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“Le savant n’étudie pas la nature parce que cela est utile; il I’étudie parce qu’il y prend plaisir et il
y prend plaisir parce qu’elle est belle. Si la nature n’était pas belle, elle ne vaudrait pas la peine
d’étre connue, la vie ne vaudrait pas la peine d’étre vécue. Je ne parle pas ici, bien entendu, de cette
beauté qui frappe les sens, de la beauté des qualités et des apparences; non que j’en fasse fi, loin de
la, mais elle n’a rien a faire avec la science; je veux parler de cette beauté plus intime qui vient de

[’ordre harmonieux des parties, et qu’une intelligence pure peut saisir.”

Henri Poincaré, in Science et Méthode
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Resumo

Nesta tese, apresentamos novos resultados sobre a resolubilidade da equag¢do A*(x,D) f = u para
f € L?, dada uma medida complexa p, associada a um operador diferencial linear eliptico A(x,D) de
ordem m com coeficientes complexos suaves. Nosso método se baseia no controle da energia— (m, p)
de u oferecendo condic¢des suficientes para a existéncia de solucdes quando 1 < p < co. Um estudo
particular sobre resolubilidade global em espacos de Lebesgue da equagdo para equagdo A*(D)f = u,
no qual A(D) é um operador diferencial homogéneo com coeficientes constantes também é apresen-
tado. Obtemos também condigdes suficientes no caso limite p = oo usando novas estimativas L'

(globais e locais) em medidas para operadores elipticos e cancelantes, que sdao de particular interesse.

Palavras-chave: Campos vetoriais de medida-divergéncia, resolubilidade em espagos de Lebesgue,

estimativas L!, equagdes elipticas, operadores cancelantes.
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Abstract

In this thesis, we present new results on the solvability of the equation A*(x,D)f = u for f € L?,
with complex measure data u, associated to an elliptic linear differential operator A(x,D) of order
m with variable complex coefficients. Our method is based on (m, p)—energy control of p giving
sufficient conditions for solutions when 1 < p < eo. A particular study is presented in the global set-
ting of Lebesgue solvability for the equation A*(D) f = u, where A(D) is a homogeneous differential
operator with constant coefficients. We also obtain sufficient conditions in the limiting case p = oo
using new L! (global and local) estimates on measures for elliptic and canceling operators, which are

interesting on their own.

Keywords: Divergence-measure vector fields, Lebesgue solvability, L! estimates, elliptic equations,

canceling operators.
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Introduction

This thesis is comprised by the results obtained by the author and his collaborators during his

PhD. These results are collected in three articles:

e BILIATTO, V.; PICON, T. A note on Lebesgue Solvability of Elliptic Homogeneous Linear
Equations with Measure Data. J. Geom. Anal., v. 34, n. 1, 22, 2024;

e BILIATTO, V.; MOONENS, L.; PICON, T. Hausdorff dimension of removable sets for el-
liptic and canceling homogeneous differential operators in the class of bounded functions.
Submitted, https://doi.org/10.48550/arXiv.2312.02560;

* BILIATTO, V.; PICON, T. Sufficient Conditions for Local Lebesgue Solvability of Cancel-
ing and Elliptic Linear Differential Equations with Measure Data. Submitted,
https://dx.doi.org/10.2139/ssrn.4710804.

The contents of these papers are connected by a common thread: the study of sufficient conditions
on a (vector-valued) complex Borel measure p in order to obtain a function f € LP, for 1 < p < oo,
which solves the equation
A* (x D )f =H

in distributional sense. Here, A*(+, D) is the formal adjoint operator associated to a linear differential
operator of order m on Q, N > 2 and 1 < m < N, from a finite dimensional complex vector space E
to a finite dimensional complex vector space F, given by

A(x,D)= Y aq(x)0*

|or|<m

where aq € C*(Q,.Z(E,F)) are smooth complex coefficients.

This research was motivated by the article Characterizations of the Existence and Removable
Singularities of Divergence-measure Vector Fields [38], due to N. Phuc and M. Torres, previously
studied by the author in his masters dissertation. In that work, they obtained characterizations for the
existence of L? solutions to the equation

divf=v.
A natural question that arose from this study was wondering if it would be possible to expand their
results to a more general class of differential operators that includes the gradient A(D) = V, whose

formal adjoint is the divergence A*(D) = div.



2 Introduction

The results in [6] deal with a first, simpler case, where A(+,D) is homogeneous and has constant

coefficients, i.e.

AD)= Y aqa®,

|atf=m

as is the case of the gradient. The main theorems are stated below. First, the case for 1 < p < oo:

Theorem A. Let A(D) be a homogeneous linear differential operator of order 1 < m < N on RY,
N2=22 fromEtoF, and U € //[(RN,E*) a complex-valued Borel measure.

(i) IF1<p<N/(N—m), uc.# (RN, E*) and f € LP(RN,F*) is a solution for

A" (D)f = u, ey
then u = 0.

(ii) IfN/(N—m) < p <ooand f € LP(RN,F*) is a solution for (1)), then u has finite (m, p)—energy.
Conversely, if ||| has finite (m,p)—energy and A(D) is elliptic, then there exists a function
f € LP(RN,F*) solving ().

The endpoint case p = oo is treated separately, assuming an extra condition related to canceling

operators satisfying a special L' type estimate.

Theorem B. Let A(D) be a homogeneous linear differential operator of order 1 <m < N on RN from
EtoF and p € # (RN E*). IfA(D) is elliptic and canceling, and | satisfies

. |ul(By)
[iellon—m = SUD " N < oo,

and the potential control

Iyl/2 B
/0 —luijs_%_’lﬁ)) dr <1, uniformly ony,

then, there exists f € L™(RN,F*) solving ().

In [38], the solvability results are used to characterize removable singularities for the divergence

equation. In the same spirit, in [5]] we use Theorem [B|to prove the following necessary condition:

Theorem C. Assume that A(D) is an elliptic and canceling homogeneous differential operator on RN
of order 1 <m < N, from E to F. If the closed set S C RY is removable for the equation A*(D)f =0
in L (RN F*), then S has Hausdorff dimension less than or equal to N — m.

Finally, in [7] we step into an even more general case, considering A(-,D) defined on an open
subset Q C RV with variable smooth complex coefficients a,. We obtain the following sufficient

conditions for local solvability:
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Theorem D. Let A(-,D) be an elliptic linear differential operator of order 1 < m < N on Q from E to
F,1<p<ooandu € #(QE*). If, for each xy € Q, there exists an open neighborhood U > xq of
Q such that || has finite strong (m, p)—energy on U, then the equation

A*(x,D)f = 1 @)

is L? locally solvable in Q.

Analogously to the homogeneous operators with constant coefficients, we state a version for the

case p = oo,

Theorem E. Let A(-,D) be a linear differential operator of order 1 < m < N on Q from E to F and
u e #(Q,E*). Suppose that A(-,D) is elliptic and canceling in Q and | satisfies

. B(x,r
llonm= sup HE®D)
r

Then, for each fixed xy € Q, there exists an open neighborhood U > xq in € such that, if the potential

b=l |u| (B(y,r))
/o N—mT1 drs i,

condition

where a is some constant between 0 and 1, is satisfied uniformly for almost every y € U, then there
exists a function f € L*(U,F*) solving (2).

The goal of this thesis is to prove the Theorems introducing a new machinery in the setting
of higher order operators. The text is organized as follows:

In Chapter |1} definitions and results which are necessary for the main proofs are presented. It
contains sections about the results in [38], vector-valued measures, measures with finite energy, the
definition of elliptic, canceling and cocanceling operators, Stein-Weiss inequalities, Riesz transforms
and pseudo-differential operators.

Chapter [2] is devoted to the results from [6]. Theorem [A]is shown first, then a Stein-Weiss type
inequality is proved in order to obtain Theorem [B| The chapter ends with some applications and
comments, including a reciprocal to Theorem [B|for first order operators.

In Chapter [3] the results from [5] are exhibited. The definition of removable singularity is in-
troduced, together with some previously known results. Then, the proof of a version of Frostman’s
lemma with a decay condition is followed by Theorem

Chapter ] focus on the results from [[7]]. First, some topics from Chapter I| are revisited, namely, a
stronger definition for measures with finite energy and local definitions of ellipticity, cancelation and
cocancelation are given. Then, Theorems [D] and [E| are proved, followed by comments and applica-
tions.

An appendix at the end of the text outlines the proof of an important estimate from [38]]. Although

this estimate inspired the reasoning behind the proofs of Theorems |B|and |E} its proof highlights why
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Phuc and Torres’s argument for V does not work in the general case for A(-,D).

Notation: throughout this work, Q always denotes an open subset of RV, The symbol f < g means
that there exists a constant C > 0, depending neither on f nor on g, such that f < Cg. Given a set
A C RY we denote by |A| its Lebesgue measure. We write B = B(x, R) for the open ball with center x
and radius R > 0. By Bg we mean the ball B(0,R). We fix f, f(x)dx := |—é‘ Jo F(x)dx, where Q'is a
measurable set. We write K CC Q to say that K is a compact subset of Q.



CHAPTER 1

Preliminaries

In this chapter we present some definitions and results that will be necessary throughout this work.

1.1 Characterizations of the existence of divergence-measure
vector fields

N. Phuc and M. Torres in [38] characterized the existence of solutions in Lebesgue spaces for the

divergence equation
divf=v, (1.1)

where v € .4, (RY), the set of scalar positive Borel measures on RY, and f € LP(RY,RY). The
method is based on controlling the (1, p)— energy of v defined by ||I;V||r, where I; is the Riesz

potential operator. In fact, ||I;v||r» finite is a necessary condition for solvability in L, since from

(L.I) we have
N
Lv=cy Y Rfj (1.2)
j=1

and the control in norm follows as a direct consequence of the continuity of Riesz transform operators

R;in L (RM) for 1 < p < . The following result was proved in [38], Theorems 3.1 and 3.2]:

Theorem 1.1. If f € LP(RY,RY) satisfies (1)) for some v € .4 (RY), then
(i) v=0, assuming 1 < p<N/(N—1);

(ii) V has finite (1, p)-energy, assuming N/(N — 1) < p < . Conversely, if v € .4 (RN) has finite
(1, p)—energy, then there is a vector field f € LP (RN, RN) satisfying (L1).

The previous result does not cover the case p = oo, since the proof breaks down once the Riesz

transform is not bounded in L=(R"). However from Gauss-Green theorem, if f € L”(RY ,RV) is a

5



6 Chapter 1. Preliminaries

solution of (I.T)) then for any ball B(x, r) there exists C = C(N) > 0 such that

V(B(x,r)) = / fondAN <l

dB(x,r)
It is easy to check that ||} V||~ < e implies the following control of the measure v on balls

v(B(x,r)) <CrV7L (1.3)

where the constant is independent of x € RY and r > 0. Indeed,

1 1 Cv(B(x,r))
Lv(x) >  __avy) > dv(y) = =201
IV(X) C/B(xm) |x_y|N_1 V(y> C/B(xm) Nl V(y) Nl

hence we have (1.3). A non-trivial argument (see Appendix [A)) is sufficient to show that (I.3)) implies

’/Rn u(x)dv

and from a standard duality argument a solution f for (T.1)) in L”(RY,R") is obtained. Hence, they

<C|Vull, YueC(RY) (1.4)

proved the following result in this case [38, Theorem 3.3]:

Theorem 1.2. If f € L™(RN,RY) satisfies (I1)) for some v € .# . (RN), then v satisfies (I.3) for
every x € RN, r > 0 and some constant C independent of x and r. Conversely, if v € .4, (RY) has the

property (I.3), then there is a vector field f € L*(RN ,RV) satisfying (T.1).

In Phuc and Torres’s proof of (1.4)), the fact that one is dealing with the divergence operator plays a
very specific role through the co-area formula (see Appendix [A]), suggesting that their argument does

not adapt easily into obtaining a solvability result for other operators than the divergence operator.

1.2 Vector-valued measures and total variation

Let Q C RN be an open set. We denote by .#(Q) the set of signed (i.e., real-valued) Borel
measures on Q. We add the subscript .Z (Q) to denote the set of positive Borel measures on Q. We
write .7 (Q,C) for the set of complex-valued Borel measures on Q given by y = uR¢ +iu'™, where
uRe um c 7 (Q). By .4, (Q,C) we mean the set of measures y € . (Q,C) such that uRe, u™ ¢
A1 (Q). Let X be a complex vector space with dimg X = d < o. We denote by .Z (Q,X) the set of
all X-valued complex measures on Q, [t = (Ui, ..., ltg), where p; = e +ip/™ € .#(Q,C) for all
¢=1,...,d. Similarly, .#,(Q,X) is the set of measures u € .# (,X) such that uy € .#, (Q,C) for
all £ =1,...,d. Here we are implicitly interchanging X and C¢.

The theory of vector-valued measures has substantial differences in comparison to that of scalar-
valued ones. Within the scope of this text, however, the classic properties and results we know for
scalar-values measures remain valid for countably additive vector-valued measures (see [3]). Let
ue . #(Q,X). If fis a scalar-valued function defined on Q, then

[rau=([raw. . [ ra).



1.3. Energy and potentials of measures 7

If g=(g1,--.,84) is an X-valued function defined on Q, then

/gdﬂz (/81dl~l1,“',/gddud)-

If v e #(Q,C), the total variation of v is the positive measure defined, for each v-measurable
set A, by |V|(A) = supY|V(Ax)|, where the supremum is taken over all partitions {A;} of A into
measurable sets. The total variation of Vv is, by construction, the smallest positive measure A such
that |[V(A)| < A(A) for every v-measurable set A. It is known that, for any v € .Z(Q,C), one has
|V|(Q) < oo and, therefore, any complex measure is bounded. For X-valued measures, the definition
is similar. If u € .#(Q,X), the total variation of L is the positive measure defined, for each -
measurable set A, by |1|(A) = sup X |1t (Ax)| = sup i 1/ X, |pe(Ar)|?, where the supremum is now
taken over all partitions {A;} of A into a finite number of measurable sets. One interesting property

is that || is comparable with Y'9_, |u|. More specifically, [pt| < Y9, || < || Indeed, |u,| < |p]
forall £ =1,...,d, since |, (Ar)| < |(Ag)|, thus Y_, || < |u|. For the converse,

d d
Y @) <Y Y [mA) =Y Y Ime(Ad)].
% % (=1 =1k

The summations can be swapped as the sum in k converges absolutely by the definition of complex
measures. Hence
d d d
ul(A) <sup Y Y |ue(A)| < ) sup ) |me(Ax)| = ) |1l (A).
=1 k =1 k =1
Definition 1.3. We say that a measure y € .# (Q) is A-Ahlfors regular, for 1 < A < oo, if it satisfies
the Morrey control given by

) wi(B(x,r
il = sup B < o,

where the supremum is taken over all open balls B = B(x,r) in Q.

In other words, u is A-Ahlfors regular if [it|(B(x,r)) < Cr* for every x € Q and r > 0, where C is

independent of x and r. For Q = RY we introduce the notation

B
140 = sup 21(B")
' r>0 r

for the case when the supremum is taken only over balls centered at the origin.

1.3 Energy and potentials of measures

For any 0 < m < N and any function f in the Schwartz space .#(R"), consider the fractional

integrals called Riesz potential operators given by the action of the multiplier Inf (E) = |E|7™F(&).

Thus, I, f is defined by
1 fo)
Inf(x) = / dy,
= o) Ja ey
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with y(m) := /22" T(m/2) /T ((N —m)/2), where I is the standard Gamma function.
It is important to point out that the constant in the previous formula depends on the definition of

Fourier transform that is being used. Here, for f € .,
(&) = /IR L€ f()d, (15)
and the inversion formula becomes

flx)= /IR LT dE. (16)

We extend this definition for measures. Let 1 € .Z (Q,X). Then, we define the Riesz potential of
n by

1 1
Inn(x) = / —dn(y
0= ) Jo ey 1)
it X =C, and I,,n := (Lyn1,...,I,ng) for a general vector space X.

Definition 1.4. Let 1 < p <o and 0 <m < N. We say that u € .Z(Q,X) has finite (m, p)—energy if

1/p
Uit = (/ |1mu<x>|pdx) <o,
]RN

and p has finite (m,1)*— energy if
Ml = sup & [{x: [t (8)] > A} < oo
A>0

From the previous definitions follows || L,ttR¢||zr + || Lntt)™||zr S || Imkt||zr for £ =1,....d. The

same control holds replacing L? by L1

Proposition 1.5. If u € .4 (Q,X) has finite (m, p)—energy for some 1 < p < N/(N—m) or (m,1)*—
energy, then L =0 on Q.

Proof. Let R > 0 and, by simplicity, we assume uy € .#, (Q) foreach £ € {1,...,d}. We have

1
@z [
( ) BrNQ |x_y|N_m
1
> ———d
/B,m (W RV H0)

_ H(BrNQ)
(I +RYN=

dpe(y)

Thus,

/RN Umu(x)\pdxz/RN[ImW(X)]pde/RN {%rd

— [(BrQ)]? / :

d
o (Ja] + RN
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/ ! d (N)/m—’”N1 d
x=c r
gy (|x|+R)N-m)p 0 r-|-R)(N m)

cw [,

and for 1 < p < N/(N —m) the last integral blows up to infinity, as N — 1 — (N —m)p > —1. Hence

Observe that

we must have ty(Bg N Q) = 0, since ||Lypt||Lr < oo. For the case p = 1, we have

pe(BrNQ)
sup?LHxE]RN: S Ao S|t e <
>0 (] + R)N= t

o)

A% |B <o,u£(BRmQ)ﬁ —xﬁR> ’ ,

However,

e G -]

which blows-up to infinity when A > 0 is small and p,(Bg N Q) # 0. Given that R > 0 was arbitrarily

chosen, and that Q = U By N Q], we conclude that uy = 0 on Q for every ¢ € {1,...,d}. Therefore,
keN

u=0. [l

L. Hedberg and T. Wolff introduced in [21]] a notion of potential within the framework of nonlinear
potential operators. For a positive Borel measure v on RY, 1 < p < e and & > 0, the Wolff potential
Wa,p of v is defined as

1
“lv(B =T dr
WapVv(x) = /0 {%} - for x € RY.

There is also a truncated version of this potential that works fine on bounded domains Q C RY, where

the integration is done in a bounded interval (0,7) for some fixed 7 > 0O:

Wi [ LB T g

yN—ap

One of the hypothesis we introduced in our solvability results can be understood as an uniform control
of the truncated Wolff potential. Applications of the Wolff potential can be found, for instance, in
(1} 40].

1.4 Elliptic, canceling and cocanceling operators

Let A(D) be a homogeneous linear differential operator of order m on RN, N > 2, from a finite

dimensional complex vector space E to a finite dimensional complex vector space F', given by

= Y agd%:C*(RV,E) —» C*(R",F).

|ot|=m
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The nomenclature homogeneous emphasizes that all the partial derivatives in A(D) have the same
order m. The coefficients ay belong to the set Z(E, F) of linear transformations from E to F. They
are constant, in the sense that they do not depend on x € RY. An important function associated to

A(D) is its symbol: a linear transformation A(&) : E — F defined, for each £ € RV, by
A(é) = Z aaéav
|ot|=m
which is, in essence, the Fourier transform of A(D), but avoiding the multiplicative constants.

Definition 1.6. A homogeneous linear differential operator A(D) on RY from E to F is said to be

elliptic if, for every & € RV \ {0}, its symbol A(&) is injective.
We present some examples of elliptic homogeneous operators.

Example 1.7. The gradient operator V : C*(RY R) — C=(RN,R") is elliptic.
Observe that

N
Vu= Z ej oy,
=1

therefore the symbol A(&) : R — RY is given by A(&)(¢) = ¢ &, which is obviously injective for every
& e RN\ {0}.

Example 1.8. The Laplace operator A : C*(RY,R) — C=(RN R) is elliptic.
Since

Au= Z 8xzju,

we have A(E) : R — R given by A(E)(¢) = |E|*¢, which is injective for every & € RV \ {0}.

Example 1.9. The vector Laplace operator A : C°(RY RM) — C= (RN, RM), given by

Af: (Aflv aAfM)7
is elliptic as A(&) : RY — RM is given by A(&)(v) = |E|? v, which is injective for every & € RV \ {0}.

Example 1.10. Let C*(Q,A*RY), for k € {0,...,N}, be the space of k-forms on RY with smooth
coefficients defined on an open subset Q C RV, A k-form f € C*(Q, A*R") can be written as

f=Y fidx,
1=k

where I = {ij,...,i;} is an ordered set of strictly increasing indices iy € {1,...,N}, f; € C*(Q) and
dx; = dx;; \--- Ndx;, is the wedge product. The exterior derivative operators dj : C*(Q,AFRN) —
C(Q, A" 'RY) are defined by dof =Y}, oy, f dx; for f € C*(Q) = C™(Q,A°R"), and

N
aif = Y (dofi)dvi= Y. Y o, fi dx; Adx;

|T|=k =k j=1
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for f € C*(Q,AFRY), 1 <k < N —1. Consider also, for 0 < k < N — 1, the co-exterior derivative
operators d; : C*(Q, AFFIRY) — C=(Q, A*RY) defined by

/dku'VdX = /u-d,i‘vdx7 u e Cr(RY,A'RY) and v € C7(RY, AFTIRY)

where the dot indicates the standard pairing on forms of the same degree. For each f € C*(Q, A*FIRY)

given by Y71 f1 dx;, we may write

dif= Y, Y —0frdx;Vdx;.

[I|=k+1 j€l
Above, for each j, € I ={j1,..., jkr1}s
dxj, Vdxy = (=1 dx; A---Ndxj,  Adxj,. A Ndx;
Je 1 J1 Je-1 Je+1 Jkt1

The chain {d }; defines a complex of differential operators, in the sense that dy | o dy = 0, called de
Rham complex.

Consider, for 0 < k < N, the operator
A(D) = (dy,df_|) : CZ (RN AFRY) — (RN, AFFIRN) 5 €2 (RN, AFTIRY),

When k = 0 and k = N, the operators d* | and dy, respectively, must be understood as zero. We
claim that the operator A(D) is elliptic. In fact, the symbol A(&) : AF(RN) — AFI(RN) x AK-1(RY)
is given by A(&)(v) = (& Av, *(&E A*v)), where x denotes the Hodge star operator (see [28], Section
1.7]). The ellipticity follows from the Lagrange identity

EPIVE =18 AVP 4% (& Aw) 2.

Example 1.11. The Laplace-Beltrami operator (d} di,di—1d;_,) : C2(RY, AFRN) — C2(RN, AFRN) x
CZ (RN, AFRN) is elliptic for k € {1,...,N —1}. In fact, it is consequence of the identity

Ax = di_1di_ +di dy,
where (Arf)r = Afy for each |I| = k (see [25, Lemma 3.1]).

Example 1.12. The Korn-Sobolev-Strauss operator Dy : C*(RN RV) — C*(RN, RVNN+1)/2) given by
Dsu(x) = f(x) with

Ox Ut (X) + Oy uj(x
fialx) = = ! )2 el ), 1 <j<k<N,
is elliptic. Its symbol Dy(&) : RN — RVNV+1)/2 i given by
Vit GrVj :
D)) = T8 g jcren.

Let & # 0 and v € RY such that Dy(€)(v) = 0. Then, in particular, Ds(€); j(v) = &;v; = 0 for every
1 < j < N. Without loss of generality, suppose &; # 0. Then v; = 0, which means that Ds(§); x(v) =
%ilvk =0 for every 1 < k < N. Therefore, v = 0.
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Example 1.13. Consider, for m € N and 0 < k < N, the Lanzani-Raich operator
A(D) = (di(didi)"™, (di_ydi1)"di_) : CZ (R, ARY) — €7 (RY, A TRY) e €7 (RY, A TRY)
as a higher order div-curl operator (see [30]). Analogous to the case m = 0, the operator is elliptic.

Definition 1.14. A homogeneous linear differential operator A(D) on RY from E to F is said to be

canceling if

M A@)E]={0}.
EERV\(0)

The theory of canceling operators was introduced by J. Van Schaftingen, motivated by studies of
some L! a priori estimates for vector fields with divergence free and chain complexes. J. Bourgain

and H. Brezis proved in [8, Theorem 5] the following solvability result:

Theorem 1.15. If N > 2 and 1 <k <N —1 we have
di[WN (AFRN)] = d [(WN L) (AFRY)).

More precisely, given X € WUV (AFRN), there exist some Y € (W'N NL=)(A*RN) and a constant
C > 0 such that one has diX = d;Y as well as:

IVY[[pv + 1Y [l < ClldiX || - (L.7)

Here, W*? denotes the homogeneous Sobolev space W*?. Clearly the result fails for k = 0, i.e.
for dy =V (see [8]]), and the same statement holds for the operator d; when 2 < k < N. The proof of

Theorem |[1.15|is a particular case of the following result from [8, Theorem 10]:

Theorem 1.16. Let S : @_, W'"N(RN) — Y to be a bounded operator into a Banach space Y with

closed range. Assume further that for each s = 1,..,r there is an index is € {1,...,N} such that:

1Sf1] < € max max |0 fs| -
1<s I

r

Then for all f € @'_; W'"N(RY) there exist § € @'_,(W'"N NL®)(RN) and constants C,C' > 0
satisfying Sf = Sg and:
IVelle + llglle- < ClISEl < CIV Sl (1.8)

As a consequence of the previous theorem and by the Hahn-Banach theorem, for the first-order
div-curl operator A(D) = (di,d;_,) for N >4 and 2 < k < N — 2 the [8| Corollary 24] asserts that the

estimate
leell o1 < € (el 1wt + ldg_qull o y-ramar) - Vue CF(RY, ARY), (1.9)
holds where [|h]| 1 y—1a/a1 :=inf {||fl|z1 +[|g]lyy-14/a-1 such that h = f +g¢}. In particular,

ull pvw-r < C (| diull o+ ldi_qull ), Vue CZ (RN, A'RY), (1.10)
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extending the classical Sobolev-Gagliardo-Nirenberg estimates taking k =0, i.e dy =V and d* |, = 0.
Independently, using a simple approach, Lanzani and Stein in [31]] proved the inequality (1.10]) for

N > 3 when £ is neither 1 nor N — 1, moreover
leell vyt < C(lldvullpr + ldgull ), Vu e CZ(RY,A'RY), (1.11)
and
ull -1 < C (|ldn—1ull g + ldyoullp) ,  Vu € CZ(RY,AV'RY), (1.12)

where H! is the Hardy space when p = 1. Several other L! inequalities of the type
leell sy < CIAD)ullyr,  Vue CZ(RYE),

for first order operators were obtained with some additional compatibility assumption (see [8, Corol-
lary 26] for the Korn’s inequalities) as in the case of div-curl operator A(D) = (dy,d;_,). Estimates
of the type
ID" " ull e < CpllADYul|r,  we CT(RY,E),
for homogeneous differential operators A(D) : C*(RY,E) — C2(RN, F) with order 1 < m < N and
I m

I1<p< %, where — 1= — — N are characterized by ellipticity as a consequence of the standard

Sobolev embedding and the classical result due Calder6n and Zygmund in [[10]:
Theorem 1.17. Let 1 < p < N. Then the estimate

ID"ullr < CpllA(Dullze,  VueCERY,E),
holds if and only if A(D) is elliptic.

The latter estimate fails in general for p = 1 as presented by Ornstein in [37]. However, Van

Schaftingen in [45, Theorem 1.3] characterized the classical Sobolev-Gagliardo-Nirenberg inequality
1" ul| vy < ClAD)ullyr,  Vu e C7(RY,E)

if and only if the operator A(D) is elliptic and canceling.

Some examples of canceling operators are the following:

Example 1.18. The gradient operator V : C*(RY R) — C=(R",R") is canceling if and only if N > 2.
We have seen that, in this case, A(E) = &. Thus, for every & € RV \ {0}, A(&)[R] = RE is the

straight line through the origin determined by the vector . Therefore,

M AG)R]=

{{0}, ifN > 2,
E€RN\{0}

R, ifN=1.
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Example 1.19. The operator A(D) = (di,d;_,) from Example is canceling if and only if k €
{2,...,N—2}. Remember that A(&)(v) = (E Av, *(E Axv)). If

(fe)e ) AE) A ®Y),
EeRM\{0}
then £ A f =0 and & Axg = 0 for every & € RY. Since 2 < k < N —2, we conclude that f = 0 and
g=0,as dyy10dy =djody ;= 0. Notice that if k = 1 we cannot prove that g = 0, so the operator is

not canceling. Analogously, for the case k = N — 1 we cannot prove f = 0.

Example 1.20. The Laplace-Beltrami operator (d} dk,dy—1 d;;_,) from Example is canceling for
ke{l,....N—1}.

Example 1.21. The Korn-Sobolev-Strauss operator Dy from Example [I.12]is canceling. Recall that

Eivi+&Ervj

Dy(&)jx(v) = 5

1<j<k<N.

Let

we ﬂ Dy(&) [RN} :
EeRM\{0}

Denote by e;, £ =1,...,N, the unit vector ¢, = (0,...,0,1,0,...,0) with 1 in the /" entry. Observe
that

Vi, jZkIl
Ds(e1)jx(v) = < /2, l=j<k<N
0, I<j<k<N.

Since, in particular, w € Dy(e) [RN} we get w; =0 for 1 < j <k < N. Similarly,

0,
Ds(en)jx(v) = vj/2,
VN,

VAN/AN
/\ //\

j<k<N
j<k=N
k=N

N, =

Y

and we get wix =0 for I <k <N, as w € Dy(ey) [RY]. Finally, since Ds(e2);n(v) =0 and w €
Dy(e7) []RN] , we obtain w; y = 0, concluding that w = 0.

Example 1.22. The scalar Laplacian A = ZN 9%x; jin RV is elliptic but it is not canceling, as

N AGRI= [ EPR=R.
SERN\{0} §ERN\{0}
Example 1.23. The vector Laplace operator from Example[I.9]is not canceling as well, since

N AQRY = ) [EPRY=RY.
EeRM\{0} EcRN\{0}
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Other examples of canceling operators can be found in [435]].
One fundamental property of elliptic and canceling operators A(D) is the existence of a homo-
geneous linear differential operator L(D) : C*(RN,F) — C*(RM,V), for some finite dimensional

complex vector space V, such that

(N kerL(&) = () A(§)E]={0}. (1.13)
EERN\{0} EERN\{0}

More precisely:

Proposition 1.24. Let A(D) be a homogeneous differential operator on RN from E to F. If A(D) is
elliptic, then there exists a finite-dimensional vector space V and a homogeneous differential operator
L(D) on RN from F to V such that

kerL(&) = A(&)[E] (1.14)

for every &€ € RN\ {0}.

The proof for the above result can be found in [45) Proposition 4.2] as well as the next definition,

also introduced by Van Schaftingen:

Definition 1.25. A homogeneous linear differential operator L(D) on RY from F to V is said to be
cocanceling if
m ker L(¢) = {0}.
SERM\{0}
As a consequence, if A(D) is elliptic and canceling then Proposition implies (I.13). This

means that there exists a cocanceling operator L(D) such that, for every u € C°(RV | E),
L(D)(A(D)u) = 0. (1.15)

In [45) Remark 4.1], Van Schaftingen gives a particular expression for the symbol of an operator

satisfying (1.14):

L(G) = det(A(G)" 0 A(5))Id —A(§) cadj(A(G)" 0 A(§)) 0 A(E)", (1.16)
where adj(A(E)*0A(E)) =det(A(E)*0A(E))(A(E)*0A(E))~! denotes the adjugate operator of A(&)* o
A(E).

The operator L(D) and the associated space V obtained from his construction are not the only
pair with the desired property and might not even be the most practical one to work with, but it is
interesting in that it is built exclusively from the ellipticity of A(D).

For instance, if A(D) = V, Van Schaftingen’s recipe gives L(€) : RY — RN, where [L(E)v]; =
E)?v; — & YN | &y, for each j = 1,...,N. Therefore, L(D) : C2*(RN,RY) — C(RN,RV) is given
by

N
[L(D)f]j = Afj - Z axjaxkfk
k=1
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foreach j=1,...,N. One can verify thatif £ £ 0 and v € ker L(§), thenv € R&. Indeed, if L(E)v =0,
then, foreach j=1,... N,

N
EPvi =& Y & =0,
k=1

hence v; = (W ¢j. Thus, v = fﬁ_\;
Therefore, ker L(§) = RE = A(E)[R]. Note also that L(D)(Vu) = 0.

Examples of cocanceling operators are:

SV E € RE. Conversely, & € kerL(E) for every t € R.

Example 1.26. The divergence operator L(D) = div : C*(RY,RY) — C=(RY,R) is cocanceling.

Indeed, observe that

N
divf =Y o.f
j=1
and therefore L(&) : RN — R is given by L(&)(v) = & -v. Then clearly

ﬂ kerL(&) = ﬂ Et = {0}.
EeRM\{0} EeRM\{0}

Example 1.27. Let k € {0,...,N — 1}. The operator L(D) = dj, the exterior derivative defined in
Example |1.10) is cocanceling. We have L(E)(v) = EAv. If v € AK(RN) fork < N—Tand EAv=0
for every & € RV, then v = 0.

Example 1.28. The higher order divergence operator L(D) : C* (RN, RM) — C=(RN,R), where M =

(N +,]§_1) is the number of multi-indices & of length N and || = &, given by

LD = ¥ 3%

o=k

is cocanceling. Its symbol L(§) : RM — R is given by

LE)(v)= ), &%a.

la|=k
Let
ve ﬂ kerL(&).
E€RN\{0}
Then
Z gaV(x - O
|a|=k

for every & € RN, The properties of multivariate polynomials imply that v = 0.

More examples are available in [45].
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1.5 Stein-Weiss inequality in L' norm
The study of two-weight inequalities for the Riesz potential operator started with Stein and Weiss
in [43], where they proved the following inequality involving power weights:

Theorem 1.29 ([43, Theorem B*]). Let N > 1,0 </ <N and 1 < p < g < oo. Assume , 3 satisfying

the conditions

N N 1 1
(i) a < — and B < — with—+— =1;
p q p D
(ii) a+p >0;
1 1 «o —/
iy L= L @Bl
qg P N

Then, there exists C > 0, depending only on the parameters p,q, o, B, such that
P 1eflloer) < CUIX* Allpp@yy, Y f €S (RY), (1.17)

Naturally, one asks if (1.17) holds for p = 1. The answer is no, in general. For p =1 and a =0,
for instance, let ¢ € C°(R") be a positive smooth function supported on the unit ball B; such that
Jgv @(x)dx = 1 and, for each € > 0, consider @¢(x) := € V¢ (e~ 'x). Then, applying (I.I7) for ¢;

and using the scaling invariance, we have

%12 1 e | gy < Cll el 1wy = C

|—N+é

uniformly. Taking € N\, 0, we know that Iy (x) — |x almost everywhere, which implies

el PO oy = el ™™ gy S 1,

a contradiction.
Inequality (1.17) can be rewritten as

q 1/q 1/p
(/ |x|—ﬁqu) <c(/ |f(X)|"|XI""’dx) |
RN RN

where K (x,y) := y(£)"!x —y|™*f and 0 < ¢ < N. De Népoli and Picon in [11] studied the Stein-

Weiss inequality for the Riesz potential in the case p = 1, and characterized this inequality for a class

/ K(e)f(y) dy
RN

of vector fields associated to cocanceling operators. Their main result was the following:

Theorem 1.30 ([11, Theorem 1.2]). Let N >2, 0 </ <N, 0< a <1, B <N/q oo+ >0 and

1 —
_:1+LM

N Then if L(D) is cocanceling, there exists C > 0 such that
q

1/q
(/ |Igf(x)|q|x|_ﬁqu> gc/ | £ ()] |x|* dx, (1.18)
RN RN

for all |x|*f € L"(RN, F) satisfying L(D) f = 0 in the sense of distributions. Conversely, if for every
non zero |x|*f € L' (RN, F) satisfying L(D)f = O the inequality (I.18)) holds for a = 0, then L(D) is

cocanceling.
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The converse in the case 0 < @ < 1 is an open question. However, the theorem fails for o« = 1.
Let ¢ € CZ(B)) a non-negative function with [y @ (x)dx =1 and @¢(x) =& V¢(x/e) for € > 0. The
vector field fp on RY with components fi ¢(x) = dy, (e (x)), fr.e(x) = =y, (@e(x)) and fje(x) =0
for j = 3,...,N satisfies div f; =0 for all € > 0. We showed in Example that the divergence

operator is cocanceling. Then, assuming Theorem [[.30] holds for & = 1, we have

1/q
([ s Poa) "5 E [ 1fetolblan veso (1.19)
RN j:l,Z RN
But f1 ¢(x) = € 1(dy,0)e(x) and f> ¢ (x) has a similar expression, hence
Y | ielidldss [ Vo0l ldldr <o (1.20)
j=12

independently of €. However, writing I;fj ¢ (x) = Cy ¢ ;(Kj * @¢)(x), with K;(x) = x;/|x|N~¢*2, and
taking € — 0 we obtain, for the left-hand side of (1.19)),

1/q oo 1/q ol 1/q
</ ;14 ’x’(N+£2ﬁ)qu) - <CN/ r(N+£lB)qu1dr) _ (CN/ rldr> ,
RN 0 0

as (—N+/¢—1—fB)g+N = 0. This integral diverges, contradicting the (I.20). The previous theorem

follows directly from the next Fundamental Lemma:

Lemma 1.31 ([11, Lemma 3.2]). Assume N >2, 0 < { < N and K(x,y) € L}

loc RY X RY, Z(F,V))
satisfying

KOyl SC o=y, x#y (1.21)
and N
y
1 o+p—¢ , ,
Suppose 0 < a<1,B<N/q, oo+ >0and - =1+ —N If L(D) is cocanceling, then there
q
exists C > 0 such that
q 1/q
(| L xensor o wroea) " <c [ irwimeas (1.23)
RN |JRN RN

for all |x|*f € LY (RN F) satisfying L(D)f = 0 in the sense of distributions.

The inequality (T.18) follows from Lemma observing that the Riesz potential kernel K (x,y) =

y(0) 7' |x — y| N+ satisfies (T.21)) and (T.22).

The following results are examples of applications for Lemma|l.31{and can be seen in [11]:

Theorem 1.32 (Hardy-Littlewood-Sobolev inequality in L! norm for canceling operators). Let A(D)
be an elliptic homogeneous linear differential operator of order v on RN, N > 2, from E to F and

assume that 0 < o < 1, 0 < ¢ < N and ¢ < v. If A(D) is canceling, then the estimate

(o

holds for every u € C2*(RN,E), some C >0and 1 < q < N+(x NTa—7"

1/q
(_A)(V—Z)/Zu(x) q ‘xl—N-i-(N—Z—Ot)de) < C/ \x|a|A(D)u(x)]dx,
RN
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In the statement above, g = (—A)“/ 2 f is the positive fractional power of the Laplacian defined
from the multiplier g(£) = |E[f(€) for f € ./ (RN), the space of tempered distributions, and a > 0.
The next is a previously known result from [46, Theorem 1.2] regarding convolution kernels, but

Lemma|l.31|allows a much easier proof.
Theorem 1.33 (Fractional integral operator for L' vector fields). Let N >2, 0< /<N, 0< o < 1,

1 .y
B<N/q,a+ﬁ>0and5:1+i

N Suppose that K (x) satisfies

(a) |[K(x)| <C \x\E_N, x#0;
(b) |K(x—y) = K(x)| < C plrr,  2ly| <l
IfT)f(x) = [en K(x—y) f(y)dy, then there exists C > 0 such that
| Tr || < Clf i+ [[lx4V (—a) " div ]|,
forall f € C2(RN,RN).

To prove this, we first use the Helmholtz decomposition f = g+ h where h = V(—A)_1 div f.
Then g = f — V(—A)~!div f satisfies divg = 0. Since div is cocanceling, Lemma gives

[P Tig]| | < CllAA £l + [[l4*V (~4) " div £] .

For h, as V is elliptic and canceling, there exists a cocanceling operator L(D) such that L(D)h =0

and (1.18]) implies
|t 70| < il

1.6 Some classes of operators

In this section we present two important classes that will be fundamental is this thesis.

1.6.1 Riesz transforms

One important class of singular integral operators that will be useful for us are the Riesz transforms

R;, for j=1,...,N, given by

e—0t

| oy
Rif(x) = lim ey /| SO iy
x—y

for f € #(RY) and cy =T (M) /aW+1/2_ Its Fourier transform is given by

A property of the Riesz transforms that will be key for some proofs in this text is that they are
bounded from L7 to itself for 1 < p < o (see [12, Corollary 4.8] or [18, Corollary 5.2.8]), that is,
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the operator can be extended to LP(RY), for all 1 < p < o, so that ||R;f||r < C(p,N)||f]|L» for all
f € LP(RY). The Riesz transforms are also of type weak(1,1) (see [18] Section 5.3]), which means
that for every f € L'(R¥)and j=1,...,N,

IR fllpre = )Stu%l [{x: IR > A S N
>

This is a simple application of Calderén-Zygmund Theorem [12, Theorem 5.1].
With the above properties, one is allowed to consider compositions of Riesz transforms. Let

o = (ay,...,ay) be a multi-index. Then, the Riesz transform of order a. is the operator
ROf = (R RS oo BEY) .

for f € LP(RY), where R?j is the composition R;joRjo---oR; for a; times. The boundedness

properties of R; naturally extend to R*. It is straightforward to conclude that

g
o

—

(R%f)(§) = (=) (&),

where E* = £ &2 E7Y and || = ]Jyzlaj.

1.6.2 Pseudo-differential operators

In this subsection, we present some basic tools of the theory of pseudo-differential operators in
the Hormander classes, with examples and properties that will be necessary in some proofs of this

text. We refer to [23, 24} 44] for a deeper study on the topic.

Definition 1.34. Let Q C RY be open and let m,p,0 € RwithO < p <1and0 <6 < 1. The set of
symbols of order m and type p, 0, denoted by S;)” 5(€), called the Hormander classes, is the set of all
acC”(Qx RN ) such that, for every K CC Q and all multi-indices o, 3, the estimate

9f o%alx, g)\ < Copx(E)"PIEOBl forxc K,E € RY, (1.24)
holds for some constant C, g x > 0. Here, (&) = (1+4[& 2)1/2 denotes the so-called japanese bracket.

In particular, we write S = S’I”O and simply say that $™ is the set of symbols of order m. We also

define S‘; s = UnSY b5 and S~ =, S;)”’ 5- Notice that the definition of S™* does not depend on p
and 6.
Example 1.35. Leta(x,&) = ) ay(x)&7, withay € C*(Q). Then, fixed K CC Q and taking x € K,
S
we have
P aga(x,§)=Co Y Pay(x)E7,
[ylsm

o<y
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where the notation o¢ < ¥y means that o/; < y; for every j =1,...,N. By the compactness of K,

oPafa(x.&)| <Capx ¥ €M

lyl<m
asy

Lilyl—
<Coupx Y, (1+]EH)2M-leD

[YIsm
as<y
< Copi(E)" 1%,
Hence, a € S"(Q).

Example 1.36. If a € C°(RY x RY) is positively homogeneous of degree m for |§| > 1, i.e.,
a(x,18) =1"a(x,§)
for |E] > 1 and ¢ > 1, then, fixed K CC R" and taking x € K, we have:

« if |&] < 1, then

8)?850‘(1()@5)’ < Cy q.p.k- since K x By is compact;
o if § =tn, with [n|=1and ¢ = |&| > 1, then
1% 3%a(x, €) = Ia(x,m) = A2 ["a(x,m)] = " Ia(x,n) = €] Oa(x,m),

hence, 8f8ga(x,§) = |&|m-ed 8)?8,‘;‘a(x, n), but since K x S¥~! is compact, we have

ol aga(x,&)| < Co o pxlEI" 1.

Combining both cases, we have

afaga<x,g)( <Copi(E)™ forxe K EcRY,
that is, a € S™(RY).
From the previous example, the symbol a(x,&) = |&|%, k € N, belongs to S,

Example 1.37. Let A > 0 and a(x, &) = (14+A|&|?)™/? for m € R. If m = 0, it is straightforward that
a € S°. If m # 0, since a is independent of x, we only need to analyze 8g‘a(x, &). Using Faa di Bruno’s

formula,

oa(n &)= ¥ |c+agPtt ¥ [(o1EP) (32/@2)]
1<<al |yf|+-l~-+yi=a[
YJ 2 ;j: EARAS A

It follows from the previous example that |£|? € 52, thus ‘8? IS |2‘ < (&Y Also,

(1+AIEPEC <1+ EP)E = ()
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Hence,

‘8g‘a(x,é)‘< Y ol Y G [<§>2—\7‘|...<§>2—|V€|]

1<(<]o m——
1Y |=15j=1,....0
= ¥ [Casteygye]
1<0<] o]
= Ca ()" 1.

Therefore, a € S™.
We can now define the main subject of this section.

Definition 1.38. To a symbol a € S 5(€2) we associate the operator

Pla)f(x) = / AR (e E)F(E)dE, fe Q). (1.25)

RN
P(a): L (Q) — L (Q) is called a pseudo-differential operator of order m and type p,d. The set of
all such operators is denoted by Op Sg’ 5(Q).

Example 1.39. Let a(x,§) = Z aqE* be the symbol in Example [1.35| with all ay constant and

la|=m

aq =0 for || < m. Then

P@fo = [

R

Nezmx-é < Z aaéaf(§)> dE.

|orf=m

From Fourier inversion formula (1.6)),

Nezmx"f (C ) aaaaf> (£)dE=C ) agd“f(x).

|a=m |af=m

P@f = [

R

Hence, the homogeneous linear differential operator of order m given by A(D) = Yjaj=m agd? is a

pseudo-differential operator in Op S§™.

More examples will appear in future chapters.
Pseudo-differential operators are bounded from . (Q) to . (Q) (see [23, Theorem 18.1.6]). If
we replace fby its definition in ((1.25)), we get

P = [ e ang) ([ e roar) ac
| K0

where K(x,y) = / PN g(x,E)dE € .7 (Q x RY) is called the distribution kernel of P(a). Tt
N

enjoys the following properties:
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Theorem 1.40 ([2, Theorem 1.1]). Let T € OpS;’;(S(Q), 0<p<1,0<p <, beapseudo-differential
operator with symbol a(x,&) and let K (x,y) be its distribution kernel.

(i) (Pseudo-local property) K is smooth outside the diagonal. Moreover, given o, B € 7, there is
no € Z such that for each n > ny,

sup|x— " 9L P K (x,3)] < e
Xy

(ii) Suppose a has compact support in & uniformly with respect to x. Then K is smooth, and given

a,B €ZY, neZy, there is C > 0 such that

19%APK (x,y)| < C(1+ [ —y]) ™

(iii) Suppose that m+M + N < 0 for some M € 7. Then K is a bounded continuous function with

bounded continuous derivatives of order up to M.

(iv) Suppose that m+ M + N = 0 for some M € Z.. Then, there is C > 0 such that

sup |90 K(x,y)| <C|nfx—y|[, x#y.
o+ Bl=M

(v) Suppose that m+ M + N > 0 for some M € 7. Then, there is C > 0 such that

sup |90 K (x,y)| < Cle—y| tmHMHNP -y oty
ot Bl=M

Next we state a comprehensive result on the L” boundedness of pseudo-differential operators, due

to Alvarez and Hounie, which will be very useful in future proofs.

Theorem 1.41 ([2, Theorems 3.2 and 3.5]). Let T € OpSgS(Q), 0<p<10<06<1 and set
A =max{0,(0 —p)/2}. Then

(i) T is of type weak(1,1) if m < —N {I_Tp—kl],

and it continuously maps LP (Q) to L1(Q), for 1 < p < g < oo, in the following cases:

11
(ii) ifp<2<qandm<—N<———+7L);
P 4q

(iii) if2<p§qandm<—N{l—l+(l—p) <l—l)+l];

P q 2 p

o 1 1 1 1

(iv) U‘P<q<2andm<—N{———+(1—p) (———)+7L].
P q qg 2

Particular cases of Theorem that are noteworthy are:
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e T€ OpSgs(Q) is continuous from L”(Q) to itself, 1 < p < oo, if

eesfnft-4]

* T € OpS™(Q) is continuous from L”(Q) to itself, 1 < p < oo, and is of type weak(1,1), if
m<0.

Regarding L! continuity, we also have the following:

Theorem 1.42 ([35, Theorem 6.1]). Let T € OpS™(RN). If m < 0, then T maps continuously L' (R")
to itself.

To finish this subsection, we connect the elliptic operators defined beforehand with the theory of

pseudo-differential operators in order to obtain an important property.

Definition 1.43. Let T € Op S;’)’ﬁ(Q) and a € S;’)’ﬁ(Q). We say a is a principal symbol of T if
o—
T—P(a) € OpSy s° P (Q).
Example 1.44. A(§) =Y |q|—maa&* € §" is a principal symbol of A(D) = ¥ 4| @ad®* € OpS™.

Definition 1.45. Let p > 6 and a € Sﬁ 5(Q). We say a is an elliptic symbol of order m if, for every

K CC Q, there are positive constants C and r such that
la(x,&)| > C(&)", forx€K,|E[>r.
IftT €Op S;”y 5(Q), we say T is elliptic of order m if it has an elliptic principal symbol of order m.

Example 1.46. A(§) = ¥j4|—maa&? is an elliptic symbol of order m if and only if A(§) # O for
& € RV\ {0}. This is in line with the definition of A(D) being elliptic given in Definition

Theorem 1.47 ([23| Theorem 18.1.8]). Letp > 6 and a; € SZIJ'B(Q), j=1,2. Then
P(a))P(a) € OpS;"f;mz(Q).
The next theorem shows that elliptic operators are invertible, modulo an operator in Op S—.

Theorem 1.48 ([23, Theorem 18.1.9]). Letp > 6, a € Sy 5(Q)andb e S;.'g (Q). Then the conditions

below are equivalent:
(i) P(a)P(b)—1€ OpS~™(Q);
(i) P(b)P(a)—1 € OpS—(Q),
and a determines b mod S™(Q). Here, I is the identity operator P(1). Both (i) and (ii) imply
(iii) a(x,§)b(x,§) —1 €5 5(Q),

which then imply that a is an elliptic symbol of order m. Conversely, if a € ng 5(Q) is elliptic of order
m, then one can find b € S;:g (Q) satisfying (i), (i) and (iii).



CHAPTER 2

Global solvability for homogeneous linear
operators with constant coefficients

Throughout this chapter, A(D) denotes an elliptic homogeneous linear differential operator of
order m on RN, N > 2 and 1 < m < N, with constant coefficients, from a finite dimensional complex
vector space E to a finite dimensional complex vector space F. Since the vector spaces have finite
dimension we will use, for simplicity, X in the place of X*.

Inspired by Theorems [I.1]and we will study the Lebesgue solvability for the equation

A*(D)f = u, @.1)

where A*(D) is the formal adjoint operator associated to the homogeneous linear differential operator
A(D):

Definition 2.1. The formal adjoint of a differential operator L : CZ°(Q,E) — C°(Q, F) is the differ-
ential operator L* : C*(Q,F) — C(Q, E) determined by

/Lq)-Tf=/qo-Wf
Q Q

for every ¢ € C2°(Q,E) and y € C(Q,F). In other words, L* = L/, where L' is the formal transpose

of L and L’ denotes the operator obtained by conjugating the coefficients of L'.

Example 2.2. If L=V : C°(RY,R) — CZ(RY,R"), then

and, therefore, L* = —div.

25
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The first result of this chapter concerns the Lebesgue solvability for the equation (2.1) when
1 < p < o and is the focus of Section [2.1]

Theorem 2.3. Let A(D) be a homogeneous linear differential operator of order 1 < m < N on RV,
N >2, fromE to F and u € .# (RN E).

(i) If1<p<N/(N—m), f € LP(RN F) is a solution for Z.1) and u € .4, (RN E), then u = 0.

(ii) IfN/(N—m) < p <ooand f € LP (RN F) is a solution for (2.1), then u has finite (m, p)—energy.
Conversely, if |lt| has finite (m,p)—energy and A(D) is elliptic, then there exists a function
f € LP(RN F) solving @2.1).
In particular, Theorem [2.3|recovers Theorem [1.1|taking A(D) = —V, where E = R, F = R" and
A*(D) = div.

The second and main result of this chapter deals with the case p = oo and is proved in Section[2.2]

Theorem 2.4. Let A(D) be a homogeneous linear differential operator of order 1 < m < N on RN
fromE to F and p € .# (RN ,E). If A(D) is elliptic and canceling, and | satisfies

) B,
I#tlov—m = sup BIB) 22)
>0 T
and the potential control
Iyl/2 B(v.r
/0 %di’ <1, uniformly ony, (2.3)

then, there exists f € L*(RN,F) solving @2.1).

We point out that the assumption (2.2)) is weaker in comparison to (N — m)-Ahlfors regularity,
|| it||[N—m < oo, since here it is only necessary to take the supremum over balls centered at the ori-
gin. The condition (2.3) can be understood as an uniform control of the truncated Wolff potential

associated to |u|.

21 The l < p <o case

The section is dedicated to the proof of Theorem For the next proposition, the following

lemma will be necessary.

Lemma 2.5 ([42], p. 73]). Let P,(x) be a homogeneous harmonic polynomial of degree k, k > 1. Then

P() \ P
() - 25

/2« I'(k/24a/2)
T(k/2+N/2—a)2)

=ik

where Y o
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Proposition 2.6. Let 1 < p < N/(N—m). If u € 4 (RN E) and f € LP(RNF) is a solution for
A*(D)f =, then u =0.
°° 1

mdr = m and the Fubini’s theorem we may

Proof. From the identity (N —m) /
o=yl
write

1 1 = 1
Im.u(x) = ’)/(m) /]%N |x—y|N—m d.l'L(y) :CN,m/l%N (/;C_y md?) d,LL(y>

X >l (I”) oo x r>|x— (I’)
_ {r>px—yl} _ {r>|x—yl}
—CN,m/RN (/0 rN—deT> du(y) —CN,m/0 (/RNrN—deN()’)> dr

* 1 ” “(B (x,7))
= —du = lim .
“Nom /0 </B(X7r) PNl ‘ (y)> ar= CNom €—>l 0+ pN—m+1 ar

Now, using the Gauss-Green theorem, we have

u(B(x.r)) = / A D)fG)dy= Y /B e

B(x,r) |ot|=m

. v —Xig
- Y a / ( )8“-emf<y>yf—’dw<y>,

lot|=m dB(x,r ‘y_x‘

where we choose, for each multi-index & = (¢,..., 0v), anumber ju € {1,...,N} such that o, # 0

in a way that 9% f = dy, (9% /o f). Summarizing

Lnit(x) = cNm Z ay lim ([)cy:raa_e'mf(y)wymx!;’v””zdw( )) dr

a|=m £%0+
% 1: a—e; Xja — Vja
=cp, ay lim 0% e f(y) — =5 dy
" e
=CNm Z ay, (Kja*aa emf) (x),
la|=m

where K, (x) := xj,/|]x|N~"*2. Thus from Lemma we have E]:(ﬁ) =cnm &j,/|E|™ and hence,

renaming the constant cy ,, we have

(K5 0% e fTE) = e £ ) = w2 FLE) = (REN)E)
In this way,
Inpt =cnm Y, ayR®f. (2.4)
lot|=m
In particular for m =1,
I (x) —CNZa lim f()’)x—wdy_CNZa R, f(x)
= e=07 J|x—y|>e ‘x y| j=

for almost every x € RV,
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Since each R; is bounded from L” to itself for 1 < p < e and of type weak(1,1), we con-
clude that ||L,ut||rr < || f|lr < oo, that is, p has finite (m, p)—energy for 1 < p < N/(N —m) and
|t 1 S IFIl 1 < oo for p = 1. Notice that up until this point we only needed u € .# (RN E). If
u € .# (RN, E), it follows from Propositionthat u=0in R, O

Next we prove the second part of the Theorem The following proposition will be necessary.
Its proof can be found in [12, p. 71].

Proposition 2.7. If T is a tempered distribution homogeneous of degree «, then its Fourier transform

is homogeneous of degree —N — QL.

Proposition 2.8. Let N/(N—m) < p < o and p € 4 (RN, E). If f € LP(RNF) is a solution for
A*(D)f = U, then U has finite (m, p)—energy. Conversely, if |lL| has finite (m, p)—energy, then there
exists a function f € LP(RN,F) solving A*(D)f = u.

Proof. The first part follows from identity (2.4) and the boundedness of order o Riesz transform
operators. For the converse, consider the function § — H(§) € £ (F,E) defined by

H(§) = (A"0A) 1 (§)A"(E)

that is smooth in RV\ {0} and homogeneous of degree —m. Here A*(&) is the symbol of the adjoint
operator A*(D). Since we are assuming that 1 < m < N, then H is a locally integrable tempered
distribution and its inverse Fourier transform K (x) is a locally integrable tempered distribution homo-
geneous of degree —N + m (Proposition that satisfies

u(x) = /R K= y)ADuO)]dy, ueCERY,E) 2.5)

and clearly |u(x)| < I,|A(D)u|(x).
Let WZ””/(RN,E) be the closure of CZ°(RN,E) with respect to the norm |[ul|,, ,y = [|A(D)ul|,-
Thus,

< [ R s a5 [ 4@t 0

v =y

[ ue)dnt

< el pr o 2]z S [0l

since || has finite (m, p)—energy, following that i € [wr’p/(RN,E)]*. Since A(D) : w;‘n’p/ (RMNE) —
L” (RN, F) is a linear isometry, its adjoint A*(D) : LP (RN, F) — [w/"” / (R",E)]* is surjective. There-
fore, there exists f € LP(RY, F) such that A*(D) f = u. O

In the end of the previous proof, the following lemma was used. It is a direct consequence of

Hahn-Banach Theorem:

Lemma 2.9. Let X and Y be normed vector spaces and T : X — Y a linear isometry. Then its adjoint

application T* : Y* — X is surjective.
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Observe that Proposition [2.8] hence Theorem [2.3[(ii), becomes a characterization for the existence
of an L? solution (N/(N —m) < p < o) for (2.1)) if || = p. This is the case when p is a positive

scalar measure:

Corollary 2.10. Let A(D) be an elliptic homogeneous linear differential operator of order 1 <m < N
onRN, N >2, fromE to F, where E and F are finite dimensional real vector spaces, with dimg E = 1.
Let u € M. (RN,E*) and N/(N —m) < p < . Then W has finite (m, p)—energy if and only if there
exists a function f € LP (RN F*) solving A*(D) f = L.

2.2 The p = case

In this section we will prove Theorem The main ingredient of the proof is to investigate

sufficient conditions on i in order to obtain

SIAD)ully,  YueCO(RYE). (2.6)

[ ux) )

The strategy used by Phuc and Torres to prove is of no use here, as the co-area formula used by
them is not applicable for a general operator A(D). However, (2.6)) is pretty similar to the Stein-Weiss
inequality (I.18) studied by de Napoli and Picon in [11]] for ¢ = 1. The twist here is that we have du
instead of |x| ~Bdx, i.e. in their case the (scalar) positive measure is given by a special weighted power
for some 8 > 0. In order to prove Theorem[2.4]it is enough to show that holds. In fact, assuming
the validity of that inequality, we conclude that y € [wf:’l (RN E)]* and, following the argument used
in the proof of Proposition there exists f € L”(RY, F) such that A*(D) f = u. From the identity
(2.5), since A(D) is elliptic, the inequality is equivalent to

L | xaetas] auto| < el @
RN LRV
where g := A(D)u, for all u € C(RV,E) and moreover
K(x—=y)| <Cla—y/"™, x#y (2.8)
and
K (e =) SC le—y" ™ 2y < . (2.9)

To see why (2.9) holds, notice that (d,K )A: céf is homogeneous of degree 1 — m. From Proposition
we conclude that d,K is homogeneous of degree m — N — 1.

The proof reduces to obtaining inequality invoking a special class of vector fields in L' norm
associated to an elliptic and canceling operator A(D) and u satisfying and (2.3).
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2.2.1 A Hardy-type inequality

The first step in the proof of Theorem [2.4]is an extension of a Hardy-type inequality [11, Lemma

2.1] on two measures.

Lemma 2.11. Let 1 < g < o0 and v be a 6-finite real positive measure. Suppose ii and v are measur-

able and non-negative almost everywhere. Then

q 1/q
[ / ( / §(y)dy> ﬂ(x)dv(x)] < / 3(x)9(x) dx
RY B\X\/Z RN

holds for all g > 0 if and only if

1/q
._ - o _
C'_zseil())(/(BR)vu(X)dV(x)) (xseug;[v(x)] >< .
q 1/q
[/ (/ _g(Y)dy> ﬁ(x)dv(x)] g/ 3(x)¥(x)dx
RY (B\JC\/Z)C RN

holds for all g > 0 if and only if

A= 18221()) </BR i(x) dv(x)) . (;ces(l)lz},:)c[ﬁ(x)]_l) < oo,

Proof. First we prove (2.11)) implies (2.10). By Minkowski inequality we have

[/RN (/le/zg(Y)deﬁ(x)dv(x)] 1/": [/RN (/RNg()’)X{zy<|x|}(x,y)dy>qﬁ(x)dv(x)]

Analogously

(2.10)

(2.11)

(2.12)

(2.13)

1/q

< [ ([ 02y eyt avis) "

1/q
-/ a0) ( /(Bzy)cu<x>dv<x>> dy
<C /R L80)v(y)dy,

since

1/q 1/q
( / ﬁ@)dv@) o) < ( / _a<x>dv<x>> ( sup mxnl) <c.
(Bajy))¢ (Bajy))° XEBy),)

Conversely, for R > 0 consider S(R) := ess sup[¥(z)] ~'. For each n € N, we define the set
ZEBR

M, = {z € Br: [5(2)] " > S(R) — 1} |

n
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From the definition follows UI/IV,,| > 0, hence there exist M, C M, with 0 < IM,)| < oo. Choosing
g(y) = Zu, (y) and using (2.10), we have

(/(BzR)Cﬂ(x)dv(x)> " = @ /(BzR)C ( . Xm,(y) dy)q ﬁ(x)dv(x)]

1 ! _
< | o ( J,, dy> u(x)dv<x>]

1/q
Taking n — oo we get / i(x)dv(x) S(R) <1 and the result follows since the control is
(B2r)¢
uniform on R > 0. The proof is analogous for 2.12) «— (2.13). O

Observe that, to prove (2.10) above, it would suffice to ask for the weaker condition

1/q
( / ﬁ(x)dv(x)) <70
(Bajy))¢

for almost every y € RV,

2.2.2 A Stein-Weiss-type inequality

The following peculiar estimate for vector fields belonging to the kernel of some cocanceling

operator was presented at [11, Lemma 3.1].

Lemma 2.12. Let L(D) be a cocanceling homogeneous linear differential operator of order m on RN

from F to'V. Then there exists C > 0 such that, for every ¢ € C™(RN F), we have
[ owrsorn|<cE [ 1l peo)a @.14)
j=1

for all functions f € L'(RN | F) satisfying L(D) f = 0 in the sense of distributions.

The second step to obtain (2.7) is an improvement of Lemma|[I.3T|([11, Lemma 3.2], [27, Lemma

2.1]) in the setting of positive Borel measures.

Lemma 2.13. Assume N >2,0<{ <N and K(x,y) € L} _(R¥ xRN, £ (F,V)) satisfying
K@) <Cl—y™, x#y (2.15)

and

1yl

’K(X,y) —K()C,O)‘ < C |X|N7£+17

2] < . (2.16)
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Suppose 1 < q < o and let v € .4 (RN) satisfying

[VIlo,(v—t)g < °°, (2.17)

and the following uniform potential condition

[Vl(n—p)g := sup dr < oo. (2.18)

N—{l)g+1
yERN r( )a+

/|y|/2 V(B(y,r))
0

If L(D) is cocanceling, then there exists C > 0 such that

(o

for all g € L'Y(RN,F) satisfying L(D)g = 0 in the sense of distributions.

q IV
dv(x)> <C/ lg(x)|dx, (2.19)
RN

/ K(x,y)g(y) dy
RN

Remark 2.14. A stronger condition satisfying (2.18)) is given by
V(B(y,R)) < Cy|y|V 04 NRY (2.20)

when R < |y|/2. The integration boundary |y|/2 in (2.18) can be swapped to aly|, where a is a fixed
constant 0 < a < 1. In this case, (2.20) must hold for R < a|x| to imply (2.18).

Let us present an example of positive measures satisfying (2.17) and (2.18). Suppose N > 2,
0<f<N,1<qg<N/(N—/)and define dv = |x|V=99=Ndx. The control (Z.17) is obvious for the
case when g = N/(N —¢), since Vv is simply the Lebesgue measure and (N — ¢)g = N. Otherwise,

R
v(Br) = [ |x|V 09N gx < / FN=04=1 4, < p(N=0)q
Bp 0
For (2.18) we note that, if |y| < R < |x|/2, then |x|/2 < |x+y| < 3|x|/2. Thus,
V(B(x,R)) :/ ’y’(N—Z)CI—Ndy _ |x+y’(N—Z)CZ—Ndy < ‘x‘(N—E)q—NRN‘
B(x,R) Br

In order to prove the inequality (2.7), and consequently the Theorem [2.4] we estimate

/RN URNK(X—y)g(y)dy} dp(x) </RN

and we apply the Lemma forg=1and v = |u|, taking K(x,y) = K(x—y) given by identity (2.5)
that, for ¢ = m, satisfies (2.8), which obviously implies (2.15)), and (2.9), which by the Mean Value
Inequality and the fact that |x — 17| > |x|/2 for |n| < |y| < |x|/2, implies that

/RNK(x—y)g(y)dy‘ d|u|(x)

K (x,y) — K(x,0)] S|y sup [9K(x,m)| < [y|/[xN 0T,
nelo,y]

that is (2.16)). Note that (2.17) and (2.18) come naturally from (2.2) and (2.3). The conclusion follows
taking g := A(D)u that belongs to the kernel of some cocanceling operator L(D) from (I.13).
Now we present the proof of Lemma
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Proof of Lemma Let y € CZ°(B 2, R) be a cut-off function such that 0 < y < 1, y = 1 on B 4,
and write K (x,y) = K (x,y) + K> (x,y) with K; (x,y) = w(y/|x|)K(x,0). We claim that

q 1/q
Jj= ( [, dv(x)) < [ Jstolan @21

for j=1,2 and g € L'(RV, F) satisfying L(D)g = 0 in the sense of distributions.
Using the control (2.15]) we estimate

(Ll
<(LILov(5)ema|

q
S ( L] %g(yndy] |x|“—N>qdv<x>>
Y | /B,
r q 1/q
-~ (/ / !yHg(y)!dy] \X\“N”qu(x)) : (2.22)
RV | /By 2

where the second inequality follows from (2.14) for ¢(y) = y(y/|x|)n, where for a fixed x, 1] is a unit
vector in F chosen so that

/RNV/(M)TI gy )dy’ = /IRNvf(%)g(y)dy‘.

Since for any multi-index o we have d%@(y) = |x| %! Y y(y/|x|) and y € C7 (B )5, R), (2.14) gives

us iy ()|

/ K;i(x,y)g(y)dy
RN

1/q
|K(x,0)]qdv(x)>

1/q
|x|“—N>de<x>)

1/q

for()swal= £ [, iy

S / F{3] %dy
Biy 2

In order to control (Z.22) we use the first part of Lemma [2.11} taking d(x) = |x|(“"¥=14, g(x) =
|x||g(x)| and #(x) = |x|~'. So checking (2.11]) we have

1/q oo 1/q
( / ﬂ(x)dv(x)) = (Z / |xy<f—N—1>qdv(x)>
(Br)© k=1 2 1R<|x|<2%R

1/q
<< (2k1R)(5N1>qV(BZkR))
k=1

s

- 1/q
< |"||(l)/3v 0g (Z 2k 1R ((—N—1)q (sz)(N—e)q>

—1
S IV, {;;gjﬁ(x)]l} ,
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where the last step follows from sup [#(x)] ! = R. Hence,
XEBR

q 1/q
Jlf,(/ [/ Iyllg(y)ldy] \XI“_N_”qu(X)> S Ivlgo / |(x0)]dx.
RN | /By 2 R

Now for J>, using Minkowski’s Inequality we get

Jr < /RN (/RN IKz(x,y)VdV(X)) 1/q|g(y)|dy-

It remains to be shown that
/ Ko ()[4 dv(x) < C (2.23)
RN

for some constant C > 0 uniformly on y. Recall that K;(x,y) = K(x,y) — y(y/|x|) K (x,0). If 2|y| >
x|, then y(y/|x|) = 0, thus |K>(x,y)|[ = [K(x,y)|. If x| > 4[y[, then y(y/|x[) = 1, thus [K>(x,y)| =
|K(x,y) — K(x,0)|. In the region 2|y| < |x| < 4|y| we have

kat) = 1w () [ Ko v v () G - K0

For each y € RY we get the following upper estimate for the previous integration

/ Ka(x,)|9dv(x) < / K(e.y)|?dv(x)
RN x| <2[y]

T Licieay (KENTHIKEY) = K(x 0)) dv(x)

+ / K(x,y) — K(x,0)dv(x)
x| =41y|
— / K (ey)|7dvi(x) + / K (x,y) — K(x,0)dv(x)
x| <4ly| |x|=2]y|
=)+ D).
From conditions (2.16)) and (2.17)) we have

) < [yl / e[ V=14 gy (x)
B2M ¢

°° (—N—1
Ny / x| N4 gy ()
k=1 2K|y|<Jx|<2k+ )y

<1 Y @D NI By
k=1

S IVlo.w—pg [y| MY 2K EEN=0a (pkF )y (N=0a
k=1

= |[Vllo.w_r)g2 ™09 Y 27
=1

S Vllo.v—0)g
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while from condition (2.15))
W [yl Maves
Bapy

- / ey Mgy () + / ey N9 gy ().
B(y,lyl/2) Byjy \B(3,[¥1/2)

(& J/

v ~~

(la) (1)

The second part is straightforward:

V(Bajy|)

1 /
) < — =~ dv(x) = ———="— <||v o
) (Iyl/2) %04 g, (x) (y]/2) V04 IVllo.v—0)q

Finally, writing Ay := {r € R: 7 > |x—y|} and pointing out that B(y, |y|/2) C By, we obtain from

(2.17) and (2.18)

I,) = N—/ ) N1 g ) gy (x
a) /B(y7y|/2)( & </|xy| ) V)

— (N—0)g /R a0 ( /0 w%m) av(x)

) 1
- / / ——F——dV(x) | dr
( . 0 < B(y|yl/2)nB(y,r) rN—0at] ( )>

I¥1/2 r)) dr ”
:(N—ﬁ)q</0y %%H(B(y,\y\ﬂ))/ W‘”)

/2’

A

(N—=10)q |:[[v]](N—£)q + v(BZM)m (M/Z)M—N)q]

S Vv-0q T 1V llo,v—0)g:

concluding €23 and thus 2 < (V- + [Vlov-0)/* | ls(3)]ay. =

2.3 Applications and general comments

2.3.1 Avoiding the Wolff potential condition

We can get a similar result to Lemma [2.13] without the potential condition (2.18). In this case,
however, we must extend the Ahlfors regularity hypothesis (2.17) to every ball and the conclusion
(2.19) has an extra power weight on the right-hand side of the inequality.

Lemma 2.15. Assume N >2,0 < { <N and K(x,y) € L} (RN xRN, Z(F,V)) satisfying

loc

K(x,0)| <Clx—y|"™, x#£y (2.24)
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and

b < x|. (2.25)

’K(x7y)_K(x70)‘<C||NT+17 2‘)}‘\

Suppose 0 < a < 1, 1 < g < oo, and let v € .4, (RY) satisfying
VI (N=tta)g < oo (2.26)

If L(D) is cocanceling then there exists C > 0 such that

(o

for all g|x|* € L' (RN, F) satisfying L(D)g = 0 in the sense of distributions.

K(x,y)g(y) dy
RN

q /g
dv(x)> < C/ lg(x)] |x|* dx, (2.27)
RN

Proof. With the necessary adaptations, the proof follows the same steps of Lemma|2.13| except when

estimating (I,).

W)= [ sl avi
B(yIv1/2)

b=y dv ()

k=1 /B(y#"lyI)\B(yl<"“)|y|)

< Z/ (27(k+1)’y’)(f*N)qdv(x)
k=1 (y72"‘|y|)
|y| ((—N)q Z k+1 V(B(y,Z_kb;D)
< IVl - o I Z ~(k+1))(E=N)g (k| |y (N—E+a)g

= 20V (v g 1% Z (27t
k=1

=200y | vy a9q (279 = 1) ||,

2.3.2 First order operators

It remains as an open question whether (2.2) or (2.3) are necessary conditions to obtain a L™
solution to (2.1)) for homogeneous differential operator A(D) with order m > 1. For m = 1, however,

we show that certain (expected) decay regularity on U is necessary:

Theorem 2.16. Let A(D) be a first order homogeneous linear differential operator on RN from E to
Fandp € 4 (RN E). If there exists f € L*(RN, F) solving 2.1), then there is a constant C > 0 such
that

u(Blx,r))| <M

for every x € RN and r > 0.
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N
Proof. Denoting A(D) = Z a;jdj we have, for every x € RY and almost every r > 0,
j=1

N
u(B(x.r)) = /B . RACTEEEDY /B AT

:_Z V)2 as(y),

JdB(x r) b’ X|

hence |p(B(x,r))| < Cn || flle=r"~".

To extend this estimate for every r > 0, let M C R be the zero-measure set of values r > 0 for
which the previous estimate does not hold. Given x € RY and r > 0 we can write B[x, r] = N;B(x,r}),
where (rj); C Ry \ M is a decreasing sequence converging to r (note that R, \ M is dense in R_).

Thus, simplifying the notation assuming g, € .# (R") for each j = 1,...,d we have
He(B(x,r)) < Tim [ (B(x,rj)| < Cullf o= }ggrﬁv" = Cn | fll=r"

Summarizing

1 (Blx, )| < (2d)2Cy | fll=r"

2.3.3 De Rham complex

Recall the operator
A(D) = (dy,d}_}) : CZ (RN, AFRY) — (RN, AFFIRY) x €2 (RN, AFIRY)

from Examples and It was shown that, for k € {2,...,N—2}, A(D) is elliptic and canceling.
Its adjoint

A*(D) : C2 (RN, AFFIRY) x 2 (RY, AFIRY) — ¢ (R, ARY)
is given by

A*(D)(f,8) =dif +dig.

Hence, we have the following corollary of Theorems [2.4]and [2.16}
Corollary 2.17. Let di: C*(RY, AFRN) — (RN, AKFIRN) and df : C= (RN, AFFIRN) — C= (RN, AFRYN)
be the exterior and co-exterior derivatives defined in Example and u € #(RV, ARV ). If
ke {2,...,N—2}, and U satisfies

|1[(B)

||U||07N*1£§gg N1 < o,

and the potential control

D2 4| (B(y,r) .
/0 r—Na’r <1, uniformly ony,
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then, there exists (f,g) € L°(RN, AKFTRN) x L= (RN, AF=1RN) solving
A f +di1g = L. (2.28)

Conversely, if there exists (f,g) € L™ (RN, A¥FIRN) x L= (RN, AK=1RN) solving (2.28), then there
is a constant C > 0 such that

u(Bx,r))| < crV

for everyx € RN and r > 0.

2.3.4 Limiting case of trace inequalities for vector fields

F. Gmeineder, B. Raitd and J. Van Schaftingen (see [17, Theorem 1.1]) characterized an inequality

similar to (2.6) involving positive Borel scalar measures. Precisely: if ¢ = =5 and 0 < s < 1 then the

estimate y
q
(/ ’Dm—lu(x)‘qdv(x)> §|yv||j]{ﬁv_l)||A(D)u||L1, (2.29)
RN

for all u € C*(RN, E) and all g(N — 1)—Ahlfors regular measure v, holds if and only if A(D) is elliptic
and canceling. Besides the authors claim that it seems to be not simple to obtain a generalization for
s =1, 1i.e g = 1, in particular the inequality holds for the total derivative operator A(D) = D™ that is
elliptic and canceling (see Remark [2.19).

Next we present the validity of the inequality (2.29) for ¢ = 1 (see [17, Theorem 1.1]) under

(N — 1)—Ahlfors regularity and an additional uniform potential condition on v.

Theorem 2.18. Let A(D) be a homogeneous linear differential operator of order m on RN, N > 2,
fromE to F. Then for all v € .#, (RN) satisfying Z.17) and 2.18), with £ = q = 1, there exists C > 0
such that

/ D" ()| dv < ClADull, Ve C2(RY,E). (2.30)
RN

Proof. The inequality follows by the combination of the identity D"~ 'u(x) = [on K (x—y)[A(D)u(y)] dy
where K (&) := Yaj=m—1E*(A 0A)~1(E)A* () that satisfies (Z.15) and (2.16) for ¢ = 1 and then the
estimate (2.30) follows by Lemma[2.13|for g = 1, as showed in the proof of inequality (2.7). O

As a consequence of the previous proof we can estimate the constant at inequality (2.30) by

C < |vllon—1+[[V]IN-1-

Remark 2.19. Let D™ := (D%)|q|—, the total derivative operator that is an elliptic and canceling

homogeneous linear differential operator. Using (T.4) it follows directly that
/N |D’”_1u(x)| dv < |[vlin=1lID™ull 1, (2.31)
R

for all u € CX(RY) and v € .#, (RY). Although the assumption that v is (N — 1)—Ahlfors regular
contrasts with ||V|jo y—1 < oo at Theorem the uniform potential condition (2.18)) is not necessary

to the validity of (2.31).
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In the same spirit of [27, Theorem A] the inequality (2.30) can be extended for the following:

Theorem 2.20. Let A(D) be a homogeneous linear differential operator of order m on RN, N > 2,
from E to F, and assume that 1 < g < oo, 0 < { < N and { < m. Then for all v € .4, (RN) satisfying
(2.17) and [2.18)) there exists C > 0 such that

(Ll

The proof follows the same steps when proving Theorem [2.18|and will be omitted. In particular,

l/q
_A><m—f>/2u<x>\qdv) <ClADuly, VueCoRYE). (2.32)

the inequality (2.32) recovers the inequality (1.5) in Local Hardy-Littlewood-Sobolev inequalities for
canceling elliptic differential operators [27)] taking dp = |x| "N N=04¢x for 1 < g < N/(N — 1) (see
Remark 4.1).






CHAPTER 3

Removable singularities

Given a linear differential operator A(x,D) = ¥ q|<m@a(x)d* with smooth coefficients in RY,
N > 2, one calls a closed set S C R removable for the equation A(x, D) f = 0 with respect to a space
7 of locally integrable functions (scalar or vector-valued), provided that for any f € .% satisfying (in
the sense of distributions) the equation A(x,D)f = 0 outside S, one has A(x,D)f = 0 in R" (in the
sense of distributions).

The following result dates back to Harvey and Polking [20, Theorem 4.1(b)], where .7#”* will stand

for the s-dimensional Hausdorff (outer) measure in RY.

Theorem 3.1. If A(x,D) is a linear differential operator of order m < N with smooth coefficients and
if the closed set S C RN satisfies 7N~ (S) = 0, then S is removable for the equation A(x,D)f =0
with respect to the space L}, C(RN ) of locally (essentially) bounded functions.

Removable sets for several linear equations have been studied, and sometimes characterized com-

pletely, in the literature.

3.1 The divergence case

It was first proven by Moonens in [34] that a compact set S C RY is removable for the equation
div f = 0 with respect to L=(RV ,RV), if and only if one has s#V~1(S) = 0. The proof, however,
heavily relies on the fact that one deals with the divergence operator, and cannot be carried out to
other differential operators (even of order one).

Shortly after, Phuc and Torres [38] obtained as an application of Theorem|1.2} among other results,
a new proof for the above characterization of compact removable sets for the divergence equation with
respect to bounded vector fields, this time relying on a new strategy to prove that a compact set § C RY
with 2V =1(S) > 0 cannot be removable for the divergence equation. Their argument uses the famous

Frostman’s lemma [32, Theorem 8.8]:

41
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Lemma 3.2 (Frostman’s lemma). Let B be a Borel set in RY. Then 7°(B) > 0 if and only if there
exists a non-trivial Radon measure v € M, (RY) (i.e., 0 < V(RN) < o) such that v is compactly
supported on B and v(B(x,r)) < r* for x € RN and r > 0.

If a compact set S C R” has s##VN~1(S) > 0, then Frostman’s lemma gives a non-trivial Radon
measure v supported on S with the property that v(B(x,r)) < ¥V~ for all x € RN and r > 0. Then, by
Theorem the equation div f = v has a solution in L*(RY,R"). Since div f = 0 outside S (as V is
supported in S), if S were removable for the divergence equation with respect to L™, this would imply
div f = 0 in R", a contradiction with the fact that div f = v # 0 in R". Once again, the presence of

the divergence operator prevents this proof being extended to other operators.

3.2 The A*(D) case

As an application of Theorem we can prove a necessary condition for a set § C RY to be re-
movable for the equation A*(D) f = 0 associated to an elliptic and canceling homogeneous differential
operator A(D):

Theorem 3.3. Assume that A(D) is an elliptic and canceling homogeneous differential operator on
RN of order 1 < m < N, from a finite-dimensional vector space E to a finite-dimensional vector space
F. If the closed set S C RY is removable for the equation A*(D)f = 0 in L (RN, F), then S has

Hausdorff dimension less than or equal to N — m.

Recall that the Hausdorff dimension of a set S is defined as the infimum of all s >> 0 such that
H5(8) = 0.

It follows from Theorem[3. 1]that if 7V ~"(S) = 0, then S is removable for the equation A*(D) f = 0
with respect to L. Such a set has Hausdorff dimension less than or equal to N —m. It hence
only remains open whether or not some sets with Hausdorff dimension N — m, yet positive (N — m)-

dimensional Hausdorff measure, may be removable in this context.

3.2.1 A version of Frostman’s lemma with decay

If one were to use Frostman’s lemma to obtain a measure satisfying the hypothesis from Theorem
condition (2.3) would be missing. Remember (see Remark [2.14) that a sufficient condition for
(2.3) to be fulfilled in this case is given by

v(B(x,r)) < |x| 7Y (3.1)

when r < |x|/2. Because of that, we provide a result ensuring at least that, given integers 1 <m < N
and a closed set S C RY satisfying sV =""%(S) > 0 for some & > 0, there exists a non-trivial Radon
measure supported on S and satisfying conditions (2.2)) and (2.3)). This will result from observing that

one can impose, in the statement of Frostman’s lemma, a decay condition.
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Lemma 3.4 (Frostman’s lemma with power weight decay). Assume that 0 < o« < s < N are fixed
and that B C RN is a Borel set satisfying 5¢°(B) > 0. Then there exists a non-trivial Radon measure

u € A (RN) supported on B satisfying:

( ) (3.2)

and such that, for any x € RN and any 0 < r < |x|/2, one has
w(B(x,r)) < x| =% . (3.3)

Proof. Using Lemma[3.2]we find a non-trivial Radon measure v supported on B satisfying v (B(x,r)) <
r* for all x € RY and all » > 0. Now define Ay := {x € R : k < |x| < k+ 1} for k € NU{0} and in-

troduce the Radon measure u defined by:

pi=Y 27"%y1A
k=0

Observe first that, for 0 < r < 1, B, C Ag. Hence, one has

u(B;) _ v(B;) < rt %L,
s—a s—a S—a

while if one has j < r < j+ 1, for some j € N, there holds
Zz—"“ k) +27/%v(B,NA;)
<Y 2 (B £ 2 (B,
k=0

J—1 ,
<Y 27k + 1) 27797,
k=0

thus,

B 1| :
nu'( r) < — Zz—ka(k+1>5+2—]ars

= ZZ’“"kJrl) 42

rS(X

< Zz*k“(k+1)s+[2*f(j+1)]°‘
k=0
g COC7S < &9,

with, for instance, Co s := 1+ Y 2_k0‘(k+ 1)%, since one has 27/(j+1) < 1 for all j € N and
Y02 %% (k+ 1) converges (by the ratio test). Therefore, (3.2) holds.
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To prove (3.3), fix x € R and 0 < r < |x|/2. Choosing j € NU {0} such that one has j < |x| <
j+ 1, one finds r < % and hence also, for y € B(x,r),
j+1 j—1 J+1

3
DI bl ==y > == =20 and Bty -l < 1+ =2+ ),

so that there holds B(x,r) NAy = @ fork <m; := L%J andk >n;:= (%(j%— 1)], where |a] denotes
the greatest integer less than or equal to a and [a] is the smallest integer greater than or equal to a.

We can hence compute

u(Bxr) < Y, 2 V(B <P Y 274 (34
k=m; k=m;

Yet one has

Z 2—/(05 — 2—H1j(X Z 2—kOC — 2—Mja
k:mj k=0

—mjot _ ~—(nj+1)a i1
_ 27— - 1 A 1 2_(17_1)05

Writing then

. o . 1 o o
p-da e (B e (FE1) T (3) e, (3.6)
21 23 2

since one has &1 < % for any k € NU {0}, we finally get, combining (3.4), (3.5) and (3.6)),

23
3
22¢ j
B g S —50
Au’( (‘x7r)) r 1_27a
25.3%
S 1_2« |X| arsv

which establishes (3.3)). [

3.2.2 Hausdorff dimension of removable sets for A*(D)

We are now ready to prove Theorem 3.3

Proof of Theorem If the Hausdorff dimension of S were larger than N — m, then there would exist
a > 0 such that N ~"+%(S) > (. The above Frostman’s lemma with power weight decay - Lemma
[3.4] - applied to B =S and s = N —m + « ensures the existence of a non-trivial real-valued Radon
measure v supported on § satisfying

v(By)

sup —
r>0 yN=m

< oo,
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and such that, for any x € RY and any 0 < r < |x|/2, one has
V(B(x,r)) < x|~

Yet then, if e € E is fixed, and if one defines the vector-valued measure pt(B) := v(B)e for any B C RY,

there holds

u|(Br) v(B,)
sup N_n: = ||e||E sup N_:n < oo,
>0 >0

meaning that (2.2) is fulfilled.
We also get, for any x € RN, x #£0,

I &3]

/O’z‘ e e e

ererl erqul 1o )

S

so that is also satisfied uniformly in x € RY, x # 0.

Hence it follows from Theorem that there exists f € L”(RY, F) solving A*(D)f = u, which
implies that S is not removable for the equation A*(D) f = 0, since, as argued in the divergence case,
one has A*(D) f = 0 outside S (in the sense of distributions) but A*(D)f = u # 0 in R (in the sense
of distributions). ]






CHAPTER 4

Local solvability for non-homogeneous
linear operators with variable coefficients

In Chapter[2] we dealt with homogeneous operators with constant coefficients defined in the whole
euclidean space. We now want to take a step further towards a more general case. If one decides to
consider operators with variable coefficients, it will be naive to expect solvability results that hold in
the whole RY. That is why the results addressed in this chapter are all local, meaning that they only
hold in open subsets of RY. From now on, Q always denotes an open subset of RV,

Let A(+,D) be a linear differential operator of order m on Q, N > 2 and 1 < m < oo, from a finite

dimensional complex vector space E to a finite dimensional complex vector space F, given by

A(x,D) =Y aq(x)0%:CZ(Q,E) = CI(Q,F), 4.1

|or|<m

where the coefficients are now smooth functions aq € C*(Q, Z(E,F)). We will study the local

Lebesgue solvability for the equation
A*(x,D)f = p, (4.2)

where we denote A*(x, D) = ¥ q|<m g (x)0%, with ag : Q — L (F,E). We shall say that equation
(@.2) is L? locally solvable in Q if, for each xy € Q, there exist an open neighborhood U C Q and
f€LP(U,F) such that

/(pd,u:/f-A(x,D)(pdx, ¢ € C*(U,E). 4.3)
U U

Continuous solvability for (4.2)), in distributional sense, was recently characterized by Moonens

and Picon for elliptic and canceling operators:

Theorem 4.1 ([36, Theorem 1.3]). Let A(-,D) be an elliptic and canceling linear differential operator
with smooth coefficients. Then, every point xy € Q admits an open neighborhood U C Q such that,
for any distribution g € 9'(U,E), the equation (&.2)) is continuously solvable in U if and only if for

47
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every € > 0 and every compact set K CC U, there exists 0 = 0(K, &) > 0 such that one has

[1(@)] < Bll@llwn-r1 +el|AC,D)@l|1, (4.4)

for any ¢ € CZ(U,E), i.e. the space of smooth functions @ in U vanishing outside K. Here,
Wm=LI(U) is the homogeneous Sobolev space defined by L' (U) functions whose weak derivatives
of order m— 1 belong to L' (U).

One must be wary of the definition of ellipticity, cancelation and cocancelation for non-homogeneous
operators with variable coefficients. This will be addressed in Section .2
The first result in this chapter presents sufficient conditions on u to guarantee the local Lebesgue

solvability for the equation (4.2) when 1 < p < co. Proving it is the goal of Section #.3]

Theorem 4.2. Let A(-,D) be an elliptic linear differential operator of order 1 < m < N on Q from E
toFasin@1), 1 <p<ooandu € #(Q,E). If, for each xy € Q, there exists an open neighborhood
U > xo of Q such that || has finite strong (m, p)—energy on U, then the equation (4.2)) is L locally

solvable in Q.

The strong (m, p)—energy is slightly different from the (m, p)—energy defined in Section
replacing the Riesz potentials by Bessel potentials in order to attain a better behavior at infinity.
Section will focus on that matter. As in the setting of operators with constant coefficients, the

proof resumes to obtaining the a priori local estimate

[ wto)auto

for some C = C(U, p,N) > 0, and the solvability follows from a duality argument. Once again, the

< ClAGDully, VucC(ULE) (4.5)

case when p = o is treated separately and is the main result of this chapter, being proved in Section

Theorem 4.3. Let A(-,D) be a linear differential operator of order 1 <m < N on Q from E to F as

in @.1) and p € 4 (Q,E). Suppose that A(-,D) is elliptic and canceling in Q and | satisfies

B
IulloN-m= sup W < oo, (4.6)
B(x,r)CQ r

Then, for each fixed xo € Q, there exists an open neighborhood U > xq in Q such that, if the potential

b0l |u|(B(y,r)

condition

where a is some constant between 0 and 1, is satisfied uniformly for almost every y € U, then there
exists a function f € L (U, F) solving (4.2).
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In contrast to (2.2) in Theorem [2.4] the hypothesis (4.6) is the (N — m)-Ahlfors regularity of y1 on
Q, taking the supremum over every ball (not only those centered at the origin).

Although the proof follows similar steps in comparison to the global case, the work is far from
trivial since the machinery in the setting of operators with variable coefficients involves new argu-

ments. An example of measure satisfying (4.6 and (.7) is given in Example [4.23]

4.1 Strong (m, p)—energy

For any m > 0 and any function f in the Schwartz space .7 (R"), the Bessel potential operators
J are given by the action of the multiplier m(é) = [E]7™ F(&), where [E] = (1+4m%&P) V2w
write J,,f = G, x f,if m > 0, and Jo f = f, where

G(x) = Cm / e /8 (8)ds, (4.8)
0

with ¢, = (47) /2T (m/2)~" and h,(8) = e~ 0/47 §(N+m=2)/2 " The kernel G,, € L' (R") and is
clearly positive and radially symmetric.
Remark 4.4. From Example we know that J,,,f is a pseudo-differential operator in OpS™"™.
From Theorem it follows that J,, is of weak type(1,1) and is bounded from L? to itself, for
1 <p<oo.

To point out an important property of Bessel potentials, we introduce a notation to describe the

asymptotic behavior of a given function.

Definition 4.5. Let f: Q CR — R and ¢ : Q — (0,00) and let @ be an accumulation point of Q or
a = £oo (when Q is unbounded). We say that:

(i) f(x) =0(¢(x)) asx — a (read “f is big-oh of ¢”) if there exist a neighborhood ¢ € U C Q and
a positive constant A such that |f(x)| < A¢(x) for every x € U,

(i) f(x) =o0(¢(x)) as x — a (read “f is little-oh of ¢”) if, for each € > 0, there exists a neighbor-
hood a € U C Q such that |f(x)| < € ¢(x) for every x € U.

It is often useful to interpret O(+) and o(-) as limits: f(x) = O(¢(x)) as x — a is equivalent to

imsup {15
whereas f(x) = o(¢(x)) as x — a is equivalent to
S|
o)

The first important property of the Bessel potential kernel is that, for 0 < m < N, its behavior near

< oo,

the origin is similar to the Riesz potential kernel. More precisely, if 0 <m < N,

’x’—N—O—m —N+m
=——+o(|x ) as |x| — 0, 4.9

Gn®) = =y
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where y(m) := /22" T'(m/2) /T ((N —m)/2). The second important property regards its decay at
infinity:
G(x) = O(e /2 as [x| — oo, (4.10)

meaning that it has exponential decay, a useful property that Riesz potentials lack. More on Bessel
potential operators can be seen in [42].

In a similar fashion to the Riesz potential, if € .Z(Q,C), we define

)= [ Gulr=y)dn(y
and, for u € A4 (Q,X), Jult := (Julhi, .-, Imla)-

Definition 4.6. Let 1 < p < 0,0 <m < N and Q C RY. We say that u € .# (Q,X) has finite strong
(m, p)—energy on a subset U C RV if

1/p
bt lir0) = ( /U ummx)\f’dx) oo,

and p has finite strong (m,1)*—energy on U if
bl = S0 1€ U gt ()] > A} <
>0

We say a measure 1 € .#4(Q,X) is translation-invariant if, for every x,y € Q and r > 0 such that
B(x,r),B(y,r) C Q, we have u(B(x,r)) = u(B(y,r)). Clearly the Lebesgue measure restricted to Q
is translation-invariant. The next proposition shows that, in RY, a certain property is still valid if we

replace the Riesz potential for the Bessel potential.

Proposition 4.7. Let 0 < m < N. If u € .# (RN ,X) is translation-invariant and has finite strong
(m, p)—energy for some 1 < p < N/(N —m) or strong (m,1)*—energy on RN, then u = 0.

Proof. Fix a point xo € RY and suppose by simplicity that the components of i are real measures, i.e.
e € Ay (RN) (otherwise take p¢ or uj™). By @9), given € > 0 there exists a small R > 0 such that

|x|fN+m |x|7N+m Nem
— G (x) < |Gp(x) — x|
¥(m) ¥(m)
whenever |x| < R. Thus, choosing € small enough, we have
1
Gm(x) > (——8) x|V >0 when |x| <R. 4.11)
o) > o —e ) N
By (@.T1) and the translation-invariance of the measure, we have
i) > [ Gule- i) > [ )
0\X) = AX—y)ale\y) = o IN—m GHeY
" BOR) B(xR) X =YV

N o W(BR) (Bl R)
> o T A= AB0) = v [ iy = e[ i
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We then get

CNm.uﬁ X(),R)) P
n Pdx > It (x))P dx > d

c (x0,R p/ dx
= [enmpe(B(xo oy |x|+R =

o)

c (x0,R p/
[Nm.uﬂ 0 0 r—|—RNm

- RN
= [en mle(B (XO,R))]p/R %

dr

and for 1 < p < N/(N —m) the last integral blows up to infinity, as N —1 — (N —m)p > —1 (in-
dependent of R > 0). Thus, as u € .#, (R ,X) has finite strong (m, p)—energy, we must have
We(B(xo,R)) = 0. For the case p = 1, we have

ue(B(xo,R))
sulexERN o A | S Ut <
B (] + RV it o

B(O,(‘%( (ifo, B )
B (0, we(B(xo, R)) i — A

which blows-up to infinity when A > 0 is small and ¢ (B(xo,R)) # 0. Since R is separable, then
ty(RV) =0 foreach £ = 1,...,d. Therefore, u = 0 on R, O

However,

A‘{x:w>l}‘:l

(x| +R)N=

= A" N-

4.2 The pointwise notion of ellipticity, cancelation and cocance-
lation

As alluded previously, the definitions for elliptic, canceling and cocanceling operators are slightly
different in this framework. Actually, these are pointwise definitions that specialize to the simpler
versions seen when the operator is homogeneous and has constant coefficients.

Let A(-,D) be a linear differential operator of order m on Q as in (@.1). Its principal part is the
homogeneous operator of order m on Q

D) = Z ag(x)0*
|a|=m

The symbol of A(-,D) is the linear transformation A(x,§) : E — F defined, for each (x,&) €
Q xRV, by

and its principal symbol is
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Remark 4.8. From Example|1.35] A(-,D) is a pseudo-differential operator in Op S™. Notice that the

definition of its principal symbol is in accordance with the one given in Definition[T.43]

Definition 4.9. A linear differential operator A(-,D) on Q from E to F is said to be elliptic at xy € Q
if, for every & € RN\ {0}, its principal symbol at xg, A,,(x0,E) : E — F, is injective. We say that
A(-,D) is elliptic in Q if it is elliptic at every xg € Q.

Remark 4.10. Once again, as in the homogeneous constant coefficient case, this definition of elliptic-
ity is equivalent to that of A(-,D) being a elliptic pseudo-differential operator. Recall from Example
[1.46] that A, (x0,&) is an elliptic symbol of order m if and only if A,,(xo,&) # 0 for & € RV \ {0}.
By continuity, A,,(x,&) # 0 for & € RY\ {0} and x in a neighborhood of xy. Thus, Theorem is
applicable when A(+, D) is elliptic in the sense of Definition

Definition 4.11. A linear differential operator A(-,D) on Q from E to F is said to be canceling at
xo € Q if its principal part evaluated at xo, A, (xo,D), is canceling in the sense of homogeneous

constant coefficient operators, i.e. if
N An(xo,§)[E] = {0}
SERM\{0}
We say that A(+, D) is canceling in Q if it is canceling at every xg € Q.

Let L(-,D) : C*(Q,F) — C*(Q,V), where V is another finite dimensional complex vector space,

be a linear differential operator of order Kk given by

L(x,D) =Y ba(x)0% (4.12)
|al<x
where by € C*(Q, Z(F,V)).
Definition 4.12. We say that L(-, D) is cocanceling at xo € Q if, for every f € F \ {0}, the polynomial
p: RN\ {0} — V, with coefficients in V, defined by

p(6) = L (x0,8)f
does not vanish identically. We say that L(-, D) is cocanceling in Q if it is cocanceling at every xp € Q.

A polynomial vanishes identically if and only if all its coefficients vanish. Since the number of

multi-indices o € NV with |ot| = is M = (VF5~!

L(x0) : F — V™ given by L(xo) f = (ba(x0) f) o 1S injective.

), then L(-,D) is cocanceling at xo if and only if

Lemma 4.13 ([26, Lemma 2.4]). Let L(-,D) be an operator as in (&.12) with smooth coefficients
bg € C*(Q,Z(F,V)). If L(-,D) is cocanceling at xy € Q, then there exist a ball B = B(xg,r) C Q
and functions ko € C*(B, £ (V,F)) such that
Y. ka(x)ba(x)=1Ir, x€B, (4.13)
|a|=x

where Ir denotes the identity in F.
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Proof. From the hypothesis, we know that Z(xo) : F — VM defined above is injective. Then the same
is true for x sufficiently close to xo. We can see L(x) as a rectangular matrix S(x) with coefficients that
depend smoothly on x. Hence, there exists r > 0 sufficiently small such that, for x € B= B(xo, r), there
is a matrix K (x) with coefficients depending smoothly on x representing a left inverse K(x) : VM — F
of L(x), that is, K (x)S(x) = I for x € B. Writing K (x) as (ke (X)) |a|=kc» We get (@.13). N

An important property of cocanceling operators is that, if 2" := kerL(-,D) NC(Q,F), then for
every K CC Q there exists a constant C = C(K) > 0 such that

<CIfluliVell, feZ, ¢ e CX(K,F). (4.14)

/Q £(x)- @(x)dx

A proof for this property is given in [26, Theorem 2.3].

Similar to homogeneous constant coefficient operators, there is a crucial relation between elliptic
and canceling operators and cocanceling operators in Q. That relation arises in the proof of the
following theorem, asserting that the ellipticity and cancelation of A(-, D) in Q is characterized by the

local Sobolev-Gagliardo-Nirenberg inequality:

Theorem 4.14 ([26, Theorem 4.2]). Let A(+, D) be a linear differential operator of order m in Q. Then
A(-,D) is elliptic and canceling if and only if every point xy € Q is contained in a ball B= B(xy,r) C Q

such that the a priori estimate
H(pHWm*LN/(N*U <(/1’|A(7D)(p|’L17 (pECgo(BvE)7 (415)
holds for some C = C(B) > 0.

In the statement above, W”?(Q) denotes the homogeneous Sobolev space of functions f € LP(Q)

such that all weak derivatives of f up to order m are L”(Q) functions, equipped with the norm

1fllwme =3 119P fllLr. (4.16)
|Bl=m
During the proof of the last theorem, from the ellipticity of A(-,D), Hounie and Picon show that
there exist a finite dimensional complex vector space V and a linear differential operator L(-,D) :
C*(Q,F) — C=(Q,V) of order k = 2mN such that

(1 An(x0,8)[E]= () kerLg(xo,§), foreach xo€Q, (4.17)
EERN\{0} SERN\{0}
and since A(-, D) is canceling in Q, i.e. the intersection in the left-hand side is {0}, the operator L(+,D)
is cocanceling in Q. Their construction generalizes Van Schaftingen’s operator for operators
with variable coefficients.
Using the previous motivation, in order to study the validity of the inequality (@3] for p’ = 1, we
prove a local version of Lemma [2.12]in the setting of cocanceling vector fields.
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Lemma 4.15. Let L(-,D) be a cocanceling linear differential operator of order k on Q from F to V

as in @.12). Then, for each xy € Q, there exists an open ball B = B(xo,r) C Q such that

S Y[, Il Do+ [ 1ol —slloto]

forall € CX(B,F)and f € 2" :=kerLi(-,D)NCK(B,F).

x)dx

Proof. For a fixed xp € Q, Lemma guarantees there is a ball B = B(xg,r) C Q and functions
ko € C*(B,Z(V,F)) such that (4.13)) holds. Without loss of generality, we can consider r < 1. Let
P:B— Z(F,V) be given by

(X _x())B *

Pl = ¥ Sk (),

Bl=x
where kE (x) € Z(F,V) denotes the adjoint of kg (x) with respect to the inner product. For |a| = K,
we have

e B L/<oc< )wY(x_xO)ﬁ]aaykE(X)Jr[&“(x—xO)ﬁ]kE(x)

Z%mx x0)P 9% iy (x) | + ki (x)

y<a

= Qa +k*

where the second equality is attained observing that, if ¥ < a, then y never equals 8, 9% (x —xo)P =
cﬁ#(x—xo)ﬁ_y when y < B and is zero otherwise, and, if |B| = |/, then % (x — x0)® = 0 unless

B = a, when it equals a!. It is noticeable that Q is of order at most k and has no term without a

power of x. Hence, we have

Li(x,D)(P Z b (x (x))
lo|=x
_ | Z_: b, ()0 (x) +‘ ; by (x)kg, (%)
:Z_ b (%) Qe (x) + I; ka(x)boc(x>] :

Writing R(x) = ¥j¢|=x by (X) Qa(x) and observing (@.13), we conclude that
Li(x,D)(P(x)) =1Ir +R(x), x€B. (4.18)

Let ¢ € C*(B\ {xo},F) and f € C¥(B,F) such that Li(x,D) f = 0. Then,

/<p<x>- dx—/f L0 D) (P(x)) () — R(x)p(x)] dx
B

/f ) [LE(x, D) (P( )] dx— /f o(x)]dx.

O an
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‘We first observe that

(I)Z/Bf(X)'[L*K(%D)(P(X))(P(X)—L*K(%D)(P(X)QD(X))]dxﬂL/Bf(X)'Li(va)(P(X)fp(X))dx
Z/Bf(X)'[L?}(x,D)(P(X))fp(X)—L*K(x,D)(P(X)QD(X))]dX+/BL;<(x,D)(f(X))‘P(X)<P(x)dx
= /Bf(X) Ly (x, D) (P(x))@(x) — Ly (x, D) (P(x)9(x))] dx,
since f € kerLi(-,D). We now proceed to calculate L} (x,D)(P(x)@(x)). First,

I%(P()o(x)) = Y, 9% 7P(x)d"(x)+d"P(x) o(x),

O<y<a
where .
a-y — — yn\B—N Jo—r—mpx
% TP(x) = > ] (ﬁ_n)!(x x0)F "9 kg (x).
IBl=xknso—y
n<p
Hence,
Ly (x,D)(P = ) balx (x)o(x))
lat|=x
=Y Y Y Y gm0 g (0970
la|=k 0<y<a |Bl=k N<a— 7/

n<p
+ Y b(x)0%P(x) p(x).
la|=x
Since the second part is just LY. (x,D)(P(x))¢(x) and, on B, kg and bg, are C functions, we have

\(D|</!f Y Y x—xo|P|07e(x)| dx.
\(x\ K0<y<a\

Bl=k nso—y
n<p

However, as [n| < [o—y| = o] —[y] = Kk — [y, we get [B —n| = [B] = [n] =k —|n| > [7]. As we

took B with radius smaller than 1, we have

015 [0l BT el 9placs X [0l g0
\a\ K0<7/<oc

Meanwhile, |(IT)| < / | f(x)]|R(x)||@(x)| dx. Observe that, for x € S = supp (f),
B

RIS Y X Y 1bllis) ke —x0 P7]0% Tkl =(s) < ¥ —xol,

o|=x |B|=Kk Y<&
|a|=x |B] iy
since |B—vy|=|B|—|y| > x—(x—1)=1and |[x—xo| < r < 1. Therefore,

dx

) J|DI @ (x)|dx+ dx.
Sl Dol [l -ullotla
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Remark 4.16. When L(x,D) = L(D), i.e. L has constant coefficients, one has that the k¢ from Lemma
d.13] are constants as well. In this case, Oy = 0 and, consequently, R = 0 in the previous proof. So,
letting xo =0 and B = RN,

¢(x)- f(x)dx

RN

S X [l Do i

recovering Lemma[2.12]

4.3 Thel < p < case

The focus of this section is to prove Theorem 4.2l We will make use of the famous Sobolev-

Gagliardo-Nirenberg inequality:

Theorem 4.17 (9, Theorem 9.9]). Let 1 < p < . Then,

. 1 1 1
whP(RN) c LP'(RY), where — = — — —,
p p N
and there exists a constant C = C(N, p) such that
1l SCIVlLr, ¥ feWIPRY). (4.19)

Suppose A(+,D) is an elliptic operator of order m on Q as in (4.1)) and consider the order 2m
differential operator Ay = A, (-,D) A, (-, D), which may be regarded as an elliptic pseudo-differential
operator with symbol in $2”(Q). So, from Theorem there exist pseudo-differential operators
q(-,D) € OpS~2"™(Q) and r(-,D) € Op S~ (Q) such that

u(x) = q(x,D)Apu(x) +r(x,D)u(x), YueC(QE). (4.20)
For the next proposition, recall from (4.16)) that

Iflwme =Y 110P fller.
Bm

Proposition 4.18. Let A,,(-, D) as before and 1 < p < oo. Then, for every point xy € €, there exist an
open ball B = B(xy,¢) C Q and a constant C = C(B) > 0 such that

l@llwne < CllAn(-,D)@llLr, Vo € C7(B,E). (4.21)

Proof. Fixed xg € Q, let £ > 0 such that B = B(xg,¢) C Q. It follows from Holder inequality and
Sobolev-Gagliardo-Nirenberg inequality (4.19) that

p/p*
[lotwprax < s ( [lotor dx) < BNV,
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for all ¢ € C°(B,E), where C > 0 is an universal constant depending on N and p. Hence,

Il < CIBI'"™ (V|
Bootstrapping the previous argument, we get

lollr < CIB" ™[ @[lwn, (4.22)
and if we start with d%* ¢ instead of ¢, we obtain

19%llr < CIB|" DN @llwns, Vo € CT(B,E) (4.23)
for all |a| < m. Now, from identity (4.20)), we may write, for |B| < m,
9% 9(x) = 4(x, D) [An(x, D) 9(x)] + F(x, D) 9 (x)
where §(-,D) := dPq(-,D)A%,(-,D) € OpS~"~1B)(Q) and #(-,D) := 3P r(-,D) € OpS~(Q). Thus,
1P @llr < [13(-, D) [An(--D)@]ller + [IF(-, D)@l 1r
S 1An(D)ollr + ]z,

since g(-,D) and 7(-,D) are bounded from L to itself for 1 < p < oo (Theorem [1.41)), including the
case p = 1 if || < m (Theorem|1.42)). Hence, we get

[@llwnr S [|An(-, D)@llr + [[@]lr,
and using (4.22)),

1@llwns S lAn (- D)@llzs + B [[@llwns.

Shrinking the radius of B to absorb the second term on the right-hand side, we conclude the desired

estimate. O]

Let A(-,D) be as in (4.1) and suppose that all coefficients a,, are bounded at some neighborhood
of xo € Q, namely B = B(xo,£) C Q, and consider C := Y |« [|aa||=(5)- For 1 < p < eoand u €
C(B,E), we have

|Am(-, D)ullr = ||A(\D)u— Y aqd®u
|| <m Ip
<[IAC,D)ullr+C Y [19%|1r
lo|<m

Then, decreasing the radius ¢ if necessary, (4.23) and (4.21]) give

A (-, D)ullr SIAC,Dullr+ Y [BI" DN uf sy
lot|<m

S ACDyully + BN [luwons
S ACDyullr + BN || Aw(-, D)ullzr
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Shrinking ¢ conveniently to absorb the second term on the right-hand side, we have
|Am (-, D)ullr < ClIA(, D)ul|rr, Vu e CZ(B,E), (4.24)

forall 1 < p < e and C = C(B) > 0. The case p = 1 also holds for (4.24)) if, besides being elliptic
A(-,D) is also canceling. This is consequence of Theorem Thus, using the previous argument,
it is sufficient to remark that, if |a| < m, then, from (4.23)), Holder inequality and (4.13)),

||aau||L1 5 |B|(m_l_lal)/NHMHWm—l,l
< 1B 1D ]y vy

< C|B|" DN A, DYl 1, (4.25)

for all u € C°(B,E), and the proof follows analogously as before.

Now we are ready to demonstrate the main result of this section.

Proof of Theorem Let w,"” / (B,E) be the closure of CZ°(B, E) with respect to the norm ||u||,,, ,y =
|A(-,D)ul|,,» for some open ball B in . We claim that, for each xo € Q, there exists an open ball
B = B(xo,¢) C Q such that

[t aut

S NAC, DYull [Tl o5y, Vi € CZ(BLE). (4.26)

Since || has finite strong (m, p)—energy on B, it follows that u € [w/"” '(B,E )*. Tt is clear that
A(-,D): wr’p/ (B,E) — LV (B, F) is a linear isometry, hence its adjoint A* (-, D) : LP(B, F) — [w':’p, (B,E)]*
is surjective. Therefore, there exists f € L”(B,F) such that A*(x,D)f = p in B.

Thus, all that is left to do is to prove (@.26). Fixed B(xo,¢) C Q, for all u € C°(B,E) we may
write, using (4.20)), the identity

u(x) = q(x,D)As(x,D)u(x) + r(x,D)u(x)
[q0(x,D)Ap (x,D)u(x) + ro(x,D)u(x)]

where

QO(xvé) = [é]mQ(xvé)A;kn(xvg) < SO(Q>7
ro(x,6) = [§]"r(x,§) € $77(Q) and
i(x) = qo(x,D)Ap(x,D)u(x) 4 ro(x,D)u(x).
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Thus,

|| s

U o=l dy )

/
- [ Jab [/ =)l ay
/

V)| 1] (y
|
]|

Jeeas

AN

40(D)Am(e, D)l + uro(-,D)uHLp/} il s,
4Dl +||u||L,,]||J o

where in the last inequality we used that go (-, D) and ro(-, D) are bounded operators from L?' to itself,
since 1 < p’ < oo, It follows from (#.22)), (4.21)) and (4.24)), shrinking the radius ¢ if necessary,

| ) data

S (1A DYul il | Il 11205

S Am G D)ull |1l o (5)
SNAC D)ull g ([ Imlttll o), Vu € CZ(B,E),

completing the proof. 0

44 The p = case

Now we turn to the proof of Theorem Suppose A(+,D) is an elliptic and canceling operator
of order m on Q as in (4.1). In order to accomplish the proof, it is sufficient to show that, for each

xo € Q satisfying (4.7)), there exists an open ball B = B(x¢,¢) C Q such that

‘/u(x)du(x) S NAm(-,D)ullp1, YueCo(B,E), 4.27)
B
then from (4.24)), decreasing ¢ if necessary,
[ utauto| <140y, vue e “2)
B

meaning that i € [WZ’I (B,E)|* and, following the argument used in the proof of Theorem there
exists f € L*(B, F) such that A*(x,D)f = u in B.

From Theorem|1.48] there exist pseudo-differential operators Q; (-, D) € OpS~™(Q) and Q»(-,D) €
OpS—*(Q) such that

u(x) = Q1(x,D)Ap(x,D)u(x) + Qa2(x,D)u(x), YuecC”(Q,E). (4.29)
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In view of the previous identity, in order to obtain it is enough to prove that, for some B =
B(xp,¢) and C = C(B) > 0, the estimates

/ 1022, D) u(x)] d]2] () < ClAw(--D)ul (4.30)

and

/B 101(x.D) Ay, D) ()| d]t] (x) < CllAn (- DYl “31)

hold for all u € C°(B,E).
First we prove (#.30). Since Q»(-,D) € OpS~=(Q), Theorem says it is bounded from
LN/WN=1) to itself. Also, there exists B = B(xo, /) such that (#.13) holds. We can take £ < 1. Thus,

using Holder inequality, (4.6), #.22) and {.13), we get

/IszD )] (6) < 110, D)l -1y 141 (B) Y
N—m
Sl 5
<O “ 1BV ||M||Wm1N/N1>

< EF ]| v ov-

S Am(, D)ullpr,

2

2

forall u € C°(B,E).
Now, to prove (4.31)), let us recall that Q (-,D) € S~ () can be written in terms of its distribution
kernel K (x,y):

01(x,D) Ap(x.D) u(x) = /Q K(5,3) An(. D) u(y) dy.

From Theorem (i), K is smooth outside the diagonal {(x,x) € Q x Q} and, from Theorem
(v), it satisfies the estimates

K(x,y)| <Cilx—y|" N, x#y, (4.32)

and

1K (x,y)] < Colx—y[" N1 x#y, (4.33)

for some Cy,C; > 0. Thus, the proof of (4.31)) reduces to obtaining

J

where g := A, (-,D)u, for all u € C°(B, E).

| K(x,y>g<y>dy\ dl11]() < Cllgll. (434)

4.4.1 A local Hardy-type inequality

First, we show a local version of the Hardy-type inequality from Lemma[2.11
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Lemma 4.19. Let 1 < g < oo, V be a o-finite real positive measure on an open set U C RN and
B(xo,r) C U a fixed ball. Let ii and ¥ be measurable and non-negative almost everywhere on U.

Then, for 0 < 8 < 1, there exists A = A(8) > 0 such that the inequality

q 1/q
/ ( / &0) dy> aav| <A goiwdx @)
B(xo,r) \ 7 B(x0,8]x—xo|) B(xo,r)
holds forall g > 0 if
1/q
(/ ﬂ(x)dv) <AV(y), ae y €B(xp,0r). (4.36)
B (x0,6~y—xo|)NU

Proof. By Minkowski inequality, we have

[/Bm,r) ([g(xo,mobg‘@) dy>qﬁ(x) dv] Vo
) [/B(x”) (/U E0) X y-sl<da=sly(%:7) dy>qﬁ(x)dVI Uq
< /B(XO,Sr) (/U [ Z fy—xo | <Sr—xo} () ﬁ(X)dv) 1/q 0

1/q
= / 3(y) ( / ﬁ(X)dV> () [F()] " dy
B(xp,0r) B¢(x0,6 ! [y—xo[)NU

where in the last inequality we used and 0 < 1. O

Example 4.20. Let U = B(xo,r) C RN with r < 1, § = r/2, and consider v a positive measure
such that v(B(xo,R)) < CR' for all 0 < R < r and some ¢ > 0. We claim that is satisfied for
ii(x) == |x —xo| "~¢ and ¥(y) := |y — xo| . Indeed, denote by ¥ the natural extension of the measure
v in RY given by ¥(S) := v(SNU). Clearly, for any R > 0, we have V(B(xo,R)) < CR'. Thus, since
BC(x0,8 'y —x0|) N B(xo,r) # @ for y € B(xg, 8r), denoting

AR = {x: 87y —xo2F < —xo| < 87y — x0[25T 1},
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we have

/ a(x)dv| = / &
B(x0,8 ™ [y—xo|) NU Be (x5~ |y—o]) X = Xo[""

oo 1/q
= X /Ak |x—xo\’qd\7)
k=0

< i (5_1 |y—xo|2k) 476]\7 (B(xo, 5! |y—xo|2k+l)>> "

k=0
oo iy . 1/q
<C Sy —xo[2F 8y — xo[2K! >
(£ (o ne) )
- 1/q
= C82'1)y — xo| ™! (Z 2’“1>
k=0
= 52D+ (24 — 1)~V ag(y)
SAV(Y),

with A independent of &.

4.4.2 A local Stein-Weiss-type inequality
Finally, in order to obtain (4.34)), we prove a local version of Lemma [2.13]

Lemma 4.21. Assume N >2,0 < { <N and K(x,y) € L} (RN xQ, Z(F,V)) satisfying

loc

K(xy)| <Cilx—y"Y, x#y (4.37)
and
K(e) ~ K2 < oLy, 2—al <l @38)
Suppose 1 < g < N/(N—V{) and let v € .4, (Q) satisfying
WMlaw-ng= sup YOER) o, @39)

B(x,R)CQ
If L(-,D) is cocanceling then, for each xo € Q, there exist an open neighborhood xo € U C Q and

C=C(U) > 0 such that, if
ol v(B(y,s5))

where a is some constant between 0 and 1, is a uniform control for almost every y € U, then

(

holds for all g € C(U,F) satisfying L (-,D)g = 0 in the sense of distributions.

q

1/q
dv(x)) <C/ lg(x)|dx, (4.41)
U

/ K(x,y)g(y)dy
U
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Remark 4.22. A stronger condition satisfying (4.40)) is given by
V(B(y,R)) < Cly — xo|V04=NRN (4.42)

when R < aly — xp|. In fact,

a‘yixo‘ V(B(y S)) a‘yixo‘ a
S O — xo|N=0)g—N ~N=Og=1+N g0 _ o2~
/0 V-0t ds < Cly —xo| /0 s ds CN—(N—ﬁ)q’

N—(N—{)q

since N— (N —{)g > 0.

Example 4.23. Let U = B(xp,r). The positive scalar measure given by the weighted power dv :=
lx — xo|"Ndx, for 0 < t < N, satisfies

V(B(xo,R)) <CR', forall 0<R<r (4.43)

and
v(B(y,R)) < Cly—xo/ " RY, forall R < aly— x| (4.44)

andO0<a< 1.
Notice that

R
V(B(x0,R)) :/ x — xo| N dx = ‘SN—l‘/ P ldr =[SV R
0

B(X(),R)

for any R > 0. For (#.44), we note that, if |x| < R < aly —xo|, then (1 —a)|y —xo| < |[x+y—x0| <
(1+a)ly—xpl|. Thus,

VBOR) = [ s Max= [ ety -l e S -l B =yl VR,
B(»R) Bg

Assume the validity of Lemma.21] Let A(-, D) and u be as in the statement of Theorem[4.3] Take
K as the distribution kernel of Q; (obtained in (4.29))). Hence (4.32)) and (4.33) imply that K satisfies

(4.37) and (4.38) with ¢ = m, and (4.7) imply that v = |u| satisfies (4.39) and (¢.39) with { =m
and ¢ = 1, and, since A(-,D) is elliptic and canceling, (4.17)) implies that there exists a cocanceling
operator L(-, D) of order k = 2mN such that g =A,,(-,D)u € ker Li(-,D) forall u € C° (U, E). Putting

it all together, we obtain (4.41) in the particular form

J

which is exactly (4.34)). As we have already discussed, this implies (4.31)) which, together with (4.30),
shows (4.27), and this proves Theorem[4.3]

/U K(5,) An(y.Duly) dy| d|1t] () < ClAn (- D)ul 1,

Proof of Lemma[d.21} For each xo € Q, let U = B(xo,r) be the neighborhood from Lemma [4.15]
We can always choose r < 1 small enough such that we have B(xg, (1 +a)r) C Q. Consider y €
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C(B(xo,r/2)) be a cut-off function such that 0 < y < 1, y =1 on B(xg,r/4), and write K(x,y) =
Ki(x,y) + K> (x,y) with K; (x,y) = ¢ ( —n +x0> K (x,x0). To prove (@.41)), it is enough to show that

=
Jjﬁ(/U / KJ-(x,y)g(y)dyqdv(x))]/qs [ sl j=1.2

for all g € C°(U, F) such that Li(-,D)g = 0. First, we point out that

= ([ (2]
<C (/U /UW<|)yC—xo| +xo) g(y)dy

in which the inequality follows from (@.37). Now we use Lemma [4.15|for ¢(y) = v ( — +x0> n

Jx—xo]

1/q
<x,xo>rqdv<x>)

q 1 1/q
—dV(X)) ,

|x—x0|(N_€)q

where, for a fixed x € U, 1 is a unit vector in F' chosen so that

/U"’(pyc: |+XO>n-g(y)dy‘= /U"’(|)yc_xo|+x0)g(y)dy"
Thus,

/ w(y‘ ° +XO>g(y)dY‘§i [ 1s0ly=sal/ Diolar+ [ el -llot]dy

Jx — xo
J .
< Z | ‘y xO’ jll/<|i}_ |+xo)‘dy

-y
(\ r*"‘))‘dy

/\g Ny — o

|y — ol
5/ el 18O dy+ [ o lgO)lly—xoldy
B(X(MTO) |)C—)C()| B()cmi2 0 )

y— X0|
S/B(xo pez) O]

v 2

where in the second to last inequality we use that y € CZ(B(xp,r/2)) and r < 1 to get }y } < 1 and,
x|

in the last one, that x € U implies |y —xg| < Replacing it in the previous inequality, we have

Ix xo|”
1 1 1/q
N3 —Xo|d dv :
< [ / ( / <u> 80) v~ o) y> i <x>]
Now we use Lemma“for 30 = gy —xo|, @i(x) = [x —xo|" V=14 and §(y) = |y — xo| ",

which is exactly Example [4.20) for t = (N — £)q. Therefore,
Ji §/ |g(x)|dx, forall g € CZ(U,F) satisfying Li(-,D)g =0.
U

For J; we are going to analyze

Y —=X0
|x — xo]

Ka(x,y) = K(x,y) = Ki(x,y) = K(x,y) =y ( +xo) K(x,x0).
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IfxEB(xo,%

he—xo]

), then I//( o~ —|—x0) = 0 and we have |K>(x,y)| = |K(x,y)|. Otherwise, if x €

B¢ (x0,%|y—xo|), then l//( o —|—x0> =1 and |K>(x,y)| = |K(x,y) — K(x,x0)|. In the intermediate

region B¢ (xo, %\y -

Ky (x,y) =

x—=xo]

x0|) NB (xo, - ) the following identity holds:

v (22 ) K w (222 ) IK) - Kv)

[ —xo |

Hence, using Minkowski’s inequality,

o

qdv(x))”? [(/ |K2<x,y>|wv<x>)1/q|g<y>|dy.

/ Ko (x,y)g(y) dy
U

If we prove that / |K2(x,y)|9dVv(x) < C for almost every y € U with a uniform constant C > 0, we
U

will obtain

h< / g0y, forall g€ C=(U,F),
U

concluding the proof.

Estimating K;(x,y) in the three regions featured above and using and (4.38)), we can write

/ Kae,y) 7 dv(x
U

Notice that

and

= Ky(x,y)|?dv(x
) /U sty IV

+ K2 (x,y)|* dV (x)
UﬁBC()C(),%b)*XO‘)mB(X(),%|yfxo|)

4 / Ky (x| dv (x)
UNBe (xg,%[y—xo|)

< / K (x,y)|dv(x)
UNB(xo,2|y—xo|)

+/ (1K (x, )7+ K (x,y) — K(x,x0)|7) d Vv (x)
UNBe (xo,%]y—xo| ) NB(x0, 5 [y—xol)

+/UﬁBC(Xo 41y XO\) |K(X,y) —K(x,_xO)|qu(X)

= x,y)|?dv(x
/U oty KDV

+ |K(x,y) — K(x,x0)|?dVv(x)
UNBe(xo,2|y—xo])

1 ’y_xo‘q
< v+ [ V().
/UmB(xo,ilyxoD [x — y| (V=04 VB (x0. 2ly—o]) ¥ — 0|V 1)a
4 B 7é - ) f - < 2 4
UﬂB(xo,—|y—x0|) = (xo ry x0|) if [y )f0| re/
r U, otherwise

2 A (x0, 2y —xol,r), if|[y—xo| <r?/2
Uch(xO,;yy_xo|):{ (t0, 3y =ol.r) - if by —xo] </

a, otherwise,



66 Chapter 4. Local solvability for non-homogeneous linear operators with variable coefficients

where A(p,ry,r2) denotes the annulus {x: r; < |x—p| < r}.

To estimate (II), we only need to consider the case |y —xq| < 2/2. In this situation, proceeding
just like in the calculations from Example we get (II) <Crd 2(N=b)q (24 —1)"!

For (I), consider first |y —xo| < r2/4. In this case, B(y,aly —xo|) C B (xo, 3|y —x0|) C U and we

can isolate the singularity to obtain

1 1
(I):/ —_dV(X)+/ —_dV()C)
Braly—xo =Y g 2o e tval—)) e =y

(.

*) oh

In (*x), we have |x —y| > aly — xo|, hence

e < larmxod [ v = ™ (5 (v T ) )

< Ca W04 (L_l) e

XQ,%'})*XQ‘)

r

(N=t)q
<c(2)
ar
For (x),let Ay = {s € R:s > [x—y|}. Then we may write
(%) :/ (N—12)q </ s(E_N)q_lds) dv(x)
B(y.aly—xol) =yl
T Xals)
Q/QXB (y,aly— x0| (/0 st) dV(x)
= B(y,aly— x0|)( )xAx(S)
q/o (/ -0t dv(x) | ds
/ ) / L v ) d
————dv(x) | ds
0 Jy \Jstassaprpios) 5007

ol v(B(y,s)) ” 1
/o WdSJFV(B(%aU—XOD)/ P

aly—xo| $

=(N—{)q

_ 1
< (V=0 €2+ ¥l g s =30 aly =0 1 L

=G (N=0)g+IVllg,n-oq-

For the case |y —xo| > r2 /4, if y is close enough to the boundary of U, the ball B(y,aly — xo|) will not
be entirely contained in U. But, from our choice of r, B(y,aly —xo|) C B(xo, (1 4+a)r) C Q, so that it

makes sense to estimate

! 1
(I)g/ —dv(x)+/ ————dv(x).
N B(y>a|y_x0‘) ’x - y| (N*f)q PN UﬂBC(yﬂ‘y—xOD |x —y|(N7£)q

-

) (%)
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The calculations for (+”) are exactly the same as before, whereas for (sx'),

() < (aly —xo]) ¥4 /U dv(x)

r (N—=0)q
el
aly —xo|
(4r>(1\’—€)q
Cl—
ar

(N=0)q
(o)
ar

completing the proof. [

N

4.5 Applications and general comments

4.5.1 A necessary condition

A natural question arises about necessary conditions on { in order to obtain local Lebesgue solv-
ability for the equation (4.2)). Suppose that, for each xy € Q, there exists an open ball B = B(xp,R) C Q
such that f € LP(B, F*) is a local solution for A*(-,D) f = p in the sense of (4.3)). If the identity

[ ampdu= [ 1) A DM dx, Vo€ CT(BiE) (445)
B B

were valid formally, then we should conclude that J,,(u LB) = J,,A*(-,D)f and, since J,, 0 A*(-,D)
is a pseudo-differential operator of order zero (which is bounded from L? to itself for 1 < p < o),
it would imply ||/, (i LB)|zr(8) < || f1lLr(8)> then LB would have finite strong (m, p)—energy on B.
However, the identity (#.43)) is not a consequence of (#.3)), since the smooth function J,,,¢ does not
have compact support on B for ¢ € C°(B,E). In order to avoid this technical problem, we state the

following result with a notion of local strong (m, p)—energy of u.

Theorem 4.24. Assume that A(-,D) from E to F is a linear differential operator of order m < N as in
@) and u € A (Q,E). If, for each xy € Q, there exists an open ball B C Q centered at xy such that
f € LP(B,F) is a solution for A*(-,D) f = W for 1 < p < o, then ||J,,(u L§)||Lp(3) < oo for any B C B.

Proof. For each B C B, let € > 0 such that B; :== B+B(0,€) C Band e := Xy * e € C(Be), where
¢ € C=(B(0,1)), is radial, positive with [|¢||;1 = 1 and @¢(x) = e V¢ (x/¢). Clearly, ye(x) =1 on B
and, for die == We(x)du we have pe(A) = (1 LB)(A) for any A C B. We know that

[ (1 LB) || Lr(5) = sup

/B I LB) () 0(x)dx|

where the supremum is taken over all ¢ € CZ(B,E) with ||¢||, () < 1. From Fubini’s Theorem, and
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the fact that G, is radially symmetric, follows

[t B @ o= [ { /EGm<x—y>du<y>] 0(x)dx

:/g[/BGm(y—x)(p(JC)dx] du(y)
- / Jn® () dp ()

B

= lim [ (Ye-Jno) ) dp(y)-
e=0/p

From the fact that yg - J,, € C” (Eg) and Eg C B then, from (4.3)), we have

[ et (y)du(y)‘ _ ] [ 504G D) () )
B B
11200 1A G D) (W2 ) 13

<
<SCENf ) lloll Ly s

since A(-,D) (ye - J,) is a pseudo-differential operator with order zero, thus bounded in L? for all
1 < p < o (Theorem [1.41)). Notice that the constant C(€) may blow-up as € — 0. Hence, we have
1 (uLB) |1 5) S N1f | o () < oo for any B C B. O

4.5.2 Fractional estimate with measures

The following L' estimate for pseudo-differential operators was obtained by Hounie and Picon:

Theorem 4.25 ([27, Theorem C]). Let A(-,D) be a differential operator of order m as in @A.1) and
assume that 0 < ¢ < N and { < m. If A(-, D) is elliptic and canceling in ., then for every xo € Q, 1 <
q < N/(N —¥), and any properly supported pseudo-differential operator P,_y(x,D) € OpS’I’SE(Q),
0 < 6 < 1, there exists a neighborhood U > xo and C > 0 such that

1/q
([ st 0rvax) " < [ At Dpcoas (4.46)
RN RN
holds for every u € C*(U,E).

The proof of inequality (4.460) is a direct consequence of the method used in the proof of Theorem
M.3]and we describe the main steps. Using the ellipticity and Theorem [[.48] we may exhibit properly
supported pseudo-differential operators Q1 (-,D) € Op Sl_fs (U) and Q»(-,D) € OpS~(U) such that

Pp—qu= Ql('?D) [Am('7D)u] +Q2('7D)u7 uc COO(U7E)'

Thus, in order to obtain the estimate (4.46) it is sufficient to prove the controls (4.31) and (4.30)),
where dv := |x — xo\(N ~04-Nx. Thanks to the calculus presented in Example , the measure
v € M+ (Q) satisfies (4.39) and (4.40), so the controls follow as before. Using this argument, we

obtain the following L! Sobolev estimate for pseudo-differential operators with measures:
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Theorem 4.26. Let A(-,D) be a differential operator of order m as in @.1)), assume that 0 < { <
N, L <mand v € M (Q) satisfying @.39) and (A.40). If A(-,D) is elliptic and canceling in Q,
then for every xo € Q, 1 < g < N/(N —{), and any properly supported pseudo-differential operator
Pu_¢(-,D) € OpSTgZ(Q), 0 < 6 < 1, there exists a neighborhood U > xy and C > 0 such that

</RN ]ngu(x)]"dv> : S C/RN |A(x, D)u(x)|dx

holds for every u € C*(U,E).

4.5.3 Divergence-type equations associated to systems of complex vector fields

Consider n complex vector fields Ly, ...,L,, n > 2, with smooth coefficients defined on Q C RN
with N > 2. We will assume that the system of vector fields . = {L,,...,L,} is linearly independent.
Consider the gradient Vg : C*(Q) — C=(Q,C") given by Vyou = (Lyu,..,Lyu),u € C*(Q) and its
formal complex adjoint operator, defined for v € C*(Q,C") by

divg=v=Livi + ...+ L,v,.

Moonens and Picon obtained a characterization for the local continuous solvability result of the
equation
divg«v = f. (4.47)

It is a particular case of Theorem [.1]
Theorem 4.27 ([35, Theorem 1.2]). Assume that £ is an elliptic system of vector fields. Then every
point xo € Q is contained in an open neighborhood U C Q such that, for any f € 2'(U), the equation

(4.4°7) is continuously solvable in U if and only if, for every € > 0 and every compact set K CC U,
there exists 0 = 0(K, €) > 0 such that one has, for every ¢ € Cg(U):

If (@) < Bllollr +ellVeoll (4.48)

The ellipticity means that, for any real 1-form @ such that (®,L;) =0, one has @ = 0. Con-
sequently, the number n of vector fields must satisfy % < n < N. The ellipticity of the system is
equivalent to the second order operator A = L{L; +---+ L, L, being elliptic in the classical sense.
Since the system .7 is linearly independent, the following lemma shows that Ve is a canceling oper-

ator.

Lemma 4.28 ([26, Lemma 5.1]). Let xo € Q and let {(x,&) denote the principal symbol of V. The

following properties are equivalent:
(i) Vg is canceling at xo;

(ii) the range of the map & — £(xo,&) € C" has dimension > 2;
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(iii) there exist two vector fields Lj,,L;, € Z that are linearly independent at x.

Reducing the neighborhood U (for instance, take K = B(xg,r) C U and redefine U = B(xo,r)),
and from the fact that ||@||;1 < C(U)||V¢ ¢||,1 locally (see (#.23)), then, if v € .#, (U,C) satisfies

(4.48), we have
| otav
U

thus, as argued for (4.28)), there exists u € L (U) solution of dive+u = v. Clearly, local continuous

=[v(@)| < (6C(U)+¢)[[Vz @, @<C(U),

solutions are bounded, however the converse is not true. A similar argument shows that (4.4)) implies

(4.28) locally for elliptic and canceling operators.



APPENDIX A

Proof of estimate (1.4

As mentioned earlier, showing that (1.3 implies (I.4) is far from trivial. This appendix is devoted
to present an outline for this proof. Some results will have their demonstrations omitted as they
heavily rely on techniques from Geometric Measure Theory, which would require a lot of background

and is not the scope of this text, but all of them will be given a reference prior to their statement.

Lemma A.1 ([33, Theorem 1.2.1/2]). Let G C RN be a bounded open subset with smooth boundary.

There exists a covering of G by a sequence of balls with radii rj, j =1,2,..., such that

Y A <erh(96),
J

where ¢ = c¢(N) and 7N~V is the (N — 1)-dimensional Hausdorff measure.
The next theorem is known as the co-area formula for functions of bounded variation.

Theorem A.2 ([47, Theorem 5.4.4]). Let Q C RY be open and f € BV (Q). Then

Iprl@ = [ 12@nZ)l@ar
where £, ={x € Q: f(x) >1t}.

Here, 27 (Q) denotes the set of functions of bounded variation in Q, ||Df]| is the variation
measure of f and ||d-Z||(Q) is the perimeter measure of %;. Their precise definitions and properties
will be omitted, but can be found in [13] or [47]. What is important in our case is that, if f € C2°(Q),
then [ Df(I(Q) = [Vf]l1(q) and [9(QNZA)|[(Q) = 271 (04).

Lemma A.3 ([33 Corollary 1.2.2]). Let f € C°(Q). Then, for almost all t € R, the sets 0.4 are

C”-compact manifolds.

71
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Theorem A.4. Let v be a positive Borel measure in RN, g > 1, Q C RN an open subset and 4 the
collection of subsets G of Q such that G C Q are compact and each G is bounded by a C* manifold.

If
su v(G)s <
Gey N 1(2G) =
then, for all u € C(Q),

[ul|za(@,v) < ClIVull (g

where
v(G)!/4
C<sup —v————-
ey AN 1(IG)
Proof. Let
L={xeQ:|u(x)| >1t}.
Then

H”Hm(g,v)

Since V(%) < v(%) when s < t, we have

/ V(L) d() = / () ()
0 0

= | qltv(L) V() ar

)
X
I
(

V(%) 1/qu} V(L)

v
U qus] 1v(.,zﬂ,)l/ffdt
([fwerva] )

v(Z qut) :

N
_

I

8&.|g
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Hence,

lullzs(o < / <z>1/‘1dt

A l/q .
%N (3.2) ,%” (0.%4)dt
v(G)e /°° =
\(s}lég AV1(3G) AN (L) dt

as, by Lemmal[A.3] almost all the sets .%; belong to the collection ¢. Therefore, by the coarea formula
(Theorem[A.2)), we have

lullzso < C /0 2.2 dr
=C[|Vul| (g

]

In the case when Q = RY | the hypothesis on the previous theorem can be weakened, only taking

the supremum over balls.

Theorem A.5. Let v be a positive Borel measure in RN and g > 1. If

v(B(x,r))

WP T v-ng S

x€RN;r>0 T
then for all u € C(RN)
lullzaqvy < ClIVul 1,
where
v(B(x,r))

CT<ce? sup  —mme,
XERN; r>0 I’( —a

with ¢ =c(N) > 0.

Proof. Given G € ¢ as in the previous theorem, let {B(x;,r;)} be the covering of G given by Lemma

[A1l Since
l/q
(Z%‘) <Yajt
J J

for a; > 0, we obtain
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Hence, from Lemmal[A.T]

v(B(x,r))

v(G) <c?  sup
( )\ XERN; r>0 r(N=1)a

(N1 (06))".

Thus,

sup ——————— < ¢ sup
Ge¥ AN 1(8G> XERN; r>0 r(N=1)a

v(G)' ( v<B<x,r>>>”q<m

The proof is completed applying Theorem [A.4]

Finally, (I.3) = (L.4) follows from Theorem [A.5|for ¢ = 1.
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