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ABSTRACT

PEREIRA, V. B. R. Rumour spreading in dynamic random graphs. 2024. 54 p. Disserta-
ção (Mestrado em Estatística – Programa Interinstitucional de Pós-Graduação em Estatística) –
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos –
SP, 2024.

We study rumour spreading in dynamic random graphs. Starting with a single informed vertex,
the information flows until it reaches all the vertices of the graph (completion), according to
the following process. At each step k, the information is propagated to neighbours, in the k-th
generated random graph, of the informed vertices. The way this information propagates from
vertex to vertex at each step will depend of the "protocol". First we consider a sequence of
graphs in which the presence or absence of an edge follows the dynamic of a Markov chain. We
provide a method based on strong stationary times allowing to bound the completion time for the
Markov dynamic using bounds on the completion time in the i.i.d. dynamic.

We also consider the rumour spreading according to the Push Protocol (at every round, informed
nodes send the rumour to one of their neighbours, chosen uniformly at random) in a sequence
of independent stochastic block model random graphs. We are able to bound the completion
time in this setting using comparisons with rumour spreading in dynamic random graphs with
skeptical nodes (nodes that cannot become informed) and stifler nodes (nodes that, after being
informed, do not spread the information further).

Keywords: Dynamic random graphs, Rumour spreading, Stochastic block model, Strong
stationary times.





RESUMO

PEREIRA, V. B. R. Propagação de rumor em grafos aleatórios dinâmicos. 2024. 54
p. Dissertação (Mestrado em Estatística – Programa Interinstitucional de Pós-Graduação em
Estatística) – Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo,
São Carlos – SP, 2024.

Nós estudamos propagação de rumor em grafos aleatórios dinâmicos. Começando com um único
vértice informado, a informação se propaga até atingir todos os vértices do grafo (finalização),
de acordo com o seguinte processo. A cada passo k, a informação é enviada, no k-ésimo grafo
aleatório gerado, para os vizinhos de vértices informados. O modo como essa informação é
propagada de vértice para vértice a cada passo depende do "protocolo". Primeiro consideramos
uma sequência de grafos em que a presença e ausência de uma aresta segue a dinâmica de uma
cadeia de Markov. Propomos um método baseado em tempos estacionários fortes que permite
limitar o tempo até a finalização na dinâmica markoviana utilizando limitantes do tempo até a
finalização no caso i.i.d..

Também consideramos o rumor se espalhando através do protocolo Push (a cada passo, vértices
informados enviam o rumor para um de seus vizinhos, escolhido uniformemente ao acaso) em
uma sequência de grafos independentes do modelo estocástico de blocos. Somos capazes de
encontrar limitantes para o tempo até a finalização utilizando comparações com propagação de
informação em grafos aleatórios dinâmicos com vértices céticos (vértices que não se tornam
informados) e vértices contidos (vértices, que após serem informados, não passam a informação
adiante).

Palavras-chave: Grafos aleatórios dinâmicos, Propagação de rumor, Modelo estocástico de
blocos, Tempos estacionários fortes..
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Chapter 1

Introduction

The study of information spreading in networks has found many applications in re-

cent years. The efforts to contain the COVID-19 pandemic benefited greatly from the

existing mathematical theory of epidemiology. Social Networks, such as Facebook and

Twitter, had a great impact on recent presidential elections all over the world, making

it crucial to gain insight into how fake news spreads on random networks. There are

also technological applications to information spreading in random networks, such as

the distribution of an update in replicated databases. In computation theory, such prob-

lems are studied under the denomination of communication protocols.

Communication protocols on networks. Rumour Spreading is a well-known algo-

rithm for broadcasting information on a large network. Some of the more important

versions of this algorithm are the Push Protocol, Flood Protocol, Pull Protocol and Push-

Pull Protocol. In all these Protocols we start with a single informed node. In the Push

version every round, an informed node chooses one of its neighbours uniformly at ran-

dom and informs it. In the Flood version, informed nodes inform every neighbour each

round. In the Pull version, uninformed nodes choose one of their neighbours, if the cho-

sen node is informed, the initial one also becomes informed. The Push-Pull Protocol

combines Push and Pull, informed nodes will send the information to a chosen neigh-

bour and uninformed nodes will try to get the information from one chosen neighbour.

Rapid overview of the literature on random networks. CLEMENTI et al. (2016)

studied the Push version of this algorithm in an underlying dynamic network. In one

setting each graph is a newly sampled (independently of everything else) Erdős-Rényi

13
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random graph, ERn(p). They showed that the completion time (the time until every

node is informed) for the Push Protocol is O( logn
min{1,np}) with high probability, that is with

probability decreasing polinomially to 0 as n diverges. DOERR e KOSTRYGIN (2017)

improved this bound when the edge probability is a
n
, where n is the number of edges and

a is a positive constant. They introduced a method for analyzing rumour spreading that

doesn’t rely on the specific definition of the protocol, under some sufficient conditions

they provide the expectation and a large deviations bound for the completion time for

several settings apart from additive constants. The expected completion time (T ) is

log2−e−a(n)+ 1
1−exp(−a)

log(n)+O(1) and P(|T −E(T )| > r) ≤ Aexp(−αr), where A and

α are positive constants.

DAKNAMA (2017) uses the method above to analyze rumour spreading in a se-

quence of Erdös-Rényi graphs for the Pull and Push-Pull Protocol. He proves that the

expected completion time for the Pull Protocol is log2−e−a(n) + 1
a log(n) + O(1) and for

Push-Pull is log1+γ(n) +
1
a
log(n) +O(1), for a constant γ.

CLEMENTI et al. (2010) and CLEMENTI et al. (2016) analyzed rumour spreading in

edge-markovian random graphs. In this dynamic graph, there is a 2-state Markov chain

attached to each possible edge (independent of one another). If an edge was absent at

time t, it will be present at time t+1 with probability p, if it was present at time t, it will be

absent at time t+1 with probability q. In the former they considered the Flood Protocol

and prove that for any p and q the completion time is O( logn
log(1+np)

) with high probability.

In the latter they considered the rumour spreading according to the Push Protocol and

prove that, for p ≥ 1
n
and when q is constant (does not depend on n), the completion

time is O(logn), with high probability.

Main contributions of this text. In this text, we work on this models on two main

directions. First, we provide a method based on strong stationary times that, under

some sufficient conditions on the edge transition matrix, is able to bound the completion

time of several information spreading protocols: Push, Pull, Flooding and Push-Pull. In

the Push Protocol setting we prove that the completion time isO(nk−1 logn)when p = a
nk

and q = 1, for constants a > 0 and k > 1, which had not been done previously in the

literature.

We also consider two variations of the rumour spreading through the Push Protocol

in a sequence of independent random graphs. In the first one we introduce skeptical
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nodes, that is nodes that cannot be informed. They have probability p2 of connecting to

informed/uninformed nodes. Non-skeptical nodes have probability p1 of connecting to

informed/uninformed nodes. We prove that the completion time isO( logn
min{1,np1})with high

probability when the number of skeptical nodes is a fixed fraction of the total amount of

nodes and p2 = O(p1).

In the second variation we introduce bots and stiflers. Bots start informed. Stiflers,

when informed, have no interest of spreading the information further. Bots have prob-

ability p1 of connecting amongst themselves and probability p2 of connecting to stiflers.

We prove that the completion time is O( logn
min{1,np2}), when the number of bots and stiflers

are fixed fractions of the total amount of nodes and p1 = O(p2).

Lastly, we provide upper bounds for the rumour spreading through the Push Proto-

col in a sequence of stochastic block model graphs with two communities. Nodes in

community i = 1, 2 have probability pi of connecting to another node in community i

and probability p12 of connecting to a node in the other community. We prove that if

p1 = Θ(p12) and p2 = Ω(p12) or if p1 = θ(p12) and p2 = o(p12) the completion time is

O( logn
min{1,np12}) with high probability.

Organization of the Dissertation. The next Chapter is divided into three Sections.

In the first Section, we define rumour spreading in a sequence of independent Erdős-

Rényi random graphs and present theorems of the literature that bound the completion

time for the Flood, Push, Pull and Push-Pull protocols. In the second section we define

rumour spreading in a sequence of random graphs with markovian edges and give a

method to bound the completion time using strong stationary times. In the last section

we provide theorems that bound the completion time for rumor spreading according

to the Push Protocol in a sequence of independent random graphs with communities.

Chapter 3 provides proofs for the new Theorems presented in Chapter 2.
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Chapter 2

Rumour Spreading in Dynamic

Random Graphs: Definitions and New

Results

2.1 Rumour Spreading in a Sequence of Independent

Erdös-Rényi Graphs

A graph is a pair of sets, G = (V,E), where V is a set of vertices and E a set of

pairs of vertices, called edges. Consider a sequence of random graphs {Gt}t≥0, where

Gt = ([n], Et). We have a fixed vertex set [n] := {1, 2, . . . , n} and the edges set Et

evolves in time, at every instant an edge is present with probability 0 < p < 1 and

absent with probability 1 − p, therefore {Gt}t≥0 is a sequence of independent Erdős-

Rényi graphs with edge parameter p (ERn(p) in what follows). Let I ⊆ [n] be the subset

of informed nodes. We start with a single informed node. For t ∈ N we generate a new

set of edges and the information spreads according to some Protocol. Some of the

classic synchronous protocols in the distributed systems literature are Push Protocol,

Flood Protocol, Pull Protocol, Push-Pull Protocol, k-Push Protocol, k-Pull Protocol. Our

interest is to get information concerning the completion time: the time until every node

is informed, that is,I = [n]. We aim to find bounds that hold with high probability, that is,

with probability at least 1 − 1
nα , α > 0. The definitions of the asymptotic notation used

further can be seen in Appendix A

17
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Push Protocol. In the synchronous version of the Push Protocol, at every time step,

each of the informed nodes chooses one of its neighbours uniformly at random. If the

neighbour was uninformed, it becomes informed.

The number of informed nodes can at most double at every time step, when at each

step, each v ∈ I chooses a distinct uninformed node. In this case the completion time

is ⌈log2 n⌉

Theorem 2.1, proved by CLEMENTI et al. (2016), gives an upper bound on the

completion time.

Theorem 2.1 Let G = (Gt)t∈N be a sequence of independent ERn(p):

(a) if p ≥ 1
n
, the completion time of the push protocol over G is O(logn), with high prob-

ability.

(b)if p < 1
n
, the completion time of the push protocol over G is O( logn

np
), with high proba-

bility.

We note that, since we need at least log2 n steps until every vertex is informed, the

completion time is Θ(logn) when p = a
n
, a > 0.

We can generalize the Push Protocol, allowing the informed nodes to send the ru-

mour to k − 1, k > 2, of its neighbours, chosen uniformly at random. We will call this

protocol k-Push Protocol. Upper bounds for the simple Push Protocol are also upper

bounds for the k-Push Protocol, since the latter informs at least the same amount of

nodes.

Flood Protocol. The Flood Protocol is the fastest information spreading algorithm

we will consider. We start with a single informed node. At every time step, each in-

formed node sends the rumour to all of its neighbours. The following Theorem 2.2

of CLEMENTI et al. (2010), bounds the maximum completion time over all possible

sources, given any sequence of ERn(p).

Theorem 2.2 Let G = (Gt)t∈N be a sequence of independent ERn(p). The completion

time of the Flood Protocol over G is O
(

logn
log(1+np)

)
, with high probability.

Pull Protocol. In the Pull Protocol we start with a single informed node. At every time

step, each uninformed vertex asks one of its neighbours, chosen uniformly at random,

for the information. If the chosen neighbour was already informed, the asking node
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becomes informed. DAKNAMA (2017) gives the expectation and a large deviations

bound for the completion time of the Pull Protocol over a sequence of ERn(p) with

p = a
n
, a > 0.

Theorem 2.3 Let G = (Gt)t∈N be a sequence of independent ERn(p) with p = a
n
, a > 0.

Let Tn be the completion time of the Pull Protocol over G . Then:

E(Tn) = log2−exp(−a)(n) +
1

a
logn+O(1),

and there are constants A,α > 0 such that ∀ r, n ∈ N:

P(|Tn − E(Tn)| ≥ r) ≤ Aexp(−αr).

In particular, Theorem 2.3 implies that the completion time of the Pull Protocol over

G is O(logn) with high probability.

In similar fashion to the Push Protocol, we can also consider the k-Pull Protocol,

where uninformed nodes ask k − 1 of its neighbours, chosen uniformly at random, for

the information. If at least one of them is already informed, the asking vertex becomes

informed. Upper bounds for the simple Pull Protocol are also upper bounds for the

k-Pull Protocol.

Push-Pull Protocol. The Push-Pull Protocol is a combination of the Push Protocol

and the Pull Protocol. We start with a single informed node. At every time step, each

informed node chooses one of its neighbours uniformly at random and informs it. And

each of the uninformed nodes asks one of its neighbours for the information, if the cho-

sen neighbour is already informed, the asking nodes becomes informed. DAKNAMA

(2017) gives the expectation and a large deviations bound for the completion time of

the Push-Pull Protocol over a sequence of ERn(p) with p = a
n
, a > 0.

Theorem 2.4 Let G = (Gt)t∈N be a sequence of independent ERn(p) with p = a
n
, a > 0.

Let λ = 2(1 − exp(−a)) − (1−exp(−a))2

a
Let Tn be the completion time of the Push-Pull

Protocol over G . Then:

E(Tn) = log1+λ(n) +
1

a
logn+O(1),
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and there are constants A,α > 0 such that ∀ r, n ∈ N:

P(|Tn − E(Tn)| ≥ r) ≤ Aexp(−αr).

In particular, Theorem 2.4 implies that the completion time of the Push-Pull Protocol

over G is O(logn) with high probability.

2.2 Rumour Spreading in a Sequence of RandomGraphs

with Markovian Edges

In this Section we consider a generalization of the rumour spreading model in a

sequence of ERn(p). Let {Gt}t≥0 be a sequence of random graphs, with Gt = ([n], Et).

In this variation we have a 2-state Markov chain attached to each edge (independently

of all the other edges). The Markov chain has state space S = {0, 1}, 0 means that

an edge is absent and 1 means the edge is present. We call this type of graph edge

markovian random graphs. The transition matrix of the edge process is:

P =

1− p p

q 1− q

 .

Wewill consider the rumour spreading according to the Protocols defined in Section 2.1.

The model presented in Section 2.1 is a particular case of this model, taking q = 1− p.

We are interested in bounding the completion time.

By construction, the set Et will only depend on Et−1. (Et)t≥1 is also a Markov chain.

Our strategy to obtain an upper bound is based on some properties of the chain (Et)t≥0.

(Et)t≥0 has transition probabilities given by the products of the transition probabilities

of each one of the edges. Let x = (x1, x2, . . . , x(n2)
) and y = (y1, y2, . . . , y(n2)

) be two

possible states of the chain. We have that the t-step transition probability between x

and y is:

M t
x,y = P t

x1,y1
P t
x2,y2

. . . P t
x
(n2)

,y
(n2)

,

where P t
i,j is the probability that an edge is in state i ∈ {0, 1} at time s and be in state

j ∈ {0, 1} at time s+ t. M t
x,y is the probability that the edges set is in state x ∈ {0, 1}(

n
2)

at time s and be in state y ∈ {0, 1}(
n
2) at time s+ t.
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The same logic applies to the stationary distribution, it’s given by the cartesian prod-

uct of the stationary distributions of each edge. We can compute the stationary distri-

bution of a single edge by solving πP = π,
∑

i∈{0,1} πi = 1, there’s an unique solution

π = ( q
p+q

, p
p+q

). Thus the stationary distribution of (Et)t≥0, Π, is:

Π = π × π · · · × π,

where we are taking the cartesian product
(
n
2

)
times.

(Et) has finite state space, given by {0, 1}(
n
2). It is aperiodic if p or q are greater than

0 (there’s a chance that the chain is in the same state two times in a row: Et = Et+1 with

positive probability) and irreducible. For Markov chains having these three properties,

the t-step transition probability converges to the stationary distribution as t → ∞.

To bound the completion time, we use the strong stationary times theory, the nec-

essary results can be seen in Appendix B. We prove the following.

Theorem 2.5 Let G = (Gt)t≥0 = ([n], Et) be a sequence of edge markovian random

graphs with transition matrix:

P =

1− f(n) f(n)

1− g(n) g(n)

 ,

in which f(n), g(n) are decreasing functions with constant limit γ ≥ 0, and |g(n)−f(n)| ≤
M
nα ,M,α > 0. Let π1 =

f(n)
1+f(n)−g(n)

be the stationary probability of an edge being present.

Let TInd be the completion time of some protocol spreading information in a sequence

of independent Erdös-Rényi graphs with parameter π1. Suppose that TInd is O(r(n))

with high probability. If for sufficiently large s,

exp
(
−(1− 1

s
)2
sr(n)

2

)
,

decreases to 0 polynomially as a function of n, then the completion time of the protocol

over G is also O(r(n)) with high probability.

The proof of Theorem 2.5 is presented in Section 3.1. Theorem 2.5 shows that

under some sufficient conditions on the edge transition matrix, if a protocol spreads

fast enough in a sequence of independent random graphs, we can give upper bounds

for the completion time on a sequence of edge markovian graphs. As an example,
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consider the Push Protocol spreading through G such that π(1) > 1
n
. Theorem 2.1 tells

us that the completion protocol is O(logn) with high probability. We have that:

exp
(
−(1− 1

s
)2
s logn

2

)
= n−(1− 1

s
)2 s

2 . (2.6)

For sufficiently large s, Equation 2.6 decreases polynomially to 0 (the exponent is pos-

itive), and that is a sufficient condition to state that the Push Protocol takes O(logn)

steps to complete transmission in the Markov dynamic.

We now state several corollaries, bounding the completion time for some information

spreading protocols. The proof for these corollaries follow directly from Theorems 2.1

to 2.4 and Theorem 2.5.

Corollary 2.7 Let π1 =
f(n)

1+f(n)−g(n)
be the stationary probability of an edge being present.

The completion time of the Push Protocol over G is O( logn
min{nπ1,1}).

We note that the Push Protocol takes at least ⌈log2 n⌉ steps to complete transmission.

So when min{nπ1, 1} = 1, the completion time is Θ(logn). The following Corollary

2.8 highlights a special case of the push protocol over a sequence of edge markovian

graphs where p = Θ( 1
nk ), k > 1. As far as we know, this case was not considered in

the literature.

Corollary 2.8 Let G = (Gt)t≥0 = ([n], Et) be a sequence of edge markovian random

graphs with f(n) = a
nk and g(n) = 0, in which a > 0 and k > 1 are constants. The

completion time of the Push Protocol over G is O(nk−1 logn)

Corollary 2.9 Let π1 =
f(n)

1+f(n)−g(n)
be the stationary probability of an edge being present.

The completion time of the Flood Protocol over G is O
(

logn
log(1+nπ1)

)
with high probability.

Corollary 2.10 Let π1 = f(n)
1+f(n)−g(n)

be the stationary probability of an edge being

present. If π1 = a
n
, for a positive constant a. Then, the completion time of the Pull

Protocol over G is O(logn) with high probability.

Corollary 2.11 Let π1 =
f(n)

1+f(n)−g(n)
be the stationary probability of an edge being present.

If π1 =
a
n
, for a positive constant a. Then, the completion time of the Push-Pull Protocol

over G is O(logn)
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2.3 Rumour Spreading inDynamicRandomGraphswith

Communities

In this section we are interested in studying rumour spreading in a sequence of

independent random graphs with nodes divided into two communities. We start by

introducing new types of nodes: skeptical nodes, bots and stiflers. We then explore

rumour spreading in a sequence of independent stochastic blockmodel random graphs.

2.3.1 Rumour Spreading in Dynamic Random Graphs with Skepti-

cal Nodes

In this Section we present a variation of the model shown in Section 2.1. We will

only consider the rumour spreading through the Push Protocol. Nodes can now be:

informed, uninformed or skeptical. There are αn skeptical nodes, 0 < α < 1. Skeptical

nodes cannot become informed. Let S be the set of skeptical nodes. Let u, v ∈ [n] \ S

and let w ∈ S. The edge {u, v} has probability p1 of being present at each time step,

independently of everything else. The edge {u,w} has probability p2 of being present at

each time step, independently of everything else. We start with one informed node. At

each time step we generate a new random graph. The informed nodes, then, choose

one of their neighbours uniformly at random. If the chosen neighbour was uninformed,

it becomes informed. We bound the time until every uninformed node has become

informed. Our proofs use the same argument as CLEMENTI et al. (2016). The following

Theorem 2.12 gives an upper bound for the completion time, it is proved in Section 3.2.

Theorem 2.12 Let (Gt)t≥1, Gt = ([n], Et), be a sequence of random graphs with edge

probability between a skeptical and a non-skeptical node p2 = O(p1):

(a) if p1 ≥ 1
(1−α)n

the completion time of the Push Protocol over (Gt) is O(logn) with

high probability.

(b) if p1 < 1
(1−α)n

the completion time of the Push Protocol over (Gt) is O( logn
np1

) with high

probability.

In part b) of Theorem 2.12, if p1 = c
n
, 0 < c < 1

1−α
the completion time remains

O(logn), however, when p1 =
c
nk , c > 0, k > 1, the completion time is O(nk−1 logn).
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2.3.2 Rumour Spreading in Dynamic Random Graphs with Bots

and Stiflers

In this Section we consider a rumour spreading according to the Push Protocol in a

sequence of random graphs. The nodes are divided into two groups: Bots and Stiflers.

We have αn Bots, 0 < α < 1, and βn Stiflers, β = 1−α. Stiflers can become informed,

but do not spread the rumour further. We start with every Bot informed. At each time

step an edge between two Bots appears with probability p1, independently of everything

else. An edge between a Bot and a Stifler appears with probability p2, independently

of everything else. At each time step we generate a new graph. Bots choose one of

their neighbours uniformly at random. If the chosen neighbour was a Stifler, it becomes

informed. We bound the time until every Stifler node becomes informed. Our proofs

use the same argument as CLEMENTI et al. (2016). The following Theorem whose

proof is presented in Section 3.3 provides an upper bound for the completion time.

Theorem 2.13 Let (Gt)t≥1, Gt = ([n], Et), be a sequence of random graphs with edge

probability between two bots p1 = O(p2):

(a) if p2 ≥ 1
βn

the completion time of the Push Protocol over (Gt) is O(logn) with high

probability.

(b) if p2 < 1
βn

the completion time of the Push Protocol over (Gt) is O( logn
np2

) with high

probability.

In part b) of Theorem 2.13, if p2 = c
n
, 0 < c < 1

1−β
the completion time remains

O(logn), however, when p2 =
c
nk , c > 0, k > 1, the completion time is O(nk−1 logn).

2.3.3 Rumour Spreading in the Dynamic Stochastic Block Model

In this Section we consider a rumour spreading according to the Push Protocol in

a sequence of stochastic block model random graphs. The nodes are divided into two

communities: 1 and 2. Let Ci be the set of nodes in community i = 1, 2. We have that

|C1| = αn and |C2| = βn = (1−α)n. A pair of nodes from community i have probability

pi of being connected, i = 1, 2. A node from community i has probability pij = pji of

being connected to a node from community j, i ̸= j, i, j = 1, 2. We start with a single

informed node in community 1. At each time step we sample a new random graph.

Informed nodes choose one of their neighbours uniformly at random. If the chosen
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neighbour wasn’t informed, it becomes informed. We bound the time until every node

becomes informed. To derive the upper bound we will present variations of this model

that are equivalent to the models discussed in Sections 2.3.1 and 2.3.2.

First we will consider the case where p1 and p12 are of the same order of magnitude

and p2 is at least of the same order.

Theorem 2.14 LetG = (Gt)t≥1,Gt = ([n], Et), be a sequence of stochastic block model

random graphs with p1 = Θ(p12) and p2 = Ω(p12). The completion time of the Push

Protocol over G is O
(

logn
min{1,np12}

)
with high probability.

We can also compute an upper bound for the special case where nodes in C2 find it

difficult to form connections between themselves and the nodes in C1 are comparatively

highly connected among themselves and among the nodes in C2.

Theorem 2.15 LetG = (Gt)t≥1,Gt = ([n], Et), be a sequence of stochastic block model

random graphs with p12 = Θ(p1) and p2 = o(p1). The completion time of the Push

Protocol over G is O
(

logn
min{1,np1}

)
with high probability.

The proofs of both results are presented in Section 3.4.
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Chapter 3

Proofs of the New Results

3.1 Proof of the TheoremonRumour Spreading in Edge

Markovian Random Graphs

As seen in section 2.2, under the hypothesis that (Et)t≥0 is an ergodic Markov chain,

Proposition B.7 establishes that there is an optimal strong stationary time for this chain.

When a strong stationary time happens, each edge is present with probability π(1) =

p
p+q

. If we let the rumour spread only at the strong stationary times, we go back to the

time independent model seen in Section 2.1 and have plenty of results to work with.

Since we limit the rumour spreading to strong stationary times, the completion time is

at least as large as the completion time on the original model, where new nodes can be

informed at every instant. Upper bounds for the completion time on the limited model

are also valid for the original model.

Lemmas 3.1 e 3.2, below, show how to bound the separation distance for (Et)t≥0

and how to bound the completion time, respectively. In what follows, let (Gt)t≥0, Gt =

([n], Et), be a sequence of edge markovian graphs with transition matrix:

P =

1− f(n) f(n)

1− g(n) g(n)

 .

The next Lemma 3.1 uses the Definition of separation distance that can be seen in

B.4.

27
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Lemma 3.1 Let Sx(t) be the separation distance for (Et)t≥0, with initial state x ∈ {0, 1}(
n
2).

Also define h(n) := max
{

f(n)
1−g(n)

, 1−g(n)
f(n)

}
Then:

Sx(t) ≤ n2h(n) (|g(n)− f(n)|)t .

Proof. We have that for a Markov chain with transition matrix:

A =

1− p p

q 1− q

 ,

the t-step transition probabilities are:

At =

 q+(1−p−q)tp
p+q

p−(1−p−q)tp
p+q

q−(1−p−q)tq
p+q

p+(1−p−q)tq
p+q

 .

We have p = f(n) and q = 1− g(n). So we can compute the separation distance for a

single edge:

S0(t) = max
y∈{0,1}

(
1−

P t
0,y

π(y)

)
= max

{
1−1−(1− f(n)− 1 + g(n))t

f(n)

1− g(n)
, 1−1+(1− f(n) + g(n))t

}
,

S1(t) = max
y∈{0,1}

(
1−

P t
1,y

π(y)

)
= max

{
1−1+(1− f(n)− 1 + g(n))t , 1−1+(1− f(n)− 1 + g(n))t

1− g(n)

f(n)

}
.

The separation distance satisfies:

S(t) := max{S0(t), S1(t)} ≤ (|g(n)− f(n)|)t h(n).

We now compute the separation distance for the edge set (Et)t≥0. For every initial state

x ∈ {0, 1}(
n
2):

Sx(t) = 1−min
y∈S

M t
x,y

Π(y)
= 1−min

y∈S

P t
x1,y1

π(y1)

P t
x2,y2

π(y2)
. . .

P t
x
(n2)

,y
(n2)

π(y(n2)
)

= 1− Π
(n2)
i=1(1− Sxi

(t)) ≤

1−
(
1− (|g(n)− f(n)|)t h(n)

)(n2) ≤ n2h(n) (|g(n)− f(n)|)t .
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Lemma 3.2 Let TMar be the completion time of an information spreading protocol over

(Gt)t≥0. Suppose that f(n), g(n) are decreasing functions with limit γ ≥ 0 and that

|g(n)− f(n)| ≤ M
nα , M,α > 0. Then for sufficiently large C,D, s:

P(TMar > C r(n)) ≤ exp
(
−(1− 1

s
)2
sr(n)

2

)
+

P(TInd > D r(n)),

in which r(n) is an arbitrary function and TInd is the completion time of the same pro-

tocol on a sequence of independent Erdös-Rényi random graphs with edge parameter
f(n)

1+f(n)−g(n)
.

Proof. Let τ be the optimal strong stationary time for (Et)t>0. We can use Lemma 3.1

and Proposition B.7 to bound the distribution of τ . ∃ k > 0, such that for any initial state

and for sufficiently large n:

P(τ > t) ≤ S(t) ≤ n2h(n)(|g(n)− f(n)|)t ≤ n2

(
M

nα

)t

≤
(

1

nk

)t−l

,

where l = ⌊ 2
k
⌋. Thus, we can establish a stochastic inequality between τ and Y , geo-

metric random variable with parameter 1− 1
nk . We have that Y + l > τ . Let (τi)i≥1 be a

sequence of optimal strong stationary times for (Et) and let (Yi)i≥1 be a sequence of iid

random variables with the same distribution as Y . If we let the rumour spread only at

the sequence (τi)i≥1, we have that TMar ≤
∑TInd

i=1 τi. For C,D > 0 and an function r(n),

we compute:

P (TMar > C r(n)) ≤ P

(
TInd∑
i=1

τi > C r(n)

)
≤ P

(
TInd∑
i=1

(Yi + l) > C r(n)

)
,

the last inequality is due to the stochastic domination. Then,

P

(
TInd∑
i=1

(Yi + l) > C r(n)

)
=

P

(
TInd∑
i=1

(Yi + l) > C r(n), TInd > D r(n)

)
+ P

(
TInd∑
i=1

(Yi + l) > C r(n), TInd ≤ D r(n)

)
≤
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P (TInd > D r(n)) + P

D r(n)∑
i=1

(Yi + l) > C r(n)

 . (3.3)

For the second term of Equation (3.3), we use Proposition A.3. Since
∑D r(n)

i=1 (Yi − 1)

has distribution Neg Bin(Dr(n), 1− 1
nk ), then for s > 1:

P

D r(n)∑
i=1

(Yi − 1) > sDr(n)(1− 1

nk

 ≤ exp
(
−(1− 1

s
)2
sr(n)

2

)
.

Now observe that,

P

D r(n)∑
i=1

(Yi + l) > C r(n)

 = P

D r(n)∑
i=1

(Yi − 1) > (C −D −Dl)r(n)

 =

P

D r(n)∑
i=1

(Yi − 1) > (
C

D
− 1− l)Dr(n)

 ≤ P

D r(n)∑
i=1

(Yi − 1) > (
C

D
− 1− l)Dr(n)(1− 1

nk
)

 .

So if C
D
− 1− l =: s > 1, we get:

P

D r(n)∑
i=1

(Yi + l) > C r(n)

 ≤ exp
(
−(1− 1

s
)2
sr(n)

2

)
. (3.4)

From (3.3) and (3.4), we conclude that:

P(TMar > C r(n)) ≤ exp
(
−(1− 1

s
)2
sr(n)

2

)
+

P(TInd > D r(n))

We can now conclude the proof of Theorem 2.5.

Proof of Theorem 2.5. When Tind is O(r(n)) with high probability and

exp
(
−(1− 1

s
)2
sr(n)

2

)
,
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vanishes polynomially as a function of n, a direct application of Lemma 3.2 shows that

P(TMar > Cr(n)) ≤ a
nβ , β ≥ 1. This implies that the completion time of the same protocol

over a sequence of edge markovian random graphs is O(r(n)) with high probability.

Concluding the proof.

3.2 Proof of the Theorem on Rumour Spreading with

Skeptical Nodes

To prove the first part of Theorem 2.12 we need a technical Definition and Lemma.

Definition 3.5 ((I, b)-modified graph) Let G be a graph with vertex set V = [n] =

{1, 2, . . . , n} and edges setE. Let I ⊆ [n] be the set of informed nodes. Let 1 ≤ b ≤ n be

an arbitrary number and {v1, . . . vb} be a set of ”virtual” nodes. Then the (I, b)-modified

version of G is the graphH with vertex set V (H) = [n]∪{v1, . . . vb} and edges set E(H)

obtained from E by the following operations:

1. remove all edges between any pair of nodes both in I,

2. for every u ∈ I add all edges {u, v1}, {u, v2}, . . . , {u, vb}.

This definition is useful to deal with the dependence that arises from two informed

vertices being connected.

We can now compute the expected amount of new informed nodes in a single step

of the Push Protocol in H. A coupling shows that the Push Protocol in G informs at

least as many nodes as in H.

Lemma 3.6 (Increasing rate of informed nodes) Let I ⊆ [n] be the set of informed

nodes and S ⊂ [n] be the set of skeptical nodes. Let G = ([n], E) be a new graph with

edge probability between two non-skeptical nodes p1 ≥ 1
(1−α)n

and edge probability

between a skeptical and a non-skeptical node p2 = O(p1). Let X be a random variable

counting the number of new informed nodes after a single step of the Push Protocol in

G. Then, there exists 0 < γ < 1:

P(X > γmin{|I|, n− |I| − |S|}) ≥ γ.



32

Proof. Let H be the (I, 2αnp2 + 2(1− α)np1)-modified version of G. 2αnp2 + 2(1−

α)np1 is two times the expected degree of a non-skeptical node. Let degG(u, I) = |{u′ ∈

I : {u, u′} ∈ E}| be the random variable counting the degree of u among informed nodes

inG. Let J = {u ∈ I : degG(u, I) ≤ 2αnp2+2(1−α)np1} be a random variable indicating

the set of informed nodes with less than 2αnp2+2(1−α)np1 informed neighbours in G.

Let v ∈ [n] \ (S ∪ I) be an uninformed node. Let u ∈ J . We consider a single step of

the push protocol in H and compute the probability of u sending the rumour to v.

Let δH(u) be a random variable indicating the node chosen by u in the single step

of the Push Protocol in H. Then:

P(δH(u) = v|J) = p1P(δH(u) = v|J, {u, v} ∈ E).

Conditioning on u having at most 3αnp2 skeptical neighbours and at most 3(1 − α)p1

uninformed nodes we get that:

P(δH(u) = v|J, {u, v} ∈ E) ≥

P(δH(u) = v|J, {u, v} ∈ E, degG(u, [n]\(I∪{v}∪S)) ≤ 3(1−α)np1−1, degG(u, S) ≤ 3αp2)

P(degG(u, [n] \ (I ∪ {v} ∪ S)) ≤ 3(1− α)np1 − 1)P(degG(u, S) ≤ 3αp2).

Now u chooses one of its neighbours uniformly at random, so the first term satisfies:

P(δH(u) = v|J, {u, v} ∈ E, degG(u, [n]\(I∪{v}∪S)) ≤ 3(1−α)np1−1, degG(u, S) ≤ 3αp2) ≥

1

5 ((1− α)np1 + αnp2)
.

We can bound the second term using the fact that p1 ≥ 1
(1−α)n

and theMarkov inequality:

P(degG(u, [n]\(I∪{v}∪S)) ≤ 3(1−α)np1−1) = 1−P(degG(u, [n]\(I∪{v}∪S)) > 3(1−α)np1−1) ≥

1−P(degG(u, [n]\(I∪{v}∪S)) > 2(1−α)np1) ≥ 1−((1− α)n− |I| − 1) p1
2(1− α)p1

≥ 1− (1− α)np1
2(1− α)np1

=
1

2
.

We can also bound the third term using the Markov inequality:

P(degG(u, S) ≤ 3αp2) = 1− P(degG(u, S) > 3αp2) ≥ 1− αnp2
3αnp2

=
2

3
.
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As a result:

P(δH(u) = v | J) ≥ 1

5 ((1− α)np1 + αnp2)

1

2

2

3
p1 ≥

1

3

1

5 ((1− α)n+ βn)
=

λ

n
,

where constant β is an upper bound on the ratio between p1 and p2, and λ = 1
15[(1−α)n+βn]

.

We can now compute the probability of v not receiving the information from any of

the nodes in J .

P(∩u∈J{δH(u) ̸= v}|J) ≤
(
1− λ

n

)|J |

≤ exp
(
−λ|J |

n

)
.

Let Y be a random variable that counts the number of nodes in [n] \ (I ∪ S) that

receive the rumour in H from a vertex in J . Then:

E(Y |J) ≥ (n− |I| − |S|)
(
1− exp

(
−λ|J |

n

))
≥ ((1− α)n− |I|) λ

2

|J |
n
.

To compute the expectation of Y we first analyze the probability of a node being a

member of J and the expectation of J .

P(u ∈ J) = P(degG(u, I) ≤ 2αnp2 + 2(1− α)np1) =

1− P(degG(u, I) > 2αnp2 + 2(1− α)np1) ≥
1

2
.

Since the probability of an informed node being part of J is at least 1
2
, we have that

E(J) ≥ |I|
2
. Using the Law of Total Expectation, we obtain that the unconditional expec-

tation of Y satisfies:

E(Y ) ≥ λ

2n
((1− α)n− |I|) |I|

2
.

We have 2 cases. If |I| ≥ (1−α)n
2

:

E(Y ) ≤ λ

8
(1− α)|I|.

If |I| > (1−α)n
2

:
λ

8
(1− α) ((1− α)n− |I|) .

We get that:

E(Y ) ≥ λ

8
(1− α)min{|I|, (1− α)n− |I|}.
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Since Y ≤ min{|I|, (1− α)n− |I|}, Proposition A.2 implies that:

P(Y ≥ λ(1− α)

16
min{|I|, (1− α)n− |I|}) ≥ λ(1− α)

16
.

Let X be a random variable that counts the number of new nodes that receive the

rumour in G after a single step of the Push Protocol. We will show through a coupling

thatX is stochastically at least as large as Y . Let u ∈ J , consider the following coupling:

• If δH(u) ∈ [n] \ |I| then δG(u) = δH(u).

• Let k, l, h be the number of uninformed, skeptical and informed neighbours of u in

G respectively. If δH(u) is one of the virtual nodes, then let δG(u) be uniform among

the uninformed neighbours with probability k
h+k+l

2αnp2+2(1−α)np1−h
2αnp2+2(1−α)np1

. Let δG(u) be

uniform among the skeptical neighbours with probability l
h+k+l

2αnp2+2(1−α)np1−h
2αnp2+2(1−α)np1

.

And let δG(u) be uniform among the informed neighbours with probability

h

h+ k + l

2αnp2 + 2(1− α)np1 + k + l

2αnp2 + 2(1− α)np1

.

Informed nodes in G that are not in J , meaning they have degree between informed

nodes greater than 2αnp2 +2(1−α)np1, perform the Push Protocol in G independently

of the Push Protocol in H.

Every time a node in J informs a new node in H, it also informs a new node in G.

We conclude that:

P(X ≥ λ(1− α)

16
min{|I|, (1− α)n− |I|}) ≥ λ(1− α)

16
.

We can now prove the first part of the Theorem, the case where p1 ≥ 1
(1−α)n

Proof of part (a) from Theorem 2.12. Consider a step t of the Push Protocol, let It
be the set of informed nodes at time t and letmt = |It| be its size.Ifmt <

(1−α)n
2

, Lemma

3.6 implies that P(mt+1 ≥ (1 + γ)mt) ≥ γ. Let εt = {mt ≥ (1 + γ)mt−1} ∪ {mt−1 ≥ n
2
}

and let Yt = Yt((E1, I1), . . . , (Et, It)) be its indicator variable. For t = log((1−α)n)
log(1+γ)

, we have

that: (1+ γ)t ≥ (1−α)n
2

. Let T1 =
2
γ
log((1−α)n)
log(1+γ)

, we compute the probability of taking longer
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than T1 steps to reach at least (1−α)n
2

informed nodes.

P(mT1 ≤
(1− α)n

2
) ≤ P(

T1∑
t=1

Yt ≤
γ

2
T1).

This probability is not larger than the probability of a binomial random variable with

parameters T1 and γ being less than γ
2
T1. A direct application of the Chernoff Bound

(Proposition A.1) shows that:

P(
T1∑
t=1

Yt ≤
γ

2
T1) ≤ exp(−γ

4
T1) = ((1− α)n)η1 ,

η1 > 0. We have shown that after T1 time steps, we reach at least (1−α)n
2

informed nodes

with high probability.

IfmT1 ≥
(1−α)n

2
, Lemma 3.6 implies that, for t > T1, P((1−α)n−mt+1 ≤ (1− γ)((1−

α)n − mt)) ≥ γ. Let t = log((1−α)n
γ

, then (1 − γ)t ≤ 1. For T2 = 2
λ
log((1−α)n

γ
+ T1, the

probability that the Push Protocol has not completed transmission by T2 is:

P(mT2 < (1− α)n) ≤ P(mT2 < (1− α)n|mT1 ≥
(1− α)n

2
) + P(mT1 <

(1− α)n

2
).

Applying the same logic used in the first regime (until (1−α)n
2

informed nodes), the first

probability is not larger than the probability of a binomial random variable with param-

eters T2 and γ being less than γ
2
T2. A direct application of the Chernoff Bound shows

that:

P(mT2 < (1− α)n|mT1 ≥
(1− α)n

2
) ≤ exp(−1

4
γT2) = ((1− α)n)−η2 .

After T2 time steps, the protocol has completed transmission with high probability. This

concludes the proof.

We state the following Lemma 3.7 without proof. It shows that a single Push on the

union of sequence of graphs informs stochastically less nodes then Push operations

performed on every single graph.

Lemma 3.7 Let G = {Gt = ([n], Et)}t=1,...,T be a finite sequence of graphs, let I ⊆ [n]

be the subset of informed nodes, and let X be a random variable counting the number

of informed nodes at time T . Let H = ([n], F ), F = ∪T
i=1Et and let Y be a random

variable counting the number of informed nodes after a single Push operation over H.
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Then, X is stochastically larger than Y , that is:

P(X ≤ l) ≤ P(Y ≤ l).

We can now offer a proof of the upper bound for the completion time when the edge

probability between two non-skeptical nodes is less than 1
(1−α)n

.

Proof of part (b) of Theorem 2.12. Consider the sequence of random graphs

H = {Hs = ([n], Fs) : s ∈ N}, Fs = EsT ∪EsT+1∪· · ·∪EsT+T−1, where T = 2
(1−α)np1

. The

probability of an edge between two non-skeptical nodes being absent in H is 1− pH1 =

(1−p1)
T ≤ exp(−p1T ) = exp(− 2

(1−α)n
). Therefore, the probability that an edge between

two non-skeptical nodes exists is pH1 = 1 − exp(− 2
(1−α)n

) ≥ 1
(1−α)n

. pH1 satisfies the

conditions of part (a) of Theorem 2.12, we now have to check pH2 .The probability of

an edge between a skeptical node and a non-skeptical node being present in H is

pH2 = 1− (1− p2)
T ≤ 1− (1− p2)

⌈T ≤ 1− (1− ⌈T ⌉p2) = ⌈T ⌉p2 = p2
p1

2
(1−α)n

. So we have

that:
pH2
pH1

≤
p2
p1

2
(1−α)n

1
(1−α)n

≤ 2p2
p1

. (3.8)

The last Equation (3.8) tells us that part (a) of Theorem 2.12 holds for H. Let τG and τH

be the completion time of the Push Protocol over G and over H respectively. From part

(a) of Theorem 2.12, we know that τH is O(logn) with high probability. From Lemma

3.7 it holds that:

P(τG ≥ Tt) ≤ P(τH ≥ t).

Taking t = D logn, for some sufficiently large constant D, we have that:

P(τG ≥ TD logn) ≤ P(τH ≥ D logn) ≤ 1

nη
,

where η > 0. Since T = 2
(1−α)np1

, this implies that τG is O( logn
np1

) with high probability.

3.3 Proof of the Theorem on Rumour Spreading with

Bots and Stiflers

To prove part (a) of Theorem 2.13 we start by computing the increasing rate of

informed Stifler nodes. The proof of the following Lemma 3.9 will use the modified
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graph defined in 3.5.

Lemma 3.9 Let B ⊆ [n] be the set of Bots and I ⊂ [n] be the set of Informed Stiflers.

Let G = ([n], E) be a new graph with edge probability between a Bot and a Stifler

p2 ≥ 1
βn

and edge probability between two Bots p1 = O(p2). LetX be a random variable

counting the number of new Stiflers informed after a single step of the Push Protocol in

G. Then, there exists a positive constant γ:

P(X ≥ γmin{αn, βn− |I|}) ≥ γ.

Proof. Let H be the (B, 2αnp1 + 2βnp2)-modified version of G. 2αnp1 + 2βnp2 is

two times the expected degree of a bot. Let degG(u,B) = |{u′ ∈ B : {u, u′} ∈ E}|

be the random variable counting the degree of u among bots in G. Let J = {u ∈ B :

degG(u,B) ≤ 2αnp1 + 2βnp2} be a random variable indicating the set of bots with less

than 2αnp1 + 2βnp2 bot neighbours in G. Let v ∈ [n] \ B be an uninformed stifler. Let

u ∈ J . We consider a single step of the push protocol in H and compute the probability

of u sending the rumour to v.

Let δH(u) be a random variable indicating the node chosen by u in the single step

of the Push Protocol in H. Then:

P(δH(u) = v|J) = p2P(δH(u) = v|J, {u, v} ∈ E).

Conditioning on u having at most 3βnp2 stifler neighbours we get that:

P(δH(u) = v|J, {u, v} ∈ E) ≥

P(δH(u) = v|J, {u, v} ∈ E, degG(u, [n] \ (B ∪ {v} ∪ I)) ≤ 3βnp2 − 1)

P(degG(u, [n] \ (B ∪ {v} ∪ I)) ≤ 3βnp2 − 1).

Since u chooses one of its neighbours uniformly at random, for the first term we have

that:

P(δH(u) = v|J, {u, v} ∈ E, degG(u, [n] \ (B ∪ {v} ∪ I)) ≤ 3βnp2 − 1) ≥

1

(5βnp2 + 2αnp1)
.
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We can bound the second term using the fact that p2 ≥ 1
βn

and the Markov inequality:

P(degG(u, [n]\(B∪{v}∪I)) ≤ 3βnp2−1) = 1−P(degG(u, [n]\(B∪{v}∪I)) > 3βnp2−1) ≥

1−P(degG(u, [n]\ (B∪{v}∪I)) > 2βnp2) ≥ 1− (n− |B| − 1− |I|) p2
2βp2

≥ 1− βnp2
2βnp2

=
1

2
.

As a result:

P(δH(u) = v|J) ≥ 1

(5βnp2 + 2αnp1)

1

2
p2 ≥

λ

n
.

where λ is a suitable constant.

We can now compute the probability of v not receiving the information from any of

the nodes in J .

P(∩u∈J{δH(u) ̸= v}|J) ≤
(
1− λ

n

)|J |

≤ exp
(
−λ|J |

n

)
.

Let Y be a random variable that counts the number of nodes in [n] \ (I ∪ B) that

receive the rumour in H from a vertex in J . Then:

E(Y |J) ≥ (n− |I| − |B|)
(
1− exp

(
−λ|J |

n

))
≥ (βn− |I|) λ

2

|J |
n
.

To compute the expectation of Y we first analyze the probability of a node being a

member of J and the expectation of J .

P(u ∈ J) = P(degG(u,B) ≤ 2αnp1 + 2βnp2) =

1− P(degG(u,B) > 2αnp1 + 2βnp2) ≥
1

2
.

Since the probability of and informed node being part of J is at least 1
2
, we have that

E(J) ≥ |B|
2

= αn
2
. Using the Law of Total Expectation, we obtain that the unconditional

expectation of Y satisfies:

E(Y ) ≥ λ

2n
(βn− |I|) |B|

2
≥ η

4
min{βn− |I|, αn}.

Since Y ≤ min{βn− |I|, αn}, Proposition A.2 implies that:

P(Y ≥ η

8
min{βn− |I|, αn}) ≥ η

8
.
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Let X be a random variable that counts the number of new nodes that receive the

rumour in G after a single step of the Push Protocol. We will show through a coupling

thatX is stochastically at least as large as Y . Let u ∈ J , consider the following coupling:

• If δH(u) ∈ [n] \B then δG(u) = δH(u).

• Let k, h, l be the number of uninformed stifler, bot and informed stifler neighbours

of u inG respectively. If δH(u) is one of the virtual nodes, then let δG(u) be uniform

among the uninformed stifler neighbours with probability k
h+k+l

2αnp1+2βnp2−h
2αnp1+2βnp2

. Let

δG(u) be uniform among the informed stifler neighbours with probability l
h+k+l

2αnp1+2βnp2−h
2αnp1+2βnp2

.

And let δG(u) be uniform among the bot neighbours with probability h
h+k+l

2αnp1+2βnp2+k+l
2αnp1+2βnp2

.

Bots inG that are not in J , meaning they have degree among bots greater than 2αnp1+

2βnp2, perform the Push Protocol in G independently of the Push Protocol in H.

Every time a node in J informs a new node in H, it also informs a new node in G.

We conclude that:

P(X ≥ η

8
min{βn− |I|, αn}) ≥ η

8
.

Lemma 3.9 tells us that when α < 0.5 there are two growth regimes of informed sti-

flers. We start with fewer bots than uninformed stiflers, so there is a cap on the amount

of stiflers we can inform in one step, as the push protocol progresses, the number of

bots becomes greater than the number of uninformed stiflers, we could possibly inform

every single remaining uninformed node in a single step. However, when α ≥ 0.5, the

number of bots is greater than the number of uninformed stiflers from the beginning,

meaning we start in the second regime.

Proof of Part (a) of Theorem 2.13. Consider a step t of the Push Protocol, let It
be the set of informed stifler nodes at time t and let mt = |It| be its size. We have two

cases.

Suppose that α < 0.5. For any t such that mt ≤ (1 − 2α)n Lemma 3.9 implies that

P(mt+1 ≥ mt + γαn) ≥ γ. Let εt = {mt ≥ (mt−1 + γαn} ∪ {mt−1 ≥ (1 − 2α)n} and

letYt = Yt((E1, I1), . . . , (Et, It)) be its indicator variable. Starting at 0 informed Stiflers if

we inform γαn nodes each step of the push protocol, we reach (1−2α)n informed ones

after (1−2α)
γα

time steps. Let T1 = 2
λ
(1−2α)

γα
, we compute the probability of taking longer
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than T1 steps to reach at least (1− 2α)n informed nodes.

P(mT1 ≤ (1− 2α)n) ≤ P(
T1∑
t=1

Yt ≤
(1− 2α)

αλ
) ≤ P(

T1∑
t=1

Yt ≤
γ

2
T1).

This probability is not larger than the probability of a binomial random variable with

parameters T1 and γ being less than γ
2
T1. A direct application of the Chernoff Bound

shows that:

P(
T1∑
t=1

Yt ≤
γ

2
T1) ≤ exp(−γ

8
T1) = (n)η1 ,

η1 > 0. We have shown that after T1 time steps, we reach at least (1 − 2α)n informed

nodes with high probability.

If mT1 ≥ (1− 2α)n, Lemma 3.6 implies that, for t > T1, P(βn−mt+1 ≤ (1− γ)(βn−

mt)) ≥ γ. Let t = log(2αn)
γ

, then (1− γ)t ≤ 1
2αn

. For T2 =
2
λ
log(2αn

γ
+T1, the probability that

the Push Protocol has not completed transmission by T2 is:

P(mT2 < βn) ≤ P(mT2 < αn|mT1 ≥ (1− 2α)n) + P
(
mT1 <

(1− α)n

2

)
.

Applying the same logic used in the first regime (until (1− 2α)n informed stifler nodes),

the first probability is not larger than the probability of a binomial random variable with

parameters T2 and γ being less than γ
2
T2. A direct application of the Chernoff Bound

shows that:

P(mT2 < (1− α)n|mT1 ≥ (1− 2α)n) ≤ exp(−1

4
γT2) = ((2α)n)−η2 .

After T2 time steps, the protocol has completed transmission with high probability. This

concludes the proof of the first case.

Suppose that α > 0.5. Lemma 3.9 implies that P(βn−mt+1 ≤ (1−γ)(βn−mt)) ≥ γ.

Let t = log(2βn)
γ

, then (1 − γ)t ≤ 1
2βn

. For T = 2
λ
log(2βn

λ
, the probability that the push

protocol has not completed transmission by T is not larger than the probability of a

binomial random variable with parameters T and γ being less than γ
2
T , which we can

bound through the Chernoff bound.

P(mT < βn) ≤ exp(−1

4

log(2βn)
γ

) =
1

(2βn)η
.
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After T time steps we have completed transmission with high probability. This con-

cludes the proof of the second case.

Proof of Part (b) of Theorem 2.13. Consider the sequence of random graphs

H = {Hs = ([n], Fs) : s ∈ N}, Fs = EsT ∪ EsT+1 ∪ · · · ∪ EsT+T−1, where T = 2
βnp2

. The

probability of an edge between a stifler and a bot being absent in H pH2 is (1 − p2)
T ≤

exp(−p2T ) = exp(− 2
βn
). Therefore, the probability that an edge exists is 1−exp(− 2

βn
) ≥

1
βn
. pH2 satisfies the conditions of part (a) of Theorem 2.13, we now have to check pH1 .

The probability of an edge between two bots being present in H is pH1 = 1− (1− p1)
T ≤

1− (1− p1)
⌈T ≤ 1− (1− ⌈T ⌉p1) = ⌈T ⌉p1 = p1

p2
2

(1−β)n
. So we have that:

pH1
pH2

≤
p1
p2

2
(1−β)n

1
(1−β)n

≤ 2p1
p2

. (3.10)

The last Equation (3.10) tells us that part (a) of Theorem 2.13 holds for H. Let τG and

τH be the completion time of the Push Protocol over G and over H respectively. From

Theorem 2.13 part (a) , we know that τH is O(logn) with high probability. From Lemma

3.7 it holds that:

P(τG ≥ Tt) ≤ P(τH ≥ t).

Taking t = D logn, for some sufficiently large constant D, we have that:

P(τG ≥ TD logn) ≤ P(τH ≥ D logn) ≤ 1

nη
,

where η > 0. Since T = 2
βnp2

, this implies that τG is O( logn
np2

) with high probability.

3.4 Proof of the Theorems on Rumour Spreading in the

Stochastic Block Model

Proof of Theorem 2.14. We introduce a slower version of the model and find

an upper bound for the completion time. First, suppose that every time a node from

community 1 tries to inform a node from community 2, we cancel this step of the process

and move to the next one. That is, we are considering community 2 to be skeptical.

Since p1 = Θ(p12) =⇒ p12 = O(p1), Theorem 2.12 tells us that after O( logn
min{1,np1}) time

steps, every node in community 1 is informed. We move into the second step of the
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proof. We no longer consider community 2 to be skeptical. We bound the geometric

time until one node in community 2 has been informed by a node in community 1. Let

X be a geometric random variable with parameter q = P(∪u∈C1δ(u) ∈ C2). We have

that:

q ≥ P(δ(u) ∈ C2) ≥

P(δ(u) ∈ C2|deg(u,C1) ≤ ρ1αnp1,deg(u,C2) ≤ (1− ρ2)βnp12)

P(deg(u,C1) ≤ ρ1αnp1)P(deg(u,C2) ≤ (1− ρ2)βnp12),
(3.11)

where ρ1 > 0 and 0 < ρ2 < 1. Since u sends the rumour uniformly at random and

p1 = Θ(p12), the first term of (3.11) is at least:

(1− ρ2)βnp12
(1− ρ2)βnp12 + ρ1αnp1

≥ η1, (3.12)

for a sufficiently large constant η1. We can bound the second term of (3.11) using the

Markov inequality.

P(deg(u,C1) ≤ ρ1αnp1) ≥ 1− αnp1
ρ1αnp1

≥ η2. (3.13)

for a sufficiently large constant η2. We can bound the third term of 3.11 using the Cher-

noff Bound.

P(deg(u,C2) ≤ (1− ρ2)βnp12) ≥ 1− exp
(
−ρ22

2
βnp12

)
. (3.14)

From (3.12),(3.13), (3.14) and (3.11), the parameter q ≥ η
(
1− exp

(
−ρ22

2
βnp12

))
, η =

η1η2. The probability that X takes longer than D logn
min{1,np12} , for a sufficiently large con-

stant D, is:

P(X ≥ D
logn

min{1, np12}
) ≤ (1− q)

D logn
min{1,np12} .

If p12 = Ω( 1
n
), then 1 − exp

(
−ρ22

2
βnp12

)
≥ 1 − exp

(
−ρ22

2
β
)
≥ λ, λ > 0, meaning that:

(1 − q)D logn ≤ exp(log(1 − ηλ)D logn) ≤ 1
nlog(1−ηλ)D . Since log(1 − q) < 0, we take

O(logn) time steps until at least one node of community 2 is informed. If p12 = θ( 1
nk ),

k > 1, q = η − η exp( λ
nk−1 ), therefore:

(1−q)Dnk−1 logn ≤ (1−η+η exp(− λ

nk−1
))Dnk−1 logn ≤ exp

(
(η − η exp(− λ

nk−1
))Dnk−1 logn

)
≤
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exp
(
−η(

λ

nk−1
− 1

2

λ2

n2k−2
)Dnk−1 logn

)
= exp (−ηDλ logn) exp

(
ηDλ2 logn

nk−1

)
≤

exp (−ηDλ logn) .

We take O(nk−1 logn) time steps until at least one node of community 2 is informed,

with high probability.

So far, we have proved that after O( logn
min{1,np12}), every node in community 1 and at

least a node in community 2 are informed. Since nodes in community 1 are all informed

and are not allowed to inform nodes in community 2, we can consider community one

to be skeptical. Since p2 = Ω(p12) =⇒ p12 = O(p2), Theorem 2.12 tells us that after

O( logn
min{1,np1}) time steps, every node in community 2 is informed.

After O( logn
min{1,np1}) time steps every node is informed with high probability in the

slower version of the model. This bound is also valid for the original version.

Proof of Theorem 2.15. We begin by cancelling out the rumour spreading of nodes

in C1 that try to inform a node in C2. This is equivalent to considering C2 to be skeptical.

Since p12 = Θ(p1) =⇒ p12 = O(p1), by Theorem 2.12, after O
(

logn
min{1,np1}

)
every node

in C1 is informed with high probability. We now allow nodes in C1 to inform nodes in C2

but cancel the rumour spreading of nodes in C2. This is equivalent to considering C1 to

be bots and C2 to be stiflers. Since p12 = Θ(p1) =⇒ p1 = O(p12), by Theorem 2.13,

after O
(

logn
min{1,np12}

)
time steps, every node in C2 is informed with high probability. Since

p12 = Θ(p1), the completion time of the Push Protocol over G is O
(

logn
min{1,np1}

)
with high

probability.
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Chapter 4

Conclusion

We analyzed rumour spreading in dynamic random graphs in different settings: sev-

eral algorithms on edge-markovian random graphs, Push Protocol with skeptical nodes,

Push Protocol with bots and stiflers and Push Protocol in a dynamic stochastic block

model random graph with 2 communities.

In the first setting we proposed a proof method based on strong stationary times

that allows us to bound the completion time of the Push, Pull, Flood and Push-Pull

protocol in the markovian dynamic using bounds of the completion time for the i.i.d.

case. We were able to get results that, as far as we know, have not been considered

in the literature. Namely, we proved that the completion time of the Pull Protocol and

the completion time of the Push-Pull Protocol are both O(logn) when the stationary

probability of an edge being present is π1 = a
n
, a > 0. We were also able to prove

that the completion time of the Push Protocol is O(nk−1 logn), k > 1, when the edge

transition matrix is of the form:

P =

1− a
nk

a
nk

1 0

 .

In the second and third settings we introduced skeptical, stifler and bot nodes. We

proved that the completion time of the Push Protocol isO( logn
np1

) in the former andO( logn
np2

)

in the latter. Using comparisons with these two variations, we were also able to show

that similar bounds hold for the completion time of the Push Protocol in a sequence

of stochastic block model random graphs with two communities. We proved that the

push protocol completes transmission after O( logn
min{1,np1}) in two different settings. When

the two communities have similar connectivity, that is when p1, p2 and p12 are of the
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same order (p2, p12 = θ(p1)). And when nodes in community one are highly connected

amongst themselves and with nodes in community two, but community two nodes are

mostly connected to nodes in community one. That is when p12 = θ(p1) and p2 = o(p1).
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Appendix A

Useful Definitions and Inequalities

In this section we present some inequalities and define asymptotic notation that will

be useful later.

Proposition A.1 (Chernoff Bound for Binomial Random Variable) LetX be a bino-

mial random variable with parameters n and p. Let µ = E(X). Then for every 0 < δ < 1

we have that:

P(X ≤ (1− δ)µ) ≤ exp(−δ2

2
µ).

The proof for Proposition A.1 can be found in HOFSTAD (2017).

Proposition A.2 Let X be a random variable taking values between 0 and m, m > 0.

If E(X) ≥ λm, 0 ≤ λ ≤ 1, then:

P(X ≥ λ

2
m) ≥ λ

2
.

Proof. Using the Markov inequality and the hypothesis that E(X) ≥ λm:

P(X <
λ

2
m) = P(−X >

λ

2
m) = P(m−X >

(
1− λ

2

)
m) ≤ E(m−X)(

1− λ
2

)
m

≤ 1− λ

1− λ
2

.

We have that:

P(X ≥ λ

2
m) ≥ 1− 1− λ

1− λ
2

=
λ
2

1− λ
2

≥ λ

2
.

Proposition A.3 (Chernoff Bound for Negative Binomial Random Variable) Let X

be a negative binomial random variable with parameters n and 1
p
. Let k > 1 be a
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constant. Then we have that:

P(X > knp) ≤ exp(
−(1− 1

k
)2

2
kn).

The proof for Proposition A.3 can be seen in BROWN (2011).

Asymptotic notation is useful when dealing with the completion time of a rumour

spreading protocol over a dynamic graph.

Definition A.4 (Big-O notation) Let f(n), g(n) be arbitrary non-negative functions. If

limn→∞
f(n)
g(n)

= l, 0 ≤ l < ∞, we say that f(n) = O(g(n)).

Definition A.5 (Small-o notation) Let f(n), g(n) be arbitrary non-negative functions.

If limn→∞
f(n)
g(n)

= o, we say that f(n) = o(g(n)).

Note that if f(n) = o(g(n)) then f(n) = O(g(n)).

Definition A.6 (Big-Ω notation) Let f(n), g(n) be arbitrary non-negative functions. If

limn→∞
f(n)
g(n)

= l, 0 < l ≤ ∞, we say that f(n) = Ω(g(n)).

Definition A.7 (Big-Θ notation) Let f(n), g(n) be arbitrary non-negative functions. If

limn→∞
f(n)
g(n)

= l, 0 < l < ∞, we say that f(n) = Θ(g(n)).



Appendix B

Strong Stationary Times

This section is based on Chapter 6 of LEVIN e PERES (2017), we will present the

concept of Strong Stationary Times and a Proposition that guarantees their existence

in ergodic Markov chains. We start with some definitions.

Definition B.1 (Random Function Representation) The random function represen-

tation of a Markov chain with states space S and transition matrix P is a functions

f : S × Ω → S, where Ω is the support of a random variable U , such that P(f(x, U) =

y) = Px,y.

Definition B.2 (Randomized Stopping Time) τ is a randomized stopping time for (Xt)t≥0

if it is a stopping time for the sequence of iid random variables (Ut)t≥1 used in the ran-

dom function representation of (Xt).

Definition B.3 (Total Variation Distance) The total variation distance between two dis-

tributions with sample space Ω is:

|µ− ν|TV =
∑

x∈Ω:µ(x)>ν(x)

µ(x)− ν(x).

In Markov chains the total variation distance is useful to measure the distance be-

tween the t-step transition probability and the stationary distribution. We define:

d(t) = max
x∈S

|P t
x,. − π|TV ,

where P t
x,. is containing the t-step transition probability when the initial state is X0 = x

and π is the stationary distribution of the chain.
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An alternative way to measure the distance between the t-step transition probability

and the stationary distribution is the separation distance.

Definition B.4 (Separation Distance) The separation distance for aMarkov chain with

initial state x ∈ S is:

Sx(t) = max
y∈S

(1−
P t
x,y

π(y)
).

It is also useful to define:

S(t) = max
x∈S

(max
y∈S

1−
P t
x,y

π(y)
).

Definition B.5 (Stationary Time) Let (Xt)t≥0 be an irreducible Markov chain with sta-

tionary distribution π. A stationary time τ for (Xt) is a randomized stopping time such

that Xτ is chosen according to π. That is:

P(Xτ = y) = π(y).

Definition B.6 (Strong Stationary Time) A strong stationary time for a Markov chain

(Xt)t≥0 with stationary distribution π is a randomized stopping time τ , such that:

Px(τ = t,Xt = y) = Px(τ = t)π(y),

where Px(.) denotes a probability conditioned on the initial state of the chain being x.

The following Proposition B.7 proves the existence of a strong stationary time for

ergodic Markov chains, we will call it optimal strong stationary time.

Proposition B.7 Let (Xt)t≥0 be an irreducible and aperiodic Markov chain with states

space S, for every initial state x ∈ S there is an strong stationary time τ such that for

t ≥ 0:

Sx(t) = Px(τ > t).

We prove some auxiliary results before proving Proposition B.7

Lemma B.8 Let (Xt)t≥0 be an irreducible Markov chain with stationary distribution π.

If τ is a strong stationary time for (Xt), then for every t > 0:

Px(τ ≤ t,Xt = y) = Px(τ ≤ t)π(y).
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Lemma B.8 tells us that the chain follows the stationary law in every time step after

τ .

Proof. Let Z1, Z2, . . . be the sequence of iid random variables used in the random

function representation of (Xt), then for any s ≤ t:

Px(τ = s,Xt = y) =
∑
i∈S

Px(Xt = y | τ = s,Xs = i)Px(τ = s,Xs = i).

We can take the composition of r random function representations, getting fr : S×Ωr →

S such that:

Xs+r = fr(Xs, Zs+1, Zs+2, . . . , Zs+r)

Since τ = s is a randomized stopping time, it depends only on (Z1, Z2, . . . , Zs), and is

independent of (Zs+1, Zs+2, . . . , Zs+r). We have that:

Px(Xt = y | τ = s,Xs = i) = Px(ft−s(i, Zs+1, Zs+2, . . . , Zs+t) = y | τ = s,Xs = i) = P t−s
i,y ,

Therefore:

Px(τ = s,Xt = y) =
∑
i∈S

P t−s
i,y π(i)Px(τ = s) = π(y)Px(τ = s) =⇒

∑
s≤t

Px(τ = s,Xt = y) =
∑
s≤t

π(y)Px(τ = s) =⇒

Px(τ ≤ t,Xt = y) = π(y)Px(τ ≤ t).

Proof of Proposition B.7. Fix a state x ∈ S and let at = miny
P t
x,y

π(y)
= 1 − Sx(t). If

there is a strong stationary time that satisfies Sx(t) = Px(τ > t), it also holds that:

P(τ = t) = P(τ > t− 1)− P(τ > t)

= Sx(t− 1)− Sx(t) = (1− Sx(t))− (1− Sx(t− 1)) = at − at−1,

we conclude that:

Px(Xt = y, τ = t) = π(y)
(
at − at−1

)
. (B.9)
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By Lemma B.8:

P(Xt = y, τ ≤ t) = Px(τ ≤ t)π(y) = π(y)at. (B.10)

Let (Ui)i≥1 be a sequence of iid random variables taking values in (0, 1) and inde-

pendently of (Xt). We define:

τ = min

t ≥ 1 : Ut ≤
at − at−1

P t
x,Xt

π(Xt)
− at−1

 .

By construction, we have that:

P(τ = t | Xt = y, τ > t− 1) =
at − at−1

P t
x,y

π(y)
− at−1

.

We need to show that τ satisfies (B.9) for every t ≥ 1. We prove by induction.

Px(Xt = y, τ = t) = P(τ = t | Xt = y, τ > t− 1)[P(Xt = y)− P(Xt = y, τ ≤ t− 1)].

The base case t = 1:

Px(Xt = y, τ = 1) = P(τ = 1 | X1 = y, τ > 0)[P(X1 = y)− P(X1 = y, τ ≤ 0)] =

a1 − a0
Px,y

π(y)
− a0

[Px,y − P(X1 = y, τ ≤ 0)],

we have a0 = miny
P 0
x,y

π(y)
= 0 e P(X1 = y, τ ≤ 0) = 0, thus:

Px(Xt = y, τ = 1) = π(y)(a1 − a0),

concluding the proof of the base case. Assume that the statement holds for every s < t.

Then:

Px(Xt = y, τ = t) =
at − at−1

P t
x,y

π(y)
− at−1

[P t
x,y − P(Xt = y, τ ≤ t− 1)],

By the induction hypothesis, we know that (B.10) holds, meaning that:

Px(Xt = y, τ = t) =
at − at−1

P t
x,y

π(y)
− at−1

[P t
x,y − π(y)at−1] = π(y)[at − at−1],

concluding the proof.
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