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Resumo
Este trabalho apresenta um estudo da dinâmica do modelo Pedra-Papel-Tesoura (RPS),
com particular ênfase na influência das variações dos parâmetros de controle na emergência
e dissipação de padrões espaciais à medida que o sistema se aproxima de um valor crítico.
Observamos que o modelo exibe transição de fase contínua, da fase simétrica para a não
simétrica. Utilizamos como ferramenta de análise, o referencial teórico dos fenômenos
críticos para explorar a estabilidade do sistema, na região próxima do ponto crítico, com
isso foi possível realizar o cálculo dos expoentes críticos. Esta pesquisa é importante
para uma melhor compreensão dos intrincados comportamentos e padrões observados
neste tipo de sistema, contribuindo significativamente para o campo geral da pesquisa de
sistemas complexos. Além disso, este trabalho estabelece uma ligação importante entre a
teoria dos fenômenos críticos e a dinâmica do modelo RPS, centrando-se na emergência
do comportamento crítico e nas condições que conduzem à criticalidade e na possível
caracterização da classe de universalidade. Em suma, embora tenha sido viável calcular
os expoentes críticos do modelo Rock-Paper-Scissors (RPS), a identificação específica da
sua classe de universalidade permanece indefinida. Esta limitação decorre da prioridade
dada neste trabalho ao desenvolvimento de novos métodos capazes de extrair informações
significativas sobre o comportamento crítico de sistemas não diretamente relacionados à
termodinâmica. Ainda assim, a obtenção dos expoentes críticos é uma conquista notável,
ressaltando o potencial inexplorado do modelo RPS. Este modelo se apresenta como
uma forma promissora de abordar sistemas complexos, tanto no âmbito da física quanto
da biologia, sugerindo um vasto campo de possibilidades para futuras investigações e
aplicações.

Palavras-chave: Fenômenos Críticos. Expoentes Críticos. Modelo Rock-Paper-Scissors.
Biodiversidade. Formação de Padrões. Dinâmica de Populações.





Abstract
This work presents a study on the dynamics of the Rock-Paper-Scissors (RPS) model,
with particular emphasis on the influence of variations of the control parameters on the
emergence and dissipation of spatial patterns as the system approaches a critical value.
We observed that the model exhibits a continuous phase transition from the symmetric
to the non-symmetric phase. We used the theoretical framework of critical phenomena
as an analytical tool to explore the system stability in the vicinity of the critical point,
allowing the calculation of the critical exponents. This research is important for a better
understanding of the intricate behaviors and patterns observed in this type of system, and
contributes significantly to the general field of complex systems research. Furthermore,
this work established a link between the theory of critical phenomena and the dynamics of
the RPS model, focusing on the emergence of critical behavior and the conditions that led
to criticality and the characterization of the universality class. In summary, although it
has been possible to obtain the critical exponents of the Rock-Paper-Scissors (RPS) model,
the specific identification of its universality class remains unclear. This limitation results
from the priority given in this thesis to the development of advanced methods capable of
extracting significant information from the critical behavior of systems not directly related
to thermodynamics. Nevertheless, obtaining the critical exponents is already an interesting
achievement that emphasizes the unexplored potential of the RPS model. This model
presents itself as a promising framework to address more complex questions in physics and
biology, suggesting a vast field of possibilities for future investigations and applications.

Keywords: Critical Phenomena. Critical Exponents. Rock-Paper-Scissors Model. Biodi-
versity. Pattern Formation. Population Dynamics.
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1

1 Introduction

1.1 Background

The study of critical phenomena and phase transitions has long been a cornerstone
of theoretical physics, tracing its roots back to the early 20th century [1, 2]. Initially, the
focus was predominantly on equilibrium systems, where phase transitions were understood
in terms of changes in thermodynamic variables, such as temperature and pressure. The
concept of universality, introduced in the 1960s and 70s, revolutionized the field by
revealing that systems with vastly different microscopic properties could exhibit strikingly
similar behavior near critical points [1, 2, 3, 4, 5, 6]. This led to the development of the
renormalization group theory [4], which provided a deeper understanding of scaling and
universality in critical phenomena. Over time, the study of critical phenomena expanded
beyond traditional physics, finding applications in a diverse range of fields including
chemistry, biology, and even economics [7].

In parallel, the study of stochastic systems, particularly in ecological and social
contexts, gained momentum. The Rock-Paper-Scissors (RPS) model emerged as a promi-
nent example, illustrating cyclic dominance and competitive interactions in ecosystems
[8, 9]. Initially conceptualized as a simple game theory model, the RPS model has evolved
to become a significant tool in understanding biodiversity, species coexistence, and evo-
lutionary dynamics [9]. Its application has extended to various fields, from the study of
microbial populations [10] to the analysis of social behaviors [7, 11]. The simplicity of the
model, coupled with its ability to capture complex dynamics, makes it an ideal framework
for exploring stochastic phenomena [12].

This interdisciplinary approach seeks to apply the principles of scaling, universality,
and phase transitions, traditionally associated with equilibrium systems in physics, to the
dynamic, stochastic world of ecological and social systems. The potential of this synthesis
lies in its ability to provide a deeper understanding of the complex behaviors and patterns
observed in these systems [7, 10]. By exploring how the RPS model behaves under different
conditions and parameters, we can learn more about the mechanisms that determine
biodiversity, stability, and change in ecosystems, contributing to a more comprehensive
picture [10] of the natural world.

The literature on critical phenomena and phase transitions is vast, with seminal
work dating back several decades. Important studies by Kenneth Wilson, who developed
renormalization group theory, have established the foundation for understanding uni-
versality and scaling behavior in physical systems [4]. This theory has been essential in
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explaining why different systems can exhibit similar behavior near critical points, despite
having different microscopic properties. In the context of ecosystems and social systems,
the RPS model has been extensively studied, with research highlighting its ability to
mimic cyclic dominance and evolutionary strategies. Notable studies have applied the RPS
model to various ecological scenarios, demonstrating its versatility in explaining complex
interactions and dynamics [13].

The integration of critical phenomena theory with the RPS model in non-equilibrium
systems [14, 15] is a novel and growing area of research that aims to establish a bridge
between theoretical physics and ecological modeling. We believe that such an interdisci-
plinary approach is capable of contributing to the understanding of ecosystems dynamics
through the application of universality and scaling laws, particularly in the context of
the RPS model. However, there is a notable research gap in fully understanding how
critical phenomena apply to ecological and social systems within this framework. Current
studies tend to focus on either theoretical aspects of critical phenomena or ecological
[16] implications of the RPS model, without fully integrating these concepts. This gap
highlights the need for more extensive studies to test and refine the theories developed in
this area [14], which could significantly advance our understanding of stochastic systems
and contribute to the broader field of complex systems research.

This study is the first step in a larger project aiming to categorize RPS systems
into different universality classes, inspired by the theory of critical phenomena. This
includes the analysis of critical exponents and scaling functions, which are essential for
understanding the diverse critical properties of such systems. Our aim here is to investigate
how variations in the RPS model control parameters influence the emergence of critical
behavior and phase transitions. This involves examining the scaling behavior of the model
under different conditions which may help in identifying potentially emerging universality
classes.

In order to study the theoretical model, we performed numerical tests to validate
the construction of the code based on previous works [17, 18]. Furthermore, the study
considers the broader implications of these results, particularly in terms of biodiversity
conservation and ecosystem management. The understanding of critical points and phase
transitions of RPS systems can improve our strategies for biodiversity conservation and
ecological equilibrium. This research aims to make a significant contribution to the physical
and ecological sciences by providing a new perspective on the complex and dynamic nature
of RPS systems.

In the realm of modern physics, the study of critical phenomena occupies a central
role, particularly in the context of phase transitions. These transitions are pivotal in deter-
mining the behavior of a myriad of physical systems as they approach their critical points.
A quintessential example of this is observed in the behavior of a ferromagnetic nearing



1.1. Background 3

its critical temperature. Here, the magnetization, which serves as the order parameter,
progressively diminishes and ultimately vanishes at the critical point, signifying a marked
phase transition. Furthermore, this phenomenon is not isolated to the order parameter
alone; other response functions, such as constant-field specific heat and isothermal sus-
ceptibility, also demonstrate singular behaviors at critical points [19]. The ubiquity of
these phenomena across a diverse range of physical systems not only highlights their
fundamental nature but also underscores the imperative for an in-depth understanding.

The concept of scaling is a cornerstone principle in the study of critical phenomena.
Scaling laws, characterized by specific exponents, are instrumental in elucidating the
behavior of physical quantities in the vicinity of critical points [19]. In this thesis we apply
a significant manifestation of this concept known as the phenomenon of data collapse,
which has received extensive validation through experimental and theoretical studies. This
facet of scaling uncovers an inherent simplicity within the complex dynamics of systems at
critical conditions [19].

Equally crucial is the concept of universality, which arises from the empirical
observation that disparate systems exhibit analogous behaviors near their critical points.
This leads to the classification of these systems into universality classes, each defined by
distinct critical-point exponents and scaling functions [19]. This aspect of the discussion
brings to light the fascinating observation that various physical systems, despite their
differences, can display strikingly similar critical behaviors, suggesting a deep-seated
commonality in their underlying physics.

The Renormalization group theory offers a comprehensive theoretical framework
for understanding the principles of scaling and universality. It introduces the concepts of
upper and lower marginal dimensionality, which are crucial in determining the relevance of
classical theories for describing critical phenomena. This approach has not only deepened
the understanding of scaling and universality but has also paved the way for new concepts
and methodologies in the study of critical phenomena [19]. In summary, the exploration
of critical phenomena in modern physics, particularly through the lenses of scaling,
universality, and renormalization, provides profound insights into the behavior of physical
systems near critical points. This study is not only relevant in advancing the understanding
of phase transitions but also plays a role in the broader context of physical and biological
sciences.

Furthermore, this research paves the way for future interdisciplinary studies, encour-
aging collaboration between physicists, ecologists, and social scientists. The methodology
and findings of this study can be used as a foundation for further research, exploring other
complex systems where critical phenomena and stochastic dynamics play a crucial role. By
demonstrating the applicability of critical phenomena theory in the RPS model, this study
opens new avenues for research, thus broadening our understanding of complex systems.
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1.2 Overview
To provide a seamless and guided reading experience, we have implemented a

structured framework for this work. Our intention is to ensure clarity and coherence
throughout the document. The following ideas have been carefully organized to facilitate
a fluid comprehension of the research.

In chapter 1, the Introduction: The text begins with an initial discussion on critical
phenomena and the RPS model and its significance in understanding complex adaptive
systems. It highlights the importance of scaling and universality in RPS dynamics, phase
transitions in ecological and social systems, and the relevance of empirical observations
and theoretical models. The introduction also touches on stochastic dynamics, fluctuations,
applications in biodiversity and conservation, challenges in integrating critical phenomena
with RPS, future research directions, and the value of interdisciplinary collaboration.

In chapter 2, the RPS Model Overview: This section provides an in-depth look
at the RPS model, focusing on population dynamics, biodiversity, and the coevolution
of species. It discusses the limitations of deterministic models and the need for a more
realistic approach that incorporates stochastic effects. The text uses the example of the
side-blotched lizard to illustrate the application of the RPS model in understanding
reproductive strategies and their implications for population dynamics.

In chapter 3, the Critical Phenomena Theory: This chapter delves into the
definition of the critical point, introduction to critical exponents, the scaling hypothesis,
analytical framework of the correlation function, and continuous phase transition.

In chapter 4, the RPS Model Critical Phenomena Analysis: This part of the
text includes a simulation of the RPS model, analysis of the order parameter, evaluation
of the correlation function, and a study of self-similarity and critical exponents.

In chapter 5, Critical Analysis: We actually apply the theory of critical phenomena
within the RPS model. We show in detail how the critical point as well as the critical
exponents can be obtained by applying scale transformations to the two-point correlation
functions in Fourier space. There we also discuss the relevance of critical phenomena
theory in understanding the complex dynamics of ecological interactions and validates the
theoretical models used.

In chapter 6, Summary and Conclusion: The final chapter summarizes the
research findings, emphasizing the application of critical phenomena theory to the RPS
model and its implications for theoretical ecology and practical applications like biodiversity
conservation. It outlines future research directions, suggesting the use of renormalization
group theory to further explore the universality classes of RPS models.
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2 RPS Model Overview

2.1 Introduction to the RPS Model
The analysis of population dynamics, with a focus on the comprehension of bio-

diversity and the coevolution of species, is a significant challenge. In the course of time,
several mathematical models have been developed to explain the process of competition
between species. Initially, deterministic, even nonlinear, models such as those proposed
by Lotka and Volterra [20, 21, 22, 23, 24] and their variants, played a prominent role in
this field. These models were limited in their predictions due to the absence of stochastic
effects [20]. In view of these limitations, the motivation arises to explore a model that
approximates a more realistic condition, where stochastic effects play a predominant role
and generic properties can be obtained more precisely [20].

An illustration of this type of interaction can be found in the observation of the
side-blotched lizard of the species Uta stansburiana [25], a species native to the arid region
of the west coast of the United States and northern Mexico. These lizards are characterized
by the phenomenon of polymorphism, which is manifested by lateral marks in orange, blue
and yellow. These different coloration are directly related to different copulation strategies
with females. This observation in nature provides an interesting context to study the RPS
model, offering the opportunity to clarify the mechanisms underlying these reproductive
strategies and their implications for population dynamics. It is important to emphasize that
the complexity of these observations in nature transcends simple prey-predator dynamics.

The males of the species Uta stansburiana have three different mark morphologies:
orange, blue and yellow, each one with unique copulation strategies [26]. The orange-
spotted males, the larger and more aggressive of the three, are ultra-dominant, cover large
areas and hold multiple mates, although they often lose their females to the yellow-spotted
males. On the other hand, the blue-spotted males, which are intermediate in size, are
dominant, occupy smaller territories, and generally have fewer or only one mate, are more
effective at protecting their females from the yellow-spotted males. The yellow-spotted
males, on the other hand, are similar in coloration to the females and use a strategy of
simulated rejection when they invade other territories. They have no territory of their own
and occupy large areas that may overlap with those of other lizards. The yellow-spotted
males are more successful in copulating with females in the territory of the orange-spotted
males. Under certain circumstances, they may adopt the behavior of blue-spotted males. In
summary, this population dynamics creates a cycle in which the strategy of yellow-spotted
males is superior to the ultra-dominant strategy of orange-spotted males, but inferior to
the territorial guarding strategy of blue-spotted males. Conversely, the strategy of the
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orange-spotted males is superior to the strategy of the blue-spotted males [25].

The application of deterministic equations to the evaluation of biological systems,
such as lizards, presents significant challenges. This is due to the complexity of ecological
interactions, which often cannot be adequately described by simple mathematical models.
In the case of population dynamics, deterministic equations tend to ignore the influence of
stochastic factors and environmental fluctuations which play a crucial role in reality. This
simplicity can lead to imprecise and incomplete predictions for complex biological systems.

Therefore, the use of stochastic simulations, becomes essential to capture the
nuances and variability inherent in these systems, allowing for a more realistic and
comprehensive understanding of their dynamics. In order to deal with the complexity of this
kind of problem, we chose to adopt a cyclical predator-prey model using a stochastic lattice
simulation with periodic boundary conditions. This model is known in the literature as the
RPS model. The RPS describes, in a non-hierarchical way, the interaction between three
different species in a generic population, allowing us to explore under what conditions these
species can coexist harmoniously within the same ecosystem. The essential interactions
within this lattice include movement, reproduction, and predation, where a chosen species
can interact with one of its four close neighbors [17, 18, 27]. It is important to note
that lizards are only one of the examples found in nature where the RPS model proves
applicable, and its usefulness extends to a variety of complex ecological systems and other
physical problems in the literature.

If we approach the analysis of such problems from the perspective of the theory
of critical phenomena, we can find a wealth of details that allow us to understand the
nuances of population dynamics. This approach takes into account the phase transition,
a crucial concept in statistical physics that describes the change in the behavior of the
system when critical values for some parameters are approached. In the context of the RPS
model, this phase transition can be interpreted as a critical point at which populations
experience drastic changes in their dynamics. For example, this critical point may lead to
the extinction of a species or, alternatively, to the exclusive dominance of a single species,
compromising the biodiversity of the ecosystem.

Biodiversity represents the diversity of life in an ecosystem and plays a fundamental
role in its stability and resilience. The greater the diversity of species in an ecosystem, the
more probable it is that some of them may play a critical role in maintaining ecological
balance. In scenarios where biodiversity is compromised, the system may become more
vulnerable to ecological perturbations and less able to recover from adverse events [28,
29]. Therefore, understanding how changes in population dynamics affect biodiversity is
fundamental for the conservation and appropriate management of ecosystems, as well
as for assessing their resilience in the face of environmental and climatic challenges.
This multidisciplinary approach, combining critical phenomena theory with stochastic
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simulation, represents a valuable advance in the study of complex biological systems.

Over the last few decades, many efforts have been made to develop and improve
stochastic models to understand complex biological systems. One of the pioneers using the
RPS model in this area was Reichenbach, whose groundbreaking work provided the basis
for a more detailed understanding of the dynamics of these systems [27].

2.1.1 Mobility impacts biodiversity in RPS games

In the study by Reichenbach [27], one of the main focuses was the influence of
mobility in the lattice on the biodiversity of a system. He defined mobility as being directly
proportional to the probability of position exchange between close neighbors, represented
by ε, and inversely proportional to the total number of sites of the lattice, represented
by Ns. This characterization resulted in the formula M = 2εN−1

s , which quantifies the
mobility of the system. One of the main results of this study was the determination
of the critical mobility value, Mc, which was calculated to be approximately equal to
(4.5 ± 0.5) × 10−4. When the mobility of the system exceeds this critical limit, biodiversity
is compromised and the system tends to evolve towards a state of uniformity in which
only one species survives.

On the other hand, when mobility is maintained under this critical threshold, a
completely different scenario is observed. In this case, the species coexist in a stable state,
and this equilibrium is accompanied by the formation of spiral waves that evolve over time.
These spirals represent the cyclical interactions between the species [27], as described by
the RPS model.

Reichenbach’s pioneering work not only highlighted the importance of lattice
mobility as a determinant of population dynamics, but also demonstrated how the RPS
model can be a powerful tool for investigating the complex relationship between biodiversity
and species interactions in ecological systems. This approach has provided valuable insights
into how mobility can influence the stability and diversity of biological communities,
with important implications for understanding and maintaining natural ecosystems. The
research of Reichenbach et al. [20] also explored the critical limits of mobility, examining
the transition between states of diversity and uniformity.

2.1.2 Junctions and Patterns in RPS Models

Later, studies explored these spirals and extended the original model. For example,
in [17], researchers investigated population dynamics in a context where the number
of species was arbitrary. The aim was to observe how the system behaved in scenarios
with even and odd numbers of species. Another relevant study, conducted in [18], used
stochastic simulations in a two-dimensional lattice to study the behavior of interfaces
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separating different species, with a cyclic predation rule. In these simulations, the presence
of partnerships between species was observed. For example, when the number of species
was N = 6, two partnerships were formed, {1, 3, 5} and {2, 4, 6}, each occupying different
regions in the lattice.

In addition, the researchers performed simulations based on a mean-field theory and
achieved similar results. These simulations reinforced the conclusion that as the number of
species N increases, so does the number of peaceful partnerships. This, in turn, induces the
generation of stable dynamical structures at the interfaces, whose complexity increases with
N . These observations are consistent in both stochastic lattice simulations and mean-field
simulations, in one and two dimensions. The formation of patterns is extremely important
for the conservation of biodiversity [30]. The formation of cooperative groups is essential
for territorial defense, resulting in the “defeat” and “expulsion” of invaders.

2.1.3 Mobility-Driven Coexistence

The study by De Oliveira and De Moura [31] introduces a groundbreaking continu-
ous model to investigate the dynamics of living organisms, with a particular focus on the
role of mobility in the coexistence and spatial distribution of organism clusters. This model
marks a significant evolution from previous models by integrating individual and collective
mobility parameters and substituting global restrictions with local constraints on popula-
tion density. The authors uncover a dual role of individual mobility: moderate mobility
disrupts cluster formation and endangers population survival, while higher mobility levels
aid in population recovery and sustainability. This paradoxical discovery highlights the
intricate relationship between movement patterns and population dynamics. The model
further reveals that collective, biased movement results in distinct spatial patterns, such
as stripe-like states, diverging from the hexagonal symmetry typical in randomly moving
populations.

In their analysis, De Oliveira and De Moura [31] provide a nuanced understanding
of how mobility influences pattern formation and survival in living systems. The study
underscores the delicate equilibrium between reproduction and mortality rates and how
these are impacted by the mobility of individuals within a population. The findings have
broader implications for comprehending the dynamics of ecological systems, suggesting that
mobility is a pivotal factor in the resilience and adaptation of populations. This research
enriches the field of ecological modeling by offering insights into the mechanisms driving
pattern formation and stability in biological populations, with potential applications in
various ecological and biological systems.
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2.1.4 Pestilent Species and Stability

Bazeia et al. [28] explore the impact of a fourth, pestilent species on a system of
three cyclically dominant species, grounded in the framework of evolutionary game theory
and using the RPS game-like cyclic dominance as a model. The study investigates the
effects of this pestilent species, which exclusively preys on one member of the cyclic trio,
on the overall biodiversity and stability of the system. The research employs numerical
simulations on a spatial model with four species distributed on a square lattice, following
the standard rules of the May-Leonard model for the first three species and a Lotka-Volterra
type predation rule for the fourth, pestilent species.

The study described in ref. [28] describes a significant shift in ecological dynamics
in its third phase, triggered by an increase in the invasion strength of a newly introduced
plague species. This phase is characterized by the disappearance of one of the species, a
critical component in the predator-prey relationships of the system, which disrupts the
existing balance of cyclic dominance. As a result, one species becomes dominant and
dominates the ecosystem in the absence of its predator. The loss of one species not only
changes the dynamics of species interactions, but also leads to the disappearance of typical
spiral patterns formed by the cyclic trio of red, blue, and yellow species. These patterns,
indicative of a balanced ecosystem where no single species is overwhelmingly dominant,
are lost, signaling a major change in the biodiversity and ecological stability of the system.

The application of Hamming distance density profiles in this phase of the study is
critical to a better understanding of these ecological changes. Hamming distance measures
the difference between two system states and provides insight into how changes in one
part of the ecosystem can lead to significant overall changes over time. This analytical
approach sheds light on the cascading effects following the introduction of the plague species
and the subsequent extinction of one species. The result is a new ecological equilibrium
characterized by the dominance of one species and the loss of the spiral patterns that
previously symbolized a diverse and balanced ecosystem. This phase of the research
highlights the complex and often unpredictable consequences of external disturbances,
such as the introduction of a new predatory species, on ecological systems, underscoring
the delicate nature of biodiversity and the balance within these systems [28].

The research concludes that the presence of a pestilent species can significantly alter
the dynamics of cyclically dominant systems. The introduction of a species that preys on
only one member of the cyclic trio can lead to unexpected outcomes, such as the survival of
the pestilent species resulting in its own extinction. This study enriches the understanding
of cyclically dominant systems, highlighting the complex and sometimes counterintuitive
nature of these interactions. The findings have implications for understanding biodiversity
and the stability of ecosystems where such cyclic dominance is present [28].
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2.1.5 Environment-Driven Oscillations in the May-Leonard Model

Bazeia et al. [32] delve into the impact of environmental conditions on the dynamics
of species competition and coexistence. Based on the May–Leonard model, a mathematical
framework for describing non-transitive interactions among competing species, particularly
in spatial systems, the study extends the rock-scissors-paper game, where each species is
both a predator and prey.

The research focuses on how varying environmental conditions, represented by a
local carrying capacity parameter, affect the patterns and dynamics of species interactions.
Employing an off-lattice version of the May-Leonard model allows for a more detailed
manipulation of environmental conditions. The results indicate that in a benign environment
with high population density, rotating spirals composed of competing species become more
evident. These spirals and their accompanying time-dependent oscillations of competing
species display a scaling law relative to the environmental parameter [32].

The study [32] also examines the role of individual movement and how it influences
the spatial distribution and evolutionary outcomes of the species. The model reveals that
in harsh environments with limited resources, the local carrying capacity is low, supporting
fewer individuals, while in more favorable environments, this capacity is higher. The
research highlights the importance of environmental conditions in maintaining biodiversity
and the dynamics of cyclic dominance in populations. This work contributes to the
understanding of how environmental factors, alongside non-transitive interactions, play a
crucial role in the evolution and coexistence of species.

2.1.6 Neighborhood Influence on Cyclic Biodiversity Models

In [33], the authors explore the impact of neighborhood interactions in RPS
models of biodiversity. The study focuses on three species evolving under standard rules
of mobility, reproduction, and competition, with competition following the RPS game
dynamics. The authors utilize the von Neumann neighborhood concept but extend it to
include interactions with the nearest, next nearest, and next to next nearest neighbors in
three different environments. These environments vary in terms of probability distribution,
either equal probability or following power law and exponential profiles. The study reveals
that increasing the neighborhood size significantly affects the system’s characteristic length.
The research also examines scenarios where the cyclic evolution is broken by altering how
a specific species competes, leading to the counterintuitive result where the strongest
individuals may become the least abundant population.

The methodology [33] involves simulating the time evolution of the system in a
square lattice with periodic boundary conditions, where each site is surrounded by a
neighborhood of four nearest sites. The simulations consider five distinct scenarios for
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mobility rules, including the standard model and models with extended neighborhoods.
The study quantifies the spatial behavior using a scalar field representing species in the
lattice and the spatial auto-correlation function. The results from the simulations show
that the characteristic length of the model is modified by including other neighbors and
altering the probability associated with their presence. The study also investigates the
abundance or density of species over time, using the discrete Fourier transform to quantify
oscillations in species density.

The findings indicate that the characteristic length increases non-linearly with
increased mobility and neighborhood size [33]. The characteristic frequency, indicating the
number of oscillations in species abundance over time, also depends on the neighborhood
size and increases with it. The study also examines the extinction probability, showing
that a larger neighborhood lowers the mobility value required to break biodiversity. This
research contributes to understanding biodiversity maintenance and offers insights into
more realistic models by considering extended neighborhood interactions. The study’s
implications extend to various ecological and biological systems, providing a deeper
understanding of the dynamics governing species interactions and biodiversity.

2.1.7 Cyclic Interactions and Pattern Formations

In [13], the authors delve into the intricate world of pattern formations driven by
cyclic interactions, a field that has garnered significant interest due to its implications in
understanding biodiversity and ecosystem stability. The review commences by acknowl-
edging the centenary of Lotka’s seminal work, underscoring the enduring relevance of
non-transitive interactions in ecological and biological systems. The authors provide a
comprehensive overview of various systems exhibiting cyclic dominance, ranging from
spiral waves in cell colonies to oscillations in salmon populations, thereby illustrating the
widespread occurrence of these interactions in nature. The review not only summarizes
recent developments in this field but also connects these ecological models to evolutionary
game theory in social systems, thereby bridging the gap between biological and social
sciences.

The core of the review focuses on two fundamental modeling approaches in the
study of cyclic interactions: the Lotka-Volterra (LV) and May-Leonard (ML) models. These
models, while conceptually similar, differ in their treatment of species competition and
population dynamics. Ref. [13] discusses the nuances of these models, particularly how
they handle species coexistence and the conditions under which biodiversity is maintained
or jeopardized. The review highlights the critical role of interaction graphs, mobility, and
long-range interactions in these models, and how they influence the stability of species
coexistence. Additionally, the authors explore the impact of various factors such as spatial
heterogeneity, site-specific invasion rates, and environmental randomness on biodiversity,
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providing a nuanced understanding of the complex dynamics governing ecological systems.

In the concluding sections, ref. [13] explore extensions of these basic models,
particularly those involving more than three species, and the resultant complex dynamics
of cyclic dominance. They discuss the formation of alliances among species and the
competition for space, emphasizing the importance of initial conditions in simulations.
The review ends with an outline of potential future research directions, suggesting areas
that could yield deeper insights into the dynamics of socio-ecological systems. This
review not only synthesizes recent advancements in the field but also sets the stage for
future explorations, highlighting the multifaceted nature of cyclic interactions and their
significance in understanding the complexity of ecological and social systems.

2.1.8 Competition Effects on Pattern Formation in RPS game

In their insightful study, Jiang et al. [34] delve into the complex dynamics of pattern
formation and biodiversity within the framework of the RPS game model, a cornerstone
in understanding ecological and evolutionary dynamics. Their research employs a lattice-
based model, where individual nodes represent either one of three competing species or
vacant sites, to explore the intricate interplay of competition, reproduction, and mobility.
The focus is particularly on the competition rate, a critical factor in the dynamics of the
system.

The study uncovers several key findings about the dynamics of biodiversity and
pattern formation under varying competition rates. A notable observation is the phase
transition from a biodiverse state to an absorbing phase, where two species go extinct,
heavily influenced by the competition rate. Higher values of competition rate are found to
enhance biodiversity but disrupt spatial pattern formation, leading to the fragmentation
of macroscopic spirals and the emergence of disordered spatial structures. This disruption
is attributed to the prevention of patterns outgrowing the system size, a novel insight into
the balance of ecological systems.

Jiang et al. work [34] contributes significantly to our understanding of ecological
and evolutionary dynamics in cyclically interacting systems. The study highlights the
delicate balance between competition rates and mobility in shaping biodiversity and pattern
formation. It also reveals that larger system sizes and higher mobility rates increase the
critical competition rate pc, necessary for the stability of single-armed spirals. These
findings underscore the complexity of ecological systems and have broader implications
for understanding spatial dynamics in both biological and social systems. The research
provides a valuable framework for future studies in the field, emphasizing the crucial
role of cyclic competition rates in determining spatial pattern formation and biodiversity
maintenance.
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2.2 Model Simulation Techniques

In the realm of ecological systems, the application of critical phenomena theory,
a cornerstone of statistical physics, presents a fascinating avenue for exploration. This
theory, which has profoundly impacted our understanding of phase transitions and scaling
behavior in physical systems, offers a unique lens through which we can examine the complex
dynamics of ecological interactions. Particularly intriguing is the potential application of
this theory to the study of cyclic dominance as exemplified by the RPS model.

This work was based on numerical experiments in which we generated our own
data sets for analysis, after carefully reviewing the existing literature that addresses the
research topic. Data was collected through computer simulations using codes developed by
the author, following the RPS model [17, 18, 27] as a guide. These simulations allowed
us to estimate the approximate value of the critical movement µc, and to explore the
dynamics of the system near the transition region.

Our results indicated that below this critical movement threshold, we observed the
formation of complex patterns and the formation of species clusters, indicating the presence
of diversity (or biodiversity) in the system, a behavior consistent with that described in
the literature [27]. In addition, we noticed that the arms of the spiral patterns tend to
increase in size as we approach the critical movement. In other words, the structure of
these spirals grows until it reaches a point where it exceeds the dimensions of the lattice.
When this occurs, the diversity patterns cease to exist and the system enters a state of
uniformity. In this process, only one dominant random species survives, while the other
two are eliminated.

The initial conditions of our system are a square matrix of dimensions N ×N with
periodic boundary conditions and random initialization. Initially, the lattice is filled with
a uniform distribution, assigning an equal weight of 1

4 to each species as well as to the
empty spaces. Each cell in the lattice is represented by an integer, denoting individuals of
the species, where 1 corresponds to the blue species, 2 to the red species, 3 to the yellow
species, and 0 to empty spaces represented by white color.

At each iteration, one cell is randomly selected as the active cell. This active cell has
the ability to interact with one of its four nearest neighbors, labeled the passive cells. The
possible interactions between the active cell and its neighbors were classified as movement,
reproduction, and predation, with probabilities denoted by µ, λ, and σ, respectively.

These interactions have been defined as follows [17]: Movement: The active cell and
the passive cell exchange positions, represented as l ⊙ → ⊙l. Reproduction: The active
cell is duplicated as long as the passive cell is an empty space, represented as l⊗ → ll.
Predation: The active cell eliminates the passive cell leaving an empty space, represented
by l(l + 1) → l⊗. Where ⊗ symbolizes an empty space, and ⊙ can represent any species l
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Figure 1 – Scheme of interaction between the three species, with predation to the right.

or an empty space. The RPS model allows the specification of the type of predation, either
to the right or to the left. Additionally, it is possible to configure simultaneous predation
in both directions. However, for the purposes of this study, we chose to consider only right
predation for convenience and simplicity, as illustrated in Figure 1.

A schematic illustration of the interaction rules in the RPS model, shown in Figure
2, provides a clearer understanding of the rules. In Figure 2a shows the initial matrix,
which is randomly generated independent of the initial parameters, with equal probabilities
assigned to all species and empty spaces. In Figure 2b, the highlighted cells in the rectangle
show the active blue cell preying on the passive cell directly above it, leaving an empty
space previously occupied by a red species. In Figure 2c shows the selected cells where the
active red cell switches positions with the passive cell. And in the Figure 2d shows the
marked cells where the active yellow cell reproduces, filling the neighboring empty cell
above it.

It is also important to note that we have used tools and techniques from the theory
of critical phenomena to analyze the data obtained in the simulations. This integration
of tools from the theory of critical phenomena enriched our analysis and contributed
significantly to the comprehension of the results obtained.

We developed the code from scratch for data generation and analysis, all imple-
mented in Python. Our simulations typically run for 21 days on a computer equipped with
two Intel(R) Xeon(R) CPU E5-2667 v4 @ 3.20GHz processors, each featuring 8 cores
and supporting 2 threads per core. Such a high demand for computer resources is due to
the phenomenon known as critical slowing down [29], which occurs in the vicinity of the
critical point.

In physics, critical slowing down is a phenomenon typically observed near second-
order phase transitions, where the relaxation time of a system diverges [29, 35]. This
means that the system becomes increasingly slow to respond to external perturbations.
Critical slowing down is closely connected to the diverging correlation length near a critical
point, which leads to a loss of local equilibrium and an increase in global fluctuations.
Consequently, near the phase transition, critical slowing down substantially prolongs the
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(a) (b) (c) (d)

Figure 2 – Illustration of the RPS model interaction rules. (a) Randomly generated initial
matrix. (b) Blue species predate red. (c) Red species switch positions with
empty space. (d) Yellow species occupy an empty site.

relaxation time, thereby decelerating the dynamics of second-order phase transitions [35].

This phenomenon has important implications for the understanding of critical
phenomena in various physical systems, such as ferromagnetic, superconductors, and fluids
[2]. In particular, critical slowing down can lead to dramatic changes in the dynamics
and properties of a system, such as glassy behavior [36, 37] and the formation of self-
organized structures. In biological systems it is usually a consequence of the increasing
interdependence and connectivity of the system’s components as it approaches a critical
point [38]. On the other hand, it can also make the system more vulnerable to collapse or
catastrophic events [39].

Understanding critical slowing down in biological systems is important for a variety
of reasons. It can help us to predict and mitigate the effects of critical transitions, such as
ecosystem collapse or disease outbreaks.

Therefore, we believe that the integration of several concepts and approaches
makes this work a pioneering effort at the intersection of critical phenomena and complex
biological systems. This innovative approach has allowed us to identify critical and universal
behaviors in a biological context, providing valuable context for how interactions between
species and interspecies can evolve in complex and dynamic environments.
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3 Critical Phenomena Theory

3.1 Definition of the Critical Point
Critical phenomena pertain to the characteristic behavior displayed by physical

systems in proximity to a critical point, which designates a phase transition point. When a
system reaches criticality, it demonstrates universal behavior, wherein distinct properties
become decoupled from the specific system particulars and instead rely on a small set of
critical exponents. This pursuit is not primarily concerned with identifying a theoretical
framework that accurately encompasses experimental data across the entirety of the
temperature range, but rather emphasizes the investigation of these critical exponents
within a localized region.

One fundamental aspect pertains to the physical phenomena involved, specifically
the establishment of significantly extended correlations encompassing an extensive number
of constituent particles, which notably emerge and dominate in proximity to the critical
point. However, these phenomena are conspicuously absent and diminish in significance as
the system diverges considerably from the critical point. Within the current context of
investigation, it is imperative to acknowledge the presence of well-defined relationships
that exist among the critical exponents. These relationships are derived from funda-
mental principles inherent in thermodynamics and statistical mechanics, and therefore
possess a universal nature that extends beyond the confines of any specific system under
consideration.

The critical point is defined by the specific set of conditions at which a phase
transition occurs. In the context of critical phenomena, the behavior of a general function,
denoted as f(ε), where,

ε ≡ x− x0

x0
= x

x0
− 1, (3.1)

in the vicinity of the critical point is encapsulated by a set of indices known as critical
point exponents. These exponents serve as mathematical descriptors that characterize the
scaling properties and critical behavior exhibited by the system. In particular, they provide
dimensionless variables that quantify the variations in a relevant physical parameter,
e.g., temperature, and elucidate the fundamental nature of the phase transition. As a
fundamental assumption, it is presumed that the function f(ε) maintains positivity and
continuity for sufficiently small positive values of ε, and that the limit

λ ≡ lim
ε→0

ln f(ε)
ln ε , (3.2)

exists.
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The limit, denoted as λ in equation (3.2), represents the limit behavior associated
with the function f(ε) at its critical point. To express this association concisely, a shorthand
notation, namely

f(ε) ∼ ελ, (3.3)

is commonly employed, indicating that λ assumes the role of the critical point exponent
for the function f(ε) under consideration. It is crucial to emphasize that the relation
f(ε) ∼ ελ should not be misconceived as implying an equality, i.e.,

f(ε) = Aελ. (3.4)

Indeed, the converse is true. In reality, the behavior of a typical thermodynamic function
is often more intricate than a simple power-law relationship, e.g., (3.3). Generally, we
encounter additional correction terms, leading to functional expressions of the form,

f(ε) = Aελ(1 +Bεy + . . . ), y > 0. (3.5)

The presence of these corrections terms results in a more comprehensive description of the
critical behavior exhibited by the system, accounting for the complexities beyond the basic
power-law behavior. Such functional expressions allow for a more accurate representation
of the behavior of the thermodynamic function near the critical point. Furthermore, it is
evident that the definition given in equation (3.2) for a critical point exponent does not
discriminate between the functional form presented in equation (3.4) and (3.5).

The relevance of quantifying the critical point exponent, regardless of its inherently
reduced information compared to the complete functional form, may rightfully be ques-
tioned. Nevertheless, the justification for such focus appears to be grounded in empirical
findings, which reveal that in proximity to the critical point, the dominant behavior is
governed by the leading terms. This experimental insight provides the basis for employing
log − log plots to analyze empirical data, where linear behavior manifests in the vicinity
of the critical point. Consequently, the critical point exponent can be ascertained as the
slope of this linear region, rendering it a measurable parameter. Therefore, critical point
exponents are indeed measurable, unlike the complete function, which may not be directly
accessible or measurable due to experimental constraints or inherent complexities.

A second justification for focusing on the critical point is the abundance of interrela-
tions that exist among the critical exponents. These interrelations arise from fundamental
principles in thermodynamics and statistical mechanics, transcending the particularities of
any individual system. The critical exponents are not isolated quantities but are intercon-
nected through universal scaling relations. These scaling relations reveal deep underlying
symmetries and universality classes that govern the critical behavior of diverse physical
systems. By studying critical phenomena and the associated critical exponents, we obtain
insights into universal properties that are shared by a wide range of systems undergoing
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phase transitions. This universality allows us to classify and categorize different systems
based on their critical behavior rather than their specific microscopic details. Consequently,
critical exponents provide a powerful tool for understanding and characterizing the critical
behavior of complex systems. In summary, study the critical point and its associated ex-
ponents offers a way to unravel universal principles governing phase transitions, providing
a deeper and more general understanding of critical behavior that extends beyond the
constraints of individual systems.

3.2 Introduction to Critical Exponents

In the domain of critical phenomena, the PV isotherm, which describes the rela-
tionship between pressure and volume in fluids, and the HM isotherm, which characterizes
the relationship between magnetic field and magnetization in magnetic systems, are of
fundamental importance. These relationships are closely related to the concepts of isother-
mal compressibility K and isothermal susceptibility χ, respectively. Notably, K and χ are
inversely proportional to the slopes of their respective isotherms [2].

A fundamental aspect of these relationships is their behavior as the system ap-
proaches the critical temperature Tc. Near Tc, both K and χ tend to diverge, a phenomenon
that can be described by the critical exponents. This divergence is expressed mathematically
for the fluid case as

K ∼ |T − Tc|−γ, (3.6)

and for the magnetic case as

χ ∼ |T − Tc|−γ, (3.7)

where γ is the critical exponent associated with both compressibility in fluids and suscep-
tibility in magnetic systems. This exponent γ characterizes the rate at which K and χ

diverge as temperature approaches Tc.

The importance of these equations lies in their ability to capture the sudden changes
in physical properties that occur near the critical point. In both fluid and magnetic systems,
the divergence of K and χ indicates a state of increased sensitivity to external influences,
a characteristic of critical behavior. This divergence is a fundamental feature of phase
transitions and provides important information about the nature of critical phenomena [2].

The critical exponent δ is an important parameter in the characterization of the
behavior of physical systems at the critical isotherm, in particular at the critical temperature
T = Tc. This exponent is essential in describing how certain physical quantities, such as
pressure and magnetization, deviate from their expected values at the critical point. For a
fluid system, the variation of the pressure P relative to the critical pressure Pc is given by
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the density ρ and the critical density ρc [2],

P − Pc

P 0
c

∼
∣∣∣∣∣ ρρc

− 1
∣∣∣∣∣
δ

, (3.8)

where P 0
c is the reference pressure, defined as kTcρc

m
. This reference pressure is the ideal

pressure of the system, where the particles do not interact and both the density ρ and the
temperature T are at their critical values, ρc and Tc, respectively.

Similarly, in the context of magnetic systems, the relation between the magnetic
field H and the magnetization M at the critical temperature is described by the equation

H

H0
c

∼
∣∣∣∣MH

Mc

∣∣∣∣δ , (3.9)

where H0
c is defined as kTcρc

m0
, where m0 is the magnetic moment per spin, and MH refers to

the magnetization of the system under an applied magnetic field H. This term denotes the
critical magnetic field of the system at Tc in an ideal case where there are no inter-particle
interactions.

The critical exponent δ thus serves as a fundamental measure for understanding
the behavior of systems near the critical point. It describes how the pressure in fluids and
the magnetic field in magnetic systems deviate from their non-interacting initial values, P 0

c

and H0
c , as the system approaches the critical point. The description of δ provides useful

information about the response of the system to fluctuations in density and magnetic field
near the critical point [2].

The critical exponents ν and η are essential to the study of critical phenomena, in
particular to the understanding of the behavior of systems in the vicinity of the critical
point. These exponents are closely related to the properties of the pair correlation function
G(r) and the correlation length ξ, both of which are important in describing the spatial
correlations within a system as it approaches criticality [2].

The correlation length ξ quantifies the strength of the correlation between particles
or spins within a system. As the temperature approaches the critical temperature Tc, the
correlation length exhibits a divergent behavior, which is expressed by the equation [2],

ξ ∼ |T − Tc|−ν , (3.10)

where ν is the critical exponent describing the rate at which ξ diverges as T approaches
Tc. This divergence indicates the emergence of long-range correlations in the system, a
characteristic of critical behavior.

The pair correlation function G(r) is a measure of how the presence of one particle
affects another at a distance r. This function is particularly important at the critical
temperature T = Tc, where it reveals the detailed interaction of particles or spins within
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a system undergoing a phase transition. At the critical temperature, G(r) exhibits a
power-law decay with distance, which is described by the equation [2],

G(r) ∼ r−(d−2+η), (3.11)

where d is the dimensionality of the system, and η is the critical exponent that char-
acterizes how the influence between particles decays with distance at Tc. The exponent
η thus provides important information about the nature and intensity of fluctuations
and interactions within the system at the critical point, thereby indicating the emergent
collective behavior that is not evident in the individual components of the system.

Thus, in combination with the critical exponent ν, which describes the divergence
of the correlation length, η provides a comprehensive approach to the analysis of phase
transitions and critical phenomena. These exponents, through their influence on the
correlation length or pair correlation function, provide a thorough understanding of the
behavior of physical systems near the critical point [2].

So far, our discussion has been based on the static scaling hypothesis, but in order
to present the last critical exponent, it is necessary to introduce the dynamic scaling. As a
system approaches its critical point, the relaxation times associated with various physical
quantities, such as magnetization, specific heat, and susceptibility, diverge. This means
that it takes longer for the system to reach equilibrium after a perturbation. In these
systems, various physical quantities often exhibit power-law dependencies both on time
and length scales. Dynamic scaling theory is used to describe how these scaling properties
emerge and how they evolve as a system approaches its critical point. Such a theory is
closely related to the more general concept of universality.

When a system is close to a critical point, it displays spatio-temporal self-similarity,
which means that its physical properties are invariant under rescaling of both length and
time. This self-similarity is described by power-law dependencies, where physical quantities
show scaling relations with the correlation length and relaxation time. One of the main
features of this subject, which differs from the one discussed up to the present moment,
is the timescale, also known as the relaxation time, denoted by τ , which diverges as the
system approaches the critical point. The relaxation time characterizes how long it takes
for the system to relax to equilibrium after a perturbation. And defined is as [40],

τ ∼ |T − Tc|−zν . (3.12)

As illustrated in Equation (3.12), the dynamic scaling hypothesis postulates that both
the correlation length and the relaxation time in a system approaching criticality follow
power-law dependencies. Consequently, critical exponents like ν and z become interrelated
through scaling relationships, often arising from inherent symmetries and constraints
within the system. Therefore, the complete form of equation (3.11) is, in fact [40]

G(r) ∼ r−u, (3.13)
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with u related to the critical exponent by u = d+ z − 2 + η.

In classical systems, the dynamic exponent z is often equal to zero, thus emphasizing
the static character of such transitions. In contrast, in quantum systems, the value of z
can be different from zero, indicating a different scaling behavior of correlations in time
as the system approaches a quantum phase transition. So, while the general expression
for G(r) is applicable to both classical and quantum systems, the specific value of the
dynamic exponent z can vary depending on the type of system and the nature of the phase
transition.

In a nutshell, we can summarize the subject addressed in the previous sections
through a Table 1.

Table 1 – Summary Critical Exponent.

Critical
Exponent

Relationship Among
Variables

Brief Interval

δ P −Pc

Pc
∼ ψδ Related to the

order parame-
ter ψ

T = Tc

η G(r) ∼ r−u Related to cor-
relation func-
tion decay

T = Tc

γ χ ∼ |T − Tc|−γ ,
K ∼ |T − Tc|−γ

Related to
susceptibility
(or compress-
ibility)

T < Tc

ν ξ ∼ |T − Tc|−ν Related to cor-
relation length
decay

T < Tc

z τ ∼ |T − Tc|−zν Related to re-
laxation time
decay

T < Tc

Source: Produced by Author.

3.3 The Self-Similarity and Scaling Hypothesis
The main idea behind the scale hypothesis is that physical systems exhibit certain

scaling properties near critical points. These scaling properties imply that the behavior of
the system remains qualitatively the same when its size is rescaled by a factor. In other
words, the properties of the macroscopic system depend only on the ratio of relevant
length scales, not on the absolute length scales themselves. The scale hypothesis allows
us to describe the critical behavior of a system in terms of critical exponents, which are
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characteristic numbers that govern how certain properties diverge or become singular at
the critical point.

Furthermore, the scale hypothesis implies that critical exponents can be related
to each other through scaling relations, reducing the number of independent exponents
needed to characterize a critical system. This relationship between critical exponents is a
powerful tool in the study of critical phenomena, because it allows us to make predictions
and understand the behavior of physical systems near their critical points without the
need for detailed microscopic knowledge [2].

In the context of critical phenomena, the concept of self-similarity emerges as a
fundamental concept, expressing the idea that the structure and patterns of a system
are invariant over a wide range of scales of observation. Most commonly observed near
critical points, self-similarity denotes a state in which traditional metrics of scale and
dimensionality become obsolete, giving way to fractal-like properties. This phenomenon
is not merely a geometric curiosity, but a profound indication of underlying symmetries
and universal behaviors [41]. It plays a crucial role in the theoretical understanding of
phase transitions, where the scale-invariant nature of fluctuations critically influences the
macroscopic properties of the system. Self-similarity is not only a descriptive property,
but a fundamental principle that underlies the scaling laws and universality classes that
characterize the behavior of systems at their critical points [41].

One illustrative example of self-similarity occurs with fractals [41, 42, 43, 44, 45, 46],
which are patterns that exhibit self-similarity across scales [46, 47, 48, 49, 50], and they
are present in various forms around us [46, 51, 52, 53, 54]. Scale invariance means that if
a part of the system is scaled up to the size of the whole system, there is no detectable
difference between the scaled-up part and the original system. This phenomenon is a
classic example of self-similarity, which is illustrated in fractal structures, as shown in the
Figure 3. These fractals, where each fragment reflects the whole structure, exemplify the
principle of self-similarity inherent in systems at criticality [55].

In the study of critical phenomena, both experimental and theoretical research
has confirmed the notion that exponent inequalities often manifest as equalities [2]. This
intriguing observation invites a full explanation. While a rigorous proof that transforms
these inequalities into equalities remains beyond the reach of this thesis, an alternative
method, known as the static scaling law or homogeneous function approach can be applied
[2]. This method relies on a fundamental assumption about the form of a correlation
function. It introduces functional relationships between the critical exponents, limiting the
number of independent critical exponents through exponent equivalence [40]. Despite being
outside the scope of this thesis, renormalization group theory can provide an explanation
for the scaling hypothesis [1, 4, 6]. In renormalization group theory, the idea is to consider
the system at different length scales and observe how its properties change as we zoom in
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(a) Canopy Tree (b) Barnsley Fern (c) Sierpiński Triangle

Figure 3 – (a) Canopy Tree: A fractal canopy is a type of fractal tree formed by repeatedly
splitting line segments into smaller parts at varying angles and lengths, creating
an infinitely branching structure. This iteration of the fractal canopy has
been modified with specific adjustments to branching angles and segment
lengths, fine-tuning its structure to more closely mimic the aesthetics of a
real tree. (b) Barnsley Fern: The Barnsley Fern is a fractal resembling a
natural fern, created through iterative affine transformations, exemplifying
how repetitive mathematical processes can produce complex, organic patterns.
(c) Sierpiński Triangle: The fractal described is a fixed set with an overall
equilateral triangle shape, repeatedly divided into smaller equilateral triangles,
forming a symmetrical and intricate pattern. Source: Produced by the author.

or out. The key insight is that the behavior of a system at a particular length scale can be
described in terms of effective parameters that capture the average behavior of the system
at that scale.

Furthermore, the scaling hypothesis extends beyond simply establishing relations
between critical exponents to make specific predictions about the form of the equation
of state. These predictions, which derive from statistical scaling considerations, have
been substantially supported by a range of numerical and experimental studies [2]. This
convergence of theoretical predictions with empirical findings not only reinforces the
validity of the scaling hypothesis, but also demonstrates its importance in providing a
coherent approach to understanding the complex dynamics at work in critical phenomena.
The consistency of these theoretical constructs with experimental data is a demonstration
of the robustness of the scaling approach in unraveling the intricate nature of critical
points.

The assumption of homogeneity of a function imposes significant restrictions on
the properties of the function, which shape the mathematical behavior of the function in a
specific and predictable form. We shall now examine a particular aspect of homogeneous
functions that is essential to our analysis. Consider a homogeneous function f of two
variables, defined as follows

f(αax1, α
bx2) = αf(x1, x2), (3.14)
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where αa and αb are scaling factors with α > 0. This equation encapsulates the essence
of homogeneity: the value of the function scales in a well-defined way when each of its
arguments is scaled. The exponents a and b are important parameters in this context,
determining the rate at which the value of the function increases or decreases under scaling
transformations.

As the equation (3.14) is valid for any positive value of the scaling parameter α,
it remains valid for a particular choice, such as α = x

− 1
b

2 . This substitution leads to the
expression,

f( x1

x
a
b
2

, 1) = x
− 1

b
2 f(x1, x2), (3.15)

where the left side of the equation (3.15), f(x1
x2
, 1), is essentially a function of two variables,

where the second variable is set to unity. This observation allows us to simplify the
expression by introducing a function of a single variable, defined as

F (y) ≡ f(y, 1), (3.16)

so by combining the equations (3.15) and (3.16), we get the following result

f(x1, x2) = x
1
b
2 F ( x1

x
a
b
2

). (3.17)

Therefore, all functions f(x1, x2) that satisfy the structure of the equation (3.14)
can be rewritten according to the equation (3.17). Similarly, functions that satisfy the
form of equation (3.17), where F (y) is an arbitrary function as defined in equation (3.16),
also satisfy equation (3.14). In essence, functions that can be represented by either the
equation (3.14) or the equation (3.17) are considered as homogeneous functions. In our
case, the static homogeneous hypothesis states that the correlation function is a generalized
homogeneous function [2].

3.4 Correlation Function
In the context of critical phenomena, the correlation function, often denoted as

G(r) or G(k), quantifies the statistical correlations or fluctuations between different points
in a system as a function of their spatial separation r. It provides information about how
the properties of one point in the system are related to those at other points, especially in
the vicinity of a phase transition.

For instance, the correlation length ξ emerges as a fundamental quantity related to
the decay of G(r). As the separation r increases, the correlation function G(r) typically
decays, indicating that correlations between distant points in the system become weaker.
Near the critical point, the rate of this decay is determined by critical exponents associated
with the system. Correlation function becomes scale-invariant near the critical point, this
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scale invariance implies that the system exhibits similar behavior regardless of the length
scale being considered. This property is important in characterizing the universality class
of the phase transition, which groups different physical systems based on their common
critical behaviors despite variations in microscopic details.

Prior to discussing the properties of the correlation function, the focus of this
analysis lies in the examination of the average values of variables of typical physical
systems. To do so, let us focus initially on density, defined as [2],

n(r) ≡
N∑

i=1
δ(r − ri), (3.18)

at a given point r in the fluid, ri denotes the spatial coordinate of the ith particle, and
where N is a total number of system particles. In a uniform system, ⟨n(r)⟩ is position-
independent, and thus, it can be expressed as the ratio between the total number of
particles and the total volume of the system [2],

⟨n(r)⟩ = ⟨N
V

⟩ ≡ n, (3.19)

where V is the total volume of the system and ⟨.⟩ is the ensemble average.

A quantification that provides a more comprehensive representation of the micro-
scopic properties of the system is denoted as ⟨n(r)n(r′)⟩. This quantity is proportional to
the probability of observing a particle at the position r given the presence of a particle
at the position r′. Accordingly, ⟨n(r)n(r′)⟩ serves as a measure of conditional probability,
capturing the statistical correlation between particle occurrences at distinct positions
within the system.

Thus, in order to measure the fluctuations in density from their average value, we
can define the density-density correlation function, also known as the correlation function.
This function serves as a tool to characterize the statistical correlations between density
fluctuations at different positions within the system,

G(r, r′) ≡ ⟨[n(r) − ⟨n(r)⟩][n(r′) − ⟨n(r′)⟩]⟩ (3.20)

Spatial uniformity, also known as spatial homogeneity [2], denotes a characteristic
of a system where its macroscopic properties or physical attributes remain invariant at
every point in space. In other words, the system exhibits a uniform distribution of its
properties across its entire spatial domain, devoid of any variations or spatial gradients.
In a spatially uniform system the macroscopic variables, e.g., density and temperature,
remain constant across positions. This assumption is frequently behind investigations
of phase transitions, critical phenomena, and statistical mechanics in extensive systems
where the range of spatial fluctuations are considered insignificant relative to the overall
size of the system. Given the assumption of spatial uniformity in our system, indicating
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translational invariance, we shall express G(r, r′) → G(r − r′). Moreover, it follows that
n(r) = n(r′), enabling us to rewrite the equation (3.20) in an equivalent form,

G(r − r′) = ⟨n(r)n(r′)⟩ − n2. (3.21)

As the distance |r − r′| tends to infinity, the probability of finding a particle at r′

becomes independent of the events occurring at r, implying that the densities become
uncorrelated. Hence, as the spatial separation between points r and r′ becomes increasingly
large, the statistical correlation between particle occurrences at these positions decreases,
resulting in the loss of correlation between densities. As a result,

⟨n(r)n(r′)⟩ → n2. (3.22)

Finally, it is important to remark that limit q → qc, with q denoting a general
control parameter and qc representing the value at its transition can be considered. In
a similar way to the limit T → Tc, i.e., the analysis is not necessarily restricted to the
temperature. Any thermodynamic quantity can be decomposed into a regular part, which
remains finite, along with a singular part that encapsulates all of its singularities [56].
Hence, for values of q close to qc, such a singular part dominates the properties of the
correlation function [57]. More specifically, for q → qc, the correlation function can be
expressed [58] as equation (3.11).

3.5 Continuous Phase Transition
The description of second-order phase transitions is often elucidated in terms of

symmetry breaking at the transition point. In order to quantitatively characterize the
alterations in these thermodynamic conditions, we can introduce the concept of order
parameter. This physical quantity undergoes remarkable modifications as the transition
occurs. Second-order phase transitions are also referred to as continuous phase transitions.
In this classification, continuous phase transitions are further divided into different univer-
sality classes based on the underlying symmetry of the order parameter and the critical
behavior near the transition point. The concept of universality and critical exponents
plays a central role in this classification. It is characterized by a gradual change in the
characteristics of a system as it passes between different phases. The order parameter of
the system or its derivatives do not change abruptly or discontinue during a continuous
phase transition. Instead, the transition occurs smoothly and the characteristics of the
system change depending on external factors such as pressure or temperature change.

A continuous phase transition is formally described by the non-analytic behavior
of a thermodynamic potential, such as the free energy or internal energy, as a function of
the control parameters, e.g., temperature, pressure. One or more thermodynamic potential



28 Chapter 3. Critical Phenomena Theory

derivatives with respect to the control parameters become singular at the transition point,
signaling the start of different phase. These singularities exhibit power-law behavior, and
the corresponding critical exponents control the divergence of various thermodynamic
parameters as the transition point is approached. Therefore, a continuous phase transition
occurs when a system change smoothly from one phase to another as external factors change,
without an abrupt change in its order parameter or its derivatives. The thermodynamic
potential of this behavior is therefore non-analytical.

The critical values of the system parameters, in which the phase transition occurs,
delineate the limits that demarcate the distinct phases within the space of the control
parameters. Phase transitions are precisely characterized as region in the control parameter
space where the thermodynamic potential exhibits non-analytical behavior [40]. The
important behavior near the transition point is encompassed by a restricted set of universal
exponents and functions, which is a universal property of continuous phase transitions.
These universal characteristics transcend the details of the system under investigation,
embracing a wide range of phenomena from fluid dynamics to magnetism.

Changes in the symmetry of the system are often involved in continuous phase
transitions. A typical example is the continuous phase change that occurs in ferromagnetic
materials from a magnetized phase with a preferred direction to a non-magnetized phase
with no preferred direction. This change in symmetry is associated with the appearance
of new collective behaviors near the critical point [40]. The ferromagnetic-paramagnetic
transition in materials, and the super fluid transition in liquid helium [2, 59] are examples
of continuous phase transitions. Continuous phase transitions can be observed experi-
mentally using a number of methods [2, 37, 60, 61] among them measuring the heat
specificity, susceptibility, and correlation lengths. Additionally, modern techniques such
critical opalescence [2] and neutron scattering [62, 63] offer insight into the behavior of
systems close to critical points.

The selection of an appropriate order parameter is commonly determined by its
usefulness and is normally set to disappear in the symmetric phase, while manifesting
a non-zero value in the non-symmetric phase [40]. Some examples of order parameter
could be the density in solid-liquid or liquid-gas transitions, liquid magnetization which
is important in the field of ferromagnetic systems. It is noteworthy that depending on
the specific system under investigation, the order parameter can be a complex number, a
vector or even a tensor. This inherent adaptability underscores the variety of characteristic
ways in which the order parameter can encapsulate the inherent aspects of the studied
system.

Considering the scaling hypothesis, the interdependence between the exponents
can be simplified, leading to a concise formulation of the scaling law [40, 64], as shown
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below:
2 − α = ν(d+ z), (3.23)

α + 2β + γ = 2, (3.24)

β + γ = βδ, (3.25)

ν(2 − η) = γ. (3.26)

The concept of symmetry breaking is introduced to explain the transition from
disordered to ordered phase. For systems with phase symmetry, it is possible to introduce
a complex scalar field,

ψ = Aeiθ, (3.27)

where A represents an amplitude and θ denotes a phase. Symmetry breaking refers to
a fundamental change that occurs without any external influence. In our case, it is the
process by which the initially indeterminate phase θ of the complex wave function ψ

becomes well-defined in the ordered phase. The disordered phase manifests itself as the
average of ψ assumes the value of zero, due the indetermination of the phase θ. The ordered
phase establishes a well-defined phase value θ, thus generating a remarkable change in the
behavior and macroscopic properties of the system.

The manifestation of spontaneous symmetry breaking gives rise to the selection
of a particular non-vanishing value by the phase parameter. This preference emerges
as a consequence of infinitesimal external perturbations acting on the system. Within
symmetric phase, each discrete microscopic configuration is intrinsically associated with a
comprehensive set of configurations, collectively sharing an identical energy value while
differing only in the phase factor. According to the Boltzmann ergodic hypothesis, which
postulates the equivalence of the time average and the ensemble average, it becomes
evident that, in a steady state, system configurations exhibiting equivalent energy levels
maintain a distribution of equivalent probability and therefore an equitable population. As
a result, this leads to the predominant result of ⟨ψ⟩ = 0, denoting the absence of an order
parameter. Thus, the occurrence of an ordered phase would be theoretically impossible
due to this convergence of principles. The resolution of this apparent paradox is due to
the peculiarities of infinite systems, in the thermodynamic limit.

Boltzmann ergodicity is the idea that a system in equilibrium will explore all of its
accessible microstates over time. In other words, it suggests that if you wait long enough, a
system will visit all its possible settings. However, ergodicity breakdown refers to situations
where this assumption is not valid and the system gets stuck in specific regions of phase
space, delimited by the expression (3.27), preventing it from exploring all possible states
[40].

The breakdown of ergodicity can have important implications, especially in complex
systems and systems with long-range interactions. This can lead to imbalance behavior,
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e.g., consider a system that exhibits hysteresis. As the system goes through cycles of
changing inputs, it may not return to the same states it previously occupied. This output
of revisiting the same states indicates an ergodicity violation, where the system fails to
explore its entire configuration space. The occurrence of hysteresis can be a manifestation
of ergodicity breakdown, as the behavior of the system is influenced by its history and
the path it has taken in its state space [2]. In the field of neuroscience, neural lattices can
exhibit ergodicity breakdown [65], with certain neural firing configurations being more
likely than others due to complex connectivity patterns. Additionally, financial markets
may exhibit a breakdown in ergodicity in the context of the economy. Due to information
asymmetry, market prices may not fully explore all possible price paths, which could result
in volatility clustering or persistent patterns [66]. Therefore, this concept is relevant in the
study of critical phenomena because phase transitions usually involve the emergence of
new macroscopic behaviors as a system moves through different phases.
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4 RPS Model Critical Phenomena Analysis

4.1 RPS Model Simulation

In our implementation of the RPS model, the system is initialized on a two-
dimensional square lattice with dimensions N×N , where N = 256, with periodic boundary
conditions. For the purpose of optimizing computational resources, the chosen lattice
size has proven to be adequate for the analysis of the phenomena of interest. Given that
the study involves phase transitions, it is expected that larger lattices will require more
extensive computational times in order to describe the system in the vicinity of a critical
point, since correlation times diverge in such regions. This lattice is randomly populated
by three distinct species and empty sites. Each site in this lattice is constrained to be
either unoccupied or singly occupied by one of the aforementioned species. As the system
undergoes its temporal evolution, an active cell, a site occupied by one of the three species,
may engage in interactions with one of its four nearest neighbors, here referred to as
passive cells.

The scope of possible interactions for each active cell is confined to movement,
reproduction, or predation. The total generation is given by tN = 2N2, which means
that each site with an active cell was visited at least 2N2 times. In the context of our
computational simulations, during each generation step, denoted by ti, the lattice is
scanned to identify positions occupied by active cells, while empty spaces are disregarded.
This process ensures that all active cells have the opportunity to interact with their nearest
neighbors. An example of the initial configuration is shown in Figure 4.

In the simulations, the control parameter is represented as movement, denoted by
µ, and ranges from approximately 0 to 1. When µ is close to zero, the system exhibits
extremely slow dynamics, resulting in the formation of species clusters. Conversely, as
µ approaches one, the dynamics becomes much faster, and it is in this region that we
observe signs of symmetry breaking in the population ratios, which means that we are
close to the critical point. Although we were not able to obtain the exact value of the
critical point, since such a task could only be exactly performed for an infinite lattice
running for an infinitely long time, we estimate it to be at µc ∼ 1. As we approach
µ ∼ 1, long-range fluctuations become increasingly pronounced, amplifying errors due to
numerical instabilities. It is important to emphasize that our inability to obtain the exact
value of µc does not affect the validity of our analysis. Our study focuses primarily on the
region in the vicinity of the critical point, rather than strictly on the critical point itself.
In the intermediate range between these extremes, complex spiral patterns emerge.
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Figure 4 – In the initial configuration of the system, a uniform distribution is maintained
for all species (1, 2, and 3) and empty spaces, each occupying a quarter of the
total space, 1

4N
2. This distribution remains constant regardless of the control

parameters. In this illustration, blue corresponds to species 1, red to species 2,
yellow to species 3, and white to empty space. Source: Produced by the author.

To investigate the universality of critical behavior of the system, we performed two
sets of simulations with different parametric settings. This approach is intended to confirm
that the behavior of the system exhibits the same critical exponents as it approaches the
critical point, regardless of the specific trajectory in parameter space. In the first set of
simulations, we used a simultaneous variation of both the predation σ and reproduction λ
parameters governed by the relation

σ = λ = µ

2 . (4.1)

In the second one, we keep the ratio so that the predation parameter is twice as high as
the reproduction value

λ = µ

3 , (4.2)

σ = 2λ, (4.3)

for all simulations, such that the relationship

µ+ σ + λ = 1, (4.4)

is consistently true.

As the system evolves temporally for µ < µc, distinct spatial patterns begin to
emerge. This system configuration is categorized as the diversity regime or, the symmetric
phase. In this regime, species coexist and exhibit periodic oscillations in their respective
population abundances.



4.1. RPS Model Simulation 33

(a) µ << µc. (b) µ < µc. (c) µ ∼ µc.

(d) µ << µc. (e) µ < µc. (f) µ ∼ µc.

Figure 5 – Spatial distribution patterns of competing species under varying control
parameters µ in the diversity regime. In these visualizations, red, blue
and yellow color markers indicate the three different species, while unoc-
cupied regions are indicated by white spaces. (a) and (d) Cluster forma-
tion pattern. (b) and (e) Complex spiral formation pattern (c) and (f)
Flat wavefront-like spatial patterning. The simulation parameters for each
scenario are µ = 0.0100, σ = λ = 0.4950 corresponding to panels (a);
µ = 0.7347, σ = λ = 0.1326 for (b); µ = 0.9617, σ = λ = 0.0192 for (c);
µ = 0.0100, σ = 0.6600, λ = 0.3300 for (d); µ = 0.7347, σ = 0.1769, λ = 0.0884
for (e), and µ = 0.9673, σ = 0.0218, λ = 0.0109 for (f). Source: Produced by
the author.

In Figures 5a and 5d it is observed that when the parameter µ is significantly
distant from the critical point, the species within the model are organized into distinct
clusters. As µ approaches the critical point, a change in the spatial structure becomes
evident with the emergence of complex spiral formations, as shown in Figures 5b and 5e.
In particular, as µ approaches the critical point, there is an increase in the length of these
spiral arms, eventually taking on dimensions comparable to the lattice size itself. This
phenomenon is illustrated in Figures 5c and 5f, where the presence of a flat wavefront is
also seen. In the Figure 5, the system exhibits evenly distributed population sizes that
persists until it reaches a threshold of instability. This threshold marks a critical point
where the system transitions to a state where a single species occupying the entire lattice,
i.e., it exhibits a symmetry break from a symmetric phase to a non-symmetric one.
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(a) µ << µc (b) µ < µc (c) µ ∼ µc (d) µ > µc

(e) µ << µc (f) µ < µc (g) µ ∼ µc (h) µ > µc

Figure 6 – Average species abundance for each generation step. Behavior of ⟨A(l)(t)⟩
for each species l, and empty space in the diversity and uniformity regimes
following a symmetry-breaking phase transition. The simulation parameters
for each scenario are µ = 0.0100, σ = λ = 0.4950 corresponding to panels
(a); µ = 0.7347, σ = λ = 0.1326 for (b); µ = 0.9617, σ = λ = 0.0192 for
(c); µ = 0.9872, σ = λ = 0.0064 for (d); µ = 0.0100, σ = 0.6600, λ = 0.3300
for (e); µ = 0.7347, σ = 0.1769, λ = 0.0884 for (f); and µ = 0.9673, σ =
0.0218, λ = 0.0109 for (g), and µ = 0.9872, σ = 0.0085, λ = 0.0043 for (h).
Source: Produced by the author.

In order to monitor temporal evolution and quantify the distribution of species and
empty spaces within the lattice, we can measure the species abundance. This abundance
is defined as the quantity of a species at a specific generation step, relative to the total
number of sites. Therefore, for each generation step ti and for each species, l, where
l = 1, 2, 3, we associate a real scalar field A(l)(r, t), where r denotes the spatial coordinates
of sites in the lattice, and the lattice spacing is ∆r = 1. This field takes on the value 1
if species l is present at the site, or 0 otherwise. Therefore, we can express the average
species abundance l at time t as follows,

⟨A(l)(t)⟩ = 1
N2

∑
r
A(l)(r, t). (4.5)

Here, ⟨.⟩ denotes the ensemble average.

In the regime characterized by species diversity, we observe that the average
abundances of each species tend to oscillate roughly around a value of 3

10N
2, while

the abundance of empty spaces consistently oscillates around 1
10N

2. This pattern holds
regardless of the values of µ, as shown by the data in Figures 6a, 6b, 6e, and 6f. The
figures 6c and 6g illustrate the faster dynamics of interactions between species. In addition,
the figures 6d and 6h show that as µ approaches the critical point, we observe evidence
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of symmetry breaking in the system. In this regime, a single species fills all sites in the
lattice, while the others are extinct.

4.2 Order Parameter Analysis
For a comprehensive understanding of a phase transition, it is essential to define

the order parameter. In the field of condensed matter physics and the study of phase
transitions, the order parameter is instrumental in describing the symmetry-breaking
behavior of a physical system as it transitions from one phase to another. The order
parameter is a quantifiable measure that reflects the degree of order or organization within
the system, providing insight into the degree of symmetry breaking and organization
within the system undergoing a phase transition. By exhibiting distinct values or behaviors
in each phase, the order parameter serves as a distinguishing feature between different
phases.

Essentially, it quantifies the macroscopic properties of the system that change as it
transitions between phases. For example, in the context of a ferromagnetic phase transition,
the order parameter is often represented by magnetization. This quantity represents the
average magnetic moment per unit volume of the material. As the material transitions
from the paramagnetic phase (disordered magnetic moments) to the ferromagnetic phase
(ordered magnetic moments aligned in the same direction), the magnetization undergoes a
significant change, and this change serves as the order parameter. In a liquid-gas critical
point scenario, the order parameter can be related to density fluctuations. Near the critical
point, the density of the substance fluctuates significantly, and the order parameter reflects
the extent of these fluctuations.

Here, the order parameter is defined through a set of fields ψ(n)(r, t), defined by a
discrete Fourier transform of A(l)(r, t) with respect to the index l = 1, 2, 3, i.e.,

ψ(n)(r, t) =
∑

l

A(l)(r, t)ei 2π
3 nl, (4.6)

where n = 0, 1, 2. The result is the three fields,

ψ(0)(r, t) = A(1)(r, t) + A(2)(r, t) + A(3)(r, t), (4.7)

and
ψ(1)(r, t) = A(1)(r, t)e 2π

3 i + A(2)(r, t)e 4π
3 i + A(3)(r, t)e2πi, (4.8)

ψ(2)(r, t) = ψ∗(1)(r, t), (4.9)

and for simplicity we will define ψ(r, t) = ψ(1)(r, t). Analyzing the equations (4.7) and
(4.8), we observe that

ψ(r, t)ψ∗(r, t) = ψ(0)(r, t)ψ(0)(r, t), (4.10)
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due to the definition of A(l)(r, t), where it is equal to 1 if the species l is present in
the position r or 0 otherwise, considering that only one species can occupy the position
r. So, with these definitions, all the information about the system is stored in ψ(r, t).
Consequently, we can express the average value of ψ(r, t) as follows

⟨ψ(t)⟩ = 1
N2

∑
r
ψ(r, t), (4.11)

where, ⟨ψ(t)⟩ is the order parameter of the system.

In the context of critical phenomena, the squared order parameter refers to the
square of the magnitude of the order parameter. The order parameter is a measure of the
degree of symmetry breaking in a system undergoing a phase transition, quantifying the
difference between the ordered and disordered phases of the system. The square of the
order parameter is performed to simplify calculations.

The definitions provided in equation (4.8) allow us to illustrate the behavior of ψ(t)
through the Figure 7, where each species is identified by a specific direction, represented
by its associated phase, e 2π

3 l, in the complex plane. The amplitude varies as the system
evolves. As the parameter µ approaches the critical value µc, the intensity of the ψ(t)
increases significantly, accompanied by the emergence of a preferred direction for the phase
of ψ(t), this behavior is typical of phase transitions. In other words, as µ approaches µc,
there is a gradual symmetry breaking in the system. This implies that one of the species
fully occupies the lattice. Although, it is important to note that this process is inherently
stochastic, and due to the non-hierarchical initial conditions defined in the system setup,
it is not possible to predict which species will become dominant.

The Figure 8 illustrates the temporal dynamics of | ⟨ψ(t)⟩ |2, an expectation value
that reflects the stability of the system. In regions far from the critical point µc, the
plot indicates a stable, flat evolution, the value tends to remain around zero, indicating
a well-defined phase with minimal fluctuations. However, as the system parameter µ
approaches µc, | ⟨ψ(t)⟩ |2 shows pronounced fluctuations and an emerging phase transition
signature.

When the system crosses the critical threshold, there is a clear stability in | ⟨ψ(t)⟩ |2,
which indicates a new equilibrium state in another phase. This behavior confirms the phase
transition. In summary, ⟨ψ(t)⟩ serves as an order parameter that describes the stability
and phase dynamics of the system in three main regimes: stability far from µc, instability
near muc, and a new equilibrium state after the transition.

4.3 Correlation Function Evaluation
The correlation function discussed in Section 3.4, commonly denoted as G(r − r′),

serves as a measure of how the field at one point r in space relates to its value at another
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(a) µ << µc (b) µ < µc (c) µ ∼ µc (d) µ > µc

(e) µ << µc (f) µ < µc (g) µ ∼ µc (h) µ > µc

Figure 7 – Illustration of the variation in amplitude and direction of ψ(t) for each
generation step as µ approaches µc. The simulation parameters for each
scenario are µ = 0.0100, σ = λ = 0.4950 corresponding to panels (a);
µ = 0.7347, σ = λ = 0.1326 for (b); µ = 0.9617, σ = λ = 0.0192 for (c);
µ = 0.9872, σ = λ = 0.0064 for (d); µ = 0.0100, σ = 0.6600, λ = 0.3300 for (e);
µ = 0.7347, σ = 0.1769, λ = 0.0884 for (f); and µ = 0.9673, σ = 0.0218, λ =
0.0109 for (g), and µ = 0.9872, σ = 0.0085, λ = 0.0043 for (h). Source: Pro-
duced by the author.

point r′. In a spatially homogeneous system, characterized by translational invariance,
such as the system under consideration here, the correlation function is typically defined as
an ensemble mean, and turns out to depend only on the relative distance between points,
which simplifies its functional form, i.e.,

G(r − r′) = ⟨ψ∗(r)ψ(r′)⟩ , (4.12)

this function provides information about the spatial structure and extent of fluctuations in
the field ψ(r), where we omitted the time dependency for simplicity. It provides important
details about the scale and range over which these fluctuations are correlated, and thus
serves as a fundamental description of systems undergoing phase transitions or exhibiting
critical phenomena.

In this context, we must analyze the correlation function in order to explore
the fundamental and more general properties of our translationally invariant system.
Translational symmetry of the correlation function in real space gives rise to a diagonal
correlation function in Fourier space, thereby greatly simplifying the computational
requirements for evaluating the correlation function. Performing a spatial Fourier transform
allows the analysis of these symmetries in reciprocal space. In two dimensions, the Discrete
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(a) (b)

Figure 8 – Illustration of the behavior of | ⟨ψ(t)⟩ |2 for each generation step as µ approaches
µc. The parameters used in the simulation are: σ = λ = µ

2 for (a), and
λ = µ

3 ;σ = 2λ for (b). Source: Produced by the author.

Fourier Transform DFT is defined by,

F (k) =
∑

r
f(r) · exp (−ik · r) , (4.13)

where the reciprocal lattice in Fourier space has spacing ∆k = 2π
N

.

The DFT transforms a discrete signal f(r) from the spatial domain into its wave-
number domain representation F (k). In the context of lattice systems with translational
symmetry, the frequency domain is often represented within the first Brillouin zone. The
Inverse Discrete Fourier Transform IDFT is given by,

f(r) = 1
N2

∑
k
F (k) · exp (i r · k) , (4.14)

and it serves to reconstruct the original signal f(r) from its wave-number representation
F (k). Hence, we can now apply the Discrete Fourier transform to the field ψ(r) and
determine its corresponding representation in reciprocal space, denoted as Ψ(k),

Ψ(k) =
∑

r
ψ(r) · exp (−ik · r) , (4.15)

and the Inverse Discrete Fourier Transform,

ψ(r) = 1
N2

∑
k

Ψ(k) · exp (i r · k) . (4.16)

Therefore, after the calculation of Ψ(k), we can calculate the correlation function of our
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system, which is given by ⟨Ψ∗(k)Ψ(k′)⟩, thus

G(k,k′) = ⟨Ψ∗(k)Ψ(k′)⟩ , (4.17)

=
∑

r

∑
r′

exp (−ik · r + ik′ · r′) ⟨ψ∗(r)ψ(r′)⟩ , (4.18)

=
∑

r

∑
r′

exp (−ik · r + ik′ · r′)G(r − r′), (4.19)

substituting r = R + r′,

G(k,k′) =
∑
r′

∑
R

exp (−ik · (R + r′) + ik′ · r′)G(R), (4.20)

=
∑
r′

exp [−i r′ · (k − k′)]
∑
R

exp (−ik · R)G(R), (4.21)

= N2δk,k′
∑
R

exp (−ik · R)G(R), (4.22)

= δk,k′N2g(k), (4.23)

where δk,k′ is the Kronecker delta symbol, and

g(k) =
∑
R

exp (−ik · R)G(R). (4.24)

Hence, through equation (4.24), we can obtain the correlation function of our system.

In the Figure 9, we observe that the greater the distance from µ to µc, the more
delocalized becomes g(k), while as µ approaches µc, the distribution of g(k) becomes
concentrated around k = 0. The width kc of g(k) can be used to define the system’s
correlation length

ξ = 2π
kc

. (4.25)

A highly concentrated g(k) around k = 0 indicates the divergence of ξ and the presence of
long-range correlations which are typical at the onset of a phase-transition.

This characterizes the point at which the symmetry of the system breaks, leading
to a transition from diversity to uniformity. In real space, this transition is typified by one
species filling all sites in the lattice.

The correlation length provides essential information about how physical systems
behave near critical points. It represents the characteristic distance over which fluctuations
in a system are correlated and thus serves as a measure of the behavior of the system. For
example, in the study of phase transitions, when a material undergoes a phase transition,
such as from a solid to a liquid, the correlation length can reveal how far the influence of
fluctuations in the order of the material extends. In the context of magnetic materials,
the correlation length can help to understand how the orientation of the atomic magnetic
moments evolves as the material approaches its Curie temperature. Thus, the correlation
length provides a quantitative measure of the range of correlations between elements in a
system.
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(a) µ << µc (b) µ < µc (c) µ ∼ µc

(d) µ << µc (e) µ < µc (f) µ ∼ µc

Figure 9 – Density Profile of correlation function g(k) in reciprocal space at different
distances to the critical point. The amplitude of g(k) is normalized, and the
color intensity indicates the magnitude of the correlation function. (a) and (d)
As the system is distant from the critical point, the correlation function g(k)
manifests a greater dispersion and evolves along a smoother profile. (b) and
(e) As the critical transition zone is approached, the correlation function g(k)
undergoes a compression in its spatial domain, combined with an intensification
of its correlation magnitude. (c) and (f) Near the critical transition boundary,
the distribution function g(k) localizes more strongly around k = 0, resulting
in a significant increase in the magnitude of the correlation function. The
parameters used in the simulation are: µ = 0.0100, σ = λ = 0.4950 (a),
µ = 0.7347, σ = λ = 0.1326 (b), µ = 0.9617, σ = λ = 0.0192 (c), µ =
0.0100, σ = 0.6600, λ = 0.3300 (d), µ = 0.7347, σ = 0.1769, λ = 0.0884 (e), and
µ = 0.9617, σ = 0.0255, λ = 0.0128 (f). Source: Produced by the author.

In Figure 10, the distribution of the blue species is represented by an emerging
pattern of spirals that progressively expand in size. This expansion continues until the
spirals extend throughout the entire lattice, leading to the complete filling of all sites.
This visual representation captures the dynamic process of spatial pattern evolution and
illustrates how localized structures gradually expand to dominate the entire system.

In the vicinity of a critical point, exemplified by scenarios like the boiling point in
the context of liquids or the Curie temperature for ferromagnetic materials, a notable phe-
nomenon emerges: the correlation length exhibits a tendency to diverge. In practical terms,
this signifies that fluctuations within the system undergo a remarkable transformation,
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(a) µ << µc (b) µ < µc (c) µ ∼ µc (d) µ > µc

(e) µ << µc (f) µ < µc (g) µ ∼ µc (h) µ > µc

Figure 10 – Formation of spatial patterns for different ranges of µ. Formation of clusters,
complex spirals and plane wave fronts, and fulfilling of the lattice in real space.
(a) and (e) Formation of Clustered Patterns: Characterizes the emergent
behavior of localized aggregations. (b) and (f) Emergence of Complex Spirals:
Describes the emergence of complex spiral configurations in the system. (c) and
(g) Wavefront-like Spatial Patterning: Describes a flat, advancing configuration
similar to a wavefront. (d) and (h) Total filling by a single species when
reaching µ critical: Denotes a state where the entire domain is occupied by
a single species when the parameter µ reaches its critical value, µc. The
simulation parameters for each scenario are µ = 0.0100, σ = λ = 0.4950
corresponding to panels (a); µ = 0.7347, σ = λ = 0.1326 for (b); µ =
0.9617, σ = λ = 0.0192 for (c); µ = 0.9872, σ = λ = 0.0064 for (d); µ =
0.0100, σ = 0.6600, λ = 0.3300 for (e); µ = 0.7347, σ = 0.1769, λ = 0.0884
for (f); and µ = 0.9673, σ = 0.0218, λ = 0.0109 for (g), and µ = 0.9872, σ =
0.0085, λ = 0.0043 for (h). Source: Produced by the author.

becoming intrinsically tied to one another over progressively greater spatial extents [2].

The singular behavior of the correlation length ξ as a physical system approaches
a critical point [40], such as a phase transition, means that the correlation length tends to
grow significantly, and approaches infinity. This phenomenon is a principal indicator that
the system is approaching a phase transition, such as the solidification of a liquid, the
magnetization of a ferromagnetic material or the condensation of a gas. The correlation
length divergence is related to other important concepts such as critical exponents and
universality. As ξ diverges, fluctuations in different parts of the system become strongly
correlated, leading to universal critical properties that do not depend on the microscopic
details of the system, and their divergence behavior is related to the critical exponent ν as
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described in equation (3.10), and the distance to the critical point by the relation [40],

ξ ∼ |µ− µc|−ν . (4.26)

The relation (4.26) states that as the control parameter µ approaches the critical value µc,
the correlation length ξ diverges following a power-law behavior. The exponent ν indicates
the rate at which this divergence occurs. Therefore, it tells us how sensitive the correlation
length is to changes in the control parameter near the critical point. This relation is
fundamental to understand the behavior of systems undergoing phase transitions and is a
fundamental concept in the study of critical phenomena.

4.4 Scaling Hypothesis
The scaling hypothesis states that near the critical point, µ → µc, the correlation

length ξ emerges as the only characteristic length scale of a system [55]. This is supported
by our numerical experiments and theory [2, 55] suggests that ξ tends to infinity at the
critical threshold, implying the absence of any characteristic length at the critical point
and, consequently, the scale invariance of the system. Scale invariance implies that if a
portion of the system is magnified to the scale of a large portion of the system, there
is no observable difference between the magnified portion and the original system, thus
indicating self-similarity across scales [55]. This concept is captured quantitatively by the
statement that all thermodynamic functions are homogeneous near the critical point [55].

As discussed in section 3.3, the homogeneity assumption implies restrictions on
the properties of a function. If any function satisfies an equation of the form (3.14) or
equivalently (3.17), then it is classified as a homogeneous equation [2]. By considering that
this is the case for our correlation function near the critical point, it follows that,

G(αar, αbξ) = αG(r, ξ), (4.27)

where αa and αb are scaling factors, with α > 0. Let us consider now the special case

α = ξ− 1
b . (4.28)

By substituting (4.28) in (4.27), we obtain:

G(ξ− a
b r, 1) = ξ− 1

bG(r, ξ). (4.29)

In a similar way to (3.16), where F (y) ≡ f(y, 1), we can rewrite (4.29) as:

G(r, ξ) = ξ
1
b Ḡ(ξ− a

b r). (4.30)

Thus, the correlation function G can be expressed both in the forms of (4.27) and (4.29),
which correspond to the forms of (3.14) and (3.17), respectively. Consequently, G(r, ξ)
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is a homogeneous function, and so is g(k, ξ). We are interested in the asymptotic form
of the correlation function (4.30), where ξ becomes the only relevant length. Thus, the
asymptotic behavior must be given by [58, 67]

G(r, ξ) ∼ r−uḠ(r
ξ

), (4.31)

therefore we must have b = − 1
u
, a = b, in agreement with (3.13).

In this thesis, we consider the approach to the critical point through two different
paths: σ = λ = µ

2 and λ = µ
3 ;σ = 2λ. Our objective is to numerically demonstrate that the

correlation function is indeed homogeneous and that the results for the critical exponents
do not depend on the path approaching the critical point, i.e., the critical behavior is
the same. For each value of the parameter µ for each approaching path we numerically
obtained a plot of the correlation function, shown in Figure 11 of chapter 5, where each
curve turns out to have a different correlation length.

In order to obtain the critical exponent ν, described by the equation (4.26), it
is more convenient to scale the correlation function in equation (4.31) relative to the
correlation length ξ in reciprocal space. Scaling these curves to collapse into a single
functional form allows a precise determination of both the critical exponents and thus
potentially provide information about the associated universality class of the system.
Consequently, it is necessary to consider the simultaneous scaling of both variables in
g(k, ρ) according to (4.27), where ρ = |µ− µc|. This parameter ρ encapsulates the extent
to which the system deviates from its critical point, thereby providing a metric for assessing
its critical behavior.

In the vicinity of the critical point, under the conditions of k ≪ 2π
∆r

, and ξ ≫ ∆r,
the equation (4.24), becomes

g(k, ρ) ≃ 1
(∆r)d

∫
ddr exp(−ik · r)G(r, ξ). (4.32)

In this context, the function G(r, ξ) is given by the equation (4.31), which takes the
form described in the equation (3.17). The correlation length ξ diverges as the system
approaches the critical point, this behavior is captured by

ξ ∼ ρ−ν , (4.33)

then, by substituting the expressions for G(r, ξ) from equation (4.31), and ξ from equation
(4.33) into equation (4.32) for g(k, ρ), we obtain the following result:

g(k, ρ) =
∫

ddr exp(−ik · r)r−uḠ

(
r
ξ

)
, (4.34)

where we assume equality, since any prefactor can be incorporated into the definition of
Ḡ(r). We can make a change of variables by taking r → ξr, which implies ddr → ξdddr
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and r−u = ξ−ur−u, thus we obtain

g(k, ρ) = ξd−u
∫

ddr exp(−iξk · r)r−uḠ(r), (4.35)

= ξd−uḡ (ξk) , (4.36)

= ρ−ν(d−u)ḡ(ρ−νk), (4.37)

we simplified the notation in a manner analogous to that demonstrated in the equation
(3.16), so that the correlation function in reciprocal space is expressed by ḡ(ρ−νk) =
g(ρ−νk, 1).

On the other hand, thermodynamic compressibility, as defined in the equation
(3.6), is commonly associated with the magnitude of fluctuations in particle density [68].
Compressibility essentially quantifies how much the density of a system varies in response to
changes in pressure, reflecting the capacity of the system to accommodate such fluctuations.
While our system does not directly provide this physical quantity, we can establish a
relation to it through the correlation function in reciprocal space, as indicated by the
relation [2],

K =
∫

ddrG(r) (4.38)

= ρ−γ, (4.39)

with ρ as a control parameter, and

K =
∫

ddrG(r) (4.40)

=
∫

ddr exp(−ik · r)G(r) (4.41)

= g(k = 0). (4.42)

Hence, by combining the results from Equations (4.39) and (4.42), we obtain

g(k = 0) = ρ−γ. (4.43)

Consequently, the exponent γ is related to the correlation function at k = 0. Therefore,
combining the result from equation (4.37) and (4.43) at k = 0, we obtain the following
scaling relation:

ρ−ν(d−u) = ρ−γ, (4.44)

thus, we conclude the scaling relation

γ = ν(d− u). (4.45)

By substituting the result from Equation (4.45) into the outcome of Equation (4.37), we
obtain the following expression [58, 67],

g(k, ρ) = ργ ḡ(ρνk). (4.46)
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Hence, we conclude that near the critical point, the correlation function in Fourier
space also takes the form described by equation (3.17), i.e., it is also a homogeneous
function. For our system, the behavior described in equation (4.46) will be demonstrated in
chapter 5, where it is shown that all curves in the vicinity of the critical point can be made
to coincide with a single unified curve by applying proper scaling transformations. We
demonstrate that such scale invariance remains true even if the critical point is approached
through different paths. The successful collapse of these curves allows a direct calculation
of the critical exponents ν and γ. Additionally, it enables us to indirectly determine the
value of η through equation (3.26). Therefore, as the system approaches the critical point,
symbolized by ρ → 0, the correlation length ξ diverges, following the power law ξ ∼ ρ−ν ,
with ν > 0. Such exponents characterize the critical behavior of this system.
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5 Critical Analysis

5.1 Self-Similarity

This chapter presents the results of our study on critical phenomena in the RPS
model. We used numerical experiments and computational simulations to investigate the
complex dynamics and characteristics of the RPS model near the critical point. Our findings
are important for validating theoretical models and enhance our understanding of systems
at the threshold of criticality in models governed by fundamental cyclic interactions [13].

In research on complex biological systems, the use of critical phenomena theory
from statistical physics provides a novel methodological framework [2, 40, 58]. This theory
is relevant for understanding phase transitions and scaling in physical systems and provides
a unique perspective for examining the complex dynamics of ecological interactions [13].
The RPS model, which is simple yet effective in capturing competitive interactions among
species [17, 18, 27], serves as a key example to underscore its relevance. The integration
of critical phenomena principles with the RPS model provides a better comprehension
of critical behaviors in ecosystems. This underlines the potential of the RPS model to
unravel the complexity of ecological dynamics.

The methodologies employed in this research combine theoretical approaches and
computational techniques chosen for their robustness and relevance to our investigation
of critical phenomena and extraction of critical exponents. Our numerical approach has
sufficient accuracy, while enabling simulation of system behavior in the critical regime.

We conducted numerical experiments and built our own data sets after reviewing
the relevant literature [17, 18, 25, 27, 34]. Data collection was performed through compu-
tational simulations using codes designed by the author, guided by the RPS model. These
simulations enabled the estimation of the critical movement, µc, and the critical exponents
γ, ν, and η, as well as the study of system dynamics near the transition region.

Our findings suggest that below the critical movement threshold, the system
develops intricate patterns such as species clustering, indicative of diversity (or biodiversity),
as shown in Figures 10a and 10e. This observation is in agreement with what is reported
in literature [27]. Moreover, we observed a notable increase in the size of the spiral pattern
arms as the system approaches critical movement [27, 34], as shown in Figure 10c and
10g. In particular, the structure of these spirals extends beyond the lattice dimensions,
as shown in Figure 10d and 10h, confirmed by [34]. Consequently, the diverse patterns
dissipate and the system transitions to uniformity. In this phase, the dominance of a
single species occurs, resulting in the extinction of the other two. Fourier Transforms were
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(a) (b)

Figure 11 – Radial profile of the correlation function g(k) in reciprocal space for varying
values of the control parameter µ, following angular averaging. Simulation
parameters are set as: σ = λ = µ

2 for (a), and λ = µ
3 ;σ = 2λ for (b). Source:

Produced by the author.

performed to explore spatial fluctuations and correlations within the system, as shown in
equation (4.24) and illustrated in Figure (9), thus providing a significant contribution to
our analytical framework.

Angular averaging was performed since our function has rotational symmetry
on average. By integrating the function in a disc, the numerical noise is attenuated,
thus leaving a function that depends only on the radial distance in Fourier space, hence
g(k) → g(k), where k = |k|, simplifying the analysis. The correlation functions g(k),
shown in Figure 9, can also be analyzed through the radial profiles shown in Figure 11.
Such plots must be subjected to scaling transformations as discussed in Section 4.4 in
order to reveal the self-similar structure of for such plots.

In the Figure 11, each curve corresponds to a different correlation length. According
to the hypothesis of homogeneity [2, 19] of the correlation function, it should be possible
to find a general homogeneous function capable of describing all curves in the vicinity of
the critical point, thus providing a unified representation of the system behavior in this
region.

Our research aims to validate the previously mentioned hypothesis. By examining
the different correlation lengths for each curve shown in Figure 11 and using the concept
of homogeneity in the correlation function. We aim to identify a general homogeneous
function that describes all curves in the vicinity of the critical point, thus allowing a
unified characterization of the system behavior in this region. This approach is supported
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by the discussion in chapter 4, where we expect the system dynamics to be consistent with
the formulation presented in equation (4.46), thus establishing a direct correspondence
between our empirical analysis and the theory.

The concept of self-similarity and scale invariance is at the core of this phenomenon.
As the system approaches the critical point, the correlation function, as expressed in the
equation (4.46), becomes self-similar, i.e., invariant under scale transformations. This
implies that the structure of the system exhibits repeating patterns across different scales
of observation, revealing the presence of universal features that persist regardless of the
scale of measurement. Figure 11 illustrates this self-similarity property, showing how
radial correlation profiles maintain similar patterns at different distances from the critical
point. This observation underscores the importance of self-similarity in understanding and
characterizing critical phenomena in physical systems.

Near the critical point, the curves exhibit a distinctive behavior as the system
approaches this singular region. This behavior is characterized by the divergence of
the correlation length according to power laws [2, 19, 58]. Such divergence signifies
the emergence of long-range correlations and critical behavior, indicating the imminent
transition of the system to a critical state [40].

Our work draws important parallels between the studied system and condensed
matter systems [2, 19, 40, 58, 60, 69]. Although there may be differences, the RPS model
can exhibit critical signatures similar to those observed in well-described physical systems.
This underlines the potential of the model for the demonstration of phenomena which
are well established in the literature. The critical phenomena theory approach to the
RPS model has not been explored within the current scope of our understanding. This
unconventional approach provides fresh perspective on complex systems, revealing critical
behaviors that have not yet been explored or documented in the existing literature.

5.2 Scaling Behavior
In this section, we expose a method for demonstrating the homogeneity for the two-

point correlation function g(k, ρ) which is depicted in Figure 11 for different distances from
the critical point ρi = |µi − µc| which for small wavelengths can be expressed according to,

g(k, ρ) = ργ ḡ(ρνk). (5.1)

This equation encapsulates the essence of how the correlation function scales with the
parameter ρ, characterized by the critical exponents γ and ν, and a scaling function ḡ.
Indeed, by considering a reference distance ρ0, a correlation function g(k, ρi) associated to
any distance ρi can be made to coincide with g(k, ρ0) through a scale transformation, i.e.,(

ρ0

ρi

)γ

g

((
ρ0

ρi

)ν

k, ρi

)
= g(k, ρ0), (5.2)
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for any ρi according to (5.1).

The objective is to establish a quantitative measure, specifically a mean square
error E, which reflects the deviation between the values of the correlation function at
different g(k, ρi) and a selected reference state g(k, ρ0).

The calculation of E involves determining the squared differences between the
logarithmically transformed, scaled correlation function at different ρi and the logarithm of
the correlation function at the reference state ρ0. This procedure is repeated for n distinct
ρi, and the results are averaged to procure the mean squared error,

E = 1
n

n∑
i=1

∑
k

(
log

[(
ρ0

ρi

)γ

g

((
ρ0

ρi

)ν

k, ρi

)
+ 1

]
− log(g(k, ρ0) + 1)

)2

, (5.3)

where ρ0 and ρi represent the deviations from the critical movement µc for the reference
and the ith curve, respectively, and n denotes the total number of considered curves in the
vicinity of the critical point. The logarithm allows for the comparison between different
scales in the error function. We modify the logarithm arguments by adding a unitary term
to avoid any divergence due to a vanishing logarithm argument. This adjustment ensures
that the logarithm remains well-defined over the entire range of g(k, ρ) values. Eq. (5.3), is
thus chosen by us as a metric for quantifying the degree of disagreement between rescaled
correlation functions across different parameters and the reference correlation function.

To minimize the mean squared error described by the equation (5.3), an exhaustive
exploration of the parameter space is performed, aka brute force, for the parameters µc, γ,
and ν, in order to identify the parameter set that minimizes E.

As opposed to gradient method, the exhaustive search strategy verify every possible
combination within the solution space, assuming that it is possible to fully explore this
space within reasonable time and resource constraints. This thorough evaluation ensures
the identification of the absolute best solution, which is critical for noisy data which is our
case.

Although in the Figure 12 the data appears smooth, a more detailed analysis reveals
the existence of small fluctuations. We can see in the figures that around the minimum
values the error function is almost flat, which means that in these regions the gradients of
the noise become too pronounced, thus making the use of gradient methods inviable.

The limitation of gradient-based methods can be avoided by using Simulated
Annealing [70], a technique that provides a stochastic means of approaching global mini-
mization, potentially solving the limitations of local minima that gradient methods may
encounter. However, in a system with only three variables, the brute force method becomes
viable and represents the most accurate approach. By exhaustively searching through all
possible solutions, the brute force method guarantees the identification of the optimal
solution.
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(a) µc fixed (b) γ fixed (c) ν fixed

(d) µc fixed (e) γ fixed (f) ν fixed

Figure 12 – Contour maps of E for fixed parameters: Each plot showcases variations against
two changing parameters (µc, γ, ν), illustrating the intricate relationship
between parameter adjustments and error minimization. (a) and (d) µc fixed:
E variation with γ and ν, for fixed µc. (b) and (e) γ fixed: Contour map
of E versus µc and ν, with constant γ. (c) and (f) ν fixed: E response to
γ and µc changes, with ν constant. The points marked with an “×” on the
picture represent the minimum error found by the exhaustive search for our
system, detailed in Table 2. The simulation parameters are set as follows:
σ = λ = µ

2 for figures (a), (b), and (c). For figures (d) and (e), the parameters
are adjusted to λ = µ

3 and σ = 2λ. Source: Produced by the author.

The contour plots shown in Figure 12 display mean square error, landscapes for
fixed parameters γ, µc, and ν, respectively. It illustrates the variation of E over the
parameter space. Mapping contours of equal E values help us to isolate promising regions
of the parameter space for deeper analysis, thereby improving the optimization process in
the presence of noise.

By identifying the optimal set of parameters (µc, γ, ν), we achieved the smallest
mean square error as delineated by equation (5.3). Following this minimization, the critical
point µc, along with the critical exponents γ and ν, were obtained and are detailed in
table 2. By applying the scale transformations (5.2) to all curves in Figure 11 according
to the parameters in the table 2, were finally able to demonstrate the self-similarity near
the critical point, as shown in Figure 13. This confirms the homogeneity of the two-point
correlation function. Additionally, by applying the hyperscaling relation described in
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(a) (b)

Figure 13 – (a) and (b) Scaling of the correlation function g(k) in the reciprocal space
for different values of the scaling parameter ρ, after angular averaging. The
parameters used in the simulation are: σ = λ = µ

2 (a), and λ = µ
3 ;σ = 2λ (b).

equation (3.26), the critical exponent η was computed, with values presented in table 2.

The concept of self-similarity, here observed in the context of a homogeneous
correlation functions, is a fundamental aspect of critical phenomena. It denotes the
intrinsic property of a system or pattern to be invariant under scaling transformations.
This property is not purely of mathematical interest, but serves as the foundation for the
derivation of scaling laws, which are essential for predicting the behavior of systems at
different scales.

The importance of self-similarity in critical systems is exemplified by the universal
nature of critical exponents. These exponents, observable in diverse systems such as the
magnetic domains in ferromagnetic to the intricate lattices in disordered media, describe
how physical quantities such as magnetization and correlation lengths diverge as the system
approaches criticality [2, 19]. Theoretical milestones, notably Kadanoff’s scaling hypothesis
[1] and Wilson’s renormalization group theory [4], provide the foundation for understanding
the self-similarity of these phenomena. Their collective findings have revealed the nature of
the underlying symmetries at critical points, thus allowing the formulation of predictions
that are consistent with empirical evidence in both experimental and real-world systems.
In this thesis, it is important to clarify that the self-similarity within this system is not
derived from first principles as for example through renormalization group theory. In thesis,
we are merely reporting the discovery of emergent self-similar structures in the RPS model.
A comprehensive explanation and exploration of this phenomenon seems to be a significant
area of interest that requires further investigation. Consequently, a more fundamental
analysis of origins of this critical behavior is left as a suggestion for future research efforts.



5.3. Critical Exponents 53

Table 2 – Critical Exponents Evaluation.

µc ν γ η

0.9662 0.1374 0.235 0.29
Source: Produced by Author.

5.3 Critical Exponents

As described in Chapter 3, critical exponents are essential for understanding phase
transitions and critical phenomena by revealing how thermodynamic quantities behave as
the critical point is approached. The fundamental relationship between these exponents
and universality classes was described by Fisher [3, 5], establishing a theoretical framework
that has been applied extensively in the field. The exponents, such as α for specific heat
and β for magnetization, have been instrumental in explaining the singular behavior of
systems on the threshold of criticality. Stanley [2], building on Weiss’s [71] initial findings,
provided a thorough analysis of the magnetization in ferromagnetic systems, thereby
improving the understanding of phase transitions.

In addition, exponents such as γ, ν, and δ encapsulate the nuances of suscep-
tibility, correlation length, and order parameter response, respectively, as discussed in
the same chapter. Onsager’s [72] exact solutions for the two-dimensional Ising model
provided a quantitative prediction for γ, and both Kadanoff’s block-spin argument [1] and
Widom’s scaling hypothesis [73] were central to developing the conceptual framework for
understanding ν and δ. These theoretical developments, coupled with the hyperscaling
relations involving system dimensionality [5, 73], are essential to the scaling theory that
characterizes the critical region. In addition, the introduction of the dynamical critical
exponent z by Hohenberg and Halperin [29] further refined the classification of dynamical
systems into universality classes, reflecting the intricate relationship between dynamic and
static critical phenomena.

As a result of our research, we determined the critical point µc and the critical
exponents γ and ν using the error minimization method. Additionally, considering the
hyperscaling relations, we computed the critical exponent η. The proximity of the critical
movement parameter µc to unity, as shown in Table 2, leads us to believe that the
actual value of the critical movement parameter is indeed equal to 1. In addition, we
demonstrated that the critical point is the same whatever the path taken to this critical
limit, as demonstrated by our analyses. The data shown in Table 2 are obtained from the
average values found for (µc, γ, ν) at the variation of the parameters with the following
proportions: σ = λ = µ

2 and λ = µ
3 ;σ = 2λ, ensuring the generality of the path up to

the critical limit. Remarkably, this investigation revealed thermodynamic-like features
in a system with no obvious or traditional parallels. This achievement not only expands
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our understanding of such unique systems, but also demonstrates their receptivity to the
principles of critical phenomena theory.

In fact, our effort to compute critical exponents transcends the simple search for
numerical precision, but rather serves as a test of the applicability of the theory of critical
phenomena to the RPS model. This work confirms the consistency of the model with the
theory, demonstrating its self-similarity near the critical point and the homogeneity of
its correlation functions. Although our results pave the way for a deeper mathematical
understanding of the RPS model in the context of critical phenomena, they also invite
further exploration. It is possible to improve the understanding of the scaling laws found
in the RPS model with the renormalization group theory approach [4]. As far as we know,
this is the first study to investigate the deeper mathematical and physical aspects of the
RPS model with the application of critical phenomena theory.

Overall, this work extends the application of critical phenomena theory to the
dynamics of biological systems, marking an interdisciplinary approach that bridges physics
and biology. The results of the present work confirm that the RPS model is consistent
with Critical Phenomena Theory, and demonstrate its self-similarity and the homogeneity
of the correlation functions near the critical point. By establishing a relation between
critical phenomena and biological dynamics, this work provides the basis for a more general
application of these principles, offering perspectives on the evolutionary behavior of species
and the laws that govern both biological and physical systems. These efforts enhance our
comprehension of the system and suggest new approaches to exploring the connections
between critical phenomena theory and various scientific disciplines.
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6 Summary and Conclusion

Our research aimed to establish the connection between the theory of critical
phenomena [2] and the dynamics of the RPS model [17, 18, 27]. This interdisciplinary
approach is based on a theoretical framework that combines scaling laws, universality,
and phase transitions with cyclic dominance patterns observed in RPS systems [2, 40, 58].
We performed a series of large scale numerical simulations in the vicinity of the RPS
critical point and analyzed the results using critical phenomena theory with the purpose
of elucidating the emergence of critical behavior within these systems [17, 18, 27].

The methodology employed in our investigation consisted in conducting numerical
simulations under different parameter settings in order to analyze the system behavior as
it approached the critical point. For this, we approached the critical point thought two
different paths corresponding to the constraints σ = λ = µ

2 and λ = µ
3 ;σ = 2λ, in order to

test the generality of the critical behavior. We inferred that regardless of the trajectory in
parameter space, the critical behavior was the same, thereby validating the universality of
the observed phenomena [27, 34].

We reproduced the dynamics of competitive interactions and the transition from
biodiversity to uniformity as the system approached the critical region [7, 9, 11]. Our
simulations confirm the balance between diversity and uniformity in competitive systems;
different states of the system were observed, such as the formation of clusters, the emergence
of complex spiral patterns, and the eventual occupation of the entire lattice by a single
species.

The homogeneity of the correlation function of the RPS model, in real as well as
in reciprocal space, was the main conclusion of our analysis. This fundamental property
allowed the application of rescaling techniques that enabled for the first time the determina-
tion of the critical point as well as the critical exponents for the RPS model by minimizing
the mean square error of the rescaled correlation function. This approach enabled the
calculation of the critical value for the movement parameter µc, the critical exponents
ν, γ and, indirectly, the value of η using hyperscaling relations (3.26). Our method has
demonstrated the applicability of the theoretical framework of critical phenomena theory
to the complex dynamics of biological systems, as illustrated by the simplicity of the RPS
model [2, 58].

In conclusion, the application of critical phenomena theory to the RPS model
demonstrated its potential for the study of its complex dynamics. Our exhaustive explo-
ration of the parameter space, aimed at minimizing errors and confirming the accuracy of
the scaling behavior, reinforced the consistency of our results. Our work has extended the
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application of critical phenomena theory to biological dynamics modeled by the RPS model,
offering new perspectives on the behavior of species interactions. As a future perspective
in this field of research, we suggest the application of group renormalization theory [4, 56]
to the RPS model. This approach can clarify the reasons for the homogeneity of the
correlation functions, as well as determine to which universality classes each variation of
the RPS model belongs.
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