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Resumo

O processamento de grandes quantidades de dados para extrair informações úteis é

um dos principais problemas que podem ser abordados com o aprendizado de máquina.

Uma das formas de obter essas informações é agrupando os dados de acordo com as

caracteŕısticas que tenham em comum. Em conjuntos de dados muito complexos, esta

tarefa pode ser realizada encontrando formas mais simples de representar as relações

entre esses dados, diminuindo o número de suas dimensões. Há vários métodos para

descobrir os agrupamentos de dados em um conjunto de forma automática. Por outro

lado, descobrir um meio de minimizar a complexidade desses dados sem perda de conteúdo

relevante é um processo computacionalmente custoso. Uma alternativa para isto é o

tratamento destes conjuntos de dados como distribuições de probabilidades de variáveis

aleatórias e a utilização de conceitos e medidas de teoria de informação para descobrir

suas relações de modo mais eficiente. Este trabalho descreve alguns métodos de redução

de dimensionalidade e medidas de teoria de informação e propõe que ambos sejam unidos

para a obtenção de resultados melhores, criando variantes mais resistentes a perturbações

nos dados ou diferenças no tamanho dos conjuntos. A adaptação dos métodos existentes

para incluir medidas baseadas em teoria da informação é testada em conjuntos de dados

reais, e os resultados verificados formalmente quanto a sua adequação para a obtenção de

métricas mais precisas. Na maior parte dos casos estudados, os resultados demonstraram

um desempenho superior ao dos métodos tradicionais para classificação, enquanto em

outros as alterações realizadas tornaram-nos mais eficazes para conjuntos de dados com

um número reduzido de amostras.

Palavras-chave: Redução de dimensionalidade. Aprendizado de métricas. Teoria da

informação.





Abstract

Processing large amounts of data to extract useful information is one of the main issues

that may be approached using machine learning. One way to obtain this information is

by grouping data according to their common features. In very complex data sets, this

task may be accomplished by finding simpler ways of representing the relations between

this data, lowering their dimensionality. There are many methods to find the data groups

in a set automatically. However, finding a way to minimise the complexity of this data

without losing relevant content is a computationally costly process. An alternative to

that is treating these data sets as probability distributions of random variables and using

concepts and measures from information theory to find their relations more efficiently. This

work describes some dimensionality reduction methods and information theory measures

and proposes that they be joined in order to obtain better results, by creating variants

more resistant to disruption in data or differences in set sizes. The adaptation of existing

methods to include information theory-based measures is tested on real datasets, and

results formally verified as to their adequacy for obtaining more accurate metrics. In most

of the tested cases, results show a better performance compared to traditional classification

methods, while in others the modifications made those more effective for datasets with

fewer samples.

Keywords: Dimensionality Reduction. Metric Learning. Information Theory.
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Chapter 1

Introduction

Many recent machine learning applications require synthesising a classification or

function from a very large data set. Modern datasets consist of a large amount of examples,

each made up of many features. Although having access to a large amount of examples is

beneficial to an algorithm that attempts to generalise something about the data, managing

a larger number of features, some of which may be irrelevant or misleading, is usually

costly for the algorithm. In order to reduce this cost for machine learning algorithms,

many techniques were developed to greatly reduce the number of features in a dataset,

that is, the dimensionality of data (CAYTON, 2005).

A common approach for this sort of problem is based on the observation that high

dimensionality data are usually much simpler than the number of dimensions suggests.

Particularly, a dataset may contain many features which have the same cause and, therefore,

much information in common. It is interesting to have a simplified representation that

aligns with the parameters that generate such data. This notion is formalised in the

concept of manifold : the data are in a low dimension set embedded in a high dimension

space, where the low dimension space reflects the underlying parameters represented in

the high dimension space. The attempt to find this manifold structure in a dataset is

called Manifold Learning (ML) (CAYTON, 2005).

ML is deeply connected to unsupervised metric learning as, aside from learning a more

compact and meaningful representation of the observed datasets, they learn a distance

function which, geometrically, is more adequate for representing a similarity measure

between a pair of objects in the collection. As such, by learning a manifold structure,

generally one consequently acquires a powerful metric (WANG; SUN, 2015).
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1.1 Motivation

Though existing ML and Dimensionality Reduction (DR) methods achieve mostly ac-

ceptable results, their formulation generally depends on metrics that, despite being usually

sufficient, can be heavily influenced by disruptions in data (FRENAY; VERLEYSEN,

2014). Having a method that is more resistant to disruptions such as noise and outliers

can provide better classification than traditional methods and allow for reliable application

on more diverse datasets.

1.2 Research Hypothesis

The present work proposes to investigate the possibility of extending existing DR

methods in order to obtain more powerful metrics. To do so, the construction of the

matrices that define the classification of these methods which, in most cases, use the

Euclidean distance to measure dissimilarity between objects in a dataset, are to be modified

into ones using information theory-based measures. Using these metrics may provide a

more adequate dataset for the application of these methods than the starting ones, since

they are based on the distribution of the probabilities of each datum occurring. Thus,

the algorithms are changed to provide possibly more relevant results, considering the

relationship between each data class and its impact over the full set.

1.3 Objectives

The main way this hypothesis is to be tested is statistical. After an initial reformulation

of existing algorithms to work with more contextually relevant distance measures, rather

than the original, often overly sensitive and inflexible, ones, tests using real datasets aim

to assert their effectiveness in actual use cases. While mathematical representations of

these modified algorithms lead to intuit their higher accuracy in classification compared to

traditional ones, the unpredictable nature of real data, represented as random variables, is

a much more reliable test of their potential benefits. Therefore, all proposed methods have

been extensively tested and their performance compared to the exiting ones on several

datasets to obtain a statistically significant sample that can be confidently treated as

sufficient for an informed evaluation.

1.4 Structure of This Work

This work is organised as follows:

❏ Chapter 1 is this introduction, describing the motivation behind its existence, the

research hypothesis, and how it is expected to be achieved.



1.4. Structure of This Work 27

❏ Chapter 2 briefly explains the concept of a manifold, the information theory measures,

and the methods that are adapted to use them as part of their construction.

❏ Chapter 3 explores these modifications and formulations of the new methods to be

applied to the data.

❏ Chapter 4 demonstrates the usage of these modified methods on data and discusses

the results of such experiments, as well as the tests used to quantify their effectiveness.

❏ Chapter 5 contextualises the experimental findings, surmises the contributions these

methods have provided to this research field, and suggests possible paths for future

research.
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Chapter 2

Theoretical Foundations

In this chapter, the bases for understanding the motivation behind the methods

proposed in this work are presented. From an initial mathematical description of basic

space definitions to the currently available algorithms for DR which are to be modified, in

search of greater efficiency, are described next. To provide a clearer logical progression,

the mathematical derivations leading from the initial ideas to the formulations used in the

modified methods are detailed, as well as the tests employed to verify their effectiveness.

2.1 Riemannian Manifolds

A Riemannian manifold, so named for being defined by Riemann (1851), and often

called simply manifold, is a topological space in which the region around each point

resembles an Euclidean space. If a 𝑛-dimensional space can be divided into patches (or

neighbourhoods) which are locally Euclidean spaces, that is, the distances between points

in each patch of which can be adequately calculated using Euclidean measures, it is a

manifold. This concept can be easily grasped considering the many examples of manifolds

found in simple geometric features in R3, such as surfaces with zero width, representing a

2D object immersed in a 3D space.

For instance, an irregular surface in R2 can represent a plane from R2 the values of

which in 𝑧 are irrelevant to its original domain. These values of 𝑧, however, may affect

the Euclidean distances of this object in R3 in a way that mischaracterises the relations

between its points in the original feature space R2. Which is to say, in representing an

object defined in R2 in a R3 space, one adds unnecessary data that only complicates its

comprehension (noise), while providing no valuable information (CAYTON, 2005).
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Figure 1 – Representation of Euclidean and geodesic distances in the Swiss roll data set.

Source: (TENENBAUM; SILVA; LANGFORD, 2000).

A classical example of one such manifold is known as the “Swiss roll”, as shown in

Figure 1, in which the Euclidean distances between the points in a high dimension space

(Figure 1A) distort their proper representation and topology (Figure 1B) in a low dimension

space (Figure 1C). Although this is a rather simple example, the issue it reveals, called

the “Curse of Dimensionality”, affects other, less easily visualised, high dimension spaces.

This issue is caused by excess data that do not contribute to express relevant information

about the subject in question.

ML, also known as non-linear dimension reduction, is a set of methods to find the

low-dimensional structure of data. DR for large, high-dimensional data is not merely a

way to reduce the data; the new representations and descriptors obtained by ML reveal the

geometric shape of high-dimensional point clouds and allow one to visualise, de-noise, and

interpret them (MEILĂ; ZHANG, 2024). The purpose of ML, then, is to find this lower

dimension topology from a data set in a high dimension space, discovering the underlying

manifold in a set of data points with a larger number of features than necessary to define

it. Therefore, the main goal is to reduce the dimensionality of the input space, that is, to

synthesise a representation of the data that expresses its relevant features while disregarding

or combining those less important to the low dimension manifold (TENENBAUM; SILVA;

LANGFORD, 2000).

2.2 Information Theory-based Measures

The amount of information that can be sent over a communication channel can be

computed from the properties of both message and channel. Likewise, the amount of

information contained in one such message can be known based on the probabilities of

each element that makes it up being present. From this set of measures to quantify

information transmitted originated the Mathematical Theory of Communication, also

known as Information Theory (SHANNON; WEAVER, 1964).
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2.2.1 Shannon Entropy

The main measure in the Mathematical Theory of Communication is entropy, that has

different interpretations depending on the context in which it is calculated. Its general

form is (SHANNON; WEAVER, 1964):

𝐻 = −
𝑛∑︁
𝑖

𝑝𝑖 log 𝑝𝑖, (1)

where 𝑝𝑖 is the probability of the 𝑖-th element in a set of 𝑛 occurring. For the case of a

message generated from a random variable, it can also be written (COVER; THOMAS,

2006):

𝐻 (𝑋) ≡ −
∑︁

𝑥

𝑝 (𝑥) log 𝑝 (𝑥), (2)

where 𝑋 is a discrete random variable shaped like a triple (𝑥, 𝐴𝑋 , 𝑃𝑋), being 𝑥 the index

of vectors 𝐴𝑋 = {𝑎1, 𝑎2, . . . , 𝑎𝑖}, that lists the symbols in which the message is coded,

𝑃𝑋 = {𝑝1, 𝑝1, . . . , 𝑝𝑖}, which gives the probability of each symbol appearing. Since these

values come from statistics and probability, 𝑝 (𝑥 = 𝑎𝑖) ≥ 0 and
∑︀

𝑥∈𝐴𝑋
𝑝 (𝑥 = 𝑎𝑖) = 1.

The simple case of a variable with two possible results, which defines a binary system,

helps to understand entropy as a measure of the uncertainty over a system. Considering a

random variable that can take values 0 and 1, if probability 𝑝0 = 𝑝 is associated to state

0, the probability of state 1 occurring must be 𝑝1 = (1 − 𝑝). Let 𝑥 = {0, 1}, 𝐴𝑋 = {0, 1},

and 𝑃𝑋 = {𝑝, 1 − 𝑝}, equation (2) can be written as:

𝐻 (𝑝0, 𝑝1) = −𝑝0 log2 𝑝0 − 𝑝1 log2 𝑝1, (3)

𝐻 (𝑝0, 𝑝1) = 𝐻 (𝑝) = −𝑝 log2 𝑝 − (1 − 𝑝) log2 (1 − 𝑝) . (4)

It can be noted that entropy assumes maximum value (𝐻 = 1) when 𝑝 = 0.5, that is, when

both states occur with the same probability, which matches the interpretation of entropy

as a measure of uncertainty over the system’s results. For maximum entropy, there is the

same likelihood of knowing both states and, therefore, the uncertainty over which result is

obtained is maximum. Assuming a higher probability for one result, such as 𝑝 = 0.8 for

example, entropy lessens, as does uncertainty over the result, as experimental results tend

to a value. In an extreme case where 𝑝 = 1 (or 𝑝 = 0) entropy is zero, for both information

obtained with the measure as the uncertainty over the result are zero, since the value is

known before measuring, being 0 (or 1) with certainty.

Introducing entropy of a random variable 𝑥 as expected value of self-information:

𝐻 (𝑝) = −
∫︁

𝑝 (𝑥) [log 𝑝 (𝑥)] d𝑥 = −𝐸 [log 𝑝 (𝑥)] , (5)

where 𝑝 (𝑥) is the probability density function (pdf) of 𝑥. Assuming 𝑥 has a normal

distribution 𝑁 (𝜇, 𝜎2), pdf 𝑝 (𝑥) is given by:

𝑝 (𝑥; 𝜇, 𝜎) = 1√
2𝜋𝜎2

exp
(︂

− 1
2𝜎2 (𝑥 − 𝜇)2

)︂
, (6)
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where 𝜇 denotes mean and 𝜎2 variance of 𝑥. Calculating the logarithm of pdf comes:

log 𝑝 (𝑥) = −1
2 log

(︁
2𝜋𝜎2

)︁
− 1

2𝜋𝜎2 (𝑥 − 𝜇)2 . (7)

Replacing equation (7) into (5), leads to:

𝐻 (𝑝) = 1
2 log

(︁
2𝜋𝜎2

)︁
+ 1

2𝜎2 𝐸
[︁
(𝑥 − 𝜇)2

]︁
= 1

2 log
(︁
2𝜋𝜎2

)︁
+ 1

2 = 1
2
(︁
1 + log

(︁
2𝜋𝜎2

)︁)︁
. (8)

Assuming a random vector �⃗� ∈ R𝑑 the pdf of which is a multivariate Gaussian 𝑁 (�⃗�, Σ),
where �⃗� is the vector of means and Σ the covariance matrix:

𝑝 (�⃗�; �⃗�, Σ) = 1
(2𝜋)

𝑑
2 |Σ|

1
2

exp
(︂

−1
2 (�⃗� − �⃗�)𝑇 Σ−1 (�⃗� − �⃗�)

)︂
. (9)

Thus, the logarithm of pdf is given by:

log 𝑝 (�⃗�; �⃗�, Σ) = −𝑑

2 log (2𝜋) − 1
2 log |Σ| − 1

2 (�⃗� − �⃗�)𝑇 Σ−1 (�⃗� − �⃗�) , (10)

which leads to (LEVADA, 2019):

𝐻 (𝑝) = 𝑑

2 log (2𝜋) + 1
2 log |Σ| + 1

2𝐸
[︁
(�⃗� − �⃗�)𝑇 Σ−1 (�⃗� − �⃗�)

]︁
= 𝑑

2 log (2𝜋) + 1
2 log |Σ| + 1

2𝐸
[︁
Tr
(︁
(�⃗� − �⃗�)𝑇 Σ−1 (�⃗� − �⃗�)

)︁]︁
= 𝑑

2 log (2𝜋) + 1
2 log |Σ| + 1

2𝐸
[︁
Tr
(︁
Σ−1 (�⃗� − �⃗�) (�⃗� − �⃗�)𝑇

)︁]︁
= 𝑑

2 log (2𝜋) + 1
2 log |Σ| + 1

2 Tr
(︁
Σ−1𝐸

[︁
(�⃗� − �⃗�) (�⃗� − �⃗�)𝑇

]︁)︁
= 𝑑

2 log (2𝜋) + 1
2 log |Σ| + 1

2 Tr
(︁
Σ−1Σ

)︁
= 𝑑

2 log (2𝜋) + 1
2 log |Σ| + 1

2 Tr (ℐ)

= 1
2 log |Σ| + 𝑑

2 (1 + log (2𝜋)) . (11)

It can be noted that, as in the univariate case, the entropy of a random Gaussian vector

does not depend on the mean.

2.2.1.1 Joint Entropy

The contents of a message can be described by more than one random variable. Thus, it

might be interesting to measure the uncertainty over message elements when it is composed

of more than one variable. To do that, a measure called joint entropy is used, written as

(SHANNON; WEAVER, 1964):

𝐻 (𝑥, 𝑦) = −
∑︁
𝑖,𝑗

𝑝 (𝑖, 𝑗) log 𝑝 (𝑖, 𝑗), (12)

where 𝑖 and 𝑗 are indices of variables 𝑥 and 𝑦, respectively, and 𝑝 (𝑖, 𝑗) the probability of

the combination of elements 𝑖 in 𝑥 and 𝑗 in 𝑦 occurring, and:

𝐻 (𝑥) = −
∑︁
𝑖,𝑗

𝑝 (𝑖, 𝑗) log
∑︁

𝑗

𝑝 (𝑖, 𝑗) , (13)

𝐻 (𝑦) = −
∑︁
𝑖,𝑗

𝑝 (𝑖, 𝑗) log
∑︁

𝑖

𝑝 (𝑖, 𝑗) . (14)
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Moreover:

𝐻 (𝑥, 𝑦) ≤ 𝐻 (𝑥) + 𝐻 (𝑦), (15)

with equality only if the variables are independent, that is, 𝑝 (𝑖, 𝑗) = 𝑝 (𝑖) 𝑝 (𝑗). The

uncertainty of a joint event is lesser or equal than the sum of individual uncertainties.

2.2.1.2 Conditional Entropy

Assuming two random variables 𝑥 and 𝑦, not necessarily independent, uncertainty

over the occurrence of an element of 𝑦, for example, when an element of 𝑥 occurs can be

measured, that is, the probability of occurring that an element of 𝑦 in bound to one in 𝑥.

This measure is named conditional entropy and is calculated as:

𝐻𝑥 (𝑦) = −
∑︁
𝑖,𝑗

𝑝 (𝑖, 𝑗) log 𝑝𝑖 (𝑗). (16)

It quantifies the mean uncertainty over 𝑦 when 𝑥 is known. Substituting 𝑝𝑖 (𝑗), it becomes:

𝐻𝑥 (𝑦) = −
∑︁
𝑖,𝑗

𝑝 (𝑖, 𝑗) log 𝑝 (𝑖, 𝑗) +
∑︁
𝑖,𝑗

𝑝 (𝑖, 𝑗) log
∑︁

𝑖

𝑝 (𝑖, 𝑗) = 𝐻 (𝑥, 𝑦) − 𝐻𝑥 (𝑦) , (17)

or:

𝐻 (𝑥, 𝑦) = 𝐻 (𝑥) + 𝐻𝑥 (𝑦) = 𝐻 (𝑦) + 𝐻𝑦 (𝑥) . (18)

The uncertainty over the set 𝑥, 𝑦 is the uncertainty over 𝑥 plus the uncertainty over 𝑦

when 𝑥 is known (SHANNON; WEAVER, 1964).

2.2.2 Kullback-Leibler Divergence

To measure the proximity between two probability distribution functions of a ran-

dom variable, one uses relative entropy, also known as Kullback-Leibler Divergence

(KL-divergence) (KULLBACK; LEIBLER, 1951), which is a measure of similarity between

two probability distribution functions, 𝑝 (𝑥) and 𝑞 (𝑥), relative to the same indices 𝑥.

Relative entropy is defined by:

𝐻 (𝑝 (𝑥) || 𝑞 (𝑥)) ≡
∑︁

𝑥

𝑝 (𝑥) log 𝑝 (𝑥)
𝑞 (𝑥) = −𝐻 (𝑋) −

∑︁
𝑥

𝑝 (𝑥) log 𝑞 (𝑥), (19)

where, by definition, 𝑞 (𝑥) → 0 ⇒ −𝑝 (𝑥) log 𝑝(𝑥)
𝑞(𝑥) → +∞, if 𝑝 (𝑥) > 0, that is, the event

with probability 𝑝 (𝑥) happens and the event with probability 𝑞 (𝑥) does not.

From relative entropy comes an important theorem used to prove many results in

information theory, named Information Inequality. According to this theorem, relative

entropy is non-negative, that is:

𝐻 (𝑝 (𝑥) || 𝑞 (𝑥)) ≥ 0, (20)
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with equality if, and only if, 𝑝 (𝑥) = 𝑞 (𝑥) , ∀𝑥. Proof comes from inequality log 𝑥 = ln 𝑥
ln 2 ≤

𝑥 − 1, for with 𝑥 = 1
𝑡
:

1
ln 2 (ln 1 − ln 𝑡) ≤ 1

𝑡
− 1 ⇒ ln 𝑡

ln 2 ≥ 1 − 1
𝑡
. (21)

Using Equation (21), the conclusion is (COVER; THOMAS, 2006):

𝐻 (𝑝 (𝑥) || 𝑞 (𝑥)) =
∑︁

𝑥

𝑝 (𝑥) log 𝑝 (𝑥)
𝑞 (𝑥) = 1

ln 2
∑︁

𝑥

𝑝 (𝑥) ln 𝑝 (𝑥)
𝑞 (𝑥) ≥

∑︁
𝑥

𝑝 (𝑥)
(︃

1 − 𝑞 (𝑥)
𝑝 (𝑥)

)︃
=
∑︁

𝑥

(𝑝 (𝑥) − 𝑞 (𝑥)) = (1 − 1) = 0. (22)

This inequality happens if, and only if, 𝑞 (𝑥) = 𝑝 (𝑥) , ∀𝑥.

Similarly, the cross entropy between two pdfs can be defined as:

𝐻 (𝑝, 𝑞) = −
∫︁

𝑝 (𝑥) [log 𝑞 (𝑥)] d𝑥. (23)

KL-divergence, then, is the difference between the cross entropy of 𝑝 (𝑥) and 𝑞 (𝑥) and the

entropy of 𝑝 (𝑥), that is:

𝐷𝐾𝐿 (𝑝, 𝑞) = 𝐻 (𝑝, 𝑞) − 𝐻 (𝑝) = −
∫︁

𝑝 (𝑥) [log 𝑞 (𝑥)] d𝑥 +
∫︁

𝑝 (𝑥) [log 𝑝 (𝑥)] d𝑥

=
∫︁

𝑝 (𝑥) log
(︃

𝑝 (𝑥)
𝑞 (𝑥)

)︃
d𝑥 = 𝐸𝑝

[︃
log

(︃
𝑝 (𝑥)
𝑞 (𝑥)

)︃]︃
. (24)

It must be noted that relative entropy is always non-negative, that is, 𝐷𝐾𝐿 (𝑝, 𝑞) ≥ 0, being

𝐷𝐾𝐿 (𝑝, 𝑞) = 0 ⇐⇒ 𝑝 (𝑥) = 𝑞 (𝑥). First, there is log (𝑎) ≤ 𝑎 − 1 for 𝑎 > 0, therefore:

− 𝐷𝐾𝐿 (𝑝, 𝑞) = −
∫︁

𝑝 (𝑥) log
(︃

𝑝 (𝑥)
𝑞 (𝑥)

)︃
d𝑥 =

∫︁
𝑝 (𝑥) log

(︃
𝑞 (𝑥)
𝑝 (𝑥)

)︃
d𝑥

≤
∫︁

𝑝 (𝑥)
(︃

𝑝 (𝑥)
𝑞 (𝑥) − 1

)︃
d𝑥 =

∫︁
𝑝 (𝑥) d𝑥 −

∫︁
𝑞 (𝑥) d𝑥 = 1 − 1 = 0. (25)

Let 𝑝 (𝑥) and 𝑞 (𝑥) be Gaussian univariate densities, 𝑁 (𝜇1, 𝜎2
1) and 𝑁 (𝜇2, 𝜎2

2), then

the KL-divergence is given by:

𝐷𝐾𝐿 (𝑝, 𝑞) = 𝐸𝑝

[︃
− log 𝜎1 − 1

2𝜎2
1

(𝑥 − 𝜇1)2 + log 𝜎2
1

2𝜎2
2

(𝑥 − 𝜇2)2
]︃

= log
(︂

𝜎2

𝜎1

)︂
+ 1

2𝜎2
2
𝐸𝑝

[︁
(𝑥 − 𝜇2)2

]︁
− 1

2𝜎2
1
𝐸𝑝

[︁
(𝑥 − 𝜇1)2

]︁
. (26)

One can easily notice that:

𝐸𝑝

[︁
(𝑥 − 𝜇1)2

]︁
= 𝜎2

1, (27)

𝐸𝑝

[︁
(𝑥 − 𝜇2)2

]︁
= 𝐸

[︁
𝑥2
]︁

− 2𝐸 [𝑥] 𝜇2 + 𝜇2
2, (28)

𝐸
[︁
𝑥2
]︁

= Var [𝑥] + 𝐸2 [𝑥] = 𝜎2
1 + 𝜇2

1, (29)
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which, finally, leads to:

𝐷𝐾𝐿 (𝑝, 𝑞) = log
(︂

𝜎2

𝜎1

)︂
+ 1

2𝜎2
2

(︁
𝜎2

1 + 𝜇2
1 − 2𝜇1𝜇2 + 𝜇2

2

)︁
− 1

2

= log
(︂

𝜎2

𝜎1

)︂
+ 𝜎2

1 + (𝜇1 − 𝜇2)2

2𝜎2
2

− 1
2 . (30)

Assuming one wishes to compute KL-divergence between two multivariate Gaussian

densities: 𝑁 (�⃗�1, Σ1) and 𝑁 (�⃗�2, Σ2). Considering parameters vector 𝜃 = {�⃗�, Σ}, comes

(DUCHI, 2007):

𝐷𝐾𝐿 (𝑝, 𝑞) = 𝐸
[︁
log 𝑝

(︁
�⃗�; 𝜃

)︁
− log 𝑞

(︁
�⃗�; 𝜃

)︁]︁
= 𝐸

[︂
−1

2 log |Σ1| − 1
2 (�⃗� − �⃗�1)𝑇 Σ−1

1 (�⃗� − �⃗�1) + 1
2 log |Σ2| + 1

2 (�⃗� − �⃗�2)𝑇 Σ−1
2 (�⃗� − �⃗�2)

]︂
= 1

2 log
(︃

|Σ2|
|Σ1|

)︃
− 1

2𝐸𝑝

[︁
(�⃗� − �⃗�1)𝑇 Σ−1

1 (�⃗� − �⃗�1)
]︁

+ 1
2𝐸𝑝

[︁
(�⃗� − �⃗�2)𝑇 Σ−1

2 (�⃗� − �⃗�2)
]︁

= 1
2 log

(︃
|Σ2|
|Σ1|

)︃
− 1

2𝐸𝑝

[︁
Tr
[︁
Σ−1

1 (�⃗� − �⃗�1) (�⃗� − �⃗�1)𝑇
]︁]︁

+ 1
2𝐸𝑝

[︁
Tr
[︁
Σ−1

2 (�⃗� − �⃗�2) (�⃗� − �⃗�2)𝑇
]︁]︁

= 1
2 log

(︃
|Σ2|
|Σ1|

)︃
− 1

2 Tr
[︁
Σ−1

1 Σ1
]︁

+ 1
2𝐸𝑝

[︁
Tr
[︁
Σ−1

2

(︁
�⃗��⃗�𝑇 − 2�⃗��⃗�𝑇

2 + �⃗�2�⃗�
𝑇
2

)︁]︁]︁
= 1

2 log
(︃

|Σ2|
|Σ1|

)︃
− 𝑑

2 + 1
2 Tr

[︁
Σ−1

2 𝐸𝑝

[︁(︁
�⃗��⃗�𝑇 − 2�⃗��⃗�𝑇

2 + �⃗�2�⃗�
𝑇
2

)︁]︁]︁
= 1

2 log
(︃

|Σ2|
|Σ1|

)︃
− 𝑑

2 + 1
2 Tr

[︁
Σ−1

2

(︁
Σ1 + �⃗�1�⃗�

𝑇
1 − 2�⃗�2�⃗�

𝑇
1 + �⃗�2�⃗�

𝑇
2

)︁]︁
= 1

2 log
(︃

|Σ2|
|Σ1|

)︃
− 𝑑

2 + 1
2 Tr

[︁
Σ−1

2 Σ1
]︁

+ 1
2
(︁
�⃗�𝑇

1 Σ−1
2 �⃗�1 − 2�⃗�𝑇

1 Σ−1
2 �⃗�2 + �⃗�𝑇

2 Σ−1
2 �⃗�2

)︁
= 1

2

[︃
log

(︃
|Σ2|
|Σ1|

)︃
− 𝑑 + Tr

[︁
Σ−1

2 Σ1
]︁

+ (�⃗�2 − �⃗�1)𝑇 Σ−1
2 (�⃗�2 − �⃗�1)

]︃
. (31)

It can be noted that, if covariance matrices are equal, KL-divergence is simplified to the

Mahalanobis distance between means.

2.2.3 Bhattacharyya Distance

Another similarity measure between two probability distributions that can be applied

on random variables is Bhattacharyya distance, given by (BHATTACHARYYA, 1943 apud

CROOKS, 2017):

𝐷𝐵 (𝑝, 𝑞) = − log
∑︁

𝑥

√︁
𝑝 (𝑥) 𝑞 (𝑥), (32)

where 𝑝 and 𝑞 are probabilities that element 𝑥 of a random variable occurs. Like

KL-divergence, Bhattacharyya distance also depends solely on pdfs. Therefore, one

can define a relationship between them using these functions as parameters.

Bhattacharyya distance is a similarity measure between pdfs derived in terms of the

Bhattacharyya coefficient, which is a classic statistic measure of overlap between two
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samples. It is a generalisation of the Mahalanobis distance in the sense that, when

distributions have close means but different variances, the Mahalanobis distance tends to

zero, while Bhattacharyya increases as variances grow apart. Bhattacharyya coefficient is

defined by:

𝐶𝐵 (𝑝, 𝑞) =
∫︁ √︁

𝑝 (𝑥) 𝑞 (𝑥) d𝑥 =
∫︁

𝑝 (𝑥)

⎯⎸⎸⎷𝑞 (𝑥)
𝑝 (𝑥) d𝑥 = 𝐸𝑝

⎡⎣
⎯⎸⎸⎷𝑞 (𝑥)

𝑝 (𝑥)

⎤⎦ . (33)

Bhattacharyya distance is the negative of the logarithm of Bhattacharyya coefficient, that

is:

𝐷𝐵 (𝑝, 𝑞) = − log 𝐶𝐵 (𝑝, 𝑞) . (34)

Since log (𝑥) is a convex function, by Jensen’s inequality, comes (LEVADA, 2019):

𝐷𝐵 (𝑝, 𝑞) = − log 𝐸𝑝

⎡⎣
⎯⎸⎸⎷𝑞 (𝑥)

𝑝 (𝑥)

⎤⎦ ≤ 𝐸𝑝

⎡⎣− log

⎯⎸⎸⎷𝑞 (𝑥)
𝑝 (𝑥)

⎤⎦ = 1
2𝐸𝑝

[︃
log

(︃
𝑝 (𝑥)
𝑞 (𝑥)

)︃]︃
, (35)

which leads to:

𝐷𝐾𝐿 (𝑝, 𝑞) ≥ 2𝐷𝐵 (𝑝, 𝑞) . (36)

It can be shown that the Bhattacharyya coefficient for two univariate Gaussian densities

is given by:

𝐶𝐵 (𝑝, 𝑞) =
√︃

2𝜎1𝜎2

𝜎2
1 + 𝜎2

2
exp

(︃
−1

4
(𝜇1 − 𝜇2)2

𝜎2
1 + 𝜎2

2

)︃
. (37)

The Bhattacharyya coefficient for two multivariate Gaussian densities can be calculated as:

𝐶𝐵 (𝑝, 𝑞) = |Σ1|
1
4 |Σ2|

1
4⃒⃒⃒

Σ1+Σ2
2

⃒⃒⃒ 1
2

exp
⎛⎝−1

8 (�⃗�1 − �⃗�2)𝑇

(︃
Σ1 + Σ2

2

)︃−1

(�⃗�1 − �⃗�2)
⎞⎠ . (38)

Finally, the expression of Bhattacharyya distance for two multivariate Gaussian densities

is:

𝐷𝐵 (𝑝, 𝑞) = 1
8 (�⃗�1 − �⃗�2)𝑇 Σ−1 (�⃗�1 − �⃗�2) + 1

2 log
⎛⎝ Σ√︁

|Σ1| |Σ2|

⎞⎠ , (39)

where Σ = Σ1+Σ2
2 .

Expressing Bhattacharyya distance in terms of the so-called Bhattacharyya coefficient

defined by equation (33), which can be used in:

𝐷𝐻 (𝑝, 𝑞) =
√︁

1 − 𝐶𝐵 (𝑝, 𝑞), (40)

which is called Hellinger distance, the relation between which and KL-divergence is given

by:

𝐷𝐾𝐿 (𝑝 || 𝑞) ≥ 2𝐷2
𝐻 (𝑝, 𝑞) = 2

√︁
1 − 𝐶𝐵 (𝑝, 𝑞). (41)
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Therefore (DIFFERENCES. . . , 2014):

𝐷𝐵 (𝑝, 𝑞) = − log 𝐶𝐵 (𝑝, 𝑞) = − log
∫︁ √︁

𝑝 (𝑥) 𝑞 (𝑥) d𝑥
def= − log

∫︁
ℎ (𝑥) d𝑥

= − log
∫︁ ℎ (𝑥)

𝑝 (𝑥)𝑝 (𝑥) d𝑥 ≤
∫︁

− log ℎ (𝑥)
𝑝 (𝑥)𝑝 (𝑥) d𝑥 =

∫︁
−1

2 log ℎ2 (𝑥)
𝑝2 (𝑥)𝑝 (𝑥) d𝑥

=
∫︁

−1
2 log 𝑞 (𝑥)

𝑝 (𝑥)𝑝 (𝑥) d𝑥 = 1
2𝐷𝐾𝐿 (𝑝 || 𝑞) . (42)

Thus, the inequality between these two distances is:

𝐷𝐾𝐿 (𝑝 || 𝑞) ≥ 2𝐷𝐵 (𝑝, 𝑞) . (43)

since − log 𝑥 ≥ 1 − 𝑥 for 0 ≤ 𝑥 ≤ 1:

𝐷𝐾𝐿 (𝑝 || 𝑞) ≥ 2𝐷𝐵 (𝑝, 𝑞) ≥ 2𝐷2
𝐻 (𝑝, 𝑞) . (44)

2.2.4 Hellinger Distance

A possible limitation of Bhattacharyya distance is that it does not obey triangular

inequality. As an alternative, Hellinger distance was proposed to overcome this problem.

Squared Hellinger distance is given by (LEVADA, 2019):

𝐷2
𝐻 (𝑝, 𝑞) = 1

2

∫︁ (︂√︁
𝑝 (𝑥) −

√︁
𝑞 (𝑥)

)︂2
d𝑥

= 1
2

(︂∫︁
𝑝 (𝑥) d𝑥 − 2

∫︁ √︁
𝑝 (𝑥) 𝑞 (𝑥) d𝑥 +

∫︁
𝑞 (𝑥) d𝑥

)︂
= 1

2

(︂
2 − 2

∫︁ √︁
𝑝 (𝑥) 𝑞 (𝑥) d𝑥

)︂
= 1 − 𝐶𝐵 (𝑝, 𝑞) , (45)

which leads to equation (40). It can be noted that, by definition, squared Hellinger

distance is the integral of a non-negative function, which implies 𝐷2
𝐻 (𝑝, 𝑞) ≥ 0. Since the

Bhattacharyya coefficient is the integral of the square root of two densities, it has a lower

bound in zero and a higher in one, that is 𝐷2
𝐻 (𝑝, 𝑞) ≤ 1.

Another important statistic divergence is total variance distance, defined by:

𝐷𝑇 𝑉 (𝑝, 𝑞) = 1
2

∫︁
|𝑝 (𝑥) − 𝑞 (𝑥)| d𝑥. (46)

Since 𝐷2
𝐻 (𝑝, 𝑞) is bound by 𝐷𝑇 𝑉 (𝑝, 𝑞), comes:

𝐷2
𝐻 (𝑝, 𝑞) = 1

2

∫︁ ⃒⃒⃒⃒√︁
𝑝 (𝑥) −

√︁
𝑞 (𝑥)

⃒⃒⃒⃒ ⃒⃒⃒⃒√︁
𝑝 (𝑥) −

√︁
𝑞 (𝑥)

⃒⃒⃒⃒
d𝑥

≤ 1
2

∫︁ ⃒⃒⃒⃒√︁
𝑝 (𝑥) −

√︁
𝑞 (𝑥)

⃒⃒⃒⃒ ⃒⃒⃒⃒√︁
𝑝 (𝑥) +

√︁
𝑞 (𝑥)

⃒⃒⃒⃒
d𝑥 = 1

2

∫︁
|𝑝 (𝑥) − 𝑞 (𝑥)| d𝑥 = 𝐷𝑇 𝑉 (𝑝, 𝑞) .

(47)
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Conversely, 𝐷𝑇 𝑉 (𝑝, 𝑞) is bound by
√

2𝐷𝐻 (𝑝, 𝑞):

𝐷2
𝑇 𝑉 (𝑝, 𝑞) = 1

4

(︂∫︁
|𝑝 (𝑥) − 𝑞 (𝑥)| d𝑥

)︂2

= 1
4

(︂∫︁ (︂√︁
𝑝 (𝑥) −

√︁
𝑞 (𝑥)

)︂(︂√︁
𝑝 (𝑥) +

√︁
𝑞 (𝑥)

)︂
d𝑥
)︂2

≤ 1
4

(︃∫︁ (︂√︁
𝑝 (𝑥) −

√︁
𝑞 (𝑥)

)︂2
d𝑥

)︃(︃∫︁ (︂√︁
𝑝 (𝑥) +

√︁
𝑞 (𝑥)

)︂2
d𝑥

)︃
, (48)

in which the Cauchy-Schwarz inequality is applied to the second row. The number in the

first parentheses is exactly twice that of squared Hellinger distance, that is, 2𝐷2
𝐻 (𝑝, 𝑞),

and the second can be simplified to:∫︁ (︂√︁
𝑝 (𝑥) +

√︁
𝑞 (𝑥)

)︂2
d𝑥 = 2 + 2

∫︁ √︁
𝑝 (𝑥) 𝑞 (𝑥) d𝑥 = 2 + 2𝐶𝐵 (𝑝, 𝑞) . (49)

From previous calculations, it is known that:

2𝐷2
𝐻 (𝑝, 𝑞) = 2 − 2𝐶𝐵 (𝑝, 𝑞) , (50)

which implies:

2𝐶𝐵 (𝑝, 𝑞) = 2 − 2𝐷2
𝐻 (𝑝, 𝑞) , (51)

that leads to:

𝐷2
𝑇 𝑉 (𝑝, 𝑞) ≤ 1

2𝐷2
𝐻 (𝑝, 𝑞)

(︁
2 − 2𝐷2

𝐻 (𝑝, 𝑞)
)︁

≤
√

2𝐷𝐻 (𝑝, 𝑞) . (52)

For the case of two multivariate Gaussian densities, it can be easily noted that equation

(38) can be replaced in equation (45), leading to:

𝐷2
𝐻 (𝑝, 𝑞) = 1 − |Σ1|

1
4 |Σ2|

1
4

|Σ|
1
2

exp
(︂

−1
8 (�⃗�1 − �⃗�2)𝑇 Σ−1 (�⃗�1 − �⃗�2)

)︂
. (53)

2.2.5 Cauchy-Schwarz Divergence

Shannon Entropy has an important part in Information Theory, however there are

other definitions of entropy such as the one given by the so-called Rényi or Quadratic

Entropy:

𝐻𝑅𝛼 (𝑝) = 1
1 − 𝛼

log
(︂∫︁

𝑝𝛼 (𝑥) d𝑥
)︂

. (54)

When 𝛼 = 2, it becomes:

𝐻𝑅 (𝑝) = − log
(︂∫︁

𝑝2 (𝑥) d𝑥
)︂

. (55)

The equivalent to KL-divergence for Quadratic Entropy is Cauchy-Schwarz divergence

(SPUREK; PA LKA, 2016):

𝐷𝐶𝑆 (𝑝, 𝑞) = log
(︂∫︁

𝑝2 (𝑥) d𝑥
)︂

+ log
(︂∫︁

𝑞2 (𝑥) d𝑥
)︂

− 2 log
(︂∫︁

𝑝 (𝑥) 𝑞 (𝑥) d𝑥
)︂

. (56)

Calculations for multivariate Gaussian distributions follow simply:

𝐷𝐶𝑆 (𝑝, 𝑞) = −1
2 log (|4Σ1Σ2|) + log (|Σ1 + Σ2|) + (�⃗�1 − �⃗�2)𝑇 Σ−1 (�⃗�1 − �⃗�2) . (57)
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2.3 Dimensionality Reduction for Metrics Learning

Linear DR methods have been developed for many areas of science, such as statistics,

optimisation, machine learning, and other applied fields for over a century, and became

powerful mathematical tools for analysing noisy and high dimensional data. Part of linear

methods’ success is due to the fact they have simple geometric interpretations and usually

attractive computational properties. Basically, linear methods search for a 𝑇 matrix which

maps the original feature space samples (R𝑚) in a linear space R𝑑, where 𝑑 < 𝑚. There

are many ways to define linear DR methods (CUNNINGHAM; GHAHRAMANI, 2015).

Definition 1. (Linear DR). Given 𝑛 𝑚-dimensional data points, 𝑋 = [�⃗�1, �⃗�2, . . . , �⃗�𝑛] ∈
R𝑚×𝑛, and a dimensionality choice 𝑑 < 𝑚, optimise a goal function 𝑓𝑥 (·) to create a linear

transform 𝑇 ∈ R𝑑×𝑚, and name 𝑌 = 𝑇𝑋 ∈ R𝑑×𝑛 the low dimensional transformed data.

2.4 Kernel Density Estimation

Kernel Density Estimation (KDE) is a non-parametric statistical technique to estimate

the pdf of a random variable (ROSENBLATT, 1956; PARZEN, 1962). Let {𝑥1, 𝑥2, . . . , 𝑥𝑛}
be an independent and identically distributed (iid) sample from a 1D random variable 𝑥

with unknown density function 𝑓 (𝑥). The KDE of 𝑓 (𝑥) is given by:

𝑓ℎ (𝑥) = 1
𝑛

𝑛∑︁
𝑖=1

𝐾ℎ (𝑥 − 𝑥𝑖) = 1
𝑛ℎ

𝑛∑︁
𝑖=1

𝐾
(︂

𝑥 − 𝑥𝑖

ℎ

)︂
, (58)

where 𝐾 (𝑥) is the kernel function and ℎ is the bandwidth, a parameter that controls

the degree of smoothing of the density estimate. Several kernel functions have been

proposed and applied with success in many problems: uniform, triangular, Gaussian, and

Epanechnikov are among the most important ones. In this work, Gaussian kernels are

used, as they can provide a reasonable approximation for many distributions in the studied

datasets while maintaining properties that allow for some simplification of otherwise costly

calculations (HONARKHAH; CAERS, 2010).

2.4.1 Bandwidth estimation methods

The choice of bandwidth ℎ is crucial for the correct estimation of the unknown density

function. Large values of ℎ cause over-smoothing, making 𝑓ℎ (𝑥) unimodal and with large

variance. Small values of ℎ often cause the emergence of noise, causing large variations in

𝑓ℎ (𝑥) for nearby points in the neighbourhood of 𝑥. Often, the optimal bandwidth value is

a trade-off between data fidelity and a smooth constraint. Figure 2 shows an illustration

of different values of ℎ in the KDE of a Gaussian pdf.
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Figure 2 – The effect of bandwidth selection in Kernel Density Estimation of a Gaussian
probability density function.

Source: (CERVATI NETO; LEVADA; HADDAD, 2024).

2.4.1.1 Silverman’s rule

It has been shown that if both the kernel function and the unknown density are

Gaussian, then the optimal bandwidth in terms of minimum integrated mean square

error (IMSE) can be computed by (SILVERMAN, 1986):

ℎ𝑆𝐼𝐿 = 0.9 min
(︂

�̂�,
𝐼𝑄𝑅

1.34

)︂
𝑛− 1

5 , (59)

where �̂� is the standard deviation of the samples, 𝐼𝑄𝑅 = 𝑄3 − 𝑄1 is the interquartile

range and 𝑛 is the sample size.

2.4.1.2 Scott’s rule

Under the Gaussian assumption, the following bandwidth estimation rule is also optimal

in terms of IMSE (SCOTT, 1979):

ℎ𝑆𝐶 = 3.49�̂�𝑛− 1
3 , (60)

where �̂� is the standard deviation of the samples, and 𝑛 is the sample size.

2.5 Principal Component Analysis

Principal Component Analysis (PCA) is a computational method which implements the

Karhunen-Loève transform, also known as Hotelling transform, a classic multivariate that

expands a given vector �⃗� ∈ R𝑚 into the eigenvalues of its covariance matrix (JOLLIFFE,

2002), being the most known method for data compression and feature extraction. PCA

is a second order statistic method, as it depends only on the covariance matrix, and is

optimal for maximising the variance of new compact representation 𝑌 and minimise the

square mean error between it and the original data 𝑋. The purpose of PCA is, from a
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statistic point of view, to reduce redundancy between the random variables which make

up vector �⃗� ∈ R𝑚, measured by the correlations between them. In that regard, PCA first

decorrelates existing features and then reduces dimensionality by finding new ones which

are linear combinations of the originals.

Let 𝑍 =
[︁
𝑇 𝑇 , 𝑆𝑇

]︁
be an orthonormal basis for R𝑚 in which 𝑇 𝑇 = [�⃗�1, �⃗�2, . . . , �⃗�𝑑]

denotes the 𝑑 < 𝑚 components one wishes to keep during the DR process, and 𝑆𝑇 =
[�⃗�𝑑+1, �⃗�𝑑+2, . . . , �⃗�𝑚] the remainder that must be discarded. That is, 𝑇 defines the linear

subspace of PCA and 𝑆 the one eliminated by the reduction process (YOUNG; CALVERT,

1974).

The problem can be summed up as: given an input feature space, find 𝑑 �⃗�𝑗 directions,

for 𝑗 = 1, 2, . . . , 𝑑, such that, when the data are projected, variance is maximised, that is,

directions that maximise data spread. The goal is, therefore, to obtain directions �⃗�𝑗. It is

assumed that, without loss of generality, sample 𝑋 = [�⃗�1, �⃗�2, . . . , �⃗�𝑛] has mean zero, that

is, data points are centred around the origin.

�⃗� ∈ R𝑚 can be written as an expansion of orthonormal basis 𝑍 as:

�⃗� =
𝑚∑︁

𝑗=1

(︁
�⃗�𝑇 �⃗�𝑗

)︁
�⃗�𝑗 =

𝑚∑︁
𝑗=1

�⃗�𝑗�⃗�𝑗, (61)

where �⃗�𝑗 are expansion coefficients. Thus, new vector �⃗� ∈ R𝑑 can be found using transform

�⃗� = 𝑇 �⃗�, as:

�⃗�𝑇 = �⃗�𝑇 𝑇 𝑇 =
𝑚∑︁

𝑗=1
�⃗�𝑗�⃗�

𝑇
𝑗 [�⃗�1, �⃗�2, . . . , �⃗�𝑑] . (62)

Having an orthonormal basis, �⃗�𝑇
𝑖 �⃗�𝑗 = 1 for 𝑖 = 𝑗 and �⃗�𝑇

𝑖 �⃗�𝑗 = 0 for 𝑖 ̸= 𝑗, resulting in:

�⃗�𝑇 = [𝑐1, 𝑐2, . . . , 𝑐𝑑] . (63)

Hence, a linear transform 𝑇 that maximises the variance retained in data is sought, that

is, to maximise functional (HYVARINEN; KARHUNEN; OJA, 2001):

𝐽𝑃 𝐶𝐴
1 (𝑇 ) = 𝐸

[︁
‖�⃗�‖2

]︁
= 𝐸

[︁
�⃗�𝑇 �⃗�

]︁
=

𝑑∑︁
𝑗=1

𝐸
[︁
𝑐2

𝑗

]︁
. (64)

As 𝑐𝑗 is the projection of �⃗� in �⃗�𝑗, leads to:

𝐽𝑃 𝐶𝐴
1 (𝑇 ) =

𝑑∑︁
𝑗=1

𝐸
[︁
�⃗�𝑇

𝑗 �⃗��⃗�𝑇 �⃗�𝑗

]︁
=

𝑑∑︁
𝑗=1

�⃗�𝑇
𝑗 𝐸

[︁
�⃗��⃗�𝑇

]︁
�⃗�𝑗 =

𝑑∑︁
𝑗=1

�⃗�𝑇
𝑗 Σ𝑥�⃗�𝑗, (65)

where Σ𝑥 denotes the covariance matrix in data points 𝑋. Therefore, the constrained

optimisation problem is given by:

arg max
�⃗�𝑗

𝑑∑︁
𝑗=1

�⃗�𝑇
𝑗 Σ𝑥�⃗�𝑗 subject to ‖�⃗�𝑗‖ = 1 for 𝑗 = 1, 2, . . . , 𝑑, (66)



42 Chapter 2. Theoretical Foundations

which is solved using Lagrange multipliers. The Lagrangian function is given by:

𝐽𝑃 𝐶𝐴
1 (𝑇, 𝜆1, 𝜆2, . . . , 𝜆𝑑) =

𝑑∑︁
𝑗=1

�⃗�𝑇
𝑗 Σ𝑥�⃗�𝑗 −

𝑑∑︁
𝑗=1

𝜆𝑗

(︁
�⃗�𝑇

𝑗 �⃗�𝑗 − 1
)︁

. (67)

Differentiating with respect to �⃗�𝑗 and equating to zero, the necessary condition for

optimality is found:

𝜕

𝜕�⃗�𝑗

𝐽𝑃 𝐶𝐴
1 (𝑇, 𝜆1, 𝜆2, . . . , 𝜆𝑑) = Σ𝑥�⃗�𝑗 − 𝜆𝑗�⃗�𝑗 = 0, (68)

which leads to the eigenvectors equation:

Σ𝑥�⃗�𝑗 = 𝜆𝑗�⃗�𝑗. (69)

The optimisation problem can, therefore, be rewritten as:

arg max
�⃗�𝑗

𝑑∑︁
𝑗=1

�⃗�𝑇
𝑗 Σ𝑥�⃗�𝑗 = arg max

�⃗�𝑗

𝑑∑︁
𝑗=1

�⃗�𝑇
𝑗 𝜆𝑗�⃗�𝑗 = arg max

�⃗�𝑗

𝑑∑︁
𝑗=1

𝜆𝑗, (70)

which means that the 𝑘 eigenvectors assigned to the 𝑘 largest eigenvalues must be chosen

to compose the basis of a linear subspace of PCA.

Another optimal property of the PCA subspace is the minimisation of mean square

error between 𝑋 and 𝑌 , being PCA approximation the best representation in terms of

data compression. Let mean square error between random vectors �⃗� ∈ R𝑚 and �⃗� ∈ R𝑑:

𝐽𝑃 𝐶𝐴
2 (𝑇 ) = 𝐸

[︁
‖�⃗� − �⃗�‖2

]︁
= 𝐸

⎡⎢⎣
⃦⃦⃦⃦
⃦⃦�⃗� −

𝑑∑︁
𝑗=1

(︁
�⃗�𝑇

𝑗 �⃗�
)︁

�⃗�𝑗

⃦⃦⃦⃦
⃦⃦

2
⎤⎥⎦ . (71)

By expanding the norm, a second expression for mean square error is:

𝐽𝑃 𝐶𝐴
2 (𝑇 ) = 𝐸

⎡⎢⎣
⎛⎝�⃗� −

𝑑∑︁
𝑗=1

(︁
�⃗�𝑇

𝑗 �⃗�
)︁

�⃗�𝑗

⎞⎠𝑇 ⎛⎝�⃗� −
𝑑∑︁

𝑗=1

(︁
�⃗�𝑇

𝑗 �⃗�
)︁

�⃗�𝑗

⎞⎠
⎤⎥⎦ . (72)

Applying the distributive property:

𝐽𝑃 𝐶𝐴
2 (𝑇 ) = 𝐸

⎡⎢⎣�⃗�𝑇 �⃗� − �⃗�𝑇

⎛⎝ 𝑑∑︁
𝑗=1

(︁
�⃗�𝑇

𝑗 �⃗�
)︁

�⃗�𝑗

⎞⎠−

⎛⎝ 𝑑∑︁
𝑗=1

(︁
�⃗�𝑇

𝑗 �⃗�
)︁

�⃗�𝑗

⎞⎠𝑇

�⃗�

+
⎛⎝ 𝑑∑︁

𝑗=1

(︁
�⃗�𝑇

𝑗 �⃗�
)︁

�⃗�𝑗

⎞⎠⎛⎝ 𝑑∑︁
𝑗=1

(︁
�⃗�𝑇

𝑗 �⃗�
)︁

�⃗�𝑗

⎞⎠𝑇
⎤⎥⎦ . (73)

Using the linearity of expected value and rearranging terms:

𝐽𝑃 𝐶𝐴
2 (𝑇 ) = 𝐸

[︁
‖�⃗�‖2

]︁
− 𝐸

⎡⎣ 𝑑∑︁
𝑗=1

(︁
�⃗�𝑇

𝑗 �⃗�
)︁ (︁

�⃗�𝑇
𝑗 �⃗�
)︁⎤⎦− 𝐸

⎡⎣ 𝑑∑︁
𝑗=1

�⃗�𝑇
𝑗

(︁
�⃗�𝑇 �⃗�𝑗

)︁
�⃗�

⎤⎦
+ 𝐸

⎡⎣⎛⎝ 𝑑∑︁
𝑗=1

�⃗�𝑇
𝑗

(︁
�⃗�𝑇 �⃗�𝑗

)︁⎞⎠⎛⎝ 𝑑∑︁
𝑗=1

(︁
�⃗�𝑇

𝑗 �⃗�
)︁

�⃗�𝑗

⎞⎠⎤⎦ . (74)
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Simplifying inner products:

𝐽𝑃 𝐶𝐴
2 (𝑇 ) = 𝐸

[︁
‖�⃗�‖2

]︁
−

𝑑∑︁
𝑗=1

𝐸
[︂(︁

�⃗�𝑇
𝑗 �⃗�
)︁2
]︂

−
𝑑∑︁

𝑗=1
𝐸
[︂(︁

�⃗�𝑇
𝑗 �⃗�
)︁2
]︂

+
𝑑∑︁

𝑗=1

𝑑∑︁
𝑘=1

𝐸
[︁(︁

�⃗�𝑇
𝑗 �⃗�
)︁ (︁

�⃗�𝑇 �⃗�𝑘

)︁
�⃗�𝑇

𝑗 �⃗�𝑘

]︁
. (75)

Since �⃗�𝑗 for 𝑗 = 1, 2, . . . , 𝑑 defines a set of orthonormal vectors:

𝐽𝑃 𝐶𝐴
2 (𝑇 ) = 𝐸

[︁
‖�⃗�‖2

]︁
−

𝑑∑︁
𝑗=1

𝐸
[︂(︁

�⃗�𝑇
𝑗 �⃗�
)︁2
]︂

−
𝑑∑︁

𝑗=1
𝐸
[︂(︁

�⃗�𝑇
𝑗 �⃗�
)︁2
]︂

+
𝑑∑︁

𝑗=1
𝐸
[︂(︁

�⃗�𝑇
𝑗 �⃗�
)︁2
]︂

= 𝐸
[︁
‖�⃗�‖2

]︁
−

𝑑∑︁
𝑗=1

𝐸
[︂(︁

�⃗�𝑇
𝑗 �⃗�
)︁2
]︂

= 𝐸
[︁
‖�⃗�‖2

]︁
−

𝑑∑︁
𝑗=1

�⃗�𝑇
𝑗 Σ𝑥�⃗�𝑗. (76)

Being that the first term is constant, as it does not depend on �⃗�𝑗 , the optimisation problem

is given by:

arg min
�⃗�𝑗

−
𝑑∑︁

𝑗=1
�⃗�𝑇

𝑗 Σ𝑥�⃗�𝑗 subject to ‖�⃗�𝑗‖ = 1 for 𝑗 = 1, 2, . . . , 𝑑, (77)

which equates to maximising variance.

As previously mentioned, an interesting property of PCA is data decorrelation. This

can be shown by using the spectral decomposition of Σ𝑥 in 𝑄Λ𝑄𝑇 , where 𝑄 is the

matrix of 𝑚 eigenvalues of Σ𝑥 and Λ = diag (𝜆1, 𝜆2, . . . , 𝜆𝑚) is the diagonal matrix of

eigenvalues of Σ𝑥. It is known that, before DR, �⃗� = 𝑍�⃗�, where 𝑍 =
[︁
𝑇 𝑇 , 𝑆𝑇

]︁
and the

covariance matrix of the transformed vector is given by Σ𝑦 = 𝑍𝑇 Σ𝑥𝑍. In PCA, however,

𝑍 is made up of the eigenvalues of covariance matrix, therefore, 𝑍 = 𝑄, which leads to

Σ𝑦 = 𝑍𝑇 𝑄Λ𝑄𝑇 𝑍 = 𝑄𝑇 𝑄Λ𝑄𝑇 𝑄 = Λ, where the orthonormality of eigenvectors implies

𝑄𝑇 𝑄 = ℐ.

2.6 Kernel Principal Component Analysis

PCA only provides linear DR. However, if the data are structured as non-linear

functions of the original features, it does not obtain relevant information. Kernel Principal

Component Analysis (KPCA) allows generalising PCA for non-linear DR. (SCHÖLKOPF;

SMOLA; MÜLLER, 1999).

The Vapnik-Chervonenkis theory shows that, under certain circumstances, mappings

that lead to a higher dimensionality space than the input’s provide more classification

power (VAPNIK, 1993). Nevertheless, mapping to a higher dimensionality space can

significantly increase computational cost. This can be mitigated using the so-called kernel

trick : given an algorithm that can be expressed only in terms of its inner products, it can

be constructed as different linear versions of itself (THEODORIDIS; KOUTROUMBAS,
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2008). The main idea behind KPCA is using this kernel trick to compute the inner product

of a higher dimensionality space without the need to project the data, allowing for the

extraction of up to 𝑛 (number of samples) non-linear principal components foregoing costly

computations (SCHÖLKOPF; SMOLA; MÜLLER, 1998).

Let 𝜑 (�⃗�) be a non-linear mapping of the original 𝑚-dimensional input space for the

𝑀 -dimensional feature space, where 𝑀 > 𝑚. It is assumed, initially, that the mean of

data after mapping to the higher dimensional space is zero:

1
𝑛

𝑛∑︁
𝑖=1

𝜑 (�⃗�𝑖) = 0. (78)

Thus, the covariance matrix of the samples of projected data 𝑀 × 𝑀 is given by:

𝐶 = 1
𝑛

𝑛∑︁
𝑖=1

𝜑 (�⃗�𝑖) 𝜑 (�⃗�𝑖)𝑇 , (79)

and the eigenvalues of 𝐶 are:

𝐶�⃗�𝑘 = 𝜆𝑘�⃗�𝑘 for 𝑘 = 1, 2, . . . , 𝑀. (80)

The following result demonstrates that the eigenvalues of the covariance matrix can be

written in terms of 𝜑 (�⃗�𝑖).

Theorem 1. The eigenvalues of 𝐶 can be expressed as a linear combination of its features,

that is:

�⃗�𝑘 =
𝑛∑︁

𝑖=1
𝛼𝑘𝑖𝜑 (�⃗�𝑖) . (81)

From equations (79) and (80), comes:

𝐶�⃗�𝑘 = 1
𝑛

𝑛∑︁
𝑖=1

𝜑 (�⃗�𝑖) 𝜑 (�⃗�𝑖)𝑇 �⃗�𝑘 = 𝜆�⃗�𝑘, (82)

which implies:

�⃗�𝑘 = 1
𝑛𝜆𝑘

𝑛∑︁
𝑖=1

(︁
𝜑 (�⃗�𝑖)𝑇 �⃗�𝑘

)︁
𝜑 (�⃗�𝑖) =

𝑛∑︁
𝑖=1

𝛼𝑘𝑖𝜑 (�⃗�𝑖) , (83)

where 𝛼𝑘𝑖 = 1
𝑛𝜆𝑘

𝜑 (�⃗�𝑖)𝑇 �⃗�𝑘. Then, finding the eigenvalues equals finding coefficients 𝛼𝑘𝑖.

Replacing (83) in (82), gives:

1
𝑛

𝑛∑︁
𝑖=1

𝜑 (�⃗�𝑖) 𝜑 (�⃗�𝑖)𝑇

⎛⎝ 𝑛∑︁
𝑗=1

𝛼𝑘𝑗𝜑 (�⃗�𝑗)
⎞⎠ = 𝜆𝑘

𝑛∑︁
𝑗=1

𝛼𝑘𝑗𝜑 (�⃗�𝑗) , (84)

which can be rewritten as:

1
𝑛

𝑛∑︁
𝑖=1

𝜑 (�⃗�𝑖)
⎛⎝ 𝑛∑︁

𝑗=1
𝛼𝑘𝑗𝜑 (�⃗�𝑖)𝑇 𝜑 (�⃗�𝑗)

⎞⎠ = 𝜆𝑘

𝑛∑︁
𝑗=1

𝛼𝑘𝑗𝜑 (�⃗�𝑗) . (85)
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Using the kernel trick, that is, 𝐾 (�⃗�𝑖, �⃗�𝑗) = 𝜑 (�⃗�𝑖)𝑇 𝜑 (�⃗�𝑗), yields:

1
𝑛

𝑛∑︁
𝑖=1

𝜑 (�⃗�𝑖)
⎛⎝ 𝑛∑︁

𝑗=1
𝛼𝑘𝑗𝐾 (�⃗�𝑖, �⃗�𝑗)

⎞⎠ = 𝜆𝑘

𝑛∑︁
𝑗=1

𝛼𝑘𝑗𝜑 (�⃗�𝑗) . (86)

Multiplying both sides by 𝜑 (�⃗�𝑙)𝑇 results in:

1
𝑛

𝑛∑︁
𝑖=1

𝜑 (�⃗�𝑙)𝑇 𝜑 (�⃗�𝑖)
⎛⎝ 𝑛∑︁

𝑗=1
𝛼𝑘𝑗𝐾 (�⃗�𝑖, �⃗�𝑗)

⎞⎠ = 𝜆𝑘

𝑛∑︁
𝑗=1

𝛼𝑘𝑗𝜑 (�⃗�𝑙)𝑇 𝜑 (�⃗�𝑗) . (87)

Using the kernel trick again:

1
𝑛

𝑛∑︁
𝑖=1

𝐾 (�⃗�𝑙, �⃗�𝑖)
⎛⎝ 𝑛∑︁

𝑗=1
𝛼𝑘𝑗𝐾 (�⃗�𝑖, �⃗�𝑗)

⎞⎠ = 𝜆𝑘

𝑛∑︁
𝑗=1

𝛼𝑘𝑗𝐾 (�⃗�𝑙, �⃗�𝑗) . (88)

Using the matrix-vector notation, the equation can be written as (SCHÖLKOPF; SMOLA;

MÜLLER, 1999):

𝐾2�⃗�𝑘 = (𝜆𝑘𝑛) 𝐾�⃗�𝑘, (89)

where 𝐾𝑖,𝑗 = 𝐾 (�⃗�𝑖, �⃗�𝑗) e �⃗�𝑘 is the 𝑛-dimensional column vector of 𝛼𝑘𝑖, that is, 𝛼𝑘𝑖 =
[𝛼𝑘1, 𝛼𝑘2, . . . , 𝛼𝑘𝑛]𝑇 . Simplifying it, comes to:

𝐾�⃗�𝑘 = (𝜆𝑘𝑛) �⃗�𝑘, (90)

showing that �⃗�𝑘 are the eigenvectors of the kernel matrix. There is a condition for

normalising eigenvectors �⃗�𝑘. Firstly, it is known that �⃗�𝑇
𝑘 �⃗�𝑘 = 1, which implies:

𝑛∑︁
𝑟=1

𝑛∑︁
𝑠=1

𝛼𝑘𝑟𝛼𝑘𝑠𝜑 (�⃗�𝑟)𝑇 𝜑 (�⃗�𝑠) = 1 =⇒ �⃗�𝑇
𝑘 𝐾�⃗�𝑘 = 1. (91)

Multiplying equation (90) by �⃗�𝑇
𝑘 :

�⃗�𝑇
𝑘 𝐾�⃗�𝑘 = (𝜆𝑘𝑛) �⃗�𝑇

𝑘 �⃗�𝑘 =⇒ (𝜆𝑘𝑛) �⃗�𝑇
𝑘 �⃗�𝑘 = 1 =⇒ �⃗�𝑇

𝑘 �⃗�𝑘 = 1
𝑛𝜆𝑘

. (92)

For a new point �⃗�, its projection over the 𝑘-th principal component is given by:

𝑦𝑘 (�⃗�) = 𝜑 (�⃗�)𝑇 �⃗�𝑘 =
𝑛∑︁

𝑖=1
𝛼𝑘𝑖𝜑 (�⃗�)𝑇 𝜑 (�⃗�𝑖) =

𝑛∑︁
𝑖=1

𝛼𝑘𝑖𝐾 (�⃗�, �⃗�𝑖) . (93)

The advantage of using the kernel trick is not needing to compute 𝜑 (�⃗�𝑖) explicitly for

𝑖 = 1, 2, . . . , 𝑛, such that the kernel matrix can be constructed from training data. Two

widely used non-linear kernels are the polynomial:

𝐾 (�⃗�, �⃗�) =
(︁
�⃗�𝑇 �⃗� + 𝑐

)︁𝑑
, (94)

where 𝑐 ≥ 0 is a constant, and the Gaussian kernel:

𝐾 (�⃗�, �⃗�) = exp
(︃

−‖�⃗� − �⃗�‖2

2𝜎2

)︃
, (95)
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with parameter 𝜎2. If the projected data have zero mean, they need to be centred:

𝜑 (�⃗�𝑖) = 𝜑 (�⃗�𝑖) − 1
𝑛

𝑛∑︁
𝑘=1

𝜑 (�⃗�𝑘) . (96)

Hence, the corresponding kernel matrix is given by:

�̃� (�⃗�𝑖, �⃗�𝑗) = 𝜑 (�⃗�𝑖)𝑇 𝜑 (�⃗�𝑗) =
(︃

𝜑 (�⃗�𝑖) − 1
𝑛

𝑛∑︁
𝑘=1

𝜑 (�⃗�𝑘)
)︃𝑇 (︃

𝜑 (�⃗�𝑗) − 1
𝑛

𝑛∑︁
𝑘=1

𝜑 (�⃗�𝑘)
)︃

= 𝜑 (�⃗�𝑖)𝑇 𝜑 (�⃗�𝑗) − 1
𝑛

𝑛∑︁
𝑘=1

𝜑 (�⃗�𝑖)𝑇 𝜑 (�⃗�𝑘) − 1
𝑛

𝑛∑︁
𝑘=1

𝜑 (�⃗�𝑘)𝑇 𝜑 (�⃗�𝑗) + 1
𝑛2

𝑛∑︁
𝑘=1

𝑛∑︁
𝑙=1

𝜑 (�⃗�𝑘)𝑇 𝜑 (�⃗�𝑙)

= 𝐾 (�⃗�𝑖, �⃗�𝑗) − 1
𝑛

𝑛∑︁
𝑘=1

𝐾 (�⃗�𝑖, �⃗�𝑘) − 1
𝑛

𝑛∑︁
𝑘=1

𝐾 (�⃗�𝑘, �⃗�𝑗) + 1
𝑛2

𝑛∑︁
𝑘=1

𝑛∑︁
𝑙=1

𝐾 (�⃗�𝑘, �⃗�𝑙) . (97)

In matrix form, kernel matrix 𝐾 is replaced by Gram matrix �̃�:

�̃� = 𝐾 − 1𝑛𝐾 − 𝐾1𝑛 + 1𝑛𝐾1𝑛, (98)

where 1𝑛 is the 𝑛 × 𝑛 matrix with all elements equalling 1
𝑛
.

2.7 Isometric Feature Mapping

Isometric Feature Mapping (ISOMAP) was one of the first algorithms for non-linear

DR. The proposed approach combines the main features of the PCA and Multidimensional

Scaling (MDS) algorithms (COX; COX, 2001; BORG; GROENEN, 2005) — computational

efficiency, discovery of global optimality, and guarantee of asymptotic convergence —

with the flexibility to learn a wide class of non-linear manifolds (TENENBAUM; SILVA;

LANGFORD, 2000). The main idea behind the ISOMAP algorithm is to initially construct

a graph connecting the 𝑘 Nearest Neighbours (KNN) in the input space, obtain the shortest

paths between each pair of vertices in this graph, and then, knowing the approximated

geodesic distances between points, find a mapping in the Euclidean subspace R𝑑 which

preserves these distances.

The hypothesis of the ISOMAP algorithm is that the shortest paths in a KNN graph

are good approximations for the actual geodesic distances in the manifold. It has been

shown that, both for graphs based on the 𝜖-neighbourhood rule as for on KNN, under

certain regularity conditions, the following result is valid (BERNSTEIN et al., 2000).

Theorem 2. (Asymptotic Convergence Theorem) Given 𝜆1, 𝜆2, 𝜇 > 0, for a large enough

number of samples �⃗�1, �⃗�2, . . . , �⃗�𝑛 ∈ R𝑚, inequality

(1 − 𝜆1) 𝑑𝑀 (�⃗�𝑖, �⃗�𝑗) ≤ 𝑑𝐺 (�⃗�𝑖, �⃗�𝑗) ≤ (1 − 𝜆2) 𝑑𝑀 (�⃗�𝑖, �⃗�𝑗) (99)

is satisfied with probability (1 − 𝜇), where 𝑑𝐺 (�⃗�𝑖, �⃗�𝑗) is the approximation of the shortest

path in the graph and 𝑑𝑀 (�⃗�𝑖, �⃗�𝑗) the geodesic distance in the manifold.
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The ISOMAP algorithm can be divided into three main steps:

1. From input data �⃗�1, �⃗�2, . . . , �⃗�𝑛 ∈ R𝑚, construct an undirected proximity graph using

either the KNN or 𝜖-neighbourhood rule (LUXBURG, 2007);

2. Compute pairwise distances matrix 𝐷 using 𝑛 runs of the Dijkstra algorithm or one

of Floyd-Warshall (CORMEN et al., 2009);

3. Estimate new coordinates for the points in an Euclidean subspace of R𝑑 preserving

distances using MDS.

The algorithms states that the embedding is constructed by the MDS method. Given its

relevance for ISOMAP, it is described next.

2.7.1 Multidimensional Scaling

The main goal of MDS is to, given a 𝑛 × 𝑛 pairwise distances matrix, retrieve the

coordinates of the 𝑛 �⃗�𝑟 ∈ R𝑑 points for 𝑟 = 1, 2, . . . , 𝑛 in an Euclidean subspace where

𝑑, target dimensionality, is a parameter of the algorithm (COX; COX, 2001; BORG;

GROENEN, 2005). First, it is noted that the pairwise distances matrix is given by

𝐷 = {𝑑2
𝑟𝑠}, for 𝑟, 𝑠 = 1, 2, . . . , 𝑛, where the distance between two arbitrary points �⃗�𝑟 and

�⃗�𝑠 is:

𝑑2
𝑟𝑠 = ‖�⃗�𝑟 − �⃗�𝑠‖2 = (�⃗�𝑟 − �⃗�𝑠)𝑇 (�⃗�𝑟 − �⃗�𝑠) . (100)

Let 𝐵 be the matrix of inner products, that is, 𝐵 = {𝑏𝑟𝑠}, where 𝑏𝑟𝑠 = �⃗�𝑇
𝑟 �⃗�𝑠, for which

MDS needs to find the embedding. Therefore, there are two problems to be solved: matrix

𝐵 needs to be obtained from 𝐷 and the coordinates of points in matrix 𝐵 must be retrieved.

2.7.2 Finding the 𝐵 matrix

In order to solve the first problem, it is assumed that the data has mean zero, that is:

𝑛∑︁
𝑟=1

�⃗�𝑛 = 0, (101)

otherwise there would be infinite different solutions, as the application of any arbitrary

translation in the set would preserve pairwise distance. From equation (100), applying the

distributive property, comes:

𝑑2
𝑟𝑠 = �⃗�𝑇

𝑟 �⃗�𝑟 + �⃗�𝑇
𝑠 �⃗�𝑠 − 2�⃗�𝑇

𝑟 �⃗�𝑠. (102)

From matrix 𝐷, the mean of an arbitrary column 𝑠 can be computed by:

1
𝑛

𝑛∑︁
𝑟=1

𝑑2
𝑟𝑠 = 1

𝑛

𝑛∑︁
𝑟=1

�⃗�𝑇
𝑟 �⃗�𝑟 + 1

𝑛

𝑛∑︁
𝑟=1

�⃗�𝑇
𝑠 �⃗�𝑠 − 2 1

𝑛

𝑛∑︁
𝑟=1

�⃗�𝑇
𝑟 �⃗�𝑠

= 1
𝑛

𝑛∑︁
𝑟=1

�⃗�𝑇
𝑟 �⃗�𝑟 + 𝑛

𝑛
�⃗�𝑇

𝑠 �⃗�𝑠 − 2�⃗�𝑠
1
𝑛

𝑛∑︁
𝑟=1

�⃗�𝑇
𝑟 = 1

𝑛

𝑛∑︁
𝑟=1

�⃗�𝑇
𝑟 �⃗�𝑟 + �⃗�𝑇

𝑠 �⃗�𝑠. (103)
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In a similar manner, the mean for a 𝑟 row can be computed as:

1
𝑛

𝑛∑︁
𝑟=1

𝑑2
𝑟𝑠 = 1

𝑛

𝑛∑︁
𝑟=1

�⃗�𝑇
𝑟 �⃗�𝑟 + 1

𝑛

𝑛∑︁
𝑟=1

�⃗�𝑇
𝑠 �⃗�𝑠 − 2 1

𝑛

𝑛∑︁
𝑟=1

�⃗�𝑇
𝑟 �⃗�𝑠

= 𝑛

𝑛
�⃗�𝑇

𝑟 �⃗�𝑟 + 1
𝑛

𝑛∑︁
𝑟=1

�⃗�𝑇
𝑠 �⃗�𝑠 − 2�⃗�𝑇

𝑟

1
𝑛

𝑛∑︁
𝑟=1

�⃗�𝑠 = �⃗�𝑇
𝑟 �⃗�𝑟 + 1

𝑛

𝑛∑︁
𝑟=1

�⃗�𝑇
𝑠 �⃗�𝑠. (104)

Finally, the mean of all elements of 𝐷 can be calculated as:

1
𝑛2

𝑛∑︁
𝑟=1

𝑛∑︁
𝑠=1

𝑑2
𝑟𝑠 = 1

𝑛2

𝑛∑︁
𝑟=1

𝑛∑︁
𝑠=1

�⃗�𝑇
𝑟 �⃗�𝑟 + 1

𝑛2

𝑛∑︁
𝑟=1

𝑛∑︁
𝑠=1

�⃗�𝑇
𝑠 �⃗�𝑠 − 2 1

𝑛2

𝑛∑︁
𝑟=1

𝑛∑︁
𝑠=1

�⃗�𝑇
𝑟 �⃗�𝑠

= 1
𝑛

𝑛∑︁
𝑟=1

�⃗�𝑇
𝑟 �⃗�𝑟 + 1

𝑛

𝑛∑︁
𝑠=1

�⃗�𝑇
𝑠 �⃗�𝑠 = 2

𝑛

𝑛∑︁
𝑟=1

�⃗�𝑇
𝑟 �⃗�𝑟. (105)

From equation (102), 𝑏𝑟𝑠 can be defined as:

𝑏𝑟𝑠 = �⃗�𝑇
𝑟 �⃗�𝑠 = −1

2
(︁
𝑑2

𝑟𝑠 − �⃗�𝑇
𝑟 �⃗�𝑟 − �⃗�𝑇

𝑠 �⃗�𝑠

)︁
. (106)

However, from equation (103), term −�⃗�𝑇
𝑟 �⃗�𝑟 can be isolated as:

−�⃗�𝑇
𝑟 �⃗�𝑟 = − 1

𝑛

𝑛∑︁
𝑠=1

𝑑2
𝑟𝑠 + 1

𝑛

𝑛∑︁
𝑠=1

�⃗�𝑇
𝑠 �⃗�𝑠, (107)

and from equation (103), term −�⃗�𝑇
𝑠 �⃗�𝑠 can be isolated as:

−�⃗�𝑇
𝑠 �⃗�𝑠 = − 1

𝑛

𝑛∑︁
𝑟=1

𝑑2
𝑟𝑠 + 1

𝑛

𝑛∑︁
𝑟=1

�⃗�𝑇
𝑟 �⃗�𝑟. (108)

Adding equations (107) and (108) yields:

−�⃗�𝑇
𝑟 �⃗�𝑟 − �⃗�𝑇

𝑠 �⃗�𝑠 = − 1
𝑛

𝑛∑︁
𝑟=1

𝑑2
𝑟𝑠 − 1

𝑛

𝑛∑︁
𝑠=1

𝑑2
𝑟𝑠 + 2

𝑛

𝑛∑︁
𝑟=1

�⃗�𝑇
𝑟 �⃗�𝑟. (109)

From equation (105), it is known that:

2
𝑛

𝑛∑︁
𝑟=1

�⃗�𝑇
𝑟 �⃗�𝑟 = 1

𝑛2

𝑛∑︁
𝑟=1

𝑛∑︁
𝑠=1

𝑑2
𝑟𝑠. (110)

Finally, an arbitrary 𝑏𝑟𝑠 can be expressed as a function of the elements of the pairwise

distances matrix 𝐷 as:

𝑏𝑟𝑠 = −1
2

(︃
𝑑2

𝑟𝑠 − 1
𝑛

𝑛∑︁
𝑟=1

𝑑2
𝑟𝑠 − 1

𝑛

𝑛∑︁
𝑠=1

𝑑2
𝑟𝑠 + 1

𝑛2

𝑛∑︁
𝑟=1

𝑛∑︁
𝑠=1

𝑑2
𝑟𝑠

)︃
. (111)

Taking 𝑎𝑟𝑠 = −1
2𝑑2

𝑟𝑠, it can be written:

𝑎𝑟. = 1
𝑛

𝑛∑︁
𝑠=1

𝑎𝑟𝑠, (112)

𝑎.𝑠 = 1
𝑛

𝑛∑︁
𝑟=1

𝑎𝑟𝑠, (113)

𝑎.. = 1
𝑛

𝑛∑︁
𝑟=1

𝑛∑︁
𝑠=1

𝑎𝑟𝑠. (114)
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Thus, 𝑏𝑟𝑠 can be expressed as:

𝑏𝑟𝑠 = 𝑎𝑟𝑠 − 𝑎𝑟. − 𝑎.𝑠 + 𝑎... (115)

Defining matrix 𝐴 = {𝑎𝑟𝑠}, for 𝑟, 𝑠 = 1, 2, . . . , 𝑛 as 𝐴 = 1
2𝐷 and matrix 𝐻 as:

𝐻 = ℐ − 1
𝑛

1⃗⃗1𝑇 , (116)

where 1⃗𝑇 = [1, 1, . . . , 1]𝑛, so that it becomes:

1⃗⃗1𝑇 = 𝒰 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 . . . 1
1 1 . . . 1
...

...
. . .

...

1 1 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎦
𝑛×𝑛

, (117)

it is possible to compute all values of matrix 𝐵 simultaneously using 𝐵 = 𝐻𝐴𝐻. It must

be noted that:

𝐵 = 𝐻𝐴𝐻 =
(︂

ℐ − 1
𝑛

𝒰
)︂

𝐴
(︂

ℐ − 1
𝑛

𝒰
)︂

− 𝐴 − 𝐴
𝒰
𝑛

− 𝒰
𝑛

𝐴 + 1
𝑛2 𝒰𝐴𝒰 , (118)

which is the matrix form of equation (115).

2.7.3 Retrieving coordinates of the points

At this point, the problem becomes finding the embedding, that is, the coordinates of

points in R𝑑. Initially, it is noted that the matrix of inner products 𝐵 can be written as:

𝐵𝑛×𝑛 = 𝑋𝑇
𝑛×𝑚𝑋𝑚×𝑛, (119)

where 𝑚 and 𝑛 denote, respectively, the number of samples and dimensionality, and

𝑋𝑛×𝑚 = [�⃗�1, �⃗�2, . . . , �⃗�𝑛] is the data matrix. In summary, it has been shown that matrix 𝐵

has three important properties: it is symmetric, has rank 𝑚, and is positive semidefinite

(COX; COX, 2001). Which means, matrix 𝐵 has 𝑚 non-negative eigenvalues and 𝑛 − 𝑚

null eigenvalues. Therefore, by the spectral decomposition of 𝐵, comes:

𝐵 = 𝑉 Λ𝑉 𝑇 , (120)

where Λ = diag (𝜆1, 𝜆2, . . . , 𝜆𝑛) is the diagonal matrix of eigenvalues of 𝐵 and 𝑉 is the

matrix the columns of which are the eigenvalues of 𝐵:

𝑉 =

⎡⎢⎢⎢⎣
| | . . . |

�⃗�1 �⃗�2 . . . �⃗�𝑛

| | . . . |

⎤⎥⎥⎥⎦
𝑛×𝑛

. (121)
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Without loss of generality, it can be assumed that 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑛. Due to the 𝑛 − 𝑚

null eigenvalues, matrix 𝐵 can be expressed as:

𝐵 = 𝑉 Λ̃𝑉 𝑇 , (122)

where Λ̃ = diag (𝜆1, 𝜆2, . . . , 𝜆𝑚) is the diagonal matrix of non-null eigenvalues of 𝐵 and

𝑉 is the 𝑛 × 𝑚 matrix the columns of which are the 𝑚 eigenvectors associated to the 𝑚

non-null eigenvalues:

𝑉 =

⎡⎢⎢⎢⎣
| | . . . |

�⃗�1 �⃗�2 . . . �⃗�𝑚

| | . . . |

⎤⎥⎥⎥⎦
𝑛×𝑚

. (123)

Hence, the following identity relates to matrix 𝐵:

𝐵 = 𝑋𝑇 𝑋 = 𝑉 Λ̃𝑉 𝑇 = 𝑉 Λ̃ 1
2 Λ̃ 1

2 𝑉 𝑇 , (124)

which finally leads to

𝑋 = Λ̃ 1
2 𝑉 𝑇 , (125)

where Λ̃ 1
2 = diag

(︁√
𝜆1,

√
𝜆2, . . . ,

√
𝜆𝑚

)︁
.

In practical terms, the intrinsic dimensionality, 𝑑, is chosen, an algorithm parameter

that is lesser than the dimensionality of input data 𝑚, so that each column of 𝑋 represents

a sample in the manifold. In general, the 𝑑 < 𝑚 eigenvalues associated to the 𝑑 largest

eigenvectors are chosen to form matrix 𝑉 , thus, the algorithm returns a 𝑑 × 𝑛 data matrix

that is the most compact representation of input data.

2.7.4 Relating Isometric Feature Mapping and Multidimensional Scaling

Defining �⃗� as:

�⃗� = 1√
𝑛

[1, 1, . . . , 1]𝑇 , (126)

it can be noted that 1𝑛 = �⃗��⃗�𝑇 . Thus, replacing in equation (98), comes:

�̃� = 𝐾 − �⃗��⃗�𝑇 𝐾 − 𝐾�⃗��⃗�𝑇 + �⃗��⃗�𝑇 𝐾�⃗��⃗�𝑇 =
[︁(︁

ℐ − �⃗��⃗�𝑇
)︁

𝐾
]︁

−
[︁(︁

ℐ − �⃗��⃗�𝑇
)︁

𝐾
]︁

�⃗��⃗�𝑇

=
(︁
ℐ − �⃗��⃗�𝑇

)︁
𝐾
(︁
ℐ − �⃗��⃗�𝑇

)︁
. (127)

In ISOMAP, the first step consists in obtaining inner products matrix 𝐵 from the geodesic

distances matrix 𝐷, which equals:

𝐵 = −1
2𝐻𝐷𝐻, (128)

where 𝐻 =
(︁
ℐ − �⃗��⃗�𝑇

)︁
, which leads to (HAM et al., 2004):

𝐾iso = −1
2
(︁
ℐ − �⃗��⃗�𝑇

)︁
𝐷
(︁
ℐ − �⃗��⃗�𝑇

)︁
. (129)

Therefore, KPCA becomes ISOMAP when kernel matrix 𝐾 equals minus one-half of the

geodesic distances matrix.
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2.7.5 Enhanced Supervised Isometric Feature Mapping

Supervised DR techniques in visualisation and classification problems have been subject

of many recent studies. In some ISOMAP-based algorithms, objects are represented by

features arrays in an Euclidean space. Nonetheless, this representation requires selecting

features, which is usually hard and domain dependent. Since the distance function does

not need to be Euclidean, an alternative would be describing patterns using dissimilarity

measures (RIBEIRO; VIEIRA; NEVES, 2008).

From the supposition that different data features can be captured using different

dissimilarity measures, the Enhanced Supervised Isometric Feature Mapping (ES-ISOMAP)

algorithm uses a dissimilarity matrix to uncover the manifold embedded in the data. The

dissimilarity matrix 𝐷 (𝑥𝑖, 𝑥𝑗) between two points 𝑥𝑖 and 𝑥𝑗 in the sample is defined by

(RIBEIRO; VIEIRA; NEVES, 2008):

𝐷 (𝑥𝑖, 𝑥𝑗) =

⎧⎪⎨⎪⎩
√︁

𝑎−1
𝑎

⇐= 𝑐𝑖 = 𝑐𝑗

√
𝑎 − 𝑑0 ⇐= 𝑐𝑖 ̸= 𝑐𝑗

, (130)

where 𝑎 = exp
(︂

𝑑2
𝑖𝑗

𝜎

)︂
with 𝑑𝑖𝑗 defined as a distance measure (Euclidean, Co-sin, Correlation,

Spearman, Kendal-𝜏), 𝜎 is a smoothing parameter (defined according to the “density” of

data), 𝑑0 is a constant (0 ≤ 𝑑0 ≤ 1) and 𝑐𝑖, 𝑐𝑗 are the class labels. If the dissimilarity

between two samples is less than 1, the points are in the same class, and in different classes

otherwise. Interclass dissimilarity is larger than intraclass, granting the method great

discriminative ability.

2.8 Locally Linear Embedding

The ISOMAP algorithm is a global method, considering that, in order to find the

coordinates of an input vector �⃗�𝑖 ∈ R𝑚 in the manifold, it uses informations from all

samples in matrix 𝐵. Comparatively, Locally Linear Embedding (LLE) is a local method,

that is, the new coordinates of any �⃗�𝑖 ∈ R𝑚 depend only on this point’s neighbourhood.

The main hypothesis behind LLE is that, for a sufficiently high sample density, it is

expected that a vector �⃗�𝑖 and its neighbours define a linear patch, that is, they belong to

a single Euclidean subspace (ROWEIS; SAUL, 2000). Hence, the local geometry can be

classified through linear coefficients:

^⃗𝑥𝑖 ≈
∑︁

𝑗

𝑤𝑖𝑗�⃗�𝑗 for �⃗�𝑗 ∈ 𝑁 (�⃗�𝑖) , (131)

that is, a vector can be reconstructed as a linear combination of its neighbours.

Basically, the LLE algorithm requires a 𝑛 × 𝑚 data matrix 𝑋 as input, with rows �⃗�𝑖, a

number of desired dimensions 𝑑 < 𝑚, and an integer 𝑘 > 𝑑+1 to find local neighbourhoods.
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The output is a 𝑛 × 𝑑 matrix 𝑌 , with rows �⃗�𝑖. The LLE algorithm can be divided in three

main steps (ROWEIS; SAUL, 2000; SAUL; ROWEIS, 2003):

1. Starting from each �⃗�𝑖 ∈ R𝑚, find its KNN;

2. Compute the weights matrix 𝑊 that minimises reconstruction error for each data

point �⃗�𝑖 ∈ R𝑚:

𝐸 (𝑊 ) =
𝑛∑︁

𝑖=1

⃦⃦⃦⃦
⃦⃦�⃗�1 −

∑︁
𝑗

𝑤𝑖𝑗�⃗�𝑗

⃦⃦⃦⃦
⃦⃦

2

, (132)

where 𝑤𝑖𝑗 = 0, unless �⃗�𝑗 is one of �⃗�𝑖’s KNN and, for each 𝑖,
∑︀

𝑗 𝑤𝑖𝑗 = 1;

3. Find the 𝑌 coordinates that minimise reconstruction error using optimal weights:

Φ (𝑌 ) =
𝑛∑︁

𝑖=1

⃦⃦⃦⃦
⃦⃦�⃗�𝑖 −

∑︁
𝑗

𝑤𝑖𝑗 �⃗�𝑗

⃦⃦⃦⃦
⃦⃦

2

(133)

subject to constraints:
∑︀

𝑖 𝑌𝑖𝑗 = 0 and 𝑌 𝑇 𝑌 = ℐ.

How to obtain the solutions for the steps in LLE is described next.

2.8.1 Finding locally linear neighbourhoods

The basic version of LLE uses a fixed number of neighbours for each sample and adopts

simple Euclidean distance as a metric to classify the nearest ones. However, different

criteria can be considered in choosing the nearest neighbours, such as selecting samples

within a fixed radius sphere. The number of neighbours can also be different for each

neighbourhood. As alternative rules, one can either:

❏ Select all samples within a radius 𝑅𝑖, up to a maximum of 𝑁𝑖;

❏ Choose a number of neighbours 𝑁𝑖, with none outside of a maximum radius 𝑅𝑖

(SAUL; ROWEIS, 2003).

A relevant aspect of LLE is that the algorithm can retrieve embeddings in which

the intrinsic dimensionality 𝑑 is smaller than the number of neighbours 𝑘. Furthermore,

assuming a linear patch forces an upper bound to 𝑘. For instance, in very curvy data

sets, a large 𝑘 is not reasonable, as it violates this condition. In the uncommon case

that 𝑘 > 𝑚, it has been shown that each sample can be perfectly reconstructed from its

neighbours, and another problem arises: reconstructions weights are no longer unique. In

order to overcome this limitation, a regularisation is needed to eliminate degeneration

(SAUL; ROWEIS, 2003).

Finally, another consideration about the LLE algorithm is the connectedness of the

KNN graph. If it has multiple connected components, LLE can be applied separately on

each, or selection must be altered to guarantee global connectedness (SAUL; ROWEIS,

2003).
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2.8.2 Estimating Minimum Square Weights

The second step in LLE is reconstruction of each data point from its nearest neighbours.

The optimal reconstruction weights can be calculated in a closed form. Without loss of

generality, the total reconstruction error in a point �⃗�𝑖 can be expressed as:

𝐸 (�⃗�) =

⃦⃦⃦⃦
⃦⃦∑︁

𝑗

𝑤𝑗 (�⃗�𝑖 − �⃗�𝑗)

⃦⃦⃦⃦
⃦⃦

2

=
∑︁

𝑗

∑︁
𝑘

𝑤𝑗𝑤𝑘 (�⃗�𝑖 − �⃗�𝑗)𝑇 (�⃗�𝑖 − �⃗�𝑘) . (134)

Defining matrix 𝐶 as:

𝐶𝑗𝑘 = (�⃗�𝑖 − �⃗�𝑗)𝑇 (�⃗�𝑖 − �⃗�𝑘) , (135)

results in the following expression for local reconstruction error:

𝐸 (�⃗�) =
∑︁

𝑗

∑︁
𝑘

𝑤𝑗𝐶𝑗𝑘𝑤𝑘 = �⃗�𝑇 𝐶�⃗�. (136)

Constraint
∑︀

𝑗 𝑤𝑗 = 1 can be understood in two different ways: geometrically and

probabilistically. From the geometric point of view, it ensures invariance under translation,

that is, adding any vector �⃗� to �⃗�𝑖 and all its neighbours does not alter the reconstruction

error. Let ˜⃗𝑥𝑖 = �⃗�𝑖 + �⃗� and ˜⃗𝑥𝑗 = �⃗�𝑗 + �⃗�, the new local reconstruction error is given by:

�̃� (�⃗�) =

⃦⃦⃦⃦
⃦⃦ ˜⃗

𝑖𝑥 −
∑︁

𝑗

𝑤𝑗
˜⃗
𝑗𝑥

⃦⃦⃦⃦
⃦⃦

2

=

⃦⃦⃦⃦
⃦⃦�⃗�𝑖 + �⃗� −

∑︁
𝑗

𝑤𝑗 (�⃗�𝑗 + �⃗�)

⃦⃦⃦⃦
⃦⃦

2

=

⃦⃦⃦⃦
⃦⃦�⃗�𝑖 + �⃗� −

∑︁
𝑗

𝑤𝑗�⃗�𝑗 + −
∑︁

𝑗

𝑤𝑗 �⃗�

⃦⃦⃦⃦
⃦⃦

2

=

⃦⃦⃦⃦
⃦⃦�⃗�𝑖 + �⃗� −

∑︁
𝑗

𝑤𝑗�⃗�𝑗 − �⃗�

⃦⃦⃦⃦
⃦⃦

2

= 𝐸 (�⃗�) . (137)

In terms of probability, forcing weights to sum up zero makes 𝑊 a stochastic transition

matrix (SAUL; ROWEIS, 2003), directly related to Markov Chains and diffusion maps.

It can be demonstrated that, in the minimisation of square error, solution is found by

an eigenvalues problem. Effectively, the estimation of 𝑊 narrows down to 𝑛 eigenvalues

problems: as there are no constraints over the lines of 𝑊 , optimal weights for each sample

�⃗�𝑖 can be found separately, which drastically simplifies calculations.

Then, there are 𝑛 independent constrained optimisation problems given by:

arg min
�⃗�𝑖

�⃗�𝑇
𝑖 𝐶𝑖�⃗�𝑖 subject to 1⃗𝑇 �⃗�𝑖 = 1 for 𝑖 = 1, 2, . . . , 𝑛. (138)

Using Lagrange multipliers, the Lagrangian is written as:

𝐿 (�⃗�𝑖, 𝜆) = �⃗�𝑇
𝑖 𝐶𝑖�⃗�𝑖 − 𝜆

(︁
1𝑇 �⃗�𝑖 − 1

)︁
. (139)

Differentiating with respect to �⃗�𝑖:

𝜕

𝜕�⃗�𝑖

𝐿 (�⃗�𝑖, 𝜆) = 2𝐶𝑖�⃗�𝑖 − 𝜆1⃗ = 0, (140)
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which leads to:

𝐶𝑖�⃗�𝑖 = 𝜆

2 1⃗. (141)

If matrix 𝐶𝑖 is reversible, the closed form solution is:

�⃗�𝑖 = 𝜆

2 𝐶−1
𝑖 1⃗, (142)

where 𝜆 can be set to guarantee
∑︀

𝑗 𝑤𝑖 (𝑗) = 1. Indeed, there is a closed form expression

of 𝑤𝑖 (𝑗) (SAUL; ROWEIS, 2000):

𝑤𝑖 (𝑗) =
∑︀

𝑘 𝐶−1
𝑖 (𝑗, 𝑘)∑︀

𝑘

∑︀
𝑙 𝐶−1

𝑖 (𝑘, 𝑙)
. (143)

To speed up the algorithm, instead of computing the inverse matrix of 𝐶, it is common to

solve the linear system:

𝐶𝑖�⃗�𝑖 = 1⃗, (144)

and then normalise the solution to ensure
∑︀

𝑗 𝑤𝑖 (𝑗) = 1 by dividing each coefficient of

vector �⃗�𝑖 by the sum of all coefficients:

𝑤𝑖 (𝑗) = 𝑤𝑖 (𝑗)∑︀
𝑗 𝑤𝑖 (𝑗) for 𝑗 = 1, 2, . . . , 𝑚. (145)

If the number of neighbours 𝑘 is greater than that of features 𝑚, then (usually) the

space occupied by 𝑘 distinct vectors is the whole space. Therefore, �⃗�𝑖 can be written

exactly as a linear combination of its KNN. In fact, if 𝑘 > 𝑚, there are generally infinite

solutions to �⃗�𝑖 = ∑︀
𝑗 𝑤𝑗�⃗�𝑗, for there are more unknown variables (𝑘) than equations

(𝑚). In this case, the optimisation problem is badly defined and needs regularisation. A

common technique for this is Tikhonov regularisation (TIKHONOV; ARSENIN, 1977)

which, instead of minimising: ⃦⃦⃦⃦
⃦⃦�⃗�𝑖 −

∑︁
𝑗

𝑤𝑗�⃗�𝑗

⃦⃦⃦⃦
⃦⃦

2

, (146)

adds a penalty term to the least squares problem:⃦⃦⃦⃦
⃦⃦�⃗�𝑖 −

∑︁
𝑗

𝑤𝑗�⃗�𝑗

⃦⃦⃦⃦
⃦⃦

2

+ 𝛼
∑︁

𝑗

𝑤2
𝑗 , (147)

where 𝛼 controls the degree of regularisation. That is, the weights that minimise a

combination of reconstruction errors and the sum of weights squared are chosen. If 𝛼 → 0,

there is a least squares problem; if 𝛼 → ∞ the square error terms becomes negligible, and

one wishes to minimise the Euclidean norm of weight vector �⃗�. Typically, 𝛼 is chosen as a

small, but not null, value. Then, the 𝑛 constrained optimisation problems become:

arg min
�⃗�𝑖

�⃗�𝑇
𝑖 𝐶𝑖�⃗�𝑖 + 𝛼�⃗�𝑇

𝑖 �⃗�𝑖 subject to 1⃗𝑇 �⃗�𝑖 = 1 for 𝑖 = 1, 2, . . . , 𝑛. (148)
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The Lagrangian function is defined by:

𝐿 (�⃗�𝑖, 𝜆) = �⃗�𝑇
𝑖 𝐶𝑖�⃗�𝑖 + 𝛼�⃗�𝑇

𝑖 �⃗�𝑖 − 𝜆
(︁
1𝑇 �⃗�𝑖 − 1

)︁
. (149)

Differentiating with respect to �⃗�𝑖 and equating to zero:

2𝐶𝑖�⃗�𝑖 + 2𝛼�⃗�𝑖 = 𝜆1⃗, (150)

(𝐶𝑖 + 𝛼ℐ) �⃗�𝑖 = 𝜆

2 1⃗, (151)

�⃗�𝑖 = 𝜆

2 (𝐶𝑖 + 𝛼ℐ)−1 1⃗, (152)

where 𝜆 is chosen as to normalise �⃗�𝑖, that is, to regularise the problem, a small disturbance

is added to the main diagonal of matrix 𝐶𝑖.

2.8.3 Finding the coordinates

If local neighbourhoods are sufficiently small in comparison to the curvature of the

manifold, optimal reconstruction weights in the embedding space and those of the manifold

are approximately equal (both sets of weights are exactly the same for linear subspaces

and, for manifolds in general, can be arbitrarily approximated by sufficiently reducing the

size of the neighbourhood) (SHALIZI, 2009). The idea behind the third step in the LLE

algorithm is using optimal weights estimated by least squares in the manifold and solving

for local coordinates. Thus, fixating matrix 𝑊 , the goal is to solve another quadratic

minimisation problem in order to minimise:

Φ (𝑌 ) =
𝑛∑︁

𝑖=1

⃦⃦⃦⃦
⃦⃦�⃗�𝑖 −

∑︁
𝑗

𝑤𝑖𝑗 �⃗�𝑗

⃦⃦⃦⃦
⃦⃦

2

. (153)

That is, coordinates �⃗�𝑖 ∈ R𝑑 (approximately in the manifold) reconstructed by these

weights (𝑊 ) must be found.

To avoid degeneration, two constraints are imposed:

1. The mean of transformed spaces is zero, otherwise there would be infinite solutions;

2. The covariance matrix of transformed data is the identity matrix, that is, there is no

correlation between components of �⃗� ∈ R𝑑.

However, unlike the estimation of 𝑊 , finding coordinates cannot be simplified to 𝑛

independent problems, for each row in 𝑌 appears in Φ many times, as the central vector

of �⃗�𝑖 as well as neighbour to other vectors.

Initially, equation (153) is rewritten using matrices. It is noted that:

Φ (𝑌 ) =
𝑛∑︁

𝑖=1

⎡⎢⎣
⎛⎝�⃗�𝑖 −

∑︁
𝑗

𝑤𝑖𝑗 �⃗�𝑗

⎞⎠𝑇 ⎛⎝�⃗�𝑖 −
∑︁

𝑗

𝑤𝑖𝑗 �⃗�𝑗

⎞⎠
⎤⎥⎦ . (154)
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Applying the distributive property:

Φ (𝑌 ) =
𝑛∑︁

𝑖=1

⎡⎢⎣�⃗�𝑇
𝑖 �⃗�𝑖 − �⃗�𝑇

𝑖

⎛⎝∑︁
𝑗

𝑤𝑖𝑗 �⃗�𝑗

⎞⎠−

⎛⎝∑︁
𝑗

𝑤𝑖𝑗 �⃗�𝑗

⎞⎠𝑇

�⃗�𝑖 +
⎛⎝∑︁

𝑗

𝑤𝑖𝑗 �⃗�𝑗

⎞⎠𝑇 ⎛⎝∑︁
𝑗

𝑤𝑖𝑗 �⃗�𝑗

⎞⎠
⎤⎥⎦ .

(155)

Expanding the summation:

Φ (𝑌 ) =
𝑛∑︁

𝑖=1
�⃗�𝑇

𝑖 �⃗�𝑖 −
𝑛∑︁

𝑖=1

∑︁
𝑗

�⃗�𝑇
𝑖 𝑤𝑖𝑗 �⃗�𝑗 −

𝑛∑︁
𝑖=1

∑︁
𝑗

�⃗�𝑇
𝑗 𝑤𝑗𝑖�⃗�𝑖 +

𝑛∑︁
𝑖=1

∑︁
𝑗

∑︁
𝑘

�⃗�𝑇
𝑗 𝑤𝑗𝑖𝑤𝑖𝑘�⃗�𝑘. (156)

Denoting by 𝑌 the 𝑑 × 𝑛 matrix in which each column �⃗�𝑖 for 𝑖 = 1, 2, . . . , 𝑛 stores the

coordinates of the 𝑖-th point in the manifold and knowing that �⃗�𝑖 (𝑗) = 0 unless �⃗�𝑗

neighbours �⃗�𝑖, Φ (𝑌 ) can be written as:

Φ (𝑌 ) = Tr
(︁
𝑌 𝑇 𝑌

)︁
− Tr

(︁
𝑌 𝑇 𝑊𝑌

)︁
− Tr

(︁
𝑌 𝑇 𝑊 𝑇 𝑌

)︁
+ Tr

(︁
𝑌 𝑇 𝑊 𝑇 𝑊𝑌

)︁
= Tr

(︁
𝑌 𝑇 𝑌

)︁
− Tr

(︁
𝑌 𝑇 (𝑊𝑌 )

)︁
− Tr

(︁
(𝑊𝑌 )𝑇 𝑌

)︁
+ Tr

(︁
(𝑊𝑌 )𝑇 (𝑊𝑌 )

)︁
= Tr

(︁
𝑌 𝑇 (𝑌 − 𝑊𝑌 ) − (𝑊𝑌 )𝑇 (𝑌 − 𝑊𝑌 )

)︁
= Tr

(︁
(𝑌 − 𝑊𝑌 )𝑇 (𝑌 − 𝑊𝑌 )

)︁
= Tr

(︁
((ℐ − 𝑊 ) 𝑌 )𝑇 ((ℐ − 𝑊 ) 𝑌 )

)︁
= Tr

(︁
𝑌 𝑇 (ℐ − 𝑊 )𝑇 (ℐ − 𝑊 ) 𝑌

)︁
. (157)

Defining 𝑛 × 𝑛 matrix 𝑀 as:

𝑀 = (ℐ − 𝑊 )𝑇 (ℐ − 𝑊 ) (158)

leads to the optimisation problem:

arg min
𝑌

Tr
(︁
𝑌 𝑇 𝑀𝑌

)︁
subject to

1
𝑛

𝑌 𝑇 𝑌 − ℐ. (159)

Hence, the Lagrangian function is given by:

𝐿 (𝑌, 𝜆) = Tr
(︁
𝑌 𝑇 𝑀𝑌

)︁
− 𝜆

(︂ 1
𝑛

𝑌 𝑇 𝑌 − ℐ
)︂

. (160)

Differentiating and equating to zero:

2𝑀𝑌 − 2𝜆

𝑛
𝑌 = 0, (161)

𝑀𝑌 = 𝛽𝑌, (162)

where 𝛽 = 𝜆
𝑛
, showing that 𝑌 must be made up of the eigenvector of matrix 𝑀 . From a

minimisation problem, the 𝑑 eigenvectors associated to the least 𝑑 eigenvalues must be

chosen to build 𝑌 . As a 𝑛 × 𝑛 matrix, 𝑀 has 𝑛 eigenvalues and 𝑛 orthogonal eigenvectors.

Although these eigenvalues are real and non-negative, the least is always zero, with constant

eigenvector 1⃗. This eigenvector corresponds to the mean of 𝑌 and must be discarded to

fulfil constraint
∑︀𝑛

𝑖=1 �⃗�𝑖 = 0 (RIDDER; DUIN, 2002). Each row of 𝑊 must sum up to one,
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thence:

𝑊 1⃗ = 1⃗, (163)

1⃗ − 𝑊 1⃗ = 0, (164)

(ℐ − 𝑊 ) 1⃗ = 0, (165)

(ℐ − 𝑊 )𝑇 (ℐ − 𝑊 ) 1⃗ = 0, (166)

𝑀 1⃗ = 0. (167)

Therefore, to obtain �⃗�𝑖 ∈ R𝑑, where 𝑑 < 𝑛, the 𝑑+1 least eigenvectors must be selected and

constant eigenvector with eigenvalue zero discarded, that is, choosing the 𝑑 eigenvectors

associated with the least non-zero eigenvalues.

The LLE algorithm has three main parameters: intrinsic dimensionality 𝑑, number of

close neighbours 𝑘 and, in some cases, regularisation parameter 𝛼, being DR very sensitive

to these. If 𝑑 is too high, mapping amplifies noise; if it is too low, distinct parts of the

data set can be mapped overlapped. If 𝑘 is too small, mapping does not reflect global

properties; if too large, mapping loses its non-linear character and behaves like traditional

PCA, considering the whole set as a local neighbourhood. Finally, if 𝛼 is incorrect, spectral

analysis may not converge (RIDDER; DUIN, 2002).

2.8.4 Supervised Locally Linear Embedding

A ML algorithm must not necessarily be unsupervised. Oft, better and more efficient

results can be achieved by having a previous classification of the data. A variation of

LLE, called Supervised Locally Linear Embedding (SLLE), regards data classes before

applying LLE to work with data sets containing multiple manifolds, usually disjoined.

To do so, the algorithm is altered to consider the difference between data sets when

calculating the distances matrix. So, the values of matrix elements are given by (RIDDER;

KOUROPTEVA, et al., 2003):

Δ′ = Δ + 𝛼 max (Δ) Λ𝑖𝑗, 𝛼 ∈ [0, 1] , (168)

where max (Δ) is the maximum value of Δ and Λ𝑖𝑗 = 0 if 𝑥𝑖 and 𝑥𝑗 belong to he same

class, and 0 otherwise. When 𝛼 = 0 the result is unsupervised LLE, while 𝛼 = 1 results in

fully supervised LLE (named 1-SLLE) and if 0 < 𝛼 < 1, it is a partially supervised LLE

(𝛼-LLE).

For 1-SLLE, distances between samples from different classes are as large as the

maximum distance in all of the data set. Thus, neighbours from a 𝑐 class sample are always

chosen among points in the same class. In practice, it is not necessary to compute equation

(168), just to pick the nearest neighbours of a sample among those in the same class.

1-SLLE is, therefore, a non-parametrised supervised LLE. However, 𝛼-SLLE introduces

an additional 𝛼 parameter that controls the amount of supervision. For 0 < 𝛼 < 1, a
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configuration such that preserves part of the manifold structure but separates classes is

found. This allows a supervised analysis of data, but may lead to a better generalisation

than 1-SLLE in previously not analysed samples (RIDDER; KOUROPTEVA, et al., 2003).

2.9 Laplacian Eigenmaps

The idea behind the Laplacian Eigenmaps (LE) method is that, if a manifold is

approximated by a basic undirected connected graph, it is possible to find a map of its

vertices to an Euclidean subspace R𝑑 such that locality is preserved, that is, neighbouring

points in the graph remain close after mapping. This map is given by eigenvectors of the

graph’s Laplacian matrix (LI; LI; ZHANG, 2018). Basically, the LE algorithm takes as

input a 𝑛 × 𝑚 data matrix 𝑋, with each row �⃗�𝑖 defining a data point, a number of desired

dimensions 𝑑 < 𝑚, and an integer 𝑘, to find local neighbourhoods. The output is a 𝑛 × 𝑑

matrix 𝑌 , with rows �⃗�𝑖. The algorithm can be divided into three main steps (BELKIN;

NIYOGI, 2003):

1. Construct neighbourhood graph 𝐺 = (𝑉, 𝐸) connecting nodes 𝑣𝑖 and 𝑣𝑗 if �⃗�𝑖 and �⃗�𝑗

are close. Its two variants are:

❏ 𝜖-neighbourhood: connect 𝑣𝑖 and 𝑣𝑗 with an edge if ‖�⃗�𝑖 − �⃗�𝑗‖2 ≤ 𝜖.

❏ KNN: connect 𝑣𝑖 and 𝑣𝑗 with an edge if 𝑣𝑖 is among the KNN of 𝑣𝑗 or if 𝑣𝑗 is

among the KNN of 𝑣𝑖.

2. Choose weights to define adjacency matrix 𝑊 . Here, too, there are two variants:

❏ Heat kernel (with parameter 𝑡 ∈ R): if nodes 𝑣𝑖 and 𝑣𝑗 are connected,

𝑊𝑖𝑗 = exp
(︃

−‖�⃗�𝑖 − �⃗�𝑗‖2

𝑡

)︃
, (169)

otherwise 𝑊𝑖𝑗 = 0.

❏ Binary weights: 𝑊𝑖𝑗 = 1 if nodes 𝑣𝑖 and 𝑣𝑗 are connected by an edge and

𝑊𝑖𝑗 = 0 otherwise.

3. Embedding: find coordinates 𝑌 selecting the 𝑑 eigenvectors associated to the 𝑑 least

non-zero eigenvalues of the graph’s Laplacian 𝐿.

Next, the reasons for which LE can provide optimal embeddings in terms of locality and

neighbourhood preservation.

2.9.1 Graph’s Laplacian and its Properties

Let 𝐺 = (𝑉, 𝐸) be an undirected graph with a set of vertices 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛}, and

let it be weighed, that is, each edge between 𝑣𝑖 and 𝑣𝑗 has a non-negative weight 𝑤𝑖𝑗 ≥ 0.
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Typically, weights 𝑤𝑖𝑗 represent a measure of similarity or distance between pairs of vectors

�⃗�𝑖 ∈ R𝑚 and �⃗�𝑗 ∈ R𝑚.

Definition 2. The weighed adjacency matrix of an undirected graph 𝐺 = (𝑉, 𝐸) with

|𝑉 | = 𝑛 is the symmetrical matrix 𝑊 = 𝑤𝑖𝑗 for 𝑖, 𝑗 = 1, 2, . . . , 𝑛. If 𝑤𝑖𝑗 = 0, vertices 𝑣𝑖

and 𝑣𝑗 are not connected by an edge.

Definition 3. The degree of a vertex 𝑣𝑖 ∈ 𝑉 is defined by the sum of elements in the 𝑖-th

row of 𝑊 :

𝑑𝑖 =
𝑛∑︁

𝑗=1
𝑤𝑖𝑗. (170)

Degrees matrix 𝐷 is defined as a diagonal matrix with degrees 𝑑1, 𝑑2, . . . , 𝑑𝑛.

Definition 4. The non-normalised graph’s Laplacian matrix is defined by:

𝐿 = 𝐷 − 𝑊, (171)

where 𝐷 is the degrees matrix and 𝑊 the adjacency matrix.

Theorem 3. Laplacian matrix 𝐿 satisfies the following properties:

1. For each column vector 𝑓 ∈ R𝑛:

𝑓𝑇 𝐿𝑓 = 1
2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑤𝑖𝑗 (𝑓𝑖 − 𝑓𝑗)2 . (172)

2. 𝐿 is symmetric and positive semidefinite.

3. The least eigenvalue of 𝐿 is zero and the corresponding eigenvector is the constant

vector 1⃗.

4. 𝐿 has 𝑛 real non-zero eigenvalues, 0 = 𝜆1 ≤ 𝜆2 ≤ · · · ≤ 𝜆𝑚.

To prove the first statement, one notes that, from the definition of 𝐿 and 𝐷:

𝑓𝑇 𝐿𝑓 = 𝑓𝑇 𝐷𝑓 − 𝑓𝑇 𝑊𝑓 =
𝑛∑︁

𝑖=1
𝑑𝑖𝑓

2
𝑖 −

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑓𝑖𝑤𝑖𝑗𝑓𝑗 = 1
2

⎛⎝2
𝑛∑︁

𝑖=1
𝑑𝑖𝑓

2
𝑖 − 2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑓𝑖𝑤𝑖𝑗𝑓𝑗

⎞⎠
= 1

2

⎛⎝ 𝑛∑︁
𝑖=1

𝑑𝑖𝑓
2
𝑖 − 2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑤𝑖𝑗𝑓𝑖𝑓𝑗 +
𝑛∑︁

𝑗=1
𝑑𝑗𝑓

2
𝑗

⎞⎠
= 1

2

⎛⎝ 𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑤𝑖𝑗𝑓
2
𝑖 − 2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑤𝑖𝑗𝑓𝑖𝑓𝑗 +
𝑛∑︁

𝑖=1

𝑛∑︁
𝑗=1

𝑤𝑖𝑗𝑓
2
𝑗

⎞⎠ = 1
2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑤𝑖𝑗 (𝑓𝑖 − 𝑓𝑗)2 . (173)

The second statement has two parts: the first, about symmetry, is a direct consequence of

the symmetry between matrices 𝐷 and 𝑊 ; the second, about being positive semidefinite,
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is deducted from (𝑓𝑖 − 𝑓𝑗)2 ≥ 0, ∀𝑓𝑖, 𝑓𝑗 ∈ R and 𝑤𝑖𝑗 ≥ 0 for 𝑖, 𝑗 = 1, 2, . . . , 𝑛, 𝑓𝑇 𝐿𝑓 ≥ 0.

To prove the third, one notes:

𝐿1⃗ = (𝐷 − 𝑊 ) 1⃗ = 𝐷1⃗ − 𝑊 1⃗ =
𝑛∑︁

𝑖=1
𝑑𝑖 −

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑤𝑖𝑗 =
𝑛∑︁

𝑖=1
𝑑𝑖 −

𝑛∑︁
𝑖=1

𝑑𝑖 = 0, (174)

showing that constant eigenvector 1⃗ has eigenvalue zero. Finally, the fourth statement is a

direct consequence of equations (170) and (171).

2.9.2 Inline Laplacian Embedding

Here, it shall be proven that the embedding provided by LE is optimal in terms of

preservations of local information, that is, neighbouring points in the graph are close and

distant ones are apart after the embedding. Assuming a connected graph 𝐺 = (𝑉, 𝐸)
with nodes which are data points 𝑋 = [�⃗�1, �⃗�2, . . . , �⃗�𝑛], the problem can be formulated as:

mapping nodes in 𝐺 as a line to keep points as closely connected as possible, which is the

goal of LE.

Let �⃗� = [𝑦1, 𝑦2, . . . , 𝑦𝑛]𝑇 ∈ R𝑛 be a map of vertices 𝑣1, 𝑣2, . . . , 𝑣𝑛 to a real line, a good

goal function must strongly penalise neighbouring points that are mapped too far apart

from each other. An adequate choice for a given adjacency matrix 𝑊 is the function:

𝐽 (�⃗�) = 1
2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑤𝑖𝑗 (𝑦𝑖 − 𝑦𝑗)2 = �⃗�𝑇 𝐿�⃗�, (175)

where 𝐿 is the Laplacian matrix. It can be noted that 𝐽 (�⃗�) is the measure of scattering of

the points among the real line, therefore minimising it is an attempt to ensure that, if �⃗�𝑖

and �⃗�𝑗 are close in the input space, coordinates 𝑦𝑖 and 𝑦𝑗 are also close in line. Thus, the

constrained optimisation problem can be written as:

arg min
�⃗�

𝑦𝑇 𝐿𝑦 subject to 𝑦𝑇 𝐷𝑦 = 1, (176)

where constraint 𝑦𝑇 𝐷𝑆𝑦 = 1 removes the arbitrary embedding scale factor (BELKIN;

NIYOGI, 2003). That is, the direction of vector �⃗� is sought. If there were no constraints,

the objective function could be minimised by simply dividing the components of �⃗� by a

constant. Again, rewriting the Lagrangian function:

𝐿 (�⃗�, 𝜆) = 𝑦𝑇 𝐿𝑦 − 𝜆
(︁
𝑦𝑇 𝐷𝑦 − 1

)︁
. (177)

Differentiating with respect to �⃗� and equating the result to zero:

𝜕

𝜕�⃗�
𝐿 (�⃗�, 𝜆) = 2𝐿�⃗� − 2𝜆𝐷�⃗� = 0, (178)

which leads to:

𝐿�⃗� = 𝜆𝐷�⃗�, (179)(︁
𝐷−1𝐿

)︁
�⃗� = 𝜆�⃗�, (180)
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demonstrating that this is a generalised eigenvectors problem. As a minimisation problem,

the eigenvector of 𝐷−1𝐿 associated to the least eigenvalue must be chosen, discarding

constant eigenvector 1⃗, which has eigenvalue zero. Obviously, minimal scattering occurs

when all points are mapped to the same coordinate, however this trivial solution has no

practical use. Hence, �⃗� must be the eigenvector associated to the least non-zero eigenvalue,

also called Fiedler vector (FIEDLER, 1989).

2.9.3 Laplacian Embedding in R𝑑

Considering the generalised embedding problem for graph 𝐺 = (𝑉, 𝐸) in a 𝑑-dimensional

Euclidean space, each node 𝑣𝑖 ∈ 𝑉 must be mapped to a point in R𝑑, that is, 𝑑 coordinates

are to be estimated for each node. The final embedding is noted by a 𝑛 × 𝑑 matrix

𝑌 = [�⃗�1, �⃗�2, . . . , �⃗�𝑑], where the 𝑖-th row, �⃗�(𝑖), provides the coordinates of 𝑣𝑖 in the manifold.

The objective function is generalised to:

𝐽 (𝑌 ) = 1
2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑊𝑖𝑗

⃦⃦⃦
�⃗�(𝑖) − �⃗�(𝑗)

⃦⃦⃦2
, (181)

where �⃗�(𝑖) =
[︁
�⃗�

(𝑖)
1 , �⃗�

(𝑖)
2 , . . . , �⃗�

(𝑖)
𝑑

]︁
is the 𝑑-dimensional representation of 𝑣𝑖. Let 𝑌 be a 𝑛 × 𝑑

matrix in which each row represents a �⃗�(𝑖), for 𝑖 = 1, 2, . . . , 𝑛, the objective function can

be rewritten as:

𝐽 (𝑌 ) = 1
2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑊𝑖𝑗

(︁
�⃗�(𝑖) − �⃗�(𝑗)

)︁ (︁
�⃗�(𝑖) − �⃗�(𝑗)

)︁𝑇
. (182)

Expanding the expression of 𝐽 (𝑌 ), this can be simplified to:

𝐽 (𝑌 ) = 1
2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

[︁
𝑊𝑖𝑗 �⃗�

(𝑖)�⃗�(𝑖)𝑇 − 𝑊𝑖𝑗 �⃗�
(𝑖)�⃗�(𝑗)𝑇 − 𝑊𝑖𝑗 �⃗�

(𝑗)�⃗�(𝑖)𝑇 + 𝑊𝑖𝑗 �⃗�
(𝑗)�⃗�(𝑗)𝑇

]︁

= 1
2

⎡⎣ 𝑛∑︁
𝑖=1

𝑑𝑖�⃗�
(𝑖)�⃗�(𝑖)𝑇 − 2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑊𝑖𝑗 �⃗�
(𝑖)�⃗�(𝑗)𝑇 +

𝑛∑︁
𝑗=1

𝑑𝑗 �⃗�
(𝑗)�⃗�(𝑗)𝑇

⎤⎦
= 1

2

⎡⎣2
𝑛∑︁

𝑖=1
𝑑𝑖�⃗�

(𝑖)�⃗�(𝑖)𝑇 − 2
𝑛∑︁

𝑖=1

𝑛∑︁
𝑗=1

𝑊𝑖𝑗 �⃗�
(𝑖)�⃗�(𝑗)𝑇

⎤⎦ =
𝑛∑︁

𝑖=1
𝑑𝑖�⃗�

(𝑖)�⃗�(𝑖)𝑇 −
𝑛∑︁

𝑖=1

𝑛∑︁
𝑗=1

𝑊𝑖𝑗 �⃗�
(𝑖)�⃗�(𝑗)𝑇 . (183)

Let 𝑌𝑛×𝑑 be the matrix of coordinates for 𝑛 points, 𝐷𝑛×𝑛 the diagonal matrix of degrees 𝑑𝑖,

and 𝑊𝑛×𝑛 the adjacency matrix, the equation can be written using matrix-vector notation

as:

𝐽 (𝑌 ) = Tr
(︁
𝐷𝑌 𝑌 𝑇

)︁
− Tr

(︁
𝑊𝑌 𝑌 𝑇

)︁
. (184)

Being the trace operator invariant to cyclic permutations, comes:

𝐽 (𝑌 ) = Tr
(︁
𝑌 𝑇 𝐷𝑌

)︁
− Tr

(︁
𝑌 𝑇 𝑊𝑌

)︁
= Tr

(︁
𝑌 𝑇 (𝐷𝑌 − 𝑊𝑌 )

)︁
= Tr

(︁
𝑌 𝑇 (𝐷 − 𝑊 ) 𝑌

)︁
= Tr

(︁
𝑌 𝑇 𝐿𝑌

)︁
. (185)
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Thus, leads to the constrained optimisation problem:

arg min
𝑌

Tr
(︁
𝑌 𝑇 𝐿𝑌

)︁
subject to 𝑌 𝑇 𝐷𝑌 = ℐ, (186)

and its Lagrangian function is given by:

𝐿 (𝑌, 𝜆) = Tr
(︁
𝑌 𝑇 𝐿𝑌

)︁
− 𝜆

(︁
𝑌 𝑇 𝐷𝑌 − ℐ

)︁
. (187)

Differentiating and equating to zero:

𝜕

𝜕𝑌
𝐿 (𝑌, 𝜆) = 2𝐿𝑌 − 2𝜆𝐷𝑌 = 0, (188)

which leads to the eigenvectors problem:

𝐿𝑌 = 𝜆𝐷𝑌. (189)

This result shows that to compose the columns of matrix 𝑌 , one must select the 𝑑

eigenvectors associated to the 𝑑 least non-zero eigenvalues of normalised Laplacian 𝐷−1𝐿.

Some variants of the algorithm include the spectral decomposition of different versions of

the graph Laplacian. Most common choices are another form of the normalised Laplacian,

given by 𝐿sym = 𝐷− 1
2 𝐿𝐷− 1

2 , and pure non-normalised Laplacian 𝐿 = 𝐷 − 𝑊 . By applying

LE to real datasets, limitations were found, such as uneven sampling of data, out of sample

problems, small sample size, extraction and selection of discriminant features, etc. To

overcome these issues, a large number of extensions was proposed for LE (LI; LI; ZHANG,

2018).

The LE algorithm is rather simple, consisting of few local operations and a sparse

eigenvalues problem. Its solution reflects the intrinsic geometry of the manifold due to the

Laplacian operator’s role in providing an optimal embedding. The solution graph Laplacian

obtained from data points can be viewed as an approximation of the Laplace-Beltrami

operator defined in the manifold (BELKIN; NIYOGI, 2002). The algorithm is relatively

insensitive to outliers and noise and, thus, emphasises data groupings.

Given 𝑛 points 𝑥1, . . . , 𝑥𝑛 in R𝐷, a weighed graph is constructed with 𝑛 nodes, one for

each point, and the set of edges connecting neighbouring points. There is an edge between

nodes 𝑖 and 𝑗 if 𝑥𝑖 and 𝑥𝑗 are near, based on a maximum distance 𝜖 between two points

or a number 𝑘 of nearest points. There are also two possibilities for edge weights: based

on heat core (equation (169)), or a simpler one with 𝑊𝑖𝑗 = 1 (BELKIN; NIYOGI, 2002).

Assuming the resultant 𝐺 graph is connected, eigenvectors and eigenvalues are calculated

for the generalised eigenvectors problem:

𝐿𝑦 = 𝜆𝐷𝑦 (190)

where 𝐷 is the diagonal of the weights matrix, with its inputs being the sums of the

columns (or rows, as 𝑊 is symmetric) of 𝑊 , 𝐷𝑖𝑖 = ∑︀
𝑗 𝑊𝑗𝑖. 𝐿 = 𝐷 − 𝑊 is the Laplacian
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matrix, which is a symmetric, positive and semidefinite matrix that can be considered

an operator of functions defined in the edges of 𝐺. Thus, 𝑦0, . . . , 𝑦𝑛−1 are solutions of

equation (190), ordered by their eigenvalues with 𝑦0 having the least eigenvalue (actually

0). The image of 𝑥𝑖 in low dimensional space R𝑑 is given by
(︁
𝑦

(𝑖)
1 , . . . , 𝑦

(𝑖)
𝑑

)︁
.

2.9.4 Supervised Laplacian Eigenmaps

Although LE might yield good results for non-linear DR, many experiments show that

the recognition rate in the reduced space depends on the size of the chosen neighbourhood.

A way to use the information provided by data classification, not used by LE, is through

Supervised Laplacian Eigenmaps (S-LE). This method has two interesting properties:

it estimates adaptively local neighbourhoods of each sample based on data density and

similarity, and its objective function simultaneously maximises local margins between

heterogeneous samples and approximates homogeneous samples. Hence, it avoids the need

to choose a predefined neighbourhood for graph construction and exploits information

discrimination to find a non-linear embedding (RADUCANU; DORNAIKA, 2012).

To uncover the geometric and discriminant structure of the data manifold, the global

graph is divided in two components: intraclass 𝐺𝑤 and interclass 𝐺𝑏. Being 𝑙 (𝑦𝑖) the label

of 𝑦𝑖 class, for each 𝑦𝑖 data point two sets are computed: 𝑁𝑤 (𝑦𝑖), containing neighbours

with the same label as 𝑦𝑖, and 𝑁𝑏 (𝑦𝑖), containing different labelled neighbours. Unlike

classic LE, this algorithm adapts the size of these two sets according to local sample point

𝑦𝑖 and its similarities to other samples. To do so, each set is defined for each point 𝑦𝑖 and

calculated in two steps. First, mean similarity is computed from the total of all similarities

to the rest of the set:

𝐴𝑆 (𝑦𝑖) = 1
𝑁

𝑁∑︁
𝑘=1

exp
(︃

−‖𝑦𝑖 − 𝑦𝑘‖2

𝛽

)︃
. (191)

Then, sets are calculated by:

𝑁𝑤 (𝑦𝑖) =
{︃

𝑦𝑗 | 𝑙 (𝑦𝑗) = 𝑙 (𝑦𝑖), exp
(︃

−‖𝑦𝑖 − 𝑦𝑗‖2

𝛽

)︃
> 𝐴𝑆 (𝑦𝑖)

}︃
, (192)

made up of data samples with the same label as 𝑦𝑖 and larger than mean similarity

associated to 𝑦𝑖 and (RADUCANU; DORNAIKA, 2012):

𝑁𝑏 (𝑦𝑖) =
{︃

𝑦𝑗 | 𝑙 (𝑦𝑗) ̸= 𝑙 (𝑦𝑖), exp
(︃

−‖𝑦𝑖 − 𝑦𝑗‖2

𝛽

)︃
> 𝐴𝑆 (𝑦𝑖)

}︃
, (193)

made up of data samples with labels different from that of 𝑦𝑖 and larger than mean

similarity associated to 𝑦𝑖. These equations show that these sets are not equally sized for

all data samples, adapting their neighbourhood according to local density and similarity

between samples in the original space.
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Since graphs 𝐺𝑤 and 𝐺𝑏 have weight matrices 𝑊𝑤 and 𝑊𝑏, respectively (RADUCANU;

DORNAIKA, 2012):

𝑊𝑤,𝑖𝑗 =

⎧⎪⎨⎪⎩
exp

(︂
−‖𝑦𝑖−𝑦𝑗‖2

𝛽

)︂
, if 𝑦𝑗 ∈ 𝑁𝑤 (𝑦𝑖) or 𝑦𝑖 ∈ 𝑁𝑤 (𝑦𝑗)

0, otherwise
, (194)

𝑊𝑏,𝑖𝑗 =

⎧⎪⎨⎪⎩1, if 𝑦𝑗 ∈ 𝑁𝑏 (𝑦𝑖) or 𝑦𝑖 ∈ 𝑁𝑏 (𝑦𝑗)

0, otherwise
. (195)

If the same weight is used for both, it is simple to demonstrate that global affinity matrix

𝑊 associated to LE is:

𝑊 = 𝑊𝑤 + 𝑊𝑏. (196)

Each data point 𝑦𝑖 is mapped to a vector 𝑥𝑖, in order to retrieve the coordinates of 𝑥𝑖 in

low dimension space for each sample, from objective functions:

min 1
2
∑︁
𝑖,𝑗

‖𝑥𝑖 − 𝑥𝑗‖2 𝑊𝑤,𝑖𝑗, (197)

max 1
2
∑︁
𝑖,𝑗

‖𝑥𝑖 − 𝑥𝑗‖2 𝑊𝑏,𝑖𝑗, (198)

considering matrix 𝑍 as
[︁
𝑥𝑇

1 ; . . . ; 𝑥𝑇
𝑁

]︁
, these equations can be written as (RADUCANU;

DORNAIKA, 2012):

min Tr
(︁
𝑍𝑇 𝐿𝑤𝑍

)︁
, (199)

max Tr
(︁
𝑍𝑇 𝐿𝑏𝑍

)︁
, (200)

where 𝐿𝑤 = 𝐷𝑤 −𝑊𝑤 and 𝐿𝑏 = 𝐷𝑏 −𝑊𝑏. Using scale restriction 𝑍𝑇 𝐷𝑤𝑍 = 𝐼 and equation

𝐿𝑤 = 𝐷𝑤 − 𝑊𝑤, both functions can be combined into:

arg max
𝑍

(︁
𝛾 Tr

(︁
𝑍𝑇 𝐿𝑏𝑍

)︁
+ (1 − 𝛾) Tr

(︁
𝑍𝑇 𝑊𝑤𝑍

)︁)︁
subject to 𝑍𝑇 𝐷𝑤𝑍 = 𝐼. (201)

By using matrix 𝐵 = 𝛾𝐿𝑏 + (1 − 𝛾) 𝑊𝑤, the problem becomes:

arg max
𝑍

Tr
(︁
𝑍𝑇 𝐵𝑍

)︁
subject to 𝑍𝑇 𝐷𝑤𝑍 = 𝐼, (202)

resulting in a generalised eigenvalues problem in the form (RADUCANU; DORNAIKA,

2012):

𝐵𝑧 = 𝜆𝐷𝑤𝑧. (203)

S-LE differs from classic LE by having as a goal solely preserving the locality of samples

and not regarding data classes, while the former divides the graph in two depending on

how classes match. Another disadvantage of classic LE is that neighbourhood size must

be chosen before the user runs the algorithm and can affect its results, which does not

happen with S-LE, as it determines neighbourhood size from the samples. This way, graph

construction automatically adapts to any data set with adjusting parameters (RADUCANU;

DORNAIKA, 2012).
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2.10 𝑡-Distributed Stochastic Neighbour Embedding

In order to understand 𝑡-Distributed Stochastic Neighbour Embedding (t-SNE), one

needs to know its predecessor, Stochastic Neighbour Embedding (SNE). Initially, this

method converts the Euclidean distances between data points �⃗�𝑖 ∈ R𝑚, for 𝑖 = 1, 2, . . . , 𝑛,

into conditional probabilities to represent similarities. Similarity between two points �⃗�𝑖 and

�⃗�𝑗 is the conditional probability 𝑝𝑗|𝑖 that �⃗�𝑖 picks �⃗�𝑗 as neighbour if selection is made in

proportion to a probability density under a Gaussian centred in �⃗�𝑖 (MAATEN; HINTON,

2008):

𝑝𝑗|𝑖 =
exp

(︂
−‖�⃗�𝑖−�⃗�𝑗‖2

2𝜎2
𝑖

)︂
∑︀

𝑘 ̸=𝑖 exp
(︂

−‖�⃗�𝑖−�⃗�𝑘‖2

2𝜎2
𝑖

)︂ , (204)

where 𝜎2
𝑖 is the variance of the Gaussian centred in �⃗�𝑖. It can be noted that, if �⃗�𝑖 and

�⃗�𝑗 are close, 𝑝𝑗|𝑖 has a significantly high value, but if they are far apart, 𝑃𝑗|𝑖 tends to

zero. It is possible to calculate a similar conditional probability for the low dimension

representation of vectors �⃗�𝑖 and �⃗�𝑗 to R𝑑, denoted by 𝑞𝑗|𝑖. Setting the variance of Gaussian

in 1√
2 , the similarity measure is given by:

𝑞𝑗|𝑖 =
exp

(︁
− ‖�⃗�𝑖 − �⃗�𝑗‖2

)︁
∑︀

𝑘 ̸=𝑖 exp
(︁
− ‖�⃗�𝑖 − �⃗�𝑘‖2

)︁ . (205)

Since similarities are modelled pairwise, 𝑝𝑖|𝑖 = 𝑞𝑖|𝑖 = 0. The idea is that, if points

�⃗�𝑖 and �⃗�𝑗 of the low dimension representation correctly model the similarities between

vectors �⃗�𝑖 and �⃗�𝑗 of high dimension, then probabilities 𝑝𝑗|𝑖 and 𝑞𝑗|𝑖 are equal. The goal

of SNE is to find a low dimension representation that minimises the distance between

both probabilities, approximating them as much as possible. A statistical measure for the

closeness of two probability distributions is KL-divergence, also known as relative entropy

(KULLBACK; LEIBLER, 1951). SNE minimises the sum of KL-divergences over all data

points using the gradient descent method. The objective function to be minimised is

(HINTON; ROWEIS, 2003):

𝐶 =
𝑛∑︁

𝑖=1
𝐾𝐿 (𝑃𝑖‖𝑄𝑖) =

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑝𝑗|𝑖 log 𝑝𝑗|𝑖

𝑞𝑗|𝑖
, (206)

where 𝑃𝑖 represents the conditional probability distribution over all other data points from

point �⃗�𝑖, and 𝑄𝑖 the conditional probability distribution over all other map points from

point �⃗�𝑖. Which is to say, the SNE cost function focuses on keeping the local structure

of data in the map (for reasonable values of variance for the Gaussian in high dimension

space, 𝜎2
𝑖 ).
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2.10.1 Defining variance for Gaussian functions

In order to work properly, SNE needs to define variance 𝜎2
𝑖 for the Gaussian centred

on each high dimension point �⃗�𝑖 ∈ R𝑚. It is unreasonable to assume there is a single value

of 𝜎2
𝑖 that is optimal for every point. In sparse patches, a smaller value of 𝜎2

𝑖 is more

adequate than in denser patches. A given 𝜎2
𝑖 induces a distribution probability 𝑃𝑖, which

has as entropy a crescent function of variance. The measure of perplexity is defined as

(MAATEN; HINTON, 2008):

Perp (𝑃𝑖) = 2𝐻(𝑃𝑖), (207)

where 𝐻 (𝑃𝑖) is the Shannon entropy (in bits):

𝐻 (𝑃𝑖) = −
𝑛∑︁

𝑗=1
𝑝𝑗|𝑖 log2 𝑝𝑗|𝑖. (208)

SNE seeks a value of 𝜎2
𝑖 that produces a fixed, user defined, perplexity 𝑃𝑖, which can be

interpreted as a smooth measure of the effective number of neighbours, and its values are

usually between 5 and 50 (MAATEN; HINTON, 2008). Minimisation of objective function

(KL-divergence) is done using gradient descent with momentum to achieve convergence,

that is, after initialisation, coordinates of the low dimension points are iteratively updated

by:

𝒴(𝑡) = 𝒴(𝑡−1) − 𝜂
𝜕𝐶

𝜕𝒴
+ 𝛼 (𝑡)

(︁
𝒴(𝑡−1) − 𝒴(𝑡−2)

)︁
, (209)

where 𝒴(𝑡) denotes the solution in iteration 𝑡, 𝜂 the learning rate, and 𝛼 (𝑡) the momentum

of iteration 𝑡.

2.10.2 Calculating gradient in Stochastic Neighbour Embedding

Equation (209) shows that the main component of the iterative algorithm is calculating

the gradient. In each step of the optimisation, it begins from a set of points �⃗�1, �⃗�2, . . . , �⃗�𝑛

and requires estimating the gradient. The process can be summarised as (MELVILLE,

2015):

1. Create a distances matrix, where element 𝑑𝑖𝑗 represents the Euclidean distance

between �⃗�𝑖 and �⃗�𝑗;

2. Transform distances to create 𝑓𝑖𝑗 (usually, they are squared);

3. Apply a weighing function to define weight 𝑤𝑖𝑗, such that, the larger the weight,

smaller the distance (similarity measure);

4. Convert weights into probabilities 𝑞𝑖𝑗 = 𝑞𝑗|𝑖, normalising their sum.
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Having the probabilities, it is possible to compute the gradient. In the original SNE

algorithm, weights are converted into probability by:

𝑞𝑗|𝑖 = 𝑞𝑖𝑗 = 𝑤𝑖𝑗∑︀
𝑘 𝑤𝑖𝑘

= 𝑤𝑖𝑗

𝑍𝑖

, (210)

where 𝑤𝑖𝑗 = exp
(︁
− ‖�⃗�𝑖 − �⃗�𝑗‖2

)︁
and 𝑤𝑖𝑗 = 𝑤𝑗𝑖. Renaming variables 𝑖, 𝑗 into 𝑘, 𝑙, the

objective function becomes (ERRICA, 2018):

𝐶 =
𝑛∑︁

𝑘=1

𝑛∑︁
𝑙=1

(𝑝𝑘𝑙 log 𝑝𝑘𝑙 − 𝑝𝑘𝑙 log 𝑝𝑘𝑙) =
𝑛∑︁

𝑘=1

𝑛∑︁
𝑙=1

(𝑝𝑘𝑙 log 𝑝𝑘𝑙 − 𝑝𝑘𝑙 log 𝑤𝑘𝑙 + 𝑝𝑘𝑙 log 𝑍𝑘) . (211)

Differentiating with respect to �⃗�𝑖, comes:

𝜕𝐶

𝜕�⃗�𝑖

= −
𝑛∑︁

𝑘=1

𝑛∑︁
𝑙=1

𝑝𝑘𝑙
𝜕

𝜕�⃗�𝑖

log 𝑤𝑘𝑙 +
𝑛∑︁

𝑘=1

𝑛∑︁
𝑙=1

𝑝𝑘𝑙
𝜕

𝜕�⃗�𝑖

𝑝𝑘𝑙 log 𝑍𝑘. (212)

It can be noted that, in the first term, the derivative is not zero when 𝑘 = 𝑖 or 𝑙 = 𝑖, which

leads to:

−
𝑛∑︁

𝑘=1

𝑛∑︁
𝑙=1

𝑝𝑘𝑙
𝜕

𝜕�⃗�𝑖

log 𝑤𝑘𝑙 = −
𝑛∑︁

𝑗=1

(︃
𝑝𝑖𝑗

𝜕

𝜕�⃗�𝑖

log 𝑤𝑖𝑗 + 𝑝𝑗𝑖
𝜕

𝜕�⃗�𝑖

log 𝑤𝑗𝑖

)︃
. (213)

Differentiating log 𝑤𝑖𝑗 with respect to �⃗�𝑖:

𝜕

𝜕�⃗�𝑖

log 𝑤𝑖𝑗 = −2 1
𝑤𝑖𝑗

𝑤𝑖𝑗 (�⃗�𝑖 − �⃗�𝑗) (214)

and the derivative of log 𝑤𝑗𝑖 with respect to �⃗�𝑖 is:

𝜕

𝜕�⃗�𝑖

log 𝑤𝑗𝑖 = −2 1
𝑤𝑗𝑖

𝑤𝑗𝑖 (�⃗�𝑗 − �⃗�𝑖) . (215)

Then, the first term of the gradient becomes:

−
𝑛∑︁

𝑗=1

(︃
−2𝑝𝑖𝑗

1
𝑤𝑖𝑗

𝑤𝑖𝑗 (�⃗�𝑖 − �⃗�𝑗) + 2𝑝𝑗𝑖
1

𝑤𝑗𝑖

𝑤𝑗𝑖 (�⃗�𝑗 − �⃗�𝑖)
)︃

=

−
𝑛∑︁

𝑗=1
(−2𝑝𝑖𝑗 (�⃗�𝑖 − �⃗�𝑗) − 2𝑝𝑗𝑖 (�⃗�𝑖 − �⃗�𝑗)) = 2

𝑛∑︁
𝑗=1

(𝑝𝑖𝑗 + 𝑝𝑗𝑖) (�⃗�𝑖 − �⃗�𝑗) . (216)

In the second term, 𝑍𝑘 does not depend on 𝑙, and can therefore be removed from the inner

summation:

𝑛∑︁
𝑘=1

𝑛∑︁
𝑙=1

𝑝𝑘𝑙
𝜕

𝜕�⃗�𝑖

log 𝑍𝑘 =
𝑛∑︁

𝑘=1

𝜕

𝜕�⃗�𝑖

log 𝑍𝑘

𝑛∑︁
𝑙=1

𝑝𝑘𝑙 =
𝑛∑︁

𝑘=1

𝜕

𝜕�⃗�𝑖

log 𝑍𝑘, (217)

as the sum of elements of 𝑃𝑘 (a row of matrix 𝑃 ) is one. Replacing variable 𝑘 by 𝑗 and

differentiating the logarithm, comes:

𝑛∑︁
𝑗=1

1
𝑍𝑗

𝑛∑︁
𝑘=1

𝜕𝑤𝑗𝑘

𝜕�⃗�𝑖

. (218)
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Since the partial derivative is not zero only when 𝑘 = 𝑖 or 𝑙 = 𝑖, it can be written:

𝑛∑︁
𝑗=1

[︃
1
𝑍𝑗

𝜕𝑤𝑗𝑖

𝜕�⃗�𝑖

+ 1
𝑍𝑖

𝜕𝑤𝑖𝑗

𝜕�⃗�𝑖

]︃
. (219)

Differentiating leads to:

𝑛∑︁
𝑗=1

(︃
1
𝑍𝑗

2𝑤𝑗𝑖 (�⃗�𝑗 − �⃗�𝑖)
)︃

−
𝑛∑︁

𝑗=1

(︂ 1
𝑍𝑖

𝑤𝑖𝑗 (�⃗�𝑖 − �⃗�𝑗)
)︂

=

− 2
𝑛∑︁

𝑗=1

(︃
𝑤𝑗𝑖

𝑍𝑗

(�⃗�𝑖 − �⃗�𝑗)
)︃

− 2
𝑛∑︁

𝑗=1

(︂
𝑤𝑖𝑗

𝑍𝑖

(�⃗�𝑖 − �⃗�𝑗)
)︂

= −2
𝑛∑︁

𝑗=1
(𝑞𝑗𝑖 + 𝑞𝑖𝑗) (�⃗�𝑖 − �⃗�𝑗) . (220)

Finally, combining equations (216) and (220), comes:

𝜕𝐶

𝜕�⃗�𝑖

= 2
𝑛∑︁

𝑗=1
(𝑝𝑖𝑗 + 𝑝𝑗𝑖) (�⃗�𝑖 − �⃗�𝑗) − 2

𝑛∑︁
𝑗=1

(𝑞𝑗𝑖 + 𝑞𝑖𝑗) (�⃗�𝑖 − �⃗�𝑗)

= 2
𝑛∑︁

𝑗=1
(𝑝𝑖𝑗 − 𝑞𝑖𝑗 + 𝑝𝑗𝑖 − 𝑞𝑗𝑖) (�⃗�𝑖 − �⃗�𝑗) . (221)

2.10.3 Limitations of Stochastic Neighbour Embedding

SNE, although constructing reasonably fine visualisations, is harmed by a hard to

optimise cost function and a “crowding problem”. This can be summarised as: the available

area in a low dimension map to position the points is not large enough in comparison

to the available area for close points, that is, to adequately model small distances in

the map, most distant points would have to be too scattered. The t-SNE algorithm

aims to mitigate these problems using a long-tail distribution in the low dimension space

(MAATEN; HINTON, 2008).

2.10.4 Calculating gradient in 𝑡-Distributed Stochastic Neighbour Em-

bedding

The cost function of t-SNE differs from that of SNE in two ways: it uses a symmetrised

version of the SNE cost function with simpler gradients (COOK et al., 2007) and a Student’s

𝑡 distribution to compute the similarity between two points in the low dimensional space

instead of a Gaussian. An alternative to minimising the sums of KL-divergences between

conditional probabilities 𝑝𝑗|𝑖 and 𝑞𝑗|𝑖 is minimising a single divergence over joint probability

distributions 𝑃 , in the high dimension space, and 𝑄, in the low (MAATEN; HINTON,

2008):

𝐶 = 𝐾𝐿 (𝑃‖𝑄) =
∑︁

𝑖

∑︁
𝑗

𝑝𝑖𝑗 log 𝑝𝑖𝑗

𝑞𝑖𝑗

, (222)
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where 𝑝𝑖𝑖 = 𝑞𝑖𝑖 = 0. This type of SNE, named symmetrical for having 𝑝𝑖𝑗 = 𝑝𝑗𝑖 and

𝑞𝑖𝑗 = 𝑞𝑗𝑖, ∀𝑖, 𝑗, has pairwise similarities in the high dimension map 𝑝𝑖𝑗 given by:

𝑝𝑖𝑗 =
exp

(︂
−‖𝑥𝑖−𝑥𝑗‖2

2𝜎2

)︂
∑︀

𝑘 ̸=𝑙 exp
(︁
−‖𝑥𝑘−𝑥𝑙‖2

2𝜎2

)︁ , (223)

where the sum of the denominator of normalisation involves all pairs of points, not only

those connected to �⃗�𝑖, as in SNE.

Using the Student’s 𝑡 distribution with one degree of freedom, joint probabilities 𝑞𝑖𝑗

are defined as:

𝑞𝑖𝑗 =

(︁
1 + ‖�⃗�𝑖 − �⃗�𝑗‖2

)︁−1

∑︀
𝑘 ̸=𝑙

(︁
1 + ‖�⃗�𝑘 − �⃗�𝑙‖2

)︁−1 =
𝑤−1

𝑖𝑗∑︀
𝑘 ̸=𝑙 𝑤−1

𝑘𝑙

=
𝑤−1

𝑖𝑗

𝑍
. (224)

For the first term of the gradient, it can be noted that the derivative is non-zero when

∀𝑗, 𝑘 = 𝑖 or 𝑙 = 𝑖, and that 𝑝𝑖𝑗 = 𝑝𝑗𝑖 and 𝑞𝑖𝑗 = 𝑞𝑗𝑖, which leads to:

−
𝑛∑︁

𝑘=1

𝑛∑︁
𝑙=1

𝑝𝑘𝑙
𝜕

𝜕�⃗�𝑖

log 𝑤−1
𝑘𝑙 = −

𝑛∑︁
𝑗=1

(︃
𝑝𝑖𝑗

𝜕

𝜕�⃗�𝑖

log 𝑤𝑖𝑗
−1 + 𝑝𝑗𝑖

𝜕

𝜕�⃗�𝑖

log 𝑤−1
𝑗𝑖

)︃

= −2
𝑛∑︁

𝑗=1
𝑝𝑖𝑗

𝜕

𝜕�⃗�𝑖

log 𝑤−1
𝑖𝑗 . (225)

The derivative of reverse weight is:

𝜕𝑤−1
𝑖𝑗

𝜕�⃗�𝑖

= −2𝑤−2
𝑖𝑗 (�⃗�𝑖 − �⃗�𝑗) , (226)

therefore the first term of the gradient is:

4
𝑛∑︁

𝑗=1
𝑝𝑖𝑗𝑤

−1
𝑖𝑗 (�⃗�𝑖 − �⃗�𝑗) . (227)

To differentiate the second term of the gradient, it is assumed that 𝑍 depends on neither

𝑘 nor 𝑙, and that the sum of probabilities equals one:

𝑛∑︁
𝑘=1

𝑛∑︁
𝑙=1

𝑝𝑘𝑙
𝜕

𝜕�⃗�𝑖

log 𝑍 = 𝜕

𝜕�⃗�𝑖

log 𝑍
𝑛∑︁

𝑘=1

𝑛∑︁
𝑙=1

𝑝𝑘𝑙 = 𝜕

𝜕�⃗�𝑖

log 𝑍 = 𝜕

𝜕�⃗�𝑖

log 𝑍

= 1
𝑍

𝜕

𝜕�⃗�𝑖

𝑍 = 1
𝑍

𝑛∑︁
𝑘=1

𝑛∑︁
𝑙=1

𝜕

𝜕�⃗�𝑖

𝑤−1
𝑘𝑙 . (228)

Again, the derivative is non-zero when ∀𝑗, 𝑘 = 𝑖 or 𝑙 = 𝑖, that is:

1
𝑍

𝑛∑︁
𝑘=1

𝑛∑︁
𝑙=1

𝜕

𝜕�⃗�𝑖

𝑤−1
𝑘𝑙 = 1

𝑍

𝑛∑︁
𝑗=1

(︃
𝜕

𝜕�⃗�𝑖

𝑤−1
𝑖𝑗

𝜕

𝜕�⃗�𝑖

𝑤−1
𝑗𝑖

)︃
. (229)

As 𝑤𝑖𝑗 = 𝑤𝑗𝑖, comes:

1
𝑍

𝑛∑︁
𝑗=1

(︃
𝜕

𝜕�⃗�𝑖

𝑤−1
𝑖𝑗

𝜕

𝜕�⃗�𝑖

𝑤−1
𝑗𝑖

)︃
= 2

𝑛∑︁
𝑗=1

1
𝑍

𝜕

𝜕�⃗�𝑖

𝑤−1
𝑖𝑗 . (230)
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From equation (226), one can write:

2
𝑛∑︁

𝑗=1

1
𝑍

𝜕

𝜕�⃗�𝑖

𝑤−1
𝑖𝑗 = −4

𝑛∑︁
𝑗=1

𝑤−1
𝑖𝑗

𝑍
𝑤−1

𝑖𝑗 (�⃗�𝑖 − �⃗�𝑗) = −4
𝑛∑︁

𝑗=1
𝑞𝑖𝑗𝑤

−1
𝑖𝑗 (�⃗�𝑖 − �⃗�𝑗) . (231)

Finally, combining equations (227) and (231) leads to the gradient for an iteration of

t-SNE:

𝜕𝐶

𝜕�⃗�𝑖

= 4
𝑛∑︁

𝑗=1
(𝑝𝑖𝑗 − 𝑞𝑖𝑗) 𝑤−1

𝑖𝑗 (�⃗�𝑖 − �⃗�𝑗) = 4
𝑛∑︁

𝑗=1
(𝑝𝑖𝑗 − 𝑞𝑖𝑗)

(︁
1 + ‖�⃗�𝑖 − �⃗�𝑗‖2

)︁−1
(�⃗�𝑖 − �⃗�𝑗) . (232)

2.11 Uniform Manifold Approximation and Projection

A method with many similarities to t-SNE is Uniform Manifold Approximation and

Projection (UMAP), based on the assumptions that there is a distance measure according

to which data are approximately uniformly distributed in the manifold and that this is

locally connected. To ensure the validity of the first assumption, a measure that approaches

the distances of the 𝑘 nearest points to a given set 𝑋 centred in 𝑋𝑖 is chosen. This creates

a different notion of distance for each 𝑋𝑖 which must be united in a consistent global

structure. To ensure the second assumption, these metric spaces must be converted into

simplicial fuzzy sets. However, from a computational standpoint, this can be described as

a weighed graph (MCINNES; HEALY; MELVILLE, 2020).

Like other algorithms based on graphs with 𝑘 neighbours, UMAP can be described

in steps. In the first one, the weighed graph with 𝑘 neighbours is constructed and in the

second, the graph layout in low dimension is calculated. The UMAP algorithm presumes

the validity of three axioms:

1. A manifold exists in which data are uniformly distributed.

2. The underlying manifold of interest is locally connected.

3. The main goal is to preserve the topological structure of this manifold.

All algorithms that use a mathematical structure such as that of a graph with 𝑘 neighbours

to approximate a manifold have a similar basic structure (MCINNES; HEALY; MELVILLE,

2020):

❏ Graph Construction:

1. Construct a weighed graph with 𝑘 neighbours;

2. Apply a transform on the vertices to ambient local distance;

3. Solve the inherent symmetry to the graph with 𝑘 neighbours.

❏ Graph Layout:



2.11. Uniform Manifold Approximation and Projection 71

1. Define an objective function that preserves desired features of this graph with

𝑘 neighbours;

2. Find a representation in low dimension that optimises this objective function.

Many DR algorithms can be divided into these steps as they are fundamental for a

particular class of solutions.

2.11.1 Graph Construction

Constructing the graph with 𝑘 neighbours can be considered the first step of UMAP.

Let 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑁} be the input dataset, with a metric (or dissimilarity measure)

𝑑 : 𝑋 × 𝑋 → R≥0. Given an input hyper-parameter 𝑘, for each 𝑥𝑖 is calculated a set

{𝑥𝑖1 , 𝑥𝑖2 , . . . , 𝑥𝑖𝑘
} of the KNN of 𝑥𝑖 under metric 𝑑. This calculation can be done using

any algorithm for search of nearest neighbours, being the one chosen in this case the

descending nearest neighbour algorithm (DONG; MOSES; LI, 2011).

For each 𝑥𝑖, 𝜌𝑖 and 𝜎𝑖 are defined. Let:

𝜌𝑖 = min
(︁
𝑑
(︁
𝑥𝑖, 𝑥𝑖𝑗

)︁
| 1 ≤ 𝑗 ≤ 𝑘, 𝑑

(︁
𝑥𝑖, 𝑥𝑖𝑗

)︁
> 0

)︁
, (233)

and 𝜎𝑖 defined as a value such that:

𝑛∑︁
𝑗=1

exp
⎛⎝− max

(︁
0, 𝑑

(︁
𝑥𝑖, 𝑥𝑖𝑗

)︁
− 𝜌𝑖

)︁
𝜎𝑖

⎞⎠ = log2 (𝑘) . (234)

The choice of 𝜌𝑖 guarantees that 𝑥𝑖 is connected to at least one other data point with

an edge of weight 1, which equals to the fuzzy simplicial set being locally connected in

𝑥𝑖. The choice of 𝜎𝑖 corresponds to a (smooth) normalisation factor, defining the local

Riemannian metric in the point 𝑥𝑖.

Then can be defined a weighed graph �̄� = (𝑉, 𝐸, 𝑤), the vertices 𝑉 of which are the

𝑋 set. Thus the 𝐸 =
{︁(︁

𝑥𝑖, 𝑥𝑖𝑗

)︁
| 1 ≤ 𝑗 ≤ 𝑘, 1 ≤ 𝑖 ≤ 𝑁

}︁
set of directed edges is formed,

and the weight function 𝑤 defined as:

𝑤
(︁(︁

𝑥𝑖, 𝑥𝑖𝑗

)︁)︁
= exp

⎛⎝− max
(︁
0, 𝑑

(︁
𝑥𝑖, 𝑥𝑖𝑗

)︁
− 𝜌𝑖

)︁
𝜎𝑖

⎞⎠ . (235)

For a given point 𝑥𝑖, exists an inducted graph of 𝑥𝑖 and edges inbound to 𝑥𝑖. The weight

of an edge can be considered as the probability that this edge exists. Given this set of

local graphs (represented as a single directed graph), a method to combine them into a

unified topological representation is needed. Let 𝐴 be the weighed adjacency matrix of �̄�,

considering the symmetric matrix:

𝐵 = 𝐴 + 𝐴⊤ − 𝐴 ∘ 𝐴⊤, (236)

where ∘ is the Hadamard (or pointwise) product. If the value of 𝐴𝑖𝑗 is interpreted as the

probability of directed edge from 𝑥𝑖 to 𝑥𝑗 existing, then 𝐵𝑖𝑗 is the probability of at least
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one directed edge (from 𝑥𝑖 to 𝑥𝑗 and from 𝑥𝑗 to 𝑥𝑖) existing. Graph 𝐺 of UMAP is, then,

an undirected graph with its adjacency matrix is given by 𝐵.

2.11.2 Graph Layout

In practice, UMAP uses a force directed graph layout algorithm in low dimension

space, which uses a set of attractive forces applied along the edges and a set of repulsive

forces among the vertices. Every force directed layout algorithm needs a description of

attractive and repulsive forces, and is applied iteratively over vertices and edges, which

results in a non-convex optimisation problem. Convergence to a local minimum is assured

by slowly reducing attractive and repulsive forces in a similar way to that used in simulated

annealing (MCINNES; HEALY; MELVILLE, 2020).

In UMAP, attractive force between two vertices 𝑖 and 𝑗 in coordinates �⃗�𝑖 and �⃗�𝑗,

respectively, is determined by:

−2𝑎𝑏 ‖�⃗�𝑖 − �⃗�𝑗‖2(𝑏−1)
2

1 + ‖�⃗�𝑖 − �⃗�𝑗‖2
2

𝑤 ((𝑥𝑖, 𝑥𝑖)) (�⃗�𝑖 − �⃗�𝑗) , (237)

where 𝑎 and 𝑏 are hyper-parameters. Repulsive forces are calculated by sampling due to

computational restrictions. Hence, when an attractive force is applied along an edge, a

vertex of this edge is repelled by a sampling of the other vertices. Repulsive force is given

by:
2𝑏(︁

𝜖 + ‖�⃗�𝑖 − �⃗�𝑗‖2
2

)︁ (︁
1 + 𝑎 ‖�⃗�𝑖 − �⃗�𝑗‖2𝑏

2

)︁ (1 − 𝑤 ((𝑥𝑖, 𝑥𝑗))) (�⃗�𝑖 − �⃗�𝑗) , (238)

where 𝜖 is a small value to prevent division by zero.

These forces derive from the gradient that minimises cross entropy of edges between

the weighed graph 𝐺 and an equivalent 𝐻 constructed from points {�⃗�𝑖}𝑖=1...𝑁 . That is, one

wishes to position points 𝑦𝑖 in a way that the weighed graph induced by them approaches

𝐺 as much as possible, being the difference between weighed graphs measured by the

total cross entropy over all probabilities of existence of the edges. Since weighed graph

𝐺 captures the topology of original data, equivalent 𝐻 constructed from points {�⃗�𝑖}1...𝑁

approaches the topology as much as optimisation allows, and therefore provides a good

representation in low dimension of the general topology of data.

2.12 Locality Preserving Projections

At first, Locality Preserving Projections (LPP) seems to be the same as LE, but there is

an important difference: as LE is a ML method, it suffers from the out-of-sample problem,

that is, once the low dimension representation of data is found, any new data points

analysed after that cannot be mapped directly to the low dimension representation (these

new data points would have to be incorporated in the dataset and LE rerun in this larger
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dataset). LPP was proposed as a way to avoid this out-of-sample problem. Basically, it

linearises the LE method to compute a projection matrix 𝑊 that can be used to map

any new data points to the low dimension space. Therefore, in summary, LPP could be

understood as a linear approximation of LE. In practice, both use the Laplacian matrix of

the input graph, but in different ways: in LPP the Laplacian matrix must be multiplied by

the data matrix before spectral decomposition, leading to a slightly higher computational

cost. However, with the advantage of overcoming the out-of-sample problem, overall, LPP

becomes less costly than multiple executions of LE.

The goal is to find a smooth map that preserves locality, similar to the LE approach.

That is, proximity in the graph must imply proximity in the line. It can be demonstrated

that, if the following criterion is minimised, map �⃗� = [𝑦1, 𝑦2, . . . , 𝑦𝑛] is optimal in that

sense (XIAOFEI; NIYOGI, 2003):

�⃗�𝑇 𝐿�⃗� = 1
2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑤𝑖𝑗 (𝑦𝑖 − 𝑦𝑗)2 , (239)

where 𝐿 is the Laplacian matrix of the KNN graph induced by the 𝑚 × 𝑛 data matrix

𝑋 = [�⃗�1, �⃗�2, . . . , �⃗�𝑛]. The edge weights 𝑤𝑖𝑗 are a major factor in the optimisation problem.

The intuition behind this equations is that proximity in the graph must imply in proximity

in the resulting embedding. In this method, the objective is to find a better measure than

the regular Euclidean distance, by employing the Probabilistic Nearest Neighbours (PNN)

method, knowing that the Euclidean distance is sensitive to outliers in data.

In LPP, it is assumed that the relationship between �⃗�𝑖 ∈ 𝑅𝑚 and 𝑦𝑖 ∈ 𝑅 is linear, that

is, 𝑦𝑖 = �⃗�𝑇 �⃗�𝑖, where �⃗� ∈ 𝑅𝑚 is a column vector. Hence, the objective function is:

�⃗�𝑇 𝐿�⃗� = 1
2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑤𝑖𝑗

(︁
�⃗�𝑇 �⃗�𝑖 − �⃗�𝑇 �⃗�𝑗

)︁2
= 1

2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑤𝑖𝑗

[︁
𝑎𝑇 �⃗�𝑖�⃗�

𝑇
𝑖 �⃗� − 2�⃗�𝑇 �⃗�𝑖�⃗�

𝑇
𝑗 �⃗� + �⃗�𝑇 �⃗�𝑗�⃗�

𝑇
𝑗 �⃗�
]︁

= 1
2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

2𝑤𝑖𝑗 �⃗�
𝑇 �⃗�𝑖�⃗�

𝑇
𝑖 �⃗� − 1

2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

2𝑤𝑖𝑗 �⃗�
𝑇 �⃗�𝑖�⃗�

𝑇
𝑗 �⃗�

=
𝑛∑︁

𝑖=1

𝑛∑︁
𝑗=1

𝑤𝑖𝑗 �⃗�
𝑇 �⃗�𝑖�⃗�

𝑇
𝑖 �⃗� −

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑤𝑖𝑗 �⃗�
𝑇 �⃗�𝑖�⃗�

𝑇
𝑗 �⃗�. (240)

Since 𝑑𝑖 = ∑︀𝑛
𝑗=1 𝑤𝑖𝑗, comes:

�⃗�𝑇 𝐿�⃗� =
𝑛∑︁

𝑖=1
�⃗�𝑇 �⃗�𝑖𝑑𝑖�⃗�

𝑇
𝑖 �⃗� −

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

�⃗�𝑇 �⃗�𝑖𝑤𝑖𝑗�⃗�
𝑇
𝑗 �⃗�, (241)

which is equivalent to:

�⃗�𝑇 𝐿�⃗� = �⃗�𝑇 𝑋𝐷𝑋𝑇 �⃗� − �⃗�𝑇 𝑋𝑊𝑋𝑇 �⃗�, (242)

where 𝑋 is the 𝑚 × 𝑛 data matrix, 𝐷 is the 𝑛 × 𝑛 diagonal matrix of degrees, and 𝑊 is

the 𝑛 × 𝑛 weights matrix. Knowing that 𝐿 = 𝐷 − 𝑊 , finally:

�⃗�𝑇 𝐿�⃗� = �⃗�𝑇 𝑋 (𝐷 − 𝑊 ) 𝑋𝑇 �⃗� = �⃗�𝑇 𝑋𝐿𝑋𝑇 �⃗�. (243)
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Thus, the following constrained minimisation problem must be solved:

arg min
�⃗�

�⃗�𝑇 𝑋𝐿𝑋𝑇 �⃗� subject to �⃗�𝑇 𝑋𝐷𝑋𝑇 �⃗� = 1, (244)

where the constraint is a general form to express that the norm of vector �⃗� is a constant (as

the direction of the vector is important in this case, not its magnitude). The Lagrangian

function is given by:

𝐿 (⃗𝑎, 𝜆) = �⃗�𝑇 𝑋𝐿𝑋𝑇 �⃗� − 𝜆
(︁
�⃗�𝑇 𝑋𝐷𝑋𝑇 �⃗� − 1

)︁
. (245)

Differentiating with respect to vector �⃗� and setting the result to zero:

𝜕

𝜕�⃗�
𝐿 (⃗𝑎, 𝜆) = 𝑋𝐿𝑋𝑇 �⃗� − 𝜆𝑋𝐷𝑋𝑇 �⃗� = 0. (246)

Which leads to a generalised eigenvectors problem:

𝑋𝐿𝑋𝑇 �⃗� = 𝜆𝑋𝐷𝑋𝑇 �⃗�, (247)(︁
𝑋𝐷𝑋𝑇

)︁−1
𝑋𝐿𝑋𝑇 �⃗� = 𝜆�⃗�, (248)

showing that, in order to minimise the objective function, vector 𝑎 must be selected as the

least eigenvector of matrix
(︁
𝑋𝐷𝑋𝑇

)︁−1
𝑋𝐿𝑋𝑇 . The multivariate version of the problem

considers a 𝑚 × 𝑑 matrix 𝐴 where each column �⃗�𝑗 represents a direction in which data is

to be projected: (︁
𝑋𝐷𝑋𝑇

)︁−1 (︁
𝑋𝐿𝑋𝑇

)︁
𝐴 = 𝜆𝐴. (249)

In this situation must be chosen the 𝑑 eigenvectors associated with the 𝑑 least eigenvalues

of (𝑋𝐷𝑋𝑇 )−1 𝑋𝐿𝑋𝑇 to build the columns of matrix 𝐴. It must be noted that the

transformation matrix 𝐴 has 𝑚 rows and 𝑑 columns, while the output matrix 𝑌 has 𝑑 rows

and 𝑛 columns, implying that each column �⃗�𝑗 for 𝑗 = 1, 2, . . . , 𝑛 stores the coordinates of

the 𝑗-th sample in the output space (after DR).

2.12.1 Graph-Based Learning

Graph-based learning methods are usually organised in two categories: graph construc-

tion and label inference. In this method, the focus is on the graph construction process. To

build a graph that is a discrete approximation of a manifold, there are two basic steps: first,

to define, from the set of all possible edges, which of them are to be created, and second, to

assign a weight to every edge created in the previous step. In the following, two strategies

for graph construction shall be discussed: Clustering with Adaptive Neighbours (CAN)

(NIE; WANG; HUANG, 2014) and PNN (JUNLIANG; BING; CHENG, 2020).
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2.12.1.1 Clustering with Adaptive Neighbours

As the name suggests, this graph construction method is more suitable for data

clustering than classification. Let 𝑠𝑖𝑗 denote the probability that sample �⃗�𝑗 is a neighbour

of �⃗�𝑖. Then, vector �⃗�𝑖 ∈ 𝑅𝑛 is composed by the probabilities of each sample in the

dataset being a neighbour of �⃗�𝑖. Intuitively, the smaller the distance 𝑑 (�⃗�𝑖, �⃗�𝑗), greater the

probability 𝑠𝑖𝑗 should be. The optimal probabilities for a single sample �⃗�𝑖 are given by the

solution to the following optimisation problem:

min 𝐽 (�⃗�𝑖) =
𝑛∑︁

𝑗=1

(︁
‖�⃗�𝑖 − �⃗�𝑗‖2 𝑠𝑖𝑗 + 𝛾𝑖𝑠

2
𝑖𝑗

)︁
subject to �⃗�𝑇

𝑖 1⃗ = 1, (250)

where 0 ≤ 𝑠𝑖𝑗 ≤ 1, 𝑛 denotes the number of samples, 𝛾𝑖 > 0 is a regularisation parameter,

and the constraint is necessary to enforce that the sum of probabilities equals one. The

first term of the objective function expresses that the edge weights are penalised by the

Euclidean distance between the vertices, while the second term serves a smooth constraint

about the solution, attempting to assess if all samples can be neighbours of �⃗�𝑖 with roughly

the same probability. Clearly, none of the limiting cases are especially interesting, but the

goal is to find a good trade-off between data fidelity and prior knowledge.

Let 𝑑𝑖 be the vector of squared Euclidean distances between the 𝑖-th sample �⃗�𝑖 and

all the other samples in the dataset. Then, the optimisation problem can be expressed in

terms of a vector norm:

min 𝐽 (�⃗�𝑖) =
⃦⃦⃦⃦
⃦�⃗�𝑖 + 1

2𝛾𝑖

𝑑𝑖

⃦⃦⃦⃦
⃦

2

subject to �⃗�𝑇
𝑖 1⃗ = 1, (251)

where 0 ≤ 𝑠𝑖𝑗 ≤ 1.

The Lagrangian function incorporates all the constraints into the objective function,

leading to:

𝐿
(︁
�⃗�𝑖, 𝜂, 𝛽𝑖

)︁
= 1

2

⃦⃦⃦⃦
⃦�⃗�𝑖 + 1

2𝛾𝑖

𝑑𝑖

⃦⃦⃦⃦
⃦

2

− 𝜂
(︁
�⃗�𝑇

𝑖 1⃗ − 1
)︁

+ 𝛽𝑇
𝑖 �⃗�𝑖, (252)

where 𝜂 and 𝛽𝑖 are the Lagrange multipliers. Differentiating with respect to 𝑠𝑖𝑗 and setting

the result to zero leads to:

𝑠𝑖𝑗 = − 𝑑𝑖𝑗

2𝛾𝑖

+ 𝜂, (253)

where 𝑑𝑖𝑗 = ‖�⃗�𝑖 − �⃗�𝑗‖2. To preserve the local geometric properties of the manifold, it is

recommended that each sample is linked only to a fixed number 𝑘 < 𝑛 of neighbours.

Without loss of generality, one can assume the distances in 𝑑𝑖 are sorted in ascending

order.

Considering that only the first 𝑘 components in the optimal �⃗�𝑖 are non-zero, it can be

written:

− 𝑑𝑖𝑘

2𝛾𝑖

+ 𝜂 > 0, (254)

−𝑑𝑖𝑘+1

2𝛾𝑖

+ 𝜂 = 0. (255)
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By the constraint that the sum of all the elements of �⃗�𝑖 must equal (since they denote

probabilities) one, comes:
𝑘∑︁

𝑗=1

(︃
− 𝑑𝑖𝑗

2𝛾𝑖

+ 𝜂

)︃
= 1. (256)

From here, it can be shown that this minimisation problem has a closed form solution,

given by (NIE; WANG; HUANG, 2014):

𝑠𝑖𝑗 = 𝑑𝑖𝑘+1 − 𝑑𝑖𝑗

𝑘𝑑𝑖𝑘+1 −∑︀𝑘
𝑗=1 𝑑𝑖𝑗

, (257)

where the vector 𝑑𝑖 stores all the distances from �⃗�𝑖 to other samples in ascending order.

2.12.1.2 Probabilistic Nearest Neighbours

The PNN approach is more suitable for classification problems in label propagation

algorithms (JUNLIANG; BING; CHENG, 2020). Intuitively, the reason is that, the larger

the 𝑠𝑖𝑗, more influence the sample �⃗�𝑖 has on the labelling of a neighbouring sample �⃗�𝑗. In

classification problems, ideally, the variance of the propagation probabilities should be

large enough to reflect the decision boundaries defined by samples belonging to different

classes. To achieve this goal, a min-max normalisation scheme is employed, which is usual

to normalise data. After this transformation, all variables have the exact same scale,

converting the data into the [0, 1] interval. According to this process, the normalisation of

a vector �⃗�𝑖 is:

𝑥*
𝑖𝑗 = 𝑥𝑖𝑗 − min (�⃗�𝑖)

max (�⃗�𝑖) − min (�⃗�𝑖)
. (258)

The main difference between CAN and PNN is the computation of 𝛾𝑖, which is:

𝛾𝑖 = 𝑑𝑖𝑘+1 − 𝑑𝑖1

𝑑𝑖𝑗 − 𝑑𝑖1

⎛⎝𝑘

2𝑑𝑖𝑘+1 − 1
2

𝑘∑︁
𝑗=1

𝑑𝑖𝑗

⎞⎠ . (259)

It has been shown that the optimal probabilities in the PNN method are given by

(JUNLIANG; BING; CHENG, 2020):

𝑠𝑖𝑗 = 𝑑𝑖𝑘+1 − 𝑑𝑖𝑗

𝑑𝑖𝑘+1 − 𝑑𝑖1
, (260)

where the vector 𝑑𝑖 stores all the distances from �⃗�𝑖 to other samples in ascending order. It

is worth mentioning that the computational complexity of the KNN graph construction is

𝑂 (𝑚𝑛2) (quadratic), where 𝑚 is the dimension of the input space and 𝑛 is the number

of samples. According to the authors, CAN and PNN methods, on the other hand, have

closed form solutions, leading to an 𝑂 (𝑛) (linear) computational complexity (JUNLIANG;

BING; CHENG, 2020).
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2.13 Evaluating Results Over Traditional Methods’

To ascertain the extent of the proposed methods’ relevance in comparison to the

traditional ones, it is necessary to test them according to some metric. Thus, some tests

were considered as ways to evaluate the effectiveness of proposed methods when applied

over the same datasets as the originals. These are described in this section.

2.13.1 Silhouette Coefficient

Silhouette Coefficient (SC) is a method for interpretation and validation of consistency

in data clusters (ROUSSEEUW, 1987). Let 𝐶𝑖 be the 𝑖-th cluster, for each data point

𝑖 ∈ 𝐶𝑖, 𝑎 (𝑖) is the mean distance between 𝑖 and every other point in the same cluster 𝐶𝑖:

𝑎 (𝑖) = 1
|𝐶𝑖| − 1

∑︁
𝑗∈𝐶𝑖,𝑗 ̸=𝑖

𝑑 (𝑖, 𝑗) , (261)

where 𝑑 (𝑖, 𝑗) is the distance between data points 𝑖 and 𝑗 in cluster 𝐶𝑖. One can interpret

𝑎 (𝑖) as a measure of how adequate the assignment of a data point 𝑖 is to its cluster (lower

is better). Thus, mean dissimilarity of a data point 𝑖 to a cluster 𝐶 is defined as the

average of all distances from 𝑖 to every point in 𝐶. For each point 𝑖, 𝑏 (𝑖) is the least mean

distance from 𝑖 to all points in any cluster it does not belong to:

𝑏 (𝑖) = min
𝑘 ̸=𝑖

1
|𝐶𝑘|

∑︁
𝑗∈𝐶𝑘

𝑑 (𝑖, 𝑗) . (262)

The cluster with least mean dissimilarity is a neighbour of 𝑖, as it is the second best choice

for clustering point 𝑖. Let:

𝑠 (𝑖) = 𝑏 (𝑖) − 𝑎 (𝑖)
max (𝑎 (𝑖) , 𝑏 (𝑖)) , if |𝐶𝑖| ≤ 1, (263)

the silhouette value of data point 𝑖 is:

𝑠 (𝑖) = 0, if |𝐶𝑖| = 1. (264)

Combining both definitions, comes:

𝑠 (𝑖) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 − 𝑎(𝑖)

𝑏(𝑖) , if 𝑎 (𝑖) < 𝑏 (𝑖)

0, if 𝑎 (𝑖) = 𝑏 (𝑖)
𝑏(𝑖)
𝑎(𝑖) − 1, if 𝑎 (𝑖) > 𝑏 (𝑖)

. (265)

It can be noted that −1 ≤ 𝑠 (𝑖) ≤ 1. A 𝑠 (𝑖) close to one means that data are properly

clustered. If 𝑠 (𝑖) tends to minus one, 𝑖 must be grouped in the neighbouring cluster

instead. A 𝑠 (𝑖) close to zero means that the point is in the border between two natural

clusters. Mean 𝑠 (𝑖) of all points in a cluster is the measure of how closely grouped are

all points in the cluster. Therefore, mean 𝑠 (𝑖) of all data in the set, known as SC, is a

measure of how adequate the clustering is.
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Table 1 – Confusion matrix.

p n

Y True Positives False Positives
N False Negatives True Negatives

Source: (FAWCETT, 2006).

2.13.2 Confusion Matrix and Classification Accuracy

Considering a classification problem with two classes, an instance 𝐼 can be mapped to

a set object {𝑝, 𝑛} with positive and negative class labels, respectively. Mapping instances

to predicted classes defines a classification model, or classifier. In order to distinguish

between real and predicted classes, labels {𝑌, 𝑁} are used for class predictions produced

by a model. Given a classifier and an instance, there are four possible results: if the

instance is positive and classified as positive, it counts as a true positive, and if classified

as negative, it is a false negative; if the instance is negative and classified as negative, it is

a true negative, and if classified as positive, it is a false positive. Given a classifier and

an instances set (test set), a 2 × 2 confusion matrix (also called contingency table) can

be constructed to represent the layout of instances. This matrix is the basis for many

common metrics (FAWCETT, 2006).

Table 1 presents a confusion matrix, where columns (with sums 𝑃 and 𝑁 , respectively)

represent true classes, and rows the predicted ones. Values in the main diagonal are correct

choices and the others errors (or confusion) in classification. Some of the metrics that can

be obtained from it are:

fp rate = 𝐹𝑃

𝑁
, (266)

tp rate = 𝑇𝑃

𝑃
, (267)

fn rate = 𝐹𝑁

𝑃
, (268)

tn rate = 𝑇𝑁

𝑁
, (269)

precision = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, (270)

accuracy = 𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
. (271)

True positive rate is also called hit, recall, or sensitivity, and false positives false alarm or

fall-out.

2.13.3 Friedman Test

The Friedman test (FRIEDMAN, 1937 apud DEMŠAR, 2006) ranks the algorithms for

each data set separately, the best performing algorithm getting the rank of 1, the second
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best rank 2, and so forth. In case of ties, average ranks are assigned. Let 𝑟𝑗
𝑖 be the rank of

the 𝑗-th algorithms on the 𝑖-th of 𝑁 data sets. The Friedman test compares the average

ranks of algorithms, 𝑅𝑗 = 1
𝑁

∑︀
𝑖 𝑟𝑗

𝑖 . Under the null-hypothesis, which states that all the

algorithms are equivalent and so their ranks 𝑅𝑗 should be equal, the Friedman statistic:

𝜒2
𝐹 = 12𝑁

𝑘 (𝑘 + 1)

⎡⎣∑︁
𝑗

𝑅2
𝑗 − 𝑘 (𝑘 + 1)2

4

⎤⎦ (272)

is distributed according to 𝜒2
𝐹 with 𝑘 − 1 degrees of freedom, when 𝑁 and 𝑘 are big

enough (as a rule of a thumb, 𝑀 > 10 and 𝑘 > 5). This statistic, however, was considered

undesirably conservative, and another was derived (DEMŠAR, 2006):

𝐹𝐹 = (𝑁 − 1) 𝜒2
𝐹

𝑁 (𝑘 − 1) − 𝜒2
𝐹

, (273)

which is distributed according to the 𝐹 -distribution with 𝑘 −1 and (𝑘 − 1) (𝑁 − 1) degrees

of freedom.

2.13.4 Nemenyi Test

If the null-hypothesis is rejected, one can proceed with a post-hoc test. The Nemenyi

test (NEMENYI, 1963 apud DEMŠAR, 2006) is used when all classifiers are compared to

one another. The performance of two classifiers is significantly different if the corresponding

average ranks differ by at least the critical difference:

𝐶𝐷 = 𝑞𝛼

√︃
𝑘 (𝑘 + 1)

6𝑁
, (274)

where critical values 𝑞𝛼 are based on the Studentised range statistic divided by
√

2.



80 Chapter 2. Theoretical Foundations



81

Chapter 3

Proposed Methods

In this chapter alternatives to the usage of shortest path to minimise distances between

points in 𝐺 are proposed. Particularly, by using information theory concepts, the adjacency

matrix can be treated as a probability distribution for a random variable. Thus, by

minimising its distance values, more accurate and computationally efficient results than

those found by differential and integral functions can be obtained. In general, the goal is to

use information theory-based measures (such as KL-divergence, Bhattacharyya, Hellinger,

and Cauchy-Schwarz) to construct modified versions of these methods, using a multivariate

parametric model for each class involved in the classification problem.

Using these measures may provide a dataset more adequate for the application of

those methods than the initial one, as they are based on probability distributions for the

occurrence of each datum. Thus, the algorithms are modified to provide possibly more

relevant results, observing the relationship between each data class and its impact on the

overall set. Further details about these methods are presented next.

3.1 Extending Manifold Learning Methods Using Stochastic

Distances

An initial approach to this problem is to replace the Euclidean distance used in regular

ML methods with the aforementioned stochastic distances. This section describes in

general terms how these methods can be altered to include these measures in an attempt

to improve their performance.
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3.1.1 Isometric Feature Mapping

For the ISOMAP algorithm, proposed methodology consists of modifying step 2

presented in section 2.7, including stochastic distances in the estimation of geodesic

distances matrix 𝐷𝐺 = {𝑑𝐺 (𝑖, 𝑗)}. To do so, initially one investigates the listed stochastic

distances in case where classes are mapped to a multivariate Gaussian distribution, with

the new distances matrix expressed as:

𝐷𝐺 = {𝛼𝑑𝐺 (𝑖, 𝑗) + (1 − 𝛼) 𝑑𝐸 (𝑖, 𝑗)} , (275)

that is, a convex combination of geodesic and stochastic distances between sample classes

𝑖 and 𝑗. It is also possible to assess the possibility of adapting the ES-ISOMAP method

using stochastic distances in the dissimilarity matrix (equation (130)). This way, one

expects to penalise neighbouring samples that belong to different classes.

3.1.2 Locally Linear Embedding

To extend the LLE algorithm, a modification to the calculation of the distances matrix

defined in SLLE (equation (168)) is proposed. Including stochastic distances, the new

matrix is:

Δ′ = Δ + 𝛼𝐷𝐸
𝑖𝑗Λ𝑖𝑗, (276)

where 𝐷𝐸
𝑖𝑗 is the stochastic distance between sample classes 𝑖 and 𝑗, with Λ𝑖𝑗 = 0 if 𝑥𝑖

and 𝑥𝑗 belong to the same class, and Λ𝑖𝑗 = 1 if they are in distinct classes. Using stochas-

tic distances, one expects to penalise samples belonging to different classes, increasing

dissimilarity between them.

3.1.3 Laplacian Eigenmaps

One way to adapt the LE algorithm would be altering the edge weights inserting a

term based on a stochastic distance. Therefore, equation (169), that can be written as:

𝑊𝑖𝑗 = exp
(︃

−‖𝑥𝑖 − 𝑥𝑗‖2

𝑡

)︃
= exp (−𝐷𝐺 (𝑥𝑖, 𝑥𝑗)) , (277)

where 𝐷𝐺 is the Gaussian distance between 𝑥𝑖 and 𝑥𝑗, becomes:

𝑊𝑖𝑗 = exp (− (𝐷𝐺 (𝑥𝑖, 𝑥𝑗) + 𝐷𝐸 (𝜔𝑖, 𝜔𝑗))) , (278)

being 𝐷𝐸 the stochastic distance, 𝜔𝑖 and 𝜔𝑗 classes in samples 𝑖 and 𝑗, respectively. If

𝑖 and 𝑗 are in the same class, 𝐷𝐸 (𝜔𝑖, 𝜔𝑗) = 0 and the weight is unchanged. If they are

in different classes, 𝐷𝐸 (𝜔𝑖, 𝜔𝑗) > 0, reducing similarity. Different distances can also be

conditioned to a parameter in a manner that results in the convex combination:

𝑊𝑖𝑗 = exp (− (𝛼𝐷𝐺 (𝑥𝑖, 𝑥𝑗) + (1 − 𝛼) 𝐷𝐸 (𝜔𝑖, 𝜔𝑗))) , 𝛼 ∈ [0, 1] . (279)

Moreover, other distributions can be used, such as multivariate Student’s 𝑡, for which new

distance formulas for the proper stochastic distances would need to be derived.
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3.2 Entropic Isometric Feature Mapping

A limitation of high dimensionality data analysis is the weak discriminating power

of the Euclidean metric. It has been shown that, as the number of features increases,

the degree of contrast provided by regular Euclidean distance becomes insufficient (LEE;

VERLEYSEN, 2007). A variation of ISOMAP defined in terms of relative entropy, or

KL-divergence, is, then, proposed. The main goal is to replace pairwise distances matrix 𝐷,

obtained from the KNN graph with edges weighed by Euclidean distances, by the entropic

distances matrix 𝐸, obtained from the KNN graph with edges weighed by symmetrised

KL-divergence between multivariate Gaussian distributions estimated from local patches.

It is known that KL-divergence (given by equation (31)) is not symmetric, therefore,

symmetrised KL-divergence must be calculated by:

𝐷sym
𝐾𝐿 (𝑝, 𝑞) = 1

2 [𝐷𝐾𝐿 (𝑝, 𝑞) + 𝐷𝐾𝐿 (𝑞, 𝑝)] , (280)

which has as closed form expression:

𝐷sym
𝐾𝐿 (𝑝, 𝑞) = 1

2

[︂1
2 Tr

[︁
Σ−1

1 Σ2 + Σ−1
2 Σ1

]︁
+ 1

2 (�⃗�1 − �⃗�2)𝑇 Σ−1
1 (�⃗�1 − �⃗�2)

+1
2 (�⃗�2 − �⃗�1)𝑇 Σ−1

2 (�⃗�2 − �⃗�1) − 𝑑
]︂

. (281)

The input matrix is denoted by 𝑋 = {�⃗�1, �⃗�2, . . . , �⃗�𝑛} , �⃗�𝑖 ∈ R𝑚. A KNN graph

𝐺 = (𝑉, 𝐸), with |𝑉 | = 𝑛, can be constructed, connecting each sample �⃗�𝑖 with its KNN.

Since the neighbourhood can be approximated by a linear patch, this step uses Euclidean

distance as similarity. Let a patch 𝑃𝑖 and set {�⃗�𝑖} ∪ {�⃗�𝑗 ∈ 𝑁 (𝑖)}, where 𝑁 (𝑖) is the set

of the neighbourhood of �⃗�𝑖, patch matrix 𝑃𝑖 can be defined by:

𝑃𝑖 = [�⃗�𝑖1, �⃗�𝑖2, . . . , �⃗�𝑖𝑘] , (282)

to denote data matrix 𝑑 × (𝑘 + 1) which makes up the 𝑖-th patch. It is assumed that 𝑃𝑖 is

a random sample of a multivariate Gaussian distribution of size 𝑘. Therefore, estimators

for maximum likelihood of model parameters can be calculated as:

�⃗�𝑖 = 1
(𝑘 + 1)

𝑘+1∑︁
𝑗=1

�⃗�𝑖𝑗, (283)

Σ𝑖 = 1
𝑘

𝑘+1∑︁
𝑗=1

(�⃗�𝑖𝑗 − �⃗�𝑖) (�⃗�𝑖𝑗 − �⃗�𝑖)𝑇 . (284)

Figure 3 illustrates the mapping of local patches in the KNN graph to a parametric

representation.

The next step is constructing entropic KNN graph (or KL-KNN graph), as a substitute

for the traditional KNN graph used in ISOMAP. Basically, this is done by updating edges’

weights in the KNN graph. Instead of Euclidean distances between vectors �⃗�𝑖 and �⃗�𝑗,
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Figure 3 – Mapping from a patch 𝑃𝑖 on the graph to a parametric feature vector.

Source: (CERVATI NETO; LEVADA, 2020).

symmetrised KL-divergence 𝐷sym
𝐾𝐿 between respective patches 𝑃𝑖 and 𝑃𝑗 is calculated using

equation (281). It is noted that 𝐷sym
𝐾𝐿 (𝑃𝑖, 𝑃𝑗) is a patch-based similarity measure, which

means it is less sensitive to the presence of outliers and noise in data than pairwise Euclidean

distance, used by the traditional ISOMAP algorithm (CERVATI NETO; LEVADA, 2020).

Given an entropic KNN graph, computing geodesic distances follows through short-

est pairwise paths. By the end of this process, Entropic Isometric Feature Mapping

(ISOMAP-KL) produces entropic distances matrix 𝐸, which replaces ISOMAP’s pairwise

distances matrix. The following steps are the same as ISOMAP’s, that is, from entropic

distances matrix 𝐸, the Gram matrix of inner products 𝐵 is calculated and, through

spectral decomposition, come the principal eigenvectors.

3.3 Supervised 𝑡-Distributed Stochastic Neighbour Embed-

ding for Metric Learning using Stochastic and Geodesic

Distances

In this section, two extensions of the t-SNE are proposed, namely the Supervised

Geodesic 𝑡-Distributed Stochastic Neighbour Embedding (SGt-SNE) and Supervised En-

tropic 𝑡-Distributed Stochastic Neighbour Embedding (SEt-SNE). Their distinction relies

on how the graph edges are weighed prior to the computation of the pairwise probabilities

employed in the iterative minimisation of the KL-divergence between the input graph and

its low dimension representation. The objective is to enlarge the cost of edges connecting

samples from different classes. This intends to penalise such samples, while preventing

them from remaining close in the low dimension representation.

3.3.1 Supervised Geodesic 𝑡-Distributed Stochastic Neighbour Embed-

ding

In SGt-SNE, the Euclidean distances ‖�⃗�𝑖 − �⃗�𝑗‖2 and ‖�⃗�𝑖 − �⃗�𝑗‖2 employed in the com-

putation of the pairwise probabilities 𝑝𝑖𝑗 and 𝑞𝑖𝑗 are replaced by geodesic distances between

samples in the KNN graph in the input space and low dimension spaces, respectively. A
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rule of thumb is to set the number of neighbours 𝑘 =
√

𝑛 in order to create the KNN based

on data, where 𝑛 is the number of samples. The Floyd-Warshall algorithm is employed in

the KNN graph to capture the pairwise distance matrix, which utilises dynamic program-

ming to solve the all-pairs shortest path problem. Algorithm 1 details a pseudocode for

the Floyd-Warshall method (CORMEN et al., 2009).

Algorithm 1 Floyd-Warshall for pairwise distances matrix.

Floyd-Warshall(𝑊 )
𝑛 = 𝑊.𝑟𝑜𝑤𝑠 //𝑊 is the adjacency matrix
𝐷(0) = 𝑊
for 𝑘 = 1 to 𝑛

Let 𝐷(𝑘) =
(︁
𝑑

(𝑘)
𝑖𝑗

)︁
be a new matrix

for 𝑖 = 1 to 𝑛
for 𝑗 = 1 to 𝑛

𝑑
(𝑘)
𝑖𝑗 = min

(︁
𝑑

(𝑘−1)
𝑖𝑗 , 𝑑

(𝑘−1)
𝑖𝑘 + 𝑑

(𝑘−1)
𝑘𝑗

)︁
return 𝐷(𝑛)

In the first supervised strategy, following the construction of the pairwise geodesic

distances matrix, the class labels are employed to calculate a final distance matrix. The

rationale relies on the fact that penalising pairwise distances between samples belonging to

different classes should improve class separability. Algorithm 2 details the pseudocode for

the function that learns the pairwise geodesic distance matrix in SGt-SNE as a substitute

for the regular Euclidean distances matrix in the t-SNE. It is worth mentioning that

increasing the distance between neighbouring samples of different classes should impose

they remain apart in the low dimension space. Hence, the clusters in such an output

space are expected to contain reduced overlaps compared to the ones produced through a

standard t-SNE, enhancing the overall classification performance.

Algorithm 2 Distance learning in SGt-SNE.

Geodesic-Distance(𝑋, 𝑦)
Compute the pairwise Euclidean distance matrix 𝐷.
Build the KNN graph from 𝑋 to yield 𝑊 .
Compute the pairwise geodesic distance matrix 𝐺.
for 𝑖 = 1 to 𝑛

for 𝑗 = 1 to 𝑛
if 𝑊 [𝑖, 𝑗] > 0

if 𝑦 [𝑖] ̸= 𝑦 [𝑗]
𝐺 [𝑖, 𝑗] = 𝐺 [𝑖, 𝑗] + 𝐷 [𝑖, 𝑗]

return 𝐺

Algorithm 3 describes the pseudocode for SGt-SNE. The calculation of the pairwise

probabilities 𝑝𝑖𝑗 and 𝑞𝑖𝑗 is dependent on the modified geodesic distance matrix 𝐺 generated

in algorithm 2. The geodesic matrix calculated in the input space is represented as 𝐺𝑥,

and 𝐺𝒴 being the geodesic matrix calculated in the low dimension space.
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Algorithm 3 Supervised Geodesic 𝑡-Distributed Stochastic Neighbour Embedding.

SG𝑡-SNE(𝑋, 𝑦, Perp, 𝑇, 𝜂, 𝛼 (𝑡))
Compute the geodesic distance matrix 𝐺𝑥.
Compute pairwise probabilities 𝑝𝑖𝑗 with equation (223) using 𝐺𝑥.
Sample initial solution 𝒴(0) from 𝒩 (0, 10−4𝐼).
For 𝑡 = 1 to 𝑇 :

Compute the geodesic distance matrix 𝐺𝒴 .
Compute low dimensional affinities 𝑞𝑖𝑗 with equation (224).
Compute the gradient using equation (232).
Update the coordinates with equation (209).

return 𝒴

3.3.2 Supervised Entropic 𝑡-Distributed Stochastic Neighbour Embed-

ding

The Euclidean distance consists of a pointwise similarity measure and, as such, it may

be highly sensitive to data noise or outliers (SHIRKHORSHIDI; AGHABOZORGI; WAH,

2015). This may critically affect the performance of classification tasks (AGGARWAL;

HINNEBURG; KEIM, 2001).

A core characteristic of SEt-SNE is to substitute the geodesic distances matrix by

a stochastic distances matrix. Nevertheless, stochastic distances are computed by local

multivariate Gaussian densities estimated from a neighbourhood of the KNN graph. Thus,

for each patch 𝑃𝑖 in the graph, the sample mean vector �⃗�𝑖 and the sample covariance

matrix Σ𝑖 are estimated. The adoption of KL-divergence, Bhattacharyya distance, or

Cauchy-Schwarz divergence is introduced due to the fact that they have a closed form

expression for multivariate Gaussian random variables.

The KL-divergence between two multivariate Gaussian densities may be represented as

equation (31). The Bhattacharyya distance consists of a similarity measure between two

densities, calculated using the Bhattacharyya coefficient, quantifying the overlapping size

between two random samples (BHATTACHARYYA, 1943). The Bhattacharyya coefficient

is proportional to the area of intersection between two pdfs, as shown by equation (38). A

generalisation of the Shannon entropy is the Rényi entropy of order 𝛼. Thus, one may

generalise the KL-divergence through the Rényi entropy:

𝐷𝛼
𝑅 (𝑝, 𝑞) = 1

𝛼 − 1 log
∫︁ 𝑝 (𝑥)𝛼

𝑞 (𝑥)𝛼−1 d𝑥. (285)

For 𝛼 = 2, the quadratic entropy that leads to the Cauchy-Schwarz divergence is given by

(NIELSEN; SUN; MARCHAND-MAILLET, 2017):

𝐷𝐶𝑆 (𝑝, 𝑞) = − log
∫︀

𝑝 (𝑥) 𝑞 (𝑥) d𝑥√︁∫︀
𝑝 (𝑥)2 d𝑥

∫︀
𝑞 (𝑥)2 d𝑥

. (286)

In the multivariate Gaussian case, the Cauchy-Schwarz divergence may be represented

through the following closed form expression (NIELSEN; SUN; MARCHAND-MAILLET,
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2017):

𝐷𝐶𝑆 (𝑝, 𝑞) = 1
2 �⃗�𝑇

𝑝 Σ−1
𝑝 �⃗�𝑝 + 1

2 �⃗�𝑇
𝑞 Σ−1

𝑞 �⃗�𝑞 + 1
4 log

⃒⃒⃒⃒
⃒Σ𝑞

2

⃒⃒⃒⃒
⃒+ 1

4 log
⃒⃒⃒⃒
⃒Σ𝑝

2

⃒⃒⃒⃒
⃒+ 1

2 log
⃒⃒⃒
Σ−1

𝑝 + Σ−1
𝑞

⃒⃒⃒
− 1

2
(︁
Σ−1

𝑝 �⃗�𝑝 + Σ−1
𝑞 �⃗�𝑞

)︁𝑇 (︁
Σ−1

𝑝 + Σ−1
𝑞

)︁−1 (︁
Σ−1

𝑝 �⃗�𝑝 + Σ−1
𝑞 �⃗�𝑞

)︁
. (287)

Algorithm 4 details the pseudocode for the function which learns the pairwise stochastic

distance matrix in SEt-SNE as a substitute for the standard Euclidean distance matrix in

the t-SNE.

Algorithm 4 Distance learning in SEt-SNE.

Entropic-Distance(𝑋, 𝑦)
Compute the pairwise Euclidean distance matrix 𝐷.
Build the KNN graph from 𝑋 to yield 𝑊 .
Estimate the local means and covariance matrices.
Compute the pairwise entropic distance matrix 𝐸.
for 𝑖 = 1 to 𝑛

for 𝑗 = 1 to 𝑛
if 𝑊 [𝑖, 𝑗] > 0

if 𝑦 [𝑖] = 𝑦 [𝑗]
𝐷 [𝑖, 𝑗] = min (𝐷 [𝑖, 𝑗] , 𝐸 [𝑖, 𝑗])

else
𝐷 [𝑖, 𝑗] = 𝐷 [𝑖, 𝑗] + 𝐸 [𝑖, 𝑗]

return 𝐺

Similarly to the geodesic framework, the main objective is to penalise neighbouring

edges connecting samples of different classes. Therefore, algorithm 5 represents the

pseudocode of SEt-SNE. The entropic distances matrix in the input space is denoted as

as 𝐸𝑥, and 𝐸𝒴 refers to the entropic distances matrix in the low dimension space.

Algorithm 5 Supervised Entropic 𝑡-Distributed Stochastic Neighbour Embedding.

SE𝑡-SNE(𝑋, 𝑦, Perp, 𝑇, 𝜂, 𝛼 (𝑡))
Compute the entropic distance matrix 𝐸𝑥.
Compute pairwise probabilities 𝑝𝑖𝑗 with equation (223) using 𝐸𝑥.
Sample initial solution 𝒴(0) from 𝒩 (0, 10−4𝐼).
for 𝑡 = 1 to 𝑇

Compute the entropic distance matrix 𝐸𝒴 .
Compute low dimensional affinities 𝑞𝑖𝑗 with equation (224).
Compute the gradient using equation (232).
Update the coordinates with equation (209).

return 𝒴
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3.4 Probabilistic Nearest Neighbours-Based Locality Pre-

serving Projections

The main goal of the proposed Probabilistic Nearest Neighbours-Based Locality Pre-

serving Projections (PNN-LPP) method is to combine the PNN graph construction method

to approximate the underlying data manifold in LPP to perform DR-based unsupervised

metric learning. The goal of PNN-LPP is to overcome two known limitations of regular

LPP:

1. To make it less sensitive to noise and outliers in data, through the replacement of

the Euclidean distance by a probabilistic measure;

2. To improve the performance of regular LPP in small sample size problems (when 𝑛

is limited).

Algorithm 6 shows a summary of the proposed PNN-LPP for DR-based unsupervised

metric learning. Basically, the method has four parameters: data matrix 𝑋, number of

neighbours 𝐾, dimension of the output space 𝑑, and variance of the Gaussian kernel 𝑡.

Algorithm 6 PNN-based LPP.

PNN-LPP(𝑋, 𝐾, 𝑑, 𝑡)
For each sample �⃗�𝑖 of the dataset:

Compute the distances to all other samples �⃗�𝑗, storing them in the vector 𝑑𝑖

Use a Gaussian Kernel to define the edge weights 𝐷.

𝐷𝑖𝑗 =

⎧⎨⎩exp
(︁
−𝑑𝑖𝑗

𝑡

)︁
, if 𝑣𝑗 ∈ 𝑁 (𝑣𝑖)

0, if 𝑣𝑗 /∈ 𝑁 (𝑣𝑖)
(288)

Sort the distances in 𝐷 in ascending order
Compute the edge weights as:

𝑠𝑖𝑗 = 𝑑𝑖𝑘+1 − 𝑑𝑖𝑗

𝑑𝑖𝑘+1 − 𝑑𝑖1
(289)

Compute the diagonal matrix 𝐷 with degrees 𝑑𝑖 for 𝑖 = 1, 2, . . . , 𝑛.
Compute the Laplacian matrix 𝐿 = 𝐷 − 𝑊

Select the least 𝑑 eigenvectors of the matrix
(︁
𝑋𝐷𝑋𝑇

)︁−1
𝑋𝐿𝑋𝑇 to build 𝐴.

Project the data using matrix 𝐴: 𝑌 = 𝐴𝑇 𝑋
return 𝑌
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3.5 Kernel Density Estimation-based Isometric Feature Map-

ping

The Parametric PCA metric learning algorithm, which computes the entropic covariance

matrix of the data using information-theoretic divergences between densities estimated in

local patches along the neighbourhood graph (LEVADA, 2020), was the main inspiration

for the Kernel Density Estimation-based Isometric Feature Mapping (KDE-ISOMAP).

The primary distinction between ISOMAP and KDE-ISOMAP is in the first phase of

the algorithm. Let 𝑋 = {�⃗�1, �⃗�2, . . . , �⃗�𝑛} be the data matrix, where each column �⃗�𝑖 ∈ R𝑚,

represents an observation, and by 𝐺 = (𝑉, 𝐸) the 𝜖-neighbourhood graph induced from

𝑋 by creating an edge between each pair of samples �⃗�𝑖 and �⃗�𝑗 if 𝑑𝐸 (�⃗�𝑖, �⃗�𝑗) < 𝜖, where

𝑑𝐸 (., .) is the regular Euclidean distance. As a result, a patch 𝑃𝑖 may be defined as the

set formed by a sample �⃗�𝑖 and its neighbourhood, which, for a sufficiently high sample

density, belong to a single Euclidean subspace (ROWEIS; SAUL, 2000). Let 𝑘𝑖 be the

number of �⃗�𝑖 neighbours in 𝐺. The patch 𝑃𝑖 is thus a (𝑘 + 1) × 𝑚 matrix:

𝑃𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�⃗�𝑖

�⃗�𝑖1

�⃗�𝑖2
...

�⃗�𝑖𝑘𝑖

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�⃗�𝑖 (1) �⃗�𝑖 (2) . . . �⃗�𝑖 (𝑚)
�⃗�𝑖1 (1) �⃗�𝑖1 (2) . . . �⃗�𝑖1 (𝑚)
�⃗�𝑖2 (1) �⃗�𝑖2 (2) . . . �⃗�𝑖2 (𝑚)

...
...

. . .
...

�⃗�𝑖𝑘𝑖
(1) �⃗�𝑖𝑘𝑖

(2) . . . �⃗�𝑖𝑘𝑖
(𝑚)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (290)

The 𝑘𝑖 neighbours of �⃗�𝑖 in the 𝜖-neighbourhood network are denoted by {�⃗�𝑖1, �⃗�𝑖2, . . . , �⃗�𝑖𝑘𝑖
}.

Let each column of the matrix 𝑃𝑖 be a sample of a 1D random variable 𝑥𝑘 with a pdf

𝑓 (𝑥𝑘), these are estimated for 𝑘 = 1, 2, . . . , 𝑚 for each patch of the 𝜖-neighbourhood graph

using KDE, a non-parametric approach. Because each patch includes 𝑚 1D densities and

the graph has 𝑛 patches, the total number of non-parametric densities is 𝑛𝑚, making the

computational cost of the proposed KDE-ISOMAP 𝑂 (𝑛3𝑚).

The relative entropies (KL-divergences) between the densities predicted for each pair

of nearby patches 𝑃𝑖 and 𝑃𝑗 are used to replace the pointwise Euclidean distances in the

edges (�⃗�𝑖, �⃗�𝑗) ∈ 𝐸. This is known as the entropic 𝜖-neighbourhood graph. Having precisely

𝑚 pairings of 1D densities, there are 𝑚 KL-divergences to compute for each pair of patches

𝑃𝑖 and 𝑃𝑗.

The KL-divergence of distributions 𝑝 = [𝑝1, 𝑝2, . . . , 𝑝𝐿] and �⃗� = [𝑞1, 𝑞2, . . . , 𝑞𝐿], where

𝐿 is the number of points (bins) employed in KDE, may be calculated as follows:

𝐷𝐾𝐿 (𝑝, �⃗�) = 1
𝐿

𝐿∑︁
𝑖=1

𝑝𝑖 log
(︃

𝑝𝑖

𝑞𝑖

)︃
. (291)
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The symmetrised KL-divergence can be calculated as:

𝐷𝑠 (𝑝, �⃗�) = 1
2 (𝐷𝐾𝐿(𝑝, �⃗�) + 𝐷𝐾𝐿 (�⃗�, 𝑝)) = 1

2 (𝐻 (𝑝, �⃗�) − 𝐻 (𝑝) + 𝐻 (�⃗�, 𝑝) − 𝐻 (�⃗�))

= 1
2 (𝐻 (𝑝, �⃗�) + 𝐻 (�⃗�, 𝑝)) − 1

2 (𝐻 (𝑝) + 𝐻 (�⃗�)) , (292)

that is, the average of the cross-entropies minus the average of the individual entropies. A

vector of relative entropies Ψ⃗𝑖𝑗 is built after computing the KL-divergences between the 𝑚

pairings of 1D densities in 𝑃𝑖 and 𝑃𝑗:

Ψ⃗𝑖𝑗 = [𝐷𝑠 (𝑝1, �⃗�1) , 𝐷𝑠 (𝑝2, �⃗�2) , . . . , 𝐷𝑠 (𝑝𝑚, �⃗�𝑚)] . (293)

Finally, the weight of the edge (�⃗�𝑖, �⃗�𝑗) ∈ 𝐸 is replaced by:

𝑤𝑖𝑗 = Ψ⃗𝑇
𝑖𝑗Ψ⃗𝑖𝑗 =

⃦⃦⃦
Ψ⃗𝑖𝑗

⃦⃦⃦2
, (294)

which leads to the entropic neighbourhood graph. KDE-ISOMAP’s second and third

phases are identical to those of regular ISOMAP.
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Chapter 4

Experiments and Results

For the analysis of results, a both qualitative, through dispersion graphs to visualise

transformed data in 2D cases, and a quantitative approach, based on accuracy metrics of

different methods for supervised classification, such as Support Vector Machines (SVM),

KNN, Bayesian classifiers under Gaussian hypothesis, among others, are used. It is

expected that supervising non-linear DR methods using information theory leads to a better

classification performance when compared to the original versions of the proposed methods.

These are tested on datasets containing real world data, retrieved from openml.org, with

Table 2 having specific information about each of them, including the number of samples,

features, and classes. In all computational experiments, 50% of the samples are chosen

for training and 50% for testing. Finally, non-parametric hypothesis tests are employed

to determine if including information theory-based measures can significantly improve

classification performance.

4.1 Entropic Isometric Feature Mapping

In order to test and evaluate the proposed method for unsupervised metric learning

in classification tasks, its performance was compared against traditional PCA, KPCA,

ISOMAP, LLE, and LE in several public datasets available at www.openml.org. It is

worth mentioning that the selected datasets have significant variations in the number of

samples and features, as well as different numbers of classes. In the first set of experiments,

an internal index was used to assess the quality of clusters obtained after the unsupervised

metric learning provided by different DR methods using SC.

Table 3 shows the obtained results for 20 different datasets, where column ISOKL

denotes the proposed parametric method under multivariate Gaussian hypothesis. It is

openml.org
www.openml.org


92 Chapter 4. Experiments and Results

Table 2 – Number of samples, features, and classes of the used openML datasets.

Dataset Samples Features Classes Dataset Samples Features Classes

SPECTF 349 44 2 first-order-theorem 2000 51 6
veteran 137 7 2 car 1728 7 4

sleuth ex1605 62 5 2 tae 151 6 2
AIDS 50 4 2 transplant 131 4 2
cloud 108 7 2 servo 167 5 2

FL2000 67 15 5 mu284 284 10 2
analcatdata creditscore 100 6 2 triazines 186 60 2

corral 160 6 2 page-blocks 5473 10 2
cars1 392 7 3 arsenic-male-lung 559 3 2

LED-display-domain-7digit 500 7 10 diggle table a2 310 8 9
hayes-roth 160 4 3 rmftsa ladata 508 11 0

Diabetes130US (1%) 1017 49 3 prnn crabs 200 6 2
blogger 100 5 2 parity5 32 0 2

user-knowledge 403 5 5 bolts 40 7 2
rabe 131 50 5 2 threeOf9 512 10 2
haberman 306 3 2 fri c3 100 5 100 5 2
prnn synth 250 2 2 baskball 96 4 2

visualizing environmental 111 3 2 newton hema 140 2 2
vineyard 52 2 2 strikes 625 6 2

monks-problems-1 566 6 2 datatrieve 130 8 2
acute-inflammations 120 6 2 prnn fglass 214 9 2

planning-relax 182 12 2 pwLinear 200 10 2
sensory 576 11 2 breast-cancer 286 10 2

auto price 159 15 2 backache 180 5 2
wisconsin 194 32 2 heart-statlog 270 13 2

fri c4 250 100 250 100 2 balance scale 625 4 3
thoracic surgery 470 16 2 mux6 128 7 2

conference attendance 246 6 2 pm10 500 7 2
analcatdata boxing1 120 3 2 disclosure z 662 4 0

fri c2 100 10 100 10 2 KnuggetChase3 194 39 2
lupus 87 3 2 breast-tissue 106 9 4
fruitfly 125 4 2 Engine1 383 5 3
iris 150 4 3 diabetes numeric 43 3 0
wine 178 13 2 parkinsons 195 23 2

mfeat-fourier 2000 76 2 prnn viruses 61 10 4
texture 5500 40 11 confidence 72 3 2
satimage 6430 36 6 plasma retinol 315 11 0

Source: openml.org.

worth mentioning that the definition of the parameter 𝑘 (patch size) plays an important

role in the proposed ISOMAP-KL. The method is sensitive to variations on this parameter,

which essentially controls the patch size. Different values of 𝑘 can lead to significantly

different classification results. In all experiments, a simple heuristic was performed: to

evaluate the classification accuracy for the all values of 𝑘 ranging from 10 to 200, using

an increment of 10 units. In other words, were considered as candidates the values of 𝑘

belonging to the interval 𝑆 = [10, 20, 30, 40, . . . , 100, . . . , 200]. The best result was then

selected for each dataset. An intuition behind this choice is that a low 𝑘 is usually preferred

in small datasets, to preserve locality of the patches. Ideally, one should keep in mind the

trade-off between locality preservation, which means choosing a small 𝑘, and having a

large enough sample size for suitable parameter estimation.

The results suggest that, on average, the proposed ISOMAP-KL is more efficient

in building a meaningful representation in terms of the consistency within clusters of

data than the other methods for these datasets. Moreover, it should be noted that, in

12 of 20 datasets, ISOMAP-KL obtained the highest SC, that is, in 60% of the cases,

openml.org
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Table 3 – Silhouette coefficients for clusters produced by
PCA, KPCA, ISOMAP, LLE, LE, and ISOMAP-
KL for several datasets from OpenML.org (2D
case).

PCA KPCA ISO LLE LE ISOKL

iris 0.401 0.469 0.423 0.297 0.539 0.576
wine 0.526 0.610 0.533 0.140 0.728 0.656

mfeat-fourier 0.000 0.011 0.016 −0.073 −0.006 0.145
texture −0.058 −0.050 0.086 0.068 0.245 0.348
satimage 0.219 0.247 0.232 0.037 0.233 0.349
theorem −0.168 −0.105 −0.099 −0.113 −0.466 −0.156
synthetic 0.346 0.459 0.361 0.146 0.501 0.512

car −0.110 −0.129 −0.075 0.000 −0.111 −0.034
tae −0.059 −0.004 −0.069 −0.017 −0.019 −0.118

transplant 0.485 0.436 0.483 0.407 0.439 0.582
hayes −0.023 0.038 −0.020 0.085 −0.012 0.234

SPECTF −0.018 0.093 −0.028 −0.083 0.046 0.106
servo 0.121 0.105 0.102 0.097 0.085 0.034
mu284 0.301 0.338 0.288 0.346 0.306 0.306
triazines 0.009 0.064 0.017 0.001 0.017 0.023
pageblock 0.419 0.218 0.534 0.402 0.299 0.450
male-lung 0.563 −0.182 0.676 0.629 0.019 0.988
retinol −0.008 0.004 0.004 0.001 0.015 0.038
diggle 0.406 0.409 0.412 0.272 0.363 0.430
rmftsa 0.228 0.242 0.235 0.188 0.231 0.258

Average 0.179 0.164 0.206 0.142 0.173 0.286
Std. Dev. 0.236 0.229 0.243 0.196 0.271 0.292

Source: (CERVATI NETO; LEVADA, 2020).

the proposed method produced better defined clusters. To test if the differences are

significant, a statistical test was performed to compare the different groups. According

to a non-parametric Friedman test, there is strong evidences against the null hypothesis

that there are no significant differences between the groups (𝑝-value = 7.49 × 10−5) for a

significance level 𝛼 = 0.05. According to a post-hoc Nemenyi test, for the same significance

level, ISOMAP-KL produced significantly better clusters (in terms of SC) than PCA

(𝑝-value = 4.15 × 10−5), KPCA (𝑝-value = 0.0425), ISOMAP (𝑝-value = 0.0201), LLE

(𝑝-value = 2.87 × 10−5), and LE (𝑝-value = 0.0046).

In the second set of experiments, the performance of the proposed method was compared

against PCA, KPCA, ISOMAP, LLE, and LE in supervised classification. For this purpose,

8 different parametric and non-parametric classifiers were selected: KNN with 𝑘 = 7 (kept

constant to have a baseline against which all methods are compared; a value close to
√

𝑛

was found, in experiments, to be a reasonable guess, so this was chosen to fit the smallest

datasets), SVM (linear), Naive Bayes (NB), Decision Trees (DT), Quadratic Discriminant

Analysis (QDA) under Gaussian hypothesis, Multilayer Perceptron (MLP) (with a hidden

layer size of 100, activated using a logistic function, over up to 5000 iterations), Gaussian

Process Classifier (GPC), and Random Forest Classifier (RFC). In all experiments, 50% of

the samples were selected for training and 50% for testing. Table 4 shows the classification

accuracies for several datasets after DR to 2D spaces. The results show that there is no

method that is uniformly superior to all the other ones. However, looking at the average
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Figure 4 – Scatter-plots of mfeat-fourier dataset for the 2D case: ISOMAP (left) versus
ISOMAP-KL (right).

Source: (CERVATI NETO; LEVADA, 2020).

accuracy, the results are more conclusive. Table 5 shows the average and standard deviation

of all accuracies for each DR algorithm. The results indicate that for these datasets, in

average, the proposed parametric ISOMAP-KL outperformed all the other methods. A

hypothesis test was also performed to check whether the differences are statistically

significant. According to a non-parametric Friedman test, there are strong evidences for

rejecting the null hypothesis that all DR methods are equivalent (𝑝-value = 1.12 × 10−15)

for a significant level 𝛼 = 0.05. According to a post-hoc Nemenyi test, ISOMAP-KL

produced significantly better classification accuracies than PCA (𝑝-value = 3.11 × 10−12),

KPCA (𝑝-value = 10−10), LLE (𝑝-value = 10−19) and LE (𝑝-value = 10−19).

The obtained results emphasise that the proposed ISOMAP-KL is competitive with

the existing DR algorithms, since, overall, it is capable of producing features that are

more discriminant than those generated by PCA, KPCA, and some ML algorithms. In

other words, it can be concluded that ISOMAP-KL is a viable option for unsupervised

metric learning in pattern classification tasks. To illustrate how the proposed method is

capable of producing better defined clusters, some scatter-plots for the two dimensional

case are presented, comparing ISOMAP and ISOMAP-KL. Figure 4 and Figure 5 show

the clusters for the mfeat-fourier and texture datasets. Note that the clusters produced

by ISOMAP-KL show less overlapping, that is, they tend to be easier to discriminate by

pattern classifiers.

4.2 Supervised 𝑡-Distributed Stochastic Neighbour Embed-

ding

The computational experiments compare the classification performance of competing

supervised methods after DR-based metric learning. Considering the following seven

classifiers: KNN, NB, SVM, Quadratic Bayesian classifier (under the Gaussian hypothesis),

DT, RFC, and GPC (THEODORIDIS; KOUTROUMBAS, 2008; DUDA; HART; STORK,
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Table 4 – Supervised classification accuracy obtained by classifiers after PCA, KPCA,
ISOMAP, LLE, LE, and ISOMAP-KL (2D case).

PCA KPCA ISO LLE LE ISOKL PCA KPCA ISO LLE LE ISOKL

iris dataset (𝑘 = 20) first-order-theorem dataset (𝑘 = 40)

KNN 0.960 0.866 0.866 0.960 0.826 0.960 0.460 0.478 0.467 0.421 0.445 0.511
SVM 0.946 0.800 0.880 0.413 0.440 0.946 0.447 0.410 0.496 0.410 0.410 0.521
NB 0.906 0.826 0.826 0.906 0.866 1.000 0.410 0.410 0.413 0.418 0.138 0.422
DT 0.933 0.800 0.760 0.933 0.800 0.960 0.423 0.449 0.457 0.377 0.434 0.498
QDA 0.946 0.800 0.866 0.946 0.813 0.946 0.410 0.423 0.430 0.418 0.150 0.405
MLP 0.946 0.826 0.866 0.960 0.306 0.946 0.412 0.410 0.431 0.410 0.410 0.457
GPC 0.906 0.826 0.853 0.613 0.440 0.946 0.443 0.414 0.493 0.410 0.410 0.512
RFC 0.920 0.880 0.840 0.960 0.813 0.946 0.483 0.492 0.490 0.409 0.442 0.516

wine dataset (𝑘 = 40) hayes-roth dataset (𝑘 = 15)

KNN 0.966 0.977 0.988 0.752 0.988 0.966 0.424 0.651 0.545 0.833 0.590 0.742
SVM 0.955 0.977 0.943 0.382 0.382 0.966 0.606 0.606 0.530 0.606 0.606 0.742
NB 0.943 0.955 0.955 0.730 0.955 0.943 0.606 0.560 0.606 0.636 0.606 0.803
DT 0.943 0.932 0.943 0.629 0.966 0.977 0.621 0.803 0.636 0.757 0.636 0.818
QDA 0.966 0.966 0.966 0.808 0.955 0.977 0.606 0.575 0.606 0.681 0.606 0.833
MLP 0.955 0.988 0.966 0.382 0.382 0.977 0.606 0.606 0.606 0.606 0.606 0.848
GPC 0.966 0.966 0.966 0.404 0.382 0.988 0.500 0.606 0.515 0.606 0.606 0.818
RFC 0.966 0.955 0.932 0.685 0.977 0.988 0.666 0.696 0.636 0.803 0.621 0.803

mfeat-fourier dataset (𝑘 = 40) SPECTF dataset (𝑘 = 80)

KNN 0.415 0.435 0.398 0.454 0.451 0.626 0.771 0.754 0.685 0.725 0.731 0.788
SVM 0.424 0.382 0.401 0.088 0.088 0.450 0.742 0.742 0.714 0.742 0.742 0.811
NB 0.415 0.431 0.428 0.469 0.409 0.576 0.725 0.742 0.720 0.640 0.702 0.754
DT 0.366 0.400 0.351 0.405 0.405 0.542 0.782 0.754 0.794 0.714 0.760 0.794
QDA 0.436 0.459 0.439 0.482 0.428 0.595 0.742 0.742 0.720 0.605 0.742 0.760
MLP 0.433 0.450 0.430 0.370 0.088 0.637 0.742 0.794 0.771 0.742 0.742 0.771
GPC 0.428 0.410 0.406 0.179 0.088 0.547 0.754 0.777 0.691 0.742 0.742 0.765
RFC 0.389 0.430 0.370 0.427 0.448 0.580 0.794 0.731 0.771 0.742 0.777 0.840

texture dataset (𝑘 = 40) servo dataset (𝑘 = 10)

KNN 0.583 0.543 0.712 0.460 0.622 0.846 0.761 0.750 0.821 0.797 0.750 0.916
SVM 0.579 0.469 0.730 0.083 0.083 0.732 0.797 0.750 0.750 0.750 0.750 0.916
NB 0.491 0.460 0.594 0.485 0.621 0.800 0.928 0.738 0.821 0.809 0.821 0.905
DT 0.485 0.470 0.646 0.408 0.545 0.810 0.904 0.738 0.773 0.690 0.797 0.845
QDA 0.541 0.461 0.661 0.705 0.760 0.819 0.916 0.714 0.821 0.809 0.809 0.916
MLP 0.568 0.419 0.714 0.474 0.087 0.840 0.821 0.809 0.821 0.750 0.750 0.905
GPC 0.578 0.463 0.732 0.304 0.083 0.826 0.833 0.750 0.821 0.750 0.750 0.905
RFC 0.538 0.522 0.704 0.408 0.559 0.844 0.916 0.773 0.785 0.726 0.821 0.845

satimage dataset (𝑘 = 200) page-blocks dataset (𝑘 = 100)

KNN 0.826 0.800 0.837 0.621 0.835 0.852 0.921 0.928 0.952 0.932 0.941 0.957
SVM 0.835 0.792 0.852 0.230 0.230 0.854 0.925 0.925 0.953 0.900 0.900 0.956
NB 0.806 0.781 0.794 0.616 0.739 0.835 0.879 0.922 0.897 0.903 0.942 0.942
DT 0.779 0.753 0.780 0.534 0.798 0.803 0.889 0.916 0.940 0.904 0.924 0.955
QDA 0.827 0.787 0.830 0.622 0.822 0.827 0.892 0.924 0.901 0.926 0.942 0.941
MLP 0.828 0.788 0.840 0.604 0.230 0.847 0.904 0.911 0.949 0.920 0.900 0.948
GPC 0.837 0.778 0.845 0.372 0.230 0.852 0.923 0.924 0.950 0.900 0.900 0.962
RFC 0.818 0.799 0.829 0.605 0.831 0.846 0.919 0.931 0.955 0.927 0.943 0.963

Source: (CERVATI NETO; LEVADA, 2020).

Table 5 – Average classification accuracies ob-
tained by different classifiers for
OpenML.org datasets in Table 4.

PCA KPCA ISO LLE LE ISOKL

Average 0.721 0.698 0.723 0.621 0.613 0.807
Std. Dev. 0.203 0.191 0.184 0.218 0.263 0.160

Source: (CERVATI NETO; LEVADA, 2020).
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Figure 5 – Scatter-plots of texture dataset for the 2D case: ISOMAP (left) versus ISOMAP-
KL (right).

Source: (CERVATI NETO; LEVADA, 2020).

2000; WEBB; COPSEY, 2011). Firstly, regular t-SNE, SGt-SNE, SEt-SNE, and Linear

Discriminant Analysis (LDA) are applied to decrease the input data dimensionality to two.

Subsequently, adopting a holdout strategy, half of the samples are employed to train the

classifiers while the other half is utilised for testing.

To asses the results, Cohen’s Kappa coefficient — which measures the level of agreement

between two rankings of specialists — is calculated. The Kappa coefficient is preferable in

comparison with accuracy due to the fact that it can tackle unbalanced data sets while

removing the possibility of agreement between the classifier and a random guess. In this

section, one ranking is provided by the true class labels (ground truth), while the remaining

ranking is given by the output labels of a specific classifier. The Kappa coefficient may be

computed directly from the confusion matrix as (HUDSON; RAMM, 1987):

𝜅 = 𝑛
∑︀𝐶

𝑖=1 𝑐𝑖𝑖 −∑︀𝐶
𝑖=1 𝑐𝑖+𝑐+𝑖

𝑛2 −∑︀𝐶
𝑖=1 𝑐𝑖+𝑐+𝑖

, (295)

where 𝑛 is the number of samples, 𝐶 refers to the number of classes (number of rows in

the confusion matrix), 𝑐𝑖+ denotes the sum of the 𝑖-th row of the confusion matrix, and

𝑐+𝑖 represents the sum of the 𝑖-th column of the confusion matrix. Table 6 reports the

results. Each value in the table refers to the maximum Kappa coefficient over the seven

supervised classifiers used. The symmetrised KL-divergence is used in all experiments

involving SEt-SNE, as reported in Table 6.

The results in Table 6 show a superior performance of the proposed SGt-SNE. The

introduction of class labels into regular t-SNE resulted in a significant increase of the

posterior supervised classification performance. A Friedman test was conducted, followed

by a post-hoc Nemenyi test in order to check the results for a significance level 𝛼 = 0.05.

Both SGt-SNE and SEt-SNE show significantly superior performance compared to regular

t-SNE (𝑝 < 10−3). Notwithstanding, the test indicates that there is no evidence that the

proposed methods performed better in comparison with LDA.

Arguably, LDA is a benchmark for two-class supervised classification problems. How-

ever, a major limitation of LDA refers to the number of possible features that can be
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Table 6 – Maximum Kappa coefficients ob-
tained by KNN, SVM, NB, SVM,
QDA, DT, RFC, and GPC classi-
fiers after metric learning with t-SNE,
LDA, SGt-SNE, and SEt-SNE.

Data sets t-SNE LDA SGt-SNE SEt-SNE

iris 0.960 0.979 1.000 1.000
digits 0.627 0.685 0.820 0.649

prnn crabs 0.739 1.000 0.799 0.800
balance scale 0.397 0.829 0.723 0.793

parity5 0.500 — 1.000 1.000
hayes-roth 0.409 0.623 0.448 0.478
rabe 131 0.834 1.000 1.000 1.000
servo 0.346 0.936 0.873 0.444

monks-problem-1 0.396 0.577 0.849 0.791
bolts 0.783 0.886 1.000 0.875

fri c2 100 10 0.600 0.600 0.760 0.880
threeOf9 0.445 0.661 1.000 1.000

fri c3 100 5 0.401 0.199 0.633 0.480
baskball 0.377 0.706 0.633 0.483

newton hema 0.482 0.500 0.571 0.626
strikes 0.463 0.373 0.738 0.660

datatrieve 0.000 0.245 0.469 0.204
diggle table a2 0.948 1.000 0.961 0.974

fl2000 0.351 0.751 0.435 0.551
triazines 0.365 0.675 0.669 0.522
veteran 0.324 0.404 0.367 0.607
diabetes 0.335 0.552 0.438 0.461

car 0.179 0.459 0.508 0.362
prnn fglass 0.328 0.386 0.508 0.559
creditscore 0.200 0.534 0.297 0.580
pwlinear 0.360 0.780 0.940 0.880

breast cancer 0.907 0.961 0.976 0.984
wine 0.948 1.000 1.000 0.982

backache 0.370 0.587 0.625 0.110
heart-statlog 0.676 0.706 0.734 0.706

Average 0.502 0.676 0.726 0.681
Median 0.405 0.675 0.736 0.654
Max 0.960 1.000 1.000 1.000
Min 0.000 0.199 0.297 0.110

Source: the author.

Note: The parity5 set has no numeric features and, there-
fore, cannot be classified using LDA.

extracted from the input data. In a problem with 𝐶 classes, the dimension of the output

space is at most 𝐶 − 1. Thus, when 𝐶 = 2, LDA should extract at most one single feature.

Therefore, an advantage of the proposed Supervised t-SNE methods over LDA is that the

former are a viable alternative to LDA in such cases. For example, in the monks-problem-1

data set, which contains only two classes, the best Kappa subsequent to LDA is 𝜅 = 0.577,

while the same performance measure after SGt-SNE equals 𝜅 = 0.849, being approximately

47% larger.

On the other hand, a caveat of the proposed methods relates to a comparatively higher

computational cost. In SGt-SNE, the pairwise geodesic distance matrix is computed, with

a complexity of 𝑂 (𝑛3) as a consequence of the Floyd-Warshall algorithm. Similarly, in

SEt-SNE, the pairwise stochastic distance matrix is computed, which may be approximately
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Figure 6 – Visual comparison between regular 𝑡-SNE (left) and Supervised Geodesic 𝑡-SNE
(right) in the threeOf9 (top) and pwLinear (bottom) data sets.

Source: the author.

performed in 𝑂 (𝑛2𝑚), where 𝑚 represents the input data dimensionality. In both cases,

the total computational cost for the DR process is larger compared to the regular t-SNE.

Figure 6 depicts scatter-plots of regular t-SNE and SGt-SNE involving the threeOf9

and pwLinear data sets. It is clear that the results of regular t-SNE show a considerably

large clustering overlapping. In the supervised exercise, the class separability is appreciably

more satisfactory, significantly improving the classification performance.

4.3 Probabilistic Nearest Neighbours-Based Locality Pre-

serving Projections

A set of computational experiments was conducted to compare the average classification

accuracies obtained by eight supervised classifiers (KNN, NB, SVM, DT, Bayesian classifier

under Gaussian hypothesis, MLP, GPC, and RFC) after DR to 2D spaces in order to

test and evaluate the proposed PNN-LPP method. An objective comparison of the

proposed PNN-LPP against six unsupervised metric learning techniques based on DR:

PCA, ISOMAP, LLE, LE, regular LPP, and UMAP.

It is widely known that state-of-the-art DR-based unsupervised metric learning al-

gorithms, such as t-SNE and UMAP have excellent performance in large datasets, in

which the density of points in the underlying data manifold is high. However, when

the number of samples is somehow limited, lowering the density of points in the input
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Table 7 – Average classification accuracies produced after dimensional-
ity reduction based unsupervised metric learning with PCA,
ISOMAP, LLE, LE, LPP, UMAP, and PNN-LPP for 32 openML
datasets (2D case).

Dataset PCA ISOMAP LLE LE LPP UMAP PNN-LPP

SPECTF 0.754 0.720 0.715 0.759 0.724 0.764 0.794
veteran 0.666 0.666 0.666 0.682 0.677 0.708 0.735

sleuth ex1605 0.556 0.608 0.641 0.540 0.588 0.604 0.734
AIDS 0.374 0.355 0.370 0.415 0.360 0.410 0.630
cloud 0.657 0.643 0.664 0.625 0.634 0.655 0.680

FL2000 0.632 0.643 0.562 0.562 0.654 0.610 0.691
analcatdata creditscore 0.795 0.795 0.730 0.750 0.737 0.757 0.825

corral 0.829 0.814 0.826 0.751 0.853 0.810 0.911
cars1 0.684 0.700 0.658 0.648 0.690 0.689 0.705

LED-display-domain-7digit 0.574 0.553 0.337 0.361 0.546 0.585 0.599
hayes-roth 0.615 0.476 0.479 0.403 0.465 0.440 0.633

Diabetes130US (1%) 0.523 0.525 0.527 0.529 0.534 0.526 0.565
blogger 0.679 0.667 0.707 0.600 0.697 0.622 0.795

user-knowledge 0.505 0.581 0.448 0.450 0.518 0.628 0.785
rabe 131 0.740 0.910 0.865 0.815 0.899 0.904 0.940
haberman 0.750 0.748 0.725 0.717 0.742 0.732 0.752
prnn synth 0.857 0.858 0.761 0.708 0.857 0.846 0.868

visualizing enviromental 0.671 0.649 0.587 0.560 0.687 0.642 0.714
vineyard 0.793 0.778 0.812 0.759 0.793 0.807 0.817

monks-problems-1 0.583 0.580 0.549 0.566 0.529 0.581 0.605
acute-inflammations 0.893 0.929 0.760 0.762 0.906 0.968 1.000

planning-relax 0.673 0.666 0.666 0.693 0.657 0.681 0.710
sensory 0.563 0.554 0.567 0.560 0.559 0.579 0.600

auto price 0.924 0.920 0.762 0.840 0.914 0.929 0.958
wisconsin 0.610 0.595 0.552 0.567 0.592 0.614 0.639

fri c4 250 100 0.549 0.559 0.571 0.588 0.487 0.536 0.595
thoracic surgery 0.813 0.814 0.813 0.805 0.820 0.815 0.823

conference attendance 0.853 0.852 0.845 0.847 0.856 0.851 0.861
analcatdata boxing1 0.691 0.639 0.679 0.622 0.668 0.641 0.729

fri c2 100 10 0.700 0.617 0.537 0.585 0.702 0.635 0.722
lupus 0.784 0.803 0.707 0.673 0.690 0.792 0.818
fruitfly 0.521 0.500 0.567 0.521 0.539 0.507 0.623

Average 0.682 0.679 0.645 0.633 0.674 0.683 0.746
Median 0.676 0.658 0.665 0.624 0.682 0.649 0.732

Minimum 0.374 0.355 0.337 0.361 0.360 0.410 0.565
Maximum 0.924 0.929 0.865 0.847 0.914 0.968 1.000

Source: (CERVATI NETO; LEVADA, 2024).

space, the performance of these algorithms tends to significantly drop. As deep neural

networks, these methods require numerical optimisation algorithms for error/distance

minimisation, such as stochastic gradient descent. Table 7 contains all of the acquired

findings. The approach with the bold value is the best for that dataset. It can be seen

that, for these datasets, PNN-LPP outperformed not only regular LPP, but also UMAP,

a state-of-the-art algorithm, implying that the proposed method is a viable alternative for

DR-based unsupervised metric learning.

In order to verify whether the PNN-LPP performance is significantly superior than the

performances of the other methods in these datasets, a Friedman test, a statistical test that

is considered to be a non-parametric version of Analysis of Variance, was performed. For

a significance level 𝛼 = 0.01, it can be concluded that there are strong evidences against

the null hypothesis (all methods have the same performance) (𝑝-value = 1.21 × 10−16).
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Figure 7 – Scatter-plots of the user-knowledge dataset for the 2D case. From left to right,
top to bottom: ISOMAP, LLE, LE, LPP, UMAP, and the proposed PNN-LPP
for 𝑘 = 9.

Source: (CERVATI NETO; LEVADA, 2024).

Moreover, to check which methods are statistically different, a post-hoc Nemenyi test was

performed for pairwise comparisons. According to the test, there are strong evidences that

PNN-LPP produced significantly higher average accuracies than PCA (𝑝-value < 10−3),

ISOMAP (𝑝-value < 10−3), LLE (𝑝-value < 10−3), LE (𝑝-value < 10−3), regular LPP

(𝑝-value < 10−3), and UMAP (𝑝-value < 10−3). A visual comparison of the clusters

obtained after DR-based metric learning is performed in the user-knowledge dataset is

shown in Figure 7. It must be noted that the discrimination between classes is more

evident in the proposed method, as there is less overlap between the clusters.

Despite the fact that the results are intriguing, the proposed strategy has certain

drawbacks. The most important is that PNN-LPP is quite sensitive to parameter 𝑘, which

sets the size of the neighbourhood in PNN. How this parameter is defined has a direct
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impact on the results: during the experiments, it was observed that the classification

accuracies are quite sensitive to changes in the value of 𝑘. A simple strategy was used in this

study: to perform a line search in the integers belonging to the interval
[︁
2, max

(︁
𝑛
2 , 50

)︁]︁
for

each dataset. The best model is defined as one that optimises classification accuracy over

all 𝑘 values. It is worth mentioning that, although class labels are used to perform model

selection, the DR-based metric learning is completely unsupervised. Currently, there is

no automated strategy for the estimation of optimal parameter 𝑘. For all experiments

described in this section, the parameter 𝑡 = 1 and 𝑑 = 2 were fixed. It is expected that

better results can be obtained by optimising the values of these parameters.

Alternatively, one advantage of the proposed technique is that it has been shown

in various computational experiments that PNN-LPP usually performs better than its

competitors when the number of samples is limited. In other words, the proposed strategy

appears to be promising for dealing with difficulties involving small sample sizes. The

t-SNE and UMAP methods, for example, are state-of-the-art algorithms for DR-based

metric learning that require a large number of samples for providing good results, since,

as the optimisation problems do not have closed form solutions, they require numerical

algorithms (stochastic gradient descend) that demand more data for convergence.

4.4 Kernel Density Estimation-based Isometric Feature Map-

ping

Two sets of computational experiments were conducted to evaluate the performance of

the proposed KDE-ISOMAP for DR-based metric learning:

1. A comparison of the clusters obtained after mapping the data to a two-dimensional

subspace, with SC, a measure of how well different clusters fit the data;

2. A comparison of the average classification accuracies for three supervised classifiers,

KNN, SVM, and Bayesian classifier under Gaussian hypothesis, after the same

feature extraction process.

If the underlying metrics are successfully learnt, it is likely that these two measures are

able to reflect it, resulting in a large rise in average scores when examining numerous

multivariate datasets. Seven distinct methods were used to compare this technique

against, namely: PCA, KPCA, ISOMAP, LLE, LE, t-SNE, and UMAP. The proposed

KDE-ISOMAP comes in three different variations: Kernel Density Estimation-based

Isometric Feature Mapping with fixed bandwidth ℎ = 0.1 for all probability density

functions (K-ISO-F), Kernel Density Estimation-based Isometric Feature Mapping with

Silverman’s rule for bandwidth estimation (K-ISO-SIL), and Kernel Density Estimation-
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Table 8 – Silhouette coefficients for clusters generated by
algorithms PCA, KPCA, ISOMAP, LLE, and LE
for a number of openML.org datasets (2D case).

PCA KPCA ISOMAP LLE LE

iris 0.401 0.469 0.452 0.365 0.541
wine 0.526 0.610 0.547 0.242 0.750

prnn crabs 0.040 0.030 0.037 0.022 0.028
happiness −0.067 −0.062 −0.066 −0.068 −0.063
mux6 0.072 0.064 −0.015 0.084 −0.014
parity5 −0.062 −0.047 −0.048 −0.051 −0.036

Hayes-roth −0.023 0.038 −0.010 −0.013 −0.013
aids −0.022 −0.027 −0.027 −0.037 −0.033
pm10 0.000 0.002 0.000 0.000 0.000
strikes 0.007 0.008 0.004 0.002 0.007

disclosure z −0.002 0.006 −0.002 −0.001 −0.002
diggle table a2 0.406 0.409 0.450 0.328 0.304
Monks-problem 0.024 0.001 0.000 0.000 −0.002
Breast-tissue −0.029 −0.030 −0.017 −0.081 −0.018
planning-relax −0.002 −0.011 −0.004 0.003 −0.004

haberman 0.060 −0.024 0.061 −0.004 −0.032
KnuggetChase3 0.199 0.070 0.187 0.077 0.091

bolts 0.337 0.254 0.286 0.028 0.317
fl2000 0.180 0.043 0.119 0.073 0.025

Engine1 −0.133 −0.032 −0.149 −0.170 −0.168
fri c2 100 10 0.099 0.059 0.083 0.021 0.093
Vineyard(2) 0.277 0.262 0.280 0.191 0.252

diabetes numeric(2) 0.092 0.081 0.093 0.085 0.089
prnn fglass 0.018 0.004 0.011 0.029 −0.009
parkinsons 0.130 0.155 0.114 0.002 0.242

Acute-inflammations(2) 0.278 0.315 0.266 0.113 0.081
blogger 0.036 −0.011 0.052 0.029 0.003

prnn viruses 0.371 0.118 0.112 0.496 0.232
analcatdata creditscore 0.111 0.081 0.131 0.071 0.049

Confidence(2) 0.173 0.214 0.123 −0.142 −0.087

Average 0.117 0.102 0.102 0.056 0.087
Median 0.066 0.041 0.057 0.022 0.005

Minimum −0.133 −0.062 −0.149 −0.170 −0.168
Maximum 0.526 0.610 0.547 0.496 0.750
Std.Dev. 0.165 0.167 0.164 0.144 0.192

Source: (CERVATI NETO; LEVADA; HADDAD, 2024).

based Isometric Feature Mapping with Scott’s rule for bandwidth estimation (K-ISO-SC).

In the experiments, the number of density points (bins) used in KDE is set to 𝐿 = 256.

Table 8 and Table 9 contain all of the results for the first set of experiments. It should

be noted that in 28 out of the 30 datasets, one of the KDE-ISOMAP versions obtained

the best SC, which corresponds to almost 93% of the cases. It can be observed from the

averages and medians that the proposed strategy outperformed the alternatives in these

datasets.

A non-parametric Friedman test was run to see if the results produced by KDE-ISOMAP

are statistically superior to others. The null hypothesis that all groups are identical is

strongly refuted (𝑝-value = 1.11 × 10−16) with a significance threshold of 𝛼 = 0.05.

Moreover, a post-hoc Nemenyi test was used to determine whether groups were statistically

distinct from the others. The test found that, for a significance level of 𝛼 = 0.05, K-ISO-F,

K-ISO-SIL, and K-ISO-SC obtained considerably higher SC than PCA, KPCA, ISOMAP,

LLE, LE, t-SNE, and UMAP. Table 10 shows the specific 𝑝-values for these tests. There
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Table 9 – Silhouette coefficients for clusters generated by algo-
rithms t-SNE, UMAP, and KDE-ISOMAP (K-ISO-F,
K-ISO-SIL, K-ISO-SC) for a number of openML.org
datasets (2D case).

t-SNE UMAP K-ISO-F K-ISO-SIL K-ISO-SC

iris 0.494 0.526 0.588 0.597 0.619
wine 0.556 0.605 0.742 0.766 0.765

prnn crabs 0.038 0.048 0.156 0.117 0.130
happiness −0.064 −0.052 0.000 0.000 0.000
mux6 0.048 0.037 0.028 0.068 0.038
parity5 −0.016 −0.053 0.000 0.000 0.000

Hayes-roth −0.012 −0.013 0.090 0.160 0.215
aids −0.013 −0.018 0.090 0.054 0.054
pm10 0.000 0.000 0.006 0.004 0.002
strikes 0.008 0.019 0.027 0.025 0.025

disclosure z 0.000 0.000 0.005 0.008 0.008
diggle table a2 0.431 0.199 0.673 0.645 0.639
Monks-problem 0.029 −0.001 0.062 0.04 0.036
Breast-tissue −0.024 −0.001 −0.007 −0.012 −0.022
planning-relax −0.006 −0.003 0.076 0.035 0.046

haberman −0.017 −0.027 0.269 0.175 0.188
KnuggetChase3 0.062 0.063 0.488 0.502 0.510

bolts 0.159 0.347 0.573 0.425 0.556
fl2000 0.045 0.014 0.128 0.302 0.301

Engine1 −0.118 −0.091 −0.243 −0.049 0.053
fri c2 100 10 0.096 0.092 0.122 0.113 0.117
Vineyard(2) 0.301 0.379 0.415 0.357 0.415

diabetes numeric(2) 0.069 0.072 0.167 0.171 0.170
prnn fglass 0.052 0.026 0.078 0.017 0.039
parkinsons 0.193 0.203 0.191 0.339 0.249

Acute-inflammations(2) 0.247 0.355 0.371 0.367 0.367
blogger 0.019 −0.033 0.398 0.398 0.397

prnn viruses 0.213 0.079 0.490 0.358 0.363
analcatdata creditscore 0.007 0.003 0.389 0.257 0.315

Confidence(2) 0.122 0.056 0.540 0.546 0.533

Average 0.097 0.094 0.230 0.226 0.238
Median 0.042 0.023 0.142 0.166 0.179

Minimum −0.118 −0.091 −0.243 −0.049 −0.022
Maximum 0.556 0.605 0.742 0.766 0.765
Std.Dev. 0.164 0.176 0.246 0.228 0.230

Source: (CERVATI NETO; LEVADA; HADDAD, 2024).

is no indication that K-ISO-F and K-ISO-SC vary in terms of SC for these datasets

(𝑝-value = 0.965) and the same holds true for K-ISO-F and K-ISO-SIL (𝑝-value = 0.982)

and K-ISO-SIL and K-ISO-SC (𝑝-value = 0.949).

For each of the datasets, in the second set of experiments, 50% of the samples were

used to train three different classifiers after DR-based metric learning: the Bayesian

classifier under the Gaussian hypothesis with different covariance matrices for each class

(a parametric and quadratic classifier), the SVM with no kernel (a non-parametric and

linear classifier), and the KNN with 𝑘 = 7 (a non-parametric and non-linear classifier).

The 50% remaining samples from the test set were then classified using each one of them,

and the classifier with the highest accuracy was chosen to assess how each metric learning

method affects supervised classification. Table 11 and Table 12 contain all of the findings.

Notably, one of the three variations of the proposed KDE-ISOMAP obtained the greatest

classification accuracy in 26 out of the 30 datasets, which corresponds to almost 86% of
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Table 10 – Post-hoc Nemenyi tests for Silhou-
ette Coefficient.

K-ISO-F K-ISO-SIL K-ISO-SC

PCA 1.79 × 10−6 1.99 × 10−6 1.44 × 10−6

KPCA 1.75 × 10−7 1.97 × 10−7 1.39 × 10−7

ISOMAP 4.81 × 10−8 5.43 × 10−8 3.78 × 10−8

LLE 1.20 × 10−11 1.39 × 10−11 8.95 × 10−12

LE 2.42 × 10−10 2.77 × 10−10 1.83 × 10−10

t-SNE 5.43 × 10−7 6.07 × 10−7 4.35 × 10−7

UMAP 1.56 × 10−7 1.75 × 10−7 1.24 × 10−8

Source: (CERVATI NETO; LEVADA; HADDAD,
2024).

the cases.

Once again, a non-parametric Friedman test was used to determine if the classification

accuracy results achieved by KDE-ISOMAP are statistically superior. Strong evidence is

shown against the null hypothesis that all groups are identical, with a significance level

of 𝛼 = 0.05. A post-hoc Nemenyi test was applied to determine whether groups were

equivalent or not. The test found that K-ISO-F, K-ISO-SIL, and K-ISO-SC produced

significantly higher classification accuracies than PCA, KPCA, ISOMAP, LLE, LE, t-SNE,

and UMAP. Table 13 shows the specific 𝑝-values for these tests. There is no indication

that K-ISO-F and K-ISO-SC vary in terms of classification accuracy for these datasets

(𝑝-value = 0.550), and the same holds true for K-ISO-F and K-ISO-SIL (𝑝-value = 0.508),

and K-ISO-SIL and K-ISO-SC (𝑝-value = 0.949).

A positive aspect of the proposed KDE-ISOMAP is related to the out-of-sample problem

in ML algorithms. Most unsupervised metric learning algorithms are not capable of dealing

with new samples that are not part of the training set in a straightforward manner. The

natural choice is to add these new samples to the set and perform another full training

round, which can be time consuming. It has been shown that ISOMAP is directly related

to KPCA: in fact, KPCA becomes ISOMAP when the kernel matrix 𝐾 (�⃗�𝑖, �⃗�𝑗) is defined

as minus one-half the geodesic distance matrix (HAM et al., 2004). Thus, using this

relation, it is possible to deal with out-of-sample instances in KDE-ISOMAP using the

same projection strategy of KPCA.

The specification of parameter 𝜖 (radius), which determines the patch size (the number

of neighbours of a particular sample in the 𝜖-neighbourhood graph), is one of the method’s

limitations. Tests showed that the classification accuracy and SC are quite sensitive to

changes in this parameter. Here, the following strategy was employed: for each dataset,

the complete graph is built by linking a sample to every other sample. Then, for each

sample �⃗�𝑖, the approximate distribution of the distances from �⃗�𝑖 to any other sample �⃗�𝑗

is computed. Computational studies show that the percentiles 𝑝 of these distribution

falling within the range 𝑃 = [1, 20] produce the most suitable values of 𝜖. In other words,

several percentiles of this distribution are tested as radius and the one that maximises the
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Table 11 – Maximum accuracies among KNN, SVM, and
Bayesian classifiers after dimensionality re-
duction with PCA, KPCA, ISOMAP, LLE,
and LE for several openML.org datasets (2D
case).

PCA KPCA ISOMAP LLE LE

iris 0.960 0.866 0.920 0.973 0.840
wine 0.966 0.977 0.989 0.797 0.989

prnn crabs 0.620 0.660 0.610 0.710 0.620
happiness 0.333 0.266 0.333 0.266 0.300
mux6 0.609 0.703 0.703 0.734 0.546
parity5 0.500 0.437 0.625 0.437 0.437

Hayes-roth 0.606 0.621 0.636 0.606 0.606
aids 0.480 0.480 0.440 0.480 0.480
pm10 0.532 0.532 0.536 0.512 0.512
strikes 0.638 0.648 0.648 0.661 0.661

disclosure z 0.531 0.558 0.525 0.519 0.519
diggle table a2 0.877 0.974 0.916 0.883 0.929
Monks-problem 0.604 0.600 0.589 0.647 0.669
Breast-tissue 0.415 0.584 0.490 0.547 0.547
planning-relax 0.714 0.714 0.714 0.714 0.714

haberman 0.790 0.764 0.764 0.764 0.764
KnuggetChase3 0.804 0.793 0.793 0.793 0.793

bolts 0.850 0.950 0.900 0.700 0.850
fl2000 0.647 0.676 0.647 0.647 0.617

Engine1 0.791 0.89 0.885 0.765 0.885
fri c2 100 10 0.740 0.680 0.700 0.540 0.680
Vineyard(2) 0.846 0.807 0.807 0.846 0.846

diabetes numeric(2) 0.681 0.590 0.681 0.681 0.636
prnn fglass 0.757 0.719 0.757 0.635 0.710
parkinsons 0.897 0.897 0.816 0.836 0.806

Acute-inflammations(2) 1.000 1.000 1.000 1.000 0.967
blogger 0.660 0.680 0.760 0.740 0.680

prnn viruses 0.839 0.806 0.741 0.774 0.774
analcatdata creditscore 0.840 0.760 0.820 0.760 0.780

Confidence(2) 0.833 0.833 0.888 0.861 0.833

Average 0.712 0.716 0.721 0.694 0.700
Median 0.727 0.709 0.728 0.712 0.695

Minimum 0.333 0.266 0.333 0.266 0.300
Maximum 1.000 1.000 1.000 1.000 0.989
Std.Dev. 0.169 0.172 0.162 0.160 0.164

Source: (CERVATI NETO; LEVADA; HADDAD, 2024).

classification accuracy among all values of 𝑝 ∈ 𝑃 is chosen as the best model. It must be

noted that, unlike a KNN graph, this graph is not regular, in the sense that the degrees

of the vertices can be quite different. It is also worth mentioning that, besides using the

class labels to perform model selection, the feature extraction stage is fully unsupervised,

in the sense that KDE-ISOMAP performs unsupervised metric learning.

In order to illustrate how the proposed KDE-ISOMAP can improve the clusters and

classification accuracy by learning a suitable metric, Figure 8 shows scatter-plots for the

AIDS dataset, which illustrates the differences between methods more acutely than most,

after reducing the number of features to two. It can be noted that, in comparison to the

original ISOMAP, t-SNE, and UMAP, the proposed method produced less overlapping

samples in terms of data discrimination. The two classes (Male — circle and Female —

cross) are better identified in KDE-ISOMAP than in the other methods.

openML.org
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Table 12 – Maximum accuracies among KNN, SVM, and
Bayesian classifiers after dimensionality reduction
with t-SNE, UMAP, and KDE-ISOMAP (K-ISO-
F, K-ISO-SIL, K-ISO-SC) for several openML.org

datasets (2D case).

t-SNE UMAP K-ISO-F K-ISO-SIL K-ISO-SC

iris 0.986 1.000 0.973 1.000 1.000
wine 0.943 0.943 0.989 0.988 1.000

prnn crabs 0.820 0.810 0.860 0.900 0.870
happiness 0.400 0.400 0.567 0.400 0.433
mux6 0.812 0.734 0.656 0.750 0.688
parity5 0.562 0.375 0.500 0.500 0.500

Hayes-roth 0.727 0.606 0.818 0.818 0.788
aids 0.520 0.520 0.560 0.760 0.600
pm10 0.588 0.536 0.564 0.576 0.560
strikes 0.853 0.750 0.757 0.767 0.770

disclosure z 0.558 0.549 0.568 0.565 0.586
diggle table a2 0.948 0.948 0.968 0.968 0.974
Monks-problem 0.748 0.733 0.766 0.676 0.687
Breast-tissue 0.566 0.509 0.642 0.660 0.623
planning-relax 0.714 0.714 0.725 0.725 0.725

haberman 0.764 0.777 0.797 0.791 0.797
KnuggetChase3 0.804 0.793 0.814 0.814 0.804

bolts 0.850 0.900 0.950 0.950 0.950
fl2000 0.647 0.617 0.676 0.676 0.706

Engine1 0.901 0.906 0.906 0.927 0.938
fri c2 100 10 0.760 0.700 0.820 0.820 0.860
Vineyard(2) 0.807 0.807 0.885 0.885 0.885

diabetes numeric(2) 0.681 0.590 0.681 0.681 0.727
prnn fglass 0.728 0.710 0.738 0.757 0.710
parkinsons 0.897 0.846 0.898 0.908 0.908

Acute-inflammations(2) 1.000 1.000 1.000 1.000 1.000
blogger 0.800 0.650 0.800 0.800 0.780

prnn viruses 0.774 0.774 0.839 0.871 0.871
analcatdata creditscore 0.820 0.820 0.820 0.840 0.840

Confidence(2) 0.833 0.833 0.917 0.917 0.917

Average 0.760 0.728 0.782 0.790 0.783
Median 0.787 0.742 0.807 0.807 0.793

Minimum 0.400 0.375 0.500 0.400 0.433
Maximum 1.000 1.000 1.000 1.000 1.000
Std.Dev. 0.145 0.167 0.143 0.151 0.154

Source: (CERVATI NETO; LEVADA; HADDAD, 2024).

Table 13 – Post-hoc Nemenyi tests for classi-
fication accuracy.

K-ISO-F K-ISO-SIL K-ISO-SC

PCA 6.84 × 10−6 2.47 × 10−7 3.47 × 10−7

KPCA 5.56 × 10−6 1.56 × 10−7 2.21 × 10−7

ISOMAP 4.57 × 10−6 1.57 × 10−7 2.20 × 10−7

LLE 1.25 × 10−8 2.10 × 10−10 3.18 × 10−10

LE 8.24 × 10−10 1.03 × 10−11 1.61 × 10−11

t-SNE 0.028 0.004 0.005
UMAP 2.01 × 10−5 8.43 × 10−7 1.16 × 10−6

Source: (CERVATI NETO; LEVADA; HADDAD,
2024).
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Figure 8 – Scatter-plots for the AIDS dataset after dimensionality reduction: from left to
right, top to bottom, they are ISOMAP, t-SNE, UMAP, and KDE-ISOMAP.

Source: (CERVATI NETO; LEVADA; HADDAD, 2024).

Note: When the number of samples is limited, t-SNE and UMAP tend to perform below the expectations
due to the numerical optimisation algorithms.
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Chapter 5

Conclusions

Unsupervised metric learning is a fundamental step in many pattern recognition

problems dealing with high dimension data. In this scenario, algorithms for DR play an

important role, as besides learning an adaptive distance function for each dataset, they

also learn an optimal representation for the observed data in terms of compression. In this

work was presented ISOMAP-KL, a parametric patch-based method using KL-divergence

that maps neighbourhoods of the KNN graph to a feature space in which a surrogate for

the pairwise distance matrix is obtained by replacing the usual Euclidean distance by

the symmetrised relative entropy between local statistical models. Results with several

real datasets indicate that besides improving the quality of the clusters, which is a

desirable feature in unsupervised classification, the proposed method can also improve the

supervised classification accuracy, indicating that it can be better suited to unsupervised

metric learning than regular PCA, KPCA, and some ML algorithms.

DR-based metric learning combines linear or non-linear transforms with the preservation

of pairwise relationships in data to produce superior distance functions for classification

tasks. The idea is to learn a transform that maps the original high dimension data

onto a low dimension space, while optimising a metric capable of capturing the intrinsic

geometry of data. This strategy combines DR with metric learning. It decreases data

dimensionality while facilitating or eliminating noisy or useless data patterns. It also

improves the discriminative capacity and performance of ML algorithms by optimising a

distance measure that condenses intended data associations.

Basically, the main positive points of ISOMAP-KL can be summarised as:

1. ISOMAP-KL is a patch-based approach so it is less sensitive to the presence of noise

and outliers in data (the entropic distance matrix is computed between pairs of
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patches instead of pairs of isolated points);

2. The method can be easily extended to different statistical models and divergences,

such as Bhattacharyya and Hellinger distances.

On the other hand, ISOMAP-KL has limitations, the major one being its sensitivity to

the patch size 𝑘. Experiments have shown that variations on this parameter can produce

significantly different classification results.

Among modern DR-based metric learning algorithms, t-SNE is considered the state-of-

the-art method. It converts Euclidean distances between samples into probabilities, while

attempting to minimise relative entropies between input and output probabilities. Two

limitations of t-SNE are that it is an unsupervised learning technique, and it relies on the

Euclidean distance, thus being sensitive to outliers.

In the present work are proposed two supervised extensions of t-SNE. One incorporates

geodesic distances from the KNN graph, and the other considers stochastic distances based

on local multivariate Gaussian densities. Experimental analysis indicate that, despite the

increase in terms of computational cost, the proposed methods are capable of yielding

superior classification performance compared to standard t-SNE. Particularly, the proposed

methods improve the performance of t-SNE when working with small samples. It is widely

known that standard t-SNE requires a significant amount of data for convergence, as it

depends on numerical optimisation algorithms (gradient descend). With the introduction

of the present supervised methodological extensions, this problem is considerably reduced.

PNN-LPP was proposed as a non-parametric approach for DR-based unsupervised

metric learning. The goal was to replace the pointwise Euclidean distance by a patch-based

probabilistic distance to make LPP more resilient against the presence of variations in data,

such as noise and outliers. The proposed PNN-LPP features can be more discriminative

in supervised classification than features produced from conventional ML techniques,

according to computational experiments. Moreover, one of the main problems with state-

of-the-art approaches such as t-SNE and UMAP is the unreasonable performance in small

sample size problems due to the necessity of numerical optimisation algorithms. The results

indicate that PNN-LPP improves the performance of regular LPP in situations where

the number of samples is limited, showing that it can be a viable option in unsupervised

metric learning.

This study presents the relative entropy between distributions estimated from patches

along the 𝜖-neighbourhood graph as a replacement for the Euclidean distance in an

entropic ISOMAP that is based on KDE. Since the computational studies validated

two key arguments, it can be asserted that the suggested KDE-ISOMAP is a potential

substitute for the numerous learning algorithms already described in the literature. The

two key arguments are:



5.1. Contributions 111

1. The KDE-ISOMAP’s non-linear features may be more discriminative in supervised

classification than features produced by other state-of-the-art ML algorithms;

2. The quality of the clusters produced by KDE-ISOMAP may be superior to that

obtained by state-of-the-art ML algorithms.

The superiority of the proposed KDE-ISOMAP in comparison to t-SNE and UMAP

becomes clearer when dealing with datasets with limited number of samples, as the

numerical optimisation methods required by these two algorithms depend heavily on data.

The main contribution of the proposed framework, which uses a patch-based distance

function to measure the similarity between the samples and is more resilient than the

pointwise Euclidean distance to deal with the presence of noise and outliers in data, is

roughly what accounts for the good performance of KDE-ISOMAP. Furthermore, since

a projection matrix can be created, dealing with out-of-sample data is simple thanks to

the relationship between KPCA and ISOMAP. The fact that KDE-ISOMAP is suited for

small sample size issues and does not require a huge amount of data for convergence should

also be mentioned, in contrast to auto-encoders and other deep-learning based algorithms.

Therefore, in general, while the initial intuition that replacing Euclidean distances in

existing methods would create improved versions of those was not verified for all cases,

most tests show a significantly better performance in classification, confidently indicating

that the research hypothesis merits further investigation. Although a few of the methods

show no difference to the originals when evaluating classification performance in the

studied datasets, there are still sufficient benefits to their usage in specific circumstances

to consider them a relevant contribution to the field. Thus, there are many other paths

this research could take, and some are suggested next.

5.1 Contributions

The methods proposed in this work have resulted in some publications during its

development:

❏ CERVATI NETO, Alaor. Exploring information theory-based measures for non-

linear dimensionality reduction in manifold learning. UFSCar, São Carlos, Brazil,

12 Feb. 2020. Poster session. Program: http://wpsm.icmc.usp.br/8WPSM/

Programa8WPSM.pdf.

❏ CERVATI NETO, Alaor; LEVADA, Alexandre L. M. ISOMAP-KL: a parametric

approach for unsupervised metric learning. In: 2020 33rd SIBGRAPI Conference

on Graphics, Patterns and Images (SIBGRAPI). 2020. P. 287–294. DOI: 10.1109/

SIBGRAPI51738.2020.00046.

http://wpsm.icmc.usp.br/8WPSM/Programa8WPSM.pdf
http://wpsm.icmc.usp.br/8WPSM/Programa8WPSM.pdf
https://doi.org/10.1109/SIBGRAPI51738.2020.00046
https://doi.org/10.1109/SIBGRAPI51738.2020.00046
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❏ CERVATI NETO, Alaor; LEVADA, Alexandre L. M. Probabilistic Nearest Neighbors

Based Locality Preserving Projections for Unsupervised Metric Learning. JUCS —

Journal of Universal Computer Science, Journal of Universal Computer Science,

v. 30, n. 5, p. 603–616, 2024. ISSN 0948-695X. DOI: 10.3897/jucs.107081.

eprint: https://doi.org/10.3897/jucs.107081. Available from: <https:

//doi.org/10.3897/jucs.107081>.

❏ CERVATI NETO, Alaor; LEVADA, Alexandre L. M.; HADDAD, Michel F. C. A

Kernel Density Estimation based entropic Isometric Feature Mapping for Unsu-

pervised Metric Learning. Annals of Data Science, 25 May 2024. Accepted for

publication.

5.2 Future Works

As was done with the methods presented, other DR and ML algorithms can be adapted

to use different distances to construct their graphs’ neighbourhoods. Measures such as

Fisher information (PORTO, 2013) or Jeffreys-Matusita distance (BRUZZONE; ROLI;

SERPICO, 1995) can be used to replace Euclidean distances for these methods in a similar

manner to those described in this work, along the same intuition that a more stochastic

metric may improve the performance of such methods. Another form of optimisation

that could be attempted is to investigate adaptive ways to set the patch size based on

local properties of the data. Yet another adjust that could yield interesting results is to

optimise the methods’ hyper-parameters dynamically, using a part of the initial datasets

as validation. Finally, comparing the usage of these methods to the results obtained by

variational auto-encoders is also a possible avenue for future research.

https://doi.org/10.3897/jucs.107081
https://doi.org/10.3897/jucs.107081
https://doi.org/10.3897/jucs.107081
https://doi.org/10.3897/jucs.107081
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