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“You never change things by fighting the existing reality.
To change something, build a new model to make the existing reality obsolete.”
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Abstract

This dissertation addresses aircraft routing problems with crew pairing in the con-
text of non-scheduled air transportation. These problems involve complex decisions in a
highly dynamic and costly environment, where various civil aviation regulations must be
followed. There is a lack of operations research literature on non-scheduled air transpor-
tation, and this type of service has significant differences from conventional (scheduled)
transportation. Overall, this research covers real-world problems of two companies be-
longing to the sector, categorized in academia as a dial-a-flight problem and an aircraft
recovery problem. The first refers to fractional ownership services with private aircraft
sharing. In this scenario, the customer owns an equity part of aircraft managed by an
airline, which entitles him/her to fly a certain amount of miles during the period. We
proposed a detailed optimization model, MIP-based heuristics and an exact branch-and-
price algorithm. The second problem refers to a rescheduling (recovery) of flights as a
way to mitigate the damage arising from past disruptions (adverse weather conditions,
mechanical failures, etc.). Given a flight timetable, we need to determine new depar-
ture times, redesign routes, reassign flights to different aircraft, and examine potential
flight cancellations. We formulated network-flow, event-based and discrete-time models.
Additionally, we developed tailored constructive and improvement heuristics. To verify
the adequacy and coherence of the approaches, several experiments were performed with
real-life data. In the first problem, all instances were solved optimally, and in the second,
we were able to generate effective reschedules without canceling flights, in relatively short
computing times.

Keywords: Non-scheduled air transportation, Dial-a-flight problem, Aircraft recovery
problem, Crew pairing, Aircraft routing.





Resumo

Esta tese aborda problemas de roteamento de aeronaves com emparelhamento de tri-
pulações no âmbito do transporte aéreo não regular. Esses problemas englobam decisões
complexas num ambiente altamente dinâmico e custoso, onde várias regras da aviação
civil devem ser respeitadas. Há uma escassez na literatura da Pesquisa Operacional a
respeito do transporte aéreo não regular, que possui diferenças significativas ao do trans-
porte convencional (regular). Ao todo, esta pesquisa abrange problemáticas reais de duas
empresas pertencentes ao setor, categorizadas no meio acadêmico como Problemas de
Reserva de Voos e de Recuperação de Aeronaves. O primeiro remete aos serviços de voos
sob demanda com o compartilhamento de aeronaves privadas. Neste, o cliente tem posse
de uma parte patrimonial da aeronave que fica sob os cuidados da companhia aérea, o
que lhe dá direito a uma certa quantia de milhas no período. Nós propusemos um modelo
de otimização bem detalhado, métodos heurísticos de programação matemática, como
também um método exato de ramificação e preço. O segundo problema refere-se à repro-
gramação (recuperação) de voos como forma de mitigar o prejuízo oriundo de interrupções
passadas (condições climáticas, avarias mecânicas, etc.). A partir de uma tabela de voos
pré-definida, são determinados novos horários de decolagem, novas rotas, a realocação
de voos às aeronaves, assim como os possíveis cancelamentos dos voos. Nós elaboramos
formulações de rede de fluxo, baseada em eventos de decolagem e com tempo discreto.
Ademais, desenvolvemos heurísticas construtivas e de melhoria, feitas sob medida. Para
verificar a adequação e a coerência das abordagens, foram realizados vários experimentos
com dados reais. No primeiro problema, conseguimos resolver todos os exemplares na
otimalidade, e no segundo, fomos capazes de gerar reprogramações efetivas, sem cancela-
mento de voos, em tempos computacionais relativamente curtos.

Palavras-chave: Transporte aéreo não regular, Transporte aéreo sob demanda, Repro-
gramação de aeronaves, Emparelhamento de tripulações, Roteamento de aeronaves.
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Chapter 1

Introduction

Air transportation is an important industry driver, stimulating socioeconomic deve-
lopment of regions and promoting domestic and foreign markets as a whole. It facilitates
intermodality in business logistics strategies and has intrinsic characteristics associated
with speed, autonomy, reliability and safety. However, the logistics in air transportation
are well-known for their high complexity in terms of operational planning and high costs
involved (LIMA; BELDERRAIN, 2008). Moreover, large airline corporations generally
have meager profits, in the order of only 1% of gross revenues (MCCARTNEY, 2012).

Given the low profitability and the presence of an increasingly demanding and competi-
tive field of activity, optimization processes end up playing an important role in supporting
decision-making. They commonly consist of quantitative approaches, such as mathema-
tical models and solution methods, which efficiently assist decision-makers to determine
routes, times and locations; assign passengers, cargo and crew to flights and aircraft; build
work schedules; reduce delays, flight times, available fleet; improve contribution margins,
revenues, resource utilization; facilitate the fulfillment of what was planned; offer insights,
scenario simulations, systematization and automation of business processes; among many
other complex tasks.

In fact, successful cases have been reported in operations research (OR) literature, in-
cluding tools by ensuring efficient solution algorithms in a reasonable time for companies in
this sector (BELOBABA; ODONI; BARNHART, 2015), e.g., schedule design, responsible
for constructing flight timetables according to traffic forecasts among cities (ERDMANN
et al., 2001); fleet assignment, which defines what type of aircraft will operate a certain
route (REXING et al., 2000; SHEBALOV; KLABJAN, 2006; ZEGHAL et al., 2011); tail
assignment, consistent with assigning a specific aircraft (identified by its tail number) to
each flight leg (LIANG et al., 2015; KHALED et al., 2018); aircraft maintenance routing,
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a sequencing landing aircraft process to realize corrective and preventive maintenances
(LIANG et al., 2011; MAHER; DESAULNIERS; SOUMIS, 2014; AL-THANI; AHMED;
HAOUARI, 2016); and crew scheduling, which aims to assign and pair crew members to
flights, reconciling flight tasks with break and rest requirements (MERCIER; SOUMIS,
2007; DUNBAR; FROYLAND; WU, 2014; HAOUARI; MANSOUR; SHERALI, 2019).

In conventional airline operations, travel services are provided based on pre-established
times and locations, so that customers make their preferred choices from a predictable
range of options defined by departure times, seat classes, origin and destination rou-
tes, etc. There is a governmental civil aviation authority – which in United States is
Federal Aviation Administration of USA (FAA), in Europe, European Union Aviation
Safety Agency (EASA), and in Brazil, Agência Nacional de Aviação Civil (ANAC), for
instance – that accounts for approvals and concessions to explore international and do-
mestic passenger, cargo charter and mail carrier airlines. This category of services is called
scheduled air transportation. Conversely, companies engaged in non-scheduled air trans-
portation do not need to submit their operational acts of incorporation for prior approval
by a regulatory agency, not having as a requirement, the pre-definition of their itineraries,
which can or cannot own commercial logistical purposes (IAC-1223, 2000; ICAO, 2009).
In this scenario, the flight schedule may be highly dynamic, as the departure/arrival ti-
mes, origin/destination locations, fleet and crews are planned on a short-term horizon,
usually varying from period to period. In a commercial airline, these decisions are made
by customers themselves, and the company seeks for responding to demand, and in the
non-commercial one, it is the company itself that deliberates schedules regarding the ope-
ration convenience and based upon the state of resources provided at that moment. This
leads to greater nervousness and unpredictability in comparison with scheduled air trans-
portation airlines (ZWAN; WILS; GHIJS, 2011). It is also relevant to emphasize that,
contrary to the literature related to scheduled air transportation, the non-scheduled case
is considered a new topic, an activity that is emerging thanks to the increased participa-
tion of air taxi services and fractional ownership programs in the market, and due to the
practicality that private aviation offers (verticalization effect), therefore, this is a class of
problems that has been barely explored.

In view of this, our study aims to apply OR as a scientific method to optimize the
routing of different aircraft types, involving flight scheduling with crew pairing in the con-
text of non-scheduled air transportation industry. The integrated optimization of these
activities represents a meaningful challenge for decision-makers, as the resulting problems
are significantly complex and imply the simultaneous use of multiple resources. Hence,
the goal of this dissertation is to propose representative optimization models, as well as
effective exact and heuristic solution methods to cope with large-scale realistic problem
instances within acceptable computer runtimes. In specific terms, the formulations com-
prise mixed-integer programming (MIP) models. The exact method is derived from the
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branch-and-price (B&P) algorithm, whereas for heuristic approaches, we focus on elabo-
rating MIP-based, tailored constructive and local search heuristics. The results of this
dissertation have potential to contribute not only to the scientific literature domain, but
also to the development of new computational tools, able to help corporations that belong
or work in this environment.

As a scope of research, two companies that proffer non-scheduled air transport ser-
vices are addressed here, for the commercial and non-commercial cases, classified in the
literature as variants of dial-a-flight problem and aircraft recovery problem, respectively,
in order to identify and validate pertinent requirements that may occur routinely in these
operations. Given the particularities of each issue and the crew regulations that govern
each situation, the first real-world case arises in the planning processes of on-demand
panorama, carried out with a fractional management airline company operating in Eu-
ropean and Asian countries; and the second comes from a problem of recovering flights
for personnel transportation (mainly teams of employees) to maritime units, faced by a
Brazilian oil and gas company.

1.1 Objectives

The dissertation in its essence is stimulated by the main and specifics objectives pre-
sented as follows.

1.1.1 Main objective

Demonstrate the potential benefits of decisions rooted in scientific methods from OR li-
terature, which concisely and objectively, propose a set of alternatives and actions capable
of representing the problem mathematically, and developing effective practical solution
strategies to create optimized aircraft routings in the non-scheduled air transportation
context.

1.1.2 Specific objectives

Basically, the dissertation comprehends four specific objectives, arising from unfolding
of the main objective, namely:

1. Deepen the study of non-scheduled air transportation literature, seeking to identify
related problems, and formulations/solution approaches that have been devised;

2. Create mathematical models that satisfactorily represent the problems and can help
in decision-making processes of the involved companies;

3. Develop an exact branch-and-price algorithm; and
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4. Elaborate heuristic methods capable of improving the computational time and effort,
without compromising the solution quality.

1.2 Motivation and justification

This dissertation addresses challenging problems that integrate complex decisions of
highly costly activities, encompassing the simultaneous use of multiple scant resources in
an unpredictable and mutable logistical environment. Because these problems are located
in a short-term horizon, whereupon the demand is known gradually and can be planned
at most a few days in advance, the sector ends up requiring in response, quality solutions
at a relatively short computational time, making necessary the development of effective
solution approaches.

Furthermore, this study comprises formulations with cost functions that are difficult
to handle, where the incorporation of aviation rules results, in its entirety, nonlinear
structures with integer variables – configurations that are originally intractable in current
terms of direct resolution by general-purpose optimization software. The models are
extensions from the formulation of heterogeneous fleet vehicle routing problem with time
windows (HFVRPTW), which belongs to the NP-hard class of problems.

Finally, non-scheduled air transportation is considered a recent subject, an activity
that has been growing since the last decade, thereby having scarce literature. The raised
studies revealed that this research presents problems with particularities that make them
unique and quite relevant to air transportation as a whole. It is also worth noting that
the potential results of this work can be adapted to multiple types of operations related to
the non-scheduled case. Therefore, the research seeks to promote approximation between
academia and industry, and has potential to generate partnerships with an impact on
society.

1.3 Methodology

Once this dissertation uses OR as a scientific tool to assist logistical planning in
the aircraft routing process, the methodological procedures of this research follow the
modeling and simulation category of production engineering literature (NAKANO, 2010).

According to the classification proposed by Bertrand and Fransoo (2002), and Mora-
bito and Pureza (2010), this research can be characterized as empirical-quantitative and
normative. The research is called empirical-quantitative because it is oriented to develop
mathematical models and solution methods for real-life problems, and is named normative
because the approaches promote engagement in decision-making processes that actively
influence strategic business choices for companies.
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The modeling process used to solve the problems under study was the one proposed
by Mitroff et al. (1974), a cycle that composes four main and sequential phases for the
construction of a quantitative model: conceptualization, formulation, resolution, imple-
mentation. In the conceptualization phase, the researcher creates a conceptual formula-
tion of the problem/system, making decisions about variables that need to be included
in the scope. In the next phase, the researcher actually develops the quantitative mo-
del, thus defining causal relationships between the variables. Afterward, the resolution
process begins through computational tests with real instances. Lastly, the results of the
mathematical model are validated and then implemented, after which a new cycle can
start. Mitroff et al. (1974) argue that a research cycle can arguably begin and end at
any of the phases, provided that the research is aware of specific parts of the addressed
solution process and, consequently, of claims the researcher can make based upon the
research results.

1.4 Organization and major contributions

The remainder of this dissertation is organized as follows, where the structure of each
chapter concerns an article style format. We also highlight the main contributions.

Chapter 2 presents a relevant literary background about the problems studied here,
dial-a-flight and aircraft recovery. It was built from the application of a systematic litera-
ture review method, which was able to do a complete scan of papers published until 2023.
The search revealed that our problems and optimization approaches are unprecedented.

In Chapter 3, we address a real-world dial-a-flight problem (DAFP) that represents
a challenge for decision-makers, because, in addition to considering the customer prefe-
rences, maintenance requests, distinct aircraft types and different operating costs, this
problem also incorporates crew assignments, resulting in the fulfillment of several labor
rules, common in the FAA guidelines. To effectively representing the problem situation,
we proposed a detailed optimization model, enriched by stronger MTZ-based constraints,
linearization artifices and variable pre-fixing. Moreover, we developed MIP-based heuris-
tics, solution methods derived from relax-and-fix and fix-and-optimize approaches. In our
adaptation/improvement, these heuristics allow forward and backward temporal stra-
tegies, admit the regret of previously fixed variables, choose how many variables will
be linearly relaxed, among other possibilities. The results of extensive computational
experiments using real-life instances show that the additional crew constraints do not
compromise the model performance, which can be effectively solved by a general-purpose
optimization software. We were capable of solving optimally 80% of the instances with
this formulation. The results of MIP-based heuristic methods were promising. They
found even better solutions, within relatively short running times.

Chapter 4 focuses on describing a branch-and-price algorithm together with a set par-
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titioning formulation for the same DAFP addressed in Chapter 3. This sophisticated
approach comprises, within its branch-and-bound tree, an interior-point method that can
offer well-centered primal and dual solutions, as a way to stabilize the column generation
procedure, avoiding well-known drawbacks in the literature. Furthermore, we create a
tailored labeling algorithm that efficiently solves the resulting subproblems from the re-
formulation. This algorithm is responsible for attending to all crew rules while it generates
the aircraft routes. We can also opt for which branching strategy to follow (two-step or
strong branching). Last but not least, we applied a primal MIP-based heuristic to obtain
good integer solutions sooner. The branch-and-price algorithm managed to solve all the
real-life instances optimally, taking less than 400 seconds on average, which indicates that
it is an exact method with an excellent performance in practice.

In Chapter 5, we start the study of a real-world aircraft recovery problem (ARP) in
the context of oil industry. This is a complex and challenging problem to solve because
of its particular characteristics observed in practice. We need to determine a daily flight
reschedule that satisfies several operational constraints and recovers all pending flights,
while minimizing flight delays and costs related to helicopter usage and reassignments.
We propose two MIP models to formulate the respective problem with all relevant cha-
racteristics, one based on the extension of traditional network-flow models and other that
relies on a novel event-based representation of the problem. Additionally, we develop
an effective heuristic approach with constructive and improvement procedures, able to
produce high-quality solutions within acceptable computational times.

Chapter 6 extends the ARP by considering a set of aerodromes (in which is possible to
have flight transfers among them) and different maximum durations of the daily working
hours of the crew members. Three approaches are proposed, a continuous-time MIP
model that faithfully represents the extended problem, a discrete-time simplification of
the former model to generate better recovery plans, and a two-phase heuristic to cope
with larger realistic problem instances. The first and last approach are extended contents
from Chapter 5.

Finally, Chapter 7 shows an overall final discussion and concluding remarks together
with perspectives for future research arising from the developments revealed in this study.
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Literature review

All the theoretical background relevant to this dissertation was raised through a
systematic literature review (SLR), conducted according to the research stages propo-
sed in Biolchini et al. (2005). The methodological-flow of this SLR is illustrated in Figure
1.

Figure 1 – Steps of the SLR.
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Source: Adapted from Biolchini et al. (2005).

As a result of Stage 1 (review planning), we obtain the research protocol, which
describes the specificities of how the SLR was carried out to answer the intended research
questions – which by the way were: (i) How are our problems classified in the literature?
(ii) Are there similar problems? (iii) What solution approaches have been proposed? (iv)
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How can we determine the planning of these two problems in order to respect the imposed
aviation rules and minimize the inherent operation costs? For the protocol construction,
insights acquired from reading other SLRs were also considered, such as Uhlmann and
Frazzon (2018), Clausen et al. (2010) and Santana et al. (2023). Figure 2 shows the
developed research protocol.

Figure 2 – Research protocol.

DATABASE Web of Science, Scopus and Compendex

MAIN 
STRINGS/KEYWORDS

"non-scheduled" OR "dial-a-flight" OR "on-demand air 
transportation" OR (("air taxi" OR "per-seat" OR "time-shared“ OR 
"charter flight") AND "scheduling") OR ("fractional" AND "ownership" 
AND ("management" OR "operations")) OR "aircraft recovery" OR 
(("flight" OR "aircraft" OR "helicopter") AND ("rescheduling" OR 
"rerouting")) OR ("irregular operations" AND "aircraft schedule") OR 
("airline" AND ("disruption management“ OR ("schedule" AND 
("perturbation" OR "disturbance")) OR "flight cancellations")) OR 
(("airline" OR "aircraft") AND "oil platform transport")

FIELDS Title, Abstract and Keywords

PERIOD Until 2023

LANGUAGE English and Portuguese

INCLUSION/EXCLUSION 
CRITERIA

Conferences and Journals, Peer reviewed and Completely available;
Operations Research area; and
Related to DAFP or ARP, either subject or formulation 

CONTENTS INCLUSION 
CRITERIA Decisions, Rule sets, Formulations and Solution methods

Source: Own authorship.

Once Stage 1 was validated, we proceeded to Stage 2 (review execution). In all, 863
articles were found, leaving 448 after filtering for language, document type, publication
stage and research area, and remaining 246 by removing duplicated works in the three
databases. After performing the content analysis (title, abstract, conclusion, and for the
most relevant articles, the full reading), a total of 101 papers prevailed (included in the
dissertation).

Given the conclusion of Stage 2, as an output, our SLR revealed that the DAFP
and ARP described here have particularities that make them unique in the literature.
Regarding the first problem, we found only five works about DAFP in the last ten years,
showing that this literature is very scarce, needing to be better explored. Related to the
second problem, we note that there is no paper associated to the oil and gas industry.

Sections 2.1 and 2.2 present the theoretical background obtained for these two pro-
blems, first for DAFP and then for ARP. We start with the initial research efforts, and
the remaining content is organized according to the type solution methodology, i.e., exact
optimization methods, heuristics and metaheuristics, hybrid methods, etc. At the end of
each section (specifically, Subsections 2.1.6 and 2.2.6), we exhibit a table that summarizes
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the main characteristics of the studied contributions. Ultimately, Section 2.3 concludes
this chapter by showing our articles that have already been published or submitted.

2.1 The dial-a-flight problem

The category of problems related to transportation on demand (TOD) refers to the
locomotion of passengers or goods between specified points of origin and destination at
the request of users. More common examples are dial-a-ride transportation services for
elderly and disabled people, urban courier activities, emergency vehicle dispatching, and
which characterizes our first problem, aircraft sharing services, spread in the literature as
dial-a-flight problem (DAFP) (CORDEAU et al., 2007).

In recent years, aircraft sharing has become more popular for a number of reasons.
Increased security at airports has resulted in longer waiting times. In addition, the cost-
reduction efforts made by airlines have led to staff cuts and reduced workload, affecting the
flexibility of the provided service, especially when it concerns smaller regional airports. At
the same time, technological advances are paving the way for the development of smaller
aircraft, which are therefore cheaper. Because of this, an air taxi system that offers
efficient, hassle-free, affordable, and that allows boarding/landing in congested outlying
airports, without packed parking lots, long lines, numerous security checkpoints, flight
delays, lost luggage, and enables greater freedom of choice and convenience, make air
transport on demand more and more attractive.

Basically, DAFPs can be characterized by the presence of three often conflicting goals:
(i) maximizing the number of requests served, (ii) minimizing operational costs and (iii)
minimize user inconvenience. Service quality is usually measured in terms of excess travel
time (i.e., the difference between a user’s actual travel time and the minimum possible
travel time). Operating costs are mainly related to the number of used vehicles, the total
duration of a journey or the total distance traveled by the aircraft.

The daily management of a dial-a-flight system involves making decisions regarding
three major aspects: request clustering, aircraft routing and flight scheduling. Request
clustering consists of creating a group of customer requests to be served by the same
aircraft due to its spatial and temporal proximity. Given this clustering, aircraft routing
is tasked of deciding the order in which airports should be visited by each aircraft. Finally,
the flight scheduling specifies the exact time that each airport should be visited. These
decisions are obviously closely intertwined and a proper management of the system calls
for their simultaneous optimization (FOY, 2013).

Related to the form of meeting the demand, dial-a-flight systems can be static or
dynamic. In the first case, all requests are known beforehand (for example, at least one
day in advance) and routes or decisions are not changed during the execution of planning,
while in the second case, requests are unknown and revealed dynamically and aircraft
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routes must be adjusted in real-time (online) to meet the demand (CORDEAU et al.,
2007). In contrast, we can also find different definitions about the word “dynamic” in the
literature. According to Ghiani, Laporte and Musmanno (2004), in dynamic problems,
all the parameters are considered to be known, even probabilistically, and the decisions
must be taken at the beginning of period based on a sequence of changes carried out at
instants defined within a time dimension, which is explicitly taken into account along
the planning horizon. Therefore, the conflict over this term arises due to the fact that
decisions are made in real-time or staged over time. In the present dissertation, we use
the first definition (CORDEAU et al., 2007), in view of the second belongs to an older
literature (JOHNSON; MONTGOMERY, 1974; BAKER, 1974; SHAPIRO, 2001), not
usually cited in more recent works.

2.1.1 Initial efforts

Desaulniers et al. (1997), Keskinocak and Tayur (1998) were the first to explore air-
craft routing and scheduling for DAFP. Desaulniers et al. (1997) solved a daily aircraft
routing and scheduling problem, which consists of finding a fleet schedule that maxi-
mizes the profits. They proposed set partitioning and time-constrained multicommodity
network-flow formulations, and obtained good computational results by employing column
generation (CG) technique. Keskinocak and Tayur (1998) addressed a time-shared jet
aircraft scheduling problem, which can be seen as a DAFP where each aircraft can serve
only one customer at a time. The authors presented a 0-1 integer programming model to
solve small and medium-sized instances, and also developed a heuristic method based on
dynamic programming (DP) for larger instances.

Since then, other works, most of which were motivated by real-life applications, have
emerged in the literature.

2.1.2 Exact optimization methods

Martin, Jones and Keskinocak (2003) built a flow-based integer linear programming
(ILP) formulation to handle five aspects of fractional fleet management (reservations,
scheduling, dispatch, aircraft maintenance, and crew requirements). They reported an
18.7% reduction in positioning legs for some aircraft and a $4.4 million savings in the first
year after implementing their procedure.

Courier services also operate through on-demand delivery. Armacost et al. (2004)
described an optimization system developed for the scheduling of packages in a North
American courier airline. At the time the study was developed, the company was delive-
ring around 13 million packages globally every day. The system consists of a MIP model
that determines aircraft routes, fleet assignments and the package routings. Given the
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weakness of linear relaxations provided by the model, the strategy was to redefine the
decision variables as composite variables (combination of two aircraft routes).

Karaesmen et al. (2005) took into account a problem with multiple types of aircraft,
scheduled maintenance, and crew constraints. At first, they implemented network-flow
and MIP models, for only aircraft scheduling constraints. After, the problem was exten-
ded by adding crew daily duty times. Due to the increased computational effort of larger
instances, they developed a set partitioning-based formulation, a branch-and-price algo-
rithm and a constructive heuristic. These approaches led to a significant improvement in
the aircraft utilization (from 62% to over 70%), diminution of costs due to reduced empty
moves, and hence increased profits.

Hicks et al. (2005) implemented a comprehensive three-module optimization system
composed by a MIP model to simultaneously maximizes the use of aircraft, crews, and
facilities within the scope of DAFP. This system made use of the GENCOL optimizer,
which encompasses a CG approach to decompose large-scale mixed-integer nonlinear pro-
gramming problems. In general, the approach was capable of generating savings of $54
million, while increasing fleet utilization of around 10% for an airline.

The term dial-a-flight problem originates from the work of Espinoza et al. (2008a).
Their research dealt with the hiring of executive jets in the USA. They modeled the pro-
blem as a multicommodity network-flow formulation with side constraints and developed
a variety of techniques to control the network size and to strengthen the quality of linear
programming relaxation, proving optimality for instances with up to six airplanes.

Lee et al. (2008) addressed an air taxi service problem with probabilistic variables.
They built an approach that describes the aggregate flow of passengers and aircraft
without specifying event-level operation in order to define the optimal pricing of tra-
vel fares. Specifically, the approach combines two optimization models, a discrete-event
model and an aggregate flow model, where the latter model abstracts away from the event-
level complexity of the first one. A set of hypothetical scenarios were used to validate the
proposed approach, revealing its potential for practical application.

Campbell, Ali and Silverwood (2020) formulated the problem of a tourist airline ope-
rating in Botswana/Africa, as multicommodity network-flow model using composite va-
riables. The method takes many of the problem constraints into account at the variable
creation stage, reducing the problem size in terms of variables and constraints. As such
the method is mostly suitable for highly constrained problems.

Munari and Alvarez (2019) considered a problem in which the aim is to determine
airplane routing and scheduling to fulfill a list of flight requests, minimizing the operati-
onal costs. They proposed a compact mixed-integer programming formulation, including
aircraft maintenance events and service upgrades. One important and novel feature of
this model is that it allows the anticipation or postponement of the beginning of flights
and maintenance events within a given tolerance, affording more freedom to the decision-
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making process. Our proposed model with crew assignment for the DAFP is based on the
formulation of Munari and Alvarez (2019). Both representations will be discussed further
in the next chapter.

2.1.3 (Meta)heuristic methods

Fagerholt, Foss and Horgen (2009) considered an air taxi service problem in Norway.
They introduced a heuristic algorithm for a strategic decision support tool that helps
estimate the trade-off between fleet size and service. The heuristic method uses insertion
operators to solve the problem and a local search stage to improve the incumbent solution.

Mane and Crossley (2012) developed an approach based on the System-of-Systems
decomposition (decisions between interdependent systems) dedicated to couple the uncer-
tain aircraft assignment problem of fractional operations and the aircraft design problem
of manufacturers. A solution to this type of problem describes an aircraft design that
directly improves operations and identifies operating strategies that influence, and take
advantage of, the characteristics of the new aircraft.

Recently, Cordeau et al. (2023) studied a DAFP faced by one of the major safari
airline companies in Tanzania. The objective is to determine the best set of itineraries
for passengers based on their travel requirements by minimizing delays, the number of
intermediate stops on routes and operational cost. Given the huge number of requests that
the operation comprises, they proposed an adaptive large neighborhood search (ALNS)
metaheuristic, enriched with local search operators and a set partitioning model.

2.1.4 Hybrid methods

Espinoza et al. (2008b) developed a parallel local search matheuristic was incorporated
to the multicommodity network-flow model, allowing to explore large neighborhoods of
the solution space, obtained high-quality solutions for large-scale real-life instances. This
method was embedded within the core optimization technology of Espinoza et al. (2008a).

An on-demand air transportation type of problem was addressed by Ronen (2000).
A set of revenue trips needed to be partially satisfied by a fleet of aircraft at minimal
cost, and any remaining flights were to be sold to other operators. A large set of feasible
candidate schedules is generated for each aircraft using heuristics. The best set is then
selected using a MIP-type solver.

Similar problems to the one found in Martin, Jones and Keskinocak (2003) were la-
ter studied by Yao et al. (2008) and Yang et al. (2008). In the first paper, the authors
discussed strategic planning issues, for example, aircraft maintenance, crew swapping,
and methods to increase and differentiate demand. They modeled it as a set partitioning
formulation and used a rolling horizon approach to solve it, where at each iteration, a
CG method was applied to deal with the resulting subproblem. In the second paper, the
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authors proposed a scheduling decision support tool that couples a network-flow model
and a heuristic algorithm aimed at increasing aircraft utilization. Additionally, these
authors presented a set partitioning formulation and a B&P algorithm to solve the pro-
blem. These methods are improvements of those presented in Karaesmen et al. (2005).
Zwan, Wils and Ghijs (2011) adopted the Yang’s set partitioning model (YANG et al.,
2008) and provided a detailed description of aircraft routing problem for per-aircraft air
taxi operator of a Belgian company. Contrary to the CG used in Yang et al. (2008), they
used a K-shortest path alike algorithm to generate feasible routing pools for set parti-
tioning. The instance included 225 airports over 72 h time horizon. They achieved an
estimated cost reduction of 12% on their routing plans with respect to using a human
dispatcher.

Related to the work of Espinoza et al. (2008a), Engineer, Nemhauser and Savelsbergh
(2011) introduced a CG approach making use of a DP that operates on the time-expanded
network underlying the previous multicommodity flow model. The DP method alternates
between a forward and backward search employing bounds derived from the previous
search to prune the search space and remove irrelevant paths during advancing iterations,
ensuring that an optimal path is found at the end of the procedure. They provide solutions
for instances with up to 200 airplanes.

2.1.5 Other methods

In Maheshwari and DeLaurentis (2021), given the stochastic and dynamic nature of
their DAFP, a hierarchical Markov decision process framework was proposed to enable the
implementation of reinforcement learning techniques. They demonstrated the functioning
of the two layers through simple example problems and a case study for a hypothetical
dial-a-flight service, located in the Chicago Metropolitan area.

In Sumarti, Brahmandita and Aqsha (2022), a stochastic simulation scheme has been
created to generate requests for an optimization model, in order to determine optimal
flight pairings that minimizes the operational cost of a fractional aircraft ownership com-
pany from Indonesia. By means of assumptions and calculations in the simulation, the
approach was able to determine the number of aircraft needed to be owned so the business
will profit.

2.1.6 Overview

Compared to the 21 works revealed by the SLR, our DAFP is one of the few (together
only with Martin, Jones and Keskinocak (2003), Karaesmen et al. (2005), Yang et al.
(2008)) that covers the three most common conflicting goals of this literature (as men-
tioned at the beginning of Section 2.1). Once all requests must be served (either by the
airline itself or by a third party), aircraft upgrade and crew overtime costs are minimized,
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and the main objective of the problem is to reduce positioning flights (i.e., trying to ensure
that there is always an aircraft available at the time and location chosen by a customer),
therefore, we also seek (in other words): “maximizing the number of requests served”,
“minimizing operational costs” and “minimizing user inconvenience”. Additionally, our
problem is the richest in terms of crew retraction. It presents a complete detail of legis-
lation rules that are in the most followed civilian aviation regulatory agencies (such as
the FAA and EASA). Consequently, our mathematical formulation ends up being the
most accurate among those analyzed. Regarding solution approaches, we are the first to
use R&F and F&O heuristics in this context, which have adaptations and enhancements
never seen before. Our B&P algorithm is the only one that includes a method to stabilize
the column generation procedure.

Table 1 gives a summary of the DAFP literature in a chronological order. For each
paper, we describe the optimization objective; inform if the problem has heterogeneous
fleet, aircraft maintenance or/and crew regulation with yes (Y) or no (N) indication;
detail the developed solution approaches (accurate description as used by the authors)
and categorize them into exact (EX), (meta)heuristic (MH), hybrid (HM) or other method
(O), considering the most relevant approach if there is more than one type of method;
identify whether most data are real-life instances (RL) or not (G); and reveal the size
of the problem in relation to the aspects of time horizon, number of aircraft, types of
aircraft (fleet) and flights (or requests). These instance aspects were collected according
to the way the authors reported them in the paper (total, average or largest number), or
even through a range (when the authors present tables with general information of the
data). In the last row of the table, we put our DAFP to be compared with the other
contributions.

We conclude this section by showing three charts in Figures 3, which illustrate the
number of DAFP articles published in relation to journals, countries and over the years,
respectively.
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2.2 The aircraft recovery problem

Many times, daily flight schedules cannot be made as previously planned, whether as
a result of mechanical failures, crew reassignments, airport closure, variations on travel
times and ground times, unavailable fuel supply, problems with the air traffic control, or
even because of inclement weather conditions. These unexpected events can be defined as
disruptions, and if they are not addressed in a timely and appropriate manner, they will
affect crew connections and passenger itineraries and may result in significant damage to
the airline’s profitability and image. Consequently, air companies will typically resche-
dule a number of aircraft taking flight plans, aircraft routings, maintenance schedules,
crew status and other pertinent information into account. Rescheduling practices include
aircraft swapping, flight cancellation, use of standby aircraft, and departure time hol-
ding. These adjustments must satisfy maintenance exigencies, station departure curfew
restrictions and aircraft balance requirements, especially at the beginning and end of a
recovery period. In most cases, it is critical for the company to “recover” their operations
as quickly as possible, which may be in a few hours or the end of the day at the latest.

Problems that comprise disruption occurrences are called Airline Recovery Problems.
According to Belobaba, Odoni and Barnhart (2015), this category is composed of th-
ree subproblems: aircraft recovery problem (ARP), crew recovery problem (CRP) and
passenger recovery problem (PRP). The first one corresponds to the second problem
addressed in this dissertation. ARP is the recovery process that focuses on the aircraft
resource and can be formulated as follows: given a flight schedule and a set of disruptions,
determine which flights to delay or cancel, and reassign the available aircraft to the flights
with respect to a preferred purpose. The objective is often minimizing the operating costs,
maximizing the profit or minimizing the time required to return to the original schedule.

Before 2009, the majority of airline recovery publications focused on aircraft recovery,
in part because: (i) aircraft are the most constraining and expensive resource; and (ii)
aircraft recovery is a smaller and simpler problem than crew recovery (which involves
complex regulations and pilots’ preferences). Despite this, ARP is still an active research
subject, where the efforts have been focused on better representing real-world networks
and decreasing the computation time (HASSAN; SANTOS; VINK, 2020).

2.2.1 Initial efforts

In a broadest understanding, the first study on ARP was proposed by Teodorović and
Guberinić (1984). In this work, one or more aircraft are unavailable and the objective
was to minimize the total passenger delays by reassigning and retiming the flights. The
authors devised a heuristic that sequentially constructs the chain of flights to be flown
by each aircraft. Their solution assumed a single fleet type and ignores all maintenance
constraints. They presented a very simple example with only eight flights. Teodorović
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and Stojković (1990) extended the study to also consider airport curfews. The described
method was tested on a small example of 14 aircraft and 80 flights. Teodorović and
Stojković (1995) further extended their model to include crew considerations too. The
proposed method was tested on 240 different randomly generated numerical examples.

2.2.2 Exact optimization methods

Jarrah et al. (1993) presented two network-flow models for solving the ARP, and used
flight delays, cancellations, aircraft swappings, and reserve aircraft as recovery strategies.
In their approach, flight cancellations were not allowed for one model whereas delaying
flights were not considered in the other model, and the authors suggested the possibi-
lity of finding better solutions by combining delays and cancellations to capture their
interactions. The authors argued that the models are general minimum-cost networks
which involve multiple sources and sinks. However, the source nodes can be combined to
one master source node using arcs with flows bounded by one. For this transformation,
they implemented the Busacker Gowen’s dual algorithm (BUSACKER; GOWEN, 1961).
To assess the cost of delaying or canceling a flight, the authors constructed a disutility
function, guided by the total number of passengers, the number of passengers with a
downstream connection, lost crew time, and disruption of maintenance. The Busacker-
Gowen’s algorithm was also used to treat three real-life scenarios from airports in the USA,
producing solutions with shorter delays than the ones in practice. The models were sub-
sequently integrated into the decision support system of the United Airlines (RAKSHIT;
KRISHNAMURTHY; YU, 1996).

The papers by Cao and Kanafani (1997a, 1997b) are basically extensions from the work
of Rakshit, Krishnamurthy and Yu (1996). In Cao and Kanafani (1997a), a 0-1 quadratic
programming formulation was presented to maximize flight revenues minus swapping and
delaying costs. Both delays and cancellations, ferrying (i.e., flying a deadhead aircraft
to a station for the next operation), and multiple aircraft type swapping were taken into
consideration in their model. From a special structure found in the quadratic formulation,
Cao and Kanafani (1997b) proposed a linear programming approximation algorithm and
reported good computational results at a reasonable CPU times.

Mathaisel (1996) described a novel approach on the integration of computer science
and operations research techniques in airline industry. The study focused on development
of a decision support system for the dispatchers in airline operations control centers.
Several optimization methods were embedded in the environment. In cases of cancellations
or significant flight delays, aircraft rescheduling alternatives minimizing the effects of the
disruption are generated. The problem was represented by a network flow model, and the
solution procedure was based on an out-of-kilter network flow algorithm.

Ground delay program (GDP) is one of the several programs that the FAA is admi-
nistering for efficient and equitable use of scarce airspace and airport capacity. In poor
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weather conditions, the FAA may decide that the number of planned arrivals at an air-
port will exceed the airport’s capacity. In such cases, GDP is initiated, and usually the
arrival times of these flights are delayed. Luo and Yu (1997) addressed such disruptions.
The performance measure was the percentage of flights that are delayed more than 15
minutes. The problem was modeled as an ILP problem. Valid inequalities and variable
reduction methods are used to solve the problem.

Thengvall, Bard and Yu (2000) used a single-commodity network-flow model for reco-
very following a hub closure. Using the framework based on a time-space network with
flight arcs, ground arcs, and overnight arcs, the authors added arcs for ferrying, arcs
for time-shifted copies of original flights (accommodating delays), protection arcs, and
through-flight arcs. This model can handle delays, cancellations, as well as swaps among
different fleets. The authors solved the problem with various objective functions such
as minimizing total cancellation and delay costs, and preserving as many of the original
aircraft routings as possible. After, Thengvall, Yu and Bard (2001), Thengvall, Bard and
Yu (2003) extended this work to consider the closure of a hub, as well as multiple fle-
ets. Three mixed-integer programming models were introduced: two so-called preference
models, which are based on timeline networks for every subfleet, and a model based on
time-bands.

In Rosenberger, Johnson and Nemhauser (2003), an ARP was modeled as a set par-
titioning problem with capacity constraints. Prior to solving the model, a pre-processing
heuristic determined which aircraft should be subjected to rerouting and rescheduling.
Tests comprising real-life instances with 32 to 96 aircraft and 139 to 407 flights were
presented.

In Xiuli and Jinfu (2007), a grey programming method was introduced to solve a flight
schedule recovery problem. The term “grey” represents the fact that the formulation
contains both white (deterministic) and black (stochastic) parts. The white part has
“white numbers” (i.e., precise values), while the black part is defined by “grey numbers”
(a family of time series random variables, where only upper and lower bounds are known).
The authors contributed to the development of a mathematical model for the problem
including grey parameters, and a grey simulation technology rooted on a shortest path
algorithm to get optimal results. The feasibility and effectiveness of the model and solution
method were validated by the simulation results.

Filar et al. (2007) sought to solve the ARP from a “common good” point of view.
They started from the premise that with a judicious choice of interventions (for exam-
ple, propagation of delays and flight cancellations) to minimize the harmful effects of
interruptions in the schedule experienced by all stakeholders: passengers, airlines, airport
companies and air traffic regulatory agencies. Among its characteristics, the use of the
time discretization strategy – as in Bard, Yu and Arguello (2001) – is noteworthy, and its
adaptability to different situations as well.
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Jafari and Zegordi (2010) presented an assignment model for solving the ARP and
reassigning disrupted passengers simultaneously, using sequential recovery stages within
the time window (a rolling horizon algorithm). The model examines possible flight reti-
ming, aircraft swapping, overflying, ferrying, utilization of reserve aircraft, cancellation
and passenger reassignment to generate an efficient schedule recovery plan. The method
uses aircraft rotations and passenger itineraries instead of flights, without consider main-
tenance constraints. Jafari and Zegordi (2011) extended the work by incorporating more
operational rules. Due to the high complexity of the algorithm, the method was only
tested on disruptions with 13 aircraft of 2 fleet types. The authors did not demonstrate
that the method was computationally efficient, nor did they show that the model can deal
with disruptions that reflect operations of a larger airline.

Gao et al. (2012) dealt with an ARP whose flights have features that prioritize each
other relatively, such as passenger class and flight status. Depending on the priority,
different costs related to delays and cancellations are applied. The authors presented an
optimum polynomial-time algorithm which was tested with a problem instance with 8
flights and 2 airports.

Akturk, Atamturk and Gurel (2014) were the first to include cruising speed in the
decisions in a mathematical model. Even though the increase of cruising speed shortens
the travel time, hence contributing to reducing delays, it also increments fuel consumption
in a non-linear trend. The trade-off between speed and consumption was significant
and should be considered when one wants to minimize both economical costs from the
rescheduling and CO2 emissions. The authors proposed a mixed-integer conic quadratic
model and concluded that allowing cruising speed provides better results both in terms
of cost and delay.

The approximated delay costs considering the random flying time around the planned
flying time is introduced by the time-band approximation model of Xu et al. (2015) to
recover flight operations and minimize the delay and cancellation costs. Their results
demonstrate that the model on flight operations recovery with the random flying time
may be more efficient than the model on flight operations recovery with the planned flying
time.

Wu et al. (2017) adopted an iterative fixed-point method for ILP to generate feasible
flight routes that are used to construct an aircraft reassignment in response to the groun-
ding of one aircraft. Two division methods are proposed to divide the solution space into
several independent segments and implement a distributed computation. Comparison
with CPLEX CP Optimizer showed that the iterative fixed-point method was essential
to find an aircraft reassignment when unexpected events happen, and the second division
method was more promising when dealing with long haul airline disruption problem.

Arıkan, Gürel and Aktürk (2017) developed a new flight network representation for
an ARP integrated to crew and passenger recovery decisions. The problem size in their
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flight network is kept within limits so that real-time solutions can be provided since it does
not require discretization of departure times and cruise speed decisions. Comparable to
Akturk, Atamturk and Gurel (2014), the authors implemented aircraft cruise speed control
and proposed a conic quadratic MIP formulation, which evaluated the passenger delay
costs more realistically by its explicit representation. Using the approach, they managed
to achieve solutions with a maximum optimality gap of 1.5% for networks having 288 and
473 flights.

Erkan, Erkip and Safak (2019) proposed a generic mathematical model to solve an
ARP under a collaborative decision environment. The studied ARP considers a single
fleet and time slots at the airports. The proposed model has the least amount of essen-
tial constraints and allows stakeholders to expand it and use it for different purposes,
adding new constraints, or using different objective functions according to their purposes.
For validation, the authors defined a base case, with optimization objectives considered
common to any stakeholder, using real data from 6 h of operation at the Minneapolis
airport, USA. Applying a general-purpose optimization solver with a time limit of 20
min, improved solutions were obtained compared to the rescheduling performed by the
airport over the same period.

Sun, Liu and Zhang (2021) addressed integrated aircraft and passenger recovery for
airline schedule disruption by developing a MIP model and proposing a solution algorithm
based on the modification of time-band network and generation of candidate passenger iti-
neraries. They also introduced an inter-modal concept to expand airline aviation networks
by including ground transportation modes. The results of the numerical experiments
showed that their modeling and solution algorithm considerably reduced the number of
disrupted passengers and total disruption cost.

Liu, Sun and Zhang (2022) developed a MIP model to incorporate high-speed rail
(HSR) transport mode into an aviation network for aircraft recovery purposes. The air-
rail inter-modal strategy focuses on occasional operational integration of existing airside
and HSR infrastructure capacities. Experimental computations are performed with flight
schedule operation data from one of Chinese airlines and railway resource data from
China’s high-speed railway network. By comparing recovery outcomes for a pure aviation
network and an air-rail intermodal network, the air-rail inter-modal strategy was shown
to help reduce the number of cancelled flights and the total disruption cost.

In Cadarso and Vaze (2023), an ARP that imposes monetary compensations to pas-
sengers in case of disruptions was studied. They proposed a passenger response model
with nonlinear cost terms to recover airline schedules, aircraft, and passenger itineraries
while endogenizing the impacts of airlines’ decisions on passenger compensation and res-
ponse. Afterward, they linearized the objective function, in combination with a delayed
constraint generation for ensuring aircraft maintenance feasibility and an acceleration
technique that penalizes deviations from planned schedules.
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Khiabani et al. (2023) proposed a mixed-integer linear programming model to re-
present their integrated aircraft and crew recovery problem. The formulation considers
individual flight legs instead of strings, which leads to more accurate schedules and better
solutions. Furthermore, a Benders decomposition approach is used to solve the proposed
model.

2.2.3 (Meta)heuristic methods

Argüello, Bard and Yu (1997) proposed a model including turnaround time, airport
time curfew, aircraft balance and compulsory maintenance schedules. The authors also
proposed a greedy randomized adaptive search procedure (GRASP) algorithm, tested
on real-life instances up to 16 aircraft and 42 flights. The model was based on the
formulation presented in Arguello (1997), after being used to derive the model by Bard,
Yu and Arguello (2001).

Løve et al. (2002) implemented a steepest ascent local search heuristic using connection
network representation for an ARP with flight schedules extracted from data of British
Airways. On average, less than 10 seconds were required to find a feasible revised flight
schedule that includes all planned flights on a given day.

Løve et al. (2005) proposed several heuristic approaches based on a network repre-
sentation with the aim of handling problems of a realistic size (about 100 aircraft and
500 flights) in real-time (no more than three minutes). The approach tried to balance
the trade-off between delays, cancellations and swaps. They tested their approach with
disruptions from British Airways, and revised flight schedules with good quality were
generated in less than 10 seconds on average.

Tang et al. (2009) extended the resource assignment model of Teodorović and Stoj-
ković (1995) and presented a greedy random simulated annealing algorithm to deal with
aircraft recovery issue of multi-fleet. The modified model took into account aircraft flow
imbalance and flights merger strategy. In the algorithm, neighbors are obtained by com-
paring aircraft route pairs, either of which is disturbed. Empirical results demonstrated
the ability of the new model and algorithm to quickly explore a wide range of unbalanced
scenarios and to produce an optimal or near-optimal solution in time.

Qiang, Xiao-wei and Jin-fu (2009) developed a greedy simulated annealing algorithm,
combining characteristics of GRASP and simulated annealing (SA). The combination of
heuristics improves the efficiency of the neighborhood selection and decreases the pro-
bability of local optima. The objective of the model is to minimize the total passenger
delay time. On the same thought thread, a combination of GRASP and ant colony opti-
mization (ACO) was used by Xiuli and Yanchi (2012). Compared to the original GRASP
algorithm, it provides a high global optimization capability. The authors state that the
model was tested on a multifleet network with 50 aircraft and more than 5 aircraft types.
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D’Ariano, Pistelli and Pacciarelli (2012) modeled an ARP as a job-shop scheduling
problem, in which a job (in the ARP’s case, an aircraft) must perform a prescribed
sequence of operations on specific machines (i.e., airport resources), including additional
real-world constraints. Two solution methods were adopted and compared. The first
combines the use of a set of heuristics to determine a good feasible solution, which is then
used as the starting point in a routine based on a B&B algorithm. The second applies a
tabu search algorithm, disturbing the pre-defined routes for each aircraft and searching
for a better solution in the vicinity. Using real data from the Fiumicino airport in Rome,
Italy, it was observed that the tabu search algorithm performed better.

Wu and Le (2012) developed a model based on flight strings instead of traditional
individual flights. They transform these strings into a time-space model that considers
maintenance constraints and regulations. The model is solved with a heuristic that was
developed by the authors called the iterative tree growing with node combination. The
model is tested on a dataset from China Airlines consisting of 170 flights, 5 fleets, 35
aircraft, and 51 airports.

Zhang, Lau and Yu (2015) proposed a two-stage heuristic for the integrated aircraft
and crew recovery problem. In the first stage, the aircraft recovery with partial crew
considerations model is built. This model is based on the traditional multi-commodity
network model for the aircraft schedule recovery problem. In the second stage, the crew
schedule recovery with partial aircraft consideration model is built. The authors propose
a new multi-commodity model for the crew schedule recovery. The two stages are run
iteratively until no improvement is found. The algorithm improved the solutions of the
other two algorithms for all scenarios. Although the algorithm had a higher run-time, it
never exceeds 72 s.

Zhao and Chen (2018) presented a weight-table heuristic algorithm for the ARP. The
authors only consider disruptions from airport closures due to bad weather conditions.
All common disruption recovery options are considered, however, maintenance constraints
are not included in the model. A single case study consisting of 6 aircraft and 31 flights.
The computation times are not presented.

Hu et al. (2021) constructed a two-objective MIP model and a heuristic with multi-
directional and stochastic variable neighborhood search (SVNS) algorithm for an ARP
considering passengers’ recovery with willingness (circumstance in which a passenger
obeys the airline assignment) under various itinerary disruption situations. The two
objectives of optimization are to minimize airline’s recovery cost and reduce passenger
recovery loss. Experiments with the data collected from Air China showed the stability
and efficiency of the approaches.

Ji et al. (2021) proposed a build-in flight feasibility verification algorithm to improve
the rescheduling of an ARP with lexicographic preference of flight priorities. A novel mo-
del of the feasibility verification problem was given, which is equivalent to the formulation
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of a maximum clique problem for networks. The authors tested their algorithm on the
real data gathered from a Chinese airline company, and the experiments revealed that the
algorithm ran fairly quickly and could be plugged into other scheduling algorithms easily.

Evler et al. (2022) presented a rolling horizon algorithm that incorporate a network
delay formulation with concepts of integrated aircraft, crew, and passenger recovery deci-
sions. The model determines assignment of aircraft to flight routes and integrates it with
allocation of scarce resources to aircraft turnarounds at the central hub airport, allowing
to estimate the delay propagation in an airline network. When evaluating different sce-
narios, the authors achieved a full recovery of the flight schedule at low and moderate
delay situations. Despite the lower efficiency of turnaround recovery in medium and high
delay scenarios, the combination of flexible aircraft assignments and ground operations
still generated additional cost savings of at least 21%.

Lee, Lee and Moon (2022) proposed Q-learning and Double Q-learning algorithms
with a reinforcement approach for ARP derived from the real-world case of an airline in
South Korea. The proposed approach presents an artificial environment of daily flight
schedules and the Markov decision process for aircraft recoveries. Computational expe-
riments showed that reinforcement learning algorithms recover disrupted flight schedules
effectively, and that their approaches flexibly adapt to various objectives and realistic
conditions.

Xu, Wandelt and Sun (2023) presented a novel approach to integrated airline reco-
very under decisions with the uncertainty of epidemic transmission probability captured
through a Wasserstein distance-based ambiguity set. To efficiently solve the model, they
elaborated a B&C algorithm combined with a large neighborhood search heuristic to ite-
ratively add infection cost-related cuts based on the established epidemic propagation
network.

Recently, Ding et al. (2023) built a mixed integer nonlinear programming (MINP)
model for an integrated airline recovery problem. Given the computational challenge of
solving the model, they develop three solution approaches, a CPLEX-based exact solution
technique with adequate preprocessing techniques, a variable neighborhood search (VNS)
algorithm with well-designed operators and state evaluator, and a Deep Reinforcement
Learning (DRL) incorporated with the VNS to pre-trained policy and value function based
on transfer learning.

Wang et al. (2023) developed a data-driven heuristic method to solve an ARP of
China South Airlines from Beijing/Chine. Inspired by the data analysis results divided
into different scenarios according to their delay reasons, the heuristic was enhanced to
imitate dispatcher actions based on two basic operations: swapping the tail numbers of
two flights and resetting their flight departure times.

Other ARPs solved by heuristic approaches can be consulted in Andersson (2006);
Liu et al. (2006), Liu, Jeng and Chang (2008); Liu, Chen and Chou (2010); Le, Gao and
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Zhan (2013); Sousa et al. (2015); Zhu, Zhu and Gao (2015); Xu and Han (2016); Hu et
al. (2017); Zhang (2017); Khaled et al. (2018); Šarčević, Rocha and Castro (2018); Lin
and Wang (2018); for example.

2.2.4 Hybrid methods

Yan and Yang (1996) made a decision support framework to handle schedule perturba-
tions in airline industry. The authors assumed a single fleet type and focus on disruptions
occurred due to an aircraft breakdown. The problem was represented on a time-space
network. Based on this representation, they proposed ARP basic models with side cons-
traints. The models were solved using lagrangian relaxation and a subgradient algorithm,
and the computational study considered real-life problems of a major Taiwan air carrier.
Yan and Tu (1997) extended the models for the case of heterogeneous fleets.

Clarke (1997) proposed a comprehensive framework for reassigning operational aircraft
to scheduled flights in the aftermath of irregularities. Multiple aircraft type swapping,
flight delays and cancellations, as well as the impact of air traffic management initiatives
and crew availability were incorporated in the modeling. About the solution methods, he
developed a tree-search heuristic and a set packing-based optimal solution algorithm.

Using the connection network as the underlying network, Andersson and Värbrand
(2004) based their approach on the set packing problem with generalized upper bound
(GUB) constraints, which ensures that each aircraft is assigned exactly one route. The
problem was solved with a lagrangian relaxation-based heuristic and a method based on
the Danzig-Wolfe decomposition (DWD).

Le and Wu (2013) extended the work presented in Le, Gao and Zhan (2013) to include
crew recovery. As in the previous work, the authors use flight strings to represent a
sequence of flights. An iterative tree-growing algorithm with nodes combination method
is proposed to speed up the computational time. The authors consider maintenance
requirements and pilot union regulations. A case study using data from a Chinese airline
is presented.

Eggenberg, Salani and Bierlaire (2010) introduced a constraint-specific approach that
simultaneously considered the aircraft, crews, and passengers. A different recovery network
was generated for each kind of resource to reduce the problem scale. A set partitioning
model was then created to embed the resources in one recovery scheme. Subsequently, a
CG approach was used to solve the model.

Vos, Santos and Omondi (2015) presented an innovative dynamic modeling framework
to the aircraft schedule recovery problem. The framework relies on the combined usage of
an efficient aircraft selection algorithm and a LP model based on parallel aircraft specific
time-space networks. This approach allows for very detailed aircraft specific constraints,
and thereby closely portrays reality. The results showed that in all the test cases a solution
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was found within a short and appropriated time window, confirming the validity of the
model framework for real-life application.

Maher (2016) studied an ARP integrated with crew recovery schedules. He proposed
a column-and-row generation framework that extends existing generics B&P methods
until then and reduces the problem size. This extension considers multiple secondary
variables and linking constraints. The proposed algorithm is compared to a standard
column generation approach. On average, the column-and-row generation method had
a 27% lower run-time. The authors tested the method on both a point-to-point and a
hub-and-spoke network with 262 and 442 flights, respectively.

Zhang et al. (2016) developed a three-stage sequential heuristic framework to solve
the integrated aircraft and passenger recovery problem. In the first stage, the flight
schedules and aircraft rotations are recovered. The next two steps iteratively solve the
flight rescheduling problem and the passenger recovery problem. A time-space network
representation is used together with a MIP formulation of the model. The proposed
algorithm is tested based on the same data sets used by the ROADEF 2009 challenge.
The algorithm can beat the finalists of the challenge on all datasets.

Liang et al. (2018) developed a framework where a master problem was used to select
routes and subproblems were used to generate routes. Airport capacity constraints are
explicitly considered in the master problem while maintenance constraints are in the
subproblems. In the suggested framework, aircraft are allowed to swap their planned
maintenance, if all constraints are satisfied. The approach is based on a CG framework.
The proposed framework is validated and tested on eight real-world scenarios, which are
based on the scenarios used as benchmark problems.

Vink et al. (2020) extended the work from Vos, Santos and Omondi (2015) by conside-
ring passengers’ itineraries and aircraft maintenance requirements when solving the ARP.
The authors modeled passengers’ delay costs by pre-computing a delay cost matrix for
both direct and connecting passengers. Maintenance constraints are directly considered
and parallel-time space networks are used to track the route of each aircraft. The problem
was formulated as a MIP model that was dynamically solved (i.e., a recovery solution is
produced every time new information about disruptions is made available). The selection
algorithm proved to be efficient, providing an initial solution within a couple of seconds
and producing a near-optimal solution in 22 s on average.

Shao et al. (2020) developed a multi-objective model that provides new flight schedules
aiming to minimize the total flight delay and the sum of the probabilities of six operational
risks (airspace control, flight collisions, ground service, aircraft parking, ground control
and taxi conflicts). Since such risks are each the result of different operational factors, their
probability values act as bounds for such factors. To solve the model, the authors used a
multi-start algorithm with intelligent neighborhood selection. The method proposed by
the authors was able to reduce the total delay of flights by up to 56% and risks by up to
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5% of the value proposed by the current method of operation.
Yetimoğlu and Aktürk (2021) addressed aircraft and passenger recovery problems si-

multaneously and proposed a novel matheuristic algorithm to solve them. The objective
is to produce recovery plans that maximize the airline’s profit while mitigating the pas-
senger dissatisfaction, also considering seat capacity limitations. In their computational
results, they used a major U.S. airline’s daily schedule and clearly demonstrated an opti-
mal trade-off between operating and passenger-related costs.

Huang et al. (2022) made an iterative cost-driven copy generation method for the ARP.
It incorporates a copy evaluation method which assesses each eligible copy by using the
dual information of the ARP LP relaxation, as well as a copy filtration method which
effectively controls the number of copies that are generated and added to the ARP model
to control the problem size. Their computational experiments using real airline data
demonstrated that the proposed method is able to iteratively reduce the total recovery
cost and can lead to very promising recovery solutions in less time.

Yan and Chen (2022) employed a network flow technique to construct an optimization
model that aims to minimize the total operating costs and efficiently deal with fight
rescheduling problems (gate reassignment) after a typhoon disruption event. To efficiently
solve realistically larger problems, a heuristic algorithm was developed. To evaluate the
model and the heuristic algorithm, a case study based on the operations of a major Taiwan
airline was performed. The test results demonstrates that the model and the algorithm
could be useful references in actual operations.

Zhao, Bard and Bickel (2023) proposed a two-stage approach composed of a single-
commodity and a multi-commodity network model with side constraints, determining
first, the flights that are most likely to be affected, and then adjusting their schedules
to achieve system-wide optimality. They also developed a rolling horizon approach that
provides hourly updates in a manner that reflects current practices in irregular airline
operations.

In Eshkevari, Komijan and Baradaran (2023), a new bi-objective aircraft/crew reco-
very model was formulated to minimize a recovery cost regarding crew swapping, flight
cancellation, flight delay, and crew deadhead costs. To solve the model, they adopted
the tabu search method for their context ARP, which was able to reach optimal and
close-optimal in a short computational time, especially in large-scale problems.

2.2.5 Other methods

Arias et al. (2013) proposed a combined methodology using simulation and optimiza-
tion techniques to cope with the stochastic aircraft recovery problem (SARP). The ap-
proach solves the SARP through the rescheduling of the flight plan using delays, swaps,
and cancellations. The main objective of the optimization model is to restore as much
as possible the original flight schedule, minimizing the total delay and the number of
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canceled flights. By applying simulation techniques, the robustness of the given solution
is assessed.

Mota, Mota and Serrano (2015) described a methodology for the SARP, which con-
siders the stochastic nature of air transportation systems. The methodology is based on
the large neighborhood search (LNS) metaheuristic, combined with a simulation run at
different stages to ensure robustness. The proposed method was tested on several instan-
ces with different characteristics, some of which were obtained from real data provided
by a Spanish airline.

In recent years, a few papers have been published using simulation-based approaches to
solve the ARP. Rhodes-Leader et al. (2018a), Rhodes-Leader et al. (2018b) and Rhodes-
Leader et al. (2022) combined a symbiotic simulation system, i.e., a simulation approach
that matches a high-fidelity simulation model with a low-fidelity physical model for the
benefit of both. In their case, the authors propose an adapted version of the ILP model
presented by Zhang, Lau and Yu (2015) to reduce the complexity of the solution space
considered for the simulation model. The ILP model generates a set of reasonable solutions
that are then used as initial solutions in the simulation model to guarantee a faster and
more effective high-fidelity simulation system. The difference among the works is that
Rhodes-Leader et al. (2018b) extends Rhodes-Leader et al. (2018a) by considering the
maintenance schedules, and Rhodes-Leader et al. (2022) by incorporating uncertainties
within the decision-making process.

Wang et al. (2019) developed a simulation model based on the dynamic system fra-
mework, even as recovery scheduling for two types of disruptions: bad weather and unex-
pected maintenance. They provided numerical test results on an operation example from
China Eastern Airlines. Their simulation model can be used to rapidly test and compare
many different recovery schedules obtained from the algorithms embedded in the simu-
lation model and proposed by the schedulers, based on which it can select and propose
some good schedules.

A SARP was considered in a recent paper by Lee, Marla and Jacquillat (2020). The
authors propose an innovative reactive and proactive approach to solve the SARP. By
forecasting systematic delays at hub airports, their study optimizes recovery actions that
respond to both realized disruptions and anticipated future disruptions. The authors
combine a stochastic queuing model to capture airport congestion, with a commercial
flight planning tool, and with a dynamic integer programming framework to model the
disruption recovery. A solution based on a look-ahead approximation and sample average
approximation is proposed to solve the modeling framework.

2.2.6 Overview

Some features of the ARP considered in the present dissertation are uncommon (but
not new) in the literature, such as flights with different rescheduling priorities (GAO et al.,
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2012) and the possibility of using spare aircraft to recover flights (JAFARI; ZEGORDI,
2011). However, we did not find models incorporating both simultaneously. Moreover,
other constraints of the addressed ARP were not identified in other studies, such as
mandatory flight precedence (i.e., certain flights must be rescheduled before others, even
if this worsens the objective function value of the reschedule); there is a single runway for
taking-off and landing at the airport; there is a single heliport at each maritime unit that
allows only one helicopter on the ground at a time; the so-called entourage flight, which
are flights that after landing at the maritime unit, occupy the heliport of the maritime
unit until the end of the day; strict operational rules related to the daily flight timetables;
and limitations on the number and type of the available helicopters for some offshore
flights. There are also papers on the helicopter transportation of oil rig crew members
in the context of oil companies (GALVÃO; GUIMARÃES, 1990; MORENO; ARAGÃO;
UCHOA, 2006; MENEZES et al., 2010; QIAN; GRIBKOVSKAIA; HALSKAU, 2011;
QIAN et al., 2012; QIAN et al., 2015; GRIBKOVSKAIA; HALSKAU; KOVALYOV,
2015), but most of them focus on helicopter routing and passenger allocation decisions
or minimizing operation safety risks (i.e., they are not ARPs), as pointed out in Bastos,
Fleck and Martinelli (2020). Concerning solution methods, we have developed novel
representations such as takeoff event-based and discrete-time formulations, as well as
heuristic approaches never seen before in the literature.

Table 2 summarizes the ARP relevant materials according to some main features,
including our ARP (see the last line). When comparing it with Table 1, we noticed the
inclusion of a new column, called “Network”. Each paper is classified by this column in
accordance with the type of network used to represent the respective problem, common
in the ARP literature (CLAUSEN et al., 2010):

• Connection network (CN): it is an activity-on-node network, where flight legs cor-
respond to nodes in the network, and connections between flight legs are consonant
with directed edges (arcs) amongst the nodes. Hence, a node i, representing the
flight leg li, is connected by a directed edge (i, j) to a node j, which represents the
flight leg lj, if it is feasible to fly lj immediately after li using a same aircraft;

• Time-line network (TLN): a.k.a time-space network, it is an activity on-edge network,
where directed edges correspond to activities of an aircraft, and schedule informa-
tion is represented explicitly by event nodes. This representation has a node for
each event, an event being an arrival or a departure of an aircraft at a particular
station;

• Time-band network (TBN): it is proposed by Arguello (1997), where the network
can be constructed dynamically as disruptions occur, for a certain recovery time
period. The idea is to partition the recovery period into time-bands or discrete
intervals. Station (airport) activity is then aggregated during each of the resulting
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time intervals. This aggregation allows us to model the flight connections to which
an aircraft may be assigned, and to approximate the costs associated with the
possible connections. The output of the transformation is a network positioned on
a two-dimensional plane, in which one axis represents time, and the other, space
or station location. A node in the transformation network represents the possible
activity at a station during a specific segment of time. Because the network is time-
based, nodes are placed according to the segment of time they portray. Arcs directed
into a node symbolize the arrival of an aircraft during a specific time segment for a
scheduled flight. Arcs originating at a node denote specific flights that an available
aircraft at the node may service.

Similar to previous section, we illustrate in Figures 4 the number of ARP articles
published by journals, countries and years. As the resulting distinct count of journals was
50, we decided to display only the first 15 newspapers in Figure 4b.
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2.3 Our publications

Finally, it is worth mentioning that Tables 1 and 2 do not include works from interna-
tional conferences and journals that are part of the content produced by this dissertation,
as well as those related to which the present author had co-authorship or direct partici-
pation. Hitherto, five articles have been written, the first referring to a DAFP, and the
remaining four, to different variants of ARP:

• de Campos, Vieira and Munari (2021) (Computational Logistics: 12th International
Conference - ICCL 2021): a branch-and-cut solution method was developed to deal
with a DAFP that requires the inclusion of a minimum rest time for the crews into
each duty period, by dynamically adding cuts/constraints. The strategy used for
this is derived on a dynamic programming algorithm (labeling), dedicated to sepa-
rate cuts that guarantee the feasibility regarding crew legislation. Computational
experimentation with real-life data showed that method obtained optimal solutions
for all instances in less than five minutes;

• Vieira et al. (2021) (Transportation Research Part E): their ARP considers an ae-
rodrome with single runway and includes features such as heterogeneous fleet, time
windows, safety briefing, minimum aircraft turnaround time, mandatory flight pre-
cedence, minimum time interval between consecutive landings on a maritime unit
and maximum allowed delays. Two MIP models were proposed to formulate the
problem with all relevant characteristics, one based on extension of the traditional
network-flow model from HFVRPTW, and other that relies on a novel takeoff event-
based representation of the problem. Additionally, the article brought an effective
tailored heuristic approach that has constructive and improvement procedures. The
results of computational experiments with real-life data provided by an oil com-
pany revealed the potential of the proposed approaches to support decision-making,
mainly the heuristic, which recovered all pending and current flights without signi-
ficant delays, taking just a few minutes.

• De La Vega et al. (2022a) (International Transactions in Operational Research):
the logistics panorama was expanded by including crew-related constraints such
as workday hours and lunch break intervals. The authors proposed a network-
flow model with continuous-time as a faithful form of representation, and from this
model, they developed a discrete-time simplification and also some simple solution
approaches (variants of this second formulation). According to their results, the
continuous-time approach is effective for producing full flight recovery only in small-
sized problem instances within an hour of runtime. On the other hand, the discrete-
time approaches reached solutions with no transferred flights for larger instances,
indicating their use in practice.
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• De La Vega et al. (2022b) (EURO Journal on Transportation and Logistics): they
extended the problem to the case of multiple aerodromes. In addition to encompas-
sing restrictions from the first two works, this ARP must consider the issue of flight
transfers among aerodromes (local-transfers). To solve real-world instances, the
previously continuous-time network-flow model from De La Vega et al. (2022a) and
tailored heuristic method from Vieira et al. (2021) were extended, and a MIP-based
local search heuristic was built. The results obtained by the model using general-
purpose optimization software and the employ of heuristics were promising, showing
recovery plans with complete flight allocations, few local-transfers, low helicopter
usage and small delays.

• Fantazzini et al. (2024) (International Transactions in Operational Research): the
ARP addressed in Vieira et al. (2021) is studied from another perspective, in which,
the objective function becomes having three non-conflicting hierarchical criteria,
lexicographically defined by the penalties: flight cancellations, aircraft usage and
departure delays. They develop four different solution approaches using hierarchi-
cal goal programming from a discrete-time ILP formulation, aided by enhancements
and valid inequalities. Computational experiments with both real-world and simu-
lated instances demonstrated that the application of goal programming significantly
reduces the runtime when compared to solving the discrete-time model with single-
scaled objective function as a unique 0-1 ILP formulation, consistently delivering
optimal or near-optimal solutions within the time limit.
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Chapter 3

Aircraft routing with crew
assignment for on-demand air
transportation: detailed
optimization model and MIP-based
heuristics

On-demand private flight service is a business in the non-scheduled transportation
sector that has significantly grown in the last decades. These operational service ty-
pes are referred to in the OR literature as dial-a-flight problems (DAFPs) (ENGINEER;
NEMHAUSER; SAVELSBERGH, 2011; CAMPBELL; ALI; SILVERWOOD, 2020; COR-
DEAU et al., 2023). This class of problems represents air taxi transportation activities
with fractional ownership aircraft programs, where the operational planning must respond
to a demand of travel requests made by customers themselves, considering the state of
resources provided at present, which usually happens a few days in advance.

As with other services, an important decision in this problem context is the assign-
ment and scheduling of crew members into flights. Although each country has its own
regulations regarding crew labor and rest rules, in the international literature, authors
usually follow the FAA guidelines to develop their formulations (SHEBALOV; KLAB-
JAN, 2006; HAOUARI; MANSOUR; SHERALI, 2019). Some of the main requirements
are: the maximum duration of a workday (duty); maximum flight time in a duty; mi-
nimum rest time between two duties (layover); and minimum work break duration. In
spite of being economically advantageous and having a social appeal, few studies integrate
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aircraft allocation with their respective crews (MARTIN; JONES; KESKINOCAK, 2003;
HICKS et al., 2005; YAO et al., 2008; YANG et al., 2008; ZWAN; WILS; GHIJS, 2011).

In this chapter, we address a real-world DAFP motivated by the case of a company
that operates in the non-scheduled air transportation sector. We propose a compact
mixed-integer programming model that effectively represents the aircraft routing with
crew assignment problem faced by the company. This model extends the formulation of
Munari and Alvarez (2019), proposed for aircraft routing (without incorporating crew
regulation) to minimize operating costs arising from positioning flights and aircraft up-
grades. As a way to enforce fundamental and highly relevant crew requirements, this
extension contemplates: minimum rest periods, breaks (split duties), maximum flight
time, pilot time windows, as well as overtime payments and the possibility of outsourcing
for customer requests. Computational experiments using real-world data provided by the
company reveal that the proposed model can be effectively solved by a general-purpose
MIP solver. To further reduce computing times and improve the quality of solutions for
instances not solved to optimality, we developed two well-established MIP-based methods,
namely the relax-and-fix and fix-and-optimize heuristics, which are based on the propo-
sed model. The results confirmed the high potential of these approaches for improving
decision-making in practice. Thereby, the proposed optimization approaches have the
potential to support realistic and complex decisions related to the DAFP in practice, ge-
nerating significant reductions in operational costs, while taking into account the aviation
labor rules.

This chapter consists of the following parts. In Section 3.1, we describe our DAFP.
Section 3.2 introduces the formulation of Munari and Alvarez (2019), hereafter referred to
as the base model (Subsection 3.2.1), and exhibits the proposed model by including new
constraints that ensure crew regulations (Subsection 3.2.2). In Section 3.3, we present
our version of relax-and-fix (Subsection 3.3.1) and fix-and-optimize (Subsection 3.3.2)
heuristics. Ultimately, the results of computational experiments carried out with the
approaches are shown in Section 3.4.

3.1 Problem description

In this logistics panorama, we address a type of service contract in which the contracted
company is an airline that has a heterogeneous fleet composed, for example, of private
jets, turboprops and helicopters. The company operates in different airports distributed
in several European and Asian countries. On the other hand, the contractor is a customer
who owns equity part of an aircraft, being responsible for monthly or annual payments
to cover outgoings incurred in the operation – such as those related to maintenance, crew
salaries, fuel consumption, control and management services, etc. – which are much lower
when compared to the costs of owning an aircraft. This contract entitles the customer to



70 Chapter 3. Aircraft routing with crew assignment for on-demand air transportation ...

a certain amount of mileage for flights in each period.
Unlike traditional airlines, where several operational requirements are already pre-

established, this service allows the customer to make a travel request (live leg) and decide:
(i) the aircraft type, (ii) the origin and destination airports, and (iii) the departure time of
his/her flight. With this, the company must designate an aircraft of the requisitioned type
to perform this travel request at the scheduled time. In some circumstances, an aircraft
of the required type may not be promptly available at the airport and date desired by
the customer. In this situation, it is possible to designate an aircraft of a superior type
(upgrade), if available, or take a positioning flight by an aircraft of the same requested
type from another airport (a.k.a. ferry leg, deadhead or non-revenue flight). An upgrade
incurs additional costs, as the customer is charged according to the aircraft type specified
in the request. Nevertheless, an upgrade can be used strategically by the company to
obtain savings with respect to positioning a farther away aircraft of the type chosen.
Ferry legs do not provide revenue, as the customer only pays for the requested leg. In
practice, they represent more than 35% of total travel times for this market segment
(YAO et al., 2008).

The company is responsible for the fleet maintenance. Periodically, each aircraft must
go through a planned checking and repair process, becoming unavailable until it is finished.
Although the start time of a maintenance event is pre-scheduled, the company is typically
allowed to advance or delay this time within a relatively large margin of 24 hours, whereas,
a customer request can only be delayed up to 15 min (by comparison). Thus, maintenance
can be seen as a request in which the aircraft is stationary at a single airport for a certain
period and presents a comprehensive time window. It is meaningful to emphasize that we
do not need to consider the number of passengers and aircraft capacity in this problem,
as the number of passengers is checked at the time a customer makes a request.

In the aircraft itineraries, before each flight event, a minimum turnaround time (ge-
nerally taking 20 minutes) is required for refueling, cleaning service, embarkation/disem-
barkation of passengers, among other activities. When a planning horizon starts, pro-
grammers also need to take into account the moment that each aircraft becomes available
for use, therefore representing an opening time window.

Hence, the design of aircraft routes has to ensure that all requested flights are served
and all maintenance events are satisfied, while minimizing the costs related to upgrading
and positioning flights. Additionally, it is crucial that each aircraft route has a feasible
crew allocation, which adds even more complexity to this planning process. Concerning
crew regulation, we consider six operational topics of aviation labor rights:

i) Duty and resting times. Being one of the most important crew requirements, the
maximum allowed time without rest in a single duty (maxDuty) is typically defined
as 13 hours in the studied company case. This rule is guaranteed by internatio-
nal labor standards due to the risks associated with fatigue. Moreover, the crew
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should have at least 10 hours of uninterrupted rest between two consecutive duties
(minRest). The inclusion of minRest establishes the end of the current duty and
the beginning of next one. Other important elements considered by company are
the crew presentation times to prepare a plane and analyze the weather conditions
and itinerary. The first occurs at the beginning of a duty (PRE), usually taking 40
minutes, being counted within the crew’s duty. The second happens at the end of
a duty (POS), lasting 30 minutes and is neither counted in the duty nor the rest
time (a policy known as Flight Duty Period - FDP). Thus, after each rest period,
there is a presentation time in the start and end of the duty.

As an example, Figure 5 depicts the insertion of minimum rest in the schedule of
an aircraft. Each Gantt chart in this figure represents a situation, indicated in
the left-hand side by (a), (b) and (c). Situation (a) shows the route taken by an
aircraft without considering, at this first moment, the insertion of minRest, PRE

or POS. After the aircraft becomes available (av), it stays on the ground for the
minimum turnaround time (the light gray rectangle) and begins by serving live
request 2, then 7, and so on (Wr portrays the time that a request r started). In
situation (b), we have the same route, but considering PRE after av, resulting in
a slight delay in request 2. As displayed, the total time calculated from PRE until
the execution of request 5 (where TF5 is the travel time) is less than maxDuty. In
turn, if this time is extended to request 3, it ends up exceeding maxDuty. Therefore,
POS + minRest + PRE must be inserted between requests 5 and 3, establishing
the end of the crew’s workday (FDP 1) and the beginning of a new one (FDP 2),
as illustrated in situation (c). It is worthy mentioning that these rest insertions
cannot be performed before the available time for flying av of an aircraft and after
its turnaround time tat, as a flight event must occur immediately after these times.
Figure 6 exhibits the possibilities for inserting the minimum rest.

ii) Duty breaks. Another rule involves the inclusion of breaks within a duty period. A
break is imposed depending on the ground time length (interval in which an aircraft
is not used, remaining on the ground between a landing and the next takeoff) that
the crew is on standby, i.e., idle waiting for a next flight. According to the crew
operation manual of the company, if the ground time is greater than 90 minutes,
but less than 6 hours, the time exceeding 90 minutes is to be reduced by 50% (see
situation (a) in Figure 7). Likewise, if the ground time is longer than 6 hours, but
does not exceed minRest, then all this time is counted as one hour (situation (b)
illustrated in Figure 7). Both situations correspond to reductions in a duty period,
called split duty practices.

iii) Rest and break during maintenance. A particularity on maintenance requests is
that, since the aircraft is parked during an entire repair process, the crew can rest
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Figure 5 – Examples of situations for the insertion of minimum rest.
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Figure 6 – The possibilities for inserting the minimum rest time.
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throughout this event (because maintenance events occur in parallel) and, hence,
the company can take advantage of the maintenance time. In Figure 8, situation (a)
illustrates a case in which the maintenance lasts longer than POS+minRest+PRE,
thus it is interesting to extend the crew’s free time until the end of this event, as there
is no reason to keep the pilots on standby if the aircraft is not ready yet. Conversely,
in situation (b), the duration of maintenance is less than POS + minRest + PRE,
thus the crew rests for the minimum required time, even if the aircraft is available
earlier. Nevertheless, it is beneficial to perform the maintenance in parallel to part
of the rest, as this promotes time-saving and feasibility of solutions that would be
impossible otherwise. Furthermore, a crew’s workday only begins with a flight event,
that way as seen in situation (c), if the aircraft’s route starts with a maintenance
request, it is not counted in the crew FDP. In this context, the maintenance duration
can also be counted as ground time in the split duty.
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Figure 7 – Illustration of duty breaks and split duty practices.
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Figure 8 – Resting time in a maintenance request.
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iv) Flying time. Similar to ground times, flight events can directly impact an aircraft’s
schedule. For each duty period, there is a maximum flight time of 10 hours permitted
for the crew activities (maxflying). Hence, the duration of live and ferry legs cannot
exceed maxflying. Figure 9 illustrates, as example, an aircraft with 560 min of total
flying time in its FDP.

Figure 9 – An example of how flying time is calculated.
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v) Pilot rostering. This crew requirement is related to the time window of a pilot-
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in-chief and its crew team. In general, every week, there is a rest period of 36
hours including two local nights that closes the pilots’ work schedules, named as
H36 Rest Period. This makes the practice of changing shifts of pilots, which enables
happening a gap between subsequent time windows t and t + 1 for a given aircraft
(see Figure 10). In the company, the same time windows are used for the first officer
and cabin hostess in the team of the pilot-in-chief.

Figure 10 – Exemplifying an arrangement of two subsequent time windows for pilots at an
aircraft.
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vi) Outsourcing and overtime issues. The problem also considers the possibility of out-
sourcing customer requests to another company, if it is not possible to service them
with the current resources. Moreover, overtime pay happens when the time ac-
cumulation in duty exceeds maxDuty or maxflying. It can be the result of an
undesirable allocation of flights, or the existence of a specific flight (live or ferry
leg) whose duration naturally already exceeds maxDuty or maxflying. Thereby,
the overtime costs are used to the detriment of rest time, which corresponds to a
percentage increase overtPerc (typically defined as 150%) in the travel cost of an
aircraft type.

3.2 Mathematical formulations

To present the two formulations (Subsections 3.2.1 and 3.2.2), firstly, we define the
common notation and parameters of our DAFP for both models. This input data comes
from a list of available airports (where there are the geographical coordinates of each one),
list of aircraft fleet (with their respective types, travel times between any two airports,
taking into account calculation from great circle mapper, turnaround times and the initial
locations of each aircraft), and a list of requests (required departure times, aircraft types
and origin and destination airports):

• K = {1, . . . , K}: set of airports in which the company operates;

• V = {1, . . . , V }: set of available aircraft;

• P = {1, . . . , P}: set of aircraft types;
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• L: set of customer requests;

• M: set of maintenance requests (hence, M∩L = ∅);

• R = {0} ∪ L ∪M: set of requests, where 0 is a dummy request used as the first
and last request serviced by any aircraft;

• Vp: subset of aircraft corresponding to type p;

• kv: initial (pre-designated) airport of aircraft v;

• p̌v: type of aircraft v;

• p̂r: required type of aircraft in request r;

• ir, jr: origin and destination airports, respectively, of the request r;

• cp: travel cost per time unit of an aircraft of type p, in $/min;

• TF p
ij: travel time between airports i and j for an aircraft of type p, in minutes;

• avv: exact time at which aircraft v becomes available to fly for the first time in the
planning horizon, in minutes;

• tatr
k: turnaround time required for an aircraft at airport k before servicing request

r, in minutes (tatr
k = 0; ∀ r ∈M, k ∈ K);

• str: planned starting time of request r, in minutes;

• ∆L: maximum delay allowed to start servicing any customer request, in minutes;

• vr: index of the aircraft that must undergo the maintenance request r;

• TLr: duration of maintenance request r ∈M, in minutes;

• ∆M: maximum tolerance of the anticipation/postponement of a maintenance event,
in minutes.

3.2.1 Base model

A peculiarity of the formulation developed in Munari and Alvarez (2019) (which served
as the basis for our model extension) is that, instead of using a problem representation ba-
sed on the traditional network in which airports are nodes and decision variables determine
which arcs will be chosen (LETCHFORD; SALAZAR-GONZÁLEZ, 2015; DESAULNI-
ERS; MADSEN; ROPKE, 2014), the authors adopted a type of alternative network where
nodes represent requests, as can be seen in Figure 11. The motivation for their choice is
that this network typically leads to a more effective mathematical model than other tra-
ditional formulations as the number of requests is significantly smaller than the number
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of available airports. In this representation, the aircraft flow is defined through requests,
and each node has to be visited only once by just one plane. Consequently, the visit to a
node r indicates that the aircraft serves request r and thus visits the related origin and
destination airports (ir and jr). If the aircraft goes from a node (request) r to another
node s, such that jr ̸= is, i.e., the destination airport of r is not the same as the origin
airport of s, then a ferry leg is implied between these visits. All routes must start and
finish at the dummy node (request) 0. This means that each aircraft v departs from its
initial airport kv before serving the first request, and at the end of its route, it stays at
the destination airport of the last request that immediately precedes the dummy node 0.
The problem is then to find routes in this network, so that all nodes (requests) are visited
(served) exactly once, reducing the occurrence of positioning flight displacements.

Figure 11 – Problem representation using a network of requests.
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Source: Adapted from Munari and Alvarez (2019).

To illustrate the occurrences of ferries on a route, consider Figure 12. In this path,
an aircraft departs from airport 2 (see the initial airport within dummy node 0) and has
as its first request, the 5, which takes as its origin airport, the 3. As these two airports
are different (2 ̸= 3), there is a necessity to execute a positioning flight, that is, a trip
without passengers among these airports, so that the aircraft is available to execute the
live request 5. After request 5 (flight from airport 3 to 8, as indicated in the node), the
next node to be visited is a maintenance request (7), which has the same airport 8 (to
ensure a uniform notation, we assume that for r ∈ M, the airports ir and jr are equal
and denote the airport in which the maintenance shall happen). In this way, there is no
ferry and the aircraft is just undergoing maintenance at airport 8. However, in the next
request (1), the origin airport is the 10, hence we have a ferry leg to then carry out request
1 (flight between airports 10 and 4). Finally, as the subsequent request to 1 (9) has the
same airport, as soon as the aircraft fulfills request 1, it is already to serve request 9 (i.e.,
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there is no ferry). At the end of the route, the aircraft will be at airport 6, which implies
that request 9 precedes dummy request 0 in the graph.

Figure 12 – Exemplifying the occurrence of ferries.
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The described network requires a proper definition of costs. Let Cf v
rs be the positi-

oning cost, which corresponds to the flying cost when aircraft v flies without customers
between requests r and s, defined as follows:

Cf v
rs =


cp̌v .TF p̌v

kvis , if r = 0 ∧ s > 0 ∧ kv ̸= is;

cp̌v .TF p̌v

jris , else if r > 0 ∧ s > 0 ∧ r ̸= s ∧ jr ̸= is;

0, otherwise.

(1)

The upgrade cost, taken as Cupv
r , is determined by choosing an aircraft v with type

better (superior) than the one contracted in request r, calculated as:

Cupv
r =

cp̌v .TF p̌v

irjr − cp̂r .TF p̂r

irjr , if p̌v > p̂r;

0, otherwise.
(2)

To simplify the notation, we assume that set P follows a non-descending order re-
garding the quality of aircraft types. Therefore, an aircraft of type p is inferior than or
similar to an aircraft of type p + 1.

Eventually, from the flow-network illustrated in Figure 11, the following decision va-
riables are defined:

• yv
rs =

1, if aircraft v services requests r and s, consecutively;

0, otherwise.

• Wr: exact time at which request r is serviced, in minutes.
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Using the parameters and notation just defined, the compact formulation (called base
model) is then formalized by:

min
∑
v∈V

∑
r∈R

∑
s∈R:
r ̸=s

Cf v
rs.y

v
rs +

∑
v∈V

∑
r∈L

∑
s∈R:
r ̸=s

Cupv
r .yv

rs; (3)

s.t. ∑
v∈V:

p̌v≥p̂r

∑
s∈R:
s ̸=r

yv
rs = 1; ∀ r ∈ L; (4)

∑
s∈R:
s ̸=r

yv
rs = 0; ∀ v ∈ V , r ∈ L | p̌v < p̂r; (5)

∑
s∈R:
s ̸=r

yvr

rs = 1; ∀ r ∈M; (6)

∑
v∈V:
v ̸=vr

∑
s∈R:
s ̸=r

yv
rs = 0; ∀ r ∈M; (7)

∑
s∈R:
s ̸=r

yv
sr =

∑
s∈R:
s̸=r

yv
rs;∀ v ∈ V , r ∈ L ∪M; (8)

∑
s∈R

yv
0s =

∑
r∈R

yv
r0 = 1; ∀ v ∈ V ; (9)

str ≤ Wr ≤ str + ∆L; ∀ r ∈ L; (10)

Ws ≥ Wr +
∑
v∈V:

p̌v≥p̂r

(TF p̌v

irjr + tats
jr + TF p̌v

jris + tats
is).yv

rs

−M1
r .(1−

∑
v∈V:

p̌v≥p̂r

yv
rs); ∀ r ∈ L, s ∈ L ∪M | r ̸= s ∧ jr ̸= is; (11)

Ws ≥ Wr +
∑
v∈V:

p̌v≥p̂r

(TF p̌v

irjr + tats
is).yv

rs

−M1
r .(1−

∑
v∈V:

p̌v≥p̂r

yv
rs); ∀ r ∈ L, s ∈ L ∪M | r ̸= s ∧ jr = is; (12)

Ws ≥ (avv + TF p̌v

kvis + tats
is).yv

0s ∀ v ∈ V , s ∈ L | kv ̸= is; (13)

Ws ≥ (avv + tats
is).yv

0s; ∀ v ∈ V , s ∈ L | kv = is; (14)

str −∆M ≤ Wr ≤ str + ∆M; ∀ r ∈M; (15)

Ws ≥ Wr + (TLr + TF p̂r

jris + tats
is).yvr

rs

−M2
r .(1− yvr

rs ); ∀ r ∈M, s ∈ L ∪M | r ̸= s ∧ jr ̸= is; (16)

Ws ≥ Wr + (TLr + tats
is).yvr

rs

−M2
r .(1− yvr

rs ); ∀ r ∈M, s ∈ L ∪M | r ̸= s ∧ jr = is; (17)

Ws ≥ (avvs + TF p̂s

kvs is).yvs

0s ; ∀ s ∈M | kvs ̸= is; (18)

Ws ≥ avvs .yvs

0s ; ∀ s ∈M | kvs = is; (19)

yv
rs ∈ {0, 1}; ∀ v ∈ V ; r, s ∈ R; (20)

Wr ≥ 0; ∀ r ∈ L ∪M; (21)
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where M1
r = str + ∆L, ∀ r ∈ L and M2

r = str + ∆M, ∀ r ∈M.
The objective function (3) aims at minimizing the operational expenses. They are

composed by the costs of aircraft positioning, which arise in trips that aircraft fly without
customers, represented by the first term; and upgrade cost, the increase in cost due to
the assignment of a better aircraft type to a live leg, represented by the second term.

Routing constraints are given by (4)-(9). Constraints (4) ensure that each request
r ∈ L is serviced by an aircraft of requested type p̂r or higher (p̌v ≥ p̂r). On the other
hand, constraints (5) prevent downgrading (p̌v < p̂r). Fulfillment of maintenance request
r ∈M for specified aircraft vr is guaranteed by constraints (6) and (7)1. While constraints
(8) ensure the flow conservation of aircraft through the network of requests, constraints
(9) enforce the balance in dummy request, where every aircraft must depart of and return
from.

The schedule of aircraft is modeled by the family of constraints (10)-(19), which can
be separated into two groups: referring to customer requests (10)-(14) and maintenance
requests (15)-(19). In the first group, the time windows for customer requests are assured
by constraints (10). The minimum time to start a customer request s is obliged by
constraints (11) and (12). The first set is activated when positioning is needed to service
request s after r (jr ̸= is) and thereby, it includes this additional travel time (tats

jr +T p̌v

jris).
The second is applied when the destination of request r is the same as the departure airport
of s, therefore, being only necessary to compute the travel time of request r (T p̌v

irjr) and
the turnaround time before request s (tats

is). Constraints (13) and (14) impose the time
that each aircraft will be ready to service the first request s at the beginning of planning
horizon, with the first set of constraints being used when a positioning flight is necessitated
between the aircraft’s starting airport (kv) and the request’s departure airport (is), and
the second one is employed when these airports are identical. Constraints (10)-(14) are
analogous to (15)-(19), but for maintenance requests. The main difference between this
type of request and the customer requests is that, instead of requiring a flight from ir

to jr for executing the request (T p̌v

irjr), the aircraft must stay on the ground at airport ir

during the whole duration (TLr) of the maintenance process.
At last, the domain of the decision variables is defined in (20) and (21).

1 At first glance, constraints (5) and (7) appear redundant, however, they are mandatory. In (4) and
(6), the sums do not cover all requests and aircraft. Unlike traditional VRP variants, in which all arcs
are costed, in this problem, there is only cost for arcs with ferry leg. If (5) and (7) were omitted, we
could have a garbage-out/infeasible solution, since sub-cycles with requests already assigned to other
aircraft may occur, and consequently, the objective function value would be lower (incorrect), because
such a relaxed formulation permit downgrading or unauthorized request assignment in an aircraft’s
route (note that (8) consider all requests and aircraft), for having a cheaper positioning cost. An
alternative to omitting these constraints would be to only declare the decision variables that satisfy
the upgrade and aircraft pre-assignment conditions. Nevertheless, this would aggravate the proposed
model’s size (shown ahead), as its constraints would have to be further partitioned, otherwise, we
would witness a memory segmentation fault in the model’s implementation.



80 Chapter 3. Aircraft routing with crew assignment for on-demand air transportation ...

3.2.2 Proposed model

As a way to faithfully represent the specifics of our DAFP, that is, in the context of
on-demand air transportation, take into account characteristics of distinct aircraft and
their different usage costs, as well as comply with aspects of legislation relevant to the
inclusion of crews in the operation, we had to elaborate a very detailed formulation with a
considerable number of constraints and variables. This makes the modeling presentation
non-trivial. For ease of understanding, in addition to grouping the constraints concerning
the six operational topics about crew regulation (as portrayed in the problem description
by Section 3.1), further partitioned into subsections 3.2.2.1-3.2.2.6, and introducing the
parameters and decision variables within the topics (specifically, at the beginning of each
one) that the families of constraints are explained, we chose to bring together the required
notation again as a complement (also divided into the topics by tables) in Appendix A.1,
which can function as a glossary. We believe that this organization may expose the model
in a more didactic way, facilitating the notation query.

It is important to highlight that these additional crew constraints do not compromise
the model performance as it can be effectively used within general-purpose MIP solvers
to obtain optimal or close-to-optimality solutions to real-world instances in reasonable
computing times.

3.2.2.1 Crew rest rules

To incorporate the minimum rest rule into the base model, we compute the accumu-
lated duty time considering the difference between time instants of consecutive requests
r and s (i.e., Ws−Wr) as the aircraft advances on its route. However, to account for the
residual time at the end of the current duty and at the beginning of the next one, we need
to define binary variables for pointing out the moment when crew members start their
rests, and continuous variables for counting the residual time among duties. To model
this, we define the following decision variables:

• Us ≥ 0: accumulated work time up to request s since the inclusion of the last rest;

• E1rs ∈ {0, 1}: 1, if there is a rest before a ferry leg between requests r and s; 0,
otherwise;

• E2rs ∈ {0, 1}: 1, if there is a rest after a ferry leg between requests r and s; 0,
otherwise;

• E12rs ∈ {0, 1}: 1, if there is a rest before and after a ferry leg between requests r

and s; 0, otherwise;

• Ers ∈ {0, 1}: 1, if there is a rest (regardless of a positioning flight) between requests
r and s; 0, otherwise;
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• E0vr ∈ {0, 1}: 1, if there is a rest after a ferry leg between the initial airport of
aircraft v and the origin airport of request r ∈ L; 0, otherwise;

• lengthCurrR1r ≥ 0: duty time without ferry leg added at the end of the current
duty by request r;

• lengthCurrR2r ≥ 0: duty time with ferry leg added at the end of the current duty
by request r;

• lengthNextR1s ≥ 0: duty time with ferry leg to be added at the beginning of the
next duty by request s;

• lengthNextR2s ≥ 0: duty time without ferry leg to be added at the beginning of
the next duty by request s;

• lengthAmongR12r ≥ 0: ferry time between the end and start of consecutive duties
by request r;

• RestM s ≥ 0: rest time to be included between a maintenance request and a live
or ferry leg represented by request s. This variable takes into account the use
of subsequent maintenance events (which will be explained further in Subsection
3.2.2.3).

Constraints (22)-(35) concern the aircraft scheduling considering crew regulation.
They correspond to constraints (10)-(19) of the base model, partitioned in more special
cases due to the different ways of including the rest when taking advantage of the mainte-
nance duration. Nevertheless, the total number of constraints remains the same (i.e., for
all r, s ∈ L∪M). Constraints (23) ensure that the binary variables E1rs and E2rs enforce
the minimum rest time if a duty ends/starts between requests r, s ∈ L with different air-
ports. Notably, activating E1rs inserts the full minimum rest (POS + minRest + PRE)
before the ferry, and activating E2rs inserts the full minimum rest after the ferry. As there
is no positioning flight in constraints (24), the inclusion of minimum rest is well-defined
using only variable Ers. In constraints (25), for all r ∈ L and s ∈M, there is the insertion
of rest before a ferry only when E1rs = 1. This enables taking advantage of ground time
from the end of a request with ferry until the start of a maintenance request, which can
be used later by also considering TLs in a subsequent request at s. This way, for any
constraint in block (23)-(28) that contains s ∈ M, there is the possibility of saving its
ground time to be used later. Because the airports are the same in constraints (26), the
accumulation of ground time is quantified by the time contained between the end of a live
leg and the beginning of a maintenance event. We clarify this in the example provided in
Figure 13. Constraints (27) and (28) impose the exact time from which the services in
a first request s ∈ L of an aircraft v can start. Since a positioning flight in constraints
(27) requires a crew on board, the minimum rest is activated by the variable E0vs. For
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each request r ∈ M with a flight event (whether ferry or live leg to s ∈ L), RestM s

represents the rest time to be included between a maintenance request and a live or ferry
leg, considering the previous maintenance durations and the current TLr itself. In the
circumstance of positioning flight in constraints (30), as request s ∈ L, there is no op-
portunity for ground time accumulation if the rest is assigned after the ferry, portraying
the placement of (POS + minRest + PRE).E2rs. Concerning constraints (32) and (33),
because s ∈M, this accumulation is possible.

(22)str.(1− outr) ≤ Wr ≤ (str + ∆L).(1− outr); ∀ r ∈ L;

(23)

Ws ≥ Wr +
∑
v∈V:

p̌v≥p̂r

(TF p̌v

irjr + tats
jr + TF p̌v

jris + tats
is).yv

rs

+ (POS + minRest + PRE).(E1rs + E2rs)
−M1

r .(1−
∑
v∈V:

p̌v≥p̂r

yv
rs); ∀ r, s ∈ L | r ̸= s ∧ jr ̸= is;

(24)

Ws ≥ Wr +
∑
v∈V:

p̌v≥p̂r

(TF p̌v

irjr + tats
is).yv

rs + (POS + minRest + PRE).Ers

−M1
r .(1−

∑
v∈V:

p̌v≥p̂r

yv
rs); ∀ r, s ∈ L | r ̸= s ∧ jr = is;

(25)

Ws ≥ Wr +
∑
v∈V:

p̌v≥p̂r

(TF p̌v

irjr + tats
jr + TF p̌v

jris).yv
rs

+ (POS + minRest + PRE).E1rs

−M1
r .(1−

∑
v∈V:

p̌v≥p̂r

yv
rs); ∀ r ∈ L, s ∈M | jr ̸= is;

(26)Ws ≥ Wr +
∑
v∈V:

p̌v≥p̂r

TF p̌v

irjr .yv
rs −M1

r .(1−
∑
v∈V:

p̌v≥p̂r

yv
rs); ∀ r ∈ L, s ∈M | jr = is;

(27)Ws ≥ (avv + PRE + TF p̌v

kvis + tats
is).yv

0s

+ (POS + minRest + PRE).E0vs; ∀ v ∈ V , s ∈ L | kv ̸= is;
(28)Ws ≥ (avv + PRE + tats

is).yv
0s; ∀ v ∈ V , s ∈ L | kv = is;

(29)str −∆M ≤ Wr ≤ str + ∆M; ∀ r ∈M;

(30)
Ws ≥ Wr + (TLr + TF p̂r

jris + tats
is).yvr

rs + RestM s

+ (POS + minRest + PRE).E2rs

− (M2
r + M3

s ).(1− yvr

rs ); ∀ r ∈M, s ∈ L | jr ̸= is;

(31)Ws ≥ Wr + (TLr + tats
is).yvr

rs + RestM s

− (M2
r + M3

s ).(1− yvr

rs ); ∀ r ∈M, s ∈ L | jr = is;

(32)Ws ≥ Wr + (TLr + TF p̂r

jris).yvr

rs + RestM s

− (M2
r + M3

s ).(1− yvr

rs ); ∀ r, s ∈M | r ̸= s ∧ jr ̸= is;
(33)Ws ≥ Wr + TLr.y

vr

rs −M2
r .(1− yvr

rs ); ∀ r, s ∈M | r ̸= s ∧ jr = is;
(34)Ws ≥ (avvs + PRE + TF p̂s

kvs is).yvs

0s ; ∀ s ∈M | kvs ̸= is;
(35)Ws ≥ avvs .yvs

0s ; ∀ s ∈M | kvs = is.
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Figure 13 – An example of using maintenance requests to include the required rest time.
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Source: Own authorship.

Constraints (36)-(72) determine the accumulated work time used to enforce rest events
in the schedules. As previously defined, the continuous variable Us represents the accu-
mulated time on duty until request s. The value of Us is reset every time there is a change
of duty shifts. To do this, first, we define how the variables related to rest are activated.
Constraints (36) and (37) allow only one of binary variables Ers (rest condition), ∑4

f=1 Bf
rs

(break condition) or DArs (for s ∈ M, expressing a ground time accumulation) to have
value of 1 when there is a route between the requests r and s (variables Bf

rs and DArs

will be better explained in Subsections 3.2.2.2 and 3.2.2.3). Constraints (38) and (39)
ensure that only a single request r ∈ L is associated with exactly one aircraft v ∈ V ,
when E0vs = 1 and yv

0s = 1 (i.e., there is a rest between dummy request 0 and request
s). Constraints (40) impose Ers = 1, if E1rs = 1 and/or E2rs = 1, while (41) and (42)
enforce E12rs = 1 when both variables E1rs and E2rs has a value of 1, depicting the
inclusion of rest before and after on positioning flight between requests r and s.

(36)Ers +
4∑

f =1
Bf

rs ≤
∑
v∈V

yv
rs; ∀ r ∈ L ∪M, s ∈ L | r ̸= s;

(37)Ers + DArs +
4∑

f =1
Bf

rs ≤
∑
v∈V

yv
rs; ∀ r ∈ L ∪M, s ∈M | r ̸= s;

(38)
∑
v ∈V

E0vs ≤
∑
v∈V

yv
0s; ∀ s ∈ L;

(39)
∑
s ∈L

E0vs ≤
∑
s∈L

yv
0s; ∀ v ∈ V ;

(40)Ers ≤ E1rs + E2rs ≤ 2.Ers; ∀ r, s ∈ L ∪M | r ̸= s;
(41)E1rs + E2rs ≥ 2.E12rs; ∀ r, s ∈ L ∪M | r ̸= s;
(42)E12rs ≥ E1rs + E2rs − 1; ∀ r, s ∈ L ∪M | r ̸= s.

The calculation of the accumulated work time is guaranteed by constraints (43)-(53).
For preceding requests r ∈ L ∪M and s ∈ L, in constraints (47), the accumulated work
time is obtained by the difference between the instants Ws −Wr, which in addition to
the travel times, also consider the idleness corresponding to the waiting time of crew in
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airports. If ∑v∈V yv
rs = 1, and Ers = 1 or ∑3

f=2 Bf
rs = 1 (time ranges in which there is a

change in ground time, in order to reduce the duty), these constraints remain redundant,
admitting that Us can be reset by another constraint (as discussed later). Constraints
(48) are similar to (47) except for the use of terms s ∈ M and Dutyrs instead of s ∈ L
and Ws−Wr. In the situation where we take advantage of the maintenance durations for
crew breaks (viable when request s ∈ M, and ∑

v∈V yv
rs = 1, Ers = 0 or ∑3

f=2 Bf
rs = 0),

making variable Dutyrs = 0, admitting that Us = Ur. This behavior guarantees that the
value of Ur is maintained throughout the accumulation of ground time, so that it can be
used later on, when some B2

rs = 1 or B3
rs = 1 (this will be better detailed in the split duty

constraints, in Subsection 3.2.2.2). When a request s is executed right after a dummy
(yv

0s = 1), constraints (43)-(46) are applied to determine the initial value of time in Us,
where constraints (43) employ the same reasoning used for calculating the rest in (47)
and (48).

Given the redundancy condition of constraints (43), (47) and (48) by the activations
of Ers, B2

rs or B3
rs, and E0vs, respectively, Us can be reset by one of constraints (49) or

(50), where, specifically, determine the work time that variable Us must contain when
starting a new duty from request s. For the dummy request, constraints (49) ensure that
Us is simply the crew presentation time. However, between requests r, s ∈ L ∪M, this
time depends on whether the inclusion of rest is made in the absence of a positioning
event, or even before and/or after the occurrence of a positioning flight. For this reason,
we put the variables lengthNextR1r and lengthNextR2r in (50), where the first variable
takes value as a function of E1rs = 1, and the second by E2rs = 1.

Another determination is how much work time precisely should be left at the end of a
current duty. Thereby, variables lengthCurrR1r and lengthCurrR2r are responsible for
quantifying this residual work and so they are in constraints (51), aiming to verify whether
the accumulated work time at the end of a duty by request r (Ur + lengthCurrR1r +
lengthCurrR2r) exceeds maxDuty. If the maximum allowed time without rest is extrapo-
lated, variable overRr quantifies this work excess, thus generating a part of the overtime
costs in (189). There is also a determination for the current duty among requests, which
is aimed at activating variable E12rs. When the rest time is entered before and after
a positioning flight, it means that the travel time value related to the positioning itself
must also be checked against maxDuty. Variable lengthAmongR12r assigns the value of
ferry leg and the constraints (52) confer whether lengthAmongR12r surpasses maxDuty,
valuing variable overF r in the overtime situation. Finally, the one last determination for
the current duty period is about a ferry in the middle of dummy request and first request
s executed by aircraft v. This is a specific situation, but relevant to the crew. Consider
that PRE + TF p̌v

kvis > maxDuty for a route between 0 and s. Even if E0vs = 1, which
causes Us to reset (making it small), this ferry could exceed maxDuty without paying
overtime. Then, we put constraints (53) to measure this surplus time (over0v), which is
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penalized in the objective function (189).

(43)Us ≥ (PRE + TF p̌v

kvis + tats
is).yv

0s

−M3
s .(1 + E0vs − yv

0s); ∀ v ∈ V , s ∈ L | kv ̸= is;
(44)Us ≥ (PRE + tats

is).yv
0s; ∀ v ∈ V , s ∈ L | kv = is;

(45)Us ≥ (PRE + TF p̂s

kvs is).yvs

0s ; ∀ s ∈M | kvs ̸= is;
(46)Us ≥ PRE.yvs

0s ; ∀ s ∈M | kvs = is;

(47)
Us ≥ Ur + (Ws −Wr)

− (M3
r + M3

s ).(1 + Ers +
3∑

f=2
Bf

rs −
∑
v∈V

yv
rs); ∀ r ∈ L ∪M, s ∈ L | r ̸= s;

(48)
Us ≥ Ur + Dutyrs

− (M3
r + M3

s ).(1 + Ers +
3∑

f=2
Bf

rs −
∑
v∈V

yv
rs); ∀ r ∈ L ∪M, s ∈M | r ̸= s;

(49)Us ≥ (PRE + tats
is).

∑
v∈V

E0vs; ∀ s ∈ L;

(50)Us ≥ lengthNextR1r + lengthNextR2r

−M4
r .(1− Ers); ∀ r, s ∈ L ∪M | r ̸= s;

(51)Ur + lengthCurrR1r + lengthCurrR2r ≤ maxDuty + overRr; ∀ r ∈ L ∪M;
(52)lengthAmongR12r ≤ maxDuty + overF r; ∀ r ∈ L ∪M;
(53)over0v ≥

∑
s∈L

(PRE + TF p̌v

kvis).E0vs −maxDuty; ∀ v ∈ V .

The three ways to insert minRest are illustrated in Figures 14, considering an example
involving the inclusion of a rest time between requests 7 and 3. The first two illustra-
tions (Figures 14a and 14b) show how the values of lengthCurrR1r, lengthCurrR2r,
lengthNextR1r and lengthNextR2r would be as a function of the activations of E1rs

and E2rs, while the last one (Figure 14c) indicates how the values of lengthCurrR1r,
lengthAmongR12r and lengthNextR2r would be by E12rs = 1. Based on Figure 14,
constraints (54)-(72) determine the value of each length type. It is worth mentioning that
placing variable E12rs in constraints (56)-(59) and (63)-(66) enforce lengthCurrR2r = 0
and lengthNextR1r = 0 in the circumstance of having rest before and after a ferry leg,
consistent with which is shown in Figure 14c.

(54)

lengthCurrR1r ≥
∑
v∈V:

p̌v≥p̂r

∑
s∈R:
s ̸=r

TF p̌v

irjr .yv
rs

−M4
r .(1−

∑
s∈L∪M:

s ̸=r

E1rs −
∑
v∈V:

p̌v≥p̂r

yv
r0); ∀ r ∈ L;

(55)lengthCurrR1r ≤M4
r .(

∑
s∈L∪M:

s ̸=r

E1rs +
∑
v∈V:

p̌v≥p̂r

yv
r0); ∀ r ∈ L;

(56)

lengthCurrR2r ≥
∑
v∈V:

p̌v≥p̂r

∑
s∈L∪M:

s ̸=r

TF p̌v

irjr .yv
rs +

∑
v∈V:

p̌v≥p̂r

∑
s∈L∪M:

s ̸=r
jr ̸=is

(tats
jr + TF p̌v

jris).yv
rs

−M4
r .[1 +

∑
s∈L∪M:

s ̸=r

(E12rs − E2rs)]; ∀ r ∈ L;
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Figure 14 – Illustration of the three ways of including minimum rest.
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(57)lengthCurrR2r ≤M4
r .

∑
s∈L∪M:

s ̸=r

(E2rs − E12rs); ∀ r ∈ L;

(58)

lengthNextR1r ≥ PRE +
∑
v∈V:

p̌v≥p̂r

∑
s∈L∪M:

s ̸=r
jr ̸=is

(tats
jr + TF p̌v

jris).yv
rs

+
∑
v∈V:

p̌v≥p̂r

∑
s∈L∪M:

s ̸=r

tats
is .yv

rs

−M4
r .[1 +

∑
s∈L∪M:

s ̸=r

(E12rs − E1rs)]; ∀ r ∈ L;

(59)lengthNextR1r ≤M4
r .

∑
s∈L∪M:

s ̸=r

(E1rs − E12rs); ∀ r ∈ L;

(60)

lengthNextR2r ≥ PRE +
∑
v∈V:

p̌v≥p̂r

∑
s∈L∪M:

s̸=r

tats
is .yv

rs

−M4
r .(1−

∑
s∈L∪M:

s ̸=r

E2rs); ∀ r ∈ L;

(61)lengthNextR2r ≤M4
r .

∑
s∈L∪M:

s ̸=r

E2rs; ∀ r ∈ L;

(62)lengthCurrR1r = 0; ∀ r ∈M;

(63)

lengthCurrR2r ≥
∑

s∈L∪M:
s ̸=r

TLr.y
vr

rs +
∑

s∈L∪M:
s ̸=r

jr ̸=is

TF p̂r

jris .yvr

rs

−M4
r .[1 +

∑
s∈L∪M:

s ̸=r

(E12rs − E2rs)]; ∀ r ∈M;

(64)lengthCurrR2r ≤M4
r .

∑
s∈L∪M:

s ̸=r

(E2rs − E12rs); ∀ r ∈M;

(65)

lengthNextR1r ≥ PRE +
∑

s∈L∪M:
s ̸=r

jr ̸=is

TF p̂r

jris .yvr

rs +
∑

s∈L∪M:
s ̸=r

tats
is .yvr

rs

−M4
r .[1 +

∑
s∈L∪M:

s ̸=r

(E12rs − E1rs)]; ∀ r ∈M;

(66)lengthNextR1r ≤M4
r .

∑
s∈L∪M:

s ̸=r

(E1rs − E12rs); ∀ r ∈M;

(67)lengthNextR2r ≥ PRE +
∑

s∈L∪M:
s ̸=r

tats
is .yvr

rs −M4
r .(1−

∑
s∈L∪M:

s ̸=r

E2rs); ∀ r ∈M;

(68)lengthNextR2r ≤M4
r .

∑
s∈L∪M:

s ̸=r

E2rs; ∀ r ∈M;

(69)

lengthAmongR12r ≥
∑
v∈V:

p̌v≥p̂r

∑
s∈L∪M:

s ̸=r
jr ̸=is

(tats
jr + TF p̌v

jris).yv
rs

−M4
r .(1−

∑
s∈L∪M:

s ̸=r
jr ̸=is

E12rs); ∀ r ∈ L;
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(70)lengthAmongR12r ≤M4
r .

∑
s∈L∪M:

s ̸=r
jr ̸=is

E12rs; ∀ r ∈ L;

(71)lengthAmongR12r ≥
∑

s∈L∪M:
s ̸=r

jr ̸=is

TF p̂r

jris .yvr

rs −M4
r .(1−

∑
s∈L∪M:

s ̸=r
jr ̸=is

E12rs); ∀ r ∈M;

(72)lengthAmongR12r ≤M4
r .

∑
s∈L∪M:

s ̸=r
jr ̸=is

E12rs; ∀ r ∈M.

3.2.2.2 Crew break constraints

In modeling terms, split duty originates a nonlinear behavior. For a complete lineari-
zation, we divide the ground time into four time ranges, as shown in Table 3. The first
column refers to each time range f , the next two, DL and DU , are the limits of ground
time, and the last column shows how much the ground time will be (the new GT ). From
Table 3, f = 4 portrays an artificial situation, defined only to meet the logical purposes
of the optimization model. Note that the break time is the difference between GT and
new GT (the crew time free of duty).

Table 3 – Modification of the ground time due to split duty.

f DL (min) DU (min) new GT (min)
1 0 90 GT
2 91 360 (GT − 90)/2 + 90
3 361 minRest 60
4 minRest + 1 ∞ -

Source: Own authorship.

Based on these time ranges, we define the following parameters and variables:

• DLf : ground time’s lower bound belonging to range f ;

• DU f : ground time’s upper bound belonging to range f ;

• Bf
rs ∈ {0, 1}: binary variable that takes 1 if and only if the ground time between

requests r and s is classified in the time range f ;

• GT rs ∈ R: continuous variable that quantifies the ground time value between re-
quests r and s;

• acumGT r ≥ 0: continuous variable that accumulates the potential ground time
until request r, to be used as a break (split duty proceeding);

• Dutyrs ∈ R: continuous variable that quantifies the duty time between requests r

and s, if there is no ground time accumulation among them;
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• DArs ∈ {0, 1}: binary variable that assumes value 1 if and only if there is ground
time accumulation between requests r and s, given the use of maintenance events.

Constraints (73)-(74) make Dutyrs = Ws −Wr for DArs = 0, while constraints (75)-
(76) ensure that Dutyrs = 0 for DArs = 1 when maintenance durations are converted
on ground time to have split duty. On the other hand, in constraints (77)-(82), where
there are flight events among requests r and s, Dutyrs receives the residual work time
from the current journey for DArs = 1, so that it is transferred to Us at constraints (48).
The idea is that the value of Us remains constant along an aircraft route that contains
sequential maintenance requests (without ferry or live legs). Constraints (83) assure that
if there is ground time accumulation between requests r and s, in the following request
h, there may be a ground time accumulation again (DAsh = 1, if h ∈ M and no ferry),
or a break time may be applied (B2

sh = 1 or B3
sh = 1). The ground time accumulated

up to request s, by variable acumGT s, is warranted by constraints (84)-(92). They are
analogous to constraints (118)-(128), employed to quantify acumRests. For the ground
time between requests r and s, we elaborate the group of constraints (93)-(100). The
presence of acumGT r in the subgroup (97)-(99) is justify by aggregating the ground time
accumulation until request r to variable GT rs, for r ∈M. Conversely, absence of TLr in
the subtractions is because maintenance times must already be in GT rs itself.

(73)Dutyrs ≥ (Ws −Wr)− (M3
r + M3

s ).DArs; ∀ r ∈ L ∪M, s ∈M | r ̸= s;
(74)Dutyrs ≤ (Ws −Wr) + (M3

r + M3
s ).DArs; ∀ r ∈ L ∪M, s ∈M | r ̸= s;

(75)Dutyrs ≥ −(M3
r + M3

s ).(1−DArs); ∀ r, s ∈M | r ̸= s ∧ jr = is;
(76)Dutyrs ≤ (M3

r + M3
s ).(1−DArs); ∀ r, s ∈M | r ̸= s ∧ jr = is;

(77)Dutyrs ≥ TLr + TF p̂r

jris

− (M3
r + M3

s ).(1−DArs); ∀ r, s ∈M | r ̸= s ∧ jr ̸= is;

(78)Dutyrs ≤ TLr + TF p̂r

jris

+ (M3
r + M3

s ).(1−DArs); ∀ r, s ∈M | r ̸= s ∧ jr ̸= is;

(79)
Dutyrs ≥

∑
v∈V:

p̌v≥p̂r

(TF p̌v

irjr + tats
jr + TF p̌v

jris).yv
rs

− (M3
r + M3

s ).(1−DArs); ∀ r ∈ L, s ∈M | jr ̸= is;

(80)
Dutyrs ≤

∑
v∈V:

p̌v≥p̂r

(TF p̌v

irjr + tats
jr + TF p̌v

jris).yv
rs

+ (M3
r + M3

s ).(1−DArs); ∀ r ∈ L, s ∈M | jr ̸= is;

(81)
Dutyrs ≥

∑
v∈V:

p̌v≥p̂r

TF p̌v

irjr .yv
rs

− (M3
r + M3

s ).(1−DArs); ∀ r ∈ L, s ∈M | jr = is;
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(82)
Dutyrs ≤

∑
v∈V:

p̌v≥p̂r

TF p̌v

irjr .yv
rs

+ (M3
r + M3

s ).(1−DArs); ∀ r ∈ L, s ∈M | jr = is;

(83)DArs ≤
∑

h∈M:
h ̸=s

DAsh +
3∑

f=2

∑
h∈L∪M:

h ̸=s

Bf
sh; ∀ r ∈ L ∪M, s ∈M | r ̸= s;

(84)acumGT r ≤ (M3
r + M3

s ).
∑

h∈L∪M:
h ̸=r

DAhr; ∀ r ∈M;

(85)acumGT s ≥ acumGT r + (Ws −Wr)
− (M3

r + M3
s ).(1−DArs); ∀ r, s ∈M | r ̸= s ∧ jr = is;

(86)acumGT s ≤ acumGT r + (Ws −Wr)
+ (M3

r + M3
s ).(1−DArs); ∀ r, s ∈M | r ̸= s ∧ jr = is;

(87)acumGT s ≥ (Ws −Wr)− (TLr + TF p̂r

jris)
− (M3

r + M3
s ).(1−DArs); ∀ r, s ∈M | r ̸= s ∧ jr ̸= is;

(88)acumGT s ≤ (Ws −Wr)− (TLr + TF p̂r

jris)
+ (M3

r + M3
s ).(1−DArs); ∀ r, s ∈M | r ̸= s ∧ jr ̸= is;

(89)
acumGT s ≥ (Ws −Wr)−

∑
v∈V:

p̌v≥p̂r

(TF p̌v

irjr + tats
jr + TF p̌v

jris).yv
rs

− (M3
r + M3

s ).(1−DArs); ∀ r ∈ L, s ∈M | jr ̸= is;

(90)
acumGT s ≤ (Ws −Wr)−

∑
v∈V:

p̌v≥p̂r

(TF p̌v

irjr + tats
jr + TF p̌v

jris).yv
rs

+ (M3
r + M3

s ).(1−DArs); ∀ r ∈ L, s ∈M | jr ̸= is;

(91)
acumGT s ≥ (Ws −Wr)−

∑
v∈V:

p̌v≥p̂r

TF p̌v

irjr .yv
rs

− (M3
r + M3

s ).(1−DArs); ∀ r ∈ L, s ∈M | jr = is;

(92)
acumGT s ≤ (Ws −Wr)−

∑
v∈V:

p̌v≥p̂r

TF p̌v

irjr .yv
rs

+ (M3
r + M3

s ).(1−DArs); ∀ r ∈ L, s ∈M | jr = is;

(93)
GT rs = Ws −Wr −

∑
v∈V:

p̌v≥p̂r

(TF p̌v

irjr + tats
jr + TF p̌v

jris + tats
is).yv

rs

− (POS + minRest + PRE).(E1rs + E2rs); ∀ r, s ∈ L | r ̸= s ∧ jr ̸= is;

(94)
GT rs = Ws −Wr −

∑
v∈V:

p̌v≥p̂r

(TF p̌v

irjr + tats
is).yv

rs

− (POS + minRest + PRE).Ers; ∀ r, s ∈ L | r ̸= s ∧ jr = is;
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(95)
GT rs = Ws −Wr −

∑
v∈V:

p̌v≥p̂r

(TF p̌v

irjr + tats
jr + TF p̌v

jris).yv
rs

− (POS + minRest + PRE).E1rs; ∀ r ∈ L, s ∈M | jr ̸= is;
(96)GT rs = Ws −Wr −

∑
v∈V:

p̌v≥p̂r

TF p̌v

irjr .yv
rs; ∀ r ∈ L, s ∈M | jr = is;

(97)
GT rs = Ws −Wr + acumGT r − (TF p̂r

jris + tats
is)

−RestM s

− (POS + minRest + PRE).E2rs; ∀ r ∈M, s ∈ L | jr ̸= is;

(98)GT rs = Ws −Wr + acumGT r − tats
is

−RestM s; ∀ r ∈M, s ∈ L | jr = is;

(99)GT rs = Ws −Wr + acumGT r − TF p̂r

jris

−RestM s; ∀ r, s ∈M | r ̸= s ∧ jr ̸= is;
(100)GT rs = Ws −Wr; ∀ r, s ∈M | r ̸= s ∧ jr = is.

Given the ground time values, constraints (101) are used to classify each GT rs between
the ranges f = 1, . . . , 4, if there is a route in requests r and s (∑v∈V yv

rs = 1), without
the presence of the rest insertion (Ers = 0). Lastly, the constraints (102)-(109) affect the
reset of variable Us by reducing the duty, given by the new ground time value (which
triggers the break), being (GT rs − 90)/2 + 90 when GT rs is in range 2, and 60 for range
3. Note that Dutyrs in (48) implies Us to receive a Ur that has been held since the last
request preceding r, which started the ground time accumulation.

(101)

4∑
f =1

DLf .Bf
rs −M6.[1 + Ers −

∑
v∈V

yv
rs] ≤ GT rs ≤

4∑
f =1

DU f .Bf
rs + M6.[1 + Ers −

∑
v∈V

yv
rs]; ∀ r, s ∈ L ∪M | r ̸= s;

(102)
Us ≥ Ur + (GT rs − 90)/2 + 90 +

∑
v∈V:

p̌v≥p̂r

(TF p̌v

irjr + tats
jr + TF p̌v

jris + tats
is).yv

rs

− (M3
r + M3

s ).(1−B2
rs); ∀ r ∈ L, s ∈ L ∪M | r ̸= s ∧ jr ̸= is;

(103)
Us ≥ Ur + (GT rs − 90)/2 + 90 +

∑
v∈V:

p̌v≥p̂r

(TF p̌v

irjr + tats
is).yv

rs

− (M3
r + M3

s ).(1−B2
rs); ∀ r ∈ L, s ∈ L ∪M | r ̸= s ∧ jr = is;

(104)Us ≥ Ur + (GT rs − 90)/2 + 90 + (TF p̂r

jris + tats
is).yvr

rs

− (M3
r + M3

s ).(1−B2
rs); ∀ r ∈M, s ∈ L ∪M | r ̸= s ∧ jr ̸= is;

(105)Us ≥ Ur + (GT rs − 90)/2 + 90 + tats
is .yvr

rs

− (M3
r + M3

s ).(1−B2
rs); ∀ r ∈M, s ∈ L ∪M | r ̸= s ∧ jr = is;
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(106)
Us ≥ Ur + 60 +

∑
v∈V:

p̌v≥p̂r

(TF p̌v

irjr + tats
jr + TF p̌v

jris + tats
is).yv

rs

− (M3
r + M3

s ).(1−B3
rs); ∀ r ∈ L, s ∈ L ∪M | r ̸= s ∧ jr ̸= is;

(107)
Us ≥ Ur + 60 +

∑
v∈V:

p̌v≥p̂r

(TF p̌v

irjr + tats
is).yv

rs

− (M3
r + M3

s ).(1−B3
rs); ∀ r ∈ L, s ∈ L ∪M | r ̸= s ∧ jr = is;

(108)Us ≥ Ur + 60 + (TF p̂r

jris + tats
is).yvr

rs

− (M3
r + M3

s ).(1−B3
rs); ∀ r ∈M, s ∈ L ∪M | r ̸= s ∧ jr ̸= is;

(109)Us ≥ Ur + 60 + tats
is .yvr

rs

− (M3
r + M3

s ).(1−B3
rs); ∀ r ∈M, s ∈ L ∪M | r ̸= s ∧ jr = is.

3.2.2.3 Maintenance utilization constraints

Although uncommon, there can be more than one maintenance request in sequence,
without the presence of a ferry among them. This is because ∆M is usually large (24
hours), enabling two immediately preceding requests r and s with the values str + ∆M+
TLr and sts − ∆M close together, hindering a pre-processing that makes the grouping
of these maintenance events. Consequently, one may lose feasible and optimal solutions
by overlooking such circumstances, since maintenance events would be underused as the
rest/break considerations. To get around this inconvenience, we need to define these
decision variables:

• firstM s ∈ [0, 1]: 1, if a maintenance (or dummy) request precedes other mainte-
nance request s without ferry leg among them; 0, otherwise. The variable firstM s

does not have to be binary, because constraints (110)-(115), shown further in the
text, preserve its domain in a feasible solution; and

• acumRests ≥ 0: potential accumulated ground time up to request s, to be used as
rest.

To quantify the benefits of maintenance durations, the set of constraints (110)-(132)
is applied. It is based on the first flight event on the route of each used aircraft, taking
into account the presence of any maintenance request that may be at the beginning
of the aircraft schedules. This mechanism is expressed by the group (110)-(117). The
idea is to propagate the value 1 between variables firstM r and firstM s, correlated
to the immediately preceding maintenance requests with airports in common. As an
example, suppose that the sequence of requests served by aircraft v is represented by the
set Ov = {0, 3, 5, 2, 4, 0}. Let subLv and subM v be subsets of requests, where subLv ⊂
L = {2, 4}, and subM v ⊂ M = {3, 5}. If kv = j3 = i5, constraints (110)-(115) enforce
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firstM3 = firstM5 = 1. If kv = j3 and j3 ̸= i5, firstM3 = 1 and firstM5 = 0. Hence,
a variable firstM s = 1 means that from dummy request 0 to s ∈ M, there are previous
maintenance requests with the same airport.

Whenever we take advantage of maintenance in sequence among any requests with
immediate precedence, the binary variable Ers and consequently, some of the related
variables (E1rs, E2rs and E12rs), must be activated. This behavior means that the
crew is not working between requests r and s (even if there is no rest inclusion or break
consideration, but instead, a ground time accumulation). Constraints (116) and (117)
serve this purpose. If there is a ferry leg, request s ∈ M and E2rs = 1, (116) forces
E1sh = 1, where request h follows s. In general terms, E1sh = 1 represents an insertion
of rest, if h ∈ L or js ̸= ih (there is a flight event), or yet, a ground time accumulation,
if h ∈M and js = ih. The second condition is propagated by constraints (117).

(110)firstM s ≥ yvs

0s ; ∀ s ∈M | kvs = is;
(111)firstM s ≤ 1− yvs

0s ; ∀ s ∈M | kvs ̸= is;
(112)firstM s ≥ firstM r − (1− Ers); ∀ r, s ∈M | r ̸= s ∧ jr = is;
(113)firstM s ≤ firstM r + (1− Ers); ∀ r, s ∈M | r ̸= s ∧ jr = is;
(114)firstM s ≤ 1− yvr

rs ; ∀ r, s ∈M | r ̸= s ∧ jr ̸= is;
(115)firstM r ≤

∑
h∈M:
h ̸=r

Ehr + yvr

0r ; ∀ r ∈M;

(116)E2rs ≤
∑

h∈L∪M:
h ̸=s

E1sh + yvs

s0 ; ∀ r ∈ L ∪M, s ∈M | r ̸= s ∧ jr ̸= is;

(117)Ers ≤
∑

h∈L∪M:
h ̸=s

E1sh + yvs

s0 ; ∀ r ∈ L ∪M, s ∈M | r ̸= s ∧ jr = is.

The block of constraints (118)-(128) determines the value of variable acumRestr, so
that the minimum rest is met when making use of sequential maintenance durations. To
better explain block (118)-(128), it is useful to partition these constraints into (118), (119)-
(122) and (123)-(128). Constraints (118) enforce acumRests = 0 when ∑h∈L∪M:

h ̸=r
Ehr = 0

for each r ∈ L ∪M. Constraints (119)-(122) perform the ground time accumulation for
rest purposes, whereas (119)-(120) guarantee that acumRests = acumRestr +(Ws−Wr),
if Ers = 1 and ∑h∈M:

h̸=r
jh ̸=ir

E1hr = 0. Constraints (121)-(122) assure acumRests = (Ws−Wr),

if Ers = 1 and ∑
h∈M:
h̸=r

jh ̸=ir

E1hr = 1. This sum activation portrays that there is a ferry

between requests h, r ∈M, and because it is a flight event, E1hr = 1 actually includes a
rest before the ferry (not a ground time accumulation). The last constraints, (123)-(128),
aim to quantify the first ground time in the accumulation. For example, suppose that
in the sequence of maintenance request r ∈ {3, 2, 5}, it is possible to use their duration
as ground time, so we obtain acumRest3 > 0 (the first ground time used as rest to be
included when the accumulation arrives on request 5). The identification of the first
ground time in the accumulation for a rest is based on the premise that request s ∈ M
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(i.e., we can take advantage of the subsequent maintenance request), and the existence of
a flight event, when Ers = 1 for r ∈ L∧ jr = is or E2rs = 1 for jr ̸= is (it means that the
time interval between the beginning of request s and the end of flight event that starts at
request r can be used in favor of rest time).

Consolidated the measurement of acumRestr, constraints (129)-(132) are in charge of
quantifying RestM s (i.e., the resulting value obtained from the ground time accumulation
by previous maintenance requests) given a request r ∈ M, and the presence of a flight
event at request s, when Ers = 1 for s ∈ L∧ jr = is or E2rs = 1 for jr ̸= is. Observe that
firstM r = 1 implies RestM r = 0, avoiding unnecessary rest insertion for a route that
has maintenance requests at its beginning.

(118)acumRestr ≤M3
r .

∑
h∈L∪M:

h ̸=r

Ehr; ∀ r ∈ L ∪M;

(119)
acumRests ≥ acumRestr + (Ws −Wr)

− (M3
r + M3

s ).(1 +
∑

h∈M:
h̸=r

jh ̸=ir

E1hr − Ers); ∀ r, s ∈M | r ̸= s ∧ jr = is;

(120)
acumRests ≤ acumRestr + (Ws −Wr)

+ (M3
r + M3

s ).(1 +
∑

h∈M:
h̸=r

jh ̸=ir

E1hr − Ers); ∀ r, s ∈M | r ̸= s ∧ jr = is;

(121)
acumRests ≥ (Ws −Wr)

− (M3
r + M3

s ).(2−
∑

h∈M:
h̸=r

jh ̸=ir

E1hr − Ers); ∀ r, s ∈M | r ̸= s ∧ jr = is;

(122)
acumRests ≤ (Ws −Wr)

+ (M3
r + M3

s ).(2−
∑

h∈M:
h̸=r

jh ̸=ir

E1hr − Ers); ∀ r, s ∈M | r ̸= s ∧ jr = is;

(123)acumRests ≥ (Ws −Wr)− (TLr + TF p̂r

jris)
− (M3

r + M3
s ).(1− E2rs); ∀ r, s ∈M | r ̸= s ∧ jr ̸= is;

(124)acumRests ≤ (Ws −Wr)− (TLr + TF p̂r

jris)
+ (M3

r + M3
s ).(1− E2rs); ∀ r, s ∈M | r ̸= s ∧ jr ̸= is;

(125)
acumRests ≥ (Ws −Wr)−

∑
v∈V:

p̌v≥p̂r

(TF p̌v

irjr + tats
jr + TF p̌v

jris).yv
rs

− (M3
r + M3

s ).(1− E2rs); ∀ r ∈ L, s ∈M | jr ̸= is;

(126)
acumRests ≤ (Ws −Wr)−

∑
v∈V:

p̌v≥p̂r

(TF p̌v

irjr + tats
jr + TF p̌v

jris).yv
rs

+ (M3
r + M3

s ).(1− E2rs); ∀ r ∈ L, s ∈M | jr ̸= is;
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(127)
acumRests ≥ (Ws −Wr)−

∑
v∈V:

p̌v≥p̂r

TF p̌v

irjr .yv
rs

− (M3
r + M3

s ).(1− Ers); ∀ r ∈ L, s ∈M | jr = is;

(128)
acumRests ≤ (Ws −Wr)−

∑
v∈V:

p̌v≥p̂r

TF p̌v

irjr .yv
rs

+ (M3
r + M3

s ).(1− Ers); ∀ r ∈ L, s ∈M | jr = is;

(129)RestM s ≥ (POS + minRest + PRE)− (acumRestr + TLr)
−M5

r .(1 + firstM r − E1rs); ∀ r, s ∈M | r ̸= s ∧ jr ̸= is;

(130)RestM s ≥ (POS + minRest + PRE)− (acumRestr + TLr)
−M5

r .(1 + firstM r − E1rs); ∀ r ∈M, s ∈ L | jr ̸= is;

(131)RestM s ≥ (POS + minRest + PRE)− (acumRestr + TLr)
−M5

r .(1 + firstM r − Ers); ∀ r ∈M, s ∈ L | jr = is;
(132)RestM r ≤M3

r .(1− firstM r); ∀ r ∈M.

3.2.2.4 Crew flying time constraints

Analogous to the rest rules, we define continuous variables to calculate the accumulated
flight time in a duty, and ensure the residual time is consistent with the duration of live
and/or ferry leg at the end of each current duty. Thus, consider the additional definitions:

• Qs ≥ 0: accumulated flight time up to request s in a duty;

• lengthCurrFD1r ≥ 0: duration of a live leg at the end of a current duty by request
r;

• lengthCurrFD2r ≥ 0: duration of a ferry leg at the end of a current duty by request
r;

• lengthCurrFD12r ≥ 0: ferry time between the end and start of consecutive duties
by request r.

We set the family of constraints (133)-(161) to comply with the maximum flying
time rule. In it, Qs measures the total flight time (live and ferry legs) up to request
s. With the presence of Ers, variable Qs could be reset for each duty by constraints
(133)-(144), assuming new values in (145)-(147) for the next duty, being the accumulated
flight time checked in (148)-(150) for the current duty, which corresponds to follow the
same principle of the rest constraints (43)-(53). Inspired on (DESROCHERS; LAPORTE,
1991), we develop stronger MTZ-based constraints than the traditional forms (MILLER;
TUCKER; ZEMLIN, 1960; ÖNCAN; ALTINEL; LAPORTE, 2009). Note that apart from
variables yv

rs and Ers, there are also the variables yv
sr and Esr. By focusing on yv

rs, we
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have three distinct cases: (i) yv
rs = 1 when yv

sr = 0; (ii) yv
sr = 1 for yv

rs = 0; or yet (iii)
yv

rs = 0 and yv
sr = 0. These are valid for Ers too. For example, in constraints (135),

suppose that request r = 4 and s = 3, performed by aircraft v, where yv
43 = 1. Therefore,

the first case implies Q3 ≥ Q4 + TF p̌v

i4j4 + TF p̌v

j4i3 , and the second case corresponds to
do Q4 ≥ Q3 − TF p̌v

i4j4 − TF p̌v

j4i3 , which means Q3 = Q4 + TF p̌v

i4j4 + TF p̌v

j4i3 , in addition to
improving the linear relaxation.

Through the variables lengthCurrFD1r and lengthCurrFD2r, which quantify the
live and ferry durations, respectively, and by variable lengthAmongFD12r, which gives
the ferry time where there is rest time before/after a positioning flight, the flight times
are determined on the end of a current duty and the start of the next one by constraints
(151)-(161).

(133)Qs ≥ TF p̌v

kvis .yv
0s −M1

s .(1 + E0vs − yv
0s); ∀ v ∈ V , s ∈ L | kv ̸= is;

(134)Qs ≤M1
s .(1− yv

0s); ∀ v ∈ V , s ∈ L | kv = is;

(135)

Qs ≥ Qr +
∑
v∈V:

p̌v≥p̂r

(TF p̌v

irjr + TF p̌v

jris).yv
rs −

∑
v∈V:

p̌v≥p̂s

(TF p̌v

isjs + TF p̌v

jsir).yv
sr

−M1
r .

1 + (Ers + Esr)− (
∑
v∈V:

p̌v≥p̂r

yv
rs +

∑
v∈V:

p̌v≥p̂s

yv
sr)

 ; ∀ r, s ∈ L | r ̸= s ∧ jr ̸= is;

(136)

Qs ≥ Qr +
∑
v∈V:

p̌v≥p̂r

(TF p̌v

irjr + TF p̌v

jris).yv
rs − TF p̂s

jsir .yvs

sr

−M1
r .

1 + (Ers + Esr)− (
∑
v∈V:

p̌v≥p̂r

yv
rs + yvs

sr )

 ; ∀ r ∈ L, s ∈M | jr ̸= is;

(137)

Qs ≥ Qr +
∑
v∈V:

p̌v≥p̂r

TF p̌v

irjr .yv
rs −

∑
v∈V:

p̌v≥p̂s

TF p̌v

isjs .yv
sr

−M1
r .

1 + (Ers + Esr)− (
∑
v∈V:

p̌v≥p̂r

yv
rs +

∑
v∈V:

p̌v≥p̂s

yv
sr)

 ; ∀ r, s ∈ L | r ̸= s ∧ jr = is;

(138)

Qs ≥ Qr +
∑
v∈V:

p̌v≥p̂r

TF p̌v

irjr .yv
rs

−M1
r .(1 + Ers −

∑
v∈V:

p̌v≥p̂r

yv
rs); ∀ r ∈ L, s ∈M | jr = is;

(139)Qs ≥ TF p̂s

kvs is .y
vs

0s ; ∀ s ∈M | kvs ̸= is;
(140)Qs ≤M2

s .(1− yvs

0s); ∀ s ∈M | kvs = is;

(141)Qs ≥ Qr + TF p̂r

jris .yvr

rs − TF p̂s

jsir .yvs

sr

−M2
r .[1 + (Ers + Esr)− (yvr

rs + yvs

sr )]; ∀ r, s ∈M | r ̸= s ∧ jr ̸= is;
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(142)

Qs ≥ Qr + TF p̂r

jris .yvr

rs −
∑
v∈V:

p̌v≥p̂s

(TF p̌v

isjs + TF p̌v

jsir).yv
sr

−M2
r .[1 + (Ers + Esr)− (yvr

rs +
∑
v∈V:

p̌v≥p̂s

yv
sr)]; ∀ r ∈M, s ∈ L | jr ̸= is;

(143)Qs ≥ Qr −M2
r .(1 + Ers − yvr

rs ); ∀ r, s ∈M | r ̸= s ∧ jr = is;

(144)

Qs ≥ Qr −
∑
v∈V:

p̌v≥p̂s

TF p̌v

isjs .yv
sr

−M2
r .[1 + (Ers + Esr)− (yvr

rs +
∑
v∈V:

p̌v≥p̂s

yv
sr)]; ∀ r ∈M, s ∈ L | jr = is;

(145)Qs ≤M1
s .(1−

∑
v∈V

E0vs); ∀ s ∈ L;

(146)

Qs ≥
∑
v∈V:

p̌v≥p̂r

∑
r∈L:
s ̸=r

jr ̸=is

TF p̌v

jris .yv
rs +

∑
r∈M:
s ̸=r

jr ̸=is

TF p̂r

jris .yvr

rs

−M3
s .[1 +

∑
r∈L∪M:

s ̸=r

(E12rs − E1rs)]; ∀ s ∈ L ∪M;

(147)Qs ≤M3
s .(1−

∑
r∈L∪M:

r ̸=s

E2rs); ∀ s ∈ L ∪M;

(148)Qr + lengthCurrFD1r + lengthCurrFD2r ≤ maxflying + overRr;
∀ r ∈ L ∪M;

(149)lengthAmongFD12r ≤ maxflying + overF r; ∀ r ∈ L ∪M;
(150)over0v ≥

∑
s∈L

TF p̌v

kvis .E0vs −maxflying; ∀ v ∈ V ;

(151)

lengthCurrFD1r ≥
∑
v∈V:

p̌v≥p̂r

∑
s∈R:
s̸=r

TF p̌v

irjr .yv
rs

−M4
r .(1−

∑
s∈L∪M:

s ̸=r

Ers −
∑
v∈V:

p̌v≥p̂r

yv
r0); ∀ r ∈ L;

(152)lengthCurrFD1r ≤M4
r .(

∑
s∈L∪M:

s ̸=r

Ers +
∑
v∈V:

p̌v≥p̂r

yv
r0); ∀ r ∈ L;

(153)

lengthCurrFD2r ≥
∑
v∈V:

p̌v≥p̂r

∑
s∈L∪M:

s ̸=r
jr ̸=is

TF p̌v

jris .yv
rs

−M4
r .[1 +

∑
s∈L∪M:

s ̸=r

(E12rs − E2rs)]; ∀ r ∈ L;

(154)lengthCurrFD2r ≤M4
r .

∑
s∈L∪M:

s̸=r

(E2rs − E12rs); ∀ r ∈ L;

(155)lengthCurrFD1r = 0; ∀ r ∈M;
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(156)

lengthCurrFD2r ≥
∑

s∈L∪M:
s ̸=r

jr ̸=is

TF p̂r

jris .yvr

rs

−M4
r .[1 +

∑
s∈L∪M:

s ̸=r

(E12rs − E2rs)]; ∀ r ∈M;

(157)lengthCurrFD2r ≤M4
r .

∑
s∈L∪M:

s ̸=r

(E2rs − E12rs); ∀ r ∈M;

(158)

lengthAmongFD12r ≥
∑
v∈V:

p̌v≥p̂r

∑
s∈L∪M:

s ̸=r
jr ̸=is

TF p̌v

jris .yv
rs

−M4
r .(1−

∑
s∈L∪M:

s̸=r

E12rs); ∀ r ∈ L;

(159)lengthAmongFD12r ≤M4
r .

∑
s∈L∪M:

s ̸=r

E12rs; ∀ r ∈ L;

(160)

lengthAmongFD12r ≥
∑

s∈L∪M:
s ̸=r

jr ̸=is

TF p̂r

jris .yvr

rs

−M4
r .(1−

∑
s∈L∪M:

s̸=r

E12rs); ∀ r ∈M;

(161)lengthAmongFD12r ≤M4
r .

∑
s∈L∪M:

s ̸=r

E12rs; ∀ r ∈M.

3.2.2.5 Pilot rostering constraints

To determine whether the pilots’ time windows cover the entire flight schedules, that
is, under the condition that there is always a pilot available to perform a flight assigned
to a certain aircraft, we define:

• nTW v: number of pilot time windows of aircraft v;

• [PicTWavt, P icTWbvt]: time window t of a pilot assigned to aircraft v;

• zlvt
r ∈ {0, 1}: binary variable that assumes 1 if and only if customer request r is

served inside the time window t of a pilot allocated to aircraft v;

• zf vt
r ∈ {0, 1}: binary variable that assumes 1 if and only if request r with ferry leg

is within the time window t of a pilot assigned to aircraft v;

• stP icFerryr ≥ 0 and edP icFerryr ≥ 0: continuous variables related to the exact
time to start/end of a ferry leg from request r on the time horizon;

• stP icFerry0v ≥ 0 and edP icFerry0v ≥ 0: continuous variables that correspond to
the exact time to start/end of the first ferry leg executed by aircraft v.
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Constraints (162)-(187) concern pilots’ time windows. We separate this family into
three subgroups: (162)-(167) stipulate in which time window the starting/ending time
of a flight event is located, (168)-(183) determine exactly the starting/ending time of a
ferry contained between requests r and s, as well as a ferry found between the dummy
request and the first request served by an aircraft, and (184)-(187) enforce the fulfillment
of pilot’s time window, linking the index t with the indices v and r. Differently from a
live leg, where we know its start time and trivially its end time by variable Wr, we declare
the continuous variables stP icFerryr, edP icFerryr, stP icFerry0v and edP icFerry0v to
have knowledge of these times, since the location of a ferry in the planning horizon can
be from the end of a live or maintenance event until the beginning of the next live or
maintenance event, as illustrated in Figure 15. When a rest is included, the company
policy establishes that if the rest is placed before a ferry, that same ferry must earliest
start, and if rest is after, that ferry must last start. This conduct makes all ground time
existing among flight events be converted as rest, in order to improve the crew’s well-
being. In this way, constraints (169) and (173) are activated for the first situation, and
(175) and (179) for the second one.

Figure 15 – The earliest and last start of a ferry into pilot’s time windows.
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(162)

∑
v ∈V

nT W v∑
t =1

PicTWavt.zlvt
r

− (M3
r + M4

r ).(1−
∑
v∈V

nT W v∑
t=1

zlvt
r ) ≤ Wr − tatr

ir ; ∀ r ∈ L;
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(163)
Wr +

∑
v ∈V:

p̌v≥p̂r

∑
s ∈R:
s ̸=r

TF p̌v

irjr .yv
rs ≤

∑
v∈V

nT W v∑
t=1

PicTWbvt.zlvt
r

+ (M3
r + M4

r ).(1−
∑
v∈V

nT W v∑
t=1

zlvt
r ); ∀ r ∈ L;

(164)

∑
v ∈V

nT W v∑
t =1

PicTWavt.zf vt
r

− (M3
r + M4

r ).(1−
∑
v∈V

nT W v∑
t=1

zf vt
r ) ≤ stP icFerryr; ∀ r ∈ L ∪M;

(165)
edP icFerryr ≤

∑
v∈V

nT W v∑
t=1

PicTWbvt.zf vt
r

+ (M3
r + M4

r ).(1−
∑
v∈V

nT W v∑
t=1

zf vt
r ); ∀ r ∈ L ∪M;

(166)
nT W v∑
t =1

PicTWavt.zf vt
0 −M6.(1−

nT W v∑
t=1

zf vt
0 ) ≤ stP icFerry0v; ∀ v ∈ V ;

(167)edP icFerry0v ≤
nT W v∑

t=1
PicTWbvt.zf vt

0 + M6.(1−
nT W v∑

t=1
zf vt

0 ); ∀ v ∈ V ;

(168)

stP icFerryr ≥ Wr +
∑
v∈V:

p̌v≥p̂r

∑
s∈L∪M:

s ̸=r
jr ̸=is

TF p̌v

irjr .yv
rs

+
∑

s∈L∪M:
s ̸=r

jr ̸=is

(POS + minRest + PRE).E1rs; ∀ r ∈ L;

(169)

stP icFerryr ≤ Wr +
∑
v∈V:

p̌v≥p̂r

∑
s∈L∪M:

s ̸=r
jr ̸=is

TF p̌v

irjr .yv
rs

+ (M3
r + M4

r ).[1 +
∑

s∈L∪M:
s ̸=r

jr ̸=is

(E12rs − E2rs)]; ∀ r ∈ L;

(170)edP icFerryr = stP icFerryr +
∑
v∈V:

p̌v≥p̂r

∑
s∈L∪M:

s ̸=r
jr ̸=is

(tats
jr + TF p̌v

jris).yv
rs; ∀ r ∈ L;

(171)
edP icFerryr ≤ Ws − tats

is − (POS + minRest + PRE).E2rs

+ (M3
r + M4

s ).(1−
∑
v∈V:

p̌v≥p̂r

yv
rs); ∀ r, s ∈ L | r ̸= s ∧ jr ̸= is;

(172)
edP icFerryr ≤ Ws − tats

is

+ (M3
r + M4

s ).(1−
∑
v∈V:

p̌v≥p̂r

yv
rs); ∀ r ∈ L, s ∈M | jr ̸= is;

(173)
edP icFerryr ≥ Ws − tats

is

− (M3
s + M4

s ).[1 + (E12rs − E1rs)];
∀ r ∈ L, s ∈ L ∪M | jr ̸= is;
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(174)stP icFerryr ≥ Wr +
∑

s∈L∪M:
s ̸=r

jr ̸=is

TLr.y
vr

rs + RestM r; ∀ r ∈M;

(175)

stP icFerryr ≤ Wr +
∑

s∈L∪M:
s ̸=r

jr ̸=is

TLr.y
vr

rs + RestM r

+ (M3
r + M4

r ).[1 +
∑

s∈L∪M:
s ̸=r

jr ̸=is

(E12rs − E2rs)]; ∀ r ∈M;

(176)edP icFerryr = stP icFerryr +
∑

s∈L∪M:
s ̸=r

jr ̸=is

TF p̂r

jris .yvr

rs ; ∀ r ∈M;

(177)edP icFerryr ≤ Ws − tats
is − (POS + minRest + PRE).E2rs

+ (M3
r + M4

s ).(1− yvr

rs ); ∀ r ∈M, s ∈ L | jr ̸= is;

(178)edP icFerryr ≤ Ws − tats
is

+ (M3
r + M4

s ).(1− yvr

rs ); ∀ r, s ∈M | r ̸= s ∧ jr ̸= is;

(179)
edP icFerryr ≥ Ws − tats

is

− (M3
s + M4

s ).[1 + (E12rs − E1rs)];
∀ r ∈M, s ∈ L ∪M | jr ̸= is;

(180)stP icFerry0v ≥ avv + PRE; ∀ v ∈ V ;
(181)edP icFerry0v = stP icFerry0v +

∑
s∈L∪M:

kv ̸=is

TF p̌v

kvis .yv
0s; ∀ v ∈ V ;

(182)edP icFerry0v ≤ Ws − tats
is − (POS + minRest + PRE).E0vs

+ (M3
s + M4

s ).(1− yv
0s); ∀ v ∈ V , s ∈ L | kv ̸= is;

(183)edP icFerry0vs ≤ Ws + (M3
s + M4

s ).(1− yvs

0s); ∀ s ∈M | kvs ̸= is;

(184)
nT W v∑
t =1

zlvt
r =

∑
s∈R:
s ̸=r

yv
rs; ∀ v ∈ V , r ∈ L;

(185)
nT W v∑
t =1

zf vt
r =

∑
s∈L∪M:

s ̸=r
jr ̸=is

yv
rs; ∀ v ∈ V , r ∈ L;

(186)
nT W vr∑

t =1
zf vr,t

r =
∑

s∈L∪M:
s ̸=r

jr ̸=is

yvr

rs ; ∀ r ∈M;

(187)
nT W v∑
t =1

zf vt
0 =

∑
s∈L∪M:

kv ̸=is

yv
0s; ∀ v ∈ V .

3.2.2.6 Objective function including outsourcing and overtime costs and do-
main of decision variables

As the demand of requests is mandatory, we created slack variables to make the
operation more flexible, allowing subterfuges that are penalized in the objective function,
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such as outsourcing and overtime costs. Below, there are the related parameters and
variables:

• Coutr: outsourcing cost to carry out live request r;

• overtPerc: percentage used on the travel cost to pay crew members’ overtime;

• outr ∈ {0, 1}: binary variable that indicates with 1 whether live request r should
be serviced by another company (outsourcing event);

• overRr ≥ 0: continuous variable that quantifies the overtime performed by the crew
in live request r;

• overF r ≥ 0: continuous variable that quantifies the overtime performed by the crew
on a ferry leg (if any) in request r;

• over0v ≥ 0: continuous variable that quantifies the overtime obtained by the first
ferry leg (if any) of aircraft v.

In the proposed model, we also use the family of constraints (4)-(9) (Subsection 3.2.1),
just adding variable outr in (4), i.e.:

∑
v∈V:

p̌v≥p̂r

∑
s∈R:
s̸=r

yv
rs + outr = 1; ∀ r ∈ L; (188)

which make it possible to outsource a customer request r, if outr = 1.
The objective function (189) is composed of four terms. The first and second are

related to repositioning and upgrade costs, while the other two represent the outsourcing
and overtime costs, respectively.

min
∑
v∈V

∑
r∈R

∑
s∈R:
r ̸=s

Cf v
rs.y

v
rs +

∑
v∈V

∑
r∈L

∑
s∈R:
r ̸=s

Cupv
r .yv

rs +
∑
r∈L

Coutr.outr

+
[ ∑

r∈L∪M
cp̂r .overPerc.(overRr + overF r) +

∑
v∈V

cp̌v .overPerc.over0v

]
. (189)

Our formulation is completed by (190)-(208), which defines the domain of decision
variables.

(190)yv
rs ∈ {0, 1}; ∀ v ∈ V , r, s ∈ R;

(191)outr ≥ 0; ∀ r ∈ L;
(192)Wr ≥ 0, Ur ≥ 0, Qr ≥ 0; ∀ r ∈ L ∪M;
(193)E0vr ∈ {0, 1}; ∀ v ∈ V , r ∈ L;
(194)E1rs ∈ {0, 1}, E2rs ∈ {0, 1}, E12rs ∈ {0, 1}, Ers ∈ {0, 1}; ∀ r, s ∈ L ∪M;
(195)overRr ≥ 0, overF r ≥ 0; ∀ r ∈ L ∪M;
(196)over0v ≥ 0; ∀ v ∈ V ;
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(197)lengthCurrR1r ≥ 0, lengthCurrR2r ≥ 0, lengthNextR1r ≥ 0,
lengthNextR2r ≥ 0, lengthAmongR12r ≥ 0; ∀ r ∈ L ∪M;

(198)lengthCurrFD1r ≥ 0, lengthCurrFD2r ≥ 0,
lengthAmongFD12r ≥ 0; ∀ r ∈ L ∪M;

(199)firstM r ∈ [0, 1]; ∀ r ∈M;
(200)acumRestr ≥ 0, RestM r ≥ 0; ∀ r ∈ L ∪M;
(201)Bf

rs ∈ {0, 1}; ∀ r, s ∈ L ∪M, f = 1, . . . , 4;
(202)GT rs ∈ R; ∀ r, s ∈ L ∪M;
(203)acumGT r ≥ 0; ∀ r ∈ L ∪M;
(204)Dutyrs ∈ R, DArs ∈ {0, 1}; ∀ r ∈ L ∪M, s ∈M;
(205)zlvt

r ∈ {0, 1}; ∀ r ∈ L; v ∈ V ; t = 1, . . . , nTW v;
(206)zf vt

r ∈ {0, 1}; ∀ r ∈ R; v ∈ V ; t = 1, . . . , nTW v;
(207)stP icFerry0v ≥ 0, edP icFerry0v ≥ 0; ∀ v ∈ V ;
(208)stP icFerryr ≥ 0, edP icFerryr ≥ 0; ∀ r ∈ L ∪M.

3.2.2.7 Variable pre-fixing

Finally, this subsection concludes the formulation by showing how the variables are
pre-fixed. Constraints (209)-(212) are added to the proposed model to reduce the number
of variables, after all, pre-solve does not treat variable pre-fixing as constraints inserted
into the coefficient matrix, but rather as variables to be removed from the model, permit-
ting them to speed up the approach’s execution times through the use of general-purpose
optimization software.

(209)yv
rs = 0; ∀ v ∈ V , r ∈ L, s ∈M | str + TF P

irjr ≥ sts + ∆M;
(210)yv

rs = 0; ∀ v ∈ V , r ∈M, s ∈ L | str −∆M + TLr ≥ sts + ∆L;
(211)yv

rs = 0; ∀ v ∈ V ; r, s ∈ L | s ̸= r ∧ str + TF P
irjr ≥ sts + ∆L;

(212)yv
rs = 0; ∀ v ∈ V ; r, s ∈M | s ̸= r ∧ str −∆M + TLr ≥ sts + ∆M.

As each decision variable Wr is bounded by the request time window, if we consider
that request r precedes request s, given the values of str and sts along with their antici-
pation/postponement tolerances, it is impossible that the time window opening plus the
duration of request r will be greater than the time window closing for request s, that is, a
situation where there is a reversal of precedence among these requests. Hence, the idea is
to pre-set at zero each variable yv

rs that portrays such a circumstance, contemplating the
four possible combinations of requisition types (customer with maintenance, maintenance
with customer, customer with customer and maintenance with maintenance).
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3.3 Heuristic approach

Exactly solving the studied DAFP, when in view of medium and larger instances,
may not be viable in practice given the computational effort and time demanded by our
optimization model (22)-(208). Hence, in this section, we propose to apply relax-and-
fix and fix-and-optimize heuristic methods in this formulation to try reaching superior
quality solutions. These two approaches are, by definition, matheuristics – hybridizations
that combine heuristic or metaheuristic methods with exact mathematical programming
techniques. Specifically, they are classified as type I (MANIEZZO; STÜTZLE; VOSS,
2021), insofar as we have these heuristics acting at a higher level and controlling the
call of exact method for solving the mathematical model (not the other way around,
which are type II). Next, we present our relax-and-fix (constructive) and fix-and-optimize
(improvement) heuristics in Subsections 3.3.1 and 3.3.2, respectively.

3.3.1 Relax-and-fix heuristic

The relax-and-fix (R&F) heuristic was initially presented by Wolsey (1998) and con-
sists of a decomposition method destined to a mixed-integer programming model in order
to dismember it into smaller and disjoint submodels, which can be resolved more quickly,
but without the guarantee of optimality, and depending on the case, also of feasibility.
This decomposition is characterized by partitioning the set of integer variables from ori-
ginal problem Γ into I subsets, given by Γi, ∀ i = 1, . . . , I. The number of subsets I

determines the total of iterations. For each iteration i in the derived model, only the
variables in subset Γi are considered as integer variables. Subsets Γ1, . . . , Γi−1 are those
formed by variables fixed on values obtained from solutions of integer variables solved in
previous iterations, that is, they assume values that will compose the final feasible solution
of problem Γ, if found at the end of procedure. The subsets Γi+1, . . . , ΓI are composed
of variables subject to continuous domain, i.e., linearly-relaxed (POCHET; WOLSEY,
2006). This procedure is done subsequently, incrementing i until it reaches the value of
I. Note that the main benefit of this method is to solve smaller subproblems at each
step, possibly easier to solve than the initial problem, which reduces the computational
effort required at first (OLIVEIRA et al., 2014). If all subproblems i are feasible, then
the R&F solution is valid for the original model (FERREIRA; MORABITO; RANGEL,
2008); otherwise, the heuristic failed and it must be interrupted in the next iteration.
This does not mean that the problem is originally infeasible, just that there is no solution
for the current subproblem, considering the previously fixed variables.

In our problem, we initially tried to partition integer variables by aircraft, however,
we ascertained this approach would require many iterations (see the size of V in Table
4 at Section 3.4) with non-trivial subproblems to be solved. Another alternative was to
partition the variables in relation to the requests, which would lead to a much smaller
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number of iterations than the previous idea. Let I = {1, . . . , I} be the set of partiti-
ons conducted by R&F, A be the list of requests r ∈ L ∪M sorted in non-descending
order (for a forward temporal strategy) or in non-ascending order (for a backward tem-
poral strategy) by request’s starting time with anticipation rlr (rlr = str, if r ∈ L; and
rlr = str − ∆M, if r ∈ M), and Di ⊂ A be the subset of requests from partition i

(|Di| ∼= |A|
I

). In favor of obtaining a higher quality solution at each iteration i
′ ∈ I, we

propose to not completely fix the schedule (referring to yv
rs), i.e., keep simultaneously the

allocation and sequencing of flights, but rather, preserve just one of them. For this, we
resort to two different mathematical artifices, both shown below.

Artifice 1 – fix the assignment among flight and aircraft, allowing the flight precedence:
∑

s∈R:
s ̸=r

yv
rs = X1

vr; ∀ v ∈ V ; r ∈ Di ∩ L; i = i
′ ; (213)

where

X1
vr =

1, if aircraft v is assigned to request r;

0, otherwise.

Artifice 2 – fix the flight precedence, enabling the assignment:
∑
v∈V

yv
rs = X2

rs; ∀ r ∈ Di; s ∈ L ∪M | r ̸= s; i = i
′ ; (214)

where

X2
rs =

1, if request r immediately precedes request s;

0, otherwise.

When opting Artifice 1, we include variables X1
vr and constraints (213) in the optimi-

zation model so that assignments between flights and aircraft are fixed according to their
previous solutions, defined by X

1
vr. On the other hand, Artifice 2 results in adding varia-

bles X2
rs and constraints (214), bringing about fixing the flight precedence in agreement

to their previously obtained values, X
2
rs.

Knowing the possibility of infeasibility by fixing binary variables during iterations, we
realized that these artifices should undergo a reformulation for partitions i = 1, . . . , i

′ − 1
(related to the fixed variables), in such a manner that subproblems always generate feasible
solutions. Therefore, we incorporate variables rgX1−

vr ∈ [0, 1], rgX1+
vr ∈ [0, 1], rgX2−

rs ∈
[0, 1] and rgX2+

rs ∈ [0, 1] to replace the constraints (213) and (214) by (215) and (216),
and the objective function (189) by (217), respectively, being the total cost penTrat used
to penalize the activation of these variables when one of the artifices is chosen, which
eliminates the chance of failure due to infeasibility of the heuristic method.
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(215)

∑
s∈R:
s ̸=r

yv
rs = X1

vr − rgX1−
vr + rgX1+

vr ;

∀ v ∈ V ; r ∈ Di ∩ L; i = 1, . . . , i
′ − 1 | i′

> 1;

(216)
∑
v ∈V

yv
rs = X2

rs − rgX2−
rs + rgX2+

rs ; ∀ r ∈ Di;

s ∈ L ∪M | r ̸= s; i = 1, . . . , i
′ − 1 | i′

> 1;

(217)

min
∑
v ∈V

∑
r ∈R

∑
s ∈R:
r ̸=s

Cf v
rs.y

v
rs +

∑
v ∈V

∑
r ∈L

∑
s ∈R:
r ̸=s

Cupv
r .yv

rs +
∑
r ∈L

Coutr.outr

+
[ ∑

r∈L∪M
cp̂r .overPerc.(overRr + overF r) +

∑
v∈V

cp̌v .overPerc.over0v

]
+ penTrat.

where

penTrat =



i
′−1:i′

>1∑
i=1

∑
v∈V

∑
r∈Di∩L

BigM.(rgX1−
vr + rgX1+

vr ), if Artifice 1 is chosen;

i
′−1:i′

>1∑
i=1

∑
r∈Di

∑
s∈R:
r ̸=s

BigM.(rgX2−
rs + rgX2+

rs ), else if Artifice 2 is chosen.

Bear in mind that the model is made feasible by regretting fixing X1
vr or X2

rs. At
Artifice 1, if X

1
vr = 1, variable rgX1−

vr assumes value of 1 on constraint (215) when the
solver verifies that it is not possible to allocate request r in aircraft v. If X

1
vr = 0,

variable rgX1+
vr can have value 1 in an infeasibility circumstance. As rgX1−

vr and rgX1+
vr

are penalized in objective function (217), they are not activated unduly, forcing (215) to
comply with the established fixations. These logics are analogous to Artifice 2, in which
rgX2−

rs and rgX2+
rs are able to activate or not due to the viability of X

2
rs on (216). It is

important to note that these regret variables do not need to be declared as binary since
constraints (215) and (216) guarantee that their values will always be 0 or 1.

Another adaptation to the traditional R&F was how many partitions of linearly-
relaxed variables to consider (defined by qtR). This option is useful in situations where
we have optimization models that are heavily loaded with variables, which could make
it difficult to solve even in the first iterations of R&F. If qtR = 0, the proposed R&F
approach reduces to a typical rolling-horizon heuristic.

The general pseudocode that represents our relax-and-fix heuristic is described in
Algorithm 1.

3.3.2 Fix-and-optimize heuristic

A MIP-based heuristic, kind of like fix-and-optimize (F&O), consists of starting from
an initial feasible solution, and then looking for new feasible solutions with better quality.
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Algorithm 1: Application of the relax-and-fix heuristic
Input: problem instance.

1 Let M-RFi
′

be the model derived from formulation (22)-(208), which will be solved by R&F at each
iteration i

′ , and F i
′
, Si

′
, be their respective objective function (217) and solution (y);

2 Let Ωi, ∀ i ∈ I and Φ be auxiliary sets (initializing Ωi ← ∅, ∀ i ∈ I and Φ← ∅);
3 Define how the list of requests A will be sorted (forward or backward) and partition it into subsets
Di, ∀ i ∈ I;

4 Choose between Artifices 1 and 2, and then determine qtR;
5 foreach i

′ ∈ I do
6 if Artifice = 1 then
7 Include decision variables X1

vr, rgX1−
vr , rgX1+

vr and constraints (213), (215) in model M-RFi
′

;
8 for i = 1 to i

′ − 1, step +1, if i
′

> 1 do // auxiliary and fixed variables

9 Ωi ←

{
X1

vr ← X
1
vr ∈ Si

′
−1; ∀ v ∈ V; r ∈ Di ∩ L;

rgX1−
vr ∈ [0, 1]; ∀ v ∈ V; r ∈ Di ∩ L;

rgX1+
vr ∈ [0, 1]; ∀ v ∈ V; r ∈ Di ∩ L.

}
;

10 Φ← {X1
vr ∈ {0, 1}; ∀ v ∈ V; r ∈ Di′ ∩ L}; // part of integrality variables

11 else // Artifice = 2
12 Include decision variables X2

rs, rgX2−
rs , rgX2+

rs and constraints (214), (216) in model M-RFi
′

;
13 for i = 1 to i

′ − 1, step +1, if i
′

> 1 do // auxiliary and fixed variables

14 Ωi ←

{
X2

rs ← X
2
rs ∈ Si

′
−1; ∀ r ∈ Di; s ∈ L ∪M | r ̸= s;

rgX2−
rs ∈ [0, 1]; ∀ r ∈ Di; s ∈ L ∪M | r ̸= s;

rgX2+
rs ∈ [0, 1]; ∀ r ∈ Di; s ∈ L ∪M | r ̸= s.

}
;

15 Φ← {X2
rs ∈ {0, 1}; ∀ r ∈ Di′ ; s ∈ L ∪M | r ̸= s}; // part of integrality variables

// Except for artifice variables, after integralization, the other (originals) binary
variables remain integers in partitions i < i

′
, thus guaranteeing feasibility

16 for i = 1 to i
′ − 1, step +1, if i

′
> 1 do

17 Γi ←



yv
rs ∈ {0, 1}; ∀ v ∈ V; r ∈ Di; s ∈ R | r ̸= s;

E0vr ∈ {0, 1}; ∀ v ∈ V; r ∈ Di ∩ L;
E1rs ∈ {0, 1}; ∀ r ∈ Di; s ∈ L ∪M | r ̸= s
E2rs ∈ {0, 1}; ∀ r ∈ Di; s ∈ L ∪M | r ̸= s
E12rs ∈ {0, 1}; ∀ r ∈ Di; s ∈ L ∪M | r ̸= s
Ers ∈ {0, 1}; ∀ r ∈ Di; s ∈ L ∪M | r ̸= s

Bf
rs ∈ {0, 1}; ∀ r ∈ Di; s ∈ L ∪M | r ̸= s; f = 1, . . . , 4;

DArs ∈ {0, 1}; ∀ r ∈ Di; s ∈M | r ̸= s;
zlvt

r ∈ {0, 1}; ∀ r ∈ Di ∩ L; v ∈ V; t = 1, . . . , nT W v;
zfvt

r ∈ {0, 1}; ∀ r ∈ Di; v ∈ V; t = 1, . . . , nT W v.


∪ Ωi;

18 Γi
′
←



yv
rs ∈ {0, 1}; ∀ v ∈ V; r ∈ Di′ ∪ {0}; s ∈ R | r ̸= s;

E0vr ∈ {0, 1}; ∀ v ∈ V; r ∈ Di′ ∩ L;
E1rs ∈ {0, 1}; ∀ r ∈ Di′ ; s ∈ L ∪M | r ̸= s
E2rs ∈ {0, 1}; ∀ r ∈ Di′ ; s ∈ L ∪M | r ̸= s
E12rs ∈ {0, 1}; ∀ r ∈ Di′ ; s ∈ L ∪M | r ̸= s
Ers ∈ {0, 1}; ∀ r ∈ Di′ ; s ∈ L ∪M | r ̸= s

Bf
rs ∈ {0, 1}; ∀ r ∈ Di′ ; s ∈ L ∪M | r ̸= s; f = 1, . . . , 4;

DArs ∈ {0, 1}; ∀ r ∈ Di′ ; s ∈M | r ̸= s;
zlvt

r ∈ {0, 1}; ∀ r ∈ Di′ ∩ L; v ∈ V; t = 1, . . . , nT W v;
zfvt

r ∈ {0, 1}; ∀ r ∈ Di′ ; v ∈ V; t = 1, . . . , nT W v.


∪ Φ; // integrality variables

19 for i = i
′ + 1 to i

′ + qtR, step +1, if i < I ∧ qtR > 0 do // linearly-relaxed variables

20 Γi ←



yv
rs ∈ [0, 1]; ∀ v ∈ V; r ∈ Di; s ∈ R | r ̸= s;

E0vr ∈ [0, 1]; ∀ v ∈ V; r ∈ Di ∩ L;
E1rs ∈ [0, 1]; ∀ r ∈ Di; s ∈ L ∪M | r ̸= s
E2rs ∈ [0, 1]; ∀ r ∈ Di; s ∈ L ∪M | r ̸= s
E12rs ∈ [0, 1]; ∀ r ∈ Di; s ∈ L ∪M | r ̸= s
Ers ∈ [0, 1]; ∀ r ∈ Di; s ∈ L ∪M | r ̸= s

Bf
rs ∈ [0, 1]; ∀ r ∈ Di; s ∈ L ∪M | r ̸= s; f = 1, . . . , 4;

DArs ∈ [0, 1]; ∀ r ∈ Di; s ∈M | r ̸= s;
zlvt

r ∈ [0, 1]; ∀ r ∈ Di ∩ L; v ∈ V; t = 1, . . . , nT W v;
zfvt

r ∈ [0, 1]; ∀ r ∈ Di; v ∈ V; t = 1, . . . , nT W v.


;

// Variables disregarded in linear relaxation depending on the choice of qtR

21 Γi ← ∅; ∀ i = i
′ + qtR + 1, . . . , I;

22 Build and solve M-RFi
′

;
23 From Si

′
, save the solution obtained from integer partition i

′ (X1
vr ← X1

vr or X
2
rs ← X2

rs);

24 return F I , SI ;
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This approach was initially proposed by Pochet and Wolsey (2006) under the name Ex-
change, later referred to as fix-and-optimize by Sahling et al. (2009). As in R&F, the set
of integer variables present in the original problem Ψ is partitioned into J subsets, being
them, Ψj, ∀ j = 1, . . . , J . For each iteration j, the provided feasible solution is used to fix
variables contained in Ω = Ψ\Ψj, while the remaining subset Ψj is put again as integer
variables to perform reoptimization. The current solution is then changed by F&O, if the
solution found by heuristic is better than the incumbent solution. In this method, observe
that there is no risk of infeasibility during the iterations, since the provided solution is
already feasible and makes up its pool of solutions. We also find it relevant to point out
that the number of partitions into F&O (J) does not necessarily have to be of the same
size as R&F, and which the larger |Ψj|, the better the solution quality tends to be.

In our F&O heuristic, we define the following notation: G, the total R&F partitions to
be reoptimized at each F&O iteration; J = {1, . . . , J}, the set of partitions considered on
F&O, (note that, the way we structure it, a partition j can be composed of one or more
partitions i of R&F; with this in mind, J = I −G + 1 | 0 < G < I); and Oj = ⋃j+G−1

i=j Di,
subset of requests from partition j.

In accordance with artifices established in R&F, only variables X1
vr or X2

rs are reop-
timized and fixed throughout iterations j

′ ∈ J , maintaining the integrity of remaining
binary variables (original from the problem). Obviously, all variables could be fixed in
the respective partitions, however, we found that the gain in solution quality prevailed
over the reduction in runtime at computational tests. As there is no risk of infeasibility,
both variables rgX1−

vr , rgX1+
vr , rgX2−

rs , rgX2+
rs , and constraints (215), (216), are no longer

needed. The objective function used is again (189).
The representative pseudocode for applying fix-and-optimize to our problem is given

in Algorithm 2.
We conclude this subsection with Figure 16. It illustrates how the R&F-F&O approach

would behave by choosing I = 5, qtR = 2 and G = 2.

3.4 Computational experiments

The company provided six different month intervals of journey logs, where the first
four correspond to the same data used by Munari and Alvarez (2019), not containing the
pilots’ time windows, and the remaining two months, encompassing all content pertinent
to the crew rules covered here. Specifically, the first month comprises 10 days of operation
and a total of 112 requests (including customer requests and maintenance events); the
second involves 10 days and 129 requests; the third consists of 8 days and 107 requests;
the fourth has 16 days and 578 requests; the fifth gives, a higher demand period, 17 days
and 730 requests; and the sixth with 16 days and 275 requests.

As proposed in Munari and Alvarez (2019), we cluster the flights of each month in
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Algorithm 2: Application of the fix-and-optimize heuristic
Input: problem instance, parameters (I,Di), initial solution (S0) of R&F.

1 Let M-FOj
′

be the model derived from formulation (22)-(208), which will be solved by F&O at each
iteration j

′
, and F j

′
, Sj

′
, be their respective objective function (189) and solution (y);

2 Let Ω and Φ be auxiliary sets (initializing Ω← ∅ and Φ← ∅);
3 Determine G (0 < G < I), and from that make J ← I −G + 1 and Oj ←

⋃j+G−1
i=j

Di;
4 Choose between Artifices 1 and 2;
5 foreach j

′
∈ J do

6 if Artifice = 1 then
7 Include decision variables X1

vr and constraints (213) in model M-FOj
′
;

// Part of the variables integralited again
8 Φ←

{
X1

vr ∈ {0, 1}; ∀ v ∈ V; r ∈ Oj
′ ∩ L

}
;

// Fixed variables

9 Ω←
{

X1
vr ← X

1
vr ∈ Sj

′
−1; ∀ v ∈ V; r ∈ L\(Oj

′ ∩ L)
}

;
10 else // Artifice = 2
11 Include decision variables X2

rs and constraints (214) in model M-FOj
′
;

// Part of the variables to be integralited again
12 Φ←

{
X2

rs ∈ {0, 1}; ∀ r ∈ Oj
′ ; s ∈ L ∪M | r ̸= s

}
;

// Fixed variables

13 Ω←
{

X2
rs ← X

2
rs ∈ Sj

′
−1; ∀ r ∈ (L ∪M)\Oj

′ ; s ∈ L ∪M | r ̸= s
}

;

// Determining the set that contains all variables (Ψ)

14 Ψ←



yv
rs ∈ {0, 1}; ∀ v ∈ V; r, s ∈ R | r ̸= s;

E0vr ∈ {0, 1}; ∀ v ∈ V; r ∈ L;
E1rs ∈ {0, 1}; ∀ r, s ∈ L ∪M | r ̸= s;
E2rs ∈ {0, 1}; ∀ r, s ∈ L ∪M | r ̸= s;
E12rs ∈ {0, 1}; ∀ r, s ∈ L ∪M | r ̸= s;
Ers ∈ {0, 1}; ∀ r, s ∈ L ∪M | r ̸= s;
Bf

rs ∈ {0, 1}; ∀ r, s ∈ L ∪M | r ̸= s; f = 1, . . . , 4;
DArs ∈ {0, 1}; ∀ r ∈ L ∪M; s ∈M | r ̸= s;
zlvt

r ∈ {0, 1}; ∀ r ∈ L; v ∈ V; t = 1, . . . , nT W v;
zfvt

r ∈ {0, 1}; ∀ r ∈ R; v ∈ V; t = 1, . . . , nT W v.


∪ Φ ∪ Ω;

15 Build and solve M-FOj
′
;

16 From Sj
′
, save the solution obtained from integer partition j

′
(X1

vr ← X1
vr or X

2
rs ← X2

rs);
17 return F J , SJ ;

instances covering three days of operation each, which is compatible with the company’s
planning horizon (up to three days). Also, this is the usual choice in the planning process
of flights for fractional ownership programs (ZWAN; WILS; GHIJS, 2011).

Table 4 presents each created instance, named in the format Mx_ytoz in the first
column, where x is an identifier for the month, and y and z portray the first and last day
considered into the month in question. For example, M2_3to5 is the instance built with
data from the 3rd to the 5th day provided in the second month. Columns 2 to 8 provide
the number of airports (K), the number of aircraft (V ), the number of aircraft types (P ),
the maximum number of time windows for an aircraft (mTW = maxv∈V{nTW v}), the
number of live requests (L = |L|), the number of maintenance requests (M = |M|), and
the total number of requests (R = |L ∪ M|). Finally, the last two columns show the
percentage of customer (%L) and maintenance (%M) requests out of R. At the end of
each month, we calculate the arithmetic mean of each column (“Avg Mx”).

This section is divided into Subsections 3.4.1, 3.4.2 and 3.4.3. In the first, we show a toy
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Table 4 – Main information of the 65 real-life-based instances provided by the company.
Instance K V P mTW R L M %L %M
M1_1to3 26 21 6 - 36 14 22 38.9% 61.1%
M1_2to4 31 16 5 - 34 17 17 50.0% 50.0%
M1_3to5 32 15 5 - 40 24 16 60.0% 40.0%
M1_4to6 33 22 6 - 42 24 18 57.1% 42.9%
M1_5to7 31 23 6 - 39 22 17 56.4% 43.6%
M1_6to8 31 19 5 - 31 15 16 48.4% 51.6%
M1_7to9 29 15 5 - 28 14 14 50.0% 50.0%
M1_8to10 27 16 5 - 23 11 12 47.8% 52.2%
Avg M1 30.0 18.4 5.4 - 34.1 17.6 16.5 51.6% 48.4%
M2_1to3 25 19 5 - 27 8 19 29.6% 70.4%
M2_2to4 30 21 6 - 33 11 22 33.3% 66.7%
M2_3to5 30 19 6 - 37 13 24 35.1% 64.9%
M2_4to6 35 25 6 - 50 17 33 34.0% 66.0%
M2_5to7 34 26 6 - 49 18 31 36.7% 63.3%
M2_6to8 30 23 6 - 43 14 29 32.6% 67.4%
M2_7to9 25 21 6 - 38 10 28 26.3% 73.7%
M2_8to10 30 22 6 - 41 12 29 29.3% 70.7%
Avg M2 29.9 22.0 5.9 - 39.8 12.9 26.9 32.4% 67.6%
M3_1to3 64 27 7 - 60 49 11 81.7% 18.3%
M3_2to4 58 28 7 - 51 44 7 86.3% 13.7%
M3_3to5 51 26 6 - 41 36 5 87.8% 12.2%
M3_4to6 38 21 5 - 28 26 2 92.9% 7.1%
M3_5to7 36 16 6 - 30 28 2 93.3% 6.7%
M3_6to8 29 13 6 - 25 24 1 96.0% 4.0%
Avg M3 46.0 21.8 6.2 - 39.2 34.5 4.7 88.1% 11.9%
M4_1to3 77 48 4 - 108 67 41 62.0% 38.0%
M4_2to4 67 48 5 - 97 58 39 59.8% 40.2%
M4_3to5 69 50 5 - 98 62 36 63.3% 36.7%
M4_4to6 77 51 5 - 103 68 35 66.0% 34.0%
M4_5to7 83 51 5 - 109 70 39 64.2% 35.8%
M4_6to8 81 50 4 - 103 63 40 61.2% 38.8%
M4_7to9 88 49 4 - 113 72 41 63.7% 36.3%
M4_8to10 83 44 5 - 101 68 33 67.3% 32.7%
M4_9to11 90 49 5 - 110 76 34 69.1% 30.9%
M4_10to12 93 52 5 - 117 80 37 68.4% 31.6%
M4_11to13 93 51 5 - 124 82 42 66.1% 33.9%
M4_12to14 88 52 5 - 120 71 49 59.2% 40.8%
M4_13to15 87 53 5 - 112 62 50 55.4% 44.6%
M4_14to16 83 48 5 - 104 56 48 53.8% 46.2%
Avg M4 82.8 49.7 4.8 - 108.5 68.2 40.3 62.9% 37.1%
M5_1to3 112 54 5 1 130 87 43 66.9% 33.1%
M5_2to4 113 51 5 1 138 93 45 67.4% 32.6%
M5_3to5 123 54 5 1 137 99 38 72.3% 27.7%
M5_4to6 117 56 4 1 131 94 37 71.8% 28.2%
M5_5to7 117 55 5 1 146 96 50 65.8% 34.2%
M5_6to8 107 55 5 1 143 88 55 61.5% 38.5%
M5_7to9 113 56 5 1 149 92 57 61.7% 38.3%
M5_8to10 113 56 5 1 122 85 37 69.7% 30.3%
M5_9to11 124 54 5 1 132 99 33 75.0% 25.0%
M5_10to12 129 56 5 1 140 106 34 75.7% 24.3%
M5_11to13 128 55 5 1 142 102 40 71.8% 28.2%
M5_12to14 110 51 5 1 136 86 50 63.2% 36.8%
M5_13to15 99 50 5 1 115 67 48 58.3% 41.7%
M5_14to16 95 51 5 1 112 70 42 62.5% 37.5%
M5_15to17 89 45 5 1 103 69 34 67.0% 33.0%
Avg M5 112.6 53.3 4.9 1.0 131.7 88.9 42.9 67.5% 32.5%
M6_1to3 87 47 4 1 98 79 19 80.6% 19.4%
M6_2to4 78 42 5 1 77 64 13 83.1% 16.9%
M6_3to5 69 42 5 1 74 65 9 87.8% 12.2%
M6_4to6 62 36 5 1 58 53 5 91.4% 8.6%
M6_5to7 66 34 4 1 60 57 3 95.0% 5.0%
M6_6to8 59 29 4 1 47 47 0 100.0% 0.0%
M6_7to9 50 24 4 1 44 44 0 100.0% 0.0%
M6_8to10 46 23 4 1 35 35 0 100.0% 0.0%
M6_9to11 50 23 4 1 33 33 0 100.0% 0.0%
M6_10to12 50 20 4 1 32 32 0 100.0% 0.0%
M6_11to13 43 18 4 1 31 31 0 100.0% 0.0%
M6_12to14 51 23 4 1 37 37 0 100.0% 0.0%
M6_13to15 52 24 3 1 36 36 0 100.0% 0.0%
M6_14to16 52 25 4 1 34 34 0 100.0% 0.0%
Avg M6 58.2 29.3 4.1 1.0 49.7 46.2 3.5 93.0% 7.0%

Source: Own authorship.
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Figure 16 – Application of the R&F-F&O approach when choosing I = 5, qtR = 2 and G = 2.
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Source: Own authorship.

problem based on part of a real instance with the intention of bringing a numerical example
for a better understanding of the crew rules contained in the problem. In the second,
we present and discuss the results of computational experiments with the optimization
models defined in Subsections 3.2.1 and 3.2.2 using a general-purpose MIP solver and
real-life data provided by the company involved in our study. Likewise, we expose the
results of relax-and-fix and fix-and-optimize heuristics from Section 3.3 and compare these
approaches with each other, and then, with the proposed model, as finding out which is
the most suitable for the operation.

All experiments were executed on a PC with processor Intel Core i7-4790 3.6 GHz
CPU and 16 GB RAM. The optimization models and MIP-based heuristics were solved
by the commercial software IBM CPLEX Optimization Studio version 12.10, and coded
using the Optimization Programming Language (OPL) interface. We imposed a time
limit of one hour and kept the default tolerance of CPLEX for the relative optimality gap
(i.e., 0.01%).

3.4.1 Toy problem

To illustrate the impact of including the crew regulation, we present two Gantt charts
in Figures 17, depicting optimal solutions for a toy problem from part of a real instance.
Specifically, Figure 17a demonstrates an optimal solution found without considering the
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crew rules, therefore referring to the use of base model, whereas Figure 17b shows an
optimal solution satisfying crew rules, consistent with the use of the proposed model. In
both figures, the charts’ vertical axis portrays the available fleet (dummy tail numbers:
“OE-AAA”, “OE-BBB”, “OE-CCC” and “OE-DDD”), while the horizontal axis represents
the time horizon (from 0 to 2800 minutes). For each aircraft, there are flight sequences
composed by rectangles with different colors. In this design, customer requests (live legs)
are blue, maintenance requirements are green, positioning flights (ferry legs) are red,
turnaround times (tat) are gray, crew presentation times (PRE and POS) are orange
and minimum rests (minRest) are yellow rectangles (ground times are the gaps among
one request and another, for this reason, they are omitted). With the exception of events
tat, PRE and POS, which have same lengths (tat = 20 min, PRE = 40 min and POS =
30 min), we plot data labels to indicate the event durations (in minutes). About rectangles
standing for customer and maintenance requests, the number inside round brackets (before
semicolon mark) denotes their respective identification indices.

Comparing Figures 17a and 17b, we note that the sequences and assignments modified
slightly by including crew requirements. In addition to changing the request start times
(many of them were delayed), there was an increase in a new positioning flight due to
customer request 14 having been allocated on aircraft “OE-DDD” (formerly belonging
to “OE-AAA”). In Figure 17b, we have interesting situations to exemplify some of crew
rules. In aircraft “OE-AAA”, PRE is placed after the maintenance event (request 1),
as a workday only starts with a travel event (the ferry before customer request 13). In
“OE-BBB”, PRE shows the starting of crew work (originated by request 3). Between
requests 3 and 8 there is a ground time of 276 min. By the split duty rule, this value
would be in range 2 (see Table 3), ergo, the counted time becomes (276−90)/2+90 = 183
min, resulting in a worked total time up to request 8 (U8) of 398 min (40 + 20 + 87 +
183 + 20 + 28 + 20). After fulfilling request 8, the schedule must close the crew workday,
including POS + minRest + PRE (remembering that minRest = 600 min). Note that
if this aircraft continued from request 8 without rest and went to request 11, we would
have U11 = U8 + 250 (live leg duration) + 741 (ground time existing among requests 8
and 11, as shown in Figure 17a) + 20 + 24 (ferry leg duration) + 20 = 983 min, which
exceeds maxDuty = 780 min = 13 h. At “OE-CCC”, after carrying out the ferry of
242 min, there is a maintenance lasting 930 min. As this time is much longer than the
inclusion of minimum rest (30 + 600 + 40 = 670 min), this event allows the crew to rest
without need to add more time to it. Starting from request 9 and going up to request
10, we have a split duty again, but now, belonging to range 3, (499 > 360), thus the new
ground time is 60 min, computing U10 = 236 min (40 + 20 + 96 + 60 + 20). At long last,
in “OE-DDD”, between requests 4 and 2, a rest of only 200 min was included because the
maintenance’s duration of 400 min with ground time of 269 min already equals 669 min,
consequently needing to delay request 2 in 1 minute. From request 2 until the workday
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ending with request 14, the total time required is 40+251+88+20+60+20+291 = 770
min, which does not go beyond maxDuty. On the other hand, if aircraft “OE-AAA” had
made request 14 in its place (by Figure 17a, 247+20+210+70+20+261 = 858 min), the
time exceeded (overtime) would be 858− 780 = 78 min. Thus, the advantage of making
an extra ferry leg lasting 60 min is that it costs less than paying overtime for 78 min.

3.4.2 Results of the base and proposed models

First, for comparison purposes, we present the results of solving instances in months
M1 to M4 using the base model in Table 5, including only the possibility of outsourcing,
in order to have a greater feasibility condition in the instances (i.e., we have outr =
1 when it is not possible to allocate all customer requests). In addition to the first
column that identifies the instance, under the header “Operational Costs”, the three next
columns show the costs of positioning (Cf), upgrade (Cup) and outsourcing (Cout). In
the header “Counters”, nOut and nF give the number of outsources and the number of
ferry legs. Lastly, under the header “CPLEX B&C”, we give the main information of
the solutions obtained by the general-purpose MIP solver of CPLEX: the lower (OF lb)
and upper (OF ub) bounds, the relative gap computed as 100%.(OF ub − OF lb)/(OF ub

+ 10−10), the number of nodes explored on the B&C tree (nNode), the total iterations
of the simplex method used to solve the linear relaxations (nSimplex), the number of
constraints (nConst), the number of decision variables (nV ar), the number of binary
variables (nBinV ar) and the computational time in seconds (CPUt). Along with the
results for each instance, Table 5 shows at the end of each month the average values for
the instances in that month.

As discussed in Munari and Alvarez (2019), this optimization model is capable of
solving all instances in M1 to M4 optimally in short computational times (0.82 to 26.14
seconds on average), showing the efficiency of a formulation that uses a network of re-
quests.

Table 6 summarizes the results obtained for months M1-M4, using the proposed model.
Comparing to the previous table, we add the columns Cover, nOver and nRest to Table
6. They are, in this order, overtime cost, total overtime in minutes and number of rests.

To help us confront base model with proposed model, we built Table 7. It shows the
percentage difference of columns OF ub and nF from Tables 5 and 6, denoted by the co-
lumns %OF ub and %nF . For example, if we assume that OF 1

ub is a column of base model,
and OF 2

ub belongs to proposed model, we have %OF ub = (OF 2
ub−OF 1

ub)/OF 1
ub. Besides,

Table 7 calculates the absolute difference of columns nOut, nNode, nSimplex, nConst,
nV ar, nBinV ar and CPUt, described by ∆nOut, ∆nNode, ∆nSimplex, ∆nConst,
∆nV ar, ∆nBinV ar and ∆CPUt. Analogously, we have ∆nOut = nOut2 − nOut1,
for example.
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Figure 17 – Analysis of a toy problem.
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Table 7 – Comparison between the main results of base and proposed model for months M1-
M4.
Instance %OFub ∆nOut %nF ∆nNode ∆nSimplex ∆nConst ∆nV ar ∆nBinV ar ∆CPUt

M1_1to3 0.00% 0 0.00% 0 401 25,818 13,743 11,144 3.49
M1_2to4 0.00% 0 0.00% 0 2,128 21,776 12,018 9,809 2.68
M1_3to5 0.00% 0 0.00% 0 4,552 28,449 16,255 13,464 7.91
M1_4to6 0.00% 0 0.00% 0 2,704 32,108 18,148 15,042 5.04
M1_5to7 0.00% 0 0.00% 0 2,240 27,939 15,739 13,008 4.20
M1_6to8 0.00% 0 0.00% 0 1,126 18,423 10,100 8,205 2.09
M1_7to9 0.00% 0 0.00% 0 902 14,878 8,205 6,636 1.59
M1_8to10 0.00% 0 0.00% 0 607 10,259 5,620 4,488 1.23
Avg M1 0.00% 0 0.00% 0 1,833 22,456 12,479 10,225 3.53
M2_1to3 0.00% 0 0.00% 0 84 15,210 7,893 6,262 0.91
M2_2to4 0.00% 0 0.00% 0 164 22,225 11,670 9,383 1.64
M2_3to5 0.00% 0 0.00% 0 2,446 27,613 14,548 11,767 2.81
M2_4to6 0.00% 0 0.00% 0 1,456 50,523 26,500 21,642 8.57
M2_5to7 0.00% 0 0.00% 0 3,901 48,013 25,386 20,772 8.22
M2_6to8 0.00% 0 0.00% 0 2,681 37,651 19,695 15,988 8.29
M2_7to9 0.00% 0 0.00% 0 385 30,253 15,545 12,494 2.64
M2_8to10 0.00% 0 0.00% 0 3,685 34,724 17,998 14,544 5.01
Avg M2 0.00% 0 0.00% 0 1,850 33,277 17,404 14,107 4.76
M3_1to3 6.63% 0 4.55% 0 6,874 56,818 35,370 30,292 25.40
M3_2to4 12.54% 0 0.00% 0 3,618 40,538 25,638 21,982 11.41
M3_3to5 69.30% 0 -7.69% 0 4,172 26,349 16,706 14,256 8.74
M3_4to6 16.12% 0 0.00% 0 1,790 12,255 7,875 6,648 3.45
M3_5to7 16.87% 0 0.00% 0 2,722 13,616 8,834 7,466 4.50
M3_6to8 158.88% 0 16.67% 0 1,257 9,354 6,125 5,136 2.69
Avg M3 19.47% 0 1.23% 0 3,406 26,488 16,758 14,297 9.37
M4_1to3 0.24% 0 0.00% 1,391 233,018 203,965 117,636 100,051 914.88
M4_2to4 19.49% 0 0.00% 2,573 441,950 167,245 95,564 81,024 1,445.45
M4_3to5 11.88% 0 3.85% 1 59,557 167,766 97,132 82,640 274.78
M4_4to6 11.70% 0 3.12% 0 35,742 182,369 106,725 91,086 247.11
M4_5to7 50.83% 0 5.88% 1,355 1,699,769 205,583 119,597 101,958 3,562.61
M4_6to8 58.97% 0 12.00% 1,359 380,237 186,815 107,436 91,278 1,048.86
M4_7to9 22.53% 0 3.45% 0 40,813 221,057 128,329 109,368 268.96
M4_8to10 26.25% 0 7.41% 2,435 381,300 173,355 102,016 87,092 397.02
M4_9to11 120.37% 1 0.00% 2,492 334,459 166,452 108,053 91,360 3,163.63
M4_10to12 21.71% 0 9.52% -529 832,805 232,677 136,656 117,028 3,527.40
M4_11to13 35.77% 0 13.04% 2,521 653,928 262,196 153,653 131,364 3,503.48
M4_12to14 112.73% 1 5.71% 1,339 434,616 255,514 145,704 123,763 2,382.03
M4_13to15 7.04% 0 3.12% 1,170 350,543 227,585 127,995 108,292 429.89
M4_14to16 15.24% 0 3.45% 1,634 178,375 197,549 110,584 93,328 237.27
Avg M4 34.92% 0.14 5.39% 1,267 432,651 203,581 118,363 100,688 1,528.81

Source: Own authorship.

In the first month, we observe that in all instances, it was possible to insert the breaks
or rests required by the crew rules (proposed model), without modifying the optimal value
obtained by disregarding such rules (base model). Therefore, there was no overtime or
outsourcing in any instance. On average, in relation to base model, the proposed model
resulted in an increase of computational time in 3.53 s, in the number of constraints in
22,456, and in the number of decision variables in 12,479. Again, in the second month, all
instances had an optimal value equal to the base model. The average values of compu-
tational time, constraints and variables revealed an increase of 4.76 s, 33,277 and 17,404,
in that order, compared to the case without considering the crew rules. Even though
the average number of requests for month 3 is practically the same as for month 2, the
inclusion of breaks and rests caused a change in the optimal values of all instances. This
resulted in an average increase of the objective function in 19.47%, of computational time
in 9.37 s, and of constraints and variables in about 26,488 and 16,758. In the third month,
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the solutions of two instances presented outsourcing costs when using the proposed mo-
del, but, in the same way, this is noticed in the base model. Furthermore, all instance
solutions presented overtime for the proposed model.

For instances in the fourth month, there is a considerable increase in the computational
difficulty, given that the average execution time was from 1.67 s to 26.14 s for base model,
and from 11.03 s to 1,554.95 s for proposed model. This can be explained by the leap
in size of problem between months M3 and M4. For example, in the proposed model, it
was 30,382 constraints and 59,893 variables to 225,810 constraints and 714,378 variables
(about 7 times more constraints and 12 times more variables). We can also see that, unlike
in instances of previous months, CPLEX was not able to solve all instances of month M4
at the root node, just using cutting planes (on average, we had 1,417 explored nodes).
Regarding outsourcing costs, we notice that the proposed model obtained two instances
with non-zero values more than base model, and on the fourth type of cost, five instances
were left without overtime in the proposed model. The average increase of the objective
function with the inclusion of breaks and rests was 34.92%. In summary, we note that the
rest inserts, apart from being required by the crew regulations, not significantly increase
the costs of solutions in relation to the base model. In particular, the proposed model
achieved solutions with gaps smaller than 0.01% for all instances from months M1-M4
at a reasonable computational time: a maximum of 3,585.86 seconds (“M4_5to7”) and a
global average of 608.78 seconds.

Table 8 presents the results obtained for instances of months M5 and M6. The layout
of Table 8 is similar to Table 6.

The computational effort reaches its peak in the fifth month. We can observe that only
2 out of 15 instances were solved optimally. According to the central tendency, the gap,
constraints and variables were in the order of 42.842%, 341,938 and 1,117,890. However,
in the sixth month, the solution time drops dramatically, resembling the computational
effort of months 1, 2 and 3.

Based on these results, we can conclude that the proposed optimization model can be
used in general-purpose MIP solvers to relatively well solve instances with up to 200,000
constraints and 700,000 variables. Once most instances that came from real-data are
below this order of magnitude, we can say that our model is adequate to the problem,
having great application potential, since the planning horizon practiced by the company
is in general of three days.

3.4.3 Results of the R&F and F&O heuristics

Ahead of running R&F and F&O heuristic methods in sequence to resolve the ins-
tances, we necessitate to determine the parameters: I (number of partitions for R&F),
ordering of request list A (forward or backward), qtR (number of linearly-relaxed parti-
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tions to be considered), J (number of partitions for F&O) and choose one of artifices 1
and 2 (which consists of opting amongst variables X1

vr and X2
rs).

Through preliminary computational tests, we decided how to contemplate the fol-
lowing eight R&F-F&O variants in our experimentation: [Forward, X1, 3, 1, 2],
[Backward, X1, 3, 1, 2], [Forward, X2, 3, 1, 2], [Backward, X2, 3, 1, 2], [Forward, X1,
4, 1, 3], [Backward, X1, 4, 1, 3], [Forward, X2, 4, 1, 3] and [Backward, X2, 4, 1, 3].
They are named in the format [order of A, Artifice 1 or 2, I, qtR, J ]. As the instances
of months M1-M4 were well-resolved by the proposed model/CPLEX and do not have
the pilot windows, we concentrated on solving the largest instances, those belonging to
months M5 and M6. Since all instances of M6 were solved optimally in the proposed
model, we have a good sample to evaluate the quality of heuristic approaches, and be-
cause M5 does not have good results, we can analyze whether these heuristic methods
can handle instances with a higher congestion level.

To better report the superiority of one approach over the other, we created the Figure
18, 19 and 20.

Figure 18 reveals the ability of approaches to find feasible solutions within the time
limit of one hour. In all, three different kinds of solution status were identified:

• “Ending”: involves the situation in which the R&F constructive heuristic is capable
of finishing all its iterations (finding a feasible solution) and the F&O improvement
heuristic ends its routine with a B&C’s gap of 0% (in this way, the total runtime is
less than the established limit of 1 h);

• “Time Limit”: implies completing R&F, but F&O ends with a B&C’s gap greater
than 0% (i.e., the heuristic procedure as a whole reaches the time limit of 1 h, might
have the chance to improve the results further, if more time was offered, since F&O’s
B&C was not fully explored);

• “No Sol. TL”: indicates when the solver seeks no feasible solution within the given
time limit interval to the R&F (therefore, F&O is not executed, as R&F cannot
complete all its iterations).

By counting these statuses for each heuristic variant, we plot the line chart contained
in Figure 18. From it, we realize that R&F-F&O[Backward, X2, 4, 1, 3] approach stands
out from the others, being the only one capable to encounter feasible solutions in all
instances within the time limit.

Figures 19 are responsible for comparing the heuristic variants by runtime (vertical
axes). We organize the comparisons into four charts. The first two focus on the choices of
I = 3, qtR = 1 and J = 2, where Figure 19a is dedicated to instances of M5 and Figure
19b to M6. Similarly, the last two charts aim attention at I = 4, qtR = 1 and J = 3,
being Figure 19c directed to M5 and Figure 19d to M6. Instances with solution status
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Figure 18 – Comparison of R&F-F&O approaches in relation to solution status.
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“No Sol. TL” have no vertical bars. Concerning M5, the approaches were competitive,
which makes it impossible to determine a best variant. However, in M6, we witnessed
that the forward temporal strategy tends to demand less computational time than the
backward one.

We utilize Figures 20 to confront the upper bounds obtained from heuristic approaches.
This figure set holds four graphs, organized in the same way as Figures 19. In addition
to the points that situate the objective function values of heuristic variants, we add as
lines the lower bounds of proposed model (blue color) and the best upper bounds found in
each instance (red color) when taking into account all approaches (including the proposed
model). For optimal values, the red line (UB∗) ended up taking the front of blue line
(LB∗), thus we see more the upper bounds. As in Figure 19, instances with solution
status “No Sol. TL” do not have points on the chart area. Solving M5 with I = 3,
qtR = 1 and J = 2 (Figure 20a) revealed that the forward strategy generates better
results than the backward one and also that Artifice 2 dominates 1. For M6 (Figure
20b), backward strategy is better, and this time, Artifice 1 and 2 are competitive. Now,
choosing I = 4, qtR = 1 and J = 3 and solving M5 (Figure 20c), we notice a much greater
predominance of backward strategy and Artifice 2. This is mainly due to the performance
of R&F-F&O[Backward, X2, 4, 1, 3] variant. For M6 (Figure 20d), over again, backward
strategy and Artifice 2 are slightly better.

From the previous comparative analyses, the superiority of R&F-F&O[Backward, X2,
4, 1, 3] approach in relation to the others variants was apparent, proving to be the best for
finding quality solutions at reasonable computational times (limited to one hour). Table
9 brings more detailed results of this heuristic variant. Headers “Operational Costs” and
“Counters” have the same columns as those described in Tables 6 and 8. The next two
headers, “R&F Part” and “F&O Part”, show the upper bound (column OF ub) reached in
the last iteration (or partition), average B&C’s relative gap of the iterations (Avg gap),
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number of completed iterations (iter) and elapsed time (CPUt). In such manner, we can
observe how the results were when building a solution with R&F and improving it by
applying F&O. Header “R&F-F&O” comprises the results Avg gap, iter and CPUt by
considering the MIP-based heuristic method as a whole. In the last column (St. Sol.), we
inform the solution status. The computational results of the remaining seven heuristic
variants are presented in the tables of Appendix A.2.

Ultimately, to verify whether the present heuristic variant has potential for application
in practice, we proceeded our analysis by confronting its upper bound values with those
of the proposed model. For that, we provide Figure 21. It has the similar layout as
Figures 20. For the larger instances with the higher level of congestion, belonging to
month M5 (Figure 21a), R&F-F&O[Backward, X2, 4, 1, 3] approach outperforms the
proposed model, managing in most cases to obtain the best upper bounds (relatively close
to the lower bounds). As regards month M6 (Figure 21b), our heuristic approach was
able to achieve optimal results in the vast majority of instances (only in M6_2to4 and
M6_5to7 we had relative gaps of 1.36% and 0.39%).
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Figure 19 – Comparison of R&F-F&O approaches in relation to runtime.
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Figure 20 – Comparison of R&F-F&O approaches in relation to upper bound.
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Chapter 4

A branch-and-price algorithm for
aircraft routing with crew
assignment in the on-demand air
transportation

Among the exact approaches applicable to variants of VRP, one that stands out as a
successful technique for solving practical and large-scale problems is the branch-and-price
(B&P) algorithm (BALDACCI; MINGOZZI; ROBERTI, 2012; COSTA; CONTARDO;
DESAULNIERS, 2019; PESSOA et al., 2020). Once the problem discussed in Chapter 3
is analogous to VRP, we were motivated to develop a B&P method to be able to solve
realistic-sized instances in acceptable computational times.

In the B&P approach, a branch-and-bound (B&B) tree (LAND; DOIG, 1960) is cons-
tructed relying on the column generation (CG) technique (LÜBBECKE; DESROSIERS,
2005) to solve each node of the tree, commonly employed in conjunction with the Danzig-
Wolfe decomposition (DWD). Briefly, DWD (DANTZIG; WOLFE, 1960) is a classical
reformulation method for solving MIP optimization problems whose constraint matrix in-
volves a set of independent blocks, dispersed in a special structure of primal block-angular
and linked by coupling constraints. This block structure suggests a decomposition into
new problems with smaller dimensions, referenced as pricing subproblems. Coupling cons-
traints together with the property that allows rewriting every point of a non-empty and
bounded convex polyhedron, can be represented as a linear convex combination of its
extreme points and linear combination of its extreme rays, making it possible to obtain
an equivalent problem with smaller number of constraints, called the master problem.
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Given this decomposition into master problem and subproblems, the CG technique is
adopted to effectively solve the linear relaxation of the master problem. It considers only
a subset of columns in this linear relaxation, resulting in what is known as the restricted
master problem (which has a smaller number of variables). Column generation uses the
dual information from the restricted master problem in the subproblems to generate new
columns (variables) and then adds them to this problem, until the optimal solution of the
master problem is reached. In the case of MIP problems, we still have to make sure that
the obtained solution is not fractional. Therefore, the B&B algorithm ends up making
partitions in the solution space, taking advantage of the dual bounds computed during
the enumeration to achieve faster convergence to optimality (i.e. we have an efficient node
pruning because B&B avoids unnecessary exploration of solution space areas where the
optimal solution cannot be found). Additionally, if there are cutting planes (valid inequa-
lities) to tighten the LP relaxations within the B&B tree, this results in a method named
branch-price-and-cut (BP&C). Most B&P algorithms are developed specifically for each
type of problem, since there are several specificities regarding the type of pricing sub-
problems, effective branching rules, auxiliary heuristics, among many other components,
which hinder the development of general-purpose implementations.

In this chapter, Section 4.1 introduces the master problem (represented by the well-
known set partitioning formulation). In Section 4.2, we reveal the development of a
tailored labeling algorithm for solving the subproblems. Section 4.3 formalizes the column
generation technique, while Section 4.4 exhibit the branching rules used in B&B tree.
Ultimately, Section 4.6 concludes the chapter with computational experiments conducted
for our B&P algorithm. For these sections, consider all the notation that has already been
presented in Chapter 3. A faster query of these sets, parameters and decision variables,
can be done through Appendix A.1.

4.1 Set partitioning formulation

In general, when the DWD is applied to variants of VRP, the resulting master pro-
blem (MP) falls into the classic set partitioning formulation, because it is formed by
vehicle coupling constraints, in which the columns of coefficient matrix corresponds to
independent routing decisions, thus establishing the subproblems. Moreover, the most
effective exact methods for VRPs are based on those mathematical models (PECIN et
al., 2017; TOTH; VIGO, 2014).

4.1.1 Master Problem

Before explaining the set partitioning formulation related to our DAFP, consider the
following notation:
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• Λv: set of all feasible routes for aircraft v ∈ V (where each route corresponds to a
sequence of requests served by the aircraft);

• αv
rρ: binary parameter that indicates whether request r ∈ L∪M is attended or not

by route ρ, originating from aircraft v;

• ςv
ρ : operational cost of route ρ, when executed by aircraft v (which implies the

inclusion of positioning, upgrade and overtime costs);

• λv
ρ: binary variable that takes value 1, if only if, route ρ ∈ Λv is chosen in the

solution.

The set partitioning is formulated by:

min
∑
v∈V

∑
ρ∈Λv

ςv
ρ .λv

ρ +
∑
r∈L

Coutr.outr; (218)

s.t. ∑
v∈V:

p̌v≥p̂r

∑
ρ∈Λv

αv
rρ.λv

ρ + outr = 1; ∀ r ∈ L; (219)

∑
ρ∈Λvr

αvr

rρ.λvr

ρ = 1; ∀ r ∈M; (220)

∑
ρ∈Λv

λv
ρ ≤ 1; ∀ v ∈ V ; (221)

λv
ρ ∈ {0, 1}; ∀ v ∈ V ; ρ ∈ Λv; (222)

outr ≥ 0; ∀ r ∈ L. (223)

Objective function (218) consists of two parts. The first is related to the operational
costs obtained through the routes, and the second represents the outlay for outsourcing
customer requests. Constraints (219) impose that, if customer request r is not subcon-
tracted (outr = 0), then it is served in exactly one route ρ of an aircraft belonging to the
requested type or higher (p̌v ≥ p̂r). Each maintenance request r that is complied with
a route executed by the specified aircraft vr is guaranteed by constraints (220). In turn,
constraints (221) ensure that at most a single route ρ can be made for each aircraft v

(which also limits the number of routes that can be used in the solution by V ). Finally,
the domain of the decision variables is defined in constraints (222) and (223). Observe
that in (223), the variable outr did not need to be declared as binary because constraints
(219) and (222) enforce this domain in a feasible solution.

4.1.2 Restricted master problem

Given the extremely large number of possible routes that we can have in Λv, solving
this MP requires the use of column generation technique, which is applied to the linear
relaxation of the problem. This technique is an iterative method that, at each iteration,
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solves the linear relaxation defined by only a subset of routes. Thus, restricting each
aircraft v to a delimited subset of routes, which means having Λv ⊂ Λv, in a given
iteration of the CG technique we solve the following problem, denominated by restricted
master problem (RMP), as already mentioned:

min
∑
v∈V

∑
ρ∈Λv

ςv
ρ .λv

ρ +
∑
r∈L

Coutr.outr; (224)

s.t. ∑
v∈V:

p̌v≥p̂r

∑
ρ∈Λv

αv
rρ.λv

ρ + outr = 1; ∀ r ∈ L; (ωr) (225)

∑
ρ∈Λvr

αvr

rρ.λvr

ρ = 1; ∀ r ∈M; (φr) (226)

∑
ρ∈Λv

λv
ρ ≤ 1; ∀ v ∈ V ; (ϱv) (227)

λv
ρ ∈ [0, 1]; ∀ v ∈ V ; ρ ∈ Λv; (228)

outr ≥ 0; ∀ r ∈ L. (229)

Looking at the current RMP, we notice the presence of ωr, φr and ϱv on the right-
hand side of constraints (225)-(227). The first two, ωr ∈ R and φr ∈ R, represent the
dual variables of coupling constraints (225) and (226), and ϱv ≤ 0 is the dual of each
convexity constraint in (227). Although this type of formulation demands more sophisti-
cated solution methods than its counterpart, which is based on the traditional resolution
of the original model through a general-purpose solver, the most common benefits of
the column generation technique lie in the possibility of providing reduced memory con-
sumption (coming from the CG itself), and offering considerably tighter bounds than
the original problem (due to the imposition of integrality in the subproblems), typically
producing more improved results at better computational times (MUNARI; GONDZIO,
2013; PECIN et al., 2017; ALVAREZ; MUNARI, 2017; MUNARI; MORABITO, 2018).

4.2 Labeling algorithm

To generate new columns for the RMP at each iteration of the CG algorithm, it is
necessary to solve a subproblem for each aircraft v ∈ V . The subproblem can be repre-
sented by a MIP model, to then be optimized by a solver. In the VRP literature, we often
find subproblems belonging to the NP-hard class, which makes it impracticable to call the
solver for optimizing a MIP model at each iteration of the CG. In our case, the subpro-
blem refers to a resource-contrained elementary shortest-path problem (RCESPP), which
is NP-hard (DROR, 1994). One way to solve this subproblem more efficiently is to apply
dynamic programming (DP) methods, such as the labeling algorithm (DESROCHERS,
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1986; BEASLEY; CHRISTOFIDES, 1989; IRNICH; DESAULNIERS, 2005; FEILLET,
2010).

In this algorithm’s framework, we associate a bucket (list) with each node (or request)
of the RCESPP’s graph. Inside each bucket, there are labels (data structures) responsible
for characterizing (labeling) by means of attributes/states a partial path (route segment)
that comes to the respective designated node. A label can inform, for example, the subset
of visited nodes, the accumulated reduced cost, and resource consumption (e.g., time,
weight, etc.) from the source/origin node. Bearing in mind the crew rules of our DAFP
(Subsection 3.1), we define the following resources for a given label ℓs at node s:

• ς(ℓs): total reduced (or relative) cost of the partial path;

• ℜ(ℓs): set of visited vertices along the partial path;

• W (ℓs): exact time at which request s is serviced along the partial path;

• U(ℓs): accumulated work time along the partial path;

• Q(ℓs): accumulated flight time along the partial path;

• aGT (ℓs): accumulated ground time along the partial path;

• firstM(ℓs): binary artifice that assumes 1, if only maintenance is performed along
the partial path (starting from the dummy); 0, otherwise. It is therefore used to
find out when a crew’s workday actually begins;

• CO(ℓs): overtime cost arising from the arc at which label ℓs is related (i.e., it is not
an accumulated resource).

In the context of RCESPP, we assign a different index number for the source and
sink/destination node. Let R = |L ∪M|, we declare 0 as the source node and R + 1 as
the sink node, and define R+ = {0} ∪ L ∪M∪ {R + 1} as the set with all nodes.

4.2.1 Duty cases of extensions

At each iteration, a parent label is extended when we create a child (new) label to
compose the bucket of a next node (i.e. the partial path is expanded by inserting a new
vertex), considering the attributes that were defined by the parent label (from a previous
bucket). The extension can be progressive (from the source node to its successors, a.k.a
forward propagation), regressive (from the sink node to its predecessors, a.k.a backward
propagation), or even bidirectional (the combination of both) (TILK; GOEL, 2020). In
our labeling algorithm, we used a progressive extension based on six duty cases consistent
with the crew labor rules (they are illustrated in Figure 22):
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• Case 1 – hoard resources (without putting a rest or work break). This case is
the option of executing request r and immediately preparing to start request s,
without any rest or work break. Therefore, we only seek to calculate the resulting
resources from the label to be created for the next bucket. Additionally, we check
the opportunity to take advantage of maintenance time in the form of ground time
(aGT (ℓs)), so that it can be used to add a rest (in duty cases 2 to 5) or to reduce
the duty (in Case 6 ).

• Case 2 – perform a minimum rest when there is no ferry leg. This aims to end the
crew’s workday by including POS + minRest + PRE, which means resetting the
resources U(ℓs), Q(ℓs) and aGT (ℓs) belonging to the subsequent bucket s, calcula-
ting the overtime cost in the current bucket r at the situation U(ℓr) > maxDuty or
Q(ℓr) > maxFlying.

• Case 3 – perform a minimum rest before a ferry leg. This case is similar to Case 2,
but it considers the occurrence of a positioning flight between request r and s in the
duty case. As POS + minRest + PRE is putting before the ferry leg, the resources
U(ℓs) and Q(ℓs) must take into account the ferry execution time at the beginning
of the next duty period.

• Case 4 – perform a minimum rest after a ferry leg. Again, we have a case analogous
to cases 2 and 3, but the difference lies in the quantification of current resources,
since the ferry time is included in U(ℓr) and Q(ℓr), where the duty period ends.

• Case 5 – perform a minimum rest before and after a ferry leg. It is a combination
of cases 3 and 4, and represents an attempt to have a minimum rest before and after
a positioning flight. This case is especially useful on particularly long positioning
trips. The benefit of this strategy over cases 3 and 4 is that it does not account
for the ferry time on the resources in bucket r, as well as in bucket s. However,
the disadvantage is how much W (ℓs) increases, after all, POS + minRest + PRE

is included twice.

• Case 6 – apply the split duty rule, where ground time is reduced in order to take
a work break. In this situation, the current ground time (which includes aGT (ℓr))
must be between 90 min and 6 hours, or greater than 6 hours (but not exceeding
minRest), to then allow it to be reduced so that U(ℓs) has a lower value, preventing
W (ℓs) from surpassing its time window by placing the rest.

It is important to mention that in all cases, we also need to check whether the flight
events (live and ferry legs) are covered by any pilot’s time window. If they are not within
a window, we may try to bring the given flight event to the nearest adjacent window,
checking if W (ℓs) is still into its limits.



4.2. Labeling algorithm 133

Figure 22 – The six cases of extending a label.

Live Ground time

Maintenance Live Live

Maintenance Live Live𝑃𝑂𝑆 𝑚𝑖𝑛𝑅𝑒𝑠𝑡 𝑃𝑅𝐸

Maintenance Live Ferry Live

Maintenance Live Ferry Live𝑃𝑂𝑆 𝑚𝑖𝑛𝑅𝑒𝑠𝑡 𝑃𝑅𝐸

Live Ferry Live𝑃𝑂𝑆 𝑚𝑖𝑛𝑅𝑒𝑠𝑡 𝑃𝑅𝐸

𝑃𝑂𝑆 𝑚𝑖𝑛𝑅𝑒𝑠𝑡 𝑃𝑅𝐸

𝑃𝑂𝑆 𝑚𝑖𝑛𝑅𝑒𝑠𝑡 𝑃𝑅𝐸

Maintenance Live

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6 New ground time

Source: Own authorship.

As overtimes are indirectly related to the position of W (ℓs) in the time horizon, and
they are included in the optimization criteria, in addition to considering its earlier start
in the recursive expressions (common in the literature), we must also take into account
its later start.

Delaying W (ℓs) on purpose makes it possible to abate the length of a duty period. In
Case 6, if the accumulated ground time exceeds 6 hours, it is then reduced to just one
hour, a much greater diminution than that provided by the previous interval, when the
ground time is between 90 min and 6 hours (see Table 3 in Chapter 3). Another advantage
is when we have a minimum rest before a maintenance request (cases 2, 4 and 5). The
maintenance postponement in this situation makes the beginning of a next duty to be
late, which reduces its length. As a consequence, we have created two variants for each
case, resulting in a total of 12 variants (of the six cases). Let 1a and 1b be the variants of
Case 1, representing the earliest and latest start, respectively, at which a request can be
serviced. In this way, we generalize V = {1a, 1b, 2a, 2b, . . . , 6a, 6b} as the set of variants
from the six cases, and define var(ℓs) as the case variant associated with label ℓs (thus,
if var(ℓs) = 2b, we know that label ℓs has assigned to Case 2, with W (ℓs) starting later).
Accordingly, when a parent label generates a child label in another bucket, the extension
always considers one of the 12 variant cases.

In general terms, the progressive extension of a label ℓr to a bucket s (which creates
a label ℓs), taking as a reference one of the variants (var) of Case 1, for example, is done
as follows. Let tw be the earliest or latest start time at which request s can be executed,
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computed by:

tw =


sts, var = 1a;

sts + ∆L, var = 1b ∧ s ∈ L;

sts + ∆M, var = 1b ∧ s ∈M;

for distinct requests r, s ∈ L ∪M from an aircraft v ∈ V , W (ℓs) is determined as:

W (ℓs) =



W (ℓr) + TF p̌v

irjr + tats
is , r ∈ L ∧ s ∈ L ∪M∧ jr = is;

W (ℓr) + TLr + tats
is , r ∈M∧ s ∈ L ∪M∧ jr = is;

W (ℓr) + TF p̌v

irjr + tats
jr + TF p̌v

jris + tats
is , r ∈ L ∧ s ∈ L ∪M∧ jr ̸= is;

W (ℓr) + TLr + TF p̌v

jris + tats
is , r ∈M∧ s ∈ L ∪M∧ jr ̸= is.

Given the time imposition arising from the arc (r, s), W (ℓs) is checked to assess if it
continues within the time window required by request s. To do this, we use the auxiliary
binary variable checkTW , expressed by:

checkTW =

W (ℓs) ≤ sts + ∆L, s ∈ L;

W (ℓs) ≤ sts + ∆M, s ∈M.

If checkTW = 1, we proceed to the next step, which consists of verifying whether all
flight events (live or ferry legs) in the arc (r, s) are covered by any pilot’s time window.
If the validation is false, we still try to bring the respective flight event to the nearest
adjacent window, which implies delaying W (ℓs) even more. If checkTW remains true,
then we advance to calculate the remaining resources aGT (ℓs), U(ℓs), Q(ℓs), firstM(ℓs)
and CO(ℓs).

The resource aGT (ℓs) is determined by removing the flight times:

aGT (ℓs) =



[W (ℓs)−W (ℓr)]− TF p̌v

irjr , r ∈ L ∧ s ∈M∧ jr = is;

aGT (ℓr) + [W (ℓs)−W (ℓr)], r ∈M∧ s ∈M∧ jr = is;

[W (ℓs)−W (ℓr)]− (TF p̌v

irjr + tats
jr + TF p̌v

jris), r ∈ L ∧ s ∈M∧ jr ̸= is;

[W (ℓs)−W (ℓr)]− (TLr + TF p̌v

jris), r ∈M∧ s ∈M∧ jr ̸= is;

notice that among maintenance requests without a ferry occurrence, the accumulated
ground time from previous arcs, aGT (ℓr), is also counted in aGT (ℓs), so that we can use
the duration of these requests as a rest or break in the next bucket (for the other duty
cases). If aGT (ℓr) is not availed, then it is used in the resource U(ℓs), which defines this
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time as work within the duty period (see the situations that request r ∈M):

U(ℓs) =



U(ℓr) + [W (ℓs)−W (ℓr)], r ∈ L ∧ s ∈ L ∧ jr = is;

U(ℓr) + TF p̌v

irjr , r ∈ L ∧ s ∈M∧ jr = is;

U(ℓr) + aGT (ℓr) + [W (ℓs)−W (ℓr)], r ∈M∧ s ∈ L ∧ jr = is;

U(ℓr), r ∈M∧ s ∈M∧ jr = is;

U(ℓr) + [W (ℓs)−W (ℓr)], r ∈ L ∧ s ∈ L ∧ jr ̸= is;

U(ℓr) + TF p̌v

irjr + tats
jr + TF p̌v

jris , r ∈ L ∧ s ∈M∧ jr ̸= is;

U(ℓr) + aGT (ℓr) + [W (ℓs)−W (ℓr)], r ∈M∧ s ∈ L ∧ jr ̸= is;

U(ℓr) + aGT (ℓr) + TLr + TF p̌v

jris , r ∈M∧ s ∈M∧ jr ̸= is.

(230)

In an arc (r, s), the resource Q(ℓs) just accumulates the flight times, keeping the same
value in the situation where we only have maintenance request:

Q(ℓs) =



Q(ℓr) + TF p̌v

irjr , r ∈ L ∧ s ∈ L ∪M∧ jr = is;

Q(ℓr), r ∈M∧ s ∈ L ∪M∧ jr = is;

Q(ℓr) + TF p̌v

irjr + TF p̌v

jris , r ∈ L ∧ s ∈ L ∪M∧ jr ̸= is;

Q(ℓr) + TF p̌v

jris , r ∈M∧ s ∈ L ∪M∧ jr ̸= is.

As was done in the proposed model of Chapter 3, we use a mathematical artifice,
firstM(ℓs), to find out when the duty period starts, i.e., the moment at which the first
flight event appears, indicated by firstM(ℓs) = 0. The resource firstM(ℓs) is calculated
by:

firstM(ℓs) =


1, if r = 0 ∧ s ∈M∧ kv = is;

firstM(ℓr), else if r ∈M∧ s ∈M∧ jr = is;

0, otherwise.

When firstM(ℓs) = 1, the resource U(ℓs) has the value corresponding to the beginning
of a duty period (note that the recursive expression (230) was defined for firstM(ℓs) = 0):

U(ℓs) =


PRE + tats

is , r ∈M∧ s ∈ L ∧ jr = is ∧ firstM(ℓr) = 1;

PRE + TF p̌v

jris + tats
is , r ∈M∧ s ∈ L ∧ jr ̸= is ∧ firstM(ℓr) = 1;

PRE + TF p̌v

jris , r ∈M∧ s ∈M∧ jr ̸= is ∧ firstM(ℓr) = 1.

Finally, to calculate the resource CO(ℓs), we first need to quantify the overtime (O),
given by the expression:

O = max{0, U(ℓs)−maxDuty, Q(ℓs)−maxFlying}

.
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As the overtime costs are penalized in the objective function, the only circumstances
in which these costs worthwhile are: the first moment that the crew exceeds maxDuty

or maxFlying (computed by Cases 2 to 5 ) in the current duty period, and at the end of
the last duty performed by the aircraft. In Case 1, the overtime cost is formulated by:

CO(ℓs) = Coverr.O; ∀ r ∈ L ∪M, s = R + 1;

where, Coverr is the overtime cost per minute for request r.
When comparing Case 1 in relation to the cases that refer to a rest inclusion (Cases 2

to 5 ), basically what changes in the resource W (ℓs) is the addition of a full minimum rest
(POS + minRest + PRE) immediately after a flight event, and a rest that can be partial
or even null, defined by RestM = max{0, (POS + minRest + PRE)− (aGT (ℓr) + TLr)},
immediately after a maintenance request.

Regarding the resource U(ℓs), in Cases 2, 4 and 5, where there is no ferry leg at the
beginning of a duty period, the reset of this resource is expressed by U(ℓs) = PRE + tats

is .
In Case 3, where the ferry leg is considered at the beginning of a duty period, the reset
is:

U(ℓs) =

PRE + tats
jr + TF p̌v

jris + tats
is , r ∈ L ∧ s ∈ L ∪M∧ jr ̸= is;

PRE + TF p̌v

jris + tats
is , r ∈M∧ s ∈ L ∪M∧ jr ̸= is.

For the other resources, the reset is also the same in Cases 2, 4 and 5 : aGT (ℓs) = 0,
Q(ℓs) = 0 and firstM(ℓs) = 0. In Case 3, the only resource that changes is Q(ℓs) =
TF p̌v

jris , remaining null aGT (ℓs) and firstM(ℓs). Concerning the accumulated work/flight
time that closes a duty period, it is counted in the overtime O, which may include a ferry
time, according to Cases 4 and 5.

Lastly, Case 6 only happens when the current ground time (which considers aGT (ℓr)),
defined by GT , is within the time ranges in which we have duty reduction. Given this
case, GT is determined as:

GT =



[W (ℓs)−W (ℓr)]− (TF p̌v

irjr + tats
is), r ∈ L ∧ s ∈ L ∧ jr = is;

[W (ℓs)−W (ℓr)] + aGT (ℓr)− tats
is , r ∈M∧ s ∈ L ∧ jr = is;

[W (ℓs)−W (ℓr)]− (TF p̌v

irjr + tats
jr + TF p̌v

jris + tats
is), r ∈ L ∧ s ∈ L ∧ jr ̸= is;

[W (ℓs)−W (ℓr)] + aGT (ℓr)− (TF p̌v

jris + tats
is), r ∈M∧ s ∈ L ∪M∧ jr ̸= is.

As stated in the split duty rule, the new ground time, denoted by newGT , is calculated
as:

newGT =

(GT − 90)/2 + 90, 90 < GT ≤ 360;

60, 360 < GT ≤ minRest.
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Therefore, newGT is considered in the formulation of U(ℓs) as:

U(ℓs) =



U(ℓr) + TF p̌v

irjr + newGT + tats
is , r ∈ L ∧ s ∈ L ∧ jr = is;

U(ℓr) + newGT + tats
is , r ∈M∧ s ∈ L ∧ jr = is;

U(ℓr) + TF p̌v

irjr + tats
jr + TF p̌v

jris + newGT + tats
is , r ∈ L ∧ s ∈ L ∪M∧ jr ̸= is;

U(ℓr) + newGT + TF p̌v

jris + tats
is , r ∈M∧ s ∈ L ∪M∧ jr ̸= is.

Note that in Case 6, U(ℓs) has a smaller value compared to the same resource deter-
mined in expression (230) (from Case 1 ).

All the six duty cases are represented in more detail by algorithms 8-13 (named Check-
DutyCase1, . . . , CheckDutyCase6 ), available in Appendix B.1.

4.2.2 Dominance rules

The efficiency of a labeling algorithm is improved by the presence of dominance rules,
as they can drastically reduce the proliferation of labels during the algorithm execution,
avoiding exhaustive enumeration. These rules are based on eliminating labels that cannot
lead to an optimal solution. We propose specific dominance rules tailored to the addressed
problem, defined as follows. Given two labels ℓr and ℓ

′
r associated with the same bucket

of request r ∈ L ∪M, ℓr does not dominate ℓ
′
r if at least one of the following conditions

is satisfied:

ς(ℓr) > ς(ℓ′

r);

ℜ(ℓr) ⊃ ℜ(ℓ′

r);

W (ℓr) > W (ℓ′

r);

U(ℓr) > U(ℓ′

r);

Q(ℓr) > Q(ℓ′

r);(
var(ℓr) = 1a ∧ var(ℓ′

r) = 1b
)

;(
var(ℓr) = 2a ∧ var(ℓ′

r) = 2b
)

;(
var(ℓr) = 3a ∧ var(ℓ′

r) = 3b
)

;(
var(ℓr) = 4a ∧ var(ℓ′

r) = 4b
)

;(
var(ℓr) = 5a ∧ var(ℓ′

r) = 5b
)

;(
var(ℓr) = 6a ∧ var(ℓ′

r) = 6b
)

.

The first line (inequality) refers to the reduced cost, computed for label ℓs as ς(ℓs) =
ς(ℓr) + Cf v

rs + Cupv
s + CO(ℓs) − (ωs + φs + ϱv). We must also guarantee that there is

no dominance relationship among two variants of the same case (see the last six lines),
since variant a tends to have better attributes than b when both are compared to the
same bucket, however, b can benefit the reduced cost of a subsequent label, as already
discussed.
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4.2.3 Unreachable labels

Another way to reduce the number of extended labels is to identify those so-called un-
reachable (FEILLET, 2010), which in our scope are labels outside the following condition
(assuming that an aircraft v performs a route in which request r immediately precedes
request s):

∃(v, r, s) := (r ∈ L ∧ s ∈ L ∧ p̌v ≥ p̂r ∧ p̂s ≥ p̂r ∧ str ≤ sts + ∆L)∨

(r ∈ L ∧ s ∈M∧ p̌v ≥ p̂r ∧ v = vs ∧ str ≤ sts + ∆M)∨

(r ∈M∧ s ∈ L ∧ v = vr ∧ p̂r ≥ p̂s ∧ str ≤ sts + ∆L)∨

(r ∈M∧ s ∈M∧ v = vr ∧ vr = vs ∧ str ≤ sts + ∆M)∨(
r ∈ L ∧ s ∈M∧ str + TF p̂r

irjr < sts + ∆M
)
∨

(r ∈M∧ s ∈ L ∧ str −∆M + TLr < sts + ∆L)∨(
r ∈ L ∧ s ∈ L ∧ str + TF p̂r

irjr < sts + ∆L
)
∨

(r ∈M∧ s ∈M∧ str −∆M + TLr < sts + ∆M)∨

(r = 0 ∧ s < R + 1)∨

(r > 0 ∧ s = R + 1) ;

∀ v ∈ V ; r, s ∈ R+ | r ̸= s.

In this condition, the first four lines permit only valid allocations between aircraft
and requests, i.e., those that satisfy upgrade (for live requests) and pre-assignment (for
maintenance requests) requirements of the problem. They also consider the request time
windows. The next four lines follow the same logic stipulated for fixing variables in the
proposed model (Subsection 3.2.2.7), leaving out situations where a reversal of precedence
among requests is impossible. Finally, the last two lines include the dummy nodes (0 and
R + 1).

Based on this condition, we define Av as the set of feasible (reachable) arcs for aircraft
v, and δ̂v as set of requests compatible with aircraft v.

4.2.4 Formalizing the algorithm

Algorithm 3 portrays the labeling method as described so far, responsible for calling
algorithms 8-13 (Appendix B.1). The algorithm 3 is initialized by creating buckets (B(r))
in the nodes/requests that are compatible with an aircraft v, and the label ℓ0 (with its
attributes starting with initial values) associated with the dummy node 0. To design the
algorithm, we defined B(r) ⊆ B(r), as the set of labels that have not yet been extended,
and E, as the set of requests to evaluate. Hence, the stopping criterion is reached when we
have no more labels to be processed (E = ∅). According to the loop shown in steps 5-36,
at each iteration, an unprocessed label ℓr is extended to a reachable bucket B(s), taking
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into account a case variant var, if it satisfies all requirements of the problem, evaluated
by the algorithm that represents the corresponding duty case (i.e., Extension = 1). For
labels belonging to the same bucket, the dominance rule is applied to eliminate those
that are unnecessary. The procedure terminates by returning the best path, which has
the lowest reduced cost.

4.3 Primal-dual column generation method

In the traditional CG technique, the RMP is solved optimally at each iteration, typi-
cally by a simplex-type method, so that subproblems receive extreme points from the set
of optimal dual solutions to then generate new columns. As a result, classic drawbacks
are observed during the CG’s execution (VANDERBECK, 2005): slow convergence near
the optimal solution (tailing-off effect); production of irrelevant columns and dual values
(heading-in effect); remaining at the same optimal value of RMP for several iterations
(plateau effect); instability in the dual solutions that jump from one extreme value to
another (yo-yo effect).

Several alternatives to overcome such weaknesses have been proposed in the literature.
Some of them modify the RMP by adding penalties and/or constraints to limit large va-
riations in the dual solutions (MARSTEN; HOGAN; BLANKENSHIP, 1975; AMOR;
DESROSIERS; FRANGIONI, 2009; BRIANT et al., 2008). Other alternatives propose
smoothing techniques, which use convex combinations of central and optimal dual solu-
tions (WENTGES, 1997; PESSOA et al., 2013). In addition, there exist approaches that
work by keeping the dual solutions centered in the feasible set, instead of depending on
an optimal point (GOFFIN; VIAL, 2002; ROUSSEAU; GENDREAU; FEILLET, 2007).
Interior-point-based methods also allow obtaining well-centered and sub-optimal dual so-
lutions of the RMP, providing more stable columns and valid inequalities, which significan-
tly improves the CG’s performance by reducing the number of iterations and computation
time (GONDZIO; GONZÁLEZ-BREVIS; MUNARI, 2013; MUNARI; GONDZIO, 2013;
GONDZIO; GONZÁLEZ-BREVIS; MUNARI, 2016).

In this dissertation, we rely on the interior-point CG algorithms presented by Gondzio,
González-Brevis and Munari (2013), and, Gondzio, González-Brevis and Munari (2016),
known as the primal-dual column generation method (PDCGM) (GONDZIO, 2012). Gi-
ven a feasible primal-dual solution (λ, ω, φ, ϱ) of the RMP, which may not be optimal,
we can obtain both a lower and upper bound of the RMP’s optimal solution by using the
primal and dual values from the objective function as follows:

(231)ZUB(λ) =
∑
v∈V

∑
ρ∈Λv

ςv
ρ .λ

v

ρ +
∑
r∈L

Coutr.outr;

(232)ZLB(ω, φ, ϱ) =
∑
r∈L

ωr +
∑

r∈M
φr +

∑
v∈V

ϱv.
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Algorithm 3: Forward labeling algorithm
Input: problem instance, aircraft v.
// Initialization

1 Create buckets B(r)← ∅,∀ r ∈ δ̂v;
2 Create label ℓ0 in bucket B(0) with initial attribute values (ℓ0 ← (var(ℓ0)← “”,ℜ(ℓ0)← ∅,

ς(ℓ0)← 0, [W (ℓ0)← 0, U(ℓ0)← 0, Q(ℓ0)← 0, aGT (ℓ0)← 0, firstM(ℓ0)← 0, CO(ℓ0)← 0]));
3 For each node r ∈ δ̂v, make a copy B(r) of bucket B(r), denoting a set of labels that have not yet been

extended;
4 Let E be a list of active nodes, i.e., at which there are unprocessed labels, initializing E ← {0};

// Search
5 repeat
6 select r ∈ E;

// Extension
7 foreach label ℓr ∈ B(r) do
8 foreach s ∈ δ̂v, if (r, s) ∈ Av ∧ s /∈ ℜ(ℓr) do
9 foreach var ∈ V do

10 Create label ℓs with initial attribute values;
11 switch var do
12 case 1a: case 1b do
13 Extension ← CheckDutyCase1 (var, ℓr, ℓs);
14 case 2a: case 2b do
15 Extension ← CheckDutyCase2 (var, ℓr, ℓs);
16 case 3a: case 3b do
17 Extension ← CheckDutyCase3 (var, ℓr, ℓs);
18 case 4a: case 4b do
19 Extension ← CheckDutyCase4 (var, ℓr, ℓs);
20 case 5a: case 5b do
21 Extension ← CheckDutyCase5 (var, ℓr, ℓs);
22 case 6a: case 6b do
23 Extension ← CheckDutyCase6 (var, ℓr, ℓs);

24 if Extension = 1 then // verify the feasibility condition
// Compute the remaining attributes

25 ς(ℓs)← ς(ℓr) + Cfv
rs + Cupv

s + CO(ℓs)− (ωs + φs + ϱv);
26 ℜ(ℓs)← ℜ(ℓr) ∪ {s};

// Check dominance
27 if ℓs dominates any label ℓ

′
s ∈ B(s) then

28 Discard the dominated labels from inside bucket B(s) (and from B(s), if
there is);

29 if ℓs is not dominated by any label ℓ
′
s ∈ B(s) then

30 Extend label ℓr (assign label ℓs) to bucket B(s): B(s)← B(s) ∪ {ℓs};
31 B(s)← B(s) ∪ {ℓs}; // the new label also is left as non-extended

32 if (B(s) ̸= ∅) ∧ (s ̸= R + 1) then
33 E ← E ∪ {s};

34 B(r)← ∅;
35 E ← E\{r};
36 until E = ∅;
37 return best path in B(R + 1);
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The solution (λ, ω, φ, ϱ) is called suboptimal or ϵ-optimal solution, if it satisfies:

0 ≤ ZUB(λ)− ZLB(ω, φ, ϱ) ≤ ϵ.
(
10−10 +

∣∣∣ZUB(λ)
∣∣∣) ; (233)

for some tolerance ϵ > 0. Notice that the PDCGM gives well-centered dual solutions
because the complementary products are kept close to the centroid’s central path until
the convergence of optimal solutions. More explicitly, a point is well-centralized if it
satisfies:

γ.µ ≤

ςv
ρ −

∑
r∈L:

p̌v≥p̂r

ωr.α
v
rρ −

∑
r∈M:
v=vr

φr.α
v
rρ − ϱv

 .λ
v

ρ ≤
µ

γ
; ∀ v ∈ V , ρ ∈ Λv; (234)

where γ ∈ (0, 1) and µ is a barrier parameter that defines the central path in the PDCGM.
Therefore, in virtue of this centrality, the resulting dual solutions oscillate less from one
iteration to another, without requiring any artificial resources such as variable bounds or
penalty costs. The PDCGM dynamically adjusts the tolerance for solving each RMP by
initially setting a loose value and tightening it as CG progresses to optimality.

Regarding the practice of adding columns in the RMP, we follow the standard. Let
yv

ρ = {yρv
rs}r,s∈R be an incidence binary vector, such that, yρv

rs = 1 if and only if route
ρ ∈ Λv traverses request r, and proceeds directly to request s. After the end of our
labeling algorithm (Section 4.2), when Zsp

v < 0 (the minimum reduced cost value found
for a given subproblem v), we have an extreme optimal point yv

ρ that is not in the current
RMP. Thereby, there is a variable λv

ρ with negative reduced cost to be included in the

RMP ({ρ} ∪ Λv), resulting in the addition of column


ςv.yv

ρ

Av.yv
ρ

εv

, in which, ςv.yv
ρ is the

objective function part; Av.yv
ρ, the coupling constraint; and εv, the insertion of value 1

in the v-th convexity constraint. Otherwise, subproblem v has an optimal solution, but
as the reduced cost of λv

ρ is positive, the optimal extreme point yv
ρ is already included in

the current RMP. Hence, the column generation technique ends when there are no more
columns with a negative relative cost to be inserted.

Finally, algorithm 4 describes in a simplified way our PDCGM version. We can observe
that the adjustment of ϵ occurs on the last line of this algorithm, being ϵmax responsible for
imposing an upper bound on the ϵ’s value. D > 1 is the optimality degree that controls
the reduction of ϵ as a function of the relative gap, and, δ establishes a termination
condition based on the relative gap.

4.4 Branching strategies

As mentioned earlier, in order to obtain a B&P procedure (i.e., guarantee the integra-
lization of all fractional variables that are imposed as binary in the original problem), we
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Algorithm 4: Primal-dual column generation method
Input: Valid initial columns (feasibility); parameters: ϵmax > 0, D > 1, δ > 0.

1 Set LB ← −∞, UB ←∞, gap←∞, ϵ← 0.5;
2 while gap ≥ δ do
3 ρ← ρ + 1;
4 Find a well-centered ϵ-optimal solution (ω, φ, ϱ) of the RMP, for iteration ρ;
5 UB ← min

{
UB, ZUB(λ)

}
;

6 foreach v ∈ V do
7 Solve the subproblem v using the labeling algorithm;
8 if Zsp

v < 0 then
9 Add column to RMP: Λv ← Λv ∪ {ρ};

10 LB ← max
{

LB, ZLB(ω, φ, ϱ) +
∑

var∈V Zsp
v

}
;

11 gap← (UB − LB)/(10−10 + |UB|);
12 Update the tolerance: ϵ← min{ϵmax, gap/D};

need to embed the CG within each node of a B&B tree. In our implementation, we de-
velop two well-established branching strategies in the VRP literature, known as two-step
branching (Subsection 4.4.1) and strong branching (Subsection 4.4.2). For each one, the
search tree is explored using the best-first rule, that is, a node with the smallest lower
bound is the node to be processed next.

4.4.1 Two-step branching

This strategy follows the branching scheme used by Desaulniers, Lessard and Hadjar
(2008), which is done in two steps, described as follows. Firstly, we attempt to branch on
the number of aircraft (or routes) used at a given solution λ of the RMP, calculated as:

nV =
∑
v∈V

∑
ρ∈Λv

λ
v

ρ. (235)

Thus, if the value of nV is fractional, then the branch is made by creating two child
nodes, forcing ∑v∈V

∑
ρ∈Λv λv

ρ ≤ ⌊nV ⌋ for the first child, and ∑
v∈V

∑
ρ∈Λv λv

ρ ≥ ⌈nV ⌉ for
the second one.

If nV is an integer, the branching strategy goes to the second step, which is directed
to the arc flows:

yv
rs =

∑
ρ∈Λv

yρv
rs .λ

v

ρ; ∀ v ∈ V ; r, s ∈ R; (236)

where yv
ρ is the same vector as the one defined at the end of Section 4.3. When selec-

ting a fractional component yv
rs, the procedure generates two new child nodes, enforcing∑

v∈V yv
rs = 0 for one, and ∑v∈V yv

rs = 1 for the other.
Notice that the branching rule in the first step only modifies the RMP of the child

nodes, while the rule in the second step changes both subproblems and the RMP of
the child nodes. In the circumstance of ∑v∈V yv

rs = 0, the removal of arc (r, s) must be
performed in all subproblems, and it is necessary to delete all columns associated with the
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routes that pass among requests r and s. For ∑v∈V yv
rs = 1, all arcs (r, s) are eliminated

for the subproblems given by Λv
′

such that v
′ ̸= v, whereas, in the subproblem defined

by Λv, all arcs starting from node r are discarded, with except the one that goes directly
to node s. The associated RMP is also modified in a similar way.

4.4.2 Strong branching

As a second option, we implement a branching rule capable of producing significan-
tly smaller B&B trees, compared to the previous strategy, called strong branching (AP-
PLEGATE et al., 1995; LINDEROTH; SAVELSBERGH, 1999; ACHTERBERG; KOCH;
MARTIN, 2005). The main idea is: given a node to be branched on, the procedure asses-
ses which of the candidate fractional variables offers the best improvement to the objective
function (i.e., the child nodes are solved for every choice of a set of different candidates)
before actually branching on the promising variable. This assessment should be relatively
quick in identifying good branches, for the reason that in the worst case, it would be
extremely expensive to solve 2K RMPs (where K is the number of fractional variables)
for making just one branching decision (DEY et al., 2023). To avoid the prohibitive com-
putational time, we just consider a subset of candidate branching variables, and solve
the RMPs by running only one iteration of the CG algorithm, without generating any
new columns. We are therefore proposing an approximate strong branching, since it com-
putes pseudo-costs. For simplicity, our method is henceforth referred to only as strong
branching.

There are different ways of developing a strong branching strategy in B&P methods,
especially because branching manners can be very specific to the problem (KLABJAN et
al., 2001; FUKASAWA et al., 2006; SANTOS et al., 2015). For the B&P method proposed
here, when nV is integer, we obtain a corresponding branching from a given fractional
solution λ̃ of the RMP, in terms of the arc variables ỹv

rs as in (236). Then, for each pair
of indices r, s ∈ R such that ∑v∈V ỹv

rs is fractional, we impose independently ∑v∈V yv
rs = 0

and ∑
v∈V yv

rs = 1 on the child nodes, and re-optimize the resulting RMP. Let z0
rs and

z1
rs be the solution values of the RMP after placing ∑

v∈V yv
rs = 0 and ∑

v∈V yv
rs = 1,

respectively, for the pair r, s ∈ R. If a resulting RMP becomes infeasible, we define its
solution value (z0

rs or z1
rs) as the best upper bound found in the B&B tree, branching the

pair of indices that results in the highest value z0
rs + z1

rs. Since we do not generate new
columns, z0

rs and z1
rs can be quickly computed by re-optimizing the RMP with a subset

of the master variables fixed at zero.

4.5 Primal heuristic for the RMP

To improve the upper bound of our B&P method, we incorporate a primal heuristic
based on the RMP to try to obtain good feasible/integer solutions prematurely. As
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any column in the RMP corresponds to a feasible route of the original problem, we can
seek a complete and feasible solution by combining a subset of these routes in such a
way that all requests are served exactly once. Therefore, a simple MIP-based primal
heuristic can be used to impose integrality constraints on variables λv

ρ of the RMP, and
solving the respective model with a general-purpose MIP solver. This idea has been
successfully employed in several VRP variants (SUBRAMANIAN; UCHOA; OCHI, 2013;
ARCHETTI; SPERANZA, 2014; ALVAREZ; MUNARI, 2017).

To ensure a fast MIP-based heuristic, we may limit the total runtime of the solver.
Knowing that all relevant columns may not be available at the RMP and the stipulated
time limit may be reached during execution, we may have as return a solution that is not
optimal for the original problem or even no feasible solution at all. Nonetheless, compu-
tational results presented in the VRP literature have shown that this type of heuristic
commonly brings feasible solutions and upper bounds that are useful for improving the
general performance of B&P methods.

4.6 Computational experiments

In this section, we present the results of computational experiments with our B&P
algorithm. The method has been coded in C++ on top of the PDCGM library (GOND-
ZIO; GONZÁLEZ-BREVIS; MUNARI, 2013; GONDZIO; GONZÁLEZ-BREVIS; MU-
NARI, 2016), which offers a efficient stabilized interior-point column generation method.
The B&P search tree follows the interior-point B&P framework described in detail by
Munari and Gondzio (2013). In addition, the primal heuristic (Section 4.5) uses the IBM
CPLEX Optimization Studio version 12.10 to solve the resulting MIP problems. All the
experiments were run on a PC with an Intel Core i7-4790 3.6GHz processor and 16 GB
of memory (which are the same hardware conditions indicated in Chapter 3). Our expe-
rimentation uses the same six months of journey logs (M1-M6) as defined in Section 3.4.
We remind that the real-life-based instances are presented in Table 4.

The next subsections aim to analyze and compare the computational results obtained
from B&P variants and then confront the best variant with the approaches presented in
Chapter 3. We set a time limit of one hour and a relative optimality tolerance of 0.01%.

4.6.1 Results from B&P variants

To better assess the contribution that each component/method (Subsections 4.2-4.5)
plays within our B&P, we solve the instances, evaluating:

• Switch between two-step and strong branching (Subsection 4.4); and

• Turn off and on the primal heuristic (PH) (Subsection 4.5).
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Hence, the experiment addresses a total of four B&P variants, which are represented
by the nomenclature [Branching strategy: 0→two-step branching or 1→strong branching,
PH : 0→off or 1→on]. Therefore, B&P[1, 0] refers to a B&P using the strong branching
strategy, without applying the primal heuristic.

Table 10 reports the averages for each month and B&P variant, obtained by solving
the real-life instances. It was structured as follows. The first and second columns identify
the month and B&P variant. Columns OF lb and OF ub are, in that order, the dual (lower)
bound and the primal (upper) bound. Consecutively, the fourth column (gap) calculates
the relative optimality gap, given by 100%.(OF ub − OF lb)/(OF ub + 10−10). nCol and
nNode bring the number of columns and nodes generated by the method. Finally, the
last three columns (RMPt, SPt and CPUt) correspond the computation time related to
the RMPs, subproblems and the B&P method as a whole, respectively. As a complement,
we present the results of this experimentation per instance in Appendix B.2.

As can be seen in Table 10, all the B&P variants were able to achieve optimal results
in all analyzed instances. However, in terms of computing time, there are some interesting
insights when comparing the B&P variants. Firstly, we can notice that months M4 and
M5 tend to require the most computational effort, in accordance with what was related
in Subsections 3.4.2 and 3.4.3.

Table 10 – Average of computational results obtained by the B&P variants.

Month B&P var OF lb OF ub gap nCol nNode RMPt SPt CPUt

M1

B&P[0, 0] 74,726.87 74,726.87 0.000% 416.00 2.75 0.113 1.699 1.898
B&P[1, 0] 74,726.87 74,726.87 0.000% 497.63 2.75 0.122 1.754 2.078
B&P[0, 1] 74,726.49 74,726.87 0.001% 406.63 0.88 0.064 0.699 0.811
B&P[1, 1] 74,726.49 74,726.87 0.001% 406.63 0.88 0.064 0.705 0.862

M2

B&P[0, 0] 164,788.01 164,788.01 0.000% 317.00 1.63 0.060 1.182 1.307
B&P[1, 0] 164,788.01 164,788.01 0.000% 356.88 1.63 0.063 1.198 1.342
B&P[0, 1] 164,788.01 164,788.01 0.000% 316.38 1.00 0.047 0.787 0.887
B&P[1, 1] 164,788.01 164,788.01 0.000% 316.38 1.00 0.049 0.794 0.915

M3

B&P[0, 0] 292,138.81 292,138.81 0.000% 594.33 4.50 0.172 4.778 5.095
B&P[1, 0] 292,138.81 292,138.81 0.000% 655.83 3.83 0.164 4.087 4.565
B&P[0, 1] 292,138.78 292,138.78 0.000% 588.83 1.00 0.087 1.715 1.861
B&P[1, 1] 292,138.78 292,138.78 0.000% 588.83 1.00 0.087 1.731 1.950

M4

B&P[0, 0] 415,261.37 415,261.37 0.000% 1,901.14 18.71 2.425 155.405 159.094
B&P[1, 0] 415,261.37 415,261.37 0.000% 2,215.07 18.50 2.705 164.825 173.480
B&P[0, 1] 415,260.24 415,261.42 0.000% 1,815.57 0.93 0.989 45.944 47.263
B&P[1, 1] 415,260.22 415,261.39 0.000% 1,815.57 0.93 0.990 46.767 48.488

M5

B&P[0, 0] 910,642.52 910,642.52 0.000% 1,910.27 21.27 3.890 387.947 393.884
B&P[1, 0] 910,642.51 910,642.51 0.000% 2,015.13 15.27 3.202 288.961 298.276
B&P[0, 1] 910,638.18 910,642.48 0.000% 1,801.33 0.93 1.541 97.604 99.602
B&P[1, 1] 910,638.16 910,642.46 0.000% 1,801.33 0.93 1.536 99.453 101.933

M6

B&P[0, 0] 372,179.53 372,179.53 0.000% 978.57 7.64 0.486 21.908 22.748
B&P[1, 0] 372,179.53 372,179.53 0.000% 1,064.79 7.50 0.552 24.433 26.379
B&P[0, 1] 372,179.51 372,179.51 0.000% 942.29 1.00 0.192 5.740 6.030
B&P[1, 1] 372,179.51 372,179.51 0.000% 942.29 1.00 0.192 5.786 6.206

Source: Own authorship.

Now for comparison purposes, consider Figures 23 and 24. Figure 23 shows a line
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chart, where on the abscissa axis there are the instances of M1-M6, numbered sequentially
from 1 to 65 (M1_1to3, . . . , M6_14to16) to facilitate the visualization, and the ordinate
axis shows CPUt. Therefore, Figure 23 portrays the computing time performance of the
variants when solving the instances. The line chart makes clear the formation of two
competing groups, B&P variants with PH turned off and on. Comparing the first group
separately (B&P[0, 0] and B&P[1, 0]), we found that the strong branching strategy tends
to improve the overall performance of the B&P method. This can be explained due to
the behavior that strong branching has (of first evaluating a set of variables and then
actually branching), combined with the fact that in these B&P variants it was necessary
to go much further down on the B&B tree than in the second group (see column nNode

in tables 40 and 41 at Appendix B.2), which gives this strategy an advantage. Although,
in the second group (B&P[0, 1] and B&P[1, 1]), two-step branching proved to be a slightly
more efficient, since the exploration of nodes in the B&B tree was limited to at most one
(as can be seen in nNode from Tables 42 and 43).

Figure 23 – Comparison of the B&P variants in relation to the runtime.
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What was verified in Figure 23 can be further explained in Figure 24, which illustrates
the computational time using a performance profile chart. This technique was introduced
in Dolan and Moré (2002), and since then it has been widely used to compare algorithms
and their computational implementation. Roughly speaking, a performance profile of a
software or algorithm can be defined as the cumulative distribution function for a given
performance metric, which in our case is CPUt. By the chart, P (f, q) is a function that
is associated to a tolerance value q ∈ R, which provides the fraction of instances solved
by an approach with performance within a factor q of the best performance metric. In
other words, P (f, q) can be understood as the probability that an approach solves a given
instance in no more than q times the minimum computing time taken by any proposed
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algorithm. To fix ideas, suppose we set q = 4. This is equivalent to saying that we are
willing to accept a performance on each instance up to four times worse than the best
performance on that same problem instance. Thus, if P (f, 4) = 0.7, for example, this
means the solution approach is able to solve 70% of the instances within this tolerance (see
Dolan and Moré (2002) for a detailed explanation of this performance profiles technique).

From Figure 24, we observe that the performance profile curve of the B&P[0, 1] variant
performed best compared to the others in around 90% of the solved instances (q = 0).
Since the performance curve associated with the B&P[0, 1] variant is above the others over
the interval q ∈ [0, 4.47], then it dominates those remaining. This means that B&P[0, 1]
stands out in relation to B&P[0, 0], B&P[1, 0] and B&P[1, 1] algorithms, in the sense that
it managed to solve more problems within a factor q of the performance of any other
approach. The previous comment is also valid when comparing only the performance
curves of B&P[0, 0], B&P[1, 0] and B&P[1, 1] variants, as the curve of B&P[1, 1] is above
the other performance profile curves associated with B&P[0, 0], B&P[1, 0]. As previously
discussed in Figure 23, we can notice the same two competing groups.

Figure 24 – Performance profile of the B&P variants, using the runtime as metric.
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4.6.2 Comparison with the approaches from Chapter 3

In the previous chapter, we presented a compact MIP model capable of representing
the problem in detail, to then be solved by a general-purpose MIP solver in order to have
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a solution approach (called the proposed model). Furthermore, we suggest MIP-based
heuristics such as relax-and-fix (R&F) and fix-and-optimize (F&O). The experiments
tested different partition sizes, parameters and forward/backward temporal strategies in
the R&F-F&O approach. Among the evaluated variants, the R&F-F&O heuristic with
backward strategy, fixation about flight sequences, four R&F partitions, one partition
with linearly relaxed variables and three F&O partitions, was the one that excelled, being
the only one that found quality solutions in all instances. It is referenced by R&F-
F&O[Backward, X2, 4, 1, 3].

In this subsection, we compare B&P[0, 1] with the proposed model and R&F-
F&O[Backward, X2, 4, 1, 3], by the quality criteria of the objective function values
and computational performances. Our comparison focuses on months M5 and M6, be-
cause they include all the crew rules (pilot time windows) and because they have the
largest instances, consistent with what was done in Subsection 3.4.3.

Figures 25-28 present charts similar to those in Figures 23 and 24. The metric used
in Figures 25 and 26 is the objective function, and in Figures 27 and 28, the computing
time. As expected, B&P[0, 1] easily dominates R&F-F&O[Backward, X2, 4, 1, 3] and the
proposed model and, in turn, R&F-F&O[Backward, X2, 4, 1, 3] dominates the proposed
model. From Figures 26 and 28, since the performance profile values of B&P[0, 1] coincide
at q = 0 and q →∞, we can conclude that, in all instances, B&P[0, 1] always determined
solutions with the lowest objective function value and computing time when compared to
the values obtained by the other approaches.

According to the analyzed results, although the B&P algorithm is exact, and the R&F-
F&O approach is a heuristic, all the B&P variants proved to be superior, both in terms
of solution quality (in which all results were optimal) and computational performance
(taking less than 400 s on average). Therefore, we can conclude that the reformulation
and B&P variants are appropriate for solving real-life instances in practice, helping the
decision-makers to efficiently determine which routes each aircraft should perform, taking
into account the fleet characteristics and the different operational costs, as well as aspects
of crew regulation, considered fundamental.
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Figure 25 – Comparison between B&P[0, 1] and the approaches from Chapter 3, in relation to
the upper bound.
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Figure 26 – Performance profile between B&P[0, 1] and the approaches from Chapter 3, using
the upper bound as metric.
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Figure 27 – Comparison between B&P[0, 1] and the approaches from Chapter 3, in relation to
the runtime.
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Figure 28 – Performance profile between B&P[0, 1] and the approaches from Chapter 3, using
the runtime as metric.

0,00
0,05
0,10
0,15
0,20
0,25
0,30
0,35
0,40
0,45
0,50
0,55
0,60
0,65
0,70
0,75
0,80
0,85
0,90
0,95
1,00

0,0 0,8 1,6 2,4 3,2 4,0 4,8 5,6 6,4 7,2

Proposed Model R&F‐F&O[Backward, X2, 4, 1, 3]        B&P[0,1]

Source: Own authorship.



151

Chapter 5

Rescheduling helicopter flights for
personnel transportation in the oil
industry

We address a rescheduling problem of helicopter flights that transport personnel from
a coastal airport to different maritime units spread over the sea (e.g., offshore oil rigs, gas-
producing platforms, etc.), motivated by the real case of a Brazilian oil company. These
flights are mainly related to transporting crews that are starting or finishing their duty
at each offshore platform. At the beginning of the week, the company determines a flight
schedule for each day in that week, defining departure times for the flights required on
that day. Some maritime units have more than one flight per day and each flight is often
a round trip between the company airport and a destination maritime unit (i.e., airport -
maritime unit - airport). Each flight departs from the airport with a group of previously
booked personnel with duties at the maritime unit of destination. Once these personnel
arrive at their destination, the helicopter comes back from this unit with another group
of also previously booked personnel that finished their duty.

Each helicopter hired by the company may carry out several round-trip flights per
day. In the absence of unexpected events, these daily flights should follow the schedule as
planned by the company at the beginning of the week, each one with its given departure
time, maritime unit destination, booked personnel and a given helicopter. However,
the daily flight schedule often cannot be carried out as previously planned because of
unexpected events, such as bad weather conditions at the airport and/or the maritime
units, passenger delays due to boarding/unboarding, aircraft breakdowns, absent crew
members, political reasons and other different causes. As a consequence, the departure
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times of some flights may be delayed to other times of the day, if possible, or even
postponed to the next day if a reschedule for the same day is not possible, in which case
it is called a transferred flight. Such flights, together with other relevant random events
on the day, require an effective rescheduling of the flights originally planned, which should
be done before the beginning of the next day. The company operators define different
penalties that incur when e.g. there is a delay in the original departure times of the
flights scheduled for the current day; flights are rescheduled for the next day; the original
assignment of helicopters to flight changes; additional helicopters are needed to cover the
flights; and transferred flights from previous days are not assigned on the current day.

This rescheduling problem is complex and challenging to solve because of the many
different characteristics that should be taken into account in the decision-making process,
the size of the problem in practical settings and the various specific constraints regarding
the airport, maritime units, flights and helicopters, as discussed below. For instance, the
aerial passenger transportation of the oil company considered here is the fourth largest
in number of flights in Brazil (HERMETO; HERMETO; HAWSON, 2019) and a typical
problem size can have dozens of maritime units, dozens of different daily flights to them
and several available helicopters. This transport operation is essential for oil companies
with offshore maritime units. For simplicity, in this study, all problem parameters are
recognized to be deterministic (i.e., known in advance). Such rescheduling problem can be
seen as the problem of assigning round-trip flights to helicopters, sequencing these flights
in a daily journey of the helicopters and, at the same time, sequencing all flights in the
busy runway of the airport and in the single heliport of each maritime unit.

We assume that each flight is planned for only one maritime unit and there are no
splitting or merging of flights. Furthermore, this ARP does not operate with connection
flights, as passengers cannot wait at the maritime units due to safety reasons (each takeoff
and landing operation is considered as a high-risk activity); passengers are not customers,
but actually company’s staff working on stressful activities and hence even short flight
delays can have a negative impact to the psychological and physical health (which af-
fects their productivity), and also can increase the company’s expenses with extra daily
allowances and overtime. When combined, such characteristics make the problem unique
in the literature. Therefore, we define this problem as an aircraft recovery problem with
priority distinction between flights, fleet and delays (ARP-PD).

To the best of our knowledge, this is the first study focusing on a real-life short-term
rescheduling problem of helicopter flights transporting personnel to and from maritime
units in the context of an oil company and under the particular constraints mentioned
above. The main contributions of this work are threefold: (i) we describe in details the
characteristics of the addressed real-life problem, so that researchers may further use this
detailed description in their studies; (ii) we propose two MIP formulations, based on dif-
ferent representations of the ARP-PD, that fully represents its relevant characteristics;
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(iii) we develop customized heuristic approaches to find relatively good feasible soluti-
ons within acceptable computational times. In addition to the theoretical contributions
related to the proposed models and algorithms, this study contributes to the practice
of operations research, enabling the improvement of the company’s decision making re-
garding flight rescheduling, by highlighting the potential of the proposed approach when
comparing its solutions with the company’s solutions.

The remainder of this chapter is organized as follows. In Section 5.1, we describe
in details the addressed flight rescheduling problem. Then, we propose two alternative
MIP formulations to model this problem in Section 5.2, and develop the tailor-made
heuristic approaches in Section 5.3. Computational results using real-life data of the
Brazilian company are presented and analyzed in Section 5.4. These results show that
the heuristics are effective for solving realistic problem instances in practical settings.

5.1 Problem description

As aforesaid, this study is inspired by a real-life problem of rescheduling daily heli-
copter flights that transport personnel from the company’s airport to its maritime units
(e.g., rigs, floating platforms, fixed platforms, floating hotels, maintenance units, support
vessels, etc.). The company programmers previously schedule several daily round-trip
flights at the beginning of the week and, in the absence of unexpected events (see the
previous section for examples of such events), the personnel transportation should follow
these previously scheduled flights.

However, unexpected events are common in practice and may cause delays in the
departure times of flights, changes in the assignment of helicopters to flights and even
the rescheduling of a flight to the next day (transferred flights). These changes require a
revised schedule for the previously planned flights, which are treated as an ARP-PD by
the company programmers. In the case of transferred flights, the flight schedule of the
day d + 1 should be revised to cope with transferred flights from day d, plus the flights
previously scheduled for day d+1. When rescheduling a flight for the next day, we should
take into account the following characteristics and requirements regarding the airport,
maritime units, flights and helicopters:

i) Airport: The airport has a single and busy runway, from which only one helicopter
can take off at a time. Thus, the interdeparture time between two consecutive flights
in this runway should not be less than a given time interval, typically of 5 minutes.
There is a daily time window for the operation of the airport that depends on the
sunrise and sunset times of the day, and all flights should take off and land at the
airport in sunlight (i.e., within this time window). After landing at the airport,
the helicopter must not take off before undergoing an inspection procedure, which
corresponds to the total preparation time of the helicopter to perform the next
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flight, referred to as the time on the ground. The minimum time interval between
the landing and takeoff for consecutive flights using the same helicopter should not
be less than a given time interval, typically of 45 minutes, including the times for
passenger unboarding and boarding the helicopter.

ii) Maritime units: The location of a maritime unit of a flight is fixed and known
in advance. In practice, they may be mobile units and their locations can change
over time, but the programmers can determine exactly their location during the
planning process. Each maritime unit has a single heliport for landing and taking
off and hence only one helicopter should be on the ground of this unit per time.
Because of the boarding and unboarding operations in the unit, the time interval
between landing and takeoff of a helicopter should not be less than a given time
interval, typically of 15 minutes, during which other helicopters must not land at
the unit. This also influences the departure times at the airport and hence the flight
rescheduling operation should ensure that the time interval between the takeoffs of
two consecutive flights from the airport runway going to the same maritime unit
should avoid more than one helicopter on the ground of this unit at the same time.

iii) Flights: Each flight is defined by its maritime unit destination and its departure
time from the airport on the current day. We represent it as a simple sequence
(route): airport - maritime unit - airport. Moreover, each flight has a previously
assigned group of passengers going to the maritime unit and another previously
assigned group of passengers coming back from this unit using the same helicopter,
which are typically related to the work shifts at the unit. The flight can be originally
scheduled in the timetable of the current day (table flight), or a flight transferred
from previous days that needs to be rescheduled on the current day. There may be
more than one flight to each maritime unit on a given day. The travel times of a
flight are assumed deterministic and depend only on the destination (maritime unit)
and the helicopter (assigned to the flight). A table flight should not departure from
the airport before its original departure time. Hence, the rescheduling of table flights
can only postpone their departure times, but never anticipate them. Moreover, a
table flight may be delayed for up to four hours; otherwise, it has to be transferred
to the next day and be rescheduled together with the table flights of the next day.
If there is a transferred flight from the last day and a table flight of the current
day going to the same maritime unit, the transferred flight has to land in that unit
before the table flight, even if this implies in a delayed departure time for the table
flight. In this case, the table flight has to be rescheduled because of this precedence
constraint between flights going to the same maritime unit. There is also a subset
of priority flights called entourage flights which after landing at a maritime unit
heliport, block it for the whole time spent by the entourage in the unit, commonly
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for the rest of the day. These special flights are used to transport managers and
other representatives of the company for special visits at the maritime unit.

iv) Helicopters: The helicopter fleet is hired by the company for a relatively long term,
e.g. through affreightment contracts of one or more years. The fleet is heterogeneous
in terms of travel cruise speed, the capacity of passengers, flying range, etc., because
the helicopters are of different models. Moreover, some helicopters are not able to
fly to some maritime units because of their distances to the airport, or because
of the sizes of their heliports. The same helicopter can perform several flights on
a day as long as these flights have a number of booked passengers that does not
exceed the capacity of the helicopter. The number of flights (turns) a helicopter
can do in a day is implicitly limited by the time window of the airport, duration
of flights, constraints regarding the interdeparture and interarrival times, among
others. There are three types of helicopter in the fleet: normal aircraft, which are
helicopters originally assigned to the daily table flights; pool aircraft, which are
spare helicopters promptly available at the airport but not previously assigned to
any flight – they can be used for flight rescheduling at additional costs; and spot
aircraft, which are not promptly available at the airport but can be used for flight
rescheduling with much higher additional costs than pool aircraft.

To facilitate the problem description, consider the time-space diagram presented in
Figure 29 for a simple schedule of five table flights (i1 to i5) of a given time interval of a
day. For each flight, this diagram indicates the corresponding scheduled departure times
(ri1 to ri5), the travel times from the airport (represented along the horizontal axis of the
figure) to the maritime units (MU1 to MU5), visiting times in the units and travel times
back to the airport. Three helicopters are used to perform these flights: helicopter 1 for
flights i1, i3, i5, helicopter 2 for flight i2 and helicopter 3 for flight i4. In the absence of
unexpected events, table flights i1 to i5 would strictly follow the schedule illustrated in
Figure 29. On the other hand, if there were events causing the partial interruption of
the operations of the airport and/or maritime units, some table flights of previous days
may be transferred to the current day considered in the illustration. Figure 30 illustrates
this situation, in which a transferred flight (i0) from the previous day is rescheduled (or
“recovered”, as named by the company operators) to the current day (originally planned as
in Figure 29). After the rescheduling, helicopter 1 is assigned to flights i0, i3, i5, helicopter
2 to flight i2 and helicopter 3 to flights i1, i4. Note in Figure 30 that the revised schedule
implies in a short delay (Di1 > 0) in the departure time of flight i1 and a change of its
assigned helicopter. Helicopter 3 becomes assigned to flight i1, instead of helicopter 1
as before, because the former is no longer able to perform flight i1 followed by flight i3

without delaying the departing time of flight i3 due to the requirement of a minimum
time on the ground between two flights of the same helicopter. Depending on the number
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of transferred flights from previous days, the rescheduling could imply in further delays
of other flights and reassignments of other helicopters, or even having to transfer some of
these flights to the next day.

Therefore, in addition to involving the rescheduling of the table flights of the day, the
flight rescheduling problem addressed in this dissertation also involves the rescheduling
(recovering) of transferred flights from previous days. It should satisfy different practi-
cal requirements, while minimizing a weighted sum of different penalties defined by the
company operators and associated to: i) transferred and table flights that cannot be res-
cheduled on the current day, ii) the use of additional and more expensive spare helicopters
(e.g., from the pool and spot fleets) to cover transferred and table flights, iii) delays in
the departure times of the table flights, and iv) changes in the previous assignment of
(normal) helicopters to cover the table flights. In case i), the company operators define
different penalties for not scheduling table flights and entourage flights of the day, trans-
ferred flights from the previous day (i.e., one day before the current day), and transferred
flights from two or more days before. In case ii), they define different penalties for using
helicopters from the pool and spot sets. In case iii), they define different penalties for
short flight delays of less than 15 minutes (called type I delays), and for longer delays
from 15 minutes to 4 hours (called type II delays).

Figure 29 – Time-space diagram illustrating a schedule with five flights, five maritime units
and three aircraft.
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In the next section, we present two MIP models that fully formulates the described
problem, while in Section 5.3 we develop a tailor-made heuristic able to find relatively
good feasible solutions within acceptable computational times.
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Figure 30 – Time-space diagram illustrating the reschedule with five flights, five maritime units
and three aircraft.
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5.2 Mathematical formulations

This section introduces the notation used throughout the chapter and presents two
MIP formulations of the ARP-PD, one based on the extension of a traditional network
flow model, and the other based on a novel event-based representation. Based on the
ARP-PD description presented in Section 5.1, we define the following notation to denote
the sets and parameters that are common in both models:

Sets and indices:

• I: set of flights, indexed by i and j;

• H: set of helicopters, indexed by h;

• P : set of maritime units, indexed by p;

• I0: subset of table flights;

• I1: subset of transferred flights from the previous day;

• I2: subset of transferred flights from two or more days before;

• IC : subset of entourage flights;

• Ih: subset of flights that can be assigned to helicopter h;

• Ip: subset of flights to maritime unit p ∈ P ;

• Hn: subset of helicopters in the normal set;
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• Hp: subset of helicopters in the pool set;

• Hs: subset of helicopters in the spot set;

• Hi: subset of helicopters able to perform flight i ∈ I.

Parameters:

• ri: original scheduled departure time of flight i;

• tf i: duration of flight i, including the time spent in the maritime unit of the flight;

• si: helicopter originally assigned to flight i ∈ I0 ∪ IC ;

• tat: minimum time on the ground between two consecutive flights of the same
helicopter (called turnaround time);

• sb: minimum time between two consecutive takeoffs in the runway of the airport
(known as safety briefing);

• tui: time spent in the maritime unit for flight i;

• dmax
I : maximum delay (of type I) allowed in the departure time of a table flight (15

minutes);

• dmax
II : maximum delay (of type II) allowed in the departure time of a table flight

(240 minutes);

• [twA, twB]: daily time window of the airport (typically between 7:00 am and 6:00
pm);

• M : a sufficiently large positive number.

5.2.1 Network-based formulation

The network-based formulation proposed in this section is based on the extension of the
traditional three-index vehicle-flow formulation that has been widely used in the literature
to formulate vehicle routing problems with heterogeneous fleet. The extension consists in
creating new variables and constraints to guarantee that all relevant characteristics of the
real-life problem are properly incorporated in the model. We create two dummy flights,
0 and n + 1, and impose that the flight plan of each helicopter begins with flight 0 and
ends with flight n + 1. In this way, consider the following decision variables:

• Xijh ∈ {0, 1}: assumes the value of 1 if and only if helicopter h performs flight j

immediately after flight i;

• Yih ∈ {0, 1}: assumes the value 1 if and only if flight i is performed by helicopter h;
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• Zij ∈ {0, 1}: assumes the value 1 if and only if the departure of flight i from the
airport is before the departure of flight j from the airport;

• Vh ∈ {0, 1}: assumes the value 1 if and only if helicopter h is used;

• BI
i ∈ {0, 1}: assumes the value 1 if and only if the delay of flight i is less than or

equal to dmax
I , for i ∈ IC ∪ I0;

• BII
i ∈ {0, 1}: assumes the value 1 if and only if the delay of flight i is greater than

dmax
I but less than or equal to dmax

II , for i ∈ IC ∪ I0;

• Di ≥ 0: delay of flight i with respect to its original scheduled departure time ri;

• DT i ≥ 0: departure instant of flight i;

• AT i ≥ 0: arrival instant of flight i.

The objective function (237) consists of minimizing the total weighted sum of the
following terms: f1, number of entourage flights not scheduled on the current day; f2,
number of transferred flights from two or more days before that are not scheduled on
the current day; f3, number of transferred flights from the previous day that are not
schedule on the current day; f4, number of table flights not scheduled on the current
day; f5, number of additional helicopters used from the spot set; f6, number of additional
helicopters used from the pool set; f7, number of normal helicopters; f8, number of
delayed table and entourage flights for which the delay is greater than 15 minutes but
less than or equal to 4 hours (type II delay); f9, number of delayed table or entourage
flights for which the delay is less than or equal to 15 minutes (type I delay); f10, number
of helicopters assigned to a table or an entourage flight that is different from the one
originally assigned; and f11, total delay considering all flights. Penalties w1 to w11 are the
weights corresponding to terms f1 to f11, respectively. This weighted objective function
is based on the company’s policy and experience to deal with flight recovery, helicopter
allocation and flight delays in practice. The weights are carefully defined by the company’s
manager in order to impose the lexicographic order: w1 > w2 > . . . > w11, taking into
account the relative importance of each type of flight and each type of helicopter used
and the consequences of the respective flight delays.

min f =
11∑

i=1
wi.fi; (237)

where each component fi is defined as:

f1 :=
|IC |−

∑
i∈IC

∑
h∈Hi

Yih

 ; f2 :=
|I2|−

∑
i∈I2

∑
h∈Hi

Yih

 ; f3 :=
|I1|−

∑
i∈I1

∑
h∈Hi

Yih

 ;

f4 :=
|I0|−

∑
i∈I0

∑
h∈Hi

Yih

 ; f5 :=
∑

h∈Hs

Vh; f6 :=
∑

h∈Hp

Vh; f7 :=
∑

h∈Hn

Vh;
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f8 :=
∑

i∈IC∪I0

BII
i ; f9 :=

∑
i∈IC∪I0

BI
i ; f10 :=

∑
i∈IC∪I0

∑
h∈Hi:
h ̸=si

Yih; f11 :=
∑
i∈I

Di.

Having settled the objective function, we define the flow constraints (238)-(240). De-
tailing, (238) guarantee that if flight i is in planning, it has a single immediate success;
(239) assure the flow conservation through the network; and (240) force dummy nodes 0
and n + 1 to be the first and last flights of each helicopter, linking the aircraft usage by
variable Vh.

(238)
∑

j ∈Ih∪{n+1}
Xijh = Yih; ∀ i ∈ I; h ∈ Hi;

(239)
∑

j ∈{0}∪Ih

Xjih =
∑

j∈Ih∪{n+1}
Xijh; ∀ i ∈ I; h ∈ Hi;

(240)
∑
j ∈I

∑
h ∈Hj

X0jh =
∑
i∈I

∑
h∈Hi

Xi(n+1)h =
∑
h∈H

Vh.

Constraints (241) state that each flight can be assigned to at most one aircraft, while
(242) assure that such assignment can only happen if this aircraft is used.

(241)
∑

h ∈Hi

Yih ≤ 1; ∀ i ∈ I;

(242)Yih ≤ Vh; ∀ h ∈ H; i ∈ Ih.

(243)-(246) are temporal constraints. (243) impose the synchronization of flight de-
partures, including turnaround times; (244) preserve the flight durations, determining
each arrival instant; (245) satisfy the planned departure time of the flights, quantifying
the resulting delay for each flight; and (246) respect the closing time of the airport time
window.

(243)DT j ≥ AT i + tat .
∑

h∈Hi∩Hj

Xijh −M.

1−
∑

h∈Hi∩Hj

Xijh

 ; ∀ i, j ∈ I | i ̸= j;

(244)AT i = DT i + tf i.
∑

h∈Hi

Yih; ∀ i ∈ I;

(245)ri.
∑

h ∈Hi

Yih ≤ DT i ≤ ri.
∑

h∈Hi

Yih + Di; ∀ i ∈ I;

(246)AT i ≤ twB.
∑

h∈Hi

Yih; ∀ i ∈ I.

Constraints (247) and (248) activate the binary variables related to the type of delays
(I or II) incurring to table and entourage flights. Specifically, constraints (247)1 ensure
that a allocated flight can have at most one type of delay, while constraints (248) limit the
delay duration according to the delay type. Note that, together with the weights assigned
1 As a matter of fact, these constraints are valid inequalities because the objective function (237)

penalizes variables BI
i and BII

i , so that only one of these variables is activated when we find a feasible
(integer) solution.
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to BI
i and BII

i in the objective function (237), these constraints model the piecewise linear
behavior of the penalties applied in terms of the delay duration.

(247)BI
i + BII

i ≤ 1; ∀ i ∈ IC ∪ I0;
(248)Di ≤ dmax

I .BI
i + dmax

II .BII
i ; ∀ i ∈ IC ∪ I0.

If flights i and j are scheduled in a solution, constraints (249)-(251) impose a single
order of precedence between them.

(249)Zij + Zji ≤ 1; ∀ i, j ∈ I | i ̸= j;
(250)Zij + Zji ≥

∑
h∈Hj

Yjh +
∑

h∈Hi

Yih − 1; ∀ i, j ∈ I | i ̸= j;

(251)2. (Zij + Zji) ≤
∑

h∈Hi

Yih +
∑

h∈Hj

Yjh; ∀ i, j ∈ I | i ̸= j.

Constraints (252) and (253) enforce the synchronization of the departure of flights
from the airport and their arrival at the maritime units, guarding the safety briefing and
each time spent at a MU, respectively.

(252)DT j −DT i ≥ sb.Zij −M.(1− Zij); ∀ i, j ∈ I | i ̸= j;
(253)DT j −DT i ≥ tui.Zij −M.(1− Zij); ∀ p ∈ P ; i, j ∈ Ip | i ̸= j.

Constraints (254) guarantee the precedence between transferred and table flights going
to the same maritime unit. Note that the departure of a table flight from the airport
can never be before the departure of a transferred flight if both flights have the same
maritime unit of destination. Constraints (255) block the maritime unit of destination of
the entourage flights, while constraints (256) block the helicopter that performs them.

(254)Zij = 0; ∀ i ∈ I0 ∩ Ip; j ∈ (I1 ∪ I2) ∩ Ip; p ∈ P ;
(255)Zij = 0; ∀ i ∈ IC ∩ Ip; j ∈ I \ IC ∩ Ip; p ∈ P .

(256)Xi(n+1)h = Yih; ∀ i ∈ IC ; h ∈ Hi.

Finally, constraints (257)-(262) define the type and domain of the decision variables.

(257)Xijh ∈ {0, 1}; ∀ i ∈ {0} ∪ I; j ∈ I ∪ {n + 1} | i ̸= j; h ∈ H;
(258)Yih ∈ {0, 1}; ∀ i ∈ I; h ∈ H;
(259)Zij ∈ {0, 1}; ∀ i, j ∈ I;
(260)Vh ∈ {0, 1} ∀ h ∈ H;
(261)BI

i ∈ {0, 1}, BII
i ∈ {0, 1}; ∀ i ∈ I;

(262)DT i ≥ 0, AT i ≥ 0, Di ≥ 0; ∀ i ∈ I.

5.2.2 Event-based formulation

We developed an alternative formulation based on the assignment of flights to take-
off events that can take place in the airport runway. To explain the reasoning of this
formulation, we start with the example presented in Figure 31, which illustrates a fea-
sible solution of an instance with three flights and three maritime units (MU1 to MU3).
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The vertical axis of the figure illustrates the maritime units, while the horizontal axis
shows the planning time horizon of the airport. As indicated in the figure, this planning
horizon is represented through a finite number of airport events. These events define
takeoff operations from the airport runway throughout the day and hence they represent
the departure times of the flights assigned to them. Thus, the number of takeoff events
coincides with the total number of flights in the instance (note that there are three takeoff
events in Figure 31) and each flight must be assigned to an event.

Figure 31 – Schematic representation of the event-based formulation for a problem instance
with three flights.

0 n + 1

1 32Airport

MU1

MU2

MU3

Source: Own authorship.

There are two routes in the feasible solution presented in Figure 31, each one associated
with a helicopter. Both start at the (dummy) event 0 and finish at the (dummy) event
n+1, and consist of an alternating sequence of takeoff events from the airport and round-
trip flights to maritime units. Thus, the problem is represented by a set of takeoff events
E = {1, . . . , n}, such that each of these events is assigned to at most one helicopter and
round-trip flight, and the additional dummy events 0 and n + 1 represent the first and
last event assigned to any helicopter that performs at least one flight, as also done in the
previous model. We assume a lexicographic order of events and thus event e ∈ E must
start before another event g ∈ E if e < g. Then, in addition to variables Vh, BI

i , BII
i and

Di already defined for the network-based model, we further define the following decision
variables for the event-based formulation:

• Xeih ∈ {0, 1}: assumes the value of 1 if and only if helicopter h performs flight i

using the takeoff event e;

• We ≥ 0: starting time of event e.

The objective function is defined similarly as in the network-based model using (237),
but since there are different types of variables in the event-based model, we need to
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redefine the following terms:

f1 :=
|IC |−

∑
e∈E

∑
i∈IC

∑
h∈Hi

Xeih

 ; f2 :=
|I2|−

∑
e∈E

∑
i∈I2

∑
h∈Hi

Xeih

 ;

f3 :=
|I1|−

∑
e∈E

∑
i∈I1

∑
h∈Hi

Xeih

 ;

f4 :=
|I0|−

∑
e∈E

∑
i∈I0

∑
h∈Hi

Xeih

 ; f10 :=
∑
e∈E

∑
i∈I0∪IC

∑
h∈Hi:
h̸=si

Xeih.

These terms have the same meaning as before, but they were rewritten using the event-
based decision variables. The remaining terms, namely f5 to f9 and f11, are defined
exactly as previously stated in (237).

The first block of constraints guarantee that aircraft routes correspond to a sequence
of airport takeoff events and round-trip flights. Constraints (263) ensure that if flight i is
not transferred to the next day, then it should be performed by a single helicopter using
a single takeoff event. Constraints (264) ensure that if the takeoff event e is used, then a
single helicopter uses it to perform a single flight. Constraints (265) relate the usage of a
helicopter with the assignment of this helicopter to a flight.

(263)
∑
e ∈E

∑
h ∈Hi

Xeih ≤ 1; ∀ i ∈ I;

(264)
∑
i ∈I

∑
h ∈Hi

Xeih ≤ 1; ∀ e ∈ E ;

(265)
∑
e ∈E

Xeih ≤ Vh,∀ i ∈ I; h ∈ Hi.

Constraints (266) ensure that takeoff events do not overlap in the airport runway,
as they impose a minimum time interval sb between any event e and its lexicographic
predecessor in set E . Note that these constraints imply an ordering to events in E and
impose a sequential assignment of events to time slots of duration at least sb. Constraints
(267) synchronize the starting times of two takeoff events of the same helicopter. If
Xeih = 1 then helicopter h uses the takeoff event e to perform flight i and, hence, any
other later event g used by the same helicopter (to perform any flight j) can only start
after the starting time of e, plus the duration of flight i (tf i), plus the inspection time
(tat) of the helicopter. Constraints (268) set the starting time of the dummy event n + 1
based on the last flight performed by any helicopter h (the inspection time tat should
not be applied after the last flight). The value of Wn+1 is used later to guarantee the
satisfaction of the airport time window.

(266)We ≥ W(e−1) + sb.
∑
i∈I

∑
h∈Hi

Xeih; ∀ e ∈ E ∪ {n + 1};

(267)Wg ≥ We + (tf i + tat).
Xeih +

∑
j∈I

Xgjh − 1
 ;

∀ e, g ∈ E | g > e; i ∈ I; h ∈ Hi;
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(268)Wn+1 ≥ We + tf i.Xeih; ∀ e ∈ E ; i ∈ I; h ∈ Hi.

Constraints (269) act as time windows for the starting time of a takeoff event e assigned
to a flight i. If there is an aircraft h ∈ Hi with this assignment (i.e., Xeih = 1), these
constraints guarantee that event e starts after the originally scheduled departure time ri

of flight i, and allow a delay Di, if necessary. Otherwise, they are redundant. Constraints
(270) ensure that all events satisfy the airport time window.

(269)ri.
∑

h ∈Hi

Xeih ≤ We ≤ ri.
∑

h ∈Hi

Xeih + Di + twB.

1−
∑

h∈Hi

Xeih

 ; ∀ e ∈ E ; i ∈ I;

(270)twA ≤ We ≤ twB; ∀ e ∈ E ∪ {0, n + 1}.

Constraints (271)2 and (272) are similar to constraints (247) and (248) defined in the
network-based model and thus, they guarantee that there is at most one type of delay (I
or II). Note that because of the summation on the right-hand of (271), these constraints
also ensure that a flight cannot be delayed if it is not assigned to any aircraft and event.

(271)BI
i + BII

i ≤
∑
e∈E

∑
h∈Hi

Xeih; ∀ i ∈ IC ∪ I0;

(272)Di ≤ dmax
I .BI

i + dmax
II .BII

i ; ∀ i ∈ IC ∪ I0.

Constraints (273) impose the minimum time interval between consecutive takeoffs
of different helicopters performing different flights (i and j) to the same maritime unit
destination (p) (i.e., if ∑h∈Hi

Xeih = ∑
h∈Hj

Xgjh = 1). Note that these constraints ensure
a synchronization between the arrival and departure times of any two different helicopters
going to the same maritime unit, avoiding these two aircraft of being on the ground of
this maritime unit simultaneously.

(273)Wg ≥We +tui.

∑
h∈Hi

Xeih +
∑

h∈Hj

Xgjh−1
 ; ∀ p∈P ; i, j ∈ Ip | i ̸= j; e, g ∈ E | g > e.

Constraints (274) impose the precedence order between a transferred flight and a table
flight going to the same maritime unit. Constraints (275) and (276) guarantee that the
helicopter performing an entourage flight blocks the corresponding maritime unit after
landing, until the end of the day.

(274)
∑

h ∈Hj

e−1∑
g =1

Xgjh ≤ 1−
∑

h ∈Hi

Xeih; ∀ p ∈ P ; i ∈ I2 ∪ I1 ∩ Ip; j ∈ I0 ∩ Ip; e ∈ E ;

(275)
∑

h ∈Hj

|E|∑
g =e+1

Xgjh ≤ 1−
∑

h∈Hi

Xeih; ∀ p ∈ P ; i ∈ IC ∩ Ip; j ∈ I \ IC ∩ Ip; e ∈ E ;

(276)
|E|∑

g =e+1
Xgjh ≤ 1−Xeih; ∀ i ∈ IC ; j ∈ I | j ̸= i; e ∈ E ; h ∈ Hi ∩Hj.

2 Analogous to (247), these constraints are also valid inequalities.
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Finally, constraints (277)-(281) impose the domain of the decision variables.

(277)Xeih ∈ {0, 1}; ∀ e ∈ E ∪ {0, n + 1}; i ∈ I; h ∈ H;
(278)Vh ∈ {0, 1}; ∀ h ∈ H;
(279)BI

i ∈ {0, 1}, BII
i ∈ {0, 1}; ∀ i ∈ I;

(280)We ≥ 0; ∀ e ∈ E ∪ {0, n + 1};
(281)Di ≥ 0; ∀ i ∈ I.

It is worthy of note that the proposed event-based formulation can be extended to the
more general case that includes not only takeoff but also landing events, in order to avoid
these two types of events to overlap in the runway of the airport. This can be done by
duplicating the number of events in the airport and then, associating two events to each
flight: one for takeoff and another for landing. We have not included landing events in our
approach because the company disregards overlaps between two landing events or between
takeoff and landing events. The time intervals between these events are not bottlenecks
and the air traffic control handles such situations by maintaining the helicopter in the air
and delaying its landing for a couple of minutes.

5.3 Heuristic approach

Our first heuristic approach to this problem was based on a flight sequencing and a
straightforward aircraft allocation procedure. The flight sequencing was initially built
by an insertion algorithm inspired on the classic NEH procedure (NAWAZ; ENSCORE;
HAM, 1983). Then, three local search methods were applied to improve the sequence
based on swapping neighborhoods. The implementation of this algorithm was able to run
on a very short time (typically less than one second for realistic company instances), but
the aircraft allocation procedure did not allow the algorithm to obtain good solutions.
The main cause was that the heuristic had no look-ahead procedure, and hence the flights
were allocated to the aircraft generating a good local choice, but that was later revealed
as a poor global choice. This showed us the need for a different approach with a global
improvement method.

Thus, a second tailor-made heuristic approach was developed with more focus on the
aircraft allocation issues. This heuristic runs for longer in comparison with the first,
yet it generates considerable better solutions. We present its details on the remainder
of this section and analyze its computational performance in Section 5.4. It consists
of a construction part followed by an improvement part. The construction part is a
relax-and-repair procedure that alternates between a relaxed stage that searches for a
(relaxed) solution disregarding the heterogeneity of the fleet and a repairing stage applied
to this relaxed solution, until it finds a feasible solution to the problem. After that, the
improvement part tries to improve this feasible solution based on six different local search
movements, as described below and in more detail in Appendix C.
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5.3.1 Construction part

The main steps of the construction part are summarized in Figure 32, in which Y k

denotes the relaxed solution vector of iteration k, OFk denotes the objective value of
the aircraft schedule obtained from Y k, and Hmin

total is a lower bound for the number of
aircraft required for performing all flights – all these components are detailed in Subsection
5.3.1.1. This part is an iterative process that starts calling the relaxed construction stage
to obtain two relaxed solutions that are then modified in the repairing stage, if necessary.
Depending on the objective values of the repaired solutions, it may repeat the call to these
stages using different parameter choices to obtain solutions with an increased number of
aircraft. The relaxed construction and repairing stages are detailed in Subsections 5.3.1.1
and 5.3.1.2, respectively.

Figure 32 – Main steps of the proposed construction part.

Construction part

relaxed solutions 
Yk-1 and Yk

feasible 
solution

Run the relaxed 
construction stage

input 
data 

Run the relaxed 
construction stage

relaxed 
solution Yk

Run the repairing stage 
for each entering solution

N

Reset the ordered sets of flights; 
increment k and update counters         H t

min

Y

 OFk < OFk-1 and 

          < |H|H total
min

Source: Own authorship.

5.3.1.1 Relaxed construction stage

This stage seeks to allocate all flights to a given number of aircraft, taking into account
all the problem characteristics defined in Section 5.1, except for the heterogeneity of the
fleet. Before detailing the steps of this stage, we introduce the required notation. Let
HT = {r, n, p, s} represent the set of aircraft type, where r is a (fictitious) generic aircraft
type (used for the transferred flights), and n, p and s indicate an aircraft in the normal,
pool and spot set, respectively. Let Qt, ∀t ∈ HT \{r}, be the subset of previously
scheduled (table and entourage) flights that have an assigned aircraft of type t ∈ {n, p, s}
(hence, Qt ⊆ I0∪IC , ∀t ∈ HT \{r}), and Qr = I1∪I2 be the set of transferred (recovery)
flights without an assigned aircraft. Note that Qr ∩ (⋃t∈HT \{r}Qt) = ∅. Assuming that
all scheduled flights will depart on the current day and ignoring possible overlaps in the
runway of the airport, the minimum number of aircraft of each type t ∈ HT required for
performing these flights can be computed as:

Hmin
t =


⌈∑

i∈Qt
(tat+tf i)

twB−twA

⌉
, t ∈ HT \{r};

0, t = r.
(282)
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Therefore, Hmin
t is a lower bound for the required number of each aircraft type t. Ad-

ditionally, a lower bound for the number of aircraft required for performing all flights,
denoted as Hmin

total, can be easily estimated by:

Hmin
total =

∑
t∈HT

Hmin
t . (283)

At first, the relaxed construction stage builds Hmin
total flight sequences that are converted

into schedules and then assigned to aircraft, as detailed in the remainder of this section.
This value is then increased and new flight sequences are built, in an attempt to obtain
schedules with improved objective values.

Let pzi denote the due time of each flight i, computed as the originally scheduled
departure time plus the duration of the flight (i.e., pzi = ri + tf i). For each aircraft
type t ∈ HT , we define an ordered list Lt = {ℓ1, ℓ2, . . . , ℓ|Qt|} of flights sorted in non-
descending order of pzi. Accordingly, the order of flights in this list follows an earliest due
time (EDT) rule. The first step of each iteration in this stage is to define initial sequences
comprising two flights: one from the beginning and another from the end of the horizon.
Thereupon, sequences of flights are obtained by removing the first Hmin

t elements from
list Lt (i.e., ℓ1 to ℓHmin

t
) and setting them (in this order) as the initial flights of the Hmin

t

flight sequences of type t ∈ HT \{r}. Next, the last Hmin
t flights are removed from the

list Lt (i.e., ℓ|Qt|−Hmin
t +1 to ℓ|Qt|) and set (in this order) as the final flights of the same

Hmin
t flight sequences of type t ∈ HT \{r}. Using this rule, we create set Prv, for each

v = 1, . . . , Hmin
total, composed by sequenced flights (route) to be later converted to a schedule

and then assigned to a specific aircraft. They are created sequentially for each aircraft
type, resulting in:

Pr1

Pr2
...

PrHmin
n

 =


{ℓ1, ℓ|Qn|−Hmin

n +1}
{ℓ2, ℓ|Qn|−Hmin

n +2}
...

{ℓHmin
n

, ℓ|Qn|}

 ;


PrHmin

n +1

PrHmin
n +2
...

PrHmin
n +Hmin

p

 =


{ℓ1, ℓ|Qp|−Hmin

p +1}
{ℓ2, ℓ|Qp|−Hmin

p +2}
...

{ℓHmin
p

, ℓ|Qp|}

 ;


PrHmin

n +Hmin
p +1

PrHmin
n +Hmin

p +2
...

PrHmin
n +Hmin

p +Hmin
s

 =


{ℓ1, ℓ|Qs|−Hmin

s +1}
{ℓ2, ℓ|Qs|−Hmin

s +2}
...

{ℓHmin
s

, ℓ|Qs|}

 .

So, each of the first Hmin
t elements in Lt becomes the first flight of each sequence for

aircraft type t, and each of the last Hmin
t elements in Lt becomes the last flight of each

sequence for aircraft of type t. Note that as Hmin
r = 0, there is no removal of transferred

flights from list Lr. Moreover, any flight inserted into Prv is removed from Lt, and hence:

( ⋃
t∈HT

Lt

)
∩
(Hmin

total⋃
v=1

Prv

)
= ∅.
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In any iteration k of this heuristic, we denote as PRk the set containing the subsets
of sequenced flights Pr1, P r2, . . . , P rHmin

total
, and represent the corresponding solution using

the binary vector of components Y vk
ij , in which Y vk

ij assumes the value of 1, if and only if,
flight i precedes flight j in the schedule v. To illustrate the sets and parameters defined
so far, Figure 33 depicts an example with 10 flights. The figure presents a table with the
details of each flight in which the first column shows the original index of the flight, the
second column identifies the flight type (0 for table flight and 1 for transferred) and the
third column shows the aircraft type as defined above (r, n, p, s). The next three columns
show parameters ri, tat and tf i, respectively, and the remaining three columns present
the value of the numerator of the ratio in the first case of (282), the due time pzi and the
position of the flight in the corresponding ordered list Lt (EDT), respectively. The airport
availability is twB−twA = 11:05. Each Hmin

t value is shown in the upper right corner of the
figure. For the flights in Figure 33, we obtain Hmin

total = 3 and the following initial sequence
and corresponding solution, according to the definitions and the steps already described:
Pr1 = {4, 8}, Y 1,1

0,4 = 1, Y 1,1
4,8 = 1, Y 1,1

8,11 = 1; Pr2 = {7, 10}, Y 2,1
0,7 = 1, Y 2,1

7,10 = 1, Y 2,1
10,11 = 1;

Pr3 = {9, 5}, Y 3,1
0,9 = 1, Y 3,1

9,5 = 1, Y 3,1
5,11 = 1, where indices i = 0 and i = 11 represent the

airport vertex.

Figure 33 – Application example of the initial flight sequencing.

𝑖
𝑇𝑦𝑝𝑒
𝐹𝑙𝑖𝑔ℎ𝑡

𝑇𝑦𝑝𝑒
𝐴𝐶𝐹𝑇

𝑟𝑖 𝑡𝑎𝑡 𝑡𝑓𝑖 𝑡𝑎𝑡 + 𝑡𝑓𝑖
𝐷𝑢𝑒 𝑇𝑖𝑚𝑒
𝑟𝑖 + 𝑡𝑓𝑖

𝐸𝐷𝑇

3 1 r 06:55 00:45 01:27 02:12 08:22 ℓ1
1 1 r 06:55 00:45 01:42 02:27 08:37 ℓ2
2 1 r 06:55 00:45 01:42 02:27 08:37 ℓ3
4 0 n 07:00 00:45 01:19 02:04 08:19 ℓ1
6 0 n 07:10 00:45 01:36 02:21 08:46 ℓ2
8 0 n 07:05 00:45 02:00 02:45 09:05 ℓ3
7 0 p 07:15 00:45 01:25 02:10 08:40 ℓ1
10 0 p 07:20 00:45 01:26 02:11 08:46 ℓ2
9 0 s 07:25 00:45 01:19 02:04 08:44 ℓ1
5 0 s 08:00 00:45 04:00 04:45 12:00 ℓ2

Availability: 11:05 𝐻𝑟
𝑚𝑖𝑛 = 0;

𝐻𝑛
𝑚𝑖𝑛 = 1;

𝐻𝑝
𝑚𝑖𝑛 = 1;

𝐻𝑠
𝑚𝑖𝑛 = 1;

𝑷𝒓𝟏:

𝑷𝒓𝟐:

𝑷𝒓𝟑:

4 8

7 10

9 5

Source: Own authorship.

Having defined initial flight sequences as described above, the next step is to determine
flight schedules from them, by setting the actual departure and arrival times of each
flight i, denoted as DT i and AT i, respectively, which allows us to compute the resulting
delays Di and penalties in terms of variables BI

i and BII
i , as defined in Section 5.2. The

scheduling of these sequences without considering the heterogeneity of the feet (in this
stage) is done by a procedure named GetSchedule. This procedure is detailed in Algorithm
5 for a given iteration k of the heuristic. It uses the flag variables factTime and factD that
are set to true if the tentative schedule is true, and to false, otherwise. Flag factTime is
related to the feasibility of departure and arrival times, while factD regards the feasibility
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of delays, airport time windows and precedence requirements.
Steps 4-8 of Algorithm 5 initialize the departure and arrival times of each flight,

assuming that all flights will depart at the originally planned departure time (ri) and
hence no delay incurs. Then, step 9 creates an ordered list containing all flights i ∈ I
sorted by the departure times DT i computed in the previous steps. Steps 10-29 check
if these tentative schedules violate the constraints related to the overlapping of aircraft
going to the same maritime unit (tui), safety briefing (sb), flight time duration (tf i) and
minimum time on the ground between two consecutive flights of same aircraft (tat). If any
of these constraints are violated, the algorithm sets factT ime to false and modifies the
departure and arrival times of flights that cause the violations. These steps are repeated
until there are no more violations, and thus the schedules are feasible. Notice that in the
loop defined in line 12, index j starts with the flight having the largest departure time
and then loop over the next flights following the order defined by list O.

The delays of the scheduled flights and the related penalties depending on the type of
these delays are computed in steps 31-41. Flag variable factD is set to false if there is
at least one flight that violates (i) the maximum delay allowed in the departure time of a
table or entourage flight (DT i−ri > dmax

II ); (ii) airport time window (AT i > twB); and/or
(iii) the precedence requirements between the flights going to the same maritime unit.
Therefore, if GetSchedule detects an infeasible schedule, it returns with factD = false.
In this case, the heuristic removes the last scheduled flights from each Pr1, . . . , P rHmin

total

and adds them back to their corresponding list Lt, until feasible schedules are obtained.
Once feasible schedules are obtained from the flight sequences in PRk, the heuristic

tries to insert new flights to these sequences. This whole flight insertion procedure, hen-
ceforth called InsertFlights, is detailed in Algorithm 6. At first (see Steps 10-17), for each
aircraft type t ∈ HT and flight sequence v = 1, . . . , Hmin

total, InsertFlights checks the impact
of inserting each (unscheduled) flight i ∈ Lt immediately before and after the position of
each scheduled flight j ∈ Prv. More specifically, it calculates −→TD

tv

ij and ←−TD
tv

ij , which are
the total score of delay types that would be obtained if i was inserted immediately before
and after j, respectively. This is done using also GetSchedule and the insertion is flagged
as feasible only if this procedure returns factD = true. Observe that GetSchedule is cal-
led whenever it is necessary to compute a schedule from a sequence. Then, after checking
all possible insertions, InsertFlights selects the tuple of indices (i∗, j∗, t∗, v∗) such that
min{−→TD

t∗v∗

i∗j∗ ,
←−
TD

t∗v∗

i∗j∗} is the smallest value over all feasible insertions calculated, accor-
ding to Step 18 (in the occurrence of ties, the heuristic selects the flight with the smallest
index and stores the others as an alternative for the improvement part). Lastly, on Steps
20-23, InsertFlights moves i∗ from Lt∗ to Prv∗ and set Y v∗k

i∗j∗ = 1, if −→TD
t∗v∗

i∗j∗ ≤
←−
TD

t∗v∗

i∗j∗ , or
Y v∗k

j∗i∗ = 1, otherwise.
The insertion of flights is repeated until it is no longer possible to assign unscheduled

flights. It may happen because all flights have already been scheduled (and hence Lt
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Algorithm 5: GetSchedule
Input: instance parameters, PRk and current solution Y k.
Output: DT, AT, D, BI , BII , factD.

1 Let factT ime and factD be flag variables related to the feasibility of the schedule;
2 Let pi ∈ P be the destination of flight i, ∀ i ∈ I;
3 Set factD ← true;
4 foreach i ∈ I do
5 DT i ← 0; AT i ← 0; Di ← 0; BI

i ← 0; BII
i ← 0;

6 if i ∈ PRk then
7 DT i ← ri;
8 AT i ← DT i + tf i;

9 Let O be an ordered list of all flights i ∈ I sorted in non-ascending order of departure times
DT i;

10 do
11 Set factT ime← true;
12 foreach j ∈ O do
13 for i = 1 to |I|, step +1 do
14 if j ∈ PRk ∧ i ∈ PRk ∧DT j ≥ DT i ∧ j ̸= i then

// Check feasibility with respect to parameters tui and sb
15 if pj = pi ∧DT j −DT i < tui then
16 factT ime← false;
17 DT j ← DT j + tui − (DT j −DT i);
18 if DT j −DT i < sb then
19 factT ime← false;
20 DT j ← DT j + sb− (DT j −DT i);

// Check feasibility with respect to tf j and tat

21 if AT j ̸= DT j + tf j then
22 factT ime← false;
23 AT j ← DT j + tf j ;
24 for v = 1 to (Hmin

n + Hmin
p + Hmin

s ), step +1 do
25 if Y v,k

i,j = 1 ∧DT j −AT i < tat then
26 factT ime← false;
27 DT j ← DT j + tat− (DT j −AT i);

28 while factT ime ̸= true;
29 foreach i ∈ PRk do
30 Di ← DT i − ri;
31 if 0 < Di ≤ dmax

I ∧ (i ∈ I0 ∪ IC) then
32 BI

i ← 1;
33 if dmax

I < Di ≤ dmax
II ∧ (i ∈ I0 ∪ IC) then

34 BII
i ← 1;

35 if [Di > dmax
II ∧ (i ∈ I0 ∪ IC)] ∨AT i > twB then

36 factD ← false;
37 foreach j ∈ PRk do
38 if DT j > DT i ∧ pi = pj ∧ [(i ∈ I0 ∪ IC ∧ j ∈ I1 ∪ I2) ∨ (i ∈ IC ∧ j ∈ I\IC)] then
39 factD ← false;
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become empty for all t ∈ HT ) or there is no tuple (i∗, j∗, t∗, v∗) that leads to a feasible
insertion. Thus, on the Steps 25 and 26, the remaining unscheduled flights are moved
from Lt, ∀ t ∈ HT , to one of the following recovery sets: RC , if it is an entourage flight;
R2, if it is a two-day transferred flight; R1 if it is a one-day transferred flight; or R0 if it
is a table flight. In addition to instance parameters, PRk and Y k, this procedure receives
ST as an input, which should specify the state of insertion regarding the constraints
that impose the heterogeneity of the fleet. If ST = R, then the insertion relaxes these
constraints (as in the relaxed construction stage); otherwise, ST = NR imposes that the
insertion must consider the heterogeneity of the fleet (as in the repairing stage).

Algorithm 6: InsertFlights
Input: instance parameters, PRk, current solution Y k and state ST .
Output: PRk, Y k.

1 Let HP be a set of aircraft, initializing HP ← {};
2 Let HAj be a set of aircraft for flight j;

// Verify if the heterogeneous fleet constraints should be ignored
3 if ST = R then
4 HAj ← {1, . . . , Hmin

total}, ∀ j ∈ I;
5 else // ST = NR
6 HP ← HP ∪ {Sk

j }, ∀ j ∈ I;
7 HAj ← HP ∩Hj , ∀ j ∈ I;
8 repeat
9 foreach t ∈ HT , i ∈ Lt, v ∈ HAi, j ∈ Prv do

10 Set i as the immediate predecessor of j in Prv, updating PRk and Y k accordingly;
11 GetSchedule(instance parameters, PRk, Y k);
12 If the resulting schedule is feasible, set:

−→
TD

t,v

i,j ← w8
∑

l∈I0∪IC
BII

l + w9
∑

l∈I0∪IC
BI

l + w11
∑

l∈I Dl;
13 Reset i as the immediate successor of j in Prv, updating PRk and Y k accordingly;
14 GetSchedule(instance parameters, PRk, Y k);
15 If the resulting schedule is feasible, set:

←−
TD

t,v

i,j ← w8
∑

l∈I0∪IC
BII

l + w9
∑

l∈I0∪IC
BI

l + w11
∑

l∈I Dl;
16 Remove i from Prv;

17 (i∗, j∗, t∗, v∗)← argmin
i∈Lt, t∈HT , v∈HAi, j∈P rv

{min{−→TD
t,v

i,j ,
←−
TD

t,v

i,j }};

18 if (i∗, j∗, t∗, v∗) ̸= ∅ then
19 Move i∗ from Lt∗ to Prv∗ ;

20 if −→TD
t∗,v∗

i∗,j∗ ≤
←−
TD

t∗,v∗

i∗,j∗ then Y v∗,k
i∗,j∗ ← 1;

21 else Y v∗,k
j∗,i∗ ← 1;

22 Update remaining solution Y k;
23 else
24 foreach t ∈ HT , i ∈ Lt do
25 Move i from Lt to the appropriate recovery set;

26 until Lt = ∅ for all t ∈ HT ;

In the next step of the heuristic, each flight sequence Prv is assigned to a specific
aircraft h, ignoring the heterogeneity of the fleet. This assignment seeks to select the
aircraft that, according to the original schedule, is pre-assigned to the largest number of



172 Chapter 5. Rescheduling helicopter flights for personnel transportation ...

flights in Prv. Let countvh be the number of times that aircraft h ∈ H is pre-allocated to a
flight in Prv (i.e., the number of times h = si for each flight i in Prv), for v = 1, . . . , Hmin

total.
Then, for each v and starting with v = 1, the aircraft assigned to sequence Prv is the
one with the largest countvh, such that h has not been assigned to any other sequence in
iteration k. After aircraft h is assigned to sequence Prv, we set Sk

i = h for each flight i

in Prv, and redefine Prh := Prv and Y hk
ij := Y vk

ij . The objective function value OF k of
iteration k is then calculated by:

OFk = w1.|Rc| + w2.|R2| + w3.|R1| + w4.|R0| + w5.H
min
s + w6.H

min
p + w7.H

min
n

+ w8 .
∑

i∈I0∪IC

BII
i + w9 .

∑
i∈I0∪IC

BI
i +

∑
i∈I0∪IC :si ̸=Sk

i

w10 + w11.
∑
i∈I

Di.
(284)

If OF k < OF k−1, then the schedule defined in the current iteration is the best found
so far, and therefore the heuristic sets it as the incumbent solution of the relaxed stage
(we initialize OF 0 = +∞). If Hmin

total < |H|, a new iteration of the current stage starts
by setting k = k + 1 and Hmin

t = Hmin
t + 1, if Hmin

t ≤ Ht (where Ht is the number of
aircraft of type t). The choice of which Hmin

t to increment is based on the least expensive
aircraft type available. The lists Lt, ∀t ∈ HT , are reset and the steps described above
are repeated. This iterative process stops if OF k ≥ OF k−1 or Hmin

total = |H|, terminating
the relaxed construction stage of the heuristic. The main steps of this stage are depicted
in the flowchart presented in Figure 34.

Figure 34 – Flowchart of the relaxed construction stage of the proposed heuristic.
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Source: Own authorship.

5.3.1.2 Repairing stage

Given a solution obtained in the relaxed construction stage, the repairing stage con-
sists of adjusting this solution, if necessary, to take into account the fleet heterogeneity
constraints and hence achieve a feasible solution of the problem. It verifies whether Sk

i

is compatible with Hi for each flight i ∈ PRk, starting with the sets and arrays defined
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in the last iteration of the relaxed construction stage. If Sk
i /∈ Hi, flight i is incompatible

with the assigned aircraft. So, this stage moves each incompatible flight i from PrSk
i

to
the corresponding Lt. Next, it calls the procedure InsertFlights with parameter ST = NR

to consider the compatibility between flight i and a given aircraft h when trying to insert
i into Prh (recall that at the end of the relaxed construction stage, each flight sequence
Prv was assigned to an specific aircraft h), which uses function GetSchedule to obtain the
corresponding schedule and check its feasibility in terms of time constraints. The main
steps of this stage are depicted in the flowchart shown in Figure 35.

Figure 35 – Flowchart of the repairing stage of the proposed heuristic.
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In summary, considering the overall scope of the construction part (see Figure 32), the
heuristic applies the repairing stage on both Y k and Y k−1, the last two (relaxed) solutions
obtained in the relaxed construction stage. If there is an improvement in the incumbent
solution in this first comparison between OF k and OF k−1 and also if there are aircraft
available, in the following iterations the heuristic executes the entire cycle contained in the
relaxed construction stage with an increased Hmin

t (adding a new aircraft to the schedule,
as already discussed), in order to obtain a different relaxed base solution. Thus, the
method proceeds by alternating the stages to define which aircraft will be assigned in
the schedules, checks the heterogeneity of the fleet and obtains a feasible solution. The
condition OF k < OF k−1 is always checked after the repairing stage, considering only
feasible solutions (i.e., solutions that take into account the heterogeneity of the fleet). As
soon as the heuristic finds no further improvement or the total number of aircraft in the
fleet is reached, the construction part ends with a feasible solution of the problem.

5.3.2 Improvement part

After obtaining a feasible solution, the following procedures are executed in the pre-
sented sequence, one at a time, until no improving move is found for the aircraft schedules:

1. Reschedule previously scheduled flights to accommodate transferred flights. It tries
to insert the flights that could not be allocated in the construction part. This
procedure starts removing an allocated flight and then places a flight that is about
to be transferred (a rejected flight) in its position. For the newly removed flight, this
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procedure verifies the impact of reinserting this flight between any pair of flights
(from the first to the last flight) in the schedule of each used aircraft that can
perform it (ignoring the one in which it was previously assigned). If the proposed
allocations are viable, the best recovery is then carried out and the incumbent
solution is updated.

2. Swap unscheduled flights for scheduled flights. If the previous procedure is not
able to allocate all flights, this improvement routine is then activated. It consists
of swapping a flight that is allocated in the schedule for another one that was
transferred when analyzing the gain condition for the objective function (example:
removing a table flight from the schedule to put a recovery flight in its place). Thus,
if the replacement is viable by validating the GetSchedule function and the weight
of the flight to be changed is greater for the objective function than the one to be
inserted, the incumbent solution is changed.

3. Transfer flights to other aircraft. This procedure is intended to improve the objective
function by transferring flights to different aircraft. For each flight in the schedule,
the method removes the respective flight from its original aircraft to replace it
on another aircraft, analyzing whether this transfer is viable due to the problem’s
constraints. If a better feasible solution is found, this new schedule is stored.

4. Inter-aircraft flight swapping. Basically for this procedure, the heuristic performs
the inter-change of flights between different aircraft, preserving the precedent and
subsequent positions. For each flight of an aircraft, its change for one of the desig-
nated flights of another aircraft is simulated. This routine ends when all flights are
considered by the permutation. If any change makes the objective function better
than before and the schedule remains viable in terms of times tui, sb, tat and AT i,
the incumbent solution starts to consider this inter-change.

5. Intra-aircraft flight swapping. This procedure performs the precedence rearrange-
ment of flights from the same aircraft. In the first iteration, the routine takes the
first flight in relation to the departure time and then places it between the second
and third flights of that association. Using the GetSchedule function, it is veri-
fied if the schedule is viable and when calculating the resulting objective function,
it checks if there has been an improvement. Afterwards, the first flight is placed
between the third and fourth flights, and so on. When the change of all flights is
considered for the aircraft in question, the feasible rearrangement that provides the
greatest reduction in the objective function is then chosen. The method is finalized
by applying this routine to all used aircraft.

6. Reduce delay types. After performing the previous five procedures, this routine
that seeks to decrease the count of flights with type I and II delay is activated.
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Through the current schedule, the heuristic analyzes which flights could return
to their departure and arrival times changed to the initial values of planned time
(without delay), by increasing the delay of flights located close to these. Thus,
for each flight i contained in the schedule with Di > 0 is placed DT i = ri and
AT i = ri + tf i, and then a routine is performed that “pushes” the other flights to
the detriment of the time constraints provided by the problem, similar to what we
have in GetSchedule. If the new schedule is feasible and if there was a decrease in
the objective function due to the reduction of the delays types, then the incumbent
solution is modified.

The general scheme of the heuristic and these procedures of the improvement part are
presented in detail in Appendix C.

5.4 Computational experiments

In this section, we report the results of computational experiments with the network
flow and the event-based formulations proposed in Section 5.2 and the heuristic methods
developed in Section 5.3. All approaches were coded in C++ and, in particular, the two
models rely on the Concert library and the general-purpose mixed-integer programming
solver of the IBM CPLEX Optimization Studio 12.10. All experiments were run on a
Linux PC with an Intel Core i7 4790 3.6 GHz CPU and 16 GB of RAM.

The instances of present ARP-PD are based on real-life data provided by the Brazilian
oil company, found on daily flights operated in three airports used by the companionship,
named hereafter as airports A, B and C. Table 11 presents the main information regarding
these instances: name (Instance), number of flights (|I|), number of aircraft in the normal,
pool and spot sets of helicopters (|Hn|, |Hp| and |Hs|, respectively), number of maritime
units (|P|), number of table flights (|I0|), number of transferred flights from the previous
day (|I1|), number of transferred flights from two or more days before (|I2|) and number
of entourage flights (|IC |). A total of twenty instances were considered, where seven are
from airport A, namely I8A, I9A, . . . , I14A, which are small-sized instances with 8, 9,
. . . , 14 flights, respectively; eight instances are based on airport B, namely I15B, I18B,
. . . , I30B, which are medium-sized instances with 15, 18, . . . , 30 flights, respectively; and
five large-sized instances of airport C, namely I33C, I35C, . . . , I45C, with 33, 35, . . . , 45
flights, respectively.

The penalty values indicated by the company operators for the different terms of the
objective function were: w1 = 320, w2 = 240, w3 = 160, w4 = 80, w5 = 30, w6 = 25,
w7 = 20, w8 = 10, w9 = 1, w10 = 0.5 and w11 = 0.001. They also provided the following
parameter values: sb = 5 min, tat = 45 min, tu = 15 min, dmax

I = 15 min, dmax
II = 240

min, [twA, twB] = [7:00am, 6:00pm].
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Table 11 – Main information of the 20 real-life-based instances provided by the company.

Instance |I| |Hn| |Hp| |Hs| |P| |I0| |I1| |I2| |IC |
I8A 8 2 1 0 6 6 1 1 0
I9A 9 2 1 0 7 7 1 1 0
I10A 10 2 1 0 7 8 1 1 0
I11A 11 2 3 1 10 7 3 0 1
I12A 12 3 0 0 9 11 1 0 0
I13A 13 2 1 1 10 7 5 1 0
I14A 14 4 2 1 11 7 4 2 1
I15B 15 3 2 2 11 11 2 1 1
I18B 18 6 2 0 15 11 5 0 2
I20B 20 4 3 1 12 14 6 0 0
I22B 22 4 1 1 13 17 5 0 0
I25B 25 12 0 0 20 20 5 0 0
I27B 27 10 3 0 22 21 6 0 0
I28B 28 6 2 0 19 13 13 2 0
I30B 30 7 2 2 20 12 16 1 1
I33C 33 5 2 1 21 12 18 3 0
I35C 35 12 0 0 26 22 10 2 1
I37C 37 11 0 0 17 30 7 0 0
I38C 38 11 0 0 24 15 20 3 0
I45C 45 11 0 0 27 22 20 3 0

Source: Own authorship.

In addition to the twenty real-life-based instances described in Table 11 (here called
Scenario 0), we also defined other instances grouped into nine other different scenarios
to be solved with the heuristic. The first eight of them are based on the larger instances
I37C, I38C and I45C of Scenario 0, in which, their parameters were changed randomly
for the purpose of investigation. The last scenario applies a sensitivity analysis for the all
instances from Scenario 0. The description of each scenario is presented as follows:

• Scenario 1: the (previous) assignment of helicopters to the table flights is randomly
modified. The motivation of this scenario is to verify the ability of the approach to
find effective reschedules with economical helicopter reassignments.

• Scenario 2: helicopter types (normal, pool and spot) are randomly modified. The
motivation is to verify the ability of the approach to find economical helicopter
assignments, including cases that require spot helicopters.

• Scenario 3: flight types (table, one-day transferred, two-or-more-day transferred and
entourage) are randomly modified. The scheduled departure times and the assigned
helicopters to these flights were adjusted because a transferred flight can depart
at the beginning of the airport time windows and it does not have a previously
assigned helicopter. The motivation of this scenario is to verify how the method
recovers from transferred flights, including cases that have entourage flights.

• Scenario 4: random changes to the scheduled departure time (ri) and the duration
(tf i) of the table flights.
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• Scenario 5: random changes to the minimum time between consecutive flights of
the airport runway (sb), the time on the ground of a helicopter at the airport (tat),
and the limit times for delays of types I and II (dmax

I and dmax
II , respectively).

• Scenario 6: the helicopter-flight 0-1 matrix that indicates which helicopter is able
to perform each flight is randomly changed.

• Scenario 7: random changes to the maritime unit destination of the table flights.

• Scenario 8: we included more transferred flights than in Scenario 0, generated by
randomly increasing the number of transferred flights by a percentage in the inter-
val [1%, 30%], while randomly decreasing the number of table flights by the same
percentage. The number of one-day transferred and two-or-more-day transferred
flights were equally sorted in the total number of transferred flights increased.

• Scenario 9: it alludes to a sensitivity analysis, in which three types of tests are perfor-
med changing the penalties of the objective function. Let us define the following sets:
(i) weight families: F1 = {1, 2, 3, 4} (types of transfers), F2 = {5, 6, 7} (types of air-
craft) and F3 = {8, 9, 11} (types of delays); (ii) weight range: RG = F2∪{10}∪F3,
and rgj denote the j-th element of RG. The first test consists of canceling (i.e.,
making null) the values of wi for families F2 and F3; thus, Test1

t : wi = 0,∀ i ∈
Ft, t = 2, 3. We note that the omission of family F1 in Test1

t is justified by the
fact that it characterizes the fundamental objective of the present ARP-PD. The
second test levels the values for each weight family. For this, we use a vector
AW t with the following values: AW 1 = 200, AW 2 = 25 and AW 3 = 0.1; so,
Test2

t : wi = AW t, ∀ i ∈ Ft, t = 1, 2, 3. The third test cancels the weights of the
objective function in a descending and accumulated way of RG, starting with w11

and going up to w5, that is: Test3
t : wi = 0,∀ i ∈ ⋃7

j=(7−t+1) rgj, t = 1, . . . , 7 (we
also note the omission of family F1 in Test3

t ).

5.4.1 Toy problem

Firstly, to illustrate the impact of including transferred flights from previous days into
the rescheduling of table flights of the day, we plot two time-space diagrams for instance
I9A in Figures 36 and 37. The diagram in Figure 36 presents the originally planned
schedule of the seven table flights i1, i2, ..., i7, without considering the transferred flights
i8 and i9 (i.e., the diagram only shows the original flight timetable of the day). The
optimal reschedule obtained with the two models and the heuristic for the nine flights is
given in the diagram of Figure 37. The schedule of these flights uses three helicopters,
named as PR-LCR, PR-LDG and PR-SHL. Similarly to Figures 29 and 30, the maritime
units MU1 to MU5 related to these nine flights are depicted in the vertical axis of Figures
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36 and 37, whereas the scheduled/rescheduled departure times of the flights are presented
in the horizontal axis. Figure 37 also presents the arrival time of flight i9 at the airport.

Figure 36 – Time-space diagram illustrating the originally planned schedule of instance I9A
without the transferred flights.
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In Figure 36, flights i1, i2 and i3 are assigned to helicopter PR-LCR, flights i4 and i6

to helicopter PR-LDG and flights i5 and i7 to helicopter PR-SHL. Note that this schedule
does not result in flight delays. The total penalty of the schedule is 65, resulting from 40
for the use of helicopters PR-LCR and PR-LCD of the normal fleet plus 25 for the use
of helicopter PR-SHL of the pool fleet. The resulting reschedule to include flights i8 and
i9, presented in Figure 37, has a similar flight-helicopter assignment: flights i1, i2 and i3

are still assigned to helicopter PR-LCR, flights i9, i4 and i6 to helicopter PR-LDG and
flights i8, i5 and i7 to helicopter PR-SHL. However, this reschedule results in a delay of
15 minutes in flight i1 due to the precedence order constraint between transferred flight
i9 and table flight i1, given that both flights are related to the same maritime unit MU1.
Indeed, the rescheduling of these flights should ensure that flight i9 lands at least 15
minutes before flight i1 at unit MU1. The reschedule of Figure 37 also results in a delay
of 14 minutes for flight i4. This is because both flights i9 and i4 were assigned to the same
helicopter PR-LDG, which needs to remain a minimum time interval on the ground of the
airport (45 minutes) between any two flights. Observe in Figure 37 that as the planned
arrival time of flight i9 at the airport is 8:19 am, the planned departure time of flight i4

from the airport cannot be before 9:04 am. Therefore, the total penalty of this reschedule
is 67.03 (40 for the use of helicopters PR-LCR and PR-LCD of the normal fleet, 25 for
using helicopter PR-SHL of the pool fleet, 2 for the two type-I delays of flights i1 and i4,
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Figure 37 – Time-space diagram illustrating the reschedule of instance I9A with the transferred
flights.
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0.034 for the total delay including 15 minutes of flight i1, 14 minutes of flight i4 and 5
minutes of the transferred flight i8).

When comparing the solutions of approaches proposed here with the manual solutions
actually carried out by the company for these problem instances, the benefits of solving the
models or applying the heuristic become evident. As an example, instance I10A (see Table
11) corresponds to a day with 8 originally scheduled table flights and 2 transferred flights
from previous days. After rescheduling some table flights to recover these two transferred
flights, the company operators were unable to find a feasible solution including all 10 flights
– the company reschedule included only 9 flights and the last one had to be transferred to
the next day. The solution of the models and the heuristic, conversely, provides a feasible
reschedule including all the 10 flights and hence, no flights are transferred to the next
day.

5.4.2 Results of the MIP formulations

Tables 12 and 13 present the results obtained using CPLEX, within the time limit of
one hour, for the network- and event-based models, respectively. For each instance and
each model, we ran the general-purpose branch-and-cut (B&C) method of CPLEX using
the following four configurations: (i) default settings; (ii) with the local branching heu-
ristic turned on; (iii) with the relaxation induced neighborhood search (RINS) heuristic
turned on; and (iv) with both heuristics turned on. Local branching and RINS are heu-
ristics that explore neighborhoods of the current incumbent solution to try to find a new,
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improved incumbent. They are embedded in the solver and were turned on by changing
one parameter before calling the B&C method. The first column of Tables 12 and 13
show the instance name (Inst). Then, for each B&C configuration, the tables present the
lower bound (fLB), upper bound (f), relative optimality gap (Gap) as a percentage, and
computational time (Time) in seconds for the solution obtained with the corresponding
configuration. The optimality gap is presented as provided by CPLEX and is computed
as 100×(f − fLB)/(f + 10−10). In each table, we highlight in bold the best upper bounds
obtained among the four configurations using the same model, except when all approaches
resulted in the same value. Additionally, the tables show the letters ’tl’ in column Time
if the corresponding method stopped after reaching the time limit, and the letter ’m’ if
the method stopped due to memory overflow.

The results in Table 12 show that CPLEX could solve to optimality all instances related
to airport A, with up to 14 flights, using the network-based model and the B&C method
in its default settings as well as with the local branching heuristic turned on. The B&C
configurations (iii) and (iv), both with the RINS heuristic, required larger computational
times for these instances than the other configurations and could not prove optimality for
two of them within the time limit, namely I13A and I14A, although they also obtained
optimal solutions for them. In spite of these relatively poor results on instances related to
airport A, the RINS heuristic promoted the best overall performance of the solver for the
remaining instances, particularly for the largest ones in the set. Indeed, the last two B&C
configurations obtained the best upper bound values for more instances than the other
configurations. For instances related to airport C, which are the largest ones, the upper
bound values were significantly better than the ones obtained by configurations (i) and
(ii). For the two largest instances (I38C and I45C), the standalone B&C failed to provide
a solution due to memory overflow, and the method using the local branching heuristic
finished with solutions that were considerably worse than the solutions provided by the
B&C with RINS only. The B&C with both heuristics obtained the best upper bounds
for the other three instances related to airport C. Finally, in any of the configurations,
we observe that the optimality gaps were significantly enormous for many instances,
particularly for the largest ones.

The heuristics embedded in CPLEX were helpful also when using the event-based
model, as indicate the results presented in Table 13. Yet, the standalone B&C found
feasible solutions to all instances and obtained the best upper bounds among the four
configurations for several of them. Recall that with the network-based model and using
this same configuration, CPLEX failed to obtain feasible solutions to the two largest
instances, and obtained the best upper bound for only one instance (I25B) in comparison
to the other configurations. Additionally, it is noticeable that for the largest instances,
the lower bounds obtained with the event-based model are significantly better than those
obtained with the other model. None of the approaches using the event-based model
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could solve instance I14A to proven optimality though, which was previously solved by
using the network-based model. Regarding the instances related to airports B and C, the
B&C with local branching only (second configuration) resulted in the best upper bounds
for five of them, namely I28B, I30B, I33C, I35C and I37C, while the B&C with RINS
only (third configuration) obtained the best results for two of them, namely I18B, I25B.
The B&C with both heuristics presented an inferior performance on instances related to
airport C, although it obtained the best upper bounds in four instances related to airport
B (I18B, I22B, I25B and I28B). Similar to the results obtained with the network-based
model, the optimality gaps were significantly high for the larger instances, particularly
for those related to airport C.

Table 14 presents the best bounds obtained in the experiments with the two models
and four B&C configurations, and details the values of each term in the objective function
for the solution corresponding to the presented upper bound. The first column (Inst)
presents the instance name. The second and third columns give the best lower bound
(f ∗LB) and the best upper bound (f ∗) obtained in the experiments, considering the two
models and the four configurations. Columns 4 to 14 present the values for each of the
11 weight terms w1f1 to w11f11 of the objective function considering the best solution
(i.e., the solution corresponding to f ∗). The next two columns, 15 and 16, show the
computational time (in seconds) to obtain this solution and the total number of flights
not scheduled and thus transferred to the next day (nR). Finally, the last column indicates
both the formulation (1: network-based; 2: event-based) and the B&C configuration (D:
default; L: with local branching; R: with RINS; B: with both heuristics) that resulted
in the best lower (f ∗LB) and upper (f ∗) bounds, respectively. For example, 2D-1R means
that f ∗LB was obtained using the event-based model and the B&C with default settings,
while f ∗ was obtained using the network-based model and the B&C with RINS only. In
case of ties, we consider the configuration with the shortest computational time and then
the simplest configuration (i.e. first the B&C with default settings, then the B&C with
one heuristic only and finally the configuration with both).

As the results in Table 14 indicate, the exact approaches obtained solutions that
schedule all flights for instances I8A to I30B. However, we observe that on instances related
to airport C, the largest ones, the poor performance of the B&C methods is related to the
difficulty of finding a schedule that include all flights. In all best solutions obtained for
these largest instances, there is at least one table flight that is no scheduled. For instance
I45, in addition to three tables flights, there is also one transferred flight from the previous
day that was not scheduled. The table also highlights that the B&C approaches using
the network-based model obtained most of the best lower and upper bounds and were the
fastest when the configurations using the event-based model obtained the same values.
The RINS heuristic promoted the best performance for the approaches using the network-
based model, either alone or in combination with the local branching, in particular for
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Table 14 – Best results obtained in the experiments with the two models and the four B&C
configurations.

Inst f∗
LB f∗ w1f1 w2f2 w3f3 w4f4 w5f5 w6f6 w7f7 w8f8 w9f9 w10f10 w11f11 Time nR Conf.

I8A 42.13 42.13 0 0 0 0 0 0 40 0 2 0.0 0.13 0.06 0 1L-1L
I9A 67.03 67.03 0 0 0 0 0 25 40 0 2 0.0 0.03 0.10 0 1L-1L
I10A 66.64 66.64 0 0 0 0 0 25 40 0 1 0.5 0.14 0.60 0 1D-1D
I11A 91.03 91.03 0 0 0 0 0 50 40 0 0 0.5 0.53 1.70 0 1D-1D
I12A 71.19 71.19 0 0 0 0 0 0 60 10 1 0.0 0.19 1.23 0 1D-1D
I13A 68.13 68.13 0 0 0 0 0 25 40 0 0 1.5 1.63 80.35 0 1L-1L
I14A 83.68 83.68 0 0 0 0 0 0 80 0 1 0.5 2.18 404.36 0 1D-1D
I15B 90.90 144.36 0 0 0 0 0 50 60 30 2 1.0 1.36 tl 0 1D-1R
I18B 126.67 147.92 0 0 0 0 0 25 120 0 0 2.0 0.92 tl 0 1D-1D
I20B 90.81 108.24 0 0 0 0 0 25 80 0 0 2.0 1.24 tl 0 1L-1D
I22B 111.19 123.91 0 0 0 0 0 25 80 10 5 3.0 0.91 tl 0 1L-1R
I25B 135.15 227.17 0 0 0 0 0 0 180 40 1 4.5 1.67 tl 0 2D-1D
I27B 145.93 186.48 0 0 0 0 0 0 180 0 3 2.5 0.98 tl 0 2D-1R
I28B 210.10 252.22 0 0 0 0 0 25 100 120 6 0.0 1.22 tl 0 2D-2L
I30B 122.50 282.43 0 0 0 0 0 50 140 90 1 2.5 4.81 tl 0 2D-1B
I33C 151.69 332.88 0 0 0 80 30 50 100 60 4 2.0 6.88 tl 1 2L-2L
I35C 188.12 309.02 0 0 0 80 0 0 220 0 5 2.5 2.96 tl 1 1L-1B
I37C 151.10 259.38 0 0 0 80 0 0 200 20 4 3.5 0.92 tl 1 2D-1B
I38C 129.80 527.71 0 0 0 240 0 0 200 80 2 0.5 5.21 tl 3 2D-1R
I45C 156.50 939.59 0 0 160 480 0 0 200 90 2 3.0 4.59 tl 8 2D-1R

Source: Own authorship.

the largest instances. Also for these instances, the event-based model was important to
obtain the best lower bounds for most of them, using the standalone B&C.

5.4.3 Results of the heuristic approach

The fact that the solver failed to obtain feasible solutions with reasonable optimality
gaps within the time limit using the proposed models for the larger problem instances
highlights the importance of developing effective tailor-made heuristics, such as the ones
proposed in Section 5.3 and analyzed in what follows. We first present the results for
instances of Scenario 0 and then for instances of Scenarios 1 to 9.

5.4.3.1 Results for the instances of Scenario 0

Table 15 presents the heuristic results for the twenty real-life-based instances (Scenario
0). The meaning of each column is the same as in Table 14. These results show that the
heuristic was able to obtain feasible solutions including all flights for all instances. Hence,
the obtained flight reschedules recover all transferred flights of the last days in addition
to schedule all table flights of the day.

When comparing the results of the heuristic with the best bounds f obtained by the
models (instances of airport A), as presented in Table 14, we note that the corresponding
optimality gaps are small (less than 6.3%), indicating the quality of the heuristic solu-
tions. It should be observed that these solutions were found in 0.077 seconds from the
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Table 15 – Results of the heuristic for the 20 instances of Scenario 0.

Inst f w1f1 w2f2 w3f3 w4f4 w5f5 w6f6 w7f7 w8f8 w9f9 w10f10 w11f11 Time nR
I8A 42.13 0 0 0 0 0 0 40 0 2 0.0 0.13 0.02 0
I9A 67.03 0 0 0 0 0 25 40 0 2 0.0 0.03 0.07 0
I10A 66.65 0 0 0 0 0 25 40 0 1 0.5 0.15 0.05 0
I11A 102.40 0 0 0 0 0 50 40 10 0 2.0 0.40 0.08 0
I12A 72.18 0 0 0 0 0 0 60 10 0 2.0 0.18 0.08 0
I13A 88.63 0 0 0 0 30 25 20 10 1 1.0 1.63 0.70 0
I14A 83.98 0 0 0 0 0 0 80 0 1 0.5 2.48 0.15 0
I15B 161.48 0 0 0 0 30 50 60 20 0 0.5 0.98 0.18 0
I18B 148.20 0 0 0 0 0 25 120 0 1 1.5 0.70 0.81 0
I20B 130.60 0 0 0 0 0 25 80 20 3 1.5 1.10 1.38 0
I22B 131.28 0 0 0 0 0 25 80 20 4 1.5 0.78 1.70 0
I25B 208.67 0 0 0 0 0 0 180 20 2 5.0 1.67 3.76 0
I27B 207.71 0 0 0 0 0 0 180 20 3 3.0 1.71 6.16 0
I28B 211.63 0 0 0 0 0 50 120 30 5 2.0 4.63 6.27 0
I30B 201.93 0 0 0 0 30 50 100 10 4 2.0 5.93 13.79 0
I33C 260.70 0 0 0 0 30 50 100 70 2 1.5 7.20 11.77 0
I35C 250.83 0 0 0 0 0 0 220 20 4 3.0 3.83 24.22 0
I37C 243.77 0 0 0 0 0 0 200 30 6 6.5 1.27 28.94 0
I38C 214.96 0 0 0 0 0 0 180 20 6 1.5 7.46 63.74 0
I45C 277.41 0 0 0 0 0 0 220 40 5 5.0 7.41 109.63 0

Source: Own authorship.

heuristic, while the two models spend 552.46 and 86.41 seconds, respectively on average.
For the medium instances (instances of airport B), the heuristic is still able to find good
reschedules as all transferred flights are recovered in affordable computational times (4.2
s for central tendency), while the best feasible solutions obtained by the B&C approaches
reach the run time limit (one hour). Finally, for the larger instances of Scenario 0 (airport
C), the heuristic surpasses the optimization models (including the applications of local
branching and RINS methods), where the results of models were considerably worse and
failed to schedule all flights. Analyzing f , the heuristic gaps are 87.1% and 51.7% better
than solving the modeling, in this order and on average. Particularly, in instance I33C,
the heuristic solution uses the entire fleet available to not transfer flights to the next day,
and changes three previously assigned helicopters. This solution results in two delays of
type I and seven delays of type II. The heuristic solution for instance I35C includes the
rescheduling of the entourage flight and saves one helicopter. Note that the solution chan-
ges six previously assigned helicopters, and involves four delays of type I and two of type
II. For instance I37C, it also reschedules all flights, saving one helicopter and changing
13 previously assigned helicopters. This solution results in six and three delays of types
I and II, respectively. For I38C, the heuristic solution uses only 9 of the 11 available
helicopters, changing three previously assigned helicopters. This solution implies in six
delays of type I and two delays of type II. The last instance, I45C, was assembled by
combining the instances I38C and I37C. According to the company’s history, I37C is a
subsequent scheduling of I38C, which has 7 transferred flight (see Table 11) from I38C
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(which were table flights of the current day). This is because the company solution was
unable to reschedule all table flights, thus forming I45C (38 + 7 = 45). The heuristic
solution was able to reschedule all transferred and table flights using the whole fleet of
helicopters and changing ten previously assigned helicopters. This solution implies in five
and four delays of types I and II, in this order. These results reinforce the effectiveness
of the heuristic approach when solving real-life instances, indicating its potential to help
decision making in practice.

Table 16 shows the relative gaps (in percentages) of the solution values obtained
by the heuristic (fheur) with respect to the best lower (f ∗LB) and upper (f ∗) bounds
obtained by the optimization models (as presented in Table 14). The values of columns
GapLB correspond to the optimality gap with respect to the best lower bound given by
GapLB = 100×(fheur − f ∗LB)/(f ∗LB + 10−10), whereas the values of columns GapUB refer
to the gap with respect to the best upper bound given by GapUB = 100×(fheur − f ∗)/(f ∗

+ 10−10). The GapUB values indicate that the solutions obtained by the heuristic for the
larger instances are significantly better than the best solutions obtained by the models.
The average gap with respect to the upper bound was −35.25% for the instances of airport
C, reaching −59.26% and −70.48% for the two largest instances (I38C and I145C). For
the smaller instances, the solutions obtained by the models are superior, but it is worth
remarking that they correspond to proven optimal solutions. We note that there are large
GapLB values in the table as the models have weak linear relaxations (as indicated by the
results of Tables 12 and 13).

Table 16 – Gaps of the heuristic solutions with respect to the best lower and upper bounds
obtained by the models.

Inst GapLB GapUB Inst GapLB GapUB Inst GapLB GapUB

I8A 0.000 0.000 I15B 77.646 11.859 I33C 71.864 -21.683
I9A 0.000 0.000 I18B 16.997 0.189 I35C 33.335 -18.830
I10A 0.015 0.015 I20B 43.817 20.658 I37C 61.330 -6.018
I11A 12.490 12.490 I22B 18.068 5.948 I38C 65.609 -59.266
I12A 1.391 1.391 I25B 54.399 -8.144 I45C 77.259 -70.475
I13A 30.090 30.090 I27B 42.335 11.385
I14A 0.359 0.359 I28B 0.728 -16.093

I30B 64.841 -28.503
Source: Own authorship.

A better way to evaluate the solution quality of the heuristic method could be to
perform a computational experiment with the B&C approaches using a longer runtime
limit. In this way, we chose the largest instance in the set (I45C) and ran the best B&C
configuration for each model, with the time limit of 24h. Table 17 shows the best results
obtained for each model from this experiment. Note that f ∗ has decreased considerably
and that f ∗LB has increased slightly. Still, no approach has managed to allocate all flights
in the schedules, which reinforces the quality of the heuristic solution, at least in the
practical scope of application.
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Table 17 – Best results from the computational experiment with the time limit of 24h for ins-
tance I45C.

Inst f∗
LB f∗ w1f1 w2f2 w3f3 w4f4 w5f5 w6f6 w7f7 w8f8 w9f9 w10f10 w11f11 Time nR Conf.

I45C 51.66 560.21 0 0 0 240 0 0 220 90 2 3 5.206 24h 3 1R
I45C 158.10 506.08 0 0 0 160 0 0 220 110 2 5.5 8.582 24h 2 2D

Source: Own authorship.

5.4.3.2 Results for the instances of Scenarios 1-8

Table 18 presents the results of experiments with instances of Scenarios 1 to 8. The
first column in the table shows the scenario number and the remaining columns have
the same meaning as in Table 15. The presented results for each scenario correspond to
the average (arithmetic mean) over three randomly generated instances for each original
instance I37C, I38C and I45C, resulting in nine instances per scenario.

Table 18 – Results for the simulated instances of Scenarios 1-8.

Scen Inst f w1f1 w2f2 w3f3 w4f4 w5f5 w6f6 w7f7 w8f8 w9f9 w10f10 w11f11 Time nR

1
I37C 245.79 0 0 0 0 0 0 193.33 36.67 6.00 8.17 1.62 21.09 0
I38C 235.39 0 0 0 0 0 0 193.33 26.67 5.00 3.50 6.89 52.79 0
I45C 266.85 0 0 0 0 0 0 220.00 30.00 4.33 4.83 7.68 103.24 0

2
I37C 328.55 0 0 0 0 130 75 60.00 53.33 2.67 6.00 1.55 15.82 0
I38C 259.49 0 0 0 0 100 58.33 60.00 26.67 4.33 2.67 7.49 36.13 0
I45C 339.37 0 0 0 0 130 58.33 86.67 46.67 5.67 4.50 7.54 96.98 0

3
I37C 255.15 0 0 0 0 0 0 213.33 26.67 7.67 6.17 1.32 26.43 0
I38C 236.38 0 0 0 0 0 0 206.67 16.67 4.67 3.00 5.38 51.51 0
I45C 270.31 0 0 0 0 0 0 220.00 33.33 6.00 4.50 6.47 96.29 0

4
I37C 277.65 0 0 0 0 0 0 220.00 43.33 6.00 7.17 1.15 19.44 0
I38C 212.04 0 0 0 0 0 0 186.67 13.33 4.33 3.50 4.21 53.00 0
I45C 253.63 0 0 0 0 0 0 220.00 16.67 5.33 5.50 6.13 73.69 0

5
I37C 241.92 0 0 0 0 0 0 180.00 46.67 7.33 6.33 1.59 30.10 0
I38C 225.82 0 0 0 0 0 0 186.67 23.33 5.33 3.00 7.49 59.09 0
I45C 274.13 0 0 0 0 0 0 206.67 46.67 6.67 6.00 8.13 130.74 0

6
I37C 252.68 0 0 0 0 0 0 213.33 26.67 4.00 7.50 1.18 18.64 0
I38C 221.53 0 0 0 0 0 0 186.67 20.00 5.67 2.00 7.20 39.95 0
I45C 275.45 0 0 0 0 0 0 220.00 36.67 5.67 5.33 7.78 76.58 0

7
I37C 244.13 0 0 0 0 0 0 200.00 36.67 2.33 3.50 1.63 24.78 0
I38C 263.52 0 0 0 0 0 0 213.33 36.67 4.00 3.50 6.02 56.79 0
I45C 290.44 0 0 0 0 0 0 213.33 56.67 6.67 6.33 7.44 117.49 0

8
I37C 246.81 0 0 0 0 0 0 193.33 40.00 6.00 5.83 1.64 26.93 0
I38C 167.04 0 0 0 0 0 0 153.33 3.33 1.33 1.67 7.38 51.40 0
I45C 265.72 0 0 0 0 0 0 213.33 36.67 4.33 4.17 7.22 82.67 0

Average 256.24 0 0 0 0 15 7.99 185.83 32.50 5.06 4.78 5.09 56.73 0

Source: Own authorship.

Comparing the results of Scenario 1 with the results obtained for the real-life instances
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(Scenario 0) also using the heuristic, we note an increase in the reassignments of helicopters
to flights, as expected. In some cases, we see a reduction in the total number of helicopters
used, still rescheduling all flights. In other cases, the whole fleet had to be used in order
to reschedule all flights. Regarding Scenario 2, mostly when comparing the availability
of the fleet to its actual usage, the heuristic was able to use less expensive helicopters
(i.e., more normal than pool, and more pool than spot helicopters) while rescheduling all
flights. It is worth mentioning that the penalties related to the use of aircraft are not
comparative, because the random generation made the normal type decrease and the pool
and spot types increase (before with zero count) in the instances. Consequently, even if
the comparison was made between optimal values of both scenarios, the real would be
better, for example. Scenario 3 also shows that even after modifying the types of flights,
the heuristic was also able to reschedule all flights. In some instances, the solutions
reduced the flight delays and the helicopter reassignments by using more helicopters. In
Scenario 4, we note that the changes in the departure times and duration of the flights did
not significantly affect the heuristic solutions corresponding to reschedules that include
all flights. In particular, delay’s type II and the linear delay tend to decrease, while the
helicopter reassignments increase.

As expected, Scenario 5 shows that the heuristic solutions were sensitive to changes
in the minimum time between consecutive flights, time on the ground and the limits
for delays I and II, once decreasing dmax

II and increasing sb and tat make the schedule
more restrictive, or the opposite makes it easier for allocation flights. Nevertheless, the
heuristic approach still allocates all flights. The results of Scenario 6 show that the
heuristic was still able to reschedule all flights under a few changes in the availability of
some helicopters. In Scenario 7, we note that the delay’s type II and linear increased
with the changes in the flight destinations, mainly because of the precedence constraints
between flights to the same maritime unit. Scenario 8 indicates the impact of having
more transferred flights. Although transferred flights have a high weight in the objective
function and it is contained in precedence constraints, they tend to be easier to allocate as
they are not considered in maximum delay rule. This increases the set of feasible solutions
in the present heuristic, which generates the possibility of less use of aircraft. Hence, the
heuristic managed to have lower values for I38C and I45C.

5.4.3.3 Results for the instances of Scenario 9

The presentation of the results of Scenario 9 was divided into two parts. The first
considers all instances of Table 11, while the second focuses only on instance I45C in
order to detail the results of one instance. This instance was chosen because it is the
largest one, representing the most complex operating situation. In both parts, the results
are shown in the form of variation, specifically the differences of the values of the 11
objective function terms (f1, f2, . . . , f11) between Scenarios 9 and 0.
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The graphs in Figures 38 depict some of the most interesting results of the first part of
the experiments. They present the number of occurrences of each variation level for each
objective function term. According to the results of Test1

2 presented in Figure 38a, when
canceling the fleet usage penalties, all flights continued to be scheduled (f1, f2, f3 and f4

in the figure), the fleet utilization (f5, f6 and f7) and the change of helicopters (f10) tend
to increase, while the delays (f8, f9 and f11) tend to decrease. This was expected as the
increase of the fleet utilization tends to increase the change of helicopters and thus, the
rate of flights performed by an aircraft is reduced. In Test1

3 (Figure 38b), the best value of
the objective function found by the heuristic was reached by increasing the delays, as the
delay penalties are zeroed in this test. The increase of the delays allows the heuristic to
increase the number of flights performed by each helicopter and reduce the total aircraft
utilization.

There were no differences between the solutions of Scenarios 9 and 0, after equalizing
the values for F1 in Test2

1. This is explained as the solutions of Scenario 0 have already
allocated all flights. However, leveling the values of F2 in Test2

2 (Figure 38c) allowed to
achieve reductions in delays of type II and helicopter reassignments, due to changes in
relation to the use of the fleet. When equalizing the values of F3 in Test2

3 (Figure 38d),
w11f11 dominates w8f8 and w9f9 (since D >> BI and D >> BII) and as expected, the
linear delays are reduced.

In Test3
1, the linear delay is not penalized and this increases f11, as expected, but does

not reduce significantly the other delays. Canceling the weight ranges for Test3
2 (Figure

38e) increases the linear delay and the change of helicopters to reduce delays of types I
and II. About Test3

3 (Figure 38f), annulling the delay type I too provoked variations in
the delay of type II and in the use of the fleet by increasing the parcels w9f9 to w11f11.
By eliminating the delay and helicopters’ change penalties, the heuristic maximizes the
helicopter utilization. This is noted on the results of Test3

4 presented in Figure 38g.
Test3

5 (Figure 38h) eliminates the f7 to f11 terms of the objective function. This allows
the heuristic to change the values on those factors without changing the remaining (non-
zero) indicators. There were no changes in the solutions given by both Test3

6 and Test3
7

compared to the ones of Test3
5.

Table 19 presents the results for the second part of Scenario 9 experiments using
instance I45C. We note in Test1

2 that its results are practically the same as the ones of
Scenario 0. This is because the aircraft usage was already maximum for I45C in Scenario
0, thus not allowing the reduction of delays. For Test1

3, canceling the weights associated
with the delays implies an increase in all delays (type I, type II and linear), as expected,
while the change of helicopters decreases. In Test2

1, as the solution of I45C in Scenario
0 have already allocated all flights, matching the values of F1 does not result in any
change in the I45C solution, as expected. In Test2

2, because all available helicopters of
I45C are of the normal fleet, matching the values of F2 cannot result in any change in the
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Figure 38 – Analysis of the main result variations between Scenarios 9 and 0.

(a) (b)

(c) (d)

(e) (f)

(g) (h)
Source: Own authorship.
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Table 19 – Result variations between Scenarios 9 and 0 for instance I45C.

Test type f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11
Test1

2 0 0 0 0 0 0 0 0 0 0 -73
Test1

3 0 0 0 0 0 0 0 9 1 -9 1,046

Test2
1 0 0 0 0 0 0 0 0 0 0 0

Test2
2 0 0 0 0 0 0 0 0 0 0 0

Test2
3 0 0 0 0 0 0 0 12 -2 2 -1,303

Test3
1 0 0 0 0 0 0 0 -2 -4 1 738

Test3
2 0 0 0 0 0 0 0 -1 0 6 760

Test3
3 0 0 0 0 0 0 0 9 1 -9 1,046

Test3
4 0 0 0 0 0 0 0 14 -4 7 -561

Test3
5 0 0 0 0 0 0 0 14 -4 7 -561

Test3
6 0 0 0 0 0 0 0 14 -4 7 -561

Test3
7 0 0 0 0 0 0 0 14 -4 7 -561

Source: Own authorship.

solution. In Test2
3, since w11f11 dominates w8f8 and w9f9 in this scenario, it is expected

that there will be a decrease in the linear delay and tiebreak conditions will occur in
relation to the counts of the delays’ types I and II. The heuristic, in this sense, behaved
as expected. About Test3

1, there was an increase in f11 and the heuristic managed to
reduce the delays of types I and II. In Test3

2, f11 and f10 increase. As f8 dominates the
change of helicopters, the heuristic achieves a reduction in this regard. In Test3

3, f8 and
f11 increased even more if compared to the previous test. For this optimization criterion,
the heuristic focused on the aircraft reassignments, since the other parcels remained the
same. In Test3

4, as expected, there was only a change in relation to the null weight scores.
It is important to highlight that there was an opposite behavior between f8, f10 and f9,
f11. In Test3

t ,∀t = 5, 6, 7, the previous behavior was maintained in these tests. This was
already expected because the solution of Scenario 0 uses all aircraft and the I45C only
has a normal type of fleet.



192

Chapter 6

Helicopter recovery in an oil and gas
industry considering multiple
aerodromes and crew workday

Airline companies often face the inherent difficulty of flight rerouting and rescheduling
(also known as aircraft recovery) when departure delays, airport close-down, temporary
aircraft unavailability and other unexpected events occur. This is particularly true in the
case of companies committed to offer a large number of flights, as the costs required to
maintain good service levels under such circumstances can be very high. Aircraft recovery
makes use of reassigning aircraft to flights, delaying and even canceling flights, which in
turn imply in additional airport taxes and fuel expenses, personnel overtime pay and
possibly extra aircraft use. In the case of passenger airlines, there are also the onuses of
hotel accommodation, refunds and reallocation of passengers to other flights. Thus, the
recovery operation targets schedules with an acceptable trade-off between minimum delay,
cancellation and costs. Moreover, the reschedules must be attained within an acceptable
time frame.

In this chapter, we further study the short-term rescheduling problem faced by a
Brazilian company engaged in the exploration, production, transportation, and commer-
cialization of crude and processed oils and natural gas. Remembering, the extraction of
these raw materials occurs mostly offshore, making the company responsible for provi-
ding the transportation from and to the mainland to the workers assigned to oil rigs and
other maritime units. Transportation occurs whenever work shifts are about to start or
finish, and it is carried out by a heterogeneous fleet of helicopters based on a few aero-
dromes operated by the company. There are several maritime units and flights and the
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daily reschedule must take into account the original timetable of each aerodrome and the
departure aerodrome of each flight, the number of runways at the aerodromes and mari-
time units, the fleet of helicopters available in each aerodrome, postponement and shift
regulations, flight departure priorities, aerodromes and helicopter time windows, among
others. In particular, this ARP also considers pending flights transferred from previous
days due to unexpected events, such as bad weather or aircraft mechanical failures, and
with different recovering priorities, for rescheduling on the current day.

In such manner, the present research extends the content of Chapter 5 and De La Vega
et al. (2022a), where the ARP does not consider a set of aerodromes and possible flight
transfers between these aerodromes. The solution approaches of these studies (mathema-
tical models and heuristic method) were developed for the particular case in which there
is a single aerodrome, isolated or independent from the others, and all flights must depart
from and return to this same aerodrome.

In order to tackle this new problem, two MIP models contemplating multiple aero-
dromes is proposed, where the first is based on the single aerodrome continuous-time
network-flow model, presented in Chapter 5, and the second is inspirited on the single
aerodrome discrete-time assignment model, available in De La Vega et al. (2022a). Both
closely describe the present company’s ARP. Due to its complexity and the usual need of
a quick response in practical settings, we also propose a two-phase heuristic (an extension
of the previous chapter too), capable of coping with larger problem instances within ac-
ceptable computer runtimes. The performance of solving the models with general-purpose
optimization software and the heuristic is assessed by means of realistic problem instances
with data collected in a case study conducted at the company. Our aim in this work is to
contribute to the practice of aerial passenger transportation and improve the company’s
flight recovery plans, highlighting the potential of proposed approaches. Notwithstanding
the specificities of our models, we believe that this study can also contribute to deal with
problems of other oil and gas companies that routinely transport work teams to maritime
units, such as offshore production platforms, drilling rigs, service units and special ves-
sels. Similar situations arise in oil and gas companies operating in the North sea, Gulf of
Mexico, West of Africa and Australia, for example.

The chapter was structured in this manner. Section 6.1 presents the problem des-
cription. The MIP formulations and the heuristics are described in Sections 6.2 and 6.3,
respectively. Section 6.4 discusses and analyses the computational experiments and re-
sults from applying the solution approaches based on the models and the heuristics in
realistic problem instances.
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6.1 Problem description

As stated before, in this study we consider the recovery of helicopter flights from/(to)
aerodromes to/(from) maritime units, motivated by the ARP faced by an oil and gas
company. As can be seen in Figure 39, each aerodrome has its own available fleet of
helicopters and the helicopters are heterogeneous in terms of travel cruise speed, capacity
of passengers, flying range, etc. The company programmers previously schedule several
daily flights (timetables) for each aerodrome and for each helicopter at the beginning of the
week and, in the absence of unexpected events, these timetables should be followed. Each
flight has its scheduled departure time in the day and it is basically a round-trip between
an aerodrome and a given maritime unit (i.e., aerodrome - maritime unit - aerodrome).
There may be more than one flight departing from the same aerodrome (or from different
aerodromes) to the same maritime unit in a day. Each aerodrome helicopter can perform
several round-trip flights per day.

Figure 39 – Spatial representation of the studied problem with three aerodromes and a set of
maritime units - MU.

Aerodrome 1

Aerodrome 2

Aerodrome 3

MU set

Source: Own authorship.

However, unexpected events are common in practice and may cause delays in the
departure times of flights, changes in the assignment of helicopters to flights, changes
in the departure aerodrome of the flights, and even the rescheduling of flights to the
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next day (in which case they are called day-transferred flights). The recovery operation
implies in rescheduling the original timetables of the aerodromes, so that transferred
flights of different priorities from previous days can be included into the current day
plans, preferably with minimal disturbance to the other flights of the timetables. For this
rescheduling, it is possible to reallocate helicopters and/or allocating additional helicopters
of the same aerodrome in one day. It is also possible to change the departure aerodrome
of a flight on the same day, although this is highly undesirable. In this case, the flight
will use a helicopter from the other aerodrome with a capacity to transport the number
of passengers and with autonomy (flying range) to fly until its maritime unit. Although
the helicopters can be of different models, there are two main fleets of helicopters in each
aerodrome: one called normal fleet, which include the helicopters originally assigned to
the daily timetables, and the pool fleet, which are spare helicopters promptly available at
the aerodrome that can be used with higher additional costs.

Each aerodrome has a single runway for helicopters taking off and landing, and each
maritime unit can bear a single helicopter at a time as it has a single heliport. The
ARP consists of determining joint daily flight reschedules for all aerodromes that satisfy
operational constraints and recovers all pending flights transferred from the last days,
while minimizing flight transfers between aerodromes, usage of helicopters and overall
flight delay. The goal is to generate a suitable timetable for the aerodromes and their
helicopters, indicating when each flight operated by which helicopter will depart during
the day and which flights will be transferred to the following day. The result of this flight
rescheduling (including the unrealized flights transferred to the next day) is known as the
recovery plan, and it is usually required in short computer runtimes in practical settings
(in the case of the company studied, in at most a few minutes).

There are two main categories of flights: table flights, that is, the ones originally
scheduled in the timetables of the aerodromes, and the aforementioned day-transferred
flights, which are the pending unrealized flights transferred from the last days. There
are two other classes of high priority and less frequent flights, called mandatory and
entourage flights. Mandatory flights are those that must be performed according to the
original timetable, that is, they must not be changed to another aerodrome or transferred
to the next day, whereas entourage flights are the ones used to transport managers and
other representatives of the company for visits to the maritime units. These are special
flight reserved to senior managements, shareholders or even political positions, such as
governors and president. In practical terms, the differentiation of entourage flights from
the others is justified by their length of time spent in a MU (which is on the order of
hours) for holding meetings, visitation, among other activities. Compared to Chapter 5,
they no longer block marine units for the rest of the day, which benefits in building more
efficient flight rescheduling. As the mandatory flights, the entourage flights must not be
changed to another aerodrome, but differently from the mandatory flights, they can be
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transferred to the next day. We note that the rescheduling of table flights, entourage flights
and mandatory flights can only delay the departures, but never anticipate them. Each
flight departs from an aerodrome to a destination unit with a group of previously booked
passengers and returns to the aerodrome from the unit with another group of previously
booked passengers, or the same group in case of entourage flights. Therefore, any flight
comprises a set of passengers, a planned departure time, the time required to reach the
destination (or to go from the destination back to the aerodrome) and the service time
required by the maritime unit to transfer passengers and prepare the aircraft to return.
The recovery plan is not allowed to split or join flights, or change the set of passengers
previously assigned to the flights in the original timetable. All aerodrome operations must
occur during sunlight, forcing an operational time window for each helicopter. A table or
entourage flight is transferred to the next day if it either cannot respect the operational
time window, or its rescheduled departure time is more than 4 hours from its original
departure time.

Thus, at the beginning of each day (or sometimes more than once a day), the company
programmers have to reschedule the daily timetable for the aerodromes taking into ac-
count the set of flights transferred from the last days. To generate feasible reschedules, the
programmers can apply some proceedings, for example, assign pending flights to vacancy
spots of the timetables, delay table flights to later departure times in the timetables,
reallocate the aerodrome helicopters to the flights, transfer flights to other aerodromes,
among others. Additional restraints should be considered for changing the aerodrome of
the flight, for example, the land transfer time (by taxi, bus, subway, etc.) of the passen-
gers of the flight between the two aerodromes should not exceed some time limit (e.g., 4
hours), here called local-transfer. There are some rules that have to be followed for this
recovery plan. For instance, if the original timetable contains two or more flights from
any origin (aerodrome) but to the same destination (maritime unit), the sequence of these
flights in the timetable must be maintained. For example, if both flight A of an aerodrome
and flight B of the same or other aerodrome go to the same maritime unit, and if flight
A is scheduled before flight B in the original timetable, then the recovery plan cannot
schedule the departure of flight B before the departure of flight A. This precedence rule
may, for example, force flight A to be allocated into the original departure slot of flight
B, while transferring flight B to the next day.

There are also minimum time intervals between consecutive flight departures at the
runway of each aerodrome (the departures must be spaced by, at least, 5 minutes) and
minimum time intervals for service times of the flights at the maritime units (typically
of 15 minutes), as well as minimum time intervals for ground preparation times between
consecutive flights of the same helicopter at the aerodrome, called turnaround time - tat
(e.g., 45 minutes). A simple representation of the elements of a single aircraft plan is
depicted in Figure 40. In this example, three flights departing from the same aerodrome



6.1. Problem description 197

with different destinations are assigned to a single aircraft.

Figure 40 – A representation of a 3-departure flight plan of a single aircraft.
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Activities:

• Moving to Maritime Unit 1 (a)

• Dwell time at Maritime Unit 1 (b)

• Moving to Aerodrome (c)

• Preparation time at Aerodrome (d)

• Moving to Maritime Unit 2 (e)

• Dwell time at Maritime Unit 2 (f)

• Moving to Aerodrome (g)

• Preparation time at Aerodrome (h)

• Moving to Maritime Unit 3 (i)

• Dwell time at Maritime Unit 3 (j)

• Moving to Aerodrome (k)

Source: Own authorship.

As an aircraft is not allowed to spend the night in a maritime unit, all helicopters must
return to the aerodromes before the end of the day. Moreover, the single heliport and
other operational constraints forbid multiple helicopters to land on the maritime unit at
the same time. Note that these constrains may affect the departure of different helicopters
in different aerodromes, as presented in Figure 41. In this example, aircraft A1 is based
on aerodrome 1 and has two scheduled flights: one to maritime unit MU1 and the other to
MU2. Aircraft A2 is based on aerodrome 2 and has one flight assigned to MU1. The gray
area represents the delay inserted for the departure of aircraft A2 due to flight landing
conflicts at maritime unit MU1. Without this delay, A2 would arrive at MU1 when the
heliport of MU1 were occupied by aircraft A1.

Figure 41 – A representation of the flight plans of two aircraft A1 and A2 - the gray rectangle
represents the delay on the departure of A2 to avoid conflicts at maritime unit
MU1.

A1

A2

Time

Aerodrome 1

Aerodrome 2

MU1

MU2

Space

Source: Own authorship.

During the requirement development phase of this research, the company programmers
indicate some guidelines to identify better recovery plans. For example, flights transferred
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from the last days have higher priorities than table flights of the daily timetable, and
helicopters of the normal fleet should be preferred for use rather than helicopters of
the pool fleet. These and other guidelines were translated into the following objectives,
here depicted in lexicographical order, in accordance with the recommendation of the
company’s programmers: i) minimum number of unrealized entourage flights during the
day, ii) minimum number of unrealized flights during the day, which were transferred
from the last two or more days, iii) minimum number of unrealized flights during the
day, which were transferred from the last day, iv) minimum number of unrealized table
flights during the day, v) minimum number of table and day-transferred flights changed
to a different aerodrome during the same day (mandatory and entourage flights cannot
change the aerodrome), vi) minimum number of pool helicopters used during the day, vii)
minimum number of normal helicopters used during the day, viii) minimum overall delay
of mandatory, entourage and table flights during the day, ix) minimum overall delay of
the other flights during the day. Formally, a set of performance indicators translates the
quality of a daily recovery plan, as detailed in the weighted sum objective function of the
models from next section, as well as a formal description of this problem, including the
necessary symbols and the mathematical formulations.

6.2 Mathematical formulations

Before presenting the two optimization models to represent this ARP, we introduce
the following notation that is common between them. Let I, H, P and K be the total
number of flights, helicopters, maritime units and aerodromes in the problem instance,
respectively. Regarding the parameters, we have:

Parameters:

• ri: scheduled departure time of flight i;

• sih: travel time of flight i from the aerodrome of helicopter h to the destination
maritime unit of this flight;

• tui: dwell time of flight i at its destination maritime unit;

• tf ih = 2.sih + tui: duration of flight i using helicopter h, including the dwell time
at the destination maritime unit of this flight;

• tat: minimum time interval between a landing and a takeoff of the same helicopter
at an aerodrome (the turnaround time);

• sb: minimum time interval between consecutive takeoffs of helicopters at the same
aerodrome (the safety briefing);
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• dmax: maximum allowed delay for table, entourage and mandatory flights;

• trkl: land transfer time (by road transportation) of flight passengers between aero-
dromes k and l;

• tmax: maximum travel time (by road transportation) used to allow local-transfer of
flights between pairs of different aerodromes;

• wdh: workday of helicopter h (crew requirement);

• [twA
k , twB

k ]: time window of aerodrome k;

• ui: destination maritime unit of flight i;

• âh: aerodrome of helicopter h;

• ǎi: aerodrome base of flight i (i.e., the aerodrome where flight i was scheduled in
the original timetable);

• prij: = 1, if the departure of flight i from any aerodrome must be scheduled before
the departure of flight j from any aerodrome, and 0, otherwise;

• cih: = 1, if helicopter h can be assigned (i.e., it is compatible in terms of capacity,
flying range, etc.) to flight i, and 0, otherwise;

• ni =



0, if flight i is a table flight;
1, if flight i is a transferred flight delayed by 1 day;
2, if flight i is a transferred flight delayed by 2 or more days;
3, if flight i is an entourage flight;
4, if flight i is a mandatory flight.

It is noteworthy to mention that some previously defined parameters are made avai-
lable by the company in different units of time. However, before running the models, we
convert all time parameters to minutes.

6.2.1 Continuous-time model

This continuous-time model is derived from the extension of the network-flow formu-
lation proposed in Chapter 5. We created two dummy flights 0 and I + 1 and impose
that any sequence of flights from a helicopter starts with dummy flight 0 and ends with
dummy flight I + 1. As each aerodrome has its own fleet of helicopters that cannot be
shared/transferred among them, the following decision variables are well-defined without
the explicit use of an aerodrome index k (i.e., this information can be obtained from the
helicopter index h and parameter âh):
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• Xijh: 1, if and only if flight i is performed immediately before flight j by helicopter
h;

• Yih: 1, if and only if helicopter h is assigned to flight i;

• Zij: 1, if and only if the departure of flight i from any aerodrome is before the
departure of flight j from any aerodrome;

• Vh: 1, if and only if helicopter h is used;

• DT i ≥ 0: departure time of flight i;

• AT i ≥ 0: arrival time of flight i;

• Di ≥ 0: delay of flight i.

The continuous-time model for the present ARP is formulated as follows:
Objective function. As the present ARP involves different objectives with different

priorities to be optimized, the objective function (285) uses a weighted sum method to
minimize the sum of the penalties associated to the following terms: (f1) flight transfers for
the next day (except for mandatory flights); (f2) flight transfers to aerodromes different
from the flight base aerodrome; (f3) use of helicopters; (f4) flight delays. The vectors
w1, w2, w3 and w4 establish the corresponding weights of each these terms and their
relative importance in the present case study is such that: w1 > w2 > w3 > w4, as
indicated by the company’s programmers. The penalty of w1

i ∈ w1 depends on the class
of flight i (table, transferred from the last day, transferred from the last two or more days,
entourage), the penalty of w2

ik ∈ w2 depends on the distance between the original base
aerodrome of flight i and aerodrome k, the penalty of w3

h ∈ w3 depends on the fleet and
the model of helicopter h (normal, pool), and the penalty of w4

i ∈ w4 depends on the
class of flight i (table, transferred from the last day, transferred from the last two or more
days, entourage, mandatory). Each of these penalty values were carefully defined by the
company’s programmers in order to reflect their relative priorities.

min f =
4∑

s=1
fs;

where

f1 =
I∑

i=1:
ni ̸=4

w1
i .

(
1−

H∑
h=1

Yih

)
; f2 =

I∑
i=1

K∑
k=1:
k ̸=ǎi

H∑
h=1:
k=âh

w2
ik.Yih; (285)

f3 =
H∑

h=1
w3

h.Vh; f4 =
I∑

i=1
w4

i .Di.

Flow constraints. Constraints (286)-(288) define the flow constraints. If flight i is
assigned to helicopter h, i.e., if Yih = 1, in a given solution, then constraints (286) and



6.2. Mathematical formulations 201

(287) ensure that there is an immediate predecessor flight (which can be the dummy flight
0) and another immediate successor flight (which can be the dummy flight I + 1) in the
helicopter h schedule, respectively. Constraints (288) ensure the outflow and inflow of
dummy flights 0 and I + 1 if helicopter h is used in the solution (i.e., if Vh = 1).

(286)
I∑

i=0:
i ̸=j

Xijh = Yjh; ∀ j = 1, . . . , I; h = 1, . . . , H;

(287)
I+1∑
j=1:
j ̸=i

Xijh = Yih; ∀ i = 1, . . . , I; h = 1, . . . , H;

(288)
I∑

i =1
X0ih =

I∑
j=1

Xj(I+1)h = Vh; ∀ h = 1, . . . , H.

Assignment constraints. The assignment constraints are defined by constraints (289)-
(292). Constraints (289) are related to the scheduling or not of the day-transferred and
table flights, either at their base aerodrome or at a different one. Constraints (290) and
(291) ensure that the entourage and mandatory flights, if scheduled in a solution, must
depart from their base aerodromes, respectively. Note that the equality of constraints
(291) forces the scheduling of mandatory flights in the solution – this is why there is no
need for penalties associated with their transfer to the next day in the objective function.
Finally, constraints (292) are used to avoid assigning flights to a helicopter h if this
helicopter is not used in the solution (i.e., if Vh = 0).

(289)
H∑

h =1
Yih ≤ 1; ∀ i = 1, . . . , I | ni = 0, 1, 2;

(290)
H∑

h=1:
âh=ǎi

Yih ≤ 1; ∀ i = 1, . . . , I | ni = 3;

(291)
H∑

h=1:
âh=ǎi

Yih = 1; ∀ i = 1, . . . , I | ni = 4;

(292)Yih ≤ Vh; ∀ i = 1, . . . , I; h = 1, . . . , H.

Helicopter synchronization constraints. The synchronization of the flight departures
made by the same helicopter is guaranteed by the set of constraints (293) and (294), which
also act as sub-tour elimination constraints for the flow variables Xijh. Constraints (293)
impose a minimum time of tat minutes between the arrival of flight i and the departure
of flight j if both flights are performed consecutively by the same helicopter. This time is
mainly associated with the helicopter inspection. Constraints (294) determine the arrival
times of the flights in accordance with their departure times and assigned helicopters.
Note that these constraints and constraints (295)-(296) (described later) ensure that the
continuous variables DT i, AT i, and Di assume the value 0 if flight i is not scheduled
in a solution, i.e., if ∑H

h=1 Yih = 0. Therefore, the equality sign of constraints (294) is
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without loss of generality. BigM is used in the model as a sufficiently large number (in
our implementation, we set BigM = maxk=1,...,K{twB

k }).

(293)DT j ≥ AT i + tat.Xijh −BigM. (1−Xijh) ;
∀ i, j = 1, . . . , I | i ̸= j; h = 1, . . . , H;

(294)AT i = DT i +
H∑

h=1
tf ih.Yih; ∀ i = 1, . . . , I.

Scheduled departure time and maximum delay constraints. Constraints (295) impose
the minimum departure times for flights and also determine the flight delays. Note that
these constraints indicate that the flight departures can be delayed, but not advanced.
Constraints (296) impose a maximum delay of dmax hours on the table, entourage and
mandatory flights.

(295)ri.
H∑

h =1
Yih ≤ DT i ≤ ri.

H∑
h=1

Yih + Di; ∀ i = 1, . . . , I;

(296)Di ≤ dmax.
H∑

h=1
Yih; ∀ i = 1, . . . , I | ni = 0, 3, 4.

Time window constraints. The imposition of aerodrome time windows is given by
constraints (297) and (298). These constraints require that the takeoff and landing of
the flights scheduled in the solution, respectively, satisfy the minimum and maximum
operating timetables of the aerodrome associated with the helicopter that performs them.

(297)DT i ≥
H∑

h=1
twA

âh
Yih; ∀ i = 1, . . . , I;

(298)AT i ≤
H∑

h=1
twB

âh
Yih; ∀ i = 1, . . . , I.

Helicopter workday constraints. The workday of the helicopters is imposed by cons-
traints (299). For a given helicopter h, these constraints determine the elapsed time
between its first takeoff and its last landing and also ensure that this time does not
exceed its workday of wdh hours.

(299)AT j −DT i ≤ wdh + BigM.
(
2−X0ih −Xj(I+1)h

)
;

∀ i, j = 1, . . . , I | i ̸= j; h = 1, . . . , H.

Precedence constraints. Constraints (300)-(302) activate the variables Zij used to
enforce the synchronization of the departures from the aerodrome of the flights, as well
as their arrivals at the maritime units. Constraints (300) ensure at most an order of
precedence between flights i and j, regardless of the aerodromes where they are scheduled
in a solution. Constraints (301) guarantee that if flights i and j are scheduled in a solution,
then there must be at least one order of precedence between them, i.e., the departure of
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flight i precedes the departure of flight j (in this case Zij = 1) or the departure of flight j

precedes the departure of i (Zji = 1). Constraints (302) are complementary to constraints
(301) and ensure the scheduling of flights i and j if there is an order of precedence between
them, i.e., if Zij = 1 or Zji = 1. It is important to note that constraints (300)-(302) only
guarantee the existence of one order of precedence between flights i and j if they are
scheduled in the solution, but they do not define the order. Constraints (303) and (304)
(described below) are responsible for defining this order, which is the one whose departure
times from the aerodrome of flights i and j incur the least penalty of the total delay.

(300)Zij + Zji ≤ 1; ∀ i, j = 1, . . . , I | i ̸= j; .

(301)Zij + Zji ≥
H∑

h=1
Yih +

H∑
h=1

Yjh − 1; ∀ i, j = 1, . . . , I | i ̸= j;

(302)2. (Zij + Zji) ≤
H∑

h=1
Yih +

H∑
h=1

Yjh; ∀ i, j = 1, . . . , I | i ̸= j.

Aerodrome synchronization constraints. The synchronization of the departure times
of scheduled flights at the same aerodrome is guaranteed by constraints (303). In these
constraints, if Zij = 1 and both flights i and j are scheduled at the same aerodrome k,
then their departure times must be at least sb minutes apart.

(303)DT j −DT i ≥ sb.Zij −BigM.

3− Zij −
H∑

h=1:
âh=k

Yih −
H∑

h=1:
âh=k

Yjh

 ;

∀ k = 1, . . . , K; i, j = 1, . . . , I | i ̸= j.

Unit maritime synchronization constraints. Constraints (304) ensure the synchroni-
zation of the arrival times of the flights at a maritime unit p. In Figure 42, we illustrate
how the imposition of the time interval (sih + tui − sjg) ensure this synchronization. In
this figure, we assume that flight i is assigned to helicopter h at aerodrome k, while flight
j is assigned to helicopter g at aerodrome l (we note that helicopters h and g can be
associated to the same aerodrome; in this case aerodrome k coincides with aerodrome l).
Moreover, we also assume that the departure of flight i from aerodrome k occurs before
the departure of flight j from aerodrome l. Observe that the (sih + tui − sjg) interval in
Figure 42 prevents flight j from landing on the maritime unit while its heliport is occupied
by flight i. It is worthy of mention that the synchronization of the arrival times of the
flights in the maritime unit can be done only using the departure times of the flights from
their aerodromes because the flight travel times are considered deterministic.

(304)DT j −DT i ≥ (sih + tui − sjg) Zij −BigM. (3− Zij − Yih − Yjg) ;
∀ i, j = 1, . . . , I; | i ̸= j ∧ ui = uj; h, g = 1, . . . , H | h ̸= g.

Other practical constraints: Constraints (305)-(308) are necessary to consider other
practical characteristics of the company problem. The set of constraints (305) and (306)
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Figure 42 – Illustration of the synchronization of flights at a maritime unit.

Aerodrome k

DT i

sih

Aerodrome l

DT j sjg

tui

α

β

sih + tui − sjg

Source: Own authorship.

ensures that flight i (if scheduled in a solution) is not carried out by a helicopter in-
compatible with it. Constraints (307) impose an order of precedence between flights i

and j. Thus, in a given solution and regardless of the aerodromes where these flights
are scheduled, the departure of flight j will never occur before the departure of flight i

if prij = 1. The set of constraints (308) prevents local-transfers between different aero-
dromes for entourage and mandatory flights or if the travel time by bus between these
aerodromes exceed tmax units of time for the other type of flights

(305)Xijh = 0; ∀ i, j = 1, . . . , I | i ̸= j; h = 1, . . . , H | cih + cjh < 2;
(306)Yih ≤ cih; ∀ i = 1, . . . , I; h = 1, . . . , H;
(307)Zji = 0; ∀ i, j = 1, . . . , I | i ̸= j ∧ prij = 1;
(308)Yih = 0; ∀ i = 1, . . . , I; h = 1, . . . , H | ǎi ̸= âh ∧ (trǎi,âh

> tmax ∨ ni = 3, 4).

Domain of the decision variables. Constraints (309)-(313) indicate the type and do-
main of the decision variables. From these constraints, we observe that variables Xijh, Yih,
Zij and Vh are binaries, while variables DT i, AT i and Di are non-negative continuous.

(309)Xijh ∈ {0, 1}; ∀ i = 0, . . . , I; j = 1, . . . , I + 1 | i ̸= j; h = 1, . . . , H;
(310)Yih ∈ {0, 1}; ∀ i = 1, . . . , I; h = 1, . . . , H;
(311)Zij ∈ {0, 1}; ∀ i, j = 1, . . . , I | i ̸= j;
(312)Vh ∈ {0, 1}; ∀ h = 1, . . . , H;
(313)DT i ≥ 0, AT i ≥ 0, Di ≥ 0; ∀ i = 1, . . . , I.

6.2.2 Discrete-time model

An alternative formulation for this ARP is to treat the time as a discrete measure,
which refers to assigning a temporal index (for example, t) into the decision variables.
Evidently, the ideal total number of periods (T ∗) to be used for this modeling corresponds
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to the number of minutes contained within the largest time window of the aerodromes
considered in a given instance, which makes the discretization equivalent to the schedules
generated by the continuous-time model. However, representing each index t as one
minute may be impractical, since T ∗ typically have 660 periods/minutes (in general,
the time windows are from 7:00 am to 6:00 pm), thus drastically impacting memory
consumption and computing time. A way to overcome this is by reducing T ∗, making
each t represent a time greater than one minute. We chose to express t as 5 minutes,
once the total number of periods dropped to 660/5 = 132, the solution quality is not
much affected (assessed by computational tests), and it already respects the requirement
of placing the safety briefing in the takeoff instants.

This subsection extends the recent discrete-time formulation elaborated in De La Vega
et al. (2022a), who also proposed leaving the time as a multiple of 5 minutes. Unlike this
work, the authors did not consider the presence of multiple aerodromes and the possibility
of transferring the flight locations.

Next, we introduce the parameters converted by the discretization and the decision
variables:

Parameters:

• factor = sb: number to be used as multiple of the time-related data (in this case,
5 minutes);

• ri = ⌈ri/factor⌉ −mink=1,...,K{⌈twA
k /factor⌉} + 1: scheduled departure of flight i,

discretized in 5-minute periods;

• sih = ⌈sih/factor⌉: travel time of flight i from helicopter h to its destination mari-
time unit, discretized in 5-minute periods;

• tui = ⌈tui/factor⌉: dwell time of flight i at its destination maritime unit, discretized
in 5-minute periods;

• tf ih = ⌈tf ih/factor⌉: duration of flight i using helicopter h, discretized in 5-minute
periods;

• tat = ⌈tat/factor⌉: turnaround time discretized in 5-minute periods;

• sb = ⌈sb/factor⌉: safety briefing discretized in 5-minute periods;

• dmax = ⌊dmax/factor⌋: maximum allowed delay for pre-scheduled flights, discretized
in 5-minute periods;

• wdh = ⌊wdh/factor⌋: workday of crew on board helicopter h, discretized in 5-
minute periods;
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• T = maxk=1,...,K{⌊twB
k /factor⌋} −mink=1,...,K{⌈twA

k /factor⌉}+ tat: planning hori-
zon (added with tat, which will be discussed later) discretized in 5-minute periods.

Decision variables:

• Xith: 1, if flight i is started by helicopter h in period t; 0, otherwise;

• Yth: 1, if helicopter h is performing a flight in period t; 0, otherwise;

• Ztk: 1, if a takeoff from aerodrome k occurs in period t; 0, otherwise;

• Qtp: 1, if a landing to maritime unit p occurs in period t; 0, otherwise;

• Vh: 1, if helicopter h is used; 0, otherwise;

• outi: 1, if flight i is not scheduled on the current day; 0, otherwise (except for
mandatory flights).

Even with the simplification of setting time-related data in multiples of 5 minutes, the
assembly of discrete-time model can still impact the computing time for larger realistic
instances. Consequently, we created the parameters below in order to improve the formu-
lation by reducing the ranges of variables and constraints, hence decreasing the solver’s
runtime.

Enhancements:

• tF irstZ
k = ⌈twA

k /factor⌉ −minl=1,...,K{⌈twA
l /factor⌉}+ 1;

• tLastZ
k = T − (maxl=1,...,K{⌈twB

l /factor⌉} − ⌈twB
k /factor⌉);

• tF irstX
ih =

ri, if ri > twA
âh

;

tF irstZ
âh

, otherwise.

• tLastX
ih =

min(tF irstX
ih + dmax, tLastZ

âh
− tf ih − tat + 1), ni = 0, 3, 4;

tLastZ
âh
− tf ih − tat + 1, ni = 1, 2.

• tLastX2
i = minh=1,...,H:cih=1{tLastX

ih};

• tF irstY
h = mini=1,...,I:cih=1{tF irstX

ih};

• tLastY
h = maxi=1,...,I:cih=1{tLastX

ih + tf ih}+ tat− 1;

• tF irstQ
p = mini=1,...,I;h=1,...,H:ui=p∧cih=1{tF irstX

ih + sih};

• tLastQ
p = maxi=1,...,I;h=1,...,H:ui=p∧cih=1{tLastX

ih + sih + tui};

• leftoveri = ⌈ri/factor⌉.factor − ri.
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Thereby, the enhanced discrete-time model for the problem is proposed in that way.
Objective function. Similar the optimization of (285), (314) minimizes the weighted

sum of unassigned flights transferred to the next day (f1), the weighted sum of flights
transferred to other aerodromes (f2), the helicopter utilization (f3), and the total delay
of the flights (f4). Some slight differences are in the use of variable outi to quantify the
flights transferred from the current day in f1, the presence of variable Xith to compare
the designated aerodromes with the pre-defined ones in f3, and the usage of index t and
parameter leftoveri to quantify the delay obtained in f4. An addendum to leftoveri is
that it computes the delay obtained by rounding ri in the discretization to correct the
existing lag between t = 1 and ri.

min f =
4∑

s=1
fs;

where

f1 =
I∑

i=1:
ni ̸=4

w1
i .outi; f2 =

I∑
i=1

K∑
k=1:
k ̸=ǎi

H∑
h=1:
cih=1
k=âh

w2
ik.

 tLastX
ih∑

t=tF irstX
ih

Xith

 ; (314)

f3 =
H∑

h=1
w3

h.Vh; f4 =
I∑

i=1

H∑
h=1:
cih=1

tLastX
ih∑

t=tF irstX
ih

w4
i . [(t− ri) .factor + leftoveri] .Xith.

Assignment constraints. Constraints (315)-(317) are responsible for associating a
flight to an helicopter and period time. Specifically, (315) ensure that each table or
day-transferred flight i is performed once at most, independent from the designated aero-
drome, (316) guarantee that entourage flights can be assigned only their base aerodromes,
while (317) obliges that all mandatory flights are included in the original planning (only
permitting delay).

(315)
H∑

h=1:
cih=1

tLastX
ih∑

t =tF irstX
ih

Xith + outi = 1; ∀ i = 1, . . . , I | ni = 0, 1, 2;

(316)
H∑

h=1:
âh=ǎi
cih=1

tLastX
ih∑

t =tF irstX
ih

Xith + outi = 1; ∀ i = 1, . . . , I | ni = 3;

(317)
H∑

h=1:
âh=ǎi
cih=1

tLastX
ih∑

t =tF irstX
ih

Xith = 1; ∀ i = 1, . . . , I | ni = 4.

Logical occupancy constraints. They express the level of occupancy/usage for the
resources, aerodromes, aircraft and maritime units, in the time horizon. Constraints
(318) cause flight i to be allocated (if applicable) to at most one aerodrome k and time
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period t by activating binary variable Ztk, hence respecting safety briefing sb (given the
factor = 5, as mentioned above). Constraints (319) allow the duration of flight tf ih and
the turnaround time tat to be fulfilled. Given the activation of Xith in period t, these
constraints make binary variable Yth to be activated from period t to t + tf ih + tat for
helicopter h (i.e., Yth = 1, . . . , Yt+tf ih+tat,h = 1). This eliminates overlap between the
landing and takeoff for a same aircraft from its aerodrome. Finally, constraints (320)
impose dwell time tui for each flight lading at its destination maritime unit (i.e., landing
period t + sih at MU ui). Note that (320) has the similar operating principle as (319),
although differing in relation to the sign “≥”, since the “for all” with index h is necessary,
given the presence of sih in the variable Qt+sih,ui

. It is also important to comment on the
placement of variables Ztk, Yth and Qtp in constraints (318), (319) and (320) instead of
simply using the summations with “≤ 1”. We observed that the solver’s B&C performance
improved considerably by enabling branching on the bounds of these constraints.

(318)Ztk =
I∑

i=1

H∑
h=1:
cih=1
k=âh

Xith; ∀ k = 1, . . . , K; t = tF irstZ
k , . . . , tLastZ

k ;

(319)
Yth =

I∑
i=1:

cih=1

∑
t′ =t,t−1,...,max{tF irstX

ih
,t−tf ih−tat+1}

Xit′ h;

∀ h = 1, . . . , H; t = tF irstY
h , . . . , tLastY

h ;

(320)
Qt+sih,ui

≥
∑

t′ =t,t−1,...,max{tF irstX
ih

,t−tui+1}
Xit′ h;

∀ i = 1 . . . , I; h = 1 . . . , H | cih = 1; t = tF irstX
ih, . . . , tLastX

ih.

Helicopter capacity and synchronization constraints. Constraints (321) oblige Vh = 1
when some Yth > 0, in this way, an allocation in the time horizon only occurs if this
helicopter is used. Suppose t is the first takeoff and t

′ is the last landing (with tat) of
helicopter h. Therefore, the maximum workday tolerated for crew on board this aircraft
(wdh) on the present day is respected when satisfying (t′ − tat + 1) − t ≤ wdh. With
that in mind, (322) guarantee this rule by preventing Yt′ h and Yth from being activated
concurrently when (t′ − tat + 1) − t > wdh. Note that these constraints only verify the
extremities of planning horizon, which makes them much more efficient than others that
compare, for example, all t

′
> t using “BigM” parameters. To make sure that the last

Y t
′
h = 1 always consider tat, so that it can then be discounted, we add tat to T .

(321)Yth ≤ Vh; ∀ h = 1, . . . , H; t = tF irstY
h , . . . , tLastY

h ;

(322)Yt′ h + Yth ≤ 1; ∀ h = 1, . . . , H;
t, t

′ = tF irstY
h , . . . , tLastY

h | (t
′ − tat + 1)− t > wdh;
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Practical precedence constraints. The flight precedence required by the problem th-
rough parameter prij is enforced by constraints (323). Basically, they prevent flight j

from being performed in periods after flight i when prij = 1.

(323)
H∑

h=1:
cjh=1

min{tLastX
jh,t−1}∑

t′ =tF irstX
jh

Xjt′ h ≤ 1−
H∑

h=1:
cih=1

Xith;

∀ i, j = 1, . . . , I | i ̸= j ∧ prij = 1; t = ri, . . . , tLastX2
i ;

Variable pre-fixing. The next three constraints ensure the last rules of problem by
means of fixing variables. Constraints (324) check if dmax will not be exceeded, considering
the addition of leftoveri in the delay. Lastly, constraints (325) avoid local transfers for
entourage/mandatory flights and do not permit this type of transfer for road routes that
exceed tmax.

(324)Xith = 0; ∀ i = 1, . . . , I | ni = 0, 3, 4; h = 1, . . . , H | cih = 1;
t = tF irstX

ih, . . . , tLastX
ih | (t− ri).factor + leftoveri > dmax;

(325)Xith = 0; ∀ i = 1, . . . , I; h = 1, . . . , H | cih = 1 ∧
ǎi ̸= âh ∧ (trǎi,âh

> tmax ∨ ni = 3, 4); t = tF irstX
ih, . . . , tLastX

ih;

Domain of the decision variables. The discrete-time model is finalized by the type
and domain of decision variables in (326)–(331), which in turn we have a binary inte-
ger programming (BIP). We can see that the intervals of period t were limited by the
enhancements, causing the model to reduce drastically when compared with an interval
1, . . . , T .

(326)Xith ∈ {0, 1}; ∀ i = 1, . . . , I; t = tF irstX
ih, . . . , tLastX

ih; h = 1, . . . , H | cih = 1;
(327)outi ∈ {0, 1}; ∀ i = 1, . . . , I | ni = 0, 1, 2, 3;
(328)Yth ∈ {0, 1}; ∀ t = tF irstY

h , . . . , tLastY
h ; h = 1, . . . , H;

(329)Ztk ∈ {0, 1}; ∀ t = tF irstZ
k , . . . , tLastZ

k ; k = 1, . . . , K;
(330)Qtp ∈ {0, 1}; ∀ t = tF irstQ

p , . . . , tLastQ
p ; p = 1, . . . , P ;

(331)Vh ∈ {0, 1}; ∀ h = 1, . . . , H.

6.3 Heuristic approach

The proposed heuristic comprises two main phases. The first phase starts by de-
composing the problem into K disjoint subproblems, each characterized by aerodrome
k ∈ K and flights i ∈ Ik in which Ik = {i = 1, . . . , I : ǎi = k}, i.e., all flights that
depart from aerodrome k in the original schedule. Each subproblem k is then solved by
a construction heuristic followed by a sequence of local searches. We name this phase
Decompose-Construct-and-Improve. If the first phase solution does not serve all flights,
the second phase, called Integration, tries to allocate them to helicopters, used or not,
based on a different aerodrome.
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6.3.1 Decompose-Construct-and-Improve Phase

This method shares the same theoretical heuristic framework presented in Chapter
5. In that work, a single aerodrome is considered, the crew’s duty are disregarded and
flight times are independent of the helicopter type. In addition to extending the problem
to the case of multiple aerodromes, our heuristic does not apply the strategy of relaxing
the fleet heterogeneity as seen in Section 5.3 since the current configuration of the ope-
ration requires prior knowledge of the helicopters to determine their schedules (there are
non-scalar parameters that depend on identifying the helicopter to be used). Next, we
describe the two parts that form Decompose-Construct-and-Improve Phase, Construction
Part and Improvement Part.

The Construction Part
For each subproblem (aerodrome) k, sequences of flights i ∈ Ik are constructed and

allocated to helicopters based on k. The construction of flight sequences requires assessing
the number of helicopters that serve as many flights as possible and, given the fleet
heterogeneity, choosing a particular subset of helicopters in Hk in which Hk = {h =
1, . . . , H : âh = k}, i.e., all helicopters based on aerodrome k in the original schedule.
Given the difficulty of assessing the required number of helicopters, we start with its
lower bound as:

(332)Hmin
k =


∑

i∈Ik
[tat + minh∈Hk

(tf ih) ]
min

{
twB

k − twA
k , maxh∈Hk

(wdh)
}
 ;

and iteratively add more helicopters, if necessary. Note that the computation of Hmin
k as-

sumes that all flights are served and disregards any flight superposition in the aerodromes
runways. Thus, the number of unique combinations of Hmin

k helicopters is given by:

(333)Cn =
 |Hk|

Hmin
k

 = |Hk|!
Hmin

k ! .(|Hk|−Hmin
k )! .

In order to choose an appropriate subset ofHk, each helicopter h is evaluated according
to function gwh = C1.

(
I − Îh

)
+ C2.

(
I − Ǐh

)
+ C3.

(
t̂fh/wdh

)
+ C4.w3

h, where Îh is the
number of flights compatible with h, Ǐh is the number of flights to which h is assigned
in the original schedule, t̂fh is h’s average flight time considering its compatible flights,
and C1, . . . , C4 are coefficients to be calibrated. The score of a given combination of
helicopters Combl ⊆ Hk is given by scl = ∑

h∈Combl
gwh,∀ l = 1, . . . , Cn. Through the

non-decreasing ordering of scl, the G first subsets of helicopters are selected to be checked
in function of the best performance that will be observed by the allocation of flights during
the rest of the Construction Part. We defined these subsets as H∗g,∀ g = 1, . . . , G (note
that

∣∣∣H∗g∣∣∣ = Hmin
k ).

A two-flight sequence Prh is then constructed for each helicopter h ∈ H∗g. The start
of the assembly of each sequence is done in relation to the due time pzi = ri + t̃f i,
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where t̃f i is the average time of flight i. Specifically, the first and the last flight of Prh

is chosen by i
′= argmin

i∈Ik:i/∈P rv ,v∈H∗
g ,v ̸=h

{ pzi | cih = 1} and j
′= argmax

j∈Ik:j /∈P rv ,v∈H∗
g ,v ̸=h

{ pzj | cjh =

1}, respectively. This corresponds to following an EDT rule ordering. Regarding the
remaining helicopter (|Hk| −Hmin

k ), we set Prh = ∅,∀ h ∈ Hk\
⋃G

g=1H∗g.
As a way of verifying feasibility, carrying out the schedule, as well as quantifying the

delay of this first flight association, the heuristic executes backward programming, cal-
led GetSchedule, responsible for making all scheduling from flight sequences. In general,
GetSchedule delays the flights of each Prh only when necessary, in order to meet the pro-
blem’s constraints aimed at building schedules. For this, the routine starts the departure
and arrival times of each flight as if they were planned (without delays). Based on this,
there is a looping designed to “push” flights that violate the conditions related to the
overlapping of helicopter in a MU (tui), safety briefing (sb), turnaround time of the same
consecutive helicopter (tat), and calculating the arrival time of a flight to the aerodrome
(AT i = DT i + tf ih). The closing of this looping occurs when all these requirements are
guaranteed, no matter how big the values of DT i and AT i may be in this first moment.

Then, the routine quantifies all delays Di and verifies the feasibility condition of the
rest constraints related to the schedule, i.e., checking if any table flight delays more than
what is tolerated (Di > dmax), if the landing of any flight of the schedule does not occur
with sunlight (AT i > twB

k ), if there is a flight j that has a scheduled departure time
before a flight i for the same MU, given by parameter prij = 1, and if there is some Prh

in which the difference between the arrival time of the last flight and the departure time
of the first flight is greater than wdh. In view of this inspection, GetSchedule also returns
a binary parameter entitled feasibleT ime, having a value of 1, if all checks confirm the
feasibility of the analyzed schedule, and 0, otherwise.

For every unscheduled flight, its insertion is analyzed before and after the position of
each scheduled flight (j ∈ Prh) using GetSchedule. The criterion for including a flight in
the schedule is made when evaluating its type (whether it is a day-transferred flight or
not), the level of precedence over other flights, and the degree of compatibility with the
available helicopter, determined by:

(i∗, j∗, h∗) = argmin
(i,j)∈Ik:i/∈P rh,j∈P rh,h∈H∗

g

{
Typei + Preci + H̃i

H
+ min (TDijh, TDjih)

}
; (334)

where:

• Typei =

1, ni ∈ {1, 2} ;

2, ni ∈ {0, 3, 4} .

• Preci =

2.I, p̃i = 0;

I/p̃i, p̃i > 0.
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• p̃i: number of flights that succeeds (not necessarily immediately) flight i (prij);

• H̃i: number of helicopters compatible with flight i;

• TDijh: total delay obtained if flight i is inserted immediately before j (TDjih, if the
insertion is after).

This procedure is called InsertF lights and it is repeated until all unscheduled flights
from the aerodrome k are included, or the circumstance arises in which it is no longer
possible to insert flights into the schedule (all the desired insertions have the return of
GetSchedule, feasibleT ime = 0). For the second situation, the remaining unscheduled
flights from aerodrome k are placed in the set defined by Rgk.

Therefore, the objective function for aerodrome k in iteration it is calculated by:

(335)OF it,k = min
g=1,...,G

fit,g,k;

where:

fit,g,k =
∑

i∈Rgk

w1
i +

∑
h∈H∗

g

w3
h +

∑
h∈H∗

g

∑
i∈P rh

w4
i .Di.

If OF it−1,k > OF it,k and Hmin
k < |Hk|, the iteration is increased and the values of

OF it,k and solution solit,k (X, DT, AT, D) are stored (for iteration it = 1, we initialize
OF 0,k = +∞). The heuristic proceeds by doing Hmin

k = Hmin
k +1 and repeating the steps

that determine H∗g. It makes the first flight insertions using the EDT ordering and tries
to designate the remaining flights using the InsertF lights routine by the criterion (334)
and the calculation of OF it,k. This cycle is performed until the comparison between the
objective functions and the availability of the fleet is considered false, which implies a
convergence to the best result found (OF ∗it−1,k), thus finishing the Constructive Part.

The Improvement Part
The Decompose-Construct-and-Improve Phase completion consists of applying five dif-

ferent local searches to the solution found in the previous step, as follows:

• N1: Helicopter itinerary rescheduling;

• N2: Exchange of scheduled flights by unscheduled flights;

• N3: Inter-helicopter flight insertion;

• N4: Inter-helicopter flight exchange;

• N5: Intra-helicopter flight exchange.

Neighborhood N1 aims at accommodating unscheduled flights at the cost of some
extra delay time. It consists of replacing a scheduled flight i by an unscheduled one in the
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same order of visitation, followed by i’s reinsertion in a different order of visitation or in
the itinerary of a distinct helicopter. Neighborhood N2 aims to reduce the solution cost
by replacing a scheduled flight by an unscheduled one with a lower day-transfer penalty
as described in the objective function of the optimization model. For instance, serving
day-transferred flights is less costly than table flights. Note that differently from N1, N2
does not alter the cardinality of the unscheduled flights set. Neighborhood N3, in turn,
consists of transferring a flight i from the itinerary of the helicopter that serves it followed
by i’s reinsertion into the itinerary of a different helicopter. Neighborhood N4 tries to
swap two flights from two different helicopter schedules. It is basically an inter-change of
flights between different helicopters maintaining the precedent and subsequent positions.
Finally, Neighborhood N5 consists of adjacent pairwise interchanges of flights in the same
helicopter itinerary. In other words it performs rearrangement of flights from the same
helicopter. This is performed for all flights of all helicopters.

Local searches N1 to N5 are applied consecutively, following the lexicographic order.
For a given local search, the neighborhood is fully investigated, the feasible move that
provides the largest improvement in the objective function is selected to produce a new
incumbent solution, and the process is repeated until no improving move is found.

6.3.2 Integration Phase

As a last resort for incorporating flights in the solution, the second phase aims at
transferring flights from their original aerodrome to a different one. For all unscheduled
flights i, originally assigned to departure from aerodrome k, we compute the feasible
insertion positions of the helicopters’ itinerary that are compatible with i and based on
aerodrome k

′ ̸= k. The insertion that results in the lowest delay is selected to produce
the new incumbent solution, and the process is repeated until no improving insertion is
found. Note that the required time for the passengers’ displacement from the original
aerodrome to the new one must be taken into account when assessing the feasibility of
the insertion.

In case the procedure fails in incorporating one or more flights, we apply a second
local search whose neighborhood is similar to N1 described in the Improvement Part. A
scheduled flight i is replaced by an unscheduled i

′ in the same order of visitation, followed
by the reinsertion of i in a different order of visitation or in the itinerary of a distinct
helicopter. The move that results in the lowest delay is selected to produce the new
incumbent solution, and the process is repeated until no improving insertion is found.
If this attempt fails, a third local search is applied, whose move consists of assigning an
unused compatible helicopter (if there is) to i

′ .
The general scheme of the heuristic is presented by Algorithm 7. The heuristic starts

with the Decompose-Construct-and-Improve Phase, which comprises Steps 4 to 22. For
each aerodrome, the Construction Part and Improvement Part are executed in sequence.
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Basically, the Construction Part is responsible for quantifying and determining the aircraft
to be used through the best score fit,g,k found, and also defining the sequences and schedu-
les of flights for each aircraft, thus storing the results OF it,k and solit,k (X, DT, AT, D). As
mentioned earlier, after obtaining a feasible solution for the first phase, the Improvement
Part is triggered, which can be seen in Steps 20 to 22. As long as there is improvement in
the incumbent solution, the five local searches are performed. Next, the Integration Phase
tries to allocate flights that were not scheduled at their original aerodromes, according to
Steps 24 to 28.

Algorithm 7: General algorithm of the two-phase heuristic method
1 begin
2 read instance;

// Decompose-Construct-and-Improve Phase
3 foreach aerodrome k = 1, . . . , K do
4 Construction Part
5 calculate Hmin

k ;
6 determine the subset H∗

g,∀ g = 1, . . . , G;
7 initialize: it← 1, OF 0,k ← +∞, improvement← 1 (an auxiliary variable);
8 do
9 for g = 1 to G do

10 make the preliminary flight sequencing by EDT rule;
11 for all the remaining unscheduled flights, use the InsertF lights procedure;
12 calculate fit,g,k;
13 store the fit,g,k and the solit,k (X, DT, AT, D);
14 choose the best result of fit,g,k and compute it as OF it,k;
15 Hmin

k ← Hmin
k + 1;

16 it← it + 1;
17 while OF it−1,k > OF it,k ∧Hmin

k < |Hk|;
18 Improvement Part
19 while improvement = 1 do
20 execute the improvement local searches N1-N5;
21 if OF it,k does not reduce more then improvement = 0;

// Integration Phase
22 repeat
23 for all unscheduled flights, try to insert them at other aerodromes (if there are

compatible helicopters and inland travel time between aerodromes ≤ tmax);
24 for all unscheduled flights, try an insertion based on neighborhood N1 of the

ImprovementPart;
25 if there are still remaining flights to assign and helicopter available, try to activate the

most compatible helicopter due to unscheduled flights (running together N3 and N4);
26 until all flights were scheduled, all compatible helicopter were assigned, or the number of

unscheduled flights has not decreased;
27 generate output;

6.4 Computational experiments

This section presents the results of numerical experiments to evaluate the computatio-
nal performance of three solution approaches: (i) solve continuous-time model (285)-(313)
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via CPLEX 12.10 with time limit of one hour (called M1); (ii) solve discrete-time model
(314)-(331) through the same CPLEX version and duration limit (M2); and (iii) apply the
two-phase heuristic (H) of Section 6.3. All these solution approaches were implemented
in C++ language with the same hardware configuration used in Section 5.4.

Table 20 resumes the main characteristics of ten realistic problem instances considered
in the computational experiments, ranging from 23 to 90 flights, from 7 to 24 helicopters,
from 17 to 59 maritime units and from 2 to 3 aerodromes. In this table, column “Ins-
tance” indicates the instance name, while the next four columns portray the number of
flights (I), helicopters (H), maritime units (P ) and aerodromes (K), respectively. The
remaining five columns show the number of table flights, transferred flights from the last
day, transferred flights from the last two or more days, entourage flights and mandatory
flights, respectively. The first eight instances used real-data provided by the company
and the last two (I82_2 and I90_2) were generated based on instances I82_3 and I90_3.
These instances simulate the important unexpected event that one of aerodromes (in the
case, the one with the fewest flights) is closed for the whole day and its respective demand
is transferred to the other aerodromes. To do this, helicopters from the closed aerodrome
are disregarded and their types of booked flights, table and transfer delayed by one day
flights, become, respectively, transfer delayed by one day and transfer delayed by two
or more days flights. Table 20 highlights the differences between I82_2 and I82_3, and
I90_2 with I90_3. From now on, the first eight instances of Table 20 are called real
instances, whereas the last two ones are called simulated instances.

Table 20 – Characteristics of the realistic problem instances.

Instance I H P K n̂0 n̂1 n̂2 n̂3 n̂4
I23_2 23 7 17 2 15 6 2 0 0
I35_2 35 12 22 2 23 9 0 3 0
I48_3 48 18 32 3 35 9 2 1 1
I56_3 56 18 40 3 27 21 3 2 3
I67_3 67 21 46 3 35 22 3 2 5
I71_3 71 21 50 3 40 25 2 0 4
I82_3 82 24 56 3 46 27 3 0 6
I90_3 90 24 52 3 49 31 4 1 5
I82_2 82 21 56 2 37 35 4 0 6
I90_2 90 18 52 2 39 39 6 1 5

Source: Own authorship.

All parameter values correspond to those used by the company. As said before, tat

was set to 45 minutes, sb to 5 minutes, and dmax and tmax to 4 hours (240 minutes).
The remaining data of all instances, such as the scheduled departure times of flights
(ri), the duration of flight i using helicopter h (tf ih), the service times of flights at
maritime units (tui), the workdays of helicopters (wdh), the time windows of aerodromes
([twA

k , twB
k ]), the land transfer times (by road transportation) of flight passengers between
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aerodromes k and l (trkl), among others, can be obtained upon request to us. These
parameters are in “hours:minutes” format but we convert them to minutes before using
any solution approach. Each of weight values for the optimization were carefully defined
by the company’s programmers in order to reflect their relative priorities. These chosen
penalties for w1 > w2 > w3 > w4 used in the experiments were: w1

i equals 320 if flight
i is an entourage flight, 240 if it is a transferred flight from the last two or more days,
180 if it is a transferred flight from the last day and 80 if it is a table flight; w2

ik equals
40 if flight i is transferred to aerodrome k when it was originally scheduled in another
aerodrome; w3

h equals 20 if helicopter h is of the pool fleet and 10 if it is of the normal
fleet; w4

i equals 0.001 if flight i is a table, entourage or mandatory flight and 0.005 if it is
a day-transferred flight. Regarding the two-phase heuristic, through computational tests
we set parameter G = 3 (the number of aircraft subsets) and adopted parameters C1 = 1,
C2 = 0.1, C3 = 100, and C4 = 1 (coefficients used to determine gwh), all described in
Constructive Part of Decompose-Construct-and-Improve Phase.

6.4.1 Toy problem

Before showing the results of real problem instances, let us consider an illustrative
example with a daily timetable of only 9 table flights (I = {i1, i2, ..., i9} with n1 = n2 =
... = n9 = 0) and 2 aerodromes (K = {k1, k2}). Figure 43 depicts the corresponding
Gantt diagram for the scheduled timetable, where the flights are represented by colored
bars: the orange ones represent the travel times to and from each maritime unit, sih;
the yellow ones represent the time that each helicopter remains on the ground at each
maritime unit, tui; the gray ones represent the turnaround time of each helicopter just
after each flight at the aerodrome, tat. The departure times of each flight, ri, are shown
over these bars. The flights depart from the two aerodromes, represented on the left-side
of figure, which have different time windows, i.e., twA

1 = 06:55, twA
2 = 07:00 and twB

1 =
19:00, twB

2 = 17:30, respectively. The flight labels are indicated inside the orange bars of
figure. Three helicopters are used (H = h1, h2, h3) in this timetable, represented along the
ordinate axis of figure, with a workday of 10 hours (wd1 = wd2 = wd3 = 10). Note that
helicopters h1 and h2 belong to aerodrome k1 while helicopter h3 to aerodrome k2. There
are 7 maritime units (P = {PA, PB, ..., PG}) and note that there are flights with same
unit destination (e.g., flights i4 and i6 goes to unit PD, i.e., PD = PF ). The maritime
unit labels are indicated inside the yellow bars of figure.

Now, let us consider that four unrealized flights (i10, i11, i12, i13) were transferred
from the last days to aerodrome k1, two of them were 2-day delay flights (i11, i12 with
n11 = n12 = 2), and the other two were 1-day delay flights (i10, i13 with n10 = n13 = 1).
The unit destination of flights i10, i11 coincides with the destination of flights i4, i6 (i.e.,
PD); the destination of flight i12 coincides with the destination of flight i1 (PA); the
destination of flight i13 coincides with the destination of flight i7 (PF ). Therefore, these
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four day-transferred flights should be scheduled before the table flights because of the
precedence constraints (i.e., pr10,4 = pr10,6 = pr11,4 = pr11,6 = pr12,1 = pr13,7 = 1).
Figure 44 depicts a recovery plan after the inclusion of these day-transferred flights in the
previous daily timetable.

Figure 43 – Original timetable of the toy problem.

Source: Own authorship.

Figure 44 – Recovery plan of the toy problem.

Source: Own authorship.

As shown in Figure 44, the four day-transferred flights were successfully rescheduled
in the recovery plan, which required some decisions to be taken. First, the precedence
constraints were met for the flights with the same unit destination - note that flights
i11 and i10 were rescheduled before flight i4 (in the same aerodrome), and flight i12 was
scheduled before flight i1 (in this case, in different aerodromes). For this, the departure
times of flights i1, i4, i7 had to be postponed in a few hours, implying in some delays
(D1, D4, D7 > 0). Moreover, flight i12, which was previously scheduled in aerodrome k1,
had to change to aerodrome k2. Given that the departure of flight i12 must occur before
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the departure of flight i1, the scheduling of flight i12 in helicopter h1 of aerodrome k1

would imply in delaying flight i1 in, at least, tf 1,1 + tat minutes, which is greater than the
time limit for a delay (dmax). Thus, flight i1 would be transferred to the next day, which
would be highly penalized. Similarly, given that the departure of flight i12 must occur
before the departure of flight i4, the scheduling of flight i12 in helicopter h2 at aerodrome
k1 would imply in delaying flight i4 for more than the time limit of a delay and, hence,
flight i4 would be transferred to the next day. A better alternative is to move flight i12

from aerodrome k1 to aerodrome k2 and use helicopter h3. Despite this recovery plan
implying a delay for flight i7, it is able to include more flights in the current day.

It should be observed that flight i6 was unrealized in the recovery plan of Figure 44
and had to be transferred to the next day. Note that this flight could not be maintained
as the last flight of helicopter h2, because of the workday restriction of 10 hours of this
helicopter. Similarly, if flight i6 were assigned to helicopters h1 or h3, the workday limit
of these helicopters would be violated as well and hence, transferring flight i6 to the next
day seems to result in a good solution. In fact, the recovery plan of Figure 44 is indeed
an optimal solution for this problem, which is proven by solving to optimality model M1.

Table 21 shows in detail the solutions obtained by the approaches M1, M2 and H.
Column “Solution Approach” indicates the proposed methods; column f the total solution
penalty; columns f1, f2, f3, f4 the penalties regarding four terms of objective function,
respectively; column “Time” the computer runtime (in seconds); column nR the number
of flights transferred to the next day; column nT the number of flights that change the
aerodrome; column nH the number of helicopters used. As previously specified, the
solution of M1 is optimal. When comparing it with the solution of M2, we notice that the
delay reached by M2 is greater (see f4). This was due to the rounding of time as a multiple
of 5 minutes. Both approaches presented exactly the same assignment and sequencing
flights in the recovery plan, however, the parameters r4 = 07:47 and tf 5 = 01:32, and
the schedule DT 1 = 09:17, DT 4 = 10:52 and DT 7 = 09:16, belonging to the solution
of M1 had to be increased by r4 = 07:50, tf 5 = 01:35, DT 1 = 09:20, DT 4 = 10:55 and
DT 7 = 09:20 in the solution of M2. Respecting to the solution of H, the recovery plan was
different from the optimal solution. Basically four flights were assigned and sequenced
differently. Despite this change, H provides a slightly higher overall flight delay (column
f4). Now about the runtime, the heuristic solution is obtained within a much shorter
computational time, and this advantage of H over M1 and M2 will become more evident
when solving the realist problem instances of the next section.

6.4.2 Real problem instances

Table 22 presents the results obtained by the three solution approaches for each of the
real problem instances. Some of the table columns are the same as Table 21, except for
the column “Instance” that indicates the instance name; column Gap1, the optimality gap
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Table 21 – Summary of the results of the toy problem.

Solution approach f f1 f2 f3 f4 Time (sec) nR nT nH

M1 151.05 80 40 30 1.05 51.24 1 1 3
M2 151.07 80 40 30 1.07 59.36 1 1 3
H 151.93 80 40 30 1.93 0.09 1 1 3

Source: Own authorship.

(in percentage) with respect to the lower bound LBM1 for each instance found by solution
approach M1 after one hour of execution time; column Gap2, the gap (in percentage) with
respect to the best upper bound UBIN of the all f got for each instance. The values of
columns Gap1 and Gap2 were determined as:

(336)Gap1 = (1− LBM1/f).100%;
(337)Gap2 = (1− UBIN/f).100%.

Some of the main results of this table are:

• The solution approach M1 was able to find feasible solutions without transferring
flights to the next day until problem instance I48_3. However, for the remaining
larger instances, the obtained recovery plans are not able to include all flights within
the time limit of one hour, which is highly undesirable by the company. The high
values of column Gap1 show that the solver cannot produce tight lower bounds using
the flow model under this time limit;

• Regarding the instances with three airports, the solution approach M2 is the one
that presented the best upper bounds, managing to recover all flights with low
utilization of the available fleet, which shows its potential in generating high quality
reschedule plans. Nevertheless, in these same instances, the time limit of one hour
was reached, which can be a negative point when short response times are required
in practice;

• The solution approach H was the fastest to generate feasible solutions, less than 170
seconds on average. Moreover, these solutions are of good quality as the obtained
recovery plans were able to reschedule all pending flights of the previous days, as
well as all flights of the day, which is the most important criterion of the company.

Next, we compare the solutions in more detail obtained by approaches M1, M2 and H
in each of the real instances. In instance I23_2, approach M1 achieves optimal solution
just before completing one hour of execution. With a slightly higher total flight delay and
with the same number of aircraft used, M2 and H are competitive at f . However, there is
a big difference in computational time among the two methods, M2 with 223.53 s and H
with only 0.56 s. These deviations between quality and runtime towards the approaches
are kept on instance I35_2. All manage to save two aircraft from the available fleet.
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Table 22 – Summary of the results of the real problem instances.

Solution Time Gap1 Gap2

Instance approach f f1 f2 f3 f4 (sec) (%) (%) nR nT nH

I23_2
M1 82.44 0 0 80 2.44 3,600.02 37.10 0.00 0 0 7
M2 82.48 0 0 80 2.48 223.53 37.13 0.05 0 0 7
H 82.52 0 0 80 2.52 0.56 37.16 0.09 0 0 7

I35_2
M1 141.32 0 0 140 1.32 3,600.18 49.89 0.00 0 0 10
M2 141.33 0 0 140 1.33 693.01 49.90 0.01 0 0 10
H 141.92 0 0 140 1.92 7.35 50.11 0.42 0 0 10

I48_3
M1 173.58 0 0 170 3.58 3,600.33 42.11 5.60 0 0 15
M2 163.86 0 0 160 3.86 3,600.20 38.68 0.00 0 0 14
H 165.58 0 0 160 5.58 16.51 39.32 1.04 0 0 14

I56_3
M1 942.39 640 80 210 12.39 3,600.12 90.40 78.51 4 2 17
M2 202.52 0 0 180 22.52 3,600.17 55.34 0.00 0 0 15
H 263.36 0 40 200 23.36 52.29 65.65 23.10 0 1 16

I67_3
M1 1,238.71 880 120 230 8.71 3,600.18 93.50 82.18 9 3 19
M2 220.73 0 0 200 20.73 3,600.45 63.54 0.00 0 0 17
H 250.39 0 0 230 20.39 148.46 67.86 11.85 0 0 19

I71_3
M1 1,504.30 1,120 120 250 14.30 3,600.05 93.33 82.62 9 3 20
M2 261.38 0 0 240 21.38 3,600.60 61.60 0.00 0 0 20
H 267.20 0 0 240 27.20 80.79 62.44 2.18 0 0 20

I82_3
M1 2,031.30 1,680 80 260 11.30 3,600.23 95.06 86.18 17 2 21
M2 280.72 0 0 260 20.72 3,600.50 64.24 0.00 0 0 22
H 311.00 0 0 290 21.00 425.83 67.72 9.74 0 0 23

I90_3
M1 3,588.34 3,360 0 210 18.34 3,600.47 96.92 91.29 29 0 18
M2 312.58 0 0 280 32.58 3,600.51 64.66 0.00 0 0 21
H 329.07 0 0 300 29.07 589.22 66.43 5.01 0 0 23

Source: Own authorship.

Leaving the scope of two airports and going to the first instance with three, I48_3, we
discover a more apparent gap in the solution quality of M1 in view of M2 and H (yielding
a Gap2 = 5.6%, given the use of one more helicopter) and in the time demanded by H
among the others (16.51 s against 1 h).

Concerning instance I56_3, whilst M1 transfers four flights to the next days, changes
two aerodrome bases and uses a total of 17 helicopters; M2 and H are able to include all
flights with less local transfers and fleet utilization. It is worth highlighting the quality of
solution obtained by M2, which did not transfer flights to other aerodromes and retained
one more helicopter than H. When observing I67_3 and I71_3, again M2 stands out in
terms of best solution, and H continues to have the lowest running time. Unlike M1,
which rejects nine flights with three local transfers, M2 and H are capable to allocate all
flights without having to change the default aerodromes.

Comparing the approaches in relation to the remaining larger instances (I82_3 and
I90_3), the potential of M2 and H to allocate flights is perceptible. The results indicate
that M2 and H can be suitable approaches for use in practical settings of the present
ARP. On the other hand, M1 become very ineffective as the problem instances incre-
ase, involving transference of several flights to the next day, as seen in instances I82_3
and I90_3. In general, we recommend M2 in situations that do not require very quick
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responses, such as an interval of at least one hour, otherwise, the best choice is H.

6.4.3 Simulated problem instances

As previously mentioned, we also consider a simulated pessimistic scenario where the
aerodrome with the fewest flights closes for the whole day due to an unexpected event,
for example, very bad weather. In this case, all scheduled flights in the timetable of the
closed aerodrome have to be either changed to the other aerodromes, or transferred to
the next day. For this simulation, we consider instances I82_2 and I90_2 with only two
aerodromes. These are supposed to be difficult problem instances as the recovery plans
have to deal with very congested situations. Table 23 reports the results obtained with
the tree solution approaches for these simulated instances. The columns of this table are
the same as Table 22.

Table 23 – Summary of the results of the simulated problem instances.

Solution Time Gap1 Gap2

Instance approach f f1 f2 f3 f4 (sec) (%) (%) nR nT nH

I82_2
M1 5,368.93 5,200 0 150 18.93 3,600.36 98.50 87.11 45 0 14
M2 694.25 320 80 260 34.25 3,600.47 88.39 0.31 4 2 21
H 692.10 400 0 260 32.09 376.94 88.36 0.00 5 0 21

I90_2
M1 6,888.94 6,720 0 160 8.94 3,600.15 97.82 82.10 51 0 14
M2 1,233.11 960 0 230 43.11 3,600.46 87.81 0.00 11 0 18
H 1,233.25 960 0 230 43.25 504.68 87.82 0.01 11 0 18

Source: Own authorship.

Note in Table 23 that, as expected, the recovery plans of M2 and H did not reschedule
all flights, even using all available fleets of the two aerodromes. In the solutions of these
approaches, all mandatory, entourage and day-transferred flights from the last days were
included in the recovery plans, as they are priority flights, and the flights transferred to
the next day are only table flights. The required runtimes of H are around 500 seconds,
which are tolerable for supporting decisions in this ARP. In particular, on instance
I82_2, despite the approaches M2 and H having close results, the solutions of both are
very different. While M2 rejected four flights (f1 = 320) and carry out two local transfers
(f2 = 80), H rejected five (f1 = 400) without transferring flights among aerodromes,
which is practically equivalent in terms of f . Similarly to the results with real instances,
approach M1 was, by far, the one that provides the largest values.

6.4.4 Sensitivity analysis for approach H

In addition to the experiments with the real-life instances of Subsection 6.4.2 (called
here scenario “Real”), we perform a sensitivity analysis on the objective function terms of
the problem to evaluate the robustness of the solutions obtained from heuristic method H
(scenario “SA”). Thereby, in scenario SA, we perform different computational tests making
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changes on the objective function weights in accordance with the weight-family groupings:
F1 = {0, 1, 2, 3} (types of flights only alluding to ni = 0, 1, 2, 3, i.e., without mandatory
flights ni = 4); F2 = {local-transfer} (transference of flights between different aerodro-
mes); F3 = {normal, pool} (types of helicopters); and F4 = {pre-scheduled, unscheduled}
(referring to the types of flights, where the pre-scheduled flights are in set {0, 3, 4} and
the unscheduled flights are in {1, 2}). These groupings are based on the penalties f1 to
f4 and they are used to distinguish the values that are different among the weights w1

i ,
w2

ik, w3
h and w4

i defined at the beginning of Section 6.4.
Given these groupings, the first set of tests consists of setting each penalty value to 0.

Therefore, we define Test1(fp): wp = 0 for each p = 1, . . . , 4. The second set of tests is in
charge of leveling the values for each weight-family grouping. We choose by the average
values acquired from each Fp with p ̸= 2 (since all w2

ik = 40 for k ̸= ǎi, which results
in scenario Real). Let w̃1 = 200, w̃3 = 15 and w̃4 = 0.003 be the average values of F1,
F3 and F4, respectively; hence, we have Test2(Fp): wp = w̃p for each p ∈ {1, 3, 4}. The
third set of tests cancels (i.e., makes null) the weights in an accumulated way, starting
with the elements in F4 and going up to those in F1, in order to maintain the stability
of the objective function. The details of the third set of tests are given below (we discard
Test3

2(F4) since Test3
2(F4) = Test1(f4)):

• Test3
1({pre-scheduled}): make all weights w4

i = 0 if ni ∈ {0, 3, 4};

• Test3
3(Test3

2, {normal}): together with the determined values from Test3
2, make all

weights w3
h = 0 if the type of helicopter h is normal;

• Test3
4(Test3

2,F3): together with the determined values from Test3
2, make penalty

f3 = 0;

• Test3
5(Test3

4,F2): together with the determined values from Test3
4, make penalty

f2 = 0;

• Test3
6(Test3

5, {0}): together with the determined values from Test3
5, make all weights

w1
i = 0 if ni = 0;

• Test3
7(Test3

5, {0, 1}): together with the determined values from Test3
5, make all weights

w1
i = 0 if ni ∈ {0, 1};

• Test3
8(Test3

5, {0, 1, 2}): together with the determined values from Test3
5, make all

weights w1
i = 0 if ni ∈ {0, 1, 2};

• Test3
9(Test3

5,F1): together with the determined values from Test3
5, make all weights

w1
i = 0 if ni ∈ F1.

For each instance, we perform the sensitivity analysis using all these tests and heu-
ristic H. The results from these experiments are presented in the tables of Appendix D.
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They are shown in the form of deviations (variations), i.e., differences between the values
of scenarios SA and Real. Among the results, we select the ones of instance I90_3 to
detail here (Table 24) because this is the largest instance representing the most complex
operating situation. The columns of Table 24 are: Test description (name of the proposed
test); ∆Time (sec) (variation of the computational time in seconds); ∆RM (variation of
the total number of mandatory flights moved or transferred to the next day); ∆RE (vari-
ation of the total number of entourage flights moved to the next day); ∆RD−2 (variation
of the total number of 2 day-transfer or more flights moved to the next day); ∆RD−1

(variation of the total number of 1 day-transfer flights moved to the next day); ∆RD0 (va-
riation of the total number of table flights moved to the next day); ∆TA1 (variation of the
total number of flights that left aerodrome A1 and went to another using a local-transfer);
∆TA2 (variation of the total number of flights that left aerodrome A2 and went to another
using a local-transfer); ∆TA3 (variation of the total number of flights that left aerodrome
A3 and went to another using a local-transfer); ∆HP (variation of the total number of
type-pool helicopters used); ∆HN (variation of the total number of type-normal helicop-
ters used); ∆DL2 (variation of the total delay of unscheduled flights, in minutes); ∆DL1

(variation of the total delay of pre-scheduled flights, in minutes); ∆nR (variation of the
total number of all flights moved to the next day); ∆nT (variation of the total number of
all flights that changed the aerodrome); ∆nH (variation of the total number of all used
helicopters); and, ∆nDL (variation of the total delay of all flights, in minutes).

Table 24 – Result variations between scenarios SA and Real for instance I90_3.

Test description ∆Time (sec) ∆RM ∆RE ∆RD−2 ∆RD−1 ∆RD0 ∆TA1 ∆TA2 ∆TA3 ∆HP ∆HN ∆DL2 ∆DL1 ∆nR ∆nT ∆nH ∆nDL

Test1(f1) -140.35 0 0 2 6 1 0 0 0 -3 0 -1,130 -744 9 0 -3 -1,874
Test1(f2) 142.02 0 0 0 0 0 0 0 0 0 0 -409 291 0 0 0 -118
Test1(f3) 134.8 0 0 0 0 0 0 0 0 1 0 -401 -145 0 0 1 -546
Test1(f4) -119.79 0 0 0 0 0 0 0 0 0 0 1,561 -761 0 0 0 800
Test2(F1) 126.17 0 0 0 0 0 0 0 0 0 0 -409 291 0 0 0 -118
Test2(F3) 138.43 0 0 0 0 0 0 0 0 1 -1 -406 308 0 0 0 -98
Test2(F4) -46.39 0 0 0 0 0 0 0 0 0 0 1,518 -1,564 0 0 0 -46
Test3

1({pre-scheduled}) -24.65 0 0 0 0 0 0 0 0 0 0 -324 645 0 0 0 321
Test3

3(Test3
2, {normal}) -117.5 0 0 0 0 0 0 0 0 0 0 1,561 -761 0 0 0 800

Test3
4(Test3

2,F3) -112.6 0 0 0 0 0 0 0 0 1 -1 1,562 -823 0 0 0 739
Test3

5(Test3
4,F2) -126.51 0 0 0 0 0 0 0 0 1 -1 1,562 -823 0 0 0 739

Test3
6(Test3

5, {0}) -124.74 0 0 0 0 1 0 0 0 1 -2 1,429 -516 1 0 -1 913
Test3

7(Test3
5, {0, 1}) -93.91 0 0 0 2 1 0 0 0 1 -3 1,088 -321 3 0 -2 767

Test3
8(Test3

5, {0, 1, 2}) -93.61 0 0 0 2 1 0 0 0 1 -3 1,088 -321 3 0 -2 767
Test3

9(Test3
5,F1) -104.13 0 0 0 2 1 0 0 0 1 -3 1,088 -321 3 0 -2 767

Source: Own authorship.

In the first set of tests, starting with Test1(f1), there was an increase in the number of
flight transfers to the next day and a decrease in the use of aircraft and delays in scenario
SA with respect to scenario Real (note that a positive value in the table means an increase
in scenario SA over scenario Real, while a negative value means a decrease). Once the
weights w1 were annulled, the optimization bias becomes the local-transfers, fleet usage
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and flight delay times, which causes the cancellation of flights to achieve these goals. In
Test1(f2), the penalties f1, f3 and f4 are prioritized to the detrimental of f2. In this
case, the heuristic solution did not result in an increase in the local-transfers, however,
w2 = 0 allowed a new flight assignment to aircraft, reducing delays. Test1(f3) tends to
lead to a greater use of aircraft and a smaller measure of local-transfers and delays. The
solution obtained revealed a greater use of type-pool aircraft to improve the total delay.
In Test1(f4), the heuristic only made the flight delay worse, which was expected since
making w4 = 0 does not generate major perturbations in the method due to the presence
of the maximum tolerated delay as a hard constraint.

Going to the second set of tests, leveling the weights of family F1 in Test2(F1) implies
changing the solutions that have rejected or canceled flights, i.e., variations related to
the types of flights. Since the heuristic solutions do not reject flights, one would expect
no changes in day-transfers and fleet usage. Test2(F2) allowed the heuristic to change
the used helicopters, achieving a slight decrease in the total delay. Defining the same
value for the weights w3 varies the delays between pre-scheduled flights and those to be
scheduled. The heuristic increased the delay for unscheduled flights and decreased it for
pre-scheduled flights, being able to improve the total delay.

In the third set of tests, which consists of gradually turning off the weights, starting
with the lowest value and going up to the highest value, one would expect that the solution
method to be used would have a standard behavior of worsening the metric corresponding
to the weight-off to try to improve others that are on. As the best solution for scenario
Real does not contain rejected flights and no local-transfer, we conclude that the heuristic
generated coherent solutions, only worsening the metrics with weight-off, as shown in the
corresponding rows from Test3

1({pre-scheduled}) to Test3
9(Test3

5,F1).
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Chapter 7

Concluding remarks and future
research

In this dissertation, we study integrated aircraft routing problems considering crew
pairing in the context of non-scheduled air transportation industry. Differently from
traditional (scheduled) airlines, in which several operational requirements are already
pre-established over a long period of time, the non-scheduled mode encompasses complex
decisions in a more dynamic and unpredictable environment, defined by events that occur
on short-term horizons and differ from period to period, based upon the state of resources
that are provided at a given moment.

Taking this context as a basis, the dissertation addresses real cases of two companies
that offer non-scheduled air transportation services, categorized in the literature as a dial-
a-flight problem (DAFP) and an aircraft recovery problem (ARP), respectively. We seek
to contribute scientifically in terms of the development of optimization models, which
are intended to adequately represent the evaluated problems, as well as the elaboration
of exact and heuristic solution methods that are effective in practice, providing quality
solutions in acceptable computing times.

Specifically, the first problem is related to on-demand air transportation with a frac-
tional ownership contract, involving the integration of aircraft routing process with crew
assignment. For this problem, we proposed a compact MIP model that allows us to de-
fine efficiently, what routes each aircraft must execute, considering features of the fleet
and its different costs and qualities, maintenance schedules, the possibility of outsour-
cing for customer trips, and also the legislation related to crew members, imposed by
the incorporation of rest periods, breaks (split duties), maximum flight time in a single
duty, overtime payments and the crew availability (pilots’ time windows), in order to
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meet some of the labor rights considered fundamental. Despite its practical relevance,
this theme has been barely explored in the literature. This mathematical model is an
extension of the formulation of Munari and Alvarez (2019), intended for aircraft routing
without considering crew assignment to minimize operating costs arising from positioning
flights and aircraft upgrade services. As solution method, we apply in the proposed model
an approach that combines two classical MIP-based heuristics: the relax-and-fix (R&F)
and fix-and-optimize (F&O). In our adaptation, R&F-F&O heuristic iteratively solves
relaxed MIP subproblems partitioned by requests. From sorting the starting time with
anticipation of requests, we can opt for the forward and backward temporal strategies.
The fixation of variables is aimed at two artifices: fix the allocation (X1) or fix the se-
quencing of flights (X2). We also customize the R&F to be able to choose how many
partitions of variables will be considered in the linear relaxation (qtR). To obtain new
bounds and optimal results, especially from larger instances, we proposed a branch-and-
price (B&P) algorithm together with a set partitioning formulation for this DAFP. To
achieve a good performance in practice, our B&P relies on stabilized column generation
processes based on well-centered solutions provided by an interior-point approach, known
as primal-dual column generation method (PDCGM). The subproblem were solved by a
tailored labeling algorithm, responsible for complying with all the crew rules during air-
craft routes. Additional features include different types of branching rules (two-step and
strong branching strategies) and a primal MIP-based heuristic to find faster incumbent
solutions.

To assess the adequacy of our approaches, we performed computational experiments
with real-life data provided by the company that motivated this study. The results obtai-
ned by proposed model revealed that the commercial solver CPLEX was able to achieve
optimal results in 52 out of 65 instances (an 80% yield), within the maximum runtime of
one hour. From the experiments, we can conclude that the proposed model with CPLEX
can optimally solve instances with up to 200,000 constraints and 700,000 variables, which
corresponds to the journey logs typically used by the airline. Related to R&F-F&O ap-
proach, we compared eight variants that differ in terms of temporal strategy, artifice,
number of R&F partitions (I), qtR and number of F&O partitions (J). The results
showed that the R&F-F&O[Backward, X2, I = 4, qtR = 1, J = 3] variant stood out
from the others, capable of getting solutions in all instances. When comparing it with the
proposed model, the heuristic variant proved to be better, being able to achieve greater
cost reductions in all instances with open gap, and having results very close to those
with closed gap. Regarding the B&P algorithm, we first tested the impact of switching
the branching strategies and turning on and off the primal heuristic. The B&P variant
using the two-step branching rule and with the primal heuristic turned on had the best
computational performance. Compared to the previous approaches, the best B&P variant
was far superior, being able to close the optimality gaps in all 65 instances in less than 38
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min (in total). Although B&P excelled in relation to the R&F-F&O heuristic, it is worth
remembering that its construction/implementation is time-consuming and complex, un-
like MIP-based heuristics, which in a short development time, we were capable of finding
quality solutions.

The second problem is alluded to a real-life short-term rescheduling problem of heli-
copter flights from one onshore airport to several maritime units (e.g., offshore oil rigs,
gas-producing platforms, etc.). Due to unexpected circumstances, such as bad weather
or aircraft mechanical failures, the original timetable very often cannot be fully met, re-
sulting in flight delays on the same day or even postponements to the following days,
interrupting many of essential activities and services on a current day. In general aspects,
this study consists of determining a daily flight reschedule that satisfies operational cons-
traints and recovers all pending flights, while minimizing flight delays and costs related
to helicopter usage and reassignments.

We began the study of this ARP by considering the characteristics of a single runway
aerodrome, heterogeneous fleet, airport time windows, briefing of safety, minimum time
on the ground between two consecutive flights of an aircraft, mandatory flight precedence,
minimum time intervals between takeoffs from the airport and same maritime units and
maximum allowed flight delays, among many others. We propose two mixed-integer
programming models to formulate the problem with all relevant features, one based on
the extension of traditional network flow models and other that relies on a novel takeoff
event-based representation. Additionally, we have brought an effective tailored heuristic to
the studied problem. In summary, the method is composed of two parts, constructive and
improvement. The construction part is a relax-and-repair type procedure that alternates
between a relaxed construction stage, responsible for finding a base solution without
considering the heterogeneity of fleet, at first, and a repairing stage, in charge of adjusting
the base solution with the fleet heterogeneity constraints, if necessary, to achieve a feasible
solution, in fact for the problem. Finally, the heuristic runs six local search methods on
the improvement part, aiming to improving the incumbent solution obtained from the
construction part.

The performance of each approach was analyzed through computational experiments
with instances created from real-life data provided by a Brazilian oil company, which
gave us all the requirements and specificities of their operations. For each model and
instance, we ran the general-purpose B&C method of CPLEX using four configurations:
default settings, with the local branching heuristic turned on, with the RINS heuristic
turned on, and with both heuristics turned on. The results revealed that in both models,
CPLEX, together with the tested configurations, was able to solve well only instances
related to airport A, which are in the order of 8 to 14 flights. On the other hand,
the computational experiments show the potential of the proposed heuristic approach
to produce effective daily reschedules in a few minutes, recovering all pending flights of
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previous days without further transferring table flights to the next day nor rescheduling
them with significant delays. When comparing the solutions obtained by the approach
with the manual solutions carried out by the company for some real problem instances,
the practical benefits of using the proposed heuristic becomes evident, as the company
is primarily interested in solutions that minimize unassigned flights and are obtained
within relatively short computer runtimes. For example, while the company operators
were unable to find feasible reschedules including all pending flights of these instances,
the reschedules found by the heuristic method, conversely, include all flights and hence,
no flights need to be transferred to the next day. As the runtime is less than three
minutes, the heuristic can be used to obtain an initial solution to human analysis, which
can improve the solution considering non-modelable aspects. A sensitivity analysis was
also carried out with instances based on nine different scenarios, which confirmed these
results and showed the robustness of proposed method.

We extended the ARP to involve workday duration of crew members and the case of
multiple aerodromes. Along with the restrictions from the previous work, in this one, we
need to determine joint daily flight reschedules for all aerodromes, while trying to recover
all pending flights and reduce flight transfers among these airports, usage of different
helicopters (with crew on board) and overall flight delays. In this panorama, we proposed
a detailed continuous-time network-flow MIP model that appropriately represents this
ARP with all the specific characteristics of its real settings, but which is unable to provide
good recovery plans for realistic problem instances within acceptable runtimes using the
CPLEX solver. Therefore, we also suggest a discrete-time approximation BIP model
together with a two-phase heuristic to cope with larger problem instances, ultimately
aiming at producing reschedules with full flight recovery and within acceptable computer
runtimes for the flight operators.

According to the results, the continuous-time model is effective in producing full flight
recovery only in small-sized problem instances (until two aerodromes). On the other
hand, the discrete-time model provided the best solutions with no transferred flights for
all instances, proving to perform much better on the CPLEX’s B&C than the continuous-
time model, however, taking the time limit of one hour for solving instances from 48 flights.
The two-phase heuristics was able to reschedule all flights at relatively short computing
times (167.83 s on average), which may be suitable for successful application in practice.
Finally, the robustness of heuristic method was also evaluated by a sensitivity analysis
performed in eight different scenarios, varying the objective function terms in each of
them.

When comparing ARP with DAFP, we can see as similarities, obviously, in addition
to non-scheduled condition, the dynamism with demand appears in short-term planning,
which is guided by a reference (customer request or flight timetables), and based on that,
there is an entire effort directed towards to servicing it. Moreover, both are concerned
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with reducing operating costs and increasing the service level, and respecting certain
aviation rules, such as time windows, delay tolerance, turnaround times, among others.
Nevertheless, there are differences that stand out because one problem is of a commercial
nature and the other not, and in which the specificities that each operation has. For
example, in the ARP, the delay, not only results in daily and overtime payments, but
also it harms productivity (interconnection activities, underwater and deck maintenance,
and the shift works cannot occur at the same time with the aircraft trips) and negatively
affect the work environment (employees who are on board at maritime units are somewhat
confined, with great physical and psychological strain). As a matter of fact, each landing
and takeoff is considered a high-risk activity, and work schedules should be minimized as
much as possible. In the first problem, it is not achievable to make flight connections.
For reasons of safety and physical space, it is not feasible to leave passengers waiting at
any aerodrome (not authorized by ANAC, for example). Another dissimilarity is seen in
relation to the possibility of postponing flights to other schedules, since in DAFP it is not
allowed, and in ARP is.

The next step in this research should be to extend the DAFP. Something desirable
for the airline and very relevant for the sector would be the consideration of time zones
and the circadian low effect on the crew journey. Business aviation operational demands
require 24-hour-a-day activities that can include shift, night, irregular and unpredictable
work schedules, and time zone changes. These factors challenge human physiology and
can result in performance impairing fatigue and an increased risk to safety. Scientific
information and practical experience with fatigue, human sleep and circadian physiology
can improve aviation safety by providing guidance in mitigating and managing factors
that contribute to fatigue in operational settings. Because of this, we suggest adding the
so-called window of circadian low (WCL) in our DAFP, which is a period between 02:00
hours and 05:59 hours, and when a crew works in it, the maximum allowed time without
rest is reduced. Another interest may be to separate the crew from aircraft, in order to
generate the schedule for both.

In particular, we verified that one of six months provided from the airline’s journey
logs presented disparity regarding the computational difficulty when solving by a solu-
tion method, something curious since all the instances of experimentation were built by
grouping three days of company operation. To understand the reason for this difference,
we applied statistical techniques from multivariate data analysis. Firstly, we checked
whether the data had normality condition (which has been proven) and then, parametric
tests such as multivariate analysis of variance (MANOVA) were carried out to seek sta-
tistical evidence that the measurements of location and spread differ in terms of months.
The p-value is significant (probability less than 0.05). In addition, we employed in our
experimentation the causality technique for prediction and classification, called discrimi-
nant function analysis, and the interdependence technique that allows grouping objects
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(cases or variables), named as clustering method. Both technique showed in their uni-
variate tests that the counters related to, number of maintenance requests, number of
overlapping windows (of requests), number of constraints and variables generated from
proposed model, have statistical significance to discriminate the groups (i.e., the months
of operation). The insertion of this topic in the dissertation was not considered, because
applications of these techniques would demand a long description on the text, and also
fall outside the doctorate’s concentration area.

As for the ARP, the next steps could be to comprise decisions on assigning passengers
to flights, aircraft capacity varying on route (fuel consumption), merging and splitting
flights, guarantee the occurrence of the lunch break for the crew, and trips that visit more
than one maritime unit on the same route.

Something interesting that we have noticed in the discrete-time model of the ARP is
that formulation also has the capacity to provide dual bounds. To this, we just invert
the way in which the parameters are discretized in 5 minutes, i.e., what it is rounded
up becomes rounded down, and vice-versa. This modification allows us to apply the
Benders decomposition (BD). Our idea was to put the discrete-time model into the mas-
ter problem, whilst the continuous variables (responsible for the schedule times) from the
continuous-time model would be placed in the subproblem. Note that, in this configura-
tion, BD could generate optimal results for the original problem, even using a formulation
that was reduced by dividing the number of periods from the time horizon by 5 minu-
tes. However, although we arrived at a lean subproblem (variables with only two indices,
constraints with reduced intervals, existence of artifices to strengthen linear relaxation),
CPLEX was unable to solve the required subproblems for larger instances in the time
limit of one hour. A way to face this obstacle might be to decompose the subproblem
into one more level, which would allow us to adopt a B&P algorithm (where the routes
of each aircraft are solved by column generation), or even another Benders (to generate a
subproblem with only linearly relaxed variables). Both second-level decompositions have
the potential to provide high-density Pareto cuts for the first-level BD. The proposed
subproblem for BD is in Appendix E.

Respecting the B&P algorithm proposed for the DAFP, we can find several methods in
the literature that could improve our B&P’s overall performance. For example, the mono-
directional backward extension could inserted to the labeling algorithm, which would give
us the possibility of applying the bidirectional extension, a technique that merges forward
and backward labels at a so-called half-way point (the middle of planning horizon), acce-
lerating the convergence. Similar to a branch-and-cut method, valid inequalities can be
added in the master problem to strengthen bound values, decreasing the number of nodes
in the enumeration branch-and-bound (B&B) tree. One of the most successful valid ine-
qualities for set partitioning formulations is the subset row cuts (SRCs) (JEPSEN et al.,
2008). Typically, these inequalities bring a stronger linear relaxation to the restricted mas-
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ter problem (RMP). To improve the application of our strong branching in the B&B tree,
we could solve each RMP using a simplex-type algorithm with limited pivoting (or with
a higher optimality tolerance), which is ideal for quickly estimating perturbations in the
objective function. As the strong branching rule solves several LPs to evaluate the most
promising variable to branch, a simplex method from a good MIP solver (e.g., Gurobi,
CPLEX, etc.) might be suitable to get out of this ordinary computational overburden.
Another advance on this rule would be to store in memory the branching evaluations al-
ready made during the search (in order to use them later as pseudo-costs), calculating for
the only new variables, those not yet computed (LINDEROTH; SAVELSBERGH, 1999).
Correlated to the node selection strategy employed on the B&B algorithm, something that
could improve the best-first rule would be the execution of a diving heuristic (BIXBY et
al., 1999; ACHTERBERG et al., 2008), a procedure that goes down some branch of the
B&B tree until it hits a pre-specified tree depth, reaches infeasibility, or finds a feasible
solution. As our DAFP is large (given the real-life instances) and B&P’s focus to ob-
tain optimal results, a diving heuristic might provide incumbents early, which makes it
possible to decrease the size of the B&B tree by optimality pruning. Following the same
idea, another node selection scheme could be a technique called best estimate criterion
(BÉNICHOU et al., 1971; FORREST; HIRST; TOMLIN, 1974), capable of determining
an estimate of the best feasible integer solution obtainable from a given node, taking into
account pseudo-costs from variables that are fractional.

Ultimately, concerning heuristic methods, we identified that some metaheuristics have
shown effectiveness in VRP’s applications, such as iterated local search (ILS) (LOU-
RENÇO; MARTIN; STÜTZLE, 2003), and adaptive large neighborhood search (ALNS)
(ROPKE; PISINGER, 2006). ILS repeatedly applies a local search algorithm to modified
versions of a good solution found previously. In this way, it is like a clever version of
the stochastic hill climbing with random restarts algorithm. The intuition behind the
algorithm is that random restarts can help to locate many local optima in a problem
and that better local optima are often close to other local optima. Therefore modest
perturbations to existing local optima may locate better or even the best solutions to an
optimization problem. Essentially, an ILS algorithm uses four basic components: (i) an
initial solution; (ii) a local search procedure; (iii) a perturbation mechanism; and (iv)
an acceptance criterion. ALNS is an extension of large neighborhood search (SHAW,
1998), in which a pool of simple heuristics depend on past success compete to modify the
incumbent solution. This is done iteratively through alternating destroy and repair ope-
rators. The choices of heuristics are given by an adaptive search engine, based on Russian
roulette of the previously obtained scores. In addition to being employed individually as
solution approaches, these heuristics can also be combined with exact methods, as is the
case of our B&P. In this hybridization, the heuristic is triggered to solve subproblems
whenever convenient, whose purpose is to obtain new incumbents and dual bounds of the
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problem at a more competitive computational time, still guaranteeing the optimality of
the method (BOSCHETTI; MANIEZZO, 2010; ALVAREZ; MUNARI, 2017).
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APPENDIX A

Supplementary content of Chapter 3

The purpose of this appendix is to support and supplement the content presented
in Chapter 3. In A.1, we show again the notation already defined in Section 3.1, in a
way that makes it easier to query the sets, parameters, and decision variables. In A.2,
we exhibit the computational results of each R&F-F&O variant (suggested in Subsection
3.4.3).

A.1 Notation defined for the proposed model

From the real-world data provided by the company and the DAFP description made in
Section 3.1, we re-present here all the required notation for a better understanding of the
proposed model found in Subsection 3.2.2. Sets, parameters and decision variables were
divided/organized into the inheritance from the base model and the six operational topics
of aviation labor rights (Table 25 to 32), according to what was shown in Section 3.1 and
Subsections 3.2.2.1-3.2.2.6. Once the proposed model has an extensive explanation, we
believe that this section can function as a effective glossary.
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Table 25 – Notation of the base model.

Notation Definition
K = {1, . . . , K} set of airports in which the company operates
V = {1, . . . , V } set of available aircraft

P = {1, . . . , P} set of aircraft types (to simplify the notation, we assume that P follows
a non-descending order regarding the quality of aircraft types)

L set of customer (or live) requests
M set of maintenance requests (hence, M∩L = ∅)

R = {0} ∪ L ∪M set of requests, where 0 is a dummy request used as the first and last request
serviced by any aircraft

Vp subset of aircraft corresponding to type p

kv initial (pre-designated) airport of aircraft v

p̌v type of aircraft v

p̂r required type of aircraft in request r

ir, jr origin and destination airports, respectively, of the request r

cp travel cost per time unit of an aircraft of type p, in $/min
T F p

ij travel time between airports i and j for an aircraft of type p, in minutes

avv
exact time at which aircraft v becomes available to fly for the first time
in the planning horizon, in minutes

tatr
k

turnaround time required for an aircraft at airport k before servicing
request r, in minutes (tatr

k = 0; ∀ r ∈M, k ∈ K)
str planned starting time of request r, in minutes
∆L maximum delay allowed to start servicing any customer request, in minutes
vr index of the aircraft that must undergo the maintenance request r

T Lr duration of maintenance request r, in minutes

∆M
maximum tolerance of the anticipation/postponement of a maintenance event,
in minutes

Cfv
rs positioning cost when aircraft v flies without customers between requests r and s

Cupv
r

upgrade cost by choosing an aircraft v with type better (superior) than
the one contracted in request r

yv
rs ∈ {0, 1} binary variable that assumes 1, if only if, aircraft v services

requests r and s, consecutively

Wr ≥ 0 continuous variable that represents the exact time that request r
can be serviced, in minutes

Source: Own authorship.
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Table 26 – Notation for the crew rest rules.

Notation Definition
maxDuty maximum crew work time allowed without rest in a single duty
P RE, P OS crew presentation time applied to the beginning/end of each duty
minRest minimum uninterrupted crew rest time among two consecutive duties

Ur ≥ 0 continuous variable that measures the accumulation of work time up to a certain
request r since the inclusion of last rest

E1rs ∈ {0, 1} binary variable that is 1 if only if a rest for the crew members exists before
a ferry leg between requests r and s

E2rs ∈ {0, 1} binary variable that is 1 if only if a rest for the crew members exists after
a ferry leg between requests r and s

E12rs ∈ {0, 1} binary variable that is 1 if only if a rest for the crew members exists before
and after a ferry leg between requests r and s

Ers ∈ {0, 1} binary variable that is 1 if only if a rest for the crew members exists
(regardless of a positioning flight) between requests r and s

E0vr ∈ {0, 1} binary variable that is 1 if only if a rest for the crew members exists after a ferry
leg between the initial airport of aircraft v and the origin airport of request r ∈ L

lengthCurrR1r ≥ 0 continuous variable that quantifies the time without ferry leg added at the end of
a current duty by request r

lengthCurrR2r ≥ 0 continuous variable that quantifies the time with ferry leg added at the end of
a current duty by request r

lengthNextR1r ≥ 0 continuous variable that quantifies the time with ferry leg to be added at
the beginning of the next duty by request r

lengthNextR2r ≥ 0 continuous variable that quantifies the time without ferry leg to be added at
the beginning of the next duty by request r

lengthAmongR12r ≥ 0 continuous variable that quantifies the occurred ferry time between the end and
start of consecutive duties by request r

RestMr ≥ 0 continuous variable that counts the rest time given to a crew in request r,
taking into account the use of subsequent maintenance events

Source: Own authorship.

Table 27 – Notation for the crew break rules.

Notation Definition
DLf , DUf ground time’s lower and upper bound belonging to range f

Bf
rs ∈ {0, 1} binary variable that takes 1 if and only if the ground time between requests r and s is

classified at time range f

GT rs ∈ R continuous variable that quantifies the ground time value between requests r and s

acumGT r ≥ 0 continuous variable that accumulates the potential ground time until request r, to be used
on the split duty proceeding

Dutyrs ∈ R continuous variable that quantifies the work time between requests r and s, if there is no
ground time accumulation among them

DArs ∈ {0, 1} binary variable that assumes value 1 if and only if there is ground time accumulation
between requests r and s given the use of maintenance events

Source: Own authorship.

Table 28 – Notation for the maintenance utilization rules.

Notation Definition

firstMr ∈ [0, 1] continuous variable that assumes value 1 if and only if a maintenance (or dummy) request
precedes request r ∈M without ferry leg among them

acumRestr ≥ 0 continuous variable that accumulates the potential ground time until request r,
to be used as rest

Source: Own authorship.
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Table 29 – Notation for the flying time rule.

Notation Definition
maxflying maximum total flight time allowed in a duty
Qr ≥ 0 continuous variable that accumulates live and ferry times until request r in a duty

lengthCurrF D1r ≥ 0 continuous variable that counts the duration of a live leg at the end of
a current duty by request r

lengthCurrF D2r ≥ 0 continuous variable that counts the duration of a ferry leg at the end of
a current duty by request r

lengthCurrF D12r ≥ 0 continuous variable used to account for the ferry time that
may occur between the end and start of consecutive duties by request r

Source: Own authorship.

Table 30 – Notation for the pilot rostering rule.

Notation Definition
nT W v number of pilot time windows belonging to aircraft v

[P icT W avt, P icT W bvt] time window t of a pilot assigned to aircraft v

zlvt
r ∈ {0, 1} binary variable that assumes 1 if and only if customer request r is

served inside time window t of a pilot allocated to aircraft v

zfvt
r ∈ {0, 1} binary variable that assumes 1 if and only if a ferry leg exists after

request r and it is in time window t of a pilot assigned to aircraft v

stP icF erryr ≥ 0, edP icF erryr ≥ 0 continuous variables related to the exact time to start/end of a
ferry leg from request r on the time horizon

stP icF erry0v ≥ 0, edP icF erry0v ≥ 0 continuous variables that correspond to exact time to start/end of
the first ferry leg executed by aircraft v

Source: Own authorship.

Table 31 – Notation of the overtime and outsourcing rules.

Notation Definition
overtP erc percentage used on the travel cost to pay overtime’s crew members
Coutr outsourcing cost to carry out live request r

overRr ≥ 0 continuous variable that quantifies the overtime performed by the crew on live request r

overF r ≥ 0 continuous variable that quantifies the overtime performed by the crew on a ferry leg (if any)
at request r

over0v ≥ 0 continuous variable that quantifies the overtime obtained by the first ferry leg (if any)
of aircraft v

outr ∈ {0, 1} binary variable that assumes 1 whether live request r is serviced by another
company (a outsourcing event)

Source: Own authorship.

Table 32 – Notation of the sufficiently large numbers.

Expression
M1

r = str + ∆L, ∀ r ∈ L
M2

r = str + ∆M, ∀ r ∈M
M3

r = str + max{∆L, ∆M}, ∀ r ∈ L ∪M
M4

r = maxv∈V,s∈L∪M:s ̸=r{P RE + T Lr + T F p̌v

irjr + tats
jr + T F p̌v

jris + tats
is},∀ r ∈ L ∪M

M5
r = M4

r + (P OS + minRest + P RE), ∀ r ∈ L ∪M
M6 = maxr∈L∪M{M3

r }

Source: Own authorship.
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A.2 Detailed results of the R&F-F&O variants

We report the results of computational experiments carried out with the seven heuristic
variants ([Forward, X1, 3, 1, 2], [Backward, X1, 3, 1, 2], [Forward, X2, 3, 1, 2],
[Backward, X2, 3, 1, 2], [Forward, X1, 4, 1, 3], [Backward, X1, 4, 1, 3] and [Forward,
X2, 4, 1, 3]) by Tables 33-39. The intention is to present the originating data used by
the graphs contained in Figures 18-20. The table structures of this section follow what
was established on Table 9.

It is noteworthy to explain how we distributed the runtime so that the heuristics could
execute within the time limit of one hour. Knowing that on a MIP-based heuristic, in
general, there is a MIP model to be solved at each iteration, something common that
happens is the solver gets stuck in one of them (being unable to close the B&C’s gap),
and may even consume all the remaining time that was dimensioned as a limit, which
causes constructive heuristic methods to fail (inasmuch as it is not possible to find a
feasible solution if the heuristic does not complete its entire routine). Obviously, if we
parameterize that each model to be solved has one hour duration (the total time limit),
at the end of procedure, the MIP-based heuristic will probably exceed one hour (mainly
at larger instances). To counteract this problem, basically, we initially thought of setting
the maximum running time parameter in the solver as: tri = tl −∑i−1

i′ =0 sti′ , where tri is
the remaining runtime of iteration i, tl is the total time limit (in this case, one hour), and
sti is the solver’s elapsed time for a MIP model at iteration i, being st0 = 0. Nevertheless,
some heuristic’s iteration could consume all the stipulated time. Then we have arrived at
a second alternative, which was to divide tl betwixt the iterations. First we distribute tl

in 45% for relax-and-fix and 55% for fix-and-optimize, in such a manner that the average
runtime of each iteration is: tm = tl.perc/n (perc is the percentage chosen for R&F or
F&O heuristic and n represents the total partitions of R&F or F&O). Afterward, we
continue doing: tri = tri−1 − sti−1 + tm (being tr0 = 0). Note that in this way, tri can
appropriate the unused time from previous iterations. As tri has to be provided at first
as a solver parameter, we still have the situation in which R&F heuristic cannot find a
feasible solution within tri. In this case, we have method failure. Tables 33-39 show this
fact through solution status “No Sol. TL” .
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APPENDIX B

Supplementary content of Chapter 4

In this appendix, we report the additional content of Chapter 4. The algorithms of
the six duty cases presented in Subsection 4.2.1 are shown in B.1. Furthermore, in B.2,
we exhibit the results per instance obtained by the B&P variants (defined in Subsection
4.6.1).

B.1 Algorithms of the six duty cases

Algorithms 8-13 detail how the resources are processed for each case rule (Subsection
4.2.1) during forward label extensions. They all start by dimensioning W (ℓs), taking
case variant var as a reference. Given the time imposition of an arc (r, s), W (ℓs) is
checked to ascertain if it remains in the time window required by a request s, otherwise,
the algorithms return a failure situation (Extension = 0), demonstrating that label ℓs is
infeasible and it can be discarded. Next, the procedures analyze whether all flight events
are covered by any pilot time window, pushing W (ℓs) to the nearest window, if necessary.
Supposing impossibility, the routines close with Extension = 0 over again. Once the time
windows have been validated, the next step determines the other resources. As previously
discussed, algorithms 9-12 reset U(ℓs), Q(ℓs) and aGT (ℓs) because they have to insert the
minimum rest, calculating overtime when the crews pass their standard working hours.
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Algorithm 8: CheckDutyCase1 (Continued on next page)
Input: problem instance, [case variant var, parent label ℓr, child label ℓs].

1 Let tw and Extension be auxiliary variables;
2 Let checkT W , checkF tw1 and checkF tw2 be binary variables to check time widows. While checkT W

indicates whether the live leg is inside its window and the pilot’s window, checkF tw1 and checkF tw2
inform whether a given ferry is covered by any pilot window, starting earlier or later, respectively;

3 Let O be the overtime worked on the arc, and Coverr be overtime cost paid per minute for request r;
4 var(ℓs)← var;

// The requests have an earlier or a later start

5 tw ←

sts, var = 1a;
sts + ∆L, var = 1b ∧ s ∈ L;
sts + ∆M, var = 1b ∧ s ∈M.

// Serviced time of the requests

6 W (ℓs)← max



tw,



avv + P RE + tats
is , r = 0 ∧ s ∈ L ∧ kv = is;

avv, r = 0 ∧ s ∈M∧ kv = is;
W (ℓr) + T F p̌v

irjr + tats
is , r ∈ L ∧ s ∈ L ∧ jr = is;

W (ℓr) + T F p̌v

irjr , r ∈ L ∧ s ∈M∧ jr = is;
W (ℓr) + T Lr + tats

is , r ∈M∧ s ∈ L ∧ jr = is;
W (ℓr) + T Lr, r ∈M∧ s ∈M∧ jr = is;
avv + P RE + T F p̌v

kvis + tats
is , r = 0 ∧ s ∈ L ∧ kv ̸= is;

avv + P RE + T F p̌v

kvis , r = 0 ∧ s ∈M∧ kv ̸= is;
W (ℓr) + T F p̌v

irjr + tats
jr + T F p̌v

jris + tats
is , r ∈ L ∧ s ∈ L ∧ jr ̸= is;

W (ℓr) + T F p̌v

irjr + tats
jr + T F p̌v

jris , r ∈ L ∧ s ∈M∧ jr ̸= is;
W (ℓr) + T Lr + T F p̌v

jris + tats
is , r ∈M∧ s ∈ L ∧ jr ̸= is;

W (ℓr) + T Lr + T F p̌v

jris , r ∈M∧ s ∈M∧ jr ̸= is.



;

// Time window of the requests

7 checkT W ←
{

W (ℓs) ≤ sts + ∆L, s ∈ L;
W (ℓs) ≤ sts + ∆M, s ∈M.

8 if ¬checkT W then return Extension ← 0;
// Time window of the pilots in chief

9 Verify if all live and ferry legs are covered by any pilot’s time window. If not, try to bring the
respective flight event to a nearest adjacent window. Indicate whether a ferry starts earlier or later
using variables checkF tw1 and checkF tw2. If the attempt fails, return Extension ← 0;
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Algorithm 8: CheckDutyCase1 (Continued)
// Determine the other resources

10 aGT (ℓs)←



[W (ℓs)−W (ℓr)]− T F p̌v

irjr , r ∈ L ∧ s ∈M∧ jr = is;
aGT (ℓr) + [W (ℓs)−W (ℓr)], r ∈M∧ s ∈M∧ jr = is;
W (ℓs)− (avv + P RE + T F p̌v

kvis ), r = 0 ∧ s ∈M∧ kv ̸= is

∧ checkF tw1 = 1;
[W (ℓs)−W (ℓr)]− (T F p̌v

irjr + tats
jr + T F p̌v

jris ), r ∈ L ∧ s ∈M∧ jr ̸= is

∧ checkF tw1 = 1;
[W (ℓs)−W (ℓr)]− (T Lr + T F p̌v

jris ), r ∈M∧ s ∈M∧ jr ̸= is

∧ checkF tw1 = 1;
0,

r = 0 ∧ s ∈M∧ kv ̸= is

∧ checkF tw1 = 0 ∧ checkF tw2 = 1;
0, r ∈ L ∪M∧ s ∈M∧ jr ̸= is

∧ checkF tw1 = 0 ∧ checkF tw2 = 1.

11 U(ℓs)←



P RE + tats
is , r = 0 ∧ s ∈ L ∧ kv = is;

P RE, r = 0 ∧ s ∈M∧ kv = is;
U(ℓr) + [W (ℓs)−W (ℓr)], r ∈ L ∧ s ∈ L ∧ jr = is;
U(ℓr) + T F p̌v

irjr , r ∈ L ∧ s ∈M∧ jr = is;
U(ℓr) + aGT (ℓr) + [W (ℓs)−W (ℓr)], r ∈M∧ s ∈ L ∧ jr = is ∧ firstM(ℓr) = 0;
P RE + tats

is , r ∈M∧ s ∈ L ∧ jr = is ∧ firstM(ℓr) = 1;
U(ℓr), r ∈M∧ s ∈M∧ jr = is;
P RE + T F p̌v

kvis + tats
is , r = 0 ∧ s ∈ L ∧ kv ̸= is;

P RE + T F p̌v

kvis , r = 0 ∧ s ∈M∧ kv ̸= is;
U(ℓr) + [W (ℓs)−W (ℓr)], r ∈ L ∧ s ∈ L ∧ jr ̸= is;
U(ℓr) + T F p̌v

irjr + tats
jr + T F p̌v

jris , r ∈ L ∧ s ∈M∧ jr ̸= is ∧ checkF tw1 = 1;
U(ℓr) + [W (ℓs)−W (ℓr)], r ∈ L ∧ s ∈M∧ jr ̸= is

∧ checkF tw1 = 0 ∧ checkF tw2 = 1;
U(ℓr) + aGT (ℓr) + [W (ℓs)−W (ℓr)], r ∈M∧ s ∈ L ∧ jr ̸= is ∧ firstM(ℓr) = 0;
P RE + T F p̌v

jris + tats
is , r ∈M∧ s ∈ L ∧ jr ̸= is ∧ firstM(ℓr) = 1;

U(ℓr) + aGT (ℓr) + T Lr + T F p̌v

jris ,
r ∈M∧ s ∈M∧ jr ̸= is

∧ (firstM(ℓr) = 0 ∨ checkF tw1 = 1);
U(ℓr) + aGT (ℓr) + [W (ℓs)−W (ℓr)], r ∈M∧ s ∈M∧ jr ̸= is ∧ [firstM(ℓr) = 0

∨ (checkF tw1 = 0 ∧ checkF tw2 = 1)];
P RE + T F p̌v

jris , r ∈M∧ s ∈M∧ jr ̸= is ∧ firstM(ℓr) = 1.

12 Q(ℓs)←



0, r = 0 ∧ s ∈ L ∪M∧ kv = is;
Q(ℓr) + T F p̌v

irjr , r ∈ L ∧ s ∈ L ∪M∧ jr = is;
Q(ℓr), r ∈M∧ s ∈ L ∪M∧ jr = is;
T F p̌v

kvis , r = 0 ∧ s ∈ L ∪M∧ kv ̸= is;
Q(ℓr) + T F p̌v

irjr + T F p̌v

jris , r ∈ L ∧ s ∈ L ∪M∧ jr ̸= is;
Q(ℓr) + T F p̌v

jris , r ∈M∧ s ∈ L ∪M∧ jr ̸= is.

13 firstM(ℓs)←

1, if r = 0 ∧ s ∈M∧ kv = is;
firstM(ℓr), else if r ∈M∧ s ∈M∧ jr = is;
0, otherwise.

// Calculate the overtime cost
14 O ← max

{
0, U(ℓs)−maxDuty, Q(ℓs)−maxF lying

}
;

15 CO(ℓs)←

{
Coverr.O,

if s = R + 1 ∧ {r ∈ L ∨ [r ∈M
∧ (var(ℓr) = 1a ∨ var(ℓr) = 1b ∨ var(ℓr) = 6a ∨ var(ℓr) = 6b)]};

0, otherwise.

16 return Extension ← (s ∈M∪ {R + 1}) ∨ (CO(ℓs) = 0);
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Algorithm 9: CheckDutyCase2
Input: problem instance, [case variant var, parent label ℓr, child label ℓs].

1 Let tw and Extension be auxiliary variables;
2 Let checkT W be a binary variable that indicates whether the live leg is inside its window and the

pilot’s window;
3 Let RestM be the amount of rest to be inserted, with a view to utilizing ground time/maintenance;
4 Let O be the overtime worked on the arc, and Coverr be overtime cost paid per minute for request r;
5 if r > 0 ∧ s ∈ L ∧ jr = is ∧ firstM(ℓr) = 0 then
6 var(ℓs)← var;

// The requests have an earlier or a later start

7 tw ←

sts, var = 2a;
sts + ∆L, var = 2b ∧ s ∈ L;
sts + ∆M, var = 2b ∧ s ∈M.

// Serviced time of the requests
8 RestM ← max

{
0, (P OS + minRest + P RE)− (aGT (ℓr) + T Lr)

}
| r ∈M;

9 W (ℓs)← max

tw,

W (ℓr) + T F p̌v

irjr

+ (P OS + minRest + P RE) + tats
is

, r ∈ L ∧ s ∈ L ∧ jr = is;

W (ℓr) + T Lr + RestM + tats
is , r ∈M∧ s ∈ L ∧ jr = is.

;

// Time window of the requests

10 checkT W ←
{

W (ℓs) ≤ sts + ∆L, s ∈ L;
W (ℓs) ≤ sts + ∆M, s ∈M.

11 if ¬checkT W then return Extension ← 0;
// Time window of the pilots in chief

12 Verify if all live legs are covered by any pilot’s time window. If not, try to bring the respective
flight event to a nearest adjacent window. If the attempt fails, return Extension ← 0;

// Determine the other resources
13 U(ℓs)← P RE + tats

is ;
14 aGT (ℓs)← 0;
15 Q(ℓs)← 0;

// Calculate the overtime cost

16 O ←

max
{

0, U(ℓr) + T F p̌v

irjr −maxDuty,

Q(ℓr) + T F p̌v

irjr −maxF lying

}
, r ∈ L ∧ s ∈ L ∧ jr = is;

max
{

0, U(ℓr)−maxDuty, Q(ℓr)−maxF lying
}

, r ∈M∧ s ∈ L ∧ jr = is.

17 CO(ℓs)← Coverr.O;
18 return Extension ← 1; // return successfully
19 else
20 return Extension ← 0;
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Algorithm 10: CheckDutyCase3
Input: problem instance, [case variant var, parent label ℓr, child label ℓs].

1 Let tw and Extension be auxiliary variables;
2 Let checkT W be a binary variable that indicates whether the live leg is inside its window and the

pilot’s window;
3 Let RestM be the amount of rest to be inserted, with a view to utilizing ground time/maintenance;
4 Let O be the overtime worked on the arc, and Coverr be overtime cost paid per minute for request r;
5 if r > 0 ∧ s < R + 1 ∧ jr ̸= is ∧ firstM(ℓr) = 0 then
6 var(ℓs)← var;

// The requests have an earlier or a later start

7 tw ←

sts, var = 3a;
sts + ∆L, var = 3b ∧ s ∈ L;
sts + ∆M, var = 3b ∧ s ∈M.

// Serviced time of the requests
8 RestM ← max

{
0, (P OS + minRest + P RE)− (aGT (ℓr) + T Lr)

}
| r ∈M;

9 W (ℓs)← max


tw,



W (ℓr) + T F p̌v

irjr + (P OS + minRest + P RE)
+ tats

jr + T F p̌v

jris + tats
is

, r ∈ L ∧ s ∈ L ∧ jr ̸= is;

W (ℓr) + T F p̌v

irjr + (P OS + minRest + P RE)
+ tats

jr + T F p̌v

jris

, r ∈ L ∧ s ∈M∧ jr ̸= is;

W (ℓr) + T Lr + RestM + T F p̌v

jris + tats
is , r ∈M∧ s ∈ L ∧ jr ̸= is;

W (ℓr) + T Lr + RestM + T F p̌v

jris , r ∈M∧ s ∈M∧ jr ̸= is.


;

// Time window of the requests

10 checkT W ←
{

W (ℓs) ≤ sts + ∆L, s ∈ L;
W (ℓs) ≤ sts + ∆M, s ∈M.

11 if ¬checkT W then return Extension ← 0;
// Time window of the pilots in chief

12 Verify if all live and ferry legs are covered by any pilot’s time window. If not, try to bring the
respective flight event to a nearest adjacent window. If the attempt fails, return Extension ← 0;

// Determine the other resources

13 U(ℓs)←


P RE + tats

jr + T F p̌v

jris + tats
is , r ∈ L ∧ s ∈ L ∧ jr ̸= is;

P RE + tats
jr + T F p̌v

jris , r ∈ L ∧ s ∈M∧ jr ̸= is;
P RE + T F p̌v

jris + tats
is , r ∈M∧ s ∈ L ∧ jr ̸= is;

P RE + T F p̌v

jris , r ∈M∧ s ∈M∧ jr ̸= is.

14 aGT (ℓs)← 0;
15 Q(ℓs)← T F p̌v

jris ;
// Calculate the overtime cost

16 O ←

max
{

0, U(ℓr)+T F p̌v

irjr −maxDuty,

Q(ℓr) + T F p̌v

irjr −maxF lying

}
, r ∈ L ∧ s ∈ L ∧ jr = is;

max
{

0, U(ℓr)−maxDuty, Q(ℓr)−maxF lying
}

, r ∈M∧ s ∈ L ∧ jr = is.

17 CO(ℓs)← Coverr.O;
18 return Extension ← 1; // return successfully
19 else
20 return Extension ← 0;
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Algorithm 11: CheckDutyCase4
Input: problem instance, [case variant var, parent label ℓr, child label ℓs].

1 Let tw and Extension be auxiliary variables;
2 Let checkT W be a binary variable that indicates whether the live leg is inside its window and the

pilot’s window;
3 Let O be the overtime worked on the arc, and Coverr be overtime cost paid per minute for request r;
4 if s ∈ L ∧ [(r = 0 ∧ kv ̸= is) ∨ (r > 0 ∧ jr ̸= is)] then
5 var(ℓs)← var;

// The requests have an earlier or a later start

6 tw ←

sts, var = 4a;
sts + ∆L, var = 4b ∧ s ∈ L;
sts + ∆M, var = 4b ∧ s ∈M.

// Serviced time of the requests

7 W (ℓs)← max


tw,



avv + P RE + T F p̌v

kvis

+ (P OS + minRest + P RE) + tats
is

, r = 0 ∧ s ∈ L ∧ kv ̸= is;

W (ℓr) + T F p̌v

irjr + tats
jr + T F p̌v

jris

+ (P OS + minRest + P RE) + tats
is

, r ∈ L ∧ s ∈ L ∧ jr ̸= is;

W (ℓr) + T Lr + T F p̌v

jris

+ (P OS + minRest + P RE) + tats
is

, r ∈M∧ s ∈ L ∧ jr ̸= is.


;

// Time window of the requests

8 checkT W ←
{

W (ℓs) ≤ sts + ∆L, s ∈ L;
W (ℓs) ≤ sts + ∆M, s ∈M.

9 if ¬checkT W then return Extension ← 0;
// Time window of the pilots in chief

10 Verify if all live and ferry legs are covered by any pilot’s time window. If not, try to bring the
respective flight event to a nearest adjacent window. If the attempt fails, return Extension ← 0;

// Determine the other resources
11 U(ℓs)← P RE + tats

is ;
12 aGT (ℓs)← 0;
13 Q(ℓs)← 0;
14 firstM(ℓs)← 0;

// Calculate the overtime cost

15 O ←



max
{

0, P RE + T F p̌v

kvis −maxDuty,

T F p̌v

kvis −maxF lying

}
, r = 0 ∧ s ∈ L ∧ kv ̸= is;

max
{

0, U(ℓr) + T F p̌v

irjr + tats
jr + T F p̌v

jris −maxDuty,

Q(ℓr) + T F p̌v

irjr + T F p̌v

jris −maxF lying

}
, r ∈ L ∧ s ∈ L ∧ jr ̸= is;

max
{

0, aGT (ℓr) + U(ℓr) + T Lr + T F p̌v

jris −maxDuty,

Q(ℓr) + T F p̌v

jris −maxF lying

}
,

r ∈M∧ s ∈ L
∧ jr ̸= is∧firstM(ℓr) = 0;

max
{

0, P RE + T F p̌v

jris −maxDuty,

Q(ℓr) + T F p̌v

jris −maxF lying

}
,

r ∈M∧ s ∈ L
∧ jr ̸= is∧firstM(ℓr) = 1.

16 CO(ℓs)← Coverr.O;
17 return Extension ← 1; // return successfully
18 else
19 return Extension ← 0;
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Algorithm 12: CheckDutyCase5
Input: problem instance, [case variant var, parent label ℓr, child label ℓs].

1 Let tw and Extension be auxiliary variables;
2 Let checkT W be a binary variable that indicates whether the live leg is inside its window and the

pilot’s window;
3 Let RestM be the amount of rest to be inserted, with a view to utilizing ground time/maintenance;
4 Let O be the overtime worked on the arc, and Coverr be overtime cost paid per minute for request r;
5 if r > 0 ∧ s ∈ L ∧ jr ̸= is ∧ firstM(ℓr) = 0 then
6 var(ℓs)← var;

// The requests have an earlier or a later start

7 tw ←

sts, var = 5a;
sts + ∆L, var = 5b ∧ s ∈ L;
sts + ∆M, var = 5b ∧ s ∈M.

// Serviced time of the requests
8 RestM ← max

{
0, (P OS + minRest + P RE)− (aGT (ℓr) + T Lr)

}
| r ∈M;

9 W (ℓs)← max

tw,


W (ℓr) + T F p̌v

irjr + tats
jr + T F p̌v

jris + tats
is

+ 2.(P OS + minRest + P RE)
, r ∈ L ∧ s ∈ L ∧ jr ̸= is;

W (ℓr) + T Lr + RestM + T F p̌v

jris

+ (P OS + minRest + P RE) + tats
is

, r ∈M∧ s ∈ L ∧ jr ̸= is.

;

// Time window of the requests

10 checkT W ←
{

W (ℓs) ≤ sts + ∆L, s ∈ L;
W (ℓs) ≤ sts + ∆M, s ∈M.

11 if ¬checkT W then return Extension ← 0;
// Time window of the pilots in chief

12 Verify if all live and ferry legs are covered by any pilot’s time window. If not, try to bring the
respective flight event to a nearest adjacent window. If the attempt fails, return Extension ← 0;

// Determine the other resources
13 U(ℓs)← P RE + tats

is ;
14 aGT (ℓs)← 0;
15 Q(ℓs)← 0;

// Calculate the overtime cost

16 O ←



max



max
{

0, U(ℓr) + T F p̌v

irjr −maxDuty
}

+ max
{

0, tats
jr + T F p̌v

jris −maxDuty
}

,

max
{

0, Q(ℓr) + T F p̌v

irjr −maxF lying
}

+ max
{

0, T F p̌v

jris −maxF lying
}


, r ∈ L ∧ s ∈ L ∧ jr ̸= is;

max



max
{

0, U(ℓr)−maxDuty
}

+ max
{

0, T F p̌v

jris −maxDuty
}

,

max
{

0, Q(ℓr)−maxF lying
}

+ max
{

0, T F p̌v

jris −maxF lying
}


, r ∈M∧ s ∈ L ∧ jr ̸= is.

17 CO(ℓs)← Coverr.O;
18 return Extension ← 1; // return successfully
19 else
20 return Extension ← 0;
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Algorithm 13: CheckDutyCase6
Input: problem instance, [case variant var, parent label ℓr, child label ℓs].

1 Let tw and Extension be auxiliary variables;
2 Let checkT W be a binary variable that indicates whether the live leg is inside its window and the

pilot’s window;
3 Let GT , B and newGT be the current ground time already considering previous aGT (ℓr, a variable

that classifies which time range GT is in, and the new ground time that can be obtained due to the
reduction in duty;

4 if r > 0 ∧ s < R + 1 ∧ {(s ∈ L ∧ jr = is) ∨ [¬(r ∈ L ∧ s ∈M) ∧ jr ̸= is]} ∧ firstM(ℓr) = 0 then
5 var(ℓs)← var;

// The requests have an earlier or a later start

6 tw ←

sts, var = 6a;
sts + ∆L, var = 6b ∧ s ∈ L;
sts + ∆M, var = 6b ∧ s ∈M.

// Serviced time of the requests

7 W (ℓs)← max


tw,


W (ℓr) + T F p̌v

irjr + tats
is , r ∈ L ∧ s ∈ L ∧ jr = is;

W (ℓr) + T Lr + tats
is , r ∈M∧ s ∈ L ∧ jr = is;

W (ℓr) + T F p̌v

irjr + tats
jr + T F p̌v

jris + tats
is , r ∈ L ∧ s ∈ L ∧ jr ̸= is;

W (ℓr) + T Lr + T F p̌v

jris + tats
is , r ∈M∧ s ∈ L ∧ jr ̸= is;

W (ℓr) + T Lr + T F p̌v

jris , r ∈M∧ s ∈M∧ jr ̸= is.


;

// Time window of the requests

8 checkT W ←
{

W (ℓs) ≤ sts + ∆L, s ∈ L;
W (ℓs) ≤ sts + ∆M, s ∈M.

9 if ¬checkT W then return Extension ← 0;
// Time window of the pilots in chief

10 Verify if all live and ferry legs are covered by any pilot’s time window. If not, try to bring the
respective flight event to a nearest adjacent window. If the attempt fails, return Extension ← 0;

// Check in which time range the cost is

11 GT ←


[W (ℓs)−W (ℓr)]− (T F p̌v

irjr + tats
is ), r ∈ L ∧ s ∈ L ∧ jr = is;

[W (ℓs)−W (ℓr)] + aGT (ℓr)− tats
is , r ∈M∧ s ∈ L ∧ jr = is;

[W (ℓs)−W (ℓr)]− (T F p̌v

irjr + tats
jr + T F p̌v

jris + tats
is ), r ∈ L ∧ s ∈ L ∧ jr ̸= is;

[W (ℓs)−W (ℓr)] + aGT (ℓr)− (T F p̌v

jris + tats
is ), r ∈M∧ s ∈ L ∧ jr ̸= is;

[W (ℓs)−W (ℓr)] + aGT (ℓr)− T F p̌v

jris , r ∈M∧ s ∈M∧ jr ̸= is.

12 B ←


1, GT ≤ 90;
2, 90 < GT ≤ 360;
3, 360 < GT ≤ minRest;
4, GT > minRest.

13 if B = 2 ∨B = 3 then

14 newGT ←
{

(GT − 90)/2 + 90, B = 2;
60, B = 3.

// Determine the other resources

15 U(ℓs)←


U(ℓr) + T F p̌v

irjr + newGT + tats
is , r ∈ L ∧ s ∈ L ∧ jr = is;

U(ℓr) + newGT + tats
is , r ∈M∧ s ∈ L ∧ jr = is;

U(ℓr) + T F p̌v

irjr + tats
jr + T F p̌v

jris + newGT + tats
is , r ∈ L ∧ s ∈ L ∧ jr ̸= is;

U(ℓr) + newGT + T F p̌v

jris + tats
is , r ∈M∧ s ∈ L ∧ jr ̸= is;

U(ℓr) + newGT + T F p̌v

jris , r ∈M∧ s ∈M∧ jr ̸= is.

16 aGT (ℓs)← 0;

17 Q(ℓs)←


Q(ℓr) + T F p̌v

irjr , r ∈ L ∧ s ∈ L ∧ jr = is;
Q(ℓr), r ∈M∧ s ∈ L ∧ jr = is;
Q(ℓr) + T F p̌v

irjr + T F p̌v

jris , r ∈ L ∧ s ∈ L ∧ jr ̸= is;
Q(ℓr) + T F p̌v

jris , r ∈M∧ s ∈ L ∪M∧ jr ̸= is.

// Calculate the overtime cost
18 CO(ℓs)← 0;
19 return Extension ← 1; // return successfully
20 else
21 return Extension ← 0;

22 else
23 return Extension ← 0;
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B.2 Detailed results of the B&P variants

Tables 40 to 43 show the results of computational experiments carried out with real-
life instances defined in Section 3.4, which were solved by the B&P variants presented
in Subsection 4.6.1, denoted B&P[0, 0], B&P[1, 0], B&P[0, 1] and B&P[1, 1], where the
first term inside the brackets indicates whether the approach uses two-step (0) or strong
branching (1), and the second, if the primal heuristic is off (0) or on (1). These tables
have a similar layout to Table 10, however, columns OF lb to CPUt depict values for each
instance (first column), not only average values for each month/B&P variant (as seen in
Table 10). In the first column, each instance is in the format Mx_ytoz, where x indicates
the month, and y and z represent the first and last day considered in the month. Finally,
at the end of each month, we calculate the average of each column (“Avg Mx”).
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Table 40 – Computational results obtained with B&P[0, 0].
Instance OF lb OF ub gap nCol nNode RMPt SPt CPUt
M1_1to3 68,274.49 68,274.49 0.000% 304 1 0.045 0.686 0.771
M1_2to4 103,236.18 103,236.18 0.000% 446 2 0.089 1.070 1.214
M1_3to5 84,257.96 84,257.96 0.000% 747 5 0.255 3.128 3.521
M1_4to6 63,677.10 63,677.10 0.000% 659 6 0.268 4.590 5.058
M1_5to7 71,632.73 71,632.73 0.000% 439 2 0.102 1.648 1.832
M1_6to8 72,926.87 72,926.87 0.000% 281 4 0.081 1.731 1.935
M1_7to9 61,871.80 61,871.80 0.000% 266 1 0.039 0.381 0.448
M1_8to10 71,937.82 71,937.82 0.000% 186 1 0.027 0.354 0.408
Avg M1 74,726.87 74,726.87 0.000% 416 2.75 0.113 1.699 1.898
M2_1to3 102,880.69 102,880.69 0.000% 172 1 0.027 0.443 0.498
M2_2to4 126,331.91 126,331.91 0.000% 209 2 0.044 1.019 1.132
M2_3to5 126,357.94 126,357.94 0.000% 351 1 0.048 0.584 0.667
M2_4to6 232,142.37 232,142.37 0.000% 426 1 0.059 1.171 1.289
M2_5to7 158,376.22 158,376.22 0.000% 526 3 0.137 2.915 3.193
M2_6to8 241,022.34 241,022.34 0.000% 392 2 0.084 1.589 1.753
M2_7to9 130,213.49 130,213.49 0.000% 177 2 0.037 1.023 1.129
M2_8to10 200,979.16 200,979.16 0.000% 283 1 0.040 0.708 0.792
Avg M2 164,788.01 164,788.01 0.000% 317 1.63 0.060 1.182 1.307
M3_1to3 243,932.79 243,932.79 0.000% 922 9 0.469 16.292 17.084
M3_2to4 520,499.87 520,499.87 0.000% 766 3 0.186 5.028 5.356
M3_3to5 204,764.81 204,764.81 0.000% 565 1 0.069 1.509 1.628
M3_4to6 526,115.69 526,115.69 0.000% 406 4 0.085 2.024 2.233
M3_5to7 218,272.61 218,272.61 0.000% 490 8 0.154 3.035 3.374
M3_6to8 39,247.12 39,247.12 0.000% 417 2 0.071 0.780 0.894
Avg M3 292,138.81 292,138.81 0.000% 594.33 4.50 0.172 4.778 5.095
M4_1to3 462,133.33 462,133.33 0.000% 2,290 27 3.347 203.479 208.673
M4_2to4 264,423.30 264,423.30 0.000% 2,602 27 3.431 160.338 165.149
M4_3to5 237,273.06 237,273.06 0.000% 2,401 45 4.774 286.713 294.288
M4_4to6 246,859.20 246,859.20 0.000% 1,942 14 2.470 144.016 147.620
M4_5to7 388,373.53 388,373.53 0.000% 1,517 13 1.846 132.822 135.580
M4_6to8 320,275.47 320,275.47 0.000% 1,630 45 3.344 249.154 254.556
M4_7to9 302,686.88 302,686.88 0.000% 1,699 15 1.640 126.142 128.929
M4_8to10 332,778.61 332,778.61 0.000% 1,684 27 1.866 149.897 153.183
M4_9to11 703,498.25 703,498.25 0.000% 2,010 10 1.546 99.899 102.286
M4_10to12 484,849.25 484,849.25 0.000% 1,853 12 2.361 183.780 187.247
M4_11to13 491,144.00 491,144.00 0.000% 1,987 7 2.679 173.999 177.608
M4_12to14 666,998.55 666,998.55 0.000% 1,806 4 1.544 95.445 97.658
M4_13to15 593,957.84 593,957.84 0.000% 1,593 10 2.032 114.015 116.962
M4_14to16 318,407.95 318,407.95 0.000% 1,602 6 1.068 55.977 57.573
Avg M4 415,261.37 415,261.37 0.000% 1,901.14 18.71 2.425 155.405 159.094
M5_1to3 630,747.54 630,747.54 0.000% 1,779 6 2.022 175.830 178.796
M5_2to4 970,635.74 970,635.74 0.000% 2,246 11 3.916 339.166 344.404
M5_3to5 599,584.81 599,584.81 0.000% 2,194 8 2.965 294.430 298.456
M5_4to6 879,487.21 879,487.21 0.000% 2,316 24 4.519 392.508 399.450
M5_5to7 926,710.66 926,710.66 0.000% 2,474 27 6.655 568.722 578.253
M5_6to8 838,037.56 838,037.56 0.000% 1,759 20 3.126 361.532 366.704
M5_7to9 719,111.83 719,111.83 0.000% 1,770 8 2.334 223.265 226.729
M5_8to10 661,246.56 661,246.56 0.000% 1,919 35 4.530 411.685 419.262
M5_9to11 718,975.36 718,975.36 0.000% 2,118 55 7.811 819.002 831.402
M5_10to12 1,297,831.26 1,297,831.26 0.000% 2,546 83 12.700 1,583.242 1,602.817
M5_11to13 1,063,134.42 1,063,134.42 0.000% 2,176 14 4.018 339.761 345.385
M5_12to14 1,298,091.85 1,298,091.85 0.000% 1,265 7 1.070 112.093 114.067
M5_13to15 1,694,978.23 1,694,978.23 0.000% 1,286 7 0.756 59.273 60.666
M5_14to16 812,133.22 812,133.22 0.000% 1,288 6 0.994 72.269 73.880
M5_15to17 548,931.56 548,931.56 0.000% 1,518 8 0.941 66.421 67.988
Avg M5 910,642.52 910,642.52 0.000% 1,910.27 21.27 3.890 387.947 393.884
M6_1to3 390,328.77 390,328.77 0.000% 1,771 10 1.181 79.875 81.751
M6_2to4 252,236.40 252,236.40 0.000% 1,357 22 1.129 76.236 78.520
M6_3to5 926,772.21 926,772.21 0.000% 1,593 20 1.242 62.537 64.617
M6_4to6 328,431.04 328,431.04 0.000% 1,168 12 0.781 27.190 28.583
M6_5to7 449,164.10 449,164.10 0.000% 1,420 12 0.961 29.122 30.601
M6_6to8 134,864.27 134,864.27 0.000% 1,263 5 0.420 9.463 10.119
M6_7to9 235,056.88 235,056.88 0.000% 871 8 0.329 7.453 8.036
M6_8to10 80,989.52 80,989.52 0.000% 496 2 0.078 1.705 1.859
M6_9to11 1,041,799.60 1,041,799.60 0.000% 484 1 0.054 0.799 0.895
M6_10to12 561,693.63 561,693.63 0.000% 498 1 0.070 0.976 1.082
M6_11to13 283,953.27 283,953.27 0.000% 567 1 0.065 0.760 0.860
M6_12to14 405,466.52 405,466.52 0.000% 705 3 0.143 2.814 3.065
M6_13to15 76,158.34 76,158.34 0.000% 785 6 0.208 4.659 5.085
M6_14to16 43,598.92 43,598.92 0.000% 722 4 0.137 3.127 3.398
Avg M6 372,179.53 372,179.53 0.000% 978.57 7.64 0.486 21.908 22.748

Source: Own authorship.
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Table 41 – Computational results obtained with B&P[1, 0].
Instance OF lb OF ub gap nCol nNode RMPt SPt CPUt
M1_1to3 68,274.49 68,274.49 0.000% 304 1 0.049 0.685 0.768
M1_2to4 103,236.18 103,236.18 0.000% 463 2 0.088 1.050 1.223
M1_3to5 84,257.95 84,257.95 0.000% 1403 7 0.383 4.607 5.576
M1_4to6 63,677.10 63,677.10 0.000% 645 6 0.250 4.440 5.337
M1_5to7 71,632.73 71,632.73 0.000% 439 2 0.104 1.650 1.862
M1_6to8 72,926.87 72,926.87 0.000% 275 2 0.043 0.864 1.004
M1_7to9 61,871.80 61,871.80 0.000% 266 1 0.035 0.373 0.435
M1_8to10 71,937.82 71,937.82 0.000% 186 1 0.027 0.364 0.415
Avg M1 74,726.87 74,726.87 0.000% 497.63 2.75 0.122 1.754 2.078
M2_1to3 102,880.69 102,880.69 0.000% 172 1 0.023 0.419 0.475
M2_2to4 126,331.91 126,331.91 0.000% 213 2 0.044 0.998 1.116
M2_3to5 126,357.94 126,357.94 0.000% 351 1 0.047 0.582 0.663
M2_4to6 232,142.37 232,142.37 0.000% 426 1 0.061 1.180 1.293
M2_5to7 158,376.22 158,376.22 0.000% 526 3 0.137 2.915 3.259
M2_6to8 241,022.34 241,022.34 0.000% 707 2 0.112 1.751 1.991
M2_7to9 130,213.49 130,213.49 0.000% 177 2 0.041 1.042 1.167
M2_8to10 200,979.16 200,979.16 0.000% 283 1 0.038 0.695 0.775
Avg M2 164,788.01 164,788.01 0.000% 356.88 1.63 0.063 1.198 1.342
M3_1to3 243,932.79 243,932.79 0.000% 915 6 0.401 12.568 13.852
M3_2to4 520,499.86 520,499.86 0.000% 767 3 0.181 4.910 5.322
M3_3to5 204,764.81 204,764.81 0.000% 565 1 0.074 1.511 1.634
M3_4to6 526,115.69 526,115.69 0.000% 407 3 0.071 1.576 1.796
M3_5to7 218,272.61 218,272.61 0.000% 490 6 0.119 2.390 2.903
M3_6to8 39,247.12 39,247.12 0.000% 791 4 0.140 1.568 1.882
Avg M3 292,138.81 292,138.81 0.000% 655.83 3.83 0.164 4.087 4.565
M4_1to3 462,133.30 462,133.30 0.000% 2,206 28 3.698 215.670 229.661
M4_2to4 264,423.30 264,423.30 0.000% 2,440 35 4.311 203.651 220.226
M4_3to5 237,273.08 237,273.08 0.000% 2,366 36 4.679 238.658 256.177
M4_4to6 246,859.20 246,859.20 0.000% 1,973 23 3.412 202.066 213.524
M4_5to7 388,373.56 388,373.56 0.000% 1,573 22 2.402 198.775 207.262
M4_6to8 320,275.47 320,275.47 0.000% 6,202 33 4.442 262.419 275.387
M4_7to9 302,686.88 302,686.88 0.000% 1,683 8 1.172 82.321 85.459
M4_8to10 332,778.58 332,778.58 0.000% 1,650 19 1.680 113.529 120.116
M4_9to11 703,498.19 703,498.19 0.000% 2,004 9 1.534 95.297 100.029
M4_10to12 484,849.25 484,849.25 0.000% 1,852 13 2.584 192.139 199.555
M4_11to13 491,144.00 491,144.00 0.000% 2,060 19 4.015 290.738 301.836
M4_12to14 666,998.55 666,998.55 0.000% 1,808 4 1.521 93.533 95.961
M4_13to15 593,957.89 593,957.89 0.000% 1,584 6 1.556 76.424 79.504
M4_14to16 318,407.96 318,407.96 0.000% 1,610 4 0.867 42.324 44.025
Avg M4 415,261.37 415,261.37 0.000% 2,215.07 18.50 2.705 164.825 173.480
M5_1to3 630,747.54 630,747.54 0.000% 1,851 7 2.296 187.789 193.429
M5_2to4 970,635.74 970,635.74 0.000% 2,309 11 4.124 353.434 362.677
M5_3to5 599,584.76 599,584.76 0.000% 2,206 10 3.204 317.271 324.580
M5_4to6 879,487.14 879,487.14 0.000% 4,275 24 6.343 489.082 505.874
M5_5to7 926,710.60 926,710.60 0.000% 2,443 20 5.623 456.374 472.000
M5_6to8 838,037.56 838,037.56 0.000% 1,771 11 2.285 252.690 258.709
M5_7to9 719,111.83 719,111.83 0.000% 1,758 9 2.356 229.304 234.921
M5_8to10 661,246.61 661,246.61 0.000% 1,766 30 3.925 348.476 363.282
M5_9to11 718,975.30 718,975.30 0.000% 2,170 56 7.435 817.764 847.408
M5_10to12 1,297,831.26 1,297,831.26 0.000% 2,148 11 3.428 308.836 318.476
M5_11to13 1,063,134.42 1,063,134.42 0.000% 2,125 7 2.871 228.014 234.594
M5_12to14 1,298,091.82 1,298,091.82 0.000% 1,273 7 1.149 118.425 121.880
M5_13to15 1,694,978.35 1,694,978.35 0.000% 1,333 8 0.835 62.857 65.678
M5_14to16 812,133.22 812,133.22 0.000% 1,251 9 1.113 87.939 91.343
M5_15to17 548,931.52 548,931.52 0.000% 1,548 9 1.050 76.165 79.286
Avg M5 910,642.51 910,642.51 0.000% 2,015.13 15.27 3.202 288.961 298.276
M6_1to3 390,328.77 390,328.77 0.000% 1,806 13 1.386 94.819 99.631
M6_2to4 252,236.40 252,236.40 0.000% 1,487 32 2.071 117.576 126.657
M6_3to5 926,772.15 926,772.15 0.000% 1,530 15 1.073 52.347 56.725
M6_4to6 328,431.05 328,431.05 0.000% 1,207 9 0.661 22.393 24.511
M6_5to7 449,164.10 449,164.10 0.000% 1,403 7 0.670 21.092 22.916
M6_6to8 134,864.26 134,864.26 0.000% 1,303 7 0.622 12.770 14.860
M6_7to9 235,056.89 235,056.89 0.000% 1,910 5 0.472 6.425 7.617
M6_8to10 80,989.52 80,989.52 0.000% 496 2 0.081 1.680 1.856
M6_9to11 1,041,799.60 1,041,799.60 0.000% 484 1 0.053 0.779 0.873
M6_10to12 561,693.63 561,693.63 0.000% 498 1 0.073 0.973 1.082
M6_11to13 283,953.27 283,953.27 0.000% 567 1 0.067 0.769 0.867
M6_12to14 405,466.49 405,466.49 0.000% 708 3 0.158 3.047 3.345
M6_13to15 76,158.34 76,158.34 0.000% 784 6 0.210 4.669 5.336
M6_14to16 43,598.91 43,598.91 0.000% 724 3 0.131 2.726 3.024
Avg M6 372,179.53 372,179.53 0.000% 1,064.79 7.50 0.552 24.433 26.379

Source: Own authorship.
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Table 42 – Computational results obtained with B&P[0, 1].
Instance OF lb OF ub gap nCol nNode RMPt SPt CPUt
M1_1to3 68,274.49 68,274.49 0.000% 304 1 0.045 0.680 0.761
M1_2to4 103,236.18 103,236.18 0.000% 442 1 0.060 0.587 0.698
M1_3to5 84,257.95 84,257.95 0.000% 730 1 0.126 0.983 1.163
M1_4to6 63,674.08 63,677.10 0.005% 619 0 0.111 1.171 1.362
M1_5to7 71,632.73 71,632.73 0.000% 431 1 0.077 0.954 1.093
M1_6to8 72,926.86 72,926.86 0.000% 275 1 0.034 0.493 0.572
M1_7to9 61,871.80 61,871.80 0.000% 266 1 0.035 0.376 0.437
M1_8to10 71,937.82 71,937.82 0.000% 186 1 0.024 0.351 0.404
Avg M1 74,726.49 74,726.87 0.001% 406.63 0.88 0.064 0.699 0.811
M2_1to3 102,880.69 102,880.69 0.000% 172 1 0.023 0.420 0.476
M2_2to4 126,331.90 126,331.90 0.000% 207 1 0.029 0.530 0.606
M2_3to5 126,357.94 126,357.94 0.000% 351 1 0.047 0.587 0.671
M2_4to6 232,142.36 232,142.36 0.000% 426 1 0.061 1.162 1.299
M2_5to7 158,376.20 158,376.20 0.000% 524 1 0.087 1.370 1.529
M2_6to8 241,022.33 241,022.33 0.000% 391 1 0.062 0.936 1.066
M2_7to9 130,213.48 130,213.48 0.000% 177 1 0.032 0.599 0.677
M2_8to10 200,979.16 200,979.16 0.000% 283 1 0.037 0.690 0.770
Avg M2 164,788.01 164,788.01 0.000% 316.38 1 0.047 0.787 0.887
M3_1to3 243,932.78 243,932.78 0.000% 892 1 0.167 4.206 4.464
M3_2to4 520,499.80 520,499.80 0.000% 765 1 0.120 2.795 2.999
M3_3to5 204,764.81 204,764.81 0.000% 565 1 0.074 1.526 1.647
M3_4to6 526,115.63 526,115.63 0.000% 406 1 0.046 0.666 0.761
M3_5to7 218,272.58 218,272.58 0.000% 488 1 0.057 0.597 0.702
M3_6to8 39,247.11 39,247.11 0.000% 417 1 0.058 0.498 0.595
Avg M3 292,138.78 292,138.78 0.000% 588.83 1 0.087 1.715 1.861
M4_1to3 462,130.74 462,130.80 0.001% 2,084 1 0.886 38.616 39.895
M4_2to4 264,423.28 264,423.28 0.000% 2,295 1 1.176 33.047 34.520
M4_3to5 237,273.05 237,273.05 0.000% 2,286 1 1.153 39.835 41.270
M4_4to6 246,859.19 246,859.19 0.000% 1,916 1 1.374 59.086 60.815
M4_5to7 388,368.90 388,373.52 0.001% 1,470 0 0.933 45.991 47.245
M4_6to8 320,275.46 320,275.46 0.000% 1,469 1 0.409 24.106 24.800
M4_7to9 302,686.85 302,686.85 0.000% 1,652 1 0.544 30.342 31.195
M4_8to10 332,778.57 332,778.57 0.000% 1,624 1 0.502 25.518 26.264
M4_9to11 703,498.16 703,498.16 0.000% 1,951 1 0.769 37.143 38.230
M4_10to12 484,849.23 484,849.23 0.000% 1,761 1 1.292 77.498 79.161
M4_11to13 491,143.94 491,143.94 0.000% 1,957 1 1.869 98.893 101.166
M4_12to14 666,998.52 666,998.52 0.000% 1,792 1 1.191 64.710 66.276
M4_13to15 593,957.81 593,957.81 0.000% 1,576 1 1.206 45.070 46.636
M4_14to16 318,399.66 318,408.46 0.003% 1,585 1 0.548 23.362 24.212
Avg M4 415,260.24 415,261.42 0.000% 1,815.57 0.79 0.989 45.944 47.263
M5_1to3 630,747.51 630,747.51 0.000% 1,756 1 1.421 90.412 92.262
M5_2to4 970,635.70 970,635.70 0.000% 2,144 1 2.601 148.121 151.206
M5_3to5 599,584.74 599,584.74 0.000% 2,125 1 1.933 152.759 155.155
M5_4to6 879,487.10 879,487.10 0.000% 2,253 1 2.277 132.212 134.974
M5_5to7 926,710.56 926,710.56 0.000% 2,391 1 3.215 157.414 161.187
M5_6to8 838,037.45 838,037.45 0.000% 1,722 1 1.353 100.926 102.824
M5_7to9 719,111.74 719,111.74 0.000% 1,695 1 1.397 103.242 105.210
M5_8to10 661,246.54 661,246.54 0.000% 1,706 1 1.317 72.929 74.684
M5_9to11 718,975.27 718,975.27 0.000% 1,797 1 1.521 99.820 101.786
M5_10to12 1,297,791.28 1,297,831.20 0.003% 2,109 0 2.007 142.395 144.979
M5_11to13 1,063,110.36 1,063,134.92 0.002% 2,063 1 1.950 127.547 130.026
M5_12to14 1,298,091.67 1,298,091.67 0.000% 1,247 1 0.664 54.830 55.922
M5_13to15 1,694,978.15 1,694,978.15 0.000% 1,273 1 0.369 19.295 19.984
M5_14to16 812,133.19 812,133.19 0.000% 1,227 1 0.592 32.490 33.397
M5_15to17 548,931.50 548,931.50 0.000% 1,512 1 0.500 29.671 30.439
Avg M5 910,638.18 910,642.48 0.000% 1,801.33 0.87 1.541 97.604 99.602
M6_1to3 390,328.75 390,328.75 0.000% 1,672 1 0.495 23.741 24.481
M6_2to4 252,236.37 252,236.37 0.000% 1,269 1 0.297 13.278 13.744
M6_3to5 926,772.11 926,772.11 0.000% 1,399 1 0.354 13.336 13.850
M6_4to6 328,431.01 328,431.01 0.000% 1,149 1 0.302 7.283 7.708
M6_5to7 449,164.08 449,164.08 0.000% 1,362 1 0.370 8.986 9.483
M6_6to8 134,864.25 134,864.25 0.000% 1,229 1 0.214 4.087 4.399
M6_7to9 235,056.87 235,056.87 0.000% 861 1 0.136 2.060 2.270
M6_8to10 80,989.52 80,989.52 0.000% 493 1 0.052 0.953 1.062
M6_9to11 1,041,799.60 1,041,799.60 0.000% 484 1 0.055 0.784 0.880
M6_10to12 561,693.63 561,693.63 0.000% 498 1 0.073 0.957 1.070
M6_11to13 283,953.27 283,953.27 0.000% 567 1 0.067 0.753 0.851
M6_12to14 405,466.47 405,466.47 0.000% 703 1 0.084 1.368 1.520
M6_13to15 76,158.33 76,158.33 0.000% 784 1 0.108 1.447 1.625
M6_14to16 43,598.91 43,598.91 0.000% 722 1 0.087 1.330 1.481
Avg M6 372,179.51 372,179.51 0.000% 942.29 1 0.192 5.740 6.030

Source: Own authorship.
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Table 43 – Computational results obtained with B&P[1, 1].
Instance OF lb OF ub gap nCol nNode RMPt SPt CPUt
M1_1to3 68,274.49 68,274.49 0.000% 304 1 0.045 0.691 0.776
M1_2to4 103,236.18 103,236.18 0.000% 442 1 0.066 0.598 0.747
M1_3to5 84,257.95 84,257.95 0.000% 730 1 0.123 0.976 1.284
M1_4to6 63,674.08 63,677.10 0.005% 619 0 0.105 1.185 1.482
M1_5to7 71,632.73 71,632.73 0.000% 431 1 0.075 0.951 1.124
M1_6to8 72,926.86 72,926.86 0.000% 275 1 0.034 0.503 0.624
M1_7to9 61,871.80 61,871.80 0.000% 266 1 0.039 0.382 0.448
M1_8to10 71,937.82 71,937.82 0.000% 186 1 0.024 0.354 0.409
Avg M1 74,726.49 74,726.87 0.001% 406.63 0.88 0.064 0.705 0.862
M2_1to3 102,880.69 102,880.69 0.000% 172 1 0.027 0.442 0.505
M2_2to4 126,331.90 126,331.90 0.000% 207 1 0.029 0.529 0.614
M2_3to5 126,357.94 126,357.94 0.000% 351 1 0.054 0.596 0.689
M2_4to6 232,142.36 232,142.36 0.000% 426 1 0.068 1.196 1.334
M2_5to7 158,376.20 158,376.20 0.000% 524 1 0.085 1.365 1.590
M2_6to8 241,022.33 241,022.33 0.000% 391 1 0.061 0.921 1.102
M2_7to9 130,213.48 130,213.48 0.000% 177 1 0.032 0.601 0.700
M2_8to10 200,979.16 200,979.16 0.000% 283 1 0.036 0.704 0.786
Avg M2 164,788.01 164,788.01 0.000% 316.38 1 0.049 0.794 0.915
M3_1to3 243,932.78 243,932.78 0.000% 892 1 0.167 4.275 4.714
M3_2to4 520,499.80 520,499.80 0.000% 765 1 0.120 2.801 3.073
M3_3to5 204,764.81 204,764.81 0.000% 565 1 0.070 1.519 1.646
M3_4to6 526,115.63 526,115.63 0.000% 406 1 0.047 0.680 0.823
M3_5to7 218,272.58 218,272.58 0.000% 488 1 0.056 0.600 0.790
M3_6to8 39,247.11 39,247.11 0.000% 417 1 0.062 0.513 0.651
Avg M3 292,138.78 292,138.78 0.000% 588.83 1 0.087 1.731 1.950
M4_1to3 462,130.64 462,133.70 0.001% 2,084 1 0.890 38.789 40.508
M4_2to4 264,423.28 264,423.28 0.000% 2,295 1 1.174 33.284 35.216
M4_3to5 237,273.05 237,273.05 0.000% 2,286 1 1.157 40.577 42.528
M4_4to6 246,859.19 246,859.19 0.000% 1,916 1 1.355 59.273 61.421
M4_5to7 388,368.90 388,373.52 0.001% 1,470 0 0.928 46.426 48.068
M4_6to8 320,275.46 320,275.46 0.000% 1,469 1 0.410 24.253 25.247
M4_7to9 302,686.85 302,686.85 0.000% 1,652 1 0.549 31.444 32.678
M4_8to10 332,778.57 332,778.57 0.000% 1,624 1 0.491 25.866 26.912
M4_9to11 703,498.16 703,498.16 0.000% 1,951 1 0.776 37.859 39.388
M4_10to12 484,849.23 484,849.23 0.000% 1,761 1 1.297 78.997 81.139
M4_11to13 491,143.94 491,143.94 0.000% 1,957 1 1.872 100.714 103.507
M4_12to14 666,998.52 666,998.52 0.000% 1,792 1 1.195 66.625 68.453
M4_13to15 593,957.81 593,957.81 0.000% 1,576 1 1.211 46.671 48.609
M4_14to16 318,399.46 318,408.26 0.003% 1,585 1 0.559 23.961 25.162
Avg M4 415,260.22 415,261.39 0.000% 1,815.57 0.79 0.990 46.767 48.488
M5_1to3 630,747.51 630,747.51 0.000% 1,756 1 1.411 92.008 94.382
M5_2to4 970,635.70 970,635.70 0.000% 2,144 1 2.610 150.753 154.456
M5_3to5 599,584.74 599,584.74 0.000% 2,125 1 1.939 155.445 158.419
M5_4to6 879,487.10 879,487.10 0.000% 2,253 1 2.253 133.929 137.270
M5_5to7 926,710.56 926,710.56 0.000% 2,391 1 3.163 159.155 163.545
M5_6to8 838,037.45 838,037.45 0.000% 1,722 1 1.341 103.979 106.361
M5_7to9 719,111.74 719,111.74 0.000% 1,695 1 1.401 106.007 108.445
M5_8to10 661,246.54 661,246.54 0.000% 1,706 1 1.335 75.109 77.317
M5_9to11 718,975.27 718,975.27 0.000% 1,797 1 1.497 101.131 103.556
M5_10to12 1,297,791.28 1,297,831.20 0.003% 2,109 0 1.998 144.016 147.190
M5_11to13 1,063,110.06 1,063,134.62 0.002% 2,063 1 1.959 130.112 133.147
M5_12to14 1,298,091.67 1,298,091.67 0.000% 1,247 1 0.668 56.445 57.924
M5_13to15 1,694,978.15 1,694,978.15 0.000% 1,273 1 0.371 20.053 21.038
M5_14to16 812,133.19 812,133.19 0.000% 1,227 1 0.594 33.627 34.832
M5_15to17 548,931.50 548,931.50 0.000% 1,512 1 0.500 30.032 31.117
Avg M5 910,638.16 910,642.46 0.000% 1,801.33 0.87 1.536 99.453 101.933
M6_1to3 390,328.75 390,328.75 0.000% 1,672 1 0.493 24.362 25.451
M6_2to4 252,236.37 252,236.37 0.000% 1,269 1 0.291 13.099 13.776
M6_3to5 926,772.11 926,772.11 0.000% 1,399 1 0.357 13.392 14.163
M6_4to6 328,431.01 328,431.01 0.000% 1,149 1 0.303 7.329 7.960
M6_5to7 449,164.08 449,164.08 0.000% 1,362 1 0.366 8.967 9.698
M6_6to8 134,864.25 134,864.25 0.000% 1,229 1 0.214 4.116 4.647
M6_7to9 235,056.87 235,056.87 0.000% 861 1 0.135 2.081 2.432
M6_8to10 80,989.52 80,989.52 0.000% 493 1 0.054 0.970 1.111
M6_9to11 1,041,799.60 1,041,799.60 0.000% 484 1 0.054 0.799 0.895
M6_10to12 561,693.63 561,693.63 0.000% 498 1 0.073 0.989 1.102
M6_11to13 283,953.27 283,953.27 0.000% 567 1 0.066 0.756 0.852
M6_12to14 405,466.47 405,466.47 0.000% 703 1 0.086 1.371 1.544
M6_13to15 76,158.33 76,158.33 0.000% 784 1 0.104 1.455 1.726
M6_14to16 43,598.91 43,598.91 0.000% 722 1 0.085 1.320 1.526
Avg M6 372,179.51 372,179.51 0.000% 942.29 1 0.192 5.786 6.206

Source: Own authorship.
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APPENDIX C

Further details on the heuristic
approach of Chapter 5

To show in details the overall execution scheme of the proposed heuristic, we present
the flowchart in Figure 45. The main steps of the method have been enumerated in blocks,
where Block 2 initializes the main variables, such as k, OF0 = +∞, CondRelax (a flag
that indicates that the relaxed condition is active), QF = 0, and ST = R (they are
parameters to be used in the repairing stage); Blocks 4-9 refer to the cycle of the relaxed
construction stage (Trk is a vector that stores the aircraft type on the current iteration
k); Block 10 shows how the repairing stage works specifically; and Block 11 represents
the call for the improvement part.

Moreover, the six procedures of the improvement part described in Subsection 5.3.2 are
detailed in Algorithms 14 to 19. In the following section, we introduce the additional no-
tation used in these algorithms. Let altIHk

i,h be the alternative regarding the insertion of
flight i in aircraft h of the iteration k, which was stored in the construction part, as menti-
oned in Subsection 5.3.1. Consider HP as the set containing only the aircraft allocated in
the current schedule, and Wl as the l-th weight term of the objective function, this is, Wl =
wlfl, ∀ l = 1, . . . , 11. Finally, we define findIndex(“flight_indice”, “aircraft_indice”,
“o: origin/d: destiny”) as a function that returns the index of the corresponding prece-
dent (parameter ‘o’) or subsequent (parameter ‘d’) flight from another flight (parameter
“flight_indice”) allocated on the same aircraft (parameter “aircraft_indice”). As an
example, let Y 2,5

3,7 = 1 be one of the components of the solution in iteration k = 2; then,
findIndex(7, 2, ‘o’) = 3 and findIndex(3, 2, ‘d’) = 7. On the other hand, if Y 2,5

3,7 = 0,
this function returns −1. It is important enough to mention that every time a given set
Prh is modified in the algorithms, set PRk is updated accordingly.
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Algorithm 14: Reschedule previously scheduled flights to accommodate transfer-
red flights

Input: instance parameters, PRk, current solution Y k, OF k.
Output: PRk, Y k, OF k.

1 Let b, TD, i′, j′, b′, h′, i∗, j∗, b∗, h∗, v0, v1, v2, v3, be auxiliary variables;
2 if |PRk|< |I| then
3 foreach i ∈ I\PRk do // for transferred flights
4 TD ← +∞; i∗ ← 0;
5 foreach i′ ∈ PRk do
6 foreach h ∈ HP ∩Hi do
7 if h = Sk

i′ ∧ i ̸= i′ ∧ altIHk
i,h = 1 then

8 j ← findIndex(i′, h, ‘o’);
9 b← findIndex(i′, h, ‘d’);

10 Y h,k
j,i′ ← 0; Y h,k

i′,b ← 0; Prh ← Prh\{i′};
11 Y h,k

j,i ← 1; Y h,k
i,b ← 1; Prh ← Prh ∪ {i}; // does the temporary change

12 foreach h′ ∈ HP ∩Hi′ do
13 if h ̸= h′ ∧ altIHk

i′,h′ = 1 then
14 b′ ← |I|+1;
15 j′ ← findIndex(b′, h′, ‘o’);
16 while j′ ≥ 0 do
17 Y h′,k

j′,b′ ← 0; Y h′,k
j′,i′ ← 1; Y h′,k

i′,b′ ← 1; Prh′ ← Prh′ ∪ {i′};
18 GetSchedule(instance parameters, PRk, Y k);
19 if

∑
l∈I Dl < TD ∧ factD = true then

20 TD ←
∑

l∈I Dl;
21 j∗ ← j; i∗ ← i;
22 b∗ ← b; h∗ ← h;
23 v1← j′; v2← i′;
24 v3← b′; v0← h′;

25 Y h′,k
j′,b′ ← 1; Y h′,k

j′,i′ ← 0; Y h′,k
i′,b′ ← 0; Prh′ ← Prh′\{i′};

26 b′ ← j′;
27 j′ ← findIndex(b′, h′, ‘o’);

28 Y h,k
j,i′ ← 1; Y h,k

i′,b ← 1; Prh ← Prh ∪ {i′};
29 Y h,k

j,i ← 0; Y h,k
i,b ← 0; Prh ← Prh\{i}; // undoes the temporary change

30 if i∗ > 0 then // determines the exchange
31 Y h∗,k

j∗,v2 ← 0; Y h∗,k
v2,b∗ ← 0; Prh∗ ← Prh∗\{v2};

32 Y h∗,k
j∗,i∗ ← 1; Y h∗,k

i∗,b∗ ← 1; Prh∗ ← Prh∗ ∪ {i∗};
33 Y v0,k

v1,v3 ← 0; Y v0,k
v1,v2 ← 1; Y v0,k

v2,v3 ← 1; Prv0 ← Prv0 ∪ {v2};
34 Remove the flight i∗ of corresponding R set;
35 Sk

i∗ ← h∗; Sk
v2 ← v0;

36 altIHk
i∗,h∗ ← 0; altIHk

v2,h∗ ← 1; altIHk
v2,v0 ← 0;

37 Update all the terms W and OF k;
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Algorithm 15: Swap unscheduled by scheduled flights
Input: instance parameters, P Rk, current solution Y k, OF k.
Output: P Rk, Y k, OF k.

1 Let b, F V 1, F V 2, i′, i∗, b∗, v1, v2, be auxiliary variables;
2 if |P Rk|< |I| then
3 foreach h ∈ HP do
4 foreach i ∈ P rh do
5 F V 1← OF k; j ← findIndex(i, h, ‘o’); b← findIndex(i, h, ‘d’);
6 Y h,k

j,i ← 0; Y h,k
i,b ← 0; P rh ← P rh\{i};

7 switch i do
8 case ∈ Ic : RC ← RC ∪ {i};
9 case ∈ I2 : R2 ←R2 ∪ {i};

10 case ∈ I1 : R1 ←R1 ∪ {i};
11 case ∈ I0 : R0 ←R0 ∪ {i};
12 if si ̸= h ∧ i ∈ I0 ∪ Ic then v1← −1; // if there was an aircraft change
13 else v1← 0;
14 i∗ ← 0;
15 foreach i′ ∈ I\P Rk do
16 if h ∈ Hi′ ∧ altIHk

i′,h = 1 then
17 Y h,k

j,i′ ← 1; Y h,k
i′,b ← 1; P rh ← P rh ∪ {i′};

18 switch i′ do
19 case ∈ Ic : RC ← RC\{i′};
20 case ∈ I2 : R2 ←R2\{i′};
21 case ∈ I1 : R1 ←R1\{i′};
22 case ∈ I0 : R0 ←R0\{i′};

23 GetSchedule(instance parameters, P Rk, Y k);
24 if si′ ̸= h ∧ i′ ∈ I0 ∪ Ic then v2← 1; // if there will be an aircraft

change
25 else v2← 0;
26 F V 2← w1.|RC |+w2.|R2|+w3.|R1|+w4.|R0|+W 5 + W 6 + W 7

+ w8.
∑

l∈I BII
l + w9.

∑
l∈I BI

l + [W 10 + w10.(v1 + v2)] + w11.
∑

l∈I Dl;
27 if F V 1 > F V 2 ∧ factD = true then
28 F V 1← F V 2;
29 i∗ ← i′; b∗ ← (v1 + v2);

30 Y h,k
j,i′ ← 0; Y h,k

i′,b
← 0; P rh ← P rh\{i′};

31 switch i′ do
32 case ∈ Ic : RC ← RC ∪ {i′};
33 case ∈ I2 : R2 ←R2 ∪ {i′};
34 case ∈ I1 : R1 ←R1 ∪ {i′};
35 case ∈ I0 : R0 ←R0 ∪ {i′};

36 if i∗ > 0 then
37 Y h,k

j,i∗ ← 1; Y h,k
i∗,b ← 1; P rh ← P rh ∪ {i∗};

38 switch i∗ do
39 case ∈ Ic : RC ←RC\{i∗};
40 case ∈ I2 : R2 ← R2\{i∗};
41 case ∈ I1 : R1 ← R1\{i∗};
42 case ∈ I0 : R0 ← R0\{i∗};

43 GetSchedule(instance parameters, P Rk, Y k);
44 W 10←W 10 + w10.b∗;
45 OF k ← w1.|RC |+w2.|R2|+w3.|R1|+w4.|R0|+W 5 + W 6 + W 7

+ w8.
∑

l∈I BII
l + w9.

∑
l∈I BI

l + W 10 + w11.
∑

l∈I Dl;
46 Sk

i∗ ← Sk
i ; Sk

i ← −1; // where “-1” corresponds no aircraft allocated
47 altIHk

i∗,h ← 0; altIHk
i,h ← 1;

48 else
49 Y h,k

j,i ← 1; Y h,k
i,b ← 1; P rh ← P rh ∪ {i};

50 switch i do
51 case ∈ Ic : RC ←RC\{i};
52 case ∈ I2 : R2 ← R2\{i};
53 case ∈ I1 : R1 ← R1\{i};
54 case ∈ I0 : R0 ← R0\{i};

55 Update the terms W 8, W 9, W 11;
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Algorithm 16: Transfer flights to other aircraft
Input: instance parameters, PRk, current solution Y k, OF k.
Output: PRk, Y k, OF k.

1 Let b, FV 1, FV 2, j′, b′, h′, i∗, j∗, b∗, h∗, v0, v1, v2, be auxiliary variables;
2 Let continue be a variable that gives “true” if there is benefits to change flights, or “false”,

otherwise;
3 do
4 Set continue← false;
5 FV 1←W8 + W9 + W10 + W11;
6 foreach h ∈ HP do
7 foreach i ∈ Prh do
8 j ← findIndex(i, h, ‘o’); b← findIndex(i, h, ‘d’);
9 Y h,k

j,i ← 0; Y h,k
i,b ← 0; Y h,k

j,b ← 1;
10 if si ̸= h ∧ i ∈ I0 ∪ Ic then v1← −1; // if there was an aircraft change
11 else v1← 0;
12 foreach h′ ∈ HP ∩Hi do
13 if h′ ̸= h ∧ altIHk

i,h′ = 1 then
14 b′ ← |I|+1;
15 j′ ← findIndex(b′, h′, ‘o’);
16 while j′ ≥ 0 do
17 Y h′,k

j′,i ← 1; Y h′,k
i,b′ ← 1; Y h′,k

j′,b′ ← 0;
18 GetSchedule(instance parameters, PRk, Y k);
19 if si ̸= h′ ∧ i ∈ I0 ∪ Ic then v2← 1; // if there will be an

aircraft change
20 else v2← 0;
21 FV 2←

w8.
∑

l∈I BII
l +w9.

∑
l∈I BI

l +[W10 + w10.(v1 + v2)]+w11.
∑

l∈I Dl;
22 if FV 2 < FV 1 ∧ factD = true then
23 FV 1← FV 2;
24 i∗ ← i; v0← h; j∗ ← j′;
25 b∗ ← b′; h∗ ← h′;
26 continue← true;

27 Y h′,k
j′,i ← 0; Y h′,k

i,b′ ← 0; Y h′,k
j′,b′ ← 1;

28 b′ ← j′;
29 j′ ← findIndex(b′, h′, ‘o’);

30 Y h,k
j,i ← 1; Y h,k

i,b ← 1; Y h,k
j,b ← 0;

31 if continue = true then
32 j ← findIndex(i∗, v0, ‘o’); k ← findIndex(i∗, v0, ‘d’);
33 Y v0,k

j,i∗ ← 0; Y v0,k
i∗,b ← 0; Y v0,k

j,b ← 1; Prv0 ← Prv0\{i∗};
34 Y h∗,k

j∗,i∗ ← 1; Y h∗,k
i∗,b∗ ← 1; Y h∗,k

j∗,b∗ ← 0; Prh∗ ← Prh∗ ∪ {i∗};
35 GetSchedule(instance parameters, PRk, Y k);
36 if si∗ ̸= v0 ∧ i∗ ∈ I0 ∪ Ic then v1← −1;
37 else v1← 0;
38 if si∗ ̸= h∗ ∧ i∗ ∈ I0 ∪ Ic then v2← 1;
39 else v2← 0;
40 OF k ← OF k +

[
w8.

∑
l∈I BII

l + w9.
∑

l∈I BI
l + w10.(v1 + v2) + w11.

∑
l∈I Dl

]
− (W8 + W9 + W10 + W11);

41 Update the terms W8, W9, W10, W11;
42 Sk

i∗ ← h∗;
43 altIHk

i∗,h∗ ← 0; altIHk
i∗,v0 ← 1;

44 while continue = true;
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Algorithm 17: Inter-aircraft flight swapping
Input: instance parameters, P Rk, current solution Y k, OF k.
Output: P Rk, Y k, OF k.

1 Let b, F V 1, F V 2, dif, i′, j′, b′, h′, i∗, j∗, b∗, h∗, v0, v1, v2, v3, be auxiliary variables;
2 Let continue be a variable that gives “true” if there is benefits to change flights, or “false”, otherwise;
3 do
4 Set continue← false;
5 F V 1←W 8 + W 9 + W 10 + W 11;
6 foreach i ∈ P Rk do
7 foreach h ∈ HP do
8 if altIHk

i,h = 1 then
9 v0← Sk

i ; j ← findIndex(i, v0, ‘o’); b← findIndex(i, v0, ‘d’);
10 foreach v2 ∈ P rh do
11 if v2 ̸= i ∧ h ∈ Hi ∧ v0 ∈ Hv2 then
12 Y v0,k

j,i ← 0; Y v0,k
i,b

← 0; P rv0 ← P rv0\{i};
13 Y h,k

v1,v2 ← 0; Y h,k
v2,v3 ← 0; P rh ← P rh\{v2};

14 Y v0,k
j,v2 ← 1; Y v0,k

v2,b
← 1; P rv0 ← P rv0 ∪ {v2};

15 Y h,k
v1,i ← 1; Y h,k

i,v3 ← 1; P rh ← P rh ∪ {i};
16 GetSchedule(instance parameters, P Rk, Y k);
17 dif ← 0;
18 if si ̸= v0 ∧ i ∈ I0 ∪ Ic then dif ← dif − 1;
19 if sv2 ̸= h ∧ v2 ∈ I0 ∪ Ic then dif ← dif − 1;
20 if si ̸= h ∧ i ∈ I0 ∪ Ic then dif ← dif + 1;
21 if sv2 ̸= v0 ∧ v2 ∈ I0 ∪ Ic then dif ← dif + 1;
22 F V 2← w8.

∑
l∈I BII

l + w9.
∑

l∈I BI
l + (W 10 + w10.dif) + w11.

∑
l∈I Dl;

23 if F V 2 < F V 1 ∧ factD = true then
24 F V 1← F V 2;
25 i∗ ← v2; j∗ ← v1; b∗ ← v3; h∗ ← h;
26 i′ ← i; j′ ← j; b′ ← b; h′ ← v0;
27 continue← true;

28 Y v0,k
j,i ← 1; Y v0,k

i,b
← 1; P rv0 ← P rv0 ∪ {i};

29 Y h,k
v1,v2 ← 1; Y h,k

v2,v3 ← 1; P rh ← P rh ∪ {v2};
30 Y v0,k

j,v2 ← 0; Y v0,k
v2,b

← 0; P rv0 ← P rv0\{v2};
31 Y h,k

v1,i ← 0; Y h,k
i,v3 ← 0; P rh ← P rh\{i};

32 if continuar = true then
33 Y h′,k

j′,i′ ← 0; Y h′,k
i′,b′ ← 0; P rh′ ← P rh′\{i′};

34 Y h∗,k
j∗,i∗ ← 0; Y h∗,k

i∗,b∗ ← 0; P rh∗ ← P rh∗\{i∗};

35 Y h′,k
j′,i∗ ← 1; Y h′,k

i∗,b′ ← 1; P rh′ ← P rh′ ∪ {i∗};

36 Y h∗,k
j∗,i′ ← 1; Y h∗,k

i′,b∗ ← 1; P rh∗ ← P rh∗ ∪ {i′};
37 GetSchedule(instance parameters, P Rk, Y k);
38 dif ← 0;
39 if si′ ̸= h′ ∧ i′ ∈ I0 ∪ Ic then dif ← dif − 1;
40 if si∗ ̸= h∗ ∧ i∗ ∈ I0 ∪ Ic then dif ← dif − 1;
41 if si′ ̸= h∗ ∧ i′ ∈ I0 ∪ Ic then dif ← dif + 1;
42 if si∗ ̸= h′ ∧ i∗ ∈ I0 ∪ Ic then dif ← dif + 1;
43 OF k ← OF k + (w8.

∑
l∈I BII

l + w9.
∑

l∈I BI
l + w10.dif + w11.

∑
l∈I Dl)− (W 8 + W 9 + W 10 + W 11);

44 Update the terms W 8, W 9, W 10, W 11;
45 v0← Sk

i′ ; Sk
i′ ← Sk

i∗ ; Sk
i∗ ← v0;

46 altIHk
i∗,h′ ← 0; altIHk

i∗,h∗ ← 1;
47 altIHk

i′,h∗ ← 0; altIHk
i′,h′ ← 1;

48 while continue = true;
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Algorithm 18: Intra-aircraft flight swapping
Input: instance parameters, PRk, current solution Y k, OF k.
Output: Y k, OF k.

1 Let FV 1, FV 2, v1, v2 be auxiliary variables, and Y be an auxiliary solution;
2 foreach h ∈ HP do
3 v1← 0;
4 while v1 < |I| do
5 for i′ = 0 to |I|+1, step +1 do
6 for j′ = 0 to |I|+1, step +1 do
7 foreach h′ ∈ H do
8 Y

h′

i′,j′ ← Y h′,k
i′,j′ ;

9 FV 1←W8 + W9 + W11;
10 v2← v1;
11 i← findIndex(v1, h, ‘d’); j ← findIndex(i, h, ‘d’);
12 while 0 < j < |I| do
13 Y

h

v1,i ← 0; Y
h

i,j ← 0; Y
h

v1,j ← 1;
14 v1← j;
15 j ← findIndex(v1, h, ‘d’);
16 Y

h

v1,i ← 1; Y
h

i,j ← 1; Y
h

v1,j ← 0;
17 GetSchedule(instance parameters, PRk, Y k);
18 FV 2← w8.

∑
l∈I BII

l + w9.
∑

l∈I BI
l + w11.

∑
l∈I Dl;

19 if FV 2 < FV 1 ∧ factD = true then
20 OF k ← OF k + (FV 2− FV 1);
21 FV 1← FV 2;
22 for i∗ = 0 to |I|+1, step +1 do
23 for j∗ = 0 to |I|+1, step +1 do
24 foreach h∗ ∈ H do
25 Y h∗,k

i∗,j∗ ← Y
h∗

i∗,j∗ ;

26 Update the terms W8, W9, W11;

27 v1← findIndex(v2, h, ‘d’);
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Algorithm 19: Reduce delay types
Input: instance parameters, P Rk, Y k, OF k.
Output: DT, AT, D, BI , BII , OF k, factD, improve.

1 Let improve and factD be variables related to the feasible condition improvement of the schedule;
2 Let F V 1, F V 2 and DT i, AT i, Di, B

I
i , B

II
i , ∀ i ∈ I, be auxiliary variables;

3 Let pi ∈ P be the destination of flight i, ∀ i ∈ I;
4 Set improve← false;
5 foreach i ∈ I do
6 DT i ← 0; AT i ← 0; Di ← 0; B

I
i ← 0; B

II
i ← 0;

7 if i ∈ P Rk then
8 DT i ← DT i;
9 AT i ← AT i;

10 Let O be an ordered list of all flights i ∈ I | Di > 0 sorted in non-descending order of delay Di;
11 foreach j ∈ O do // simulates a zero delay for flight j

12 DT j ← rj ;
13 AT j ← rj + tfj ;
14 Set factD ← true;
15 foreach i ∈ I do // if necessary, delay other flights instead of flight j

16 if (i, j) ∈ P Rk ∧DT i < DT j ∧ i ̸= j then
17 if pi = pj ∧DT j −DT i < tu

j then
18 DT i ← rj + tu

j ;

19 if DT j −DT i < sb then
20 DT i ← rj + sb;

21 if AT i ̸= DT i + tf i then
22 AT i ← DT i + tf i;

23 foreach j ∈ I do // checking the feasibility
24 foreach i ∈ I do
25 if (j, i) ∈ P Rk ∧DT j ≥ DT i ∧ j ̸= i then
26 if pj = pi ∧DT j −DT i < tui then factD ← false;
27 if DT j −DT i < sb then factD ← false;
28 if AT j ̸= DT j + tfj then factD ← false;
29 foreach h ∈ H do
30 if Y h,k

i,j = 1 ∧DT j −AT i < tat then factD ← false;

31 foreach i ∈ P Rk do
32 Di ← DT i − ri;
33 if 0 < Di ≤ dmax

I ∧ i ∈ I0 ∪ Ic then B
I
i ← 1;

34 if dmax
II < Di ≤ dmax

II ∧ i ∈ I0 ∪ Ic then B
II
i ← 1;

35 if (Di > dmax
II ∧ i ∈ I0 ∪ Ic) ∨AT i > twB then factD ← false;

36 foreach j ∈ P Rk do
37 if DT j > DT i ∧ pj = pi ∧ (i ∈ I0 ∪ Ic ∧ j ∈ I1 ∪ I2) then
38 factD ← false;

39 F V 1← w8.
∑

i∈I BII
i + w9.

∑
i∈I BI

i + w11.
∑

i∈I Di;

40 F V 2← w8.
∑

i∈I B
II
i + w9.

∑
i∈I B

I
i + w11.

∑
i∈I Di;

41 if F V 2 < F V 1 ∧ factD = true then
42 foreach i ∈ P Rk do
43 DT i ← DT i, AT i ← AT i;
44 Di ← Di, BI

i ← B
I
i , BII

i ← B
II
i ;

45 improve← true;
46 else
47 foreach i ∈ I do
48 DT i ← DT i; AT i ← AT i;
49 Di ← 0, B

I
i ← 0, B

II
i ← 0;

50 Update OF k;
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APPENDIX D

Heuristic results obtained by
scenario SA from Chapter 6

As a complement to Subsection 6.4.4, Tables 44-50 summarize the heuristic results for
the remaining problem instances of the numerical experiments. These experiments were
conducted to study the impact on computational performance and solution quality of
heuristic H with regard to the changes in the weights of the objective function (Scenario
SA). The analysis of the information of these tables is similar to the analysis presented
for Table 24.

Table 44 – Result variations between scenarios SA and Real for instance I23_2.

Test description ∆Time (sec) ∆RM ∆RE ∆RD−2 ∆RD−1 ∆RD0 ∆TA1 ∆TA2 ∆HP ∆HN ∆DL2 ∆DL1 ∆nR ∆nT ∆nH ∆nDL

Test1(f1) -0.29 0 0 0 1 1 0 0 -1 0 -124 124 2 0 -1 0
Test1(f2) -0.31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Test1(f3) -0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Test1(f4) -0.37 0 0 0 0 0 0 0 0 0 152 -144 0 0 0 8
Test2(F1) -0.24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Test2(F3) -0.26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Test2(F4) -0.37 0 0 0 0 0 0 0 0 0 138 -155 0 0 0 -17
Test3

1({pre-scheduled}) 0.38 0 0 0 0 0 0 0 0 0 0 11 0 0 0 11
Test3

3(Test3
2, {normal}) 0.05 0 0 0 0 0 0 0 0 0 152 -144 0 0 0 8

Test3
4(Test3

2,F3) 0.1 0 0 0 0 0 0 0 0 0 152 -144 0 0 0 8
Test3

5(Test3
4,F2) 0.03 0 0 0 0 0 0 0 0 0 152 -144 0 0 0 8

Test3
6(Test3

5, {0}) -0.2 0 0 0 0 2 0 0 -1 0 300 -20 2 0 -1 280
Test3

7(Test3
5, {0, 1}) -0.16 0 0 0 0 2 0 0 -1 0 300 -20 2 0 -1 280

Test3
8(Test3

5, {0, 1, 2}) -0.2 0 0 0 0 2 0 0 -1 0 300 -20 2 0 -1 280
Test3

9(Test3
5,F1) -0.22 0 0 0 0 2 0 0 -1 0 300 -20 2 0 -1 280

Source: Own authorship.
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Table 45 – Result variations between scenarios SA and Real for instance I35_2.

Test description ∆Time (sec) ∆RM ∆RE ∆RD−2 ∆RD−1 ∆RD0 ∆TA1 ∆TA2 ∆HP ∆HN ∆DL2 ∆DL1 ∆nR ∆nT ∆nH ∆nDL

Test1(f1) -3.56 0 0 0 2 3 0 0 -3 0 -141 -218 5 0 -3 -359
Test1(f2) -1.18 0 0 0 0 0 0 0 -1 0 -79 -254 0 0 -1 -333
Test1(f3) -1.27 0 0 0 0 0 0 0 0 -1 -79 -287 0 0 -1 -366
Test1(f4) -3.17 0 0 0 0 0 0 0 -1 0 25 155 0 0 -1 180
Test2(F1) -1.15 0 0 0 0 0 0 0 -1 0 -79 -254 0 0 -1 -333
Test2(F3) -1.03 0 0 0 0 0 0 0 0 -1 -79 -287 0 0 -1 -366
Test2(F4) -2.52 0 0 0 0 0 0 0 -1 0 2 -371 0 0 -1 -369
Test3

1({pre-scheduled}) -1.69 0 0 0 0 0 0 0 -1 0 -79 254 0 0 -1 175
Test3

3(Test3
2, {normal}) -2.64 0 0 0 0 0 0 0 -1 0 25 155 0 0 -1 180

Test3
4(Test3

2,F3) -2.53 0 0 0 0 0 0 0 0 -1 25 -197 0 0 -1 -172
Test3

5(Test3
4,F2) -2.52 0 0 0 0 0 0 0 0 -1 25 -197 0 0 -1 -172

Test3
6(Test3

5, {0}) -1.86 0 0 0 0 3 0 0 -2 -1 408 27 3 0 -3 435
Test3

7(Test3
5, {0, 1}) -2.46 0 0 0 0 3 0 0 -2 -1 408 27 3 0 -3 435

Test3
8(Test3

5, {0, 1, 2}) -2.31 0 0 0 0 3 0 0 -2 -1 408 27 3 0 -3 435
Test3

9(Test3
5,F1) -2.23 0 0 0 0 3 0 0 -2 -1 408 27 3 0 -3 435

Source: Own authorship.

Table 46 – Result variations between scenarios SA and Real for instance I48_3.

Test description ∆Time (sec) ∆RM ∆RE ∆RD−2 ∆RD−1 ∆RD0 ∆TA1 ∆TA2 ∆TA3 ∆HP ∆HN ∆DL2 ∆DL1 ∆nR ∆nT ∆nH ∆nDL

Test1(f1) -4.42 0 0 1 3 0 0 0 0 -2 0 -205 50 4 0 -2 -155
Test1(f2) -5 0 0 0 0 0 0 0 0 0 1 -259 -230 0 0 1 -489
Test1(f3) -4.73 0 0 0 0 0 0 0 0 1 3 -349 -1101 0 0 4 -1450
Test1(f4) -5.83 0 0 0 0 0 0 0 0 0 1 155 -439 0 0 1 -284
Test2(F1) -4.82 0 0 0 0 0 0 0 0 0 1 -259 -230 0 0 1 -489
Test2(F3) -4.46 0 0 0 0 0 0 0 0 1 0 -270 -246 0 0 1 -516
Test2(F4) -6.16 0 0 0 0 0 0 0 0 0 1 47 -466 0 0 1 -419
Test3

1({pre-scheduled}) -4.25 0 0 0 0 0 0 0 0 0 1 -337 768 0 0 1 431
Test3

3(Test3
2, {normal}) -6.42 0 0 0 0 0 0 0 0 0 1 155 -439 0 0 1 -284

Test3
4(Test3

2,F3) -6.33 0 0 0 0 0 0 0 0 1 0 174 -503 0 0 1 -329
Test3

5(Test3
4,F2) -5.78 0 0 0 0 0 0 0 0 1 0 174 -503 0 0 1 -329

Test3
6(Test3

5, {0}) -6.32 0 0 0 0 2 0 0 0 1 -3 740 57 2 0 -2 797
Test3

7(Test3
5, {0, 1}) -5.9 0 0 0 0 2 0 0 0 1 -3 740 57 2 0 -2 797

Test3
8(Test3

5, {0, 1, 2}) -6.34 0 0 0 0 2 0 0 0 1 -3 740 57 2 0 -2 797
Test3

9(Test3
5,F1) -7.02 0 0 0 0 2 0 0 0 1 -3 740 57 2 0 -2 797

Source: Own authorship.

Table 47 – Result variations between scenarios SA and Real for instance I56_3.

Test description ∆Time (sec) ∆RM ∆RE ∆RD−2 ∆RD−1 ∆RD0 ∆TA1 ∆TA2 ∆TA3 ∆HP ∆HN ∆DL2 ∆DL1 ∆nR ∆nT ∆nH ∆nDL

Test1(f1) -23.27 0 0 1 1 2 -1 0 0 -2 1 -127 -335 4 -1 -1 -462
Test1(f2) -23.36 0 0 0 0 1 -1 0 0 -1 1 13 -237 1 -1 0 -224
Test1(f3) -21.92 0 0 0 0 1 -1 0 0 0 2 13 -502 1 -1 2 -489
Test1(f4) -30.66 0 0 0 0 0 0 0 0 -1 1 1,377 -106 0 0 0 1,271
Test2(F1) -22.55 0 0 0 0 0 0 0 0 -1 1 39 224 0 0 0 263
Test2(F3) -6.55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Test2(F4) 9.9 0 0 0 0 0 0 0 0 -1 1 1,097 -1,040 0 0 0 57
Test3

1({pre-scheduled}) -3.06 0 0 0 0 0 0 0 0 0 0 -86 296 0 0 0 210
Test3

3(Test3
2, {normal}) -30.48 0 0 0 0 0 0 0 0 -1 1 1,377 -106 0 0 0 1,271

Test3
4(Test3

2,F3) -29.81 0 0 0 0 0 0 0 0 -1 1 1,377 -106 0 0 0 1,271
Test3

5(Test3
4,F2) -30 0 0 0 0 0 0 0 0 -1 1 1,377 -106 0 0 0 1,271

Test3
6(Test3

5, {0}) -30.23 0 0 0 0 2 -1 0 0 -1 0 1,377 -131 2 -1 -1 1,246
Test3

7(Test3
5, {0, 1}) -30.67 0 0 0 1 1 -1 0 0 -1 0 1,044 44 2 -1 -1 1,088

Test3
8(Test3

5, {0, 1, 2}) -30.13 0 0 0 1 1 -1 0 0 -1 0 1,044 44 2 -1 -1 1,088
Test3

9(Test3
5,F1) -30.07 0 0 0 1 1 -1 0 0 -1 0 1,044 44 2 -1 -1 1,088

Source: Own authorship.
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Table 48 – Result variations between scenarios SA and Real for instance I67_3.

Test description ∆Time (sec) ∆RM ∆RE ∆RD−2 ∆RD−1 ∆RD0 ∆TA1 ∆TA2 ∆TA3 ∆HP ∆HN ∆DL2 ∆DL1 ∆nR ∆nT ∆nH ∆nDL

Test1(f1) 55.57 0 0 0 3 0 0 0 0 -2 0 -492 534 3 0 -2 42
Test1(f2) 43.64 0 0 0 0 0 0 0 0 0 0 -24 -147 0 0 0 -171
Test1(f3) 42.12 0 0 0 0 0 0 0 0 1 0 -14 -354 0 0 1 -368
Test1(f4) 0.25 0 0 0 0 0 0 0 0 0 0 1,087 -177 0 0 0 910
Test2(F1) 42.8 0 0 0 0 0 0 0 0 0 0 -24 -147 0 0 0 -171
Test2(F3) 41.94 0 0 0 0 0 0 0 0 0 0 -24 -149 0 0 0 -173
Test2(F4) 40.66 0 0 0 0 0 0 0 0 0 0 539 -757 0 0 0 -218
Test3

1({pre-scheduled}) 83.04 0 0 0 0 0 0 0 0 0 0 -220 640 0 0 0 420
Test3

3(Test3
2, {normal}) 2.98 0 0 0 0 0 0 0 0 0 0 1,087 -177 0 0 0 910

Test3
4(Test3

2,F3) -1.71 0 0 0 0 0 0 0 0 1 -1 1,105 -216 0 0 0 889
Test3

5(Test3
4,F2) -1.6 0 0 0 0 0 0 0 0 1 -1 1,105 -216 0 0 0 889

Test3
6(Test3

5, {0}) 3.45 0 0 0 0 2 0 0 0 0 -1 1,092 -201 2 0 -1 891
Test3

7(Test3
5, {0, 1}) 0.79 0 0 0 0 2 0 0 0 0 -1 1,092 -201 2 0 -1 891

Test3
8(Test3

5, {0, 1, 2}) 1.62 0 0 1 2 3 0 0 0 0 -2 748 17 6 0 -2 765
Test3

9(Test3
5,F1) -5.46 0 0 1 2 3 0 0 0 0 -2 748 17 6 0 -2 765

Source: Own authorship.

Table 49 – Result variations between scenarios SA and Real for instance I71_3.

Test description ∆Time (sec) ∆RM ∆RE ∆RD−2 ∆RD−1 ∆RD0 ∆TA1 ∆TA2 ∆TA3 ∆HP ∆HN ∆DL2 ∆DL1 ∆nR ∆nT ∆nH ∆nDL

Test1(f1) -29.31 0 0 0 2 0 0 0 0 0 -1 -44 -152 2 0 -1 -196
Test1(f2) -20.83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Test1(f3) -22.97 0 0 0 0 0 0 0 0 1 0 2 -447 0 0 1 -445
Test1(f4) -39.34 0 0 0 0 0 0 0 0 0 0 1,062 -245 0 0 0 817
Test2(F1) -20.85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Test2(F3) -20.57 0 0 0 0 0 0 0 0 1 -1 -12 -14 0 0 0 -26
Test2(F4) -8.45 0 0 0 0 0 0 0 0 0 0 503 -392 0 0 0 111
Test3

1({pre-scheduled}) -0.17 0 0 0 0 0 0 0 0 0 0 -237 854 0 0 0 617
Test3

3(Test3
2, {normal}) -39.39 0 0 0 0 0 0 0 0 0 0 1,062 -245 0 0 0 817

Test3
4(Test3

2,F3) -38.16 0 0 0 0 0 0 0 0 1 -1 1,189 -595 0 0 0 594
Test3

5(Test3
4,F2) -36.41 0 0 0 0 0 0 0 0 1 -1 1,189 -595 0 0 0 594

Test3
6(Test3

5, {0}) -37.58 0 0 0 0 0 0 0 0 1 -1 1,189 -595 0 0 0 594
Test3

7(Test3
5, {0, 1}) -37.51 0 0 0 0 0 0 0 0 1 -1 1,189 -595 0 0 0 594

Test3
8(Test3

5, {0, 1, 2}) -38.02 0 0 0 0 0 0 0 0 1 -1 1,189 -595 0 0 0 594
Test3

9(Test3
5,F1) -37.14 0 0 0 0 0 0 0 0 1 -1 1,189 -595 0 0 0 594

Source: Own authorship.

Table 50 – Result variations between scenarios SA and Real for instance I82_3.

Test description ∆Time (sec) ∆RM ∆RE ∆RD−2 ∆RD−1 ∆RD0 ∆TA1 ∆TA2 ∆TA3 ∆HP ∆HN ∆DL2 ∆DL1 ∆nR ∆nT ∆nH ∆nDL

Test1(f1) -54.57 0 0 2 6 1 0 0 0 -4 1 -1,265 -390 9 0 -3 -1,655
Test1(f2) 133.08 0 0 0 0 0 0 0 0 -1 1 257 303 0 0 0 560
Test1(f3) 108.03 0 0 0 0 0 0 0 0 0 0 55 152 0 0 0 207
Test1(f4) -60.83 0 0 0 0 0 0 0 0 -1 1 2,052 -812 0 0 0 1,240
Test2(F1) 127.44 0 0 0 0 0 0 0 0 -1 1 257 303 0 0 0 560
Test2(F3) 97.85 0 0 0 0 0 0 0 0 0 0 55 152 0 0 0 207
Test2(F4) 25.79 0 0 0 0 0 0 0 0 -1 1 1,093 -1,110 0 0 0 -17
Test3

1({pre-scheduled}) -2.34 0 0 0 0 0 0 0 0 -1 1 223 285 0 0 0 508
Test3

3(Test3
2, {normal}) -82.89 0 0 0 0 0 0 0 0 -1 1 2,052 -812 0 0 0 1,240

Test3
4(Test3

2,F3) -88.05 0 0 0 0 0 0 0 0 0 0 1,710 -526 0 0 0 1,184
Test3

5(Test3
4,F2) -84.98 0 0 0 0 0 0 0 0 0 0 1,710 -526 0 0 0 1,184

Test3
6(Test3

5, {0}) -81.3 0 0 0 0 0 0 0 0 0 0 1,710 -526 0 0 0 1,184
Test3

7(Test3
5, {0, 1}) -89.79 0 0 0 3 1 0 0 0 -1 -1 562 -88 4 0 -2 474

Test3
8(Test3

5, {0, 1, 2}) -89.4 0 0 0 3 1 0 0 0 -1 -1 562 -88 4 0 -2 474
Test3

9(Test3
5,F1) -87.54 0 0 0 3 1 0 0 0 -1 -1 562 -88 4 0 -2 474

Source: Own authorship.
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APPENDIX E

The proposed primal subproblem for
Benders decomposition

Briefly, Benders decomposition (BD) (BENDERS, 1962) is a reformulation method
dedicated to convex optimization problems, especially, when the constraint matrix is
composed of one or more independent blocks arranged in a dual angular structure and
linked by coupling variables. Basically, this approach partitions the model to be solved
into two simpler formulation types, called master problem (generally with integer varia-
bles) and subproblems (in general, with continuous variables). Iteratively, this algorithm
solves the master problem to grant a (primal) solution as values to be fixed in the sub-
problems, which in turn, provide optimality cuts (through extreme points) or feasibility
cuts (by the presence of extreme rays or directions, given by an infeasible condition) to
the master problem. Thus, while the subproblems estimate primal bounds for the original
problem, the master problem computes the dual bounds. This procedure is repeated until
the gap between the dual and primal bounds is closed. Once BD adds new constraints
as it progresses towards an optimal solution, the approach is called row generation. In
contrast, Danzig-Wolfe decomposition uses column generation.

As already mentioned, to apply BD, we thought about using the discrete-time model
from Subsection 6.2.2. The idea was to relax the formulation so that it could provide
dual bounds. The relaxation we idealize comes from the inversion of rounding done for
the parameter discretizations with a factor of 5 minutes, i.e., what is “floor” becomes
“ceil” and vice-versa. The motivation for this is given by the potential that this model
has to provide tight bounds (since times are already considered, however, as discrete),
having a much stronger linear relaxation than the other proposed models (including those
in Chapter 5). As the method described here is exact, the time has to be determined as
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continuous, thus temporal (scheduling) constraints must be added to the formulation.
Following the traditional concept of variables’ separation, the discrete-time model

(without crew workday constraints, to make it easier to solve) was left in the master
problem and the temporal constraints in a single subproblem. As aircraft routes are
interdependent (i.e., the route that one helicopter takes can affect the schedule of another,
due to overlapping restrictions about takeoffs at aerodromes and landings at maritime
units), it is not possible for us to have a subproblem for each aircraft (commonly done in
VRPs) without loss of generality.

Another habit in this decomposition is to use the dual formulation of the subproblem
to avoid the hassle of infeasibility. In our case, to make the primal formulation feasible,
we simply add a slack variable (for example, outi) to permit/indicate flight cancellations.

Even though our Benders’ approach was able to find optimal solutions in just one ite-
ration for smaller instances, CPLEX (used as the standard solver throughout the disser-
tation) was not capable of solving the resulting subproblem from larger instances within
the time limit of one hour. Because the subproblem has some interesting insights, we
thought it relevant to be presented in this dissertation as an appendix. From a solution
of the master problem, we get the assignment among flights and aircraft, and define the
following notation:

Parameters:

• Ï: subset of flights included in planning;

• Ḧ: subset of helicopters used in planning:

• ḧi: helicopter assigned to flight i;

• äi: aerodrome assigned to flight i;

• pOF MP : the sum of remaining penalty values, f2 (local-transfer of flights among
different aerodromes) and f3 (helicopter utilization), obtained in the master pro-
blem.

Decision variables:

• outi: 1, if flight i is not scheduled on the solution; 0, otherwise (except for mandatory
flights);

• Zij: 1, if flight i precedes (also not immediately) flight j from the same aerodrome
or when the maritime units of each are equal; 0, otherwise;

• DT i: exact departure time of flight i;
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And to improve the formulation, we propose for each flight i ∈ Ï:

rmin
i = max{ri, twA

äi
};

Rmax
i =

min{ri + dmax, twB
äi
− tf i,ḧi

}, ni = 0, 3, 4;

twB
äi
− tf i,ḧi

, ni = 1, 2.

Dprec
ij = Rmax

j + sj,ḧj
− tui − si,ḧi

| prij = 1 ∧ ni = 1, 2 ∧ nj = 0, 3, 4;

where parameter rmin
i is the earlier start for the take-off of flight i considering the aero-

drome opening, Rmax
i determines the later start of flight i based on the maximum allowed

delay (dmax), and Dprec
ij establishes a new maximum departure time by the time win-

dow inheritance from a non-transferred flight j to a transferred flight i, when we have
precedence priority (prij = 1). We illustrate how Dprec

ij is calculated in Figure 46.

Figure 46 – Determination of Dprec
ij .

(transferred flight 𝑖)

(non-transferred flight 𝑗)
𝑟𝑗 𝑅𝑗

𝑚𝑎𝑥 𝑠𝑗

𝑡𝑢𝑗

𝑡𝑢𝑖

𝑡𝑓𝑗

𝑡𝑓𝑖

𝐷𝑖𝑗
𝑝𝑟𝑒𝑐 𝑠𝑖

Source: Own authorship.

Using the notation defined here, as well as the parameters denoted in Chapter 6, we
state the following subproblem:

min
∑
i∈Ï:

ni=0,1,2,3

w1
i .outi +

∑
i∈Ï

w4
i .[DT i − ri.(1− outi)] + pOF MP ; (338)

s.t.

Zij + Zji = 1; ∀ i, j ∈ Ï | i > j ∧ (äi = äj ∨ ui = uj); (339)

DT i ≥ rmin
i .(1− outi); ∀ i ∈ Ï; (340)

DT i ≤ Rmax
i .(1− outi); ∀ i ∈ Ï; (341)
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DT i ≤ Dprec
ij .(1− outj) + Rmax

i .outj;

∀ i, j ∈ Ï | ni = 1, 2 ∧ nj = 0, 3, 4 ∧Dprec
ij > 0; (342)

DT j −DT i ≥ (tf i,ḧi
+ tat).(Zij − outi)

− (wdḧj
− tf i,ḧi

).(Zji − outj)−BigM.outj;

∀ i, j ∈ Ï | i ̸= j ∧ ḧi = ḧj

∧ {[rmin
j < Rmax

i + (tf i,ḧi
+ tat)] ∨ [Rmax

i + tf i,ḧi
− rmin

j > wdḧj
]}; (343)

DT j −DT i ≥ sb.(Zij − outj)−BigM.Zji;

∀ i, j ∈ Ï | i ̸= j ∧ ḧi ̸= ḧj ∧ äi = äj ∧ ui ̸= uj ∧ (rmin
j < Rmax

i + sb); (344)

DT j −DT i ≥ (si,ḧi
+ tui − sj,ḧj

).(Zij − outj)−BigM.Zji;

∀ i, j ∈ Ï | i ̸= j ∧ ui = uj ∧ ḧi ̸= ḧj

∧ [rmin
j < Rmax

i + (si,ḧi
+ tui − sj,ḧj

)]; (345)

Zji = 0; ∀ i, j ∈ Ï | i ̸= j

∧ {[ni, nj = 0, 3, 4 ∧ (äi = äj ∨ ui = uj) ∧Rmax
i < rmin

j ]

∨ [(äi = äj ∨ ui = uj) ∧ prij = 1]}; (346)

outi = 0; ∀ i ∈ Î | ni = 4; (347)

DT j ≥ (rmin
i + sb).(Zij − outj);

∀ i, j ∈ Ï | ni = 0, 3, 4 ∧ nj = 1, 2 ∧ ḧi ̸= ḧj ∧ äi = äj ∧ ui ̸= uj; (348)

Zij ∈ {0, 1}; ∀ i, j ∈ Ï | i ̸= j ∧ (äi = äj ∨ ui = uj); (349)

outi ∈ {0, 1}; ∀ i ∈ Ï; (350)

DT i ≥ 0; ∀ i ∈ Ï; (351)

The objective function (338) consists of minimizing penalties related to flight cancel-
lation (which makes the problem feasible) and the total flight delay. When outi = 1, w1

i

is computed to (338) and DT i becomes zero, according to what is observed in constraint
(341).

Constraints (339) comply with the logic of flight precedence. Unlike constraints (300)-
(302) of the continuous-time model (Subsection 6.2.1), which contain variables outi, we
kept (339) in equality and put outi in the temporal constraints (340)-(345). In this way,
Zij also sorts the canceled flights in the first positions, since in this situation, DT i = 0.
This makes the linear relaxation stronger compared to constraints (300)-(302).

The family of constraints (340)-(345) are in charge of determining the exact take-off
times, building the aircraft schedule. Constraints (340)-(342) define the bounds of DT i;
(343) preserve flight times together with turnaround times (when Zij = 1 and outi = 0)
and ensure the minimum crew workday (for Zji = 1 and outj = 0); (344) respect safety
briefing times at the aerodromes; and (345) impose the minimum dwell time at maritime
units. An improvement we found to reduce the formulation was to restrict the intervals of
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constraints (343)-(345) to situations where, in the worst case, flight time windows overlap
and the crew workload exceeds the capacity. Therefore, these constraints are placed
punctually, in really necessary situations.

Variable pre-fixing is carried out by constraints (346) and (347). Constraints (346)
cover circumstances in which there is no flight precedence, while (347) oblige mandatory
flights to be included in the present planning. Another improvement in the model is
provided by the valid inequalities (348), which strengthen the flight time windows.

Finally, (349)-(351) define the domain of our subproblem’s decision variables.
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