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Abstract

Vehicle routing in urban environments encompasses additional challenges for logistics ser-

vices providers due to traffic conditions, city regulations, and difficulty in finding parking lo-

cations. To overcome these issues, companies usually adopt alternative delivery systems, such

as the ones that are reflected in two-echelon routing problems. These problems are based on

the idea of having larger vehicles taking goods from depots to intermediary facilities or parking

locations, and smaller vehicles or walking deliverymen taking goods from these points to the

final customers. Two examples of such problems are the two-echelon location-routing prob-

lem (2E-LRP) and the vehicle routing problem with time windows and multiple deliverymen

(VRPTWMD). The first encompasses decisions on vehicle routing in both echelons and the

facilities to be opened or used. The latter considers that vehicles may carry more than one deliv-

eryman to increase vehicle efficiency. In this dissertation, we propose improvements for both of

these problems, focusing on formulations, valid inequalities, Benders decomposition schemes,

and exact solution methods. For the 2E-LRP, two novel formulations are presented and com-

pared to the benchmark one. Their linear programming relaxations and their performance under

a mixed-integer programming solver are compared, showing that the novel formulations greatly

outperform the benchmark of the literature. Also, 125 new best known lower bounds and 55

new optimal solutions were found for the 131 benchmark instances evaluated. Regarding the

VRPTWMD, two realistic extensions of the problem were proposed, incorporating in the opti-

mization the deliveryman routes and the decision on which customers to serve in each vehicle

stop, which are usually considered to be preprocessed in the literature. Valid inequalities and

Benders decomposition schemes were proposed to develop exact solution algorithms for these

new variants of the VRPTWMD. Managerial insights show the importance of applying these

variants instead of the common approach from the literature, leading to cost reductions of around

10%.

Keywords: vehicle routing; last-mile delivery; two-echelon location-routing problem; multiple

deliverymen; Benders decomposition.



Resumo

O roteamento de veículos em ambientes urbanos engloba desafios adicionais para provedores

de serviços logísticos devido às condições de tráfego, regulamentações das cidades e dificuldade

de encontrar locais para estacionar. Para superar essas dificuldades, empresas comumente ado-

tam sistemas de entrega alternativos, como os que são refletidos em problemas de roteamento

em dois níveis. Esses problemas se baseiam na ideia de ter veículos maiores transportando bens

de depósitos para facilidades intermediárias ou pontos de estacionamento, e veículos menores ou

entregadores a pé transportando bens desses pontos até os consumidores finais. Dois exemplos

de tais problemas são o problema de localização-roteamento em dois níveis (PLR-2N) e o prob-

lema de roteamento de veículos com janelas de tempo e múltiplos entregadores (PRVJTME). O

primeiro envolve decisões sobre roteamento de veículos em dois níveis e quais facilidades devem

ser abertas. O último considera que veículos podem carregar mais de um entregador para aumen-

tar a eficiência dos veículos. Nesta dissertação, propõem-semelhorias para ambos os problemas,

focando-se em formulações, desigualdades válidas, decomposições de Benders e métodos ex-

atos de solução. Para o PLR-2N, duas novas formulações são apresentadas e comparadas com

o padrão da literatura. Suas relaxações lineares e seus desempenhos quando aplicadas a um

solver de programação inteira mista são comparados, mostrando que as novas formulações têm

desempenhomuitomelhor. Ainda, 125 novosmelhores limitantes inferiores e 55 novas soluções

ótimas foram encontrados dentre as 131 instâncias da literatura avaliadas. Considerando-se o

PRVJTME, duas extensões realistas do problema foram propostas, incorporando-se na otimiza-

ção as rotas dos entregadores e a definição de quais clientes são atendidos em cada parada do

veículo, os quais geralmente são considerados como dados de pré-processamento na literatura.

Desigualdades válidas e esquemas de decomposição de Benders foram discutidos para desen-

volver algoritmos de solução exatos para essas novas variantes do PRVJTME. Experimentos

mostram a importância de se aplicar essas variantes em vez da abordagem comum na literatura,

levando a economias de custo da ordem de 10%.

Palavras-chave: roteamento de veículos; entrega de última milha; problema de localização-

roteamento em dois níveis; múltiplos entregadores; decomposição de Benders.
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1 Introduction

In operational contexts of delivery operations, a very important question is: “which are the

routes that the vehicles should follow to serve the customers?”. In this decision, several factors

should be taken into account, such as customer information (e.g., demand and time windows),

vehicle characteristics (e.g., capacity and speed), and business strategy (e.g., service level).

In 1959, Dantzig and Ramser proposed what was later called the vehicle routing problem

(VRP), which is an optimization problem that aims at minimizing the costs of the vehicle routes,

while serving all customers (Dantzig; Ramser, 1959). Since then, many variants of the VRP

were proposed to reflect the characteristics of different business models. The most traditional

variant is the capacitated VRP (Queiroga; Sadykov; Uchoa, 2021), which assumes that vehicles

have load capacity. There is also the VRP with time windows (Toth; Vigo, 2014), in which

customers have time windows in which the service must occur; the pickup-and-delivery routing

problem (Furtado; Munari; Morabito, 2017), in which the goods must be collected and dis-

tributed; the split-delivery VRP (Munari; Savelsbergh, 2022), that assumes that the demand of

customers can be served by more than one vehicle; among many others.

A particularly interesting area of application of VRP variants is the last-mile delivery, cor-

responding to the delivery to the final customers. Last-mile delivery systems are more and more

complex nowadays due to the increasing demand for efficient deliveries in densely populated

urban centers. A very common approach among companies is the adoption of some sort of two-

echelon system (Cuda; Guastaroba; Speranza, 2015; Li et al., 2021a; Sluijk et al., 2023). In

these schemes, larger vehicles travel from the depots to intermediary points from which smaller

vehicles take the goods to the final customers. These intermediary points can be either trans-

shipment facilities (Li et al., 2021b; Escobar-Vargas; Crainic, 2024), or parking locations from

which smaller vehicles such as drones and robots (Moshref-Javadi; Winkenbach, 2021; Alfan-

dari; Ljubić; De Melo da Silva, 2022), or walking deliverymen (Pureza; Morabito; Reimann,

2012; Cabrera; Cordeau; Mendoza, 2022) take goods from the vehicles to the customers. A

crucial question in these delivery systems is the definition of the routes to be traveled by the

vehicles.

In this dissertation, we study two combinatorial optimization problems related to two-

echelon routing in last-mile delivery: the two-echelon location-routing problem (2E-LRP) and

the vehicle routing problem with tiwe windows and multiple deliverymen (VRPTWMD).

The first problem studied, the 2E-LRP, was originally proposed by Boccia et al. (2011). In
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this problem, there are two sets of facilities: the platforms, which are larger and where the goods

are stored (equivalent to depots), and the satellites, which are smaller and where the goods are

transshipped. There is also a set of customers with demands. Larger vehicles take goods from

the platforms to the satellites, corresponding to the first-echelon (FE); and smaller vehicles take

these goods to the customers in the second-echelon (SE). The aim of the problem is to define

which facilities to open (or use) and which routes should the FE and SE vehicles perform, while

minimizing the costs – fixed costs associated with opening the facilities and using the vehicles,

and distance costs associated with the vehicle routes.

The 2E-LRP reflects applications in which there are recurrent deliveries in urban areas where

the circulation of large vehicles is limited or the traffic significantly slows the delivery process.

This way, the larger vehicles are used in the FE, where there are no circulation restrictions,

and the smaller vehicles are used in the SE, since they are allowed to transit for being small.

Moreover, where there is an excessive traffic, it is pointless to use large vehicles, since, in these

contexts, the routes are often limited by their duration, not the capacity of the vehicle. As smaller

vehicles are cheaper, the business scheme proposed by the 2E-LRP leads to more cost-efficient

deliveries.

Figure 1.1 illustrates the 2E-LRP dynamics. Figure 1.1a presents an instance with three

potential platforms, three potential satellites, and four customers. Figure 1.1b portrays a solution

for this instance, in which only one platform and two satellites are opened (the shaded ones are

not used). One FE vehicle visits both satellites and two SE vehicles serve the customers.

SE

FE

(a) Instance.

Customer

Satellite

Platform

(b) Solution.

Figure 1.1: The two-echelon location-routing problem.

Most of the literature on this problem is based on mixed-integer programming (MIP) for-

mulations that have variables with vehicle index. However, experiments have shown that these

formulations are not effective to solve the problem. The main contribution of this dissertation

towards the 2E-LRP is the proposition of two novel compact formulations (with a polynomial

number of variables and constraints) that do not require the vehicle index in the variables. The

quality of their linear programming relaxations is theoretically compared with the benchmark

formulation, and extensive computational experiments are performed to evaluate the perfor-

mance of a commercial MIP solver upon solving instances of the 2E-LRP with each of the for-

mulations. The obtained results indicate that the novel formulations outperform the benchmark
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one.

The second problem studied, the VRPTWMD, was introduced by Pureza, Morabito, and

Reimann (2012). It reflects a delivery system in which each vehicle may travel with more

than one deliveryman to increase delivery efficiency. This way, every time the vehicle stops,

many customers (cluster) are served in parallel by the multiple deliverymen. This allows each

vehicle to serve more customers than it would in a traditional vehicle routing problem with time

windows, reducing costs.

When defining the problem, Pureza, Morabito, and Reimann (2012) introduced two sim-

plifying hypotheses to improve its tractability: (i) the definition of which customers are to be

served by a single vehicle stop (clusters) can be predefined, and (ii) the deliveryman routes can

be approximated in a preprocessing phase. The majority of the literature that followed worked

with these hypotheses (Álvarez; Munari, 2017; Munari; Morabito, 2018; De La Vega; Munari;

Morabito, 2020). Senarclens de Grancy and Reimann (2015) and Senarclens de Grancy (2015)

extended the problem by including the customer clustering in the optimization, while still con-

sidering that the deliveryman routes can be approximated. To the best of our knowledge, there

is no work that solves the VRPTWMD considering the optimization of the deliveryman routes.

The main contribution of this dissertation regarding the VRPTWMD is to bridge this gap.

We introduce two novel and realistic variants of the VRPTWMD: one that includes the deliv-

eryman routes in the optimization while still considering that the clusters are predefined, and

another that optimizes both these routes and the customer clustering.

The first variant introduced is the VRPTWMD with two-level routing (VRPTWMD2R),

which includes the decisions of which deliveryman routes to perform in the optimization, while

still considering that the customer clusters are predefined. Figure 1.2 represents this problem. In

Figure 1.2a, an instance of the problem is illustrated, with customers divided in clusters. Each

cluster has a parking location and a few customers. The VRPTWMD2R aims at defining the

vehicle and deliveryman routes that serve the customers while minimizing the costs – fixed costs

of vehicles and deliveryman, and distance costs associated with vehicle and deliveryman routes.

Figure 1.2b portrays a feasible solution for this instance. In the right-hand side of the picture, one

vehicle with two deliverymen serve the upper-right green and lower-right red clusters, while, in

the left-hand side, another vehicle with only one deliveryman serves the remaining ones.

The second variant studied is the VRPTWMD with clustering and two-level routing

(VRPTWMDC2R). In this variant, on top of considering the deliveryman routes, the customer

clustering is also included in the optimization. This is illustrated in Figure 1.3. The differences

between the instance portrayed in Figure 1.3a and the one in 1.2a clearly show that, unlike in

the VRPTWMD2R, in the VRPTWMDC2R there are not predefined clusters and, instead, there

are a set of parking locations that may be used and a set of customers. It is part of the problem

the definition of which parking locations to use and which customers to serve from each parking

location, as shown in Figure 1.3b. This figure (1.3b) represents a solution for this instance, with

the proper definition of customer clusters, the decision of which parking locations to visit, and
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(a) Instance.

Parking
locations

Customers

Depot

(b) Solution.

Figure 1.2: The vehicle routing problem with time windows, multiple deliverymen, and two-

level routing.

the vehicle and deliveryman routes.

In summary, the main objectives of this dissertation are (i) to propose more efficient compact

formulations for the 2E-LRP, and (ii) to include the deliveryman routes and the customer clus-

tering in the VRPTWMD. To achieve this, the following specific objectives must be pursued:

(i) to review the pertinent literature on the 2E-LRP and the VRPTWMD, (ii) to propose novel

formulations and valid inequalities for the 2E-LRP, (iii) to introduce two realistic extensions

for the VRPTWMD and formulate them, (iv) to propose valid inequalities and exact methods

for these variants, and (v) to discuss the benefits of considering these variants compared to the

literature approach to the VRPTWMD.

(a) Instance.

Parking
locations

Customers

Depot

(b) Solution.

Figure 1.3: The vehicle routing problem with time windows, multiple deliverymen, customer

clustering, and two-level routing.

This dissertation is organized as a collection of three papers, in which all research devel-

opments and results are detailed. The first paper is presented in Chapter 2, entitled The two-

echelon location-routing problem: A comparative analysis of novel and existing compact for-

mulations and coauthored with Prof. Leandro C. Coelho (from Université Laval, in Canada),

Prof. Reinaldo Morabito, and Prof. Pedro Munari (both from the Federal University of São
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Carlos, in Brazil). It provides a brief literature review of the 2E-LRP and introduces two novel

compact formulations for the 2E-LRP. The new formulations are compared with the benchmark

one, showing that they greatly outperform the benchmark. Moreover, the best known lower

bounds are improved for 125 out of the 131 benchmark instances evaluated and 55 new optimal

solutions are found. This paper is publicly available at the CIRRELT repository (Senna et al.,

2024b).

Chapter 3 contains the second paper, entitled An exact method for a last-mile delivery rout-

ing problem with multiple deliverymen and coauthored with Prof. Leandro C. Coelho (from

Université Laval, in Canada), Prof. Reinaldo Morabito, and Prof. Pedro Munari (both from

the Federal University of São Carlos, in Brazil). This paper surveys the literature on the

VRPTWMD, and introduces a variant that includes the deliveryman routes in the optimization

problem (VRPTWMD2R). This variant is formulated, valid inequalities are proposed, and it is

decomposed in a Benders (1962) fashion to solve it exactly in a branch-and-Benders-cut (BBC)

scheme (Moreno; Munari; Alem, 2019, 2020). The obtained results show the efficiency of the

proposed methodology, solving realistic sized instances within reasonable times. In addition,

the paper empirically shows the importance of considering the deliveryman routes from a costs

minimization perspective, evaluates the impact of the deliveryman usage on the solution quality,

and discusses opportunities for reducing costs and greenhouse gases emissions with the clever

adoption of multiple deliverymen. This paper has been published at the European Journal of

Operational Research (Senna et al., 2024a).

The third paper extends the VRPTWMD by considering both the deliveryman routes and

the customer clustering. It is entitled Last-mile delivery with multiple deliverymen: formula-

tion and exact solution methods for a rich vehicle routing problem, and is presented in Chapter

4. It is coauthored with Prof. Leandro C. Coelho (from Université Laval, in Canada), Prof.

Reinaldo Morabito, and Prof. Pedro Munari (both from the Federal University of São Carlos, in

Brazil). This paper introduces the VRPTWMDC2R, presents a mathematical formulation, dis-

cusses some theoretical properties, and proposes useful lower bounds. These theoretical results

are used to develop valid inequalities that, in practice, significantly improve the MIP solver

performance. The VRPTWMDC2R is decomposed in a Benders fashion and a branch-and-

Benders-cut is proposed to solve it (Moreno; Munari; Alem, 2019, 2020). Managerial insights

show the importance of including the deliveryman routes and the customer clustering in the

optimization problem.

Concisely, the main contributions of this dissertation are new approaches for well-known

routing problems applied to last-mile delivery. Specifically, the contributions concerning the

2E-LRP are (i) the introduction of two novel formulations based on two-index arc variables, (ii)

the proposition of valid inequalities for these formulations, and (iii) the discovery of 125 new

lower bounds and 55 new optimal solutions for benchmark instances. For the VRPTWMD, the

contributions are (iv) the introduction of a realistic variant including the deliveryman routes in

the optimization, (v) the introduction of another realistic variant that encompasses both the deliv-
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eryman routes and the customer clustering in the optimization, (vi) MIP formulations and valid

inequalities for both variants, (vii) Benders decomposition schemes and branch-and-Benders-cut

algorithms to solve these variants, and (viii) computational experiments to evaluate the perfor-

mance of the proposed approaches and the impact of the new variants on the solution quality.

Since this document is organized as a collection of papers, Chapters 2 to 4 should be treated

as independent documents. Specially considering notation, even though there are many similar-

ities, the notation of each paper should be considered independently. Throughout the document,

the terms “two-level” and “two-echelon” are used interchangeably, with the choice of which

expression to use being defined by the literature over which the corresponding paper is based.

The remainder of this document is structured as follows: Chapters 2 to 4 present the three papers

that compose this dissertation, and Chapter 5 presents concluding remarks.
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2 The two-echelon location-routing prob-

lem: A comparative analysis of novel

and existing compact formulations

Abstract

The two-echelon location-routing problem (2E-LRP) is a well-known problem in the liter-

ature that is commonly used to address applications in which deliveries occur at two levels. It

concerns the location of facilities and the routing of vehicle fleets. Most studies addressing this

problem and its variants rely on mixed-integer programming (MIP) formulations that are com-

pact (i.e., have a polynomial number of variables and constraints). Although the formulations

with two-index arc variables tend to perform better than those with vehicle index variables in ve-

hicle routing problems, most of the literature on the 2E-LRP is based on the latter. In this paper,

we present a comparative analysis of three compact formulations for the 2E-LRP: a literature-

based formulation with vehicle index variables, and two novel formulations with two-index

arc variables. Additionally, we propose enhancements for the literature-based formulation and

polynomial valid inequalities for all of them. The linear programming relaxations of these for-

mulations are compared, showing that those of the two-index formulations are stronger. Exten-

sive computational experiments evaluate the formulations’ performances on a general-purpose

MIP solver. The results show that the formulations with vehicle index variables, despite being

the standard approach in the literature, lead to poor solver performance, failing to find feasible

solutions even for instances with only 50 customers. In fact, the best performance comes from

the novel formulations, one of which leads to feasible solutions for all benchmark instances

evaluated. Valid inequalities can be used to improve this performance even further. These ex-

periments resulted in the discovery of 125 new best known lower bounds and 55 new optimal

solutions (out of 131 benchmark instances evaluated).1

1This chapter is a paper coauthored with Prof. Leandro C. Coelho (Université Laval), Prof. Reinaldo Morabito

(Federal University of São Carlos), and Prof. Pedro Munari (Federal University of São Carlos). It is publicly

available at the CIRRELT repository (Senna et al., 2024b).
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2.1 Introduction

The continuous worsening of traffic conditions in urban centers has prompted many mu-

nicipalities to impose restrictions on the traffic of large vehicles in the cities (Enthoven et al.,

2020; Friedrich; Elbert, 2022). This, associated with a growing demand for urban deliveries,

has led many companies to develop new logistics schemes. In city logistics, one particularly

popular approach is the delivery in two echelons (Cuda; Guastaroba; Speranza, 2015; Senna et

al., 2024a). This way, larger vehicles transport goods from central depots (platforms) to smaller

facilities (satellites) closer to the urban centers, in the first echelon (FE). From these satellites,

smaller vehicles serve the customers in the second echelon (SE). Thus, the long distances are

traveled by more cost-efficient vehicles while complying with constraints on urban traffic.

From an operational standpoint, it is important to determine the most efficient vehicle routes,

which is the concern of the well-known two-echelon vehicle routing problem (2E-VRP), as re-

viewed by Sluijk et al. (2023). From a strategic and tactical perspective, one must consider both

location and routing decisions, which leads to the so-called location-routing problems (Prod-

hon; Prins, 2014). In particular, the two-echelon location-routing problem (2E-LRP) studies the

decisions regarding the opening of facilities (platforms and satellites) and the routes of FE and

SE vehicles, with the objective of minimizing overall costs (Drexl; Schneider, 2015).

The idea of integrating location and routing decisions in a two-echelon scheme can be traced

back to the works of Jacobsen and Madsen (1980) and Madsen (1983). However, it was only in

2011 that Boccia et al. formally defined and formulated the 2E-LRP (Boccia et al., 2011). The

authors introduced three mixed-integer programming (MIP) formulations, two of which were

compact (i.e., with polynomial numbers of variables and constraints) and one was extensive (i.e.,

with an exponential number of variables). The results of computational experiments indicated

that the best compact formulation (CF) was based on arc variables with a vehicle index, clearly

outperforming the one based on two-index arc variables. Results for the extensive formulation

were not presented. Since then, most papers dealing with CFs for the 2E-LRP and its variants

have relied on this vehicle index-based formulation.

The main difficulty in designing two-index arc variables CFs for the 2E-LRP is ensuring

that the vehicles return to the facility they left from. In formulations with a vehicle index, this

is simply made by flow conservation constraints, which ensure that the vehicle flow arriving

at a node in one vehicle must leave this node in the same vehicle. Hence, the vehicles must

make closed loops. In formulations without the vehicle index, this constraint does not work

anymore in this sense because, although the vehicle flow should be maintained, it is possible

that the vehicle arriving at a facility is not the same that left it. Thus, additional variables and

constraints are required to guarantee that a vehicle starts and ends its route at the same facility.

In this paper, we propose two novel CFs with two-index arc variables for the 2E-LRP. The

main difference between them is exactly the variables and constraints used to ensure that vehicles

return to the facilities they departed from. Both of these formulations outperform the original
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formulation with vehicle index variables in general-purpose MIP solvers. Because the majority

of papers addressing the 2E-LRP rely on CFs, this may be a significant development, as it will

allow future researchers and practitioners to work with simple yet more powerful options. The

contributions of this paper are fivefold:

• A vehicle index-based formulation adapted from Boccia et al. (2011) by revising some

minor inaccuracies and two novel formulations based on two-index arc variables;

• New valid inequalities for all of the proposed formulations;

• A theoretical comparison of the linear programming relaxations (LRs) of the different

formulations;

• Extensive computational experiments to assess which is the best CF for the 2E-LRP when

relying on a general-purpose MIP solver;

• 125 best known lower bounds for benchmark instances and 55 new optimal solutions (out

of 131 instances evaluated).

The remainder of this paper is organized as follows. Section 2.2 provides an overview of the

literature on the 2E-LRP. In Section 2.3, we formally define the problem, present the different

formulations, and introduce the valid inequalities. Section 2.4 provides a theoretical comparison

of the LRs of the formulations. In Section 2.5, we discuss the results of the computational

experiments. Finally, Section 2.6 presents concluding remarks.

2.2 Literature review

This section presents a review of the literature on the 2E-LRP and its variants, with a par-

ticular focus on the formulations used in these publications. We restrict our review to papers

that present MIP formulations. For comprehensive reviews, we refer the reader to the works of

Prodhon and Prins (2014), Cuda, Guastaroba, and Speranza (2015), and Drexl and Schneider

(2015).

Boccia et al. (2011) were the first to formally define and formulate the 2E-LRP. They pre-

sented three differentMIP formulations. The first is a CF that considers binary arc variables with

a vehicle index (three-index formulation). The second one is also compact and avoids the vehi-

cle index by using only two-index arc variables. The third one is an extensive formulation with

an exponential number of variables representing all the feasible routes for the problem. Their

computational experiments only provide results for the CFs and demonstrate empirically that the

formulation with vehicle index variables is better than the alternative, which had a significant

impact on subsequent literature.

Nguyen, Prins, and Prodhon (2012a) were the first to developmetaheuristics for the 2E-LRP,

while also presenting the formulation with vehicle index variables introduced by Boccia et al.
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(2011). Contardo, Hemmelmayr, and Crainic (2012) and Nguyen, Prins, and Prodhon (2012b)

also worked on the 2E-LRP as defined by Boccia et al. (2011) by proposing metaheuristics and

extensive two-index arc variables-based formulationswith an exponential number of constraints.

Govindan et al. (2014) extended the problem to encompass time windows in a multi-objective

approach to design a sustainable perishable food supply chain. They presented a CF based on

the three-index formulation proposed by Boccia et al. (2011). Breunig et al. (2016) extended the

problem by considering split deliveries in the FE and provided an extensive formulation with an

exponential number of variables.

Rahmani, Cherif-Khettaf, and Oulamara (2016) and Wang et al. (2018) adapted the 2E-

LRP to two beverage distribution applications, also presenting CFs based on arc variables with

a vehicle index. Pichka et al. (2018) extended the problem for an open routing situation and

Zhao, Wang, and Souza (2017) looked at the particularities of heterogeneous fleets. Both papers

propose CFs based on variables with a vehicle index. Darvish et al. (2019) incorporated the

notion of flexibility into the 2E-LRP, modeling it with a CF and presenting valid inequalities

and an exact method. Dai et al. (2019) addressed the 2E-LRP as well as two other extensions

considering three and four echelons, modeling them with variables with a vehicle index.

The 2E-LRP has also been applied to model off-shore oil and gas supply chains (Amiri;

Amin; Tavakkoli-Moghaddam, 2019), postal services (Mirhedayatian et al., 2021), electric vehi-

cles applications (Wang; Miao; Zhang, 2021), disaster waste clean-up in humanitarian contexts

(Cheng et al., 2022), cold supply chains (Wang et al., 2023), and other city logistics situations

(Agnimo et al., 2023). Sutrisno and Yang (2023) looked at the problem with mobile satellites

instead of fixed ones, and Escobar-Vargas and Crainic (2024) dealt with synchronization con-

straints. All of them used variables with a vehicle index.

Yıldız, Karaoğlan, and Altiparmak (2023) discussed a variant of the 2E-LRP with pickup

and delivery. They relied on a formulation with two-index arc variables based on assignment

variables used for the 2E-VRP (Belgin; Karaoğlan; Altiparmak, 2018). They adapted this for-

mulation to the 2E-LRP, but without including the platforms’ capacity constraints since the way

it was modeled would create a non-linearity. In Section 2.3.2, we introduce a formulation that

is based on what they proposed while including these capacity constraints by adopting a com-

modity flow-based formulation. We also present an improvement to this formulation.

Tian and Hu (2023) and Ben Mohamed et al. (2023) proposed branch-and-price algorithms,

considering extensive formulations with an exponential number of variables. The first study

considered a variant of the 2E-LRPwith satellite recommendations whereas the second analyzed

a multi-period stochastic variant.

Table 2.1 provides a summary of the information presented, analyzing the formulation char-

acteristics of each work. Of the 23 works presented, 18 of them (78%) defined their problems

with CFs. Of those, 16 (89%) had vehicle index variables in their formulations. Moreover,

Amiri, Amin, and Tavakkoli-Moghaddam (2019) worked with vehicle index variables despite

having an extensive formulation. Only four of the works presented two-index arc variables. Of
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those, only two presented CFs and Boccia et al. (2011) showed that their two-index variables

formulation performed worse than the vehicle index one, while Yıldız, Karaoğlan, and Altipar-

mak (2023) ignored the platforms capacity constraints. It is important to note that, in the context

of this discussion, we do not refer to echelon-related indices because, in many works, the FE

and SE arc variables have different notations.

Reference
Compact

formulation
Vehicle index
variables

Two-index
arc variables

Boccia et al. (2011) X X X
Contardo, Hemmelmayr, and Crainic (2012) X
Nguyen, Prins, and Prodhon (2012a) X X
Nguyen, Prins, and Prodhon (2012b) X
Govindan et al. (2014) X X
Breunig et al. (2016)

Rahmani, Cherif-Khettaf, and Oulamara (2016) X X
Zhao, Wang, and Souza (2017) X X
Pichka et al. (2018) X X
Wang et al. (2018) X X
Darvish et al. (2019) X
Dai et al. (2019) X X
Amiri, Amin, and Tavakkoli-Moghaddam (2019) X
Mirhedayatian et al. (2021) X X
Wang, Miao, and Zhang (2021) X X
Cheng et al. (2022) X X
Wang et al. (2023) X X
Agnimo et al. (2023) X X
Tian and Hu (2023) X X
Ben Mohamed et al. (2023)

Yıldız, Karaoğlan, and Altiparmak (2023) X X
Sutrisno and Yang (2023) X X
Escobar-Vargas and Crainic (2024) X X

Table 2.1: A summary of the main formulations found for the 2E-LRP in the literature.

This outcome indicates the importance of CFs for the 2E-LRP because, even though most of

the papers present tailored optimization methods (exact and heuristic) for their problems, they

usually apply CFs to formally define the addressed variants and compare the performance of

their methods with that of the CF. Hence, the better the formulation, the fairer the comparison.

Moreover, given that the vast majority of formulations include vehicle index variables, it is

important to assess whether this is the best approach. The present paper aims at solving this

issue by presenting novel formulations without vehicle index variables and by comparing all of

them theoretically and computationally.

2.3 Problem definition and mathematical formulations

The 2E-LRP is defined over a graph G = (N ,A). The node set is N = P ∪ S ∪ C, with P
being the set of potential platforms, S the set of potential satellites, and C the set of customers.

Platforms and satellites are also called facilities. The set of echelons is E = {1, 2}, with e = 1
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representing the FE and e = 2 the SE. We define sets N 1 = P ∪ S and N 2 = S ∪ C. To

improve notation, we shall denote by Oe and De the sets of origins and destinations in echelon

e, i.e., O1 = P , D1 = S , O2 = S, and D2 = C. The set of arcs is A = A1 ∪ A2, with

A1 = {(i, j)|(i ∈ P , j ∈ S) ∨ (i ∈ S, j ∈ P) ∨ (i ∈ S, j ∈ S, i 6= j)} and A2 = {(i, j)|(i ∈
S, j ∈ C) ∨ (i ∈ C, j ∈ S) ∨ (i ∈ C, j ∈ C, i 6= j)}.

In each echelon, there is an unlimited and homogeneous fleet (FE and SE vehicles may be

different). FE vehicles take goods from the platforms to the satellites, where they are trans-

shipped and delivered to the customers by the SE vehicles. Every vehicle route starts and ends

at the same facility. In the 2E-LRP, each facility i ∈ N 1 has a fixed cost Hi associated with

opening it and a capacity Bi. FE and SE vehicles have capacities Q1 and Q2 and fixed costs

f 1 and f 2, respectively. Each customer i ∈ C has a demand qi. The cost of traveling in arc

(i, j) ∈ Ae in echelon e ∈ E is ceij . It is worth noting that superindex e in ceij could be sup-

pressed, since each arc only belongs to one echelon. However, we opted to keep it since it

makes notation clearer both in this parameter and in some variables.

The goal of the 2E-LRP is to determine the optimal subset of facilities to open, along with

the least-cost FE and SE routes that can serve all customers. Figure 2.1 illustrates the problem

by presenting a feasible solution to an instance with three potential platforms, three potential

satellites, and four customers. This solution uses a single platform and two satellites (the shaded

ones are potential facilities that are not selected in this solution). In the FE, the vehicle serves

the two satellites from a single platform, whereas in the SE, two vehicles serve the customers.

SE

FE Customer

Satellite

Platform

Figure 2.1: An illustrative example of the 2E-LRP.

We present three CFs for this problem. Section 2.3.1 presents a formulation with vehi-

cle index variables proposed for the 2E-LRP (CF1) based on the one introduced by Boccia et

al. (2011), and discusses an improvement of CF1 by considering commodity flow constraints

(ICF1). We do not present the other formulations proposed by Boccia et al. (2011) since their

experiments proved that these formulations performed worse. Section 2.3.2 introduces a formu-

lation with two-index arc variables based on binary assignment variables (CF2), adapted from

what is proposed by Yıldız, Karaoğlan, and Altiparmak (2023), and a possible enhancement

(ICF2). In Section 2.3.3, another formulation with two-index arc variables is presented, without
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binary assignment variables (CF3). Valid inequalities (VIs) are discussed for all formulations.

As discussed in Section 2.1, the main difference between the two formulations with two-index

arc variables (CF2 and CF3) is the variables and constraints that are used to ensure that each

vehicle returns to the facility it left from. In what follows, the binary variable yi is common to

all proposed formulations and indicates whether a facility i ∈ N 1 is opened.

2.3.1 Formulation with vehicle index variables (CF1)

In this section, we present the formulation with three-index variables for the 2E-LRP as

introduced byBoccia et al. (2011), but we fixminor errors of their presentation. This formulation

requires additional sets Ke of vehicles in echelon e ∈ E .
The binary variable w2

si indicates whether customer i ∈ C is assigned to satellite s ∈ S .
Also, the binary variable xe

ijk indicates whether a vehicle k ∈ Ke travels through arc (i, j) ∈ Ae

in echelon e ∈ E . Another binary variable zk is required to indicate whether vehicle k ∈ K1∪K2

is used. Load flow from platform p ∈ P to satellite s ∈ S in vehicle k ∈ K1 is controlled by

the continuous and non-negative variable gpsk. Finally, u
e
i is an auxiliary variable for subtour

elimination that indicates the position of node i ∈ N e in a route in echelon e ∈ E .
The formulation introduced by Boccia et al. (2011) for the 2E-LRP is:

(CF1) min
∑
i∈N 1

Hiyi +
∑
e∈E

∑
k∈Ke

f ezk +
∑
e∈E

∑
k∈Ke

∑
(i,j)∈Ae

ceijx
e
ijk (2.1)

s.t.
∑

i:(i,j)∈Ae

xe
ijk =

∑
i:(j,i)∈Ae

xe
jik, ∀ j ∈ N e, k ∈ Ke, e ∈ E (2.2)

ue
j ≥ ue

i + 1− |De|

(
1−

∑
k∈Ke

xe
ijk

)
, ∀ (i, j) ∈ Ae, e ∈ E (2.3)∑

j∈Oe

∑
i:(i,j)∈Ae

xe
ijk ≤ 1, ∀ k ∈ Ke, e ∈ E (2.4)

∑
k∈K1

∑
j:(s,j)∈A1

x1
sjk = ys, ∀ s ∈ S (2.5)

∑
k∈K2

∑
j:(i,j)∈A2

x2
ijk = 1, ∀ i ∈ C (2.6)

∑
s∈S

w2
si = 1, ∀ i ∈ C (2.7)∑

j:(i,j)∈A2

x2
ijk +

∑
j:(s,j)∈A2

x2
sjk − w2

si ≤ 1, ∀ i ∈ C, s ∈ S, k ∈ K2 (2.8)

∑
k∈K1

∑
p∈P

gpsk =
∑
i∈C

qiw
2
si, ∀ s ∈ S (2.9)∑

k∈K1

∑
s∈S

gpsk ≤ Bpyp, ∀ p ∈ P (2.10)∑
k∈K1

∑
p∈P

gpsk ≤ Bsys, ∀ s ∈ S (2.11)
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Q1
∑

j:(s,j)∈A1

x1
sjk ≥ gpsk, ∀ p ∈ P , s ∈ S, k ∈ K1 (2.12)

Q1
∑

j:(p,j)∈A1

x1
pjk ≥ gpsk, ∀ p ∈ P , s ∈ S, k ∈ K1 (2.13)

∑
p∈P

∑
s∈S

gpsk ≤ Q1zk, ∀ k ∈ K1 (2.14)∑
i∈C

∑
j:(i,j)∈A2

qix
2
ijk ≤ Q2zk, ∀ k ∈ K2 (2.15)

xe
ijk ∈ {0, 1}, ∀ (i, j) ∈ Ae, k ∈ Ke, e ∈ E (2.16)

yi ∈ {0, 1}, ∀ i ∈ N 1 (2.17)

w2
si ∈ {0, 1}, ∀ s ∈ S, i ∈ C (2.18)

zk ∈ {0, 1}, ∀ k ∈ K1 ∪ K2 (2.19)

gpsk ≥ 0, ∀ p ∈ P , s ∈ S, k ∈ K1 (2.20)

ue
i ∈ [1, |De|], ∀ i ∈ N e, e ∈ E . (2.21)

The objective function (2.1) aims to minimize facilities and vehicles fixed costs as well

as distance-related costs. Constraints (2.2) are vehicle flow conservation constraints for both

echelons. Constraints (2.3) are Miller-Tucker-Zemlin (MTZ) subtour elimination constraints

for both echelons (Miller; Tucker; Zemlin, 1960). Constraints (2.4) ensure that each vehi-

cle performs a single route. Constraints (2.5) define that a satellite is opened if and only if

an FE vehicle leaves it. Constraints (2.6) state that every customer is visited exactly once.

Constraints (2.7) define that each customer is assigned to exactly one satellite. Constraints

(2.8) ensure that if a customer is assigned to a satellite, the vehicle that serves it leaves the

corresponding satellite. Constraints (2.9) define that the amount of load transferred from

a platform to a satellite is equal to the demand of the customers assigned to this satellite.

Constraints (2.10) and (2.11) ensure that the capacities of the platforms and satellites are re-

spected. Constraints (2.12) and (2.13) define that there is a load flow from a platform to

a satellite only if they are both served by the same vehicle. Constraints (2.14) and (2.15)

make sure that the vehicles’ capacities are respected. Constraints (2.16)–(2.21) define the vari-

ables’ domains. This formulation has O((|P| + |S|)2|K1| + (|S| + |C|)2|K2|) variables and
O((|P|+ |S|)2 + (|S|+ |C|)2 + (|P|+ |S|)|K1|+ (|S|+ |C|)|K2|+ |P||S||K1|+ |S||C||K2|)
constraints.

It is worth noting that the original formulation has two minor issues that are corrected in

CF1. First, Boccia et al. (2011) do not consider the echelon related index of variable ue
i . Hence,

for the satellites, these variables become poorly defined, since they appear in the constraints of

both echelons. Additionally, in their paper, constraints (2.13) use Q2 instead of Q1, which is

incorrect since they are related to the FE.
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Improved formulation

A possible improvement to this formulation is the substitution of constraints (2.3),

(2.7)–(2.15), and (2.18)–(2.21) by a commodity flow based formulation (Gavish; Graves, 1978).

To this extent, we define continuous variables geij that represent the flow of commodities in arc

(i, j) ∈ Ae, e ∈ E . The new formulation (ICF1) becomes:

(ICF1) min
∑
i∈N 1

Hiyi +
∑
e∈E

∑
k∈Ke

∑
i∈Oe

∑
j∈De

f exe
ijk +

∑
e∈E

∑
k∈Ke

∑
(i,j)∈Ae

ceijx
e
ijk (2.22)

s.t. (2.2), (2.4)–(2.6), (2.16)–(2.17)∑
i:(i,s)∈A1

g1is −
∑

i:(s,i)∈A1

g1si = −
∑
j∈C

g2js, ∀ s ∈ S (2.23)

∑
i:(i,j)∈A2

g2ij −
∑

i:(j,i)∈A2

g2ji = −qj, ∀ j ∈ C (2.24)

∑
i∈De

geij ≤ Bjyj, ∀ j ∈ Oe, e ∈ E (2.25)

0 ≤ geij ≤ Qe
∑
k∈Ke

xe
ijk, ∀ (i, j) ∈ Ae, e ∈ E . (2.26)

The objective function (2.22) is equivalent to (2.1) but uses a different form for calculat-

ing vehicle fixed costs. Constraints (2.23) define that the difference between the load arriving

and leaving a satellite is the load transshipped through this satellite. Constraints (2.24) do the

same for the customers. Constraints (2.25) ensure that the facilities capacities are respected.

Constraints (2.26) define the domain of the new decision variables. The number of variables in

ICF1 is of the same order as in CF1, but the number of constraints is significantly reduced to

O((|P|+ |S|)|K1|+ (|S|+ |C|)|K2|).

Valid inequalities

It is well-known that vehicle index formulations for routing problems exhibit solution sym-

metries, which may negatively impact the performance of branch-and-bound-based methods

(Furtado; Munari; Morabito, 2017; Munari; Savelsbergh, 2022). To mitigate this issue, one

could add the following valid inequalities (VIs):∑
i∈Oe

∑
j∈De

xe
ijk ≥

∑
i∈Oe

∑
j∈De

xe
ij(k+1), ∀ k ∈ Ke \ {|Ke|}, e ∈ E (2.27)∑

(i,j)∈A2:i<h

x2
ij(k−1) ≥

∑
j:(h,j)∈A2

x2
hjk, ∀ h ∈ C \ {1}, k ∈ K2 \ {1}. (2.28)

Constraints (2.27) state that, if a vehicle is used, a vehicle with a smaller index is also used.

Constraints (2.28) ensure that, if a vehicle serves a customer, a vehicle with a smaller index

serves another customer with a smaller index.
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In addition to these, the following VIs could be used to tighten the LR of the formulations:∑
i∈Oe

yi ≥ oemin, ∀ e ∈ E (2.29)

∑
i∈Oe

∑
j∈De

∑
k∈Ke

xe
ijk ≥

⌈
1

Qe

∑
i∈C

qi

⌉
, ∀ e ∈ E (2.30)∑

k∈Ke

∑
j:(i,j)∈Ae

xe
ijk ≥ yi, ∀ i ∈ Oe, e ∈ E (2.31)

2
∑
k∈K1

x1
psk ≤ yp + ys, ∀ p ∈ P , s ∈ S (2.32)

2
∑
k∈K1

x1
spk ≤ yp + ys, ∀ p ∈ P , s ∈ S (2.33)∑

k∈K2

x2
sjk ≤ ys, ∀ s ∈ S, j ∈ C (2.34)∑

k∈K2

x2
jsk ≤ ys, ∀ s ∈ S, j ∈ C (2.35)∑

i∈C

w2
si ≥ ys, ∀ s ∈ S (2.36)

w2
si ≤ ys, ∀ s ∈ S, i ∈ C. (2.37)

Constraints (2.29) define lower bounds on the number of platforms and satellites (Yıldız;

Karaoğlan; Altiparmak, 2023). In these VIs, oemin are lower bounds on the number of facili-

ties opened and can be defined by ordering the corresponding facilities in decreasing order of

capacity and taking the smallest number of them that can serve all the customers’ demands.

Constraints (2.30) are lower bounds on the number of vehicles needed in each echelon. Con-

straints (2.31) define that if a facility is opened, at least one vehicle leaves it. Constraints (2.32)

and (2.33) forbid vehicles from traveling between a platform and a satellite if one of them is

not opened. Constraints (2.34) and (2.35) state that a vehicle can only leave from or return to

a satellite if it is opened. Constraints (2.36) state that, if a satellite is opened, at least one cus-

tomer is assigned to it. Constraints (2.37) forbid customers to be assigned to satellites that are

not opened. It is worth noticing that VIs (2.36) and (2.37) cannot be used with ICF1 because

variables w2 are not defined in this formulation.

2.3.2 Formulation with two-index arc variables and binary assignments

(CF2)

We introduce a novel formulation for the 2E-LRP with two-index routing variables. This

formulation is based on a 2E-VRP formulation (Belgin; Karaoğlan; Altiparmak, 2018) that has

been adapted to the 2E-LRP by Yıldız, Karaoğlan, and Altiparmak (2023). However, when

adapting it to the 2E-LRP, they did not include the platforms’ capacity constraints since it would
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create nonlinearities. We have adapted it by considering commodity flow variables in both

echelons to ensure that these capacities are respected.

In this formulation, the binary variable xe
ij indicates whether a vehicle traverses arc (i, j) ∈

Ae in echelon e ∈ E . As mentioned in Section 2.1, when avoiding the variables with vehicle

index, additional variables and constraints must be used to ensure that the vehicles end their

routes in the facilities they started from. In this formulation, this is made by the variable w2
si

already employed in CF1 and the binary variable w1
ps that indicates whether satellite s ∈ S is

assigned to platform p ∈ P .

The first formulation with two-index arc variables is defined as:

(CF2) min
∑
i∈N 1

Hiyi +
∑
e∈E

∑
i∈Oe

∑
j∈De

f exe
ij +

∑
e∈E

∑
(i,j)∈Ae

ceijx
e
ij (2.38)

s.t. (2.7), (2.17), (2.23)–(2.25)∑
i:(i,j)∈Ae

xe
ij =

∑
i:(j,i)∈Ae

xe
ji, ∀ j ∈ N e, e ∈ E (2.39)

∑
j:(s,j)∈A1

x1
sj = ys, ∀ s ∈ S (2.40)

∑
j:(i,j)∈A2

x2
ij = 1, ∀ i ∈ C (2.41)

∑
p∈P

w1
ps = ys, ∀ s ∈ S (2.42)

xe
ij ≤ we

ij, ∀ i ∈ Oe, j ∈ De, e ∈ E (2.43)

xe
ji ≤ we

ij, ∀ i ∈ Oe, j ∈ De, e ∈ E (2.44)

xe
ij + we

hi +
∑

h′∈Oe\{h}

we
h′j ≤ 2, ∀ i, j ∈ De, i 6= j, h ∈ Oe (2.45)

xe
ij ∈ {0, 1}, ∀ (i, j) ∈ Ae, e ∈ E (2.46)

we
ij ∈ {0, 1},∀ i ∈ Oe, j ∈ De, e ∈ E (2.47)

0 ≤ geij ≤ Qexe
ij, ∀ (i, j) ∈ Ae, e ∈ E . (2.48)

The objective function (2.38) and constraints (2.39)–(2.41) are the two-index variables

equivalent of (2.22), (2.2), (2.5), and (2.6), respectively. Constraints (2.42) define that if a

satellite is opened, it is assigned to a platform. Constraints (2.43) and (2.44) state that if a

vehicle travels between an origin and a destination, this destination is assigned to this origin.

Constraints (2.45) ensure that a vehicle can only travel between two destinations assigned to

the same origin. Constrains (2.46)–(2.48) define the domain of variables. This formulation has

O((|P|+ |S|)2 + (|S|+ |C|)2) variables and O(|P||S|2 + |S||C|2 + (|P|+ |S|)2 + (|S|+ |C|)2)
constraints.
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Improved formulation

The first possible improvement to CF2 concerns constraints (2.45). They were presented

this way since it is the common approach in the literature (Belgin; Karaoğlan; Altiparmak, 2018;

Yıldız; Karaoğlan; Altiparmak, 2023). However, they can be improved to become sparser and

provide a tighter LR. For the SE, from constraints (2.7), we have that
∑

h′∈O2\{h}w
2
h′j = 1−w2

hj

and this can be substituted in constraints (2.45) to make them sparser. For the FE, we would

have
∑

h′∈O1\{h}w
1
h′j = yh − w1

hj from constraints (2.42), but it is possible to use 1 − w1
hj

because constraints (2.45) are redundant for yh = 0. Moreover, given that constraints (2.45)

define that a vehicle may travel between two destinations only if they are both assigned to the

same origin, we can add xe
ji to their left-hand side, tightening the LR. This way, we obtain the

following formulation ICF2:

(ICF2) min (2.38)

s.t. (2.7), (2.17), (2.23)–(2.25), (2.39)–(2.44), (2.46)–(2.48)

xe
ij + xe

ji + we
hi − we

hj ≤ 1, ∀ i, j ∈ De, i 6= j, h ∈ Oe. (2.49)

Valid inequalities

Both CF2 and ICF2 can be enhanced by the following VIs:

(2.29), (2.36)–(2.37)∑
i∈Oe

∑
j∈De

xe
ij ≥

⌈
1

Qe

∑
c∈C

qc

⌉
, ∀ e ∈ E (2.50)∑

j∈De

xe
ij ≥ yi, ∀ i ∈ Oe, e ∈ E (2.51)

2x1
ps ≤ yp + ys, ∀ p ∈ P , s ∈ S (2.52)

2x1
sp ≤ yp + ys, ∀ p ∈ P , s ∈ S (2.53)

x2
sj ≤ ys, ∀ s ∈ S, j ∈ C (2.54)

x2
js ≤ ys, ∀ s ∈ S, j ∈ C (2.55)∑
s∈S

w1
ps ≥ yp, ∀ p ∈ P (2.56)

2w1
ps ≤ yp + ys, ∀ p ∈ P , s ∈ S. (2.57)

Constraints (2.50)–(2.55) are the two-index variables equivalent to (2.30)–(2.35). Con-

straints (2.56) define that if a platform is opened at least one satellite is assigned to it. Con-

straints (2.57) define that a satellite can only be assigned to a platform if both the satellite and

the platform are opened. Constraints (2.50) and (2.52)–(2.56) can be found in Yıldız, Karaoğlan,

and Altiparmak (2023).
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2.3.3 Formulation with two-index arc variables and continuous assign-

ments (CF3)

In this section, we present a novel two-index formulation that does not require the assignment

variables w from CF2. Instead of binary assignments, this formulation is based on continuous

variables vej that indicate from which origin the vehicle visiting destination j ∈ De, e ∈ E
departed. It is inspired by the index propagation formulation of Furtado, Munari, and Morabito

(2017) for the pickup and delivery routing problem. Formulation CF3 is defined as:

(CF3) min (2.38)

s.t. (2.17), (2.23)–(2.25), (2.39)–(2.41), (2.46), (2.48)

vej ≥
∑
i∈Oe

ixe
ij, ∀ j ∈ De, e ∈ E (2.58)

vej ≥
∑
i∈Oe

ixe
ji, ∀ j ∈ De, e ∈ E (2.59)

vej ≤ M e
1 −

∑
i∈Oe

(M e
1 − i)xe

ij, ∀ j ∈ De, e ∈ E (2.60)

vej ≤ M e
1 −

∑
i∈Oe

(M e
1 − i)xe

ji, ∀ j ∈ De, e ∈ E (2.61)

vej ≥ vei −M e
2 (1− xe

ij − xe
ji), ∀ i, j ∈ De, i 6= j, e ∈ E (2.62)

1 ≤ vej ≤ |Oe|, ∀ j ∈ De, e ∈ E . (2.63)

Constraints (2.58)–(2.61) impose that if a vehicle travels between an origin i and a destina-

tion j, then vej assumes the value of i, this way indicating the origin related to node j. Constraints

(2.62) ensure that if a vehicle travels between two destinations i and j, then these nodes are in

the same route and, therefore, have the same origin (i.e., vei = vej ). Constraints (2.63) define the

domain of the new variables. M e
1 andM

e
2 are sufficiently large numbers. Their tightest possible

values areM e
1 = |Oe| andM e

2 = |Oe| − 1. This formulation has O((|P|+ |S|)2 +(|S|+ |C|)2)
variables and O((|P|+ |S|)2 + (|S|+ |C|)2) constraints.

Formulation CF3 can be enhanced by the following VIs:

(2.29), (2.50)–(2.55)

vej ≥ i

(
yi −

∑
i′∈Oe:i′<i

yi′

)
, ∀ i ∈ Oe \ {1}, j ∈ De, e ∈ E (2.64)

vej ≤ i+
∑

i′∈Oe:i′>i

i′yi′ + (|Oe| − i)(1− yi), ∀ i ∈ Oe \ {|Oe|}, j ∈ De, e ∈ E . (2.65)

Constraints (2.64) define that destinations are assigned to an origin with an index at least

equal to the smallest index of opened origins. Analogously, constraints (2.65) ensure that des-

tinations are assigned to an origin with an index at most equal to the greatest index of opened
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origins.

2.4 Comparison of LRs

In this section, we discuss some relationships between the LRs of the different proposed

formulations. Propositions 2.1 to 2.6 and Corollaries 2.1 to 2.4 enunciate and prove them.

Proposition 2.1. The LR of ICF1 is not weaker than that of CF1.

Proof. The optimal value of the LR of ICF1 for instance “100–10MN” from set Nguyen2 is

156,294, higher than that of CF1, which is 111,867.

Proposition 2.2. Formulation ICF2 has a stronger LR than formulation CF2.

Proof. The optimal value of the LR of ICF2 for instance “100–10MN” from set Nguyen is

160,148, which is higher than that of the LR of CF2 for the same instance (156,294). Hence,

CF2 does not have a stronger LR than ICF2.

The fact that the LR of ICF2 is stronger than that of CF2 comes directly from the fact that,

if constraints (2.49) are satisfied, constraints (2.45) are also satisfied. Indeed, from constraints

(2.7) and (2.42),
∑

h′∈Oe\{h}

we
h′j − 1 = −we

hj . Substituting this in (2.49) makes

1 ≥ xe
ij + xe

ji + we
hi − we

hj ≥ xe
ij + we

hi +
∑

h′∈Oe\{h}

we
h′j − 1, ∀ i, j ∈ De, i 6= j, h ∈ Oe,

corresponding precisely to constraints (2.45).

Proposition 2.3. Formulation CF2 has a stronger LR than formulation ICF1.

Proof. Given a solution xe
ij, (i, j) ∈ Ae, e ∈ E , for the LR of CF2, it is possible to define a

solution for the LR of ICF1 by making x̃e
ijk =

1
|Ke|x

e
ij, (i, j) ∈ Ae, k ∈ Ke, e ∈ E . This way, we

have that constraints (2.39)⇒ (2.2), (2.40)⇒ (2.5), (2.41)⇒ (2.6), (2.46)⇒ (2.16), and (2.48)

⇒ (2.26). Moreover, (2.40) and (2.41)⇒ (2.4). In fact, from (2.41),∑
j∈C\{i}

x2
ij +

∑
j∈S

x2
ij = 1, ∀ i ∈ C ⇒

∑
i∈C

∑
j∈S

x2
ij = |C| −

∑
i,j∈C:i 6=j

x2
ij ⇒

⇒
∑
i∈C

∑
j∈S

x̃2
ijk ≤

|C|
|K2|

≤ 1, ∀ k ∈ K2

since the fleet is unlimited, corresponding precisely to constraints (2.4) for the SE. For the FE,

the derivation from (2.40) is analogous. Hence, it is proved that, if x is a solution to the LR of

CF2, then x̃ is a solution to the LR of ICF1.

2The benchmark instances sets are properly presented in Section 2.5.
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Figure 2.2 represents an example of a solution of the LR of ICF1 that is not a solution of the

LR of CF2. It presents an instance with three potential satellites and two customers (the FE is

not presented since it is not needed in this demonstration). The customers in this instance have

low demands, while vehicles and facilities have large enough capacities to ensure that load and

capacity constraints are non-binding. Figure 2.2a portrays a solution of the LR of ICF1. The

solid blue arrows represent the positive arc variables associated with one vehicle and the dashed

green ones represent another vehicle. It is easy to see that these values respect all constraints of

ICF1.
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1 2

0.255

0.25

0.25
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(a) Solution of the LR of ICF1.
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1 2
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Satellite
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(b) Projection onto the two-index arc variables

space.

Figure 2.2: An example for proving that ICF1 does not have a stronger LR than CF2.

The only way to project this solution onto the two-index arc variables space of CF2 while

respecting constraints (2.41) is by defining x2
ij =

∑
k∈K2 x2

ijk, ∀ (i, j) ∈ A2, yielding the

solution shown in Figure 2.2b. However, constraints (2.43) and (2.44) would impose w2
1,1 ≥

0.51 and w2
3,1 ≥ 0.5. This implies

∑
s∈S w

2
s1 ≥ 1.01, violating constraints (2.7). Hence, this

solution of the LR of ICF1 does not have a correspondent solution for the LR of CF2.

Corollary 2.1. Formulation ICF2 has a stronger LR than formulation ICF1.

Corollary 2.2. The LR of CF2 is not weaker than the LR of CF1.

Corollary 2.3. The LR of ICF2 is not weaker than the LR of CF1.

Proposition 2.4. Formulation CF3 has a stronger LR than formulation ICF1.

Proof. The proof that every feasible solution for the LR of CF3 has a corresponding feasible

solution in the LR of ICF1 is the same as in the proof of Proposition 2.3 for CF2 and ICF1. Also,

the optimal value of the LR of ICF1 for instance “100–10MN” from setNguyen is 156,294, while

for the LR of CF3 it is 160,146.

Corollary 2.4. The LR of CF3 is not weaker than the LR of CF1.

Proposition 2.5. The LRs of formulations CF2 and CF3 are not comparable.
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Proof. The optimal value of the LR of CF3 for instance “100–10MN” from set Nguyen is

160,146 while for the LR of CF2 it is 156,294. Hence, the LR of CF2 is not stronger than

that of CF3.

Moreover, Figure 2.2b presents an example of a solution of the LR of CF3 that is not a

solution for the LR of CF2. Once again, assume that the customers have low demands and

the vehicles and facilities have high enough capacities. The arrows represent the value of the

corresponding x2 variables. It is easy to see that v21 = v22 = 1.5 is a solution to CF3. However,

for CF2, constraints (2.43) and (2.44) would impose w2
1,1 ≥ 0.51 and w2

3,1 ≥ 0.5. This implies∑
s∈S w

2
s1 ≥ 1.01, violating constraints (2.7). Hence, this solution of the LR of CF3 is not

feasible for the LR of CF2.

Proposition 2.6. Formulation ICF2 has a stronger LR than formulation CF3 if M e
1 = M e

2 =
|Oe|(|Oe|+1)

2
.

Proof. First, we prove that a solution in the LR of ICF2 has a corresponding solution in the

LR of CF3 by defining vej =
∑

i∈Oe iwe
ij , which automatically respects constraints (2.63). By

multiplying constraints (2.43) and (2.44) by i and summing over Oe, we get∑
i∈Oe

iwe
ij ≥

∑
i∈Oe

ixe
ij, ∀ j ∈ De, e ∈ E , and∑

i∈Oe

iwe
ij ≥

∑
i∈Oe

ixe
ji, ∀ j ∈ De, e ∈ E ,

which correspond to constraints (2.58) and (2.59), respectively.

From constraints (2.41), in the SE, we have∑
s′∈S

x2
is′ +

∑
j∈C\{i}

x2
ij = 1, ∀ i ∈ C ⇒ x2

is +
∑

j∈C\{i}

x2
ij = 1−

∑
s′∈S\{s}

x2
is′ , ∀ s ∈ S, i ∈ C.

From constraints (2.7) and (2.43),

x2
is +

∑
j∈C\{i}

x2
ij ≥ 1−

∑
s′∈S\{s}

w2
s′i = w2

si, ∀ s ∈ S, i ∈ C.

By multiplying these inequalities by s and summing over S, we get

∑
s∈S

sw2
si ≤

∑
s∈S

sx2
is +

∑
s∈S

s

 ∑
j∈C\{i}

x2
ij

 , ∀ i ∈ C

⇒ v2i ≤
∑
s∈S

sx2
is +

|S|(|S|+ 1)

2

(
1−

∑
s∈S

x2
is

)
, ∀ i ∈ C,

which yields constraints (2.61) for e = 2. The derivations for constraints (2.60) and the FE are

analogous.
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Finally, by multiplying constraints (2.49) by h and summing over Oe, we get

|Oe|(|Oe|+ 1)

2
(xe

ij + xe
ji) +

∑
h∈Oe

h(we
hi − we

hj) ≤
|Oe|(|Oe|+ 1)

2
, ∀ i, j ∈ De, i 6= j,

which are precisely constraints (2.62).

The example presented in Figure 2.2b along with the discussion in the proof of Proposition

2.5 also works in this proposition to show that the LR of CF3 is not stronger than the LR of

ICF2.

Figure 2.3 illustrates the properties presented in Propositions 2.1 to 2.6 and in Corollaries

2.1 to 2.4. This figure does not explicitly represent all of these relationships since the strength of

the LR is a transitive property, i.e., if formulation A has a stronger LR than another formulation

B and the LR of B is stronger than that of C, the LR of A dominates that of C.

CF1 ICF1

CF2

ICF2

CF3

A B The LR of B is stronger than that of A

A B The LR of B is not weaker than that of A

A B The LRs of A and B are not comparable

Figure 2.3: A visual representation of the relationships between different 2E-LRP formulations.

2.5 Computational experiments

This section presents the results of the extensive computational experiments developed to

assess the performance of the presented formulations of the 2E-LRP in a general-purpose MIP

solver. All experiments were run on a computing cluster from Compute Canada, where each

node is equipped with 2xAMD Rome 7532 processors running at 2.4GHz. The formulations

were implemented in C++ using Gurobi 11.0 as solver with an optimality tolerance of 10−7. All

experiments were limited to one hour of runtime and 80GB of RAM, using up to eight threads.

We performed experiments with five benchmark instance sets of the 2E-LRP and its variants.

The first of them is the Prodhon set, which contains 30 instances with the number of customers

ranging from 20 to 200, the number of potential satellites being five or 10, and the number

of potential platforms fixed as one. The second instance set is called Nguyen and contains 24

instances with one platform in each, five or ten potential satellites, and a range of customers that

goes from 25 to 200. These two instances sets were introduced by Nguyen, Prins, and Prodhon

(2012b).
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The remaining three instance sets, named I1, I2, and I3, were generated by Contardo, Hem-

melmayr, and Crainic (2012) following the procedure suggested by Boccia et al. (2011). These

sets contain 31 instances each with the number of potential platforms ranging from two to five,

the number of potential satellites going from three to 20, and the number of customers between

eight and 200.

We ran our experiments using all instances in these sets, except those with 200 customers.

These instances were excluded because they are too large for CFs to handle, as few formula-

tions found feasible solutions and only for few instances of this size. The remaining instances

were divided into three groups: small (from eight to 25 customers), medium (from 50 to 75

customers), and large (from 100 to 150 customers).

In Section 2.5.1, the presented formulations are compared in terms of their LR, their per-

formance, and their number of constraints and variables. They are also compared with the best

known solutions (BKS) from the literature. Section 2.5.2 assesses how the existence or absence

of multiple potential platforms in an instance affects the performance of the formulations. Fi-

nally, Section 2.5.3 evaluates the benefits of including valid inequalities for each formulation.

2.5.1 Comparison of CFs

The first assessment to be made is on how the different formulations compare to each other

empirically. We also confront these results with the BKS from the literature, considering both

the best known lower bounds (BKLBs) and the best known upper bounds (BKUBs). The BKLBs

have all been presented by Contardo, Hemmelmayr, and Crainic (2012), while the BKUBs have

been reported by Contardo, Hemmelmayr, and Crainic (2012), Nguyen, Prins, and Prodhon

(2012b) and Schwengerer, Pirkwieser, and Raidl (2012), and Breunig et al. (2016). For each

instance, we computed the gap of the BKS as BKUB−BKLB
BKUB

. Instances with this gap equal to

zero were considered having an optimal solution found. Although no BKUB was improved, the

presented formulations found many of the reported BKUBs and improved most of the BKLBs.

Table 2.2 presents the results of different metrics for each formulation. These results are

aggregated by size (small, medium, and large) and also by all instances. Detailed results are

presented as supplementary material. In this table, “Size” indicates the instance size, “Met-

ric” presents the corresponding value, “BKS” is the best known solution, and “CF1”, “ICF1”,

“CF2”, “ICF2”, and “CF3” indicate the corresponding formulation. “LR” represents the opti-

mal value of the LR of the corresponding model, “LB” and “UB” are respectively the lower and

upper bounds reported by the solver at the end of the runtime, “Gap (%)” corresponds to the

optimality gap, “Time (s)” indicates the runtime in seconds, and “# of optimals” indicates the

number of instances with proved optimality. Except for “# of optimals”, all reported values are

averages. Moreover, for the gap, the presented value is the average of optimality gaps, not the

gap computed with the average LB and UB. For each instance, the gap reported for the BKS

is defined as BKUB−BKLB
BKUB

, while for the five formulations it is the optimality gap reported by
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the solver
(
UB−LB

UB

)
. For the formulations that did not find feasible solutions to one or more in-

stances of a given instance class, the corresponding UB and gap were reported as “N/A”, since

it is impossible to define these values for these specific instances.

Size Metric BKS CF1 ICF1 CF2 ICF2 CF3

Small
(71 insts.)

LR – 5,139 6,715 6,715 6,924 6,921

LB 8,506 7,880 8,741 8,930 8,930 8,931

UB 8,934 9,090 8,947 8,934 8,934 8,934

Gap (%) 7.78 14.11 3.02 0.38 0.36 0.33

Time (s) – 2,651 2,097 936 911 861

# of optimals 6 20 33 56 58 59

Medium
(28 insts.)

LR – 35,855 50,174 50,174 51,308 51,303

LB 61,850 50,018 59,569 64,659 64,860 64,910

UB 67,071 N/A N/A 68,022 67,743 67,641

Gap (%) 9.88 N/A N/A 8.46 6.75 6.37

Time (s) – 3,600 3,600 3,600 3,600 3,600

# of optimals 0 0 0 0 0 0

Large

(32 insts.)

LR – 93,089 119,158 119,158 120,654 120,646

LB 133,224 109,045 123,967 136,450 136,825 139,211

UB 147,140 N/A N/A N/A N/A 153,291

Gap (%) 10.36 N/A N/A N/A N/A 13.28

Time (s) – 3,602 3,600 3,600 3,600 3,600

# of optimals 0 0 0 0 0 0

All
(131 insts.)

LR – 33,188 43,471 43,471 44,192 44,187

LB 50,373 41,599 47,752 51,991 52,126 52,720

UB 55,120 N/A N/A N/A N/A 56,745

Gap (%) 8.85 N/A N/A N/A N/A 4.78

Time (s) – 3,086 2,786 2,156 2,142 2,116

# of optimals 6 20 33 56 58 59

Table 2.2: Results of the MIP solver for different CFs.

Figure 2.4 delves deeper into the performances of the MIP solver for different CFs. In the

four charts, “# of optimals” indicates the number of optimal solutions found, “# no feasible sol.”

corresponds to the number of instances for which the solver could not find a feasible solution,

“# of BKLBs improved” and “# of BKUBs found” respectively indicate the number of instances

to which the corresponding CF found an LB that was better than the BKLB or an UB that was

as good as the BKUB. Figure 2.5 presents the average number of constraints, variables (any

kind), and binary variables for each formulation (“# of constraints”, “# of variables”, and “# of

binary variables”, respectively). The results are aggregated by size and presented for the overall

solution, as in Table 2.2.

Regarding the LR, it is clear that the CF1 presents the lowest values. On average, ICF1 has

an LR bound that is 30.98% higher than that of CF1. Moreover, despite having a stronger LR

than ICF1, CF2 presents the same result as ICF1 for all tested instances. The average value of

the LR of CF3 is 1.65% higher than that of CF2, even though their LRs are not comparable. ICF2

has an average LR bound that is 1.66% higher than that of CF2, but only 0.01% higher than that

of CF3. This indicates that, although ICF2 has a stronger LR than CF3, their difference may not
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(a) Small (71 insts.) (b) Medium (28 insts.)

(c) Large (32 insts.) (d) All (131 insts.)

Figure 2.4: Results of the MIP solver for different CFs and sizes.

be significant in practice, since in the test instances they showed very similar results. Another

impressive result is the fact that, for the medium and large instances, the average optimal values

of LRs of ICF1, CF2, ICF2, and CF3 are higher than the average LB found by the solver after

one hour of runtime with CF1 (this is also true for the overall average).

Comparing the number of variables and constraints, it is clear that ICF1 has a slightly larger

number of general variables and smaller number of binary variables when compared to CF1.

The number of constraints, however, is 81.21% smaller on average, significantly reducing the

size of the linear programming problem solved in each branch-and-bound node. When compar-

ing formulations CF2 and ICF2, the number of constraints increases again, being closer to that

of CF1 and much larger than that of ICF1. The number of variables, however, is drastically re-

duced, going from being 88.95% smaller for the small-sized instances to being 98.22% smaller

in the large-sized instances (for the binary variables the numbers are 93.57% and 99.07%, re-

spectively). Finally, CF3 has the smallest number of variables and constraints of all formula-

tions. Compared to ICF2, CF3 has 80.57% fewer constraints, 4.18% fewer variables, and 9.02%

fewer binary variables, being the smallest formulation, while preserving almost all strength of

the LR. This translates into the results of theMIP solver, since this is the CF with the best overall

performance.

For the small instances, CF1 allows the solver to prove optimality for only 20 out of 71 of

them, presenting an average gap of 14.11%. These results are considerably improved by ICF1,



39

(a) Small (71 insts.) (b) Medium (28 insts.)

(c) Large (32 insts.) (d) All (131 insts.)

Figure 2.5: Average number of constraints, variables, and binary variables for different CFs and

sizes.

as the solver proves optimality to a total of 33 instances, lowering the average gap to 3.02%

and improving both the lower and the upper bounds. The three formulations with two-index

arc variables (CF2, ICF2, and CF3) promote good results, with very similar UBs. The BKLB

is improved in 65 instances, all of them with unknown optimal solutions in the literature. The

solver finds the BKUB for all the 71 instances using CF2, for 69 instances using ICF2, and for

70 instances using CF3. The best LB is obtained when using CF3, which proves optimality for

59 of the instances (83.10% of them) and presents the best gap. The optimal solutions of 53 of

these instances are not reported in the literature.

For medium and large instances, the solver can no longer find feasible solutions for all in-

stances when using formulations with vehicle index variables. In fact, despite leading to better

LBs on average, ICF1 results in feasible solutions for fewer instances than CF1. For medium-

sized instances, the average gap for CF2 is 8.46%, whereas for ICF2 it is 1.71% lower, as a result

of attaining better LBs and UBs. This fully justifies the modification in constraints (2.45) that

yield ICF2 with sparser and stronger constraints. CF3 yields even better bounds and gap, with

solutions that are only 0.85% worse than the BKUB on average, while improving the BKLB by

4.95%. CF3 also results in better BKLB for all of these instances, while finding the BKUB for

three of them.

For the large instances, only CF3 leads to feasible solutions for all instances. The perfor-
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mance is not as good as for the small- and medium-sized instances, since it presents 13.28%

average gap. However, the obtained solutions are only 4.18% away from the average BKUB,

which is an excellent result for a compact formulation in large-sized instances. Furthermore,

the LB obtained with CF3 is 4.49% higher than the BKLB on average. In fact, the BKLB is

improved for 27 out of 32 instances.

Overall, CF3 is the best performing CF and the only one that results in feasible solutions for

all instances. The average gap is 4.78%, the UB is only 2.95% higher than the BKUB (whichwas

obtained by tailored metaheurisitics) and the BKLB is improved in 4.66%, which is significant

since it is a CF. It also leads to improved BKLB for 120 instances (91.60% of them), while

resulting in the BKUB for 73 instances (55.73%).

To further compare the performance of the MIP solver for different formulations, Figures

2.6 and 2.7 present performance profiles (Dolan; Moré, 2002) for the UB and optimality gap,

respectively. For the UB, for example, given a set of instances and a set of CFs, denote by UBfp

the UB for instance pwhen solved with formulation f . In these graphs, for a value q > 0, P (f, q)

indicates the fraction of instances for which CF f finds solutions with an UB that lies within a

factor q of the best obtained UB. Hence, the value of P (f, 0) indicates the fraction of instances

for which CF f finds the best UB among all CFs. For the gap, the definition is analogous. The

graphs are presented with the horizontal axis in logarithmic scale.

For the UB, the performance profiles indicate that ICF1 outperforms CF1 for the small in-

stances and is outperformed by CF1 for the medium ones, while for the large ones they are

practically equivalent. On the overall average, CF1 slightly outperforms ICF1, which is coher-

ent with the results in Figure 2.4, since there are more instances for which the solver does not

find any feasible solution for ICF1 than for CF1. Nevertheless, for the gap, this behavior is not

the same. Although for the small, medium, and large instances the comparison of CF1 and ICF1

is similar for both UB and gap, on the overall average, ICF1 outperforms CF1, since it provides

much better LBs.

The performance profiles of CF2 and ICF2 for UB are very similar. They are practically the

same for the small and medium instances, and, for the large instances, ICF2 outperforms CF2

for small values of q. For the gap, this difference is more significant. For the small instances,

there is a small difference, which did not exist for the UB performance profiles. Moreover,

for the medium and large instances, as well as for the overall average, this difference is more

expressive due mostly to the improvements in the LR and the LB documented in Table 2.2.

Finally, the performance profiles confirm the results presented in Table 2.2 that CF3 is the

best performing CF. For the UB, P (f, q) is equal to one for almost every possible value of q,

greatly outperforming the other CFs for the overall average. For the gap, the results of the MIP

solver for CF3 are also much better than those for the other CFs.

Therefore, the presented results make clear that the use of formulations with vehicle index

variables does not lead to good results in a general-purpose MIP solver. Moreover, in medium-

and large-sized instances, it may not possible to obtain even feasible solutions. The two-index
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(a) Small (71 insts.) (b) Medium (28 insts.)

(c) Large (32 insts.) (d) All (131 insts.)

Figure 2.6: Performance profile of the MIP solver for different CFs and sizes considering the

UB.

arc variables are more suited to solve the 2E-LRP, leading to much better results. Nevertheless,

CF2, which is based in a formulation found in the literature, has too many constraints and binary

variables, deteriorating the performance of the solver. CF3 is much smaller, while preserving

most of the quality of the LR and being, therefore, the best option to represent the 2E-LRP with

a compact formulation.

2.5.2 The impact of multiple platforms

Table 2.3 presents a closer look at how the number of platforms may affect the performance

of the solver according to the addressed CFs. As discussed in Section 2.5, there are two instance

sets with a single platform in each instance and three sets with multiple platforms. In Table 2.3,

this information is presented in column |P|. The results presented in the table clearly indicate

that the number of platforms significantly affects the performance of the solver. In general,

instances with a single platform are easier to solve than the ones with multiple platforms. This
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(a) Small (71 insts.) (b) Medium (28 insts.)

(c) Large (32 insts.) (d) All (131 insts.)

Figure 2.7: Performance profile of the MIP solver for different CFs and sizes considering the

optimality gap.

characteristic affects the solver’s ability to find feasible solutions and prove optimality. For the

small instances, the use of CF2, ICF2, and CF3 leads to optimal solutions for all single-platform

instances, which is not true for the multiple-platforms ones. Likewise, for these instances, the

solver performs better with both CF1 and ICF1 in the single-platform instances. Moreover,

for the large instances, both CF2 and ICF2 result in feasible solutions for all single-platform

instances, while for three multiple-platforms instances no solution is found.

Therefore, in addition to promoting the best overall performance, CF3 is the least sensitive to

the existence of multiple platforms. For medium-sized instances, the average gaps for CF2 and

ICF2 are 8.48% and 6.05%worse in the multiple-platforms instances than in the single-platform

ones, while for CF3 this number is only 5.55%. Additionally, CF3 yields feasible solutions for

the large multiple-platforms instances that CF2 and ICF2 do not.
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Size |P| Metric BKS CF1 ICF1 CF2 ICF2 CF3

Small

Single

(8 insts.)

LB 69,840 64,636 71,576 73,071 73,071 73,071

UB 73,071 74,274 73,165 73,071 73,071 73,071

Gap (%) 4.06 12.44 2.00 0.00 0.00 0.00

# of optimals 0 0 2 8 8 8

# no feasible sol. 0 0 0 0 0 0

Multiple

(63 insts.)

LB 717 673 762 785 785 786

UB 790 813 793 790 790 790

Gap (%) 8.25 14.33 3.15 0.43 0.40 0.37

# of optimals 6 20 31 48 50 51

# no feasible sol. 0 0 0 0 0 0

Medium

Single

(16 insts.)

LB 107,320 86,878 103,429 112,188 112,531 112,606

UB 116,324 N/A N/A 117,915 117,455 117,277

Gap (%) 7.73 N/A N/A 4.83 4.16 3.99

# of optimals 0 0 0 0 0 0

# no feasible sol. 0 5 12 0 0 0

Multiple

(12 insts.)

LB 1,224 872 1,089 1,287 1,300 1,315

UB 1,400 N/A N/A 1,499 1,460 1,460

Gap (%) 12.73 N/A N/A 13.31 10.21 9.54

# of optimals 0 0 0 0 0 0

# no feasible sol. 0 10 12 0 0 0

Large

Single

(20 insts.)

LB 212,188 173,755 197,485 217,353 217,950 221,762

UB 234,320 N/A N/A 273,690 258,576 244,036

Gap (%) 9.28 N/A N/A 17.49 14.16 8.80

# of optimals 0 0 0 0 0 0

# no feasible sol. 0 17 20 0 0 0

Multiple

(12 insts.)

LB 1,618 1,194 1,437 1,612 1,617 1,626

UB 1,841 N/A N/A N/A N/A 2,050

Gap (%) 12.15 N/A N/A N/A N/A 20.74

# of optimals 0 0 0 0 0 0

# no feasible sol. 0 12 12 3 3 0

All insts.

Single

(44 insts.)

LB 148,173 122,324 140,390 152,878 153,274 155,034

UB 162,094 N/A N/A 180,568 173,531 166,857

Gap (%) 7.77 N/A N/A 9.71 7.95 5.45

# of optimals 0 0 2 8 8 8

# no feasible sol. 0 22 32 0 0 0

Multiple

(87 insts.)

LB 912 772 900 968 971 975

UB 1,019 N/A N/A N/A N/A 1,056

Gap (%) 9.41 N/A N/A N/A N/A 4.45

# of optimals 6 20 31 48 50 51

# no feasible sol. 0 22 24 3 3 0

Table 2.3: The impact of the number of potential platforms on the CFs performances.

2.5.3 Experiments with VIs

We ran experiments with the VIs to assess their impact on the solver performance. These

experiments were performed with formulations CF1, ICF1, ICF2, and CF3. The impact of VIs

in CF2 was not assessed because this formulation is very similar to ICF2. Since the impacts of

the VIs on the performances of the formulations is highly dependent on the instances sizes, the
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results are all presented aggregated by size, not the overall average.

The experiments consisted of grouping the VIs based on similar characteristics. First, the

performances were evaluated including all VIs. Then, each VI group was removed to evaluate

how it affected the performance, resulting in six different configurations. Table 2.4 presents

which VIs are included in each configuration. Note that ICF1 does not consider configuration

VI2, since variables w are not defined in this formulation and hence configurations VI2 and All

would be the same. Also, the formulations with two-index arc variables (ICF2 and CF3) do not

consider symmetry breaking constraints and, thus, do not have configuration VI5. The results

of the VI experiments are summarized in Tables 2.5 to 2.8.

Configuration Meaning CF1 VIs ICF1 VIs ICF2 VIs CF3 VIs

VI1

All VIs

except for the

lower bounds

on the

number of

facilities

(2.27)–(2.28)

(2.30)–(2.37)

(2.27)–(2.28)

(2.30)–(2.35)

(2.36)–(2.37)

(2.50)–(2.57)

(2.50)–(2.55)

(2.64)–(2.65)

VI2

All VIs

except for the

ones that

relate

assignment

and opening

of facilities

(2.27)–(2.35) – (2.29), (2.50)–(2.55) (2.29), (2.50)–(2.55)

VI3

All VIs

except for the

lower bounds

on the

number of

vehicles

(2.27)–(2.29)

(2.31)–(2.37)

(2.27)–(2.29)

(2.31)–(2.35)

(2.29), (2.36)–(2.37)

(2.51)–(2.57)

(2.29), (2.51)–(2.55)

(2.64)–(2.65)

VI4

All VIs

except for

those that

relate the

opening of

facilities with

their visit

(2.27)–(2.30)

(2.36)–(2.37)
(2.27)–(2.30)

(2.29), (2.36)–(2.37)

(2.50), (2.56)–(2.57)

(2.29), (2.50)

(2.64)–(2.65)

VI5
All VIs

except for

those that

break

symmetry

(2.29)–(2.37) (2.29)–(2.35) – –

All All VIs (2.27)–(2.37) (2.27)–(2.35)
(2.29), (2.36)–(2.37)

(2.50)–(2.57)

(2.29), (2.50)–(2.55)

(2.64)–(2.65)

Table 2.4: Different VI configurations for each formulation.

Table 2.5 presents the results for CF1 and the six VI configurations. Only the results for

the small instances are shown, since for medium and large instances no configuration of CF1

is able to find feasible solutions for all instances. Moreover, the numbers of general and binary

variables are not included in this table since they do not change when including or removing
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VIs.

CF1 CF1–VI1 CF1–VI2 CF1–VI3 CF1–VI4 CF1–VI5 CF1–All

LB 7,880 8,152 8,183 7,895 8,185 8,259 8,187

UB 9,090 8,969 N/A N/A N/A 8,980 N/A

Gap (%) 14.11 10.73 N/A N/A N/A 7.44 N/A

Time (s) 2,651 2,626 2,594 2,664 2,598 2,379 2,587

# of optimals 20 21 22 20 22 27 22

# no feasible sol. 0 0 3 1 2 0 1

# of BKLBs improved 20 24 29 17 22 40 27

# of BKUBs found 34 40 38 32 35 44 37

# of constrains 4,083 4,873 4,734 4,873 4,560 4,543 4,875

Table 2.5: The impact of including VIs in CF1 for small instances (71 instances).

It is clear that the inclusion of all VIs is not beneficial for CF1 because the solver cannot

find feasible solutions for all instances. Indeed, the only cases in which the inclusion of VIs is

beneficial are the ones that do not include the lower bound on the number of facilities (2.29)

or the symmetry breaking constraints (2.27)–(2.28). The best performing VI configuration is

CF1–VI5, i.e., the one that includes all VIs except for the symmetry breaking ones. Compared

to CF1 without VIs, this CF has 11.27% more constraints, leading to 4.81% LB improvement,

1.21%UB reduction, and 6.67% decrease in the average gap. Moreover, the number of instances

proved optimal increased from 20 to 27, a 35% improvement. Configuration CF1–VI5 doubles

the number of BKLBs improved and increases the number of BKUBs found in 29.41% compared

to CF1. These improvements, however, do not get to the quality of ICF1, which outperformed

them even without VIs.

Table 2.6 presents the results for the ICF1. The results show that only ICF1–VI5 (without the

symmetry breaking constraints) has better results than ICF1 and showing a limited improvement.

The LB increases 0.33%, the UB decreases 0.10%, the gap reduces 0.12%, the average runtime

is 2.96% smaller, and two new instances have their solutions proved optimal, while four new

instances have their BKUBs found.

ICF1 ICF1–VI1 ICF1–VI3 ICF1–VI4 ICF1–VI5 ICF1–All

LB 8,741 8,675 8,645 8,729 8,770 8,684

UB 8,947 N/A N/A N/A 8,938 N/A

Gap (%) 3.02 N/A N/A N/A 2.90 N/A

Time (s) 2,097 2,397 2,349 2,317 2,035 2,352

# of optimals 33 30 31 30 35 29

# no feasible sol. 0 4 3 2 0 3

# of BKLBs improved 63 62 60 61 63 63

# of BKUBs found 51 45 45 45 55 42

# of constrains 1,319 1,968 1,968 1,655 1,639 1,970

Table 2.6: The impact of including VIs in ICF1 for small instances (71 instances).

Table 2.7 presents the results for the inclusion of VIs with ICF2 for small and medium

instances. The large instances are not presented since neither the base formulation nor any of
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the VI scenarios found results for all instances.

For ICF2, the inclusion of VIs is overall beneficial. For the small instances, the average

LB and UB do not vary significantly. The best gaps come from ICF2–VI4 and ICF2–All, and

ICF2–VI4 results in proved optimal solutions to most instances (59 against 58 from the other

approaches). The running times do not vary much, even though the VIs help improving them on

average. For the medium-sized instances, the best UB is achieved in configuration ICF2–VI3,

the best LB in ICF2–VI2, and the best gap in ICF2–All. The number of constraints in ICF2–All

increases in 4.49% with respect to ICF2, but this clearly pays off.

Size Metric ICF2 ICF2–VI1 ICF2–VI2 ICF2–VI3 ICF2–VI4 ICF2–All

Small
(71 insts.)

LB 8,930 8,930 8,930 8,930 8,930 8,931

UB 8,934 8,934 8,934 8,934 8,934 8,934

Gap (%) 0.36 0.37 0.35 0.35 0.33 0.33

Time (s) 911 843 876 823 845 851

# of optimals 58 58 58 58 59 58

# no feasible sol. 0 0 0 0 0 0

# of BKLBs improved 65 65 65 65 65 65

# of BKUBs found 69 68 70 69 70 69

# of constraints 3,842 4,321 4,161 4,321 4,008 4,323

Medium
(28 insts.)

LB 64,860 65,068 65,202 65,019 65,004 65,104

UB 67,743 67,693 67,603 67,343 67,720 67,476

Gap (%) 6.75 7.08 6.84 6.66 6.54 6.21

Time (s) 3,600 3,600 3,600 3,600 3,600 3,600

# of optimals 0 0 0 0 0 0

# no feasible sol. 0 0 0 0 0 0

# of BKLBs improved 27 25 28 28 27 28

# of BKUBs found 4 4 4 6 5 3

# of constraints 34,071 35,602 35,091 35,602 34,588 35,604

Table 2.7: The impact of including VIs in ICF2 for small and medium instances.

It is worth noticing that, with the inclusion of VIs, the performance related to ICF2–All is

better than that of CF3 (the best performing formulation so far) for the medium-sized instances,

improving the LB in 0.30%, the UB in 0.24%, and the gap in 0.16%. For the small instances,

ICF2–All matches CF3 in LB, UB, and gap, but loses in the number of instances with optimality

proved. ICF2–VI4, however, lead to the same number of instances with proved optimal solution

as CF3.

Finally, Table 2.8 presents the results regarding CF3 and the different VI configurations. For

the small instances, the average LB and UB do not change significantly. However, considering

the optimality gap and the number of instances with proved optimal solution, the best config-

uration is CF3–VI1, which shows an improvement of 0.06% in the gap and provides proved

optimal solutions for two extra instances compared to CF3.

For the medium-sized instances, the inclusion of VIs is mainly beneficial. The LB is im-

proved in every configuration compared to the base formulation CF3 and the UB is improved

in most of them. The best LB and UB are obtained from the inclusion of all VIs (CF3–All),

improving the LB in 0.47% and the UB in 0.34% compared to CF3. CF3–All also outperforms
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Size Metric CF3 CF3–VI1 CF3–VI2 CF3–VI3 CF3–VI4 CF3–All

Small
(71 insts.)

LB 8,931 8,931 8,930 8,930 8,931 8,931

UB 8,934 8,934 8,934 8,934 8,934 8,934

Gap (%) 0.33 0.27 0.34 0.33 0.32 0.31

Time (s) 861 834 820 834 834 830

# of optimals 59 61 58 58 59 58

# no feasible sol. 0 0 0 0 0 0

# of BKLBs improved 65 65 65 65 65 65

# of BKUBs found 70 70 70 69 71 70

# of constraints 1,250 1,824 1,569 1,824 1,510 1,826

Medium
(28 insts.)

LB 64,910 65,050 65,136 65,087 65,210 65,219

UB 67,641 67,532 67,513 67,647 67,658 67,412

Gap (%) 6.37 6.32 5.57 6.17 6.14 6.10

Time (s) 3,600 3,600 3,600 3,600 3,600 3,600

# of optimals 0 0 0 0 0 0

# no feasible sol. 0 0 0 0 0 0

# of BKLBs improved 28 28 28 28 28 28

# of BKUBs found 3 8 3 6 6 5

# of constraints 7,839 9,734 8,858 9,734 8,720 9,736

Large

(32 insts.)

LB 139,211 139,062 138,903 138,746 139,197 139,074

UB 153,291 N/A N/A 154,833 155,202 N/A

Gap (%) 13.28 N/A N/A 14.11 14.81 N/A

Time (s) 3,600 3,600 3,600 3,600 3,600 3,600

# of optimals 0 0 0 0 0 0

# no feasible sol. 0 1 2 0 0 2

# of BKLBs improved 27 29 31 30 28 31

# of BKUBs found 0 0 0 0 0 0

# of constraints 27,987 32,581 30,413 32,581 30,161 32,583

Table 2.8: The impact of including VIs in CF3.

ICF2–All for these instances, improving the LB in 0.18%, the UB in 0.09%, and the gap in

0.11%. Thus, the 24.20% increase in the number of constraints compared to CF3 is worth it for

these instances.

Nonetheless, for the large instances, the inclusion of VIs worsens the performance of CF3.

Indeed, with CF3–VI1, CF3–VI2, and CF3–All it is not possible to find feasible solutions for

some instances. Furthermore, in the configurations that do find feasible solutions for all in-

stances (CF3–VI3 and CF3–VI4), the average LB, UB, and gap are worse than the correspond-

ing values for CF3. Possibly this happens because these models already have large numbers of

variables and constraints due to the instance size, and the inclusion of these VIs make it even

harder for the MIP solver to process the branch-and-bound nodes, on top of possible effects on

the solver heuristics. It is worth noticing, however, that the inclusion of VIs in CF3 for large

instances allows for the improvement of another four BKLBs.

In conclusion, the effect of including valid inequalities heavily depends on the instance size

and the base formulation. For the formulations with vehicle index variables (CF1 and ICF1), the

inclusion of VIs helped the performance of the solver depending on which VIs were included,

since in some configurations they prevented the solver from finding feasible solutions to some
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instances. For the two-index arc variables formulations (ICF2 andCF3), the inclusion of VIs was

beneficial for the small- and medium-sized instances. In fact, for the medium-sized instances,

the best performing approach for both formulations was to include all of the VIs that were com-

patible with the corresponding formulation. For the large instances, however, the inclusion of

VIs had negative effects in the solution quality in all evaluated scenarios.

Finally, considering all experiments performed, we have found lower bounds that are better

than the BKLBs reported in the literature for 125 out of the 131 benchmark instances evaluated,

which encompasses all instances with unknown optimal solutions in the literature so far. Fur-

thermore, we have proved optimality for 55 instances for the first time. The detailed results are

available in the supplementary material.

2.6 Conclusion

In this paper, we have compared mixed-integer programming (MIP) compact formulations

for the two-echelon location-routing problem (2E-LRP). We have discussed a formulation with

vehicle index variables from the literature and provided improvements to it. Additionally, we

have introduced two novel formulations based on two-index arc variables. From a theoretical

perspective, we have demonstrated that the formulations with two-index variables have stronger

linear programming relaxations. We have also showed, from extensive computational experi-

ments, that these formulations perform much better in practice when solved with a general-

purposed MIP solver.

This suggests that, although the literature on the 2E-LRP is mostly based on compact for-

mulations with a vehicle index, the future use of two-index variables formulations would be

beneficial both for defining variants and evaluating the performance of tailored algorithms.

Furthermore, for ad hoc methods based on mathematical formulations such as branch-and-cut

schemes, decomposition-based algorithms, and matheuristics, the formulations with two-index

arc variables are likely to be a better starting point than the formulations based on variables with

a vehicle index.

We have also discussed the impacts of including valid inequalities in these formulations, both

novel and literature-based. Our experiments suggest that their utility depends on the instance size

and type of formulation. On the one hand, for small and medium instances (up to 75 customers)

they help the MIP solver. On the other hand, for large instances, they actually worsen the solver

performance.

Considering all experiments performed, we have improved the best known lower bounds

for 125 out of the 131 benchmark instances evaluated (the other six had the optimal solution as

lower bound). We have also obtained the optimal solutions of 55 instances for the first time.

Interesting research developments are available for future work. For instance, onemay focus

on extending the addressed formulations to the numerous 2E-LRP variants present in the litera-

ture. Moreover, the development of branch-and-cut schemes and other ad hoc solution methods
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on top of these formulations could further improve the best known lower and upper bounds for

these instances.
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3 An exact method for a last-mile delivery

routing problem with multiple delivery-

men

Abstract

The demand for efficient last-mile delivery systems in large cities creates an opportunity to

develop innovative logistics schemes. In this paper, we study a problem in which each vehicle

may travel with more than one deliveryman to serve multiple customers with a single stop of

the vehicle, increasing the delivery efficiency. We extend the vehicle routing problem with

time windows and multiple deliverymen by explicitly considering the deliveryman routes. We

introduce the problem, formally define it with a formulation, propose valid inequalities, and

develop a tailored branch-and-Benders-cut (BBC) algorithm to solve it. The BBC is capable of

solving 89% of the instances to proven optimality in reasonable times, many of them of realistic

sizes. Additionally, we show the benefits of evaluating the deliveryman routes considering a

cost minimization perspective, and discuss relevant solutions for urban logistics problems that

can help decrease congestion and emissions.1

3.1 Introduction

The increasing demand for cost- and time-efficient delivery in densely populated urban areas

creates additional challenges for last-mile delivery systems, such as poor traffic conditions and

difficulty in finding parking locations (Martinez-Sykora et al., 2020; Boysen; Fedtke; Schwerd-

feger, 2021; Reed; Campbell; Thomas, 2024). However, the proximity of customers allows for

inventive developments to overcome these challenges. For instance, the combination of trucks

and drones is already well-known (Li et al., 2021a) since the seminal work by Murray and Chu

(2015). Similarly, the combination of robots and trucks has also been applied to last-mile de-

livery systems (Alfandari; Ljubić; De Melo da Silva, 2022). Alternatively, one could rely on

1This chapter is a paper coauthored with Prof. Leandro C. Coelho (Université Laval), Prof. Reinaldo Mora-

bito (Federal University of São Carlos), and Prof. Pedro Munari (Federal University of São Carlos). It has been

published at the European Journal of Operational Research (Senna et al., 2024a).
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crowd-sourcing operations in last-mile delivery, as proposed by Ouyang, Leung, and Huang

(2023), or on combining vehicles, cargo bikes, and walking porters, such as in the problem

presented by Bayliss et al. (2023).

Another well-adopted possibility in city logistics is the combination of vehicles with walking

carriers (Reed; Campbell; Thomas, 2021; Wehbi; Bektaş; Iris, 2022; Le Colleter et al., 2023).

In particular, Pureza, Morabito, and Reimann (2012) proposed the vehicle routing problem with

timewindows andmultiple deliverymen (VRPTWMD), which arose from a practical application

of last-mile delivery from a beverage company. In this problem, a vehicle may travel with more

than one deliveryman. Once the vehicle parks, the deliverymen walk to serve the customers

in parallel. This reduces the time the vehicle stays parked throughout the route, allowing it to

serve more customers in a single route. Therefore, a smaller fleet of vehicles can serve the

same customers compared to the traditional approach of having a single deliveryman traveling

in each vehicle. Since deliverymen fixed costs are smaller than those of the vehicles, this creates

an opportunity for operational cost reduction.

TheVRPTWMD is oftenmodeled using a network given by nodes that correspond to clusters

of customers (Pureza; Morabito; Reimann, 2012; Álvarez; Munari, 2017; Munari; Morabito,

2018). Clusters are defined in advance, in a previous decision stage, and the service time at a

cluster depends on the number of deliverymen in the vehicle that visits that cluster. Hence, at

each stop of a vehicle at a node, the service time at this node is the service time of the cluster

divided by the number of deliverymen on the vehicle. Some variants consider the definition

of the clusters as an endogenous decision, thus determining also the clustering of customers

that are visited at each stop of the vehicles, as in Senarclens de Grancy and Reimann (2015).

However, in these variants, the authors still simply divide the service time of a cluster by the

number of deliverymen that serve it. To the best of our knowledge, no study has addressed the

VRPTWMD and related variants explicitly considering the routes traveled by the deliverymen

inside the clusters. Moreover, authors have assumed thus far that the deliverymen capacities

are small compared to the customer demands, such as in the beverage industry from which the

problem emerged, making the deliveryman routes trivial. However, in applications where the

customer demands are small (e.g., e-commerce) or the deliverymen capacities are large (e.g.,

deliverymen with small carts or cargo bikes), this assumption is not valid and the deliveryman

routes can significantly affect the vehicle routes.

In this paper, we extend the VRPTWMD by also designing the deliveryman routes inside

each cluster, instead of simply considering round-trips. Since most drone-truck and robot-truck

combinations consider that drones and robots can only visit one customer at a time (Moshref-

Javadi; Winkenbach, 2021; Ostermeier; Heimfarth; Hübner, 2023), our work also general-

izes such problems. Furthermore, to efficiently solve the problem, we propose a Benders

decomposition-based exact algorithm (Benders, 1962), which might be of broader interest given

that the majority of works that address the VRPTWMD and related problems rely on heuristics

(Pureza; Morabito; Reimann, 2012; Senarclens de Grancy; Reimann, 2014; Moshref-Javadi;
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Winkenbach, 2021; Wehbi; Bektaş; Iris, 2022; Le Colleter et al., 2023).

The contributions of this paper are threefold. First, we introduce a novel problem in the

literature with practical and theoretical relevance, namely the vehicle routing problem with time

windows, multiple deliverymen, and two-level routing (VRPTWMD2R). Second, we present

a formulation for this problem and introduce several families of valid inequalities that tighten

the linear programming (LP) relaxation of this formulation. Third, we propose a branch-and-

Benders-cut method to solve the problem, which is an exact algorithm based on Benders de-

composition, and develop lower bounding techniques.

The remainder of this paper is organized as follows. Section 3.2 reviews the pertinent litera-

ture. In Section 3.3, the problem is defined. Section 3.4 introduces themathematical formulation

and valid inequalities. Section 3.5 describes the exact algorithm to solve the problem. In Section

3.6, the computational experiments are outlined and the results are evaluated. Finally, Section

3.7 presents concluding remarks.

3.2 Literature review

Pureza, Morabito, and Reimann (2012) introduced the VRPTWMD as a variant of the clas-

sical vehicle routing problem (VRP). In this variant, in addition to time windows and vehicle

capacity constraints, the vehicles may carry more than one deliveryman to reduce overall service

time. The problem arises from companies that make regular deliveries in densely populated ur-

ban areas, in which the proximity of customers creates the possibility of serving more than one

customer with a single stop of the vehicle. In such case, the presence of multiple deliverymen

allows the customers to be served in parallel, reducing the time of each stop of the vehicles.

Since the vehicle fixed costs are usually higher than those of the deliverymen, increasing the

number of deliverymen can reduce the number of vehicles needed, decreasing the overall costs.

The problem dynamics are based on the creation of clusters of customers with similar time

windows and close to each other. The vehicles travel from the depot to the clusters and, once

they arrive, the deliverymen leave the vehicle to serve the customers. Once all customers in

a cluster are served, the deliverymen return to the vehicle and travel to the next cluster on the

vehicle route.

Several authors have studied this problem with different approaches. Pureza, Morabito, and

Reimann (2012) compared the performance of two metaheuristics: tabu search (TS) and ant

colony optimization (ACO). Senarclens de Grancy and Reimann (2014) systematically com-

pared the performance of ACO and greedy randomized adaptative search procedure (GRASP)

to solve the problem. Álvarez and Munari (2016) solved the problem with iterated local search

(ILS) and large neighborhood search (LNS). Munari and Morabito (2018) proposed the first ex-

act algorithm for the problem, which consisted of a branch-price-and-cut method, thus based on

the column generation technique. Álvarez and Munari (2017) combined this exact method with

the metaheuristics ILS and LNS, resulting in a hybrid method for the problem. Souza Neto and
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Pureza (2016) proposed a variant of the VRPTWMD in which vehicles can perform more than

one route and solved it with GRASP, a commercial solver, and a hybrid method.

All of the above-mentioned studies address the problem considering two simplifying hy-

potheses: (i) the clusters are predefined, and (ii) the time spent in each cluster is approximated

by a function of the cluster demand and the number of deliverymen, ignoring the routes traveled

by the deliverymen. To incorporate clustering issues, Senarclens de Grancy and Reimann (2015)

proposed two heuristics to cluster the customers, and Senarclens de Grancy (2015) combined

these heuristics in an iterative method to optimize clustering and routing.

We are not aware of any study addressing the design of deliveryman routes within the

VRPTWMD. Approximating the service time of clusters based on their demand and the num-

ber of deliverymen may be reasonable when the deliverymen capacities are small compared to

the customers demands. In such cases, the deliverymen can only visit one customer in each of

their routes, making the optimal deliveryman routes trivial (i.e., round trips), with no need to

be optimized. However, when the deliverymen capacities are large compared to the customers

demands, they can visit more than one customer in each route. In such cases, approximating the

cluster service time based on the demand and the number of deliverymen becomes less accurate

and does not represent the problem complexity. This assessment is important because it affects

all of the other decisions of the problem, namely the number of vehicles and deliverymen, and

the vehicle routes.

Another issue with disregarding the deliveryman routes arises when considering time win-

dows. Preprocessing the service times in each cluster, such as made by Pureza, Morabito, and

Reimann (2012), implicitly defines the deliveryman routes in advance. To accomodate this, the

time windows for parking locations need to be adapted to ensure that the vehicle arrives at each

cluster with enough time to serve the customers in this predetermined order while respecting

their time windows. The flexibility created by jointly optimizing the deliveryman routes allows

for the adoption of deliveryman routes that can still respect customers’ time windows if the vehi-

cle arrives at the cluster later than it would if these routes were predefined. This way, there is no

need to adapt the time windows of parking locations, making the problem less constrained and

creating opportunity for cost reduction. Finally, there is a trade-off between the time spent on

a cluster and the cost of the deliveryman routes within this cluster. Cost and time minimization

not always lead to the same solution. If these routes are preprocessed, a subset of them must

be chosen a priori and there is no guarantee that the selected ones will lead to the best overall

solution.

The present study addresses this issue by generalizing the VRPTWMD to consider two-level

routing (VRPTWMD2R), i.e., both the vehicle and the deliveryman routes. Therefore, while

relying on assumption (i), i.e., the clusters of customers are previously defined, we propose a

problem that overcomes the limitations of assumption (ii) by properly evaluating and optimizing

the deliveryman routes.
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3.3 Problem definition

We define the VRPTWMD2R considering different graph representations for vehicle and

deliveryman routes (first- and second-level). For vehicle routes, we assume a single depot and a

set of clustersN = {1, 2, . . . , n}, where n > 0 is the number of clusters. Each cluster consists of

a set of customers and a single parking location. We shall refer to clusters and parking locations

interchangeably. Let G = (N0, A) be a directed graph, where N0 = {0, n + 1} ∪ N is the set

of nodes and A = {(i, j) | i, j ∈ N0, i 6= j, i 6= n + 1, j 6= 0} is the set of arcs. Indices 0

and n+1 represent the depot, and all vehicle routes start at 0 and end at n+1. This graph only

concerns the nodes and arcs related to the design of first-level routes.

For each cluster i ∈ N , we define a directed graph Gi = (N i
0, A

i), given by the set of

nodes N i
0 = {0i, ni + 1} ∪ N i, where N i is the set of ni customer nodes in this cluster and

Ai = {(h, k) | h, k ∈ N i
0, h 6= k, h 6= ni + 1, k 6= 0i} is the set of arcs related to the

second-level routes inside this cluster. Nodes 0i and ni + 1 represent the parking location, and

the deliveryman routes must depart from 0i and return to ni + 1, traversing only the arcs in Ai.

Both nodes 0i and ni + 1 are at the same place as the corresponding parking location i ∈ N .

No customer is part of more than one cluster, i.e., N i ∩N j = ∅,∀ i, j ∈ N, i 6= j. To make

the notation clear, we shall represent nodes of first-level routes (set N ) by i and j, and those of

second-level routes (sets N i, i ∈ N ) by h and k.

Every cluster is served by exactly one vehicle, and every customer inside a cluster is served

by exactly one deliveryman. Both clusters and customers have time windows that indicate when

the service may begin, which are supposed to be compatible in order to ensure feasibility. Cus-

tomers have positive demands that are aggregated to define cluster demands, typically consisting

of a few customers. We assume that deliverymen do not have capacity constraints since clusters

are relatively small, and hence all customers of a cluster could be served by a single deliveryman

when considering only capacity constraints.

Each vehicle may travel with up to ML deliverymen. Once the vehicle arrives at a cluster,

the deliverymen leave it to serve the customers. After serving all of them, the deliverymen return

to the vehicle and it travels to the next cluster in the route. We define the set of possible numbers

of deliverymen in a vehicle as L = {1, 2, . . . ,ML}. We assume that the vehicle fleet and the

deliveryman team are both homogeneous.

The decisions of the problem are (i) the number of vehicles to be used, (ii) the number of

deliverymen in each vehicle, (iii) the vehicle routes, and (iv) the deliveryman routes. These

decisions should be made ensuring that every customer is served, and respecting time windows

and vehicle capacity. The goal of the problem is to minimize the fixed costs associated with

vehicles and deliverymen and the distance-related costs of vehicle and deliveryman routes.

Figure 3.1 illustrates the VRPTWMD2R. Figure 3.1a presents an instance of the problem,

with the customers clustered around their respective parking locations. Figure 3.1b represents a

feasible solution to the problem. The black arrows that travel among parking locations represent
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vehicle paths, while the colored arrows inside the clusters show deliveryman routes. In the

picture, the vehicle that serves the clusters on the left-hand side of the picture travels with one

deliveryman and the other one travels with two deliverymen.

(a) Instance.

Parking
locations

Customers

Depot

(b) Solution.

Figure 3.1: An illustrative example of the VRPTWMD2R.

A trade-off between vehicle and deliveryman costs is inherent to the VRPTWMD2R. Fig-

ure 3.2 illustrates it. Figure 3.2a presents an instance of the problem in which the depot time

window closes at instant 150. The best solution considering only the second-level routes cost

minimization would be serving each cluster with a single deliveryman, as portrayed in Figure

3.2b. This solution incurs in costs c1 = 10 and c2 = 7, while the time spent in each cluster

is t1 = 100 and t2 = 80. If these routes were to be taken, these clusters would need to be

served by two vehicles since they would not respect the depot time windows when served by a

single vehicle. However, if the problem is solved by minimizing all costs, the solution would be

the one represented in Figure 3.2c, in which two deliverymen travel with a single vehicle. The

routes inside the clusters are slightly more costly when considered individually and include an

additional deliveryman, but they help minimize the overall costs.

[0, 150]

(a) Instance.

c1 = 10, t1 = 100

c2 = 7, t2 = 80

(b) Min deliveryman routes costs.

c∗1 = 11, t∗1 = 60

c∗2 = 9, t∗2 = 50

Parking
locations

Customers

Depot

(c) Min overall costs.

Figure 3.2: A trade-off between deliveryman routes cost and time.
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3.4 Mathematical formulation

We introduce a compact mixed-integer programming (MIP) formulation for the

VRPTWMD2R. Consider the following parameters:

ML Maximum number of deliverymen in each vehicle;

fv Fixed cost associated with each vehicle;

fd Fixed cost associated with each deliveryman;

cv Unitary distance cost of first-level routes (vehicles);

cd Unitary distance cost of second-level routes (deliverymen);

Q Vehicle load capacity;

qi Demand of cluster i ∈ N ;

dij Distance between first-level nodes i and j, (i, j) ∈ A (asymmetrical);

tij Travel time between first-level nodes i and j, (i, j) ∈ A (asymmetrical);

dihk Distance between second-level nodes h and k of cluster i ∈ N , (h, k) ∈ Ai, (asymmetrical);

tihk Travel time between second-level nodes h and k of cluster i ∈ N, (h, k) ∈ Ai (asymmetri-

cal);

sh Service time of customer h ∈ N i of cluster i ∈ N ;

[ah, bh] Time window of node h ∈ N i
0 of cluster i ∈ N .

We define the decision variables taking into account the first- and second-level routes, re-

lated to vehicles and deliverymen. Additionally, we need auxiliary variables to model vehicle

load and time propagation in the routes. These variables are defined as follows:

xijl Binary variable that indicates whether a vehicle travels from node i to node j with l deliv-

erymen in a first-level route, (i, j) ∈ A, l ∈ L;

ui Vehicle load after leaving node i ∈ N0;

xi
hk Binary variable that indicates whether a deliveryman travels from node h to node k in a

second-level route inside cluster i, (h, k) ∈ Ai, i ∈ N ;

wh Time when service at node h ∈ N i
0, i ∈ N, begins. The arrival time of the vehicle at the

parking location of cluster i is represented by w0i and its departure happens at wni+1.

Using the sets, parameters, and decision variables defined so far, we propose the following

compact formulation (CF) for the VRPTWMD2R:

(CF) min
∑
j∈N

∑
l∈L

(fv + lfd)x0jl + cv
∑

(i,j)∈A

∑
l∈L

dijxijl + cd
∑
i∈N

∑
(h,k)∈Ai

dihkx
i
hk (3.1)
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s.t.
∑

i:(i,j)∈A

∑
l∈L

xijl = 1, ∀ j ∈ N (3.2)

∑
i:(i,j)∈A

xijl =
∑

i:(j,i)∈A

xjil, ∀ j ∈ N, l ∈ L (3.3)

∑
i∈N

x0il =
∑
i∈N

xi(n+1)l, ∀ l ∈ L (3.4)

uj ≥ ui + qj −Q

(
1−

∑
l∈L

xijl

)
, ∀ (i, j) ∈ A (3.5)∑

h:(h,k)∈Ai

xi
hk = 1, ∀ k ∈ N i, i ∈ N (3.6)

∑
h:(h,k)∈Ai

xi
hk =

∑
h:(k,h)∈Ai

xi
kh, ∀ k ∈ N i, i ∈ N (3.7)

∑
h∈N i

xi
0ih

=
∑
h∈N i

xi
h(ni+1), ∀ i ∈ N (3.8)

wk ≥ wh + sh + tihk −M i
hk(1− xi

hk), ∀ (h, k) ∈ Ai, i ∈ N (3.9)

w0j ≥ wni+1 + tij −Mij

(
1−

∑
l∈L

xijl

)
, ∀ (i, j) ∈ A (3.10)∑

h∈Nj

xj
0jh

≤
∑

i:(i,j)∈A

∑
l∈L

lxijl, ∀ j ∈ N (3.11)

u0 = 0, w0 = 0 (3.12)

xijl ∈ {0, 1}, ∀ (i, j) ∈ A, l ∈ L (3.13)

qi ≤ ui ≤ Q, ∀ i ∈ N0 (3.14)

xi
hk ∈ {0, 1}, ∀ (h, k) ∈ Ai, i ∈ N (3.15)

ah ≤ wh ≤ bh, ∀ h ∈ N i
0, i ∈ N0. (3.16)

The objective function (3.1) seeks to minimize the total fixed costs of both vehicles and

deliverymen and the distance costs of both vehicle and deliveryman routes. Constraints (3.2)

ensure that every cluster is visited by exactly one vehicle. Constraints (3.3) and (3.4) are flow

conservation constraints for first-level routes. Constraints (3.5) control the load flow in vehicle

routes. Constraints (3.6)–(3.8) are similar to (3.2)–(3.4) but considering second-level routes.

Constraints (3.9) and (3.10) control the time propagation for deliveryman and vehicle routes,

respectively. Beyond defining the arrival time at each customer, constraints (3.9) implicitly

define the time spent in each cluster since they involve the moments that the deliverymen depart

from and arrive at the parking locations. Constraints (3.10) use this information to synchronize

the first- and second-level routes by defining that the deliverymen start to serve a cluster j

after having served a cluster i and having traveled to cluster j if they travel in a vehicle that

goes from i to j. In these constraints, we define M i
hk = max{0, bh + sh + tihk − ak} and

Mij = max{0, bni+1 + tij − a0j} as the smallest possible values to ensure that the constraints
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are valid. Constraints (3.11) also couple the first- and second-level routes by defining that the

number of deliveryman routes inside a cluster is, at most, the number of deliverymen that arrive

at it (it is possible that not all deliverymen visiting a cluster leave the vehicle). Constraints

(3.12)–(3.16) define the domain of the decision variables.

3.4.1 Valid inequalities

Formulation CF can be strengthened by the following valid inequalities (VIs) to improve

its linear relaxation. In these constraints, let eil, i ∈ N, l ∈ L, be a lower bound on the time

needed to serve cluster i with l deliverymen andmi, i ∈ N, be a lower bound on the number of

deliverymen needed to serve cluster i feasibly.∑
h∈N i

xi
0ih

≥ 1, ∀ i ∈ N (3.17)∑
(h,k)∈Ai:h,k∈S

xi
hk ≤ |S| − 1, ∀ S ⊂ N i, i ∈ N : |S| ∈ {2, 3} (3.18)

xi
hk = 0, ∀ (h, k) ∈ Ai, i ∈ N : (ah + sh + tihk > bk) (3.19)∑

j∈N

∑
l∈L

x0jl ≥

⌈
1

Q

∑
i∈N

qi

⌉
(3.20)∑

(i,j)∈A:i,j∈S

∑
l∈L

xijl ≤ |S| − 1, ∀ S ⊂ N : |S| ∈ {2, 3} (3.21)

xijl = 0, ∀ (i, j) ∈ A, l ∈ L : (qi + qj > Q) ∨ (ani+1 + tij > b0j) (3.22)

wni+1 ≥ w0i +
∑

j:(i,j)∈A

∑
l∈L

eilxijl, ∀ i ∈ N (3.23)

xijl = 0, ∀ (i, j) ∈ A, l ∈ L : (l < mi) ∨ (l < mj) (3.24)∑
h∈N i

xi
0ih

≥ mi, ∀ i ∈ N. (3.25)

Constraints (3.17)–(3.22) are common in the literature (Dantzig; Fulkerson; Johnson, 1954;

Ascheuer; Fischetti; Grötschel, 2001; Lysgaard; Letchford; Eglese, 2004), while constraints

(3.23)–(3.25) are novel VIs proposed specifically for this problem. Constraints (3.17) ensure

that at least one deliveryman leaves each parking location. Constraints (3.18) eliminate small

subtours of two and three customers in second-level routes. Constraints (3.19) remove infeasible

second-level arcs due to time window incompatibility. Constraints (3.20) define a lower bound

on the number of vehicles needed to serve all the clusters based on the total cluster demands

and vehicle capacity. Constraints (3.21) eliminate subtours for sets of two and three clusters in

first-level routes. Constraints (3.22) eliminate first-level arcs that are infeasible due to vehicle

capacity or time windows incompatibility. Constraints (3.23) provide an estimation on the min-

imum time spent on the cluster. Constraints (3.24) forbid the visit of the cluster by a vehicle

with fewer deliverymen than needed to serve it. Constraints (3.25) ensure that the number of
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deliverymen leaving a parking location respects its lower bound. Since mi ≥ 1, ∀ i ∈ N, con-

straints (3.17) are redundant when constraints (3.25) are considered. Hence, either constraints

(3.17) or (3.25) are included, never both.

On top of these constraints, time windows are tightened based on the earliest arrival time

from the depot and the latest departure time to arrive while the depot is still open (Ascheuer;

Fischetti; Grötschel, 2001).

3.5 Benders decomposition

Since the definition of the deliveryman routes depends on the vehicle routes and the number

of deliverymen serving each cluster, the CF can be decomposed in a Benders fashion (Benders,

1962; Hooker; Ottosson, 2003; Codato; Fischetti, 2006). This way, the master problem (MP)

defines the first-level routes and the number of deliverymen in each vehicle, and the subproblem

(SP) defines the second-level routes.

To exploit this characteristic of the VRPTWMD2R and efficiently solve it, we develop an

exact algorithm based on a branch-and-Benders-cut (BBC) scheme (Moreno; Munari; Alem,

2019, 2020). To this extent, we improve the Benders decomposition by including valid inequal-

ities and developing lower bounding techniques. Section 3.5.1 presents the MP, Section 3.5.2

defines the SP, Section 3.5.3 introduces useful lower bounds, and Section 3.5.4 discusses the

BBC algorithm.

3.5.1 Master problem

Let ηi, i ∈ N, be a variable representing the cost of the deliveryman routes inside cluster i

with a lower bound η
i
≥ 0. Let R be the set of all pairs (r, l) of vehicle routes r and number of

deliverymen l that are feasible given first-level constraints (3.2)–(3.5), (3.10), (3.12)–(3.14) and

second-level constraints (3.6)–(3.9), (3.11), (3.15), (3.16); andR be the set of pairs (r, l) that are

feasible considering first-level constraints (information in the MP), but infeasible considering

second-level constraints (information in the SP). It is clear that R ∩R = ∅.
Let Nr be the set of clusters visited by route r and Ar be the set of arcs of route r. Given a

pair (r, l) ∈ R, let grli, i ∈ Nr, represent the cost of deliveryman routes inside cluster i when

visited by a vehicle traveling with l deliverymen along route r, and crl =
∑

i∈Nr
grli be the sum

of these costs throughout the vehicle route.

Given these definitions, the CF can be reformulated as the following MP:

(MP) min
∑
j∈N

∑
l∈L

(fv + lfd)x0jl + cv
∑

(i,j)∈A

∑
l∈L

dijxijl +
∑
i∈N

ηi (3.26)

s.t. (3.2)–(3.5), (3.10), (3.12)–(3.14)
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∑
i∈Nr

ηi ≥ crl

 ∑
(i,j)∈Ar

xijl − |Ar|+ 1

 , ∀ (r, l) ∈ R (3.27)

∑
(i,j)∈Ar

xijl ≤ |Ar| − 1, ∀ (r, l) ∈ R (3.28)

ah ≤ wh ≤ bh, ∀ h ∈ {0i, ni + 1}, i ∈ N (3.29)

ηi ≥ η
i
, ∀ i ∈ N. (3.30)

The objective function (3.26) is equivalent to (3.1) with a different form of calculating the

deliveryman routes cost. Constraints (3.27) correspond to the so-called optimality cuts, which

define the cost of second-level routes inside the clusters visited by a vehicle traveling along a

first-level route r and carrying l deliverymen. Constraints (3.28) consist in the so-called feasi-

bility cuts, removing from the set of feasible solutions of theMP the vehicle routes that are infea-

sible due to the corresponding deliveryman routes. Constraints (3.29) define the time windows

of parking locations, and constraints (3.30) establish a lower bound on the cost of deliveryman

routes inside each cluster. The MP can be further strengthened by VIs (3.20)–(3.24). We shall

refer to the MP without the optimality cuts (3.27) and feasibility cuts (3.28) as the relaxed MP

(RMP).

Constraints (3.27) and (3.28) are based on the traditional route-based optimality and feasibil-

ity cuts. However, we propose using the path cuts introduced by Parada et al. (2024), in which

the first-level route arcs that are connected to the depot are removed from the cut. Propositions

1 and 2 ensure the validity of this approach for the VRPTWMD2R. Proposition 3 includes an

additional summation in l ∈ L in the feasibility cuts. These modifications yield better cuts that

help boost the algorithm’s performance. To this extent, we denote by Âr ⊂ Ar the set of arcs

in route r without those connected to the depot.

Proposition 3.1. The constraints

∑
i∈Nr

ηi ≥ crl

 ∑
(i,j)∈Âr

xijl − |Âr|+ 1

 , ∀ (r, l) ∈ R (3.31)

can replace constraints (3.27) as valid optimality cuts if |Nr| > 1 and the triangular inequality

holds for vehicle routes.

Proof. Given a pair (r, l) ∈ R with |Nr| > 1, let r = (0, r1, r2, . . . , r|Nr|, n+1) be the sequence

of nodes visited in first-level route r. Let us define path p = (r1, r2, . . . , r|Nr|) as the path of

|Nr| clusters visited in route r. With these definitions, Âr can be interpreted as the set of arcs

of p. Hence, constraints (3.31) state that, for every first-level route that contains path p, the cost

of second-level routes inside the clusters of path p is at least crl, i.e., the cost of traveling the

path in a vehicle route that does not visit any cluster out of the path. This is true because in

every first-level route r ⊃ p, r 6= r, there are clusters visited before and/or after path p, making
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the dynamic of the deliverymen inside the clusters of path p more constrained than in route r,

as triangular inequality holds. Since it is more constrained, the costs of the deliveryman routes

in the clusters of path p is at least crl, proving the validity of constraints (3.31) as optimality

cuts.

Proposition 3.2. The constraints∑
(i,j)∈Âr

xijl ≤ |Âr| − 1, ∀ (r, l) ∈ R (3.32)

can replace constraints (3.28) as valid feasibility cuts if the triangular inequality holds for ve-

hicle routes.

Proof. Following the notation used on the proof of Proposition 3.1, constraints (3.32) state that

(r, l) ∈ R ⇒ (r, l) ∈ R, ∀ r ⊃ p, i.e., if a first-level route r = (0, p, n + 1) is infeasible when

traveled by a vehicle with l deliverymen, every other route r ⊃ p will also be infeasible when

traveled with the same number l of deliverymen. This is true because, if the triangular inequality

holds, including any cluster before or after path pwould make the second-level routes inside the

clusters of pmore constrained than in route r. If these deliveryman routes are infeasible without

this additional cluster, they will remain as such with this addition.

Proposition 3.3. The constraints∑
(i,j)∈Âr

∑
l∈L:l≤l

xijl ≤ |Âr| − 1, ∀ (r, l) ∈ R (3.33)

can replace constraints (3.28) as valid feasibility cuts if the triangular inequality holds for ve-

hicle routes.

Proof. It is true that (r, l) ∈ R ⇒ (r, l) ∈ R, ∀ l ∈ L, l < l, because reducing the number

of deliverymen on a first-level route makes the second-level routes inside the clusters more

constrained. Thus, if the first-level route is infeasible with l deliverymen, it will also be with

l < l. Therefore, given Proposition 3.2,∑
(i,j)∈Âr

xijl ≤ |Âr| − 1, ∀ l ≤ l, (r, l) ∈ R

are valid feasibility cuts if the triangular inequality holds. By constraints (3.2)–(3.4), at most

one value of l is associated with a vehicle route r, allowing for the summation in l that yields

constraints (3.33) as valid feasibility cuts.

Note that it is possible to aggregate the optimality cuts (3.31) by summing them up for all

number of deliverymen l < l, as we did for feasibility cuts (3.33). However, preliminary results

indicate that, in the case of optimality cuts, this is only beneficial for small instances, and has a



62

negative effect for medium and large instances as the cuts become too dense. Therefore, we use

the disaggregated version as presented above.

Comparing the improved path cuts (3.31) and (3.33) with the original route cuts (3.27) and

(3.28), it is clear that the improved versions yield stronger LP relaxations. Furthermore, while

each route cut is active in a single integer solution, the improved versions are active in more than

one solution. This justifies the improvements from a theoretical perspective. Our experiments

confirm that this theoretical improvement is translated into a better performance of the BBC, as

shown in Section 3.6.3.

Another possible improvement to the MP is the replacement of constraints (3.5) and (3.14)

by the so-called rounded capacity inequalities (RCIs):

∑
(i,j)∈A:
i 6∈S,j∈S

∑
l∈L

xijl ≥

⌈
1

Q

∑
i∈S

qi

⌉
, ∀ S ⊂ N. (3.34)

These constraints are know to have a stronger linear relaxation than constraints (3.5) and (3.14)

and to be efficient in branch-and-cut algorithms for VRP variants (Lysgaard; Letchford; Eglese,

2004). Since they are exponential by definition, their inclusion is made dynamically throughout

the exploration of the branch-and-cut tree whenever they are found to be violated.

3.5.2 Subproblem

To generate optimality and feasibility cuts we resort to an SP that optimizes the cost of the

deliveryman routes for each pair (r, l) ∈ R, or determines that it is infeasible to perform first-

level route r with l deliverymen if (r, l) ∈ R. Given a pair (r, l), the corresponding SP is defined

by

(SP) min cd
∑
i∈Nr

∑
(h,k)∈Ai

dihkx
i
hk (3.35)

s.t.
∑

h:(h,k)∈Ai

xi
hk = 1, ∀ k ∈ N i, i ∈ Nr (3.36)

∑
h:(h,k)∈Ai

xi
hk =

∑
h:(k,h)∈Ai

xi
kh, ∀ k ∈ N i, i ∈ Nr (3.37)

∑
h∈N i

xi
0ih

=
∑
h∈N i

xi
h(ni+1), ∀ i ∈ Nr (3.38)

wk ≥ wh + sh + tihk −M i
hk(1− xi

hk), ∀ (h, k) ∈ Ai, i ∈ Nr (3.39)∑
h∈N i

xi
0ih

≤ l, ∀ i ∈ Nr (3.40)

w0j ≥ wni+1 + tij, ∀ (i, j) ∈ Ar (3.41)

xi
hk ∈ {0, 1}, ∀ (h, k) ∈ Ai, i ∈ Nr (3.42)

ah ≤ wh ≤ bh, ∀ h ∈ N i
0, i ∈ Nr ∪ {n+ 1}. (3.43)
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The objective function (3.35) seeks to minimize the total cost of second-level routes. Con-

straints (3.36)–(3.39) are equivalent to (3.6)–(3.9) but restricted to the nodes in Nr. Constraints

(3.40) limit the number of deliveryman routes inside a cluster to the number of deliverymen

traveling in the vehicle route r. Constraints (3.41) define the vehicle time flow, i.e., the deliv-

erymen leave a parking location (w0j ) after serving the previous cluster in the route (wni+1) and

traveling from one cluster to the next one in the vehicle route (tij). Finally, constraints (3.42)

and (3.43) define the domain of the decision variables.

It is important to notice that this SP comes from splitting a solution in routes and is, therefore,

separable by vehicle route r, but not by deliveryman routes in each cluster due to the trade-off

between deliveryman routes cost and time discussed in Section 3.3. There is a time dependency

among different clusters served by the same vehicle given by constraints (3.41). Thus, although

there might be a short deliveryman route to serve a given cluster’s customers, if this route takes

a long time it might affect the feasibility of the corresponding vehicle route by not respecting the

next cluster’s timewindow. Hence, in this case, it would be necessary to take longer deliveryman

routes that would be more costly but feasible considering the vehicle route to be followed.

The SP can be strengthened by VIs (3.17)–(3.19), and (3.25). We also define the following

VIs for the SP relative to a pair (r, l) ∈ R ∪R:

wni+1 ≥ w0i + eil, ∀ i ∈ Nr, (3.44)

in which eil is a lower bound on the time spent in cluster i when visited by a vehicle with l

deliverymen, as discussed in Section 3.4.1. Thus, these constraints define that the time spent in

each cluster is at least this lower bound.

Finally, time windows are tightened. Ascheuer, Fischetti, and Grötschel (2001) propose to

tighten the time windows based on all of the possible predecessors and successors of a node.

Since in the SP the vehicle route is predefined, each cluster has a unique predecessor and a

unique successor, making this tightening very efficient.

3.5.3 Lower bounds

The definition of the MP relies on the lower bound η
i
, i ∈ N, for the cost of the deliveryman

routes inside a cluster i. Moreover, VIs (3.23) and (3.44) depend on the lower bound eil, i ∈
N, l ∈ L, for the time spent in cluster i when served with l deliverymen; and VIs (3.24) and

(3.25) are based on a lower bound mi, i ∈ N, for the number of deliverymen needed to serve a

cluster. To tightly define these lower bounds, we solve a sequence of MIP models based on the

SP defined for a vehicle route that goes from the depot to a cluster i ∈ N and then back to the

depot. For calculating η
i
, the SP is solved for every cluster i ∈ N defining l = ML in constraints

(3.40). Hereinafter, we shall refer to this problem as SPcost(i). For defining eil, the SP is solved

by changing its objective function towni+1−w0i , for every node i ∈ N and deliverymen number

l ∈ L. This problem will be denoted SPtime(i, l). The value ofmi is assessed by the feasibility



64

of SPtime(i, l). If this model is infeasible for a given l, then mi ≥ l + 1. Otherwise, if it is

feasible for every l ∈ L, thenmi = 1. When solving both SPcost(i) and SPtime(i, l), we define

a lower bound on the time spent in cluster i ∈ N when served by l ∈ L deliverymen as

max

{
1

l

∑
h∈N i

sh,max
h∈N i

{
ti0ih + sh + tih(ni+1)

}}
.

Notably, even though distances and travel times are proportional, the SPcost(i) and

SPtime(i, l) models yield different solutions due to the customers time windows and the pos-

sibility of serving the clusters with more than one deliveryman. This difference has already

been explained and is illustrated in Figure 3.3 by showing a cluster i with four customers. Fig-

ure 3.3a presents the cluster data, indicating the cost of each arc and that each customer has a

service time of 10 units (arcs cost, distance, and travel time are equivalent in the picture). If

the limit on the number of deliverymen in each vehicle were ML = 2, the solution to SPcost(i)

would use only one of them to produce the second-level route portrayed in Figure 3.3b, since

it is the shortest option with a total cost of 7 and total time of 47. Nevertheless, if the goal is

to minimize the time spent in the cluster, using both deliverymen traveling the routes shown in

Figure 3.3c would be the best choice, since the customers would be served in parallel, yielding

a solution with total cost 10 and total time 25 for SPtime(i, 2). Hence, it is necessary to solve

both SPcost(i) and SPtime(i, l) for each node i ∈ N and number of deliverymen l ∈ L. This is

partly what creates the trade-off between deliveryman routes cost and time discussed in Section

3.3.

2 2

si = 10 ∀ i

2

1
1

1

2

(a) Instance.

c = 7, t = 47

2

1
1

1

2

(b) Cost minimization.

2 2

c = 10, t = 25

2

1 1

2

Parking
location

Customers

(c) Time minimization.

Figure 3.3: Different solutions by minimizing deliveryman routes cost or time.

Calculating these lower bounds requires solving n(ML +1)MIP models: n times SPcost(i)

and nML times SPtime(i, l). Although computationally burdensome, this evaluation signifi-

cantly improves the performance of the algorithms, as shown in Section 3.6.
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3.5.4 Branch-and-Benders-cut

Given the exponential number of optimality and feasibility cuts, it is impractical to enumer-

ate all of them a priori. Instead, the best approach is to solve the RMP and include optimality

and feasibility cuts as needed in a BBC fashion (Moreno; Munari; Alem, 2019). To this extent,

we solve the MP using a branch-and-cut algorithm that starts with the RMP. While processing

the nodes of the branch-and-cut tree, every time a feasible integer solution to the RMP is found,

we evaluate the corresponding SPs. If the solution of the RMP respects the optimality and feasi-

bility cuts, we update the incumbent solution (if the new solution is better than the incumbent),

otherwise we include the corresponding optimality and feasibility cuts and reoptimize the node.

The following steps represent the BBC algorithm:

1. Define cost and time lower bounds on the deliveryman routes in each cluster (Section

3.5.3);

2. Define the initial RMP and start the branch-and-cut method (Section 3.5.1);

3. Every time a feasible solution of the RMP is found in the branch-and-cut tree, check if

the RCIs (3.34) are respected. If they are violated, include the corresponding RCIs and

solve the current node again.

4. Separate the solution by vehicle routes, tighten the clusters time windows considering

the vehicle route serving them, and solve the SPs (Section 3.5.2). For each SP, if it is

feasible, include the corresponding optimality cuts (3.31), otherwise include the corre-

sponding feasibility cuts (3.33). If all SPs are feasible and the solution cost updated with

the deliveryman routes cost is lower than the incumbent cost, update the incumbent.

The algorithm terminates once all nodes of the branch-and-cut tree have been processed. In

modern MIP solvers, this can be implemented using callbacks. To this extent, we declare the

RMP model and start the solution procedure. In the callback, once an integer solution is found,

the routine for separating RCIs (3.34), solving the SP, and separating optimality cuts (3.31) and

feasibility cuts (3.33) is called (as described in the steps 3 and 4 above).

3.6 Computational experiments

We now describe the computational experiments performed to assess the performance of the

proposedmodel and algorithms and their suitability to solve theVRPTWMD2R. The approaches

were implemented in C++ and use Gurobi 10.0.2 with an optimality gap tolerance of 10−7. The

routines for separating RCIs (3.34) were implemented using the CVRPSep package (Lysgaard;

Letchford; Eglese, 2004). The experiments were run on a computing cluster from Compute

Canada, where each node is equipped with 2xAMD Rome 7532 processors running at 2.4GHz

and up to 64GB of RAM for the CF, and 32GB for the BBC, with a time limit of 7,200s. For
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each instance, we use 8 threads. For the MIP models SPcost(i) and SPtime(i, l) that determine

the lower bounds described in Section 3.5.3, we set a time limit of 10s; when the solver was

unable to prove optimality within this time limit, we used the lower bound obtained by the

solver to define the lower bounding parameter on time or cost. All instances and detailed results

are available at https://www.dep.ufscar.br/munari/vrptwmd/.
Section 3.6.1 describes the instances used in our experiments. In Section 3.6.2, we present

the results obtained with the CF and the different sets of VIs, allowing us to assess the effec-

tiveness of the existing and new VIs. In Section 3.6.3, we discuss the results obtained with the

BBC method. Finally, Section 3.6.4 provides managerial insights for this practical problem.

3.6.1 Instances

The generated instances are based on the Solomon (1987) instances for the VRPTW from

classes C1, R1, and RC1. We considered that each node in a Solomon instance represents the

parking location of a cluster in the VRPTWMD2R. Then, we generated one to seven customer

locations around each parking location to create the customers in the corresponding cluster.

Coordinates of the customers were generated following a normal distribution with mean in the

parking location’s coordinates and standard deviation σ = 3, which showed to be well suited

for the problem representation. In the Solomon instances, only some nodes have time windows;

if they do, i.e., the parking location has a time window, then time windows were generated for

the customers assigned to them. These time windows were randomly generated considering the

time window opening of the cluster and the average width of the clusters time windows, while

ensuring feasibility of the instances. The service time of each customer is assumed to be the

same as that of the corresponding parking locations.

We generated instances of five different sizes, namely 10–40, 15–60, 15–85, 20–80, and

25–125, in which the first number represents the number of clusters (parking locations) and the

second number represents the total number of customers. This way, there are instances with 50,

75, 100, and 150 nodes, which are realistic for many last-mile logistics applications. There are

29 instances of each size, for a total of 145, all available online.

Following Pureza, Morabito, and Reimann (2012), we defined the cost parameters as

(fv, cv, fd, cd) = (1000, 10, 100, 1) and allowed up to ML = 3 deliverymen per vehicle. The

distances were calculated assuming Euclidean distances truncated to integers. For the vehicles,

distance and travel time were considered equivalent, and deliverymen were assumed to travel at

one-third of the vehicles’ speed. After calculating distances and travel times, the Floyd-Warshall

algorithm (Cormen et al., 2009) was run to ensure the triangular inequality was valid.

3.6.2 Compact formulation and valid inequalities

We first assess the performance of our CF (3.1)–(3.16), of the existing VIs (3.17)–(3.22),

and of the newly proposed VIs (3.23)–(3.25). Table 3.1 shows the summarized results of the
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experiments with the CF and VIs (detailed results are provided as supplementary material).

It presents the results for the CF only (hereinafter referred to as CF1), the CF enhanced with

VIs (3.17)–(3.22) from the literature (CF2), and the CF enhanced with VIs (3.18)–(3.25), both

novel and literature-based (CF3). As discussed in Section 3.4, VIs (3.17) are redundant when

VIs (3.25) are considered and are, therefore, not included in the latter scenario. In this table,

“LR” stands for “LP relaxation”, “LB” for “lower bound”, “UB” for “upper bound”, “Gap”

for the optimality gap provided by the solver (as a percentage), “Time” for the running time in

seconds, “# opt” for the number of instances for which the solver has proved optimality for the

corresponding model, “# veh” for the number of vehicles in the best solution found, and “# del”

for the number of deliverymen. All values represent the corresponding average, except for “#

opt”. We present the average gap as the average of optimality gaps of instances, not the gap

calculated with the average LB and UB.

Size LR LB UB Gap (%) Time (s) # opt # veh # del

CF1

10–40 1,027 5,508 7,138 26.93 6,069 5 3.69 8.45

15–60 1,354 6,912 10,453 34.42 6,704 2 5.31 12.62

15–85 1,398 6,900 12,403 46.47 6,954 1 6.34 15.69

20–80 1,764 9,088 14,614 38.96 6,723 2 7.38 16.55

25–125 2,071 11,446 20,426 45.63 6,954 1 10.38 23.83

Total 1,523 7,971 13,007 38.48 6,681 11 6.62 15.43

CF2

10–40 4,063 5,727 7,170 21.51 6,081 7 3.72 8.38

15–60 5,752 7,274 10,447 30.14 6,470 3 5.31 12.45

15–85 6,023 7,379 12,255 40.50 6,954 1 6.24 15.66

20–80 7,515 9,411 14,462 35.87 6,723 2 7.28 16.62

25–125 10,066 12,017 20,220 41.62 6,953 1 10.24 23.79

Total 6,684 8,362 12,911 33.93 6,636 14 6.56 15.38

CF3

10–40 4,637 7,131 7,131 0.00 316 28 3.69 8.41

15–60 6,445 10,189 10,228 0.68 2,262 26 5.10 12.62

15–85 7,757 12,018 12,116 1.26 4,108 13 6.14 15.69

20–80 8,589 13,499 13,988 4.55 4,184 14 6.90 16.66

25–125 12,653 18,358 19,195 5.76 5,155 9 9.48 24.24

Total 8,016 12,239 12,532 2.45 3,205 90 6.26 15.52

Table 3.1: Results of the experiments with CF and different sets of VIs.

These results indicate that the VIs significantly strengthen the LP relaxation of the CF. The

inclusion of the VIs from the literature improves the average value of the LR in 338.92% and the

novel VIs provide an additional improvement of 19.94%, leading to a total increase of 426.42%

in the LR values. Moreover, for instances with sizes 15–85 and 25–125, the value of the LR of

CF3 is higher than the final LB obtained after running the solver for two hours with the other

two model configurations.

Regarding the performance of the MIP solver, the CF1 yields poor results, with high gaps

even for the smallest instances. The solver proved optimality on few instances (11 out of a total

of 145). The VIs from the literature (CF2) improve its performance, especially by lifting the
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average LB in 4.91%, which yields a modest 4.55% improvement in the average gap. They also

help prove optimality for three other instances, reaching 9.66% of the instances (14/145). Still,

the average gap is 21.51% for the smallest-sized instances. Regarding the solution details, both

the number of vehicles and the number of deliverymen used are reduced on average.

The combination of the VIs from the literature with the VIs proposed for the problem (CF3)

produces a significant improvement in the results, leading to an additional 46.36% increase in

the average LB and 31.48% reduction in the average gap. Furthermore, the number of instances

with proven optimality increases to 90, which is more than half of the total instances, and more

than six times the number of instances proved to optimality before. The runtime is significantly

improved as a consequence of the new VIs and their effect in proving optimality. Note that the

small instances can now be solved in about five minutes, and the average runtime is decreased

by more than half. The comparison of the number of vehicles and deliverymen in the solutions

of CF2 and CF3 shows that the number of vehicles is reduced while the number of deliverymen

increases. This confirms the hypothesis presented in Section 3.3 that the deliverymen can be

used to reduce the fleet size and, thus, the solution costs.

(a) CF1. (b) CF2.

(c) CF3.

Figure 3.4: Convergence curves for instance R110 with size 25–125.

Figure 3.4 shows the convergence curves of the different CFs when solving instance R110

with size 25–125, which illustrates a common behavior of these models in many instances.

Figures 3.4a and 3.4b indicate that both the CF1 and the CF2 start from high UBs that rapidly
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decrease and the LB increases a little in the first few seconds. However, after 1000s of runtime,

there is little improvement either in the UB or the LB, leading to large gaps (55.67% for the

CF1 and 54.42% for the CF2). The CF3, as portrayed in Figure 3.4c, starts a few seconds later

because it calculates the lower bounds discussed in Section 3.5.3 before starting the solution

procedure. As in the other approaches, the UB rapidly decreases, but the difference here is the

significant increase in the LB right in the first seconds of runtime. This figure illustrates the

effect shown in Table 3.1. Indeed, although the improvement in the LR from using the novel

VIs is small compared to the VIs from the literature, it significantly helps the performance of the

MIP solver by increasing the LB throughout the branch-and-cut search tree. Nevertheless, these

improvements do not overcome the tailing-off effect shown by the CF1 and the CF2, preventing

the algorithm from proving optimality within the time limit, and finishing with an optimality

gap of 5.80%. It is worth mentioning that, to assess whether longer runtimes would allow the

solver to prove optimality for this instance, we have run the CF3 solving this specific instance

with a time limit of twenty hours and, even though the gap was reduced, it was not possible to

prove optimality.

These analyses have demonstrated the added value of the VIs from the literature and the

significant improvement obtained with the newly proposed VIs for our problem. Using the CF3,

the solver proved optimality for many instances and provided good bounds for the remaining

larger instances. This version of the model is used in the next section to assess the performance

of our BBC algorithm.

3.6.3 Branch-and-Benders-cut algorithm

Since the previous experiments clearly show the efficiency of the proposed VIs, in our BBC

method the RMP always includes the VIs (3.20)–(3.24), and the SP includes VIs (3.17)–(3.19),

(3.25), and (3.44).

The first experiments with the BBC method evaluate the relevance of the cut improvements

discussed in Section 3.5.1, at first with constraints (3.5) and (3.14) in the MP instead of the

RCIs (3.34). Table 3.2 presents the results considering two different versions of the method:

BBC1 with route cuts (3.27) and (3.28); and BBC2 with improved path cuts (3.31) and (3.33).

Notably, the performance of BBC2 is slightly worse for smaller instances but it is significantly

better for larger ones. On average, the improved cuts yield positive impacts in the LB and UB,

leading to a 0.19% gap improvement, 7.40% time reduction, and an additional instance proved

to optimality. Given these results, the remaining experiments with the BBC are all run with the

path cuts (3.31) and (3.33).

Table 3.3 compares the results of the experiments with CF3, BBC2, and BBC3 with im-

proved cuts (3.31) and (3.33) and RCIs (3.34). Figure 3.5 shows the convergence curves of

BBC2 for instance R110 with size 25–125. In addition to the LB and UB curves, this figure also

shows the points in which optimality cuts were inserted.
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Size LB UB Gap (%) Time (s) # opt # veh # del

BBC1

10–40 7,131 7,131 0.00 16 29 3.69 8.41

15–60 10,200 10,228 0.49 631 28 5.10 12.62

15–85 12,076 12,116 0.53 361 28 6.14 15.69

20–80 13,398 13,972 4.99 1,948 22 6.90 16.66

25–125 18,174 19,263 6.86 2,380 21 9.48 24.28

Total 12196 12542 2.58 1067 128 6.26 15.53

BBC2

10–40 7,131 7,131 0.00 18 29 3.69 8.41

15–60 10,196 10,228 0.56 435 28 5.10 12.62

15–85 12,075 12,116 0.54 374 28 6.14 15.69

20–80 13,425 13,972 4.89 2,003 22 6.90 16.62

25–125 18,205 19,083 5.96 2,110 22 9.38 24.03

Total 12,207 12,506 2.39 988 129 6.24 15.48

Table 3.2: Impact of cut improvements in the BBC method.

Compared to the CF3, the BBC2 algorithm reduces another 0.06% in the average gap and

gives a slight improvement in the average UB for large instances of sizes 20–80 and 25–125.

The greatest improvements, however, are in the number of instances solved to proven optimality

and in the average runtime.

Size LB UB Gap (%) Time (s) # opt # veh # del

CF3

10–40 7,131 7,131 0.00 316 28 3.69 8.41

15–60 10,189 10,228 0.68 2,262 26 5.10 12.62

15–85 12,018 12,116 1.26 4,108 13 6.14 15.69

20–80 13,499 13,988 4.55 4,184 14 6.90 16.66

25–125 18,358 19,195 5.76 5,155 9 9.48 24.24

Total 12,239 12,532 2.45 3,205 90 6.26 15.52

BBC2

10–40 7,131 7,131 0.00 18 29 3.69 8.41

15–60 10,196 10,228 0.56 435 28 5.10 12.62

15–85 12,075 12,116 0.54 374 28 6.14 15.69

20–80 13,425 13,972 4.89 2,003 22 6.90 16.62

25–125 18,205 19,083 5.96 2,110 22 9.38 24.03

Total 12,207 12,506 2.39 988 129 6.24 15.48

BBC3

10–40 7,131 7,131 0.00 25 29 3.69 8.41

15–60 10,196 10,228 0.56 448 28 5.10 12.55

15–85 12,078 12,116 0.51 382 28 6.14 15.69

20–80 13,430 13,975 5.06 2,010 22 6.90 16.62

25–125 18,291 19,045 5.30 2,032 22 9.34 24.03

Total 12,225 12,499 2.29 980 129 6.23 15.46

Table 3.3: Results of the experiments with the best versions of the CF and BBC approaches.

The BBC2 proved optimality for all instances with sizes 10–40, and for 28 out of 29 instances

of sizes 15–60 and 15–85. In total, it proved optimality for 129 instances, which represents

88.97% of the total number of instances, and an increase of 43.33% compared to the CF3. Even

for the instances with sizes 20–80 and 25–125, to which there was no improvement in the LB
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and gap when comparing the BBC2 with the CF3, the number of instances solved to proven

optimality went from 14 and 9 to 22 and 22 with the BBC2. For these sizes, the average LB

and gap did not improve because the BBC2 performed worse than the CF3 in a few instances,

despite being superior in most of them.

Moreover, the runtime was drastically reduced. Small instances were solved to optimality

within seconds by the BBC2 method, and the average runtime, which was close to 2 hours

for the CF1 and close to 1 hour for the CF3, was reduced to slightly more than 15 minutes.

In part, this improvement is caused by the overcoming of the tailing-off effect, as shown in

Figure 3.5. The BBC2 method proved optimality for that instance in less than 200s, while the

other approaches had high gaps after 7200s and, as discussed in Section 3.6.2, could not prove

optimality even after twenty hours of runtime. This leads to significant improvements in the

runtime of the algorithm, with the average value representing 69.17% of reduction compared to

the results of the CF3. In the instances of size 10–40, the runtime reduction is of 94.30%. This

result is especially important considering that exact methods usually suffer from being very time-

consuming, while the proposed BBC has presented reasonable running times for most instances.

Figure 3.5: Convergence of the BBC2 method for instance R110 with size 25–125.

The inclusion of the RCIs (3.34) create LB and UB improvements that lead to an additional

0.10% gap improvement. The RCIs have more impact on instances of size 25–125, that show

a 0.66% gap reduction. Considering the number of vehicles and deliverymen in the solutions,

both from CF3 to BBC2 and from BBC2 to BBC3, there is a small reduction in both metrics.

Table 3.4 provides a closer look at the cuts inserted in the BBC2 algorithm. It displays the

number of feasibility and optimality cuts inserted, as well as the total separation time for these

cuts (which includes the time for solving the SPs). The number of feasibility cuts is less than

one per instance on average. For the instances with size 15–60, no feasibility cut was needed in

any instance. This indicates a very good performance of the proposed lower bounds for ensuring

feasibility of the solution provided by the RMP. It also shows that many instances do not need

feasibility cuts, as the one portrayed in Figure 3.5. The number of inserted optimality cuts grows

with the instance sizes, but there are fewer than two cuts for each node on average. Figure 3.5
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Size # of feasibility # of optimality Total separation (s)

10–40 0.21 38.72 7.71

15–60 0.00 94.93 31.00

15–85 0.69 87.17 95.67

20–80 1.17 154.28 57.45

25–125 1.79 222.03 437.76

Avg 0.77 119.43 125.92

Table 3.4: Average number of cuts and separation times in the BBC algorithm.

illustrates the fact that when a new optimality cut is inserted, a new incumbent solution is often

found, reducing the UB value.

Regarding the time spent separating these cuts, it grows rapidly with the instance sizes and

is directly related to the number of cuts added. Additionally, each cut separation takes longer

for larger instances as they have more customers in each route and larger clusters.

When comparing the results of our BBC3 approach with those obtained by solving the CF

alone (CF1), the BBC yields a 36.19% reduction in the average gap, the number of instances

solved to optimality is increased from 11 to 129, the average UB is improved by 3.91%, the

average LB increases 53.37%, and the average runtime is reduced in 85.33%, which highlights

the suitability of the proposed method to solve the problem.

Moreover, when looking at the results of the algorithms considering different instance sizes,

it can be seen that it becomes more challenging to solve the problem as the instances grow.

Nonetheless, different solution methods may be more or less sensitive to this increase in the

difficulty in solving the problem depending if the size changes more expressively in the number

of customers or clusters. Instances with sizes 15–85 and 20–80, for example, have a total of 100

nodes. On the one hand, CF1 and CF2 have better performances for instances with size 20–80

than for instances with size 15–85, indicating that the size of clusters affects these approaches

more than the number of clusters. On the other hand, CF3 and BBC have better performances in

the instances with size 15–85 than in those with size 20–80, suggesting that these methods are

more affected by the number of clusters than by the cluster size. This shows that the proposed

BBC method and the novel VIs were effective in decreasing the difficulty related to the second-

level routes, as was our goal with those approaches given that these routes are less relevant

(much cheaper and highly dependent on the other decisions) than the first-level routes and the

number of vehicles or deliverymen used. Furthermore, the number of cuts added in the BBC

for the instances with size 20–80 is 76.99% higher than for the instances with size 15–85, even

though the separation time is 39.95% lower.

3.6.4 Managerial insights

We ran experiments to assess the relevance of considering deliveryman routes and to perform

sensitivity analysis on the results. Experiments were run with the BBC method in a subset of
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instances of sizes 15–85, 20–80, and 25–125 to which this method proved optimality in all

configurations.

As discussed in Section 3.2, the previous works on the VRPTWMD ignored the deliveryman

routes by considering that deliverymen have limited capacity and thus cannot visit more than one

customerwithout returning to the vehicle. We adapted ourmethods to consider this alternative of

having the deliverymen perform round trips to all customers in the cluster by simply setting the

distance dij = di0 + d0j , where i and j are two customers and 0 represents the parking location.

This new distance matrix effectively models the case of round trips to each customer. The travel

times were defined accordingly. The results presented in Table 3.5 contrast this situation with

the VRPTWMD2R proposed in this paper.

Ignoring deliveryman routes With deliveryman routes

# of vehicles 6.78 6.22

# of deliverymen 18.39 16.11

First-level distance 454.22 423.00

Second-level distance 669.00 474.56

Total cost 13,827.89 12,537.89

Table 3.5: The importance of considering deliveryman routes.

In spite of being a problem much easier to solve (the solution times were roughly one-third),

ignoring the second-level routes creates significantly worse results. Since it overestimates the

deliveryman routes time and distance, it has a greater need for both vehicles and deliverymen.

The overall costs are 10.29%higher, highlighting the importance of considering the deliveryman

routes in the problem.

These results also highlight that savings are expected if deliverymen can perform small

routes instead of visiting one customer at a time. In applications where walking deliverymen

cannot carry goods to serve more than one customer at a time, small scooters or cargo bikes can

enable this. More generally, this analysis sheds light on the limitations and benefits of drone

delivery, depending on the drone capacity and range.

Another important assessment is the trade-off between vehicle and deliveryman costs dis-

cussed in Section 3.3. Table 3.6 compares the results for three different cost structures, in

which the first- and second-level cost components in (fv, cv, fd, cd) are set as follows: (i) de-

liverymen ten times cheaper than vehicles (1000, 10, 100, 1); (ii) deliverymen and vehicles with

the same costs (100, 1, 100, 1); and (iii) deliverymen ten times more expensive than vehicles

(100, 1, 1000, 10). These results illustrate the trade-off mentioned above. They make clear that

more efficient deliveryman routes and more deliverymen can be used to reduce both the number

and the distance traveled by vehicles if this is interesting from a cost perspective. However,

when this is not the case, the vehicles are more intensively used to reduce deliverymen costs.

From the first scenario to the last, the average number of deliverymen per vehicle drops from

2.59 to 1.93, which is a 25.48% decrease. Nevertheless, the average distance traveled by each
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vehicle and deliveryman does not change much from one scenario to the other since the fixed

costs are much higher than the variable costs, enforcing that each vehicle and deliveryman is

used as much as possible.

Del < Veh Del = Veh Del > Veh

# of vehicles 6.22 6.28 7.56

# of deliverymen 16.11 15.33 14.56

First-level distance 423.00 439.39 522.83

Second-level distance 474.56 467.22 438.17

Table 3.6: Costs sensitivity analysis.

Furthermore, we look at other possibilities of cost reduction enabled by clever uses of multi-

ple deliverymen in practice. Table 3.7 presents a base case with a limit ofML = 3 deliverymen

in each vehicle in which they travel at one-third of the vehicles’ speed. This base case is com-

pared to another with a limit ofML = 5 deliverymen that travel at the same speed. Once again,

these results prove that deliverymen can be used to reduce the number of vehicles used. Here,

the number of vehicles is reduced by 17.85% and the first-level distance is reduced accordingly

by 12.54%. Despite the increase in deliverymen costs, this leads to an overall cost reduction

of 11.32%. Another comparison is made with a case of fast deliverymen (twice the vehicles’

speed), which could represent a case with drones, bicycles, or motorcycles as deliverymen, in-

stead of walking carriers. Even though the number of deliverymen in each vehicle remains

ML = 3, this increased speed allows for a great reduction on the service time in each clus-

ter, leading to better first-level routes. The average number of vehicles is reduced by 22.35%,

the number of deliverymen by 25.88%, and the vehicles distance by 17.89%, leading to a cost

reduction of 20.52%.

Base case More deliverymen Fast deliverymen

ML = 3 ML = 5 ML = 3
1/3 of vehicles’ speed 1/3 of vehicles’ speed 2× the vehicles’ speed

# of vehicles 6.22 5.11 4.83

# of deliverymen 16.11 17.78 11.94

First-level distance 423.00 369.94 347.33

Second-level distance 474.56 530.33 464.06

Total cost 12,537.89 11,118.67 9,965.17

Table 3.7: Further advantages of multiple deliverymen.

A beneficial side effect of the business model incorporated by the VRPTWMD2R is a re-

duction on the emission of greenhouse gases (GHGs) and other pollutants. If the deliverymen

are walking carriers, bicycles, or drones, for instance, GHGs emissions are much smaller in the

second-level routes than in the first-level routes. Since the adoption of more deliverymen leads

to reduced vehicle usage, as demonstrated above, this also reduces the environmental harm of

the delivery. As presented in Table 3.7, the distance traveled by the vehicles can be reduced by
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more than 15%with the proper usage of deliverymen, creating a much greener last-mile delivery

system while reducing operational costs.

Finally, we assess the impact of the clustering decision in the VRPTWMD2R. Considering

that clustering is part of the input data, there may be different instances with the same cus-

tomers and parking locations, changing only the customer’s clustering. We ran experiments to

determine how this decision impacts the solution.

We analyzed, from our instances of size 10–40, which ones have customers that are not

assigned to their closest parking locations with compatible time windows. This may happen

due to the random generation of customers. There are 7 out of the 29 instances in which at least

one customer is not assigned to its closest compatible parking location. Among those, in only

four of them (C102, C103, C104, and RC104) there is an expressive number of these customers.

All these instances share two characteristics: they have loose time windows and many parking

locations with short distances among them.

We have then performed experiments to determine the impact of the clustering on the so-

lution costs. To this extent, we generated customer locations as described in Section 3.6.1 for

these four instances (C102, C103, C104, and RC104) of size 10–40 considering different val-

ues for the customers coordinates standard deviation: σ = 3 (original instances), σ = 5, and

σ = 7. We have opted to evaluate instances with higher variability in the customer’s positions

since this is a factor that considerably affects clustering. We shall refer to these 12 instances (4

Solomon instances with customers generated based on 3 different standard deviation values) as

instances with predefined clustering. For each instance with predefined clustering, we defined a

new instance by reassigning each customer to the closest parking location with compatible time

window (clustering based on proximity). The experiment consisted in comparing the solutions

for the instances with predefined clustering against those with clustering based on proximity.

Table 3.8 presents the results of this evaluation, where “σ” indicates the customers’ coordi-

nates standard deviation, “Instance” is the instance name, and “Customers (%)” represents the

percentage of customers that were reassigned to a closer cluster. Columns “Cost (%)”, “Vehi-

cles (%)”, and “Deliverymen (%)” represent the variation in the solution cost, the number of

vehicles, and the number of deliverymen, respectively, when comparing the optimal solution

for the instance with predefined clustering and the instance with clustering based on proxim-

ity. A negative value indicates a reduction (better in the second clustering) and a positive value

indicates an increase in the corresponding value.

The results of Table 3.8 for the original instances (σ = 3) show that, even for the four

instances that were the most sensitive to clustering, the cost reduction that arises from the new

clustering is small (less than 1% in average), with no changes in the number of vehicles or

deliverymen used. This indicates that the clustering decision has little impact in the quality of

the solution in situations in which customers are close to parking locations or have tight time

windows, even if a considerable fraction of customers are not assigned to the closest possible

parking location (more than 25% in the instances evaluated).
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σ Instance Customers (%) Cost (%) Vehicles (%) Deliverymen (%)

3 (original)

C102 30.00 -0.83 0.00 0.00

C103 32.50 -0.69 0.00 0.00

C104 40.00 -1.96 0.00 0.00

RC104 25.00 -0.25 0.00 0.00

Average 31.88 -0.93 0.00 0.00

5

C102 25.00 -1.01 0.00 0.00

C103 25.00 -1.72 0.00 0.00

C104 42.50 -35.55 -50.00 50.00

RC104 30.00 -20.71 -20.00 -18.18

Average 30.63 -14.75 -17.50 7.96

7

C102 42.50 -2.93 0.00 0.00

C103 30.00 -1.19 0.00 0.00

C104 47.50 -3.72 0.00 0.00

RC104 42.50 -33.76 -37.50 -9.09

Average 40.63 -10.40 -9.38 -2.27

Table 3.8: Solution variation after reclustering.

Nonetheless, when customers are more spread in a region with many candidate parking

locations (σ = 5 and σ = 7), the clustering becomes more complicated and has more impact in

the solution cost. Indeed, for some instances with a greater number of customers reassignments,

the clustering has an impact on the vehicle fleet and deliverymen crew sizes, leading to cost

reductions of more than 10% on average. It is worth noticing, however, that, even among these

instances, the majority of them has a cost reduction of less than 5%. Also, these instances have

loose time windows. In situations with tight time windows, the cost improvement would be

much more restricted.

In conclusion, the presented results demonstrate the importance of properly evaluating the

deliveryman routes and integrating them in a cost-effective manner with the vehicle routes. It

has been shown that the adequate usage of deliverymen can reduce overall costs, the usage and

number of vehicles, and the emission of GHGs and other pollutants. This creates the opportunity

of devising less costly and greener operations. Regarding clustering, we have shown that it has

little impact on the solutions of the VRPTWMD2R for instances with customers close to each

other or with tight time windows.

3.7 Conclusion

In this work, we have introduced a novel problem in the literature called the vehicle routing

problem with time windows, multiple deliverymen, and two-level routing. This problem is an

extension of the vehicle routing problem with time windows and multiple deliverymen in which

we incorporate the routes traveled by the deliverymen. We formally define and formulate the

problem, propose valid inequalities for this formulation, and develop a branch-and-Benders-cut
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algorithm to solve it efficiently.

The results of computational experiments show the relevance of including more than one

deliveryman in each vehicle and properly optimizing their routes inside the clusters. We have

shown that this evaluation leads to a significant cost reduction and directly impacts the number

of vehicles and their routes in the solution. The experiments confirmed the suitability of the

proposedmethodology. The proposedBBC solves 129 out of 145 instances to proven optimality,

with an average processing time of less than 1,000s. The proposed method is capable of solving

instances of realistic sizes. Moreover, we have performed a sensitivity analysis on the costs that

highlighted opportunities to improve the usage of multiple deliverymen, such as increasing the

number of deliverymen in each vehicle and adopting faster deliverymen (e.g., drones, bicycles,

and motorcycles). We have also discussed beneficial environmental effects of this business

model, which are relevant in urban logistics.

Finally, some possibilities of future work are extending the problem further and propos-

ing other solution methods. Interesting extensions would be considering pickup-and-delivery

schemes, evaluating heterogeneous fleet (especially in the first level), dealing with uncertain

data (e.g., uncertainties in the demand or travel times), or integrating the clustering decision in

the optimization. Regarding new methods, the development of heuristics and metaheuristics, or

their combination with the proposed BBC to create hybrid methods, could lead to good solutions

for even larger instances.
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4 Last-mile delivery with multiple deliv-

erymen: formulation and exact solution

methods for a rich vehicle routing prob-

lem

Abstract

There is an increasing demand for cost- and time-efficient last-mile delivery due to the

growth of urban areas and the expansion of home-delivery systems. To respond to this need,

many companies and academics have focused on proposing inventive delivery schemes to re-

duce costs and improve the service level offered to customers, while dodging traffic and avoiding

an increase in the emission of green house gases and other pollutants, such as combining the use

of vehicles with walking carriers. The vehicle routing problem with time windows and mul-

tiple deliverymen is an example of such delivery systems. In this problem, each vehicle may

travel with more than one deliveryman to serve many customers with a single stop of the vehicle

and reduce the overall time that the vehicle stays parked. As originally defined, this problem

considers that the definition of which customers are served from each parking location and the

routes traveled by the deliveryman can be predefined. We propose a variant of this problem that

includes both of these decisions in the optimization. The novel problem is formally defined and

formulated. Theoretical properties and useful lower bounds are introduced and used to propose

several valid inequalities. The problem is also decomposed in a Benders scheme and solved ex-

actly by a branch-and-Benders-cut algorithm. Extensive computational experiments show the

suitability of the proposed methodology to solve the problem. Furthermore, managerial insights

indicate that the inclusion of the customer clustering and deliveryman routes in the optimization

leads to an average cost reduction of over 10%, with this value being much higher for particular

instances.1

1This chapter is a paper coauthored with Prof. Leandro C. Coelho (Université Laval), Prof. Reinaldo Morabito

(Federal University of São Carlos), and Prof. Pedro Munari (Federal University of São Carlos).
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4.1 Introduction

Last-mile delivery is a growing concern in logistics operations due to the increasing demand

for efficient deliveries in cities caused by the urban population growth and the expansion of

e-commerce (Bayliss et al., 2023). Compared to traditional routing problems, last-mile delivery

systems encompass additional challenges such as finding places to park the vehicles and poor

traffic conditions (Martinez-Sykora et al., 2020). Also, some cities have restrictions on vehicle

sizes and circulation.

On the one hand, the aforementioned issues are faced by the logistics companies when de-

signing their routes and delivery systems. On the other hand, from the public perspective, poorly

designed delivery systems negatively affect the traffic and can lead to higher emission of green-

house gases (GHGs) and other pollutants (Bektaş; Laporte, 2011). These questions show the

importance of evaluating and designing more effective last-mile delivery systems.

A common approach in these systems is to use two-echelon schemes (Cuda; Guastaroba;

Speranza, 2015; Sluijk et al., 2023), in which larger vehicles take the goods from the depot to

transshipment facilities (satellites) and smaller vehicles take them from these facilities to the

final customers. The main examples are the two-echelon vehicle routing problem (2E-VRP)

and the two-echelon location routing problem (2E-LRP).

Another possibility is to use two-echelon schemes without having these transshipment satel-

lites by using the first-echelon vehicles as mobile facilities and having smaller vehicles taking

goods from the vehicles to the customers. Some common applications include having the cus-

tomers served by drones (Moshref-Javadi; Winkenbach, 2021), robots (Alfandari; Ljubić; De

Melo da Silva, 2022), or carriers on bicycles or walking (Cabrera; Cordeau; Mendoza, 2022;

Bayliss et al., 2023; Senna et al., 2024a). These smaller vehicles take the goods directly from

the vehicles to the customers, with no need for transshipment facilities while increasing the ef-

ficiency of the deliveries. This is highly beneficial since it does not incur in additional costs

of facility location (2E-LRP) and transshipment (2E-VRP), and does not require infrastructure

investments in satellites. Additionally, the use of greener options in the second echelon (drones,

robots, and people walking or cycling) leads to reducing the emission of GHGs and pollutants

and does not impact the traffic.

A particularly interesting application is the vehicle routing problem with time windows and

multiple deliverymen (VRPTWMD). This problem is based on a depot, a set of customers, and

a set of potential parking locations. Vehicles take goods from the depot to the customers and,

once parked, the deliverymen traveling with this vehicle serve the customers. It is assumed that

each vehicle may carry more than one deliveryman and that they serve the customers in parallel,

reducing the time that the vehicle stays parked throughout the route. Since vehicle costs are often

higher than deliveryman costs, this creates an opportunity for cost reduction (Pureza; Morabito;

Reimann, 2012).

The common approach in the VRPTWMD is to assume that the deliveryman routes and the
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definition of which customers are to be served by each parking location (clustering) can be pre-

processed (Pureza; Morabito; Reimann, 2012; Álvarez; Munari, 2017; Munari; Morabito, 2018;

De La Vega; Munari; Morabito, 2020). The customer clustering has been addressed by Senar-

clens de Grancy and Reimann (2015) and Senarclens de Grancy (2015), and the deliveryman

routes by Senna et al. (2024a), all of them showing the benefits of including these decisions

on the problem. However, to the best of our knowledge, no other work has evaluated the im-

pact of including both the deliveryman routes and the customer clustering in the optimization

problem. In this paper, we extend the VRPTWMD by considering both of these decisions. The

contributions of this paper are sixfold:

• The introduction of a variant of the VRPTWMD that encompasses the decisions on which

customers are to be served by a vehicle parked at each parking location and the delivery-

man routes;

• The proposition of a mixed-integer programming formulation to represent this problem;

• The discussion of theoretical properties of the problem and the proposition of valid in-

equalities;

• A branch-and-Benders-cut algorithm to solve the problem based on Benders decomposi-

tion;

• Extensive computational experiments evaluating the performance of the proposed solution

approaches;

• Managerial insights that highlight the importance of including these decisions in the prob-

lem.

The remaining of this paper is structured as follows. In Section 4.2, a brief literature review

of the VRPTWMD is presented. Section 4.3 defines the problem. In Section 4.4, the problem is

formulated, some properties are discussed, and valid inequalities are proposed. In Section 4.5,

a Benders decomposition is proposed along with a branch-and-Benders-cut algorithm. Section

4.6 presents the computational experiments and provides some interesting managerial insights.

Section 4.7 discusses concluding remarks.

4.2 Literature review

The VRPTWMD was proposed by Pureza, Morabito, and Reimann (2012) to reflect the de-

liveries of a beverage company in a densely populated urban center. In large cities, it is common

that vehicles spend long times in their deliveries traveling slowly (due to traffic) in search of a

place to park. It is also common that there are many customers close to each other, creating an

opportunity of serving such customers with a single stop of the vehicle. Although reducing the
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issues of traffic and lack of parking location availability, this approach has the downside of hav-

ing the vehicles parked during long periods while a single deliveryman serves many customers.

To speed up the delivery process, this company came up with the idea of including more than

one deliveryman in each vehicle, reducing the time that the vehicles stay parked and increasing

the delivery efficiency. Since the costs associated with vehicles are usually higher than those of

deliverymen, this creates an opportunity for cost reduction. Moreover, since deliverymen emit

less GHGs and other pollutants, this business model has the beneficial side effect of reducing

emissions.

Based on the operations of the beverage company studied, (Pureza; Morabito; Reimann,

2012) defined the problem with two simplifying hypotheses: (i) the definition of the customers

to be served by each vehicle stop (clusters) is predefined, and (ii) the deliverymen routes inside

each cluster can be defined in a preprocessing phase.

Since then, most works that studied the VRPTWMD followed these ideas. Senarclens de

Grancy and Reimann (2014) and Álvarez and Munari (2016) compared the performance of dif-

ferent metaheuristics to solve the problem. Souza Neto and Pureza (2016) extended the problem

to include the possibility ofmultiple trips for the vehicles. Munari andMorabito (2018) proposed

the first exact algorithm for the VRPTWMD: a branch-and-price, solving the problem with col-

umn generation. Álvarez and Munari (2017) combined this method with two metaheuristics to

create a hybrid algorithm. De La Vega, Munari and Morabito looked at the problem with uncer-

tainties by means of robust optimization heuristically (De La Vega; Munari; Morabito, 2019)

and exactly (De La Vega; Munari; Morabito, 2020).

These hypotheses make sense in beverage delivery schemes, since the goods to be trans-

ported are usually large and heavy. Thus, a walking deliveryman cannot travel far from the

vehicle while transporting these commodities, and the clusters can be easily defined based on

customers that have compatible time windows and are very close to each other. Furthermore,

the walking deliveryman would not be capable of serving many customers without coming back

to the vehicle to collect more goods before heading to the next customer. This way, the deliv-

eryman routes become trivial as back and forth trips from the vehicle to the customers.

Nonetheless, in different applications that include smaller demands or larger deliveryman

capacities, the definition of customer clusters and deliveryman routes are not so straightforward

and their inclusion in the optimization problem becomes beneficial. Senarclens de Grancy and

Reimann (2015) were the first to realize this and propose the inclusion of the clustering in the

problem. In fact, they proposed two novel heuristics to define the clusters. Senarclens de Grancy

(2015) went further to combine the clustering with the routing. Both of these works looked at

the VRPTWMD by removing the hypothesis (i) of predefined clustering while maintaining the

hypothesis (ii) that the deliveryman routes should be predefined. Senna et al. (2024a) looked at

the problem from a different perspective, by evaluating the deliveryman routes and, hence, re-

moving hypothesis (ii) that they should be preprocessed. However, they still considered that the

clusters would be defined in a preprocessing phase as stated by hypothesis (i). These three works



82

proved the relevance of extending the VRPTWMD in these ways and the benefits it creates.

Nevertheless, there is no work that addressed removing both of these simplifying hypotheses to

include the customer clustering and the deliveryman routes in the optimization problem.

In this paper, we aim at bridging this gap, by defining the vehicle routing problem with time

windows, multiple deliverymen, customer clustering, and two-level routing (VRPTWMDC2R).

The VRPTWMDC2R extends the VRPTWMD by including both the customer clustering and

the deliverymen routes in the optimization. As discussed above, this is especially interesting

when having deliverymen with large capacities compared to customer demands. Moreover,

when considering time windows, this becomes even more important. Upon preprocessing the

clusters and/or deliveryman routes, the order of visits inside a cluster must be predefined and,

hence, there is little flexibility regarding time of arrival at each parking location, since one must

ensure that the vehicle would arrive with time to have the deliverymen serving the customers

within their time windows in the predetermined order. As discussed by Senna et al. (2024a),

this would require a preprocessing in the time windows of the parking locations that could make

the problem more constrained than it actually is, possibly leading to worse solutions.

4.3 Problem definition

The VRPTWMDC2R is defined over a directed graphG = (N,A), withN representing the

set of nodes and A the set of arcs. Let N1 be the set of the n potential parking locations and N2

the set of customers. We represent the depot by 0 (source) and n + 1 (sink) and extend the set

N1 by defining N1
0 = N1 ∪ {0, n + 1}. The set of nodes is defined as N = N1

0 ∪N2. The set

A1 = {(i, j) : i, j ∈ N1
0 , i 6= j, i 6= n + 1, j 6= 0} encompasses every arc that connects two

parking locations or the depot and a parking location. The set Ã2 = {(i, j) : i, j ∈ N2, i 6= j}
contains the arcs that connect every pair of customers. Let (N1 : N2) represent the arcs that go

from a node in N1 to a node in N2. We shall denote by A2 = Ã2 ∪ (N1 : N2) ∪ (N2 : N1)

the set of arcs connecting two customers or a customer and a parking location. The set of arcs

in the graph is denoted by A = A1 ∪ A2.

A homogeneous fleet of vehicles with limits of capacity Q1 and route duration T travels in

the arcs of A1. Each vehicle may carry from 1 toML deliverymen that will serve the customers.

Once the vehicle is parked, the deliverymen leave the vehicle to serve the customers. We assume

that the deliverymen travel with the same vehicle throughout the whole vehicle route, i.e., the

vehicle is parked while the deliverymen serve the customers and it waits all of them to come

back before traveling to the next cluster. Also, each deliverymen may perform at most one route

per vehicle stop and has a capacityQ2. The deliverymen travel in the arcs of setA2. We assume

that each parking location has a limited transshipment capacity to reflect the fact that it is not

viable to serve an indefinite amount of demand from a single parking location.

Figure 4.1 presents an example of the VRPTWMDC2R. Figure 4.1a illustrates an instance

of the problem, with a depot, a set of customers, and a set of potential parking locations. In
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(a) Instance.

Parking
locations

Customers

Depot

(b) Solution.

Figure 4.1: An illustrative example of the VRPTWMDC2R.

Figure 4.1b a feasible solution is portrayed. Only four out of the seven potential parking loca-

tions are effectively used, and the customers are clustered around these locations. The black

arrows represent the vehicle routes, and the colorful arrows inside the clusters correspond to the

deliveryman routes. The vehicle on the right-hand side of the figure travels with two delivery-

men. Once it arrives at the upper right green cluster, the deliverymen leave the vehicle to serve

the customers in parallel. Afterwards, they return to the vehicle and travel to the lower right red

cluster, when the same procedure is repeated. Then, the vehicle returns to the depot. The vehicle

on the left-hand side of the picture travels with a single deliveryman, who serves all customers

in the clusters visited by this vehicle.

Every cluster is visited by exactly one vehicle and every customer by exactly one delivery-

man. Both customers and parking locations have time windows for the vehicle or deliveryman

arrival, but there is no time limit for the departure from the node. Every customer has a pos-

itive demand that must be completely fulfilled. We assume that both the vehicle fleet and the

deliveryman crew are unlimited. The decisions of the problem are (i) which customers are to be

assigned to each parking location, (ii) the number of vehicles to be used, (iii) the vehicle routes,

(iv) the number of deliverymen traveling with each vehicle, and (v) the deliveryman routes.

4.4 Mathematical formulation

To improve understanding, variables and parameters associated with customers and deliv-

erymen routes are identified with a superscript “2” (second echelon) and the ones associated

with vehicles and parking locations with a superscript “1” (first echelon). Also, nodes inN1
0 are

represented by i and j, and nodes inN2 by h and k. We define L = {1, 2, . . . ,ML} as the set of
possible configurations (number) of deliverymen on a vehicle. The parameters included in the

formulation are:

ML Maximum number of deliverymen in each vehicle;

f 1 Fixed cost associated with each vehicle;
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c1 Unitary distance cost of vehicle routes;

f 2 Fixed cost associated with each deliveryman;

c2 Unitary distance cost of deliveryman routes;

Q1 Vehicle load capacity;

Q2 Deliveryman load capacity;

d1ij Distance between nodes i and j, (i, j) ∈ A1 (asymmetrical);

t1ij Travel time between nodes i and j, (i, j) ∈ A1 (asymmetrical);

Hi Capacity of parking location i ∈ N1;

s1i Lower bound for the time spent in parking location i ∈ N1 if this parking location is used.

Defined as s1i = minh∈N2{t2ih + s2h + t2hi}, ∀ i ∈ N1;

[a1i , b
1
i ] Parking location i ∈ N1 time window. We denote as T = b1n+1 the travel time limit of

each vehicle;

d2hk Distance between nodes h and k, (h, k) ∈ A2 (asymmetrical);

t2hk Travel time between nodes h and k, (h, k) ∈ A2 (asymmetrical);

q2h Demand of customer h ∈ N2;

s2h Service time of customer h ∈ N2;

[a2h, b
2
h] Time window of customer h ∈ N2.

The variables of the problem are:

x1
ijl Binary variable that indicates whether a vehicle travels from node i to node j with l deliv-

erymen, (i, j) ∈ A1, l ∈ L;

w1
i Arrival time at node i ∈ N1;

w′1
i Departure time from node i ∈ N1;

u1
i Vehicle load after leaving node i ∈ N1;

x2
hk Binary variable that indicates whether a deliveryman travels through arc (h, k) ∈ A2;

w2
h Instant in which service at customer h ∈ N2 begins;

u2
h Deliveryman load after leaving customer h ∈ N2;
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zjh Binary variable that indicates whether customer h ∈ N2 is served by a deliveryman travel-

ing with a vehicle parked at parking location j ∈ N1.

We present the following compact formulation (CF) to formally define theVRPTWMDC2R:

(CF) min
∑
j∈N1

∑
l∈L

(f 1 + lf 2)x1
0jl + c1

∑
(i,j)∈A1

∑
l∈L

d1ijx
1
ijl + c2

∑
(h,k)∈A2

d2hkx
2
hk (4.1)

s.t.
∑

i:(i,j)∈A1

∑
l∈L

x1
ijl ≤ 1, ∀ j ∈ N1 (4.2)

∑
i:(i,j)∈A1

x1
ijl =

∑
i:(j,i)∈A1

x1
jil, ∀ j ∈ N1, l ∈ L (4.3)

∑
i∈N1

x1
0il =

∑
i∈N1

x1
i(n+1)l, ∀ l ∈ L (4.4)∑

h∈N2

q2hzih ≤ Hi, ∀ i ∈ N1 (4.5)∑
j∈N1

zjh = 1, ∀ h ∈ N2 (4.6)

∑
h:(h,k)∈A2

x2
hk = 1, ∀ k ∈ N2 (4.7)

∑
h:(h,k)∈A2

x2
hk =

∑
h:(k,h)∈A2

x2
kh, ∀ k ∈ N2 (4.8)

∑
h∈N2

x2
ih =

∑
h∈N2

x2
hi, ∀ i ∈ N1 (4.9)∑

k∈N2

x2
jk ≤

∑
i:(i,j)∈A1

∑
l∈L

lx1
ijl, ∀ j ∈ N1 (4.10)

x2
hk + x2

kh + zih − zik ≤ 1, ∀ h, k ∈ N2, h 6= k, i ∈ N1 (4.11)

x2
ih ≤ zih, ∀ (i, h) ∈ (N1 : N2) (4.12)

x2
hi ≤ zih, ∀ (h, i) ∈ (N2 : N1) (4.13)

w′1
i ≥ w1

i , ∀ i ∈ N1 (4.14)

w1
j ≥ w′1

i + t1ij −Mij

(
1−

∑
l∈L

x1
ijl

)
, ∀ i, j ∈ N1, i 6= j (4.15)

w2
k ≥ w2

h + s2h + t2hk −Mhk(1− x2
hk), ∀ (h, k) ∈ Ã2 (4.16)

w2
k ≥ w1

i + t2ik −Mik(1− x2
ik), ∀ (i, k) ∈ (N1 : N2) (4.17)

w′1
i ≥ w2

h + s2h + t2hi −Mhi(1− x2
hi), ∀ (h, i) ∈ (N2 : N1) (4.18)

u1
i ≥

∑
h∈N2

q2hzih, ∀ i ∈ N1 (4.19)

u1
j ≥ u1

i +
∑
h∈N2

q2hzjh −Q1

(
1−

∑
l∈L

x1
ijl

)
, ∀ i, j ∈ N1, i 6= j (4.20)

u2
k ≥ u2

h + q2k −Q2(1− x2
hk), ∀ (h, k) ∈ Ã2 (4.21)
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x1
ijl ∈ {0, 1}, ∀ (i, j) ∈ A1, l ∈ L (4.22)

0 ≤ u1
i ≤ Q1, ∀ i ∈ N1 (4.23)

a1i ≤ w1
i ≤ b1i , ∀ i ∈ N1 (4.24)

a1i + s1i ≤ w′1
i ≤ T − t1i(n+1), ∀ i ∈ N1 (4.25)

x2
hk ∈ {0, 1}, ∀ (h, k) ∈ A2 (4.26)

a2h ≤ w2
h ≤ b2h, ∀ h ∈ N2 (4.27)

q2h ≤ u2
h ≤ Q2, ∀ h ∈ N2 (4.28)

zjh ∈ {0, 1}, ∀ j ∈ N1, h ∈ N2. (4.29)

The objective function (4.1) minimizes fixed and variable costs of both vehicles and de-

liverymen. Constraints (4.2) limit the usage of each parking location to at most once. Con-

straints (4.3) and (4.4) are vehicle flow conservation. Constraints (4.5) limit the demand served

by each parking location to its load capacity. Constraints (4.6) ensure that each customer is

assigned to exactly one parking location and constraints (4.7) that every customer is visited

exactly once. Constraints (4.8) and (4.9) are the deliveryman routes equivalent to (4.3) and

(4.4). Constraints (4.10) limit the number of deliverymen leaving a parking location to serve

the customers to the number of deliverymen that arrive at that parking location. Constraints

(4.11) ensure that deliverymen can only travel between nodes assigned to the same parking

location. They are adapted from the formulation that was proposed to the 2E-LRP by Senna

et al. (2024b). Constraints (4.12) and (4.13) define that a deliveryman can only travel be-

tween a parking location and a customer if this customer has been assigned to that parking

location. Constraints (4.14) state that a vehicle can only leave a parking location after arriv-

ing at it. Constraints (4.15) and (4.16) define the time flow in vehicle and deliveryman routes,

respectively. Constraints (4.17) and (4.18) synchronize vehicle and deliveryman routes. In

these constraints, Mij = max{0, T − t1i(n+1) + t1ij − a1j}, Mhk = max{0, b2h + s2h + t2hk − a2k},
Mik = max{0, b1i+t2ik−a2k}, andMhi = max{0, b2h+s2h+t2hi−a1i−s1i }. Constraints (4.19) define
that the load of a vehicle after visiting a cluster is at least the sum of the demands assigned to the

corresponding parking location. Constraints (4.20) and (4.21) control the load flow of vehicle

and deliveryman routes, respectively. Constraints (4.22)–(4.29) define the variable domains.

4.4.1 Theoretical properties

In this section we present some theoretical properties of the problem and establish useful

lower bounds that are used to define our valid inequalities and solution methods. These results

are formally defined and proved in Propositions 4.1 to 4.5 and Corollary 4.1.

Proposition 4.1. If the triangular inequality holds, there is an optimal solution in which only

parking locations with customers assigned to it are visited.

Proof. Suppose that a vehicle visits nodes i, j, k ∈ N1 in this sequence and that there is no
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customer assigned to parking location j. In this case, if the vehicle goes straight from node i to

node k, the route is still feasible and the total distance is reduced by d1ij + d1jk − d1ik. Given that

the triangular inequality holds, d1ij + d1jk ≥ d1ik and, hence, d
1
ij + d1jk − d1ik ≥ 0, this “shortcut”

leads to a vehicle route that is at most as costly as the previous one. Therefore, given a solution

that visits a parking location without customers assigned to it, there is always a solution that is

at least as good as this one and does not visit this parking location.

Corollary 4.1. If the triangular inequality holds, there is an optimal solution in which a deliv-

eryman leaves every parking location visited by a vehicle.

Proposition 4.2. If the triangular inequality holds, a lower bound on the time spent in a parking

location i ∈ N1 visited by l deliverymen is given by

∑
h∈N2

(
s2h + (t2ih + t2hi)

q2h
Q2

)
zih
l
.

Proof. Consider an instance of the asymmetric capacitated vehicle routing problem (ACVRP)

with the depot represented by 0, the set of customers by N , the demands of a node j ∈ N by

qj , and the travel time to and from the depot as tj0 and t0j , respectively. Given this notation,

one can show that the total travel time of the vehicles (summing up for all vehicles) in this

instance is at least
∑

j∈N(t0j + tj0)
qj
Q
by extending to the ACVRP the lower bound presented

by Haimovich and Kan (1985) for the capacitated vehicle routing problem (CVRP) – following

the logic presented in their paper.

In our problem, once defined the customers assigned to a parking location, the dynamics

of the deliverymen inside this cluster are similar to a vehicle routing problem with time win-

dows (VRPTW) in which the parking location acts as the depot. Since the VRPTW is a more

constrained version of the ACVRP,
∑

h∈N2(t2ih + t2hi)
q2h
Q2 zih is a lower bound on the total travel

time inside cluster i ∈ N1. The time spent in the cluster considers both the total travel time and

the total service time. Also, if the cluster is visited by l deliverymen, in a best case scenario

the total time is evenly divided between these deliverymen, yielding the lower bound presented

above.

Proposition 4.3. If the triangular inequality holds, a lower bound on the total travel time of the

vehicles is
1

Q1

∑
i∈N1

∑
h∈N2

(t10i + t1i0)q
2
hzih.

Proof. Analogous to the proof of Proposition 4.2.

Proposition 4.4. If the triangular inequality holds, a lower bound on the total time the vehicles

stay out of the depot is

1

Q1

∑
i∈N1

∑
h∈N2

(t10i + t1i0)q
2
hzih +

1

ML

∑
h∈N2

(
sh +

1

Q2

∑
i∈N1

(t2ih + t2hi)q
2
hzih

)
.
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Proof. By summing up the lower bound from Proposition 4.2 for all parking locations consid-

ering that they are visited by ML deliverymen (resulting in the smallest possible lower bound)

with the lower bound from Proposition 4.3 for the total travel time of the vehicles, one gets this

lower bound.

Proposition 4.5. If the triangular inequality holds, a lower bound on the cost of the deliverymen

routes inside a cluster i ∈ N1 is

c2
∑
h∈N2

(d2ih + d2hi)q
2
hzih.

Proof. Analogous to the proof of Proposition 4.2.

4.4.2 Valid inequalities

With these results, the presented CF can be strengthened by the following valid inequalities

(VIs): ∑
(i,j)∈A1:i,j∈S

∑
l∈L

x1
ijl ≤ |S| − 1, ∀ S ⊂ N1 : |S| ∈ {2, 3} (4.30)

∑
(h,k)∈A2:h,k∈S

x2
hk ≤ |S| − 1, ∀ S ⊂ N2 : |S| ∈ {2, 3} (4.31)

∑
j∈N1

∑
l∈L

x1
0jl ≥

⌈
1

Q1

∑
h∈N2

q2h

⌉
(4.32)

∑
(i,j)∈A1

i 6=0

∑
l∈L

lx1
ijl ≥

⌈
1

Q2

∑
h∈N2

q2h

⌉
(4.33)

x1
ijl = 0, ∀ i, j ∈ N1, i 6= j, l ∈ L : a1i + s1i + t1ij > b1j (4.34)

x2
hi = 0, x2

ih = 0, zih = 0, ∀ i ∈ N1, h ∈ N2 : (4.35)

(a1i + t2ih > b2h) ∨ (a2h + s2h + t2hi > T − t1i(n+1))

x2
hk = 0, ∀ h, k ∈ N2, h 6= k : (a2h + s2h + t2hk > b2k) ∨ (q2h + q2k > Q2) (4.36)∑

(i,j)∈A1

i 6=0

∑
l∈L

x1
ijl ≥ Pmin (4.37)

x2
jk ≤

∑
i:(i,j)∈A1

∑
l∈L

x1
ijl, ∀ j ∈ N1, k ∈ N2 (4.38)

∑
k∈N2

x2
jk ≥

∑
i:(i,j)∈A1

∑
l∈L

x1
ijl, ∀ j ∈ N1 (4.39)

∑
h∈N2

zjh ≥
∑

i:(i,j)∈A1

∑
l∈L

x1
ijl, ∀ j ∈ N1 (4.40)

zjh ≤
∑

i:(i,j)∈A1

∑
l∈L

x1
ijl, ∀ j ∈ N1, h ∈ N2 (4.41)



89

∑
h∈N2

zjh ≥
∑
h∈N2

x2
jh, ∀ j ∈ N1 (4.42)

zjh ≤
∑
k∈N2

x2
jk, ∀ j ∈ N1, h ∈ N2 (4.43)∑

h∈N2

q2hzjh ≤ Q2
∑

i:(i,j)∈A1

∑
l∈L

lx1
ijl, ∀ j ∈ N1 (4.44)

w′1
i ≥ a1i + s1i + (a2h + s2h + t2hi − a1i − s1i )zih, ∀ i ∈ N1, h ∈ N2 : (4.45)

a2h + s2h + t2hi > a1i + s1i

w1
i ≤ b1i + (b2h − t2ih − b1i )zih, ∀ i ∈ N1, h ∈ N2 : b2h − t2ih < b1i (4.46)

w2
h ≥ a2h + (a1i + t2ih − a2h)zih, ∀ i ∈ N1, h ∈ N2 : a1i + t2ih > a2h (4.47)

w2
h ≤ b2h + (T − t1i(n+1) − t2hi − s2h − b2h)zih, ∀ i ∈ N1, h ∈ N2 : (4.48)

T − t1i(n+1) − t2hi − s2h < b2h

w′1
i − w1

i ≥ (t2ih + s2h + t2hi)zih, ∀ i ∈ N1, h ∈ N2 (4.49)

w′1
i − w1

i ≥ s1i , ∀ i ∈ N1 (4.50)

Q2l(w′1
i − w1

i ) ≥
∑
h∈N2

(
Q2s2h + (t2ih + t2hi)q

2
h

)
zih (4.51)

−Mil

1−
∑

j:(i,j)∈A1

∑
l∈L:l≤l

xijl

 , ∀ i ∈ N1, l ∈ L

TMLQ
1
∑
j∈N1

∑
l∈L

x1
0jl ≥ ML

∑
i∈N1

∑
h∈N2

(t10i + t1i0)q
2
hzih (4.52)

+Q1
∑
h∈N2

(
s2h +

1

Q2

∑
i∈N1

(t2ih + t2hi)q
2
hzih

)
.

Constraints (4.30)–(4.37) are common in the literature (Dantzig; Fulkerson; Johnson, 1954;

Ascheuer; Fischetti; Grötschel, 2001; Lysgaard; Letchford; Eglese, 2004; Yıldız; Karaoğlan;

Altiparmak, 2023), constraints (4.38)–(4.43) are adapted for the VRPTWMDC2R from the valid

inequalities proposed for the 2E-LRP by Senna et al. (2024b), and constraints (4.44)–(4.52) are

novel valid inequalities proposed for this problem. Constraints (4.30) and (4.31) eliminate small

subtours of two and three nodes in both vehicle and deliveryman routes. Constraints (4.32) de-

fine a lower bound on the number of vehicles used considering customer demands and vehicle

capacity, and constraints (4.33) do the same for the deliverymen that leave the parking loca-

tions. Constraints (4.34)–(4.36) eliminate infeasible arcs and assignments due to time window

incompatibility and deliveryman capacity. Constraint (4.37) defines that the number of park-

ing locations visited is greater than a lower bound (Pmin) on the number of parking locations

needed to serve all customers considering their demands and the parking locations capacity. To

define Pmin, the facilities should be ordered in a decreasing lexicographic order from the one

with the largest to the one with the smallest capacity. The value of Pmin is the number of facil-

ities obtained by following this ordered list of facilities from the one with the largest capacity
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until the accumulated capacity is at least the sum of all customers demands. Constraints (4.38)

state that deliverymen do not leave a parking location if it is not visited by a vehicle. Con-

straints (4.39) ensure that Corollary 4.1 holds. Constraints (4.40) guarantee that Proposition

4.1 holds. Constraints (4.41) state that no customer is assigned to a parking location if it is not

visited by a vehicle. Constraints (4.42) define that deliverymen only leave a parking location

if there are customers assigned to it. Constraints (4.43) ensure that no customer is assigned

to a parking location if no deliveryman leaves it. Constraints (4.44) limit the total demand of

the customers assigned to a parking location to the capacity of the deliverymen visiting this

parking location. Constraints (4.45)–(4.48) define lower and upper bounds on the time vari-

ables based on the assignment of customers to parking locations. Constraints (4.49) state that

the time spent in a parking location is at least the time of serving the customer that takes more

time to be visited and served. Constraints (4.50) ensure that the time spent in a parking loca-

tion i ∈ N1 is greater than or equal to the lower bound s1i . Constraints (4.51) define the lower

bound presented in Proposition 4.2 for the time spent in a parking location. In these constraints,

Mil =
∑

h∈N2(Q2s2h+(t2ih+ t2hi)q
2
h)−Q2ls1i is a sufficiently large number to ensure the validity

of the constraints. Constraints (4.52) define a lower bound on the number of vehicles needed

to serve the customers, based on the lower bound on the total time that the vehicles stay out of

the depot from Proposition 4.4. On top of these VIs, time windows were tightened based on

Ascheuer, Fischetti, and Grötschel (2001).

4.5 Benders decomposition

The VRPTWMDC2R can be decomposed in a Benders fashion (Benders, 1962; Hooker;

Ottosson, 2003). Due to the high dependence of the deliveryman routes to clustering and vehicle

routes, the master problem (MP) assigns customers to parking locations and defines the vehicle

routes while the subproblem (SP) defines the deliveryman routes. To solve this reformulation of

the VRPTWMDC2R, we design a branch-and-Benders-cut (BBC) algorithm (Moreno; Munari;

Alem, 2019, 2020). Section 4.5.1 presents the MP, Section 4.5.2 introduces the SP, Section

4.5.3 discusses the BBC, Section 4.5.4 proposes some improvements to the BBC, and Section

4.5.5 introduces a mixed-integer programming (MIP) heuristic for the problem that can be used

to provide a good initial solution.

4.5.1 Master Problem

Let r represent a vehicle route that starts and ends at the depot, visiting a set of parking loca-

tions to which there are customers assigned to (r represents the vehicle route and the customer

assignment conjointly). Let N1
r ⊂ N1 be the set of parking locations visited by this route, and

N2
r ⊂ N2 be the set of customers assigned to the parking locations in N1

r . We shall represent

the arcs of route r that do not connect to the depot asA1
r . An assignment of customers to parking
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locations defines sets N
[i]
r , i ∈ N1, that are the sets of customers assigned to the corresponding

parking location i ∈ N1. We shall refer to a set N
[i]
r as a cluster.

DefineR as the set of all feasible pairs (r, l), in which r is a vehicle route with corresponding

customer assignment, and l the number of deliverymen in this route. These pairs are all feasible

with regard to constraints (4.2)–(4.29), since they represent vehicle routes and customer clus-

tering that allow for feasible deliveryman routes. Given a pair (r, l), the cost of the deliveryman

routes inside the clusters defined byN
[i]
r , i ∈ N1, in the route r when traveled by a vehicle with

l deliverymen is crl.

Let R be the set of infeasible pairs (r, l) when considering the deliveryman routes, i.e.,

the pairs that respect constraints (4.2)–(4.6), (4.14), (4.15), (4.19), (4.20), (4.22)–(4.25), and

(4.29), but do not respect at least one of constraints (4.7)–(4.13), (4.16)–(4.18), (4.21), and

(4.26)–(4.28). The MP is given by:

(MP) min
∑
j∈N1

∑
l∈L

(f 1 + lf 2)x1
0jl + c1

∑
(i,j)∈A1

∑
l∈L

d1ijx
1
ijl +

∑
i∈N1

ηi (4.53)

s.t. (4.2)–(4.6), (4.14), (4.15), (4.19), (4.20), (4.22)–(4.25), (4.29)

∑
i∈N1

r

ηi ≥ crl

 ∑
(i,j)∈A1

r

∑
l∈L:l≤l

x1
ijl

+
∑
j∈N1

r

∑
h∈N [j]

r

zjh − |A1
r| − |N2

r |+ 1

 , (4.54)

∀ (r, l) ∈ R∑
(i,j)∈A1

r

∑
l∈L:l≤l

x1
ijl

+
∑
j∈N1

r

∑
h∈N [j]

r

zjh ≤ |A1
r|+ |N2

r | − 1, ∀ (r, l) ∈ R. (4.55)

The objective function (4.53) is equivalent to (4.1) with the cost of the deliveryman routes

calculated based on variables ηi. Constraints (4.54) and (4.55) are optimality and feasibility cuts

based on path-cuts (Parada et al., 2024; Senna et al., 2024a). We shall refer to the MP without

the optimality and feasibility cuts as the relaxed MP (RMP).

To define VIs, let Ril ⊂ R be the set of all assignments of customers to parking location

i that are feasible considering the deliveryman routes when visited by l ∈ L deliverymen in a

back-and-forth trip from the depot (a vehicle route that only visits parking location i ∈ N1).

Accordingly, let Ril ⊂ R be the set of all assignments of customers to parking location i that

creates clusters that are infeasible when visited by l ∈ L deliverymen in back-and-forth trips

from the depot.

The MP can be strengthened by VIs (4.30), (4.32), (4.34), (4.35), (4.37), (4.40), (4.41),

(4.44)–(4.46), (4.49)–(4.52). We also propose the following valid inequalities:

Q2ηi ≥ c2
∑
h∈N2

(d2ih + d2hi)q
2
hzih, ∀ i ∈ N1 (4.56)

ηi ≥ c2(d2ih + d2hi)zih, ∀ i ∈ N1, h ∈ N2 (4.57)
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ηi ≥ crML

∑
h∈N [i]

r

zih − |N [i]
r |+ 1

 , ∀ i ∈ N1, (r,ML) ∈ RiML
(4.58)

∑
h∈N [i]

r

zih +
∑

j:(i,j)∈A1

∑
l∈L:l≤l

x1
ijl

≤ |N [i]
r |, ∀ i ∈ N1, (r, l) ∈ Ril (4.59)

w′1
i − w1

i ≥ trl

∑
h∈N [i]

r

zih +
∑

j:(i,j)∈A1

∑
l∈L:l≤l

x1
ijl

− |N [i]
r |

 , ∀ i ∈ N1, (r, l) ∈ Ril. (4.60)

Constraints (4.56) impose the lower bound presented in Proposition 4.5 for the cost of de-

liveryman routes inside a cluster. Constraints (4.57) state that the cost of the deliveryman routes

associated to a parking location is at least the cost of visiting the farthest customer associated to it.

Constraints (4.58) provide a lower bound on the cost of the deliveryman routes in a cluster. Con-

straints (4.59) eliminate infeasible assignments. Constraints (4.60) define a lower bound (trl)

on the time spent in each parking location by the vehicle visiting it depending on the customers

assigned to it and the number of deliverymen. In constraints (4.59)–(4.60), when l = ML,

the summation in xijl may be replaced by 1, since this is the best case scenario for costs and

feasibility.

The optimality and feasibility cuts (4.54) and (4.55) and the VIs (4.58)–(4.60) are of expo-

nential cardinality. Therefore, it is impractical to enumerate all of them a priori. Instead, one

declares the RMP and starts to solve it in a branch-and-cut scheme. When a solution is found,

the cuts and VIs needed for this solution are separated and included in the model. This leads

to the BBC algorithm described in Section 4.5.3. The separation of cuts and VIs is made by

solving the SP described next.

4.5.2 Subproblem

Given a pair (r, l) ∈ R, we define an SP that is separable by vehicle route. To simplify nota-

tion, we shall represent N
[i]
r by N [i] in this context. Also, parking location i will be represented

by nodes as 0i and ni+1 for deliveryman routes source and sink, respectively, with ni = |N [i]|.
Let N

[i]
0 = N [i] ∪ {0i, ni + 1}. We define the complete directed graph G[i] = (N

[i]
0 , A[i]), in

which A[i] = {(h, k) ∈ Ã2 : h, k ∈ N [i]} ∪ ({0i} : N [i]) ∪ (N [i] : {ni + 1}).
The SP is given by

(SP) min c2
∑
i∈N1

r

∑
(h,k)∈A[i]

d2hkx
2
hk (4.61)

s.t.
∑

h:(h,k)∈A[i]

x2
hk = 1, ∀ k ∈ N [i], i ∈ N1

r (4.62)

∑
h:(h,k)∈A[i]

x2
hk =

∑
h:(k,h)∈A[i]

x2
kh, ∀ k ∈ N [i], i ∈ N1

r (4.63)
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∑
h∈N [i]

x2
0ih

=
∑

h∈N [i]

x2
h(ni+1), ∀ i ∈ N1

r (4.64)∑
h∈N [i]

x2
0ih

≤ l, ∀ i ∈ N1
r (4.65)

w2
k ≥ w2

h + s2h + t2hk −Mhk(1− x2
hk), ∀ (h, k) ∈ A[i], i ∈ N1

r (4.66)

w2
0j

≥ w2
ni+1 + t1ij, ∀ (i, j) ∈ A1

r (4.67)

u2
k ≥ u2

h + q2k −Q2(1− x2
hk), ∀ (h, k) ∈ A[i], i ∈ N1

r (4.68)

x2
hk ∈ {0, 1}, ∀ (h, k) ∈ A[i], i ∈ N1

r (4.69)

a2h ≤ w2
h ≤ b2h, ∀ h ∈ N

[i]
0 , i ∈ N1

r (4.70)

q2h ≤ u2
h ≤ Q2, ∀ h ∈ N [i], i ∈ N1

r . (4.71)

The objective function (4.61) minimizes the cost of the deliveryman routes inside the clusters

visited by route r. Constraints (4.62)–(4.64) are equivalent to (4.7)–(4.9) but restricted to the

customers visited in the route. Constraints (4.65) limit the number of deliveryman routes in

each cluster to the number of deliverymen traveling in the corresponding vehicle. Constraints

(4.66) control the time flow of the deliveryman routes. Constraints (4.67) control the time flow

along the vehicle route. Constraints (4.68) control the load flow inside the clusters. Constraints

(4.69)–(4.71) define variable domains.

The SP can be strengthened by the following VIs:∑
(h,k)∈A[i]:h,k∈S

x2
hk ≤ |S| − 1, ∀ i ∈ N1

r , S ⊂ N [i] : |S| ∈ {2, 3} (4.72)

x2
hk = 0, ∀ i ∈ N1

r , h, k ∈ N [i], h 6= k : (a2h + s2h + t2hk > b2k) ∨ (q2h + q2k > Q2) (4.73)

w2
ni+1 − w2

0i
≥ max

1

l

∑
h∈N [i]

[
s2h + (t20ih + t2h(ni+1))

q2h
Q2

]
, max
h∈N [i]

{
t20ih + s2h + t2h(ni+1)

} ,

(4.74)
∀ i ∈ N1

r .

Constraints (4.72) and (4.73) are equivalent to constraints (4.31) and (4.36) but restricted

to the customers visited by the vehicle route. Constraints (4.74) define a lower bound on the

time spent in each cluster as the maximum of the lower bound discussed in Proposition 4.2 and

the time needed to serve the most time-consuming customer. Time windows are also tightened

based on Ascheuer, Fischetti, and Grötschel (2001). Since in the SP the vehicle route is already

defined, this tightening becomes very efficient.

The SP is used to define the optimality and feasibility cuts (4.54) and (4.55). When the

SP is feasible, the value of the objective function for an optimal solution is used to define the

parameter crl of constraints (4.54) for the pair (r, l) ∈ R. If the SP is not feasible, the pair

(r, l) ∈ R and, hence, a feasibility cut (4.55) must be added to the MP.
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The SP is also used to define VIs (4.58)–(4.60). To separate VIs (4.58), one defines the

SP based on a vehicle route that goes from the depot to a parking location and back to the

depot with ML deliverymen. For VIs (4.59), the procedure is the same, but with the number

of deliverymen that are actually traveling in the vehicle that visits the corresponding cluster (l).

Finally, VIs (4.60) are separated by replacing the objective function (4.61) by w′1
i − w1

i and

solving the SP for a route that goes back and forth from the depot to the customer i ∈ N1 and

considering the number of deliverymen l ∈ L in the vehicle. The objective function value of an

optimal solution of this problem is used to define the value of parameter trl of constraints (4.60).

4.5.3 Branch-and-Benders-cut algorithm

Due to the exponential nature of the cuts (4.54) and (4.55) and the VIs (4.58)–(4.60), it is

impractical to enumerate all of them to solve theVRPTWMDC2R. Instead, we solve the problem

in a branch-and-Benders-cut scheme (Moreno; Munari; Alem, 2019, 2020). To this extent, the

RMP strengthened by the polynomial VIs is solved in a branch-and-cut fashion. Every time an

integer solution is found, the SP is solved to separate the optimality and feasibility cuts (4.54)

and (4.55) and VIs (4.58)–(4.60). The following steps summarize the BBC algorithm:

1. Declare the RMP with the polynomial VIs (4.30), (4.32), (4.34), (4.35), (4.37), (4.40),

(4.41), (4.44)–(4.46), (4.49)–(4.52), (4.56), and (4.57) and start the branch-and-cut algo-

rithm;

2. Every time a feasible integer solution is found, separate VIs (4.58)–(4.60) by solving the

SP restricted to a single cluster for all clusters in the current solution. Separate also the

feasibility and optimaltiy cuts (4.54) and (4.55) by solving the SP defined for all pairs

(r, l) of the current solution;

3. If the current solution is feasible given the deliveryman routes, compute the overall solu-

tion cost by including the cost update given by the SP. If this cost is lower than that of the

incumbent solution, update the incumbent;

4. Continue the branch-and-cut solution procedure by proceeding to the next node in the

branch-and-cut tree. If a new feasible integer solution is found, return to step 2. If the

time limit is reached or the optimality gap reaches the optimality tolerance, interrupt the

algorithm procedure.

This algorithm can be implemented in a modern commercial solver by means of callbacks.

4.5.4 Improvements

For some instances, the separation procedures of the BBC may take a few seconds for each

route, which leads to a long time spent in separation procedures, i.e., solving the MIPs that
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correspond to the SP. This leads to a reduction in the rate that the branch-and-cut nodes are

processed. Although essential to the BBC algorithm, it would be better to separate these cuts

only when they are needed and the corresponding SP is useful, i.e., it corresponds to an important

route or assignment. At the beginning of the solution procedure, the lower bound is too low

and the first solutions found by the solver are usually of poor quality. Therefore, it would be

interesting to separate cuts when solutions are better and the lower bound is not so low.

To overcome these issues, we propose a two-phase BBC (2P-BBC). In the first phase,

only one cut is separated, enough to cut off the solution presented by the solver while reduc-

ing the computational burden of separating every possible cut. In the second phase, every VI

(4.58)–(4.60) and cut (4.54)–(4.55) is separated. The second phase starts upon reaching a gap

plateau, i.e., when the solution procedure remains a long time without significantly improving

the optimality gap, which indicates that both the lower bound and the upper bound found by the

BBC have not significantly improved. The following steps are executed in the procedure of the

2P-BBC:

1. Declare the RMP with the polynomial VIs (4.30), (4.32), (4.34), (4.35), (4.37), (4.40),

(4.41), (4.44)–(4.46), (4.49)–(4.52), (4.56), and (4.57) and start the branch-and-cut algo-

rithm;

2. Every time a feasible integer solution is found, verify whether a gap plateau has been

reached. If so, go to step 5;

3. Start to separate VIs (4.58)–(4.60) by solving the SP restricted to a single cluster. Upon

finding a VI that cuts off the current solution, include this VI in the model and go to step

7 without separating other VIs;

4. Start to separate cuts (4.54) and (4.55), one route at a time. Upon finding a cut that cuts

off the current solution, include this cut in the model and go to step 7. If no cut has been

found, go to step 6;

5. Separate all VIs (4.58)–(4.60) by solving the SP restricted to a single cluster and all feasi-

bility and optimality cuts (4.54) and (4.55) by solving the SP defined by the vehicle routes

and customer assignments of the solution;

6. If the current solution is feasible given the deliveryman routes and its cost is lower than

that of the incumbent after computing the cost of the deliveryman routes, update the in-

cumbent;

7. Continue the branch-and-cut algorithm by proceeding to the next node in the branch-and-

cut tree. If a new feasible integer solution is found, return to step 2. If the time limit

is reached or the optimality gap reaches the optimality tolerance, interrupt the algorithm

procedure.
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Like the algorithm in Section 4.5.3, this can be implemented in a commercial solver by

means of callbacks. When implementing this algorithm, it is important to be careful in step

3 to ensure that, in successive callback calls, different parking locations are selected for VI

separation. Otherwise, several VIs would be separated for a single node (e.g., the one with

smallest index), having many cuts related to this parking location and none related to the others.

This deteriorates the algorithm’s performance and increases significantly the number of included

constraints, most of them non-binding in an optimal solution. In our implementation, we have

ordered the parking locations and defined that the first parking location to be processed in a

callback call is the subsequent of the one that had a cut separated in the previous call. If no

VI was separated for this parking location, the next node would be analyzed until one VI was

found or it was proved that there was no VI (4.58)–(4.60) that cuts off the current solution. This

way, if a VI was included for a parking location in a callback call, it would be the last one to be

analyzed in the next call.

4.5.5 MIP heuristic

For some instances, the CF and the BBC showed to be slow in finding good feasible solutions

for some instances. Thus, providing good initial solutions lead to better overall performance of

the algorithm. This is specially important for the two-phase BBC, since the delayed separation

of VIs and cuts makes it more difficult for the algorithm to update the incumbent solution at the

beginning of the solution procedure.

To overcome this issue, we have developed aMIP heuristic that finds a good feasible solution

in a short amount of time. The procedure is based on defining, for each customer, a list of the

parking locations that have a time window opening that varies at most 0.1T from the moment

that the customer’s time window opens. The heuristic consists in solving the CF (with VIs) by

limiting the parking locations to which each customer can be assigned to the α closest ones from

this list. The resulting MIP is then solved by a commercial MIP solver for a few minutes or until

it finds a solution with optimality gap within a tolerance. This solution is then used as a MIP

start for the BBC (or the CF). If by constraining the assignment of each customer we obtain

an infeasible problem, the heuristic is solved iteratively by increasing α by one until it finds a

feasible solution for the problem.

4.6 Computational experiments

Computational experiments were performed to evaluate the suitability of the proposed

methodology and obtain managerial insights on the problem. All algorithms were implemented

in C++ and use Gurobi 11.0 solver. The optimality gap tolerance was set at 10−7, the time

limit at 3,600s, and the memory limit at 32GB. The experiments were performed on computers

equipped with 2xAMD Rome 7532 processors running at 2.46GHz and using eight threads. For
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the MIP heuristic, the optimality tolerance was set at 10%, and the time limit at 300s; the initial

value of α was three.

In Section 4.6.1, the instances used in the experiments are presented. Section 4.6.2 evaluates

the performance of the CF and VIs for solving the problem with the commercial solver and

Section 4.6.3 does the same for the BBC. Finally, in Section 4.6.4, managerial insights are

presented, shedding light onto the importance of considering both the customers clustering and

the deliveryman routes in the problem.

4.6.1 Instances

Two sets of instances were used in the experiments. The first one consists of the instances

proposed by Senna et al. (2024a) for the VRPTWMD with two-level routing with 50 nodes

(10 parking locations and 40 customers, denoted as 10–40). These instances were generated

by the authors based on the Solomon instances for the VRPTW (Solomon, 1987), having the

first ten nodes of the original instance representing a parking location and randomly generating

customers around them. These instances have predefined clusters, but we have ignored them

for the VRPTWMDC2R.

To broaden the scope of our experiments, we have generated another set of instances with

25 nodes (five parking locations and 20 customers, referred to as 5–20). We have followed

what was proposed by Senna et al. (2024a), generating customers around the parking locations

represented by the original nodes of Solomon instances. The customers have time windows

similar to the parking locations they are assigned to. Their coordinates follow a normal distribu-

tion with mean on the coordinate of the corresponding parking location and standard deviation

σ = 3. We have generated these instances with predefined clusters as well, to follow what

was proposed by Senna et al. (2024a) and because this is important for the assessment of the

impact of clustering in the solution quality, as discussed in Section 4.6.4. However, we have

ignored this clustering in the VRPTWMDC2R. All instances and detailed results are available

at https://www.dep.ufscar.br/munari/vrptwmd/.
Following Senna et al. (2024a), we have considered the cost parameters to be

(f 1, c1, f 2, c2) = (1000, 10, 100, 1) and that the deliverymen travel at one third of the vehi-

cle speed. A limit of ML = 3 deliverymen in each vehicle was considered. Distances were

calculated based on the euclidean distance truncated to integers. We ran the Floyd-Warshall

algorithm (Cormen et al., 2009) on these distances to ensure the triangular inequality was valid.

Travel times were processed accordingly. In all instances, we considered that the deliverymen

capacity is 50, since it is the largest individual demand in the Solomon instances (Solomon,

1987).
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4.6.2 Compact formulation

The first assessment to be made is on the performance of the MIP solver with the CF and

different sets of VIs. Five different configurations were compared. The first one (CF1) corre-

sponds to the CF (4.1)–(4.29) without VIs. The second (CF2) represents the CF with the VIs

from the literature (4.30)–(4.37). The third configuration (CF3) has the CF with the VIs from

the literature (4.30)–(4.37) and those that are related to the binary variables and load constraints

(4.38)–(4.44). Configuration CF4 includes the CF and all VIs (4.30)–(4.52): the ones included

in the other configurations and the ones related to time variables. Furthermore, the impact of

using the MIP heuristic to provide a MIP start to CF4, referred to as CF4H, was evaluated.

The performance of the MIP solver with different CF configurations varies significantly de-

pending on the instance class (C, R, or RC) to which the original Solomon instance belongs.

When generating instances for the VRPTW, Solomon proposed three different classes of in-

stances. Class “C” has its nodes separated in clusters, class “R” has the nodes uniformly ran-

domly generated, and, for class “RC”, some of the nodes were generated as in class “C” and

some as in class “R” (Solomon, 1987). Therefore, with the generation of new customers around

these nodes for the VRPTWMD (Senna et al., 2024a), the geographical distribution of customers

and parking locations varies significantly for different instance classes. In class “C”, there are

many parking locations close to each other, having many possibly interesting parking locations

to which the customers can be assigned. On the contrary, in class “R”, parking locations are

usually far apart, having a little amount of candidate parking locations that are interesting for

each customer. Class “RC” has an intermediate behavior.

These results are summarized in Table 4.1 for instances of size 5–20 and in Table 4.2 for

those of size 10–40. The results are presented divided by instance class and aggregated by all

instances as well. In these tables, for each CF configuration, “LR” represents the optimal value

of the objective function of the linear programming relaxation of the VRPTWMDC2R. “LB”

and “UB” stand, respectively, for the lower and upper bounds reported by the MIP solver at the

ending of the solving procedure. “Gap (%)” corresponds to the optimality gap and “Time (s)”

to the runtime in seconds. All these values represent the average for all instances in the corre-

sponding classes. Moreover, “# of optimals” and “# no feasible solution” indicate, respectively,

the number of instances for which the MIP solver could prove optimality for the best solution

found and could not find any feasible solution. For some classes of instances, the solver could

not find a feasible solution for all instances. In these cases, the corresponding values of UB and

gap were reported as “N/A”. Since this only happened for instances of size 10–40, the informa-

tion of “# no feasible solution” was suppressed in Table 4.1. Detailed results are available as

supplementary material and also at https://www.dep.ufscar.br/munari/vrptwmd/.
Regarding the LR, all results indicate that the linear programming relaxation of CF1 is very

weak. The inclusion of the VIs from the literature (CF2) leads to average values of LR that are

over 30 times higher than those obtained for CF1 for instances of size 5–20 and over 25 times
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higher for those of size 10–40. The other VIs, however, do not impact much the value of LR,

representing around 1% increase in the average value from CF2 to CF4. The greater differences

are observed for instances of class R, suggesting that the new VIs affect more instances with

customers more spread than those with customers closer to parking locations.

Comparing CF1 and CF2 with respect to the performance of the solver while optimizing

the corresponding MIP problem, it is clear that the difference in the strength of the LR directly

impacts the LB and UB. For instances of size 5–20, the average LB increases 11.34% from

CF1 to CF2, with the greatest difference being for class RC (13.75%). This leads to major gap

improvements. In fact, the average gap is reduced by 10.72%, with the greatest improvement

being for instances of class C, whose average gap goes from 12.25% to only 0.15%. The number

of optimal solutions found is also increased, with 5 new ones (33.33% increase). Moreover, the

average runtimes are 44.47% shorter.

Class Metric CF1 CF2 CF3 CF4 CF4H

C
(9 instances)

LR 45 1,565 1,568 1,571 –

LB 1,904 2,093 2,094 2,096 2,096

UB 2,097 2,096 2,096 2,096 2,096

Gap (%) 12.25 0.15 0.14 0.00 0.00

Time (s) 1,926 904 562 120 69

# of optimals 5 7 8 9 9

R
(12 instances)

LR 99 2,658 2,658 2,687 –

LB 3,718 4,122 4,121 4,220 4,220

UB 4,220 4,220 4,220 4,220 4,220

Gap (%) 13.30 2.60 2.62 0.00 0.00

Time (s) 1,921 387 410 57 7

# of optimals 8 11 11 12 12

RC
(8 instances)

LR 53 1,977 1,978 1,995 –

LB 2,443 2,779 2,784 3,906 3,906

UB 3,941 3,911 3,911 3,911 3,911

Gap (%) 38.81 29.62 29.48 0.14 0.13

Time (s) 2,981 2,861 2,863 604 564

# of optimals 2 2 2 7 7

All
(29 instances)

LR 70 2,131 2,132 2,150 –

LB 2,804 3,122 3,123 3,474 3,474

UB 3,484 3,476 3,476 3,476 3,476

Gap (%) 20.01 9.29 9.26 0.04 0.04

Time (s) 2,215 1,230 1,134 228 180

# of optimals 15 20 21 28 28

Table 4.1: Results of the CF configurations for instances of size 5–20.

For instances of size 10–40 the impact of the VIs from the literature is even greater, since

the solver using CF1 cannot find feasible solutions for seven instances, while the CF2 leads to

feasible solutions for all instances.

Moving on to CF3, for instances of size 5–20, there is little improvement compared to CF2.

The most significant differences are that CF3 finds one extra optimal solution (for an instance

of class C) and the runtimes are 37.83% shorter. For instances of size 10–40, the behavior is
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similar, with the greatest improvement coming from the increase in the average LB (1.79%).

Nevertheless, CF4 presents a great improvement in the average results. For instances of

size 5–20, one extra optimal solution is found for class C and one extra for class R, with all

instances having an optimal solution found for these classes. For class RC, the difference from

the other CFs is even greater, with 5 new optimal solutions found, having 7 out of 8 optimals

found. Accordingly, the LB increases 40.30% and the UB decreases 29.34%. The runtimes are

also cut by 79.89%. This indicates a great improvement in the solver performance created by

the time-related VIs.

For instances of size 10–40, the behavior is similar. On average, the LB increases 42.26%

compared to the CF3 value, which, combined with a 6.07%UB improvement, leads to a 28.54%

gap improvement. Three new optimal solutions were also found for instances of class R.

Class Metric CF1 CF2 CF3 CF4 CF4H

C
(9 instances)

LR 69 1,710 1,716 1,737 –

LB 754 1,773 1,910 3,307 3,329

UB N/A 5,085 5,102 4,612 3,612

Gap (%) N/A 64.93 61.66 26.85 7.85

Time (s) 3,600 3,600 3,600 3,600 3,601

# of optimals 0 0 0 0 0

# no feasible solution 2 0 0 0 0

R
(12 instances)

LR 176 3,801 3,804 3,877 –

LB 3,239 5,730 5,791 8,253 8,236

UB N/A 8,714 8,707 8,551 8,551

Gap (%) N/A 35.33 34.75 3.65 3.80

Time (s) 3,300 3,009 3,015 2,217 1,878

# of optimals 1 2 2 5 6

# no feasible solution 3 0 0 0 0

RC
(8 instances)

LR 101 3,955 3,962 3,964 –

LB 1,128 4,232 4,250 5,363 5,509

UB N/A 9,646 9,883 8,928 8,490

Gap (%) N/A 55.66 56.69 39.05 34.94

Time (s) 3,601 3,600 3,601 3,600 3,601

# of optimals 0 0 0 0 0

# no feasible solution 2 0 0 0 0

All
(29 instances)

LR 122 3,195 3,200 3,236 –

LB 1,885 4,089 4,162 5,921 5,961

UB N/A 7,845 7,913 7,433 7,001

Gap (%) N/A 50.13 49.16 20.62 13.65

Time (s) 3,476 3,356 3,358 3,028 2,888

# of optimals 1 2 2 5 6

# no feasible solution 7 0 0 0 0

Table 4.2: Results of the CF configurations for instances of size 10–40.

The inclusion of the heuristic solution as a MIP start for the MIP solver has little effect for

instances of size 5–20. For those of size 10–40, however, there is a major improvement in the

solver performance, mainly for the instances of class C. In fact, for these instances, the UB is

decreased by 21.68%, leading to a 19.00% gap reduction. For instances of class R, one extra
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optimal solution is found, but the average LB is worse for CF4H than for CF4. For instances of

class RC, there are improvements in the LB and UB that lead to a 4.11% gap improvement. On

the overall average for instances of size 10–40, there is a 6.97% gap reduction.

Comparing the solver performance for different instance classes, it is clear that RC instances

are the hardest ones to solve, being the only class that does not have an optimal solution found for

all instances of size 5–20 and the class with largest average gap for size 10–40. Moreover, class

R has the instances that presented the best results for the solver with the proposed formulations.

In fact, for the ones with size 5–20, there is no significant difference between class C and class R

since optimal solutions were found for all instances of both of these instance classes. However,

for those with size 10–40, the solver has a much better performance for class R than for class

C, since it finds six optimal solutions for class R and none for class C. The average gap is also

better for R than for C.

These results show the positive impact encompassed by the proposed valid inequalities and

the use of the MIP heuristic to provide aMIP start. The solver under configuration CF1 (without

VIs) has a poor performance due to its very weak LR. In fact, the average gap for instances of

size 5–20 is over 20% and, for those of size 10–40, it cannot even find a feasible solution for

24.14% of the instances. When including all VIs and the heuristic (CF4H), for instances of size

5–20, the gap drops to only 0.04% with only one instance not having an optimal solution found.

The runtimes are also greatly reduced (91.87% reduction in the average value). For those of size

10–40, on top of all instances having a feasible solution found by the solver, six of them also

have an optimal solution found and the LB increases by 216.23%.

4.6.3 Branch-and-Benders-cut

In this section, we compare the performance of different configurations of the BBC algo-

rithm. Since our experiments with VIs show that all of them are beneficial for the solver per-

formance, we have included all presented VIs in the BBC. More specifically, VIs (4.30), (4.32),

(4.34), (4.35), (4.37), (4.40), (4.41), (4.44)–(4.46), (4.49)–(4.52), (4.56), and (4.57) were in-

cluded in the MP, and VIs (4.72)–(4.74) in the SP. The first configuration is BBC1, which rep-

resents the BBC with all polynomial VIs but without the exponential VIs (4.58)–(4.60). BBC2

corresponds to the BBC1 with the inclusion of VIs (4.58)–(4.60). BBC2H includes in the BBC2

the MIP heuristic solution as a MIP start. Finally, 2P-BBC2H has also the two-phase scheme

discussed in Section 4.5.4. The results are presented in Table 4.3 for instances of size 5–20 and

Table 4.4 for those of size 10–40. These tables also include the results for CF4 and CF4H for

comparison, since they were the ones with the best performance among the CF configurations.

Comparing the BBC1 with the BBC2, their results vary depending on the instance class and

size. For those of class R, they have equivalent behaviors for both size 5–20 and 10–40. For

instances of class C, the BBC2 outperforms the BBC1 for both sizes. However, for class RC,

the BBC1 presents the best results for size 5–20, having a gap that is 5.48% smaller, while, for
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Class Metric CF4 CF4H BBC1 BBC2 BBC2H 2P-BBC2H

C
(9 instances)

LB 2,096 2,096 2,084 2,089 2,088 2,089

UB 2,096 2,096 2,097 2,097 2,098 2,097

Gap (%) 0.00 0.00 0.83 0.52 0.61 0.54

Time (s) 120 69 1,627 1,528 1,578 1,566

# of optimals 9 9 5 6 6 6

R
(12 instances)

LB 4,220 4,220 4,220 4,220 4,220 4,220

UB 4,220 4,220 4,220 4,220 4,220 4,220

Gap (%) 0.00 0.00 0.00 0.00 0.00 0.00

Time (s) 57 7 7 26 16 16

# of optimals 12 12 12 12 12 12

RC
(8 instances)

LB 3,906 3,906 3,897 3,694 3,911 3,911

UB 3,911 3,911 3,912 3,911 3,911 3,911

Gap (%) 0.14 0.13 0.38 5.86 0.00 0.00

Time (s) 604 564 739 642 346 362

# of optimals 7 7 7 7 8 8

All
(29 instances)

LB 3,474 3,474 3,468 3,413 3,473 3,473

UB 3,476 3,476 3,476 3,476 3,476 3,476

Gap (%) 0.04 0.04 0.36 1.78 0.19 0.17

Time (s) 228 180 711 662 592 592

# of optimals 28 28 24 25 26 26

Table 4.3: Results of the BBCs for instances of size 5–20.

size 10–40, the BBC2 outperforms BBC1 since BBC1 is unable to find a feasible solution for

one instance. One interesting result is that, for class R, both of them find an optimal solution

for all instances, greatly outperforming the CFs, that only find optimal solutions for half of the

instances of class R and size 10–40.

Upon the inclusion of the MIP heuristic (BBC2H), for instances of class RC and size 5–20,

there is a great improvement, since all instances have an optimal solution found, with the average

runtime being reduced by 46.11% compared to BBC2 and by 53.18% compared to BBC1. On

average, for size 5–20, BBC2H has an LB that is 1.76% greater than that of BBC2 and a gap

that is 0.17% smaller than that of BBC1 and 1.59 smaller that the one of BBC2.

The greatest improvements created by the heuristic, however, are for instances of size 10–40.

In fact, for those of class C, the UB is reduced by 25.40% compared to the BBC2, leading to a

19.26% improvement in the average gap. For instances of class RC, the behavior is similar, with

a 15.68% gap reduction. On average, the UB of BBC2H is 10.89% lower than that of BBC2,

and the gap is improved by 10.31%. There is also one extra optimal solution found.

The 2P-BBC2H leads to an additional 0.02% gap improvement for instances of class 5–20.

The greater advantage of the two-phase procedure, however, is for instances of size 10–40. For

those of class C, there is an LB improvement that leads to a 0.11% gap reduction compared to

BBC2H. For class RC, the LB is improved by 0.64%, the UB by 1.85%, and the gap by 1.10%.

On average, for instances of size 10–40, the 2P-BBC2H provides a 0.33% gap improvement

compared to BBC2H.

Comparing the 2P-BBC2H with the CF4H, for instances of size 5–20, the average LB of
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the 2P-BBC2H is 0.03% lower than that of the CF4H, the average UBs are the same, and the

gap is 0.13% lower for the CF4H. This suggests that the quality of the solutions found by these

configurations is practically the same, although the CF4H is more efficient in proving optimality

(there are two extra optimal solutions found by the CF4H). For instances of size 10–40, however,

the 2P-BBC2H outperforms the solver with the CFs. In fact, the average LB of the 2P-BBC2H is

2.37%higher than that of the CF4H and theUB is 1.14% lower, leading to a 1.89%gap reduction.

Moreover, the average runtime is 23.20% shorter in the 2P-BBC2H and the 2P-BBC2H finds

an optimal solution for 7 extra instances (a 116.67% increase compared to the CF4H).

Class Metric CF4 CF4H BBC1 BBC2 BBC2H 2P-BBC2H

C
(9 instances)

LB 3,307 3,329 3,240 3,260 3,269 3,275

UB 4,612 3,612 4,902 4,854 3,621 3,624

Gap (%) 26.85 7.85 32.23 29.03 9.77 9.66

Time (s) 3,600 3,601 3,605 3,604 3,605 3,604

# of optimals 0 0 0 0 0 0

# no feasible solution 0 0 0 0 0 0

R
(12 instances)

LB 8,253 8,236 8,539 8,539 8,539 8,539

UB 8,551 8,551 8,539 8,539 8,539 8,539

Gap (%) 3.65 3.80 0.00 0.00 0.00 0.00

Time (s) 2,217 1,878 68 204 251 276

# of optimals 5 6 12 12 12 12

# no feasible solution 0 0 0 0 0 0

RC
(8 instances)

LB 5,363 5,509 5,280 5,060 5,592 5,628

UB 8,928 8,490 N/A 10,060 8,360 8,205

Gap (%) 39.05 35.00 N/A 48.53 32.85 31.75

Time (s) 3,600 3,601 3,604 3,605 3,597 3,573

# of optimals 0 0 0 0 1 1

# no feasible solution 0 0 1 0 0 0

All
(29 instances)

LB 5,921 5,961 5,995 5,941 6,091 6,102

UB 7,433 7,001 N/A 7,815 6,964 6,921

Gap (%) 20.62 13.65 N/A 22.40 12.09 11.76

Time (s) 3,028 2,888 2,141 2,198 2,215 2,218

# of optimals 5 6 12 12 13 13

# no feasible solution 0 0 1 0 0 0

Table 4.4: Results of the BBCs for instances of size 10–40.

All these results show that both the proposed VIs and the BBCs significantly improve the

performance of the MIP solver, since the CF1 (without VIs) presents a very poor performance

when solved by the MIP solver. The proposed VIs, lower bounds, and heuristic lead to a much

better performance while maintaining the formulation compact (i.e., with a polynomial number

of variables and constraints). The Benders decomposition also leads to a very good performance

when applied in one of the proposed BBCs, although generating a formulation with an expo-

nential number of constraints. For the smaller instances, the solver under configuration CF4H

slightly outperforms the BBCs, but, for the larger ones, the 2P-BBC2H clearly has the best

performance among all developed methods.



104

4.6.4 Managerial insights

As discussed in Section 4.2, the VRPTWMD was proposed by Pureza, Morabito, and

Reimann (2012) with two simplifying hypotheses: (i) the customer clusters can be predefined,

and (ii) the deliveryman routes can be preprocessed. Senarclens de Grancy and Reimann (2015)

and Senarclens deGrancy (2015) extended the problem by relaxing hypothesis (i), while keeping

hypothesis (ii), resulting in the VRPTWMDwith customer clustering (VRPTWMDC). Senna et

al. (2024a) also extended the VRPTWMD by relaxing hypothesis (ii), while keeping hypothesis

(i), creating the VRPTWMD with two-level routing (VRPTWMD2R). In this paper, we have

proposed the VRPTWMDC2R, which relaxes both of these hypotheses.

In the previous sections, we have discussed the performance of the proposed methodologies

to solve the VRPTWMDC2R. It is important, however, to assess the relevance of including the

decisions of clustering and deliveryman routes in the problem, i.e., the impact on the solution

quality of the VRPTWMDC2R compared to the other VRPTWMD variants. To this extent, we

have performed some experiments simulating the different variants. As discussed in Section

4.6.1, the instances used in the experiments have predefined clusters that were ignored in the

VRPTWMDC2R. Nevertheless, these clusters were used to simulate the VRPTWMD and the

VRPTWMD2R, by setting the variables zih to match the assignment provided by the instance.

Furthermore, to simulate the preprocessing of deliveryman routes, we have assumed that, in-

stead of making direct trips between customers, in both the VRPTWMD and the VRPTWMDC,

the deliveryman must always come back to the vehicle to take more goods as discussed in Sec-

tion 4.2. This can be done by redefining the distances (travel times) between customers as the

distances (travel times) passing through the parking location instead of the euclidean distances.

Finally, to further evaluate the impact of clustering, we have extended our analysis by generat-

ing instances with varying customer dispersion. To this extent, we have followed the procedure

proposed by Senna et al. (2024a) and discussed in Section 4.6.1, but generated instances with

different values of standard deviation for the customers coordinates (σ ∈ {1, 3, 5}). This way,
there are instances with the customers closer to (σ = 1) and farther from (σ = 5) the parking

locations.

The results of these experiments are presented in Table 4.5 for a subset of instances to which

it was possible to prove optimality for all configurations. In this table, on top of presenting the

results divided by instance class and standard deviation σ of customer’s coordinates, the aggre-

gated total is also provided. “Cost” represents the overall solution cost, “# of veh.” corresponds

to the number of vehicles used in the solution, “# of del.” indicates the size of the deliveryman

crew used, “veh. dist.” stands for the distance traveled by the vehicles, and “del. dist.” shows

the distance traveled by the deliverymen. All presented values are computed as averages.

The results clearly indicate that, the higher the σ, the higher the difference between the

solutions of the variants and, hence, the greater the importance including the clustering and

the deliveryman routes in the optimization. As expected, the costs of the VRPTWMD are the
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Class σ Metric VRPTWMD VRPTWMDC VRPTWMD2R VRPTWMDC2R

C

1

Cost 2,057 2,049 2,039 2,027

# of veh. 1.33 1.33 1.33 1.33

# of del. 1.33 1.33 1.33 1.33

Veh. dist. 54.00 52.67 54.00 52.67

Del. dist. 50.67 55.33 32.33 34.00

3

Cost 2,225 2,168 2,171 2,089

# of veh. 1.33 1.33 1.33 1.33

# of del. 2.00 1.67 2.00 1.33

Veh. dist. 53.67 53.00 53.67 53.67

Del. dist. 154.67 138.00 100.67 86.00

5

Cost 2,351 2,297 2,209 2,173

# of veh. 1.33 1.33 1.33 1.33

# of del. 2.33 2.00 1.67 1.67

Veh. dist. 54.00 54.00 54.00 53.67

Del. dist. 244.00 224.00 169.00 136.67

R

1

Cost 3,732 3,732 3,672 3,672

# of veh. 2.00 2.00 2.00 2.00

# of del. 2.33 2.33 2.00 2.00

Veh. dist. 144.33 144.33 144.00 144.00

Del. dist. 55.33 55.33 32.33 32.33

3

Cost 3,952 3,952 3,803 3,803

# of veh. 2.00 2.00 2.00 2.00

# of del. 4.00 4.00 3.00 3.00

Veh. dist. 141.67 141.67 141.67 141.67

Del. dist. 135.33 135.33 86.33 86.33

5

Cost 5,569 5,569 4,891 4,891

# of veh. 3.00 3.00 2.67 2.67

# of del. 7.67 7.67 5.00 5.00

Veh. dist. 156.67 156.67 155.67 155.67

Del. dist. 236.00 236.00 168.00 168.00

RC

1

Cost 2,114 2,112 2,028 2,027

# of veh. 1.00 1.00 1.00 1.00

# of del. 2.00 2.00 1.33 1.33

Veh. dist. 86.33 86.33 86.33 86.33

Del. dist. 50.67 48.67 31.67 30.67

3

Cost 4,109 4,102 3,972 3,964

# of veh. 2.00 2.00 2.00 2.00

# of del. 4.33 4.00 3.67 3.33

Veh. dist. 153.67 157.00 151.00 154.33

Del. dist. 138.67 132.00 95.00 87.67

5

Cost 6,151 4,934 5,312 4,176

# of veh. 3.00 2.33 2.67 2.00

# of del. 6.67 6.00 4.67 4.33

Veh. dist. 225.33 178.00 201.33 159.00

Del. dist. 231.33 220.67 165.67 153.00

Total

Cost 3,584 3,435 3,344 3,203

# of veh. 1.89 1.81 1.81 1.74

# of del. 3.63 3.44 2.74 2.59

Veh. dist. 118.85 113.74 115.74 111.22

Del. dist. 144.07 138.37 97.89 90.52

Table 4.5: The impact of different VRPTWMD variants on the solution quality.
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highest, since it is the most constrained variant, and those of the VRPTWMDC2R are the lowest,

since it is the least constrained variant. In general, the costs of VRPTWMD2R are lower than

those of the VRPTWMDC, but not always, and, in the total average, the solution cost of the

VRPTWMD2R is higher than that of the VRPTWMDC. Furthermore, the distance traveled by

the deliverymen is always smaller for the variants that optimize the deliveryman routes than for

those that consider them to be approximated a priori.

For instances of class C, an interesting result is that the vehicle distances are the same for the

VRPTWMD and the VRPTWMD2R, suggesting that the vehicle routes do not change. Look-

ing in more detail, for instances with σ = 1, the difference in the solutions is concentrated in

the distance traveled by vehicles and deliverymen, with little impact in the overall cost. For

those with σ = 3 and σ = 5, however, differences in the number of deliverymen also appear,

although the size of the vehicle fleet is always the same. As a consequence, the deliveryman

routes distance is significantly impacted, having a 43.99% reduction from the VRPTWMD to

the VRPTWMDC2R in the instances with σ = 5, leading to a 7.57% cost reduction. The

cost improvement of the VRPTWMDC2R compared to the VRPTWMDC is 5.40% and to the

VRPTWMD2R is 1.63% for those instances.

For instances of class R, the solutions of the VRPTWMD and the VRPTWMDC are always

the same. Accordingly, the solutions of the VRPTWMD2R and the VRPTWMDC2R are also

the same. This suggests that, for these instances, the clustering can be easily preprocessed with

little impact on the solution. This happens because these instances have their parking locations

very far apart and, hence, clustering becomes trivial. The impact of considering the deliveryman

routes, however, is not negligible. In fact, this leads to a reduction on the size of the deliveryman

crew that ranges from 14.16% for instances with σ = 1 to 34.81% for those with σ = 5.

Accordingly, the reduction on the distance traveled by the deliverymen ranges from 28.81% for

instances with σ = 5 to 41.57% for those with σ = 1. Combined with some reductions in the

vehicle fleet size and the distance traveled by the vehicles, this leads to a cost reduction that

goes from 1.61% for instances with σ = 1 to 12.17% for those with σ = 5.

For instances of class RC, the number of vehicles used is the same for all variants and in-

stances with σ = 1 and σ = 3. For instances with σ = 5, however, the reduction from the

VRPTWMD to the VRPTWMDC2R is of 33.33%. For instances with σ = 1, the main differ-

ence among the solutions of the different variants is on the distance traveled by the deliverymen,

which is significantly reduced by the variants that optimize these routes. This leads to the re-

duction on the average solution cost of 4.12% from the VRPTWMD to the VRPTWMDC2R.

The clustering, however, has little impact. The behavior for σ = 3 is similar. Nonethe-

less, for instances with σ = 5, the clustering has a huge impact. In fact, the cost reduction

from the VRPTWMD to the VRPTWMDC is of 19.79% while from the VRPTWMD2R to the

VRPTWMDC2R it is of 21.39%. Combined with the cost reduction obtained by the inclu-

sion of the deliveryman routes in the optimization, this leads to an average solution cost of the

VRPTWMDC2R that is 32.11% smaller than that of the VRPTWMD.
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Considering the overall average of instances, it is clear that the optimization of the delivery-

man routes is of major relevance in the optimal size of the deliveryman crew and the distance

traveled by them. Moreover, the clustering is important depending on the instances characteris-

tics, as expected. On the one hand, for instances that have parking locations far apart from each

other and customers close to them, the clustering becomes trivial and, hence, its optimization

is not impactful. On the other hand, for instances that have many interesting candidate parking

locations for each customer, the clustering becomes relevant and its optimization may lead to

major cost reductions. On the overall average, the VRPTWMDC2R has a solution cost that is

10.63% smaller than that of the VRPTWMD.

4.7 Conclusion

In this paper, we have introduced a variant of the vehicle routing problemwith time windows

and multiple deliverymen (VRPTWMD). This problem emulates a last-mile delivery scheme

that has vehicles traveling with more than one deliveryman to increase the number of customers

that can be served with a single stop of the vehicle while reducing the overall time that the

vehicles stay parked throughout the route. Since deliveryman costs and GHGs emissions are

usually smaller than those of the vehicles, this allows for a cheaper and greener delivery system.

As originally proposed, the VRPTWMD considers that the decision on which customers are

to be served by each stop of the vehicles (clustering) and the deliveryman routes inside the clus-

ters can be defined in a preprocessing phase. In previous studies, the problem had been extended

to encompass either the clustering or the deliveryman routes in the optimization, but never both.

With this paper, we have bridged this gap by introducing the vehicle routing problem with time

windows, multiple deliverymen, customer clustering, and two-level routing (VRPTWMDC2R),

which is a rich vehicle routing problem with applications in last-mile delivery.

We have formally defined the VRPTWMDC2R by means of a mathematical formulation.

Theoretical properties and lower bounds have been discussed and used to propose valid in-

equalities. The problem has also been decomposed in a Benders fashion to develop a branch-

and-Benders-cut algorithm to solve it. Computational experiments show the suitability of the

proposed methodology to solve the problem.

Furthermore, managerial insights were provided to shed light onto the importance of op-

timizing the customer clustering and the deliveryman routes in the VRPTWMD. Our results

show that the optimization of deliveryman routes is always beneficial. The clustering, however,

depends on the instance characteristics. In fact, if customers are closely distributed around park-

ing locations that are far apart from each other, clustering becomes trivial and its optimization

is not relevant. Nevertheless, in situations that have many parking locations close to each other

with customers distributed around them without an obvious clustering pattern, optimizing the

customer clusters is of major relevance.

Finally, some possibilities of future work are the proposition of variants that include the pos-
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sibility of having the deliverymen coming back to the vehicles at different parking locations or

even changing vehicles throughout the route. Other interesting extensions would be the study

of the problem under uncertainties (e.g., in the demand or travel time) by means of robust or

stochastic optimization. New methods based on metaheuristics could also provide better solu-

tions for large scale instances.
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5 Conclusion

In this dissertation, new developments regarding two-echelon routing problems for last-mile

delivery were presented. In particular, the two-echelon location-routing problem (2E-LRP) and

the vehicle routing problem with time windows and multiple deliverymen (VRPTWMD) were

addressed. As were the objectives of this dissertation, the literature on the 2E-LRP and the

VRPTWMD was reviewed, novel formulations for the 2E-LRP were introduced, two realistic

extensions for the VRPTWMD were proposed and formulated, valid inequalities and exact so-

lution methods for these variants were presented, and the benefits of these new variants on the

solution quality of the VRPTWMD were assessed. Hence, all the objectives were attained.

In particular, regarding the 2E-LRP, we have proposed novel formulations based on two-

index arc variables, contrasting with the benchmark formulation from the literature, which is

based on variables with a vehicle index. Novel and literature-based formulations were also

evaluated, and their linear programming relaxations were compared. Extensive computational

experiments have shown that the proposed formulations greatly outperform the benchmark one.

Moreover, 125 new best known lower bounds were discovered, as well as 55 new optimal solu-

tions. These developments have been discussed in Chapter 2, which is a paper coauthored with

Prof. Leandro C. Coelho (Université Laval), Prof. Reinaldo Morabito (Federal University of

São Carlos), and Prof. Pedro Munari (Federal University of São Carlos). This paper is pub-

licly available at the CIRRELT repository and is under revision for publication at a renowned

Operations Research journal (Senna et al., 2024b).

Furthermore, two realistic extensions of the VRPTWMD were introduced. The first one is

the VRPTWMD with two-level routing (VRPTWMD2R). It was formally defined and formu-

lated. Several valid inequalities were proposed, as well as a Benders decomposition to craft a

branch-and-Benders-cut algorithm. The proposed algorithm has shown to be very efficient to

solve the problem, since it has proved optimality to 88.97% of the instances, many of them of re-

alistic sizes. Moreover, managerial insights were provided. First, we showed the importance of

properly evaluating the deliveryman routes, which in our experiments showed to give solutions

that were around 10% better than the ones that ignore these routes (following the literature).

Sensitivity analyses on costs were also performed and possibilities of further improvement in

the use of deliverymen were discussed. We have highlighted the opportunities for cost reduction

enabled by the business model encompassed by the problem, while having the beneficial side

effect of reducing the emission of greenhouse gases and other pollutants due to the reduction in
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the use of vehicles and the distance traveled by them. These results were presented in Chapter 3:

a paper coauthored with Prof. Leandro C. Coelho (Université Laval), Prof. Reinaldo Morabito

(Federal University of São Carlos), and Prof. Pedro Munari (Federal University of São Carlos).

This paper has been published at the European Journal of Operational Research (Senna et al.,

2024a).

The second extension is the VRPTWMD with customer clustering and two-level routing

(VRPTWMDC2R), which encompasses both the deliveryman routes and the definition of clus-

ters of customers that are served with a single stop of the vehicle. The problem was formally

defined and formulated. Theoretical properties were discussed and useful lower bounds were

proposed. Several valid inequalities were introduced. A Benders decomposition-based exact

algorithm was proposed. The computational experiments show that the proposed developments

greatly improve the solver performance. Moreover, the relevance of including the deliveryman

routes and the customer clustering in the optimization problemwas thoroughly discussed. These

outcomes have been introduced in Chapter 4, which is a paper coauthored with Prof. Leandro

C. Coelho (Université Laval), Prof. Reinaldo Morabito (Federal University of São Carlos), and

Prof. Pedro Munari (Federal University of São Carlos). This paper is on its final stages of

preparation and should be submitted for publication soon.

In conclusion, the main contributions of this dissertation were novel developments consid-

ering two-echelon routing problems in last-mile delivery. In particular, for the 2E-LRP, two

formulations based on two-index arc variables and valid inequalities were proposed, and 125

new best known lower bounds and 55 new optimal solutions were found for benchmark in-

stances. For the VRPTWMD, two realistic variants were introduced and formulated, with the

proposition of valid inequalities and branch-and-Benders-cut algorithms to solve these prob-

lems. The computational experiments show the suitability of the proposed formulation to solve

the problem and the impact on the solution cost upon considering these variants compared to

the literature-based VRPTWMD (10% cost reduction on average).

Finally, there are great possibilities for future work based on the research documented in

this dissertation. Considering the 2E-LRP, for example, the proposed formulations could be ex-

tended to reflect the many variants available in the literature, or exact methods based on branch-

and-cut schemes and other ad hoc solution methods could further improve the best known lower

and upper bounds for the benchmark instances from the literature. Regarding the VRPTWMD,

new extensions considering that the deliveryman routes could end in parking locations that are

different from the ones they departed from or the deliveryman could change vehicles through-

out the route are interesting extensions for the problem that reflect realistic applications. The

study of the problem considering uncertainties in some of the parameters or the development of

metaheuristics could also lead to interesting results.
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