UNIVERSIDADE FEDERAL DE SÃO CARLOS

CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL

Estudo do Fator de Dano Acumulado (CDF) de pavimentos aeroportuários brasileiros utilizando FAARFIELD e BAKFAA – Avaliação da incorporação de geogrelhas

SÉRGIO RICARDO SANTILLI

São Carlos Abril, 2024

UNIVERSIDADE FEDERAL DE SÃO CARLOS

CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL

Estudo do Fator de Dano Acumulado (CDF) de pavimentos aeroportuários brasileiros utilizando FAARFIELD e BAKFAA – Avaliação da incorporação de geogrelhas

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Civil da Universidade Federal de São Carlos, como parte dos requisitos para título de Mestre em Engenharia Civil.

Área de Concentração: Estruturas e Geotecnia

Orientadora: Profa. Dra. Natália de Souza Correia

São Carlos Abril, 2024

Dedico este trabalho aos meus pais, Sérgio Gonzaga Santilli e Maria Goreti Pavão Santilli, e a minha esposa Fernanda Neves Magaldi. Referências de dedicação e amor.

AGRADECIMENTOS

Faço nessas poucas linhas um modesto reconhecimento daqueles que contribuíram com todo o aprendizado e as experiências vividas durante esse mestrado.

Agradeço a Deus, por ter me agraciado com a vida e a saúde que me permitiram chegar até esse momento, e a Dom Bosco, padroeiro dos estudantes, pela intercessão nos momentos de maior dificuldade.

Agradeço à minha querida esposa, Fernanda Neves Magaldi, a maior incentivadora e apoiadora desse sonho, com quem compartilho a felicidade desta conquista. Obrigado pelo amor e carinho com nossa família.

Agradeço de forma especial aos meus pais Sérgio Gonzaga Santilli e Maria Goreti Pavão Santilli, e minhas irmãs Ana Paula Santilli e Ana Maria Santilli. O caminho com vocês é mais fácil e prazeroso.

Ao Programa de Pós-Graduação em Engenharia Civil e à Universidade Federal de São Carlos, pelo apoio institucional que permitiram o desenvolvimento deste trabalho.

Agradeço à Profa. Dra. Natália de Souza Correia, pela orientação, dedicação e profissionalismo durante a realização dessa pesquisa.

Ao Prof. Dr. Fernando Henrique Martins Portelinha, por todas as contribuições e sugestões durante este trabalho.

A Agência Nacional de Aviação Civil e ao Ministério de Portos e Aeroportos, pelo fomento e incentivo desta pesquisa.

À CCR Aeroportos e à Vinci Airports Brasil, pela disponibilização de dados e ensaios geotécnicos das pistas estudadas.

Aos colegas do grupo de pesquisa de Geotecnia e Geossintéticos da UFSCar (GEGeos/UFSCar) e ao Laboratório de Geotecnia da UFSCar (LabGEO/UFSCar), pela parceria e por serem exemplos de dedicação e perseverança.

Por fim, a todos aqueles aos quais pude conviver e trocar experiências neste período. Muito obrigado!

"Paciência e perseverança tem o efeito mágico de fazer as dificuldades desaparecerem e os obstáculos sumirem."

John Quincy Adams (1767-1848)

Resumo

Santilli, S. R. Estudo do Fator de Dano Acumulado (CDF) de pavimentos aeroportuários brasileiros utilizando FAARFIELD e BAKFAA – Avaliação da incorporação de geogrelhas. 2024. 137f. Dissertação (Mestrado em Engenharia Civil) – Universidade Federal de São Carlos, São Carlos, 2024.

Os pavimentos dos aeroportos brasileiros, os quais foram projetados numa época de aeronaves mais leves, agora enfrentam desafios devido ao aumento do número de pousos e decolagens e ao surgimento de aeronaves maiores, bem como ao envelhecimento da infraestrutura, predominantemente construída entre as décadas de 1950 e 1970. Uma das formas de avaliar condição estrutural dos pavimentos é pela determinação do Cumulative Damage Factor (CDF) ou fator de dano acumulado, o qual considera as características mecânicas da estrutura existente e a movimentação de aeronaves em operação. Neste sentido, esta pesquisa envolve a coleta de dados sobre características das aeronaves, padrões de tráfego aéreo e propriedades das camadas dos pavimentos aeroportuários para atualizar informações sobre a vida útil dos pavimentos existentes nos aeroportos brasileiros. A pesquisa envolve a coleta de dados e análise do CDF das pistas de pouso e decolagem de 20 aeroportos brasileiros. A retroanálise das bacias de deflexão obtidas nos ensaios de Heavy Weight Deflectometer (HWD) é realizada usando o software BAKFAA. O software FAARFIELD é então empregado para calcular o CDF, incorporando as informações mais recentes sobre o mix de aeronaves e as condições do pavimento. Notadamente, 11 aeroportos apresentam CDF menor que 0,01, o que sugere potencial superdimensionamento do pavimento para o movimento de aeronaves existente. O Aeroporto de Boa Vista/RR (SBBV) obteve CDF de 1,5, que demanda a adoção de ações para mitigar a degradação do pavimento. Na segunda etapa, avaliou-se a incorporação de geossintéticos nos pavimentos aeroportuários por meio de modelagem numérica computacional com Método dos Elementos Finitos usando ABAQUS. Análises paramétricas avaliaram os efeitos do enrijecimento pelo reforço geossintético em diversas posições da estrutura, observados pela diminuição do CDF e redução das deflexões. As descobertas oferecem informações valiosas para ações futuras, estratégias de manutenção e recomendações para a construção de novos aeroportos.

Palavras-chave: pavimento aeroportuário; cumulative damage factor; bakfaa; faarfield; geossintético

Abstract

Santilli, S. R. Study of the cumulative damage factor (CDF) of Brazilian airport pavements using FAARFIELD and BAKFAA – Implications of the incorporation of geogrids. 2024. 137f. Thesis (Master in Civil Engineering) – Federal University of Sao Carlos, Sao Carlos, 2024.

Brazilian airport pavements, designed during an era of lower aircraft weights, now face up with challenges due to increased traffic and heavier aircraft, as well as aging infrastructure, predominantly constructed between the 1950s and 1970s. A way to evaluate the structural condition of pavements is by determining the Cumulative Damage Factor (CDF), which considers the mechanical characteristics of the existing structure and the aircraft operations. Therefore, this research involves collecting data on aircraft characteristics, traffic patterns, and pavement layer properties to update information on the pavement life service of existing Brazilian airfield pavements. The research involves data collection and analysis of the CDF of 20 Brazilian airport runways pavement. Backanalysis of deflection basins obtained from Heavy Weight Deflectometer (HWD) tests is conducted using the BAKFAA software. The FAARFIELD software is then employed to calculate the CDF, incorporating the latest information on aircraft mix and pavement conditions. Notably, 11 airports exhibit a CDF less than 0.01, suggesting potential oversizing of pavements for existing aircraft movement. Boa Vista Airport/RR (SBBV) stands out with a CDF of 1.5, prompting recommendations for actions to mitigate pavement degradation. In the second stage, the incorporation of geosynthetics in airport pavements was evaluated through computational numerical modeling with the Finite Element Method using ABAQUS. Parametric analyzes evaluated the effects of stabilization by geosynthetic reinforcement in different positions of the structure, verified by the decrease in CDF and reduction in deflections. Furthermore, the CDF was recalculated for this condition. The findings offer valuable insights for future actions, maintenance strategies, and recommendations for the construction of new airports.

Keywords: airport pavement; cumulative damage factor; Bakfaa; Faarfield; geosynthetic

Sumário

1. INT	RODUÇÃO 10
1.1.	Justificativa
1.2.	Objetivos
1.2.1.	Objetivo geral14
1.2.2.	Objetivos específicos 15
2. RE\	/ISÃO BIBLIOGRÁFICA 16
2.1.	Análise estrutural não destrutiva de pavimentos16
2.2.	Método de dimensionamento da FAA18
2.3.	Modelagem em elementos finitos21
2.4.	Incorporação de geossintéticos em análises numéricas de pavimentos aeroportuários
3. AN/	ÁLISE DO FATOR DE DANO ACUMULADO 29
3.1.	Movimentação de aeronaves
3.2.	Características construtivas das pistas de pouso e decolagem
3.3.	Retroanálise e determinação dos módulos de elasticidade32
3.4.	Determinação do fator de dano acumulado – CDF43
3.5.	Resultados e discussões45
4. AV	ALIAÇÃO DA INCORPORAÇÃO DE GEOGRELHAS
4.1.	Domínio do modelo e condições de contorno55
4.2.	Interação entre as camadas
4.3.	Tipo dos elementos finitos e refinamento da malha58
4.4.	Modelos constitutivos
4.5.	Carregamento
4.6.	Calibração do modelo61
4.7.	Processamento

4.8.	Resultados e discussões	64
5. CON	NCLUSÕES	80
Referên	cias bibliográficas	82
Anexo A		88
Anexo B		96
Anexo C		103

1. INTRODUÇÃO

O fato de os pavimentos dos aeroportos brasileiros terem sido dimensionados e projetados numa época em que as aeronaves em operação tinham peso máximo de decolagem menores do que aquelas em operação atualmente, combinado com o crescimento no número de pousos e decolagens, pode acarretar degradação acelerada e redução da vida útil das estruturas desses pavimentos.

Os pavimentos aeroportuários brasileiros são tradicionalmente projetados de acordo com as diretrizes e métodos desenvolvidos pela agência reguladora da aviação civil norteamericana, a *Federal Aviation Administration* (FAA), como o denominado Método FAA, estabelecido na AC 150/5320-6G, e, mais recentemente, com o auxílio do software FAARFIELD 2.0 (FAA, 2023).

Esse software aplica a Teoria dos Sistemas de Camadas Elásticas para dimensionamento de pavimentos aeroportuários flexíveis (FAA, 2021), e é utilizado tanto para dimensionamento de pavimentos novos, quanto para projetos de reabilitação ou reconstrução de pavimentos existentes. Essa versão incluiu modificações importantes nos modelos de dimensionamento de pavimentos rígidos e flexíveis, e também novas ferramentas para melhorar a experiência do usuário (Brill e Kawa, 2017). Com relação a reabilitação ou reconstrução de pavimentos existentes, de acordo com Robinson e Norwood (2019), a FAA está explorando a viabilidade e os benefícios de integrar geossintéticos como elementos estruturais no projeto de pavimentos aeroportuários flexíveis.

Diversos estudos têm examinado extensivamente o impacto da incorporação de reforços geossintéticos para aprimorar a estrutura de pavimentos rodoviários flexíveis, através da redução das deformações permanentes e distribuições de tensões mais favoráveis nas camadas inferiores do pavimento (Moghaddas-Nejad; Small, 1996; Holtz et al., 1998; Perkins; Edens, 2002; Abu-Farsakh; Akond; Chen, 2015; Luo et al., 2017; Imjai; Pilakoutas; Guadagnini, 2019; Zadehmohamad et al., 2022). Entretanto, comparativamente aos pavimentos aeroportuários flexíveis, poucos estudos têm avaliado a incorporação de reforços geossintéticos como parte de sua estrutura, apesar das diferenças existentes entre ambos os tipos de pavimento. Portanto, considerando as vantagens de empregar geossintéticos em pavimentos rodoviários, estudos recentes têm avaliado seu potencial no enrijecimento e na estabilização, ou seja, na restrição de deslocamentos das partículas de agregado, e no desempenho estrutural de pavimentos aeroportuários mais espessos.

Tendo em vista que os projetistas de pavimentos aeroportuários desejam incorporar geossintéticos, é essencial obter uma compreensão mais profunda das suas implicações práticas (Robinson; Howard, 2021). No entanto, a aplicação de geossintéticos em pavimentos

aeroportuários permanece relativamente limitada. Assim, na primeira parte do presente estudo, buscou-se investigar a condição estrutural dos pavimentos aeroportuários brasileiros. Para isso, fez-se o levantamento do mix de aeronaves em operação, suas características principais, o número de pousos e decolagens em cada aeroporto, bem como as características e propriedades das camadas dos pavimentos existentes nas pistas de pouso e decolagem de 20 aeroportos brasileiros. Usando a retroanálise dos dados obtidos dos ensaios com deflectômetro de impacto pesado (*Heavy Weight Deflectometer – HWD*) realizados nas pistas de pouso e decolagem, este estudo buscou determinar o módulo de elasticidade de cada camada dos pavimentos existentes, através do software BAKFAA. Com o auxílio do software FAARFIELD, o Fator de Dano Acumulado (*Cumulative Damage Factor – CDF*) da estrutura do pavimento aeroportuário foi calculado.

Na segunda parte desse estudo, considerando os pavimentos aeroportuários que a etapa anterior indicou possuir condição estrutural deficiente, buscou-se avaliar os aspectos da incorporação de geossintéticos no comportamento mecânico das estruturas por meio de modelagem numérica computacional e processamento através de Método dos Elementos Finitos, usando o Software ABAQUS. Foram realizadas análises paramétricas que possibilitaram avaliar os efeitos do enrijecimento proporcionado pela inserção do reforço geossintético em diferentes posições da estrutura do pavimento aeroportuário, bem como da utilização de reforços com diferentes especificações. Assim, a pesquisa visa fornecer subsídios para considerar o enrijecimento do pavimento aeroportuário com geossintéticos como alternativa apropriada para estender a vida de serviço das estruturas, bem como propor uma análise do fator de melhoria obtido com reforços geossintéticos por meio da análise do CDF.

1.1. Justificativa

O pavimento é a estrutura composta por camadas de diferentes materiais compactados, sobrepostos a partir do subleito, de tal forma que atenda as solicitações estruturais e operacionais do tráfego. Tal arranjo de materiais deve ser executado com o objetivo de que a estrutura se mantenha durável e ao menor custo possível. As pistas de pouso e decolagem dos principais aeroportos públicos brasileiros foram idealizadas e construídas entre as décadas de 1950 e 1970. Observa-se na Figura 1.1 que, dos 29 aeroportos brasileiros que atualmente processam mais de 1 milhão de passageiros por ano, 22 foram abertos ao tráfego antes de 1970 e suas pistas de pouso e decolagem foram construídas considerando a realidade das operações aéreas da época do seu planejamento (ANAC, 2022).

Cidade - Código ICAO dos Aeroportos

Figura 1.1 - Ano de abertura dos principais aeroportos brasileiros. Fonte: ANAC (2022)

No Brasil, alterações regulatórias promoveram a adoção de políticas de liberdade de preço a partir de 2001 e de liberdade de oferta dos serviços aéreos a partir de 2005, popularizando o transporte aéreo e, com isso, causando aumento considerável do número de pousos e decolagens. A Figura 1.2 evidencia que o número total de pousos e decolagens cresceu 87% no período de 2004 a 2013 e, desde então, tem mantido certa estabilidade, com leves variações influenciadas principalmente pelo desempenho macroeconômico do país, pela cotação da moeda norte-americana e pelo preço internacional dos combustíveis de aviação. Exceção a essa tendência pode ser visualizada nos anos de 2020 e 2021, nos quais se vê uma queda atípica e bastante acentuada da movimentação de aeronaves, por efeito das restrições causadas pela pandemia de Covid-19.

Figura 1.2 - Evolução do número de pousos e decolagens nos aeroportos brasileiros. Fonte: ANAC (2022).

Devido ao constante avanço tecnológico da indústria aeronáutica, observa-se na Figura 1.3 que o peso máximo de decolagem das aeronaves passou da ordem de 200 toneladas na década de 1970, para até 500 toneladas na última década, causando uma elevação dos esforços transmitidos à estrutura dos pavimentos aeroportuários.

Figura 1.3 - Evolução do peso máximo de decolagem das aeronaves civis comerciais. Fonte: Bejan; Charles; Lorente (2014)

O fato de os pavimentos aeroportuários brasileiros terem sido dimensionados numa época em que as aeronaves em operação possuíam pesos máximos de decolagem menores do que aquelas utilizadas na atualidade, associado ao crescimento do número de pousos e decolagens, pode ser causa de degradação acelerada e redução da vida de serviço dessas estruturas.

Os pavimentos aeroportuários brasileiros são usualmente dimensionados de acordo com as diretrizes e métodos desenvolvidos pela agência reguladora da aviação civil norte americana, a FAA, como o denominado Método FAA que consta na *Advisory Circular nº 150/5320-6G Airport Pavement Design and Evaluation*.

O dimensionamento de pavimentos aeroportuários depende de um rol de variáveis que o diferencia dos pavimentos rodoviários, entre elas a elevada pressão de inflação dos pneus das aeronaves, os diferentes arranjos dos pneus nos trens de pouso, as elevadas cargas aplicadas pelos pneus no pavimento, as frequências de repetição de cargas, diferenças substanciais nas espessuras das camadas, e outras.

A opção de estudar o reforço estrutural de pavimentos aeroportuários com aplicação de geogrelha se devido às vantagens desse método em relação aos métodos tradicionais ao passo que promove redução de espessura das camadas do pavimento resultando em economia de materiais e de custos, em especial nos aeródromos localizados na região amazônica, onde há dificuldade de se obter agregados graúdos de boa qualidade para reforço de base; as geogrelhas ajudam a distribuir as cargas e a controlar o movimento do solo, reduzindo assim o risco do surgimento de trincas e deformações no pavimento; e podem melhorar a capacidade de carga do pavimento, prolongando sua vida útil e reduzindo a necessidade de manutenção futura.

1.2. Objetivos

1.2.1. Objetivo geral

Este estudo teve como objetivo principal avaliar a condição estrutural dos pavimentos das pistas de pouso e decolagem de 20 aeroportos brasileiros através do Fator de Dano Acumulado (CDF), bem como os efeitos do enrijecimento com geogrelhas no comportamento estrutural de pavimentos aeroportuários.

1.2.2. Objetivos específicos

Avaliar as propriedades físicas e mecânicas de cada uma das camadas dos pavimentos existentes nas pistas de pouso e decolagem dos aeroportos brasileiros.

Avaliar a condição estrutural dos pavimentos através do Fator de Dano Acumulado (CDF).

Desenvolver um modelo numérico computacional de pavimento aeroportuário que possibilite avaliar os efeitos do reforço geossintético no cálculo do CDF.

2.1. Análise estrutural não destrutiva de pavimentos

A análise estrutural de um pavimento consiste em determinar tais características e verificar o seu comportamento mecânico quando submetido aos carregamentos aplicados pelo tráfego. Avaliações estruturais não destrutivas, ou seja, sem abertura de trincheiras ou poços de sondagem, são preferíveis quando se refere aos pavimentos aeroportuários, pois evitam longos períodos de indisponibilidade da infraestrutura e não geram irregularidades na superfície que possam comprometer o conforto e a segurança das operações.

Um dos métodos não destrutivos de avaliação estrutural comumente utilizado para verificar as deformações elásticas dos pavimentos é através de deflectômetros, assim denominados por medirem os deslocamentos verticais retornáveis – deflexões – que podem gerar trincamentos e fadiga do pavimento. No Brasil, a norma técnica DNER-PRO 273/96 (DNER, 1996) fixa o procedimento a ser adotado para determinar as deflexões na superfície de pavimentos rodoviários para fins de avaliação estrutural da sua condição, utilizando o deflectômetro de impacto tipo Falling Weight Deflectometer (FWD). Porém, as condições usualmente existentes em pavimentos rodoviários são diferentes daquelas observadas nos pavimentos aeroportuários. Por esse motivo o Manual de Sistema de Gerenciamento de Pavimentos Aeroportuários – SGPA (ANAC, 2017) recomenda adaptações no procedimento de ensaio, para melhor adequá-lo à realidade construtiva e operacional dos pavimentos aeroportuários. Dentre essas adaptações, o equipamento de teste deve ser configurado para aplicar carga de impacto maior do que a estabelecida na norma técnica, de tal forma que reproduza uma pressão no pavimento aeroportuário similar à pressão gerada pelos pneus da maior aeronave em operação no aeroporto, usualmente chamado de Heavy Weight Deflectometer (HWD). Ainda, em função da grande largura da pista de pouso e decolagem, recomenda a realização dos testes em linhas longitudinais paralelas, sendo uma no eixo central da pista e as demais afastadas 3,00 m e 6,00 m, tanto à direita quanto à esquerda do eixo, e que as estações de ensaio localizadas na mesma linha longitudinal possuam espaçamento de 20,00 m.

Os dados de deflexão coletados no ensaio HWD fornecem informações quantitativas e qualitativas sobre o comportamento mecânico de um pavimento. Os valores medidos imediatamente abaixo da placa de aplicação de carga indicam a rigidez da estrutura do pavimento como um todo. Os valores medidos pelos sensores mais distantes indicam o comportamento do subleito (Figura 2.1).

Figura 2.1 - Representação do deflectômetro de impacto. Fonte: DNIT (2005).

As bacias de deflexão obtidas nos ensaios HWD, quando associados às informações de espessura das camadas da estrutura, podem ser processadas através de softwares de retroanálise, como os listados na Tabela 2.1.

Software	Desenvolv edor	Sub-rotina de cálculo	Análise das interfaces	Número máximo de camadas	Rotina de convergência
BAKFAA	FAA	LEAF	variável	10	raiz do erro quadrático médio
BISDEF	USACE	BISAR	variável	não excede o número de sensores de deflexão	soma dos quadrados dos erros absolutos
CHEVDEF	USACE	CHEVRON	fixo (aderido)	não excede o número de sensores de deflexão	soma dos quadrados dos erros absolutos
ELSDEF	Texas A&M USACE	ELSYMS	fixo (aderido)	não excede o número de sensores de deflexão	soma dos quadrados dos erros absolutos
MODULUS	Texas Transp. Institute	WESLEA	fixo (aderido)	até 4 camadas, mais camada rígida	soma dos quadrados dos erros relativos
WESDEF	USACE	WESLEA	variável	até 5 camadas	soma dos quadrados dos erros absolutos
MICHBAK	Michigan State	CHEVRON	fixo (aderido)	até 4 camadas, mais camada rígida	soma dos quadrados dos erros relativos
BACKMEDINA	IPR; COPPE	AEMC	variável	até 6 camadas	raíz do erro quadrático médio

Tabela 2.1 – Programas de retroanálise de dados de HWD.

Fonte: Adaptado de FAA (2011).

A retroanálise consiste no processamento dos dados realizados por tais softwares utiliza conceitos da Teoria de Sistema de Camadas Elásticas (TSCE), e permite comparar os dados de deflexão coletados em campo com valores calculados numericamente, por meio de algoritmos iterativos que minimizam os erros entre as duas situações, e se obtém a combinação de módulos de elasticidade das camadas da estrutura que melhor reproduz o comportamento de campo.

2.2. Método de dimensionamento da FAA

Os pavimentos aeroportuários brasileiros são, tradicionalmente, dimensionados de acordo com as diretrizes e métodos desenvolvidos pela agência reguladora da aviação norteamericana, a FAA, que disponibiliza o software FAARFIELD, amplamente utilizado no Brasil, que aplica a TSCE para o dimensionamento de pavimentos flexíveis e, para pavimentos rígidos, também utiliza a análise através de Método dos Elementos Finitos (FAA, 2021). Esse software é utilizado tanto para dimensionamento de pavimentos aeroportuários novos, quanto para projetar reforços, reconstrução ou reabilitação de pavimentos existentes.

Para o dimensionamento de pavimentos flexíveis, aos quais o escopo desse estudo está restrito, o software FAARFIELD utiliza como critérios de dimensionamento a máxima deformação de encurtamento vertical no topo do subleito e a máxima deformação de alongamento horizontal na porção inferior da camada de revestimento asfáltico, e fornece as espessuras necessárias para todas as camadas do pavimento para suportar um mix de aeronaves durante a vida útil de projeto, considerando o subleito existente.

A vida útil de projeto se refere à vida estrutural, ou seja, o tempo no qual o pavimento aeroportuário é submetido às movimentações de pousos e decolagens do mix de aeronaves, antes de falhar estruturalmente. Esse conceito difere da vida de serviço, que é o tempo no qual o pavimento é capaz de manter adequado nível de funcionalidade, podendo até ser maior do que a vida útil de projeto.

Diferentemente do dimensionamento de pavimentos rodoviários, que partem do carregamento de um eixo padrão e determinam o número de passagens desse mesmo eixo equivalente para os demais veículos, o dimensionamento de pavimentos aeroportuários considera todo o mix de aeronaves em operação no aeroporto, aplicando-se a hipótese de que a falha estrutural ocorre devido ao acúmulo dos danos causados em cada operação de pouso ou decolagem ao longo da vida de projeto. O chamado Fator de Dano Acumulado, do inglês *Cumulative Damage Factor* (CDF), é a quantidade de fadiga estrutural que um pavimento em uso pode suportar, ou seja, que já foi consumida (FAA, 2021). Portanto, é a

razão entre o número de carregamentos aplicados (n_i) e o número total de carregamentos que o pavimento pode suportar até a falha (N_i).

$$CDF = \sum \frac{n_i}{N_i} \tag{1}$$

No caso de pavimentos existentes, o software pode determinar o CDF como um indicativo da sua condição estrutural, considerando as características mecânicas da estrutura existente e a movimentação de aeronaves em operação.

Para tanto, devem ser fornecidos como dados de entrada as espessuras das camadas dos materiais que compõem o pavimento, e seus respectivos módulos de elasticidade, que podem ser obtidos através de retroanálises dos resultados de ensaios HWD, como descrito no tópico anterior.

Quanto aos carregamentos gerados pelas aeronaves no pavimento, o software FAARFIELD utiliza o peso máximo de decolagem e a distribuição do peso entre os conjuntos de rodas dos trens de pouso informados pelos fabricantes. De acordo com FAA (2021), o uso do peso máximo de decolagem proporciona um dimensionamento conservador, e permite mudanças no uso e no tráfego das operações. A pressão de inflação dos pneus varia de acordo com o peso da aeronave, o tamanho do pneu e a configuração do trem de pouso.

O volume de tráfego normalmente utilizado para o dimensionamento do pavimento aeroportuário considera o número de decolagens anuais de cada tipo de aeronave, e inclui todas as aeronaves que utilizarão o pavimento. Segundo a FAA (2021), desconsidera-se o número de pousos no dimensionamento pois, em geral, o peso das aeronaves ao pousar é muito menor do que ao decolar, devido ao consumo de combustível. Em alguns casos, entretanto, o usuário deve considerar também os carregamentos do pavimento devido aos movimentos de pouso. Como quando não há serviço de reabastecimento disponível no aeródromo, as aeronaves pousam e decolam com o mesmo peso, portanto o dimensionamento no software FAARFIELD deve considerar o dobro da quantidade de decolagens para indicar o número de vezes que o pavimento é submetido àquela carga.

Ao se considerar a soma dos efeitos dos danos causados por cada aeronave para o dimensionamento do pavimento aeroportuário, deve ser analisado o efeito da movimentação lateral das aeronaves ao realizar os pousos ou decolagens. De acordo com FAA (2021), essa variação lateral do percurso da aeronave tem distribuição normal e, com a movimentação da aeronave ao longo de uma pista de pousos e decolagens, pode ser necessário que essa aeronave realize diversas passagens em uma determinada seção do pavimento para que haja uma única cobertura, que é aquela que produz o dano equivalente ao máximo carregamento produzido por uma determinada aeronave.

A razão entre o número de passagens necessárias para aplicar uma cobertura a uma unidade de área do pavimento é expressa por Passagens por Cobertura (P/C). Para pavimentos flexíveis, coberturas são uma medida do número de repetições para que se obtenha a máxima deformação no topo do subleito produzido por uma determinada aeronave.

$$CDF = \frac{(decolagens anuais) . (vida de serviço)}{\left(\frac{Passagens}{Cobertura}\right) . (Coberturas até a falha)}$$
(2)

Para determinar o CDF, o software FAARFIELD ainda considera o conceito de largura efetiva do pneu que, como mencionado, em pavimentos flexíveis é definido no topo do subleito, como mostrado na Figura 2.2.

Figura 2.2 – Largura efetiva dos pneus para pavimentos flexíveis: (a) Sem sobreposição da largura efetiva; (b) Com sobreposição da largura efetiva. Fonte: Adaptado de FAA (2021).

O número de passagens de cada tipo de aeronave em uma pista de pousos e decolagens é obtido por simples observação e levantamento dos registros dos operadores aeroportuários. O número de coberturas resultante das operações de uma aeronave em particular, por sua vez, é função do número de passagens, da configuração do trem de pouso, da largura da área de contato da roda, da variação lateral do caminho da roda em relação ao centro da pista, e é obtido matematicamente no software, que determina os efeitos dos danos causados por cada aeronave listada no mix, considerando as particularidades dos seus trens de pouso, peso e localização da roda em relação ao centro da pista de pousos e decolagens, e calcula o CDF total para cada faixa de 0,25 m, nos 20,8 m centrais da pista de pousos e decolagens.

A obtenção de valor unitário para CDF total indica que o pavimento utilizou toda a sua vida de serviço ao longo da vida útil estabelecida em projeto (usualmente, fixado em 20 anos), para as condições de movimentação de aeronaves e da estrutura do pavimento

consideradas. Valores de CDF abaixo de 1,0 indicam que o pavimento ainda possui parte da vida útil. E valores de CDF acima de 1,0 não indicam necessariamente que o pavimento não suportará a ação do tráfego, mas que o pavimento poderá estar em situação de falha estrutural, de acordo com as diretrizes de projeto. Nos casos em que se obtém CDF acima de 1,0, considera-se apropriado realizar uma avaliação da necessidade de reforçar o pavimento, ou adotar medidas que mitiguem a degradação acelerada do pavimento, como restrições ao número de operações de pouso e decolagem ou restrições às operações de aeronaves que tenham contribuição relevante para a elevação do valor do CDF total (ANAC, 2020).

Prahara e Rachma (2020) estudaram o CDF da pista de pouso e decolagem de um aeroporto na Indonésia, e produziram correlações desse fator com a espessura do pavimento, e com sua vida útil. Nesse estudo foi possível determinar quais aeronaves produziram maiores contribuições para o CDF total, qual a vida útil remanescente do pavimento estudado. Realizaram ainda correlações entre as variações do CDF, da espessura do pavimento e da vida útil remanescente.

2.3. Modelagem em elementos finitos

Avanços da tecnologia de processamento computacional e dos métodos numéricos, como o Método dos Elementos Finitos - MEF (Hughes, 2000), para a solução de problemas mecânicos, vêm tornando cada vez mais comum o uso de softwares específicos para realizar análises numéricas computacionais das deformações, tensões e deslocamentos nos pavimentos. Um dos programas computacionais mais utilizados para modelagem numérica, de cargas e de materiais, para análise de problemas de pavimentação com processamento baseado no MEF é o software comercial ABAQUS (ABAQUS, 2014), que é capaz de realizar simulações e análises dinâmicas ou estáticas, pode utilizar diferentes tipos de carga, variações de temperatura, tipos de contato, entre outras funcionalidades.

Os modelos numéricos observados nos estudos mais recentes podem ser diferenciados pelo tipo de análise realizada, se dinâmica ou estática; pelo tipo de modelo utilizado, se bidimensional plano, bidimensional axissimétrico ou tridimensional; pelo modelo constitutivo que representa o comportamento mecânico dos materiais, que pode ser linear ou não linear, elástico, viscoelástico ou elastoplástico; e pela modelagem da interação entre os materiais, entre outras possibilidades.

A definição das características mecânicas dos materiais constituintes das camadas dos pavimentos é primordial para que os modelos numéricos apresentem resultados equivalentes aos observados em campo. Os módulos de elasticidade das camadas do pavimento são os principais fatores utilizados para definir modelos computacionais que simulem o comportamento do pavimento em situações de carregamento. Uma forma de obtenção dos módulos de elasticidade das camadas de um pavimento é através da retroanálise das bacias de deflexões medidas no ensaio HWD, com as deflexões calculadas numericamente, ajustando-se os valores dos módulos até que se obtenha convergência entre os resultados. Essa calibração do modelo é fundamental para que se obtenha precisão dos resultados produzidos pelo modelo numérico e possibilite seu uso para prever o comportamento mecânico do pavimento em situações que não foram verificadas experimentalmente.

Para que os modelos numéricos de pavimentos aeroportuários apresentem resultados compatíveis com o comportamento mecânico real, é necessário adequar os numéricos anteriormente desenvolvidos modelos para pavimentos rodoviários. Diferentemente das conclusões obtidas por Duncan, Monismith e Wilson (1968), que estudaram a influência do tamanho do domínio em modelos axissimétricos para pavimentos rodoviários, e observaram que a profundidade total do modelo numérico da estrutura do pavimento deve ter 50 vezes o raio da área de aplicação da carga, e a largura deve ter 12 vezes esse raio, Rezende (2021) estudou as dimensões mais adequadas do domínio para a modelagem computacional em elementos finitos de pavimentos aeroportuários, e obteve resultados que mostraram que, tanto a espessura do subleito, quanto o limite radial do modelo, para a modelagem computacional tridimensional em elementos finitos de pavimentos aeroportuários, devem ser de pelo menos 50 vezes o raio de aplicação da carga (Figura 2.3).

Figura 2.3 – Configuração ideal do domínio do modelo numérico: (a) Pavimento rodoviário (Duncan; Monismith; Wilson, 1968); (b) Pavimento aeroportuário (Rezende, 2021).

Quanto à malha de elementos finitos utilizada nos modelos de pavimento, destacase que o grau de refinamento é um fator de grande importância para estimar com precisão o campo de tensões e deformações do pavimento (Leonardi et al., 2020). Portanto, a região sob a área de aplicação da carga é definida com maior concentração de elementos, assim como a região das camadas superiores do pavimento, de tal forma a captar adequadamente as variações na distribuição das tensões e deformações do modelo.

Zadehmohamad et al. (2022) analisaram os benefícios a longo prazo da incorporação de geossintéticos em pavimentos flexíveis utilizando modelagem numérica com elementos finitos, adotando como condição de contorno das faces laterais do modelo a restrição aos movimentos no eixo horizontal e, para a face inferior, a restrição aos movimentos tanto no eixo horizontal quanto no eixo vertical. Os modelos foram capazes de simular o comportamento do pavimento reforçado com geossintético, e os resultados das simulações numéricas foram compatíveis com os resultados dos ensaios físicos. Da mesma forma, Dong et al. (2023) utilizaram simulações com elementos finitos para analisar o desempenho estrutural de um pavimento aeroportuário submetido a variações de temperatura e, adotando condições de contorno similares, foram obtidos resultados consistentes com aqueles medidos em ensaios.

Para analisar um pavimento aeroportuário submetido ao ensaio FWD, Tarefder e Ahmed (2014) desenvolveram modelos axissimétricos e tridimensionais com auxílio do software ABAQUS, foi utilizado o MEF no processamento, e os resultados obtidos com a aplicação de carga dinâmica e carga estática foram comparados. Foi observado que o modelo axissimétrico apresentou resultados tão precisos quanto o modelo tridimensional. Entretanto, há vantagem na utilização dos modelos axissimétricos no que se refere à redução do esforço computacional para processamento dos modelos e, consequentemente, que é uma alternativa eficaz para reduzir o tempo de processamento, quando comparado com os modelos tridimensionais, além de garantir a precisão necessária dos resultados (Cho; McCullough; Weissmann, 2000).

Na literatura, o modo mais comum de se simular cargas de rodas em um modelo numérico de elementos finitos é através de cargas do tipo pressão, uniformemente distribuída em uma região circular ou retangular, com área equivalente à área de contato entre o pavimento e o pneu do veículo (Alkasawneh; Pan; Green, 2008). Nesse sentido, Buonsanti, Leonardi e Scopelliti (2012) simularam no modelo de elementos finitos desenvolvido com o Software ABAQUS o carregamento produzido pelo pneu de uma aeronave Airbus A321 aplicando carga do tipo pressão em uma região retangular de dimensões L x 0,7L, com área equivalente à área de contato entre o pavimento e o pneu daquele modelo de aeronave. Ling et al. (2021) também utilizaram essa abordagem para avaliar as cargas de aeronaves com distribuição não uniforme e seus efeitos na deformação permanente de trilhas de roda no revestimento asfáltico. Ao simular no modelo de elementos finitos desenvolvido com o Software ABAQUS, o carregamento produzido pela roda da aeronave Airbus A380 foi da ordem de 1500 kPa em uma região retangular de 0,50 m x 0,35 m, segundo as dimensões

descritas pela fabricante da aeronave, porém com distribuição não uniforme, tendo em vista que o objetivo do estudo foi avaliar os efeitos das cargas dinâmicas para a deformação permanente de trilhas de roda no revestimento asfáltico. Liu, Han e Ding (2020) utilizaram modelagens numéricas no Software ABAQUS para comparar os efeitos de cargas estáticas e dinâmicas na formação de trincas em pavimentos aeroportuários, considerando a roda de uma aeronave Airbus A318. Os resultados mostraram que os deslocamentos e as tensões nas trincas do pavimento devido às cargas dinâmicas das aeronaves são maiores do que aquelas resultantes das cargas estáticas.

Por fim, verifica-se que o Método dos Elementos Finitos tem sido amplamente utilizado para investigar o comportamento mecânico de pavimentos aeroportuários, reduzindo os custos elevados que envolvem os estudos em pavimentos reais ou em protótipos. Apesar das limitações, avanços na tecnologia de processamento computacional têm elevado significativamente a aceitação e a frequência de utilização de análises numéricas computacionais para simular o comportamento do pavimento. Entre os principais desafios da modelagem numérica de pavimentos estão o tipo de carregamento, as dimensões do domínio do modelo numérico e a definição dos modelos constitutivos dos materiais.

2.4. Incorporação de geossintéticos em análises numéricas de pavimentos aeroportuários

De acordo com FAA (2021), para efeito de dimensionamento, a agência reguladora norte americana não considera nenhum efeito da aplicação de geossintético como reforço de pavimento aeroportuário. Por isso, o software FAARFIELD não possui funcionalidade que possibilite considerar sua aplicação. É necessário, portanto, a utilização de outra ferramenta que possibilite a avaliação dos efeitos da incorporação de reforços geossintéticos nos pavimentos aeroportuários.

Na Tabela 2.2, adaptada de Gu (2011), observa-se que os estudos apresentam grande variedade na definição dos modelos constitutivos dos materiais que compõem a estrutura dos pavimentos nos modelos computacionais, resultando em diferentes abordagens para reproduzir e prever o seu comportamento mecânico. Entretanto, destacam-se nos estudos mais recentes os modelos constitutivos isotrópicos, lineares viscoelástico para a camada de revestimento asfáltico (Luo et al., 2017; Imjai, Pilakoutas, Guadagnini, 2019; Zadehmohamad et al., 2022; Dong et al., 2023) e os modelos isotrópicos de Drucker-Prager para as camadas granulares (Calvarano et al., 2017; Darabi et al., 2020; Zadehmohamad et al., 2022).

		M - 1 - 1 - 1 -			Modelo do			
Autor	Tipo de análise	Modelo do revestiment o asfáltico	Modelo da base	Modelo do subleito	reforço geossintéti co	Modelo da interface		
Barksdale et al. (1989)	2D axissimétrico	isotrópico, não-linear elástico	Anisotrópico, não-linear elástico	lsotrópico, não-linear elástico	Membrana, linear elástico	Linear elasto- plástico		
Miura et al. (1990)	2D axissimétrico	isotrópico, linear elástico	isotrópico, linear elástico	isotrópico, linear elástico	Barra, linear elástico	Linear elástico, Elementos de junção		
Burd e Brocklehurst (1992)	2D plano de deformações	-	lsotrópico, elasto- plástico Matsuoka	Von Mises	Membrana, linear elástico	Elasto- plástico, Mohr- Coulomb		
Dondi (1994)	3D	isotrópico, linear elástico	lsotrópico, Drucker- Prager	Cam-clay	Membrana, linear elástico	Elasto- plástico, Mohr- Coulomb		
Whathugala et al. (1996)	2D axissimétrico	lsotrópico, Drucker- Prager	lsotrópico, Drucker- Prager	HiSS δ_0	Sólido, Von Mises	Linear elasto- plástico		
Perkins (2001)	3D	isotrópico, linear elasto- plástico	Modelo de superfície delimitadora	Modelo de superfície delimitadora	Membrana, linear elástico	Elasto- plástico, Mohr- Coulomb		
Leng e Gabr (2003)	2D axissimétrico	-	lsotrópico, Drucker- Prager	lsotrópico, Drucker- Prager	Membrana, linear elasto- plástico	Elasto- plástico, Mohr- Coulomb		
Kwon et al. (2005)	2D axissimétrico	isotrópico, linear elástico	não-linear elástico	isotrópico, linear elástico	Membrana, linear elástico	Linear elástico, Elementos de mola		
Abu-Farsakh et al. (2009)	2D axissimétrico	isotrópico, linear elasto- plástico	Isotrópico, Drucker- Prager	lsotrópico, Drucker- Prager	Membrana, linear elástico	Totalmente aderido		
Nazzal et al (2010)	2D axissimétrico	isotrópico, linear elasto- plástico	Estado Crítico	Cam-clay	Membrana, linear elástico	Totalmente aderido		
Huang (2014)	2D axissimétrico	-	lsotrópico, Drucker- Prager	lsotrópico, Drucker- Prager	Sólido, linear elástico	Totalmente aderido		
Correia et al. (2018)	2D axissimétrico	isotrópico, linear elástico	Mohr- Coulomb	Mohr- Coulomb	Sólido, linear elástico	Totalmente aderido		
Pedroso e Silva (2021)	2D axissimétrico	-	não-linear, Uzan (1988) model_	não-linear, Uzan (1988) model	Membrana, linear elástico	Totalmente aderido		

Tabela 2.2 – Relação de modelos constitutivos adotados em estudos sobre pavimentos rodoviários.

Fonte: Adaptado de GU (2011)

A modelagem do reforço geossintético, por sua vez, tem se mostrado desafiadora, haja vista as diferentes abordagens observadas na literatura. Observa-se predomínio da utilização de modelo constitutivo linear elástico, com elementos do tipo membrana (Pedroso; Silva, 2021; Zadehmohamad et al., 2022) e configurações que tratam da interação desses elementos com as camadas do pavimento que os circundam. Offenbacker (2019) apresentou relação de estudos que trataram da incorporação de reforço geossintético em pavimentos, utilizando MEF (Tabela 2.3).

Autor e Ano	Localização do reforço	Conclusões					
Howard; Warren (2009)	Interface base- subleito	A modelagem numérica no software Plaxis não teve sucesso em prever a resposta do pavimento com reforço de geogrelha.					
Moayedi et al. (2009)	Variando	A modelagem numérica do pavimento no software Plaxis exibiu reduções de tensão de tração com o uso de reforço de geogrelha.					
Kazemian et al. (2010)	Interface base- revestimento asfáltico	A modelagem numérica no software Plaxis mostrou que a rigidez da geogrelha ajuda a evitar formação de trilha de roda no pavimento e reduz deflexões do subleito.					
Siriwardane et al. (2010)	Revestimento asfáltico	A modelagem no software Abaqus não mostrou nenhuma mudança significativa nas tensões verticais quando a geogrelha é colocada na camada de revestimento asfáltico.					
Huang (2014)	Interface base- subleito	A modelagem no software Abaqus mostrou que há aproximadamente 50% de melhoria nos subleitos de solo mole.					
Imjai, Pilakoutas e Guadagnini (2019)	Revestimento asfáltico	A modelagem numérica no software Abaqus obteve boas previsões de tensões verticais e tensões laterais. A presença de reforço de geossintético causou redução significativa nas tensões verticais transferidas para a base e subleito.					
Medeiros et al. (2020)	Revestimento asfáltico	A modelagem numérica no software Abaqus mostrou que todos os reforços de geogrelha utilizados estabilizaram a propagação da trinca e impediram a reflexão na camada superior.					
Pedroso e Silva (2021)	Base	A modelagem numérica no software Abaqus evidenciou que o reforço de geogrelha diminuiu as tensões verticais e as deformações permanentes.					
Fonte: Adaptado de Offenbacker (2019)							

Tabela 2.3 – Relação de estudos que trataram da incorporação de reforço geossintético em

pavimentos rodoviários.

onte: Adaptado de Offenbacker (2019).

De modo geral, evidenciou-se nestes estudos que a incorporação de reforço geossintético em pavimentos produziu efeitos positivos, como a melhoria na distribuição das tensões verticais incidentes no topo do subleito, estabilização da propagação de trincas, redução de deflexões e mitigação da formação de trilhas de roda.

Lees e Clausen (2020), por outro lado, indicaram que diversos estudos mostraram evidências de que os efeitos enrijecedores do geossintético se estende por uma espessura além de 0,30 m do seu plano e propuseram diferente abordagem ao modelar numericamente o solo reforçado no MEF, apenas ajustando as características mecânicas do solo nas proximidades da região onde o geossintético estaria localizado, sem efetivamente inserir qualquer parte que represente o reforço, obtendo-se calibração satisfatória dos modelos com resultados de ensaios triaxiais. Evidenciou-se que os efeitos enrijecedores do geossintético estão presentes numa faixa de 0,35 m a partir do seu plano.

Nesse sentido, Liu et al. (2016) utilizaram um sensor denominado *smart rock* posicionado em meio ao lastro de uma ferrovia, que possibilitou a observação da movimentação sofrida por esse artefato quando a ferrovia era submetida a carregamentos cíclicos. Os resultados indicaram que a aplicação de geogrelha no lastro promoveu redução significativa na movimentação do dispositivo, devido ao intertravamento entre a geogrelha e o agregado do lastro; e que os efeitos enrijecedores do reforço se propagavam para uma região, não ficando restritas ao plano de aplicação do geossintético.

Dentre os estudos recentes que abordaram pavimentos aeroportuários, Liu, Han e Ding (2020) compararam a formação de trincas no pavimento aeroportuário sujeito a cargas de aeronaves, modeladas por MEF, quando utilizados carregamentos estáticos e dinâmicos. Os resultados mostraram que os deslocamentos verticais obtidos para os dois estados de carregamento são equivalentes. Porém, o pico da tensão na região de formação de trinca foi maior quando se utilizou carregamento dinâmico.

Ling et al. (2021) utilizou uma seção de pavimento aeroportuário submetida a carga dinâmica cíclica de uma aeronave A380 para calibrar um modelo numérico em MEF, destinado a estudar a formação de trilhas de roda. Os autores concluíram que a variação de temperatura, bem como as características de aderência da interface das camadas do modelo numérico tem impacto significante na formação de trilhas de roda.

Rezende (2021) utilizou MEF para estudar o comportamento estrutural, em especial as dimensões do domínio do modelo, de um pavimento aeroportuário submetido ao carregamento da aeronave A380. O autor concluiu que, para a modelagem tridimensional em elementos finitos de pavimento aeroportuário, a área de influência (limite radial e espessura do subleito) deve ser de pelo menos 50 vezes a distância de aplicação da carga.

Dong et al. (2023) analisaram o comportamento estrutural de pavimento aeroportuário real, e produziram um modelo computacional em MEF para estudar os efeitos da variação de temperatura. Os modelos propostos apresentaram resultados satisfatórios em relação ao campo de temperatura e à resposta estrutural do pavimento, e o método pode aprimorar a acurácia das análises e dimensionamentos futuros.

Já em relação à incorporação de reforço geossintético em pavimentos aeroportuários, Abdesssemed, Kenai e Bali (2015) realizaram um estudo experimental medindo as deflexões através de ensaios HWD em pavimento aeroportuário flexível, antes e depois da incorporação de reforço geossintético. Uma análise do comportamento estático da estrutura foi realizada através de MEF, obtendo-se as tensões e deformações na estrutura do pavimento. Os autores concluíram que a melhor posição para o reforço geossintético, em

termos de redução dos deslocamentos verticais, é na interface entre as camadas de base e sub-base.

Norwood (2019) examinou o efeito do uso de geossintéticos como agente de reforço no projeto de pavimento de aeródromos com estruturas de pavimento submetidas a cargas de aeronaves de grande porte, utilizando teste de placa de carga cíclica e seção de pavimento em escala real. Deslocamentos e tensões foram coletados, tanto para uma seção sem reforço, quanto para outras três seções com diferentes tipos de reforço geossintético incorporado. Os resultados possibilitaram concluir que há significativa melhora no desempenho do pavimento quando incorporado reforço de geogrelha. O TBR – *traffic benefit ratio,* definido como a razão entre o número de carregamentos cíclicos necessários para alcançar determinada deformação na seção de pavimento sem reforço, e o número de carregamentos cíclicos necessários para alcançar a mesma deformação na seção de pavimento reforçado com geogrelha – das seções reforçadas variou de 20,3 a 29,7.

Offenbacker (2019) analisou o comportamento das trincas de fadiga em asfalto misturado a quente reforçado com geogrelha, para uso em pavimento aeroportuário. Utilizou quatro tipos diferentes de geogrelha e desenvolveu modelo numérico utilizando MEF. Foi observado que houve aumento significativo no desempenho em relação às trincas de fadiga quando o revestimento asfáltico do pavimento aeroportuário foi reforçado, e que a geogrelha deteve a propagação das trincas.

Robinson et al. (2020) estudaram uma seção de pavimento aeroportuário em escala real, de grande espessura, submetida a um simulador de carga cíclica de aeronave de grande porte, para analisar a performance do pavimento reforçado com geogrelha. Foram utilizados sete diferentes geossintéticos e monitoradas a formação de trilhas de roda, tensões nas camadas do pavimento e deslocamentos verticais. Apenas um geossintético promoveu redução estatisticamente relevante nas tensões verticais no topo do subleito. E três geossintéticos geraram melhoria no desempenho em relação à formação de trilhas de roda. Portanto, neste estudo, nem todo geossintético foi capaz de produzir melhoria de desempenho mecânico em pavimentos aeroportuários.

Assim, verifica-se que os estudos apresentados validaram com sucesso a capacidade do modelo numérico de simular o comportamento do pavimento aeroportuário com inclusão de reforço geossintético. É importante que ferramentas sejam criadas para fornecer informações sobre os benefícios oferecidos pelos reforços geossintéticos para melhorar o desempenho estrutural, de forma que no futuro, possam ser incorporadas em metodologias de projeto.

3. ANÁLISE DO FATOR DE DANO ACUMULADO

O presente capítulo contempla os métodos adotados para realizar as análises que compõem este estudo. Limitou-se o escopo desse estudo aos dados de 20 aeródromos, os quais integraram a 6^a rodada de concessões do Governo Federal. Essa limitação foi necessária pois se trata do grupo de aeródromos com a maior quantidade de dados disponibilizados na plataforma do Ministério dos Portos e Aeroportos, com informações mais recentes e amplamente disponibilizadas para acesso público. O processo licitatório ocorreu em 2021, e incluiu os aeródromos localizados em Manaus/AM, Tabatinga/AM, Tefé/AM, Rio Branco/AC, Cruzeiro do Sul/AC, Porto Velho/RO, Boa Vista/RR, Goiânia/GO, Palmas/TO, Teresina/PI, Petrolina/PE, São Luís/MA, Imperatriz/MA, Curitiba/PR, Foz do Iguaçu/PR, Londrina/PR, Curitiba (Bacacheri)/PR, Navegantes/SC, Joinville/SC e Uruguaiana/RS.

A seguir, na Tabela 3.1, são apresentados o Código de identificação atribuído ao aeródromo de acordo com a ICAO – International Civil Aviation Organization, a localidade, o PCN - *Pavement Classification Number*, que é o número que expressa a capacidade de suporte de um pavimento aeroportuário para operações sem restrição, as dimensões e orientação das pistas de pouso e decolagem principais, obtidas nas publicações das Informações Aeronáuticas do Brasil.

Cidade	UF	Código ICAO	Dimensões da pista principal	Orientação das cabeceiras	PCN
Manaus	AM	SBEG	2700 m X 45 m	11/29	71/F/C/X/T
Tabatinga	AM	SBTT	2150 m X 32 m	12/30	34/F/A/X/T
Tefé	AM	SBTF	2200 m X 45 m	15/33	29/F/C/X/U
Rio Branco	AC	SBRB	2158 m X 45 m	06/24	78/F/D/X/T
Cruzeiro do Sul	AC	SBCZ	2400 m X 45 m	10/28	32/F/A/X/T
Porto Velho	RO	SBPV	2400 m X 45 m	01/19	41/F/B/X/T
Boa Vista	RR	SBBV	2700 m X 45 m	08/26	38/F/A/X/T
Goiânia	GO	SBGO	2286 m X 45 m	14/32	67/F/B/X/T
Palmas	то	SBPJ	2500 m X 45 m	14/32	48/F/B/X/T
Teresina	ΡI	SBTE	2200 m X 45 m	02/20	46/F/A/X/T
Petrolina	PE	SBPL	3250 m X 45 m	13/31	80/F/C/X/T
São Luís	MA	SBSL	2385 m X 45 m	06/24	52/F/B/X/T
Imperatriz	MA	SBIZ	1798 m X 45 m	07/25	50/F/A/X/T
Curitiba	PR	SBCT	2218 m X 45 m	15/33	42/F/A/X/T
Foz do Iguaçu	PR	SBFI	2195 m X 45 m	15/33	51/F/B/X/T
Londrina	PR	SBLO	2100 m X 45 m	13/31	43/F/B/X/T
Curitiba	PR	SBBI	1390 m X 31 m	18/36	21/F/B/X/T
Navegantes	SC	SBNF	1701 m X 45 m	07/25	33/F/A/X/T
Joinville	SC	SBJV	1540 m X 45 m	15/33	51/F/A/W/T
Uruguaiana	RS	SBUG	1500 m X 30 m	09/27	18/F/C/Y/T

Tabela 3.1 – Informações aeronáuticas dos aeródromos.

Fonte: DECEA (2023)

No Anexo A, nas Figuras A.1 a A.20, são apresentadas as imagens de satélite de cada um dos aeródromos avaliados neste estudo.

Na primeira etapa do estudo, avaliou-se a condição estrutural dos aeródromos por meio do cálculo do CDF dos pavimentos das pistas de pouso e decolagem dos 20 aeroportos selecionados nesta pesquisa. Para isso, foi estabelecido o seguinte fluxo de análises (Figura 3.1). Inicialmente realizou-se o levantamento de dados de tráfego, ou seja, o número de movimentações de pouso e decolagem, os modelos das aeronaves e suas características físicas, como peso, configuração de trens de pouso, área de contato dos pneus com o pavimento, distribuição das cargas entre os trens de pouso, entre outras.

Na sequência, realizou-se o levantamento das características construtivas dos pavimentos das pistas de pouso e decolagem de aeroportos brasileiros, como os materiais utilizados e as espessuras das camadas constituintes. Ainda, foram realizadas retroanálises das bacias de deflexão obtidas de ensaios HWD, obtendo-se os módulos de elasticidade de cada uma das camadas dos pavimentos aeroportuários, o qual é um parâmetro relevante para a avaliação do comportamento mecânico deles.

Figura 3.1 – Fluxo de análises para cálculo do CDF.

Na etapa final, determinou-se o CDF dos pavimentos dos aeroportos em estudo, considerando as características construtivas e mecânicas dos pavimentos e o mix de aeronaves obtidos nas análises anteriores. Serão apresentados a seguir as informações levantadas e o método utilizado para o desenvolvimento das etapas descritas.

3.1. Movimentação de aeronaves

O levantamento do mix de aeronaves e do número de movimentos (pousos e decolagens) dos aeroportos foi realizado a partir da base de dados da Agência Nacional de Aviação Civil e da Secretaria Nacional de Aviação Civil, do Ministério de Portos e Aeroportos, que foi disponibilizada aos interessados em participar dos processos de concessões aeroportuárias.

Os dados obtidos abrangem a quantidade total de pousos e decolagens, individualizados pelos anos de 2014 a 2018, e pelo modelo das aeronaves que operaram nos aeroportos em análise.

Foram consolidadas nos mix de aeronaves a serem utilizados nesse estudo apenas aquelas de maior porte e com número de movimentações relevantes, desconsiderando as aeronaves de uso privado de pequeno porte, helicópteros, aeronaves de aero desporto e de treinamento, e aquelas com número muito baixo de movimentações anuais, portanto, desconsiderou-se as aeronaves cuja contribuição é irrelevante para a análise estrutural do pavimento.

As características físicas das aeronaves em operação, e que são necessárias para o processo de dimensionamento e avaliação estrutural dos pavimentos aeroportuários, foram obtidas nos Manuais dos Fabricantes, denominados genericamente como ACAP - *"Airplane Characteristics for Airport Planning"* (BOEING, 2022; AIRBUS, 2022; EMBRAER, 2021), e com o auxílio do banco de dados existente no software FAARFIELD. O software possui extenso banco de dados, com informações sobre as características das aeronaves como, por exemplo, peso máximo de taxiamento, pressão dos pneus, percentual do peso bruto suportado pelo trem de pouso principal, espaçamento lateral entre as rodas duplas do trem de pouso, espaçamento entre as rodas em tandem, dimensões da área de contato das rodas com o pavimento. Apesar do grande volume de informações contidas no banco de dados do software, eventualmente determinada aeronave pode não estar cadastrada no sistema. Nesse caso, é possível inserir dados de uma aeronave genérica, na qual o usuário tem a possibilidade de lançar diretamente as informações com base nas características obtidas junto aos manuais dos fabricantes das aeronaves.

Os mix de aeronaves dos aeroportos objeto desse estudo, bem como o número de pousos e decolagens anuais, foram consolidados no Anexo B, nas Tabelas B.1 a B.20.

3.2. Características construtivas das pistas de pouso e decolagem

O levantamento das informações relativas às características construtivas das pistas de pouso e decolagem foi realizado através de relatórios de ensaios geotécnicos (VINCI, 2022

e CCR, 2022) disponibilizados pelas empresas operadoras aeroportuárias, a CCR Aeroportos, responsável pela gestão dos aeroportos dos Blocos Sul e Central, e a empresa Vinci Airports, responsável pela gestão dos aeroportos do Bloco Norte.

Dentre os relatórios de ensaios geotécnicos obtidos, constam ensaios de simples reconhecimento com SPT, conforme NBR 6484 (ABNT, 2020a) de todo o entorno das pistas, abertura de trincheiras de inspeção ao longo da pista, conforme NBR 9604 (ABNT, 2016), determinação do Índice de Suporte Califórnia, de acordo com NBR 9895 (ABNT, 2016b), granulometria por peneiramento, seguindo o procedimento da NBR 7181 (ABNT, 2018), limites de liquidez e de plasticidade, respectivamente, pela NBR 6459 (ABNT, 2017) e pela NBR 7180 (ABNT, 2016c), ensaio de compactação, segundo a NBR 7182 (ABNT, 2020b), análise geotécnica com GPR – *Ground Penetrating Radar*, conforme o método estabelecido na ASTM D4748-10 (ASTM, 2020). As principais informações obtidas através dos resultados dos ensaios geotécnicos foram consolidadas no Anexo C. Com isso, foi possível obter a caracterização dos materiais e a espessura de cada uma das camadas dos pavimentos das pistas de pouso e decolagem dos aeroportos.

Foram consolidadas no tópico seguinte, juntamente com os resultados da retroanálise, as seções dos pavimentos das pistas de pouso e decolagem, contendo o tipo de material constituinte e as respectivas espessuras, levantadas por meio dos relatórios obtidos junto às gestoras dos aeródromos. Ressalta-se que tais seções foram definidas através de valores de espessura média, considerando os dados de diversos poços de inspeção executados, e que se trata de uma simplificação para efeitos acadêmicos, tendo em vista que ao longo da extensão das pistas de pouso e decolagem pode haver variações tanto das espessuras das camadas quanto do tipo de material constituinte.

3.3. Retroanálise e determinação dos módulos de elasticidade

Foram obtidos os dados de ensaios HWD realizados pelos operadores aeroportuários em toda a extensão das pistas de pouso e decolagem dos aeroportos em estudo. Os ensaios foram executados conforme o procedimento da norma técnica DNER-PRO 273/96 (DNER, 1996) adaptado de acordo as orientações existentes no Manual de Sistema de Gerenciamento de Pavimentos Aeroportuários – SGPA (ANAC, 2017). Essas adaptações são relativas à compatibilização da pressão aplicada pelo equipamento de teste HWD com as pressões geradas no pavimento pelos pneus das maiores aeronaves em operação no aeroporto, por exemplo, observa-se na Tabela 3.2 que os pneus da aeronave B737-800 exercem pressão de 1407 kPa no pavimento, portanto, ao se utilizar o equipamento HWD com placa de carga de 45 cm de diâmetro, para atingir pressão compatível com a exercida pelos pneus dessa aeronave, a carga aplicada pelo equipamento de teste deve ser

ajustada dos 40 kN previstos da norma técnica DNER-PRO 273/96 (DNER, 1996) para 240 kN, que proporcionará pressão de 1509 kPa no pavimento. As adaptações também se referem ao posicionamento das estações de ensaio em linhas paralelas ao eixo da pista, com espaçamento longitudinal de 20 m entre cada estação e espaçamento transversal de 3 m e 6 m entre as linhas longitudinais.

Aeronave	Pressão dos pneus (kPa)	LWD - Ø 15 cm Pressão exercida (kPa)	FWD - Ø 30 cm Pressão exercida (kPa)	HWD - Ø 45 cm Pressão exercida (kPa)	Carga utilizada no ensaio (kN)
Citation II	896	849	212	94	15
B727-200	1020		566	252	40
E195	1062		1132	503	80
A320neo	1220		1698	754	120
A321-100	1358			1006	160
Learjet 45	1386			1258	200
B737-800	1407			1509	240
B777-300ER	1503			1761	280
A380-800	1503			1761	280
A350-900	1662			2012	320

Tabela 3.2 – Adequação da carga utilizada nos ensaios HWD.

Fonte: ANAC (2017).

Optou-se por realizar a retroanálise com o auxílio do software BAKFAA, disponibilizado pela FAA, por ser um programa desenvolvido pela agência norte-americana reguladora da aviação civil especificamente para processamento de pavimentos aeroportuários, de acesso gratuito, e que permite o processamento dos dados das bacias de deflexão captadas por grande variedade de equipamentos de teste.

O primeiro passo para realizar a retroanálise, consiste em carregar no software os dados de deflexão captados em campo pelos sensores do equipamento de teste. Observa-se na Figura 3.2 um exemplo de parte dos dados carregados no BAKFAA.

Γ	Undate Data						- Ui	nits					
Ĺ		_						\bigcirc English	Met	tric			
Ļ	Cancel Updates	;											
	Exit FWD Interfac	:e											
		Γ	Sensors	1	2	3	4	5	6	7 8		9	٦
			Offset, mm	0	300	450	600	900	1200 1	500 18	00	2100	1
			<		1							>	>
Test Number	Drop Number	Distance, r	m Load, KN	Defin, mc 1	Defln, mc 2	Defln, mc	B Defln, mc	4 Defln, mc	5 Defin, mc 6	Defln, mc 7	Defln, n	nc 8	
1	1	0	80	401	205	142	108	77	59	47	37	1	^
1	2	0	200	1422	715	461	336	227	168	130	104		
1	3	0	200	1254	653	447	333	228	168	131	102		
1	4	0	260	1687	906	610	452	305	222	174	137		
2	1	30	80	383	222	163	128	88	67	51	37		
2	2	30	200	1325	765	558	415	271	192	142	108		
2	3	30	200	1294	739	544	409	272	193	142	109		
2	4	30	260	1636	1024	758	570	372	260	191	149		
3	1	61	80	363	164	118	94	67	52	41	32		
3	2	61	200	1154	525	376	293	201	144	110	88		
3	3	61	200	1116	511	371	290	196	144	111	89		
3	4	61	260	1501	701	504	397	263	192	148	122		
4	1	91	80	235	152	114	88	62	48	38	27		
4	2	91	200	770	471	360	280	191	137	105	83		
4	3	91	200	843	464	358	279	190	137	106	83	Τ.	v

Figura 3.2 – Exemplo de bacias de deflexão obtidas no ensaio HWD carregadas no software de retroanálise BAKFAA.

Em seguida, nos campos apresentados na Figura 3.3, são inseridas as informações relativas à espessura das camadas constituintes do pavimento, e os respectivos módulos de elasticidade semeados para início do processamento numérico. Adicionalmente, é possível estabelecer o coeficiente de Poisson para cada tipo de material, bem como um parâmetro de interface, onde 0 indica interface não aderida, e 1 indica interface totalmente aderida.

Layer No	Pavement Type	Seed Modulus, MPa	Backcalculated Modulus, MPa	Poisson's Ratio	Interface Parameter (0 to 1.0)	Thickness, mm	Moduli Changeable
1	User Defined	3.000	4.227	0,30	1,00	150	✓
2	User Defined	300	498	0,35	1,00	300	✓
3	User Defined	170	271	0,40	0,00	0	✓

Figura 3.3 – Exemplo de dados construtivos do pavimento carregados no software de retroanálise BAKFAA

Após a inserção dos dados de entrada, o software realiza o processamento de forma iterativa, calculando numericamente a bacia de deflexão e comparando-a com a bacia de deflexão medida em campo, como indicando na Figura 3.4.

Figura 3.4 – Exemplo de retroanálise no software de retroanálise BAKFAA.

Os módulos de elasticidade das camadas são ajustados, buscando aproximar as curvas das deflexões calculadas numericamente daquelas medidas em campo. Esse procedimento é realizado diversas vezes, até que se obtenha pequena diferença entre as duas curvas.

O procedimento de retroanálise das bacias de deflexão obtidas nos ensaios HWD resultou na determinação dos módulos de elasticidade de cada uma das camadas constituintes dos pavimentos dos aeródromos em estudo, e estão consolidados na Tabela 3.3. Tais valores são fundamentais para a compreensão do comportamento mecânico das pistas de pouso e decolagem.

Os valores dos módulos de elasticidade de cada uma das camadas dos pavimentos das pistas de pouso e decolagem, obtidos após retroanálise, foram consolidados nas Figuras 3.5 a 3.24, a seguir, juntamente com as informações dos tipos de materiais constituintes e as respectivas espessuras das camadas dos pavimentos de cada aerodromo. Ressalta-se que se trata de valores médios, tendo em vista que o procedimento de retroanálise das bacias de deflexão apresenta grande variabilidade de resultados.

	Módulo de Elasticidade (MPa)							
Aeroporto	Revestimento asfáltico	Base tratada com cimento	Base de agregado	Sub- base	Subleito			
SBEG – Manaus/AM	1019	4335	-	3785	422			
SBTT – Tabatinga/AM	1519	447	-	346	181			
SBTF – Tefé/AM	1265	559	-	315	67			
SBRB – Rio Branco/AC	2055	-	438	-	77			
SBCZ – Cruzeiro do Sul/AC	1647	-	530	-	275			
SBPV – Porto Velho/RO SBBV – Boa Vista/RR	2338 3000	-	135 300	-	398 170			
SBGO – Goiânia/GO	5289	-	1022	516	134			
SBPJ – Palmas/TO	5117	958	-	-	285			
SBTE – Teresina/PI	3560	-	1549	5439	159			
SBPL – Petrolina/PE	5137	420	-	169	163			
SBSL – São Luis/MA	1783	-	784	561	216			
SBIZ – Imperatriz/MA	3052	1193	-	-	198			
SBCT – Curitiba/PR	2168	-	892	300	148			
SBFI – Foz do Iguaçu/PR	8467	363	-	589	165			
SBLO – Londrina/PR	1403	676	-	247	155			
SBBI – Curitiba /PR	2006	391	-	251	80			
SBNF – Navegantes/SC	3389	388	-	117	64			
SBJV – Joinville/SC	5760	-	2166	304	49			
SBUG – Uruguaiana/RS	3832	-	706	-	107			

Tabela 3.3 – Resultados dos módulos de elasticidade obtidos na retroanálise

Revestimento asfáltico Espessura: 290 mm Módulo de elast.: 1019 MPa

Base de solo tratado com cimento Espessura: 140 mm Módulo de elast.: 4335 MPa

Sub-base de solo melhorado Espessura: 200 mm Módulo de elast.: 3785 MPa

Subleito Módulo de elast.: 422 MPa

Figura 3.5 – Estrutura do pavimento da pista de pouso e decolagem do aeroporto SBEG – Manaus/AM com resultados de retroanálise.
Revestimento asfáltico Espessura: 175 mm Módulo de elast.: 1519 MPa Base de solo tratado com cimento Espessura: 108 mm Módulo de elast.: 447 MPa

Sub-base de solo melhorado Espessura: 120 mm Módulo de elast.: 346 MPa

Subleito Módulo de elast.: 181 MPa

Figura 3.6 – Estrutura do pavimento da pista de pouso e decolagem do aeroporto SBTT – Tabatinga/AM com resultados de retroanálise.

Revestimento asfáltico Espessura: 170 mm Módulo de elast.: 1265 MPa

Base de solo tratado com cimento Espessura: 130 mm Módulo de elast.: 559 MPa

Sub-base de solo melhorado Espessura: 120 mm Módulo de elast.: 315 MPa

Subleito Módulo de elast.: 67 MPa

Figura 3.7 – Estrutura do pavimento da pista de pouso e decolagem do aeroporto SBTF – Tefé/AM com resultados de retroanálise.

Revestimento asfáltico Espessura: 150 mm Módulo de elast.: 2055 MPa

Base de rachão Espessura: 340 mm Módulo de elast.: 438 MPa

Subleito Módulo de elast.: 77 MPa

Figura 3.8 – Estrutura do pavimento da pista de pouso e decolagem do aeroporto SBRB – Rio Branco/AC com resultados de retroanálise.

Revestimento asfáltico Espessura: 210 mm Módulo de elast.: 1674 MPa

Base de rachão Espessura: 220 mm Módulo de elast.: 530 MPa

Subleito Módulo de elast.: 275 MPa

Figura 3.9 – Estrutura do pavimento da pista de pouso e decolagem do aeroporto SBCZ – Cruzeiro do Sul/AC com resultados de retroanálise.

Revestimento asfáltico Espessura: 287 mm Módulo de elast.: 2338 MPa

Base de pedregulho arenoso Espessura: 439 mm Módulo de elast.: 135 MPa

Subleito Módulo de elast.: 398 MPa

Figura 3.10 – Estrutura do pavimento da pista de pouso e decolagem do aeroporto SBPV – Porto Velho/RO com resultados de retroanálise.

Revestimento asfáltico Espessura: 150 mm Módulo de elast.: 3000 MPa

Base de solo melhorado Espessura: 300 mm Módulo de elast.: 300 MPa

Subleito Módulo de elast.: 170 MPa

Figura 3.11 – Estrutura do pavimento da pista de pouso e decolagem do aeroporto SBBV – Boa Vista/RR com resultados de retroanálise.

Revestimento asfáltico Espessura: 280 mm Módulo de elast.: 5289 MPa

Base de solo com cascalho Espessura: 170 mm Módulo de elast.: 1022 MPa

Sub-base de solo com cascalho Espessura: 310 mm Módulo de elast.: 516 MPa

Subleito Módulo de elast.: 134 MPa

Figura 3.12 – Estrutura do pavimento da pista de pouso e decolagem do aeroporto SBGO – Goiânia/GO com resultados de retroanálise.

Revestimento asfáltico Espessura: 100 mm Módulo de elast.: 5117 MPa

Base de solo-cimento/pedregulho Espessura: 296 mm Módulo de elast.: 958 MPa

Subleito Módulo de elast.: 285 MPa

Figura 3.13 – Estrutura do pavimento da pista de pouso e decolagem do aeroporto SBPJ – Palmas/TO com resultados de retroanálise.

Revestimento asfáltico Espessura: 110 mm Módulo de <u>elast.</u>: 3560 MPa

Base de solo betume Espessura: 240 mm Módulo de elast.: 1549 MPa

Sub-base de areia com pedregulho Espessura: 350 mm Módulo de <u>elast.</u>: 5493 MPa

Subleito Módulo de elast.: 159 MPa

Figura 3.14 – Estrutura do pavimento da pista de pouso e decolagem do aeroporto SBTE – Teresina/PI com resultados de retroanálise. Revestimento asfáltico Espessura: 180 mm Módulo de elast.: 5137 MPa

Base de solo/brita cimento Espessura: 260 mm Módulo de elast.: 420 MPa

Sub-base de solo cimento Espessura: 360 mm Módulo de elast.: 169 MPa

Subleito Módulo de elast.: 163 MPa

Figura 3.15 – Estrutura do pavimento da pista de pouso e decolagem do aeroporto SBPL – Petrolina/PE com resultados de retroanálise.

Revestimento asfáltico Espessura: 60 mm Módulo de elast.: 1783 MPa

Base de solo betume com brita Espessura: 250 mm Módulo de elast.: 784 MPa

Sub-base de areia com pedregulho Espessura: 200 mm Módulo de <u>elast.</u>: 561 MPa

Subleito Módulo de elast.: 216 MPa

Figura 3.16 – Estrutura do pavimento da pista de pouso e decolagem do aeroporto SBSL – São Luis/MA com resultados de retroanálise.

> Revestimento asfáltico Espessura: 200 mm Módulo de elast.: 3052 MPa

> Base de BGS Espessura: 230 mm Módulo de elast.: 1193 MPa

Subleito Módulo de elast.: 198 MPa

Figura 3.17 – Estrutura do pavimento da pista de pouso e decolagem do aeroporto SBIZ – Imperatriz/MA com resultados de retroanálise. Revestimento asfáltico Espessura: 220 mm Módulo de elast.: 2168 MPa

Base de Macadame hidráulico Espessura: 160 mm Módulo de <u>elast.</u>: 892 MPa

Sub-base de cascalho Espessura: 230 mm Módulo de elast.: 300 MPa

Subleito Módulo de elast.: 148 MPa

Figura 3.18 – Estrutura do pavimento da pista de pouso e decolagem do aeroporto SBCT – Curitiba/PR com resultados de retroanálise.

Revestimento asfáltico Espessura: 240 mm Módulo de <u>elast.</u>: 8467 MPa

Base de BGS Espessura: 230 mm Módulo de elast.: 363 MPa

Sub-base de solo brita Espessura: 230 mm Módulo de elast.: 589 MPa

Subleito Módulo de elast.: 165 MPa

Figura 3.19 – Estrutura do pavimento da pista de pouso e decolagem do aeroporto SBFI – Foz do Iguaçu/PR com resultados de retroanálise.

Revestimento asfáltico Espessura: 160 mm Módulo de elast.: 1403 MPa

Base de BGS Espessura: 250 mm Módulo de elast.: 676 MPa

Sub-base de solo brita Espessura: 200 mm Módulo de elast.: 247 MPa

Subleito Módulo de elast.: 155 MPa

Figura 3.20 – Estrutura do pavimento da pista de pouso e decolagem do aeroporto SBLO – Londrina/PR com resultados de retroanálise. Revestimento asfáltico Espessura: 80 mm Módulo de elast.: 2006 MPa

Base de BGS Espessura: 155 mm Módulo de elast.: 391 MPa

Sub-base de solo brita Espessura: 200 mm Módulo de elast.: 251 MPa

Subleito Módulo de elast.: 80 MPa

Figura 3.21 – Estrutura do pavimento da pista de pouso e decolagem do aeroporto SBBI – Curitiba (Bacacheri)/PR com resultados de retroanálise.

> Revestimento asfáltico Espessura: 170 mm Módulo de <u>elast.</u>: 3389 MPa

Base de BGS Espessura: 290 mm Módulo de elast.: 388 MPa

Sub-base de solo brita Espessura: 100 mm Módulo de elast.: 117 MPa

Subleito Módulo de elast.: 64 MPa

Figura 3.22 – Estrutura do pavimento da pista de pouso e decolagem do aeroporto SBNF – Navegantes/SC com resultados de retroanálise.

> Revestimento asfáltico Espessura: 150 mm Módulo de elast.: 5760 MPa

Base de pedregulho Espessura: 250 mm Módulo de elast.: 2166 MPa

Sub-base de seixo rolado com silte Espessura: 500 mm Módulo de elast.: 304 MPa

Subleito Módulo de elast.: 49 MPa

Figura 3.23 – Estrutura do pavimento da pista de pouso e decolagem do aeroporto SBJV – Joinville/SC com resultados de retroanálise.

Base de macadame hidráulico Espessura: 260 mm Módulo de elast.: 706 MPa

Subleito Módulo de elast.: 107 MPa

Figura 3.24 – Estrutura do pavimento da pista de pouso e decolagem do aeroporto SBUG – Uruguaiana/RS com resultados de retroanálise.

3.4. Determinação do fator de dano acumulado – CDF

Procedeu-se, nessa etapa, a verificação da compatibilidade das características construtivas e os parâmetros de comportamento mecânico dos pavimentos das pistas de pouso e decolagem, com o mix de aeronaves em operação nos aeroportos. Essa verificação foi realizada com auxílio do software FAARFIELD, que possibilita determinar o CDF, que é a razão entre o número de passagens das aeronaves e o número máximo de passagens antes de ocorrer a ruptura por fadiga do pavimento.

O software FAARFIELD utiliza as informações de espessura das camadas dos pavimentos e seus respectivos módulos de elasticidade, como mostrado na tela de entrada (Figura 3.25) em um cálculo hipotético.

ction								
b Name:	SBBV - Boa vista sem subbase	e, Life		Run	Status	Gear Structure		
ection Name:	New Section 1	✓ Include i	n Summary Rej	oort Add To Batch				
Pavement Laye	rs De: New Flexible		~					
Material		Thickness (mm)	E (MPa)	CBR	User De	fined	T=150 m	nm E=23
User Defi	ned	150	2330,00					
> User Defi	ned	300	522,00					
Subgrade		1	82,74	8				
	Sele	ect As The Design	Layer De	elete Selected Layer				
Design Life (Ye	ars): 20				Subgrad	de	CBR=8	E=82,

Figura 3.25 – Inserção dos dados construtivos do pavimento no Software FAARFIELD. Fonte: FAARFIELD (2020).

No caso ilustrado, o pavimento é composto de camada de revestimento de 150 mm de espessura, com módulo de elasticidade de 2330 MPa, camada de base de 300 mm de espessura, com módulo de elasticidade de 522 MPa, sobrepostas a um subleito cujo módulo de elasticidade é de 82,74 MPa.

O cálculo do CDF total também exige que seja informado o mix de aeronaves em operação no aeródromo, como pode ser observado na Figura 3.26.

Traffic															>
Stored Aircraft Mix SBBV - mix de aeronaves pa 👻 Save Aircraft Mix to File Clear All Aircraft from List Remove Selected Aircraft from Section Delete Aircraft Mix File															
Airplane Name		Gross Taxi Weight (kg)	Annual Departures	Annual Growth (%)	Total Departures	CDF Contributions	CDF Max for Airplane	P/C Ratio	Tire Pressure (kPa)	Percent GW on Gear	Dual Tire Spacing (mm)	Tandem Tire Spacing (mm)	Tire Contact Width (mm)	Tire Contact Length (mm)	Tire Contact Area (mm^2)
A320-200 std		73900	1208	3	31408	7.51	8.52	1.56	1379	0.475	927	0	315	504	124819
B737-800		79242	688	3	17888	9.73	10.83	1.51	1407	0.475	864	0	323	517	131219
EMB-195 STD		48950	292	3	7592	0	0	1.57	1062	0.475	864	0	292	468	107374
Cessna Citation X		16329	80	3	2080	0	0	2.26	1303	0.475	311	0	152	244	29187
Learjet 45/55B		9752	44	3	1144	0	0	2.33	1386	0.475	305	0	114	183	16387
B737-700		70307	34	3	884	0.16	0.18	1.54	1358	0.475	864	0	310	496	120561

Figura 3.26 – Inserção dos dados do mix de aeronaves no Software FAARFIELD. Fonte: FAARFIELD (2020).

Como é possível visualizar, após inserir os modelos de aeronaves e o número de decolagens anuais, o banco de dados do software apresenta informações específicas dessas aeronaves, como taxa de passagens por cobertura, pressão dos pneus e configuração das rodas nos trens de pouso, dimensões da área de contato entre pneu e pavimento.

Após a entrada dos dados, a funcionalidade de cálculo da vida útil deve ser selecionada. O processamento do software resulta na determinação do CDF acumulado máximo da seção do pavimento, e num gráfico de CDF em função do distanciamento da linha central da pista de pousos e decolagens (Figura 3.27). Esse gráfico apresenta a curva do valor acumulado, ou seja, a soma dos efeitos de todas as aeronaves do mix, bem como as curvas individualizadas para cada modelo de aeronave.

Figura 3.27 - Gráfico do CDF calculado no Software FAARFIELD. Fonte: FAARFIELD (2020).

Nos casos em que se obtém CDF acima de 1,0, como o mostrado no exemplo hipotético da Figura 3.27, o dano acumulado no subleito causado pela movimentação das aeronaves informadas consumirá toda a vida de serviço até a fadiga do pavimento antes do prazo estipulado em projeto. Para evitar o aumento dos riscos à segurança operacional, considera-se apropriado realizar uma avaliação da necessidade de realizar reforço do pavimento, ou adotar medidas que mitiguem a degradação acelerada do pavimento, como restrições ao número de operações de pouso e decolagem ou restrições às operações de aeronaves que tenham contribuição relevante para a elevação do valor do CDF acumulado (ANAC, 2020).

3.5. Resultados e discussões

Na tabela 3.4 são apresentados os resultados dos CDF calculados para cada um dos aeroportos objeto do presente estudo, considerando as características físicas e mecânicas do pavimento, bem como o número de movimentações e os modelos de aeronaves que compõem os respectivos mix de aeronaves.

	Pista de		Vida de
Aeroporto	pouso e	CDF	serviço (anos)
SBEC Manaus/AM	11/20	0.18	(anos) 64.2
	11/29	0.16	104,2
SBTT – Tabatinga/Alvi	12/30	0.16	121,8
SBTF – Tefé/AM	15/33	0.19	107,4
SBRB – Rio Branco/AC	06/24	0.27	54,8
SBCZ – Cruzeiro do Sul/AC	10/28	< 0.01	> 2000
SBPV – Porto Velho/RO	01/19	< 0.01	> 2000
SBBV – Boa Vista/RR	08/26	1.5	14,2
SBGO – Goiânia/GO	14/32	< 0.01	>2000
SBPJ – Palmas/TO	14/32	0.21	62,7
SBTE – Teresina/PI	02/20	0.02	954,1
SBPL – Petrolina/PE	13/31	< 0.01	> 2000
SBSL – São Luis/MA	06/24	0.32	61,7
SBIZ – Imperatriz/MA	07/25	< 0.01	> 2000
SBCT – Curitiba/PR	15/33	< 0.01	> 2000
SBFI – Foz do Iguaçu/PR	15/33	< 0.01	> 2000
SBLO – Londrina/PR	13/31	< 0.01	> 2000
SBBI – Curitiba /PR	18/36	< 0.01	> 2000
SBNF – Navegantes/SC	07/25	0.74	25,0
SBJV – Joinville/SC	15/33	< 0.01	> 2000
SBUG – Uruguaiana/RS	09/27	< 0.01	> 2000

Tabela 3.4 – Valores de CDF acumulado calculados

Fonte: O autor.

Nas Figuras 3.28 a 3.47 são apresentados os gráficos de CDF calculados para cada um dos aeródromos.

Figura 3.28 – Gráfico do CDF do pavimento da pista de pouso e decolagem do aeroporto SBEG – Manaus/AM.

Figura 3.29 – Gráfico do CDF do pavimento da pista de pouso e decolagem do aeroporto SBTT – Tabatinga/AM.

Figura 3.30 – Gráfico do CDF do pavimento da pista de pouso e decolagem do aeroporto SBTF – Tefé/AM.

Figura 3.31 – Gráfico do CDF do pavimento da pista de pouso e decolagem do aeroporto SBRB – Rio Branco/AC.

Figura 3.32 – Gráfico do CDF do pavimento da pista de pouso e decolagem do aeroporto SBCZ – Cruzeiro do Sul/AC.

Figura 3.33 – Gráfico do CDF do pavimento da pista de pouso e decolagem do aeroporto SBPV – Porto Velho/RO.

Figura 3.34 – Gráfico do CDF do pavimento da pista de pouso e decolagem do aeroporto SBBV – Boa Vista/RR.

Figura 3.35 – Gráfico do CDF do pavimento da pista de pouso e decolagem do aeroporto SBGO – Goiânia/GO.

Figura 3.36 – Gráfico do CDF do pavimento da pista de pouso e decolagem do aeroporto SBPJ – Palmas/TO.

Figura 3.37 – Gráfico do CDF do pavimento da pista de pouso e decolagem do aeroporto SBTE – Teresina/PI.

Figura 3.38 – Gráfico do CDF do pavimento da pista de pouso e decolagem do aeroporto SBPL – Petrolina/PE.

Figura 3.39 – Gráfico do CDF do pavimento da pista de pouso e decolagem do aeroporto SBSL – São Luis/MA.

Figura 3.40 – Gráfico do CDF do pavimento da pista de pouso e decolagem do aeroporto SBIZ – Imperatriz/MA.

Figura 3.41 – Gráfico do CDF do pavimento da pista de pouso e decolagem do aeroporto SBCT – Curitiba/PR.

Figura 3.42 – Gráfico do CDF do pavimento da pista de pouso e decolagem do aeroporto SBFI – Foz do Iguaçu/PR.

Figura 3.43 – Gráfico do CDF do pavimento da pista de pouso e decolagem do aeroporto SBLO – Londrina/PR.

Figura 3.44 – Gráfico do CDF do pavimento da pista de pouso e decolagem do aeroporto SBBI – Curitiba (Bacacheri)/PR.

Figura 3.45 – Gráfico do CDF do pavimento da pista de pouso e decolagem do aeroporto SBNF – Navegantes/SC.

Figura 3.46 – Gráfico do CDF do pavimento da pista de pouso e decolagem do aeroporto SBJV – Joinville/SC.

Figura 3.47 – Gráfico do CDF do pavimento da pista de pouso e decolagem do aeroporto SBUG – Uruguaiana/RS.

Verifica-se que dentre os 20 aeroportos que tiveram as pistas de pouso e decolagem analisadas, apenas o Aeroporto de Boa Vista/RR (SBBV) apresentou CDF acima de 1,0, situação em que a ANAC (2020) recomenda que sejam adotadas ações que mitiguem a degradação acelerada do pavimento, seja através de imposição de restrições ao número de operações de pouso e decolagem, seja com restrições às operações de aeronaves que tenham contribuição relevante para a elevação dos danos ou, ainda, pela avaliação da necessidade de realizar reforço do pavimento.

Observa-se, também, que 11 aeroportos tiveram CDF menor que 0,01. Isso indica que o pavimento está superdimensionado para a movimentação de aeronaves existente. Três fatores, que isoladamente ou em conjunto, influenciam mais fortemente para esses valores baixos de CDF: (I) Pavimento da pista de pouso e decolagem possui subleito com módulo de elasticidade elevado, como é o caso de SBCZ (275 MPa), SBPV (398 MPa), SBIZ (198 MPa); (II) Pavimento da pista de pouso e decolagem possui camada de revestimento asfáltico espesso, como SBGO (280 mm), SBCT (220 mm), SBFI (240 mm); e (III) Aeroporto possui pouco ou nenhum movimento de aeronaves de grande porte, como ocorre em SBLO, SBBI e SBJV.

4. AVALIAÇÃO DA INCORPORAÇÃO DE GEOGRELHAS

Uma das formas disponíveis de se reforçar um pavimento é seu enrijecimento com a incorporação de geossintético, com o objetivo de melhorar a distribuição de tensões no pavimento, reduzir as deformações e os deslocamentos. Entretanto, o método de dimensionamento da FAA (2021), não considera nenhum efeito da aplicação de geossintético como reforço de pavimento aeroportuário. Por isso, o software FAARFIELD não possui funcionalidade que possibilite considerar sua aplicação. É necessário, portanto, a utilização de outra ferramenta que possibilite a avaliação dos efeitos da incorporação de reforços geossintéticos nos pavimentos aeroportuários. Assim, a segunda etapa do estudo consistiu na modelagem numérica do pavimento aeroportuário, realizada com a utilização do Método dos Elementos Finitos, por meio do software ABAQUS (ABAQUS, 2014), com a finalidade de simular o comportamento mecânico do pavimento aeroportuário e avaliar as tensões, deformações e deslocamentos da estrutura, por meio da comparação de reforço geossintético, sob diferentes condições. Para tanto, foi estabelecido o fluxo de análises da Figura 4.1.

Figura 4.1 – Fluxo de atividades para análise paramétrica do pavimento enrijecido com geossintético.

reforço

O modelo buscou reproduzir a estrutura do pavimento mostrado na Figura 4.2, da pista de pouso e decolagem do Aeroporto Atlas Brasil Cantanhede (SBBV), localizado na cidade de Boa Vista/RR, cujo processamento dos dados de movimentação de aeronaves e dos parâmetros construtivos da pista resultaram em CDF acumulado de 1,5, indicando a necessidade de se avaliar a realização de reforço.

Base de solo melhorado Espessura: 300 mm Módulo de elast.: 300 MPa

Subleito Módulo de elast.: 170 MPa

Figura 4.2 – Estrutura do pavimento da pista de pouso e decolagem do aeroporto SBBV – Boa Vista/RR. Fonte: Adaptado de Vinci (2022)

O modelo numérico do pavimento é composto por camada de revestimento asfáltico CAUQ de 150 mm de espessura, camada de base de solo laterítico melhorado, de 300 mm de espessura e subleito de solo silto-arenoso. Optou-se por desenvolver um modelo bidimensional axissimétrico, que proporciona simplificação e rapidez no processamento computacional, e apresenta precisão satisfatória com dados reais quando comparado com modelo tridimensional (Tarefder; Ahmed, 2014).

4.1. Domínio do modelo e condições de contorno

De acordo com Rezende (2021), nos modelos numéricos tridimensionais de pavimentos aeroportuários, tanto a espessura do subleito, quanto a sua largura devem ter 50 vezes o raio da área de aplicação da carga (Figura 4.3).

Figura 4.3 – Configuração do domínio do modelo em função do raio de aplicação da carga.

A partir da determinação do CDF acumulado, o software FAARFIELD apresentou os gráficos de CDF individualizados por tipo de aeronave que compõem o mix do aeroporto SBBV (Figura 4.4).

Figura 4.4 – Gráfico do CDF calculado no Software FAARFIELD para o aeroporto SBBV.

É possível observar que a aeronave de maior contribuição para o CDF acumulado é o Boeing B737-800. Assim, através do banco de dados do software e dos manuais do fabricante da aeronave (BOEING, 2022) foi obtida a área de contato pneu-pavimento de 0,131218 m². Tratando-se de um modelo axissimétrico, foi assumido que a superfície de contato pneu-pavimento tem formato circular, com área equivalente à área de contato real. O raio de aplicação da carga no modelo é de 0,2044 metros, considerando a área da superfície de contato de 0,131218 metros quadrados. Portanto, o modelo numérico axissimétrico foi desenvolvido com largura radial de 10,22 m e subleito com espessura de 10,22 m.

As condições de contorno escolhidas para o modelo, ilustradas na Figura 4.5, foram semelhantes às adotadas por Zadehmohamad et al. (2022) e Dong et al (2023).

Figura 4.5 – Condições de contorno do modelo.

Restringiu-se a movimentação da face inferior do subleito aos deslocamentos nos eixos X e Y. A face externa do modelo teve restrição apenas ao deslocamento no eixo X. A face localizada no eixo axissimétrico teve restringidas a movimentação no eixo X e a rotação nos eixos Y e Z.

4.2. Interação entre as camadas

Cada uma das camadas do pavimento foi gerada de forma independente, necessitando definir as características de interação entre elas. A propriedade de contato entre as camadas do pavimento é fundamental para a acurácia dos resultados do processamento do modelo. Nesse estudo, tanto o contato entre duas camadas do pavimento quanto o contato entre uma camada do pavimento e o reforço de geogrelha foram consideradas totalmente aderidas, como realizado por Huang (2014), Correia et al. (2018) e Pedroso e Silva (2021), simulando o contato na direção normal das suas superfícies, sem a possibilidade de haver separação ou deslizamento horizontal nas interfaces.

4.3. Tipo dos elementos finitos e refinamento da malha

Todas as camadas do pavimento foram definidas com elementos finitos quadrilaterais, sólidos contínuos, de 4 nós, próprios para serem utilizados em modelos axissimétrico, cuja nomenclatura no software ABAQUS é "CAX4". Tais elementos são adequados para a análise de tensões e apresentam graus de liberdade para deslocamento e rotação nos eixos X e Y.

Ressalta-se que esses elementos não possuem graus de liberdade para tempo, velocidade ou temperatura, portanto os resultados apresentados pelo modelo não serão dependentes desses parâmetros. A Figura 4.6 ilustra a densidade da Malha de elementos finitos do modelo.

Figura 4.6 – Densidade da malha de elementos finitos do modelo.

Como mostrado na Figura 4.6, foi utilizada uma malha de elementos finitos com maior densidade nas camadas de revestimento e de base, como forma de reduzir o esforço computacional de processamento. O elemento no topo do modelo possui dimensão de 0,03 m x 0,03 m, e o elemento na extremidade inferior, localizado no fundo do subleito, possui dimensão de 0,03 m x 1,00 m.

O reforço de geogrelha foi modelado como membrana (Pedroso; Silva, 2021; Zadehmohamad et al., 2022), utilizando-se elementos lineares, de 2 nós, próprios para serem utilizados em modelos axissimétrico, cuja nomenclatura é "MAX1", adequados para a análise de tensões e que possuem os mesmos graus de liberdade das demais camadas do pavimento. A malha foi definida com elementos finitos de 0,015 m.

4.4. Modelos constitutivos

Os materiais das camadas do pavimento foram considerados homogêneos e isotrópicos, com comportamento mecânico do tipo elástico linear, de forma semelhante ao adotado no modelo produzido por Miura *et al* (1990). Por isso, os parâmetros que determinarão o comportamento mecânico do modelo numérico são os Módulos de Elasticidade, obtidos através da retroanálise dos resultados dos ensaios HWD, e os Coeficientes de Poisson, adotados de acordo com o tipo dos materiais. Teremos, para o modelo do pavimento do aeroporto SBBV – Boa Vista/RR, os dados de entrada da Tabela 4.1:

Camada	Material	Espessura (m)	Largura (m)	Módulo de Elasticidade (MPa)	Coeficiente de Poisson
Revestimento	CAUQ	0,15	10,22	3000	0,30
Base	Solo laterítico melhorado A2-4	0,30	10,22	300	0,35
Subleito	Solo SC A6 / A2-4	10,22	10,22	170	0,40

Tabela 4.1 - Estrutura do pavimento de SBBV - Boa Vista/RR

O reforço de geogrelha foi idealizado no modelo numérico considerando-se que o elemento de reforço é homogêneo e isotrópico, com comportamento mecânico do tipo elástico linear para a ordem de grandeza das tensões de trabalho, semelhante ao estudo conduzido por Zadehmohamad et al. (2022). De acordo com Huang (2014), esse tipo de modelo constitutivo para o reforço é considerado adequado, pois a deformação necessária para mobilizar sua resistência é relativamente baixa.

Uma verificação da abordagem numérica a ser utilizada na consideração do reforço de geogrelha foi realizada previamente a este estudo. O modelo em elementos finitos passou por validação por meio da comparação dos resultados de deslocamento, tensões e deformações com o modelo em escala real conduzido por Robinson e Norwood (2019) para a geogrelha denominada BX1200. Esse processo de validação envolveu ajustes sucessivos dos módulos de elasticidade das camadas até uma calibração satisfatória do modelo. As simulações numéricas demonstraram que o modelo proposto foi capaz de capturar as respostas do pavimento sob cargas repetidas. Para tanto, o módulo de elasticidade adotado para a geogrelha foi de 4967 MPa. Detalhes sobre o modelo validado podem ser encontrados em Santilli e Correia (2024).

Admitiu-se que o Coeficiente de Poisson desse reforço de geogrelha é de 0,30, como utilizado por Luo et al. (2017), e o módulo de elasticidade adotado variou entre os valores de

2000 MPa a 8000 MPa, de forma a abranger ampla faixa de valores. A Figura 4.7 ilustra uma geogrelha biaxial utilizada com a finalidade de reforço estrutural de pavimentos.

Figura 4.7 – Geogrelha utilizada como referência para a modelagem do reforço.

4.5. Carregamento

Optou-se por realizar análise do tipo estática, com o objetivo de simplificar o modelo, e considerando que as deflexões obtidas com a análise estática apresentaram precisão satisfatória com os dados obtidos em campo, equivalentes aos resultados obtidos através da análise dinâmica (Tarefder; Ahmed, 2014). Por isso, desprezou-se o componente horizontal do carregamento provocado pela movimentação da aeronave, e a pressão de contato foi considerada uniformemente distribuída.

Foram aplicados ao modelo numérico desenvolvido os carregamentos que simulassem aqueles gerados pelo equipamento de ensaios HWD. Para tanto, foram adotadas cargas do tipo pressão de 1258 kPa e 1635 kPa, equivalentes às pressões geradas pelo equipamento utilizado para realizar os ensaios HDW com dois níveis de carga, 200 kN e 260 kN, respectivamente. Tais pressões foram aplicadas em uma área circular de 0,45 m de diâmetro, equivalente à dimensão da placa de transferência de carga utilizada nos ensaios, de acordo com os relatórios obtidos com o operador aeroportuário.

O impacto da carga aplicada no ensaio foi configurado com o uso da funcionalidade "amplitude" do software ABAQUS, pela qual se relaciona em uma tabela (Figura 4.8) a evolução do processamento ("*step time*") com o aumento e diminuição do módulo da carga, sendo que o valor 1 significa aplicação da totalidade do módulo da carga, e valores entre 0 e 1, a redução proporcional do módulo dessa carga.

Figura 4.8 – Aplicação de carga utilizando a funcionalidade "*amplitudes*" do Software ABAQUS: (a) tela de entrada de dados; (b) resultado gráfico da fração do módulo da carga aplicada em função do tempo.

De acordo com Huang (2014) essa abordagem revela as tensões e deslocamentos máximos nos picos dos carregamentos, e os deslocamentos permanentes após os descarregamentos.

4.6. Calibração do modelo

Com o intuito de assegurar a calibração dos resultados apresentados pelo modelo numérico desenvolvido, utilizou-se como referência as bacias de deflexão obtidas nos ensaios HWD realizados em 19 de agosto de 2021, na pista de pouso e decolagem do aeroporto SBBV (VINCI, 2022) (Figura 4.9).

Figura 4.9 – Comparação das bacias de deflexão obtidas no modelo numérico e nos ensaios HWD do Aeroporto SBBV – Boa Vista/RR: (a) Carga de 200 kN; (b) Carga de 260 kN.

Para tanto, foram aplicados ao modelo numérico desenvolvido os carregamentos que simulassem a área de aplicação da carga e as pressões geradas pelo equipamento de teste HWD. Foram captadas as medidas de deflexão no modelo numérico nas mesmas posições em que se localizaram os geofones, ou seja, no centro da área de aplicação da carga e nos pontos distantes a 0,30 m, 0,45 m, 0,60 m, 0,90 m, 1,20 m, 1,50 m, 1,80 m e 2,10 m. As bacias

de deflexão obtidas no modelo numérico foram comparadas com as bacias deflectométricas observadas em campo, e indicaram calibração satisfatória.

4.7. Processamento

Optou-se por realizar a avaliação dos efeitos da incorporação de reforço de geogrelha no pavimento da pista de pouso e decolagem do Aeroporto de Boa Vista/RR (SBBV) através da comparação do CDF do pavimento de referência, ou seja, sem reforço de geogrelha, com o CDF do pavimento enrijecido com geogrelha.

Inicialmente, calcula-se o CDF do pavimento de referência com o Software FAARFIELD. Em seguida, utilizando o Software ABAQUS, insere-se no modelo numérico calibrado uma parte representativa do reforço de geogrelha e, após aplicação do carregamento equivalente ao ensaio HWD, determina-se a bacia de deflexão do pavimento reforçado.

Num segundo modelo numérico, igualmente calibrado, o elemento que representava o reforço de geogrelha é substituído por uma região do material granular, representando a região sob influência dos efeitos enrijecedores de um reforço, de 15 cm de espessura segundo com Luo et al. (2017). O módulo de elasticidade dessa região é ajustado de tal forma que o modelo numérico reproduza uma bacia de deflexão semelhante à produzida pelo modelo que contava com o reforço de geogrelha. Os valores do módulo de elasticidade ajustado e da espessura da região de influência do efeito enrijecedor são inseridos no Software FAARFIELD, e o CDF do pavimento com reforço de geogrelha é calculado.

Calcula-se, de acordo com o fluxo ilustrado na Figura 4.10, o Fator de Melhora do CDF (FM_{CDF}) da razão do CDF calculado para o pavimento com reforço de geogrelha pelo CDF calculado para o pavimento de referência:

$$FM_{CDF} = 1 - \frac{CDF_{REFOR,CADO}}{CDF_{REFER, ENCIA}}$$
(3)

Foram processados modelos nos quais se pretendeu avaliar os efeitos no CDF considerando-se o posicionamento do reforço de geogrelha em três posições distintas:

(a) na interface das camadas de base e subleito;

(b) no meio da camada de base; e

(c) na interface da camada de base e revestimento asfáltico.

Figura 4.10 – Fluxo de processamento dos modelos e cálculo do CDF da estrutura enrijecida com geogrelha.

Processou-se também modelos nos quais se pretendeu avaliar os efeitos no CDF considerando-se diferentes módulos de elasticidade do reforço de geogrelha, de forma a abranger ampla faixa de valores condizentes com os produtos disponíveis no mercado, para tanto, foram adotados os seguintes módulos de elasticidade para a geogrelha:

- (a) 2000 MPa;
- (b) 4967 MPa; e
- (c) 8000 MPa.

4.8. Resultados e discussões

Na Tabela 4.2 são apresentadas as deflexões medidas no topo do revestimento asfáltico no modelo numérico desenvolvido no software ABAQUS, à distância de 0,00 m, 0,30 m, 0,45 m, 0,60 m, 0,90 m, 1,20 m, 1,50 m, 1,80 m e 2,10 m do centro de aplicação da carga. O modelo numérico calibrado, cujas características básicas estão ilustradas na Figura 4.11, foi submetido a dois níveis distintos de carregamento, de 200 kN e 260 kN, semelhantes às cargas adotadas nos ensaios HWD realizados no pavimento da pista de pouso e decolagem do Aeroporto de Boa Vista/RR.

Figura 4.11 – Características físicas e mecânicas básicas do modelo numérico de referência.

Tabela 4.2 – Bacias de deflexão obtidas no modelo numérico calibrado, sem reforço.

Dovimonto do referêncio	Distância do centro de aplicação da carga do HWD (m)										
	0,00	0,30	0,45	0,60	0,90	1,20	1,50	1,80	2,10		
Deflexão para carga de 200 kN (µm)	1220	825	626	485	313	219	162	125	99		
Deflexão para carga de 260 kN (μm)	1586	1071	814	630	407	284	211	162	129		

Como calculado anteriormente, para esse pavimento de referência (não reforçado com geogrelha), utilizando-se o software FAARFIELD foi obtido CDF_{REFERÊNCIA} de 1,50. A Figura 4.12 ilustra o posicionamento do reforço de geogrelha no modelo numérico.

Figura 4.12 – Características físicas e mecânicas do modelo numérico com reforço de geogrelha de módulo de elasticidade de 4967 MPa posicionado: (a) na interface revestimento-base; (b) no meio da camada de base; (c) na interface base-subleito.

A seguir, nas Tabelas 4.3 a 4.5 são apresentadas as bacias de deflexão obtidas após a inserção no modelo numérico de parte representativa do reforço de geogrelha, em três posições distintas.

Reforço na interface	Distância do centro de aplicação da carga do HWD (m)										
com módulo 4967 MPa	0,00	0,30	0,45	0,60	0,90	1,20	1,50	1,80	2,10		
Deflexão para carga de 200 kN (µm)	1214	823	626	485	313	219	162	125	99		
Deflexão para carga de 260 kN (µm)	1578	1069	814	630	407	285	211	162	129		

Tabela 4.3 – Bacias de deflexão obtidas no modelo numérico, com reforço de geogrelha de módulo de elasticidade de 4967 MPa posicionado na interface revestimento-base.

Tabela 4.4 – Bacias de deflexão obtidas no modelo numérico, com reforço de geogrelha de módulo de elasticidade de 4967 MPa posicionado no meio da camada de base.

Reforço no meio da base,	Distância do centro de aplicação da carga do HWD (m)										
com módulo 4967 MPa	0,00	0,30	0,45	0,60	0,90	1,20	1,50	1,80	2,10		
Deflexão para carga de 200 kN (µm)	1215	821	624	484	313	219	162	125	99		
Deflexão para carga de 260 kN (µm)	1578	1067	811	629	407	285	211	162	129		

Tabela 4.5 – Bacias de deflexão obtidas no modelo numérico, com reforço de geogrelha de módulo de elasticidade de 4967 MPa posicionado na interface base-subleito.

Reforço na interface base-	Distância do centro de aplicação da carga do HWD (m)										
Subleito, com modulo 4967 MPa	0,00	0,30	0,45	0,60	0,90	1,20	1,50	1,80	2,10		
Deflexão para carga de 200 kN (μm)	1213	819	622	483	313	219	163	125	99		
Deflexão para carga de 260 kN (µm)	1576	1064	809	627	406	285	211	163	129		

Comparando-se os valores de deflexão da Tabela 4.2 com as Tabelas 4.3 a 4.5, verifica-se que houve redução nas deflexões máximas, medidas no centro da aplicação da carga, com aplicação da carga de 260 kN, para as três posições em que foi simulada a inserção da geogrelha no pavimento aeroportuário. Houve ganho discreto ao se posicionar o reforço na interface base-subleito, com redução 2 µm maior do que nos outros casos.

Em relação ao alcance dos efeitos do enrijecimento do pavimento, comparando-se a Tabela 4.2 com a Tabela 4.3, resultante da inserção do reforço na interface revestimentobase, observa-se que houve redução das deflexões apenas nos dois primeiros pontos de medição, localizados a 0,00 m e 0,30 m do centro de aplicação da carga. Por outro lado, comparando-se a Tabela 4.2 com a Tabela 4.5, resultante da inserção do reforço na interface base-subleito, observa-se que houve redução das deflexões nos 5 primeiros pontos de medição, localizados a 0,00 m, 0,30 m, 0,45 m, 0,60 m e 0,90 m. Portanto, a inserção do reforço a maiores profundidades proporcionou redução nas deflexões em um maior raio. A Figura 4.13 ilustra a localização da região cujo módulo de elasticidade foi ajustado no modelo numérico.

Figura 4.13 – Características físicas e mecânicas do modelo numérico com região ajustada para simular confinamento do reforço de geogrelha de módulo de elasticidade de 4967 MPa posicionado: (a) na interface revestimento-base; (b) no meio da camada de base; (c) na interface base-subleito.

Nas Tabelas 4.6 a 4.8 constam as bacias de deflexão obtidas nos modelos numéricos onde se ajustou o módulo de elasticidade de uma região de 150 mm de espessura, referente à região de influência do efeito confinante do reforço geossintético. O ajuste foi realizado de tal forma que fossem obtidas bacias de deflexão o mais próximas possíveis àquelas medidas nos modelos que contavam com partes simulando o reforço de geogrelha.

Tabela 4.6 – Bacias de deflexão obtidas no modelo numérico, com região do material granular ajustado para reproduzir as deflexões obtidas com o reforço de geogrelha de módulo de elasticidade de 4967 MPa posicionado na interface revestimento-base.

Reforço na interface	Distância do centro de aplicação da carga do HWD (m)										
com módulo 4967 MPa	0,00	0,30	0,45	0,60	0,90	1,20	1,50	1,80	2,10		
Deflexão para carga de 200 kN (μm)	1214	822	625	485	313	219	162	125	99		
Deflexão para carga de 260 kN (µm)	1577	1068	812	630	407	285	211	162	129		

Tabela 4.7 – Bacias de deflexão obtidas no modelo numérico, com região do material granular ajustado para reproduzir as deflexões obtidas com o reforço de geogrelha de módulo de elasticidade de 4967 MPa posicionado no meio da camada de base.

Reforço no meio da base,	Distância do centro de aplicação da carga do HWD (m)										
com módulo 4967 MPa	0,00	0,30	0,45	0,60	0,90	1,20	1,50	1,80	2,10		
Deflexão para carga de 200 kN (µm)	1212	819	623	483	313	219	162	125	99		
Deflexão para carga de 260 kN (µm)	1575	1065	809	628	407	285	211	162	129		

Tabela 4.8 – Bacias de deflexão obtidas no modelo numérico, com região do material granular ajustado para reproduzir as deflexões obtidas com o reforço de geogrelha de módulo de elasticidade de 4967 MPa posicionado na interface base-subleito.

Reforço na interface base-	Distância do centro de aplicação da carga do HWD (m)										
subleito, com módulo 4967 MPa	0,00	0,30	0,45	0,60	0,90	1,20	1,50	1,80	2,10		
Deflexão para carga de 200 kN (μm)	1212	819	622	482	312	219	162	125	99		
Deflexão para carga de 260 kN (µm)	1575	1064	808	627	406	285	211	163	129		

Comparando-se os valores das deflexões medidas, observa-se que são mínimas as diferenças entre as bacias de deflexão produzidas no modelo numérico onde foram inseridas partes que simulam a incorporação de reforço de geogrelha (Tabela 4.3 a 4.5) e as bacias de deflexão produzidas no modelo numérico onde uma região de 150 mm de espessura do material granular teve o módulo de elasticidade ajustado (Tabela 4.6 a 4.8).

Nota-se que o ajuste realizado no módulo de elasticidade na situação em que o reforço de geogrelha foi posicionado na interface base-subleito, sendo aumentado de 300 MPa para 340 MPa, foi consideravelmente maior que nos demais casos, nos quais o aumento foi de 300 MPa para 314 MPa e 315 MPa. Portanto, a inserção do reforço na interface base-subleito proporcionou ao pavimento um comportamento mecânico equivalente a uma estrutura de melhor qualidade.

Com os valores dos módulos de elasticidades ajustados para a região de influência do reforço geossintético, procedeu-se novo cálculo no Software FAARFIELD dos CDF_{REFORÇADO}, obtendo-se os seguintes valores:

 a) Para o reforço de geogrelha posicionado na interface revestimento-base foi obtido CDF_{REFORÇADO} de 1,45. Determina-se o FM_{CDF} com a Fórmula (3):

$$FM_{CDF} = 1 - \frac{CDF_{REFOR,CADO}}{CDF_{REFER,ENCIA}} = 1 - \frac{1,45}{1,50} = 3,33\%$$
(4)

 b) Para o reforço de geogrelha posicionado no meio da camada de base foi obtido CDF_{REFORÇADO} de 1,49. Determina-se o FM_{CDF} com a Fórmula (3):

$$FM_{CDF} = 1 - \frac{CDF_{REFOR,CADO}}{CDF_{REFER,ENCIA}} = 1 - \frac{1,49}{1,50} = 0,67\%$$
(5)

 c) Para o reforço de geogrelha posicionado na interface base-subleito foi obtido CDF_{REFORÇADO} de 1,40. Determina-se o FM_{CDF} com a Fórmula (3):

$$FM_{CDF} = 1 - \frac{CDF_{REFORÇADO}}{CDF_{REFERÊNCIA}} = 1 - \frac{1,40}{1,50} = 6,67\%$$
(6)

Sabendo-se que a vida útil de projeto de um pavimento aeroportuário usualmente adotado é de 20 anos, prazo em que o CDF deveria atingir o valor de 1,00. No caso do Aeroporto de Boa Vista/RR (SBBV), o CDF calculado de 1,50 indica que a vida útil da estrutura é de 14,2 anos, dadas as características atuais do pavimento da pista de pouso e decolagem e o mix de aeronaves em operação. Caso tivesse sido incorporado um reforço de geogrelha de módulo de elasticidade 4967 MPa na interface base-subleito, mantidas as demais características construtivas e de movimentação de aeronaves, o CDF calculado seria de 1,40, que indica que a vida útil da estrutura aumentaria para 15 anos. Ou seja, a incorporação do reforço na interface base-subleito proporcionaria ganho de apenas 0,8 ano (ou 9 meses e meio) na vida útil do pavimento aeroportuário.

A Figura 4.14 ilustra o posicionamento do reforço de geogrelha no modelo numérico.

Figura 4.14 – Características físicas e mecânicas do modelo numérico com reforço de geogrelha de módulo de elasticidade de 2000 MPa posicionado: (a) na interface revestimento-base; (b) no meio da camada de base; (c) na interface base-subleito.

A seguir, nas Tabelas 4.9 a 4.11 são apresentadas as bacias de deflexão obtidas após a inserção no modelo numérico de parte representativa do reforço geossintético, em três posições distintas, porém utilizando um reforço de geogrelha hipotético com módulo de elasticidade de 2000 MPa, como forma de avaliar a influência da redução dessa característica mecânica do reforço no comportamento mecânico do pavimento aeroportuário.

Reforço na interface	Distância do centro de aplicação da carga do HWD (m)											
com módulo 2000 MPa	0,00	0,30	0,45	0,60	0,90	1,20	1,50	1,80	2,10			
Deflexão para carga de 200 kN (µm)	1218	823	626	485	313	219	162	125	99			
Deflexão para carga de 260 kN (µm)	1582	1071	814	630	407	284	211	162	129			

Tabela 4.9 – Bacias de deflexão obtidas no modelo numérico, com reforço de geogrelha de módulo de elasticidade de 2000 MPa posicionado na interface revestimento-base.

Tabela 4.10 – Bacias de deflexão obtidas no modelo numérico, com reforço de geogrelha de módulo de elasticidade de 2000 MPa posicionado no meio da camada de base.

Reforço no meio da base, com módulo 2000 MPa	Distância do centro de aplicação da carga do HWD (m)								
	0,00	0,30	0,45	0,60	0,90	1,20	1,50	1,80	2,10
Deflexão para carga de 200 kN (µm)	1218	823	625	485	313	219	162	125	99
Deflexão para carga de 260 kN (µm)	1583	1070	813	630	407	285	211	162	129

Tabela 4.11 – Bacias de deflexão obtidas no modelo numérico, com reforço de geogrelha de módulo de elasticidade de 2000 MPa posicionado na interface base-subleito.

Reforço na interface base-	Dis	stância o	to centro de aplicação da carga do HWD (m)							
com módulo 2000 MPa	0,00	0,30	0,45	0,60	0,90	1,20	1,50	1,80	2,10	
Deflexão para carga de 200 kN (μm)	1217	822	624	484	313	219	162	125	99	
Deflexão para carga de 260 kN (µm)	1581	1068	811	629	407	285	211	162	129	

Comparando-se os valores de deflexão da Tabela 4.2 e das Tabelas 4.9 a 4.11, como esperado, verifica-se que houve pouca redução nas deflexões máximas, medidas no centro da aplicação da carga, com aplicação da carga de 260 kN, para as três posições em que foi simulada a inserção da geogrelha no pavimento aeroportuário, com diferença de 2 µm entre o posicionamento com melhor desempenho – reforço posicionado na interface base-subleito – e o posicionamento com pior desempenho – reforço posicionado no meio da camada de base. E de 3 µm entre este e o modelo sem reforço de geogrelha.

Em relação ao alcance dos efeitos do enrijecimento do pavimento, comparando-se a Tabela 4.2 com a Tabela 4.5, produzida sob efeito do reforço de módulo de elasticidade 4967 MPa, e a Tabela 4.11, produzida sob efeito do reforço de módulo de elasticidade 2000 MPa, observa-se que a redução do módulo de elasticidade do reforço de geogrelha provocou diminuição do alcance dos efeitos do enrijecimento do pavimento.

A Figura 4.15 ilustra a localização da região cujo módulo de elasticidade foi ajustado no modelo numérico.

Figura 4.15 – Características físicas e mecânicas do modelo numérico com região ajustada para simular confinamento do reforço de geogrelha de módulo de elasticidade de 2000 MPa posicionado: (a) na interface revestimento-base; (b) no meio da camada de base; (c) na interface base-subleito.

Nas Tabelas 4.12 a 4.14 constam as bacias de deflexão obtidas nos modelos numéricos onde se ajustou o módulo de elasticidade de uma região de 150 mm de espessura, referente à região de influência do efeito confinante do reforço geossintético, como efetuado anteriormente, obtendo-se bacias de deflexão o mais próximas possíveis àquelas medidas nos modelos que contavam com partes simulando o reforço de geogrelha.

Tabela 4.12 – Bacias de deflexão obtidas no modelo numérico, com região do material granular ajustado para reproduzir as deflexões obtidas com o reforço de geogrelha de módulo de elasticidade de 2000 MPa posicionado na interface revestimento-base.

Reforço na interface revestimento-base, com módulo 2000 MPa	Distância do centro de aplicação da carga do HWD (m)									
	0,00	0,30	0,45	0,60	0,90	1,20	1,50	1,80	2,10	
Deflexão para carga de 200 kN (µm)	1218	824	626	485	313	219	162	125	99	
Deflexão para carga de 260 kN (μm)	1583	1070	813	630	407	284	211	162	129	

Tabela 4.13 – Bacias de deflexão obtidas no modelo numérico, com região do material granular ajustado para reproduzir as deflexões obtidas com o reforço de geogrelha de módulo de elasticidade de 2000 MPa posicionado no meio da camada de base.

Reforço no meio da base,	Distância do centro de aplicação da carga do HWD (m)								
com módulo 2000 MPa	0,00	0,30	0,45	0,60	0,90	1,20	1,50	1,80	2,10
Deflexão para carga de 200 kN (μm)	1218	823	625	485	313	219	162	125	99
Deflexão para carga de 260 kN (μm)	1582	1070	812	630	407	284	211	162	129

Tabela 4.14 – Bacias de deflexão obtidas no modelo numérico, com região do material granular ajustado para reproduzir as deflexões obtidas com o reforço de geogrelha de módulo de elasticidade de 2000 MPa posicionado na interface base-subleito.

Reforço na interface base-	Dis	Distância do centro de aplicação da carga do HWD (m)									
subleito, com módulo 2000 MPa	0,00	0,30	0,45	0,60	0,90	1,20	1,50	1,80	2,10		
Deflexão para carga de 200 kN (μm)	1216	821	624	484	313	219	162	125	99		
Deflexão para carga de 260 kN (µm)	1580	1067	811	628	406	285	211	162	129		

Observa-se que são mínimas as diferenças entre as bacias de deflexão produzidas no modelo numérico onde foram inseridas partes que simulam a incorporação de reforço geossintético (Tabelas 4.9 a 4.11) e as bacias de deflexão produzidas no modelo numérico onde uma região de 150 mm de espessura do material granular teve o módulo de elasticidade ajustado (Tabela 4.12 a 4.14).

Novamente, observa-se que a inserção do reforço na interface base-subleito proporcionou ao pavimento um comportamento mecânico equivalente a uma estrutura de melhor qualidade, tendo em vista que o ajuste realizado no módulo de elasticidade nessa situação foi maior que nos demais casos, passando de 300 MPa para 322 MPa.

Com os valores dos módulos de elasticidades ajustados para a região de influência do reforço de geogrelha, procedeu-se novo cálculo no Software FAARFIELD dos CDF_{REFORÇADO}, obtendo-se os seguintes valores:

 a) Para o reforço de geogrelha posicionado na interface revestimento-base foi obtido CDF_{REFORÇADO} de 1,48. Determina-se o FM_{CDF} com a Fórmula (3):

$$FM_{CDF} = 1 - \frac{CDF_{REFOR,CADO}}{CDF_{REFER,ENCIA}} = 1 - \frac{1,48}{1,50} = 1,33\%$$
(7)

 b) Para o reforço de geogrelha posicionado no meio da camada de base foi obtido CDF_{REFORÇADO} de 1,50. Determina-se o FM_{CDF} com a Fórmula (3):

$$FM_{CDF} = 1 - \frac{CDF_{REFOR,CADO}}{CDF_{REFER,CIA}} = 1 - \frac{1,50}{1,50} = 0,00\%$$
(8)

 c) Para o reforço de geogrelha posicionado na interface base-subleito foi obtido CDF_{REFORÇADO} de 1,45. Determina-se o FM_{CDF} com a Fórmula (3):
$$FM_{CDF} = 1 - \frac{CDF_{REFORÇADO}}{CDF_{REFERÊNCIA}} = 1 - \frac{1,45}{1,50} = 3,33\%$$
(9)

Observa-se que o CDF calculado para o caso em que o reforço de geogrelha foi posicionado no meio da camada de base não teve qualquer melhoria em relação ao pavimento aeroportuário sem reforço.

A Figura 4.16 ilustra o posicionamento do reforço de geogrelha no modelo numérico.

Figura 4.16 – Características físicas e mecânicas do modelo numérico com reforço de geogrelha de módulo de elasticidade de 8000 MPa posicionado: (a) na interface revestimento-base; (b) no meio da camada de base; (c) na interface base-subleito.

Em seguida são apresentados os resultados dos processamentos realizados de forma similar aos casos mostrados anteriormente, considerando desta vez a incorporação de reforço de geogrelha com módulos de elasticidade hipotético de 8000 MPa. Nas Tabelas 4.15 a 4.17 são apresentadas as bacias de deflexão obtidas após a inserção no modelo numérico de parte representativa do reforço geossintético, em três posições distintas.

Reforço na interface	Dis	Distância do centro de aplicação da carga do HWD (m)									
com módulo 8000 MPa	0,00	0,30	0,45	0,60	0,90	1,20	1,50	1,80	2,10		
Deflexão para carga de 200 kN (µm)	1211	822	626	486	313	219	162	125	99		
Deflexão para carga de 260 kN (µm)	1573	1068	814	631	407	285	211	162	129		

Tabela 4.15 – Bacias de deflexão obtidas no modelo numérico, com reforço de geogrelha de módulo de elasticidade de 8000 MPa posicionado na interface revestimento-base.

Reforço no meio da base,	Distância do centro de aplicação da carga do HWD (m)									
com módulo 8000 MPa	0,00	0,30	0,45	0,60	0,90	1,20	1,50	1,80	2,10	
Deflexão para carga de 200 kN (μm)	1212	819	623	483	313	219	163	125	99	
Deflexão para carga de 260 kN (μm)	1575	1065	810	629	407	285	211	163	129	

Tabela 4.16 – Bacias de deflexão obtidas no modelo numérico, com reforço de geogrelha de módulo de elasticidade de 8000 MPa posicionado no meio da camada de base.

Tabela 4.17 – Bacias de deflexão obtidas no modelo numérico, com reforço de geogrelha de módulo de elasticidade de 8000 MPa posicionado na interface base-subleito.

Reforço na interface base-	Distância do centro de aplicação da carga do HWD (m)									
com módulo 8000 MPa	0,00	0,30	0,45	0,60	0,90	1,20	1,50	1,80	2,10	
Deflexão para carga de 200 kN (μm)	1208	816	620	481	313	220	163	126	99	
Deflexão para carga de 260 kN (µm)	1570	1060	805	625	406	285	212	163	129	

Conforme esperado, observou-se redução das deflexões máximas em relação às obtidas com a incorporação de reforço de geogrelha com módulos de elasticidade menores. Porém não houve aumento do alcance dos efeitos do enrijecimento do pavimento, tendo em vista que é possível observar redução das deflexões medidas até a 0,90 m do centro de aplicação da carga.

A Figura 4.17 ilustra a localização da região cujo módulo de elasticidade foi ajustado no modelo numérico.

Figura 4.17 – Características físicas e mecânicas do modelo numérico com região ajustada para simular confinamento do reforço de geogrelha de módulo de elasticidade de 8000 MPa posicionado: (a) na interface revestimento-base; (b) no meio da camada de base; (c) na interface base-subleito.

Nas Tabelas 4.18 a 4.20 são apresentadas as bacias de deflexão obtidas nos modelos numéricos onde se ajustou o módulo de elasticidade de uma região de 150 mm de espessura, referente à região de influência do efeito confinante do reforço geossintético, como

efetuado anteriormente, obtendo-se bacias de deflexão o mais próximas possíveis àquelas medidas nos modelos que contavam com partes simulando o reforço de geogrelha.

Tabela 4.18 – Bacias de deflexão obtidas no modelo numérico, com região do material granular ajustado para reproduzir as deflexões obtidas com o reforço de geogrelha de módulo de elasticidade de 8000 MPa posicionado na interface revestimento-base.

Reforço na interface	Dis	Distância do centro de aplicação da carga do HWD (m)										
com módulo 8000 MPa	0,00	0,30	0,45	0,60	0,90	1,20	1,50	1,80	2,10			
Deflexão para carga de 200 kN (μm)	1214	822	625	485	313	219	162	125	99			
Deflexão para carga de 260 kN (µm)	1577	1068	812	630	407	285	211	162	129			

Tabela 4.19 – Bacias de deflexão obtidas no modelo numérico, com região do material granular ajustado para reproduzir as deflexões obtidas com o reforço de geogrelha de módulo de elasticidade de 8000 MPa posicionado no meio da camada de base.

Reforço no meio da base,	Distância do centro de aplicação da carga do HWD (m)									
com módulo 8000 MPa	0,00	0,30	0,45	0,60	0,90	1,20	1,50	1,80	2,10	
Deflexão para carga de 200 kN (μm)	1212	819	623	483	313	219	162	125	99	
Deflexão para carga de 260 kN (μm)	1575	1065	810	628	407	285	211	162	129	

Tabela 4.20 – Bacias de deflexão obtidas no modelo numérico, com região do material granular ajustado para reproduzir as deflexões obtidas com o reforço de geogrelha de módulo de elasticidade de 8000 MPa posicionado na interface base-subleito.

Reforço na interface base-	Distância do centro de aplicação da carga do HWD (m)									
com módulo 8000 MPa	0,00	0,30	0,45	0,60	0,90	1,20	1,50	1,80	2,10	
Deflexão para carga de 200 kN (μm)	1209	817	621	482	312	219	162	125	99	
Deflexão para carga de 260 kN (µm)	1571	1061	806	626	406	285	211	162	129	

Verificou-se que as bacias de deflexão produzidas após a inserção do reforço de geogrelha com módulo de elasticidade de 4967 MPa (Tabelas 4.6 a 4.8) possuem grande semelhança com aquelas produzidas após a inserção do reforço de geogrelha com módulo de elasticidade de 8000 MPa (Tabelas 4.18 a 4.20). Isso sugere que o efeito de confinamento de ambos é semelhante. Diferem, entretanto, quando o reforço é posicionado na interface base-subleito, caso em que o reforço com módulo de elasticidade maior produz menores deflexões máximas, fazendo com que o ajuste do módulo de elasticidade da região de influência do confinamento seja maior, de 300 MPa para 355 MPa.

Com os valores dos módulos de elasticidades ajustados para a região de influência do reforço geossintético, procedeu-se novo cálculo no Software FAARFIELD dos CDF_{REFORÇADO}, obtendo-se os seguintes valores:

 a) Para o reforço de geogrelha posicionado na interface revestimento-base foi obtido CDF_{REFORÇADO} de 1,45. Determina-se o FM_{CDF} com a Fórmula (3):

$$FM_{CDF} = 1 - \frac{CDF_{REFOR, CADO}}{CDF_{REFER, ENCIA}} = 1 - \frac{1,45}{1,50} = 3,33\%$$
(10)

 b) Para o reforço de geogrelha posicionado no meio da camada de base foi obtido CDF_{REFORÇADO} de 1,49. Determina-se o FM_{CDF} com a Fórmula (3):

$$FM_{CDF} = 1 - \frac{CDF_{REFOR,CADO}}{CDF_{REFER,ENCIA}} = 1 - \frac{1,49}{1,50} = 0,67\%$$
(11)

 c) Para o reforço de geogrelha posicionado na interface base-subleito foi obtido CDF_{REFORÇADO} de 1,36. Determina-se o FM_{CDF} com a Fórmula (3):

$$FM_{CDF} = 1 - \frac{CDF_{REFOR,CADO}}{CDF_{REFER,ENCIA}} = 1 - \frac{1,36}{1,50} = 9,33\%$$
(12)

Novamente é possível observar o reduzido efeito produzido pelo reforço de geogrelha inserido no meio da camada de base do pavimento aeroportuário, e o efeito consideravelmente maior quando seu posicionamento é na interface base-subleito, onde proporcionou redução do CDF de 1,50 para 1,36.

A Figura 4.18 consolida os valores de CDF em função da variação da posição de aplicação do reforço de geogrelha e do módulo de elasticidade do reforço.

Figura 4.18 – Gráfico de CDF em função da variação da posição de incorporação do reforço de geogrelha e do módulo de elasticidade do reforço.

Observa-se que posicionar o reforço no meio da camada de base do pavimento aeroportuário proporciona pouco ou nenhum efeito no CDF, independentemente do módulo de elasticidade do reforço de geogrelha. Por outro lado, posicionar o reforço na interface basesubleito apresentou as maiores reduções de CDF, para os três valores de módulo de elasticidade simulados para o reforço, reduzindo o CDF proporcionalmente à medida que se aumenta o módulo de elasticidade.

A Figura 4.19 consolida os valores de FM_{CDF} em função da variação da posição de aplicação do reforço de geogrelha e do módulo de elasticidade do reforço.

Figura 4.19 – Gráfico de FM_{CDF} em função da variação da posição de incorporação do reforço de geogrelha e do módulo de elasticidade do reforço.

Posicionar o reforço na interface base-subleito apresentou os maiores valores de FM_{CDF}, que aumentou proporcionalmente à medida que se aumentou o módulo de elasticidade do reforço de geogrelha.

Os resultados obtidos no presente estudo estão condizentes com as conclusões de Abdesssemed, Kenai e Bali (2015), que também identificaram que o posicionamento ótimo da geogrelha é na porção inferior da camada de base do pavimento aeroportuário; e que posicionar o reforço na porção central da camada de base produz os menores efeitos em relação à redução das deformações quando comparado com a aplicação do reforço em camadas mais profundas. Robinson (2020) também observou nos dados obtidos de células de pressão em pavimento aeroportuário, durante testes experimentais, melhor desempenho em termos de tensão vertical no topo do subleito quando o geossintético é posicionado na interface sub-base-subleito.

Assim, verifica-se que a modelagem numérica possibilita avaliar os efeitos do enrijecimento da estrutura do pavimento aeroportuário com geogrelha, e pode subsidiar os projetistas com informações que não são disponibilizadas pelo software de dimensionamento da FAA, amplamente utilizado no Brasil. O posicionamento do reforço na interface base-subleito promoveu redução nas deflexões em um raio maior a partir do centro de aplicação de carga, quando comparado com o pavimento em que o reforço é inserido na interface revestimento-base. A inserção do reforço na interface base-subleito também proporcionou ao

pavimento aeroportuário maior ganho de rigidez do que o observado com o posicionamento do reforço em menores profundidades. Quanto à variação do módulo de elasticidade do reforço, como esperado, a utilização de reforço de geogrelha de maior rigidez resultou em menores deflexões. Porém, o aumento da rigidez do reforço não ocasionou aumento do alcance dos efeitos de enrijecimento do pavimento. Em termos do Fator de Dano Acumulado (CDF), importante indicador a ser considerado para dimensionamento de pavimentos aeroportuários, observa-se que a inclusão de reforço de geogrelha não produziu variações relevantes.

Salienta-se que os resultados obtidos com a modelagem numérica e processamento através de MEF no presente estudo referem-se às condições existentes no Aeroporto Atlas Brasil Cantanhede (SBBV), localizado em Boa Vista/RR. É possível, a depender de estudos futuros, que sejam obtidos melhores efeitos do enrijecimento de pavimento aeroportuário com reforços geossintéticos em situações diversas como, por exemplo, de pavimento aeroportuário com subleito com módulo de elasticidade baixo, ou revestimento asfáltico menos espessos, ou com a utilização de multicamadas de reforço.

5. CONCLUSÕES

O objetivo principal desse trabalho foi avaliar a condição estrutural dos pavimentos das pistas de pouso e decolagem de 20 aeroportos brasileiros através do Fator de Dano Acumulado (CDF). Considera-se que o levantamento de dados realizado, tanto da movimentação e do mix de aeronaves, quanto das propriedades físicas e mecânicas dos pavimentos, possibilitou adequado subsídio para a utilização do software FAARFIELD como ferramenta auxiliar para o cálculo do CDF. Complementarmente, o CDF pôde ser utilizado como parâmetro de verificação da condição estrutural dos pavimentos aeroportuários, pois trata-se de um parâmetro de simples compreensão e frequentemente utilizado pelos operadores aeroportuários em diversos países.

A pesquisa demonstrou que dos 20 aeroportos que tiveram as pistas de pouso e decolagem analisadas, apenas o Aeroporto de Boa Vista/RR (SBBV) apresentou CDF acima de 1,0, situação em que a ANAC (2020) recomenda que sejam adotadas ações que mitiguem a degradação acelerada do pavimento. A pesquisa concluiu ainda que 11 aeroportos apresentaram CDF menor que 0,01, sugerindo um potencial sobredimensionamento dos pavimentos para a movimentação de aeronaves existentes. O estudo mostrou ainda que dos 20 aeroportos brasileiros que tiveram as pistas de pouso e decolagem analisadas, 65% destes pavimentos aeroportuários são compostos por 4 camadas estruturais, sendo 50% das estruturas compostas por camadas de base tratadas com cimento.

O procedimento utilizado para calcular o CDF de um pavimento aeroportuário com incorporação de reforço de geogrelha através do Software FAARFIELD mostrou-se viável e possibilita estimar os ganhos de desempenho e de extensão da vida útil da estrutura do pavimento. No caso do Aeroporto de Boa Vista/RR (SBBV), a redução do CDF, de 1,50 para 1,40, quando aplicado um reforço de geogrelha na interface base-subleito, mantidas as demais características construtivas e de movimentação de aeronaves, proporcionaria um ganho de 0,8 ano (ou 9 meses e meio) na vida útil do pavimento aeroportuário. Em termos de Fator de Dano Acumulado (CDF) e de extensão da vida útil, observou-se que a inclusão de reforço de geogrelha não produziu variações relevantes para a estrutura de pavimento aeroportuário considerada na análise.

Análises paramétricas demonstraram o efeito produzido pelo reforço de geogrelha inserido no meio da camada de base do pavimento aeroportuário, e o efeito consideravelmente maior quando seu posicionamento é na interface base-subleito, que proporcionou redução do CDF de 1,50 para 1,36. Os resultados da pesquisa indicaram que a inclusão de reforço de geogrelha na interface base-subleito de pavimento aeroportuário proporcionou maiores reduções das deflexões na camada de revestimento asfáltico, portanto

pode mitigar o surgimento de defeitos como trincas ascendentes e melhorar a distribuição de tensões nas camadas inferiores do pavimento.

Por fim, com esse estudo foi possível analisar os efeitos do enrijecimento com geogrelha no comportamento estrutural de pavimentos aeroportuários. A modelagem numérica e o processamento através de MEF mostrou ser um método confiável para se estimar as deflexões de um pavimento aeroportuário. A avaliação do comportamento estrutural através da comparação do CDF mostrou-se favorável, tendo em vista que este é um fator utilizado na prática do dimensionamento de pavimentos aeroportuários e, por isso, familiar aos projetistas e aos profissionais das áreas de operação e manutenção da infraestrutura aeroportuária. As descobertas oferecem informações valiosas para ações futuras, estratégias de manutenção e recomendações para a construção de novos aeroportos.

Sugere-se pesquisas futuras em busca de efeitos mais pronunciados advindos do enrijecimento com geossintético, com novas modelagens numéricas que permitam a avaliação do pavimento aeroportuário em termos de deslocamentos permanentes, da utilização de multicamadas de reforços geossintéticos para enrijecimento do pavimento, ou da aplicação do reforço na camada de revestimento asfáltico. ABAQUS. ABAQUS User's Manual. Providence, Rohde Island, USA: Dassault Sistèmes S.A., Simulia Corp. Versão 6.14. 2014.

ABDESSSEMED, Mouloud; KENAI, Said; BALI, Abderrahim. Experimental and numerical analysis of the behavior of an airport pavement reinforced by geogrids. **Construction and Building Materials**. v. 94, p 547 – 554, 2015. https://doi.org/10.1016/j.conbuildmat.2015.07.037.

ABU-FARSAKH, Murad; NAZZAL, Munir; MOHAMMAD, Louay. Finite Element Analysis to Evaluate the Performance of Geogrid Base Reinforcement in Weak Flexible Pavement Structures. In: **Transportation Research Board 88th Annual Meeting**. Washington, DC. USA. 2009.

ABU-FARSAKH, Murad; AKOND, Imran; CHEN, Qiming. Evaluating the performance of geosynthetic-reinforced unpaved roads using plate load tests. **International Journal of Pavement Engineering**. v. 17, n. 10, p. 901-912, 2016. https://doi.org/10.1080/10298436.2015.1031131.

ABNT. Associação Brasileira de Normas Técnicas. NBR 9604:2016: Abertura de poço e trincheira de inspeção em solo, com retirada de amostras deformadas e indeformadas — Procedimento. Rio de Janeiro, 2016.

ABNT. Associação Brasileira de Normas Técnicas. NBR 9895:2016: Solo - Índice de suporte Califórnia (ISC) - Método de ensaio. Rio de Janeiro, 2016b.

ABNT. Associação Brasileira de Normas Técnicas. NBR 7180:2016: Solo - Determinação do limite de plasticidade. Rio de Janeiro, 2016c.

ABNT. Associação Brasileira de Normas Técnicas. NBR 6459:2017: Solo - Determinação do limite de liquidez. Rio de Janeiro, 2017.

ABNT. Associação Brasileira de Normas Técnicas. NBR 7181:2018: Solo - Análise granulométrica. Rio de Janeiro, 2018.

ABNT. Associação Brasileira de Normas Técnicas. NBR 6484:2020: Solo — Sondagem de simples reconhecimento com SPT — Método de ensaio. Rio de Janeiro, 2020a.

ABNT. Associação Brasileira de Normas Técnicas. NBR 7182:2020: Solo – Ensaio de Compactação. Rio de Janeiro, 2020b.

ANAC. Agência Nacional De Aviação Civil. **Concessões de Aeroportos**. Disponível em: https://www.gov.br/anac/pt-br/assuntos/concessoes. Acesso em: 20 maio. 2021

ANAC. Agência Nacional De Aviação Civil. **Manual de Sistema de Gerenciamento de Pavimentos Aeroportuários – SGPA**. 2017. Disponível em: ">https://www.gov.br/anac/pt-br/centrais-de-conteudo/aeroportos-e-aerodromos/manuais-e-cartilhas/manual-para-sgpa-v3.pdf/view>">https://www.gov.br/anac/pt-br/centrais-de-conteudo/aeroportos-e-aerodromos/manuais-e-cartilhas/manual-para-sgpa-v3.pdf/view>">https://www.gov.br/anac/pt-br/centrais-de-conteudo/aeroportos-e-aerodromos/manuais-e-cartilhas/manual-para-sgpa-v3.pdf/view>">https://www.gov.br/anac/pt-br/centrais-de-conteudo/aeroportos-e-aerodromos/manuais-e-cartilhas/manual-para-sgpa-v3.pdf/view>">https://www.gov.br/anac/pt-br/centrais-de-conteudo/aeroportos-e-aerodromos/manuais-e-cartilhas/manual-para-sgpa-v3.pdf/view>">https://www.gov.br/anac/pt-br/centrais-de-conteudo/aeroportos-e-aerodromos/manuais-e-cartilhas/manual-para-sgpa-v3.pdf/view>">https://www.gov.br/anac/pt-br/centrais-de-conteudo/aeroportos-e-aerodromos/manuais-e-cartilhas/manual-para-sgpa-v3.pdf/view>">https://www.gov.br/anac/pt-br/centrais-de-conteudo/aeroportos-e-aerodromos/manuais-e-cartilhas/manual-para-sgpa-v3.pdf/view>">https://www.gov.br/anac/pt-br/centrais-de-conteudo/aeroportos-e-aerodromos/manuais-e-cartilhas/manual-para-sgpa-v3.pdf/view>">https://www.gov.br/anac/pt-br/centrais-de-conteudo/aeroportos-e-aerodromos/manuais-e-cartilhas/manual-para-sgpa-v3.pdf/view>">https://www.gov.br/anac/pt-br/centrais-de-conteudo/aeroportos-e-aerodromos/manuais-e-cartilhas/manual-para-sgpa-v3.pdf/view>">https://www.gov.br/anac/pt-br/centrais-de-conteudo/aeroportos-e-aerodromos/manuais-e-cartilhas/manual-para-sgpa-v3.pdf/view>">https://www.gov.br/anac/pt-br/centrais-de-conteudo/aeroportos-e-aerodromos/manuais-e-cartilhas/manuais-e-cartilhas/manuais-e-cartilhas/manuais-e-cartilhas/manuais-e-cartilhas/manuais-e-cartilhas/manuais-e-cartilhas/manuais-e-cartilhas/manuais-e-cartilhas/manuai

ANAC. Agência Nacional De Aviação Civil. Manual de Cálculo de PCN de Pavimentos Aeroportuários Usando o COMFAA 3.0. 2020. Disponível em: <

https://www.gov.br/anac/pt-br/centrais-de-conteudo/aeroportos-e-aerodromos/manuais-ecartilhas/manual-de-calculo-de-pcn-de-pavimentos-aeroportuarios-usando-o-comfaa-3.0/view>. Acesso em: 18/07/2022.

ANAC. Agência Nacional De Aviação Civil. **Consulta Interativa – Indicadores do Mercado de Transporte Aéreo**. Disponível em: https://www.gov.br/anac/pt-br/assuntos/dados-e-estatisticas/mercado-de-transporte-aereo/consulta-interativa. Acesso em: 12 julho. 2022.

AIRBUS S.A.S. **Aircraft Characteristics Airport And Maintenance Planning**. 2022 Disponível em: https://www.airbus.com/en/airport-operations-and-technical-data/aircraft-characteristics. Acesso em: 20/07/2022.

ALKASAWNEH, Wael; PAN, Ernie; GREEN, Roger. The effect of loading configuration and footprint geometry on flexible pavement response based on linear elastic theory. **Road Materials and Pavement Design.** v. 9. n. 2. p. 159-179. 2008. http://dx.doi.org/10.1080/14680629.2008.9690112

ASTM. American Society For Testing And Materials. **ASTM D4748-10: Standard Test Method for Determining the Thickness of Bound Pavement Layers Using Short-Pulse Radar.** USA. 2020.

BAKFAA. Versão 3.3.0. Federal Aviation Administration – FAA, 2020. Disponível em ">https://www.airporttech.tc.faa.gov/Products/Airport-Safety-Papers-Publications/Airport-Safety-Detail/bakfaa-330-1>

BARKSDALE, Richard; BROWN, Stephen; CHAN, Francis. Potential benefits of geosynthetics in flexible pavement systems. **National Cooperative Highway Research Program Report No. 315**, Transportation Research Board. National Research Council. Washington, DC. USA. 56 p.1989.

BEJAN, Adrian; CHARLES, Jacob; LORENTE, Sylvie. The evolution of airplanes. **Journal of Applied Physics**, v. 116, n. 4, p. 44901, 2014. https://doi.org/10.1063/1.4886855

BOEING COMMERCIAL AIRPLANES. Airplane Characteristics for Airport Planning. 2022. Disponível em: https://www.boeing.com/commercial/airports/plan_manuals.page> Acesso em: 20/07/2022.

BRILL, David; KAWA, Izydor. Advances in FAA pavement thickness design software: FAARFIELD 1.41. In **International Conference on Highway Pavements and Airfield Technology 2017**. Philadelphia, PA, USA: American Society of Civil Engineers, p. 92-102. 2017. https://doi.org/10.1061/9780784480953.009

BUONSANTI, Michele; LEONARDI, Giovanni; SCOPELLITI, Francesco. Theoretical and computational analysis of airport flexible pavements reinforced with geogrids. In: **7th RILEM International Conference on Cracking in Pavements**. RILEM Bookseries, v. 4. p. 1219-1227. Springer, Dordrecht. 2012. https://doi.org/10.1007/978-94-007-4566-7_116.

BURD, Harvey; BROCKLEHURST, Christopher. Parametric Studies of a Soil Reinforcement Problem Using Finite Element Analysis. In: **Proceedings of the Conference on Computer Methods and Advances in Geomechanics.** Balkema. p. 1783-1788. 1992.

CALVARANO, Lidia *et al.* 3D-FEM Analysis on Geogrid Reinforced Flexible Pavement Roads. In: **World Multidisciplinary Earth Sciences Symposium**, 2017, Prague, Czech Republic. IOP Conference Series: Earth and Environmental Science 95. London: IOP Publishing, 2017, 022024. https://doi.org/10.1088/1755-1315/95/2/022024

CCR AEROPORTOS. **Relatórios Técnicos de Avaliação Estrutural dos Aeroportos dos Blocos Central e Sul da 6ª Rodada de Concessões**. São Paulo, SP. Brasil. 2022. Não Publicado. (Relatórios).

CHO, Yoon-Ho; MCCULLOUGH, Frank; WEISSMANN, José. Consideration on finiteelement method application in pavement structural analysis. **Transportation Research Record 1539**, TRB National Research Council, Washington, DC, pp. 96-101. 2000.

CORREIA, Natália; ESQUIVEL, Edmundo; ZORNBERG, Jorge. Finite-element evaluations of geogrid-reinforced asphalt overlays over flexible pavements. **Journal of Transportation Engineering**. Part B: Pavements. v. 144, n. 2, p. 04018020, 2018. https://doi.org/10.1061/jpeodx.0000043

DARABI, Masoud *et al.* Time-dependent Drucker-Prager-Cap model coupled with PANDA (Pavement Analysis Using Nonlinear Damage Approach) to predict rutting performance of flexible pavements. Construction and Building Materials. v. 224, p. 118326, 2020. https://doi.org/10.1016/j.conbuildmat.2020.118326.

DECEA. Departamento de Controle do Espaço Aéreo. **Informações Aeronáuticas do Brasil**. Rio de Janeiro, 2023. Disponível em br/>.

DNER. Departamento Nacional de Estradas de Rodagem. DNER-PRO 273/96: Procedimento. Determinação de deflexões utilizando deflectômetro de impacto tipo "Falling Weight Deflectometer (FWD)". Rio de Janeiro, 1996.

DNIT. Departamento Nacional de Infraestrutura de Transportes. **Manual de Restauração de Pavimentos Asfálticos.** 2^a ed. 310p. Rio de Janeiro, 2005.

DONDI, Giulio. Three-dimensional finite element analysis of a reinforced paved road. In: **Proceedings of the Fifth International Conference on Geotextiles, Geomembrane and Related Products.** Singapore. p. 95-100. 1994.

DONG, Zejiao *et al.*, Structural performance evaluation of airport asphalt pavement based on field data measurement and finite element simulation. Measurement. 210 (2023) 112553. https://doi.org/10.1016/j.measurement.2023.112553

DUNCAN, James; MONISMITH, Carl; WILSON, Edward. Finite Element Analysis of Pavements. **Highway Research Record**. Task 228. National Research Council. Washington, D.C. USA. p. 18-33, 1968.

EMBRAER S.A. **Airport Planning Manual**. 2021. Disponível em < https://www.flyembraer.com/irj/portal/anonymous>. Acesso em: 20/07/2022.

FAARFIELD. Versão 2.0.18. Federal Aviation Administration – FAA, 2023. Disponível em https://www.airporttech.tc.faa.gov/Products/Airport-Safety-Papers-Publications/Airport-Safety-Detail/faarfield-20

FAA. Federal Aviation Administration. Advisory Circular nº 150/5370-11B: Use of Nondestructive Testing in the Evaluation of Airport Pavements. U.S. Department of Transportation. Whashington, DC. USA. 2011. 80p.

FAA. Federal Aviation Administration. Advisory Circular nº 150/5320-6G: Airport Pavement Design and Evaluation. U.S. Department of Transportation. Washington, DC.

USA. 2021. 195p.

GOOGLE, Google Earth website. Imagem de satélite dos aeroportos do Bloco Norte da 6ª Rodada de Concessões Aeroportuárias. Disponível em http://earth.google.com/, 2022.

GU, Jie. Computational modeling of geogrid reinforced soil foundation and geogrid reinforced base in flexible pavement. 222p. Thesis (Doctor of Philosophy in Civil Engineering), Louisiana State University, Baton Rouge, LA. USA. 2011.

HOLTZ, Robert *et al.*, Report n^o. FHWA HI-95-038: **Geosynthetic Design and Construction Guidelines**. National Highway Institute. Washington, D.C., USA, 1998.

HOWARD, Isaac; WARREN, Kimberly. Finite-element modeling of instrumented flexible pavements under stationary transient loading. **Journal of Transportation Engineering**, v. 135, n. 2, p. 53–61, 2009. https://doi.org/10.1061/ASCE0733-947X2009135:253

HUANG, Wen. Improvement evaluation of subgrade layer under geogrid-reinforced aggregate layer by finite element method. **International Journal of Civil Engineering**. v. 12, n. 3, p. 204-215, 2014.

HUGHES, Thomas. **The Finite Element Method: Linear Static and Dynamic Finite Element Analysis**. Dover Publications, Inc. 2000. 704p.

IMJAI, Thanongsak; PILAKOUTAS, Kypros; GUADAGNINI, Maurizio. Performance of geosynthetic-reinforced flexible pavements in full-scale field trials. **Geotextiles and Geomembranes**, v. 47, n. 2, p. 217–229, 2019. https://doi.org/10.1016/j.geotexmem.2018.12.012

KAZEMIAN, Sina *et al.* Reinforced pavement above trench under urban traffic load: Case study and finite element (FE) analysis. **Scientific Research and Essays**, v. 5, n. 21, p. 3313–3329, 2010.

KWON, Jayhyun; TUTUMLUER, Erol; KIM, Minkwan. Development of a mechanistic model for geosynthetic-reinforced flexible pavements. **Geosynthetics International**. v. 12, n. 6, p. 310-320, 2005.

LEES, Andrew; CLAUSSEN, Johan. Strength envelope of granular soil stabilized by multi-axial geogrid in large triaxial tests. **Canadian Geotechnical Journal**. v. 57, n. 3, p. 448-452, 2020. https://doi.org/10.1139/cgj-2019-0036.

LENG, Jianjun; GABR, Mohammed. Numerical Analysis of Stress-deformation Response in Reinforced Unpaved Road Sections. **Geosynthetics International**. v.12, n.2, p.111-119. 2005.

LEONARDI, Giovanni *et al.*, Finite element analysis of geogrid-stabilized unpaved roads. Sustainability. v. 12, n. 5, 2020. https://doi.org/10.3390/su12051929.

LING, Jianming *et al.* Analysis of airfield composite pavement rutting using full-scale accelerated pavement testing and finite element method. **Construction and Building Materials**, v. 303, p. 124528, 2021. https://doi.org/10.1016/j.conbuildmat.2021.124528

LIU, Chaojia; HAN, Zhuo; DING, Congcong. A Study of Mechanic Based on ABAQUS Software under Different Loads of Airport Pavement Crack. In: **Proceedings of the 3rd International Conference on Information Technologies and Electrical Engineering**, Changde City Hunan, China. p. 439-445, 2020. https://doi.org/10.1145/3452940.3453024.

LIU, Shushu *et al.* Effect of geogrid on railroad ballast particle movement. **Transportation Geotechnics**. v. 9, p. 110–122, 2016. https://doi.org/10.1016/j. trgeo.2016.08.003.

LUO, Rong *et al.* Quantifying the Influence of Geosynthetics on Pavement **Performance**. Washington, DC, USA: The National Academies Press, 2017. 841p. https://doi.org/10.17226/24841

MEDEIROS, Marcio *et al.* Backanalysis of geosynthetic reinforced asphalt pavements. In: **4º Pan American Conference on Geosynthetics**. 2020, Rio de Janeiro, Brasil.

MINER, M. A. Cumulative Damage in Fatigue. **Journal of Applied Mechanics**. v. 12 - Transactions of the American Society of Mechanical Engineers. v. 67, p. A159 - A164, 1945.

MIURA, Norihiko et al. Polymer grid reinforced pavement on soft clay grounds. **Geotextiles and Geomembranes**, v. 9, n. 1, p. 99-123. 1990. https://doi.org/10.1016/0266-1144(90)90007-Y.

MOAYEDI, Hossein et al. Effect of geogrid reinforcement location in paved road improvement. **Electronic Journal of Geotechnical Engineering**. v. 14P, p. 1-11. 2009.

MOGHADDAS-NEJAD, Fereidoon., SMALL, John. Effect of Geogrid Reinforcement in Model Track Tests on Pavements. **Journal of Transportation Engineering**. v. 122, n. 6, p. 468-474, 1996. https://doi.org/10.1061/(ASCE)0733-947X(1996)122:6(468).

NAZZAL, Munir; ABU-FARSAKH, Mouloud; MOHAMMAD, Louay. Implementation of a critical state two-surface model to evaluate the response of geosynthetic reinforced pavements. **International Journal of Geomechanics**. v. 10, n. 5, p. 202-212. 2010.

NORWOOD, Gregory. Cyclic plate testing for reinforced airport pavements - phase I: geogrid. **Technical Report TC-19/3**. U.S. Department of Transportation, Federal Aviation Administration, Washington, DC, USA, 2019, 58p.

OFFENBACKER, Daniel. **Evaluation of the cracking performance of geogridreinforced hot-mix asphalt for airfield applications**. 2019. 210p. Thesis (Doctor of Philosophy in Civil Engineering), Rowan University, Glassboro, 2019.

PEDROSO, Gabriel; SILVA, Jefferson. Numerical simulation of geogrid reinforced flexible pavements. **Revista Transportes**. v. 29, p. 264–279. 2021. https://doi.org/ 10.14295/transportes.v29i1.2366.

PERKINS, Steven. Report nº. FHWA/MT-01-002/99160-1A: Mechanistic-empirical modeling and design model development of geosynthetic reinforced flexible pavements. Montana Department of Transportation. Helena, Montana. USA. 2001.

PERKINS, Steven; EDENS, Michael. Finite element and distress models for geosynthetic-reinforced pavements. **International Journal of Pavement Engineering**. v. 3, n. 4, p. 239-250. 2002. https://doi.org/10.1080/1029843021000083504.

PRAHARA, Eduardi; RACHMA, Hanna. The effect of cumulative damage factor value on existing runway life service. **IOP Conf. Series: Earth and Environmental Science**. v. 426. p. 012034. 2020. https://doi.org/10.1088/1755-1315/426/1/012034

REZENDE, Carlos. Estudo da influência do A380 sobre pavimentos flexíveis aeroportuários nas condições de contorno. **Brazilian Journal of Development**. v. 7, n. 3, p. 28817-28836, 2021. https://doi.org/10.34117/bjdv7n3-547

ROBINSON, William; NORWOOD, Gregory. **Cyclic plate testing for reinforced airport pavements - phase II: Geosynthetics.** Technical Report TC-19/4. U.S. Department of Transportation, Federal Aviation Administration, Washington, DC, USA, 2019.

ROBINSON, William *et al.* Analysis of full-scale geosynthetic reinforced airfield pavement subjected to accelerated aircraft loading. **Journal of Transportation Engineering.** Part B: Pavements, v. 146, n. 3, p. 04020052, 2020. https://doi.org/10.1061/jpeodx.0000212

ROBINSON, William; HOWARD, Isaac. Implications of incorporating geosynthetics in airfield pavements. **Transportation Geotechnics**, v. 28, p. 100533, 2021. https://doi.org/10.1016/j.trgeo.2021.100533.

SANTILLI, Sergio; CORREIA, Natália. Evaluating Stabilizing Effects of Geosynthetics in Flexible Airport Pavement Structures by FE Analyses. **International Journal of Pavement Research and Technology**. Submetido à publicação. 2024.

SIRIWARDANE, Hema; GONDLE, Raj; KUTUK, Bora. Analysis of flexible pavements reinforced with geogrids. **Geotechnical and Geological Engineering**, v. 28, p. 287–297, 2010. https://doi.org/10.1007/s10706-008-9241-0

TAREFDER, Rafiqul; AHMED, Mesbah. Modeling of the FWD Deflection Basin to Evaluate Airport Pavements. International Journal of Geomechanics. v. 14. p. 205-213. American Society of Civil Engineers. 2014. https://doi.org/10.1061/(asce)gm.1943-5622.0000305

VINCI AIRPORTS SAS. Relatórios Técnicos de Avaliação Estrutural dos Aeroportos do Bloco Norte da 6ª Rodada de Concessões. Salvador, BA. Brasil. 2022. Não Publicado. (Relatórios).

WATHUGALA, Wije; HUANG, Baoshan; PAL, Surajit. Numerical simulation of geosynthetic reinforced flexible pavement. **Transportation Research Record 1534**, Transportation Research Board. National Research Council. Washington, DC. USA. p. 58-65. 1996.

ZADEHMOHAMAD, Mehdi *et al.* Evaluating long-term benefits of geosynthetics in flexible pavements built over weak subgrades by finite element and Mechanistic-Empirical analyses. **Geotextiles and Geomembranes**. v. 50, n. 3, p. 455-469, 2022. https://doi.org/10.1016/j.geotexmem.2022.01.004.

Nesse Anexo A, nas Figuras A.1 a A.20, são apresentadas as imagens de satélite de cada um dos aeródromos avaliados neste estudo.

Figura A.1 – Imagem de satélite do aeroporto SBEG – Manaus/AM. Fonte: Google (2022)

Figura A.2 – Imagem de satélite do aeroporto SBTT – Tabatinga/AM. Fonte: Google (2022)

Figura A.3 – Imagem de satélite do aeroporto SBTF – Tefé/AM. Fonte: Google (2022)

Figura A.4 – Imagem de satélite do aeroporto SBRB – Rio Branco/AC. Fonte: Google (2022)

Figura A.5 - Imagem de satélite do aeroporto SBCZ - Cruzeiro do Sul/AC. Fonte: Google (2022)

Figura A.6 – Imagem de satélite do aeroporto SBPV – Porto Velho/RO. Fonte: Google (2022)

Figura A.7 – Imagem de satélite do aeroporto SBBV – Boa Vista/RR. Fonte: Google (2022)

Figura A.8 – Imagem de satélite do aeroporto SBGO – Goiânia/GO. Fonte: Google (2023)

Figura A.9 – Imagem de satélite do aeroporto SBPJ – Palmas/TO. Fonte: Google (2023)

Figura A.10 - Imagem de satélite do aeroporto SBTE - Teresina/PI. Fonte: Google (2023)

Figura A.11 – Imagem de satélite do aeroporto SBPL – Petrolina/PE. Fonte: Google (2023)

Figura A.12 – Imagem de satélite do aeroporto SBSL – São Luis/MA. Fonte: Google (2023)

Figura A.13 – Imagem de satélite do aeroporto SBIZ – Imperatriz/MA. Fonte: Google (2023)

Figura A.14 – Imagem de satélite do aeroporto SBCT – Curitiba/PR. Fonte: Google (2023)

Figura A.15 - Imagem de satélite do aeroporto SBFI - Foz do Iguaçu/PR. Fonte: Google (2023)

Figura A.16 - Imagem de satélite do aeroporto SBLO - Londrina/PR. Fonte: Google (2023)

Figura A.17 – Imagem de satélite do aeroporto SBBI – Curitiba (Bacacheri)/PR. Fonte: Google (2023)

Figura A.18 – Imagem de satélite do aeroporto SBNF – Navegantes/SC. Fonte: Google (2023)

Figura A.19 - Imagem de satélite do aeroporto SBJV - Joinville/SC. Fonte: Google (2023)

Figura A.20 - Imagem de satélite do aeroporto SBUG - Uruguaiana/RS. Fonte: Google (2023)

Nesse Anexo B, nas Tabelas B.1 a B.20, foram consolidados os mix de aeronaves dos aeroportos objeto desse estudo, bem como o número de pousos e decolagens anuais.

	Número de pousos e decolagens									
Modelo de aeronave	2014	2015	2016	2017	2018					
Boeing 737-800	7014	7835	6249	7007	7669					
Embraer 190	6659	9102	6917	2640	423					
Airbus A320	8076	4473	1524	2630	3065					
Airbus A321	820	2220	3317	3257	3438					
Boeing 767-300	3195	2708	1548	1530	1851					
Embraer 195	-	-	983	2492	3716					
Airbus A330-200	1161	1012	908	900	826					
Boeing 737-700	2203	1603	528	142	130					
Airbus A319	177	750	664	729	741					
Boeing 737-400	8	247	576	550	838					
Boeing 747-400	450	375	256	274	334					
Boeing 737-200	-	172	160	184	244					
Embraer 135	156	88	90	108	124					
Embraer 170	116	134	128	116	50					
Boeing 747-8	-	67	162	146	84					
Boeing 737-300	14	-	62	84	68					
Boeing 737 Max 8	-	-	-	-	220					
Embraer 175	8	28	42	44	36					

Tabela B.1 – Mix de aeronaves do Aeroporto SBEG – Manaus/AM.

Fonte: Adaptado de ANAC (2021).

	Número de pousos e decolagens/Ano							
Modelo de aeronave	2014	2015	2016	2017	2018			
Cessna 208 Caravan	691	683	772	772	624			
Embraer 190	414	677	721	276	-			
Piper PA-32 Cherokee	340	635	448	237	96			
Embraer 195	298	49	31	448	708			
Piper Seneca	596	218	120	138	90			
Embraer 110 Bandeirante	376	212	10	46	116			
Piper Saratoga	1	4	4	285	434			
Cessna 210 Centurion	422	62	4	10	14			
Piper Arrow 4	-	95	100	90	142			
Beechcraft King Air	28	74	104	90	112			

Tabela B.2 – Mix de aeronaves do Aeroporto SBTT – Tabatinga/AM.

	Número de pousos e decolagens/Ano								
Modelo de aeronave	2014	2015	2016	2017	2018				
Cessna 208 Caravan	2301	2125	2166	2007	1584				
Embraer 110 Bandeirante	1060	596	198	256	338				
Piper Seneca	1022	708	312	123	104				
ATR 42-500	1361	444	76	20	10				
Embraer 190	452	572	597	194	-				
ATR 72-600	30	26	168	418	398				
ATR 42-300	90	124	276	26	32				
Beechcraft Baron	66	142	234	32	28				
Embraer 195	-	-	1	178	322				
Helicoptero Bell 212	101	4	19	349	6				
			0 (000 0 1)						

Tabela B.3 – Mix de aeronaves do Aeroporto SBTF – Tefé/AM.

Fonte: Adaptado de ANAC (2021).

Tabela B.4 – Mix de aeronaves do Aeroporto SBRB – Rio Branco/AC.

	Número de pousos e decolagens								
Modelo de aeronave	2014	2015	2016	2017	2018				
Boeing 737-700	1920	1730	1191	780	406				
Piper Seneca	1562	980	1016	787	767				
Airbus A320	846	997	1411	661	927				
Boeing 737-800	106	339	591	1475	2048				
Cessna 208 Caravan	1490	613	679	686	629				
Embraer 110 Bandeirante	778	506	404	646	688				
Piper PA-32 Cherokee	410	294	340	614	488				
Embraer 190	741	697	187	-	-				
Helicoptero Esquilo	188	167	65	218	106				
Beechcraft Baron	77	159	92	152	170				
Airbus A321	-	-	-	138	70				
Airbus A319	38	48	50	24	32				

Fonte: Adaptado de ANAC (2021).

Tabela B.5 – Mix de aeronaves do Aeroporto SBCZ – Cruzeiro do Sul/AM.

	Número de pousos e decolagens/Ano								
Modelo de aeronave	2014	2015	2016	2017	2018				
Piper PA-32 Cherokee	2562	2082	2383	2716	2837				
Piper Seneca	1143	1111	953	373	543				
Boeing 737-700	696	710	569	356	192				
Boeing 737-800	4	-	142	581	606				
Beechcraft Baron	143	267	162	364	356				
Cessna 208 Caravan	266	82	234	202	202				
Helicoptero B105	180	179	293	23	-				
Piper P28B Dakota	-	4	217	142	156				
Cessna 206 Station Air	74	103	88	52	68				
Piper Cherokee Arrow	78	63	26	26	30				

	Número de pousos e decolagens/Ano								
Modelo de aeronave	2014	2015	2016	2017	2018				
Embraer 190	3152	4173	3956	1820	28				
Cessna 208 Caravan	2595	2243	2260	2413	2781				
Boeing 737-800	1752	2391	1198	2364	2786				
Airbus A320	1483	1731	2388	1396	1620				
Embraer 195	194	168	147	2102	3157				
Boeing 737-700	1877	1438	694	96	52				
Piper Seneca	657	768	527	414	633				
Helicoptero Esquilo	121	471	511	482	873				
Mitsubishi MU2	481	218	102	86	116				
Boeing 737-400	66	349	381	6	8				
Airbus A319	26	6	36	30	94				
Boeing 737 Max 8	-	-	-	-	22				

Tabela B.6 – Mix de aeronaves do Aeroporto SBPV – Porto Velho/RO.

Fonte: Adaptado de ANAC (2021).

Tabela B.7 – Mix de aeronaves do Aeroporto SBBV – Boa Vista/RR.

	Número de pousos e decolagens				
Modelo de aeronave	2014	2015	2016	2017	2018
Cessna 206 Station Air	612	3611	944	472	474
Cessna 208 Caravan	838	901	1237	1313	1233
Airbus A320	1304	1134	790	1010	1208
Boeing 737-800	754	720	534	556	688
Embraer 190	186	714	846	91	
Cessna 210 Centurion	302	677	387	104	168
Embraer 195	7	6	5	370	292
Helicóptero Bell JetRanger	48	98	206	54	101
Cessna Citation Excel	57	88	76	122	34
Boeing 737-700	56	8	166	110	34

Fonte: Adaptado de ANAC (2021).

Tabela B.8 – Mix de aeronaves do Aeroporto SBGO – Goiânia/GO.

	Número de pousos e decolagens				
Modelo de aeronave	2014	2015	2016	2017	2018
Embraer 190	11086	10656	11292	6375	2227
Airbus A320	5863	6458	7543	7852	7651
Piper Seneca	6600	4271	4067	3756	4624
Boeing 737-800	4748	5302	4369	3676	3734
Embraer 195	-	-	-	5580	10000
Boeing 737-700	5049	3956	2127	1821	1513
Beechcraft King Air	2535	2758	2714	3033	3377
ATR 72-600	3711	3112	2114	1654	2577
Beechcraft Baron	1929	1798	1920	1869	2108
Cessna 152	1580	2043	1804	1708	1836
Airbus A319	828	956	1082	1343	1927
Airbus A318	900	828	70	30	12
Boeing 737-300	-	-	38	820	894
Boeing 737-400	434	82	12	100	66

	Ν	lúmero de	pousos e	decolagen	IS
Modelo de aeronave	2014	2015	2016	2017	2018
ATR 72-600	2324	2092	1592	1458	1440
Boeing 737-800	1416	1689	1539	1610	1489
Embraer 190	1426	1618	1587	928	392
Airbus A320	360	903	1017	1504	1552
Piper Seneca	1761	993	818	680	795
Beechcraft King Air	994	634	554	415	706
Embraer 120 Brasília	1192	1362	8	10	2
Embraer 195	2	2	7	790	1340
Cessna 210 Centurion	589	403	326	359	362
Airbus A319	945	400	412	121	87
Boeing 737-700	623	279	246	335	470
Гал	to. Adapta		C (2024)		

Tabela B.9 - Mix de aeronaves do Aeroporto SBPJ - Palmas/TO.

Fonte: Adaptado de ANAC (2021).

Tabela B.10 - Mix de aeronaves do Aeroporto SBTE - Teresina/PI.

	Número de pousos e decolagens				
Modelo de aeronave	2014	2015	2016	2017	2018
Airbus A320	3023	3026	2668	3541	3514
Boeing 737-800	1910	2663	3003	2926	2287
Embraer 190	3151	4034	3075	421	6
Piper Seneca	2105	1381	1428	1155	1236
Beechcraft King Air	1061	766	629	679	693
ATR 72-600	182	727	1067	1492	2
Boeing 737-700	1641	717	141	308	516
Boeing 737-300	648	566	712	780	406
Embraer 195	-	-	-	634	1748
Cirrus SR22	560	315	241	274	285
Boeing 737-400	336	416	288	202	72
Airbus A319	258	52	32	74	412

Fonte: Adaptado de ANAC (2021).

Tabela B.11 – Mix de ae	eronaves do Aeropor	rto SBPL – Petro	lina/PE.

	Número de pousos e decolagens					
Modelo de aeronave	2014	2015	2016	2017	2018	
Airbus A320	2163	2093	2132	2175	2066	
Boeing 737-800	1300	672	561	556	570	
Embraer 190	729	732	1203	473	80	
Embraer 195	-	-	-	841	1212	
Piper Seneca	355	264	256	96	170	
Cessna 208 Caravan	72	182	234	208	248	
Beechcraft King Air	117	168	182	166	98	
Helicoptero Esquilo	140	192	76	106	76	
Cirrus SR22	144	70	100	88	86	
Beechcraft Baron	82	78	76	106	92	
Boeing 747-400	96	84	86	106	32	
Boeing 737-700	10	46	50	58	32	

	Número de pousos e decolagens					
Modelo de aeronave	2014	2015	2016	2017	2018	
Boeing 737-800	7232	6913	4596	3843	2863	
Airbus A320	5600	3151	1947	2669	3074	
Embraer 190	2637	2880	2886	1902	36	
Embraer 195	-	-	-	2496	4749	
Airbus A321	19	1130	2043	1812	2020	
ATR 72-600	43	1086	1722	1424	4	
Piper Seneca	1303	633	665	610	769	
Boeing 737-700	1138	723	242	208	306	
Helicoptero Esquilo	1198	490	342	202	161	
Embraer 120 Brasília	244	1824	2	-	-	
Boeing 737-300	337	308	368	401	201	
Airbus A319	740	66	94	134	294	
Boeing 737-400	189	190	142	111	40	

Tabela B.12 – Mix de aeronaves do Aeroporto SBSL – São Luis/MA.

Fonte: Adaptado de ANAC (2021).

Tabela B.13 - Mix de aeronaves do Aeroporto SBIZ - Imperatriz/MA.

	Número de pousos e decolagens						
Modelo de aeronave	2014	2015	2016	2017	2018		
Airbus A320	1778	1682	1422	1596	1644		
Piper Seneca	591	670	676	486	246		
Embraer 190	540	824	899	340	28		
Boeing 737-700	1396	843	72	-	-		
Embraer 120 Brasília	292	1632	2	8	6		
Airbus A319	894	124	260	208	144		
Embraer 195	458	52	17	356	627		
Beechcraft King Air	286	193	192	225	238		
Helicoptero Esquilo	275	196	116	306	201		
ATR 72-600	6	296	534	246	-		
Boeing 737-800	26	563	244	-	-		

Fonte: Adaptado de ANAC (2021).

Tabela B.14 – Mix de aeronaves do Aeroporto SBCT – Curitiba/PR.

	N	lúmero de	pousos e	decolagen	S	
Modelo de aeronave	2014	2015	2016	2017	2018	
Embraer 190	21213	20809	19782	12904	3016	
Airbus A320	16872	16658	15194	10536	10577	
Boeing 737-800	16803	16937	11520	10258	9685	
Boeing 737-700	7766	7060	5679	5964	5774	
Embraer 195	6	-	-	9906	17062	
ATR 72-600	4351	4882	5160	3920	4276	
Airbus A319	3136	2625	1703	2764	2863	
Airbus A321	104	256	555	3682	3607	
Boeing 727-200	500	502	696	911	876	
Boeing 767-300	906	906	286	199	193	
Embraer Phenom 100	195	228	306	562	611	
Airbus A318	403	79	732	638	44	
Airbus A330-200	204	190	206	204	190	
Boeing 747-400	208	208	208	164	146	
Boeing 737-400	14	18	54	38	109	
Boeing 737-300	8	-	2	34	99	
Boeing 747-8	-	-	-	46	66	

	N	lúmero de	pousos e	decolager	IS
Modelo de aeronave	2014	2015	2016	2017	2018
Airbus A320	5246	4534	3339	3750	5216
Boeing 737-800	3122	5062	4442	4471	4976
Embraer 190	2050	2553	2604	1504	562
Boeing 737-700	2010	1387	938	1082	736
Airbus A319	1015	1686	1061	1171	634
ATR 72-600	1187	1139	1549	1235	420
Airbus A321	30	247	1199	2037	1592
Embraer 195	-	-	-	1464	3092
Piper Seneca	331	294	290	341	393
Beechcraft Baron	289	228	192	251	273
For	to. Adaptad		(2021)		

Tabela B.15 – Mix de aeronaves do Aeroporto SBFI – Foz do Iguaçu/PR.

Fonte: Adaptado de ANAC (2021).

Tabela B.16 - Mix de aeronaves do Aeroporto SBLO - Londrina/PR.

	N	úmero de	pousos e	decolagen	IS
Modelo de aeronave	2014	2015	2016	2017	2018
Cessna 150	1519	4398	3448	2628	2552
ATR 72-600	3109	2624	2748	2264	2644
Airbus A320	2363	2524	1797	709	1882
Boeing 737-800	1520	1710	1785	1794	1944
Embraer 190	2310	2315	2054	1192	116
Piper P28A Tupi	1610	1559	1853	994	862
Boeing 737-700	1520	1546	1412	1309	900
Beechcraft Baron	1391	1324	1022	1256	1088
Cessna 152	2809	526	471	646	932
Embraer 195	-	-	-	1340	2148
Airbus A319	874	556	514	760	622

Fonte: Adaptado de ANAC (2021).

Tabela B.17 - Mix de aeronaves do Aeroporto SBBI - Bacacheri/PR.

	Número de pousos e decolagens					
Modelo de aeronave	2014	2015	2016	2017	2018	
Cessna 152	3387	3158	2929	2507	3857	
Piper Seneca	3750	3059	2794	2959	3201	
Aero Boero 115	2197	3071	2369	2772	3994	
Cirrus SR22	1420	1198	1311	1372	1551	
Beechcraft King Air	1062	1214	1370	1442	1615	
Piper P28A Tupi	916	1359	905	1404	1649	
Beechcraft Super King Air	784	814	675	1178	1248	
Beechcraft Baron	1132	877	689	802	822	
Piper Cheyenne 2	598	1048	956	870	839	
Piper Cheyenne 3	637	379	454	664	621	

	N	lúmero de	pousos e	decolagen	S
Modelo de aeronave	2014	2015	2016	2017	2018
Embraer 190	3622	6433	4947	2461	1370
Boeing 737-700	5364	5158	2741	2757	1732
Airbus A319	2354	2540	2725	1774	1273
Boeing 737-800	-	650	2565	2605	4602
Embraer 195	1894	99	11	1741	3836
Airbus A320	22	328	688	2409	3275
Helicóptero Sikorsky S76	917	1181	524	-	-
Embraer Phenom 100	497	532	407	398	428
Cirrus SR22	433	409	353	445	578
Piper Seneca	267	370	398	391	519
Helicóptero Bell A139	8	-	118	830	739
East	a. A danta		2 (0004)		

Tabela B.18 – Mix de aeronaves do Aeroporto SBNF – Navegantes/SC.

Fonte: Adaptado de ANAC (2021).

Tabela B.19 – Mix de aeronaves do Aeroporto SBJV – Joinville/SC.

	1	Número de	pousos e	decolagen	S
Modelo de aeronave	2014	2015	2016	2017	2018
Airbus A319	1840	2026	2283	1499	934
ATR 72-600	1848	1590	1378	1370	1183
Helicóptero Robinson 22	2129	1079	441	158	49
Boeing 737-700	1013	876	608	660	502
Embraer 190	844	1454	684	263	162
Boeing 737-800	233	406	866	554	728
Cessna 150	971	710	435	374	106
Cessna 152	1145	277	172	219	45
Piper Seneca	468	308	254	261	270
Airbus A320	2	-	-	440	962
Pilatus PC12	147	155	192	234	276
Embraer 195	2	-	2	316	566

Fonte: Adaptado de ANAC (2021).

Tabela B.20 – Mix de aeronaves do	Aeroporto SBUG -	- Uruguaiana/RS.
-----------------------------------	------------------	------------------

	N	lúmero de	pousos e	decolagen	IS
Modelo de aeronave	2014	2015	2016	2017	2018
ATR 72-600		104	576	396	398
Beechcraft Super King Air	68	66	58	60	24
Beechcraft King Air	45	58	24	28	28
Cirrus SR22	34	40	30	36	14
Piper PA-46 Malibu	19	26	14	14	24
Piper Seneca	10	2	24	12	2
Beechcraft Baron	24	6	10	2	2
Embraer Phenom 300	16	-	10	2	12
Pilatus PC12	6	20	4	6	4

Nesse Anexo C foram consolidadas as principais informações obtidas através dos resultados dos ensaios geotécnicos realizados no pavimento das pistas de pouso e decolagem dos aeroportos estudados.

		970875	enunes		AEROPO	ORTO INTE Avaliação Es	RNACION	AL - EDUA Pavimenta	RDO GOM	IES - MAN	AUS AM	
	п	VTERESSA	DO:	VINCI Conces	sionária Aeropob	os Bloco Norte				RES Nº:	. 00	03/2021
		OBRA:		AEROPORTO	INTERNACIO	NAL • EDUARI	DO GOMES			DATA:	14	09.2021
		SERVICO	S:	ESTUDOS GE	OTÉCNICOS D	O SUBLEITO						
		1	RESUMO DOS RE	L SULTADOS DO	S ENSAIOS GE	OTÉCNICOS DE	AIS		FOLHA Nº:	003		
Р	ROCEDÊN	icia da amos:	TRA ENSALADA	VANCI Manaus	VANCI Manaus	VANCI Manaus	VANCI Manaas	VANCI Manaus	VANCI Manau s	VANCI Manaus	VANCI Manaus	VANCI Manaus
	NATUREZ	A DO MATERIA	AL ENSAIADO	ARGLA ARENOSA - VERMELHA	ARGIA ARENOSA - VERMELHA	ARGILA ARENOSA - VERMELHA	ARGILA SILTOSA - CINZA ESCURO	ARGELA SELTOSA - CINZA ESCURO	ARGEA SELTOSA - CINZA ESCURO	ARGILA SILTOSA - VERMELHA	ARGILA SILTOSA - VERMELHA	ARGILA SILTOSA - VERMELHA
PC	ÇO/FUR) SONDAGEM	I/AMOSTRA (b?)	07	10	07	08	08	08	09	89	09
	LC	CALEAÇÃO/	FURO	P. L.15	P.I. 15	P. I. 15	PI-17	PI-17	PI-17	P. I. 18	P.I.18	P. L 18
	ESTAQU	EAMENTO / AL	MARRAÇÃO	a	21	2	<i>c</i>	5			1	
0	DLETA DA	AMOSTRA PRO	OF. INICIAL (cm)	0,09	0,09	0,09	0,08	0,08	0,08	0,09	0,09	0,09
,	oleta d.	a amostra pi	ROF. FINAL (m)	1,54	1,54	1,54	1,59	1,59	1,59	1,53	1,53	1,53
(B)	5- bordo es	POSIÇÂO querdo/ E- eixo/)	BD-bordo direito)	-	~		e				-	~
	COLET	A DA AMOSTR	AT (DATA)	01.09.2021	01.09.2021	01.09.2021	01,09,2021	01.09.2021	01.09.2021	01.09.2021	01,09,2021	01.09.2021
	REG	DA AMOSTRA	- CAMPO	07	07	07	08	08	08	09	09	09
	I	eg da amos	TR.A	454/21	454/21	454/21	455/21	455/21	455/21	456/21	456/21	456/21
	NÚMERO	DE ORDEM D	A AMOSTRA	07	07	07	08	08	08	09	09	09
I	ESTINOD	e aplicação	DO MATERIAL	*	142	÷	×	-	-	(24)		-
		POL2*	50,8 mm	8		×	9 9		18		81	10
	33	POL 1 1/2*	38,1 mm			÷	94			(24)		(42)
R.718	TELB.	POL 1"	25,4 mm	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0
ANB	SPEC	FOL 3/4"	19,5mm	-	~		*	-	-	140	-	
TRIC	(ILAS	POL 3/8"	9,5 mm	98,9	98,9	98,9	98,9	98,9	98,9	100,0	100,0	100,0
CARE	D D D D D D D D D D D D D D D D D D D	14° 4	4,8 mm	96,0	96,0	96,0	97,5	97,5	97,5	96,8	96,8	96,8
Ĕ	ASSA	14:10 M# 15	2 mm	93,9	93,9	9,66	97,0	97,0	97,0	344,7	344,7	54,/
GRAN	SA P.	Nº 30	0.6 mm			1					1	
EE	NAS	13º 40	0,42 mm	88.2	88,2	88,2	85.4	85,4	85,4	88,5	88,5	88.5
TANL	EMI	1Nº 50	0,3 mm		-	-	-	-	-	12	-	
~	14	1№ 100	0,15 mm		- U		2			1.1		14
		1№ 200	0,075 mm	83,6	83,6	83,6	68,8	68,8	68,8	82,0	82,0	82,0
52 08	NBR 645	9:1984 LIMITE DE	ELIQUIDEZ 1L (%)	67,52	67,52	67,52	57,18	57,18	57,18	70,35	70,35	70,35
DIC	MBR 7180 1	984 LIMITE DE PI	LASTICIDADE LP (%)	43,41	43,41	43,41	40,39	40,39	40,39	45,56	45,56	45,56
AE	INDICI	e de plasficid.	ADE (LL-LP) IR(%)	24,11	24,11	24,11	16,79	16,79	16,79	24,78	24,78	24,78
5	OMPACT.	ação dmáx (i	MODIFICADA)			1,859			1,579			1,485
	υ	MIDADE OTIM.	A (%)			12,9			23,7			29,6
NBR	182:1986	COMPA	CTAÇÃO CBR	Normal	Intermediario	Modificado	Normal	Intermediario	Modificado	Normal	Intermediario	Modificado
Em: COMP.	a 11933 ACTAÇÃO	yn sâny	u chuẩz (g/cm ²) h . (94)	1,568	1,687	1,858	1,417	1,528	1,579	1,291	1,363	1,485
NBR	895:1987	ISC /M	HOLAN)	2.06	7.40	21.40	23,17	14.74	25,70	13.02	15.01	1017
INI SU	ICE DE FORTE	100 (70 Eur	omsão (21)	0.31	0.28	0.24	0.00	0.00	0.00	0.13	0.04	0.00
MBR	BORNIA 1895:1987	CBR	FINAL (%)		14.50		-,	12.50	-1.00	.,	16.50	,00
SU	RORTE	EXPANS	SÃO FINAL (%)		0,28			0,00			0,06	
DN	T 164/2013	-ME MASSA ES	SPECÍFICA (g/cm ³)	1,573	1,573	1,573	1,611	1,611	1,611	1,417	1,417	1,417
	INDICED	E GRUPO IG (IR	(B/AASHTO)	17,6	17,6	17,6	12,4	12,4	12,4	17,9	17,9	17,9
	CLASS	IFICAÇÃO TRB	/AASHTD	A-7-5	A-7-5	A-7-5	A-7-5	A-7-5	A-7-5	A-7-5	A-7-5	A-7-5
C	LASSIFIC	AÇÃO SUCS (A	STM D2487/83)	SC	SC	SC	SC	SC	SC	SC	SC	SC
NBP	6457 UME	ADE NATURAL	DO MATERIAL (%)		24,5			18,5			31,6	
LEGEN	DA: NBR: 7	Norma Brasileira	da ABNT registrada no	INMETRO; SUCS	(Sistema Universal d	e Classificação dos So	iks da ASTM -"Am	erican Society for Tes	ting and Materials").			

C.1 – Aeroporto SBEG – Manaus/AM. Fonte: Vinci (2022)

LEGENDA: NER: Norma Brasileria da AUNT registenda no INMETRO; SUCS (Stetems Universal de Classificazión da Solta da ASTM -"American Society for Testing and Maerialo"); TRB ("Transportation Research Board"); ASITIO ("American Association of Stete Highway and Transportation"); FI = convenção alorada para os materiais que são se enquadram ras faixas do DNIT para a canada de base. NL e NP = convenções adoblas para os moies ins granulares para os quais do se conveges determinares alimites de liquidez e plasticitade respectivos.

		nunne	Cliente			VINCI	Proc.	AEROPORTO MANAUS	Visto	A
WING COL	54 P	anunos.	Obje	tiv	0:	ESTUDO GEOTÉCNICO	Data:	10.09.21 Sondador.: Ricardo/Roni	Eng. Civil	Luiz Eugênio Nunes
Sondagem	Furo N*	Posição	Profi	und	idade la (cm)	Descrição da Camada		Classificação Por textura		Obs
	-	PPD	0	1.	36	Concreto Asfalto		CBUQ		
		(Perto da	36	1.	50	2 Sub-Base solo melhorado So		Solo Arenoso de cor amarelo	2	
26006/2021	5801	cabeceira	50	1.	62			Solo Arenoso de cor Laranja		
		11)	62		71	Sub-leito solo		Solo Arenoso de cor Laranja		
-			0	1.	30	Concreto Asfalto		CBUQ	1	
001000001	0000	000	30	1.	43	Base solo cimento		Solo Arenoso de cor amarelo		
2600612021	SR 02	PPD	43		59	Sub-Base solo melhorado		Solo Arenoso de cor amarelo		
			59		70	Sub-Leito solo		Solo Arenoso de cor Laranja		
		S	0	1.	26	Concreto Asfalto		CBUQ	8	
2010020004	00.00	000	26		41	Base solo cimento		Solo Arenoso de cor amarelo	8	
28/08/2021	SRUS	PPD	41		55	Sub-Base solo com cimento		Solo Arenoso de cor amarelo	2	
			55	-	70	Sub-Leito solo		Solo Arenoso de cor Laranja		
		12	0	•	30	Concreto Asfalto		CBUQ	S7	2
20100/2024	epos	000	30		43	Base solo cimento		Solo Arenoso de cor amarelo claro	2	
20/00/2021	on us	PPD	43		67	Sub-Base solo melhorado		Solo Arenoso de cor amarelo		
		3	67		70	Sub-Leito solo		Solo Arenoso de cor Laranja claro	3	
			0		29	Concrete Asfalto		CBUQ		
2010020021	88.05	PPD	29	+	42	Base solo cimento		Solo Arenoso de cor amarelo	3	
2000012021	01.00	110	42		54	Sub-Base solo melhorado		Solo Arenoso de cor amarelo	2	
3 33		10	54		64	Sub-Leito solo		Solo Arenoso de cor Laranja claro	8	
			0		23	Concreto Asfalto		CBUQ		
21100/0021	00.00	PPD	23	•	37	Base solo cimento		Solo Arenoso de cor amarelo	() ()	
2170012021	12021 SK 06 PPD		37		49	Sub-Base solo melhorado		Solo Arenoso de cor amarelo		
		1	49		60	Sub-Leito solo		Solo Arenoso de cor Laranja claro		
			0		27	Concreto Asfalto		CBUQ	S	
21100/2021	21/08/2021 SR 07	pen	27	•	40	Base solo cimento		Solo Arenoso de cor amarelo		
2170012021		mu	40		53	Sub-Base solo melhorado		Solo Arenoso de cor amarelo	2	
a		-	53	,	63	Sub-Leito solo		Solo Arenoso de cor Laranja claro	3 	2
			0	1.0	28	Concreto Asfalto		CBUQ	2	
21/08/2021	SPIN	PPD	28	+	42	Base solo cimento laterita		Solo Arenoso de cor Laranja claro		
210012021	00,00		42	•	55	Sub-Base solo melhorado		Solo Arenoso de cor amarelo		
			56		65	Sub-Leito solo		Solo Arenoso de cor Laranja	2	
1			0	÷	27	Concreto Asfalto		CBUQ	5	
21/08/2021	SR 09	PPD	27		40	Base solo com cimento lateritico		Solo Arenoso de cor Laranja ciaro	<u> </u>	
200501000		1920	40	÷	50	Sub-Base solo melhorado		Solo Arenoso de cor amarelo		
	-		50		56	Sub-Leito solo		Solo Arenoso de cor Laranja		
			0	•	32	Concreto Asfalto		CBUQ	3	1
21/08/2021	SR 10	PPD	32	Ŀ	46	Base solo cimento		Solo Arenoso de cor amareio		
2002.000	1272.222	1.37255	46	÷	60	Sub-Base solo melhorado		Solo Arenoso de cor amarelo		
	-		60	+	65	Sub-Leito solo		Solo Arenoso de cor Laranja claro		
			0	·	32	Concreto Asfaito		CBUQ		
21/08/2021	SR 11	PPD	32	+	45	Base solo cimento		Solo Arenoso de cor amarelo		
			45	÷	52	Sub-Base solo melhorado		Solo Arenoso de cor amarelo		
	-		62	÷	60	Sub-Leito solo		Solo Arenoso de cor Laranja ciaro		
			0	÷	18	Concreto Asfalto		CBUQ		
21/08/2021	SR 12	PPD	18	÷	35	Base solo cimento		Solo Arenoso de cor amarelo		
			35	÷	49	Sub-Base solo melhorado		Solo Arenoso de cor amarelo		
	-		49	+	60	Sub-Leito solo		Solo Arenoso de cor Laranja ciaro		
		1	0	+	34	Concreto Astalto		COUV	-	
21/08/2021	SR 13	PPD	34		40	base solo cimento		Solo Arenoso de cor amareio		
			46 - 58 Sub-Base solo melhorado	Solo Arenoso de cor amareio						
	-	000	68		68	Sub-Leito Solo		CRUO		
Same and		PPD	0		31	Concreto Astalto		Colo frances de cor ameralo		
21/08/2021	SR 14	(perto da	31		44	Base solo cimento		Solo Arenoso de cor amarelo	-	
		200	44	+	5/	Sub-base solo melhorado		Solo frances de cor amarelo como	-	
-		20)	0/	1 .	0/	Jord - Ferto Edio		solo realisso de cor amareio escuro	L	

ESSADO: BRA: VIÇOS: RESUMO DOS R AMOSTRA ENSAIADA ATTERIAL ENSAIADO agão vi nuk) (AGEM / AMOSTRA (nº) ÇÃO / FURO TO / AMARRAÇÃO RA PROF. ENCIAL (m) IÇÃO - nizo/ BD-bordo dimito) 6/STRA - CAMPO AMOSTRA 2EM DA AMOSTRA	VINCI Concer AEROPORTO ESTUDOS GI ESTUDOS GI VANCI Tabatinga ABOLA SETGA- VERMEIAA 01 PI 02 - 0,05 1,55	sionária Aeropot D DE TABATINO EOTÉCNICOS D DS ENSAIOS GE VANCI Tabatinga AROLA SILTOSA VEJSAELRA VEJSAELRA PEI 02 0,05	os Bloco Norte 3A -AM O SUBLEITO OTÉCNICOS DE VANCI Tabataga ANOLA SETCIA- VEDAELHA BI PI 02	E LABORATÓRI VANCI Tabatinga AROLA SLITOSA - AMAREA 02	O DOS MATERI VANCI Tabatinga ABOEA SELTOGA - AMAREIA	AIS VANCI Tabatinga AROLA SLICSA	RES Nº: DATA: VANCI Tabatinga	FOLHA N": VANCI Tabatinga	01/2021 09.2021 001 VANCI Tabatinga		
SRA: VIÇOS: RESUMO DOS R AMOSTRA ENSAIADA ATERIAL ENSAIADO 10260 vi nul) (AGEM / AMOSTRA (n°) ÇÃO / FURO TO / AMARRAÇÃO RA PROF. ENICIAL (m) IÇÃO - nizof BD-bordo direito) 805TRA / (DATA) STRA - CAMPO AMOSTRA 2EM DA AMOSTRA	AEROPORTC ESTUDOS GH ESTUDOS DO VANCI Tabatinga AROEA SETOSA- VERMEIAA 01 PI 02 - 0,05 1,55	D DE TABATINO COTÉCNICOS D DS ENSAIOS GE VANCI Tabatinga AlDILA SILTOSA- VEDAELEA 01 PI 02 -	GA -AM O SUBLEITO OTÉCNICOS DI VANCI Tabatinga AROLA SETOGA- VEBMEIHA DI PI 02 -	E LABORATÓRI VANCI Tabatinga AROLA SLITOSA - AMARELA 02	O DOS MATERI VANCI Tabatinga ABOEA SELTOGA - AMARELA	AIS VANCI Tabatinga AROLA SLICSA	DATA: VANCI Tabatinga	28. FOLHA Nº: VANCI Tabatinga	09.2021 001 VANCI Tahatinga		
VIÇOS: RESUMO DOS R AMOSTRA ENSALADA ATERIAL ENSALADO 19280 vi nuk) (AGEM / AMOSTRA (n ^o) ÇÃO / FURO TO / AMARRAÇÃO RA PROF. ENICIAL (m) TÇÃO - mixof BD-bordo direito) 80STRA / (DATA) 8TRA - CAMPO AMOSTRA 2EM DA AMOSTRA	ESTUDOS GI ESULTADOS DO VANCI Tabatinga AROEA SETOSA- VEMELEA 01 PI 02 - 0,05 1,55	EOTÉCNICOS D OS ENSAIOS GEI VANCI Tabatings ADILA SILTOSA - VEDELEA 01 PI 02 - 0,05	O SUBLEITO OTÉCNICOS DI VANCI Tabatinga ABOLA SETOSA- VERMEIHA 01 PI 02 -	E LABORATÓRI VANCI Tabatinga AROILA SLITOSA - AMARELA 02	VANCI Tabatinga ABOLA SELTOGA - AMARELA	AIS VANCI Tabatinga AROLA SLTOSA	VANCI Tahatinga	FOLHA N": VANCI Tabatinga	001 VANCI Tahatinga		
RESUMO DOS R AMOSTRA ENSALADA ATERIAL ENSALADO 16260 vi nosi) (AGEM / AMOSTRA (nº) (ÇÃO / FURO TO / AMARRAÇÃO RA PROF. ENICIAL (cm) TRA PROF. ENICIAL (cm) IÇÃO - nizo/ BDbordo direito) 80STRA / (DATA) STRA - CAMPO AMOSTRA 2EM DA AMOSTRA	VANCI Tabatinga AROEA SETOSA- VENELEA 01 PI 02 - 0,05 1,55	VANCI Tabatings ADDIA SILTOSA - VEIMELRA 01 PI 02 - 0,05	OTÉCNICOS DE VANCI Tabainga AROLA SLTOSA- VERMEIRA 01 PI 02 -	E LABORATÓRI VANCI Tabatinga AROLA SLITOSA - AMARELA 02	VANCI Tabatinga	AIS VANCI Tabatinga	VANCI Tabatinga	FOLHA N": VANCI Tabatinga	001 VANCI Tahatinga		
AMOSTRA ENSAIADA ATERIAL ENSAIADO tação trash) VAGEM / AMOSTRA (nº) (ÇÃO / FURO IO / AMARRAÇÃO RA PROF. INICIAL (cm) IRA PROF. FINAL (m) IÇÃO - nizo/ BD-bordo direito) SOTRA / (DATA) STRA - CAMPO AMOSTRA ZEM DA AMOSTRA	VANCI Tabatinga AROLA SETOSA - VERMELRA 01 PI 02 - 0,05 1,55	VANCI Tabatiaga AROILA SILTOSA VESAELRA 01 PI 02 0,05	VANCI Tabatinga AROLA SLTOSA - VERMELHA 01 PI 02	VANCI Tabatinga AROILA SILTOSA - AMARELA 02	VANCI Tabatinga AROILA SILTOSA - AMARELA	VANCI Tabatinga	VANCI Tabatinga	VANCI Tabatinga	VANCI Tahatinga		
AMUSTRA ENSALADA ATERIAL ENSALADO Ingão vi nusi) AGEM / AMOSTRA (nº) ÇÃO / FURO TO / AMARRAÇÃO RA PROF. ENICIAL (cm) IRA PROF. ENICIAL (cm) IÇÃO - mixof ED-bordo direito) 80STRA / (DATA) STRA - CAMPO AMOSTRA ZEM DA AMOSTRA	Tabatinga ABOEA SETOSA- VERMELPIA 01 PI 02 - 0,05 1,55	Tabatinga AROILA SILTOSA - VERMELHA 01 P1 02 - 0,05	Tabatinga AROLA SETOSA - VERMELHA 01 PI 02	Tabatings ARGEA SETOSA - AMARELA 02	Tabatinga AROLA SILTOSA - AMARELA	Tabatinga	Tabatinga	Tabatinga	Tahatinga		
ATERIAL ENSAIADO tação strusi) AGEM/ AMOSTRA (nº) ÇÃO/ FURO TO/ AMARRAÇÃO RA PROF. DUCIAL (cm) TRA PROF. DUCIAL (cm) UÇÃO - eizo/ ED- bordo direito) @OSTRA/ (DATA) @TRA - CAMPO AMOSTRA ZEM DA AMOSTRA	ARGLA SETOGA- VERMELHA 01 PI 02 - 0,05 1,55 -	AROILA SILTOSA - VERMELHA 01 PI 02 0,05	ARGEA SETOSA- VERMELHA 01 PI 02	ARGILA SLITOSA - AMARELA 02	ARGEA SETOSA - AMARELA	AROLA SLTOSA -	the second se		L		
DAGEM / AMOSTRA (6?) (ÇÃO / FURO TO / AMARRAÇÃO RA PROF. INICIAL (cm) TRA PROF. FINAL (m) IÇÃO - nizo/ BD- bordo dimito) #OSTRA / (DATA) STRA - CAMPO AMOSTRA ZEM DA AMOSTRA ZEM DA AMOSTRA	01 PI 02 	01 PI 02 0,05	01 PI 02	02	•	AMARELA	COR MISTA	AROLA SLTOSA - COR META	AROILA SILTOSA COR MISTA		
IÇÃO/FURO TO/AMARRAÇÃO RA PROF. INICIAL (m) ICÃO - mixo/ ED-bordo direito) #OSTRA/(DATA) STRA - CAMPO AMOSTRA ZEM DA AMOSTRA	PI 02 - 0,05 1,55	PI 02	PI 02		02	02	83	03	03		
TO / AMARRAÇÃO RA PROF. INICIAL (m) TRA PROF. FINAL (m) ICÃO - nizo/ BD-bordo direito) ØOSTRA / (DATA) STRA - CAMPO AMOSTRA ZEM DA AMOSTRA	- 0,05 1,55	0,05	*	PI 03	PI 03	PI 03	PI 06	PI 06	PI 06		
RA PROF. INICIAL (cm) TRA PROF. FINAL (m) ICÃO – mizo/ BD-bordo dimito) ØOSTRA / (DATA) STRA - CAMPO AMOSTRA JEM DA AMOSTRA	0,05	0,05		2		-	(8)				
TRA PROF FINAL (m) ICÃO - mixo/ BD-bordo direito) ØOSTRA / (DATA) STRA - CAMPO AMOSTRA ZEM DA AMOSTRA	1,55	100	0,05	0,05	0,05	0,05	0,08	0,08	0,08		
NCÃO - eizo/ BD- bordo direito) #OSTRA / (DATA) ISTRA - CAMPO AMOSTRA VEM DA AMOSTRA VEM DA AMOSTRA		1,55	1,50	1,52	1,52	1,52	1,55	1,55	1,55		
MOSTRA / (DATA) ISTRA - CAMPO AMOSTRA VEM DA AMOSTRA		-	×		~		(*)	(e) e (e			
STRA - CAMPO AMOSTRA XEM DA AMOSTRA	22.09.2021	22.09.2021	22.09.2021	22.09.2021	22.09.2021	22.09.2021	22.09.2021	22.09.2021	22.09.2021		
AMOSTRA DEM DA AMOSTRA	01	01	01	02	02	02	03	03	03		
DEM DA AMOSTRA	505/21	505/21	505/21	506/21	506/21	506/21	507/21	507/21	507/21		
Lalopour meur	01	01	01	02	02	02	03	03	03		
AGAO DO MATERIAL			-		-				-		
L.2* 50,8 mm	-		-	~	-	-	-	-	-		
1 1/2* 38,1 mm		-	-			-	-	-	-		
L 1" 25,4 mm	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0		
. 3/4" 19,5mm			4		-	-	-	-			
. 3/8* 9,5 mm	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0		
4 4,8 mm	99,9	99,9	99,9	99,9	99,9	99,9	100,0	100,0	100,0		
10 2 mm	99,6	99,6	99,6	99,8	99,8	99,8	99,8	99,8	99,8		
15 1,2 mm	-		-	-	-	-	-	-	-		
30 0,6 mm	-	-	-	-	-	-	-	-	-		
40 0,42 mm	82,8	82,8	82,8	94,5	94,5	94,5	95,5	95,5	95,5		
50 0,3 mm		121		~	-						
100 0,15 mm	8		8			<i></i>	÷		-		
200 0,075 mm	59,1	59,1	59,1	45,9	45,9	45,9	54,3	54,3	54,3		
MITTE DE L'IQUIDEZ LL (%)	47,61	47,61	47,61	39,29	39,29	39,29	39,01	39,01	39,01		
TE DE PLASTIC DADE LP (%	3 29,46	29,46	29,46	28,56	28,56	28,56	24,85	24,85	24,85		
ASTICIDADE (LL-LP) IP(%)	18,15	18,15	18,15	10,73	10,73	10,73	14,16	14,16	14,16		
MÁX (MODIFICADA)			1.716			1.735			1.689		
S OTIMA (%)			18,8			19,0			21,5		
COMPACTAÇÃO CBR	Normal	Intermediario	Modificado	Normal	Intermediario	Modificado	Normal	Intermediario	Modificade		
ymåt ou dmåt (gfcm ³)	1,567	1,647	1,749	1,583	1,671	1,746	1,535	1,614	1,693		
h _{at} (%)	18,8	18,6	18,5	18,8	18,6	18,5	21,4	21,5	21,5		
ISC (%) uo CBR (%)	7,72	10,19	16,93	11,18	14,78	16,43	7,89	11,18	12,33		
Expansão (%)	0,09	0,06	0,02	0,07	0,05	0,02	0,11	0,07	0,07		
CBR FINAL (%)		9,50			14,00			11,20			
XPANSÃO FINAL (%)		0,06			0,00			0,07			
SSAESPECIFICA (g/cm ²)	1,692	1,692	1,692	1,680	1,680	1,680	1,660	1,660	1,660		
) IG (TRB / AASHTO)	9,0	9,0	9,0	2,4	2,4	2,4	5,5	5,5	5,5		
O TRB/AASHTO	A-7-6	A-7-6	A-7-6	A-6	A-6	A-6	A-6	A-6	A-6		
UCS (ASTM D2487/83)	SC	SC	SC	SC	SC	SC	SC	SC	SC		
	ITE DE LIQUIDEZ LL (%) DE FLASTICIDADE (LL (%) IDE FLASTICIDADE (LP (%) IDE TADE (LL-LP) IP(%) IÁX (MODIFICADA) OTIMA (%) MAPACTAÇÃO CBR. náte ou dmás (g/m?) h _a (%) EX (%) C (%) uo CBR. (%) Expansão (%) EX (%) CBR. FINAL (%) SA. ESPECIFICA (g/m?) IG (TRB / AASHTO CS (ASTMD2487/83) URAL DO MA TERIAL (%) URAL DO MA TERIAL (%) CIRIDA ARNT registradas	ITE DE LIQUIDEZ LL.(%) 47,61 DE FLASTIC DADE LP (%) 29,46 TICIDADE (LL-LP) IP(%) 18,15 IÅX (MCDIFICADA)	ITE DE LIQUIDEZ LL.0% 47,61 47,61 DE FLASTIC DADE LP.0% 29,46 29,46 TICIDADE (LL-D) IP.0% 18,15 18,15 LÅX (MCDIFICADA) OTIMA (%) MPACTAÇÃO CBR. Normal Intermediario når. ou dmár. (g/cm ²) 1,567 1,647 h _{at} (%) 18,8 18,6 SC (%) uo CBR. (%) 7,72 10,19 Expansão (%) 0,09 0,06 CBR FINAL (%) 9,50 9,50 PANSÃO FERAL (%) 0,06 21,692 IO (TBE / AASHTO) 9,0 9,0 TB / AASHTO A-7.6 A-7.6 CS (ASTM D2487/83) SC SC USAL DO MATERIAL (%) 19,8 19,8 Heim da AENT registrada no INMETRO; SUOS (Skrema Universal (%) 19,8	ITE DE LIQUIDEZ LL (%) 47,61 47,61 47,61 DE PLASTIC DADE LP (%) 29,46 29,46 29,46 TICIDADE (L1-P) IP(%) 18,15 18,15 18,15 LÅX (MODIFICADA) 1.716 1.716 DTIMA (%) 18,8 18,8 MPACTAÇÃO CER Normal Intermediario Modificado nár ou dnár (g(m)) 1,567 1,647 1,749 hat (%) 18,8 18,6 18,5 CO (%) uo CER (%) 7,72 10,19 16,93 Expansão (%) 0,09 0,06 0,02 CBR FINAL (%) 9,50 9,50 PANSÃO FINAL (%) 0,06 5,692 1,692 10 (TRB / AASHTO) 9,0 9,0 9,0 9,0 12 (Har A ASHTO) A.7.6 A.7.6 A.7.6 C.7.6 CS (ASTM D2487/83) SC SC SC SC URAL DO MATERIALON 19,8 19,8 URAD DANATERIALON 19,8	ITE DELIQUIDEZ LL (%) 47,61 47,61 47,61 39,29 DE FLASTIC DADE LP (%) 29,46 29,46 29,46 28,56 TICIDADE (LL-LP) IP(%) 18,15 18,15 18,15 10,73 IÅX (MODIFICADA) 1.716 1.716 DTIMA (%) 18,8 18,6 Normal når ou dnär (g/m²) 1,567 1,647 1,749 1,583 har (%) 18,8 18,6 18,5 18,8 CO (%) uo CBR (%) 7,72 10,19 16,93 11,18 Expansão (%) 0,09 0,06 0,02 0,07 CBR FINAL (%) 9,50 9,50 PANSÃO FINAL (%) 0,06 SA ESPECIFICA (g/m²) 1,692 1,692 1,680 10 (TB / AASHTO) 9,0 9,0 2,4 THB / AASHTO A-7.6 A-7.6 A-6 CS (SE TM D2487/83) SC SC SC SC SC URAL DO MA TERIAL(%) 19.8 19.8 19.8 11.18 11.18 11.18 <t< td=""><td>ITE DELIQUIDEZ LL (%) 47,61 47,61 47,61 39,29 39,29 DE FLASTIC DADE LP (%) 29,46 29,46 29,46 28,56 28,56 28,56 10,73 10,73 10,73 LDE FLASTIC DADE LP (%) 18,15 18,15 18,15 10,73 10,73 10,73 LÅX (MCODEFICADA) 1.716 171 OTIMA (%) 18,8 18,6 18,8 MPACTAÇÃO CBR Normal Intermediario Modificado Normal Intermediario nár ou dmáx (g/m²) 1,567 1,647 1,749 1,583 1,671 har(%) 18,8 18,6 18,5 18,8 18,6 SC (%) uo CBR (%) 7,72 10,19 16,93 11,18 14,78 Expansão (%) 0,09 0,06 0,00 0,00 0,00 SA ESPECIPICA (g/m²) 1,692 1,692 1,680 1,680 10 1,680 10 (TB / AASHTO) 9,0</td></t<> <td>TE DELIQUIDEZ LL (%) 47,61 47,61 47,61 39,29 30,73 10,73<!--</td--><td>THE DELIQUIDEZ LL (%) 47,61 47,61 47,61 39,29 39,01 DEDELQDELDADE LP(%) 18,15 18,15 10,73 10,73 10,73 10,73 10,73 10,73 10,73 10,73 11,76 1,535 DTIMA (%) 1,567 1,647 1,749 1,583 11,671</td><td>TELDELIQUIDEZ LL (%) 47,61 47,61 47,61 39,29 39,29 39,29 39,01 39,01 DEFLASTIC DADE LP (%) 29,46 29,46 28,56 28,56 28,56 24,85 24,85 TICIDADE (L-LP) [P(%) 18,15 18,15 18,15 10,73 10,73 10,73 14,16 14,16 LXX (MODIFICADA) 1.716 1.735 1.735 1.735 1.735 1.735 DTIMA (%) 1.8,8 19,0 1.735 1.735 1.735 1.746 1.535 1.614 MACTAÇÃO CBR Normal Intermediario Modificado Normal Intermediario Modificado Normal Intermediario MACGAÇÃO CBR Normal Intermediario Modificado Normal Intermediario Modificado Normal Intermediario MACGAÇÃO CBR Normal Intermediario Modificado Normal Intermediario Modificado Normal Intermediario MACGAÇÃO CBR Normal 16,53 11,48</td></td>	ITE DELIQUIDEZ LL (%) 47,61 47,61 47,61 39,29 39,29 DE FLASTIC DADE LP (%) 29,46 29,46 29,46 28,56 28,56 28,56 10,73 10,73 10,73 LDE FLASTIC DADE LP (%) 18,15 18,15 18,15 10,73 10,73 10,73 LÅX (MCODEFICADA) 1.716 171 OTIMA (%) 18,8 18,6 18,8 MPACTAÇÃO CBR Normal Intermediario Modificado Normal Intermediario nár ou dmáx (g/m²) 1,567 1,647 1,749 1,583 1,671 har(%) 18,8 18,6 18,5 18,8 18,6 SC (%) uo CBR (%) 7,72 10,19 16,93 11,18 14,78 Expansão (%) 0,09 0,06 0,00 0,00 0,00 SA ESPECIPICA (g/m²) 1,692 1,692 1,680 1,680 10 1,680 10 (TB / AASHTO) 9,0	TE DELIQUIDEZ LL (%) 47,61 47,61 47,61 39,29 30,73 10,73 </td <td>THE DELIQUIDEZ LL (%) 47,61 47,61 47,61 39,29 39,01 DEDELQDELDADE LP(%) 18,15 18,15 10,73 10,73 10,73 10,73 10,73 10,73 10,73 10,73 11,76 1,535 DTIMA (%) 1,567 1,647 1,749 1,583 11,671</td> <td>TELDELIQUIDEZ LL (%) 47,61 47,61 47,61 39,29 39,29 39,29 39,01 39,01 DEFLASTIC DADE LP (%) 29,46 29,46 28,56 28,56 28,56 24,85 24,85 TICIDADE (L-LP) [P(%) 18,15 18,15 18,15 10,73 10,73 10,73 14,16 14,16 LXX (MODIFICADA) 1.716 1.735 1.735 1.735 1.735 1.735 DTIMA (%) 1.8,8 19,0 1.735 1.735 1.735 1.746 1.535 1.614 MACTAÇÃO CBR Normal Intermediario Modificado Normal Intermediario Modificado Normal Intermediario MACGAÇÃO CBR Normal Intermediario Modificado Normal Intermediario Modificado Normal Intermediario MACGAÇÃO CBR Normal Intermediario Modificado Normal Intermediario Modificado Normal Intermediario MACGAÇÃO CBR Normal 16,53 11,48</td>	THE DELIQUIDEZ LL (%) 47,61 47,61 47,61 39,29 39,01 DEDELQDELDADE LP(%) 18,15 18,15 10,73 10,73 10,73 10,73 10,73 10,73 10,73 10,73 11,76 1,535 DTIMA (%) 1,567 1,647 1,749 1,583 11,671	TELDELIQUIDEZ LL (%) 47,61 47,61 47,61 39,29 39,29 39,29 39,01 39,01 DEFLASTIC DADE LP (%) 29,46 29,46 28,56 28,56 28,56 24,85 24,85 TICIDADE (L-LP) [P(%) 18,15 18,15 18,15 10,73 10,73 10,73 14,16 14,16 LXX (MODIFICADA) 1.716 1.735 1.735 1.735 1.735 1.735 DTIMA (%) 1.8,8 19,0 1.735 1.735 1.735 1.746 1.535 1.614 MACTAÇÃO CBR Normal Intermediario Modificado Normal Intermediario Modificado Normal Intermediario MACGAÇÃO CBR Normal Intermediario Modificado Normal Intermediario Modificado Normal Intermediario MACGAÇÃO CBR Normal Intermediario Modificado Normal Intermediario Modificado Normal Intermediario MACGAÇÃO CBR Normal 16,53 11,48		

Figura C.2 – Aeroporto SBTT – Tabatinga/AM. Fonte: Vinci (2022)

105

		Cliente	Cliente		VINCI Proc.		AEROPORTO DE TABATINGA - TBT	Visto	Visto 🙆			
VINCI	ter	nunes	Objetiv	vo:		ESTUDO GEOTÉCNICO	Data:	23.09.21 Sondador: Ricardo/Huam	Eng. Gyl	Luiz Europin Nunes		
										En recigente realiza		
Sondagem	Furo	Posicão	Profi	Ind	dade	Descrição da Camada		Classificação Por textura		Obs		
Data	Nº		da Car	mad	a (cm)			2010				
		PPD	10	-	19	Concreto Astalto (CBUQ)		Site arenoso cinza				
15/09/2021	SR01	(Perto da	30	1	43	Sub-Base solo cimento		Silte arenoso cinza				
		cab ec eira	43	÷.	66	Leite sole arenese		Areia siltosa cinza escuro				
		12)	66	-	79	Sub-leito argila silto sa		Argila Siltosa vermelho				
			D	-	18	Concrete Asfalte (CBUQ)		CBUQ				
- Section Constraints			18	-	30	Base solo cimento		Silte arenoso cinza				
15/09/2021	SR 02	PPD	30	-	42	Sub-Base solo cimento		Site arenoso cinza claro				
			42	-	66	Leito solo arenoso		Areia siltosa cinza escuro				
			66	-	79	Sub-leito argila silto sa		Argi a Siltosa amarelo				
			0	-	25	Concreto Asfalto (CBUQ)		CBUQ	_			
452002004	20.02	000	25	-	33	Base solo cimento		Silte arenoso cinza				
1014012021	314.03	PPD	33	-	42	Sub-Base solo cimento		Arela sillosa cinza escura				
			92	-	90	Cub Joint angle site as		Areia Siltosa cinza elscuro				
			0.	1	15	Concrete Asfalte (CBUO)		CBUQ				
			15		21	Base sole cimento		Silte arenoso cinza				
15/09/2021	SR 04	PPD	21	-	32	Sub-Base solo cimento		Site arenoso cinza claro				
			32	-	52	Leito solo arenoso		Areia siltos cinza				
			52	-	67	Sub-leito argila silto sa		Argila Siltosa amarelo claro				
			0	-	15	Concreto Asfalto (CBUQ)		CBUQ				
			15	•	28	Base solo cimento		Silte arenoso cinza claro				
16/08/2021	SR05	PPD	28	-	40	Sub-Base solo cimento		Site arenoso cinza claro				
			40	-	53	Leito solo arenoso		Areia siltosa amarelo ciaro				
			53	-	68	Sub-leito argila silto sa		Argi a Sitosa amarelo ciaro				
			0	-	16	Concreto Asfalto (CBUQ)		CBUQ				
16/09/2021	SPAG	PPD	15	-	2/	Base solo cimento		Site arenozo cinza claro				
TOTAGTE OF	31.00	110	40	-	40	Laita sola arenaso		Arolia siltosa cinta securo				
			57	1	70	SubJaite areila siltesa		Argia siltosa cinza escuro				
	-		0	-	18	Concrete Asfalte (CBUQ)		CBUQ				
			18	-	32	Base solo cimento		Silte arenozo cinza claro				
16/09/2021	SR 07	PPD	32	-	46	Sub-Base solo cimento		Silte arenozo cinza claro				
			45		67	Leite sole arenose		Areia siltosa amarelo ciaro				
			67	-	82	Sub-leito argila silto sa		Argila Siltosa amarelo				
			0	-	15	Concrete Asfalte (CBUQ)		CBUQ				
1710010004		000	15	-	20	Base solo cimento		Site arenozo cinza ciaro				
17/09/2021	SRUS	PPD	20	-	32	Sub-Base solo cimento		Site arenozo cinza ciaro				
			32	-	67	Letto solo arenoso Cubil alta sola		Arela Siltosa amarelo ciaro	_			
		-	0		14	Concrete Asfelte (CBUO)		CBUQ				
			14	1	28	Base solo cimento		Silte arenoso cinza				
17/09/2021	SR 09	PPD	28	-	43	Sub-Base solo cimento		Silte arenoso cinza				
			43	-	66	Leito solo arenoso		Areia siltosa cinza escuro				
			66		81	Sub-leito argila silto sa		Argila Siltosa vermelho				
			0	-	16	Concrete Asfalte (CBUQ)		CBUQ				
			16	-	28	Base solo cimento		Silte arenoso cinza				
17/09/2021	SR 10	PPD	28	-	40	Sub-Base solo cimento		Site arenoso cinza				
			40	-	58	Leito solo arenoso		Arela sinosa cinza escure				
			08	-	19	Concrete Argita sittesa		CBUO				
			-10	H.	33	Base solo cimento	_	Silte arenozo cinza claro				
17/09/2021	SR 11	PPD	33		45	Sub-Base sole cimento		Site arenozo cinza claro				
			45	-	65	Leito solo arenoso		Arela siltosa amarelo ciaro				
			65	-	77	Sub-leito argila silto sa		Argila Siltosa amarelo claro				
			0		17	Concrete Asfalte (CBUQ)		CBUQ				
		PPD(Perte	17	-	29	Base solo cimento		Silte arenozo cinza claro				
17/09/2021	SR 12	cabeceira	29	-	41	Sub-Base solo cimento		Site arenozo cinza claro				
		30)	41		63	Leite sole arenoso		Areia siltosa amarelo claro				
			63	-	77	Sub-leito argila silto sa		Argila Siltosa amarelo claro				

C.3 – Aeroporto SBTF – Tefé/AM. Fonte: Vinci (2022)

	ARPORTS		nunes			3.1 Avaliaçã	o Estrutura	l do Pavime	nto - Estudo	do Sub-leit	0		
	IN	TERESSAD	0:	VINCI Conces	sionária Aeropob	os Bloco Norte				RES Nº	RTC - 009/202		
		OBRA:		AEROPORTO	DE TEFÉ -AM					DATA:	14.	09.2021	
		SERVIÇOS		ESTUDOS GI	EOTÉCNICOS D	O SUBLEITO							
		3.1 R	SUMO: - RE	SULTADOS	DOS ENSAIO	S GEOTÉCN	ICOS DE LA	BORATÓRIO	DOS MATER	IAIS	FOLHA N':	002	
PROCE	EDÊNC	ta da amoste	A ENSALADA	VANCI Tefe	VANCI Tefe	VANCI Tefe	VANCI Tefe	VANCI Tefé	VANCI Tefe	VANCI Tefe	VANCI Tefe	VANCI Tefe	
NAT	UREZ.A	DO MATERIAL aracterização vi su	ENSAIADO	AROEA SELTOSA - AMARELADA	AROILA SILTOSA - AMARELADA	AROLA SLIDSA - AMARILADA	AROLA SETOSA - VERMELNA	AROLA SILTOSA - VERMELHA	AROLA SLITOSA - VERMELIGA	AROLA SILTOSA - COR MISTA	AROILA SILTOSA - COR MESTA	AROILA SILTOS COR.MISTA	
POÇO/	FURO	SONDAGEM /	AMOSTRA (nº)	84	84	04	05	05	05	86	06	06	
	LO	CALEZAÇÃO/FI	JRO	P.106	P.106	P.106	P.107	P. I 07	P.I07	PI 08	PI 08	PI 08	
EST	TAQUE	AMENTO / AM	ARRAÇÃO	. ×		×	×	×			×		
COLET	ADA	MOSTRA PROP	INICIAL (cm)		0,05		"Cole	stada entre0,05 e 0	,60 m"	0,10			
COLE	TA DA	AMOSTRA PRO	F. FINAL (m)		1,51		Entre0,	60 e 1,50 m "Salo O	Trganico"		2,02		
(BE-bor	rdo esqu	POSIÇÃO aerdo/E- eizo/Bi)- bordo direito)		-								
0	OLETA	DA AMOSTRA	(ATAD)	14.09.2021	14.09.2021	14.09.2021	14.09.2021	14.09.2021	14.09.2021	14.09.2021	14.89.2021	14.09.2027	
7	REG D	A AMOSTRA -	CAMPO	04	04	04	05	05	05	06	06	06	
	R	EG DA AMOSTI	A.S	479/21	479/21	479/21	480/21	480/21	480/21	481/21	481/21	481/21	
NUM	MERO	DE ORDEM DA	AMOSTRA	04	04	04	05	05	05	06	06	06	
DESTE	NODE	APLICAÇÃO D	O MATERIAL									-	
	-	POL 2*	50_8 mm			-	-					-	
AS AS	- F	POL 1 1/2*	38_1 mm										
	ŀ	POL 1*	25,4 mm	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	
A PEN	ŀ	POL 3/4*	19,,5mm									-	
NAS	2	POL 3/8*	9,5 mm	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	
	"June	Nº 4	4,8 mm	100,0	100,0	100,0	100,0	100,0	100,0	99,3	99,3	99,3	
SSA N	3	Nº 10	2 mm	100,0	100,0	100,0	100,0	100,0	100,0	98,3	98,3	98,3	
APA	8	NF 10	1,2 mm										
ASS N	ŀ	27.30	0.42 mm				-		-			-	
MIM	ŀ	10-40 MP-60	0,42 mm	998	99,8	99,8	99,4	99,4	99,4	20,0	20,3	90,3	
2 2	ŀ	17:20	0.15mm				~				-		
	ŀ	Nº 200	0,075 mm	89,5	89,5	89,5	89,0	89,0	89,0	84,4	84,4	84,4	
52 N	ER 6409	1984 LIMITE DE L	JQUIDEZ LL (%)	48,80	48,80	48,80	42,24	42,24	42,24	42,62	42,62	42,62	
OL NER	R, 7180.19	84 LIMITE DE PLA	STICIDADE LP (%)	30,35	30,35	30,35	21,40	21,40	21,40	21,53	21,53	21,53	
E I	INDICE	DE PLASTICIDAI	DE (LL-LP) IP(%)	18,45	18,45	18,45	20,85	20,85	20,85	21,09	21,09	21,09	
COMP	PACTA	ÇÃO DMÁX (M	ODIFICADA)			1,779			1,742			1,874	
	UB	AIDADE OTIMA	(%)			18,3			17,7			12,5	
BR. 7182-1	996	COMPAC	TAÇÃO CBR	Normal	Intermediario	Modificado	Normal	Intermediario	Modificado	Normal	Intermediario	Modifica	
Eneta 1:191 MPACTA	CÃO	ymán ou o	imier (g(cm ²)	1,511	1,641	1,772	1,616	1,673	1,759	1,708	1,814	1,864	
1000	287	h	(%)	18,06	18,21	18,47	17,33	17,65	17,05	12,95	13,01	13,27	
INDICE DE	E	LSC (%)	10 CBR (%)	1,97	3,73	7,67	3,73	4,16	8,77	2,63	6,14	12,05	
CALIFÓRN BR 9095 1	IIA 987	Espa	ISBO (79)	0,18	5.00	0,08	0,26	0,19	0,11	0,13	4,00	0,05	
INDICE DI SUPORTE	E B	EVDANCI	OFINAL (N)		0,13			0,10			4,70		
CALFÓRN DNET 164	4/2013	ME MASSA FOR	ECIFICA (elem)	1.639	1,639	1.639	1662	1,662	1662	1 705	1 295	1.705	
ÍN	DICED	GRUPO IG (TRB	/AASHTO)	13.1	13.1	13.1	12.8	12.8	12.8	13.0	13.0	13.0	
1	CLASSI	FICAÇÃO TRB/	AASHTO	A-7-5	A-7-5	A-7-5	A-7-6	A-7-6	A-7-6	A-7-6	A-7-6	A-7-6	
CLAS	SIFICA	CÃO SUCS (AS	TM D2487/83)	SC	sc	SC	SC	SC	SC	SC	SC	SC	
CLASSIFICAÇÃO SUCS (ASTM D2487/83)				30	19.6		~	19.4			151	30	

VINEL	¢ k	enunes	Cliente			VINCI	Proc.	AEROPO	AEROPORTO DE TEFÉ-TFF			A		
			Obje	tiv	0:	ESTUDO GEOTÉCNICO	Data:	23.09.21	Sondador:	Ricardo/Huam	Eng. Civil	Luiz Eugénio Nunes		
Sondagem Data	Furo N*	Posição	Profund Inicial	didə	de(cm Final	Descrição da Camada			Classificação	Por texture		Obs		
02/09/2021			0	- 1	15	Concreto Asfalto (CBUQ)		CBUQ	tBUQ					
		PPD	15		26	Base solo dimento		Solo siltose	o de cor amarelo					
	SR 01	caberaira	26		38,5	Sub-Base sole cimente		Solo siltoso	o de cor amarelo	claro				
		15)	38,5		50,5	Leito sole arenose		Leito - Areia	a am areio claro					
			50,5	•	64	Sub-leito arglia siltosa		Solo Argila	Siltosa					
			0	•	17,5	Concrete Asfalte (CBUQ)		CBUQ						
	00.00		17,5		29,5	Base solo cimento		Sole siltese	de cor amarelo	escuro				
04/05/2021	SR 02	PPU	29,5	- I	41,6	Sub-Base solo cimento		Solo siloso	o de cor amareia					
			41,5	•	53	Leito solo arenoso		Leito - Aren	a am arelo ciaro		-			
			90	•	15.5	Consiste Active (CRU/C)		CRUC	renose cor maria	201				
			15.5	-	28	Base sole cimente		Asfaite Rec	iciado + sole		-			
04/09/2021	SR 03	PPD	26		36	Sub-Base solo cimento		Asfaite Rec	iclado + sole		-			
			36		47.5	Leito sole arenose		Leite - Areis	a am arelo claro					
			47.5		60.5	Sub-leito argila siltosa		Solo Areno	so am areiado					
			0		21	Concrete Asfalte (CBUQ)		CBUQ						
			21		32,5	Base solo cimento		Solo siltose	o am areladio					
04/09/2021	SR 04	PPD	32,5		43,5	Sub-Base sole cimente		Solo siltose	o de cor amarelo	claro				
			43,5	-	63,6	Leito solo arenoso		Leito - Areis	a am arelo claro					
			53,5	•	64	Sub-leito argila siltosa		Solo Areno	so de cor Amare	lä				
			0	•	16.5	Concrete Asfalte (CBUQ)		CBUQ			-			
			16,5	·	29	Base solo cimento		Solo silbosi	o de cor cinzz clu	24	-			
04/05/2021	SR 05	PPD	29	-	41,6	Sub-Base solo cimento		Solo siltoso	am arelado		-			
			41,5	-	53	Leito solo arenoso		Leito - Areis	a am arelo claro					
			53	-	65	Sub-leito argila siltosa		Solo Areno	so de cor amare	a	-			
			0	•	17,5	Concreto Asfalto (CBUQ)		Cobba	de ses sister als					
0.6100/2021	CD OF	ppn	17,0	•	20	Dase solo cimiento		Solo silton	o de cor cinza ci					
			20.5		56	Laite sele tranese		Laita - Arai	a am arele clare					
			56		68	Sub-leite araila sittesa		Sele Araile	so amareizdo					
			0		14.5	Concrete Asfaite (CRUC)		CBUQ						
			14.5		30	Base solo cimento		Solo siltoso	o de cor amarelo	claro				
04/06/2021	SR 07	PPD	30		42.5	Sub-Base sole cimente		Sole siltese	de cor cinza cla	ro	-			
			42.5	1	69.6	Leito sole arenose		Leite - Areia amarelo claro						
			69,5	-	72,5	Subjette orgile eithes		Solo Silter	Arenoso branco	escuro				
			0	•	17.5	Concreto Asfalto (CBUQ)		CBUQ						
			17,5	-	33	Base solo cimento		Solo Laterit	la l					
04/06/2021	SR 08	PPD	33	·	45,5	Sub-Base solo cimento		Sale Laterit	ta.					
			45,5	-	67,5	Leito sole arenose		Leito - Areia am areio claro						
			67,5	1	80,5	Sub-Leito selio		Sole am are	ilo Argila e Silte					
			0	-	15,5	Concrete Astalte (CEUD)		Sala Lateria	12		1			
05/09/2024	SR 09	PPD	10,5	-	29,5	Base solo dimento Sub-Base solo cimento		Solo Laterio	a					
VATURAUE I	511 55		29,0		62	Leite sele arenes -		Leite - Arei	am anale stare		-			
			42	÷	77	Sub joite areals citiess		Solo cinza	Araila e Silte					
			0	1	16	Concrete Asfalte (CELIO)		CBUQ			-			
			16	1	31	Base solo cimento		Solo Areno	so Laterítico ama	arelo escuro				
05/06/2021	SR 10	PPD	31	1.1	43	Sub-Base solo cimento		Solo Areno	so Laterítico ama	arelo escuro				
			43	-	66	Leito solo arenoso		Leito - Areia	a am arelo claro					
			66		78	Sub-leito argila siltosa		Solo Silte A	rgiloso amarelo	es curo				
			0	-	13,6	Concrete Asfalte (CBUQ)		CBUQ						
		10000	13,5	·	28,5	Base solo cimento		Solo siltoso	o de cor amarelo	claro				
05/06/2021	SR 11	PPD	28.5	-	40,5	Sub-Base solo cimento		Solo siltose	o de cor cinza					
			40.5	·	61.5	Leito solo arenoso		Leito - Arei	a am areio claro					
			61,5	-	73,6	Sub-leito argila siltosa		Solio Aireno	so am areiado					
		PPD(Perto	0	11	15	Concreto Astalto (CBUQ)		Releating	de contempo di	hide				
05/09/2024	SR 12	da	16 - 29 Base solo cimento					Solo silcoso	de cor averm el	hado				
CONTRACT.	Jun 12	cabeseira	41	1	65	Joine sale senase		Leito - Arei	amarelo claro	14.414				
		33)	68	1	78	Sub-leite argija siltesa		Solo Areno	so com laterita a	m arelo				
				-										

C.4 – Aeroporto SBRB – Rio Branco/AC. Fonte: Vinci (2022)

8	nac		n ^{N S}														R. N
												QL	JADR	ORES	UMO D	OS EN	ISAIOS
Cliente:	VINCI AIR	PORTS	6														
Obra:	AEROPOR	RTO RI	o Bra	NCO													
Local:	RIO BRAN		:														
														Co	mpaotag Modi	ão - Proc Noado	tor
	0.000		Granul	ometria	(% Pac	icando)						-	0	Na Pa	Umid	Peso Solo	Umi
POÇO	(m)	n.º 1"	n.º 3/8"	n.º 4	n.º 10	n.º 40	n.º 200	₹F	25	N) P	0	RB	UCS	o Esp. Seco dimo (g/cm²)	ade Ótima (%)	Específico do Seco "in situ" (g/cm²)	dade Natural (%)
01 (BASE)	0,00 a 0,18	100,00	100,00	100,00	95,11	94,57	70,85	41,8	27,5	14,3	8	A-7-6	ML	1,680	18,20	1,484	12,40
01 (SUB-BASE)	0,18 a 0,37	100,00	97,14	92,19	89,78	87,58	55,94	43,0	22,4	20,6	8	A-7-6	d	1,813	13,40	1,695	11,70
01 (SUBLEITO)	0,37 a 0,55	100,00	98,68	93,05	88,99	86,73	52,88	29,8	17,5	12,3	4	A-6	Ъ	1,958	8,70	2,028	10,90
05 (BASE)	0,00 a 0,20	100,00	100,00	100,00	93,88	93,73	52,43	31,5	17,0	14,5	6	A-6	Ы	1,872	12,20	1,667	17,40
05 (SUB-BASE)	0,20 a 0,38	100,00	99,30	95,62	92,70	91,87	60,43	30,2	11,2	19,0	8	A-6	сL	1,925	11,80	1,759	14,70
05 (SUBLEITO)	0,38 a 0,58	100,00	100,00	100,00	99,60	98,70	94,90	85,5	27,1	58,4	20	A-7-6	сн	1,747	14,60	1,721	19,50
06 (BASE)	0,00 a 0,21	100,00	97,65	88,87	85,63	83,69	49,81	41,0	23,9	17,1	8	A-7-6	80	1,808	16,30	1,572	20,20
06 (SUB-BASE)	0,21 a 0,39	100,00	97,35	88,50	85,37	83,94	50,36	41,2	25,3	15,9	6	A-7-6	ML	1,801	15,90	1,744	17,40
06 (SUBLEITO)	0,39 a 0,57	99,12	95,65	88,58	82,14	80,35	46,69	29,8	14,8	15,0	4	A-6	80	1,968	10,80	1,838	14,70
·															-		
08 (BASE)	0,00 a 0,22	100,00	97,29	88,81	85,51	84,18	50,35	40,2	24,8	15,4	6	A-7-6	CL	1,785	15,20	1,66	9,20
08 (SUB-BASE)	0,22 a 0,44	100,00	97,69	90,21	86,66	85,30	51,34	42,7	22,4	20,3	7	A-7-6	CL	1,786	16,40	1,65	11,10
08 (SUBLEITO)	0,44 a 0,66	100,00	98,64	93,38	89,96	88,79	66,16	38,0	21,0	17,0	8	A-6	CL	1,853	13,30	1,68	21,70
09 (BASE)	0,00 a 0,18	100,00	98,64	95,49	92,65	90,68	58,75	30,0	17,4	12,6	8	A-6	CL	1,928	11,80	1,83	12,10
09 (SUB-BASE)	0,18 a 0,43	100,00	98,43	92,62	89,50	88,16	56,27	37,5	18,8	18,7	8	A-6	CL	1,834	13,70	1,65	20,20
09 (SUBLEITO)	0,43 a 0,65	100,00	99,83	99,24	98,55	96,36	90,31	68,5	27,0	41,5	20	A-7-6	сн	1,751	17,40	1,87	14,70

C.5 - Aeroporto SBCZ - Cruzeiro do Sul/AC. Fonte: Vinci (20.	22)
--	-----

8		CO 1 G E	n s														R.M C.
												QL	JADR	O RES	UMO E	OOS EN	ISAIOS
Cliente:	VINCI AIR	PORTS	6														
Obra:	AEROPOR	RTO CF	RUZEIF	RO DO	SUL												
Local:	CRUZEIRO	DO S	UL/AC														
	Compactação - Proctor Modificado													tor:			
POÇO	Camada (m)	Granulometria (% Passando)		HRB		Peso Es Máximo	Umidade Ć	Peso Espe Solo Seco (g/cr	Umidade (%								
		n.º 1"	n.º 3/8"	n.⁰ 4	n.⁰ 10	n.º 40	n.º 200							p. Seco (g/cm²))tima (%)	vifico do "in situ" m ³)	Natural)
01 (BASE)	0,00 a 0,18	100,00	100,00	100,00	98,64	75,74	19,96	NP	NP	NP	0	A-2-4	SM	2,067	7,50	2,021	5,20
01 (SUB-BASE)	0,18 a 0,38	100,00	100,00	100,00	99,20	67,88	22,55	NP	NP	NP	0	A-2-4	SM	2,079	6,90	2,110	8,00
01 (SUBLEITO)	0,38 a 0,58	100,00	100,00	100,00	98,92	73,78	24,50	NP	NP	NP	0	A-2-4	SM	2,080	6,90	1,986	9,20
03 (BASE)	0,00 a 0,19	100,00	100,00	100,00	98,15	71,17	22,83	NP	NP	NP	0	A-2-4	SM	1,996	8,40	1,619	6,80
03 (SUB-BASE)	0,19 a 0,39	100,00	100,00	100,00	98,29	71,09	26,07	NP	NP	NP	0	A-2-4	SM	2,049	7,60	2,022	7,40
03 (SUBLEITO)	0,39 a 0,59	100,00	100,00	100,00	98,16	70,27	24,42	NP	NP	NP	0	A-2-4	SM	2,063	8,50	2,038	5,70
06 (BASE)	0,00 a 0,16	100,00	100,00	100,00	98,93	71,21	23,50	NP	NP	NP	0	A-2-4	SM	1,993	8,30	1,975	8,00
06 (SUB-BASE)	0,16 a 0,35	100,00	100,00	100,00	99,21	74,12	24,69	NP	NP	NP	0	A-2-4	SM	2,036	7,70	2,189	6,80
06 (SUBLEITO)	0,35 a 0,54	100,00	100,00	100,00	98,58	72,74	23,38	NP	NP	NP	0	A-2-4	SM	2,038	8,40	2,041	6,30

C.6 - Aeroporto SBPV -	- Porto Velho/RO.	Fonte: Vinci (2	2022)
------------------------	-------------------	-----------------	-------

2	nac	:0	n														R.M
	50 N D A	GE	NS														C.I
												QL	JADR	0 RES	UMOE	OOS EN	ISAIOS
Cliente:	VINCI AIR	PORTS	6														
Obra:	AEROPOF	RTO PO	ORTO \	/ELHO)												
Local:	PORTO V	ELHO/	RO											_			
														Co	mpactaç Modi	ao - Proo ficado	tor
POÇO	Camada (m)		Granul	ometria	(%Pas	isando)		.⊛F	<u>چ</u> گ	(%) 91	ត	HRB	SUCS	Peso Es Máximo	Umidade	Peso Esp Solo Secc (g/c	Umidade (%
		n.⁰ 1"	n.º 3/8"	n.⁰ 4	n.º 10	n.º 40	n.º 200							p. Seco (g/cm²)	Ótima (%)	ecífico do o "in situ" m ^a)	e Natural 6)
01 (BASE)	0,00 a 0,20	100,00	94,51	92,11	89,42	85,29	74,66	50,8	30,7	20,1	14	A-7-5	MH	1,626	20,10	1,488	13,60
01 (SUB-BASE)	0,20 a 0,40	100,00	100,00	99,90	99,28	98,38	95,54	48,5	28,2	20,3	14	A-7-6	ML	1,589	21,60	1,307	28,00
01 (SUBLEITO)	0,40 a 0,60	100,00	100,00	100,00	90,73	89,85	79,85	46,5	24,3	22,2	14	A-7-6	CL	1,599	21,60	1,286	21,70
02 (BASE)	0,00 a 0,20	100,00	96,45	86,35	79,53	74,79	70,09	57,0	32,9	24,1	16	A-7-5	ΜΗ	1,733	19,70	1,742	12,40
02 (SUB-BASE)	0,20 a 0,38	100,00	97,98	95,55	93,04	91,69	86,92	59,0	35,2	23,8	17	A-7-5	MH	1,654	21,40	1,623	21,70
02 (SUBLEITO)	0,38 a 0,58	100,00	94,98	89,01	83,38	80,46	76,68	62,0	27,8	34,2	20	A-7-6	СН	1,664	21,30	1,733	23,20
03 (BASE)	0,00 a 0,18	100,00	93,56	86,17	80,97	78,57	72,38	51,5	31,0	20,5	14	A-7-5	МН	1,605	24,30	1,508	14,90
03 (SUB-BASE)	0,18 a 0,36	100,00	96,75	91,38	85,61	83,89	79,48	54,0	34,1	19,9	15	A-7-5	МН	1,632	23,90	1,637	17,00
03 (SUBLEITO)	0,36 a 0,52	100,00	96,55	91,93	87,54	85,81	81,22	50,5	30,6	19,9	14	A-7-5	МН	1,635	22,70	1,566	21,70
—	1																
04 (BASE)	0,00 a 0,18	99,28	96,56	92,69	88,91	86,25	82,14	47,0	28,0	19,0	13	A-7-6	ML	1,750	18,20	1,68	10,00
04 (SUB-BASE)	0,18 a 0,33	100,00	93,95	82,12	74,55	68,58	63,27	50,0	32,0	18,0	10	A-7-5	ML	1,719	21,00	1,65	14,90
04 (SUBLEITO)	0,33 a 0,50	100,00	94,82	87,67	82,10	78,82	74,55	51,0	33,9	17,1	13	A-7-5	MH	1,694	21,50	1,67	18,80
07 (BASE)	0,00 a 0,18	100,00	84,91	75,47	68,40	62,07	56,67	45,5	29,2	16,3	7	A-7-6	ML	1,943	15,70	2,01	9,80
07 (SUB-BASE)	0,18 a 0,36	100,00	99,36	98,82	97,53	96,38	92,26	51,0	33,9	17,1	13	A-7-5	MH	1,686	19,00	1,54	23,20
07 (SUBLEITO)	0,36 a 0,54	100,00	99,73	99,26	98,14	97,11	93,44	53,5	33,9	19,6	15	A-7-5	MH	1,620	22,80	1,44	24,80
10 (BASE)	0,00 a 0,20	100,00	94,40	91,95	89,78	85,50	77,17	36,0	21,3	14,7	10	A-6	CL	1,784	13,10	1,65	9,20
10 (SUB-BASE)	0,20 a 0,40	100,00	97,33	94,12	91,37	88,24	79,39	29,5	15,1	14,4	10	A-6	CL	1,860	12,60	1,73	9,80
10 (SUBLEITO)	0,40 a 0,60	100,00	100,00	100,00	90,09	89,54	83,04	39,5	21,8	17,7	11	A-6	CL	1,784	15,00	1,66	8,00

C.7 – Aeroporto SBBV – Boa Vista/RR. Fonte: Vinci (2022)

~		🔶 🧧	nunes		2	AE 3.1 - Avaliaç	ROPOR	ΓΟ - BO al do Pavime	A VISTA ento - Estudo	RR 9 do Sub-leit	to	
	P	NTERESSAI	00:	VINCI Conces	sionária Aeropot	os Bloco Norte				RES Nº:	RTC	- 010/2021
		OBRA:		AEROPORTO	DE BOA VIST	A • RR				DATA:	30.	09.2021
		SERVIÇOS	:	ESTUDOS GE	OTÉCNICOS E	O SUBLEITO						
		3,1 R	ESUMO DOS	RESULTADO	S DOS ENS	AIOS GEOTÉ	CNICOS DE I	LABORATÓR	IO DOS MAT	ERIAIS	FOLHA Nº:	001
3	ROCEDÊN	ICIA DA AMOST	RA ENSAIADA	VANCI Boa Vista	VANCI Boa Vista	VANCI Bea Vista	VANCI Boa Vista	VANCI Boa Vista	VANCI Bea Vista	VANCI Bos Vista	VANCI Bea Vista	VANCI Bea Vista
	NATUREZ	A DO MATERIA (caracterização vis	LENSAIADO	ARGEA ARENOSA AMARELA ESCURA	ARGILA ARENOSA - AMARELA ESCURA	ARGLA ARENOSA - AMARELA ESCURA	AREIA ARCELOSA - AMARELA ESCURA	AREIA ARGEOSA - AMARELA ESCURA	AREIA ARGILOSA - ANNARELA ESCURA	AREIA SILTOSA - AMARELA ESCURA	AREIA SILTOSA- AMARELA ESCURA	AREA SILTOSA - ANDRELA ESCURA
P	QCO / FURC	O/SONDAGEM/	AMOSTRA (nº)	01	01	- 11	02	02	02	03	03	63
	LC	DCALEAÇÃO/F	URO	P. 102	P.102	P.102	P.103	P.I03	P. I 03	P.106	P.106	P.106
	ESTAQU	TEAMENTO / AM	ARRAÇÃO						×			
0	OLETA DA	AMOSTRA PRO	F. INICIAL (cm)		0,80			0,10			0,06	
	COLETA D	a amostra pr	OF. FINAL (m)		1,68			1,70			1,63	
(2	E- bordo eso	POSIÇÃO querdo/E-eixo/B	D-bordo direito)		-			-		-	-	
	COLET	A DA AMOSTRA	(ATAC)	17.89.2021	17.09.2021	17.09.2021	17.09.2021	17.09.2021	1709.2021	163 - - - 17.09.2021 17.09.2021 17.09.2021 03 03 05 003/21 003/21 003/21 03 03 03 - - - - - - - - - 100,0 100,0 100,0		
	REG	DA AMOSTRA -	CAMPO	01	01	01	02	02	02	ERIAIS POLHA N*: 001 VANCI Bas Vista VANCI Bas Vista VANCI Bas Vista VANCI Bas Vista ASED SILTOSA- ASED SILTOSA- ASE		
	3	reg da amost	RA	001/21	001/21	001/21	002/21	002/21	002/21	003/21	003/21	003/21
	NÚMERO	D DE ORDEM DA	AMOSTRA	01	01	01	02	02	02	03	03	03
- 1	DESTINOD	e aplicação i	O MATERIAL	×	•							
		POL 2'	50,8 mm			1.0						
=	S	POL 1 1/2*	38,1 mm									
878	ALC: N	POL 1*	25,4 mm	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0
ΨV	13d S	POL 3/4"	19,5mm		-					-	-	
IRIO	NA (B	FOL 365"	9,0 mm	99,4	99,4	99,4	100,0	100,0	100,0	100,0	100,0	100,0
-Ha	NTDO	DF-4	4,8 mm	99,1	99,1	99,1	100,0	100,0	100,0	100,0	100,0	100,0
Ĩ	UL-10	Nº 10	2 mm	98,0	98,6	98,5	39,0	99,D	99,0	99,9	999.9	99,9
3B.AJ	N PI	19 12	0.6.000	-	-	-		-		-	-	
ISE	TASS	NP.40	0.42 mm	77.3	77.3	77.3	81.0	81.0	81.0	87.4	87.4	87.4
NAL	CW3	NP 50	0.3mm	1.16	1110		erb.	01,0	er,	(m) 1	0.0,1	0411
<	2	37º 100	0.15 mm									
		17º 200	0.075 mm	49.8	49.8	49.8	31.5	31.5	31.5	44.1	44.1	44.1
		COMPANY IN COMPANY	INTERNET CO. MIL	200	199.0	20.0						
CEB	388,643	R 1994 LINGTE DE L	AQUIDEZ LL (%)	28,0	28,0	28,0	21	21	21	35	33	23
Diff.	NDL 100 2	THE REAL TROPING	SEALLER BASS	10,5	10,5	10,5	14	14	14	20	10	13
	TAPACT	cionaixa	(DIFICADA)	44,0	4414	1 984			2.078	1.0	100	1917
_	Th	MTD ADE OTIMA	66)			10.6			78	-		11.0
-		COMPAC	TACÃO CBR	Mormal	Intermediario	Modificado	Normal	Intermediario	Modificado	Normal	Intermediario	Modificado
MBR. Emi	7182 1996 • 1 1981	ymier au a	knia: (g/on?)	1,801	1,907	2,020	1,820	1,922	2,058	1,719	1,845	1,921
COMP	ACTAÇÃO	h,	(%)	10,1	10,5	10,4	7,2	8,1	7,5	9,1	9,3	9,1
3455	2003 3787 HCR.DE	ISC (%)	10 CBR (%)	3,38	16,56	39,67	5,70	7,75	12,82	3,17	15,03	38,51
3U CAL	PORTE .	Екра	arlio (%)	0,1	0,0	0,0	0,13	0,09	0,03	0,09	0,03	0,00
1455	NDES SHED	CBRF	INAL (86)		13,7		6	9,8		1	10,4	
SU	BORTE ABORDE	EXPANSI	OFINAL (%)		0,03		8	0,08			0,04	
DH	T 164/2013	ME MASSA ESP	ECFICA (g(ant)					2 3				
	BADACE DE	E GRUPO IG (TRB	/AASHTO)	3,5	3,5	3,5	0,0	0,0	0,0	2,7	2,7	2,7
	CLASS	тсаção тва/	AABETO	A - 6	Δ - 6	A - 6	Δ-2-4	A-2-4	Δ-2-4	A - 6	A-6	A-6
(LASSIFICA	AÇÃO STICS (AS	TM D 0487/83)	SC	SC	SC	\$C	SC	SC	SC	SC	5C
187	6457 UME	ADE NATURAL D	0 MATERIAL (%)									
LECES	DA: NBR: N	forma Brasileirs da	ABNT registrade re	INMETRO; SUCS	(Sistema Universal d	le Classific ação das S	olos du ASTM -"Am	eric an Society for Tos	ting and Materials")		· · · · · · · · · · · · · · · · · · ·	100 C

LECEDDA: NBR: Norma Bouildors da ABNT registrada ne INMETRO; SICS (Biesso Lizh wral de Classific des dos da ASTM "American Society for Toxing and Marrials"); TBR ("Transportaine Research Bisard"; ASMTO ("American Association of Sich Highway and Transportation"); El Te converçõe adactada para os maioriais que não se enquadram nos faixos do DNIT para a causada de base. NL e NP= nonverções adesdas para os materiais granulares para os quais não se consegue deternistar os limitos de liguide e plasticidade respectivos.

	e la	nunan	Clien	te		VINCI	Proc.	AEROPORTO BOA VISTA - BVB		
VINCI	IS	nunes	Obie	tiv	0:	ESTUDO GEOTÉCNICO	Data:	23.09.21 Sondador: CAIO		Visto:
			0.010							
Sondagem	Furo Nº	Posição	Profi da Car	undi mad	idade la (cm)	Descrição da Camada		Classificação Por textura		Obs
		PPD	0	1.	14	Concrete Asfalte		CBUQ		
0010010001	00.64	(Perto da	14	1.1	29	Base solo cimento		Sole Argiloso com laterita avermelhado		
0000002021	SKVI	cabeceira	29	·	44	Sub-Base solo melhorado		Sole Argiloso com laterita avermelhade		
		(80	44	•	60	Sub-leito solo		Solo Argiloso com laterita avermelhado		
			0	•	14	Concreto Asfalto		CBUQ		
11/09/2021	58.02	PPD	14	· ·	28	Base solo cimento		Solo Argiloso laterítico vermelho		
			28	I • I	42	Sub-Base solo melhorado		Sole Argilose Izteritico vermelho		
			42	- I	60	Sub-Leito solo		Solo Silte arenoso cor Marrom		
			0	·	14	Concrete Asfalte		CBUQ		
11/09/2021	SR 03	PPD	14	- I	30	Base solo cimento		Asfalto Reciclado + solo		
			30	1 ·	44	Sub-Base solo com cimento		Asfaito Reciciado + solo		
			44	- I	60	Sub-Leito solo		Solo Arenoso avermelhado	<u> </u>	
			0		16	Concrete Asfalto		CBUQ	<u> </u>	
11/09/2021	SR 04	PPD	16	<u>+ - </u>	28	Base solo cimento		Sole Arenoso com laterita averni einado	<u> </u>	
			20		45	Sub-Base solo melhorado		Solo Arenoso com laterita avern elhado	<u> </u>	
<u> </u>			45	<u>+ +</u>	60	Sub-Leito solo		Solo Arenoso de cor Amarela	<u> </u>	
			0	1.1	10	Concreto Asralto		COOL Release the Interity warm of the	<u> </u>	
11/09/2021	SR 06	PPD	15	14	28	Base solo cimento		Sole Argilose com laterita avermeinade	<u> </u>	
			28		43	Sub-Base solo melhorado		Sole Argnose de con materia avenirenzae		
<u> </u>			43	+ ·	60	Sub-Letto solo				
			0	11	29	Concreto Asrato		Sale Arcilose com Isterita avermelhade	<u> </u>	
11/09/2021	SR 06	PPD	20	11	30	Base solo cimento Sub Base solo melherado		Sole Argilose com Isterita avernehade	<u> </u>	
			50	+÷	60	Sub-Late sele		Sole Argilose com laterita avermelhado	<u> </u>	
<u> </u>			0	1.1	24	Concrete Astalte		CRUQ		
		100000	21	t:t	31	Base solo cimento		Solo Arciloso com laterita avermelhado		
11/09/2021	SR 07	PPD	31	t:t	42	Sub-Base solo melhorado		Sole Argiloso com laterita avermelhade	<u> </u>	
			42	1.1	60	Sub-Leito solo		Solo Silte Arenoso branco escuro	<u> </u>	
			0	1.1	15	Concrete Asfalte		CBUQ		
0710010004	00.00	000	15	1.1	31	Base solo cimento laterita		Solo Laterita		
07/09/2021	SK 66	PPD	31	1-1	48	Sub-Base solo melhorado		Sole Laterita	Água com 40	Cm de profundidade
			48	1.1	64	Sub-Leito solo		Solo Vermelho Argila e Silte		
			0	•	11	Concreto Asfalto		CBUQ		
07/08/2024	80.00	PPP.	11	•	27	Base solo cimento		Sole Laterita		
STROAT202 1	31.40	FFW.	27	•	42	Sub-Base solo melhorado		Solo Laterita		
			42	•	63	Sub-Leito solo		Sole Vermelho Argila e Silte		
			0	· ·	15	Concrete Asfalte		CBUQ		
10/09/2021	SR 10	PPD	15	•	28	Base solo cimento		Solo Arenoso Laterítico amarelo escuro		
			28	Ŀ	41	Sub-Base solo melhorado		Sole Arenoso Lateritico amarelo escuro		
			41	- I	59	Sub-Leito solo		Solo Silte Argiloso amarelo escuro		
			0	1.1	15	Concrete Asfalto		CBUQ	<u> </u>	
10/09/2021	SR 11	PPD	15	1.1	30	Base solo cimento		Solo Arenoso laterífico avermelhado	<u> </u>	
			30		45	Sub-Base solo melhorado		Sole Arenose Izteritice avermelhade	<u> </u>	
<u> </u>			45	1.1	60	Sub-Leite sele		Sole Arenese lateritice avermelhade	<u> </u>	
			0		11	Concreto Asfalto		COUQ		
10/09/2021	SR 12	PPD	11	1.1	20	Base solo cimiento		Sale Arenese com laterita aveni enade	<u> </u>	
			20		40	Sub-Base solo melhorado		Solo Arenoso com laterita avera enado		
<u> </u>			40	H.	45	Canazata Asfalta		CBUO		
			15	ŧ÷	28	Bara role cimente		Sale Brita		
09/09/2021	SR 13	PPD	28	H	42	Sub-Base solo melhorado		Sole Brita		
			42	t i l	60	Sub-Leito solo		Solo Arenoso Isteritico avermelhado		
<u> </u>		PPD	0	H	10.5	Concrete Asfalte		CBUQ		
		(perto da	10.5	H	25.5	Base solo cimento		Sole Brita	<u> </u>	
09/09/2021	SR 14	cabeceira	25.5	H	35.5	Sub-Base solo melhorado		Sole Brita	L	
		26)	36.6	Н	55	Sub-Leito solo		Solo Arenoso com pouca laterita - amarelo escuro		

Data	Rotativa nº	Espessura do material cm ²	Tipo de revestimento	Fotos
14/09/2022	85	28,0	CBUQ	
14/09/2022	RS	31,0	CBUQ	
14/09/2022	R7	29,0	CBUQ	Address, which are an article for the second
14/09/2022	RS	34,0	CBUQ	14 de set de 2022 DB 16 m 22% defeadat insker april do on nome - Sr. Oliemanik, Galana - Go. 7 4675-410. Senat Abbide 2007 van Weseladat 2007 van

	UTU [.]		Dy Dy Pavement	Expertise in Action	1 DA ESTRUTURA DO	PAVIMENTO	
Local: Aeroporto	Santa Genovev	va			Coord	enadas:	
Pista: 32 - 14				Técnico Responsável: Cláudia Calado	Latitude	Longitude	Zona
Nº do Poço: PI-O2				Data: 21/09/2022	690141	8160106	22K
POÇO: PI-02	KM:			PISTA/ACOSTAMENTO			
Comodor	Profur	ndidade	Espessura	MATERIAL		Contraction of the	All and a state of
Camadas	DE	Α	(cm)	MATERIAL	Constant of the second	ALL STATES	
	0,0	8,0	8,0	CBUQ	and the second	A seal of the seal	-Arade
					- We want y	State Barrier	4 Stor
Revestimento					- A BOOK	in Prices	The second
						Contraction of the	A I STRAT
						CONTRACTOR OF STREET, STRE	
Base	8,0	25,0	17,0	Argilo-arenoso com pedregulho, cor vermelha	Harris and Marrie	21 de set 22 la 4, s/n - Santa Genoveva,	én 2072 01:25-0 K 690139 9160102 Gelania GCU Brasil
Sub-Base	25,0	56,0	31,0	Argilo-arenoso com cascalho, cor vermelha	-	Nim	Altitude 783 9m elocidade 0.0km/h ePt02 erordo indice, 1521
Reforço do Subleito							
Subleito	56,0	68,0	12,0	Argilo-arenoso, cor: marrom			
POÇO: PI-02	KM :		0	ACOSTAMENTO			
Comedea	Profur	ndidade	Espessura	MATERIAL	-	Valensie	A STATE OF
Camadas	DE	Α	(cm)	MATERIAL			and and
	0,0	7,0	7,0	CBUQ	A 7		
					A A	201 034	1 1 1 1
Revestimento						Alter Alter	
					215 11		1-11-1
					THE REAL PROPERTY AND	21 de set	0 00 2022 01 12 39
Base	7,0	16,0	9,0	Argilo-arenoso com pedregulho, cor vermelha	(comparison) - Alamas	22 Ia 4, s/n - Santa Genoveva,	K 690140 B160105 Goldrin - GO, Brazil
Sub-Base	16,0	39,0	23,0	Argilo-arenoso com cascalho, cor vermelha	10	No.	eroc dade 0 0 m.m.
Reforço do Subleito						HUT I	
Subleito	39,0	68,0	29,0	Argilo-arenoso, cor marrom]		

C.8 - Aeroporto SBGO - Goiânia/GO. Fonte: CCR Aeroportos (2022)

C.9 – Aeroporto SBPJ – Palmas/TO. Fonte: CCR Aeroportos (2022)

		SE 🛛	Dyl Pavement	Expertise in Action BOLETIM DE SONDAGEN	1 DA ESTRUTURA DO PAVI	MENTO		
Local: Aeroporto o	de Palmas/TO					Coorde	enadas:	
Pista: PPD				Técnico Responsável: Cláudia e Equipe		Latitude	Longitude	Zona
				Data: 22/07/2022		788507	8861784	22
POÇO: PI-01	KM:			PISTA		HARDING IN	in the low second	
Camadas	Profun	didade	Espessura	MATERIAL	Observação:		A STATE OF THE OWNER	
Camadas	DE	Α	(cm)	matestat			State of Contraction of Contractiono	-
Revestimento	44,0	54,0	10,0	CBUQ				-
Base	11,0	44,0	33,0	Solo cimento + pedregulho	Observação: Há material saturado em alguma camada? Não	Constant of the	22 the july the 202	-25
Subleito	0,0	11,0	11,0	Argilo arenoso		adri Aver	ide Josculni Techelo Plans Direidi Be	Patrola Patrola Patrola
POÇO: PI-01	км :		А	COSTAMENTO		and another state		
Come de s	Profun	didade	Espessura		Observação:	- 30-		
Camadas	DE	Α	(cm)	MATERIAL		and the	the state	-
Revestimento	44,0	54,0	10,0	CBUQ				
Base	3ase 11,0 44,0 33,0		33,0	Solo cimento + pedregulho	Observação: Há material saturado em alguma camada? Não	1		31102
Subleito	0,0	11,0	11,0	Argilo arenoso	All Avenue of the second of th			
			-		·I	.		

		SE 🛛		Expertise in Action	I DA ESTRUTURA DO PAVIN	MENTO				
Local: Aeroporto d	e Palmas/TO					Coorder	iadas:			
Pista: PPD				Técnico Responsável: Cláudia e Equipe		Latitude	Longitude	Zona		
				Data: 22/07/2022		788920	8861581	22		
POÇO: PI-02	KM:			PISTA		and the second s	Sec. 212 Part	100		
Camadas	Profun DE	didade A	Espessura (cm)	MATERIAL	Observação:	S CAR	10 10 10	A		
Revestimento	0,0 10,0 1			CBUQ		A				
Base	10,0	16,0	6,0	Solo cimento + pedregulho marrom escuro	Observação: Há material	S 18				
Sub-Base	16,0	39,5	23,5	Solo cimento + pedregulho cinza claro		22 de rat de 20	21 19:58 HR 72 5 19:00 19:00 19			
Subleito	39,5	54,0	14,5	Areno argiloso, cor vermelho						
POÇO: PI-02	КМ :			ACOSTAMENTO						
Camadas	Profun DE	didade A	Espessura (cm)	MATERIAL	Observação:	- 19 A		T. A. S.		
Revestimento	0,0	10,0	10,0	CBUQ.			-			
Base	10,0 16,0 6,		6,0	Solo cimento + pedregulho marrom escuro	Observação: Há material					
Sub-Base	ub-Base 16,0 39,5 23,5		23,5	Solo cimento + pedregulho cinza claro	camada? Não	ao But	22 de jul. de 2022 1 221 7/110 Palman - TO, 221	and the second		
Subleito	39,5	54,0	14,5	Areno argiloso, cor vermelho		-	Velopite Nomer	A CONTRACTOR		

	UTU ENCEDALARIA PARA ALÉM DA TÉCHICA	SE D	Dy Dy Pavement	Expertise in Action	M DA ESTRUTURA DO PAVI	MENTO					
Local: Aeroporto d	de Palmas/TO					Coord	enadas:				
Pista: PPD				Técnico Responsável: Cláudia e Equipe		Latitude	Longitude	Zona			
				Data: 23/07/2022		789265	8861290	22			
POÇO: PI-03	KM:			PISTA		TE H					
Camadas	Profun	didade	Espessura	ssura Observação:							
Canadas	DE	Α	(cm)			and the second s					
Revestimento	Revestimento 0,0 10,0		10,0	CBUQ	Obranuzcão: Há material	1	LAN THE				
Base	10,0	41,0	31,0	Solo cimento + pedregulho	saturado em alguma camada? Não, mas o solo						
Subleito	41,0	51,0	10,0	Areno argiloso, cor vermelho	apresenta umidade	21 de jul de 2 14 ba 6 e					
POÇO: PI-03	км :	•		ACOSTAMENTO							
Comodor	Profun	didade	Espessura		Observação:	14 strains		and the second second			
Camadas	DE	Α	(cm)	MATERIAL							
Revestimento	Camada3 DE A Revestimento 0,0 10,0 Base 10,0 41,0		10,0	CBUQ	Obropusção: Há matorial	A spille					
Base			31,0	Solo cimento + pedregulho	observação: Ha material saturado em alguma camada? Não, mas o solo		- 20 mil jul de DO	and the state			
Subleito	Subleito 41,0 51,0	51,0	10,0	Areno argiloso, cor vermelho	apresenta umidade	le					

C.10 – Aeroporto SBTE – Teresina/PI. Fonte: CCR Aeroportos (2022)

ocal: Aeroporto	de Teresina					Coordenadas:
ista: PPD				741355.19 9439405.42		
				Data: 07/06/2022		
DÇO: PI-01	км :			ACOSTAMENTO		
Camadas	Profun	ndidade	Espessura	MATERIAL	Observação:	
	0,0	6,0	6,0	Revestimento Asfaltico		
Revestimento						
					Observação: Há material	
Base	6,0	30,0	24,0	Solo Betume	camada? Não	
Sub-Base	30,0	80,0	50,0	Areia, siltoso com Pedregulhoso amarela		XALAR
Subleito	80,0	90,0	10,0	Silte arenoso cinza escuro		0700 071215
						50601, 282309W
					ř	
Camadas	RM: Profu	ndidade	Espessura	PISTA	Observação:	
500.000000	DE	A	(cm)	MATERIAL		ALL AND DECEMBER
	0,0	10,0	10,0	Revestimento Asfaltico	-	
Revestimento	3 7			£	-	States and a state of
		<u> </u>			Obranuação: Há matorial	Set Vere -
78070	- 3) / Skož (S	0.000	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		saturado em alguma	The second s
Base	10,0	59,0	49,0	Solo Betume	camada? Não	CALL AND DESCRIPTION
Sub-Base	59,0	70,0	11,0	Areia, siltoso com Pedregulhoso amarela	-	N 1 2714W
Subieito	70,0	80,0	10,0	Silte arenoso cinza e amareio	-	
				<u>8</u>		
		SE [Expertise in Action BOLETIM DE SONDAGEN	M DA ESTRUTURA DO PAVI	MENTO
	de Teresina					Coordenadas:
cal: Aeroporto				Técnico Responsável:		741294.19 9439998.85
cal: Aeroporto sta: PPD						
cal: Aeroporto sta: PPD				Data: 09/06/2022		
cal: Aeroporto sta: PPD DÇO: PI-03	KM:			Data: 09/06/2022 PISTA	-1	
cal: Aeroporto sta: PPD DÇO: PI-03 Camadas	KM: Profun DE	didade A	Espessura (cm)	Data: 09/06/2022 PISTA M A T E R I A L	Observação:	a proto
cal: Aeroporto ita: PPD DÇO: PI-03 camadas	KM: Profun DE 0,0	ididade A 6,0	Espessura (cm) 6,0	Data: 09/06/2022 PISTA M A T E R I A L TSD	Observação:	5-101 + 10
cal: Aeroporto ta: PPD VÇO: PI-03 Camadas	KM: Profun DE 0,0	didade A 6,0	Espessura (cm) 6,0	Data: 09/06/2022 PISTA M A T E R I A L TSD	Observação:	A PT
cal: Aeroporto sta: PPD DÇO: PI-03 Camadas Revestimento	KM: Profur DE 0,0	didade A 6,0	Espessura (cm) 6,0	Data: 09/06/2022 PISTA M A T E R I A L TSD	Observação:	
cal: Aeroporto sta: PPD DÇO: PI-03 Camadas Revestimento	KM: Profur DE 0,0	didade A 6,0	Espessura (cm) 6,0	Data: 09/06/2022 PISTA M A T E R I A L TSD	Observação: Observação: Há material	
cal: Aeroporto sta: PPD DÇO: PI-03 Camadas Revestimento Base	KM: Profur 0,0 6,0	didade A 6,0 30,0	Espessura (cm) 6,0 24,0	Data: 09/06/2022 PISTA M A T E R I A L TSD Solo Betume	Observação: Observação: Há material saturado em alguma camada? Não	
cal: Aeroporto sta: PPD DÇO: PI-03 Camadas Revestimento Base Sub-Base	KM: Profur DE 0,0 	1didade A 6,0 30,0 40,0	Espessura (cm) 6,0 24,0 10,0	Data: 09/06/2022 PISTA M A T E R I A L TSD Solo Betume Siltoso arenoso com Pedreguihoso (cascalho)	Observação: Observação: Há material saturado em alguma camada? Não	4.755 42°4925134W
ccal: Aeroporto sta: PPD 2çO: PI-03 Camadas Revestimento Base Sub-Base Subleito	KM: Profur DE 0,0 6,0 30,0 40,0	didade A 6,0 30,0 40,0 60,0	Espessura (cm) 6,0 24,0 10,0 20,0	Data: 09/06/2022 PISTA M A T E R I A L TSD Solo Betume Siltoso arenoso com Pedregulhoso (cascalho) Silte arenoso fino cinza e amarelo	Observação: Observação: Há material saturado em alguma camada? Não	46/15/5 42/49/25/134/W Revitante

Data	Hors	Rotative of	Expensura do material cm²	Tipo de revestimento	Cha.
13/set	09:46:00	805	13,0	cauq	Read 2 and 6 200 and 6 10 a
12/tet	50-90-00	806	11,0	cauo,	Rede 10 de un de Artic 4000- Local de un de Artic 4000- Local de un de Artic 4000- Regente de
13/set	10:10:00	807	14,0	awa	
13/set	10:33:00	838	12,4	ano	Reder 10 the red. dos 2022 fo 1 the Local Cli de aud. dos 2022 fo 1 the Local Cli de aud. dos 2023 fo 1 the Local Cli de aud. dos 2023 fo 1 the

C.11 – Aeroporto SBPL – Petrolina/PE. Fonte: CCR Aeroportos (2022)

.ocal: Aeroporto de Petrolina Coordenadas:										
ista: 13				Técnico Responsável: Ana Calado	Latitude	Longitude Zona				
lúmero do poço:	PI01			Data: 25/08/2022	326238	8965158 24				
OÇO: PI-01	KM:			PISTA/ACOSTAMENTO						
Camadas	Profun DE	didade A	Espessura (cm)	MATERIAL	and and the second					
	0,0	8,0	8,0	CBUQ	A State	and the second second				
						des and the second				
Revestimento					and the second	The state of the				
					A Martin	- Standing				
Base	8,0	23,0	15,0	Solo cimento + brita		- Concer				
Sub-Base	23,0	34,0	11,0	Solo cimento + brita		BROTH SER				
Reforço do Subleito	34,0	46,0	12,0	material rico em seixos de diferentes tamanhos granulométricos	C.Sept	25 de ago. de 2022 15 44.3 24L 326237 896515				
Reforço do Subleito (2)	46,0	70,0	24,0	Material areno-argiloso (areia grossa, seixos, cascalho		Petrolina - PE, 56313-900, Bras Altitude:S07.2r Velocidade D.0km/				
Subleito				Não foi encontrado	-	#PIC Número do indice: 63				

COPAVEL ATP	ENGENHARIA PARAALÉN DA TÉCNICA		Pavement	Expertise in Action				
Local: Aeroporto d	e Petrolina					Coorde	nadas:	
Pista: 13				Técnico Responsável:	Ana Calado	Latitude	Longitude	Zona
Número do poço:	P103			Data: 27/08/2022		327319	8964784	24
POÇO: PI-03	KM:			PIS	TA		1 10-	The
Camadas	Profun	didade	Espessura	МАТЕ	RIAL	- THE MARKED FOR	an otering	and the second
	0,0	8,0	(cm) 8,0	СВ	UQ			
							1 130 3	ip f
Revestimento						THE REAL PROPERTY OF	A DAT	1945
						South States	ANA A	Maryo A
Base	8,0	27,0	19,0	Solo cimento com	areia média + brita	State of	A Late	
Sub-Base							10- 1	6
Reforço do Subleito	27,0	98,0	71,0	Areia argilosa com Cor:ver	presença de seixos melho.	HE WE REAL	27 de ago. de 20 24L 3273	22 14:59:59 21 8964790
Reforço do Subleito (2)						im 11, syn Zona Rural, I	Petrolina - PE, 5631 Altit Velocida	3-900, Brasil tude:364.7m ade:0.0km/h
Subleito	98,0	110,0	12,0	Areia argilosa	. Cor: marrom	care and	Número do	#PI03 indice: 686

Data	Hora	Rotativa n ^e	Espessura do material cm	Paw Tipo de revestimento	ement Expertise in Action Obs.
		5	13	CBUQ 01	
04/set 14:58:00	R04	7	BINDER		
			6	CBUQ 02	
			7,0	CBUQ 01	Espessura total: 16,3 cm
05/set 15:13:00	R05	9,3	CBUQ 02	And a first of the second seco	
03/set 13:40:00	13-40-00	805	7	CBUQ 01	Espessuta total - 33 cm
	iller and a second	10	CBUQ 02		

COPAVEL	FUT		SONDAGEM ROTATIVA AEROPORTO - SBPL	Pa	Dynatest* vement Expertise in Action
Data	Hora	Rotatíva n ^e	Espessura do material cm	Tipo de revestimento	Obs.
03/set	12:54:00	R07	10	CBUQ 01	
03/set	13:25:00	RDS	14	CBUQ	
05/set	15:22:00	R09	19	CBUQ	
05/set	15:43:00	R10	28	CBUQ	

			Dvr	natest				
COPAVEL ATF	ENGENERARIA IPARA ALÉRI DA TÉCHICA		Pavement	Expertise in Action	M DA ESTRUTURA DO PAVIN	MENTO		
Local: Aeroporto d	le São Luis					Coorde	enadas:	
Pista: PPD 06/24				Técnico Responsável: Carlos e Equipe		Latitude	Longitude	Zona
					9714445	585364	23M	
POÇO: PI-03	км:			PISTA	Observação:		-	- Antonio
Camadas	Profun	ndidade A	Espessura (cm)	MATERIAL	Observação.	and the second sec	Los and an and	-
	0,0	5,0	5,0	CBUQ		1 Conservation States		
					1	and a state of the		
Revestimento					-	The part of the second	and the second	
					Observação: Há material		and a second second	1
Base	5.0	36.0	31.0	Brita Graduada simples com solo betume	saturado em alguma	1. S.	(The second	ALC NO.
Sub-Base	36.0	56.0	20.0	Areia areilosa com pedregulho, vermelho	Camada : Nau			
Peforro do Subleito	50,0	50,0	20,0	Areia al Biosa com peureBanio Vermeino	-	A State State		
Cubleite		71.0	15.0		-	A strate of		
Subletto	50,0	/1,0	15,0	Argia arenosa com pedreguno				19 mm 47
OÇO: PI-03	КМ :		0	ACOSTAMENTO	Obranceža:	1 . St.		
Camadas	Profur DE	ndidade A	Espessura (cm)	MATERIAL	Observação.		D ge	
	0,0	5,0	5,0	CBUQ			a sa	
					-	CON-14		
Revestimento					-			1
					Observação: Há material	St.		15. 1
Base	5.0	36.0	21.0	Brita Graduada simples com solo betume	saturado em alguma	3		
Sub Para	5,0	50,0	51,0	Areiz arrilara com pedregulhe vermelhe	camada? Não	10 C		1
Sub-base	36,0	56,0	20,0	Areia argiosa com pedreguno vermeno	-	States of the little		
Reforço do Subieito					-	•	15 de mai, de 2 23M 585	022 07 44 364 97 144 http://doi.16
\bigcirc					•	•		
	P ENGENALARIA P ENGENALARIA PANA ALÉM DA TÉCNIC	≺⊏ [Pavement	Expertise in Action	M DA ESTRUTURA DO PAVI	MENTO		
Local: Aeroporto	de São Luis					Coord	enadas:	
Pista: PPD 06/24				Técnico Responsável: Carlos e Equipe		Latitude	Longitude	Zona
				Data: 20/05/2022		9714066	585059	23M
POÇO: PI-04	KM:			PISTA			Recting and the second second	Sec. 18
Camadas	Profu	ndidade	Espessura	MATERIAL	Observação:	and the second second		
	DE	A 60	(cm)	CBUO		The second second	And Andrews	i kei
	0,0	0,0	0,0		-	the state of the state of		
Revestimento					_			-
					Observação: Há matorial	The second second	Estal The Ma	
					saturado em alguma		er	Side-
Base	6,0	28,0	22,0	Solo betume com brita	camada? Não			
Sub-Base	28,0	38,0	10,0	areia siltosa com pedregulho vermelho	_		- Company	and the second s
Reforço do Subleito					_	A Apple of the second second	a find and and	- Auge
Subleito	38,0	50,0	12,0	Silte arenoso amarelo		and the second second		
POÇO: PI-04	KM :		0	ACOSTAMENTO		and de las		
Camadas	Profu	ndidade	Espessura	MATERIAL	Observação:	the the set		ale ale
	DE	A	(cm)	0010		Barris Maria		the sea
	0,0	6,0	8,0	CBUQ		C. Larsen		
Revestimento		+				A AND	· · · · · ·	and and
		-			Obranacia	and the second		-
					saturado em alguma		a de la come	-
Base	6,0	28,0	22,0	Solo betume com brita	camada? Não	100		
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			And a second second second	STATES AND A
Sub-Base	28,0	38,0	10,0	areia siltosa com pedregulho vermelho			a Break	
Sub-Base Reforço do Subleito	28,0	38,0	10,0	areia siltosa com pedreguino vermeino				

C.12 – Aeroporto SBSL – São Luis/MA. Fonte: CCR Aeroportos (2022)

COPWE											
Deta	Hora	Rotative n#	Espessara do material cm	Tipo de revertimento	Obs.						
05/out	67:21:00	8-05	7,0	auq							
CL/out	07:36:00	8-06	75	and							
05/out	07:52:00	8-07	7,0	aua							
CL/out	08:12:00	R-QL	75	and							

C.13 – Aeroporto SBIZ – Imperatriz/MA. Fonte: CCR Aeroportos (2022)

		SE [Expertise in Action BOLETIM DE SONDAGEN	M DA ESTRUTURA DO PAVI	MENTO			
Local: Aeroporto de Imperatriz Coordenadas:									
Pista: PPD/Acostamento				Técnico Responsável: Carlos e Equipe		Latitude	Longitude	Zona	
				Data: 23/05/2022		9388509,32	228122,05	23M	
POÇO: PI-01	KM:			PISTA	at				
Camadas	Profur	ndidade	Espessura	MATERIAL	Observação:	Start of the last	all in the	and the second	
	DE	A	(cm)				18 - 3	A COL	
	0,0	25,0	25,0	CBUQ		100 0	Section Section	1.1	
						2083		and the second	
Revestimento					1	-	a for al Ca	State of	
					Observação: Há material	A 14 34		AN A	
					saturado em alguma			1 Mary	
Base	25,0	44,0	19,0	Pedregulho areno-argiloso vermelho	camada? Não	3	Contra Cal		
Sub-Base	44,0	64,0	20,0	Pedregulho areno-argiloso vermelho				State .	
Reforço do Subleito						The first of	1 States	18	
Subleito	64,0	149,0	85,0	Areia argilosa vermelha					

L								
POÇO: PI-02	KM:			PISTA				
Comodos	Profur	didade	Espessura	MATERIAL	Observaçao:	the second se		
Camadas	DE	Α	(cm)	MATERIAL				
	0,0	25,0	25,0	CBUQ		+		
Bauartimento								
Revestimento]			
					Observação: Há material			
Base	25,0	43,0	18,0	Brita Graduada Simples	camada? Não			
Sub-Base	43,0	58,0	15,0	Pedregulho areno-argiloso vermelho]			
Reforço do Subleito]			
Subleito	58,0	134,0	76,0	Areia silto-argilosa vermelha				

POÇO: PI-03	км:	KM:		PISTA		
Comodor	Profur	ndidade	Espessura	ura Observação:		
Califadas	DE	Α	(cm)	MATERIAL		
	0,0	29,0	29,0	29,0 CBUQ		
Revestimento						
					Observação: Há material saturado em alguma	
Base	29,0	40,0	11,0	Brita Graduada Simples	camada? Não	
Sub-Base	40,0	54,0	14,0	Pedregulho areno-argiloso vermelho		
Reforço do Subleito						and the second s
Subleito	54,0	54,0 91,0 37,0		Areia silto-argilosa amarela		
	•	•		•	• • •	

COPAVE											
Deta	Hora	Rotativa nº	Espessura do material cm	Tipo de revestimento	Obs.						
07/out	19:03:00	RD1	13,0	CBUQ	A CONTRACT OF CONTRACT						
01/out	20:00:00	R02	16,0	CBUQ	Rederif de cut, de la cadicación de la c						
07/out	20:28:00	RO3	14,3	CBUQ	Reserve de la construcción de Imperente a Preserve de la construcción de Imperente a Preserve de la construcción de Imperente a Preserve Registo Mareiro de Imperente						

C.14 – Aeroporto SBCT – Curitiba/PR. Fonte: CCR Aeroportos (2022)

	UTU PINA KLÉH DA TÉCH KA	RE [Pavement	BOLETIM DE SONDAGEM	DA ESTRUTURA DO PAVI	менто
Local: Aeroporto A	fonso Pena					Coordenadas:
Pista: Pista 15-33	Lado Direito			Técnico Responsável: Carlos e Equipe		22J0682788 7175769
				Data:30/07/2022		
POÇO: PI-02	KM:			PISTA		
Camadas	Profun	didade	Espessura	MATERIAL	Observação:	FEK Auptrisia
	DE	A	(cm)			PISTA-L D
	0,0	6,0	6,0	1ª Camada CBUQ		3017/22
	6,0	12,0	6,0	2ª Camada CBUQ		
Revestimento	12,0	17,0	5,0	3ª Camada CBUQ		
	17,0	22,0	5,0	4ª Camada CBUQ	Observação: Há material saturado em alguma	
	22,0	27,0	5,0	5ª Camada CBUQ	camada? Não	
Base	27,0	43,0	16,0	Macadame Hidráulico]	
Reforço do Subleito	43,0	70,0	27,0	Cascalho Amarelo]	
Subleito	70,0	120,0	50,0	Argila Marrom (úmida)		

		SE 🛛	Dyi Pavement	BOLETIM DE SONDAGEM	DA ESTRUTURA DO PAVI	иелто			
Local: Aeroporto Afonso Pena Coordenadas:									
Pista: Pista 15-33 L	ado Esquerdo)		Técnico Responsável: Carlos e Equipe		22J0683440 7175170			
				Data:01/08/2022					
POÇO: PI-05	KM:			PISTA					
Camadas	Profun	didade	Espessura	MATERIAL	Observação:				
	DE	Α	(cm)			HER CURITINE			
	0,0	7,0	7,0	1ª Camada CBUQ		PIEDE -			
Pevestimento	7,0	14,0	7,0	2ª Camada CBUQ		01/8/«-			
Revestimento	14,0	21,0	7,0	3ª Camada CBUQ	Obran acõa: Há matarial				
	21,0	28,0	7,0	4ª Camada CBUQ	saturado em alguma				
Base	28,0	46,0	18,0	Macadame Hidráulico	camada? Sim, na camada				
Sub-Base	46,0	67,0	21,0	Cascalho vermelho	de Argila Organica				
Reforço do Subleito	67,0	76,0	9,0	Camada de bloqueio (Areia de Brita)					
Subleito	76,0	110,0	34,0	Argila Orgânica		-36% ·			

C.15 – Aeroporto SBFI – Foz do Iguaçu/PR. Fonte: CCR Aeroportos (2022)

	UTU P ENGENHARIA P RARAALEM DA TÉCNICA	I DA ESTRUTURA DO PAVI	менто			
Local: Aeroporto I	Foz do Iguaçú					Coordenadas:
Pista: PPD-15-33				Técnico Responsável: Carlos e Equipe		21J0752348 7166727
				Data: 25/06/2022		
POÇO: PI-04	KM:			PISTA		
Camadas	Profun DE	didade A	Espessura (cm)	MATERIAL	Observação:	
	0,0	5,0	5,0	1ª Camada CBUQ		100 10 10 20 10 10 10 10 10 10 10 10 10 10 10 10 10
	5,0	11,0	6,0	2ª Camada CBUQ		Pista-1E 15-06-21
Revestimento	11,0	17,0	6,0	3ª Camada CBUQ		PI-04
					Observação: Há material saturado em alguma	The second secon
Base	17,0	36,0	19,0	Pedrisco Misto com Brita Graduada Simples	camada? Sim, na camada de Argila Orgânica	
Sub-Base	36,0	50,0	14,0	Macadame Hidráulico		
Reforço do Subleito	50,0	90,0	40,0	Solo Brita Amarelo		
Subleito	90,0	125,0	35,0	Argila Siltosa Vermelha (úmida)		and the second

POÇO: PI-05	KM:			PISTA		
Comodor	Profur	Profundidade		MATERIAL	Observação:	AFROP ENZ.
Califadas	DE	Α	(cm)	MATERIAL		DETA
	0,0	6,0	6,0	1ª Camada CBUQ		26-06-12
Devention ante	6,0	12,0	6,0	2ª Camada CBUQ		PI-03
Revestimento	12,0	18,0	6,0	3ª Camada CBUQ		
	18,0	24,0	6,0	4ª Camada CBUQ	Observação: Há material	
Base	24,0	47,0	23,0	1ª Camada Brita Graduada Simples	camada? Não	
Sub-Base	47,0	70,0	23,0	2ª Camada Brita Graduada Simples		
Reforço do Subleito						a the
Subleito	70,0	120,0	50,0	Argila Vermelha		

OÇO: PI-06	KM:	KM: PISTA	695) C347	TASEPP. FOZ.		
Comodor	Profur	ndidade	Espessura	MATERIAL	Observação:	PISTA-LE
Camadas	DE	Α	(cm)	MATERIAL		25-06-44 07-06
	0,0	5,0	5,0	1ª Camada CBUQ		
	5,0	10,0	5,0	2ª Camada CBUQ		and the second se
Revestimento	10,0	15,0	5,0	3ª Camada CBUQ		and the second second
	15,0	20,0	5,0	4ª Camada CBUQ	Observação: Há material	A State of the state of the
	20,0	25,0	5,0	5ª Camada CBUQ	camada? Não	
Base	25,0	49,0	24,0	1ª Camada Brita Graduada Simples		and have the first
Sub-Base	49,0	73,0	24,0	2ª Camada Brita Graduada Simples		
Subleito	73,0	120,0	47,0	Argila Siltosa Marrom		25 ANG ANT ANT AND

COPAVEL		test" lie in Action
Local: Aeroporto Foz do Iguaçu - Pa Fecnico Responsável: Carlos	กอกอ์	
	R-07 Data da extração: 11/09/2022 Pista: 15-33 Latitude: 21J0752183 Longitude: 716 CBUQ Espessura: 25,0 cm	6844
	R-08 Data da extração: 10/09/2022 Pista: 15-33 Latitude: 210752368 Longitude: 716 CBUQ Espessura: 25,0 cm	6901
	R-09 Data da extração: 10/09/2022 Pista: 15-33 Latitude: 21/0752556 Longitude: 716 CBUQ Espessura: 22,0 cm	6509
	R-10 Data da extração: 10/09/2022 Pista: 15-33 Latitude: 21J0752795 Longitude: 716 CBUQ Espessura: 23,0 cm	6300

		SE [Expertise in Action	DAGEM DA ESTRUTURA DO PAVIN	IENTO	
Local: Aeroporto Gov. Jo	sé Richa					Coorde	nadas:
Pista: PPD -13-31				Técnico Responsável: Carlos e Equipe		22K0486007	7419817
				Data: 28/08/2022			-
POÇO: PI-02	KM:			PISTA			
Camadas	Profu	ndidade	Espessura	MATERIAL	Observação:	-	-
Camadas	DE	Α	(cm)	MATERIAL		HER.LONDR	NA
	0,0	6,0	6,0	1ª Camada CBUQ		PISTALIS	2.1
Pevestimento	6,0	12,0	6,0	2ª Camada CBUQ		2018122	
Nevestimento					Obraniacão: Há matorial		
					saturado em alguma		and the second
Base	12,0	34,0	22,0	Brita Graduada Simples	camada? Sim, na camada	Station .	the second
Sub-Base	34,0	57,0	23,0	Solo Brita	de Argila Vermeina	Marine 7	12/2
Reforço do Subleito							and the
Subleito	57,0	120,0	63,0	Argila Vermelha		1	Standal and
	Tana .			12120	T I		
POÇO: PI-05	KM:			PISTA	Observação:	the second	-
Camadas	Protu	ndidade	Espessura	MATERIAL		Charles	
	0,0	6,0	6,0	1ª Camada CBUQ			
	6,0	12,0	6,0	2ª Camada CBUQ		California ()	TA:13-31
Revestimento	×				×	and the second second	18/33
					Observação: Há material		
Base	12,0	42,0	30,0	Brita Graduada Simples	saturado em alguma camada? Não		and a second
Sub-Base							1000
Reforço do Subleito	65,0	83,0	18,0	Solo Brita			Balling -
Subleito	83,0	120,0	37,0	Argila Vermelha			and a state of the state of the

C.16 – Aeroporto SBLO – Londrina/PR. Fonte: CCR Aeroportos (2022)

COPAVEL	ATP INCENSION
ocal: Aeroporto Gov. José Richa - Londrina - Pa ecnico Responsável: Carlos	rană
	R-05
THE REAL PROPERTY OF	Data da extração: 01/09/2022
	Pista: PPD - 13-31
	Latitude: 22K0486406 Longitude:7419649 Espessura CBUQ: 17,0 cm
	R-06
	Data da extração: 01/09/2022
	Pista: PPD - 13-31
	Latitude: 22K0486435 Longitude: 7419635
	Espessura CBUQ: 16,0 cm
	R-07
	Data da extração: 01/09/2022
Losen C	Pista: PPD - 13-31
	Latitude: 22K0486974 Longitude: 7419440
	Espessura CBUQ: 19,0 cm
S. AL	R-08
State State	Data da extração: 01/09/2022
	Pista: PPD - 13-31
	Latitude: 0487035 Longitude: 7419422
CE.	Espessura CBUQ: 16,0 cm

C.17 – Aeroporto SBBI – Curitiba (Bacacheri)/PR. Fonte: CCR Aeroportos (2022)

		SE [Pavement	Expertise in Action	AGEM DA ESTRUTURA DO PAVIN	иелто
Local: Aeroporto d	le Bacacheri					Coordenadas:
Pista: Lado Esquer	rdo			Técnico Responsável: Carlos e Equipe		22J0677953 7189493
				Data: 05/05/2022		· · · ·
POÇO: PI-10	KM:			PISTA		
Camadas	Profun	didade	Espessura	MATERIAL	Observação:	ALKOPORTO DE Receberiqueit
Camadas	DE	Α	(cm)			VACESSO LE
	0,0	8,0	8,0	CBUQ,		PI
Revertimente						
Revestimento					oburn far til en sid	
					saturado em alguma	
Base	8,0	18,0	10,0	Brita Graduada Simples	camada? Sim, na camada	
Sub-Base	18,0	40,0	22,0	Solo Brita Amarelo	de argita organica.	
Reforço do Subleito						
Subleito	40,0	93,0	53,0	Argila Orgânica (Preta)		

COPAVEL	ATP RECEIPTION
ocal: Aeroporto de Bacacheri - Curitiba - Paranà ecnico Responsável: Carlos	
S S S S S S S S S S S S S S S S S S S	R-01 Data da extração: 13/10/2022 Pista: PPD - 18-36 Latitude: 22J0678068 Longitude: 7188434 Espessura CBUQ: 17,0 cm
	R-02 Data da extração: 13/10/2022 Pista: PPD - 18-36 Latitude: 22J0678058 Longitude: 7188461 Espessura CBUQ: 6,5 cm
	R-03 Data da extração: 13/10/2022 Pista: PPD - 18-36 Latitude: 22J0677987 Longitude: 7188644 Espessura CBUQ: 6,0 cm
No Contraction of the second sec	R-04 Data da extração: 13/10/2022 Pista: PPD - 18-36 Latitude: 22J0677980 Longitude: 7188659 Espessura CBUQ: 5,5 cm

C.18 – Aeroporto SBNF – Navegantes/SC. Fonte: CCR Aeroportos (2022)

		SE I		Expertise in Action BOLETIM DE SONDAGEN	I DA ESTRUTURA DO PAVI	иенто
Local: Aeroporto d	e Navegantes					Coordenadas:
Pista: Pista Lado D	ireito			Técnico Responsável: Carlos e Equipe		22J0733337 7024777
				Data: 16/05/2022		_
POÇO: PI-03	KM:			PISTA		
Camadas	Profur	ididade	Espessura	MATERIAL	Observação:	
	DE	Α	(cm)			APPOPURTO DE
	0,0	6,0	6,0	CBUQ		WAVES HALERIA
						FURD-03 LD KEELAZID
Revestimento					1	PISTO 22
					Observação: Há material	
Base	6,0	22,0	16,0	Brita Graduada Simples	camada? Não	
Sub-Base	22,0	38,0	16,0	Brita Graduada Simples]	2. A CE
Reforço do Subleito						
Subleito	38,0	120,0	82,0	Silte Arenoso Com Cascalho Marrom		

	UTU ENGEDIHARIA PIRRA ALÉRI DA TÉCNICA	SE D	Dyi Pavement	Expertise in Action	1 DA ESTRUTURA DO PAVIN	MENTO		
Local: Aeroporto de Navegantes Coordenadas:								
Pista: Pista Lado E	squerdo			Técnico Responsável: Carlos e Equipe		22J0733216 7024644		
				Data: 16/05/2022				
POÇO: PI-04	KM:			PISTA		A CONTRACT OF A		
Camadas	Profur	didade	Espessura	MATERIAL	Observação:	ARROPORTD DE		
	DE	A	(cm)			STRUTTARINA		
	0,0	4,0	4,0	CBUQ		PISTP 22		
Revestimento					-			
					Observação: Há material	一个的小文		
Base	4,0	19,0	15,0	Brita Graduada simples	camada? Não			
Sub-Base	19,0	33,0	14,0	Brita Graduada Simples]			
Reforço do Subleito								
Subleito	33,0	125,0	92,0	Silte Arenoso Com Cascalho Marrom				

					P	ERFIL GEOTÉCNICO INDIVIDUAL - BROQUEAMENTO	(BQ)		
						ABNT NBR-9604/86 - Abertura de poço e trincheira de inspeção em solo			
Cliente:	Concessi	onária do	Bloc	o Sul	S.A		Furo:	BQ-06	Folha:
Obra:	Aeroporto	de Nave	gant	es (BC	2)		Cota (m):		1/1
Local:	Navegant	tes/SC					Coordenadas:	N=7024704,3400	
Data:	30/07/202	22						E=733280,0500	
AMOSTRA COLETADA N° ESCALA (m)	PROFUND. CAMADA (m)	PERAL GEÓLOGICO	N.A. (m)	ENSAIO (%) 30V0IWN	DENSIDADE UMIDA (g'am ³)	DESCRIÇÃO DO MATERIAL	RI	EGISTRO FOTOGRÁFI	со
° -	0.10 -					REVESTIMENTO ASFÁLTICO			
]]	0,18					Critério Especificado pelo Cliente			

					P	ERFIL GEOTÉCNICO INDIVIDUAL - BROQUEAMENTO	(BQ)		
						ABNT NBR-9604/86 - Abertura de poço e trincheira de inspeção em solo			
Cliente:	Concessi	onária do	Bloc	o Sul	S.A		Furo:	BQ-09	Folha:
Obra:	Aeroporto	de Nave	gant	es (BC	2)		Cota (m):	-	1/1
Local:	Navegant	tes/SC					Coordenadas:	N=7025062,0800	
Data:	31/07/202	22						E=733808,5600	
AMOSTRA OOLETADA N° ESCALA (m)	PROFUND. CAMADA (m)	PERFL GEOLOGICO	N.A. (m)	ENSAIO (%) 30V0IWN	DENSIDADE	DESCRIÇÃO DO MATERIAL	R	EGISTRO FOTOGRÁFIO	co
° -	0.00					REVESTIMENTO ASFÁLTICO			
	0,20 -		Т			Critério Especificado pelo Cliente			

COPAVEL	F	ENGENAMENA PARRAALEM DA TÉCNICA	SE D		BOLETIM DE SONDAGEM	DA ESTRUTURA DO PAVIN	IENTO
Local: Aero	porto d	e Joinville		Coordenadas:			
Pista: PPD 1	15-33			Técnico Responsável: Carlos e Equipe			22J0719796 7097825
					Data: 12/06/2022		
POÇO: PI-05		KM:			PISTA		
		Profun	Profundidade Espessura		MATERIAL	Observação:	ACRIPTICAL DE
Califadas		DE	Α	(cm)	MATERIAL		DE OELD
			6,0	6,0	1ª Camada CBUQ		PISTOL P
		6,0	12,0	6,0	2ª Camada CBUQ	2ª Camada CBUQ	
Revestiment	0					Ī	100 - 10 - 10 - 10 - 10 - 10 - 10 - 10
						Observação: Há material	
Base		12,0	41,0	29,0	Seixo Marrom	camada? Não	
Sub-Base		41,0	70,0	29,0	Seixo Marrom	1	-04
Reforço do Sub	Reforço do Subleito Subleito		100,0	30,0	Silte Argiloso Marrom]	
Subleito			130,0	30,0	Silte Argiloso Cinza (Orgânico) Saturado	Ţ	All and the second s

C.19 – Aeroporto SBJV – Joinville/SC. Fonte: CCR Aeroportos (2022)

COPAVEL	TUTURE Dynatest
cal: Aeroporto de Joinville - SC cnico Responsável: Carlos	
	R-01 09/10/2022 Pista: PPD - 15-33 Latitude: 22J0719549 Longitude: 7097995 Pavimento Flexível Espessura: 15,0 cm
	R-02 09/10/2022 Pista: PPD - 15-33 Latitude: 22J0719586 Longitude: 7098970 Pavimento Flexível Espessura: 15,0 cm
	R-03 09/10/2022 Pista: PPD - 15-33 Latitude: 22J0719737 Longitude: 7097866 Pavimento Flexível Espessura: 13,0 cm
	R-04 09/10/2022 Pista: PPD - 15-33 Latitude: 22J0719812 Longitude: 7087776 Espessura: 18,0 cm Pavimento Flexível

FUTURE **Dynatest** BOLETIM DE SONDAGEM DA ESTRUTURA DO PAVIMENTO Pavement Expertise in Action COPAVEL ATP ENGENHANA PNBA KLEN DA TEONICA Coordenadas: Local: Aeroporto Uruguaiana 21J0496348 6705350 Técnico Responsável: Carlos e Equipe Pista: Pista Lado Direito Data:18/07/2022 POÇO: PI-04 KM: PISTA Observação: Profundidade Espessur MATERIAL Camadas ER. URUGU DE Α (cm) 0,0 5,0 5,0 1ª camada CBUQ 5,0 10,0 5,0 2ª camada CBUQ Revestimento 10,0 15,0 5,0 3ª camada CBUQ Observação: Não foi possível continuar a sondagem devido ao nível d'água na camada Base 15,0 28,0 13,0 Macadame Hidráulico de macadame hidráulico Sub-Base Reforço do Subleito Subleito POÇO: PI-05 KM: PISTA Observação: Profundidade Espessura MATERIAL Camadas DE А (cm) 0,0 5,0 5,0 1ª camada CBUQ 5,0 10,0 5,0 2ª camada CBUQ Revestimento 10,0 15,0 5,0 3ª camada CBUQ Observação: Não foi possível continuar a sondagem devido ao

C.20 – Aeroporto SBUG – Uruguaiana/RS. Fonte: CCR Aero	oportos (2022)
0.20 Actopolito 0.200 Orugualana/10.1 onice. Oort Acto	Spontos (2022)

O: PI-06	KM:		-24	PISTA	in the second second second	
Constant Inc.	Profun	didade	Espessura		Observação:	
Camadas	DE A		(cm)	MATERIAL		
	0,0	5,0	5,0	1ª camada CBUQ		AFK. ORUGUN PISTA LD PI-06 LD 17:18-07 - AN
	5,0	10,0	5,0	2ª camada CBUO		
Revestimento	10,0	15,0	5,0	3ª camada CBUQ	Observação: Não foi	
					possivel continuar a sondagem devido ao	
	-	-			nível d'água na camada	ALC: CONTRACT
Base	15,0	50,0	35,0	Macadame Hidraulico	de macadame nidradiico	A state of the sta
Sub-Base						
Subleito	-	0X	8 X			States and the second

Macadame Hidráulico

nível d'água na camada de macadame hidráulico

Base

Sub-Base Reforço do Subleito Subleito 15,0

35,0

20,0

COPAVEL	FUTURE ATP NET OF DE TODO	Parenet Fasefor a Adar
local: Aeroporto de Urugualana - RS Fecnico Responsável: Jamílton		
And the second s	R-05 Data da extraç Pista: 9-27 Latitude: 21JO CBUQ Espessura Tota	ão: 24/09/2022 496430 Longitude: 6705376 1l = 16,0 cm
	R-06 Data da extraç Pista: 9-27 Latitude: 21J0 CBUQ Espessura Tota	ão: 24/09/2022 496572 Longitude: 6705377 al = 14.0 cm
	R-07 Data da extraç Pista: 9-27 Latitude: 21J0 CBUQ Espessura Tota	ão: 24/09/2022 496753 Longitude: 6705403 al = 14.0 cm
	R-08 Data da extraç Pista: 9-27 Latitude: 2130 CBUQ Espessura Tota	ão: 24/09/2022 496856 Longitude: 6705407 11 = 14,0 cm