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RESUMO

DANIEL CAMILO FUENTES GUZMAN. Diagnóstico de Influência para Modelos de Re-
gressão Linear Censurada com Misturas de Escala Assimétrica de Distribuições Normais.
2024. 91 p. Tese (Doutorado em Estatística – Programa Interinstitucional de Pós-Graduação em
Estatística) – Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo,
São Carlos – SP, 2024.

Nesta pesquisa, conduzimos estudos de diagnóstico de influência local e global para modelos de
regressão linear com censura e misturas de escala assimétrica de distribuições normais, propostos
por Guzman, Ferreira and Zeller (2020) e denotados como SSMN-CR. Inicialmente, discutimos
métodos para gerar dados censurados, apresentando especificamente métodos para gerar dados
censurados aleatórios com censura unilateral e intervalar. Posteriormente, abordamos a exclusão
de casos e o diagnóstico de influência local com base na função Q, inspirada nas descobertas de
Zhu et al. (2001) e Zhu and Lee (2001). Para analisar a sensibilidade dos estimadores de máxima
verossimilhança dos parâmetros do modelo SSMN-CR a pequenas perturbações nos pressupostos
e/ou dados, consideramos vários esquemas de perturbação, como ponderação de casos, variáveis
explicativas, variáveis resposta e perturbações nos parâmetros de escala e assimetria. Para ilustrar
a utilidade da metodologia proposta, apresentamos a análise de um conjunto de dados reais e
três estudos de simulação.

Palavras-chave: Censura, Algoritmo EM, Diagnóstico de Influência, Modelos de Regressão Li-
near, Distribuições Assimétricas.





ABSTRACT

DANIEL CAMILO FUENTES GUZMAN. Influence Diagnostics for Linear Censored Re-
gression Models with Skew-Scale Mixtures of Normal Distributions. 2024. 91 p. Tese (Dou-
torado em Estatística – Programa Interinstitucional de Pós-Graduação em Estatística) – Instituto
de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2024.

In this research, we conducted studies on local and global influence diagnostics for Censored
Linear Regression Models with Skew Scale Mixtures of Normal Distributions (SSMN-CR),
proposed by Guzman, Ferreira and Zeller (2020). Initially, we discussed methods for generating
censored data, specifically presenting methods to generate randomly censored data with both
unilateral and interval censoring. Subsequently, we addressed case deletion and local influence
diagnostics based on the Q function, inspired by the findings of Zhu et al. (2001) and Zhu and
Lee (2001). To analyze the sensitivity of the maximum likelihood estimators of the SSMN-CR
model parameters to small perturbations in assumptions and/or data, we considered various
perturbation schemes, such as case weighting, explanatory variables, response variables, and
perturbations in scale and skewness parameters. To illustrate the usefulness of the proposed
methodology, we presented the analysis of a real dataset and three simulation studies.

Keywords: Censoring, EM Algorithm, Influence Diagnostics, Linear Regression Models,
Skewed Distributions.
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CHAPTER

1
INTRODUCTION

The analysis of linear regression models with censored data and the detection of outliers
are crucial for ensuring the robustness and accuracy of statistical inferences. Censored linear
regression models (CR), particularly those dealing with errors distributed according to families
that include asymmetry and heavy tails, are of great importance in fields such as health and
economics, where censorship and the presence of outliers are common. These models are
especially valuable in contexts where measurement limitations or the nature of the phenomena
studied result in censored data, often complicating statistical analysis.

The family of Skew Scale Mixtures of Normal (SSMN) distributions, proposed by Fer-
reira, Bolfarine and Lachos (2011), offers a flexible approach for modeling data with asymmetry
and heavy tails. Such characteristics are frequently observed in real-world data that are not
well-represented by symmetric distributions. The SSMN-CR model, developed by Guzman,
Ferreira and Zeller (2020), extended this approach by incorporating censorship into linear re-
gression and estimating parameters using the Expectation-Maximization (EM) algorithm. The
Q-function, derived from the Expectation step of the EM algorithm, forms the basis for the
influence diagnostics conducted in this thesis.

This research focuses on global and local influence diagnostics for SSMN-CR models,
following the methodology proposed by Zhu and Lee (2001). This methodological choice is
strategic, as the Q-function, already available from Guzman’s previous work, allows for an in-
depth influence analysis without the need to develop new methods. The thesis is distinguished by
integrating influence diagnostics techniques with outlier detection methods specifically adapted
for SSMN-CR models.

The work significantly advances the analysis of censored data and the robustness of
statistical models, providing effective tools for influence diagnostics and outlier detection in
SSMN-CR models. Additionally, it addresses the development of mechanisms for generating
censored data and applies these models to real and simulated datasets.
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The main objectives of this thesis are: To advance the understanding and development
of techniques for influence diagnostics and outlier detection in SSMN-CR models. To explore
methods for global and local influence diagnostics, integrating measures based on the Q-function
and perturbation techniques for sensitivity analysis. To validate the effectiveness of the developed
algorithms through simulation experiments, demonstrating their applicability in real-world
scenarios.

This work represents a significant advancement in the analysis of censored data and
the robustness of statistical models, providing precise and reliable tools for analysis in various
application areas, and contributing to the improvement of statistical practices in challenging
contexts.

1.1 Background

Regression models have become a cornerstone of statistical modeling across various
scientific disciplines. Their strength lies in their broad applicability, allowing researchers to
analyze data from diverse phenomena. The research process for regression models typically
involves two key steps.

The first step is model inference. This initial phase focuses on calibrating the model.
Researchers estimate the model’s parameters and evaluate its performance through simulations.
This ensures the model’s ability to represent the data and the underlying phenomenon accurately.

Following the initial inference, model diagnostics become crucial. This step involves
further investigation to assess the model’s sensitivity and robustness. Influence analysis, as
emphasized by Fung et al. (2002) and Zeller et al. (2010), plays a vital role here. It helps
identify observations that may disproportionately influence the model results, ensuring reliable
conclusions.

The methodology for influence diagnostics is well-established, with numerous references
demonstrating its application in both symmetric and asymmetric models (Zhu, He and Fung
(2003), Zeller et al. (2010), Zeller, Lachos and Vilca-Labra (2011), Ferreira, Lachos and Bolfarine
(2015), Massuia et al. (2015), Matos et al. (2019) and Louredo, Zeller and Ferreira (2021)).

However, defining a linear regression model involves establishing various aspects, in-
cluding the nature of variables, parameters, error terms, and their corresponding distributions.
These initial assumptions are critical for accurate analysis.

Real-world phenomena often present challenges, particularly when dealing with cen-
sored response variables. Censoring occurs when the complete response variable cannot be
observed, either due to limitations in measurement instruments or inherent characteristics of the
phenomenon under study. An example is measuring viral load in a living organism, where values
below or above a certain detection limit are not quantifiable (ZELLER et al., 2019). Censoring
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can arise for various reasons (WU, 2010), and the censored data may also exhibit extreme values,
asymmetries, and varying levels of censoring.

The development of robust statistical models for censored data has gained significant
traction in recent years. Numerous approaches have been proposed to address the complexities of
real-world data from diverse fields, including health, technology, agriculture, and social sciences,
among others, such as the works of Arellano-Valle et al. (2012) and Garay et al. (2017).

The SSMN-CR model, which has the possibility of the presence of censorship in the
response variable and errors distributed in the family of SSMN distributions, allows the adequate
modeling of phenomena that present outliers and/or asymmetries, as well as having a good
hierarchical representation, which allows for easy implementation of inference and the influence
diagnosis procedure based on Zhu and Lee’s approach. Based on this approach, there are influence
analysis studies developed for different types of models. For example, Zeller et al. (2010) for
skew-normal/independent linear mixed models, Li, Chen and Xie (2012) for heterogeneous log-
Birnbaum-Saunders regression models, Ferreira, Lachos and Garay (2020) for heteroscedastic
nonlinear regression models under skew-scale mixtures of normal distributions, Ferreira, Zeller
and Garcia (2022) for a partially linear heteroscedastic model under skew-normal distribution,
and Ferreira, Paula and Lana (2022) for partially linear models with first-order autoregressive
skew-normal errors.

The SSMN-CR model shares similarities with skew-elliptical regression models, par-
ticularly in their ability to handle censored data. Therefore, investigating influence diagnostics
for the SSMN-CR model is a natural progression. This thesis focuses on applying global and
local influence analysis approaches, based on Zhu and Lee’s methods, to the SSMN-CR model.
Influence analysis is a crucial step in data analysis, and this study aims to equip practitioners
with tools to identify potentially influential observations.

By leveraging the hierarchical structure of the SSMN-CR model, we propose diagnostic
measures derived from the Q-function calculated during the E-step of the EM-type algorithm.
This approach avoids the complexities of using the log-likelihood function directly. The proposed
methods include case-deletion diagnostics and local influence analysis. These techniques will
help researchers identify observations that may significantly impact the analysis and assess the
sensitivity of parameter estimates to data perturbations.

The results of this research are organized into four chapters.

In Chapter 2, all the basic concepts necessary to understand the thesis are defined, and
the random sampling process of the SSMN-CR models is described.

The Chapter 3, focuses on the study of influence diagnosis techniques for the SSMN-CR
model, including several simulation studies and the analysis of a real data set.

In Chapter 4, the final considerations derived from this thesis are presented, and possible
directions for future research are suggested, such as Mean Shift Outliers (MSOM) models and
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outlier testing techniques for detecting outliers in SSMN-CR models.
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CHAPTER

2
RANDOM SAMPLES WITH SSMN-CR

MODELS

This chapter defines the theoretical foundations necessary to understand the statistical
models covered in this thesis. First, the fundamental concepts are outlined, highlighting their
importance in statistical modeling and their applicability across various research contexts. The
family of SSMN distributions, which underpins the models studied, is then explored in detail.
Special attention is given to the hierarchical and stochastic representation of SSMN distributions,
allowing for flexible and adaptable modeling of different types of data.

The chapter then introduces the SSMN-CR Model, detailing its structure and parameter
estimation procedures based on the work of Guzman, Ferreira and Zeller (2020). This model
provides a robust framework for handling censored data and complex distributions, forming the
foundation for the studies conducted in this thesis.

Finally, the chapter discusses approaches to statistical influence diagnostics, laying a
solid groundwork for the subsequent chapters, which delve deeper into the analysis of censored
data and outlier detection.

2.1 Fundamental Concepts

2.1.1 Statistical censorship

Censorship is a critical concept in statistical analysis, particularly prevalent in survival
studies, reliability analysis, economics, and epidemiology. It occurs when complete informa-
tion about the timing of an event is unavailable due to limitations or restrictions in the study
design. This can happen due to factors such as loss to follow-up, study termination before event
occurrence, or events not happening within the observation period, as described by Ramos et

al. (2020). Ignoring censorship can lead to biased analyses and inaccurate conclusions about



34 Chapter 2. Random Samples With SSMN-CR Models

the phenomenon under investigation. Understanding and appropriately handling censorship is
essential for drawing valid inferences from data.

Several types of statistical censorship exist:

Right Censoring: Right censoring occurs when data is censored after a certain follow-up
time or when observations exceed a certain value. For example, in a study of patient survival times,
right censoring occurs when a patient is still alive at the end of the study period. Mathematically,
right censoring can be represented as T = min(T *,C), where T is the observed time, T * is the
actual time until the event of interest occurs, and C is the censoring time. Example: In a study
on machine failure time, if some machines are still functioning well at the end of the observation
period, those observations would be right-censored.

Left Censoring: Left censoring occurs when data is censored before a certain follow-up
time or when observations do not reach a certain value. An example would be a study on the
lifespan of a product, where products that fail before the start of the study are subject to left
censoring. Mathematically, left censoring can be represented as T = max(T *,C), where T is the
observed time, T * is the actual time until the event of interest occurs, and C is the censoring time.
Example: In a study on disease detection time, if some patients have already been diagnosed
with the disease before the start of the study, their observations would be left-censored.

Interval Censoring: Interval censoring occurs when data is censored within a specific
time or value interval. For example, in a study on injury recovery time, interval censoring may
occur when the injury heals between two scheduled measurements. Mathematically, interval
censoring can be represented as T = [L,R], where T is the observed time, L is the left endpoint
of the interval, and R is the right endpoint of the interval. Example: In a study on response time
to a medication, if patients are evaluated only at fixed time intervals and the exact response time
is not known, the observations are subject to interval censorship.

Type I Censoring: Type I censoring occurs when an experiment is terminated at a
predetermined time or after a predetermined number of events. For example, in a reliability study
of light bulbs, the experiment may be terminated after a certain number of bulbs fail, and the
remaining bulbs are right-censored. Example: In a study on the time until a computer program
crashes, if the experiment is terminated after a fixed duration, any observations beyond that
duration would be right-censored.

Type II Censoring: Type II censoring occurs when an experiment is terminated after a
predetermined number of events or failures occur. For example, in a study on the time until a
battery fails, the experiment may be terminated after a certain number of failures have occurred,
and the remaining batteries are left-censored. Example: In a study on the lifespan of animals
in a controlled environment, if the experiment is terminated after a fixed number of deaths, any
animals that have not died by that point would be left-censored.
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2.1.2 Expectation-Maximization Algorithm

The Expectation-Maximization (EM) algorithm is an iterative statistical method used
to find maximum likelihood estimates of parameters when data is incomplete or has missing
values. It is particularly useful in models with latent variables, which are unobserved variables
that influence the observed data. Proposed by Dempster (1977), EM has applications in various
fields, including pattern recognition and bioinformatics.

The EM algorithm consists of two steps:

∙ Expectation (E-step): In this step, the algorithm computes the expected value of the
complete-data log-likelihood function, conditional on the observed data and current pa-
rameter estimates. This involves calculating the conditional expectations of the missing
data. Here, the algorithm computes the conditional expectations of the latent variables Z,
given the observations Y and the current parameters of the model θ . This is done using the
likelihood function L(θ ;Y,Z), which is the joint density function of the observations and
the latent variables. Mathematically, the Expectation step is expressed as:

Q(θ |θ (t)) = E[logL(θ ;Y,Z)|Y,θ (t)],

this step computes an "expectation" of the log-likelihood function conditional on the
distribution of the latent variables, with the current parameters of the model θ (t).

∙ Maximization (M-step): In this step, the model parameters θ are updated to maximize
the expected likelihood calculated in the previous step. This is done by adjusting the
parameters to increase the joint probability of the observed data Y and the latent variables
Z. Mathematically, the Maximization step is expressed as:

θ
(t+1) = argmax

θ

Q(θ |θ (t)).

The process is repeated iteratively until convergence is achieved, i.e., until the parameter
values θ do not change significantly between consecutive iterations.

2.1.3 The SSMN-CR model

2.1.3.1 The SSMN distributions

It is important to note that there are some important differences between the classes of
SSMN and Scale Mixtures of Skew-Normal (SMSN) distributions; see, for example, Branco and
Dey (2001) and Ferreira, Bolfarine and Lachos (2011). The SSMN distributions were defined by
Ferreira, Bolfarine and Lachos (2011) through the probability density function (pdf)

fSSMN(y|µ,σ2,λ ,H) = 2Φ

(
λ
√

d
)∫ ∞

0

κ−1/2(u)√
2πσ2

exp
{
−1

2
κ
−1(u)d

}
dH(u|τ), (2.1)
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where d = (y−µ)2/σ2 is the Mahalanobis distance, useful to check the validity of the model
and to detect outliers, Φ(x|µ,σ2) is the cumulative distribution function (cdf) of the N(µ,σ2)

distribution evaluated at x, H(u|τ) is the cdf of a positive random variable U indexed by the
parameter vector τ, that controls the tails of the distributions, and κ(.) is a strictly positive
function. In this work, we will consider the Skew-Normal (SN), the Skew Student-T-Normal
(ST), the Skew-Slash (SSL) and the Skew-Contaminated Normal (SCN), i.e., when κ(u) = u−1,
whose properties have been widely discussed in Ferreira, Bolfarine and Lachos (2011). Note
that when λ = 0 the PDF (2.1) reduces to the pdf obtained assuming SMN distributions; see
Lange and Sinsheimer (1993) for more details. For a random variable with PDF as in (2.1),
we use the notation Y ∼ SSMN(µ,σ2,λ ,H). This class of distributions has a nice hierarchical
representation, given by Y |U = u∼ SN(µ,σ2u−1,λu−1/2) and U ∼H(τ), which allows an easy
implementation of inference and the influence diagnostic procedure based on Zhu and Lee’s
approach; see Zhu and Lee (2001) and Zhu et al. (2001).

2.1.3.2 The model

In this section, consider the linear regression model with the distributed errors in the
family of skew-scale mixtures of normal distributions, as follows

Yi = µi +ξi, ξi
iid∼ SSMN(0,σ2,λ ,H), i = 1, . . . ,n, (2.2)

where the response variable Yi is continuous for each individual i, ξi is a random error, µi = x⊤i β ,
with β being a p-dimensional vector of unknown regression coefficients and xi is assumed a
vector of covariates p×1 known. In addition, ins this paper, we describe the censored regression
model in the left censored scenario, that is, the observations are of the form:

Vi =

{
ci, i f ρi = 1 (i.e. Yi ≤ ci),

Yi, i f ρi = 0 (i.e. Yi > ci),
(2.3)

for some known threshold point to ci, i = 1, . . . ,n, and ρi is the censoring indicator. However, the
right censored scenario can be analyzed just by transforming the response Vi to −Vi. The model
defined in the Equations (2.2) and (2.3) is called of the SSMN-CR model. More details about
this model are provided in Guzman, Ferreira and Zeller (2020).

The log-likelihood function of the SSMN-CR model is given by

`(θ |v,ρ) =
n

∑
i=1

ρi log
[

F
(

vi−µi

σ

)]
+

n

∑
i=1

(1−ρi) log[ fSSMN(vi|θ ,H)], (2.4)

where θ = (β⊤,σ2,λ ,τ⊤)⊤, v = (v1,v2, . . . ,vn) is the observed sample of V = (V1,V2, . . . ,Vn),

ρ = (ρ1,ρ2, . . . ,ρn), and F(·) denotes the cdf of the SSMN(0,1,λ ,H) distribution. More details
on additional properties of this class of distributions can be found in the work of Ferreira,
Bolfarine and Lachos (2011).
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The SSMN-CR model can be formulated by following hierarchical representation:

Yi|Ui = ui,Ti = ti
ind∼ N

(
µi +

σλ

(ui(ui +λ 2))1/2 ti,
σ2

ui +λ 2

)
Ui

iid∼ H(τ)

Ti
iid∼ T N(0,1;(0,+∞)), i = 1, . . . ,n,

(2.5)

all independent, where T N(r,s;(a,b)) denotes the univariate normal distribution (N(r,s)), trun-
cated on the interval (a,b). It is important to point out that we exploit the hierarchical representa-
tion of the SSMN-CR model to derive diagnostic measures, constructed from the Q-function
determined in the E-step of the EM-type algorithm instead of the more complicated `(θ |v,ρ).
Thus, in this article, for performing influence diagnostics in SSMN-CR model, we use the
EM-type algorithm, specifically, the MCEM algorithm.

In the MCEM estimation procedure, let the complete data be yc = (v⊤,ρ⊤,y⊤, t⊤,u⊤),
with y = (y1, . . . ,yn)

⊤, t = (t1, . . . , tn)⊤ and u = (u1, . . . ,un)
⊤, where y, t and u are treated as

hypothetical missing data. Let θ̂
(k)

= (β̂
(k)⊤

, σ̂2
(k)
, λ̂ (k), τ̂(k)⊤)⊤ denote the estimates of θ at

the k-th iteration. Given the current estimate θ̂
(k)

at the kth iteration, we obtain the conditional
expectation of the log-likelihood function of complete data given the observed v and ρ , thus
defining the Q-function, whose structure for the model under study is given by Q(θ |θ̂

(k)
) =

∑
n
i=1 Qi(θ |θ̂

(k)
), where, excluding unimportant constants,

Qi(θ |θ̂
(k)
) = − logσ

2− 1
2σ2 [ûy2

(k)
i −2µiûy(k)i +µ

2
i û(k)i + t̂2

(k)
i −2λ t̂y(k)i

+2λ µit̂
(k)
i +λ

2(ŷ2
(k)
i −2µiŷ

(k)
i +µ

2
i )], (2.6)

where ûy(k)i = E[UiYi|vi,ρi, θ̂
(k)
], ûy2

(k)
i = E[UiY 2

i |vi,ρi, θ̂
(k)
], û(k)i = E[Ui|vi,ρi, θ̂

(k)
], t̂2

(k)
i =

E[T 2
i |vi,ρi, θ̂

(k)
], t̂y(k)i = E[TiYi|vi,ρi, θ̂

(k)
], t̂(k)i = E[Ti|vi,ρi, θ̂

(k)
], ŷ(k)i = E[Yi|vi,ρi, θ̂

(k)
] and

ŷ2
(k)
i = E[Y 2

i |vi,ρi, θ̂
(k)
].

Note that E-step of the developed EM-type algorithm is composed of two parts, one asso-
ciated with uncensored data and another for censored data. The M-step requires the maximization
of Q(θ |θ̂) with respect to θ , which leads to closed-form equations.

It is important to point out the special cases, the SN-CR, ST-CR, SSL-CR and SCN-CR
models (based on skew-normal, skew Student-t-normal, skew-slash and skew-normal contami-
nated distributions, respectively). Now, since ξi is distributed according to a asymmetric distribu-
tion, then the SSMN-CR model may be used along the same line as the skew-elliptical regression
models, in the context of censorship. Therefore, a study of analysis diagnostics in SSMN-CR
model is a natural way to follow and develop. A influence diagnostics in this model is interesting
because the SMN-CR model (linear censored regression model with scale mixtures of normal
distributions) is particular case too; see Arellano-Valle et al. (2012) and Garay et al. (2017). In
the section 3.1, we propose influence diagnostics for the SSMN-CR model.
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2.1.4 Influence Diagnostics Approaches

2.1.4.1 Global influence approach

For incomplete data problems, Zhu et al. (2001) proposed an approach based on the
Q-function, using the generalized Cook distance and the Q distance defined by, respectively,

GD[i](θ) =
(
θ̂ [i]− θ̂

)⊤{−Q̈(θ̂ |θ̂)}
(
θ̂ [i]− θ̂

)
and QD[i](θ) = 2

[
Q
(
θ̂ |θ̂
)
−Q

(
θ̂ [i]|θ̂

)]
,(2.7)

where a quantity with a subscript “[i]” means the original quantity with the i-th case deleted,

θ̂ [i] is the maximizer of the Q-function Q[i](θ |θ̂), i = 1, . . . ,n, and Q̈(θ̂ |θ̂) = ∂ 2Q(θ̂ |θ̂)
∂θ∂θ

⊤ is the

Hessian matrix evaluated at θ = θ̂ . The Hessian matrix has elements given in Subsection 3.1.1.1.
According to Louredo, Zeller and Ferreira (2021), the GD and QD measures provide the same
information, then, in this work, let’s consider the generalized Cook distance for our purposes.
The interest is to consider the influence of the ith observation on some subset of parameters, it
can be obtained quite easily as follows:

GD[i](α) = (α̂ [i]− α̂)⊤{R̈α̂α̂}(α̂ [i]− α̂), (2.8)

where R̈α̂α̂ indicates the entries of the matrix R̈ = {−Q̈(θ̂ |θ̂)} corresponding to the α = β ,σ2

or λ . Next, we describe measures of joint influence and conditional influence; see Lawrance
(1995a) and Li, Xu and Zhu (2009).

2.1.4.1.1 Joint Influence

To assess the influence of the observations in set M on the ML estimate θ̂ , the basic idea
is to compare the difference between θ̂ [M] and θ̂ . If deletion of the observations in the set M

seriously influence the estimates, more attention should be paid to the obsrvations in M. Hence,
if θ̂ [M] is far from θ̂ , then the observations in M are regarded as influential. The joint influence
of the subset M on the θ̂ can be assessed using

GD[M](θ) = (θ̂ [M]− θ̂)⊤{−Q̈(θ̂ |θ̂)}(θ̂ [M]− θ̂), (2.9)

where θ̂ [M] are the estimates of θ obtained using the data without observations in M. Note that if,
for example, M = {i, j} and GD[M] > GD[ j] the observation i is said to have an enhancing effect
relative to the observation j when θ is estimated, for i = 1, . . . ,n and i ̸= j. Otherwise, the term
reducing effect will be used. More details about these terms are given in Lawrance (1995a) and
Li, Xu and Zhu (2009).

2.1.4.1.2 Conditional Influence

Another measure of influence is the conditional influence. The generalized Cook distance
for the subset M2 after prior removal of the subset M1 from the entire dataset is defined by

GD[M2|M1](θ) = (θ̂ [M1,M2]− θ̂ [M1])
⊤{−Q̈(θ̂ [M1]|θ̂ [M1])}(θ̂ [M1,M2]− θ̂ [M1]). (2.10)
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Note that if GD[M2|M1](θ) > GD[M2](θ), the subset M2 is said to have a masking effect by the
subset M1 when θ is estimated. Otherwise, the term boosting effect will be used. See Lawrance
(1995a) and Li, Xu and Zhu (2009) for more details about these terms.

2.1.4.2 Local influence approach

The general approach developed by Zhu and Lee (2001) for local influence analysis of
statistical models, in the context of incomplete data, will be utilized to obtain the diagnostic mea-
sures for the SSMN-CR model. Let ω = (ω1, ...,ωg)

⊤ be a g-dimensional vector of perturbation
varying in an open region Ω⊆ Rg. The perturbed complete log-likelihood function is denoted
by `c(θ ,ω|yc) = log f (yc,θ ,ω), where f (yc,θ ,ω) is the probability density function for the
complete-data. We assume that there is a ω0 such that `c(θ ,ω0|yc) = `c(θ |yc) for all θ . Let
θ̂(ω) the maximum of the function Q(θ ,ω|θ̂) = E[`c(θ ,ω|yc)|y, θ̂ ]. Then, the influence graph
is defined as α(ω) = (ω⊤, fQ(ω))⊤, where fQ(ω) is the Q-displacement function defined as fol-
lows: fQ(ω) = 2

[
Q
(

θ̂ |θ̂
)
−Q

(
θ̂(ω)|θ̂

)]
. Following the approach developed by COOK, R. D.

(1986) and Zhu and Lee (2001), the normal curvature C fQ,r of α(ω) at ω0 in the direction of some

unit vector r is given by C fQ,v = −2r⊤Q̈ω0r and −Q̈ω0 = ∆
⊤
ω0

{
−∂ 2Q(θ |θ̂)

∂θ∂θ
⊤

∣∣∣
θ=θ̂

}−1

∆ω0,

where ∆ω0 =
∂ 2Q(θ ,ω|θ̂)

∂θ∂ω⊤

∣∣∣
θ=θ̂ , ω=ω0

. Since C fQ,r(θ) may assume any value, Zhu and Lee

(2001) considered the following conformal normal curvature B fQ,r(θ) =C fQ,r(θ)/tr[−2Q̈ω0],
which has an interesting property 0≤ B fQ,r(θ)≤ 1, for any unitary direction r. In addition, Zhu
and Lee (2001) showed that for all i, M(0)i = B fQ,ri, with ri be a basic perturbation vector with
ith entry 1 and zero elsewhere.

2.2 Data Generation and Censorship Mechanisms in SSMN-
CR Models

To conduct simulation studies with SSMN-CR statistical models, precise data generation
mechanisms are crucial for each distribution in the SSMN family: SN, ST, SSL, and SCN. These
mechanisms are essential for simulating data used in regression models with errors from these
distributions. This chapter outlines the procedure for generating random samples from the SSMN
family, a fundamental step for simulating data in censored linear regression models with errors
distributed according to the SSMN family (SSMN-CR).

Initially, the generation of random samples following the SSMN distribution is discussed,
covering the SN, ST, SSL, and SCN distributions. These distributions are essential for the models
studied. Subsequently, unilateral and interval censoring mechanisms are incorporated into the
data generation process.

Understanding these mechanisms is vital for simulating realistic data, as censoring often
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occurs in survival studies and data analysis when events of interest are not fully observed due to
limitations in data collection or follow-up.

Section 2.1.1 provides definitions of censorship, with a focus on unilateral (left or right)
and Interval censoring. The objective of this chapter is to offer a comprehensive understanding
of data simulation principles for subsequent statistical analyses.

Additionally, the article "Sampling with censored data: a practical guide" Ramos et al.

(2020), developed alongside this research, is highlighted for its detailed description of methods
and techniques for generating random samples under various types of censorship. This study
offers practical insights that complement the theoretical methods discussed in this thesis.

2.2.1 Data Generation In Asymmetric Distributions

In Subsection 2.1.3 the family of SSMN distributions was defined. Note that, If µ = 0
and σ2 = 1 we refer to this as a SSMN standard distribution and denote this by SSMN(λ ,H;k).

A random variable Y follows a Scale Mistures of Normal (SMN) distribution with the
location parameter µ ∈ R and a positive scale parameter σ2 if your pdf takes the form

f0 = (y; µ,σ2,τ) =
∫

∞

0
φ(y; µ,k(u)σ2)dH(u,τ), (2.11)

where H(u;τ) is the cdf of a positive random variable U indexed by the parameter vector τ and
k(.) is a strictly positive function (See Andrews and Mallows (1974)).

When λ = 0 in some member of the SSMN family, we have the corresponding SMN dis-
tribution. For the simulated data generation procedure described in this study, it will be necessary
to define the asymmetric normal distribution SN and its respective stochastic representation.

A random variable Y follows a univariate SN distribution with location parameter µ ,
scale parameter σ2 and skewness parameter λ if its pdf is given by

f (y) = 2φ(y; µ,σ2)Φ
λ (y−µ)

σ
, y ∈ R, (2.12)

where φ(x; µ,σ2) and Φ(x; µ,σ2) are the probability density function (pdf) and cumulative
distribution function (cdf), respectively, of the Normal distribution N(µ,σ2) evaluated in x. In
the case where λ = 0, the distribution SN becomes a usual Normal Distribution (Y ∼ N(µ,σ2)).
The marginal stochastic representation is given by

Y d
= µ +σ [δ | T0 |+(1−δ

2)1/2T1] (2.13)

with δ =
λ

(1+λ 2)1/2 where | T0 | stands for the absolute value of T0, T0 ∼ N(0,1) and T1 ∼

N(0,1) are independent. Here N(0,1) is the standard normal.

To generate data of SSMN distribution, we first generate the U distribution and then
the Y |U conditional distribution, as illustrated in the following proposition using the stochastic
representation of the Asymmetric Normal (SN) defined in the Equation (2.13),
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Proposição 1. Let Y ∼ SSMN(µ,σ2,λ ,H;k). So, its stochastic representation is given by

Y |U = u ∼ SN(µ,σ2k(u),λk(u)1/2) (2.14)

U ∼ H(τ)

Further details are described in the Subsection 2.1.3.

2.2.2 Censorship Mechanisms

In this work, we are interested in the situation in which the response variable is not fully
observed for all subjects i . Thus, for the i−th subject we can assume unilateral (left or right) or
interval censoring.

2.2.2.1 One-sided Censorship

Assuming right censoring, Yi is a latent variable and the observed data (Vi,ρi) take shape

Vi =

{
ci, i f ρi = 1 (i.e. Yi ≤ ci),

Yi, i f ρi = 0 (i.e. Yi > ci),
(2.15)

for some known threshold point ci, i = 1, . . . ,n. The censor indicator ρi = 1 (or ρi = 0) means
that the i−th observation is censored (or uncensored). The extensions of our results to left
censoring are immediate: just transform the answer Yi and the level of censorship ci for −Yi and
−ci.

2.2.2.2 Left Censoring

Algorithm 1 – Left Censoring
1: procedure LEFTCENSORING(y,perc)
2: Sort y in ascending order
3: n← length(y)
4: m← round(n×perc)
5: for i← 1 to m do
6: y[i]←−∞

7: end for
8: end procedure

In (1) of Appendix A is the R code implementing the mechanism for generating data
with unilateral censoring, specifically left censoring.
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2.2.2.3 Rigth Censoring

Algorithm 2 – Right Censoring
1: procedure RIGHTCENSORING(y,perc)
2: Sort y in ascending order
3: n← length(y)
4: m← round(n×perc)
5: for i← 1 to m do
6: y[n− i+1]← ∞

7: end for
8: end procedure

The Code (2) of Appendix A is the R code implementing the generation mechanism with
unilateral censoring, specifically right censoring.

2.2.2.4 Interval Censorship

In the case of Interval Censorship for some fixed threshold points ci1 and ci2, we will
have

Vi =

{
(ci1,ci2), i f ρi = 1 (i.e. ci1 ≤ Yi ≤ ci2),

Yi, i f ρi = 0 (i.e. −∞ < Yi <+∞),
(2.16)

Algorithm 3 – Interval Censoring
1: procedure INTERVALCENSORING(y,perc)
2: Sort y in ascending order
3: n← length(y)
4: m← round(n×perc)
5: for i← 1 to m do
6: y[i]←−∞

7: y[n− i+1]← ∞

8: end for
9: end procedure

The Code 3 of Appendix A is the R code implementing the mechanism for generating
data with interval censoring, for more details see Mirfarah, Naderi and Chen (2021).

2.3 Random Sampling with SSMN Distributions

To simulate SSMN-CR data we initially define values for the parameters. The number
of generated observations will be indicated by n. The covariates are simulated from a uniform
U(0,1). The errors have SSMN distribution. Regarding the family of SSMN distributions,
there exists the package Sanchez and Ferreira (2016), which provides the density, distribution
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function, quantile function, random number generator, likelihood function, direct algorithm,
and Expectation-Maximization (EM) algorithm for Maximum Likelihood estimators for a given
sample, all for regression models using Skew Scale Mixtures of Normal Distributions. In (4)
is a general algorithm illustrating the process of generating random samples from the SSMN
distributions see Appendix A.

2.3.1 Algorithm Description

2.3.1.1 Random Sampling with SN Distribution

The rsnn function generates random samples from the Skew Normal (SN) distribution,
allowing users to specify the location, scale, and shape parameters. If the optional parameter vec-
tor dp is provided, it overrides the individual parameters. Algorithm: 1. Check if the parameters
dp are provided. If yes, set the location, scale, and shape parameters accordingly. 2. Generate n

standard normal variates (u1 and u2). 3. Compute the random samples y using the SN distribution
formula. The SN distribution is commonly used to model skewed data (LACHOS; CABRAL,
2017). The function utilizes the Box-Muller transformation to generate random samples from a
standard normal distribution, which are then transformed to follow the SN distribution.

The Algorithmic (5) in the Appendix A illustrates the function in detail.

2.3.1.2 Random Sampling with ST Distribution

The rstn function generates random samples from the skew t-normal distribution. It
allows for specifying the location, scale, shape, and degrees of freedom (nu) parameters of the
distribution. Algorithm: 1. Check if the parameters dp are provided. If yes, set the location, scale,
shape, and degrees of freedom parameters accordingly. 2. Generate n gamma variates (u) with
degrees of freedom nu. 3. Compute the random samples y using the ST distribution formula.
The skew t-normal distribution is a generalization of the skew normal distribution with heavier
tails (SANTOS; LACHOS, 2021). Random samples are generated using the gamma distribution
method, with additional transformation steps to incorporate skewness and adjust the scale.

The Algorithmic (6) in the Appendix A illustrates the function in detail.

2.3.1.3 Random Sampling with SSL Distribution

The rssl function generates random samples from the skew slash distribution. It allows
for specifying the location, scale, shape, and degrees of freedom (nu) parameters of the distribu-
tion. Algorithm: 1. Check if the parameters dp are provided. If yes, set the location, scale, shape,
and degrees of freedom parameters accordingly. 2. Generate n uniform variates (v). 3. Compute
the random samples y using the SSL distribution formula. This distribution is characterized by a
symmetric shape with longer tails. Random samples are generated using the uniform distribution
method, followed by transformations to achieve the desired skewness and scale.
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The Algorithmic (7) in the Appendix A illustrates the function in detail.

2.3.1.4 Random Samples with SCN Distribution

The rscn function generates random samples from the skew normal contaminated
distribution. It allows for specifying the location, scale, shape, degrees of freedom (nu), and
contamination parameter (gama) of the distribution. Algorithm: 1. Check if the parameters dp are
provided. If yes, set the location, scale, shape, degrees of freedom, and contamination parameters
accordingly. 2. Generate n binomial variates (uu) to introduce contamination. 3. Compute the
random samples y using the SCN distribution formula. This distribution combines elements
of the skew normal and contaminated normal distributions, allowing for the modeling of data
with skewness and contamination. Random samples are generated using a binomial distribution
approach, followed by transformations to introduce skewness and adjust the scale.

The Algorithmic (8) in the Appendix A illustrates the function in detail.

2.4 Simulation Considerations for SSMN-CR Models

In this chapter, we illustrated the generation of random samples from the family of
Skew Scale Mixtures of Normal (SSMN) distributions and discussed the applicable censoring
mechanisms. To generate random samples for the SSMN-CR model, which includes right-
censoring, we performed the following steps:

1. We defined the model parameters, including regression coefficients and SSMN distribution
parameters.

2. We generated explanatory variables from standard normal distributions.

3. We constructed the design matrix with the explanatory variables.

4. We calculated the model mean based on the design matrix and regression coefficients.

5. We generated model errors from random samples of the SSMN distribution.

6. We created the response variable by adding the model mean to the model errors.

7. We introduced right-censoring by adjusting values of Y less than the specified cutoff
value to the cutoff value (and for left-censoring, we adjusted values of Y greater than the
specified cutoff value to the negative cutoff value).

This process enables the generation of data for the SSMN-CR model, considering both
the structure of the regression model and the applicable censoring mechanisms.
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2.4.1 Diagnostic Analyses through Simulation in SSMN-CR Models

The simulation of data plays a crucial role in studies for SSMN-CR statistical models,
allowing for the assessment of robustness and identification of potential weaknesses in the
proposed models. Through simulation, it is possible to investigate how SSMN-CR models
behave under different scenarios and conditions, especially regarding outlier detection, statistical
diagnostic analysis, and bootstrap studies.

In particular, simulation is fundamental for evaluating of SSMN-CR models concerning
the presence of outliers and influential observations. This involves generating simulated data
with specific characteristics, such as asymmetric distributions and heavy tails, and introducing
outliers and influential observations at different proportions and magnitudes. These studies
enable understanding how the models respond to different data patterns and identifying potential
limitations or vulnerabilities.

Bootstrap studies also benefit from data simulation, allowing for the evaluation of the
accuracy and validity of confidence intervals and estimates obtained through this resampling
technique. Through simulation, it is possible to investigate the performance of the bootstrap in
different contexts and conditions, providing valuable insights for its application in SSMN-CR
models.

In summary, data simulation is an essential tool in studies for SSMN-CR models, pro-
viding important insights into the effectiveness, and validity of the proposed models. Its use
allows for exploring different scenarios and conditions, identifying potential weaknesses, and
enhancing the understanding and interpretation of the results obtained.
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CHAPTER

3
INFLUENCE DIAGNOSTICS FOR SSMN-CR

MODELS

This chapter is organized as follows. In Section 2.1.3, the SSMN-CR model are defined
together with the Q-function from the EM-type algorithm. This function is fundamental for
diagnostic analysis proposed in Section 3.1, where we deduced the essential elements for
calculating the case-deletion measures and the local influence measures for the SSMN-CR
model. For the global influence analysis, we discussed the effects of influential observations
on parameter estimates through individual exclusion, joint exclusion and conditional exclusion.
Furthermore, for the local influence analysis, we proposed the following perturbation schemes:
case-weight, explanatory variable, response variable and perturbations in scale and skewness
parameters. In Sections 3.2 and 3.3, we present a simulation study and an application on a real
dataset of the proposed methodology for the SSMN-CR model, respectively. Conclusions and
final considerations are presented in Section 3.4.

3.1 Influence diagnostics

After the model be fitted a key step is a influence diagnostic; see Cook (1977), Cook and
Weisberg (1982), COOK, R. D. (1986), Zhu et al. (2001) and Zhu and Lee (2001), for example.
In this section, we propose the case-deletion technique and the local influence approach in order
to identify and understand the observations that may affect the analysis for the SSMN-CR model.

In the next subsections, we introduce the essential elements for calculating the case-
deletion measures and the local influence measures for the SSMN-CR model. We first consider
the case-deletion measures, then the local influence and finally the perturbation schemes used.

In Section 2.1.4, we present the description of the general methodology for the analysis
of influence diagnostics in the global and local contexts. In particular, the global influence,
joint influence and conditional influence techniques are described as well as the local influence
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approach considered in SSMN-CR model.

3.1.1 Global influence approach

In Section 2.1.4, we present the measures for performing the global influence analysis,
known as the case deletion analysis (COOK, 1977), for the context of incomplete data problems.
Note that the generalized Cook distance (GD) and the Q distance (QD) are defined in the same
manner to the usual Cook’s measures, we here use the Q-function in place of the genuine
likelihood; see Zhu et al. (2001) and Zhu and Lee (2001). According to Louredo, Zeller and
Ferreira (2021), the GD and QD measures provide the same information, then, in this work,
let’s consider the generalized Cook distance for our purposes. An observation is considered
influential if its deletion generates considerable impact on the estimates; see Cook and Weisberg
(1982). The notation GD[i] means that it is the GD measure calculated considering the exclusion
of observation i from the dataset. In this work, we consider the i-th observation to be influential
if GD[i] is larger than the cutoff value: GD+ c*× sd(GD), where GD is the vector with all the
values of GD[i], c* is a selected constant, GD and sd(GD) are the mean and standard deviation
of {GD[i] i = 1, . . . ,n}, respectively. The choice of c* is subjective; here we consider c* = 2.

Additionally, a joint global influence analysis is performed as well as a conditional global
influence analysis for the SSMN-CR models. Inspired by the works of Lawrance (1995b), Xu,
Lee and Poon (2006) and Li, Xu and Zhu (2009), we consider a more general approach of
case deletion, with M being the set of indices of the selected observations on which we want
to assess the influence. According to Lawrance (1995b), if the diagnostic analysis is combined,
considering the joint influence and the conditional influence, then it will be more effective.

3.1.1.1 The hessian matrix

The hessian matrix is an essential element in the method developed by Zhu et al. (2001)
in order to obtain the diagnostic measures. Hence, compute

∂ 2Q
(
θ |θ̂
)

∂θ∂θ
⊤

∣∣∣
θ=θ̂

=
n

∑
i=1

∂ 2Qi
(
θ |θ̂
)

∂θ∂θ
⊤

∣∣∣
θ=θ̂

,

where

∂ 2Qi(θ |θ̂)
∂β∂β

⊤

∣∣∣
θ=θ̂

= − 1

σ̂2
xi[ûi + λ̂

2]x⊤i ,
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3.1.2 Local influence approach

Alternatively to the global influence method that evaluates the influence of excluding one
or a group of observations in the estimation process of the SSMN-CR model, the local influence
approach will evaluate the sensitivity of the model under small perturbations in the model (or
data).

In Section 2.1.4, we describe this influence method, for the context of incomplete data
problems. Next, we deduce expressions of the matrices required to implement some meaningful
perturbation schemes under the SSMN-CR model.

3.1.2.1 Perturbation schemes for the SSMN-CR model

For each perturbation scheme, one has the partitioned form ∆ω0 = (∆⊤
β
,∆⊤

σ2,∆
⊤
λ
)⊤,

for ∆α = (∆⊤1α , . . . ,∆⊤gα )⊤, α = β ,σ2 or λ and ∆lα =
∂ 2Q(θ ,ω|θ̂)

∂α∂ωl

∣∣∣
θ=θ̂ , ω=ω0

, l = 1, . . . ,g,

where ∆
β
=

∂ 2Q(θ ,ω|θ̂)
∂β∂ω⊤

∣∣∣
θ=θ̂ , ω=ω0

∈Rp×g, ∆σ2 =
∂ 2Q(θ ,ω|θ̂)

∂σ2∂ω⊤
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θ=θ̂ , ω=ω0

∈R1×g, ∆λ =

∂ 2Q(θ ,ω|θ̂)
∂λ∂ω⊤

∣∣∣
θ=θ̂ , ω=ω0

∈ R1×g and g is the dimension of the perturbation vector ω . Note

that for the local influence analysis in SSMN-CR model, we consider g = n. The quantity
M(0)i = B fQ,ri proposed by Zhu and Lee (2001), described in Appendix A, allows us to compare
the curvatures among different special schemes of perturbations of SSMN-CR model. The i-th
case may be regarded as influential if {M(0)i, i = 1, . . . ,n} is larger than the cutoff value. Lee
and Xu (2004) propose to use 1/n+ c*× sd(M(0)) as a benchmark, where M(0) is the vector
with all the values of M(0)i, sd(M(0)) is the standard deviation of {M(0)i, i = 1, . . . ,n} and
here we consider c* = 2.
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(i) Case-weight perturbation

This perturbation scheme may capture departures in general directions, such as ob-
servation that can exercise high influence on the θ̂ due to its outstanding contribution of the
log-likelihood function. First, we consider an arbitrary attribution of weights for the Q-function,
given in the Equation (2.6), that results in Q(θ ,ω|θ̂) = ∑

n
i=1 ωiQi(θ |θ̂), where 0≤ ωi ≤ 1. In

this case, ω0 = 1n, where 1n is the n-vector of ones. For this perturbation scheme, we find
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xi[ûyi− µ̂iûi− λ̂ t̂i + λ̂
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2
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Note that for ωi = 0 and ω j = 1, j ̸= i, the ith observation is dropped from the estimation
of θ . Alternatively, following Leiva et al. (2007), we can consider two other sub-perturbations:
Non-censoring case perturbation: when ωi = 1 for ρi = 0 in the Equation (2.3), where only the
non-censoring observations are perturbed and Censoring case perturbation: when ωi = 1 for
ρi = 1 in the Equation (2.3), where only the censoring observations are perturbed.

(ii) Response perturbation

The response perturbation can indicate observations with large influence on their own
predicted values. In this perturbation and in (iii) Explanatory perturbation, the response and
explanatory variables are modified through additive (“a") and multiplicative (“m") perturbation
schemes. According to Castro, Galea-Rojas and Bolfarine (2007), we can interpret additive and
multiplicative disturbances as absolute and relative changes of the data, respectively. We return to
the working model by taking ω0 = 0n in the additive case and ω0 = 1n in the multiplicative case,
where 0n is the n-vector of zeros. A perturbation of the response variables V = (V1, . . . ,Vn)

⊤

is introduced by replacing Vi by Vi(ω), such that Vi(ω) =Vi +ωiSV with additive perturbation
and Vi(ω) =Viω

−1
i S−1

V with multiplicative perturbation, where SV is the standard deviation of V.
The perturbed Q-function is as in the Equation (2.6), switching Vi with Vi(ω), i.e., we can write
the perturbed model as

{
Yi(ω)≤Vi, i f ρi = 1,
Yi(ω) =Vi, i f ρi = 0,

where Yi(ω) = Yi−ωiSV with additive perturbation and Yi(ω) = YiωiSV with multiplicative
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perturbation. For these perturbation schemes, we find

∆iβ = − 1
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Syxi(ûi + λ̂
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with multiplicative perturbation.

(iii) Explanatory perturbation

Here, we investigate the influence that perturbation in the specific continuous explanatory
variable may produce on the parameter estimates. An additive perturbation of the explanatory
variable xi = (xi1, . . . ,xip)

⊤ is defined as xi(ω) = xi +ωiSrIr0, r ∈ 1, . . . , p, where Sr is the
standard deviation of the explanatory variable xr and Ir0 denotes a p×1 vector of zeros with one
in the r-th position. Furthermore, a multiplicative perturbation of the explanatory variable xi is
defined as xi(ω) = xiωiSr. In these cases, the perturbed Q-function is as in the Equation (2.6),
switching xi(ω) with xi. It follows that the matrix ∆ω0 has the following elements:
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with additive perturbation and
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with multiplicative perturbation.

(iv) Scale perturbation

To investigate the effects of deviations from the assumption with respect to the scale
parameter σ2, a perturbation in this parameter can be introduced by replacing σ2 by σ2(ωi) =

ω
−1
i σ2, for i = 1, . . . ,n, in the Equation (2.6), getting perturbed Q-function. It is assumed that the

non-perturbed model is obtained when ω0 = 1n. In this case, the matrix ∆ω0 has the following
elements:
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i−2µ̂iûyi + µ̂
2
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i−2µiŷi +µ
2
i )],

∆iλ = − 1

σ̂2
[−t̂yi + µ̂it̂i + λ̂ (ŷ2
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(v) Perturbation of the skewness parameter

To investigate the effects of deviations from the assumption with respect to the skewness
parameter λ , a perturbation in this parameter can be introduced by replacing λ by λ (ωi)=ω

−1
i λ ,

for i = 1, . . . ,n, in the Equation (2.6), getting perturbed Q-function. It is supposed that the non-
perturbed model is obtained when ω0 = 1n. In this case, the matrix ∆ω0 has the following
elements:
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In the next sections, a simulation study and an application to real data are presented in
order to illustrate the performance of the developed methodology.

3.2 Performance of the Proposed Diagnostic Measures

The performance of the local influence diagnostic measure in detecting influential obser-
vations is explored through the analysis of empirical studies. Inspired by Schumacher et al. (2018),
we generate 500 Monte Carlo samples of sizes n = 100 using a left-censored SSMN-CR model
and level of censoring 15%, with parameters set at β = (1,−1,2,−2)⊤,σ2 = 1,λ =−3,τ = 5
for the ST-CR and SSL-CR models and τ = (0.3,0.1)⊤ for the SCN-CR model; and the ex-
planatory variables xi = (1,xi1,xi2,xi3)

⊤, where xi j ∼ N(0,1) for i = 1, . . . ,n and j = 1,2,3. For
each sample, We generate an atypical point in the following way: replacing the 50th response
observation by max(y)+k×sd(y),k = 0.1,0.3,1 and 3, where max(·) and sd(·) is the maximum
and standard deviation of the variable, respectively.

The results are presented in Tables 1-4. The proportion of correct identifications increases
as the magnitude of the outlier response value increases under the GD measure, case weight,
scale, response, and asymmetry parameter perturbation in the SCN-CR model (see Table 1). Note
that in the SSL-CR model this behavior occurs under the GD measure, response and perturbation
of the asymmetry parameter (see Table 2). In the ST-CR model, we observed this pattern under
the GD measure and response perturbation (see Table 3); and only in the GD measure for the
SN-CR model (see Table 4). In general, the proportion of correct identifications in the SSMN-CR
model varies between 0.75 and 1 with exceptions under the case weight and scale perturbations
for the ST-CR model; and under the response perturbation for the ST-CR and SCN-CR models. In
the SCN-CR model, it can be seen that the proportion is around 0.8 with k = 3 under the response
perturbation. In the ST-CR model, note that in the case of weight and scale perturbations, with
k = 0.1, the proportions are around 0.7 and tend to decrease to approximately 0.2, but under the
response perturbation the behavior is reversed, as mentioned here previously. In this way, we
can conclude that the proposed diagnostic methods exhibit reasonable performance in detecting
influential observations in the SSMN-CR model.

Table 1 – Proportion of times that the observation 50 was identified as influential for each type of pertur-
bation, including GD measure, under the SCN-CR model.

k Case weight Scale Skewness Response (“m”) GD(θ)
0.10 0.84 0.84 0.77 0.08 0.95
0.50 0.84 0.84 0.80 0.12 0.96
1.00 0.85 0.85 0.84 0.22 1.00
3.00 0.86 0.86 0.86 0.83 1.00

Note that the results presented for this simulation cover only a few of the possible
scenarios. This is due to the extensive range of disturbances tested in the local analysis, as well
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Table 2 – Proportion of times that the observation 50 was identified as influential for each type of pertur-
bation, including GD measure, under the SSL-CR model.

k Case weight Scale Skewness Response (“m”) GD(θ)
0.10 0.80 0.83 0.83 0.78 0.97
0.50 0.82 0.85 0.85 0.84 0.99
1.00 0.79 0.83 0.87 0.87 1.00
3.00 0.75 0.81 0.87 0.87 1.00

Table 3 – Proportion of times that the observation 50 was identified as influential for each type of pertur-
bation, including GD measure, under the ST-CR model.

k Case weight Scale Skewness Response (“m”) GD(θ)

0.10 0.66 0.69 0.86 0.21 0.94
0.50 0.59 0.61 0.83 0.22 0.97
1.00 0.52 0.55 0.85 0.33 0.97
3.00 0.16 0.18 0.82 0.68 0.97

Table 4 – Proportion of times that the observation 50 was identified as influential for each type of pertur-
bation, including GD measure, under the SN-CR model.

k Case weight Scale Skewness Response (“m”) GD(θ)
0.10 0.84 0.84 0.85 0.86 0.98
0.50 0.83 0.83 0.84 0.85 0.99
1.00 0.81 0.81 0.84 0.84 1.00
3.00 0.84 0.85 0.87 0.87 1.00

as variations in parameter intensities, such as different sample sizes and numbers of iterations.
For example, additional anomalies could be explored by testing different values for the model
parameters in the simulation. However, this experimental part was not feasible due to the potential
overlap of computational time with the final submission date of this thesis.

3.3 Application

In this section, we present the application of diagnostic analysis for the SSMN-CR
models to the Stellar abundance dataset. This dataset was taken from the work of Santos et al.

(2002) and has been previously analyzed by Mattos, Garay and Lachos (2018) under the SMSN
family of distributions. Recently, Guzman, Ferreira and Zeller (2020) analyzed this same dataset
and pointed out that they are better suited for SSMN distributions with heavier tails than SMSN
distributions. Then, we revisited this dataset in order to carry out diagnoses of global and local
influence based on the approach of Zhu and Lee (2001) under the SSMN-CR model.

This data contains measurements for 68 solar-type stars, where the logN(Be) is the
response variable, which represents the log of the abundance of the light element beryllium (Be)
in stars scaled to the Sun’s abundance (i.e. the Sun has logN(Be) = 0.0) and the Te f f/1000 is
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the explanatory variable, which represents the effective stellar surface temperature (in kelvin).
Moreover, we have 12 left-censored data points, i.e. 12 undetected beryllium measurements,
which represents 19.35% of observations.

This illustrative application is organized as follows. First, we show the SSMN-CR
models fitted to the stellar abundance dataset. We then compare the SSMN-CR models by
examining various information selection criteria. Next, we identify influential observations in
the stellar abundance dataset using the influence diagnostics analysis described in Section 3.1.
The adjustment results, including log-likelihood, AIC, and BIC, are provided in Table 5. Both
the AIC and BIC criteria favor the ST-CR model, which is characterized by heavy tails and
asymmetric behavior. For more details on these selection criteria, see Akaike (1998), Schwarz
(1978) and Gelman, Hwang and Vehtari (2014).

Table 5 – Stellar abundances dataset: Comparison of log-likelihood maximum, AIC and BIC for fitted
various models using the stellar abundances data. Best fit indicated by (*1).

SSMN-CR models log-likelihood AIC BIC
SN-CR -18.2276 44.4553 53.3333
ST-CR -1.7802 11.5605 (*1) 20.4385 (*1)

SSL-CR -3.2474 14.4949 23.3729
SCN-CR -4.4375 16.8750 25.7531

Next, we present the results of the diagnostic analysis for the ST-CR model, which best
fits the data, and for the typical models in the context of SSMN distributions.

3.3.1 Detection of outliers

First, the censored values are imputed and then, the Mahalanobis distance di = (yi−
µi)/σ2, i= 1, . . . ,68, has been employed to detect extreme observations, using a complete dataset.
See Section 4.3 in Guzman, Ferreira and Zeller (2020) for more details about the imputation of
censored observations. According to Lange and Sinsheimer (1993) and Ferreira, Bolfarine and
Lachos (2011), we have that in the SN case, the Mahalanobis distance di ∼ χ2

1 , thus one can use
the quantile ϑ = χ2

1 (ξ ), where 0 < ξ < 1, to identify outliers. For the ST distribution, we can

use di ∼ F(ν ,1); for the SSL case Pr(di ≤ ϑ) = Pr(χ2
1 ≤ ϑ)− 2νΓ(ν +1/2)

ϑ νΓ(1/2)
Pr(χ2

2ν+1 ≤ ϑ)

and finally for the SCN model Pr(di ≤ ϑ) = νPr(χ2
1 ≤ γϑ)+(1−ν)Pr(χ2

1 ≤ ϑ).

In the Figure 1, we report the index plot of the Mahalanobis distances for SSMN-CR
models, where the cutoff lines correspond to the quantile ϑ , with ξ = 0.95. We can see from
these figures that observations 13, 23, 29 and 49 appear as possible outliers for the ST, SSL and
SCN models.

As we can see the analysis by the Q-function, given in the Equation (2.6), depends on the
Mahalanobis distance di. Note that the values of weights ûi in the Q-function depend on di and
seem be inversely proportional to di. For example, in the ST model, ûi = (τ +1)/(τ + d̂i), with
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Figure 1 – Index plots of the d̂i for the SSMN-CR fitted models.

d̂i = (yi− µ̂i)/σ̂2. In MCEM estimation procedure, the M-Step depends on ûi, which depends
on the Mahanalobis distance di. Then, this distance can be used successfully to detect anomalous
observations, candidates influential observations, in SSMN-CR models because for big values of
di, we have small values of ûi.

The terms outliers and robustness play an important role in this work. One of the
objectives underlying the estimation and diagnostic techniques considered in this work is the
development of procedures under the class of SSMN distributions that are robust in the presence
of outliers, that is, statistical methods that are less affected by extreme observations. In the Figure
2, the observations that stand out in Figure 1 show the lowest weights for the ST, SSL and SCN
models. For the skew-normal case, ui = 1,∀i, and are shown with segmented lines in Figure 2.
The results indicate that the SSMN-CR model, based on heavy-tailed distributions, can better
accommodate atypical observations by assigning smaller weights during the estimation process.

A fact to be highlighted is that even robust parameter estimation models (skewed and
heavy-tailed) can present unusual observations such as outliers or influential observations. Thus,
diagnostics methods are still important tools for detecting anomalies in the fitted model.

3.3.2 Influence diagnostic analysis

3.3.2.1 Global influence

Here, we discuss the effects of influential observations on parameter estimates through
individual exclusion, joint exclusion and conditional exclusion. First, Figure 3(a) displays the
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Figure 2 – Weights (ûi) for the SSMN-CR fitted models.

measures GD[i](θ), i = 1, . . . ,68, for the SSMN-CR fitted models. In Figure 3(a), we can observe
that observations 5 under the SN-CR model, 23 under the ST-CR model; 29 under the SCN-CR
model and 23 and 29 under the SSL-CR model were identified as potentially influential on the
parameter estimates. To assess the influence of these observations on the ML estimate of the
components of θ , i.e., β ,σ2 and λ , we analyze the GD[i](β ),GD[i](σ

2) and GD[i](λ ) plots in
Figures 3(b), 4(a) and 4(b), respectively. From Figures 4(a) and 4(b), we can see that observation
5 is influential regarding the parameters σ2 and λ (in particular). We can still see that observation
5 stands out as influential under the SCN-CR model concerning the parameter β . In Figures 4(a)
and 4(b), observation 29 is influential on the parameter estimates σ2 and λ (in particular) under
the SCN-CR model. This observation was also identified as potentially influential on parameter
estimates λ under the SSL-CR model. Moreover, under the SSL-CR model, observation 23
is influential concerning the parameters β and σ2. Finally, in Figures 3(b) and 4(b), note that
observation 23 is seen to be influential under the ST-CR model regarding the parameters β and
λ (in particular). In general, the results show that the exclusion of some observations mainly
affected the estimates of λ for the four fitted models. The effects of such influential observations
on parameter estimates is reduced when considering models with heavier tails than those of the
SN-CR model, for instance, the ST-CR model.

Since subjects 5,23 and 29 are the most influential, we will evaluate the joint influence
and the conditional influence based on these observations; see Figures 5-7.

In Figure 5, note that for the SSMN-CR model, based on heavy-tailed distributions, the
values GD[5,i] are closer to the values GD[i], i ̸= 5 and i = 1, . . . ,68, indicating that the other
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Figure 3 – Index plots for the SSMN-CR fitted models.

0 10 30 50 70

0
5
0

1
0
0

1
5
0

index

G
D

(σ
2
)

5 23

29

49

SN

0 10 30 50 70

0
2

4
6

8
1
0

index

G
D

(σ
2
)

ST

0 10 30 50 70

0
2

4
6

8
1
0

index

G
D

(σ
2
)

23 54

SSL

0 10 30 50 70

0
2

4
6

8
1
0

index

G
D

(σ
2
)

5

29

SCN

(a)

0 10 30 50 70

0
2
0
0

6
0
0

index

G
D

(λ
)

5

SN

0 10 30 50 70

0
1
0
0

2
0
0

3
0
0

index

G
D

(λ
)

23
29 49

ST

0 10 30 50 70

0
1
0
0

2
0
0

3
0
0

index

G
D

(λ
)

29

SSL

0 10 30 50 70

0
1
0
0

2
0
0

3
0
0

index

G
D

(λ
)

29

SCN

(b)

Figure 4 – Index plots of (a) GD[i](σ
2) and (b) GD[i](λ ) for the SSMN-CR fitted models.

observations suffer less from the effect of observation 5, different from what occurs in the
SN-CR model. In the SN-CR and ST-CR models, in general, the values GD[5,i] > GD[i],∀i ̸= 5.
It shows an enhancing effect by subject 5 with other subjects while both estimating θ . However,
GD[5,29] < GD[29] for the ST-CR, SSL-CR, and SCN-CR models, and only under the SCN-CR
model, we have that GD[5,23] < GD[23]. Thus, these highlighted observations, in the heavy-tailed
models, have their effect attenuated by observation 5 when estimating θ . In addition, in this
scenario, we can see that cases 23 under the ST-CR model, 23 and 29 under the SSL-CR model,
and 29 under the SCN-CR model have the highest joint Cook’s distance. The conditional Cook’s
distances are smaller than the individual Cook’s distances for most observations, except for
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Figure 5 – Stellar abundance dataset - dots, squares and triangles denote GD[i], GD[5,i] and GD[i|5], respec-
tively.

i = 23 and 29 in the SSL and ST models, respectively. Therefore, cases 23 and 29 are said to
have a masking effect by observation 5 when θ is estimated in the respective models mentioned
above.

From Figure 6, note that under the SN-CR, ST-CR and SSL-CR models, GD[23,i] >

GD[i],∀i ̸= 23, except for i = 29 in the ST and SSL models. Unlike what happens in the other
models, it is observed that in the SCN-CR model GD[23,i] < GD[i],∀i ̸= 23. Then, under the
SCN-CR model, observation 23 is said to have a reducing effect relative to observation i when
θ is estimated. Furthermore, in this context, we can see that cases 29 and 5 have the highest
joint Cook distance under the SCN-CR and SN-CR models, respectively. The Cook’s distances
show that only GD[5|23] > GD[5] under the SN-CR model, GD[i|23] > GD[i] for i = 5 and 29
under the ST and SSL models. Then, observations 5 and 29 are said to have a masking effect by
observation 23 when θ is estimated in the respective models mentioned above.

From Figure 7, the values that GD[i|29] < GD[i], ∀i ̸= 29, show that the influence of
subjects i decreases after the deletion of subject 29. It suggests that subject i has been boosted
by subject 29 while estimating the θ , except for i = 5 in the SN, ST and SSL models. Note
that for all fitted models, GD[29,i] > GD[i], ∀i ̸= 29, except for i = 23 in the ST-CR model. Thus,
observation 23 in the ST-CR model has its effect attenuated by observation 29 when estimating θ .
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Figure 6 – Stellar abundance dataset - dots, squares and triangles denote GD[i], GD[23,i] and GD[i|23],
respectively.

In addition, in this scenario, we can see that case 5 has the highest joint and conditional Cook’s
distances under the SN-CR model.

These findings have important implications for further inference; see Table 7.

3.3.2.2 Local influence

We now identify influential cases for the dataset using M(0). Figures 8-11 display
the index graphs of M(0) for the proposed perturbation schemes. Table 6, summarizes the
observations detected as influential under different perturbation schemes. This table lists the
influential points identified according to various criteria in the local analysis. Given the large
number of influential points, we focus on a subset known as the "consistent set of influential
points." This subset includes points consistently identified as influential across all analysis
methods. In this case, observations 5,23, and 29 are highlighted as consistently influential.
Below are some comments on the perturbation schemes considered in this work.

Case-weight perturbation and Scale perturbation: Figures 8 and 11(a) show that under the
SSMN-CR models, observation 5 is identified as influential under the case-weights perturbation
and scale perturbation. Furthermore, under the SCN-CR model, observation 29 (also detected as
an outlier) is identified as influential under both perturbations.
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Figure 7 – Stellar abundance dataset - dots, squares and triangles denote GD[i], GD[29,i] and GD[i|29],
respectively.

Table 6 – Influential observations under SSMN-CR models.

Perturbation schemes Fitted models
SN-CR ST-CR SSL-CR SCN-CR

Case weight perturbation 5-11-62 5 5 5-29
Response perturbation (“a") 13-23-29-49 29 29 29
Response perturbation (“m") 16 16-24 16-24 16-24
Explanatory perturbation (“a") 5-23-29 5-29 5-23-29 5-23-29
Explanatory perturbation (“m") 5-23-29 5-23-29 5-23-29 5-23-29
Scale perturbation 5-11 5 5 5-29
Perturbation of the skewness parameter 29 23-29 23-29 29

Response perturbation: We now examine the effects of perturbing the response variable
by an additive perturbation scheme. Figure 9(a) indicates some influence when the response of
item 29 is perturbed under the SSMN-CR models. Furthermore, under the SN-CR model, obser-
vation 23 (also detected as an outlier) is identified as influential. These are censored observations
and stand out for having small values in the response variable, that is, y23 = 0.25 (below the first
quartile) and y29 =−0.4 (minimum value of the respective variable). Using this perturbation, we
can examine the influence on the response variable under the multiplicative perturbation scheme.
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Figure 8 – Index plots of M(0) under case weight perturbation for the SSMN-CR fitted models.
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Figure 9 – Index plots of M(0) under response perturbation for the SSMN-CR fitted models.
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Figure 10 – Index plots of M(0) under explanatory perturbation for the SSMN-CR fitted models.
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Figure 11 – Index plots of M(0) under scale and skewness perturbations for the SSMN-CR fitted models.

In Figure 9(b), we see some influences when the responses of items 16 and 24 are perturbed
under the ST-CR, the SSL-CR and SCN-CR models, while only observation 16 is identified as
influential under the SN-CR model. Such observations are notable for having large values in the
response variable, that is, y16 = 1.36 (maximum value of the respective variable) and y24 = 1.33
(value above the third quartile).

Explanatory perturbation: Figure 10 shows that in the SSMN-CR model, cases 5,23 and
29 are identified as influential under the explanatory perturbation in additive and multiplicative
perturbation schemes. These observations stand out because they have the following values in
x: x5 = 5.641,x23 = 6.339 and x29 = 6.229. We observe that the value of x23 corresponds to the
maximum temperature, and the values x29 and x5 are, respectively, above the third quartile and
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Table 7 – Comparison of the RC% in the β̂0, β̂1, σ̂2 and λ̂ for the SSMN-CR fitted models.

SN-CR ST-CR

M RC(β̂0) RC(β̂1) RC(σ̂2) RC(λ̂ ) RC(β̂0) RC(β̂1) RC(σ̂2) RC(λ̂ )
[#5] 1.071% 0.284% 27.833% 61.9308% 1.958% 0.953% 12.133% 7.313%
[#29] 2.111% 4.345% 38.459% 26.290% 1.359% 0.8702% 7.724% 11.005%
[#23] 0.302% 2.253% 26.589% 19.166% 1.058% 0.198% 22.721% 15.307%
[#5,#29] 7.469% 7.998% 47.795% 58.662% 3.424% 1.695% 22.222% 2.765%
[#23,#29] 11.078% 11.517% 47.399% 31.694% 1.326% 0.910% 11.982% 8.794%
[#5,#23,#29] 13.158% 12.947% 56.706% 57.445% 5.096% 2.820% 23.341% 0.804%

SNC-CR SSL-CR

M RC(β̂0) RC(β̂1) RC(σ̂2) RC(λ̂ ) RC(β̂0) RC(β̂1) RC(σ̂2) RC(λ̂ )
[#5] 2.510% 0.628% 26.248% 23.522% 2.274% 1.016% 15.478% 0.996%
[#29] 2.196% 0.5401% 30.390% 36.472% 0.2304% 0.012% 6.778% 16.885%
[#23] 2.477% 1.270% 4.148% 19.262% 0.253% 0.679% 40.151% 5.691%
[#5,#29] 11.530% 5.846% 52.743% 28.986% 3.582% 1.754% 18.072% 10.703%
[#23,#29] 6.093% 2.887% 36.537% 34.137% 4.0206% 2.551% 0.403% 14.125%
[#5,#23,#29] 17.243% 9.331% 60.836% 25.875% 7.107% 3.945% 20.582% 6.285%

between the first quartile and the median of the variable of interest.

Perturbation of the skewness parameter: In Figure 11(b) it can be seen that observation
29 is identified as influential only under the SN-CR and SCN-CR models when compared with
the ST-CR and SSL-CR models. Note that under the ST-CR and SSL-CR models, observation 23
is identified as influential too.

Furthermore, note that the ML estimates are quite stable as they relate to the perturbations
of the response and explanatory variables in the four models considered, as shown in Figures
9 and 10. The table 6 displays the observations detected through the different perturbation
schemes of the applied local influence analysis. Note that observations 5,23 and 29 are detected
as potentially influential. To quantifier the impact of these observations on the ML estimates, we
readjusted the model, discarding each one. Consequently, in Table 7 we present a comparison of
the RC% (relative changes in %) in the β̂0, β̂1, σ̂2 and λ̂ for the SSMN-CR fitted model. Let

RC(α̂) =
∣∣(α̂− α̂[M])

α̂

∣∣, where α = β0,β1,σ
2 or λ and α̂[M] are the estimates of α obtained using

the data without the observations in M. We found that the observations 5,23 and 29, detected
as influential in both the global and local influence diagnotics, cause a significant change in
the parameters σ2 and λ in the four fitted models. Furthermore, removing these observations
together affects the estimates of all parameters of the models, in particular for the parameters
σ2 and/or λ in the four fitted models. Note that the biggest changes occur in the SN-CR model.
Thus, our main conclusion for this data set is that the maximum-likelihood estimates from the
ST-CR model (best fit) seem to be more robust than the estimates from the SN-CR model.

Additionally, we carry out a series of simulations based on actual data to explore the
effectiveness of the methods given in the chapter.
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3.3.3 Effectivenes of the proposed diagnostic measures

This simulation study considers the generation of 100 resamples with replacement of
n = 68 of the dataset under investigation (non-parametric bootstrap). Global and local diagnostic
measures were calculated in each sample in order to evaluate the effectiveness of the proposed
measures in the context of the SSMN-CR model. It is worth mentioning that, due to the char-
acteristics of the data set, the ST model emerged as the most appropriate. Consequently, this
simulation study was conducted for the SN-CR and ST-CR models to provide a comprehensive
comparison. After resampling, we observed that the average censoring proportion is 18.22%
and the median censoring proportion is 19.12%, indicating that, in our study, we maintained the
censoring level around the censoring proportion of the original dataset.

Following the approach described in Section 3.1, we counted the number of times the
observations highlighted in Figure 1 and Table 6 were identified as influential and the average
number of influential observations identified, for all samples. The results are presented in
Tables 8-9. In general, the capability of our proposal for detecting influential points seems to
be reasonable. Note that observations 5, 23 and 29 are detected as potentially influential, as
expected.

Table 8 – Summary of number of detected influential observations for all Bootstrap samples for each type
of perturbation, including Mahalanobis distance and GD measure, under the SN-CR and ST-CR
models. SD - Standard Deviation.

Measures SN-CR ST-CR

Mean SD Mean SD

Mahalanobis distance 2.03 1.09 4.92 1.81
Case weight perturbation 3.21 1.34 2.28 1.21
Scale perturbation 3.20 1.34 1.99 1.09
Perturbation of the skewness parameter 2.32 1.42 2.38 1.44
Explanatory perturbation (“a”) 3.03 1.25 3.39 1.20
Explanatory perturbation (“m”) 3.10 1.18 3.29 1.18
Response perturbation (“a”) 2.75 1.13 1.33 0.99
Response perturbation (“m”) 0.74 1.07 2.64 1.21
GD(θ ) 1.71 1.09 3.53 1.21

3.3.4 Influence of a single outlier

Finally, aspects of the robustness of the SSMN-CR model can be illustrated by disturbing
an observation in the data. Specifically, we compared the ST-CR model (the one that best fits the
data for this application) with the SN-CR model. Changes in ML estimates of θ can be evaluated
replacing vk, from the data, by vk(δ ) = vk +δ , for δ between 0 and 5 in increments of 0.5. In
other words, we create an outlier, first, contaminating the typical observation 4 (y4 = 1.19). After,
we contaminate observation 5, detected as influential for δ between 0 and 15 in increments of 1.
The influence of outliers on estimates can be assessed based on the mean magnitude of relative
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Table 9 – Frequency (in parentheses) of influential observations for all Bootstrap samples for each type of
perturbation, including Mahalanobis distance and GD measure, under the SN-CR and ST-CR
models.

Measures SN-CR ST-CR

Mahalanobis distance 29(121) 29(125)-13(102)-23(95)-49(101)-51(57)
Case weight perturbation 5(82)-11(11)-62(16) 5(82)
Response perturbation (“a”) 13(49)-23(43)-29(125)-49(53) 29(85)
Response perturbation (“m”) 16(42) 16(78)-24(81)
Explanatory perturbation (“a”) 5(82)-23(20)-29(68) 5(80)-29(109)
Explanatory perturbation (“m”) 5(82)-23(35)-29(86) 5(80)-23(34)-29(121)
Scale perturbation 5(82)-11(11) 5(82)
Perturbation of the skewness parameter 29(125) 23(33)-29(119)
GD(θ ) 5(63)-29(39) 23(71)-29(58)
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Figure 12 – Stellar abundances dataset - contamination of observation 4. Mean magnitude of relative error
(MMER) of EM estimates for β0,β1,σ

2 and λ .

error (MMER) defined by Guzman, Ferreira and Zeller (2020) (see Section 4.4). In Figures 12
and 13, we present the results of the MMERs for different contaminations δ . As expected, note
that, under the SN-CR model, the outlying observations have much more impact on the ML
estimates of θ . This suggests that the ST-CR model provided an appropriate way for achieving
robust statistical inference.

3.4 Conclusions

The SSMN-CR models provide a satisfactory fit to the data illustrated in Section 3.3 of
this research. When a proposed model is acceptable and available, an influential diagnostic study
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is recommended as the next step in the modeling process. In the present thesis, we deduced some
diagnostic tools suitable for use in this model with applications in several areas. In particular, we
propose the case exclusion technique and the local influence approach, under some perturbation
schemes, for the SSMN-CR model, based on the Q function, inspired by the results of Zhu and
Lee. Aspects of the robustness of the ML estimators under the SSMN-CR models were observed
through influence analysis. In other words, in the context of asymmetry, once outliers are detected,
models with heavier tails are robust alternatives to the SN-CR model. These techniques provide
the professional with valuable tools that allow the identification of potentially influential elements
and how to evaluate the real effects of disturbances on parameter estimates.
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CHAPTER

4
CONCLUDING REMARKS

In this thesis, we document advances in research related to diagnostic analysis for SSMN-
CR models. As mentioned previously, in statistical modeling, researchers typically begin by
examining the inferential aspect of the model: how it is fitted, how its parameters can be estimated,
which techniques are suitable, and the quality of the estimates, among other considerations. Once
the inferential part is established, it is customary to evaluate the sensitivity of the model: Is it
robust in its predictions, estimates, and adjustments? How does it respond to different intensities
of disturbances? How does it react to influential observations or groups of observations?.

In this context, our objective was to address common problems such as lack of fit or
inclusion of asymmetry in models based on normal distribution and increased robustness in the
presence of outliers in the estimates. We achieved this by adopting the SSMN distribution family,
which includes skewness control and heavier tails, allowing for less sensitive results even in the
presence of outliers. Furthermore, this study focused on cases where observations are partially
observed, such as when the response variable Y is censored. Therefore, the SSMN-CR model
was studied and tested under different local and global diagnostic schemes.

In Chapter 3, within the context of global influence, we evaluate the impact of observa-
tions on the estimation of parameters when they are excluded from the data. In local influence
analysis, we examine the detection of influential observations when some model assumption is
disturbed. Finally, we evaluate this impact by removing these observations and calculating the
RC measure, as presented in Table 7.

The research conducted demonstrated that the SSMN-CR models, yields a satisfactory
fit to the data from the Stellar Abundances dataset - astrodatR, as evidenced in Section 3.3 of
this study. Once a proposed model is deemed acceptable and available, conducting an influence
diagnostics study becomes a recommended next step in the modeling process.

We have derived diagnostic tools suitable for application in this model, with relevance
across various domains. Thus, it can be argued that the findings presented herein complement
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those of Guzman, Ferreira and Zeller (2020). Specifically, we introduce the case-deletion tech-
nique and the local influence approach, incorporating various perturbation schemes, for the
SSMN-CR model, utilizing the Q-function as inspired by Zhu and Lee. Through the analysis
of influence, we observed aspects of the robustness of maximum likelihood estimators under
the ST-CR, SSL-CR and SCN-CR models. Notably, in scenarios involving skewness, models
exhibiting heavier tails emerge as robust alternatives to the SN-CR model once outliers are
detected.

These techniques furnish practitioners with valuable tools for identifying potentially
influential elements and assessing the actual effects of perturbations on parameter estimates.

The objective of this work is to identify influential observations within a censoring
context. To achieve this, it is essential to include in the simulation an assessment of this capability
in the context of censoring, varying sample sizes and parameter values. The magnitude of the
imputed influence must also be analyzed and complemented, as the simulation was performed
using standard deviation.

A concern arises when censoring mechanisms are implemented in the following manner:
if a cutoff line for censoring is identified at a quantile of the sampled data, this implies that the
cutoff line originates from a random process related to the distribution of the order statistics
of the data. Consequently, the censorship distribution would be closely linked to the response
distribution, and the likelihood analysis method would need to be restructured, as the likelihood
approach assumes independent censoring.

If censoring is always based on the quantiles of the sample, the censoring distribution
will be closely related to the distribution of the order statistics of that quantile. This raises
implications for simulation processes. Specifically, if you are researching influential points and
handling outliers on the right, caution is needed to avoid inadvertently removing genuine outliers
using the cutoff line. Removing such outliers could introduce confusion and distort the simulation
results, as it might make it appear as though there is always a single outlier present, leading to
consistently skewed model outcomes.

Creating a simulated graphical scheme to expose patterns and understand how distur-
bances affect practice would be highly valuable. This approach could offer insights into different
scenarios and enhance our understanding of disturbances.

Introducing disturbances in explanatory variables is straightforward for continuous
variables, but less common for categorical variables. Exploring how to apply disturbances in
categorical variables could be an interesting area of research.

Anomalously, the ST model, which performed poorly in simulations, actually performed
best in practice for model adjustment. This discrepancy suggests the need for simulations that
can better distinguish the identification potential of models and identify any simulation errors.
More extensive exploration and testing of simulations are needed to draw reliable conclusions.
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In practice, influential observations typically indicate outliers in usual regression contexts.
However, in the models researched in this thesis, these observations do not behave as traditional
outliers, given their similarity to generalized linear models.

When dealing with influential points, the final model is usually presented both with and
without these points. This allows users to investigate how influential points impact parameter
estimates and make informed decisions.

All methods developed in this work were implemented in the R Core Team (2019)
software, and codes are available upon request.

The research described in this thesis is summarized in two publications that have been
submitted to international journals.

4.1 Future Work Perspectives

A promising area for future research involves exploring the Mean Shift Outliers Models
(MSOM) and its associated tests, as illustrated in the Subsection 4.1.1. MSOM is an extension
of the SSMN-CR model, adding an additional parameter, denoted as φ , which is used to assess
whether a specific observation can be considered an outlier. Therefore, by proposing the MSOM
Model, we are also introducing outlier tests aimed at identifying and assessing the presence
of outliers in the data modeled by SSMN-CR. These tests have the potential to significantly
enhance our ability to detect and handle outliers in statistical analyses, thus contributing to a
more comprehensive and accurate understanding of the observed data.

In concluding this thesis, it is advantageous to reflect on some insights gleaned from
years of research and development in the aforementioned studies. During the literature review,
it becomes evident that some authors emphasize a direct correlation between outlier tests and
methods grounded in case deletion see for example Li, Xu and Zhu (2009). Furthermore, several
authors propose that outlier tests can be effectively addressed through ridge and lasso-like
techniques, which involve penalization in regression models. An intriguing recent study delves
into the application of the EM algorithm to address regularization challenges in high-dimensional
mixed-effects linear models in Oliveira, Schumacher and Lachos (2023). Further exploration
may unveil the substantial potential of this work, as it encompasses the utilization of EM with
lasso regularization, potentially facilitating a more comprehensive exploration of outlier tests.

In the articles by Zhang, Liu and Wu (2016) and Pan, Liu and Song (2021), there are
studies developed on MSOU models and Outliers Tests, and they propose a very interesting idea,
which is under the assumption of sparsity in the parameter φ incorporated in the regression to
indicate whether the i-th observation is an outlier or not, having in the model more parameters
than observations. The problem of detecting outliers can be solved through a penalized Variable
Selection method, that is, they reformulate the task of detecting outliers into a high-dimensional
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variable selection structure so that we can employ currently well-developed tools such as the
method of regularization regression (Ridge and Lasso regression). These results can be extended
to the SSMN-CR models.

The study of SSMN-CR models can be broadly extended, for example, to a Bayesian
approach with reference to works such as Massuia et al. (2017).

4.1.1 The MSOM for SSMN-CR Models

In this Subsection, we briefly present the extension of SSMN-CR models to the proposed
MSOM models as a potential direction for continuing the research presented in this thesis. First,
we define the MSOM models and discuss the outlier test they enable. Then, we outline the
estimation process using the EM algorithm, which allows for the construction of the Q function.

The specification of the SSMN-CR model is presented in Section 2.1.3. The MSOM was
introduced in the work of Xie and Wei (2007), and its version for regression models under the
SSMN family of distributions was developed by Ferreira, Mattos and Balakrishnan (2016). In
this section, we present the theoretical development of the MSOM for the SSMN-CR model
used in our research.

In general, the MSOM for the SSMN-CR models is defined as:

Yi = x⊤i β +ξi, i = 1, . . . ,n, j ̸= i (4.1)

Yi = x⊤i β +φ +ξi, i = 1, . . . ,n, j = i (4.2)

ξi
iid∼ SSMN(0,σ2,λ ,H), i = 1, . . . ,n, (4.3)

where φ is an extra parameter that, if non-zero, indicates that the j-th case (observation) is a
candidate for an outlier according to Cook, Holschuh and Weisberg (1982). Yi is an observed
continuous response variable for individual i and ξi is a random error. Associated with individual
i, it is assumed a known p×1 covariate vector xi, as defined in Section 2.1.3.

Considering the assumption that the response variable is not fully observed for all
subjects. For the i-th subject and assuming left-censoring, Yi is a latent variable and the observed
data take the form (Vi,ρi), according to Section 2.1.3.

Additionally, note that we can formulate an Outlier Test considering

H0 : φ = 0 vs H1 : φ ̸= 0.

where, if H0 is rejected, the j-th observation can be selected as a possible Outlier. To evaluate
these hypotheses we can use asymptotic tests such as the likelihood ratio test, wald, score and
gradient. We will see in the Subsection 4.1.2 further details about the asymptotic tests.

Under the established conditions the log-likelihood function of the θ =(β⊤,φ ,σ2,λ ,τ⊤)⊤
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observed data is given by

`(θ |v,ρ) = `[i](θ)+ ` j(θ) (4.4)

=
n

∑
i=1, i ̸= j

`[i](θ)+ ` j(θ), (4.5)

where

`i(θ) = ρi log
[

F
(

vi−µi

σ

)]
+(1−ρi) log[ fSSMN(vi|θ ,H)], (4.6)

with {
µi = x⊤i β , i = 1, . . . ,n e i ̸= j,

µi = x⊤i β +φ , i = j,
(4.7)

due to the integrals present in equation (4.4), finding the MLE’s (Maximum Likelihood Estima-
tors) for θ by direct maximization of `(θ) becomes a difficult task. We will implement the EM
algorithm. Thus, the MSOM can be described as follows:

Yi|Ui = ui,Ti = ti
ind∼ N

(
µi +

σλ

(ui(ui +λ 2))1/2 ti,
σ2

ui +λ 2

)
Ui

iid∼ H(τ)

Ti
iid∼ T N(0,1;(0,+∞)), i = 1, . . . ,n,

(4.8)

all independent, where T N(r,s;(a,b)) denotes the univariate normal distribution (N(r,s)), trun-
cated on the interval (a,b). Defining the vectors y = (y1, . . . ,yn)

⊤, t = (t1, . . . , tn)⊤ and u =

(u1, . . . ,un)
⊤ we have that the complete data log-likelihood associated with yc =(v⊤,ρ⊤,y⊤, t⊤,u⊤).

Thus,

`c(θ |yc) = c−n logσ
2− 1

2σ2

n

∑
i=1

[uiy2
i −2µiuiyi +µ

2
i ui + t2

i

−2λ tiyi +2λ µiti +λ
2(y2

i −2µiyi +µ
2
i )],

where c is a constant that does not depend on θ . So, it follows that, after algebraic manipulations,
we have to

Q(θ |θ̂) =
n

∑
i=1

Qi(θ |θ̂) =
n

∑
i=1, i ̸= j

Qi(θ |θ̂)+Q j(θ |θ̂) (4.9)

= Q[ j](θ |θ̂)+Q j(θ |θ̂), (4.10)

where

Q(θ |θ̂) ∝ −n logσ
2− 1

2σ2

n

∑
i=1

[ûy2
i−2µiûyi +µ

2
i ûi + t̂2i−2λ t̂yi (4.11)

+2λ µit̂i +λ
2(ŷ2

i−2µiŷi +µ
2
i )]+

n

∑
i=1

E[logh(ui|τ)].
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4.1.1.1 EM algorithm for MSOM

The specifications of the EM algorithm for MSOM are:

Step E: Giving θ = θ̂
(k)

in the k-th iteration. we need to calculate ûy2
i, ûyi, ûi, t̂2i, t̂yi, t̂i, ŷi and

ŷ2
i , i = 1, . . . ,n, with{

µi = x⊤i β , i = 1, . . . ,n and i ̸= j,

µi = x⊤i β +φ , i = j,
(4.12)

Step M: Update θ̂
(k+1)

by maximizing Q(θ |θ̂
(k)
) over θ , which leads to the following closed form

expressions

β̂
(k+1)

= [X⊤D(û(k)+ λ̂
2(k)In)X]−1X⊤[ûy(k)− λ̂

(k)̂t(k)+ λ̂
2(k)ŷ(k)]− φ̂

(k)(1+ û(k)j )X j,

φ̂
(k+1) =

ûy(k)i − λ̂ (k)̂t(k)j + λ̂ 2(k)ŷ(k)j

1+ û j
−x⊤j β̂

(k)

λ̂
(k+1) =

∑
n
i=1[t̂y

(k)
i − µ̂

(k+1)
i t̂(k)i ]

∑
n
i=1[ŷ2

(k)
i −2µ̂

(k+1)
i ŷ(k)i + µ̂

2(k+1)
i ]

and

σ̂2
(k+1)

=
1

2n

n

∑
i=1

[ûy(k)i −2µ̂
(k+1)
i ûy(k)i + µ̂

2(k+1)
i û(k)i + t̂2

(k)
i −2λ̂

(k+1)t̂y(k)i

+2λ̂
(k+1)

µ̂
(k+1)
i t̂(k)i + λ̂

2(k+1)(ŷ2
(k)
i −2µ̂

(k+1)
i ŷ(k)i + µ̂

2(k+1)
i )].

the expressions for λ̂ (k+1) and σ̂2
(k+1)

are the same as in the article Guzman, Ferreira and
Zeller (2020), where the parameter τ associated with the mixture variable U is known; see,
for instance, Osorio, Paula and Galea (2007) and Zeller, Lachos and Vilca-Labra (2011).
In this case, the profile likelihood and the Schwarz information criterion can be used for
determining the optimum value of τ.

The iterations are repeated until a suitable convergence rule is satisfied. For example, the
following criterion can be used: ||θ̂

(k+1)
− θ̂

(k)
||< 10−4.

4.1.2 Asymptotic Tests

The hypotheses will be evaluated using the Likelihood Ratio Test and The Gradient Test.

4.1.2.1 Likelihood Ratio Test (LRT)

The statistic for this test defined in Neyman and Pearson (1928) is given by

MSLR = 2[`(θ̂)− `(θ̃)],
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where the log-likelihood function `(θ) is defined in 4.4, θ̂ and θ̃ are the MLE’s (Maximum
Likelihood Estimators) on the restricted (Under H0) and unrestricted (Under H1) models, respec-
tively.

4.1.2.2 Gradient Test (GT)

The statistic for this test defined in Terrell (2002), is given by

MSG = S⊤(θ̃)(θ̂ − θ̃),

where S(θ) is the score function.

4.1.3 Considerations

The MSOM in this section are being implemented and tested through simulations.
However, this research is still ongoing and has not been completed due to the time constraints of
finishing the doctorate and the extensive computational time required for these types of studies,
which necessitate extensive simulations and experiments. The theoretical development was
included in this work to illustrate that our research remains current and active.

For the Asymptotic Test we selected this both statistics (LRT and GT) for the ease of
computing they offer. Furthermore, we have closed expressions for the Maximum Likelihood
Estimators from the EM algorithm under both the restricted and unrestricted models for most
parameters of interest. So, calculating the likelihood region statistic is not complicated when
compared to the Wald and Score statistics which depend on Fisher’s information matrix available
in the work of Guzman, Ferreira and Zeller (2020).

Each of these statistics possesses an asymptotic distribution, specifically the chi-square
(χ2) distribution, under the null hypothesis (H0). In practical terms, this means that as the
sample size increases indefinitely, the distribution of these statistics converges to the chi-square
distribution. Consequently, we can assess the significance of our findings by comparing the
observed values of these statistics to critical values from the chi-square distribution.

To formally test the null hypothesis (H0), we reject it at a significance level denoted by
α if the computed values of the statistics fall below the corresponding critical values from the
chi-square distribution. These critical values are determined by the degree of freedom associated
with each statistic and the chosen significance level α . Specifically, if the computed statistic
value is smaller than the corresponding quantile of the chi-square distribution at a level of 1−α ,
we reject the null hypothesis, indicating that there is sufficient evidence to conclude that the
observed data deviates significantly from what would be expected under the null hypothesis.
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APPENDIX

A
ALGORITHMS AND CODES

Algorithm 4 – Data Generation Algorithm
1: procedure GENERATESAMPLES(n, location, scale, shape, nu, gamma)
2: Initialize parameters (location, scale, shape, nu, gamma) if provided; otherwise, use

default values.
3: Generate n random numbers u from a uniform distribution.
4: Perform transformations on u to obtain ku, shape1, and scale1 according to the distribu-

tion’s characteristics.
5: Generate random samples y using the transformed parameters and additional random

numbers generated from a standard normal distribution.
6: return the generated random samples y.
7: end procedure
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Algorithm 5 – RSSN: Algorithm for Generating Skew Normal Distributed Random Variables
1: procedure RSSN(n, location,scale,shape,d p)
2: Input: n - number of random variables to generate
3: location - location parameter of the Skew-Normal distribution
4: scale - scale parameter of the Skew-Normal distribution
5: shape - shape parameter of the Skew-Normal distribution
6: d p - optional parameter vector specifying location, scale, and shape
7: Output: Vector of n random variables from the Skew-Normal distribution
8: if d p is not NULL then
9: if shape is not missing then

10: Stop: You cannot set both component parameters and d p
11: end if
12: location← d p[1]
13: scale← d p[2]
14: shape← d p[3]
15: end if
16: if scale≤ 0 then
17: Stop: Parameter scale must be positive
18: end if
19: δ ← shape√

1+shape2

20: for i = 1 to n do
21: Generate standard normal random variables u1 and u2
22: yi← location+

√
scale× (δ ×|u1|+

√
1−δ 2×u2)

23: end for
24: return Vector y containing the generated random variables
25: end procedure
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Algorithm 6 – RSTN: Algorithm for Generating Skew Student-t Distributed Random Variables
1: procedure RSTN(n, location,scale,shape,nu,d p). Generate n skew Student-t distributed

random variables
2: if !is.null(d p) then
3: if !missing(shape) then
4: stop("You cannot set both component parameters and d p")
5: end if
6: location← d p[1]
7: scale← d p[2]
8: shape← d p[3]
9: nu← d p[4]

10: end if
11: if nu≤ 0 then
12: stop("Parameter nu must be positive")
13: end if
14: if scale≤ 0 then
15: stop("Parameter scale must be positive")
16: end if
17: if nu < 1 then
18: warning("Nu < 1 can generate values tending to infinite", call. = FALSE)
19: end if
20: u← rgamma(n, nu

2 ,
nu
2 )

21: ku← 1
u

22: shape1← shape×
√

ku
23: scale1← scale× ku
24: δ ← shape1√

1+shape12

25: u1← rnorm(n)
26: u2← rnorm(n)
27: y← location+

√
scale1× (δ ×|u1|+

√
1−δ 2×u2)

28: return(y)
29: end procedure
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Algorithm 7 – RSSL: Algorithm for Generating Skew Slash Distributed Random Variables
1: procedure RSSL(n, location,scale,shape,nu,d p) . Generate n scaled stable distributed

random variables
2: if !is.null(d p) then
3: if !missing(shape) then
4: stop("You cannot set both component parameters and d p")
5: end if
6: location← d p[1]
7: scale← d p[2]
8: shape← d p[3]
9: nu← d p[4]

10: end if
11: if nu≤ 0 then
12: stop("Parameter nu must be positive")
13: end if
14: if scale < 0 then
15: stop("Parameter scale must be positive")
16: end if
17: v← runif(n,0,1)
18: u← v1/nu

19: ku← 1
u

20: shape1← shape×
√

ku
21: scale1← scale× ku
22: δ ← shape1√

1+shape12

23: u1← rnorm(n)
24: u2← rnorm(n)
25: y← location+

√
scale1× (δ ×|u1|+

√
1−δ 2×u2)

26: return(y)
27: end procedure
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Algorithm 8 – RSCN: Algorithm for Generating Skew Contaminated Normal Distributed
Random Variables

1: procedure RSCN(n, location,scale,shape,nu,gama,d p) . Generate n scaled compound
normal distributed random variables

2: if !is.null(d p) then
3: if !missing(shape) then
4: stop("You cannot set both component parameters and d p")
5: end if
6: location← d p[1]
7: scale← d p[2]
8: shape← d p[3]
9: nu← d p[4]

10: gama← d p[5]
11: end if
12: if nu≤ 0 or nu≥ 1 then
13: stop("Parameter nu must be between 0 and 1.0")
14: end if
15: if gama≤ 0 or gama≥ 1 then
16: stop("Parameter gama must be between 0 and 1.0")
17: end if
18: if scale≤ 0 then
19: stop("Parameter scale must be positive")
20: end if
21: uu← rbinom(n,1,nu)
22: u← gama×uu+(1−uu)
23: ku← 1

u
24: shape1← shape×

√
ku

25: scale1← scale× ku
26: δ ← shape1√

1+shape12

27: u1← rnorm(n)
28: u2← rnorm(n)
29: y← location+

√
scale1× (δ ×|u1|+

√
1−δ 2×u2)

30: return(y)
31: end procedure

Source code 1 – R Code-Left Censorship Generator

1: ni <- n # number of observations

2: ci <- perc # censoring percentage

3:

4: # Introducing left censoring

5: nc = floor (ni*ci) # number of censored observations

6: ind_ censored = sort( sample (1:ni , nc , replace = FALSE)) #

indices of censored observations

7: u = runif (nc) # random numbers
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8: c1 = mapply ( function (ic , i) max(c(y[ic] - u[i], y[ic]+u[i]-1)),

ind_censored , 1: length (ind_ censored )) # thresholds for left

censoring

9: for(i in 1: length (ind_ censored )){

10: y[ind_ censored [i]] = c1[i] # replacing censored observations

with thresholds

11: }

12:

13: phi <- as. numeric (1: length (y) %in% ind_ censored ) # creating

indicator variable for censored observations

Source code 2 – R Code-Right Censorship Generator

1: beta0= matrix (c(1,-1,2,-2)) # Define the coefficients for the

regression model

2:

3: sigma2 =1 # Set the variance of the error term

4:

5: # Set parameters for the distribution of the error term

6: lambda =-3

7: nu=5

8:

9: n=100 # Define the sample size

10:

11: # Generate random values for the predictor variables

12: x1=rnorm(n ,0 ,1)

13: x2=rnorm(n ,0 ,1)

14: x3=rnorm(n ,0 ,1)

15:

16: # Create the design matrix X

17: X= matrix (1,n ,4)

18: X[ ,2]= x1

19: X[ ,3]= x2

20: X[ ,4]= x3

21:

22: mu=X %*% beta0 # Calculate the mean values using the regression

coefficients

23:

24: # Generate the error term following a skew -t normal

distribution

25: erro=rstn(n, location =0, scale=sigma2 , shape=lambda , nu=nu)

26:
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27: # Generate the response variable y as the sum of the mean

values and error term

28: y=mu+erro

29:

30: # Define the level of censorship

31: perc <- 0.2

32:

33: # Determine the number of censored observations

34: ni <-n

35: ci <-perc

36: nc = floor(ni*ci)

37:

38: # Sample the indices of censored observations

39: ind_censored = sort( sample (1:ni , nc , replace = F))

40:

41: # Generate random values for censoring

42: u = runif(nc)

43:

44: # Apply left censoring mechanism

45: c1=-Inf

46: c2 = mapply ( function (ic , i) min(c(y[ic] + u[i], y[ic]-u[i]+1)),

ind_censored , 1: length ( ind_censored ))

47: for(i in 1: length ( ind_censored )){

48: y[ ind_censored [i]]= c2[i]

49: }

50:

51: cutof=c2 # Store the censoring cutoff values

52:

53: # Create an indicator variable for censored observations

54: aux1=rep (0,n)

55: aux1[ ind_censored ]=1

56: cc=aux1

57:

58: y # Display the resulting response variable y

Source code 3 – R Code-Interval Censorship Generator

1: Setting the seed for reproducibility

2: set.seed (2024)

3:

4: Parameters

5: beta0 <- matrix (c(1, -1, 2, -2))
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6: sigma2 <- 1

7: lambda <- -3

8: nu <- 5

9: n <- 10

10:

11: Generating covariates

12: x1 <- rnorm(n, 0, 1)

13: x2 <- rnorm(n, 0, 1)

14: x3 <- rnorm(n, 0, 1)

15: X <- matrix (1, n, 4)

16: X[, 2] <- x1

17: X[, 3] <- x2

18: X[, 4] <- x3

19:

20: Calculating the mean

21: mu <- X %*% beta0

22:

23: Generating errors following a skew t- normal distribution

24: erro <- rstn(n, location = 0, scale = sigma2 , shape = lambda ,

nu = nu)

25:

26: Generating the response variable

27: y <- mu + erro

28:

29: Applying interval censoring

30: perc <- 0.2 # Censoring level

31: ni <- n

32: ci <- perc

33:

34: Determining the number of censored observations

35: nc <- floor(ni * ci)

36:

37: Selecting random indices for censoring

38: ind_ censored <- sort( sample (1:ni , nc , replace = FALSE))

39:

40: Generating random thresholds for censoring

41: u <- runif(nc)

42: c1 <- mapply ( function (ic , i) max(c(y[ic] - u[i], y[ic] + u[i] -

1)), ind_censored , 1: length (ind_ censored ))

43: c2 <- mapply ( function (ic , i) min(c(y[ic] + u[i], y[ic] - u[i] +

1)), ind_censored , 1: length (ind_ censored ))

44:
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45: Applying censoring

46: for (i in 1: length (ind_ censored )) {

47: y[ind_ censored [i]] <- (c1[i] + c2[i]) / 2

48: }

49:

50: Displaying the censored data

51: y
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