
UNIVERSIDADE FEDERAL DE SÃO CARLOS
PROGRAMA DE GRADUAÇÃO EM ENGENHARIA DE

COMPUTAÇÃO

Matheus Malonda dos Santos Macaia

Study and Quality Evaluation of LLM’s
Generated Unit Test Sets for C Programs

São Carlos, São Paulo

2024





Matheus Malonda dos Santos Macaia

Study and Quality Evaluation of LLM’s Generated Unit
Test Sets for C Programs

Trabalho de Graduação do Curso de Grad-
uação em Engenharia de Computação da
Universidade Federal de São Carlos para a
obtenção do título de bacharel em Engenharia
de Computação.

Orientação Prof. Dr. Auri Marcelo Rizzo Vin-
cenzi

São Carlos, São Paulo
2024



UNIVERSIDADE FEDERAL DE SÃO CARLOS

MATHEUS MALONDA DOS SANTOS MACAIA

Esta Monografia foi julgada adequada para a obtenção do título de Bacharel em
Engenharia de Computação, sendo aprovada em sua forma final pela banca examinadora:

Orientador(a): Prof. Dr. Auri M. R. Vincenzi
Universidade Federal de São Carlos -

UFSCAR

Prof. Dr. André Takeshi Endo
Universidade Federal de São Carlos -

UFSCAR

Prof. Delano M. Beder
Universidade Federal de São Carlos -

UFSCAR

São Carlos, Setembro 2024



Abstract
Context: As technology becomes more integrated into our daily routines, reliable software
becomes increasingly critical. However, the high cost of manual test generation often leads
developers to neglect software quality concepts. In this context, the growing demand for
automated test generation is a crucial response to the potential negative consequences of
inadequate software testing. Problem: Various tools designed explicitly for automated
program testing exist for different programming languages, including C. However, learning
and properly configuring these tools is often not trivial, and users must install and set them
up for use. Solution: This work leverages the rapid rise of Large Language Models (LLMs)
to evaluate their capability in generating unit tests for C programs, using code coverage
and mutation score as metrics to assess the quality of the generated test sets. Method:
This study selected 27 C programs from the literature. We grouped these programs into
three non-overlapping categories, depending on how each one accepts inputs (Basic Input –
inputs provided as program parameters; Driver Type 1 – each test case is a case option in
a switch command and the inputs are hard-coded inside the case option; and Driver Type
2 – similar to Driver Type 1 but with the inputs encoded on external data files). For each
program, we interactively asked the LLM to generate tests automatically. After generating
the test sets, we collected metrics such as code coverage, mutation score, and test execution
success rate to evaluate the efficiency and effectiveness of each set. We then used these
metrics as new parameters to enhance the efficiency of the sets. Results: The test sets
generated by LLMs demonstrate significant relevance by presenting substantial results,
given the ease of use and low need for human intervention in adjusting the necessary
configuration guidelines. On average, LLMs test sets reached 100% of code coverage and
98,7% of mutation score on testing programs with basic inputs. The worst results are
in testing programs requiring a driver of Type 1, reaching 91,8% of code coverage and
95.2% of mutation score. Nevertheless, these results are very satisfactory, mainly due to
the prompt simplicity and the effort required for test case generation.

Keywords: software testing, automated test generation, coverage testing, mutation testing,
large language models, ChatGPT, unit testing
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1 Introduction

Testing software is a complex and time-consuming activity. Still, it is essential
to ensure the quality of software products, as well as to enable the approval of software
products in CI/CD processes (Continuous Integration (CI)/Continuous Deployment (CD)).
Such methods, generally adopted in modern software development, are only possible due
to the existence of automated tests that aim to ensure that frequent changes do not "break"
the software under continuous development.

The field of artificial intelligence (AI) is advancing significantly, mainly due to the
recent development and use of LLMs, with the most famous examples being ChatGPT1 and
Bing Copilot2 which use the GPT-3.5 and GPT-4 models. These models have transformed
many fields by demonstrating an extraordinary ability to interpret and produce text
with human-like characteristics. Additionally, they can organize and correct files such as
documents, code, and even some architectures and generate images and videos.

Given the significant accessibility in interpreting and generating code through
high-level language instructions, LLMs show enormous potential in automation in various
scenarios, including classical areas of Software Engineering. In the context of software
testing, the research area known as SBST (Search-based Software Testing) has already
been extensively using artificial intelligence techniques to solve testing problems, with
the automatic generation of test data being one of the most explored. In this sense, this
paper investigates the performance of LLM (ChatGPT 3.5) in generating unit tests for C
programs and analyzes the quality of the generated test sets in light of traditional testing
criteria, such as code coverage testing and mutation testing.

The results obtained in the study demonstrate the LLMs’ capability to generate
high-quality tests, considering the programs used in this study. Moreover, prompt interface
simplicity is essential in adopting LLM to support different software engineering tasks,
including software testing.

The remainder of this paper is organized as follows. In Section 2, the terminology
and basic concepts for understanding the work are presented. In Section 3, we describe some
related work exploring LLM on testing activities. In Section 4, we describe our experiment
design. In Section 5, we present the collected data and the analysis we performed. In
Section 6, we describe the lessons learned on using LLM for testing C programs. Finally,
in Section 7, we conclude the paper and point out some future work.

1 <https://chatgpt.com/>
2 <https://www.bing.com/copilot>

https://chatgpt.com/
https://www.bing.com/copilot




13

2 Background

2.1 Software testing
Testing software is a fundamental activity in the software development cycle. Its

main objective is to demonstrate the presence of faults in the product under test.

Software testing is categorized into 4 stages: (i) planning, (ii) test case design, (iii)
execution, and (iv) analysis. Once, in general, programs have a very large or infinite input
domain, test case design is of fundamental importance once, as stated by Roper (1994),
testing is sampling. The quality of the test activity depends on a good test sampling.

The testing phases are defined based on the focus, needs, and problems to be
addressed. Thus, different types of tests are applied at different stages, with the most
common being:

Unit testing: aims to verify the proper functioning of individual software components,
such as functions, methods, or classes;

Integration testing: examines how various software modules or components interact. It
ensures that individual units exchange data appropriately and integrate as planned;

System testing: evaluates the system as a whole. It involves verifying that all parts and
functionalities work as intended by testing an entire application that mimics the
production environment.

Acceptance testing: which aims to verify whether a system meets the customer’s or
end-user’s needs and expectations. In a production or pre-production environment,
the customer or a customer representative usually conducts these tests.

Any software product can be tested primarily through functional and structural
testing. In functional testing, the program is evaluated solely based on its specifications;
the tester does not have access to the internal structures or implementation of the software.
Structural testing, on the other hand, involves generating test cases based on the program’s
internal structure. In addition to functional and structural testing methodologies, fault-
based testing involves using knowledge of common faults committed during the software
development process.

Each testing technique has a set of testing criteria which, based on a source of
information, like a program specification or a program source code, derives test requirements
that a test set must obey to become adequate with respect to (w.r.t.) that specific testing
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criterion. Our study emphasizes test sets targeting code elements, so we concentrate on
trying to generate adequate test sets for structural and fault-based testing criteria.

This study focuses on generating unit test cases with support from large language
models (LLM). Moreover, to judge the quality of the generated test set, we will use
traditional software testing criteria, namely Statement Coverage (ROPER, 1994) and
Mutation Testing (DEMILLO; LIPTON; SAYWARD, 1978).

Once software testing is generally neglected, our intention is to provide automated
support for test case generation, reducing the effort of manual testing. Manual testing,
while effective, tends to be more expensive and subject to errors committed by the tester
during the test case creation and automation.

Mutation testing is considered an excellent fault model for judging the quality of
test sets (ANDREWS; BRIAND; LABICHE, 2005; PAPADAKIS et al., 2018). It involves
adding intentional faults within the program to verify if the test set can detect these faults
and return something different from expected or if it fails to trace them, generating the
same output as the original program. Once each mutant represents a possible fault, the
idea behind mutation testing is to find a test set able to expose the difference between
each mutant and the original program.

When this happens, we can ensure the original program did not contain the fault
modeled by the mutant.

Mutants are generated with the aid of mutation operators, defined according to the
characteristics of the programming language in which the programs are being implemented.
Not all mutants can be considered a fault. Some syntactic changes may produce an
equivalent implementation of the original program, i.e., it may create an equivalent mutant.
As the determination of equivalence is an undecidable problem, in general, the task of
determining equivalence is performed manually.

To measure the adequacy of a given test set T , considering the mutation testing
applied in a program P , we compute the mutation score MS. MS is the ratio between all
dead mutants of P killed by T and the total number of non-equivalent mutants of P . This
ratio varies from 0 (0%-adequate) to 1 (100%-adequate), so closer to one means a more
adequate test set.

MS(T, P ) = DM(P, T )
TM(P ) − EM(P )

Where:
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- MS(P,T): Mutation score of T on testing P .

- DM(P,T): Dead (killed) mutants of P by T .

- TM(P): Total number of generated mutants.

- EM(P): Number of equivalent mutants.

When MS is equal to 100%, the test set T is adequate for testing the program P

w.r.t. mutation testing.

Both the automatic test case generation to kill mutants and the determination
of equivalent mutants are, in general, undecidable problems and very costly tasks when
performed manually. In this sense, although there are several limitations, artificial intelli-
gence (AI) techniques are extensively used to partially help solve both problems. The area
known as search-based software testing (SBST) employs AI to find approximate solutions
to undecidable software testing problems.

Search-based software testing (SBST) helps us with several testing tasks (COHEN,
2017), such as automated test data generation (FRASER; ARCURI, 2011; ROJAS et
al., 2017; JATANA; SURI, 2020), automatic identification of infeasible test paths (DING;
TAN; LIU, 2012; DING; TAN, 2013; NETO et al., 2022), automatic identification of
equivalent mutants (SILVA; SOUZA; SOUZA, 2017; KUSHARKI et al., 2022), test case
prioritization (SINGH et al., 2023), and so on.

2.2 Automatic test data generation
There are several traditional approaches to automatic test data generation, including

methods based on static and dynamic analysis, as well as search-based and machine learning
techniques (TAHBILDAR; BORBORA; G.P., 2013).

It is not trivial to use tools for automatic test generation. These tools often require
complex configurations and a deep understanding of the software under test. Since a
program can have many inputs, it is important to efficiently choose which inputs to use
in testing. The number of possible inputs, in general, is very large. The generators must
infer a type for test data generation in a dynamically typed language. Moreover, we need
both the test input and the expected output to create a test case. Generating the correct
expected output for a given input is known as an oracle problem (BARR et al., 2015).

Traditional automated test case generation, such as EvoSuite (FRASER; ARCURI,
2016) and Randoop (PACHECO; ERNST, 2007) for Java or Pynguin (LUKASCZYK;
FRASER, 2022) for Python, generate the so-called “regression test cases” (PACHECO;
ERNST, 2007), i.e., all generated test cases pass in the existing product implementation



16 Chapter 2. Background

once they assume the current output as the expected output. So, generated test sets
are useful to validate future changes in the current implementation, avoiding the oracle
problem.

New AI advances with the advent of the Large Language Models (LLM) are making
access to AI tools more popular. LLM’s impact on the workforce of several professions
is still unclear (ELOUNDOU et al., 2023). Specifically, on software testing tasks, we
expect a positive impact on productivity and time-saving by using LLMs. Therefore,
it is natural to evaluate how LLM can help in different activities, including software
engineering (OZKAYA, 2023; RASNAYAKA et al., 2024) and testing activities (NGUYEN
et al., 2023; PIYA; SULLIVAN, 2024).

2.3 Large Language Models – LLMs
LLMs are a new class of machine learning models (GeeksforGeeks, 2024), being

a type of artificial intelligence algorithm that uses self-supervised learning techniques
to process and understand text or human languages using neural network techniques
with a large number of parameters. Their performance and aptitude in a variety of
tasks, including chat, open question answering, content summarizing, execution of almost
arbitrary instructions, translation, and content and code generation, have far surpassed
the performance of their predecessors like N-gram models (JURAFSKY; MARTIN, 2009),
SHRDLU (WINOGRAD, 1971), and ELIZA (WEIZENBAUM, 1966).

Several aspects influence the architecture of LLMs, such as the specific model design
purpose, available computational resources, and the types of language processing tasks the
LLM is expected to perform. Multiple layers, including feed-forward layers, embedding
layers, and attention layers, make up the overall architecture of an LLM, as depicted in
Figure 1.

Predictions are produced by working in conjunction with embedded text. The
Transformer architecture is the main foundation of modern LLMs and can be characterized
by the following components:

Encoder: This component transforms large volumes of text into tokens – numerical values.
Words with comparable meanings are grouped in the vector space by the Encoder,
which generates meaningful token embedding;

Embedding: Transforms tokens into high-dimensional vectors, with positional informa-
tion added to the embedding so that the word order is considered;

Attention Mechanism: Allows LLMs to effectively handle large amounts of information
by observing the relationships between all tokens in a sequence. Based on the
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calculation of attention scores, this method allocates different levels of importance to
various tokens, enabling the establishment of dependencies and relationships based
on context. As such, it allows models to focus on specific segments of the input text,
particularly correlated words or phrases;

Feed Forward: Its high parallelization makes efficient processing of large sequences
possible, where the feed-forward applies a neural network separately to each token,
performing non-linear transformations to the token embeddings, which helps capture
intricate relationships and complex non-linear patterns in the data;

Decoder: The decoder uses the encoder’s internal representation to create the output
sequence. Each block is repeated n times, and at each step, it selects the word with
the highest probability, generating an output sequence where tokens are passed
through a linear layer, transforming them back into text.

Evaluating LLMs is a challenging and constantly evolving field, mainly because
LLMs often demonstrate varying levels of skill across various tasks. With this in mind,
this article focuses on analyzing their efficiency and effectiveness in generating unit test
sets and the quality of these generated test sets. Moreover, we discuss the simplicity of
interaction with an LLM compared to automated test generators. In our opinion, prompt
simplicity is the biggest revolution LLM has caused in supporting different tasks with a
simple text interface.
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Figure 1 – Components of a Transformer Architecture. (extracted from AWS (2024))
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3 Related Work

LLMs, like ChatGPT1, are state-of-the-art language models based on the Trans-
former architecture (VASWANI et al., 2017). They are designed to process human language,
enabling machines to generate coherent and contextually relevant text. These models are
trained on large amounts of linguistic data, allowing them to capture intricate patterns
and relationships in language usage. As a result, they demonstrate impressive capabilities
in tasks such as text generation, translation, question answering, and even software-related
activities.

Ma et al. (2023) conduct a comprehensive exploration of the applicability of
ChatGPT and its potential in software engineering. The authors examine various tasks,
including code generation, code summarization, bug detection, and code completion, to
evaluate the performance of ChatGPT. Through rigorous investigation and comparison with
existing software engineering tools and techniques, the study reveals both the strengths
and limitations of ChatGPT in different software engineering scenarios. The findings
provide valuable insights into ChatGPT’s capabilities and offer guidance on harnessing
its potential to improve software development practices while highlighting areas where
further advancements are needed.

White et al. (2023) also explores the potential applications of ChatGPT in various
software engineering tasks. The researchers introduce prompt patterns to leverage Chat-
GPT’s language generation capabilities to enhance code quality, refactoring, requirements
elicitation, and software design tasks. Through experiments and case studies, they demon-
strate the effectiveness of using ChatGPT with these prompt patterns to assist developers
and software engineers in their daily activities. The paper highlights the versatility of
ChatGPT as a tool to support software engineering practices and promote better code
development and design.

Exploratory studies also investigate using LLMs to generate test data at different
stages of testing, from unit tests to end-to-end tests. Notably, the context provided to the
LLM was the only aspect that changed during these experiments. In the case of unit tests,
the LLM received code snippets as input (LI et al., 2023; YUAN et al., 2023; SIDDIQ
et al., 2023; XIE et al., 2023; GUILHERME; VINCENZI, 2023; TANG et al., 2023). For
example, a prompt could be formulated as follows:

“Given the provided code snippet, please generate test cases to cover all possible
scenarios and branches within the code.”

The LLM then used its language generation capabilities to produce comprehensive
1 <https://chat.openai.com/>

https://chat.openai.com/
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test data sets that addressed various test scenarios. From the studies above, the majority
used LLM in an interactive way, such that the results are obtained after a “few-shot”
prompting to the LLM (YONG et al., 2023; HURLEY; OKYERE-BADOO, 2024). On the
other hand, in some other studies, like (GUILHERME; VINCENZI, 2023), the authors
used a “zero-shot” prompt (YONG et al., 2023; HURLEY; OKYERE-BADOO, 2024)
strategy to generate test sets without human intervention.

On the other hand, for end-to-end tests, the LLM was provided with a description
of the system’s functional specifications (RIBEIRO, 2023) or a GUI (LIU et al., 2023).
The prompt may have asked the LLM to:

“Generate test cases that validate all system functionality based on the provided
functional specification.”

The results of these exploratory studies demonstrated the promising potential of
LLMs in automating the test data generation process, simplifying testing efforts, and
enhancing software quality. By adjusting the input context to the capabilities of the LLM,
effective test cases were obtained for different testing stages, further demonstrating the
versatility and adaptability of LLMs in software testing. Specifically for test generation,
another advantage is that by using LLM, we do not need to worry about specific testing
tools for each programming language we use. Generally, it is expected that the LLM can
generate test cases for each specific programming language with minor prompt changes.

In the experiment described below, we intend to evaluate the quality of test sets
generated by LLM for C programs, considering different program categories related to how
the programs received their inputs. We adopt a few-shot prompt strategy and interact with
the LLM, trying to maximize code coverage and mutation score metrics. The experiment
design, data collection, and analysis are presented in the following sections.
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4 Experimental Design

The aim of this study is to evaluate the effectiveness of large language models
(LLMs) in creating test data sets for programs developed in the C language. ChatGPT,
model version 3.5, was chosen as the main tool for this study due to its accessibility, ease
of use, active community, extensive documentation, popularity, and low cost if used via
API or free in case of use of the interactive prompt (our choice).

These features make ChatGPT one of the most user-friendly and accessible tools,
making it an excellent candidate for this study. However, in future works, we intend to
explore other LLMs and compare them when carrying out the same task.

We used statement coverage and mutation testing to evaluate the efficiency and
effectiveness of the LLM’s generated test sets, as previous research (DELAMARO et
al., 2021) (DELAMARO et al., 2014) has demonstrated that this method is robust and
effective for experimentation and assessment of test set quality.

Mutation testing follows the processes outlined in Section 2. ChatGPT, the study’s
target tool, will interactively receive instructions and requests based on specific code needs,
using a few-shot prompt strategy

Once we receive a test set, we try to compile and run it in the original program
and generate mutants, also measuring the statement coverage of the generated test set.

For this study, 27 programs written in C were chosen, previously used in experi-
mental studies by other researchers (DELAMARO et al., 2014; DELAMARO; OFFUTT;
AMMANN, 2014; AMMANN; DELAMARO; OFFUTT, 2014; ANDRADE et al., 2019;
DELAMARO et al., 2021) to ensure the relevance and comparability of the results.

Table 1 lists the selected programs, the number of mutated functions (#Fun) on each
program, the number of lines to quantify the program size in terms of lines of code (LOC),
helping to define the complexity of the programs, the number of generated mutants (#Mut)
considering all unit mutation operators implemented in the Proteum/IM (DELAMARO;
MALDONADO; VINCENZI, 2001) mutation testing tool for C, representing all the faults
a test set must identify and the number of equivalent mutants (#Eq). Observe that in
the work of Delamaro et al. (2014), they created an adequate test set and determined the
equivalent mutants for all these 27 programs manually. We simply used these previously
generated data such that, in our experiment, we only used the non-equivalent mutants to
evaluate the quality of the LLM-generated test cases.

From Table 1, we can observe that all these programs have 78 functions, implemented
on 1374 lines of code and, considering all unit mutation operators, Proteum/IM generated
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23,253 mutants, being 1,864 (8,0%) equivalents on average. To kill all the non-equivalent
mutants Delamaro et al. (2014) created 1086 test cases manually, presented in Table 5 on
pp. 33.

Table 1 – Information Table of Programs (data adapted from Delamaro et al. (2014)

Program #Fun LOC #Mut #Eq
boundedQueue 6 49 1121 100
cal 1 18 891 71
Calculation 7 46 1118 107
checkIt 1 9 104 5
CheckPalindrome 1 9 166 21
countPositive 1 10 151 9
date-plus 1 132 2421 164
DigitReverser 1 9 496 45
findLast 1 17 198 8
findVal 1 16 190 14
Heap 7 43 1079 104
inversePermutation 7 41 576 61
jday+date 1 45 2821 84
lastZero 1 9 173 10
LRS 2 54 1132 290
MergeSort 1 126 991 32
numZero 1 9 151 12
oddOrPos 1 10 361 71
power 8 18 268 8
printPrimes 2 35 715 78
Queue 6 233 469 38
quickSort 1 60 1026 66
RecursiveSelecSort 2 101 555 37
Stack 5 56 461 53
sum 7 45 165 18
trashAndTakeOut 1 55 599 19
UnixCal 4 119 4855 339
Sum 78 1374 23253 1864
Average 2.89 50.89 861.22 69.04
Standard Deviation 2.59 51.82 1033.14 81.16

ChatGPT’s task is to receive high-level text instructions close to human interaction
and generate a test data set for each program under test. Then, the quality of the generated
test set, in terms of its efficiency in executing the code under testing and effectiveness in
detecting defects, is analyzed by computing the statement coverage and the mutation score
of the set against all non-equivalent unit mutants generated by Proteum/IM (DELAMARO;
MALDONADO; VINCENZI, 2001).

We need to compile the original program before using Proteum/IM for mutant
generation. Each program has a compile.txt file containing the correct gcc parameters for
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program compilation. We also generated an instrumented version of the original program
to compute statement coverage using gcc with the –coverage parameter.

Then, we created a Proteum/IM test session for each program and used all unit
mutation operators available to generate all possible mutants, discarding the equivalent
ones previously determined by other researchers (DELAMARO et al., 2014) (see Table 1).

Thus, after generating all mutants and discarding the equivalent ones, the experi-
mental cycle for each program consists of:

1. Request a test set via LLM prompt;

2. Execute the test set against the original program registering the output for each test
case;

3. Execute the test set against the instrumented version of the original program,
generating the statement coverage report;

4. Execute the test set against all non-equivalent mutants;

5. Calculate the mutation score.

6. If the score is not 100% or if there are uncovered lines. If it’s not the final interaction,
feedback prompt is given to the LLM, and the cycle restarts

We iterate manually over steps 1 to 5 until it reaches 100% of statement coverage
and mutation score or until LLM does not improve coverage and mutation score after 5
interactions, whenever an improvement was detected, the counter for the 5-interaction
limit was reset. Figure 2 illustrates the interaction with the LLM aiming to generate good
test sets.
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Figure 2 – LLM cycle to kill mutants
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5 Data Collection and Analysis

Following the first stage of mutation testing, we need to generate the mutants
of the programs. Although we can do this activity manually, it is time-consuming and
subject to human mistakes. We used all mutation operators for unit testing implemented
in the Proteum/IM testing tool for this task. Proteum/IM can be executed via scripts
or GUI interface. We developed a set of scripts to run Proteum/IM via scripts. The
complete repository of our experiment is available at <https://anonymous.4open.science/
r/c_sbqs2024-0A03/>.

Scripts can compile all programs, generate mutants, execute the original program
and all mutants with the generated test set, and produce coverage and mutation test-
ing reports. This tool saves considerable study time by automating the generation and
validation of mutants. Since the programs have already been used in previous research,
their equivalent mutants are also mapped and discarded from our analysis, so we use only
non-equivalent mutants.

By using LLM to generate a test set, we adopted the following strategy: requests
must be made clearly and specifically, leaving no room for ambiguity and ensuring that
the responses are precise and useful. Since LLMs work by storing information passed to
them in tokens, which have a cost associated with the amount used, and considering that
the search should focus on generating better tests with the fewest possible resources, it is
not beneficial to spend resources on many maintenance requests.

To increase efficiency, ChatGPT will have full access to the code of the analyzed
programs, allowing for a thorough and detailed “understanding”. This method reduces the
need for a lengthy explanation of the type and format of the desired output. One of the
guidelines is to analyze the code as an experienced programmer whose goal is to generate
a high-quality test set capable of discovering and achieving high statement coverage and
mutation score, thereby ensuring better quality in its responses.

To make the test scenarios as standardized as possible, a preliminary analysis of the
programs was conducted to generate a common question for all of them. It was noted that
they could be categorized into two groups: one in which the program’s input variables were
already passed as parameters in its call and another in which the inputs were obtained
through an external file named drive.c. Thus, specific forms of requests to ChatGPT
were defined following these categories.

https://anonymous.4open.science/r/c_sbqs2024-0A03/
https://anonymous.4open.science/r/c_sbqs2024-0A03/
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5.1 Basics
These programs receive inputs directly in their call, not requiring any external files

to receive inputs. For these, it is only necessary to provide the program to ChatGPT and
request that an efficient set of inputs be generated to eliminate all mutants, using the best
techniques available in the field of software quality, as shown in the prompt presented in
Figure 3. The tag <<source-code>> (line 10) is replaced by the complete source code of
the original program under testing.

1 It is necessary to test this program , aiming to
2 cover all its statements and kill all possible
3 mutants . So , you have to create a set of test
4 cases for this program . The suite needs to be
5 robust enough to cover multiple scenarios , and
6 as an experienced programmer , you should use
7 efficient software quality testing techniques
8 for greater reliability in the test suite.
9

10 <<source -code >>

Figure 3 – Example of LLM prompt to deal with programs of Category 1

Each test data for programs of this category is encoded as a line in a text file called
textset.txt. Each line in this file corresponds to input parameters used to execute the
original program and its mutants. Figure 4 illustrates the manual test set for the cal
program, which calculates the number of days between two dates in the same year.

1 1 1 1 1 1963
2 2 1 8 24 1963
3 2 1 8 24 1972
4 2 1 8 24 1900
5 2 1 8 24 2000
6 8 2 8 24 1972
7 8 24 9 24 1963
8 7 24 9 24 1963

Figure 4 – Example of testset.txt file for a specific program of Category 1

5.2 Multiple
These programs use an external file named driver.c to process the inputs of the

main program. In this case, we need to provide more information to ChatGPT, as poorly
defined inputs can lead to unsatisfactory responses.

ChatGPT needs to “understand” the functioning of multiple files, always considering
the token limitation. This limitation can lead to the loss of relevant information when
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correcting unwanted responses and detailing the request needed to obtain the desired
output. To circumvent this problem, we need to provide examples of the desired output
formats. Additionally, there are two different types of drivers:

Driver Type 1
Programs with driver Type 1 are those where an additional file named driver.c

contains specific function calls where the order and value of input parameters matter.
driver.c encodes each test as case option inside a switch statement. In this scenario,
the testset.txt file, which previously was responsible for receiving inputs to test the
programs, plays a different role, essentially storing the test indices to be executed from
the driver.c file. Therefore, it is necessary for ChatGPT to understand not only what
the program does but also how the driver.c is configured, to provide inputs that are
efficiently accepted by the program.

For this purpose, part of the content of the driver.c file was provided along with
the program to generate the input sets, as shown in Figure 5.

1 I need to test each function of the C code below:
2
3 <<source -code >>
4
5 Test cases are decoded as a driver , as in the
6 example below:
7
8 <<test case encoding sample >>
9

10 Generate test cases for each function to kill
11 as many mutants as possible .
12
13 Each test , mapped in a case inside the switch ,
14 must call as many functions as possible and at
15 least one of such functions must print some output
16 so that we may use it to show the difference
17 between the original program and the mutated
18 program outputs .
19
20 Provide just the C code corresponding to the main
21 function , the switch case , and the test cases. Do
22 not include additional information before or after
23 the code. I need just the code.

Figure 5 – Example of LLM prompt to deal with programs of Category 2

For example, Figure 6 and Figure 7 illustrate the content of testset.txt and
driver.c for the boundedQueue program. This program implements a bounded queue in
C, based on an example from the book of Ammann e Offutt (2008).
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1 1
2 2
3 ...

Figure 6 – Example of testset.txt file for boundedQueue program of Driver Type 1

1 # include <stdio.h>
2 # include <malloc .h>
3 # include " boundedQueue .h"
4 void driver (int argc , char *argv []) {
5 int tc_number ;
6 BoundedQueue * q, * p;
7 tc_number = atoi(argv [1]);
8 switch ( tc_number ) {
9 case 1:

10 q = createQueue (5);
11 enqueue (q ,1);
12 enqueue (q ,2);
13 enqueue (q ,3);
14 enqueue (q ,4);
15 printBoundedQueue (q);
16 free(q);
17 break;
18 case 2:
19 q = createQueue (0);
20 free(q);
21 q = createQueue (-1);
22 printf ("%d\n", q == NULL);
23 free(q);
24 break;
25 ...
26 }
27 }

Figure 7 – Example of the driver.c file for the boundedQueue

Driver Type 2

Type 2 driver programs are similar to Type 1, where test inputs are provided
through a third-party file. However, the driver behaves as a decoder for the inputs, so
the aforementioned testset.txt file once again contains the inputs to test the program.
Therefore, in addition to understanding what the program needs, ChatGPT also needs to
know the format of the inputs driver.c file requires to read and direct the inputs to the
program. Thus, the program, examples of the expected input format, and the driver.c
file will be provided, as shown in the prompt in Figure 8.

For instance, considering the program MergeSort, the command line calendar
program of Unix and Linux systems, Figure 9 illustrates an example of the content of
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1 I need to test each function of the C code below:
2
3 <<source -code >>
4
5 Test cases are decoded as a driver , as in the
6 example below:
7
8 <<test case encoding sample >>
9

10 And here ’s the example file containing the
11 inputs for the example tests of the C code:
12
13 <<test set source -code >>
14
15 Once the execution begins in the main function ,
16 I need test inputs , as in the example format
17 above , to allow me to reach each additional
18 function presented in this code. The test input
19 is used to kill as many mutants as possible .

Figure 8 – Example of LLM prompt to deal with programs of Category 3

testset.txt file with valid and inputs for this particular program.

1
2 abc
3 abc 3
4 1752
5 13 1963

Figure 9 – Example of testset.txt file for MergeSort program – Driver Type 2

Figure 10 shows the code of the driver.c program, and Figure 11 shows a piece
of MergeSort.c programs with the main function delegating to the driver.c the input
processing.

1 # include <stdio.h>
2
3 void driver (int tc_number , int argc , char *argv []) {
4 switch ( tc_number ) {
5 case 0:
6 dispatch (argc , argv);
7 break;
8 }
9 }

Figure 10 – Example of the driver.c file for the MergeSort

Once we obtained a test set, Proteum/IM ran it against the original program,
recording the output of each test input. Observe that we are assuming all subject programs
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1 # include <sys/types.h>
2 # include <time.h>
3 # include <stdio.h>
4 # include <stdlib .h>
5 ...
6 main(argc , argv)
7 int argc;
8 char *argv [];
9 {

10 if ( argc > 1 && strcmp ("-", argv [1]) == 0 ) {
11 driver (atoi(argv [2]) , argc , argv);
12 }
13 else {
14 driver (0, argc , argv);
15 }
16 return 0;
17 }
18
19 dispatch (argc , argv)
20 char *argv [];
21 {
22 ...
23 }
24 ...

Figure 11 – Piece of MergeSort.c program

are correct, and in this way, the output they provide for each test input is assumed to be
the correct output, avoiding the oracle problem (BARR et al., 2015).

We also ran all tests with the original program instrumented version, which was
previously generated, and after the execution, we generated the coverage report with lcov
tool1.

Finally, Proteum/IM ran the test set against all mutants for a specific program
and generated a report containing the following information: the total generated mutants,
the number of equivalent mutants, the number of live mutants and the current mutation
score.

If the program presented statement coverage or mutation score below 100%, we
analyzed the test set and provided specific feedback to search for possible problems. If
corrections are needed, we request them. Additionally, we interacted with ChatGPT,
asking them to correct and/or improve the generated test set and keep the existing ones.

For each new test set, scripts are rerun to recollect data. After five interactions
without increment in statement coverage and mutation score, we stopped and followed the
next program. The next section presents the results we obtained with this process.
1 <https://github.com/linux-test-project/lcov>

https://github.com/linux-test-project/lcov


5.3. Results 31

5.3 Results
The initial goal of this work was to investigate the capability of LLM, specifically

ChatGPT, to automatically generate unit tests for C programs. However, upon testing
some programs using very simple prompts, where only the format and expected output for
the programs were explained, it was noted that the results were satisfactory, especially
in simpler programs where no very complex treatment was needed. We need additional
work for programs with more complicated output, such as those with drivers Type 1 and
2 mentioned above, but we also consider the results satisfactory.

Tables 2 to 4 presents the results obtained for all 27 subject programs. They are
grouped by their input category. Table 2 presents the 19 programs with basic input.

Table 2 – Manual Tests vs. Automatic (LLM) Tests – Basic

Program Manual Tests LLM Tests
Coverage Score Coverage Score

cal 100.0 100.0 100.0 94.6
checkIt 100.0 100.0 100.0 99.0
CheckPalindrome 100.0 100.0 100.0 95.9
countPositive 100.0 100.0 100.0 99.3
DigitReverser 100.0 100.0 100.0 100.0
findLast 100.0 100.0 100.0 100.0
findVal 100.0 100.0 100.0 99.4
Heap 100.0 100.0 100.0 98.7
InversePermutation 100.0 100.0 100.0 98.1
jday-jdate 100.0 100.0 100.0 97.0
lastZero 100.0 100.0 100.0 100.0
LRS 100.0 100.0 100.0 97.9
numZero 100.0 100.0 100.0 100.0
oddOrPos 100.0 100.0 100.0 96.6
power 100.0 100.0 100.0 100.0
printPrimes 100.0 100.0 100.0 100.0
quicksort 100.0 100.0 100.0 99.5
RecursiveSelectionSort 100.0 100.0 100.0 100.0
sum 100.0 100.0 100.0 100.0
Average 100.0 100.0 100.0 98.7
Standard Deviation 0.0 0.0 0.0 1.6

We decided to keep in the table the Coverage and Mutation Score determined by
the manually generated test sets taken from Delamaro et al. (2014) work. This shows that
for each program, it is possible to cover all statements and kill all non-equivalent mutants
with the cost of manually generating test cases and determining equivalent mutants.
Considering this group of programs, the LLM’s generated test set also obtained 100% of
statement coverage for all programs and 100% of mutation score for 8 out of 19 programs.
The final average mutation score reached 98.7%, and only 3 out of 19 programs had a
mutation score below 97.0%.

Table 3 presents the four programs which require a driver Type 1. For these groups
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of programs, manual testing determined 100% of statement coverage and mutation score.
The LLM’s generated test set reached 100% of statement coverage on 3 out of 4 programs.
Except for Stack, all other programs also had mutation scores above 94.9%. Stack reached
91.8% of statement coverage and 93.6 of mutation score. On average, statement coverage
and mutation scores were 98.0% and 95.2%, respectively.

Table 3 – Manual Tests vs. Automatic (LLM) Tests – Driver Type 1

Program Manual Tests LLM Tests
Coverage Score Coverage Score

boundedQueue 100.0 100.0 100.0 94.7
Calculation 100.0 100.0 100.0 97.5
Queue 100.0 100.0 100.0 94.9
Stack 100.0 100.0 91.8 93.6
Average 100.0 100.0 98.0 95.2
Standard Deviation 0.0 0.0 4.1 1.7

Table 4 presents the four programs which require a driver Type 2. Again, manual
testing determined 100% of statement coverage and mutation score for these program
groups. The LLM’s generated test set reached 100% of statement coverage on 3 out of 4
programs. data-plus was the program with the lowest coverage (99.1%) and mutation
score (95.5%). On average, statement coverage and mutation scores were 99.8% and 95.1%,
respectively.

Table 4 – Manual Tests vs. Automatic (LLM) Tests – Driver Type 2

Program Manual Tests LLM Tests
Coverage Score Coverage Score

date-plus 100.0 100.0 99.1 95.5
MergeSort 100.0 100.0 100.0 97.0
trashAndTakeOut 100.0 100.0 100.0 91.0
UnixCal 100.0 100.0 100.0 97.0
Average 100.0 100.0 99.8 95.1
Standard Deviation 0.0 0.0 0.5 2.8

Finally, Table 5 compares the number of generated test cases using LLM and
the number of manual tests. It is important to consider here that we did not apply
minimization strategies or eliminate redundant LLM-generated test cases. In the same
way, we cannot guarantee there are no redundant test cases from the manual tests taken
from (DELAMARO et al., 2014).

It is notable that the size of tests generated by LLM can appear arbitrary if not
enough information is provided. Without clear direction, the model may apply different
tactics, generating tests with similar objectives but which may not cover all parts of the
program. This can result in a large number of ineffective or redundant tests. Therefore,
unless you are looking to create extremely specific tests, something that is not as practical
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due to the limit of information that the model can process, it is more efficient to ask the
LLM to create specific tests for particular lines of code or functions.

When tests fail to eliminate mutants, this fine-grained approach may be more
effective. On average, LLM generated more than twice (111.1%) as many test cases as
manual testing but with a minimum effort in terms of time spent understanding the source
code for test case generation. In only two programs, date-plus and Stack, the number of
LLM tests was inferior to manual testing. In the case of date-plus, the generated test
set reached 99.1% of statement coverage and 95.5% of mutation score (see Table 3). In the
case of Stack, we got 91.8% statement coverage and a mutation score of 93.6%.

Table 5 – Comparison of the number of tests generated by each type of test

Program #Manual #LLM % Inc.Tests Tests
boundedQueue 16 18 12.5
cal 40 70 75.0
Calculation 13 16 23.1
checkIt 27 47 74.1
CheckPalindrome 8 14 75.0
countPositive 15 132 780.0
date-plus 313 219 -30.0
DigitReverser 5 43 760.0
findLast 24 111 362.5
findVal 25 116 364.0
Heap 40 49 22.5
InversePermutation 43 200 365.1
jday-jdate 55 93 69.1
lastZero 12 26 116.7
LRS 10 35 250.0
MergeSort 165 575 248.5
numZero 11 29 163.6
oddOrPos 30 31 3.3
power 18 20 11.1
printPrimes 7 9 28.6
Queue 12 18 50.0
quicksort 73 75 2.7
RecursiveSelectionSort 33 74 124.2
Stack 11 9 -18.2
sum 8 73 812.5
trashAndTakeOut 30 80 166.7
UnixCal 42 111 164.3
Sum 1086 2293 111.1
Average 40.2 84.9 188.0
Standard Deviation 63.0 112.2 244.2

We consider the obtained results very satisfactory. The prompts had a significant
impact and great potential for test case generation considering programs demanding
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different types of inputs. The simplicity of handling and high flexibility in the calls make
LLM a very relevant tool not only for creating test sets but also for quick expansion,
replication, and formatting of code.

This study, therefore, assesses whether LLMs using mutation testing concepts,
having behavior and peculiarities already explored in other researchers’ work (GUIL-
HERME; VINCENZI, 2023), are also efficient in generating test data for C programs,
using a well-known effective analysis method and a well-practiced set of programs. The
obtained results contribute to a better understanding of the potential of LLMs to enable
the development of high-quality unit test sets, reducing human effort and cost.
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6 Lessons Learned

Several points are worth mentioning throughout this research due to their relevance
to its development, especially regarding the exploration of ChatGPT’s understanding as a
tool for generating input sets for programs.

Firstly, it is interesting to note that to determine the most efficient method of
instructing it to return the necessary responses to generate an efficient data set, we practice
with a sample program asking for test cases using different prompts for ChatGPT. It was
observed that to get an efficient response, it is necessary to provide as much information as
possible, be as objective as possible, and avoid ambiguities so that there are no unnecessary
tokens or accidental misdirection of its focus. It was also noted that it is more efficient to
demonstrate than to explain, so it is better to provide, if possible, the basis of what is
being requested via prompt, whether text, files, or images.

Depending on the complexity of what is being requested, it is unlikely that a
completely correct response will be obtained with a zero-shot prompt. Therefore, it
is extremely valuable to give continuous feedback until the desired output is achieved.
However, as mentioned earlier, there is a cost associated with using some LLMs, and there
is a limit to the amount of information they can handle (context window). If a considerable
amount of feedback is given, part of the previous context may be lost, and in this process,
relevant information for the desired output might be lost too. Hence, restarting with a
different approach might be the best choice if the prompt extends too much.

We also tried to create prompts using different languages. Although not extensively
evaluated, this point did not prove to be very significant for the test case generation in
general, but it did impact other relevant aspects. English proved more efficient as it has
less room for ambiguity, and prompts tend to be shorter to explain the same scenario
than the ones in Portuguese. However, a study on this objective must be conducted to
qualitatively assess this issue in future work.
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7 Conclusion

The efficiency of ChatGPT in generating test cases for mutation testing stems from
its ability to understand complex code structures, generate diverse and meaningful test
scenarios, and anticipate possible edge cases. By leveraging its advanced natural language
processing capabilities, ChatGPT can analyze program requirements, the codebase, and
existing test cases to create comprehensive and targeted test cases that address various
aspects of the program’s functionality.

However, while ChatGPT excels at automatically generating these test cases, there
are still some areas where additional assistance may be necessary to ensure a complete
testing process. These areas include:

Seeking to eliminate all mutants: For this study, the live mutants were not made
available to the LLM in order to evaluate its efficiency solely by accessing the source
code. However, in order to maximize the score and eliminate all mutants, a step could be
incorporated into the study where the live mutants become information accessible to the
LLM, enabling the generation of highly specific sets and verifying whether the maximum
score can be achieved from this.

Analysis of mutation operators: An interesting point that could further this study
would be to conduct an in-depth analysis of which mutation operators ChatGPT has the
most difficulty generating effective test sets to detect. This would help in understanding
and mitigating the challenges it faces.

Understanding specific domain and context: While ChatGPT can generate test
cases based on the provided code and requirements, having specific domain knowledge can
enhance the relevance and accuracy of the test cases.

Manual validation: Although ChatGPT can automate the generation of test cases,
manual validation by a developer or tester is crucial to ensure that the test cases align
with the actual behavior and requirements of the program.

Integration with existing testing frameworks: ChatGPT can provide test cases in
various formats, but integrating these test cases into existing testing frameworks and
ensuring seamless execution may require additional setup and customization.

Information limitations: There are situations where the amount of information
needed for a complete understanding of the problem may exceed ChatGPT-3.5’s capacity,
the subject of this study, to process. To ensure that tests are performed efficiently, human
support is needed to break down the code in these cases into smaller, more manageable
pieces.
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Ongoing updates and maintenance: As the program evolves, test cases need to be
updated and maintained to reflect changes. This requires continuous effort and collaboration
between development and testing teams.

In summary, ChatGPT is highly efficient in generating test cases for mutation
testing, providing a significant boost to the testing process by offering comprehensive and
targeted test scenarios. However, to achieve a complete and effective testing process, some
assistance is needed in understanding the specific domain, manual validation, integration
with existing frameworks, and ongoing updates. By combining the capabilities of LLMs
with human expertise, a robust and reliable testing process can be achieved. An interesting
direction for future studies would be to increase the number of simultaneous codes analyzed
by LLMs, the generation of tests that involve interactions between multiple programs, and
even tests where the input of one program depends on the output of another, increasing
the complexity of the information that needs to be analyzed.
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