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Abstract

This work presents a collection of scientific research results in the field of quantum
information. The first paper describes the mathematical properties of a particular type
of state of light, called the two-mode squeezed state (TMSS). We have shown that it is
possible to generate a superposition of such states with particular probability distributions,
making them suitable for applications in quantum information. In particular, such states
are effectively phase insensitive, a property that enables a larger extraction of information
regarding a dynamical process. The second paper deals with an extensive discussion on
the complexity of quantum algorithms. It was observed that while quantum algorithms
can, under certain conditions, outperform classical algorithms in time or space complexity,
some key steps such as state preparation and information retrieval are not always taken
into account when analysing the complexity of quantum algorithms. For this reason, the
aim of this study was to provide a complete complexity analysis for the implementation
of quantum algorithms, considering different alternatives in terms of state preparation,
quantum gate implementation and measurement techniques. We provide an asymptotic
analysis of different algorithm implementation strategies. Finally, the last paper deals with
the Hong-Ou-Mandel interference visibility of photons emitted in a cascade process. As
a result of a two-photon excitation process, an entangled photon pair is emitted. This
unwanted entanglement affects the coherence of the reduced single photon state, i.e. one
of the photons emitted in the cascade process. As a result, the visibility of the Hong-Ou-
Mandel interference is reduced. We show that, under certain conditions, it is possible
to circumvent the restriction imposed by the time-energy entanglement by applying a
post-selection method. The experimental results together with the theoretical framework
are presented to provide a complete analysis of the method.

Keywords: Quantum Computation, Quantum Information, Single Photons, Quantum
Interference.
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1 Overview

In this work, platforms such as trapped ions and quantum dots were investigated
for the study of quantum information, under the joint supervision of Prof. Dr. Celso Jorge
Villas-Bôas and Prof. Dr. Ana Predojević, as part of a cotutelle Ph.D. between Federal
University of São Carlos (Brazil) and Stockholm University (Sweden).

Firstly, we have treated quantum information in its basis regarding the properties of
two-mode squeezed states. The probability distributions in phase space were investigated,
showing potential applications in quantum metrology. In particular, we have employed the
concept of Fisher information to estimate the amount of information that can be extracted
about a dynamical process, using the reduced states of the two-mode squeezed state as
probe. The results show a phase insensitive behavior, thus making the aforementioned
reduced modes a robust platform to estimate displacements in any direction in phase space.
Entanglement properties were also investigated, and the purity of the resulting reduced
state was used as an entanglement witness. The results surpass the degree of entanglement
of the EPR states for a lower squeezing parameter.

Secondly, we have analyzed computational complexity in depth, with the objective
to quantify and optimize the implementation of quantum algorithms, as a way to approach
the processing of quantum information. We point out the space and time complexity
aspects of the information input, processing and reading, providing a detailed analysis and
quantifying lower and upper bounds for resources under distinct architectures for quantum
computation and hardware.

Under Prof. Predojević’s supervision, I took part on the study of properties of two-
photon interference. Specifically, we have investigated the impact of temporal correlations
and time-energy entanglement on the Hong-Ou-Mandel interference of photons emitted
in a cascaded process. We show that with the application of postselection techniques,
it is possible to circumvent the restrictions imposed by the unwanted entanglement
and obtain increased Hong-Ou-Mandel interference visibility. I have collaborated with
the computational simulations and implementation of a method to calculate correlation
functions and coherence properties. This work, entitled Impact of temporal correlations,
coherence, and postselection on two-photon interference, is submitted to Physical Review
Letters.

This thesis is divided into four main parts. In the first part, we have a quick
theoretical background, presenting the basic concepts of Hong-Ou-Mandel interference,
quantum computation and quantum Fisher information with squeezed states. In the
following three chapters, the three works mentioned above are presented, followed by an
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overview.

1.1 Author’s Contribution

Paper I

Superposition of two-mode squeezed states for quantum information processing
and quantum sensing

Fernando Redivo Cardoso, Daniel Zini Rossato, Gabriel P. L. M. Fernandes, Gerard
Higgins, and Celso J. Villas-Bôas.

Phys. Rev. A 103, 062405 (2021).

This paper addresses the mathematical properties of two-mode squeezed states,
whose generation is covered in previous work [1]. In this work, we analyze properties
such as photon number distribution, Wigner functions and entanglement. We study the
application of even and odd two-mode squeezed states for estimation of parameters in
quantum metrology with the concept of quantum Fisher information. My contributions
are:

• Study of the general superposition generated originally in [1], with the quantification
of photon distribution and calculation of analytical Wigner functions.

• Quantification of entanglement for the superpositions related to the relative phase
factor between states, identifying conditions in which entanglement is maximized.

• Calculation of analytical expressions for quantum Fischer information and discus-
sion about the advantages of phase-insensitive states obtained by reduction of the
wavepacket, in comparison to the single mode squeezed states.

• Development of Python and Julia codes to implement the generation of the studied
superpositions in the context of trapped ion systems.

Reprinted article with permission from Fernando R. Cardoso, Daniel Z. Rossatto,
Gabriel P. L. M. Fernandes, Gerard Higgins, and Celso J. Villas-Bôas, Physical Review A
103, 062405, 2021. Copyright (2021) by the American Physical Society.

Paper II

Detailed account of complexity for implementation of circuit-based quantum
algorithms
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Fernando Redivo Cardoso, Daniel Yoshio Akamatsu, Vivaldo Leiria Campo Junior, Eduardo
I. Duzzioni, Alfredo Jaramillo, Celso J. Villas-Bôas.

Frontiers in Physics 9, 731007 (2021).

In this work we analyze the computational complexity for implementation of
quantum algorithms, considering the circuit model for quantum computation. We consider
the space and time complexity of fundamental steps of a quantum algorithm, such as
state preparation and measurement processes, under a variety of methods. The analysis
covers distinct architectures for information input of initial conditions, covered by state
preparation, decomposition of quantum gates for information processing, and quantum
state tomography for the retrieval of the output results. My contributions to this paper
are:

• Research of references for methods of quantum state preparation and quantum state
tomography, together with the respective space and time complexity aspects.

• Research of complexity aspects for quantum gate decomposition.

• Estimatives of overall space and time complexity for combined techniques of state
preparation, state manipulation via quantum gates, and reading of output results
via quantum state tomography.

• Writing of all sections covered in the published paper, except for 4.1 - Pure State
Tomography.

• Review and discussion of all sections with all collaborators.

Paper III

Trapped ions as architecture for quantum computation

Gabriel P. L. M. Fernandes, Alexandre C. Ricardo, Fernando R. Cardoso and Celso J.
Villas-Bôas.

.

This work consists of a text published for educational purposes. The basic concepts
of trapped ion systems are reviewed, together with the basic interactions and implementa-
tion of quantum gates.

• Review of the main text and appendices.

• Contribution to “State of the art" section.
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Paper IV

Impact of temporal correlations, coherence and postselection on two-photon
interference

Fernando R. Cardoso, Jaewon Lee, Riccardo Checchinato, Jan-Heinrich Littmann, Marco
De Gregorio, Sven Höfling, Christian Schneider, Celso J. Villas-Bôas and Ana Predojević.

arXiv: 2312.01503 (2024).

In this work we investigate how two-photon interference is impacted by properties
of the photon emitter, wavepacket and the measurement process. In particular, we consider
photons generated via a cascade emission process in a quantum dot. We performed
simulations to obtain parameters regarding dissipative processes, such as dephasing of
the internal energy levels of the quantum dot. The parameters are estimated by fitting of
experimental data to theoretical results, convoluted with the response time of the detectors.
We performed the experimental measurements, and the simulations consider a theoretical
model for photon emission and calculation of two-photon correlations. We implemented
the Monte Carlo wavefunction stochastic method for theoretical temporal postselection.
My contributions to this work are:

• Development of all codes for simulation of the physical system with the quantum
master equation formalism, written in Python and Julia programming languages.

• Simulation of all theoretical results presented in the paper, with the implementation
of the sensor method [2].

• Proposition and Implementation of Monte Carlo stochastic method for theoretical
simulation of photon postselection.

• Calculation of all theoretical values for Hong-Ou-Mandel interference visibility
presented in the main text and supplemental material.
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2 Teorethical background

2.1 Superposition of two-mode squeezed states and quantum Fisher
information

In this section, we study the properties of superpositions of two-mode squeezed
states and its potential applications in quantum information. In particular, we analyze the
properties of the aforementioned superpositions for estimation of parameters involved in
dynamical processes in the domain of quantum metrology. The application of squeezed
states in quantum metrology is motivated by the possibility of obtaining reduced uncertainty
in a variable, for instance, position x, at the expense of increasing the deviation in its
conjugated variable, in this case, momentum p, without violating the intrinsic restriction
imposed by the Heisenberg uncertainty principle [3]. We focus the study of the applications
in quantum metrology in the reduced modes of the superposition of two-mode squeezed
states, obtained by the reduction of the density matrix corresponding to the composed
two-mode bosonic states in the system [4]. Specifically, we concentrate the analysis of two
particular cases of the reduced modes of the superposition of two-mode squeezed states,
namely, the even and odd states, which will be introduced further. It is shown that, due
to the peculiar probability distributions in phase space, given by its Wigner functions,
it is possible to obtain a robust platform for measurements that is phase independent,
representing an advantage over the single mode squeezed states in certain cases [4]. The
entanglement properties of the superposition of two-mode squeezed states are investigated,
as a function of its squeezing and relative phase factors. This correlation is a fundamental
ingredient for fundamental tests of quantum mechanics such as the Einstein-Podolski-
Rosen paradox [5, 6], for implementation of quantum teleportation [7] and quantum
computation [8, 9] with continuous variables, among others. The generation process for the
two-mode squeezed states, originally presented in [1], take place through the interaction
between a two-level system and two modes of the quantized electromagnetic field. The
concept of quantum Fisher information is presented, along with the estimation protocol
for parameters involved in dynamical processes. The mathematical properties of the states,
such as occupation probabilities and Wigner functions are described [4].

2.1.1 Parameter estimation and quantum Fisher information

Metrology is the science that studies the theoretical and experimental aspects and
methods of measurement processes of a physical quantities associated with a physical
system or dynamical process of interest. Examples include measuring the length of a bar,
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time intervals between events, estimating the acceleration of gravity, among others. It is
of great interest that the measured value of a variable inherent to the system is as close as
possible to the real value of this quantity, i.e. that the uncertainty associated with the
measured value is minimized. The central interest of metrology, therefore, is the process of
optimizing measurements and minimizing the uncertainties associated with them.

On the macroscopic scale, it is natural to relate the precision of the measurements
to the instrument used to perform it. For quantum systems, the uncertainty principle

∆x∆p ≥ ℏ
2 (2.1)

defines a limit for the deviations associated with the canonically conjugated variables x
and p [10]. This means that the intrinsic properties of the theory prevent the estimation
of quantities with absolute precision. Quantum metrology investigates the apllication of
quantum systems, such as quantized modes of the electromagnetic field, in the estimation
of parameters involved in physical process in order to achieve minimum uncertainty in
measurement processes, within the limit imposed by the uncertainty principle.

The process of parameter estimation can be implemented through the estimation
protocol, which involves the quantum system as a probe that interacts with a dynamical
process. The protocol, in general, is described through the following steps [11]:

• The “probe”, as the state that interacts with the dynamical process containing
the parameter to be estimated, y, is prepared into a known initial configuration,
described quantitatively by the density operator ρ;

• The configuration of the probe is altered by the process, making it dependent on the
parameter ρ = ρ(y);

• An experimental measurement is performed on the final probe configuration, with
the result denoted by κ;

• An estimate of the parameter is made, yest, using a well-established rule to compute
y.

The rule mentioned in the last step of the established protocol depend on the
process in question. It is necessary to have knowledge of the phenomenon in order to be
able to estimate the unknown parameter y by means of κ. The experimental apparatuses
utilized in the measurements are represented mathematically by a set of positive operator
valued measure (POVM’s) {Eκ}, which generally define the measurement processes in
quantum mechanics [11], and satisfy the relation

∑
κ

Eκ = 1. (2.2)
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The theoretical model for calculating the estimation of y is based on the distribu-
tion of experimental results. For each experimental result κ, a probability is associated,
dependent on the estimation parameter y, Pκ(y), such that at the end of a sequence of
measurements, the associated set of probabilities, {Pκ(y)}, is known. The mean value of
the parameter, calculated using the individual values of the estimates, is defined by

⟨yest⟩ =
∑

κ

yest(κ)Pκ(y), (2.3)

with the probabilities properly normalized,

∑
κ

Pκ(y) = 1. (2.4)

Using the normalization of probabilities,

∑
κ

yest(κ)Pκ(y) −
∑

κ

⟨yest⟩Pκ(y) =
∑

κ

Pκ(y) [yest(κ) − ⟨yest⟩] = 0, (2.5)

where the estimates yest(κ) are constant values. Deriving this result in relation to the y
parameter, we get

∑
κ

Pκ(y)d ln(Pκ(y))
dy [yest(κ) − ⟨yest⟩] = d ⟨yest⟩

dy . (2.6)

Squaring (2.6) and using the Cauchy-Schwarz inequality [12], we get
∑

κ

Pκ(y)
(

d ln(Pκ(y))
dy

)2
(∑

κ

Pκ(y) [yest(κ) − ⟨yest⟩]2
)

≥
(

d ⟨yest⟩
dy

)2

. (2.7)

Defining the variance associated with the estimation variable ⟨∆y⟩2 ≡ ⟨(yest − ⟨yest⟩)2⟩,
and substituting it in (2.7), we get

⟨∆y⟩2 ≥

(
d⟨yest⟩

dy

)2〈(
d ln(Pκ(y))

dy

)2
〉 , (2.8)

which is called the Cramér-Rao inequality. The quantity in the denominator,

F (y) ≡
〈(

d ln(Pκ(y))
dy

)2〉
, (2.9)

is called Fisher information, and represents the amount of information about the parameter
y available in the probability set [11]. As F (y) limits the deviation in the value of
the parameter, the calculation of this quantity is of central interest for minimizing the
uncertainties inherent in the measurement process.
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2.1.2 Computation of the Quantum Fisher Information

To calculate the Quantum Fisher Information for the density matrix ρ(y), it is
necessary to construct the set of probabilities {Pκ(y)}. The probability Pκ(y) associated
with an experimental result is [11]

Pκ(y) = Tr(ρ(y)Eκ), (2.10)

where Eκ is the POVM associated with the measurement process on the probe, described
in the protocol. As mentioned above, the uncertainty principle prohibits estimating
parameters with absolute precision. However, it is natural to seek maximum precision
in measurement processes, obtaining estimates close to the real value of the parameters,
within the Heisenberg limit. This situation is equivalent, within the estimation theory
presented, to maximizing Fisher’s Information. Quantum Fisher Information is then given
by the maximization over all POVM’s {Eκ},

FQ[ρ(y)] ≡ max
{Eκ}

∑
κ

1
Tr(ρ(y)Eκ)

(
d Tr(ρ(y)Eκ)

dy

)2
 , (2.11)

which is equivalent to performing the maximization on all the experimental apparatuses
allowed by quantum mechanics [11]. However, an upper bound [13] for Fisher’s Information
is given in terms of the Hermitian operator symmetric logarithmic derivative, Ly, defined
by the differential equation

dρ(y)
dy = Lyρ+ ρLy

2 . (2.12)

Using (2.12), one gets
d Tr(ρ(y)Eκ)

dy = Tr
(
Lyρ+ ρLy

2 Eκ

)
, (2.13)

and, using Tr(A)∗ = Tr
(
A†
)
,

Tr
(
Lyρ+ ρLy

2 Eκ

)
= 1

2 [Tr(EκρLy) + Tr(ρLyEκ)∗] = Re{Tr(EκρLy)}, (2.14)

where the cyclic properties of the trace and the hermiticity of the operators were used.
With the application of the Cauchy-Schwarz inequality,

Tr
(
Lyρ+ ρLy

2 Eκ

)
≤ |Tr(EκρLy)|2. (2.15)

Now, using the inequality [11]

∣∣∣Tr
(
A†B

)∣∣∣2 ≤ Tr
(
A†A

)
Tr
(
B†B

)
, (2.16)
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and defining A = √
ρ
√
Eκ, B = √

ρLy

√
Eκ, we have

Tr
(
A†B

)
= Tr(EκρLy),

|Tr(EκρLy)|2 ≤ Tr(Eκρ) Tr(EκLyρLy),[
Tr
(

dρ
dyEκ

)]2

≤ Tr(Eκρ) Tr(EκLyρLy),

1
Tr(Eκρ)

[
Tr
(

dρ
dyEκ

)]2

≤ Tr(EκLyρLy).

(2.17)

We can then write the Fisher information as

FQ[ρ(y)] ≤
∑

κ

Tr(EκLyρLy), (2.18)

which, due to the condition ∑κ Eκ = 1, becomes

FQ[ρ] ≤ Tr
(
ρL2

y

)
. (2.19)

The inequality (2.19) reveals an independence of the maximization of Fisher’s Information
with respect to the set of all POVM’s, {Eκ}, which can be increased by modifying the
initial configuration of the probe, represented by the density operator ρ, in order to find
the highest value of this in the estimation of an unknown parameter y.

2.1.2.1 Pure states

In the case of pure states, a simplified form for Ly can be found: Making ρ2 = ρ,

dρ
dy = dρ2

dy = dρ
dyρ+ ρ

dρ
dy . (2.20)

Rewriting (2.12) and substituting, you get
1
2Lyρ+ ρ

1
2Ly = dρ

dyρ+ ρ
dρ
dy , (2.21)

where we conclude that Ly = 2dρ
dy

. For the case of a unitary evolution of the form

U(y) = e−iyG, (2.22)

the evolution of the initial state |ψ0⟩ is given by

iℏd |ψ⟩
dy = G |ψ⟩ . (2.23)

which is the Schrödinger equation for the evolution of the initial state under the action of
the transformation represented by the G operator, so that |ψ⟩ = U(y) |ψ0⟩. Deriving with
respect to the parameter y, and substituting in (2.19), the Quantum Fisher Information is
written, for a pure state, as

FQ(ρ(y)) = 4(∆G)2, (2.24)

where (∆G)2 = ⟨G2⟩−⟨G⟩2 is the variance associated with the operator G, which generates
the inprint of the unknown parameter in the density matrix ρ.
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2.1.2.2 Mixed states

For mixed-state estimation under the action of the G parameter inprint generator,
the evolution of the ρ probe configuration is given by the Von-Neumann equation [14]

i∂ρ
∂y

= Gρ− ρG. (2.25)

Rewriting the density matrix in spectral representation, with the eigenvalues and
eigenvectors in a base {|m⟩}, we get

ρ =
∑
m

λm |m⟩⟨m| . (2.26)

Using (2.25), the array element corresponding to the operator ∂ρ
∂y

is

⟨m|∂ρ
∂y

|n⟩ = ⟨m|−iGρ+ iρG|n⟩ = i(λm − λn) ⟨m|G|n⟩ , (2.27)

from which we conclude

⟨m|G|n⟩ = 1
i(λm − λn) ⟨m|∂ρ

∂y
|n⟩ . (2.28)

From equation (2.19), Fisher information is maximal when

FQ = Tr
(
ρL2

)
, (2.29)

which, using the definition of the symmetric logarithmic derivative operator (2.12), becomes

FQ = Tr
(
∂ρ

∂y
L

)
. (2.30)

Rewriting the trace of the equation (2.30),

FQ =
∑
m

⟨m|∂ρ
∂y
L|m⟩ =

∑
m,n

⟨m| ∂ρ
∂y

|n⟩⟨n|L |m⟩ (2.31)

where the completeness relation ∑
n |n⟩⟨n| = I has been inserted. Using the definition

expressed in (2.12), one can write the form of the matrix element of the operator L as

⟨n|∂ρ
∂y

|m⟩ = 1
2(λn + λm) ⟨n|L|m⟩ . (2.32)

Substituting (2.32) in (2.31) gives the expression for Fisher’s information,

FQ =
∑
m,n

2
λm + λn

∣∣∣∣∣ ⟨m|∂ρ
∂y

|n⟩
∣∣∣∣∣
2

. (2.33)

In terms of the operator that generates the printout of the parameter in the density
matrix ρ, using (2.25),

⟨m|∂ρ
∂y

|n⟩ = i(λm − λn) ⟨m|G|n⟩ , (2.34)
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so that Fisher’s information, written in terms of G, takes the form

FQ = 2
∑
m,n

(λm − λn)2

λm + λn

| ⟨m|G|n⟩|2. (2.35)

In this way, it is possible to calculate FQ in a simple way, with the eigenvalues and
eigenvectors of the density matrix ρ, which now represents a mixed state.

2.1.3 Two-mode squeezed states

The superposition of two-mode squeezed states are generated in the context of
the interaction between an atom driven by a laser field and two modes of the quantized
electomagnetic field [1]. The interaction between the atomic states and the field modes is
represented by the effective Hamiltonian [1]

H = χ(ab+ a†b†)(σ−− − σ++), (2.36)

where a and b (a† e b†) are the annihilation (creation) operators of the field modes, and
σ±± = |±⟩⟨±| are the operators that act on the atomic states. Here |±⟩ = 1/

√
2(|g⟩ ± |e⟩,

with |g⟩ and |e⟩) being the ground and excited states of the atom, respectively. The initial
state of the atom under consideration is prepared as the superposition of spin states

|ϕ0⟩ = 1√
2
(
|+⟩ + eiφ |−⟩

)
, (2.37)

where eiφ represents the relative phase factor between the |+⟩ and |−⟩ states.

The electromagnetic field inside the cavity is initially in the vacuum state, repre-
sented by

|ψ0⟩ = |0, 0⟩ . (2.38)

The time evolution of the composite system, given by the product state |Ψ⟩ =
|ϕ0⟩⊗|ψ0⟩ (atom and bosonic modes) is governed by the Hamiltonian (2.36), and generates
the state

|Ψ(t)⟩ = e−it
ℏ χ(ab+a†b†)(σ−−−σ++)

[
1√
2
(
|+⟩ + eiφ |−⟩

)
⊗ |0, 0⟩

]
. (2.39)

The action of the atom operators on the atomic state |ϕ0⟩ results in

|Ψ(t)⟩ = 1√
2
[
|+⟩ er(ab+a†b†) |0, 0⟩ + eiφ |−⟩ e−r(ab+a†b†) |0, 0⟩

]
, (2.40)

where iχt
ℏ = ξ, with |ξ| = r being the squeezing factor. A measurement performed on the

atomic state on the basis {|+⟩ , |−⟩} leaves the field in the final configuration

|ψ±(r)⟩ = S±(r) |0, 0⟩ , (2.41)
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where S12,(±)(r) = e±r(ab+a†b†) is the operator that generates the squeezing in the state of
the field [3]. Represented in the Fock basis, the states |ψ±(r)⟩ can be written as [1]

|ψ±(r)⟩ = 1
cosh(r)

∞∑
n=0

[± tanh(r)]n |n, n⟩ . (2.42)

After taking the partial trace over either of the modes, we obtain the reduced density
matrix,

ρ1,+(r) = 1
cosh2(r)

∞∑
n=0

tanh2n(r) |n⟩⟨n| , (2.43)

which describes a thermal state distribution.

Performing a change of basis to the atom states {|e⟩ , |g⟩}, with

|±⟩ = 1√
2

(|g⟩ ± |e⟩) , (2.44)

one can rewrite the final configuration of the composite system (2.40) in the form

|Ψ(r, φ)⟩ = 1
2
[
|g⟩

(
|ψ+(r)⟩ + eiφ |ψ−(r)⟩

)
+ |e⟩

(
|ψ+(r)⟩ − eiφ |ψ−(r)⟩

)]
. (2.45)

Measurements performed on the atomic states on the basis {|g⟩ , |e⟩} leave the field in the
superposition

|ψ(r, φ)⟩ = N (r, φ)
(
|ψ+(r)⟩ ± eiφ |ψ−(r)⟩

)
, (2.46)

where ± refers to the atom detected either in the |g⟩ or in the |e⟩ atomic states. Represented
in Fock basis, the superposition is written as

|ψ(r, φ)⟩ = N (r, φ)
[ ∞∑

n=0
tanhn(r)

(
1 ± eiφ(−1)n

)
|n, n⟩

]
, (2.47)

where N (r, φ) stands for the normalization factor, with

|N (r, φ)|2 = 1
2

[
1 − tanh4(r)

(1 + tanh2(r)) ± cos(φ)(1 − tanh2(r))

]
. (2.48)

Similarly, the reduced density matrix corresponding to the two-mode state (2.47) is given
by

ρ1 = |N (r, φ)|2
∞∑

n=0
2 tanh2n(r) [1 ± cos(φ)(−1)n] |n⟩⟨n| . (2.49)

The even and odd EPR states are special cases generated when φ = 0 and φ = π,
respectively, and can be written as∣∣∣ψ(e,o)(r)

〉
= N(e,o)(r)

∞∑
n=0

tanhn(r)(1 ± (−1)n) |n, n⟩ , (2.50)

where the indexes e, o identify the even and odd states, represented by the positive and
negative signs on the right-hand side of eq. (2.50), respectively, with the normalization
factor given by ∣∣∣N(e,o)(r)

∣∣∣2 = 1
2∑∞

n=0

[
tanh2n(r)(1 ± (−1)n)

] . (2.51)
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The states described by
∣∣∣ψ(e,o)(r)

〉
have occupation probabilities concentrated on

even and odd number states of excitation. In fact, the substitution of φ in equation (2.49)
results in the expressions

|ψe(r)⟩ = 2Ne(r)
∞∑

n=0
tanh2n(r) |2n, 2n⟩ , (2.52a)

|ψo(r)⟩ = 2No(r)
∞∑

n=0
tanh2n+1(r)) |2n+ 1, 2n+ 1⟩ . (2.52b)

with the corresponding reduced density matrix for the single-mode states

ρ1,(e,o)(r) =
∣∣∣N(e,o)(r)

∣∣∣2 ∞∑
n=0

2 tanh2n(r)(1 ± (−1)n) |n⟩⟨n| . (2.53)

Figure 1 shows the photon distributions and Wigner functions for the studied EPR states.

The states represented by the reduced density matrices ρ1(r, φ) show peculiar
characteristics as the squeezing factor r increases. Similar to |ψ+(r)⟩, the even and odd
EPR states are left in a mixture of Fock states after the reduction of its respective
density operators. However, the probability distributions W (q, p) behave differently when
compared to |ψ+(r)⟩, as the Wigner function for the even and odd states is concentrated
on the vicinity of the origin. This particular feature of

∣∣∣ψ(e,o)(r)
〉

motivates its application
in the estimation of parameters with quantum metrology.

2.2 Quantum algorithms and complexity aspects
This section provides a theoretical introduction to quantum computing. The basic

concepts such as qubits, algorithms, circuit representation and complexity aspects will be
presented, along with the operations that need to be performed on the system to process
information and reading of the output results.

2.2.1 Qubit states and units of information

Classical bits: The bit (binary digit) is the smallest unit of information that can be
stored or transmitted. Two different values can be associated with a bit: 0 or 1. Bits can
be read, stored, manipulated and transmitted using various types of physical elements,
such as electronic devices, in which the bit is associated with the presence or absence of
electrical charge or current. Information represented by more than bit is called a bit string
and its length depends on the information to be processed.

Quantum bits: The qubit, like classical bits, among its possible configurations, also
present the values 0 and 1, which are conveniently represented here by the Dirac notation
|0⟩ and |1⟩, denominated computational basis states [15]. The fundamental difference
between bits and qubits is that in the case of qubits, the states can be found in states
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Figure 1 – Field properties of EPR states. In the left panels we show the populations in
the Fock basis of the reduced (a) EPR (c) even and (e) odd EPR states, for
squeezing parameter r = 1.5. In the right panels (b), (d) and (f) the Wigner
functions for each of the respective states are represented. Reprinted figure
with permission from Fernando R. Cardoso, Daniel Z. Rossatto, Gabriel P. L.
M. Fernandes, Gerard Higgins, and Celso J. Villas-Bôas, Physical Review A
103, 062405, 2021. Copyright (2021) by the American Physical Society.

that are not only |0⟩ or |1⟩, but in superpositions of those. The general qubit state can be
represented by

|ψ⟩ = α |0⟩ + β |1⟩ . (2.54)

The complex coefficients α and β are interpreted as probability amplitudes, and are related
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by |α|2 + |β|2 = 1. Formally the qubit is characterized by a vector in a complex vector
space, called Hilbert space. The vector space also allows one qubit to be represented in
linear combinations of the basis states {|0⟩ , |1⟩} for example

|+⟩ = 1√
2

(|0⟩ + |1⟩) , (2.55)

which represents one case of superposition of states from the computational basis, with
equal probabilities of the possible measurement outcomes |⟨0|+⟩|2 = |⟨1|+⟩|2 = 1/2.

Classicaly, information can be encoded and stored as a string of n bits, with n

depending on the information encoded. For n = 2, a string can be in 2n = 4 possible
states, namely 00, 01, 10, 11. In the quantum case, a string with n bits is defined by the
composite quantum state

|Ψ⟩ = |e1⟩ ⊗ |e2⟩ ⊗ . . .⊗ |en⟩ , (2.56)

ei = {0, 1}, in the Hilbert space given by the product of the individual Hilbert spaces of
each of the components, H = H1 ⊗ H2 ⊗ . . .⊗ Hn. For the example of n = 2, the state of
the string is in general represented, making use of the computational basis states {|0⟩ , |1⟩}
for each of the components, by

|Ψ⟩ = α |00⟩ + β |01⟩ + γ |10⟩ + δ |11⟩ . (2.57)

In general, a string with n bits will be represented as the composite quantum state of n
qubits, with dimension d = 2n. A quantum state that generically represents the state of
such string can be written as the superposition

|Ψ⟩ = α0 . . . 0︸ ︷︷ ︸
n indexes

|0 . . . 0⟩ + . . .+ α1 . . . 1︸ ︷︷ ︸
n indexes

|1 . . . 1⟩ =
∑

i1,...,in=0,1
αi1...in |i1 . . . in⟩ . (2.58)

Naturally, as in the classical case, as the amount of information processed or stored
increases, here represented simply by the length of the string, so does the amount of
resources needed to process or store it. Those resources are here represented by the number
of qubits needed to represent such a state.

2.2.2 Logic operations

2.2.2.1 Single qubit gates

Quantum information processing is done using gates. A quantum circuit is composed
of quantum gates and wires that carry bits between them. The quantum gates are sets of
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operators acting on the qubit whose state must be transformed. An operation performed
on the state |ψ⟩ can be written as

|ψ′⟩ = U |ψ⟩ , (2.59)

where |ψ′⟩ denotes the transformed state after the action of the quantum gate U . For |ψ′⟩
to be normalized, U must be unitary.

Due the unitarity of the quantum gates, there is an inverse operation such that
U †U = I, with I representing the identity operator. For this reason, quantum gates are
reversible: the initial state in eq. (2.59) can be reverted applying the inverse quantum gate,
|ψ⟩ = U † |ψ′⟩, and the initial state is recovered. The quantum gates can be divided into
single- and multi-qubit gates.

Single qubit operations are quantum gates that alter the state of one qubit only,
leaving the other qubits untouched. Examples of single qubit operations comprise rotations,
which rotate the vector on the Bloch sphere [15], and the NOT operation.

The NOT operation has the action of “negation" of the value, as it flips the qubit
on the Bloch sphere. The action of this gate is

|0⟩ NOT−−−→ |1⟩ , |1⟩ NOT−−−→ |0⟩ . (2.60)

Representing the states as vectors |0⟩ = (1, 0), |1⟩ = (0, 1), the NOT gate corre-
sponds to the Pauli σx matrix,

NOT ≡ X =
0

1
1
0

. (2.61)

Single qubit rotations can be in general defined as the operator

Rn̂(θ) = cos(θ/2)I − i sin(θ/2)n̂ · σ⃗, (2.62)

where n̂ = (nx, ny, nz) defines the rotation axis, with n2
x + n2

y + n2
z = 1, and

σ⃗ = (σx, σy, σz) denotes the Pauli matrices. As an example the state |ψ⟩ = |0⟩ rotated
around the y-axis by an angle of π/2 has the action

Ry(π/2) |0⟩ =
cos(π/4)

sin(π/4)
− sin(π/4)
cos(π/4)

1
0

 =
1/

√
2

1/
√

2

 = 1√
2

(|0⟩ + |1⟩) = |+⟩ , (2.63)

and analogously Ry(−π/2) = |−⟩. Ry(π/2) is also known as the Hadamard gate [15] H.
Hadamard gates applied independently to a set of n qubits transform the state |0⟩⊗n into
the superposition of all the possible string states in the composed Hilbert space.
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2.2.2.2 Multi qubit gates

As mentioned in the previous section, single qubit gates are those that act upon
the state of one qubit, leaving the others untouched. Multi qubit operations are gates that
transform more than one qubit, or have more than one qubit involved.

As an important example of multi qubit operation, one can list the Controlled-NOT
or CNOT operation. CNOT operation consists of a controlled operation, where two qubits
are involved: the so called control and target qubits. The control qubit is the one in which
the application of the transformation, in this case, the single qubit NOT gate, is performed
upon the target qubit. The operation can be written as

|c⟩ |a⟩ CNOT−−−→ |c⟩ |c⊕ a⟩ , (2.64)

with c⊕ a indicating addition modulus 2 of bits c and a. For the set of two qubit states of
the computational basis, {|00⟩ , |01⟩ , |10⟩ , |11⟩}, where the first qubit is the control and
the second is the target, CNOT has the action



|00⟩ CNOT−−−→ |0 0 ⊕ 0⟩ = |00⟩ ,

|01⟩ CNOT−−−→ |0 0 ⊕ 1⟩ = |01⟩ ,

|10⟩ CNOT−−−→ |1 1 ⊕ 0⟩ = |11⟩ ,

|11⟩ CNOT−−−→ |1 1 ⊕ 1⟩ = |10⟩ .

(2.65)

and can be represented in the matrix form as

CNOT ≡


1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

. (2.66)

The formalism is not only valid for the NOT operation, but for all general single
qubit rotations. The control is added to the system whenever one needs an operation to be
performed on one qubit, or a set of qubits, given that one condition is fulfilled. Another
example of controlled operation, analogous to the CNOT case is the controlled Hadamard
operation, that puts the target qubit in a superposition given the state of the control qubit



|00⟩ HC−−→ |0⟩ |+⟩ = 1√
2 (|00⟩ + |01⟩) ,

|01⟩ HC−−→ |0⟩ |−⟩ = 1√
2 (|00⟩ − |01⟩) ,

|10⟩ HC−−→ |1⟩ |+⟩ = 1√
2 (|10⟩ + |11⟩) ,

|11⟩ HC−−→ |1⟩ |−⟩ = 1√
2 (|10⟩ − |11⟩) ,

(2.67)

and has the following matrix representation
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HC =


1 0
0 1

0 0
0 0

0 0
0 0

1√
2

1√
2

1√
2

−1√
2

. (2.68)

It is also possible to have gates with more than two qubits involved. One example
of this is the 3-qubit Toffoli gate. This operation transforms the target qubit, conditioned
to the states of two control qubits. In this case, the target qubit is flipped whenever the
states of both control qubits are set to |1⟩, and left untouched otherwise. The Toffoli gate
has the matrix representation

TOFFOLI =



1
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0

0
0
1
0
0
0
0
0

0
0
0
1
0
0
0
0

0
0
0
0
1
0
0
0

0
0
0
0
0
1
0
0

0
0
0
0
0
0
0
1

0
0
0
0
0
0
1
0



. (2.69)

2.2.3 Quantum circuits

Quantum circuits are diagram representations of sequences of logic operations
performed on a set of qubits. The circuit is composed of wires, which carry the information
contained within the qubit states from left to right, and the gates are represented by boxes
on the wires corresponding to the qubits they must act on. The state of the composed
system is given by the tensor product of all the components at any specific point of the
circuit. The employment of quantum circuits turns out to be a convenient tool to represent
quantum algorithms, that sometimes can make use of several single- and multi qubit gates
and controlled operations, making matrix representations extensive.

To illustrate a simple case of a quantum circuit, we represent the SWAP operation,
which consists in an operation between two qubits that has the effect of swapping the
information between one another. This gate has the logic action of

|a, b⟩ SWAP−−−→ |b, a⟩ , (2.70)

that can be decomposed into the application of three CNOT operations between the
two qubits of the system, acting in alternate times as control and target. The circuit is
represented in figure 2.
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Figure 2 – Circuit representation of the SWAP gate, that swaps the information between
two qubits of a composed system. On the left, the decomposition of the gate
into three CNOT operations is presented, and on the right, the simplified
representation. The black circles on the wires mark the control qubit of each
CNOT operation indicated by ⊕ acting on the target qubit.

Figure 3 – Circuit representation of an operation that takes a set of n control qubits,
applied to a set of m target qubits. The composed states are here denoted, for
the sake of simplicity, by |x⟩⊗n and |y⟩⊗m to illustrate the dimension of the
Hilbert spaces of control and targets, respectively.

It is also possible to have multi controlled operations, acting on a multi qubit state.
These kind of operations are controlled by more than one qubit, and acts also in a set of
qubits. Although its matrix representation or Dirac notation can be extensive, this class
of operation has an intuitive form in the circuit representation of quantum algorithms. A
case of multi controlled qubit operation is illustrated on figure 3, where a hypothetical
case of n controls are applied to m targets.

2.2.4 Complexity aspects of quantum algorithms

There are different classes of computational complexity. Among them, one can list
P (deterministic polynomial time) and NP (non-deterministic polynomial time). The
P class consists of problems that can be solved within a polynomial quantity of time
steps or operations. Problems within NP are those in which solutions can be verified
in a polynomial quantity of operations. One example of problem from NP class is the
factorization of integers, that can be rapidly verified, but not executed [15]. A broader class
of problems is the so called PSPACE, composed by problems that can be solved with a
limited amount of resources, but with no upper limit in time. The study of complexity
classes is not a completely closed subject in terms of knowledge or answered questions,
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and it is not the objective of this work. Fundamental discussions about the topic can be
found in [15].

One can divide the complexity aspects involved in solving computational tasks in
two different categories:

• Space: Space aspects take into account the required physical resources to solve the
problem in question, in analogy to the hardware in classical computers. This aspect
within quantum computation is represented by the number of qubits required to
perform a task.

• Time: Time aspects consist into the number of operations that must be performed in
order to get a specific task done. This aspect is often mentioned in terms of number
of steps, which translate in number of operations executed upon the qubits part of
the complete system under consideration.

Computational complexity is denoted by the asymptotic notation, which consists
in

• “Big O” O(·): indicates the upper limit for complexity aspects in a given problem. It
is used to indicate the worst case scenario for computational complexity.

• “Big Omega” Ω(·): the opposite of O(·), indicates the lower limit for complexity,
consisting in the cases where the number of operations or space complexity is the
minimum.

• “Big Theta” Θ(·): employed when a circuit or function behaves asymptotically in the
same manner as other function or circuit: f(x) is Ω(g(x)) if f(x) is O(g(x)) AND
f(x) is Ω(g(x)).

2.2.5 Quantum algorithms

A quantum algorithm consists of a defined sequence of steps that must be executed
to complete a determined task, employing quantum mechanical systems and operations.
Different quantum algorithms have been developed to perform various kinds of tasks, for
example database search [16], number factoring [17], solving linear systems [18], ordinary
and partial differential equations [19, 20, 21]. The properties and resources of quantum
mechanics, as superposition and entanglement, result in different conditions regarding
how computational tasks are done, and under some circumstances, can present quantum
advantage [9, 22, 23].

One of the features of quantum computation is the so called quantum parallelism
[15]. Parallelism is a feature of quantum systems that allows one to calculate several values
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for a given function f employing one circuit. Generally speaking, it is possible to obtain
values for the function f(x) for all values of x simultaneously with a reduced amount of
time steps.

As a simple example of parallelism, we can assume a function f(x) : {0, 1} → {0, 1}.
A simple algorithm to calculate f(x) using a circuit consists of employing two qubits and
a transformation that performs the task

|x, y⟩ → |x, y ⊕ f(x)⟩ . (2.71)

Hence, if one has |y⟩ = |0⟩, after the transformation that calculates f(x), |y⟩ will then be
found in the state |f(x)⟩. We can assume, for example, that the first qubit is prepared in
the superposition state |x⟩ = 1/

√
2 (|0⟩ + |1⟩), which can be obtained by the initialization

of |x⟩ = |0⟩, followed by the application of a Hadamard gate H. The composite system
then is given by |Ψ⟩ = |x⟩ ⊗ |y⟩ = 1/

√
2 (|00⟩ + |10⟩). The transformation U acts on |Ψ⟩,

leaving the system in the configuration

U |Ψ⟩ = 1√
2

(|0⟩ |f(0)⟩ + |1⟩ |f(1)⟩) . (2.72)

Therefore the final state of the system is left in a superposition that contains information
about values of f calculated upon all points of the domain. However one must consider
that although all values were obtained with just one circuit, the circuit itself might consist
of an independent algorithm, with associated complexity aspects that might depend on
the function f itself. The fundamental difference is that in the quantum case all the
tasks can be done applying the transformation U on the superposition |Ψ⟩. Naturally, the
given example for two qubits can be also generalized for n qubits through the following
algorithm:

1 Initially, a system of n + 1 qubits must be prepared in the configuration |ψ1⟩ =
|0⟩⊗n |0⟩;

2 Hadamard operations are applied independently upon the set of n qubits, leaving
the composite system in the configuration |ψ2⟩ = H⊗n |ψ1⟩ = |+⟩⊗n |0⟩;

3 The transformation U is then applied to the system performing the operation
|x, y⟩ → |x, y ⊗ f(x)⟩. The state |x⟩ in this case corresponds to the superposition
|x⟩ = 1/

√
(2n)∑γ |γ⟩, with γ standing for each of the n-bit strings. After U the state

of the system is then given by

|ψ3⟩ = U |+⟩⊗n |0⟩ = 1√
2n

∑
γ

|γ⟩ |f(γ)⟩ . (2.73)
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Despite of the useful parallelism features of quantum computation, it is worth
noticing that, after the transformation U , the system is left in a n + 1-dimensional
quantum superposition, which means that after the algorithm is completed, a measurement
performed on the system will collapse the wavefunction to a particular state,

|ψf⟩ = |x′⟩ |f(x′)⟩ , (2.74)

where x′ represents the measurement outcome. Therefore, though parallelism is an intrinsic
feature of quantum computation, the collapse of the wavefunction brings one to the
discussion of the access of information after calculation. For the quantum parallelism
to present some advantage over classical systems, it becomes necesssary to be able to
recover all values of f(x) in an efficient manner, since the information is already within
the superposition given by |ψ3⟩.

Although the collapse of the wavefunction for the quantum system introduces
a degree of difficulty in the readout process of outcomes for quantum algorithms, it is
theoretically possible to obtain global properties of the function f calculated via the
transformation U . An algorithm that aims for this task is the so called Deutsch algorithm,
which combines properties of parallelism and interference. The algorithm consists in the
following steps:

1 A system of two qubits is initialized in the state |ψ1⟩ = |0⟩ |0⟩;

2 A NOT gate is applied on the second qubit, transforming the state into |ψ2⟩ = |0⟩ |1⟩;

3 Two independent Hadamard gates are applied to the qubits, and the transformed
state |ψ3⟩ = H⊗2 |ψ2⟩ = |+⟩ |−⟩;

4 The transformation U is applied to the system, which is left in the following super-
position

|ψ4⟩ = 1
2 (|0⟩ |0 ⊕ f(0)⟩ − |0⟩ |1 ⊕ f(0)⟩ + |1⟩ |f(1)⟩ − |1⟩ |1 ⊕ f(1)⟩) , (2.75)

which can be also written in a compact form

|ψ4⟩ = 1√
2

|x⟩ (|0 ⊕ f(x)⟩ − |1 ⊕ f(x)⟩) , (2.76)

given |x⟩ = 1√
2 (|0⟩ + |1⟩).

The function f can have one output bit, either 0 or 1. If f(x) = 0,

|ψ4⟩ = 1√
2

|x⟩ (|0⟩ − |1⟩) = (−1)0 |x⟩ |−⟩ , (2.77)
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and if f(x) = 1,

|ψ4⟩ = 1√
2

|x⟩ (− |0⟩ + |1⟩) = (−1)1 |x⟩ |−⟩ , (2.78)

and therefore the state can be written as

|ψ4⟩ = (−1)f(x) |x⟩ |−⟩ . (2.79)

As one can see from eq. (2.79), when f(0) = f(1), the output states only differ by a global
phase factor (−1)f(x), for a given value of f(x). Now one must analyze the case where
f(0) ̸= f(1).

• f(0) = 0, f(1) = 1, then

|ψ4⟩ = |−⟩ |−⟩ , (2.80)

• f(0) = 1, f(1) = 0, then

|ψ4⟩ = − |−⟩ |−⟩ . (2.81)

which means in general that when f(0) ̸= f(1) one has |ψ4⟩ = ± |−⟩ |−⟩, and one can
write the state |ψ4⟩ as

|ψ4⟩ =

± |+⟩ |−⟩ , if f(0) = f(1),

± |−⟩ |−⟩ , if f(0) ̸= f(1).
(2.82)

Lastly one applies a Hadamard gate upon the first qubit, and obtain

H |ψ4⟩ = |ψ5⟩ =

± |0⟩ |−⟩ , if f(0) = f(1),

± |1⟩ |−⟩ , if f(0) ̸= f(1).
(2.83)

Now, if f(0) = f(1), one has f(0) ⊕ f(1) = 0, and on the other hand if f(0) ̸= f(1),
f(0) ⊕ f(1) = 1. Under these conditions, one can write eq. (2.83) as

|ψ5⟩ = ± |f(0) ⊕ f(1)⟩ |−⟩ . (2.84)

Therefore, it becomes possible to obtain a global property of the function, f(0) ⊕ f(1) with
only one implemented circuit. In the classical counterpart, this property would require
two independent calculations, f(0) and f(1). This also differs from the case without
interference, where the final state was obtained as |ψ⟩ = 1/

√
2(|0⟩ |f(0)⟩ + |1⟩ |f(1)⟩),

where measurements are mutually exclusive, with probability of
∣∣∣1/√2

∣∣∣2 = 1/2 for each
outcome.
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2.2.6 Measurement and retrieval of information from quantum states

It is possible to determine the state of a bit, given a generic process to access
information, which can be either in state 0 or 1. In the case of quantum computation, this
process must necessarily involve measurements, which consist on the manipulation and
operations done upon the physical system itself. This measurement process, as mentioned
before, collapses the wavefunction, and the measurement outcome in this case represents one
of the several possibilities, depending on the dimension of the system under consideration.

Formally, to retrieve the encoded information provided by a quantum state, it
is necessary to have an ensemble of identically prepared systems. This comes from the
fact that there is no measurement or set of measurements, described by observables M
that can distinguish between non-orthogonal states, such as |0⟩ and |−⟩, since ⟨0|−⟩ ≠ 0.
Therefore, one must be able to perform projective measurements in different directions or
bases to reconstruct the density matrix that represents the state of the full system [24].
In particular, the set of matrices {I, X, Y, Z} form an orthogonal set of operators with
respect to the Hilbert-Schmidt inner product [15], and the density matrix can then be
expanded as

ρ = Tr(ρX)X + Tr(ρY )Y + Tr(ρZ)Z + Tr(ρ)I. (2.85)

As each of the factors Tr(ρO) have statistical interpretation as averages of observ-
ables, several measurements are necessary to obtain correct estimations. For a set of m
measurements, a set of outcomes {O0, O1, . . . , Om−1} is obtained, such that

Tr(ρO) = 1
m

m−1∑
j=0

Oj. (2.86)

In particular, the availability of several identical copies of ρ is referred to as query
complexity. In the case where the state represents the output solution of a problem solved
by a quantum algorithm, ρ can only be obtained with the full implementation of the
algorithm itself, which involves all the space and time aspects mentioned before.

The process of quantum state tomography can be performed under different condi-
tions, protocols and physical systems [25, 26, 27, 28, 29]. The fact that solutions might be
encoded within the probability amplitudes of the output wavefunction [19, 21, 18] makes
the density matrix reconstruction a tool of fundamental importance for the complete knowl-
edge of the solution, and quantum algorithm implementations frequently depend of this
process [19, 30]. However, the study of quantum algorithms, due to the large dimensions
of the involved Hilbert spaces, and considering that the determination of the amplitudes
scale exponentially with its dimensions [30], it is considered that the simpler alternative is
to obtain properties of the solution, represented by observables specially defined previously
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for these ends [18, 31, 30], represented by ⟨ψ|M |ψ⟩. The mathematical structure of the
operators M is specific to the problem under consideration and the information one must
obtain from the output states. This query complexity therefore adds an additional layer to
the complexity of implementation of a quantum algorithm itself, that must be considered
in the case of applying quantum computers to solve any type of problems.

2.3 Two-photon interference from a quantum dot cascade source
In this section, we studied the interference properties of photons emitted by

a quantum dot. In particular, the quantum dot is driven from the ground state to
the biexciton state using a two-photon excitation process, upon which it would emit
a photon pair in a cascade. The time-ordered nature of the cascade emission implies
the existence of temporal correlations [32] and time-energy entanglement [33], however
quantum dots such as polarization entanglement [34], time-energy entanglement [35, 33]
and hyperentanglement [36]. Although photons are suitable for applications in quantum
information through encoding information in its degrees of freedom, their low interaction
nature imposes difficulties. The Hong-Ou-Mandel phenomenon is a quantum interference
effect, originally demonstrated by Chung Ki Hong, Zheyu Ou, and Leonard Mandel, in
1987 [37], and constitutes a mechanism that enables two-photon interference, therefore the
interaction between photons. The HOM effect takes place when two photons impinge at two
distinct ports of a beam splitter, where the photons can interfere depending on their degree
of distinguishability and spatio-temporal properties. The interaction introduced by the
HOM interference has many applications, such as entanglement swapping [38], quantum
teleportation [39], photonic circuits [40], among others. In this chapter, we introduce
the emission process and the theoretical basis for the interference visibility calculation,
introduced by a description of the HOM interference phenomenon. To calculate the two-
photon correlations and interference properties, we employ the sensor method [2], which
constitutes a practical tool for calculation of frequency- and time-resolved photon-photon
correlations.

2.3.1 Hamiltonian and excitation process

The quantum dot is modelled as a three-level system, with ground (|g⟩), exciton
(|x⟩) and biexciton (|b⟩) energy levels [41]. The excitation of the system takes place by
driving a two-photon excitation from the ground (|g⟩) to the biexciton (|b⟩) state through
a virtual level, detuned from the exciton state by ∆x. A schematic of the system is given
in Figure 4.

The excitation pulse is assumed to have a Gaussian profile and frequency ωL,

Ω(t) = Ω0e−2 log(2)( t−t0
σ )2

. (2.87)
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Figure 4 – Schematic representation of the three level system. The excitation pulse of
frequency ωL couples the ground and biexciton states via a virtual level, detuned
from the exciton level by ∆x. The emmitted photons of frequencies ω1 and ω2
correspond to the |b⟩ → |x⟩ and |x⟩ → |g⟩ transitions, respectively.

where Ω0 represents the Rabi frequency. The pulse peak is located at t = t0 and its width
is σ. The Hamiltonian that governs the dynamics of the three level system can be written
as [41]

He = ωxσxx + ωbσbb + Ω(t)
2

(
e−iωLt + eiωLt

)
(σgx + σxb + h.c.) , (2.88)

where ωx and ωb are the frequencies of the exciton and biexciton states, respectively.
The operators σij = |i⟩⟨j| account for the transitions |g⟩ → |x⟩ and |x⟩ → |b⟩. Once the
excitation is completed, the decay takes place via a cascade emission process. A photon
pair is generated as a result, with frequencies denoted as ω1 and ω2. The emissions are
temporally ordered, such that the biexciton photon (ω1) preceeds the exciton one. The
decay rates of the system are associated with the respective lifetimes of the corresponding
internal states. These are denoted by τb and τx, for the biexciton and exciton states,
respectively.

2.3.2 Sensor method

The sensor method is a tool to calculate frequency- and time-resolved correlations
[2]. The method has been applied to compute correlation functions in a variety of systems
[42, 43], having the advantage of computing N -photon correlations for arbitrary time
delays and frequency intervals, making it suitable for the application on any open quantum
system.

The method consists of coupling of two two-level systems, which behave as sensors,
to the three-level emitter. Each sensor is made resonant to one of the emission frequencies
of the three-level system. This translates to the addition of extra terms to the Hamiltonian
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given by eq. (2.88). The sensor contribution to the Hamiltonian can be written as

Hs =
2∑

j=1

{
ωjξ

†
jξj + g

[
(σxb + σgx) ξ†

j + h.c.
]}
, (2.89)

where ξ†
j (ξj) and ωj represent the creation (annihilation) operator and the resonance

frequency for sensors j = 1, 2. Given that the emissions eventually occur in free space, we
assume that the linewidth κj associated with each of the sensors is broadband (κ ≫ 1). The
coupling strengths (g) associated with the sensors are made small, satisfying g ≪

√
κΓ/2

[2], where Γ represents the spontaneous decay rates, to prevent the introduction of back-
action into the main system. The sensor method has been previously developed and
utilized for the investigation of photon-photon correlations in various physical systems.
Moreover, no additional assumptions are imposed on the system, and the correlation
functions obtained with the sensor operators correspond to the correlations in emission
[2]. We employ and demonstrate the applicability of the sensor method to investigate
time-resolved correlations, as well as to model the emission and two-photon interference of
photons emitted as a part of the biexciton-exciton cascade.

The complete Hamiltonian to describe the full system (emitter + sensors) can be
written as He +Hs, and reads

H = ωxσxx + ωbσbb + Ω(t)
2

(
e−iωLt + eiωLt

)
(σgx + σxb + h.c.)

+
2∑

j=1

{
ωjξ

†
jξj + g

[
(σxb + σgx) ξ†

j + h.c.
]}
. (2.90)

It is convenient to perform a unitary transformation to simplify the Hamiltonian and
remove the complex time dependence. The transformation is defined by the operator
U1 = e−iH1t, where H1 is given as

H1 = (ωL + ∆b)σxx + (2ωL + ∆b)σbb +
2∑

j=1
ωjξ

†
jξj (2.91)

with ∆b = 2ωL − ωb being the detuning between the laser frequency and the two-photon
resonance. The transformed Hamiltonian H ′ = U †

1HSU1 − iU †
1

∂U1
∂t

is written as

H ′ = (∆x − ∆b)σxx − 2∆bσbb + Ω(t)
2

(
e−i∆btσgx + σxb + h.c.

)
+ g

2∑
j=1

[(
e−i∆btσgx + σxb

)
ξ†

i ei∆it + h.c.
]
, (2.92)

where ∆i = ωi − ωL is defined as the sensor detuning. We applied the rotating wave
approximation was applied, and terms that oscillate with double laser frequency 2ωL

were dropped. The two-photon excitation is assumed to be resonant with the biexciton



40 Chapter 2. Teorethical background

frequency ωb, resulting in ∆b = 0. The time dependence from the sensor operators can be
removed by performing a second unitary transformation U2 = e−iH2t, with H2 defined as

H2 =
2∑

j=1
αiξ

†
i ξi, (2.93)

where the coefficients αi are to be defined. The result of the second transformation applied
on H ′ is

HI = −α1ξ
†
1ξ1 − α2ξ

†
2ξ2 + (∆x − ∆b)σxx − 2∆bσbb + Ω(t)

2 (σgx + σxb + h.c.)

+ g
2∑

i=1

[
(σgx + σxb) ξ†

i ei(∆i+αi)t + h.c.
]
, (2.94)

which becomes time independent under the following conditions∆1 + α1 = 0 ⇒ −α1 = ∆1

∆2 + α2 = 0 ⇒ −α2 = ∆2,
(2.95)

and the time independent Hamiltonian reads

HI = ∆1ξ
†
1ξ1 + ∆2ξ

†
2ξ2 + (∆x − ∆b)σxx − 2∆bσbb

+ Ω(t)
2 (σgx + σxb + h.c.) + ϵ

2∑
i=1

[
(σxb + σgx) ξ†

i + h.c.
]
. (2.96)

The sensor detunings ∆1 and ∆2 can be adjusted to be resonant with the frequencies of
the emmitted photons, corresponding to the transitions |b⟩ → |x⟩ and |x⟩ → |g⟩. In this
case, one must introduce

ω1 = ωb − ωx

ω1 − ωL = (ωb − ωx) − ωL + ωL − ωL

∆1 = −(∆b + ∆x),

(2.97)

for sensor 1, and

ω2 = ωx − ωg

ω2 − ωL = ωx − ωL

∆2 = ∆x.

(2.98)

for sensor 2.

The dynamics of the system is solved using the ensemble master equation,

ρ̇ = −i[HI , ρ] +
∑

k

Lkρ, (2.99)
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Figure 5 – Occupation probabilities as a function of time for biexciton and exciton states,
simulated via the master equation.

considering the system to be at the ground state at t = 0. The dissipation mechanisms
are taken into account by means of the Lindblad operators Lk, that are connected to
spontaneous decay, dephasing and sensor linewidth. For spontaneous decay, one has

L1ρ = Γb

2
[
2σxbρσ

†
xb − σ†

xbσxbρ− ρσ†
xbσxb

]
, (2.100)

L2ρ = Γx

2
[
2σgxρσ

†
gx − σ†

gxσgxρ− ρσ†
gxσgx

]
, (2.101)

with Γx,b = 1/τx.b represents the decay rate for each of biexciton and exciton states. The
dephasing related to both transitions are modeled by [41],

L3ρ = Γdb

2
[
2σdbρσ

†
db − σ†

dbσdbρ− ρσ†
dbσdb

]
, (2.102)

L4ρ = Γdb

2
[
2σdxρσ

†
dx − σ†

dxσdxρ− ρσ†
dxσdx

]
, (2.103)

with σdb = σbb −σxx and σdx = σxx −σgg. The factors Γdb,dx = (1/τdb,dx) are the dephasing
rates of biexciton and exciton, respectively. The last Lindblad terms correspond to the
sensor linewidths, and can be written as

Ljρ = κj

2
(
2ξjρξ

†
j − ξ†

jξjρ− ρξ†
jξj

)
, (2.104)

with j = 1, 2. As the emissions into free space are considered, the sensor are considered to
have a broad linewidth, with κj ≫ 1. The population of the biexciton state is defined by

Pb = Γb

∫ ∞

0
⟨σbb(t)⟩ dt, (2.105)

and is adjusted through Ω0 to Pb = 0.5. The occupation probabilities for biexciton and
exciton states as a function of time are represented in figure 6, obtained by the expectation
values ⟨σbb(t)⟩ and ⟨σxx(t)⟩.

2.3.3 Two-photon interference

The radiation field in each of the input ports of the beamsplitter is described by the
annihilation (creation) operator ξj (ξ†

j ), with j = 1, 2, each with specific and potentially
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distinguishable degrees of freedom, such as polarization, and also temporal properties,
characterized by their lengths and arrival times at the beamsplitter. Considering the case
of a 50 : 50 beamsplitter, which means that 50% of the incident light is transmitted, and
the other 50% is reflected, the beam splitter acts as a unitary transformation upon the
field operators, and those are transformed by [44]

χ1 = 1√
2

(ξ1 + ξ2) ,

χ2 = 1√
2

(ξ1 − ξ2) ,
(2.106)

where χj operators denote output modes of the radiation after the beam splitter. More
specifically, the modes containing one photon each can be described as the quantum state

|Ψin⟩12 = ξ†
1ξ

†
2 |0⟩1 |0⟩2 , (2.107)

where again the subscripts denote the distinct modes of the radiation. After interacting at
the beamsplitter, the state containing one photon each will be described in terms of the
operators χj as χ†

1χ
†
2 |0⟩1 |0⟩2, and can be written in terms of the input modes using the

transformation in eq. (2.106) as

|Ψout⟩12 = 1
2
(
ξ†

1ξ
†
1 − ξ†

1ξ
†
2 + ξ†

2ξ
†
1 − ξ†

2ξ
†
2

)
|0⟩1 |0⟩2 . (2.108)

At this point distinguishability plays a key role in the phenomenon, which can be seen
with a very simple analysis. If we consider, for example, photons from modes 1 and 2 have
horizontal and vertical polarization respectively, they are distinguishable. In this case, we
denote the transformation in eq. (2.106) taking into account the polarization degree of
freedom,

χ1,H(t) = 1√
2

(ξ1,H + ξ2,H) ,

χ2,V (t) = 1√
2

(ξ1,V − ξ2,V ) ,
(2.109)

and the output state is then

|Ψout⟩12 = 1
2
(
ξ†

1,Hξ
†
1,V − ξ†

1,Hξ
†
2,V + ξ†

1,V ξ
†
1,H − ξ†

2,Hξ
†
2,V

)
|0⟩1 |0⟩2 , (2.110)

which in terms of amplitudes is [44]

|Ψout⟩12 = 1
2(|1;H, 1;V ⟩1 |0;H, 0;V ⟩2 − |1;H⟩1 |1;V ⟩2 +

|1;V ⟩1 |1;H⟩2 − |0;H, 0;V ⟩1 |1;H, 1;V ⟩2),
(2.111)

where the notation |n;H,m;V ⟩j indicates the presence of n photons of polarization H and
m photons of polarization V in mode j. In this case there is no interference: the system
has a probability of having two photons in either modes 1 and 2, given by the amplitudes
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of the first and last terms |1/2|2 + |1/2|2 = 1/2, and also a coincidence probability, the
scenario in which one photon is present in each mode of 1/2, given by the two middle
terms. In the indistinguishable scenario, where all degrees of freedom for both modes have
the same properties, the polarization indexes can be dropped from eq. (2.111), the middle
terms cancel out, and the output state can be obtained directly from eq. (2.108) as

|Ψout⟩12 = 1√
2

(|2⟩1 |0⟩2 − |0⟩1 |2⟩2) . (2.112)

In this case due to indistinguishability, the impinging photons interfere such that there is
no coincidence events: detectors placed at the output ports of the beamsplitter would not
click within a zero delay time between detections.

Besides polarization, it is also possible to analyze distinguishability in terms of
other degrees of freedom, such as the times in which the two interfering photons impinge
on the beamsplitter. In this case, the temporal properties are relevant to the analysis, as
the degree of distinguishability will change if the wavepackets do not match in space. In
the case of temporal distinguishability of single photons impinging on different ports of
the beamsplitter, one can account for the interference between the paths evaluating the
correlation functions for the coincidence events.

In general, one can describe the statistics of the output modes of the beamsplitter
by means of intensity-intensity correlation functions [14]. Considering detection events
at times t1 and t2, the statistics of the field is given in terms of the normally ordered
correlation

G
(2)
ij (t1, t2) = ⟨: ni(t1)nj(t2) :⟩ , (2.113)

which accounts for auto- and cross-correlation for i = j and i ̸= j, respectively. One is
interested in this case to quantify the cross-correlation between two independent modes of
the field that impinge on the beamsplitter. The two modes are assumed to be independent,
i.e. radiated by independent sources. Considering a time interval τ between the detection
of the output ports, the cross-correlation can be evaluated through eq. (2.113) as [45]

⟨: n1(t+ τ)n2(t) :⟩ =
〈
χ†

1(t+ τ)χ†
2(t)χ2(t)χ1(t+ τ)

〉
, (2.114)

which in terms of the input operators is

⟨: ni(t1)nj(t2) :⟩ = 1
4
〈(
ξ†

1(t+ τ) − ξ†
2(t+ τ)

) (
ξ†

1(t) + ξ†
2(t)

)
×

(ξ1(t) + ξ2(t)) (ξ1(t+ τ) − ξ2(t+ τ))
〉
,

(2.115)

from which terms with odd number of operators from the same mode such as
〈
ξ†

i ξ
†
i ξiξj

〉
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vanish, yielding

G
(2)
ij (t, τ) = 1

4
[〈
ξ†

1(t+ τ)ξ†
1(t)ξ1(t)ξ1(t+ τ)

〉
+
〈
ξ†

2(t+ τ)ξ†
2(t)ξ2(t)ξ2(t+ τ)

〉]
+

1
4
[〈
ξ†

1(t+ τ)ξ†
2(t)ξ2(t)ξ1(t+ τ)

〉
+
〈
ξ†

2(t+ τ)ξ†
1(t)ξ1(t)ξ2(t+ τ)

〉]
−1

4
[〈
ξ†

2(t+ τ)ξ†
1(t)ξ2(t)ξ1(t+ τ)

〉
+
〈
ξ†

1(t+ τ)ξ†
2(t)ξ1(t)ξ2(t+ τ)

〉]
.

(2.116)

The assumption that the fields are radiated by independent sources, and thus not correlated
by any means makes it possible to write the cross-correlation terms in eq. (2.116) as
products of two two-time autocorrelation functions [45], which can be written as

G
(2)
12 (t, τ) = 1

4
[〈
ξ†

1(t+ τ)ξ†
1(t)ξ1(t)ξ1(t+ τ)

〉
+
〈
ξ†

2(t+ τ)ξ†
2(t)ξ2(t)ξ2(t+ τ)

〉]
+

1
4
[〈
ξ†

1(t+ τ)ξ1(t+ τ)
〉 〈
ξ†

2(t)ξ2(t)
〉

+
〈
ξ†

2(t+ τ)ξ2(t+ τ)
〉 〈
ξ†

1(t)ξ1(t)
〉]

−
1
4
[〈
ξ†

2(t+ τ)ξ2(t)
〉 〈
ξ†

1(t)ξ1(t+ τ)
〉

+
〈
ξ†

1(t+ τ)ξ1(t)
〉 〈
ξ†

2(t)ξ2(t+ τ)
〉]
.

(2.117)

Rewriting eq. (2.117) in terms of two-time unnormalized intensity and amplitude
correlations,

G
(1)
j (t, τ) =

〈
ξ†

j (t+ τ)ξj(t)
〉
, (2.118)

G
(2)
jj (t, τ) =

〈
ξ†

j (t+ τ)ξ†
j (t)ξj(t)ξj(t+ τ)

〉
, (2.119)

one can also rewrite the cross-correlation as

G
(2)
12 (t, τ) = 1

4
[
G

(2)
11 (t, τ) +G

(2)
22 (t, τ)

]
+ 1

4
[〈
ξ†

1(t+ τ)ξ1(t+ τ)
〉 〈
ξ†

2(t)ξ2(t)
〉

+
〈
ξ†

2(t+ τ)ξ2(t+ τ)
〉 〈
ξ†

1(t)ξ1(t)
〉

− 2 Re
(
G

(1)
1 (t, τ)

)∗
G

(1)
2 (t, τ)

]
.

(2.120)

Integrating eq. (2.120) over t one obtains the correlation as a function of the time delay τ ,
G

(2)
HOM(τ) [45]

G
(2)
HOM(τ) =

∫ ∞

0
G

(2)
12 (t, τ)dt. (2.121)

The correlation at zero delay can then be obtained by integrating over the time
span of t and τ as

G
(2)
HOM[0] =

∫ ∞

−∞

∫ ∞

0
G

(2)
12 (t, τ) dt dτ, (2.122)

where the limits (−∞,∞) account for both positive and negative values of τ , given that
one photodetection occurs at time t.

2.3.4 Monte Carlo wavefunction and postselection

The Monte Carlo wavefunction method [46] consists of determining single quantum
trajectories that the evolution of the quantum system undergoes. Instead of obtaining
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the density operator ρ(t) as in the master equation solution, the method is based on the
solution of the Schrödinger equation

iℏd |Ψ(t)⟩
dt = Hnh |Ψ(t)⟩ . (2.123)

The evolution is governed by the non-hermitian Hamiltonian Hnh defined as [46]

Hnh = HI − iℏ
2
∑

k

C†
kCk, (2.124)

where Ck denotes the k-th to the collapse operator of the system composed of emitter and
sensors, and HI is the interaction Hamiltonian given in eq. (2.96). The imaginary terms
present in eq. (2.124) cause a decrease of the norm of the state vector |Ψ(t)⟩, such that
∥|ψ(t1)⟩∥ > ∥|ψ(t2 > t1)⟩∥.

The decrease of the norm of the state vector is used to trigger a transition of the
system, corresponding to the collapse and renormalization of the wavefunction [46]

|Ψ(t)⟩ → Ck |Ψ(t)⟩√
⟨Ψ(t)|C†

kCk|Ψ(t)⟩
. (2.125)

To perform the simulation, a random number r1 (0 ≤ r1 ≤ 1) is generated, and the time
interval is discretized. For every time step, the norm of the state vector is calculated and
numerically compared with r1. A quantum jump takes place at t = t0 when the condition
∥|Ψ(t0⟩∥ < r1. As a result, a set of N state vectors is obtained, each corresponding to a
trajectory calculated in the time evolution. The correspondence with the ensemble master
equation is achieved in the average

ρ(t) = lim
N→∞

1
N

N∑
j=1

|Ψj(t)⟩⟨Ψj(t)| , (2.126)

where |Ψj(t)⟩ denotes the j-th simulated trajectory at time t.

For the computation of the postselected density matrix, a reduced set of trajectories
is considered upon ensemble average represented in eq. (2.126).

2.3.5 Wavepacket reduction and time-energy entanglement

The cascaded nature of the system under consideration translates into a time-
ordered emission of the photons. This temporal correlation was investigated by J. D.
Franson, with the introduction of the concept of time-energy entanglement. The wavefunc-
tion for a photon pair pertaining to one cascade is given by [32]

ψ(tb, tx) = 2
√

ΓbΓxe−ΓbtbΘ(tb)e−Γx(tx−tb)Θ(tx − tb), (2.127)

where tb (tx) denote the emission time and decay rate of the biexciton (exciton) state,
and Θ(t) denotes the Heaviside function. The entanglement arises from the presence
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Figure 6 – Occupation probabilities as a function of time for biexciton and exciton states.
The number of trajectories considered for the average is N = 1000.

of the factor Θ(tx − tb), which accounts for the time ordering of the emissions, with
Θ(tx − tb) ̸= 0 ⇔ tx > tb. The effect of this correlation can be observed by evaluating the
state of one photon that pertains to one photon pair. Denoting the composite density matrix
of the system as ρ(tb, tx) = ψ∗(tb, tx)ψ(tb, tx), the reduced density matrix corresponding to
one photon can be obtained by taking the partial trace over either of the temporal degrees
of freedom. Denoting the exciton reduced density matrix by ρx, obtained by tracing over
the biexciton emission time tb, the quantity [32]

Tr
(
ρ2

x

)
= Γb

Γb + Γx

(2.128)

represents the purity of the exciton photon, related to the decay rates Γb and Γx. The
expression for the purity shows that the correlations between biexciton and exciton photons
are strong when Γx ≫ Γb. This corresponds to the case considered in the time-energy
entanglement [47], where the uncertainty in the time difference of the emission events in
the cascade is smaller compared to the uncertainties of individual emissions (τx ≪ τb). On
the other hand, Γx ≪ Γb (τx ≫ τb) implies that the reduced density operator has a greater
temporal purity, as Tr(ρ2

x) → 1 as the ratio between lifetimes τb/τx becomes smaller.

To analyze the impact of the temporal correlations on the coherence and interference
properties of the reduced single-photon state, a postselection framework was implemented.
The concept consists of sampling the first photon of the cascade corresponding to the
transition |b⟩ → |x⟩, into distinct temporal groups, separated by a time t = t0. In this
way, the postselected density matrix is constructed based on the biexciton photons whose
emission time tb is such that tb < t0. No restrictions are imposed on the exciton emission.
The postselection scheme is illustrated in Figure 7. This postselection of the photon
emissions virtually translates in an average reduction of the biexciton state lifetime, as
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Figure 7 – Occupation probability for the biexciton state |b⟩ as a function of time, simu-
lated via Monte Carlo wavefunction method. The blue vertical line corresponds
to the postselection condition, located at t = 192ps. The orange lines represent
the trajectories in which the biexciton emission preceeds the postselection con-
dition. The dashed black lines correspond to trajectories in which the biexciton
emission does not satisfy the condition.

the postselected density matrix,

ρP S(t) ≈ 1
N ′

N ′<N∑
j=1

|Ψj(t)⟩⟨Ψj(t)| (2.129)

disregards emission events based on the postselection time window. The condition for
increased purity, Γx ≪ Γb, can be achieved through postselection by making tP S ≪ τx.
Simulated trajectories are illustrated on Figure 7. Figure 8 shows the theoretical results
for Hong-Ou-Mandel interference visibility predicted theoretically. The experiment was
conducted with quantum dot embedded in a micropillar structure [48], showing the effective
action of the experimental postselection framework. The detailed experimental schemes,
together with the experimental data is presented in [49].
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Figure 8 – Theoretical curves for the Hong-Ou-Mandel interference visibility as a function
of the postselection time window. The black curve represents the no-dephasing
case. The blue curve accounts for the scenario corresponding to the coherence
times estimated theoretically. The light blue region represents the error with
which the coherence times were determined.
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3 Conclusion

In this thesis, we have reviewed the results achieved during the entire doctoral
project, focused on quantum information and quantum computation. The results consist
of two published and one submitted papers, each of which addressing a distinct topic
regarding quantum information processing.

In the first work [4], we have investigated the mathematical properties of superpo-
sitions of two-mode squeezed states. In particular, we focused on two particular cases that
take place under specific parameters, the even and odd EPR states. We presented a pa-
rameter relevant to quantifying and maximizing the entanglement between the two modes
of the electromagnetic field, which shows the possibility of achieving higher efficiency in
entanglement in entanglement generation compared to the two-mode squeezed EPR state.
We motivate the application of even and odd EPR states for quantum metrology purposes.
Through the concept of Quantum Fisher Information, we presented a quantitative analysis
that motivates the use of these states for the implementation of phase insensitive quantum
metrology.

The second work [50] addresses the complexity analysis of quantum algorithms.
We point out that, although quantum algorithms might offer an improvement over their
well established classical counterparts, the full implementation of a quantum algorithm for
practical execution is often costly regarding the time and space complexity aspects. To
provide a quantitative analysis, we have considered the computational complexity of infor-
mation input, consisting of the preparation of the initial state for algorithmic processing,
together with complexity of retrieving the output state, containing the relevant information
about the task performed by the algorithm. We perform a detailed analysis regarding
distinct architectures for quantum random access memory (qRAM) and quantum state
tomography, combining the results of different approaches and indicating the alternatives
that can lead to optimized complexity.

Finally, we presented a study regarding interference properties of photons emitted in
cascaded processes [49]. We have employed the sensor method, described in the theoretical
background, for the computation of correlation functions of photons pertaining to one
cascade. The behavior of the Hong-Ou-Mandel interference visibility was quantified for
both of the emitted photons under distinct coherence conditions, caractherized by the
lifetimes of the internal states and the dephasing times relative to each of the transitions,
and quantify the dephasing times correspondent to the system we study experimentally.
To study the impact of postselection on HOM interference visibility, we implement a
stochastic framework based on the Monte-Carlo wavefunction method. We present and
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discuss the enhancement of visibility based on the length of the postselection time window.
With this work, submitted to Physical Review Letters, we hope to provide a relevant
discussion about the performance of cascaded sources and, indicating the way towards
optimal performance.

We believe that this thesis provides a valuable collection of results in the field of
quantum information and quantum computation, regarding to both basic and applied
aspects of physics.
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4 Superposition of two-mode squeezed states
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We investigate superpositions of two-mode squeezed states (TMSSs), which have potential applications in
quantum information processing and quantum sensing. We study some properties of these nonclassical states
such as the statistics of each mode and the degree of entanglement between the two modes, which can be higher
than that of a TMSS with the same degree of squeezing. The states we consider can be prepared by inducing
two-mode Jaynes-Cummings and anti-Jaynes-Cummings interactions in a system of two modes and a spin- 1

2
particle, for instance, in the trapped ion domain, as described here. We show that when two harmonic oscillators
are prepared in a superposition of two TMSSs, each reduced single-mode state can be advantageously employed
to sense arbitrary displacements of the mode in phase space. The Wigner function of this reduced state exhibits
a symmetrical peak centered at the phase-space origin, which has the convenient peculiarity of getting narrower
in both quadratures simultaneously as the average photon number increases. This narrow peak can be used as
the pointer of our quantum sensor, with its position in phase space indicating the displacement undergone by the
oscillator.

DOI: 10.1103/PhysRevA.103.062405

I. INTRODUCTION

In quantum mechanics, the superposition principle is the
origin of fascinating nonclassical attributes of quantum states
such as quantum coherence [1], squeezing [2], and entan-
glement [3]. Great efforts, both theoretical and experimental,
have been made in order to generate nonclassical states
and to investigate their properties, since these states have
a wide range of applications in quantum information pro-
cessing [4–10], quantum-enhanced metrology [11–14], and
fundamental tests of quantum mechanics [15,16].

Consider the two-mode squeezed state (TMSS), which is
an entangled state of two bosonic modes [2]. This kind of
correlation exhibits Bell nonlocality [15], a key ingredient
to demonstrate the Einstein-Podolsky-Rosen paradox [17,18]
(fundamental test of quantum mechanics), to implement quan-
tum teleportation in continuous variables [19] (manipulation
of quantum information), and to detect very weak fields
[20] such as the gravitational waves [21] (quantum metrol-
ogy). Another intriguing nonclassical state is the so-called cat
state, a quantum superposition of two diametrically opposed
coherent states, which has been employed to demonstrate
Schrödinger’s famous cat paradox and has been used as a
resource for quantum information processing [22–40].

Here we are interested in nonclassical states that connect
the concepts of both TMSSs and cat states, namely, a su-
perposition of TMSSs with the same amplitudes but opposite

*frc@df.ufscar.br

phases. There are already theoretical proposals for their gen-
eration in microwave cavities [41] (that could also be adapted
for the context of optical cavities or solid-state-based sys-
tems), in trapped ions [42], and by using the parity operator
[43]. Nevertheless, the literature lacks studies of their proper-
ties and applications, which is our goal here.

We first analyze the statistics of each reduced single-
mode state (RSMS) of a superposition of TMSSs. For the
symmetrical balanced superposition, which we call the even
TMSS, we show that there is bosonic superbunching [44,45],
an effect with potential applications for advanced imaging
techniques (such as ghost interference and imaging) as well
as efficient nonlinear light-matter interaction [46–52]. In con-
trast, for small squeezing parameters, each single mode of the
asymmetrical balanced superposition (odd TMSS) presents
two-photon anticorrelation [44,45], a desired behavior for
single-photon sources [53]. Remarkably, each mode of the
even and odd TMSSs behaves as a pseudothermal state,
which consists of thermal states with only even and odd Fock
excitations, respectively. In addition, we investigate the en-
tanglement degree between the modes of such catlike states,
which can be higher than that of the TMSS in certain param-
eter regimes. Since entanglement is a resource of quantum
states, this may be an advantage for quantum information
processing.

Afterward, we show that the RSMS of either the even or
the odd TMSS can be used to sense the amplitude of arbitrary
single-mode displacements acting on a harmonic oscillator.
The Wigner functions of these RSMSs each have a sym-
metrical peak centered at the phase-space origin, which gets

2469-9926/2021/103(6)/062405(10) 062405-1 ©2021 American Physical Society
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narrower in both quadratures simultaneously as the squeezing
parameter and the average number of excitations in the state
increase, but without violating Heisenberg’s uncertainty rela-
tion. This narrow peak works as the pointer of our quantum
sensor, with its position in the phase space indicating the
displacement undergone by the oscillator, which could phys-
ically describe, for instance, an optical [40] or a microwave
resonator mode [35,54,55], vibrational modes of trapped ions
[42,56], or a nanomechanical oscillator [57]. In this sense,
our sensor is able to probe any time-dependent classical force
inducing a displacement on a quantum resonator [58].

Several studies have attempted to figure out the ultimate
limits of measuring forces and displacements on an oscillator
[59], beating the standard quantum limit and even reaching the
Heisenberg one [11,54,60–66]. However, it worth stressing
that this is not our goal. Hence, as similarly considered in
Ref. [58], which described the determination of both parame-
ters of a displacement acting on an oscillator, the idea we put
forward here is the possibility of sensing displacements under-
gone by a quantum resonator with a single-mode sensor state
robust against phase errors when measuring a phase-space
quadrature. Furthermore, our results hold regardless of the
displacement strength, not being limited to small amplitudes
as is the case for grid states [58].

The paper is organized as follows. Section II outlines the
procedure for generating superpositions of TMSSs by cou-
pling a two-level quantum system with two bosonic field
modes and presents the expressions for the two-mode su-
perposition and the reduced density matrices. In Sec. III we
present the relevant statistical properties for those states, such
as Wigner functions and populations in the Fock basis, and
also the second-order correlation function g(2)(0), discussing
the properties of antibunching and superbunching, and show
that odd TMSSs can be used as a source of single photons in
two modes. Section IV provides the entanglement properties
of the superpositions of TMSSs and shows that, for a certain
regime of parameters, the superpositions of TMSSs show
more entanglement than TMSSs. In Sec. V we present basic
concepts of quantum metrology and discuss potential appli-
cations of even and odd TMSSs in detecting small coherent
forces in any direction (they are sensitive to displacements in
all directions in phase space). In Sec VI a simulation of the
process for generating even and odd TMSSs in the trapped-
ion domain is presented. The process involves coupling the
electronic state of the ion with two of its motional degrees of
freedom using a two-color laser field. We also discuss the pro-
cess of probing the Wigner function. Section VII summarizes
the results and presents the conclusions.

II. GENERATION OF SUPERPOSITION OF TWO-MODE
SQUEEZED STATES

Two-mode squeezed states can be generated by coupling
two bosonic modes with a two-level quantum system (a qubit)
via the Hamiltonian (h̄ = 1)

H = −(χ∗ab + χa†b†)σx

= −(χ∗abσ+ + χa†b†σ−) − (χ∗abσ− + χa†b†σ+),
(1)

where χ is the coupling strength; a (a†) and b (b†) are
the annihilation (creation) operators for the bosonic modes;
σx = |+〉〈+| − |−〉〈−| is the Pauli-X operator, with |±〉 =

1√
2
(|g〉 ± |e〉), where |e〉 (|g〉) is the excited (ground) state of

the two-level system; and σ± = 1
2 (σx ± iσy) are the fermionic

raising and lowering operators. The two terms in the second
line of Eq. (1) are a two-mode Jaynes-Cummings interaction
and a two-mode anti-Jaynes-Cummings interaction.

The coupling Hamiltonian H can be realized in various
platforms. In Sec. VI we describe how it may be implemented
in a trapped-ion setup.

We consider the case where the two-level system is ini-
tially in the superposition state |φ0〉 = 1√

2
(|−〉 + eiϕ |+〉) ≡

[cos(ϕ/2)|g〉 + i sin (ϕ/2)|e〉] while the two bosonic modes
are both in the vacuum state |ψ0〉 = |0, 0〉. Thus the initial
state of the composite system is separable |�0〉 = |φ0〉|ψ0〉
(the tensor product symbol is omitted for brevity). After
applying the coupling H for time τ the composite system
evolves to

|�τ 〉 = e−iHτ |�0〉 = 1√
2

[|−〉|ψ (ξ )〉 + eiϕ |+〉|ψ (−ξ )〉],
(2)

where

|ψ (ξ )〉 = e(ξ∗ab−ξa†b† )|0, 0〉

= 1

cosh r

∞∑
n=0

(−eiθ tanh r)n|n, n〉 (3)

is the TMSS which we parametrize by ξ = −iχτ = reiθ , with
the squeezing parameter r = |χ |τ and squeezing angle θ =
arg(ξ ) [67].

From Eq. (2) the bosonic modes are projected onto a
TMSS by measurement of the two-level system in the X
basis {|+〉, |−〉}. Starting from the TMSS, the reduced density
matrix of one mode (found by tracing out the variables of the
other mode) is a thermal state

ρth = (1 − λr )
∞∑

n=0

λn
r |n〉〈n| =

∞∑
n=0

〈n〉n
th

(1 + 〈n〉th)n+1
|n〉〈n|, (4)

with the average number of excitations 〈n〉th = Tr(a†aρth ) =
sinh2 r = λr

1−λr
and λr = tanh2 r [67].

More interesting results emerge when the two-level system
is projected onto the Z basis {|e〉, |g〉}. In this basis Eq. (2)
becomes

|�(ξ, ϕ)〉 = 1

2N+
|g〉|ψ+(ξ, ϕ)〉 − 1

2N−
|e〉|ψ−(ξ, ϕ)〉, (5)

where

|ψ±(ξ, ϕ)〉 = N±[|ψ (ξ )〉 ± eiϕ |ψ (−ξ )〉] (6)

are superposition states of two diametrically opposed TMSSs,
with |N±|2 = 1

2
1+λr

(1+λr )±εϕ (1−λr ) and εϕ = cos ϕ. When the two-
level system is projected onto |g〉 (|e〉) the bosonic modes
are projected onto the catlike state |ψ+(ξ, ϕ)〉 [|ψ−(ξ, ϕ)〉].
Since ϕ ∈ [0, 2π ) and |ψ+(ξ, ϕ)〉 = |ψ−(ξ, ϕ + π )〉, it is
sufficient to analyze just the properties of one of these
states, e.g., |ψ+(ξ, ϕ)〉. We refer to the states that emerge
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when ϕ = 0 and ϕ = π as even and odd TMSSs, respec-
tively, |ψE (ξ )〉 ≡ |ψ+(ξ, 0)〉 = |ψ−(ξ, π )〉 and |ψO(ξ )〉 ≡
|ψ+(ξ, π )〉 = |ψ−(ξ, 0)〉, because they comprise only even
and odd bosonic excitations

|ψE (ξ )〉 =
√

1 − λ2
r

∞∑
n=0

( − λ1/2
r eiθ

)2n|2n, 2n〉, (7)

|ψO(ξ )〉 =
√

1 − λ2
r

λr

∞∑
n=0

( − λ1/2
r eiθ

)2n+1|2n + 1, 2n + 1〉.

(8)

When the two modes are in the state |ψ+(ξ, ϕ)〉 the reduced
density matrix of each mode is

ρ(r, ϕ) = 2(1 − λr )|N+|2
∞∑

n=0

λn
r [1 + (−1)n cos ϕ]|n〉〈n|,

(9)
which is independent of the squeezing angle θ . Specifically
for the even and odd TMSSs, we have the RSMSs

ρE = (
1 − λ2

r

) ∞∑
n=0

λ2n
r |2n〉〈2n|, (10)

ρO = (
1 − λ2

r

) ∞∑
n=0

λ2n
r |2n + 1〉〈2n + 1|. (11)

As the even and odd TMSSs [Eqs. (7) and (8)] are built
from the superposition of TMSSs, whose reduced single-
mode states are described by thermal states [Eq. (4)], it is
not surprising that the reduced single modes of the even and
odd TMSSs behave as pseudothermal states. We can indeed
identify that by rewriting Eqs. (10) and (11) in terms of 〈n〉th

and comparing them with ρth, namely,

ρE = 1 + 2〈n〉th

1 + 〈n〉th

∞∑
n=0

〈n〉2n
th

(1 + 〈n〉th )2n+1
|2n〉〈2n|, (12)

ρO = 1 + 2〈n〉th

〈n〉th

∞∑
n=0

〈n〉2n+1
th

(1 + 〈n〉th)(2n+1)+1
|2n + 1〉〈2n + 1|.

(13)

From these expressions one can recognize ρE and ρO as
even and odd thermal states (pseudothermal states), respec-
tively [68], which are particular cases of binomial negative
states [69]. Even thermal states (even RSMSs) can also be
generated through a parametric pumping field with fluctua-
tions [70].

III. STATISTICAL PROPERTIES

Let us discuss the properties of each single mode
of the catlike state. Since ρ(r, ϕ) is diagonal in the
Fock basis, with populations Pn(ϕ) = 2(1 − λr )|N+|2λn

r [1 +
(−1)n cos ϕ], the Wigner function of this state can be writ-
ten as W (q, p) = ∑∞

n=0 PnWn(q, p), in which Wn(q, p) =
(2/π )(−1)nLn(4s2)e−2s2

is the Wigner function of the Fock
state |n〉, with the Laguerre polynomial Ln(x) and s2 = q2 +
p2. Here q and p are the eigenvalues of the position and
momentum quadrature operators of the mode q̂ = a + a† and

FIG. 1. Statistical properties of the reduced single-mode states:
populations in the Fock basis of the (a) thermal state (Pth

n ) and for
each mode of the (c) even (PE

n ) and (e) odd (PO
n ) TMSSs for the

squeezing parameter r = 1.5 (light gray for odd occupation) and
(b), (d), and (f) Wigner functions for the same reduced single-mode
states, respectively.

p̂ = i(a† − a), respectively, representing the dimensionless
amplitudes of the mode quadratures in phase space [71].

First we observe that ρ(r, ϕ) reduces to the thermal state
ρth when ϕ = {π

2 , 3π
2 } because |ψ+(ξ, ϕ = π

2 , 3π
2 )〉 reduces to

|ψ (ξ )〉 except for a global phase factor. The Wigner function
of the thermal state ρth is given by the two-dimensional Gaus-
sian function

Wth(q, p) = 2

π

exp
( − 2 (q2+p2 )

2〈n〉th+1

)
2〈n〉th + 1

= 2

π

1 − λr

1 + λr
exp

(
−2

1 − λr

1 + λr
(q2 + p2)

)
, (14)

while for each single mode of the even (ρE ) and odd (ρO)
TMSSs the Wigner functions are each described by sums of
two two-dimensional Gaussian functions

WEO (q, p)

= �EO

(
(1 − λr ) exp

[
−2

(
1 − λr

1 + λr

)
(q2 + p2)

]

± (1 + λr ) exp

[
−2

(
1 + λr

1 − λr

)
(q2 + p2)

])
, (15)

with �E = π−1 and �O = (πλr )−1.
Figure 1 shows the populations and the Wigner function

for ρth (Pth
n and Wth), ρE (PE

n and WE ), and ρO (PO
n and WO) for

the squeezing parameter r = 1.5. We observe that the profile
of the populations for ρE and ρO are very similar, namely,
PO

2n+1 = PE
2n = (1 − λ2

r )λ2n
r , that is, the probability distribu-
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FIG. 2. (a) Second-order correlation function at zero-time delay
g(2)(0) as a function of the squeezing parameter r, via λr = tanh2(r),
for the thermal state (ρth) (black solid line), the RSMSs of the
even (ρE ) (orange dashed line) and odd (ρO) (blue dot-dashed line)
TMSSs, and the single-mode squeezed state (|SS〉) (black dotted
line). (b) Probability of projecting onto the odd TMSS (PO) (ascend-
ing blue line) and probability of it having a single-photon in each
mode (PO

1 ) (descending orange line) as a function of λr .

tion of ρO is shifted by one unit compared with the distribution
of ρE .

Accordingly, the average number of excitations is related
by 〈n〉O = 〈n〉E + 1, where 〈n〉E = Tr(a†aρE ) = 2λ2

r /(1 −
λ2

r ). Moreover, we notice that PE
n and PO

n are very similar to
Pth

n , except for a normalization factor and for being nonzero
only for even and odd Fock numbers, respectively, which
illustrates the pseudothermal behavior of each mode of the
even and odd TMSSs. It is also important to notice in Fig. 1 a
concentrated profile of Wigner functions around the phase-
space origin for both ρE and ρO, which can be useful for
metrological purposes, as we discuss in Sec. V.

We can also investigate the statistics of ρE and ρO using the
second-order correlation function at zero-time delay g(2)(0) =
〈a†a†aa〉/〈a†a〉2,

g(2)
E (0) = 2 + 1 − λ2

r

2λ2
r

� 2 for ρE , (16)

g(2)
O (0) = 2 − 2

(
1 − λ2

r

)
(
1 + λ2

r

)2 � 2 for ρO. (17)

For large values of the squeezing parameter (λr → 1 or,
equivalently, for r 
 1) we observe that the correlation func-
tions g(2)(0) of ρE and ρO become indistinguishable and tend
to the thermal one, i.e., g(2)

th (0) = 2. In contrast, when the
squeezing parameter is small, the RSMSs of the even and
odd TMSSs present completely opposite statistics: While ρO

exhibits antibunching [g(2)
O (0) < 1], ρE displays superbunch-

ing [g(2)
E (0) > 2]. To be more specific, g(2)

E (0) > 2 ∀ r � 0

(λr � 0) and g(2)
O (0) < 1 for 0 � λr <

√√
5 − 2 ≈ 0.49 ↔

0 � r < tanh−1 4
√√

5 − 2 ≈ 0.86. Figure 2(a) displays the
change of g(2)(0) with λr for ρth, ρE , ρO and the single-mode
squeezed state |SS〉 = e(re−iθ a2−reiθ a†2 )/2|0〉, with g(2)

SS (0) = 2 +
1/λr . We have included the latter for the sake of comparison,
since it has the same average number of excitations of each
single mode of the TMSS (〈n〉SS = 〈n〉th) and presents super-
bunching. Remarkably, each mode of the even TMSS exhibits
more superbunching than if it were in a single-mode squeezed
state [g(2)

E (0) > g(2)
SS (0) > 2] within the parameter range 0 �

λr <
√

2 − 1 ≈ 0.41 ↔ 0 � r < tanh−1
√√

2 − 1 ≈ 0.76.

Due to the aforementioned attributes, each mode of the
even and odd TMSSs is quite suitable for quantum devices
related to advanced imaging techniques and single-photon
generation, respectively. A single photon may be produced
in each of the two modes when the odd TMSS is produced.
The probability of projecting onto the odd TMSS is PO =
λr/(1 + λr ). The proportion of the odd TMSS described by
two single photons is PO

1 = 1 − λ2
r . Production of high-purity

states of two single photons requires λr → 0, which comes
at the expense of a low production probability PO, as shown
in Fig. 2(b). It is worth noting that the qubit may be used to
herald projection onto the odd TMSS.

IV. ENTANGLEMENT

Considering a bipartite system in a pure state, the degree
of entanglement between the subsystems can be quanti-
fied through the linear entropy E = d

d−1 (1 − γ ), where γ =
Tr(ρ2

1 ) is the purity of one of the subsystems described by
the reduced density matrix ρ1 and d = dim ρ1. Since our sub-
systems are bosonic modes, with infinite-dimensional Hilbert
spaces, 0 � E � 1 such that E = 0 for separable states while
E = 1 for maximally entangled continuous-variable states.

For the TMSS |ψ (ξ )〉, the degree of entanglement is

ETMSS(r) = 1 − 1 − λr

1 + λr
, (18)

while for the general superposition |ψ+(ξ, ϕ)〉,

Eϕ (r) = 1 −
(

1 − λ2
r

1 + λ2
r

)
(1 + εϕ )2 + λ2

r (1 − εϕ )2

[(1 + εϕ ) + λr (1 − εϕ )]2
. (19)

Here Eϕ (r) = ETMSS(r) for any r when ϕ = {π
2 , 3π

2 } → εϕ =
0, which is not a surprise, since we have seen in Sec. III that
ρ(r, ϕ) reduces to ρth for these values of ϕ. The same degree of
entanglement also occurs when λr = √

(1 + εϕ )/(1 − εϕ ) or
r → ∞. Notably, Eϕ (r) > ETMSS(r) for ϕ ∈ ( π

2 , π ) ∪ (π, 3π
2 )

provided 0 < λr <
√

(1 + εϕ )/(1 − εϕ ). In this range, for
the same value of the squeezing parameter r, the entan-
glement degree in the catlike TMSSs becomes higher than
that in the TMSS. Curiously, it can reach high values even
for r � 1, namely, Eϕ (r) ≈ 0.5 for ϕ = π + β and r ≈
|β|/2 considering |β| � 1, for which we have |ψ+(ξ, ϕ)〉 ≈
(|0, 0〉 − sgn(β )ei(θ+π/2)|1, 1〉)/

√
2, i.e., a maximally entan-

gled qubit state. By contrast, ETMSS(r) ≈ β2/2 � 1 under
the same conditions, for which we have |ψ (ξ )〉 ≈ (|0, 0〉 −
(|β|/2)eiθ |1, 1〉)/

√
1 + |β|2/4 ≈ |0, 0〉, i.e., a separable state.

This means that it is possible to generate much more entangle-
ment between the modes with a lower squeezing parameter
by exploiting the catlike states instead of the TMSS, in-
dicating an advantage from the point of view of quantum
information science. Figure 3 illustrates the above results.
It is worth noting that the even (ϕ = 0) and odd (ϕ = π )
TMSSs have the same entanglement degree EE (r) = EO(r) =
1 − (1 − λ2

r )/(1 + λ2
r ), which is always smaller than or equal

to that for the TMSS. Despite that, we show in the next section
that their RSMSs can be employed for quantum metrological
purposes.
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FIG. 3. (a) Density plot showing the entanglement between the
two modes [Eϕ (r)], when they are in the catlike state |ψ+(r, ϕ)〉,
as a function of the initial-state relative phase ϕ and the two-mode
squeezing parameter r via λr = tanh2(r). The dashed lines delimit
the region for which Eϕ (r) surpasses the entanglement of the TMSS
[ETMSS(r)]. (b) Entanglement degree as a function of λr correspond-
ing to the states |ψ (ξ )〉 (orange dashed line), |ψ (ξ, ϕ)〉 (blue solid
line), and |ψE ,O(ξ )〉 (green dot-dashed line), considering ϕ = π + β,
with β = π/10. One can notice here that the entanglement outper-
forming occurs even for small values of r, reaching its maximum for
r ≈ |β|/2 (λr ≈ r2) when |β| � 1. Surprisingly, under this condition
an extreme contrast between the entanglement in the catlike state
and in the TMSS takes place; while the latter is essentially a sepa-
rable state given by the two-mode ground state [|ψ (ξ )〉 ≈ (|0, 0〉 −
(|β|/2)eiθ |1, 1〉)/

√
1 + |β|2/4 → ETMSS(r) ≈ 0.05 for the consid-

ered parameters], the former is approximately a maximally entangled
qubit state [|ψ+(ξ, ϕ)〉 ≈ (|0, 0〉 − ieiθ |1, 1〉)/

√
2 → Eϕ (r) ≈ 0.5].

The even and odd TMSSs have the same entanglement degree, which
is always smaller than or equal to that for the TMSS. (c) Populations
of the catlike state [Pn(ϕ)] [blue (dark gray) bars] and the TMSS
(PTMSS

n ) [orange (light gray) bars] for r = β/2 and ϕ = π + β, with
β = π/10.

V. QUANTUM METROLOGY

Quantum metrology takes advantage of the properties of
quantum mechanics to better estimate parameters involved in
dynamical processes, using quantum states as probes [72].
The process of estimating a parameter y follows a specific
sequence of steps, known as the protocol of estimation [73]:
(i) The probe state is prepared in an initial and determined
configuration, represented by the density matrix ρ; (ii) the
initial state evolves through a dynamical process, which is
represented by a unitary evolution operator U (y) such that
the final configuration of the system is dependent on the
parameter y; (iii) the final state ρ(y) is measured, giving
results yest(κ ), with associated probabilities Pκ (y); (iv) these
results are used to estimate the parameter y. It is important
to note that different results κ come from separate processes
of measurement. The average value of the parameter can
then be calculated with the individual estimation yest(κ ) as
〈yest〉 = ∑

κ yest(κ )Pκ (y), with
∑

κ Pκ (y) = 1. The deviation
of the parameter can be defined as (�y)2 ≡ 〈(yest − 〈yest〉)2〉
and its lower bound is proportional to the inverse of the Fisher

FIG. 4. Comparison of the Wigner function and its projections of
the single-mode squeezed state (projections in light gray dot-dashed
curves) with the projections of the RSMS of the even TMSS (black
solid lines), with r = 1.5 and the vacuum state |0〉 (red dashed lines).
The projections of the RSMS of the even TMSS display tails because
they are described by the summation of two two-dimensional Gaus-
sian functions [see Eq. (15)].

information 〈( d ln[Pκ (y)]
dy )2〉 [74,75] with respect to the parame-

ter y and represents the maximum quantity of information that
can be obtained with respect to y through the probability set
{Pκ (y)}, as derived from the Cramér-Rao inequality [76,77].
Although this is the main method of estimation of the param-
eter we discuss, nonlinear methods of estimation for quantum
metrological purposes are also available [78–80].

Given a generator U (y) for the transformation on the den-
sity matrix which leads to the final state ρ(y), the quantum
Fisher information for y with probe state ρ can be written
as F (y) = 4[�U (y)]2 if ρ is a pure state, with [�U (y)]2 =
〈U 2(y)〉 − 〈U (y)〉2, and F (y) = 2

∑
i, j

(δi−δ j )2

δi+δ j
|〈i|U (y)| j〉|2 if

ρ is mixed, where δ j and | j〉 stand for the eigenvalues and
eigenvectors of ρ, respectively.

Single-mode squeezed states are widely used in quan-
tum metrology due to the reduction of fluctuations in one
of the quadratures of the bosonic mode [81–83]. The fact
that the Wigner functions of each mode of the even and
odd TMSSs are invariant under rotations and sharply con-
centrated around the origin of the phase space (Fig. 1)
motivates the study of applications of those states in quantum
metrology.

Figure 4 shows a comparison between the Wigner func-
tions of a single-mode squeezed state, with reduced noise in
one of the quadratures, the RSMS of the even TMSS, for
the same value of the squeezing parameter r, and a vacuum
coherent state. The single-mode squeezed state has a more
concentrated probability distribution profile than the RSMS.
However, we would like to point out that the symmetry of
the Wigner function (around the origin of the phase space)
of the even and odd RSMSs implies a robust and sensitive
scheme for applications in quantum metrology, since that
peak, whose width can be controlled by the squeezing parame-
ter r, allows for probing small displacements in any direction,
as described in detail in the next section. Furthermore, the
Wigner function still presents thermal contributions along
broad regions of the phase space, so, despite the concentrated
peak around the origin, the Heisenberg uncertainty principle
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FIG. 5. (a) Quantum Fisher information FQ as a function of λr

and (b) average number of excitations in the bosonic field 〈n〉 for
each state. If the direction of squeezing in phase space matches the
displacement direction, single-mode squeezed states are well suited
for measuring the displacement. This is shown by the quantum Fisher
information FQ of the solid black curve. If the angle θ between the
squeezing direction and the displacement direction is large, it can
be more efficient to measure the displacement using the RSMS of the
even or odd TMSS. This is seen by comparing the red star curve (the
black dashed and red star curves show the average FQ values obtained
with SMSSs when θ is spread over a range) with the blue circle
and pink square curves. Here λr = tanh2 r describes the amount of
squeezing. Note also that for small values (λr < 0.3) the odd RSMS
presents a larger FQ than the SMSS. In particular, for λ → 0, the
odd RSMS (blue circles) approximates to the single-photon state |1〉
and the SMSS to the vacuum |0〉. From (b) it can be seen that FQ

behaves linearly for all states and, in particular, for small values of
λ, FQ(〈n〉) ≈ 4(2〈n〉 + 1), with 〈n〉 the average number of excitations
for each corresponding state. Note also that the red star, blue circle,
and pink square curves overlap in (b), corresponding to the SMSS
(−π � θ � π ) and odd and even RSMSs, respectively. We also in-
cluded in (b) the quantum Fisher information for a coherent state |α〉
represented by the blue dot-dashed line, which presents a constant
value of FQ = 4.0.

is not violated. For estimation of displacement, we employ
the general quadrature operator X (φ) = ae−iφ + a†eiφ , which
corresponds to position and momentum operators for φ =
0, π/2, respectively. Figure 5 shows the quantum Fisher in-
formation for the RSMSs of the even and odd TMSSs and
for the single-mode squeezed state, for estimation of po-
sition amplitudes of the mode. Although the single-mode
squeezed state shows better results for the quantum Fisher
information (for a specific quadrature), by employing a mea-
surement scheme of the Wigner function [84], the even and
odd RSMSs could be employed to detect small coherent
forces.

For our state, differently from the single-mode squeezed
state, one does not need to worry about the phase of the
displacement due to the symmetry of its Wigner function
around the origin, as we see in Fig. 4. Thus, although both
variances of the quadratures X and P increase with the amount
of squeezing λ as (3λ2 + 1)/(1 − λ2) and (λ2 + 3)/(1 − λ2)
for the even and odd RSMSs, respectively, the RSMSs still
can be very useful to detect small displacements and, con-
sequently, small forces, by monitoring the Wigner function
of the reduced mode state. This is described in detail in the
next section, showing in particular how these ideas can be
implemented in trapped-ion systems.

VI. ION IMPLEMENTATION

Two-mode squeezed states can be generated by a com-
bination of Jaynes-Cummings and anti-Jaynes-Cummings
interactions, as we see in Eq. (1). In this section we describe
how these interactions can be realized to produce an entangled
state of two motional modes of a single trapped ion, which
could be used for enhanced force sensing. In Ref. [42] similar
effective Hamiltonians are proposed, but the proposal involves
two trapped ions and other types of two-mode squeezed states
are considered.

Electronic states of a single trapped ion can be coupled
to the ion’s motion using a laser field. When the laser field’s
wave vector projects onto two motional modes (x and y), the
Hamiltonian describing the coupling (within the interaction
picture and after taking the rotating-wave approximation) is

HF = �

2
e−i�t eiηx (ae−iωxt +a†eiωxt )eiηy (be−iωyt +b†eiωyt )σ+ + H.c.,

(20)
where � is the coupling strength, � is the detuning of the
laser field from the atomic resonance, a†, b† and a, b raise and
lower the states of the x and y modes, and ωi are the motion
mode frequencies. In addition, σ+ and σ− act on the ion’s
internal state and the Lamb-Dicke parameters are defined by

ηi = ki

√
h̄

2mωi
, (21)

where ki is the projection of the laser field’s wave vector in the
i direction and m is the ion mass.

When a two-color coupling field satisfying � = ±(ωx +
ωy) is used, provided the system is within the Lamb-Dicke
regime η2

x (2nx + 1) and η2
y (2ny + 1) � 1 (ni is the number of

phonons in the i mode), the coupling Hamiltonian becomes

Heff = − 1
2ηxηy�σ+(ab + a†b†) + H.c.

= − 1
2ηxηy�σx(ab + a†b†) (22)

after another application of the rotating-wave approximation.
Identifying χ = 1

2ηxηy�, this Hamiltonian is equivalent to
Eq. (1) for real-valued χ .

The coupling laser field drives second-order sideband
transitions which are relatively weak. This implementation
requires the coupling dynamics to be faster than the decoher-
ence time ηxηy� 
 γ , also off-resonant excitation of stronger
transitions must be avoided � � ωx + ωy.

If the system is initialized in |�(t = 0)〉 = |g〉|0, 0〉, then
after evolution under HF given by Eq. (22), followed by
projection of the electronic state onto |g〉 (|e〉), the motional
modes of the trapped ion can be prepared in the even (odd)
TMSS in principle. Projective measurement of a trapped ion’s
electronic state is commonly accomplished with near-unity
fidelity by detecting laser-induced fluorescence detection [56].
We note that if the ion is in state |g〉, the scattering of fluores-
cence photons destroys the ion’s motional state. If the ion is
in projected onto the nonfluorescing state (|e〉), the motional
state (the odd TMSS) will be unperturbed.

In Fig. 6 we plot the fidelity of the states which evolve un-
der the effective Hamiltonian Heff [Eq. (22)] as compared with
the states evolved under the full Hamiltonian HF [Eq. (20)].
The effective Hamiltonian describes the squeezing dynam-
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FIG. 6. The squeezing dynamics in a trapped ion system is
captured well by Heff : The fidelity (represented by the red solid
decreasing curve) shows the overlap of the state evolved according to
the effective Hamiltonian Heff (black dot-dashed curve) with the state
evolved according to the full Hamiltonian HF (black solid line). The
evolution of the average number of excitations in the bosonic fields
is also shown.

ics well up to χt = r = 1. The parameters considered are
ωx = 1.0, ωy = 1.2, � = ωx/20, and ηx = ηy = 0.1. We also
show the evolution of the average number of phonons 〈n〉 =
a†a + b†b.

Now we describe how these states can be employed to
detect small forces by measuring the Wigner function of one
of the modes based on the protocol given in Ref. [84]. By
tracing out one of the modes, one can see that the Wigner
function of the reduced state is completely symmetric around
the origin (see Fig. 4). Thus, one does not need to worry about
the phase of the coherent displacement applied to the ion trap.

A weak coherent force applied on either the ion or the ion
trap causes a displacement D(α) = eαa†−α∗a of the mode state,
resulting in a state ρ(α) = D(α)ρvD−1(α), where ρv is the
reduced density operator of the motional state. The phase and
amplitude of the complex parameter α indicate the direction
and intensity of the displacement operation in the phase space.
At this point a laser pulse resonant to the |g〉 ↔ |e〉 transi-
tion (the carrier transition) is applied, whose Hamiltonian is
given by (keeping terms up to η2

x ) Hc = �/2[1 − η2
x (a†a +

1
2 )]σx. Adjusting the interaction time τ such that �η2

xτ/2 =
π/2, the evolution operator will be given by U = e−iHcτ =
e−i(�−πa†a/2), with � = �τ/2 − π/4. As shown in [84], the
evolved state of the system, Uρ(α)|e〉〈e|U −1, will be

[|e〉 cos(� − πa†a/2) − i|g〉 sin(� − πa†a/2)]ρ(α)

× [〈e| cos(� − πa†a/2) + i〈g| sin(� − πa†a/2)] (23)

and then the population inversion Peg = 〈σz〉 of the ion will
give, apart from a constant factor, the value of the Wigner
function at the position α = (q − ip)/2 in phase space, i.e.,
Peg ∝ W (α) [84]. For the even (odd) TMSS, when there is

no force acting on the ion, this results in α = 0 and conse-
quently the maximal (minimal) value of the atomic population
inversion. However, for small values of |α|, which are larger
than the width of the central peak of the Wigner function, the
population inversion would result in nearly zero, thus allowing
us to detect the action of small coherent forces applied in any
direction.

VII. CONCLUSION

In this work we have presented the statistical properties
of superpositions of two-mode squeezed states with relative
phase factors, giving special attention to two cases of rela-
tive phase, corresponding to the even and odd TMSSs. The
reduced single-mode states of the even (ρE ) and odd (ρO)
TMSSs, obtained by tracing out one of the bosonic modes,
present populations in the Fock basis which resemble thermal
distribution, thus illustrating the pseudothermal behavior of
those states. Furthermore, we investigated the second-order
correlation function of ρE and ρO and showed that, for small
squeezing parameters, ρE presents superbunching behavior,
while ρO presents antibunching, thus making it a potential
source of single photons. We studied entanglement between
the two bosonic modes corresponding to the superposition of
TMSSs; for small values of the squeezing parameter r and
specific relative phase angle ϕ, the superpositions show a
larger degree of entanglement than TMSSs, generating a max-
imally mixed state in each of the RSMSs when tracing out one
of the mode variables. We also studied the pseudoprobability
distributions related to ρE and ρO in phase space, given by
the Wigner function W (q, p). We pointed out that the profiles
of both RSMSs narrow around the phase-space origin as the
squeezing parameter is increased. For ρE and ρO, the symme-
try of W (q, p) makes the states sensible to weak forces in any
direction of the phase space, in contrast with the single-mode
squeezed state. Finally, we described how the states discussed
above can be generated and how they can be employed to
measure weak forces in the trapped-ion domain, by deriving
effective two-mode Jaynes-Cummings-like interactions, thus
motivating applications in quantum information processing,
quantum metrology, and quantum sensing of small coherent
displacements.

ACKNOWLEDGMENTS

This work was supported by the Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior (CAPES), Finance
Code 001, and through the CAPES/STINT project, Grant No.
88881.304807/2018-01. C.J.V.-B. is grateful for support from
São Paulo Research Foundation Grant No. 2019/11999-5 and
the National Council for Scientific and Technological Devel-
opment Grant No. 307077/2018-7. This work is also part of
the Brazilian National Institute of Science and Technology for
Quantum Information Grant No. 465469/2014-0. G.H. grate-
fully acknowledges the hospitality of Universidade Federal de
São Carlos and Universidade de São Paulo.

[1] A. Streltsov, G. Adesso, and M. B. Plenio, Quantum
coherence as a resource, Rev. Mod. Phys. 89, 041003
(2017).

[2] A. I. Lvovsky, in Fundamentals of Photonics and Physics,
edited by D. L. Andrew (Wiley, Hoboken, 2015), Vol. 1, Chap.
5, pp. 121–164.

062405-7



FERNANDO R. CARDOSO ET AL. PHYSICAL REVIEW A 103, 062405 (2021)

[3] R. Horodecki, P. Horodecki, M. Horodecki, and K.
Horodecki, Quantum entanglement, Rev. Mod. Phys. 81, 865
(2009).

[4] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge University, Cambridge,
2000).

[5] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe,
and J. L. O’Brien, Quantum computers, Nature (London) 464,
45 (2010).

[6] B. M. Terhal, Quantum error correction for quantum memories,
Rev. Mod. Phys. 87, 307 (2015).

[7] N. Gisin and R. Thew, Quantum communication, Nat. Photon.
1, 165 (2007).

[8] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek,
N. Lütkenhaus, and M. Peev, The security of practical quantum
key distribution, Rev. Mod. Phys. 81, 1301 (2009).

[9] H. J. Kimble, The quantum internet, Nature (London) 453, 1023
(2008).

[10] R. Van Meter, Quantum Networking (Networks and Telecommu-
nications) (Wiley, Hoboken, 2014).

[11] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum-enhanced
measurements: Beating the standard quantum limit, Science
306, 1330 (2004).

[12] V. Giovannetti, S. Lloyd, and L. Maccone, Advances in quan-
tum metrology, Nat. Photon. 5, 222 (2011).

[13] G. Tóth and I. Apellaniz, Quantum metrology from a quantum
information science perspective, J. Phys. A: Math. Theor. 47,
424006 (2014).

[14] L. Pezzè, A. Smerzi, M. K. Oberthaler, R. Schmied,
and P. Treutlein, Quantum metrology with nonclassical
states of atomic ensembles, Rev. Mod. Phys. 90, 035005
(2018).

[15] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S.
Wehner, Bell nonlocality, Rev. Mod. Phys. 86, 419 (2014).

[16] D. Z. Rossatto, T. Werlang, E. I. Duzzioni, and C. J.
Villas-Boas, Nonclassical Behavior of an Intense Cavity Field
Revealed by Quantum Discord, Phys. Rev. Lett. 107, 153601
(2011).

[17] A. Einstein, B. Podolsky, and N. Rosen, Can Quantum-
Mechanical Description of Physical Reality Be Considered
Complete? Phys. Rev. 47, 777 (1935).

[18] M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti,
P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, Collo-
quium: The Einstein-Podolsky-Rosen paradox: From concepts
to applications, Rev. Mod. Phys. 81, 1727 (2009).

[19] S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, and S. L.
Braunstein, Advances in quantum teleportation, Nat. Photon. 9,
641 (2015).

[20] P. M. Anisimov, G. M. Raterman, A. Chiruvelli, W. N. Plick,
S. D. Huver, H. Lee, and J. P. Dowling, Quantum Metrology
with Two-Mode Squeezed Vacuum: Parity Detection Beats the
Heisenberg Limit, Phys. Rev. Lett. 104, 103602 (2010).

[21] R. Schnabel, Squeezed states of light and their applications in
laser interferometers, Phys. Rep. 684, 1 (2017).

[22] W. Schleich, M. Pernigo, and F. L. Kien, Nonclassical state
from two pseudoclassical states, Phys. Rev. A 44, 2172 (1991).

[23] B. C. Sanders, Entangled coherent states, Phys. Rev. A 45, 6811
(1992).

[24] S. J. van Enk and O. Hirota, Entangled coherent states: Telepor-
tation and decoherence, Phys. Rev. A 64, 022313 (2001).

[25] H. Jeong, M. S. Kim, and J. Lee, Quantum-information
processing for a coherent superposition state via a mixed
entangled coherent channel, Phys. Rev. A 64, 052308
(2001).

[26] J. Wenger, M. Hafezi, F. Grosshans, R. Tualle-Brouri, and
P. Grangier, Maximal violation of Bell inequalities using
continuous-variable measurements, Phys. Rev. A 67, 012105
(2003).

[27] H. Jeong, W. Son, M. S. Kim, D. Ahn, and Č. Brukner, Quantum
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In this review article, we are interested in the detailed analysis of complexity aspects of both
time and space that arises from the implementation of a quantum algorithm on a quantum
based hardware. In particular, some steps of the implementation, as the preparation of an
arbitrary superposition state and readout of the final state, in most of the cases can surpass
the complexity aspects of the algorithm itself. We present the complexity involved in the full
implementation of circuit-based quantum algorithms, from state preparation to the number
of measurements needed to obtain good statistics from the final states of the quantum
system, in order to assess the overall space and time costs of the processes.

Keywords: quantum algorithms, quantum computation, quantum computational complexity, quantum tomography,
quantum state preparation, quantum circuit model

1 INTRODUCTION

Quantum computing takes advantage of the unique properties of quantum mechanics, such as
superposition and entanglement to carry out computational tasks in distinct ways than the classical
computers do [1]. Since Richard Feynman’s idealization that a quantum architecture would be a
proper way to simulate actual quantum systems that occur in nature in the early 1980’s [2], much
attention has been given to the application of quantum systems for computational tasks. Among the
greatest and most famous achievements of quantum information and quantum computation, one
can cite superdense coding [3], the BB-84 algorithm for quantum public key distribution of
cryptography systems [4], Shor’s integer factoring algorithm [5], Grover’s database search
algorithm [6], alongside examples of no less importance or relevance. The advances have also
reached important areas of mathematics and natural sciences in general, with quantum algorithms
and circuit designing being developed to accomplish linear algebra tasks like eigen- [7, 8] and
singular- value [9, 10] decompositions of matrices, finding solutions to linear systems of equations
[11], solving linear [12–14] and nonlinear [15] differential equations, partial non-homogeneous
linear differential equations [16], among other potential applications.

There have been recent progress in the current era of Noisy Intermediate Scale Quantum (NISQ)
devices, such as problems that cannot be solved by any classical shallow circuits in reasonable time,
but turns out to be possible by shallow quantum circuits [17], quantum supremacy using a
superconducting quantum processor architecture achieved by Google team [18], and also
quantum advantages over classical computation using boson sampling [19] and the simulation
of quantum systems by means of quantum based architecture in D-Wave systems [20].

In general, the implementation of a quantum algorithm is based on many steps, that involve data
pre-processing, preparation of input quantum states, the processing of the input information
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through quantum gates and operations applied to the system,
measurement of the final state of the composite quantum system,
and post-processing of the data collected by the measurement
process. In the present work, we will not deal with the pre- and
post-processing steps, which are usually done by classical means.
In most quantum algorithms, the quantum advantage over
classical computation lies in the processing or evolution step,
which takes advantage of the dimension of the Hilbert space of
quantum systems and quantum parallelism to manipulate very
large amounts of data, a task for which the present classical
computers usually require exponential scaling resources, such as
memory and state-of-the-art processors in supercomputer units.
However, the preparation and measurement processes present in
some quantum algorithms, which are essential for their proper
implementations, are often neglected in their presentations,
because of the intrinsic difficulties of these tasks.

Themain purpose of this work is to perform a detailed analysis
of the computational complexity defined by the space and time
costs of quantum algorithms, considering all steps, from state
preparation to readout processes. This work considers a scenario
in which the rapid development of quantum computing has
attracted the attention of people with different background,
not only restricted to physicists or computer scientists from
academia, but curious, investors, bankers, and entrepreneurs,
which are delighted with the quantum speedups at first sight.
Although quantum computing provides amazing results
compared to its classical counterpart, a suitable interpretation
of the algorithmic costs demands a proper analysis, which
includes the circuit width, represented by the number of
qubits necessary to carry on the tasks, as well as the circuit
depth, which takes into account the number of quantum
operations that must be implemented on the system for the
proper processing of the information encoded in the qubit
system. We are also concerned with the processes of
recovering the resulting information of the processing, which
can be represented by observable statistics or quantum
tomography, depending on the task aimed by the quantum
algorithm.

This work is organized as follows. In section 2 the costs of state
preparation using different schemes are covered. Section 3 covers
matrix and quantum gate decomposition and their complexity
bounds. Section 4 considers quantum state tomography, with
emphasis on the required number of measurements and
repetitions of the execution of a quantum algorithm to achieve
a desired accuracy in the results. In section 5, the overall
complexity aspects for implementation are given, from state
preparation to readout process. Finally, section 6 contains the
conclusion of the work.

2 COMPLEXITY OF QUANTUM STATE
PREPARATION

The need for preparation of quantum states as input for solving a
given problem is a common task in many quantum algorithms
implemented in the circuit model of Quantum Computation
(QC) [1]. Such a preparation constitutes an important part in

the process of implementation of a given algorithm for circuit
gate-based quantum computing, as the final quantum state
encoding the solution of the problem is directly linked to the
input state through the evolution step. Thus, the complexity
aspects of preparing the input state must be taken into account in
a detailed resource analysis.

To describe the encoding of input states properly, we must
split the entire quantum system that constitutes a quantum
computer into two parts: the ancilla qubits, which are used,
for instance, to encode relevant information and control
logical operations, and the work system, that encodes the
initial conditions of the problem to be solved, which is
submitted to the evolution process defined by the quantum
algorithm. For instance, consider the processes to encode the
initial conditions for a linear differential equation [14] or for the
HHL quantum linear problem [11] in the work system. The goal
of state preparation is to initialize the system in a N-dimensional
specific quantum superposition that is suitable to the problem to
be solved on a quantum computer. This task is often
accomplished by subroutines that, in quantum algorithms, are
usually referred to as system encoding.

It is important to remark that there are different kinds of
encoding, such as basis encoding and amplitude encoding: the
former is often used when one needs to manipulate real numbers
arithmetically, and the latter when one takes advantage of the
large size of the Hilbert space to encode data as probability
amplitudes [21]. As an example of basis encoding, let us see
how a real number is encoded in a binary string. Suppose we must
represent the real value vector �x � (−0.3, 0.6). The first digit on
the binary string encodes the sign of the number, in which a 0
stands for “+”, and a 1 for “−” signs. The floating point is located
immediately to the right of the sign bit. This will lead to the state
vector |x〉 � |10100 01001〉 in basis encoding 1. Note that this
representation is approximate, subjected to an error ε in its
representation, which depends on the number of precision
qubits employed. The exact representation of a decimal basis
number into the binary basis would require more or less bits,
according to the number to be represented. In general, assuming
that the composite system starts from the configuration |0〉⊗n,
those circuits present depth 1, as only one NOT operation may be
executed on each qubit in parallel, depending on the binary
representation that must be encoded. Examples of circuits for
basis encoding are presented in detail in Ref. [22]. Basis encoded
states can be used, for instance, to solve prime factorization
problems [23], in machine learning techniques [24], and to
encode the solution of the computation by quantum
annealers [25].

For amplitude encoding, the relevant information for
computation is stored in the probability amplitudes of the
quantum state. The process usually starts from the n-qubit
state |0〉⊗n, which is submitted to a transformation like

1A real number x ∈ [0, 2) can be represented in binary basis as x � ∑R
i�1ai2

−i , with ai
∈ {0, 1} and R is the number of precision bits. There are different strategies of
covering the whole interval of real numbers.
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|0〉⊗n → |ψ〉 � ∑N−1

i�0
ci|i〉, (1)

with ∑N−1
i�0 |ci|2 � 1, and each |i〉 corresponding to a given state

vector of theN-dimensional computational basis, withN � 2n. To
address this task, one must be capable of preparing such a
superposition preserving coherence properties. The costs of
preparing such input states have been discussed in the
literature [26–29]. The generic superposition can be prepared
from the state |0〉⊗n by the implementation of quantum gates that
act directly upon the system to be prepared. These operations,
and consequently, the cost of the procedure that aims to prepare a
pure state, must be defined by the free parameters
contained within |ψ〉, that is, a transformation |ψ〉 � U|0〉⊗n,
with O( ~N) [21, 30] gates, could be implemented, where ~N
corresponds to the number of free parameters. Since the
number ~N can be less than the total dimension of the system
N, the process of preparing these bounded states can present a
resulting cost that is cheaper than preparing the full upper bound
case. Notice that, in the upper bound case, where |ψ〉 has 2n free
parameters, ~N � N � 2n. This is often the case with general
systems of differential or linear equations, where the degrees
of freedom of the quantum state must encode the initial values of
the variables within the problem. Nevertheless, there are cases
where the state vector defining the initial conditions for a system
to be evolved or simulated are defined by sparse vectors or
specially bounded initial conditions. For instance, one can
consider the study of the behavior and properties of spin
chains [31], where often each site of the chain starts from a
ground state configuration or with a few qubits representing the
excited states of spins in the chain. This procedure of
initialization has the advantages of being based on operations
that act directly on the work qubits, without the presence of any
ancilla systems which would increase the circuit width, whose
operations are entirely defined by the free parameters of the
initial state |ψ〉. On the other hand, it requires a number of
quantum gates which grows with the number of free parameters.
Although these gates can be executed in parallel, in each qubit,
this scheme is better implemented when the initial conditions
encoded in |ψ〉 are given by sparse configurations or specially
bounded vectors.

The state initialization can follow the procedure described in
detail in [26], which makes use of standard single- and
controlledk-operations, which are operations controlled by k
qubits, acting on a single target. This method requires
O(Nlog22(N)) single and two-qubit operations in total for
executing a transformation like 1) without the introduction of
additional quantum bits. One should also take notice of the
presence of controlledk-operations, that can be further
decomposed into O(k2) single and two-qubit quantum gates
[32]. The particular structure of these controlled operations
increases the depth of its action throughout the components
of the quantum system [26]. Soklakov and Schack presented a
quantum algorithm [33] to prepare an arbitrary quantum register
based on the Grover’s search algorithm requiring resources that
are polynomial in the number of qubits and additional gate
operations.

As an example of state preparation, the Divide-and-Conquer
scheme [34] presents an algorithm for amplitude encoding in the
form of a superposition like

|x〉 � x0|0〉 ψ0

∣∣∣∣ 〉 +/ + xN−1|N − 1〉 ψN−1
∣∣∣∣ 〉, (2)

in which the qubits of the work and ancilla systems are
entangled. So, although the system is prepared in a
superposition state, the results after observation of ancilla
qubtis will be left the work system as a mixed density matrix,
what, in the case of algorithms for solving systems of linear or
differential equations, this could be a disadvantage.
Nevertheless, the algorithm is useful for machine learning
and statistical analysis, and other applications, such as data
sorting [34]. The algorithm structure presents the idea of
dividing a problem into subproblems of the same class. The
idea for creating the quantum superposition is to divide the
problem like the scheme presented in Figure 1. The algorithm is
based on the circuit model for quantum computing, which are
presented in detail in [34], and presents space and time costs
that scales as O(N) and O(log22(N)), respectively.

The circuit for implementation of the Divide-and-
Conquer algorithm for state preparation presents
polylogarithmic depth and has a simplified structure, with
the tasks divided into problems of the same class. It also
presents the advantage of being based on the circuit model of
computation, making its implementation simple as a
subroutine for the main algorithm just by including the
corresponding circuit in the state preparation step.
However, this polylogarithmic depth comes at the cost of
increasing the circuit width, as ancilla qubits are necessary to
carry on its implementation. Thus, one can observe a trade-
off between gate counts and number of qubits playing a
significant role for this scheme.

Another state preparation scheme usually mentioned in
quantum algorithms involves accessing a quantum database in
which the quantum states are prepared in advance and can be
quickly transferred to the working qubits. Below we describe this
scheme in more detail, paying special attention to its complexity.

FIGURE 1 | Schematic representation of the Divide-and-Conquer
algorithm for loading a four-dimensional vector x into a quantum state. The
task of preparing |x〉 is divided into subtasks and can be represented as the
logic tree shown above. Adapted from [34].
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2.1 Quantum Database and Quantum
Random Access Memory
Employing calls on RandomAccess Memory (RAM) devices is an
approach that aims to accomplish the task of preparation of
quantum states by querying a database that contains the
information of interest. For the purpose of querying a memory
device with relevant information about the input state, one must
be able to construct a database which consists in a set of state
vectors containing the information for quantum computation.
For instance, suppose a set ofm vectors S � {ψ1, ψ2, . . . , ψm}, each
of them containing k components. The quantum equivalent of
this database is the quantum associative memory representation
[35] given by the uniform superposition of each state vector [21].

|S〉 � 1��
m

√ ∑m
i�1

ψi

∣∣∣∣ 〉. (3)

The cost for the creation of |S〉 scales as O(mk) [21, 35].
Assuming that each |ψi〉 can be considered as a qubit system with
dimension k � N � 2n, this would require O(mN) steps, which
grows linearly (quadratically) with N in the best (worst) case.
Grover’s quantum search algorithm is often used as subroutine
for querying databases with complexity O( ��

m
√

log2(m)) steps,
while preparing and processing results of the query process would
take Ω(m log 2(N)) steps [6].

There are other architectures for the implementation of
quantum random access memory, such as the “Bucket
Brigade” (BB) [36] and the Flip-Flop qRAM [37], which make
use of different schemes to retrieve the content of a memory cell
coherently. The BB architecture, for instance, is composed of a
series of three-level quantum systems (qutrits), described by the
states |•〉, |← 〉 and |→ 〉, which are used to guide a bus signal to
the corresponding memory cell. A scheme to access a memory

cell addressed by a 3-bit string is shown in Figure 2. In this
architecture, each qubit in the address register is sequentially sent
into the subsequent levels of the binary tree. These qubits then
interact with the corresponding three-level system, whose initial
state |•〉 is changed to |← 〉 or |→ 〉, depending on the address
qubits. The three-level systems then act like a routing system
which is used to guide a bus signal to the addressed memory cell.
In this process, the state of the address qubits becomes entangled
with the position state of the bus. The content of the cell is then
transferred to the internal degrees of freedom of the bus signal by
means of CNOT operations, whose number corresponds to the
internal degrees of freedom that must be encoded. The signal is
then sent backwards towards the path, and its position state

FIGURE 2 | Schematic representation of the BB architecture for a eight states qRAM. To address the memory cells only 3 � log 2(8) are needed. The nodes of the
tree are composed by qutrits, which are initially in the wait state. The bit string determines the path to be followed by the bus signal, in which 0 means left path and 1 right
path. Depending on the bits of the given string, the states of the qutrits are left in |← 〉 or |→ 〉, and follows to the next level. Adapted from [38]. After returning by the same
path to the beggining of the tree, the states return to the wait states.

FIGURE 3 | Quantum circuit corresponding to one Flip-Flop iteration of
the FF-qRAM algorithm. The classically-controlled operations X are applied to
the states |ψ j〉, and the register |0〉R can include the probability amplitudes for
encoding. Note that the complete superposition creation requires the
complete circuit implementation. Adapted from [37].
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becomes uncorrelated with the address qubits. To complete the
process, a SWAP operation is done between the internal degrees
of freedom of the bus signal and the answer register. To
completely construct the BB architecture for qRAM, O(N)
qutrits would be necessary, although only O(log 2(N)) of those
are activated for routing during one memory call. It has been
shown that the BB architecture for quantum RAM accomplishes
the task of retrieving the content of a memory cell coherently with
O(log22(N)) [38] steps. The results can also be returned in a N-
dimensional superposition form, if the bit string for addressing is
given by a state of n qubits in superposition. The introduction of
qutrit systems also has the effect of increasing the width of the
circuit, as more quantum systems are introduced for its
implementation. The architecture also presents the
characteristic of not being suitable for quantum correction
algorithms, as for the implementation of these, all the qutrits
in the system would be activated, and this would make it
equivalent to the usual FANOUT RAM architecture [36, 37].
Possible physical implementations of the BB architecture can be
realized in quantum optical and solid state systems [36].

The Flip-Flop qRAM (FF-qRAM) [37] scheme has the
advantage of being based on the circuit model for quantum
computation, and thus can be implemented as a subroutine in
the state preparation step of a quantum algorithm to generate a
quantum database by just adding the circuit to the state
preparation step. The circuit for one Flip-Flop iteration is
shown in Figure 3. The operation executed by the complete
circuit has the effect [37].

FF − QRAM∑
j

ψj

∣∣∣∣∣ 〉|0〉R � ∑
l

d(l)∣∣∣∣ 〉 θ(l)
∣∣∣∣ 〉R, (4)

where |d(l)〉 encodes the string of the vector, and |θ(l)〉R �
cos(θ(l))|0〉R + sin(θ(l))|1〉R represents the information about the
amplitudes of encoding in superposition of the register qubit R. In
this scheme, the CNOT operations applied to the qubits in the basis
vectors |ψj〉 are classically controlled by the corresponding bits
d(l)i . The gate denoted in the circuit by θ(l) denotes a rotation on the
register qubit to associate the probability amplitude to the qubits in
the database. Note that the database qubits |ψj〉 can be in an
arbitrary basis state, and the circuit has the effect of applying the
controlled rotation θ(l) only if the database state |ψj〉 matches the
bit string d(l) � d(l)0 d(l)1 . . ., thus only associating the amplitude
with the corresponding bit string.

According to Ref. [37], the costs of space and time amounts to
O(log 2(N)) qubits and O(m log 2(N)) multi-qubit operations for

creating superpositions of basis states with specific probability
amplitudes on a quantum database such as represented by Eq. 1.
The information can also be read and updated through repeated
iterations of the Flip-Flop scheme. It has the advantage of not
depending on proper routing algorithms, as it happens with the
conventional and BB qRAM architectures [36], and is based on
the quantum circuit computation model, what makes possible the
application of quantum error-correction routines [37, 39–41].
The major disadvantage of the FF-qRAM architecture is the
requirement of multi-controlled qubit rotations, whose cost
can surpass the entire complexity of implementation for the
whole FF-qRAM circuit, as the decomposition of such an
operation can increase considerably the depth of the
corresponding quantum circuit (see Section 3), depending on
the architecture of the hardware in which it must be
implemented.

In Table 1, the space and time costs for the preparation
schemes are summarized. The BB based architecture for
qRAM presents polylogarithmic time costs, as well as the
Divide-and-Conquer algorithm, but needs O(N) qutrits
(represented in brackets), although only O(log 2(N)) of these
qutrits are activated during the process, and a proper routing
algorithm, together with the O(log 2(N)) address qubits for
routing the bus signals to the corresponding the memory cells.

3 GATE DECOMPOSITION COMPLEXITY
BOUNDS

Gate decomposition consists in the task of writing general
operators that act upon a n-qubit system in the form of
simpler gates that can be implemented in a quantum
computer. For this purpose, different approaches and
techniques have been developed, such as cosine-sine
decomposition (CSD) [42], QR decomposition [43],2 the
Khaneja-Glaser decomposition (KGD) [44] among other
methods with no less relevance.

In general, an arbitrary n-qubit gate U is represented by a N ×
N matrix, with N2 degrees of freedom, that can be written as a
product of O(N2) two-level unitary operations. To achieve such a
decomposition, one can make use of a set of universal gates for
computation, i.e., a set of one- and two-qubit operations from
which any arbitrary operator U can be decomposed. For instance,
it is known that the set of single-qubit and CNOT gates is
universal [1]. With respect to the complexity regarding the
implementation of U in terms of this universal set, the
theoretical lower bound amounts to ⌈14 (N2 − 3 log2(N) − 1)⌉
CNOT operations [30].

Different approaches of circuit designing for gate
decomposition are available in the literature. In particular,
using the QR approach, the decomposition of U results in a
quantum circuit with gate cost that amounts to O(N2log32(N))
elementary operations [32]. Ref. [45] shows a circuit build in

TABLE 1 | Resource Analysis of space and time for schemes of preparation (Free
Parameters, BB—Bucket Brigade, Divide and Conquer, FF—Flip-Flop). The
quantities in brackets represent the quantity of qutrits needed for the considered
architecture.

Preparation scheme Space costs Time costs

Free Parameter O(log 2(N)) O( ~N)
Divide and Conquer O(N) O(log22(N))
BB-qRAM O(log 2(N) + [N]) O(log22(N))
FF-qRAM O(log 2(N)) O(log 2(N))

2QR decomposition consists in decomposing an operator in a product of matrices,
Q and R, each of which have particular properties.
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which the CSD method is recursively applied together with
uniformly controlled operations, resulting in a cost of N2 − 2N
CNOTs and N2 elementary single-qubit operations for
implementing U. In [46], it is presented a circuit based on the
use of Gray Codes [47], whose complexity bounds matches
asymptotically the theoretical lower bound by reducing the
gate cost from O(N2 log 2(N)) to O(N2) by elimination of
superfluous control qubits from the corresponding quantum
circuit.

Although the lower bound of CNOT gates for implementing
an arbitrary U has an exponential cost in terms of the number of
qubits n, it is possible to reduce the depth of a CNOT based circuit
by the realization of a space-depth trade-off. This technique
consists in the use of additional ancilla qubits, thus increasing
the width of the quantum circuit, to parallelize the CNOT
operations that must be realized throughout the circuit to
implement the generic n-qubit gate U. The ideia was first
demonstrated in [48], where it is proved that making use of
O(n2) ancilla qubits, a n-qubit CNOT circuit can be parallelized to
O(log 2(n)) depth. It has been also already proved that each n-

qubit CNOT circuit can be synthesized with O( n2

log2(n)) CNOT

gates [49]. These results were recently improved [50], showing
that it is possible to reduce the number of ancilla qubits presented

in [49] by a factor of log22(n), resulting thatm � ( n2

log22(n)) auxiliary
qubits suffice to build O(log 2(n))-depth circuits, and also, to
reduce the depth presented in [49] by a factor of n, thus achieving

the asymptotically optimal bound of O( n
log2(n)). This

optimization in space-depth trade-off is summarized in the
following way [50]: For any integer m ≥ 0, any n-qubit CNOT

circuit can be parallelized to O(max log2(n),
n2

(n+m)log2(n+m){ }),
with m standing for the number of ancillas in the composed
system.

Thus, besides the exponential complexity of decomposing
arbitrary n-qubit unitary operators, the space-depth trade-off
presents an alternative in optimizing the circuit synthesis.
Nevertheless, it is worth to consider that this parallel approach
requires additional qubits to make the trade-off, having the
immediate effect of increasing the circuit width of a quantum
algorithm. It is also worth noting that different architectures for
quantum computing may present different sets of basic gates in
which the quantum operations must be decomposed, and also
other different important aspects, such as connectivity, making
the costs of decomposition and implementation of gates also
dependent on the architecture of the quantum computer.

4 COMPLEXITY OF QUANTUM STATE
TOMOGRAPHY

Quantum state tomography (QST) is a procedure that aims for
the complete reconstruction of an unknown density matrix ρ [1].
Often, for information encoded in amplitudes or phases of a
quantum state, after executing a quantum algorithm, one is
presented with a density matrix whose elements (ρij) codify
the algorithm’s output [51]. Information encoded in the

complex amplitudes of a quantum state is not directly
accessible through trivial means [1]. Thus, QST could
represent a fundamental step in the knowledge of obtaining
the full solution of a given problem. This consideration is
important for a proper comparison between quantum and
classical algorithms in which the quantum solution is a
superposition state while the classical solution is a vector
where all coefficients are known [52]. At the same time
quantum information can be stored in a Hilbert space whose
dimension increases exponentially according to the number of
qubits. To retrieve such information it is necessary to pay the
price for that, which also requires exponential steps.
Alternatively, some global properties of the solution could be
obtained by means of the expectation values of some observables,
i.e., Ok � Tr(Okρ) [51]. This later approach usually conducts to
quantum advantage in the processing time, however, it is not
straightforward to get from average values of observables the
desired quantities usually employed in practical applications of
quantum computing. In this way, the impact of the QST
complexity on the overall costs of quantum algorithms must
be carefully considered.

There are many quantum algorithms whose output state has
coherence in the computational basis. There are algorithms to
solve partial differential equations [53–59], linear differential
equations [12–14], nonlinear differential equations [60], linear
system of equations (also named quantum linear problem) [61,
62]. In these examples, QST may be required depending on the
level of detail expected to be known.

There is a variety of QST processes and schemes available to
accomplish the characterization task, such as Simple Quantum
State Tomography (SQST) [1], Ancilla Assisted Process
Tomography3 (AAPT) [63], QST via Linear Regression
Estimation [64], Compressed-Sensing QST [65], Principal
Component Analysis [66], efficient process tomography [67]
and permutationally invariant tomography schemes [68, 69],
each of these with particular complexity aspects, being suitable
for specific problems. Their different computational costs arise
from taking advantage of particular characteristics of ρ.

In general, QST is based on the decomposition of the density
matrix in a linear combination of basis operators. For a system of
n qubits, the reconstruction of a density matrix ρ in such space
requires 4n − 1 � N2 − 1 basis operators [1], which scales
polynomially in the dimension O(N2). These exponential
aspects of complexity are well known [70]. Besides the
number of basis operators needed for characterization, it is
important to remind that the reconstruction of ρ is based on
expectation values of those basis operators. For instance, in the
case of a single qubit, the set of 41 − 1 � 3 basis operators needed
for the proper quantum statistics could be based on the Pauli
matrices X, Y, and Z, such that

ρ � 1
2

Tr(ρ)I + Tr(ρX)X + Tr(ρY)Y + Tr(ρZ)Z[ ] , (5)

3Although Ref. [63] discusses quantum process tomography, a QST procedure is
needed in order to complete the protocol in SQPT and AAPT schemes, and an
insight about the complexity of quantum state tomography can be obtained.
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where I is the identity operator. This statistical approach requires
ensemble measurements of these observables, thus requiring a
large number of copies of ρ [1]. Besides these fundamental
concepts, it has been shown that by using machine learning
theory one could learn information about ρ by a number of
measurements that grow linearly with n [71]. Ref. [51] gives a
detailed description of the number of measurements and the
scaling of the physical resources of the system. There are also
models in which the QST problem is converted into a parameter
estimation problem such as linear regression [72], for which the
computational complexity scales as O(N4).

The overall costs of implementation 4 yielded from SQST is
O(N4 log 2(N)), and the same relation holds for AAPT using Joint
Separable Measurement (JSM) scheme. Both SQST and AAPT-
JSM require only single body interactions [51], while the
Mutually Unbiased Bases (MUB) and the generalized POVM
AAPT-schemes require many-body interactions. The costs for
MUB scale as O(N2log22(N))[O(N2log32(N))] under presence
of nonlocal [local] two-body interactions, and the POVM scheme
as O(N4) measurements on a single copy of the density matrix.
The particular aspects of complexity of these schemes of
tomography must take into account the required type of
interactions between qubits, as nonlocal interactions may be
not available in all architectures for quantum computation,
which would represent a difficulty for its implementations. It
is also worth noticing that AAPT-based schemes require the
presence of ancillary systems, which, in practice, have the effect of
increasing the system width. SQST has the ability of
characterizing the full density matrix of a quantum system,
including all probabilities and relative phases, but with a cost
exponentially large with respect to the number of qubits that
compose the system, making its implementation impractical to
characterize output states of circuits with large width of the work
system. The Quantum Principal Component Analysis (QPCA)
[73], widely applied in machine learning techniques, focuses on
reconstructing the eigenvectors of ρ corresponding to the largest
eigenvalues of the system in a particular region of the spaceH, in
time O(R log 2(N)). The full density matrix reconstruction can
also be realized with QPCA process, in a number of time steps
that amounts to O(RN log 2(N)) [73]. Compressed-Sensing, in
contrast, reconstructs the full density matrix of the system in
O(RNlog22(N)) time steps [74]. In particular, the basic idea of
Compressed-Sensing is that a low-rank density matrix can be
estimated with fewer copies of the state, as the sample
complexity depends on its rank R. Ref. [71] introduces the
matrix Dantzig selector and matrix Lasso estimators, with
sample complexity for obtaining an estimate accurate within
ε in trace distance scaling as O(R2N2

ϵ2 log2(N)) for rank-R
states, requiring measuring of O(RNpolylog(N)) Pauli
expectation values. Finally, in the case where the final
density matrix of the work qubits ends up in a state which
is permutationally invariant (PI), the tomographic method
presented in [68, 69] requires only O(log22(N)) operations. If

the density matrix is not perfectly invariant under qubit
permutation, the method still provides a satisfactory result at
least for those cases where the order of the qubits is not
relevant. The PI method is best suited for the tomography of
systems which present symmetric quantum states, like Dicke
states [72] or spin squeezed states [73].

In practice, all of the costs rising from measurement schemes
used for obtaining prior information about the systems under
consideration will increase the overall cost of its implementation
in quantum computing devices, which will be brought together in
section 5. The cost of tomography schemes are brought together
in Table 2.

4.1 Pure State Tomography
There exist certain procedures where one is not interested in the
full description of the resulting state ρ (e.g., some special cases of
the algorithm in [14]). Instead, let us assume that the output of
the algorithm is fully codified in the squares of the state’s
amplitudes, i.e., if |Ψ〉 � ∑N

m�1〈m|Ψ〉|m〉 is the output of the
algorithm, then all one needs to know is each |〈m|Ψ〉|2. More
generally, one may be interested in knowing the square of the
amplitudes associated to only a subspace ofH. An example of this
is considered in [74], where it is assumed that the output of the
algorithm can be written as

|Ψ〉 � 1
N |0〉 Ψ0| 〉 + |1〉 Ψ1| 〉( ) , (6)

where the first qubit is an auxiliary one, |Ψ0〉 � ∑N
m�1αm|m〉 is

the target state (written in terms of the computational basis of
the subsystem), |Ψ1〉 is an arbitrary state, and N is a
normalization constant that may depend on N. The
probability of success p corresponds to the probability of
the auxiliar qubit to be found in the state |0〉, which may be
computed as

p � 〈Ψ0|Ψ0〉
N 2 . (7)

Moreover, the probability of the system to be found in the state
|0〉|m〉 is pm � |αm|2/N 2, here assumed to be non-null for every

TABLE 2 | Resource Analysis for schemes of tomography of quantum states. The
schemes presented consists of Standard Quantum State Tomography
(SQST), Joint Separable Measurements (JSM), Mutual Unbiased Measurements
(MUB), Positive Operator Valued Measurements (POVM), Quantum Principal
Component Analysis (QPCA), Compressed-Sensing (CS) and the
Permutationally Invariant Quantum Tomography (PI) scheme. Note that QPCA
process can be used to reconstruct large eigenvalues of the Hilbert space, as
well as the full density matrix (QPCA Full).

Tomography scheme Overall process cost

SQST/JSM O(N4 log 2(N))
MUB O(N2log22(N))
POVM O(N4)
QPCA O(R log 2(N))
CS O(RNlog22(N))
QPCA (Full) O(RN log 2(N))
PI O(log22(N))

4The overall complexity is defined as in [51], given by the number of copies of ρ
times the number of gates per measurement.
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m. As explained in [51], each pm is possible to be estimated by
performing Mm independent measurements, each measurement
requiring one copy of |Ψ〉. After these trials, the probability pm is
estimated as �pm � nm/Mm, where nm is the number of
occurrences of |0〉|m〉. By statistical arguments, in Ref. [51] it
is shown that the number of trials necessary to estimate pm up to a
relative precision Δ with probability 1 − ε 5, denoted byMm(Δ, ε),
is bounded as

Mm ≥p−1
m C(n, ϵ) , (8)

where C(n, ϵ) ≡ 3
Δ2 log2(1/ϵ) does not depend on the system’s

size. Denoting now the square of the normalized amplitude by
β2m ≡ |αm|2〈Ψ0|Ψ0〉, then pm � |αm|2/N 2 � p β2m, and thus, from
Eq. 8, the behavior of Mm can be determined from the behavior
of p and β2m in terms of N. Finally, let’s assume that each |αm|

2

goes to 0 at the same rate as N grows, i.e., |αm|
2 � O(N−r) for r > 0

and all m. A particular case of the last occurs when the
discrete probability distribution {β2m} is fairly uniform, for
which r � 1. Therefore, since β2m � |αm|2/∑m|αm|2, one has that
β2m � 1/N and from Eq. 8 the number of copies of |Ψ〉 necessary
to determine each pm, that can be taken as M � max

m
Mm, is

such that

M≥O p−1 min
m

β2m( )−1( ) � O(p−1N) . (9)

We conclude that if p has a non-null minimum as a function of
N, then the computational complexity of the tomography of all
the pi is of order N. Otherwise, one needs to determine the
asymptotic behavior of the success probability p as N grows (e.g.
Ref. [14]).

5 OVERALL COMPLEXITY OF
IMPLEMENTATION

The overall complexity for implementation of a quantum
algorithm accounts for all tasks that must be executed. It must
take into account the total resource aspect, such as the number of
work and ancilla qubits, represented by the width of the circuit,
that could eventually include qRAM systems, as well as the usual
gate cost aspect, brought together with the number of
measurements. The last accounts for the number of copies
times the number of measurements per copy done upon the
final state in order to reconstruct its proper statistical averages
and features.

Space costs: As discussed in section 2, the preparation of a
generic superposition can be done by manipulating the work
system, by the application of quantum gates that correspond to
the transformations defined by the free parameters of the state.
This results in a space cost which corresponds to the dimension
of the work system alone. Assuming that such system has a
Hilbert space dimension corresponding to a n-qubit space, it
results in O(log 2(N)) qubits needed for its implementation. The

Divide-and-Conquer scheme requires a circuit width which
have a space cost of O(N) for implementation, but it is worth
noting that it makes use of ancilla qubits that are left entangled
with the work system. The discussed schemes for qRAM have
similar aspects of qubit resources, but the presence of routing
and O(N) qutrits (although this is not the number of activated
qutrits during a memory call) in the BB architecture makes it
less favorable for the implementation of gate-based algorithms
for computation.

Gate or time costs: For the analysis of the corresponding
overall gate complexity of an implementation, we need to
consider also the amount of identical copies of ρ needed for
its proper reconstruction, given a determined scheme for the task
[51]. The overall cost of these schemes will appear as a
multiplying factor in the full time cost analysis, since all the
operations in the implementation of the quantum algorithm,
from preparation to readout, should be done this corresponding
number of times.

Preparation: The overall time cost of the preparation step
depends on whether it is implemented by operating directly
on the work system based on the free parameters of the state,
or by queries made upon a previously prepared quantum
RAM device 6. With preparation based on the free
parameters, the amount of quantum operations has the
upper bound of O(N) for preparing a N-dimensional
quantum superposition. The Divide-and-Conquer quantum
algorithm can create an entangled superposition between
ancilla and work systems, with a O(log22(N)) circuit depth.
The Bucket-Brigade qRAM architecture [36] also presents
O(log22(N)) time steps, as discussed in section 2. The
preparation implemented via FF-qRAM scheme is fully
based on the quantum circuit computation model, without
any routing algorithm to address the memory cells that must
be queried throughout the transformation represented by Eq.
1. The number of gate operations in the FF-qRAM sums up to
O(log 2(N)) [37].

Evolution: We define the expression evolution to denote the
process in which the previously prepared work system is evolved
to its last configuration, which could represent, for instance, the
solution of a system of linear equations [11], a system of coupled
differential equations [14], among other examples of possible
applications for quantum computation. The quantum algorithm
is composed by a sequence of defined steps and operations,
which transforms the initial state under linear operations, that
can be controlled by ancilla qubits that compose the full system
under consideration. The evolution process will be denoted here
as a linear map, represented by ε, as in Ref. [49]. The gate and
resource costs of a given algorithm depend on the tasks that may
be executed through its implementation, so different quantum
algorithms have distinct space and time costs. To represent
generically the time cost of the processing step of the algorithm,
we will define a function C(ε), of which one excludes the steps of
preparation and measurement of the quantum states.

5This exactly means that |�pm − pm|/|pm|≤Δ with probability 1 − ε.

6The complexity of preparing a quantum RAM device is beyond the scope of the
present work.
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Readout: The readout aspect must bring the analysis of the
number of gates per measurement necessary to characterize a N-
dimensional quantum system. For both SQTP and AAPT-JSM,
O(log 2(N)) single qubit operations must be implemented in order
to reconstruct the density matrix. For AAPT-MUB based
schemes, one needs O(log22(N)) [O(log32(N))] single- and
two-qubit gates, given that nonlocal [local] correlations occur
in the system. The POVM scheme gate cost scales as O(N4) [49]
operations per measurement. There are, also, particular methods
of reconstruction for ρ, such as QPCA [67] and Compressed-
sensing, which are capable of reconstructing the density matrix
with a number of gates up to O(R log 2(N)) and O(RNlog22(N))
respectively, where R stands for the rank of the density matrix
under reconstruction [65]. For systems which are
permutationally invariant, the PI tomography scheme presents
a measerement cost which scales quadratically with the number
of qubits of the composed system [66, 67]. The PI method also
presents approximate results of the density matrix being
measured when the system is not invariant under
permutations. For the application of those techniques, some
knowledge of ρ must be needed, such as the existence of larger
eigenvalues in some regions of the composed Hilbert space [67]
and sparsity of ρ. Since we assume that no prior information
about ρ is known, we shall not discuss these in the overall
complexity analysis.

Overall Complexity: The overall gate cost for implementation
of a quantum algorithmwill now be classified according to each of
the techniques discussed in the previous sections, including
preparation and measurement schemes. The first multiplicative
factors in each of the bounds presented stands for the number of
experimental samples needed for each measurement scheme,
which will be O(N4 log 2(N)) for both SQTP and JSM,
O(N2log22(N))[log32(N)] for MUB, and O(1) for POVM. We
will not bring to this particular analysis the QPCA and
Compressed-Sensing methods, since we suppose no further
information (like the rank R) of the density matrix is known.
For each of the considered preparation methods, the free
parameter has the upper bound of O(N) operations, while
both of the divide-and-conquer algorithm and the BB-qRAM

architecture present the same upper bound of O(log22(N))
quantum operations for preparing a state in a generic
superposition. Using FF-qRAM, this bound is improved to
O(log 2(N)) operations. The evolution cost is generically
represented by the function C(ε). These information are
brought all together in Table 3. We also present the possible
choices of state preparation and measurement schemes suitable
for tasks often approached by circuit-based quantum algorithms
in Table 4.

6 CONCLUSION

We have presented a theoretic overview of the total complexity
for the implementation of circuit-based quantum algorithms,
involving the codification of the system parameters in the
initial state of the work/register qubits, the evolution step
towards the final state encoding the solution of the problem
and the readout of this solution. A comparison between several
schemes of preparation of input states as well as of tomography of
final states was provided.

It is important to notice that algorithms that depend on the
preparation of input states as superpositions of the basis states have at
least O( ~N) gate operations based on the number of free parameters,
~N, defined by the initial state of the work qubits. Once a FF-qRAM
device is available, this complexity can be reduced to O(log2( ~N)),
which means to be linear in the number of qubits.

The evolution step can be represented by a linear map ε of the
initial state to the final state. Its time cost,C(ε), is strongly dependent
on the quantum algorithm, and usually shows an exponential
speedup compared to the classical algorithm solving the same
problem. The origin of such speedup comes from the nature of
the Hilbert space, i.e., the ability of a given number of qubits to
encode an exponential number of states. Concerning the readout of
the solution encoded in the final state, we have done a generic
analysis assuming a fairly uniform probability distribution over the
basis states of the Hilbert space. In this case, if the desired result is
encoded in a single amplitude of a given basis state, the number of
required ensemble copies will scale asO(N) in the best scenario. This
means a cost that is at least exponential in number of qubits. It is also
important to mention that expectation values of observables which

TABLE 3 |Gate Complexity Analysis for various schemes of preparation (FP - Free
Parameters, DC—Divide-and-Conquer, BB—Bucket Brigade, FF—Flip-Flop)
and readout—Measurement procedures. The quantities in brackets are only taken
into account if the system shows local interaction between qubits, in the case of
the MUB sheme only. C(ε) stands only for the time cost of the evolution stage
of the quantum algorithm, represented via the linear map ε.

Overall gate complexity

Meas.Prep FP DC/BB-qRAM FF-qRAM

SQTP/JSM O(N4 log2(N)(N O(N4 log2(N) O(N4 log2(N)
+C(ε))) (log22(N) + C(ε))) log2(N) + C(ε))

MUB O(N2log22(N) O(N2log22(N) O(N2log22(N)
[log32(N)](N+ [log32(N)](log22(N) [log32(N)]
C(ε))) +C(ε))) (log 2(N)

+C(ε)))
POVM O(N + C(ε) O(log22(N) + C(ε) O(log2(N)+

+N4) +N4) C(ε) + N4)

TABLE 4 | Quantum algorithms and possible choices for input state preparation
and tomography schemes.

Algorithm State preparation Tomography scheme

Quantum Simulation/ Free-parameter QPCA/
Systems with sparse/ gate-based Compressed-
specially bounded preparation Sensing
conditions
Machine Learning Divide-and- QPCA
Techniques Conquer algorithm
Systems of linear/ BB-qRAM SQTP/JSM
differential equations FF-qRAM POVM
with non-sparse initial QPCA (Full)
conditions Compressed-Sensing
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represent global features of the solution can be realized as a method
to avoid the full tomography of the system [11]. Combining this fact
with the classical shadows technique [75] for measurements, it is
possible to diminish even more the overall quantum algorithmic
complexity.

Therefore, for algorithms depending upon the preparation
of a superposition state, for which the solution is encoded
in the final superposition state of the work qubits, the
overall complexity to obtain the solution will be at least
O(N log 2(N)C(ε)), which can be significantly higher than
C(ε). We point out that this complexity overview also
depends on the architecture of the quantum hardware in which
the algorithm should be implemented, and the availability of basic
quantum gates for proper decomposition of all operations needed in
the process of implementation.
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In this paper we describe one of the most promising platforms for the construction of a universal quantum
computer, which consists of a chain of N ions trapped in a harmonic potential, whose internal states work
out as qubits, and are coupled to collective vibrational modes of the chain. From such coupling, it is possible
to build interactions between different ions of the chain, that is, qubit-qubit interactions that, together with
individual operations on the ions, allow building a quantum computer as first proposed by Cirac and Zoller in
the 1990s [Phys. Rev. Lett. 74, 4091 (1995)]. Here we discuss from the physics involved in trapping ions
in electromagnetic potentials to the Hamiltonian engineering needed to generate a universal set of logic gates,
fundamental for the execution of more complex quantum algorithms. Finally, we present the current state of
the art of quantum computing in trapped ion systems, highlighting recent advances made by companies and
government projects that use such architecture, such as IonQ and AQTION.

Keywords: Quantum computation; Trapped ions; Quantum algorithms.

I. INTRODUCTION

The principle of superposition is at the origin of a series of
attributes and properties of quantum states, which are essen-
tial in describing physical systems. Among its most notable
consequences are the phenomena of coherence [1] and entan-
glement [2], both of which are fundamental to understanding
the nature of non-classical properties and their applications to
the development of new technologies, used, for example, in
computing and information processing [3]. It has been shown
that, based on these phenomena, machines operating under the
laws of Quantum Mechanics can perform calculations more
efficiently than those operating under the laws of Classical
Mechanics [4], which enables a substantial gain in computing
power when performing certain tasks [5]. The extent of the
computational power of these new machines, known as quan-
tum computers, depends on the task at hand and can translate
into exponential gains in processing time [6] or even in solv-
ing problems that could not be solved in a timely manner by
today’s most powerful supercomputers [7].

In general, quantum computers are built in such a way that
they can be programmed in one of the different possible mod-
els of quantum computing [8]. Specifically, considering the
model of logic gates in discrete variables, a quantum com-
puter is a network of systems whose dynamics are restricted
to two levels. Individually, each system is called a qubit, the
basic unit of quantum computing memory in which informa-
tion is allocated and manipulated.

The qubits differ from classical bits in the following re-
spect: while a bit has strictly deterministic behavior, given
by a well-defined state, 0 or 1, the behavior of a qubit is
probabilistic, and can present itself in the states |0⟩ or |1⟩,
which form the computational basis of quantum computing,
or in normalized superpositions of these [9]. In the computing
model under consideration, the manipulation of the informa-
tion allocated to the qubits is carried out via the application of
quantum logic gates, which are interactions applied with the

∗ e-mail:gabrielpedro@df.ufscar.br

aim of rotating or entangling the states of the qubits [10]. The
engineering behind these interactions and the mapping of the
eigenstates onto the computational basis are issues that are in-
evitably linked to the nature of the systems that make up the
quantum computer [11].

Over the last few decades, different physical systems have
been considered for the implementation of quantum comput-
ing [11, 12]. Among those that have proved most appropriate,
i.e. those in which a greater degree of control over the dy-
namics of the system has been achieved, are systems based on
photonics [13], superconducting circuits [14] and trapped ions
[15–17], each with its own particularities. In trapped ions, the
first proposal for a scalable quantum computer was made by
Cirac and Zoller [18], who idealized a system composed of
a linear chain of N ions confined in a trap of approximately
harmonic potential, in which the states of the qubits are ma-
nipulated via the application of laser pulses, which couple the
internal states of the ions to the collective modes of motion of
the chain [19, 20]. Currently, with financial investment from
companies such as IonQ and AQT and government projects
such as AQTION, architectures inspired by Cirac and Zoller’s
initial proposal have shown growing commercial success and
new technological advances. In view of this, the aim of this
article is to present in a didactic way the implementation of
quantum computing in trapped ion systems, discussing some
of the most fundamental results achieved to date.

This article is organized as follows: In Section II, we dis-
cuss the trapping of a single ion in a Paul trap, where we treat
the classical equations of motion in order to derive the Hamil-
tonian of the motion of a single ion in a trap. In Section III,
we consider two different schemes regarding the choice of the
pair of states among the internal levels of the ions that will be
mapped onto the |0⟩ and |1⟩ states, adopting the mathemati-
cally simpler model for the following sections. In Section IV,
we consider a trapped ion interacting with a resonant or quasi-
resonant laser pulse at only one atomic transition such that the
dynamics of the ion is in fact restricted to a two-level system.
We also discuss the engineering required to construct different
interactions that allow the dynamics of the system to be con-
trolled. In Section V, we consider the scalable (and therefore
more interesting for quantum computing) system of a linear
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chain of N ions subjected to a harmonic potential, where the
ions in the chain interact with each other via Coloumbian re-
pulsion. In Section VI, we construct a set of elementary oper-
ations that can be applied to the ions in the chain such that any
other unitary operations can be decomposed in terms of these,
which is essential for implementing quantum algorithms. In
Section VII, we demonstrate how the previously constructed
interactions can be used to implement the quantum teleporta-
tion algorithm. In Section VIII, we discuss the current state of
the art of quantum computers based on trapped ions. Finally,
in Section IX, we present our conclusions.

II. ION TRAPS

Traps capable of confining ions in a region of space are es-
sential for implementing quantum computing on trapped ion
platforms. In this sense, the best-known ways of trapping ions
are Penning traps and Paul traps, the result of independent
work by physicists Hans Dehmelt [24, 25] and Wolfgang Paul
[26], who shared the 1989 Nobel Prize in Physics for devel-
oping the trapping techniques used to this day [27]. Penning
traps use electrostatic and magnetic fields for this purpose,
while Paul traps use only electric fields - static and oscillat-
ing. Given its growing popularity in quantum computing, the
confinement of ions in a Paul trap will be the subject of this
section. Later on, we will address the problem of confining a
linear chain ofN ions in a trap, but for now we will devote our
efforts to trapping a single ion. To do this, we will consider
the partially time-dependent electric potential [28]

Φ(x⃗, t) =
U

2

3∑

i=1

αix
2
i +

Ũ

2
cos(ωrft)

3∑

i=1

α̃ix
2
i , (1)

where (x1, x2, x3) = (x, y, z) denotes the Cartesian coordi-
nates, U

(
Ũ
)

denotes the intensity of the time-independent
(time-dependent) potential with the appropriate dimension
and the constants αi and α̃i are the geometric parameters of
the trap. We are assuming that the frequency of the oscillating
field, ωrf, is in the radio frequency range.

As discussed in basic electromagnetism courses, the elec-
tric potential must satisfy Laplace’s equation,

∇2Φ(x⃗, t) = 0, (2)

which implies that the confinement of the ion in the trap is
dynamic, since there is no point of global minimum in the po-
tential, only saddle points. Furthermore, Laplace’s equation
generates restrictions on the values of the geometric parame-
ters, i.e,

{
α1 + α2 + α3 = 0,

α̃1 + α̃2 + α̃3 = 0,
(3)

It is therefore possible to build traps with different geometric
configurations, depending on the choice of the parameters αi

and α̃i.
As the potential is separable in Cartesian coordinates, the

treatment of the classical equations of motion comes down

to determining the trajectory of the ion under the action of
the force generated by the electric potential in one direction
and generalizing the result for the others. Thus, for the axial
direction, we have the ordinary differential equation

d2x

dt2
= −Z|e|

m

[
Uαx + Ũ α̃x cos(ωrf)

]
x, (4)

where Z is the degree of ionization of the atom (difference
between the number of electrons and the number of protons),
m is the mass of the ion and e is the electronic charge. Intro-
ducing the parameters

ξ =
ωrft

2
, ax =

4Z|e|Uαx

mω2
rf

, qx = −2Z|e|Ũ α̃x

mω2
rf

, (5)

equation (4) can be written as

d2x

dξ2
+ [ax − 2qx cos(2ξ)]x = 0, (6)

which is known as the Mathieu differential equation and has
known solutions [30]. In the regime where ax, q2x ≪ 1 [28], it
can be shown that

x(t) ≈ A cos(νxt)
[
1− qx

2
cos(ωrft)

]
, (7)

where A is the amplitude of the oscilation of the ion in the
trap and

νx =

√
ax +

q2x
2

ωrf

2
. (8)

The above expressions describe the motion of the ion in the
axial direction: harmonic oscillations of frequency νx (secu-
lar motion or macromotion) superimposed by oscillations of
smaller amplitude and higher frequency (micromotion). As
Figure 1 shows, for sufficiently high frequencies of the oscil-
latory potential, in the radio frequency range, the micromotion
can be neglected, bringing the trajectory of the ion in the trap
closer to a harmonic motion in the axial direction, which jus-
tifies the decision to denote the frequency of the oscillatory
potential as ωrf from the start.

Thus, in the limit of high frequencies, the Hamiltonian of
the ion’s motion in one dimension is given by

Hm =
p2

2m
+
m

2
ν2xx

2, (9)

isto é, a hamiltoniana do oscilador harmônico livre.
Quantitatively, still in the limit of high frequencies, it is pos-

sible to approximate the Hamiltonian of the ion’s motion in
one dimension to the Hamiltonian of a harmonic oscillator of
frequency νx, by exchanging the coordinate x and the momen-
tum p for the operators x̂ and p̂, which satisfy the commutation
relation [x̂, p̂] = iℏ. To this end, the time dependence of the
electric potential can be considered a disturbance whose ef-
fects, in the regime under consideration, will not significantly
alter the eigenstates of the harmonic oscillator’s Hamiltonian.
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FIG. 1. Graph of the ion’s position as a function of time for val-
ues of (a) ωrf = 0.1 GHz and (b) ωrf = 0.5 GHz, in the regime of
equation (7), with qx = 0.17, νx = 8.9 MHz. It can be seen that for
sufficiently large values of ωrf, as occurs in (b), the ion’s motion is
close to a harmonic motion, so it is possible to disregard the micro-
motion term, represented by the visible deformation in relation to the
harmonic motion in the peaks and valleys of (a), in the limit of high
frequencies.

III. CHOICE OF INTERNAL LEVELS OF THE ION

In trapped ion architectures, the interactions that allow the
information allocated to the qubits to be manipulated are con-
structed according to the theory of radiation-matter interac-
tion [31, 32], by applying laser pulses with resonant or quasi-
resonant frequencies to only one atomic transition of the ion,
such that all other levels can be neglected, thus allowing the
two internal states of the selected transition to be mapped
onto the computational base, i.e. recognized as |0⟩ and |1⟩.
The choice of which internal levels should be mapped onto
the computational basis is made considering the parity of the
wave functions of these states, which influence the engineer-
ing behind the interactions that are applied to the [33] system,
as will be explained in the following sections.

There are two main schemes for choosing the internal [20]
levels: In the first, which is conceptually simpler, the inter-
nal levels are chosen in such a way that the wave functions
associated with the states have different parities. In the sec-
ond, experimentally more complex, the internal levels have
the same parity, but a third level of different parity must be
used to mediate the interaction between the states of the com-
putational base. The intermediate level, generally a state with
a short lifetime, is used to bring the ion quickly to the ini-
tial desired level, which is chosen to be a state with a longer
lifetime. A great deal of dissonance between the intermediate
level and the fundamental levels means that it is not effectively
populated, thus resulting in an effective interaction involving
only the fundamental levels and, consequently, behaving in
a manner equivalent to a two-level system. Thus, from now
on, all discussion will consider ions as a two-level system, for
simplicity. Both schemes are represented in Figure 2.

IV. HAMILTONIAN OF A SINGLE TRAPPED ION

The degree of success in implementing quantum comput-
ing in real physical systems depends on the control that can
be obtained over the dynamics of the system. Each physical

a)

ω1

|1⟩

|0⟩

b)

ω1

ω2

|2⟩

|1⟩
|0⟩

1

FIG. 2. Energy level diagrams for (a) two-level and (b) three-level
systems. The states |0⟩ and |1⟩ in (a) have distinct parities. The
states |0⟩ e |1⟩ in (b) have equal parities, and thus it is necessary to
introduce an intermediate state, in general with a short lifetime for
the dynamics between the states of the computational basis.

system has its own methods from which it is possible to gener-
ate interactions that make it possible to control its dynamics.
In trapped ion platforms, control of the states that describe
the system is achieved by applying laser pulses at specific fre-
quencies. For a more in-depth discussion, this section aims to
derive the Hamiltonian of a single ion trapped in a Paul trap
interacting with a laser pulse and, from this Hamiltonian, to
construct the elementary interactions that allow the dynamics
of the system to be controlled.

The Hamiltonian to be derived is given by

Ĥ = Ĥm + Ĥa + V̂I , (10)

where Ĥm is the Hamiltonian of the motion of the ion trapped
in the trap, Ĥa is the Hamiltonian of the ionized atom and
V̂I is the interaction potential between the ion and the applied
beam. In the following subsections, we will deduce expres-
sions for these Hamiltonians, quantizing different aspects of
the system.

A. Quantization of the Motion

As discussed, the axial motion of the ion in the trap
is approximately described by the Hamiltonian of the one-
dimensional harmonic oscillator, and the result can be gen-
eralized to the other dimensions. In this way, we can describe
the ion’s motion quantumly by exchanging the coordinate and
momentum variables for the respective operators x̂ and p̂ of
a harmonic oscillator. For convenience, we also define the
operators

âx =

√
mνx
2ℏ

(
x̂+

i

mνx
p̂

)
, (11a)

â†x =

√
mνx
2ℏ

(
x̂− i

mνx
p̂

)
, (11b)

respectively called the annihilation and creation operators of
the (axial) vibrational mode. In order not to overload the no-
tation, the subscript for the secular frequency and the mode
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creation and annihilation operators will be omitted from here
on, it being clear that at all times we are referring to the op-
erators and secular frequency of the axial mode. From the
commutation relation between x̂ and p̂, it can be shown that[
â, â†

]
= 1.

Inverting equations (11a) and (11b), it can be shown that

x̂ =

√
ℏ

2mν

(
â† + â

)
, (12a)

p̂ = i

√
ℏmν
2

(
â† − â

)
, (12b)

such that, substituting in the quantized version of the equation
(9), we get

Ĥm = ℏν
(
â†â+

1

2

)
, (13)

i.e. the Hamiltonian of the ion’s motion in terms of the cre-
ation and annihilation operators, whose physical meanings
will be discussed below.

The definitions of â and â† show the non-hermiticity of
these operators, but the product â†â is hermitian and it is use-
ful to define the vibrational mode number operator,

N̂ = â†â, (14)

whose eigenvalues and eigenvectors equation is given by

N̂ |n⟩ = n |n⟩ , (15)

where n assumes only non-negative integers [34]. Since[
Ĥm, N̂

]
= 0, Ĥm and N̂ share a common basis of eigen-

states [35]. In this way, the set of eigenstates of the number
operator also forms the basis of eigenvectors of the Hamilto-
nian of the ion’s motion, and are called Fock states or mode
number states.

The actions of the operators â and â† on the Fock states
are - as expected from the treatment of the quantum harmonic
oscillator - given by

â |n⟩ = √n |n− 1⟩ , (16a)

â† |n⟩ =
√
n+ 1 |n+ 1⟩ , (16b)

in such a way that applying the creation (annihilation) opera-
tor to the number state |n⟩ generates a number state increased
(decreased) by one, creating (annihilating) an excitation in the
vibrational mode, i.e. a phonon. The number states therefore
determine the number of phonons in the mode.

Finally, by relocating the energy zero in the equation (13),
we obtain

Ĥm = ℏνâ†â (17)

as the Hamiltonian of the ion’s motion in a harmonic trap. The
result can be generalized to other dimensions when necessary.

B. Matter Quantization

Assuming that the laser pulse applied is resonant or quasi-
resonant with only one atomic transition, it is possible to con-
sider the states of the ion as restricted to two energy levels, dis-
regarding interaction with all other levels, which is certainly
fundamental for mapping the internal states in the computa-
tional base. Thus consider the states |g⟩ and |e⟩, which rep-
resent the states of the computational basis defined previously
|0⟩ and |1⟩ †, with energy Eg and Ee, respectively. Thus, the
Hamiltonian of the atom in the eigenstate basis is given by

Ĥa = ÎĤaÎ = Eg |g⟩⟨g|+ Ee |e⟩⟨e| , (18)

where Î is the identity operator, such that, from the matrix
representation of the states,

|g⟩ =
(
0
1

)
, |e⟩ =

(
1
0

)
, (19)

we obtain the matrix form of Ĥa,

Ĥa =

(
Ee 0
0 Eg

)
, (20)

which can be written as

Ĥa =
1

2
(Eg + Ee)Î+

1

2
(Ee − Eg)σ̂z. (21)

where σ̂z is one of the Pauli matrices introduced in Appendix
A.

Defining ω0 = ωe−ωg as the transition frequency between
the ground state and the excited state of the atom and con-
veniently relocating the energy zero of the Hamiltonian, we
obtain

Ĥa =
ℏω0

2
σ̂z, (22)

as the Hamiltonian of the ionized atom.

C. Quantization of the Interaction Between Internal and
External Degrees of Freedom

By restricting the laser wavelength to values much larger
than the dimensions of the ion, the coupling with the electric
field generates an induced electric dipole, whose interaction
potential with the field is given by [36]

V̂I = −d̂ ·E, (23)

† In Quantum Mechanics texts, the notation |g⟩ and |e⟩ is widely used. In
Quantum Computing texts, on the other hand, in an analog of Classical
Computing, the notation |0⟩ and |1⟩ is the usual notation. Here, we will
use both notations, depending on the context, and the states can be directly
mapped, i.e. |g⟩ ←→ |0⟩ and |e⟩ ←→ |1⟩.
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where d̂ is the electric dipole operator and E the electric field
of the laser on the dipole. In the eigenstate basis, the electric
dipole operator is given by

d̂ =
∑

i,j=g,e

dij |i⟩⟨j| , (24)

where the elements

dij = ⟨i|d̂|j⟩ = −|e|
∫
ψ∗
i (r) r ψj(r) d

3r, (25)

are commonly called dipole transitions, since they are associ-
ated with transitions from the |j⟩ state to the |i⟩ state, which
can be allowed (non-zero) or forbidden (equal to zero) de-
pending on the parity of the ψi(r) and ψj(r wave functions,
as shown in equation (25).

Assuming that the wave functions of the electronic states
are distinct parity functions, we obtain

V̂I = − (dgeσ̂− + degσ̂+) ·E, (26)

where σ̂− = |g⟩⟨e| and σ̂+ = |e⟩⟨g|, as discussed in Appendix
A. For propagating electric fields, we can approximate them
by plane waves and therefore we can write

V̂I = − (dgeσ̂+ + degσ̂−)·E0

(
ei(k·r̂−ωt+ϕ) + h.c.

)
, (27)

where E0 is the vector amplitude of the field, k is its wave
vector, ω is its oscillation frequency and ϕ is the phase of the
wave. h.c. represents the conjugate Hermitian.

Assuming that the matrix element dge is real ‡, we can de-
fine the atom-field coupling constant,

Ω

2
=
∣∣∣ eℏ ⟨g| r̂ |e⟩ ·E0

∣∣∣, (28)

which describes the coupling strength between the atomic
transition (between electronic levels) and the field. Thus, in
terms of the coupling constant, we can write

V̂I =
ℏΩ
2

(σ̂+ + σ̂−)
(
ei(k·r̂−ωt+ϕ) + h.c

)
(29)

as the atom-field interaction potential.

D. Jaynes-Cummings Hamiltonian

The above results lead to the total Hamiltonian of the sys-
tem in the Schrödinger picture,

Ĥ = ℏνâ†â+
ℏω0

2
σ̂z +

ℏΩ
2

(σ̂++ σ̂−)
(
ei(k·̂r−ωt+ϕ)+h.c.

)
.

‡ According to D. Wineland et al. [28], it is always possible to choose a
convention in which the element of the electric dipole matrix is real. This
is possible because the general phase (which governs the evolution of the
system) is composed of the sum of the phase coming from the wave func-
tions and the phase of the external field (which is perfectly controllable).
An alternative treatment is that in [37].

Rabi Hamiltonian, as the equation above is known, has so-
phisticated analytical solutions [38, 39]. However, it is pos-
sible to find simpler solutions to an approximate problem.
This approximation consists of analyzing the time evolution
of Rabi Hamiltonian and discarding the terms that oscillate
more rapidly. The idea is that, on average, the terms that os-
cillate more slowly dominate the dynamics of the system. To
follow the procedure, however, it is necessary to rewrite the
Rabi Hamiltonian in the interaction picture.

The interaction picture is an intermediate picture between
the Schrödinger and Heisenberg pictures. In the interaction
picture, both the states of the system and the linear operators
acting on these states have time dependence. The interaction
picture can be used whenever the Hamiltonian of the system
can be written as the sum of two terms

Ĥ = Ĥ0 + Ĥ1, (30)

where, typically, the separation of terms is done in such a way
that the simplest terms of the total Hamiltonian - those whose
dynamics are known - are included in Ĥ0 while the more com-
plicated terms - whose dynamics are still unknown - are in-
cluded in Ĥ1. In general, the terms in the last Hamiltonian
describe the interaction between two systems whose Hamilto-
nians are included in Ĥ0, known as the free part of the system.

The states in the Schrödinger picture are connected to the
states in the interaction picture via the transformation,

|ψ(t)⟩I = Û†
0 (t) |ψ(t)⟩S = eiĤ0t/ℏ |ψ(t)⟩S , (31)

while the connection between the operators of the different
pictures is given by

ÂI(t) = eiĤ0t/ℏÂSe
−iĤ0t/ℏ, (32)

where the elements of the Schrödinger picture (Interaction)
are represented by the subscript S (I).

By relating the elements of both descriptions, we can de-
rive the equation that describes the evolution of states in the
interaction picture. In fact, with a few algebraic manipula-
tions, inverting the equation (31) and substituting it into the
Schrödinger equation, we obtain

(
Û0ĤÛ0 − Ĥ0

)
|ψ(t)⟩I = iℏ

∂ |ψ(t)⟩I
∂t

, (33)

which, taking into account the evolution of operators in the
interaction picture, equation (32), can be written as

Ĥ1(t) |ψ(t)⟩I = iℏ
∂ |ψ(t)⟩I

∂t
, (34)

which is the analog of the Schrödinger equation in the inter-
action picture since the Hamiltonian Ĥ = Ĥ0 + Ĥ1 is repre-
sented by

Ĥ = Û†
0 Ĥ1Û0 (35)

in the interaction picture.
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Thus, from equation (35), with Ĥ0 = Ĥa + Ĥm and Ĥ1 =

V̂I , Rabi Hamiltonian in the interaction picture is given by

Ĥ =
ℏΩ
2

[σ̂+(t) + σ̂−(t)]
{
ei[η[â(t)+â†(t)]−ωt+ϕ] + h.c.

}
,

(36)
where η = k cos θ

√
ℏ/2mν is called the Lamb-Dicke param-

eter, and θ is the angle between the direction of the laser and
the direction of motion of the ion in the trap. The evolution of
the operators present in Rabi Hamiltonian is given by

â†(t) = â†eiνt, â(t) = âe−iνt, (37)

σ̂+(t) = σ̂+e
iω0t, σ̂−(t) = σ̂−e

−iω0t, (38)

as can be shown by the Baker-Campbell-Haussdorff lemma
[40] from the equation (32).

Introducing the operator γ̂ = η
(
âe−iνt + â†eiνt

)
just to

simplify the notation, we can write

Ĥ =
ℏΩ
2

(
σ̂+e

−iδtei(γ̂+ϕ) + σ̂−e
iω̄tei(γ̂+ϕ) + h.c.

)
, (39)

where we define δ ≡ ω − ω0 and ω̄ ≡ ω + ω0. In the rotating
wave approximation, the fastest oscillating terms - the expo-
nentials with frequency ω̄ - can be discarded, which allows us
to write

ĤJC =
ℏΩ
2

(
σ̂+e

−iδtei(γ̂+ϕ) + h.c.
)
, (40)

which is known as the semiclassical Jaynes-Cummings
Hamiltonian.

E. Elementary Interactions

In the development of the semiclassical Jaynes-
Cummings Hamiltonian, the Lamb-Dicke parameter,
η = k cos θ

√
ℏ/2mν, was introduced. This parameter

quantifies the amplitude of the oscillations of the ion in
the trap when compared to the wavelength of the applied
radiation [28]. A very useful regime is the Lamb-Dicke
regime, in which η ≪ 1, i.e. the oscillation amplitude is very
small compared to the wavelength of the applied laser. Under
these conditions, expanding the exponential to first order and
disregarding higher order terms, we have

ĤLD =
ℏΩ
2

{
σ̂+
[
1 + iη

(
âe−iνt + â†eiνt

)]
ei(ϕ−δt) + h.c.

}
,

which allows us to study the possible interactions that can be
built up by changing the frequency of the applied laser pulse,
coupling the internal levels to the external (vibration) levels.
The nature of the operators generates different transition fre-
quencies for each possible interaction between ion and light,
which are generally referred to as Rabi frequencies [41].

For δ = 0, in which case the frequency of the applied laser
is resonant with the transition frequency between the internal
levels, we have

Ĥ =
ℏΩ
2

(
σ̂+e

iϕ + σ̂−e
−iϕ
)
, (41)

where the spin-wave approximation was applied, in this case
because we assumed ν ≫ ηΩ, thus allowing us to disre-
gard the terms proportional to the time exponentials in ĤLD.
The interaction with the resonant field induces transitions of
the type |g, n⟩ ←→ |e, n⟩ with Rabi frequency Ω, changing
the internal state without modifying the vibrational state of
the mode. This interaction is called resonant field interaction
(carrier interaction).

For δ = −ν, the case in which the frequency of the applied
laser is given by ω = ω0 − ν, we have

Ĥ =
ℏΩ
2
η
(
âσ̂+e

iϕ + â†σ̂−e
−iϕ
)
, (42)

where the spin-wave approximation was applied (assuming
then ν ≫ Ω). The interaction induces transitions of the type
|g, n⟩ ←→ |e, n− 1⟩ with Rabi frequency Ωn,n−1 = Ωη

√
n.

This Hamiltonian is known as the first red shift (first red side-
band interaction) and produces interactions in which the in-
ternal state is excited at the cost of annihilating a phonon in
the ion’s vibrational mode, or the internal state is de-excited
at the cost of creating a phonon in the ion’s vibrational mode.

For δ = ν, then ω = ω0 + ν, and therefore,

Ĥ =
ℏΩ
2
η
(
â†σ̂+e

iϕ + âσ̂−e
−iϕ
)
, (43)

where the rotating wave approximation has been applied
(again assuming ν ≫ Ω) . The interaction induces transi-
tions of the type |g, n⟩ ←→ |e, n+ 1⟩ with Rabi frequency
Ωn,n+1 = Ωη

√
n+ 1. This Hamiltonian is known as the first

blue shift (first blue sideband interaction) and produces inter-
actions in which both the internal and external states of the ion
undergo excitations or de-excitations.

The interactions constructed above – namely, resonant field
interaction, first red shift and first blue shift – can be used to
apply logic gates (in this case, rotations) on the internal states
of a single trapped ion by means of the σ̂+ and σ̂− matrices,
as well as their possible combinations. The engineering of
interactions behind logic gates will be discussed in Section VI,
after studying the interactions that can be generated in a linear
chain of N ions, i.e. a system of trapped ions that is scalable
and more suitable for implementing quantum computing.

V. HAMILTONIAN OF SEVERAL TRAPPED IONS

Processing information and solving complex problems
quickly and efficiently is one of the great challenges of quan-
tum computing. An important (but not unique) aspect of a
quantum computer’s ability to solve problems is the number
of qubits available for implementing [3] algorithms. In gen-
eral, problems of technological and industrial interest require
a high number of qubits, especially when error correction pro-
tocols are considered [42]. There is therefore a concern to
develop quantum computers that are scalable, i.e. that can
support a progressively larger number of qubits. On trapped
ion platforms, one of the ways to develop scalable quantum
computers is to gain control of the dynamics of a chain of
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N ions, where each ion represents a qubit on which informa-
tion can be allocated and processed. In this section, we will
discuss the dynamics of a linear chain ofN ions and the possi-
ble interactions that can be generated in such a system, which
in a way represents an essential step towards characterizing
trapped ion systems as a viable architecture for implementing
quantum computing.

To do this, we will consider a chain of ions trapped in a
Paul trap in which the motion of the ions is harmonic in the
axial direction and strongly limited (to the point of being neg-
ligible) in the other directions. In a configuration like this,
Coloumbian repulsion between the ions plays an important
role, since the motion of each ion in the chain influences the
motion of the others, as in a coupled oscillator problem. In this
way, describing the individual motion of N coupled ions in
terms of ordinary coordinates can become an extremely com-
plex task. It is always possible, however, to describe the over-
all motion of the system as a combination of simpler collective
and oscillatory motions, which are called [43] normal modes.

The normal modes of the system – a set of collective oscil-
latory motions whose combinations are useful for describing
the overall motion of the system – are constructed in such a
way that they are independent (or uncoupled) from each other,
even though there is a physical coupling between the ions in
the chain. Identifying each of the normal modes makes it pos-
sible to build up a revealing picture of the dynamics of the
system, even though the actual motion is a sometimes com-
plicated combination of all the independent periodic motions
[44]. For this reason, the classical treatment of the equations
of motion of a linear chain of N ions boils down to finding
the normal modes of our system. Subsequently, we will quan-
tize the normal modes in a similar way to what we did when
we quantized the vibrational modes of a single trapped ion in
the last section. For most of this section, we will follow the
mathematical treatment carried out in the references [18, 20],
considering at various times the simplest example of a chain
of two ions, a problem that is intuitive and even possibly fa-
miliar to the reader.

In a system like the one described above, it is impor-
tant to understand how the motion of each ion in the chain
– subjected to a harmonic potential – is influenced by the
Coloumbian repulsion generated by the other (N − 1) ions.
To do this, assume that the displacement of the mth ion, listed
from left to right, can be approximated by

xm(t) ≈ x(0)m + qm(t), (44)

where x(0)m denotes the equilibrium position of the m-th ion
and qm(t) denotes small displacements around the equilib-
rium position.

Under this notation, the potential energy of the system is
written as

V =
N∑

m=1

1

2
Mν2xm(t)2+

N∑

m,n=1 m ̸=n

Z2e2

8πϵ0

1

|xm(t)− xn(t)|
,

(45)
where M is the mass of each ion, e is the electronic charge,
Z is the degree of ionization of the atoms in the chain, ϵ0 is

the electrical permittivity of the vacuum and ν is the secular
frequency in the axial direction. The kinetic energy is simply
the sum of the kinetic energies of each of the ions in the chain.

Thus, the equilibrium position of the m-th ion in the chain
is given by

[
∂V

∂xm

]

xm=x
(0)
m

= 0, (46)

and defining the parameter

ℓ =

(
1

4πϵ0

Z2e2

Mν2

)1/3

, (47)

which has unit position, we can introduce a dimensionless
variable for the equilibrium position of the m-th ion, i.e,

um = x(0)m /ℓ. (48)

Rewriting the equation (46) in terms of the dimensionless
equilibrium positions, we have a linear system of N coupled
equations for each n = 1, ..., N ,

um −
n−1∑

m=1

1

(um − un)2
+

N∑

m=n+1

1

(um − un)2
= 0, (49)

that can be solved for arbitrary N . For N = 2, for example,

x
(0)
1 = − 1

22/3
ℓ, x

(0)
2 =

1

22/3
ℓ.

More than knowing the equilibrium position, we want to
describe the collective motion of the ion chain from the
Hamiltonian of the system. To do this, based on the kinetic
and potential energies, we can write the Lagrangian of the sys-
tem as

L =
M

2

N∑

m=1

q̇2m −
1

2

N∑

m,n=1

qmqn

[
∂2V

∂xm∂xn

]

qm=qn=0

,

(50)
where the potential energy has been expanded in Taylor series
around the equilibrium points, readjusting the zero energy and
disregarding higher order terms.

It can be verified that

L =
M

2

[
N∑

m=1

q̇2m − ν2
∑

m,n=1

Amnqmqn

]
, (51)

where the elements of the matrix Amn are given by

Amn =





1 + 2
N∑

p=1
p ̸=m

1

|um − up|3
,m = n,

−2
|um − un|3

,m ̸= n,

(52)

it is easy to see that, as well as having real elements, the matrix
A is symmetric because the order of derivation is arbitrary.
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The problem now comes down to finding a coordinate
transformation that diagonalizes the matrix A, making the
problem simpler [44]. These coordinates are found from the
eigenvalues and eigenvectors equation,

N∑

n=1

Amnb
(p)
n = µpb

(p)
m (p = 1, ..., N), (53)

with µp ≥ 0. The eigenvectors are enumerated by the index
p (from the smallest to the largest corresponding eigenvalue)
and normalized so that the completeness and orthonormality
relations hold,

N∑

p=1

b(p)m b(p)n = δmn, (54a)

N∑

m=1

b(p)m b(q)m = δpq. (54b)

It can be shown that the first and second eigenvalues and
eigenvectors are always given by

b(1) =
1√
N




1
1
...
1


 , µ1 = 1, (55a)

b(2) =
1√∑N

m=1 u
2
m




u1
u2
...
uN


 , µ2 = 3, (55b)

where the constants um are determined by the equation (49).
As an illustration, for N = 2, the eigenvectors of the matrix
A are

b(1) =
1√
2

(
1
1

)
, µ1 = 1,

b(2) =
1√
2

(
−1
1

)
, µ2 = 3.

The normal modes of the system are defined by [44]

Qp(t) =
N∑

m=1

b(p)m qm(t). (57)

The first of these modes, Q1(t), called the center of mass
mode, corresponds to a motion in which all the ions oscillate
back and forth as if they were rigidly attached to each other.
The second mode, Q2(t), called breathing mode, corresponds
to a motion in which each ion oscillates with an amplitude
proportional to its distance from the center of the trap [45].

Inverting the equation (57), we get

qm(t) =

N∑

p=1

b(p)m Qp(t), (58)

that allows us to rewrite the lagrangean of the system, equa-
tion (51), in terms of the normal modes,

L =
M

2

N∑

p=1

[
Q̇2

p − ν2pQ2
p

]
, (59)

where νp =
√
µpν is the frequency of the p-th mode. As

discussed earlier, the advantage of finding the normal modes
that describe the system is that they allow the motion of the
system to be studied as a combination of independent oscilla-
tory motions with well-defined frequencies, as can be seen in
the equation above, from which the Hamiltonian of the system
can be derived.

In terms of normal modes, the Hamiltonian of the linear
chain of N ions is, considering the canonically conjugate mo-
ment Pp =MQ̇p, given by

H =
N∑

p=1

[
P 2
p

2M
+

1

2
Mν2pQ

2
p

]
. (60)

Similarly to what was done in the study of the dynamics of
a single trapped ion, we can introduce the position and mo-
mentum operators of the p-th normal mode as a linear combi-
nation of the creation and annihilation operators of the respec-
tive normal mode,

Q̂p(t) =

√
ℏ

2Mω

(
â†pe

iνpt + âpe
−iνpt

)
, (61a)

P̂p(t) = i

√
ℏMω

2

(
â†pe

iνpt − âpe−iνpt
)
, (61b)

already written in the interaction picture and defined in the
same way as before, i.e. such that

[
Q̂p, P̂p

]
= iℏ and

[
âp, â

†
p

]
= 1.

From equation (58), it is possible to define the operator
q̂m(t), which denotes the displacement of them-th ion around
its equilibrium position, in terms of the creation and annihila-
tion operators of the normal modes,

q̂m(t) =
∑

p

s(p)m

(
â†pe

iνpt + âpe
−iνpt

)
, (62)

where we define

s(p)m =

√
Nb

(p)
m

µ
1/4
p

(63)

as the mode coupling constant. Thus, for the center of mass
mode,

s(1)m = 1, ν1 = ν,
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and for the breathing mode,

s(2)m =

√
N

31/4
um

(
∑N

m u2m)
1
2

, ν2 =
√
3ν. (64)

The equation (62) expresses an important result of the sec-
tion. In short, we have shown that it is possible to have an or-
ganized structure of ions whose equilibrium positions are de-
termined by the coulombic repulsion and the harmonic poten-
tial to which the ions are subjected. In this system, however,
Coulombian repulsion does not allow us to study the motion
of each ion separately, since the motion of one ion is coupled
to that of all the others by the interaction between the elec-
tric charges. On the other hand, it is possible to describe the
displacement of a single ion from the superposition of the cre-
ation and annihilation operators of the collective vibrational
modes. Having defined the creation and annihilation opera-
tors for each mode, the next step is to analyze the interaction
between a single laser and the chain of trapped ions, connect-
ing what we have seen so far with the aim of applying logic
gates to a scalable platform of trapped ions whose internal
states are mapped onto the computational basis of the qubits
of a quantum computer.

A. Elementary Interactions

Similar to the case of a single trapped ion, the interaction
potential between a laser pulse and the m-th ion of the linear
chain is described by the dipole interaction,

V̂I = −d̂ ·E, (65)

where d̂ is the dipole moment of the m-th ion and E is the
electric field in the dipole. Still following the reference [20],
now considering, for convenience, a stationary field (where
we replace the exponential function that appeared earlier with
a sinusoidal function) and carrying out the same procedure
for coupling the potential with the electronic states discussed
in the previous section, we obtain

Ĥ =
ℏΩ
2

sin [kζ̂m(t)]ei(δt−ϕ)σ̂− + h.c., (66)

i.e. the Hamiltonian describing the interaction between the
stationary field and them-th ion of the chain in the interaction
picture, the spin-wave approximation having been applied. As
before, δ is the dissonance between the frequencies, Ω0 is the
coupling constant of the field with the m-th ion, k is the wave
number and ϕ is the phase of the field. The new operator intro-
duced, ζ̂m(t), denotes the distance between the mth ion and
the plane mirror used to form the stationary wave, as shown
in Figure 3.

Adjusting the ion-mirror distance such that the equilibrium
position of the m-th ion is at a node of the field,

ζ̂m(t) =
lλ

2
+ q̂m(t) cos θ, (67)

ζm
(t
)

x

y

z

Espelho

Íons
Laser

θ

......

m

FIG. 3. Schematic representation of the linear ion chain proposed by
Cirac and Zoller in a Cartesian coordinate system. The laser beam is
applied parallel to the y direction. Adapted from [20].

where l is an integer, λ is the laser wavelength and θ is the
angle between the direction of the applied beam and the trap
axis. Therefore, the interaction generated is of the form

Ĥ =
ℏΩ
2

sin [kq̂m(t) cos θ]ei(δt−ϕ+lπ)σ̂− + h.c.. (68)

Thus, as we consider the displacement of the m-th ion
around the equilibrium point to be sufficiently small, it is pos-
sible to disregard the higher orders of the operator q̂m(t) in
the expansion of sin [kq̂m(t) cos θ], obtaining the interaction

Ĥ ≈ ℏΩ
2
k cos θq̂m(t)ei(δt−ϕ+lπ)σ̂− + h.c.. (69)

On the other hand, adjusting the ion-mirror distance so that
the equilibrium position of the m-th ion is at an antinode of
the field,

ζ̂m(t) =
2l − 1

4
λ+ q̂m(t) cos θ, (70)

the Hamiltonian of the interaction will be given by

Ĥ =
ℏΩ
2

cos [kq̂m(t) cos θ]ei(δt−ϕ+lπ/2)σ̂− + h.c.. (71)

Again, since we consider the displacement of the m-th ion
around the equilibrium point to be sufficiently small, we can
approximate cos [kq̂m(t) cos θ] ≈ 1, obtaining the interaction

Ĥ ≈ ℏΩ
2
ei(δt−ϕ+lπ/2)σ̂− + h.c.. (72)

Using equation (62), we can write the operator q̂m(t) as a
function of the creation and destruction operators of the col-
lective modes, such that

k cos θq̂m(t) =
η√
N

N∑

p=1

(
â†pe

iνpt + âpe
−iνpt

)
, (73)
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where η =
√

ℏk2cos2θ/2mν is the Lamb-Dicke parameter
of the interaction. From this definition, it can be seen that the
interaction constructed in equation (69) couples the internal
states of the m-th ion with the vibrational states of the nor-
mal modes of the chain, while the interaction constructed in
equation (72) alters only the internal states of the m-th ion,
without coupling the internal states with the vibrational states
of the collective modes.

The interactions built into equations (69) and (72) are es-
sential for implementing quantum computing in trapped ion
systems, as we will see in the next section. Before that, it is
important to note that equation (69), unlike equation (72), de-
pends on the number of ions in the chain, which can become
a complex problem since the internal levels are coupled with
all N collective modes at each pulse applied to the system.
However, as noted by Cirac and Zoller [18], it is possible to
obtain a sufficient condition such that equation (69) can be
approximated for the interaction

ĤCZ =
ℏΩη√
4N

(
â1e

−iν1t + â†1e
iν1t
)
ei(δt−ϕ)σ̂− + h.c., (74)

in which the laser interacts only with the collective mode of
the center of mass, so that the interaction of the laser with
the other modes can be neglected. The Hamiltonian above is
known as the Cirac-Zoller Hamiltonian. The condition under
which this approximation is valid is given by

(
Ωη√
Nν

)2

≪ 1 (75)

and demonstrated in Appendix B.

VI. IMPLEMENTATION OF LOGIC GATES IN TRAPPED
ION SYSTEMS

In a quantum computer, information is stored in qubits and
manipulated via the application of logic gates. The aim of
this section is to construct, from the interactions developed
in a linear chain of N ions, equations (72) and (74), a set of
logic gates in which any operations between the qubits can be
decomposed. A set like this is called a universal set of logic
gates and is not unique [46]. In 1995, Sleator and Weinfurter
[47] demonstrated that a universal set of logic gates can be
formed by rotations on a single qubit and by the Controlled-
NOT gate – a quantum gate that acts simultaneously on two
qubits, controlling their respective states. Next, we will build
the aforementioned interactions into a system of N trapped
ions, thus constructing a universal set of logic gates for the
architecture.

A. Rotations on a Single Qubit

In a system of trapped ions, the general state of the m-th
qubit of the chain is represented by the superposition of the
internal levels of the ion,

|Ψ⟩m = α |0⟩m + β |1⟩m , (76)

where we map the internal states of the ion onto the states
of the computational base, where α and β are complex coef-
ficients that satisfy |α|2 + |β|2 = 1, i.e. the normalization
condition. We can then rewrite the equation (76) as

|Ψ⟩m = cos θ/2 |0⟩m + eiφ sin θ/2 |1⟩m , (77)

which allows us to represent any state of a qubit as a point on
the surface of a sphere of unit radius, known as a Bloch sphere
[3], illustrated in Figure VI A. The Bloch sphere offers a sim-
ple and intuitive way of visualizing the result of operations
applied to a single qubit, which we call rotations.

x

y

z

|ψ〉

ϕ

θ

|0〉

|1〉

FIG. 4. Representation of an arbitrary |ψ⟩ state on the surface of the
Bloch sphere

.

Based on the representation of the states of the qubits as
points on the surface of the Bloch sphere, applying an arbi-
trary rotation to the m-th qubit of a chain of N ions is analo-
gous to performing a rotation at the point |Ψ⟩m, which repre-
sents the state of the qubit in relation to some arbitrary axis.
In other words, to construct a general rotation about the m-th
qubit in the chain is to construct an interaction in which a state
of the computational basis of the m-th qubit, |0⟩m or |1⟩m, is
taken into the general state cos θ |0⟩m + eiφ sin θ |1⟩m.

To construct an interaction with the properties discussed
above, we start from the equation (72) with δ = 0, adjust-
ing the phase of the field and applying the interaction to the
m-th qubit of the chain for a time t = kπ/Ω. In this way, the
interaction’s time evolution operator becomes

V̂ k
m(ϕ) = exp

{
−ik π

2

(
σ+e

−iϕ + σ−e
iϕ
)}
, (78)

where k is a constant that can be adjusted to build different
time evolutions. Note that the evolution described above does
not act on the collective modes, which allows us to omit the
vibrational states of these modes, knowing that they will not
be altered by the interaction.

Applying the time evolution constructed above to the states
of the computational basis of the m-th ion, we obtain

|0⟩m
V̂ k
m(ϕ)−→ cos

(
kπ/2

)
|0⟩m − ieiϕ sin

(
kπ/2

)
|1⟩m , (79a)



11

|1−⟩ |1+⟩

|0⟩

1

FIG. 5. Schematic representation of the internal energy levels of a
trapped ion for the CNOT gate. The ellipses with different axes rep-
resent different polarizations of a laser with the same frequency, used
to make transitions between levels. The |1+⟩ state is the state used
in the computational base and the |1−⟩ state is used as an auxiliary
state, for example to obtain desired rotations.

|1⟩m
V̂ k
m(ϕ)−→ cos

(
kπ/2

)
|1⟩m − ie−iϕ sin

(
kπ/2

)
|0⟩m .

(79b)
Thus, since the states |0⟩ and |1⟩ form the computational basis,
equations (79a) and (79b) imply that it is possible to transform
a general state such as that of equation (76) into a state such
as that of equation (77) from applications of V̂ m

k (ϕ), mak-
ing it possible to perform any rotation on a qubit in the chain
without altering the collective or individual states of the other
qubits.

B. Controlled-NOT Gate

The Controlled-NOT (or CNOT) gate is a conditional op-
eration performed between two qubits, denoted by the sub-
scripts m and n. Conditional operations consist of changing
the state of the n-th qubit, called the target qubit, depending
on the state of the m-th qubit, called the control qubit. In par-
ticular, the action of CNOT can be described as follows: If the
state of the control qubit is |0⟩ (|1⟩), then the state of the target
qubit is not (will be) changed. To summarize:

To do this, first consider a slightly modified experimental
scheme: Each ion has three internal levels, two distinct ex-
cited states, |1−⟩ and |1+⟩, and a ground state. The transitions
between the ground state and the excited states are made with
the same transition frequency, but with different polarizations
of the incident laser, as shown in Figure 5. Effectively, we’re
still dealing with a two-level system, where the |1+⟩ state is
mapped onto the |1⟩ state of the computational base and the
|1−⟩ state is only used as an auxiliary state to individually ro-
tate the qubits.

Now, consider the time evolution operator that results from
applying the interaction represented by the equation (74) for a
time interval t = kπ

√
N/Ωη with δ = −ν1, i.e.,

Ûk,q
m = exp

{
−ik π

2

(
â1σ̂

q
+e

−iϕ + â†1σ̂
q
−e

iϕ
)}
, (80)

where q = +,− represents the two possible polarizations, the
rotating wave approximation having been used. Applying the
time evolution above on the m-th qubit - accompanied by the
vibrational state that will be altered by the interaction, we have
that

|0⟩m |0⟩
Ûk,q

m (ϕ)−→ |0⟩m |0⟩ ,

|0⟩m |1⟩
Ûk,q

m (ϕ)−→ cos
(
kπ/2

)
|0⟩m |1⟩−ieiϕ sin

(
kπ/2

)
|1q⟩m |0⟩ ,

|1⟩m |0⟩
Ûk,q

m (ϕ)−→ cos
(
kπ/2

)
|1q⟩m |0⟩−ie−iϕ sin

(
kπ/2

)
|0⟩m |1⟩ .

Considering the m-th and n-th ions in the chain, the ap-
plication of time evolution ÛCNOT = Û1,+

m Û2,−
n Û1,+

m leva a

|0⟩m |0⟩n |0⟩
Û1,+

m Û2,−
n Û1,+

m (0)

−−−−−−−−→ |0⟩m |0⟩n |0⟩ , (82a)

|0⟩m |1⟩n |0⟩
Û1,+

m Û2,−
n Û1,+

m (0)

−−−−−−−−→ |0⟩m |1⟩n |0⟩ , (82b)

|1⟩m |0⟩n |0⟩
Û1,+

m Û2,−
n Û1,+

m (0)

−−−−−−−−→ |1⟩m |0⟩n |0⟩ , (82c)

|1⟩m |1⟩n |0⟩
Û1,+

m Û2,−
n Û1,+

m (0)

−−−−−−−−→ −|1⟩m |1⟩n |0⟩ , (82d)

where we set ϕ = 0 for convenience. At first glance, the final
state of these evolutions doesn’t look like the port suggested
at the beginning. However, by defining the normalized state
base

|±⟩ = |0⟩ ± |1⟩√
2

, (83)

the specified Hamiltonian acts in such a way that

|0⟩m |±⟩n |0⟩ −→ |0⟩m |±⟩n |0⟩ , (84a)

|1⟩m |±⟩n |0⟩ −→ |1⟩m |∓⟩n |0⟩ . (84b)

Therefore, by rotating the nth qubit so that |0⟩ → |±⟩ and
|1⟩ → |∓⟩, it is possible to implement the CNOT gate in a
trapped ion chain. In fact, by choosing ϕ = ±π/2 and k =
1/2 in the equation (78),

|0⟩n |0⟩
V̂

1
2

n (π
2 )

−−−−−→ |+⟩n |0⟩ , (85a)

|1⟩n |0⟩
V̂

1
2

n (π
2 )

−−−−−→ |−⟩n |0⟩ , (85b)

|−⟩n |0⟩
V̂

1
2

n (−π
2 )

−−−−−→ |1⟩n |0⟩ , (85c)

|+⟩n |0⟩
V̂

1
2

n (−π
2 )

−−−−−→ |0⟩n |0⟩ , (85d)

we show that the operator V̂
1
2
n

(
π
2

)
ÛCNOT V̂

− 1
2

n

(
− π

2

)
acts as

a CNOT gate in a general state. Another way of generating
the CNOT gate, as an alternative to using lasers with different
polarizations, can be found in [48].
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C. Decomposition of Other Logic Gates

In addition to the representations used so far, logic gates
and states can also be represented in matrix form. In matrix
algebra, the |0⟩ and |1⟩ states that form the computational ba-
sis are defined as

|0⟩ ≡
(
1
0

)
, |1⟩ ≡

(
0
1

)
, (86)

while the logic gates are represented as unitary and square
matrices that act on the states of the qubits – superpositions of
the states of the computational base, modifying them.

1. Logic gates acting on a single qubit

Considering a single qubit system, the rotations that act on
the system – described by equations (79a) and (79b) – can be
mathematically written as the unitary matrix 2× 2

R(k, ϕ) =

(
cos(kπ/2) −ie−iϕ sin(kπ/2)

−ieiϕ sin(kπ/2) cos(kπ/2)

)
, (87)

such that every operation on the qubit can be broken down
into sequential applications of the rotation matrix.

Among the main operations applied to a single qubit, it
is important to highlight the X , Y and Z operations, which
are represented by their respective Pauli matrices. In order to
demonstrate the process of decomposing operations that act
on a single qubit, we will construct these gates - apart from a
global phase α - from the rotation matrix R(k, ϕ).

For the execution of anX gate, we can chooseR(1, 0) with
global phase α = π/2 such that

eiπ/2R(1, 0) = eiπ/2
(

0 −i
−i 0

)
=

(
0 1
1 0

)
. (88)

Similarly, we can generate the Y gate usingR(1, π/2) with
α = π/2, obtaining

Y = eiπ/2
(
0 −1
1 0

)
. (89)

Finally, to obtain the port Z, we can use the relation Z =
iY X such that

Z = eiπ/2Y X = ei3π/2
(

0 −i
−i 0

)(
0 −1
1 0

)
=

(
1 0
0 −1

)
.

(90)

2. Logic Gates action on Two Qubits

For systems where n qubit entanglements are handled, the
computational base is made up of 2n column matrices with 2n

entries and the logic gates are 2n × 2n unit matrices. In the
case of a system composed of two qubits, the matrices that
form the computational base are

|x⟩ H •

|y⟩

1

FIG. 6. Circuit representing the operations needed to create the Bell
state |βxy⟩ from states in the computational base. The first operation
H is called a Hadamard gate [3], and can be decomposed as a rotation
of theX gate. The second operation is a CNOT gate, where the qubit
|x⟩ is being controlled.

|00⟩ ≡
(
1
0

)
⊗
(
1
0

)
, |01⟩ ≡

(
1
0

)
⊗
(
0
1

)
,

|10⟩ ≡
(
0
1

)
⊗
(
1
0

)
, |11⟩ ≡

(
0
1

)
⊗
(
0
1

)
. (91)

In addition to the computational base, Bell states |βxy⟩

|β00⟩ =
1√
2
(|00⟩+ |11⟩), (92a)

|β01⟩ =
1√
2
(|01⟩+ |10⟩), (92b)

|β10⟩ =
1√
2
(|00⟩ − |11⟩), (92c)

|β11⟩ =
1√
2
(|01⟩ − |10⟩), (92d)

form another important basis for quantum computing, being
the first gate to act in many quantum algorithms, such as the
algorithms of Shor [49], Deutsch-Jozsa [50], Grover [51] and
Bernstein [52].

Bell states can be easily generated from the computational
base using the sequence of operations shown in the circuit in
Figure 6, which involves a Hadamard gate, represented math-
ematically by

H =

(
1 1
1 −1

)
= X R

(1
2
,
π

2

)
, (93)

and a CNOT port. Thus, using the method for generating the
CNOT gate obtained in section VI B and the decomposition of
the Hadamard gate, it is possible to generate the base formed
by Bell states from the computational base.
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VII. QUANTUM TELEPORTATION ALGORITHM

Formulated by Bennett et al. [53] in 1993, the quantum
teleportation algorithm was experimentally verified in pho-
tonic systems [54, 55] in 1997 and in trapped ion systems by
Riebe et al. [56] and Barrett et al. [57] in 2004. The pro-
tocol developed is not related to the teleportation of physical
objects, but rather to the transmission of information – more
specifically, the transmission of the state of a qubit – over an
arbitrary distance in a secure and efficient manner. The aim
of this section is to discuss how the quantum teleportation al-
gorithm can be implemented in trapped ion systems from the
logic gates built in the previous sections, following the refer-
ence [56].

To do this, imagine the following situation: Alice, who has
ion A, wants to send the information contained in the internal
states of her ion to a distant friend, Bob, who has ion C. Alice
consults Figure 7, which describes the quantum teleportation
algorithm and realizes that she will need an auxiliary ion, also
in her possession, which she names the B ion.

In the first part of the algorithm, we assume that Al-
ice’s and Bob’s ions have previously been prepared in the
|1⟩A |1⟩B |1⟩C state and then it is possible to generate the su-
perposition state

|Ψ⟩ = |1⟩A ⊗
(
|0⟩B |1⟩C + |1⟩B |0⟩C

)
/
√
2,

in which a Bell state of the form explained in the equation
(92b) is constructed between the B and C ions. Once the su-
perposition has been prepared, Alice then modifies, using se-
quential rotations represented by the Uχ gate, the state of the
A ion to the state to be teleported to Bob, |χ⟩ = a |0⟩+ b |1⟩,
such that

|Ψ⟩ =
(
a |0⟩A + b |1⟩A

)
⊗ (|0⟩B |1⟩C + |1⟩B |0⟩C)√

2
.

Next, a controlled Hadamard-CNOT-Hadamard operation –
also known as CZ, an operation of the type σz controlled by
the qubit B, which can also be performed from the sequence
of operations presented by the equations (82) – is performed
between ions A and B followed by the application of a rotation
R(1/2, π/2) to each ion. At that moment, the state describing
the system is given by

|Ψ⟩ = −1

2
|0⟩A |0⟩B (a |0⟩C + b |1⟩C)

+
1

2
|0⟩A |1⟩B (b |0⟩C + a |1⟩C)

+
1

2
|1⟩A |0⟩B (−a |0⟩C + b |1⟩C)

+
1

2
|1⟩A |1⟩B (−b |0⟩C + a |1⟩C) .

The state constructed above has an interesting feature that
makes the quantum teleportation protocol feasible. By per-
forming a measurement on the states of the A and B ions,
Alice causes the state of the C ion to be projected into a su-
perposition of the |0⟩C and |1⟩C states, whose coefficients are

related to the state you want to teleport. This new superpo-
sition can then be measured by Bob – before applying the
conditional operations Z and X that finalize the algorithm –
such that, with a statistical treatment of the measurements, the
amplitudes of the state |χ⟩ previously known only to Alice
can now be known to Bob, and the information has been suc-
cessfully teleported. It is important to note that, due to the
sequential operations performed on the A ion and the detec-
tion performed, the original state is erased from the A ion at
the end of the algorithm’s execution, which can be seen as a
consequence of the Non-Cloning Theorem [3]. As a way of
confirming the success of the algorithm, it is possible to apply
the U−1

χ gate to the state teleported to Bob, hoping that the |1⟩
state will be obtained in less than one global phase.

VIII. STATE OF THE ART

The architecture for quantum computing based on trapped
ions consists of a system made up of many atoms, which are
confined in a certain region of space by electromagnetic traps.
Although this platform presents promising results, made pos-
sible by the high degree of control over the ion chain and the
high precision of the laser pulses applied to realize logic gates,
trapped ion systems are at the center of important research
aimed at improving the conditions for their implementation
and for the development of quantum computers for industrial
and commercial use.

Much of the progress made on ion platforms consists of
optimizing and increasing the degree of control of opera-
tions that are already implementable. Current examples of
operation and control optimization include methods for re-
ducing the cost of gates that produce entanglement between
two qubits by using optimized pulses that require less en-
ergy in certain parameter regimes [58], procedures for effi-
ciently entangling arbitrary pairs of ions in a chain [59] using
amplitude-modulated laser pulses applied directly to individ-
ual ions in the chain,

In addition to technological advances, there is great interest
in making trapped ion architectures available for commercial
use. In this regard, the American company IonQ [21], a pio-
neer in the field, which uses ytterbium (Yb) atoms in its de-
vices, stands out. Founded in 2015, IonQ provides access to
its quantum computers via the Amazon Braket [60] and Azure
Quantum [61] platforms of technology giants Amazon and
Microsoft, respectively. The quantum computers available on
the platforms have 11 qubits with a fully interconnected topol-
ogy, as shown in Figure 8, allowing a two-qubit gate to act on
any pair of qubits in the chain, a unique feature of ion plat-
forms. The average fidelity in the application of logic gates is
over 99.5% for gates acting on a single qubit and over 97.5%
for gates acting on two qubits. More technical information
about the quantum computer and algorithm implementations
can be found at [62], demonstrating the operation (and inter-
connectivity) of the machine.

Recently, IonQ announced the future launch of a machine
with 32 interconnected qubits, scheduled for the year 2022
[63]. In its public roadmap, it plans to launch a quantum
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FIG. 7. Quantum teleportation algorithm performed by a trapped ion system. Adapted from [56].

computer with 256 qubits by 2026 and with 1024 qubits by
2028. However, despite the highly promising results shown
by trapped ion systems, there are still difficulties and chal-
lenges that must be discussed when considering the prospect
of a quantum computer based on trapped ions for practical use,
with tens of thousands of qubits, including error correction
protocols and system decoherence. Among these challenges,
the most important is to progressively increase the number
of qubits in the traps without losing individual control and,
therefore, the high fidelity in the application of logic gates
demonstrated by quantum computers with few ions. Possible
solutions for different models of quantum computers based
on trapped ion architectures, including the one exposed in this
article, can be found in (Sec. IV, [17]). One of these solu-
tions, for example, is to compartmentalize the linear chain into
smaller chains, divided into modules, which has the conse-
quence of making it difficult to manipulate each module with-
out damaging the fidelity obtained with the logic gates and
avoiding any other type of loss of quantum information.

Finally, among the initiatives in development that are at-
tracting attention to the area, it is worth highlighting the inter-
governmental project AQTION (Advanced Quantum comput-
ing with Trapped IONs) [23] which aims to build a quantum
computer based on trapped ions with a forecast of raising 1
billion euros between 2018 and 2028. In 2021, an article pub-
lished by the initiative in the scientific journal PRX Quantum
demonstrated the ability to build a quantum state with 24 en-
tangled ions in a quantum computer that occupies the space of
just 1.7m3 [65], which represents a first step towards minia-
turizing the components needed to engineer such technolo-
gies.

IX. CONCLUSIONS

In this article, we aimed to present the characteristics that
guarantee that trapped ion systems are architectures for im-
plementing quantum computing. To this end, considering the
circuital model of quantum computing, we discussed how the
internal levels of a single trapped ion can be mapped onto the
computational basis of a qubit and how laser pulses can be
used to generate interactions that act as logic gates in the sys-
tem. With the intention of demonstrating the ease with which
the architecture can be scaled up to a certain limit, we expand
the discussion to a chain of N trapped ions, in which the nor-
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FIG. 8. Topology of the American company IonQ quantum com-
puter with 11 fully interconnected qubits. Taken from [60].

mal modes of the chain serve as the basis for generating inter-
actions that allow different pairs of qubits to be connected. As
an application, we discuss the implementation of the quantum
teleportation algorithm. Finally, we present the current state
of the art of the architecture, exposing the advantages and cur-
rent limitations of the system.

In conclusion, trapped ion systems present characteristics
that hold great expectations for the future of this architecture,
such as high fidelity in the generation of logic gates and differ-
ent proposals for dealing with the challenges of scalability. In
addition, the interconnectivity between qubits is an aspect of
the architecture that, although its importance is not fully un-
derstood, has great potential to increasingly favor these sys-
tems, as high financial investments from intergovernmental
projects such as AQTION and commercial companies such
as IonQ and AQT already indicate. In this sense, in addition
to the different future prospects for the area, trapped ion plat-
forms allow us to explore unique possibilities in the imple-
mentation of algorithms in quantum computers, which makes
the architecture a source of learning in many exclusive terms
for the evolution, development and implementation of quan-
tum computing.
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APPENDIX A - PAULI MATRICES

The Pauli matrices (σ̂x, σ̂y, σ̂z) form a set of three 2 × 2
Hermitian matrices that are originally related to the interaction
between a 1/2 spin particle and an electromagnetic field [40],
and are represented by

σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)
.

Together with the identity matrix 2 × 2, the Pauli matrices
form the spin algebra 1/2, i.e. they generate the space of oper-
ators that act on the Hilbert space of two-level systems. In this
way, any operator that acts on the qubits of a quantum com-
puter can be mapped onto combinations of this set of matrices.
In this sense, it is worth

|g⟩⟨g|+ |e⟩⟨e| → Î, |g⟩⟨g|+ |e⟩⟨g| → σ̂x, i(|g⟩⟨e| − |e⟩⟨g|) → σ̂y, |e⟩⟨e| − |g⟩⟨g| → σ̂z,

as should be easy to see. Furthermore, from the combination
of the Pauli matrices

σ̂± =
σ̂x ± iσ̂y

2
, (94)

can be mapped

|e⟩⟨g| → σ̂+, |g⟩⟨e| → σ̂−,

where σ̂+ and σ̂− act as qubit excitation and de-excitation
operators, as we can see from their respective definitions.

APPENDIX B - CIRAC-ZOLLER HAMILTONIAN

The aim of this appendix is to find the necessary condition
for the interaction that couples the internal state of the m-th
ion to the N collective states of the motion of the ions in the
chain,

Ĥ =
ℏΩη√
4N

N∑

p=1

(
â†pe

iνpt + âpe
−iνpt

)
ei(δt−ϕ)σ̂− + h.c.,

(95)
can be approximated for the Cirac-Zoller Hamiltonian,

ĤCZ =
ℏΩη√
4N

(
â1e

−iν1t + â†1e
iν1t
)
ei(δt−ϕ)σ̂− + h.c, (96)

that couples the internal states of the m-th ion only to the vi-
brational mode of the center of mass of the chain. The condi-
tion under which this approximation is valid was introduced
by James [20] and is presented below.

To do this, we assume that the wave function of the m-th
ion of the chain interacting with a laser is a superposition of
the coupling of the internal states with the N collective vibra-
tional modes that can be expressed as

|Ψ(t)⟩ = α0(t) |g⟩ |0⟩+ β0(t) |e⟩ |0⟩+

+

N∑

p=1

αp(t) |g⟩ |1p⟩+
N∑

p=1

βp(t) |e⟩ |1p⟩ ,
(97)

where we choose the order of the kets in such a way that the
kets of the internal states, |g⟩ and |e⟩, are represented in front
of the vibrational states.

In this way, the equation of motion of the wave function
that describes the behavior of the m-th ion is therefore given
by

iℏ
∂

∂t
|Ψ(t)⟩ = Ĥ |Ψ(t)⟩ , (98)

from where, choosing δ = −ν1 so that the laser is in reso-
nance with the mode of the center of mass, it is possible to
obtain

α̇0 =
Ωη√
N

4N∑

p=1

s(p)m βp(t), (99)

β̇0 =
Ωη√
4N

N∑

p=1

s(p)m αp(t), (100)

α̇p(t) = −i(νp − ν1)αp −
Ωη√
4N

s(p)m βp(t), (101)

β̇p = −i(νp + ν1)βp −
Ων√
4N

s(p)m α0(t). (102)

Furthermore, we know that

N∑

p=0

|αp(t)|2 + |βp(t)|2 = 1, (103)

which allows us to write, using the triangle inequality,

|(νp − ν1)αp(t)| =
∣∣α̇p +

Ωη√
4N

s(p)m β0(t)
∣∣ ≤ 2

Ωη√
4N
|s(p)m |,

(104)

|βp(t)| ≤
Ω0η√

N(νp + ν1)
|s(p)m |, (105)

so that the probability of finding the ion outside the center-of-
mass mode is given by

Pm =
N∑

p=2

|αp(t)|2 + |βp(t)|2 (106)

≤ 2

(
Ωη√
Nν

)2 N∑

p=2

µp + 1

(µp − 1)2
|s(p)m |2. (107)
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However, this probability is only related to the m-th ion in the
chain and will be different for each ion. We must consider the
average probability over the entire chain, which is given by

P =
1

N

N∑

m=1

Pi =
2

N

(
Ωη√
Nν

)2[∑

m,p

µp + 1

(µp − 1)2
|s(p)m |2

]

≤ 2

(
Ωη√
Nν

)2 N∑

p=2

µp + 1

(µp − 1)2
sup
m,t
|s(p)m |2 = 2

(
Ωη√
Nν

)2

Σ(N),

where

Σ(N) =

N∑

p=2

µp + 1
√
µp(µp − 1)2

. (108)

Numerically, it is possible to show that Σ(N) is increasing
and tends to 0.82 for sufficiently large N . Therefore,

P ≤ 1, 69

(
Ωη√
Nν

)2

(109)

must be much smaller than unity for Cirac and Zoller’s ap-
proximation to be valid.
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Two-photon interference is an indispensable resource in quantum photonics, but it is not straightforward to
achieve. The cascaded generation of photon pairs contains intrinsic temporal correlations that negatively affect
the ability of such sources to perform two-photon interference, thus hindering applications. We report on how
such correlation interplays with decoherence and temporal postselection, and under which conditions temporal
postselection could improve two-photon interference visibility. Our study identifies crucial parameters and
points the way to a source with optimal performance.

Photons are a highly suitable choice for flying qubits due
to their ease of generation, ability to carry encoding in vari-
ous degrees of freedom, and low decoherence resulting from
low interaction with the environment. The latter comes at a
cost of a limited means to enable photons to interact. The
primary method for achieving photon interaction is through
two-photon interference on a beamsplitter, also known as the
Hong-Ou-Mandel interference [1]. The use of this effect
spans numerous platforms and applications, including opera-
tions such as teleportation [2] and entanglement swapping [4],
linking quantum systems [5, 6], photonic circuits [7], fusing
of photonic states [8], and state control and characterization
[9].

Spontaneous parametric downconversion and quantum dots
are the two most commonly used systems to generate bipartite
photon entanglement. In the case of spontaneous parametric
downconversion, the high two-photon interference contrast is
engineered by modifying the joined-spectral amplitude [10]
and eliminating the underlying correlations by means of spec-
tral filtering. In contrast to spontaneous parametric downcon-
version, where the two photons are generated simultaneously,
a quantum dot emits a pair of photons as a time-ordered cas-
cade, with the biexciton photon preceding the exciton photon.
The resulting two-photon wave function describing the cas-
cade emission has the following form [11, 12]

ψ(tb, tx) = 2
√

ΓbΓxe
−ΓbtbΘ(tb)e

−Γx(tx−tb)Θ(tx − tb),
(1)

where tb (tx) is the emission time of the biexciton (exciton)
photon, while Γb (Γx) denotes the biexciton (exciton) de-
cay rate. The factor Θ(tx − tb) has the form of a Heaviside
step function and accounts for the temporal ordering (cascade
emission) that induces correlations between the emitted pho-
tons [11, 12]. The extent of the correlations between the two
photons, and hence, the purity of a single photon belonging
to a pair, can be quantified by determining the trace of the
squared reduced density operator [13]. Due to the form of the
two-photon wave function, ψ(tb, tx), tracing over the biex-
citon (exciton) photon subsystem will reveal that the exciton

(biexciton) is not in a pure state. For example, by denoting
ρx = Trb(ψ

∗ψ), we obtain [12] the purity of the exciton pho-
ton as

Tr
(
ρ2x
)
=

Γb

Γb + Γx
. (2)

The upper bound of Tr
(
ρ2x
)

is unity and manifests itself in the
case the state is pure. Hence, Γx ≪ Γb implies high purity,
a condition required to achieve high visibility contrast in two-
photon interference experiments. On the other hand, Γx ≫ Γb

indicates that the temporal correlations described by ψ(tb, tx)
are strong and that they would lead to a reduction of purity of
the individual photons pertaining to a photon pair.

In a quantum dot embedded in a bulk material, the biexci-
ton and exciton decay times are comparable [15, 16]. As a
result, the two-photon interference visibility observed in the
experiments rarely exceeded 0.5 [14]. On the other hand, the
ability to use photon pairs generated by a single quantum dot
in experiments that rely on two-photon interference [2, 4] is
an essential prerequisite for their use. Therefore, there is a
need for an in-depth analysis of the origins of the low interfer-
ence contrast and mitigation strategies. Here, we theoretically
and experimentally investigate how the visibility of the two-
photon interference is affected by temporal correlations, deco-
herence, and the temporal postselection. Our results identify
the strategy required to maximize the visibility.

The measurements were performed using an In(Ga)As
quantum dot embedded in a micropillar cavity. The cavity
was designed to feature a low quality factor (200-300) and in
return provide a bandwidth of ∼5 nm [17]. The quantum dot
was excited resonantly by means of two-photon resonant ex-
citation of the biexciton [18]. To this end, we employed an
excitation laser featuring 80 MHz repetition rate and a pulse
length of 15 ps. The excess laser scattering was removed by
means of spectral and polarization filtering. The biexciton
and exciton single photons were separated using a diffrac-
tion grating and coupled into single mode fibers. The low
multi-photon contribution in the quantum dot emission was
confirmed by measuring the auto-correlation function (shown
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in [19]). The measurements yield g
(2)
b (0)=0.0144(19) for

biexciton and g
(2)
x (0)=0.0074(11) for exciton photons. We

also performed lifetime measurements and obtained τb =
237.16(59) ps and τx = 367.61(99) ps for the biexciton and
exciton, respectively (data plots and the respective fits are
given in [19]). The ratio of the lifetimes indicates that the
correlations between the biexciton and the exciton emission
time should significantly reduce the purity of the individual
photons [20]. However, to determine the upper bound of the
two-photon interference visibility we had to employ a theoret-
ical model.

We modeled the quantum dot as a three-level system con-
sisting of a ground state, exciton, and biexciton, as shown in
Fig. 1a. Once the quantum dot is two-photon resonantly ex-
cited it decays to the ground state via emission of photons with
frequencies ω1 (biexciton) and ω2 (exciton). The full descrip-
tion of the system dynamics is given in [19].

Two indistinguishable photons impinging on the beamsplit-
ter will undergo interference [21]. If we denote the beam-
splitter input modes as a and b, the time-resolved interference
of two photons emitted by independent sources is given by
[22, 23]

G
(2)
HOM (t, τ) =

1

2

[〈
ξ†a(t)ξa(t)

〉 〈
ξ†b(t+ τ)ξb(t+ τ)

〉

−2Re
{(
G(1)

a (t, τ)
)∗
G

(1)
b (t, τ)

}]
. (3)

In the equation above the na(t) =
〈
ξ†a(t)ξa(t)

〉
and nb(t +

τ) =
〈
ξ†b(t+ τ)ξb(t+ τ)

〉
are values of photon number in

modes a and b and, as such, are proportional to the intensity
in the respective mode. On the other hand, G(1)

a,b(t, τ) is the
first-order (field) correlation function. The function describ-
ing the two-photon interference is the second-order (intensity)
correlation function G(2)

HOM (t, τ).
To calculate the first-order correlation function, we im-

plemented the sensor method [24]. This approach is based
on supplementing the three-level system by weakly coupled
quantized radiation modes (two-level systems) that act as sen-
sors. Here, we introduced two such sensors (one per emission
frequency) and they are described by the following Hamilto-
nian

Hs =

2∑

j=1

{
ωjξ

†
j ξj + g

[
(σxb + σgx) ξ

†
j + h.c.

]}
, (4)

where ωj is the resonance frequency, while ξ†j (ξj) correspond
to the creation (annihilation) operator for a sensor j. The
coupling strength between the sensors and the quantum dot
is given by g. The presence of the sensors must not perturb
the three-level system by, for example, introducing back ac-
tion from the sensed excitation. Therefore, the parameter g
must be very small (we consider g = 10−3). The detailed
description of the sensor method is given in [19].
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FIG. 1: (a) Schematic of the three-level system. A laser with a fre-
quency ωL coherently couples the ground state, |g⟩, and the biexci-
ton, |b⟩, via a virtual level. Upon excitation, the biexciton photon,
ω1, and exciton photon, ω2, are emitted. The two-photon resonance
is detuned from the single-photon resonance (ground state, |g⟩, to
exciton, |x⟩) by ∆x. (b) The results of the sensor method simula-
tion: intensity, first-order correlation function, G(1)(τ) and second-
order correlation function, G(2)

HOM (τ), for the biexciton (left) and
the exciton (right). For optimal comparison of the two plots, the
area under the intensity peak was scaled to unity. The simulation
assumed the experimentally determined biexciton and exciton life-
times (τb = 237.16(59) ps and τx = 367.61(99) ps) and no de-
phasing. These results yield two-photon coincidence probability of
P0 = 0.15 while the visibility is equal to ν=0.54 for both the biexci-
ton and the exciton photon.

The sensor method allows the treatment of photon corre-
lations taking into account the uncertainties in time and fre-
quency of the detection [24]. Hence, it is the ideal approach to
quantify the correlations present in quantum dot emission. We
employed it to calculate the photon number and the first-order
correlation function of the sensor modes. By replacing these
in (3) and integrating over t, we obtain the G(2)

HOM (τ). Simi-
larly, by integrating the individual terms in (3) one obtains the
correlation in photon number and G(1)(τ), respectively. The
results are shown in Fig. 1b. They yield the probability of a
coincidence at the outputs of the beamsplitter of P0 = 0.15.
While this value is significantly lower than the classical limit
of P∞ = 0.5, imposed by full absence of the interference
effect, it demonstrates the detrimental effect of the temporal
correlations. The corresponding visibility ν is 0.54, where the
visibility is defined as (P∞ − P0)/(P∞ + P0) [25].

We accessed P0 and ν experimentally. To achieve this we
employed two unbalanced interferometers with a nominal de-
lay of 3 ns. The first interferometer served to generate two
laser pulses required to excite the quantum dot, while we used
the second interferometer to observe two-photon interference
of photons emitted in two consecutive excitations. The de-
tailed schematic of the setup is given in [26]. The results of
these measurements are shown as points in Fig. 2c and Fig.
2d for biexciton and exciton, respectively. The measurements
yield P0,b = 0.3355(19) and P0,x = 0.3777(18) for biexciton
and exciton, respectively. The values P0,b and P0,x were de-
termined by summing the area under the central peak and di-
viding it with the sum of the areas of the adjacent peaks [27].
In the absence of the two-photon interference the three peaks
would be identical, resulting in P∞ = 0.5. The correspond-
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FIG. 2: The results of the sensor method calculation for a) biexciton
and b) exciton. We assumed the coherence time of biexciton and ex-
citon to be τcb=200 ps and τcx=450 ps, respectively. The G(2)

HOM (τ)
is plotted as the red central peak, while in blue we plotted the profile
of the peak that would be achieved if no interference occurs. P0 and
ν match the experimentally observed ones. Panels c) and d) show
the results of the two-photon interference measurement for biexci-
ton and exciton, respectively. The measurement data are shown as
points. The solid line is theory prediction achieved by convolution
of the curves shown in the panel a) and b) with the response of the
detector. The panels e) and f) show the visibility of the biexciton and
exciton photon, respectively, for various values of the biexciton and
exciton photon coherence time. The numerical values are given as
tables in [19].

ing values of the visibility were found to be νb = 0.1969(23)
and νx = 0.1393(21), respectively. These values suggest that
the reduction of the interference contrast is not solely caused
by the cascaded emission, but that there is a coexisting ef-
fect of the dephasing of the quantum dot levels. However,
accessing the degree of dephasing for a cascaded decay is not
straightforward. Specifically, when a quantum dot is driven in
the two-level regime, exciting only the exciton, the informa-
tion on the dephasing is commonly extracted from the two-
photon interference measurement [28, 29]. This approach is
motivated by slow dephasing mechanisms that cause methods
such as the G(1) measurement using Michelson interferom-
eter to record a higher degree of dephasing than commonly
observed in a measurement implemented using photons emit-
ted shortly after each other [30]. In a three-level system, two-
photon interference is reduced by both the dephasing of any
of the energy levels involved and cascade correlations. There-
fore, estimating dephasing-induced photon distinguishability
is more complex than in the two-level regime.

However, accessing the coherence time and purity of the
photons pertaining to a cascade is crucial for experiments re-

lying on two-photon interference. Therefore, we investigated
this interplay between cascade-correlations and decoherence-
induced reduction of two-photon interference contrast. The
sensor method can also be used for this purpose. We intro-
duced the dephasing via the Lindblad terms of the master
equation [19]. This enabled us to determine G(2)

HOM (τ) for
any value of the coherence time attributed to either biexciton
or exciton. Several examples of G(2)

HOM (τ) we calculated us-
ing this method are plotted in Fig. 3 in [19], while the results
that most closely match the experimentally observed values of
P0,b and P0,x are shown in Fig. 2a and 2b, respectively. To fit
the G(2)

HOM (τ) calculated using sensor method shown in Fig.
2a and 2b to the experimental data, the G(2)

HOM (τ) needs to be
convoluted with the response of the detector employed in the
measurement, resulting in curves shown in Fig. 2c and Fig.
2d. The data fitting confirmed the values of coherence time
of τcb=200(25) ps and τcx=450(25) ps for biexciton and exci-
ton, respectively. We used this result to determine the dephas-
ing times of the biexciton and exciton, which are 346(74) ps
and 1160(167) ps, respectively. In addition, the coherence
time of the biexciton and exciton are, as anticipated, signif-
icantly longer than the G(1) values we measured employing
the Michelson interferometer, which yielded 193(9) ps and
130(5) ps for biexciton and exciton, respectively.

We determined the values of the expected two-photon in-
terference visibility for a wide range of different values of the
coherence time. The results are shown in Fig.2e and Fig.2f
for biexciton and exciton, respectively. They show that the
visibility for the biexciton photon is unequally affected by the
coherence loss of the biexciton and the exciton. The numer-
ical values of the visibility are given as tables in [19]. Fur-
thermore, to achieve a generalized analysis of the problem, we
determined the values of the two-photon interference visibility
for the same wide range of coherence time values and a biex-
citon to exciton lifetime ratio of 1:2 (200 ps and 400 ps). The
plots and the table with numerical values are given in [19].

The most common method for eliminating undesired corre-
lations between a pair of entangled photons is postselection.
While sources based on spontaneous parametric downconver-
sion rely on spectral postselection [10], the system we are ad-
dressing here asks for temporal postselection. In this scenario,
to improve the purity of individual photons biexciton decay is
truncated. We conducted both theoretical and experimental
study of this scenario.

To theoretically address the effect of temporal postselection
on two-photon interference visibility, we employed the quan-
tum trajectory approach [31]. This method determines sin-
gle quantum trajectories from the time evolution of the non-
hermitian Hamiltonian,

H ′ = HI −
iℏ
2

∑

k

C†
kCk, (5)

where Ck corresponds to the k-th collapse operator and HI is
the time-independent Hamiltonian describing our three level
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FIG. 3: a) The trajectories shown in orange exhibit a quantum jump
before the 180 (ps) cut-off (blue dashed line), while the trajectories
shown in black feature a quantum jump after the cut-off time. In gray
is plotted the change of biexciton population with time calculated as
the sum of all possible trajectories. The intensity of the individual
plots is given in arbitrary units as the individual curves were ver-
tically displaced for better visual presentation. b) The population
change with time for exciton when the corresponding biexiton had a
postselection cut-off at at 512 ps (black) and 64 ps (orange). c) The-
oretically predicted result of postselection for no-dephasing (black),
dephasing such that the coherence time of biexciton and exciton is at
80% of the Fourier-transform limit (green). The parameters of life-
time were equal to the ones of the emitter we used in the experiment.
In blue is shown the result for our emitter, accounting for the coher-
ence time determined experimentally. The light blue region accounts
for the error with which we have determined the coherence time.

system together with the sensors (eq. (16) [19]). Each tra-
jectory consists of a continuous evolution governed by H ′

and a quantum jump that takes place at a random time, en-
abling spontaneous emission. The continuous evolution is de-
scribed by the operator U(t) = e−iH′t/ℏ, where the imagi-
nary term of H ′ decreases the norm of the state vector such
that ∥|ψ(t1)⟩∥ > ∥|ψ(t2 > t1)⟩∥. To describe the quantum
jumps we discretized the time evolution and for each step we
computed the norm of the state vector. We compared val-
ues of the norm of the state vector with a randomly gener-
ated number r (0 ≤ r ≤ 1). We assumed that when the
condition ∥|ψ(t1)⟩∥ < r was satisfied the collapse and the
re-normalization of the wavefunction took place.

While a single trajectory corresponds to the single evolu-
tion of the initial state under a random collapse condition, an
averaged set of N trajectories (N → ∞) approximates the
density operator ρ(t) typically obtained by solving the ensem-
ble quantum master equation. Thus, with a numerical solu-
tion for a large number of trajectories, we can simulate the
effect of temporal postselection based on the biexciton emis-
sion that occurs before a given time (Fig. 3a). This post-
selection procedure modifies the shape of the corresponding
exciton wavepacket (Fig. 3b). The postselection effectively
truncates the biexciton wavepacket, increasing the purity of
the exciton-reduced density matrix. The increase in visibility
as a result of the temporal postselection is shown in the Fig.
3c.

To test the effect of postselection experimentally, we con-
ditioned the detection of exciton two-photon interference on
the detection of a biexciton photon. This allowed us to use the
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FIG. 4: a) The probability of a coincidence at the output of the beam-
splitter for exciton photon P0,x and b) the visibility, respectively.
Both of these results were achieved in a measurement conditioned
by biexciton detection and plotted as a function of the size of the
postselection window. c) Lifetime of the biexciton used to define the
postselection window.

time of biexciton photon detection as the postselection crite-
rion. The results are shown in Fig. 4. The observed effect
of postselection is stronger than predicted theoretically, espe-
cially for short postselection windows. However, it should be
noted that the accuracy of the result is limited by the measure-
ment statistics for such a short postselection window.

The concept of correlation of photons emitted as a cascade
can be generalized to the phenomenon of time-energy entan-
glement as introduced by Franson [32]. The manifestation of
Franson’s interference is based on two properties of the emis-
sion time: the uncertainty of when a cascade is emitted and
the strong correlations of the photons belonging to a cascade.
This property of quantum dot emission has recently been ex-
ploited to demonstrate time-energy entanglement [33]. How-
ever, any other application of entangled photon pairs gener-
ated by a quantum dot requires the complete elimination of
the cascade-induced correlations.

We have analysed the combined effect of decoherence and
cascade-induced correlations on the visibility of the two-
photon interference of biexciton (exciton) photons emitted
sequentially from a semiconductor quantum dot. We have
shown that the sensor method and the two-photon interfer-
ence measurement provide access to the coherence times of
the biexciton and exciton photons. We generalised our results
and showed that, in terms of two-photon interference visibil-
ity, the biexciton and exciton photons do not respond equally
to the loss of coherence. We also investigated temporal post-
selection as a method to improve the visibility of two-photon
interference. Our results indicate that improvement is only
possible in the absence of dephasing mechanisms, which typ-
ically set the quantum dot emission far from Fourier-transform
limited. This result has an important implication: it points to
the appropriate approach for designing photonic cavities that
can improve the performance of quantum dot-based sources of
entangled photon pairs. Namely, not only the biexciton emis-
sion rate must be modified to eliminate the cascade-induced
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correlations, but also the exciton emission rate must be modi-
fied to overcome the dephasing.
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mamoto, Nature 419, 594 (2002).
[28] X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Un-

sleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y.Lu,
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Two-photon interference is an indispensable resource in quantum photonics, but it is not straightforward to
achieve. The cascaded generation of photon pairs contains intrinsic temporal correlations that negatively affect
the ability of such sources to perform two-photon interference, thus hindering applications. We report on how
such correlation interplays with decoherence and temporal postselection, and under which conditions temporal
postselection could improve two-photon interference visibility. Our study identifies crucial parameters and
points the way to a source with optimal performance.

I. THE QUANTUM DOT PHOTON PAIR SOURCE

To perform the measurements, we used a quantum dot em-
bedded in a micropillar cavity. The cavity was designed to
consist of 5 top and 18 bottom pairs of λ/4 thick AlAs/GaAs
distributed Bragg reflectors. The diameter of the micropillar
was 2.74µm. The sample was kept in a closed-cycle cryostat
at 5.273(23) K. The quantum dot emission was collected using
a 0.7 NA aspherical lens. We eliminated the excess laser scat-
tering using a polarizer and a notch filter with a bandwidth of
0.65 nm. The single-photon nature of the emission was con-
firmed by measuring the autocorrelation function, as shown in
Fig. 1. The results of the biexciton and exciton lifetime mea-
surement are presented in Fig. 2a, along with the respective
fits.

II. QUANTUM DOT LEVEL STRUCTURE AND SYSTEM
DYNAMICS

In the interaction picture, the Hamiltonian for the three-
level system can be expressed as follows

HI = ∆xσxx +
Ω(t)

2
(σxg + σbx + h.c.) (1)

with σij = |i⟩⟨j|. The two-photon resonance is detuned from
the single-photon resonance (ground state, |g⟩, to exciton, |x⟩)
by ∆x, which is equal to 2π×434GHz for the system we stud-
ied. We assume the laser excitation pulse to have a Gaussian
profile with the following form

Ω(t) = Ω0e
−2 log(2)( t−t0

σ )
2

, (2)

where Ω0 is the Rabi frequency. The intensity of the pulse
peaks at t = t0 and the pulse width is σ. Upon the quantum

∗ ana.predojevic@fysik.su.se

dot excitation the biexciton photon, ω1, and exciton photon,
ω2, are emitted. The biexciton and exciton decay rates are Γb

and Γx, respectively. The frequencies of the emitted photons
are related as ω2 > ωL > ω1 (see Figure 1a in the main text).
The biexciton and exciton lifetimes are τb and τx, respectively.

The system dynamics can be obtained by solving the master
equation for the density operator ρ,

ρ̇ = −i[HI , ρ] +
∑

k

Lkρ. (3)

Here, the Lk (k = 1, 2) are the Lindblad terms that account
for spontaneous decay

L1ρ =
Γb

2

[
2σxbρσ

†
xb − σ

†
xbσxbρ− ρσ

†
xbσxb

]
, (4)

L2ρ =
Γx

2

[
2σgxρσ

†
gx − σ†

gxσgxρ− ρσ†
gxσgx

]
, (5)

and dephasing Lk (k = 3, 4)

L3ρ =
Γdb

2

[
2σdbρσ

†
db − σ†

dbσdbρ− ρσ†
dbσdb

]
, (6)

L4ρ =
Γdb

2

[
2σdxρσ

†
dx − σ†

dxσdxρ− ρσ†
dxσdx

]
, (7)

with σdb = σbb − σxx and σdx = σxx − σgg . The factors
Γdb,dx = (1/τdb,dx) are the dephasing rates of biexciton and
exciton, respectively. For the simulations, the population of
the biexciton state, defined by

Pb = Γb

∫ ∞

0

⟨σbb(t)⟩dt, (8)

was adjusted via Ω0 to the value of Pb = 0.5. Figure 2b
illustrates the biexciton and exciton population as a function
of time. Figure 2c shows the 2D histogram of the biexciton
and exciton emission times. The triangular shape of the 2D
histogram indicates correlation that originates in the temporal
ordering of the photon emission, mathematically described by
two-photon wave function ψ(tb, tx), given in the main text.
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FIG. 2. a) Results of the biexciton and exciton lifetime measurements. We employed a 35 ps resolution single photon detector. From the
data fit we deduct the lifetimes of τb = 237.16(59) ps and τx = 367.61(99) ps for the biexciton and exciton, respectively. b) Simulated
quantum dot populations for biexciton (|b⟩) and exciton (|x⟩) as a function of time. The lifetimes were considered to be τb and τx, determined
experimentally. c) 2D histogram of the emission times of the biexciton and exciton. The triangular shape reflects the time ordering of the
emitted photons. The correlation intensity is normalized to unity.

III. SENSOR METHOD

As introduced in the main text the sensor method supple-
ments the three-level system with 2 two-level systems, one per
emission frequency. These two-level systems act as sensors
and, as given in the main text, are described by the following
Hamiltonian:

Hs =
2∑

j=1

{
ωjξ

†
j ξj + g

[
(σxb + σgx) ξ

†
j + h.c.

]}
. (9)

Upon performing a unitary transformation, the complete
Hamiltonian of the system can be written as

H ′ = ∆xσxx + ω1ξ
†
1ξ1 + ω2ξ

†
2ξ2

+
Ω(t)

2
(σgx + σxb + h.c.)

+ g
2∑

j=1

[
(σxb + σgx) ξ

†
je

−iωLt + h.c.
]

(10)

where the terms that oscillate with double the laser frequency
have been eliminated. To make the Hamiltonian time indepen-
dent, we perform two unitary transformations involving sen-
sor operators. The first transformation is U2 = e−iH2t, with
H2 being the free part of the sensor Hamiltonian

H2 = ω1ξ
†
1ξ1 + ω2ξ

†
2ξ2. (11)

By defining the sensor detunings ∆i = ωi − ωL (i = 1, 2),
the Hamiltonian is transformed to

H ′′ = ∆x |x⟩⟨x|+
Ω(t)

2
(|g⟩⟨x|+ |x⟩⟨b|+ h.c.)

+ ϵ
2∑

i=1

[
(σxb + σgx) e

i∆itξ†i + h.c.
]
. (12)

In the second transformation, the time dependence from the
sensor coupling terms is removed using the following unitary
operation U3 = e−iH3t, with

H3 = α1ξ
†
1ξ1 + α2ξ

†
2ξ2, (13)

where α coefficients are to be determined. The transformation
acts on H ′′ in the following way

HI = −α1ξ
†
1ξ1 − α2ξ

†
2ξ2 +∆x |x⟩⟨x|

+
Ω(t)

2
(|g⟩⟨x|+ |x⟩⟨b|+ h.c.)

+ g
2∑

j=1

[
(σxb + σgx) e

i(∆j+αj)tξ†j + h.c.
]
, (14)
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HOM (τ) (in blue) obtained using sensor method and accounting for dephasing of the quantum dot levels. The
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HOM (τ) of the exciton. for better comparison on each image is shown the mode intensity (in

black). While the selected coherence times are equal for the biexciton and, exciton the achieved values of the P (τ) and visibility (ν) (shown
in each plot) are quite different.

resulting in a Hamiltonian that is time independent under the
following conditions

{
∆1 + α1 = 0⇒ −α1 = ∆1

∆2 + α2 = 0⇒ −α2 = ∆2.
(15)

We employ this result to rewrite the time independent Hamil-
tonian as

HI = ∆1ξ
†
1ξ1 +∆2ξ

†
2ξ2 +∆x |x⟩⟨x|

+
Ω(t)

2
(|g⟩⟨x|+ |x⟩⟨b|+ h.c.)

+ g
2∑

j=1

[
(σxb + σgx) ξ

†
j + h.c.

]
. (16)

This adjustment in eq. (16) enables the sensors to be resonant
to the respective optical transitions of the three level system.
To this end, the sensor detunings ∆1 and ∆2 are chosen to be

ω1 = ωb − ωx

ω1 − ωL = (ωb − ωx)− ωL + ωL − ωL

∆1 = −∆x,

(17)

for sensor 1, and

ω2 = ωx − ωg

ω2 − ωL = ωx − ωL

∆2 = ∆x.

(18)

for sensor 2. Finally, we consider each of the sensors to have
a linewidth. These manifest as two additional Lindblad terms
that we add to the master equation,

Ljρ =
κj
2

(
2ξjρξ

†
j − ξ†j ξjρ− ρξ†j ξj

)
, (19)

with j = 1, 2.
In our study, we use the sensor method where two quan-

tized modes act as weakly coupled sensors to model the be-
havior of a detector. A notable advantage of this framework
is its ability to compute N -photon correlations for arbitrary
time delays and frequencies, making it suitable for application
to any open quantum system. Since the emissions ultimately
occur in free space, we assume that the linewidth κj associ-
ated with each of the sensors is broadband (κ ≫ 1). The
coupling strengths (g) associated with the sensors are made
small, satisfying ϵj ≪

√
κjγj/2, to prevent the introduction

of feedback into the main system. The sensor method has
been previously developed and used to study photon-photon
correlations in various physical systems [1, 2]. Moreover, no
additional assumptions are imposed on the system, and the
correlation functions obtained with the sensor operators cor-
respond to the correlations in emission [3]. We employ and
demonstrate the applicability of the sensor method to investi-
gate time-resolved correlations, as well as to model the emis-
sion and two-photon interference of photons emitted as a part
of the biexciton-exciton cascade.

IV. TWO-PHOTON INTERFERENCE

The Hong-Ou-Mandel (HOM) or two-photon interference
manifests when two photons impinge on distinct ports of a
beamsplitter. The photons will interfere, depending on their
degree of indistinguishability. We investigated the two-photon
interference of the consecutively emitted biexciton (exciton)
photons while considering the inherent correlations present in
biexciton-exciton cascade.

Our analysis considers as parameters the lifetimes of biex-
citon and exciton as well as the dephasing resulting from the
drifting of the internal levels, all of which can exert an impact
on the interference visibility of the generated photons. The
two-photon interference properties are obtained, as explained
in the main text, via the correlations of the auxiliary two-level
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TABLE I. Values of the visibility, ν, for biexciton two-photon in-
terference for the quantum dot we used in our measurements. The
exciton coherence times are given in the row most to the left, while
the values of the biexciton coherence time are given in the top col-
umn. All coherence times are in ps.

50 100 150 200 250 300 350 400
50 0.087 0.112 0.129 0.143 0.153 0.162 0.169 0.175

100 0.092 0.124 0.151 0.175 0.196 0.215 0.233 0.249
150 0.093 0.129 0.162 0.192 0.221 0.249 0.276 0.302
200 0.094 0.132 0.168 0.203 0.237 0.272 0.307 0.343
250 0.095 0.134 0.172 0.210 0.249 0.289 0.331 0.375
300 0.095 0.136 0.175 0.215 0.257 0.302 0.350 0.401
350 0.095 0.136 0.177 0.219 0.264 0.312 0.365 0.422
400 0.095 0.137 0.179 0.222 0.269 0.321 0.377 0.440
450 0.096 0.138 0.180 0.225 0.274 0.328 0.388 0.456
500 0.096 0.138 0.181 0.227 0.277 0.334 0.397 0.469
550 0.096 0.139 0.182 0.229 0.281 0.338 0.404 0.481
600 0.096 0.139 0.183 0.230 0.283 0.343 0.411 0.491
650 0.096 0.139 0.184 0.232 0.285 0.346 0.417 0.500
700 0.096 0.139 0.184 0.233 0.287 0.350 0.422 0.508
750 0.096 0.140 0.185 0.234 0.289 0.353 0.427 0.515

TABLE II. Values of visibility, ν, for exciton interference, for the
quantum dot we used in our measurements. The exciton coherence
times are given in the column most to the left, while the values of
the biexciton coherence time are given in the top row. All coherence
times are in ps.

50 100 150 200 250 300 350 400
50 0.033 0.035 0.035 0.036 0.036 0.036 0.036 0.036

100 0.042 0.047 0.049 0.050 0.051 0.052 0.052 0.052
150 0.049 0.058 0.062 0.064 0.066 0.067 0.068 0.068
200 0.054 0.067 0.073 0.077 0.080 0.082 0.084 0.085
250 0.058 0.075 0.085 0.091 0.095 0.099 0.101 0.103
300 0.062 0.082 0.095 0.104 0.111 0.116 0.120 0.123
350 0.064 0.089 0.106 0.118 0.127 0.135 0.141 0.146
400 0.067 0.095 0.116 0.132 0.145 0.155 0.164 0.171
450 0.069 0.101 0.126 0.146 0.163 0.177 0.189 0.199
500 0.070 0.106 0.136 0.161 0.182 0.201 0.217 0.232
550 0.072 0.111 0.145 0.176 0.203 0.227 0.249 0.269
600 0.073 0.116 0.155 0.191 0.225 0.256 0.286 0.313
650 0.074 0.120 0.164 0.207 0.248 0.288 0.327 0.366
700 0.076 0.124 0.173 0.223 0.273 0.324 0.376 0.430
750 0.077 0.128 0.182 0.239 0.300 0.364 0.434 0.508

systems, i.e. sensors.
In figure 3 are shown several examples ofG(2)

HOM (τ) calcu-
lated for various values of the coherence length of the biexci-
ton and the exciton. The figures clearly demonstrate that even
for the same values of the coherence length the biexciton and
exciton will not exhibit the same P0 and ν. Namely the po-
tential to perform two-photon interference is always stronger

TABLE III. Values of visibility, ν, for biexciton two-photon interfer-
ence for the ratio of 2 between the lifetimes of the exciton and biex-
citon (400 ps and 200 ps, respectively). The first column on the left
contains exciton coherence times, while the top row contains biexci-
ton coherence times. All values are given in ps.

50 100 150 200 250 300 350 400
50 0.090 0.115 0.134 0.147 0.158 0.167 0.175 0.181
100 0.094 0.128 0.156 0.181 0.204 0.224 0.242 0.258
150 0.096 0.134 0.167 0.199 0.230 0.260 0.289 0.315
200 0.097 0.137 0.174 0.211 0.247 0.284 0.322 0.358
250 0.097 0.139 0.178 0.218 0.260 0.303 0.348 0.392
300 0.098 0.140 0.181 0.224 0.269 0.317 0.369 0.420
350 0.098 0.141 0.184 0.228 0.276 0.328 0.385 0.443
400 0.098 0.142 0.185 0.231 0.282 0.337 0.399 0.463
450 0.098 0.142 0.187 0.234 0.286 0.345 0.411 0.480
500 0.099 0.143 0.188 0.236 0.290 0.351 0.420 0.494
550 0.099 0.143 0.189 0.238 0.294 0.356 0.429 0.507
600 0.099 0.144 0.190 0.240 0.296 0.361 0.436 0.518
650 0.099 0.144 0.190 0.241 0.299 0.365 0.443 0.528
700 0.099 0.144 0.191 0.242 0.301 0.369 0.449 0.536
750 0.099 0.144 0.191 0.244 0.303 0.372 0.454 0.544
800 0.099 0.144 0.192 0.244 0.304 0.374 0.458 0.551

TABLE IV. Values of visibility, ν, for exciton two-photon interfer-
ence for the ratio of 2 between the lifetimes of the exciton and biex-
citon (400 ps and 200 ps, respectively). The first column on the left
contains exciton coherence times, while the top row contains biexci-
ton coherence times. All values are given in ps.

50 100 150 200 250 300 350 400
50 0.032 0.034 0.034 0.035 0.035 0.035 0.035 0.035
100 0.041 0.046 0.048 0.049 0.050 0.050 0.051 0.051
150 0.048 0.056 0.060 0.062 0.064 0.065 0.066 0.066
200 0.053 0.065 0.071 0.075 0.078 0.080 0.081 0.083
250 0.057 0.073 0.082 0.088 0.093 0.096 0.098 0.100
300 0.060 0.080 0.093 0.101 0.108 0.112 0.116 0.119
350 0.063 0.086 0.103 0.114 0.123 0.130 0.136 0.140
400 0.065 0.092 0.112 0.128 0.140 0.150 0.158 0.164
450 0.067 0.098 0.122 0.141 0.157 0.170 0.182 0.191
500 0.068 0.103 0.131 0.155 0.175 0.193 0.208 0.221
550 0.070 0.108 0.141 0.169 0.195 0.218 0.238 0.256
600 0.071 0.112 0.150 0.184 0.215 0.245 0.272 0.296
650 0.072 0.117 0.158 0.198 0.237 0.275 0.311 0.344
700 0.073 0.121 0.167 0.214 0.261 0.308 0.356 0.401
750 0.074 0.124 0.175 0.229 0.285 0.345 0.408 0.469

with biexciton photon. On the other hand, and as shown in the
Fig. 1 of the main text the cascade correlation alone induces
equal reduction of the interference contrast.

In the tables I and II we give the numerical values of the
visibility for biexicton and exciton, respectively. These values
have been calculated for the quantum dot emitter that we em-
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a) b)

FIG. 4. The panels a) and b) show the visibility of the biexciton and
exciton photon respectively for various values of the biexciton and
exciton photon coherence time. The numerical values are given in
tables III and IV.

ployed in the experiments. These values of the visibility are
also graphically presented in the the Figure 2e and 2f of the
main text.

In addition to this we also have calculated the values of the
visibility for an emitter that has the ratio of 2:1 between the
exciton and the biexciton lifetime (400 ps and 200 ps, respec-
tively). These values are shown in the the tables III and IV,
while the plot is shown in the Figure 4.
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