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Resumo

Nesta tese de Doutorado, estudamos subvariedades pseudo-paralelas em formas espaciais pseudo-

Riemannianas. Damos uma caracterização das superfı́cies Lorentzianas pseudo-paralelas com fi-

brado normal não flat em formas espaciais pseudo-Riemannianas como superfı́cies λ -isotrópicas,

estendendo um resultado análogo de Asperti-Lobos-Mercuri no caso Riemanniano. Consequente-

mente, para este tipo de superfı́cies Lorentzianas damos uma caracterização usando o conceito de

hipérbola de curvatura e obtemos um resultado de não existência quando o espaço ambiente é uma

forma espacial Lorentziana. Em particular, quando o espaço ambiente é uma forma espacial pseudo-

Riemanniana de dimensão 4, obtemos que qualquer superfı́cie Lorentziana pseudo-paralela com fi-

brado normal não flat é superextremal, ou seja, uma superfı́cie λ -isotrópica com campo vetorial de

curvatura média identicamente nulo, e o espaço ambiente deve ter métrica de ı́ndice 2. No caso

em que a função de pseudo-paralelismo é constante, descrevemos explicitamente essas superfı́cies

com codimensão dois, obtendo que são superfı́cies paralelas e existem em formas espaciais não flat,

e para o caso em que a função de pseudo-paralelismo não é constante, damos exemplos explı́citos

dessas superfı́cies no espaço pseudo-euclidiano de dimensão 4 com métrica de ı́ndice 2. Um ex-

emplo de uma superfı́cie Lorentziana pseudo-paralela extremal e flat com fibrado normal não flat

que não é semi-paralela é dada em codimensão três. Continuamos o estudo das hipersuperfı́cies

Lorentzianas pseudo-paralelas em formas espaciais Lorentzianas iniciado por Lobos, completando a

caracterização do operador de Weingarten inclusive quando este não é diagonalizável. Então, consi-

deramos o caso em que a função de pseudo-paralelismo é constante e distinta da curvatura do espaço

ambiente e damos a classificação local dessas hipersuperfı́cies sob a hipótese de serem boas no sentido

de Ryan. Também damos uma classificação das hipersuperfı́cies Lorentzianas semiparalelas comple-

tas e conexas do espaço de Minkowski e uma classificação local das hipersuperfı́cies Lorentzianas

pseudo-paralelas com função de pseudo-paralelismo constante e curvatura média constante nas for-

mas espaciais Lorentzianas.

Palavras-chave: Espaço pseudo-Riemanniano, superfı́cie pseudo-paralela, hipersuperfı́cie pseudo-

paralela, subvariedade Lorentziana, superfı́cie λ -isotrópica, hipérbola de curvatura normal, imersão

extremal, superfı́cie rotacional geral, hipersuperfı́cie isoparamétrica.
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Abstract

In this Ph.D. thesis, we study pseudo-parallel submanifolds in pseudo-Riemannian space forms.

We give a characterization of pseudo-parallel Lorentzian surfaces with non-flat normal bundle in

pseudo-Riemannian space forms as λ -isotropic surfaces, extending an analogous result by Asperti-

Lobos-Mercuri in the Riemannian case. Consequently, for this kind of Lorentzian surfaces we give a

characterization using the concept of hyperbola of curvature and get a non-existence result when the

ambient space is a Lorentzian space form. In particular, when the ambient space is a 4-dimensional

pseudo-Riemannian space form, we obtain that any pseudo-parallel Lorentzian surface with non-

flat normal bundle is super-extremal, i.e., a λ -isotropic surface with everywhere vanishing mean

curvature vector field, and the ambient space must have metric of index 2. In the case where the

pseudo-parallelism function is constant, we explicitly describe these surfaces with codimension two,

obtaining that they are parallel surfaces and exist in non-flat space forms, and for the case where

the pseudo-parallelism function is non-constant we give explicit examples of these surfaces in the

4-dimensional pseudo-Euclidean space with metric of index 2. An example of an extremal and flat

pseudo-parallel Lorentzian surface with non-flat normal bundle which is not semi-parallel is given in

codimension three. We continue the study of pseudo-parallel Lorentzian hypersurfaces in Lorentzian

space forms started by Lobos, by completing the characterization of the Weingarten operator even

when it is non-diagonalizable. Then, we consider the case where the pseudo-parallelism function is

constant and different from the curvature of the ambient space and give the local classification of these

hypersurfaces under the hypothesis of being good in the sense of Ryan. We also give a classification

of the connected complete semi-parallel Lorentzian hypersurfaces of the Minkowski space and a lo-

cal classification of the pseudo-parallel Lorentzian hypersurfaces with constant pseudo-parallelism

function and constant mean curvature in Lorentzian space forms.

Keywords: Pseudo-Riemannian space, pseudo-parallel surface, pseudo-parallel hypersurface,

Lorentzian submanifold, λ -isotropic surface, hyperbola of normal curvature, extremal immersion,

general rotational surface, isoparametric hypersurface.
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Introduction

Among the Riemannian manifolds, those that present some type of symmetry or homogeneity

tend to be very interesting in themselves and are also important for applications due to their

simplicity (see [54]). For example, n-dimensional Euclidean spaces, spheres and hyperbolic spaces,

which are connected complete simply-connected manifolds with constant sectional curvature, are

the most fundamental Riemannian manifolds and much of the research in geometry is related to them.

It usually happens in mathematics that the variation of an object is represented by some type of

derivation and then the simplest objects are those for which that derivation vanishes. In this way, a

tensor field in a Riemannian manifold is called parallel if its covariant derivative vanishes. Thus,

a natural generalization for the perfect symmetry of manifolds with constant sectional curvature

is given by the class of Riemannian manifolds whose curvature tensor R is parallel, i.e., ∇R = 0.

A manifold in this class is called a locally symetric space. When all the Riemannian manifold is

reflectionally symmetric around any point, then it is called a symmetric space. Locally symmetric

spaces were extensively studied by É. Cartan around 1925-1930 and he also classified symmetric

spaces.

Works in (locally) symmetric spaces led to new research in two directions: intrinsically, they were

generalized to semi-symmetric spaces, introduced by É. Cartan in [16] and classified by Z.I. Szabó

(see [69] and [70]). E. Cartan and H. Takagi presented examples of semi-symmetric manifolds that

are not locally-symmetric (see [73]). Secondly, in Submanifold Theory, (locally) parallel immersions

were introduced by D. Ferus (see [32] and [33]) as an extrinsic analogue of locally symmetric space,

that is, as immersions with parallel second fundamental form α (i.e., with ∇α = 0, where ∇ is

the Van der Waerden-Bortolotti connection of the immersion). The same author obtained a local

classification of such immersions in Euclidean spaces and spheres of constant sectional curvature. In

the hyperbolic spaces two classifications were obtained independently by Backes-Reckziegel (see

[10]) and M. Takeuchi (see [74]). Parallel immersions are related to symmetric spaces in the sense

that any parallel submanifold of a Riemannian space form is intrinsically a locally symmetric space.

Next, semi-parallel immersions were defined by J. Deprez in [23] satisfying an analogous

condition to that for semi-symmetry. Many results on semi-parallel immersions can be found, for

1



2 Introduction

example, in [7, 23, 24, 30, 51, 52, 54]. Even when a full classification is not available yet, we can find

a complete classification of semi-parallel hypersurfaces in [24] for the Euclidean space and in [30]

for Riemannian space forms. Also, Riemannian cylinders Hn(c)×R and Sn(c)×R are examples of

symmetric spaces and a classification of parallel and semi-parallel immersions in these cylinders is

given in [15] and [76].

Again in the case of intrinsic geometry, investigation of several properties of semi-symmetric

spaces gave rise to a more general class of manifolds, that is, the class of pseudo-symmetric spaces.

For example, these spaces appear naturally from study of totally umbilical submanifolds of a semi-

symmetric space with parallel mean curvature vector (see [2]). The class of pseudo-symmetric mani-

folds is very large, and many examples of pseudo-symmetric manifolds which are not semi-symmetric

have been constructed (see e.g. [25], [26] and references therein). Many particular results are known,

see, for example, [22, 25, 26, 27, 28, 29], but a full classification is not available yet. Finally, pseudo-

parallel immersions were introduced by Asperti-Lobos-Mercuri in [8] as a generalization of semi-

parallel immersions and as an extrinsic analogue of pseudo-symmetric spaces.

On the other hand, with the publication of his Especial Relativity Theory in 1905, Einstein gave

a solution to the difficulties that the Classical Newtonian Physics have to do around the property of

invariance of the speed of light, introducing an innovative way to change space and time coordinates,

which led to conceiving models of the space-time with three spatial dimensions and one time dimen-

sion, having a metric tensor which is negative definite in the time direction (see [62]). Thus, from

Einstein’s work, the positiveness of the inner product induced from Riemannian metrics was weak-

ened and the research involving pseudo-Riemannian manifolds, i.e., smooth manifolds furnished with

a non-degenerate metric tensor, had a growing interest that has reached our time. Particularly, when

the largest integer that is the dimension of a subspace of the tangent space at any point of the variety

in which the metric is negative defined, called the index of the metric, is 1, the manifold is called a

Lorentzian manifold. All the classes of symmetric spaces and parallel immersions, as well as their

successive generalizations including pseudo-symmetric spaces and pseudo-parallel immersions, can

be defined in this more general context of the pseudo-Riemannian geometry.

An isometric immersion f : Mn
t → M̃m

s between pseudo-Riemannian manifolds with dimensions

n and m and metric tensors of index t and s, respectively, is said to be pseudo-parallel if its second

fundamental form α satisfies the following condition:

R(X ,Y ) ·α = ψ(X ∧Y ) ·α, (1)

for some smooth real-valued function ψ on Mn
t and for all tangent vector fields X ,Y of Mn

t , where R is

the curvature tensor corresponding to the Van der Waerden-Bortolotti connection ∇ of the immersion,
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X ∧Y denotes the endomorphism defined by

(X ∧Y )Z = ⟨Y,Z⟩X −⟨X ,Z⟩Y

and R(X ,Y ), X ∧Y are considered in (1) as fields of linear operators acting as derivations on α .

Sometimes we will say that the immersion is ψ-pseudo-parallel to specify the parallelism function.

Asperti-Lobos-Mercuri in [9] proved that pseudo-parallel surfaces in Riemannian space forms are

surfaces with flat normal bundle (i.e., with vanishing normal curvature tensor) or λ -isotropic surfaces

in the sense of O’Neill in [61] (i.e., for each point x of the surface, ||α(X ,X)|| does not depends on

the choice of the unit tangent vector X of the surface at x, that is, the ellipse of normal curvature

at x is a circle centered at the mean curvature vector H(x) and orthogonal to H(x)). In particular,

they proved that pseudo-parallel surfaces of Riemannian space forms with non-flat normal bundle in

codimension two are superminimal in the sense of Bryant in [12] (i.e., minimal and λ -isotropic). As

a consequence, they gave a characterization of the Veronese surface in codimension two. Also, they

classified pseudo-parallel surfaces in codimension three with constant ψ . Next, Lobos-Tassi-Yucra

Hancco in [50], extended the study of pseudo-parallel surfaces to the case where the ambient space

is a cylinder Hn(c)×R or Sn(c)×R.

Pseudo-parallel hypersurfaces of a Riemannian space form were characterized by Asperti-Lobos-

Mercuri in [9] as quasi-umbilical hypersurfaces or cyclides of Dupin. Also, pseudo-parallel real

hypersurfaces in complex space forms were classified by Lobos-Ortega in [48] and the study of

pseudo-parallel hypersurfaces in cylinders Sm(c)×R and Hm(c)×R was started by F. Lin and B.

Yang in [43], including a classification and the geometric description of this kind of hypersurfaces

under the condition of having at most two distinct principal curvatures. Then, the complete

description was given by Lobos-Tassi in [49] and as an application, they obtained a classification of

pseudo-parallel hypersurfaces in Sm(c)×R and Hm(c)×R with constant mean curvature function.

Chacón-Lobos in [17] studied pseudo-parallel Lagrangian submanifolds in a complex space form.

For the case of dimension 2, they showed that the minimal Lagrangian surfaces are pseudo-parallel.

In particular, they proved that the semi-parallel Lagrangian surfaces are totally geodesic or flat and

gave examples of pseudo-parallel Lagrangian surfaces which are not semi-parallel. Also, in this

work they conjectured that every Lagrangian pseudo-parallel submanifold of dimension at least 3 of

a complex space form is semi-parallel, which was later proven by Dillen-Van der Veken-Vrancken in

[31].

In [44], Lobos started the study of pseudo-parallel hypersurfaces in pseudo-Riemannian space

forms where the situation is richer and new possibilities arise from the fact that the Weingarten

operator is not diagonalizable in general for pseudo-Riemannian hypersurfaces. Indeed, Lobos
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showed a class of pseudo-parallel Lorentzian hypersurfaces into Lorentzian space forms which

are not semi-parallel and have non-diagonalizable Weingarten operator. These examples in-

troduced by Alı́as-Ferrández-Lucas in [5], are closely related with certain classes of generalized

umbilical hypersurfaces in n-dimensional Lorentz-Minkowski space, introduced by M. Magid in [55].

Also in [44], for a pseudo-parallel hypersurface f : Mn
t → Qn+1

s (c), with s ∈ {t, t + 1}, Lobos

showed that if at each point x ∈ Mn
t the Weingarten operator A in the η-direction, with η a unit

normal vector field to f , satisfies an identity of the form

A2 = λA+µIn, (2)

where λ ,µ ∈ R, ε = ⟨η ,η⟩ = ±1 and In is the identity operator in TxM, then the hypersurface is

pseudo-parallel. It is interesting that hypersurfaces whose Weingarten operator satisfies particular

cases of (2) have been also studied: when λ = µ = 1, the so-called golden-shaped hypersurfaces

were classified by Yang-Fu in [81] for Lorentzian space forms and when λ and µ are positive integers

the so-called metallic shaped hypersurfaces were classified by Özgür-Özgür in [64] for Lorentzian

space forms (see also [19, 63], for the Riemannian case). It is worth observing that for metallic

shaped hypersurfaces in Lorentzian space forms, which generalize golden-shaped hypersurfaces, the

Weingarten operator is always diagonalizable.

Other works on surfaces or hypersurfaces that are worth mentioning in the pseudo-Riemannian

context are the following: E. Safiulina in [72] studied and gave a classification of parallel and semi-

parallel spacelike surfaces in pseudo-Euclidean spaces. Ü. Lumiste in [53] obtained a classification

of semi-parallel Lorentzian (timelike) surfaces in Lorentzian space forms. The λ -isotropy condition

was studied for the pseudo-Riemannian case by Y. Kim in [40] and by Cabrerizo-Fernández-Gómez

in [13] and [14]. Also, K. Hasegawa in [38] showed a characterization of the Lorentzian surfaces

of the Veronese type in four-dimensional manifolds of neutral signature, as extremal (i.e. with

mean curvature vector field zero) and isotropic with negative spin immersions of constant Gaussian

curvature. The isotropy with negative spin condition was also studied by G.R. Jensen and M.

Rigoli in [39]. On the other hand, Al-shehri and Guediri in [6], studied semi-symmetric Lorentzian

hypersurfaces in Lorentzian space with constant curvature and obtained some classification results,

especially when the ambient space has non-zero curvature, using analogous techniques of those used

by Ryan in [66]. The semi-symmetric case when the ambient space is a Minkowski space was studied

by Van de Woestijne and Verstraelen in [75], under the condition that the rank of the Weingarten

operator is greater than two.

The aim of this work is study pseudo-parallel immersions between pseudo-Riemannian mani-

folds, being particularly interested in those pseudo-parallel immersions of Lorentzian manifolds into
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the m-dimensional pseudo-Riemannian space form Sm
s (c), Hm

s (c) or Em
s , with constant curvature c

and index s, denoted for short by Qm
s (c). Specifically, we study pseudo-parallel Lorentzian surfaces

(see [46]) and pseudo-parallel Lorenzian hypersurfaces in the ambient spaces Qm
s (c), continuing the

work in [44].

It is natural to ask the following questions:

(i) Any Lorentzian surface with non-flat normal bundle in a pseudo-Riemannian space form Qm
s (c)

is pseudo-parallel if and only if it is λ -isotropic?

(ii) Which are all the pseudo-parallel Lorentzian surfaces with non-flat normal bundle in a 4 di-

mensional or 5-dimensional pseudo-Riemannian space form with constant pseudo-parallelism

function ψ?

(iii) Are there pseudo-parallel Lorentzian surfaces with non-flat normal bundle in a 4 dimensional

pseudo-Riemannian space form with non constant pseudo-parallelism function ψ?

(iv) Which are all the pseudo-parallel hypersurfaces of a pseudo-Riemannian space form?

In this work, we answer affirmatively to the first question and give partial answers to questions (ii)

and (iii): the case of codimension two in question (ii) and the case c = 0 in question (iii). Question

(iv) is still an open problem in general, but here we almost completely solve the particular situation

corresponding to the following question:

(v) Which are all the pseudo-parallel Lorentzian hypersurfaces of a Lorentzian space form Qn+1
1 (c)

with constant pseudo-parallelism function ψ?

Let M2
1 be a Lorentzian surface and let Qm

s (c) an m-dimensional pseudo-Riemannian space form

of constant sectional curvature c and index s, with 1 ≤ s ≤ m− 1. We begin by observing that any

isometric immersion f : M2
1 → Qm

s (c) with flat normal bundle is pseudo-parallel. Then, we obtain

analogous results of those given for Riemannian pseudo-parallel surfaces with non-flat normal bundle

in [9] and [50]. We recall that f is called λ -isotropic, in this pseudo-Riemannian context, if for any

point x of the surface we have that ⟨α(X ,X),α(X ,X)⟩= λ (x), for all unit tangent vector X of M2
1 at

x and for some smooth real-valued function λ on M2
1 (see [40]). The following is the main result that

we obtain for the case of surfaces:

Theorem 0.1. An isometric immersion f : M2
1 → Qm

s (c) which has non-flat normal bundle on any

open subset of M2
1 is ψ-pseudo-parallel if and only if it is λ -isotropic. Moreover, for such an immer-

sion we have that f is pseudo-umbilical and

(a) if ψ ̸= K, then 2 ≤ s ≤ m−2 and

λ =−3ψ − c+4K, (3)

⟨H,H⟩=−2ψ − c+3K; (4)
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(b) if ψ = K, then 3 ≤ s ≤ m−3 and λ = ⟨H,H⟩= K − c,

where K is the Gaussian curvature of M2
1 , H is the mean curvature vector field of f and λ is a smooth

real-valued function on M2
1 .

We remark that there are no pseudo-parallel Lorentzian surfaces with non-flat normal bundle in

Lorentzian space forms. In the Riemannian case, condition ψ = K implies that the pseudo-parallel

surface has flat normal bundle (see [9]). In Example 2.5, we show a pseudo-parallel Lorentzian

surface with non-flat normal bundle and ψ = K = 0 in a 6-dimensional pseudo-Euclidean space.

As a consequence of Theorem 0.1, we obtain the following geometric characterization for pseudo-

parallel Lorentzian surfaces with non-flat normal bundle in terms of the hyperbola of normal curva-

ture.

Corollary 0.2. Let f : M2
1 → Qm

s (c) be an isometric immersion with Gaussian curvature K. f is ψ-

pseudo-parallel with non-flat normal bundle on any open subset of M2
1 if and only if, for each x ∈ M2

1 ,

the set

Hx = {⟨X ,X⟩α(X ,X) : X ∈ TxM with ⟨X ,X⟩=±1}

is a non-degenerate hyperbola with center at the mean curvature vector H(x), which lies in a 2-

dimensional affine subspace V of N f M(x) orthogonal to H(x), such that

(a) either V −H(x) is Lorentzian and Hx is an equilateral hyperbola satisfying that ⟨W −
H(x),W −H(x)⟩ = r(x) ̸= 0 does not depend on W ∈ Hx. In this case, 2 ≤ s ≤ m − 2,

r(x) = K −ψ and if m = 4, then s = 2 and f is extremal;

(b) or all non-zero vectors of V −H(x) are lightlike. In this case, 3 ≤ s ≤ m− 3, ψ = K and if

m = 6, then s = 3 and ⟨H(x),H(x)⟩= 0.

In particular, for m= 4, we obtain that any pseudo-parallel Lorentzian surface with non-flat normal

bundle in Q4
s (c) is super-extremal, i.e., extremal and λ -isotropic, and s = 2. In this case and under the

hypothesis that the pseudo-parallelism function is constant, using a classification result by Hasegawa

in [38] for extremal and isotropic with negative spin immersion, we show the next result:

Corollary 0.3. Let f : M2
1 →Q4

s (c) be an isometric immersion with R⊥ ̸= 0. f is ψ-pseudo-parallel

if and only if s = 2 and f is an extremal and isotropic with negative spin immersion. Moreover, if ψ is

constant, then K =
c
3
̸= 0 and locally f (M2

1) is congruent to an open set of the Veronese type surface

given in Example 3.1.

Considering Corollary 0.3, it is natural to ask if there are ψ-pseudo-parallel Lorentzian surfaces

with non-flat normal bundle and non-constant ψ in a pseudo-Riemannian space form Q4
2(c), espe-

cially for c = 0. We answer affirmatively to this question, showing the first explicit examples of
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this kind of surfaces in E4
2. For this, we study the class of extremal general rotational surfaces

in E4
2, such that the meridian m lies in a two-dimensional plane, i.e., m : x(u) = ( f (u),0,g(u),0),

u ∈ J ⊂ R. General rotational surfaces as a source of examples of surfaces in the 4-dimensional Eu-

clidean space were introduced by Moore and analogous Lorentzian surfaces in E4
2 were defined by

Aleksieva-Milousheva-Turgay in [4], where some classification results were given. Using classifica-

tions in [4] and looking at the λ -isotropy condition, we obtain the following results:

Theorem 0.4. Let M1 be a general rotational Lorentzian surface of elliptic type in E4
2, defined by

(1.23). Then M1 is pseudo-parallel with R⊥ ̸= 0 if and only if the meridian m is determined by

( f +g)2 = a( f −g)2 +b, with f g′ ̸= g f ′ everywhere, a ̸= 0 constant, b constant, θ = β . In this case,

ψ = 3
2K =

3( f g′−g f ′)2

( f ′2 −g′2)(g2 − f 2)2 .

Theorem 0.5. Let M2 be a general rotational surface of hyperbolic type in E4
2, defined by (1.28).

Then M2 is pseudo-parallel with R⊥ ̸= 0 if and only if the meridian m is determined by

(i) f = cgk, c ̸= 0 constant, k =±θ

β
̸=±1, or

(ii) arctan
(

f ′
g′

)
=−arctan

(
f
g

)
+b, with f g′ ̸= g f ′ everywhere, b constant, θ = β .

For any of these cases, we have ψ = 3
2K =

−3θ 2β 2( f g′−g f ′)2

( f ′2 +g′2)(β 2g2 +θ 2 f 2)2 .

Note that all the surfaces in Theorem 0.4 and Theorem 0.5 are not semi-parallel and the

Veronese type surface mentioned in Corollary 0.3 is a parallel immersion. To get an example of a

ψ-pseudo-parallel surface with non flat normal bundle and constant ψ which is not semi-parallel,

we must look at codimension three. We give an example of a such surface in S5
2(c). The case with

constant ψ in codimension three for ψ-pseudo-parallel Lorentzian surfaces with non flat normal

bundle is more complicated than in the Riemannian case and we do not give a complete classification;

indeed, to our knowledge there is no classification of λ -isotropic Lorentzian surfaces with constant λ

in Q5
s (c), with s = 2,3. We want to remark that Simons’ formula was used by Sakamoto in [68] for

the classification of λ -isotropic surfaces with constant λ in Q5(c), but the question remains whether

a Simons type formula can be obtained for Lorentzian surfaces. It is worth to mention that as part of

our study of Simons’ formula, a generalization of a result by Asperti-Lobos-Mercuri in Theorem 1.1

of [8] was obtained in a joint work with M.R. Santos for spacelike pseudo-parallel immersions of any

codimension in pseudo-Riemannian warped product spaces. Such a result can be found in Theorem 2

of [47] and and it gives conditions for the mean curvature vector and the pseudo-parallelism function

ψ to guarantee that a point of a pseudo-parallel immersion is a geodesic point.

For a pseudo-parallel Lorentzian hypersurface f : Mn
1 → Qn+1

s (c), with s ∈ {0,1}, we complete

in Proposition 4.6 a result partially given by Lobos in [44], which provides a specific description
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of the pseudo-parallelism condition in terms of the Weingarten operator at each point of the

hypersurface, covering both the diagonalizable and non-diagonalizable cases. Then, we shall focus

on pseudo-parallel Lorentzian hypersurfaces with constant ψ in Lorentzian space forms Qn+1
1 (c).

For the case ψ = c = 0, we give the following classification of connected complete semi-parallel

Lorentzian hypersurfaces in the Minkowski space, using essentially the technique in [75, 59], for

the case where the rank of the Weingarten operator is greater than 1, and the classification of the

complete Lorentzian hypersurfaces with constant curvature zero in En+1
1 , for the case where the rank

of the Weingarten operator is at most 1.

Theorem 0.6. Let f : Mn
1 → En+1

1 be a connected and complete semi-parallel Lorentzian hypersur-

face in En+1
1 , with n ≥ 3. Then, f (Mn

1) is congruent to one of the following Lorentzian submanifolds:

(i) En
1 = {x ∈ En+1

1 : xn+1 = 0};

(ii) Sn
1(a

2) =

{
x ∈ Rn+1

1 : −x2
1 +

n+1

∑
i=2

x2
i =

1
a2

}
with a ̸= 0;

(iii) Sk(a2)×En−k
1 =

{
x ∈ En+1

1 :
k+2

∑
i=2

x2
i =

1
a2

}
, with a ̸= 0 and 2 ≤ k ≤ n−1;

(iv) Sk
1(a

2)×En−k =

{
x ∈ En+1

1 : −x2
1 +

k+1

∑
i=2

x2
i =

1
a2

}
, with a ̸= 0 and 2 ≤ k ≤ n−1;

(v) En−2
1 × h(E2), where h(E2) is a Euclidean cylinder in a subspace E3 of En+1

1 orthogonal to

En−2
1 ; or En−2 ×h(E2

1), where h(E2
1) is a Lorentzian cylinder or a B-scroll in a subspace E3

1 of

En+1
1 orthogonal to En−2.

Next, using an approach analogous to that by Ryan, Al-shehri and Guediri in [66, 6], we obtain

the following local classification results for the case where ψ ̸= c and the hypersurface is good in the

sense of Ryan.

Theorem 0.7. Let Mn
1 be a ψ-pseudo-parallel Lorentzian hypersurface in Qn+1

1 (c), with n ≥ 3 and

constant ψ < c. Then Mn
1 is either good and locally congruent to one of the following Lorentzian

manifolds

(i) Sn
1(a

2 + c) =
{

x ∈ Sn+1
1 (c)⊂ En+2

1 : xn+2 =

√
1
c
− 1

a2 + c

}
with a ∈ R, if c > 0;

(ii) En
1 = {x ∈ En+1

1 : xn+1 = 0} or Sn
1(a

2) =

{
x ∈ En+1

1 : −x2
1 +

n+1

∑
i=2

x2
i =

1
a2

}
with a ̸= 0, if c = 0;

(iii) Hn
1(a

2+c) =
{

x ∈Hn+1
1 (c)⊂ En+2

2 : xn+2 =

√
1
c
− 1

a2 + c

}
, with |a|<

√
−c, or Sn

1(a
2+c) ={

x ∈Hn+1
1 (c)⊂ En+2

2 : x1 =

√
1

a2 + c
− 1

c

}
, with a2 >−c. In this case c < 0;
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(iv) a totally umbilical hypersurface of the form {y ∈ Hn+1
1 (c) : ⟨y,X⟩= a}, where a =±

√
−c and

X is a parallel vector field in En+2
2 , which satisfies ⟨X ,X⟩= 0. In this case c < 0;

(v) Sk(a2+c)×Sn−k
1 (b2+c) =

{
x ∈ Sn+1

1 (c)⊂ En+2
1 :

k+2

∑
i=2

x2
i =

1
a2 + c

,−x2
1 +

n+2

∑
i=k+3

x2
i =

1
b2 + c

}
,

where c > 0, ψ = ab+ c = 0 and 1 < k < n−1;

or else, Mn
1 is a bad hypersurface foliated either by (n−1)-dimensional Riemannian hyperspheres or

by (n−1)-dimensional de Sitter spaces.

Theorem 0.8. Let Mn
1 be a good ψ-pseudo-parallel Lorentzian hypersurface in Qn+1

1 (c), with n ≥ 3

and constant ψ > c. Then, Mn
1 is locally congruent to one of the following Lorentzian manifolds

(i) a totally geodesic or totally umbilical hypersurface as described in parts (i), (ii), (iii) and (iv)

of Theorem 0.7;

(ii) Hk
1(a

2+c)×Sn−k
(

c2

a2 + c
)
=

{
x ∈Hn+1

1 (c)⊂ En+2
2 : −

2

∑
i=1

x2
i +

k+1

∑
i=3

x2
i =

1
a2 + c

,
n+2

∑
i=k+2

x2
i =

a2

c2 + ca2

}
,

where c < 0, |a|<
√
−c, ψ = 0 and 1 < k < n−1;

(iii) Sk
1(a

2 + c) × Hn−k
(

c2

a2 + c
)

=

{
x ∈ Hn+1

1 (c) ⊂ En+2
2 : −x2

1 +
k+2

∑
i=3

x2
i =

1
a2 + c

,−x2
2 +

n+2

∑
i=k+3

x2
i =

a2

c2 + ca2

}
, where c < 0, |a|>

√
−c, ψ = 0 and 1 < k < n−1;

(iv) a generalized umbilical hypersurface of degree 2 as in (1.36), (1.37) or (1.38), where ψ =

c+a2, a =−τ ̸= 0, at each connected component of the open subset of non-umbilical points.

To obtain the classifications in Theorem 0.7 and Theorem 0.8, the study of isoparametric

Lorentzian hypersurfaces carried out in [37, 55, 80, 42, 5, 1] will be useful. In fact, for the case

ψ ̸= c, the constancy of the pseudo-parallelism function will imply that the principal curvatures of

the hypersurface will be constant as well, provided that the hypersurface is good.

In Example 4.24, we give a Lorentzian hypersurface f : U → E4
1 with U a neighborhood of 0 in

R3, parameterized by

f (s,u,z) = γ(s)+uB(s)+ zẽ4 +C(s)−
√

1− z2C(s). (5)

where

γ(s) =
1
6

s

{
2 0F1

(
;
1
3
,− s3

18

)2

+4 0F1

(
;
1
3
,− s3

18

)
0F1

(
;
4
3
,− s3

18

)
+ s3

0F1

(
;
4
3
,− s3

18

)2
}

ẽ1

+

{
8 0F1

(
;
2
3
,− s3

18

)2

−8 0F1

(
;
2
3
,− s3

18

)
0F1

(
;
5
3
,− s3

18

)
+ s3

0F1

(
;
5
3
,− s3

18

)2
}

ẽ2

+
1
6

{
−2 0F1

(
;
1
3
,− s3

18

)[
2 0F1

(
;
1
3
,− s3

18

)
+ s3

0F1

(
;
4
3
,− s3

18

)]
+s3

[
0F1

(
;
1
3
,− s3

18

)
+ 0F1

(
;
4
3
,− s3

18

)]
0F1

(
;
5
3
,− s3

18

)}
ẽ3,

(6)
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{ẽ1, ẽ2, ẽ3, ẽ4} is a pseudo-orthonormal frame in E4
1 and {T (s),B(s),C(s), ẽ4} is a pseudo-

orthonormal frame associated to γ , satisfying T (s) = d
dsγ(s) and d

dsC(s) =−T (s)+ sB(s). The curve

γ(s) and the vector fields T (s),B(s),C(s) were obtained as solutions of a initial value problem using

the software Mathematica. This hypersurface f is a generalized umbilical hypersurface of degree 2

out of the non empty set of umbilical points, in fact, the Weingarten operator A is non diagonalizable

almost everywhere, except when the parameter s vanishes and then A degenerates to a multiple of the

identity. Thus, f is isoparametric in the sense of Hahn (see [37]), but the minimal polynomial of the

Weingarten operator is not constant.

Finally, we study the particular case of pseudo-parallel Lorentzian hypersurfaces in Qn+1
1 (c) with

constant ψ and constant mean curvature function H. Here, the classification of all immersions of En
1

into En+1
1 given in [34] will also be useful, in addition to the study of isoparametric hypersurfaces

mentioned above. We obtain the following results.

Theorem 0.9. Let f : Mn
1 → Qn+1

1 (c) be a ψ-pseudo-parallel Lorentzian hypersurface, with n ≥ 3

and constant ψ = c. If f has nonzero constant mean curvature, then f (Mn
1) is locally congruent to

one of the following Lorentzian hypersurfaces:

(i) A totally umbilical Sn
1(a

2) =

{
x ∈ En+1

1 : −x2
1 +

n+1

∑
i=2

x2
i =

1
a2

}
, a = H ̸= 0, if c = 0.

(ii) A totally umbilical Sn
1(a

2 + c) =
{

x ∈ Sn+1
1 (c)⊂ En+2

1 : xn+2 =

√
1
c
− 1

a2 + c

}
, with a = H ̸=

0, if c > 0.

(iii) A totally umbilical Hn
1(a

2+c) =
{

x ∈Hn+1
1 (c)⊂ En+2

2 : xn+2 =

√
1
c
− 1

a2 + c

}
, with 0< |a|<

√
−c, or Sn

1(a
2 + c) =

{
x ∈Hn+1

1 (c)⊂ En+2
2 : x1 =

√
1

a2 + c
− 1

c

}
, with a2 >−c. In this case

a = H ̸= 0 and c < 0.

(iv) A totally umbilical hypersurface of the form {y ∈ Hn+1
1 (c) : ⟨y,X⟩= a}, where a =±

√
−c = H

and X is a parallel vector field in En+2
2 , which satisfies ⟨X ,X⟩= 0. In this case c < 0.

(v) A cylinder Sk
τ(a

2)×En−k
1−τ

=

{
x ∈ En+1

1 : −
1

∑
i=2−τ

x2
i +

k+2−τ

∑
i=2

x2
i =

1
a2

}
, a =

nH
k

̸= 0 and 1 ≤

k ≤ n−1. In this case c = 0.

Theorem 0.10. Let f : Mn
1 → Qn+1

1 (c) be a ψ-pseudo-parallel Lorentzian hypersurface, with n ≥ 3

and constant ψ = c. If f has mean curvature H = 0, then f (Mn
1) is either totally geodesic or

(i) c = 0 and f (Mn
1) is a generalized cylinder given by En−2 ×h(E2

1), where h(E2
1) is a B-scroll in

a subspace E3
1 of En+1

1 orthogonal to En−2, that is, locally, the hypersurface f : U → En+1
1 , U
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a neighborhood of 0 in Rn, parameterized by

f (s,y,z3, . . . ,zn) = γ(s)+ yB(s)+∑
i

ziZi(s)

where γ is a null curve in En+1
1 with an associated pseudo-orthonormal frame

{T (s),B(s),Z3(s), . . . ,Zn(s),C(s)} of tangent vectors of En+1
1 along γ , such that T (S) and

B(s) are lightlike vectors with ⟨T (S),B(S)⟩=−1, T (s) = d
dsγ(s) and d

dsC(s) =−κ(s)B(s).

(ii) c < 0, and at the open subset of non-geodesic points, locally f (Mn
1) is an open piece of a

Lorentzian hypersurface f : U → Hn+1
1 (c) ⊂ En+2

2 , with U an open neighborhood of 0 in Rn,

parameterized by

f (s,u,z) =

√
1− c

n

∑
i=3

z2
i γ(s)+uB(s)+

n

∑
i=3

ziZi(s), (7)

where z = (z3, . . . ,zn), γ(s) is a null curve in Hn+1
1 (c) with an associated pseudo-orthonormal

frame {T (s), B(s),Z3(s), . . . ,Zn(s),C(s)} of tangent vector fields of Hn+1
1 (c) along γ , such that

⟨T (s),T (s)⟩ = ⟨B(s),B(s)⟩ = 0, ⟨T (s),B(s)⟩ = −1, ⟨Zi(s),Zi(s)⟩ = ⟨C(s),C(s)⟩ = 1, all other

inner products are zero along γ(s), d
dsγ(s) = T (s) and d

dsC(s) = κ(s)B(s), where d
ds denote the

ordinary derivation in En+1
2 and κ(s) ̸= 0.

(iii) c > 0, and at the open subset of non-geodesic points, locally f (Mn
1) is an open piece of a

Lorentzian hypersurface f : Ω = (a,b)×R× Sn−2
+ → Sn+1

1 (c) ⊂ En+2
1 , with Sn−2

+ (c) = {y =

(y3, . . . ,yn+1) ∈ Sn−2(c) : y3 > 0}, parameterized by

f (t,u,y) = y3E3(t)+uE2(t)+
n+1

∑
i=4

yiEi(t)

=

√√√√1
c
−

n+1

∑
i=4

y2
i E3(t)+uE2(t)+

n+1

∑
i=4

yiEi(t),

(8)

where ρ(t), with t ∈ (a,b), is a parameterized curve satisfying ⟨ρ(t),ρ(t)⟩ = 0, for all t,

and d
dt ρ(t) is a spacelike curve, with an associate pseudo-orthonormal frame {E1(t),E2(t) =

ρ(t),E3(t), . . . ,En+2(t)} of tangent vector fields to En+2
1 along ρ , such that ⟨E1,E1⟩ =

⟨E2,E2⟩ = 0, ⟨E1,E2⟩ = −1, ⟨E j,E j⟩ = 1, for 4 ≤ j ≤ n+2, all other inner products are zero

along ρ(s) and

E ′
1 =C1E3 +C2E4 + · · ·+CnEn+2,

E ′
2 = E3, E ′

3 = E1 +C1E2, E ′
j =C j−2E2, for 4 ≤ j ≤ n+2,

(9)

where C1, . . . ,Cn are functions in the variable t and E ′
i =

d
dt Ei.

Theorem 0.11. Let f : Mn
1 → Qn+1

1 (c) be a ψ-pseudo-parallel Lorentzian hypersurface, with n ≥ 3

and constant ψ < c. If f has constant mean curvature, then f (Mn
1) is locally congruent to one of the

following Lorentzian hypersurfaces:
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(i) A totally geodesic or totally umbilical hypersurface as described in parts (i), (ii), (iii) and (iv)

of Theorem 0.7, with a = H.

(ii) Sk(a2 + c)× Sn−k
1

(
c2

a2 + c
)

=

{
x ∈ Sn+1

1 (c) ⊂ En+2
1 :

k+2

∑
i=2

x2
i =

1
a2 + c

,−x2
1 +

n+2

∑
i=k+3

x2
i =

a2

c2 + ca2

}
,

where c > 0, ψ = 0, a =
nH ±

√
n2H2 +4k(n− k)c

2k
and 1 ≤ k ≤ n−1.

Theorem 0.12. Let f : Mn
1 → Qn+1

1 (c) be a ψ-pseudo-parallel Lorentzian hypersurface, with n ≥ 3

and constant ψ > c. If f has constant mean curvature, then f (Mn
1) is locally congruent to one of the

following Lorentzian hypersurfaces:

(i) A totally geodesic or totally umbilical hypersurface as described in parts (i), (ii), (iii) and (iv)

of Theorem 0.7, with a = H.

(ii) Hk
1(a

2+c)×Sn−k
(

c2

a2 + c
)
=

{
x ∈Hn+1

1 (c)⊂ En+2
2 : −

2

∑
i=1

x2
i +

k+1

∑
i=3

x2
i =

1
a2 + c

,
n+2

∑
i=k+2

x2
i =

a2

c2 + ca2

}
,

where c < 0, |a|<
√
−c, ψ = 0, a =

nH ±
√

n2H2 +4k(n− k)c
2k

and 1 ≤ k ≤ n−1.

(iii) Sk
1(a

2 + c) × Hn−k
(

c2

a2 + c
)

=

{
x ∈ Hn+1

1 (c) ⊂ En+2
2 : −x2

1 +
k+2

∑
i=3

x2
i =

1
a2 + c

,−x2
2 +

n+2

∑
i=k+3

x2
i =

a2

c2 + ca2

}
, where c < 0, |a|>

√
−c, ψ = 0, a =

nH ±
√

n2H2 +4k(n− k)c
2k

and 1 ≤ k ≤ n−1.

(iv) A generalized umbilical hypersurface of degree 2 as in (1.36), (1.37) or (1.38), where ψ =

c+a2, τ = a = H ̸= 0, in the open subset of non-umbilical points.

We remark that the classification of ψ-pseudo-parallel Lorentzian hypersurfaces in Qn+1
1 (c), with

constant ψ = c ̸= 0 is still an open problem. We state the following conjecture:

Conjecture 0.13. Any connected ψ-pseudo-parallel Lorentzian hypersurface f : Mn
1 →Qn+1

1 (c), with

n ≥ 3 and ψ = c ̸= 0, is congruent to a totally umbilical hypersurface of Qn+1
1 (c) or k(x)≤ 1 every-

where on Mn
1 .

The thesis is organized in five chapters. In Chapter one, we introduce the notations we

use along the whole work and recall some concepts of the Submanifold Theory. We state the

definitions of pseudo-parallel immersions and other related extrinsic notions. We also recall the

pseudo-Riemannian space forms as well the Fundamental Equations for surfaces and hypersurfaces

in these ambient spaces, which will be useful in the next chapters. In the following sections, we

will make a summary about some particular surfaces and hypersurfaces of pseudo-Riemannian space

forms which will be a source of examples for our work, namely, the general rotational surfaces

with plane meridians in 4-dimensional pseudo-Euclidean spaces as well the B-scrolls, generalized

cylinders and generalized umbilical hypersurfaces of degree 2 in Lorentzian space forms, also we
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recall classification results for hypersurfaces of constant curvature in Lorentzian space forms and

for isoparametric Lorentzian hypersurfaces in Lorentzian space forms, in particular those such that

the Weingarten operator is diagonalizable and has at most two different principal curvatures or the

minimal polynomial is (t −a)2, with a ∈ R constant.

In Chapter two, first we present in Section 2.1 some basic results about Lorentizan surfaces

in pseudo-Riemannian space forms. Mainly, we characterized the condition of the normal bundle

being non-flat in terms of the linear independence of two normal vector fields given by the second

fundamental form and we reduce the pseudo-parallelism condition to equations involving the normal

curvature tensor, the Gaussian curvature, the second fundamental form α and the pseudo-parallelism

function ψ . We show in Example 2.5 a pseudo-parallel Lorentzian surface with non-flat normal

bundle and ψ = K. In Section 2.2, we characterize λ -isotropic Lorentzian surfaces by providing

several equivalent conditions to λ -isotropy. In particular, we study the hyperbola of normal curvature

of λ -isotropic Lorentzian surfaces. Finally, in Section 2.3, we prove Theorem 0.1 and obtain as

corollary a characterization of pseudo-parallel Lorentzian surfaces with non-flat normal bundle in

terms of the hyperbola of normal curvature.

In Chapter three, we will present examples of pseudo-parallel Lorentzian surfaces with non-flat

normal bundle in a 4-dimensional or 5-dimensional pseudo-Riemannian space form. First, in Section

3.1, we recall the definition of isotropy with negative (positive) spin. Next, in Example 3.1, we

prove that Lorentzian surfaces of the Veronese type in codimension two, which are extremal and

isotropic with negative spin immersion, are also parallel and λ -isotropic. Then, we study the case of

pseudo-parallel Lorentzian surface with constant ψ and prove Corollary 0.3. In Section 3.1, we study

pseudo-parallel general rotational surfaces with plane meridians in E4
2 and prove Theorem 0.4 and

Theorem 0.5. In section 3.3, we explore the case of codimension three and give, in Example 3.10, a

flat extremal pseudo-parallel Lorentzian surface with non-flat normal bundle in S5
2(c) which is not a

semi-parallel surface.

In Chapter four, we first recall in Section 4.1 some basic notions about pseudo-parallel hypersur-

faces in pseudo-Riemannian space forms. Since reference [44] is quite difficult to find, for the sake of

completeness we recall some results therein. In Section 4.2, we obtain in Proposition 4.6 a complete

characterization of the Weingarten operator of a pseudo-parallel Lorentzian hypersurface in pseudo-

Riemannian space forms. In Section 4.3, we begin describing in detail the Weingarten operator of a

Lorentzian hypersurface in Qn+1
1 (c), with n ≥ 3, in Lemma 4.7. Then, we obtain in Theorem 4.10

the classification of all connected complete semi-parallel Lorentzian hypersurfaces of En+1
1 . Next, in

Section 4.4, we study the case where the pseudo-parallelism function ψ is constant and does not coin-

cide with the curvature of the ambient space, proving that the set of bad points of the pseudo-parallel
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Lorentzian hypersurface is open if ψ ̸= c and also closed if ψ < c. Then we show in Proposition 4.17

for ψ ̸= c, that the rank of the Weingarten operator is either zero everywhere or n everywhere on the

hypersurface. Using this, we prove Theorem 0.7 and Theorem 0.8. Finally, in Section 4.5, we study

ψ-pseudo-parallel Lorentzian hypersurfaces in Qn+1
1 (c) with constant ψ and constant mean curvature

function H and prove Theorem 0.9 and Theorem 0.10, for the case ψ = c, and Theorem 0.11 and

Theorem 0.12, for the cases ψ < c and ψ > c, respectively.



CHAPTER 1

Preliminaries and basic notations

In this chapter, we recall basic notions of Submanifold Theory in pseudo-Riemannian manifolds

and fix the notation we use along this work. For the reader interested in a detailed introduction to

Theory of Riemannian or pseudo-Riemannian submanifolds we recommend [20] and [62].

1.1 Basics of theory of pseudo-Riemannian submanifolds

A scalar product B in a finite dimensional real vector space V is a non-degenerate symmetric

bilinear form. The dimension of the largest subspace W ⊂ V on which B|W is negative definite,

i.e., B(v,v) < 0 for all nonzero vector v ∈ W , is called the index of B. A vector v ∈ V is said to be

timelike if satisfies B(v,v) < 0 or lightlike (null) if v ̸= 0 and B(v,v) = 0, in other case v is called

a spacelike vector. Non-degeneracy of B means that v ∈V with B(u,v) = 0 for all u ∈V implies v = 0.

A non-degenerate metric tensor g̃ in a m-dimensional smooth manifold M̃, is a symmetric

non-degenerate (0,2) tensor field on M̃ of constant index, i.e., g̃ assigns to each point x ∈ M̃ a scalar

product g̃x on TxM̃, and the index of g̃x is the same for all x ∈ M̃. A pseudo-Riemannian manifold is a

smooth manifold furnished with a non-degenerate metric tensor g̃.

Let M̃m
s be a m-dimensional pseudo-Riemannian manifold with metric g̃ of index s and let Mn

t

an n-dimensional pseudo-Riemannian manifold with metric g of index t, with n < m, 0 ≤ t ≤ n

and t ≤ s ≤ m. We say that a smooth map f : Mn
t → M̃m

s is an immersion if its differential

f∗ : TxM → Tf (x)M̃ is injective, for all x ∈ Mn
t .

Moreover, an immersion f : Mn
t → M̃m

s is said to be an isometric immersion provided that

g̃( f∗X , f∗Y ) = g(X ,Y ),

for all X ,Y ∈ TxM, for all x ∈ Mn
t .

15
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From now until the end of this section, we consider f : Mn
t → M̃m

s an isometric immersion. We

denote the tangent bundles of Mn
t and M̃m

s by T M and T M̃, respectively, and denote by f ∗T M̃ the

induced bundle over Mn
t , whose fiber at x ∈ Mn

t is Tf (x)M̃.

For each point x ∈ Mn
t , we denote by N f M(x) the orthogonal complement of f∗TxM in Tf (x)M̃

which is called the normal space of f an x. The normal bundle of f , denoted by N f M, is the vector

subbundle of f ∗T M̃ whose fiber at each point x ∈ Mn
t is N f M(x). Smooth sections of T M are called

tangent vector fields and smooth sections of N f M are called normal vector fields.

The Levi–Civita connection of M̃m
s induce a connection ∇̃ on f ∗T M̃. Given tangent vector fields

X ,Y of Mn
t , we can make the decomposition

∇̃ f∗X f∗Y = (∇̃ f∗X f∗Y )T +(∇̃ f∗X f∗Y )⊥,

respect to the decomposition as a orthogonal direct sum

f ∗T M̃ = f∗T M⊕N f M.

The tangent part ∇XY = ( f∗)−1(∇̃ f∗X f∗Y )T , coincides with the Levi-Civita connection of Mn
t . The

symmetric 2-tensor field defined by the normal part

α(X ,Y ) = (∇̃ f∗X f∗Y )⊥,

is called the second fundamental form of f . Thus, we have the Gauss formula

∇̃ f∗X f∗Y = f∗∇XY +α(X ,Y ), (1.1)

for all tangent vector fields X ,Y of Mn
t .

At each point x ∈ Mn
t , α defines a symmetric bilinear map α : TxM ×TxM → N f M(x), which we

also call the second fundamental form of f at x.

For any ξ ∈ N f M(x), the corresponding Weingarten operator of f at x in the ξ -direction, denoted

by Aξ , is defined by

g̃(α(X ,Y ),ξ ) = g(Aξ X ,Y ), (1.2)

for all X ,Y ∈ TxM, where Aξ X ∈ TxM.

It follows that − f∗Aξ X is the tangent part of ∇̃ f∗X ξ . On the other hand, the normal component

∇
⊥
X ξ = (∇̃ f∗X ξ )⊥,
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where X ∈ T M and ξ is a normal vector field of Mn
t , defines a torsion-free connection ∇⊥ in N f (M)

compatible with g̃, called the normal connection of f . Thus, we have the Weingarten formula:

∇̃ f∗X ξ =− f∗Aξ X +∇
⊥
X ξ . (1.3)

Let {X1, . . . ,Xn} a local frame of Mn
t and denote by gi j = g(Xi,X j). The mean curvature vector

field of f is the normal vector field H, defined by

H=
1
n

trace(α) =
1
n

n

∑
i, j=1

gi j
α(Xi,X j),

where (gi j) is the inverse matrix of (gi j).

We say that f is extremal (minimal or maximal) if H= 0.

We denote by R the curvature tensor at x∈Mn
t corresponding to T M and adopt the sign convention

R(X ,Y )Z = ∇X ∇Y Z −∇Y ∇X Z −∇[X ,Y ]Z,

for all X ,Y,Z ∈ TxM.

The sectional curvature K(X ,Y ) of Mn
t with respect to spam{X ,Y} ⊂ TxM is defined by

K(X ,Y ) =
g(R(X ,Y )Y,X)

g(X ,X)g(Y,Y )−g(X ,Y )2 .

We denote by R⊥ the curvature tensor of the normal bundle N f M, and it is given by

R⊥(X ,Y )ξ = ∇
⊥
X ∇

⊥
Y ξ −∇

⊥
Y ∇

⊥
X ξ −∇

⊥
[X ,Y ]ξ ,

for all X ,Y ∈ TxM and any normal vector field ξ of f .

We say that f has flat normal bundle, or vanishing normal curvature if R⊥ = 0 on Mn
t .

Let R̃ the curvature tensor of T M̃, from Gauss and Weingarten formulas, we can deduce the

following three important equations, called compatibility equations of the isometric immersion f :

GAUSS EQUATION:

(R̃( f∗X , f∗Y ) f∗Z)T = f∗R(X ,Y )Z +Aα(X ,Z)Y −Aα(Y,Z)X ; (1.4)

CODAZZI-MAINARDI EQUATION:

(R̃( f∗X , f∗Y ) f∗Z)⊥ = (∇X α)(Y,Z)− (∇Y α)(X ,Z), (1.5)
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where

(∇X α)(Y,Z) = ∇
⊥
X α(Y,Z)−α(∇XY,Z)−α(Y,∇X Z);

RICCI EQUATION:

(R̃( f∗X , f∗Y )ξ )⊥ = R⊥(X ,Y )ξ +α(Aξ X ,Y )−α(X ,AξY ), (1.6)

for X ,Y,Z ∈ TxM and ξ ∈ N f M(x).

1.2 Pseudo-parallel submanifolds

Let f : Mn
t → M̃m

s be an isometric immersion. We consider the decomposition of induced bundle

f ∗T M̃ over Mn
t as a Whitney sum f ∗T M̃ = f∗T M⊕N f M and we denote by R = R⊕R⊥ the curvature

tensor corresponding to the Van der Waerden-Bortoletti connection ∇ = ∇⊕∇⊥ of f .

f is said to be:

1. Totally geodesic if

α(X ,Y ) = 0; (1.7)

2. Totally umbilical if

α(X ,Y ) = ⟨X ,Y ⟩H; (1.8)

3. Pseudo-umbilical if

⟨α(X ,Y ),H⟩= ⟨H,H⟩⟨X ,Y ⟩; (1.9)

4. λ -isotropic if

⟨α(X ,X),α(X ,X)⟩= λ (x) (1.10)

for some smooth real-valued function λ on Mn
t and for any X ∈ TxM with ∥X∥=

√
|⟨X ,X⟩|= 1,

for all x ∈ Mn
t .

5. Locally parallel if

(∇X α)(Y,Z) = 0, (1.11)

with (∇X α)(Y,Z) defined as in (1.5);

6. Semi-parallel if

(R(X ,Y ) ·α)(Z,W ) = 0; (1.12)

7. Pseudo-parallel if

(R(X ,Y ) ·α)(Z,W ) = ψ((X ∧Y ) ·α)(Z,W ), (1.13)

for some smooth real-valued function ψ on Mn
t and for any X ,Y,Z,W ∈ TxM, for all x ∈ Mn

t .
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Here the notation means

(R(X ,Y ) ·α)(Z,W ) = R⊥(X ,Y )α(Z,W )−α(R(X ,Y )Z,W )−α(Z,R(X ,Y )W ),

((X ∧Y ) ·α)(Z,W ) =−α((X ∧Y )Z,W )−α(Z,(X ∧Y )W )

(X ∧Y )Z = ⟨Y,Z⟩X −⟨X ,Z⟩Y.

1.3 Pseudo-Riemannian space forms

Let EN
s be the N-dimensional pseudo-Euclidean space with the semi-Riemannian metric of index

s given by

⟨x,y⟩=−
s

∑
i=1

xiyi +
N

∑
i=s+1

xiyi, (1.14)

where x = (x1, . . . ,xN),y = (y1, . . . ,yN) ∈ EN
s .

We will consider a standard pseudo-Riemannian space form Qm
s (c) as a complete m-dimensional

pseudo-Riemannian manifold with constant sectional curvature c and index s, such that

Qm
s (c) =

 Hm
s (c)⊂ Em+1

s+1 , if c < 0,
Em

s , if c = 0,
Sm

s (c)⊂ Em+1
s , if c > 0,

where the m-dimensional pseudo-sphere Sm
s (c), c > 0, is a connected component of

{x ∈ Em+1
s : ⟨x,x⟩ = 1

c} with the induced metric of index s and the m-dimensional pseudo-

hyperbolic space Hm
s (c), c < 0, is a connected component of

{
x ∈ Em+1

s+1 : ⟨x,x⟩= 1
c

}
with the

induced metric of index s. We remark that Sm
m−1(c), c > 0, and Hm

1 (c), c < 0, are not simply

connected.

For c = 0, we denote by ∇̃ the usual directional derivative in Em
s . For c ̸= 0, the outward pointing

unit normal vector of Qm
s (c) in Em+1

s+σ , where σ = 0 if c > 0 and σ = 1 if c < 0, at any point x =

(x1, . . . ,xn), is given by normalization of the position vector u =
√

|c|i(x) =
√

|c|(x1, . . . ,xn). With

respect to this unit normal vector, we have that the inclusion i : Qm
s (c) → Em+1

s+σ is umbilical with

Weingarten operator −
√
|c|Im, where Im is the identity in TxM, and thus, its second fundamental form

at x is given by

α
i(X ,Y ) = ⟨u,u⟩⟨α i(X ,Y ),u⟩u =−c⟨X ,Y ⟩i(x),

for all X ,Y ∈ TxQm
s (c).

Now, denoting by ∇̂ the usual directional derivative in Em+1
s+σ , we can recover the Levi-Civita

connection ∇̃ of Qm
s (c), c ̸= 0, using Gauss formula for immersion i

i∗∇̃XY = ∇̂i∗X i∗Y −α
i(X ,Y ) = ∇̂i∗X i∗Y + c⟨X ,Y ⟩i(x).
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On the other hand, the curvature tensor R̃ of a pseudo-Riemannian space form Qm
s (c) at a point x,

is given by

R(X ,Y )Z = c(X ∧Y )Z,

for all X ,Y,Z ∈ TxQm
s (c).

We will study pseudo-parallel immersions in Qm
s (c) in two special cases. When immersion f is a

surface (i.e., f from a 2-dimensional pseudo-Riemannian submanifold) and when f is a hypersurface

(i.e., f from a n-dimensional pseudo-Riemannian manifold with m = n+1).

For the first case, let f : M2
t →Qm

s (c) be an isometric immersion. Let {e1,e2} be an orthonormal

local frame for M2
t and denote αi j = α(ei,e j). The compatibility equations of f can be expressed as

following (see for instance [58] and [62]):

GAUSS:

R(e1,e2)ek = c(e1 ∧ e2)ek +Aα2ke1 −Aα1ke2. (1.15)

CODAZZI-MAINARDI:

(∇e1α)(e2,ek) = (∇e2α)(e1,ek). (1.16)

RICCI:

R⊥(e1,e2)ξ = α(e1,Aξ e2)−α(Aξ e1,e2), (1.17)

for all ξ ∈ N f M.

Now, for the case when f is a hypersurface, consider an insometric immersion f : Mn
t →Qn+1

s (c).

In this case, a smooth unit normal vector field η ∈ N f M is locally unique, up to sign. Let A the

Weingarten operator corresponding to the η-direction and let ε = ⟨η ,η⟩, we write the Gauss and the

Weingarten formulas as

∇̃ f∗X f∗Y = f∗∇XY + ε⟨AX ,Y ⟩η ,

and

∇̃ f∗X η =− f∗AX ,

respectively, where X ,Y are tangent vector fields of Mn
t , and the mean curvature vector can be write

(locally) as

H(x) = εH(x)η(x),

where x ∈ Mn
t and H(x) is called the mean curvature of f at x, with respect to η .
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The compatibility equations for the hypersurface f are given by

GAUSS:

R(X ,Y )Z = c(X ∧Y )Z + ε(AX ∧AY )Z. (1.18)

CODAZZI-MAINARDI:

(∇X ·A)Y = (∇Y ·A)X , (1.19)

where (∇X ·A)Y = ∇X(AY )−A(∇XY ). We observed that Ricci Equation is trivially satisfied for the

case of hypersurfaces.

The eigenvalues of the Weingarten operator A are called the principal curvatures of the

Lorentzian hypersurface Mn
t . For each x ∈ Mn

t , the subspace T0(x) = {X ∈ TxM : AxX = 0} is called

the relative nullity space at x. The dimension of the subspace T0(x) is called the index of relative
nullity at x, while the rank of the shape operator Ax is called the type number at x and it is denoted

by k(x).

1.4 General rotational surfaces with plane meridians in E4
2

General rotational surfaces of Moore type in the pseudo- Euclidean 4-space E4
2, are defined in

[4] as follows. Let Oe1e2e3e4 be an orthonormal frame of E4
2, such that ⟨e1,e1⟩ = ⟨e2,e2⟩ = 1 and

⟨e3,e3⟩= ⟨e4,e4⟩=−1. Let m : x(u) = (x1(u),x2(u),x3(u),x4(u)), u ∈ J ⊂ R, be a smooth spacelike

or timelike curve in E4
2, and θ ,β constants. A general rotational surface of elliptic type can be defined

by:

X(u,v) = (X1(u,v),X2(u,v),X3(u,v),X4(u,v)), (1.20)

where

X1(u,v) = x1(u)cosθv− x2(u)sinθv;

X2(u,v) = x1(u)sinθv+ x2(u)cosθv;

X3(u,v) = x3(u)cosβv− x4(u)sinβv;

X4(u,v) = x3(u)sinβv+ x4(u)cosβv.

(1.21)

In the present section we shall consider Lorentzian general rotational surfaces of elliptic type

for which θ > 0, β > 0, x2(u)= x4(u)= 0. In this case the meridian m lies in a two-dimensional plane.

Similarly to the general rotational surfaces of elliptic type we define general rotational surfaces of



22 Chapter 1. Preliminaries and basic notations

hyperbolic type in E4
2 as follows:

X1(u,v) = x1(u)coshθv− x3(u)sinhθv;

X2(u,v) = x2(u)coshβv+ x4(u)sinhβv;

X3(u,v) = x1(u)sinhθv+ x3(u)coshθv;

X4(u,v) = x2(u)sinhβv+ x4(u)coshβv.

(1.22)

We shall consider Lorentzian general rotational surfaces of hyperbolic type with plane meridians

m for which θ > 0, β > 0, x3(u) = x4(u) = 0.

In this section, we denote by ∇̃ the usual directional derivative in E4
2.

1.4.1 General rotational surfaces of elliptic type with plane meridians

Now we shall consider general rotational surfaces of elliptic type with plane meridians. Let M1

be the surface in E4
2 defined by

M1 : z(u,v) = ( f (u)cosθv, f (u)sinθv,g(u)cosβv,g(u)sinβv), (1.23)

where u ∈ J ⊂R, v ∈ [0,2π), θ and β are positive constants and f (u), g(u) are smooth non-vanishing

functions satisfying

θ
2 f 2(u)−β

2g2(u)< 0 and f ′2(u)−g′2(u)> 0. (1.24)

A tangent frame field in TM1 is determined by the vector fields

zu = ( f ′(u)cosθv, f ′(u)sinθv,g′(u)cosβv,g′(u)sinβv)

zv = (−θ f (u)sinθv,θ f (u)cosθv,−βg(u)sinβv,βg(u)cosβv)

The coefficients of the first fundamental form of M1 are expressed by

E = ⟨zu,zu⟩= f ′2(u)−g′2(u)> 0;

F = ⟨zu,zv⟩= 0;

G = ⟨zv,zv⟩= θ
2 f 2(u)−β

2g2(u)< 0.

So, M1 is a Lorentzian surface in E4
2.

We consider the following tangent frame fields

X =
zu√
E

; Y =
zv√
−G

,
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which satisfy ⟨X ,X⟩ = 1, ⟨Y,Y ⟩ = −1 and ⟨X ,Y ⟩ = 0. Let η1 and η2 be the normal vector fields

defined by

η1 =
1√
−G

(βg(u)sinθv,−βg(u)cosθv,θ f (u)sinβv,−θ f (u)cosβv);

η2 =
1√
E
(g′(u)cosθv,g′(u)sinθv, f ′(u)cosβv, f ′(u)sinβv).

Note that ⟨η1,η1⟩= 1, ⟨η2,η2⟩=−1 and ⟨η1,η2⟩= 0.

From [4], we have the equations:

∇̃X X =−ν1η2;

∇̃XY = µη1;

∇̃Y X =−γ2Y +µη1;

∇̃YY =−γ2X −ν2η2.

∇̃X η1 = µY ;

∇̃X η2 =−ν1X ;

∇̃Y η1 =−µX +β2η2;

∇̃Y η2 = ν2Y +β2η1.

(1.25)

Thus,

α(X ,X) =−ν1η2; α(X ,Y ) = µη1; α(Y,Y ) =−ν2η2. (1.26)

The Gaussian curvature K, the curvature of the normal connection K⊥, and the mean curvature

vector field H of the general rotational surface M1 are expressed in terms of the geometric functions

ν1, ν2 and µ as follows (see also Proposition 3.1 of [3]):

K = ν1ν2 +µ
2; K⊥ =−µ(ν1 +ν2); H=

ν2 −ν1

2
η2.

We use the following notations:

ν1 =
g′ f ′′− f ′g′′

( f ′2 −g′2)
3
2

;

µ =
θβ ( f g′−g f ′)√

f ′2 −g′2(β 2g2 −θ 2 f 2)
;

β2 =
θβ ( f f ′−gg′)√

f ′2 −g′2(β 2g2 −θ 2 f 2)
.

ν2 =
−(θ 2 f g′−β 2g f ′)√

f ′2 −g′2(β 2g2 −θ 2 f 2)
;

γ2 =
θ 2 f f ′−β 2gg′√

f ′2 −g′2(β 2g2 −θ 2 f 2)
; (1.27)

1.4.2 General rotational surfaces of hyperbolic type with plane meridians

Now we shall consider general rotational surfaces of hyperbolic type with plane meridians. Let

M2 be the surface in E4
2 defined by

M2 : z(u,v) = ( f (u)coshθv,g(u)coshβv, f (u)sinhθv,g(u)sinhβv), (1.28)

where u ∈ J ⊂R, v ∈ [0,2π), θ and β are positive constants and f (u), g(u) are smooth non-vanishing

functions satisfying

θ
2 f 2(u)+β

2g2(u)> 0 and f ′2(u)+g′2(u)> 0. (1.29)
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The tangent frame field TpM2 is determined by the vector fields

zu = ( f ′(u)coshθv,g′(u)coshβv, f ′(u)sinhθv,g′(u)sinhβv)

zv = (θ f (u)sinhθv,βg(u)sinhβv,θ f (u)coshθv,βg(u)coshβv)

The coefficients of the first fundamental form of M1 are expressed by

E = ⟨zu,zu⟩= f ′2(u)+g′2(u)> 0;

F = ⟨zu,zv⟩= 0;

G = ⟨zv,zv⟩=−(θ 2 f 2(u)+β
2g2(u))< 0.

So, M2 is a Lorentzian surface in E4
2.

We consider the following tangent frame fields

X =
zu√
E

; Y =
zv√
−G

,

which satisfy ⟨X ,X⟩ = 1, ⟨Y,Y ⟩ = −1 and ⟨X ,Y ⟩ = 0. Let η1 and η2 be the normal vector fields

defined by

η1 =
1√
E
(g′(u)coshθv,− f ′(u)coshβv,g′(u)sinhθv,− f ′(u)sinhβv);

η2 =
1√
−G

(βg(u)sinhθv,−θ f (u)sinhβv,βg(u)coshθv,−θ f (u)coshβv).

Note that ⟨η1,η1⟩= 1, ⟨η2,η2⟩=−1 and ⟨η1,η2⟩= 0.

From [4], we have the equations:

∇̃X X = ν1η1;

∇̃XY =−µη2;

∇̃Y X =−γ2Y −µη2;

∇̃YY =−γ2X +ν2η1;

∇̃X η1 =−ν1X ;

∇̃X η2 = µY ;

∇̃Y η1 = ν2Y −β2η2;

∇̃Y η2 =−µX −β2η1.

(1.30)

Thus,

α(X ,X) = ν1η1; α(X ,Y ) =−µη2; α(Y,Y ) = ν2η1. (1.31)

The Gaussian curvature K, the curvature of the normal connection K⊥, and the mean curvature vector

field H of the general rotational surface M2 are expressed in terms of the geometric functions ν1, ν2

and µ as follows:

K =−(ν1ν2 +µ
2); K⊥ = µ(ν1 +ν2); H=

ν1 −ν2

2
η1.
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We use the following notations:

ν1 =
g′ f ′′− f ′g′′

( f ′2 +g′2)
3
2

;

µ =
θβ ( f g′−g f ′)√

f ′2 +g′2(θ 2 f 2 +β 2g2)
;

β2 =− θβ ( f f ′+gg′)√
f ′2 +g′2(θ 2 f 2 +β 2g2)

.

ν2 =
θ 2 f g′−β 2g f ′√

f ′2 +g′2(θ 2 f 2 +β 2g2)
;

γ2 =− θ 2 f f ′+β 2gg′√
f ′2 +g′2(θ 2 f 2 +β 2g2)

; (1.32)

1.5 Lorentzian hypersurfaces in Lorentzian space forms with
type II Weingarten operator

Let V be a vector space over R endowed with a nondegenerate inner product ⟨ , ⟩. We recall that an

endomorphism A of (V,⟨ , ⟩) is said to be self-adjoint if it satisfies ⟨AX ,Y ⟩= ⟨X ,AY ⟩, for all X ,Y ∈V .

It is well known that a self-adjoint endomorphism in a indefinite vector space (V,⟨ , ⟩) does not

need to be diagonalizable. In particular, we recall the following well known classification result for

self-adjoint endomorphisms in Lorentzian vector spaces (see for instance [62] or [65]):

Lemma 1.1. Let V be a n-dimensional real vector space with a Lorentzian inner product ⟨ , ⟩. A

self-adjoint endomorphism A on V can take only one of the following forms:

I. a1
. . .

an

 ,

III. 

a 0 0
0 a 1
−1 0 a

a4
. . .

an


,

II. 
a 0
1 a

a3
. . .

an

 ,

IV. 
a b
−b a

a3
. . .

an

 ,b ̸= 0.

Forms I and IV correspond to an orthonormal basis {E1, . . . ,En}, where ⟨E1,E1⟩=−1, ⟨Ei,E j⟩=
δi j for i, j ≥ 2 and ⟨E1,Ei⟩= 0 for i ≥ 2. Forms II and III correspond to a pseudo-orthonormal basis

{X ,Y,E3, . . . ,En}, where ⟨X ,X⟩ = ⟨Y,Y ⟩ = 0, ⟨X ,Y ⟩ = −1, ⟨Ei,E j⟩ = δi j for i, j ≥ 3 and ⟨X ,Ei⟩ =
⟨Y,Ei⟩= 0 for i ≥ 3. In cases I, II and III, all the eigenvalues are real, while in case IV there are two

complex eigenvalues a+bi and a−bi.
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It follows that the Weingarten operator of a Lorentzian hypersurface in a pseudo-Riemannian

space form Qn+1
s (c), s ∈ {1,2}, must be of one of the forms in Lemma 1.1, at each point of the

hypersurface. In particular, form II will be important in our study of pseudo-parallel Lorentzian

hypersurfaces, especially when the minimal polynomial of the Weingarten operator is t2 or (t − a)2,

a ̸= 0, so we give in this section the fundamental examples of such hypersurfaces for the case where

the ambient space is also a Lorentzian space, i.e., when s = 1. In order to this, we need to present first

some concepts about null curves with an associated pseudo-orthonormal frame in Qn+1
1 (c).

A null (lightlike) curve in a Lorentzian space form is a curve s 7→ γ(s) all of whose tangent vectors

are lightlike.

1.5.1 B-scrolls and generalized cylinders

Let γ(s) a null curve in the Minkowski space E3
1 such that T (s) =

dγ(s)
ds

and T ′(s) =
dT (s)

ds
are

never colinear. Since ⟨T,T ⟩ = 0, it follows that ⟨T,T ′⟩ = 0 and thus, T ′ is everywhere spacelike.

Let C(s) be the unit spacelike vector field along γ satisfying T ′(s) = κ(s)C(s), with κ(s) = ||T (s)||.
Finally, for each s, consider the 2-dimensional subspace C(s)⊥ of Tγ(s)E3

1 orthogonal to C(s). Since

C(s)⊥ is a Lorentzian plane, it contains a lightlike vector B(s) such that ⟨T (s),B(s)⟩ = −1. Let

τ(s) = ⟨B′(s),C(s)⟩, we obtain that B′(s) = τ(s)C(s) and C′(s) = τ(s)T (s)+ κ(s)B(s). Therefore,

{T (s),B(s),C(s)} is a Cartan frame for γ(s). If in addition τ(s) = 0, for all s, that is, B(s) is parallel,

then the null curve γ(s) with the Cartan frame {T (s),B(s),C(s)} is called a generalized cubic in this

particular case when the ambient space is E3
1. With these notations, we have the following immersion:

Definition 1.2. The immersion given by the parametrization h(s,u) = γ(s)+uB(s) is called B-scroll

associated to γ . Since h∗
(

∂

∂ s

)
= T (s)+uτ(s)C(s) and h∗

(
∂

∂u

)
= B(s), the metric of the B-scroll h is

Lorentzian.

It was proved in Theorem 3.10 of [34] that a B-scroll h is flat if and only if τ(s) = 0 for all s. In

this case, h is an isometric immersion of E2
1 onto E3

1 and we also have that C(s) is a unit normal vector

field to h. Since h∗
(

∂

∂s

)
= T (s) and h∗

(
∂

∂u

)
= B(s), the Weingarten operator A = AC(s) is given in

the frame
{

h∗
(

∂

∂s

)
,h∗
(

∂

∂u

)}
by

A =

(
0 0

−κ(s) 0

)
.

It was proved in Theorem 9.7 of [34] that the B-scroll immersions with τ(s) = 0 for all s are the

only isometric immersions of E2
1 onto E3

1 such that the Weingarten operator satisfies identity t2 = 0.

Moreover, when κ(s) ̸= 0, the minimal polynomial of the Weingarten operator is t2, that is, A takes

the form II in Lemma 1.1 with only 0 being eigenvalue.

It is known that the only parallel surfaces in the 3-dimensional Euclidean space E3 are open

sets of planes, spheres or right circular cylinders. On the other hand, the next result provides a
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classification of parallel Lorentzian surfaces in E3
1 given by Chen-Van der Veken in [18], where the

essential examples, other than totally umbilical surfaces and cylinders, are the B-scroll immersions.

Proposition 1.3 (Chen-Van der Veken). A non-degenerate parallel Lorentzian surface in E3
1 is con-

gruent to an open part of one of the following five types of surfaces:

(i) a Lorentzian plane E2
1 in E3

1 given by L = (u,v,0);

(ii) a totally umbilical de Sitter space S2
1 in E3

1 given by

L = b(sinhu,coshucosv,coshusinv), with b > 0;

(iii) a flat cylinder E1
1 ×S1 in E3

1 given by L = (u,acosv,asinv) with a > 0;

(iv) a flat cylinder S1
1 ×E1 given by L = (asinhu,acoshu,v) with a > 0;

(v) a flat minimal Lorentzian surface in E3
1 given by

L =

(
1
6
(u− v)3 +u,

1
6
(u− v)3 + v,

1
2
(u− v)2

)
.

Surfaces in (v) of Proposition 1.3 are precisely B-scroll immersions. After reparametrizing,

we can write surface L in (v) as the B-scroll h(s,u) = γ(s) + uB(s) with B =
1√
2
(1,1,0) and

γ(s) =
1√
2

(
2
3

s3 + s,
2
3

s3 − s,
√

2s2
)

, in this case we have κ(s) = 2 (see Figure 1.1).

x y

z

x

y

z

Figure 1.1: Two different views of the B-scroll immersion in (v) of Proposition 1.3

Now, to get higher dimensional examples of Lorentzian hypersurfaces whose Weingarten operator

has minimal polynomial t2, we simply consider the isometric immersion

f = h× In−2 : E2
1 ×En−2 → E3

1 ×En−2,
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where h : E2
1 → E3

1 is a B-scroll immersion (see [34]). Such an isometric immersion is defined by

f (s,u,z) = γ(s)+uB(s)+
n

∑
i=3

ziZ(s),

where z= (z3, . . . ,zn) and {T (s),B(s),Z3(s), . . . ,Zn(s),C(s)} is a pseudo-orthonormal frame of vector

fields of En+1
1 along a null curve γ , such that T (s),B(s) are lightlike vector fields with ⟨T (s),B(s)⟩=

−1, T (s) = d
dsγ(s) and d

dsC(s) = κ(s)B(s). f is called a generalized cylinder (see [55]) and if

κ(s) ̸= 0, then the minimal polynomial of f is t2. In fact, we have that f∗
(

∂

∂s

)
= T (s)+ u d

dsB(s)+

∑
n
i=3 zi

d
dsZi(s), f∗

(
∂

∂u

)
= B(s) and f∗

(
∂

∂zi

)
= Zi(s). We note that C(s) is a unit spacelike normal vec-

tor field to f , since using that d
dsC(s) = κ(s)B(s) we obtain ⟨ d

dsB(s),C(s)⟩ = ⟨ d
dsZi(s),C(s)⟩ = 0.

Then, for the Weingarten operator A = AC(s) of f , using the Weingarten formula, we have that

A f∗
(

∂

∂s

)
= − ∂

∂s
C(s) = −k(s)B(s), A f∗

(
∂

∂u

)
= − ∂

∂u
C(s) = 0 and A f∗

(
∂

∂zi

)
= − ∂

∂zi
C(s) = 0, for

3 ≤ i ≤ n. Therefore, A takes the form

A =

(
0 0

−κ(s) 0

)
⊕0n−2,

expressed in the frame
{

f∗
(

∂

∂s

)
, f∗
(

∂

∂u

)
, f∗
(

∂

∂z3

)
, . . . , f∗

(
∂

∂zn

)}
.

Now, we will show analogous examples to the generalized cylinders for c ̸= 0.

Example 1.4. For c < 0, let γ(s) be a null curve in Hn+1
1 (c)⊂En+2

2 with a pseudo-orthonormal frame

{T (s),B(s),Z3(s), . . . ,Zn(s),C(s)} of tangent vector fields of Hn+1
1 (c) along γ , such that T (s),B(s)

are lightlike vector fields with ⟨T (s),B(s)⟩ = −1, d
dsγ(s) = T (s) and d

dsC(s) = κ(s)B(s), where d
ds

denote the ordinary derivation in En+1
2 . As in [80], we consider the Lorentzian hypersurface f : U →

Hn+1
1 (c)⊂ En+2

2 , with U an open neighborhood of 0 in Rn, parameterized by

f (s,u,z) =

√
1− c

n

∑
i=3

z2
i γ(s)+uB(s)+

n

∑
i=3

ziZi(s), (1.33)

where z = (z3, . . . ,zn). If κ(s) ̸= 0, it follows from [80] that the minimal polynomial of f is t2. Indeed,

since d
dsC(s) = κ(s)B(s), it follows that the vector field f∗

(
∂

∂s

)
=
√

1− c∑
n
i=3 z2

i T (s)+ u d
dsB(s)+

∑
n
i=3 zi

d
dsZi(s) does not contain terms with C(s), as f∗

(
∂

∂u

)
= B(s) and f∗

(
∂

∂zi

)
=

−czi√
1− c∑i z2

i

γ(s)+

Zi(s) as well. This means that C(s) is a unit spacelike normal vector field to f in Hn+1
1 (c). Then, for

the Weingarten operator A = AC(s) of f , we have that A f∗
(

∂

∂s

)
=− ∂

∂s
C(s) =−k(s)B(s), A f∗

(
∂

∂u

)
=

− ∂

∂u
C(s) = 0 and A f∗

(
∂

∂zi

)
=− ∂

∂zi
C(s) = 0, for 3 ≤ i ≤ n. Therefore, A takes the form

A =

(
0 0

−κ(s) 0

)
⊕0n−2,

expressed in the frame
{

f∗
(

∂

∂s

)
, f∗
(

∂

∂u

)
, f∗
(

∂

∂z3

)
, . . . , f∗

(
∂

∂zn

)}
.



1.5. Lorentzian hypersurfaces in Lorentzian space forms with type II Weingarten operator 29

Example 1.5. For c > 0, accordingly with [42], we consider this time a light cone curve in En+2
1 ,

that is, a parameterized curve ρ(t), with t ∈ (a,b), satisfying ⟨ρ(t),ρ(t)⟩ = 0, for all t. If ρ(t) is

never colinear with d
dt ρ(t), then ρ(t) is a spacelike curve, since ⟨ d

dt ρ(t), d
dt ρ(t)⟩> 0. We can assume

that t is the arc lenght parameter of ρ(t). As in Lemma 6.1 of [42], we can associate to ρ a pseudo-

orthonormal frame {E1(t),E2(t) = ρ(t),E3(t), . . . ,En+2(t)} of vector fields of En+2
1 along ρ , such

that E1(t),E2(t) are lightlike vector fields with ⟨E1(t),E2(t)⟩=−1, and

E ′
1 =C1E3 +C2E4 + · · ·+CnEn+2,

E ′
2 = E3, E ′

3 = E1 +C1E2, E ′
j =C j−2E2, for 4 ≤ j ≤ n+2,

(1.34)

where C1, . . . ,Cn are functions in the variable t and E ′
i =

d
dt Ei.

Let Sn−2(c)⊂ Rn−1 the (n−2)-dimensional Euclidean sphere of constant curvature c and denote

by Sn−2
+ (c) = {y = (y3, . . . ,yn+1) ∈ Sn−2(c) : y3 > 0}. We consider the Lorentzian hypersurface f :

Ω = (a,b)×R×Sn−2
+ → Sn+1

1 (c)⊂ En+2
1 , parameterized by

f (t,u,y) = y3E3(t)+uE2(t)+
n+1

∑
i=4

yiEi(t)

=

√√√√1
c
−

n+1

∑
i=4

y2
i E3(t)+uE2(t)+

n+1

∑
i=4

yiEi(t).

(1.35)

From Theorem 6.4 of [42] and its proof, we have that Mn
1 = f (Ω) is a Lorentzian hypersurface of

Sn+1
1 (c), En+2(t) is a unit spacelike normal vector field to f and the minimal polynomial of the

Weingarten operator A of f is t2, that is, A takes the form

A =

(
0 0

−Cn(t) 0

)
⊕0n−2.

Note that if C1 = 0, then 1√
cE3 is a null curve in Sn+1

1 (c) and (1.35) takes a form as (1.33).

1.5.2 Generalized umbilical hypersurfaces of degree 2

The notion of generalized umbilical hypersurfaces in Lorentz-Minkowski space En+1
1 has been

introduced by Magid in [55], for some kind of hypersurfaces satisfying that all principal curvatures

are equal. Then, analogous hypersurfaces were given by Alı́as-Ferrández-Lucas in [5] for non-flat

Lorentzian space forms (see also [80], for the case c < 0).

For c ̸= 0, let γ : J ⊂ R → Qn+1
1 (c) ⊂ En+2

σ , σ = 1 + c−|c|
2c , be a null curve with a pseudo-

orthonormal frame {T (s),B(s), Z3(s), . . . ,Zn(s),C(s)} of tangent vector fields of Qn+1
1 (c) along γ ,

such that T (s),B(s) are lightlike vector fields with ⟨T (s),B(s)⟩ = −1, d
dsγ(s) = T (s) and d

dsC(s) =
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τT (s)+κ(s)B(s), where d
ds denote the ordinary derivation in En+2

σ , with κ(s) ̸= 0 and τ is a nonzero

constant. If c+ τ2 ̸= 0, then the map f : J×R×Rn−2 →Qn+1
1 (c) defined by

f (s,u,z) =
(

τ2 + cg(z)
c+ τ2

)
γ(s)+uB(s)+

n

∑
i=3

ziZi(s)−
τ(1−g(z))

c+ τ2 C(s), (1.36)

where z = (z2, . . . ,zn) and g(z) =

√
1− (c+ τ2)

n

∑
i=3

z2
i , parameterizes, in a neighborhood of the origin,

a Lorentzian hypersurface Mn
1 of Qn+1

1 (c).

A unit normal vector field to Mn
1 in Qn+1

1 (c) is given by

η(s,u,z) =−cτ(1−g(z))
c+ τ2 γ(s)+uτB(s)+ τ ∑

i=3
ziZi(s)+

c+ τ2g(z)
c+ τ2 C(s).

If τ =±
√
−c, with c < 0, then we define the map f : J×R×Rn−2 →Hn+1

1 (c) by

f (s,u,z) =

(
1− c

2

n

∑
i=3

z2
i

)
γ(s)+uB(s)+

n

∑
i=3

ziZi(s)−
τ

2

n

∑
i=3

z2
i C(s), (1.37)

which parameterizes, in a neighborhood of the origin, a Lorentzian hypersurface Mn
1 in Hn+1

1 (c). In

this case, a unit normal vector field to Mn
1 in Hn+1

1 (c) is given by

η(s,u,z) =−τc
2

(
n

∑
i=3

z2
i

)
γ(s)+uτB(s)+ τ

n

∑
i=3

ziZi(s)+

(
1+

c
2

n

∑
i=3

z2
i

)
C(s).

We have from [5] that the Weingarten operator A = Aη of Mn
1 , given by (1.36) or (1.37), satisfies the

equation A2 =−2τA− τ2In. Indeed, the minimal polynomial of Mn
1 is (t + τ)2 and

A f∗

(
∂

∂s

)
=− ∂

∂s
η =−τ f∗

(
∂

∂s

)
− k(s)B(s),

A f∗

(
∂

∂u

)
=− ∂

∂u
η =−τ f∗

(
∂

∂u

)
,

A f∗

(
∂

∂zi

)
=− ∂

∂zi

η =−τ f∗

(
∂

∂zi

)
,

for 3 ≤ i ≤ n. From Proposition 4.2, we conclude that the hypersurface Mn
1 is ψ-pseudo-parallel with

ψ = c+ τ2. Mn
1 is called a generalized umbilical hypersurface of degree 2.

For c= 0, we consider Mn
1 as the Lorentzian hypersurface f : J×R×Rn−2 →En+1

1 , parameterized

by

f (s,u,z) = γ(s)+uB(s)+
n

∑
i=3

ziZi(s)−
1
τ

(
1−

√
1− τ2

n

∑
i=3

z2
i

)
C(s), (1.38)

where γ is a null curve in En+1
1 with a pseudo-orthonormal frame {T (s),B(s),Z3(s), . . . ,Zn(s),C(s)}

of vector fields of En+1
1 along γ , such that T (s),B(s) are lightlike vector fields with ⟨T (s),B(s)⟩=−1,
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d
dsγ(s) = T (s) and d

dsC(s) = τT (s) + κ(s)B(s), where d
ds denote the ordinary derivation in En+1

1 ,

κ(s) ̸= 0 and τ is a nonzero constant.

A unit normal vector field to Mn
1 in En+1

1 is given by

η(s,u,z) = uτB(s)+

√
1− τ2

n

∑
i=3

z2
i C(s)+ τ

n

∑
i=3

ziZi(s).

We have from [55], that the minimal polynomial of the Weingarten operator of the hypersurface Mn
1

given by (1.38), is (t + τ)2 and Mn
1 is a generalized umbilical hypersurface of En+1

1 . Again from

Proposition 4.2, we conclude that Mn
1 is ψ-pseudo-parallel with ψ = c+ τ2.

Observation 1.6. Note that if X ,Y are lightlike vectors with ⟨X ,Y ⟩ = −1, then rX , 1
rY satisfy the

same conditions for any real number r ̸= 0. From here, we can see that a pseudo-orthonomal frame

associated to a null curve γ is not uniquely determined (after reparametrizing γ), as well as the function

κ(s) if κ(s) ̸= 0. Also, function Cn(t) in Example 1.4 is not uniquely determined. Thus, if the

Weingaten operator A of a Lorentzian hypersurface takes the form II in Lemma 4.6, as it may happen

for the examples above of B-scrolls, generalized cylinders and generalized umbilical hypersurfaces of

degree 2, then the component under the diagonal of A can be changed to be any nonzero real number.

1.5.3 Lorentzian hypersurfaces with constant curvature in Qn+1
1 (c)

Complete Lorentzian hypersurfaces of constant curvature in Lorentz-Minkowski space En+1
1 and

in Lorentzian spheres Sn+1
1 (c) are described in [6], as following

Proposition 1.7 (Al-shehri-Guediri). In Sn+1
1 (c), n ≥ 3, a connected complete Lorentzian hypersur-

face of constant curvature is a small or a great hypersphere.

Proposition 1.8 (Al-shehri-Guediri). Let Mn
1 , n ≥ 3, be a n-dimensional connected complete

Lorentzian hypersurface of constant curvature ĉ in En+1
1 . Then, necessarily ĉ ≥ 0 and we have:

(a) If ĉ = 0, Mn
1 is isometric to Rn

1 or to one of the following products:

(i) En−2
1 ×g(E2), where g(E2) is a Euclidean cylinder in a subspace E3 of En+1

1 orthogonal

to En−2
1 .

(ii) En−2×g(E2
1), where g(E2

1) is a Lorentzian cylinder or a B-scroll in a subspace E3
1 of En+1

1

orthogonal to En−2
1 .

1. If ĉ > 0, Mn
1 is isometric to Sn

1(ĉ).

For c < 0, situation is more complicate due to the absence of any precise result which classifies

isometric immersions of Hn
1(c) into Hn+1

1 (c) (see Remark 3.4 in [6]), so in this case we just can say

that
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Proposition 1.9 (Al-shehri-Guediri). Let Mn
1 , n ≥ 3, be a n-dimensional connected complete

Lorentzian hypersurface of constant curvature ĉ in Hn+1
1 (c). Then, either

(a) ĉ = c and the number type k(x)≤ 1, for all x ∈ Mn
1 , or

(b) ĉ > c and Mn
1 is totally umbilical, with Weingarten operator Ax =

√
ĉ− cIn, for all x ∈ Mn

1 .

For a classification of totally umbilical immersions in Hn+1
1 (c) we refer to [1] (see also [67]).

1.6 Some classification results for isoparametric hypersur-
faces in Qn+1

1 (c)

Let Mn
t be a pseudo-Riemannian hypersurface in Qn+1

s (c) with a (local) unit normal vector field

η and consider the following possible conditions on Mn
t :

(A) All the principal curvatures with their algebraic multiplicities are constant on Mn
t .

(B) All the parallel hypersurfaces Mr defined, at least locally and for sufficiently small r ∈ R, by

Ψr : Mn
t →Qn+1

1 (c), p → expp(r ηp), have constant mean curvature.

(C) The minimal polynomial of the Weingarten operator A = Aη is constant on Mn
t .

Hypersurfaces in Riemannian space forms satisfying any of these conditions were firstly studied by

Cartan and Münzner. Later, Nomizu in 1981 extended the study of these conditions to spacelike

hypersurfaces in Lorentzian space forms (see [60]). Hahn in 1984, with his work in [37], proved

that conditions (A) and (B) above are equivalents in the case of pseudo-Riemannian hypersurfaces of

Qn+1
s (c), so the next definition makes sense.

Definition 1.10. A pseudo-Riemannian hypersurface in Qn+1
s (c) satisfying condition (A) or (B) is

called isoparametric.

Moreover, Hahn proved that conditions (A) and (B) are more general than condition (C), by show-

ing the existence of isoparametric pseudo-Riemannian hypersurfaces in pseudo-Riemannian space

forms which do not satisfy (C). Classification of isoparametric hypersurfaces in pseudo-Riemannian

space forms is an open problem in general. For the case of isoparametric Lorentzian hypersurfaces

in Lorentzian space forms, there are significant advances made by Magid, Abe-Koike, Xiao and Li in

[55], [1], [80] and [42], respectively, but the classification is not complete.

In 1985, Magid in [55] classified isoparametric Lorentzian hypersurfaces in Lorentz-Minkowski

space satisfying condition (C) (in fact, Magid used (C) as definition and so did Xiao and Li). Magid

proved that these particular isoparametric Lorentzian hypersurfaces in En+1
1 are cylinders or umbilical

hypersurfaces when the Weingarten operator is diagonalizable or they are some kind of hypersurfaces
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with properties close to cylinders and umbilical hypersurfaces when the Weingarten operator is

non-diagonalizable and has constant minimal polynomial. In order to obtain this classification,

Magid proved that the Weingarten operator of any Lorentzian hypersurface with constant minimal

polynomial in En+1
1 cannot have complex eigenvalues (Theorem 4.10 of [55]) and at most one real

eigenvalue is nonzero (Corollary 2.7 of [55]).

In particular, in Theorem 4.5 of [55], it was proved the next result which will be useful in our

study of pseudo-parallel Lorentzian hypersurfaces

Proposition 1.11 (Magid). If the Weingarten operator of a Lorentzian hypersurface Mn
1 of En+1

1 has

(t −a)2, with a ̸= 0 constant, as its minimal polynomial, then in a neighborhood of any point, Mn
1 is

a generalized umbilical hypersurface of degree 2 as in (1.38), with a =−τ .

For c ̸= 0, an analogous result was proved by Alı́as-Ferrández-Lucas in Theorem 5.5 of [5], which

we state below

Proposition 1.12 (Alı́as-Ferrández-Lucas). Let Mn
1 be a Lorentzian hypersurface of Qn+1

1 (c) and let

(t − a)2, with a ̸= 0 constant, be the minimal polynomial of its Weingarten operator. Then, in a

neighborhood of any point, Mn
1 is a generalized umbilical hypersurface of degree 2 as in (1.36) and

(1.37), with a =−τ .

Result in Theorem 1.12 was also showed by Xiao in Theorem 4.1 and Theorem 4.2 of [80], for

the case c < 0.

For an isometric immersion f : En
1 → En+1

1 , Graves in [34] proved that the set W of non-geodesic

points of f is open and it is the union of a family of parallel (n−1)-hyperplanes, where each hyper-

plane is a leaf of the relative nullity foliation. Thus, a metric is degenerate in all these hyperplanes or

it is non-degenerate in all of them. Since the points x ∈W with degenerate relative nullity are exactly

the points where the minimal polynomial is t2, Graves gave in Theorem 9.8 the next classification

result:

Proposition 1.13 (Graves). Up to a proper motion of En+1
1 , the isometric immersions f : En

1 → En+1
1

with degenerate relative nullity have the form

h× In−2 : E2
1 ×En−2 → E3

1 ×En−2,

where the factors in each product are orthogonal and h : E2
1 → E3

1 is a B-scroll immersion as in

Definition 1.2.

Thus, the only isometric immersions from En
1 into En+1

1 whose minimal polynomial of the Wein-

garten operator is t2 are the generalized cylinders over a B-scroll immersion, which are also defined
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by (1.33), associated to a generalized cubic γ with κ(s) ̸= 0, for all s. We note, from the proof of

the degenerate case in [34], that if the generalized cubic γ has κ(s) = 0 for some s, then all points of

the hyperplane passing through that point of γ and contained in the generalized cylinder h× Id are

geodesic points.

Observation 1.14. Analogously, it is known that the only Lorentzian hypersurfaces in Qn+1
1 (c), c ̸= 0,

with t2 as the minimal polynomial of the Weingarten operator are the parameterized hypersurfaces

given by 1.33 and 1.35. A proof of this can be found in Theorem 4.2 and case (2) in Theorem 4.1 of

[80], for c < 0, and in Theorem 6.8 of [42] for the case c > 0.

For a classification of isoparametric hypersurfaces in Qn+1
1 (c) with diagonalizable Weingarten

operator having only one or two distinct principal curvatures, we refer to [1]. There, Abe-Koike-

Yamaguchi in Theorem 5.1 proved that, locally, any such hypersurface is either a totally umbilical

hypersurface or it is isometric to the product of two real space forms of constant curvature, according

to the models presented there. In the same reference, a global classification result was obtained in

Theorem 5.2, but it is a partial result because some models are not simply connected.



CHAPTER 2

Pseudo-parallel Lorentzian surfaces in
pseudo-Riemannian space forms

In this chapter, we begin our study of pseudo-parallel Lorentzian surfaces in pseudo-Riemannian

space forms Qm
s (c). In the first section we present some basic results about Lorentizan surfaces

involving their second fundamental form, their Gaussian curvature and their normal curvature ten-

sor, as well as the pseudo-parallelism condition. In the second section we characterize λ -isotropic

Lorentzian surfaces by providing several equivalent conditions to λ -isotropy. In particular, we study

the hyperbola of normal curvature of λ -isotropic Lorentzian surfaces. In the third section, we prove

our principal theorem of characterization of pseudo-parallel Lorentzian surfaces with non flat normal

bundle in Qm
s (c) and in particular the non-existence of pseudo-parallel Lorentzian surfaces with non

flat normal bundle in Lorentzian space forms.

2.1 Lorentzian surfaces in Qm
s (c) and the pseudo-parallelism

condition

In this section we prove some auxiliary results concerning pseudo-parallel Lorentzian surfaces

in Qm
s (c), with 1 ≤ s ≤ m − 1, that will be useful later. Specifically, we determine whether the

normal bundle of a surface is non-flat depending on whether a particular subspace of the normal

space at each point on the surface, which is generated by two normal vectors related to the second

fundamental form α , is two-dimensional or not. Also, working with an orthonormal frame of

the tangent space to the Lorenzian surface, we reduce the pseudo-parallelism condition to few

equations involving the normal curvature tensor, the Gaussian curvature, the second fundamental

form α and the pseudo-parallelism function ψ . We explore some differences that these equations

imply with respect to the Riemannian case, due to the possible existence of lightlike vectors

in the normal space at each point of the surface when the metric of the ambient space is just

non-degenerate. Finally, we study how the pseudo-parallelism condition behaves with respect to

35
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the composition of immersions, which can be used to obtain examples of pseudo-parallel immersions.

Let f : M2
1 → Qm

s (c) be an isometric immersion. Let {e1,e2} be an orthonormal local frame for

M2
1 , where ε1 = ⟨e1,e1⟩= 1, ε2 = ⟨e2,e2⟩=−1 and ⟨e1,e2⟩= 0.

It follows from the Ricci equation (1.17) that

R⊥(e1,e2)ξ ∈ span{α(X ,Y ) : X ,Y ∈ T M}, for all ξ ∈ N f M2
1 .

For the mean curvature vector field, we have

H=
1
2

trace(α) =
1
2
(α11 −α22).

Lemma 2.1. Let f : M2
1 →Qm

s (c) be an isometric immersion. We have the following equations:

K = c−⟨α11,α22⟩+ ⟨α12,α12⟩, (2.1)

R⊥(e1,e2)ξ = ((α11 +α22)∧α12)ξ , (2.2)

for all ξ ∈ N f M. Moreover, α11 +α22 and α12 are linearly dependent if and only if f has vanishing

normal curvature.

Proof. For the Gaussian curvature K of M2
1 , we have

K =
⟨R(e1,e2)e2,e1⟩

⟨e1,e1⟩⟨e2,e2⟩−⟨e1,e2⟩2 =−⟨R(e1,e2)e2,e1⟩.

It follows from Gauss equation (1.15) that

K =−c⟨(e1 ∧ e2)e2,e1⟩−⟨α11,α22⟩+ ⟨α12,α12⟩

=−c⟨e2,e2⟩⟨e1,e1⟩+ c⟨e1,e2⟩⟨e2,e1⟩−⟨α11,α22⟩+ ⟨α12,α12⟩

= c−⟨α11,α22⟩+ ⟨α12,α12⟩.

Next, using Ricci equation (1.17) we get

R⊥(e1,e2)ξ = α(e1,Aξ e2)−α(Aξ e1,e2)

= ∑
k

α(e1,εk⟨Aξ e2,ek⟩ek)−∑
k

α(εk⟨Aξ e1,ek⟩ek,e2)

= ∑
k

εk⟨α(e2,ek),ξ ⟩α(e1,ek)−∑
k

εk⟨α(e1,ek),ξ ⟩α(ek,e2)

= ⟨α12,ξ ⟩(α11 +α22)− (⟨α11,ξ ⟩+ ⟨α22,ξ ⟩)α12

= ⟨α12,ξ ⟩(α11 +α22)−⟨α11 +α22,ξ ⟩α12

= ((α11 +α22)∧α12)ξ ,

for all ξ ∈ N f M.
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Now, if α11 +α22 and α12 are linearly dependent, then either α12 = 0 or for some µ ∈ R we have

R⊥(e1,e2)ξ = ((α11 +α22)∧α12)ξ = (µα12 ∧α12)ξ = 0.

Conversely, if R⊥(e1,e2)ξ = 0 for all ξ ∈ N f M, it follows from (2.2) that

⟨α12,ξ ⟩(α11 +α22)−⟨α11 +α22,ξ ⟩α12 = 0.

If there exists ξ ∈ N f M such that ⟨α12,ξ ⟩ ̸= 0 or ⟨α11 +α22,ξ ⟩ ̸= 0, then α11 +α22 and α12 are

linearly dependent. If ⟨α12,ξ ⟩= ⟨α11 +α22,ξ ⟩= 0, for all ξ ∈ N f M, from non-degeneracy we have

that α12 = α11 +α22 = 0. Therefore, α11 +α22 and α12 are linearly dependent.

Lemma 2.2. Let f : M2
1 → Qm

s (c) be an isometric immersion. f is ψ-pseudo-parallel if and only if

the following equations are satisfied:

R⊥(e1,e2)α11 = R⊥(e1,e2)α22 = 2(ψ −K)α12, (2.3)

R⊥(e1,e2)α12 = (ψ −K)(α11 +α22). (2.4)

Proof. In fact, equation (1.13) is equivalent to

R⊥(X ,Y )α(Z,W ) = α(R(X ,Y )Z,W )+α(Z,R(X ,Y )W )

−ψα((X ∧Y )Z,W )−ψα(Z,(X ∧Y )W ).

Therefore, for the orthonormal frame {e1,e2}, we have

R⊥(e1,e2)α12 = α(R(e1,e2)e1,e2)+α(e1,R(e1,e2)e2)

−ψα((e1 ∧ e2)e1,e2)−ψα(e1,(e1 ∧ e2)e2)

= ε2⟨R(e1,e2)e1,e2⟩α(e2,e2)+ ε1⟨R(e1,e2)e2,e1⟩α(e1,e1)

−ψ⟨e2,e1⟩α(e1,e2)+ψ⟨e1,e1⟩α(e2,e2)

−ψ⟨e2,e2⟩α(e1,e1)+ψ⟨e1,e2⟩α(e1,e2)

=−K(α(e2,e2)+α(e1,e1))+ψ(α(e2,e2)+α(e1,e1))

= (ψ −K)(α22 +α11).

And for i = 1,2, we have

R⊥(e1,e2)αii = α(R(e1,e2)ei,ei)+α(ei,R(e1,e2)ei)

−ψα((e1 ∧ e2)ei,ei)−ψα(ei,(e1 ∧ e2)ei)

= ⟨R(e1,e2)e2,e1⟩α(e2,e1)+ ⟨R(e1,e2)e2,e1⟩α(e1,e2)

−ψ⟨e2,ei⟩α(e1,ei)+ψ⟨e1,ei⟩α(e2,ei)

−ψ⟨e2,ei⟩α(ei,e1)+ψ⟨e1,ei⟩α(ei,e2)

=−2Kα(e1,e2)+2ψα(e1,e2)

= 2(−K +ψ)α12.
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As a consequence of Lemma 2.2, we get:

Proposition 2.3. Let f : M2
1 → Qm

s (c) be an isometric immersion. If f has flat normal bundle, then

f is a ψ-pseudo-parallel immersion with ψ = K. Moreover, if f is totally umbilical, then f is a

ψ-pseudo parallel immersion for any ψ .

Proof. If f has R⊥ = 0, taking ψ =K, we conclude from equations (2.3) and (2.4) that f is ψ-pseudo-

parallel.

Observation 2.4. The converse of Proposition 2.3 is not true in general, because in the pseudo-

Riemannian case it is possible to have R⊥(e1,e2)ξ = 0 for all ξ ∈ span{α(X ,Y ) : X ,Y ∈ T M} and

R⊥ ̸= 0, as we show in Example 2.5.

We consider the first normal spaces N1(x) := {N0(x)}⊥ ⊂ N f M(x), x ∈ M2
1 , where N0(x) = {η ∈

N f M(x) : Aη = 0}. Thus, N1(x) = span{α(X ,Y ) : X ,Y ∈ TxM}.

Example 2.5. Consider the isometric immersion f : E2
1 → E6

3, defined by

f (x1,x2) = (ex1+x2,x2
1,x1,x2,x2

1,e
x1+x2).

We have that f is semi-parallel with K = 0, ⟨H,H⟩= 0 and R⊥ ̸= 0. In fact, we have

e1 = d f (∂x2) = (ex1+x2,0,0,1,0,ex1+x2),

e2 = d f (∂x1) = (ex1+x2,2x1,1,0,2x1,ex1+x2),

with ⟨e1,e1⟩= 1, ⟨e2,e2⟩=−1 and ⟨e1,e2⟩= 0.

Also,

α11 = (ex1+x2,0,0,0,0,ex1+x2),

α22 = (ex1+x2,2,0,0,2,ex1+x2),

α12 = (ex1+x2,0,0,0,0,ex1+x2).

Thus, α11 +α22 and α12 are linearly independent, which means that R⊥ ̸= 0, H=−(0,1,0,0,1,0) is

lightlike and ⟨α12,α12⟩= ⟨α11 +α22,α11 +α22⟩= ⟨α11 +α22,α12⟩= 0. Then, for all x = (x1,x2) ∈
E2

1, we have

N1(x) = span{2(ex1+x2,1,0,0,1,ex1+x2),(ex1+x2,0,0,0,0,ex1+x2)},

N0(x) = {N1(x)}⊥ = N1(x),

and

N fE2
1(x) = N1(x)⊕ span{η1,η2},
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where

η1 = (x1ex1+x2,x2
1 −

1
4
,x1,0,x2

1 +
1
4
,x1ex1+x2),

η2 =−2η1 +

(
− 1

2ex1+x2
,0,1,−1,0,

1
2ex1+x2

)
,

with ⟨η1,η1⟩ = ⟨η1,η2⟩ = ⟨η2,η2⟩ = ⟨α11 + α22,η2⟩ = ⟨α12,η1⟩ = 0 and ⟨α12,η2⟩ = ⟨α11 +

α22,η1⟩= 1.

Thus, for all ξ ∈ span{α(X ,Y ) : X ,Y ∈ T M}, using Ricci equation (2.2) we obtain

R⊥(e1,e2)ξ = ⟨α12,ξ ⟩(α11 +α22)−⟨α11 +α22,ξ ⟩α12 = 0.

Moreover, from Gauss equation (2.1) we get K = 0, then f satisfies equations (2.3) and (2.4) with

ψ = 0, thus f is a semi-parallel immersion.

In particular, we have

R⊥(e1,e2)η1 = ⟨α12,η1⟩(α11 +α22)−⟨α11 +α22,η1⟩α12 =−α12 ̸= 0.

Observation 2.6. Isometric immersion f in Example 2.5 was obtain from Remark 3.4 in [14], where

Cabrerizo-Fernández-Gómez gave examples of λ -isotropic immersions in pseudo-Euclidean spaces

with isotropy function λ = ⟨H,H⟩= 0 which are not totally umbilical (see also Example 4.3 in [13]).

We will study λ -isotropic immersions in Section 2.2.

Observation 2.7. Taking ψ = 0 in equations (2.3) and (2.4), we get that any non-flat semi-parallel

Lorentzian surface M2
1 in Qm

s (c) with R⊥ = 0 is umbilical. Then, any non-flat and non-umbilical

surface with flat normal bundle is an example of a pseudo-parallel immersion which is not semi-

parallel.

Since any hypersurface has R⊥ = 0, it follows from Proposition 2.3 that

Corollary 2.8. Any isometric immersion f : M2
1 →Q3

s (c) is pseudo-parallel.

As another consequence of Lemma 2.2, we get

Lemma 2.9. Let f : M2
1 → Qm

s (c) be a pseudo-parallel isometric immersion. The mean curvature

vector field H satisfies R⊥(X ,Y )H= 0, for all X ,Y ∈ T M.

Proof. Since H=
1
2
(α11 −α22), it follows from (2.3) and (2.4) that

R⊥(e1,e2)H=
1
2
(R⊥(e1,e2)α11 −R⊥(e1,e2)α22) = 0.
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The following proposition is useful to construct examples of pseudo-parallel submanifolds.

Proposition 2.10. Let f : Mn
t →QN

s (c) be a isometric immersion and h : QN
s (c)→QN̂

ŝ (ĉ) be a totally

umbilical immersion. If f is ψ-pseudo-parallel, then h◦ f : Mn
t →QN̂

ŝ (ĉ) is ψ-pseudo-parallel.

Proof. We denote by α f , αh and αh◦ f the second fundamental forms of f , h and h◦ f , respectively.

In the same way, we denote by R⊥
f and R⊥

h◦ f the normal curvature tensors of f and h◦ f , respectively.

Let R f and Rh◦ f be the curvature tensors of the Var der Waerden-Bortolotti connections ∇
f

and ∇
h◦ f

of the respective bundles T M⊕N f M and T M⊕Nh◦ f M. Since h is a totally umbilical immersion, we

have the following relations:

α
h◦ f (Z,W ) = ⟨Z,W ⟩Hh +h∗α

f (Z,W ),

R⊥
h◦ f (X ,Y )h∗α

f (Z,W ) = h∗R⊥
f (X ,Y )α f (Z,W ),

R⊥
h◦ f (X ,Y )Hh = 0.

Then, for X ,Y,Z,W ∈ T M, we get that the immersion h◦ f satisfies pseudo-parallelism condition

(1.13), since[
Rh◦ f (X ,Y ) ·αh◦ f

]
(Z,W ) = R⊥

h◦ f (X ,Y )αh◦ f (Z,W )−α
h◦ f (R(X ,Y )Z,W )

−α
h◦ f (Z,R(X ,Y )W )

= h∗R⊥
f (X ,Y )α f (Z,W )+ ⟨Z,W ⟩R⊥

h◦ f (X ,Y )Hh

−h∗α
f (R(X ,Y )Z,W )−⟨R(X ,Y )Z,W ⟩Hh

−h∗α
f (Z,R(X ,Y )W )−⟨Z,R(X ,Y )W ⟩Hh

= h∗ψ[X ∧Y ·α f ](Z,W )

= ψ

{
−h∗α

f ((X ∧Y )Z,W −α
f (Z,(X ∧Y )W ))

−⟨(X ∧Y )Z,W ⟩Hh −⟨Z,(X ∧Y )W ⟩Hh
}

= ψ

{
α

h◦ f ((X ∧Y )Z,W )−α
h◦ f (Z,(X ∧Y )W )

}
= ψ[X ∧Y ·αh◦ f ](Z,W ).

In fact, let ∇, ∇̃ and ∇̂ be the Levi-Civita connections of Mn
t , QN

s (c) and QN̂
ŝ (ĉ), respectively. We

have

α
h◦ f (Z,W ) = ∇̂Zh∗( f∗W )−h∗( f∗∇ZW )

= ∇̂Zh∗( f∗W )−h∗∇̃Z f∗W +h∗α
f (Z,W )

= α
h( f∗Z, f∗W )+h∗α

f (Z,W ).

Now, let ξ ∈ N f M and η ∈ NhQN
s (c) be two normal vector fields of f and h, respectively. Note

that h∗ξ ∈ Nh◦ f M and ⟨η ,h∗ξ ⟩= 0.
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The Weingarten operators of f ,h and h◦ f are related in the following way:

⟨Ah◦ f
h∗ξ

X ,Y ⟩= ⟨αh◦ f (X ,Y ),h∗ξ ⟩

= ⟨αh( f∗X , f∗Y ),h∗ξ ⟩+ ⟨h∗α
f (X ,Y ),h∗ξ ⟩

= ⟨α f (X ,Y ),ξ ⟩

= ⟨A f
ξ

X ,Y ⟩,

and

⟨Ah◦ f
η X ,Y ⟩= ⟨αh◦ f (X ,Y ),η⟩

= ⟨αh( f∗X , f∗Y ),η⟩+ ⟨h∗α
f (X ,Y ),η⟩

= ⟨αh( f∗X , f∗Y ),η⟩

= ⟨Ah
η f∗X , f∗Y ⟩.

Hence,

Ah◦ f
h∗ξ

X = A f
ξ

X and f∗Ah◦ f
η X = Ah

η f∗X , for all X ∈ T M.

On the other hand, the normal connections of f , h and h◦ f satisfy the following relations:

∇
⊥h◦ f
X h∗ξ = ∇̂X h∗ξ +h∗ f∗Ah◦ f

h∗ξ
X

= h∗∇̃X ξ +αh( f∗X ,ξ )+h∗ f∗Ah◦ f
h∗ξ

X

=−h∗ f∗A f
ξ

X +h∗∇
⊥ f
X ξ +αh( f∗X ,ξ )+h∗ f∗Ah◦ f

h∗ξ
X

=−h∗ f∗A f
ξ

X +h∗∇
⊥ f
X ξ +αh( f∗X ,ξ )+h∗ f∗A f

ξ
X

= h∗∇
⊥ f
X ξ +αh( f∗X ,ξ ),

and

∇
⊥h◦ f
X η = h∗ f∗Ah◦ f

η X + ∇̂X η

= h∗ f∗Ah◦ f
η X −h∗Ah

η f∗X +∇
⊥h
f∗X η

= h∗Ah
η f∗X −h∗Ah

η f∗X +∇
⊥h
f∗X η

= ∇
⊥h
f∗X η .

In particular, if h is an umbilical immersion and Hh denotes the mean curvature vector of h, then

we have

α
h◦ f (Z,W ) = ⟨Z,W ⟩Hh +h∗α

f (Z,W ),

∇
⊥h◦ f
X h∗ξ = h∗∇

⊥ f
X ξ .
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Putting all this information together, including the hypothesis of h being umbilical, we conclude

that:

R⊥
h◦ f (X ,Y )h∗α

f (Z,W ) = h∗R⊥
f (X ,Y )α f (Z,W ),

and

R⊥
h◦ f (X ,Y )Hh = R⊥

h ( f∗X , f∗Y )Hh = 0.

2.2 The λ -isotropy condition and the hyperbola of normal cur-
vature

In this section, we study λ -isotropic Lorentzian surfaces in pseudo-Riemannian space forms and

their hyperbolas of curvature, obtaining conditions equivalent to λ -isotropy.

First, we state the following lemma, which provide a characterization of λ -isotropic Lorentzian

surfaces and is analogous to a result by O’Neill in [61] for the Riemannian case and extended by

Cabrerizo-Fernández-Gómez in [13] for pseudo-Euclidean spaces. We prove this lemma with a tech-

nique analogous to the one used by Lobos-Tassi-Yucra Hancco in [50].

Lemma 2.11. Let f : M2
1 → Qm

s (c) be an isometric immersion and let {e1,e2} be an orthonormal

frame of M2
1 , with ⟨e1,e1⟩ = 1, ⟨e2,e2⟩ = −1 and ⟨e1,e2⟩ = 0. Then, the following conditions are

equivalent:

(a) f is λ -isotropic.

(b) ⟨αii,α12⟩= 0 and ⟨αii,αii⟩=−2⟨α12,α12⟩−⟨α11,α22⟩, where i = 1,2.

(c) ⟨α11 +α22,α11 +α22⟩=−4⟨α12,α12⟩ and {H,α11 +α22,α12} is an orthogonal set.

(d) ⟨α(X ,X),α(X ,X)⟩= ⟨X ,X⟩2λ (x), for all X ∈ TxM and for all x ∈ M2
1 .

Moreover, if f is λ -isotropic, then λ = ⟨H,H⟩−⟨α12,α12⟩=
1
2
(c−K+3⟨H,H⟩), where K is the

Gaussian curvature of M2
1 and H is the mean curvature vector field of f .

Proof. (a) ⇒ (b). Let us suppose that f : M2
1 →Qm

s (c) is λ -isotropic and fix an arbitrary point x∈M2
1 .

For X ∈ TxM, such that X = cosh te1 + sinh te2, we have that ∥X∥= 1 for all t ∈ R. Also,

α(X ,X) = cosh2 tα11 +2cosh t sinh tα12 + sinh2 tα22,



2.2. The λ -isotropy condition and the hyperbola of normal curvature 43

and we have

λ = ⟨α(X ,X),α(X ,X)⟩

=
(
cosh4 t + sinh4 t

)
λ +4cosh2 t sinh2 t⟨α12,α12⟩

+4cosh3 t sinh t⟨α11,α12⟩+4cosh t sinh3 t⟨α12,α22⟩

+2cosh2 t sinh2 t⟨α11,α22⟩.

Since λ does not depend on t, from the λ -isotropy condition (1.10), taking the derivative with

respect to t, we get

0 =
d
dt
⟨α(X ,X),α(X ,X)⟩

= 4(cosh3 t sinh t + cosh t sinh3 t)λ

+2(cosh3 t sinh t + cosh t sinh3 t)(4⟨α12,α12⟩

+2⟨α11,α22⟩)+4(cosh4 t +3cosh2 t sinh2 t)⟨α11,α12⟩

+4(3cosh2+t sinh2 t + sinh4 t)⟨α12,α22⟩

= sinh(4t)(λ +2⟨α12,α12⟩+ ⟨α11,α22⟩)

+2(cosh(2t)+1)(2cosh(2t)−1)⟨α11,α12⟩

+2(cosh(2t)−1)(2cosh(2t)+1)⟨α12,α22⟩.

Then,

0 =
dλ

dt

∣∣∣∣
t=0

=
d
dt
⟨α(X ,X),α(X ,X)⟩

∣∣∣∣
t=0

= 4⟨α11,α12⟩. (2.5)

Now, for t̂ ̸= 0, we have

d
dt
⟨α(X ,X),α(X ,X)⟩

∣∣∣∣
t=−t̂

= 0 =
d
dt
⟨α(X ,X),α(X ,X)⟩

∣∣∣∣
t=t̂

. (2.6)

Using (2.5) and (2.6), we get

(λ +2⟨α12,α12⟩+ ⟨α11,α22⟩)sinh4t̂ = 2⟨α12,α22⟩(1− cosh2t̂)(1+2cosh2t̂)

=−(λ +2⟨α12,α12⟩+ ⟨α11,α22⟩)sinh4t̂.

Since t̂ ̸= 0, we deduce that

⟨αii,αii⟩= λ =−2⟨α12,α12⟩−⟨α11,α22⟩, (2.7)

and

⟨α12,α22⟩= 0. (2.8)

So, we have (b). Also, it follows from (2.7) that

⟨H,H⟩= 1
2
(λ −⟨α11,α22⟩) = λ + ⟨α12,α12⟩. (2.9)
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Moreover, from (2.9) and Gauss equation (2.1), we get

3⟨H,H⟩= 2λ −⟨α11,α22⟩+ ⟨α12,α12⟩= 2λ +K − c.

(b) ⇒ (c). Let us assume that the isometric immersion f : M2
1 → Qm

s (c) satisfies ⟨αii,α12⟩ = 0

and ⟨αii,αii⟩=−2⟨α12,α12⟩−⟨α11,α22⟩, for i = 1,2. We have that

2⟨H,α11 +α22⟩= ⟨α11 −α22,α11 +α22⟩= ⟨α11,α11⟩−⟨α22,α22⟩= 0,

2⟨H,α12⟩= ⟨α11 −α22,α12⟩= 0,

and

⟨α11 +α22,α12⟩= 0.

Thus, {H,α11 +α22,α12} is an orthogonal set. Also, we have that

⟨α11 +α22,α11 +α22⟩= ⟨α11,α11⟩+2⟨α11,α22⟩+ ⟨α22,α22⟩

=−4⟨α12,α12⟩,

and we have (c).

(c) ⇒ (a). Let x∈M2
1 be fixed. For all X ∈ TxM with ⟨X ,X⟩= 1, there exists t ∈R and 𝜖1 ∈{−1,1}

such that X = 𝜖1 cosh te1 + sinh te2. Thus

α(X ,X) = α(𝜖1 cosh te1 + sinh te2,𝜖1 cosh te1 + sinh te2)

= cosh2 tα11 + 𝜖12cosh t sinh tα12 + sinh2 tα22

=

(
cosh(2t)+1

2

)
α11 + 𝜖12cosh t sinh tα12 +

(
cosh(2t)−1

2

)
α22

=
1
2
(α11 −α22)+

1
2

cosh(2t)(α11 +α22)+ 𝜖1 sinh(2t)α12

=H(x)+
1
2

cosh(2t)(α11 +α22)+ 𝜖1 sinh(2t)α12. (2.10)

If X ∈ TxM with ⟨X ,X⟩ = −1, there exists t ∈ R and 𝜖1 ∈ {−1,1} such that X = sinh te1 +

𝜖1 cosh te2. Thus

α(X ,X) = α(sinh te1 + 𝜖1 cosh te2,sinh te1 + 𝜖1 cosh te2)

= sinh2 tα11 + 𝜖12cosh t sinh tα12 + cosh2 tα22

=

(
cosh(2t)−1

2

)
α11 + 𝜖12cosh t sinh tα12 +

(
cosh(2t)+1

2

)
α22

=
1
2
(−α11 +α22)+

1
2

cosh(2t)(α11 +α22)𝜖1 sinh(2t)α12

=−H(x)+
1
2

cosh(2t)(α11 +α22)+ 𝜖1 sinh(2t)α12. (2.11)
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Hence, in both cases we have

α(X ,X) = ⟨X ,X⟩H(x)+
1
2

cosh(2t)(α11 +α22)+ 𝜖1 sinh(2t)α12. (2.12)

Now, if {H,α11+α22,α12} is an orthogonal set and ⟨α11+α22,α11+α22⟩=−4⟨α12,α12⟩, from

equation (2.12) follows that ⟨α(X ,X),α(X ,X)⟩= ⟨H,H⟩−⟨α12,α12⟩ does not depend on t and f is

a λ -isotropic surface with λ = ⟨H,H⟩−⟨α12,α12⟩, so we get (a).

(a) ⇔ (d). One of the implications is immediate. Next, if f is λ -isotropic and ∥X∥ ≠ 0, we get

(d) by using X
∥X∥ . It only remains to prove that ⟨α(X ,X),α(X ,X)⟩ = 0 when f is λ -isotropic and

X ∈ TxM is lightlike, but this case follows by continuity, like in [13].

In the Riemannian case, for an isometric immersion f : M2 → M̃m of a surface M2 in a Riemannian

manifold M̃m, the λ -isotropy condition has a geometric interpretation in terms of the indicatrix of

normal curvature at each point x ∈ M2, which is the set {α(X ,X) : X ∈ TxM with ||X ||= 1} contained

in the normal space to f at x. In this case, the indicatrix is an ellipse, maybe degenerate, with center

at the mean curvature vector H, so more precisely it is called ellipse of normal curvature. If f is

λ -isotropic then, at each point x ∈ M2, the ellipse of normal curvature is a circle orthogonal to the

mean curvature vector. In particular, if for x ∈ M2 this circle has radius 0, that is, when the ellipse

of normal curvature degenerates to a point, then x is a umbilical point, thus, λ -isotropic immersions

generalize totally umbilical immersions. When the ellipse of normal curvature is a circle with positive

radius, then the λ -isotropic immersion f has non flat normal bundle. Observe that at x ∈ M2, α(X ,X)

is the normal curvature vector of the surface along a curve in M2 whose speed vector at x is X . Thus,

in a way, the geometry of λ -isotropic surfaces is the same regardless of direction. For instance, the

only λ -isotropic surfaces in the Euclidean space E3 are the totally umbilical ones (see Figure 2.1).

X2

X1

η

R× S1(1)

∥α(X1, X1)∥ = 1

∥α(X2, X2)∥ = 0

η

X

S2(1)

∥α(X,X)∥ = 1

Figure 2.1: Cylinder R×S1(1) is not a λ -isotropic surface in E3, but sphere S2(1) is totally umbilical
and λ -isotropic in E3 with λ = 1.
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Now, for a Lorentzian surface f : M2
1 →Qm

s (c), we observe from the right side of equation (2.12),

that the image of the map X → α(X ,X) from the set of tangent unit vectors of M2
1 at x into N f M(x) is

composed by branches of hyperbolas with center at H(x) if ⟨X ,X⟩= 1 and at −H(x) if ⟨X ,X⟩=−1

(see Figure 2.2). Thus, for each x ∈ M2
1 , we consider the indicatrix of normal curvature of f as the set

Hx = {⟨X ,X⟩α(X ,X) : X ∈ TxM with ⟨X ,X⟩=±1}, (2.13)

which is an hyperbola in N f M(x) centered at H(x), so we refer to Hx as the hyperbola of normal

curvature of f at x.

⟨X,X⟩ = −1

⟨X,X⟩ = 1
α(X,X)

TxM

NfM(x)

0

H

α11 + α22

α12

Figure 2.2: Branches of hyperbolas as image of the map X 7→ α(X ,X) from the set of unit tangent
vectors of M2

1 at x into N f M(x).

Notice that in this definition, the hyperbola of normal curvature can also be degenerate, in the

sense that it can be contained in a right line or be a point. From here to the end of this section,

we study the geometric relation between the λ -isotropy condition and the concept of hyperbola of

normal curvature for Lorentzian surfaces.

The frame {e1,e2} in Lemma 2.11 can be transformed according to

e′1 = 𝜖1 cosh te1 + sinh te2,

e′2 = 𝜖3 sinh te1 + 𝜖1𝜖3 cosh te2,

where 𝜖1,𝜖3 ∈ {1,−1}. Let’s denote α ′
i j = α(e′i,e

′
j), it follows from (2.10), (2.11) and analogous

calculations that
α ′

11 +α ′
22

2
= cosh(2t)

(
α11 +α22

2

)
+ 𝜖1 sinh(2t)α12,

α
′
12 = 𝜖1𝜖3 sinh(2t)

(
α11 +α22

2

)
+ 𝜖3 cosh(2t)α12.
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Thus, I f M2
1(x) := span{α11+α22,α12} is an invariant vector subspace of N f M(x) which contains

the hyperbola of normal curvature Hx.

Proposition 2.12. Let f : M2
1 →Qm

s (c) be an isometric immersion with Gaussian curvature K. f is λ -

isotropic with flat normal bundle if and only if, for each x ∈ M2
1 , either f is umbilical at x or I f M2

1(x)

is 1-dimensional, lightlike and orthogonal to H(x). Moreover, we have that λ = ⟨H,H⟩= K − c.

Proof. Fix an arbitrary point x ∈ M2
1 . In fact, if R⊥ = 0 then {α11 +α22,α12} is linearly dependent.

If f is λ -isotropic, for any orthonormal frame {e1,e2} of M2
1 nearly of x, it follows from Lemma 2.11

that ⟨α11+α22,α11+α22⟩=−4⟨α12,α12⟩ and {α11+α22,α12} is orthogonal to H. If α11+α22 = 0,

we have that −4⟨α12,α12⟩= ⟨α11+α22,α11+α22⟩= 0, thus, α12 = 0 or α12 is lightlike. Analogously,

if α12 = 0, then α11 +α22 = 0 or α11 +α22 is lightlike. If α11 +α22 = µα12 with µ ̸= 0, we have

that µ2⟨α12,α12⟩= ⟨α11+α22,α11+α22⟩= ⟨α11+α22,α12⟩= 0, then α12 and α11+α22 are zero or

lightlike. Now, if α11 +α22 = α12 = 0 then f is umbilical. If α11 +α22 is lightlike or α12 is lightlike,

hence I f M2
1(x) = span{α11 +α22,α12} is 1-dimensional and lightlike.

The converse is true from Ricci equation (2.2) and Lemma 2.11, since {H,α11 +α22,α12} is

an orthogonal set and ⟨α11 +α22,α11 +α22⟩ = 0 = −4⟨α12,α12⟩. Also, from Lemma 2.11 we get

λ = ⟨H,H⟩= K − c.

Proposition 2.13. Let f : M2
1 → Qm

s (c) be an isometric immersion. f is λ -isotropic with non-flat

normal bundle on any open subset of M2
1 if and only if, for each x ∈ M2

1 , the set Hx, given by (2.13),

is a non-degenerate hyperbola with center at the mean curvature vector H(x), which lies in a 2-

dimensional affine subspace V of N f M(x) orthogonal to H(x), such that

(a) either V −H(x) is Lorentzian and Hx is an equilateral hyperbola satisfying that ⟨W −
H(x),W −H(x)⟩ = r(x) ̸= 0 does not depend on W ∈ Hx. In this case, 2 ≤ s ≤ m − 2,

r(x) = λ (x)−⟨H(x),H(x)⟩ and if m = 4, then s = 2 and f is extremal;

(b) or all non-zero vectors of V −H(x) are lightlike. In this case, 3 ≤ s ≤ m − 3, λ (x) =

⟨H(x),H(x)⟩ and if m = 6, then s = 3 and λ (x) = 0.

Proof. Let us suppose that f : M2
1 → Qm

s (c) is λ -isotropic with R⊥ ̸= 0 and fix an arbitrary point

x ∈ M2
1 . Let {e1,e2} be an orthonormal frame of M2

1 , with ⟨e1,e1⟩= 1, ⟨e2,e2⟩=−1 and ⟨e1,e2⟩= 0.

It follows from equation (2.12) that Hx = {H(x)+ 𝜖2y(t) : t ∈ R,𝜖2 =±1}, where

y(t) :=
1
2

cosh(2t)(α11 +α22)+ sinh(2t)α12.

Since R⊥ ̸= 0, using Ricci equation (2.2), we obtain that {α11 +α22,α12} is linearly indepen-

dent, hence I f M2
1(x) = span{α11 +α22,α12} is 2-dimensional and {y(t), t ∈ R} is a branch of a non-

degenerate hyperbola, this means that it is not contained in a 1-dimensional space. Thus, Hx is a
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non-degenerate hyperbola with center H(x), which lies in the affine subspace V of N f M(x) generated

by {α11 +α22,α12} and containing H(x).

From Lemma 2.11, we have that {H(x),α11 +α22,α12} is an orthogonal set and

⟨α11 +α22,α11 +α22⟩=−4⟨α12,α12⟩= 4(λ (x)−⟨H(x),H(x)⟩).

Thus, we obtain that V is orthogonal to H(x) and for W = H(x) + 𝜖2y(t), we have that ⟨W −
H(x),W −H(x)⟩= ⟨y(t),y(t)⟩= λ (x)−⟨H(x),H(x)⟩= r(x) does not depend on t.

If r(x) ̸= 0, then ⟨α11+α22,α11+α22⟩⟨α12,α12⟩< 0 and I f M2
1(x) = V−H(x) is Lorentzian, thus

2 ≤ s ≤ m− 2 and Hx is a equilateral hyperbola. In particular, if m = 4, we have that N f M(x) =

I f M2
1(x) and using that H(x) is orthogonal to α11 +α22 and α12, we can conclude that H(x) = 0.

If r(x) = 0, then any non-zero vector in I f M2
1(x) = V − H(x) is lightlike and I f M2

1(x) ⊂
{I f M2

1(x)}⊥. Since dimI f M2
1(x)+ dim

{
I f M2

1(x)
}⊥

= dimN f M(x), it follows that dimN f M(x) ≥ 4

and 3 ≤ s ≤ m− 3. If m = 6, then
{

I f M2
1(x)

}⊥
= I f M2

1(x) and using that H(x) is orthogonal to

α11 +α22 and α12, we can conclude that H(x) ∈ I f M2
1(x).

Conversely, if for x ∈ M2
1 , the set Hx is a non-degenerate hyperbola centered at H(x), which lies

in a 2-dimensional affine subspace V of N f M(x) orthogonal to H(x), from equation (2.12) we have

that Hx−H(x) = {𝜖2y(t) : t ∈R,𝜖2 =±1} is orthogonal to H(x), i.e., ⟨H(x),y(t)⟩= 0, for all t ∈R,

where y(t) := 1
2 cosh(2t)(α11 +α22)+ sinh(2t)α12.

Also, for all X ∈ TxM with ⟨X ,X⟩= 𝜖2 =±1, there exists t ∈ R such that, using equation (2.12),

we can write α(X ,X) = 𝜖2H(x)+ y(t). Then

⟨α(X ,X),α(X ,X)⟩= ⟨H(x),H(x)⟩+ ⟨y(t),y(t)⟩. (2.14)

Since Hx is a non-degenerate hyperbola, we have that {α11 +α22,α12} is linearly independent

and it follows from Ricci equation (1.17) that R⊥ ̸= 0.

If all non-zero vectors of V −H(x) are lightlike, then ⟨y(t),y(t)⟩ = 0 and f is λ -isotropic with

λ = ⟨H(x),H(x)⟩. On the other hand, if V −H(x) is Lorentzian and Hx is an equilateral hyperbola

in V such that ⟨W −H(x),W −H(x)⟩= r(x) does not depend on W =H(x)+ 𝜖2y(t) ∈ Hx, we have

that ⟨y(t),y(t)⟩ does not depend on t. Therefore, we can conclude that f is λ -isotropic with λ =

⟨H(x),H(x)⟩+ ⟨y(t),y(t)⟩.

2.3 Characterization of pseudo-parallel surfaces in Qm
s (c)

In this section we present our main result concerning pseudo-parallel Lorentzian surfaces in Qm
s (c)

with nowhere vanishing normal curvature, which is stated below. As a consequence, we obtain a

characterization of this kind of Lorentzian surfaces in terms of the hyperbola of normal curvature.
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Theorem 2.14. An isometric immersion f : M2
1 → Qm

s (c) which has non-flat normal bundle on any

open subset of M2
1 is ψ-pseudo-parallel if and only if it is λ -isotropic. Moreover, for such an immer-

sion we have that f is pseudo-umbilical and

(a) if ψ ̸= K, then 2 ≤ s ≤ m−2 and

λ =−3ψ − c+4K, (2.15)

⟨H,H⟩=−2ψ − c+3K; (2.16)

(b) if ψ = K, then 3 ≤ s ≤ m−3 and λ = ⟨H,H⟩= K − c,

where K is the Gaussian curvature of M2
1 , H is the mean curvature vector field of f and λ is a smooth

real-valued function on M2
1 .

Observation 2.15. In particular, Theorem 2.14 states that there are no pseudo-parallel Lorentzian

surfaces with non-flat normal bundle in Lorentzian space forms.

Observation 2.16. Case (b) in Theorem 2.14 represents a significant difference with respect to the

Riemannian case. Example 2.5 shows that pseudo-parallel Lorentzian surfaces as in (b) actually exist.

The proof of the Theorem 2.14 will be carried out using techniques analogous to those used by

Asperti-Lobos-Mercuri in [9] and Lobos-Tassi-Yucra Hancco in [50]:

Proof of Theorem 2.14. Let us suppose that f : M2
1 →Qm

s (c) is pseudo-parallel with non-flat normal

bundle. For x ∈ M2
1 and an orthonormal frame {e1,e2} of M2

1 , with ⟨e1,e1⟩ = 1, ⟨e2,e2⟩ = −1 and

⟨e1,e2⟩= 0, combining equations (2.2), (2.3) and (2.4), we get for i = 1,2

R⊥(e1,e2)αii −2(ψ −K)α12 = 0

⟨α12,αii⟩(α11 +α22)−⟨α11 +α22,αii⟩α12 −2(ψ −K)α12 = 0

⟨α12,αii⟩(α11 +α22)− (⟨α11 +α22,αii⟩+2(ψ −K))α12 = 0 (2.17)

and

R⊥(e1,e2)α12 − (ψ −K)(α11 +α22) = 0

⟨α12,α12⟩(α11 +α22)−⟨α11 +α22,α12⟩α12 − (ψ −K)(α11 +α22) = 0

(⟨α12,α12⟩− (ψ −K))(α11 +α22)−⟨α11 +α22,α12⟩α12 = 0. (2.18)

Since f has non-flat normal bundle, from Ricci equation (2.2), we can conclude that α11 +α22

and α12 are linearly independent, in particular α11 +α22 ̸= 0 and α12 ̸= 0. Using this and equations

(2.17) and (2.18), we get

⟨α12,α11⟩= ⟨α12,α22⟩= 0, (2.19)

⟨α11 +α22,αii⟩=−2(ψ −K), (2.20)
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⟨α12,α12⟩= ψ −K. (2.21)

From Gauss equation (2.1), we have

⟨α11,α22⟩=−K + c+ ⟨α12,α12⟩

⟨α11,α22⟩=−2K + c+ψ, (2.22)

⟨α11 +α22,α11⟩=−2(ψ −K)

⟨α11,α11⟩=−2(ψ −K)−⟨α22,α11⟩

⟨α11,α11⟩=−2(ψ −K)− (−2K + c+ψ)

⟨α11,α11⟩=−3ψ +4K − c, (2.23)

⟨α11 +α22,α22⟩=−2(ψ −K)

⟨α22,α22⟩=−2(ψ −K)−⟨α11,α22⟩

⟨α22,α22⟩=−2(ψ −K)− (−2K + c+ψ)

⟨α22,α22⟩=−3ψ +4K − c, (2.24)

⟨α11 +α22,α11 +α22⟩=−4(ψ −K), (2.25)

⟨H,H⟩= 1
4
⟨α11 −α22,α11 −α22⟩

=
1
4
(⟨α11,α11⟩−2⟨α11,α22⟩+ ⟨α22,α22⟩)

=
1
4
(−3ψ +4K − c−2(−2K + c+ψ)−3ψ +4K − c)

=
1
4
(−8ψ −4c+12K)

=−2ψ − c+3K. (2.26)

In particular, from equations (2.19), (2.20) and (2.21), we have that α11+α22 and α12 are orthog-

onal, ⟨α11 +α22,α11 +α22⟩ = −4(ψ −K) = −4⟨α12,α12⟩ and from equations (2.19) and (2.20) we

obtain that H is orthogonal to {α11 +α22,α12}. Also, for all X ∈ TxM with ∥X∥= 1, it follows from

equation (2.12) that

λ (x) = ⟨α(X ,X),α(X ,X)⟩

= ⟨H,H⟩+ 1
4

cosh2(2t)⟨α11 +α22,α11 +α22⟩+ sinh2(2t)⟨α12,α12⟩

= ⟨H,H⟩−⟨α12,α12⟩

=−2ψ − c+3K − (ψ −K)

=−3ψ − c+4K.
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Therefore, f is λ -isotropic with λ = −3ψ − c+ 4K and by Corollary 4.6 of [14], f is pseudo-

umbilical.

Also, we have that λ −⟨H,H⟩= K −ψ . It follows from Proposition 2.13 that if ψ −K ̸= 0, then

2 ≤ s ≤ m−2, and if ψ −K = 0, then 3 ≤ s ≤ m−3.

Conversely, let us suppose that f is λ -isotropic. From Lemma 2.11, we have that

⟨αii,α12⟩= 0 (2.27)

and

λ =−2⟨α12,α12⟩−⟨α11,α22⟩. (2.28)

Then, using Gauss equation (2.1), we get

⟨α12,α12⟩=−1
3
(c+λ −K).

From Ricci equation (2.2), for i = 1,2, we obtain

R⊥(e1,e2)αii = ((α11 +α22)∧α12)αii

=−⟨α11 +α22,αii⟩α12

=−(λ + ⟨α11,α22⟩)α12

=−(λ −λ −2⟨α12,α12⟩)α12

= 2⟨α12,α12⟩α12

=−2
3
(c+λ −K)α12,

and

R⊥(e1,e2)α12 = ((α11 +α22)∧α12)α12

= ⟨α12,α12⟩(α11 +α22)

=−1
3
(c+λ −K)(α11 +α22).

Therefore, taking ψ = −1
3
(c+ λ − 4K), we conclude that f is ψ-pseudo-parallel according to

Lemma 2.2.

Considering ψ = 0 in Theorem 2.14 and equations (2.3), (2.4), we get the next corollary which is

a generalization of a result given by J. Deprez in [23]. Also, E. Safiulina in [72] obtained an analogous

result for semi-parallel spacelike surfaces in pseudo-Euclidean spaces.

Corollary 2.17. Let f : M2
1 → Qm

s (c) be an isometric immersion. f is semi-parallel if and only if

there exists an open and dense subset U of M2
1 , such that the connected components of U are of the

following types:
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(a) Totally umbilical Lorentzian surfaces.

(b) Lorentzian surfaces with K = 0 and R⊥(X ,Y )(N1(x)) = 0, for all X ,Y ∈ TxM and for all x∈M2
1 .

In this case, if R⊥ ̸= 0, then 3 ≤ s ≤ m− 3 and f is λ -isotropic with λ = −c = ⟨H,H⟩ and

pseudo-umbilical.

(c) λ -isotropic Lorentzian surfaces with non-flat normal bundle and λ = −c+4K = ⟨H,H⟩+K.

In this case, 2 ≤ s ≤ m−2 and f is pseudo-umbilical.

Here, K is the Gaussian curvature of M2
1 , H is the mean curvature vector field of f , N1(x) is the

first normal space of f at x and λ is a smooth real-valued function on M2
1 .

Proof. First, let us assume that f is semi-parallel and fix an arbitrary point x ∈ M2
1 . Let {e1,e2} be an

orthonormal frame of M2
1 at x. If R⊥ = 0 and K ̸= 0, it follows from equations (2.3) and (2.4) that f

is umbilical. If R⊥ ̸= 0, it follows from Theorem 2.14 by considering ψ = 0 that f is a λ -isotropic

and pseudo-umbilical Lorentzian surface with λ = −c+ 4K, ⟨H,H⟩ = −c+ 3K and if K ̸= 0, then

2 ≤ s ≤ m−2, if K = 0, then 3 ≤ s ≤ m−3.

Now, consider the set U1 = {x ∈ M2
1 : K(x) ̸= 0,⟨H,H⟩ ̸= −c+ 3K}. U1 is an open subset of

M2
1 and we have that f is umbilical in all x ∈ U1. Then, K and ⟨H,H⟩ are constant in the con-

nected components of U1. In fact, if f is umbilical, from Codazzi-Mainardi equation (1.16) we have

∇⊥
ei
H= ⟨e j,e j⟩∇⊥

ei
H= ⟨ei,e j⟩∇⊥

e j
H= 0, with {i, j}= {1,2}, then ⟨H,H⟩ is constant and from Gauss

equation (2.1), we have that K = c+⟨H,H⟩ is constant. Thus, U1 is also closed in M2
1 . We can assume

that M2
1 is connected. Then, U1 = M2

1 or U1 = /0. In the first case, we get a). In the second case, let

U2 = {x ∈ M2
1 : K(x) ̸= 0} and U3 = M2

1 \U2, where U2 is the closure of U2, then U2 and U3 are open

subsets of M2
1 and U =U2 ∪U3 is an open and dense subset of M2

1 . For all connected component Uγ

of U , we have that Uγ ⊂U2 and we have (c) or Uγ ⊂U3 and from equations (2.3) and (2.4) we have

(b). This proves one of the implications. The converse follows from Theorem 2.14 and equations

(2.3) and (2.4).

Observation 2.18. The semi-parallel Lorentzian surface in Example 2.5 shows that case (b) in Corol-

lary 2.17 with the non-flat normal bundle condition is not empty at least for c = 0.

As another consequence of Theorem 2.14, we give below a geometric characterization of pseudo-

parallel Lorentzian surfaces with R⊥ ̸= 0 in pseudo-Riemannian space forms in terms of their hyper-

bolas of normal curvature.

Corollary 2.19. Let f : M2
1 →Qm

s (c) be an isometric immersion with Gaussian curvature K. f is ψ-

pseudo-parallel with non-flat normal bundle on any open subset of M2
1 if and only if, for each x ∈ M2

1 ,

the set

Hx = {⟨X ,X⟩α(X ,X) : X ∈ TxM with ⟨X ,X⟩=±1}
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is a non-degenerate hyperbola with center at the mean curvature vector H(x), which lies in a 2-

dimensional affine subspace V of N f M(x) orthogonal to H(x), such that

(a) either V −H(x) is Lorentzian and Hx is an equilateral hyperbola satisfying that ⟨W −
H(x),W −H(x)⟩ = r(x) ̸= 0 does not depend on W ∈ Hx. In this case, 2 ≤ s ≤ m − 2,

r(x) = K −ψ and if m = 4, then s = 2 and f is extremal;

(b) or all non-zero vectors of V −H(x) are lightlike. In this case, 3 ≤ s ≤ m− 3, ψ = K and if

m = 6, then s = 3 and ⟨H(x),H(x)⟩= 0.

Proof. From Theorem 2.14 we have that f is ψ-pseudo-parallel with R⊥ ̸= 0 if and only if f is a

λ -isotropic immersion with R⊥ ̸= 0. Moreover, we have that K−ψ = λ −⟨H,H⟩. The result follows

from Proposition 2.13.
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CHAPTER 3

Pseudo-parallel Lorentzian surfaces with
non flat normal bundle in low codimension

In this chapter, we present examples of pseudo-parallel Lorentzian surfaces with non-flat normal

bundle in a 4-dimensional or 5-dimensional pseudo-Riemannian space form. In the first section,

we study pseudo-parallel Lorentzian surfaces with R⊥ ̸= 0 in Q4
s (c) and we prove that these surfaces,

which are extremal and only exists for s= 2, also satisfy the condition of being isotropic with negative

spin immersions. As a consequence, we obtain that any pseudo-parallel Lorentzian surface with

R⊥ ̸= 0 in a 4-dimensional pseudo-Riemannian space form with constant pseudo-parallelism function

ψ is locally congruent to a surface of Veronese type, which is only defined for c ̸= 0. In the second

section, we obtain examples of pseudo-parallel Lorentzian surfaces with non-flat normal bundle and

non-constant ψ ̸= 0, by studying general rotational surfaces with plane meridians in E4
2. Finally, in

the third section, we give an example of a flat and extremal pseudo-parallel Lorentzian surface with

R⊥ ̸= 0 and constant ψ in S5
2(c) which is not semi-parallel.

3.1 Pseudo-parallel Lorentzian surfaces in Q4
2(c)

3.1.1 Lorentzian surface of Veronese type in Q4
2(c), c ̸= 0

Let f : M2
1 → Q4

2(c) be an isometric immersion such that M2
1 is oriented. Let {ẽ1, ẽ2, ẽ3, ẽ4} be a

(local) frame adapted to the orientation of Q4
2(c), such that {ẽ1, ẽ3} is a pseudo-orthonormal frame

that defines the orientation of M2
1 and {ẽ2, ẽ4} is a pseudo-orthonormal frame for N f M2

1 . Setting for

i, j ∈ {1,3},

α̃i j := α(ẽi, ẽ j) = ∑
k=2,4

α̃
k
i jẽk.

We say that f is isotropic with negative spin at x ∈ M2
1 if

α̃
2
11(x) = 0 = α̃

4
33(x),

55
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and we say that f is isotropic with positive spin at x ∈ M2
1 if it is isotropic with negative spin at x with

respect to the opposite orientation of Q4
2(c) (see [39]).

We say that f is isotropic with negative (positive) spin if it is isotropic with negative (positive)

spin at every point of M2
1 .

Example 3.1. K. Miura in [58] defined an extremal isometric immersion f : S2
1(1)→ S4

2(3) by

f (x,y,z) = (xy,xz,yz,

√
3

6
(2x2 + y2 + z2),

1
2
(y2 − z2)),

which corresponds to the Veronese immersion in Riemannian geometry (see also [11] and [57]). K.

Hasegawa in [38] proved that f is isotropic with negative spin. Also, composing with homotethies

and anti-homotethies of S2
1(1) and S4

2(3), Hasegawa obtained extremal and isotropic with negative

spin immersions of the Veronese type from Q2
1(

c
3) to Q4

2(c), c ̸= 0.

Moreover, we have that f is a parallel immersion. Thus, f is ψ-pseudo-parallel with ψ = 0 and

λ -isotropic with λ = 1.

In fact, let γx(s) and γθ (s) be curves parameterized by arc length in S2
1(1), defined by

γx(s) =
(

x,
√

x2 +1cos
(

s√
x2 +1

)
,
√

x2 +1sin
(

s√
x2 +1

))
, x constant.

γθ (s) = (sinh(s),cosh(s)cosθ ,cosh(s)sinθ) , θ constant.

S2
1(1)

γθ(s)

γx(s)

z
y

x

Figure 3.1: Parameterized curves γx(s) and γθ (s) whose velocity vectors provide an orthonormal
frame of the tangent space to S2

1(1).
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Taking the derivative respect to s, we get the velocity vectors

γ
′

x (s) =
(

0,−sin
(

s√
x2 +1

)
,cos

(
s√

x2 +1

))
=

1√
x2 +1

(0,−z,y),

γ
′

θ (s) = (cosh(s),sinh(s)cosθ ,sinh(s)sinθ) =
1√

x2 +1

(
x2 +1,xy,xz

)
,

since 1 ≤ cosh(s) =
√

y2 + z2 =
√

x2 +1 and sinh(s) = x, cosh(s)cosθ = y, cosh(s)sinθ = z (see

Figure 3.1). Thus, we have that {T1,T2} is an orthonormal frame of S2
1(1), where

T1(x,y,z) =
1√

x2 +1
(0,−z,y),

T2(x,y,z) =
1√

x2 +1

(
x2 +1,xy,xz

)
,

with ⟨T1,T1⟩= 1, ⟨T2,T2⟩=−1 and ⟨T1,T2⟩= 0

Next, we apply the function f to obtain the following parameterized curves in S4
2(3):

f (γx(s)) =
(

x
√

x2 +1cos
(

s√
x2 +1

)
,x
√

x2 +1sin
(

s√
x2 +1

)
,

(x2 +1)
2

sin
(

2s√
x2 +1

)
,

√
3

6
(1+3x2),

(x2 +1)
2

cos
(

2s√
x2 +1

))
,

f (γθ (s)) =
(

1
2

sinh(2s)cosθ ,
1
2

sinh(2s)sinθ ,
1
2

cosh2(s)sin(2θ),

√
3

6
(1+3sinh2(s)),

1
2

cosh2(s)cos(2θ)

)
.

Taking the derivative respect to s, we get

( f ◦ γx)
′(s) =

(
−xsin

(
s√

x2 +1

)
,xcos

(
s√

x2 +1

)
,√

x2 +1cos
(

2s√
x2 +1

)
,0,−

√
x2 +1sin

(
2s√

x2 +1

))
=

1√
x2 +1

(−xz,xy,y2 − z2,0,−2yz),

and

( f ◦ γθ )
′(s) =

(
cosh(2s)cosθ ,cosh(2s)sinθ ,

1
2

sinh(2s)sin(2θ),
√

3
2

sinh(2s),
1
2

sinh(2s)cos(2θ)
)

=
1√

x2 +1
((2x2 +1)y,(2x2 +1)z,2xyz,

√
3x(x2 +1),x(y2 − z2)).
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Thus, we get the following tangent vector fields of f (S2
1(1))

e1 = d f (T1) =
1√

x2 +1
(−xz,xy,y2 − z2,0,−2yz),

e2 = d f (T2) =
1√

x2 +1
((2x2 +1)y,(2x2 +1)z,2xyz,

√
3x(x2 +1),x(y2 − z2)).

We observe that {e1,e2} define an orthonormal frame of f (S2
1(1)) with ⟨e1,e1⟩= 1, ⟨e2,e2⟩=−1 and

⟨e1,e2⟩= 0. Thus, f is an isometric immersion.

Now, denoting by ∇̌ the usual directional derivative in E3
1, we obtain

∇̌T1T1 =− z√
x2 +1

∇̌∂y

(
0,− z√

x2 +1
,

y√
x2 +1

)
+

y√
x2 +1

∇̌∂z

(
0,− z√

x2 +1
,

y√
x2 +1

)
=− 1

x2 +1
(0,y,z),

∇̌T2T1 =
√

x2 +1∇̌∂x

(
0,− z√

x2 +1
,

y√
x2 +1

)
+

xy√
x2 +1

∇̌∂y

(
0,− z√

x2 +1
,

y√
x2 +1

)
+

xz√
x2 +1

∇̌∂z

(
0,− z√

x2 +1
,

y√
x2 +1

)
= (0,0,0).

A unit normal vector field to S2
1(1) in E3

1 is given by the position vector p = (x,y,z) and we have that

⟨∇̌T1T1, p⟩=− 1
x2 +1

⟨(0,y,z),(x,y,z)⟩=− 1
x2 +1

(y2 + z2) =−1.

Thus, for the Levi-Civita conection ∇ of S2
1(1), we have that

∇T1T1 =− 1
x2 +1

(0,y,z)+(x,y,z) =
(

x,
x2y

x2 +1
,

x2z
x2 +1

)
=

x√
x2 +1

T2,

∇T2T1 = 0,

and considering immersion f , we write

∇e1e1 = d f (∇T1T1) =
x√

x2 +1
d f (T2)

=
1

x2 +1
((2x2 +1)xy,(2x2 +1)xz,2x2yz,

√
3x2(x2 +1),x2(y2 − z2)),

∇e2e1 = d f (∇T2T1) = 0.

Let x1 = xy, x2 = xz, x3 = yz, x4 =
√

3
6 (3x2 +1) and x5 =

y2−z2

2 , then

e1 = d f (T1) =

√
2x5

x2
1 − x2

2 +2x5
(−x2,x1,2x5,0,−2x3),

∇e1e1 =
2

x2
1 − x2

2 +2x5

(
(x2

1 − x2
2 + x5)x1,(x2

1 − x2
2 + x5)x2,(x2

1 − x2
2)x3,

√
3

2
(x2

1 − x2
2)

(
x2

1 − x2
2

2x5
+1
)
,(x2

1 − x2
2)x5

)
.
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Next, let ∇̂ be the usual directional derivative in E5
2, we have that

∇̂e1e1 =
1√

x2
1−x2

2
2x5

+1

(
−x2∇̂∂x1

e1 + x1∇̂∂x2
e1 +2x5∇̂∂x3

e1 −2x3∇̂∂x5
e1

)

=
1√

x2
1−x2

2
2x5

+1

−x2

(
x1x2

2x5

(
x2

1−x2
2

2x5
+1
)3/2 ,

1√
x2

1−x2
2

2x5
+1

−
x2

1

2x5

(
x2

1−x2
2

2x5
+1
)3/2 ,

−x1(
x2

1−x2
2

2x5
+1
)3/2 ,

0,
x1x3

x5

(
x2

1−x2
2

2x5
+1
)3/2

)
+ x1

(
−1√

x2
1−x2

2
2x5

+1
−

x2
2

2x5

(
x2

1−x2
2

2x5
+1
)3/2 ,

x1x2

2x5

(
x2

1−x2
2

2x5
+1
)3/2 ,

x2(
x2

1−x2
2

2x5
+1
)3/2 ,0,

−x2x3

x5

(
x2

1−x2
2

2x5
+1
)3/2

)
+2x5

0,0,0,0,− 2√
x2

1−x2
2

2x5
+1


−2x3

(
−

x2(x2
1 − x2

2)

4x2
5

(
x2

1−x2
2

2x5
+1
)3/2 ,

x1(x2
1 − x2

2)

4x2
5

(
x2

1−x2
2

2x5
+1
)3/2 ,

2√
x2

1−x2
2

2x5
+1

+
(x2

1 − x2
2)

2x5

(
x2

1−x2
2

2x5
+1
)3/2 ,0,

−
x3(x2

1 − x2
2)

2x2
5

(
x2

1−x2
2

2x5
+1
)3/2

)
=

(
−2x1x2

2x5

(x2
1 − x2

2 +2x5)2 ,
2x2

1x2x5

(x2
1 − x2

2 +2x5)2 −
2x2x5

x2
1 − x2

2 +2x5
,

4x1x2x2
5

(x2
1 − x2

2 +2x5)2 ,0,
−4x1x2x3x5

(x2
1 − x2

2 +2x5)2

)

+

(
−2x1x5

x2
1 − x2

2 +2x5
−

2x1x2
2x5

(x2
1 − x2

2 +2x5)2 ,
2x2

1x2x5

(x2
1 − x2

2 +2x5)2 ,
4x1x2x2

5

(x2
1 − x2

2 +2x5)2 ,0,
−4x1x2x3x5

(x2
1 − x2

2 +2x5)2

)

−

(
0,0,0,0,

8x2
5

x2
1 − x2

2 +2x5

)
+

(
2x2x3(x2

1 − x2
2)

(x2
1 − x2

2 +2x5)2 ,
−2x1x3(x2

1 − x2
2)

(x2
1 − x2

2 +2x5)2 ,
−8x3x5

x2
1 − x2

2 +2x5

−
4x3x5(x2

1 − x2
2)

(x2
1 − x2

2 +2x5)2 ,0,
4x2

3(x
2
1 − x2

2)

(x2
1 − x2

2 +2x5)2

)
,

=− 2x5

x2
1 − x2

2 +2x5
(x1,x2,4x3,0,4x5).

A normal vector field to S4
2(3) in E5

2 is given by f (p) = (x1,x2,x3,x4,x5), with ⟨ f (p), f (p)⟩= 1
3

.

Then, we have that

⟨∇̂e1e1, f (p)⟩= −2x5

x2
1 − x2

2 +2x5
⟨(x1,x2,4x3,0,4x5),(x1,x2,x3,x4,x5)⟩=−1,

and we obtain

α11 = ∇̂e1e1 −3⟨∇̂e1e1, f (p)⟩ f (p)−∇e1e1

=

(
xy,xz,yz

(
x2 −1
x2 +1

)
,

√
3

2
(x2 +1),

y2 − z2

2

(
x2 −1
x2 +1

))
.
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Analogously, we obtain

α12 =

(
−z,y,

x(y2 − z2)

x2 +1
,0,− 2xyz

x2 +1

)
.

Since f is an extremal immersion, i.e., H= 0, we get that α11 = α22.

Also, we have that {α11,α12} is an orthonormal frame of N fS2
1(1), with

⟨α11,α11⟩= 1,⟨α12,α12⟩=−1, and ⟨α11,α12⟩= 0.

Then, there exists a 1-form Φ, such that

∇
⊥
X α11 = Φ(X)α12 and ∇

⊥
X α12 = Φ(X)α11.

Also, it follows from Ricci equation (2.2) that R⊥ ̸= 0.

Now, we have

(∇e1 ·α)(e1,e1) = ∇
⊥
e1

α11 −2α(∇e1e1,e1) =

(
Φ(e1)−

2x√
x2 +1

)
α12, (3.1)

(∇e1 ·α)(e1,e2) = ∇
⊥
e1

α12 −α(∇e1e1,e2)−α(e1,∇e1e2)

=

(
Φ(e1)−

2x√
x2 +1

)
α11, (3.2)

(∇e2 ·α)(e1,e1) = ∇
⊥
e2

α11 −2α(∇e2e1,e1) = Φ(e2)α12, (3.3)

(∇e2 ·α)(e1,e2) = ∇
⊥
e2

α12 −α(∇e2e1,e2)−α(e1,∇e2e2) = Φ(e2)α11. (3.4)

Also,

Aα11 =

(
⟨Aα11e1,e1⟩ ⟨Aα11e2,e1⟩
−⟨Aα11e1,e2⟩ −⟨Aα11e2,e2⟩

)
=

(
1 0
0 −1

)
,

and

Aα12 =

(
⟨Aα12e1,e1⟩ ⟨Aα12e2,e1⟩
−⟨Aα12e1,e2⟩ −⟨Aα12e2,e2⟩

)
=

(
0 −1
1 0

)
.

Therefore,

Aα11e1 = e1, Aα11e2 =−e2, Aα12e1 = e2 and Aα12e2 =−e1.

On the other hand, using that

α11 =

(
x1,x2,x3

(
x2

1 − x2
2 −2x5

x2
1 − x2

2 +2x5

)
,

√
3

2

(
x2

1 − x2
2

2x5
+1
)
,

x5

(
x2

1 − x2
2 −2x5

x2
1 − x2

2 +2x5

))
,

e1 =

√
2x5

x2
1 − x2

2 +2x5
(−x2,x1,2x5,0,−2x3),
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we obtain that

∇̂e1α11 =
1√

x2 +1

(
−xz,xy,

(y2 − z2)(x2 −1)
x2 +1

,0,−2yz(x2 −1)
x2 +1

)
.

Next, for the Levi-Civita connection ∇̃ of S4
2(3), we have

∇
⊥
e1

α11 = ∇̃e1α11 +Aα11e1 = ∇̂e1α11 + e1 =
2x√

x2 +1
α12,

since ⟨∇̂e1α11, f (x,y,z)⟩ = 0. Thus, Φ(e1) =
2x√

x2 +1
. It follows from equations (3.1) and (3.2)

that

(∇e1 ·α)(e1,e1) = (∇e1 ·α)(e1,e2) = 0.

Analogously,

∇
⊥
e2

α11 = ∇̃e2α11 +Aα11e2 = e2 − e2 = 0.

Thus, Φ(e2) = 0 and, from equations (3.3) and (3.4), we obtain

(∇e2 ·α)(e1,e1) = (∇e2 ·α)(e1,e2) = 0.

Then, we conclude that f is a parallel immersion.

Also, we have that ⟨α11+α22,α11+α22⟩= 4⟨α11,α11⟩= 4 =−4⟨α12,α12⟩, ⟨α11+α22,α12⟩= 0

and H= 0. Therefore, from Lemma 2.11, f is a λ -isotropic immersion with λ =−⟨α12,α12⟩= 1.

3.1.2 Pseudo-parallel Lorentzian surfaces with constant pseudo-parallelism func-
tion ψ in Q4

s (c)

Hasegawa in [38], showed that an extremal and isotropic with negative spin Lorentzian surface

with constant Gaussian curvature in Q4
s (c) is congruent to a piece of a surface of the Veronese type

from Example 3.1. Also, isotropy with negative spin has an interpretation using the concept of hy-

perbola of curvature, but the plane of the hyperbola is not necessarily orthogonal to H (see [39]). We

use Hasegawa’s characterization to get the next result:

Corollary 3.2. Let f : M2
1 →Q4

s (c) be an isometric immersion with R⊥ ̸= 0. f is ψ-pseudo-parallel

if and only if s = 2 and f is an extremal and isotropic with negative spin immersion. Moreover, if ψ is

constant, then K =
c
3
̸= 0 and locally f (M2

1) is congruent to an open set of the Veronese type surface

given in Example 3.1.

Proof. If f : M2
1 → Q4

s (c) is ψ-pseudo-parallel with R⊥ ̸= 0, from Theorem 2.14 we have that f

is λ -isotropic, s = 2 and from Corollary 2.19 f is extremal. For x ∈ M2
1 , let {ẽ1, ẽ3} be a local

pseudo-orthonormal frame that defines the orientation of U , with x ∈U and U open in M2
1 , such that
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⟨ẽ1, ẽ1⟩= ⟨ẽ3, ẽ3⟩= 0 and ⟨ẽ1, ẽ3⟩= 1. Denote α̃i j = α̃(ẽi, ẽ j) for i, j ∈ {1,3}, it follows from Ricci

equation that

R⊥(ẽ1, ẽ3)ξ = α(ẽ1,Aξ ẽ3)−α(Aξ ẽ1, ẽ3)

= ⟨Aξ ẽ3, ẽ3⟩α̃11 + ⟨Aξ ẽ3, ẽ1⟩α̃13 −⟨Aξ ẽ1, ẽ3⟩α̃13 −⟨Aξ ẽ1, ẽ1⟩α̃33

= ⟨α̃33,ξ ⟩α̃11 + ⟨α̃13,ξ ⟩α̃13 −⟨α̃13,ξ ⟩α̃13 −⟨α̃11,ξ ⟩α̃33

= ⟨α̃33,ξ ⟩α̃11 −⟨α̃11,ξ ⟩α̃33

= (α̃11 ∧ α̃33)ξ .

Then, we have that α̃11 and α̃33 are linearly independent since R⊥ ̸= 0. Moreover, from isotropy

condition and Lemma 2.11 we have that α̃11 and α̃33 are lightlike vectors. Thus, choosing conve-

niently the orientation in Q4
2(c), we conclude that f is isotropic with negative spin at x (see [39]).

Conversely, let f : M2
1 → Q4

2(c) be an extremal and isotropic with negative spin isometric im-

mersion and R⊥ ̸= 0. For x ∈ M2
1 , let {ẽ1, ẽ3} be a local pseudo-orthonormal frame that defines the

orientation of U , with x ∈ U and U open in M2
1 , such that ⟨ẽ1, ẽ1⟩ = ⟨ẽ3, ẽ3⟩ = 0 and ⟨ẽ1, ẽ3⟩ = 1.

Then,

H=
1
2

trace(α) = α̃13. (3.5)

For any unit tangent vector X ∈ TxM, there exists t ∈ R and 𝜖1,𝜖3 ∈ {−1,1} such that X =
1√
2
(𝜖1tẽ1 +

𝜖3

t
ẽ3). Since f is extremal, we have

α(X ,X) = 𝜖1𝜖3H+
t2

2
α̃11 +

1
2t2 α̃33 =

t2

2
α̃11 +

1
2t2 α̃33. (3.6)

Since f is isotropic with negative spin we have that ⟨α̃11, α̃11⟩= ⟨α̃33, α̃33⟩= 0 and we get

⟨α(X ,X),α(X ,X)⟩= 1
2
⟨α̃11, α̃33⟩. (3.7)

Therefore, f is λ -isotropic with λ =
1
2
⟨α̃11, α̃33⟩ and by Theorem 2.14 f is ψ-pseudo-parallel,

since R⊥ ̸= 0.

If in addition ψ is constant, from Theorem 2.14, we have that K =
2ψ + c

3
is constant in M2

1 and

K ̸= c since K ̸= ψ . Then, the claim follows from Corollary 4 in [38].

3.2 Examples of pseudo-parallel Lorentzian surfaces in E4
2 with

non-constant ψ

For general rotational surfaces of elliptic type with plane meridians in E4
2, defined by 1.23, we

are looking for those satisfying condition of being extremal and λ -isotropic.
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Cabrerizo-Fernández-Gómez in Corollary 6.3, Corollary 6.6 and Proposition 6.8 of [13], proved

that

• non-totally umbilical λ -isotropic Lorentzian surfaces in E4
2 with constant Gaussian curvature

or constant λ are 0-isotropic surfaces with K = 0. Moreover, at each non-geodesic point, all

non-zero vectors in the first normal space Im(α) are lightlike vectors, thus, Im(α) is one-

dimensional in this case;

• any non-totally umbilical λ -isotropic Lorentzian surface in E4
2 with λ ̸= 0 (or K ̸= 0) every-

where, has H= 0 and Im(α) is all of the normal space to the surface. In this case, K =−2λ .

Note that the mean curvature vector field of M1, given by H =
ν2 −ν1

2
η2, is never lightlike. Analo-

gously, α(X ,Y ) and α(X ,X)+α(Y,Y ) are not lightlike. So, we get

Proposition 3.3. Let M1 be a general rotational surface of elliptic type with plane meridians in E4
2.

If M1 is a non-totally umbilical λ -isotropic surface, then H = 0, K is non-constant with K = −2λ

and in non-geodesic points the second fundamental form α is a surjective mapping.

If H= 0 we have ν1 = ν2 = ν and from [4] we have the next result for extremal general rotational

surfaces.

Theorem 3.4 (Aleksieva-Milousheva-Turgay [4]). Let M1 be a general rotational surface of elliptic

type in E4
2, defined by (1.23). Then M1 has H= 0 if and only if the meridian m is determined by one

of the following:

(i) f = cgk, c ̸= 0 constant, k =±θ

β
̸=±1;

(ii) arcsin
(

θ f√
A

)
=±θ

β
arcsin

(
βg√

A

)
+C; C constant, A > 0 constant, θ ̸= β ;

(iii) ( f +g)2 = a( f −g)2 +b, where a ̸= 0 constant, b constant, θ = β .

From [9], we have that a Lorentzian surface with R⊥ ̸= 0 in E4
2 is ψ-pseudo-parallel if and only if

it is λ -isotropic with H= 0. In this case, we have that ψ =−3λ = 3
2K. Moreover, condition R⊥ ̸= 0

for M1 is equivalent to the fact that span{α(X ,X)+α(Y,Y ),α(X ,Y )} is all of the normal space to

the surface in E4
2.

On the other hand, for each unit tangent vector Z of M1, there exists t ∈R and 𝜖1 ∈ {−1,1}, such

that

⟨Z,Z⟩α(Z,Z) =H+ ⟨Z,Z⟩[cosh(2t)
α(X ,X)+α(Y,Y )

2
+ 𝜖1 sinh(2t)α(X ,Y )].

Thus, if M1 is extremal, then it is also λ -isotropic if and only if ⟨α(X ,X)+α(Y,Y ),α(X ,Y )⟩ = 0

and ⟨α(X ,X)+α(Y,Y ),α(X ,X)+α(Y,Y )⟩=−4⟨α(X ,Y ),α(X ,Y )⟩ (see Lemma 8 in [9]).
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Since {η1,η2} is an orthonormal frame, using equations (1.26), we have that M1 is extremal with

R⊥ ̸= 0 if and only if ν = ν1 = ν2 ̸= 0 and µ ̸= 0. In this case, the λ -isotropic condition for M1 is

equivalent to the following equation being satisfied:

−4ν
2 =−(ν1 +ν2)

2 = ⟨α(X ,X)+α(Y,Y ),α(X ,X)+α(Y,Y )⟩=−4⟨α(X ,Y ),α(X ,Y )⟩=−4µ
2.

This means that M1 is λ -isotropic with H = 0 and R⊥ ̸= 0, and so it is pseudo-parallel, if and only

if ν2 = µ2 ̸= 0, with ν = ν1 = ν2.

Now, we note from the proof of Theorem 3.4 in [4] that ν2 ̸= µ2 in case (ii), thus, M1 is not

pseudo-parallel with R⊥ ̸= 0 in this case. On the other hand, θ = β in case (iii) and it follows from

(1.27) that µ =−ν2 =−ν . Finally, µ2 −ν2 = 0 in case (i), but this case is empty. In fact, in (i), we

have that f ′ =±c θ

β
g±

θ

β
−1g′. Next, from conditions for f , g, f ′ and g′ given in (1.24) we obtain

G = θ
2 f 2(u)−β

2g2(u) = θ
2c2g±2 θ

β (u)−β
2g2(u)

= g2(u)
(

θ
2c2g2

(
± θ

β
−1
)
(u)−β

2
)
< 0,

E = f ′2(u)−g′2(u) = c2 θ 2

β 2 g2
(
± θ

β
−1
)
(u)g′2(u)−g′2(u)

=
g′2(u)

β 2

(
θ

2c2g2
(
± θ

β
−1
)
(u)−β

2
)
> 0.

Then, we have a contradiction and (i) in Theorem 3.4 cannot happen.

Thus, for pseudo-parallel surfaces with R⊥ ̸= 0, we obtain:

Theorem 3.5. Let M1 be a general rotational Lorentzian surface of elliptic type in E4
2, defined by

(1.23). Then M1 is pseudo-parallel with R⊥ ̸= 0 if and only if the meridian m is determined by

( f +g)2 = a( f −g)2 +b, with f g′ ̸= g f ′ everywhere, a ̸= 0 constant, b constant and θ = β . In this

case, ψ = 3
2K = 3µ2.

Note that, for example, functions g(u) = u and f (u) =
√

1−u2, u∈ J = ( 1√
2
,1), satisfy conditions

in Theorem 3.5 for a =−1, b = 2, θ = β = 1 and satisfy constraints in (1.24).

Observation 3.6. Since f g′ ̸= g f ′, we have that µ ̸= 0 everywhere and all the surfaces in Theorem

3.5 are not semi-parallel (see also Corollary 13 in [9]). From Proposition 3.3, we have that K is

non-constant.

For extremal general rotational surfaces of hyperbolic type, we have from [4] the next result

Theorem 3.7 (Aleksieva-Milousheva-Turgay, [4]). Let M2 be a general rotational surface of hyper-

bolic type in E4
2, defined by (1.28). Then M2 has H = 0 if and only if the meridian m is determined

by one of the following:
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(i) f = cgk, c ̸= 0 constant, k =±θ

β
̸=±1;

(ii) θ f +
√

θ 2 f 2 −A =C
(

βg+
√

β 2g2 +A
)± θ

β , C constant, A constant AC ̸= 0, θ ̸= β ;

(iii) arctan
(

f ′
g′

)
=−arctan

(
f
g

)
+b, where b constant, θ = β .

We observe that, in Theorem 3.7, case (i) is not empty, since the conditions in (1.29) only require

that at least one of f or g is non-zero and that at least one of f ′ or g′ is non-zero, thus, g(u) = u and

f (u) = u2 satisfy equation in case (i), with θ = 2β , c = 1 and u > 0. Also, g(u) = u and f (u) = 1
u

satisfy equation in case (iii) with b = 0 and u > 0. An analysis analogous to that for Theorem 3.5

leads to the next result:

Theorem 3.8. Let M2 be a general rotational surface of hyperbolic type in E4
2, defined by (1.28).

Then M2 is pseudo-parallel with R⊥ ̸= 0 if and only if the meridian m is determined by

(i) f = cgk, c ̸= 0 constant, k =±θ

β
̸=±1;

(ii) arctan
(

f ′
g′

)
=−arctan

(
f
g

)
+b, f g′ ̸= g f ′ everywhere, b constant, θ = β .

For any of these cases, we have ψ = 3
2K =−3µ2.

Observation 3.9. Note that an analogous result to Proposition 3.3 can be obtained for general rota-

tional surfaces of hyperbolic type with plane meridians. Thus, we have that for a surface M2 as in

Theorem 3.8, K is non-constant. Moreover, M2 is not semi-parallel since µ ̸= 0 everywhere.

3.3 A extremal and flat pseudo-parallel Lorentzian surface in
S5

2(c) which is not semi-parallel

In [9], Asperti-Lobos-Mercuri gave an example of a pseudo-parallel surface in a 5-dimensional

Riemannian space form, which is not semi-parallel, namely the standard flat tori. Now, we give an

analogous example in the pseudo-Riemannian case which was used by L. Vrancken in [77], for the

study of Lagrangian submanifolds in indefinite complex space forms.

Example 3.10. Consider the immersion T : E2
1 → S5

2(c)⊂ (E6
2,(−,−,+,+,+,+)), defined by

T (x,y) =
2√
6c

(cosusinhv,sinusinhv,cosucoshv,sinucoshv,

√
2

2
cos2u,−

√
2

2
sin2u),

where u =
√ c

2x,v =
√

6c
2 y. From [77], we have that T is a flat and extremal Lorentzian surface. A

direct calculation shows that T is ψ-pseudo-parallel and λ -isotropic with ψ = −λ = −c
2
̸= 0 and

R⊥ ̸= 0. Thus, T is not a semi-parallel immersion. Composing T with anti-homotethies of S5
2(c), we

obtain pseudo-parallel immersions with non-flat normal bundle and constant ψ in H5
3(−c).
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In fact,

⟨T (x,y),T (x,y)⟩= 2
3c

(−sinh2 v(cos2 u+ sin2 u)+ cosh2 v(cos2 u+ sin2 u)

+
1
2
(cos2 2u+ sin2 2u)) =

1
c
,

e1 = dT (∂x) =
1√
3
(−sinusinhv,cosusinhv,−sinucoshv,cosucoshv,

−
√

2sin2u,−
√

2cos2u),

e2 = dT (∂y) = (cosucoshv,sinucoshv,cosusinhv,sinusinhv,0,0)

and ⟨e1,e1⟩ = 1, ⟨e2,e2⟩ = −1, ⟨e1,e2⟩ = 0. Thus, T is a Lorentzian surface in S5
2(c) and {e1,e2} is

an orthonormal frame of T .

Now, setting

x1 =
2√
6c

cosusinhv, x2 =
2√
6c

sinusinhv, x3 =
2√
6c

cosucoshv,

x4 =
2√
6c

sinucoshv, x5 =
1√
3c

cos2u and x6 =− 1√
3c

sin2u,

we have

e1 =

√
c
2
(−x2,x1,−x4,x3,2x6,−2x5),

e2 =

√
6c
2

(x3,x4,x1,x2,0,0),

and

−x2
1 − x2

2 + x2
3 + x2

4 + x2
5 + x2

6 =
1
c
,

3x2
5 +3x2

6 =
1
c
.

Let ∇̂ be the usual directional derivative in E6
2. We have

∇̂e1e1 =−c
2
(x1,x2,x3,x4,4x5,4x6).

and

⟨∇̂e1e1,e1⟩= ⟨∇̂e1e1,e2⟩= 0.

Thus,

∇e1e1 = 0
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and

α11 = ∇̂e1e1 − c⟨∇̂e1e1,T (x,y)⟩T (x,y)

=−c
2
(x1,x2,x3,x4,4x5,4x6)+ c(x1,x2,x3,x4,x5,x6)

=
c
2
(x1,x2,x3,x4,−2x5,−2x6)

=

√
c
6
(cosusinhv,sinusinhv,

cosucoshv,sinucoshv,−
√

2cos2u,
√

2sin2u).

Analogously,

∇̂e2e2 =
3c
2
(x1,x2,x3,x4,0,0),

∇̂e2e1 = ∇̂e1e2 =

√
3

2
c(−x4,x3,−x2,x1,0,0).

Thus,

∇e2e2 = 0,∇e2e1 = ∇e1e2 = 0

and

α22 =
c
2
(x1,x2,x3,x4,−2x5,−2x6) = α11,

α12 =

√
3

2
c(−x4,x3,−x2,x1,0,0)

=

√
c
2
(−sinucoshv,cosucoshv,−sinusinhv,cosusinhv,0,0),

with ⟨α11,α11⟩=
c
2
,⟨α11,α12⟩= 0,⟨α12,α12⟩=−c

2
.

Then, we have that R⊥ ̸= 0 since α11 + α22 = 2α11 and α12 are linearly independent. Also,

∇e1e1 = ∇e2e2 = ∇e2e1 = ∇e1e2 = 0 means that T is flat, i.e., K = 0.

Moreover, H =
1
2
(α11 −α22) =

1
2
(α11 −α11) = 0, i.e., T is extremal, {H,α11 +α22,α12} is an

orthogonal set and

⟨α11 +α22,α11 +α22⟩= 4⟨α11,α11⟩= 2c =−4⟨α12,α12⟩.

Thus, from Lemma 2.11 we have that T is λ -isotropic with λ =−⟨α12,α12⟩= c
2 . Finally, using Ricci

equation (2.2) we get

R⊥(e1,e2)α11 = R⊥(e1,e2)α22 =−cα12, (3.8)

R⊥(e1,e2)α12 =−c
2
(α11 +α22). (3.9)

It follows from Lemma 2.2 that T is ψ-pseudo-parallel with ψ = − c
2 , that is, T is not a semi-

parallel surface.
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Example 3.11. Let f : Q2
1(c) → Q4

2(3c), c ̸= 0 be an immersion of the Veronese type of Example

3.1, if i : Q4
2(3c) → E5

2+σ
, σ = c−|c|

2c , and j : Q4
2(3c) → Q4+m

2 (3c), m ≥ 1, are the inclusions, we

have from Proposition 2.10 that i ◦ f is a pseudo-parallel Lorentzian surface of E5
2+σ

and j ◦ f is a

pseudo-parallel Lorentzian surface of Q4+m
2 (3c).

Observation 3.12. Classification of ψ-pseudo-parallel Lorentzian surfaces with non-flat normal bun-

dle in Q5
s (c), with s = 2,3, is still an open problem. Even in the case of constant ψ , the question still

remains as to whether there are other surfaces of this type apart from those presented in Example 3.10

and j ◦ f with m = 1 in Example 3.11.



CHAPTER 4

Pseudo-parallel Lorentzian hypersurfaces in
pseudo-Riemannian space forms

In this chapter, we study pseudo-parallel hypersurfaces in pseudo-Riemannian space forms, espe-

cially when the hypersurface and the ambient space both have metric of index 1. Then, we consider

the case where the pseudo-parallelism function is constant and different from the curvature of the

ambient space and give the classification of such hypersurfaces under the hypothesis of being good

in the sense of Ryan. We also give a classification of the complete semi-parallel Lorentzian hyper-

surfaces in the Minkowski space and of the pseudo-parallel Lorentzian hypersurfaces with constant

pseudo-parallelism function and constant mean curvature in Lorentzian space forms.

4.1 Pseudo-parallel hypersurfaces in pseudo-Riemannian
space forms

For the case of hypersurfaces, the pseudo-parallel condition (1.13) can be stated in terms of the

Weingarten operator A in the locally unique, up a sign, normal η-direction. We say that a hypersurface

f : Mn
t →Qn+1

s (c) is ψ-pseudo-parallel if it satisfies the condition:

R(U,V ) ·A = ψ(U ∧V ) ·A, (4.1)

for all U,V ∈ T M, where

(R(U,V ) ·A)Z = R(U,V )AZ −AR(U,V )Z,

((U ∧V ) ·A)Z = (U ∧V )AZ −A(U ∧V )Z,

69
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for all U,V,Z ∈ T M. Next, using Gauss Equation (1.18), we observe that:

(R(U,V ) ·A)Z −ψ((U ∧V ) ·A)Z
= R(U,V )AZ −AR(U,V )Z −ψ((U ∧V )AZ −A(U ∧V )Z)

= c(⟨V,AZ⟩U −⟨U,AZ⟩V )+ ε(⟨AV,AZ⟩AU −⟨AU,AZ⟩AV )

−A(c(⟨V,Z⟩U −⟨U,Z⟩V )+ ε(⟨AV,Z⟩AU −⟨AU,Z⟩AV ))

−ψ(⟨V,AZ⟩U −⟨U,AZ⟩V −A(⟨V,Z⟩U −⟨U,Z⟩V ))

=−(c−ψ)⟨U,AZ⟩V +(c−ψ)⟨V,AZ⟩U − (ε⟨AU,AZ⟩− (c−ψ)⟨U,Z⟩)AV

+(ε⟨AV,AZ⟩− (c−ψ)⟨V,Z⟩)AU + ε⟨AU,Z⟩A2V − ε⟨AV,Z⟩A2U. (4.2)

Thus, from (4.1) and (4.2) we conclude that the hypersurface f is pseudo-parallel if and only if it

satisfies

0 =−(c−ψ)⟨U,AZ⟩V +(c−ψ)⟨V,AZ⟩U − (ε⟨AU,AZ⟩− (c−ψ)⟨U,Z⟩)AV

+(ε⟨AV,AZ⟩− (c−ψ)⟨V,Z⟩)AU + ε⟨AU,Z⟩A2V − ε⟨AV,Z⟩A2U,
(4.3)

for all U,V ∈ T M.

As pointed out in the Introduction, we recall some results given in [44].

Proposition 4.1 (Lobos, [44]). Let f : Mn
t → Qn+1

s (c), n ≥ 2, be a pseudo-parallel hypersurface.

Then, the Weingarten operator A satisfies the polynomial equation:

ε trace(A)A2 +
(
n(c−ψ)− ε trace(A2)

)
A− (c−ψ) trace(A)In = 0, (4.4)

where In is the identity operator in T M.

Proof. The Weingarten operator A can be expressed in an (local) orthonormal frame {E1, . . . ,En} on

Mn
t . Let us εi = ⟨Ei,Ei⟩. Using (4.2), for all W ∈ T M we have

∑
i
(εi(R(W,Ei) ·A)Ei − εiψ((W ∧Ei) ·A)Ei) = ∑

i
εi (−(c−ψ)⟨W,AEi⟩Ei +(c−ψ)⟨Ei,AEi⟩W

− (ε⟨AW,AEi⟩− (c−ψ)⟨W,Ei⟩)AEi +(ε⟨AEi,AEi⟩− (c−ψ)⟨Ei,Ei⟩)AW

+ε⟨AW,Ei⟩A2Ei − ε⟨AEi,Ei⟩A2W
)

=∑
i

εi (−(c−ψ)⟨AW,Ei⟩Ei +(c−ψ)⟨AEi,Ei⟩W − εA
(
⟨A2W,Ei⟩Ei

)
+(c−ψ)A(⟨W,Ei⟩Ei)

+ ε⟨A2Ei,Ei⟩AW − (c−ψ)A(⟨Ei,Ei⟩W ) +εA2(⟨AW,Ei⟩Ei)− ε⟨AEi,Ei⟩A2W
)

=− (c−ψ)AW +(c−ψ) trace(A)W − εA3W +(c−ψ)AW + ε trace(A2)AW −n(c−ψ)AW

+ εA3w− ε trace(A)A2W

=−
(
ε trace(A)A2 +(n(c−ψ)− ε trace(A2))A− (c−ψ) trace(A)I

)
W,

and from pseudo-parallelism condition (4.1) we obtain the polynomial equation (4.4).
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Proposition 4.2 (Lobos, [44]). Let f : Mn
t →Qn+1

s (c), n ≥ 2, be a hypersurface. If for a point x ∈ Mn
t

there exist real numbers λ ,µ such that A2 = λA+ µIn at x, where In denotes the identity operator,

then f satisfies the pseudo-parallelism condition at x with ψ(x) = c− εµ .

Proof. Using Gauss equation, for U,V,Z ∈ TxM we have that

(R(U,V ) ·A)Z =R(U,V )(AZ)−A(R(U,V )Z)

=c(U ∧V )AZ + ε(AU ∧AV )AZ −A(c(U ∧V )Z + ε(AU ∧AV )Z)

=c(U ∧V )AZ + ε(⟨AV,AZ⟩AU −⟨AU,AZ⟩AV )

− cA((U ∧V )Z)− ε(⟨AV,Z⟩A2U −⟨AU,Z⟩A2V )

=c(U ∧V )AZ + ε(⟨V,λAZ +µZ⟩AU −⟨U,λAZ +µZ⟩AV )

− cA((U ∧V )Z)− ε(⟨AV,Z⟩(λAU +µU)−⟨AU,Z⟩(λAV +µV ))

=c(U ∧V )AZ + εµ⟨V,Z⟩AU − εµ⟨U,Z⟩AV

− cA((U ∧V )Z)− εµ⟨V,AZ⟩U)+ εµ(⟨U,AZ⟩V )

=(c− εµ)(U ∧V )AZ −A(U ∧V )Z))

=(c− εµ)((U ∧V ) ·A)Z.

Therefore, f satisfies the pseudo-parallelism condition (4.1) at x with ψ(x) = c− εµ .

Observation 4.3. If f (Mn
t ) is totally umbilical, it can be seen from (4.1) that f is pseudo-parallel

with any smooth function ψ .

We recall that a manifold Mn
t is pseudo-symmetric if there exist a real valued smooth function ψ

on Mn
t , such that

R(U,V ) ·R = ψ(U ∧V ) ·R, (4.5)

for all U,V ∈ T M, where

(R(U,V ) ·R)(X ,Y,Z) = R(U,V )(R(X ,Y )Z)−R(R(U,V )X ,Y )Z −R(X ,R(U,V )Y )Z

−R(X ,Y )R(U,V )Z,

((U ∧V ) ·R)(X ,Y,Z) = (U ∧V )R(X ,Y )Z −R((U ∧V )X ,Y )Z −R(X ,(U ∧V )Y )Z

−R(X ,Y )(U ∧V )Z.

As in the Riemannian case (see [8]), pseudo-parallel Lorentzian hypersurfaces are intrinsically

characterized by the next result:

Proposition 4.4 (Lobos, [44]). Let f : Mn
t → Qn+1

s (c), n ≥ 2, be a ψ-pseudo-parallel hypersurface,

then Mn
t is a ψ-pseudo-symmetric manifold.
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Proof. Using Gauss Equation (1.18) in the definition of (R(U,V ) ·R)(X ,Y,Z), for all X ,Y,Z ∈ T Mn
t ,

we have that

(R(U,V ) ·R)(X ,Y,Z)

=R(U,V )(R(X ,Y )Z)−R(R(U,V )X ,Y )Z −R(X ,R(U,V )Y )Z −R(X ,Y )R(U,V )Z

=R(U,V )(c(X ∧Y )Z + ε(AX ∧AY )Z)− c(R(U,V )X ∧Y )Z − ε(AR(U,V )X ∧AY )Z

− c(X ∧R(U,V )Y )Z − ε(AX ∧AR(U,V )Y )Z − c(X ∧Y )R(U,V )Z − ε(AX ∧AY )R(U,V )Z

=c(R(U,V )(X ∧Y )Z − ((R(U,V )X)∧Y )Z − (X ∧R(U,V )Y )Z − (X ∧Y )R(U,V )Z)

+ εR(U,V )(AX ∧AY )Z − ε(AR(U,V )X ∧AY )Z − ε(AX ∧AR(U,V )Y )Z − ε(AX ∧AY )R(U,V )Z

=ε⟨AY,Z⟩R(U,V )AX − ε⟨AX ,Z⟩R(U,V )AY

− ε⟨AY,Z⟩AR(U,V )X + ε⟨AR(U,V )X ,Z⟩AY

− ε⟨AR(U,V )Y,Z⟩AX + ε⟨AX ,Z⟩AR(U,V )Y

− ε⟨AY,R(U,V )Z⟩AX + ε⟨AX ,R(U,V )Z⟩AY

=ε⟨AY,Z⟩(R(U,V )AX −AR(U,V )X)− ε⟨AX ,Z⟩(R(U,V )AY −AR(U,V )Y )

− ε⟨R(U,V )AX −AR(U,V )X ,Z⟩AY + ε⟨R(U,V )AY −AR(U,V )Y,Z⟩AX ,

since R(U,V )(X ∧Y )Z− ((R(U,V )X)∧Y )Z− (X ∧R(U,V )Y )Z− (X ∧Y )R(U,V )Z = 0. Next, using

pseudo-parallelism condition (4.1) and Gauss equation once more, we obtain

(R(U,V ) ·R)(X ,Y,Z)

=εψ⟨AY,Z⟩(U ∧V (AX)−A(U ∧V (X)))− εψ⟨AX ,Z⟩(U ∧V (AY )−A(U ∧V (Y )))

− εψ⟨U ∧V (AX)−A(U ∧V (X)),Z⟩AY + εψ⟨U ∧V (AY )−A(U ∧V (Y )),Z⟩AX

=εψ⟨AY,Z⟩U ∧V (AX)− εψ⟨AX ,Z⟩U ∧V (AY )

− εψ⟨AY,Z⟩A(U ∧V (X))+ εψ⟨A(U ∧V (X)),Z⟩AY

− εψ⟨A(U ∧V (Y )),Z⟩AX + εψ⟨AX ,Z⟩A(U ∧V (Y ))

− εψ⟨(U ∧V )Z,AY ⟩AX + εψ⟨(U ∧V )Z,AX⟩AY

=ψU ∧V (ε(AX ∧AY )Z)− εψ(A(U ∧V (X))∧AY )Z − εψ(AX ∧A(U ∧V (Y )))Z

− εψ(AX ∧AY )((U ∧V )Z)

=ψ((U ∧V )R(X ,Y )Z −R((U ∧V )X ,Y )Z −R(X ,(U ∧V )Y )Z −R(X ,Y )(U ∧V )Z)

− cψ((U ∧V )((X ∧Y )Z)− ((U ∧V )X ∧Y )Z − (X ∧ (U ∧V )Y )Z − (X ∧Y )((U ∧V )Z))

=ψ((U ∧V ) ·R)(X ,Y,Z),

since (U ∧V )((X ∧Y )Z))− ((U ∧V )X ∧Y )Z− (X ∧ (U ∧V )Y )Z− (X ∧Y )((U ∧V )Z) = 0. Thus, Mn
t

is ψ-pseudo-symmetric.
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4.2 Reduction of the pseudo-parallelism condition for
Lorentzian hypersurfaces in Qn+1

s (c)

Considering the classification of Weingarten operator types for Lorentzian manifolds, provided

by Lemma 1.1, we study the pseudo-parallelism condition for Lorentzian hypersurfaces in Qn+1
s (c)

according to each case.

Observation 4.5. From Corollary 2.8, any Lorentzian surface in Q3
s (c), s ∈ {1,2}, is pseudo-parallel.

For n-dimensional Lorentzian hypersurfaces in pseudo-Riemannian space forms, with n ≥ 3, we

complete a partial result from [44].

Proposition 4.6. Let f : Mn
1 → Qn+1

s (c) be a pseudo-parallel Lorentzian hypersurface, with n ≥ 3

and s ∈ {1,2}. Then, at each point x ∈ Mn
1 ,

(i) either the Weingarten operator A is diagonalizable with principal curvature functions a1, . . . ,an,

and in this case:

(c−ψ + εaia j)(a j −ai) = 0, for all i ̸= j. (4.6)

Consequently f has at most two distinct principal curvatures at x and, if it has exactly two,

their product is ε(ψ − c);

(ii) or the Weingarten operator A has the form:

A =


a 0
1 a

a
. . .

a

 ,

with a2 = ε(ψ − c).

Proof. Since f is pseudo-parallel in Qn+1
s (c), it satisfies

(R(U,V ) ·A)Z −ψ(U ∧V ·A)Z = 0, for all U,V,Z ∈ T M.

Let x be a fixed point of Mn
1 . The proof will be separated in four cases, corresponding to the four

possible forms I, II, III and IV for the Weingarten operator A at x, given in Lemma 1.1.

Case 1: In the case where A is diagonalizable, we have AEi = aiEi, for all i = 1,2, . . . ,n. Then,

for U = Z = Ei and V = E j, i ̸= j, from pseudo-parallelism condition (4.3), it follows that:

0 =−(c−ψ)ai⟨Ei,Ei⟩E j +(c−ψ)ai⟨E j,Ei⟩Ei

− (εa2
i ⟨Ei,Ei⟩− (c−ψ)⟨Ei,Ei⟩)a jE j +(εa jai⟨E j,Ei⟩− (c−ψ)⟨E j,Ei⟩)aiEi

+ εai⟨Ei,Ei⟩a2
jE j − εa j⟨E j,Ei⟩a2

i Ei

= (−(c−ψ)ai − εa2
i a j +(c−ψ)a j + εaia2

j)⟨Ei,Ei⟩E j.
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Since ⟨Ei,Ei⟩ ̸= 0, we obtain identity (4.6), that is

(c−ψ + εaia j)(a j −ai) = 0, i ̸= j.

If there exists distinct ai,a j,ak, we can assume ai ̸= 0. Then, cyclic permuting the indices in (4.6)

and adding the results, we have ai(a j − ak) = 0, which is a contradiction, so at most two of the ai’s

are distinct.

If there exists exactly two unequal eigenvalues ai,a j of A, that is, Mn
1 has two unequal principal

curvatures, then ψ = c+ εaia j. If all eigenvalues of A are equal, then Mn
1 is umbilical and ψ is

arbitrary.

Case 2: If A takes the form II, in a pseudo-orthonormal basis {X ,Y,E3, . . . ,En} at x, for i ≥ 3 we

have

AEi = aiEi, AX = aX +Y, AY = aY,

A2Ei = a2
i Ei, A2X = a2X +2aY, A2Y = a2Y.

if U = Z = X , V = Ei (since n ≥ 3), from pseudo-parallelism condition (4.3), it follows that:

0 =−(c−ψ)⟨X ,aX +Y ⟩Y +(c−ψ)⟨Y,aX +Y ⟩X

− (ε⟨aX +Y,aX +Y ⟩− (c−ψ)⟨X ,X⟩)aY +(ε⟨aY,aX +Y ⟩− (c−ψ)⟨Y,X⟩)(aX +Y )

+ ε⟨aX +Y,X⟩a2Y − ε⟨aY,X⟩(a2X +2aY )

= (c−ψ)Y − (c−ψ)aX +2εa2Y − (εa2 − (c−ψ))(aX +Y )− εa2Y + εa(a2X +2aY )

= 2(c−ψ + εa2)Y.

Thus, we have

c−ψ =−εa2 (4.7)

Now, if U = X , V = Z = Ei, i ≥ 3, from pseudo-parallelism condition (4.3), it follows that:

0 =−(c−ψ)⟨X ,aiEi⟩Ei +(c−ψ)ai⟨Ei,Ei⟩X

− (ε⟨aX +Y,aiEi⟩− (c−ψ)⟨X ,Ei⟩)aiEi +(εa2
i ⟨Ei,Ei⟩− (c−ψ)⟨Ei,Ei⟩)(aX +Y )

+ ε⟨aX +Y,Ei⟩a2
i Ei − εai⟨Ei,Ei⟩(a2X +2aY )

= ((c−ψ)ai + εa2
i a− (c−ψ)a− εaia2)X +(εa2

i − (c−ψ)−2εaia)Y

= (c−ψ + εaia)(ai −a)X +(εa2
i − (c−ψ)−2εaia))Y

Thus,

c−ψ = εa2
i −2εaia. (4.8)

Combining (4.7) with (4.8), we obtain

εa2
i −2εaia =−εa2,
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which is equivalent to

(a−ai)
2 = 0. (4.9)

Thus, we have a = ai, for all i ≥ 3, and A has the form

A =


a 0
1 a

a
. . .

a

 ,

with ψ = c+ εa2.

Case 3: If A takes the form III, in a pseudo-ortonormal basis {X ,Y,E3, . . . ,En} at x, for i ≥ 4 we

have

AEi = aiEi, AX = aX −E3, AY = aY, AE3 = Y +aE3,

A2Ei = a2
i Ei, A2X = a2X −Y −2aE3, A2Y = a2Y, A2E3 = 2aY +a2E3.

Now, choosing U = Z = X and V = E3, from pseudo-parallelism condition (4.3) it follows that:

0 =−(c−ψ)⟨X ,aX −E3⟩E3 +(c−ψ)⟨E3,aX −E3⟩X
− (ε⟨aX −E3,aX −E3⟩− (c−ψ)⟨X ,X⟩)(Y +aE3)+(ε⟨Y +aE3,aX −E3⟩− (c−ψ)⟨E3,X⟩)(aX −E3)

+ ε⟨aX −E3,X⟩(2aY +a2E3)− ε⟨Y +aE3,X⟩(a2X −Y −2aE3)

=−(c−ψ)X − ε(Y +aE3)−2εa(aX −E3)+ ε(a2X −Y −2aE3)

= (−εa2 − c+ψ)X −2εY − εaE3,

which is a contradiction since ε ̸= 0. Thus, A can not take the form III.

Case 4: If A takes the form IV , with two complex conjugate eigenvalues, for i ≥ 3 we have

AEi = aiEi, AE1 = aE1 −bE2, AE2 = bE1 +aE2,

A2Ei = a2
i Ei, A2E1 = (a2 −b2)E1 −2abE2, A2E2 = 2abE1 +(a2 −b2)E2.

If U = Z = E1, V = E2, from pseudo-parallelism condition (4.3) it follows that:

0 =−(c−ψ)⟨E1,aE1 −bE2⟩E2 +(c−ψ)⟨E2,aE1 −bE2⟩E1

− (ε⟨aE1 −bE2,aE1 −bE2⟩− (c−ψ)⟨E1,E1⟩)(bE1 +aE2)

+(ε⟨bE1 +aE2,aE1 −bE2⟩− (c−ψ)⟨E2,E1⟩)(aE1 −bE2)

+ ε⟨aE1 −bE2,E1⟩(2abE1 +(a2 −b2)E2)− ε⟨bE1 +aE2,E1⟩((a2 −b2)E1 −2abE2)

= (−(c−ψ)b+ εb(a2 −b2)−b(c−ψ)−2εa2b−2εa2b+ εb(a2 −b2))E1

+((c−ψ)a+ εa(a2 −b2)− (c−ψ)a+2εab2 − εa(a2 −b2)−2εab2)E2

=−2b(c−ψ + ε(a2 +b2))E1.
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Thus, b ̸= 0 implies

c−ψ =−ε(a2 +b2). (4.10)

On the other hand, since n ≥ 3, if U = E1, V = Z = Ei, i ≥ 3, from pseudo-parallelism condition (4.3),

it follows that:

0 =−(c−ψ)ai⟨E1,Ei⟩Ei +(c−ψ)ai⟨Ei,Ei⟩E1

− (ε⟨aE1 −bE2,aiEi⟩− (c−ψ)⟨E1,Ei⟩)aiEi +(εa2
i ⟨Ei,Ei⟩− (c−ψ)⟨Ei,Ei⟩)(aE1 −bE2)

+ ε⟨aE1 −bE2,Ei⟩a2
i Ei − εai⟨Ei,Ei⟩((a2 −b2)E1 −2abE2)

= ((c−ψ)ai + εaa2
i − (c−ψ)a− εai(a2 −b2))E1 +(−εba2

i +(c−ψ)b+2εaiab)E2

= ((c−ψ + εaai)(ai −a)+ εaib2)E1 +b(−εa2
i +(c−ψ)+2εaia)E2

Using that b ̸= 0, we obtain

c−ψ =−ε(2aia−a2
i ) (4.11)

Next, from (4.10) and (4.11), we obtain that

a2 +b2 = 2aia−a2
i ⇐⇒ a2 −2aai +a2

i +b2 = 0 ⇐⇒ (a−ai)
2 +b2 = 0,

which is not possible, since b ̸= 0. Thus, A can not have a complex eigenvalue.

4.3 Pseudo-parallel Lorentzian hypersurfaces in Qn+1
1 (c) with

constant ψ

Now, we focus on the case where the ambient space form is Lorentzian, i.e., s = 1. The following

results are consequences of Proposition 4.6.

Lemma 4.7. Let f : Mn
1 → Qn+1

1 (c), n ≥ 3, be a pseudo-parallel Lorentzian hypersurface. Then, at

each point x ∈ Mn
1 , either

(i) the Weingarten operator Ap is diagonalizable and the principal curvatures ai of Mn
1 , 1 ≤ i ≤ n,

satisfy the identity:

(c−ψ +aia j)(ai −a j) = 0, for all i ̸= j. (4.12)

Consequently, in an orthonormal basis at x, either

• Ap = aIn, a ∈ R, or

• Ap = aIk ⊕bIn−k, where 1 ≤ k ≤ n−1, ab = ψ − c and a ̸= b.
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(ii) or ψ = c and for a pseudo-orthonormal basis at x

Ap =


0 0
1 0

0
. . .

0

 ,

(iii) or ψ > c and for a pseudo-orthonormal basis at x

Ap =


a 0
1 a

a
. . .

a

 , where a2 = ψ − c > 0.

Corollary 4.8. Let f : Mn
1 →Qn+1

1 (c), n ≥ 3, be a ψ-pseudo-parallel Lorentzian hypersurface. Then,

for any x ∈ Mn
1 such that ψ(x) ̸= c, we have that k(x) = 0 or k(x) = n. If k(x) = n, then Ax has at most

two distinct eigenvalues.

Proof. If Ax is diagonalizable, we assume to the contrary that 1 ≤ k(x) ≤ n− 1, Let ai be a nonzero

eigenvalue of Ax, from Lemma 4.7, with a j = 0, it follows that ai(c − ψ(x)) = 0, which is a

contradiction. Thus, k(x) = 0 or k(x) = n. If k(x) = n, we have that (c−ψ(x)+ aia j)(ai − a j) = 0,

for any i ̸= j, then ai = a j or ai =
ψ(x)−c

a j
̸= 0. It follows that at most two eigenvalues of Ax are distinct.

If Ax is non-diagonalizable, then the proposition follows from (iii) in Lemma 4.7.

Corollary 4.9. Let f : Mn
1 →Qn+1

1 (c), n ≥ 3, be a Lorentzian hypersurface and let x ∈ Mn
1 .

(i) If k(x)≤ 1, we have that R(X ,Y ) ·A = cX ∧Y ·A, for all X ,Y ∈ TxMn
1 .

(ii) If k(x)≥ 2 and R(X ,Y ) ·A = cX ∧Y ·A, for all X ,Y ∈ TxMn
1 , then Ax is diagonalizable and the

nonzero principal curvatures are equal.

Proof. First, suppose that Ax is diagonalizable. If k(x) ≤ 1, that is, if at most one of ai’s is nonzero,

say a, then we have that A2
x −aAx = 0 and it follows from Proposition 4.2 that the pseudo-parallelism

condition is satisfied at x with ψ(x) = c. If k(x)≥ 2, then for any i ̸= j, such that aia j ̸= 0, it follows

from the identity (4.12) that ai − a j = 0, if the pseudo-parallelism condition is satisfied in x with

ψ(x) = c.

Now, suppose that Ax is non-diagonalizable. It follows from Lemma 4.7 that if the pseudo-

parallelism condition is satisfied at x with ψ = c, then k(x) = 1. Conversely, if k(x) = 1, since Ax

only can take the form II in Lemma 1.1, with a = a3 = · · · = an = 0, we have that A2
x = 0 and it

follows from Proposition 4.2 that the pseudo-parallelism condition is satisfied at x with ψ = c.
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For the case ψ = c = 0, we obtain the next result.

Theorem 4.10. Let f : Mn
1 → En+1

1 be a connected and complete semi-parallel Lorentzian hypersur-

face in En+1
1 , with n ≥ 3. Then, f (Mn

1) is congruent to one of the following Lorentzian submanifolds:

(i) En
1 = {x ∈ En+1

1 : xn+1 = 0};

(ii) Sn
1(a

2) =

{
x ∈ Rn+1

1 : −x2
1 +

n+1

∑
i=2

x2
i =

1
a2

}
with a ̸= 0;

(iii) Sk(a2)×En−k
1 =

{
x ∈ En+1

1 :
k+2

∑
i=2

x2
i =

1
a2

}
, with a ̸= 0 and 2 ≤ k ≤ n−1;

(iv) Sk
1(a

2)×En−k =

{
x ∈ En+1

1 : −x2
1 +

k+1

∑
i=2

x2
i =

1
a2

}
, with a ̸= 0 and 2 ≤ k ≤ n−1;

(v) En−2
1 × h(E2), where h(E2) is a Euclidean cylinder in a subspace E3 of En+1

1 orthogonal to

En−2
1 ; or En−2 ×h(E2

1), where h(E2
1) is a Lorentzian cylinder or a B-scroll in a subspace E3

1 of

En+1
1 orthogonal to En−2.

Proof. First, consider the case where k(x0)≥ 2 for some point x0 ∈ Mn
1 . Note that the proof of Theo-

rem 2 of [75] can be carried out without major changes for the weaker condition k(x) ≥ 2, provided

that the Weingarten operator at any point x ∈ Mn
1 with k(x)≥ 2 takes the form Ax = a(x)Ik(x)⊕0n−k(x),

with a(x) ̸= 0, which is the case, from Lemma 4.7.

Then, if k(x0) ≥ 2 at some point x0 ∈ Mn
1 , let π : M̃n

1 → Mn
1 be the universal covering of Mn

1 and

consider the immersion f̃ = f ◦π . Proceeding for f̃ as in [75, 59], as we show in Proposition A.1

in the Appendix A, we obtain that k(x) and the nonzero eigenvalue a(x) are constant, say k(x) = k,

a(x) = a, and f̃ : M̃n
1 → En+1

1 is a surjective map onto either a totally umbilical Sn
1(a

2), with a ̸= 0,

or a product as in (iii) and (iv). Note that if f̃ (M̃n
1) is also simply connected, we can deduce that π is

one-to-one, thus, f is an isometry and Mn
1 is simply connected as well. If f̃ (M̃n

1) = S2
1(a

2)×En−2,

then f̃ = f ◦π is just a surjective map and π is not necessarily one-to-one, so Mn
1 is not necessarily

simply connected in this case, but still we have f (Mn
1) = S2

1(a
2)×En−2.

On the other hand, if k(x) ≤ 1 for all x ∈ Mn
1 , we have that Mn

1 has constant curvature 0. From

Corollary 4.9, we know that any such hypersurface in En+1
1 is always semi-parallel. It follows from

the classification of connected complete Lorentzian hypersuperfaces with constant curvature of En+1
1

in Theorem 3.5 of [6] that f (Mn
1) is a totally geodesic En

1 or has one of the forms in (v) (in this case,

the subset of geodesic points of f (Mn
1) is not necessarily empty). This completes the proof of the

theorem.
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4.4 Good pseudo-parallel Lorentzian hypersurfaces with con-
stant ψ ̸= c

From here, we will study ψ-pseudo-parallel Lorentzian hypersurfaces in Qn+1
1 (c) with constant

ψ using the techniques in [6, 66] to obtain analogous classification results when ψ ̸= c.

Let f : Mn
1 → Qn+1

1 (c) be a Lorentzian hypersurface, with n ≥ 3. In the sense of Ryan [66], we

say that a point x ∈ Mn
1 is bad if Ax is non-singular and has at least one eigenvalue of multiplicity one.

Otherwise, x is said to be good. If all points of M2
1 are good, then we say that f is a good hypersurface.

Observation 4.11. Let f : Mn
1 →Qn+1

1 (c) be a ψ-pseudo-parallel Lorentzian hypersurface, with n≥ 3

and constant ψ ̸= c. From Lemma 4.7, we have shown that at each point x ∈ Mn
1 the Weingarten

operator Ax can be one of the following.

1. Ax = aIn ̸= 0,

2. Ax = 0,

3. Ax is diagonalizable and has two unequal nonzero eigenvalues a, b, each of multiplicity greater

than 1. In this case, we have ab = ψ − c.

4. Ax is diagonalizable and has two unequal nonzero eigenvalues a, b, of multiplicity 1 and n−1.

In this case, we have ab = ψ − c.

5. Ax is non-diagonalizable and has only one eigenvalue a which is nonzero. In this case, we have

that ψ − c = a2 > 0 and the minimal polynomial of Ax is (t −a)2.

Definition 4.12. We say that x ∈ Mn
1 is a point of type 1,2, . . . ,5 whenever Ax has, respectively, the

form 1,2, . . . ,5 in the list in Remark 4.11. The set of points of type i will be denoted by Ci.

Observation 4.13. If f : Mn
1 →Qn+1

1 (c) is a ψ-pseudo-parallel Lorentzian hypersurface, with n ≥ 3

and ψ ̸= c, the set of bad points of Mn
1 is precisely C4.

Proposition 4.14. Let f : Mn
1 →Qn+1

1 (c) be a ψ-pseudo-parallel Lorentzian hypersurface, with n ≥ 3

and ψ ̸= c. Then, C4 is open.

Proof. Assume without loss of generality that Mn
1 is orientable. Since f is ψ-pseudo-parallel with

ψ ̸= c, from Lemma 4.7, all eigenvalues of A are real numbers. Therefore, we may define n principal

curvature functions {a1, . . . ,an} as done in Lemma 2.1 of [66] and using the same arguments there,

we conclude that the ai’s are continuous functions.
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Note that, also from Lemma 4.7, only two eigenvalues of A can be distinct. Let x0 be a bad

point such that (without loss of generality) a(x) = a1(x0) > a2(x0) = a3(x0) = · · · = an(x0) = b(x).

By continuity, there is an open neighborhood U of x0, in which we have a = a1 > a j, for all j ∈
{2,3, . . . ,n}. We conclude that a2 = a3 = · · ·= an = b in U , thus, the multiplicities of eigenvalues a,

b are constant in U . Moreover, U can be chosen so that ai ̸= 0 in U since ai(x0) ̸= 0 for all 1 ≤ i ≤ n.

Then, by checking the list in Remark 4.11, we conclude that U consists entirely of type 4 points.

Observation 4.15. The same argument above shows that the set of type 3 points is open and the

multiplicities remain constant in a sufficiently small neighborhood of a point of that type.

Proposition 4.16. Let f : Mn
1 →Qn+1

1 (c) be a ψ-pseudo-parallel Lorentzian hypersurface, with n ≥ 3

and constant ψ < c. Then, the set of bad points is closed.

Proof. Let {xi} be a sequence of bad points converging to some point x ∈ Mn
1 . For any i ≥ 1, Axi

is diagonalizable and has two unequal eigenvalues a(xi), b(xi), such that a(xi)b(xi) = ψ − c. By

continuity, we have a(x)b(x) =ψ−c. Since ψ is constant and ψ−c< 0≤ a2(x), we have a(x) ̸= b(x)

and a(x)b(x) ̸= 0. It follows that Ax is diagonalizable with two unequal nonzero eigenvalues. Thus, x

is type 3 or type 4. Since the set of type 3 points is open, it follows that x must be of type 4, i.e., x is

a bad point.

Proposition 4.17. Let f : Mn
1 →Qn+1

1 (c) be a connected good ψ-pseudo-parallel Lorentzian hyper-

surface, with n ≥ 3 and constant ψ ̸= c. Then, either k(x) = 0 for all x ∈ Mn
1 , or k(x) = n for all

x ∈ Mn
1 .

Proof. A) If ψ < c, the argument is analogous to that in Proposition 4.7 of [66]. In fact, from the list

in Remark 4.11, we can define W = {x ∈ Mn
1 : k(x) = 0}= {x ∈ Mn

1 : det(Ax) = 0}. We have that W is

closed. Since Mn
1 is connected, it will be sufficient to show that W is open. First consider a sequence

of points {yi} of type 3 converging to some point y0. Since the principal curvatures are continuous

and satisfy a(yi)b(yi) = ψ − c < 0, for all i, it follows that a(y0)b(y0) ̸= 0. Thus, y0 can not lie in

W . Then, for a given x0 ∈ W , we can choose a connected neighborhood U of x0 which contains no

points of type 3. We will now show that U has no points of type 1. Suppose there is a point y of type

1 in U . Let V = {x ∈ U : det(Ax) = det(Ay)}. We have that V is closed in U . Choose an arbitrary

z ∈ V . Since Az is non-singular, z has a (connected) neighborhood U ′ ⊂ U where A is non-singular.

U ′ consists entirely of umbilical poits. By Proposition D.4 of [41], the principal curvature function a

of A is constant in U ′ and is equal to a(z), thus U ′ ⊂U . This shows that V is open and hence V =U .

This can not happen since x0 belongs to W . We conclude that there are no type 1 points in U . Thus,

from the list in Remark 4.11 and since Mn
1 is good, we have that U ⊂W and W is open.

B) If ψ > c, the argument is analogous to that in Proposition 5.7 in [6]. As above, the subset

W = {x ∈ Mn
1 : k(x) = 0}= {x ∈ Mn

1 : det(Ax) = 0} is closed. It remains to show that W is also open.
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Analogously to the case ψ < c, we have that W ∩C3 = /0, where C3 denotes the closure of C3. Then,

for each x0 ∈W , we can choose a connected neighborhood U of x0 which contains no points of type

3. We claim that U ∩C1 =U ∩C5 = /0. Indeed, let x1 ∈U ∩(C1∪C5), and set Vx1 = {x ∈U : det(Ax) =

det(Ax1) = (a(x1))
n}, which is a closed subset of U . Choose an arbitrary z ∈ Vx1 . Since Ax1 is non-

singular, z has a (connected) neighborhood U ′ ⊂ U where A is non-singular. If {yi} is a sequence

in C5 converging to z, since the principal curvature a satisfies a(yi)
2 = ψ − c for all i, then we get

by continuity that a(z) =
√

ψ − c. Since z is arbitrary, we may assume that either U ′ ⊂ C1 or else

a =
√

ψ − c in U ′. If U ′ ⊂C1, then U ′ is totally umbilical. By Proposition D.4 of [41], the principal

curvature function a of A is constant in U ′ and is equal to a(z), thus U ′ ⊂ U . This shows that Vx1 is

open and hence Vx1 =U . This is a contradiction since x0 ∈W . Hence, we conclude in this case that

U ∩ (C1 ∪C5) = /0 as claimed. If a =
√

ψ − c in U ′, then a(w) = a(z) =
√

ψ − c, for all w ∈U ′, and

we have that det(Aw) = det(Az) = det(Ax1), for all w ∈ U ′, consequently, U ′ ⊂ Vx1 . This also shows

that Vx1 is open and hence Vx1 = U . This is a contradiction since x0 ∈ W . We therefore conclude

in this case that U ∩ (C1 ∪C5) = /0. Hence, U ⊂ W and W is open. The proof of the proposition is

complete.

Proposition 4.18. Let f : Mn
1 →Qn+1

1 (c) be a connected ψ-pseudo-parallel Lorentzian hypersurface,

with n ≥ 3 and constant ψ < c. If Mn
1 has at least one good point, then either f (Mn

1) is totally

geodesic, totally umbilical or Mn
1 consists entirely of points of type 3.

Proof. Since Mn
1 has at least one good point, it follows from Proposition 4.14, Proposition 4.16 and

the connectedness of Mn
1 that f is a good hypersurface. If k(x) = 0 for all x∈Mn

1 , then f (Mn
1) is totally

geodesic. On the other hand, suppose that k(x0) ≥ 1, for some x0 ∈ Mn
1 , it follows from Proposition

4.17 that k(x) = n for all x ∈ Mn
1 . Note that Mn

1 does not contain type 5 points, since ψ −c < 0. Thus,

in this case, Mn
1 only can contain type 3 points or totally umbilical points. Since C3 is closed and

open, the proposition follows again by the connectedness of Mn
1 .

Theorem 4.19. Let f : Mn
1 → Qn+1

1 (c) be a ψ-pseudo-parallel Lorentzian hypersurface, with n ≥ 3

and constant ψ < c. Then f (Mn
1) is locally congruent to either a good hypersurface which is one of

the following

(i) Sn
1(a

2 + c) =
{

x ∈ Sn+1
1 (c)⊂ En+2

1 : xn+2 =

√
1
c
− 1

a2 + c

}
with a ∈ R, if c > 0;

(ii) En
1 = {x ∈ En+1

1 : xn+1 = 0} or Sn
1(a

2) =

{
x ∈ En+1

1 : −x2
1 +

n+1

∑
i=2

x2
i =

1
a2

}
with a ̸= 0, if c = 0;

(iii) Hn
1(a

2+c) =
{

x ∈Hn+1
1 (c)⊂ En+2

2 : xn+2 =

√
1
c
− 1

a2 + c

}
, with |a|<

√
−c, or Sn

1(a
2+c) ={

x ∈Hn+1
1 (c)⊂ En+2

2 : x1 =

√
1

a2 + c
− 1

c

}
, with a2 >−c. In this case c < 0;
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(iv) a flat totally umbilical hypersurface of the form {y ∈Hn+1
1 (c) : ⟨y,X⟩= a}, where a =±

√
−c

and X is a parallel vector field in En+2
2 , which satisfies ⟨X ,X⟩= 0. In this case c < 0;

(v) Sk
1(a

2+c)×Sn−k(b2+c) =

{
x ∈ Sn+1

1 (c)⊂ En+2
1 : −x2

1 +
k+1

∑
i=2

x2
i =

1
a2 + c

,
n+2

∑
i=k+2

x2
i =

1
b2 + c

}
,

where c > 0, ψ = ab+ c = 0 and 1 < k < n−1;

or else, f (Mn
1) is locally congruent to a bad hypersurface foliated either by (n − 1)-dimensional

Riemannian spaces of constant curvature greater than c or by (n−1)-dimensional Lorentzian spaces

of constant curvature greater than c.

Proof. We can assume that Mn
1 is connected. First, suppose that Mn

1 contains at least one good

point. It follows from Proposition 4.18 that Mn
1 is either totally geodesic, totally umbilical or else Mn

1

consists entirely of points of type 3 and the two unequal nonzero eigenvalues a, b of the Weingarten

operator A satisfy ab = ψ − c < 0. If Mn
1 consists entirely of points of type 3, then the eigenvalues

a, b have constant multiplicities. We deduce from Proposition D.4 of [41], that the eigenspace

distributions Ta and Tb, given by Ta = {X ∈ T M : AX = aX} and Tb = {X ∈ T M : AX = bX}, are

differentiable and integrable with a and b constant on each leaf of the corresponding eigenspace

distribution. Since ab = ψ − c is constant and a,b are nonzero, it follows that a is constant if

and only if b is constant, thus a,b are constant everywhere in Mn
1 . Therefore, f is isoparametric

with diagonalizable Weingarten operator and (i), (ii), (iii), (iv) and (v) follow from Theorem 5.1

of [1] combined with Theorem 3.1 of [80]. In particular, from Theorem 3.5 of [1] we have that

ψ = ab+ c = 0 if all point of Mn
1 are type 3 points.

On the other hand, if all the points of Mn
1 are bad points, as in Theorem 5.10 of [36], let a and

b the two distinct nonzero eigenvalues of A, with constant multiplicities n− 1 and 1, respectively.

Then, by Proposition D.4 of [41], we have that the distribution Ta is differentiable and integrable with

a constant on each leaf of Ta. Moreover, each integral manifold Ma of Ta is a non-degenerate totally

geodesic hypersurface of Mn
1 , thus the curvature tensor Ra of Ma coincides with the restriction of R to

Ma. This means that for any X ,Y ∈ Ta, we have that Ra(X ,Y ) = R(X ,Y ) = (a2 + c)X ∧Y . It follows

that Ma is a (n−1)-dimensional space of constant curvature a2 + c. This completes the proof of the

theorem, since the metric of Ma can be Riemannian or Lorentzian and all the leaves must have the

same metric.

Observation 4.20. The immersion f : En
1 → Hn

1(c), x 7→ (
√
−c⟨x,x⟩ + 5

4
√
−c ,x,

√
−c⟨x,x⟩ +

3
4
√
−c) is totally umbilical, with Weingarten operator A = ±

√
−cIn, and the vector field X =

(±2c,0, . . . ,0,±2c) ∈ En
2 satisfies conditions in (iv) of Theorem 4.19.

Corollary 4.21. Let f : Mn
1 → Qn+1

1 (c) be a connected complete ψ-pseudo-parallel Lorentzian hy-

persurface, with n ≥ 3, c ≥ 0 and constant ψ < c, containing at least one good point. Then, f (Mn
1) is

congruent to one of the hypersurfaces described in (i), (ii), (iii), (iv) and (v) of Theorem 4.19.
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Proof. Since Mn
1 has at least one good point, we have that f is isoparametric with diagonalizable

Weingarten operator and f (Mn
1) is locally congruent to one of the models in Theorem 4.19. If Mn

1 is

not locally congruent with Hn
1(a

2 + c) or S2
1(a

2 + c)×Sn−2(b2 + c), the result follows from Theorem

5.2 of [1].

If Mn
1 is locally congruent to S2

1(a
2+c)×Sn−2(b2+c), with a,b constant, we have that ab+c = 0

from Theorem 4.19. Then, let π : M̃n
1 → Mn

1 be its universal covering, we have the immersion

f̃ = f ◦ π : M̃n
1 → Sn+1

1 (c). In this case, the unit normal vector field η to f̃ and the distribution Ta

and Tb are globally defined with dimensions greater than 1. It follows from Wu’s extension of the de

Rham decomposition theorem to pseudo-Riemannian manifolds in [78] that M̃n
1 is congruent to the

simply connected product S̃2
1(a

2 + c)×Sn−2(b2 + c), where π̃ : S̃2
1(a

2 + c) → S2
1(a

2 + c) is the uni-

versal covering. Then, consider π2 : S̃2
1(a

2 + c) × Sn−2
1 (b2 + c) → S2

1(a
2 + c) × Sn−2(b2 + c),

given by π2 = (π̃, id). Note that the inclusion i of S2
1(a

2 + c) × Sn−2(b2 + c) ={
(y1,y2,y3,z4, . . . ,zn+2) ∈ En+2

1 : −y2
1 + y2

2 + y2
3 =

1
a2 + c

, ∑
n+2
i=4 z2

i =
1

b2 + c

}
into Sn+1

1 (c) does

in fact exist, since
1

a2 + c
+

1
b2 + c

= − 1
ab

=
1
c

. Note that S2
1(a

2 + c)× Sn−2(b2 + c) is connected

and complete. Consider then f̂ = i ◦ π2. Since k(x) = n everywhere (because all points are type 3

points), we can apply Theorem 1.3 of [66] to deduce that f̃ = f̂ . Thus, f (Mn
1) = f̃ (M̃n

1) is congruent

to S2(a2 + c)×Sn−2
1 (b2 + c) and we obtain the missing case k = 2, in (v).

Now, suppose that c < 0. If f (Mn
1) is a totally geodesic hypersurface of Hn+1

1 (c), then it is

congruent to the standard imbedding of Hn
1(c) into Hn+1

1 (c), given in (iii) of Theorem 4.19 with

a = 0 (in fact, f (M2
1) is totally umbilical in En+2

1 with codimension two). If Mn
1 is locally congruent

to Hn
1(a

2 + c), with a ̸= 0, let π : M̃n
1 → Mn

1 be its universal covering. Then, M̃n
1 is a connected

complete simply connected space of constant curvature a2 + c, and hence congruent to H̃n
1(a

2 + c),

where π̃ : H̃n
1(a

2 + c)→ Hn
1(a

2 + c) is the universal covering. Note that k(x) = n everywhere. Since

we have the inclusion i : Hn
1(a

2 + c) → Hn+1
1 (c) ⊂ En+2

2 , given by x 7→
(

x,
√

1
c −

1
a2+c

)
, it follows

from Theorem 1.3 of [66] that f (Mn
1) = f ◦π(M̃n

1) is congruent to i ◦ π̃(M̃n
1) = i(Hn

1(a
2 + c)). This

completes the proof of the corollary.

Now, for ψ > c we have the next result.

Theorem 4.22. Let f : Mn
1 → Qn+1

1 (c) be a good ψ-pseudo-parallel Lorentzian hypersurface, with

n ≥ 3 and constant ψ > c. Then, for each connected component C of Mn
1 containing at least some

point x such that k(x)≥ 1, we have that f is isoparametric and either

(i) totally umbilical,

(ii) locally congruent to a product of two spaces each of constant curvature greater than c. In this

case, the ambient space is Hn+1
1 (c).
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(iii) or the open subset of non umbilical points of C consists entirely of points of type 5.

Proof. Let C be a connected component of Mn
1 , which contains at least one point x such that k(x)≥ 1.

It follows from Proposition 4.17 that k(x) = n everywhere in C. Since f is pseudo-parallel and ψ > c,

according to Lemma 4.7, we conclude that A has at most two unequal eigenvalues, which are real

nonzero, and if at some point y ∈ Mn
1 exactly two are distinct then Ay is diagonalizable.

Suppose first that there is a type 3 point x0 in C. Define two continuous functions a = a1 and

b = an (the largest and smallest eigenvalues respectively), and note that a ≥ b. Let

W3 = {x ∈C : a(x) = a(x0) and b(x) = b(x0)}.

We have that W3 is a closed subset in C. By continuity, x0 has a neighborhood U consisting of points

of type 3 (C3 is open). Indeed, by applying an analogous argument of that in Proposition 2.2 of

[66], we have that a and b are differentiable and have constant multiplicities, say k and n− k, in U ,

where 1 < k < n−1 since all points are good. Thus, U consists entirely of points of type 3, as desired.

Let a1 = a2 = · · · = ak = a and ak+1 = ak+2 = · · · = an = b. From proposition D.4 of [41] and

since a, b satisfy b = ψ−c
a in U , it follows that a = a(x0) and b = b(x0) near x0. Observe that x0 could

have been any point in W3, thus, W3 is also open and hence is all of C. Thus, f is then isoparametric in

C with A diagonalizable and the unequal principal curvatures satisfy ab > 0. Assertion (ii) of the the-

orem follows from Theorem 5.1 of [1], including the fact that ψ = c+ab= 0. Thus, c< 0 in this case.

Suppose now that C does not contains points of type 3. Since Mn
1 is a good hypersurface, we see

that C consists entirely of umbilical points and type 5 points. Let a ̸= 0 be the unique eigenvalue of

A in C. By Proposition D.4 of [41], we have that a is constant in C, say a(x) = a0, thus we obtain

that f is isoparametric in C. Since a point x of type 5 must satisfy the equation a2(x) = ψ −c > 0, we

get that C consists entirely of umbilical points if a0 ̸=±
√

ψ − c. On the other hand, if a0 =
√

ψ − c,

consider the subsets

U = {x ∈C : Ax =
√

ψ − cIn},

V = {x ∈C : Ax =

( √
ψ − c 0
1

√
ψ − c

)
⊕
√

ψ − cIn−2}.

We have that U and V are complementary with U closed. Thus, the open set V of type 5 points of C,

which can be empty, is open. This proves assertions (i) and (iii) of the theorem.

Theorem 4.23. Let f : Mn
1 → Qn+1

1 (c) be a good ψ-pseudo-parallel Lorentzian hypersurface, with

n ≥ 3 and constant ψ > c. Then, f (Mn
1) is locally congruent to one of the following Lorentzian

hypersurfaces:

(i) A totally geodesic or totally umbilical hypersurface as described in parts (i), (ii), (iii) and (iv)

of Theorem 4.19.
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(ii) Hk
1(a

2+c)×Sn−k
(

c2

a2 + c
)
=

{
x ∈Hn+1

1 (c)⊂ En+2
2 : −

2

∑
i=1

x2
i +

k+1

∑
i=3

x2
i =

1
a2 + c

,
n+2

∑
i=k+2

x2
i =

a2

c2 + ca2

}
,

where c < 0, |a|<
√
−c, ψ = 0 and 1 < k < n−1.

(iii) Sk
1(a

2+c)×Hn−k
(

c2

a2 + c
)
=

{
x ∈Hn+1

1 (c)⊂ En+2
2 : −x2

1 +
k+2

∑
i=3

x2
i =

1
a2 + c

,−x2
2 +

n+2

∑
i=k+3

x2
i =

a2

c2 + ca2

}
,

where c < 0, |a|>
√
−c, ψ = 0 and 1 < k < n−1.

(iv) A generalized umbilical hypersurface of degree 2 as in (1.36), (1.37) or (1.38), in the open

subset of non-umbilical points.

Proof. We can assume that Mn
1 is connected. We observe first that if there exists a point x ∈ Mn

1 with

k(x) ≥ 1, then f is necessarily isoparametric, according to each possibility in Theorem 4.22, that is,

either the Weingarten operator is diagonalizable with two unequal nonzero eigenvalues everywhere,

f is totally umbilical or all the non umbilical points are type 5 points. In other case, f (Mn
1) is a totally

geodesic hypersurface. Thus, the result follows from Theorem 5.1 of [1], combined with Theorem

4.5 of [55], Theorem 5.5 of [5] and Theorem 3.1 and Theorem 4.2 of [80].

In the last part of Corollary 4.23, we were forced to omit the presence of umbilical points, due

to the possible existence of pseudo-parallel Lorentzian hypersurfaces containing type 5 points which

converge to umbilical points, as shown by the following example, at least for the case c = 0.

Example 4.24. Consider the matrix

M(s) =

 0 0 −1
0 0 s
s −1 0

 .

We denote

X(s) =

 x1 x2 x3
y1 y2 y3
z1 z2 z3

 ,

and let us solve the initial value problem:

X ′(s) = X(s)M(s), X(0) = I3. (4.13)

We have that

x′2 =−x3, x′3 =−x1 + sx2, x′1 = sx3,

y′2 =−y3, y′3 =−y1 + sy2, y′1 = sy3,

z′2 =−z3, z′3 =−z1 + sz2, z′1 = sz3.

We affirm that there is a matrix X(s) which is a solution of the initial value problem (4.13) in a
neighborhood of s = 0. Let T (s),B(s),C(s) be the vector fields given by the columns of X(s) in a
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pseudo-orthonormal frame {ẽ1, ẽ2, ẽ3, ẽ4} of E4
1, where ẽ1 and ẽ2 are lightlike vector fields, that is,

T (s) = x1ẽ1 + y1ẽ2 + z1ẽ3, B(s) = x2ẽ1 + y2ẽ2 + z2ẽ3 and C(s) = x3ẽ1 + y3ẽ2 + z3ẽ3. We have that
these vector fields satisfy T ′(s) = sC(s), B′(s) = −C(s) and C′(s) = −T (s)+ sB(s), with T (s) and
B(s) lightlike, so the curve γ(s) =

∫ s
0 T (t)dt is a null curve and {T (s),B(s),C(s), ẽ4} is a pseudo-

orthonormal frame associated to γ , with τ = −1 and κ(s) = s. In fact, using Mathematica [79] to
solve (4.13), we obtain explicit expressions for T (s), B(s) and C(s) and we also obtain that the null
curve γ is given in terms of the hypergeometric 0F1 function as follows.

γ(s) =
1
6

s

{
2 0F1

(
;
1
3
,− s3

18

)2

+4 0F1

(
;
1
3
,− s3

18

)
0F1

(
;
4
3
,− s3

18

)
+ s3

0F1

(
;
4
3
,− s3

18

)2
}

ẽ1

+

{
8 0F1

(
;
2
3
,− s3

18

)2

−8 0F1

(
;
2
3
,− s3

18

)
0F1

(
;
5
3
,− s3

18

)
+ s3

0F1

(
;
5
3
,− s3

18

)2
}

ẽ2

+
1
6

{
−2 0F1

(
;
1
3
,− s3

18

)[
2 0F1

(
;
1
3
,− s3

18

)
+ s3

0F1

(
;
4
3
,− s3

18

)]
+s3

[
0F1

(
;
1
3
,− s3

18

)
+ 0F1

(
;
4
3
,− s3

18

)]
0F1

(
;
5
3
,− s3

18

)}
ẽ3,

(4.14)

where we can choose ẽ1 =
(

1√
2
, 1√

2
,0,0

)
, ẽ2 =

(
1√
2
,− 1√

2
,0,0

)
, ẽ3 = (0,0,1,0) and ẽ4 = (0,0,0,1),

given in the standard coordinates of E4
1.

Then, we consider f : U → E4
1 with U a neighborhood of 0 in R3, given by

f (s,u,z) = γ(s)+uB(s)+ zẽ4 +C(s)−
√

1− z2C(s). (4.15)

A unit normal vector field η to f is given by

η(s,u,z) =−uB(s)+
√

1− z2C(s)− zẽ4.

Considering the frame f∗
(

∂

∂ s

)
, f∗
(

∂

∂u

)
, f∗
(

∂

∂ z

)
, and using again Mathematica, we obtain that the

first fundamental form of f is

I(s,u,z) =


u2 +2s(1− z2 −

√
1− z2) −

√
1− z2 − uz√

1− z2

−
√

1− z2 0 0

− uz√
1− z2

0
1

1− z2

 ,

and the Weingarten operator A = Aη takes the form

A(s,u,z) =

 1 0 0
−s 1 0
0 0 1

 .

Observe that the determinant of I(s,u,z) is −1 and f∗
(

∂

∂ z

)
is spacelike for small z, thus, f (U)

is a Lorentzian hypersurface in E4
1, even for s = 0. We note that f (U) is a generalized umbilical

hypersurface of degree 2 for s ̸= 0, such that the Weingarten operator has minimal polynomial (t−1)2,

but all the points of f (U) at the slice with s = 0 are umbilical points and the minimal polynomial is

t − 1. Using Mathematica [79], we draw the slice z = 0 of the immersion f that we show in Figure

4.1.
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Figure 4.1: Slice z = 0 of the hypersurface f of E4
1 given by (4.15) from Example 4.24.

4.5 Classification of ψ-pseudo-parallel Lorentzian hyper-
surfaces with constant ψ and constant mean curvature in
Lorentzian space forms

Let f : Mn
1 →Qn+1

1 (c) be a Lorentzian hypersurface. We consider the mean curvature function H

of Mn
1 , defined by

H =
1
n

n

∑
i=1

εi⟨α(Ei,Ei),η⟩= 1
n

n

∑
i=1

εi⟨AEi,Ei⟩,

where {E1, . . . ,En} is an orthonormal frame in T M with εi = ⟨Ei,Ei⟩ and η is a unit (spacelike)

normal vector field. For a pseudo-orthonormal frame {X ,Y,E3, . . . ,En}, where ⟨X ,Y ⟩=−1, ⟨X ,X⟩=
⟨Y,Y ⟩= ⟨X ,Ei⟩= ⟨Y,Ei⟩= 0, and ⟨Ei,E j⟩= δi j, 3 ≤ i, j ≤ n, we have that

H =
1
n

(
−2⟨AX ,Y ⟩+

n

∑
i=3

⟨AEi,Ei⟩

)
,

Theorem 4.25. Let f : Mn
1 → Qn+1

1 (c) be a ψ-pseudo-parallel Lorentzian hypersurface, with n ≥ 3

and constant ψ = c. If f has nonzero constant mean curvature, then f (Mn
1) is locally congruent to

one of the following Lorentzian hypersurfaces:

(i) A totally umbilical Sn
1(a

2) =

{
x ∈ En+1

1 : −x2
1 +

n+1

∑
i=2

x2
i =

1
a2

}
, a = H ̸= 0, if c = 0.

(ii) A totally umbilical Sn
1(a

2 + c) =
{

x ∈ Sn+1
1 (c)⊂ En+2

1 : xn+2 =

√
1
c
− 1

a2 + c

}
, with a = H ̸=

0, if c > 0.
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(iii) A totally umbilical Hn
1(a

2+c) =
{

x ∈Hn+1
1 (c)⊂ En+2

2 : xn+2 =

√
1
c
− 1

a2 + c

}
, with 0< |a|<

√
−c, or Sn

1(a
2 + c) =

{
x ∈Hn+1

1 (c)⊂ En+2
2 : x1 =

√
1

a2 + c
− 1

c

}
, with a2 >−c. In this case

a = H ̸= 0 and c < 0.

(iv) A totally umbilical hypersurface of the form {y ∈ Hn+1
1 (c) : ⟨y,X⟩= a}, where a =±

√
−c = H

and X is a parallel vector field in En+2
2 , which satisfies ⟨X ,X⟩= 0. In this case c < 0.

(v) A cylinder Sk
τ(a

2)×En−k
1−τ

=

{
x ∈ En+1

1 : −
1

∑
i=2−τ

x2
i +

k+2−τ

∑
i=2

x2
i =

1
a2

}
, a =

nH
k

̸= 0 and 1 ≤

k ≤ n−1. In this case c = 0.

Proof. We can assume that Mn
1 is connected. Since f is pseudo-parallel, it follows from Lemma 4.7

that Ax has at most one nonzero eigenvalue a(x), for x ∈ Mn
1 . Thus, we have that k(x)a(x) = nH ̸= 0

and so a(x) ̸= 0 with 1 ≤ k(x) ≤ n. Then, again from Lemma 4.7, we have that Ax is diagonalizable

and takes the form Ax = a(x)Ik(x)⊕ 0n−k(x). As in [59] (or [66]), we can show that k(x) is a locally

constant function and, since Mn
1 is connected, we have that k(x) is constant in all of Mn

1 , say k(x) = k.

Again, using that k(x)a(x) = nH is constant, we have that a(x) is constant in all of Mn
1 , say a(x) = a.

This means that f is isoparametric. The theorem follows from the classification of isoparametric

hypersurfaces with diagonalizable Weingarten operator in Theorem 5.1 of [1].

In the case of ψ = c and degenerate relative nullity, we have the following result:

Theorem 4.26. Let f : Mn
1 → Qn+1

1 (c) be a ψ-pseudo-parallel Lorentzian hypersurface, with n ≥ 3

and constant ψ = c. If f has mean curvature H = 0, then f (Mn
1) is either totally geodesic or

(i) c = 0 and f (Mn
1) is a generalized cylinder given by En−2 ×h(E2

1), where h(E2
1) is a B-scroll in

a subspace E3
1 of En+1

1 orthogonal to En−2, that is, locally, the hypersurface f : U → En+1
1 , U

a neighborhood of 0 in Rn, parameterized by

f (s,y,z3, . . . ,zn) = γ(s)+ yB(s)+∑
i

ziZi(s)

where γ is a null curve in En+1
1 with an associated pseudo-orthonormal frame

{T (s),B(s),Z3(s), . . . ,Zn(s),C(s)} of vector fields of En+1
1 along γ , such that T (S) and B(s)

are lightlike vector fields with ⟨T (S),B(S)⟩=−1, T (s) = d
dsγ(s) and d

dsC(s) = κ(s)B(s).

(ii) c ̸= 0 and at the open subset of non-geodesic points, locally f (Mn
1) is an open piece of a

hypersurface as described in Example 1.4 or Example 1.5.

Proof. Under the assumptions of the theorem, it follows from Lemma 4.7 that the Weingarten operator

A only have one eigenvalue 0 and f is isoparametric with minimal polynomial t or t2. In fact, as

in the proof of Theorem 4.25, if Ax has one nonzero eigenvalue a(x), for x ∈ Mn
1 , we have that
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k(x)a(x) = nH = 0, which is a contradiction and Ax = 0n or Ax takes the form in (ii) of Lemma

4.7. Thus, for c = 0, the results follows from Theorem 9.8 of [34] (see also the observation after the

proof of Theorem 4.4 of [55]). For c ̸= 0, the result about the open subset of non-geodesic points

follows from the classification of isoparametric Lorentzian hypersurfaces in Theorem 4.2 and case

(2) in Theorem 4.1 of [80], for c < 0, and in Theorem 6.8 of [42] for the case c > 0.

Note that in (i) of Theorem 4.26, κ(s) can be zero. The next example shows that B-scrolls con-

taining non-geodesic points which converge to geodesic points indeed exists, at least for the case

c = 0.

Example 4.27. Consider the matrix

M(s) =

 0 0 0
0 0 s
s 0 0

 .

We denote

X(s) =

 x1 x2 x3
y1 y2 y3
z1 z2 z3

 ,

and let us solve the initial value problem:

X ′(s) = X(s)M(s), X(0) = I3.

We have that

x′2 = 0, x′3 = sx2, x′1 = sx3,

y′2 = 0, y′3 = sy2, y′1 = sy3,

z′2 = 0, z′3 = sz2, z′1 = sz3.

We obtain: x2 = c1 constant, then x′3 = c1s and we have x3 =
1
2c1s2+a. It follows that x′1 =

1
2c1s3+as

and we obtain x1 =
1
8c1s4 + 1

2as2 +K. Using that M(0) = I3, it follows that c1 = 0, a = 0 and K = 1.

Thus, x1 = 1, x2 = 0 and x3 = 0.

Analogously, we obtain y1 =
1
8s4, y2 = 1, y3 =

1
2s2 and z1 =

1
2s2, z2 = 0 and z3 = 1.

Now, let A(s) = x1ẽ1+y1ẽ2+z1ẽ3 = ẽ1+
1
8s4ẽ2+

1
2s2ẽ3 in a pseudo-ortonormal frame {ẽ1, ẽ2, ẽ3}

of E3
1, where ⟨ẽ1, ẽ1⟩= ⟨ẽ2, ẽ2⟩= 0, ⟨ẽ1, ẽ2⟩=−1, ⟨ẽ1, ẽ3⟩= ⟨ẽ2, ẽ3⟩= 0 and ⟨ẽ3, ẽ3⟩= 1. We can see

that A(s) satisfies ⟨A(s),A(s)⟩=−2x1y1 + z2
1 = 0. So the curve

γ(s) =
∫ s

0
A(t)dt = (s,

1
40

s5,
1
6

s3) = sẽ1 +
1

40
s5ẽ2 +

1
6

s3ẽ3,
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is a null curve with κ(s) = s (in fact γ and the columns of X(s) define a generalized null cubic) and

f (s,u) = γ(s)+uB(s) is a B-scroll, where B(s) = x2ẽ1+y2ẽ2+ z2ẽ3 = ẽ2 is a parallel lightlike vector

field in E3
1 and C(s,u) =C(s) = x3ẽ1+y3ẽ2+z3ẽ3 =

1
2s2ẽ2+ ẽ3 is a unit spacelike normal vector field

to f . Note that f∗
(

∂

∂s

)
= A(s), f∗

(
∂

∂u

)
= B(s) and ⟨A(s),B(s)⟩= ⟨ẽ1, ẽ2⟩=−1, for all s ∈ R. Thus,

the metric of f is Lorentzian even for s = 0, that is, s can be zero, and note that the points at the image

of f with s = 0 are geodesic points, since the Weingarten operator A takes the form

A(s,u) =
(

0 0
−s 0

)
.

x

y

z

Figure 4.2: B-scroll with geodesic points from Example 4.27

If ψ < c and H constant, we have the following classification result:

Theorem 4.28. Let f : Mn
1 → Qn+1

1 (c) be a ψ-pseudo-parallel Lorentzian hypersurface, with n ≥ 3

and constant ψ < c. If f has constant mean curvature, then f (Mn
1) is locally congruent to one of the

following Lorentzian hypersurfaces:

(i) A totally geodesic or totally umbilical hypersurface as described in parts (i), (ii), (iii) and (iv)

of Theorem 4.19, with a = H.

(ii) Sk(a2 + c)× Sn−k
1

(
c2

a2 + c
)

=

{
x ∈ Sn+1

1 (c) ⊂ En+2
1 :

k+2

∑
i=2

x2
i =

1
a2 + c

,−x2
1 +

n+2

∑
i=k+3

x2
i =

a2

c2 + ca2

}
,

where c > 0, ψ = 0, a =
nH ±

√
n2H2 +4k(n− k)c

2k
and 1 ≤ k ≤ n−1.

Proof. We can assume that Mn
1 is connected. First, suppose that there exists at least one good point

x ∈ Mn
1 . It follows from Proposition 4.14 and Proposition 4.16 that the set of bad points is open

and closed, thus, f is a good hypersurface because of the connectedness of Mn
1 . Then, it follows

from Theorem 4.19 that f (Mn
1) is locally congruent either to a totally geodesic or totally umbilical



4.5. Classification of ψ-pseudo-parallel Lorentzian hypersurfaces with constant ψ and constant
mean curvature in Lorentzian space forms 91

hypersurface as described in parts (i), (ii), (iii) and (iv) of that same theorem, with a = H in this case,

or else f (Mn
1) is locally a product of two spaces each of constant curvature as in (v) of the same

theorem, for 1 < k < n− 1, and the Weingarten operator has two nonzero eigenvalues a and −c
a

,

which satisfy ka− (n− k)
c
a
= nH. Thus, a =

nH ±
√

n2H2 +4k(n− k)c
2k

.

On the other hand, if all the points of Mn
1 are bad, without loss of generality, let a and b be the two

distinct nonzero eigenvalues of the Weingarten operator with multiplicities 1 and n−1, which satisfy

b =
ψ − c

a
from Lemma 4.7. Since we have that a+(n−1)b = nH, we obtain a+(n−1)

ψ − c
a

= nH.

Thus, a =
nH ±

√
n2H2 −4(n−1)(ψ − c)

2
is constant in Mn

1 and so also b is constant, because H and

ψ are constant and Mn
1 is connected. From the classification of isoparametric hypersurfaces with

diagonalizable Weingarten operator and at most two real principal curvatures in Theorem 5.1 of [1],

we have that f (Mn
1) is locally congruent to a hypersurface as in (ii) of this theorem for k = 1 or

k = n−1. It follows from this classification that ψ = 0 in this case.

Now, if ψ < c, to obtain a classification of pseudo-parallel Lorentzian hypersurfaces with constant

ψ and constant H, we prove first the next result:

Proposition 4.29. Let f : Mn
1 →Qn+1

1 (c) be a connected ψ-pseudo-parallel Lorentzian hypersurface,

with n ≥ 3 and constant ψ > c. If f has constant mean curvature and contains at least one bad point,

then all points of Mn
1 are bad points.

Proof. Consider the set C4 of bad points of Mn
1 , which is open from Proposition 4.14. Let C be a

connected component of C4, we have that C is open because Mn
1 is locally connected. Since Mn

1 is

connected, we just need to prove that C is also closed and the proposition follows. In fact, let {xi} be

a sequence of bad points in C converging to some point x ∈ Mn
1 . From Lemma 4.7, A is diagonalizable

and has two unequal eigenvalues a, b, such that ab = ψ −c on C. Using an argument as in Proposition

2.2 of [66], we can show that the multiplicities of a and b are locally constant functions near non-

umbilical points and, thus, we have that a and b have constant multiplicities in C. We can assume

that 1 and n−1 are the multiplicities of a and b, respectively. Since ψ is constant, H is constant and

a+(n−1)b = nH and b =
ψ − c

a
in C, we have that a =

nH ±
√

n2H2 −4(n−1)(ψ − c)
2

is constant

in C and so also b is constant in C, because C is connected. By continuity, we have that a(x) = a,

b(x) = b and also the multiplicities of a and b at x are 1 and n−1, respectively. Therefore, x is also a

bad point and C is also closed.

Theorem 4.30. Let f : Mn
1 → Qn+1

1 (c) be a ψ-pseudo-parallel Lorentzian hypersurface, with n ≥ 3

and constant ψ > c. If f has constant mean curvature, then f (Mn
1) is locally congruent to one of the

following Lorentzian hypersurfaces:

(i) A totally geodesic or totally umbilical hypersurface as described in parts (i), (ii), (iii) and (iv)

of Theorem 4.19, with a = H.
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(ii) Hk
1(a

2+c)×Sn−k
(

c2

a2 + c
)
=

{
x ∈Hn+1

1 (c)⊂ En+2
2 : −

2

∑
i=1

x2
i +

k+1

∑
i=3

x2
i =

1
a2 + c

,
n+2

∑
i=k+2

x2
i =

a2

c2 + ca2

}
,

where c < 0, |a|<
√
−c, ψ = 0, a =

nH ±
√

n2H2 +4k(n− k)c
2k

and 1 ≤ k ≤ n−1.

(iii) Sk
1(a

2 + c) × Hn−k
(

c2

a2 + c
)

=

{
x ∈ Hn+1

1 (c) ⊂ En+2
2 : −x2

1 +
k+2

∑
i=3

x2
i =

1
a2 + c

,−x2
2 +

n+2

∑
i=k+3

x2
i =

a2

c2 + ca2

}
, where c < 0, |a|>

√
−c, ψ = 0, a =

nH ±
√

n2H2 +4k(n− k)c
2k

and 1 ≤ k ≤ n−1.

(iv) A generalized umbilical hypersurface of degree 2 as in (1.36), (1.37) or (1.38), where ψ =

c+a2, τ = a = H ̸= 0, in the open subset of non-umbilical points.

Proof. We can assume that Mn
1 is connected. From Proposition 4.29, we have that either Mn

1 is a good

hypersurface or else all the points of Mn
1 are bad points. Thus, using an analogous argument as in the

proof of Theorem 4.28, we can deduce the result from Theorem 4.23 and Theorem 5.1 of [1].

Observation 4.31. The classification of ψ-pseudo-parallel Lorentzian hypersurfaces in Qn+1
1 (c), with

constant ψ = c ̸= 0 is still an open problem.

From the remark after the models of isoparametric hypersurfaces with diagonalizable Weingarten

operator with at most two unequal eigenvalues in [1] and Theorem 5.2 of the same reference,

we have that any such Lorentzian hypersurface Mn
1 either is totally umbilical or the two dis-

tinct eigenvalues a,b satisfy ab = −c. If in addition, Mn
1 is a ψ-pseudo-parallel hypersurface,

from Lemma 4.7, we have necessarily that ab = ψ − c and so ψ = 0. Then, we cannot have two

distinct constant eigenvalues if ψ = c ̸= 0. Therefore, it is reasonable to state the following conjecture:

Conjecture 4.32. Any connected ψ-pseudo-parallel Lorentzian hypersurface f : Mn
1 →Qn+1

1 (c), with

n ≥ 3 and ψ = c ̸= 0, is congruent to a totally umbilical hypersurface of Qn+1
1 (c) or k(x)≤ 1 every-

where on Mn
1 .



APPENDIX A

Semi-parallel hypersurfaces in En+1
1 with

rank of the Weingarten operator ≥ 2

We will prove here the following proposition, which is part of the classification of connected and

complete semi-parallel Lorentzian hypersurfaces of the Minkowski space given in Theorem 4.10.

Proposition A.1. Let Mn
1 , n ≥ 3, be a connected complete Lorentzian manifold and let f : Mn

1 →En+1
1

be an isometric immersion. Suppose that the type number k(x)≥ 2 at least at one point x ∈ Mn
1 . Then

f is semi-parallel if and only if f is either an isometry and Mn
1 is congruent to

(i) Sk(a2)×En−k
1 , 2 ≤ k ≤ n−1,

(ii) Sk
1(a

2)×En−k, 3 ≤ k ≤ n,

for some a,k constants, a ̸= 0, or else f (Mn
1) is congruent to S2

1(a
2)×En−2.

The proof of Proposition A.1 can be carried out practically without changes from that by Van de

Woestijne, Verstraelen and Nomizu in [75, 59]. Without loss of generality, we may suppose that Mn
1

is simply connected and thus a unit normal vector field η to f can be globally defined, since in case

that Mn
1 is not simply connected we can always work with the universal covering instead. Note that f

is not necessarily an injective map.

First, we will prove Proposition A.1 under the assumption that k(x) ≥ 2 for all x ∈ Mn
1 . Suppose

that f is semi-parallel. It follows from Corollary 4.7, that the Weingarten operator takes the form

Ax = a(x)Ik(x)⊕0n−k(x), for all x ∈ Mn
1 . Since all eigenvalues of A are real numbers, we may define n

principal curvature functions {a1, . . . ,an} as done in Lemma 2.1 of [66] and using the same arguments

there, we conclude that the ai’s are continuous functions. We have that k(x) is locally constant in Mn
1 .

In fact, if k(y) = n for some y ∈ Mn
1 , since a(y) ̸= 0, we have that ai(x) = a(x) ̸= 0, for all 1 ≤ i ≤ n,

and k(x) = n on some neighborhood of y. If 2 ≤ k(y) ≤ n− 1, we have that a(y) = a1(y) = · · · =
ak(y)(y)> ak(y)+1(y) = · · ·= an(y) = 0. By continuity, there is an open neighborhood U of y, on which

93
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k(y) principal curvatures have absolute value greater than 1
2 |a(y)| and n− k(y) principal curvatures

have absolute value smaller than 1
2 |a(y)|. It follows that k(x)≥ k(y)≥ 2 for all x ∈U , and since all the

nonzero principal curvatures are equal, we have that the n− k(y) principal curvatures with absolute

value smaller than 1
2 |a(y)| are 0. Thus, k(x) = k(y) constant on U . By the connectedness of Mn

1 , it

follows that k(x) is constant in Mn
1 , say, k(x) = k, and the only nonzero eigenvalue a(x) of Ax, defines

a differentiable function a(x) = 1
k trace(Ax) on Mn

1 . Now, we consider the distributions T0 and T1

which are defined by

T0(x) = {X ∈ TxMn
1 : AX = 0},

T1(x) = {X ∈ TxMn
1 : AX = aX}.

If 2 ≤ k ≤ n − 1, as in Proposition 2.3 of [66], we can prove that these distributions on Mn
1

are differentiable and involutive (i.e., integrable). This is also true if k = n, since in this case

T1(x) = TxMn
1 . From Proposition D.4 of [41], since dimension of T1(x) is greater than 1, it follows

that X(a) = 0 for all X ∈ T1, i.e., a is constant on each maximal integral manifold of T1. Also,

we have that TxMn
1 = T0(x)⊕ T1(x), for all x ∈ Mn

1 . For any Z ∈ T Mn
1 , (Z)0 and (Z)1 denote the

component of Z in T0(x) and T1(x), respectively).

We will prove that a is also constant on each maximal integral manifold of T0 and so it is constant

on Mn
1 . As in [59], it follows that:

Lemma A.2. (i) If X ∈ T1,Y ∈ T0, then A(∇XY ) =−Y (a)X.

(ii) If Y ∈ T0, then ∇Y (T1)⊂ T1.

(iii) If Y ∈ T0, then ∇Y (T0)⊂ T0.

(iv) If Y ∈ T0, X ∈ T1 and [X ,Y ] = 0, then ∇XY ∈ T1.

Proof. Let X ∈ T1, Y ∈ T0 and compute both sides of the Codazzi equation:

(∇X A)Y =−A(∇XY ) =−a(∇XY )1,

(∇Y A)X = ∇Y (aX)−A(∇Y X) = Y (a)X +a(∇Y X)−a(∇Y X)1

= Y (a)X +a(∇Y X)0.

Thus, we obtain

(∇Y X)0 = 0, that is, ∇Y X ∈ T1

and also

Y (a)X =−a(∇XY )1 =−A(∇XY ).
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Then, we have (i) and (ii).

Now, (iii) follows from (ii), since (T0)
⊥ = T1. In fact, since ⟨Z,X⟩ = 1

a⟨Z,AX⟩ = 1
a⟨AZ,X⟩ = 0

for Z ∈ T0, we have that ⟨∇Y Z,X⟩=−⟨Z,∇Y X⟩= 0, for all X ∈ T1.

Finally, (iv) follows from ∇XY = ∇Y X +[X ,Y ] = ∇Y X ∈ T1.

Also, as in [59], we have the following result.

Lemma A.3. If Y (a) = 0 for all Y ∈ T0, then ∇X T0 ⊂ T0 and ∇X T1 ⊂ T1 for all vector X ∈ T M.

Proof. Under the assumption, (i) of Lemma A.2 implies that A(∇XY ) = 0, that is ∇XY ∈ T0 for X ∈ T1

and Y ∈ T0. Thus, ∇X(T0)⊂ T0 for X ∈ T1. Since (T0)
⊥ = T1, analogously to (iii) of Lemma A.2, we

also have that ∇X(T1)⊂ T1.

The next lemma is essential and its proof use strongly that the ambient space has zero curvature.

Lemma A.4. Let Y,Z vector fields in T0, such that ∇Y Z = ∇ZY = 0. If there is a non-vanishing vector

field X belonging to T1, such that [X ,Y ] = [X ,Z] = 0, then (Y Z)
(1

a

)
= 0.

Proof. Since AY = 0, we have that R(X ,Y ) =AX ∧AY = 0. On the other hand, using that ∇Y Z = 0 and

[X ,Y ] = 0, we have that 0 = R(X ,Y )Z = ∇X(∇Y Z)−∇Y (∇X Z)−∇[X ,Y ]Z =−∇Y (∇X Z). From (i) of

Lemma A.2, we have that −Z(a)X = A(∇X Z). From (iv) of Lemma A.2, we have A(∇X Z) = a(∇X Z).

Thus, we obtain that ∇X Z =−Z(a)
a X .

Hence, we have ∇Y

(
Z(a)

a X
)
= 0, which implies

aY Z(a)−Y (a)Z(a)
a2 X +

Z(a)
a

∇Y X = 0.

Since [X ,Y ] = 0, we have that ∇Y X =∇XY =−Y (a)
a X (in the same way as for ∇X Z =−Z(a)

a X .). Then,

the equation above reduces to

(aY Z(a)−2Y (a)Z(a))X = 0.

Since X is non-vanishing, we obtain that

aY Z(a)−2Y (a)Z(a) = 0.

Therefore,

Y Z
(

1
a

)
=−aY Z(a)−2Y (a)Z(a)

a3 = 0. (A.1)

We will denote by M0(x) and M1(x) the maximal integral submanifolds of Mn
1 corresponding

respectively to T0 and T1, passing through the point x. Then, as in [75, 59], we have the following

result.
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Proposition A.5. (i) M0(x) is complete and totally geodesic in Mn
1 .

(ii) The restriction to M0(x) of the isometrical immersion f of Mn
1 in En+1

1 , is an isometry of M0(x)

to En−k(x) or to En−k
1 (x).

Proof. (i) From (iii) of Lemma A.2, we have that ∇Y (T0) ⊂ T0 for all Y ∈ T0. This means that

M0(x) is totally geodesic (that is, αM0(x)(Y,Z) = (∇Y Z)⊥ = 0 for Z ∈ T0, since T M0(x) = T0).

M0(x) is complete as a maximal integral submanifold which is totally geodesic. Indeed, let

y(s) be a geodesic in M0(x). As a geodesic in Mn
1 , y(s) it is infinitely extendible. Denote

s0 = sup{s1 : y(t) ∈ M0(x) for s < s1}. Choosing local coordinates {x1, . . . ,xk,xk+1, . . . ,xn}
with origin y(s0), such that { ∂

∂x1 . . . ,
∂

∂xk } e { ∂

∂xk+1 . . . ,
∂

∂xn} are local frames for T1 and T0. Since

y(s), s < s0 is a geodesic lying in the T0-direction, we have yi(s) = ci constant, 1 ≤ i ≤ k, for

s0 − δ < s < s0, with δ > 0. Since in y(s0) all coordinates are 0, it follows that yi(s) → 0 as

s → s0, and since all ci’s are constants in this interval, we obtain that c1 = · · ·= ck = 0, that is,

y(s) = (0, . . . ,0,yk+1(s), . . . ,yn(s)), for s0 − δ < s ≤ s0, and the tangent vector to y(s) in s0 is

still in the T0-direction. Therefore, the geodesic continues to lie in M0(x).

(ii) Note that f (M0(x)), which is (n− k)-dimensional, is also a totally geodesic submanifold of

the Minkowski space En+1
1 , since α(X ,Y ) = ⟨AX ,Y ⟩η = 0, for all X ,Y ∈ T0(X) = T M0(x).

Consequently, every geodesic of M0(x) is mapped under the immersion f to a straight line in

En+1
1 . The restriction of the metric on M0(x) is Euclidean or Lorentzian. Accordingly, by the

completeness of M0(x), we have that f (M0(x)) = En−k(x) or f (M0(x)) = En−k
1 (x). It follows

that f is a covering map (see Corollary 29 in p. 202 of [62]) and so it is an isometry of M0(x)

to En−k(x) or En−k
1 (x).

We now come to the crucial step of the proof.

Proposition A.6. For any Y ∈ T0, we have Y (a) = 0.

Proof. For a point x ∈ Mn
1 , Let {y1, . . . ,yk,yk+1, . . . ,yn} be a coordinate system with origin x in a

neighborhood U of x, such that { ∂

∂y1 . . . ,
∂

∂yk } and { ∂

∂yk+1 . . . ,
∂

∂yn} are local bases for T1 and T0. Fol-

lowing Proposition A.5, we have to consider two cases:

A) If M0(x) is isometric to En−k(x), we may assume that the restriction of {yk, . . . ,yk+1} to M0(x)∩
U is rectangular, that is 〈

∂

∂yα
,

∂

∂yβ

〉
= δαβ , for k+1 ≤ α,β ≤ n.

We will show that the restriction of {yk, . . . ,yk+1} a M0(y)∩U , for any y ∈ M1(x)∩U , is also

rectangular. Denote functions gαβ =
〈

∂

∂yα ,
∂

∂yβ

〉
, k+1 ≤ α,β ≤ n, we have

∂gαβ

∂yi
=

〈
∇ ∂

∂yi

(
∂

∂yα

)
,

∂

∂yβ

〉
+

〈
∂

∂yα
,∇ ∂

∂yi

(
∂

∂yβ

)〉
.
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Now, Lemma A.2, (iv), implies that ∇ ∂

∂yi

(
∂

∂yα

)
∈ T1, para 1 ≤ i ≤ k. Thus,〈

∇ ∂

∂yi

(
∂

∂yα

)
,

∂

∂yβ

〉
= 0

and, similarly,
〈

∂

∂yα ,∇ ∂

∂yi

(
∂

∂yβ

)〉
= 0. Thus, we have that

∂gαβ

∂yi
= 0, k+ 1 ≤ α,β ≤ n, that

is, functions gαβ are constant respect to variables y1, . . . ,yk, thus

gαβ (y
1, . . . ,yk,yk+1, . . . ,yn) = gαβ (0, . . . ,0,y

k+1, . . . ,yn) = δαβ .

Now, let Y = ∂

∂yα , where k+ 1 ≤ α ≤ n, and X = ∂

∂yi , where 1 ≤ i ≤ k. Since {yk+1, . . . ,yn}
is rectangular in each M0(y)∩U (thus, for each y, ∇̂YY = 0, where ∇̂ is the connection on

M0(y)∩U), which is totally geodesic in Mn
1 , we have that ∇YY = 0 (these vector fields are

parallel in M0(y), since M0(y) is Euclidean, so they are also parallel in Mn
1 ). Applying Lemma

A.4 to X ,Y and Z = Y , ([X ,Y ] = 0 for the rectangular coordinates), we obtain that Y 2 (1
a

)
= 0.

If L is a straight line in M0(x) (i.e., a geodesic), let Y be the parallel vector field in the direction

of L on the Euclidean space M0(x). For any point of L, we may choose suitable local coordinates

{y1, . . . ,yn} and show by the argument above that Y 2 (1
a

)
= 0. This means that if s is the length

parameter of L, which can take any real value by the completeness of M0(x), then d2

ds2

(1
a

)
= 0.

Thus, 1
a = us+ v, for all s ∈ R, where u,v are constant. If u ̸= 0, then 1

a will be 0 for s = − v
u ,

which is a contradiction. We have thus shown that a is constant in L. Since L is an arbitrary

straight line in M0(x) starting from x, we can conclude that a is constant in M0(x). Therefore,

Y (a) = 0, for any Y ∈ T0.

B) If M0(x) is isometric to the Minkowski space En−k
1 (x), we may assume that the restriction of

{yk, . . . ,yk+1} to M0(x)∩U is rectangular in the Lorentzian sense, i.e.,〈
∂

∂yα
,

∂

∂yβ

〉
= εαδαβ , for k+1 ≤ α,β ≤ n,

where εγ = 1, for γ ∈ {k+2, . . . ,n} and ε1 =−1. As in case A), we can obtain that Y 2 (1
a

)
= 0,

for any Y = ∂

∂yα .

Consequently, a is constant on all straight lines in M0(x), which pass through x but do not lye

on the null cone through x. Considering this and the fact that a is continuous on Mn
1 (even

differenciable), it follows that a is a constant function on the whole of M0(x).

Observation A.7. Since X(a) = 0 for all X ∈ T1, it follows that Z(a) = 0 for any tangent vector Z of

Mn
1 . Thus, a is constant in Mn

1 , which means that Mn
1 is isoparametric with diagonalizable Weingarten

operator.
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Proposition A.8. Let M0(x) and M1(x) be the maximal integral submanifolds of T0 and T1, respec-

tively, through x ∈ Mn
1 .

(i) M1(x) is complete and totally geodesic in Mn
1 for any x ∈ Mn

1 .

(ii) For any point w ∈ Mn
1 , let M0 = M0(w) and M1 = M1(w). Then Mn

1 is isometric to M0 ×M1.

(iii) For all x ∈ M1, the spaces f (M0(x)) = En−k(x), respectively, f (M0(x)) = En−k
1 (x), given in

Proposition A.5, are all parallel.

(iv) In case M0 is isometric to En−k, the restriction f1 of f to M1, is a covering map of M1 onto

Sk
1 ⊂ Ek+1

1 , which is an isometry if k ≥ 3, where Ek+1
1 is orthogonal to En−k in En+1

1 .

(v) In case M0 is isometric to En−k
1 , the restriction f1 of f to M1, is a covering map of M1 onto

Sk ⊂ Ek+1, which is an isometry, where Ek+1 is orthogonal to En−k
1 in En+1

1 .

(vi) If f0 is the restriction of f to M0, then f = f0 × f1, that is, f (y,x) = ( f0(y), f1(x)), for every

point (y,x) ∈ M0 ×M1 = Mn
1 .

Proof. (i) By Proposition A.6 and Lemma A.3, we know that ∇X(T1) ⊂ T1, for any vector field X

belonging to T1. This means that M1(x) is totally geodesic. The completeness can be proved in the

same way as for M0(x).

(ii) Lemma A.2 and Lemma A.3 together imply that T0 and T1 are parallel. Since Mn
1 is

simply connected and complete and the restrictions of the metric on TwM to T0(w) and T1(w) are

non-degenerate, by Wu’s extension of the de Rham decomposition theorem to pseudo-Riemannian

manifolds in [78], we can conclude that Mn
1 is isometric to M0 ×M1.

(iii) Let Y ∈ T0(w) and let Yt be the family of tangent vectors parallel to Y along a curve x(t) in M1.

By (ii), we have that Yt ∈ T0(x(t)). Let ∇̂ the ordinary derivation in En+1
1 and considering f locally,

we get (denoting by −→xt the tangent vector of the curve x(t))

∇̂ f∗(−→xt ) f∗(Yt) = f∗(∇−→xt
Yt)+ ⟨AYt ,

−→xt ⟩η = 0,

since ∇−→xt
Yt = 0 and ⟨AYt ,

−→xt ⟩ = 0 (in fact AYt = 0). Thus, f∗(Yt) is parallel in En+1
1 . Since the flat

subspaces En−k
σ (x) = f (M0(x)), σ ∈ {0,1}, have f (T0(x)) as the tangent space at f (x), we conclude

that all En+1
σ (x), x ∈ M1, are parallel.

(iv) Consider the En+1
1 -valued vector function x 7→ ηx +a f (x) on M1. For any tangent vector X to

M1, we have

∇̂ f∗(X)(η +a f ) = f∗(−AX +aX) = 0,
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which shows that η + a f is a constant vector v in En+1
1 and f (M1) lies in the hypersphere Sn

1(a
2)

with center 1
av and radius |1

a |. Since f (M1) is orthogonal to f (M0(x)) = En−k(x), x ∈ M1, at each

point of f (M1), and En−k(x) are all parallel to En−k. It follows that f (M1) is also contained in the

linear subspace Ek+1
1 of En+1

1 which passes through f (w) and is orthogonal to En−k. Hence, f (M1)

lies in the sphere Sk
1(a

2) = Sn
1(a

2)∩Ek+1
1 . Since M1 is complete, it follows that f1 : M1 → Sk

1(a
2) is

a covering map of M1 onto Sk
1(a

2) (see p. 202 of [62]). Particularly, if k ≥ 3, then Sk
1(a

2) is simply

connected and f1 is one-to-one, thus, f1 is an isometry in this case.

(v) This proof is similar to the one in (iv).

(vi) Let (y,x) ∈ M0 ×M1. Let y = expwsY0, where Y0 is a unit vector in T0(w). Then, the point

(y,x) is equal to expxsY , where Y is the unit vector in T0(x), which is parallel to Y0. By (iii), we

know that f∗Y0 and f∗Y are parallel in En+1
1 . Since f maps every geodesic in M0(x) onto a straight

line in En−k
σ (x), we see that f (y,x) = exp f1(x)s f∗Y and this is equal to ( f0(y), f1(x)), since f0(y) =

exp f (w)s f∗Y0. We have thus shown that f (y,x) = ( f0(y), f1(x)).

So far, we proved Proposition A.1 under the assumption that the type number k(x) of the

Weingarten operator is greater than 1 at every point of the Lorentzian hypersurface Mn
1 .

The proof under the weaker assumption that there exists a point x ∈ Mn
1 where k(x) ≥ 2, can be

adapted from [59] using arguments similar to those given above, as follows. Let W = {x : k(x)≥ 2},

which is an open set (multiplicities are locally constant for k(x)≥ 1). Let x0 be a point with k(x0)≥ 2

and let W0 be the connected component of x0 in W . We have that k(x) is constant in W0, a(x) is a

differentiable function, and the distributions T0 and T1 defined in W0 are differentiable and involutive.

Lemmas above are valid. Then, we can prove the following result:

Proposition A.9. Let M0 and M1 be the maximal integral submanifolds of T0 and T1, respectively,

through x0.

(i) M0 is totally geodesic in Mn
1 and locally flat.

(ii) On a geodesic L(s) in M0 with arc length parameter s, we have a(s) = 1
us+v .

(iii) M0 is complete and a is constant in M0.

(iv) k(x)≥ 2 for all x ∈ Mn
1 .

Proof. (i) M0 is totally geodesic by (iii) in Lemma A.2. Hence the curvature tensor of M0 is the

restriction of the curvature tensor R of Mn
1 to M0. Since we have R(X ,Y ) = AX ∧AY = 0 for any X



100 Appendix A. Semi-parallel hypersurfaces in En+1
1 with rank of the Weingarten operator ≥ 2

and Y tangents to M0, it follows that M0 is locally flat.

(ii) For any geodesic L(s) in M0 with arc length parameter s, we may show that d
ds

(1
a

)
= 0 by

using the essentially same argument as for Proposition A.6.

(iii) Let L(s) be a geodesic in M0 starting from x0. As a geodesic in Mn
1 , it is infinitely extendible.

If this entire geodesic does not lie in W0, let s0 be such that L(s) ∈W0 (and from the argument in the

proof of (i) of Proposition A.5, L(s) ∈ M0) for s < s0, but L(s0) /∈W0. The characteristic polynomial

of A in L(s), s < s0, is (t −a(s))ktn−k. Setting s → s0, we obtain that the characteristic polynomial of

A in s0 is (t−a(s0))
ktn−k. On the other hand, a(s0) = lim

s→s0
a(s) = lim

s→s0

1
us+ v

can not be 0. This shows

that k(L(s0)) ≥ 2. It follows that L(s0) ∈ W0 and, again as in the proof that M0(x) is complete when

k ≥ 2 everywhere in (i) of Proposition A.5, we have that L(s) ∈ M0. Thus, M0 is complete. Also,

as in the proof of Proposition A.6, we can prove that constant u has to be 0, that is, a is constant in M0.

(iv) Since a is constant on any maximal integral manifold of T0 (defined on W0), we have that

Y (a) = 0 for all Y ∈ T0. Since we also have that X(a) = 0 for all X ∈ T1, hence a is a constant function

on W0. We now show that W0 is actually equal to Mn
1 . Suppose W0 ̸= Mn

1 and let {yi} be a sequence

of points in W0 converging to some point y ∈ Mn
1 . By the continuity argument for the characteristic

polynomial of A and using that a(yi) = a ̸= 0 constant, we can show that k(y)≥ 2. Thus, W0 is open

and closed so that W0 = Mn
1 , completing the proof of the proposition.

Proposition A.9 shows that the assumption that k(x) ≥ 2 for some point x in Mn
1 actually implies

that k(x)≥ 2 everywhere in Mn
1 , with k(x) = k and a ̸= 0 constants in Mn

1 . Thus, Proposition A.1 has

been proved.
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