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Graduação em Matemática da Universidade
Federal de São Carlos como parte dos requi-
sitos para a obtenção do Tı́tulo de Doutor em
Matemática.
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“Le savant n’étudie pas la nature parce que cela est utile; il l’étudie parce qu’il y prend plaisir et il

y prend plaisir parce qu’elle est belle. Si la nature n’était pas belle, elle ne vaudrait pas la peine

d’être connue, la vie ne vaudrait pas la peine d’être vécue. Je ne parle pas ici, bien entendu, de cette

beauté qui frappe les sens, de la beauté des qualités et des apparences; non que j’en fasse fi, loin de

là, mais elle n’a rien à faire avec la science; je veux parler de cette beauté plus intime qui vient de

l’ordre harmonieux des parties, et qu’une intelligence pure peut saisir.”

Henri Poincaré, in Science et Méthode
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É por esse motivo que esse trabalho é dedicado à minha famı́lia, principalmente, à minha mãe
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Resumo

Nesta tese, apresentamos novos resultados sobre a resolubilidade da equação A∗(x,D) f = µ para

f ∈ Lp, dada uma medida complexa µ , associada a um operador diferencial linear elı́ptico A(x,D) de

ordem m com coeficientes complexos suaves. Nosso método se baseia no controle da energia−(m, p)

de µ oferecendo condições suficientes para a existência de soluções quando 1 ⩽ p < ∞. Um estudo

particular sobre resolubilidade global em espaços de Lebesgue da equação para equação A∗(D) f = µ ,

no qual A(D) é um operador diferencial homogêneo com coeficientes constantes também é apresen-

tado. Obtemos também condições suficientes no caso limite p = ∞ usando novas estimativas L1

(globais e locais) em medidas para operadores elı́pticos e cancelantes, que são de particular interesse.

Palavras-chave: Campos vetoriais de medida-divergência, resolubilidade em espaços de Lebesgue,

estimativas L1, equações elı́pticas, operadores cancelantes.
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Abstract

In this thesis, we present new results on the solvability of the equation A∗(x,D) f = µ for f ∈ Lp,

with complex measure data µ , associated to an elliptic linear differential operator A(x,D) of order

m with variable complex coefficients. Our method is based on (m, p)−energy control of µ giving

sufficient conditions for solutions when 1 ⩽ p < ∞. A particular study is presented in the global set-

ting of Lebesgue solvability for the equation A∗(D) f = µ , where A(D) is a homogeneous differential

operator with constant coefficients. We also obtain sufficient conditions in the limiting case p = ∞

using new L1 (global and local) estimates on measures for elliptic and canceling operators, which are

interesting on their own.

Keywords: Divergence-measure vector fields, Lebesgue solvability, L1 estimates, elliptic equations,

canceling operators.
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Introduction

This thesis is comprised by the results obtained by the author and his collaborators during his

PhD. These results are collected in three articles:

• BILIATTO, V.; PICON, T. A note on Lebesgue Solvability of Elliptic Homogeneous Linear
Equations with Measure Data. J. Geom. Anal., v. 34, n. 1, 22, 2024;

• BILIATTO, V.; MOONENS, L.; PICON, T. Hausdorff dimension of removable sets for el-
liptic and canceling homogeneous differential operators in the class of bounded functions.

Submitted, https://doi.org/10.48550/arXiv.2312.02560;

• BILIATTO, V.; PICON, T. Sufficient Conditions for Local Lebesgue Solvability of Cancel-
ing and Elliptic Linear Differential Equations with Measure Data. Submitted,

https://dx.doi.org/10.2139/ssrn.4710804.

The contents of these papers are connected by a common thread: the study of sufficient conditions

on a (vector-valued) complex Borel measure µ in order to obtain a function f ∈ Lp, for 1 ⩽ p ⩽ ∞,

which solves the equation

A∗(x,D) f = µ

in distributional sense. Here, A∗(·,D) is the formal adjoint operator associated to a linear differential

operator of order m on Ω, N ⩾ 2 and 1 ⩽ m < N, from a finite dimensional complex vector space E

to a finite dimensional complex vector space F , given by

A(x,D) = ∑
|α|⩽m

aα(x)∂ α ,

where aα ∈C∞(Ω,L (E,F)) are smooth complex coefficients.

This research was motivated by the article Characterizations of the Existence and Removable

Singularities of Divergence-measure Vector Fields [38], due to N. Phuc and M. Torres, previously

studied by the author in his masters dissertation. In that work, they obtained characterizations for the

existence of Lp solutions to the equation

div f⃗ = ν .

A natural question that arose from this study was wondering if it would be possible to expand their

results to a more general class of differential operators that includes the gradient A(D) = ∇, whose

formal adjoint is the divergence A∗(D) = div.

1



2 Introduction

The results in [6] deal with a first, simpler case, where A(·,D) is homogeneous and has constant

coefficients, i.e.

A(D) = ∑
|α|=m

aα∂
α ,

as is the case of the gradient. The main theorems are stated below. First, the case for 1 ⩽ p < ∞:

Theorem A. Let A(D) be a homogeneous linear differential operator of order 1 ⩽ m < N on RN ,

N ⩾ 2, from E to F, and µ ∈ M (RN ,E∗) a complex-valued Borel measure.

(i) If 1 ⩽ p ⩽ N/(N −m), µ ∈ M+(RN ,E∗) and f ∈ Lp(RN ,F∗) is a solution for

A∗(D) f = µ, (1)

then µ ≡ 0.

(ii) If N/(N−m)< p<∞ and f ∈ Lp(RN ,F∗) is a solution for (1), then µ has finite (m, p)−energy.

Conversely, if |µ| has finite (m, p)−energy and A(D) is elliptic, then there exists a function

f ∈ Lp(RN ,F∗) solving (1).

The endpoint case p = ∞ is treated separately, assuming an extra condition related to canceling

operators satisfying a special L1 type estimate.

Theorem B. Let A(D) be a homogeneous linear differential operator of order 1 ⩽ m < N on RN from

E to F and µ ∈ M (RN ,E∗). If A(D) is elliptic and canceling, and µ satisfies

∥µ∥0,N−m
.
= sup

r>0

|µ|(Br)

rN−m < ∞,

and the potential control

� |y|/2

0

|µ|(B(y,r))
rN−m+1 dr ≲ 1, uniformly on y,

then, there exists f ∈ L∞(RN ,F∗) solving (1).

In [38], the solvability results are used to characterize removable singularities for the divergence

equation. In the same spirit, in [5] we use Theorem B to prove the following necessary condition:

Theorem C. Assume that A(D) is an elliptic and canceling homogeneous differential operator on RN

of order 1 ⩽ m < N, from E to F. If the closed set S ⊆ RN is removable for the equation A∗(D) f = 0

in L∞(RN ,F∗), then S has Hausdorff dimension less than or equal to N −m.

Finally, in [7] we step into an even more general case, considering A(·,D) defined on an open

subset Ω ⊂ RN with variable smooth complex coefficients aα . We obtain the following sufficient

conditions for local solvability:



Introduction 3

Theorem D. Let A(·,D) be an elliptic linear differential operator of order 1 ⩽ m < N on Ω from E to

F, 1 < p < ∞ and µ ∈ M (Ω,E∗). If, for each x0 ∈ Ω, there exists an open neighborhood U ∋ x0 of

Ω such that |µ| has finite strong (m, p)−energy on U, then the equation

A∗(x,D) f = µ (2)

is Lp locally solvable in Ω.

Analogously to the homogeneous operators with constant coefficients, we state a version for the

case p = ∞.

Theorem E. Let A(·,D) be a linear differential operator of order 1 ⩽ m < N on Ω from E to F and

µ ∈ M (Ω,E∗). Suppose that A(·,D) is elliptic and canceling in Ω and µ satisfies

∥µ∥Ω,N−m
.
= sup

B(x,r)⊂Ω

|µ|(B(x,r))
rN−m < ∞.

Then, for each fixed x0 ∈ Ω, there exists an open neighborhood U ∋ x0 in Ω such that, if the potential

condition � a|y−x0|

0

|µ|(B(y,r))
rN−m+1 dr ≲ 1,

where a is some constant between 0 and 1, is satisfied uniformly for almost every y ∈ U, then there

exists a function f ∈ L∞(U,F∗) solving (2).

The goal of this thesis is to prove the Theorems A-E introducing a new machinery in the setting

of higher order operators. The text is organized as follows:

In Chapter 1, definitions and results which are necessary for the main proofs are presented. It

contains sections about the results in [38], vector-valued measures, measures with finite energy, the

definition of elliptic, canceling and cocanceling operators, Stein-Weiss inequalities, Riesz transforms

and pseudo-differential operators.

Chapter 2 is devoted to the results from [6]. Theorem A is shown first, then a Stein-Weiss type

inequality is proved in order to obtain Theorem B. The chapter ends with some applications and

comments, including a reciprocal to Theorem B for first order operators.

In Chapter 3, the results from [5] are exhibited. The definition of removable singularity is in-

troduced, together with some previously known results. Then, the proof of a version of Frostman’s

lemma with a decay condition is followed by Theorem C.

Chapter 4 focus on the results from [7]. First, some topics from Chapter 1 are revisited, namely, a

stronger definition for measures with finite energy and local definitions of ellipticity, cancelation and

cocancelation are given. Then, Theorems D and E are proved, followed by comments and applica-

tions.

An appendix at the end of the text outlines the proof of an important estimate from [38]. Although

this estimate inspired the reasoning behind the proofs of Theorems B and E, its proof highlights why



4 Introduction

Phuc and Torres’s argument for ∇ does not work in the general case for A(·,D).

Notation: throughout this work, Ω always denotes an open subset of RN . The symbol f ≲ g means

that there exists a constant C > 0, depending neither on f nor on g, such that f ⩽ C g. Given a set

A ⊂ RN we denote by |A| its Lebesgue measure. We write B = B(x,R) for the open ball with center x

and radius R > 0. By BR we mean the ball B(0,R). We fix
�

Q f (x)dx := 1
|Q|

�
Q f (x)dx, where Q is a

measurable set. We write K ⊂⊂ Ω to say that K is a compact subset of Ω.



CHAPTER 1

Preliminaries

In this chapter we present some definitions and results that will be necessary throughout this work.

1.1 Characterizations of the existence of divergence-measure
vector fields

N. Phuc and M. Torres in [38] characterized the existence of solutions in Lebesgue spaces for the

divergence equation

div f⃗ = ν , (1.1)

where ν ∈ M+(RN), the set of scalar positive Borel measures on RN , and f ∈ Lp(RN ,RN). The

method is based on controlling the (1, p)− energy of ν defined by ∥I1ν∥Lp , where I1 is the Riesz

potential operator. In fact, ∥I1ν∥Lp finite is a necessary condition for solvability in Lp, since from

(1.1) we have

I1ν = cN

N

∑
j=1

R j f j (1.2)

and the control in norm follows as a direct consequence of the continuity of Riesz transform operators

R j in Lp(RN) for 1 < p < ∞. The following result was proved in [38, Theorems 3.1 and 3.2]:

Theorem 1.1. If f ∈ Lp(RN ,RN) satisfies (1.1) for some ν ∈ M+(RN), then

(i) ν = 0, assuming 1 ⩽ p ⩽ N/(N −1);

(ii) ν has finite (1, p)-energy, assuming N/(N−1)< p < ∞. Conversely, if ν ∈M+(RN) has finite

(1, p)−energy, then there is a vector field f ∈ Lp(RN ,RN) satisfying (1.1).

The previous result does not cover the case p = ∞, since the proof breaks down once the Riesz

transform is not bounded in L∞(RN). However from Gauss-Green theorem, if f ∈ L∞(RN ,RN) is a

5



6 Chapter 1. Preliminaries

solution of (1.1) then for any ball B(x,r) there exists C =C(N)> 0 such that

ν(B(x,r)) =
�

∂B(x,r)
f ·n dH N−1 ⩽C∥ f∥L∞rN−1.

It is easy to check that ∥I1ν∥L∞ < ∞ implies the following control of the measure ν on balls

ν(B(x,r))⩽CrN−1, (1.3)

where the constant is independent of x ∈ RN and r > 0. Indeed,

I1ν(x)⩾C
�

B(x,r)

1
|x− y|N−1 dν(y)⩾C

�
B(x,r)

1
rN−1 dν(y) =

C ν(B(x,r))
rN−1 ,

hence we have (1.3). A non-trivial argument (see Appendix A) is sufficient to show that (1.3) implies∣∣∣∣�
Rn

u(x)dν

∣∣∣∣⩽C∥∇u∥L1, ∀u ∈C∞
c (Rn) (1.4)

and from a standard duality argument a solution f for (1.1) in L∞(RN ,RN) is obtained. Hence, they

proved the following result in this case [38, Theorem 3.3]:

Theorem 1.2. If f ∈ L∞(RN ,RN) satisfies (1.1) for some ν ∈ M+(RN), then ν satisfies (1.3) for

every x ∈RN , r > 0 and some constant C independent of x and r. Conversely, if ν ∈M+(RN) has the

property (1.3), then there is a vector field f ∈ L∞(RN ,RN) satisfying (1.1).

In Phuc and Torres’s proof of (1.4), the fact that one is dealing with the divergence operator plays a

very specific role through the co-area formula (see Appendix A), suggesting that their argument does

not adapt easily into obtaining a solvability result for other operators than the divergence operator.

1.2 Vector-valued measures and total variation

Let Ω ⊆ RN be an open set. We denote by M (Ω) the set of signed (i.e., real-valued) Borel

measures on Ω. We add the subscript M+(Ω) to denote the set of positive Borel measures on Ω. We

write M (Ω,C) for the set of complex-valued Borel measures on Ω given by µ = µRe + i µ Im, where

µRe,µ Im ∈ M (Ω). By M+(Ω,C) we mean the set of measures µ ∈ M (Ω,C) such that µRe,µ Im ∈
M+(Ω). Let X be a complex vector space with dimCX = d < ∞. We denote by M (Ω,X) the set of

all X-valued complex measures on Ω, µ = (µ1, . . . ,µd), where µℓ = µRe
ℓ + i µ Im

ℓ ∈ M (Ω,C) for all

ℓ= 1, . . . ,d. Similarly, M+(Ω,X) is the set of measures µ ∈ M (Ω,X) such that µℓ ∈ M+(Ω,C) for

all ℓ= 1, . . . ,d. Here we are implicitly interchanging X and Cd .

The theory of vector-valued measures has substantial differences in comparison to that of scalar-

valued ones. Within the scope of this text, however, the classic properties and results we know for

scalar-values measures remain valid for countably additive vector-valued measures (see [3]). Let

µ ∈ M (Ω,X). If f is a scalar-valued function defined on Ω, then�
f dµ =

(�
f dµ1 , · · · ,

�
f dµd

)
.



1.3. Energy and potentials of measures 7

If g = (g1, . . . ,gd) is an X-valued function defined on Ω, then
�

gdµ =

(�
g1 dµ1 , · · · ,

�
gd dµd

)
.

If ν ∈ M (Ω,C), the total variation of ν is the positive measure defined, for each ν-measurable

set A, by |ν |(A) = sup∑k |ν(Ak)|, where the supremum is taken over all partitions {Ak} of A into

measurable sets. The total variation of ν is, by construction, the smallest positive measure λ such

that |ν(A)| ⩽ λ (A) for every ν-measurable set A. It is known that, for any ν ∈ M (Ω,C), one has

|ν |(Ω) < ∞ and, therefore, any complex measure is bounded. For X-valued measures, the definition

is similar. If µ ∈ M (Ω,X), the total variation of µ is the positive measure defined, for each µ-

measurable set A, by |µ|(A) = sup∑k |µ(Ak)|= sup∑k

√
∑

d
ℓ=1 |µℓ(Ak)|2, where the supremum is now

taken over all partitions {Ak} of A into a finite number of measurable sets. One interesting property

is that |µ| is comparable with ∑
d
ℓ=1 |µℓ|. More specifically, |µ|⩽ ∑

d
ℓ=1 |µℓ|≲ |µ|. Indeed, |µℓ|⩽ |µ|

for all ℓ= 1, . . . ,d, since |µℓ(Ak)|⩽ |µ(Ak)|, thus ∑
d
ℓ=1 |µℓ|≲ |µ|. For the converse,

∑
k
|µ(Ak)|⩽ ∑

k

d

∑
ℓ=1

|µℓ(Ak)|=
d

∑
ℓ=1

∑
k
|µℓ(Ak)|.

The summations can be swapped as the sum in k converges absolutely by the definition of complex

measures. Hence

|µ|(A)⩽ sup
d

∑
ℓ=1

∑
k
|µℓ(Ak)|⩽

d

∑
ℓ=1

sup∑
k
|µℓ(Ak)|=

d

∑
ℓ=1

|µℓ|(A).

Definition 1.3. We say that a measure µ ∈ M (Ω) is λ -Ahlfors regular, for 1 ⩽ λ < ∞, if it satisfies

the Morrey control given by

∥µ∥λ

.
= sup

B

|µ|(B(x,r))
rλ

< ∞,

where the supremum is taken over all open balls B = B(x,r) in Ω.

In other words, µ is λ -Ahlfors regular if |µ|(B(x,r))⩽Crλ for every x ∈ Ω and r > 0, where C is

independent of x and r. For Ω = RN , we introduce the notation

∥µ∥0,λ
.
= sup

r>0

|µ|(Br)

rλ

for the case when the supremum is taken only over balls centered at the origin.

1.3 Energy and potentials of measures

For any 0 < m < N and any function f in the Schwartz space S (RN), consider the fractional

integrals called Riesz potential operators given by the action of the multiplier Îm f (ξ ) = |ξ |−m f̂ (ξ ).

Thus, Im f is defined by

Im f (x) =
1

γ(m)

�
RN

f (y)
|x− y|N−m dy,
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with γ(m) := πN/2 2m Γ(m/2)/Γ((N −m)/2), where Γ is the standard Gamma function.

It is important to point out that the constant in the previous formula depends on the definition of

Fourier transform that is being used. Here, for f ∈ S ,

f̂ (ξ ) =
�
RN

e−2πix·ξ f (x)dx, (1.5)

and the inversion formula becomes

f (x) =
�
RN

e2πix·ξ f̂ (ξ )dξ . (1.6)

We extend this definition for measures. Let η ∈ M (Ω,X). Then, we define the Riesz potential of

η by

Imη(x) :=
1

γ(m)

�
Ω

1
|x− y|N−m dη(y)

if X = C, and Imη := (Imη1, . . . , Imηd) for a general vector space X .

Definition 1.4. Let 1 ⩽ p < ∞ and 0 < m < N. We say that µ ∈ M (Ω,X) has finite (m, p)−energy if

∥Imµ∥Lp :=
(�

RN
|Imµ(x)|p dx

)1/p

< ∞,

and µ has finite (m,1)∗− energy if

∥Imµ∥L1,∞
.
= sup

λ>0
λ |{x : |Imµ(x)|> λ}|< ∞.

From the previous definitions follows ∥ImµRe
ℓ ∥Lp + ∥Imµ Im

ℓ ∥Lp ≲ ∥Imµ∥Lp for ℓ = 1, . . . ,d. The

same control holds replacing Lp by L1,∞.

Proposition 1.5. If µ ∈M+(Ω,X) has finite (m, p)−energy for some 1< p⩽N/(N−m) or (m,1)∗−
energy, then µ ≡ 0 on Ω.

Proof. Let R > 0 and, by simplicity, we assume µℓ ∈ M+(Ω) for each ℓ ∈ {1, . . . ,d}. We have

Imµℓ(x)≳
�

BR∩Ω

1
|x− y|N−m dµℓ(y)

⩾
�

BR∩Ω

1
(|x|+R)N−m dµℓ(y)

=
µℓ(BR ∩Ω)

(|x|+R)N−m .

Thus,
�
RN

|Imµ(x)|p dx ≳
�
RN

[Imµℓ(x)]p dx ≳
�
RN

[
µℓ(BR ∩Ω)

(|x|+R)N−m

]p

dx

= [µℓ(BR ∩Ω)]p
�
RN

1
(|x|+R)(N−m)p

dx.
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Observe that �
RN

1
(|x|+R)(N−m)p

dx = c(N)

�
∞

0

rN−1

(r+R)(N−m)p
dr

= c(N)

�
∞

R

(r−R)N−1

r(N−m)p
dr

and for 1 < p ⩽ N/(N −m) the last integral blows up to infinity, as N −1− (N −m)p ⩾ −1. Hence

we must have µℓ(BR ∩Ω) = 0, since ∥Imµ∥Lp < ∞. For the case p = 1, we have

sup
λ>0

λ

∣∣∣∣{x ∈ RN :
µℓ(BR ∩Ω)

(|x|+R)N−m > λ

}∣∣∣∣≲ ∥Imµ∥L1,∞ < ∞.

However,

λ

∣∣∣∣{x :
µℓ(BR ∩Ω)

(|x|+R)N−m > λ

}∣∣∣∣= λ

∣∣∣∣∣B
(

0,
(

µℓ(BR ∩Ω)

λ

) 1
N−m

−R

)∣∣∣∣∣
= λ

− m
N−m

∣∣∣B(0,µℓ(BR ∩Ω)
1

N−m −λ
1

N−m R
)∣∣∣ ,

which blows-up to infinity when λ > 0 is small and µℓ(BR∩Ω) ̸= 0. Given that R > 0 was arbitrarily

chosen, and that Ω =
⋃

k∈N
[Bk ∩Ω], we conclude that µℓ ≡ 0 on Ω for every ℓ ∈ {1, . . . ,d}. Therefore,

µ ≡ 0.

L. Hedberg and T. Wolff introduced in [21] a notion of potential within the framework of nonlinear

potential operators. For a positive Borel measure ν on RN , 1 < p < ∞ and α > 0, the Wolff potential

Wα,p of ν is defined as

Wα,pν(x) =
�

∞

0

[
ν(B(x,r))

rN−α p

] 1
p−1 dr

r
, for x ∈ RN .

There is also a truncated version of this potential that works fine on bounded domains Ω ⊂RN , where

the integration is done in a bounded interval (0, t) for some fixed t > 0:

W t
α,pν(x) =

� t

0

[
ν(B(x,r))

rN−α p

] 1
p−1 dr

r
, for x ∈ Ω.

One of the hypothesis we introduced in our solvability results can be understood as an uniform control

of the truncated Wolff potential. Applications of the Wolff potential can be found, for instance, in

[1, 40].

1.4 Elliptic, canceling and cocanceling operators

Let A(D) be a homogeneous linear differential operator of order m on RN , N ⩾ 2, from a finite

dimensional complex vector space E to a finite dimensional complex vector space F , given by

A(D) = ∑
|α|=m

aα∂
α : C∞(RN ,E)→C∞(RN ,F).
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The nomenclature homogeneous emphasizes that all the partial derivatives in A(D) have the same

order m. The coefficients aα belong to the set L (E,F) of linear transformations from E to F . They

are constant, in the sense that they do not depend on x ∈ RN . An important function associated to

A(D) is its symbol: a linear transformation A(ξ ) : E → F defined, for each ξ ∈ RN , by

A(ξ ) := ∑
|α|=m

aα ξ
α ,

which is, in essence, the Fourier transform of A(D), but avoiding the multiplicative constants.

Definition 1.6. A homogeneous linear differential operator A(D) on RN from E to F is said to be

elliptic if, for every ξ ∈ RN \{0}, its symbol A(ξ ) is injective.

We present some examples of elliptic homogeneous operators.

Example 1.7. The gradient operator ∇ : C∞(RN ,R)→C∞(RN ,RN) is elliptic.

Observe that

∇u =
N

∑
j=1

e j ∂x ju,

therefore the symbol A(ξ ) : R→RN is given by A(ξ )(t) = t ξ , which is obviously injective for every

ξ ∈ RN \{0}.

Example 1.8. The Laplace operator ∆ : C∞(RN ,R)→C∞(RN ,R) is elliptic.

Since

∆u =
N

∑
j=1

∂
2
x j

u,

we have A(ξ ) : R→ R given by A(ξ )(t) = |ξ |2 t, which is injective for every ξ ∈ RN \{0}.

Example 1.9. The vector Laplace operator ∆ : C∞(RN ,RM)→C∞(RN ,RM), given by

∆ f = (∆ f1, . . . ,∆ fM),

is elliptic as A(ξ ) : RM →RM is given by A(ξ )(v) = |ξ |2 v, which is injective for every ξ ∈RN \{0}.

Example 1.10. Let C∞(Ω,ΛkRN), for k ∈ {0, . . . ,N}, be the space of k-forms on RN with smooth

coefficients defined on an open subset Ω ⊆ RN . A k-form f ∈C∞(Ω,ΛkRN) can be written as

f = ∑
|I|=k

fI dxI,

where I = {i1, . . . , ik} is an ordered set of strictly increasing indices iℓ ∈ {1, . . . ,N}, fI ∈C∞(Ω) and

dxI = dxi1 ∧ ·· · ∧ dxik is the wedge product. The exterior derivative operators dk : C∞(Ω,ΛkRN) →
C∞(Ω,Λk+1RN) are defined by d0 f .

= ∑
N
j=1 ∂x j f dx j for f ∈C∞(Ω) =C∞(Ω,Λ0RN), and

dk f .
= ∑

|I|=k
(d0 fI) dxI = ∑

|I|=k

N

∑
j=1

∂x j fI dx j ∧dxI
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for f ∈ C∞(Ω,ΛkRN), 1 ⩽ k ⩽ N − 1. Consider also, for 0 ⩽ k ⩽ N − 1, the co-exterior derivative

operators d∗
k : C∞(Ω,Λk+1RN)→C∞(Ω,ΛkRN) defined by
�

dku · vdx =
�

u ·d∗
k vdx, u ∈C∞

c (RN ,ΛkRN) and v ∈C∞
c (RN ,Λk+1RN)

where the dot indicates the standard pairing on forms of the same degree. For each f ∈C∞(Ω,Λk+1RN)

given by ∑|I|=k+1 fI dxI , we may write

d∗
k f .

= ∑
|I|=k+1

∑
j∈I

−∂x j fI dx j ∨dxI.

Above, for each jℓ ∈ I = { j1, . . . , jk+1},

dx jℓ ∨dxI
.
= (−1)ℓ+1dx j1 ∧·· ·∧dx jℓ−1 ∧dx jℓ+1 ∧·· ·∧dx jk+1.

The chain {dk}k defines a complex of differential operators, in the sense that dk+1 ◦dk = 0, called de

Rham complex.

Consider, for 0 ⩽ k ⩽ N, the operator

A(D) = (dk,d∗
k−1) : C∞

c (RN ,ΛkRN)→C∞
c (RN ,Λk+1RN)×C∞

c (RN ,Λk−1RN).

When k = 0 and k = N, the operators d∗
−1 and dN , respectively, must be understood as zero. We

claim that the operator A(D) is elliptic. In fact, the symbol A(ξ ) : Λk(RN)→ Λk+1(RN)×Λk−1(RN)

is given by A(ξ )(v) = (ξ ∧ v , ⋆(ξ ∧⋆v)), where ⋆ denotes the Hodge star operator (see [28, Section

1.7]). The ellipticity follows from the Lagrange identity

|ξ |2|v|2 = |ξ ∧ v|2 + |⋆ (ξ ∧⋆v)|2.

Example 1.11. The Laplace-Beltrami operator (d∗
k dk,dk−1 d∗

k−1) :C∞
c (RN ,ΛkRN)→C∞

c (RN ,ΛkRN)×
C∞

c (RN ,ΛkRN) is elliptic for k ∈ {1, . . . ,N −1}. In fact, it is consequence of the identity

∆k = dk−1 d∗
k−1 +d∗

k dk,

where (∆k f )I = ∆ fI for each |I|= k (see [25, Lemma 3.1]).

Example 1.12. The Korn-Sobolev-Strauss operator Ds : C∞
c (RN ,RN)→C∞

c (RN ,RN(N+1)/2) given by

Dsu(x)
.
= f (x) with

f j,k(x)
.
=

∂x juk(x)+∂xku j(x)
2

, 1 ⩽ j ⩽ k ⩽ N,

is elliptic. Its symbol Ds(ξ ) : RN → RN(N+1)/2 is given by

Ds(ξ ) j,k(v) =
ξ jvk +ξkv j

2
, 1 ⩽ j ⩽ k ⩽ N.

Let ξ ̸= 0 and v ∈ RN such that Ds(ξ )(v) = 0. Then, in particular, Ds(ξ ) j, j(v) = ξ jv j = 0 for every

1 ⩽ j ⩽ N. Without loss of generality, suppose ξ1 ̸= 0. Then v1 = 0, which means that Ds(ξ )1,k(v) =
1
2ξ1vk = 0 for every 1 ⩽ k ⩽ N. Therefore, v = 0.
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Example 1.13. Consider, for m ∈ N and 0 ⩽ k ⩽ N, the Lanzani-Raich operator

A(D) = (dk(d∗
k dk)

m,(d∗
k−1dk−1)

md∗
k−1) : C∞

c (RN ,ΛkRN)→C∞
c (RN ,Λk+1RN)×C∞

c (RN ,Λk−1RN)

as a higher order div-curl operator (see [30]). Analogous to the case m = 0, the operator is elliptic.

Definition 1.14. A homogeneous linear differential operator A(D) on RN from E to F is said to be

canceling if ⋂
ξ∈RN\{0}

A(ξ )[E] = {0}.

The theory of canceling operators was introduced by J. Van Schaftingen, motivated by studies of

some L1 a priori estimates for vector fields with divergence free and chain complexes. J. Bourgain

and H. Brezis proved in [8, Theorem 5] the following solvability result:

Theorem 1.15. If N ⩾ 2 and 1 ⩽ k ⩽ N −1 we have

dk[Ẇ 1,N(ΛkRN)] = dk[(Ẇ 1,N ∩L∞)(ΛkRN)].

More precisely, given X ∈ Ẇ 1,N(ΛkRN), there exist some Y ∈ (Ẇ 1,N ∩ L∞)(ΛkRN) and a constant

C > 0 such that one has dkX = dkY as well as:

∥∇Y∥LN +∥Y∥L∞ ⩽C∥dkX∥LN . (1.7)

Here, Ẇ k,p denotes the homogeneous Sobolev space W k,p. Clearly the result fails for k = 0, i.e.

for d0 = ∇ (see [8]), and the same statement holds for the operator d∗
k when 2 ⩽ k ⩽ N. The proof of

Theorem 1.15 is a particular case of the following result from [8, Theorem 10]:

Theorem 1.16. Let S :
⊕r

s=1Ẇ 1,N(RN) → Y to be a bounded operator into a Banach space Y with

closed range. Assume further that for each s = 1, ..,r there is an index is ∈ {1, ...,N} such that:

∥S f∥⩽C max
1⩽s⩽r

max
i̸=is

∥∂i fs∥LN .

Then for all f⃗ ∈
⊕r

s=1Ẇ 1,N(RN) there exist g⃗ ∈
⊕r

s=1(Ẇ
1,N ∩ L∞)(RN) and constants C,C′ > 0

satisfying S f⃗ = S⃗g and:

∥∇g∥LN +∥g∥L∞ ⩽C∥S⃗g∥⩽C′∥∇ f∥LN . (1.8)

As a consequence of the previous theorem and by the Hahn-Banach theorem, for the first-order

div-curl operator A(D) = (dk,d∗
k−1) for N ⩾ 4 and 2 ⩽ k ⩽ N −2 the [8, Corollary 24] asserts that the

estimate

∥u∥LN/N−1 ⩽C
(
∥dku∥L1+W−1,N/N−1 +∥d∗

k−1u∥L1+W−1,N/N−1

)
, ∀u ∈C∞

c (RN ,ΛkRN), (1.9)

holds where ∥h∥L1+W−1,d/d−1 := inf
{
∥ f∥L1 +∥g∥W−1,d/d−1 such that h = f +g

}
. In particular,

∥u∥LN/N−1 ⩽C
(
∥dku∥L1 +∥d∗

k−1u∥L1
)
, ∀u ∈C∞

c (RN ,ΛkRN), (1.10)
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extending the classical Sobolev-Gagliardo-Nirenberg estimates taking k = 0, i.e d0 = ∇ and d∗
−1 = 0.

Independently, using a simple approach, Lanzani and Stein in [31] proved the inequality (1.10) for

N ⩾ 3 when k is neither 1 nor N −1, moreover

∥u∥LN/N−1 ⩽C (∥d1u∥L1 +∥d∗
0u∥H1) , ∀u ∈C∞

c (RN ,Λ1RN), (1.11)

and

∥u∥LN/N−1 ⩽C
(
∥dN−1u∥H1 +∥d∗

N−2u∥L1
)
, ∀u ∈C∞

c (RN ,ΛN−1RN), (1.12)

where H1 is the Hardy space when p = 1. Several other L1 inequalities of the type

∥u∥LN/(N−1) ⩽C∥A(D)u∥L1, ∀u ∈C∞
c (RN ,E),

for first order operators were obtained with some additional compatibility assumption (see [8, Corol-

lary 26] for the Korn’s inequalities) as in the case of div-curl operator A(D) = (dk,d∗
k−1). Estimates

of the type

∥Dm−1u∥Lp∗ ⩽Cp∥A(D)u∥Lp, u ∈C∞
c (RN ,E),

for homogeneous differential operators A(D) : C∞
c (RN ,E) → C∞

c (RN ,F) with order 1 ⩽ m < N and

1 ⩽ p < N
m , where

1
p∗

:=
1
p
− m

N
, are characterized by ellipticity as a consequence of the standard

Sobolev embedding and the classical result due Calderón and Zygmund in [10]:

Theorem 1.17. Let 1 < p < N. Then the estimate

∥Dmu∥Lp ⩽Cp∥A(D)u∥Lp , ∀u ∈C∞
c (RN ,E),

holds if and only if A(D) is elliptic.

The latter estimate fails in general for p = 1 as presented by Ornstein in [37]. However, Van

Schaftingen in [45, Theorem 1.3] characterized the classical Sobolev-Gagliardo-Nirenberg inequality

∥Dm−1 u∥LN/(N−1) ⩽C∥A(D)u∥L1, ∀u ∈C∞
c (RN ,E)

if and only if the operator A(D) is elliptic and canceling.

Some examples of canceling operators are the following:

Example 1.18. The gradient operator ∇ : C∞(RN ,R)→C∞(RN ,RN) is canceling if and only if N ⩾ 2.

We have seen that, in this case, A(ξ ) = ξ . Thus, for every ξ ∈ RN \ {0}, A(ξ )[R] = Rξ is the

straight line through the origin determined by the vector ξ . Therefore,

⋂
ξ∈RN\{0}

A(ξ )[R] =

{
{0}, if N ⩾ 2,
R, if N = 1.
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Example 1.19. The operator A(D) = (dk,d∗
k−1) from Example 1.10 is canceling if and only if k ∈

{2, . . . ,N −2}. Remember that A(ξ )(v) = (ξ ∧ v , ⋆(ξ ∧⋆v)). If

( f ,g) ∈
⋂

ξ∈RN\{0}
A(ξ )

[
Λ

k(RN)
]
,

then ξ ∧ f = 0 and ξ ∧ ⋆g = 0 for every ξ ∈ RN . Since 2 ⩽ k ⩽ N − 2, we conclude that f = 0 and

g = 0, as dk+1 ◦dk = d∗
k ◦d∗

k+1 = 0. Notice that if k = 1 we cannot prove that g = 0, so the operator is

not canceling. Analogously, for the case k = N −1 we cannot prove f = 0.

Example 1.20. The Laplace-Beltrami operator (d∗
k dk,dk−1 d∗

k−1) from Example 1.11 is canceling for

k ∈ {1, . . . ,N −1}.

Example 1.21. The Korn-Sobolev-Strauss operator Ds from Example 1.12 is canceling. Recall that

Ds(ξ ) j,k(v) =
ξ jvk +ξkv j

2
, 1 ⩽ j ⩽ k ⩽ N.

Let

w ∈
⋂

ξ∈RN\{0}
Ds(ξ )

[
RN] .

Denote by eℓ, ℓ = 1, . . . ,N, the unit vector eℓ = (0, . . . ,0,1,0, . . . ,0) with 1 in the ℓth entry. Observe

that

Ds(e1) j,k(v) =


v1, j = k = 1
vk/2, 1 = j < k ⩽ N
0, 1 < j ⩽ k ⩽ N.

Since, in particular, w ∈ Ds(e1)
[
RN], we get w j,k = 0 for 1 < j ⩽ k ⩽ N. Similarly,

Ds(eN) j,k(v) =


0, 1 ⩽ j ⩽ k < N
v j/2, 1 ⩽ j < k = N
vN , j = k = N,

and we get w1,k = 0 for 1 ⩽ k < N, as w ∈ Ds(eN)
[
RN]. Finally, since Ds(e2)1,N(v) = 0 and w ∈

Ds(e2)
[
RN], we obtain w1,N = 0, concluding that w = 0.

Example 1.22. The scalar Laplacian ∆ = ∑
N
j=1 ∂ 2x j in RN is elliptic but it is not canceling, as

⋂
ξ∈RN\{0}

A(ξ )[R] =
⋂

ξ∈RN\{0}
|ξ |2R= R.

Example 1.23. The vector Laplace operator from Example 1.9 is not canceling as well, since

⋂
ξ∈RN\{0}

A(ξ )
[
RM]= ⋂

ξ∈RN\{0}
|ξ |2RM = RM.
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Other examples of canceling operators can be found in [45].

One fundamental property of elliptic and canceling operators A(D) is the existence of a homo-

geneous linear differential operator L(D) : C∞(RN ,F) → C∞(RN ,V ), for some finite dimensional

complex vector space V , such that⋂
ξ∈RN\{0}

ker L(ξ ) =
⋂

ξ∈RN\{0}
A(ξ )[E] = {0} . (1.13)

More precisely:

Proposition 1.24. Let A(D) be a homogeneous differential operator on RN from E to F. If A(D) is

elliptic, then there exists a finite-dimensional vector space V and a homogeneous differential operator

L(D) on RN from F to V such that

ker L(ξ ) = A(ξ )[E] (1.14)

for every ξ ∈ RN \{0}.

The proof for the above result can be found in [45, Proposition 4.2] as well as the next definition,

also introduced by Van Schaftingen:

Definition 1.25. A homogeneous linear differential operator L(D) on RN from F to V is said to be

cocanceling if ⋂
ξ∈RN\{0}

ker L(ξ ) = {0}.

As a consequence, if A(D) is elliptic and canceling then Proposition 1.24 implies (1.13). This

means that there exists a cocanceling operator L(D) such that, for every u ∈C∞
c (RN ,E),

L(D)(A(D)u) = 0. (1.15)

In [45, Remark 4.1], Van Schaftingen gives a particular expression for the symbol of an operator

satisfying (1.14):

L(ξ ) = det(A(ξ )∗ ◦A(ξ )) Id−A(ξ )◦ adj(A(ξ )∗ ◦A(ξ ))◦A(ξ )∗, (1.16)

where adj(A(ξ )∗◦A(ξ ))= det(A(ξ )∗◦A(ξ ))(A(ξ )∗◦A(ξ ))−1 denotes the adjugate operator of A(ξ )∗◦
A(ξ ).

The operator L(D) and the associated space V obtained from his construction are not the only

pair with the desired property and might not even be the most practical one to work with, but it is

interesting in that it is built exclusively from the ellipticity of A(D).

For instance, if A(D) = ∇, Van Schaftingen’s recipe gives L(ξ ) : RN → RN , where [L(ξ )v] j =

|ξ |2v j − ξ j ∑
N
k=1 ξkvk, for each j = 1, . . . ,N. Therefore, L(D) : C∞

c (RN ,RN)→ C∞
c (RN ,RN) is given

by

[L(D) f ] j = ∆ f j −
N

∑
k=1

∂x j∂xk fk
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for each j = 1, . . . ,N. One can verify that if ξ ̸= 0 and v∈ ker L(ξ ), then v∈Rξ . Indeed, if L(ξ )v= 0,

then, for each j = 1, . . . ,N,

|ξ |2v j −ξ j

N

∑
k=1

ξkvk = 0,

hence v j =

(
ξ · v
|ξ |2

)
ξ j. Thus, v =

(
ξ · v
|ξ |2

)
ξ ∈ Rξ . Conversely, tξ ∈ ker L(ξ ) for every t ∈ R.

Therefore, ker L(ξ ) = Rξ = A(ξ )[R]. Note also that L(D)(∇u) = 0.

Examples of cocanceling operators are:

Example 1.26. The divergence operator L(D) = div : C∞(RN ,RN)→C∞(RN ,R) is cocanceling.

Indeed, observe that

div f =
N

∑
j=1

∂x j f j

and therefore L(ξ ) : RN → R is given by L(ξ )(v) = ξ · v. Then clearly

⋂
ξ∈RN\{0}

ker L(ξ ) =
⋂

ξ∈RN\{0}
ξ
⊥ = {0}.

Example 1.27. Let k ∈ {0, . . . ,N − 1}. The operator L(D) = dk, the exterior derivative defined in

Example 1.10, is cocanceling. We have L(ξ )(v) = ξ ∧ v. If v ∈ Λk(RN) for k ⩽ N −1 and ξ ∧ v = 0

for every ξ ∈ RN , then v = 0.

Example 1.28. The higher order divergence operator L(D) : C∞(RN ,RM)→C∞(RN ,R), where M =(N+k−1
k

)
is the number of multi-indices α of length N and |α|= k, given by

L(D) f = ∑
|α|=k

∂
α fα

is cocanceling. Its symbol L(ξ ) : RM → R is given by

L(ξ )(v) = ∑
|α|=k

ξ
αvα .

Let

v ∈
⋂

ξ∈RN\{0}
ker L(ξ ).

Then

∑
|α|=k

ξ
αvα = 0

for every ξ ∈ RN . The properties of multivariate polynomials imply that v = 0.

More examples are available in [45].
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1.5 Stein-Weiss inequality in L1 norm

The study of two-weight inequalities for the Riesz potential operator started with Stein and Weiss

in [43], where they proved the following inequality involving power weights:

Theorem 1.29 ([43, Theorem B*]). Let N ⩾ 1, 0 < ℓ< N and 1 < p ⩽ q < ∞. Assume α,β satisfying

the conditions

(i) α <
N
p′

and β <
N
q

with
1
p
+

1
p′

= 1;

(ii) α +β ⩾ 0;

(iii)
1
q
=

1
p
+

α +β − ℓ

N
.

Then, there exists C > 0, depending only on the parameters p,q,α,β , such that

∥|x|−β Iℓ f∥Lq(RN) ⩽C∥|x|α f∥Lp(RN), ∀ f ∈ S (RN), (1.17)

Naturally, one asks if (1.17) holds for p = 1. The answer is no, in general. For p = 1 and α = 0,

for instance, let ϕ ∈ C∞
c (RN) be a positive smooth function supported on the unit ball B1 such that�

RN ϕ(x)dx = 1 and, for each ε > 0, consider ϕε(x) := ε−Nϕ(ε−1x). Then, applying (1.17) for ϕε

and using the scaling invariance, we have

∥|x|−β Iℓϕε∥Lq(RN) ⩽C∥ϕε∥L1(RN) =C

uniformly. Taking ε ↘ 0, we know that Iℓϕε(x)→ |x|−N+ℓ almost everywhere, which implies

∥|x|−(β+N−ℓ)∥Lq(RN) = ∥|x|−N/q∥Lq(RN) ≲ 1,

a contradiction.

Inequality (1.17) can be rewritten as(�
RN

∣∣∣∣�
RN

K(x,y) f (y) dy
∣∣∣∣q |x|−βq dx

)1/q

⩽C
(�

RN
| f (x)|p |x|α p dx

)1/p

,

where K(x,y) := γ(ℓ)−1|x− y|−N+ℓ and 0 < ℓ < N. De Nápoli and Picon in [11] studied the Stein-

Weiss inequality for the Riesz potential in the case p = 1, and characterized this inequality for a class

of vector fields associated to cocanceling operators. Their main result was the following:

Theorem 1.30 ([11, Theorem 1.2]). Let N ⩾ 2, 0 < ℓ < N, 0 ⩽ α < 1, β < N/q, α + β > 0 and
1
q
= 1+

α +β − ℓ

N
. Then if L(D) is cocanceling, there exists C > 0 such that

(�
RN

|Iℓ f (x)|q |x|−βq dx
)1/q

⩽C
�
RN

| f (x)| |x|α dx, (1.18)

for all |x|α f ∈ L1(RN ,F) satisfying L(D) f = 0 in the sense of distributions. Conversely, if for every

non zero |x|α f ∈ L1(RN ,F) satisfying L(D) f = 0 the inequality (1.18) holds for α = 0, then L(D) is

cocanceling.
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The converse in the case 0 < α < 1 is an open question. However, the theorem fails for α = 1.

Let ϕ ∈C∞
c (B1) a non-negative function with

�
RN ϕ(x)dx = 1 and ϕε(x) = ε−Nϕ(x/ε) for ε > 0. The

vector field f⃗ε on RN with components f1,ε(x) = ∂x2(ϕε(x)), f2,ε(x) = −∂x1(ϕε(x)) and f j,ε(x) = 0

for j = 3, . . . ,N satisfies div f⃗ε = 0 for all ε > 0. We showed in Example 1.26 that the divergence

operator is cocanceling. Then, assuming Theorem 1.30 holds for α = 1, we have(�
RN

|Iℓ fε(x)|q |x|−βq dx
)1/q

≲ ∑
j=1,2

�
RN

| f j,ε(x)| |x|dx, ∀ε > 0. (1.19)

But f1,ε(x) = ε−1(∂x2ϕ)ε(x) and f2,ε(x) has a similar expression, hence

∑
j=1,2

�
RN

| f j,ε(x)| |x|dx ≲
�
RN

|∇ϕ(x)| |x|dx < ∞, (1.20)

independently of ε . However, writing Iℓ f j,ε(x) = CN,ℓ, j(K j ∗ϕε)(x), with K j(x) = x j/|x|N−ℓ+2, and

taking ε → 0 we obtain, for the left-hand side of (1.19),(�
RN

|x j|q |x|(−N+ℓ−2−β )q dx
)1/q

=

(
CN

�
∞

0
r(−N+ℓ−1−β )q rN−1 dr

)1/q

=

(
CN

�
∞

0
r−1 dr

)1/q

,

as (−N+ ℓ−1−β )q+N = 0. This integral diverges, contradicting the (1.20). The previous theorem

follows directly from the next Fundamental Lemma:

Lemma 1.31 ([11, Lemma 3.2]). Assume N ⩾ 2, 0 < ℓ < N and K(x,y) ∈ L1
loc(R

N ×RN ,L (F,V ))

satisfying

|K(x,y)|⩽C |x− y|ℓ−N , x ̸= y (1.21)

and

|K(x,y)−K(x,0)|⩽C
|y|

|x|N−ℓ+1 , 2|y|⩽ |x|. (1.22)

Suppose 0 ⩽ α < 1, β < N/q, α +β > 0 and
1
q
= 1+

α +β − ℓ

N
. If L(D) is cocanceling, then there

exists C > 0 such that(�
RN

∣∣∣∣�
RN

K(x,y) f (y) dy
∣∣∣∣q |x|−βq dx

)1/q

⩽C
�
RN

| f (x)| |x|α dx, (1.23)

for all |x|α f ∈ L1(RN ,F) satisfying L(D) f = 0 in the sense of distributions.

The inequality (1.18) follows from Lemma 1.31 observing that the Riesz potential kernel K(x,y)=

γ(ℓ)−1|x− y|−N+ℓ satisfies (1.21) and (1.22).

The following results are examples of applications for Lemma 1.31 and can be seen in [11]:

Theorem 1.32 (Hardy-Littlewood-Sobolev inequality in L1 norm for canceling operators). Let A(D)

be an elliptic homogeneous linear differential operator of order ν on RN , N ⩾ 2, from E to F and

assume that 0 ⩽ α < 1, 0 < ℓ < N and ℓ⩽ ν . If A(D) is canceling, then the estimate(�
RN

∣∣∣(−∆)(ν−ℓ)/2u(x)
∣∣∣q |x|−N+(N−ℓ−α)q dx

)1/q

⩽C
�
RN

|x|α |A(D)u(x)|dx,

holds for every u ∈C∞
c (RN ,E), some C > 0 and 1 ⩽ q < N

N+α−ℓ .
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In the statement above, g = (−∆)a/2 f is the positive fractional power of the Laplacian defined

from the multiplier ĝ(ξ ) = |ξ |a f̂ (ξ ) for f ∈ S ′(RN), the space of tempered distributions, and a ⩾ 0.

The next is a previously known result from [46, Theorem 1.2] regarding convolution kernels, but

Lemma 1.31 allows a much easier proof.

Theorem 1.33 (Fractional integral operator for L1 vector fields). Let N ⩾ 2, 0 < ℓ < N, 0 ⩽ α < 1,

β < N/q, α +β > 0 and
1
q
= 1+

α +β − ℓ

N
. Suppose that K(x) satisfies

(a) |K(x)|⩽C |x|ℓ−N , x ̸= 0;

(b) |K(x− y)−K(x)|⩽C |y|
|x|N−ℓ+1 , 2|y|⩽ |x|.

If Tℓ f (x) =
�
RN K(x− y) f (y)dy, then there exists C > 0 such that∥∥∥|x|−β Tℓ f

∥∥∥
Lq

⩽C∥|x|α f∥L1 +
∥∥|x|α∇(−∆)−1 div f

∥∥
L1 ,

for all f ∈C∞
c (RN ,RN).

To prove this, we first use the Helmholtz decomposition f = g+ h where h = ∇(−∆)−1 div f .

Then g = f −∇(−∆)−1 div f satisfies divg = 0. Since div is cocanceling, Lemma 1.31 gives∥∥∥|x|−β Tℓg
∥∥∥

Lq
⩽C∥|x|α f∥L1 +

∥∥|x|α∇(−∆)−1 div f
∥∥

L1 .

For h, as ∇ is elliptic and canceling, there exists a cocanceling operator L(D) such that L(D)h = 0

and (1.18) implies ∥∥∥|x|−β Tℓh
∥∥∥

Lq
⩽C∥|x|αh∥L1 .

1.6 Some classes of operators

In this section we present two important classes that will be fundamental is this thesis.

1.6.1 Riesz transforms

One important class of singular integral operators that will be useful for us are the Riesz transforms

R j, for j = 1, . . . ,N, given by

R j f (x) = lim
ε→0+

cN

�
|x−y|>ε

f (y)
x j − y j

|x− y|N+1 dy

for f ∈ S (RN) and cN = Γ
(N+1

2

)
/π(N+1)/2. Its Fourier transform is given by

(̂R j f )(ξ ) =−i
ξ j

|ξ |
f̂ (ξ ).

A property of the Riesz transforms that will be key for some proofs in this text is that they are

bounded from Lp to itself for 1 < p < ∞ (see [12, Corollary 4.8] or [18, Corollary 5.2.8]), that is,
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the operator can be extended to Lp(RN), for all 1 < p < ∞, so that ∥R j f∥Lp ⩽ C(p,N)∥ f∥Lp for all

f ∈ Lp(RN). The Riesz transforms are also of type weak(1,1) (see [18, Section 5.3]), which means

that for every f ∈ L1(RN) and j = 1, . . . ,N,

∥R j f∥L1,∞
.
= sup

λ>0
λ
∣∣{x : |R j f (x)|> λ}

∣∣≲ ∥ f∥L1.

This is a simple application of Calderón-Zygmund Theorem [12, Theorem 5.1].

With the above properties, one is allowed to consider compositions of Riesz transforms. Let

α = (α1, . . . ,αN) be a multi-index. Then, the Riesz transform of order α is the operator

Rα f .
=
(
Rα1

1 ◦Rα2
2 ◦ · · · ◦RαN

N
)

f ,

for f ∈ Lp(RN), where Rα j
j is the composition R j ◦ R j ◦ · · · ◦ R j for α j times. The boundedness

properties of R j naturally extend to Rα . It is straightforward to conclude that

(̂Rα f )(ξ ) = (−i)|α| ξ α

|ξ ||α| f̂ (ξ ),

where ξ α = ξ
α1
1 ξ

α2
2 · · ·ξ αN

N and |α|= ∑
N
j=1 α j.

1.6.2 Pseudo-differential operators

In this subsection, we present some basic tools of the theory of pseudo-differential operators in

the Hörmander classes, with examples and properties that will be necessary in some proofs of this

text. We refer to [23, 24, 44] for a deeper study on the topic.

Definition 1.34. Let Ω ⊂ RN be open and let m,ρ,δ ∈ R with 0 < ρ ⩽ 1 and 0 ⩽ δ < 1. The set of

symbols of order m and type ρ,δ , denoted by Sm
ρ,δ (Ω), called the Hörmander classes, is the set of all

a ∈C∞(Ω×RN) such that, for every K ⊂⊂ Ω and all multi-indices α,β , the estimate∣∣∣∂ β
x ∂

α

ξ
a(x,ξ )

∣∣∣⩽Cα,β ,K⟨ξ ⟩m−ρ|α|+δ |β |, for x ∈ K,ξ ∈ RN , (1.24)

holds for some constant Cα,β ,K > 0. Here, ⟨ξ ⟩ .
= (1+ |ξ |2)1/2 denotes the so-called japanese bracket.

In particular, we write Sm = Sm
1,0 and simply say that Sm is the set of symbols of order m. We also

define S∞

ρ,δ
.
=
⋃

m Sm
ρ,δ and S−∞ .

=
⋂

m Sm
ρ,δ . Notice that the definition of S−∞ does not depend on ρ

and δ .

Example 1.35. Let a(x,ξ ) = ∑
|γ|⩽m

aγ(x)ξ γ , with aγ ∈C∞(Ω). Then, fixed K ⊂⊂ Ω and taking x ∈ K,

we have

∂
β
x ∂

α

ξ
a(x,ξ ) =Cα ∑

|γ|⩽m
α⩽γ

∂
β aγ(x)ξ

γ−α ,
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where the notation α ⩽ γ means that α j ⩽ γ j for every j = 1, . . . ,N. By the compactness of K,∣∣∣∂ β
x ∂

α

ξ
a(x,ξ )

∣∣∣⩽Cα,β ,K ∑
|γ|⩽m
α⩽γ

|ξ ||γ|−|α|

⩽Cα,β ,K ∑
|γ|⩽m
α⩽γ

(1+ |ξ |2)
1
2 (|γ|−|α|)

⩽ C̃α,β ,K⟨ξ ⟩m−|α|.

Hence, a ∈ Sm(Ω).

Example 1.36. If a ∈C∞(RN ×RN) is positively homogeneous of degree m for |ξ |⩾ 1, i.e.,

a(x, tξ ) = tma(x,ξ )

for |ξ |⩾ 1 and t ⩾ 1, then, fixed K ⊂⊂ RN and taking x ∈ K, we have:

• if |ξ |⩽ 1, then
∣∣∣∂ β

x ∂ α

ξ
a(x,ξ )

∣∣∣⩽C1,α,β ,K , since K ×B1 is compact;

• if ξ = tη , with |η |= 1 and t = |ξ |> 1, then

t |α|
∂

α

ξ
a(x,ξ ) = ∂

α
η a(x, tη) = ∂

α
η [tma(x,η)] = tm

∂
α
η a(x,η) = |ξ |m ∂

α
η a(x,η),

hence, ∂
β
x ∂ α

ξ
a(x,ξ ) = |ξ |m−|α| ∂

β
x ∂ α

η a(x,η), but since K ×SN−1 is compact, we have∣∣∣∂ β
x ∂ α

ξ
a(x,ξ )

∣∣∣⩽C2,α,β ,K|ξ |m−|α|.

Combining both cases, we have∣∣∣∂ β
x ∂

α

ξ
a(x,ξ )

∣∣∣⩽Cα,β ,K⟨ξ ⟩m−|α|, for x ∈ K,ξ ∈ RN ,

that is, a ∈ Sm(RN).

From the previous example, the symbol a(x,ξ ) = |ξ |2k, k ∈ N, belongs to S2k.

Example 1.37. Let A > 0 and a(x,ξ ) = (1+A|ξ |2)m/2 for m ∈ R. If m = 0, it is straightforward that

a ∈ S0. If m ̸= 0, since a is independent of x, we only need to analyze ∂ α

ξ
a(x,ξ ). Using Faà di Bruno’s

formula,

∂
α

ξ
a(x,ξ ) = ∑

1⩽ℓ⩽|α|

Cℓ(1+A|ξ |2)
m
2 −ℓ

∑
γ1+···+γℓ=α

|γ j|⩾1; j=1,...,ℓ

[(
∂

γ1

ξ
|ξ |2

)
· · ·
(

∂
γℓ

ξ
|ξ |2

)] .
It follows from the previous example that |ξ |2 ∈ S2, thus

∣∣∣∂ γ j

ξ
|ξ |2

∣∣∣⩽C⟨ξ ⟩2−|γ j|. Also,

(1+A|ξ |2)
m
2 −ℓ ⩽Cℓ(1+ |ξ |2)

m
2 −ℓ =Cℓ⟨ξ ⟩m−2ℓ
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Hence,

∣∣∣∂ α

ξ
a(x,ξ )

∣∣∣⩽ ∑
1⩽ℓ⩽|α|

Cℓ⟨ξ ⟩m−2ℓ
∑

γ1+···+γℓ=α

|γ j|⩾1; j=1,...,ℓ

Cα

[
⟨ξ ⟩2−|γ1| · · · ⟨ξ ⟩2−|γℓ|

]
= ∑

1⩽ℓ⩽|α|

[
Cα,ℓ⟨ξ ⟩m−2ℓ⟨ξ ⟩2ℓ−|α|

]
=Cα⟨ξ ⟩m−|α|.

Therefore, a ∈ Sm.

We can now define the main subject of this section.

Definition 1.38. To a symbol a ∈ Sm
ρ,δ (Ω) we associate the operator

P(a) f (x) =
�
RN

e2πix·ξ a(x,ξ ) f̂ (ξ )dξ , f ∈ S (Ω). (1.25)

P(a) : S (Ω)→ S (Ω) is called a pseudo-differential operator of order m and type ρ,δ . The set of

all such operators is denoted by OpSm
ρ,δ (Ω).

Example 1.39. Let a(x,ξ ) = ∑
|α|=m

aαξ
α be the symbol in Example 1.35 with all aα constant and

aα = 0 for |α|< m. Then

P(a) f (x) =
�
RN

e2πix·ξ

(
∑

|α|=m
aαξ

α f̂ (ξ )

)
dξ .

From Fourier inversion formula (1.6),

P(a) f (x) =
�
RN

e2πix·ξ

(
C ∑

|α|=m
aα∂

α f

)̂
(ξ )dξ =C ∑

|α|=m
aα∂

α f (x).

Hence, the homogeneous linear differential operator of order m given by A(D) = ∑|α|=m aα∂ α is a

pseudo-differential operator in OpSm.

More examples will appear in future chapters.

Pseudo-differential operators are bounded from S (Ω) to S (Ω) (see [23, Theorem 18.1.6]). If

we replace f̂ by its definition in (1.25), we get

P(a) f (x) =
�
RN

e2πix·ξ a(x,ξ )
(�

RN
e−2πiy·ξ f (y)dy

)
dξ

=

�
RN

K(x,y) f (y)dy,

where K(x,y) =
�
RN

e2πi(x−y)·ξ a(x,ξ )dξ ∈ S ′(Ω×RN) is called the distribution kernel of P(a). It

enjoys the following properties:



1.6. Some classes of operators 23

Theorem 1.40 ([2, Theorem 1.1]). Let T ∈OpSm
ρ,δ (Ω), 0< ρ ⩽ 1, 0⩽ ρ < 1, be a pseudo-differential

operator with symbol a(x,ξ ) and let K(x,y) be its distribution kernel.

(i) (Pseudo-local property) K is smooth outside the diagonal. Moreover, given α,β ∈ ZN
+, there is

n0 ∈ Z+ such that for each n ⩾ n0,

sup
x ̸=y

|x− y|n|∂ α
x ∂

β
y K(x,y)|< ∞.

(ii) Suppose a has compact support in ξ uniformly with respect to x. Then K is smooth, and given

α,β ∈ ZN
+, n ∈ Z+, there is C > 0 such that

|∂ α
x ∂

β
y K(x,y)|⩽C(1+ |x− y|)−n.

(iii) Suppose that m+M+N < 0 for some M ∈ Z+. Then K is a bounded continuous function with

bounded continuous derivatives of order up to M.

(iv) Suppose that m+M+N = 0 for some M ∈ Z+. Then, there is C > 0 such that

sup
|α+β |=M

|∂ α
x ∂

β
y K(x,y)|⩽C

∣∣ ln |x− y|
∣∣, x ̸= y.

(v) Suppose that m+M+N > 0 for some M ∈ Z+. Then, there is C > 0 such that

sup
|α+β |=M

|∂ α
x ∂

β
y K(x,y)|⩽C|x− y|−(m+M+N)/ρ , x ̸= y.

Next we state a comprehensive result on the Lp boundedness of pseudo-differential operators, due

to Álvarez and Hounie, which will be very useful in future proofs.

Theorem 1.41 ([2, Theorems 3.2 and 3.5]). Let T ∈ OpSm
ρ,δ (Ω), 0 < ρ ⩽ 1, 0 ⩽ δ < 1 and set

λ = max{0,(δ −ρ)/2}. Then

(i) T is of type weak(1,1) if m ⩽−N
[

1−ρ

2
+λ

]
,

and it continuously maps Lp(Ω) to Lq(Ω), for 1 < p ⩽ q < ∞, in the following cases:

(ii) if p ⩽ 2 ⩽ q and m ⩽−N
(

1
p
− 1

q
+λ

)
;

(iii) if 2 ⩽ p ⩽ q and m ⩽−N
[

1
p
− 1

q
+(1−ρ)

(
1
2
− 1

p

)
+λ

]
;

(iv) if p ⩽ q ⩽ 2 and m ⩽−N
[

1
p
− 1

q
+(1−ρ)

(
1
q
− 1

2

)
+λ

]
.

Particular cases of Theorem 1.41 that are noteworthy are:
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• T ∈ OpSm
ρ,δ (Ω) is continuous from Lp(Ω) to itself, 1 < p < ∞, if

m ⩽−N
[
(1−ρ)

∣∣∣∣1p − 1
2

∣∣∣∣+λ

]
.

• T ∈ OpSm(Ω) is continuous from Lp(Ω) to itself, 1 < p < ∞, and is of type weak(1,1), if

m ⩽ 0.

Regarding L1 continuity, we also have the following:

Theorem 1.42 ([35, Theorem 6.1]). Let T ∈ OpSm(RN). If m < 0, then T maps continuously L1(RN)

to itself.

To finish this subsection, we connect the elliptic operators defined beforehand with the theory of

pseudo-differential operators in order to obtain an important property.

Definition 1.43. Let T ∈ OpSm
ρ,δ (Ω) and a ∈ Sm

ρ,δ (Ω). We say a is a principal symbol of T if

T −P(a) ∈ OpSm+δ−ρ

ρ,δ (Ω).

Example 1.44. A(ξ ) = ∑|α|=m aαξ α ∈ Sm is a principal symbol of A(D) = ∑|α|=m aα∂ α ∈ OpSm.

Definition 1.45. Let ρ > δ and a ∈ Sm
ρ,δ (Ω). We say a is an elliptic symbol of order m if, for every

K ⊂⊂ Ω, there are positive constants C and r such that

|a(x,ξ )|>C⟨ξ ⟩m, for x ∈ K, |ξ |> r.

If T ∈ OpSm
ρ,δ (Ω), we say T is elliptic of order m if it has an elliptic principal symbol of order m.

Example 1.46. A(ξ ) = ∑|α|=m aαξ α is an elliptic symbol of order m if and only if A(ξ ) ̸= 0 for

ξ ∈ RN \{0}. This is in line with the definition of A(D) being elliptic given in Definition 1.6.

Theorem 1.47 ([23, Theorem 18.1.8]). Let ρ ⩾ δ and a j ∈ Sm j
ρ,δ (Ω), j = 1,2. Then

P(a1)P(a2) ∈ OpSm1+m2
ρ,δ (Ω).

The next theorem shows that elliptic operators are invertible, modulo an operator in OpS−∞.

Theorem 1.48 ([23, Theorem 18.1.9]). Let ρ > δ , a ∈ Sm
ρ,δ (Ω) and b ∈ S−m

ρ,δ (Ω). Then the conditions

below are equivalent:

(i) P(a)P(b)− I ∈ OpS−∞(Ω);

(ii) P(b)P(a)− I ∈ OpS−∞(Ω),

and a determines b mod S−∞(Ω). Here, I is the identity operator P(1). Both (i) and (ii) imply

(iii) a(x,ξ )b(x,ξ )−1 ∈ S−1
ρ,δ (Ω),

which then imply that a is an elliptic symbol of order m. Conversely, if a ∈ Sm
ρ,δ (Ω) is elliptic of order

m, then one can find b ∈ S−m
ρ,δ (Ω) satisfying (i), (ii) and (iii).



CHAPTER 2

Global solvability for homogeneous linear
operators with constant coefficients

Throughout this chapter, A(D) denotes an elliptic homogeneous linear differential operator of

order m on RN , N ⩾ 2 and 1 ⩽ m < N, with constant coefficients, from a finite dimensional complex

vector space E to a finite dimensional complex vector space F . Since the vector spaces have finite

dimension we will use, for simplicity, X in the place of X∗.

Inspired by Theorems 1.1 and 1.2, we will study the Lebesgue solvability for the equation

A∗(D) f = µ, (2.1)

where A∗(D) is the formal adjoint operator associated to the homogeneous linear differential operator

A(D):

Definition 2.1. The formal adjoint of a differential operator L : C∞
c (Ω,E)→ C∞

c (Ω,F) is the differ-

ential operator L∗ : C∞
c (Ω,F)→C∞

c (Ω,E) determined by
�

Ω

Lϕ ·ψ =

�
Ω

ϕ ·L∗ψ

for every ϕ ∈C∞
c (Ω,E) and ψ ∈C∞

c (Ω,F). In other words, L∗ = Lt , where Lt is the formal transpose

of L and Lt denotes the operator obtained by conjugating the coefficients of Lt .

Example 2.2. If L = ∇ : C∞
c (RN ,R)→C∞

c (RN ,RN), then

�
RN

∇ϕ ·ψ =
N

∑
j=1

�
RN

(∂ jϕ)ψ j =−
N

∑
j=1

�
RN

ϕ (∂ jψ j)

=−
�
RN

ϕ divψ =

�
RN

ϕ (−divψ),

and, therefore, L∗ =−div.

25
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The first result of this chapter concerns the Lebesgue solvability for the equation (2.1) when

1 ⩽ p < ∞ and is the focus of Section 2.1.

Theorem 2.3. Let A(D) be a homogeneous linear differential operator of order 1 ⩽ m < N on RN ,

N ⩾ 2, from E to F and µ ∈ M (RN ,E).

(i) If 1 ⩽ p ⩽ N/(N −m), f ∈ Lp(RN ,F) is a solution for (2.1) and µ ∈ M+(RN ,E), then µ ≡ 0.

(ii) If N/(N−m)< p<∞ and f ∈Lp(RN ,F) is a solution for (2.1), then µ has finite (m, p)−energy.

Conversely, if |µ| has finite (m, p)−energy and A(D) is elliptic, then there exists a function

f ∈ Lp(RN ,F) solving (2.1).

In particular, Theorem 2.3 recovers Theorem 1.1 taking A(D) =−∇, where E = R, F = RN and

A∗(D) = div.

The second and main result of this chapter deals with the case p = ∞ and is proved in Section 2.2.

Theorem 2.4. Let A(D) be a homogeneous linear differential operator of order 1 ⩽ m < N on RN

from E to F and µ ∈ M (RN ,E). If A(D) is elliptic and canceling, and µ satisfies

∥µ∥0,N−m
.
= sup

r>0

|µ|(Br)

rN−m < ∞, (2.2)

and the potential control

� |y|/2

0

|µ|(B(y,r))
rN−m+1 dr ≲ 1, uniformly on y, (2.3)

then, there exists f ∈ L∞(RN ,F) solving (2.1).

We point out that the assumption (2.2) is weaker in comparison to (N −m)-Ahlfors regularity,

∥µ∥N−m < ∞, since here it is only necessary to take the supremum over balls centered at the ori-

gin. The condition (2.3) can be understood as an uniform control of the truncated Wolff potential

associated to |µ|.

2.1 The 1 ⩽ p < ∞ case

The section is dedicated to the proof of Theorem 2.3. For the next proposition, the following

lemma will be necessary.

Lemma 2.5 ([42, p. 73]). Let Pk(x) be a homogeneous harmonic polynomial of degree k, k ⩾ 1. Then(
Pk(·)

| · |k+N−α

)̂
(ξ ) = γk,α

Pk(ξ )

|ξ |k+α
,

where γk,α = ikπN/2−α
Γ(k/2+α/2)

Γ(k/2+N/2−α/2)
.
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Proposition 2.6. Let 1 ⩽ p ⩽ N/(N −m). If µ ∈ M+(RN ,E) and f ∈ Lp(RN ,F) is a solution for

A∗(D) f = µ , then µ ≡ 0.

Proof. From the identity (N −m)

�
∞

|x−y|

1
rN−m+1 dr =

1
|x− y|N−m and the Fubini’s theorem we may

write

Imµ(x) =
1

γ(m)

�
RN

1
|x− y|N−m dµ(y) = cN,m

�
RN

(�
∞

|x−y|

1
rN−m+1 dr

)
dµ(y)

= cN,m

�
RN

(�
∞

0

χ{r>|x−y|}(r)
rN−m+1 dr

)
dµ(y) = cN,m

�
∞

0

(�
RN

χ{r>|x−y|}(r)
rN−m+1 dµ(y)

)
dr

= cN,m

�
∞

0

(�
B(x,r)

1
rN−m+1 dµ(y)

)
dr = cN,m lim

ε→0+

�
∞

ε

µ(B(x,r))
rN−m+1 dr.

Now, using the Gauss-Green theorem, we have

µ(B(x,r)) =
�

B(x,r)
A∗(D) f (y)dy = ∑

|α|=m
a∗α

�
B(x,r)

∂
α f (y)dy

= ∑
|α|=m

a∗α

�
∂B(x,r)

∂
α−e jα f (y)

y jα − x jα

|y− x|
dω(y),

where we choose, for each multi-index α = (α1, . . . ,αN), a number jα ∈ {1, . . . ,N} such that α jα ̸= 0

in a way that ∂ α f = ∂x jα
(∂ α−e jα f ). Summarizing

Imµ(x) = cN,m ∑
|α|=m

a∗α lim
ε→0+

�
∞

ε

(�
|x−y|=r

∂
α−e jα f (y)

y jα − x jα

|y− x|N−m+2 dω(y)

)
dr

= cN,m ∑
|α|=m

a∗α lim
ε→0+

�
|x−y|>ε

∂
α−e jα f (y)

x jα − y jα

|x− y|N−m+2 dy

= cN,m ∑
|α|=m

a∗α
(
K jα ∗∂

α−e jα f
)
(x),

where K jα (x) := x jα/|x|N−m+2. Thus from Lemma 2.5 we have K̂ jα (ξ ) = cN,m ξ jα/|ξ |m and hence,

renaming the constant cN,m, we have

(K jα ∗∂
α−e jα f )̂ (ξ ) = cN,m

ξ jα

|ξ |m
ξ

α−e jα f̂ (ξ ) = cN,m
ξ α

|ξ |m
f̂ (ξ ) = (̂Rα f )(ξ ).

In this way,

Imµ = cN,m ∑
|α|=m

a∗αRα f . (2.4)

In particular for m = 1,

I1µ(x) = cN

N

∑
j=1

a∗j lim
ε→0+

�
|x−y|>ε

f (y)
x j − y j

|x− y|N+1 dy = cN

N

∑
j=1

a∗jR j f (x)

for almost every x ∈ RN .
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Since each R j is bounded from Lp to itself for 1 < p < ∞ and of type weak(1,1), we con-

clude that ∥Imµ∥Lp ≲ ∥ f∥Lp < ∞, that is, µ has finite (m, p)−energy for 1 < p ⩽ N/(N −m) and

∥Imµ∥L1,∞ ≲ ∥ f∥L1 < ∞ for p = 1. Notice that up until this point we only needed µ ∈ M (RN ,E). If

µ ∈ M+(RN ,E), it follows from Proposition 1.5 that µ ≡ 0 in RN .

Next we prove the second part of the Theorem 2.3. The following proposition will be necessary.

Its proof can be found in [12, p. 71].

Proposition 2.7. If T is a tempered distribution homogeneous of degree α , then its Fourier transform

is homogeneous of degree −N −α .

Proposition 2.8. Let N/(N −m) < p < ∞ and µ ∈ M (RN ,E). If f ∈ Lp(RN ,F) is a solution for

A∗(D) f = µ , then µ has finite (m, p)−energy. Conversely, if |µ| has finite (m, p)−energy, then there

exists a function f ∈ Lp(RN ,F) solving A∗(D) f = µ .

Proof. The first part follows from identity (2.4) and the boundedness of order α Riesz transform

operators. For the converse, consider the function ξ 7→ H(ξ ) ∈ L (F,E) defined by

H(ξ ) = (A∗ ◦A)−1(ξ )A∗(ξ )

that is smooth in RN\{0} and homogeneous of degree −m. Here A∗(ξ ) is the symbol of the adjoint

operator A∗(D). Since we are assuming that 1 ⩽ m < N, then H is a locally integrable tempered

distribution and its inverse Fourier transform K(x) is a locally integrable tempered distribution homo-

geneous of degree −N +m (Proposition 2.7) that satisfies

u(x) =
�
RN

K(x− y)[A(D)u(y)]dy, u ∈C∞
c (RN ,E). (2.5)

and clearly |u(x)|⩽ Im|A(D)u|(x).
Let wm,p′

A (RN ,E) be the closure of C∞
c (RN ,E) with respect to the norm ∥u∥m,p′

.
= ∥A(D)u∥Lp′ .

Thus, ∣∣∣∣�
RN

u(x)dµ(x)
∣∣∣∣≲ �

RN

[�
RN

|A(D)u(y)|
|x− y|N−m dy

]
d|µ|(x)≲

�
RN

|A(D)u(y)| Im|µ|(y)dy

⩽ ∥u∥m,p′ ∥Im|µ|∥Lp ≲ ∥u∥m,p′,

since |µ| has finite (m, p)−energy, following that µ ∈ [wm,p′
A (RN ,E)]∗. Since A(D) : wm,p′

A (RN ,E)→
Lp′(RN ,F) is a linear isometry, its adjoint A∗(D) : Lp(RN ,F)→ [wm,p′

A (Rn,E)]∗ is surjective. There-

fore, there exists f ∈ Lp(RN ,F) such that A∗(D) f = µ .

In the end of the previous proof, the following lemma was used. It is a direct consequence of

Hahn-Banach Theorem:

Lemma 2.9. Let X and Y be normed vector spaces and T : X →Y a linear isometry. Then its adjoint

application T ∗ : Y ∗ → X∗ is surjective.
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Observe that Proposition 2.8, hence Theorem 2.3(ii), becomes a characterization for the existence

of an Lp solution (N/(N −m) < p < ∞) for (2.1) if |µ| = µ . This is the case when µ is a positive

scalar measure:

Corollary 2.10. Let A(D) be an elliptic homogeneous linear differential operator of order 1 ⩽ m < N

on RN , N ⩾ 2, from E to F, where E and F are finite dimensional real vector spaces, with dimRE = 1.

Let µ ∈ M+(RN ,E∗) and N/(N −m)< p < ∞. Then µ has finite (m, p)−energy if and only if there

exists a function f ∈ Lp(RN ,F∗) solving A∗(D) f = µ .

2.2 The p = ∞ case

In this section we will prove Theorem 2.4. The main ingredient of the proof is to investigate

sufficient conditions on µ in order to obtain∣∣∣∣�
RN

u(x)dµ(x)
∣∣∣∣≲ ∥A(D)u∥L1 , ∀u ∈C∞

c (RN ,E). (2.6)

The strategy used by Phuc and Torres to prove (1.4) is of no use here, as the co-area formula used by

them is not applicable for a general operator A(D). However, (2.6) is pretty similar to the Stein-Weiss

inequality (1.18) studied by de Nápoli and Picon in [11] for q = 1. The twist here is that we have dµ

instead of |x|−β dx, i.e. in their case the (scalar) positive measure is given by a special weighted power

for some β > 0. In order to prove Theorem 2.4 it is enough to show that (2.6) holds. In fact, assuming

the validity of that inequality, we conclude that µ ∈ [wm,1
A (RN ,E)]∗ and, following the argument used

in the proof of Proposition 2.8, there exists f ∈ L∞(RN ,F) such that A∗(D) f = µ . From the identity

(2.5), since A(D) is elliptic, the inequality (2.6) is equivalent to∣∣∣∣�
RN

[�
RN

K(x− y)g(y)dy
]

dµ(x)
∣∣∣∣≲ ∥g∥L1 (2.7)

where g := A(D)u, for all u ∈C∞
c (RN ,E) and moreover

|K(x− y)|⩽C |x− y|m−N , x ̸= y (2.8)

and

|∂yK(x− y)|⩽C |x− y|m−N−1, 2|y|⩽ |x|. (2.9)

To see why (2.9) holds, notice that (∂yK)̂ = cξ K̂ is homogeneous of degree 1−m. From Proposition

2.7 we conclude that ∂yK is homogeneous of degree m−N −1.

The proof reduces to obtaining inequality (2.7) invoking a special class of vector fields in L1 norm

associated to an elliptic and canceling operator A(D) and µ satisfying (2.2) and (2.3).
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2.2.1 A Hardy-type inequality

The first step in the proof of Theorem 2.4 is an extension of a Hardy-type inequality [11, Lemma

2.1] on two measures.

Lemma 2.11. Let 1 ⩽ q < ∞ and ν be a σ -finite real positive measure. Suppose ũ and ṽ are measur-

able and non-negative almost everywhere. Then[�
RN

(�
B|x|/2

g̃(y)dy

)q

ũ(x)dν(x)

]1/q

≲
�
RN

g̃(x)ṽ(x)dx (2.10)

holds for all g̃ ⩾ 0 if and only if

C := sup
R>0

(�
(BR)c

ũ(x)dν(x)

)1/q(
sup
x∈BR

[ṽ(x)]−1

)
< ∞. (2.11)

Analogously [�
RN

(�
(B|x|/2)

c
g̃(y)dy

)q

ũ(x)dν(x)

]1/q

≲
�
RN

g̃(x)ṽ(x)dx (2.12)

holds for all g̃ ⩾ 0 if and only if

Ã := sup
R>0

(�
BR

ũ(x)dν(x)
)1/q

(
sup

x∈(BR)c
[ṽ(x)]−1

)
< ∞. (2.13)

Proof. First we prove (2.11) implies (2.10). By Minkowski inequality we have[�
RN

(�
B|x|/2

g̃(y)dy

)q

ũ(x)dν(x)

]1/q

=

[�
RN

(�
RN

g̃(y)χ{2|y|<|x|}(x,y)dy
)q

ũ(x)dν(x)
]1/q

⩽
�
RN

(�
RN

[g̃(y)]q χ{2|y|<|x|}(x,y) ũ(x)dν(x)
)1/q

dy

=

�
RN

g̃(y)

(�
(B2|y|)c

ũ(x)dν(x)

)1/q

dy

⩽C
�
RN

g̃(y) ṽ(y)dy,

since (�
(B2|y|)c

ũ(x)dν(x)

)1/q

[ṽ(y)]−1 ⩽

(�
(B2|y|)c

ũ(x)dν(x)

)1/q(
sup

x∈B2|y|

[ṽ(x)]−1

)
⩽C.

Conversely, for R > 0 consider S(R) := ess sup
z∈BR

[ṽ(z)]−1. For each n ∈ N, we define the set

M̃n :=
{

z ∈ BR : [ṽ(z)]−1 > S(R)− 1
n

}
.
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From the definition follows |M̃n| > 0, hence there exist Mn ⊆ M̃n with 0 < |Mn| < ∞. Choosing

g̃(y) = χMn(y) and using (2.10), we have(�
(B2R)c

ũ(x)dν(x)

)1/q

=
1

|Mn|

[�
(B2R)c

(�
BR

χMn(y)dy
)q

ũ(x)dν(x)

]1/q

⩽
1

|Mn|

[�
RN

(�
B|x|/2

χMn(y)dy

)q

ũ(x)dν(x)

]1/q

≲
 

Mn

ṽ(x)dx ≲
(

S(R)− 1
n

)−1

.

Taking n → ∞ we get

(�
(B2R)c

ũ(x)dν(x)

)1/q

S(R)≲ 1 and the result follows since the control is

uniform on R > 0. The proof is analogous for (2.12) ⇐⇒ (2.13).

Observe that, to prove (2.10) above, it would suffice to ask for the weaker condition(�
(B2|y|)c

ũ(x)dν(x)

)1/q

≲ ṽ(y)

for almost every y ∈ RN .

2.2.2 A Stein-Weiss-type inequality

The following peculiar estimate for vector fields belonging to the kernel of some cocanceling

operator was presented at [11, Lemma 3.1].

Lemma 2.12. Let L(D) be a cocanceling homogeneous linear differential operator of order m on RN

from F to V . Then there exists C > 0 such that, for every ϕ ∈Cm
c (RN ,F), we have∣∣∣∣�

RN
ϕ(y) · f (y)dy

∣∣∣∣⩽C
m

∑
j=1

�
RN

| f (y)| |y| j |D j
ϕ(y)|dy (2.14)

for all functions f ∈ L1(RN ,F) satisfying L(D) f = 0 in the sense of distributions.

The second step to obtain (2.7) is an improvement of Lemma 1.31 ([11, Lemma 3.2], [27, Lemma

2.1]) in the setting of positive Borel measures.

Lemma 2.13. Assume N ⩾ 2, 0 < ℓ < N and K(x,y) ∈ L1
loc(R

N ×RN ,L (F,V )) satisfying

|K(x,y)|⩽C |x− y|ℓ−N , x ̸= y (2.15)

and

|K(x,y)−K(x,0)|⩽C
|y|

|x|N−ℓ+1 , 2|y|⩽ |x|. (2.16)
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Suppose 1 ⩽ q < ∞ and let ν ∈ M+(RN) satisfying

∥ν∥0,(N−ℓ)q < ∞, (2.17)

and the following uniform potential condition

[[ν ]](N−ℓ)q := sup
y∈RN

� |y|/2

0

ν(B(y,r))
r(N−ℓ)q+1

dr < ∞. (2.18)

If L(D) is cocanceling, then there exists C̃ > 0 such that(�
RN

∣∣∣∣�
RN

K(x,y)g(y) dy
∣∣∣∣q dν(x)

)1/q

⩽ C̃
�
RN

|g(x)|dx, (2.19)

for all g ∈ L1(RN ,F) satisfying L(D)g = 0 in the sense of distributions.

Remark 2.14. A stronger condition satisfying (2.18) is given by

ν(B(y,R))⩽C2 |y|(N−ℓ)q−NRN (2.20)

when R < |y|/2. The integration boundary |y|/2 in (2.18) can be swapped to a|y|, where a is a fixed

constant 0 < a < 1. In this case, (2.20) must hold for R < a|x| to imply (2.18).

Let us present an example of positive measures satisfying (2.17) and (2.18). Suppose N ⩾ 2,

0 < ℓ < N, 1 ⩽ q ⩽ N/(N − ℓ) and define dν = |x|(N−ℓ)q−Ndx. The control (2.17) is obvious for the

case when q = N/(N − ℓ), since ν is simply the Lebesgue measure and (N − ℓ)q = N. Otherwise,

ν(BR) =

�
BR

|x|(N−ℓ)q−N dx ≲
� R

0
r(N−ℓ)q−1 dr ≲ R(N−ℓ)q.

For (2.18) we note that, if |y|< R < |x|/2, then |x|/2 < |x+ y|< 3|x|/2. Thus,

ν(B(x,R)) =
�

B(x,R)
|y|(N−ℓ)q−N dy =

�
BR

|x+ y|(N−ℓ)q−N dy ≲ |x|(N−ℓ)q−NRN .

In order to prove the inequality (2.7), and consequently the Theorem 2.4, we estimate∣∣∣∣�
RN

[�
RN

K(x− y)g(y)dy
]

dµ(x)
∣∣∣∣⩽ �

RN

∣∣∣∣�
RN

K(x− y)g(y)dy
∣∣∣∣ d|µ|(x)

and we apply the Lemma 2.13 for q = 1 and ν = |µ|, taking K(x,y) = K(x−y) given by identity (2.5)

that, for ℓ = m, satisfies (2.8), which obviously implies (2.15), and (2.9), which by the Mean Value

Inequality and the fact that |x−η |⩾ |x|/2 for |η |⩽ |y|⩽ |x|/2, implies that

|K(x,y)−K(x,0)|≲ |y| sup
η∈[0,y]

|∂yK(x,η)|≲ |y|/|x|N−ℓ+1,

that is (2.16). Note that (2.17) and (2.18) come naturally from (2.2) and (2.3). The conclusion follows

taking g := A(D)u that belongs to the kernel of some cocanceling operator L(D) from (1.15).

Now we present the proof of Lemma 2.13.
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Proof of Lemma 2.13. Let ψ ∈C∞
c (B1/2,R) be a cut-off function such that 0 ⩽ ψ ⩽ 1, ψ ≡ 1 on B1/4,

and write K(x,y) = K1(x,y)+K2(x,y) with K1(x,y) = ψ(y/|x|)K(x,0). We claim that

J j
.
=

(�
RN

∣∣∣∣�
RN

K j(x,y)g(y)dy
∣∣∣∣q dν(x)

)1/q

≲
�
RN

|g(x)|dx (2.21)

for j = 1,2 and g ∈ L1(RN ,F) satisfying L(D)g = 0 in the sense of distributions.

Using the control (2.15) we estimate

J1 =

(�
RN

∣∣∣∣�
RN

ψ

(
y
|x|

)
g(y)dy

∣∣∣∣q |K(x,0)|q dν(x)
)1/q

≲

(�
RN

∣∣∣∣�
RN

ψ

(
y
|x|

)
g(y)dy

∣∣∣∣q |x|(ℓ−N)q dν(x)
)1/q

≲

(�
RN

[�
B|x|/2

|y|
|x|

|g(y)|dy

]q

|x|(ℓ−N)q dν(x)

)1/q

=

(�
RN

[�
B|x|/2

|y||g(y)|dy

]q

|x|(ℓ−N−1)q dν(x)

)1/q

, (2.22)

where the second inequality follows from (2.14) for ϕ(y) = ψ(y/|x|)η , where for a fixed x, η is a unit

vector in F chosen so that∣∣∣∣�
RN

ψ

(
y
|x|

)
η ·g(y)dy

∣∣∣∣= ∣∣∣∣�
RN

ψ

(
y
|x|

)
g(y)dy

∣∣∣∣ .
Since for any multi-index α we have ∂ αϕ(y) = |x|−|α| ∂ α

y ψ(y/|x|) and ψ ∈C∞
c (B1/2,R), (2.14) gives

us ∣∣∣∣�
RN

ψ

(
y
|x|

)
g(y)dy

∣∣∣∣≲ m

∑
j=1

�
B|x|/2

|g(y)| |y|
j

|x| j

∣∣∣∣D j
yψ

(
y
|x|

)∣∣∣∣ dy

≲
�

B|x|/2

|g(y)| |y|
|x|

dy.

In order to control (2.22) we use the first part of Lemma 2.11, taking ũ(x) = |x|(ℓ−N−1)q, g̃(x) =

|x||g(x)| and ṽ(x) = |x|−1. So checking (2.11) we have(�
(BR)c

ũ(x)dν(x)

)1/q

=

(
∞

∑
k=1

�
2k−1R⩽|x|<2kR

|x|(ℓ−N−1)q dν(x)

)1/q

⩽

(
∞

∑
k=1

(2k−1R)(ℓ−N−1)q
ν(B2kR)

)1/q

⩽ ∥ν∥1/q
0,(N−ℓ)q

(
∞

∑
k=1

(2k−1R)(ℓ−N−1)q(2kR)(N−ℓ)q

)1/q

≲ ∥ν∥1/q
0,(N−ℓ)q

{
sup
x∈BR

[ṽ(x)]−1

}−1

,
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where the last step follows from sup
x∈BR

[ṽ(x)]−1 = R. Hence,

J1 ≲

(�
RN

[�
B|x|/2

|y||g(y)|dy

]q

|x|(ℓ−N−1)q dν(x)

)1/q

≲ ∥ν∥1/q
0,(N−ℓ)q

�
RN

|g(x)|dx.

Now for J2, using Minkowski’s Inequality we get

J2 ⩽
�
RN

(�
RN

|K2(x,y)|q dν(x)
)1/q

|g(y)|dy.

It remains to be shown that �
RN

|K2(x,y)|q dν(x)⩽C (2.23)

for some constant C > 0 uniformly on y. Recall that K2(x,y) = K(x,y)−ψ(y/|x|)K(x,0). If 2|y| >
|x|, then ψ(y/|x|) = 0, thus |K2(x,y)| = |K(x,y)|. If |x| ⩾ 4|y|, then ψ(y/|x|) = 1, thus |K2(x,y)| =
|K(x,y)−K(x,0)|. In the region 2|y|⩽ |x|< 4|y| we have

K2(x,y) =
[

1−ψ

(
y
|x|

)]
K(x,y)+ψ

(
y
|x|

)
[K(x,y)−K(x,0)].

For each y ∈ RN we get the following upper estimate for the previous integration
�
RN

|K2(x,y)|q dν(x)⩽
�
|x|<2|y|

|K(x,y)|q dν(x)

+

�
2|y|⩽|x|<4|y|

(|K(x,y)|q + |K(x,y)−K(x,0)|q) dν(x)

+

�
|x|⩾4|y|

|K(x,y)−K(x,0)|q dν(x)

=

�
|x|<4|y|

|K(x,y)|q dν(x)+
�
|x|⩾2|y|

|K(x,y)−K(x,0)|q dν(x)

:= (I)+ (II).

From conditions (2.16) and (2.17) we have

(II) ≲ |y|q
�
(B2|y|)c

|x|(ℓ−N−1)q dν(x)

= |y|q
∞

∑
k=1

�
2k|y|⩽|x|<2k+1|y|

|x|(ℓ−N−1)q dν(x)

⩽ |y|q
∞

∑
k=1

(2k|y|)(ℓ−N−1)q
ν(B2k+1|y|)

≲ ∥ν∥0,(N−ℓ)q |y|(ℓ−N)q
∞

∑
k=1

2k(ℓ−N−1)q (2k+1|y|)(N−ℓ)q

= ∥ν∥0,(N−ℓ)q 2(N−ℓ)q
∞

∑
k=1

2−kq

≲ ∥ν∥0,(N−ℓ)q
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while from condition (2.15)

(I) ≲
�

B4|y|

|x− y|(ℓ−N)q dν(x)

=

�
B(y,|y|/2)

|x− y|(ℓ−N)q dν(x)︸ ︷︷ ︸
(Ia)

+

�
B4|y|\B(y,|y|/2)

|x− y|(ℓ−N)q dν(x).︸ ︷︷ ︸
(Ib)

The second part is straightforward:

(Ib)⩽
1

(|y|/2)(N−ℓ)q

�
B4|y|

dν(x) =
ν(B4|y|)

(|y|/2)(N−ℓ)q
≲ ∥ν∥0,(N−ℓ)q.

Finally, writing Ax := {r ∈ R : r > |x− y|} and pointing out that B(y, |y|/2) ⊂ B2|y|, we obtain from

(2.17) and (2.18)

(Ia) =

�
B(y,|y|/2)

(N − ℓ)q

(�
∞

|x−y|
r(ℓ−N)q−1 dr

)
dν(x)

= (N − ℓ)q
�
RN

χ
B(y,|y|/2)(x)

(�
∞

0

χAx(r)
r(N−ℓ)q+1

dr
)

dν(x)

= (N − ℓ)q
�

∞

0

(�
B(y,|y|/2)∩B(y,r)

1
r(N−ℓ)q+1

dν(x)

)
dr

= (N − ℓ)q

(� |y|/2

0

ν(B(y,r))
r(N−ℓ)q

dr
r
+ν(B(y, |y|/2))

�
∞

|y|/2

1
r(N−ℓ)q+1

dr

)

≲ (N − ℓ)q
[
[[ν ]](N−ℓ)q +ν(B2|y|)

1
(N − ℓ)q

(|y|/2)(ℓ−N)q
]

≲ [[ν ]](N−ℓ)q +∥ν∥0,(N−ℓ)q,

concluding (2.23) and thus J2 ≲ ( [[ν ]](N−ℓ)q +∥ν∥0,(N−ℓ)q)
1/q

�
RN

|g(y)|dy.

2.3 Applications and general comments

2.3.1 Avoiding the Wolff potential condition

We can get a similar result to Lemma 2.13 without the potential condition (2.18). In this case,

however, we must extend the Ahlfors regularity hypothesis (2.17) to every ball and the conclusion

(2.19) has an extra power weight on the right-hand side of the inequality.

Lemma 2.15. Assume N ⩾ 2, 0 < ℓ < N and K(x,y) ∈ L1
loc(R

N ×RN ,L (F,V )) satisfying

|K(x,y)|⩽C |x− y|ℓ−N , x ̸= y (2.24)
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and

|K(x,y)−K(x,0)|⩽C
|y|

|x|N−ℓ+1 , 2|y|⩽ |x|. (2.25)

Suppose 0 < α < 1, 1 ⩽ q < ∞, and let ν ∈ M+(RN) satisfying

∥ν∥(N−ℓ+α)q < ∞. (2.26)

If L(D) is cocanceling then there exists C̃ > 0 such that(�
RN

∣∣∣∣�
RN

K(x,y)g(y) dy
∣∣∣∣q dν(x)

)1/q

⩽ C̃
�
RN

|g(x)| |x|α dx, (2.27)

for all g |x|α ∈ L1(RN ,F) satisfying L(D)g = 0 in the sense of distributions.

Proof. With the necessary adaptations, the proof follows the same steps of Lemma 2.13, except when

estimating (Ia).

(Ia) =

�
B(y,|y|/2)

|x− y|(ℓ−N)q dν(x)

=
∞

∑
k=1

�
B(y,2−k|y|)\B(y,2−(k+1)|y|)

|x− y|(ℓ−N)q dν(x)

⩽
∞

∑
k=1

�
B(y,2−k|y|)

(2−(k+1)|y|)(ℓ−N)q dν(x)

= |y|(ℓ−N)q
∞

∑
k=1

(2−(k+1))(ℓ−N)q
ν(B(y,2−k|y|))

⩽ ∥ν∥(N−ℓ+α)q |y|(ℓ−N)q
∞

∑
k=1

(2−(k+1))(ℓ−N)q (2−k|y|)(N−ℓ+α)q

= 2(N−ℓ)q ∥ν∥(N−ℓ+α)q |y|αq
∞

∑
k=1

(2−αq)k

= 2(N−ℓ)q ∥ν∥(N−ℓ+α)q (2
αq −1)−1|y|αq.

2.3.2 First order operators

It remains as an open question whether (2.2) or (2.3) are necessary conditions to obtain a L∞

solution to (2.1) for homogeneous differential operator A(D) with order m > 1. For m = 1, however,

we show that certain (expected) decay regularity on µ is necessary:

Theorem 2.16. Let A(D) be a first order homogeneous linear differential operator on RN from E to

F and µ ∈M (RN ,E). If there exists f ∈ L∞(RN ,F) solving (2.1), then there is a constant C > 0 such

that

|µ(B(x,r))|⩽CrN−1

for every x ∈ RN and r > 0.
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Proof. Denoting A(D) =
N

∑
j=1

a j∂ j we have, for every x ∈ RN and almost every r > 0,

µ(B(x,r)) =
�

B(x,r)
A∗(D) f (y)dy =−

N

∑
j=1

�
B(x,r)

a∗j∂ j f (y)dy

=−
N

∑
j=1

�
∂B(x,r)

a∗j f (y)
y j − x j

|y− x|
dS(y),

hence |µ(B(x,r))|⩽CN∥ f∥L∞rN−1.

To extend this estimate for every r > 0, let M ⊂ R+ be the zero-measure set of values r > 0 for

which the previous estimate does not hold. Given x ∈RN and r > 0 we can write B[x,r] = ∩ jB(x,r j),

where (r j) j ⊂ R+ \M is a decreasing sequence converging to r (note that R+ \M is dense in R+).

Thus, simplifying the notation assuming µℓ ∈ M (RN) for each j = 1, ...,d we have

µℓ(B(x,r))⩽ lim
j→∞

|µ(B(x,r j))|⩽CN∥ f∥L∞ lim
j→∞

rN−1
j =CN∥ f∥L∞rN−1.

Summarizing

|µ(B(x,r))|⩽ (2d)1/2CN∥ f∥L∞rN−1.

2.3.3 De Rham complex

Recall the operator

A(D) = (dk,d∗
k−1) : C∞

c (RN ,ΛkRN)→C∞
c (RN ,Λk+1RN)×C∞

c (RN ,Λk−1RN)

from Examples 1.10 and 1.19. It was shown that, for k ∈ {2, . . . ,N−2}, A(D) is elliptic and canceling.

Its adjoint

A∗(D) : C∞
c (RN ,Λk+1RN)×C∞

c (RN ,Λk−1RN)→C∞
c (RN ,ΛkRN)

is given by

A∗(D)( f ,g) = d∗
k f +dk−1g.

Hence, we have the following corollary of Theorems 2.4 and 2.16:

Corollary 2.17. Let dk :C∞(RN ,ΛkRN)→C∞(RN ,Λk+1RN) and d∗
k :C∞(RN ,Λk+1RN)→C∞(RN ,ΛkRN)

be the exterior and co-exterior derivatives defined in Example 1.10 and µ ∈ M (RN ,ΛkRN). If

k ∈ {2, . . . ,N −2}, and µ satisfies

∥µ∥0,N−1
.
= sup

r>0

|µ|(Br)

rN−1 < ∞,

and the potential control
� |y|/2

0

|µ|(B(y,r))
rN dr ≲ 1, uniformly on y,



38 Chapter 2. Global solvability for homogeneous linear operators with constant coefficients

then, there exists ( f ,g) ∈ L∞(RN ,Λk+1RN)×L∞(RN ,Λk−1RN) solving

d∗
k f +dk−1g = µ. (2.28)

Conversely, if there exists ( f ,g) ∈ L∞(RN ,Λk+1RN)×L∞(RN ,Λk−1RN) solving (2.28), then there

is a constant C > 0 such that

|µ(B(x,r))|⩽CrN−1

for every x ∈ RN and r > 0.

2.3.4 Limiting case of trace inequalities for vector fields

F. Gmeineder, B. Raiţă and J. Van Schaftingen (see [17, Theorem 1.1]) characterized an inequality

similar to (2.6) involving positive Borel scalar measures. Precisely: if q = N−s
N−1 and 0 ⩽ s < 1 then the

estimate (�
RN

∣∣Dm−1u(x)
∣∣q dν(x)

)1/q

≲ ∥ν∥1/q
q(N−1)∥A(D)u∥L1 , (2.29)

for all u∈C∞
c (RN ,E) and all q(N−1)−Ahlfors regular measure ν , holds if and only if A(D) is elliptic

and canceling. Besides the authors claim that it seems to be not simple to obtain a generalization for

s = 1, i.e q = 1, in particular the inequality holds for the total derivative operator A(D) = Dm that is

elliptic and canceling (see Remark 2.19).

Next we present the validity of the inequality (2.29) for q = 1 (see [17, Theorem 1.1]) under

(N −1)−Ahlfors regularity and an additional uniform potential condition on ν .

Theorem 2.18. Let A(D) be a homogeneous linear differential operator of order m on RN , N ≥ 2,

from E to F. Then for all ν ∈M+(RN) satisfying (2.17) and (2.18), with ℓ= q = 1, there exists C > 0

such that �
RN

∣∣Dm−1u(x)
∣∣ dν ⩽C∥A(D)u∥L1, ∀u ∈C∞

c (RN ,E). (2.30)

Proof. The inequality follows by the combination of the identity Dm−1u(x)=
�
RN K(x−y)[A(D)u(y)]dy

where K̂(ξ ) := ∑|α|=m−1 ξ α(A∗ ◦A)−1(ξ )A∗(ξ ) that satisfies (2.15) and (2.16) for ℓ= 1 and then the

estimate (2.30) follows by Lemma 2.13 for q = 1, as showed in the proof of inequality (2.7).

As a consequence of the previous proof we can estimate the constant at inequality (2.30) by

C ≲ ∥ν∥0,N−1 +[[ν ]]N−1.

Remark 2.19. Let Dm := (Dα)|α|=m the total derivative operator that is an elliptic and canceling

homogeneous linear differential operator. Using (1.4) it follows directly that�
RN

∣∣Dm−1u(x)
∣∣ dν ≲ ∥ν∥N−1∥Dmu∥L1, (2.31)

for all u ∈ C∞
c (RN) and ν ∈ M+(RN). Although the assumption that ν is (N − 1)−Ahlfors regular

contrasts with ∥ν∥0,N−1 < ∞ at Theorem 2.18, the uniform potential condition (2.18) is not necessary

to the validity of (2.31).
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In the same spirit of [27, Theorem A] the inequality (2.30) can be extended for the following:

Theorem 2.20. Let A(D) be a homogeneous linear differential operator of order m on RN , N ≥ 2,

from E to F, and assume that 1 ⩽ q < ∞, 0 < ℓ < N and ℓ⩽ m. Then for all ν ∈ M+(RN) satisfying

(2.17) and (2.18) there exists C > 0 such that(�
RN

∣∣∣(−∆)(m−ℓ)/2u(x)
∣∣∣q dν

)1/q

⩽C∥A(D)u∥L1 , ∀u ∈C∞
c (RN ,E). (2.32)

The proof follows the same steps when proving Theorem 2.18 and will be omitted. In particular,

the inequality (2.32) recovers the inequality (1.5) in Local Hardy-Littlewood-Sobolev inequalities for

canceling elliptic differential operators [27] taking dµ = |x|−N+(N−ℓ)qdx for 1 ⩽ q < N/(N − ℓ) (see

Remark 4.1).





CHAPTER 3

Removable singularities

Given a linear differential operator A(x,D) = ∑|α|⩽m aα(x)∂ α with smooth coefficients in RN ,

N ⩾ 2, one calls a closed set S ⊆RN removable for the equation A(x,D) f = 0 with respect to a space

F of locally integrable functions (scalar or vector-valued), provided that for any f ∈F satisfying (in

the sense of distributions) the equation A(x,D) f = 0 outside S, one has A(x,D) f = 0 in RN (in the

sense of distributions).

The following result dates back to Harvey and Polking [20, Theorem 4.1(b)], where H s will stand

for the s-dimensional Hausdorff (outer) measure in RN .

Theorem 3.1. If A(x,D) is a linear differential operator of order m < N with smooth coefficients and

if the closed set S ⊆ RN satisfies H N−m(S) = 0, then S is removable for the equation A(x,D) f = 0

with respect to the space L∞
loc(R

N) of locally (essentially) bounded functions.

Removable sets for several linear equations have been studied, and sometimes characterized com-

pletely, in the literature.

3.1 The divergence case

It was first proven by Moonens in [34] that a compact set S ⊆ RN is removable for the equation

div f = 0 with respect to L∞(RN ,RN), if and only if one has H N−1(S) = 0. The proof, however,

heavily relies on the fact that one deals with the divergence operator, and cannot be carried out to

other differential operators (even of order one).

Shortly after, Phuc and Torres [38] obtained as an application of Theorem 1.2, among other results,

a new proof for the above characterization of compact removable sets for the divergence equation with

respect to bounded vector fields, this time relying on a new strategy to prove that a compact set S⊆RN

with H N−1(S)> 0 cannot be removable for the divergence equation. Their argument uses the famous

Frostman’s lemma [32, Theorem 8.8]:

41
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Lemma 3.2 (Frostman’s lemma). Let B be a Borel set in RN . Then H s(B) > 0 if and only if there

exists a non-trivial Radon measure ν ∈ M+(RN) (i.e., 0 < ν(RN) < ∞) such that ν is compactly

supported on B and ν(B(x,r))⩽ rs for x ∈ RN and r > 0.

If a compact set S ⊆ Rn has H N−1(S) > 0, then Frostman’s lemma gives a non-trivial Radon

measure ν supported on S with the property that ν(B(x,r))⩽ rN−1 for all x ∈RN and r > 0. Then, by

Theorem 1.2, the equation div f = ν has a solution in L∞(RN ,RN). Since div f = 0 outside S (as ν is

supported in S), if S were removable for the divergence equation with respect to L∞, this would imply

div f = 0 in RN , a contradiction with the fact that div f = ν ̸= 0 in RN . Once again, the presence of

the divergence operator prevents this proof being extended to other operators.

3.2 The A∗(D) case

As an application of Theorem 2.4, we can prove a necessary condition for a set S ⊆ RN to be re-

movable for the equation A∗(D) f = 0 associated to an elliptic and canceling homogeneous differential

operator A(D):

Theorem 3.3. Assume that A(D) is an elliptic and canceling homogeneous differential operator on

RN of order 1 ⩽ m < N, from a finite-dimensional vector space E to a finite-dimensional vector space

F. If the closed set S ⊆ RN is removable for the equation A∗(D) f = 0 in L∞(RN ,F), then S has

Hausdorff dimension less than or equal to N −m.

Recall that the Hausdorff dimension of a set S is defined as the infimum of all s ⩾ 0 such that

H s(S) = 0.

It follows from Theorem 3.1 that if H N−m(S)= 0, then S is removable for the equation A∗(D) f = 0

with respect to L∞. Such a set has Hausdorff dimension less than or equal to N − m. It hence

only remains open whether or not some sets with Hausdorff dimension N −m, yet positive (N −m)-

dimensional Hausdorff measure, may be removable in this context.

3.2.1 A version of Frostman’s lemma with decay

If one were to use Frostman’s lemma to obtain a measure satisfying the hypothesis from Theorem

2.4, condition (2.3) would be missing. Remember (see Remark 2.14) that a sufficient condition for

(2.3) to be fulfilled in this case is given by

ν(B(x,r))≲ |x|−mrN (3.1)

when r < |x|/2. Because of that, we provide a result ensuring at least that, given integers 1 ⩽ m < N

and a closed set S ⊆RN satisfying H N−m+α(S)> 0 for some α > 0, there exists a non-trivial Radon

measure supported on S and satisfying conditions (2.2) and (2.3). This will result from observing that

one can impose, in the statement of Frostman’s lemma, a decay condition.
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Lemma 3.4 (Frostman’s lemma with power weight decay). Assume that 0 < α < s < N are fixed

and that B ⊆ RN is a Borel set satisfying H s(B)> 0. Then there exists a non-trivial Radon measure

µ ∈ M+(RN) supported on B satisfying:

∥µ∥0,s−α = sup
r>0

µ(Br)

rs−α
< ∞, (3.2)

and such that, for any x ∈ RN and any 0 < r < |x|/2, one has

µ(B(x,r))≲ |x|−αrs. (3.3)

Proof. Using Lemma 3.2 we find a non-trivial Radon measure ν supported on B satisfying ν(B(x,r))⩽

rs for all x ∈ RN and all r > 0. Now define Ak := {x ∈ RN : k ⩽ |x| < k+1} for k ∈ N∪{0} and in-

troduce the Radon measure µ defined by:

µ :=
∞

∑
k=0

2−kα
ν Ak.

Observe first that, for 0 < r < 1, Br ⊂ A0. Hence, one has

µ(Br)

rs−α
=

ν(Br)

rs−α
⩽

rs

rs−α
= rα ⩽ 1,

while if one has j ⩽ r < j+1, for some j ∈ N, there holds

µ(Br) =
j−1

∑
k=0

2−kα
ν(Ak)+2− jα

ν(Br ∩A j)

⩽
j−1

∑
k=0

2−kα
ν(Bk+1)+2− jα

ν(Br)

⩽
j−1

∑
k=0

2−kα(k+1)s +2− jαrs,

thus,

µ(Br)

rs−α
⩽

1
rs−α

[
j−1

∑
k=0

2−kα(k+1)s +2− jαrs

]

=
1

rs−α

j−1

∑
k=0

2−kα(k+1)s +2− jαrα

⩽
j−1

∑
k=0

2−kα(k+1)s +[2− j( j+1)]α

⩽Cα,s < ∞,

with, for instance, Cα,s := 1+∑
∞
k=0 2−kα(k + 1)s, since one has 2− j( j + 1) ⩽ 1 for all j ∈ N and

∑
∞
k=0 2−kα(k+1)s converges (by the ratio test). Therefore, (3.2) holds.
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To prove (3.3), fix x ∈ RN and 0 < r ⩽ |x|/2. Choosing j ∈ N∪{0} such that one has j ⩽ |x| <
j+1, one finds r < j+1

2 and hence also, for y ∈ B(x,r),

|y|⩾ |x|− |x− y|> j− j+1
2

=
j−1

2
and |y|⩽ |x|+ |y− x|< j+1+

j+1
2

=
3
2
( j+1),

so that there holds B(x,r)∩Ak =∅ for k < m j :=
⌊

j−1
2

⌋
and k > n j :=

⌈3
2( j+1)

⌉
, where ⌊a⌋ denotes

the greatest integer less than or equal to a and ⌈a⌉ is the smallest integer greater than or equal to a.

We can hence compute

µ(B(x,r))⩽
n j

∑
k=m j

2−kα
ν(B(x,r))⩽ rs

n j

∑
k=m j

2−kα . (3.4)

Yet one has

n j

∑
k=m j

2−kα = 2−m jα
n j−m j

∑
k=0

2−kα = 2−m jα
1−2−[1+(n j−m j)]α

1−2−α

=
2−m jα −2−(n j+1)α

1−2−α
⩽

1
1−2−α

2−m jα ⩽
1

1−2−α
2−
(

j−1
2 −1

)
α

=
2

3
2 α

1−2−α
2−

j
2 α . (3.5)

Writing then

2−
j
2 α = |x|−α

(
|x|
2

j
2

)α

⩽ |x|−α

(
j+1

2
j
2

)α

⩽

(
3
2

)α

|x|−α , (3.6)

since one has k+1

2
k
2
⩽ 3

2 for any k ∈ N∪{0}, we finally get, combining (3.4), (3.5) and (3.6),

µ(B(x,r))⩽ rs 2
3
2 α

1−2−α
2−

j
2 α

⩽
2

α

2 ·3α

1−2−α
· |x|−αrs,

which establishes (3.3).

3.2.2 Hausdorff dimension of removable sets for A∗(D)

We are now ready to prove Theorem 3.3.

Proof of Theorem 3.3. If the Hausdorff dimension of S were larger than N−m, then there would exist

α > 0 such that H N−m+α(S)> 0. The above Frostman’s lemma with power weight decay - Lemma

3.4 - applied to B = S and s = N −m+α ensures the existence of a non-trivial real-valued Radon

measure ν supported on S satisfying

sup
r>0

ν(Br)

rN−m < ∞,
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and such that, for any x ∈ RN and any 0 < r < |x|/2, one has

ν(B(x,r))≲ |x|−αrN−m+α .

Yet then, if e∈E is fixed, and if one defines the vector-valued measure µ(B) := ν(B)e for any B⊆RN ,

there holds

sup
r>0

|µ|(Br)

rN−m = ∥e∥E sup
r>0

ν(Br)

rN−m < ∞,

meaning that (2.2) is fulfilled.

We also get, for any x ∈ RN , x ̸= 0,

� |x|
2

0

|µ|(B(x,r))
rN−m+1 dr =

� |x|
2

0

ν(B(x,r))
rN−m+1 dr ≲ |x|−α

� |x|
2

0
rα−1 dr =

1
2αα

,

so that (2.3) is also satisfied uniformly in x ∈ RN , x ̸= 0.

Hence it follows from Theorem 2.4 that there exists f ∈ L∞(RN ,F) solving A∗(D) f = µ , which

implies that S is not removable for the equation A∗(D) f = 0, since, as argued in the divergence case,

one has A∗(D) f = 0 outside S (in the sense of distributions) but A∗(D) f = µ ̸= 0 in RN (in the sense

of distributions).





CHAPTER 4

Local solvability for non-homogeneous
linear operators with variable coefficients

In Chapter 2, we dealt with homogeneous operators with constant coefficients defined in the whole

euclidean space. We now want to take a step further towards a more general case. If one decides to

consider operators with variable coefficients, it will be naı̈ve to expect solvability results that hold in

the whole RN . That is why the results addressed in this chapter are all local, meaning that they only

hold in open subsets of RN . From now on, Ω always denotes an open subset of RN .

Let A(·,D) be a linear differential operator of order m on Ω, N ⩾ 2 and 1 ⩽ m < ∞, from a finite

dimensional complex vector space E to a finite dimensional complex vector space F , given by

A(x,D) = ∑
|α|⩽m

aα(x)∂ α : C∞
c (Ω,E)→C∞

c (Ω,F), (4.1)

where the coefficients are now smooth functions aα ∈ C∞(Ω,L (E,F)). We will study the local

Lebesgue solvability for the equation

A∗(x,D) f = µ, (4.2)

where we denote A∗(x,D) = ∑|α|⩽m a∗α(x)∂
α , with a∗α : Ω → L (F,E). We shall say that equation

(4.2) is Lp locally solvable in Ω if, for each x0 ∈ Ω, there exist an open neighborhood U ⊆ Ω and

f ∈ Lp(U,F) such that
�

U
ϕ dµ =

�
U

f ·A(x,D)ϕ dx, ϕ ∈C∞
c (U,E). (4.3)

Continuous solvability for (4.2), in distributional sense, was recently characterized by Moonens

and Picon for elliptic and canceling operators:

Theorem 4.1 ([36, Theorem 1.3]). Let A(·,D) be an elliptic and canceling linear differential operator

with smooth coefficients. Then, every point x0 ∈ Ω admits an open neighborhood U ⊂ Ω such that,

for any distribution µ ∈ D ′(U,E), the equation (4.2) is continuously solvable in U if and only if for

47
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every ε > 0 and every compact set K ⊂⊂U, there exists θ = θ(K,ε)> 0 such that one has

|µ(ϕ)|⩽ θ∥ϕ∥W m−1,1 + ε∥A(·,D)ϕ∥L1, (4.4)

for any ϕ ∈ C∞
K (U,E), i.e. the space of smooth functions ϕ in U vanishing outside K. Here,

W m−1,1(U) is the homogeneous Sobolev space defined by L1(U) functions whose weak derivatives

of order m−1 belong to L1(U).

One must be wary of the definition of ellipticity, cancelation and cocancelation for non-homogeneous

operators with variable coefficients. This will be addressed in Section 4.2.

The first result in this chapter presents sufficient conditions on µ to guarantee the local Lebesgue

solvability for the equation (4.2) when 1 < p < ∞. Proving it is the goal of Section 4.3.

Theorem 4.2. Let A(·,D) be an elliptic linear differential operator of order 1 ⩽ m < N on Ω from E

to F as in (4.1), 1 < p < ∞ and µ ∈M (Ω,E). If, for each x0 ∈ Ω, there exists an open neighborhood

U ∋ x0 of Ω such that |µ| has finite strong (m, p)−energy on U, then the equation (4.2) is Lp locally

solvable in Ω.

The strong (m, p)−energy is slightly different from the (m, p)−energy defined in Section 1.2,

replacing the Riesz potentials by Bessel potentials in order to attain a better behavior at infinity.

Section 4.1 will focus on that matter. As in the setting of operators with constant coefficients, the

proof resumes to obtaining the a priori local estimate∣∣∣∣�
U

u(x)dµ(x)
∣∣∣∣⩽C∥A(·,D)u∥Lp′ , ∀u ∈C∞

c (U,E) (4.5)

for some C = C(U, p,N) > 0, and the solvability follows from a duality argument. Once again, the

case when p = ∞ is treated separately and is the main result of this chapter, being proved in Section

4.4.

Theorem 4.3. Let A(·,D) be a linear differential operator of order 1 ⩽ m < N on Ω from E to F as

in (4.1) and µ ∈ M (Ω,E). Suppose that A(·,D) is elliptic and canceling in Ω and µ satisfies

∥µ∥Ω,N−m
.
= sup

B(x,r)⊂Ω

|µ|(B(x,r))
rN−m < ∞. (4.6)

Then, for each fixed x0 ∈ Ω, there exists an open neighborhood U ∋ x0 in Ω such that, if the potential

condition � a|y−x0|

0

|µ|(B(y,r))
rN−m+1 dr ≲ 1, (4.7)

where a is some constant between 0 and 1, is satisfied uniformly for almost every y ∈ U, then there

exists a function f ∈ L∞(U,F) solving (4.2).
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In contrast to (2.2) in Theorem 2.4, the hypothesis (4.6) is the (N −m)-Ahlfors regularity of µ on

Ω, taking the supremum over every ball (not only those centered at the origin).

Although the proof follows similar steps in comparison to the global case, the work is far from

trivial since the machinery in the setting of operators with variable coefficients involves new argu-

ments. An example of measure satisfying (4.6) and (4.7) is given in Example 4.23.

4.1 Strong (m, p)−energy

For any m ⩾ 0 and any function f in the Schwartz space S (RN), the Bessel potential operators

Jm are given by the action of the multiplier Ĵm f (ξ ) = [ξ ]−m f̂ (ξ ), where [ξ ] =
(
1+4π2|ξ |2

)1/2. We

write Jm f = Gm ∗ f , if m > 0, and J0 f = f , where

Gm(x) = cm

�
∞

0
e−π|x|2/δ hm(δ )dδ , (4.8)

with cm = (4π)−m/2 Γ(m/2)−1 and hm(δ ) = e−δ/4π δ (−N+m−2)/2. The kernel Gm ∈ L1(RN) and is

clearly positive and radially symmetric.

Remark 4.4. From Example 1.37, we know that Jm f is a pseudo-differential operator in OpS−m.

From Theorem 1.41, it follows that Jm is of weak type(1,1) and is bounded from Lp to itself, for

1 < p < ∞.

To point out an important property of Bessel potentials, we introduce a notation to describe the

asymptotic behavior of a given function.

Definition 4.5. Let f : Ω ⊆ R → R and φ : Ω → (0,∞) and let a be an accumulation point of Ω or

a =±∞ (when Ω is unbounded). We say that:

(i) f (x) = O(φ(x)) as x → a (read “ f is big-oh of φ”) if there exist a neighborhood a ∈U ⊂ Ω and

a positive constant A such that | f (x)|⩽ Aφ(x) for every x ∈U ;

(ii) f (x) = o(φ(x)) as x → a (read “ f is little-oh of φ”) if, for each ε > 0, there exists a neighbor-

hood a ∈U ⊂ Ω such that | f (x)|⩽ ε φ(x) for every x ∈U .

It is often useful to interpret O(·) and o(·) as limits: f (x) = O(φ(x)) as x → a is equivalent to

limsup
x→a

| f (x)|
φ(x)

< ∞,

whereas f (x) = o(φ(x)) as x → a is equivalent to

lim
x→a

| f (x)|
φ(x)

= 0.

The first important property of the Bessel potential kernel is that, for 0 < m < N, its behavior near

the origin is similar to the Riesz potential kernel. More precisely, if 0 < m < N,

Gm(x) =
|x|−N+m

γ(m)
+o(|x|−N+m) as |x| → 0, (4.9)
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where γ(m) := πN/2 2m Γ(m/2)/Γ((N −m)/2). The second important property regards its decay at

infinity:

Gm(x) = O(e−|x|/2) as |x| → ∞, (4.10)

meaning that it has exponential decay, a useful property that Riesz potentials lack. More on Bessel

potential operators can be seen in [42].

In a similar fashion to the Riesz potential, if η ∈ M (Ω,C), we define

Jmη(x) :=
�

Ω

Gm(x− y)dη(y)

and, for µ ∈ M (Ω,X), Jmµ := (Jmµ1, . . . ,Jmµd).

Definition 4.6. Let 1 ⩽ p < ∞, 0 < m < N and Ω ⊆ RN . We say that µ ∈ M (Ω,X) has finite strong

(m, p)−energy on a subset U ⊂ RN if

∥Jmµ∥Lp(U) :=
(�

U
|Jmµ(x)|p dx

)1/p

< ∞,

and µ has finite strong (m,1)∗−energy on U if

∥Jmµ∥L1,∞(U)
.
= sup

λ>0
λ |{x ∈U : |Jmµ(x)|> λ}|< ∞.

We say a measure µ ∈ M+(Ω,X) is translation-invariant if, for every x,y ∈ Ω and r > 0 such that

B(x,r),B(y,r) ⊂ Ω, we have µ(B(x,r)) = µ(B(y,r)). Clearly the Lebesgue measure restricted to Ω

is translation-invariant. The next proposition shows that, in RN , a certain property is still valid if we

replace the Riesz potential for the Bessel potential.

Proposition 4.7. Let 0 < m < N. If µ ∈ M+(RN ,X) is translation-invariant and has finite strong

(m, p)−energy for some 1 < p ⩽ N/(N −m) or strong (m,1)∗−energy on RN , then µ ≡ 0.

Proof. Fix a point x0 ∈RN and suppose by simplicity that the components of µ are real measures, i.e.

µℓ ∈M+(RN) (otherwise take µRe
ℓ or µ Im

ℓ ). By (4.9), given ε > 0 there exists a small R > 0 such that

|x|−N+m

γ(m)
−Gm(x)⩽

∣∣∣∣Gm(x)−
|x|−N+m

γ(m)

∣∣∣∣⩽ ε|x|−N+m

whenever |x|< R. Thus, choosing ε small enough, we have

Gm(x)⩾
(

1
γ(m)

− ε

)
|x|−N+m ⩾ 0 when |x|< R. (4.11)

By (4.11) and the translation-invariance of the measure, we have

Jmµℓ(x)⩾
�

B(x,R)
Gm(x− y)dµℓ(y)⩾

�
B(x,R)

cN,m

|x− y|N−m dµℓ(y)

⩾
�

B(x,R)

cN,m

(|x|+R)N−m dµ(y) = cN,m
µℓ(B(x,R))
(|x|+R)N−m = cN,m

µℓ(B(x0,R))
(|x|+R)N−m .
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We then get �
RN

|Jmµ(x)|p dx ≳
�
RN

[Jmµℓ(x)]p dx ⩾
�
RN

[
cN,m µℓ(B(x0,R))
(|x|+R)N−m

]p

dx

= [cN,mµℓ(B(x0,R))]
p
�
RN

1
(|x|+R)(N−m)p

dx

= [cN,mµℓ(B(x0,R))]
p
�

∞

0

rN−1

(r+R)(N−m)p
dr

= [cN,mµℓ(B(x0,R))]
p
�

∞

R

(r−R)N−1

r(N−m)p
dr

and for 1 < p ⩽ N/(N −m) the last integral blows up to infinity, as N − 1− (N −m)p ⩾ −1 (in-

dependent of R > 0). Thus, as µ ∈ M+(RN ,X) has finite strong (m, p)−energy, we must have

µℓ(B(x0,R)) = 0. For the case p = 1, we have

sup
λ>0

λ

∣∣∣∣{x ∈ RN :
µℓ(B(x0,R))
(|x|+R)N−m > λ

}∣∣∣∣≲ ∥Jmµ∥L1,∞ < ∞.

However,

λ

∣∣∣∣{x :
µℓ(B(x0,R))
(|x|+R)N−m > λ

}∣∣∣∣= λ

∣∣∣∣∣B
(

0,
(

µℓ(B(x0,R))
λ

) 1
N−m

−R

)∣∣∣∣∣
= λ

− m
N−m

∣∣∣B(0,µℓ(B(x0,R))
1

N−m −λ
1

N−m R
)∣∣∣ ,

which blows-up to infinity when λ > 0 is small and µℓ(B(x0,R)) ̸= 0. Since RN is separable, then

µℓ(RN) = 0 for each ℓ= 1, . . . ,d. Therefore, µ ≡ 0 on RN .

4.2 The pointwise notion of ellipticity, cancelation and cocance-
lation

As alluded previously, the definitions for elliptic, canceling and cocanceling operators are slightly

different in this framework. Actually, these are pointwise definitions that specialize to the simpler

versions seen when the operator is homogeneous and has constant coefficients.

Let A(·,D) be a linear differential operator of order m on Ω as in (4.1). Its principal part is the

homogeneous operator of order m on Ω

Am(x,D) = ∑
|α|=m

aα(x)∂ α .

The symbol of A(·,D) is the linear transformation A(x,ξ ) : E → F defined, for each (x,ξ ) ∈
Ω×RN , by

A(x,ξ ) := ∑
|α|⩽m

aα(x)ξ
α ,

and its principal symbol is

Am(x,ξ ) := ∑
|α|=m

aα(x)ξ
α ,
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Remark 4.8. From Example 1.35, A(·,D) is a pseudo-differential operator in OpSm. Notice that the

definition of its principal symbol is in accordance with the one given in Definition 1.43.

Definition 4.9. A linear differential operator A(·,D) on Ω from E to F is said to be elliptic at x0 ∈ Ω

if, for every ξ ∈ RN \ {0}, its principal symbol at x0, Am(x0,ξ ) : E → F , is injective. We say that

A(·,D) is elliptic in Ω if it is elliptic at every x0 ∈ Ω.

Remark 4.10. Once again, as in the homogeneous constant coefficient case, this definition of elliptic-

ity is equivalent to that of A(·,D) being a elliptic pseudo-differential operator. Recall from Example

1.46 that Am(x0,ξ ) is an elliptic symbol of order m if and only if Am(x0,ξ ) ̸= 0 for ξ ∈ RN \ {0}.

By continuity, Am(x,ξ ) ̸= 0 for ξ ∈ RN \{0} and x in a neighborhood of x0. Thus, Theorem 1.48 is

applicable when A(·,D) is elliptic in the sense of Definition 4.9.

Definition 4.11. A linear differential operator A(·,D) on Ω from E to F is said to be canceling at

x0 ∈ Ω if its principal part evaluated at x0, Am(x0,D), is canceling in the sense of homogeneous

constant coefficient operators, i.e. if ⋂
ξ∈RN\{0}

Am(x0,ξ )[E] = {0}.

We say that A(·,D) is canceling in Ω if it is canceling at every x0 ∈ Ω.

Let L(·,D) : C∞(Ω,F)→C∞(Ω,V ), where V is another finite dimensional complex vector space,

be a linear differential operator of order κ given by

L(x,D) = ∑
|α|⩽κ

bα(x)∂ α , (4.12)

where bα ∈C∞(Ω,L (F,V )).

Definition 4.12. We say that L(·,D) is cocanceling at x0 ∈ Ω if, for every f ∈ F \{0}, the polynomial

p : RN \{0}→V , with coefficients in V , defined by

p(ξ ) .
= Lκ(x0,ξ ) f

does not vanish identically. We say that L(·,D) is cocanceling in Ω if it is cocanceling at every x0 ∈Ω.

A polynomial vanishes identically if and only if all its coefficients vanish. Since the number of

multi-indices α ∈ NN with |α| = κ is M .
=
(N+κ−1

κ

)
, then L(·,D) is cocanceling at x0 if and only if

L̃(x0) : F →V M given by L̃(x0) f = (bα(x0) f )|α|=κ is injective.

Lemma 4.13 ([26, Lemma 2.4]). Let L(·,D) be an operator as in (4.12) with smooth coefficients

bα ∈ C∞(Ω,L (F,V )). If L(·,D) is cocanceling at x0 ∈ Ω, then there exist a ball B = B(x0,r) ⊂ Ω

and functions kα ∈C∞(B,L (V,F)) such that

∑
|α|=κ

kα(x)bα(x) = IF , x ∈ B, (4.13)

where IF denotes the identity in F.
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Proof. From the hypothesis, we know that L̃(x0) : F →V M defined above is injective. Then the same

is true for x sufficiently close to x0. We can see L̃(x) as a rectangular matrix S(x) with coefficients that

depend smoothly on x. Hence, there exists r > 0 sufficiently small such that, for x∈B=B(x0,r), there

is a matrix K(x) with coefficients depending smoothly on x representing a left inverse K(x) : V M → F

of L̃(x), that is, K(x)S(x) = IF for x ∈ B. Writing K(x) as (kα(x))|α|=κ , we get (4.13).

An important property of cocanceling operators is that, if X := ker L(·,D)∩C∞
c (Ω,F), then for

every K ⊂⊂ Ω there exists a constant C =C(K)> 0 such that∣∣∣∣�
Ω

f (x) ·ϕ(x)dx
∣∣∣∣⩽C∥ f∥L1∥∇ϕ∥LN , f ∈ X , ϕ ∈C∞

c (K,F). (4.14)

A proof for this property is given in [26, Theorem 2.3].

Similar to homogeneous constant coefficient operators, there is a crucial relation between elliptic

and canceling operators and cocanceling operators in Ω. That relation arises in the proof of the

following theorem, asserting that the ellipticity and cancelation of A(·,D) in Ω is characterized by the

local Sobolev-Gagliardo-Nirenberg inequality:

Theorem 4.14 ([26, Theorem 4.2]). Let A(·,D) be a linear differential operator of order m in Ω. Then

A(·,D) is elliptic and canceling if and only if every point x0 ∈Ω is contained in a ball B=B(x0,r)⊂Ω

such that the a priori estimate

∥ϕ∥W m−1,N/(N−1) ⩽C∥A(·,D)ϕ∥L1, ϕ ∈C∞
c (B,E), (4.15)

holds for some C =C(B)> 0.

In the statement above, W m,p(Ω) denotes the homogeneous Sobolev space of functions f ∈ Lp(Ω)

such that all weak derivatives of f up to order m are Lp(Ω) functions, equipped with the norm

∥ f∥W m,p
.
= ∑

|β |=m
∥∂

β f∥Lp. (4.16)

During the proof of the last theorem, from the ellipticity of A(·,D), Hounie and Picon show that

there exist a finite dimensional complex vector space V and a linear differential operator L(·,D) :

C∞(Ω,F)→C∞(Ω,V ) of order κ = 2mN such that⋂
ξ∈RN\{0}

Am(x0,ξ )[E] =
⋂

ξ∈RN\{0}
ker Lκ(x0,ξ ), for each x0 ∈ Ω, (4.17)

and since A(·,D) is canceling in Ω, i.e. the intersection in the left-hand side is {0}, the operator L(·,D)

is cocanceling in Ω. Their construction generalizes Van Schaftingen’s operator (1.16) for operators

with variable coefficients.

Using the previous motivation, in order to study the validity of the inequality (4.5) for p′ = 1, we

prove a local version of Lemma 2.12 in the setting of cocanceling vector fields.
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Lemma 4.15. Let L(·,D) be a cocanceling linear differential operator of order κ on Ω from F to V

as in (4.12). Then, for each x0 ∈ Ω, there exists an open ball B = B(x0,r)⊂ Ω such that∣∣∣∣�
B

ϕ(x) · f (x)dx
∣∣∣∣≲ κ

∑
j=1

�
B
| f (x)||x− x0| j|D j

ϕ(x)|dx+
�

B
| f (x)||x− x0||ϕ(x)|dx,

for all ϕ ∈Cκ
c (B,F) and f ∈ X := ker Lκ(·,D)∩Cκ

c (B,F).

Proof. For a fixed x0 ∈ Ω, Lemma 4.13 guarantees there is a ball B = B(x0,r) ⊂ Ω and functions

kα ∈ C∞(B,L (V,F)) such that (4.13) holds. Without loss of generality, we can consider r < 1. Let

P : B → L (F,V ) be given by

P(x) = ∑
|β |=κ

(x− x0)
β

β !
k∗

β
(x),

where k∗
β
(x) ∈ L (F,V ) denotes the adjoint of kβ (x) with respect to the inner product. For |α| = κ ,

we have

∂
αP(x) = ∑

|β |=κ

1
β !

[
∑

γ<α

(
α

γ

)
[∂ γ(x− x0)

β ]∂ α−γk∗
β
(x)+ [∂ α(x− x0)

β ]k∗
β
(x)

]

=

 ∑
|β |=κ

∑
γ<α

γ<β

cα,β ,γ(x− x0)
β−γ

∂
α−γk∗

β
(x)

+ k∗α(x)

.
= Qα(x)+ k∗α(x),

where the second equality is attained observing that, if γ < α , then γ never equals β , ∂ γ(x− x0)
β =

cβ ,γ(x− x0)
β−γ when γ < β and is zero otherwise, and, if |β | = |α|, then ∂ α(x− x0)

β = 0 unless

β = α , when it equals α!. It is noticeable that Qα is of order at most κ and has no term without a

power of x. Hence, we have

L∗
κ(x,D)(P(x)) = ∑

|α|=κ

b∗α(x)∂
α(P(x))

= ∑
|α|=κ

b∗α(x)Qα(x)+ ∑
|α|=κ

b∗α(x)k
∗
α(x)

= ∑
|α|=κ

b∗α(x)Qα(x)+

[
∑

|α|=κ

kα(x)bα(x)

]∗
.

Writing R(x) .
= ∑|α|=κ b∗α(x)Qα(x) and observing (4.13), we conclude that

L∗
κ(x,D)(P(x)) = IF +R(x), x ∈ B. (4.18)

Let ϕ ∈Cκ(B\{x0},F) and f ∈Cκ
c (B,F) such that Lκ(x,D) f = 0. Then,�

B
ϕ(x) · f (x)dx =

�
B

f (x) · [L∗
κ(x,D)(P(x))ϕ(x)−R(x)ϕ(x)]dx

=

�
B

f (x) · [L∗
κ(x,D)(P(x))ϕ(x)]dx︸ ︷︷ ︸

(I)

−
�

B
f (x) · [R(x)ϕ(x)]dx︸ ︷︷ ︸

(II)

.
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We first observe that

(I) =
�

B
f (x) · [L∗

κ(x,D)(P(x))ϕ(x)−L∗
κ(x,D)(P(x)ϕ(x))]dx+

�
B

f (x) ·L∗
κ(x,D)(P(x)ϕ(x))dx

=

�
B

f (x) · [L∗
κ(x,D)(P(x))ϕ(x)−L∗

κ(x,D)(P(x)ϕ(x))]dx+
�

B
Lκ(x,D)( f (x)) ·P(x)ϕ(x)dx

=

�
B

f (x) · [L∗
κ(x,D)(P(x))ϕ(x)−L∗

κ(x,D)(P(x)ϕ(x))]dx,

since f ∈ ker Lκ(·,D). We now proceed to calculate L∗
κ(x,D)(P(x)ϕ(x)). First,

∂
α(P(x)ϕ(x)) = ∑

0<γ⩽α

∂
α−γP(x)∂

γ
ϕ(x)+∂

αP(x)ϕ(x),

where

∂
α−γP(x) = ∑

|β |=κ

∑
η⩽α−γ

η⩽β

1
(β −η)!

(x− x0)
β−η

∂
α−γ−ηk∗

β
(x).

Hence,

L∗
κ(x,D)(P(x)ϕ(x)) = ∑

|α|=κ

b∗α(x)∂
α(P(x)ϕ(x))

= ∑
|α|=κ

∑
0<γ⩽α

∑
|β |=κ

∑
η⩽α−γ

η⩽β

1
(β −η)!

b∗α(x)(x− x0)
β−η

∂
α−γ−ηk∗

β
(x)∂

γ
ϕ(x)

+ ∑
|α|=κ

b∗α(x)∂
αP(x)ϕ(x).

Since the second part is just L∗
κ(x,D)(P(x))ϕ(x) and, on B, k∗

β
and b∗α are C∞ functions, we have

|(I)|≲
�

B
| f (x)| ∑

|α|=κ

∑
0<γ⩽α

∑
|β |=κ

∑
η⩽α−γ

η⩽β

|x− x0||β−η | |∂ γ
ϕ(x)|dx.

However, as |η | ⩽ |α − γ| = |α|− |γ| = κ −|γ|, we get |β −η | = |β |− |η | = κ −|η | ⩾ |γ|. As we

took B with radius smaller than 1, we have

|(I)|≲
�

B
| f (x)| ∑

|α|=κ

∑
0<γ⩽α

|x− x0||γ| |∂ γ
ϕ(x)|dx ≲

κ

∑
j=1

�
B
| f (x)||x− x0| j |D j

ϕ(x)|dx.

Meanwhile, |(II)|⩽
�

B
| f (x)| |R(x)| |ϕ(x)|dx. Observe that, for x ∈ S .

= supp( f ),

|R(x)|≲ ∑
|α|=κ

∑
|β |=κ

∑
γ<α

γ<β

∥b∗α∥L∞(S) |x− x0||β−γ| ∥∂
α−γk∗

β
∥L∞(S) ≲ |x− x0|,

since |β − γ|= |β |− |γ|⩾ κ − (κ −1) = 1 and |x− x0|< r < 1. Therefore,∣∣∣∣�
B

ϕ(x) · f (x)dx
∣∣∣∣≲ κ

∑
j=1

�
B
| f (x)||x− x0| j |D j

ϕ(x)|dx+
�

B
| f (x)||x− x0||ϕ(x)|dx.
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Remark 4.16. When L(x,D) = L(D), i.e. L has constant coefficients, one has that the kα from Lemma

4.13 are constants as well. In this case, Qα ≡ 0 and, consequently, R ≡ 0 in the previous proof. So,

letting x0 = 0 and B = RN ,∣∣∣∣�
RN

ϕ(x) · f (x)dx
∣∣∣∣≲ κ

∑
j=1

�
RN

| f (x)||x| j |D j
ϕ(x)|dx,

recovering Lemma 2.12.

4.3 The 1 < p < ∞ case

The focus of this section is to prove Theorem 4.2. We will make use of the famous Sobolev-

Gagliardo-Nirenberg inequality:

Theorem 4.17 ([9, Theorem 9.9]). Let 1 ⩽ p < ∞. Then,

W 1,p(RN)⊂ Lp∗(RN), where
1
p∗

=
1
p
− 1

N
,

and there exists a constant C =C(N, p) such that

∥ f∥Lp∗ ⩽C∥∇ f∥Lp , ∀ f ∈W 1,p(RN). (4.19)

Suppose A(·,D) is an elliptic operator of order m on Ω as in (4.1) and consider the order 2m

differential operator ∆A
.
= A∗

m(·,D) Am(·,D), which may be regarded as an elliptic pseudo-differential

operator with symbol in S2m(Ω). So, from Theorem 1.48, there exist pseudo-differential operators

q(·,D) ∈ OpS−2m(Ω) and r(·,D) ∈ OpS−∞(Ω) such that

u(x) = q(x,D)∆Au(x)+ r(x,D)u(x), ∀ u ∈C∞(Ω,E). (4.20)

For the next proposition, recall from (4.16) that

∥ f∥W m,p
.
= ∑

|β |=m
∥∂

β f∥Lp .

Proposition 4.18. Let Am(·,D) as before and 1 < p < ∞. Then, for every point x0 ∈ Ω, there exist an

open ball B = B(x0, ℓ)⊂ Ω and a constant C =C(B)> 0 such that

∥ϕ∥W m,p ⩽C∥Am(·,D)ϕ∥Lp , ∀ϕ ∈C∞
c (B,E). (4.21)

Proof. Fixed x0 ∈ Ω, let ℓ > 0 such that B = B(x0, ℓ) ⊂ Ω. It follows from Hölder inequality and

Sobolev-Gagliardo-Nirenberg inequality (4.19) that

�
B
|ϕ(x)|pdx ⩽ |B|1−p/p∗

(�
B
|ϕ(x)|p

∗
dx
)p/p∗

⩽C|B|p/N∥∇ϕ∥p
Lp ,
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for all ϕ ∈C∞
c (B,E), where C > 0 is an universal constant depending on N and p. Hence,

∥ϕ∥Lp ⩽C|B|1/N∥∇ϕ∥Lp.

Bootstrapping the previous argument, we get

∥ϕ∥Lp ⩽C|B|m/N∥ϕ∥W m,p , (4.22)

and if we start with ∂ αϕ instead of ϕ , we obtain

∥∂
α

ϕ∥Lp ⩽C|B|(m−|α|)/N∥ϕ∥W m,p, ∀ϕ ∈C∞
c (B,E) (4.23)

for all |α|⩽ m. Now, from identity (4.20), we may write, for |β |⩽ m,

∂
β

ϕ(x) = q̃(x,D)[Am(x,D)ϕ(x)]+ r̃(x,D)ϕ(x)

where q̃(·,D) := ∂ β q(·,D)A∗
m(·,D) ∈ OpS−(m−|β |)(Ω) and r̃(·,D) := ∂ β r(·,D) ∈ OpS−∞(Ω). Thus,

∥∂
β

ϕ∥Lp ⩽ ∥q̃(·,D)[Am(·,D)ϕ]∥Lp +∥r̃(·,D)ϕ∥Lp

≲ ∥Am(·,D)ϕ∥Lp +∥ϕ∥Lp,

since q̃(·,D) and r̃(·,D) are bounded from Lp to itself for 1 < p < ∞ (Theorem 1.41), including the

case p = 1 if |β |< m (Theorem 1.42). Hence, we get

∥ϕ∥W m,p ≲ ∥Am(·,D)ϕ∥Lp +∥ϕ∥Lp,

and using (4.22),

∥ϕ∥W m,p ≲ ∥Am(·,D)ϕ∥Lp + |B|m/N∥ϕ∥W m,p.

Shrinking the radius of B to absorb the second term on the right-hand side, we conclude the desired

estimate.

Let A(·,D) be as in (4.1) and suppose that all coefficients aα are bounded at some neighborhood

of x0 ∈ Ω, namely B = B(x0, ℓ) ⊆ Ω, and consider C := ∑|α|<m ∥aα∥L∞(B). For 1 < p < ∞ and u ∈
C∞

c (B,E), we have

∥Am(·,D)u∥Lp =

∥∥∥∥∥A(·,D)u− ∑
|α|<m

aα ∂
αu

∥∥∥∥∥
Lp

⩽ ∥A(·,D)u∥Lp +C ∑
|α|<m

∥∂
αu∥Lp

Then, decreasing the radius ℓ if necessary, (4.23) and (4.21) give

∥Am(·,D)u∥Lp ≲ ∥A(·,D)u∥Lp + ∑
|α|<m

|B|(m−|α|)/N∥u∥W m,p.

≲ ∥A(·,D)u∥Lp + |B|1/N∥u∥W m,p

≲ ∥A(·,D)u∥Lp + |B|1/N∥Am(·,D)u∥Lp
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Shrinking ℓ conveniently to absorb the second term on the right-hand side, we have

∥Am(·,D)u∥Lp ⩽C∥A(·,D)u∥Lp, ∀u ∈C∞
c (B,E), (4.24)

for all 1 < p < ∞ and C = C(B) > 0. The case p = 1 also holds for (4.24) if, besides being elliptic

A(·,D) is also canceling. This is consequence of Theorem 4.14. Thus, using the previous argument,

it is sufficient to remark that, if |α|< m, then, from (4.23), Hölder inequality and (4.15),

∥∂
αu∥L1 ≲ |B|(m−1−|α|)/N∥u∥W m−1,1

⩽ |B|(m−|α|)/N∥u∥W m−1,N/(N−1)

⩽C|B|(m−|α|)/N∥A(·,D)u∥L1, (4.25)

for all u ∈C∞
c (B,E), and the proof follows analogously as before.

Now we are ready to demonstrate the main result of this section.

Proof of Theorem 4.2. Let wm,p′
A (B,E) be the closure of C∞

c (B,E) with respect to the norm ∥u∥m,p′
.
=

∥A(·,D)u∥Lp′ for some open ball B in Ω. We claim that, for each x0 ∈ Ω, there exists an open ball

B = B(x0, ℓ)⊆ Ω such that∣∣∣∣�
B

u(x)dµ(x)
∣∣∣∣≲ ∥A(·,D)u∥Lp′∥Jm|µ|∥Lp(B), ∀u ∈C∞

c (B,E). (4.26)

Since |µ| has finite strong (m, p)−energy on B, it follows that µ ∈ [wm,p′
A (B,E)]∗. It is clear that

A(·,D) : wm,p′
A (B,E)→Lp′(B,F) is a linear isometry, hence its adjoint A∗(·,D) : Lp(B,F)→ [wm,p′

A (B,E)]∗

is surjective. Therefore, there exists f ∈ Lp(B,F) such that A∗(x,D) f = µ in B.

Thus, all that is left to do is to prove (4.26). Fixed B(x0, ℓ) ⊆ Ω, for all u ∈ C∞
c (B,E) we may

write, using (4.20), the identity

u(x) = q(x,D)∆A(x,D)u(x)+ r(x,D)u(x)

= Jm(D)[q0(x,D)Am(x,D)u(x)+ r0(x,D)u(x)]

= Jm(D)ũ(x),

where

q0(x,ξ )
.
= [ξ ]m q(x,ξ )A∗

m(x,ξ ) ∈ S0(Ω),

r0(x,ξ )
.
= [ξ ]m r(x,ξ ) ∈ S−∞(Ω) and

ũ(x) .
= q0(x,D)Am(x,D)u(x)+ r0(x,D)u(x).
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Thus, ∣∣∣∣�
B

u(x)dµ(x)
∣∣∣∣= ∣∣∣∣�

B
Jm(D)ũ(x)dµ(x)

∣∣∣∣
≲
�

B

[�
RN

Gm(x− y)|ũ(y)|dy
]

d|µ|(x)

=

�
RN

|ũ(y)|
[�

B
Gm(x− y)d|µ|(x)

]
dy

≲
�

B
|ũ(y)|Jm|µ|(y)dy

≲
[
∥q0(·,D)Am(·,D)u∥Lp′ +∥r0(·,D)u∥Lp′

]
∥Jm|µ|∥Lp(B)

≲
[
∥Am(·,D)u∥Lp′ +∥u∥Lp′

]
∥Jm|µ|∥Lp(B),

where in the last inequality we used that q0(·,D) and r0(·,D) are bounded operators from Lp′ to itself,

since 1 < p′ < ∞. It follows from (4.22), (4.21) and (4.24), shrinking the radius ℓ if necessary,∣∣∣∣�
B

u(x)dµ(x)
∣∣∣∣≲ [∥Am(·,D)u∥Lp′ +∥u∥W m,p′

]
∥Jm|µ|∥Lp(B)

≲ ∥Am(·,D)u∥Lp′∥Jm|µ|∥Lp(B)

≲ ∥A(·,D)u∥Lp′∥Jm|µ|∥Lp(B), ∀u ∈C∞
c (B,E),

completing the proof.

4.4 The p = ∞ case

Now we turn to the proof of Theorem 4.3. Suppose A(·,D) is an elliptic and canceling operator

of order m on Ω as in (4.1). In order to accomplish the proof, it is sufficient to show that, for each

x0 ∈ Ω satisfying (4.7), there exists an open ball B = B(x0, ℓ)⊆ Ω such that∣∣∣∣�
B

u(x)dµ(x)
∣∣∣∣≲ ∥Am(·,D)u∥L1, ∀u ∈C∞

c (B,E), (4.27)

then from (4.24), decreasing ℓ if necessary,∣∣∣∣�
B

u(x)dµ(x)
∣∣∣∣≲ ∥A(·,D)u∥L1, ∀u ∈C∞

c (B,E) (4.28)

meaning that µ ∈ [wm,1
A (B,E)]∗ and, following the argument used in the proof of Theorem 4.2, there

exists f ∈ L∞(B,F) such that A∗(x,D) f = µ in B.

From Theorem 1.48, there exist pseudo-differential operators Q1(·,D)∈OpS−m(Ω) and Q2(·,D)∈
OpS−∞(Ω) such that

u(x) = Q1(x,D)Am(x,D)u(x)+Q2(x,D)u(x), ∀u ∈C∞(Ω,E). (4.29)
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In view of the previous identity, in order to obtain (4.27) it is enough to prove that, for some B =

B(x0, ℓ) and C =C(B)> 0, the estimates
�

B
|Q2(x,D)u(x)|d|µ|(x)⩽C∥Am(·,D)u∥L1 (4.30)

and �
B
|Q1(x,D)Am(x,D)u(x)|d|µ|(x)⩽C∥Am(·,D)u∥L1 (4.31)

hold for all u ∈C∞
c (B,E).

First we prove (4.30). Since Q2(·,D) ∈ OpS−∞(Ω), Theorem 1.41 says it is bounded from

LN/(N−1) to itself. Also, there exists B = B(x0, ℓ) such that (4.15) holds. We can take ℓ < 1. Thus,

using Hölder inequality, (4.6), (4.22) and (4.15), we get
�

B
|Q2(x,D)u(x)|d|µ|(x)⩽ ∥Q2(·,D)u∥LN/(N−1)(B) |µ|(B)

1/N

≲ ∥u∥LN/(N−1) ℓ
N−m

N

≲ ℓ
N−m

N |B|
m−1

N ∥u∥W m−1,N/(N−1)

≲ ℓ
N−m

N +m−1 ∥u∥W m−1,N/(N−1)

≲ ∥Am(·,D)u∥L1,

for all u ∈C∞
c (B,E).

Now, to prove (4.31), let us recall that Q1(·,D)∈ S−m(Ω) can be written in terms of its distribution

kernel K(x,y):

Q1(x,D)Am(x,D)u(x) =
�

Ω

K(x,y)Am(y,D)u(y)dy.

From Theorem 1.40 (i), K is smooth outside the diagonal
{
(x,x) ∈ Ω×Ω

}
and, from Theorem 1.40

(v), it satisfies the estimates

|K(x,y)|⩽C1|x− y|m−N , x ̸= y, (4.32)

and

|∂yK(x,y)|⩽C2|x− y|m−N−1, x ̸= y, (4.33)

for some C1,C2 > 0. Thus, the proof of (4.31) reduces to obtaining

�
B

∣∣∣∣�
Ω

K(x,y)g(y)dy
∣∣∣∣ d|µ|(x)⩽C∥g∥L1 , (4.34)

where g := Am(·,D)u, for all u ∈C∞
c (B,E).

4.4.1 A local Hardy-type inequality

First, we show a local version of the Hardy-type inequality from Lemma 2.11.
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Lemma 4.19. Let 1 ⩽ q < ∞, ν be a σ -finite real positive measure on an open set U ⊂ RN and

B(x0,r) ⊆ U a fixed ball. Let ũ and ṽ be measurable and non-negative almost everywhere on U.

Then, for 0 < δ ⩽ 1, there exists A = A(δ )> 0 such that the inequality

[�
B(x0,r)

(�
B(x0,δ |x−x0|)

g̃(y)dy

)q

ũ(x)dν

]1/q

⩽ A
�

B(x0,r)
g̃(x)ṽ(x)dx (4.35)

holds for all g̃ ⩾ 0 if

(�
Bc(x0,δ−1|y−x0|)∩U

ũ(x)dν

)1/q

⩽ Aṽ(y), a.e. y ∈ B(x0,δ r). (4.36)

Proof. By Minkowski inequality, we have

[�
B(x0,r)

(�
B(x0,δ |x−x0|)

g̃(y)dy

)q

ũ(x)dν

]1/q

=

[�
B(x0,r)

(�
U

g̃(y)χ{|y−x0|<δ |x−x0|}(x,y)dy
)q

ũ(x)dν

]1/q

⩽
�

B(x0,δ r)

(�
U
[g̃(y)]q χ{|y−x0|<δ |x−x0|}(x,y) ũ(x)dν

)1/q

dy

=

�
B(x0,δ r)

g̃(y)

(�
Bc(x0,δ−1|y−x0|)∩U

ũ(x)dν

)1/q

ṽ(y)[ṽ(y)]−1 dy

⩽ A
�

B(x0,r)
g̃(y) ṽ(y)dy,

where in the last inequality we used (4.36) and δ ⩽ 1.

Example 4.20. Let U = B(x0,r) ⊂ RN with r < 1, δ = r/2, and consider ν a positive measure

such that ν(B(x0,R)) ⩽ CRt for all 0 < R < r and some t > 0. We claim that (4.36) is satisfied for

ũ(x) := |x− x0|−t−q and ṽ(y) := |y− x0|−1. Indeed, denote by ν̃ the natural extension of the measure

ν in RN given by ν̃(S) := ν(S∩U). Clearly, for any R > 0, we have ν̃(B(x0,R))⩽CRt . Thus, since

Bc(x0,δ
−1|y− x0|)∩B(x0,r) ̸=∅ for y ∈ B(x0,δ r), denoting

Ak := {x : δ
−1|y− x0|2k ⩽ |x− x0|⩽ δ

−1|y− x0|2k+1},
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we have(�
Bc(x0,δ−1|y−x0|)∩U

ũ(x)dν

)1/q

=

(�
Bc(x0,δ−1|y−x0|)

1
|x− x0|t+q dν̃

)1/q

=

(
∞

∑
k=0

�
Ak
|x− x0|−t−q dν̃

)1/q

⩽

(
∞

∑
k=0

(
δ
−1|y− x0|2k

)−t−q
ν̃

(
B(x0,δ

−1|y− x0|2k+1)
))1/q

⩽C

(
∞

∑
k=0

(
δ
−1|y− x0|2k

)−t−q(
δ
−1|y− x0|2k+1

)t
)1/q

=Cδ2t/q|y− x0|−1

(
∞

∑
k=0

2−kq

)1/q

=Cδ2(t/q)+1(2q −1)−1/qṽ(y)

⩽ Aṽ(y),

with A independent of δ .

4.4.2 A local Stein-Weiss-type inequality

Finally, in order to obtain (4.34), we prove a local version of Lemma 2.13.

Lemma 4.21. Assume N ⩾ 2, 0 < ℓ < N and K(x,y) ∈ L1
loc(R

N ×Ω,L (F,V )) satisfying

|K(x,y)|⩽C1 |x− y|ℓ−N , x ̸= y (4.37)

and

|K(x,y)−K(x,z)|⩽C2
|y− z|

|x− z|N−ℓ+1 , 2|y− z|⩽ |x− z|. (4.38)

Suppose 1 ⩽ q < N/(N − ℓ) and let ν ∈ M+(Ω) satisfying

∥ν∥Ω,(N−ℓ)q
.
= sup

B(x,R)⊂Ω

ν(B(x,R))
R(N−ℓ)q

< ∞. (4.39)

If L(·,D) is cocanceling then, for each x0 ∈ Ω, there exist an open neighborhood x0 ∈ U ⊂ Ω and

C =C(U)> 0 such that, if � a|y−x0|

0

ν(B(y,s))
s(N−ℓ)q+1

ds ⩽C3, (4.40)

where a is some constant between 0 and 1, is a uniform control for almost every y ∈U, then(�
U

∣∣∣∣�
U

K(x,y)g(y)dy
∣∣∣∣q dν(x)

)1/q

⩽C
�

U
|g(x)|dx, (4.41)

holds for all g ∈C∞
c (U,F) satisfying Lκ(·,D)g = 0 in the sense of distributions.
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Remark 4.22. A stronger condition satisfying (4.40) is given by

ν(B(y,R))⩽C |y− x0|(N−ℓ)q−NRN (4.42)

when R < a|y− x0|. In fact,

� a|y−x0|

0

ν(B(y,s))
s(N−ℓ)q+1

ds ⩽C|y− x0|(N−ℓ)q−N
� a|y−x0|

0
s−(N−ℓ)q−1+N ds =C

aN−(N−ℓ)q

N − (N − ℓ)q
,

since N − (N − ℓ)q > 0.

Example 4.23. Let U = B(x0,r). The positive scalar measure given by the weighted power dν :=

|x− x0|t−Ndx, for 0 < t < N, satisfies

ν(B(x0,R))⩽CRt , for all 0 < R < r (4.43)

and

ν(B(y,R))⩽C|y− x0|t−NRN , for all R < a|y− x0| (4.44)

and 0 < a < 1.

Notice that

ν(B(x0,R)) =
�

B(x0,R)
|x− x0|t−N dx =

∣∣SN−1∣∣� R

0
rt−1 dr = t−1 ∣∣SN−1∣∣Rt

for any R > 0. For (4.44), we note that, if |x| < R < a|y− x0|, then (1− a)|y− x0| < |x+ y− x0| <
(1+a)|y− x0|. Thus,

ν(B(y,R)) =
�

B(y,R)
|x− x0|t−N dx =

�
BR

|x+ y− x0|t−N dx ≲ |y− x0|t−N |BR|=C|y− x0|t−NRN .

Assume the validity of Lemma 4.21. Let A(·,D) and µ be as in the statement of Theorem 4.3. Take

K as the distribution kernel of Q1 (obtained in (4.29)). Hence (4.32) and (4.33) imply that K satisfies

(4.37) and (4.38) with ℓ= m, (4.6) and (4.7) imply that ν = |µ| satisfies (4.39) and (4.39) with ℓ= m

and q = 1, and, since A(·,D) is elliptic and canceling, (4.17) implies that there exists a cocanceling

operator L(·,D) of order κ = 2mN such that g= Am(·,D)u∈ ker Lκ(·,D) for all u∈C∞
c (U,E). Putting

it all together, we obtain (4.41) in the particular form
�

U

∣∣∣∣�
U

K(x,y)Am(y,D)u(y)dy
∣∣∣∣d|µ|(x)⩽C∥Am(·,D)u∥L1,

which is exactly (4.34). As we have already discussed, this implies (4.31) which, together with (4.30),

shows (4.27), and this proves Theorem 4.3.

Proof of Lemma 4.21. For each x0 ∈ Ω, let U .
= B(x0,r) be the neighborhood from Lemma 4.15.

We can always choose r < 1 small enough such that we have B(x0,(1+ a)r) ⊂ Ω. Consider ψ ∈



64 Chapter 4. Local solvability for non-homogeneous linear operators with variable coefficients

C∞
c (B(x0,r/2)) be a cut-off function such that 0 ⩽ ψ ⩽ 1, ψ ≡ 1 on B(x0,r/4), and write K(x,y) =

K1(x,y)+K2(x,y) with K1(x,y) = ψ

(
y−x0
|x−x0| + x0

)
K(x,x0). To prove (4.41), it is enough to show that

J j
.
=

(�
U

∣∣∣∣�
U

K j(x,y)g(y)dy
∣∣∣∣q dν(x)

)1/q

≲
�

U
|g(x)|dx, j = 1,2,

for all g ∈C∞
c (U,F) such that Lκ(·,D)g = 0. First, we point out that

J1 =

(�
U

∣∣∣∣�
U

ψ

(
y− x0

|x− x0|
+ x0

)
g(y)dy

∣∣∣∣q |K(x,x0)|q dν(x)
)1/q

⩽C1

(�
U

∣∣∣∣�
U

ψ

(
y− x0

|x− x0|
+ x0

)
g(y)dy

∣∣∣∣q 1
|x− x0|(N−ℓ)q

dν(x)
)1/q

,

in which the inequality follows from (4.37). Now we use Lemma 4.15 for ϕ(y) = ψ

(
y−x0
|x−x0| + x0

)
η

where, for a fixed x ∈U , η is a unit vector in F chosen so that∣∣∣∣�
U

ψ

(
y− x0

|x− x0|
+ x0

)
η ·g(y)dy

∣∣∣∣= ∣∣∣∣�
U

ψ

(
y− x0

|x− x0|
+ x0

)
g(y)dy

∣∣∣∣ .
Thus,∣∣∣∣�

U
ψ

(
y− x0

|x− x0|
+ x0

)
g(y)dy

∣∣∣∣≲ κ

∑
j=1

�
U
|g(y)||y− x0| j |D j

ϕ(y)|dy+
�

U
|g(y)||y− x0||ϕ(y)|dy

≲
κ

∑
j=1

�
U
|g(y)| |y− x0| j

|x− x0| j

∣∣∣∣D j
ψ

(
y− x0

|x− x0|
+ x0

)∣∣∣∣ dy

+

�
U
|g(y)||y− x0|

∣∣∣∣ψ( y− x0

|x− x0|
+ x0

)∣∣∣∣ dy

≲
�

B
(

x0,
r|x−x0|

2

) |g(y)| |y− x0|
|x− x0|

dy+
�

B
(

x0,
r|x−x0|

2

) |g(y)||y− x0|dy

≲
�

B
(

x0,
r|x−x0|

2

) |g(y)| |y− x0|
|x− x0|

dy,

where in the second to last inequality we use that ψ ∈C∞
c (B(x0,r/2)) and r < 1 to get |y−x0|

|x−x0| < 1 and,

in the last one, that x ∈U implies |y− x0|< |y−x0|
|x−x0| . Replacing it in the previous inequality, we have

J1 ≲

[�
U

(�
B
(

x0,
r|x−x0|

2

) |g(y)||y− x0|dy

)q
1

|x− x0|(N−ℓ+1)q
dν(x)

]1/q

.

Now we use Lemma 4.19 for g̃(y) = |g(y)||y− x0|, ũ(x) = |x− x0|−(N−ℓ+1)q and ṽ(y) = |y− x0|−1,

which is exactly Example 4.20 for t = (N − ℓ)q. Therefore,

J1 ≲
�

U
|g(x)|dx, for all g ∈C∞

c (U,F) satisfying Lκ(·,D)g = 0.

For J2 we are going to analyze

K2(x,y) = K(x,y)−K1(x,y) = K(x,y)−ψ

(
y− x0

|x− x0|
+ x0

)
K(x,x0).
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If x ∈ B
(
x0,

2
r |y− x0|

)
, then ψ

(
y−x0
|x−x0| + x0

)
= 0 and we have |K2(x,y)|= |K(x,y)|. Otherwise, if x ∈

Bc (x0,
4
r |y− x0|

)
, then ψ

(
y−x0
|x−x0| + x0

)
= 1 and |K2(x,y)| = |K(x,y)−K(x,x0)|. In the intermediate

region Bc (x0,
2
r |y− x0|

)
∩B
(
x0,

4
r |y− x0|

)
, the following identity holds:

K2(x,y) =
[

1−ψ

(
y− x0

|x− x0|
+ x0

)]
K(x,y)+ψ

(
y− x0

|x− x0|
+ x0

)
[K(x,y)−K(x,x0)].

Hence, using Minkowski’s inequality,

J2 =

(�
U

∣∣∣∣�
U

K2(x,y)g(y)dy
∣∣∣∣q dν(x)

)1/q

⩽
�

U

(�
U
|K2(x,y)|q dν(x)

)1/q

|g(y)|dy.

If we prove that
�

U
|K2(x,y)|q dν(x)⩽C for almost every y ∈ U with a uniform constant C > 0, we

will obtain

J2 ≲
�

U
|g(y)|dy, for all g ∈C∞

c (U,F),

concluding the proof.

Estimating K2(x,y) in the three regions featured above and using (4.37) and (4.38), we can write�
U
|K2(x,y)|q dν(x) =

�
U∩B(x0,

2
r |y−x0|)

|K2(x,y)|q dν(x)

+

�
U∩Bc(x0,

2
r |y−x0|)∩B(x0,

4
r |y−x0|)

|K2(x,y)|q dν(x)

+

�
U∩Bc(x0,

4
r |y−x0|)

|K2(x,y)|q dν(x)

≲
�

U∩B(x0,
2
r |y−x0|)

|K(x,y)|q dν(x)

+

�
U∩Bc(x0,

2
r |y−x0|)∩B(x0,

4
r |y−x0|)

(|K(x,y)|q + |K(x,y)−K(x,x0)|q)dν(x)

+

�
U∩Bc(x0,

4
r |y−x0|)

|K(x,y)−K(x,x0)|q dν(x)

=

�
U∩B(x0,

4
r |y−x0|)

|K(x,y)|q dν(x)

+

�
U∩Bc(x0,

2
r |y−x0|)

|K(x,y)−K(x,x0)|q dν(x)

≲
�

U∩B(x0,
4
r |y−x0|)

1
|x− y|(N−ℓ)q

dν(x)︸ ︷︷ ︸
(I)

+

�
U∩Bc(x0,

2
r |y−x0|)

|y− x0|q

|x− x0|(N−ℓ+1)q
dν(x)︸ ︷︷ ︸

(II)

.

Notice that

U ∩B
(

x0,
4
r
|y− x0|

)
=

{
B
(
x0,

4
r |y− x0|

)
, if |y− x0|< r2/4

U, otherwise

and

U ∩Bc
(

x0,
2
r
|y− x0|

)
=

{
A
(
x0,

2
r |y− x0|,r

)
, if |y− x0|< r2/2

∅, otherwise,
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where A(p,r1,r2) denotes the annulus {x : r1 ⩽ |x− p|< r2}.

To estimate (II), we only need to consider the case |y− x0| < r2/2. In this situation, proceeding

just like in the calculations from Example 4.20, we get (II) ⩽C rq2(N−ℓ)q(2q −1)−1.

For (I), consider first |y− x0| < r2/4. In this case, B(y,a|y− x0|) ⊂ B
(
x0,

4
r |y− x0|

)
⊂U and we

can isolate the singularity to obtain

(I) =
�

B(y,a|y−x0|)

1
|x− y|(N−ℓ)q

dν(x)︸ ︷︷ ︸
(*)

+

�
B(x0,

4
r |y−x0|)∩Bc(y,a|y−x0|)

1
|x− y|(N−ℓ)q

dν(x)︸ ︷︷ ︸
(**)

.

In (∗∗), we have |x− y|⩾ a|y− x0|, hence

(∗∗)⩽ (a|y− x0|)−(N−ℓ)q
�

B(x0,
4
r |y−x0|)

dν(x) = (a|y− x0|)−(N−ℓ)q
ν

(
B
(

x0,
4
r
|y− x0|

))

⩽C a−(N−ℓ)q
(

4
r

)(N−ℓ)q

⩽C
(

4
ar

)(N−ℓ)q

.

For (∗), let Ax = {s ∈ R : s > |x− y|}. Then we may write

(∗) =
�

B(y,a|y−x0|)
(N − ℓ)q

(�
∞

|x−y|
s(ℓ−N)q−1 ds

)
dν(x)

= (N − ℓ)q
�

Ω

χ
B(y,a|y−x0|)(x)

(�
∞

0

χAx(s)
s(N−ℓ)q+1

ds
)

dν(x)

= (N − ℓ)q
�

∞

0

(�
Ω

χ
B(y,a|y−x0|)(x) χAx(s)

s(N−ℓ)q+1
dν(x)

)
ds

= (N − ℓ)q
�

∞

0

(�
B(y,a|y−x0|)∩B(y,s)

1
s(N−ℓ)q+1

dν(x)

)
ds

= (N − ℓ)q

[� a|y−x0|

0

ν(B(y,s))
s(N−ℓ)q+1

ds+ν(B(y,a|y− x0|))
�

∞

a|y−x0|

1
s(N−ℓ)q+1

ds

]

⩽ (N − ℓ)q
[
C3 +∥ν∥Ω,(N−ℓ)q (a|y− x0|)(N−ℓ)q (a|y− x0|)(ℓ−N)q 1

(N − ℓ)q

]
=C3 (N − ℓ)q+∥ν∥Ω,(N−ℓ)q.

For the case |y−x0|⩾ r2/4, if y is close enough to the boundary of U , the ball B(y,a|y−x0|) will not

be entirely contained in U . But, from our choice of r, B(y,a|y− x0|)⊂ B(x0,(1+a)r)⊂ Ω, so that it

makes sense to estimate

(I) ⩽
�

B(y,a|y−x0|)

1
|x− y|(N−ℓ)q

dν(x)︸ ︷︷ ︸
(*’)

+

�
U∩Bc(y,a|y−x0|)

1
|x− y|(N−ℓ)q

dν(x)︸ ︷︷ ︸
(**’)

.
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The calculations for (∗′) are exactly the same as before, whereas for (∗∗′),

(∗∗′)⩽ (a|y− x0|)−(N−ℓ)q
�

U
dν(x)

⩽C
(

r
a|y− x0|

)(N−ℓ)q

⩽C
(

4r
ar2

)(N−ℓ)q

=C
(

4
ar

)(N−ℓ)q

,

completing the proof.

4.5 Applications and general comments

4.5.1 A necessary condition

A natural question arises about necessary conditions on µ in order to obtain local Lebesgue solv-

ability for the equation (4.2). Suppose that, for each x0 ∈Ω, there exists an open ball B=B(x0,R)⊆Ω

such that f ∈ Lp(B,F∗) is a local solution for A∗(·,D) f = µ in the sense of (4.3). If the identity
�

B
Jmϕ dµ =

�
B

f (x) ·A(x,D)Jmϕ(x)dx, ∀ϕ ∈C∞
c (B;E) (4.45)

were valid formally, then we should conclude that Jm(µ B) = JmA∗(·,D) f and, since Jm ◦A∗(·,D)

is a pseudo-differential operator of order zero (which is bounded from Lp to itself for 1 < p < ∞),

it would imply ∥Jm(µ B)∥Lp(B) ≲ ∥ f∥Lp(B), then µ B would have finite strong (m, p)−energy on B.

However, the identity (4.45) is not a consequence of (4.3), since the smooth function Jmϕ does not

have compact support on B for ϕ ∈ C∞
c (B,E). In order to avoid this technical problem, we state the

following result with a notion of local strong (m, p)−energy of µ .

Theorem 4.24. Assume that A(·,D) from E to F is a linear differential operator of order m < N as in

(4.1) and µ ∈ M (Ω,E). If, for each x0 ∈ Ω, there exists an open ball B ⊂ Ω centered at x0 such that

f ∈ Lp(B,F) is a solution for A∗(·,D) f = µ for 1 ⩽ p < ∞, then ∥Jm(µ B̃)∥Lp(B) < ∞ for any B̃ ⊂ B.

Proof. For each B̃ ⊂ B, let ε > 0 such that B̃ε := B̃+B(0,ε)⊂ B and ψε := χ
B̃ ∗ φε ∈C∞

c (B̃ε), where

φ ∈C∞
c (B(0,1)), is radial, positive with ∥φ∥L1 = 1 and φε(x) = ε−Nφ(x/ε). Clearly, ψε(x)≡ 1 on B̃

and, for dµε := ψε(x)dµ we have µε(A) = (µ B̃)(A) for any A ⊆ B̃. We know that

∥Jm(µ B̃)∥Lp(B) = sup
∣∣∣∣�

B
Jm(µ B̃)(x)ϕ(x)dx

∣∣∣∣ ,
where the supremum is taken over all ϕ ∈C∞

c (B,E) with ∥ϕ∥Lp′(B) ⩽ 1. From Fubini’s Theorem, and
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the fact that Gm is radially symmetric, follows
�

B
Jm(µ B̃)(x)ϕ(x)dx =

�
B

[�
B̃

Gm(x− y)dµ(y)
]

ϕ(x)dx

=

�
B̃

[�
B

Gm(y− x)ϕ(x)dx
]

dµ(y)

=

�
B̃

Jmϕ(y)dµ(y)

= lim
ε→0

�
B
(ψε · Jmϕ)(y)dµ(y).

From the fact that ψε · Jmϕ ∈C∞
c (B̃ε) and B̃ε ⊂ B then, from (4.3), we have∣∣∣∣�

B
(ψε · Jmϕ)(y)dµ(y)

∣∣∣∣= ∣∣∣∣�
B

f (x) ·A(x,D)(ψε · Jmϕ)(x)dx
∣∣∣∣

⩽ ∥ f∥Lp(B) ∥A(·,D)(ψε · Jmϕ)∥Lp′(B)

⩽C(ε)∥ f∥Lp(B) ∥ϕ∥Lp′(B)

since A(·,D)(ψε · Jm) is a pseudo-differential operator with order zero, thus bounded in Lp for all

1 < p < ∞ (Theorem 1.41). Notice that the constant C(ε) may blow-up as ε → 0. Hence, we have

∥Jm(µ B̃)∥Lp(B) ≲ ∥ f∥Lp(B) < ∞ for any B̃ ⊂ B.

4.5.2 Fractional estimate with measures

The following L1 estimate for pseudo-differential operators was obtained by Hounie and Picon:

Theorem 4.25 ([27, Theorem C]). Let A(·,D) be a differential operator of order m as in (4.1) and

assume that 0 < ℓ < N and ℓ⩽ m. If A(·,D) is elliptic and canceling in Ω, then for every x0 ∈ Ω, 1 ⩽

q < N/(N − ℓ), and any properly supported pseudo-differential operator Pm−ℓ(x,D) ∈ OpSm−ℓ
1,δ (Ω),

0 ⩽ δ < 1, there exists a neighborhood U ∋ x0 and C > 0 such that(�
RN

|Pm−ℓ u(x)|q|x|(N−ℓ)q−N dx
)1/q

⩽C
�
RN

|A(x,D)u(x)|dx (4.46)

holds for every u ∈C∞
c (U,E).

The proof of inequality (4.46) is a direct consequence of the method used in the proof of Theorem

4.3 and we describe the main steps. Using the ellipticity and Theorem 1.48, we may exhibit properly

supported pseudo-differential operators Q1(·,D) ∈ OpS−ℓ
1,δ (U) and Q2(·,D) ∈ OpS−∞(U) such that

Pm−ℓu = Q1(·,D)[Am(·,D)u]+Q2(·,D)u, u ∈C∞(U,E).

Thus, in order to obtain the estimate (4.46) it is sufficient to prove the controls (4.31) and (4.30),

where dν := |x− x0|(N−ℓ)q−Ndx. Thanks to the calculus presented in Example 4.23, the measure

ν ∈ M+(Ω) satisfies (4.39) and (4.40), so the controls follow as before. Using this argument, we

obtain the following L1 Sobolev estimate for pseudo-differential operators with measures:
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Theorem 4.26. Let A(·,D) be a differential operator of order m as in (4.1), assume that 0 < ℓ <

N, ℓ ⩽ m and ν ∈ M+(Ω) satisfying (4.39) and (4.40). If A(·,D) is elliptic and canceling in Ω,

then for every x0 ∈ Ω, 1 ⩽ q < N/(N − ℓ), and any properly supported pseudo-differential operator

Pm−ℓ(·,D) ∈ OpSm−ℓ
1,δ (Ω), 0 ≤ δ < 1, there exists a neighborhood U ∋ x0 and C > 0 such that(�

RN
|Pm−ℓ u(x)|qdν

)1/q

⩽C
�
RN

|A(x,D)u(x)|dx

holds for every u ∈C∞
c (U,E).

4.5.3 Divergence-type equations associated to systems of complex vector fields

Consider n complex vector fields L1, . . . ,Ln, n ⩾ 2, with smooth coefficients defined on Ω ⊆ RN

with N ⩾ 2. We will assume that the system of vector fields L
.
= {L1, . . . ,Ln} is linearly independent.

Consider the gradient ∇L : C∞(Ω) → C∞(Ω,Cn) given by ∇L u .
= (L1u, ..,Lnu),u ∈ C∞(Ω) and its

formal complex adjoint operator, defined for v ∈C∞(Ω,Cn) by

divL ∗ v .
= L∗

1v1 + ...+L∗
nvn.

Moonens and Picon obtained a characterization for the local continuous solvability result of the

equation

divL ∗ v = f . (4.47)

It is a particular case of Theorem 4.1.

Theorem 4.27 ([35, Theorem 1.2]). Assume that L is an elliptic system of vector fields. Then every

point x0 ∈ Ω is contained in an open neighborhood U ⊂ Ω such that, for any f ∈D ′(U), the equation

(4.47) is continuously solvable in U if and only if, for every ε > 0 and every compact set K ⊂⊂ U,

there exists θ = θ(K,ε)> 0 such that one has, for every ϕ ∈C∞
K (U):

| f (ϕ)|⩽ θ∥ϕ∥L1 + ε∥∇L ϕ∥L1. (4.48)

The ellipticity means that, for any real 1-form ω such that ⟨ω,L j⟩ = 0, one has ω = 0. Con-

sequently, the number n of vector fields must satisfy N
2 ⩽ n ⩽ N. The ellipticity of the system is

equivalent to the second order operator ∆L
.
= L∗

1L1 + · · ·+L∗
nLn being elliptic in the classical sense.

Since the system L is linearly independent, the following lemma shows that ∇L is a canceling oper-

ator.

Lemma 4.28 ([26, Lemma 5.1]). Let x0 ∈ Ω and let ℓ(x,ξ ) denote the principal symbol of ∇L . The

following properties are equivalent:

(i) ∇L is canceling at x0;

(ii) the range of the map ξ 7→ ℓ(x0,ξ ) ∈ Cn has dimension ⩾ 2;
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(iii) there exist two vector fields L j1,L j2 ∈ L that are linearly independent at x0.

Reducing the neighborhood U (for instance, take K = B(x0,r) ⊂ U and redefine U = B(x0,r)),

and from the fact that ∥ϕ∥L1 ⩽ C(U)∥∇L ϕ∥L1 locally (see (4.25)), then, if ν ∈ M+(U,C) satisfies

(4.48), we have ∣∣∣∣�
U

ϕ(x)dν

∣∣∣∣= |ν(ϕ)|⩽ (θC(U)+ ε)∥∇L ϕ∥L1, ϕ ∈C∞
c (U),

thus, as argued for (4.28), there exists u ∈ L∞(U) solution of divL ∗ u = ν . Clearly, local continuous

solutions are bounded, however the converse is not true. A similar argument shows that (4.4) implies

(4.28) locally for elliptic and canceling operators.



APPENDIX A

Proof of estimate (1.4)

As mentioned earlier, showing that (1.3) implies (1.4) is far from trivial. This appendix is devoted

to present an outline for this proof. Some results will have their demonstrations omitted as they

heavily rely on techniques from Geometric Measure Theory, which would require a lot of background

and is not the scope of this text, but all of them will be given a reference prior to their statement.

Lemma A.1 ([33, Theorem 1.2.1/2]). Let G ⊂ RN be a bounded open subset with smooth boundary.

There exists a covering of G by a sequence of balls with radii r j, j = 1,2, . . . , such that

∑
j

rN−1
j ⩽ cH N−1(∂G),

where c = c(N) and H N−1 is the (N −1)-dimensional Hausdorff measure.

The next theorem is known as the co-area formula for functions of bounded variation.

Theorem A.2 ([47, Theorem 5.4.4]). Let Ω ⊂ RN be open and f ∈ BV (Ω). Then

∥D f∥(Ω) =

�
R
∥∂ (Ω∩Lt)∥(Ω)dt,

where Lt = {x ∈ Ω : f (x)> t}.

Here, BV (Ω) denotes the set of functions of bounded variation in Ω, ∥D f∥ is the variation

measure of f and ∥∂Lt∥(Ω) is the perimeter measure of Lt . Their precise definitions and properties

will be omitted, but can be found in [13] or [47]. What is important in our case is that, if f ∈C∞
c (Ω),

then ∥D f∥(Ω) = ∥∇ f∥L1(Ω) and ∥∂ (Ω∩Lt)∥(Ω) = H N−1(∂Lt).

Lemma A.3 ([33, Corollary 1.2.2]). Let f ∈ C∞
c (Ω). Then, for almost all t ∈ R, the sets ∂Lt are

C∞-compact manifolds.
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Theorem A.4. Let ν be a positive Borel measure in RN , q ⩾ 1, Ω ⊂ RN an open subset and G the

collection of subsets G of Ω such that Ḡ ⊂ Ω are compact and each G is bounded by a C∞ manifold.

If

sup
G∈G

ν(G)1/q

H N−1(∂G)
< ∞,

then, for all u ∈C∞
c (Ω),

∥u∥Lq(Ω,ν) ⩽C∥∇u∥L1(Ω),

where

C ⩽ sup
G∈G

ν(G)1/q

H N−1(∂G)
.

Proof. Let

Lt = {x ∈ Ω : |u(x)|> t}.

Then

∥u∥Lq(Ω,ν) =

(�
Ω

|u(x)|q dν(x)
) 1

q

=

(�
Ω

(�
∞

0

χ
(0,|u(x)|q)(τ)dτ

)
dν(x)

) 1
q

=

(�
∞

0

(�
Ω

χ
(0,|u(x)|q)(τ)dν(x)

)
dτ

) 1
q

=

(�
∞

0
ν({x ∈ Ω : |u(x)|q > τ})dτ

) 1
q

=

(�
∞

0
ν({x ∈ Ω : |u(x)|> t})d(tq)

) 1
q

=

(�
∞

0
ν(Lt)d(tq)

) 1
q

.

Since ν(Lt)⩽ ν(Ls) when s ⩽ t, we have

�
∞

0
ν(Lt)d(tq) =

�
∞

0
[ν(Lt)

1/q]q d(tq)

=

�
∞

0
q[tν(Lt)

1/q]q−1
ν(Lt)

1/q dt

=

�
∞

0
q
[� t

0
ν(Lt)

1/q ds
]q−1

ν(Lt)
1/q dt

⩽
�

∞

0
q
[� t

0
ν(Ls)

1/q ds
]q−1

ν(Lt)
1/q dt

=

�
∞

0

d
dt

([� t

0
ν(Ls)

1/q ds
]q)

dt

=

(�
∞

0
ν(Lt)

1/q dt
)q

.
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Hence,

∥u∥Lq(Ω,ν) ⩽
�

∞

0
ν(Lt)

1/q dt

=

�
∞

0

ν(Lt)
1/q

H N−1(∂Lt)
H N−1(∂Lt)dt

⩽ sup
G∈G

ν(G)1/q

H N−1(∂G)

�
∞

0
H N−1(∂Lt)dt,

as, by Lemma A.3, almost all the sets Lt belong to the collection G . Therefore, by the coarea formula

(Theorem A.2), we have

∥u∥Lq(Ω,ν) ⩽C
�

∞

0
H N−1(∂Lt)dt

=C∥∇u∥L1(Ω).

In the case when Ω = RN , the hypothesis on the previous theorem can be weakened, only taking

the supremum over balls.

Theorem A.5. Let ν be a positive Borel measure in RN and q ⩾ 1. If

sup
x∈RN ;r>0

ν(B(x,r))
r(N−1)q

< ∞,

then for all u ∈C∞
c (RN)

∥u∥Lq(ν) ⩽C∥∇u∥L1 ,

where

Cq ⩽ cq sup
x∈RN ; r>0

ν(B(x,r))
r(N−1)q

,

with c = c(N)> 0.

Proof. Given G ∈ G as in the previous theorem, let {B(x j,r j)} be the covering of G given by Lemma

A.1. Since (
∑

j
a j

)1/q

⩽ ∑
j

a1/q
j

for a j ⩾ 0, we obtain

ν(G)⩽ ∑
j

ν(B(x j,r j))⩽

(
∑

j
ν(B(x j,r j))

1/q

)q

=

(
∑

j

[
r(1−N)q

j ν(B(x j,r j))
]1/q

rN−1
j

)q

⩽ sup
x∈RN ; r>0

ν(B(x,r))
r(N−1)q

(
∑

j
rN−1

j

)q

.
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Hence, from Lemma A.1,

ν(G)⩽ cq sup
x∈RN ; r>0

ν(B(x,r))
r(N−1)q

(
H N−1(∂G)

)q
.

Thus,

sup
G∈G

ν(G)1/q

H N−1(∂G)
⩽ c

(
sup

x∈RN ; r>0

ν(B(x,r))
r(N−1)q

)1/q

< ∞.

The proof is completed applying Theorem A.4.

Finally, (1.3) ⇒ (1.4) follows from Theorem A.5 for q = 1.
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