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Abstract

Video traffic constitutes a significant portion of Internet traffic, directly impacting
the Quality of Service (QoS) for several applications sharing the network. Emerging
on-demand video streaming technologies, like Dynamic Adaptive Streaming over HTTP
(DASH), enable a degree of adaptability in video playback to match the quality levels
provided by video service providers. However, from the perspective of network providers,
monitoring and managing such applications pose considerable challenges due to their
client-driven nature. In this work, we address these challenges and present solutions
founded on two key pillars: 𝑖) contemporary programmable networks; and 𝑖𝑖) artificial
intelligence. We propose a solution that encompasses the Monitor-Analyze-Plan-Execute
(MAPE) cycle, where monitoring and management mechanisms collaborate to enhance
the QoS of DASH video streaming. In this work, we create a “Smart Closed Loop”,
leveraging the capabilities of the Programmable Data Planes (PDP) and utilizing fine-
grained measurements provided by In-band Network Telemetry (INT) to guide Machine
Learning (ML) decisions.

We designed and implemented a more precise method for estimating adaptive video
service metrics, characterizing significant progress in the field of DASH service monitoring
(M). Analyzing these estimates (A), the Smart Closed Loop can plan (P) execution
(E) strategies within the network infrastructure that aim to deliver the video in better
conditions. In this work, the preferred execution strategy is a probabilistic packet discard
policy, due to DASH utilizing TCP as a congestion control approach. In this context, we
revisited a well-known Active Queue Management (AQM) mechanism based on the RED
algorithm, and inspired by it we developed our solution: ingress Random Early Detection
(iRED). iRED is a disaggregated P4-AQM fully implemented in programmable data plane
hardware (Tofino switches) that saves router resources. This algorithm not only conserves
router resources but also aligns with the Low Latency, Low Loss, and Scalable throughput
(L4S) framework.

Considering the dynamic nature of video traffic, we design and implement a mechanism



based on Deep Reinforcement Learning to fine-tune iRED parameters in real-time named
Dynamic, Enhanced and Smart iRED (DESiRED). With DESiRED, we leverage the
benefits attained in enhancing the quality of the DASH video service, making our solution
adaptive to the dynamics of network traffic.

Keywords: Programmable Data Plane. In-band Network Telemetry. Machine Learning.
Deep Reinforcement Learning. Adaptive Video Streaming.
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Chapter 1

Introduction

The operation and service management of contemporary networks pose an ongoing
horizon of challenges for network administrators. The extensive array of applications and
services, each with distinct requirements, inherently introduces a layer of complexity to
these environments. Among these applications, on-demand video streaming prominently
emerges as a significant component, currently constituting 60-75% of the total Internet
traffic (Sandvine, 2023).

In this context, Dynamic Adaptive Streaming over HTTP (DASH)(ISO, 2014) holds
a prominent position as the preferred solution adopted by major players in the streaming
industry, including Netflix® and Google® (Lederer, 2015). Essentially, DASH serves as a
facilitator for video encoding, accommodating a wide range of combinations encompassing
resolution, bitrate, Frames per Second (FPS), and various other essential parameters. It
provides consumers with a user-friendly, adaptive menu, empowering them to select the
most suitable configuration based on their adaptation logic (Bentaleb et al., 2019). This
selection process is influenced by the available resources on the consuming devices and
the status of the infrastructure. The videos are segmented into uniform-duration chunks,
thereby enabling smooth transitions between different video quality levels (Chen; Wu;
Zhang, 2015).

Given the importance of adaptive video streaming on the Internet, this subject has
captivated the interest of the scientific community (Lin et al., 2020; Wei et al., 2021;
Kim; Chung, 2022; Hafez; Hassan; Landolsi, 2023; Spang et al., 2023) with the primary
objective to enhance the video Quality of Service (QoS), and consequently the Quality of
Experience (QoE). We observed the literature has focused on solutions on the video client
side, bringing innovations mainly to the Adaptive Bitrate Streaming (ABR) algorithm.
However, we understand that the state of the video player mirrors the conditions of the
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network. To a better comprehension, when the network operates without congestion,
the ABR algorithm can deliver video content under optimal conditions. During network
congestion, the ABR mechanism may offer suboptimal service to users. In summary, we
believe that mere adjustments to the ABR algorithm do not directly tackle the funda-
mental issue. Section 1.1 delves into the research problem, describing the challenges it
presents and providing a characterization of the issues that remain unresolved.

1.1 Problem Statement
QoS and QoE in on-demand video streaming play a fundamental role in enhancing

viewer satisfaction. As previously mentioned, recent efforts within the community have
been dedicated to enhancing ABR algorithms from the client-side perspective. This focus
arises from the client-driven nature of DASH service. However, we understand that this
approach has some drawbacks.

The fundamental consideration is that leaving the adaptation or adjustment decisions
exclusively to ABR serves as a palliative measure to address the issue rooted in network
congestion. This situation arises due to the inherent approach of ABR algorithms, which
delegate the responsibility of fair distributing network resources among competing users
to the transport layer algorithms (Spang et al., 2023).

Moreover, from the point of view of network service providers, it’s important to note
that: firstly, they lack control over video clients as decisions regarding the download
of the next video segments are determined by the ABR; secondly, the greedy policy of
ABR decisions can lead to a global deterioration of QoE due to a lack of coordination
among clients (Kim; Chung, 2022); and thirdly, ABR solutions tend to be mutually
exclusive, making the integration of their respective characteristics into a single video
player a formidable challenge. Consequently, network service providers face difficulties in
providing a premium QoS to DASH clients.

In this regard, efforts initiated by the IETF in 20131 culminated in the proposal of a
complex architecture referred to as Server and Network-assisted DASH (SAND) in 2017
(Thomas et al., 2017). Within the SAND architecture, elements are categorized into
three groups: 𝑖) DASH clients, 𝑖𝑖) DASH-assisting network elements (DANE), and 𝑖𝑖𝑖)
conventional network elements. In this scenario, elements 𝑖 and 𝑖𝑖 engage in the exchange
of DASH messages to facilitate the efficient delivery of video segments. However, this
architecture was too intricate, primarily because it mandated the presence of network
elements with the capacity to comprehend DASH messages. This requirement not only
introduced additional overhead in network traffic but also led to its limited adoption by
service providers. Furthermore, there were inherent challenges linked to the scalability of
the architecture, as the management complexity increased proportionally with the growing
1 https://mpeg.chiariglione.org/about/events/workshop-session-management-and-control-mpeg-dash
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number of DASH clients within the environment. Therefore, proposing a solution to help
existing Congestion Control (CC) mechanisms enhance the QoS of real-time video services
represents a current challenge.

As a presented scenario, the networking community has sought more innovative so-
lutions in the QoS/QoE guarantees of on-demand video streaming. The recent advances
in the domain of Programmable Data Plane (PDP)(Bosshart et al., 2014a) and In-band
Network Telemetry (INT) (P4, 2021) have conducted a paradigm shift, bringing us the ca-
pability to attain granular visibility, discernible on a per-packet basis, effectively altering
the scenario of the challenges associated with data availability in the context of moni-
toring within computer networks. Furthermore, recent progress in the field of Artificial
Intelligence (AI) applied to computer networks (Boutaba et al., 2018) has reshaped the
mechanisms to support the management of network services by incorporating some level
of intelligence. This thesis is situated within this context, offering contributions
to the current state-of-the-art in enhancing the QoS for on-demand video
streaming services, leveraging from the killing technologies for monitoring
and service operations in programmable networks. In the next section, we will
examine the hypothesis outlined in this work, providing the supporting arguments for our
foundations.

1.2 Hypothesis
Conventional practices for monitoring and managing computer networks are predomi-

nantly based on the evaluation of a variety of performance metrics. These metrics encom-
pass various parameters, including the utilization of CPU resources by specific equipment,
the volume of packets transmitted via network interfaces, and the latency experienced in
particular connections. These metrics serve as indicators of the network’s condition and
are subject to influence by other external factors. For instance, it is anticipated that
a direct correlation exists between the number of connections on a web server and the
corresponding memory utilization.

In the context of networking, this cause-and-effect association is a well-established
concept, frequently utilized by transport protocols for congestion inference. Notably,
Transmission Control Protocol (TCP), for example, relies on not receiving acknowledg-
ments to deduce that the network is congested. Meanwhile, the Bottleneck Bandwidth
and Round-trip (BBR) protocol employs Round-trip time (RTT) measurements to de-
tect congestions (Cardwell et al., 2016). In this case, the information acquired reflects
a historical state of network conditions, signifying that the inferred congestion pertained
to a moment before its detection. Consequently, the strategies employed are inherently
reactive rather than proactive.

Within switches, the status of buffers holds relevance as they serve as critical indicators
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of network congestion (Kim et al., 2018). Furthermore, these buffers’ occupancy levels
can influence various metrics employed by monitoring systems, including RTT, delay, and
jitter. Nonetheless, the real-time acquisition of data from a buffer is a challenge, primarily
due to the resource-intensive nature of this task. This challenge arises from the requisite
of the use of additional bits in headers and the resultant elevated power consumption in
network devices (Arslan; McKeown, 2019).

In the context of modern networks, a notable shift has occurred, making it feasible
to collect real-time data from buffers with only minimal increases in power consumption
or capacity loss (Arslan; McKeown, 2019). Furthermore, integrating PDP and INT has
enabled the more precise and comprehensive observation of network data. We believe
that services operating across a network have the potential to use performance metrics as
a means to evaluate the QoS. In such scenarios, quality metrics associated with a service
may mirror the state of the network on which the service is deployed, as exemplified in
(Almeida; Pasquini; Verdi, 2021).

Based on these initial considerations, our core hypothesis is that fine-grained mea-
surements provided by In-band Network Telemetry (INT) within Programmable
Data Planes (PDP) can be used as input layer for Machine Learning (ML)
models to drive Active Queue Management (AQM) mechanisms with the ul-
timate goal to enhance the Quality of Service (QoS) of DASH video services.
In the next section, as we aim to evaluate the hypothesis, we will present our proposal by
detailing each component of the solution within the framework of the Monitor-Analyze-
Plan-Execute (MAPE) cycle.

1.3 Proposal
To evaluate the feasibility of the hypothesis, we designed a proposal based on the

MAPE cycle, where each component plays a defined role in the Smart Closed Loop frame-
work, as can be seen in Fig. 1. In short, fine-grained INT measurements are collected
directly from the data plane in-line rate, characterizing the Monitor phase. These mea-
surements serve as the input layer for two intelligent components at the control plane:
𝑖) a regressor utilizing Supervised Learning to infer the state of DASH clients through
QoS estimations, thus characterizing the Analyse phase; and 𝑖𝑖) a Deep Reinforcement
Learning (DRL) agent that Plans the actions and interacts (Execute) with the environ-
ment (network) to maximize rewards (best QoS). It achieves this by fine-tuning AQM
parameters, to improve the quality of the DASH video service. Before explaining how
this agent Plans the actions, for a better understanding, we will proceed one step further
and describe the Execute phase. After this, we will step back and show how the Plan
phase is designed.

The component chosen to implement the Execute phase in this work was the prob-
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Figure 1 – The main outcome from the hypothesis of this thesis is the Smart Closed Loop.

abilistic packet discard/marking policy. In this context, we revisited a well-known AQM
mechanism based on the Random Early Detection (RED) algorithm (Floyd; Jacobson,
1993). The RED mechanism is quite simple: drop packets before the queue buffer is
full then avoiding packet tail drop. The idea behind this is that for latency-sensitive
applications, such as DASH, the lower the time packets stay in the queue, the better.
We argue that, with this strategy, there is a high probability of discarding packets from
culprit flows, that is, those that exacerbate congestion. Given that DASH uses TCP as
transport layer protocol (ISO, 2014), the CC can benefit from drops, reacting as soon as
possible to the congestion signal by receiving duplicate ACKs and triggering the TCP
Fast Recovery. This early feedback accelerates the reduction of the packet-sending rate
across the network and consequently alleviates the congestion.

The primary methods for conveying congestion conditions to senders include packet
marking using Explicit Congestion Notification (ECN) bits and selective packet drop-
ping, which are typically implemented in the Active Queue Management (AQM) solutions
(Gombos et al., 2022). Considering the dynamic adaptation logic of DASH (Spang et al.,
2023), we believe the video QoS would be minimally affected by discards, as the player
maintains a local buffer to temporarily store the last received frames.

We designed and implemented a RED mechanism, called ingress Random Early De-
tection (iRED), which is a disaggregated P4-AQM fully implemented in a programmable
data plane hardware (Tofino switch). To understand the meaning of disaggregation in
this work, it’s essential to observe the entire path of a packet within a PDP. Initially,
incoming packets are received at the Ingress Block and the match-action logic (e.g., IPv4
forwarding) is executed. In the Traffic Manager, which is non-programmable, packets
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can be accommodated temporarily in the appropriate output queue. After this, packets
are sent to the Egress Block, where AQM algorithms are traditionally implemented as a
match-action logic to make drop decisions (set a packet to drop). Finally, the packets
marked to be dropped will be effectively discarded in Egress Deparser, which is the last
phase in the pipeline.

One may ask why the AQMs are deployed in the Egress block causing a waste of
resources since the packet traversed all the pipelines in the switch and then was discarded.
It makes much more sense to deploy the AQMs in the Ingress block. However, queuing
delay metadata (or queue depth) which is the main information used as input to the
AQM algorithm to decide whether the packet should be dropped or not, is captured by
the Traffic Manager and made available only in the Egress block. Then, AQM algorithms
must be deployed at the Egress block. The challenge is to design a solution in which
the packets are dropped in the Ingress block saving resources of the network device. We
discuss this topic as the Egress drop problem.

In this sense, disaggregation in this work means that iRED takes the decision to discard
a packet in the Egress block (after Traffic Manager), but the drop action is performed in
the Ingress block. Based on this concept, our evaluations have shown that iRED can save
router resources (See Chapter 5).

In addition, our iRED solution supports the recent L4S framework (Briscoe et al.,
2023), which is a new architecture proposed by Internet Engineering Task Force (IETF)
that enables Internet applications to achieve low queuing latency, low congestion loss,
and scalable throughput control (L4S). The L4S architecture introduces incremental
changes to both hosts and network nodes. On the host side, L4S incorporates a novel
variant of a “Scalable” CC algorithm known as TCP Prague (Briscoe et al., 2018). TCP
Prague adjusts its window reduction in proportion to the extent of recently observed
congestion. This stands in contrast to “Classic” CC algorithms, which typically implement
a worst-case reduction, typically by half, upon detecting any signal of congestion. At
network nodes, L4S brings a dual queue coupled mechanism (Schepper; Briscoe; White,
2023), in which one queue is for Classic traffic and another queue is for Scalable traffic.
This coupled mechanism allows fair use of bandwidth, ensuring harmonious coexistence
between CC flavors. iRED supports the L4S by categorizing traffic as either Classic
(subject to dropping) or Scalable (marked with the ECN bit), thus ensuring fairness
among various flows through a combined packet dropping and marking in a coupled
mechanism.

A key aspect of iRED involves setting an appropriate threshold value, often based
on queue delay (target delay) or queue depth. A too-small target delay increases packet
losses, raising drop probability and reducing overall link utilization. Conversely, a high
target delay results in long queuing delays but a lower drop probability. We discuss this
topic as the fixed target delay problem. As the DASH traffic is dynamic, it would be
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interesting for the target delay to have a dynamic characteristic, adjusting the load applied
to the network buffers. In the Smart Closed Loop (Fig. 1), the Plan phase is characterized
by determining the ideal target delay for the current network load conditions.

In this work, to adjust the iRED target delay dynamically, we design and implement
the Dynamic, Enhanced and Smart iRED (DESiRED), a joint solution that leverages
the In-band Network Telemetry (INT) and Deep Reinforcement Learning (DRL). With
DESiRED, fine-grained measurements are used as an input layer for the Deep Queue
Network (DQN) to define management actions, that is, find the ideal target delay based
on the current network conditions (INT measurements). Based on the experience of the
actions taken, DESiRED learns the ideal target delay values following a rewards policy
that maximizes DASH QoS. With DESiRED dynamically adjusting the target delay, we
achieved the best results compared to a fixed target delay. We understand this solution
materializes the Smart Closed Loop.

Starting from our solution proposal, we enumerate three research questions that guided
this work. In the following section, we will introduce and discuss these questions, explain-
ing how we formulated our answers. These answers form the foundation for the five
contributions of this work.

1.4 Research Questions and Contributions
In this section, we enumerate five significant contributions that are the answers to the

three research questions guiding this thesis.
Question 1: Is there a correlation between the conditions of the network

infrastructure and the state of a DASH service? If such a correlation exists,
what methodology is best employed to map and quantify this relationship
effectively?

To address this first question, we initiate our investigation by exploring the estimation
of the quality of service through network state information. This topic has been commonly
discussed in the literature (Stadler; Pasquini; Fodor, 2017; Calasans, 2020), enabling a
network operator to obtain a clear view of the state of the video application based on the
conditions of the network infrastructure.

In our first contribution, we characterize this issue as a regression problem that can
be solved through supervised learning. In this particular context, our second contribu-
tion trains a regressor employing fine-grained INT measurements as the input layer for
the estimation of DASH metrics. These infrastructure metrics were collected at line rate
from the router buffers, offering a detailed view of network congestion status. The out-
come derived from this trained regressor yielded improved accuracy, exhibiting a reduced
prediction error in comparison to the state-of-the-art solutions. Furthermore, this regres-
sor could be valuable in cases where the network operator lacks access to the application’s
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performance metrics, enabling awareness of the application’s status with a certain level
of accuracy.

Question 2: Based on these correlations, is it possible to manage and or-
chestrate some mechanism in real-time to improve the QoS of a DASH service?

In our initial investigations, we established a demonstrable correlation between the
buffer occupancy within routers and the DASH QoS. Drawing upon these findings, our
exploration delved deeper into the investigation of techniques designed to mitigate con-
gestion. Potential strategies were analyzed encompassing to ReRouting (Chiesa et al.,
2019; Verdi; Luz, 2023; Marques; Levchenko; Gaspary, 2023), Queue Priorization (Ra-
houti et al., 2021), and AQM (Kundel et al., 2018; Papagianni; Schepper, 2019). In our
initial analyses, we opted to employ packet discard as the primary strategy, aimed at
efficiently draining packets directly from the queues and consequently alleviating network
congestion.

Regarding our third contribution, we design and deploy iRED, our implementation
of the RED (Floyd; Jacobson, 1993) algorithm, in both, hardware (Tofino) and soft-
ware (Bmv2). Our evaluations indicated that iRED enhances the QoS for DASH service
(Almeida et al., 2022), dropping packets as soon as possible, and signaling the sender
to reduce the packet sending rate. Also, to the best of our knowledge, iRED represents
the pioneering P4-AQM with support for L4S framework, fully implemented in the data
plane. Moreover, it employs a key concept regarding disaggregation, wherein the decision
to discard a packet is made in the Egress block (after Traffic Manager). Still, the action is
executed in the Ingress block, thus optimizing the utilization of router resources. In this
context, we have identified and elucidated a recurring issue in the state-of-the-art AQM
mechanisms integrated into the data plane. In this thesis, our fourth contribution
pertains to the definition and characterization of the “Egress drop problem”.

Question 3: Given the flexibility of the programmable data plane and the
robustness of reinforcement learning models, is it possible to create a joint
solution, encompassing the data plane and the control plane of a network to
materialize the MAPE cycle?

In this thesis, we design and implement a solution named DESiRED, that materializes
a “Smart Closed Loop” as our fifth contribution. With DESiRED, we successfully
addressed the “fixed target delay problem” in the context of AQM in a programmable
data plane. The target delay is a threshold value commonly used by AQMs to trigger
the drop probability for every packet. Historically, this value has remained static, and
as a result, we refer to it as the “fixed target delay”. We posit that a dynamic target
delay could offer advantages for improving the QoS in the context of DASH, given the
inherently dynamic nature of video traffic (Spang et al., 2023). This was achieved by
dynamically adapting the target delay in real-time, through the integration of In-band
Network Telemetry (INT), Service Estimation, DRL, and iRED.
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Figure 2 – Thesis organization.

The organization of the chapters, their correlation and the placement of each compo-
nent within the MAPE cycle are detailed in Fig. 2. After the introduction, the funda-
mental concepts necessary for an understanding of the topics discussed in this thesis are
presented in Chapter 2. In Chapter 3, the related works are briefly described, providing
an exposition of the primary distinctions achieved through the advancements introduced
within this thesis. Chapter 4 provides a comprehensive account of the challenges faced
and the progress achieved in addressing the issue of service metrics estimation, using fine-
grained INT measurements as input layer to ML models. Chapter 5 introduces iRED,
a P4-based AQM fully implemented within the data plane, designed to support the L4S
framework. We illustrate the materialization of the Smart Closed Loop (DESiRED),
which encompasses both the control and data planes in Chapter 6. Chapter 7 presents
the final considerations, including lessons learned and future directions to be explored.
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Chapter 2

Fundamental Concepts

The objective of this chapter is to provide clarity on the conceptual foundations,
highlighting how the adaptive video service can be improved from the Smart Closed
Loop introduced. In this scenario, our solution can be interpreted as a fusion of network
programmability, machine learning and active queue management.

2.1 Adaptive Bitrate Video Streaming

Currently, on-demand streaming video traffic from services such as Netflix and YouTube
constitutes a substantial portion, accounting for 60-75% of Internet traffic (Sandvine,
2023). This scenario represents a predominant profile wherein a single application com-
mands the largest share of Internet traffic. In this context, contemporary video applica-
tions exert a notable influence on Internet traffic patterns (Spang et al., 2023), potentially
impacting the QoS for other applications that share the same network resources.

The delivery of audiovisual content through Hypertext Transfer Protocol (HTTP)
has evolved into a standard practice adopted by major players in the video industry
(Lederer, 2015). Within this scenario, the integration of the DASH standard alongside
ABR algorithms has significantly reshaped the content delivery process.

On the server side, as an integral aspect of the encoding process, the video is parti-
tioned into segments of uniform size, commonly denoted as chunks. Subsequently, each of
these segments undergoes encoding at multiple discrete quality levels. Conversely, on the
client side, the ABR adaptation logic governs the consumption pattern of video segments
(Spiteri; Sitaraman; Sparacio, 2018). As depicted in Fig. 3, the ABR adaptation logic is
capable of dynamically transitioning between various video quality levels in response to



36 Chapter 2. Fundamental Concepts

Segment 1 Segment 2 Segment 3 Segment 4

Segment 1 Segment 2 Segment 3 Segment 4

Segment 1 Segment 2 Segment 3 Segment 4

High 
Quality

Mid 
Quality

Low 
Quality

Time

Time

Network 
Load

Figure 3 – ABR adaptation logic changes in response to the network conditions.

the network load conditions, with the ultimate goal of optimizing the QoE for a single
video session (Spang et al., 2023).

Although this technology is considered a “smart” mechanism due to its capability
to adapt to fluctuations caused by network load, unfortunately, such a solution by it-
self is not enough to keep the pace required by certain Service Level Agreement (SLA)
and other auxiliary mechanisms should be designed to jointly work with them. These
additional mechanisms can emerge from various avenues, with one notable avenue being
network innovations. Network programmability has opened doors to increased flexibility
in packet processing within the network infrastructure. This newfound flexibility signifies
an essential paradigm shift that can serve as a supplementary mechanism in the provision
of video services over the Internet.

2.2 Network Programmability
With the emergence of Software Defined Network (SDN) (Casado et al., 2007; McK-

eown et al., 2008), the initial advances towards network programmability were taken
(Hauser et al., 2023). The separation of data and control planes has brought about
increased flexibility and new avenues of research in the field of computer networks.

In this context, the OpenFlow protocol pioneered the provision of a network abstrac-
tion layer to the control element (Controller), thereby enabling the configuration and
manipulation of the network’s data plane through software programming. However, this
model still lacked sufficient flexibility for adding new headers and defining new actions af-
ter flow matching due to limitations imposed by the rigidity in the intelligence embedded
in the pipeline of ASIC processors (Garcia et al., 2018).

Traditionally, the data plane has taken on the role of processing packets according
to the logic prescribed by the control plane. However, the game changes with the intro-
duction of data plane programmability, which facilitates the incorporation of intelligence
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during packet processing at the hardware’s most proximate level, without the necessity
for control plane intervention. Noteworthy examples of languages tailored for program-
ming the data plane in this context include Programming Protocol-independent Packet
Processors (P4) (Bosshart et al., 2014b) and Network Programming Language (NPL)
(Broadcom, 2019). Among these, P4 stands out as a language that has gained wide
acceptance within both the scientific and industrial communities.

Beyond the evident flexibility, the response time of the data plane resides in the order
of nanoseconds, while the control plane operates on a scale of seconds or milliseconds
(Hauser et al., 2023). P4 code exhibits versatility across a range of architectures, each
characterized by unique match-action pipeline stages and packet processing attributes.
These architectural designs are fundamentally underpinned by an abstraction model, such
as Protocol-Independent Switch Architecture (PISA), that facilitates the mapping of in-
structions and hardware-specific features tailored to individual targets. The P4 language
abstracts packet parsing and processing, by providing a generalized forwarding model.

Figure 4 – PISA abstraction model. Adapted from (Hauser et al., 2023).

As illustrated in Fig. 4, the PISA architecture consists of three fundamental com-
ponents: a programmable parser, a programmable match-action pipeline, and a pro-
grammable deparser.

The programmable parser operates as a finite state machine that dictates the order of
header extraction from incoming network packets. Once the headers and their associated
fields have been exposed by the programmable parser, they can traverse through multiple
stages within the match-action pipeline. In this context, tables are defined to effectively
manage metadata, adhering to the logic established by the programmer. For instance,
in the context of IPv4 routing, a table can be configured to perform matches against
the destination address and execute actions such as: i) decrementing the TTL field; ii)
adjusting physical addresses; iii) configuring the output port.

The deparser represents the programmable component responsible for specifying the
packet’s serialization, i.e., reassembly, for subsequent transmission.
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In the context of programmable networking, the industry has recently adopted support
for the P4 language. Notably, Xilinx has introduced the NetFPGA SUME, an advanced
network card that enables P4 programming. Furthermore, industry leaders such as Intel
and Broadcom have launched dedicated processors, namely the Tofino (Intel, 2021) and
Trident4 (Broadcom, 2023), specifically tailored for the programmable networking market.

For educational purposes, a software-based switch version capable of executing P4
code is available. The Bmv2 (Behavioral Model Version 2) 1 is an integral component
within the P4 ecosystem, designed as a tool for the study, testing, and analysis of solutions
directly within the data plane.

In the P4 ecosystem, commonly referred to as a “target”, each equipment category
possesses a specific architecture. In the case of NetFPGA, the employed architecture is
the Simple Sume Architecture, whereas Tofino utilizes the Tofino Native Architecture and
the Bmv2 is rooted in the V1model architecture (Hauser et al., 2023).

A comprehensive understanding of the architecture supported by the target is essen-
tial for the programmer, as it delineates the implementation particulars of the various
stages. Furthermore, the availability of metadata for utilization depends on the specific
architecture. These metadata can be accessed and integrated into network monitoring
systems. For instance, in the V1model architecture, metadata about switch interface
buffers can be retrieved and encapsulated within packets during the forwarding process.
This technique is elaborated in the INT specification (P4, 2021), designed to facilitate
metadata collection within the data plane without necessitating control plane intervention
or involvement.

2.2.1 In-band Network Telemetry

Advancements in programmable data plane (Bosshart et al., 2014b) have enabled
network devices to autonomously report the network’s state, eliminating the need for
direct control plane intervention (Arslan; McKeown, 2019). In this scenario, packets
incorporate telemetry instructions within their header fields, facilitating the fine-grained
collection and recording of network data. The telemetry instructions are defined in the
INT data plane specification (P4, 2021).

Figure 5 illustrates the operation of INT within an arbitrary network. The network
comprises four hosts, namely H1, H2, H3, and H4, along with four nodes equipped with
P4 and INT support, denoted as S1, S2, S3, and S4. Each network node possesses a set of
metadata, represented by orange (S1), magenta (S2), green (S3), and blue (S4) rectangles.
This metadata contains information specific to each node, such as Node ID, Ingress Port,
Egress Spec, Egress Port, Ingress Global Timestamp, Egress Global Timestamp, Enqueue
Timestamp, Enqueue Queue Depth, Dequeue Timedelta, and Dequeue Queue Depth, as
specified in the V1Model architecture.
1 https://github.com/p4lang/behavioral-model
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Figure 5 – In-band Network Telemetry operation. INT metadata is appended on the
packets in each hop. In the specific collection point, the monitoring system
receives INT metadata.

Still in Figure 5, there are two distinct flows depicted: one represented by red packets
and the other by black packets. The red flow is required to adhere to the prescribed
network path f1=H1, S1, S3, S4, H4, while the black flow must traverse the designated
path f2=H1, S1, S2, H2.

At each network hop along these paths, the data plane of the network devices employs
telemetry instructions to facilitate the collection and inclusion of metadata within the
packets as they traverse each node. This process is iteratively performed throughout the
path, starting from the first node after the source and concluding at the last node before
reaching the destination. Upon reaching the destination node, the metadata is extracted
from the packet and subsequently relayed to the monitoring system. The original packet
is then directed to its final destination.

In addition to the modes delineated in the INT specification, alternative approaches
exist for collecting metadata within programmable networks. One such approach involves
the utilization of an “exclusive telemetry flow” to monitor the network’s state, which, in
this work, is referred to as Out-of-band Network Telemetry (ONT).

In the ONT scenario, dedicated probe packets are employed to gather metadata, elim-
inating the need for any modifications to the data packets associated with the services
operating within the network. The primary advantage of this approach lies in its ability
to maintain the integrity of application traffic, as it traverses the programmable net-
work without modifications, thereby mitigating issues related to packet growth, such as
fragmentation.

Conversely, the use of an exclusive telemetry flow could introduces additional overhead
to the overall network traffic. This is due to the necessity of having a dedicated monitoring
flow ONT for each service running within the network.

One of the primary advantages of employing telemetry lies in the exceptional level
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of granularity it offers. Every individual packet traversing the network carries pertinent
information directly to the monitoring system at the line rate. This level of granularity
aligns with the perspective presented in (Castro et al., 2019), wherein it is recognized
that a substantial volume of data can prove useful for ML algorithms.

2.3 Machine Learning
ML is a field within artificial intelligence where computers are designed to learn from

past experiences. In this context, learning occurs through the ability to enhance perfor-
mance in executing tasks based on past experience (Faceli et al., 2011b). In essence, the
aim of ML is to identify and leverage hidden patterns within data (Boutaba et al., 2018).

Moreover, ML operates on the principle of inductive inference, in which a hypothesis
(or approximating function) is drawn from past experiences to predict future events (Faceli
et al., 2011b). This hypothesis should ideally be as general as possible, as it needs to be
valid for unseen objects.

In a broad sense, ML can be studied in three main categories: Supervised Learning
(SL), Unsupervised Learning (UL) and Reinforcement Learning (RL). In SL, the labels for
the objects used are known, often referred to as target or meta attributes. In contrast, UL
involves situations where labels are unknown, and the objective is to explore or describe
a dataset (Faceli et al., 2011b). RL is an ML paradigm centered on actions and rewards.
This study specifically focuses on SL and RL.

2.3.1 Supervised Learning

Within the field of SL, we can categorize models into two types: classification and
regression. In classification problems, the goal is to find a hypothesis that separates the
data into discrete value classes. Conversely, in regression problems, the objective is to
determine continuous values (Boutaba et al., 2018). In both cases, it is feasible to visually
represent the problems using a line (straight line) on a graph. This line can serve as a
decision boundary for classification problems or a regression line for regression problems,
as illustrated in Fig. 6.

In this Thesis, several ML models were considered, including Decision Tree (DT),
Random Forest (RF), K-Nearest Neighbors (KNN), and Neural Networks (NN).

DT is a method based on the divide-and-conquer strategy, aimed at solving a complex
problem by decomposing it into smaller subproblems. In this approach, solutions to
the subproblems are combined in a tree-like structure, ultimately yielding a solution
to the original problem (Faceli et al., 2011b). The goal of the Decision Trees (DT)
algorithm is to minimize the sum of squared residuals, as described in Equation 1, where
𝑦𝑅𝑗 = ∑︀

𝑖 ∈ 𝑅𝑗
𝑌𝑖

|𝑅𝑗 | .
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𝐽∑︁
𝑗=1

∑︁
𝑖∈𝑅𝑘

(𝑦𝑖 − 𝑦𝑅𝑗
)2 (1)

In this scenario, the feature space X with n characteristics is divided into J distinct
and non-overlapping regions, 𝑅1, 𝑅2,...,𝑅𝑗. For each observation falling within a particular
region 𝑅𝑗, a prediction is made, which entails taking the average of response values from
the training observations within 𝑅𝑗. Additionally, 𝑦𝑅𝑗

represents the mean response for
the | 𝑅𝑗 | observations in the 𝑗-th region (Calasans, 2020).

RF is a model that extends DT by employing a strategy that combines multiple trees.
The final estimate is computed by averaging the estimates produced by each tree. Each
tree is constructed using a random subset of the input attributes 𝑋, which introduces
variability in the structure of each tree (Stadler; Pasquini; Fodor, 2017).

KNN is a ML model that relies on the Euclidean distance (refer to Equation 2), guided
by the intuition that objects associated with the same concept tend to be proximate to
one another.

𝑑𝑖𝑠𝑡(𝑥, 𝑦) =
⎯⎸⎸⎷ 𝑛∑︁

𝑖=1
(𝑥𝑖 − 𝑦𝑖)2 (2)

In Equation 2, the distance is computed as the sum of differences between vectors 𝑥

and 𝑦, where both 𝑥 and 𝑦 are vectors of the same dimension (𝑛).
NN represent a ML methodology designed to replicate the biological architecture of

human neurons. These networks comprise densely interconnected processing units, often
referred to as artificial neurons (𝜃), which utilize internal mathematical functions. These
units are structured into one or more fully connected layers, where each connection fea-
tures a weight (𝑤) that adapts during each learning iteration. For example, in Fig. 7, you
can observe two artificial neurons in the input layer, one artificial neuron in the hidden
layer, and one artificial neuron in the output layer.
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Figure 7 – Neural Network with one hidden layer.

In this example, each neuron in the input layer has a value (𝑥𝑖); these values are
multiplied by the weights (𝑤𝑖) and then summed. The result (output) of this summation
serves as the input for the next layer of neurons, as described by Equation 3.

𝑛∑︁
𝑖=1

𝑥𝑖 × 𝑤𝑖 ≥ 𝜃 (3)

The neural network algorithm encompasses an error correction mechanism that lever-
ages the optimization of a mean squared error function, aligning the network’s outputs
with the expected values. In this context, artificial neurons are harnessed to make pre-
dictive estimations in regression scenarios.

2.3.2 Reinforcement Learning

Reinforcement Learning (RL) is an Artificial Intelligence (AI) paradigm based on
actions and rewards. It differs from other approaches most frequently studied in the ML
research field, such as supervised and unsupervised learning, since the objective of an RL
learner is learning to map situations to actions to maximize a reward signal, instead of
mapping the features describing a situation to a label (supervised paradigm) or to find
hidden patterns in collections of unlabeled data (unsupervised paradigm). (Boutaba et
al., 2018; Sutton; Barto, 2018).

Agent

Environment

action
𝐴𝑡

next state
𝑆𝑡+𝟷

reward
𝑅𝑡+𝟷

Figure 8 – Interaction between the agent and environment in a MDP. Adapted from (Sut-
ton; Barto, 2018).

The model depicted in Fig. 8 illustrates the formalization of a sequential decision-
making strategy known as a Markov Decision Process (MDP). In this framework, the
agent continually interacts with the environment by executing actions (𝐴) at specific
time steps (𝑡) and observing new states (𝑆𝑡+1) resulting from these actions. After each
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interaction, a reward value (𝑅𝑡+1) is generated to evaluate the correctness of the action,
to maximize cumulative rewards throughout the agent’s training process (Boutaba et al.,
2018; Sutton; Barto, 2018).

In this context, the agent learns to maximize its cumulative rewards by determining
a policy2 that optimizes an action-value function, denoted as 𝑄. This function estimates
the quality of actions taken by the agent in specific states.

Formally, an optimal action-value function, denoted as 𝑞*, can be defined using the
Bellman optimality equation (Sutton; Barto, 2018):

𝑞*(𝑠, 𝑎) = E[𝑅𝑡+1 + 𝛾 max
𝑎′

𝑞*(𝑆𝑡+1, 𝑎′) | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (4)

Intuitively, the Bellman optimality equation suggests that the optimal Q-value for
any state-action pair (𝑞*(𝑠, 𝑎)) is expected to be the immediate reward obtained after
taking an action (𝑎) in a given state (𝑠) at time step (𝑡), augmented by the maximum
expected return achievable by adhering to an optimal policy for subsequent state-action
pairs, which are discounted3 by 𝛾 (Sutton; Barto, 2018).

Hence, the resolution of the Bellman optimality equation provides a pathway to ascer-
tain an optimal policy, offering a potential solution to a RL problem. Nevertheless, it is
imperative to acknowledge that, in practice, this solution is seldom feasible. It resembles
an exhaustive search that requires consideration of all possible scenarios, involving the
computation of occurrence probabilities and expected reward returns. Additionally, it
relies on three assumptions that are often challenged when implementing solutions for
real-world problems:

a) The accurate knowledge of environmental dynamics.
b) Sufficient computational resources to complete the computational requirements of

the solution.
c) The adherence to the Markov property.
In light of these challenges, the only pragmatic approach to tackle the Bellman opti-

mality equation is to seek a policy approximation derived from actual experiences, where
transitions involving state 𝑠, action 𝑎, and reward 𝑟 are considered, as opposed to relying
solely on the expected outcomes (Sutton; Barto, 2018).

When dealing with scenarios characterized by a well-defined set of finite states, it
becomes feasible to model an approximation of the Bellman optimality equation using
tabular data structures. Each entry within these structures corresponds to a state-action
2 A policy defines the agent’s strategy for associating actions with states. Such strategies can be

stochastic, specifying probabilities for each action that could be taken when a particular state is
observed (Sutton; Barto, 2018).

3 This discounting approach allows the agent to prioritize actions that maximize the cumulative rewards
it receives in the future. The discount rate, denoted as 𝛾, determines the present value of future
rewards. For instance, a reward received 𝑘 time steps in the future is worth only 𝛾𝑘−1 times what it
would be worth if it were received immediately (Sutton; Barto, 2018).
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pair. In this context, the Q-Learning algorithm, introduced by Watkins (Watkins; Dayan,
1992), marked a significant milestone in the early stages of the RL paradigm.

Q-Learning is noteworthy for its direct approximation of the Bellman optimality equa-
tion, irrespective of the policy in use. It simplified the analysis of agent algorithms and
facilitated early convergence proofs (Sutton; Barto, 2018). The Watkins Q-Learning al-
gorithm is formally defined as follows:

𝑄(𝑆𝑡, 𝐴𝑡) = (1 − 𝛼)𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼[𝑅𝑡+1 + 𝛾 max
𝑎

𝑄(𝑆𝑡+1, 𝑎)] (5)

where the approximated optimal Q-value is calculated by blending the current Q-value,
denoted as 𝑄(𝑆𝑡, 𝐴𝑡), with the target temporal difference. The target temporal difference
represents the reward 𝑅𝑡+1 obtained when transitioning to the subsequent state 𝑆𝑡+1 after
taking action 𝑎. This value is then weighted by the discount factor 𝛾 and modulated by
a learning rate 𝛼 (0 ≤ 𝛼 < 1) (Watkins; Dayan, 1992; Sutton; Barto, 2018).

Nonetheless, it should be noted that Q-learning assumes a tabular representation of
state-action pairs, whereas real-world applications tend to encompass high-dimensional
state spaces unfeasible to be stored in tables, given the impractical computer resources re-
quired for such (Sutton; Barto, 2018). In this sense, network monitoring and management
applications that utilize a large volume of data, such as fine-grained INT measurements,
serve as examples of cases that may be affected by the limitation presented by Q-learning.

To address the Q-learning limitation, (Mnih et al., 2015) leveraged the Q-Learning al-
gorithm by integrating it with a Deep Neural Network (DNN) to approximate the optimal
Q-value, a methodology known as DQN. In their work (Mnih et al., 2015), the authors
showcased the effectiveness of this approach by training and evaluating the DQN on an
Atari 2600 emulator. Impressively, the DQN-based agents achieved performance levels
surpassing those of human players in 49 distinct games, relying solely on pixel inputs and
game scores for guidance.

Of note, the authors maintained a consistent algorithm, DNN architecture, and hyper-
parameters across all games, eliminating the need for game-specific feature engineering.
Thus, DQN not only outperformed agents employing linear function approximation but
also demonstrated the capacity to attain or exceed human-competitive skills across di-
verse gaming environments. This pioneering work exemplified the synergy between RL
and contemporary Deep Learning (DL) techniques, a significant advancement in the field
of AI. It underscored the potential of RL when combined with modern DL methods,
yielding remarkable outcomes (Mnih et al., 2015; Sutton; Barto, 2018).

2.3.2.1 Deep Q-Network workflow

The DQN architecture, as proposed by Mnih et al. (Mnih et al., 2015), consists of
a Deep Convolutional Neural Network (CNN) designed to receive emulated game frames
as input and subsequently generate predicted Q-values for each potential action within
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the given input state. To facilitate such predictions, Mnih et al. introduced two critical
modifications to the conventional Q-Learning algorithm. These alterations were essential
to mitigate instabilities inherent in using DNN for Q-value approximation (Sutton; Barto,
2018).

The first modification entails the incorporation of a biologically inspired mechanism
referred to as “experience replay”. In this approach, the agent’s experiences are stored as
tuples containing the current state (𝑆𝑡), the action taken (𝐴𝑡), the reward received (𝑅𝑡+1),
and the subsequent state (𝑆𝑡+1). Periodically, after reaching a predefined replay memory
limit, a mini-batch of these experiences is uniformly sampled for training the DNN (Mnih
et al., 2015; Sutton; Barto, 2018).

This approach plays a fundamental role in mitigating the emergence of correlations
within the observed state space. By decoupling the dependence on successive experiences,
it effectively reduces the variance in the parameters of the DNN. Fig. 9 illustrates the
interaction between a DQN agent and an environment, taking into account the experience
replay mechanism. Within this context, the agent selects actions following an 𝜖-greedy
rule.

𝜀 → probability of taking random actions 

𝜀-greedy 
actions

Decreasing 𝜀 
at each step

Environment

Exploring or 
exploiting the
actions space

Buffering the 
experience replay

Experience 
replay

Training the DNN
to approximate the

optimal q-value

Learning from 
experience

Figure 9 – DQN high-level workflow (Mnih et al., 2015; Sutton; Barto, 2018).

Specifically, when employing this rule, the agent chooses between two strategies: “ex-
ploitation” and “exploration”. A “greedy action” involves selecting an action from the
action space based on the maximum estimated Q-value. Conversely, a “non-greedy ac-
tion” entails the random selection of an action. Exploitation, represented by the selection
of a greedy action, aims to exploit the current knowledge to maximize immediate re-
wards. In contrast, exploration, represented by non-greedy actions, focuses on traversing
the action space to maximize cumulative rewards in the long run (Sutton; Barto, 2018).

In RL, achieving a balanced trade-off between exploration and exploitation is paramount.
However, it’s important to acknowledge that, at a single time step, it’s not possible for an
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agent to simultaneously exploit and explore actions. To conciliate these opposing strate-
gies, a solution is to allow the agent to primarily act greedily, favoring exploitation, while
intermittently choosing an action from the action space at random, independent of the
estimated Q-values. This random selection is determined by an exponentially decreasing
probability parameter 𝜖. Consequently, as the time steps progress, the probability of se-
lecting an optimal action gradually converges to a value greater than 1 − 𝜖, approaching
near certainty in favor of exploitation as the agent refines its strategy over time (Sutton;
Barto, 2018).

A second significant contribution introduced by Mnih et al. (Mnih et al., 2015), relative
to classical Q-Learning, pertains to the learning stage of the DQN. In this stage, a separate
network, referred to as the “target network”, is employed to estimate target values for
the Q-network, often referred to as the “online network”. This modification enhances the
algorithm’s stability compared to using a single online network. The rationale behind
this improvement lies in the fact that updating the parameters of the online network for
the current state-action pair can inadvertently influence the Q-values of the next state,
potentially leading to oscillations or even policy divergence.

To address this challenge, the online network’s parameters are periodically cloned to
the target network at intervals of every 𝐶 time step. Consequently, the target network’s
predictions serve as target values for the online network during the subsequent 𝐶 time
steps. This introduces a delay in updating the Q-values between the current and next
states, effectively reducing the likelihood of policy oscillations or divergence (Mnih et
al., 2015). Figure 10 illustrates the DQN learning workflow, incorporating the approach
described above.

online 
network

target 
network

States Rewards Next
States

Q-values from 
taken actions

Q-values from 
best actions

online network 
update

Target network update 
at each 𝐂 steps

online 
network

target 
network

Random samples from 
experience replay

𝐂 → rate at which the online network weights are cloned to the target network 

Figure 10 – DQN learning stage workflow (Mnih et al., 2015).

In the context of this thesis, our premise revolved around optimizing the integration
of the data generated by INT with ML models. We have harnessed the synergy of these



2.4. Congestion Control 47

two tools, using them as a supplementary mechanism for congestion control.

2.4 Congestion Control
Over the past thirty years, the topic of Internet congestion has received widespread

attention from the scientific community (Peterson; Brakmo; Davie, 2022). Since the first
paper (Jacobson, 1988) published, the topic of Internet congestion has been consistently
characterized as a “resource allocation” problem. In the context of this thesis, these
“resources” can be understood such as link bandwidth and buffer space. Based on this
understanding, congestion control mechanisms (CC) were created to allocate resources
fairly within the shared network infrastructure.

To achieve greater fairness in the use of shared network resources, CC mechanisms re-
duce the transmission of additional data packets within the network. However, depending
on the intensity and attributes of the network traffic, the CC mechanisms implemented
at the host level may prove insufficient in ensuring optimal network utilization. Such
limitations arise when network buffers are full, forcing the router to employ a tail-drop
mechanism to discard the most recently received packets. This approach is considered
suboptimal due to its propensity to induce “TCP global synchronization” (Malangadan;
Raina; Ghosh, 2023).

In this case, the CC necessitates the integration of auxiliary mechanisms to mitigate
network congestion, such as AQM, a traditional mechanism employed in network device
queues.

2.4.1 Active Queue Management

The main objective of an AQM algorithm is to effectively manage network congestion
and prevent queues from reaching their maximum buffer capacity. The primary methods
for conveying congestion conditions to senders include packet marking using ECN bits
and selective packet dropping.

Using ECN for packet marking plays a role in congestion control by explicitly in-
dicating to CC mechanisms that they should reduce their transmission rates. We can
observe that CC mechanisms take advantage of ECN bit marking covering Data Center
TCP (DCTCP) (Alizadeh et al., 2010) and, more recently, TCP Prague (Briscoe et al.,
2018).

On the other hand, in the scenario of probabilistic packet discards by an AQM mech-
anism, CC stands to gain from the process of fast retransmission. In this instance, the
sender detects the occurrence of duplicate acknowledgments (typically three in number)
and initiates the retransmission of the packet that had been deliberately discarded by the
AQM as part of its congestion mitigation strategy within the router’s queues (Peterson;
Brakmo; Davie, 2022).
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Within this thesis, the subject matter of AQM assumes a central and fundamental role
in enhancing the QoS for the DASH service. A comprehensive discussion of our proposed
solution will be presented in Chapters 5 and 6.

2.5 Summary of the Chapter
In this chapter, we provided a concise overview of essential concepts to facilitate the

understanding of Smart Closed Loop. Consequently, we delved into the topics of adaptive
video streaming, network programmability, machine learning, and congestion control. Our
objective was to enable readers to discern with greater clarity the precise positioning of
the concepts that materialize the Smart Closed Loop.
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Chapter 3

Related Work

This chapter provides an overview of the most recent related work. In Section 3.1,
we delve into the subject of video service estimation. These investigations are situated
within the context of the “M” and “A” components of the MAPE cycle. Section 3.2 is
dedicated to a comprehensive examination of research associated with the “E” component,
specifically focusing on the developments in AQM within the programmable data plane.
Lastly, in Section 3.3, we present the latest research findings of the application of ML
techniques to enhance the QoS and QoE in the context of DASH services, fully covering
the MAPE cycle.

3.1 Video Service Estimation
In the study (Stadler; Pasquini; Fodor, 2017), a ML approach was employed, encom-

passing the integration of metrics extracted per second from a computing cluster. These
metrics encompassed various aspects, including CPU, memory, and disk utilization, in
addition to metrics from an OpenFlow network. Specifically, they focused on the data
volume in terms of bytes and packets transmitted and received. This set of input features
was utilized to estimate various video metrics, such as FPS. The outcome of this investiga-
tion yielded a Normalized Mean Absolute Error (NMAE) of 9.17% in the FPS prediction.
It is important to clarify that the study (Stadler; Pasquini; Fodor, 2017) was primarily
founded on the analysis of a static video service, deviating from the dynamicity of the
DASH. In contrast, our work successfully tackled this dynamicity and demonstrated a
reduction in prediction errors.

In the study (Calasans, 2020), bytes and packets transmitted and received in an Open-
Flow setup served as the basis for ML models estimate DASH metrics. It is worth noting
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that the video and audio parameters employed in this investigation closely mirrored those
employed in this thesis. Notably, despite the exclusive reliance on network-derived met-
rics, the work (Calasans, 2020) reported a NMAE of 16.5% in their evaluation.

Work NMAE audio NMAE video
(Stadler; Pasquini; Fodor, 2017) 20.6% 9.17%

(Calasans, 2020) 13% 16.5%
This thesis (Chapter 4) 2.80% 7.22%

Table 1 – DASH service metrics estimation.

As briefly described in Table 1 and detailed in Chapter 4, the findings of this the-
sis supported an improvement in DASH service metric estimation, reaching 2.80% and
7.22% of NMAE error. We posit that the utilization of fine-grained telemetry metrics for
estimating video service metrics yields superior outcomes.

Work Fine-grained (INT) Timescale Buffer metrics Data plane
(Stadler; Pasquini; Fodor, 2017) x sec x x

(Calasans, 2020) x sec x x
This thesis (Chapter 4) ✓ 𝜇s ✓ ✓

Table 2 – Characteristics used to estimate DASH service metrics.

Table 2 enumerates the main attributes that delineate the advancements achieved
within this thesis in comparison to existing literature regarding the estimation of DASH
service metrics. We can observe that our work utilizes fine-grained measurements of buffer
metadata collected directly from the data plane on a microsecond timescale.

3.2 AQM in programmable data planes
Since the paper introducing P4 in 2014 (Bosshart et al., 2014b), the scientific com-

munity has shown interest in the implementation of AQM flavors in the programmable
data planes. The initial work was published in 2018 (Kundel et al., 2018), titled “P4-
CoDel: Active Queue Management in Programmable Data Planes”. It presented a P4
implementation of the CoDel (Nichols; Jacobson, 2012) algorithm in a software switch
environment.

In the following year (2019) two other works (Menth et al., 2019) and (Papagianni;
Schepper, 2019) were published in the same context. The first, published in July 2019,
whose title is “Implementation and Evaluation of Activity-Based Congestion Management
Using P4 (P4-ABC)”, presents an AQM prototype in P4 based on the ABC strategy using
software switch and externs (out of data plane domain) to workaround the data plane
limitations. In December 2019, the second one was published with the title “PI2 for P4:
An Active Queue Management Scheme for Programmable Data Planes”, representing the
first P4 implementation of the Proportional Integral controller in a software switch envi-
ronment. Part of the AQM logic was implemented in the control plane due to constraints
in mathematical operations within the data plane.
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It was only in 2021 that a more robust performance analysis of a hardware version
of P4-CoDel (Tofino architecture) was presented (Kundel et al., 2021) in the work “P4-
CoDel: Experiences on Programmable Data Plane Hardware”. Still in 2021, the thesis
“Making a Packet-value Based AQM on a Programmable Switch for Resource-sharing and
Low Latency” was defended proposing PV-AQM (Toresson, 2021), an AQM based on
Per-Packet Value (PPV) and Proportional Integral Controller Enhanced (PIE) in pro-
grammable data plane hardware (Tofino architecture). As in (Papagianni; Schepper,
2019), they also resorted to the control plane to calculate the drop probability with the
PIE controller.

In August 2022, a more in-depth evaluation of PI2 in hardware (Tofino architecture)
was published (Gombos et al., 2022) in the work “Active Queue Management on the
Tofino programmable switch: The (Dual)PI2 case”. Furthermore, an extension of PI2
(dualPI2) to support the L4S framework was also developed and presented in the same
work. In both versions, the control plane has been used to assist in computing complex
mathematical operations performed by the PI controller. In the same year, the first
version of iRED (a result of this thesis) was presented in a software switch environment
(v1model) (Almeida et al., 2022), evaluating an adaptive video streaming scenario in the
work “iRED: Improving the DASH QoS by dropping packets in programmable data planes”.
In this previous version, iRED obtained superior results about the state-of-the-art AQMs
and the Tail Drop approach. Still in 2022, FG-AQM was published (Qiao; Gao, 2022) in
the work “Fine-Grained Active Queue Management in the Data Plane with P4”. In this
case, FG-AQM uses a PI controller to compute the drop probability in a software switch
environment.

In 2023, a new implementation of the CoDel algorithm, referred to as CoDel++ (Doan
et al., 2023), in a PDP using priority queues was proposed in the work “Interplay Between
Priority Queues and Controlled Delay in Programmable Data Planes”. In this new version,
the authors evaluated CoDel++ on a Tofino hardware switch. In the same year, a new
version of iRED with full support for the L4S framework was proposed in (Almeida et
al., 2023). This work involved a comprehensive performance evaluation conducted on the
Tofino2 hardware.

Work
Delay
based

Depth
based

Ingress
drop

L4S
compliance

Fully imp. in
the data plane

Hardware
version

P4-CoDel ✓ x x x ✓ ✓
P4-ABC ✓ x ✓ x x x

PI2 for P4 ✓ x x ✓ x ✓
PV-AQM ✓ x ✓ x x ✓
FG-AQM ✓ x x x x x
CoDel++ ✓ x x x ✓ ✓

This thesis (Chapter 5) ✓ ✓ ✓ ✓ ✓ ✓

Table 3 – AQM comparative analysis.

Table 3 provides a succinct comparative analysis of AQM implemented within a pro-
grammable data plane. The table showcases the advancements achieved by the research
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conducted in this thesis, reflecting the state-of-the-art progress in AQM context.

3.3 QoS/QoE improvements in DASH scope
The KNN-Q algorithm, a fusion of KNN and Q-Learning techniques, was introduced

in (Lin et al., 2020) as an approach aimed at enhancing the QoE in DASH scope. The
simulations demonstrated that the utilization of KNN in conjunction with Q-Learning
mitigates the challenges associated with a large state space. In this particular scenario,
KNN-Q was integrated within the client-side video player.

In (Wei et al., 2021), a RL framework was introduced to enhance QoE within the
context of DASH. In this framework, the video player assumes the role of an agent, while
the fluctuations in the network state serve as the environment. Rewards are computed
based on the video quality and player buffer status. The primary objective of the agent
is to make optimal selections of video segments to maximize the accumulated rewards.

The study presented in (Kim; Chung, 2022) combines the capabilities of Edge com-
puting and RL to enhance the QoE in a DASH service. In this context, a mobile edge
computing framework collects measurements from clients, including bandwidth, bitrate,
and buffer level. These measurements serve as inputs to the RL algorithm. The RL agent,
utilizing this data, dynamically adjusts the bitrate adaptation policy on the client side
with the ultimate aim of maximizing the QoE.

The DQNReg, which was introduced in (Hafez; Hassan; Landolsi, 2023), represents
a RL strategy designed to improve the QoE in DASH scenarios. This strategy leverages
DQN to enhance the adaptive logic algorithm in the video player. Specifically, the input
layer of the DQN is constituted by network throughput, segment bitrate, and buffer
occupancy of the client video player. The reward function is a composite measure that
takes into account the segment bitrate, buffer level, and rebuffering duration using a
segment-wise approach.

The common thread among all the related work described in this section is their em-
phasis on the video client side. The measurements utilized as observed states originate
from the video player, and the actions taken are associated with the logic of ABR adap-
tation. One of the outcomes of this thesis is DESiRED, described in detail in Chapter
6, which adopts a different perspective of the problem. In contrast to the client-side ap-
proach, which predominantly focuses on capturing client state information, the DESiRED
framework directs its focus toward the monitoring and intervention processes at the net-
work nodes. It leverages fine-grained network telemetry as the input for a DRL mechanism
and orchestrates real-time adjustments in the AQM target delay.

In this context, it is crucial to emphasize that the approach proposed in this work is
uniquely inclusive, as it focuses its monitoring and interventions exclusively on the net-
work. In essence, it is entirely feasible to integrate DESiRED with any of the approaches
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mentioned in this section. Moreover, we anticipate that such integration has the potential
to augment the outcomes achieved by these approaches.

Table 4 presents a compilation of the state-of-the-art employing machine learning
models to enhance the QoS and QoE in the context of DASH services. We can observe
that our proposal stands out for being the only one that addresses adjustments to the
network instead of the video player.

Work Input layer Agent Action Reward ML strategy
(Lin et al., 2020) coarse-grained (player) bitrate selection QoE KNN-Q
(Wei et al., 2021) coarse-grained (player) bitrate selection QoE DDPG

(Kim; Chung, 2022) coarse-grained (edge comp.) bitrate selection QoE DQN
(Hafez; Hassan; Landolsi, 2023) coarse-grained (player) bitrate selection QoE DQN

This thesis (Chapter 6) fine-grained (INT) AQM target delay QoS DQN

Table 4 – Main characteristics used to improve DASH QoS/QoE.

3.4 Summary of the Chapter
In this chapter, a comprehensive review of the current state-of-the-art of service esti-

mation, AQM, and QoS improvements were presented. We have delineated the principal
characteristics of the relevant works and described how our approach extends beyond the
existing research.
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Chapter 4

Using ML and INT for Service
Metrics Estimation

This chapter presents the challenges and motivations behind the DASH service estima-
tion1, characterizing the Monitoring and Analysis components within the MAPE cycle.
In this context, we provide a solution to make QoS estimations of a DASH service using
In-Band Network Telemetry (INT) to feed Machine Learning (ML) models. Moreover, we
provide a comprehensive examination of the strategies employed in the literature, as well
as an in-depth exploration of the advancements achieved through the research conducted
in this thesis. We still offer a concise summary of our findings and present our concluding
remarks.

4.1 Contextualization and Motivation
The extensive array of network metrics made available through INT offers signifi-

cant benefits for network administrators, as INT empowers them with novel insights into
network dynamics, encompassing packet pathways, buffer occupancy, and queue waiting
times. This fine-grained data could be a valuable resource for data-hungry ML algo-
1 This chapter is based on the following works:

❏ ALMEIDA, Leandro C. de; VERDI, Fábio L.; PASQUINI, Rafael. Estimando métricas de
serviço através de In-band Network Telemetry. Brazilian Simposium on Computer Net-
works and Distributed Systems (SBRC 2021)Uberlândia, MG, Brazil.

❏ ALMEIDA, Leandro C. de; VERDI, Fábio L.; PASQUINI, Rafael. Using Machine Learning
and In-band Network Telemetry for Service Metrics Estimation. 10th IEEE International
Conference on Cloud Networking (IEEE CloudNet 2021), Virtual Conference.
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rithms. With this knowledge, they could accurately forecast the operational status of
services within the network, thereby creating opportunities for management actions.

In this context, this Chapter intends to answer the following research questions:

1. Can INT metadata be used to feed (as input layer) ML algorithms?

2. Is it possible to obtain a more accurate estimate than that provided in the related
work (Stadler; Pasquini; Fodor, 2017; Calasans, 2020)?

3. What is the most appropriate model for estimating DASH QoS metrics?

By leveraging the synergy between INT and ML, the objective of this Chapter is
to investigate the potential of their combined application in service metrics estimation.
More specifically, our focus is on estimating the QoS for DASH services. It is important to
clarify that DASH represents the prevailing technology choice for video streaming, being
adopted by industry leaders such as Netflix® and Google® (Lederer, 2015). DASH’s
unique offering lies in its adaptive rate video service, allowing clients to adjust various
parameters, including resolution, bitrate, and frames per second, in response to network
load conditions (ISO, 2014). The estimation of metrics for an adaptive service like DASH
is inherently challenging due to the dynamic nature of network load conditions, which
constantly fluctuate.

4.2 Problem Statement
In this chapter, we initially operate under the assumption of a Content Delivery Net-

work (CDN) environment. Within this context, the estimations generated by the ML can
prove valuable for Network Service Providers in adapting their infrastructure in response
to the outputs of the estimation. Furthermore, we hypothesize that fluctuations in service
metrics have a positive correlation with network infrastructure measurements.

In our investigation, we conducted an in-depth analysis to examine the correlations
between INT metrics, referred to as data set X, and service metrics, designated as data set
Y. In essence, the fine-grained network metrics in dataset X represent the network state,
while the dataset Y encompass data sourced from the video components, specifically
focusing on FPS.

Following the approach presented in (Stadler; Pasquini; Fodor, 2017), we adopt the
use of a global clock, which is accessible to all network devices, ensuring precise synchro-
nization across all devices. Furthermore, we treat the progression of metrics X and Y
as time series denoted as 𝑋𝑡, 𝑌𝑡, and (𝑋𝑡, 𝑌𝑡) , where each time instant t signifies the
network and video service’s state.

The central challenge in our study lies in estimating the service metrics 𝑌𝑡 at time
t, based on the detailed network telemetry metrics 𝑋𝑡. This problem can be formally
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represented as 𝑀 : 𝑋𝑡 → 𝑌𝑡, where 𝑌𝑡 serves as an approximation of the function 𝑌𝑡 for a
given 𝑋𝑡. In essence, this constitutes a regression problem, typically addressable through
supervised ML techniques, as discussed in the domain of statistical learning (James et al.,
2013).

4.3 Evaluation

In this section, we offer a concise overview of the evaluation for DASH service esti-
mation. For a comprehensive and detailed examination of the implementation, we kindly
direct the reader to Appendix B.

In our investigation, we utilized well-established ML algorithms to identify the most
suitable regressor for DASH service estimation, using INT measurements as the input
layer. Specifically, we evaluated the performance of the Decision Tree (DT), Random
Forest (RF), K-Nearest Neighbors (KNN), and Deep Neural Networks (NN). In this eval-
uation, we designed a dataset containing a diverse range of traffic patterns managed by
Workload Assay for Verified Experiments (WAVE) (Almeida et al., 2023), including sinu-
soidal, flashcrowd, and a simultaneous combination of both. These traffic patterns were
intentionally chosen to provide a model with a robust training experience, encompassing
transitions from low to high network load conditions. Additionally, we introduced random
microbursts into the dataset, creating a diverse load profile with variations in flow char-
acteristics, such as size (long and short), application types (web services, management),
and duration times.

Initially, we aim to determine the most important2 feature among the evaluated ML
algorithms. Fig. 11 shows which features (INT metadata) contributed the most for the
learning in all load conditions. In this case, on the x-axis, we have the Gini importance
(Nembrini; König; Wright, 2018) representing the impurity level of the feature, and in the
y-axis we have the name of the feature (metadata).

  

Figure 11 – Random Forest feature importance.

2 The feature that has more impact in the training phase.
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The lower the level of impurity, the better the feature is classified. Therefore, we can
observe the metadata related to buffers (highlighted with a box) has the most influence
on the learning model. Such a finding is of great importance since it gives some hints
that not all the network metrics may need to be collected. It points to a direction where
the ML algorithms may have good accuracy with less data.

Still in Figure 11, we can observe that the node closest to the client (See topology
in Appendix B) has more influence on the learning than all the others. We conjecture
that the intermediate nodes represent a good point of view of the state of the network,
however, it is the closest node to the client that has the most accurate information for
the client state. This result supports a similar finding in related work (Stadler; Pasquini;
Fodor, 2017).

Furthermore, we evaluated what is the best ML model in terms of NMAE, discussing
the ability of ML models to predict QoS metrics from different load conditions. In this
sense, the results in Table 5 were obtained with the best estimator after the grid search
cross-validation and hyperparameters optimization for each load pattern.

Load DT RF KNN NN
Sinusoid 33.74% 7.23% 25.81% 26.85%

Flashcrowd 30.28% 6.70% 20.54% 19.94%
Mix 25.71% 2.96% 29.82% 21.42%

Table 5 – NMAE for load patterns individually.

Table 5 shows that RF obtained the lowest NMAE at evaluating individual datasets,
that is, the model was trained, tested and evaluated in every individual load pattern. A
NMAE of 7.23% was obtained for the sinusoid load, 6.70% for the flashcrowd load and
2.96% for the mix load, having a mean NMAE of 5.63%. Unexpectedly, the RF achieved
its best performance in the mix load pattern, which is the worst scenario considering that
both loads (sinusoid and flashcrowd) run at the same time. Although this pattern of traffic
is challenging for the ML algorithms, it mimics the real traffic load. We believe that this
behavior was because the mix pattern generated a high load, and made few transitions
in the network when compared to the sinusoid and flashcrowd patterns. This can be
inferred by observing histograms in Figure 12, in which the x-axis represents the number
of the FPS played in the client and the y-axis the percentage of this FPS frequency in
the experiment.

When looking at the sinusoid load (Figure 12(a)), we observe that the client played
the video with a high resolution (around 30 FPS) in 21% of the time and made transitions
to other minor resolutions (around 18 and 24 FPS). Figure 12(b) (flashcrowd load) shows
that the client played the video in the lower resolution (around 18 FPS) in 27% of the time.
Transitions to higher resolutions were done at other moments in time. It is important to
say that about 4% of the time the client couldn’t play the video. In the mix load (Figure
12(c)), the client played the video in high resolutions (around 30 FPS) in just 11% of
the time. This indicates that the load in the network was higher for a longer time. This
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high load caused a lower number of transitions in the resolutions when compared to the
other two experiments, which is easier for ML algorithms’ estimations, leading to a better
NMAE.
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Figure 12 – Load Patterns.

Utilizing the best regressor, which in this case was the RF, we depict a visual represen-
tation of the estimated values compared to the real values for video metrics. Specifically,
Fig. 13 provides a graphical representation of the estimated values concerning the real
values for the video metric (FPS).
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Figure 13 – Real and estimation computed by RF regressor.

The estimation curve depicted in Fig. 13 shows a tendency to mirror the behavior of
the reality curve. However, due to its regression nature, the estimates are susceptible to
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abrupt changes in real FPS values. In such instances, employing a continuous learning
strategy, such as reinforcement learning, could be considered a viable option.

Finally, we evaluated the ability of a ML model, trained in one load pattern, to predict
service metrics from other load patterns, as described below and shown in Table 6.

❏ Sinusoid → Flashcrowd: the model was trained with the sinusoid load and evaluated
with the flashcrowd load.

❏ Sinusoid → Mix: the model was trained with the sinusoid load and evaluated with
the mix load.

❏ Flashcrowd → Sinusoid: the model was trained with the flashcrowd load and eval-
uated with the sinusoid load.

❏ Flashcrowd → Mix: the model was trained with the flashcrowd load and evaluated
with the mix load.

❏ Mix → Sinusoid: the model was trained with the mix load and evaluated with the
sinusoid load.

❏ Mix → Flashcrowd: the model was trained with the mix load and evaluated with
the flashcrowd load.

Load DT RF KNN NN
Sinusoid → Flashcrowd 30.89% 33.22% 33.88% 35.69%

Sinusoid → Mix 28.75% 30.98% 41.00% 36.33%
Flashcrowd → Sinusoid 33.72% 36.15% 36.38% 42.69%

Flashcrowd → Mix 30.04% 30.34% 40.64% 43.57%
Mix → Sinusoid 35.11% 38.15% 37.42% 40.26%

Mix → Flashcrowd 31.11% 34.30% 34.03% 37.77%

Table 6 – NMAE for cross evaluations.

The general conclusion is that the models perform poorly when evaluating against
other load patterns. It is conjectured that this happens because the load patterns explored
different regions of the space of possibilities (system states), as seen in the histograms of
Figure 12.

4.4 Summary of the Chapter
This chapter presented a step forward toward the estimation of DASH QoS metrics

using INT and ML, covering the Monitoring and Analysis components within the
MAPE cycle. We answer the three questions listed at the beginning of this chapter as
follows:

1. It is possible to use measurements from telemetry to estimate service metrics;
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2. It is possible to obtain results with a lower NMAE error in service estimates;

3. The random forest demonstrated to be the model with the best performance, that
is the lowest error.

A network service provider could leverage the methodologies and insights discussed
here to realize tangible benefits, including the implementation of real-time, fine-grained
monitoring for DASH flows transiting its network. Within the Smart Closed Loop, the
solution proposed in this chapter serves as a trigger for potential action strategies, aiming
to maintain an adequate level of QoS. The next chapter discusses one of these strategies,
which is based on a probabilistic packet discard policy.
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Chapter 5

Mitigating Network Congestion
through Probabilistic Packet
Dropping

Once the network service provider is aware of the video quality through the monitor-
ing and analysis strategies discussed in the previous chapter, we can evaluate solutions
to maintain an adequate level of QoS for a DASH client. Among the various possible
solutions, we chose to use a policy based on packet discarding, as DASH uses TCP as
a transport protocol, which reacts to the non-receipt of confirmations. In this scope,
this chapter covers the Execution component of the MAPE cycle, being dedicated to a
comprehensive exploration of Active Queue Management (AQM) within the context of
programmable data planes (PDP). We start this topic by delineating a challenge encoun-
tered in the context of AQM when deployed within a PDP, commonly referred to as the
“Egress Drop Problem”. Following, we provide a brief introduction to the L4S framework,
representing one of the most recent initiatives by the IETF aimed at addressing conges-
tion issues on the Internet. The main point of this chapter lies in the comprehensive
exposition of iRED1, a disaggregated P4-AQM solution, which is entirely realized within
1 This chapter is based on the following works:

❏ ALMEIDA, Leandro C. de; MATOS, Guilherme; PASQUINI, Rafael; PAPAGIANNI, Chrysa,
VERDI, Fábio L. iRED: Improving the DASH QoS by dropping packets in pro-
grammable data planes. 18th International Conference on Network and Service Management
(CNSM). November 2022, Thessaloniki, Greece.

❏ ALMEIDA, Leandro C. de; MATOS, Guilherme; PASQUINI, Rafael; PAPAGIANNI, Chrysa,
VERDI, Fábio L. Improving the DASH QoS by dropping packets in programmable data
planes. IEEE Global Communications Conference (IEEE Globecom), DEMO Session, Rio de
Janeiro - Brazil, 2022.
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the data plane, supports the L4S framework and saves router resources.

5.1 The Egress Drop Problem
In this section, we elucidate the operation of a typical PDP switch, providing insights

into the precise conditions that give rise to the Egress drop problem – where, how, and
why it occurs. Additionally, we explain the advantages of separating the decision-making
process from the packet-discarding action within an AQM logic. To comprehensively
understand the origins of this issue, we delve deeper into the architecture of a standard
programmable switch in Fig. 14.
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Figure 14 – The generic architecture of the data plane programmable switch. Headers
and Payload follow different paths on the device.

As detailed in Fig. 14, a generic switch architecture with a PDP is composed of some
programmable blocks (Ingress and Egress) and non-programmable components (Traffic
Manager). After the packet is received by a given ingress port, it is separated into Headers
and Payload. Headers are the structures that are actually processed by programmable
blocks. It is from the data contained in the header fields and other metadata that the
programmer can define logic based on match-action to accomplish what is desired with
the network packet. On the other hand, the Payload remains unchanged, usually stored in
buffers, throughout the packet processing. After processing the Ingress block, the packet
is reconstructed, generally by a Deparser (omitted in the Figure), which unifies the header
with the payload that was stored in the Ingress buffer. The packet is then sent entirely
to the Traffic Manager, which positions the entire structure in a queue associated with
an output port. After the packet is serviced by the scheduler, it is separated again so
that the Headers can be processed by the Egress block. As with the Ingress buffer, the
payload remains in the Egress buffer unchanged. After the Header passes through the

❏ ALMEIDA, Leandro C. de; PASQUINI, Rafael; PAPAGIANNI, Chrysa, VERDI, Fábio L. iRED:
A disaggregated P4-AQM fully implemented in programmable data plane hardware.
Preprint 2023. (TNSM under review).
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necessary stages in the Egress block, the packet is then reassembled to be forwarded or
marked for drop, if applicable.

As already mentioned, the most important data for the AQM logic is the queuing delay
(or queue depth) which is only available at the Egress block. The way the AQM works is
by setting a FLAG which informs to the Egress block that the packet must be dropped.
This action is performed only after the end of Header processing in the Egress block, that
is, the buffer resources (memory) that are being used by the Payload are finally released.
In this work, we define this waste of resources as The Egress drop problem.

Understanding the causes and effects that this problem brings, we argue that it is
possible to improve the use of shared resources (switch pipeline). The idea we defend is
that the decision of the drop must be separated (in different blocks) from the action
of the actual drop, thus having a disaggregated concept of AQM. The materialization of
this new concept is described in Section 5.3, in which we present the iRED algorithm.

5.2 L4S - Low Latency, Low Loss, and Scalable through-
put

As briefly mentioned previously, the L4S architecture (shown in Fig. 15) introduces
incremental changes to both the hosts’ CC algorithm and the AQM at the network nodes.
The modifications proposed by L4S were motivated by some requirements, such as L4S-
ECN packet identification, accurate ECN feedback, fall-back to Reno-friendly on Loss,
fall-back to Reno-friendly on classic ECN bottleneck, reduce RTT dependence, scale down
to the fractional window and detecting loss in units of time (Briscoe et al., 2018).

In this context, L4S introduces two distributed mechanisms that work together to
achieve the requirements listed above. The first of these reside in the host scope, being
the scalable CC algorithm, TCP Prague2(Briscoe et al., 2018). The TCP Prague is a
modified version of DCTCP (Alizadeh et al., 2010) for safe use over the Internet. As
is well-known (by TCP researchers) DCTCP is suitable only for data centers, where
the administrator can arrange the network to work properly for frequent ECN-marking.
However, this is not so simple for the public Internet, as DCTCP flows would certainly
starve classical flows. For this reason, TCP Prague presents minor modifications from
DCTCP to meet the requirements listed above.

The second resides in the network nodes as a Dual-Queue coupled AQM (Schep-
per; Briscoe; White, 2023), that is responsible for maintaining a harmonious coexistence
between the flavors of CC, Classic and Scalable. The Dual Queue coupled AQM mecha-
nism, specified in the RFC9332 (Schepper; Briscoe; White, 2023), was designed to solve
the coexistence problem, accommodating flows into separated queues for Classic (larger
2 The name is after an ad hoc meeting of IETF in Prague in July 2015.
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Figure 15 – Dual-Queue AQM in L4S architecture. Adapted from (Schepper; Briscoe;
White, 2023).

queueing delay) and Scalable (small queueing delay) CC flavors, as can be seen in Fig.
15.

Despite the use of distinct queues with varying depths (shallow and deeper), bandwidth
consumption remains uniform across flows. Achieving equitable resource allocation, or
harmonious coexistence, involves the interplay between the Classic and Scalable queues.
This interaction enables the Classic queue to perceive the square of congestion levels in
the Scalable queue. This squared is then offset by the sending rate of the classic sender
(𝑟𝑐) in response to a congestion signal, characterized by 𝑟𝑐 ∝ 1/

√
𝑝𝑐, where 𝑝𝑐 denotes

the loss level of the Classic flow. On the other hand, the Scalable sender rate (𝑟𝑠) follows
an inverse linear approach, characterized by 𝑟𝑠 ∝ 1/𝑝𝑠, where 𝑝𝑠 denotes the loss level of
Scalable flow. It is this linearity that characterizes scalability in response to congestion.
In the next section, we will describe iRED, our AQM proposal that supports the L4S
framework.

5.3 iRED - ingress Random Early Detection

iRED was designed under three fundamental premises: 𝑖) Perform probabilistic packet
dropping with minimal overhead; 𝑖𝑖) Support and adhere to current Internet congestion
control mechanisms, such as the L4S framework; 𝑖𝑖𝑖) Be fully implemented in the data
plane hardware. Based on these guiding requirements, this Section describes the details
and challenges of implementing iRED on the Tofino2 programmable switch3.

Regarding the first premise, we understand that to minimize overhead on the switch,
iRED should be able to discard packets as soon as possible. Leveraging the programmable
switch pipeline, we believe that the most suitable place to perform the drop action is in
the Ingress block. However, the data (queue metadata) necessary to calculate the drop
probability is available after the Traffic Manager, that is, in the Egress block. In this
context, we decided to divide iRED’s operation into two parts, making it a disaggregated

3 The previous version of iRED (Almeida et al., 2022) was deployed in a software switch environment.
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AQM. As can be seen in Fig. 16, decisions are made at the Egress, while actions
are performed at the Ingress.
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Figure 16 – iRED design. Disaggregating the action of a drop decision reduces wasted
resources.

In alignment with the second premise, we implemented the AQM requirements pre-
sented previously in Sec. 5.2 to provide support for L4S. First of all, the classification
process is performed in the Ingress block, in which the logic identifies the type of flow and
enqueues it to the corresponding output queue. Furthermore, the coupling mechanism is
implemented in the Egress block. In this scenario, iRED dynamically adjusts the drop
probability or marking based on the flow type (Classic or Scalable).

Finally, iRED is fully implemented in the hardware improving the autonomy in per-
forming AQM functions only within the data plane, thereby eliminating the control plane
or external mechanisms to make specific tasks. In this context, it is well-established
that AQM logic requires the utilization of intricate mathematical operations, including
multiplications, divisions, and square roots. Furthermore, certain sections of the logic
require the implementation of more sophisticated functions, such as exponential moving
averages or similar calculations. We overcome the challenges imposed by the architecture
and implement iRED entirely in the data plane using available resources, such as bitshift
to represent mathematical operations and compute the Exponentially Weighted Mean
Average (EWMA).

For a more comprehensive understanding, we will initiate the description of iRED’s
operation from the Egress block, specifically commencing with the drop or mark decision
(decision module). At the Egress, iRED computes the EWMA of the queue delay (or
queue depth4) for each individual packet, entirely within the data plane. The inherent
absence of division and floating-point operations poses challenges in calculating average
values within the data plane. To overcome this limitation, as applied in (Busse-Grawitz
et al., 2022), we employ an approximation method following Eq. 6:
4 The programmer can choose whether to use iRED’s delay-based or depth-based approach.
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𝑆𝑡 = 𝛼 · 𝑌𝑡 + (1 − 𝛼) · 𝑆𝑡−1 (6)

where 𝑆𝑡 is the updated average queue delay, 𝑆𝑡−1 is the previous average queue delay and
𝑌𝑡 is the current queue delay. The constant 𝛼 ∈ [0, 1] determines how much the current
value influences the average. We use 𝛼 = 0.5, such multiplication can be replaced by bit
shifts operations. The output of the EWMA will represent the average queue delay over
time. If the value observed (average queue delay) is between a set of min-max thresholds
defined, iRED will compute the drop probability according to the RED approach and will,
based on the coupling mechanism, generate different congestion signal intensities (drop
or marking).

Once the iRED decision module (Egress) has detected that a packet must be dropped
(Classic), iRED must notify the action module (Ingress) to perform this action. The first
challenge in the PDP context is to achieve communication between the Ingress and Egress
blocks with minimum overhead. Obviously, iRED will not drop the packet that generated
the discard decision, but a future packet (Chen et al., 2019). Discarding future packets is
one of the main features differentiating iRED from other state-of-the-art AQMs. For the
congestion notification to reach the Ingress block, iRED creates a congestion notification
packet (clone packet with only 48 bytes) and sends it through an internal recirculation
port to reach the Ingress block.

Algorithm 1 presents the iRED decision module, which operates within the Egress
block. This module continuously monitors the queue delay (or depth) and maintains an
updating register that stores the probability for dropping (Classic) or marking the ECN
bit (Scalable).

Algorithm 1 functions as follows: when the packet is identified as a clone, it is recir-
culated to the Ingress block (lines 5-6). This action signifies that future packets should
be dropped in the Ingress for the designated output port, thereby consuming only 48
bytes per packet. For regular packets, not cloned, the current queue delay is employed
to calculate the EWMA based on Equation 6 (line 8). If the EWMA value falls within
the defined minimum and maximum thresholds (line 9), iRED proceeds to calculate the
probability of dropping or marking with ECN. The decision module employs a random
number generator to compute distinct probabilities for each traffic type (lines 10-11). It
is noteworthy to clarify that for L4S packets, the marking probability is twice as high as
that for classic packets (coupling mechanism). Consequently, the random number used in
the computation of the L4S marking probability is half of the random number employed
for determining the drop probability, as defined by the L4S framework (Briscoe et al.,
2023).

The subsequent step in the algorithm involves identifying the packet type, which could
be L4S or Classic. If the packet type is determined to be L4S (line 12), the decision module
proceeds to compare the randomly generated L4S number with the drop probability value
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Algorithm 1 Decision to drop - Egress
1: 𝑚𝑖𝑛𝑇 ℎ𝑠𝑙𝑑 = 𝑇 𝐴𝑅𝐺𝐸𝑇 _𝐷𝐸𝐿𝐴𝑌 |𝑄𝑈𝐸𝑈𝐸_𝐷𝐸𝑃 𝑇 𝐻
2: 𝑚𝑎𝑥𝑇 ℎ𝑠𝑙𝑑 = 2 *𝑚𝑖𝑛𝑇 ℎ𝑠𝑙𝑑
3: 𝑑𝑟𝑜𝑝𝑃 𝑟𝑜𝑏 = 0
4: for 𝑒𝑎𝑐ℎ 𝑝𝑘𝑡 do
5: if 𝑝𝑘𝑡 == 𝑝𝑘𝑡𝐶𝑙𝑜𝑛𝑒𝑑 then
6: 𝑟𝑒𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑡𝑒(𝑝𝑘𝑡)
7: else
8: 𝐸𝑊 𝑀𝐴 = 0.5 · 𝑞𝑢𝑒𝑢𝑒_𝑑𝑒𝑙𝑎𝑦 + (1− 0.5) · 𝐸𝑊 𝑀𝐴𝑡−1
9: if (𝐸𝑊 𝑀𝐴 ≥ 𝑚𝑖𝑛𝑇 ℎ𝑠𝑙𝑑) and (𝐸𝑊 𝑀𝐴 ≤ 𝑚𝑎𝑥𝑇 ℎ𝑠𝑙𝑑) then

10: 𝑟𝑎𝑛𝑑𝐶𝑙𝑎𝑠𝑠𝑖𝑐 = 𝑟𝑎𝑛𝑑𝑜𝑚(0, 65535)
11: 𝑟𝑎𝑛𝑑𝐿4𝑆 = 𝑟𝑎𝑛𝑑𝐶𝑙𝑎𝑠𝑠𝑖𝑐/2
12: if L4S then
13: if 𝑟𝑎𝑛𝑑𝐿4𝑆 < 𝑑𝑟𝑜𝑝𝑃 𝑟𝑜𝑏 then
14: 𝑚𝑎𝑟𝑘𝐸𝐶𝑁(𝑝𝑘𝑡)
15: 𝑑𝑟𝑜𝑝𝑃 𝑟𝑜𝑏 = 𝑑𝑟𝑜𝑝𝑃 𝑟𝑜𝑏− 1
16: else
17: 𝑑𝑟𝑜𝑝𝑃 𝑟𝑜𝑏 = 𝑑𝑟𝑜𝑝𝑃 𝑟𝑜𝑏 + 1
18: end if
19: else
20: if 𝑟𝑎𝑛𝑑𝐶𝑙𝑎𝑠𝑠𝑖𝑐 < 𝑑𝑟𝑜𝑝𝑃 𝑟𝑜𝑏 then
21: 𝑑𝑟𝑜𝑝𝑃 𝑟𝑜𝑏 = 𝑑𝑟𝑜𝑝𝑃 𝑟𝑜𝑏− 1
22: 𝑐𝑙𝑜𝑛𝑒(𝑝𝑘𝑡)
23: else
24: 𝑑𝑟𝑜𝑝𝑃 𝑟𝑜𝑏 = 𝑑𝑟𝑜𝑝𝑃 𝑟𝑜𝑏 + 1
25: end if
26: end if
27: end if
28: if 𝐸𝑊 𝑀𝐴 > 𝑚𝑎𝑥𝑇 ℎ𝑠𝑙𝑑 then
29: if L4S then
30: 𝑚𝑎𝑟𝑘𝐸𝐶𝑁(𝑝𝑘𝑡)
31: else
32: 𝑐𝑙𝑜𝑛𝑒(𝑝𝑘𝑡)
33: end if
34: end if
35: end if
36: end for

stored in a register (line 13). If this comparison yields a true result, indicating that the
L4S packet should be marked, the ECN bit of the L4S packet is set to 1 (line 14), and
the drop probability value stored in the register is decremented by one unit (line 15).
Conversely, if the condition is false (line 16), the drop probability value in the register is
incremented by one unit (line 17).

For Classic traffic, the logic is analogous (lines 20-24). However, instead of marking
the ECN bit, the decision module executes a clone operation (line 22). In the clone
operation, the original packet remains unaltered and proceeds to be forwarded as usual to
its final destination. Simultaneously, the clone packet is modified to carry only notification
information destined for the action module.

In cases where the EWMA value exceeds the established maximum threshold (line
28), a uniform action is taken: either all packets are marked as L4S or all packets are
cloned as Classic, depending on the traffic type (lines 29-32).

The action module, situated in the Ingress block, maintains the congestion state ta-
ble on a per-port/queue basis and activates the drop flag (ON) for the corresponding
port/queue. The current packet is forwarded to the next hop without introducing any
additional delay. Subsequently, future packets intended for the same output port/queue,
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where the drop flag is set to ON, will be dropped (classic), and the drop flag will be
reset to OFF. This mechanism, facilitated by iRED, ensures that the Ingress pipeline can
proactively mitigate imminent queue congestion.

Now, we will explain the action part of iRED (listed in Algorithm 2), which runs at
the Ingress block. The initial step in Algorithm 2 involves verifying whether the incoming
packet has been recirculated from the Egress block (line 2). We employ a register with
a length matching the number of ports, where each port is associated with an index. If
the packet has been recirculated, the drop flag is activated by setting the corresponding
value in the index register to 1 (line 3). Following this, the recirculated packet serves its
purpose and is subsequently discarded (line 4).

Algorithm 2 Action to drop - Ingress
Input: pkt, pktRecirc
1: for 𝑒𝑎𝑐ℎ 𝑝𝑘𝑡 do
2: if 𝑝𝑘𝑡 == 𝑝𝑘𝑡𝑅𝑒𝑐𝑖𝑟𝑐 then
3: 𝑑𝑟𝑜𝑝𝐹 𝑙𝑎𝑔[𝑜𝑢𝑡𝑝𝑢𝑡_𝑝𝑜𝑟𝑡] = 1 {Flag to drop ON}
4: 𝑑𝑟𝑜𝑝(𝑝𝑘𝑡𝑅𝑒𝑐𝑖𝑟𝑐)
5: end if
6: 𝑖𝑝_𝑓𝑜𝑟𝑤𝑎𝑟𝑑
7: 𝑑𝑟𝑜𝑝𝑃 𝑜𝑟𝑡 = 𝑑𝑟𝑜𝑝𝐹 𝑙𝑎𝑔[𝑜𝑢𝑡𝑝𝑢𝑡_𝑝𝑜𝑟𝑡]
8: if 𝑑𝑟𝑜𝑝𝑃 𝑜𝑟𝑡 == 1 then
9: if L4S then

10: 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑖𝑛𝑔
11: else
12: 𝑑𝑟𝑜𝑝(𝑝𝑘𝑡) {Packet dropped}
13: 𝑑𝑟𝑜𝑝𝐹 𝑙𝑎𝑔[𝑜𝑢𝑡𝑝𝑢𝑡_𝑝𝑜𝑟𝑡] = 0 {Flag to drop OFF}
14: end if
15: end if
16: end for

The remainder of Algorithm 2 primarily focuses on the routine forwarding of packets
(line 6), where the output port is determined. In this step, the algorithm evaluates to
ascertain the status of the drop flag associated with the specified output port. Should the
flag be in the activated state (indicated by a value of 1), the packet undergoes a dropping
procedure (as delineated in lines 12-13), and concurrently, the register is restored to
its initial state. It is important to note that only one packet is dropped at a time, and
subsequent packets destined for the same output port will only be dropped if a recirculated
packet is detected in the Ingress pipeline, signaling congestion.

For Scalable flows, iRED does not drop packets, as expected; instead it forwards the
packet to the scalable queue. In summary, iRED is the only current AQM P4-based
that drops packets in the Ingress block, fully deployable in the programmable data plane
hardware and is L4S-capable.

5.4 Evaluation
In this evaluation, we have conducted three types of experiments. Firstly, we evaluate

resource utilization within the context of existing AQM algorithms implemented in the
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P4, utilizing a Tofino2 programmable switch as the experimental platform. Following
this, we proceed to assess the compatibility of AQM with the L4S framework, with a
specific focus on fairness in the concurrent operation of classic (TCP cubic) and scalable
(TCP Prague) flow types. Lastly, we evaluate the AQM algorithms within the context of
an adaptive video streaming scenario, specifically focusing on DASH.

5.4.1 Resource Consumption Analysis - Tofino2

The objective of this evaluation is to analyze the consumption of switch resources for
all packets discarded by the AQM methods, that is, the resources that were wasted. In
this context, we evaluated four metrics: wasted memory, wasted time, wasted clock cycles
(latency), and wasted weight (power consumption). The wasted memory is the sum of
all memory resources used by the packets until being dropped, expressed in megabyte
(MB). The wasted time is the sum of all time used by the packets until being dropped,
expressed in milliseconds. The wasted cycles is the number of clock cycles and weight is a
metric that represents the power consumption (unit-less). A comprehensive exposition of
the results is provided in Appendix C. The subsequent paragraphs present a consolidated
summary of the results.

We performed an in-depth evaluation with the state-of-the-art Egress-based AQMs
(P4-CoDel and PI2 for P4) and iRED, reproducing the same setup (traffic intensity)
conducted in (Gombos et al., 2022), as detailed in Fig. 17. Our testbed consists of a
P4 programmable switch (Edgecore DCS810 - Tofino2), which connects two Linux hosts,
Sender and Receiver, having 25Gbps of link capacity. We conducted our experiments over
different network conditions shown in Table 7, varying bandwidth, RTT and MTU.

Cubic

Prague

TMIngress Egress

Cubic

Prague

Sender Receiver
Tofino2

25Gbps 25Gbps

Figure 17 – Evaluation setup. Cubic and Prague flows coexist in the same scenario, shar-
ing the programmable switch bandwidth.

Figs. 18 and 19 show the consolidated overview of the resources saved by iRED for
all configurations evaluated. Regarding PI2 (Fig. 18), iRED saves up to 5.6x power
consumption, 5.47x clock cycles and 4.77x memory. However, in three configurations (IV,
VIII and XII) in which the RTT is 50ms, PI2 wastes fewer resources. We observed that
the target delay was rarely reached in these configurations, resulting in few actions of the
PI controller.
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Table 7 – Configurations

Configuration Bandwidth(Mbps) RTT(ms) MTU(Bytes)

I 120 10 1500
II 120 50 1500
III 1000 10 1500
IV 1000 50 1500
V 120 10 800
VI 120 50 800
VII 1000 10 800
VIII 1000 50 800
IX 120 10 400
X 120 50 400
XI 1000 10 400
XII 1000 50 400

I II III IV IX V VI VII VIII X XI XII

Memory

Cycles

Weight

3.18

3.34

3.74

3.9

4.09

4.46

1.55

1.62

1.76

0.85

0.89

0.97

2.58

2.79

3.03

4.77

5.14

5.6

1.4

1.51

1.64

0.62

0.66

0.72

2.6

2.97

3.23

3.89

4.43

4.82

1.01

1.15

1.25

0.22

0.25

0.28

Figure 18 – iRED resource savings compared to PI2.

Regarding P4-CoDel (Fig. 19), the AQM algorithm drops all packets that reached
the target delay. Even for the scalable traffic (TCP Prague), all packets are dropped
(instead of being marked), since P4-CoDel does not support the L4S. This explains the
large number of wasted resources. iRED saves up to 8.9x weight, 12.79x clock cycles and
10.21x memory.

I II III IV IX V VI VII VIII X XI XII

Memory
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1.95
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4.3
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10.21

12.79

8.09

3.98
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3.14

3.23

4.28

2.71

3.42

4.53

2.87

9.18

12.13

7.68

4.42

5.86

3.71

Figure 19 – iRED resource savings compared to P4-CoDel.
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5.4.2 Fair sharing in L4S scope

In this particular experiment, our primary objective is to evaluate the support and
adherence to the L4S framework. As only iRED and PI2 meet this requirement, P4-CoDel
was not evaluated in this experiment. Additionally, we aim to evaluate the harmonious
coexistence between non-L4S flows, conventionally referred to as classic (TCP Cubic),
and L4S-compliant flows, denoted as Scalable (TCP Prague). We used the same setup
as the previous experiment (See Fig. 17), selecting configurations with an MTU of 1500
bytes (I, II, III, and IV).

In alignment with the methodology outlined by (Gombos et al., 2022), our experimen-
tal configuration involved the imposition of traffic intensity loads comprising four discrete
phases, each spanning a 120-second duration. Within each of these phases, we introduced
new flows with specific flow pairs (1-1, 2-2, 10-10, 25-25) into the system. This sequential
introduction of flows allowed us to initiate the load with lower intensity and progress
toward a high-load scenario.

In the context of a 10ms baseline RTT and a bandwidth set at 120 Mbps, Figs. 20(a)
and 20(b), becomes evident that a more equitable coexistence between flows is achieved
with the implementation of the iRED. Conversely, flows employing the PI2 exhibit a
relative disadvantage, with improved fairness only becoming apparent in the latter half
of the experiment, specifically during phases 3 and 4.
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Figure 20 – Coexistence evaluation of Cubic and Prague flows (RTT base 10ms).

When we examine the evaluation outcomes for a 1 Gbps bandwidth and a base RTT
of 10 ms, it remains evident that the equitable distribution of shared bandwidth among
flows persists across all phases of the experiment when utilizing iRED, as can be seen in
Fig. 20(c). In the case of PI2, Fig. 20(d) despite the initial appearance of fairness in the
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coexistence of flows during the initial phase of the experiment, this equilibrium does not
endure into phase 2.

In Fig. 20, the overarching conclusion drawn from our analysis suggests that in the
case of PI2, the intensity (i.e., the probability of marking the ECN bit) required to mark
packets from the Prague flow is insufficient during the initial phases of the experiment.
This deficiency in marking intensity becomes apparent because the Prague flow, due to
its bandwidth consumption characteristics, tends to dominate and not facilitate a fair
coexistence with the Cubic flow.

In Figure 21, we evaluate scenarios in which the baseline RTT is configured to 50 ms,
a value commonly encountered in long-distance networks. With a bandwidth of 120 Mbps
and an RTT of 50 ms, the observed outcomes closely parallel those obtained with an RTT
of 10 ms. Specifically, the iRED continues to exhibit superior fairness in the coexistence
of Cubic and Prague flows, as seen in Fig. 21(a), while the PI2 attains fairness only in
the later stages of the experiment, as can be seen in Fig. 21(b).
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Figure 21 – Coexistence evaluation of Cubic and Prague flows (RTT base 50ms)

However, in the case of 1 Gbps and an RTT of 50 ms, both approaches exhibited
a parallel pattern of behavior, as can be seen in Figs. 21(c) and 21(d). There was a
notable reduction in the performance of the Prague flow during the initial phase of the
experiment, followed by a more equitable coexistence between flows in the subsequent
three phases. In this particular scenario, we conjecture that the delayed feedback (ACK)
to the Prague TCP flow resulted in a slower initial ramp-up, as Prague TCP is notably
more dependent on this metric (Briscoe et al., 2018). This sensitivity likely contributed to
the observed behavior where Prague TCP experienced a significant drop in performance
during the initial phase of the experiment.
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5.4.3 DASH scenario

Finally, there is nothing more important than evaluating novel mechanisms using real
scenarios and applications. In this experiment, we elucidate the functioning of delay-based
AQM mechanisms, specifically P4-CoDel and PI2, with an iRED depth-based version. We
employ a DASH test case for our investigation, where the experimental setup comprises
three Linux hosts: a DASH server, a video client, and a load generator. These hosts
are interconnected via a Tofino 2 switch offering a throughput capacity of 25 Gbps, as
depicted in Figure 22.

Tofino 2

60 fps
30 fps
24 fps
18 fps

Video client

Load GeneratorDASH

Figure 22 – DASH experiment.

The DASH server houses the Big Buck Bunny video, available in four different quality
levels: 60, 30, 24, and 18 frames per second (FPS). The video client can dynamically
select from these quality levels based on the network conditions. In instances of elevated
congestion, the client opts for lower-resolution video playback. Conversely, during periods
of reduced network load, the client selects the highest available video resolution. This dy-
namic traffic behavior is influenced by the sinusoidal load applied to the testbed, wherein
the number of video clients concurrently consuming the video varies between 100 and 150
instances.

The load generator makes requests according to a Poisson process, and the arrival
rate is modulated by a sinusoidal function as defined in Equation 7. In this equation, 𝐴

denotes the amplitude, 𝐹 represents the frequency, and 𝜆 signifies the phase, measured
in radians.

𝑓(𝑦) = 𝐴 sin(𝐹 + 𝜆) (7)

The video client and load generator share the same output queue in the switch. We
set the bandwidth (using port shaping) to 100 Mbps as it is the global average broadband
speed (Cisco, 2021).

We conducted an evaluation of various AQM strategies, including iRED, P4-CoDel,
and PI2, encompassing measurements at application levels. We examined the FPS ren-
dered by the video client and the size of the local buffer employed for storing and playing
the next video frames.
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Figure 23 – DASH Results. iRED improves the DASH Quality of Service.

Figure 23(a) displays the FPS average achieved by the video client for each AQM
approach, while Figure 23(b) presents the cumulative distribution function (CDF) of the
remaining buffer duration (in seconds) within the video player. It is evident from the
results that iRED optimizes both FPS and the available time in the local buffer for video
playback. In light of these findings, it is noteworthy that iRED outperforms P4-CoDel by
a factor of 1.64x and PI2 by a factor of 2.34x in terms of maximizing FPS. Regarding the
video player buffer, our evaluation shows that iRED allows a filling up to 2.57x compared
to P4-CoDel and 4.77x compared to PI2.

Our understanding is that iRED has an advantage for latency-sensitive applications
due to packet drops in the Ingress block, which minimizes the waste of switch resources.
This is in contrast to the TNA implementations of PI2 and P4-CoDel, where packet drops
occur on the egress, potentially resulting in less efficient resource utilization. Addition-
ally, the mechanism for discarding packets in the future has a dual impact. First, it
ensures that packets experiencing delay are not immediately discarded but are forwarded
to their final destination (the video client). Second, this introduces a subtle delay in
signaling congestion at the sender. This delay helps to further smooth out TCP’s bursty
traffic patterns, making iRED particularly effective in maintaining network stability and
reducing congestion-induced fluctuations.

5.5 Summary of the Chapter
In this chapter, we cover the Execution component within the MAPE cycle, employ-

ing probabilistic packet discarding as an approach for AQM to manage the congestion.
We presented iRED as a viable solution, offering insights into its operational complex-
ities, efficient utilization of router resources, adherence to the L4S framework, and its
significant ability to improve the quality of DASH services. However, iRED suffers from
a common issue with all AQM strategies discussed in this work. The fixed target delay
problem is detailed in the next chapter, along with our solution to solve it.
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Chapter 6

Materializing a Smart Closed Loop
Utilizing DRL and INT

As discussed in the previous chapter, iRED uses a fixed target delay (or queue depth)
to calculate the drop probability. It would be interesting to have a solution in which
the target delay could be dynamically adjusted to better accommodate the DASH traf-
fic behavior. This is precisely what we cover in this chapter. We initiate this chapter
with an exposition of a frequently encountered challenge within AQM algorithms, herein
referred to as the “fixed target delay problem”. After describing the problem, we will
present DESiRED1, our solution for a fixed target delay, leveraging from In-band Net-
work Telemetry (INT) and Deep Reinforcement Learning (DRL) to dynamically adjust
the iRED target delay. DESiRED uses the QoS metrics to calculate the rewards or punish-
ments of the smart agent, which can come directly from the video player or be estimated
using a regressor, as discussed in Chapter 4. The ultimate goal is to utilize this DRL
model for real-time improvements of DASH QoS.

We undertake a comprehensive evaluation of DESiRED within a realistic testbed envi-
ronment, focusing on the delivery of an DASH service. In this evaluation, we explore the
flexibility of DESiRED in two different scenarios: 𝑖) we use the QoS metrics originating
from the video player 2 to calculate the rewards of the RL agent; 𝑖𝑖) we use the supervised

1 This chapter is based on the following work:

❏ ALMEIDA, Leandro C. de; SILVA, Washington Rodrigo Dias da; TAVARES, Thiago C.;
PASQUINI, Rafael; PAPAGIANNI, Chrysa, VERDI, Fábio L. DESiRED - Dynamic, En-
hanced, and Smart iRED: A P4-AQM with Deep Reinforcement Learning and In-band
Network Telemetry. Preprint 2023. (Computer Networks - major review).

2 Although valid in some contexts (eg. network slicing), this scenario does not apply to network service
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learning to estimate the state of the video client and use these QoS estimations as input
to the RL agent.

Our findings show that DESiRED can reduce video stall occurrences by a factor of up
to 90 times. Moreover, the enhancement in the DASH QoS is evident, as measured by
an augmentation of up to 42x in terms of FPS, underscoring the considerable efficacy of
DESiRED in elevating the QoE.

6.1 The Fixed Target Delay Problem
In the modern domain of computer networks, the necessity to meet rigorous service

requirements, including ultra-reliable low-latency communications and high bandwidth,
has resulted in a substantial increase in network traffic, amplifying the challenges asso-
ciated with traffic management. In this sense, AQM approaches that assist congestion
control (CC) mechanisms are welcome.

In scenarios where incoming packet rates exceed a network device’s processing capacity,
transient congestion occurs in the appropriate output queue, often causing transmission
delays. To mitigate this bottleneck, an effective strategy involves notification congestion
status to the packet sender, allowing the CC algorithm to reduce transmission rates.

Traditionally, AQM mechanisms have been primarily focused on draining packets di-
rectly from queues, to mitigate transient congestion and reducing the queue delay. Ex-
amples of these traditional AQM algorithms include Random Early Detection (RED)
(Floyd; Jacobson, 1993), Blue (Feng et al., 2002), CoDel (Nichols; Jacobson, 2012), CAKE
(Høiland-Jørgensen; Täht; Morton, 2018), and PIE (Pan; Natarajan; Baker, 2015). More
recently, due to the inherent flexibility of the PDP, the state-of-the-art AQM solutions
designed to operate within PDP hardware environments and made publicly accessible
comprise iRED (Almeida et al., 2022), P4-CoDel (Kundel et al., 2021), and the (dual)
PI2 (Gombos et al., 2022). These AQM implementations exemplify the synergy between
novel programmable data plane capabilities and the evolving demands of CC within mod-
ern network infrastructures.

An integral aspect of AQM algorithms pertains to setting an appropriate threshold
value, often determined based on considerations of queue delay (referred to as the target
delay) or queue depth. Opting for a minimal threshold value can lead to an increased oc-
currence of packet losses, resulting in a higher drop probability while reducing overall link
utilization. Conversely, employing a high threshold value can lead to extended queuing
delays but a lower likelihood of packet drops, characterized by a reduced drop probability.
Additionally, the dynamic nature of network traffic necessitates the avoidance of static
threshold values for specific applications. In this context, we explore this issue as the
fixed target delay problem, as illustrated in Fig. 24.

provider’s context, as they do not have access to customer devices.
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Figure 24 – The trade-off: If the Target Delay is small, it can increase packet losses and
decrease link utilization. If it is high, increases queueing delays and decreases
packet drops.

Based on this trade-off, it arises a fundamental question: What is the ideal target
delay for AQM? Estimating this value presents a challenging task. However, recent
advancements in the field of AI as applied to computer networks (Boutaba et al., 2018)
introduce a potential avenue, leveraging the capabilities of DRL as a powerful tool.

Although DRL models require a high volume of data, providing real-time data at
the requisite granularity has posed an obstacle within the context of computer networks.
However, recent progress in PDP and INT (P4, 2021), have conducted a paradigm shift.
These advancements have given us the capability to attain granular visibility, discernible
on a per-packet basis, effectively altering the scenario of the challenges associated with
data availability in the context of DRL applications within computer networks.

6.2 DESiRED - Dynamic, Enhanced and Smart iRED

DESiRED, Dynamic, Enhanced and Smart iRED, introduces an innovation where the
intelligent control plane leverages the power of DRL to dynamically optimize and adjust
iRED target delay parameters on the fly. On the data plane side, DESiRED inherits all
the capabilities and functions of iRED. In short, DESiRED materializes a Smart Control
Loop.

As discussed in Chapter 5, the concept of disaggregation in the context of this work
deals with the ability of AQM to operate on different programmable blocks within the
architecture of a PDP. As illustrated in Fig. 25, the decision-making process within DE-
SiRED takes place at the Egress block, while the corresponding actions are subsequently
executed at the Ingress block. With DESiRED, the control and data planes interact to
materialize an intelligent monitoring and actuation mechanism that aims to maximize the
QoS of a DASH service.

The following subsections will describe the functioning of DESiRED, with a distinct
focus on data plane and control plane operations.
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Figure 25 – The Smart Closed Loop overview with DESiRED. At the control plane side,
DRL updates the target delay at the data plane.

6.2.1 Data plane operation

The operation on the DESiRED in the data plane is “almost” identical to the operation
of the iRED (See Chapter 5). The main difference is that, with DESiRED, the target
delay value (threshold) is dynamic. In this case, a specific register (small orange box
in Fig. 25) in the Egress Pipeline stores the value of the target delay computed by the
intelligent control plane (blue rectangle in Fig. 25). For each packet that enters the Egress,
DESiRED reads this value to evaluate whether the average queue delay has reached the
defined threshold. The decision to discard (Classic flows) or mark (Scalable flows) packets
is carried out in the same manner as iRED.

6.2.2 Control plane operation

As mentioned earlier, DESiRED tackles the issue of fixed target delay through the
implementation of an intelligent control plane, denoted by the blue rectangle in Figure 25.
This intelligent control mechanism is responsible for updating the register that maintains
the dynamic target delay threshold, as determined by the DRL decision process. Now,
let’s present a comprehensive overview of the control plane operation.

The control plane operates by receiving data from two sources: the network state
and the application state. In this particular implementation, fine-grained INT mea-
surements constitute the input layer for the DQN from the network state. The DQN’s
output layer is responsible for generating the agent’s actions. Concurrently, the appli-
cation state encompasses DASH metrics, including parameters such as FPS and Local
Buffer Occupancy (LBO). The values can be obtained through two approaches: 𝑖) us-
ing the real values from the video player; and 𝑖𝑖) using the predicted values from the
supervised learning component defined in Chapter 4, as can be seen in Fig. 26.

INT measurements comprise observations that depict the network’s state with fine-
grained detail, offering an unprecedented perspective on the extent of congestion. These
measurements are acquired within the PDP and subsequently routed to the intelligent
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Figure 26 – Operation of the Control Plane in DESiRED involves using fine-grained INT
measurements as the input layer for the DQN. Additionally, DASH QoS mea-
surements serve as the basis for calculating agent rewards.

control plane. Within the control plane, they are aggregated into compact data frames,
which collectively form what we term the “observation space”. In the context of this
study, the term observation space refers to the temporal window within which the intel-
ligent control plane conducts an integrated analysis of both the network’s state and the
application’s behavior.

For each received observation space, the DQN incorporates INT measurements as an
input layer. Following neural network processing (refining its internal weights), the DQN
generates an action, which is manifested as an activation in one of the neurons within the
output layer. In this study, the possible actions include:

1. Increase the target delay;

2. Decrease the target delay;

3. Maintain the current state (i.e., take no action).

Subsequently, the control plane retains a record of the executed action and enters
a state of anticipation for the next observation space. Upon the arrival of data from
the subsequent observation space, the DRL mechanism evaluates whether the undertaken
action has led to the optimization of DASH QoS, particularly about enhancements in FPS
and LBO metrics. In the event of a positive outcome, the agent is rewarded, whereas in
cases of QoS deterioration, the agent incurs a penalty.

Leveraging insights from the dynamic network traffic patterns, DESiRED demon-
strates a capability to adapt with precision to prevailing congestion conditions. This
adaptability facilitates a continuous enhancement in the quality of video services offered.
It is imperative to clarify that DESiRED can be inherently application-agnostic, signify-
ing its capacity to accommodate diverse reward policies tailored to evaluate a wide array
of service metrics. This flexibility extends to metrics such as the response time of a web
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server or even the frame rate in video playback, underscoring its versatility across various
service domains.

6.3 Evaluation
In this section, we provide a summary of the evaluation’s key details. For a more

comprehensive and in-depth exploration of the implementation, please refer to Appendix
D. We undertake a comprehensive evaluation of DESiRED within a realistic testbed envi-
ronment, using Bmv2 software switch, focusing on the delivery of an DASH service (ISO,
2014) based on two approaches. In the first approach (Case 1), we use real data from
the video player to compute the agent’s reward policy. In the second approach (Case 2),
we predict these data using a trained regressor. All artifacts are available in the public
repository 3.

We understand that the first approach (Case 1) may be more suitable for cases where
the video service provider has access to network infrastructure metrics. In such scenarios,
the content provider may also own the communication infrastructure, thereby allowing
unrestricted access to monitor the state of the network.

On the other hand, in the second approach (Case 2), we believe it is more suitable
for cases where the network provider does not have access to the video player’s metrics.
In this scenario, the network provider needs to somehow estimate the QoS of the video
player. In this case, the estimates will be provided by the trained regressor, as discussed
in Chapter 4 and detailed in (Almeida; Verdi; Pasquini, 2021) and (Almeida; Pasquini;
Verdi, 2021).

The setup of these evaluations is depicted in Fig. 27.

SW 1 SW 2 SW 3

Video Quality Level
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Control Plane 
Reinforcement Learning

Video Client

Load Generator

MPEG-DASH
Server

Figure 27 – Setup of DESiRED Evaluation.

6.3.1 Case 1 - Using data from the real video player

Our objective is to evaluate if DESiRED can optimize the QoS for DASH services by
dynamically adapting the target delay under conditions characterized by both stationary
3 https://github.com/dcomp-leris/DESiRED.
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and non-stationary loads within a CDN environment. For the baseline, various fixed target
delays (5ms, 20ms, 50ms, and 100ms) were implemented within the iRED framework.

Our experiments involve the provision of diverse video catalogs to video clients travers-
ing a programmable network. Fine-grained INT measurements, collected at line rate in
the data plane, are utilized to inform the DRL mechanism in the control plane. The DRL
mechanism guides the agent’s actions, dynamically adjusting the target delay to optimize
the QoS for the DASH service.

We will present the outcomes of our experiments, where we evaluate how DESiRED
enhances the QoS of DASH. We offer an in-depth analysis from the client-side perspec-
tive, showcasing the results and delving into instances where video QoS has benefited from
the dynamic adjustments facilitated by DESiRED. Furthermore, we observe the perfor-
mance of the DRL model, providing evidence that the agent has successfully learned the
designated policy. It has also been able to identify an optimal target delay value that
maximizes QoS across the range of experiments conducted.

6.3.1.1 Stationary Loads

The motivation behind evaluating performance under stationary loads stemmed from
the necessity to ascertain whether the DRL agent would exhibit distinct learning behaviors
during moments of low load (free resources) and high load (congested resources) across
separate executions.

When the network load predominantly remains low, network resources are readily
available. In such scenarios, there is minimal contention for the use of the queue, resulting
in limited or no intervention from auxiliary congestion control mechanisms like AQM.
This phenomenon can be observed from the perspective of the video client, as depicted
in Figure 28.
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Figure 28 – Low Load - Characterized by only ten video player instances managed by
WAVE (Load Generator).

Figures 28(a) and 28(b) illustrate the Cumulative Distribution Function (CDF) of
FPS and LBO under low load conditions. In Figure 28(a), we observe some variation in
FPS for iRED with a fixed target delay of 5ms and 20ms/50ms. Conversely, in the cases
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of iRED with a fixed target delay of 100ms and DESiRED, the video client consistently
played the video at 30 FPS throughout all experiments.

Concerning LBO, as depicted in Figure 28(b), the results exhibit similar behavior
across approaches, with the local buffer maintaining a near-full state for most of the
evaluations, approximately 60 seconds. The only exception is the iRED with a 5ms fixed
target delay. In this specific scenario, the use of such a small threshold value appears to
have triggered a higher frequency of AQM actions. This, in turn, might have led to more
frequent drops within a time interval of less than one RTT, as discussed in (Gettys, 2011).
Paradoxically, this increased AQM activity, rather than alleviating congestion, may have
exacerbated the situation, demonstrating the potential for unintended side effects when
setting overly aggressive congestion control thresholds.

Conversely, when the network experiences predominantly high load conditions, the
dynamics shift significantly. In such scenarios, all approaches employing fixed target delay
mechanisms encounter challenges in maintaining acceptable DASH QoS. DESiRED, on
the other hand, manages to distinguish itself from the fixed target delay approaches, as
evident in Figure 29.
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Figure 29 – High Load. Characterized by forty video player instances managed by WAVE
(Load Generator).

To gain a deeper understanding of these results, it’s important to clarify some aspects
of the ABR adaptation logic employed by the DASH.js player, as described in (Spiteri;
Sitaraman; Sparacio, 2018). The adaptation logic used in DASH.js, known as DYNAMIC,
employs two different algorithms at different stages of video playback. During instances
when buffer levels (LBO) are low, such as startup and seek events, a straightforward
THROUGHPUT algorithm (based on throughput) is utilized. Conversely, when buffer
levels are high, the player switches to the BOLA algorithm (Spiteri; Urgaonkar; Sitara-
man, 2020). This dynamic adaptation approach aims to optimize video streaming under
varying network conditions, aligning the bitrate selection algorithm with the network’s
congestion state.

DYNAMIC starts with THROUGHPUT until the buffer level reaches 10s or more.
From this point on, DYNAMIC switches to BOLA which chooses a bitrate at least as high
as the bitrate chosen by THROUGHPUT. DYNAMIC switches back to THROUGHPUT
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when the buffer level falls below 10s and BOLA chooses a bitrate lower than THROUGH-
PUT (Spiteri; Sitaraman; Sparacio, 2018).

Indeed, from the perspective of the video player’s adaptation logic, the LBO metric
proves to be far more sensitive to variations in network buffer levels compared to FPS.
It’s important to note that changes in bitrate and FPS should only occur when the LBO
drops below 10 seconds. Consequently, it is logical to aim for maintaining an LBO greater
than 10 seconds for the majority of the time, as this instructs the ABR algorithm to select
the highest-quality video levels.

Figure 29(b), which pertains to LBO, contributes significantly to understanding why
DESiRED achieves superior FPS levels, as indicated in Figure 29(a). In this context,
it is plausible to think that fine-tuning the target delay has provided an advantage in
terms of preserving a sufficient LBO during periods of severe network congestion. This,
in turn, assists the ABR algorithm in making optimal bitrate and quality level selections,
ultimately leading to an improved video QoS

6.3.1.2 Non-stationary Load

Recognizing the dynamic nature of network traffic, we evaluated it under non-stationary
load conditions. To achieve this, we leveraged the WAVE framework, which effectively
managed the execution of video client instances over time, adhering to a mathematical
model of sinusoidal periodic load as detailed in Subsection D.0.3 of the Appendix D.

The choice of a sinusoidal periodic load model holds significance because it encapsu-
lates moments of congestion and resource relief in the network, particularly within router
buffers, within a single execution. This approach allows us to evaluate our agent’s perfor-
mance in situations of high congestion, where rapid adaptation is crucial, and congestion-
free states where shared resources are not overwhelmed. In essence, we expect that the
agent will learn distinct patterns that differentiate between these varying states.

This evaluation under non-stationary load conditions provides valuable insights into
how the agent responds to fluctuations in network congestion, thereby contributing to a
more comprehensive understanding of its adaptability and effectiveness.
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Figure 30 – Actions performed by the agent in the environment. After the initial random
exploration, the agent finds the best target delay value to maximize the QoS
of MPEG-DASH.

The initial result we would like to present pertains to the actions taken by the agent
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(DESiRED) within the network environment. Figure 30 provides an overview of the
agent’s actions throughout the experiment. Notably, there is an initial phase of random
exploration (indicated by the vertical dashed red line) extending up to the first 250 obser-
vations. During this exploratory phase, the agent gathers data about the network state,
which is used to populate the experience replay buffer (as outlined in Subsection 2.3.2.1
of Chapter 2).

After this initial exploration phase, the agent commences taking actions based on its
learned knowledge, drawing from the experiences stored in the experience replay buffer.
It’s important to highlight that this buffer is continually updated, enabling the agent to
learn from new states. Consequently, the agent can adapt to previously unseen states, a
capability that proves particularly valuable in scenarios with non-stationary loads.

This analysis of the agent’s actions provides insights into its learning process and the
transition from exploration to exploitation as it becomes more knowledgeable about the
environment.

Analyzing the agent’s actions, it becomes apparent that during the initial phase of
the experiment, characterized by an increase in network load, the agent frequently opted
to increase the value of the target delay. Subsequently, as the load stabilized, the agent
chose to take no action, potentially reducing the overhead of control plane operations in
the data plane. Towards the end of the experiment, as the network load decreased, the
agent shifted its strategy towards reducing the target delay.

Having observed how these actions mirror the agent’s interactions with the environ-
ment, we can now delve deeper into the model’s performance. Figure 31 provides an
overview of the model’s behavior, illustrated by the curves representing key performance
metrics such as Loss and Reward.
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Figure 31 – Model performance results - Decreasing Loss and increasing Reward indicate
model convergence.

Figure 31(a) illustrates the trajectory of Loss throughout the experiment. A decline
in Loss signifies a lower Mean Squared Error (MSE) in predicting q-values. In essence,
a low Loss value suggests that the model is effectively learning the policy by selecting
actions that maximize rewards (QoS). During the initial phase of filling the experience
replay buffer, Loss tends to be higher as actions are taken without the benefit of learning,
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effectively representing random actions. However, as the experience replay buffer becomes
populated and the Q-network is updated based on these experiences, the agent begins to
make more informed and assertive decisions. This shift towards lower Loss values reflects
the agent’s ability to learn and improve its policy.

Turning our attention to Rewards (Figure 31(b)), we observe that the model incurs
some penalties during the initial phase of the experiment. This corresponds to the period
when the agent transitions from an initial stationary state with no charges to reaching
the peak of the sinusoidal load curve, marked by the presence of 40 instances of the
video player simultaneously. Subsequently, as the agent refines its decision-making, it
starts receiving rewards consistently. These rewards indicate that the agent effectively
maximizes the QoS of DASH, further underscoring the model’s learning and adaptive
capabilities.

The insights obtained from the agent’s performance analysis are supported by the
LBO and FPS metrics observed by the video client in response to DESiRED’s actions,
as outlined in Table 8 and depicted in Figure 32. At this conjuncture, we aim to pro-
vide an interpretation of the results from the video client’s perspective, highlighting how
DESiRED outperformed other approaches considered in this study.

An essential piece of data when evaluating the QoS of a video service is the resolution
displayed on the screen by the video player. In this context, video consumers were offered
three distinct quality levels:

1. Minimum Resolution: 426x240 pixels at 18 FPS.

2. Medium Resolution: 854x480 pixels at 24 FPS.

3. Maximum Resolution: 1280x720 pixels at 30 FPS.

AQM Min. Resolution Med. Resolution Max. Resolution

iRED 5ms 91.83% 5.49% 1.36%
iRED 20ms 68.77% 12.96% 17.69%
iRED 50ms 46.74% 11.73% 41.27%
iRED 100ms 43.81% 9.91% 46.18%
DESiRED 31.71% 10.15% 58.07%

Table 8 – Execution percentage at each video quality level.

Even under challenging conditions, Table 8 demonstrates that DESiRED exhibits the
highest percentage of video playback at the maximum resolution (58.07%) and the lowest
rate of playback at the minimum resolution (31.71%). This finding aligns with the data
presented in Figure 32.

The discussion initiated in Subsection 6.3.1.2 remains pertinent in this context as well.
To reiterate, during periods of intense competition for shared resources, probabilistic drops
facilitated by a target delay that adjusts in response to network load fluctuations have
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proven instrumental in maximizing the QoS of the video service. Once again, DESiRED
effectively maintains a higher level of LBO filling, as depicted in Figure 32(b), ultimately
contributing to superior FPS performance, as evidenced in Figure 32(a).
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Figure 32 – QoS measurements of the MPEG-DASH video service. DESiRED improves
FPS and LBO while minimizing video stall.

Figure 32(c) presents a boxplot representing the percentage of video stalls, which
signifies moments when the video remains frozen without any frames being displayed. A
fast analysis of this figure might lead to the incorrect assumption that a longer delay at
a fixed target would yield better results. However, it’s important to note that DESiRED
imposes an upper limit of 70ms, which is lower than the value employed by iRED100ms,
thereby dispelling this theory. In this context, we believe that DESiRED’s fine-tuned
approach enables it to determine the optimal target delay value for each network state
during the sinusoidal load.

6.3.2 Case 2 - Using the data from the predicted video player

In this section, our goal is to evaluate the performance of DESiRED under conditions
where the network service provider lacks access to the video player metrics. In such cases,
we leverage supervised learning to predict the DASH QoS values. Based on our previous
work (Almeida; Pasquini; Verdi, 2021) we chose the Random Forest Regressor as our
estimator.

Initially, we use data (INT and QoS measurements) from execution under non-stationary
load (Subsection 6.3.1.2) to train a regressor. About this topic, we undergo data pre-
processing with the ultimate goal of finding the best regressor. We employed a random
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search (Randomized search) with cross-validation (K-fold cross-validation) to identify the
best parameters for a regressor in this dataset (Sinusoidal load).

After the pre-processing stage, we compute the NMAE to evaluate the performance of
the estimator in the validation4 dataset. The results indicate an estimation error of 5%
for FPS and 9% for LBO. In Figure 33, we can observe a visual arrangement of the
predictions made by the estimator in the validation set for FPS (Fig. 33(a)) and LBO
(Fig. 33(b)).
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Figure 33 – QoS estimations of the trained regressor.

We attribute the smaller prediction error about FPS to the fact that our experiment
only involved three levels of video quality (18, 24, and 30 FPS). On the other hand, with
LBO varying between 0 and approximately 60 seconds, the regressor tends to make more
errors in its predictions, thus justifying this difference in the NMAE value.

After this initial analysis of the performance of the regressor on the validation set, we
evaluated DESiRED using the QoS values (FPS and LBO) predicted by this regressor
as input. In other words, at this point, DESiRED calculates the rewards defined in its
policy based on these estimates.

For an hour, we conduct DASH transmission and expose the network to the same non-
stationary load pattern. We collect the real FPS and LBO values computed in the video
player and compare them to the values estimated by our regressor. Fig. 34 summarizes the
results of this experiment, in which we observed a similarity in the behavior of the CDF
curve between the real and predicted FPS values (Fig. 34(a)), which can be reinforced by
the NMAE of just 5%. Regarding the behavior of the CDF curve for LBO, we observed
that the regressor has difficulty estimating values with greater precision during moments
4 Samples not yet seen by the regressor in the training phase.
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Figure 34 – QoS estimations of trained regressor and real QoS values.

of low network load (high LBO). We believe this difficulty arises due to the low occupancy
of buffers in the network, often approaching zero, justifying a higher NMAE (9%).

These results indicate the feasibility of using DESiRED in environments where the
network service provider lacks access to the video client’s performance metrics. The idea
behind this solution is to train a model to predict FPS and LBO so that this pre-trained
agent can guide the DRL to make decisions

6.4 Summary of the Chapter
This chapter introduced DESiRED, a solution to tackle the fixed target delay problem.

By leveraging advanced network telemetry and the capabilities of deep reinforcement
learning, DESiRED emerges as a solution to improve the DASH QoS. In this work,
DESiRED represents the materialization of the Smart Closed Loop, encompassing all
components within the MAPE cycle.



91

Chapter 7

Final Considerations

In this chapter, we present the conclusions of this thesis, describing the contributions,
weaknesses, and future directions. Initially, we will revisit the hypothesis defined in
Chapter 1 and discuss how we concluded that it is correct. We will also present the
weaknesses of our solution, pointing out cases where it might not perform adequately.
Moreover, we outline some directions for open issues not yet solved in this work.

7.1 Conclusions
The main conclusion of this thesis indicates that the hypothesis outlined at the be-

ginning of this work is correct, that is, fine-grained measurements provided by In-band
Network Telemetry (INT) can be successfully used as input for Machine Learning (ML)
models to guide the Smart Closed Loop in a DASH transmission scope. This conclusion
results from the progress made in the estimation of adaptive video service metrics, followed
by the probabilistic packet discarding approach implemented with iRED, and culminating
in the materialization of the Smart Closed Loop with DESiRED. The Smart Closed Loop
concept was conceived within the MAPE (Monitor-Analyze-Plan-Execute) cycle, wherein
components interact with the ultimate goal of continuous monitoring and management.
We believe that this control loop could prove beneficial within ISP networks wherein the
network provider maintains management over the interconnect devices. Additionally, it
may find utility in scenarios where the video content provider also possesses ownership of
the network infrastructure (Lam, 2021).

Seeking to evaluate the hypothesis, we listed three research questions, which were
answered throughout the chapters of this work. The initial research question pertained to
the difficulties associated with estimating metrics from an adaptive video service within
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the context of a programmable network. This estimation relied on the utilization of
fine-grained metrics supplied by INT as input for training regressors based on supervised
learning.

The subsequent research question examined the feasibility of implementing real-time
network management actions aimed at enhancing the Quality of Service (QoS) for a DASH
service. We tackle this question through the development and deployment of the ingress
Random Early Detection (iRED) approach. This approach represents a disaggregated
P4-AQM mechanism designed to align with the L4S framework.

The final research question delved into the possibility of designing a comprehensive
solution that integrates both control and data planes, thereby realizing a closed-loop
mechanism. As a fundamental requirement, the control plane is envisioned to have some
intelligence, leveraging machine learning algorithms to guide its operations. In the context
of this topic, we introduced DESiRED as a viable Smart Closed Loop solution. DESiRED
was founded on the composition of In-band Network Telemetry (INT) measurements,
serving as input to Deep Reinforcement Learning (DRL) models. This approach aids in
the decision-making process for optimizing a dynamic Active Queue Management (AQM)
mechanism within a programmable network.

7.2 Weaknesses and Limitations
Despite the advances presented in this work, this section shows a set of limitations

and weaknesses that still demand greater attention. First of all, our solution has not
been evaluated with applications other than DASH. These services may be adversely
affected by the probabilistic dropping, especially throughput-sensitive applications. This
weakness opens up a new and challenging field of research since a plurality of applications
and services with different requirements must coexist in a network.

Another point of attention arises for more in-depth evaluations concerning a greater
variety of network conditions. Given the vast diversity of services, applications, topolog-
ical configurations, and network loads encountered, it is imperative to acknowledge that
an agent trained within a specific network environment cannot be expected to replicate
its performance in other heterogeneous settings. In response to this challenge, Transfer
Learning (TL) has emerged as a promising approach, aiming to address several intricacies
not typically encountered in the context of RL.

However, the application of TL within an RL framework is a non-trivial undertaking,
necessitating numerous adaptations to enable the agent to effectively leverage knowledge
acquired in a source domain for application in a target domain. In this context, numerous
questions arise, including but not limited to:

❏ What types of knowledge are amenable to successful transfer?
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❏ Which RL structures are best suited for integration into a TL framework?

❏ What distinguishes a source domain from a target domain?

The literature (Zhu; Lin; Zhou, 2020) has briefly discussed this topic; however, we
understand that a dedicated examination of these issues is needed within the specific
context of transfer learning in RL, particularly in computer networking problem domains.

7.3 Future Directions and Open Issues
Despite the advancements outlined in this thesis, some still require further analysis,

thus characterizing them as prospective challenges for the future. The first among these
challenges pertains to the design and implementation of a Smart Closed Loop within the
data plane. We have noted some contributions to deploying machine learning (ML) mod-
els exclusively in the data plane, such as IIsy (Zheng et al., 2022a), Planter (Zheng et
al., 2022b) and QCMP (Zheng; Rienecker; Zilberman, 2023). However, these studies con-
centrate solely on conducting the inference phase within the data plane, relegating model
training to the control plane. This is primarily due to the ample resources and mathe-
matical functions that are available in the control plane. Moreover, there is still progress
to be made before more intricate models like Deep Reinforcement Learning (DRL) can
be effectively employed.

The second issue revolves around the generalization capacity of the Smart Closed
Loop. While DESiRED was conceived to be application-agnostic, it is a challenge to
adapt its reward policies to different types of applications. A more advanced approach
might involve crafting a policy with the capability to dynamically adjust to the specific
services being monitored by DESiRED.

Another topic that can be better explored in future studies is the use of Generative
Adversarial Networks (GANs) to assist in the training, hyperparameterization, and fine-
tuning of machine learning models. Recent preliminary studies (Tavares et al., 2024)
demonstrate that, in some specific cases, generative AI can help with the operation and
management of networks with machine learning models.

The use of multiple queues was not addressed in this work. However, it is naive to
think that these cases do not exist. In this sense, it is necessary to investigate more deeply
how the strategies discussed here would behave in cases where traffic visits multiple queues
on the same node.
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APPENDIX B

Evaluation Description (Service
Estimation)

We established a virtualized environment hosted on a Dell EMC PowerEdge R720
physical server model, featuring 2 Intel Xeon processors® E5-2630 v2 running at 2.60GHz,
with 6 cores per socket (24 virtual CPUs), 48GB of RAM, a 2TB HDD, and operating
on Ubuntu 18.04.5 LTS.

For virtualization, we utilized VirtualBox version 6.1.8 as the hypervisor, comple-
mented by the use of Vagrant version 2.2.13 and Ansible version 2.9.15 for infrastructure
provisioning. All associated artifacts and resources have been made accessible for repli-
cation purposes via a public repository1.

B.0.1 Components description

The topology described in Table 9 and shown in Figure 35 is composed by 10 virtual
machines having all their connections provided by BMv2 switches, which are P4-capable
virtual equipments.

The dashServer is the component responsible for providing video streaming in the
DASH standard for the client and the load generators. In this evaluation, two video
streams were made available: the transmission of a soccer game for the client access; and
a playlist containing the ten most accessed videos on Youtube® for the load generators.
Apache version 2 applications were installed as the web server; FFmpeg (2.8.17) was used
for encoding the videos; and MP4box (0.5.2) for creating the DASH manifest files.

1 https://github.com/leandrocalmeida/
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Figure 35 – Topology of experiment.

Name OS vCPUs Memory
dashServer Ubuntu 16.04.7 LTS 12 4GB
clientVlc Ubuntu 20.04.1 LTS 12 8GB

sinkServer Ubuntu 20.04.2 LTS 4 8GB
loadGen1 Ubuntu 20.04.1 LTS 6 8GB
loadGen2 Ubuntu 20.04.1 LTS 6 8GB
loadGen3 Ubuntu 20.04.1 LTS 6 8GB

loadGenMicroBurst Ubuntu 20.04.1 LTS 1 4GB
bmv2_1 Ubuntu 20.04.1 LTS 4 1GB
bmv2_2 Ubuntu 20.04.1 LTS 4 1GB
bmv2_3 Ubuntu 20.04.1 LTS 4 1GB

Table 9 – VMs details.

The clientVlc is the component responsible for consuming the video streaming of the
soccer game, in which the VLC video player (3.0.8) was executed, with modifications to
collect service metrics.

The BMv2 switches were programmed to append INT metadata in all INT packets.
In this experiment, we adopt an ONT approach, that is, specific INT probes are sent from
the DASH server to the sink node. So, no data packets are changed to carry out INT
metadata.

The sinkServer is the component responsible for collecting INT traffic and storing it in
the format supported by the ML methods. Code written in Python was used to perform
the collection and storage functionalities.

The load generators (loadGen{1/2/3}) are components responsible for consuming the
streaming of the ten most accessed videos on Youtube®. They run two load patterns: a
sinusoidal and flashcrowd.

The sinusoidal function is described in Equation 8, where: 𝐴 represents an amplitude;
𝐹 the frequency; and 𝜆 is a phase in radians. The loadGen{1/2/3} execute video clients
obeying the sinusoid load function, increasing and decreasing over time.

𝑓(𝑦) = 𝐴 sin(𝐹 + 𝜆) (8)

The flashcrowd load describes a flash event, that is represented by a large spike or
surge in traffic to a particular Web site (Ari et al., 2003). The flashcrowd is divided into
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three phases: ramp-up, sustained and ramp-down.
Ramp-up is modeled by shock level (𝑆), that is an order of magnitude increase in the

average request (video clients) rate. Furthermore, it starts in 𝑡0 and ends in 𝑡1.

𝑟𝑎𝑚𝑝𝑢𝑝 = 1
log10(1 + 𝑆) (9)

Sustained represents the maximum traffic (clients) level at the time interval 𝑡1 and 𝑡2.
It is also modeled by 𝑆.

𝑠𝑢𝑠𝑡𝑎𝑖𝑛𝑒𝑑 = log10(1 + 𝑆) (10)

Ramp-down represents the end of the flash event, gradually decreasing the amount of
traffic (video clients). In this phase, 𝑛 is a constant that defines the speed of reduction.
Ramp-down is modeled by 𝑛 and 𝑆.

𝑟𝑎𝑚𝑝𝑑𝑜𝑤𝑛 = 𝑛 × log10(1 + 𝑆) (11)

The loadGenMicroBurst is a component that runs a microburst (Joshi et al., 2018)
generator used to create noise in the network load. The purpose of having microbursts is
to mimic as much as possible the real traffic in a datacenter and make it difficult for the
ML methods to characterize the load patterns.

B.0.2 Experiment description

The experiment lasted approximately 19 hours (8h for sinusoid, 6h for flashcrowd and
5h for mix load). Mix load means that both sinusoid and flashcrowd were used at the
same time in the experiment. The dashServer hosts the video with different configurations
(from high quality to low quality), as shown in Table 10, so that the client can use each
one (transition) depending on the traffic load in the network.

Type Resolution FPS GOP Kbps Buffer Codec
vídeo 426x240 18 72 280 140 h264
vídeo 854x480 24 96 980 490 h264
vídeo 1280x720 30 120 2080 1040 h264
áudio - - - 128 - AAC
áudio - - - 64 - AAC

Table 10 – Video parameters used in a dashServer.

Every second, service quality metrics were collected in the clientVlc component. In
parallel, packets with INT instructions were sent from the dashServer to the sinkServer
in every µs interval. INT metadata is then appended by each switch (bmv2_{1,2,3}) in
the path as shown in Figure 36. At each hop, the INT packet size increases 32 bytes
(metadata) from its original size (48 bytes).

Upon arriving at the sinkServer, the metadata is extracted and stored in the proper
format for the ML methods. In addition, the load generators (loadGen{1,2,3}) run the
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Figure 36 – Add INT metadata.

load patterns, sinusoid, flashcrowd2 and mix, in independent executions. The parameters
used are described in Table 11.

Component Sinusoid Flashcrowd Mix
loadGen1 A=4, F=15, 𝜆=5 S=(8-15), n=(1-5) A=2, F=7, 𝜆=5,

S=(3-8), n=(1-2)
loadGen2 A=4, F=15, 𝜆=5 S=(8-15), n=(1-5) A=2, F=7, 𝜆=5,

S=(3-8), n=(1-2)
loadGen3 A=4, F=15, 𝜆=5 S=(8-15), n=(1-5) A=2, F=7, 𝜆=5,

S=(3-8), n=(1-2)

Table 11 – Parameters used for load generators.

The microburst generator sent 500 bytes-packets in a time interval between 0.01 - 1
second during all experiments.

After performing the experiments, the data (FPS and INT metrics) were integrated
into a matrix 𝑀𝑚𝑥𝑛, where: 𝑚 represents the number of samples (time series); and 𝑛

represents the number of attributes used for the regression. Before submitting the data
to the ML method, a pre-processing step was performed, in which the objective was
to improve the quality and representation of the data. Pre-processing was carried out
following the steps described below:

Incomplete/missing data handling: Incomplete/missing data (NaN - Not a Num-
ber) may lead to problems in the execution of the methods (Faceli et al., 2011a). For this
reason, through the function removeNaN, samples with these values were removed.

Removal of same-valued attributes: single-valued attributes do not have informa-
tion that helps distinguish objects, so they are considered irrelevant (Faceli et al., 2011a).
For this reason, single-valued attributes have been removed with the removeSameValuedAttr

function.
Attribute normalization: attributes that have very different scales can cause prob-

lems in machine learning methods (Faceli et al., 2011a). For this reason, the z-score
(Kotsiantis; Kanellopoulos; Pintelas, 2006) attribute normalization process was performed
2 The value was chosen randomly from a range described in Table 11.
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with the StandardScaler function of the Scikit-learn package. In this case, the mean of
each attribute was equal to zero and standard deviation equal to one.

After the pre-processing step, the dataset was divided into three partitions (train/test
and evaluation) using the function train_test_split from python’s Scikit-learn package.
In this sense, 80% of data went to training/test and 20% to evaluation. Train/test par-
tition (80% from original) was split again using the KFold cross-validation function, with
k=5, creating 5 sub-partitions, 4 for train and 1 for test. Each partition was submit-
ted to the ML models of the Scikit-learn package, performing a grid search through the
RandomizedSearchCV() function, in order to find the regressor with the smallest error. For
each method, 75 ML models were analyzed (25 for each load), totalizing 300 models eval-
uated. The best estimator of each ML method was used to evaluate the data evaluation
partition (20% from original) for each load.
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APPENDIX C

Evaluation Description (Resource
consumption analysis in Tofino2)

Environment description. Our testbed consists of a P4 programmable switch
(Edgecore DCS810 - Tofino2). The switch connects two Linux hosts, Sender and Re-
ceiver, having 25Gbps of link capacity, as shown in Fig. 17. Seeking to analyze the
coexistence and fairness between different versions of TCP, each end-host sends TCP Cu-
bic and Prague flows. We conducted our experiments over different network conditions
shown in Table 7, varying bandwidth, RTT and Maximum Transmission Unit (MTU).
The bandwidth is emulated by the P4-switch using the port shaping feature. The base
RTT is emulated in the Receiver by the tc netem tool, delaying the ACKs of TCP flows.
The MTU is emulated in the end-hosts (Sender and Receiver) by the ifconfig tool. The
traffic is generated by the iperf tool.

Load description. The load applied to the experiment is composed of 4 phases of
120 seconds each. In each phase, new flows enter the system, that is, starting with less
load and ending with a high load (bottleneck condition), as used in (Gombos et al., 2022).
The number of Cubic and Prague flows are shown in Table 12.

Table 12 – Load parameters

Phase Relative time Cubic Flows Prague Flows

1 0 1 1
2 120 2 2
3 240 10 10
4 360 25 25

AQMs settings. We use a base TARGET DELAY of 20ms for all AQMs. For iRED,
we set the minimum and maximum thresholds for queue delay, configuring 20 (TARGET
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delay) and 40 ms respectively, following the rule of thumb to set the maximum threshold
as at least twice the minimum (Floyd; Jacobson, 1993). For PI2, we set the TARGET
delay (20ms), INTERVAL (15ms), 𝛼 (0.3125) and 𝛽 (3.125), following the parameters
used in (Gombos et al., 2022). In P4-CoDel, we set the TARGET delay (20ms) and
INTERVAL (100ms), following the values used in (Kundel et al., 2021).

Ghost Thread. Tofino2 provides a new feature that enables the observation of the
queue depth at the Ingress block per packet. From the flexibility that is brought by this
new feature, we created a modified iRED version (iRED+G), that obtains the Egress port
queue depth at the Ingres block, and then, makes the decision and the dropping both at
the Ingres block. The key difference here is that we needed to adapt the iRED to use the
queue depth rather than the queue delay.

Tables in grayscale. All tables used to present the results are colored in grayscale,
in which the range of values is between light (best value) and dark (worst value).

Table 13 – Number of dropped packets

Conf iRED PI2 CoDel iRED+G

I 35597 58417 35861 37561
II 11311 22735 17947 11575
III 9495 7546 36602 45725
IV 4103 1802 9086 13266
V 27826 38060 21282 29016
VI 7625 19246 20665 8077
VII 6141 4538 33136 28367
VIII 7296 2378 15301 15612
IX 18314 26663 33044 21841
X 5455 11852 10430 5973
XI 4684 2639 23975 17669
XII 12080 1510 29870 19744

Number of dropped packets. All evaluations were performed based on the number
of dropped packets in each configuration, detailed in Table 13. The variation of the
numbers refers to the drop probability (randomness) for each AQM.

C.0.0.1 Wasted Memory

In this subsection, we detail the results of wasted memory for each configuration
evaluated in Table 14. In the case of Egress-based AQMs, the wasted memory is calculated
by doing 2 * the size of the packet (1500 bytes in the Ingress Buffer + 1500 bytes in the
Traffic Manager). For iRED, the wasted memory is computed by the sum of the length of
the dropped (1500 bytes) and notification (48 bytes) packets, resulting in 1500+48 = 1548
bytes. For the iRED+G, the wasted memory is only the Ingress buffer, which is 1500 bytes.
We conjecture that there is some internal memory used by the Ghost mechanism to share
queue depth information between the Traffic Manager and Ingress, but it’s an internal
feature that is not exposed to the programmer.

In general, as can be seen in Table 14, Egress-based AQMs need more memory to
perform drops, given the same load. This happens because the AQM operations (decision
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Table 14 – Wasted Memory (MB)

Conf iRED PI2 CoDel iRED+G

I 55.09 175.24 107.58 56.34
II 17.5 68.2 53.84 17.36
III 14.69 22.78 109.8 68.58
IV 6.34 5.4 27.24 19.89
V 23.59 60.89 34.05 23.21
VI 6.46 30.79 33.06 6.46
VII 5.19 7.26 53.01 22.69
VIII 6.15 3.8 24.48 12.48
IX 8.19 21.33 26.43 8.73
X 2.44 9.48 8.34 2.38
XI 2.09 2.11 19.18 7.06
XII 5.4 1.2 23.89 7.89

and action) are combined in the Egress block. As packets dropped by iRED only cross
the Ingress block, there is up to 10x less memory usage (Configuration VII).

C.0.0.2 Wasted Time

In the case of the Egress-based AQM, the wasted time is defined by the queue delay
computed for each discarded packet. In other words, it means the time that a given packet
stayed in the output queue before being dropped. However, in TNA there is no intrinsic
metadata to represent the queue delay. In this case, the traditional way (Kundel et al.,
2021; Gombos et al., 2022) to do it is to compute the difference between egress global
timestamp (egTstmp) and ingress global timestamp (igTstmp). This difference represents
the sum of the time spent in: Ingress parser latency; Ingress processing latency; Ingress
deparser latency; and Traffic Manager latency. We create an internal bridge header to
carry the igTstmp from Ingress to Egress, and when the packet reaches the Egress block,
we get the egTstmp to calculate the queue delay.

In the Ingress-based AQMs, the discarded packets are not sent to the output queue,
so the queue delay is always zero. However, the congestion notification needs to be
carried to the Ingress block. iRED uses recirculation, so in this case, the wasted time
is defined by the recirculation time for each notification packet sent from Egress to the
Ingress block. Again, for the iRED+G, we were not able to compare it with the others,
because it uses internal features that are not exposed to the programmer.

Fig. 37 shows the boxplot of the wasted time for iRED, P4-Codel and PI2. For
reasons already explained, the iRED+G is not present in this measurement. In many of
the observed cases for P4-CoDel and PI2, the median of the wasted time for the discarded
packets is very close to the TARGET DELAY, that is, the packets waited in the queue
for about 20ms before being discarded.

On the other hand, for iRED, the wasted time was very low, even requiring a zoom
(blue boxplot) in the graph for better visualization of the measurements. In this case,
only 48 bytes are transferred when the AQM logic decides to drop, that is, consumes very
low time through the 400Gbps internal recirculation port.
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Figure 37 – Wasted Resources (Time).

Since iRED uses the high-speed recirculation port, the recirculation time is very small
compared to the queuing delay of Egress-based AQMs. For example, the recirculation
time was approximately 0.001ms per packet in all configurations evaluated, while dropped
packets wasted 20ms on Egress-based AQMs. This explains why we need to zoom in on
Fig. 37.

C.0.0.3 Wasted Latency and Power

The results shown in this section were obtained using the P4 Insight (p4i) tool1 pro-
vided by Intel to inspect the P4-codes. First of all, by means of P4 Insigtht, we obtained
the cycles and power consumption for each AQM. Table 15 summarizes the p4i output
for each metric evaluated (for each programmable block).

The number of Cycles or Weight for iRED is more balanced between Ingress and
Egress. Although for iRED the Cycles/Weight numbers are balanced between Ingress
and Egress, the dropped packets essentially consumed the resources of the Ingress block.
Not surprisingly, for PI2 and CoDel, most of the Cycles and Weights are concentrated in
the Egress. Noteworthy to say that, although the number of cycles for PI2 is smaller than
CoDel, the weight is larger for PI2. The explanation refers to the fact that PI2 needs
additional registers to store the probabilities computed by the control plane, requiring
more power consumption for the writing operations. For iRED+G, all AQM logic is
concentrated in the Ingress.
1 https://www.intel.com.br/content/www/br/pt/products/details/network-io/intelligent-fabric-

processors/p4-insight.html.
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Table 15 – Latency and Power

AQMs Cycles Weight
Ingress Egress Ingress Egress

iRED 108.0 192.0 112.5 158.8
PI2 60.0 160.0 20.8 235.8

CoDel 60.0 196.0 13.8 154.9
iRED+G 212.0 84.0 208.0 31.6

Then, by having the numbers shown in Tab. 15, we were able to calculate the wasted
cycles and weight.

C.0.0.4 Wasted Clock Cycles

Each block has a fixed number of clock cycles (Latency), which are necessary to
forward each packet through the pipeline. For PI2, the wasted cycles are computed by
60+160 = 220 cycles per dropped packet. For P4-CoDel, the wasted cycles are computed
by 60 + 196 = 256 cycles per dropped packet. In iRED and iRED+G cases, only Ingress
cycles are used, resulting in 108 and 212 per dropped packet respectively.

Table 16 – Wasted Clock Cycles

Conf iRED PI2 CoDel iRED+G

I 3844476.0 12851740.0 9180416.0 7962932.0
II 1221588.0 5001700.0 4594432.0 2453900.0
III 1025460.0 1660120.0 9370112.0 9693700.0
IV 443124.0 396440.0 2326016.0 2812392.0
V 3005208.0 8373200.0 5448192.0 6151392.0
VI 823500.0 4234120.0 5290240.0 1712324.0
VII 663228.0 998360.0 8482816.0 6013804.0
VIII 787968.0 523160.0 3917056.0 3309744.0
IX 1977912.0 5865860.0 8459264.0 4630292.0
X 589140.0 2607440.0 2670080.0 1266276.0
XI 505872.0 580580.0 6137600.0 3745828.0
XII 1304640.0 332200.0 7646720.0 4185728.0

In Table 16, the cycles consumed by iRED for the dropped packets are colored on a
lighter scale in most parts of the configurations. If we look at the values, iRED achieves
savings in the order of up to 12x fewer clock cycles. Moreover, the results of the iRED+G
show that despite running in the Ingress, it wastes a large number of clock cycles for
each dropped packet since all AQM logic operations are combined within the same pro-
grammable block.

C.0.0.5 Wasted Weight (Power Consumption)

The Wasted Weight is a sum of weights (Power consumption) in Ingress and Egress for
each dropped packet. For PI2, the wasted weight is computed by 20.8+235.8 = 256, 8 per
dropped packet. For P4-CoDel, the wasted weight is computed by 13.8 + 154.9 = 168, 7
per dropped packet. In iRED and iRED+G cases, only Ingress weights are used, resulting
in 112.5 and 208 per dropped packet respectively.
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Table 17 – Wasted Weight (Power Consumption)

Conf iRED PI2 CoDel iRED+G

I 4004662.5 14989802.2 6049750.7 7812688.0
II 1272487.5 5674656.0 3027658.9 2407600.0
III 1068187.5 1883481.6 6174757.4 9510800.0
IV 461587.5 449779.2 1532808.2 2759328.0
V 3130425.0 9499776.0 3590273.4 6035328.0
VI 857812.5 4803801.6 3486185.5 1680016.0
VII 690862.5 1132684.8 5590043.2 5900336.0
VIII 820800.0 593548.8 2581278.7 3247296.0
IX 2060325.0 6655084.8 5574522.8 4542928.0
X 613687.5 2958259.2 1759541.0 1242384.0
XI 526950.0 658694.4 4044582.5 3675152.0
XII 1359000.0 376896.0 5039069.0 4106752.0

Looking at Table 17, the Egress-based AQMs have more power consumption in com-
parison to iRED, because all drop logic is not disaggregated. This is repeated with the
iRED+G version, which concentrates all operations in the Ingress block. On the other
hand, as iRED splits AQM’s operations, only the Ingress block’s power resources are
consumed by dropped packets. Then, iRED reduces power consumption by up to 8x.
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APPENDIX D

Evaluation Description (DESiRED)

In this appendix, we provide a comprehensive overview of the DESiRED evaluation.
This encompasses a detailed exposition of the research methodology, an in-depth portrayal
of the experimental environment and its configuration, the load pattern employed, the
DRL mechanism implemented, the metrics and measurements used for comprehensive
analysis.

D.0.1 Research methodology

Our methodology is rooted in experimental research aimed at evaluating the effective-
ness of the DRL mechanism within DESiRED. In this experiment, our aim is to conduct
a comprehensive evaluation of DESiRED in comparison to iRED, where iRED employs
fixed target delay settings of 5ms, 20ms, 50ms, and 100ms. We evaluate these approaches
under both stationary (low and high) and non-stationary (sinusoidal) load conditions. To
mitigate potential biases, each round of the investigation, spanning one hour, was repeated
ten times for each approach, resulting in a cumulative duration of over fifty hours across
independent runs. Furthermore, to gauge DESiRED’s robustness, we aggregated the DRL
agents derived from all preceding executions by employing an ensemble approach. This
involved combining the model parameters through an exponentially decaying running av-
erage, as described by Eq. 12 (Polyak; Juditsky, 1992; Goodfellow; Bengio; Courville,
2016):

𝜃(𝑡) = 𝛼𝜃(𝑡−1) + (1 − 𝛼)𝜃(𝑡) (12)

where 𝜃 represents a parameter from the i-th Q-network at the gradient descent iteration
𝑡; 𝜃(𝑡) the average from all parameters (1

𝑡
Σ𝑖𝜃

(𝑖)); and 𝛼 the exponential decaying factor
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(defined as 2.0).
We evaluate the DASH performance from the client-side perspective, focusing on three

key metrics: FPS, LBO, and Rebuffering Rate (Starvation) as measured within the video
player. Higher values for FPS and LBO correspond to improved QoS, while for Rebuffering
Rate, a lower value signifies enhanced QoS.

In addition to evaluating application quality metrics, we also scrutinize the perfor-
mance metrics of the DRL agent, encompassing Loss function and Rewards.

D.0.2 Environment description

The experiment was constructed within a realistic testbed, adopting an Infrastructure
as Code (IaC) approach, and implemented using Vagrant, Virtualbox (version 6.1.28), and
Ansible (version 2.10.8). In this setup, each infrastructure component is represented by
an isolated virtual machine, interlinked through a P4 programmable data plane network.

Each switch in the experiment was equipped with both the iRED and DESiRED
approaches. On the control plane side, the DRL engine was implemented, comprising
approximately 750 lines of code and utilizing Tensorflow as its backend framework. The
CDN was deployed to facilitate an DASH service, featuring live streaming of a soccer
game and a playlist housing the ten most frequently accessed YouTube videos. Load
management was executed using WAVE (Almeida et al., 2023) 1, a versatile load generator
that orchestrates instances of an application over time.

This infrastructure was hosted on a bare-metal server, namely the Dell EMC Pow-
erEdge R720, equipped with 2 Intel Xeon processors (E5-2630 v2, 2.60GHz) boasting 6
cores per socket (amounting to 24 virtual CPUs), 48GB of RAM, a 2TB HDD, and run-
ning the Ubuntu 20.04.6 LTS operating system. All pertinent artifacts and resources can
be accessed within the repository available at our GitHub2.

The Server hosts video content using the DASH standard to both the Video Client and
the Load Generator. It offers various configurations, as detailed in Table 18, with each
configuration having a chunk segment size of 4 seconds. The Video Client dynamically
selects and transitions between these configurations based on network traffic conditions
and the adaptation logic embedded within the video player.

The infrastructure is equipped with Apache version 2 as the web server, FFmpeg
(version 2.8.17) for video encoding, and MP4box (version 0.5.2) for creating the DASH
manifest files, ensuring seamless video streaming.

The Video Client utilizes DASH.js, a contemporary DASH reference player equipped
with an ABR algorithm. It employs this ABR algorithm to consume the video stream of
the soccer game, with the TCP New Reno congestion control algorithm managing network
congestion.
1 https://github.com/ifpb/wave
2 https://github.com/dcomp-leris/DESiRED.
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Type Resolution FPS Group of Pictures Kbps Buffer Codec
vídeo 426x240 18 72 280 140 h264
vídeo 854x480 24 96 980 490 h264
vídeo 1280x720 30 120 2080 1040 h264
áudio - - - 128 - AAC
áudio - - - 64 - AAC

Table 18 – Video parameters used in an MPEG-DASH Server.

The Load Generator is responsible for introducing network noise, operating the WAVE
framework with a variety of loads, including both stationary and non-stationary scenarios.
It dynamically adjusts the number of video player instances over time to simulate changing
network conditions. Further elaboration on this aspect can be found in Subsection D.0.3.

All the switches utilized in this experiment were implemented within the BMv2 soft-
ware switch environment, incorporating the respective P4 code for both iRED (fixed
target delay) and DESiRED (dynamic target delay with DRL) approaches. Across all
approaches, telemetry instructions were meticulously programmed to append telemetry
metadata to all probe packets. Notably, this experiment follows the ONT approach,
wherein dedicated ONT probes are dispatched from the DASH server to the Video Client.
Consequently, no modifications are made to data packets to accommodate telemetry meta-
data. The specifics of the telemetry metadata, consisting of 32 bytes, gathered at each
node within this experiment, are elaborated upon in Table 19.

Name bits Description
Switch ID 31 the switch identification number

Ingress port 9 the port number that the packet entered in the switch
Egress port 9 the port number that the packet left of the switch
Egress spec 9 the port number (Ingress) in which the packet will leave the switch

Ingress Global
Timestamp 48 the timestamp, in µs, of when the packet entered in the ingress

Egress Global
Timestamp 48 the timestamp, in µs, of when the packet started processing in the egress

Enq Timestamp 32 the timestamp, in µs, of when the packet was enqueue
Enq Qdepth 19 the queue depth when the packet was queued

Deq Timedelta 32 the time, in µs, that the packet remained in the queue
Deq Qdepth 19 the queue depth when the packet was dequeued

Table 19 – INT medatada.

D.0.3 Load Pattern

The Load Generator, powered by WAVE, orchestrates the instances of video clients
over time based on input parameters described by a mathematical function that defines
the load pattern. In its current iteration, WAVE supports constant, sinusoidal, and
flashcrowd load patterns. It initiates and concludes video player processes, generating
network load through genuine video requests (real traffic) that flow from the video player
to the DASH Server.

In this study, our aim is to evaluate DESiRED under various load conditions, aiming
to simulate diverse network state scenarios. To achieve this, we employ two distinct
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categories of load patterns: stationary and non-stationary. For stationary loads, which
remain constant throughout the experiment, we classify them into two types: low and
high. In this context, a low load is characterized by the presence of ten video client
instances operating concurrently throughout the duration of the experiment, as depicted
in Figure 38(a). Conversely, a high load is characterized by the simultaneous operation
of forty video player instances, representing a high-intensity load, as illustrated in Figure
38(b).
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Figure 38 – Stationary Loads.

Under low load conditions, it is anticipated that the target delay will be attained
relatively infrequently, given the shorter queuing delays that typically prevail. In this
scenario, both AQM strategies, whether employing a fixed or dynamic target delay, are
likely to yield comparable results in terms of QoS.

However, when the network experiences predominantly high load, the surge in traffic
volume can lead to an increase in queue delay, thereby prompting AQM strategies to
respond in accordance with the specified target delay, whether fixed or dynamic. In such
instances, the dynamic adaptability of DESiRED’s target delay is expected to confer
advantages in terms of QoS compared to the rigid, fixed target delay approach employed
by iRED. This dynamicity enables DESiRED to better accommodate and optimize QoS
in the face of fluctuating and demanding network conditions.

It is indeed unrealistic to assume that network loads will always remain stationary or
static. Consequently, in the second phase of our evaluation, we undertook a more compre-
hensive evaluation under a realistic load scenario, one that mirrors the dynamic nature of
real-world network environments. Our objective was to evaluate non-stationary load pat-
terns, encompassing both peak (high load) and off-peak (low load) periods within a single
experiment. To achieve this, we employed a sinusoidal periodic load pattern characterized
by the sinusoidal function detailed in Equation 13, where 𝐴 represents the amplitude, 𝐹

denotes the frequency, and 𝜆 signifies the phase in radians. The specific input parameters
utilized for this evaluation were: 𝐴 = 15, 𝐹 = 1, and 𝜆 = 25, culminating in the load
pattern illustrated in Figure 39. This approach captures the fluctuations in network load
more realistically, offering a dynamic and challenging environment for our evaluation.

𝑓(𝑦) = 𝐴 sin(𝐹 + 𝜆) (13)
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Figure 39 – Non-stationary (Sinusoid) Load.

D.0.4 Deep Reinforcement Learning mechanism

To accomplish the objectives outlined in this paper, we tailored the DQN architec-
ture and agent-environment workflow to align with the distinctive characteristics of the
DESiRED environment. In doing so, we designed the DQN using a Multilayer Percep-
tron (MLP) architecture, which is well-suited for handling the tabular nature of network
telemetry metadata. The MLP network adopted in our approach consists of an input
layer featuring units corresponding to each INT feature, two hidden layers each compris-
ing 24 neurons, and an output layer containing units for each possible action that the
agent can undertake, as depicted in Figure 40. Importantly, both the online and target
networks share this identical architecture. Table 20 provides a detailed breakdown of the
hyperparameters utilized for training DESiRED.

Input 
Layer

Hidden 
Layers

Output 
Layer

… … …

Ing Global
TImestamp

Eg Global
TImestamp

Deq 
Timedelta

Enqueue 
QDepth

Q(A1)

Q(A0)

Q(A2)

Figure 40 – DESiRED DQN architecture. The input layer is a network of fine-grained
measurements, provided by INT. Hidden Layers make up the DQN. The
actions are defined in the Output Layer.

To facilitate the desired agent-environment interaction, we formulated the agent’s
behavior as an MDP with the video chunk size serving as the discrete time steps. In
this framework, DESiRED operates within the environment, dynamically adjusting the
target delay in all switches at 4-second intervals, synchronized with the video chunk size.
The agent’s action space is delineated in Table 21, where it is evident that the action
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Hyperparameter Value Description
Q-network input layer dimension 19 A scalar defining the state input shape.
Q-network hidden layers 2 A scalar defining the Q-network depth.
Q-network hidden units 24 A scalar defining the Q-network non-linear computing units.
Q-network output layer dimension 3 A scalar defining the Q-network predictions output shape.
Hidden units activation function ReLU1 The non-linear activation function computed by hidden units.
Output units activation function Linear The activation function computed by the output layer.
Optimization function SGD2 The function used to adjust the Q-network weights in order to

minimize the predictions error in relation to the expected output.
SGD momentum 0.9 A scalar defining the momentum included in the

optimization equation to accelerate the gradient descent.
Learning rate 1e-3 A scalar determining the pace at which the weights are updated.
Loss function MSE3 The function used to compute the Bellman equation error.
Gamma 0.99 A scalar determining the discount factor in the Q-Learning update.

Tau 1e4
A scalar value determining how many updates the online network
should perform before updating the target network
(it corresponds to the parameter 𝐶 depicted in the Fig. 10).

Experience replay capacity 1e6 A scalar defining the size of the list in which the agent’s
experience will be stored.

Experience replay minimum memory 100 A scalar defining the minimum experiences that should be
stored before updating the online network.

Mini batch size 32 A scalar defining the number of experience samples over which
the Q-network will be updated.

Starting epsilon 1.0 A scalar defining the initial probability to take random actions
in the 𝜖-greedy exploration.

Ending epsilon 0.01 A scalar defining the final probability to take random actions
in the 𝜖-greedy exploration.

Epsilon decay steps 250
A scalar determining how many steps the probability to
take random actions in the 𝜖-greedy exploration should decrease
linearly before the exponential decay.

Epsilon exponential decay 0.99 A scalar determining exponential decay of the probability to take
random actions in the 𝜖-greedy exploration.

1 Rectified Linear Unit.
2 Stochastic Gradient Descent with Nesterov Momentum.
3 Mean Squared Error.

Table 20 – DQN hyperparameters.

Action Number Value Description
0 + 2ms increase target delay in all switches until 70ms (upper limit)
1 - 1ms decrease target delay in all switches until 20ms (lower limit)
2 - do nothing

Table 21 – DESiRED actions space.

to increase the target delay brings about a modification that is proportionally twice as
substantial as the decrease action. This choice was made to prompt DESiRED to respond
promptly to transient congestion while retaining the flexibility to decrease the target delay
when necessary, mirroring the rationale discussed in (Li et al., 2019).

It’s important to highlight that the calculation of rewards does not occur immediately
after an action is taken in the current state. This delay in reward calculation is attributed
to the fact that the effects of the agent’s action do not manifest instantly, primarily due to
the inherent control mechanisms incorporated within TCP and ABR systems, as detailed
in (Spiteri; Sitaraman; Sparacio, 2018). Consequently, the computation of rewards is
deferred until the subsequent state’s observation. In this context, the agent relies on
network status data derived from INT measurements to form its states, selects actions,
and is subsequently rewarded based on its ability to optimize the video’s QoS, which is
characterized by metrics such as FPS and LBO.
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Indeed, the intrinsic correlation between metrics such as LBO and FPS presents a
challenge when devising a reward policy. As the LBO increases, there is a tendency for
the FPS to also increase. However, this relationship is not always straightforward due to
the complex dynamics of network congestion and video streaming.

To calculate a reward (𝑅𝑡+1) for a specific action (𝐴𝑡), we adopt a strategy that first
evaluates whether the LBO in the next state (𝐿𝐵𝑂𝑡+1) improves compared to the LBO
observed when the action was executed (𝐿𝐵𝑂𝑡). Subsequently, a reward score is assigned
based on the effects of this action on both the next state’s LBO and FPS (𝐹𝑃𝑆𝑡+1).
Consequently, the agent receives maximum reward whenever the action taken leads to
the maximization of 𝐿𝐵𝑂𝑡+1 and is penalized in an inversely proportional manner if
the video experiences stalls. The algorithmic logic for calculating rewards is detailed in
Algorithm 3. This approach ensures that the agent’s reward is contingent on its capacity
to optimize both LBO and FPS, balancing the trade-offs inherent to video streaming in
dynamic network conditions.

Algorithm 3 DESiRED reward policy algorithm.
1: if 𝐿𝐵𝑂𝑡+1 > 𝐿𝐵𝑂𝑡 then
2: if 𝐿𝐵𝑂𝑡+1 > 30 then
3: 𝑅𝑡+1 ← 2
4: else if 𝐿𝐵𝑂𝑡+1 < 30 then
5: if 𝐹 𝑃 𝑆𝑡+1 == 30 then
6: 𝑅𝑡+1 ← 1
7: else if 𝐹 𝑃 𝑆𝑡+1 == 24 then
8: 𝑅𝑡+1 ← 0.5
9: else

10: 𝑅𝑡+1 ← 0.1
11: end if
12: end if
13: end if
14: if 𝐿𝐵𝑂𝑡+1 < 𝐿𝐵𝑂𝑡 then
15: if 𝐿𝐵𝑂𝑡+1 > 30 then
16: 𝑅𝑡+1 ← 2
17: else if 𝐿𝐵𝑂𝑡+1 < 30 then
18: if 𝐹 𝑃 𝑆𝑡+1 == 30 then
19: 𝑅𝑡+1 ← 1
20: else if 𝐹 𝑃 𝑆𝑡+1 == 24 then
21: 𝑅𝑡+1 ← 0.5
22: else
23: 𝑅𝑡+1 ← −2
24: end if
25: end if
26: end if

These actions were executed according to the 𝜖-greedy strategy as elucidated in Sub-
section 2.3.2.1. To implement this strategy, we established initial and final probabilities
for taking random actions, specified the number of decaying steps, and defined an ex-
ponential decay factor (as outlined in Table 20). In this scheme, 𝜖 commences its linear
decrease for 250 time steps to facilitate exploration. Subsequently, the probability of
selecting random actions is exponentially reduced, gradually transitioning to a minimal
value to emphasize exploitation over exploration. This strategy allows the agent to strike
a balance between exploring new actions and exploiting its existing knowledge as it in-
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teracts with the environment.
Taking into consideration the agent’s action frequency of once every 4 seconds and

the requirement for 250 iterations to initiate the exponential decay of 𝜖, the exploration
phase is expected to persist for approximately 17 minutes (equivalent to 1000 seconds).
In tandem, the experience replay memory buffer necessitates a minimum of 100 samples
to facilitate the online network parameter updates (as indicated in Table 20. Since ex-
periences resulting from the agent-environment interaction are stored every 8 seconds, it
would take approximately 13 minutes (or 800 seconds) for this condition to be met. Con-
sequently, the online network undergoes an update each time a new experience is stored,
as illustrated in Figures 9 and 10.

In the case of the non-stationary load, it follows a trajectory of 15 minutes to reach
its peak, maintains a plateau for an additional 15 minutes, and subsequently begins
to decline. During this period, the agent explores the action space during the ascending
phase of the sinusoidal curve and exploits these actions during the plateau and descending
phases. Consequently, when the exploitation stage commences, the agent should have
already gleaned insights from past experiences, encompassing both low and high load
scenarios. This enables the agent to adapt and respond effectively to the fluctuating
network conditions.

D.0.5 Metrics and Measurements

On the video client side, we evaluate the QoS by monitoring key metrics, including:

❏ FPS (Frames Per Second): This metric quantifies the number of frames displayed
per second on the screen, reflecting the smoothness of the video playback.

❏ LBO (Local Buffer Occupancy): LBO measures the remaining time, in seconds,
for frames stored in the player’s local buffer. It provides insights into the buffer’s
capacity to absorb network fluctuations and maintain continuous playback.

From these primary metrics, we derive additional insights, including:

❏ Resolution Distribution: We analyze the percentage of video content played at
different resolutions (Maximum, Medium, and Minimum) to assess the adaptive
streaming capabilities.

❏ Rebuffering Rate: This metric represents the percentage of time during which the
video experiences stalls or freezes on the screen, indicating interruptions in playback.

To facilitate these measurements, we configure the DASH.js player to log these met-
rics on a per-second basis. Within the DRL mechanism, we focus on evaluating the
performance metrics of the DQN:
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❏ Loss: This metric is calculated as the MSE between the predicted q-values for the
current and next states. It reflects the convergence and accuracy of the DQN’s
predictions.

❏ Reward: Reward represents the cumulative rewards and penalties acquired through-
out the experiment. It offers insights into the agent’s performance in maximizing
QoS.

Additionally, we capture the action history for each experiment, documenting the
agent’s selected actions at each observation space (every 4 seconds). These metrics provide
a comprehensive view of the agent’s learning and adaptation throughout the experiment.


	2e0c16b5-e4a3-419c-ab57-f016d074f748.pdf
	Title page
	Dedication
	Acknowledgements
	Epigraph
	List of Figures
	List of Tables
	Lista de siglas
	Contents
	Introduction
	Problem Statement
	Hypothesis
	Proposal
	Research Questions and Contributions
	Organization of this Thesis

	Fundamental Concepts
	Adaptive Bitrate Video Streaming
	Network Programmability
	In-band Network Telemetry

	Machine Learning
	Supervised Learning
	Reinforcement Learning
	Deep Q-Network workflow


	Congestion Control
	Active Queue Management

	Summary of the Chapter

	Related Work
	Video Service Estimation
	AQM in programmable data planes
	QoS/QoE improvements in DASH scope
	Summary of the Chapter

	Using ML and INT for Service Metrics Estimation
	Contextualization and Motivation
	Problem Statement
	Evaluation
	Summary of the Chapter

	Mitigating Network Congestion through Probabilistic Packet Dropping
	The Egress Drop Problem
	L4S - Low Latency, Low Loss, and Scalable throughput
	iRED - ingress Random Early Detection
	Evaluation
	Resource Consumption Analysis - Tofino2
	Fair sharing in L4S scope
	DASH scenario

	Summary of the Chapter

	Materializing a Smart Closed Loop Utilizing DRL and INT
	The Fixed Target Delay Problem
	DESiRED - Dynamic, Enhanced and Smart iRED
	Data plane operation
	Control plane operation

	Evaluation
	Case 1 - Using data from the real video player
	Stationary Loads
	Non-stationary Load

	Case 2 - Using the data from the predicted video player

	Summary of the Chapter

	Final Considerations
	Conclusions
	Weaknesses and Limitations
	Future Directions and Open Issues

	Bibliography
	Appendix
	Achievements
	Publications and disseminations during the Ph.D. (2019 - 2024)
	Co-authored publications and dissemination during the Ph.D. (2019 - 2024)
	Works under review
	Other

	Evaluation Description (Service Estimation)
	Components description
	Experiment description

	Evaluation Description (Resource consumption analysis in Tofino2)
	Wasted Memory
	Wasted Time
	Wasted Latency and Power
	Wasted Clock Cycles
	Wasted Weight (Power Consumption)

	Evaluation Description (DESiRED)
	Research methodology
	Environment description
	Load Pattern
	Deep Reinforcement Learning mechanism
	Metrics and Measurements



	b13ea7a8-6458-4154-ba30-29d0045152ac.pdf
	2e0c16b5-e4a3-419c-ab57-f016d074f748.pdf
	Title page
	Dedication
	Acknowledgements
	Epigraph
	List of Figures
	List of Tables
	Lista de siglas
	Contents
	Introduction
	Problem Statement
	Hypothesis
	Proposal
	Research Questions and Contributions
	Organization of this Thesis

	Fundamental Concepts
	Adaptive Bitrate Video Streaming
	Network Programmability
	In-band Network Telemetry

	Machine Learning
	Supervised Learning
	Reinforcement Learning
	Deep Q-Network workflow


	Congestion Control
	Active Queue Management

	Summary of the Chapter

	Related Work
	Video Service Estimation
	AQM in programmable data planes
	QoS/QoE improvements in DASH scope
	Summary of the Chapter

	Using ML and INT for Service Metrics Estimation
	Contextualization and Motivation
	Problem Statement
	Evaluation
	Summary of the Chapter

	Mitigating Network Congestion through Probabilistic Packet Dropping
	The Egress Drop Problem
	L4S - Low Latency, Low Loss, and Scalable throughput
	iRED - ingress Random Early Detection
	Evaluation
	Resource Consumption Analysis - Tofino2
	Fair sharing in L4S scope
	DASH scenario

	Summary of the Chapter

	Materializing a Smart Closed Loop Utilizing DRL and INT
	The Fixed Target Delay Problem
	DESiRED - Dynamic, Enhanced and Smart iRED
	Data plane operation
	Control plane operation

	Evaluation
	Case 1 - Using data from the real video player
	Stationary Loads
	Non-stationary Load

	Case 2 - Using the data from the predicted video player

	Summary of the Chapter

	Final Considerations
	Conclusions
	Weaknesses and Limitations
	Future Directions and Open Issues

	Bibliography
	Appendix
	Achievements
	Publications and disseminations during the Ph.D. (2019 - 2024)
	Co-authored publications and dissemination during the Ph.D. (2019 - 2024)
	Works under review
	Other

	Evaluation Description (Service Estimation)
	Components description
	Experiment description

	Evaluation Description (Resource consumption analysis in Tofino2)
	Wasted Memory
	Wasted Time
	Wasted Latency and Power
	Wasted Clock Cycles
	Wasted Weight (Power Consumption)

	Evaluation Description (DESiRED)
	Research methodology
	Environment description
	Load Pattern
	Deep Reinforcement Learning mechanism
	Metrics and Measurements




	b13ea7a8-6458-4154-ba30-29d0045152ac.pdf
	2e0c16b5-e4a3-419c-ab57-f016d074f748.pdf
	Title page
	Dedication
	Acknowledgements
	Epigraph
	List of Figures
	List of Tables
	Lista de siglas
	Contents
	Introduction
	Problem Statement
	Hypothesis
	Proposal
	Research Questions and Contributions
	Organization of this Thesis

	Fundamental Concepts
	Adaptive Bitrate Video Streaming
	Network Programmability
	In-band Network Telemetry

	Machine Learning
	Supervised Learning
	Reinforcement Learning
	Deep Q-Network workflow


	Congestion Control
	Active Queue Management

	Summary of the Chapter

	Related Work
	Video Service Estimation
	AQM in programmable data planes
	QoS/QoE improvements in DASH scope
	Summary of the Chapter

	Using ML and INT for Service Metrics Estimation
	Contextualization and Motivation
	Problem Statement
	Evaluation
	Summary of the Chapter

	Mitigating Network Congestion through Probabilistic Packet Dropping
	The Egress Drop Problem
	L4S - Low Latency, Low Loss, and Scalable throughput
	iRED - ingress Random Early Detection
	Evaluation
	Resource Consumption Analysis - Tofino2
	Fair sharing in L4S scope
	DASH scenario

	Summary of the Chapter

	Materializing a Smart Closed Loop Utilizing DRL and INT
	The Fixed Target Delay Problem
	DESiRED - Dynamic, Enhanced and Smart iRED
	Data plane operation
	Control plane operation

	Evaluation
	Case 1 - Using data from the real video player
	Stationary Loads
	Non-stationary Load

	Case 2 - Using the data from the predicted video player

	Summary of the Chapter

	Final Considerations
	Conclusions
	Weaknesses and Limitations
	Future Directions and Open Issues

	Bibliography
	Appendix
	Achievements
	Publications and disseminations during the Ph.D. (2019 - 2024)
	Co-authored publications and dissemination during the Ph.D. (2019 - 2024)
	Works under review
	Other

	Evaluation Description (Service Estimation)
	Components description
	Experiment description

	Evaluation Description (Resource consumption analysis in Tofino2)
	Wasted Memory
	Wasted Time
	Wasted Latency and Power
	Wasted Clock Cycles
	Wasted Weight (Power Consumption)

	Evaluation Description (DESiRED)
	Research methodology
	Environment description
	Load Pattern
	Deep Reinforcement Learning mechanism
	Metrics and Measurements





