ± 0.0 249.0 ± 0.0 538.0 ± 0.0 73.0 ± 0.0 185.0 ± 0.0
Low 80.8 ± 110.8 146.0 ± 0.0 214.0 ± 0.0 182.0 ± 0.0 56.0 ± 0.0 56.0 ± 0.0

Medium 773.4 ± 560.2 278.0 ± 0.0 193.0 ± 0.0 135.0 ± 0.0 86.0 ± 0.0 94.0 ± 0.0
High 452.2 ± 501.5 418.0 ± 0.0 187.0 ± 0.0 899.0 ± 0.0 340.0 ± 0.0 381.0 ± 0.0

Very High 412.8 ± 162.3 784.0 ± 0.0 911.0 ± 0.0 - 1199.0 ± 0.0 1038.0 ± 0.0

1 Day in the Future

Null 0.8 ± 1.8 16.0 ± 17.8 64.6 ± 54.6 640.4 ± 368.3 0.2 ± 0.4 55.6 ± 38.6
Low 400.6 ± 760.8 76.4 ± 50.8 157.6 ± 102.4 151.2 ± 84.1 3.6 ± 4.3 50.0 ± 29.9

Medium 743.4 ± 748.8 270.8 ± 163.8 149.6 ± 106.2 109.4 ± 61.7 46.8 ± 36.0 79.6 ± 49.2
High 516.6 ± 687.1 409.8 ± 236.3 143.2 ± 92.6 853.0 ± 513.1 939.6 ± 469.9 372.2 ± 225.2

Very High 92.6 ± 84.3 981.0 ± 461.5 1239.0 ± 352.5 - 763.8 ± 448.9 1196.6 ± 338.6

2 Days in the Future

Null 0.0 ± 0.0 0.0 ± 0.0 4.0 ± 4.2 618.6 ± 397.0 0.0 ± 0.0 0.2 ± 0.4
Low 390.4 ± 767.1 13.6 ± 10.7 130.2 ± 160.7 58.8 ± 34.7 0.2 ± 0.4 1.0 ± 1.2

Medium 810.4 ± 817.0 359.0 ± 273.2 106.4 ± 107.9 48.6 ± 27.4 48.2 ± 77.7 12.0 ± 9.0
High 511.6 ± 742.3 256.6 ± 152.2 79.4 ± 57.1 1028.0 ± 453.0 1059.2 ± 410.6 536.6 ± 346.1

Very High 41.6 ± 41.2 1124.8 ± 415.5 1434.0 ± 324.7 - 646.4 ± 403.4 1204.2 ± 351.7

3 Days in the Future

Null 0.0 ± 0.0 0.0 ± 0.0 6.6 ± 9.3 706.8 ± 448.2 0.2 ± 0.4 0.0 ± 0.0
Low 395.0 ± 765.7 19.2 ± 21.4 211.4 ± 253.9 57.8 ± 33.3 1.6 ± 3.6 0.8 ± 1.3

Medium 841.0 ± 836.0 458.2 ± 341.9 124.8 ± 94.7 39.0 ± 22.5 63.0 ± 129.2 7.8 ± 8.2
High 487.4 ± 750.1 231.0 ± 128.9 89.2 ± 62.1 950.4 ± 488.3 1127.2 ± 396.5 643.8 ± 422.0

Very High 30.6 ± 34.8 1045.6 ± 462.1 1322.0 ± 406.8 - 562.0 ± 392.5 1101.6 ± 425.4

Table 18 – Software’s Exhaustive Search version: Number of predictions for each class
and method.

present and future. Equation 24 elucidates the calculations, where 𝑐𝑜𝑢𝑛𝑡𝑛,𝐶 represents
the count of predictions for class 𝐶 on the 𝑛’th day. The resulting weighted correlations
for each class and method are summarized in Table 19.

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑐𝑜𝑟𝑟𝐶 =
𝑁∑︁

𝑛=0

𝑐𝑜𝑟𝑟𝑛,𝐶 · 𝑐𝑜𝑢𝑛𝑡𝑛,𝐶

𝑐𝑜𝑢𝑛𝑡𝐶
(24)

Software FMA FMA+ Telicyn Angs. Nest.

Null 0.010 ± 0.023 0.070 ± 0.019 0.106 ± 0.016 0.207 ± 0.031 0.291 ± 0.008 0.086 ± 0.020
Low 0.087 ± 0.137 0.144 ± 0.016 0.202 ± 0.029 0.287 ± 0.022 0.131 ± 0.024 0.161 ± 0.015

Medium 0.255 ± 0.103 0.208 ± 0.030 0.239 ± 0.027 0.334 ± 0.007 0.200 ± 0.027 0.127 ± 0.020
High 0.428 ± 0.088 0.280 ± 0.019 0.262 ± 0.021 0.405 ± 0.040 0.253 ± 0.039 0.240 ± 0.030

Very High 0.518 ± 0.050 0.405 ± 0.042 0.372 ± 0.031 - 0.395 ± 0.013 0.388 ± 0.031

Table 19 – Software’s Exhaustive Search version: Weighted correlations for each class and
method.

Software FMA FMA+ Telicyn Angs. Nest.

Nulo 0.010 ± 0.023 0.070 ± 0.019 0.106 ± 0.016 0.207 ± 0.031 0.291 ± 0.008 0.086 ± 0.020
Baixo 0.087 ± 0.137 0.144 ± 0.016 0.202 ± 0.029 0.287 ± 0.022 0.131 ± 0.024 0.161 ± 0.015
Médio 0.255 ± 0.103 0.208 ± 0.030 0.239 ± 0.027 0.334 ± 0.007 0.200 ± 0.027 0.127 ± 0.020
Alto 0.428 ± 0.088 0.280 ± 0.019 0.262 ± 0.021 0.405 ± 0.040 0.253 ± 0.039 0.240 ± 0.030

Muito Alto 0.518 ± 0.050 0.405 ± 0.042 0.372 ± 0.031 - 0.395 ± 0.013 0.388 ± 0.031

As can be seen from Table 19, the Software outperformed all Forest Fire Risk Indexes
for “Null”, “Low”, “High” and “Very High” classes. Still, the standard deviation for
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“Low” and “Medium” classes are high (> 0.100) for the Software results, while it was
more stable for the other 3 classes.

As explained in Section 8.1.2, this version conducts an exhaustive search across all pos-
sible combinations of hyperparameters and subsequently selects the optimal configuration
based on specific metrics. Table 20 presents a summary of the chosen hyperparameter
combinations resulting from the various executions.

Execution
#

Scaling
Method

Forecasting
Algorithm

Classification
Algorithm 𝑡ℎ𝑟𝑛𝑢𝑙𝑙 𝑡ℎ𝑟𝑙𝑜𝑤 𝑡ℎ𝑟𝑚𝑒𝑑𝑖𝑢𝑚 𝑡ℎ𝑟ℎ𝑖𝑔ℎ

1 Max-Abs CNN-LSTM LightGBM 0.05 0.1 0.7 0.75
2 Max-Abs CNN-LSTM CatBoost 0.05 0.1 0.5 0.55
3 Max-Abs CNN-LSTM CatBoost 0.05 0.1 0.15 0.5
4 Max-Abs CNN-LSTM CatBoost 0.05 0.1 0.15 0.55
5 Max-Abs CNN-LSTM CatBoost 0.05 0.1 0.5 0.55

Table 20 – Software’s Exhaustive Search version: Combination of hyperparameters se-
lected by the software.

Notably, Max-Abs consistently emerged as the preferred scaling method in all 5 ex-
ecutions, alongside the CNN-LSTM for forecasting algorithm. In terms of classification
algorithms, those based on the Symbolic Paradigm (as detailed in Section 3.1) were fa-
vored in all 5 executions. Specifically, CatBoost was the preferred choice in 4 executions,
while LightGBM was selected once.

Finally, as forest fire risk rate thresholds, all executions selected the 0.05 as 𝑡ℎ𝑟𝑛𝑢𝑙𝑙

and 0.1 as 𝑡ℎ𝑟𝑙𝑜𝑤, favoring the lowest thresholds possibles. As of the 𝑡ℎ𝑟𝑚𝑒𝑑𝑖𝑢𝑚, the results
varied considerably, and for the 𝑡ℎ𝑟ℎ𝑖𝑔ℎ is ranged between 0.5 and 0.75. We understand
that this behaviour is due to the scoring 𝑆 (Equations 19 and 20), which benefits low
correlations for “Null” and “Low” classes. Although such low correlations are desired,
the software ended up picking really low values for 𝑡ℎ𝑟𝑛𝑢𝑙𝑙 and 𝑡ℎ𝑟𝑙𝑜𝑤. So low that there
would be almost 0 instances predicted in such classes, leading to a correlation equal to
0 for both. This is validated from Table 18, in which for 2 and 3 days in the future,
there were 0 instances predicted as “Null”, for example. As mentioned in Section 8.1.3,
we updated the score 𝑆 for Software’s GA version (Equations 21 to 23), looking forward
to overcome this.

9.1.7 Computational Performance

Across all machines, the Training pipeline exhibited an average execution time of
approximately 2 hours and 30 minutes, while the Prediction pipeline typically concluded
within an average of 30 seconds. Ideally, the Training pipeline should be executed either
once or whenever there is a need to retrain the model. On the other hand, the Prediction
pipeline should be executed more frequently, as it is designed for regular usage.
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9.2 Software’s GA version - Traditional GA

The second set of experiments were regarding the Software’s GA version, for the
Traditional GA algorithm (Section 8.1.3).

9.2.1 Scaling Methods

We considered a space of 2 scaling methods: Min-Max and Max-Abs.

9.2.2 Forecasting Algorithms

We assessed 3 forecasting algorithms: LSTM, GRU, and CNN-LSTM. The imple-
mented Long Short-Term Memory utilizes 4 LSTM layers with the number of units being
set by the GA individual’s hyperparameter, as well as the batch size. There is a sin-
gle Dense layer employing the sigmoid activation function. Meanwhile, the implemented
Gated Recurrent Unit architecture employs 4 GRU layers, also with the number of units
being set by the GA individual’s hyperparameter, as well as the batch size. There is
one Dense layer with the sigmoid activation function. The CNN-LSTM model, adapted
from (HAMAD et al., 2020), incorporates a raw CNN layer for feature extraction (64 fil-
ters with ReLU activation) combined with LSTMs to facilitate sequence prediction. The
CNN-LSTM number of units and batch size are also determined by the GA individual’s
hyperparameters.

All forecasting algorithms underwent training for a maximum of 250 epochs, with
early stopping activated if no improvements in error were detected within a span of 10
consecutive epochs.

9.2.3 Sampling Methods

There were 17 sampling methods considered, all explained in Section 2.2: Random
Over Sampler, SMOTE, ADASYN, Borderline SMOTE, SVM-SMOTE, Random Un-
der Sampler, Cluster Centroids, Near Miss, ENN, Repeated ENN, All KNN, One Sided
Selection, Neighbourhood Cleaning Rule, Instance Hardness Threshold, SMOTE-ENN,
SMOTE-Tomek and None.

9.2.4 Classification Algorithms

The classifiers under evaluation encompassed Decision Trees, Random Forests, XG-
Boost, LightGBM, CatBoost, Naive Bayes, KNN, MLP, SVM and Logistic Regression.
Differently from Software’s Exhaustive Search version, we did not apply cross-validation
for the Classification Algorithms, to improve execution time.
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9.2.5 Forest Fire Risk Class Thresholds

For the forest fire risk class thresholds, we randomly generate the thresholds for the
initial population, and they are subject to mutation and crossover. Regarding the random
generation, we set the following rules: (1) 0 < 𝑡ℎ𝑟𝑛𝑢𝑙𝑙 <= 0.2; (2) 𝑡ℎ𝑟𝑛𝑢𝑙𝑙 < 𝑡ℎ𝑟𝑙𝑜𝑤 <= 0.4;
(3) 𝑡ℎ𝑟𝑙𝑜𝑤 < 𝑡ℎ𝑟𝑚𝑒𝑑𝑖𝑢𝑚 <= 0.6; (4) 𝑡ℎ𝑟𝑚𝑒𝑑𝑖𝑢𝑚 < 𝑡ℎ𝑟ℎ𝑖𝑔ℎ <= 0.8.

9.2.6 Forecaster Number of Units

There were 6 different values considered for the forecaster number of units: 20, 50,
100, 200 and 500.

9.2.7 Forecaster Batch Size

There were 6 different values considered for the forecaster number of units: 1, 4, 8, 32
and 64.

9.2.8 Results

To execute the GA, we set 20 epochs (generations), with a population size equal to 10
and an early stopping equal to 3. Besides that, we set both the mutation and selection
ratio to 0.5. We ran the training pipeline 5 times, varying the seeds, in order to get the
average results between executions, and their standard deviations.

Table 21 shows the average correlations (Equation 17) across the executions, and in
parallel, Table 22 shows the the count of examples predicted in each class and for each
day, where “Angs.” stands for “Angström” and “Nest.” stands for “Nesterov”. The best
results are highlighted in bold face. As mentioned in the previous section, it is expected
that the correlations for the present day for the Forest Risk Rate Indexes have a standard
deviation equal to 0.0.

As done for Software’s Exhaustive Search version experiments (Section 9.1, we com-
puted correlations by applying a weighted average across each class and aggregating re-
sults from all days, both present and future, as described in Equation 24. The resulting
weighted correlations for each class and method are summarized in Table 23.

As can be seen from Table 23, the Software outperformed all Forest Fire Risk Indexes
for “Very High” class, while being competitive with Telicyn for the “High” class. With
the updated score 𝑆 for Software’s GA version (Equations 21 to 23), the distribution of
predictions per class for Software predictions got way more balanced, as can be seem from
Table 22. However, it did not improve for the Forest Fire Risk Indexes. In fact, FMA
has almost 0 predictions for 2 and 3 Days in the Future when it comes to “Null” class, as
well as Angström, favoring their low correlations.
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Software FMA FMA+ Telicyn Angs. Nest.

Present

Null 0.087 ± 0.044 0.055 ± 0.000 0.096 ± 0.000 0.165 ± 0.000 0.288 ± 0.000 0.059 ± 0.000
Low 0.172 ± 0.067 0.144 ± 0.000 0.220 ± 0.000 0.258 ± 0.000 0.125 ± 0.000 0.196 ± 0.000

Medium 0.291 ± 0.062 0.234 ± 0.000 0.290 ± 0.000 0.348 ± 0.000 0.186 ± 0.000 0.117 ± 0.000
High 0.374 ± 0.055 0.292 ± 0.000 0.289 ± 0.000 0.423 ± 0.000 0.191 ± 0.000 0.294 ± 0.000

Very High 0.505 ± 0.048 0.444 ± 0.000 0.419 ± 0.000 - 0.379 ± 0.000 0.403 ± 0.000

1 Day in the Future

Null 0.115 ± 0.107 0.334 ± 0.388 0.164 ± 0.049 0.227 ± 0.021 0.080 ± 0.179 0.181 ± 0.025
Low 0.217 ± 0.148 0.129 ± 0.024 0.131 ± 0.056 0.344 ± 0.053 0.107 ± 0.147 0.127 ± 0.077

Medium 0.273 ± 0.119 0.186 ± 0.041 0.207 ± 0.062 0.347 ± 0.074 0.079 ± 0.072 0.130 ± 0.038
High 0.356 ± 0.139 0.294 ± 0.052 0.273 ± 0.082 0.437 ± 0.016 0.228 ± 0.026 0.225 ± 0.043

Very High 0.509 ± 0.179 0.430 ± 0.040 0.390 ± 0.039 - 0.386 ± 0.021 0.407 ± 0.026

2 Days in the Future

Null 0.136 ± 0.127 0.000 ± 0.000 0.103 ± 0.101 0.225 ± 0.035 0.000 ± 0.000 0.050 ± 0.112
Low 0.232 ± 0.166 0.107 ± 0.098 0.120 ± 0.100 0.296 ± 0.108 0.022 ± 0.050 0.059 ± 0.081

Medium 0.274 ± 0.133 0.171 ± 0.105 0.237 ± 0.137 0.300 ± 0.097 0.100 ± 0.092 0.095 ± 0.096
High 0.443 ± 0.134 0.228 ± 0.147 0.233 ± 0.157 0.409 ± 0.045 0.237 ± 0.046 0.185 ± 0.113

Very High 0.240 ± 0.225 0.393 ± 0.046 0.362 ± 0.046 - 0.392 ± 0.025 0.379 ± 0.034

3 Days in the Future

Null 0.149 ± 0.139 0.200 ± 0.447 0.227 ± 0.178 0.201 ± 0.116 0.000 ± 0.000 0.133 ± 0.298
Low 0.263 ± 0.165 0.129 ± 0.118 0.191 ± 0.110 0.349 ± 0.110 0.000 ± 0.000 0.256 ± 0.433

Medium 0.283 ± 0.126 0.189 ± 0.115 0.194 ± 0.140 0.257 ± 0.146 0.063 ± 0.087 0.191 ± 0.117
High 0.467 ± 0.301 0.236 ± 0.149 0.218 ± 0.146 0.409 ± 0.059 0.261 ± 0.048 0.199 ± 0.119

Very High 0.292 ± 0.185 0.410 ± 0.068 0.374 ± 0.057 - 0.398 ± 0.039 0.388 ± 0.046

Table 21 – Software’s GA version, Traditional GA: Correlations between each class and
method.

Software FMA FMA+ Telicyn Angs. Nest.

Present

Null 335.6 ± 185.4 128.0 ± 0.0 249.0 ± 0.0 538.0 ± 0.0 73.0 ± 0.0 185.0 ± 0.0
Low 91.6 ± 69.0 146.0 ± 0.0 214.0 ± 0.0 182.0 ± 0.0 56.0 ± 0.0 56.0 ± 0.0

Medium 450.8 ± 357.1 278.0 ± 0.0 193.0 ± 0.0 135.0 ± 0.0 86.0 ± 0.0 94.0 ± 0.0
High 367.0 ± 268.2 418.0 ± 0.0 187.0 ± 0.0 899.0 ± 0.0 340.0 ± 0.0 381.0 ± 0.0

Very High 509.0 ± 263.9 784.0 ± 0.0 911.0 ± 0.0 - 1199.0 ± 0.0 1038.0 ± 0.0

1 Day in the Future

Null 354.0 ± 354.0 9.6 ± 9.3 58.6 ± 50.4 849.4 ± 213.7 1.8 ± 2.5 48.8 ± 27.3
Low 117.8 ± 76.2 93.6 ± 76.0 224.8 ± 160.5 162.2 ± 35.4 4.6 ± 7.1 56.6 ± 31.9

Medium 415.4 ± 392.2 379.2 ± 174.8 177.8 ± 87.4 121.2 ± 18.7 52.2 ± 68.0 93.2 ± 39.0
High 320.0 ± 410.3 489.4 ± 80.7 154.2 ± 68.6 621.2 ± 191.4 628.0 ± 149.7 538.4 ± 154.6

Very High 546.8 ± 715.4 782.2 ± 289.8 1138.6 ± 356.3 - 1067.4 ± 201.1 1017.0 ± 249.5

2 Days in the Future

Null 437.0 ± 450.3 0.2 ± 0.4 34.8 ± 48.0 739.0 ± 442.0 0.0 ± 0.0 1.2 ± 1.8
Low 126.6 ± 77.4 81.6 ± 103.7 249.4 ± 304.8 69.0 ± 18.7 2.4 ± 3.9 5.8 ± 7.1

Medium 389.4 ± 354.6 393.4 ± 316.0 92.0 ± 74.3 63.2 ± 16.7 67.2 ± 114.3 48.6 ± 53.9
High 274.0 ± 380.6 241.4 ± 143.2 68.2 ± 52.8 882.8 ± 455.3 705.4 ± 203.3 567.2 ± 392.0

Very High 527.0 ± 729.8 1037.4 ± 507.1 1309.6 ± 471.4 - 979.0 ± 301.7 1131.2 ± 444.6

3 Days in the Future

Null 545.8 ± 557.4 0.2 ± 0.4 80.2 ± 112.0 803.4 ± 540.8 0.0 ± 0.0 0.6 ± 1.3
Low 145.2 ± 90.6 145 ± 188.1 327.0 ± 344.7 49.6 ± 42.3 1.2 ± 2.7 4.0 ± 7.9

Medium 321.2 ± 282.4 465.6 ± 339.2 96.0 ± 62.2 43.4 ± 28.2 97.2 ± 176.2 87.0 ± 107.7
High 241.8 ± 328.9 180.2 ± 115.8 71.8 ± 48.0 857.6 ± 567.1 784.2 ± 239.1 651.4 ± 475.8

Very High 500.0 ± 715.1 963.0 ± 554.0 1179.0 ± 538.6 - 871.4 ± 376.3 1011.0 ± 548.0

Table 22 – Software’s GA version, Traditional GA: Number of predictions for each class
and method.
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Software FMA FMA+ Telicyn Angs. Nest.

Null 0.146 ± 0.091 0.069 ± 0.016 0.121 ± 0.021 0.219 ± 0.030 0.286 ± 0.008 0.085 ± 0.012
Low 0.250 ± 0.106 0.155 ± 0.023 0.203 ± 0.024 0.304 ± 0.040 0.130 ± 0.007 0.165 ± 0.026

Medium 0.287 ± 0.088 0.217 ± 0.036 0.263 ± 0.034 0.336 ± 0.039 0.168 ± 0.010 0.139 ± 0.017
High 0.380 ± 0.054 0.289 ± 0.045 0.282 ± 0.052 0.413 ± 0.030 0.237 ± 0.037 0.245 ± 0.035

Very High 0.471 ± 0.089 0.413 ± 0.040 0.380 ± 0.036 - 0.385 ± 0.016 0.391 ± 0.027

Table 23 – Software’s GA version, Traditional GA: Weighted correlations for each class
and method.

Table 24 presents a summary of the chosen hyperparameter combinations resulting
from the various executions.

Execution
#

Scaling
Method

Forecasting
Algorithm

Sampling
Method

Classification
Algorithm 𝑡ℎ𝑟𝑛𝑢𝑙𝑙

1 Min-Max CNN-LSTM Borderline
SMOTE CatBoost 0.051

2 Max-Abs LSTM ADASYN MLP 0.162
3 Min-Max CNN-LSTM SMOTE-ENN CatBoost 0.124
4 Max-Abs CNN-LSTM One-Sided

Selection LightGBM 0.070
5 Min-Max GRU None CatBoost 0.136

Execution
# 𝑡ℎ𝑟𝑙𝑜𝑤 𝑡ℎ𝑟𝑚𝑒𝑑𝑖𝑢𝑚 𝑡ℎ𝑟ℎ𝑖𝑔ℎ

Number
of Units

Batch
Size

1 0.065 0.445 0.485 100 4
2 0.276 0.403 0.735 20 1
3 0.186 0.205 0.620 200 64
4 0.089 0.499 0.794 100 64
5 0.191 0.404 0.628 100 32

Table 24 – Software’s GA version, Traditional GA: Combination of hyperparameters se-
lected by the software.

Regarding the scaling method, there is not an outstanding method, which suggests
that the choice between the Min-Max or Max-Abs methods does not play an important
role in the overall results. The same applies to the sampling method, in which there was
not a “winner” method. For the forecasting algorithm, the CNN-LSTM was favored in 3
of the 5 executions. The same is true for the CatBoost as classification algorithm.

It is not possible to identify an outstanding number of units or batch size. The selected
hyperparameters for them varied considerably. Finally, as forest fire risk rate thresholds,
the values varied a lot. One significant aspect is that, for Execution #1, there is a very
low range between 𝑡ℎ𝑟𝑛𝑢𝑙𝑙 and 𝑡ℎ𝑟𝑙𝑜𝑤, and the same for 𝑡ℎ𝑟𝑚𝑒𝑑𝑖𝑢𝑚 and 𝑡ℎ𝑟ℎ𝑖𝑔ℎ. This means
that there were very low instances predicted as “Low” and “High”, which explains the
high standard deviations exposed for in Table 22.

9.2.9 Computational Performance

Across all machines, the Training pipeline exhibited an average execution time of ap-
proximately 16 hours, while the Prediction pipeline typically concluded within an average
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of 1 minute. Ideally, the Training pipeline should be executed either once or whenever
there is a need to retrain the model. On the other hand, the Prediction pipeline should
be executed more frequently, as it is designed for regular usage.

9.3 Software’s GA version - NSGA-II

The third set of experiments were regarding the Software’s GA version, for the
NSGA-II algorithm (Section 8.1.3).

The space of hyperparameters are the same as of the Traditional GA, detailed in
Sections 9.2.1 to 9.2.7.

9.3.1 Results

As it was set for the Traditional GA (Section 9.2.8), the executions run 20 epochs
(generations), with a population size equal to 10 and an early stopping equal to 3. Besides
that, we set both the mutation and selection ratio to 0.5. Regarding the NSGA-II’s
tournament step (Section 5.2, we considered 5 participants.

We ran the training pipeline 5 times, varying the seeds, in order to get the average
results between executions, and their standard deviations.

Table 25 shows the average correlations (Equation 17) across the executions, and in
parallel, Table 26 shows the the count of examples predicted in each class and for each
day, where “Angs.” stands for “Angström” and “Nest.” stands for “Nesterov”. The best
results are highlighted in bold face. As mentioned in the previous section, it is expected
that the correlations for the present day for the Forest Risk Rate Indexes have a standard
deviation equal to 0.0.

As done for the two previous experiments, we computed correlations by applying a
weighted average across each class and aggregating results from all days, both present and
future, as described in Equation 24. The resulting weighted correlations for each class
and method are summarized in Table 27.

As can be seen from Table 27, the Software outperformed all Forest Fire Risk Indexes
for “Very High” class, while being competitive with Telicyn for the “High” class, and with
FMA for the “Null” class. Regarding the standard deviation between the executions, the
NSGA-II algorithm demonstrated to be way more stable when compared to Traditional
GA and Software’s Exhaustive Search version.

Table 28 presents a summary of the chosen hyperparameter combinations resulting
from the various executions.

Regarding the scaling method, there is not an outstanding method, which suggests
that the choice between the Min-Max or Max-Abs methods does not play an important
role in the overall results. The same applies to the sampling method, in which there was
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Software FMA FMA+ Telicyn Angs. Nest.

Present

Null 0.099 ± 0.047 0.055 ± 0.000 0.096 ± 0.000 0.165 ± 0.000 0.288 ± 0.000 0.059 ± 0.000
Low 0.141 ± 0.071 0.144 ± 0.000 0.220 ± 0.000 0.258 ± 0.000 0.125 ± 0.000 0.196 ± 0.000

Medium 0.281 ± 0.044 0.234 ± 0.000 0.290 ± 0.000 0.348 ± 0.000 0.186 ± 0.000 0.117 ± 0.000
High 0.384 ± 0.033 0.292 ± 0.000 0.289 ± 0.000 0.423 ± 0.000 0.191 ± 0.000 0.294 ± 0.000

Very High 0.528 ± 0.053 0.444 ± 0.000 0.419 ± 0.000 - 0.379 ± 0.000 0.403 ± 0.000

1 Day in the Future

Null 0.063 ± 0.088 0.226 ± 0.189 0.111 ± 0.084 0.244 ± 0.043 0.000 ± 0.000 0.143 ± 0.085
Low 0.288 ± 0.403 0.112 ± 0.078 0.104 ± 0.062 0.260 ± 0.147 0.083 ± 0.114 0.088 ± 0.060

Medium 0.190 ± 0.118 0.188 ± 0.076 0.209 ± 0.065 0.269 ± 0.155 0.133 ± 0.085 0.120 ± 0.073
High 0.321 ± 0.076 0.238 ± 0.134 0.208 ± 0.120 0.346 ± 0.194 0.186 ± 0.105 0.248 ± 0.047

Very High 0.353 ± 0.208 0.338 ± 0.189 0.306 ± 0.171 - 0.368 ± 0.027 0.317 ± 0.177

2 Days in the Future

Null 0.020 ± 0.045 0.000 ± 0.000 0.027 ± 0.060 0.236 ± 0.050 0.000 ± 0.000 0.040 ± 0.089
Low 0.123 ± 0.119 0.027 ± 0.060 0.060 ± 0.083 0.256 ± 0.150 0.000 ± 0.000 0.025 ± 0.056

Medium 0.196 ± 0.126 0.196 ± 0.071 0.149 ± 0.129 0.238 ± 0.153 0.191 ± 0.155 0.022 ± 0.050
High 0.337 ± 0.086 0.188 ± 0.109 0.137 ± 0.127 0.317 ± 0.177 0.187 ± 0.105 0.208 ± 0.064

Very High 0.336 ± 0.197 0.309 ± 0.173 0.270 ± 0.151 - 0.377 ± 0.032 0.302 ± 0.169

3 Days in the Future

Null 0.000 ± 0.000 0.000 ± 0.000 0.025 ± 0.056 0.256 ± 0.037 0.000 ± 0.000 0.000 ± 0.000
Low 0.130 ± 0.121 0.104 ± 0.151 0.121 ± 0.079 0.241 ± 0.152 0.000 ± 0.000 0.000 ± 0.000

Medium 0.212 ± 0.139 0.206 ± 0.07 0.207 ± 0.082 0.275 ± 0.161 0.194 ± 0.229 0.027 ± 0.061
High 0.353 ± 0.104 0.224 ± 0.126 0.186 ± 0.138 0.316 ± 0.177 0.199 ± 0.112 0.243 ± 0.047

Very High 0.304 ± 0.175 0.312 ± 0.175 0.274 ± 0.154 - 0.379 ± 0.036 0.309 ± 0.173

Table 25 – Software’s GA version, NSGA-II: Correlations between each class and method.

Software FMA FMA+ Telicyn Angs. Nest.

Present

Null 190.6 ± 110.1 128.0 ± 0.0 249.0 ± 0.0 538.0 ± 0.0 73.0 ± 0.0 185.0 ± 0.0
Low 191.4 ± 168.7 146.0 ± 0.0 214.0 ± 0.0 182.0 ± 0.0 56.0 ± 0.0 56.0 ± 0.0

Medium 519.6 ± 376.3 278.0 ± 0.0 193.0 ± 0.0 135.0 ± 0.0 86.0 ± 0.0 94.0 ± 0.0
High 475.2 ± 302.7 418.0 ± 0.0 187.0 ± 0.0 899.0 ± 0.0 340.0 ± 0.0 381.0 ± 0.0

Very High 377.2 ± 165.9 784.0 ± 0.0 911.0 ± 0.0 - 1199.0 ± 0.0 1038.0 ± 0.0

1 Day in the Future

Null 12.8 ± 16.3 7.0 ± 4.7 34.2 ± 21.7 973.0 ± 441.5 0.8 ± 1.8 39.6 ± 22.9
Low 99.6 ± 122.1 54.0 ± 33.1 139.8 ± 77.0 149.8 ± 85.2 3.8 ± 6.1 43.6 ± 26.2

Medium 474.8 ± 483.4 608.0 ± 640.7 478.2 ± 709.9 117.2 ± 65.8 39.2 ± 25.9 77.0 ± 42.8
High 608.2 ± 697.2 455.4 ± 255.2 128.6 ± 72.1 514.0 ± 291.3 498.2 ± 281.7 742.8 ± 565.1

Very High 558.6 ± 609.2 629.6 ± 356.7 973.2 ± 544.4 - 1212.0 ± 305.3 851.0 ± 477.1

2 Days in the Future

Null 2.2 ± 4.4 0.0 ± 0.0 4.0 ± 6.2 877.0 ± 496.9 0.0 ± 0.0 1.0 ± 2.2
Low 105.0 ± 159.7 12.0 ± 18.6 41.2 ± 53.6 71.2 ± 43.4 0.6 ± 1.3 1.6 ± 3.6

Medium 542.6 ± 565.2 541.4 ± 685.5 394.0 ± 757.2 55.4 ± 34.2 35.6 ± 29.5 7.6 ± 10.9
High 586.2 ± 702.5 300.0 ± 176.3 33.8 ± 23.0 750.4 ± 426.3 595.2 ± 335.8 738.6 ± 569.1

Very High 518.0 ± 661.2 900.6 ± 508.7 1281.0 ± 721.2 - 1122.6 ± 355.3 1005.2 ± 566.0

3 Days in the Future

Null 0.8 ± 1.3 0.0 ± 0.0 4.0 ± 6.7 963.4 ± 443.3 0.0 ± 0.0 0.0 ± 0.0
Low 148.4 ± 242.9 11.6 ± 17.8 77.0 ± 79.0 62.0 ± 42.0 0.0 ± 0.0 0.0 ± 0.0

Medium 570.8 ± 623.0 656.2 ± 619.4 410.6 ± 747.9 51.6 ± 32.1 48.4 ± 46.8 5.2 ± 9.4
High 566.0 ± 698.3 273.2 ± 171.7 55.8 ± 31.9 677.0 ± 383.4 679.4 ± 382.2 907.4 ± 473.9

Very High 468.0 ± 664.8 813.0 ± 455.7 1206.6 ± 679.7 - 1026.2 ± 411.5 841.4 ± 471.9

Table 26 – Software’s GA version, NSGA-II: Number of predictions for each class and
method.
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Software FMA FMA+ Telicyn Angs. Nest.

Null 0.099 ± 0.048 0.065 ± 0.008 0.100 ± 0.007 0.233 ± 0.041 0.285 ± 0.007 0.080 ± 0.012
Low 0.174 ± 0.034 0.141 ± 0.010 0.181 ± 0.018 0.290 ± 0.027 0.129 ± 0.005 0.162 ± 0.028

Medium 0.279 ± 0.019 0.210 ± 0.061 0.239 ± 0.049 0.338 ± 0.028 0.214 ± 0.071 0.127 ± 0.016
High 0.360 ± 0.035 0.281 ± 0.015 0.267 ± 0.031 0.412 ± 0.006 0.225 ± 0.021 0.246 ± 0.042

Very High 0.456 ± 0.077 0.414 ± 0.018 0.375 ± 0.026 - 0.374 ± 0.025 0.393 ± 0.007

Table 27 – Software’s GA version, NSGA-II: Weighted correlations for each class and
method.

Execution
#

Scaling
Method

Forecasting
Algorithm

Sampling
Method

Classification
Algorithm 𝑡ℎ𝑟𝑛𝑢𝑙𝑙

1 Min-Max CNN-LSTM
Random
Under

Sampler
SVM 0.090

2 Min-Max CNN-LSTM
Random

Over
Sampler

Logistic
Regression 0.162

3 Max-Abs CNN-LSTM ADASYN Random
Forest 0.040

4 Min-Max CNN-LSTM Boderline
SMOTE CatBoost 0.070

5 Max-Abs LSTM
Random

Over
Sampler

CatBoost 0.083

Execution
# 𝑡ℎ𝑟𝑙𝑜𝑤 𝑡ℎ𝑟𝑚𝑒𝑑𝑖𝑢𝑚 𝑡ℎ𝑟ℎ𝑖𝑔ℎ

Number
of Units

Batch
Size

1 0.130 0.578 0.713 50 4
2 0.276 0.403 0.735 50 1
3 0.149 0.524 0.582 20 32
4 0.088 0.499 0.794 500 64
5 0.356 0.390 0.782 20 64

Table 28 – Software’s GA version, NSGA-II: Combination of hyperparameters selected by
the software.

not a “winner” method. For the forecasting algorithm, the CNN-LSTM was favored in 4
of the 5 executions. As of the classification algorithm, the tree-based methods (CatBoost
and Random Forest) outperformed in 3 of the 5 executions.

It is not possible to identify an outstanding number of units or batch size. The selected
hyperparameters for them varied considerably. Finally, as forest fire risk rate thresholds,
the values varied a lot. Compared to the Traditional GA results, the ranges of the forest
fire risk rate thresholds are better distributed, but there are still high standard deviations
for the number of instances predicted in each class, as showed on Table 26.

9.3.2 Computational Performance

Across all machines, the Training pipeline exhibited an average execution time of
approximately 23 hours and 30 minutes, while the Prediction pipeline typically concluded
within an average of 1 minute. Ideally, the Training pipeline should be executed either
once or whenever there is a need to retrain the model. On the other hand, the Prediction
pipeline should be executed more frequently, as it is designed for regular usage.
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9.4 Discussion

When it comes to the weighted correlations, the Software’s Exhaustive Search ver-
sion yield to the best results for “Null”, “Low”, “High” and “Very High” classes against
all forest fire risk indexes, and also when compared with Software’s GA version (both
Traditional and NSGA-II). On the other hand, though, the Software’s Exhaustive Search
version had considerably higher standard deviations, meaning that it lacks stability across
different executions.

The Software’s GA version with the Traditional GA only outperforms the forest fire
rate indexes for the “Very High” class, while being competitive for the “Null” and “High
classes”. The same is true for the NSGA-II. However, the Software’s GA version with the
NSGA-II improved in terms of stability. It has an average of 0.043 standard deviation
across the five classes (Table 27), which is lower than the Software’s Exhaustive Search
version (0.080 average standard deviation - Table 19) and the Software’s GA version with
the Traditional GA (0.086 average standard deviation - Table 23). This makes sense
given the NSGA-II algorithm, which is exploring the optimal hyperaparmeters based on
the Pareto fronts (Section 5.2).

Although the Software GA version already requires 10 times more execution time for
training than the Software Exhaustive Search version, our understanding is that the GA
would benefit from more epochs and a even higher population size. In fact, the study of
(MAN; TANG; KWONG, 1996) explains that undesired premature convergence of a GA
may occur, which is called “Genetic Drift”, and that this can easily happen when the GA
is set with a small population size - which is our case, for the population size being equal
to 10 individuals. The authors of (ULLAH; MASOOD, 2023) also explored genetic drift
and its effects on the performance of GAs. It concludes that the negative effects of genetic
drift are particularly perceptible in small populations, leading the GA to become slow or
to provide a locally optimal solution. The same is true for small number of generations -
which is our case, for the number of epochs being equal to 20.

In summary, the results seem promising as they meet the general objective of this
work (Section 1.2). This is, to develop software containing ML models that are capable
of: (1) Forecasting climatic variables for a specific number of days; and (2) Classifying
the risk of forest fire occurrence in the Brazilian Pantanal. Both software versions also
overcome the known limitations for the current forest fire risk indexes, which are: (1)
Not adjusting to the characteristics of each biome; (2) Being limited to specific climatic
variables; and (3) Not being able to predict forest fire risk for a given number of days.

Given its average performance, we recommend the use of the Software’s Exhaustive
Search version. At the same time, we understand that further studies are required for the
GA version, as long as there are more computational resources available.



92 Chapter 9. Experiments and Results

9.5 Other Achievements

Besides the software development itself, this study achieved another remarkable re-
sult: Being accepted and published by the IEEE’s 2023 International Joint Conference on
Neural Networks (IJCNN). The paper presented the initial results obtained from experi-
ments with Software’s Exhaustive Search version, but with some slightly different set up.
The paper is entitled “A New Time Series Framework for Forest Fire Risk Forecasting
and Classification” (SANTOS et al., 2023).

Moreover, there is an ongoing effort to include the Software’s forecasting and pre-
dictions to the existing SARIPAN system (NARCISO; SORIANO, 2019). SARIPAN is
currently being used by the environmental authorities and the Brazilian Agricultural Re-
search Corporation (from Portuguese, “Empresa Brasileira de Pesquisa Agropecuária”)
(Embrapa) to detect and combat forest fires in the Brazilian Pantanal region. By in-
tegrating our Software with SARIPAN, there is the potential to improve its forest fire
risk predictions, with the advantage of being able to forecast for a number of days in the
future.
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Chapter 10

Conclusion

This study was undertaken with the goal of developing Machine Learning (ML) models
capable of achieving two primary objectives: (1) Forecasting climatic variables for a spe-
cific number of days; and (2) Classifying the risk of forest fire occurrence in the Brazilian
Pantanal. This endeavor is of utmost urgency, given the Pantanal biome’s immeasurable
ecological significance, which is constantly threatened by the occurrence and recurrence
of forest fires.

To create this software, climate and hotspot data spanning from 1999 to 2022 were
preprocessed and utilized to train the ML models. Moreover, this studied extensively ex-
plored different methods for Scaling and Sampling, as well as algorithms for Classification,
Forecasting and GAs. The exploration of a high-dimensional hyperparameter space was
required. Consequently, two distinct software versions were developed: one employing an
Exhaustive Search approach and the other integrating a Genetic Algorithm (GA). Both
versions effectively overcame the recognized limitations of existing forest fire risk indexes,
which include: (1) Not adjusting to the characteristics of each biome; (2) Being limited
to specific climatic variables; and (3) Not being able to predict forest fire risk for a given
number of days.

The performance of both software versions was assessed based on the average correla-
tion between forest fire risk classifications and observed hotspots. Overall, the Software’s
Exhaustive Search version outperformed the current forest fire risk indexes for the “Null”,
“Low”, “High” and “Very High” risk classes. On the other hand, the GA version of the
software exhibited greater stability across multiple executions, although it did not achieve
the same level of success as the Exhaustive Search version. This discrepancy is attributed
to the software’s tendency to converge to a local optimal solution due to genetic drift.
The limitation in computational resources appears to be a contributing factor, and with
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increased computational resources, this issue could likely be mitigated.
We highlight the significance of this practical scientific study for the Brazilian Pan-

tanal, and it is worth noting that the software is already in the process of integration
into the existing SARIPAN system (NARCISO; SORIANO, 2019). We anticipate that
this software has the potential to empower environmental authorities to make informed
and proactive decisions, ultimately benefiting both the environment and the populace
at large. Furthermore, the software boasts adaptability and can readily be extended to
various biomes, provided that historical climate and hotspot data are accessible.

As part of our forthcoming research, we intend to delve deeper into the GA meth-
ods, with the aim of surmounting the current computational limitations. One promising
avenue to explore involves the application of surrogate-assisted evolutionary algorithms,
which leverage meta-models to approximate the fitness function within the evolutionary
algorithm. This approach holds the potential to address the genetic drift issue that we
have identified.
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ANNEX A

Dew Point Temperature as a
Function of Temperature and
Relative Humidity

RH 15 20 25 30 35 40 45 50 55 60 65 70 75 80 U
T Dew Point Temperature (∘𝐶) T
6 0 1 2 3 6
7 0 1 2 3 4 7
8 0 1 2 3 4 5 8
9 0 2 3 4 5 6 9
10 0 1 3 4 5 6 7 10
11 0 1 2 4 5 6 7 8 11
12 0 2 3 5 6 7 8 9 12
13 0 1 3 4 5 7 8 9 10 13
14 1 2 4 5 6 8 9 10 11 14
15 0 2 3 5 6 7 8 10 11 12 15
16 1 2 4 6 7 8 9 11 12 13 16
17 1 3 5 7 8 9 10 12 13 14 17
18 0 2 4 5 7 9 10 11 13 14 15 18
19 1 3 5 7 8 10 11 12 13 15 16 19
20 2 4 6 8 9 11 12 13 14 15 16 20
21 0 3 5 7 9 10 12 13 14 15 16 17 21
22 1 4 6 8 10 11 13 14 15 16 17 18 22
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23 2 5 7 9 10 12 14 15 16 17 18 19 23
24 0 3 5 8 10 11 13 14 16 17 18 19 20 24
25 1 4 6 9 11 12 14 15 17 18 19 20 21 25
26 1 5 7 9 11 13 15 16 18 19 20 21 22 26
27 2 6 8 10 12 14 16 17 19 20 21 22 23 27
28 3 6 9 11 13 15 17 18 20 21 22 23 24 28
29 4 7 10 12 14 16 18 19 20 22 23 24 25 29
30 0 5 8 11 13 15 17 18 20 21 23 24 25 26 30
31 0 5 9 11 14 16 18 19 21 22 24 25 26 27 31
32 1 6 10 12 15 17 19 20 22 23 25 26 27 28 32
33 2 7 11 13 16 18 20 21 23 24 26 27 28 29 33
34 3 8 11 14 16 19 20 22 24 25 27 28 29 30 34
35 4 9 12 15 17 19 21 23 25 26 27 29 30 31 35
36 5 10 13 16 18 20 22 24 25 27 28 30 31 32 36
37 6 10 14 17 19 21 23 25 27 28 29 31 32 33 37
38 7 11 15 17 20 22 24 26 27 29 30 32 33 34 38
39 8 12 15 18 21 23 25 27 28 30 31 33 34 35 39
40 9 13 16 19 22 24 26 28 29 31 32 34 35 36 40
41 9 14 17 20 23 25 27 29 30 32 33 34 36 37 41
42 10 14 18 21 23 26 28 29 32 33 34 35 37 38 42

Table 29 – Dew point temperature (∘𝐶) as a function
of air temperature (T, ∘𝐶) and relative hu-
midity (RH, %). Adapted from (SOARES;
BATISTA, 2007).
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ANNEX B

Maximum Vapor Pressure of Water
as a Function of Air Temperature

T (∘𝐶) E (mb) T (∘𝐶) E (mb) T (∘𝐶) E (mb)
0.0 6.1078 20.0 23.373 40.0 73.777
0.5 6.3333 20.5 24.107 40.5 75.767
1.0 5.5662 21.0 24.261 41.0 77.302
1.5 6.8086 21.5 25.635 41.5 79.885
2.0 7.0567 22.0 26.430 42.0 62.015
2.5 7.3109 22.5 27.247 42.5 84.194
3.0 7.5753 23.0 28.086 43.0 86.423
3.5 7.8480 23.5 28.947 43.5 88.703
4.0 8.1294 24.0 29.831 44.0 91.034
4.5 8.4198 24.5 30.739 44.5 93.418
5.0 8.7198 25.0 31.671 45.0 95.855
5.5 9.0280 25.5 32.637 45.5 98.347
6.0 9.3480 26.0 33.608 46.0 100.89
6.5 9.6743 26.5 34.615 46.5 103.50
7.0 10.013 27.0 35.649 47.0 106.16
7.5 10.362 27.5 37.709 47.5 108.88
8.0 10.722 28.0 37.796 48.0 111.66
8.5 11.092 28.5 38.911 48.5 114.50
9.0 11.474 29.0 40.055 49.0 117.40
9.5 11.867 29.5 41.228 49.5 120.37
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10.0 12.272 30.0 42.430 50.0 123.40
10.5 12.690 30.5 43.663 50.5 126.49
11.0 13.119 31.0 44.927 51.0 129.65
11.5 13.562 31.5 46.223 51.5 132.88
12.0 14.017 32.0 47.551 52.0 136.17
12.5 14.486 32.5 48.912 52.5 139.51
13.0 14.969 33.0 50.307 53.0 142.98
13.5 15.466 33.5 51.736 53.5 146.49
14.0 15.977 34.0 53.200 54.0 150.07
14.5 16.503 34.5 54.700 54.5 153.73
15.0 17.644 35.0 56.236 55.0 157.46
15.5 17.800 35.5 57.810 55.5 161.27
16.0 18.173 36.0 59.422 56.0 165.16
16.5 18.762 36.5 61.072 56.5 169.13
17.0 19.367 37.0 62.762 57.0 173.18
17.5 19.990 37.5 64.493 57.5 177.31
18.0 20.630 38.0 66.264 58.0 181.53
18.5 21.288 38.5 68.078 58.5 185.83
19.0 21.964 39.0 69.937 59.0 190.22
19.5 22.659 39.5 71.833 59.5 199.26
Table 30 – Maximum Vapor Pressure of Water (E, mb)

as a Function of Air Temperature (T, ∘𝐶).
Adapted from (SOARES; BATISTA, 2007).
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