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Maria Aparecida Soares Ruas and Matthias Zach for all the helpful discussions and suggestions pro-

vided by them during the development of this work.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Su-

perior - Brasil (Capes) - Finance Code 001 and in part by the Deutsche Akademische Austauschdienst

- Germany (DAAD) - Doctoral Research Grant (Number 57507871).

i





Abstract

In this work, we study invariants of determinantal singularities, by analysing the Newton polyhe-

dra which arise from the entries of a given matrix. The main contribution of this work is providing

sufficient conditions, which guarantee the Whitney equisingularity of a family of isolated determi-

nantal singularities (IDS) in terms of Newton polyhedra. We also introduce a formula to compute the

local Euler obstruction of IDS in terms of Newton polyhedra and we simplify this formula for some

classes of singularities, which must satisfy a condition on its Newton polyhedra. Lastly, we present

an implementation on the software OSCAR in order to compute relative mixed volumes of pairs of

polyhedra, to verify the non-degeneracy of a 2×3 matrix and to compute the local Euler obstruction

of an IDS defined by a 2×3 matrix.

Keywords: Determinantal Singularities, Local Euler Obstruction, Newton polyhedra, OSCAR, Whit-

ney equisingularity.
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Resumo

Neste trabalho, estudamos invariantes de singularidades determinantais, analisando os poliedros

de Newton que surgem a partir das entradas de uma dada matriz. A principal contribuição deste

trabalho é fornecer condições suficientes que garantem a Whitney equisingularidade de uma famı́lia

de singularidades determinantais isoladas (IDS) em termos de poliedros de Newton. Também intro-

duzimos uma fórmula para calcular a obstrução de Euler local de IDS em termos de poliedros de

Newton e simplificamos esta fórmula para algumas classes de singularidades, que devem satisfazer

uma condição em seus poliedros de Newton. Por fim, apresentamos uma implementação no software

OSCAR para calcular volumes mistos relativos de pares de poliedros, verificar a não degeneracidade

de uma matriz de ordem 2× 3 e calcular a obstrução de Euler local de uma IDS definida por uma

matriz de ordem 2×3.

Palavras-chave: Singularidades Determinantais, Obstrução de Euler Local, Poliedros de Newton,

OSCAR, Whitney equisingularidade.

v





Zusammenfassung

In dieser Arbeit untersuchen wir Invarianten von Determinantiellen Singularitäten, indem wir

die Newton-Polyeder analysieren, die aus den Einträgen einer gegebenen Matrix entstehen. Der

Hauptbeitrag dieser Arbeit besteht darin, ausreichende Bedingungen zu liefern, die die Whitney-

Äquisingularität einer Familie isolierter Determinantiellen Singularitäten (IDS) in Bezug auf die

Newton-Polyeder garantieren. Wir stellen auch eine Formel vor, um die lokale Euler-Obstruktion

von IDS in Bezug auf die Newton-Polyeder zu berechnen und vereinfachen diese Formel für einige

Klassen von Singularitäten, die eine Bedingung an ihre Newton-Polyeder erfüllen müssen. Schließlich

präsentieren wir eine Implementierung in der Software OSCAR, um relative gemischte Volumina von

Paaren von Polyedern zu berechnen, die Nichtdegeneriertheit einer 2× 3-Matrix zu überprüfen und

die lokale Euler-Obstruktion einer durch eine 2×3-Matrix definierten IDS zu berechnen.

Schlüsselwörter: Determinantiellen Singularitäten, Lokale Euler-Obstruktion, Newton-Polyeder, OS-

CAR, Whitney-Äquisingularität.
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Introduction

Singularity Theory is am important branch of mathematics. The original foundations of Singu-

larity Theory can be traced back to various areas of mathematics, such as Commutative Algebra,

Algebraic Geometry, Topology, Complex Analysis and Differential Equations.

While other fields focuses in general situations, Singularity Theory focus on studying the singular

points of analytic spaces of functions. A space with a singular point locally does not look like Cm,

therefore it is not as simple as possible.

While sufficiently small neighbourhoods of smooth points of the same dimension are all isomor-

phic, singular points fall in to a great number of different isomorphism classes. A full classification of

all infinitely many family of cases is unthinkable and invariants help to put some order in those cases.

Although they pose an obstruction to general techniques, the invariants hold a wealth of informa-

tion about the singular case, much richer than in a smooth point. There is a variety of invariants used to

characterize singularities. Some of them are coarse, such as multiplicity and local Euler obstruction,

and other are finer, such as Milnor number and intersection number.

Along the years, many authors have pursued a formula to compute some of those invariants with

algebraic tools. The Milnor number is, for instance, an example of a topological invariant which can

be computed using algebraic methods. In this direction, Newton polyhedra of Newton non-degenerate

functions play an important role, since it provides an algebraic as well as a visual and computational

approach to understanding the behaviour of a singularity.

In this work, we study the so called determinantal singularities, which are singularities defined by

equations given by minors of a matrix. Determinantal singularities are a natural extension of complete

intersection singularities. Therefore, searching for an understanding on which properties of complete

intersection singularities also hold for determinantal singularities is a natural way to follow. Our

task is to study the Whitney equisingularity of a family of determinantal singularities as well as the

invariants such as multiplicity and local Euler obstruction of determinantal singularities, by analysing

the Newton polyhedron arising from the entries of the matrix which defines the singularity.

Polar multiplicities are important tools in the study of Whitney equisingularity, for many classes

of spaces. For instance, in [24, 25], Gaffney showed that a family of d-dimensional isolated com-

plete intersection singularities (ICIS) {(Xt ,0)}t∈D is Whitney equisingular if, and only if, the polar

multiplicities (see Definition 1.54) mi(Xt ,0), i = 0, . . . ,d are constant on this family, where D is an

open disc around the origin in C. Later, Nuño-Ballesteros, Oréfice-Okamoto and Tomazella [46]

1



2 Introduction

extended Gaffney’s result to isolated determinantal singularities (IDS), proving that a good family

of d-dimensional IDS {(X s
At
,0)}t∈D is Whitney equisingular if and only if the polar multiplicities

mi(X s
At
,0), i = 0, . . . ,d, do not depend on t.

Whitney equisingularity of families of varieties is also strongly related to Newton polyhedra. As

noted by Eyral and Oka [21], “in unpublished notes Briançon showed that a family of Newton non-

degenerate isolated hypersurface singularities (see Definition 1.34) with constant Newton polyhedron

is Whitney equisingular”. Eyral and Oka [21] extended Briançon’s result to families of possibly

non-isolated non-degenerate hypersurface singularities.

The main contribution of this work is in Chapter 2, where we extend the ideas of Eyral and Oka

in order to prove that a family of Newton non-degenerate determinantal singularities with constant

Newton polyhedra is smooth over the admissible coordinate spaces (see definition 2.4). We combine

this fact with the results presented by Nuño-Ballesteros, Oréfice-Okamoto and Tomazella [46] to

prove the following theorem.

Theorem 2.30. Let
{
(X s

At
,0)

}
t∈D

, be a family of determinantal singularities, defined by the germ

of matrices At = ((ai, j)t) : (Cm,0) → (Mn,k,0) with holomorphic entries. Suppose that X s
A0

has an

isolated singularity at 0 and, for all t ∈ D, the matrix At satisfies the following conditions:

(i) the Newton polyhedra ∆t
j of (ai, j)t are convenient and independent of t;

(ii) the matrix At is Newton non-degenerate (see Definition 2.2).

Then the family
{
(X s

At
,0)

}
t∈D

is Whitney equisingular.

Whitney equisingularity is a geometric feature, for this reason it can not be checked directly by a

computer. On the other hand, the non-degeneracy assumption provides an algebraic tool to work with

computational methods.

The second contribution of this work is providing a method to compute the local Euler obstruction

of an isolated determinantal singularity in terms of Newton polyhedra. Many authors have presented

formulas to compute some invariants of singularities using newton polyhedra. In 1976, Kouchnirenko

[39] introduced a formula to compute the Milnor number of a Newton non-degenerate hypersurface

singularity in terms of its Newton polyhedron. Later, Oka [48, 49] extended Kouchnirenko’s result to

isolated complete intersection singularities. In 2007, Esterov [18, 19] followed the same approach to

give formulas to compute the multiplicity of an IDS as well as the Euler characteristic of the Milnor

fiber of a function restricted to an isolated determinantal singularity.

One can compute the local Euler obstruction of a variety in terms of its polar multiplicities using

the formula introduced by Lê and Teissier [40]. Furthermore, Brasselet, Lê and Seade presented a

formula to compute the local Euler obstruction, by computing the Euler characteristic of the Milnor

fiber on each stratum of a Whitney stratification [6]. In Chapter 3, we combine the formula presented

by Brasselet, Lê and Seade with Esterov’s formula in order to obtain the following result.



Introduction 3

Corollary 3.21. Let (Xn
A,0) be an isolated determinantal singularity defined by the matrix germ

A= (ai, j) : (Cm,0)→ (Mn,k,0), where A has holomorphic entries. Suppose that the Newton polyhedra

of ai, j do not depend on i and the functions ai, j are convenient, i = 1, . . . ,n, j = 1, . . . ,k. If the matrix

A is Newton non-degenerate, then

EuXn
A
(0) = ∑

{ j1,..., jq}⊂{1,...,k}
∑

I⊂{1,...,m}
|I|≥q+1

|I|−q

∑
a=1

(−1)|I|+k−n
(
|I|+q−a−2
n+q− k−1

)

× ∑
a j1

,...,a jq∈N

a j1+···+a jq=|I|−a

|I|! · (LI)a(∆̃I
j1)

a j1 · · ·(∆̃I
jq)

a jq .

In addition, we use G -equivalence (see Definition 1.25) to present a method, which is based on

the method introduced by Kouchnirenko [39], to compute this Euler obstruction, in the case where the

entries of a matrix are not necessarily convenient. Furthermore, we use the same method to compute

the vanishing Euler characteristic of an isolated determinantal singularity.

In Chapter 4, we provide methods in order to simplify the computations involved in the above

theorem. We use GL-equivalence of matrices (see Definition 4.1) in order to define the Newton

polyhedron of a matrix and compute the local Euler obstruction of an IDS in terms of this polyhedron.

Moreover, we use the ideas of Chen [12], in order to unmix the relative mixed volume computations

and also simplify the computations involved in the above formula. As a result we obtain the following

theorem.

Theorem 4.27. Let (Xn
A,0) be the IDS defined by the germ of a Newton non-degenerate matrix

A = (ai, j) : (Cm,0) → (Mn,k,0). Let ∆i, j be the Newton polyhedron of ai, j, ∆ j be the convex hull

conv(∆1, j, . . . ,∆n, j) and ∆A be the convex hull conv(∆1,1, . . . ,∆n,k).

(i) Suppose that the polyhedron ∆ j is convenient, j = 1, . . . ,k. If, for each j = 1, . . . ,k, the polyhedra

∆1, j, . . . ,∆n, j are interlaced (see Definition 4.23), then

EuXn
A
(0) = ∑

{ j1,..., jq}⊂{1,...,k}
∑

I⊂{1,...,m}
|I|≥q+1

|I|−q

∑
a=1

(−1)|I|+k−n
(
|I|+q−a−2
n+q− k−1

)

× ∑
a j1

,...,a jq∈N

a j1+···+a jq=|I|−a

|I|! · (LI)a(∆̃I
j1)

a j1 · · ·(∆̃I
jq)

a jq .

(ii) Suppose that the polyhedron ∆A is convenient. If the polyhedra ∆i, j, i= 1, . . . ,n and j = 1, . . . ,k,

are interlaced, then

EuXn
A
(0) =

k

∑
q=k−n+1

∑
I⊂{1,...,m}
|I|≥q+1

|I|−q

∑
a=1

(−1)|I|+k−n
(
|I|+q−a−2
n+q− k−1

)

×
(
|I|−a−1

q−1

)(
k
q

)
|I|!(LI)a(∆̃I

A)
|I|−a.
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Lastly, there is an implementation on the mathematical software OSCAR [51] to verify the non-

degeneracy condition, to compute mixed volumes of pairs of polyhedra and to compute the local Euler

obstruction of a determinantal singularity using the above theorems.



CHAPTER 1

Background

We use this chapter to revisit key concepts to the development of this work. In Section 1, in

order to introduce the concept of determinantal singularities, which is our object of study, we present

definitions and results concerning algebraic sets and analytic spaces. In Section 2, we present the

Newton polyhedron of a function and the mixed volume of polyhedra. These objects will appear

in later chapters, when we compute some invariants of determinantal singularities. In Section 3,

we present the polar varieties, which will be important in Chapter 2, where we study of the Whitney

equisingularity of a family of isolated determinantal singularities. In Section 4, we introduce Whitney

stratification and Whitney equisingularity. Whitney stratification is an important object to compute the

local Euler obstruction of an analytic space. In section 5, we present concepts and results regarding

local Euler obstruction, which is the main invariant that we compute, in Chapter 3 and Chapter 4, in

terms of Newton polyhedra. Lastly, in Section 6, we present the vanishing Euler characteristic of an

isolated determinantal singularity, which plays an important role in Chapter 2 to guarantee that under

some conditions the polar multiplicities are constant along a family of determinantal singularities.

1 Complex analytic space germs

Throughout this work, we study the analytic structure of determinantal varieties, which are geo-

metric objects given by the zero locus of the set of minors of a given matrix with holomorphic entries.

In this section, we will present definitions and important results regarding algebraic varieties and an-

alytic spaces as well as space germs. Lastly, we will present the class of determinantal singularities.

In comparison to analytic sets, algebraic sets a are easier to understand. Therefore, for didactic

reasons, we present firstly concepts of algebraic geometry. For this part, we will follow [36, Chapter

1].

Let C[x1, . . . ,xm] be the polynomial ring in m-variables over C. We can see the elements of

C[x1, · · · ,xm] as functions from the space Cm on C. Therefore, given f ∈C[x1, . . . ,xm], the zero locus

of f , which we denote by V ( f ) = {p ∈ Cm; f (p) = 0}, makes sense. In general, if S ⊂ C[x1, · · · ,xm],

5



6 Chapter 1. Background

we can define the zero locus of S as

V (S) = {p ∈ Cm : f (p) = 0, ∀ f ∈ S}.

It is easy to show that, if I is the ideal of C[x1, . . . ,xm] generated by S, then V (S)=V (I). Moreover,

since C[x1, . . . ,xm] is a noetherian ring, any ideal I is finitely generated by some f1, . . . , fr, thus V (S)

can be written as the zero locus of a finite set of polynomials.

Definition 1.1. A subset Y of Cm is said to be an algebraic set if there exists a subset S⊂C[x1, . . . ,xm]

such that Y =V (S).

Example 1.2. Let I =< y − x2 > be an ideal of C[x,y]. The set Y = V (I) ⊂ C2 is an algebraic

set. If an ideal I of C[x1, . . . ,xm] is generated by only one element, then the set V (I) ⊂ Cm is called

hypersurface

We will use the following more complicated example as running example throughout this work.

Example 1.3. Let I =< xz− y2,yw− z2,xw− yz > be an ideal of C[x,y,z,w]. Then Y = V (I) is an

algebraic set.

The following proposition (see [36, Proposition 1.1] for a proof) shows that algebraic sets satisfy

the axioms of a topology as closed sets. This topology is called the Zariski topology.

Proposition 1.4. Consider the polynomial ring C[x1, . . . ,xm].

(i) Let S1,S2 ⊂ C[x1, . . . ,xm], then V (S1) ∪V (S2) = V (S1 · S2), where S1 · S2 = { f1 · f2 : f1 ∈
S1 and f2 ∈ S2}. Therefore, the union of two algebraic sets is an algebraic set.

(ii) Let {Si}i∈I be an arbitrary collection of subsets of C[x1, . . . ,xm], then V (∪i∈ISi) = ∩i∈iV (Si).

Thus, the intersection of an arbitrary family of algebraic sets also is an algebraic set.

(iii) V (0) =Cm and V (1) = /0. This means that both the empty set and the whole space are algebraic

sets.

Definition 1.5. We say that a non-empty set Y of a topological space X is irreducible if it can not be

written as an union Y = Y1 ∪Y2 of two proper subsets, each one of which is closed in Y . The empty

set is not considered to be irreducible.

As one can see in [36, Corollary 1.4], V (I) is irreducible if and only if I is a prime ideal.

Example 1.6. The set V (< I >)⊂C4, where I =< xz−y2,yw−z2,xw−yz >, is irreducible, because

I is a prime ideal. On the other hand, the set V (< xy,yz,xz>)⊂C3 is the union of the three coordinate

axes, therefore, it is reducible.
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Definition 1.7. An affine algebraic variety is an irreducible subset of Cm which is given by zeros of

polynomial functions.

Example 1.8. The first set in Example 1.6 is an affine algebraic variety, while the second set is not.

Similar to polynomial functions, we can also study the zero locus of one or more analytic func-

tions. The analytic ring inherits some nice properties from the polynomial ring, such as the noetherian

property, power series representations, Zariski topology, among others.

For this subject, we follow [34]. Before we continue, it is important to observe that, by Osgood’s

Lemma, a continuous function f : U ⊂ Cm → C is analytic if and only if it is holomorphic, where

U ⊂ Cm is an open set. In this work, analytic and holomorphic have the same meaning.

Definition 1.9. Consider the set of pairs (Vα ,Uα), where Uα and Vα are analytic subsets containing

the origin in Cm, Uα is an open neighbourhood of the origin in Cm and Vα ⊂ Uα . Two such pairs

(V1,U1) e (V2,U2) are equivalent if there exists a neighbourhood W ⊂U1 ∩U2 of the origin such that

V1 ∩W =V2 ∩W . An equivalence class of these pairs is said to be a germ at the origin in Cm.

We can also define germs of functions at the origin 0 ∈ Cm, as equivalence classes in the set of

differentiable functions from Cm to C.

Definition 1.10. Let f ,g : Cm → C be differentiable functions, we say that f is equivalent to g if

there exists a neighbourhood U of 0 in Cm, where f and g coincide. We denote by f the germ which

its representative is the function f : Cm → C.

We denote the local ring of germs at 0 of analytic functions in Cm by Om. If f1, . . . , fr ∈ Om,

the equivalence class of the set {x ∈ Cm : f1(x) = · · · = fr(x) = 0}, where f1, . . . , fr : Cm → C are

representatives of the germs f1, . . . , fr, respectively, is denoted by V ( f1, . . . , fr). If fi and gi are

representative of the same germ, where i = 1, . . . ,r, then the sets V ( f1, . . . , fr) and V (g1, . . . ,gr)

coincide.

Definition 1.11. A germ of an analytic space (V,0) around the origin is the germ of the subset

V = V ( f1, . . . , fr),

for f1, . . . , fr ∈ Om.

Our purpose is to study the nature of such analytic spaces in the neighbourhood of some fixed

point in Cm, which without loss of generality we can consider to be the origin.

We say that a germ of an analytic space V is irreducible when for any germs V1 and V2 such that

V =V1 ∪V2 then V =V1 or V =V2, in this case we say that V is an analytic variety.

The next proposition states that a germ of an analytic space can always be decomposed in irre-

ducible components. One can find a proof for it in [34, page 89].
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Proposition 1.12. Let V be a germ of an analytic space, then there exists a positive integer s and

irreducible varieties V1, . . . ,Vs, with Vi not contained in V j, for all i ̸= j, such that V = V1 ∪ ·· · ∪Vs.

Such varieties are uniquely determined, up to their order, and they are called irreducible components
of V .

A germ of an analytic space at x is a germ of a set V at x such that, for some neighbourhood U

of x, the space V ∩U can be described by V ( f1, . . . , fr), for some f1, . . . , fr ∈ Om.

Definition 1.13. A germ V =V ( f1, . . . , fr) is called reduced if the C-quotient algebra Om/⟨ f1, . . . , fr⟩
does not contain nilpotent elements.

A function f : X →C defined on an analytic variety X is holomorphic if for all x ∈ X there exists

a neighbourhood V of x in Cm such that f |X∩V is the restriction of a holomorphic function in V .

Definition 1.14. A map F = ( f1 . . . , fk) : X →Ck is called holomorphic if fi : X →C for i = 1, . . . ,k

are holomorphic functions. A holomorphic map F : X → Cm is said to be biholomorphic if it is

bijective and its inverse is also holomorphic.

We recall that the Jacobian matrix of a holomorphic mapping F = ( f1, . . . , fk) : U ⊂ Cm → Ck at

a point z is

J(F)(z) =


∂ f1
∂x1

(z) · · · ∂ f1
∂xm

(z)
... . . . ...

∂ fk
∂x1

(z) · · · ∂ fk
∂xm

(z)

 ,

where ∂ f
∂xi

(z) is the partial derivative of the function f with respect to xi at the point z.

Definition 1.15. A point z ∈ U is said to be a regular point of the map F if the rank of J(F)(z) is

maximal. Otherwise, z is a singular point of F . We denote the singular set of F by S(F).

We say that a point z of a germ of an analytic space V is a regular or smooth point if for some

neighbourhood U of z, the germ U ∩V can be described as the zero locus of a finite number of germs

of analytic functions which have z as a regular point. A non-regular point of V is called singular
point of V .

Definition 1.16. The dimension of an analytic variety V is the dimension of the tangent space to V

at a regular point of V .

Example 1.17. Let X =V ( f1, . . . , fr) be a germ of an analytic variety, where fi :Cm →C, i= 1, . . . ,r.

We say that X is a complete intersection if dim(X) = m− r.

Definition 1.18. We say that a germ of an analytic space V is equidimensional when all of its irre-

ducible components have the same dimension.
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Example 1.19. Let (X ,0) be a germ around the origin defined by X = V (xy,yz,xz) ⊂ C3. The germ

(X ,0) contains three irreducible components, which are all 1-dimensional. Therefore, the germ (X ,0)

is equidimensional.

An important class of analytic spaces is the class of determinantal varieties. Determinantal vari-

eties have been widely studied by researchers in Commutative Algebra and Algebraic Geometry (see

[9, 10]). In Singularity Theory there are countless articles with the purpose of studying those vari-

eties, we can quote, for instance, Ebeling and Gusein-Zade [15], Frühbis-Krüger and Neumer [22],

Nuño-Ballesteros, Oréfice-Okamoto and Tomazella [45], Pereira and Ruas [53] and Zach [58].

Let

A =

 a1,1 · · · a1,k
... . . . ...

an,1 · · · an,k


denote the matrix of n× k indeterminates over C. The set of all such matrices is denoted by Mn,k.

Definition 1.20. The subset Ms
n,k = {A∈Mn,k : rank(A)< s} is called generic determinantal variety.

The set Ms
n,k is an irreducible subvariety of Mn,k with codimension (n−s+1)(k−s+1) (see [10]).

Moreover, the singular set of Ms
n,k is exactly Ms−1

n,k .

Definition 1.21. Let A = (ai, j(x)) be a n× k matrix, whose entries are complex analytic functions

in U ⊂ Cm, 0 ∈ U and F be a map defined by the s size minors of A. We say that F−1(0) is a

determinantal variety if it has codimension (n− s+1)(k− s+1).

Some of the invariants studied along this work, such as the top polar multiplicity and the vanishing

Euler characteristic, depend on determinantal structure of the variety F−1(0), therefore, we denote

the determinantal variety defined by the s size minor of a matrix A by X s
A.

We can see the matrix A = (ai, j(x)) as a map A : Cm → Mn,k, with A(0) = 0. Therefore, the

determinantal variety in Cm is the set X s
A = A−1(Ms

n,k).

Remark 1.22. Let X = f−1(0), where f = ( f1, . . . , fk) : Cm →Ck, be a complete intersection variety.

Then X is a determinantal variety defined by the matrix A = [ f1 · · · fk ].

Definition 1.23. Let (X s
A,0)⊂ (Cm,0) be a determinantal variety satisfying the condition

s = 1 or m < (n− s+2)(k− s+2).

The variety (X s
A,0) is said to be an isolated determinantal singularity (IDS) if X s

A is smooth at x and

rank A(x) = s−1 for all x ̸= 0 in a neighbourhood of the origin.

Example 1.24. Consider the algebraic variety X =V (I)⊂ C4, where I is the ideal generated by

f1 = xw− yz, f2 = xz− y2 e f3 = yw− z2.
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Note that, f1, f2 e f3 are exactly the size 2 minors of the matrix

A =

(
x y z
y z w

)
.

We can show that X has an isolated singularity at the origin 0 ∈ C4 and that the tangent space on its

regular points have dimension 2, which means that X is a surface in C4. Furthermore, we observe that

(2−2+1)(3−2+1) = 2. Therefore, X is a determinantal variety in C4.

In the following we present the essential notions of equivalence for matrices and the associated

concepts of finite determinacy. The main references for this subject are [23] and [52].

We denote by GLp(Om) the group of p× p invertible matrices with entries in Om. Let R the group

of change of coordinates in Cm, i.e., R is the group composed by the germs of diffeomorphisms,

which are analytic.

In addition, consider H = GLk(Om)×GLn(Om) and denote by Mn,k(Om) the set of all n× k

matrices with entries in Om.

Definition 1.25. Let G(n,k) = R×GLk(Om)×GLn(Om). Two germs of singularities A,B ∈ Mn,k(Om)

are G(n,k)-equivalent if and only if there exists (ϕ,P,Q) ∈ G(n,k) such that A = Q−1(ϕ∗B)P.

Given (φ ,R,S),(ϕ,P,Q) ∈ G(n,k) we can define the composition

(φ ,R,S)◦ (ϕ,P,Q) = (ϕ ◦φ ,(φ∗P)R,(φ∗Q)S).

With this operation, the set G(n,k) has a group structure. Therefore, the mapping

G(n,k)×Mn,k(Om) → Mn,k(Om)

(ϕ,P,Q,M) 7→ Q−1(ϕ∗M)P

is an action from the group G(n,k) on the space of n×k matrices with entries in Om. Hence, two germs

of matrices are G(n,k)-equivalent if and only if they belong to the same orbit under this action. When

there is no risk of misunderstandings, G(n,k) is denoted simply by G .

We observe that in the above definition the varieties X s
A and X s

B defined by matrices A and B are

not necessarily determinantal. If they are indeed determinantal singularities, then, by the following

lemma (see [23, Lemma 2.1.3] for a proof), the varieties X s
A and X s

B are isomorphic as germs.

Lemma 1.26. Let A ∈ Mn,k be a matrix. For any pair of invertible matrices P ∈ GLn(C) and Q ∈
GLk(C) and every number s one has

< (P ·A ·Q−1)∧s >=< A∧s >,

where A∧s denotes the exterior power ∧s :
∧s(Ck)→

∧s(Cn).
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Definition 1.27. A germ of a matrix A ∈ Mn,k(Om) is l-determined, or l−G -determined if for every

matrix B such that

jlA(0) = jlB(0),

B is G -equivalent to A. If M is l-determined for some l, we say that A is G -finitely determined. The

smallest l such that the germ A is l-determined is called determinacy bound of A.

Theorem 1.28. Isolated determinantal singularities are G -finitely determined and, therefore, they

have a polynomial representative.

A detailed proof can be found in [52, Corollary 2.4.1].

2 Newton polyhedra and mixed volumes of polyhedra

In this section we present concepts, definitions and results regarding convex geometry, such as

Newton polyhedra, mixed volumes of polyhedra and relative mixed volumes of pairs of polyhedra.

Newton polyhedra of polynomial functions are important objects which can be very useful to

compute some mathematical objects, such as the Milnor number ([39]), the principal zeta function

of monodromy ([48]), multiplicities ([18], [4]), among others. For this section, we take as reference

[49].

The monomial xa1
1 · · ·xam

m is denoted by xa, where a = (a1, . . . ,am) ∈ Zm. We denote by Rm
+, the

positive orthant of Rm. A subset ∆ ⊂ Rm
+ is called a Newton polyhedron when there exists some

P ⊂ Zm
+ such that ∆ is the convex hull of the set {p+ v : p ∈ P and v ∈ Rm

+}. In this case, ∆ is said to

be the Newton polyhedron determined by P.

Definition 1.29. If f ∈ Om is a germ of a polynomial function f (x) = ∑
p∈Zm

+

cpxp, then the support

of f is supp(f) := {p ∈ Zm
+ |cp ̸= 0}. The Newton polyhedron of f , ∆ f , is the Newton polyhedron

determined by supp(f).

Definition 1.30. A polyhedron is said to be convenient if it touches all coordinate axes. A function

f : Cm → C is convenient if its Newton polyhedron is convenient.

Example 1.31. Consider the function f : (C2,0)→ (C,0) defined by f (x,y) = x3 −y2. We construct

step by step the Newton polyhedron of f . Firstly, we note that f (x,y) = x3y0 − x0y2, then supp( f ) =

{(3,0,(0,2)}. The first step is to indicate those points in the positive orthant R2
+, as shown Figure

1.1. Secondly, we draw the orthant R2
+ at each of those two points. As we can see in the Figure 1.2.

Lastly, we take the convex hull of the union of (3,0)+R2
+ and (0,2)+R2

+ and we obtain the

Newton polyhedron of f .
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3

2

Figure 1.1: Support of f .

3

2

Figure 1.2: Sum with with R2
+.

3

2

Figure 1.3: Newton polyhedron of f .

Example 1.32. Let f : (C3,0)→ (C,0) be defined by f (x,y,z) = ax+by+ cz, where a, b and c are

non-zero. Then the following picture illustrates the Newton polyhedron of f .

1

1

1

Figure 1.4: Newton polyhedron of f .

Let P = (p1, . . . , pm) be a weight vector. For each x ∈ Rm, we define P(x) =
m
∑

i=1
pi · xi. For a

positive weight (pi ≥ 0, for i = 1, . . . ,m), we define d(P; f ) as the minimal value of the restriction

P|∆ f , i.e., d(P; f ) = min{P(x) : x ∈ ∆ f }. Let

Γ(P; f ) = {x ∈ ∆ f : P(x) = d(P; f )}
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be the face of ∆ f , where P takes the minimal value d(P; f ). For a strictly positive weight P (pi > 0,

for i = 1, . . . ,m), Γ(P; f ) is a bounded face of ∆ f . When there is no risk of misunderstandings, we

denote Γ(P; f ) simply by Γ. We define

f |Γ(x) = ∑
a∈Γ

caxa

and we call f |Γ the face function of f with respect to Γ.

Example 1.33. Let f : (C2,0) → (C,0) be the function defined by f (x,y) = x3 − y2. Consider the

weight P = (p1, p2), with p1 > 0 and p2 > 0 and the function P(x,y) = p1 · x+ p2 · y. We have three

cases.

(i) If p1 > p2, then d(P; f ) = 2 · p2, Γ1 = Γ(P; f ) = {(0,2)} and f |Γ1 =−y2.

(ii) If p1 < p2, then d(P; f ) = 3 · p1, Γ2 = Γ(P; f ) = {(3,0)} and f |Γ2 = x3.

(iii) If p1 = p2, then d(P; f ) = 3p1 +2p2, Γ3 = Γ(P; f ) = (3,0)(0,2) and f |Γ3 = x3 −y2, where AB

denotes the line segment between the points A and B.

If p1 = 0, for example, d(P; f ) = 0 and the face Γ(P; f ) = (3,0)+ (R+,0) is not a bounded face of

the Newton polyhedron ∆ f .

Definition 1.34. Let f : (Cm,0)→ (C,0) be the germ of a holomorphic function, with Newton poly-

hedron ∆ f . The function f is said to be Newton non-degenerate if for every bounded face Γ of ∆ f

the restriction of f |Γ to the set {x ∈ (C\{0})m : f |Γ(x) = 0} has no critical points.

Example 1.35. Consider the function f : (C2,0) → (C,0) defined by f (x,y) = x3 − y2. As seen in

Example 1.33, the Newton polyhedron ∆ f contains three bounded faces Γ1, Γ2 and Γ3. Firstly, we

have

{(x,y) ∈ (C\{0})2 : f |Γ1(x,y) =−y2 = 0}= {(x,y) ∈ (C\{0})2 : f |Γ2(x,y) = x3 = 0}= /0.

Moreover, since f |Γ3(x,y) = x3 − y2, we have

d f |Γ3 = [ 3x2 −2y ] = [ 0 0 ]⇔ (x,y) = (0,0).

As (0,0) /∈ (C \ {0})2, the restriction of d f |Γ3 to the set {(x,y) ∈ (C \ {0})2 : f |Γ3(x) = 0} has no

zeros. Then f |Γ3 has no critical points in {(x,y) ∈ (C\{0})2 : f |Γ3(x) = 0}. Therefore, the function

f is Newton non-degenerate.

Remark 1.36. The Newton non-degeneracy of a function depends on the choice of the coordinates.

For instance, in Example 1.35, f (x,y) = x3 − y2 is Newton non-degenerate. However, if we make the

change of coordinates
φ : C2 → C2

(x,y) 7→ (x,x+ y)
,

we obtain the function g = ( f ◦φ(x,y)) = x3 − (x+ y)2, which is not Newton non-degenerate.
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Mixed volumes of polyhedra are a concept from convex geometry which have several important

applications in mathematics and related fields. They are a generalization of the notion of volume to

higher dimensions, and they provide a way to measure the interaction between multiple convex bodies.

In algebraic geometry, mixed volumes play an important role in questions related to intersection

theory and intersection multiplicities.

The set of all convex bounded polyhedra in Rm is denoted by C . There are many natural ways to

define, on the set C , interesting operations of addition and scalar products. For A,B ∈ C and λ ∈ R,

the Minkowski addition and the ordinary scalar product are defined in the following:

A+B = {x+ y : x ∈ A,y ∈ B},

λ ·A = {λ · x : x ∈ A}.

Proposition 1.37 (see [32, Proposition 6.1]for a proof) and Theorem 1.38 (a proof can be found in

[32, Theorem 6.1]) show that the set C with the Minkowski addition is a semigroup.

Proposition 1.37. Let A,B ∈ C and λ ∈ R. Then A+B,λ ·A ∈ C .

Theorem 1.38. C , endowed with Minkowski addition, is a commutative semigroup with cancellation

law.

Minkowski’s theorem on mixed volumes (one can find a proof in [32, Theorem 6.5]) states that

the volume of a linear combination of convex bodies is a polynomial in the coefficients of the linear

combination.

Theorem 1.39 (Minkowski Theorem). Let P1 . . . ,Pm ∈C . Then there are coefficients, MV (Pi1, . . . ,Pid),

1 ≤ i1, . . . , id ≤ m, which are symmetric in the indices and such that

Vol(λ1 ·P1 + · · ·+λm ·Pm) =
m

∑
i1,...,id=1

MV (Pi1, . . . ,Pid) ·λi1 · · ·λid , (2.1)

for λ1, . . . ,λm ≥ 0.

Definition 1.40. The coefficient MV (Pi1 , . . . ,Pid) in the above theorem is called mixed volume.

The mixed volume can be more explicitly expressed in terms of volumes of Minkowski sums,

through the following polarization formula.

Lemma 1.41.

MV (P1, . . . ,Pm) =
1

m!

m

∑
r=1

(−1)m−r
∑

1≤i1≤···≤ir≤m
Vol(Pi1 + · · ·+Pir).

One can find a proof in [54, Lemma 5.1.4]. For more properties of the mixed volume, we suggest

[27], [32] and [54].
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1

2

Figure 1.5: Polyhedron P1.

2

1

Figure 1.6: Polyhedron P2.

Example 1.42. Consider the sets S1 = {(0,0),(1,0),(0,2)} and S2 = {(0,0),(2,0),(1,2)}. Let P1

and P2 be polyhedra given by P1 = conv(S1) and P2 = conv(S2). Figure 1.5 and Figure 1.6 illustrate

polyhedra P1 and P2, respectively.

By Lemma 1.41, the mixed volume of P1 and P2 is given by

MV (P1,P2) =
1
2!
(Vol(P1 +P2)−Vol(P1)−Vol(P2)).

As illustrated in Figure 1.7, the Minkowski sum

P1 +P2 = conv(S1 +S2) = conv({(0,0),(1,0),(0,1),(2,0),(0,2),(3,0),(0,3),(1,1),(2,2)}).

3

3

1 2

2

1

Figure 1.7: Minkowski sum P1 +P2.

Therefore,

MV (P1,P2) =
1
2
(6−1−1) = 2.

Computing mixed volumes can be a very complicated task in high dimension spaces. Therefore,

establishing certain sufficient conditions to simplify those computations are very helpful. In his arti-

cle, Chen [12] introduced conditions under which MV (P1, . . . ,Pm) is exactly equal Vol(conv(P1, . . . ,Pm)),

where conv(P1, . . . ,Pm) denotes the convex hull of the union ∪m
i=1Pi.

Theorem 1.43. Given non-empty finite sets S1, . . . ,Sm ⊂Qm, let S̃ = S1 ∪ ·· ·∪Sm . If every positive

dimensional face F of conv(S̃) satisfies one of the following conditions:
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(i) F ∩Si ̸= /0, for all i ∈ {1, . . . ,m};

(ii) F ∩Si is a singleton for some i ∈ {1, . . . ,m};

(iii) For each i ∈ I := {i : F ∩ Si ̸= /0}, F ∩ Si is contained in a common coordinate subspace of

dimension |I|, and the projection of F to this subspace is of dimension less than |I|;

then

MV (conv(S1), . . . ,conv(Sm)) =Vol(conv(S̃)).

One can find a detailed proof in [12, Theorem 1.3]. With few changes, it is possible to gener-

alize the above result to the case where the union is taken over a subset of the polytopes, therefore

transforming the mixed volume into semi-mixed volume.

Corollary 1.44. Given non-empty finite sets Si, j ⊂ Qm for i = 1, . . . ,r and j = 1, . . . ,ki with ki ∈ Z+

and k1 + · · ·+ kr = m, let Qi, j = conv(Si, j), S̃i = ∪ki
j=1Si, j, and Q̃i = conv(S̃i). If for each i, every

positive dimensional face of Q̃i that intersects Si, j for some j on at least two points must intersect all

Si,1, . . . ,Si,ki , then

MV (Q1,1, . . . ,Qm,km) = MV (Q̃1, . . . , Q̃1︸ ︷︷ ︸
k1

, . . . , Q̃m, . . . , Q̃m︸ ︷︷ ︸
km

).

The proof can be found in [12, Corollary 5.1].

Example 1.45. Consider P1 = conv(S1) and P2 = conv(S2) be as in Example 1.42. Let P= conv(S1,S2)

(Figure 1.8), we have

MV (P1,P2) =Vol(P) = 2.

2

2

Figure 1.8: Polyhedron P = conv(S1 S2).

In [18], [17], Esterov introduces a relative version of the mixed volume, where the polyhedra

involved are not necessarily bounded, with the purpose of proving a relative version of Bernstein’

formula [3]. In the following we present essential definitions and results necessaries to understand

this concept.

Definition 1.46. A pair of polyhedra (A,B) in Rm is called bounded if both A \ B and B \ A are

bounded.
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Let N ⊂ Rm be a convex polyhedron. Its support function N(·) is defined as

N(P) = inf
x∈N

P(x),

for every weight vector P in the dual space (Rm)∗ . The set

NP = {x ∈ N : P(x) = N(P)}

is called the support face of the polyhedron N with respect to the weight vector P ∈ (Rm)∗ . The set

{P : N(P)>−∞} ⊂ (Rm)∗ is called the support cone of N.

Consider the set CΓ of all ordered pairs of polyhedra (A,B) with a given support cone Γ ∈ (Rm)∗,

such that the differences A\B and B\A are bounded.

Definition 1.47. (i) The Minkowski sum (A1,B1)+(A2,B2) of two pairs (A1,B1) and (A2,B2) in

CΓ is the pair (A1 +A2,B1 +B2) in CΓ.

(ii) The volume Vol(A,B) of a bounded pair (A,B) is the difference Vol(A\B)−Vol(B\A).

CΓ is a semigroup with respect to Minkowski addition of two pairs of polyhedra.

Definition 1.48. The mixed volume of pairs of polyhedra with the support cone Γ ⊂ (Rm)∗ is the

symmetric multilinear function

MV : CΓ ×·· ·×CΓ︸ ︷︷ ︸
m

→ Z
m! ,

such that MV ((A,B), . . . ,(A,B)) =Vol(A,B) for every pair (A,B) ∈ CΓ .

As for the mixed volume, we can explicitly compute the relative mixed volume of polyhedra

through a polarized formula (see [17, Lemma 3] for a proof).

Lemma 1.49. The mixed volume of pairs is the following polarization of the volume of a pair (as a

function on the semigroup of polyhedron pairs).

MV ((A1,B1), . . . ,(Am,Bm)) =
1

m!

m

∑
r=1

(−1)m−r
∑

1≤i1≤···≤ir≤m
Vol((Ai1,Bi1)+ · · ·+(Air ,Bir)).

Example 1.50. Consider f1, f2 : C2 → C defined by f1(x,y) = x+ y2 and f2(x,y) = x2 + y. Let ∆ f1

and ∆ f2 be their Newton polyhedra.

The mixed volume of the pairs of polyhedra (R2
+,∆ f1) and (R2

+,∆ f2) is given by

MV ((R2
+,∆ f1),(R

2
+,∆ f2)) =

1
2!
(Vol(R2

+,∆ f1 +∆ f2)−Vol(R2
+,∆ f1)−Vol(R2

+,∆ f2))

=
1
2
(3−1−1) =

1
2
.

For brevity, we denote the mixed volume

MV(Γ1, . . . ,Γ1︸ ︷︷ ︸
a1

, . . . ,Γr, . . . ,Γr︸ ︷︷ ︸
ar

) := Γ
a1
1 · · ·Γar

r .
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1

2

Figure 1.9: Newton polyhedron of f1.

2

1

Figure 1.10: Newton polyhedron of f2.

3

3

1

1

2

2

Figure 1.11: ∆ f1 +∆ f2 .

3 Polar varieties

The notion of polar variety was used by Lê and Teissier in the 70’s, ([40, 56]) with the purpose of

studying singularities of analytic varieties. In this section, we present the definition of polar varieties

introduced by Teissier in [56].

Let f : X → S be a morphism of reduced complex analytic spaces, such that the fibers of f are

smooth with dimension d = dimX −dimS, outside a closed subset, not dense F ⊂ X . In general, we

can embed X ⊂ S×Cr as the diagram

X //

f
��

S×Cr

p1
{{

S

Let Dd−k+1 be a vector subspace of Cr of codimension d − k+ 1, with 0 ≤ k ≤ d, and p : Cr →
Cd−k+1 be a generic linear projection (in the sense of [56, Proposition 1.3.2]), whose kernel is Dd−k+1.

For x ∈ X \F the fiber Xx = f−1( f (x)) of f in X is non-singular and contained in { f (x)}×Cr. We

denote by px : Xx → Cd−k+1 the restriction of the projection p to Xx . We define

Pk( f , p,0)0 = {y ∈ X \F ; y ∈ Σ(px)} ,

where Σ(px) denotes the set of critical points of px, and by Pk( f , p,0) its closure in X .

Proposition 1.51. Let f : (X ,0) → (S,0) be a smooth morphism, i.e., plane with smooth fibers, in
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every point of X \F. Then Pk( f , p,0) is a closed analytic subset, empty or of pure codimension k in

X.

The proof can be found in [56, Corollary 1.3.2]. Teissier [56] introduced the definition of relative

polar variety.

Definition 1.52. Let f : (X ,0)→ (S,0) be a morphism as above, a S-embedding (X ,0)⊂ (S,0)×Cr

is a generic linear subspace Dd−k+1 ⊂ Cr of codimension d − k+ 1, where Dd−k+1 is the kernel of

a generic linear projection p : Cr → Cd−k+1. The closed analytic subset Pk( f , p,0) of X is called a

relative polar variety of X with codimension k associated to f and Dd−k+1. When S is a point, we

call Pk( f , p,0) an absolute polar variety.

Example 1.53. This example was extracted from [33, Example 1.42]. Consider the surface V =

{(x,y, t) ∈ C3 : f (x,y, t) = y2 − x3 − t2x2 = 0} and the projection parallel to the y-axis. The singular

set of V is the t-axis. Let (x0,y0, t0) ∈Vreg, the tangent plane to V at this point is given by

x · ∂ f
∂x

(x0,y0, t0)+ y · ∂ f
∂y

(x0,y0, t0)+ t · ∂ f
∂ z

(x0,y0, t0) = 0.

In order to the projection π restrict to the tangent plane Tp0Vreg, where p0 = x · ∂ f
∂x

(x0,y0, t0), not to

be surjective, the tangent plane must contain the y-axis, i.e., points of the form (0,y,0) must satisfy

the plane equation, then we want y · ∂ f
∂y (x0,y0, t0) = 0. Therefore, the polar variety P1(V,P) associated

to the projection π is the closure of the solution of the following system of equations,{
y · ∂ f

∂y (x,y, t) = 0
f (x,y, t) = 0

, where (x,y, t) ∈Vreg.

Thus, {
y = 0

y2 − x3 − t2x2 = 0) = 0
, where (x,y, t) ∈Vreg.

Therefore, P1(V,P) = {(x,y, t) ∈Vreg : x2(x− t2) = 0}.

Definition 1.54. Let X be a subvariety with dimension k contained on a regular variety M. Let D be a

small polydisc (cartesian product of discs) centered at p. Consider a projection π on a k-dimensional

generic plane. Let q be a point in π(D)\π(p) and δ a small polydisc centered at q. The multiplicity
of X at p, denoted by m(X , p), is the number of fibers of π−1(δ )∩D∩X .

The key invariant of the polar variety Pk( f , p,0) is its multiplicity at 0, m0(Pk( f , p,0)), which is

called kth relative polar multiplicity of X and denoted by mk(X , f ,0). If f is a constant map, we

denote the multiplicity by mk(X ,0). For a generic linear projection, the multiplicity is independent of

Dd−k+1 and, indeed, it is an analytic invariant of X .

Example 1.55. We shall compute the polar multiplicities of the surface V = {(x,y, t)∈C3 : f (x,y, t)=

y2 − x3 − t2x2 = 0}. We have P0(V,D2) = V and P1(C,D1) = {(x,y, t) ∈ C3 : y = 0 and x− t2 = 0},

where D2 is the zero vectorial space and D1 is the line defined by the y-axis. Therefore, m0(V,0) = 2

and m1(V,0) = 1.
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4 Whitney stratification and Whitney equisingularity

In this section, we introduce the notion of Whitney stratification, which was presented by Whitney

in [57] and widely used since then. Another reference to this subject is [28]. In addition we also study

the Whitney equisingularity of a family of singularities.

Definition 1.56. Let M be a smooth variety and V ⊂ M. A locally finite stratification of V is

a partition of V in subvarieties of M (called strata) such that, for each point of V there exists a

neighbourhood in M which meets only finitely many strata.

Example 1.57. Let f : R3 →R be a function given by f (x,y,z) = x2−y2z, then the variety V defined

by the zero locus of f is V =
{
(x,y,z) ∈ R3; x2 = y2z

}
. Considering subvarieties Vα ,Vβ ⊂R3 defined

by Vβ =
{
(0,0,z) ∈ R3} ⊂ V and Vα = V \Vβ , we have that Vα and Vβ form a finite and, therefore,

locally finite stratification of V .

Figure 1.12: Variety V ⊂ R3. Figure 1.13: Stratification of V .

We are interested in stratifications, where points in the same stratum have homeomorphic neigh-

bourhoods. This is granted by the boundary condition.

Definition 1.58. We say that a stratification {Vα} of V satisfies the boundary condition, if for any

two strata Vα and Vβ , such that Vα ∩V β ̸= /0 then Vα ⊂V β .

Once these strata are disjoint, either Vα =Vβ or Vα ⊂Vβ \Vβ .

Definition 1.59. A stratification {Vα} satisfies the Whitney conditions if for every pair of strata

(Vα ,Vβ ), such that Vβ ⊂Vα and for every point y ∈Vβ we have:

a) For every sequence of points {xi} of Vα converging to y, such that the limit

lim
i→∞

Txi(Vα) = T

exists in the corresponding Grassmannian, T contains Ty(Vβ ).
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b) If we also have a sequence {yi} of points in Vβ with limit y and such that the limit of directions

lim
i→∞

xiyi = λ

exists in the projective space, then T contains λ .

These conditions are called conditions (a) and (b) of Whitney.

A stratification which satisfies the boundary condition and the conditions of Whitney is called a

Whitney stratification.

Whitney showed, in his work [57], that every complex analytic variety admits a stratification

which satisfies conditions a) and b) of Whitney. Moreover, if X is a locally finite collection of

analytic subsets of U , then we can choose a stratification V such that each element of X is a union of

strata of V (see [31]). Such stratification is called stratification adapted to X .

Next, we present some examples of stratification.

Example 1.60. Consider the cone C with vertex at the origin, and the stratification {V1,V2}, where

V1 is a generatrix of the cone and V2 =C \V1. In this case, the conditions (a) and (b) of Whitney are

not satisfied. It is enough to consider a sequence {xi} of points in C, which are over a generatrix L

of the cone which is not V1, whose limit is the origin, such that the segment xiyi has always the same

direction λ .The condition (a) is not satisfied, once the limit of tangent spaces TxiV2 does not contain

the space T0(V1), the condition (b) is also not satisfied, because λ is not contained in the limit of

tangent spaces TxiV2.

Figure 1.14: Singular variety.

Example 1.61. Consider the variety V in C3 defined by the equation y2 − x3 − t2x2 = 0.

If we take the t-axis as a stratum V1 and the regular part of V , Vreg, as the other stratum, the

stratification {V1,V2} (Figure 1.16) satisfies the condition (a), but does not satisfy the condition (b).

However, if we add a zero dimensional stratum, the origin of C3, we have both conditions satisfied

(Figure 1.17).

Whitney equisingularity is a concept which deals with the behaviour of singularities in families of

germs of varieties as parameters vary. It is a condition that ensures that the singularities change in a
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t

Figure 1.15: Singular variety V .

Figure 1.16: Stratification of V . Figure 1.17: Whitney stratification of V .

controlled and compatible way, making it a valuable tool for understanding the behaviour of singular

points. In the following, we present the Whitney equisingularity of a family of functions.

Consider a function f : (Cm,0)→ (C,0) and let U ⊂ Cm be an open neighbourhood of 0 ∈ Cm.

Let D ⊂C be an open disc centered at 0 ∈C and consider the map germ F : (U ×D,0)→ (C,0) such

that F(z,0) = f (z) for all z ∈ Cm. Then we set ft(z) = F(z, t).

Definition 1.62. We say that the family {(V ( ft),0)}t∈D is Whitney equisingular, if the stratification

V = {F−1(0,0)\T,T} satisfies the Whitney conditions, where T = D×{0} ⊂ C×Cm.

Example 1.63. (i) Consider the family {(V ( ft),0)}t∈D defined by ft(x,y) = y2 − x3. This family

is clearly Whitney equisingular.

(ii) Consider the family {(V ( ft),0)}t∈D defined by ft(x,y) = y2 − x3 − t2x2. As showed in Exam-

ple 1.61, the stratification V = {F−1(0,0) \ T,T} does not satisfy condition b) of Whitney.

Therefore, this family is not Whitney equisingular.

5 Local Euler obstruction

An important invariant studied in singularity theory is the local Euler obstruction, which was

defined by MacPherson in [42] as one of the main ingredients of its proof for the Deligne and

Grothendieck’s conjecture. This conjecture concerns the existence and uniqueness of the Chern

classes in the singular case. Some basic references about the development of the local Euler ob-

struction are [5], [13] and [33].

In [7] Brasselet and Schwartz, using vector fields, introduced an equivalent definition for this

invariant, which we will consider in this work. This point of view allows us to study the local Euler

obstruction in the class of index of vector fields.
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Before presenting the definition of the local Euler obstruction introduced in [7] we discuss the

concepts of Nash modification and Nash bundle. For results on Nash modification and resolution of

singularities, we suggest [55].

We denote by G(d,n) the Grassnannian of d-planes of Cm (see [41] for more details on Grass-

mannian varieties). Let X be a representative of a germ of a complex analytic space (X ,0), equidi-

mensional of complex dimension d with X ⊂U , where U is an open subset of Cm.

Over the regular part Xreg of X , we can define the Gauss map φ : Xreg →U ×G(d,n) by:

φ(x) = (x,TxXreg).

U ×G(d,n)

π1
��

Xreg i
//

φ
99

U

Definition 1.64. The Nash modification X̃ is defined as the closure of the image of φ in U ×G(d,n).

Remark 1.65. As observed in [8, pg. 130], X̃ is a complex analytic space with a natural analytic

projection ν : X̃ → X , whose restriction ν |
ν−1(Xreg)

is holomorphic, bijective and its inverse is also

holomorphic.

Denote by U(d,n) the tautological bundle over G(d,n), i.e., the bundle whose fiber in P ∈ G(d,n)

is the set of all vectors of P, and by T the bundle corresponding to the trivial extension of U(d,n)

over U ×G(d,n), i.e., T contains the elements (x,P,v), where (x,P) ∈U ×G(d,n) and v ∈ P.

Definition 1.66. The Nash bundle T̃ with basis X̃ is the restriction of T over X̃ , then we have the

diagram:
T̃ ↪→ T
↓ ↓
X̃ ↪→ U ×G(d,n)

ν ↓ ↓ ν

X ↪→ U

Example 1.67. The Nash modification of the cone is a cylinder.

ν

It is important to remark the fact that the Nash modification of a singular set is not always regular,

i.e., not all Nash modifications solve a singularity of an algebraic or analytic variety.
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Example 1.68. Consider the plane curve formed by the cusp C and by a line l, such that l is the limit

lim
p→0

lp,

where lp is the tangent line to the cusp at p, this curve is illustrated in the following figure.

Figure 1.18: Plane curve formed by the cusp C and the line l.

The Nash modification of this curve, is the space curve represented in the Figure 1.18. Note that

(0, l) is still a singular point of the Nash modification, since it is still a crossing point between two

curves.

Figure 1.19: Nash modification of the curve formed by the cusp C and by the line l.

Let (X ,0) ⊂ (Cm,0) be a germ of a complex analytic variety, equidimensional and reduced of

codimension d in an open subset U ⊂ Cm. We consider a Whitney stratification V = {Vi} of U

adapted to X and assume that {0} is a stratum. We choose a small representative of (X ,0) such that 0

belongs to the closure of all strata. We denote such representative by X and write X = ∪q
i=0Vi where

V0 = {0} and Vq = Xreg is the set of regular points of X . We assume that the strata V0, . . . ,Vq−1 are

connected and the analytic sets V0, . . . ,Vq−1 are reduced.

We denote by TU |X the restriction to X of the tangent bundle of U . We know that a stratified

vector field v in X is a continues section of TU |X such that if x ∈ Vα ∩X , then v(x) ∈ Tx(Vα). From

the Whitney conditions we have the following lemma ( one can find a proof in [7].):

Lemma 1.69. Every stratified vector field v without singularities in a subset A ⊂ X has a canonical

lifting to a section ṽ, of the Nash bundle T̃ , without singularities in ν−1(A)⊂ X̃ .
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Now consider the radial stratified vector field v(x) in a neighbourhood of {0} in X , i.e., there exists

ε0 such that for all 0 < ε ≤ ε0, v(x) points to outside the ball Bε over the boundary Sε := ∂Bε .

In [7] Brasselet and Schwartz defined the local Euler obstruction in the following way:

Definition 1.70. Let v be a radial vector field in X ∩Sε and ṽ be the lifting of v in ν−1(X ∩Sε) to

a section of the Nash bundle. The local Euler obstruction EuX(0) is defined as the obstruction to

extend ṽ as a non zero section of T̃ over ν−1(X ∩Bε).

More precisely, let O(ṽ)∈ H2d(ν−1(X ∩Bε),ν
−1(X ∩Sε)) be a cocycle of obstruction to extend ṽ

as a non zero section of T̃ to the interior of ν−1(X∩Bε). The local Euler obstruction EuX(0) is defined

as the cocycle of evaluation O(ṽ) in the fundamental class of the pair (ν−1(X ∩Bε),ν
−1(X ∩Sε)).

The local Euler obstruction is an integer number.

Remark 1.71. Some important properties of the local Euler obstruction:

• The local Euler obstruction at a regular point is equal to 1.

• The local Euler obstruction at a point of a curve is exactly the multiplicity of this point over this

curve [30].

• The local Euler obstruction is constant along each stratum of a Whitney stratification [7].

• EuX×Y (a,b) = EuX(a) ·EuY (b), ∀a ∈ X , ∀b ∈ Y .

The local Euler obstruction is not easily computed using its definition, which motivated many

authors to find formulas to facilitate its computation. In [6], Brasselet, Lê and Seade provided a

Lefschetz type formula, therefore a topological formula, for the local Euler obstruction. Before pre-

senting that formula we present the definition of transversality and a lemma concerning generic linear

forms.

Definition 1.72. Let Y1,Y2 be smooth subvarieties of a smooth variety M. The variety Y1 is transver-
sal to Y2 in M, if for each point p ∈ Y1 ∩Y2, we have

TpX1 +TpY2 = TpM.

Lemma 1.73. There exists a non-empty Zariski open set W in the space of complex linear functions

on Cm such that for every l ∈W, there exists a representative X of (X ,0) such that:

(i) for each x ∈ X, the hyperplane l−1(0) is transversal in Cm to every limit of tangent spaces in

T (Xreg) of points in Xreg converging to x;

(ii) for each y in the closure Vi in X of each strata Vi, i = 1, . . . ,q, the hyperplane l−1(0) is transver-

sal in Cm to every limit of tangent spaces in TVi of points converging to y, where {Vi} is a

Whitney stratification of X.
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In particular, for each l ∈W one has

X̃ ⊂ Cm × (G(d,m)−H∗)

where H∗ := {T ∈ G(d,N) : l(T ) = 0}.

One can find a proof in [6, Lemma 1.3].

Theorem 1.74. Let (X ,0) be a germ of a complex analytic variety and {Vi} a Whitney stratification

of X. Let ℓ : U → C be a generic linear function (in the sense of Lemma 1.73), where, U is an open

neighbourhood of 0 in Cm. Then

EuX(0) = ∑
i

χ(Vi ∩Bε ∩ ℓ−1(t0)) ·EuX(Vi),

where Bε is a small closed ball around the origin in Cm, t0 ∈ C\{0} such that ∥t0∥<< 1, EuX(Vi) is

the local Euler obstruction of X at any point of the stratum Vi and the above sum extends to all strata

such that 0 ∈V i.

The proof can be found in [6, Theorem 3.1].

Example 1.75. This example was extracted from [33, Example 2.16]. Let f : C3 → C be defined by

f (x,y, t) = y2 − x3 − t2x2

and consider X = f−1(0). Consider also the Whitney stratification of X given by

{V0 = {0},V1 = {t − axis}\{0},V2 =Vreg}.

Let ℓ : C3 →C be the generic linear function defined by ℓ(x,y, t) = t,then, by Theorem 1.74, we have

EuX(0) = χ(V0 ∩Bε ∩ ℓ−1(t0)) ·EuX(V0)

+ χ(V1 ∩Bε ∩ ℓ−1(t0)) ·EuX(V1)

+ χ(V2 ∩Bε ∩ ℓ−1(t0)) ·EuX(V2).

Since V0 ∩Bε ∩ ℓ−1(t0) = /0, we have χ(V0 ∩Bε ∩ ℓ−1(t0)) = 0. In addition, V1 ∩Bε ∩ ℓ−1(t0) =

{(0,0, t0)}, then, χ(V1 ∩Bε ∩ ℓ−1(t0)) = 1. On the other hand, V2 ∩Bε ∩ ℓ−1(t0) = {(x,y, t)/y2 −x3 −
t2
0 x2 = 0}\{(0,0, t0)}. With help from [35, Theorem 2], which presents a formula to compute the

Euler characteristic of a plane curve, we can compute χ(V2 ∩Bε ∩ ℓ−1(t0)) =−1. By the first item of

Remark 1.71 we have EuX(V2) = EuX(Vreg) = 1. To compute EuX(V1), we take t0 ∈V1, note that in a

small neighbourhood of t0 we have that V1 is diffeomorphic to the product of a small disc containing

t0 and contained in t-axis with the curve X ∩ ℓ−1(t0), using the second and the last item of Remark

1.71, we obtain EuX(V1) = 2. Therefore,

EuX(0) = 0 ·EuX(0)+1 ·2+(−1) ·1 = 1.

Hence, for any non zero section ṽ of T̃ over ν−1(X ∩∂Bε), the lifting of a radial vector field v at

0 ∈ X over the set X ∩∂Bε , can not be extended over ν−1(X ∩Bε) without singularities.
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Lê and Teissier [40, Corollary 5.1.2] provided the following formula to compute the local Euler

obstruction of an analytic space in terms of its polar multiplicities.

EuX(0) =
d−1

∑
k=0

(−1)kmk(X ,0). (5.1)

Example 1.76. Let V = {(x,y, t) ∈ C3 : f (x,y, t) = y2 − x3 − t2x2 = 0}. As we have seen in Example

1.55, m0(V,0) = 2 and m1(V,0) = 1, therefore

EuV (0) = 2−1 = 1.

6 Vanishing Euler characteristic and top polar multiplicity

In this section, we present concepts, definitions and results regarding vanishing Euler characteris-

tic and its relation to the top polar multiplicity. In addition, we study the relation between top polar

multiplicity and the other polar multiplicities as well as their relation with Whitney equisingularity of

families of IDS.

The vanishing Euler characteristic of an isolated determinantal singularity was introduced by

Nuño-Ballesteros, Oréfice-Okamoto and Tomazella [45]. In the same article, the authors showed

that the vanishing Euler characteristic satisfies properties which hold for the Milnor number of an

ICIS, such as the relations with polar multiplicities and a Lê–Greuel type formula.

Let (X s
A,0) be an IDS defined by the germ of a matrix A : (Cm,0) → (Mn,k,0). Choose a small

enough representative A : Bε → (Mn,k,0), where Bε is a small enough open ball centered at the origin

in Cm. For a matrix B ∈ Mn,k, denote

A+B : Bε → Mn,k
x 7→ (A+B)(x) = A(x)+B

Lemma 1.77. There exists a non-empty Zariski open subset W ⊂ Mn,k such that:

(i) X s
A+B is smooth and rank(A(x)+B) = s−1, for all x ∈ X s

A+B and A ∈W;

(ii) the Euler characteristic of X s
A+B, χ(X s

A+B), does not depend on A ∈W.

The proof can be found in [45, Lemma 3.1]. When s = 1, the IDS (X s
A,0) is an ICIS and we can

see X s
A+B as the Milnor fiber of (X s

A,0). In this case, X s
A+B has the homotopy type of a bouquet of µ

spheres, where µ is the Milnor number of X s
A (see for instance [45]). Therefore, the Milnor number

coincides with the so-called vanishing Euler characteristic, i.e.,

µ(X s
A,0) = (−1)d(χ(X s

A+B −1)),

where d = dim(X s
A,0). Based on this fact and Lemma 1.77, Nuño-Ballesteros, Oréfice-Okamoto and

Tomazella defined the vanishing Euler characteristic of an IDS as follows.
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Definition 1.78. The vanishing Euler characteristic of the d-dimensional IDS (X s
A,0) is defined by

ν(X s
A,0) = (−1)d(χ(X s

A+B)−1),

where A ∈W and W is given in Lemma 1.77.

For codimension 2 IDS in C4 and C5, the vanishing Euler characteristic coincides with the Milnor

number introduced by Pereira and Ruas [53].

Consider a map germ A : (Cm×C,0)→ (Mn,k,0) such that A (x,0) = A(x) for all x ∈Cm. When

X s
A is a determinantal variety, the projection

π : (X s
A ,0) → (C,0)
(x, t) 7→ t

is called a determinantal deformation of X s
A . If we fix a small enough representative A : Bε →

(Mn,k,0), where Bε is the open ball centered at the origin with radius ε > 0, then we set At(x) :=

A (x, t) and X s
At
= A−1

t (Ms
n,k).

Definition 1.79. Let A be as in the above construction. We say that A defines a determinantal
smoothing of (X s

A,0) if Xt is smooth and rank(At(x)) = s−1 for all x ∈ Xt and all t ̸= 0 small enough.

The above formula to compute the vanishing Euler characteristic is also valid when we consider a

general determinantal smoothing Xt instead of the special smoothing X s
A+B. A proof for the following

theorem can be found in [45, Theorem 3.4].

Theorem 1.80. Let A : (Cm ×C,0)→ (Mn,k,0) be a determinantal smoothing of (X s
A,0). Then, for

all t ̸= 0 small enough,

ν(X s
A,0) = (−1)d(χ(X s

At
)−1).

Let (X s
A,0) ⊂ (Cm,0) be an IDS and let p : (Cm,0) → (C,0) be a generic linear function. Then

X s
A ∩ p−1(0) is an IDS of type (n,k;s) inside the hyperplane p−1(0). Therefore, it makes sense to

consider the vanishing Euler characteristic ν(X s
A∩ p−1(0)). The proof of the following lemma can be

found in [45, Lemma 4.2].

Lemma 1.81. Let p : (Cm,0)→ (C,0) be a generic linear function, B ∈ Mn,k a generic matrix and

c ∈ C\{0} sufficiently small. Then

ν(X s
A ∩ p−1(0)) = (−1)d−1(χ(X s

A ∩ p−1(c)))

= (−1)d−1(χ(X s
A+B ∩ p−1(0)))

= (−1)d−1(χ(X s
A+B ∩ p−1(c))),

where d = dim(X s
A).

Theorem 1.82 (see [46, Theorem 4.2] for a proof) and Corollary 1.83 (its proof is in [46, Corollary

4.3]) show under which circumstances, the vanishing Euler characteristic is constant on a family of

isolated determinantal singularities.
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Theorem 1.82. Let X s
A0

be a d-dimensional IDS and let X s
At

be any determinantal deformation. Then,

ν(X s
A0
,0)− ∑

x∈S(X s
At
)

ν(X s
At
,0) = (−1)d(χ(X s

At
)−1),

where S(·) denotes the singular set.

Corollary 1.83. Let X s
At

be a determinantal deformation of the IDS X s
A0

. Then, the sum

∑
x∈S(X s

At
)

ν(X s
At
,x)

is constant on t if and only if χ(X s
At
) = 1.

In the following, we present the definition of top polar multiplicity or dth polar multiplicity of an

IDS (X s
A,0), as the number of critical points of a morsification of generic linear map defined on the

smoothing X s
A+B. For more information on Morse functions and morsification see [45, Appendix A].

Firstly, it is important to point out that for a complex analytic variety X ⊂Cm of dimension d, the

top polar variety of X of codimension d consists of a finite number of points or it is empty. In both

cases, its multiplicity is not defined. However, in [24] Gaffney introduced the dth polar multiplicity

tin the following way.

Let X ⊂ Cm ×Cs be a complex analytic variety of dimension d + s and f : X → Cs an analytic

function such that f−1(0) = X . Then, we have the following definition:

Definition 1.84. The top polar multiplicity of X , which is denoted by md(X , p,0), is defined as the

multiplicity m0(Pd( f , p,0)), where Pd( f , p,0) is the polar variety of X related to ( f , p). If p is generic,

we denote md(X , p,0) by md(X ,0).

Nuño-Ballesteros, Oréfice-Okamoto and Tomazella defined the top polar multiplicity of an IDS

trough the following construction.

Lemma 1.85. There exists a linear function p : Cm → C and a non-empty Zariski open subset W ⊂
Mn,k such that XA+B is smooth and p|XA+B is a Morse function for all B ∈W .

The proof can be found in [45, Lemma 4.1].

Definition 1.86. The top polar multiplicity of (X s
A,0) is defined by

md(X s
A,0) := ♯Σ(p|XA+B),

where p : C→ C is a generic linear map, B ∈ Mn,k is a generic matrix, where ♯Σ(p|XA+B) denotes the

number of critical points of p|XA+B and d is the dimension of X s
A.

The top polar multiplicity is related to the vanishing Euler characteristic and the local Euler ob-

struction of an IDS. These relations are stated in the following theorems.
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Theorem 1.87. Let p : C→ C be a generic linear function. Then

md(X s
A,0) = ν(X s

A,0)+ν(X s
A ∩ p−1(0),0).

The proof of this theorem can be found in [45, Theorem 4.3].

Theorem 1.88. Let (X s
A,0) be an IDS of dimension d. Then,

Eu(X s
A,0)+(−1)dmd(X s

A,0) = 1+(−1)d
ν(X s

A,0).

One can find a proof in [45, Theorem 4.5]. The last two theorems show that md does not depend

neither on choice of the smoothing or the generic linear function.

Example 1.89. This example was computed in [45, Example 4.6]. Consider X2
A ⊂ C4 the determi-

nantal variety defined by the matrix

A(x,y,z,w) =
[

x y z
y z w

]
.

Take

B =
1

100

[
6 −8 5
1 8 7

]
and p(x,y,z,w) = 2x−3y+4z−w. Making computations with Mathematica, we see that

m2(X s
A,0) = ♯Σ(p|X2

A+B
) = 3.

Since X ∩ p−1(0) is a curve, following [47] one can compute its Milnor number in terms of the Milnor

number µ(g|X2
A∩p−1(0)) and the local degree deg(g|X2

A∩p−1(0)) of a function g : (C4,0)→ (C,0) on the

curve X2
A ∩ p−1(0) : µ(g|X2

A∩p−1(0)) = ν(X2
A ∩ p−1(0),0)+deg(g|X2

A∩p−1(0))−1. Taking g(x,y,z,w) =

x−2y+5z+5w, we have that

µ(g|X2
A∩p−1(0)) = ♯Σ(g|X2

A+B∩p−1(0)) = 4, deg(g|X∩p−1(0)) = ♯{X2
A+B ∩ p−1(0)∩g−1(0)}= 3.

Therefore, ν(X2
A ∩ p−1(0),0) = µ(X2

A ∩ p−1(0),0) = 4−3+1 = 2. Hence

EuX2
A
(0) = 1−ν(X2

A ∩ p−1(0),0) =−1

and

ν(X2
A,0) = m2(X2

A)−ν(X2
A ∩ p−1(0),0) = 1

For an isolated determinantal singularity, there exists a relation between its top polar multiplicity

of generic hyperplane sections and its polar multiplicities. The following lemma was introduced by

Gaffney, Grulha Jr. and Ruas [26, Lemma 3.6].

Lemma 1.90. Suppose X s
A is a d-dimensional IDS, π2 : (X s

A,0) → (C2,0) defines the polar curve

P1(X s
A). If H is a generic hyperplane then

md−1(X s
A ∩H,0) = m0(P1(X s

A),0).
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The above lemma is actually valid for a larger class of determinantal singularities called essentially

isolated determinantal singularities.

The polar multiplicities mi(X s
A,0), i = 0, . . . ,d, play an important role in the study of equisingu-

larity of families of d-dimensional determinantal singularities (see [46]).

Let X s
At

be a determinantal deformation of (X s
A0
,0) as above, we say that:

(i) X s
At

is origin preserving if 0 ∈ S(X s
At
), for all t in D, where S(X s

At
) denotes the singular set of

X s
At

and D ⊂ C is a disc around the origin. Then
{
(X s

At
,0)

}
t∈D

is called a 1-parameter family

of IDS;

(ii)
{
(X s

At
,0)

}
t∈D

is a good family if there exists ε > 0 with S(X s
At
) = {0} on Bε , for all t in D;

(iii)
{
(X s

At
,0)

}
t∈D

is Whitney equisingular if it is a good family and
{

X s
A \T,T

}
satisfies the

Whitney conditions, where T = {0}×D.

Theorem 1.91. A good family of d-dimensional IDS {(X s
At
,0)}t∈D is Whitney equisingular if and only

if all the polar multiplicities mi(X s
At
,0), i = 0, . . . ,d are constant on t ∈ D.

The proof to this Theorem can be found in [46, Theorem 5.3].
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CHAPTER 2

Newton polyhedra and Whitney
equisingularity

Our purpose in this chapter is to prove that a family of IDS {(X s
At
,0)}t∈D, where D ⊂ C is a

neighbourhood of the origin, defined by Newton non-degenerate matrices with convenient entries is

Whitney equisingular (Theorem 2.30).

1 Families of determinantal singularities

In order to prove the Whitney equisingularity of a family of IDS {(X s
At
,0)}t∈D, we would like to

show that the vanishing Euler characteristic is constant on this family, by applying Theorem 1.91 to

the family {(X s
At
,0)}t∈D. By Corollary 1.83, we need to prove that χ(X s

At
,0) = 1 for all t ∈ D.

We start with the following example, which shows a necessary condition in order to the vanishing

Euler characteristic be constant on a family of singularities.

Example 2.1. Consider the cusp defined by the function

f : (C2,0) → (C,0)
(x,y) 7→ y2 − x3

and the cusp deformation defined by

F : (C2 ×C,0) → (C,0)
(x,y, t) 7→ ft(x,y) = y2 − x3 − t2x2 .

As we have seen in Example 1.63, the family {(V ( ft),0)}t∈D is not Whitney equisingular. Since m0

is constant on this family, then the top polar multiplicity m1 must be non-constant on this family.

Therefore, the vanishing Euler characteristic ν(V ( ft)),0) depends on t ∈ D.

We note that, for each t ∈ D, V ( ft) has an isolated singularity at the origin. Thus, there exists, for

each t, εt > 0 such that Bεt is a Milnor ball, i.e., V ( ft)∩Bεt is smooth outside the origin and intersects

transversally Sr, for all r < Bεt . Therefore,

χ(V ( ft)∩Bεt ) = 1,

33
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for all t ∈ D.

Example 2.1 raises a natural question: why is the vanishing Euler characteristic not constant in

this family? The answer to this question is in the fact that, in this example, there is not an uniform

ε > 0, such that χ(V ( ft)∩Bε) = 1, for all t ∈ D. Therefore, finding conditions which guarantee this

uniformity can be very helpful to study the Whitney equisingularity of families of varieties.

We proceed by extending the Newton non-degeneracy condition to determinantal singularities. In

[18, Definition 1.16], Esterov introduces a non-degeneracy condition which comprehends determi-

nantal singularities given by the maximal minors of a matrix A(x) = (ai, j(x)), under the assumption

that, all the entries of a column j has the same Newton polyhedron ∆ j. Here we still consider that,

for each j = 1, . . . ,k, the Newton polyhedron of ai, j(x) is ∆ j, for all i = 1, . . . ,n. However, we do not

consider determinantal varieties given only by the maximal minors of a matrix.

Definition 2.2. Let A = (ai, j) : (Cm,0)→ (Mn,k,0) be a germ of a holomorphic matrix, which defines

a determinantal singularity X s
A of type (n,k;s). We denote by ∆ j ⊂Rm

+ the Newton polyhedron of ai, j,

for all i = 1, . . . ,n. The matrix A is said to be Newton non-degenerate if, for each collection of faces

Γ j ⊂ ∆ j such that the sum
k
∑
j=1

Γ j is a bounded face of the polyhedron
k
∑
j=1

∆ j, the polynomial matrix

(ai, j|Γ j) defines a non-singular determinantal variety of type (n,k;s) in (C\0)m. In this case, we say

that X s
A is a Newton non-degenerate determinantal singularity.

Example 2.3. Let X2
A be the determinantal variety of type (2,3;2) defined by the matrix

A =

[
x+ y+ z+w x+2y− z+3w 3x+2y+ z−w

2x+3y+ z+2w x+ y+3z−w x− y+2z−2w

]
.

We shall verify if A is Newton non-degenerate.

Firstly, we observe that, since ∆1 = ∆2 = ∆3, then ∆1 +∆2 +∆3 = 3 ·∆1. Moreover, let Γ1, Γ2

and Γ3 be bounded faces of ∆1, ∆2 and ∆3, respectively, since these polyhedra are the same, then

Γ1 +Γ2 +Γ3 is a bounded face of 3 ·∆1 only if Γ1 = Γ2 = Γ3. Take for instance the line segment

connecting the points (3,0,0,0) and (0,3,0,0), which we denote by σ . This line segment is a bounded

face of 3 ·∆1 and its the set of points satisfying (1− s) · (3,0,0,0)+ s · (0,3,0,0), for s ∈ [0,1]. We

can rewrite this expression as 3 · [(1− s) · (1,0,0,0)+ s · (0,1,0,0)], for s ∈ [0,1]. Therefore, σ =

σ1+σ2+σ3, where σ1 = σ2 = σ3 is the line segment connecting the points (1,0,0,0) and (0,1,0,0).

The following figures illustrate this example in the xy-plane.

Therefore, we must verify that the polynomial matrix (ai, j|Γ) defines a non-singular determinantal

variety of type (2,3;2) in (C \ 0)4, where Γ is a bounded face of ∆1 = ∆2 = ∆3. We write A =

{(1,0,0,0)}, B = {(0,1,0,0)}, C = {(0,0,1,0)} and D = {(0,0,0,1)}, those are the 0-dimensional

bounded faces of ∆1. The 1-dimensional bounded faces of ∆1 are the line segments AB, AC, AD, BC,

BD, CD. The 2-dimensional bounded faces of ∆1 are the triangles △ABC, △ABD, △ACD, △BCD.

Lastly, the 3-dimensional bounded face of ∆1 is the tetrahedron connecting the vertices A, B, C and
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3

3

1

1

2

2 σ

σ1

σ2

σ3

Figure 2.1: Face σ .

1

1 σ1

Figure 2.2: Face σ1.

1

1 σ2

Figure 2.3: Face σ2.

1

1 σ3

Figure 2.4: Face σ3.

D, which we denote simply by Γ. We have

(ai, j|A) =
[

x x 3x
2x x x

]
and X2

(ai, j|A) = {(x,y,z,w) ∈ C4 : x2 = 0}. Therefore, X2
(ai, j|A) ∩ (C \ 0)4 = /0. The remaining 0-

dimensional faces are analogous, then

X2
(ai, j|B)∩ (C\0)4 = X2

(ai, j|C)∩ (C\0)4 = X2
(ai, j|D)∩ (C\0)4 = /0.

Moreover,

(ai, j|AB) =

[
x+ y x+2y 3x+2y

2x+3y x+ y x− y

]
and X2

(ai, j|AB)
= {(x,y,z,w) ∈ C4 : −x2 − 5xy− 5y2 = −5x2 − 13xy− 7y2 = −2x2 − 4xy− 4y2 = 0}.

Therefore, X2
(ai, j|AB)

∩ (C\0)4 = /0. Analogously,

X2
(ai, j|AC)

∩(C\0)4 =X2
(ai, j|AD)

∩(C\0)4 =X2
(ai, j|BC)

∩(C\0)4 =X2
(ai, j|BD)

∩(C\0)4 =X2
(ai, j|CD)

∩(C\0)4 = /0.

In addition,

(ai, j|△ABC) =

[
x+ y+ z x+2y− z 3x+2y+ z

2x+3y+ z x+ y+3z x− y+2z

]
and X2

(ai, j|△ABC)
= {(x,y,z,w) ∈ C4 : −x2 −5xy+5xz−5y2 +5yz+4z2 = −5x2 −13xy−2xz−7y2 −

4yz + z2 = −2x2 − 4xy − 9xz − 4y2 − 2yz − 5z2 = 0}. With the help of OSCAR [51], we obtain

that X2
(ai, j|△ABC)

∩ (C\0)4 is a 2-dimensional non-singular variety. Analogously X2
(ai, j|△ABD)

∩ (C\0)4,
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X2
(ai, j|△ACD)

∩ (C\0)4 and X2
(ai, j|△BCD)

∩ (C\0)4 are also 2-dimensional non-singular varieties.

Lastly, (ai, j|Γ)=A and we use OSCAR [51] to show that XA∩(C\0)4 is a 2-dimensional non-singular

variety. Therefore, the matrix A is Newton non-degenerate.

The smoothness along coordinate spaces plays an important role in the study of Whitney equi-

singularity. This concept were introduced by Eyral and Oka [21, 49] for hypersurfaces and complete

intersection singularities and we present it in the next paragraphs.

For any subset I ⊂ {1, . . . ,m}, we define

CI = {(x1, . . . ,m) ∈ Cm : xi = 0, i /∈ I},

C∗I = {(x1, . . . ,m) ∈ Cm : xi = 0 if and only if i /∈ I}.

In particular, C /0 = C∗ /0 = {0} and C∗{1,...,m} = C∗m, where C∗ = C\{0}.

Definition 2.4. Let f : (Cm,0)→ (C,0) be a germ of an analytic function and I ⊂ {1, . . . ,m}. We say

that CI is an admissible coordinate subspace for f if f I := f |CI∩U is not constantly zero, where U

is a neighbourhood of the origin in Cm.

Example 2.5. Let f : (C3,0)→ (C,0) be defined by f (x,y, t) = y2−x3−x2t2. C{3} is not admissible

while C{1,2} is admissible for f .

If the function f : (Cm,0) → (C,0) is convenient, then CI is admissible for f , for all subsets

I ⊂ {1, . . . ,m}.

Oka, in [49, Chapter III, Lemma 2.2] and [50, Theorem 19], proved that a hypersurface defined

by a Newton non-degenerate function is smooth along its admissible coordinate spaces.

Theorem 2.6. Let f : (Cm,0)→ (C,0) be a germ of a Newton non-degenerate function. Then there

exists a positive number R such that for every admissible coordinate space CI , V ( f I)∩BR is smooth

and the sphere Sr with 0 < r ≤ R intersects V ( f I)∩BR transversally.

In addition, Eyral and Oka [21, Proposition 3.1], introduced an uniform version of the above

theorem.

Proposition 2.7. Suppose that for all t sufficiently small, the following two conditions are satisfied:

(i) the Newton polyhedron ∆t of ft at 0 is independent of t;

(ii) the polynomial function ft is Newton non-degenerate.

Then there exists a positive number R > 0 such that for any admissible coordinate space of f0 and

any t sufficiently small, the set V ( ft)∩C∗I ∩BR is non-singular and intersects transversely with Sr

for any r < R, where BR (respectively, Sr ) is the open ball (respectively, the sphere) with center at the

origin 0 ∈ Cm and radius R (respectively, r).
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Our next goal is to extend the previous concepts and results to determinantal singularities.

Definition 2.8. Let A = (ai, j) : (Cm,0)→ (Mn,k,0) be a germ of a holomorphic map, we say that CI

is an admissible coordinate space for A if CI is admissible for each ai, j, i = 1, . . . ,n and j = 1, . . . ,k.

Along this work, we will use the following notation:

(i) AI = (aI
i, j), where aI

i, j = ai, j|CI∩U ;

(ii) A∗I = (a∗I
i, j), where a∗I

i, j = ai, j|C∗I∩U .

In the following Lemma we show that a Newton non-degenerate matrix is also Newton non-

degenerate on the admissible coordinate spaces CI ⊂ C.

Lemma 2.9. Let A : (Cm,0)→ (Mn,k,0) be a germ of a holomorphic matrix and f1, . . . , fl : (Cm,0)→
(C,0) be germs of functions. Let CI be an admissible coordinate subspace for A. If the matrix A is

Newton non-degenerate, then AI is Newton non-degenerate.

Proof. For each j = 1, . . . ,k let Γ j be the faces of ∆aI
i, j

such that ∑
k
j=1 Γ j is a bounded face of

∑
k
j=1 ∆aI

i, j
. Since ∆aI

i, j
= ∆ai, j ∩RI , Γ j is also a face of ∆ai, j such that ∑

k
j=1 Γ j is a bounded face

of ∑∆ai, j for each j = 1, . . . ,k. Since the matrix A is Newton non-degenerate, then (aI
i, j|Γ j) defines a

non-singular determinantal variety in (C\0)m. Hence, AI is Newton non-degenerate.

We finally have all the tools necessaries to state the version of Proposition 2.7 to determinantal

singularities.

Proposition 2.10. Suppose that for all t sufficiently small, the following two conditions are satisfied:

(i) the matrix At = ((ai, j)t) is Newton non-degenerate;

(ii) the Newton polyhedron ∆t
j of (ai, j)t is independent of t, for all j = 1, . . . ,k.

Then there exists a positive number R > 0 such that for any admissible coordinate subspace CI of A0

and for any t sufficiently small, the set X s
At
∩C∗I ∩BR is non-singular and intersects transversely with

Sr for any r < R, where BR (respectively, Sr) is the open ball (respectively, the sphere) with center at

the origin 0 ∈ Cm and radius R (respectively, r).

Proof. The proof is given in Section 2.

Corollary 2.11. In addition to the conditions of Proposition 2.10, if the functions (ai, j)t are conve-

nient (see Definition 1.30), then there exists a positive number R > 0 such that for any t sufficiently

small, the set X s
At
∩BR is smooth outside the origin and intersects transversely with Sr for any r < R,

where BR (respectively, Sr) is the open ball (respectively, the sphere) with center at the origin 0 ∈ Cm

and radius R (respectively, r).
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Proof. Since the functions (ai, j)t are convenient, then, for each t ∈ D, the coordinate subspace CI

is admissible for At = (ai, j)t for all subsets I ⊂ {1, . . . ,k}, i = 1, . . . ,n, j = 1, . . . ,k and the result

follows.

Corollary 2.12. If for all t sufficiently small, the following two conditions are satisfied:

(i) the matrix At = ((ai, j)t), is Newton non-degenerate;

(ii) the Newton polyhedron ∆t
j of (ai, j)t is convenient and independent of t, for all j = 1, . . . ,k.

Then the vanishing Euler characteristic of X s
At

is independent of t, i.e.,

ν(X s
At
,0) = ν(X s

A0
,0).

Proof. It follows directly from Corollary 1.83 and Corrolary 2.11.

2 Proof of Proposition 2.10

In order to prove Proposition 2.10, we follow the steps of the proof of Proposition 2.7, making the

necessary adjustments to determinantal singularities.

As ∆t
j is independent of t, the set of admissible systems is also independent of t and, since there are

only finitely many subsets I ⊂ {1, . . . ,m}, it is sufficient to show the result for a fixed I = {1, . . . ,r},

r ≤ m.

We divide this proof in four main steps. In the first two steps we show that X s
At
∩C∗I ∩BR is

smooth and in the last two steps we prove that this variety is transversal to Sr for r < R. Both steps

are proved by contradiction. After each step we present examples, where we make the computations

with a 2×3 matrix.

Firstly, consider the determinantal deformation A : (Cm ×C,0) → (Mn,k,0) of A. Suppose that

for all R > 0 the intersection X s
At
∩C∗I ∩BR has a singular point. Consider the sequence {(tR,zR)} of

points in X s
A ∩ (D×C∗I) converging to (0,0), where zR is a singularity of X s

At
∩C∗I ∩BR. Then (0,0)

is in the closure of the set

W = {(t,z) ∈ D×C∗I : z ∈ X s
At

and z is a singular point of X s
At
}.

Then, by the Curve Selection Lemma [44], there exists an analytic curve

p : [0,ε] → W
q 7→ (t(q),z(q))

such that p(q) = (t(q),z1(q), . . . ,zr(q),0, . . . ,0), for all q ̸= 0, and p(0) = (0,0). For 1 ≤ i ≤ r,

consider the Taylor expansions

t(q) = t0qω + · · · , zi(q) = aiqwi + · · · ,
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where t0,ai ̸= 0 and ω,wi > 0, for i = 1, . . . ,r. Here, the three centered dots stand for the higher order

terms. Choose a = (a1, . . . ,ar,0, . . . ,0) ∈C∗I and w = (w1, . . . ,wr,0, . . . ,0) ∈Nm \{0}. Consider the

face Γ j of (∆t(q)
j )I = (∆0

j)
I defined as the set where the map

W I
j : (∆0

j)
I → R+

x := (x1, . . . ,xr,0, . . . ,0) 7→
r

∑
i=1

xiwi

takes its minimal value d j and such that
k
∑
j=1

Γ j is a bounded face of
k
∑
j=1

∆ j.

Lemma 2.13. The point a ∈ C∗I belongs to the variety X s
A∗I

0 |Γ
= ((a∗I

i, j)0|Γ j).

Proof. Firstly, consider the n× k matrix

(A∗I
t(q))|Γ(z(q)) = ((a∗I

i, j)t(q)|Γ j(z(q)).

Now, note that

(ai, j)t(z) = ((ai, j)t)|Γ j(z)+ ∑
α /∈Γ j

cαzα . (2.1)

Consider a monomial component

(cαzα)|Γ j = cαzα1
1 . . .zαr

r (2.2)

of the face function ai, j|Γ j . Then over the curve p we have

(cαz(q)α)|Γ j = cα(a1qw1 + · · ·)α1 . . .(arqwr + · · ·)αr

= cαaα1
1 . . .aαr

r qd j + · · · .

Therefore,

(a∗I
i, j)t(q)|Γ j(z(q)) = (a∗I

i, j)t(q)|Γ j(a)q
d j + · · · . (2.3)

Consider the set

C = {(I ,J ) : I ⊂ {1, . . . ,n}, J ⊂ {1, . . . ,k} and |I |= |J |= s}.

Since the Newton polyhedron of a∗I
i, j is ∆I

j for all i = 1, . . . ,n and z(q) belongs to the determinantal

variety X s
A∗I

t(q)|Γ
, which is defined by the s size minors of A∗I

t(q)|Γ, for each (I ,J ) ∈ C , we have the

zero polynomial

det(((a∗I
i, j)t(q)|Γ j(a)q

d j + · · ·)i∈I , j∈J ) = det(((a∗I
i, j)t(q)|Γ j(a))i∈I , j∈J )q

∑
j∈J

d j

+ · · ·= 0.

This implies that all the coefficients of this polynomial are equal to zero, in particular

det(((a∗I
i, j)t(q)|Γ j(a))i∈I , j∈J ) = 0.

Taking q → 0, we have

det(((a∗I
i, j)0|Γ j(a))i∈I , j∈J ) = 0,

for all (I ,J ) ∈ C . Therefore, the point a belongs to the determinantal variety X s
A∗I

0 |Γ
.
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We exemplify the previous computations with a determinantal singularity of type (2,3;2).

Example 2.14. Consider the determinantal singularity X2
A , defined by the matrix germ A = (ai, j) :

(Cm,0)→ (M2,3,0). Then over the curve p, we have

A∗I
t(q)|Γ(z(q)) =

[
(a∗I

11)t(q)|Γ1(z(q)) (a∗I
12)t(q)|Γ2(z(q)) (a∗I

13)t(q)|Γ3(z(q))
(a∗I

21)t(q)|Γ1(z(q)) (a∗I
22)t(q)|Γ2(z(q)) (a∗I

23)t(q)|Γ3(z(q))

]
.

By Eq. (2.3), we have

A∗I
t(q)|Γ(z(q)) =

[
(a∗I

11)t(q)|Γ1(a)q
d1 + · · · (a∗I

12)t(q)|Γ2(a)q
d2 + · · · (a∗I

13)t(q)|Γ3(a)q
d3 + · · ·

(a∗I
21)t(q)|Γ1(a)q

d1 + · · · (a∗I
22)t(q)|Γ2(a)q

d2 + · · · (a∗I
23)t(q)|Γ3(a)q

d3 + · · ·

]
.

Now, we take the 2 size minors given by the two first columns of A∗I
t(q)|Γ(z(q)). Thus, we have

det(((a∗I
i, j)t(q)|Γ j(a)q

d j + · · ·)i∈{1,2}, j∈{1,2})

= ((a∗I
11)t(q)|Γ1(a)q

d1 + · · ·) · ((a∗I
22)t(q)|Γ2(a)q

d2 + · · ·)

−((a∗I
12)t(q)|Γ2(a)q

d2 + · · ·) · ((a∗I
21)t(q)|Γ1(a)q

d1 + · · ·)

= [((a∗I
11)t(q)|Γ1(a)) · ((a

∗I
22)t(q)|Γ2(a))− ((a∗I

12)t(q)|Γ2(a)) · ((a
∗I
21)t(q)|Γ1(a)]q

d1+d2 + · · ·

= det(((a∗I
i, j)t(q)|Γ j(a))i∈{1,2}, j∈{1,2})q

d1+d2+ · · ·= 0.

Therefore,

det(((a∗I
i, j)t(q)|Γ j(a))i∈{1,2}, j∈{1,2}) = 0.

Taking q → 0, we obtain

det(((a∗I
i, j)0|Γ j(a))i∈{1,2}, j∈{1,2}) = 0.

Repeating the process to the other 2 size minors of A∗I
t(q)|Γ(z(q))

det(((a∗I
i, j)0|Γ j(a))i∈{1,2}, j∈{1,2}) = 0

det(((a∗I
i, j)0|Γ j(a))i∈{1,2}, j∈{1,3}) = 0.

det(((a∗I
i, j)0|Γ j(a))i∈{1,2}, j∈{2,3}) = 0

Therefore,

a ∈ X2
A∗I

0 |Γ
.

Lemma 2.15. The point a is a singularity of X s
A∗I

0 |Γ
.

Proof. We start by taking the partial derivative of Eq. (2.2), which gives us the following equation

∂

∂ zl
(cαzα) = αlcαzα1

1 . . .zαl−1
l . . .zαr

r .

Then, over the curve p

∂

∂ zl
(cαz(q)α)|Γ j = αlcα(a1qw1 + · · ·)α1 · · ·(alqwl + · · ·)αl−1 · · ·(arqwr + · · ·)αr

= αla
α1
1 · · ·aαl−1

l · · ·aαr
r qd j−wl + · · ·

=
∂

∂ zl
(cαz(q)α)|Γ j(a) ·q

d j−wl + · · · .
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Thus, the following equation holds

∂

∂ zl
((a∗I

i, j)t(q)|Γ j(z(q)) =
∂

∂ zl
((a∗I

i, j)t(q)|Γ j(a)) ·q
d j−wl + · · · . (2.4)

It follows from Eq. (2.1) that

((a∗I
i, j)t(q)(z(q)) = ((a∗I

i, j)t(q)|Γ j(z(q))+ ∑
α /∈Γ j

cαz(q)α

and
∂

∂ zl
((a∗I

i, j)t(q)(z(q)) =
∂

∂ zl
((a∗I

i, j)t(q)|Γ j(z(q))+
∂

∂ zl
( ∑

α /∈Γ j

cαz(q)α).

Furthermore, by Eq. (2.3), Eq. (2.4) and the derivative product law, we have

∂

∂ zl
(det((a∗I

i, j)t(q)|Γ j(z(q))i∈I , j∈J )) =
∂

∂ zl
(det((a∗I

i, j)t(q)|Γ j(a))i∈I , j∈J ) ·q(∑ j∈J d j)−wl + · · · .

Then the jacobian matrix of the map given by the s size minors of the matrix

A∗I
t(q)|Γ(z(q)) = ((a∗I

i, j)t(q)|Γ j(a)q
d j + · · ·)i∈I , j∈J

is the
(k

s

)(n
s

)
×m matrix(

∂

∂ zl
(det((a∗I

i, j)t(q)|Γ j(a))i∈I , j∈J ) ·q(∑ j∈J d j)−wl + · · ·
)
(I ,J )∈C ,l∈{1,...,m}

.

Since z(q) is a singularity of the determinantal variety X s
A∗I

t(q)|Γ
, this matrix has rank less than (n− s+

1)(k− s+ 1). This means that all the (n− s+ 1)(k− s+ 1) size minors of this jacobian matrix are

equal to zero.

Note that, for each θ = 1, . . . ,(n− s+1)(k− s+1), the zero polynomial

det
( ∂

∂ zlθ

(
det(((a∗I

i, j)t(q)|Γ j(a))i∈Iθ , j∈Jθ
) ·q(∑ j∈Jθ

d j)−wlθ + · · ·)(Iθ ,Jθ )∈C

)
θ

)
= det

(
∂

∂ zlθ

(
det(((a∗I

i, j)t(q)|Γ j(a))i∈Iθ , j∈Jθ
)Iθ ,Jθ∈C

)
θ

)
×q(∑

(n−s+1)(k−s+1)
θ=1 ∑ j∈Jθ

d j)−∑
(n−s+1)(k−s+1)
lθ=1 wlθ + · · ·= 0,

implies that everyone of its coefficients are equal to zero, in particular

det
(

∂

∂ zlθ
(det(((a∗I

i, j)t(q)|Γ j(a))i∈Iθ , j∈Jθ
)Iθ ,Jθ∈C )θ

)
= 0.

Therefore, the matrix (
∂

∂ zl
(det((a∗I

i, j)t(q)|Γ j(a))i∈I , j∈J )

)
(I ,J )∈C ,l∈{1,...,m}



42 Chapter 2. Newton polyhedra and Whitney equisingularity

has also rank less than (n− s+1)(k− s+1). Taking again q → 0, the following matrix has also rank

less than (n− s+1)(k− s+1)

(
∂

∂ zl
(det((a∗I

i, j)0|Γ j(a))i∈I , j∈J )

)
(I ,J )∈C ,l∈{1,...,m}

Since this matrix is the jacobian matrix of A∗I
0 |Γ(a), the point a ∈ C∗I is a singularity of the

determinantal variety X s
A∗I

0 |Γ
.

By Lemma 2.13 and Lemma 2.15, the matrix A∗I
0 is not Newton non-degenerate, which contradicts

Lemma 2.9.

Now we continue with the matrix from Example 2.14.

Example 2.16. Consider the 2 size minor given by the two first columns of A∗I
t(q)|Γ(z(q)). We have

the following partial derivative

∂

∂ zl
(det((a∗I

i, j)t(q)|Γ j(z(q))i∈{1,2}, j∈{1,2})) =
∂

∂ zl
(det((a∗I

i, j)t(q)|Γ j(a))i∈{1,2}, j∈{1,2}) ·qd1+d2−wl + · · · .

Of course, we can do the same for j ∈ {1,3} and j ∈ {2,3}. Therefore, the jacobian matrix of

A∗I
t(q)|Γ(z(q)) is the following 3×m matrix


∂

∂ z1
(det((a∗I

i, j)t(q)|Γ j(a))i∈{1,2}, j∈{1,2}) ·qd1+d2−w1 + · · · · · · ∂

∂ zm
(det((a∗I

i, j)t(q)|Γ j(a))i∈{1,2}, j∈{1,2}) ·qd1+d2−wm + · · ·
∂

∂ z1
(det((a∗I

i, j)t(q)|Γ j(a))i∈{1,2}, j∈{1,3}) ·qd1+d3−w1 + · · · · · · ∂

∂ zm
(det((a∗I

i, j)t(q)|Γ j(a))i∈{1,2}, j∈{1,3}) ·qd1+d3−wm + · · ·
∂

∂ z1
(det((a∗I

i, j)t(q)|Γ j(a))i∈{1,2}, j∈{2,3}) ·qd2+d3−w1 + · · · · · · ∂

∂ zm
(det((a∗I

i, j)t(q)|Γ j(a))i∈{1,2}, j∈{2,3}) ·qd2+d3−wm + · · ·

 .

Since, the variety X2
A∗I

t(q)|Γ
has codimension 2, this jacobian matrix has rank equal to 2. This means that

its size 2 minors vanish. We compute now, the 2 size minor defined by the two first lines and two first
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columns of A∗I
t(q)|Γ(z(q)). Therefore, we have(

∂

∂ z1
(det((a∗I

i, j)t(q)|Γ j(a))i∈{1,2}, j∈{1,2}) ·qd1+d2−w1 + · · ·
)

×
(

∂

∂ z2
(det((a∗I

i, j)t(q)|Γ j(a))i∈{1,2}, j∈{1,3}) ·qd1+d3−w2 + · · ·
)

−
(

∂

∂ z1
(det(a∗I

i, j)t(q)|Γ j(a))i∈{1,2}, j∈{1,3}) ·qd1+d3−w1 + · · ·
)

×
(

∂

∂ z2
(det((a∗I

i, j)t(q)|Γ j(a))i∈{1,2}, j∈{1,2}) ·qd1+d2−w2 + · · ·
)

=

(
∂

∂ z1
(det(((a∗I

i, j)t(q)|Γ j(a))i∈{1,2}, j∈{1,2})

× ∂

∂ z2
(det((a∗I

i, j)t(q)|Γ j(a))i∈{1,2}, j∈{1,3})
)
·q(d1+d2)+(d1+d3)−w1−w2 + · · ·

−
(

∂

∂ z1
(det(a∗I

i, j)t(q)|Γ j(a))i∈{1,2}, j∈{1,3})

× ∂

∂ z2
(det((a∗I

i, j)t(q)|Γ j(a))i∈{1,2}, j∈{1,2})
)
·q(d1+d2)+(d1+d3)−w1−w2 + · · ·

=

(
∂

∂ z1
(det(((a∗I

i, j)t(q)|Γ j(a))i∈{1,2}, j∈{1,2})

× ∂

∂ z2
(det((a∗I

i, j)t(q)|Γ j(a))i∈{1,2}, j∈{1,3})

−(
∂

∂ z1
(det(a∗I

i, j)t(q)|Γ j(a))i∈{1,2}, j∈{1,3})

× ∂

∂ z2
(det((a∗I

i, j)t(q)|Γ j(a))i∈{1,2}, j∈{1,2})
)
·q(d1+d2)+(d1+d3)−w1−w2 + · · ·

= 0

Therefore,

(
∂

∂ z1
(det((a∗I

i, j)t(q)|Γ j(a))i∈{1,2}, j∈{1,2}) ·
∂

∂ z2
(det((a∗I

i, j)t(q)|Γ j(a))i∈{1,2}, j∈{1,3})

− (
∂

∂ z1
(det(a∗I

i, j)t(q)|Γ j(a))i∈{1,2}, j∈{1,3}) ·
∂

∂ z2
(det((a∗I

i, j)t(q)|Γ j(a))i∈{1,2}, j∈{1,2})

= 0.

Repeating the same process for all 2 size minors of this jacobian matrix, we obtain that the following

matrix has also rank less than 2.


∂

∂ z1
(det((a∗I

i, j)t(q)|Γ j(a))i∈{1,2}, j∈{1,2}) · · · ∂

∂ zm
(det((a∗I

i, j)t(q)|Γ j(a))i∈{1,2}, j∈{1,2})
∂

∂ z1
(det((a∗I

i, j)t(q)|Γ j(a))i∈{1,2}, j∈{1,3}) · · · ∂

∂ zm
(det((a∗I

i, j)t(q)|Γ j(a))i∈{1,2}, j∈{1,3})
∂

∂ z1
(det((a∗I

i, j)t(q)|Γ j(a))i∈{1,2}, j∈{2,3}) · · · ∂

∂ zm
(det((a∗I

i, j)t(q)|Γ j(a))i∈{1,2}, j∈{2,3})


Since the above matrix is the jacobian matrix of the variety X2

A∗I
t(q)|Γ

at a, the point a is a singularity

of X2
A∗I

t(q)|Γ
.



44 Chapter 2. Newton polyhedra and Whitney equisingularity

The objective of the following steps is to prove the transversality of X s
At
∩C∗I ∩BR with the sphere

Sr, for r < R. Suppose that there exists a sequence {(tR,zR)} of points in X s
A ∩ (D×C∗I) converging

to (0,0) and such that X s
AtR

∩C∗I does not intersect the sphere S||zR|| transversally at zR. Thus

(TzRS||zR||)
⊥ ⊆ (TzR(X

s
AtR

∩C∗I))⊥.

The orthogonal space (TzR(X
s
AtR

∩C∗I))⊥ is generated by the set

G = {grad(det((a∗I
i, j)tR(zR))i∈I , j∈J ) : (I ,J ) ∈ C }.

where the gradient of a function f is grad( f (z)) =
(

∂ f
∂ z1

(z), . . . , ∂ f
∂ zm

(z)
)

and ∂ f
∂ zi

(z) denotes the com-

plex conjugation of ∂ f
∂ zi

(z), i = 1, . . . ,m. For simplification purposes, we use the notation ∂ f
∂ zi

(z) =
∂ f
∂ zi

(z), i = 1, . . . ,m.

For determinantal singularities in general, the set G is not linearly independent, then G is not a

basis for (TzR(X
s
AtR

∩C∗I))⊥. Our first task is finding, if necessary, a subsequence (tRγ
,zRγ

) of (tR,zR),

such that

Gγ = {grad(det((a∗I
i, j)tRγ

(zRγ
))i∈I , j∈J ) : (I ,J ) ∈ Cγ}

is a basis for (TzRγ
(X s

AtRγ

∩C∗I))⊥.

Firstly, we divide N into subsets Pγ such that

Gγ = {grad(det((a∗I
i, j)tRγ

(zRγ
))i∈I , j∈J ) : (I ,J ) ∈ Cγ}

is a basis for (TzRγ
(X s

AtRγ

∩C∗I))⊥, where Cγ ⊂ C and 1/Rγ ∈ Pγ . Since there are only finitely many

subsets Pγ , there exists γ0 such that Pγ0 is not finite. Therefore, {(tRγ0
,zRγ0

)} 1
Rγ0

∈Pγ0
is the desired

subsequence. To simplify, we denote this subsequence by (tRγ
,zRγ

). Therefore, for each γ , we can

write the vector zRγ
∈ (TzRγ

S||zRγ ||)
⊥ ⊆ (TzR(X

s
AtR

∩C∗I))⊥ uniquely as a linear combination of vectors

from Gγ , i.e., there exist λ(I ,J ) satisfying

zRγ
= ∑

(I ,J )∈Cγ

λ(I ,J ) ·grad(det((a∗I
i, j)tRγ

(zRγ
))i∈I , j∈J ).

We observe that some of the coefficients λ(I ,J ) in the above linear combination may be zero.

However, by the same arguments, if necessary, we can consider a subsequence of (tRγα
,zRγα

) of

(tRγ
,zRγ

) such that

zRγα
= ∑

(I ,J )∈Cγα

λ(I ,J ) ·grad(det((a∗I
i, j)tRγα

(zRγα
))i∈I , j∈J ),

with λI ,J ̸= 0, for all (I ,J ) ∈ Cγα
and 1/Rγα

∈ Pγα
. We will denote this subsequence simply by

{(tRα
,zRα

)} and we denote by Cα the set of (I ,J ) ∈ C such that

{grad(det((a∗I
i, j)tRα

(zRα
))i∈I , j∈J )}
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is linearly independent and λ(I ,J ) ̸= 0, for all (I ,J ) ∈ Cα , and 1/α ∈ Pα .

Since the subsequence (tRα
,zRα

) also converges to (0,0), the point (0,0) belongs to the closure of

the set consisting of points (t,z) ∈ D×C∗I such that

z ∈ X s
At

and z = ∑
(I ,J )∈Cα

λ(I ,J ) ·grad(det((a∗I
i, j)t(z))i∈I , j∈J ).

By the Curve Selection Lemma [44], there exists a real analytic curve

(t(q),z(q)) = (t(q),z1(q), . . . ,zr(q),0, . . . ,0)

and Laurent series λ(I ,J ), (I ,J ) ∈ Cα , such that

a) (t(0),z(0)) = (0,0);

b) (t(q),z(q)) ∈ D×C∗I , for q ̸= 0;

c) z(q) ∈ X s
At(q)

;

d) z(q) = ∑
(I ,J )∈Cα

λ(I ,J ) ·grad(det(((a∗I
i, j)t(q)(z(q)))i∈I , j∈J )).

Consider the Taylor expansions

t(q) = t0qω + · · · , zi(q) = aiqwi + · · · ,

where t0,ai ̸= 0 and ν ,wi > 0, for i = 1, . . . ,r. Consider also the Laurent expansions

λ(I ,J )(q) = β(I ,J ) ·qu(I ,J )+ · · · ,

where β(I ,J ) ̸= 0.

We define a = (a1, . . . ,ar,0, . . . ,0) ∈ C∗I , w = (w1, . . . ,wr,0, . . . ,0) ∈ Nm and d j the minimum

value of the function l j
w : (∆t(q)

j )I →R+, with Γ j being the face of (∆t(q)
j )I = (∆0

j)
I where this function

takes this minimum value and such that
k
∑
j=1

Γ j is a bounded face of
k
∑
j=1

∆k.

As usual, we exemplify the above construction with a determinantal singularity defined by a 2×3

matrix.

Example 2.17. We proceed with the determinantal variety X2
A of type (2,3;2) from Example 2.14.

Since this variety has codimension 2, the orthogonal space (TzR(X
s
AtR

∩C∗I))⊥ has dimension 2. There-

fore, every basis for it has 2 vectors. Since, the matrix A∗I
tR has three size 2 minors, for each zR, one

of the gradient vectors is a linear combination of the other 2. In general, the gradient vectors which

form a basis for (TzR(X
s
AtR

∩C∗I))⊥ vary depending on tR and zR. We want a subsequence of (tR,zR)

such that a the gradient vectors of the same minors form a basis for the orthogonal space. Since the

variety X2
A∗I

tR
is defined by the three size 2 minors of A∗I

tR , we can take a partition of the set N with three
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subsets. Since this partition has a finite number of subsets, one of them must be infinite and we can

take our subsequence using this infinite set.

Suppose, without loss of generality, that the subsequence (tRγ
,zRγ

) is such that the gradient of the

minors defined by the subset Cγ = {(I ,J1),(I ,J2)}= {({1,2},{1,2}),({1,2},{1,3})} forms a

basis for (TzRγ
(X s

AtRγ

∩C∗I))⊥, i.e., the set

{grad(det((a∗I
i, j)tRγ

(zRγ
))i∈I , j∈J1),grad(det((a∗I

i, j)tRγ
(zRγ

))i∈I , j∈J2)}

is linearly independent. Therefore, we can write the vector zRγ
∈ (TzRγ

S||zRγ ||)
⊥ uniquely as a linear

combination of vectors from this set, i.e., there exist λ1 and λ2 satisfying

zRγ
=

2

∑
k=1

λk ·grad(det((a∗I
i, j)tRγ

(zRγ
))i∈I , j∈Jk).

We remark that λ1 or λ2 might be zero, (in the case, where zRγ
is a multiple of the vector

grad(det((a∗I
i, j)tRγ

(zRγ
))i∈I , j∈Jk), for k = 1 or k = 2). If that is the case, we take another subse-

quence (tRγα
,zRγα

)) such that for each member of this sequence, one of the following items is true.

1. λ1 ̸= 0 and λ2 = 0;

2. λ1 = 0 and λ2 ̸= 0.

We take the case, where λ1 ̸= 0 and λ2 ̸= 0 (for items 1. and 2. the procedure is the same as in the

proof of Proposition 2.7. Since (tRγ
,zRγ

) converges to (0,0), the point (0,0) belongs to the closure of

the set consisting of points (t,z) ∈ D×C∗I such that

z ∈ X s
At

and z =
2

∑
k=1

λk ·grad(det((a∗I
i, j)t(z))i∈I , j∈Jk).

By the Curve Selection Lemma [44], there exists a real analytic curve

(t(q),z(q)) = (t(q),z1(q), . . . ,zr(q),0, . . . ,0)

and Laurent series λ1(q) and λ2(q), such that

(i) (t(0),z(0)) = (0,0);

(ii) (t(q),z(q)) ∈ D×C∗I , for q ̸= 0;

(iii) z(q) ∈ X2
At(q)

;

(iv) z(q) =
2
∑

k=1
λk(q) ·grad(det(((a∗I

i, j)t(q)(z(q)))i∈I , j∈Jk)).
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Therefore, we can consider the Taylor expansions

t(q) = t0qω + · · · , zi(q) = aiqwi + · · · ,

where t0,ai ̸= 0 and ν ,wi > 0, for i = 1, . . . ,r. We also consider the Laurent expansions

λ1(q) = β1 ·qu1 + · · · ,λ2(q) = β2 ·qu2 + · · · ,

where βk ̸= 0, for k = 1,2.

After the last example, we can return to the proof of Proposition 2.10.

Lemma 2.18. There exists C̃ ⊆ Cα such that

∑
(I ,J )∈C̃

β(I ,J )

r

∑
l=1

wlal
∂

∂ zl
(det((a∗I

i, j)0|Γ j(a))i∈I , j∈J ) ̸= 0.

Proof. Indeed, since

grad(det((a∗I
i, j)t(q)|Γ j(z(q)))i∈I , j∈J ) =

(
∂

∂ z1
(det((a∗I

i, j)t(q)|Γ j(a))i∈I , j∈J ) ·q(∑ j∈J d j)−w1 + · · · , · · · ,

∂

∂ zr
(det((a∗I

i, j)t(q)|Γ j(a))i∈I , j∈J ) ·q(∑ j∈J d j)−wr + · · · ,0, · · · ,0)),

by d), we have

alqwl + · · ·= zl(q) = ∑
(I ,J )∈Cα

β(I ,J )
∂

∂ zl
(det((a∗I

i, j)t(q)|Γ j(a))i∈I , j∈J ) ·q∑ j∈J d j+u(I ,J )−wl + · · · ,

for l = 1, . . . ,m.

We choose the set C̃ ⊂ Cα , such that, for each (I ,J ),(Ĩ ,J̃ ) in C̃ , we have

( ∑
j∈J

d j)+u(I ,J ) = ( ∑
j∈J̃

d j)+u
Ĩ ,J̃

= min{( ∑
j∈J

d j)+uI ,J : (I ,J ) ∈ Cα}.

Then, wl = (∑ j∈J d j)+u(I ,J )−wl , for all (I ,J ) ∈ C̃ .

We may reorder w1, . . . ,wr, if necessary, such that w1 = · · ·= wb < wc (b < c ≤ r). Therefore,

∑
(I ,J )∈C̃

β(I ,J )
∂

∂ zl
(det((a∗I

i, j)t(q)|Γ j(a))i∈I , j∈J ) =

{
al, 1 ≤ l ≤ b,
0, b < l ≤ r .

Multiplying both sides of the last equality by wlal , which is non-zero, we have

∑
(I ,J )∈C̃

βI ,J wlal
∂

∂ zl
(det((a∗I

i, j)t(q)|Γ j(a))i∈I , j∈J ) =

{
wl|al|2, 1 ≤ l ≤ b,

0, b < l ≤ r
.
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Taking a sum over 1 ≤ l ≤ r and taking q → 0 we have

∑
(I ,J )∈C̃

βI ,J

r

∑
l=1

wlal
∂

∂ zl
(det((a∗I

i, j)0|Γ j(a))i∈I , j∈J ) =
r

∑
l=1

wl|al|2 ̸= 0.

Next we continue with our computations with the family of determinantal singularities from Ex-

ample 2.14.

Example 2.19. For k = 1,2, we have

grad(det((a∗I
i, j)t(q)|Γ j(z(q)))i∈I , j∈Jk) =

(
∂

∂ z1
(det((a∗I

i, j)t(q)|Γ j(a))i∈I , j∈Jk) ·q
(∑ j∈Jk

d j)−w1 + · · · , · · · ,

∂

∂ zr
(det((a∗I

i, j)t(q)|Γ j(a))i∈I , j∈Jk) ·q
(∑ j∈Jk

d j)−wr + · · · ,0, · · · ,0).

Then, by (iv),

alqwl + · · ·= zl(q) =
2

∑
k=1

βk
∂

∂ zl
(det((a∗I

i, j)t(q)|Γ j(a))i∈I , j∈Jk) ·q
∑ j∈Jk

d j+uk−wl + · · · , (2.5)

for l = 1, . . . ,m. We have again three possible cases, which are the following.

1. d1 +d2 +u1 = d1 +d3 +u2;

2. d1 +d2 +u1 < d1 +d3 +u2;

3. d1 +d2 +u1 > d1 +d3 +u2.

If d1+d2+u1 < d1+d3+u2, then wl = d1+d2−wl , because wl is the smallest degree of a monomial

of alqwl + · · · . Therefore, for each l = 1, . . . ,m, the coefficients al and β1 must be equal. Thus, we

can proceed exactly the same as [21, Proposition 3.1]. Of course, the procedure to the case, where

d1 +d2 +u1 > d1 +d3 +u2 is analogous.

We take special care of the case, where d1+d2+u1 = d1+d3+u2. In this case, Eq. (2.5) implies

that, for each l = 1, . . . ,m

al =
2

∑
k=1

βk
∂

∂ zl
(det((a∗I

i, j)t(q)|Γ j(a))i∈I , j∈Jk).

Now, we may reorder w1, . . . ,wr, if necessary, such that w1 = · · ·= wb < wc (b < c ≤ r). Therefore,

2

∑
k=1

βk
∂

∂ zl
(det((a∗I

i, j)t(q)|Γ j(a))i∈I , j∈Jk) =

{
al, 1 ≤ l ≤ b,
0, b < l ≤ r .
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Multiplying both sides of the last equality by wlal , we have

2

∑
k=1

βkwlal
∂

∂ zl
(det((a∗I

i, j)t(q)|Γ j(a))i∈I , j∈Jk) =

{
wl|al|2, 1 ≤ l ≤ b,

0, b < l ≤ r
.

Taking a sum over 1 ≤ l ≤ r and taking q → 0 we have

2

∑
k=1

βk

r

∑
l=1

wlal
∂

∂ zl
(det((a∗I

i, j)0|Γ j(a))i∈I , j∈Jk) =
r

∑
l=1

wl|al|2 ̸= 0.

The last step of the proof is to prove the following equality.

Lemma 2.20. For each (I ,J ) ∈ C̃ , the following equality holds

r

∑
l=1

wlal
∂

∂ zl
(det((a∗I

i, j)0|Γ j(a))i∈I , j∈J ) = 0.

Proof. The polynomial det((a∗I
i, j)t(q)|Γ j(a))i∈I , j∈J is weighted homogeneous with respect to the

weight w and it has weighted degree ∑
j∈J

d j, therefore, it follows from the Euler identity that

( ∑
j∈J

d j) ·det((a∗I
i, j)t(q)|Γ j(a))i∈I , j∈J =

r

∑
l=1

wlal
∂

∂ zl
(det((a∗I

i, j)t(q)|Γ j(a))i∈I , j∈J ).

Taking q → 0, by the same arguments of Lemma 1, a ∈ X s
A∗I

0
. Then

det((a∗I
i, j)0|Γ j(a))i∈I , j∈J = 0.

Hence
r

∑
l=1

wlal
∂

∂ zl
(det((a∗I

i, j)0|Γ j(a))i∈I , j∈J ) = 0.

Combining Lemma 2.18 and Lemma 2.20, we get the contradiction

0 = ∑
(I ,J )∈C̃

β(I ,J )

r

∑
l=1

wlal
∂

∂ zl
(det((a∗I

i, j)0|Γ j(a))i∈I , j∈J ) ̸= 0.

Hence, there exists a positive number R > 0 such that for any admissible coordinate subspace CI

of A0 and for any t sufficiently small, the set X s
At
∩C∗I ∩BR is non-singular and intersects transversely

with Sr for any r < R.

3 Families of fibers on determinantal singularities

In this section, we will extend the concepts from Section 1 to a family of fibers of functions on

determinantal singularities.
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Now, given a determinantal deformation of X s
A, A , consider the functions fk+1, . . . , fp : (Cm,0)→

(C,0) and function germs Fk+1, . . . ,Fp : (Cm×C,0)→ (C,0) such that Fi(x,0) = fi(x) for all x ∈Cm

and i = k+ 1, . . . , p. For each i = k+ 1, . . . , p, we fix small enough representatives fi : Bε → (C,0),
where Bε is the open ball centered at the origin with radius ε > 0, and we set f(i,t)(x) := Fi(x, t),

i = k+ 1, . . . , p. Therefore, we can consider the map germ Ã := (A ,Fk+1, . . . ,Fp) : (Cm ×C,0)→
(Mn,k ×Cp,0) and we have a family of fibers

{(X s
At
∩ f−1

(k+1,t)(0)∩·· ·∩ f−1
(p,t)(0),0)}t∈D.

The properties of fibers of functions defined on determinantal singularities were also studied,

for instance, by Ament, Nuño-Ballesteros, Oréfice-Okamoto and Tomazella [2], Carvalho, Nuño-

Ballesteros, Oréfice-Okamoto and Tomazella [11] and Menegon and Pereira [43].

Definition 2.21. Let A : (Cm,0)→ (Mn,k,0) be a germ of a matrix with holomorphic entries and let

∆ j be the Newton polyhedron of ai, j. Let fk+1, . . . , fp : (Cm,0) → (C,0) be germs of holomorphic

functions with Newton polyhedra ∆k+1, . . . ,∆p, respectively. The variety X s
A ∩ f−1

k+1(0)∩ ·· ·∩ f−1
p (0)

is said to be Newton non-degenerate if, A is a Newton non-degenerate matrix and for each collection

of faces Γ j ⊂ ∆ j, j = 1, . . . ,k,k+1, . . . , p such that the sum
p
∑
j=1

Γ j is a bounded face of the polyhedron

p
∑
j=1

∆ j, the variety

X s
(ai, j|Γ j )

∩ ( fk+1|Γk+1)
−1(0)∩·· ·∩ ( fp|Γp)

−1(0)

is a non-singular variety in (C\0)m with the same dimension as X s
A ∩ f−1

k+1(0)∩·· ·∩ f−1
p (0).

When l = 1, the definition introduced by Esterov ([18, Definition 1.16]) of f being non-degenerate

with respect to a matrix A implies that the variety X s
A ∩ f−1(0) is a Newton non-degenerate variety.

Remark 2.22. Given a Newton non-degenerate matrix A and a generic linear form with respect to X s
A

h : (Cm,0)→ (C,0), the restriction of h to X s
A may be degenerate if we eliminate one variable using

h = 0 (see [49, Example (I-2)]). However the variety X s
A ∩h−1(0)⊂ Cm is Newton non-degenerate.

From now on, we will denote by ∆t
1, . . . ,∆

t
k,∆

t
k+1, . . . ,∆

t
p the Newton polyhedra of the columns

of the matrix At = ((ai, j)t) and the Newton polyhedra of the functions f(k+1,t), . . . , f(p,t), respectively.

With this notation, we introduce the following result.

Lemma 2.23. Let A : (Cm,0)→ (Mn,k,0) be a germ of a holomorphic matrix and f1, . . . , fl : (Cm,0)→
(C,0) be germs of functions. Let CI be an admissible coordinate subspace for A, f1, . . . , fl . If the

variety X s
A ∩ f−1

1 (0)∩ ·· · ∩ f−1
l (0) is Newton non-degenerate, then X s

AI ∩ ( f I
1)

−1(0)∩ ·· · ∩ ( f I
l )

−1(0)

is a Newton non-degenerate variety.

Proof. The proof follows by the same arguments Lemma 2.9.

Proposition 2.24. Suppose that for all t sufficiently small, the following two conditions are satisfied:
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(i) the variety X s
At
∩ f−1

(k+1,t)(0)∩·· ·∩ f−1
(p,t)(0) is Newton non-degenerate, where At = ((ai, j)t);

(ii) the Newton polyhedra ∆t
1, . . . ,∆

t
k,∆

t
k+1, . . . ,∆

t
p are independent of t.

Then there exists a positive number R > 0 such that for any admissible coordinate subspace CI of A0,

f(k+1,0), . . . , f(p,0) and any t sufficiently small, such that the variety

X s
At
∩ f−1

(k+1,t)(0)∩·· ·∩ f−1
(p,t)(0)∩C∗I ∩BR

is non-singular and intersects transversely with Sr for any r < R, where BR (respectively, Sr) is the

open ball (respectively, the sphere) with center at the origin 0 ∈ Cm and radius R (respectively, r).

Proof. The proof is presented in Section 2.24.

Corollary 2.25. In addition to the conditions of Proposition 2.24, if the Newton polyhedra

∆
t
1, . . . ,∆

t
k,∆

t
k+1, . . . ,∆

t
p

are convenient, then there exists a positive number R > 0 such that for any t sufficiently small, the

variety X s
At
∩ f−1

k+1(0)∩·· ·∩ f−1
p (0)∩C∗I ∩BR is smooth outside the origin and intersects transversely

with Sr for any r < R, where BR (respectively, Sr) is the open ball (respectively, the sphere) with center

at the origin 0 ∈ Cm and radius R (respectively, r).

Proof. Since the polyhedra

∆
t
1, . . . ,∆

t
k,∆

t
k+1, . . . ,∆

t
p

are convenient, then every coordinate space is admissible for A, fk+1, . . . , fp.

Let h : (Cm,0) → (C,0) be a generic linear form with respect to X s
A and for each c ∈ C denote

Ac(x1, . . . ,xm−1)=A(x1, . . . ,xm−1,c). Then the variety X s
A∩h−1(0) is biholomorphic to the IDS X s

A0 ⊂
Cm−1.

Since, h is a generic linear form, the variety X s
A ∩ h−1(0) is Newton non-degenerate and we

can assume that the Newton polyhedron ∆h of h is convenient. Moreover, if X s
At

is a determinan-

tal deformation of X s
A, we can consider a deformation X s

At
∩ h−1

t (0) of X s
A ∩ h−1(0) where for each t

ht : (Cm,0)→ (C,0) is a generic linear form with respect to X s
At

such that ∆ht is convenient for all t.

Therefore, we have the following corollary.

Corollary 2.26. Suppose that for all t sufficiently small, the following conditions are satisfied:

(i) the variety X s
At

is Newton non-degenerate;

(ii) the Newton polyhedra ∆t
j of (ai, j)t are convenient and independent of t, for all j = 1, . . . ,k.
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Then the vanishing Euler characteristic of X s
At
∩h−1

t (0) and consequently the top polar multiplicity of

X s
At

are independent of t, i.e.,

ν(X s
At
∩h−1

t (0),0) = ν(X s
A0
∩h−1

0 (0),0)

and

md(X s
At
,0) = md(X s

A0
,0).

Proof. The first equality follows directly from Corollary 1.83 and Corollary 2.25. The second equa-

tion follows directly from the first equality, Theorem 1.87 and Corollary 2.12.

4 Proof of Proposition 2.24

The proof is a combination of the proof of Proposition 2.10 and [21, Proposition 3.1]. Again it

is sufficient showing the result for a fixed I = {1, . . . ,r}, r ≤ m, since there are only finitely many

subsets I ⊂ {1, . . . ,m}.

Let A : (Cm ×C,0)→ (Mn,k,0) a determinantal deformation of X s
A and Fl : (Cm ×C,0)→ (C,0)

be a deformation of V ( fl) for l = k+1, . . . , p.

Suppose that there exists a sequence {(tR,zR)} of points in X s
A ∩F−1

(k+1,t)(0)∩·· ·∩F−1
(p,t)(0)∩(D×

C∗I) converging to (0,0), where zR is a singularity of X s
At
∩ f−1

(k+1,t)(0)∩·· ·∩ f−1
(p,t)(0)∩C∗I ∩BR. Then

(0,0) is in the closure of the set

W = {(t,z) ∈ D×C∗I : z ∈ X s
At
∩ f−1

(k+1,t)(0)∩·· ·∩ f−1
(p,t)(0)

and z is a singular point of X s
At
∩ f−1

(k+1,t)(0)∩·· ·∩ f−1
(p,t)(0)}.

Then, by the Curve Selection Lemma [44], there exists an analytic curve

(t(q),z(q)) = (t(q),z1(q), . . . ,zr(q),0, . . . ,0),

for all q ̸= 0, and (t(0),z(0)) = (0,0). For 1 ≤ i ≤ r, consider the Taylor expansions

t(q) = t0qω + · · · , zi(q) = aiqwi + · · · ,

where t0,ai ̸= 0 and ω,wi > 0. Choose a = (a1, . . . ,ar,0, . . . ,0)∈C∗I and w = (w1, . . . ,wr,0, . . . ,0)∈
Nm \{0} and consider the face Γ j of (∆t(q)

j )I = (∆0
j)

I defined as the set where the map

l j
w : (∆

t(q)
j )I → R+

x := (x1, . . . ,xr,0, . . . ,0) 7→
r

∑
i=1

xiwi

takes its minimal value d j, j = 1, . . . ,k,k+1, . . . , p, and such that
p
∑
j=1

Γ j is a bounded face of
p
∑
j=1

∆ j.

Lemma 2.27. The point a belongs to the fiber X s
A∗I

0 |Γ
∩ ( f ∗I

(k+1,0)|Γk+1)
−1(0)∩·· ·∩ ( f ∗I

(p,0)|Γp)
−1(0).
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Proof. Since z(q) ∈ X s
A∗I

t(q)|Γ
, by Lemma 2.13, a ∈ X s

A∗I
0 |Γ

. Moreover, z(q) ∈ ( f ∗I
(i,t(q))|Γi)

−1(0), for all

i = k+1, . . . , p. Since, every hypersurface singularity is also a determinantal singularity, by Lemma

2.13, a ∈ ( f ∗I
(i,0)|Γi)

−1(0), for all i = k+1, . . . , p. Therefore,

a ∈ X s
A∗I

0 |Γ
∩ ( f ∗I

(k+1,0)|Γk+1)
−1(0)∩·· ·∩ ( f ∗I

(p,0)|Γp)
−1(0).

Lemma 2.28. The point a is a singularity of X s
A∗I

0 |Γ
∩ ( f ∗I

(k+1,0)|Γk+1)
−1(0)∩·· ·∩ ( f ∗I

(p,0)|Γp)
−1(0).

Proof. Consider the jacobian matrix of the map given by the s size minors of A∗I
t(q)|Γ at z(q),

JA∗I
t(q)|Γ

(z(q)) = (M(I ,J ),l(z(q))),

where

M(I ,J ),l(z(q)) =
∂

∂ zl
(det((a∗I

i, j)t(q)|Γ j(a))i∈I , j∈J ) ·q(∑ j∈J d j)−wl + · · · ,

(I ,J ) ∈ C and l = 1, . . .m. In addition, consider the jacobian matrix of the map

f ∗I
t(q) = ( f ∗I

(k+1,t(q))|Γk+1, . . . , f ∗I
(p,t(q))|Γp)

at z(q),

J f ∗I
t(q)

(z(q)) = (
∂

∂ zl
( f ∗I

(α,t(q))|Γ j(a) ·q
dα−wl + · · ·),

where, α = k+ 1, . . . , p and l = 1, . . . ,m. Therefore, the jacobian matrix of the map given by the s

size minors of A∗I
t(q)|Γ together with the map f ∗I

t(q) at z(q) is

JA∗I
t(q)|Γ, f

∗I
t(q)

(z(q)) =

[
JA∗I

t(q)|Γ
(z(q))

J f ∗I
t(q)

(z(q))

]
.

Since rank of JA∗I
t(q)|Γ, f

∗I
t(q)

(a) is the same as rank of JA∗I
t(q)|Γ, f

∗I
t(q)

(z(q)) and z(q) is a singularity of

X s
A∗I

t(q)|Γ
∩ ( f ∗I

(k+1,t(q))|Γk+1)
−1(0)∩·· ·∩ ( f ∗I

(p,t(q))|Γp)
−1(0), the point a is also a singularity of

X s
A∗I

t(q)|Γ
∩ ( f ∗I

(k+1,t(q))|Γk+1)
−1(0)∩·· ·∩ ( f ∗I

(p,t(q))|Γp)
−1(0).

Therefore, taking q → 0, a is a singularity of X s
A∗I

0 |Γ
∩ ( f ∗I

(k+1,0)|Γk+1)
−1(0)∩·· ·∩ ( f ∗I

(p,0)|Γp)
−1(0).

By Lemma 2.27 and Lemma 2.28, a ∈ C∗I is a singularity of X s
A∗I

0 |Γ
∩ ( f ∗I

(k+1,0)|Γk+1)
−1(0)∩ ·· · ∩

( f ∗I
(p,0)|Γp)

−1(0). Therefore, this variety is not Newton non-degenerate which contradicts of Lemma

2.23.

To prove the ”transversality”, we suppose that there exists a sequence {(tR,zR)} of points in

X s
A ∩F−1

k+1(0)∩ ·· ·∩F−1
p (0)∩ (D×C∗I) converging to (0,0) and such that X s

AtR
∩ f−1

(k+1,tR)
(0)∩ ·· ·∩

f−1
(p,tR)

(0)∩C∗I does not intersect the sphere S||zR|| transversally at zR. Thus

(TzRS||zR||)
⊥ ⊆ (TzR(X

s
AtR

∩ f−1
(k+1,tR)

(0)∩·· ·∩ f−1
(p,tR)

(0)∩C∗I))⊥.
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Moreover, (TzR(X
s
AtR

∩ f−1
(k+1,tR)

(0)∩·· ·∩ f−1
(p,tR)

(0)∩C∗I))⊥ is generated by the set G=G1∪G2, where

G1 = {grad(det((a∗I
i, j)tR(zR))i∈I , j∈J ) : (I J ) ∈ C } and G2 = {grad( f ∗I

(ρ,tR)
(zR)) : k+1 ≤ ρ ≤ p}.

Once again, we are looking for subsets Cγ ⊂ C and τγ ⊂ {k+1, . . . , p} such that Gγ = G1
γ ∪G2

γ is

a basis for

(TzRγ
(X s

AtRγ

∩ f−1
(k+1,tRγ )

(0)∩·· ·∩ f−1
(p,tRγ )

(0)∩C∗I))⊥,

where G1
γ = {grad(det((a∗I

i, j)tRγ
(zRγ

))i∈I , j∈J ) : (I ,J ) ∈ Cγ} and G2
γ = {grad( f ∗I

(τ,tRγ )
(zRγ

)) : τ ⊂
τγ}.

As early, there exists a subsequence {(tRγ
,zRγ

)} of {(tR,zR)} such that Gγ is a basis for this or-

thogonal space. Therefore, we can write zR ∈ (TzRγ
S||zRγ ||)

⊥ uniquely as linear combination of those

gradient vectors, i.e., there exist λ(I ,J ) and µρ satisfying

zRγ
= ∑

(I ,J )⊂Cγ

λ(I ,J ) ·grad(det((a∗I
i, j)tRγ

(zRγ
))i∈I , j∈J )+ ∑

ρ∈τγ

µρ ·grad( f ∗I
(ρ,tRγ )

|Γρ
(zRγ

)).

We observe that some of the coefficients λ(I ,J ),µρ may be zero in the above linear combination.

If µρ = 0 for all ρ = τ1, . . . ,τγ we proceed in the same way as Section 2. If not, we can take a

subsequence {(tRα
,zRα

)} of {(tRγ
,zRγ

)} such that

zRα
= ∑

(I ,J )∈Cα

λ(I ,J ) ·grad(det((a∗I
i, j)tRα

(zRα
))i∈I , j∈J )+ ∑

ρ=τα

µρ ·grad( f ∗I
(ρ,tRα )

|Γρ
(zRα

)),

with λ(I ,J ) ̸= 0 and µρ ̸= 0 for all (I ,J ) ∈ Cα ⊂ Cγ and ρ ∈ τα ⊂ τγ ⊂ {k+1, . . . , p}.

Since (tRα
,zRα

)→ (0,0), (0,0) belongs to the closure of the set consisting of points (t,z)∈D×C∗I

such that

z ∈ X s
At
∩ f−1

(k+1,t)(0)∩·· ·∩ f−1
(p,t)(0) and

z = ∑
(I ,J )∈Cα

λ(I ,J ) ·grad(det((a∗I
i, j)t(z))i∈I , j∈J )+

τα

∑
ρ=τ1

µρ ·grad( f ∗I
(ρ,t)|Γρ

(z)).

By the Curve Selection Lemma [44], there exists a real analytic curve

(t(q),z(q)) = (t(q),z1(q), . . . ,zr(q),0, . . . ,0)

and Laurent series λ(I ,J ), (I ,J ) ∈ Cα , and µρ , ρ = τ1, . . . ,τα , such that

(i) (t(0),z(0)) = (0,0);

(ii) (t(q),z(q)) ∈ D×C∗I , for q ̸= 0;

(iii) z(q) ∈ X s
At(q)

∩ ( f ∗I
(k+1,t(q)))

−1(0)∩·· ·∩ ( f ∗I
(p,t(q)))

−1(0);

(iv) z(q) = ∑
(I ,J )∈Cα

λ(I ,J )(q) ·grad(det((a∗I
i, j)t(q)(z(q)))i∈I , j∈J )

+
τα

∑
ρ=τ1

µρ(q) ·grad( f ∗I
(ρ,t(q))|Γρ

(z(q))).



4. Proof of Proposition 2.24 55

Consider the Taylor expansions

t(q) = t0qω + · · · , zi(q) = aiqwi + · · · ,

where t0,ai ̸= 0 and ω,wi > 0, for i = 1, . . . ,r. Consider also the Laurent expansions

λ(I ,J )(q) = β(I ,J ) ·qu(I ,J ) + · · · , µρ(q) = ζρqvρ + · · ·

where β(I ,J ) ̸= 0 and ζρ ̸= 0. Choose a = (a1, . . . ,ar,0, . . . ,0)∈C∗I and w = (w1, . . . ,wr,0, . . . ,0)∈
Nm \{0} and consider the face Γ j of (∆t(q)

j )I = (∆0
j)

I defined as the set where the map

l j
w : (∆

t(q)
j )I → R+

x := (x1, . . . ,xr,0, . . . ,0) 7→
r

∑
i=1

xiwi

takes its minimal value d j, j = 1, . . . ,k,k+1, . . . , p, and such that
p
∑
j=1

Γ j is a bounded face of
p
∑
j=1

∆ j.

Lemma 2.29. There exist subsets C̃ ⊂ Cα and τ̃ ⊂ τα such that

∑
(I ,J )⊂C̃

β(I ,J )

r

∑
l=1

wlal
∂

∂ zl
(det((a∗I

i, j)0|Γ j(a))i∈I , j∈J )+ ∑
ρ∈τ̃

ζρ

r

∑
l=1

wlal
∂

∂ zl
( f ∗I

(ρ,0)|Γρ
(a)) ̸= 0.

Proof. Since

grad(det((a∗I
i, j)t(q)|Γ j(z(q)))i∈I , j∈J ) =

(
∂

∂ z1
(det((a∗I

i, j)t(q)|Γ j(a))i∈I , j∈J )·q(∑ j∈J d j)−w1 + · · · , · · · ,

∂

∂ zr
(det((a∗I

i, j)t(q)|Γ j(a))i∈I , j∈J ) ·q(∑ j∈J d j)−wr + · · · ,0, · · · ,0)

and

grad( f ∗I
(ρ,t(q))|Γρ

(z(q))) =

(
∂

∂ z1
( f ∗I

(ρ,t(q))|Γρ
(a)) ·qdρ−w1 + · · · , · · · , ∂

∂ zr
( f ∗I

(ρ,t(q))|Γρ
(a)) ·qdρ−wr + · · · ,0, · · · ,0)

by (iv), we have

alqwl + · · ·= zl(q) = ∑
(I ,J )∈Cα

βI ,J
∂

∂ zl
(det((a∗I

i, j)t(q)|Γ j(a))i∈I , j∈J ) ·q∑ j∈J d j+uI ,J −wl + · · ·

+ ∑
ρ∈τα

ζρ

∂

∂ zl
( f ∗I

(ρ,t(q))|Γρ
(a)) ·qdρ+νρ−wr + · · · ,

for l = 1, . . . ,m.

We choose the sets C̃ ⊂ Cα and τ̃ ⊂ τα , such that, for each (I ,J ),(Ĩ ,J̃ ) ∈ C̃ and ρ, ρ̃ ∈ τ̃ ,

we have
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( ∑
j∈J

d j)+u(I ,J ) = ( ∑
j∈J̃

d j)+u
(Ĩ ,J̃ )

= min{( ∑
j∈J

d j)+u(I ,J ) : (I ,J ) ∈ Cα}

= min{d j +ν j : j ∈ τα}= dρ + vρ = dρ̃ + vρ̃ .

Then, wl = ( ∑
j∈J

d j)+u(I ,J )−wl = dρ +νρ , for all (I ,J ) ∈ C̃ and ρ ∈ τ̃ .

We can reorder w1, . . . ,wr, if necessary, such that w1 = · · ·= wb < wc(b < c ≤ r). Therefore,

∑
(I ,J )∈C̃α

βI ,J
∂

∂ zl
(det((a∗I

i, j)t(q)|Γ j(a))i∈I , j∈J )+ ∑
ρ∈τ̃

ζρ

∂

∂ zl
( f ∗I

(ρ,t(q))|Γρ
(a)) =

{
al, 1 ≤ l ≤ b,
0, b < l ≤ r

Repeating the same process as in Lemma 2.18, we multiply this equality by wlal , take the sum

over 1 ≤ l ≤ r and take q → 0 to obtain

∑
(I ,J )⊂C̃

β(I ,J )

r

∑
l=1

wlal
∂

∂ zl
(det((a∗I

i, j)0|Γ j(a))i∈I , j∈J )

+ ∑
ρ∈τ̃

ζρ

r

∑
l=1

wlal
∂

∂ zl
( f ∗I

(ρ,0)|Γρ
(a)) =

r

∑
l=1

wl|al|2 ̸= 0.

By Lemma 2.20, we have, for each (I ,J ) ∈ C̃ ,

r

∑
l=1

wlal
∂

∂ zl
(det((a∗I

i, j)0|Γ j(a))i∈I , j∈J ) = 0

and, for each ρ ∈ τ̃ ,
r

∑
l=1

wlal
∂

∂ zl
( f ∗I

(ρ,0)|Γρ
(a)) = 0,

since a hypersurface is also a determinantal variety.

Hence, we conclude the proof of Lemma 2.23 with the contraction

0 = ∑
(I ,J )⊂C̃

β(I ,J )

r

∑
l=1

wlal
∂

∂ zl
(det((a∗I

i, j)0|Γ j(a))i∈I , j∈J )+ ∑
ρ∈τ̃

ζρ

r

∑
l=1

wlal
∂

∂ zl
( f ∗I

(ρ,0)|Γρ
(a)) ̸= 0.

5 Whitney equisingularity

Finally, we have all the necessary tools to prove the main theorem of this chapter.

Theorem 2.30. Let
{
(X s

At
,0)

}
t∈D

, be a d-dimensional family of determinantal singularities, defined

by the germ of matrices At = ((ai, j)t) : (Cm,0) → (Mn,k,0) with holomorphic entries. Suppose that

X s
A0

has an isolated singularity at 0 and, for all t ∈ D, the matrix At satisfies the following conditions:

(i) the Newton polyhedra ∆t
j of (ai, j)t are convenient and independent of t;
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(ii) the matrix At is Newton non-degenerate.

Then the family
{
(X s

At
,0)

}
t∈D

is Whitney equisingular.

Proof. Firstly, since the Newton polyhedra ∆t
j are convenient and independent of t for each j =

1, . . . ,k and the matrix At is Newton non-degenerate, then by Corollary 2.11, there exists a positive

number R such that for any t sufficiently small, the set X s
At
∩BR is smooth outside the origin, where

BR is the open ball with center at the origin and radius R. Therefore, this family is good. Moreover,

by Corollary 2.26,

md(X s
At
,0) = md(X s

A0
,0). (5.1)

Now, applying successively Corollary 2.26 we have the following relation,

ν(X s
At
∩h−1

(t,1)(0)∩·· ·∩h−1
(t,l)(0),0) = ν(X s

A0
∩h−1

(0,1)(0)∩·· ·∩h−1
(0,l)(0),0),

where h(t,i) are generic linear forms with respect to

X s
At
∩h−1

(t,1)(0)∩·· ·∩h−1
(t,i−1)(0)

for i = 1, . . . , l. Hence,

md−l(X s
At
∩h−1

(t,1)(0)∩·· ·∩h−1
(t,l)(0),0) = md−l((X s

A0
∩h−1

(0,1)(0)∩·· ·∩h−1
(0,l)(0),0).

In addition, applying successively Lemma 1.90, we have

md−l(X s
At
∩h−1

(t,1)(0)∩·· ·∩h−1
(t,l)(0),0) = md−l(X s

At
,0),

for l = 1, . . . ,d. Combining both equations above, we have

md−l(X s
At
,0) = md−l(X s

At
∩h−1

(t,1)(0)∩·· ·∩h−1
(t,l)(0),0)

= md−l((X s
A0
∩h−1

(0,1)(0)∩·· ·∩h−1
(0,l)(0),0)

= md−l(X s
A0
,0),

for all l = 1, . . . ,d.

Therefore, m j(X s
At
,0) = m j(X s

A0
,0), for all 0 ≤ j ≤ d. Hence, the family

{
(X s

At
,0)

}
t∈D

is Whitney

equisingular, by Theorem 1.91.

Example 2.31. Consider the classical Briançon-Speder example, i.e., the family of functions ft :

(C3,0)→ (C,0) defined by ft(x,y,z) = x5 + t · xy6 + y7z+ z15.The family {(V ( ft),0)}t∈D is topolog-

ically trivial, but it is not Whitney equisingular.

We observe that the function ft is not convenient and the Newton polyhedron of ft depends on t

(see Figure 2.5 and Figure 2.6).

This example illustrates how essential is Condition (i) of Theorem 2.30.
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7
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1
5

Figure 2.5: Newton polyhedron of f0.

6 7

15

1
5

1

Figure 2.6: Newton polyhedron of ft , for t ̸= 0.

Example 2.32. Let
{
(X2

At
,0)

}
t∈D

be the family of 2-dimensional IDS defined by the matrices At :

(C4,0)→ (M2,3,0), where

At =

[
x+ y+ z+w+ ty4 2x+ y+ z+3w+ tx3 5x+7y+ z+w+ tw2

2x+3y+7z+8w+ tz2 9x+5y+7z+11w+ ty2 13x+15y+9z+11w+ tx4

]
.

The matrix At is Newton non-degenerate and the polyhedron ∆t
j, j = 1,2,3, is convenient and

constant on t, for all t ∈ D. Then, by Theorem 2.30,
{
(X2

At
,0)

}
t∈D

is Whitney equisingular.

Example 2.33. Let
{
(X2

At
,0)

}
t∈D

be the family of 2-dimensional determinantal singularities defined

by the germ At : (C4,0)→ (M2,3,0), given by the matrix[
2x+2y3 + ty4 + z2 −3w4 2x+3y3 +2ty4 +2z2 −5w4 3x+2y3 + ty4 +2z2 −3w4

3x+3y3 + ty4 +2z2 −4w4 3x+4y3 +2ty4 +4z2 −7w4 5x+3y3 + ty4 +3z2 −3w4

]
.

For all t ∈ D, the matrix At is Newton non-degenerate (see Example A.3), ∆t
j is convenient and

independent of t, for all j = 1,2,3. Hence, this family is Whitney equisingular.



CHAPTER 3

Newton polyhedra and determinantal
singularities

Newton polyhedra of polynomial functions have been a powerful tool to compute invariants of

singularities. Along the years, many authors have provided formulas to compute, for instance, the

number of solutions of a system of polynomial equations [3], the genus of a complete intersection

[37], the Milnor number of isolated hypersurfaces singularities [39] and of isolated complete inter-

section singularities [49], the Euler characteristic of the Milnor fiber of a function restricted to an

isolated determinantal singularity [18], among others.

1 Newton polyhedra and determinantal singularities

This section is devoted to present the formulas introduced by Esterov (see [18] and the extended

version [19]). The results introduced by Esterov to compute invariants of determinantal singularities

are derived from his results on a resultantal singularity. Therefore, we start this section with its

definition.

Let B ⊂ Zn be a finite set. Denote the set of all Laurent polynomials of the form ∑
b∈B

cbtb by

C[B]. Let B1, . . . ,Bk ⊂ Zn be finite sets. Let Σ(B1, . . . ,Bn) be the closure of the set of all collections

(p1, . . . , pk) ∈ C[B1]⊕·· ·⊕C[Bk] such that the set {t ∈ C∗n : p1(t) = · · ·= pk(t) = 0} is not empty.

Definition 3.1. Let B1, . . .Bk ⊂ Zn be finite sets. The germ of an analytic set M ⊂ Cm in a neigh-

bourhood of the origin is called (B1, . . . ,Bk)-resultantal if, for some analytic germ f : (Cm,0) →
C[B1]⊕·· ·⊕C[Bk] the set M is equal f−1(Σ(B1, . . . ,Bk)) and its codimension in Cm is the same as

the codimension of Σ(B1, . . . ,Bk) in the space C[B1]⊕·· ·⊕C[Bk].

Determinantal varieties of type (n,k;n) are identified with resultantal singularities trough the fol-

lowing construction.

59
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Remark 3.2. Consider B1 = · · · = Bk = {e0,e1, . . . ,en−1} ⊂ Zn−1, where e j = (0, . . . ,0︸ ︷︷ ︸
j−1

,1,0, . . . ,0)

and n < k. Then we can identify the space of collections of linear functions

(a1,1 +
n

∑
i=2

ai,1ti−1, . . . ,a0,k +
n

∑
i=2

ai,kti−1) ∈ C[B1]⊕·· ·⊕C[Bk]

with the space of n× k matrices (ai, j), the set Σ(B1, . . . ,Bk) with the set of all degenerate matrices,

and (B1, . . . ,Bk)-resultantal singularities with determinantal singularities of type (n,k;n).

Example 3.3. Consider the sets B1 = B2 = B3 = {0,1} ⊂ Z and the germ f : C4 → C[B1]⊕C[B2]⊕
C[B3] defined by f (x,y,z,w) = (x+ y · t,y+ z · t,z+w · t). The variety M = f−1(Σ(B1,B2,B3)) is a

(B1,B2,B3)-resultantal singularity. Moreover, M is the set of points in C4 such that the system of

equations 
x + y · t = 0
y + z · t = 0
z + w · t = 0

has no trivial solutions. Therefore, M is the set of points of C4 such that the matrix

A =

[
x y z
y z w

]
has rank less than 2. Hence, M = {(x,y,z,w) ∈ C4 : rank(A(x,y,z,w)) < 2} = X2

A is a determinantal

variety of type (2,3;2).

In the following, we present the definition of a essential collection of sets in Zn. In [18], Esterov

proves that “each resultantal set is (A1, . . . ,Ak)-resultantal for some non-degenerate collection of finite

sets A1, . . . ,Ak ⊂ Zn”.

Definition 3.4. (i) A sublattice L ⊂Zn is generated by a set B ∈Zn if it is generated by all vectors

of the form a−b, where a ∈ B and b ∈ B.

(ii) The dimension of a set B ∈ Zn is the dimension of the sublattice generated by A.

(iii) The sum of sets Bi ∈ Zn is the set of all sums of the form ∑i bi, where bi ∈ Bi.

(iv) The codimension of a collection of finite sets B1, . . . ,Bk ⊂ Zn is the difference k−dim(∑i Bi),

if k ̸= 0. The codimension of the empty collection is 0.

Definition 3.5. A collection of finite sets B1, . . . ,Bk ⊂ Zn is said to be essential if its codimension is

greater than the codimension of every subcollection Bi1, . . . ,Bir , {i1, . . . , ir}⊊ {1, . . . ,k}.

Definition 3.6. A (m,n)-Newton pile P = (B.,∆.) is a collection of finite sets Bi ⊂Zn and polyhedra

∆a ⊂Rm
+, where i = 1, . . . ,k and a runs over all pairs (b, i) such that i = 1, . . . ,k and b ∈ Bi. A Newton

pile is called essential if the collection {B1, . . . ,Bk} is essential and the sum ∑i Bi contains the origin

and generates Zn. A Newton pile is called convenient if the difference Rm
+ \∆(b,i) is bounded for all

pairs (b, i).
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For a point p = (p1, . . . , pk) ∈ C[B1]⊕ ·· ·⊕C[Bk], denote the coefficient of the monomial tb in

the polynomial pi by c(b,i)(p). For a (m,n)-newton pile P = (B.,∆.), let C{P} be the set of germs

of all analytic maps f : Cm → C[B1]⊕ ·· ·⊕C[Bk] such that the components c(b,i) ◦ f are contained

in the space C{∆(b,i)}, where C{∆} is the the space of all complex analytic functions of the form

∑
b∈∆∩Zm

cbxb.

Definition 3.7. “Almost all collections of germs f1 ∈C{∆1}, . . . , fk ∈C{∆k}” means “all collections

of germs ( f1, . . . , fk), fi = ∑b∈∆i c(i,b)xb, such that P(ca1, . . . ,caN ) ̸= 0, where P is some non-zero

polynomial in N variables”. “Almost all maps in C{B}” means “almost all collections of components

c(b, i)◦ f in ⊕i=1,...,k,∈BiC{∆(b,i)}”.

For a (m,n)-newton pile P denote the convex hull of the union ∪b∈Bi{b}×∆(b,i) ⊂ Rn ⊕Rm by

P(i). Denote the (m,n)-Newton pile (B1, . . . ,Bk,Rm
+, . . . ,Rm

+) by P0.

Theorem 3.8. Let P be a convenient essential (m,n)-Newton pile such that k = m+ n. Then for

almost all maps f ∈ C{P}, the intersection number of the germ f (Cm) and the set Σ(B1, . . . ,Bk) in

the space ⊕iC[Bi] is well defined and equal to the mixed volume of pairs

k!(P0(1),P(1))1 · · ·(P0(k),P(k))1.

One can find the proof in [18, Theorem 3.5]. Since determinantal singularities of type (n,k;n)

can be identified with resultantal singularities, Theorem 3.8 can be rewritten for a determinantal

singularity, by setting B1 = · · ·= Bk = {e0, . . . ,en−1}.

For a collection of positive weights w = (w1, . . . ,wm) assigned to the variables x1, . . . ,xm, the

lowest order non-zero w-quasihomogeneous component of the function f = ∑
a∈Zm

caxa is denoted by

f w.

Definition 3.9. The system of polynomial functions f1, . . . , fr : Cm → C is Newton non-degenerate
if, for every collection of positive weights w = (w1, . . . ,wm), the polynomial equations f w

1 = · · · =
f w
r = 0 have no common zeros in C∗m.

Let A = (ai, j) : (Cm,0)→ (Mn,k,0) be a germ of a matrix and ∆i, j be the Newton polyhedron of

ai, j. For each j = 1, . . . ,k, denote by ∆1, j ∗ · · · ∗∆n, j the convex hull of the union ∪n
i=1{en−1}×∆i, j ⊂

Rn−1 ×Rm
+. This polyhedron is called Cayley polyhedron.

Corollary 3.10. Let A = (ai, j) : (Cm,0)→ (Mn,k,0) be a germ of a matrix such that m = k−n+1 and

let ∆i, j be the Newton polyhedron of ai, j. If the system of equations ai, j, i = 1, . . . ,n and j = 1, . . . ,k

is Newton non-degenerate and the pairs of polyhedra (Rm
+,∆i, j) are bounded, then the intersection

number of the germ A(Cm) and Mn
n,k is equal

k!(Sn−1 ×Rm
+,∆1,1 ∗ · · · ∗∆n,1)

1 · · ·(Sn−1 ×Rm
+,∆1,k ∗ · · · ∗∆n,k)

1,

where Sm is the standard m-dimensional simplex.
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One can find a proof in [17] and, with more details, in the extended version [19, Corollary 3.10].

Moreover, if the Newton polyhedron of ai, j does not depend on i, Esterov [18] introduces a formula

to compute the multiplicity of a determinantal singularity.

Definition 3.11. The matrix A = (ai, j) is said to be weakly Newton non-degenerate, if, for each

collection w of positive weights and every subset I ⊂ {1, . . . ,n}, the set of all points x ∈ C∗m, such

that the matrix is (aw
i, j(x)) i∈I

j∈{1,...,k}
is degenerate, has the maximal possible codimension k−|I |+1.

Remark 3.12. Under the conditions of the above definition, the matrix A is weakly Newton non-

degenerate for almost all collections ai, j ∈ C{∆ j} ([18, Theorem 1.17.1]).

For a polyhedron ∆ ⊂Rm
+, denote the pair (Rm

+,∆) by ∆̃. Denote the pair (Rm
+,Rm

+ \Sm) by L. The

proof of the following corollary can be found in [18, Theorem 1.9].

Corollary 3.13. Let A : (Cm,0)→ (Mn,k,0) be a germ of a matrix with holomorphic entries. Suppose

that the Newton polyhedron of ai, j does not depend on i and let ∆ j be the Newton polyhedra of ai, j,

for all i = 1, . . . ,n, j = 1, . . . ,k. If ∆ j ⊂ Rm
+, j = 1, . . . ,k, touches all the coordinate axes and A is

weakly Newton non-degenerate, then Xn
A is a determinantal singularity with multiplicity

∑
1≤ j0≤···≤ jk−n≤k

m! · (∆̃ j0)
1 · · ·(∆̃ jk−n)

1(L)m−k+n−1

Using the same ideas, Esterov [18] also presents a formula to compute the Euler characteristic of

a function restricted to a resultantal singularity in terms of its Newton pile.

Definition 3.14. Let A ⊂ Zn be a finite set and let B be a subset of A. The dual cone Γ of the set B is

the set of weight vectors γ ∈ (Zn)∗ such that {a ∈ A : γ(a) = min γ(A)}= B. If a cone Γ′ is contained

in Γ, then B is called support set of Γ′ and it is denoted by AΓ′
.

Suppose that the integer polyhedra ∆0, . . . ,∆k ⊂ Rm are parallel to each other, the dimension of

∑∆i equals p+ 1, and ∆0 is contained in a pointed cone C such that C \∆0 is bounded. Denote the

sum of mixed volume of pairs

(−1)k−p−1
∑

a0+···+ak=p+1
a0,...,ak∈N

(p+1)!(C,∆0)
a0(∆1,∆1)

a1 · · ·(∆k,∆k)
ak

by χ(∆0,∆1, . . . ,∆k).

For a set I ⊂ {1, . . . ,m} and a polyhedron ∆ ⊂ Rm
+, denote the polyhedron ∆∩RI by ∆I . For

a (m,n)-newton pile P = (B1, . . . ,Bk,∆.) and a cone Γ ⊂ (Zn)∗ denote the (|I|,n)-Newton pile

(BΓ
1 , . . . ,B

Γ
k ,∆

I.) by PΓ,I .

Theorem 3.15. Let (B1, . . . ,Bk,∆.) be a convenient essential (m,n)-Newton pile. Let ∆ ⊂ Rm
+ be a

polyhedron which touches all the coordinate axes. Denote the polyhedron {0}×∆ ⊂ Rn ⊕Rm by ∆̃.
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Let Φ be the dual fan of the convex hull conv(∑ j B j). Then the Euler characteristic of the Milnor fiber

of g| f−1(Σ(B1,...,Bk))
is

∑
Γ∈Φ

I⊂{1,...,m}

|I|! ·χ(∆̃,PΓ,I(1), · · · ,PΓ,I(k))

for almost all pairs (g, f ) ∈ C{∆}×C{P}.

One can find a proof in [18, Theorem 3.19]. Let A = (ai, j) : (Cm,0)→ (Mn,k,0) be a germ of a

matrix with holomorphic entries and let ∆i, j be the Newton polyhedron of the entry ai, j. If, for each

j = 1, . . . ,k, the polyhedron ∆i, j depends on i, we can compute the Euler characteristic of the Milnor

fiber of f |Xn
A

applying Theorem 3.15, for the Newton pile (B1, . . . ,Bk,∆.), where B1 = · · · = Bk =

{e0, . . . ,en−1}.

Definition 3.16. The matrix A = (ai, j) is said to be Newton non-degenerate, if, for every collection

of positive weights w, the polynomial matrix (aw
i, j) defines a non-singular determinantal set in C∗m.

In this case, a function f : (Cm,0)→ (C,0) is called Newton non-degenerate with respect to A,

if, for every collection w of positive weights, the restriction of f w to the determinantal set, defined by

the matrix (aw
i, j) in C∗m, has no critical points.

If m ≤ 2(k−n+2), then the function f is Newton non-degenerate with respect to A for almost all

collections f ∈ C{∆0}, ai, j ∈ C{∆ j} ([18, Theorem 1.17.2]).

Corollary 3.17. Denote the Newton polyhedron of the entry ai, j of a matrix A = (ai, j) : (Cm,0) →
(Mn,k,0) with holomorphic entries, n ≤ k by ∆i, j. Suppose that ai, j is convenient, for i = 1, . . . ,n and

j = 1, . . . ,k, and m ≤ 2(k−n+2).

(i) If the A is Newton non-degenerate, then (Xn
A,0) is smooth outside of the origin.

(ii) If the germ of a convenient function f : (Cm,0)→ (C,0) is Newton non-degenerate with respect

to A, the Euler characteristic of a Milnor fiber of f |Xn
A

is

∑
Γ∈Φ

I⊂{1,...,m}

χ(∆̃I,∆Γ,I
1,1 ∗ · · · ∗∆

Γ,I
n,1, · · · ,∆

Γ,I
1,k ∗ · · · ∗∆

Γ,I
n,k),

where ∆ is the Newton polyhedron of f and ∆
Γ,I
1, j ∗· · ·∗∆

Γ, j
n,1 denotes the Newton pile (BΓ

1 , . . . ,B
Γ
k ,∆

I.)

for B1 = · · ·Bk = {e0,e1, . . . ,en−1}.

The proof follows the same construction as Corollary 3.10. Moreover, if the Newton polyhedron

of ai, j does not depend on i, we have the simpler formula.

Corollary 3.18. Denote the Newton polyhedron of the entry ai, j of a matrix A = (ai, j) : (Cm,0) →
(Mn,k,0) with holomorphic entries, n ≤ k by ∆ j. Suppose that ai, j is convenient, for i = 1, . . . ,n and

j = 1, . . . ,k, and m ≤ 2(k−n+2).
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(i) If the A is Newton non-degenerate, then (Xn
A,0) is smooth outside of the origin.

(ii) If the germ of a convenient function f : (Cm,0)→ (C,0) is Newton non-degenerate with respect

to A, then the Euler characteristic of a Milnor fiber of f |Xn
A

is

∑
{ j1,..., jq}⊂{1,...,k}

∑
I⊂{1,...,m}
|I|≥q+1

|I|−q

∑
a=1

(−1)|I|+k−n
(
|I|+q−a−2
n+q− k−1

)

× ∑
a j1

,...,a jq∈N

a j1+···+a jq=|I|−a

|I|! · (∆̃I
0)

a(∆̃I
j1)

a j1 · · ·(∆̃I
jq)

a jq .

The proof can be found in [18, Theorem 1.12].

2 Local Euler obstruction

Theorem 1.74, relates the local Euler obstruction of an analytic space X with the Euler charac-

teristic of the Milnor fiber restricted to each stratum of a Whitney stratification of X . In addition,

Theorem 3.15 computes the Euler characteristic of the Milnor fiber restricted to a resultantal singu-

larity in terms of its Newton pile. The main purpose of this section is combining these theorems in

order to present a formula to compute the local Euler obstruction of an IDS (Xn
A,0) in terms of the

Newton polyhedra of the entries of the matrix A. We start stating a theorem which computes the local

Euler obstruction of resultantal varieties with an isolated singularity in terms of its Newton pile.

Theorem 3.19. Let P = (B1, . . . ,Bk,∆.) be a convenient essential (m,n)-Newton pile and consider

the germ of an isolated resultantal singularity X = f−1(Σ(B1, . . . ,Bk)). Let Φ be the dual fan of the

convex hull conv(∑ j B j). Then the local Euler obstruction of X is

EuX(0) = ∑
Γ∈Φ

I⊂{1,...,m}

χ(L̃ I,PΓ,I(1), · · · ,PΓ,I(k)),

for almost all f ∈ C{P}, where L = Rm
+ \Sm and L̃ = {e0}×L .

Proof. Since X has an isolated singularity at the origin, the partition

V = {{0},X \{0}}

is a Whitney stratification of X . Thus, if l : (Cm,0) → (C,0) is a generic linear form, by Theorem

1.74

EuX(0) = χ({0}∩Bε ∩ l−1(t0)) ·EuX({0})+χ((Xn
A \{0})∩Bε ∩ l−1(t0)) ·EuXn(X \{0}).

On the other hand, as t0 ̸= 0, then {0}∩Bε ∩ l−1(t0) = /0. Therefore,

χ({0}∩Bε ∩ l−1(t0)) = 0.



2. Local Euler obstruction 65

Moreover, the stratum X \{0} is the smooth part of X , then EuX(X \{0}) = 1. Consequently,

EuX(0) = χ(X \{0}∩Bε ∩ l−1(t0)).

Therefore in order to compute the Euler obstruction of an isolated singularity X , we can compute the

Euler characteristic of the Milnor fiber of a generic linear form on X .

Moreover, by Lemma 1.73, we can choose an appropriate linear form l : (Cm,0)→ (C,0) which

is convenient (its Newton polyhedron is L = Rm
+ \Sm). Therefore, the result follows from Theorem

3.15.

Applying the same process as in the previous section, we can rewrite the above theorem for iso-

lated determinantal singularities.

Corollary 3.20. Denote the Newton polyhedron of the entry ai, j of a matrix A = (ai, j) : (Cm,0) →
(Mn,k,0) with holomorphic entries, n ≤ k, by ∆i, j. If the matrix A is Newton non-degenerate, then the

local Euler obstruction of (Xn
A,0) is

EuXn
A
(0) = ∑

Γ∈Φ

I⊂{1,...,m}

χ(L̃ I,∆Γ,I
1,1 ∗ · · · ∗∆

Γ,I
n,1, · · · ,∆

Γ,I
1,k ∗ · · · ∗∆

Γ,I
n,k).

In addition, if the germ of a matrix A is such that the Newton polyhedron of ai, j is independent of

i, for all j = 1, . . . ,k, we have a much simpler formula.

Corollary 3.21. Let Xn
A be an isolated determinantal singularity defined by the matrix germ A :

(Cm,0)→ (Mn,k,0), where A has holomorphic entries. Suppose that the Newton polyhedra ai, j does

not depend on i and the function ai, j is convenient, i = 1, . . . ,n, j = 1, . . . ,k. Denote by ∆ j the Newton

polyhedron of ai, j, j = 1, . . . ,k. If the matrix A is Newton non-degenerate, then

EuXn
A
(0) = ∑

{ j1,..., jq}⊂{1,...,k}
∑

I⊂{1,...,m}
|I|≥q+1

|I|−q

∑
a=1

(−1)|I|+k−n
(
|I|+q−a−2
n+q− k−1

)

× ∑
a j1

,...,a jq∈N

a j1+···+a jq=|I|−a

|I|! · (LI)a(∆̃I
j1)

a j1 · · ·(∆̃I
jq)

a jq .

Example 3.22. Let (X2
A,0) be the IDS defined by the matrix germ A : (C4,0)→ (M2,3,0), where

A =

[
x+ y+ z+w 2x+ y+ z+3w 5x+7y+ z+w

2x+3y+7z+8w 9x+5y+7z+11w 13x+15y+9z+11w

]
.
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The matrix A is Newton non-degenerate and its entries are convenient. Therefore, by Corollary 3.21,

EuX2
A
(0) = 3![(L{1,2,3})1(∆̃

{1,2,3}
1 )1(∆̃

{1,2,3}
2 )1 +(L{1,2,3})1(∆̃

{1,2,3}
1 )1(∆̃

{1,2,3}
3 )1

+(L{1,2,3})1(∆̃
{1,2,3}
1 )2(∆̃

{1,2,3}
3 )1 +(L{1,2,4})1(∆̃

{1,2,4}
1 )1(∆̃

{1,2,4}
2 )1

+(L{1,2,4})1(∆̃
{1,2,4}
1 )1(∆̃

{1,2,4}
3 )1 +(L{1,2,4})1(∆̃

{1,2,4}
1 )2(∆̃

{1,2,4}
3 )1

+(L{1,3,4})1(∆̃
{1,3,4}
1 )1(∆̃

{1,3,4}
2 )1 +(L{1,3,4})1(∆̃

{1,3,4}
1 )1(∆̃

{1,3,4}
3 )1

+(L{1,3,4})1(∆̃
{1,3,4}
1 )2(∆̃

{1,3,4}
3 )1 +(L{2,3,4})1(∆̃

{2,3,4}
1 )1(∆̃

{2,3,4}
2 )1

+(L{2,3,4})1(∆̃
{2,3,4}
1 )1(∆̃

{2,3,4}
3 )1 +(L{2,3,4})1(∆̃

{2,3,4}
1 )2(∆̃

{2,3,4}
3 )1]

−4![(L)2(∆̃1)
1(∆̃2)

1 +(L)1(∆̃1)
1(∆̃2)

1 +(L)1(∆̃1)
1(∆̃2)

2 +(L)2(∆̃1)
1(∆̃3)

1

+(L)1(∆̃1)
1(∆̃3)

1 +(L)1(∆̃1)
1(∆̃3)

2 +(L)2(∆̃2)
1(∆̃3)

1 +(L)1(∆̃2)1(∆̃3)
1 +(L)1(∆̃2)

1(∆̃3)
2]

−4 ·4!(L)1(∆̃1)
1(∆̃2)

1(∆̃3)
1

= 12−9−4 =−1.

3 G -equivalence and matrices with non-convenient entries

In 1976, Kouchnirenko [39] introduced a formula to compute the Milnor number of a germ

of Newton non-degenerate function f : (Cm,0) → (C,0) in terms of its Newton polyhedron. If

f (x1, . . . ,xm) is non-convenient, the author dealt with this function in the following way: he would

add a function f̃ (x1, . . . ,xm) = α1xM
1 + · · ·+αmxM

m to f . In this way the function g = f + f̃ is conve-

nient. Moreover, Kouchnirenko proved that the Milnor number of f and g are equal for M big enough

and, for sufficiently general coefficients α1, . . . ,αm, the function g is Newton non-degenerate.

In this section, we use the ideas introduced by Kouchnirenko [39] and G -equivalence of matrices

to deal with matrices, which do not have convenient entries.

We start this section with a motivational example. Consider the IDS X2
A defined by the matrix

A =

[
x+ y y+ z z+w

2x+3y 5y+7z 9z+11w

]
.

The matrix A is Newton non-degenerate (see A.2), but its entries are not convenient. Consider now

the matrix

Ã =

[
x2 + y2 + z2 +w2 x2 + y2 + z2 +w2 x2 + y2 + z2 +w2w

2x2 + y2 +2z2 +3w2 5x2 + y2 + z2 +7w2 9x2 +11y2 + z2 +w2

]
.

The matrix 2A = A+ Ã is Newton non-degenerate and its entries are convenient. Moreover, A is G -

finitely determined and its determinacy bound is 1 (see Definition 1.27). Therefore, the germs A and

2A are G -equivalents and, for this reason, the determinantal singularities X2
A and X2

2A have the same

Euler obstruction. Therefore, we can apply Corollary 3.21 to the matrix 2A.

We can extend the above construction to any isolated determinantal singularity. Let MA = (Mai, j)

denote the matrix defined by Mai, j = ai, j +
m
∑

l=1
α l

i, jx
M
l , we denote by M∆i, j the Newton polyhedron of

MA.
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Theorem 3.23. Let Xn
A be the IDS defined by the matrix germ A : (Cm,0) → (Mn,k,0) with non-

convenient entries. If the matrix A is Newton non-degenerate, then the local Euler obstruction of

(Xn
A,0) is

EuXn
A
(0) = ∑

Γ∈Φ

I⊂{1,...,m}

χ(L̃ I,M∆
Γ,I
1,1 ∗ · · · ∗M∆

Γ,I
n,1, . . . ,M∆

Γ,I
1,k ∗ · · · ∗M∆

Γ,I
n,k),

where M is greater than the determinacy bound of A.

Proof. Let (Xn
A,0) be an isolated determinantal singularity, defined by the matrix A = (ai, j). By

Theorem 1.28, Xn
A is finitely determined. Consider the matrix Ã = (ãi, j), where ãi, j =

m
∑

l=1
α l

i, jx
M
i ,

i = 1, . . . ,n and j = 1, . . . ,k. Suppose that M is greater than the determinacy bound of A, then the

matrices A and MA = A+ Ã are G -equivalents. Therefore, Xn
A is isomorph to Xn

MA and they have the

same Euler obstruction.

Since A is Newton non-degenerate, then MA is Newton non-degenerate for almost all coefficients

α l
i, j (see [39, Theorem 3.7]), therefore, we can choose appropriate α l

i, j such that each entry Mai, j is

convenient, i = 1, . . . ,n and j = 1, . . . ,k, and the matrix MA is Newton non-degenerate. Therefore, by

Corollary 3.20, the local Euler obstruction of Xn
A is

EuXn
A
(0) = EuXn

MA
(0) = ∑

Γ∈Φ

I⊂{1,...,m}

χ(L̃ I,M∆
Γ,I
1,1 ∗ · · · ∗M∆

Γ,I
n,1, . . . ,M∆

Γ,I
1,k ∗ · · · ∗M∆

Γ,I
n,k).

As usual, if the Newton polyhedron of ai, j does not depend on i, we have the following simpler

formula.

Corollary 3.24. Let (Xn
A,0) be the IDS defined by the matrix germ A = (ai, j) : (Cm,0) → (Mn,k,0)

with non-convenient entries. Denote by ∆ j the Newton polyhedron of ai, j. If the matrix A is Newton

non-degenerate, then the local Euler obstruction of Xn
A is

EuXn
A
(0) = ∑

{ j1,..., jq}⊂{1,...,k}
∑

I⊂{1,...,m}
|I|≥q+1

|I|−q

∑
a=1

(−1)|I|+k−n
(
|I|+q−a−2
n+q− k−1

)

× ∑
a j1

,...,a jq∈N

a j1+···+a jq=|I|−a

|I|! · (LI)a(M∆̃
I
j1)

a j1 · · ·(M∆̃
I
jq)

a jq .

Example 3.25. Consider the matrix germ A from the above construction, i.e.,

A =

[
x+ y y+ z z+w

2x+3y 5y+7z 9z+11w

]
.
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Then, by Corollary 3.24,

EuX2
A
(0) = ∑

{ j1,..., jq}⊂{1,2,3}
∑

I⊂{1,2,3,4}
|I|≥q+1

|I|−q

∑
a=1

(−1)|I|+1
(
|I|+q−a−2

q−2

)

× ∑
a j1

,...,a jq∈N

a j1+···+a jq=|I|−a

|I|! · (LI)a(2∆̃
I
j1)

a j1 · · ·(2∆̃
I
jq)

a jq =−1.

We used OSCAR [51] to compute this local Euler obstruction (see Example A.6).

4 Vanishing Euler characteristic and Newton polyhedra

The purpose of this section is to use the same ideas as in Section 3 and apply G -equivalence of

matrices also to compute the vanishing Euler characteristic of an IDS X s
A.

Let A : (Cm ×C,0) → (Mn,k,0) be a determinantal smoothing of Xn
A . We take a small enough

representative A : Bε ×D → C, where Bε is the open ball with radius ε centered at 0 ∈ Cm and D is

small enough open ball centered at the origin in C, such that Xn
At

is smooth and rank(At(x)) = n− 1

for all x ∈ Xn
At

and all t ∈ D\{0}. By Theorem 1.80

ν(Xn
A,0) = (−1)d(χ(Xt)−1),

for all t ∈ D\{0}, where d is the dimension of X s
A.

Since A is a determinantal smoothing, then (Xn
A ,0) ⊂ Cm+1 is an isolated determinantal singu-

larity. Moreover, the determinantal smoothing A can be chosen such that the matrix A is Newton

non-degenerate and the variable t appears in every entry of A (see [45, Proof of Theorem 3.4]). We

consider the projection onto the second factor

π : (Cm ×C,0) → (C,0)
(x, t) 7→ t ,

which is a finite map germ whose generic fiber is π|−1
Xn

A
(t) = Xn

At
. Therefore, we can compute the

vanishing Euler characteristic, by computing the Euler characteristic of the Milnor fiber of π restricted

to the total space Xn
A , i.e.,

ν(Xn
A,0) = (−1)d(χ(Xn

A ∩π
−1(δ )∩Bε)−1),

where δ ∈ C\{0} is such that |δ |<< 1.

We observe that the set of critical points of π|Xn
A is Xn

A ×{0} ⊂ Cm ×C. Therefore, if the matrix

A is Newton non-degenerate, then the projection π is Newton non-degenerate with respect to A .

Our first challenge to compute this Euler characteristic using Corollary 3.17 comes from the fact

that π is not convenient. However, we apply G -equivalence of matrices to overcome this challenge.
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Firstly, consider the function Mπ : (Cm×C,0)→ (C,0) defined by Mπ(x1, . . . ,xm, t) = t+β1xM
1 +

· · ·+βmxM
m . Consider MA = A + Ã, where Ã = (ãi, j) and ãi, j =

m
∑

l=1
α l

i, jx
M
l (we do not need to add a

monomial αtM, because we can choose a determinantal smoothing with t in every entry). Suppose that

M is greater than the determinacy bound of A , therefore, Xn
A and Xn

MA are isomorph. Moreover, since

M is greater than the determinacy bound of A , then Mπ−1(t)∩Xn
A is isomorph to Xn

At
. Therefore, we

can replace the Euler characteristic of Xn
At

by the Euler characteristic of Mπ−1(t)∩Xn
A to compute the

vanishing Euler characteristic of Xn
A . Hence,

ν(Xn
A,0) = (−1)d(χ(Xn

A ∩Mπ
−1(δ )∩Bε)−1).

In addition, if A is Newton non-degenerate, then the projection π is Newton non-degenerate with

respect to A and we can choose the coefficients βl and α l
i, j, l = 1, . . . ,m such that Mπ is Newton

non-degenerate with respect to MA (see [39, Theorem 3.7]). Hence, we have the following result.

Theorem 3.26. Let A : (Cm,0)→ (Mn,k,0) be a germ of a Newton non-degenerate matrix. Suppose

that (Xn
A,0) is an isolated determinantal singularity and let A = (Ai, j) : (Cm,0) → (Mn,k,0) be its

determinantal smoothing. Denote by ∆i, j the Newton polyhedron of Ai, j. Then we have the following

relation.

1+(−1)dimXn
A ν(Xn

A,0) = ∑
Γ∈Φ

I⊂{1,...,m}

χ(M∆̃
I,M∆

Γ,I
1,1 ∗ · · · ∗M∆

Γ,I
n,1, . . . ,M∆

Γ,I
1,k ∗ · · · ∗M∆

Γ,I
n,k),

where M∆ is the Newton polyhedron of Mπ .

In the case, where the Newton polyhedron of Ai, j does not depend on i, for all j = 1, . . . ,k, we

have the following formula.

Corollary 3.27. Let A : (Cm,0) → (Mn,k,0) be a germ of a Newton non-degenerate matrix. Sup-

pose that (Xn
A,0) is an isolated determinantal singularity and A = (Ai, j) : (Cm,0)→ (Mn,k,0) is its

determinantal smoothing. Let ∆ j be the Newton polyhedron of Ai, j. Then

1+(−1)dimXn
A ν(Xn

A,0) = ∑
{ j1,..., jq}⊂{1,...,k}

∑
I⊂{1,...,m}
|I|≥q+1

|I|−q

∑
a=1

(−1)|I|+k−n
(
|I|+q−a−2
n+q− k−1

)

× ∑
a j1

,...,a jq∈N

a j1+···+a jq=|I|−a

|I|! · (M∆̃
I
0)

a(M∆̃
I
j1)

a j1 · · ·(M∆̃
I
jq)

a jq .

Example 3.28. Consider the matrix germ

A =

[
x+ y y+ z z+w

2x+3y 5y+7z 9z+11w

]
.

X2
A ⊂ C4 is an isolated determinantal singularity. Let A = A+B denote its smoothing, where

B =
1

100

[
6t −8t 5t
t 8t 7t

]
.
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As in the previous section, we consider the matrix

Ã =

[
x2 + y2 + z2 +w2 x2 + y2 + z2 +w2 x2 + y2 + z2 +w2w

2x2 + y2 +2z2 +3w2 5x2 + y2 + z2 +7w2 9x2 +11y2 + z2 +w2

]
.

The matrix 2A = A + Ã is Newton non-degenerate (see Example A.4) and it is G -equivalent to A .

Consider the projection π : C4 ×C→ C defined by π(x,y,z,w, t) = t and the function 2π : C4 ×
C→C, where 2π(x,y,z,w, t) = x2+y2+z2+w2+ t. Consider 0 < |δ |<< 1 and set t = δ −x2−y2−
z2 −w2. Therefore,

2π
−1(δ )∩X2

2A
∼= X2

2Aδ
,

where 2Aδ = A+ Ã+Bδ and

Bδ =
1

100

[
6(δ − x2 − y2 − z2 −w2) −8(δ − x2 − y2 − z2 −w2) 5(δ − x2 − y2 − z2 −w2)
(δ − x2 − y2 − z2 −w2) 8(δ − x2 − y2 − z2 −w2) 7(δ − x2 − y2 − z2 −w2)

]
.

We have

X2
At
∼= π

−1(t)∩X2
A

∼= 2π
−1(t)∩X2

2A
.

Moreover, since 2 is greater than the determinacy bound of Aδ , the matrix 2Aδ is G -equivalent to

Aδ . Thus X2
Aδ

∼= X2
2Aδ

. In addition, setting π(x,y,z,w, t) = t = δ , we obtain X2
At
∩π−1(δ )∼= X2

Aδ
.

Therefore,

ν(X2
A,0) = (−1)2(χ(X2

At
∩π

−1(δ )∩Bε)−1) = (−1)2(χ(X2
2A

∩ 2π
−1(δ )∩Bε)−1).

Thus, computing the Euler characteristic of the Milnor fiber of 2π restricted to X2
2A

, we obtain

1+ν(X2
A,0) = ∑

{ j1,..., jq}⊂{1,2,3}
∑

I⊂{1,...,5}
|I|≥q+1

|I|−q

∑
a=1

(−1)|I|+1
(
|I|+q−a−2

q−2

)

× ∑
a j1

,...,a jq∈N

a j1+···+a jq=|I|−a

|I|! · (2∆̃
I
0)

a(2∆̃
I
j1)

a j1 · · ·(2∆̃
I
jq)

a jq = 2.

Hence, ν(X2
A,0) = 2−1 = 1.

The above Euler characteristic of the Milnor fiber was computed with OSCAR [51] (see Example

A.7).



CHAPTER 4

GL-equivalence and Newton polyhedra

The purpose of this chapter is to present methods which allow us to compute more concrete

examples, where we can apply the results from Chapter 3. We apply row and column operations to

the germ of a matrix A = (ai, j) in order to obtain a new matrix Ã such that up to constants all the

monomial components of each ai, j appear on each entry of Ã and, therefore, the Newton polyhedron

of each entry of Ã will be the same. After this process, the condition that the Newton polyhedron of

each column of the matrix Ã is convenient will be more satisfiable.

1 Equivalent matrices and Newton polyhedra

We start this section defining an equivalence of matrices, which is slightly different from the

definition of G -equivalence (Definition 1.25).

Definition 4.1. The germs of matrices A, Ã : (Cm,0)→ (Mn,k,0) are said to be GL-equivalent if they

belong to the same equivalence class of the following relation:

A ∼ Ã ⇔∃P ∈ GLn(C),∃Q ∈ GLk(C) : Ã = P ·A ·Q,

where GLl(C) is the group of order l invertible matrices with entries in C.

In contrast to Definition 1.25, the above definition does not involve a change of coordinates on the

source. Therefore, if the germs A, Ã : (Cm,0)→ (Mn,k,0) are GL-equivalent, then X s
A = X s

Ã
.

Furthermore, the action GLn(C)×GLk(C) on the space of matrices Mn,k(Om) is a subgroup of the

G -action (see [14, 52]). Since the invariants such as polar multiplicities, Euler obstruction, vanishing

Euler characteristic only depend on the G -equivalence class, the GL-equivalence of matrices does not

alter them.

71
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Definition 4.2. If A = (ai, j) : (Cm,0)→ (Mn,k,0) is a germ of a matrix with polynomial entries, we

denote by

supp(A) :=
⋃

i ∈ {1, . . . ,n}
j ∈ {1, . . . ,k}

supp(ai,j).

The Newton polyhedron of A, which we denote by ∆A, is the Newton polyhedron determined by

supp(A).

Given a germ of a matrix A, there is always a germ Ã which is GL-equivalent to A such that the

Newton polyhedron of each entry of Ã is equal to ∆A. Since both the matrices A and Ã define the same

singularity, therefore, if A defines a determinantal singularity, then whenever we need the Newton

polyhedron of each entry of a matrix A and Ã is Newton non-degenerate, we can replace them by ∆A.

Definition 4.3. Let A be a germ of a matrix with polynomial entries. We say that Ã is GL-equivalent
to A with respect to ∆A, if Ã is GL-equivalent to A and the Newton polyhedron of each entry of Ã is

equal to ∆A.

Example 4.4. Consider the determinantal singularity given by the germ A : (C4,0)→ (M2,3,0), where

A =

[
x− z y−w z−w
y−w z−w w+ x

]
.

None of the entries of A has convenient Newton polyhedron ∆i, j. Now, consider the matrices

P =

[
1 1
1 2

]
and Q =

 1 1 1
1 2 1
1 1 2

 . (1.1)

We obtain the germ Ã = P ·A ·Q, given by

Ã =

[
2x+2y+ z−3w 2x+3y+2z−5w 3x+2y+2z−3w
3x+3y+2z−4w 3x+4y+4z−7w 5x+3y+3z−3w

]
.

In this case, every function ãi, j is convenient and has the same Newton polyhedron, i = 1, . . . ,n,

j = 1, . . . ,k.

We observe that the GL-equivalence may affect the Newton non-degeneracy conditions. In the

following we exemplify this fact in the next example.

Example 4.5. (i) In Example 4.4, both matrices A and Ã are Newton non-degenerate. Then we

can apply the results from Chapter 3, directly to Ã.

(ii) Now, consider the determinantal singularity given by the germ of the matrix

B =

[
x y z
y z w

]
.
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For every collection of positive weights w = (w1,w2,w3,w4), the matrix Bw = (bw
i, j) = B. Since

X2
B ∩ (C∗)4 is a smooth determinantal variety, the matrix B is Newton non-degenerate.

Using the matrices P and Q from Eq. (1.1), we obtain the germ B̃ = P ·B ·Q given by the matrix[
x+2y+2z+w x+3y+3z+w x+2y+3z+2w

x+3y+3z+2w x+4y+5z+2w x+3y+4z+4w

]
.

Consider the weight w = (1,2,2,2), then

B̃w =

[
x x x
x x x

]
.

Therefore X2
B̃w ∩C∗4 = C4 ∩C∗4 is not a determinantal variety. Hence, B̃ is not Newton non-

degenerate.

Motivated by this example, we present the following definition.

Definition 4.6. Let A = (ai, j) : (Cm,0)→ (Mn,k,0) be a germ of a matrix with polynomial entries.

(i) The matrix A is weakly Newton non-degenerate with respect to ∆A if for every bounded face

Γ of ∆A the matrix A|Γ is Newton non-degenerate;

(ii) The matrix A is Newton non-degenerate with respect to ∆A if for every bounded face Γ of ∆A

the matrix A|Γ is strongly Newton non-degenerate;

(iii) The germ of a function f is Newton non-degenerate with respect to A and ∆A if for every

bounded face Γ of ∆A the function f |Γ is Newton non-degenerate with respect to the matrix

A|Γ.

We choose to define Newton non-degeneracy trough the bounded faces of ∆A, in order to be able

to verify this condition directly to the matrix A. The definitions trough bounded faces and strictly

positive weights are equivalent (see [18] and [19]).

Example 4.7. Let A be the matrix from Example 4.4 is Newton non-degenerate with respect to its

Newton polyhedron ∆A.

Using this ideas we show, in the next sections, how we can compute invariants of determinantal

singularities using the polyhedron ∆A.

2 Multiplicity

Corollary 3.13 computes the multiplicity of a determinantal variety Xn
A when A is weakly Newton

non-degenerate, each entry ai, j is convenient and the Newton polyhedron of ai, j does not depend on

i, i = {1, . . . ,n} j = 1, . . . ,k. Using this result and equivalence of matrices we present the next result,

which depends only on the Newton polyhedron of A.
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Proposition 4.8. Let A = (ai, j) : (Cm,0)→ (Mn,k,0) be a germ of a matrix with polynomial entries

such that its Newton polyhedron ∆A touches all coordinate axes. If A is weakly Newton non-degenerate

with respect to ∆A, then A defines the germ of a determinantal singularity Xn
A , whose multiplicity is

m(Xn
A,0) =

(
k

k−n+1

)
·m! · ∆̃k−n+1

A Lm−k+n−1.

Proof. Let Ã be a germ of a matrix equivalent to A with respect to ∆A. Then Ã is weakly Newton non-

degenerate and the entries ãi, j are convenient. By Corollary 3.13, the variety Xn
Ã

is a determinantal

singularity and it has multiplicity

m(Xn
Ã
,0) = ∑

0< j0<···< jk−n≤k
m! · ∆̃1

j0 · · · ∆̃
1
jk−n

Lm−k+n−1, (2.1)

where ∆ j is the Newton polyhedron of the function ãi, j : Cm → C. Since Xn
A = Xn

Ã
and ∆ j = ∆A, for

all j = 1, . . . ,k, by Eq. (2.1), the multiplicity of Xn
A = Xn

Ã
is

m(Xn
A,0) = m(Xn

Ã
,0) = ∑

0< j0<···< jk−n≤k
m! · ∆̃k−n+1

A Lm−k+n−1 =

(
k

k−n+1

)
·m! · ∆̃k−n+1

A Lm−k+n−1.

Example 4.9. Let A be the germ given by the matrix

A =

[
x− z2 y3 −w4 z2 −w4

y3 −w4 z2 −w4 w4 + x

]
and P and Q from Eq. (1.1), then we obtain the germ Ã = P ·A ·Q, given by the matrix[

2x+2y3 + z2 −3w4 2x+3y3 +2z2 −5w4 3x+2y3 +2z2 −3w4

3x+3y3 +2z2 −4w4 3x+4y3 +4z2 −7w4 5x+3y3 +3z2 −3w4

]
.

The Newton polyhedron of each entry of Ã, ∆A, is convenient and the matrix Ã is Newton non-

degenerate (see A.3), then the matrix A is Newton non-degenerate with respect to ∆A. By Proposition

4.8, X2
A is a determinantal singularity and its multiplicity is

m(X2
A,0) =

(
3
2

)
·4! · ∆̃2

AL2 =

(
3
2

)
= 3 ·4! · 2

4!
= 6.

Here, we use OSCAR [51] to compute the mixed volume ∆̃2
AL2 (see Example A.5).

We observe that, we could not apply Corollary 3.13 to the matrix A. However, we can apply to

a germ Ã, which is equivalent to A with respect to ∆A. This is the same as applying Proposition 4.8

directly to the matrix A.

Now, we compute the multiplicity of a determinantal singularity defined by a matrix A with linear

initial part. This class of determinantal singularities includes the ones defined by matrices with linear

entries, which is very important, for instance, in [1], the authors find a class of essentially isolated

determinantal singularities defined by a matrix with homogeneous entries using a matrix with linear

entries.
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Corollary 4.10. Under the conditions of the Proposition 4.8, if the matrix germ A : (Cm,0)→ (Mn,k,0)

has linear initial part, then the multiplicity of Xn
A is given by

m(Xn
A,0) =

(
k

k−n+1

)
.

Proof. It follows directly from the fact that, in this case, ∆̃A = L.

Example 4.11. Consider the germ A, given in Example 4.4. The Newton polyhedron ∆A is convenient,

A is Newton non-degenerate with respect to ∆A and ∆̃A = L. By the last corollary, X2
A is a determinantal

singularity and its multiplicity is

m(X2
A,0) =

(
3
2

)
= 3.

In the following, we present an example where the matrix A is not Newton non-degenerate with

respect to ∆A, but we use the equivalence of matrices to find an equivalent matrix which is Newton

non-degenerate, using one Newton polyhedra for the first two columns of A and another Newton

polyhedron for the last column.

Example 4.12. Consider the germ A given by the matrix

A =

[
z+w− y y+ x+ z x− y−w
x− y−w w− z− y y2 + zk

]
and the matrix

Q =

[
1 2
2 3

]
.

Then, we have the equivalent matrix Ã = Q ·A given by[
2x−3y+ z+w x− y− z+w x− y+ y2 +2zk −w

3x−4y+ z+2w x−2y−2z+2w x− y+2y2 +3zk −w

]
.

The matrix Ã is Newton non-degenerate, in this case ∆̃1 = ∆̃2 = L and ∆3 is the Newton polyhe-

dron with vertices {(1,0,0,0),(0,1,0,0),(0,0,k,0),(0,0,0,1),(0,0,0,0)}. Therefore, we can apply

Corollary 3.13 to Ã and obtain

m(Xn
A,0) = 4! ·L4 +4! · ∆̃1

3L3 +4! · ∆̃1
3L3 = 3.

3 Local Euler obstruction

We can apply the same process as in Proposition 4.8, in order to compute the Euler characteristic

of the Milnor of a function restricted to a determinantal singularity and, consequently, compute the

local Euler obstruction of an isolated determinantal singularity in terms of the Newton polyhedra of

the matrix.
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Proposition 4.13. Let Xn
A be a determinantal singularity given by the matrix A = (ai, j) : (Cm,0)→

(Mn,k,0), where A has holomorphic entries and Newton polyhedron ∆A. Suppose that ∆A touches all

the coordinate axes and m ≤ 2(k−n+2).

i) If A is Newton non-degenerate with respect to ∆A, then Xn
A is smooth outside the origin.

ii) If the map germ f : (Cm,0)→ (C,0) is convenient and f is Newton non-degenerate with respect

to A and ∆A, then the Euler characteristic of the Milnor fiber of f |Xn
A

is given by

χ(F0) =
k

∑
q=k−n+1

∑
I⊂{1,...,m}
|I|≥q+1

|I|−q

∑
a=1

(−1)|I|+k−n
(
|I|+q−a−2
n+q− k−1

)

×
(
|I|−a−1

q−1

)(
k
q

)
· |I|! · (∆̃I

f )
a(∆̃I

A)
|I|−a.

Proof. Let Ã be a germ equivalent to A with respect to ∆A. By Corollary 3.18, the determinantal

singularity Xn
A = Xn

Ã
is smooth outside the origin and

χ(F0) = ∑
a∈N, I⊂{1,...,m}

{ j1,..., jq}⊂{1,...,k}

(−1)|I|+k−n
(
|I|+q−a−2
n+q− k−1

)

× ∑
a j1

,...,a jq∈N

a j1+···+a jq=|I|−a

|I|! · (∆̃I
f )

a(∆̃I
j1)

a j1 · · ·(∆̃I
jq)

a jq ,

where ∆ j is the Newton polyhedron of ãi, j. Since ∆A = ∆ j, for all j ∈ {1, . . . ,k}, we have

χ(F0) = ∑
a∈N, I⊂{1,...,m}

{ j1,..., jq}⊂{1,...,k}

(−1)|I|+k−n
(
|I|+q−a−2
n+q− k−1

)

× ∑
a j1

,...,a jq∈N

a j1+···+a jq=|I|−a

|I|! · (∆̃I
f )

a(∆̃I
A)

a j1 · · ·(∆̃I
A)

a jq .

Furthermore, the number of combinations for the sum a j1 + · · ·+a jq = |I|−a is
(
|I|−a−1

q−1

)
, then

we have

χ(F0) = ∑
a∈N, I⊂{1,...,m}

{ j1,..., jq}⊂{1,...,k}

(−1)|I|+k−n
(
|I|+q−a−2
n+q− k−1

)(
|I|−a−1

q−1

)(
k
q

)
· |I|! · (∆̃I

f )
a(∆̃I

A)
|I|−a.

We assume
(r

s

)
= 0 for r /∈ {0, . . . ,s}, then, all terms in this sum are equal to zero, except the terms

with |I|−a ≥ q > k−n. Hence,

χ(F0) =
k

∑
q=k−n+1

∑
I⊂{1,...,m}
|I|≥q+1

|I|−q

∑
a=1

(−1)|I|+k−n
(
|I|+q−a−2
n+q− k−1

)(
|I|−a−1

q−1

)(
k
q

)
· |I|! · (∆̃I

f )
a(∆̃I

A)
|I|−a.
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As a consequence of Proposition 4.13, we can also compute the local Euler obstruction of a

determinantal variety with isolated singularity using the Newton polyhedron of A.

Corollary 4.14. Let Xn
A be an isolated determinantal singularity defined by the germ A : (Cm,0)→

(Mn,k,0), where A has holomorphic entries. Suppose that ∆A touches all coordinate axes. If the matrix

A is Newton non-degenerate with respect to ∆A, then

EuXn
A
(0) =

k

∑
q=k−n+1

∑
I⊂{1,...,m}
|I|≥q+1

|I|−q

∑
a=1

(−1)|I|+k−n
(
|I|+q−a−2
n+q− k−1

)

×
(
|I|−a−1

q−1

)(
k
q

)
· |I|! · (LI)a(∆̃I

A)
|I|−a.

Example 4.15. Let (X ,0)⊂ (Cm,0) be an ICIS defined by the polynomial functions f1, . . . , fk, where

fi : (Cm,0)→ (C,0) for i = 1, . . . ,k. Since (X ,0) is an ICIS, (X ,0) is also a determinantal singularity

given by X = X1
A , where A = [ f1 · · · fk ]. If ∆A touches all the coordinate axes and A is Newton

non-degenerate with respect to ∆A, then the local Euler obstruction of X is

EuX(0) = ∑
I⊂{1,...,m}
|I|≥k+1

|I|−k

∑
a=1

(−1)|I|+k−1 ·
(
|I|−a−1

k−1

)
· |I|! · (LI)a(∆̃I

A)
|I|−a.

For instance, consider the ICIS X1
A where A : (C3,0)→ (M1,2,0) is defined by

A(x,y,z) =
[

x2 + y2 xy+ zk
]
.

The matrix A is Newton non-degenerate with respect to ∆A, therefore

EuX1
A
(0) =

(
1
1

)
·3! · (L)1(∆̃A)

2 = 3! · 4
3!

= 4.

Another way to make this computation is using Eq. (5.1) together with Proposition 4.8. Since, X1
A is

a curve, then

EuX1
A
(0) = m0(X1

A,0) =
(

2
2

)
3!(∆̃A)

2(L)1 = 4.

Remark 4.16. In the last example, we can see that the local Euler obstruction can be independent of

k in the Ak, Dk and Sk series of singularities. There are many cases where the local Euler obstruction

depends on characteristics which are not related to every exponent of every monomial. For instance,

the Euler obstruction of affine toric surfaces depends only in the minimum dimension of the embed-

ding (see [29]) and the local Euler obstruction of images of stable maps with corank 1 is always 1

(see [38]).

In the following we present a class of IDS for which the local Euler obstruction is given just as a

sum of binomial coefficients.
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Corollary 4.17. When a germ A satisfies the conditions of Corollary 4.14 and A has linear initial

part, we have the following formula for the local Euler obstruction of Xn
A:

EuXn
A
(0) =

k

∑
q=k−n+1

m

∑
|I|=q+1

|I|−q

∑
a=1

(−1)|I|+k−n
(
|I|+q−a−2
n+q− k−1

)(
|I|−a−1

q−1

)(
k
q

)(
m
|I|

)
.

Example 4.18. Consider A, the germ given in Example 4.4. Since the matrix A have linear entries

and the matrix A is Newton non-degenerate with respect to ∆A, by Corollary 4.17,

EuX2
A
(0) =

3

∑
q=2

4

∑
|I|=q+1

|I|−q

∑
a=1

(−1)|I|+1
(
|I|+q−a−2

q−2

)(
|I|−a−1

q−1

)(
3
q

)(
4
|I|

)
=−1.

4 Whitney equisingularity

Lastly, we can also present a version of Theorem 2.30 using the Newton polyhedron of a matrix.

Corollary 4.19. Let
{
(X s

At
,0)

}
t∈D

, be a d-dimensional family of determinantal singularities, defined

by the germ of matrices At = (at
i, j) : (Cm,0)→ (Mn,k,0) with holomorphic entries. Suppose that X s

A0

has an isolated singularity at 0 and, for all t ∈ D, the matrix At satisfies the following conditions:

(i) the Newton polyhedron ∆At of At is convenient and independent of t;

(ii) the matrix At is strongly Newton non-degenerate with respect to ∆At .

Then the family
{
(X s

At
,0)

}
t∈D

is Whitney equisingular.

Using Corollary 4.19, Example 4.4 and the elements from the previous sections, we present an

example of a Whitney equisingular family.

Example 4.20. Let
{
(X2

At
,0)

}
t∈D

be the family of 2-dimensional determinantal singularities defined

by the germ At : (C4,0)→ (M2,3,0), with

At =

[
x− z y+ ty2 −w z−w
y−w z−w w+ x

]
.

For all t ∈ D, the matrix At is strongly Newton non-degenerate with respect to ∆At , ∆At is convenient

and independent of t. Then, by Corollary 4.19,
{
(X2

At
,0)

}
t∈D

is Whitney equisingular.

5 Unmixing the relative mixed volume computations

The purpose of this section is to present a condition in terms of Newton polyhedra which allows us

to replace the mixed volume involving polyhedra ∆1,1, . . . ,∆n,1, . . . ,∆1,k, . . . ,∆n,k by the mixed volume

involving the convex hulls conv(∆1,1, . . . ,∆n,1), . . . ,conv(∆1,k, . . . ,∆n,k). As we have seen in Chapter

1, Section 2, Chen [12] introduced a condition on the polyhedra ∆1, . . . ,∆m ⊂ Rm in order to unmix
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the classic mixed volume computation. Using the definition of interlaced polyhedra, Esterov [16]

introduced a method to unmix the relative mixed volume computations in the case where we have a

complete intersection singularity. In the next paragraphs we extend their results in order to unmix the

relative mixed volume computations for determinantal singularities.

We start by choosing an appropriate resultantal singularity to our set up. Let B0 = {e0} and

B = {e0,e1, . . . ,en−1}. We denote the space C[B]⊕·· ·⊕C[B]︸ ︷︷ ︸
r

by C[B]r. A point in C[B0]
a0 ⊕C[B]k is

a collection of Laurent polynomials of the form (s1, . . . ,sa0 ,a1,1 +
n
∑

i=2
ai,1ti−1, . . . ,a1,k +

n
∑

i=2
ai,kti−1),

where sl,ai, j, l = 1, . . . ,a0, i = 1, . . . ,n, j = 1, . . . ,k, is the natural system of coordinates in C[B0]
a0 ⊕

C[B]k. A germ of a holomorphic map f : (Cm,0)→ (C[B0]
a0 ⊕C[B]k,0) is given by its components

sl = fl and ai, j = fi, j, in this coordinate system.

By Theorem 3.8, the intersection number f (Cm)∩Σ(B0, . . . ,B0︸ ︷︷ ︸
a0

,B, . . . ,B︸ ︷︷ ︸
k

) is equal

(k+a0)!({e0}×Rm
+,∆0)

a0(Sn−1 ×Rm
+,∆1,1 ∗ · · · ∗∆n,1)

1 · · ·(Sn−1 ×Rm
+,∆1,k ∗ · · · ∗∆n,k)

1, (5.1)

if the system of equations sl, fi, j is Newton non-degenerate. Note that this intersection number only

makes sense for m = k−n+a0 +1, otherwise the intersection number is not defined.

Consider the cone {e0}×Rm
+. We observe that, for each j = 1, . . . ,k, the polyhedra ∆1, j ∗ · · ·∗∆n, j

is the convex hull of the union ∪a:ca ̸=0 a+ {e0}×Rm
+, where f j =

n
∑

i=1
∑

a∈Zm
caxati. The next lemma,

which was introduced by Esterov [20, Lemma 2.6], shows that the cone {e0}×Rm
+ plays the role of

the unit in the semigroup of pairs of convex bounded polyhedra.

Lemma 4.21. ({e0}×Rm
+,Q1)

1(P2,Q2)
1 · · ·(Pm,Qm)

1 = ({e0}×Rm
+,Q1)

1(Q2,Q2)
1 · · · ,(Qm,Qm)

1,

i.e., the left-hand side does not depend on the choice of P2, . . . ,Pm .

Therefore, the intersection number f (Cm)∩Σ(B0, . . . ,B0︸ ︷︷ ︸
a0

,B, . . . ,B︸ ︷︷ ︸
k

) is

(k+a0)! · ({e0}×Rm
+,∆0)

a0(∆1,1 ∗ · · · ∗∆n,1,∆1,1 ∗ · · · ∗∆n,1)
1 · · ·(∆1,k ∗ · · · ∗∆n,k,∆1,k ∗ · · · ∗∆n,k)

1,

(5.2)

provided that the system of equations sl, fi, j is Newton non-degenerate.

Lemma 4.22. Let A : (Cm,0)→ (Mn,k,0) be a matrix germ, P ∈ GLn(C) and Q ∈ GLk(C). Consider

the map germs

f : (Cm,0) → (C[B0]
a0 ⊕C[B]k,0)

x 7→ (s0(x),a1,1(x)+
n
∑

i=2
ai,1(x)ti−1, . . . ,a1,k(x)+

n
∑

i=2
ai,k(x)ti−1),

and
f̃ (Cm,0) → (C[B0]

a0 ⊕C[B]k,0)
x 7→ (s0(x), ã1,1(x)+

n
∑

i=2
ãi,1(x)ti−1, . . . , ã1,k(x)+

n
∑

i=2
ãi,k(x)ti−1),
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where Ã = (ãi, j) = P ·A ·Q. Then we have the following isomorphism

f̃ (Cm)∩Σ(B0, . . . ,B0︸ ︷︷ ︸
a0

,B, . . . ,B︸ ︷︷ ︸
k

)∼= f (Cm)∩Σ(B0, . . . ,B0︸ ︷︷ ︸
a0

,B, . . . ,B︸ ︷︷ ︸
k

).

Proof. Consider the homomorphism

φ : f (Cm) → f̃ (Cm)

f (x) 7→ f̃ (x)
.

The homomorphism φ is an isomorphism with inverse

φ−1 : f̃ (Cm) → f (Cm)

(s0(x), ã1,1(x)+
n
∑

i=2
ãi,1(x)ti−1, . . . , ã1,k(x)+

n
∑

i=2
ãi,k(x)ti−1) 7→ (s0(x),m1,1(x)+

n
∑

i=2
mi,1(x)ti−1, . . . ,m1,k(x)+

n
∑

i=2
mi,k(x)ti−1)

,

where M = (mi, j) = P−1 · Ã ·Q−1.

Since f̃ (Cm) and f (Cm) are isomorphic, their intersection with Σ(B0, . . . ,B0︸ ︷︷ ︸
a0

,B, . . . ,B︸ ︷︷ ︸
k

) are also

isomorphic.

The following definition was introduced by Chen [12]. Esterov [16] also introduced a notion of

interlaced polyhedra, which contains the cases covered by Definition 4.23.

Definition 4.23. For a collection of polyhedra ∆1, . . . ,∆k ⊂Rm
+. Denote by S j the set of vertices of the

polyhedron ∆ j, j = 1, . . . ,k. A collection of polyhedra ∆1, . . . ,∆k ⊂ Cm is called interlaced if every

l-dimensional face of conv(∆1, . . . ,∆k), l > 0, which intersects S j for some j in at least two points

must intersect all S1, . . . ,Sk.

Example 4.24. Let ∆1,∆2 ⊂R2
+ be the Newton polyhedra of the functions f1 = x+y2 and f2 = x2+y,

respectively (see Figure 4.1), and let ∆ be the convex hull conv(∆1,∆2) (see Figure 4.2).

1

2

2

1

Figure 4.1: Polyhedra ∆1 and ∆2.

1

1

Figure 4.2: Polyhedron ∆.

Note that, the polyhedron ∆ has two 0-dimensional faces (1,0) and (0,1) and one 1-dimensional

AB proper face (1,0)(0,1). In addition, the face (1,0)(0,1) intersects both S1 and S2. Therefore,

polyhedra ∆1 and ∆2 are interlaced.
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For a polyhedron P ⊂ Rm
+ and a strictly positive weight γ = (γ1, . . . ,γm), define d(γ,P) := min{<

p,γ >: p ∈ P} and (P)γ := {p ∈ P :< p,γ >= d(γ, p)}. Since γ is strictly positive, then (P)γ is a

bounded face of P.

Lemma 4.25. Let S1, . . . ,Sk ⊂Qm be the sets of vertices of polyhedra ∆1, . . . ,∆k, respectively. Let Γ

be a proper face of conv(∆1, . . . ,∆k) and let γ be a strictly positive weight vector. For each j such that

Γ∩S j ̸= /0, we have Γ∩∆ = (∆ j)γ .

The proof can be found in [12, Lemma 4.1]. Now we are ready to unmix the relative mixed

volume computations. We follow the steps of Chen [12, Corollary 5.1], adapting to relative mixed

volumes of polyhedra.

Theorem 4.26. Let ∆0,∆i, j ⊂ Rm
+, i = 1, . . . ,n and j = 1, . . . ,k, be convenient polyhedra. Denote the

polyhedron {e0}×∆0 ⊂ Rn−1 ⊕Rm
+ by ∆̃0 and by ∆1, j ∗ · · · ∗∆n, j the convex hull conv(∪n

i=1{ei−1}×
∆i, j).

(i) For each j = 1, . . . ,k, denote the convex hull conv(∆1, j, . . . ,∆n, j) by ∆ j. If, for each j = 1, . . . ,k,

the polyhedra ∆i, j ⊂ Rm
+, i = 1, . . . ,n, are interlaced, then

({0}×Rm
+, ∆̃0)

a0(∆1,1 ∗ · · · ∗∆1,n,∆1,1 ∗ · · · ∗∆n,1)
a1 · · ·(∆1,k ∗ · · · ∗∆n,k,∆1,k ∗ · · · ∗∆n,k)

ak =

({0}×Rm
+, ∆̃)

a0(Sn−1 ×∆1,Sn−1 ×∆1)
a1 · · ·(Sn−1 ×∆k,Sn−1 ×∆k)

ak ,

where Sn−1 is the standard (n−1)-dimensional simplex and a0 +a1 + · · ·+ak = m.

(ii) If the polyhedra ∆i, j ⊂ Rm
+, i = 1, . . . ,n and j = 1, . . . ,k, are interlaced, then

({0}×Rm
+, ∆̃0)

a0(∆1,1 ∗ · · · ∗∆1,n,∆1,1 ∗ · · · ∗∆n,1)
a1 · · ·(∆1,k ∗ · · · ∗∆n,k,∆1,k ∗ · · · ∗∆n,k)

ak =

({0}×Rm
+, ∆̃0)

a0(Sn−1 ×∆,Sn−1 ×∆)m−a0,

where ∆ is the convex hull conv(∆1,1, . . . ,∆n,k).

Proof. Let S0 and Si, j be the sets of vertices of the polyhedra ∆0 and ∆i, j, respectively. Let P =

(pl
0, pl

i, j), i = 1, . . . ,n, j = 1, . . . ,k and l = 1, . . . ,a j, be a Newton non-degenerate system of Laurent

polynomials such that, for each i, j and l, pl
0 = ∑

a∈S1

cl
0,axa and pl

i, j = ∑
a∈Si, j

cl
i, j,axa, a1 + · · ·+ ak =

m−a0. Define Pl
j = (pl

1, j, . . . , pl
n, j), for each j = 1, . . . ,k and l = 1, . . . ,a j.

Let f : (Cm,0)→ (C[B0]
a0 ⊕C[B]m−a0,0) be a function germ defined by

f (x) =
(
s1

0(x) , . . . ,s
a0
0 (x),a1

1,1(x)+
n

∑
i=2

a1
i,1(x)ti−1, . . . ,a

a1
1,1(x)+

n

∑
i=2

aa1
i,1(x)ti−1, . . . ,

a1
1,k(x)+

n

∑
i=2

a1
i,k(x)ti−1, . . . ,a

ak
1,k(x)+

n

∑
i=2

aak
i,k(x)ti−1

)
.
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Then the Newton polyhedron of sl
0 is ∆0 and the Newton polyhedron of al

i, j is ∆i, j, i = 1, . . . ,n,

j = 1, . . . ,k, for all l = 1, . . . ,a j (this means that those polyhedra do not depend on l). Therefore, it

follows from Eq. (5.2) that the intersection number f (Cm)∩Σ(B0, . . . ,B0︸ ︷︷ ︸
a0

,B, . . . ,B︸ ︷︷ ︸
k−a0

) is

m!({e0}×Rm
+, ∆̃0)

a0(∆1,1 ∗ · · · ∗∆n,1,∆1,1 ∗ · · · ∗∆n,1)
a1 · · ·(∆1,1 ∗ · · · ∗∆n,1,∆1,k ∗ · · · ∗∆n,k)

ak . (5.3)

(i) Consider a matrix Q ∈ GLn(C) such that the Newton polyhedron of ãl
i, j is equal ∆ j, j = 1, . . . ,k,

for all i = 1, . . . ,n and l = 1, . . . ,a j, where A = (al
i, j) and Ã = (ãl

i, j) = Q ·A (we can choose the

matrix Q such that there is no cancellations of terms of terms in Q ·Pl
j).

Consider the system of polynomial equations M ·P induced by the non-singular m · n×m · n

block matrix

M =


Ia0

Q
. . .

Q

 .

Our first goal is proving that the system of polynomial equations M ·P is Newton non-degenerate.

For a strictly positive weight vector γ , consider the face Γ j = (∆ j)γ , j = 1, . . . ,k.

We divide in two possible cases. Firstly, suppose that Γ j is a vertex for some j = 1, . . . ,k,

then each Laurent polynomial in initγ(Q · Pl
j) has only one term, and V ∗(initγ(Q · Pl

j)) = /0,

where V ∗(g1, . . . ,gr) = {x ∈ C∗m : g1(x) = · · · = gr(x) = 0} and the initial part initγ(g) is the

restriction of the function g to the face (∆)γ . Since

initγ(M ·P) =



initγ(p1
0)

...
initγ(pa0

0 )
...

initγ(Q ·P1
k )

...
initγ(Q ·Pak

k )


,

V ∗(initγ(M ·P))⊂V ∗(initγ(Q ·Pl
j)) = /0. Therefore, V ∗(initγ(M ·P)) = /0.

Secondly, suppose that Γ1, . . . ,Γk are positive dimensional. For each j ∈ {1, . . . ,k}, let I j = {i ∈
{1, . . . ,n} : Γ j ∩Si, j ̸= /0}, for j = 1, . . . ,k. Thus, by Lemma 4.25,

initγ(Q ·Pl
j) =



n

∑
r=1

q1,r ∑
a∈Γ j∩Si, j

cl
i,r,axa

...
n

∑
r=1

qn,r ∑
a∈Γ j∩Si, j

cl
i,r,axa

= QI j ·
[

∑
a∈Γ j∩Si, j

cl
i,r,axa

]
i∈I j

,
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where QI j is the matrix containing columns of Q = (qi, j) indexed by I j. Since Q is non-singular,

then rank(QI j) is |I j| ≤ n. Therefore, initγ(Q ·Pl
j) = 0 if and only if ∑

a∈Γ j∩Si, j

cl
i,r,axa = 0, for each

i ∈ I j.

If |Γ j ∩Si, j| = 1 for all i ∈ I j, then each one of the Laurent polynomials from above has again

only one term and, therefore, V ∗(initγ(Q ·Pl
j)) = /0. Hence V (initγ(M ·P)) = /0.

Now, suppose that, for each j = 1, . . . ,k, |Γ j ∩ Si, j| > 1 for at least one i ∈ I j, then since

∆1, j, . . . ,∆n, j are interlaced, then each Γ j must intersect each of Si, j, for all i = 1, . . . ,n. Thus

I j = {1, . . . ,n}, for each j = 1, . . . ,k. Since M is non-singular, then initγ(M ·P) = 0 if and only if

initγ(P) = 0. Therefore V ∗(initγ(B ·P)) =V ∗(initγ(P)) = /0. Hence, the system M ·P is Newton

non-degenerate.

Let f̃ (Cm,0)→ (C[B0]
a0 ⊕C[B]m−a0,0) be a function germ defined by

f̃ (x) = (s1
0(x), . . . ,s

a0
0 (x), ã1

1,1(x)+
n

∑
i=2

ã1
i,1(x)ti−1, . . . , ã

a1
1,1(x)+

n

∑
i=2

ãa1
i,1(x)ti−1, . . . ,

ã1
1,k(x)+

n

∑
i=2

ã1
i,k(x)ti−1, . . . , ã

ak
1,k(x)+

n

∑
i=2

ãak
i,k(x)ti−1).

Then the Newton polyhedron of sl
0 is ∆0 and the Newton polyhedron of ãl

i, j is ∆ j, j = 1, . . . ,k,

for all i = 1, . . . ,n and l = 1, . . . ,a j. Therefore, by Eq. (5.2), the intersection number f̃ (Cm)∩
Σ(B0, . . . ,B0︸ ︷︷ ︸

a0

,B, . . . ,B︸ ︷︷ ︸
k−a0

) is equal

m!({0}×Rm
+, ∆̃)

a0(Sn−1 ×∆1,Sn−1 ×∆1)
a1 · · ·(Sn−1 ×∆k,Sn−1 ×∆k)

ak . (5.4)

In addition Q is non-singular, then, by Lemma 4.22, we have the isomorphism

f̃ (Cm)∩Σ(B0, . . . ,B0︸ ︷︷ ︸
a0

,B, . . . ,B︸ ︷︷ ︸
k−a0

)∼= f (Cm)∩Σ(B0, . . . ,B0︸ ︷︷ ︸
a0

,B, . . . ,B︸ ︷︷ ︸
k−a0

).

Therefore, combining Eq. (5.3) and Eq. (5.4) we obtain

({0}×Rm
+, ∆̃0)

a0(∆1,1∗· · · ∗∆1,n,∆1,1 ∗ · · · ∗∆n,1)
a1 · · ·(∆1,k ∗ · · · ∗∆n,k,∆1,k ∗ · · · ∗∆n,k)

ak =

({0}×Rm
+, ∆̃)

a0(Sn−1 ×∆1,Sn−1 ×∆1)
a1 · · ·(Sn−1 ×∆k,Sn−1 ×∆k)

ak .

(ii) the proof is analogous to item i).

Theorem 4.27. Let (Xn
A,0) be the IDS defined by the germ of a Newton non-degenerate matrix

A = (ai, j) : (Cm,0) → (Mn,k,0). Let ∆i, j be the Newton polyhedron of ai, j, ∆ j be the convex hull

conv(∆1, j, . . . ,∆n, j), for each j = 1, . . . ,k, and ∆A be the convex hull conv(∆1,1, . . . ,∆n,k).
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(i) Suppose that the polyhedron ∆ j is convenient, j = 1, . . . ,k. If, for each j = 1, . . . ,k, the polyhedra

∆1, j, . . . ,∆n, j are interlaced, then

EuXn
A
(0) = ∑

{ j1,..., jq}⊂{1,...,k}
∑

I⊂{1,...,m}
|I|≥q+1

|I|−q

∑
a=1

(−1)|I|+k−n
(
|I|+q−a−2
n+q− k−1

)

× ∑
a j1

,...,a jq∈N

a j1+···+a jq=|I|−a

|I|! · (LI)a(∆̃I
j1)

a j1 · · ·(∆̃I
jq)

a jq .

(ii) Suppose that the polyhedron ∆A is convenient. If the polyhedra ∆i, j, i= 1, . . . ,n and j = 1, . . . ,k,

are interlaced, then

EuXn
A
(0) =

k

∑
q=k−n+1

∑
I⊂{1,...,m}
|I|≥q+1

|I|−q

∑
a=1

(−1)|I|+k−n
(
|I|+q−a−2
n+q− k−1

)

×
(
|I|−a−1

q−1

)(
k
q

)
|I|!(LI)a(∆̃I

A)
|I|−a.

Proof. Firstly, let M be an integer number, which is greater than the determinacy bound of A. Con-

sider the matrix MA = (Mai, j), where Mai, j = ai, j +
m
∑

l=1
α l

i, jx
M
l . Let M∆i, j be the Newton polyhedron

of the entry Mai, j. By Theorem 3.23, the local Euler obstruction of Xn
A is

EuXn
A
(0) = ∑

Γ∈φ

I⊂{1,...,m}

χ(L̃ I,M∆
Γ,I
1,1 ∗ · · · ∗M∆

Γ,I
n,1, . . . ,M∆

Γ,I
1,1 ∗ · · · ∗M∆

Γ,I
n,1). (5.5)

(i) Moreover, the polyhedra ∆1, j, . . . ,∆n, j are interlaced, for each j = 1, . . . ,k, then the poly-

hedra M∆1, j, . . . ,M∆n, j are also interlaced. In addition, ∆ j is convenient, then ∆ j = M∆ j =

conv(M∆1, j, . . . ,M∆n, j). Therefore, by Theorem 4.26

({e0}×RI
+,{e0}×L I)a0(M∆

Γ,I
1,1 ∗ · · · ∗M∆

Γ,I
1,n,M∆

Γ,I
1,1 ∗ · · · ∗M∆

Γ,I
n,1)

a1 · · ·

(M∆
Γ,I
1,k ∗ · · · ∗M∆

Γ,I
n,k,M∆

Γ,I
1,k ∗ · · · ∗M∆

Γ,I
n,k)

ak =

({e0}×RI
+,{e0}×L I)a0(Sn−1×∆

Γ,I
1 ,Sn−1 ×∆

Γ,I
1 )a1 · · ·(Sn−1 ×∆

Γ,I
k ,Sn−1 ×∆

Γ,I
k )ak .

Thus, we can compute the Euler obstruction taking ∆ j to be the Newton polyhedron of the

column j of A, for each j = 1, . . . ,k. Therefore, we can reduce Eq. (5.5) to

EuXn
A
(0) = ∑

{ j1,..., jq}⊂{1,...,k}
∑

I⊂{1,...,m}
|I|≥q+1

|I|−q

∑
a=1

(−1)|I|+k−n
(
|I|+q−a−2
n+q− k−1

)

× ∑
a j1

,...,a jq∈N

a j1+···+a jq=|I|−a

|I|! · (LI)a(∆̃I
j1)

a j1 · · ·(∆̃I
jq)

a jq .
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(ii) Now, suppose that ∆A is convenient. By assumption, the polyhedra ∆1,1, . . . ,∆n,k are interlaced.

Since ∆A is convenient, then ∆A = M∆A = conv(M∆1,1, . . . ,M∆n,k). Thus, by Theorem 4.26

({e0}×RI
+,{e0}×L I)a0(M∆

Γ,I
1,1 ∗ · · · ∗M∆

Γ,I
1,n,M∆

Γ,I
1,1 ∗ · · · ∗M∆

Γ,I
n,1)

a1 · · ·

(M∆
Γ,I
1,k ∗ · · · ∗M∆

Γ,I
n,k,M∆

Γ,I
1,k ∗ · · · ∗M∆

Γ,I
n,k)

ak =

({e0}×RI
+,{e0}×L I)a0(Sn−1 ×∆

Γ,I
A ,Sn−1 ×∆

Γ,I
A )|I|−a0 .

Once again, we can reduce Eq. (5.5) to obtain

EuXn
A
(0) =

k

∑
q=k−n+1

∑
I⊂{1,...,m}
|I|≥q+1

|I|−q

∑
a=1

(−1)|I|+k−n
(
|I|+q−a−2
n+q− k−1

)

×
(
|I|−a−1

q−1

)(
k
q

)
|I|!(LI)a(∆̃I

A)
|I|−a.

With the help of Theorem 4.27, in the following, we compute more concrete examples.

Example 4.28. Consider the matrix germ A = (ai, j) : (C4,0)→ (M2,3,0), defined by

A =

[
w y x
z w y

]
.

Denote by ∆i, j the Newton polyhedron of ai, j. We observe that, the polyhedra ∆1,1,∆1,2,∆1,3,∆2,1,

∆2,2,∆2,3 are interlaced and conv(∆1
1,1, . . . ,∆

1
2,3) is convenient. In addition, the matrix A is Newton

non-degenerate. Therefore,

EuX2
A
(0) =

k

∑
q=k−n+1

∑
I⊂{1,...,m}
|I|≥q+1

|I|−q

∑
a=1

(−1)|I|+k−n
(
|I|+q−a−2
n+q− k−1

)

×
(
|I|−a−1

q−1

)(
k
q

)
|I|!(LI)a(∆̃I

A)
|I|−a =−1.

We used OSCAR [51] to compute the above formula (see Example A.8).

Example 4.29. Let Xn
A ⊂ Cn×k be a generic determinantal variety, i.e., Xn

A is defined by the n size

minors of the matrix

A(x1,1, . . . ,xn,k) =

 x1,1 · · · x1,k
... . . . ...

xn,1 · · · xn,k

 .

Denote by ∆i, j the Newton polyhedra of ai, j. The polyhedra ∆i, j, i = 1, . . . ,n and j = 1, . . . ,k, are

interlaced and ∆A is such that Rn×k
+ \∆A = Sn×k. Therefore, by Theorem 4.27,

EuXn
A
(0) =

k

∑
q=k−n+1

n×k

∑
|I|=q+1

|I|−q

∑
a=1

(−1)|I|+k−n
(
|I|+q−a−2
n+q− k−1

)(
|I|−a−1

q−1

)(
k
q

)(
n× k
|I|

)
.

We computed the above formula in OSCAR [51], for some values of n and k (see Example A.10).
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Example 4.30. Let A : (Cm,0)→ (M2,k,0) be the matrix germ defined by

A(x1, . . . ,xm) =

[
x1 x2 · · · xm−1
x2 x3 · · · xm

]
.

The matrix A is Newton non-degenerate, the Newton polyhedra of its entries are interlaced and

∆A = Sm. Therefore,

EuX2
A
(0) =

m−1

∑
q=m−2

m

∑
|I|=q+1

|I|−q

∑
a=1

(−1)|I|+m−3
(
|I|+q−a−2

q−m+2

)(
|I|−a−1

q−1

)(
m−1

q

)(
m
|I|

)
= 3−m.

We observe that X2
A is a toric surface in Cm, therefore, its Euler obstruction is indeed 3−m (see

[29]). We also computed the above formula, for various values of m, with OSCAR [51] (see A.11).

In addition, we can also use the previous construction to compute the vanishing Euler character-

istic of an IDS.

Theorem 4.31. Let Xn
A be the IDS defined by the germ of a Newton non-degenerate matrix A =

(ai, j) : (Cm,0) → (Mn,k,0) and A : (Cm+1,0) → (Mn,k,0) its determinantal smoothing. Let ∆i, j be

the Newton polyhedron of Ai, j, ∆ j be the convex hull conv(∆1, j, . . . ,∆n, j) and ∆A be the convex hull

conv(∆1,1, . . . ,∆n,k).

(i) Suppose that the polyhedron ∆ j is convenient, j = 1, . . . ,k. If, for each j = 1, . . . ,k, the polyhedra

∆1, j, . . . ,∆n, j are interlaced, then

1+(−1)dimXn
A ν(Xn

A,0) = ∑
{ j1,..., jq}⊂{1,...,k}

∑
I⊂{1,...,m}
|I|≥q+1

|I|−q

∑
a=1

(−1)|I|+k−n
(
|I|+q−a−2
n+q− k−1

)

× ∑
a j1

,...,a jq∈N

a j1+···+a jq=|I|−a

|I|! · (M∆̃
I
0)

a(∆̃I
j1)

a j1 · · ·(∆̃I
jq)

a jq .

(ii) Suppose that the polyhedron ∆A is convenient. If the polyhedra ∆i, j, i= 1, . . . ,n and j = 1, . . . ,k,

are interlaced, then

1+(−1)dimXn
A ν(Xn

A,0) =
k

∑
q=k−n+1

∑
I⊂{1,...,m}
|I|≥q+1

|I|−q

∑
a=1

(−1)|I|+k−n
(
|I|+q−a−2
n+q− k−1

)

×
(
|I|−a−1

q−1

)(
k
q

)
|I|!(M∆̃

I
0)

a(∆̃I
A )|I|−a.

Example 4.32. Let X2
A be the IDS defined by the matrix germ A : (C4,0)→ (M2,3,0), where

A =

[
x y z
y z w

]
.



5. Unmixing the relative mixed volume computations 87

The matrix A is Newton non-degenerate and the polyhedra ∆1,1, . . . ,∆2,3 are interlaced. Denote

by ∆A the convex hull conv(∆1,1, . . . ,∆2,3).

Consider the determinantal smoothing of X2
A A : (C4 ×C,0)→ (M2,3,0) defined by

A (x,y,z,w, t) =
[

x y z
y z w

]
+

1
100

[
6t −8t 5t
t 8t 7t

]
.

Denote by 2∆0 the Newton polyhedra of t+β1x2+β2y2+β3z2+β4w2, by 2∆i, j the Newton polyhedra

of Ai, j +α1
i, jx

2 +α2
i, jy

2 +α3
i, jz

2 +α4
i, jw

2. Moreover, the matrix A is Newton non-degenerate and the

polyhedra 2∆1,1, . . . ,2∆2,3 are interlaced. Therefore,

1+ν(X2
A,0) =

k

∑
q=k−n+1

∑
I⊂{1,...,m}
|I|≥q+1

|I|−q

∑
a=1

(−1)|I|+k−n
(
|I|+q−a−2
n+q− k−1

)

×
(
|I|−a−1

q−1

)(
k
q

)
|I|!(2∆̃

I
0)

a(∆̃I
A )|I|−a = 2

The above expression was computed with OSCAR [51] (see Example A.9). Hence, ν(X2
A,0) = 1.

With the local Euler obstruction and the vanishing Euler characteristic of X2
A , we can compute the top

polar multiplicity of X2
A .

m2(X2
A,0) = 1+ν(X2

A,0)−EuX2
A
(0) = 1+1− (−1) = 3.
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APPENDIX A

Implementation on OSCAR

This appendix is dedicated to presenting functions implemented in OSCAR [51]. One can find

the code files in https://github.com/MaicomVarella/implementation_on_OSCAR.

Firstly, we generate the Newton polyhedron of a function and verify if a function is Newton non-

degenerate. As an extension, we also verify if a 2× 3 matrix is Newton non-degenerate. Moreover,

we introduce a function to compute the relative mixed volume of polyhedra. Lastly, we compute the

local Euler obstruction of isolated determinantal singularities defined by 2×3 matrices.

1 Non-degeneracy of a function

We start by generating the Newton polyhedron, ∆( f ), of a polynomial function, according with

Definition 1.29. For a polynomial function f = ∑
a∈Nn

caxa, the command

Newton po ly tope ( f : : MPolyElemLoc )

returns the polyhedron conv(
⋃

a∈supp( f ) a+Rn
+), where supp( f ) = {a ∈ Nn : ca ̸= 0}.

Then we compute its Newton diagram, Γ( f ), which is the set of all bounded faces of the polyhe-

dron. For a polynomial function f , the function

Newton diagram ( f : : MPolyElemLoc )

returns the set of bounded faces of ∆( f ).

In the next step, we verify if a function is convenient, i.e., its Newton polyhedra touches all the

coordinate axis. For a polynomial function f , the command

i s c o n v e n i e n t ( f : : MPolyElemLoc )

returns “true” if its Newton polyhedron meets all the coordinate axis and it returns “false” otherwise.

Lastly, we verify if a polynomial function is Newton non-degenerate. Before that, we compute the

face function with respect to a polyhedron. For a polynomial function f = ∑
a∈Nn

caxa and a polyhedron

P, the command
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f a c e f u n c t i o n ( f : : MPolyElemLoc , P : : P o l y h e d r o n )

returns the function fP = ∑
a∈P

caxa. For a polynomial function f , the command

i s N e w t o n n o n d e g e n e r a t e ( f : : MPolyElemLoc )

returns“true” if, for all faces P ∈ Γ( f ), the germ (V ( fP),0) is non-singular outside the coordinate

hyperplanes C∗n.

Example A.1. Let f : (C3,0) → (C,0) be the function germ defined by f (x,y,z) = x4 + y4 + z4 +

xyz+ y2z2 + x5.

j u l i a > R , ( x , y , z ) = QQ[ ” x ” , ” y ” , ” z ” ]
( M u l t i v a r i a t e P o l y n o m i a l Ring i n x , y , z ove r R a t i o n a l F i e l d ,
fmpq mpoly [ x , y , z ] )

j u l i a > f = x ˆ4+ y ˆ4+ z ˆ4+ x*y* z+y ˆ2* z ˆ2+ x ˆ5
x ˆ5 + x ˆ4 + x*y* z + y ˆ4 + y ˆ2* z ˆ2 + z ˆ4

j u l i a > Newton po ly tope ( f )
A p o l y h e d r o n i n ambien t d imens ion 3

j u l i a > Newton diagram ( f )
13− e l e m e n t V e c t o r { P o l y h e d r o n { fmpq }} :
A p o l y h e d r o n i n ambien t d imens ion 3
A p o l y h e d r o n i n ambien t d imens ion 3
A p o l y h e d r o n i n ambien t d imens ion 3
A p o l y h e d r o n i n ambien t d imens ion 3
A p o l y h e d r o n i n ambien t d imens ion 3
A p o l y h e d r o n i n ambien t d imens ion 3
A p o l y h e d r o n i n ambien t d imens ion 3
A p o l y h e d r o n i n ambien t d imens ion 3
A p o l y h e d r o n i n ambien t d imens ion 3
A p o l y h e d r o n i n ambien t d imens ion 3
A p o l y h e d r o n i n ambien t d imens ion 3
A p o l y h e d r o n i n ambien t d imens ion 3
A p o l y h e d r o n i n ambien t d imens ion 3

j u l i a > i s c o n v e n i e n t ( f )
t r u e

j u l i a > i s N e w t o n n o n d e g e n e r a t e ( f )
t r u e

2 Non-degeneracy of a 2×3 matrix

Analogously, we can verify the non-degeneracy of a matrix (see Definition 2.2). We make the

following construction for a 2× 3 matrix, but it can also be made to any size matrix. We verify the
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Newton non-degeneracy of matrices (ai, j) such that the Newton polyhedron of ai, j does not depend

on i.

For a 2×3 matrix, a, with polynomial entries, the function

a l l f a c e s ( a )

returns the collection of all vectors, where the entry j, j = 1,2,3, is a face of the Newton diagram

Γ(a1, j).

For a 2×3 matrix a with polynomial entries, the command

f a c e s t o k e e p ( a )

returns a boolean vector, where an entry is “true” if the vector of all faces (a) contains only faces σ j

of Γ(a1, j) such that ∑
j=1,2,3

σ j belongs to the Newton diagram Γ(a1,1∗a1,2∗a1,3) and “false” otherwise.

For a 2×3 matrix a with polynomial entries, the function

b o u n d e d f a c e s ( a )

returns a subcollection of all faces (a) containing only the faces σ j of Γ(a1, j) such that ∑
j=1,2,3

σ j

belongs to the Newton diagram Γ(a1,1 ∗a1,2 ∗a1,3).

We can also define a face matrix, where each entry of a matrix is a face function for some polyhe-

dron. For a 2×3 matrix a with polynomial entries and polyhedra P, Q and R, the command

m a t r i x f u n c t i o n ( a , P : : Po lyhedron ,Q : : Po lyhedron , S : : P o l y h e d r o n )

returns a matrix, aP,Q,R, with entries (a1,1)P, (a2,1)P, (a1,2)Q, (a1,2)Q, (a1,3)R and (a2,3)R.

Finally, we can verify if a 2× 3 matrix is Newton non-degenerate. For a 2× 3 matrix a with

polynomial entries, the function

i s n o n d e g e n e r a t e ( a )

returns “true” if for all vectors [P Q R] of bounded faces(a) the determinantal variety defined by

aP,Q,R is non-singular outside the coordinate hyperplanes C∗n.

Example A.2. Consider the matrix germ A : (C4,0)→ (M2,3,0) defined by the matrix

A =

[
x+ y y+ z z+w

2x+3y 5y+7z 9z+11w

]
.

j u l i a > A = R[ x+y y+z z+w; 2x+3y 5y+7z 9 z +11w]
[ x + y y + z z + w]
[2* x + 3*y 5*y + 7* z 9* z + 11*w]

j u l i a > i s n o n d e g e n e r a t e (A)
t r u e
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Example A.3. j u l i a > A = R[2 x+2y ˆ3+ z ˆ2 −3wˆ4 2x+3y ˆ3+2 z ˆ2 −5wˆ4
3x+2y ˆ3+2 z ˆ2 −3wˆ 4 ; 3x+3y ˆ3+2 z ˆ2 −4wˆ4 3x+4y ˆ3+4 z ˆ2 −7wˆ4
5x+3y ˆ3+3 z ˆ2 −3wˆ 4 ]
[ 2*x + 2*y ˆ3 + z ˆ2 − 3*wˆ4 2*x + 3*y ˆ3 + 2* z ˆ2 − 5*wˆ4
3*x + 2*y ˆ3 + 2* z ˆ2 − 3*wˆ 4 ]
[3* x + 3*y ˆ3 + 2* z ˆ2 − 4*wˆ4 3*x + 4*y ˆ3 + 4* z ˆ2 − 7*wˆ4
5*x + 3*y ˆ3 + 3* z ˆ2 − 3*wˆ 4 ]

j u l i a > i s n o n d e g e n e r a t e (A)
t r u e

Example A.4. j u l i a > A = R[ x+y y+z z+w; 2x+3y 5y+7z 9 z +11w]
[ x + y y + z z + w]
[2* x + 3*y 5*y + 7* z 9* z + 11*w]

j u l i a > B = R[ x ˆ2+ y ˆ2+ z ˆ2+wˆ2 x ˆ2+ y ˆ2+ z ˆ2+wˆ2 x ˆ2+ y ˆ2+ z ˆ2+wˆ 2 ;
x ˆ2+ y ˆ2+2 z ˆ2+3wˆ2 5x ˆ2+ y ˆ2+ z ˆ2+7wˆ2 9x ˆ2+11 y ˆ2+ z ˆ2+wˆ 2 ]
[ x ˆ2 + y ˆ2 + z ˆ2 + wˆ2 x ˆ2 + y ˆ2 + z ˆ2 + wˆ2
x ˆ2 + y ˆ2 + z ˆ2 + wˆ 2 ]
[ x ˆ2 + y ˆ2 + 2* z ˆ2 + 3*wˆ2 5*x ˆ2 + y ˆ2 + z ˆ2 + 7*wˆ2
9*x ˆ2 + 11*y ˆ2 + z ˆ2 + wˆ 2 ]

j u l i a > C = A+B
[ x ˆ2 + x + y ˆ2 + y + z ˆ2 + wˆ2 x ˆ2 + y ˆ2 + y + z ˆ2 + z + wˆ2
x ˆ2 + y ˆ2 + z ˆ2 + z + wˆ2 + w]
[ x ˆ2 + 2*x + y ˆ2 + 3*y + 2* z ˆ2 + 3*wˆ2 5*x ˆ2 + y ˆ2 + 5*y + z ˆ2
+ 7* z + 7*wˆ2 9*x ˆ2 + 11*y ˆ2 + z ˆ2 + 9* z + wˆ2 + 11*w]

j u l i a > i s n o n d e g e n e r a t e (C)
t r u e

3 Relative mixed volume of pairs of polyhedra

In this section, we present the implementation on the formula 1.49, in order to compute the

normalized relative mixed volume of pairs of polyhedra ∆̃J = (RJ
+,∆

J), where ∆J = RJ
+ ∩ ∆ and

J ⊂ {1, . . . ,n}.

For a polyhedron P and a vector J, the function

m a t r i x ( P : : Po lyhedron , J )

returns the matrix with the vertices of the intersection between P and the coordinate hyperplane CJ .

For a polyhedron P and a vector J, the function

NP( P : : Po lyhedron , J )

returns the polyhedron generated by the lines of matrix(P,J).

For a polyhedron P and a vector J, the function



4. Euler characteristic of the Milnor fiber 93

NP0 ( P : : Po lyhedron , J )

returns the polyhedron generated by the lines of matrix(P,J) and the origin.

For a polyhedron P and a vector J, the command

Vol ( P : : Po lyhedron , J )

returns the difference of volumes volume(NP0(P,J))−volume(NP(P,J)).

For a set of polyhedra p1, . . . , p|J| and a vector J, the function

MV( J , p . . . )

returns the sum
m

∑
r=1

(−1)|J|−r
∑

1≤i1≤···≤ir≤|J|
Vol(J ,p1 + · · ·+pr ).

Example A.5. j u l i a > p = Newton po ly tope ( x+y+z+w)
A p o l y h e d r o n i n ambien t d imens ion 4

j u l i a > q = Newton po ly tope ( x+y ˆ3+ z ˆ2 −5wˆ 4 )
A p o l y h e d r o n i n ambien t d imens ion 4

j u l i a > MV( [ 1 , 2 , 3 , 4 ] , p , p , q , q )
2

4 Euler characteristic of the Milnor fiber

Finally, we compute the Euler characteristic of the Milnor fiber of a function f restricted to an

isolated determinantal singularity X2
A , defined by a 2×3 matrix, by applying Corollary 3.18.

For a polynomial function f and a 2×3 matrix, the command

E u l e r c h a r a c t e r i s t i c M i l n o r f i b e r ( f , a )

returns the sum

∑
{ j1,..., jq}⊂{1,2,3}

∑
I⊂{1,...,m}
|I|≥q+1

|I|−q

∑
a=1

(−1)|I|+1
(
|I|+q−a−2

q−2

)

× ∑
a j1

,...,a jq∈N

a j1+···+a jq=|I|−a

MV (I, p0, . . . , p0︸ ︷︷ ︸
a

, p j1, . . . , p j1︸ ︷︷ ︸
a j1

. . . p jq, . . . , p jq︸ ︷︷ ︸
a jq

),

where p0 is the Newton polyhedron of f and p j is the Newton polyhedron of a1, j, for j = 1,2,3.

Example A.6. j u l i a > A = R[ x+y y+z z+w; 2x+3y 5y+7z 9 z +11w]
[ x + y y + z z + w]
[2* x + 3*y 5*y + 7* z 9* z + 11*w]

j u l i a > B = R[ x ˆ2+ y ˆ2+ z ˆ2+wˆ2 x ˆ2+ y ˆ2+ z ˆ2+wˆ2 x ˆ2+ y ˆ2+ z ˆ2+wˆ 2 ;
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x ˆ2+ y ˆ2+2 z ˆ2+3wˆ2 5x ˆ2+ y ˆ2+ z ˆ2+7wˆ2 9x ˆ2+11 y ˆ2+ z ˆ2+wˆ 2 ]
[ x ˆ2 + y ˆ2 + z ˆ2 + wˆ2 x ˆ2 + y ˆ2 + z ˆ2 + wˆ2
x ˆ2 + y ˆ2 + z ˆ2 + wˆ 2 ]
[ x ˆ2 + y ˆ2 + 2* z ˆ2 + 3*wˆ2 5*x ˆ2 + y ˆ2 + z ˆ2 + 7*wˆ2
9*x ˆ2 + 11*y ˆ2 + z ˆ2 + wˆ 2 ]

j u l i a > C = A+B
[ x ˆ2 + x + y ˆ2 + y + z ˆ2 + wˆ2 x ˆ2 + y ˆ2 + y + z ˆ2 + z + wˆ2

x ˆ2 + y ˆ2 + z ˆ2 + z + wˆ2 + w]
[ x ˆ2 + 2*x + y ˆ2 + 3*y + 2* z ˆ2 + 3*wˆ2 5*x ˆ2 + y ˆ2 + 5*y + z ˆ2
+ 7* z + 7*wˆ2 9*x ˆ2 + 11*y ˆ2 + z ˆ2 + 9* z + wˆ2 + 11*w]

j u l i a > f = x+y+z+w
x + y + z + w

j u l i a > E u l e r c h a r a c t e r i s t i c M i l n o r f i b e r ( f , C)
−1

Example A.7. j u l i a > A = R[ x+y y+z z+w; 2x+3y 5y+7z 9 z +11w]
[ x + y y + z z + w]
[2* x + 3*y 5*y + 7* z 9* z + 11*w]

j u l i a > B = 1 / / 1 0 0 * (R[6 t −8 t 5 t ; t 8 t 7 t ] )
[ 3 / / 5 0 * t −2 / /25* t 1 / / 2 0 * t ]
[ 1 / / 1 0 0 * t 2 / / 2 5 * t 7 / / 1 0 0 * t ]

j u l i a > C = R[ x ˆ2+ y ˆ2+ z ˆ2+wˆ2 x ˆ2+ y ˆ2+ z ˆ2+wˆ2 x ˆ2+ y ˆ2+ z ˆ2+wˆ 2 ;
x ˆ2+ y ˆ2+2 z ˆ2+3wˆ2 5x ˆ2+ y ˆ2+ z ˆ2+7wˆ2 9x ˆ2+11 y ˆ2+ z ˆ2+wˆ 2 ]
[ x ˆ2 + y ˆ2 + z ˆ2 + wˆ2 x ˆ2 + y ˆ2 + z ˆ2 + wˆ2
x ˆ2 + y ˆ2 + z ˆ2 + wˆ 2 ]
[ x ˆ2 + y ˆ2 + 2* z ˆ2 + 3*wˆ2 5*x ˆ2 + y ˆ2 + z ˆ2 + 7*wˆ2
9*x ˆ2 + 11*y ˆ2 + z ˆ2 + wˆ 2 ]

D = A+B+C
[ x ˆ2 + x + y ˆ2 + y + z ˆ2 + wˆ2 + 3 / / 5 0 * t x ˆ2 + y ˆ2 + y + z ˆ2 + z
+ wˆ2 − 2 / / 2 5 * t x ˆ2 + y ˆ2 + z ˆ2 + z + wˆ2 + w + 1 / / 2 0 * t ]
[ x ˆ2 + 2*x + y ˆ2 + 3*y + 2* z ˆ2 + 3*wˆ2 + 1 / / 1 0 0 * t 5*x ˆ2 + y ˆ2
+ 5*y + z ˆ2 + 7* z + 7*wˆ2 + 2 / / 2 5 * t 9*x ˆ2 + 11*y ˆ2 + z ˆ2 + 9* z
+ wˆ2 + 11*w + 7 / / 1 0 0 * t ]

j u l i a > f = x ˆ2+ y ˆ2+ z ˆ2+wˆ2+ t
x ˆ2 + y ˆ2 + z ˆ2 + wˆ2 + t

j u l i a > E u l e r c h a r a c t e r i s t i c M i l n o r f i b e r ( f ,D)
2

Let A = (ai, j) : (Cm,0) → (Mn,k,0) be a matrix germ. If the Newton polyhedra of the entries

ai, j are interlaced, for i = 1, . . . ,n and for j = 1, . . . ,k or A is Newton non-degenerate with respect
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to its Newton polyhedron ∆A and ∆A is convenient, we can compute the Euler characteristic of the

Milnor fiber of a function restricted to the determinantal singularity (Xn
A,0) in terms of the Newton

polyhedron of f and ∆A (see Theorem 4.27).

For a polynomial function f and a 2×3 matrix a with polynomial entries, the command

E u l e r c h a r a c t e r i s t i c M i l n o r f i b e r m a t r i x ( f , a )

returns

3

∑
q=2

∑
I⊂{1,...,m}
|I|≥q+1

|I|−q

∑
a=1

(−1)|I|+1
(
|I|+q−a−2

q−2

)(
|I|−a−1

q−1

)(
3
q

)
MV (I, p0, . . . , p0︸ ︷︷ ︸

a

, p, . . . , p︸ ︷︷ ︸
|I|−a

),

where p0 is the Newton polyhedron of f and p is the Newton polyhedron of a.

Example A.8. j u l i a > A = R[ x y z ; y z w]
[ x y z ]
[ y z w]

j u l i a > f = x+y+z+w
x + y + z + w

j u l i a > E u l e r c h a r a c t e r i s t i c M i l n o r f i b e r m a t r i x ( f ,A)
−1

Example A.9. j u l i a > A = R[ x y z ; y z w]
[ x y z ]
[ y z w]

j u l i a > B = 1 / / 1 0 0 * (R[6 t −8 t 5 t ; t 8 t 7 t ] )
[ 3 / / 5 0 * t −2 / /25* t 1 / / 2 0 * t ]
[ 1 / / 1 0 0 * t 2 / / 2 5 * t 7 / / 1 0 0 * t ]

j u l i a > C = A+B
[ x + 3 / / 5 0 * t y − 2 / / 2 5 * t z + 1 / / 2 0 * t ]
[ y + 1 / / 1 0 0 * t z + 2 / / 2 5 * t w + 7 / / 1 0 0 * t ]

j u l i a > f = x ˆ2+ y ˆ2+ z ˆ2+wˆ2
x ˆ2 + y ˆ2 + z ˆ2 + wˆ2

j u l i a > f = x ˆ2+ y ˆ2+ z ˆ2+wˆ2+ t
x ˆ2 + y ˆ2 + z ˆ2 + wˆ2 + t

j u l i a > E u l e r c h a r a c t e r i s t i c M i l n o r f i b e r m a t r i x ( f , C)
2

Example A.10. Using Example 4.29, we compute the Euler obstruction of a generic determinantal

variety of type (n,k;n) for certain n and k such that the binomial computations do not overflow.
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j u l i a > g e n e r i c d e t e r m i n a n t a l ( n , k ) = sum ( sum ( sum ( ( − 1 ) ˆ
( p+k−n )* b i n o m i a l ( p+q−a −2 , n+q−k −1)* b i n o m i a l ( p−a −1 , q −1) b i n o m i a l ( k , q )
* b i n o m i a l ( n*k , p ) f o r a i n 1 : p−q ) f o r p i n q +1: n*k ) f o r q i n k−n+1
: k )
g e n e r i c d e t e r m i n a n t a l ( g e n e r i c f u n c t i o n wi th 1 method )

j u l i a > [ g e n e r i c d e t e r m i n a n t a l ( 2 , k ) f o r k i n 2 : 3 3 ] ==
[2 f o r k i n 2 : 3 3 ]
t r u e

j u l i a > [ g e n e r i c d e t e r m i n a n t a l ( 3 , k ) f o r k i n 3 : 2 2 ] ==
[3 f o r k i n 3 : 2 2 ]
t r u e

j u l i a > [ g e n e r i c d e t e r m i n a n t a l ( 4 , k ) f o r k i n 4 : 1 6 ] ==
[4 f o r k i n 4 : 1 6 ]
t r u e

j u l i a > [ g e n e r i c d e t e r m i n a n t a l ( 5 , k ) f o r k i n 5 : 1 3 ] ==
[5 f o r k i n 5 : 1 3 ]
t r u e

j u l i a > [ g e n e r i c d e t e r m i n a n t a l ( 6 , k ) f o r k i n 6 : 1 1 ] ==
[6 f o r k i n 6 : 1 1 ]
t r u e

j u l i a > [ g e n e r i c d e t e r m i n a n t a l ( 7 , k ) f o r k i n 7 : 9 ] ==
[7 f o r k i n 7 : 9 ]
t r u e

j u l i a > [ g e n e r i c d e t e r m i n a n t a l ( 8 , k ) f o r k i n 8 : 8 ] ==
[8 f o r k i n 8 : 8 ]
t r u e

Example A.11. Applying Example 4.30, we compute the Euler obstruction of the toric variety defined

by the matrix

A(x1, . . . ,xm) =

[
x1 x2 · · · xm−1
x2 x3 · · · xm

]
.

j u l i a > t o r i c d e t e r m i n a n t a l (m) = sum ( sum ( sum ( ( − 1 ) ˆ ( p+m−3)* b i n o m i a l
( p+q−a −2 , q−m+2)* b i n o m i a l ( p−a −1 , q −1)* b i n o m i a l (m−1 , q )* b i n o m i a l (m, p )
f o r a i n 1 : p−q ) f o r p i n q +1:m) f o r q i n m−2:m−1)
t o r i c d e t e r m i n a n t a l ( g e n e r i c f u n c t i o n wi th 1 method )

j u l i a > [ t o r i c d e t e r m i n a n t a l (m) f o r m i n 4 :100000000] ==
[3 −m f o r m i n 4 :100000000]
t r u e
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[46] J. J. Nuño-Ballesteros, B. Oréfice-Okamoto, and J. N. Tomazella. Equisingularity of families of

isolated determinantal singularities. Math. Z., 289(3-4):1409–1425, 2018.

[47] J. J. Nuño-Ballesteros and J. N. Tomazella. The Milnor number of a function on a space curve

germ. Bull. Lond. Math. Soc., 40(1):129–138, 2008.

[48] M. Oka. Principal zeta-function of nondegenerate complete intersection singularity. J. Fac. Sci.

Univ. Tokyo Sect. IA Math., 37(1):11–32, 1990.

[49] M. Oka. Non-degenerate complete intersection singularity. Actualités Mathématiques. [Current
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