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Abstract

This thesis presents a study on the spin dynamics of confined excitons under the

influence of a magnetic field. Experimental observations reveal unique correlations

between Zeeman splitting and spin thermalization, which can be tuned to both tem-

perature and incident light power. The theoretical model, which considers the eventual

spin thermalization of bright excitons, qualitatively agrees with the experimental obser-

vations and highlights the importance of the exchange interaction. Furthermore, this

study goes beyond previous approaches, offering additional insights into spin relaxation

and the effects of correlations between bright and dark excitons. Two fundamental con-

clusions are derived from this work: first, it is shown that the spin dynamics of excitons

confined under a magnetic field can be tuned by both temperature and incident power.

Second, it is noted that the polarization of the electrons is not appropriate to adjust

the experimental curve of the degree of optical polarization, since under the same ap-

proximations it is obtained that the optical polarization is zero. These conclusions

provide valuable insights for interpreting experimental measurements and guiding fu-

ture investigations into the spin dynamics of excitons in confinement.
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Resumo

Esta tese apresenta um estudo sobre a dinâmica de spin de éxcitons confinados sob

a influência de um campo magnético. Observações experimentais revelam correlações

únicas entre a divisão de Zeeman e a termalização de spin, que podem ser ajustadas

tanto à temperatura quanto à potência da luz incidente. O modelo teórico, que consid-

era a eventual termalização do spin de excitons brilhantes, concorda qualitativamente

com as observações experimentais e destaca a importância da interação de troca. Além

disso, este estudo vai além das abordagens anteriores, oferecendo insights adicionais so-

bre o relaxamento do spin e os efeitos das correlações entre excitons claros e escuros.

Duas conclusões fundamentais são derivadas deste trabalho: primeiro, é mostrado que

a dinâmica de spin dos excitons confinados sob um campo magnético pode ser ajustada

tanto pela temperatura quanto pela potência incidente. Em segundo lugar, nota-se que

a polarização dos elétrons não é adequada para ajustar a curva experimental do grau

de polarização óptica, pois sob as mesmas aproximações obtém-se que a polarização

óptica é zero. Estas conclusões fornecem informações valiosas para a interpretação de

medições experimentais e orientar futuras investigações sobre a dinâmica de spin de

excitons em confinamento.
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I. INTRODUCTION

Photoluminescence (PL) consists in the emission of light from a system when it

is exposed to electromagnetic radiation. It may take place in a variety of materials,

including inorganic solids, organic molecules, semiconductors, and nanoscopic devices,

providing information about their electronic structure and other physical properties.

When a photon with sufficient energy is absorbed by a semiconductor or other lumines-

cent material, it excites electrons to higher energy states. As these electrons return to

their original energy states, they release energy in the form of light [1]. The wavelength

and intensity of the emitted light can then be used to determine the energy levels of

the electrons in the material and the effectiveness of the photoluminescence process,

respectively. By using adequate excitation and detection configurations it can also pro-

vide information about the spin degrees of freedom of the electronic states that have

significant effects on the physical and chemical properties of materials. The spin of an

electron in a nanostructure affect the way it responds to magnetic fields, or different

temperatures [2], which in turn can impact the material’s electrical conductivity and

other physical properties. It is indeed the study of spin properties of nanostructures

and how they respond to the absorption and emission of light the main focus of the

present project.

Understanding the spin-properties of nanostructures [3] can be useful to develop

new technologies , such as spintronics[4], which use the spin of electrons for computing

architectures instead the traditional logic transistors [5]. The spin of an electron in a

nanostructure can be modulated by temperature through thermal changes, which can

cause the spin to become more or less aligned with an external magnetic field. In some

cases the spin of an electron becomes more sensitive to thermal fluctuations at higher

temperatures, which can lead to changes in the semiconductor magnetic properties.

The presence of high-energy photons can also excite electrons, causing their spins to
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become more or less aligned with an external magnetic field.

When studying electronic, spin, and optical properties in solid state physics it is

unavoidable to introduce quasi particles that describe collective interactions reducing

them to single or few particles representations. Specifically excitons, that represent an

electronic state of electrons in the conduction band and their paired vacancies in the

valence band (holes), are relevant when dealing with inter-band transitions mediated

by light absorption and emission. Excitons are made up of an electron and a hole,

each with its own spin, and the exchange coupling between them plays a critical part

in their collaborative behavior [6].

The exchange interaction in solids refers to the quantum mechanical effect that

arises from the Pauli exclusion principle, influencing the behavior of electrons within

a crystalline lattice. It is a fundamental concept in condensed matter physics and

plays a crucial role in determining the magnetic properties of materials. It can be

defined as the quantum-mechanical interaction energy associated with the exchange of

identical particles, such as electrons, in a many-body system. According to the Pauli

exclusion principle, which establishes that two electrons in an atom cannot have all

their quantum numbers identical, that is, in our case, the electrons with the same

spin cannot occupy the same quantum state simultaneously. The exchange interaction

arises from the anti symmetry of the wave function for identical particles, leading to

a repulsive energy when electrons are in close proximity with parallel spins and an

attractive energy when spins are anti parallel [7].

In the context of solids, the exchange interaction contributes to the formation of

magnetic moments and the alignment of electron spins, giving rise to various magnetic

phenomena such as ferromagnetism, antiferromagnetism, and ferrimagnetism. The

strength [4] and nature of the exchange interaction depend on the specific arrange-

ment of atoms and electrons in the crystal lattice, as well as the material’s electronic

structure.

There is a variety of ways where traces of the exchange coupling emerge, for instance

through excitation at two close energy levels that results in two close but different
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frequencies. This leads to an interference between them and a modulation of the

emitted light polarization provoking beats [8] that reflect the exciton spin splitting

in the transverse magnetic field into two different states: bright excitons and dark

excitons.

In our work we study in the first instance how excitons confined in a quantum dot

behave when exposed to an external magnetic field, giving rise to the polarization of

the excitons, as proposed in the recent study by Smirnov [9] , and as observed by our

experimental colleagues at UfScar, who measured the degree of circular polarization in

an InAs/GaAsSb sample, and observed an interesting relationship with the polarization

of the electrons as we will discuss later. For that study we reproduced the calculations

from the paper and extended its ideas to understand the nature of the degree of circular

polarization in the material.

We also carried out the calculation of the Zeeman splitting taking into account that

it could have a strong influence with the distribution of the up and down spins for

the electrons and holes in the semiconductor, with which we obtained a good model

to understand the atypical behavior observed in the measurements carried out by our

colleagues.

II. EXPERIMENTAL MOTIVATION

Understanding how the temperature impacts the dynamics of the spins confined in

nanostructures and how the incident power of a laser beam can be used to manipulate

their magnetic response are goals of the present Master Thesis, as some studies suggest

the possibility of control the spin behavior on the magnetic field is known [10] [2]. In

order to resolve the spin nature of the transitions that induce the emission of photons

it is necessary to use circularly polarized light given the selection rules that control the

optical excitation and recombination, described later.

In polarization resolved PL experiments carried out by experimental colleagues at

the Physics Department at UFSCar in InAs/GaAsSb quantum dots they have been
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able to identify a non-monotonic modulation of the degree of circular polarization

(DCP) [11] as represented in Fig.1, for a sample kept out of equilibrium via energy

pumping and cooling simultaneously. These experimental results have been fitted with

a theoretical model for electron polarization described in Ref. [9]. Yet, it is the scope

of this thesis to corroborate or not whether such an interpretation is feasible.

Our colleagues have also been able to resolve the energy splitting of spin states

(Zeeman effect) in InGaAs quantum wells in the presence of an external magnetic

field. Part of these results have been summarized in Fig. 2. Note, in the left panel, that

the absolute value of energy splitting grows with magnetic field for high illumination

powers, yet the monotonic behavior changes drastically for low powers. An analogous

effect has been presented in the right panel by reducing the temperature.

FIG. 1: Degree of circular polarization measured at 4K in InAs/GaAsSb quantum dots
as a function of the applied magnetic field for various intensities of the incident light.
Adjustment of experimental data in the region of dynamic spin polarization, with the
inset expanding the region of low magnetic fields [12]
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FIG. 2: Zeeman splitting of electron-hole pairs detected in the Photoluminescence of
InGaAs quantum wells under an applied magnetic field. Left panel: various incident
power of the incoming light at a fixed temperature. Right panel: the results for two
different temperatures under the same incident power. Results provided by the exper-
imental colleagues.

Thus, relevant scientific questions can be raised: what is the nature of these effects

and how to be able to modulate them. Given that there is a clear correlation with

the occupation of spin states that can be controlled by the incoming intensity and

temperature a relevant hypothesis to be tested is the eventual effect of the exchange

interaction and the magnetic field tuning of the spin relaxation, because the excitonic

effect and other effects that do not depend on spin have a negligible contribution to

understanding the phenomenon. Also relevant, the spin-relaxation, that is the process

by which the spin state of an electron in a semiconductor structure becomes randomized

due to interactions with the crystal lattice or other electrons, must be considered. There

are several mechanisms that contribute to it including the Elliott- Yafet mechanism

[13], the D’yakonov-Perel mechanism, and the Bir-Aronov-Pikus [14] mechanism. In

turn, exchange effects related to indistinguishable interacting electrons in the solid, can

be reduced to the effective interactions between their spins. This affect the energy of

configurations of aligned or anti-aligned of the spins in particular of electron-hole pairs

as described previously. These excitons can be classified as bright or dark, depending

on their spin properties. Bright excitons are those in which the spin of the electron

and hole are aligned, allowing for a direct recombination emitting light, whereas dark
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ones are those in which the spin of the electron and hole are anti-aligned, where such

a recombination is forbidden (at least in the first order approximation in perturbation

theory). The interplay between the spin relaxation, magnetic fields, and exchange

interactions can affect the relative populations of bright and dark excitons which can

in turn affect the overall spin dynamics of the system.

III. OBJECTIVES

Given these premises as motivations for the current thesis, a set of scientific tasks

was programmed according to the following objectives:

1. Develop and strengthen research and analytical skills by employing mathematical

and computational techniques in semiconductor physics, providing hands-on experience

in conducting independent research, data analysis, and critical interpretation of results

and available literature.

2. Explore and characterize the electronic and optical properties of confined exci-

tons under the dynamic conditions of continuous light pumping and the effect of spin

relaxation and exchange interaction.

3. Investigate the role of thermalization and the interplay with exchange interaction

in the exciton emission.

The scientific tasks are devoted to two main problems related to exciton spin and

exchange interaction: one demands the use of a stationary model where thermal equi-

librium can be assumed yet another requires a dynamic approach.

In addition to becoming familiar with the fundamentals of semiconductor theory, a

concrete milestone was established and achieved in order to address the main scientific

questions raised: reproducing the results summarized in Physical Review Letters 125,

156801 (2020), Ref. [9], with the purpose of verifying the dynamic spin effects on the

modulation of exciton spin polarization for the non-equilibrium system and contrast

this with the experimental results just presented.
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IV. THEORETICAL BACKGROUND

A. Electronic structure of semiconductors

When the interaction between radiation and matter is studied, simple approaches

such as two-level models are usually used, in which after interacting with an electro-

magnetic field, transitions of electrons are induced from one level to another, however

in the case of semiconductors, we are not only talking about two allowed energy levels,

but also energy bands. Semiconductors are extremely widely used materials both in

solid-state physics research [15] and in practically any modern electronic device. A use-

ful and many times reasonable approximation for the description of the band structure

of semiconductors is the assumption of parabolic relations in momentum space of the

main energy states involved in certain phenomena as represented in Fig. 3 (Left). This

simplifies the mathematical description and makes it easier to calculate both optical

and transport properties.

FIG. 3: (Left)Band structure of GaAs near the center of the Brillouin zone
[16]:s conduction band; HH: heavy hole band; LH: light hole band; SO: split-off
band.(Right)Fermi Dirac distribution function for intrinsic semiconductors
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FIG. 4: (Left)Square quantum well[1](Right)Set of Landau levels to a material bulk

It is common to use the so called k.p approximation that describes the energy bands

by a Hamiltonian based on the wave-number k and the momentum operator p [17], for

simulating the conduction and valence band properties in terms of effective masses. In

order to understand this concept we may start with describing the Hamiltonian of the

electron in a crystal as [18]

H(r) = p2

2m0
+ V (r), (1)

where V (r) as a periodic potential that responds to the crystal order of the material,

and m0 the free electron mass. The crystalline structure allows defining the particular

Bravais lattice of each case, so in this form U(r) = U(r + R) with R a vector of the

Bravais lattice. Given this spatial symmetry, Bloch’s theorem allows us to define the

eigenfunctions (also called Bloch functions) of the electron as follows

ψn,k(r) = eik·run,k(r), (2)

with

un,k(r) = un,k(r + R). (3)

where the number n represents the band index. By applying the eigenfunctions (2) to

16
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the Hamiltonian (1) of a certain crystal, the corresponding band scheme is obtained [19]

[
p2

2m0
+ ℏ
m0

k · p + V (r)
]
uk,n(r) =

[
En(k) − ℏ2

2m0

]
un,k(r) (4)

yielding the n-th band energy En(k) with

H0un,0(r) = En(0)un,0(r) (5)

and [
H0 + ℏ

m0
k · p

]
uk,n(r) =

[
En(k) − ℏ2

2m0

]
un,k(r) (6)

For values close to k = 0, we can use the second-order perturbation theory [20], and

assuming that the energy level is not degenerate, then En(k) can be expressed as follows

un,k(r) = un,0(r) + ℏ
m0

∑
n′ ̸=n

⟨un′,0|k · p|un,0⟩
En,0 − En′,0

, (7)

and

En(k) = En(0) + ℏ2k2

2m0
+ ℏ2

m0

∑
n′ ̸=n

|⟨un′,0|k · p|un,0⟩|2

En,0 − En′,0
, (8)

This expression can be condensed introducing the concept of effective mass m∗,

1
m∗ = 1

m0
+ 2
m2

0k
2

∑
n′ ̸=n

|⟨un′,0|k · p|un,0⟩|2

En,0 − En′,0
(9)

in the following way

En(k) = En(0) + ℏ2k2

2m∗ . (10)

The schematic representation of these bands has been included in Fig.3 (left). At

low temperatures semiconductors have a full valence band separated by an energy gap

from an empty conduction band. If we assume that the electrons are thermalized, they

would follow a Fermi-Dirac distribution as represented in Fig.3 (right).

This seemingly simple model for describing the energy bands can be extended to
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heterostructures consisting in a sequence of lattice matched semiconductors, as repre-

sented in Fig. 4 (Left). The band profile in this case corresponds to a semiconductor

quantum well where the quantum confinement along z-direction leads to the forma-

tion of energy levels [1]. The effects of external fields can also be included within

the parabolic and k.p approximations. Thus is the case of a uniform magnetic field

along the quantization direction z that leads to the formation of Landau levels [21] as

displayed in Fig. 4 (Right).

B. Excitons

In the realm of condensed matter physics, the concept of an exciton plays a pivotal

role in understanding the behavior of electrons and holes in semiconductors and or-

ganic materials. Excitons are fascinating entities, representing a quantum coupling of

two fundamental particles: an electron that has gained sufficient energy to traverse the

energy gap between the valence and conduction bands, and the hole it leaves behind,

which carries an opposite charge. Broadly speaking, excitons come in two principal va-

rieties: Wannier-Mott excitons, often referred to as free excitons, and Frenkel excitons,

known as bound excitons. Each type possesses distinctive characteristics that hinge on

their environment and spatial scale.

Wannier-Mott excitons predominantly emerge in semiconductors, and they exhibit

a size that encompasses several atoms. In contrast, Frenkel excitons are commonly

found in organic materials, and they manifest as tightly bound [22] quasiparticles with

a much smaller spatial extent, often comparable to the unit cell of the material. In

essence, an exciton is a quasiparticle birthed from the electrostatic attraction between

an electron and a hole, coaxed into existence by the Coulomb interaction.

The binding energy of an exciton is typically a fraction of the band gap[23], and

as a first approximation, it can be considered independent of the particle’s spin. This

characteristic simplifies our discussion, as we can primarily focus on properties dictated

by the orientation of the spins. Thus, in what follows the binding energy will simply be
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neglected, and so any Coulomb electron-hole coupling unless those where the exchange

interaction plays a role.

However, when delving into the dynamics of excitons, we encounter the intriguing

phenomenon of spin relaxation. Spin relaxation occurs when the spin of an exciton

interacts with various factors, including external magnetic fields and exchange inter-

actions. The influence of a magnetic field on the spin of excitons is mediated through

the Zeeman effect, which refers to the splitting of energy levels within a particle due

to its interaction with a magnetic field. In the context of excitons, the Zeeman effect

can induce a realignment of the exciton’s spin relative to the strength and orientation

of the applied magnetic field.

Additionally, exchange interactions come into play, a class of interactions governing

the correlation between the spins of two particles. For excitons, exchange interactions

lead to correlated spins between the constituent electron and hole, thereby influencing

the overall spin properties of the exciton. Thus, while the binding energy may remain

relatively constant, the spin orientation of excitons can undergo dynamic changes,

offering a rich field of study with implications for various applications in condensed

matter physics.

C. Optical selection rules and circularly polarized light.

The possible transitions and the number of those that actually happen are not the

same, in general some transitions have such a low probability of occurrence that they

are considered prohibited. On the contrary some of these transitions are so likely

that they occur and they are called allowed transitions. The rules for choosing which

transitions are allowed are called selection rules. According to the basic time-resolved

perturbation approach in quantum mechanics, the transition probability per unit time

can be calculated using the Fermi Golden Rule [1]

Pv,c = 2π
ℏ

|⟨ψc,k|V |ψv,k⟩|2δ (Ec − Ev − ℏω) (11)

19
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FIG. 5: transitions between levels with j = 3/2 and j = 1/2 and the levels with j =
1/2 ,absorption of a right-polarized photon [18]

between the valence band state −Ev and the conduction band state, Ec emitting a

photon with energy ℏω. Given the electron photon interaction term V = ieF
2m0ω

ϵp,

where F is the wave electric field with polarization ϵ, the selection rules for the optical

transitions are determined by the matrix element

⟨ψc,k|V |ψv,k⟩ ∝
∫
ψ∗

vϵpψc d3r, (12)

where ψ∗
1 and ψ2 are the wave functions of the initial and final states, and p is the

momentum operator. The transition probability is proportional to the square of this

integral, so, if the result is zero then we called that transition forbidden.

To describe the selection rules in semiconductors it is necessary to fulfill the conser-

vation of angular momentum and energy. Circularly polarized photons can be left or

right polarized, and thus their momentum can be projected to have values of +1, -1,

in fundamental units, h. When absorbing or emitting a circularly polarized photon,

its angular momentum is shared with the electron-hole pair, depending on the momen-

tum of the electron, and the hole and the shape of the particular band structure of

20



Jhon F. Contreras D Hamiltonian exciton in a quantum well

the crystal. Some of the allowed transitions for the absorption of a photon with right

circular polarization have been represented in Fig. 5 and will be used later.

In the case of semiconductors such as InGaAs, the selection rules are influenced by

the band structure of the material and the conservation of angular momentum. The

total angular momentum of the exciton must be conserved during the optical transition.

This implies that the change in angular momentum of the electron and hole, together

with the angular momentum of electromagnetic radiation, must cancel out.

The energy of the photon absorbed or emitted during the transition must match

the energy difference between the energy levels of the electron and the hole involved in

the transition. This is because the energy of a photon is proportional to its frequency,

and the energy of an electron or a hole is determined by the energy of its band, and

whether these energies are sufficient to allow a transition, as described by Eq. 11. For

illustration, if an electron is excited from the valence band to the conduction band, it

will absorb a photon with an energy equal to the difference between the two bands,

which is embedded within the delta function of that equation. The backward process

can also plausible, in which a photon is emitted when an electron recombines from the

conduction band to the valence band.

In general, the optical behavior of materials is strongly related to their electronic

structure, in such a way that the conservation of energy and momentum when de-

termining the optical transitions of semiconductors can explain phenomena such as

reflection, refraction and scattering of light from the materials.

D. Hamiltonian exciton in a quantum well

In our case we study confined electron-hole pairs, in the presence of an external

magnetic field. In order to model its electronic structure we use the parabolic effective

mass approximation described earlier where the Hamiltonian for either an electron or

a hole is given by

H = T + V +HZeeman +HLandau (13)
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Jhon F. Contreras E Density of states 2D

Where T is the kinetic energy operator of the electron, V is the potential energy

operator due to the confinement in the quantum well, HZeeman is the Zeeman energy

due to the interaction of the magnetic field with the electronic spin, and the Landau

quantization energy due to the interaction of the magnetic field with the electron

motion is produced by HLandau, in the case of quantum wells. Now, the Zeeman energy

could be written as

HZeeman = gs · µB ·B · S (14)

with gs, the effective g-factor, µB is the Bohr magneton, B is the magnetic field

strength, and S the spin. The Landau quantization energy levels represented in Fig. 4

(right), is defines as [1]

HLandau = ℏ · ωc ·
(
N + 1

2

)
(15)

Where ωc = eB
m∗c

is the cyclotron frequency with N = 0, 1, 2..., a positive integer called

the Landau level index. So, the energy for an electron (hole) confined in a quantum

well in the presence of a magnetic field could be expressed as

EN,s = ℏeB
m∗c

(
N + 1

2

)
+ s

2
· gµBB

s = ±1
(16)

E. Density of states 2D

In order to describe how electrons occupy the available energy levels it is sometimes

possible to assume that they are thermalized defining a Fermi level conditioned by the

amount of free electrons in the material, the effective temperature, and the density of

energy states, which determines how many electronic states are in some energy range.

In our case the density of 2D states in the presence of an external magnetic field must

take into account the quantization of the electronic energy levels due to the magnetic

22



Jhon F. Contreras F Electron-hole exchange interaction

field, as well as the spin splitting of the energy levels due to the Zeeman interaction [1]

ρm(ε) = S

2πλ2

∑
N,σz

δ
[
ε− ξm −

(
N + 1

2

)
ℏωq − g∗µBBσz

]
. (17)

The variable ε represents the energy of the electronic states, S is the system area, and

ρm(ε) is the DOS for the m-th energy level in the quantum well (The first level to

our case). The sum over the Landau levels and spin quantum numbers gives the total

density of states in the 2D. The variable ξm is the energy of the m-th confined state, and

the sum over N and σz takes into account the quantization of the electronic energy levels

due to the magnetic field, while σz is the z component of the spin quantum number and

takes values of ±1
2 . The delta function δ

[
ε− ξm −

(
n+ 1

2

)
ℏωq − g∗µBBσz

]
determines

the energy value of each electronic state. The magnetic length is given by λ =
√

ℏ
eB

.

If equilibrium is reached, and the charge carriers attain certain effective temperature,

we can assume the spin thermalization in the semiconductor material that distributes

the orientation of electronic spins according to their energy position. The tuning of

the Fermi level with magnetic field and temperature can be achieved by changing the

external magnetic field that modifies these energy levels.

F. Electron-hole exchange interaction

The electron-hole exchange interaction is a property that affects the energy ordering

of the exciton states according to the spin of their constituents electrons and holes. This

allows resolving bright from dark excitons with optically forbidden transitions [24]. The

emergence of interaction exchange occurs as a result of the superposition of the electron

and hole wave functions, so when excitons are restricted to smaller volumes, such as in

narrow quantum wells Fig. 4 (left) one can expect more intense exchange interaction.

For our analysis, that is reduced to the spin dependent components to the energies of

electrons and holes, the Hamiltonian of the ground state for the electron-hole pairs can
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be reduced to

H = geµBB · S + ghµBB · jz − 2
3
δ0Sz · jz (18)

where S is the electron spin, jz = ±3/2 is the hole spin, and δ0 quantifies the strength

of the exchange interaction, as defined in Ref. [25].

In contrast, if the thermalization process cannot be guaranteed, the spin dynamics

can be emulated by using the density matrix method and master equations as described

in Ref. [26]. The statistical state of a quantum system can be effectively described

through the density matrix formalism and this proves to be particularly beneficial in

the case of open quantum systems, where a system interacts with its surroundings [27].

The density matrix noted as ρ, is a matrix that represents the state of a quantum

system. It is Hermitian, with a unitarian trace, symmetric and has a 1 sum of its

diagonal elements (trace).

The probability distribution of a quantum system can be calculated using the density

matrix, which also allows for determining its entropy and energy. Furthermore, the

density matrix is a valuable tool for describing the time evolution of a quantum system,

and when we need to know how the system interact with the universe then we use the

evolution of the density matrix in open quantum systems that follows the Lindblad

equation. This is a non-unitary equation to describe the interaction between the system

and the environment.

In the case of open quantum systems, the density matrix evolves according to

the Lindblad equation. The Lindblad equation is a non-unitary equation that de-

scribes the temporal evolution of the density matrix in the presence of interactions

with the environment and it has the following general form dρ/dt = −i[H, ρ] +∑ (LρL+ − 1/2 {L+L, ρ}) where H is the Hamiltonian operator of the system, L are

the Lindblad operators that represent the interaction with the environment, and

[ρ̂, Ĥ]denotes the anticommutator of ρ̂ and Ĥ.

iℏ
∂ρ̂

∂t
= −[ρ̂, Ĥ] = −(ρ̂Ĥ − Ĥρ̂) (19)
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First, the density matrix is defined in terms of the matrix elements. The notation

ρmn means the element at position (m,n) of the matrix. The expression ρmn = ⟨m|ρ|n⟩

is used, which represents the expected value of between the states |m⟩ and |n. The

operator ρ is defined as |j⟩⟨j|, which means that ρ is the projector of the state |j⟩. A

pure state is a state in which the system is definitely in a single state, and the density

matrix is simply a projection operator onto that state.

Now we can define the expectation value of an observable ⟨Ô⟩ as the average value

of the observable, and it is calculated by taking a weighted average of the eigenvalues

of the observable, [28] with the weights being the probabilities of the system being in

each of the possible states

dρmn

dt
= − i

ℏ
(
⟨m|Ĥρ|n⟩ − ⟨m|ρ̂Ĥ|n⟩

)
. (20)

Now we rewrite the density matrix in terms of its matrix elements using the com-

pleteness relation ∑j |j⟩⟨j| = 1 The completeness relation states that any state in the

system can be expressed as a superposition of the basis states of the system and we

can rewrite the equation of motion as follows

dρmn

dt
= − i

ℏ
∑

j

(
⟨m|Ĥ|j⟩⟨j|ρ|n⟩ − ⟨m|ρ|j⟩⟨j|Ĥ|m⟩

)
(21)

This equation of motion is expressed in terms of the matrix elements of the Hamiltonian

Hmj , and the density matrix, ρmn,

dρmn

dt
= − i

ℏ
∑

j

(Hmjρjn −Hjmρmj) . (22)

Now we want to apply such a description to the characterization of the dynamics

of exciton ground states in the presence of a magnetic field. The excitonic basis states

in this case are the eigenstates of the total angular momentum operator Jz and the

spin operator Sz. We use the Jz operator as the component of the angular momentum
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operator along the z-axis that in the matrix representation the operator for heavy holes

can be written as

Jz =

3/2 0

0 −3/2

 .
Then, the excitonic basis states are defined as the eigenstates of the total angular

momentum operator Jz +Sz, where Sz is the component of the electron spin operator

along the z-axis. With |Jz + Sz⟩ ⟨Jz + Sz|, a projection operator onto the excitonic

basis state|Jz + Sz⟩.

The following lines show how these projection operators apply to heavy hole and

electron states in different spin and angular momentum configurations, as follows:

|Jz⟩ |Sz⟩ ⟨Sz| ⟨Jz| then , first for dark |3/2⟩|1/2⟩⟨1/2|⟨3/2| = |2⟩⟨2| indicates how a

specific state is projected into the space of excitonic ground states. For example, in

this case, the result is the projection in the excitonic state with a total angular mo-

mentum of 2. And for the other cases bright |3/2⟩ |−1/2⟩ ⟨−1/2|⟨3|2| =| 1⟩⟨1|, bright

| − 3/2⟩|1/2⟩⟨1/2|⟨−3/2| = | − 1⟩⟨−1|, dark | − 3/2⟩ | −1/2⟩⟨−1/2|⟨−3/2| = | − 2⟩⟨−2|.

Thus, making use of a matrix notation for the electron spin states, up and down,

defined as |1/2⟩ =

1

0

 ;|−1/2⟩ =

0

1

 and using the Pauli matrices to represent the

spin of electrons and holes

σx =

 0 1

1 0

 σy =

 0 −i

i 0

 σz =

 1 0

0 −1

 (23)

we can get the expectation values of the Pauli matrices for the spin states 1/2,1/2 and

1/2,1/2 such as

⟨−1/2 |σx| 1/2⟩ = 1 ⟨−1/2 |σy| 1/2⟩ = i ⟨1/2 |σz| 1/2⟩ = 1

⟨1/2 |σx| − 1/2⟩ = 1 ⟨1/2 |σy| − 1/2⟩ = −i ⟨1/2 |σz| − 1/2⟩⟩ = −1
(24)

The expected value of the spin density will not be zero when the state of the electron
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is a superposition of spin states. So we can now calculate their value along each

direction, as ⟨Si⟩ ≡
〈

σj

2

〉
then in x direction we get ⟨Sx⟩ ≡

〈
σx

2

〉
〈
σx

2

〉
= 1

2

(
ρ22 ⟨2|σx|2⟩ + ρ21 ⟨1|σx|2⟩

+ ρ2−1 ⟨−1|σx|2⟩ + ρ2−2 ⟨−2|σx|2⟩ + ρ12 ⟨2|σx|1⟩

+ ρ11 ⟨1|σx|1⟩ + ρ1−1 ⟨−1|σx|1⟩ + ρ1−2 ⟨−2|σx|1⟩
)

+ 1
2

(
ρ−12 ⟨2|σx| − 1⟩ + ρ−11 ⟨1|σx| − 1⟩

+ ρ−1−1 ⟨−1|σx| − 1⟩ + ρ−1−2 ⟨−2|σx| − 1⟩

+ ρ−22 ⟨2|σx| − 2⟩ + ρ−21 ⟨1|σx| − 2⟩

+ ρ−2−1 ⟨−1|σx| − 2⟩ + ρ−2−2 ⟨−2|σx| − 2⟩
)

(25)

To see the terms in a explicit way in the exitonic basis we have

ρ−2−1 ⟨−1 |σx| − 2⟩ = ρ−2−1

〈
−3

2

∣∣∣∣〈1
2

|σx| − 1
2

〉∣∣∣∣− 3
2

〉
= ρ−2−1

ρ−1−2 ⟨−2 |σx| − 1⟩ = ρ−1−2

〈
−3

2

∣∣∣∣〈−1
2

|σx| 1
2

〉∣∣∣∣− 3
2

〉
= ρ−1−2

ρ21 ⟨1 |σx| 2⟩ = ρ21

〈3
2

∣∣∣∣〈−1
2

|σx| 1
2

〉∣∣∣∣ 3
2

〉
= ρ21

ρ12 ⟨2 |σx| 1⟩ = ρ12

〈3
2

∣∣∣∣〈1
2

|σx| − 1
2

〉∣∣∣∣ 3
2

〉
= ρ12.

(26)

Then, removing the null terms, the expected value can be reduced to very compact

expressions

⟨Sx⟩ = 1
2

(ρ12 + ρ21 + ρ−1−2 + ρ−2−1) (27)

An analogous procedure can be performed with the expected value of Jz. In this

case we have

⟨Jz⟩ =
∑
m

⟨m|ρ|n⟩ ⟨n |Jz|m⟩. (28)

27



Jhon F. Contreras F Electron-hole exchange interaction

In this case, the non zero values of the matrix elements in the excitonic basis are

ρ11 ⟨1 |Jz| 1⟩ = ρ11

〈
−1

2

∣∣∣∣〈3
2

|Jz| 3
2

〉∣∣∣∣− 1
2

〉
= 3

2
ρ11

ρ22 ⟨2 |Jz| 2⟩ = ρ22

〈1
2

∣∣∣∣〈3
2

|Jz| 3
2

〉∣∣∣∣ 1
2

〉
= 3

2
ρ22

ρ−1−1 ⟨−1 |Jz| − 1⟩ = ρ−1−1

〈1
2

∣∣∣∣〈−3
2

|Jz| − 3
2

〉∣∣∣∣ 1
2

〉
= −ρ−1−1

3
2

ρ−2−2 ⟨−2 |Jz| − 2⟩ = ρ−2−2

〈
−1

2

∣∣∣∣〈−3
2

|Jz| − 3
2

〉∣∣∣∣− 1
2

〉
= −3

2
ρ−2−2

(29)

with reduce the expected value for Jz to

⟨Jz⟩ = 3
2

(−ρ11 + ρ22 + ρ−1−1 − ρ−2−2) (30)

Beside the average value of each component of the spin operators, we must consider

the exchange terms that characterize the correlation between the hole and electron

spin, which are proportional to the operator Q⃗ = 2/3JzS⃗ [26]. Thus, in an analogous

way for Qx, we can set

⟨Qx⟩ = ⟨2
3
JzSx⟩ = 1

2
· 2

3

(3
2
ρ12 + 3

2
ρ21 − 3

2
ρ−1−2 − 3

2
ρ−2−1

)
= 1

2
(ρ12 + ρ21 − ρ−1−2 − ρ−2−1)

(31)

and also for the expected value Qz

⟨Qz⟩ =
〈2

3
JzSz

〉
= 2

3

(
−3

2
· 1

2
ρ11 − 3

2
· 1

2
ρ−1−1 + 3

2
· 1

2
ρ22 + 3

2
· 1

2
ρ−2−2

)
= 1

2
(−ρ11 − ρ−1−1 + ρ22 + ρ−2−2)

(32)

Also the expected values for Qy, Sy, Sz can be expressed in terms of components of

the density matrix ρij as follows

⟨Qy⟩ = 2
3

(1
2

3
2
iρ21 − 3

2
1
2
iρ12 − 3

2
1
2
iρ−1−2 + 3

2
1
2
iρ−2−1

)
= i

2
(ρ21 − ρ12 − ρ−1−2 + ρ−2−1) .

(33)
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Likewise,

⟨Sy⟩ = i

2
(ρ21 − ρ12 + ρ−1−2 − ρ−2−1) (34)

and

⟨Sz⟩ = 1
2

(ρ22 − ρ11 + ρ−1−1 − ρ−2−2) , (35)

In what follows we will follow the paths indicated in Ref. [26] that provides a the-

oretical framework for understanding the spin dynamics of excitons in quantum wells

and open all the algebraic steps. That reference shows that the spin dynamics is domi-

nated by the single-particle hole spin-flip mechanism and also that the two-dimensional

confinement and low temperatures are the most important factors that stabilize the

hole spin orientation within the exciton.

The first step is to correlate the dynamics of the spin related operators with our

experimental observables, the intensities of circularly polarized exciton emissions: I+ ∝

ρ11 and I− ∝ ρ−1−1. We can thus define the number of bright excitons (those emitting

light) as Nb = ρ11 + ρ−1−1 while the dark ones would correspond to Nd = ρ22 + ρ−2−2,

and prove that

I+ = Nb

2
+ 1

2

(
Jz

3
− Sz

)
= 1

2

[(1
2

−Qz

)
+ 1

3
Jz − Sz

]
. (36)

By substituting the expressions of the mean values of Sz, Jz, Qz we get

I+ = 1
2

[1
2

− 1
2

(−ρ11 − ρ−1−1 + ρ22 + ρ−2−2)

+ 1
2

(ρ11 − ρ−1−1 + ρ22 − ρ−2−2)

− 1
2

(−ρ11 + ρ−1−1 + ρ22 − ρ−2−2)
]

= ρ11.

(37)

In turn, in the case of I− we can prove that

I− = 1
2

[(1
2

−Qz

)
−
(1

3
Jz − Sz

)]
(38)
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by substituting the expressions of Sz, Jz, Qz in I−. This yields

I− = 1
2

[
1
2

− 1
2
(
−ρ11 − ρ−1−1 + ρ22 + ρ−2−2

)
−
(

1
2
(
ρ11 − ρ−1−1 + ρ22 − ρ−2−2

)
− 1

2
(
−ρ11 + ρ−1−1 + ρ22 − ρ−2−2

))]
= ρ−1−1.

(39)

Note that, given the normalization ∑j ρjj = 1, then Nb + Nd = 1, in this case. Addi-

tionally, according to Eq. 32, Qz = 1/2(Nd−Nb) = 1/2 −Nb.

Then the degree of circular polarization, defined as [11]

P = I+ − I−

I+ + I− (40)

results in

P =
1
3Jz − Sz

1
2 −Qz

(41)

Or expressed in terms of the number of bright exciton Nb

⇒ P = I+ − I−

I+ + I− = ρ11 − ρ−1−1

ρ11 + ρ−1−1
=

Jz

3 − Sz

Nb
(42)

Now lets assume the excitons confined and consider just the two spin-split ground

states of the conduction band present, Sz = ±1
2 , and two in the valence band, cor-

responding to the heavy hole sub-band with total angular momentum J = ±3
2 . The

states of the heavy hole exciton are described by the basis |Jz + Sz⟩ Thus, the sim-

plest Hamiltonian for the spin of the heavy hole exciton in a magnetic field is given

by Eq. 18. We will further neglect the effect of the hole Zeeman splitting and define

ℏω⃗ = gµBB⃗. Then, since the equation of motion of any observable Ô is

dÔ

dt
= 1
iℏ

[Ô, Ĥ]. (43)
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This equation includes just coherent terms, responsible for the reversible and deter-

ministic dynamics of the quantum system.

The dynamics of the spin S⃗ in the presence of the magnetic field and the exchange

term is given by

dS⃗

dt
= − i

ℏ

[
S⃗(ℏω⃗S⃗) − (ℏω⃗S⃗)S⃗ − 2

3
δ
(
s⃗JzSz − JzSzS⃗

)]

Now, using Dyakonov’s definition of δ̃ = δ
ℏ , [26] and taking a vector n̂ = (0, 0, 1) normal

to the confinement direction, one has

ds⃗

dt
= −i

[
s⃗(ω⃗s⃗) − (ω⃗s⃗)s⃗− 2

3
δ̃ (s⃗Jz(s⃗ · n̂) − Jz(s⃗n̂)s⃗)

]
(44)

We must introduce now the Levi-Civita symbol εjik to represent the cross product.

This symbol is 1 if (i, j, k) is one of the cyclic permutations, −1 if it is one of the anti

cyclic permutations, and 0 otherwise i.e.

εijk =


1 if (i, j, k) then (1, 2, 3), (2, 3, 1), (3, 1, 2)

−1 if (i, j, k) then (3, 2, 1), (1, 3, 2), (2, 1, 3)

0 else i = j, j = k, k = i

. (45)

This condenses the vector cross product a⃗× b⃗ = c⃗

ci =
3∑

j,k=1
εijkajbk (46)

in such a way that the terms in Eq. 44 can be written as follows with s⃗ factored from

both parts of the expression. We thus obtain

s⃗(ω⃗s⃗) − (ω⃗s⃗)s⃗ = s⃗

( 3∑
i=1

ωisi

)
−
( 3∑

i=1
ωisi

)
s⃗ (47)
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=
3∑

j=1
n̂jSi

3∑
i=1

ωiSi −
3∑

i=1
ωiSi

3∑
j=1

n̂jSj =
3∑

j=1

3∑
i=1

n̂jωi [SjSi − SiSj] (48)

This expression is simplified in terms of the Levi-Civita symbol, resulting in

s⃗(ω⃗s⃗) − (ω⃗s⃗)s⃗ = −
3∑

i=1

3∑
j=1

3∑
k=1

n̂iωjεjikSk = iω⃗ × s⃗. (49)

Therefore, with this development we show how the initial expression that involves scalar

and cross products is simplified and we arrive at the final equation that describes the

evolution of the spin s⃗ under the influence of ω⃗, δ̃ and Jz in a compact form

ds⃗

dt
= ω⃗ × s⃗− 2

3
δ̃n̂× Jz s⃗ (50)

We should note that the operator Jz is a constant of motion, meaning that its derivative

with respect to time is zero i.e. dJz

dt
= 0. This is because [Jz, Ĥ] = 0, which implies

that Jz is a conserved operator in the system. Analogously, we obtain the equation

that describes the evolution of JzS⃗ as a function of ω⃗, Jz, S⃗ and the term of exchange

as
d
(
JzS⃗

)
dt

= w⃗ ×
(
JzS⃗

)
− 2

3
δn̂× J2

z S⃗ (51)

Now we rewrite the expression to describe how the spin vector S⃗ changes with time.

It includes two terms, ω⃗× S⃗ representing the spin precession around the magnetic field,

ω⃗ and −δ̃n̂3 × Q⃗ representing the influence of the exchange term δ̃ and a vector n̂3

pointing in the z direction, so that

dS⃗

dt
= ω⃗ × S⃗ − δ̃n̂3 × Q⃗ with n3 = (0, 0, 1) (52)

The expression in Eq. 51 transforms into

dQ⃗

dt
= ω⃗ × Q⃗− δ̃n3 × S⃗ (53)
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Here, the term, ω⃗×Q⃗ represents the precession of Q⃗ around the magnetic field, ω⃗, while

−δ̃n3 × S⃗ represents the interaction between S⃗ and Q⃗ due to the exchange contribution

δ̃ and the vector n̂3.

The vector products are given by

ω⃗ × S⃗ =

∣∣∣∣∣∣∣∣∣∣
î ĵ k̂

ωx ωy ωz

Sx Sy Sz

∣∣∣∣∣∣∣∣∣∣
=î (ωySz − ωzSy) − ĵ (ωxSz − ωzSx) + k̂ (ωxSz − ωzSx) (54)

and

n̂3 × S⃗ = −î (Sy) + ĵ (Sx) . (55)

So, we can decompose Eq. 53 as

dQz

dt
= ωxQy − ωyQx

dQy

dt
= −ωxQz + ωzQx − δ̃Sx

dQx

dt
= ωyQz − ωzQy + δ̃Sy

(56)

and the following equations for the components of the vector S⃗,

dSz

dt
= ωxSy − ωySx

dSy

dt
= −ωxSz + ωzSx − δ̃Qx

dSz

dt
= ωy − ωzSy + δ̃Qy

(57)

This, will deliver the evolution of the vector Q⃗ by describing how its components

change in time due to precession around the magnetic field and the interaction with

the spin vector S⃗. Furthermore, it is established how the components of S⃗ change

in response to the aforementioned influences. These equations are fundamental to

understand the dynamics of exciton spins subjected to a magnetic field.
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V. INCOHERENT PROCESSES

The dynamic equations described thus far included just coherent terms. The inco-

herent terms are associated with processes, such as dissipation and decoherence, which

introduce irreversibility and cause the system to lose coherence. They model the inter-

actions and energy exchange with the environment which can lead to phenomena such

as relaxation (energy dissipation) and dephasing (loss of phase coherence). Under-

standing these processes is crucial for accurately modeling and predicting the behavior

of open quantum systems in practical applications.

The incoherent terms in the Lindblad equation are introduced "by hand" in a

phenomenological way because the detailed microscopic dynamics of the system-

environment interaction are often complex and challenging to describe precisely. In-

stead of deriving these terms from first principles, they are added based on general

physical principles and experimental observations.

Thus, the time evolution of an operator Ô will be given by

dÔ

dt
= − i

ℏ
[Ô, Ĥ] + ∂Ô

dt

∣∣∣∣∣
incoherent

. (58)

A. Radiative

In order to incorporate recombination processes in the temporal evolution of the

components of the density matrix (ρmm′) one may introduce a recombination time,

τR that will affect components corresponding to optically active states. According to

Ref. [26]
∂ρmm′

∂t

∣∣∣∣∣
inco

= − 1
2τR

(
δ|m|,1 + δ|m′|,1

)
ρmm′ (59)

that has been symmetrized that ensures that the evolution is trace-preserving.

Now we have that the subsequent table of derivatives describe the temporal evolution

of the components of the density matrix ρmm′ due to recombination processes present

in the Table I
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TABLE I: Derivatives of the density ρmm′ with respect to time

Component of ρmm′ Derivative with respect to time
ρ11 −ρ11

τR

ρ−1−1 −ρ−1−1
τR

ρ−11 −ρ−1
τR

ρ1−1 −ρ1−1
τR

ρ12 − ρ12
2τR

ρ21 − ρ21
2τR

ρ−12 −ρ−12
2τR

ρ2−1 −ρ2−1
2τR

ρ−12 − ρ12
2τR

ρ−1−2 −ρ−1−2
2τR

ρ−21 −ρ−21
2τR

ρ−2−1
ρ−2−1

2τR

B. Non-Radiative

Analogously, one can describe the rate of change of the diagonal elements ρmm of

the density matrix due to incoherent nonradiative processes

∂ρmm′

∂t

∣∣∣∣∣
inco

= − 1
2τNR

(
δ|m|2 + δ|m′|2

)
ρmm′ . (60)

Here, τNR represents the nonradiative relaxation time.The term on the right-hand side

contains a Kronecker delta functions δ|m|2 and δ|m′|2, which essentially select diagonal

elements (|m| = 2) of the density matrix. This means it affects elements where m or m′

are 2 or -2. The negative sign indicates a decrease in the populations of these diagonal

elements due to nonradiative processes.

Some cases of the rate of change for various density matrix elements due to nonra-

diative processes that can be useful later are presented in the Table II.
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TABLE II: Rate of Change of Density Matrix Elements (ρmm′) Due to Non-Radiative
Processes

Density Matrix Element Rate of Change Relaxation Time
ρ22 − ρ22

τNR
τNR

ρ−2−2 −ρ−2−2
τNR

τNR

ρ2−2 −ρ2−2
τNR

τNR

ρ−22 −ρ−22
τNR

τNR

ρ12 − ρ12
2τNR

2τNR

ρ21 − ρ21
2τNR

2τNR

ρ−12 − ρ−12
2τNR

2τNR

ρ2−1 − ρ2−1
2τNR

2τNR

ρ−1−2 −ρ−1−2
2τNR

2τNR

ρ−2−1
ρ−2−1
2τNR

2τNR

ρ1−2 − ρ1−2
2τNR

2τNR

ρ−21 − ρ−21
2τNR

2τNR

For total exciton flip processes the relations are analogous, i.e. ρ11 to ρ−1−1 or ρ22 to

ρ−2−2. These processes will not change the numbers of Nb and Nd and we will neglect

their contribution.

C. Spin Flip

Now we will introduce the temporal evolution of the components of the density

matrix due to spin flip processes of either electrons or holes, controlled by the relaxation

times τe and τh, respectively. The following equations show how the different spin

components evolve due to spin flip rates as described in Ref. [29]

∂ρsj,s′j′

∂t

∣∣∣∣∣
sF

= − 1
τe

(
ρsj,s′j′ − 1

2
δss′

∑
s′
ρs′′j,s′′j′

)
− 1
τh

ρsj,s′j′ − 1
2
δjj′

∑
j′′
ρsj′′,s′j′


(61)

Table III shows the equations that describes how the spin polarization of the exciton

evolves over time.
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TABLE III: Derivates with respect to time for spin reversal processes.

Density Matrix Component Derivative with respect to time
ρ11 −ρ11

(
1

2τe
+ 1

2τh

)
+ ρ22

2τe
+ ρ−2−2

2τh

ρ−1−1 −ρ−1−1
(

1/2τe

+
1

2τh

)
+ ρ−2−2

2τe
+ ρ22

2τh

ρ22 −ρ22
(

1
2τe

+ 1
2τh

)
+ ρ11

2τe
+ ρ−1−1

2τh

ρ−2−2 −ρ−2−2
(

1
2τe

+ 1
2τh

)
+ ρ−1−1

2τe
+ ρ11

2τh

ρ12 −ρ12
τe

− ρ12
2τh

+ ρ−2−1
2τh

ρ21
ρ21
τe

− ρ21
2τh

+ ρ−1−2
2τh

ρ−11 −ρ−11
τe

− ρ−11
τh

ρ2−2 −ρ2−2
τe

− ρ2−2
τh

ρ−22 −ρ−22
τe

− ρ−22
τh

ρ−12 −ρ−12
τe

+ ρ−12
2τe

+ ρ−21
2τe

− ρ−12
τh

ρ2−1 −ρ2−1
2τe

− ρ2−1
τh

+ ρ1−2
2τe

ρ−21 −ρ−21
τe

+ ρ−21
2τe

+ ρ−12
2τe

− ρ−21
τh

D. Photogeneration

Another important interaction with the environment is the creation of electron-hole

pairs through photon absorption. These generation terms represent the rates at which

density matrix elements associated with different spin states change with time due to

photogeneration processes that can be polarization resolved. The values of these terms,

which we note as G11, G−1−1, G22 and G−2−2, are important for understanding how

the exciton polarization evolves in the presence of light pumping

dρ11

dt
= G11,

dρ−1−1

dt
= G−1−1,

dρ22

dt
= G22,

dρ−2−2

dt
= G−2−2 (62)

E. Final Expressions

Then, we now present the expression taking into account the incoherent terms in

the change of the component Jz. Incoherent terms are divided into two parts: dJz

dt

∣∣∣
sf

and dJz

dt

∣∣∣ Recombination = R +NR. That is, the radiative and non-radiative part in
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a single term.
dJz

dt
= dJz

dt

∣∣∣∣∣
sf

+ dJz

dt

∣∣∣∣∣
Recombination =R+NR

(63)

That can be written as follows using the detailed terms of the spin flip part

dJz

dt
= dJz

dt

∣∣∣∣∣
R+NR

+ 3
2
(
ρ̇11|sf + ρ̇22|sf − ρ̇−1−1|sf − ρ̇−2−2|sf

)

= dJz

dt

∣∣∣∣∣
R+NR

+ 3
2

[ − ρ11

( 1
2τe

+ 1
2τh

)
+ ρ22

2τe

+ ρ−2−2

2τh

− ρ22

( 1
2τe

+ 1
2τh

)

+ ρ11

2τe

+ ρ−1−1

2τh

+ ρ−1−1

( 1
2τe

+ 1
2τh

)
− ρ−2−2

2τe

− ρ22

2τh

+ρ−2−2

( 1
2τe

+ 1
2τh

)
− ρ−1−1

2τe

− ρ11

2τh

]
(64)

That reduces to the following expression for Jz

dJz

dt
= dJz

dt

∣∣∣∣∣
R+NR

− 1
τh

3
2

(ρ11 + ρ22 − ρ−1−1 − ρ−2−2) (65)

and finally to
dJz

dt
= dJz

dt

∣∣∣∣∣
R+NR

− Jz

τh

(66)

Now, to include the other contributions

dJz

dt
= −Jz

τh

+ 3
2
(
ρ̇11|R+NR + ρ̇21|R+NR − ρ̇−1−1|R+NR − ρ̇−2−2|R+NR

)
= −Jz

τh

− 3
2τR

(ρ11 − ρ−1−1) − 3
2τNR

(ρ22 − ρ−2−2) .
(67)

Since Jz

3 −Sz = ρ11 −ρ−1−1 and Jz

3 +Sz = ρ22 −ρ−2−2 we can rewrite the last expression

in a more compact representation

dJz

dt
= −Jz

τh

− Jz − 3Sz

2τR

− Jz + 3Sz

2τNR

(68)
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The generation terms can be added now and we get

dJz

dt
= −Jz

τh

− Jz − 3Sz

2τR

− Jz + 3Sz

2τNR

+ 3
2

[(G11 −G−1−1) + (G22 −G−2−2)] (69)

In the case of the z-component of the correlation term, we use

dQz

dt
= (ωxQy − ωyQx) + Q̇z

∣∣∣
sf

+ Q̇z

∣∣∣
R+NR

. (70)

where z and x are the components of the angular frequency of the magnetic field in the

z and x directions, respectively and (ωxQy − ωyQx) is the spin precession of the spin

polarization in the presence of a magnetic field, Q̇z

∣∣∣
sf

is the contribution to the time

rate of change of the spin polarization due to spin flip processes and, Q̇z

∣∣∣
R+NR

is the

contribution to the time rate of change of the spin polarization due to recombination.

In order to show explicitly the last two therms Q̇z

∣∣∣
sf

and Q̇z

∣∣∣
R+NR

we have first

Q̇z

∣∣∣
sf

= 1
2
(
− ρ̇11|sf − ρ̇−1−1|sf + ρ̇22|sf + ρ̇−2−2|sf

)
. (71)

Then, using the explicit derivatives of earlier result in the Tables leads to

= 1
2

[
ρ11

( 1
2τe

+ 1
2τh

)
− ρ22

2τe

− ρ2−2

2τh

+ ρ−1−1

( 1
2τe

+ 1
2τh

)
− ρ−2−2

2τe

− ρ22

2τh

− ρ22

( 1
2τe

+ 1
2τh

)
+ ρ11

2τe

+ ρ−1−1

2τh

− ρ−2−2

( 1
2τe

+ 1
2τh

)
− ρ−1−1

2τe

+ ρ11

2τh

]
.

(72)

Additionally

Q̇z

∣∣∣
R+NR

= 1
2

(− ρ̇11|R − ρ̇−1−1|R) + 1
2

( ρ̇22|NR + ρ̇−2−2|NR)

= 1
2τR

(ρ11 + ρ−1−1) − 1
2τNR

(ρ22 + ρ−2−2)
(73)

Then, remembering that ρ11 + ρ−1−1 = Nb, ρ22 + ρ−2−2 = Nd, and Qz = Nd−Nb

2 and
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using again the generation functions

Q̇z

∣∣∣
gen

= 1
2

(−G11 −G−1−1 +G22 +G−2−2) , (74)

one obtains

dQz

dt
= (ωxQy − ωyQx) −Qz

( 1
τe

+ 1
τh

)
+ Nb

2τR

− Nd

2τNR

− G11 +G−1−1

2
+ G22 +G−2−2

2

(75)

If the generation rates of excitons with different spin states are different, then the

total number of excitons must change by optical pumping. For example, if the genera-

tion rate of excitons with spin up is higher than the generation rate of excitons with a

down spin, then the total number of excitons will increase over time towards up spin

state.

The total number of excitons can be defined as

N ≡ ρ11 + ρ−1−1 + ρ22 + ρ−2−2, (76)

and their dynamics is modeled by

dN

dt
= dN

dt

∣∣∣∣∣
sf

+ dN

dt

∣∣∣∣∣
R+NR

+ dN

dt

∣∣∣∣∣
Gen

. (77)

As the terms in dN
dt

∣∣∣
sf

cancel then

dN

dt
= G11 +G−1−1 +G22 +G−2−2 − Nb

τR

− Nd

τd
. (78)
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In turn,

dNd

dt
− dNb

dt
= 2 (ωxQy − ωyQx) − 2Qz

( 1
τe

+ 1
τh

)
+ Nb

τR

− Nd

τNR

− (G11 +G−1−1) + (G22 +G−1−2) .
(79)

This equation describes the rate of change of the number of excitons with dark and

bright spin. The first part of the equation, 2 (ωxQy − ωyQx), describes the spin ro-

tation of the excitons due to the magnetic field. The second part of the equation,

2Qz

(
1
τe

+ 1
τh

)
describes the spin relaxation of excitons for electrons and holes. The

third part of the equation, Nb

τR
− Nd

τNR
describes exciton recombination. The last part

of the equation describes the generation of excitons with different spin states. So, to

describe how the quantity Nd changes over time, taking into account the influence of

angular frequencies, spin polarization, relaxation processes, the total number of exci-

tons, and generation processes we can write

2dNd

dt
= 2 (ωxQy − ωyQx) − 2Qz

( 1
τe

+ 1
τn

)
− 2Nd
τNR

+ 2 (G22 +G−2−2) . (80)

That can be rearranged more conveniently as

dNd

dt
= (G22 +G−2−2) − Nd

τNR

−Qz

( 1
τe

+ 1
τh

)
+ (ωxQy − ωyQx) . (81)

Now, in the case of the rate of change of the total number of bright excitons, Nb, we

have

2dNb

dt
= −2 (ωxQy − ωyQx) + 2Qz

( 1
τe

+ 1
τn

)
− 2Nb

τR

+ 2 (G11 +G−1−1) . (82)

This can be rewrite as follows

dNb

dt
= (G11 +G−1−1) − Nb

τR

+Qz

( 1
τe

+ 1
τh

)
− (ωxQy − ωyQx) (83)

41



Jhon F. Contreras E Final Expressions

Now, the change rate of the x component of the electron spin magnetic moment within

the excitons, under the influence of an external magnetic field can be written as

dSx

dt
= (ωySz − ωzSy) + δ̃Qy + 1

2
(ρ̇11 + ρ̇21 + ρ̇−1−2 + ρ̇−2−1)

∣∣∣∣
inco

(84)

By using the results condensed in the Tables

dSx

dt

∣∣∣∣∣
sf

= 1
2

(
ρ11

τe

− ρ12

2τh

+ ρ−2−1

2τh

− ρ21

τe

− ρ21

τh

+ ρ21

2τh

+ ρ−1−2

2τh

− ρ−1−2

τe

−ρ−1−2

2τh

+ ρ21

2τh

− ρ−2−1

τe

− ρ−2−1

2τh

+ ρ12

2τh

) (85)

That simplifies under the following assumptions: the spin-flip relaxation rate for bright

excitons is equal to the spin-flip relaxation rate for dark excitons and the spin-flip

relaxation rate for bright excitons is equal to the rate of radiative and non-radiative

exciton recombination. As a result, it is seen that the rate of change of the x component

of the spin magnetic moment due to the spin-flip relaxation processes is proportional

to the spin magnetic moment and the spin-flip relaxation time.

dSx

dt

∣∣∣∣∣
sf

= 1
2τe

(−ρ12 − ρ21 − ρ−1−2 − ρ−2−1)

= −Sx

τe

.

(86)

By considering now the radiative and no radiative processes, we have

dSx

dt

∣∣∣∣∣
R+NR

= 1
2

[
−ρ12

( 1
2τR

+ 1
2τNR

)
− ρ21

( 1
2τR

+ 1
2τNR

)

−ρ−1−2

( 1
2τR

+ 1
2τNR

)
+ ρ−2−1

( 1
2τR

+ 1
2τNR

)] (87)

This last equation simplifies to

dSx

dt

∣∣∣∣∣
R+NR

= −Sx

( 1
2τR

+ 1
2τNR

)
(88)
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The complete rate of change of the x component of the spin magnetic moment of

excitons is
dSx

dt
= −Sx

( 1
τe

+ 1
2τR

+ 1
2τNR

)
+ (ωySz − ωzSy) + δ̃Qy (89)

Radiative recombination is when an exciton recombines and emits a photon. Nonra-

diative recombination is when an exciton recombines without emitting a photon.

The following equations in Table IV describes the complete rate of change of the

y-components of the exciton spin magnetization, taking into account the same factors

as in previous terms. The first column of the table shows the name of the derivative,

the second column shows the mathematical expression for the derivative. The third

column provides a brief description of the contribution of each term to the derivative.

TABLE IV: Derivatives of the y component of the spin magnetic moment of the excitons
in a semiconductor, under the influence of an external magnetic field and spin-flip
relaxation processes.

#
dt

∣∣∣ Expression Description
dSy

dt

∣∣∣
sf

−Sy

τe
Spin-flip relaxation

dSy

dt

∣∣∣
R+NR

−Sy

(
1

2τR
+ 1

2τNR

)
Rad. and non-rad. recomb.

dSy

dt
−Sy

(
1
τe

+ 1
2τR

+ 1
2τNR

)
+ (ωzSx − ωxSz) − δ̃Qx Total derivative

dQx

dt

∣∣∣
sf

−Qx

(
1
τe

+ 1
τh

)
Spin-flip relaxation

dQx

dt

∣∣∣
R+NR

−Qx

(
1

2τR
+ 1

2τNR

)
Rad. and non-rad. recomb.

dQx

dt
−Qx

(
1

2τR
+ 1

2τNR
+ 1

τe
+ 1

τh

)
+ (ωyQz − ωzQy) + δ̃Sy Total derivative

dQy

dt

∣∣∣
sf

−Qy

(
1
τe

+ 1
τh

)
Spin-flip relaxation

dQy

dt

∣∣∣
R+NR

−Qy

(
1

2τR
+ 1

2τNR

)
Rad. and non-rad.recomb.

dQy

dt
−Qy

(
1

2τR
+ 1

2τNR
+ 1

τe
+ 1

τh

)
+ (ωzQx − ωxQz) − δ̃Sx Total derivative

The derivatives of the y-component of the exciton spin moment can be divided into

two categories: spin-flip relaxation (sf) and radiative and non-radiative recombination

(R+NR). Spin-flip relaxation derivatives describe the decay of the y-component of the

exciton spin moment due to spin-flip processes. Spin-flip processes can occur between

excitons with different spin states.
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VI. RESULTS

A. Spin polarization

In the context of our study, the exciton polarization can be used to determine the

preferential orientation of the spins of electrons and holes in response to a magnetic

field and all the dynamic processes just described. Under stationary conditions, all the

time derivatives in the tables and equation above can be considered zero and the spin

polarizations can be assessed.

We have been able to reproduce the main result of Ref. [9] that characterizes the

electron polarization that can be defined as the difference between available electrons

with spin up, ρ22 + ρ−1−1 and spin down, ρ11 + ρ−2−2, weighted by the total number

of available electrons ρ11 + ρ−1−1 + ρ22 + ρ−2−2 = Nb + Nd. This yields, according to

Eq. 35

Pe = 2⟨Sz⟩
⟨Nb +Nd⟩

. (90)

In Ref. [9], beside the effect of the external field, Bz, they have included the contribution

to the effective magnetic field of the nuclear spins randomized following a Gaussian

distribution with dispersion ∆B. After some cumbersome algebra and by neglecting

all direct spin-flip terms one gets that

Pe = −2BzBexch

B2
z +B2

exch + ∆2
B

, (91)

where Bexch = δ0/geµB. This is a relevant result that points to the fact that the bright

to dark exciton correlation leads to a net non-zero electron spin polarization as we

can see in Figs. 6. Note that, in absolute terms, this results is very similar to the

experiment described in Fig. 1. Indeed, the curves that fit those values use this same

expression and we should come back to that later.

The polarization of electrons in confined excitons is a complex function of the mag-

netic field and the parameters Bexch and ∆B. In Fig. 6 we get the variation of polar-
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ization as a function of Bz while Bexch and ∆B are kept constant. The polarization

is maximized when the magnetic field approaches Bz =
√
B2

exch + ∆2
B and collapses to

zero when the magnetic fields increases beyond that point. This is a contrast with the

thermal polarization that is expected to reach a saturation as the field increases.

FIG. 6: The spin polarization of the electrons as a function of the external magnetic
field, Bz , for a constant exchange magnetic field, Bexch = 0.5mT . The spin polarization
increases when Bz approaches to Bexch .

Then, in Fig. 7, we modeled the variation of the electron polarization with respect

to ∆B, with Bz and Bexch constants. This illustrates how the electron polarization

is affected by changes in the dispersion of nuclear spins, ∆B. We can note that the

maximum polarization always appears as ∆B ⇒ 0, when the dispersion is sharper,

while disappearing if the nuclear spins are widely randomized.
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FIG. 7: Variation of the absolute value of polarization with ∆B. This graph shows
how the absolute value of the polarization of the electrons in a semiconductor varies
as a function of the variation in nuclear spin dispersion ∆B. Absolute polarization
is a measure of the deviation of the electron distribution from thermal equilibrium in
the presence of a magnetic field. As the value of ∆B increases, the polarization of the
electrons tends to decrease and to approach zero.

Now in Fig. 8 we see how the polarization behaves simultaneously for a range

of values of the Bexch and the ∆B. A symmetrical behavior is obtained around the

zero exchange field value (vertical axis), while we also observe that the polarization

decreases as the ∆B increases much beyond 0.5 mT.
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FIG. 8: Polarization Variation as a Function of BExch and ∆B. This 2D colormap
depicts the absolute value of electron polarization as a function of the exchange mag-
netic field BExch and the nuclear spin dispersion ∆B. Darker regions indicate higher
polarization, while lighter areas represent lower polarization(opposite directions). The
graph provides insights into the intricate interplay between these magnetic parameters
and their influence on electron polarization in the semiconductor material.

Since half of the polarization values are negative, we chose to represent the polar-

ization in three dimensions so that we can observe the complete dependence of the

average orientation of the electron spins in better details, in relation to the Bexch field

and the ∆B.
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FIG. 9: Polarization vs. BExch, ∆B. This three-dimensional graph represents the
polarization of the electronic spins as a function of two variables: the exchange magnetic
field BExch and ∆B. Spin polarization is maximum when external and internal magnetic
fields are equal

The dependence on magnetic field Bz that we observe in Fig. 6 is consistent with

Fig. 1. In our case we use the polarization in absolute value to reproduce the version

proposed in Ref. [9]. The questions arises on whether the measured exciton polarization

in the experiment of Fig. 1 corresponds to the electron polarization just described.

However, we have also been able to calculate the polarization of bright excitons

which can be directly related to the degree of circular polarization that can be measured

in the PL emission. In this case it would be defined as

PP L = ⟨Jz/3 − Sz⟩
⟨Nb⟩

. (92)
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Then, by using the same exact approximations reported in Ref. [9], we have calculated

the value of PP L = 0 that exactly cancels out for any value of the magnetic field.

This is relevant because clearly the approximations used in Ref. [9] are too strong for

emulating the polarized emission of the PL reported experimentally in our experiments.

Thus, under these assumptions the polarization described in the experiments of Fig. 1,

cannot be related to the electron polarization nor to any exciton polarization ascribed

to the hyperfine interaction and contribution of nuclear spins.

B. Termalization

By assuming now the possibility of thermal equilibrium, we are able to also charac-

terize the spin polarization. We will assumed the 2D density of excited electron-hole

pairs as a known parameter n2D thus using Eq. (16) one gets the following results, as

reported in Ref. [1]

2π ℏ2

m0
n2D = ℏω0

c

∑
N,s

f

[
ℏω0

c

m∗

(
N + 1

2

)
+ s

4
· gℏω0

c , µ

]
, (93)

with ω0
c ≡ eB

m0c
, where

f(E, µ) = 1
1 + exp

(
E−µ

kBTeff

) (94)

is the Fermi-Dirac distribution for certain effective temperature, Teff . We can then

use Eq. (94) to calculate the Fermi level tuning with magnetic field for a given value

of temperature and electron density. This has been illustrated in Fig. 10 and Fig.11

that shows how the Landau levels fill up in relation to the Fermi level, in such a way

that the probability of occupation can be obtained for each of them. It can be seen

how by increasing the effective temperature, which should not necessarily be the lattice

temperature [30], the curves are less defined, and the Landau level filling begins to blur.

That is to say, having a lower temperature, a sharper filling is observed and therefore

the shape of a chainsaw appears.
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We present the result of the model that shows how electrons in a confined 2D system

respond to the presence of a magnetic field, generating quantized energy levels known

as Landau levels Fig.11. The graph illustrates how these levels fill according to the

Fermi distribution as the magnetic field strength is varied. The underlying physics is

a manifestation of the quantization of energy in quantum systems and the fermionic

character of the electrons.

As we can see in graphs 10 and 11, the interesting behavior of the electrons is ob-

served when saturating the initial Landau levels, however, for the sake of the precision

of the numerical calculation, several dozens Landau levels were taken into account, to

obtain a definition high in the numerical solution in the calculation of the Fermi level.

FIG. 10: Graphic representation of the Landau Levels and Fermi Distributions for
electrons in a semiconductor exposed to a magnetic field. The effective temperature is
Tef = 8 K, the two-dimensional density is n2D = 0.3 × 1012cm−2 and the number of
Landau levels considered is 5, however the relevant behavior occurs in the first three
levels. Landau levels are plotted as a function of magnetic field, revealing relationships
between energy and magnetic field, while Fermi distributions for different Landau levels
and spins are presented as a function of energy.
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In general we have that, when applying a magnetic field, both electrons and holes

in a 2D system experience quantization, and the Fermi distribution determines how

these levels are filled Fig10 and fig 11. The main difference between electrons and holes

is their electrical charge, their effective masses and effective Lande factors that affect

their behavior in a magnetic field. In the case of holes, we will observe how they move

to higher energy levels as the magnetic field increases and how they fill with increasing

effective temperature.

FIG. 11: Simulation of Landau Levels and Fermi Distributions for Holes in a Magnetic
Field. This figure shows the simulation of Landau levels and Fermi distributions for
holes in a semiconductor under the influence of a magnetic field. Parameters used in the
simulation include an effective temperature of Tef = 1K , a two-dimensional density of
n2D = 0.3 × 1012cm−2 and a number of Landau levels of 5. The holes are characterized
by an effective mass of m = 0.45 and a Landé factor of g = 0.7. The Landau levels
are represented as a function of the magnetic field B in Tesla, and the corresponding
Fermi distributions are presented in terms of energy (meV). The adjusted effective
temperature (lower than for electrons) allows to capture the subtleties of the effects of
effective mass and thermal properties on holes, generating an accurate representation
of their behavior under the influence of a magnetic field. The numbers next to the
Landau level lines indicate their corresponding indices.

While two-dimensional representations can be useful for visualizing simpler data
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and relationships, in cases where a deep and complete understanding of the system is

needed, three-dimensional representation offers a significant advantage. 3D data allows

us to better explore and understand relationships and effects in complex systems.

A three-dimensional graph is created to represent the results. A two-dimensional

grid of B and n2D is created, and then the three-dimensional Fermi surface is repre-

sented. The Fermi surface is now calculated and visualized in an electronic system

as a function of three variables: magnetic field, two-dimensional density and effective

temperature. This 3D representation provides a detailed view of how the Fermi energy

changes in response to different system conditions.

FIG. 12: Fermi surface for confined electrons in the presence of a magnetic field. The
ripples on the Fermi surface are caused by the different Landau levels. The density
controls the resolution of the Fermi surface. The higher the density, the sharper the
edges of the surface.
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FIG. 13: Fermi surface of holes of a semiconductor material in the presence of a
magnetic field. This figure illustrates the three-dimensional variation of the Fermi
surface in a two-dimensional semiconductor under the influence of a magnetic field B,
and the bi-dimensional density n2D .

Now we shift to a different 3d representation, in Fig. 14 that shows the relations

of the Fermi energy an two independent variables, the magnetic field (B) and the

effective temperature Teff . This provides a more complete view of how these two

variables change and their influence on the Fermi energy. We can also observe this

relationship in Fig. 15 as a different view of figure 14.
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FIG. 14: View 1. Fermi Surface of electrons in a Two-Dimensional Semiconductor
model as a Function of Effective Temperature and Magnetic Field. The plot shows the
Fermi energy as a series of wavy surfaces where the ripples are caused by the different
Landau levels. This figure illustrates the three-dimensional variation of the Fermi
surface in a two-dimensional semiconductor under the influence of a magnetic field, as
a function of the effective temperature Teff and the magnetic field (B). Colors represent
Fermi energy levels EF in meV. The two-dimensional density n2D = 0.4x1012cm−2.
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FIG. 15: View 2. We can see how the increment of magnetic field and with low
effective temperature allows the electrons to occupy higher energy levels. Each point
on the Fermi surface represents the Fermi energy for a specific combination of Teff

and B. The colors on the graph represent the variation in Fermi energy: darker colors
correspond to higher Fermi energy values and lighter colors at lower values. The color
bar on the side of the graph acts as a guide to understand the correspondence between
colors and energy values. You can see how the Fermi energy values change as you
adjust the temperature and magnetic field.
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FIG. 16: Fermi Surface in a Two-Dimensional Semiconductor as a Function of Teff

and B to holes with Landé factor 0.7 and effective mass 0.45. This three-dimensional
graph shows the variation of the Fermi surface in a two-dimensional semiconductor
as a function of the effective temperature Teff and the magnetic field B to a fix bi
dimensional density n2D = 0.5 × 1012cm−2.

The function in Fig. 16 has been obtained for a different 2D electron density, mod-

ifying the shape of the Fermi surface with respect to the previous ones. It shows

that increasing the density of electrons in the semiconductor higher Landau levels are

occupied for lower fields.

Let us now analyze how this occupation of quantized levels may affect the electronic

structure. For that purpose we will reduce the analysis to the ground state of Eq. 16,

and take

Ẽ0,s = s

4
· gℏω0

c . (95)

This allows defining the Zeeman spin splitting as ∆Ez = Ẽ0,+ − Ẽ0,+. The Zeeman
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splitting, under this approximation, increases linearly with the magnetic field. The

slope of the line is equal to the Landé factor of the electrons, which is -0.44 in this

case.

In this next simulation, the Landau equation and the Fermi-Dirac distribution are

used to model this behavior as a function of the effective temperature and magnetic

field intensity.

FIG. 17: Zeeman Splitting in Electrons at Effective Temperatures: 1.5 K, 2 K, 6K, 8
K, 10 K, and 20 K, with a 2D density of n2D = 0.061 × 1012cm−2 . The value of the
Landé factor for electrons is -0.44 and the effective mass is 0.0760 [31]
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FIG. 18: Graph of the Zeeman Effect in Holes: The graphical representation shows the
Zeeman splitting in holes in a semiconductor. Each curve corresponds to a different
effective temperature (in this case, 1.5K, 3K, 4K, 6K, 8K, 20K), and shows how the
Zeeman splitting varies as the magnetic field increases. The value of the Landé factor
for the holes is 0.7 [31] and the effective mass is 0.45

Also we will assume in this case the exchange contribution to the energy state

Ẽ0,s = s

4
· gℏω0

c + 1
3
δ0s · ⟨jz⟩ . (96)

but in terms of a mean value of the hole spin ⟨jz⟩

⟨jz⟩ =
n↑

1
2 − n↓

1
2

n↑ + n↓
≈ 1

2
f
(
Ẽ0,+1 (B), µ (B, Teff )) − f

(
Ẽ0,−1(B), µ (B, Teff )

)
f
(
Ẽ0,+1(B), µ (B, Teff )

)
+ f

(
Ẽ0,−1(B), µ (B, Teff )

)
(97)

which, in the first order approximation, can be calculated as

⟨jz⟩ ≈ 1
2
f (E0,+1(B), µ (B, Teff )) − f (E0,−1(B), µ (B, Teff ))
f (E0,+1(B), µ (B, Teff )) + f (E0,−1(B), µ (B, Teff ))

(98)

58



Jhon F. Contreras B Termalization

The model describes the behavior of a thermalized system of excitons and assumes a

relation between the effective temperature, external magnetic field, and the way as the

excitons reach equilibrium. It also includes possible asymmetries between the spins up

and down, due to the correction provoke by the term ⟨jz⟩. This has been illustrated in

Fig. 17 and Fig.18 As we can see the results of our theoretical model, that assumes an

eventual spin thermalization of the bright excitons that agrees with the experimental

behavior observed in Fig. 2.

The horizontal axis in Fig. 17 represents the magnetic field in Tesla, while the

vertical axis represents the Zeeman splitting. It also shows that the Zeeman splitting

depends on the effective temperature, at lower effective temperatures the effect of

the exchange contribution to the Zeeman splitting is larger. This is because at lower

temperatures, there are fewer electrons in the higher energy states, becoming thus

highly polarized. As the temperature increases the polarization gets more diffuse and

the effect is reduced converging towards the linear behavior of the unperturbed Zeeman

splitting.

Figure. 17 illustrates the analogous effect for the Zeeman splitting of confined holes.

This effect describes how holes behave in response to an applied magnetic field in the

presence of the exchange interaction with electrons. The phenomenon is modeled using

the Landau equation and the Fermi-Dirac distribution, allowing us to understand how

holes change their behavior with magnetic field intensity and effective temperature.
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VII. CONCLUSIONS

The fluctuation of the circular polarization of the exciton emission, described in

Fig. 1, cannot be explained within the scope of the model and approximations reported

in Ref. [9]. However, this model provides a useful tool to characterize the dynamic

electron polarization that arises from the interplay of fine structure and the interaction

with nuclear spins. Further calculations must be performed relaxing the parameter

constraints to check whether the experimental results can be explained that way.

The spin dynamics of confined excitons in the presence of a magnetic field can

be tuned by both the temperature and incident power in a very peculiar way. The

experimental observation can be so far be interpreted as the correlation of Zeeman

splitting, exchange interaction, and spin thermalization. Our findings indicate that

the incident power exerts a significant influence on the exciton spin dynamics. Varying

the incident power reveals distinctive patterns in the evolution of spin polarization,

thus providing a tunable tool to control and manipulate quantum information in these

systems.

The experimental observation of the Zeeman splitting correlation in our results

supports the idea that the presence of a magnetic field triggers notable changes in the

spin structure of excitons. This phenomenon offers a valuable tool for probing and

controlling quantum states in nanostructured systems.

Advanced understanding of spin dynamics in confined excitons opens new possi-

bilities for technological applications[32]. These results could have implications for

the development of quantum devices, such as quantum qubits, and components for

emerging technologies based on the manipulation of quantum states.
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