
Characterizing Experimentation in Continuous
Deployment: a Case Study on Bing

Katja Kevic

University of Zurich

Switzerland

kevic@ifi.uzh.ch

Brendan Murphy

Microsoft Research

United Kingdom

bmurphy@microsoft.com

Laurie Williams

North Carolina State University

United States of America

lawilli3@ncsu.edu

Jennifer Beckmann

Microsoft

United States of America

jennifer.beckmann@microsoft.com

Abstract—The practice of continuous deployment enables
product teams to release content to end users within hours or
days, rather than months or years. These faster deployment
cycles, along with rich product instrumentation, allows product
teams to capture and analyze feature usage measurements.
Product teams define a hypothesis and a set of metrics to assess
how a code or feature change will impact the user. Supported
by a framework, a team can deploy that change to subsets
of users, enabling randomized controlled experiments. Based
on the impact of the change, the product team may decide
to modify the change, to deploy the change to all users, or
to abandon the change. This experimentation process enables
product teams to only deploy the changes that positively impact
the user experience.

The goal of this research is to aid product teams to improve their
deployment process through providing an empirical characteriza-
tion of an experimentation process when applied to a large-scale
and mature service. Through an analysis of 21,220 experiments
applied in Bing since 2014, we observed the complexity of the
experimental process and characterized the full deployment cycle
(from code change to deployment to all users). The analysis
identified that the experimentation process takes an average of 42
days, including multiple iterations of one or two week experiment
runs. Such iterations typically indicate that problems were found
that could have hurt the users or business if the feature was
just launched, hence the experiment provided real value to the
organization.

Further, we discovered that code changes for experiments
are four times larger than other code changes. We identify
that the code associated with 33.4% of the experiments is
eventually shipped to all users. These fully-deployed code changes
are significantly larger than the code changes for the other
experiments, in terms of files (35.7%), changesets (80.4%) and
contributors (20.0%).

Keywords-continuous deployment; experimentation; empirical
analysis; full deployment cycle

I. INTRODUCTION

As the software industry has moved towards a service

model, different companies have adopted techniques such

as continuous deployment, in which software is continually

released to users [24]. Increasing the rate of releasing soft-

ware, radically changes the way software is developed and

deployed [5]. Previously product changes occurred as part

of major releases while in continuous deployment products

evolve. Some organizations have chosen to couple this rapid

deployment with an experimental framework to assess the

impact of changes on the end user using a practice referred

to as continuous experimentation [12]. Some products, such

as Bing, have been using online controlled experiments, since

2009 [15]. Visibility of continuous experimentation increased

with the build-measure-learn cycles advocated in the Lean

StartUp methodology [26] in 2011 based upon experiences

at IMVU. As the value of continuous experimentation is more

and more recognized, large organizations, such as Facebook,

Google, and Netflix, increasingly employ continuous experi-

mentation [25].

These incremental, rapid deployments offer the opportunity

for development teams to formulate hypotheses about expected

user behavior due to a software change, define metrics needed

to be collected to verify the hypotheses, and continuously learn

how users react. The process to verify hypotheses is through

controlled experiments1 [22]. Different versions of the product

are exposed to randomly-chosen user subgroups. By measuring

users behavior in each group, development teams have the

ability to make a data-driven decision of whether to modify,

delay, or abandon the given software change [15], [20], [21].

If a software change is abandoned the code associated with it,

is removed from the system.

While a few works investigated the experimentation process,

they often focus on the use of the process to evolve small

products or services (e.g., [21]), or share experience reports

and lessons learned (e.g. [17], [28]). The full life-cycle from

an experiment’s first code change all the way to the analysis of

the captured usage measurements has not been characterized.

Parts of product strategies evolve based on experiments’

outcome [12], [11]. Therefore, knowing how quickly a product

team can learn from experiments may help to better plan

product strategies. Furthermore, knowing more about the code

changes used for experiments may allow the elaboration of

different experimentation procedures tailored to different kinds

of code changes. Finally, we determine how many experiments

are ultimately deployed to all users. Knowing more about the

amount of deployed experiments helps to assess the efficiency

of continuous experimentation approaches for products in

different maturity stages. Previous research has not addressed

how the code changes for experiments that were deployed

to all users differ from the code changes which were not

1Also called A/B tests, split tests, bucket testing, randomized experiments,
online field experiments, canary, flighting, or gradual rollouts.

2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering in Practice Track

978-1-5386-2717-4/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-SEIP.2017.19

121

2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering in Practice Track

978-1-5386-2717-4/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-SEIP.2017.19

123

2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering in Practice Track

978-1-5386-2717-4/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-SEIP.2017.19

123

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SAO CARLOS. Downloaded on March 25,2021 at 21:08:16 UTC from IEEE Xplore. Restrictions apply.

deployed to all users. Knowing more about these differences

might enable efficiencies in the product development and

experimentation processes.

The goal of this research is to aid product teams to improve
their deployment process through providing an empirical char-
acterization of an experimentation process when applied to a
large-scale and mature service. In particular, we investigate

the following research questions:

RQ1: What are the characteristics of experiments

and their development efforts, in terms of time spans,

number of people involved, files and changes in a

large-scale and mature product?

RQ2: What percentage of experiments are ultimately

deployed to all users?

RQ3: How do the experiments which are deployed

to all users differ from the experiments which were

not deployed to all users in terms of time spans,

number of people involved, files and changes?

To answer these questions, we conducted a large-scale

empirical analysis of Bing, Microsoft’s search engine. We

analyzed 21,220 experiments conducted in Bing since 2014,

and all code changes that occurred during the same period of

time. These experiments include a variety of different kinds

of hypotheses that are tested. These hypotheses range from

testing tweaks in algorithms to the impact of user interface or

configuration changes on the end users. Through establishing

a procedure to link specific change sets within Bing’s change

history to specific experiments, we analyzed the code changes

committed for experiments. A change set includes one or

multiple files changed at the same time. Through this analysis,

we inferred whether the code changes for an experiment were

ultimately deployed to all users. Change sets which we could

not link to experiments were also analyzed.

The remainder of this paper is structured as follows. First,

we present background on continuous experimentation and the

related work which has been conducted in this area. Then, we

describe how experiments are conducted within a large-scale

and mature product, i.e. Bing. We describe the main points

which increase the complexity of the experimentation process.

Section IV describes the historical data that we used to analyze

characteristics of experiments and infer whether the software

change for the experiment was ultimately shipped to all users.

The results of this analysis are described in Sections V,VI, and

VII. We then discuss the threats to validity in Section VIII, our

findings in Section IX, and conclude our work in Section X.

II. BACKGROUND AND RELATED WORK

In this section, we provide background and related work on

continuous deployment and continuous experimentation.

A. Background

We define and differentiate four terms used in this paper:

Continuous Integration Software is developed in smaller,

incremental change sets which are regularly integrated

into the codebase of the complete product, where a

process automatically builds and runs a test suite daily,

hourly, or even per individual change [10].

Continuous Delivery The automated implementation of an

application’s build, deploy, test, and release process [13].

Continuous Deployment A continuation of the continuous

delivery process, where the application or service is

automatically deployed to the customer [13].

Continuous Experimentation All changes require a clear

hypothesis of their impact on the end customer, and that

hypotheses are verified against a subset of customers prior

to full deployment [12].

We found that the terms delivery and deployment are often

incorrectly used interchangeably in literature on this subject.
One of the prerequisites for continuous experimentation, is

that a product team deploys code changes frequently through

continuous delivery or continuous deployment. Continuous

integration enables both, continuous delivery and continuous

deployment processes.
Through verifying the product at both, unit and system level,

bugs can be detected soon after they have been introduced,

and the quality of the software can be measured and analyzed

over time. For example, the Apollo space mission, in the

1960s, incorporated all changes made during the day into a

single overnight computer run [23]. Hence, developers can be

increasingly confident about the quality of their code change.

Further, by including feedback mechanisms into each step

in the continuous integration pipeline, developers have the

possibility to react immediately to merge conflicts, to bugs or

to irregularities within the collected measures. One of the main

benefits of employing the principles of continuous integration

is that the product remains in a deployable state and could be

released at any point in time.
Further advancements in technology beyond continuous

integration enabled continuous delivery and continuous de-

ployment practices. These later two practices originated in

the Software-As-A-Service area, whereby changes to the code

base could be rapidly deployed to the service and the impact

of these changes on the end users can be measured.
In an experiment, different versions of the product are

exposed to different randomly chosen user groups. One version

of the product includes a change or a new feature, referred to

as the treatment, and the other version is the current version

of the product, referred to as the control [22].
For each experiment a prior hypothesis is formulated which

states that the treatment is not better than the control when

evaluated with a measure2, which measures the targeted aspect

of the user behavior [20]. As the experiment runs for a

predefined amount of time, the initial hypothesis is evaluated

through testing for statistical differences between the treatment

and the control. If the null hypothesis can be rejected, the

users, in fact, react differently to each version of the product.
Five main components enable developers to run experi-

ments [20], [12], [11], [24]:

2Also called the overall evaluation criterion (OEC), response, dependent
variable, outcome, evaluation metric, key performance indicator, endpoint or
fitness function.

122124124

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SAO CARLOS. Downloaded on March 25,2021 at 21:08:16 UTC from IEEE Xplore. Restrictions apply.

1) a hypothesis on the experiment’s objective which is

modeled in measurable metrics;

2) the instrumentation of the product;

3) a randomization algorithm;

4) an assignment method;

5) and a data path.

The product is instrumented such that the metrics defined

to verify the hypothesis can be captured. The randomization

algorithm is used to identify the users that are exposed to either

the treatment or the control of an experiment. One difficulty

for a large-scale product in which parallel experiments are run,

is that the randomization algorithm has to ensure that there are

no correlations between the assignments of experiments. The

assignment method is the mechanism in place used to route

user requests to the specified version of the product.

Users can be assigned to specific version of the product

using techniques, such as traffic splitting, page rewriting,

client-side assignment, and server-side assignment. Kohavi et

al. [20] elaborate the advantages and disadvantages of each

method. Finally, the data path is responsible for collecting the

defined metrics and preparing the statistical analysis.

B. Continuous Experimentation at Microsoft

Different works analyzed the experimentation process

within Bing. Kohavi and colleagues [17], [18], [19] and Crook

and colleagues [6] share their insights and lessons learned

while running an experimentation process at a large-scale.

They work out seven rules of thumb for running controlled

experiments and seven pitfalls to be avoided when running

controlled experiments. They identify three main categories

of challenges, including organizational challenges, engineering

challenges, and the challenge of having a trustworthy exper-

iment outcome. While Kohavi et al. [15] further look into

the cultural aspects and share valuable real-world examples,

Kohavi et. al [20] focus on the technical aspects in more detail

and summarize the cost of experimentation when using differ-

ent assignment methods. The trustworthiness of experiments

is further elaborated through the analysis of five experiments’

outcomes by Kohavi et al. [16]. Deng et al. [9] investigate how

the percentage of users to which the experiment is exposed

or the exposure duration of the experiment can be reduced

while the same statistical power can be observed. Deng [8]

explores an objective Bayesian A/B testing framework to

analyze metrics. In this paper we build upon that work with

a focus on the full life-cycle of experiments, characterizing

experiment and code changes attributes.

C. Other Continuous Experimentation Research

Several case studies have been conducted which identified

the challenges which are faced when employing experimenta-

tion. Other researchers [7], [15], [17], [21] have identified the

cultural shifts often necessary in development teams to be one

of the major challenges. In particular, the risk of individuals

losing power or prestige due to experiment results contrary to

their own intuitions and the importance of a consistent reward

system which rewards the volume of valuable experiments

regardless of outcome have been observed as the main cultural

challenges. Lindgren and Münch [21] further identified that

slow development cycles, the product instrumentation and the

identification of the metrics to measure the user experience are

further challenges. Rissanen and Münch [27] largely confirmed

these challenges when they studied experimentation in a

B2B environment. They further found that the capturing and

transferring of user data becomes a further challenge, as legal

agreements come into play.

Fagerholm et al. [11], [12] explore a model of continuous

experimentation and how experiments are related to the vision

and the strategy of a startup company’s product. They found

that the results from experiments altered the strategy of prod-

ucts, but the vision of the product remained unchanged. Within

their suggested model, called RIGHT, the experimentation

process is structured into build-measure-learn blocks. In our

research, we approximate the duration of such a block.

While these case studies and experience reports focused

on identifying challenges within an experimentation process

and analyzed how experiments influence a product’s strategy,

we focus on the source code development efforts which are

involved in an experimentation process.

D. Experimentation - the State of Practice.

Systematic experimentation processes are prevalent in large

companies that offer SaaS services [4], [5], [17], [21], [29]. For

example, at Google every change that can impact customers

goes through an experimentation process [28]. Thereby, many

types of changes to the product are run as experiments: from

visual enhancements to changes within back-end algorithms.

These companies have developed scalable platforms which

offer the infrastructure to run experiments in a systematic

way. Many of these advanced experimentation platforms have

further tools to support the data analysis integrated. For

example, LinkedIn’s XLNT analysis dashboard [29] supports

experimenters to make a data-driven decision of whether

the experiment improved the user experience by presenting

summarized views. Other tools and platforms to run systematic

experiments are emerging. Google’s Analytics experiment

framework [1] and Facebook’s PlanOut [2] are two examples

of such frameworks that support an experimentation process.

When Lindgren and Münch [21] surveyed ten smaller

software companies to understand the current state of

the practice of experimentation processes applied, they

found that the surveyed companies recognize the value of

experimentation but only few companies run systematic

experiments often. As more and more services and even

desktop applications such as Chrome or Mozilla Firefox,

adapt principles of continuous delivery [3], experimentation

can become an integral part within the development cycle of

a wide range of different products.

While all these case studies and experience reports enable

important insights into different experimentation processes, we

add to the existing body of research the first empirical study on

123125125

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SAO CARLOS. Downloaded on March 25,2021 at 21:08:16 UTC from IEEE Xplore. Restrictions apply.

a large-scale and mature experimentation process. In particular,

compared to previous works, we describe the full life-cycle of

an experiment from the first code change to the deployment

of the experiment.

III. BING EXPERIMENTATION PROCESS

For this case study, we analyze Microsoft’s search engine

Bing. Bing includes the main search results pages from

Bing.com, as well as several services that are consumed by

other Microsoft products, such as Cortana. Bing’s richness in

a variety of services enabled us to study the experimentation

process in different environments. While the majority of the

services are customer based, some are development support

services for the rest of Bing (e.g. developing the deployment

software). Bing is broken down into a large number of

independent components, where components are either library

components or dedicated to specific services. Since 2009,

Bing and other services across Microsoft, increasingly use

the Experimentation Platform (ExP). ExP was introduced by

the Experimentation Platform team within Microsoft that was

formed in 2006. ExP is a highly scalable platform that enables

a systematic experimentation process [15]. In the following,

we characterize the individual steps of in the experimentation

process in Bing (see Figure 1).

A. Experiment Design

In a first step, developers formulate a hypothesis that defines

the aspects of the users’ behaviors they seek to improve.

Then, they identify the set of metrics that allow the formulated

hypothesis to be tested. ExP provides a wide range of prede-

fined metrics that can be used to capture the users’ behaviors.

If this set of predefined metrics does not properly test the

developers’ hypothesis, the developers need first to implement

or request the needed instrumentation within the product to

capture additional aspects of the users’ behaviors. The set of

metrics that is identified for the experiment are then captured

within an ExP scorecard. Furthermore, experimenters need to

decide on the number of users that are exposed to each group

within the experiment and the amount of time the experiment

will be exposed to the users. A rigorous experiment design is

indispensable for being able to make a data-driven decision of

whether the feature should be deployed.

B. Pre-Study

Development teams have the possibility to rapidly evaluate

a predetermined hypothesis by creating an internal pre-

experiment prior to fully developing the software change.

Internal experiments are usually mock-ups or quick-hacks of

the idea that are submitted to an internal crowd-platform.

Within this crowd-platform, the mock-ups or quick-hacks are

shown to a chosen set of people, without identifying which

is the treatment and which is the control. The outcome of

these human judgments is then used to evaluate if the idea

should be further implemented and then run through the full

experimentation process or if the idea does not show potential.

Furthermore, product teams use the outcomes of these internal

experiments to prioritize the planned experiments.

C. Source Code Development and Deployment

The development team for each of the Bing services has the

autonomy to choose their own software development process.

Each service has its own development environment managed

through its own branching structure. Also the deployment

process varies among the different services and is often based

on the characteristics of the service itself. For instance, the

service that manages the user interface (UI) has an hourly

development and deployment cycle, where the deployment

process rolls out the changes in a controlled manner and rolls

back changes that have bugs. Conversely, the development and

deployment of complex state based services, such as the index

server can require additional verification: deployment cycles

can be weekly or longer.

D. Experiment Execution

After the source code is changed and deployed, the exper-

iment execution starts. Experiments generally run for one or

two weeks. To lower unforeseeable risks of system failures,

an experiment generally starts by directing a small percentage

of users to the advanced version, the treatment, of the product.

After some time, where no failures are detected, the percent-

age of users directed to the treatment gradually increases.

This mechanism ensures that if there was an issue with an

experiment only a small percentage of users experienced it.

There are different metrics which are continuously captured

while the experiment is running. One group of metrics, the

guardrail metrics, is the sentinel to the health of the product.

If metrics in this group change drastically, egregious issues

with the experiment are detected and ExP informs an alert

system, which shuts the experiment automatically down and

all traffic will be sent to the prior version. An example of a

guardrail metrics is the page load time.

Since ExP allows multiple experiments to run in parallel,

the risk of different experiments interacting with each other

increases. Because the interaction of experiments can corrupt

the metrics captured for each experiment and possibly harm

the user experience with the product, it is pivotal that a

possible interaction is prevented. If the prevention was by-

passed, the corruption it is quickly detected. ExP incorporates

mechanisms to prevent and detect interactions. To prevent

interactions between different experiments, each experiment

defines constraints. These constraints are used to identify the

experiments that should not be exposed to the same user. To

detect interactions between running experiments, ExP scans

and analyzes the metrics of pairs of running experiments.

If interactions between experiments are recognized, an alert

is raised and the owners of the experiment involved in the

interaction are informed. They then decide whether to stop

one of the experiments.

If a bug in the changed code or in the experiment config-

uration is detected, another alert is raised which informs the

owners of the experiments. If no issues are detected during the

124126126

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SAO CARLOS. Downloaded on March 25,2021 at 21:08:16 UTC from IEEE Xplore. Restrictions apply.

suellen

experiment execution, the experiment is stopped automatically

after the exposure duration specified by the experimenter.

E. Data Analysis

To inform experimenters of the status of a running exper-

iment, ExP allows the creation of scorecards on a periodic

basis. A more extensive data analysis occurs after the experi-

ment completed.

If the experiment ran without any issues (i.e. no alerts

from the alert system reported and no bugs in the source

code detected), it is considered to be a valid execution of

the experiment. Developers can now decide between three

alternatives: deploy the experiment, abandon the experiment,

or iterate the experiment. Each experiment within Bing aims

to improve user behavior on two levels. The first level is the

same for each experiment within Bing. Metrics in this level

are called the main metrics which each experiment tries to

improve. These metrics target long-term goals of the product,

such as the number of clicked search results. The second level

is experiment-specific and targets the metrics that were defined

in the product team’s hypothesis for the experiment. Examples

of experiment-specific metrics are the elapsed time until a

first search result is clicked or whether a suggested query

completion was used. Based on the product team’s hypothesis

and the gathered metrics a data-driven decision of whether to

ship, abandon, or iterate the code change is made.

If the overall evaluation criterion (OEC) measurably im-

proved with the new version of the product, then the treatment

of the experiment is shipped and abandoned in the contrary.

In practice, the OEC takes several factors into account, such

as the user experience and revenue, and allows to trade one

factor off for another. If the product team cannot make a data-

driven decision based on the metrics that were collected, the

product team iterates on the experiment design and defines a

new set of metrics to test the hypothesis on. If the correct

metrics have been collected for the experiment, but more user

data is needed to enable a data-driven decision, then a new

iteration of the experiment is launched. Finally, the product

team can also decide to iterate on the source code change, but

to validate the same hypothesis.

If the experiment executed with issues, then it is an invalid

execution. If there was a bug in the changed code or in the

experiment configuration detected, the product team iterates on

a further code change to eliminate the bug. If the experiment

was stopped because the metrics indicated that they were

harming the user experience, then it might be abandoned.

F. Complexity of Experimentation

We observed that running a thorough experimentation pro-

cess on a large scale service is very complex. Figure 1

depicts the experimentation process currently used by Bing.

The complexity of the experimentation process stems from

different aspects. First, while it is possible to rapidly verify

that a deployment does not break the user experience, it takes

time to verify that the user experience is improved or not

degraded by the change. Experiments have to be exposed

to the user groups for at least one week. There are many

reasons for this: one reason is that users interact with the

product differently on different days of the week. While it

is imaginable that users search, for example, may be more

work related on a Monday morning, they would rather search

for social related activities over the weekend. Another reason

is that it is important to have enough users for statistical

validity for trustworthy comparison. Depending on the size

of the change and the prominence of the feature, it takes time

until a large enough number of users interacted with it to

gain enough data for statistical validity. Second, since Bing

has users all over the world and runs on different devices, the

results of the experiment can be country and device dependent.

This segmentation adds complexity to the configuration of the

service. Third, there is a limited capacity to run experiments.

Parallel experiments can be run for each deployment and each

data center. Finally, after running a series of experiments

it needs to be tested how these experiments interact with

each other and whether the combined user experience is still

improved.

IV. STUDY DATA AND METHOD

Our dataset consists of 21,220 experiments that were con-

ducted within Bing over the last 2.5 years. Bing offers the

possibility to study experimentation in inherently different

components of the product. Since these different components

have slightly different procedures to capture and implement

experiments, the following analysis does not capture all ex-

periments for all components within Bing.

A. Experiments

As the experimentation process within Bing emerged and

changed over time, we restricted the analysis to only exper-

iments that were created since the beginning of 2014. Our

dataset comprises historical data of 21,220 experiments run

within 19 components of Bing. We downloaded information

about these experiments through an API offered by ExP. ExP

stores attributes about experiments and stores the exposure

duration of each experiment, which reflects the amount of

time the experiment’s treatment was exposed to end users of

the product. In our analysis, we included only experiments

for which a positive exposure duration was stored (occa-

sionally experiments were created, but never run and hence

the exposure duration is zero). Furthermore, ExP stores for

each experiment a list of people who are responsible for the

experiment, i.e. the owners of the experiments. Finally, we

also retrieved the information showing which experiments are

iterations of one another (i.e. the experiments which belong to

the same experiment group).

Using another API offered by ExP, we downloaded for

each experiment the created scorecards, which include several

metrics measured over the experiment duration. ExP gener-

ates scorecards on a regular basis throughout an experiment.

Hourly and daily scorecards measure the early hours of

experiments and look for serious negative results that indicate

a regression or bug in the product. As time goes on, the system

125127127

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SAO CARLOS. Downloaded on March 25,2021 at 21:08:16 UTC from IEEE Xplore. Restrictions apply.

no experimentation on code change/

experimentation already done

analyse collected metrics

Generally 1 or 2

Weeks

Shipped

start experiment
Experiment

Started

Experiment

Stopped

Metrics Analysed

Valid execution Invalid execution

Decided to Ship
Abandoned

(Gracefully)
Abandoned

Decided to Iterate
Decided to Iterate

(Gracefully)

Daily or

Weekly

Experiment

Designed

Source Code

Changed

Pre-Studycreate mockups

DeployedDeployedcreate changeset
define hypothesis

and metrics

collect more user data

modify source code or

experiment configuration

Fig. 1. Experimentation Process used in Bing.

generates fewer scorecards, because the bugs are typically

detected early on, and the goal is now to determine the validity

of the hypothesis. In our analysis, we considered only the last

scorecard that was created for a particular experiment.

B. Linking Source Code and Experiments
No explicit link exists between experiments and the source

code. To re-establish this link, we analyzed all change sets

within Bing’s source code change history since 2014.
Experiments in Bing are generally controlled through con-

figuration initialization files (INI). As Bing is a large product,

consisting of multiple components and developed by hundreds

of developers, different syntax are used to configure experi-

ments.
In a first step, we filtered all change sets identifying those

that include the editing of at least one INI file. In a second

step, we iterated through all the INI files identified in the

first step and parsed the files using a regular expression to

identify those INI files used to configure experiments. In a

third step, we iterated through all INI files identified in the

second step. We parsed each version of the files using another

regular expression to identify whether the specific file version

includes a configuration for one of the 21,220 experiments in

our data set. Through this method, we created a link between

a specific change set and a specific experiment.
As a result of this analysis, we were able to categorize and

label every change occurring in the Bing development envi-

ronment since 2014 into one of the following four categories:

Matched Change
The change set includes an INI file that was linked to a

particular experiment.

High Probability Change
The change set includes an INI file for which we know at

least one version has been used to configure experiments.

Low Probability Change
The change set includes at least one arbitrary INI file, but

the INI file contains no syntax that implies it is used to

configure experiments.

Other Code Change
The change set includes no INI file.

Due to the variety of complex syntax used in INI files, we

concede that we may missed matched changes. However, these

experiments are represented in the high probability category.

Prior to releasing the code for an experiment, a development

team may iterate the code multiple times. Each code iteration

is referred to as a change set. The change sets prior to the

deployment of the code for an experiment are referred to as

related change sets. To identify how much effort goes into an

experiment, related change sets must be identified.

To identify the related change sets, we use the fact that a file

in Bing has 1.3 iterations per year. As a result, we made the

assumption that if the same file changes within a 5 day period

then we can assume that the change sets containing the file are

related. The small percentage (0.07%) of files that change very

frequently (greater than 15 times per year) are excluded from

the analysis. The following algorithm is applied to identify

and process all related changes. Every change set edited by

Bing since 2014 is processed, starting with the latest change

set and working backwards. For each file in the change set the

process identifies if the file was previously edited within the

5 day time window. If so, the change label for the change set,

that the file belongs to, is altered based on the value of the label

of the initial change set. If the label on the initial change set is

matched change it overrides all other categories. If the label

is high probability this overrides low probability and other

code changes and if it was low probability this overrides other

code changes. Walking backwards through the change sets will

result in a cascading effect, where edits that occur within 5

days of the re-labeled change sets will also be re-labeled.

We also analyzed the identification of related changes over

a time span of ten days. As the association of related changes

126128128

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SAO CARLOS. Downloaded on March 25,2021 at 21:08:16 UTC from IEEE Xplore. Restrictions apply.

remains roughly the same, we decided to use a time span of

5 days in this analysis.

C. Parsing the Experiment Outcome

The experiments for which we could identify one or more

matched changes, allowed us to infer whether the treatment

of the experiment was ultimately deployed to all users. In

particular, we analyzed the sequences of changed lines (diffs)

within the matched changes of an experiment.

Occasionally, the configuration names of experiments are

reused. In this circumstance, we cannot infer whether the

treatment of the experiment was shipped or not. The syntax

for controlling the shipment of experiments’ treatments is

complex. The parser currently does not cover all options.

V. EXPERIMENT CHARACTERIZATION (RQ1)

RQ1: What are the characteristics of experiments

and their development efforts, in terms of time spans,

number of people involved, files and changes in a

large-scale and mature product?

We answer this research question from two perspectives.

First, we analyze how much time an average experiment

within Bing takes (Section V-A). Further, we characterize other

attributes of the development efforts and of experiments, such

as the people who are involved. Due to substantial differences

between components of Bing, we summarize these features

for each component separately in Table I. Second, we analyze

Bing’s change history of the past 2.5 years and compare the

changes that are used for experiments to those changes not

used for experiments (Section V-B).

A. Experiment Life-Cycle

Change sets for experiments are rapidly deployed. The

average time between the first code change for an experiment

and its deployment (last code change observed before the start

of the experiment) is 1.5 days (SD = 1.4). Depending upon

the specific component of Bing, an experiment iteration is

generally exposed for one or two weeks to a user group. On

average, experiments are iterated 1.8 times (SD = 1.8) and

owned by 4.8 (SD = 2.3) people. On average, 1409 different

metrics (SD = 488) are collected for an experiment. Over

an experiment group, we observed 6.4 separate changes to

software files submitted by 2.3 people (SD = 1.7). See Table I

for details on the major Bing components. The analysis of the

captured data and additional code changes between iterations

adds additional time to the execution of the experiments. Our

analysis identified that the experimentation process, from the

start of the experiment to the completion of the last iteration of

an experiment, takes an average of 42 days, including multiple

iterations of one or two week experiment runs. Through

characterizing the life-cycle of experiments, a product team

is enabled to identify potential bottlenecks. Knowing where

the bottlenecks are within the development cycle, enables to

appoint either more resources or synchronize resources in an

improved way.

B. Experimental Activity within Bing

As described in Section IV-B, we categorized each code

change in Bing’s change history into one of the four categories:

matched change, high probability change, low probability

change, and other code change. We assume that many of the

changes that we could not link to experimental activity and

hence were grouped into the other code changes category are

tool-based changes, test related, or bug fixes. Of the changes

that we could link to experimental activity, we grouped 12.1%

into the matched category, 45.5% into the high probability

category and 42.4% into the low probability category. We

observed that changes that are related to the matched and

high probability category include more files than changes

which are categorized into the low probability or other change

category. We observed, on average, 78.9 files (SD = 9.6)

for the matched changes, 122.2 files (SD = 10.3) for the

high probability changes, 37.2 files (SD = 10.4) for low

probability changes, and 11.7 (SD = 8.2) files for other code

changes. See Figure 2.

We also found that changes categorized as matched or high

probability changes have more related changes (on average

2.0 related changes for the matched changes and 1.8 related

changes for the high probability changes) than the low prob-

ability or other changes (on average, 0.6 related changes for

low probability changes, and 0.6 related changes for other code

changes). In summary, our analysis indicates that changes that

we relate to experiments are generally larger in terms of the

files changed and have more related changes.

Bing can now use these results to identify the challenges that

hindered developers from launching experiments. The chal-

lenges identified can then be addressed within the experimental

framework.

Fig. 2. Average number of files for matched, high probability, low probability,
and other code changes.

VI. SUCCESS RATE OF EXPERIMENTS (RQ2)

RQ2: What percentage of experiments are ultimately

deployed to all users?

Our empirical analysis indicates that 33.4% of the ex-

periment groups were ultimately deployed to all users. Our

observation supports Kohavi et al. [15] who reported that

about a third of the experiments improve the metrics they were

designed to improve. For 18% of the experiment groups, our

procedure cannot infer whether the experiment was deployed

to all users, these would require additional analysis to identify

their status (see Section IV-B for details). We also found

127129129

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SAO CARLOS. Downloaded on March 25,2021 at 21:08:16 UTC from IEEE Xplore. Restrictions apply.

TABLE I
CHARACTERISTICS OF EXPERIMENTS FOR THE MAJOR BING COMPONENTS INCLUDED IN OUR ANALYSIS. THE EXPOSURE DURATION IS CALCULATED

OVER ALL ITERATIONS OF AN EXPERIMENT.

Bing component
development efforts experimentation time

contributors # files # changes exposure duration # iterations # owners

Ads 2.2 12.1 4.2 29.1 1.9 6.2

Cortana 1.8 11.7 4.2 17.3 1.6 4.7

Datamining 1.6 9.4 3.9 19.7 1.9 3.1

Engagement 1.7 13.2 4.4 30.0 2.2 4.9

Index 2.0 15.5 4.2 11.5 1.6 3.8

Infrastructure 1.2 5.6 2.2 21.8 3.1 5.0

Local 2.2 14.0 5.2 25.4 1.7 4.2

Multimedia 1.9 18.3 4.1 15.0 1.5 5.3

Relevance 2.6 13.8 7.2 16.3 1.7 4.7

Segments 2.3 9.2 5.3 23.4 1.5 3.9

UX 2.1 15.3 4.9 22.9 2.2 4.9

Windows Search 1.7 16.2 3.0 14.6 1.5 4.8

considerable differences between the components within Bing.

While components related to multimedia deploy 50.7% of the

experiments to all customers, the rate is lower for components

related to the index server (24.9%) for example. The varying

rates of deployed experiments among components in Bing

indicate that different components have different levels of

difficulty to innovate enhancements which significantly im-

proves the user experience. Bing developers mentioned that

they are happy that they do not have a specific target of

successful experiments, enabling them to try out new ideas.

We further observed that the percentage of non-deployed

experiments is increasing over time. One possible root cause

might be that it becomes more difficult to find a niche for

innovation as the product matures. On the other hand, since

ExP facilitates systematic experiments, developers might test

different variants of the same feature in separately captured

experiments. Through our analysis, Bing is enabled to analyze

the metrics that lead to a data-driven decision. Knowing which

metrics are crucial for a particular component, opens the

possibility to further automate a data-driven decision and offer

an improved scorecard interface.

VII. DIFFERENCES BETWEEN DEPLOYED AND

NON-DEPLOYED EXPERIMENTS (RQ3)

RQ3: How do the experiments which are deployed

to all users differ from the experiments which were

not deployed to all users in terms of time spans,

number of people involved, files and changes?

To answer RQ3, we opposed several characteristics that we

captured for the deployed and non-deployed experiments. We

did not observe significant differences for the experiments’

exposure durations, number of iterations conducted within an

experiment group, number of experiment owners, and number

of metrics collected. We found differences in the way the code

is developed for an experiment. A Welch two sample t-test

indicates that experiments for which the treatment was ulti-

mately deployed to all users have significantly more changes

(M = 5.1) associated than treatments of experiments which

have not been deployed (M = 2.9) at the time of the analysis,

t = −15.86, p < .001. Furthermore, significantly more

people contributed these changes for the deployed experiments

(M = 2.0) than for the non-deployed experiments (M = 1.6),

t = −9.05, p < .001. We also found that the code changes

for deployed experiments are overall larger, in terms of the

files that were changed (M = 22.1 for deployed experiments,

M = 14.2 for non-deployed experiments, t = −11.23, p <
.001), the unique files that were changed (M = 14.4 for de-

ployed experiments, M = 10.7 for non-deployed experiments,

t = −7.30, p < .001), and the number of lines that were

changed (M = 690 for deployed experiments, M = 231 for

non-deployed experiments, t = −2.58, p = .01).

We can infer for experiments which were ultimately deployed

to all users that the captured metrics allowed a data-driven

decision. At this point of our analysis, we cannot infer for

the experiments that were not deployed to all users whether

the metrics indicated that the user experience is decreased or

whether there was no significant difference observed between

the treatment and the control. Nevertheless, our results indicate

that the collaboration of more contributors leads to the fruitful

execution of an experiment. To better understand whether the

collaboration of more people causes more files being changed

or whether the need to change more files requires more people

to collaborate, is planned for future work. Understanding the

differences between deployed and non-deployed experiments,

teams may be able to identify which category of experiments

are more likely to be more successful and which category of

experiments may require more monitoring.

VIII. THREATS TO VALIDITY

The external validity of our empirical analysis is threatened

by the analysis of only one project. Because Bing is a mature

large service, our results are not generalizable to less mature

128130130

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SAO CARLOS. Downloaded on March 25,2021 at 21:08:16 UTC from IEEE Xplore. Restrictions apply.

products. Furthermore, we also believe that the experimental

process is more complex for on-premises products. However,

the project which we analyzed comprises several inherently

different components. We tried to mitigate this difference by

considering each component separately. Furthermore, due to

data consistency reasons we limited our analysis to experi-

ments of the past 2.5 years.

The internal validity of our analysis is threatened by the

fact that components within Bing use slightly different ways to

capture, configure and deploy experiments. Bing is a composi-

tion of very large services that use different programming lan-

guages. Further, Bing is developed by hundreds of developers,

who implement source code for experiments in different ways.

Therefore, we were limited in the development of parsers

to link code changes to experiments and to infer whether

experiments have been shipped. Hence, our analysis does not

cover all experiments run within Bing, but presents an analysis

on a subset of Bing’s experiments. Furthermore, our analysis

on the experiments’ life-cycle does not capture the time spent

on designing the experiment and analyzing the gathered user

data. Our analysis is therefore a first approximation of the

actual time needed to conduct controlled experiments in a

large-scale software product.

IX. DISCUSSION

The opportunity to experiment with products drastically

changed the way software is deployed within Bing. Our

empirical analysis showed that experimentation has become

an integral part within the deployment cycle. In the following,

we discuss different aspects of the experimentation process

and our planned future work.

A. Should Experimentation be Done for All Code Changes?

Bing has significantly increased the number of experiments

since 2009 [17]. Further, many people are involved in the

execution of an experiment who spend time preparing and

executing experiments. The experimentation process is now a

substantial part within the deployment cycle. We also observed

that experiments can become a limiting factor of the cycle

time within the deployment cycle, and hence we suggest that

practice as well as research should not only focus on methods

to accelerate the deployment of code changes, but on methods

to identify experiments which are worthwhile to run and on

methods to ensure that the experiment is run without issues.

We observed that generally larger code changes are linked

to experiments. While it is possible to run a controlled

experiment with each kind of change, we conclude that

smaller changes have other priorities than improving the user

experience. As an example, for a bug fix, the most important

issues are to rapidly understand whether the deployed fix

does not introduce further issues and whether the change

fixes the bug. For small code changes, users may be less

likely to significantly react. On the other side of the spectrum,

the difficulty in the experiment design, measurement, and

analysis is substantially increased for large code changes as

many different aspects about the larger change can influence

user behaviors. Therefore, adapting experimentation means

to understand the trade-off between running a controlled

experiment and other means to verify a code change or to

offer different experimentation processes for different kinds of

changes. We believe that the cost of a controlled experiment

could be dramatically decreased for bug fixes, if these changes

could be deployed after a shorter amount of time and do not

have to improve the user experience necessarily. Requiring

a hypothesis for every change is too great an overhead for

small changes, such as big fixes. Therefore, we believe that

an experimentation process tailored to the different kinds of

code changes may be more efficient.

B. Size of the Code Changes.

We observed that code changes which we classified as

matched changes or high probability changes have overall

more development activity associated with them than changes

which we classified as low probability or other changes. This

observation raises the question whether experimentation in

a mature system is only enabled by changes big enough to

cause measurable effects on the end users of the product. On

the other hand, developers may not want to spend additional

time for experimentation if the change is reasonably small.

Hence, we suggest that different experimentation processes

and frameworks should be used for different kinds of changes.

For future work, we plan to investigate further the relation

between bigger releases and the amount of experiments run

and compare these findings to experimentation activity in

a less mature system. Furthermore, we plan to investigate

how continuous experimentation influences the way developers

work.

C. Developers as Data Analysts.

We observed that on average 1409 metrics about the users’

behavior for each version of the product are identified and

analyzed by experimenters. Further, experimentation frame-

works offer to analyze an ongoing experiment multiple times

a day. The collected metrics are not always straight-forward

to interpret, as Kohavi et al. [16] illustrate on five real-world

examples. This difficulty of interpreting the collected metrics

suggests an inevitable shift of traditional development work

to rigorous data analyses. This observation agrees with the

observations of Kim et al. [14] who found that data scientist

are increasingly important within software development teams.

As these data analyses have potential to impact the annual

revenue of a product [16], proper data analyses is of superior

importance. As Lindgren and Münch [21] found out when

interviewing people of different roles in ten software com-

panies, a lack of time and missing expertise were named as

reasons of inadequate data analysis. This lack of data analysis

expertise was also identified for experiments run in a B2B

environment [27]. Hence, the team around the Experimentation

Platform introduced one-day classes in statistics and experi-

ment design, which nowadays even have wait lists [15]. We

plan to further investigate how developers can be supported

in coping with the captured metrics about the user behavior,

129131131

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SAO CARLOS. Downloaded on March 25,2021 at 21:08:16 UTC from IEEE Xplore. Restrictions apply.

for example through improved user interfaces and summarized

views.

D. Success of Experiments.

The success of an experiment can be considered from

different standpoints. In our analysis, we first verified whether

the code change is eventually shipped to all users. We ob-

served that experiments which were shipped are significantly

larger and that more people contributed source code for the

experiment. However, an experiment can also be considered

successful if a data-driven decision of whether to ship or

abandon a code change was enabled and hence a development

team had the possibility to learn more about their users.

In a next step, we plan to analyze this learning value of

experiments and we plan to figure out what the characteristics

of experiments are that enable a data-driven decision.

X. CONCLUSION

The opportunity to experiment with a software product

denotes a radical change in how software is deployed. While

previously every change was deployed to all users, now only

the changes which have a measurable improvement on the user

experience are deployed to all users. We characterized such an

experimentation process employed in a large-scale and mature

product, i.e. Bing. We further analyzed 21,220 experiments

over the past 2.5 years and observed that 33.4% of these

experiments have been deployed to all users of the product.

Our characterization of the experiments and their develop-

ment activities revealed that experiments which are eventually

shipped to all users, have generally more development activity.

ACKNOWLEDGMENT

We would like to thank the Experimentation Platform team

for sharing historical data of experiments and helpful discus-

sions of this work. We also thank the people who reviewed

this paper, in particular the NCSU Realsearch research group,

for providing valuable feedback.

REFERENCES

[1] Experiments - articles & solutions.
https://developers.google.com/analytics/solutions/experiments.
Accessed: 2016-10-21.

[2] Planout a framework for online field experiments.
https://facebook.github.io/planout/. Accessed: 2016-10-21.

[3] B. Adams and S. McIntosh. Modern release engineering in a nutshell –
why researchers should care. In IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering, pages 78–90, 2016.

[4] E. Bakshy, D. Eckles, and M. S. Bernstein. Designing and deploying
online field experiments. In 23rd International Conference on World
Wide Web, pages 283–292, 2014.

[5] J. Bosch. Building products as innovation experiment systems. In
3rd International Conference on Software Business, Lecture Notes in
Business Information Processing, pages 27–39, 2012.

[6] T. Crook, B. Frasca, R. Kohavi, and R. Longbotham. Seven pitfalls to
avoid when running controlled experiments on the web. In 15th ACM
International Conference on Knowledge Discovery and Data Mining,
pages 1105–1114, 2009.

[7] T. H. Davenport. How to design smart business experiments. Harvard
Business Review, pages 69–76, 2009.

[8] A. Deng. Objective bayesian two sample hypothesis testing for online
controlled experiments. In 24th International Conference on World Wide
Web (Companion), pages 923–928, 2015.

[9] A. Deng, Y. Xu, R. Kohavi, and T. Walker. Improving the sensitivity of
online controlled experiments by utilizing pre-experiment data. In 6th
ACM International Conference on Web Search and Data Mining, pages
123–132, 2013.

[10] P. Duvall, S. Matyas, and A. Glover. Continuous Integration: Improving
Software Quality and Reducing Risk. A Martin Fowler signature book.
Addison-Wesley, 2007.

[11] F. Fagerholm, A. S. Guinea, and H. M˙ The {RIGHT} model for
continuous experimentation. Journal of Systems and Software, pages –,
2016.

[12] F. Fagerholm, A. S. Guinea, H. Mäenpää, and J. Münch. Building blocks
for continuous experimentation. In 1st International Workshop on Rapid
Continuous Software Engineering, pages 26–35, 2014.

[13] J. Humble and D. Farley. Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation. Addison-
Wesley Signature Series (Fowler). Pearson Education, 2010.

[14] M. Kim, T. Zimmermann, R. DeLine, and A. Begel. The emerging role
of data scientists on software development teams. In 38th International
Conference on Software Engineering, pages 96–107, 2016.

[15] R. Kohavi, T. Crook, R. Longbotham, B. Frasca, R. Henne, J. L. Ferres,
and T. Melamed. Online experimentation at microsoft. In Workshop on
Data Mining Case Studies and Practice Prize, 2009.

[16] R. Kohavi, A. Deng, B. Frasca, R. Longbotham, T. Walker, and Y. Xu.
Trustworthy online controlled experiments: Five puzzling outcomes ex-
plained. In 18th ACM International Conference on Knowledge Discovery
and Data Mining, pages 786–794, 2012.

[17] R. Kohavi, A. Deng, B. Frasca, T. Walker, Y. Xu, and N. Pohlmann.
Online controlled experiments at large scale. In 19th ACM International
Conference on Knowledge Discovery and Data Mining, pages 1168–
1176, 2013.

[18] R. Kohavi, A. Deng, R. Longbotham, and Y. Xu. Seven rules of thumb
for web site experimenters. In 20th ACM International Conference on
Knowledge Discovery and Data Mining, pages 1857–1866, 2014.

[19] R. Kohavi and R. Longbotham. Online controlled experiments and
a/b tests (to appear). In Encyclopedia of Machine Learning and Data
Mining, 2016.

[20] R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne. Con-
trolled experiments on the web: survey and practical guide. Data Mining
and Knowledge Discovery, 18(1):140–181, 2009.

[21] E. Lindgren and J. Münch. Software Development as an Experiment
System: A Qualitative Survey on the State of the Practice. 2015.

[22] R. Mason, R. Gunst, and J. Hess. Statistical design and analysis
of experiments: with applications to engineering and science. Wiley
series in probability and mathematical statistics: Applied probability and
statistics. 1989.

[23] D. Mindell. Digital Apollo: Human and Machine in Spaceflight. Inside
Technology Series. 2008.

[24] H. H. Olsson, H. Alahyari, and J. Bosch. Climbing the ”stairway to
heaven” – a mulitiple-case study exploring barriers in the transition
from agile development towards continuous deployment of software.
In 38th Euromicro Conference on Software Engineering and Advanced
Applications, pages 392–399. IEEE Computer Society, 2012.

[25] C. Parnin, E. Helms, C. Atlee, H. Boughton, M. Ghattas, A. Glover,
J. Holman, J. Micco, B. Murphy, T. Savor, M. Stumm, S. Whitaker,
and L. Williams. Top 10 adages in continuous deployment. In IEEE
Software, to appear. IEEE Computer Society, 2016.

[26] E. Ries. The Lean Startup: How Today’s Entrepreneurs Use Continuous
Innovation to Create Radically Successful Businesses. Crown Publishing
Group, 2011.

[27] O. Rissanen and J. Münch. Continuous experimentation in the b2b
domain: A case study. In 2nd Rapid Continuous Software Engineering,
pages 12–18. IEEE/ACM, 2015.

[28] D. Tang, A. Agarwal, D. O’Brien, and M. Meyer. Overlapping
experiment infrastructure: More, better, faster experimentation. In 16th
Conference on Knowledge Discovery and Data Mining, pages 17–26,
2010.

[29] Y. Xu, N. Chen, A. Fernandez, O. Sinno, and A. Bhasin. From infrastruc-
ture to culture: A/b testing challenges in large scale social networks. In
21th ACM International Conference on Knowledge Discovery and Data
Mining, pages 2227–2236. ACM, 2015.

130132132

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SAO CARLOS. Downloaded on March 25,2021 at 21:08:16 UTC from IEEE Xplore. Restrictions apply.

suellen

