
UNIVERSIDADE FEDERAL DE SÃO CARLOS
UNIVERSITÉ LIBRE DE BRUXELLES

JOINT SUPERVISION OF DOCTORAL THESIS

THE DESIGN OF VAGUE SPATIAL DATA
WAREHOUSES

THIAGO LUÍS LOPES SIQUEIRA

SUPERVISORS:
RICARDO RODRIGUES CIFERRI

ESTEBAN ZIMÁNYI

São Carlos – SP

December/2015

UNIVERSIDADE FEDERAL DE SÃO CARLOS
UNIVERSITÉ LIBRE DE BRUXELLES

JOINT SUPERVISION OF DOCTORAL THESIS

THE DESIGN OF VAGUE SPATIAL DATA
WAREHOUSES

THIAGO LUÍS LOPES SIQUEIRA

A thesis presented in partial fulfilment of the re-
quirements for the degree of Doutor em Ciência
da Computação from Universidade Federal de São
Carlos and the degree of Docteur en Sciences de
l’ingénieur et technologie from Université libre de
Bruxelles
Supervisors:
Ricardo Rodrigues Ciferri
Esteban Zimányi

São Carlos – SP

December/2015

Ficha catalográfica elaborada pelo DePT da Biblioteca Comunitária UFSCar
 Processamento Técnico

com os dados fornecidos pelo(a) autor(a)

S618dv
Siqueira, Thiago Luís Lopes
 The design of vague spatial data warehouses /
Thiago Luís Lopes Siqueira. -- São Carlos : UFSCar,
2015.
 325 p.

 Tese (Doutorado) -- Universidade Federal de São
Carlos, 2015.

 1. Spatial data warehouses. 2. Spatial vagueness.
3. Conceptual modeling. 4. Logical design. 5.
Indexing. I. Título.

To Luı́sa and Cris.

ACKNOWLEDGEMENTS

I am grateful to the following institutions, whose administrative, financial, and technical

supports were essential for the development of this thesis. Instituto Federal de Educação,

Ciência e Tecnologia de São Paulo (IFSP) provided me a leave of absence to attend a doctoral

program (project #23315500316/2013-81). Conselho Nacional de Desenvolvimento Cientı́fico

e Tecnológico (CNPq) funded a scholarship aimed at doctoral split fellowship program (grant

#229675/2013-1). Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and

Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior (CAPES) funded a scholarship

aimed at doctoral program (grant #2014/14103-9, São Paulo Research Foundation). Empresa

Brasileira de Pesquisa Agropecuária (Embrapa) kindly provided a real dataset and allowed its

use. Universidade Federal de São Carlos (UFSCar) and Université libre de Bruxelles (ULB)

agreed on a joint supervision of doctoral thesis.

I thank Ricardo R. Ciferri and Esteban Zimányi for dedicating themselves to supervise me

as a doctoral candidate and to contribute with the development of my professional and academic

skills. I also thank Cristina D. A. Ciferri, João Celso S. Oliveira, Rodrigo C. Mateus, and Valéria

C. Times, for the interesting discussions and fruitful collaborations we had.

Last but not least, I thank my daughter Luı́sa and my wife Cris for their love; my parents

Silvia and Geraldo and my sister Thayse for their unconditional support and encouraging words;

and Jesus for being lamp to my feet and for offering a source of living water and inspiration.

Lead me on, lead me on

To a place where the river runs into your keeping

Oh, lead me on, lead me on

The awaited deliverance comforts the seeking, lead on.

A. Grant, W. Kirkpatrick, and M. W. Smith

RESUMO

O data warehouse espacial (DWE) é um banco de dados multidimensional integrado e volu-

moso que armazena dados espaciais e dados convencionais. Já o processamento analı́tico-

espacial online (SOLAP) permite consultar o DWE, tanto pela seleção de dados espaciais

que satisfazem um relacionamento topológico, quanto pela agregação dos dados espaciais.

Deste modo, DWE e SOLAP beneficiam o suporte a tomada de decisão. As aplicações

de DWE e SOLAP abordam majoritarimente fenômenos representados por dados espaci-

ais exatos, ou seja, que assumem localizações e fronteiras bem definidas. Contudo, tais

aplicações negligenciam dados espaciais afetados por imperfeições, tais como a vagueza

espacial, a qual interfere na identificação precisa de um objeto e de seus vizinhos. Um

objeto espacial vago não tem sua fronteira ou seu interior precisamente definidos. Além

disso, é composto por partes que certamente pertencem a ele e partes que possivelmente

pertencem a ele. Apesar de inúmeros fenômenos do mundo real serem caracterizados pela

vagueza espacial, na literatura consultada não se identificaram trabalhos que considerassem

a vagueza espacial no projeto de DWE e nem para consultar o DWE. Tal limitação mo-

tivou a elaboração desta tese de doutorado, a qual introduz os conceitos de DWE vago e de

SOLAP vago. Um DWE vago é um DWE que armazena dados espaciais vagos, enquanto

que SOLAP vago provê os meios para consultar o DWE vago. Nesta tese, o projeto de

DWE vago é abordado e as principais contribuições providas são: (i) o modelo conceitual

VSCube que viabiliza a criação de um cubos de dados multidimensional para representar o

esquema conceitual de um DWE vago; (ii) o modelo conceitual VSMultiDim que permite

criar um diagrama para representar o esquema conceitual de um DWE vago; (iii) diretrizes

para o projeto lógico do DWE vago e de suas restrições de integridade, e para estender a lin-

guagem SQL visando processar as consultas de SOLAP vago no DWE vago; e (iv) o ı́ndice

VSB-index que aprimora o desempenho do processamento de consultas no DWE vago. A

aplicabilidade dessas contribuições é demonstrada em dois estudos de caso no domı́nio da

agricultura, por meio da criação de esquemas conceituais de DWE vago, da transformação

dos esquemas conceituais em esquemas lógicos de DWE vago, e do processamento de con-

sultas envolvendo as regiões vagas do DWE vago.

Palavras-chave: data warehouse espacial, vagueza espacial, modelo conceitual, projeto lógico, indexação

ABSTRACT

Spatial data warehouses (SDW) and spatial online analytical processing (SOLAP) enhance

decision making by enabling spatial analysis combined with multidimensional analytical queries.

A SDW is an integrated and voluminous multidimensional database containing both conventional

and spatial data. SOLAP allows querying SDWs with multidimensional queries that select spatial

data that satisfy a given topological relationship and that aggregate spatial data. Existing SDW

and SOLAP applications mostly consider phenomena represented by spatial data having exact

locations and sharp boundaries. They neglect the fact that spatial data may be affected by

imperfections, such as spatial vagueness, which prevents distinguishing an object from its

neighborhood. A vague spatial object does not have a precisely defined boundary and/or interior.

Thus, it may have a broad boundary and a blurred interior, and is composed of parts that certainly

belong to it and parts that possibly belong to it. Although several real-world phenomena are

characterized by spatial vagueness, no approach in the literature addresses both spatial vagueness

and the design of SDWs nor provides multidimensional analysis over vague spatial data. These

shortcomings motivated the elaboration of this doctoral thesis, which addresses both vague spatial

data warehouses (vague SDWs) and vague spatial online analytical processing (vague SOLAP).

A vague SDW is a SDW that comprises vague spatial data, while vague SOLAP allows querying

vague SDWs. The major contributions of this doctoral thesis are: (i) the Vague Spatial Cube

(VSCube) conceptual model, which enables the creation of conceptual schemata for vague SDWs

using data cubes; (ii) the Vague Spatial MultiDim (VSMultiDim) conceptual model, which

enables the creation of conceptual schemata for vague SDWs using diagrams; (iii) guidelines for

designing relational schemata and integrity constraints for vague SDWs, and for extending the

SQL language to enable vague SOLAP; (iv) the Vague Spatial Bitmap Index (VSB-index), which

improves the performance to process queries against vague SDWs. The applicability of these

contributions is demonstrated in two applications of the agricultural domain, by creating

conceptual schemata for vague SDWs, transforming these conceptual schemata into logical

schemata for vague SDWs, and efficiently processing queries over vague SDWs.

Keywords: spatial data warehouses, spatial vagueness, conceptual modeling, logical design, indexing

RÉSUMÉ

Les entrepôts de données spatiales (EDS) et l’analyse en ligne spatiale (ALS) améliorent la

prise de décision en permettant l’analyse spatiale combinée avec des requêtes analytiques

multidimensionnelles. Un EDS est une base de données multidimensionnelle intégrée et

volumineuse qui contient des données classiques et des données spatiales. L’ALS per-

met l’interrogation des EDS avec des requêtes multidimensionnelles qui sélectionnent des

données spatiales qui satisfont une relation topologique donnée et qui agrègent les données

spatiales. Les EDS et l’ALS considèrent essentiellement des phénomènes représentés par

des données spatiales ayant une localisation exacte et des frontières précises. Ils négligent

que les données spatiales peuvent être affectées par des imperfections, comme l’imprécision

spatiale, ce qui empêche de distinguer précisément un objet de son entourage. Un ob-

jet spatial vague n’a pas de frontière et/ou un intérieur précisément définis. Ainsi, il peut

avoir une frontière large et un intérieur flou, et est composé de parties qui lui appartien-

nent certainement et des parties qui lui appartiennent éventuellement. Bien que plusieurs

phénomènes du monde réel sont caractérisés par l’imprécision spatiale, il n’y a pas dans

la littérature des approches qui adressent en même temps l’imprécision spatiale et la con-

ception d’EDS ni qui fournissent une analyse multidimensionnelle des données spatiales

vagues. Ces lacunes ont motivé l’élaboration de cette thèse de doctorat, qui adresse à la

fois les entrepôts de données spatiales vagues (EDS vagues) et l’analyse en ligne spatiale

vague (ALS vague). Un EDS vague est un EDS qui comprend des données spatiales vagues,

tandis que l’ALS vague permet d’interroger des EDS vagues. Les contributions majeures

de cette thèse de doctorat sont: (i) le modèle conceptuel Vague Spatial Cube (VSCube),

qui permet la création de schémas conceptuels pour des EDS vagues à l’aide de cubes de

données; (ii) le modèle conceptuel Vague Spatial MultiDim (VSMultiDim), qui permet la

création de schémas conceptuels pour des EDS vagues à l’aide de diagrammes; (iii) des

directives pour la conception de schémas relationnels et des contraintes d’intégrité pour des

EDS vagues, et pour l’extension du langage SQL pour permettre l’ALS vague; (iv) l’indice

Vague Spatial Bitmap (VSB-index) qui améliore la performance pour traiter les requêtes

adressées à des EDS vagues. L’applicabilité de ces contributions est démontrée dans deux

applications dans le domaine agricole, en créant des schémas conceptuels des EDS vagues,

la transformation de ces schémas conceptuels en schémas logiques pour des EDS vagues,

et le traitement efficace des requêtes sur des EDS vagues.

Mots-clefs: entrepôts de données spatiales, données spatiales vagues, modèle conceptuel, modèle logique, index

LIST OF FIGURES

1.1 Crops in remote sensed image and after identification. (a) A remote sensed im-

age (adapted from Crop Circles in Kansas, by NASA Image of the Day Gallery).

(b) Identified crops. 33

1.2 An applied area of pesticide A1 over the crop C1. (a) A1 over C1. (b) A1 over C11.

(c) A1 over C13. (d) Subsets of A1. 33

1.3 HLB infection. (a) Plots. (b) Two infected trees. (c) Two infected groups. (d)

Two groups and a continuous representation for an infected region. (e) Two

groups and a discrete representation for an infected region. 36

2.1 The relational schema of a SDW regarding a retail application (adapted from

(SIQUEIRA et al., 2010)). 51

2.2 A table and its columns indexed by bitmap join indices. 54

2.3 A region, its approximations and spatial range queries. (a) A region and its

MBR. (b) A region and its MER. (c) A region and its MBR and MER. (d)

Spatial query windows w and v. 56

2.4 The multi-step resolution of spatial predicates (adapted from Brinkhoff, Kriegel

& Schneider (1993)). 56

2.5 An R-tree built using cities of customers from the SDW described in Figure

2.1. (a) Cities, their MBRs and the R-tree’s space partitioning method. (b) The

R-tree data structure. 58

2.6 Probabilistic modeling of uncertain objects: the location of a vehicle (extracted

from Tao, Xiao & Cheng (2007)). 62

2.7 A conceptual model of uncertainty in spatial data (adapted from Fisher (1999)

and Jadidi et al. (2014)). 65

2.8 Examples of vague spatial objects designed according to existing exact models

for spatial vagueness. 69

2.9 Vague regions A and B and the topological relationships between them accord-

ing to existing exact models. 73

2.10 Example of vague spatial objects designed according to existing fuzzy models

for spatial vagueness. 74

2.11 A simple fuzzy region and its membership function (VERSTRAETE; HALLEZ;

TRÉ, 2006). 76

2.12 Evaluating the fuzzy topological relationship between two fuzzy regions. (a)

Pairs of reference α-cuts in black, and Ãα0, B̃α0 in gray. (b) Membership func-

tions and the linguistic labels they assume. 78

2.13 Examples of implemented fuzzy point, fuzzy lines and fuzzy regions. 79

3.1 The graphical notation of the MultiDim conceptual model: (a) Level. (b) Hier-

archy. (c) Cardinalities. (d) Fact with measures and related levels. (e) Hierarchy

name. (f) Spatial data types. (g) Topological relationships. Adapted from Vais-

man & Zimányi (2014a). 86

3.2 A SDW regarding the maintenance of highways modeled according to the Mul-

tiDim model (extracted from Vaisman & Zimányi (2014a)). 88

3.3 A SDW regarding the maintenance of highways modeled according to the UML

profile proposed by Boulil, Bimonte & Pinet (2015). 90

3.4 The logical design according to the Fuzzy SDW (adapted from Somodevilla &

Petry (2003), Perez, Somodevilla & Pineda (2007)). (a) Sample points and a

studied area. (b) Original schema. (c) The fuzzy MBR. (d) Modified schema. . 93

3.5 A conceptual schema of SDW for CERA (adapted from Jadidi et al. (2013)). . . 94

3.6 Creating fuzzy regions for an arbitrary indicator (adapted from Jadidi et al.

(2014)). (a) A magnified cell and its center. (b) The Gaussian function. (c)

A grid and its vague regions defined over multiple cells. 95

3.7 Flow of fertilizer by material by month by spreading region. (a) A spreading

region. (b) The SDW’s fact table. 97

3.8 An example of aR-tree. (a) Cities, MBRs and a spatial query window. (b) SDW

data. (c) Structure of the bi-dimensional array. (d) Data structure of the aR-tree. 100

3.9 An example of SB-index. (a) Cities, their MBRs and a spatial query window.

(b) SDW data. (c) Bitmap join indices. (d) Data structure of the SB-index. . . . 102

3.10 An example of vague R-tree. (a) Vague regions and their pair of MBRs. (b)

Vague R-tree and three point queries. (c) Vague R-tree’s data structure. 105

3.11 An example of FMBR R-tree (adapted from Petry, Ladner & Somodevilla (2007)).

(a) A fuzzy region and points within it. (b) Data structure. 106

4.1 The types of attributes defined in the VSCube Conceptual Model. 116

4.2 Instances of crisp spatial attributes: (a) An address. (b) A watershed. 117

4.3 The vague spatial attribute ν is a composite attribute with a multivalued certi-

tude denoted by geometries and a multivalued dubiety denoted by geometries

and their membership values. 118

4.4 Vague spatial attributes and instances for the pest control case study. (a) An

aplied area. (b) A crop. 119

4.5 The topological relationships among agricultural lands and crops. 121

4.6 The topological relationships among watersheds and agricultural lands. 123

4.7 A watershed, an agricultural land and crops. 125

4.8 The multidimensional and geographic views provided by the cuboid c0, and the

fact f . 130

4.9 The matrix of a vague spatial fact. 132

4.10 Lattice of cuboids LPesticideApplication, represented according to the bottom-up

notation of Ciferri et al. (2013). 134

4.11 A subset of the lattice LPesticideApplication. (a) Cuboids. (b) The multidimensional

view. (c) The geographic view. (d) Data aggregation. 135

4.12 The vague spatial object z and the spatial query window q. 136

4.13 The results for IRQcertitude elements, IRQdubiety elements and IRQdubiety elements−mval .

(a) IRQcertitude elements. (b) IRQdubiety elements. (c) IRQdubiety elements−mval 138

4.14 A V SRQob ject against crisp watersheds. (a) Watersheds and spatial query win-

dows. (b) Result set. 139

4.15 The vague spatial union applied to the vague spatial objects x and y. (a) x and

y. (b) z =V SUnion(x,y). 141

4.16 The vague spatial intersection applied to the vague spatial objects x and y. (a) x

and y. (b) z =V SIntersection(x,y). 142

4.17 The vague spatial difference applied to the vague spatial objects x and y. (a) x

and y. (b) z =V SDi f f erence(x,y). 143

4.18 A pivoted cuboid. 145

4.19 A spatial range query against a TIN. (a) A TIN and a spatial query window w.

(b) Triangles tblack and tgray of the TIN. 149

4.20 Pictograms denoting data types supported by the VSMultiDim conceptual model.152

4.21 Pictograms denoting topological relationships of the VSMultiDim conceptual

model. 155

4.22 Vague spatial levels: (a) Obtained from a dimension of the pest control case

study. (b) Modeled to comply with the HLB case study. 156

4.23 A hierarchy of the pest control case study represented according to both the

VSCube model and the VSMultiDim model. 158

4.24 A hierarchy of the HLB case study represented according to the VSMultiDim

model. 159

4.25 Hierarchies of the HLB case study represented according to the VSMultiDim

model. 160

4.26 A conceptual schema of vague SDW for the pest control case study. 161

4.27 A conceptual schema of vague SDW for the HLB case study. 162

5.1 Separate Tables for Certitude and Dubiety. 172

5.2 A vague region and its storage in separate Tables for Certitude and Dubiety. . . 173

5.3 A vague region and its storage in separate Tables for Certitude and Dubiety

considering a vague spatial attribute whose both the certitude and the dubiety

are monovalued. 174

5.4 The vague spatial attribute represented by a single table. 175

5.5 An example of vague region according to the vague spatial attribute represented

by a single table. 175

5.6 A vague region, its MBR and the MBRs of its elements. 176

5.7 A single table with a composite primary key. 177

5.8 The classes VSElementType and VSAttributeType and the table T. 178

5.9 A vague region and its representation as an array. 178

5.10 The vague spatial attribute represented by a pair of arrays. 180

5.11 A vague region and its representation as a pair of arrays. 180

5.12 The vague spatial attribute designed as a column for multiple geometries and a

column for the array of membership values. 182

5.13 A vague region stored as a multiple geometry and an array of membership values.183

5.14 The logical design for the vague spatial attribute with monovalued certitude and

monovalued dubiety. 185

5.15 The storage of a vague region whose both certitude and dubiety are monovalued. 185

5.16 Shortcomings of both the 2D geometry type with measure and the 3D geometry

type: (a) A vague point set. (b) A vague line. (c) Two elements of a vague

region. 186

5.17 Examples of the application of Rule 2VS to obtain the vague spatial level tables

Crop and Infection. 192

5.18 Mapping rules applied to a pair of related vague spatial levels. 195

5.19 The logical schema of the vague SDW regarding the HLB disease. 197

5.20 A vague spatial fact table. (a) The schema. (b) A vague spatial fact set. 201

5.21 A vague spatial fact table with a vague spatial measure for areas where pesti-

cides were applied to. 203

5.22 Intersections among elements of A1 and C1. (a) A1 and C1. (b) Intersection

among elements of A1 and C13. (c) Merging the geometries from (b). (d) Inter-

section among elements of A1 and C11. (e) Merging the geometries from (d). . 204

5.23 A vague spatial fact set involving one numeric measure, one vague spatial mea-

sure and one vague spatial level table. 205

6.1 The vague SDW storing infected groups as vague point sets. 238

6.2 Creating vague point sets: (a) Processing the real polygon. (b) The vague point

set. 239

6.3 The spatial query window w containing two vague point sets. 240

6.4 Performance results of the DBMS for the vague SDW containing vague point

sets: (a) Storage requirements. (b) Query processing. 241

6.5 The schema of the vague SDW storing vague regions: (a) Incomplete schema.

(b) Tables to complete the schema. 242

6.6 From real polygons to vague regions: (a) Processing the real polygon. (b) The

obtained vague region. 243

6.7 The spatial query window w intersecting several vague regions of the vague SDW.245

6.8 Results for the DBMS and indices for SDWs: (a) Average elapsed time. (b)

Fraction of the vague spatial predicate. 246

6.9 The vague SDW storing vague regions in a separate table. 248

6.10 Elapsed time to process VSRQobject over the vague SDW containing vague

regions. 250

6.11 A vague region and its approximations: (a) The MIP5 on the certitude. (b) The

MBR on the vague region and the MIP5 on the certitude. 252

6.12 A vague region in tones of gray, its approximations with black continuous

contour and spatial range queries with dashed rectangles: (a) A CRQob ject

against OMBR. (b) A CRQcertitude against OMBRCMBR. (c) An IRQob ject against

OMBRCMIP5. (d) Another IRQob ject against OMBRCMIP5. (e) An IRQcertitude

against OMBROMIP5CMBRCMIP5. 259

6.13 A vague region, its elements and vague spatial predicates regarding the dubiety:

(a) A CRQdubiety. (b) An IRQdubiety. (c) A query window into the holes. 262

6.14 Vague spatial range queries. (a) Against MBRs. (b) Against MBRs and MIP5s. 268

6.15 The schema of both the synthetic vague SDW and the real vague SDW. 273

6.16 Two vague regions and one spatial query window w. 273

6.17 Results for IRQobject and IRQdubiety issued over the real vague SDW: (a)

Average elapsed time. (b) Average number of candidates. 277

6.18 Results for IRQcertitude issued over the real vague SDW: (a) Average elapsed

time. (b) Average number of candidates. 279

6.19 The performance to process IRQobject and IRQdubiety over the synthetic vague

SDW. 281

6.20 The performance to process the IRQcertitude over the synthetic vague SDW. . . 283

6.21 Average elapsed time to process CRQobject and CRQdubity over the synthetic

vague SDW. 284

6.22 Average elapsed time to process CRQcertitude over the synthetic vague SDW. . 286

6.23 Average elapsed time to process VSRQobject over the synthetic vague SDW. . 288

6.24 Time spent to build different configurations of the VSB-index. 290

6.25 Storage requirements for different configurations of the VSB-index. 290

LIST OF TABLES

1.1 Examples of queries for the analysis of the pest control activities. 34

1.2 Examples of queries for the analysis of of HLB control. 37

2.1 Multidimensional queries extended with spatial predicates. 47

2.2 Nomenclatures adopted by exact models for components of a vague spatial object. 68

2.3 Comparing exact models, fuzzy models and implementations for fuzzy models. 83

3.1 Comparing existing work on SDW design to conceptual modeling and logical

design of vague SDWs introduced in this thesis. 108

3.2 Comparing existing work on design of SDWs characterized by spatial vague-

ness to the design of vague SDWs described in this thesis. 109

3.3 Comparing indices for SDW and indices for vague regions to the VSB-index. . 110

4.1 Types that the attributes xi and xi+1 can assume. 122

4.2 Categories of hierarchies of the VSCube conceptual model. 126

5.1 The approaches described in Sections 5.2.1 to 5.2.6 and the goals they achieve. 187

5.2 Operations on vague spatial attributes. 219

5.3 Accessors: methods’ signatures and descriptions. 220

5.4 Vague spatial predicates: methods’ signatures and descriptions. 223

5.5 Vague spatial aggregation functions: methods’ signatures and descriptions. . . . 228

5.6 Classes of slice and dice operations. 230

5.7 Classes of roll-up and drill-down operations. 230

5.8 The logical design of vague SDWs and the corresponding guidelines or imple-

mentations. 232

6.1 Entry size in bytes (s), number of entries per disk page (L) and number of disk

pages to store the index file (A) considering different cardinalities (c). 253

6.2 Spatial range queries of the workload. 275

6.3 Summary of the results obtained with the experimental evaluation of the VSB-

index. 292

TABLE OF CONTENTS

CHAPTER 1 – INTRODUCTION 29

1.1 The Pest Control Case Study . 32

1.2 The HLB Case Study . 34

1.3 Thesis Organization . 37

CHAPTER 2 – THEORETICAL FOUNDATIONS 41

2.1 Spatial Data Warehouse Design . 41

2.1.1 Conceptual Modeling . 41

2.1.1.1 Entity-Relationship Model and Unified Modeling Language . 42

2.1.1.2 Multidimensional Modeling 43

2.1.1.3 Spatial Data . 44

2.1.1.4 Multidimensional and Spatial Data Cubes 45

2.1.2 Logical Design . 46

2.1.2.1 Relational Databases . 47

2.1.2.2 Spatial Extensions of Database Management Systems 48

2.1.2.3 Relational Representation of Spatial Data Warehouses 49

2.1.3 Physical Design . 52

2.1.3.1 Bitmap Index and Bitmap Join Index 52

2.1.3.2 Spatial Indices . 54

2.2 Uncertain Data Management . 59

2.2.1 Probabilistic Data . 60

2.2.1.1 Probabilistic Data Warehouses 61

2.2.1.2 Probabilistic Spatial Data 61

2.2.2 Fuzzy Data . 63

2.2.2.1 Fuzzy Data Warehouses . 63

2.3 Spatial Vagueness . 65

2.3.1 Exact Models for Spatial Vagueness 67

2.3.1.1 Vague Spatial Data Types 68

2.3.1.2 Vague Spatial Geometric Set Operators 70

2.3.1.3 Vague Topological Relationships 71

2.3.2 Fuzzy Models for Spatial Vagueness 72

2.3.2.1 Fuzzy Spatial Data Types 72

2.3.2.2 Fuzzy Spatial Operators . 76

2.3.2.3 Fuzzy Spatial Topological Relationships 77

2.3.3 Implementations for Fuzzy Models 78

2.3.3.1 Spatial Plateau Objects . 79

2.3.3.2 Lines with Gradual Transitions 80

2.3.3.3 Bitmaps . 80

2.3.3.4 Triangulated Irregular Networks 81

2.3.3.5 Fuzzy Minimum Bounding Rectangles 81

2.3.4 Summary . 82

CHAPTER 3 – RELATED WORK 85

3.1 Conceptual Modeling and Logical Design of Spatial Data Warehouses 85

3.1.1 The MultiDim Conceptual Model . 86

3.1.2 UML Profiles . 88

3.1.3 The Spatial Data Warehouse Metamodel 90

3.1.4 Discussion . 91

3.2 Spatial Vagueness in Spatial Data Warehouses 92

3.2.1 The Fuzzy Spatial Data Warehouse 92

3.2.2 Conceptual Frameworks for Risk Assessment 94

3.2.3 The RADSOLAP Method . 96

3.2.4 Discussion . 98

3.3 Indices for Spatial Data Warehouses . 99

3.3.1 aR-tree . 99

3.3.2 SB-index . 101

3.3.3 Discussion . 103

3.4 Indices for Vague Regions . 104

3.4.1 Vague R-tree . 104

3.4.2 FMBR R-tree . 105

3.4.3 Discussion . 107

3.5 Summary . 107

CHAPTER 4 – CONCEPTUAL DESIGN OF VAGUE SPATIAL DATA WAREHOUSES111

4.1 Conceptual Modeling of Vague Spatial Data Warehouses 112

4.2 Attributes . 115

4.3 Hierarchies . 120

4.3.1 Hierarchy Operator . 120

4.3.2 Properties of Hierarchies . 123

4.3.3 Categories of Hierarchies . 126

4.4 Multidimensional Cube with Vague Spatial Data 127

4.4.1 Dimensions . 127

4.4.2 Measures . 128

4.4.3 Cube . 128

4.4.4 Vague Spatial Fact . 130

4.4.5 Lattice of Cuboids . 132

4.5 Vague Spatial Predicates . 134

4.5.1 Spatial Range Queries . 135

4.5.2 The Vague Spatial Range Query . 138

4.6 Vague Spatial Aggregation Functions . 140

4.6.1 Vague Spatial Union . 140

4.6.2 Vague Spatial Intersection . 141

4.6.3 Vague Spatial Difference . 142

4.7 Vague Spatial Online Analytical Processing 144

4.8 Reusing Existing Models and Implementations 146

4.8.1 Arbitrary Geometries . 146

4.8.2 Bitmaps . 147

4.8.3 Triangulations . 147

4.8.4 Lines with Gradual Transitions . 150

4.9 The Vague Spatial MultiDim Conceptual Model 151

4.9.1 Fundamentals . 152

4.9.1.1 Data Types . 152

4.9.1.2 Certitude and Dubiety . 154

4.9.1.3 Vague Topological Constraints 154

4.9.2 Attributes, Levels and Members . 155

4.9.3 Dimensions and Hierarchies . 157

4.9.4 Fact and Measures . 160

4.10 Summary . 164

CHAPTER 5 – LOGICAL DESIGN OF VAGUE SPATIAL DATA WAREHOUSES 167

5.1 Relational Representation of Vague Spatial Data Warehouses 168

5.2 Implementations for the Vague Spatial Attribute 170

5.2.1 Separate Tables for Certitude and Dubiety 171

5.2.2 A Single Table for Certitude and Dubiety 174

5.2.3 User Defined Types . 177

5.2.4 A Pair of Arrays . 179

5.2.5 One Multiple Geometry And One Array of Membership Values 181

5.2.6 Monovalued Certitude and Monovalued Dubiety 184

5.2.7 2D Geometry With Measure or 3D Geometry 184

5.2.8 Discussion . 186

5.3 Vague Spatial Attribute . 187

5.4 Vague Spatial Level and Vague Spatial Member 191

5.5 Hierarchies . 194

5.6 Fact and Vague Spatial Measure . 195

5.7 Vague Spatial Fact . 197

5.7.1 Relational Representation . 198

5.7.2 Numeric Measures and Crisp Spatial Measures 199

5.7.3 Vague Spatial Measures . 201

5.7.4 Loading a Vague Spatial Fact Table 205

5.7.5 Discussion . 206

5.8 Vague Topological Constraints . 208

5.8.1 Pairwise Evaluation of Sets of Topological Relationships 208

5.8.2 Hierarchy . 211

5.8.3 Spatial Fact . 214

5.8.4 Intra Level and Intra Fact . 217

5.9 Vague Spatial Online Analytical Processing 219

5.9.1 Accessors . 219

5.9.2 Vague Spatial Predicates . 222

5.9.3 Vague Spatial Aggregation Functions 228

5.9.4 Slice-and-Dice, Roll-Up, and Drill-Down 229

5.10 Summary . 231

CHAPTER 6 – PHYSICAL DESIGN OF VAGUE SPATIAL DATA WAREHOUSES 235

6.1 Indexing Vague Spatial Data Warehouses . 235

6.2 Evaluation of a DBMS and of Indices for Spatial Data Warehouses 237

6.2.1 Containment Range Queries against Vague Point Sets 237

6.2.1.1 Workbench and Platforms 238

6.2.1.2 Workload . 240

6.2.1.3 Results . 240

6.2.2 Intersection Range Queries against Vague Regions 241

6.2.2.1 Workbench and Platforms 242

6.2.2.2 Workload . 243

6.2.2.3 Results . 245

6.2.3 Vague Spatial Range Queries against Vague Regions 246

6.2.3.1 Workbench and Platforms 247

6.2.3.2 Workload . 247

6.2.3.3 Extending the SB-index . 249

6.2.3.4 Results . 249

6.2.4 Discussion . 250

6.3 The Vague Spatial Bitmap Index . 251

6.3.1 Maximum Area Inscribed Polygon . 252

6.3.2 Data Structure . 252

6.3.3 Building Operation . 253

6.3.4 Processing Queries containing Spatial Range Queries 256

6.3.4.1 Filtering with a Conservative Approximation 258

6.3.4.2 Filtering with a Conservative Approximation and a Progres-

sive Approximation . 259

6.3.4.3 Particularities of Querying the Dubiety 261

6.3.4.4 Calling the Procedures . 262

6.3.5 Processing Queries Containing a Vague Spatial Range Query 264

6.3.5.1 Filtering with a Conservative Approximation 266

6.3.5.2 Filtering with a Conservative Approximation and a Progres-

sive Approximation . 268

6.3.5.3 Calling the Procedures . 270

6.4 Evaluation of the VSB-index . 271

6.4.1 Experimental Setup . 272

6.4.1.1 Workbench and Platforms 272

6.4.1.2 Workload . 275

6.4.2 Intersection Range Queries over the Real Vague SDW 276

6.4.2.1 IRQobject and IRQdubiety 277

6.4.2.2 IRQcertitude . 278

6.4.3 Intersection Range Queries over the Synthetic Vague SDW 280

6.4.3.1 IRQobject and IRQdubiety 280

6.4.3.2 IRQcertitude . 282

6.4.4 Containment Range Queries over the Synthetic Vague SDW 282

6.4.4.1 CRQobject and CRQdubiety 283

6.4.4.2 CRQcertitude . 285

6.4.5 Vague Spatial Range Queries over the Synthetic Vague SDW 285

6.4.5.1 Test Configurations . 286

6.4.5.2 Results . 287

6.4.6 Building Costs and Storage Requirements 288

6.5 Summary . 290

CHAPTER 7 – CONCLUSION AND FUTURE WORK 295

REFERENCES 301

GLOSSARY 317

APPENDIX A – USER-DEFINED FUNCTIONS 319

APPENDIX B – PROCEDURES OF THE VSB-INDEX 323

Chapter 1
INTRODUCTION

Decision-making support has gained the attention of researchers of data warehouse (DW),

online analytical processing (OLAP), and geographic information system (GIS). Spatial data

warehouse (SDW) and spatial online analytical processing (SOLAP) are remarkable achieve-

ments that resulted from their research. A SDW is a subject-oriented, integrated, time-variant,

voluminous, non-volatile and multidimensional database that stores spatial data and conven-

tional data (numeric and alphanumeric) (STEFANOVIC; HAN; KOPERSKI, 2000; FIDALGO et al.,

2004; SILVA et al., 2010; VAISMAN; ZIMÁNYI, 2014b). Fact, dimension, and hierarchy are core

concepts of a SDW. A fact denotes the scores of business activities through numeric measures or

spatial measures, while dimensions hold conventional attributes and spatial attributes that con-

textualize the values of the measures. Hierarchies associate dimension’s attributes of coarser

and finer granularity. When these attributes are spatial, the association is described by a topo-

logical relationship (e.g. within).

SOLAP aids the decision-making process by providing spatial analysis combined with

multidimensional analytical queries that run over the SDW (BÉDARD; MERRETT; HAN, 2001;

BIMONTE; TCHOUNIKINE; MIQUEL, 2005). SOLAP operations process both conventional and

spatial data. For instance, a roll-up operation aggregates not only numeric data with functions

such as sum, but also aggregates spatial data using the geometric union (STEFANOVIC; HAN;

KOPERSKI, 2000; SILVA et al., 2008; GOMEZ et al., 2009; BOULIL; BIMONTE; PINET, 2015). In ad-

dition, spatial range queries select spatial data that satisfy a given topological relationship (e.g.

intersects and within) with respect to an ad hoc spatial query window (PAPADIAS et al., 2001;

SIQUEIRA et al., 2010).

In SDWs, spatial data are modeled either as spatial objects or as continuous fields (STE-

FANOVIC; HAN; KOPERSKI, 2000; VAISMAN; ZIMÁNYI, 2009; BIMONTE; KANG, 2010; GASCUEÑA;

GUADALUPE, 2009; VAISMAN; ZIMÁNYI, 2014b; BOULIL; BIMONTE; PINET, 2015). Spatial ob-

30 1 Introduction

jects are crisp in the sense that they assume definite extent, boundary, and shape, e.g. the

territory of a city. They are commonly implemented using vector geometries provided by the

underlying DBMS (HOEL, 2008). Continuous fields represent phenomena that change contin-

uously in space, e.g. elevation (CÂMARA; FREITAS; CASANOVA, 1995; CÂMARA et al., 2014).

They are often implemented as raster and triangulated irregular networks (HOEL, 2008).

However, spatial data are susceptible to imperfections. Spatial vagueness is one kind of

spatial data imperfection concerning the difficulty of distinguishing an object shape from its

neighborhood, since the concepts used to describe the spatial information are not defined pre-

cisely (WORBOYS, 1998; BEJAOUI, 2009). As a result, it is not possible to be sure if the parts

of a spatial object belong completely to it, or possibly belong to it, or simply do not belong to

it (PAULY; SCHNEIDER, 2010). A vague spatial object has an extent, but it inherently cannot or

does not have a precisely definable boundary and/or interior. Consequently, it is not rigorously

bounded by a sharp line and might have a blurred interior (BURROUGH, 1996; SCHNEIDER,

2014). Spatial vagueness has been considered in applications for agriculture (BEJAOUI et al.,

2009; EDOH-ALOVE et al., 2014), coastal erosion (DILO, 2006; JADIDI et al., 2014), volcanic cri-

sis management (PEREZ; SOMODEVILLA; PINEDA, 2010), among others (BURROUGH; FRANK,

1996).

Spatial vagueness has been addressed by distinct models that assign membership degrees to

vague concepts: exact models (COHN; GOTTS, 1996; CLEMENTINI; FELICE, 1996; BEJAOUI et al.,

2009, 2010; PAULY; SCHNEIDER, 2010) and fuzzy models (DILO; BY; STEIN, 2007; SCHNEIDER,

2008; TANG; KAINZ; WANG, 2010; HAZARIKA; HAZARIKA, 2012; SCHNEIDER, 2014). Exact

models are mostly based on crisp spatial data types, while fuzzy models adopt the fuzzy set

theory as their mathematical fundamentals. There is not a commonly accepted terminology

to define concepts related to imperfections of spatial data (DEVILLERS et al., 2010). In this

thesis, the terms vague and fuzzy differ exclusively in the approach used to define the model.

Therefore, vague spatial data can be modeled either according to a vague spatial data type from

an exact model or to a fuzzy spatial data type from a fuzzy model.

Existing models for representing spatial vagueness do not provide multidimensional analy-

sis combined with spatial analysis. However, such combination is essential for a SOLAP tool to

query a SDW. Spatial vagueness was tackled exclusively in data cleansing and integration tasks,

before the design of the SDW schema, for natural phenomena whose indeterminate boundaries

need to be re-measured at different epochs (BÉDARD; MERRETT; HAN, 2001). Since the design

of SDWs typically considers crisp spatial objects, it prevents some types of decision-support

analysis to be carried out by SOLAP (BÉDARD; MERRETT; HAN, 2001). These shortcomings

1 Introduction 31

gained the attention of researchers and recent work in the literature consider spatial vagueness

in the design of SDWs (PEREZ; SOMODEVILLA; PINEDA, 2010; JADIDI et al., 2013; EDOH-ALOVE;

BIMONTE; BÉDARD, 2014; EDOH-ALOVE et al., 2014). Those work rely upon the advances on

multidimensional modeling (VAISMAN; ZIMÁNYI, 2014b; BOULIL; BIMONTE; PINET, 2015), sys-

tems of both vague and fuzzy spatial data types (BURROUGH; FRANK, 1996; DILO; BY; STEIN,

2007; PAULY; SCHNEIDER, 2010), and implementations for these systems (VERSTRAETE et al.,

2005; SCHNEIDER, 2014).

Nevertheless, existing work focus exclusively on conceptual design of SDWs (JADIDI et al.,

2013), or on logical design of SDWs (PEREZ; SOMODEVILLA; PINEDA, 2010), or do not con-

sider different models to represent spatial vagueness in the design of SDWs (EDOH-ALOVE;

BIMONTE; BÉDARD, 2014; EDOH-ALOVE et al., 2014). Furthermore, the physical design of a

SDW does not comprise an index to improve the performance of multidimensional queries ex-

tended with spatial predicates involving vague spatial data. Rather, existing indices process

either multidimensional queries (WU et al., 2009; LANE; POTINENI, 2014), or spatial predicates

involving crisp spatial data (GUTTMAN, 1984; AOKI, 1998; ORACLE. . . , 2014; OBE; HSU, 2015),

or spatial predicates involving vague spatial data (PETRY; LADNER; SOMODEVILLA, 2007), or

multidimensional queries extended with spatial predicates involving crisp spatial data (PAPA-

DIAS et al., 2001; SIQUEIRA et al., 2012b).

On the other hand, in this thesis, spatial vagueness is considered to design and query the

SDW. Consequently, the vague spatial data warehouse (vague SDW) and the vague spatial on-

line analytical processing (vague SOLAP) are obtained. The results of the investigations on

conceptual modeling, logical design, and physical design of the vague SDW have provided the

following contributions:

• the Vague Spatial Cube (VSCube) conceptual model that enables the creation of concep-

tual schemata for vague SDWs using data cubes and provides vague spatial aggregation

functions and vague spatial predicates to query vague spatial data from measures and

dimensions;

• the Vague Spatial MultiDim (VSMultiDim) conceptual model that provides visual rep-

resentations for the concepts and enables the creation of conceptual schemata for vague

SDWs using diagrams;

• guidelines for designing relational schemata and integrity constraints for vague SDWs,

and for extending the SQL language to enable vague SOLAP;

• the Vague Spatial Bitmap Index (VSB-index), which improves the performance to process

32 1 Introduction

queries against vague SDWs.

In order to illustrate the applicability of the vague SDW and the aforementioned contri-

butions, two case studies concerning agriculture are described and used throughout this thesis

to exemplify concepts. The pest control case study described in Section 1.1 addresses a real

problem whose existing solutions mostly neglect spatial vagueness. The huanglongbing (HLB)

case study detailed in Section 1.2 tackles a real problem in citriculture that has been investi-

gated by the Brazilian Agricultural Research Corporation (Embrapa), but that had not yet been

addressed using a vague SDW. Section 1.3 outlines the chapters of this thesis and summarizes

the aforementioned contributions.

1.1 The Pest Control Case Study

Precision agriculture has been adopted in the management of farms to optimize returns on

inputs while preserving resources. Spatial and temporal characteristics of crops are processed

in decision support systems (INAMASU et al., 2011). For instance, remote sensing images are

provided as input to classification algorithms, e.g. k-means, for identification of crops and

their characteristics (RECIO et al., 2013). The goal is to map the crop in order to apply a suitable

pesticide rate. The output of the classification comprises some crops as crisp regions and several

crops as vague regions.

Figure 1.1a shows a remote sensed image and crops highlighted inside a white dashed

rectangle. One crop is identified as being crisp and is shown in Figure 1.1b: C6. On the other

hand, the remaining crops intrinsically have a vague shape, e.g. the crop C1 has two parts that

belong to it in black and one part that may belong to it in gray, and the crop C5 has one part that

belongs to it in black and four parts that may belong to it in gray.

The combination of remotely sensed imagery and variable rate technology enables the ap-

plication of pesticides at specific locations (RECIO et al., 2013). Pesticides such as herbicides,

insecticides, fungicides and defoliants are applied aerially to crops, with some fraction inter-

cepted by foliage and some fraction reaching the soil. Methods of application vary from ground

equipment to aircraft, and the material can be applied as solids, dispersions, emulsions or so-

lutions (LEONARD; KNISEL; STILL, 1987). Pesticides are not applied uniformly over the extent,

due to variable spraying according to the weed area, real-time sensory and fuzzy control used to

regulate dose of drugs (SHI et al., 2008). In addition, dissipation, plant transpiration and runoff

influence the distribution of pesticide in a given extent (NEITSCH; ARNOLD; WILLIANS, 2011).

For instance, the crop C1 and the area A1 where a given pesticide was applied to, shown in Fig-

1.1 The Pest Control Case Study 33

(a)

C5

C6

C7

C3

C4

C1 C2

Belongs to a crop

Possibly belongs to a crop

(b)

Figure 1.1: Crops in remote sensed image and after identification. (a) A remote sensed image
(adapted from Crop Circles in Kansas, by NASA Image of the Day Gallery). (b) Identified crops.

ure 1.2a, indicate that the possibility of application is higher in the darker gradient than in the

brighter gradient.

A1

C1

(a)

C11

0.25 tons

C12

(b) (c)

A1

100%

80%

50%

30%

(d)

Figure 1.2: An applied area of pesticide A1 over the crop C1. (a) A1 over C1. (b) A1 over C11. (c) A1

over C13. (d) Subsets of A1.

In addition to estimate where pesticides were applied, another relevant measure in the study

is the amount in tons of pesticides applied. For instance, considering that 0.3 t were applied over

A1, some portions of pesticides were applied over parts of crops, as follows: 0.25 t were applied

over the part C11 that certainly belongs to C11, as shown in Figure 1.2b; no pesticide was applied

over the part C12 that certainly belongs to C1; and 0.05 t were applied over the part C13 that may

belong to C1, in the extent circumscribed by a dashed line in Figure 1.2c. A discrete represen-

34 1 Introduction

Table 1.1: Examples of queries for the analysis of the pest control activities.

Query Description
PC1 Retrieve the amount of pesticides applied and areas where pesticides were applied to

by pesticide by date by crop.

PC2 Retrieve the amount of pesticides applied and areas where pesticides were applied to
by pesticide by date by parts that certainly (or possibly) belong to a crop.

PC3 Retrieve the amount of pesticides applied and areas where pesticides were applied to
by pesticide type by month by agricultural land.

PC4 Retrieve the amount of pesticides applied and areas where pesticides were applied to
by pesticide type by month by agricultural land, for herbicides applied in 2012 whose
applied areas certainly intersect a spatial query window provided by the user.

tation of a continuous applied area is obtained as subsets having a possibility of application,

according to Figure 1.2d, for A1 and possibilities of 100%, 80%, 50% and 30%. Such represen-

tation use geometric shapes and the corresponding possibility (membership) values. Dates of

pesticide applications are also recorded.

Agricultural lands from different owners are identified through the same procedure and

have broad boundaries. Each agricultural land maintains several crops, but one crop is asso-

ciated to at most one agricultural land. Aiming at correlating water quality and pesticide use,

watersheds were included in the application and gathered from the database of the hydrological

local department. Each watershed contains several agricultural lands.

Crops, areas of pesticide application, and agricultural lands are affected by spatial vague-

ness, while watersheds are crisp regions. The areas where pesticides were applied to and the

amounts of applied pesticides in tons are reported by pesticide by crop by date to benefit the

analysis of the agricultural and the environmental impacts. Table 1.1 lists a few queries used

for the analysis of the pest control activities.

1.2 The HLB Case Study

Huanglongbing (HLB), also known as greening, is the world’s most serious citrus disease

(BOVÉ, 2014). A bacteria-carrying psyllid injects the bacterium into a healthy tree while feeding

from it. Visual inspections of all trees of the plot are carried out monthly throughout multiple

years to detect symptomatic and infected trees. The symptom severity is a value estimated after

inspecting leaves and branches of a tree (PUSTIKA et al., 2008). Although infected trees have

1.2 The HLB Case Study 35

often high symptom severity, some infected trees show no symptoms during a period.

Studying the spatial distribution of infection is valuable to motivate control practices, e.g.

eradication of symptomatic trees and replacement by healthy trees. HLB spread is analyzed

(GOTTWALD, 2010): (i) by tree, by plot, by farm, by city; and (ii) by group of certainly and

possibly infected trees, by region with several groups. Given a certainly infected tree, adjacent

trees within row and across row are possibly infected. The possibility of infection is higher

as closer a tree is from an infected tree. A group may encompass up to 572 trees and the

distance between groups was once estimated to be within 25 to 30 meters (GOTTWALD; GRAÇA;

BASSANEZI, 2007). The edge effect determines that infected regions often overlap more than

one plot, mainly when neighbor farms do not comply with a regional policy of HLB control.

Furthermore, a recent study reported decreasing psyllid abundance with increased elevation,

e.g. no psyllids were collected at an elevation above 600 meters (JENKINS; HALL; GOENAGA,

2015).

The Brazilian Agricultural Research Corporation (Embrapa) studies HLB. For instance,

Jorge & Inamasu (2014) described an application whose main features are the following. Farms,

their plots, and plot’s trees are mapped. All of them have exact location and boundaries. A farm

has an owner and comprises several plots. In a plot, trees of a given plant are grown. Monthly,

inspectors examine all trees and annotate a status, i.e. “healthy”, “infected”, or “eradicated”.

The dataset used by Jorge & Inamasu (2014) has been kindly provided for use in this thesis.

In order to comply with the characteristics of HLB infection, the following features extend the

cited application.

The HLB infection is mapped monthly. An inspector examines a tree and estimates a pos-

sibility of infection in [0,1] to the tree’s location. The possibility of infection indicates whether

the tree’s location belongs to the HLB infection and quantifies the membership degree. For each

location where the possibility of infection is 1, locations of adjacent trees within row and across

row are assigned a possibility of infection in]0,1[according to a distance function. An infected

group is composed of adjacent locations that had a possibility of infection assigned.

After the complete examination of the farm, the extent occupied by the HLB infection is

outlined as a region that covers one or more infected groups. Clustering techniques can be

applied to outline infected regions, e.g. α-hull (EDELSBRUNNER; KIRKPATRICK; SEIDEL, 1983)

and fuzzy c-means (BEZDEK; EHRLICH; FULL, 1984). An infected region is composed both by

parts where the possibility of infection is 1 and by parts where the possibility of infection is in

]0,1[. It may overlap more than one plot.

Figure 1.3a shows a remote-sensed image of citrus plots and labels the plots Plot1 and Plot2.

36 1 Introduction

Figure 1.3b zooms into the rectangular area highlighted in Figure 1.3a and shows two certainly

infected trees recognized in a given month: the red and the orange, each one in a plot. These

trees belong to the red group and to the orange group as shown in Figure 1.3c. Each tree in a

group has a possibility of infection. Both the orange group and the red group belong to the same

infected region shown in Figure 1.3d, which overlaps both Plot1 and Plot2, even though a road

separates these plots. Figure 1.3e shows a discrete representation of the continuous infected

region exemplified in Figure 1.3d, according to the possibility of infection.

(a) (b) (c)

(d) (e)

Figure 1.3: HLB infection. (a) Plots. (b) Two infected trees. (c) Two infected groups. (d) Two
groups and a continuous representation for an infected region. (e) Two groups and a discrete
representation for an infected region.

In addition to examine a tree and estimate a possibility of infection, the inspector also as-

signs the HLB symptom severity as a value within 0 and 9. Furthermore, the inspector indicates

whether the examined tree must be eradicated or not. If a tree is eradicated, then its eradication

date is assigned. Therefore, each tree must also have a date when it was planted, while the date

of eradication due to HLB infection is initially unknown. Table 1.2 lists a few queries used for

the analysis of HLB control.

1.3 Thesis Organization 37

Table 1.2: Examples of queries for the analysis of of HLB control.

Query Description
HLB1 Retrieve an infection’s location and possibility and the symptom severity by tree by

infected group by month by inspector.

HLB2 Retrieve infections’ location and maximum possibility by plot by quarter of 2014.

HLB3 Retrieve the average symptom severity by infected group by month in 2014.

HLB4 Retrieve the number of eradicated trees by plot by year by team.

HLB5 Retrieve the number of eradicated trees by year by team, such that infected regions
intersect a spatial query window provided by the user.

HLB6 Retrieve the number of certainly infected trees located between 500m and 600m
by plot by month in a given city between January and June, 2014.

HLB7 Retrieve infected regions identified in a given city between January and March, 2014,
such that infection possibility was greater than 80%.

1.3 Thesis Organization

Chapter 2 addresses the main concepts that are necessary to comprehend this thesis, con-

cerning SDW and spatial vagueness. Firstly, fundamentals of conceptual modeling, logical

design and physical design for SDWs are surveyed. Secondly, spatial vagueness is character-

ized and the fundamentals of the main approaches for spatial vagueness are summarized. Exact

models, fuzzy models and implementations for fuzzy models are revised according to their data

types, operators, and topological relationships.

Chapter 3 surveys and discusses existing work in the literature that are related to this thesis.

The main characteristics of existing conceptual models for SDW are reported in order to iden-

tify requirements of a conceptual model for vague SDWs. Similarly, existing work aimed at the

logical design of SDWs are addressed to determine a baseline for the logical design of vague

SDWs. Furthermore, indices for SDWs have their data structures and query processing algo-

rithms studied to verify the adequacy for indexing vague spatial data. Finally, existing indices

for vague regions are also surveyed regarding the data types they support, the query processing

algorithms they offer, and the spatial predicates they resolve.

Chapter 4 addresses conceptual design of vague SDWs and describes two major contri-

butions of this thesis: the VSCube conceptual model and the VSMultiDim conceptual model.

The VSCube conceptual model is based on the multidimensional data cube and supports vague

38 1 Introduction

spatial objects as geometric shapes and their corresponding membership values, both in dimen-

sions or as measures in a fact. Furthermore, values of measures are allowed to be assigned to

parts of a vague spatial object. Vague spatial aggregation functions (e.g. vague spatial union),

vague spatial predicates (e.g. vague spatial range queries) and vague SOLAP operations (e.g.

drill-down and roll-up) are described to enable spatial analysis combined with multidimensional

exploitation of the data cube. The VSMultiDim conceptual model extends an existing concep-

tual model for SDWs by enabling vague spatial attributes in dimensions or as measures in a

fact, and by specifying constraints involving vague spatial data. Differently from the VSCube

model, the VSMultiDim model provides a graphical notation to allow the creation of diagrams

that represent the multidimensional conceptual schema of the vague SDW. Both the VSCube

and the VSMultiDim models overcome related work in expressiveness, as those models tackle

both vague spatial data types and fuzzy spatial data types.

Chapter 5 focuses the logical design of vague SDWs underlying relational database manage-

ment systems (DBMSs) with an extension for spatial data. Alternative logical designs for vague

spatial attributes are duly described and compared. Mapping rules are provided to transform the

conceptual schema of a vague SDW into a logical schema. These mapping rules address at-

tributes, dimensions, hierarchies, measures, and fact. In addition, an specific design for the fact

allows values of measures to be assigned to parts of a vague spatial object. Vague SOLAP is

enabled by extending SQL and implementing operations for accessing vague spatial data, pro-

cessing vague spatial predicates and computing aggregation of vague spatial data. Constraints

are specified and implemented to maintain the integrity of the vague SDW. The guidelines for

designing schemata and constraints for SDWs are also part of the major contributions of this

thesis.

Chapter 6 focuses the physical design of vague SDWs and describes one of the major con-

tributions of this thesis: the VSB-index. Firstly, an experimental evaluation of a database man-

agement system and of existing indices for SDWs identify bottlenecks and their limitations to

provide a reasonable performance to process queries over vague SDWs. Secondly, the VSB-

index is introduced and described. Thirdly, an experimental evaluation of the VSB-index is

described and the benefits for the performance to process queries over vague SDWs are dis-

cussed.

The development of this doctoral research project resulted in the following publications that

are related to this thesis:

1. Siqueira, Thiago Luı́s Lopes; Ciferri, Cristina Dutra de Aguiar; Times, Valéria Cesário;

Ciferri, Ricardo Rodrigues. Modeling vague spatial data warehouses using the VSCube

1.3 Thesis Organization 39

conceptual model. Geoinformatica (Dordrecht. Online), v. 18, p. 313-356, 2014.

2. Siqueira, Thiago Luı́s Lopes; Ciferri, Ricardo Rodrigues; Zimányi, Esteban. Extending

the MultiDim conceptual model to enable the design of vague spatial data warehouses.

In: Dutch Belgian Database Day, 2014, Anvers, Belgium. Online abstract available at:

http://adrem.ua.ac.be/sites/adrem.ua.ac.be/files/abstract 14.pdf.

3. Siqueira, Thiago Luı́s Lopes; Ciferri, Cristina Dutra de Aguiar; Times, Valéria Cesário;

Ciferri, Ricardo Rodrigues. Towards Vague Geographic Data Warehouses. In: Inter-

national Conference on Geographic Information Science, 2012, Columbus, OH, USA.

Lecture Notes in Computer Science. New York: Springer-Verlag, 2012. v. 7478. p.

173-186.

4. Siqueira, Thiago Luı́s Lopes; Mateus, Rodrigo Costa; Ciferri, Ricardo Rodrigues; Times,

Valéria Cesário; Ciferri, Cristina Dutra de Aguiar. Querying Vague Spatial Information

in Geographic Data Warehouses. In: The 14th AGILE International Conference on Geo-

graphic Information Science, 2011, Utrecht, Netherlands. Lecture Notes in Geoinforma-

tion and Cartography: Advancing Geoinformation Science for a Changing World, 2011.

v. 1. p. 379-397.

5. Siqueira, Thiago Luı́s Lopes; Oliveira, João Celso Santos; Times, Valéria Cesário; Ciferri,

Cristina Dutra de Aguiar; Ciferri, Ricardo Rodrigues. Indexing Vague Regions in Spatial

Data Warehouses. In: XIV Brazilian Symposium on Geoinformatics, 2013, Campos do

Jordão, SP, Brazil. XIV Brazilian Symposium on Geoinformatics, Proceedings, 2013. p.

158-169.

6. Siqueira, Thiago Luı́s Lopes; Oliveira, João Celso Santos; Times, Valéria Cesário; Ciferri,

Cristina Dutra de Aguiar; Ciferri, Ricardo Rodrigues. Indexing and Querying Vague

Spatial Data Warehouses. Journal of Information and Data Management - JIDM, v. 5, p.

161-170, 2014.

The article number 1 describes the VSCube conceptual model in the journal’s special issue

entitled “Spatial Data Warehouses and SOLAP” and provides most of the content for Chapter 4.

The paper number 2 summarizes the VSMultiDim conceptual model, which is also addressed in

Chapter 4. The paper number 3 tackles the logical design of vague SDWs reusing the relational

model and provides substantial findings and content for Chapter 5. Three publications based

the elaboration of Chapter 6, as follows. The paper number 4 processes queries in a vague SDW

using both a DBMS system and an existing index for SDW, and then compares and discusses

40 1 Introduction

the results. The paper number 5 introduces the VSB-index for vague SDWs and evaluates its

performance. It was awarded the 3rd best paper of the that conference. The article number 6

uses the VSB-index in a vague SDW built using a real dataset provided by Embrapa, evaluates

the performance to process queries and discusses the main findings.

Chapter 2
THEORETICAL FOUNDATIONS

This chapter addresses theoretical foundations of spatial data warehouses in Section 2.1, of

uncertain data management in Section 2.2, and of spatial vagueness in Section 2.3.

2.1 Spatial Data Warehouse Design

A spatial data warehouse (SDW) is a multidimensional, integrated, subject-oriented, his-

toric and non-volatile database that stores conventional data like a data warehouse (DW), but

additionally stores spatial data (STEFANOVIC; HAN; KOPERSKI, 2000; BÉDARD; MERRETT; HAN,

2001; FIDALGO et al., 2004; SILVA et al., 2010; VAISMAN; ZIMÁNYI, 2014b). While OLAP pro-

vide multidimensional queries that aggregate huge volumes of conventional data stored in a

DW (HARINARAYAN; RAJARAMAN; ULLMAN, 1996; POURABBAS; RAFANELLI, 1999; KIMBALL;

ROSS, 2002; CIFERRI et al., 2013), spatial analysis together with agile and flexible multidimen-

sional analytical operations are provided by spatial OLAP (SOLAP) (BÉDARD; MERRETT; HAN,

2001; FIDALGO et al., 2004; BADARD; DUBÉ, 2009; BIANCHI; HATANO; SIQUEIRA, 2013; VAIS-

MAN; ZIMÁNYI, 2014b). The database design encompasses the conceptual modeling, the logi-

cal design and a physical design (ELMASRI; NAVATHE, 2010). Since the SDW is a database, its

conceptual modeling, logical design and physical design are addressed in Sections 2.1.1, 2.1.2

and 2.1.3, respectively.

2.1.1 Conceptual Modeling

Designers typically use conceptual models or languages for representing and conceptual-

izing abstractions, which consist of essential, relevant, or important parts of an application as

interpreted by designers (THALHEIM, 2009). A conceptual model represents data in terms of

42 2 Theoretical Foundations

named sets of objects, named sets of values, named sets of relationships, and their correspond-

ing constraints, as well as often use graphical symbols to represent data semantics (EMBLEY,

2009b). The conceptual schema of a database is a high-level description that is natural and di-

rect for users of the database that does not take into account implementation details (BORGIDA;

MYLOPOULOS, 2009).

Databases are usually designed at the conceptual level using some variation of the Entity-

Relationship model or the Unified Modeling Language (ELMASRI; NAVATHE, 2010). They are

outlined in Section 2.1.1.1. Furthermore, multidimensional models have been widely used to

produce data schemas for multidimensional databases and to allow OLAP tools to present re-

sults of data aggregation in a multidimensional fashion (PEDERSEN, 2009). Multidimensional

models are addressed in Section 2.1.1.2. Moreover, conceptual modeling of SDWs is not only

related to elaboration of a conceptual data schema, but involves choosing between two alterna-

tive conceptualizations of spatial data: spatial object or continuous field, which are outlined in

Section 2.1.1.3.

2.1.1.1 Entity-Relationship Model and Unified Modeling Language

The Entity-Relationship (E-R) model (CHEN, 1976; SONG; CHEN, 2009) represents the in-

formation structure of a problem domain in terms of entities and relationships. An entity is

an object in the real world with an independent existence and is characterized by its properties

called attributes. An entity type defines a collection of entities that have the same attributes.

An identifier is a non-empty set of attributes whose values uniquely identify the entities. An

identifier is also called key.

A relationship is a relation among entities. A relationship type relates entities of entity

types. The cardinality is a constraint on a relationship type and stipulates the maximum number

of entities that can be related with another entity via a relationship type. For instance, the

cardinality of a relationship between two entity types is one-to-one (1:1), one-to-many (1:N)

or many-to-many (M:N). The elaboration of a conceptual schema with the E-R model maps

categories of individuals into entity types, models relations of entity types as relationship types

and uses attributes to denote qualities and values of individuals that belong to entity types or

relationship types (BORGIDA; MYLOPOULOS, 2009).

Since the E-R model facilitates the identification of data and constraints, it has been widely

used in database design to produce the conceptual schema of a database as an E-R diagram.

Different symbols are used to produce an E-R diagram according to the concept being repre-

sented, e.g. a rectangle for an entity type and a diamond for a relationship type (ELMASRI;

2.1 Spatial Data Warehouse Design 43

NAVATHE, 2010). These symbols improve the comprehension of application requirements and

allow a better communication between designers and users.

The Unified Modeling Language1 (UML) is a graphical language for visualizing, spec-

ifying, constructing, and documenting the artifacts of a system such as conceptual database

schemata (GOGOLLA, 2009a). In the UML class diagram, a class is a descriptor for a set of

objects that share the same structure and behavior. Object properties are described by attributes

that assume data types. An identifier plays the same role as described for the E-R model. An

association is a connection among a collection of classes and has a name. A multiplicity con-

strains the connections of classes linked by an association. The UML also defines the Object

Constraint Language2 (OCL) that allows the specification of integrity constraints (GOGOLLA,

2009b).

2.1.1.2 Multidimensional Modeling

Multidimensional models provide a data cube and categorize data as being either facts with

associated measures, or as being dimensions that characterize facts (CODD; CODD; SALLEY,

1993; PEDERSEN, 2009; CIFERRI et al., 2013). A dimension provides perspectives to analyze

data and encompasses attributes with different granularity that are hierarchically organized in

levels of aggregation. Let Lchild and Lparent be levels of aggregation. The operator � imposes

a partial order on Lchild and Lparent , such that Lparent � Lchild if and only if values of measures

for Lparent can be computed using values of measures of Lchild (HARINARAYAN; RAJARAMAN;

ULLMAN, 1996). A level may consist of a single attribute (GOLFARELLI; MAIO; RIZZI, 1998), or

comprise a few attributes and be analogous to an entity-type (MALINOWSKI; ZIMÁNYI, 2009).

An instance of a level is called member. A fact relates levels and its attributes called measures

are the subject of analysis. Measure values are summarized by traversing hierarchies and using

aggregation functions. An instance of a fact is called fact member. Although the term “cube”

implies three dimensions, a cube can have an arbitrary number of dimensions.

The views of a data cube can be organized by a directed acyclic graph often called lattice of

cuboids, where each cuboid is a view of the data cube (HARINARAYAN; RAJARAMAN; ULLMAN,

1996). An edge links a view of finer granularity to a view of coarser granularity. The view with

the finest granularity indicates values of measures detailed for the attributes with the finest gran-

ularity of each dimension, which are their (surrogate) keys. A view of coarser granularity has

summarized values of measures, as it simply aggregates all values of one or more dimensions,

1http://www.omg.org/spec/UML/
2http://www.omg.org/spec/OCL/

44 2 Theoretical Foundations

or it refers to attributes of coarser granularity according to hierarchies.

OLAP operations exploit dimensions and hierarchies of the data cube and enable multidi-

mensional analysis (HARINARAYAN; RAJARAMAN; ULLMAN, 1996; CHAUDHURI; DAYAL, 1997;

VAISMAN; ZIMÁNYI, 2014a). The pivot stands for switching the axis of the dimensions of the

cube. A slice is the selection of fixed values in attributes of dimensions, while a dice is the

selection of ranges of values from attributes of dimensions of the cube. The aggregation of

measure values done by traversing a hierarchy from levels with finer granularity to levels with

coarser granularity produces summarized results and is known as roll-up. Conversely, travers-

ing a hierarchy from levels with coarser granularity to levels with finer granularity produces

detailed results and is called drill-down.

2.1.1.3 Spatial Data

A spatial object has a descriptive component denoted by a set of conventional attributes

and a spatial component that describes the location and the shape of the object in the space

of interest (GOODCHILD, 1992; CÂMARA; FREITAS; CASANOVA, 1995). A spatial object has a

spatial data type assigned to it, such as Point, Line and Region (Surface) (GOODCHILD, 1992;

PARENT; SPACCAPIETRA; ZIMÁNYI, 2006). A point is 0-dimensional and often denotes a discrete

location, such as an address. A line is 1-dimensional and usually represents linear features, such

as rivers and roads. A region is 2-dimensional and regularly refer to extents, such as the extent of

a county. More complex data types as Point Set, Line Set and Region Set (Surface Set) also exist

and are more effective to represent real world phenomena (PARENT; SPACCAPIETRA; ZIMÁNYI,

2006). The implementation of spatial objects is commonly based on vector geometries, as

explained in Section 2.1.2. For instance, a polygon represents the 2D region occupied by a city.

A continuous field represents a phenomenon that continuously change in space and/or

time (GOODCHILD, 1992; CÂMARA; FREITAS; CASANOVA, 1995). Conceptually, a continuous

field can be represented as a function that assigns to each point in space a value of a domain.

For example, a continuous field for altitude varies in space, while a continuous field for tem-

perature varies both in space and time. As for the altitude, the value for a given point in space

is numeric. The functions are partial since they might be undefined at some points in space.

The implementation of continuous fields is commonly based on tessellations, whose tiles are

geometric shapes that do not overlap and neither have gaps. Digital elevation models pro-

vide tessellations, e.g. bitmap (raster-based) and triangulated irregular network (vector-based)

(HOEL, 2008).

Topological relationships describe how spatial data are related in real world. Examples

2.1 Spatial Data Warehouse Design 45

of such relationships are meets (touches), contains, inside (within), equals, overlaps, inter-

sects, covers, covered by and disjoint (EGENHOFER; FRANZOSA, 1991; CLEMENTINI; SHARMA;

EGENHOFER, 1994; PARENT; SPACCAPIETRA; ZIMÁNYI, 2006). For instance, Belgium contains

Brussels, while Brazil covers the state of São Paulo.

In the 9-intersection model (EGENHOFER; FRANZOSA, 1991), topological relationships be-

tween a pair of spatial objects A and B are interpretations of a 3×3 matrix. The matrix’ cells

indicate the disjointness F or the intersection T among interiors ◦, boundaries ∂ and exteriors
′ of the objects. The dimensionality of the intersection can also be specified, i.e. 0, 1 or 2.

For instance, AcontainsB holds if there is intersection between their interiors and the exterior

of A is disjoint from both the interior and boundary of B. Since both the dimensionality of the

intersection and the values of the other cells are irrelevant (∗), a simplified version of the matrix

for A contains B is:


B◦ ∂B B′

A◦ T ∗ ∗
∂A ∗ ∗ ∗
A′ F F ∗


Topological relationships also allow querying spatial data. For instance, a spatial exact

match query compares two spatial objects and yields the truth value whether the topological re-

lationship equals is satisfied (GAEDE; GUNTHER, 1998). Conversely, a spatial range query com-

pares a spatial object to a rectangular spatial query window and yields the truth value whether

a given topological relationship is held (GAEDE; GUNTHER, 1998). In this sense, an intersec-

tion range query refers to the topological relationship intersects and a containment range query

refers to the topological relationship inside/within.

2.1.1.4 Multidimensional and Spatial Data Cubes

Spatial data have been included in data cubes as spatial attributes in dimensions and as

spatial measures in facts. Stefanovic, Han & Koperski (2000), Bimonte, Tchounikine & Miquel

(2005) focused on spatial objects, while Vaisman & Zimányi (2009), Bimonte & Kang (2010)

tackled continuous fields.

Stefanovic, Han & Koperski (2000) defined three types of spatial dimensions. A non-spatial

dimension does not have any spatial levels or spatial attributes. In a spatial to non-spatial

dimension, spatial levels are those with the lowest granularities while nopen-spatial levels have

higher granularities. In a spatial to spatial dimension, all the levels are spatial levels. The

aforementioned types of dimensions are also used to represent the SDW as a lattice of cuboids.

46 2 Theoretical Foundations

The aggregation of numeric measures is performed using well-known aggregation functions

such as SUM and AVG. Conversely, the aggregation of the spatial measure is performed using

geometric functions such as geometric union (region merge) (WANG et al., 2004), for example.

The spatial measure can be a composite attribute rather than an atomic attribute (BIMONTE;

TCHOUNIKINE; MIQUEL, 2005). Then, an aggregation mode is essential to ensure the use of

the adequate aggregation function on each field of the composite attribute representing a spatial

measure. The use of SUM for a numeric measure may imply the use of union for a spatial

measure (SILVA et al., 2008).

Spatial OLAP (SOLAP) operations slice, dice, pivot, roll-up, and drill-down involve both

conventional and spatial data. For instance, the slice involving a spatial attribute may refer to a

spatial exact match query, while the dice might refer to a spatial range query. Furthermore, in

roll-up and drill-down, numeric measures are summarized using aggregation functions such as

SUM, AVG, MIN, MAX and COUNT, while spatial measures are aggregated by spatial aggregation

functions, e.g. union, intersection and difference. Moreover, a roll-up in a spatial dimension to

a non-spatial dimension traverses a hierarchy from a level with a geometric attribute to a level

with a non-geometric attribute.

For example, let a cube describe the SDW of a retail application with the dimensions

Customer, Part and Date, the fact Orders and the numeric measure Revenue aggregated using

the function SUM. The dimension Customer holds the hierarchy NationGeo � CityGeo � Cus-

tomerKey, the dimension Part has the hierarchy Brand � PartKey and the dimension Date has the

hierarchy Month� Date� DateKey. CityGeo is a spatial attribute of type Region, while NationGeo

is a spatial attribute of type Region Set since the territory of nations can have islands.

Considering the aforementioned cube and that q1 and q2 are spatial query windows provided

by the user, Table 2.1 exemplifies multidimensional queries extended with spatial predicates.

Query Q1 has an intersection range query involving cities of customers and q1. Query Q2

traverses the hierarchy from a finer level to a coarser level and has an intersection range query

concerning nations of customers and q2, which is larger than q1 and proportional to the extent

of nations. Then, query Q2 is a roll-up of query Q1. Conversely, query Q1 is a drill-down of

query Q2. Both queries Q1 and Q2 hold slice with a fixed value of brand and a dice involving a

set of spatial objects.

2.1.2 Logical Design

The logical database design is a mapping from a conceptual database schema into a schema

for the data model underlying a particular database management system (DBMS) (ELMASRI;

2.1 Spatial Data Warehouse Design 47

Table 2.1: Multidimensional queries extended with spatial predicates.

Query Description
Q1 Retrieve the revenue earned by year with orders of parts whose brand is

MFGR2239 for customers located in cities that intersect q1
Q2 Retrieve the revenue earned by year with orders of parts whose brand is

MFGR2239 for customers located in nations that intersect q2

NAVATHE, 2010). The main goals of the logical database design are (BORGIDA; CASANOVA;

LAENDER, 2009; ELMASRI; NAVATHE, 2010): (i) to preserve the ability to represent all valid

states of the conceptual database schema; (ii) to address issues related to the ease and cost

of querying the logical database schema; (iii) to estimate storage costs of the logical database

schema; and (iv) to estimate costs related to the maintenance of constraints.

The ER model and its extensions are mapped to logical schemata for relational databases

(TEOREY; YANG; FRY, 1986; BORGIDA; MYLOPOULOS, 2009; ELMASRI; NAVATHE, 2010). Rela-

tional OLAP (ROLAP) is a logical design that consists of storing the DW in relational databases,

extending the SQL and providing specific access methods to efficiently implement the multidi-

mensional data schema and operations. The SDW has been often implemented on a relational

DBMS and accessed by SOLAP tools (CAZZIN et al., 2012; BIANCHI; HATANO; SIQUEIRA, 2013;

BOULIL; BIMONTE; PINET, 2015). Relational databases are outlined in Section 2.1.2.1. The

support provided by DBMS for spatial data is tackled in Section 2.1.2.2. The relational repre-

sentation of spatial data warehouses is addressed in Section 2.1.2.3.

2.1.2.1 Relational Databases

The Relational Model describes data as named relations of labeled values (CODD, 1970;

EMBLEY, 2009a). Each relation has a name and tuples as pairs (label,value). Commonly,

relations are viewed as tables where labels are the columns and tuples are rows containing values

for each column. The relational database of a given application is a collection of table schemata.

A relation’s schema has mainly a name, a set of attributes with distinct names to compose tuples,

key constraints and referential constraints. The key constraint is a set of attributes whose values

uniquely determine at most one tuple. When the key has the minimum number of attributes, it

is called primary key. The referential constraint prevents referencing an inexistent tuple from

another table and is called foreign key.

The Structured Query Language (SQL) is a standard commercial language adopted by

DBMSs for specifying, modifying and querying a database, such that developers can declare

tables and their constraints (ELMASRI; NAVATHE, 2010). Several DBMSs additionally support

48 2 Theoretical Foundations

the object-relational model and then allow preserving foundations of the relational model while

data is organized using an object model. For instance, an attribute can be implemented as an

user-defined type (UDT) with encapsulation and customized functions and operators. Besides,

several DBMSs additionally offer non-relational resources. For instance, while the relational

model allows only monovalued attributes, current DBMSs enable multivalued attributes to be

implemented as columns of type array in tables (POSTGRESQL. . . , 2015).

2.1.2.2 Spatial Extensions of Database Management Systems

Several DBMSs have spatial extensions that provide spatial data types, spatial operators

and spatial functions as well as enable indices for spatial objects. For example, PostgreSQL

and Oracle 12c are object-relational DBMSs whose spatial extension are PostGIS (OBE; HSU,

2015) and Oracle Spatial and Graph (ORACLE. . . , 2014), respectively. Although PostGIS and

Oracle Spatial and Graph are exemplified in this section, other DBMSs and their spatial ex-

tensions have similar characteristics (e.g. Microsoft SQL Server 20143 and IBM DB2 Spatial

Extender4). Both PostGIS and Oracle Spatial and Graph implement vector types defined by the

Open Geospatial Consortium (OGC) and SQL/MM types and operators described by the In-

ternational Organization for Standardization in the standard ISO/IEC 13249-35. Besides, both

PostGIS and Oracle Spatial and Graph provide implementations for raster. The aforementioned

advanced features benefit the development of spatial applications in many domains.

The vector types implemented in PostGIS and Oracle Spatial and Graph are those defined

by OGC. As a result, a column of a table can assume any of these types. Geometry is an

abstract and root class of the hierarchy. Thus, geometries are casted to one of its subclasses.

Every geometry is associated to a spatial reference system (SRS), which assigns coordinates

in a mathematical space to a location in real-world space. There are several SRSs and each

one is identified by a spatial reference system identifier (SRID). The spatial abstract data types

mentioned in Section 2.1.1 can be directly mapped to vector types supported by the spatial

extensions of DBMSs, as follows.

The type Point is mapped to the class Point whose instances are geometries with 0D. The

type Line is mapped to the class Line whose instances are geometries with 1D. The type Region

is mapped to the class Polygon whose instances are polygonal (and not polyhedral) geometries

with 2D. Furthermore, the collection classes MultiPoint, MultiLineString and MultiPolygon refer

to collections of points, linestrings and polygons, respectively. The class GeometryCollection

3https://msdn.microsoft.com/en-us/library/bb933988.aspx
4http://www.ibm.com/software/products/en/db2spaext
5http://www.iso.org/iso/iso catalogue/catalogue tc/catalogue detail.htm?csnumber=53698

2.1 Spatial Data Warehouse Design 49

represents instances with non-homogeneous collections, e.g. a collection composed of two

lines and one polygon. An instance of the class TIN is a polyhedral surface composed of one or

more triangles that do not overlap, such that each triangle is a polygon.

All subclasses of Geometry allow 0D, 1D and 2D geometries that exist in 2, 3 or 4-dimensional

coordinate space, i.e. R2, R3 or R4. A geometry in R2 has vertices with coordinate values for

x and y. A geometry in R3 has vertices with coordinate values x, y and z or for x, y and m. The

z coordinate often denotes altitude or elevation. The m coordinate represents a measurement

that can belong to a linear reference system and refer to events that occur along a network.

Analogously, a geometry in R4 has points with coordinate values for x, y, z and m.

Both PostGIS and Oracle Spatial and Graph enable adding a geometry column into a table

and the registration of geometry columns in OGC’s metadata. The registration ensures auto-

matic consistency checks (e.g. whenever a new geometry is inserted) and compatibility with

other higher-level application programming interfaces for development of client applications

(e.g. MapServer6). For example, in PostGIS, the function AddGeometryColumn adds a geometry

column to a table and registers it in a metadata table (OBE; HSU, 2015).

PostGIS and Oracle Spatial and Graph not only provide geometry data types to represent

spatial data types, but also implement OGC functions for the evaluation of topological predi-

cates and for the aggregation of spatial data. In detail, these DBMS implement an extended ver-

sion of the 9-intersection model (EGENHOFER; FRANZOSA, 1991) and manipulate 3×3 matrices

expressed as 1×9 masks. For instance, the topological relationship intersects has a correspond-

ing OGC function Intersects that evaluates the intersection between two spatial objects, which

is implemented in PostGIS as the function ST Intersects that returns whether two geometries

provided as arguments intersect. Also, the union of two spatial objects is described by the OGC

aggregate function Union (HERRING, 2011), which is implemented in PostGIS by the function

ST Union that receives a set of geometries as arguments and unions (merges) them into a single

geometry with no intersecting regions (OBE; HSU, 2015).

2.1.2.3 Relational Representation of Spatial Data Warehouses

Three main logical models for DW exist: relational OLAP (ROLAP), multidimensional

OLAP (MOLAP) and hybrid OLAP (HOLAP) (VAISMAN; ZIMÁNYI, 2014a). They differ on

how to store the data cube. ROLAP stores data in relational databases, extends SQL and pro-

vides specific access methods to efficiently implement the multidimensional data model and

the corresponding operations. Conversely, MOLAP stores data in specialized multidimensional

6http://mapserver.org

50 2 Theoretical Foundations

data structures such as arrays and implements the OLAP operations over those data structures.

Finally, HOLAP combines both approaches. Since SDWs have been often deployed on a rela-

tional DBMS and accessed by SOLAP tools, this section focuses on the relational representation

of SDWs.

Considering that existing DBMSs have extensions with support for spatial data types and

implements functions to evaluate topological relationships, logical schemata of SDWs are de-

signed reusing the relational model. The well-known star and snowflake schemata (KIMBALL;

ROSS, 2002) are adapted to support the inclusion of spatial attributes as geometry columns in

dimension tables and as measures in fact tables.

Stefanovic, Han & Koperski (2000) reused and adapted the star-schema and the snowflake

schema proposed by Kimball & Ross (2002), but did not provide clear rules for the creation of

the relational schema of the SDW. Three approaches were proposed for storing a spatial measure

in a fact table: (i) pointers for spatial objects; (ii) rough approximations of spatial objects; and

(iii) duly selected spatial objects. Stefanovic, Han & Koperski (2000) then developed a selective

materialization of spatial objects based on the relative access frequency.

Spatial data introduces new storage costs, might impair the performance to process queries

and often require the design of a hybrid schema (FIDALGO et al., 2004) because a geometry

requires a varying storage space according to its shape (CIFERRI, 2002). In addition, the spa-

tial data redundancy impairs the query processing performance in SDW and must be avoided

(SIQUEIRA et al., 2008, 2009). The performance of some SOLAP queries can also be improved

by a logical design that (MATEUS et al., 2010): (i) maintains a spatial attribute of type Point and

other conventional attributes in the same table if, and only if these attributes have a 1:1 relation-

ship; and (ii) maintains a surrogate key and a spatial attribute whose dimensionality is 1D or 2D

in a table separate from the other conventional attributes.

For instance, consider an extended version of the retail SDW exemplified in Section 2.1.1,

whose logical schema is shown in Figure 2.1 according to the relational model. LineOrder is

a fact table, Date and Part are conventional dimension tables, Supplier and Customer are spatial

dimension tables and City, Nation and Region are spatial level tables. The fact table LineOrder

has a composite key to identify items of an order, columns with suffix “FK” with a foreign

key referencing the dimension tables, and the numeric measures Revenue and Quantity. Spatial

attributes have both a suffix “Geo” and an assigned geometry type. Conventional types are

omitted for the sake of simplicity.

In the schema shown in Figure 2.1, dimension tables Supplier and Customer have each one a

geometry column to store addresses, since the relationship between the spatial attribute of type

2.1 Spatial Data Warehouse Design 51

LineOrder

OrderKey

LineNumber

SupplierFK

DateFK

PartFK

CustomerFK

Revenue

Quantity

...

Part

PartPK

Name

Brand

...

Date

DatePK

Date

Year

...

Supplier

SupplierPK

Address

AddressGeo : Point

CityFK

NationFK

RegionFK

...

Customer

CustomerPK

Address

AddressGeo : Point

CityFK

CityName

NationFK

NationName

RegionFK

RegionName

...

City

CityPK

CityGeo: Polygon

Region

RegionPK

RegionGeo: MultiPolygon

Nation

NationPK

NationGeo: MultiPolygon

Figure 2.1: The relational schema of a SDW regarding a retail application (adapted from
(SIQUEIRA et al., 2010)).

Point and the other attributes is 1:1. On the other hand, surrogate keys and geometry columns for

cities, nations and regions are stored in separate tables, since spatial data redundancy must be

avoided. Then, polygons of cities are not redundantly stored in the tables Supplier and Customer.

Furthermore, City, Nation and Region are referenced by Supplier and Customer through foreign

keys to prevent joining unused tables to process queries. Although the hierarchy RegionGeo

� NationGeo � CityGeo holds, City does not reference Nation and the Nation does not reference

Region because such design would impose a snowflake schema (KIMBALL; ROSS, 2002) that

introduces joins and impairs the performance to process queries.

The query shown in Listing 2.1 issued over the SDW schema shown in Figure 2.1 retrieves

the total revenue earned by year by brand with customers located in cities that intersect the

rectangular spatial query window whose vertices are (50.82, 3.99), (50.82, 4.93), (51.32, 4.93)

and (51.32, 3.99). The PostGIS function ST GeomFromText receives a string as input, formatted

according to well-known text OGC standard, and converts into a geometry (OBE; HSU, 2015).

The query requires five joins among tables, one conventional predicate to filter brands, one

spatial predicate as the intersection range query involving cities, grouping and sorting. These

operations may impair the performance and should be tackled in the physical design of the

SDW.

52 2 Theoretical Foundations

Listing 2.1: A SQL query issued over the SDW described in Figure 2.1.

SELECT SUM(Revenue) , Year , Brand
FROM LineOrder , Date , Part , Customer , C i t y
WHERE DateFK = DatePK

AND PartFK = PartPK
AND CustomerFK = CustomerPK
AND CityFK = CityPK
AND Brand = ‘MFGR2239’
AND ST In te rsec ts (CityGeo , ST GeomFromText (‘POLYGON((

50.82 3.99 , 50.82 4.93 , 51.32 4.93 , 51.32 3.99 , 50.82 3 . 9 9)) ’))
GROUP BY Year , Brand
ORDER BY Year , Brand ;

2.1.3 Physical Design

The physical design of the SDW is crucial to determine reasonable performance and short

query response time (VAISMAN; ZIMÁNYI, 2014a). Three techniques have been used to improve

the performance to process queries in SDWs: indexing (PAPADIAS et al., 2001; MOHAN et al.,

2008; SIQUEIRA et al., 2012b), view materialization (STEFANOVIC; HAN; KOPERSKI, 2000; RAO

et al., 2003; GOMEZ et al., 2009) and partitioning (BALTZER; RAU-CHAPLIN; ZEH, 2013; MATEUS

et al., 2015).

Since this thesis focuses on indexing, the following sections summarize indices that im-

prove the performance to process queries that involve joins, conventional predicates, aggrega-

tion and spatial predicates, as these operations are usually present in SOLAP queries. Sec-

tion 2.1.3.1 addresses the bitmap index and the bitmap join index. The former is useful for

processing conventional predicates and conventional data aggregation, while the latter avoids

costly joins among tables. Finally, Section 2.1.3.1 tackles spatial indices that aid the resolution

of spatial predicates and the aggregation of spatial data.

2.1.3.1 Bitmap Index and Bitmap Join Index

The first implementation of the bitmap index was developed for the non-relational database

system called Model 204 (O’NEIL, 1989). Operations such as COUNT, AND, and OR were effi-

ciently processed by Model 204. The benefits of the bitmap index have motivated its extension

as a join index, i.e. the bitmap join index (O’NEIL; GRAEFE, 1995). The bitmap index and the

bitmap join index are described in the following, but considering the relational database.

Let T be a table, A be a column in T and |A| be the cardinality of A, i.e. the number of

distinct values that A can assume. The bitmap index built on A indicates, for each value a that

A can assume, the rows of T where A = a, as follows. A bit-vector is a vector of bits whose

entries can assume the value 1 to represent true (or on) or the value 0 to denote false (or off).

2.1 Spatial Data Warehouse Design 53

The bitmap index built on A comprises one bit-vector for each distinct value a that A can assume.

Then, the cardinality of the indexed column determines the quantity of bit-vectors. The length

of every bit-vector is equal to the number of rows stored by T . If A = a in the i-th row of the T ,

then the i-th bit of the bit-vector created for the value a is set to 1. Otherwise, the bit is set to 0.

Let TL and TF be tables and L be a column in TL. A bitmap join index built on L indicates

the set of rows in TF that can be joined with a certain value of TL, as follows. The bitmap join

index built on L comprises one bit-vector for each distinct value l that L can assume. The length

of every bit-vector is equal to the number of rows of the join between TL and TF . If L = l in the

i-th row of the join between TL and TF , then the i-th bit of the bit-vector built for value l is set

to 1. Otherwise, the bit is set to 0. Note that the join between TL and TF requires a single join if

TF references TL. Otherwise, several joins might be required. Joins among huge DW tables are

necessary only once to build the bitmap join index. After the index is built, the queries can be

processed by accessing the index and avoiding joins.

Figure 2.2 shows the table that corresponds to the selection of the columns Revenue, Year,

Brand and CityFK after joining the tables LineOrder, Date, Part, and Customer from the SDW

schema shown in Figure 2.1. For the sake of simplicity only the first five rows are displayed.

Figure 2.2 also illustrates bitmap join indices built on the columns Revenue, Year, and Brand of

the aforementioned table. Each bit-vector indicates the rows of the fact table where a given

value occurs. For instance, Year = 2013 occurs in the first and second rows, as the bit-vector for

Year = 2013 has the bit 1 in both the first and second entries.

Furthermore, conventional predicates involving logical operations are solved using bit-wise

operations. For instance, the conjunction Year = 2013 AND Brand = ‘MFGR#2239’ executes the

bit-wise AND using the corresponding bit-vectors, i.e. 11000 AND 10010 whose result is 10000.

Therefore, the first row of the fact table satisfies Year = 2013 AND Brand = ‘MFGR#2239’. The

same bit-vector 10000 can be used to group results by year by brand and apply the function

SUM to aggregate values of Revenue, i.e. only the first row of the table is processed by SUM.

The aforementioned bitmap join indices and the operations described using bit-vectors aid to

process the query shown in Listing 2.1, except the spatial predicate.

The bitmap index and the bitmap join index provide efficient processing of bit-wise logical

operations even if the number of involved bit-vectors is high (STOCKINGER; WU, 2006; WU et

al., 2009). Therefore, they have been used to index columns of DWs (VAISMAN, 1998; LANE;

POTINENI, 2014) in addition to B-tree and hashed indices provided by the DBMS. A column

with high cardinality requires an index with many bit-vectors which are sparse, i.e. that have

few bits with value 1. In the past, the use of the bitmap index was avoided if the cardinal-

54 2 Theoretical Foundations

Revenue Year Brand CityFK

7,931 2013 MFGR#2221 12

6,901 2013 MFGR#2339 11

10,012 2012 MFGR#2339 13

3,589 2014 MFGR#2221 13

5,410 2014 MFGR#2339 11

...

1

0

0

0

0

...

7,931

0

1

0

0

0

...

6,901

0

0

0

0

1

...

5,410

0

0

1

0

0

...

0

0

0

1

0

...

0

0

0

1

1

...

2014

0

0

1

0

0

...

1

1

0

0

0

...

0

1

1

0

1

...

MFGR#
2221

1

0

0

1

0

...

10,012 3,589 2013 2012

Π Revenue, Year, Brand, CityFK(Lineorder⋈Date⋈Part⋈Customer) Revenue Year

MFGR#
2239

Brand

Bitmap join indices

Figure 2.2: A table and its columns indexed by bitmap join indices.

ity of the column was high (O’NEIL, 1989). In current relational DBMSs, bitmap join indices

should be built on columns with low cardinality (LANE; POTINENI, 2014). Furthermore, three

techniques have been continuously improved to overcome limitations imposed by the high car-

dinality: compression, binning and encoding (WU; OTOO; SHOSHANI, 2006; WU et al., 2009). As

a result, recent implementations of the bitmap index provide efficient query processing even for

attributes with huge cardinality.

The bitmap join index is reused by the SB-index that is an efficient index for SDW, as

detailed in Section 3.3. Besides, the bitmap join index is also reused by the VSB-index, which

is one of the most relevant contributions of this thesis, as described in Section 6.3.

2.1.3.2 Spatial Indices

An approximation is a coarser representation of a spatial object and is, therefore, less com-

plex than the original spatial object. A conservative approximation is a superset of the extent

of the spatial object, while a progressive approximation is a subset of the extent of the spatial

object (BRINKHOFF; KRIEGEL; SCHNEIDER, 1993). For instance, the minimum bounding rectan-

gle (MBR) and the convex-hull are conservative approximations, while the maximum enclosed

rectangle (MER) is a progressive approximation. The MBR is the smaller iso-oriented rectangle

that circumscribes a given geometry. The convex-hull is the smallest convex set of points that

contains a geometry. The MER is a rectangle that intersects the longest enclosed horizontal

connection starting in a vertex of the polygon. In addition, the vertices of the MER are also

vertices of the polygon. Figure 2.3a depicts a region and its MBR, Figure 2.3b depicts a region

and its MER and Figure 2.3c depicts a region and its MBR and MER. The extent that belongs to

a conservative approximation but does not belong to the spatial object is called deadspace. Note

that the spatial query window w intersects the deadspace of the MBR but does not intersect the

spatial object in Figure 2.3d.

2.1 Spatial Data Warehouse Design 55

The multi-step resolution of the spatial predicate (BRINKHOFF; KRIEGEL; SCHNEIDER, 1993)

is illustrated in Figure 2.4. In the filter step, the spatial query window is tested against the

approximations built for the spatial objects of the dataset. A spatial object is either an answer

if the test concludes that it is satisfies the spatial predicate, or a candidate if the test assumes

it might satisfy the spatial predicate. Otherwise, the spatial object is ignored. The conclusion

of the filter step depends on the approximations being used and on the spatial predicated being

tested.

In the refinement step, the original spatial objects of the candidates are accessed and tested

against the spatial query window. Candidates that are not answers are ignored as they are merely

false hits, while spatial objects that satisfy the spatial predicate are answers. The refinement step

is in general more costly than the filter step, since the former requires the access to the original

spatial objects stored in secondary memory, while the latter accesses the approximations. To

reduce the cost of the refinement step, the filter step can use progressive approximations in

addition to conservative approximations to identify answers of the spatial predicate (GAEDE;

GUNTHER, 1998).

For instance, Figure 2.3d shows a region, its MBR, its MER and also two spatial query

windows w and v that aim to evaluate the spatial predicate IRQ. Concerning the spatial query

windows v, the filter step verifies that the intersection between v and the MBR is true while the

intersection between v and the MER is true. As a result, the filter step considers the region as

being an answer of the IRQ, since v intersects a subset of the region, i.e. its MER. Conversely,

regarding the spatial query windows w, the filter step verifies that the intersection between w

and the MBR is true while the intersection between w and the MER is false. Then, the filter

step considers the region as being a candidate, since w intersects a superset of the region, i.e.

its MBR. In the refinement step, the polygon of the region is fetched and compared to w. The

intersection between w and the region is false. Therefore, the region does not belong to the set

of answers of the IRQ.

Spatial indices are efficient data structures to improve the resolution of spatial predicates.

They store approximations and implement the multi-step resolution described in Figure 2.4. In

the following, spatial indices are summarized because they are implemented in existing spatial

extensions for DBMSs. While Oracle Spatial and Graph provides an implementation of the

R-tree, PostGIS offers an implementation of the Generalized Search Tree (GiST).

The R-tree (GUTTMAN, 1984) is a spatial index that supports spatial range queries and is

commonly implemented by DBMSs to index spatial objects data in the secondary memory. Its

hierarchical data structure is based on the B-tree (BAYER; MCCREIGHT, 1972) and has non-leaf

56 2 Theoretical Foundations

(a) (b) (c) (d)

Figure 2.3: A region, its approximations and spatial range queries. (a) A region and its MBR. (b)
A region and its MER. (c) A region and its MBR and MER. (d) Spatial query windows w and v.

Figure 2.4: The multi-step resolution of spatial predicates (adapted from Brinkhoff, Kriegel &
Schneider (1993)).

nodes and leaf nodes. A leaf node has entries holding the key value and the MBR of a spatial

object, also called input MBR. A non-leaf node has entries holding a pointer to a child node and

a MBR that encompasses all the MBRs of the corresponding child node. Every node can store

M entries and must store at least m entries, such that often m≤M÷2. Only the root node can

have less than m entries. The capacity of nodes is determined by the disk page size.

The insertion algorithm allocates input MBRs in entries of leaf nodes. Initially, the root

node is also the single leaf node and entries are inserted until the node becomes full. The ful-

filled root node causes the creation of two leaf nodes and the distribution of the entries between

them. Two distinct subsets of entries are created, such that each subset has its MBRs encom-

passed by one computed MBR whose coverage of the extent is minimal. Each subset is then

allocated in one leaf node. The two MBRs with minimal coverage are allocated in distinct en-

tries of the new root node. Each entry of the root node maintains a pointer to one leaf node. As

a result, the computed MBRs refer to two distinct clusters of input MBRs.

After the division of the root node, each new input MBR is inserted as follows. The R-tree

is traversed comparing the input MBR to MBRs held by non-leaf nodes. The subtree chosen

to store the input MBR is the one pointed to by the entry whose MBR demands the minimal

increase on area. When more than one subtree is able to store the input MBR, the preference

is for that subtree pointed to by the entry whose MBR has the smallest area. If the leaf node

is already fulfilled, then the aforementioned procedure of distribution is applied. Finally, the

2.1 Spatial Data Warehouse Design 57

modifications due to distribution are back-propagated to higher levels of the R-tree.

The hierarchical structure allows pruning the traversal to process the filter step. A top-

down traversal of the tree starts at the root node and tests the intersection between the spatial

query window and MBRs in entries of non-leaf nodes. If the intersection is true, the traversal

continues through child nodes. Leaf nodes are also visited and their MBRs that satisfy the

spatial predicate become candidates and have the corresponding key values collected. These

candidates are processed in the refinement step that accesses the original geometries. It is

noteworthy that the creation of MBRs with the minimal coverage for the entries of non-leaf

nodes reduce the possibility of intersection among MBRs of distinct non-leaf nodes and a spatial

query window. When a spatial query window intersects MBRs of distinct non-leaf nodes, there

is a ramification of the tree traversal during the search, which might impair the performance.

Consider the SDW whose schema is shown in Figure 2.1. Figure 2.5a illustrates five cities

of customers as polygons, whose MBRs are r11, r12, r13, r21 and r22. These MBRs were the

input to build a R-tree whose nodes can maintain at most 3 entries, i.e. M = 3. The insertion

algorithm computed the MBRs R1 and R2 and distributed of the input MBRs between R1 and

R2. The MBR R1 encompasses r11, r12 and r13, while the MBR R2 encompasses r21 and r22.

The data structure of the obtained R-tree is depicted in Figure 2.5b.

Like the query described in Listing 2.1, an intersection range query is issued using the

spatial query window w depicted in Figure 2.5a. To resolve such spatial predicate, the entries

of the R-tree that intersect w and are highlighted in gray in Figure 2.5b are accessed, since

w intersects R1, r11 and r13. As a result, the cities represented by the MBRs r11 and r13 are

considered candidates. A subsequent refinement step verifies that the city represented by the

MBR r11 is an answer, but the city denoted by the MBR r13 is just a false hit. The resolution

described for the intersection range query complies with the spatial predicate of the query shown

in Listing 2.1.

The R*-tree (BECKMANN et al., 1990) improves the R-tree insertion algorithm according to

the criteria of coverage, overlap, margin and storage, rather than only applying the criterion of

reducing the coverages. While the overlap criterion aims at minimizing the intersection area of

the MBRs, the margin criterion is used to minimize the perimeter of the MBRs, and the storage

criterion is used to maximize the occupation rate of the structure nodes. Analyzing these criteria

during the insertion guarantees to the R*-tree a better space partitioning and, consequently, a

better search performance than the R-tree.

The GiST (AOKI, 1998) is aimed at supporting an extensible set of queries and data types

that can unify and generalize the behavior of different search trees. Due to this flexibility, some

58 2 Theoretical Foundations

r11 r12 r13 r21 r22

R1

R2

r11

r12

r13

r21

r22

w

a

b
R1 R2

Figure 2.5: An R-tree built using cities of customers from the SDW described in Figure 2.1. (a)
Cities, their MBRs and the R-tree’s space partitioning method. (b) The R-tree data structure.

DBMSs have implemented the GiST to efficiently index and retrieve conventional and complex

data for different queries. If the GiST is built on a spatial attribute, it inherits the characteristics

of the R-tree.

The performance to resolve a spatial predicate using a spatial index can be impaired by

several factors, as follows (CIFERRI, 2002). The factors related to spatial data include but are

not limited to data type, complexity (number of vertices), distribution of objects in space and

volume of data. The object’s extent and shape and the degree of overlapping among objects

may also influence, except if the type is point. The factors associated to the workload include

but are not limited to the spatial predicate, the spatial query window’s size, shape and spatial

distribution and selectivity. Given an attribute with cardinality c and a spatial query window w

that retrieves n distinct values in the domain of the attribute, the selectivity is n÷ c.

Spatial indices such as R-tree and GiST are implemented by the DBMS to improve the

performance to resolve spatial predicates, which are often present in SOLAP queries issued over

SDWs. For instance, PostGIS implements the GiST (OBE; HSU, 2015), while Oracle Spatial and

2.2 Uncertain Data Management 59

Graph provides the R-tree (ORACLE. . . , 2014). The R-tree is also extended by existing indices

for SDW such as the aR-tree tackled in Section 3.3 as well as by existing indices for vague

regions such as the Vague R-tree and the FMBR R-tree addressed in Section 3.4. Finally, the

multi-step resolution of the spatial predicate using conservative and progressive approximations

is also adopted by the VSB-index, which is one of the most relevant contributions of this thesis,

as described in Section 6.3.

2.2 Uncertain Data Management

Information from the real world is often imperfect in several ways. A database is an ab-

straction of a piece of the real world and is intrinsically imperfect, since its relevant entities and

its level of detail are determined according to the needs of the database applications (ZIMÁNYI;

PIROTTE, 1997). On the one hand, the information contained in a database is complete and cer-

tain if it accurately and adequately represents the corresponding application domain in the real

world. On the other hand, a piece of information in a database is imprecise if it approximates the

corresponding piece of information in the real world. Also, a piece of information in a database

is uncertain if the corresponding piece of information in the real world is imperfectly known.

Uncertainty and imprecision in databases require representing and querying information that is

uncertain, vague, fuzzy, probabilistic, unknown, partially known, indefinite, disjunctive, possi-

ble, maybe, incomplete, approximate, erroneous, or imprecise (DYRESON, 1997).

Uncertainty in spatial data is the gap between a phenomenon in the real world and its spa-

tial representation in a database (GOODCHILD, 2008). Such gap appears, for example, if broad

boundaries of a phenomenon are modeled as sharp boundaries (BEJAOUI, 2009). The terms

“imperfection” and “uncertainty” are often used interchangeably, as spatial uncertainty encom-

passes different types of spatial data imperfections (BÉDARD, 1987). Imperfections are inher-

ent to spatial data and directly influence the reliability of spatial analysis output (GOODCHILD,

2008). There is not a commonly accepted terminology to define concepts related to imperfec-

tions of spatial data. Consequently, the terms and categorizations associated to imperfections

assume different interpretations depending on the people using the terms and their scientific

community (DEVILLERS et al., 2010). Even though, in different categorizations of spatial data

imperfections, spatial uncertainty is considered the root and is a generic imperfection that can

be specialized into different forms (WORBOYS, 1998; FISHER, 1999; JADIDI et al., 2014).

This thesis addresses uncertain data. Hence, two prominent representations for uncertain

data are summarized in the following. Section 2.2.1 tackles probabilistic data, while Sec-

60 2 Theoretical Foundations

tion 2.2.2 stands for fuzzy data. Probability and fuzziness on spatial data and in DWs are

also outlined.

2.2.1 Probabilistic Data

Probabilistic data refer to uncertain data modeled using the mathematical fundamentals of

Probability Theory (whose core concepts have been recently addressed by Klenke (2014)). Let

X indicate a finite universe and p be a probability distribution. The value given of p(x) specifies

the probability that an element x ∈ X occurs such that p(x) ∈ [0,1]. In addition, Σx∈X p(x) = 1.

A discrete probability distribution can also be denoted as being the set {x1/p(x1),x2/p(x2), ...,

xn/p(xn)}, where xi ∈ X for i = 1, ...,n such that Σx∈X p(x)≤ 1.

An example with conventional data is “John teaches Physics with probability 0.8” (ZIMÁNYI;

PIROTTE, 1997). The statement is represented, in the relation Teaches (Student, Course, Prob-

ability), by the tuple (‘John’, ‘Physics’, 0.8). It is also possible to claim that “John teaches

no course with probability 0.2”. Nevertheless, such statement would not require a tuple in the

relation teaches.

As for spatial data, an error is the difference between the available value and another one

considered as true (GOODCHILD, 1995). For example, a measurement device that is misused

or inadequately calibrated provides erroneous measurements that are inserted into the spatial

database and afterwards are considered as true values (BEJAOUI, 2009). The inability of mea-

suring an object precisely is a measurement uncertainty (PAULY; SCHNEIDER, 2010). The lack

of knowledge about the position and shape of a spatial object that has a definable boundary is

a positional uncertainty (PAULY; SCHNEIDER, 2010). The uncertainty of a crisp spatial object is

caused by errors and is intrinsically probabilistic (FISHER, 1999).

There are three categories of probability models that refer to different granularities of un-

certainty, as follows (TAO; XIAO; CHENG, 2007). A table-based solution estimates how much

percentage of tuples are present in a table (WIDOM, 2005). A tuple-based solution assigns a

probability to each individual tuple to indicate the likelihood that the tuple exists in the table

(DALVI; SUCIU, 2004; SUCIU, 2009). Finally, an attribute-based solution is required when at-

tribute of a tuple is not known precisely and introduces a probability distribution for describing

a set of possible values, together with their probabilities of occurrence (WOLFSON et al., 1999;

CHENG; KALASHNIKOV; PRABHAKAR, 2003).

Section 2.2.1.1 addresses probabilistic models for DWs and Section 2.2.1.2 tackles proba-

bilistic models for spatial data.

2.2 Uncertain Data Management 61

2.2.1.1 Probabilistic Data Warehouses

This section describes the combination of tuple-based and attribute-based solutions that en-

abled imprecision and uncertainty in multidimensional modeling (BURDICK et al., 2005, 2007).

To illustrate how imprecision is supported, consider the fact table LineOrder shown in Fig-

ure 2.1. Rather than referencing a key value from Customer, an imprecise fact would reference

a key value from City. As a result, the fact would be associated to a given city, but still unsure

about the customer (and its address). Nevertheless, a fact member cannot reference a member

of a level that is a non-leaf level of a hierarchy.

Therefore, the column Allocation is necessary and is added to the fact table to denote the

probability of a fact member being associated to a given customer, based on the referenced city.

Such probability is called weight. If the referenced city has x customers, then x weights are

created and their sum is equal to 1. Then, the imprecise fact comprises x rows in the fact table.

Uncertainty in measure values was provided by applying a probability distribution function

to indicate the degree of belief that a true value is being represented. For example, consider

the existence of the uncertain measure Customer Satisfied? in the fact table LineOrder shown in

Figure 2.1. Its uncertain domain is {Yes, No} and a discrete probability distribution function

indicates, with a pair of probabilities, whether the customer was satisfied with a given part

referenced by the fact table, e.g. {Yes/0.8, No/0.2}.

The function results from a classifier algorithm that analyses values of other attributes of

the schema and outputs the pair of probabilities. The classifier is applicable to domains with

more than two elements, but is beyond the scope of this section. The aggregation of an uncer-

tain measure performs a weighted linear combination of probability distribution functions to

reach a consensus from a set of opinions. For example, the query “how likely were customers

satisfied with a given part brand in 2015?” requires aggregating the uncertain measure Customer

Satisfied?. The aggregation functions SUM, AVG, and COUNT are extended for uncertain and im-

precise data and their completeness and faithfulness characteristics ensure the summarizability.

2.2.1.2 Probabilistic Spatial Data

A spatial probability distribution can model the random position of a spatial object. Then,

attribute-based probability models have been often used to model uncertainty in spatio-temporal

databases (TAO; XIAO; CHENG, 2007). The probabilistic models mainly deal with the expectation

of a future event, based on something currently known (PAULY; SCHNEIDER, 2010).

62 2 Theoretical Foundations

Suppose a location-based service used to monitor moving objects such as vehicles. Each

vehicle o informs its current location whenever it has moved away from its previously updated

position x by a certain distance ε . At any time, the precise location of o is unknown, but must be

inside a circle whose center is x and radius is ε and constrained by the underlying road network

(WOLFSON et al., 1999). Figure 2.6 illustrates the position of the vehicle o, ε , the circle, and the

road network. It also depicts a grid that approximates the distribution of o, such that o can be

strictly in the gray cells that intersect both the circle and the road network. Imposing an equal

chance for all the gray cells would be a simple solution. A more realistic solution would be to

assign chances taking into account the distance between the cell and x and the speed limits of

roads, for example. A probability distribution can also assign a weight to each pixel of a raster

that displays the extent of an object (PEBESMA; KARSSENBERG; JONG, 2006).

Figure 2.6: Probabilistic modeling of uncertain objects: the location of a vehicle (extracted from
Tao, Xiao & Cheng (2007)).

Spatial range queries are processed using probabilistic constrained rectangles (PCRs) that

approximate object’s probabilities acting as MBRs (TAO; XIAO; CHENG, 2007). First, PCRs

prune and validate the majority of non-qualifying and qualifying probabilistic data. Second, a

refinement thus processes a small number of objects by invoking more costly routines, which

comprise loading and calculating an object’s probability.

Nearest neighbor queries often do not have an obvious answer, since no object is the near-

est neighbor with absolutely certainty. The superseding nearest neighbor core (SNN-core) over-

comes such limitations (YUEN et al., 2010). It is the minimum set of nearest neighbor candidates,

such that each candidate overcomes (supersedes) all the nearest neighbor candidates outside the

SNN-core. Once the SNN-core is usually a singleton, it benefits the nearest neighbor search as

it can minimize the number of retrieved objects.

2.2 Uncertain Data Management 63

2.2.2 Fuzzy Data

Fuzzy Logic and Fuzzy Set Theory provide means of addressing the uncertainty regarding

the absence of sharply defined criteria of membership (ZADEH, 1965). A fuzzy set Ã defined

in Rn has a function µÃ : Rn→ [0,1] called membership function, which quantifies the mem-

bership degree of an element a to the fuzzy set Ã. Membership values are in the interval [0,1].

Higher membership values represent increasing membership degrees, while lower membership

values denote decreasing membership degrees. The membership value 1 ensures a certain mem-

bership to the fuzzy set, while the membership value 0 indicates a false membership to the fuzzy

set. According to the application, a fuzzy set can be interpreted as degree of similarity (to a pro-

totype in a class), degree of plausibility, or degree of preference (DUBOIS; PRADE, 1997). It is

noteworthy that fuzzy sets do not have a statistical nature (ZADEH, 1965) and are not meant to

disguise probabilities (DUBOIS; PRADE, 2015).

In database management, two main approaches are adopted (KACPRZYK; ZADROZNY; TRÉ,

2015). One approach enables issuing fuzzy queries against a traditional database such that

matching a tuple against a query provides a gradual rather than binary result set. The other ap-

proach considers a fuzzy database whose data are affected by fuzziness. Table-based solutions

assume that relations in a database are fuzzy. In attribute-based solutions, an imperfectly known

value of an attribute at some tuple is represented by a possibility distribution. Fuzzy databases

also require modifications on query languages in order to retrieve query answers by similarity

instead of equality, for example.

Section 2.2.2.1 addresses fuzzy data warehouses. Spatial fuzziness is closely related to the

difficulty of delineating boundaries for regions (HAZARIKA; COHN, 2001) and to provide gradual

rather than abrupt membership to fuzzy spatial objects. Conversely, spatial vagueness is more

general than spatial fuzziness and can also refer to the broadness of shapes such as point (set),

line (set), and region (set). This thesis focuses on spatial vagueness, which is duly addressed in

Section 2.3. Besides, related work regarding spatial vagueness in spatial data warehouses are

surveyed in Section 3.2.

2.2.2.1 Fuzzy Data Warehouses

Multidimensional modeling and data warehouses have been extended with fuzzy data in

several manners. This section outlines a few of them.

A membership degree can be assigned to elements of a data cube considering membership

values interpreted as degrees of truth rather than possibility, as follows (LAURENT, 2003). An

64 2 Theoretical Foundations

attribute value is not a single, but a pair of values (v,c), where v is either a precise value or a

linguistic label obtained from a fuzzy set and d is a confidence degree in [0,1]. Then, an attribute

of a dimension is (vD,cD) and a measure (attribute of a fact) is (vm,cm). A fact member f

comprises pairs of values (vD,cD) and (vm,cm) and is assigned a degree µ f in [0,1] that denotes

the extent to which it belongs to the cube.

For instance, let Food, Season, and City be dimensions and Sales be a fact with the measure

Quantity. An example of fact member is ((‘Pamonha’, 1.0), (‘Corn Season’, 0.7), (‘Piracicaba’,

0.8), (‘High’, 90,000), µ f =0.9). The OLAP operator dice, for example, selects fact members

that satisfy conditions involving (LAURENT, 2003): (i) the attribute value(s) vd (or vm), e.g.

Season=‘Corn Season’; (ii) the degree µ f , e.g. µ f =0.9; and (iii) the degree of confidence cD (or

cm), e.g. cSeason=0.7.

A fuzzy hierarchical relation addresses the imprecision in the relationship between mem-

bers of different levels (DELGADO et al., 2004, 2007). The value in [0,1] representing the relation

between members of a level and members of parent levels can be replaced by linguistic labels.

For example, consider the hierarchy LegalAge� Age and the fuzzy hierarchy AgeGroup� Age.

The members of AgeGroup are ‘Young’ and ‘Adult’, and ‘Old’, the members of LegalAge are

‘Yes’ and ‘No’, and the members of Age are values between 0 and 120. Each age is associated

to a legal age with possibility that is either 1 or 0. Conversely, ages are classified within the

fuzzy concept of an age group. The age 25 belongs to ‘Young’ with a membership degree of 0.7

and to ‘Adult’ with a degree of 0.3. Therefore, a roll-up to the level AgeGroup would distribute

age 25 as 17.5 (obtained from 0.7×25) for ‘Young’ and 7.5 (obtained from 0.3×25) for ‘Adult’.

As for the logical design, the methodology of Kimball & Ross (2002) is also extended,

as follows. A fuzzy dimension has at least one category attribute as a fuzzy concept (SAPIR;

SHMILOVICI; ROKACH, 2008). An additional table has one column for each linguistic label

defined by the membership function. It also has a column referencing the level on which the

fuzzy concept was defined. The tuples store membership values regarding the linguistic labels.

Consider the dimension Customer containing the hierarchy AgeGroup � Age as described in

the previous example. The table Customer (CustomerPK, Age, ...) has a surrogate key of a

customer and its age, respectively, and a tuple is (‘Customer1’, 25, ...). The table CustomerAge

(CustomerFK, Young, Adult, Old) has a foreign key and one column for each linguistic label,

and a tuple is (‘Customer1’, 0.7, 0.3, 0.0).

An alternative is to separate fuzzy membership tables from fuzzy classification tables (FASEL,

2014). Their meanings are illustrated as follows considering the previous example. The fuzzy

membership table CustomerAgeFMT (CustomerAgeFmtPK, CustomerFK, LabelFK, Mem-

2.3 Spatial Vagueness 65

bership) holds a surrogate key, a reference to the table Customer, a reference to the table

CustomerAgeFCT , and a membership value, respectively. Two tuples are (‘Fmt25’, ‘Cus-

tomer1’, ‘FctYoung’, 0.7) and (‘Fmt25’, ‘Customer1’, ‘FctAdult’, 0.3). The fuzzy classification

table CustomerAgeFCT (CustomerAgeFctPK, Label) holds a surrogate key and a linguistic la-

bel, respectively. Two tuples are (‘FctYoung’, ‘Young’) and (‘FctAdult’, ‘Adult’). To sum up, a

fuzzy data warehouse has at least one or more fuzzy membership tables and zero or more fuzzy

classification tables.

2.3 Spatial Vagueness

Figure 2.7 illustrates an UML class diagram representing a taxonomy that contextualizes

spatial uncertainty in spatial data modeling and the models used to handle it. The uncertainty

affecting an object’s definition is related to the object’s semantics and shape (FISHER, 1999). The

spatial representation of a given phenomenon is either a well-defined object or a poorly-defined

object. A well-defined (crisp) object is considered definable in both its conventional attributes

and spatial representation. As a result, it has Boolean occurrence, such that any location is

either part of the object, or it is not. If the object is well-defined, then uncertainty is addressed

by probabilistic models. Conversely, a poorly-defined object is affected by imperfections that

affect its definition, such as spatial vagueness and spatial ambiguity.

Figure 2.7: A conceptual model of uncertainty in spatial data (adapted from Fisher (1999) and
Jadidi et al. (2014)).

Spatial vagueness influences the broadness of a spatial object’s shape, i.e. its boundary and

interior (HAZARIKA; COHN, 2001). If it is not possible to clearly define the shape of an object to

be mapped or analyzed, the object is considered vague. There is not a combination of object’s

properties (attributes) that allows the definition of the precise shape of the object (FISHER, 1999).

66 2 Theoretical Foundations

A vague spatial object comprises parts that are certainly a member and parts that are possibly a

member (ERWIG; SCHNEIDER, 1997). The membership degree to a given vague concept cannot

be computed using a binary logic, i.e. true or false, because spatial vagueness impairs the

unequivocal assignment of members to an object (FISHER, 1999). Temporality is another facet

that may affect the shape of a spatial object (HAZARIKA; COHN, 2001).

Spatial vagueness has been mainly addressed by distinct models that assign membership

degrees to vague concepts: exact models and fuzzy models. The difference between the terms

vague and fuzzy refers exclusively to the approach used to define the model as an exact model

based on crisp spatial data types or as an approach based on mathematical theories such as the

fuzzy set theory. Regardless the term vague or fuzzy, these spatial data models comprise vague

or fuzzy points, vague or fuzzy lines, vague or fuzzy regions (JADIDI et al., 2014). In this thesis,

vague spatial data can be modeled either according to a vague spatial data type from an exact

model or to a fuzzy spatial data type from a fuzzy model.

Exact models extend the research legacy regarding crisp spatial data by employing a 3-

valued logic based on {true,maybe, f alse} to define vague spatial data types, operators and

topological relationships. These models reuse and adapt either the point-set topology (EGEN-

HOFER; FRANZOSA, 1991) or the region connection calculus (RANDELL; CUI; COHN, 1992). A

vague spatial object designed according an exact model has: (i) one geometric component that

certainly belong to it, whose membership to the object is true; (ii) one geometric component

that possibly belong to it, whose membership to the object is maybe; and (iii) an exterior whose

membership to the object is false. All components are processed by operators, such as union,

which merges a pair of vague spatial objects. Analogously, a vague spatial topological relation-

ship yields either true, maybe, or false.

Conversely, fuzzy models are based on Fuzzy Set Theory (ZADEH, 1965). Fuzzy models

define fuzzy spatial topologies and fuzzy spatial data types. A fuzzy spatial object is a vague

spatial object with the additional feature of using a membership function that quantifies the

membership degrees of its components. Membership values are in the interval [0,1]. An ex-

ample of membership function is a distance function. Furthermore, fuzzy models utilizes the

fuzzy logic to determine the truth degree of a topological relationship. They also extend fuzzy

set operations, such as union, to merge two fuzzy spatial objects.

In general, crisp spatial data and exact models neglect the loss of information as they adapt

reality to a coarse representation with low resolution (HWANG; THILL, 2005). These represen-

tations are not able to adequately address phenomena that have characteristics of spatial object

and continuous fields simultaneously (BURROUGH, 1996). Fuzzy models overcome these gaps

2.3 Spatial Vagueness 67

by adopting a multivalued logic with a continuum of truth values in the interval [0,1], instead

of a 3-valued logic (ZADEH, 1965). Since it is not feasible to store infinite elements of a fuzzy

set representing a fuzzy spatial object, implementations for fuzzy models mainly hold geomet-

ric features and their corresponding membership values in]0,1] (VERSTRAETE; HALLEZ; TRÉ,

2006; DILO, 2006; PETRY; LADNER; SOMODEVILLA, 2007; KANJILAL; LIU; SCHNEIDER, 2010;

SCHNEIDER, 2014).

On the other hand, the utilization of fuzzy models might be unfeasible if elaborating a mem-

bership function to assign values in]0,1] is impossible, or if a membership function does not

exist (LEUNG, 1987; BURROUGH; FRANK, 1996). Then, adopting an exact model may become

necessary. Alternatively, clustering and classification methods can be used to search for patterns

within a dataset and assign membership values, e.g. fuzzy c-means algorithm and fuzzy neural

networks (FISHER, 1999; JADIDI et al., 2014).

In this thesis, the design of vague SDWs tackles data types, operators and topological rela-

tionships from exact models, fuzzy models, and implementations for fuzzy models. Therefore,

Section 2.3.1 addresses exact models, Section 2.3.2 addresses fuzzy models, Section 2.3.3 ad-

dresses implementations for fuzzy models, and Section 2.3.4 summarizes relevant characteris-

tics of the studied models and implementations. The description of the taxonomy illustrated in

Figure 2.7 is resumed and concluded in the following paragraph.

Different perceptions on the classification of a phenomenon cause spatial ambiguity (FISHER,

1999), as distinct results are obtained using divergent classification methods for the same set of

elements (BEJAOUI, 2009). It is noteworthy that ambiguity results from the classification pro-

cess itself and not from the characteristics of the classes involved (BEJAOUI, 2009). Discord is

a subtype of spatial ambiguity and occurs when completely different naming conventions are

used by designers (OORT, 2006). Conflicting territorial claims, such as the existence or non-

existence of a nation of Kurds, exemplify a ambiguity through discord in the creation of maps

(FISHER, 1999). Non-specificity is also a subtype of spatial ambiguity that may affect spatial

relationships, as exemplified by Fisher (1999). For the statement “A is north of B”, both of the

following definitions are valid, but hold ambiguity through non-specificity: (i) A lies on exactly

the same line of longitude and towards the north pole from B; and (ii) A lies somewhere to the

north of a line running east to west through B.

2.3.1 Exact Models for Spatial Vagueness

Exact models for spatial vagueness or simply exact models define vague spatial data types,

vague operators and vague topological relationships. Their comprehension is essential to enable

68 2 Theoretical Foundations

Table 2.2: Nomenclatures adopted by exact models for components of a vague spatial object.

Component Egg-Yolk RBB QMM VASA
Membership is true Yolk Inner boundary Minimal extent Kernel

Membership is maybe White Broad boundary Maximal extent Conjecture

the design of vague SDWs and provide both multidimensional and spatial analyses. The next

sections survey the following exact models for spatial vagueness, or simply exact models: the

Egg-Yolk model proposed by Cohn & Gotts (1996), the model for regions with broad bound-

aries (RBB) introduced by Clementini & Felice (1996), the qualitative min-max (QMM) model

described by Bejaoui et al. (2009, 2010), and the vague spatial algebra (VASA) proposed by

Pauly & Schneider (2010). Section 2.3.1.1 addresses vague spatial data types, Section 2.3.1.2

tackles vague spatial operators, and Section 2.3.1.3 stands for vague topological relationships.

2.3.1.1 Vague Spatial Data Types

Exact models describe a vague spatial object using a pair of geometric components, as illus-

trated in Figure 2.8. One component certainly belongs to the object, its membership is true, and

its color is black in Figure 2.8. The other component possibly belongs to the object, its mem-

bership is maybe, and its color is gray in Figure 2.8. Exact models adopt distinct nomenclatures

for these components, as listed in Table 2.2.

In VASA, a vague point P has the point set Pk as kernel and the point set Pc as conjecture.

The sets are disjoint. A vague point P, according to VASA, is interpreted as a set of known

locations where some locations certainly belong to P, while other locations possibly belong to

P. Figure 2.8a-d exemplify vague points designed according to VASA.

In the QMM model, a vague point P is a broad point visualized as a region, as exemplified

in Figure 2.8e. It is interpreted as an undetermined location within a determined area. P has an

empty minimal extent Pmin and a non-empty maximal extent Pmax composed of the area occupied

by P.

The QMM model defines 9 different subtypes of vague line. The endpoints and the interior

points of a crisp line are strictly crisp points as exemplified in Figure 2.8f. Conversely, the end-

points and/or the interior points of a vague line can be crisp points or vague points. Thus, vague

lines of the QMM model assume broad boundary and/or broad interior, as exemplified in Fig-

ures 2.8g-l. Additionally, a completely vague line is a broad line as exemplified in Figure 2.8m.

The maximal extent Lmax of a vague line L encompasses the set of vague end and interior points

from L. The minimal extent Lmin of a vague line L encompasses one or more lines from L that

2.3 Spatial Vagueness 69

do not cross themselves and that do not form a loop.

In VASA, a vague line L has the line set Lk as kernel and the line set Lc as conjecture.

Distinct lines can meet but cannot overlap. Figure 2.8f,n-p exemplify vague lines designed

according to VASA.

VASA

(a)

VASA

(b)
VASA

(c)
VASA

(d)
QMM

(e)

QMM, VASA

(f)

QMM

(f)

QMM

(g)

QMM

(h)

QMM

(i)

QMM

(j)

QMM

(k)
QMM

(l)

QMM

(m)

VASA

(n)

VASA

(o)

VASA

(p)

QMM, VASA

(q)

Egg-Yolk, RBB,
QMM, VASA

(r)

QMM, VASA

(s)

VASA

(t)

VASA

(u)

VASA

(v)

Vague Point

Vague Line

Vague Region

Membership: True Maybe

Figure 2.8: Examples of vague spatial objects designed according to existing exact models for
spatial vagueness.

In the Egg-Yolk model, a vague region R is composed of a pair of concentric regions, such

that the inner is the yolk Ryolk, the outer is the white Rwhite, and they together compose the egg

R. There is an explicit constraint that the boundary of the white does not touch the boundary of

the yolk. Conceptually, the indeterminate boundary of the vague region R is an outline within

the white. Figure 2.8r exemplifies a vague region designed according to the Egg-Yolk model.

In the RBB model, a region with broad boundaries R is a pair of sets in R2: Rin and Rout

such that Rin ⊆ Rout . Then, ∂Rin is the internal boundary of R, ∂Rout is the external boundary

of R, ∆R = Rin−R◦out is the broad boundary of R in R2 and Ro = Rout −∆R is the interior of R.

Figure 2.8r exemplifies a vague region designed according to the RBB model.

In the QMM model, a vague region R has the region Rmax as maximal extent and the region

70 2 Theoretical Foundations

Rmin as minimal extent. Rmax is comparable to the egg from the Egg-Yolk model and to the

external boundary of the RBB model. Conversely, Rmin is comparable to the yolk from Egg-

Yolk model and to the internal boundary of the RBB model. Figure 2.8q-s exemplify vague

regions designed according to the QMM model. Differently from the Egg-Yolk and the RBB

models, the QMM model constrains a vague region R such that:

Equals(Rmin,Rmax)∨Contains(Rmin,Rmax)∨Covers(Rmin,Rmax).

In VASA, a vague region R has the region set Rk as kernel and the region set Rc as con-

jecture. Points within the kernel Rk certainly belong to R, while points within the conjecture

Rc possibly belong to R. Figure 2.8q-v exemplify vague regions designed according to VASA.

Differently from the Egg-Yolk, RBB and the QMM models, VASA constrains a vague region R

such that the interior of the kernel Rk is disjoint from the interior of the conjecture Rc. In other

words:

Dis joint(Rk,Rc)∨Touches(Rk,Rc).

2.3.1.2 Vague Spatial Geometric Set Operators

Concerning the exact models that have been surveyed in this chapter, only VASA com-

prises operators that processes vague spatial objects and return a vague spatial object, as union,

intersection and difference, since its vague spatial data types are closed under these operations.

The union of the pair of vague spatial objects A and B produces a vague spatial object with

the same data type of both A and B. The kernel of the resulting vague spatial object is the union

of the kernels of A and B. Also, the conjecture of the resulting vague spatial object comprises

the union of the conjectures of A and B, except from the extent that already belong to the kernel.

Considering that ⊕ is the geometric union and 	 is the geometric difference, then:

A union B = (Ak⊕Bk,(Ac⊕Bc)	 (Ak⊕Bk))

The intersection of the pair of vague spatial objects A and B produces a vague spatial object

with the same data type of both A and B. The kernel of the resulting vague spatial object

encompasses the intersection between the kernels of A and B. The conjecture of the resulting

vague spatial object comprises the intersections between the kernel of A and the conjecture of

B, between the conjecture of A and the kernel of B, and between the conjectures of A and B.

Considering that ⊗ is the geometric intersection, then:

A intersection B = (Ak⊗Bk,(Ac⊗Bc)⊕ (Ak⊗Bc)⊕ (Ac⊗Bk))

2.3 Spatial Vagueness 71

The difference of the pair of vague spatial objects A and B produces a vague spatial object

with the same data type of both A and B. The kernel of the resulting vague spatial object

encompasses parts of the kernel of A that do not intersect B. The conjecture of the resulting

vague spatial object comprises the intersection of the conjectures of A and B, the intersection

of the kernel of A and the conjecture of B, and parts of the conjecture of B that do not intersect

A. Considering that ⊕ is the geometric union, ⊗ is the geometric intersection, and � is the

geometric complement (the set of points that do not belong to a given geometry), then:

A difference B = (Ak⊗ (�(Bk⊕Bc)),(Ac⊗Bc)⊕ (Ak⊗Bc)⊕ (Ac⊗ (�(Bk⊕Bc))))

2.3.1.3 Vague Topological Relationships

Let A and B be two vague regions modeled according to the Egg-Yolk model. Then, the

topological relationship between A and B is an interpretation of four region connection calculi,

such that each calculus C is in {Distinct Regions, Partially Overlapping, Proper Part, Equal,

Proper Part Inverse} (RANDELL; CUI; COHN, 1992):

C(Ayolk,Byolk)

C(Ayolk,Bwhite)

C(Awhite,Byolk)

C(Awhite,Bwhite)

In Figure 2.9, the analysis of the four calculi concludes that A nearly overlaps B.

Let A and B be two vague regions modeled according to the RBB model. Then, then the

topological relationship between A and B is an interpretation of a 3×3 matrix of intersections,

such that ◦, ∆, and − denote interior, broad boundary, and exterior, respectively:
A◦∩B◦ A◦∩∆B A◦∩B−

∆A∩B◦ ∆A∩∆B ∆A∩B−

A−∩B◦ A−∩∆B A−∩B−


In Figure 2.9, the analysis of the 3×3 matrix concludes that the relationship number 12 specified

by Clementini & Felice (1996) is held by A and B.

Let A and B be two vague spatial objects modeled according to the QMM model. Then, the

topological relationship between A and B is an interpretation of a 2×2 matrix where R1, R2, R3,

72 2 Theoretical Foundations

R4 ∈ { meets, contains, inside, equals, overlaps, covers, covered by, disjoint}:(
R1(Amin,Bmin) R2(Amin,Bmax)

R3(Amax,Bmin) R2(Amax,Bmax)

)

In Figure 2.9, the analysis of the 2×2 matrix concludes that A strongly overlaps B, according to

the relationship number 190 specified by Bejaoui et al. (2010).

Let A and B be two vague spatial objects modeled according to VASA and ⊕ be the geo-

metric union. Then, the topological relationship between A and B is an interpretation of p, q, r,

s, v, w ∈ { meets, contains, inside, equals, overlaps, covers, covered by, disjoint}:

p(Ak,Bk)∧
q(Ak⊕Ac,Bk)∧
r(Ak,Bk⊕Bc)∧

s(Ak⊕Ac,Bk⊕Bc)∧
v(Ak,Ak⊕Ac)∧
w(Bk,Bk⊕Bc)

In Figure 2.9, the analysis of the six conjunctions concludes that A maybe meets B.

2.3.2 Fuzzy Models for Spatial Vagueness

Exact models for spatial vagueness or simply exact models define vague spatial data types,

vague operators and vague topological relationships. Their comprehension is essential to enable

the design of vague SDWs and provide both multidimensional and spatial analyses. The next

sections survey the following exact models for spatial vagueness, or simply exact models: the

Egg-Yolk model proposed by Cohn & Gotts (1996), the model for regions with broad bound-

aries (RBB) introduced by Clementini & Felice (1996), the qualitative min-max (QMM) model

described by Bejaoui et al. (2009, 2010), and the vague spatial algebra (VASA) proposed by

Pauly & Schneider (2010). Section 2.3.1.1 addresses vague spatial data types, Section 2.3.1.2

tackles vague spatial operators, and Section 2.3.1.3 stands for vague topological relationships.

2.3.2.1 Fuzzy Spatial Data Types

Figures 2.10a-l exemplify vague spatial objects represented according to different fuzzy

spatial data types. The shaded representation using gradients indicate a higher membership

values for black and darker tones of gray, a lower membership value for brighter tones of gray

and membership value equal to 0 for white.

2.3 Spatial Vagueness 73

A B

Egg-Yolk RBB QMM VASA

C(Ayolk,Byolk)
Distinct
Regions

Ao∩Bo is false
False

R1(Amin, Bmin)
Meets

p(Ak, Bk)
Meets

C(Ayolk,Bwhite)
Partially

Overlapping

Ao∩∆B

True
R2(Amin, Bmax)

Overlaps
q(AkAc, Bk)

Overlaps

C(Awhite,Byolk)
Partially

Overlapping

∆A∩Bo
True

R3(Amax, Bmin)
Overlaps

r(Ak, BkBc)
Overlaps

C(Awhite,Bwhite)
Partially

Overlapping

∆A∩∆B
True

R4(Amax, Bmax)
Overlaps

s(AkAc, BkBc)
Overlaps

- - -
v(Ak, AkAc)

Inside

- - -
w(Bk, BkBc)

Inside

How are A and B
related?

A nearly
overlaps B

(9)

(12)

Meets Overlaps
Overlaps Overlaps

A strongly
overlaps B

(190)

MeetsOverlaps
Overlaps

OverlapsInside
Inside

A maybe

overlaps B

A B

A B

A B

A B

A

B

0 T T

T T T

T T T

Figure 2.9: Vague regions A and B and the topological relationships between them according to
existing exact models.

Dilo (2006), Dilo, By & Stein (2007) and Schneider (2008) defined a simple fuzzy point

as an exact location (a,b) in R2 with a membership value in]0,1] concerning the observed

phenomenon. Therefore, a simple fuzzy point is the unitary fuzzy set µ p̃(a,b) such that:

µp̃(a,b)(x,y) =

{
m if (x,y) = (a,b), where 0 < m≤ 1

0 otherwise.

Figure 2.10a shows a simple fuzzy point with membership value 1, while Figure 2.10b depicts

a simple fuzzy point with membership value in]0,1[.

Dilo (2006) and Dilo, By & Stein (2007) also defined the fuzzy point P̃ as a finite set of one

74 2 Theoretical Foundations

(a) (b) (c) (d)

(h) (i) (j) (k) (l)

Fuzzy Point

Fuzzy Line

Fuzzy Region

(e) (f) (g)

Membership: 0 1

Figure 2.10: Example of vague spatial objects designed according to existing fuzzy models for
spatial vagueness.

or more disjoint simple fuzzy points p̃ as:

µP̃ =
n⊔

i=1

µ p̃i(a,b).

Figure 2.10c exemplifies a fuzzy point composed of six simple fuzzy points.

Besides, Schneider (2008) defined a broad fuzzy point composed of all pairs of coordinates

(x,y) within an arbitrary distance from the coordinates (a,b). The membership values are as-

signed according to a distance function, which is commonly a circle equation. As a result, there

is a buffer zone circumscribing (a,b) composed of simple fuzzy points. As the distance from

(a,b) increases the membership value decreases, and vice-versa. Such definition of fuzzy point

is:

µ p̃(a,b)(x,y) =

 1−
√

(x−a)2+(y−b)2

r if (x−a)2 +(y−b)2 ≤ r2

0 otherwise.

Figure 2.10d exemplifies a broad fuzzy point.

2.3 Spatial Vagueness 75

Dilo (2006), Dilo, By & Stein (2007) and Schneider (2008) agreed that a simple fuzzy line

is a (curvi)linear feature with exact location but with a vague outline composed of simple fuzzy

points p̃. The membership values of these points vary smoothly between the endpoints fl̃(0)

and fl̃(1), whose membership values are the lowest and the greatest, respectively. Although

stepwise variations in the membership values may occur, discontinuities and self-intersection of

the interior are disallowed. A simple fuzzy line l̃ comprising these characteristics is exemplified

in Figure 2.10e.

Schneider (2008) also defined a fuzzy block b̃ as a finite set of simple fuzzy lines that have

disjoint interiors and that share one endpoint whose membership value is the same. Figure 2.10f

exemplifies a fuzzy block composed of three numbered simple fuzzy lines that share a common

endpoint. The membership value in such endpoint is the same for the three simple fuzzy lines.

Schneider (2008) extended the definition of fuzzy block to define a fuzzy line L̃ as being

a collection of disjoint fuzzy blocks. The fuzzy line defined by Dilo (2006) and Dilo, By &

Stein (2007) also complied with the definitions and constraints of the fuzzy line proposed by

Schneider (2008). Figure 2.10g exemplifies a fuzzy line composed of two fuzzy blocks, such

that one block has three simple fuzzy lines and the other block has four simple fuzzy lines.

Verstraete, Hallez & Tré (2006) defined a simple fuzzy region as a set of simple fuzzy

points. With U being the universe of locations p, the membership µÃ(p) quantified the degree

of membership of p to the simple fuzzy region r̃, i.e.:

r̃ = {(p,µr̃(p))}
where µr̃ : U → [0,1] and p 7→ µr̃(p).

Given a fuzzy set Ã, an α-cut Ãα is a set of elements of Ã such that the membership value

is greater than or equal to α:

Ãα = {x ∈ Rn | Ã(x)≥ α}

Figure 2.11 depicts the simple fuzzy region r̃ and highlights the interval [a,b] that encom-

passes the α-cut for α = 0.5. Figure 2.10h repeats r̃, while Figure 2.10i depicts another simple

fuzzy region.

Although Dilo (2006), Dilo, By & Stein (2007), Schneider (2008), and Tang, Kainz &

Wang (2010) adopted distinct topologies, they agreed that a simple fuzzy region is composed

of a set of simple fuzzy points whose membership values vary gradually and smoothly among

neighbor points. In general, they defined a fuzzy region R̃ as a finite set of simple fuzzy regions

and disallowed the following irregularities: abrupt variation of the membership value, isolated

76 2 Theoretical Foundations

Figure 2.11: A simple fuzzy region and its membership function (VERSTRAETE; HALLEZ; TRÉ,
2006).

points, and isolated lines. Figures 2.10j-l depict fuzzy regions encompassing different numbers

of simple fuzzy regions.

Dilo (2006), Dilo, By & Stein (2007), Schneider (2008), and Hazarika & Hazarika (2012)

allowed disjoint holes in a fuzzy region if, and only if they are not located over the following

transitions of membership values: from 1 to 0 and from 0 to more than 0. Tang, Kainz & Wang

(2010) also disallowed a fuzzy region to have holes where the membership value is equal to 1.

2.3.2.2 Fuzzy Spatial Operators

Fuzzy models’ operators are based upon the following operators for union, intersection and

difference of fuzzy sets (ZADEH, 1965).

The union of two fuzzy sets Ã and B̃ is Ãt B̃, whose membership function yields the maxi-

mum membership values of the functions µÃ(x) and µB̃(x):

µÃtB̃(x) = Max[µÃ(x),µB̃(x)],x ∈ Rn

The union of fuzzy sets was adapted by Dilo (2006), Dilo, By & Stein (2007), and Schneider

(2008) to yield the maximum membership value of a pair of operands that belong to the same

fuzzy spatial data type, i.e. two fuzzy points, or two fuzzy lines, or two fuzzy regions. In

general, each fuzzy model defined its own operators according to the adopted topology and to

the available data types. Intersection, complement and difference, which are described in the

following, were extended analogously.

2.3 Spatial Vagueness 77

The intersection of two fuzzy sets Ã and B̃ is Ãu B̃, whose membership function yields the

minimum membership values of the functions µÃ(x) and µB̃(x):

µÃuB̃(x) = Min[µÃ(x),µB̃(x)],x ∈ Rn

The complement of a fuzzy set Ã is Ã′ whose membership function is:

µÃ′(x) = 1R
n
−µÃ

The difference of two fuzzy sets Ã and B̃ is Ã− B̃, whose membership function yields the

minimum membership values of the functions µÃ(x) and µB̃′(x) (complement of B̃):

µÃ−B̃(x) = Min[µÃ(x),µB̃′(x)],x ∈ Rn.

2.3.2.3 Fuzzy Spatial Topological Relationships

Some authors defined fuzzy topological relationships based on the crisp topological rela-

tionships commented in Section 2.1.1.3. Zhan (1998) determined the fuzzy topological relation-

ship R between two simple fuzzy regions Ã and B̃ by using a finite number of α-cuts without

holes α1=1 > α2 > ... > αn = 0, which are generated using a pair of input α-cuts provided as

reference. R(Ã, B̃) assumes a value in [0,1], such that:

R(Ã, B̃) = ∑
n−1
i=1 ∑

n−1
j=1(αi−αi+1)× (α j−α j+1)×R(Ãαi, B̃α j)

where R(Ãαi, B̃α j) is the truth value 1 or 0 regarding meets (touches), contains, inside (within),

equals, overlaps, intersects, covers, covered by or disjoint.

Figure 2.12a exemplifies a pair of input α-cuts in gray provided as reference for determin-

ing the topological relationship between the simple fuzzy regions Ã and B̃. More α-cuts are

generated, for each vague region, between the black α-cut and the gray α-cut. They have α

in]0,1[, since the black α-cuts have α = 1.0 and the gray α-cuts have the minimum α values.

The evaluation of dis joint(Ã, B̃) yields a value between 0 and 1, since it the reference α-cuts

clearly have dis joint(Ãα0, B̃α0) = 0 because they are not disjoint.

Schneider (2008) extended the method of Zhan (1998) to provide support for fuzzy points,

fuzzy lines and fuzzy regions, as well as to allow linguistic labels provided by either a trape-

zoidal membership function or a triangular membership function. For instance, if dis joint(Ã, B̃)=

0.30 in Figure 2.12a, then Ã e B̃ are slightly disjoint according to the membership functions

shown in Figure 2.12b.

78 2 Theoretical Foundations

(a) (b)

Figure 2.12: Evaluating the fuzzy topological relationship between two fuzzy regions. (a) Pairs of
reference α-cuts in black, and Ãα0 , B̃α0 in gray. (b) Membership functions and the linguistic labels
they assume.

Other authors adapted the 9-intersection matrix commented in Section 2.1.1.3, as follows.

Shi & Liu (2007) and Liu & Shi (2009) reused the 9-intersection matrix and, for each cell, used

integrals to quantify the intersection between the components of the inputs Ã and B̃. Indeed,

these integrals correspond to the area shared by the both input membership functions. Also,

these integrals fit the data type of the inputs, i.e. surface integral for a simple fuzzy region and

line integral for a simple fuzzy line. The fuzzy model described by Tang, Kainz & Wang (2010)

adopt a topology that defines fuzzy regions with five components. Therefore, a 5×5 matrix is

used to identify intersections between a pair of components from the input fuzzy regions Ã and

B̃. The existence of intersection is indicated by 1, while the absence of intersection is indicated

by 0. Hazarika & Hazarika (2012) defined a matrix to relate a fuzzy region Ã with n holes and

B̃, which is either a fuzzy point, a fuzzy line or a fuzzy region. The number of cells of the matrix

varies according to the number of holes n in Ã.

2.3.3 Implementations for Fuzzy Models

Fuzzy models have been implemented in several different manners. The comprehension

of these implementations is essential to indicate requirements that the design of vague SDWs

should satisfy. The following sections survey existing implementations for fuzzy models that

both support one or more fuzzy spatial data types and describe their operators. Section 2.3.3.1

addresses spatial plateau objects in the context of the plateau algebra (KANJILAL; LIU; SCHNEI-

DER, 2010; SCHNEIDER, 2014). Section 2.3.3.2 tackles fuzzy lines implemented as lines with

gradual transitions (DILO, 2006). Section 2.3.3.3 stands for fuzzy regions implemented as

bitmaps (VERSTRAETE et al., 2005; VERSTRAETE; TRÉ; HALLEZ, 2006). Section 2.3.3.4 focuses

2.3 Spatial Vagueness 79

on fuzzy regions implemented as triangulated irregular networks (DILO et al., 2006; VERSTRAETE

et al., 2007). Finally, Section 2.3.3.5 addresses fuzzy regions implemented as minimum bound-

ing rectangles (SOMODEVILLA; PETRY, 2003).

Fuzzy Point

Fuzzy Line

Fuzzy Region

(p1, 0.4)

(p2, 0.6)

(p3, 0.8)

(p1, 1.0)

 1.00
 ○ almost 0

■ 1.0
■ 0.8

■ 0.6
■ 0.4

■ 0.2
□ 0.0

● consecutive points approximated point

Plateau region

(d)

Bitmap

(e)

TIN

(f)

Fuzzy MBR

(g)

Plateau point

(a)

Plateau line

(b)

Line with gradual transitions

(c)

Figure 2.13: Examples of implemented fuzzy point, fuzzy lines and fuzzy regions.

2.3.3.1 Spatial Plateau Objects

The plateau algebra provides the following implementations of fuzzy spatial data types:

plateau point, plateau line and plateau region. A plateau spatial object po represents the fuzzy

spatial object õi with n subsets as n pairs containing a geometry oi, j and its corresponding

membership value mi,n j , for 1≤ i≤ j ≤ n:

po = 〈(oi,1,mi,1)...(oi,ni,mi,ni),oi〉

80 2 Theoretical Foundations

The pairs are ordered in ascending order of membership values and each geometry oi, j approx-

imates a subset from õi. Every geometry oi, j has the same crisp spatial data type closed under

geometric set operations, such as those from OGC and implemented by PostGIS and Oracle

Spatial and Graph. Also, oi =⊕ni
j=1 oi, j, where ⊕ denotes geometric union.

A plateau point is a finite set of disjoint points (or point sets) with distinct membership

values. Figure 2.13a exemplifies the plateau point pp = 〈(p1,0.4),(p2,0.6),(p3,0.8),(p4,1.0)

, p1〉. A plateau line is a finite set of lines (or line sets) with distinct membership values. The

component lines (or line sets) are disjoint or meet or have a finite number of intersection points.

Figure 2.13b exemplifies the plateau line pl = 〈(l1,0.1),(l2,0.2),(l3,0.3),(l4,0.4),(l5,0.5),(l6,
0.6),(l7,0.7),(l8,0.8),(l9,1.0), l〉. A plateau region is a finite set of crisp adjacent or disjoint

regions (or region sets) with distinct membership values. Figure 2.13d depicts the plateau region

pr = 〈(r1,0.1),(r2,0.2),(r3,0.3), (r4,0.4),(r5,0.5),(r6, 0.6),(r7,0.7),(r8,0.8),(r9,1.0),r〉. The

union of two plateau spatial objects requires performing geometric union and yielding the max-

imum membership value where the plateau spatial objects intersect.

2.3.3.2 Lines with Gradual Transitions

Fuzzy lines are also represented by lines with gradual transitions, by applying a function

over membership values of two consecutive vertices of a linear feature. The line with gradual

transition l̃ is a sequence of triples, each triple providing the (x,y) coordinates to locate a point

in the line with the corresponding membership value mv:

l̃ = (x1,y1,mv1), . . .(xn,yn,mvn).

Consecutive points are interpolated to approximate the line tracing and its membership val-

ues. Figure 2.13c depicts a line with gradual transition holding four consecutive points and

their membership values, the approximate tracing of the line and one highlighted approximated

point whose membership value is omitted, but given by a linear interpolation with the vertices

(x2,y2,mv2) and (x3,y3,mv3).

2.3.3.3 Bitmaps

The bitmap is a raster approach that implements fuzzy regions. It distributes a finite number

of rectangular or hexagonal cells ci over a grid G and associates a membership value mi in]0,1]

to each cell:

f uzzyBitmap = {ci,mi | ci ∈ G}.

2.3 Spatial Vagueness 81

Each cell covers a limited extent and holds one membership value. Figure 2.13e depicts a

bitmap where membership values are shown for each cell. Both the union and the intersection

of two input bitmaps requires an overlay and the construction of a new grid that combines the

grids of the input bitmaps.

2.3.3.4 Triangulated Irregular Networks

A triangulated irregular network (TIN) models a fuzzy region by creating non-overlapping

triangles whose vertices have membership values. Let P be the set of input data points on which

the TIN is constructed, E be a set of edges, and T be the set of triangles that compose the TIN,

then a fuzzy region represented by a TIN is:

f uzzyT IN = [(P,E,T), f].

Figure 2.13f depicts a TIN whose triangles with membership value 1 were omitted. The

vertices and the corresponding membership values are shown for one of the triangles. Let each

triangle be defined by the coordinates of the three vertices (x,y) and their membership values z,

i.e. (x1,y1,z1),(x2,y2,z2) and (x3,y3,z3). The membership value of any point inside a triangle

is obtained by a linear interpolation considering the membership values of the vertices, i.e.:

−A
C

x− B
C

y− D
C

(2.1)

such that:

A = y1(z2− z3)+ y2(z3− z1)+ y3(z1− z2)

B = z1(x2− x3)+ z2(x3− x1)+ z3(x1− x2)

C = x1(y2− y3)+ x2(y3− y1)+ x3(y1− y2)

D =−Ax1−By1−Cz3

The union of two TINs requires rebuilding the frontier of the TINs using Delaunay Trian-

gulation, removing the overlapping edges and triangles in holes and add more vertices to the

resulting TIN in order to assign them more realistic membership values.

2.3.3.5 Fuzzy Minimum Bounding Rectangles

The fuzzy minimum bounding rectangle, or simply fuzzy MBR, approximates a fuzzy re-

gion by creating: (i) a rectangle with that is circumscribed by the fuzzy region; (ii) the MBR of

the fuzzy region, which has them minimum membership value; and (iii) a finite set of αMBR-

82 2 Theoretical Foundations

cuts that are rectangles with increasing membership values between the circumscribed rectangle

and the MBR. The circumscribed rectangle has membership value 1.0, the MBR has the mini-

mum membership value and the αMBR-cuts have increasing membership values as closer they

are from the circumscribed rectangle and decreasing membership values as closer they are to

the MBR. Figure 2.13g depicts a fuzzy region and its fuzzy MBR, where the circumscribed

rectangle is white, αMBR-cuts are gray and the MBR is black. The union (overlay) of two

input fuzzy MBRs requires the construction of a grid.

2.3.4 Summary

Spatial vagueness is an imperfection of spatial data that has been tackled by the work sur-

veyed in Sections 2.3.1 to 2.3.3. Those work are listed and compared in Table 2.3. They are

classified as exact models, fuzzy models, and implementations for fuzzy models. Data types

supported are characterized according to their complexity, i.e. simple point “·”, simple line

“:”, simple region “D”, complex point “∴”, complex line “@”, or complex region “DD”. Note

that complex data types allow collections, holes, and islands, for example. The existence of

operators for union “∪”, intersection “∩”, and difference “−” of a pair of spatial objects is

indicated. The approach extended to describe topological relationships is also specified, i.e.

the region connection calculus “RCC” from Randell, Cui & Cohn (1992) or the 9-intersection

model “9IM” from Egenhofer & Franzosa (1991), Egenhofer & Herring (1991).

Egg-Yolk (COHN; GOTTS, 1996), RBB (CLEMENTINI; FELICE, 1996), QMM (BEJAOUI et al.,

2009, 2010), and VASA (PAULY; SCHNEIDER, 2010) are exact models that adopt a 3-valued

logic to assign a membership to each component of an object and to describe vague spatial

data types, operators, and topological relationships. The definitions of vague spatial data types

revealed several incompatibilities among the models. For instance, QMM allows a vague line

to be composed of lines and regions, while VASA allows a vague line strictly to be composed of

a pair of lines or a pair of line sets. All the aforementioned exact models explore the Cartesian

product of relationships among crisp and vague components of two input vague spatial objects,

but only the Egg-Yolk model reuses the region connection calculus. In addition, VASA is the

only one that considers the union of all components of the input vague spatial objects in the

comparisons. To sum up, VASA is the more complete exact model studied, since it supports

complex vague spatial data types for points, lines and regions, which are closed under operators

for union “∪”, “∩”, and difference “-” of vague spatial objects.

Dilo (2006), Dilo, By & Stein (2007), Verstraete, Hallez & Tré (2006), Schneider (2008),

Tang, Kainz & Wang (2010), and Hazarika & Hazarika (2012) proposed fuzzy models that

2.3 Spatial Vagueness 83

adopt fuzzy logic to assign a membership to each component of an object and to describe fuzzy

spatial data types, operators, and topological relationships. Differences among fuzzy models

mainly arise due to the adoption of distinct topologies, which define the parts of vague spatial

objects. Some fuzzy models do not provide data types closed under operations such as union,

intersection and difference. The evaluation of topological predicates extends the 9-intersection

model and its 3×3 matrix, either by using subsets provided by α-cuts, or fulfilling a matrix after

the identification of intersections.

Table 2.3: Comparing exact models, fuzzy models and implementations for fuzzy models.

Model/Implementation Class Data Types Operators Relationships
Egg-Yolk Exact Model D - RCC

RBB Exact Model D - 9IM
QMM Exact Model ·, :, D - 9IM
VASA Exact Model ∴, @, DD ∪,∩,− 9IM

Dilo (2006), Dilo, By & Stein (2007) Fuzzy Model ∴, @, DD ∪,∩,− 9IM
Verstraete, Hallez & Tré (2006) Fuzzy Model D ∪ 9IM

Schneider (2008) Fuzzy Model ∴, @, DD - 9IM
Tang, Kainz & Wang (2010) Fuzzy Model D ∪,∩ 9IM
Hazarika & Hazarika (2012) Fuzzy Model D - 9IM

Plateau Algebra Fuzzy Impl. ∴, @, DD ∪,∩,− 9IM
Lines with gradual transitions Fuzzy Impl. : ∪,∩,− -

Bitmaps Fuzzy Impl. D ∪,∩ -
TIN Fuzzy Impl. DD ∪,∩,− -

Fuzzy MBR Fuzzy Impl. D ∪ 9IM

The main implementations for fuzzy models found in the literature were the plateau algebra

(KANJILAL; LIU; SCHNEIDER, 2010; SCHNEIDER, 2014), lines with gradual transitions (DILO et

al., 2006), bitmaps (VERSTRAETE et al., 2005; VERSTRAETE; TRÉ; HALLEZ, 2006), TIN (VER-

STRAETE et al., 2005; DILO et al., 2006), and the fuzzy MBR (SOMODEVILLA; PETRY, 2003).

They approximate a vague spatial object as pairs composed of a portion of space and an asso-

ciated membership value that is either precomputed or calculated. Plateau algebra is the only

implementation that supports complex data types for point, line and region. A line with gradual

transitions provides a continuous outline, while a plateau line is discrete. Analogously, a TIN

provides a continuous surface, while a plateau region, a bitmap and a fuzzy MBR are discrete.

Furthermore, lines with gradual transitions and TINs maintain precomputed membership val-

ues for vertices and provide functions to calculate the membership values of the other points

on the fly. Conversely, spatial plateau objects, bitmaps and fuzzy MBRs maintain precomputed

membership values for their geometries, cells and rectangles, respectively. Operators such as

union were described for most of the surveyed implementations for fuzzy models. However,

84 2 Theoretical Foundations

topological relationships between a pair of fuzzy spatial objects were not tackled.

Chapter 3
RELATED WORK

This chapter surveys existing work in the literature that are related to this thesis and involve

either SDW design or spatial vagueness or both. Section 3.1 addresses both conceptual model-

ing and logical design of SDWs. Section 3.2 surveys spatial vagueness in SDWs. Section 3.3

tackles the physical design of SDWs and focuses on indices. Section 3.4 addresses indices for

vague regions. Finally, Section 3.5 summarizes the main findings of this chapter and compares

related work to the major contributions of this thesis.

3.1 Conceptual Modeling and Logical Design of Spatial Data
Warehouses

The comprehension of existing conceptual models for SDWs is a prerequisite for the elab-

oration of a conceptual model for SDWs characterized by spatial vagueness. Section 3.1.1

addresses the MultiDim conceptual model introduced by Malinowski & Zimányi (2009) and

improved by Vaisman & Zimányi (2014b). Section 3.1.2 tackles multidimensional modeling

of SDWs using UML profiles from Pinet & Schneider (2010) and Boulil, Bimonte & Pinet

(2015). The aforementioned conceptual models also enable the logical design of SDWs by pro-

viding mapping rules to transform a conceptual schema into a logical schema. Conversely, Sec-

tion 3.1.3 tackles the elaboration of logical schemata disassociated from a conceptual schema

by using the Spatial Data Warehouse Metamodel (CUZZOCREA; FIDALGO, 2012). Finally, Sec-

tion 3.1.4 discusses and compares the surveyed related work.

86 3 Related Work

3.1.1 The MultiDim Conceptual Model

MultiDim is a conceptual multidimensional model that enables the graphical representation

of the concepts of a data cube, i.e. dimensions, hierarchies, fact and measures. In addition,

pictograms represent spatial data types used to model attributes of dimensions and spatial mea-

sures, as well as topological relationships that establish topological constraints. The graphical

notation of the MultiDim model is partially depicted in Figure 3.1 and, apart from pictograms,

it resembles the symbols of the E-R model.

Figure 3.1: The graphical notation of the MultiDim conceptual model: (a) Level. (b) Hierarchy.
(c) Cardinalities. (d) Fact with measures and related levels. (e) Hierarchy name. (f) Spatial data
types. (g) Topological relationships. Adapted from Vaisman & Zimányi (2014a).

A schema encompasses a set of dimensions and a set of facts. A dimension comprises

either one level or one or more hierarchies, while a hierarchy is a set of related levels. A level

is equivalent to an entity type from the E-R model. Instances of a level are called members.

As shown in Figure 3.1a, a level has a name, one or more attributes and at least one identifier.

An identifier can be composed of one or several attributes. Every conventional attribute has a

data type which is omitted for the sake of simplicity. Figure 3.2 exemplifies a schema with four

dimensions and the fact .

The MultiDim model supports spatial data types and topological relationships defined by

3.1 Conceptual Modeling and Logical Design of Spatial Data Warehouses 87

the MADS model (PARENT; SPACCAPIETRA; ZIMÁNYI, 2006), as shown in Figure 3.1f-g. A

spatial level is a level that refers to spatial data according to the application requirements. Every

spatial level has one spatial data type assigned and the corresponding pictogram placed on the

right of the level’s name. The same notation is valid for spatial attributes. The MultiDim model

also supports continuous fields. Figure 3.2 exemplifies the spatial levels Highway and Section

with type Line Set, Segment with type Line, and State with type Region Set. County is a spatial

level with type Region and also holds the spatial attribute Capital of type Point.

Given a pair of related levels in a hierarchy, the level with finest granularity is called child

and the level with coarsest granularity is called parent, as shown in Figure 3.1b. The parent-

child relationships assume one of the cardinalities depicted in Figure 3.1c. Every hierarchy has

a name specified by a rounded rectangle as shown in Figure 3.1e. Figure 3.2 exemplifies the

hierarchy HighwayStructure that relates the levels Segment, Section and Highway and the hierarchy

Location involving the levels County and State.

Given a pair of spatial levels of a hierarchy, the topological relationship satisfied by their

spatial members must be specified as a topological constraint. Then, one pictogram that denotes

such topological relationship is placed close to the link representing the association between the

levels. The pictogram is one of those shown in Figure 3.1g. Figure 3.2 exemplifies that states

contain counties (as well as counties are located within states).

A fact relates several levels and its instances are called fact members. As illustrated in

Figure 3.1d, a level can participate more than one time in a fact and play different roles. The

relationship between a level and a fact also assume the cardinalities depicted in Figure 3.1c. A

fact may contain measures and the aggregation function applied on a measure can be specified

on the right of the measure’s name, as shown in Figure 3.1d. If the aggregation function is

omitted, SUM is assumed by default.

A spatial measure has a spatial data type assigned by placing one of the pictograms shown

in Figure 3.1f on the right of the measure’s name. The aggregation function of a spatial measure

can also be specified, on the right of the pictogram. Otherwise, Union is assumed by default and

denotes the geometric union. Figure 3.2 exemplifies the spatial measure CommonArea of type

Line whose associated aggregation function has been omitted and is Union.

A spatial fact is a fact that relates several levels such that at least two of them are spatial

levels. A spatial fact may introduce a topological constraint among members of the spatial

levels related by the fact. Such topological constraint is specified by a pictogram placed inside

the fact. The pictogram is one of those shown in Figure 3.1f. Figure 3.2 exemplifies that a

segment intersects a county and that a county overlap a segment.

88 3 Related Work

Figure 3.2: A SDW regarding the maintenance of highways modeled according to the MultiDim
model (extracted from Vaisman & Zimányi (2014a)).

Mapping rules were provided to transform a conceptual schema of SDW into a relational

logical schema of SDW. A spatial attribute is represented by a geometry column. A spatial level

table contains all the attributes of the corresponding level and, specially, the spatial attribute as

a geometry column. A spatial measure is represented by a geometry column in the fact table.

Hierarchies are designed according to the cardinality of the relationships, i.e. 1:1, 1:N or M:N.

Topological constraints imposed by hierarchies and by the spatial fact were implemented as

triggers in the DBMS, according to the application addressed by the SDW.

3.1.2 UML Profiles

Pinet & Schneider (2010) proposed an UML profile for building data cubes of SDWs using

the notation of an UML class diagram, whose metaclasses were customized mainly with the

stereotypes class of facts, class of members, measure, id and aggregating association. A class

of fact denotes a fact, while a measure is an attribute of a class of fact. A class of members

is equivalent to a level. The stereotype id annotates the identifier of the class. An aggregating

association plays the role of a hierarchy relationship between classes of members. The class

of members can also assume the role of a class of facts, depending on the analysis required.

Therefore, given a SDW schema with several cubes, the dimension of one cube can be the

fact of another cube. OCL was used to specify constraints such as the allowed topological

relationships among members (from a class of members) and measure values (from a class of

3.1 Conceptual Modeling and Logical Design of Spatial Data Warehouses 89

facts).

Boulil, Bimonte & Pinet (2015) elaborated an even more detailed UML profile for concep-

tual modeling of spatio-temporal DW and definition of constraints using OCL. The main details

regarding SDW are summarized in the following and the support for temporality is omitted for

the sake of simplicity. A hypercube is a package and is composed of at least one fact and one

dimension. A fact is a class and has zero or more measures. A measure is a property and is

described by its type. Aggregation levels, hierarchies and dimensions may be spatial or de-

scriptive (thematic). A dimension is a package and is composed of at least one hierarchy. A

hierarchy is a package and encompasses aggregation levels and aggregation relationships. An

aggregation level is class composed of at least one dimensional attribute. Stereotypes customize

UML metaclasses, as follows.

A dimensional attribute is either an identifier with the stereotype �IDAttribute�, or descrip-

tive with the stereotype �DescriptiveAttribute�, or geometry with the stereotype �LevelGeometry

�. An identifier allows grouping when performing roll-up operations. A descriptive attribute al-

lows selection when performing slice and dice operations and assumes an UML data type, e.g.

Integer, float, or String. A geometry attribute represent geometric shapes of spatial dimension

members and assume one spatial data type from the MADS model (PARENT; SPACCAPIETRA;

ZIMÁNYI, 2006).

A dimensioning relationship with stereotype �DimRelationship � is an association between a

fact and one aggregation level. Two aggregation levels are related through an aggregation rela-

tionship with stereotype �AggRelationship �, such that one of the levels has a coarser granularity.

Although Boulil, Bimonte & Pinet (2015) allowed constraints to be defined using OCL, they

did not specify which constraints involved spatial data.

The SDW conceptual schema shown in Figure 3.3 was modeled using the UML profile from

Boulil, Bimonte & Pinet (2015). It addresses the maintenance of highways and is equivalent

to the one previously modeled according to the MultiDim model and shown in Figure 3.2. The

only exception is the spatial attribute Capital in the spatial aggregation level State, which has not

been associated to a stereotype because �LevelGeometry � does not reflect what a capital is for a

state. In other words, Capital cannot be a �LevelGeometry � because the point of a capital does

not adequately represent a state. In addition, the UML profile constrains that there is only one

geometry attribute per spatial aggregation level, but �LevelGeometry � has already been assigned

to StateGeo that denotes the territory of the state.

Boulil, Bimonte & Pinet (2015) implemented a tool that generates and executes SQL com-

mands in the DBMS Oracle that create a star-schema or a snowflake schema to represent the

90 3 Related Work

«SpatialAggLevel»
State

«IDAttribute»-StateName : String
«DescriptiveAttribute»-StatePopulation : Integer
«DescriptiveAttribute»-StateArea : float
«LevelGeometry»-StateGeo : Region Set
-CapitalGeo: Point

«SpatialAggLevel»
County

«IDAttribute»-CountyName : String
«DescriptiveAttribute»-CountyPopulation : Integer
«DescriptiveAttribute»-CountyArea : float
«LevelGeometry»-CountyGeo : Region

«TemporalAggLevel»
Time

«IDAttribute»-DateID : Integer
«LevelTemporality»-Date : TimeInstant{granule=Day}
«DescriptiveAttribute»-DayNbWeek : Integer
«DescriptiveAttribute»-DayNameWeek :String

«SpatialAggLevel»
Segment

«IDAttribute»-SegmentNo : Integer
«DescriptiveAttribute»-RoadCondition : String
«DescriptiveAttribute»-SpeedLimit : String
«LevelGeometry»-SegmentGeo : Line

«SpatialAggLevel»
Section

«IDAttribute»-SectionNo : Integer
«LevelGeometry»-SectionGeo : Line Set

1

«SpatialAggLevel»
Highway

«IDAttribute»-HighwayNo : Integer
«LevelGeometry»-HighwayGeo : Line Set

«ThematicAggLevel»
RoadCoating

«IDAttribute»-CoatingName : String
«DescriptiveAttribute»-CoatingType : String
«DescriptiveAttribute»-CoatingDurability : Integer

1..*

1

1..*

1

1..*

1

0..*

1

0..*

1 0..* 0..* 1

«DimRelationship» «DimRelationship»

«DimRelationship»

«AggRelationship»
{higherLevel = Section}

«AggRelationship»
{higherLevel = Highway}

«AggRelationship»
{higherLevel = State}

«DimRelationship»

«Fact»
Maintenance

«NumericalMeasure» Length : float
«SpatialMeasure» CommonArea : Line
«NumericalMeasure» NoCars : Integer
«NumericalMeasure» RepairCost : float

Figure 3.3: A SDW regarding the maintenance of highways modeled according to the UML profile
proposed by Boulil, Bimonte & Pinet (2015).

conceptual schema described by an UML profile. Basically, they employ object-relational map-

ping to transform a conceptual schema into a logical relational schema. In addition, the tool cre-

ates triggers that implement the constraints that were defined using OCL (BOULIL et al., 2010).

3.1.3 The Spatial Data Warehouse Metamodel

Cuzzocrea & Fidalgo (2012) defined the spatial data warehouse metamodel (SDWM) that

allows the design of valid relational schemata for SDWs through an UML class diagram. They

disassociated the relational logical design of SDW from the multidimensional conceptual design

of SDW to enable support for techniques that are intrinsic of relational DWs, such as degen-

erated dimensions (KIMBALL; ROSS, 2002). Tables are either a dimension table, a bridge table

or a fact table. A spatial attribute is implemented as a geometry column in a dimension table.

3.1 Conceptual Modeling and Logical Design of Spatial Data Warehouses 91

The metamodel allows spatial attributes to be normalized or shared among dimension tables.

A spatial measure is implemented as a geometry column in a fact table. A brigde table is used

for relationships with cardinality M:N. Tables and attributes are stereotyped with pictograms

that differentiate fact tables from dimension tables, integer attributes from date attributes, and

spatial attributes of type Point from spatial attributes of type Polygon, for example.

A CASE tool called SDWCASE was implemented to evaluate the correctness of SDWM.

It provides a graphical user interface that allows the designer to edit the SDW schema. Fur-

thermore, SDWCASE can validate the SDW schema and generate source code as input for

PostgreSQL/PostGIS.

3.1.4 Discussion

In Sections 3.1.1 to 3.1.3, different approaches for conceptual modeling and logical design

of SDW have been surveyed. Multidimensional modeling produces data cubes with spatial and

non-spatial dimensions and measures, but do not offer graphical representations of the concepts,

which could aid designers to build conceptual schemas of SDW. In this sense, graphical rep-

resentations of the concepts of a data cube are enabled by the MultiDim model elaborated by

Malinowski & Zimányi (2009) and Vaisman & Zimányi (2014b) and by UML profiles created

by Pinet & Schneider (2010) and Boulil, Bimonte & Pinet (2015). Furthermore, Cuzzocrea &

Fidalgo (2012) defined the SDWM metamodel for creating logical relational schemata for SDW

using UML class diagrams and provided stereotypes and pictograms to differentiate tables and

attributes.

A conceptual SDW schema created using the MultiDim model resembles an E-R diagram,

while the conceptual SDW schema outlined using an UML profile is an UML class diagram.

Also, a logical schema according to SDWM is also an UML class diagram. The MultiDim

model represents a spatial level using a single pictogram indicating a spatial data type, while

UML profiles utilize a stereotype above the class’ name and adds an attribute with type geom-

etry in the class. The MultiDim model allows more than one spatial attribute per spatial level

and specifies the spatial data type with a pictogram, while the UML profiles do not allow more

than one spatial attribute per spatial level. The SDWM metamodel also provides pictograms

according to the spatial data type.

The following topological constraints were found in the surveyed work: (i) among members

from distinct spatial levels related through a hierarchy; (ii) among members from distinct spatial

levels related through a fact; and (iii) between members from a spatial level and measure values

from a fact. The MultiDim model allows the graphical representation of the first and second

92 3 Related Work

using pictograms. OCL is used by Pinet & Schneider (2010) to specify the third in their UML

profile. Boulil, Bimonte & Pinet (2015) claimed that OCL can be used to write constraints, but

did not specify which topological constraints involve spatial data. The SDWM metamodel did

not address constraints.

A conceptual schema modeled according to the MultiDim model is transformed into a rela-

tional logical model by applying mapping rules that are analogous to ER to relational mapping.

Conversely, UML profiles apply object-relational mapping to transform the UML class dia-

gram into a relational logical schema. The SDWM metamodel does not provide mapping rules

because it addresses the relational logical design.

3.2 Spatial Vagueness in Spatial Data Warehouses

The related work surveyed in the following sections tackle the design of SDW that admit

the existence of vague spatial data. They propose different methods to handle spatial vagueness

in SDWs. To the best of the author’s knowledge, only the Fuzzy Spatial Data Warehouse (Fuzzy

SDW) by Perez, Somodevilla & Pineda (2007, 2010) preceded the start of the doctoral research

project that resulted in this thesis. On the other hand, during the development of such doctoral

research project, the topic was also considered in the elaboration of the frameworks described

by Jadidi et al. (2013, 2014) and the RADSOLAP method proposed by Edoh-Alove, Bimonte &

Bédard (2014), Edoh-Alove et al. (2014). Section 3.2.1 addresses the Fuzzy SDW, Section 3.2.2

tackles the frameworks, Section 3.2.3 stands for the RADSOLAP method, and Section 3.2.4

discuss and compare those work.

3.2.1 The Fuzzy Spatial Data Warehouse

The Fuzzy SDW focused on the logical design of relational SDWs, considered fuzzy regions

implemented as fuzzy MBRs, and was experimented in volcanic crisis management. Its design

method: (i) identifies crisp spatial objects of distinct granularities that are related; (ii) creates

a fuzzy region for related crisp spatial objects; (iii) implements each fuzzy region as a fuzzy

MBR; (iv) creates a table and, for each fuzzy MBR, stores the surrogate key and the membership

value of every αMBR-cut; (v) adds a column to maintain linguistic labels that are assigned to

denote fuzziness; and (vi) drops geometry columns.

In order to exemplify the design method, consider sample points within studied areas, which

are located close to a volcano. Figure 3.4a shows sample points and a studied area, while Fig-

3.2 Spatial Vagueness in Spatial Data Warehouses 93

ure 3.4b depicts the relational schema denoting the hierarchy among sample points and studied

areas. The potential extent of lava flow is a fuzzy region that covers sample points and is delim-

ited by the studied area. Different from crisp spatial data types, a fuzzy region can both outline

the extent of the lava flow and estimate the possibility degree of a given location being affected.

Then, the lava flow is represented by the fuzzy MBR shown in Figure 3.4c.

Thereafter, a table LavaFlow is created as shown in Figure 3.4d. For each αMBR-cut of the

fuzzy MBR, a surrogate key value is generated and stored together with rectangle’s membership

value, in the columns LavaFlowPK and PossibilityDegree, respectively. The column PossibilityLabel

is added to LavaFlow. For each row in LavaFlow, a label such as low, moderate or high is assigned

to PossibilityLabel based on the value in PossibilityDegree. Then, both SamplePoint and StudiedArea

have their geometry columns dropped. The definitive schema is that depicted in Figure 3.4d.

(a)

SamplePoint

LocationPK : int
Location : point

StudiedAreaFK : int

StudiedArea

StudiedAreaPK : int
Name : int

Area : polygon

(b)

(c)

SamplePoint

LocationPK : int
StudiedAreaFK : int

LavaFlowFK : int

StudiedArea

StudiedAreaPK : int
Name : int

LavaFlow

LavaFlowPK : int
PossibilityDegree : float
PossibilityLabel : varchar

(d)

Figure 3.4: The logical design according to the Fuzzy SDW (adapted from Somodevilla & Petry
(2003), Perez, Somodevilla & Pineda (2007)). (a) Sample points and a studied area. (b) Original
schema. (c) The fuzzy MBR. (d) Modified schema.

Furthermore, in the Fuzzy SDW, geometry columns are dropped and replaced by results of

spatial relationships that are held by members of distinct spatial dimensions. In addition, lin-

guistic labels are assigned to denote fuzziness, instead of fuzzy regions. The goal is to describe

the semantics of implicit spatial relationships that are held by crisp spatial objects. For example,

distance was considered as a metric spatial relationship, distances among cities and evacuation

routes were calculated, and results were stored into a separate table. Then, linguistic labels such

94 3 Related Work

as very far, far, near, and very near were assigned according to the calculated distance. These

labels described the distance between cities and routes. Finally, polygons of cities and lines of

evacuation routes were eliminated.

3.2.2 Conceptual Frameworks for Risk Assessment

An analytical conceptual framework was proposed for coastal erosion risk assessment (CERA).

Such framework added steps to conceptual modeling of SDW, such as the identification of vul-

nerability indexes for elements exposed to erosion. Using the framework, a conceptual schema

of SDW for CERA was designed as an UML class diagram, which is partially illustrated in

Figure 3.5.

Indicators

.

.

.

Erosion Rate

ID
ErosionRate
Classification
...

Analysis Unit

ID
Municipality
Province
Country
...

Time

ID
Day
Week
Month
...

0..* 1

CERA

ID
Risk

0..* 1

0..* 1 0..* 1

Figure 3.5: A conceptual schema of SDW for CERA (adapted from Jadidi et al. (2013)).

The dimension Time is temporal. The spatial dimension Analysis Unit denotes administrative

units and encompasses the hierarchy Country � Province � Municipality. Spatial attributes can be

implemented using tessellations. The dimension Erosion Rate is a vulnerability index intrinsic of

CERA. It classifies a erosion as very low (1), low (2), average (3), high (4), or very high (5). A

vulnerability index is based on expert-knowledge and on interests of stakeholders and decision

makers through multiple indicators. The annotation “Indicators” refer to omitted dimensions de-

noting other categories of vulnerability indexes. For instance, a socio-economical vulnerability

index is land occupation, which could be represented by a dimension to classify a risk level as

low for rural zones and high for urban zones. The fact CERA holds the numeric measure Risk.

Its values in [1,5] are assigned by an equation whose input are the referenced values of Erosion

Rate and other dimensions denoting indicators.

3.2 Spatial Vagueness in Spatial Data Warehouses 95

Thereafter, a conceptual framework for fuzzy representation of risk zones was proposed

and considered the conceptual schema of SDW shown in Figure 3.5. The method: (i) gener-

ates regular tessellations to represent Erosion Rate and the dimensions denoting indicators; (ii)

determines the membership functions and the respective membership value for each cell of a

grid within each indicator to obtain fuzzy regions; and (iii) calculate the overall risk for a given

region, by aggregating multiple layers of grids.

Regular tessellations are produced using a GIS such that the size of the cell depends on

required scales and available information. For each class of an indicator, one layer of the grid is

created and contains fuzzy regions. For instance, five layers are created for the dimension Ero-

sion Rate and two would be created for the dimension of land occupation. As a result, the layer

denoting very low erosion rate contains fuzzy regions that indicate where such vulnerability

exists.

Membership functions are derived from vulnerability index classification and membership

values are assigned to each cell of the grid, considering multiple layers. The membership value

is assigned to the center of each cell as shown in Figure 3.6a and scattered as a Gaussian function

toward the outside as shown in Figure 3.6b. For instance, considering the grid for erosion rate

and the layer for very low erosion rate, the value 0.5 meters per year yields a membership value

of 0.2, which is assigned to the center of the corresponding cell. After assigning membership

values to each cell, the grid contains fuzzy regions as shown in Figure 3.6b.

(a) (b) (c)

Figure 3.6: Creating fuzzy regions for an arbitrary indicator (adapted from Jadidi et al. (2014)).
(a) A magnified cell and its center. (b) The Gaussian function. (c) A grid and its vague regions
defined over multiple cells.

The calculation of the overall risk for a given region requires the aggregation of multiple

layers of information. Rules for aggregation are defined according to the risk equation and the

priority of stakeholders and authorities of the region under study. An example of a fuzzy rule is

“if hazard to hydrological network is very high and hazard to protection structure is very high

96 3 Related Work

and distance to vulnerable object is very high and erosion rate is very high, then use fuzzy union

to aggregate fuzzy regions for obtaining the overall risk”. Aggregation can be performed using

fuzzy union, fuzzy intersection, mean, or weighted mean.

The SDW conceptual schema shown in Figure 3.5 was elaborated according to the ana-

lytical conceptual framework. However, such schema does not consider vague spatial data in

dimensions’ attributes and neither as measures in the fact. In addition, the framework did not

provide the transformation of the conceptual SDW schema into a logical schema.

The conceptual framework for fuzzy representation of risk zones assumed the existence

of the SDW conceptual schema shown in Figure 3.5 in order to generate tessellations, design

fuzzy regions, and calculate overall risks. Nevertheless, the validation of such framework did

not utilize an implemented SDW, since the input to generate tessellations and to design fuzzy

regions were not the SDW’s dimensions representing indicators. In addition, the output com-

prising calculated overall risks was not stored into a SDW. In fact, the implementation of the

proposed method in a multidimensional context was considered a future work.

3.2.3 The RADSOLAP Method

The RADSOLAP method supplies several prototypes of the SDW conceptual schema to

users. Each prototype is tailored according to users’ tolerance levels to vague spatial data. If

the tolerance is low, new prototypes have vague spatial data gradually eliminated from the SDW

schema. Otherwise, vague spatial data are maintained. The conceptual schema of SDW is an

UML class diagram, while the logical schemata is obtained through object-relational mapping.

The RADTool implements the RADSOLAP method and allow designers to automatically and

incrementally design conceptual schemata, which are deployed on the DBMS, loaded with sam-

ple data and accessed by a SOLAP tool in order to test. The RADSOLAP method uses simple

geometry types to represent and implement vague spatial data types, i.e. Point, Line, and Polygon.

A case study regarding fertilizer spreading considered each spreading area as being com-

posed of a part that certainly belong to it and a part that possibly belong to it, like a broad

boundary. For instance consider the vague region S1 shown in Figure 3.7a. A relational schema

of SDW has been provided for such application and a sample of its fact table is shown in Fig-

ure 3.7b. Both rows refer to the flow of fertilizers spread over the vague region S1. For each

row, one column of the measure Flow provides a value for the part that certainly belongs to S1,

while the other column of the measure provides a value for the part that possibly belongs to S1.

There is a risk of misinterpretation of the values of the measures that denote flow, because

3.2 Spatial Vagueness in Spatial Data Warehouses 97

(a) (b)

Figure 3.7: Flow of fertilizer by material by month by spreading region. (a) A spreading region.
(b) The SDW’s fact table.

for each row of the fact table there are two possible values for the same measure. One value is

for the spreading over the part that certainly belong to the spread area. The other value is for

the part that possibly belongs to the spread area. Such risk of misinterpretation was defined as

a risk related to vague spatial data implemented as complex geometries in dimensions of the

SDW.

Furthermore, there is a hierarchy Watershed � Spreading Area. The cardinality is 1:N and,

in most of the cases, a vague region of a spreading area is fully contained by a crisp region of a

watershed. Otherwise, the split method proposed by Malinowski & Zimányi (2009) aggregates

measure values. However, for a vague region, a pair of measure values are defined by the pair

of columns in the fact table. Then, the use of only one of these values for aggregation can under

evaluate or over evaluate the total regarding the watershed related to a spreading area. The risk

of aggregation concerns measures associated to vague regions.

Decision-makers informally identify and assess risks of misinterpretation and risks of ag-

gregation for each prototype of the SDW schema. They report a tolerance level. Actions may

modify the SDW schema (e.g. deletion of level), the aggregation function utilized, or the visu-

alization technique employed (e.g. coloring cells of the pivot table). The tolerance level zero

indicates an unacceptable risk and causes the elimination of vague spatial data from the SDW

schema, the removal of any attributes related to vague spatial data, and the replacement of com-

plex geometries by simple geometries. In the aforementioned example, the level containing

the vague spatial attribute of spreading areas is eliminated, the fact table references the level

containing crisp regions of watersheds, and the measure in the fact table is transformed into a

single column rather of a pair of columns.

Nevertheless, initiatives to be taken whether tolerance level is 1 or 2 were not clarified. If

tolerance level is 3, then a totally acceptable risk is assumed and vague spatial data can remain

in the SDW schema. However, in contrast with the RADSOLAP method that prioritizes simple

geometries, spreading areas cannot be designed using simple polygons, as shown in Figure 3.7a.

98 3 Related Work

3.2.4 Discussion

A few existing work in the literature address the design of SDW and admit the existence of

vague spatial data. The Fuzzy SDW described by Perez, Somodevilla & Pineda (2007, 2010)

identified fuzzy regions by relating crisp spatial objects of distinct granularities from a relational

SDW. Jadidi et al. (2013) proposed a framework and created a conceptual schema of SDW for

coastal erosion risk assessment. The schema was reused by (JADIDI et al., 2014) to propose a

framework that guides the creation of fuzzy regions for dimensions and the overlay of fuzzy

regions to obtain measure values. However, the Fuzzy SDW and the cited frameworks did not

define attributes in the SDW schema for the fuzzy regions and did not store fuzzy regions in the

SDW. As a result, they did not enable querying fuzzy regions maintained by the SDW.

Conversely, Edoh-Alove, Bimonte & Bédard (2014) and Edoh-Alove et al. (2014) admitted

that vague spatial attributes may exist in dimensions of the SDW. Their RADSOLAP method

provided users with several prototypes of the SDW conceptual schema according to users’ toler-

ance levels to vague spatial data. If the tolerance is low, new prototypes have vague spatial data

gradually eliminated from the SDW schema. The RADSOLAP method uses simple geometry

types to represent and implement vague spatial data types, i.e. Point, Line, and Polygon.

Regarding the SDW used as case study for RADSOLAP, it is noteworthy that: (i) the level

table containing a vague spatial attribute implemented as one column of type MultiPolygon, was

designed according to the logical design proposed by Siqueira et al. (2012a), which is presently

described in Section 5.2.1; and (ii) the hierarchy involving a finer level with a vague spatial

attribute and a coarser level with a crisp spatial attribute were also tackled by Siqueira et al.

(2012a, 2014) and is presently discussed in Sections 4.3, 4.9.3 and 5.5.

Also regarding the SDW used as case study for RADSOLAP, the numeric measure designed

as a pair of columns is substantially different from the vague spatial fact described by Siqueira

et al. (2014) and presently detailed in Sections 4.4.4 and 5.7. The vague spatial fact does not

constrain the assignment of one measure value to each of the two elements of a vague spatial

object. Rather, since it considers vague spatial objects may be composed of several elements

instead of only two, it allows assigning partial measure values to each element of a vague spatial

object. Moreover, the vague spatial fact does not implement measures as two columns such that

each column refer to one of the two parts of a vague spatial object Rather than adopting one

column for each element of a vague spatial object, only one column is used.

3.3 Indices for Spatial Data Warehouses 99

3.3 Indices for Spatial Data Warehouses

The comprehension of existing indices for SDWs precedes the elaboration of an index for

vague SDWs. The following sections describe two distinct indices developed for SDW: the

aggregate R-tree (aR-tree) (PAPADIAS et al., 2001) that is addressed in Section 3.3.1 and the

Spatial Bitmap Index (SB-index) (SIQUEIRA, 2009; SIQUEIRA et al., 2009, 2012b) that is tackled

in Section 3.3.2. Finally, Section 3.3 discusses and compares the surveyed related work.

3.3.1 aR-tree

The aR-tree reuses the R-tree’s data structure and space partitioning method. An entry of

a leaf node maintains: (i) a key value of a spatial object stored in the SDW; (ii) the MBR of

that spatial object; (iii) a pointer to a multidimensional array that details the values of a measure

associated to that spatial object according to values of the attributes from other dimensions of

the SDW; and (iv) the value of the measure obtained by applying the aggregation function over

the values of the multidimensional array. An entry of a non-leaf node holds a pointer to the child

node, the MBR encompassing all MBRs of the child node, a pointer to a multidimensional array

containing values obtained from applying the aggregation function over the multidimensional

arrays pointed to by the entries of the child node, the value of the measure obtained by applying

the aggregation function over the values held by the child nodes.

To process an intersection range query, the tree is traversed top-down from the root to the

leaves. For all entries visited, one of the following conditions applies: (i) the MBR of the entry is

disjoint from the spatial query window and, therefore, the node pointed to by the entry must not

be visited; (ii) the MBR of the entry is within the spatial query window and, consequently, the

entry has all the relevant values of the measure; (iii) the MBR of the entry intersects the spatial

query window and, thus, the child node is recursively followed. Note that for the containment

range query only the conditions (i) or (ii) may apply. It is also noteworthy that when condition

(ii) applies, it prunes the traversal of the tree, avoid the search until the leaf nodes and prevent

the costly refinement step. The same algorithm is used to process intersection range queries and

containment range queries.

Consider the SDW schema shown in Figure 2.1, the cities of customers shown in Fig-

ure 3.8a, and the SDW data shown in Figure 3.8b such that CityFK=11 refers to the city whose

MBR is r11 in Figure 3.8a and so forth. An aR-tree is built for the SDW data shown in Fig-

ure 3.8b such that each entry points to a bi-dimensional array like the one shown in Figure 3.8c

and assigns values of the measure Revenue to each pair of Brand and Year. The bi-dimensional

100 3 Related Work

array has |Brand|× |Year| entries, i.e. the multiplication of the cardinalities. The aR-tree applies

the space partitioning method of the R-tree over the MBRs as shown in Figure 3.8a and builds

the data structure shown in Figure 3.8d.

R1 33,843 R2 0

11 r11 12,311 12 r12 7,931 13 r13 13,601 21 r21 0 22 r22 0

R1

R2

r11

r12

r13

r21

r22

w

2012

2013

2014

0 0

0 6,901

0 5,410

0 0

7,931 0

0 0

0 10,012

0 0

3,589 0

0 0

0 0

0 0

0 0

0 0

0 0

0 10,012

7,931 6,901

3,589 5,410

0 0

0 0

0 0

Ye
ar

Brand
Revenue Year Brand CityFK

7,931 2013 MFGR#2221 12

6,901 2013 MFGR#2339 11

10,012 2012 MFGR#2339 13

3,589 2014 MFGR#2221 13

5,410 2014 MFGR#2339 11

Π Revenue, Year, Brand, CityFK(Lineorder⋈Date⋈Part⋈Customer)

a

b c

d

Figure 3.8: An example of aR-tree. (a) Cities, MBRs and a spatial query window. (b) SDW data.
(c) Structure of the bi-dimensional array. (d) Data structure of the aR-tree.

The aR-tree depicted in Figure 3.8d is used to process the query described in Listing 2.1,

considering the spatial query window w shown in Figure 3.8a, as follows. The root node is

accessed and the first entry tested is the one holding the MBR R1, which intersects w. Thus,

the child node is accessed and the MBR r11 of the first entry is tested against w. Since the

intersection is true, the city with key value 11 becomes a candidate and is processed in the

refinement step. As the corresponding city intersects w, as shown in Figure 3.8a, it is an answer

of the spatial predicate. Then, the multidimensional array pointed to by the entry is accessed.

Only the values where Brand=‘MFGR#2239’ are added to the result set, i.e. those from the

right column. Afterwards, the search continues in the tree and the entry holding the MBR R12 is

3.3 Indices for Spatial Data Warehouses 101

tested against w, but w does not intersect R12. Further, the entry holding the MBR R13 is tested

against w. Since they intersect, the city with key value 13 becomes a candidate and is processed

in the refinement step, which yields that the city and w are disjoint as shown in Figure 3.8a.

Since all the entries of the node were tested, the search continues in the root node, and the entry

holding the MBR R2 is tested against w. As they are disjoint, the traversal stops. Finally, the

result set is sorted and then returned.

3.3.2 SB-index

The SB-index is an array of pairs (Key, MBR) sorted in ascending order of key values,

whose i-th entry points to the i-th bit-vector of a bitmap join index. The SB-index is built by

extracting the primary key values and the geometries of a table in the SDW and after by creating

a bitmap join index for the key values. Thus, each bit-vector specifies the tuples of the fact table

referencing the spatial object identified by a key value.

The algorithm for query processing of the SB-index is summarized as follows, considering

the intersection range query (IRQ) and the containment range query (CRQ) as spatial predicates.

The filter step comprises a sequential scan that iterates reading each disk page of the index file

and copying to the main memory. For each entry, the spatial predicate is tested against the

MBR. If the test yields true and the spatial predicate is an IRQ, the corresponding key value is

added to the collection of candidates. If the test yields true, but the spatial predicate is a CRQ,

the corresponding key value is added to the collection of answers. If candidates were collected,

there is a refinement step that tests the original geometry of each candidate against the spatial

predicate to identify answers. After collecting answers, a key matching uses the answers to

replace the spatial predicate by a conventional predicate. After the replacement, the rewritten

query is processed accessing bitmap join indices.

The spatial filter performs a fixed number of disk accesses since it is a sequential scan that

consecutively reads all the pages of the index file. The refinement step requires accessing the

DBMS to fetch complex geometries and, therefore, is more costly than the filter step. The

access to bitmap join indices avoids joining huge tables and accesses strictly the indices to

perform conventional predicates, aggregation and sorting.

A SB-index is built for table City of the SDW schema shown in Figure 2.1, which comprises

the cities shown in Figure 3.9a. The built data structure is depicted in Figure 3.9d, considering

that CityFK=11 refers to the city whose MBR is r11 in Figure 3.9a and so forth. Each entry

of the SB-index sequential file holds a key value and a city’s MBR as well as points to a bit-

vector whose bits indicate tuples of the fact table referencing the indexed city. Besides, bitmap

102 3 Related Work

r11

r12

r13

r21

r22

w

a

Revenue Year Brand CityFK

7,931 2013 MFGR#2221 12

6,901 2013 MFGR#2339 11

10,012 2012 MFGR#2339 13

3,589 2014 MFGR#2221 13

5,410 2014 MFGR#2339 11

1

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

1

0

0

0

0

0

1

0

0

0

0

1

1

0

0

1

0

0

1

1

0

0

0

0

1

1

0

1

1

0

0

1

0

Π Revenue, Year, Brand, CityFK(Lineorder⋈Date⋈Part⋈Customer) Revenue Year Brand

Bitmap join indices

0

0

1

1

0

0

1

0

0

1

1

0

0

0

0

11
r11

12
r12

13
r13

14
r14

15
r15

SB-index for the table City b
c d

0

0

0

0

0

0

0

0

0

0

Figure 3.9: An example of SB-index. (a) Cities, their MBRs and a spatial query window. (b) SDW
data. (c) Bitmap join indices. (d) Data structure of the SB-index.

join indices are built for the SDW data shown in Figure 3.9b and the bit-vectors are shown in

Figure 3.9c.

The SB-index depicted in Figure 3.9d is used to process the query described in Listing 2.1,

considering the spatial query window w shown in Figure 3.9a, as follows. A sequential scan

is performed on the SB-index’ sequential file. The MBR r11 of the first entry is tested against

w and, since they intersect, the key value 11 is added to the collection of candidates. Further,

the MBR R12 of the second entry is tested against w and, since they are disjoint, the entry is

skipped. Further, the MBR R13 of the third entry is tested against w and, since they intersect,

the key value 13 is added to the collection of candidates. Subsequently, the MBRs of the fourth

and fifth entries of the sequential file are tested against w and, since they are disjoint, the entries

are skipped.

After the sequential scan, the collection of candidates has the key values 11 and 13. In the

refinement step, the geometries with these key values are fetched in table City, but only the city

with key value 11 really intersects the spatial query window w, as shown in Figure 3.9a. Then,

the key value is added to the set of answers.

After the refinement step, the collection of answers has the key value 11, which is used to

3.3 Indices for Spatial Data Warehouses 103

replace the spatial predicate “ST Intersects(...)” by the conventional predicate “CityFK = 11” in

the query show in Listing 2.1. The rewritten query is then processed by the SB-index’ bitmap

join indices together with bitmap join indices built for the other attributes of the query. Only the

SB-index’ bit-vector where CityPK=11 is accessed to execute a bit-wise AND with the bit-vector

for Brand=‘MFGR#2239’. As a result, only the first and the fourth entries of the bit-vectors for

Revenue and Year, where there is a bit 1, must be aggregated. The result set is sorted and then

returned. The SB-index was developed also for SDW schemata with redundancy of spatial data

in tables (SIQUEIRA et al., 2008, 2009).

3.3.3 Discussion

The aR-tree has a hierarchical data structure and a tree-based search in the filter step com-

parable to the R-tree’s, while the SB-index has a sequential data structure and a sequential

search in the filter step. They use a single conservative approximation for crisp spatial data: the

MBR (minimum bounding rectangle). The aR-tree’s tree-based search can prune the traversal

and avoid unnecessary disk accesses specially if the spatial query window is not very large and

the input MBRs do not have overlap one each other with a high rate. In such conditions, the

traversal does not reach many leaf-nodes and is able to provide answers by accessing aggregated

multidimensional arrays pointed to by entries in non-leaf nodes. The SB-index’ sequential scan

has a fixed cost an often performs unecessary disk accesses. On the other hand, it is not affected

by a large spatial query window and neither by overlapping among MBRs. While the aR-tree

is able to identify answers for intersection range queries and containment range queries already

in the filter step, the SB-index is only able to identify answers for containment range queries in

the filter step.

The refinement step of the aR-tree is required if an entry of a leaf-node has an MBR that is

considered a candidate. Then, the refinement step tends to be less costly as more answers of the

spatial predicate are identified when accessing non-leaf nodes, e.g. when the MBR of an entry

in a non-leaf node is within the spatial query window. The refinement step of the SB-index

happens after the filter step identified candidates. Finally, conventional predicates, aggregation

and sorting are processed by the aR-tree manipulating multidimensional arrays, while the SB-

index reuse bitmap join indices to process them.

104 3 Related Work

3.4 Indices for Vague Regions

The concern about the performance to process queries against vague spatial data, due to

the complexity of vague spatial objects, has motivated the development of indices. This section

surveys related work that describe indices for vague regions. Two main indices have been

found in the literature, such that Section 3.4.1 summarizes the Vague R-tree designed for simple

vague regions (PETRY; LADNER; SOMODEVILLA, 2007), while Section 3.4.1 addresses the Fuzzy

MBR R-tree designed for simple fuzzy regions (SOMODEVILLA; PETRY, 2004; PETRY; LADNER;

SOMODEVILLA, 2007). Finally, Section 3.3 discusses and compares the surveyed related work.

Section 3.4.3 discusses and compares the surveyed related work. Existing work in the literature

that focus on probabilistic models and continuous fields are not surveyed (TAO et al., 2005;

KALASHNIKOV et al., 2006; LI et al., 2007; ZINN; BOSCH; GERTZ, 2007; YUEN et al., 2010).

3.4.1 Vague R-tree

The vague R-tree is an index for processing point queries against vague regions. A point

query can be interpreted as a range query such that the vertices of the rectangular query window

are all the same. The vague R-tree considers a pair of MBRs for each vague region. I is the

MBR that approximates the kernel (using VASA’s nomenclature) and is called inner MBR. O is

the MBR that approximates the vague region and is called outer MBR. Figure 3.10a shows the

pairs of MBRs for the vague regions A and B.

The vague R-tree extends the R-tree by using the pair of MBRs instead of the well-known

MBR. For the sake of simplicity, the size in bytes of an entry of Vague R-tree is two times the

size in bytes of an entry of R-tree. Considering the node capacity M = 2 for the R-tree, then a

single entry of Vague R-tree is supported per node. Every entry in a non-leaf node maintains

an inner MBR, an outer MBR and a pair of pointers to subtrees. The inner MBR circumscribes

the inner MBRs of the subtree. Analogously, the outer MBR circumscribes the outer MBRs of

the subtree. Figure 3.10b shows a pair of MBR such that the inner MBR IAB circumscribes the

inner MBRs IA and IB, while the outer MBR OAB circumscribes the outer MBRs OA and OB.

A leaf node has strictly inner MBRs or outer MBRs. If it has inner MBRs, these are cir-

cumscribed by the inner MBR of the parent node. Conversely, if it has outer MBRs, these are

circumscribed by the outer MBR of the parent node. Figure 3.10c depicts the data structure of

the Vague R-tree for M = 2 and the pair of MBRs shown in Figure 3.10b. Point queries are

supported and exemplified in the following.

A query asks to identify to which vague region the point p1 belongs, as shown in Fig-

3.4 Indices for Vague Regions 105

ure 3.10b. Traversing the index, p1 intersects OAB but is disjoint from IAB. Then, the leaf node

containing outer MBRs is accessed, but p1 is disjoint from both OA and OB. The answer for the

query is that p1 does not belong to any vague region.

Other query asks to identify to which vague region the point p2 belongs. Traversing the

index, p2 intersects both OAB and IAB. Then, the leaf node containing inner MBRs is accessed,

but p2 is disjoint from both IA and IB. The answer for the query is that p2 does not belong to any

vague region.

Finally, another query asks to determine where is the point p3. Traversing the index, p3

intersects both OAB and IAB. Then, the leaf node containing inner MBRs is accessed, but p3 is

disjoint from both IA and IB. Further, the leaf node containing outer MBRs is accessed and p3

intersects OB. The answer for the query is that p3 possibly belongs to the vague region B.

Kernel
Conjecture

IA and IB

OA and OB

A

B

(a)

IA and IB

OA and OB

p1

p2 p3

IAB

OAB

(b)

OA OB IA IB

OAB IAB

(c)

Figure 3.10: An example of vague R-tree. (a) Vague regions and their pair of MBRs. (b) Vague
R-tree and three point queries. (c) Vague R-tree’s data structure.

Although the Vague R-tree supports point queries it does not have a detailed query process-

ing algorithm. Details are also missing about the necessity of a refinement step against kernels

and vague regions to conclude the resolution of the spatial predicate. Besides, the Vague R-tree

was not assessed through a performance evaluation.

3.4.2 FMBR R-tree

The Fuzzy MBR R-tree, or simply FMBR R-tree, is an index for searching crisp spatial

objects located within a fuzzy region. The data structure of a Fuzzy MBR R-tree built on a

fuzzy region encompasses: (i) the list of αMBR-cuts obtained from the fuzzy MBR built on a

fuzzy region; and (ii) a R∗-tree for each αMBR-cut. The list is sorted by ascending membership

value. Each R∗-tree indexes crisp spatial objects located within a given αMBR-cut.

106 3 Related Work

Figure 3.11a depicts the frontier of a fuzzy region, points within the fuzzy region, and the

FMBR R-tree built for the fuzzy region and the the points. The fuzzy MBR is composed of the

following αMBR-cuts: αMBR1, αMBR2, αMBR3, αMBR4, and αMBR5, such that αMBR1 is the

inscribed rectangle corresponding to the core where the membership value is 1.0 and αMBR5

is the circumscribing rectangle where the membership values are the lowest. For each αMBR-

cut, a R∗-tree is built using the points within the fuzzy region as input. The data structure of

the FMBR R-tree is shown in Figure 3.11b and comprises the sorted list of αMBR-cuts in

ascending order of membership values, such that each entry of the list points to a R∗-tree.

(a)

(b)

Figure 3.11: An example of FMBR R-tree (adapted from Petry, Ladner & Somodevilla (2007)). (a)
A fuzzy region and points within it. (b) Data structure.

An example of containment range query using the FMBR R-tree shown in Figure 3.11 is:

are there black points within the fuzzy region? The search starts at the first entry of the list and

verifies whether there is a black point within αMBR1. The test yields true and R∗-tree pointed

to by αMBR1 is searched. In the root node, the search concludes that there is no black point

within mbr11, but there is a black point within mbr12 and then the subtree is accessed. Although

there is no black point within mbr121, there is a black point within mbr122. Such black point

is added to the result set. The search then continues throughout the list, but there is no black

point within αMBR2 and neither within αMBR3. Since there is a black point within αMBR4, the

subtree is accessed. Although there is no black point within mbr41, there is a black point within

mbr42. Such black point is added to the result set. The search then continues throughout the list

and finishes after yielding that there is no black point within αMBR5. The result set is returned

3.5 Summary 107

and prioritizes the black point within mbr122 rather than the black point within mbr42, since the

former is within αMBR1 that has membership value 1.0 while the latter is within αMBR4 that

has a membership value lesser than 1.0.

Although FMBR R-tree’s authors claim that the index supports spatial range queries, dis-

tance queries, spatial joins, and nearest neighbor queries, detailed algorithms for processing

these spatial predicates were not provided. Another issue that was not clarified is whether spa-

tial objects that are not points, e.g. lines and regions, can also be queried within a fuzzy region.

The example previously described provides a list of crisp points to be queried within a list of

spatial query windows. The list is composed of the αMBR-cuts of the fuzzy MBR created for

a fuzzy region. In fact, the FMBR R-tree does not query vague spatial data, but queries crisp

spatial data within a fuzzy region. The FMBR R-tree was not assessed through a performance

evaluation. There is a concern about the scalability of the FMBR R-tree if the volume of fuzzy

regions is huge, such as in a SDW, because each fuzzy region would demand the creation of one

FMBR R-tree.

3.4.3 Discussion

The vague R-tree is an index for processing point queries against vague regions designed

according to exact models. However, the absence of detailed algorithms derail its implemen-

tation and utilization. The Fuzzy MBR R-tree is an index for searching crisp spatial objects

located within a vague region. Although the Fuzzy MBR R-tree does not aim at querying vague

spatial data, the characteristic of prioritizing results of a query that refer to higher membership

values in the vague region is a feature that can be explored to query vague SDWs.

3.5 Summary

Existing conceptual models for SDWs reuse multidimensional modeling, define spatial at-

tributes in dimensions or as measures in a fact of a data cube, and enable SOLAP. A spatial

dimension provides a geographical perspective of analysis for the subject, while a spatial mea-

sure is the subject of the analysis itself. Hierarchies associate spatial attributes and constrain

the cardinality of the relationship and the topological relationships that exist among instances

of attributes from distinct levels of granularity. Aggregation functions for spatial measures per-

form geometric operations. The logical design of SDWs mainly produces a relational schema

either by applying mapping rules over a conceptual schema or not.

108 3 Related Work

Section 3.1 has surveyed existing work on conceptual models for SDWs and logical design

for SDWs. The MultiDim conceptual model was proposed by Malinowski & Zimányi (2009)

and extended by Vaisman & Zimányi (2014b). Both Pinet & Schneider (2010) and Boulil,

Bimonte & Pinet (2015) described UML profiles. The SDWM metamodel was defined by Cuz-

zocrea & Fidalgo (2012) to provide logical schemata of SDWs. The comprehension of those

work is a prerequisite to elaborate a conceptual model for SDWs characterized by spatial vague-

ness and to design their logical schemata. Table 3.1 compares those work to major contributions

of this thesis regarding conceptual modeling and logical design of vague SDWs, as described in

Chapters 4 and 5, respectively.

Multidimensional models prevail in conceptual modeling of SDWs. Commonly, graphical

notations for the concepts of the data cube are provided to enable the creation of diagrams. The

MultiDim model’s notation resembles the E-R model, while UML profiles extends the UML

class diagram. Even the SDWM metamodel that addresses the logical design of SDWs also

extends the UML class diagram. Spatial data are modeled either as spatial objects or continuous

fields, but the latter are supported only by the MultiDim model. Pictograms are utilized by

the MultiDim model to illustrate both spatial data types and topological constraints. Pinet &

Schneider (2010) used OCL to specify a topological constraint. Mapping rules analogous to ER

to relational mapping transform the conceptual schema according to the MultiDim model into

a relational logical schema, while the UML profiles reused object-relational mapping for the

same purpose. Topological constraints were graphically annotated by the MultiDim model and

implemented as triggers in the underlying DBMS.

Table 3.1: Comparing existing work on SDW design to conceptual modeling and logical design of
vague SDWs introduced in this thesis.

Features MultiDim UML profiles SDWM This
Is a multidimensional model Yes Yes No Yes
Enables the creation of diagrams Yes Yes Yes Yes
Supports spatial objects Yes Yes Yes Yes
Supports continuous fields Yes No No Yes
Has pictograms for spatial data types Yes No Yes Yes
Specifies topological constraints Yes Yes No Yes
Provides mapping rules to transform a Yes Yes No Yes
conceptual schema into a logical schema
Produces a relational schema Yes Yes Yes Yes
Specifies topological constraints Yes Yes No Yes
Implements topological constraints Yes No No Yes
Addresses spatial vagueness No No No Yes

Section 3.2 has surveyed existing work that address SDW design considering spatial vague-

3.5 Summary 109

ness. Perez, Somodevilla & Pineda (2007, 2010) proposed the Fuzzy SDW. Jadidi et al. (2013,

2014) focused on coastal erosion risk assessment and proposed frameworks for conceptual mod-

eling of a SDW and for creation of fuzzy regions. Edoh-Alove, Bimonte & Bédard (2014),

Edoh-Alove et al. (2014) described the RADSOLAP method that provides users with several

prototypes of the SDW conceptual schema, according to user’s tolerance to vague spatial data in

the SDW schema. Table 3.2 distinguishes those work from the design of vague SDWs described

in Chapters 4 and 5 of this thesis.

Table 3.2: Comparing existing work on design of SDWs characterized by spatial vagueness to the
design of vague SDWs described in this thesis.

Features Fuzzy SDW Frameworks RADSOLAP This
Supports vague spatial data types No No Yes Yes
Supports fuzzy spatial data types Yes Yes No Yes
Supports implementations for fuzzy Yes Yes No Yes
spatial data types
Allows spatial vagueness in dimensions No No Yes Yes
Allows spatial vagueness in measures No No No Yes
Queries with vague SOLAP operations No No No Yes
Defines vague topological constraints No No No Yes

Different from related work, the design of vague SDWs described in this thesis addresses

data types defined by exact models, fuzzy models, and implementations for fuzzy models. In

contrast with the Fuzzy SDW and the frameworks, vague spatial attributes can be defined in

dimensions as they are essential to evaluate spatial predicates on the fly to query the SDW.

Different from the RADSOLAP method, vague spatial attributes can also be defined as measures

in a fact to allow the aggregation of vague spatial data. Partial results of this thesis were used

to design the logical schema of SDW used as case study for the RADSOLAP method. This

fact corroborates the importance of designing vague spatial data warehouses and amplifies the

challenges to be outperformed in the design of vague spatial data warehouses. Furthermore, two

contributions of this thesis were not addressed by existing work in the literature: vague SOLAP

operations to query the vague SDW and vague topological constraints to ensure the integrity of

vague spatial data.

None of the aforementioned related work focused on physical design of SDWs. Then, Sec-

tions 3.3 and 3.4 have addressed physical design and surveyed indices for SDW and indices for

vague regions, respectively, and outlined their data structures and query processing algorithms.

Table 3.3 compare those indices to the Vague Spatial Bitmap Index (VSB-index) that is one

of the contributions of this thesis, as described in Chapter 6. Existing indices use the MBR

as conservative approximation, while the VSB-index has been prototyped and evaluated using

110 3 Related Work

the MBR. The FMBR R-tree uses an inscribed rectangle corresponding to the core of the fuzzy

MBR as progressive approximation, while the VSB-index has been prototyped and evaluated

using the maximum area inscribed polygon described in Chapter 6. Both the VSB-index and

existing indices approximate a vague region using a MBR and then they can process spatial

predicates against vague regions, e.g. an intersection range query. On the other hand, only

the VSB-index processes spatial predicates against elements of vague regions, i.e. parts that

certainly belong to the vague region and parts that possibly belong to the vague region. Al-

though most existing indices are able to identify answers of the spatial predicate already in the

filter step, the VSB-index drastically enhances the performance to process queries and reduces

the query response time as described in Chapter 6. The VSB-index also resolves conventional

predicates, aggregation and sorting, like existing indices for SDWs.

Table 3.3: Comparing indices for SDW and indices for vague regions to the VSB-index.

Features aR-tree SB-index Vague FMBR VSB-index
R-tree R-tree

Conservative approximation Yes Yes Yes Yes Yes
Progressive approximation No No No Yes Yes
Designed for vague regions No No Yes Yes Yes
Resolution of spatial predicates Yes Yes Yes Yes Yes
against vague regions
Resolution of spatial predicates No No Partially No Yes
against elements of vague regions
Identification of answers of the spatial Yes Partially No Yes Yes
predicate already in the filter step
Resolution of conventional predicates, Yes Yes No No Yes
aggregation and sorting

Chapter 4
CONCEPTUAL DESIGN OF VAGUE SPATIAL DATA

WAREHOUSES

Conceptual modeling is crucial for designing databases as it focus on user’s requirements,

facilitates the communication between users and designers, and omit details of the underly-

ing implementation platform. Conceptual modeling of multidimensional databases such as

data warehouses converges on multidimensional modeling to elaborate a conceptual database

schema known as data cube. Conceptual modeling of spatial data warehouses involves not only

the design of a data cube, but also representing spatial data as objects or continuous fields.

This chapter addresses conceptual modeling of spatial data warehouses whose spatial data

are partially or completely affected by spatial vagueness, i.e. vague spatial data warehouses.

Two conceptual models are described: the Vague Spatial Cube (VSCube) and the Vague Spa-

tial MultiDim (VSMultiDim). First, an overview of conceptual modeling of vague spatial data

warehouses is detailed in Section 4.1. Then, the VSCube conceptual model is described in Sec-

tions 4.2 to 4.8, as follows. Section 4.2 describes attribute types and highlights the vague spatial

attribute. Section 4.3 focuses on hierarchies that associate instances of attributes. Section 4.4

addresses the data cube assuming vague spatial data in dimensions and measures. Section 4.5

describes vague spatial predicates for selecting vague spatial objects. Section 4.6 details ag-

gregation functions for vague spatial data. Section 4.7 introduces the vague spatial OLAP.

Section 4.8 summarizes how vague spatial data designed according to existing models and

implementations for spatial vagueness can be reused in the VSCube conceptual model. Fur-

thermore, the VSMultiDim conceptual model is described in Section 4.9. Finally, Section 4.10

summarizes this chapter. In order to corroborate the applicability of both the VSCube and the

VSMultiDim conceptual models and illustrate the use of each defined concept, examples have

been elaborated considering the pest control and the HLB case studies.

112 4 Conceptual Design of Vague Spatial Data Warehouses

4.1 Conceptual Modeling of Vague Spatial Data Warehouses

A vague spatial data warehouse (vague SDW) is a spatial data warehouse whose spatial

data are partially or completely affected by the imperfection of spatial vagueness. A vague

spatial object is an object from the real world that has at least one vague spatial attribute. A

vague spatial attribute is the representation in space for an object from the real world, such that

the representation is affected by spatial vagueness. In this thesis, the location and shape of a

vague spatial object do not change through time. Multidimensional modeling of a vague SDW

produces a data cube as conceptual schema, which supports vague spatial dimensions as well

as vague spatial measures. A vague spatial dimension has at least one vague spatial attribute,

while a vague spatial measure is a vague spatial attribute in a fact. The data cube of a vague

SDW has not only vague spatial data, but also conventional data and crisp spatial data.

For example, consider a conceptual schema of a vague SDW built according to the require-

ments of the pest control case study. The data cube comprises the dimensions Pesticide, Date,

and Crop. The amount of applied pesticides in tons is a numeric measure, while the areas where

pesticides were applied to are vague spatial objects. The dimension Crop has vague spatial at-

tributes to spatially describe crops and agricultural lands, as well as a crisp spatial attribute to

address watersheds, among other conventional attributes. Conversely, the dimensions Pesticide

and Date have only conventional attributes.

Conceptually, a vague spatial object has been represented using an exact model if it has

elements that certainly belong to it and elements that possibly belong to it, or using a fuzzy

model if its elements have a quantifiable degree of membership in]0,1]. On the other hand, a

conceptual schema of a vague SDW may not or cannot fulfill the user’s requirements if a single

model is chosen to design every vague spatial attribute. In other words, the use of a single

exact model or a specific fuzzy model might not be sufficient to design all the vague spatial

attributes in dimensions and all the vague spatial measures. Opting exclusively for an exact

model constrains the vague SDW to contain vague spatial objects whose elements do not have a

quantifiable membership degree. Opting strictly for a fuzzy model assumes that the vague SDW

does not allow vague spatial objects to have elements whose degree of membership are not or

cannot be estimated. Furthermore, neglecting that fuzzy sets are infinite and often require a

finite implementation may cause difficulties to map the conceptual schema of vague SDW into

a feasible logical schema of vague SDW. Therefore, conceptual modeling of vague SDWs must

allow vague spatial attributes to be designed according to different exact models and fuzzy

models and also comply with some characteristics of implementations for fuzzy models.

4.1 Conceptual Modeling of Vague Spatial Data Warehouses 113

For example, consider the aforementioned data cube regarding pest control. It is not possi-

ble to assign membership values to parts that possibly belong to crops, as shown in Figure 1.1b.

On the other hand, membership values are assigned to parts of areas where pesticides were

applied to. Since it is not adequate to design crops using fuzzy models and neither applied

areas using exact models, it is clear that the vague SDW conceptual schema call for both repre-

sentations of vague spatial data. Furthermore, a discretization of the continuous surface where

pesticides were applied to may be necessary, as shown in Figure 1.2d, and must also be sup-

ported.

A vague spatial attribute must clearly differentiate a valid vague spatial object from an

invalid vague spatial object, but must also be general enough to enable the reuse of existing

models for designing vague spatial objects. Besides, it should not allow ambiguity, but must

omit some details that could impair the communication between users and designers. The vague

shape of a vague spatial object is composed of two disjoint sets. One set has elements whose

membership to the shape is confirmed with certitude1, while for elements of the other set there is

dubiety2 about the membership to the shape. For these reasons, the former set is called certitude

and the latter set is called dubiety.

Certitude elements belong to the vague spatial object, while dubiety elements either have

an undetermined degree of membership or a quantifiable membership degree. The certitude

generalizes the component that certainly belong to a vague spatial object as defined by exact

models, as well as the subsets of a fuzzy spatial object whose membership value is 1.0 as defined

by fuzzy models. Conversely, the dubiety generalizes the component that possibly belong to a

vague spatial object as defined by exact models, as well as the subsets of a fuzzy spatial object

whose membership value is in]0,1[as defined by fuzzy models. The certitude and the dubiety

must be disjoint to prevent ambiguity. The shape of a certitude element and the shape of a

dubiety element are approximated using geometries, comparable to implementations for fuzzy

models.

For example, the certitude elements of the crop C1 shown in Figure 1.2b are c11 and c12,

while the single dubiety element is c13 as shown in Figure 1.2c. Also, the certitude of the applied

area A1 shown in Figure 1.2a comprises the subset of the fuzzy region whose membership value

is 1.0, while the dubiety encompasses the subset of the fuzzy region whose membership values

are in]0,1[. If the fuzzy set of A1 is discretized as shown in Figure 1.2d, then the certitude

comprises the parts where the possibility of application is 100%, while the dubiety encompasses

the remaining parts.

1Certitude: the state of being or feeling certain (http://www.merriam-webster.com/dictionary/certitude)
2Dubiety: the state or quality of being doubtful (http://www.oxforddictionaries.com/definition/english/dubiety)

114 4 Conceptual Design of Vague Spatial Data Warehouses

Vague spatial attributes are defined in dimensions. Dimensions often encompass hierarchies

associating attributes with different granularity. Specially when associating a pair of vague spa-

tial attributes, the hierarchy must clearly state the cardinality of the relationship and topological

constraints involving vague spatial objects. The topological constraints, then, relate the certi-

tudes and the dubieties of these vague spatial objects. Not only vague spatial attributes may be

associated, but also crisp spatial attributes and conventional attributes.

For example, consider a hierarchy between crops and agricultural lands. A crop is associ-

ated to at most one agricultural land, while an agricultural land maintains several crops. Since

both are vague spatial attributes, a topological constraint specify which topological relationships

are admissible among: (i) certitude elements of an agricultural land and certitude elements of a

crop; (ii) certitude elements of an agricultural land and dubiety elements of a crop; (iii) dubiety

elements of an agricultural land and certitude elements of a crop; and (iv) dubiety elements of

an agricultural land and dubiety elements of a crop. As another example, consider a hierarchy

between watersheds and agricultural lands, where the former are represented by a crisp spatial

attribute and the latter are denoted by a vague spatial attribute. Then, a topological constraint

specify which topological relationships are admissible among: (i) a watershed and certitude

elements of an agricultural land; and (ii) a watershed and dubiety elements of an agricultural

land.

A vague spatial measure is the subject of analysis in a fact. The aggregation of vague

spatial objects is essential to allow summarization. Aggregation functions for vague spatial

objects that have certitude and dubiety must perform not only geometric operations, but also

consider undetermined degree of membership or membership values in]0,1[for the dubiety

elements. A measure value in a crisp spatial data warehouse is associated to the entire vague

spatial object whose vague spatial attribute is in a dimension of the data cube. Conversely, in

the vague SDW, a value of measure can be assigned to certitude elements and dubiety elements

of a vague spatial object whose vague spatial attribute is in a dimension of the data cube.

Vague spatial predicates allow selecting vague spatial objects that satisfy to a set of criteria.

These criteria refer to the location and the shape that describe the vague spatial object. Addi-

tionally, the criteria involve the location and shape that describe the certitude elements and the

dubiety elements of the vague spatial object. The criteria can also involve membership values

of the elements.

It is noteworthy that the vague spatial attributes being hierarchically associated might com-

ply with different models, i.e. exact or fuzzy. Furthermore, the aggregation of vague spatial

objects must support vague spatial objects designed according to exact or fuzzy models. More-

4.2 Attributes 115

over, the vague spatial predicates must select vague spatial objects designed according to exact

or fuzzy models. The compliance to these requirements enables vague spatial online analytical

processing (vague SOLAP) to be performed over the data cube that represents the conceptual

vague SDW schema, with roll-up, drill-down, slice-and-dice, and pivot operations. For exam-

ple, the data cube regarding pest control can be queried as shown in Table 1.1.

Although multidimensional modeling produces data cubes as the conceptual schema for a

vague SDW, it does not enable the elaboration of diagrams or the use of symbols to represent

concepts. Then, conceptual modeling of vague SDWs should also provide graphical represen-

tations for the concepts and enable the elaboration of diagrams to facilitate the communication

between users and designers. To comply with such requirement, it is crucial to introduce a

graphical notation for vague spatial data types and for topological constraints involving vague

spatial attributes.

The overview regarding conceptual modeling of vague SDWs described in this section has

guided the development of the VSCube and VSMultiDim conceptual models for vague SDWs.

The VSCube is detailed in Sections 4.2 to 4.8 and focuses on multidimensional modeling, while

the VSMultiDim is detailed in Section 4.9, reuses concepts from the VSCube and focuses on

the graphical representation of the concepts and the elaboration of diagrams.

4.2 Attributes

An attribute describes the characteristics of a real world object. Given a real world object,

the domain of an attribute is the set of values allowed for that attribute. Furthermore, an in-

stance of an attribute is a valid value assigned to that attribute. The VSCube conceptual model

classifies attributes according to the UML class diagram shown in Figure 4.1. These classes

of attributes are essential to represent data in a variety of formats in a vague SDW. Recall that

abstract classes are not instantiable, but concrete classes are. Attribute is an abstract class whose

descendants are the concrete class Conventional Attribute and the abstract class Spatial Attribute.

The descendants of the latter are the concrete class Non-geometric Spatial Attribute, the abstract

class Vague Spatial Attribute, and the concrete class Crisp Spatial Attribute. The concrete classes

Partially Vague Spatial Attribute and Completely Vague Spatial Attribute inherit the abstract class

Vague Spatial Attribute.

Definition 4.2.1. A conventional attribute is an attribute whose domain has only numeric, al-

phanumeric or date values and, therefore, has a total order relation. A label specifying the data

type of a conventional attribute optionally precedes its name, i.e. numeric, date, or string.

116 4 Conceptual Design of Vague Spatial Data Warehouses

Attribute

Conventional Attribute Spatial Attribute

Non-geometric Spatial Attribute Vague Spatial Attribute Crisp Spatial Attribute

Partially Vague Spatial Attribute Completely Vague Spatial Attribute

Figure 4.1: The types of attributes defined in the VSCube Conceptual Model.

Example 4.2.1. The conventional attributes numericPesticideId, stringPesticideName and dateDate

refer to an identifier for a pesticide, a name of pesticide, and a date, respectively. Also, their

domains are numeric, alphanumeric and the set of valid dates, respectively.

Definition 4.2.2. A non-geometric spatial attribute describes existing locations without provid-

ing geometric features or reference coordinates. The label nongeo optionally precedes the name

of a non-geometric spatial attribute.

Example 4.2.2. The attributes nongeoAddress and nongeoCityName are non-geometric spatial at-

tributes referring to civic addresses and names of cities, respectively. Instances of nongeoAddress

are ‘1160 10th Street’ and ‘Avenue F.D. Roosevelt’, while instances of nongeoCityName are ‘Na-

mur’ and ‘Brussels’. The domains of both nongeoAddress and nongeoCityName are alphanumeric.

Definition 4.2.3. A crisp spatial attribute is a geometric feature assuming exact location and

well-known shape and boundaries for a given phenomenon in the 2D Euclidean space. The

label crisp optionally precedes the name of a crisp spatial attribute.

Example 4.2.3. The crisp spatial attribute crispAddress locates an address with one point. An

instance is shown in Figure 4.2a. In addition, crispWatershed describes a watershed using one

(complex) region whose boundaries are crisp. An instance is illustrated in Figure 4.2b.

Different from a crisp spatial attribute, a vague spatial attribute provides a representation

for the spatial vagueness that affects a real world object.

Definition 4.2.4. A vague spatial attribute is a composite attribute denoted ν = 〈certitude,

dubiety〉, where:

• certitude= geocertitude, where geocertitude is a simple or a complex crisp geometric feature

in the 2D Euclidean space;

4.2 Attributes 117

(a) (b)

Figure 4.2: Instances of crisp spatial attributes: (a) An address. (b) A watershed.

• dubiety = 〈geodubiety, [mval]〉, where geodubiety is a simple or a complex crisp geometric

feature in the 2D Euclidean space, and mval is an optional membership value associated

to geodubiety; and

• both the certitude and dubiety are multivalued.

The certitude describes the features of a given phenomenon that are assumed to have exact

location and well-known shape and boundaries, while the dubiety describes the vagueness of

the shape of such phenomenon. Therefore, the certitude represents the space where a given

phenomenon certainly occurs, while the dubiety represents the space where the phenomenon

may occur according to a membership degree. The representation of the vague spatial attribute

ν according to the E-R notation of Elmasri & Navathe (2010) is shown in Figure 4.3.

Since the vague spatial attribute is a composite attribute comprising a multivalued certitude

and a multivalued dubiety, an instance z of a vague spatial attribute is composed of certitude

elements and dubiety elements. A certitude element is a geometry, while a dubiety element

is a pair comprising a geometry and its corresponding membership value. Accessors provide

access to elements from certitude and dubiety of a given instance z. The following accessors

are provided by the VSCube conceptual model:

• the certitude geometry accessor returns all geometries that compose the certitude of z and

is z.certitude.geo.

• the certitude element geometry accessor retrieves the i-th geometry of the certitude and

is z.certitude[i].geo.

• the dubiety geometry accessor returns the collection of geometries that compose the du-

biety of z and is z.dubiety.geo.

• the dubiety memberships accessor returns the collection of membership values of the

elements in the dubiety of z and is z.dubiety.mval.

118 4 Conceptual Design of Vague Spatial Data Warehouses

• the dubiety element geometry accessor retrieves the j-th geometry of the dubiety and is

z.dubiety[j].geo.

• the dubiety element membership accessor retrieves the membership associated to the j-th

geometry of the dubiety and is z.dubiety[j].mval.

Figure 4.3: The vague spatial attribute ν is a composite attribute with a multivalued certitude
denoted by geometries and a multivalued dubiety denoted by geometries and their membership
values.

The following constraints apply to every instance z of a given vague spatial attribute ν ,

in order to allow aggregation of vague spatial data (Section 4.6) and vague spatial predicates

(Section 4.5):

• the interior of geocertitude is disjoint from the interior of geodubiety.

• ∀ j ≥ 0, only one of the following conditions is valid:

1. z.dubiety[j].mval is in]0,1[; or

2. z.dubiety[j].mval is determined by a function whose codomain is]0,1] ; or

3. z.dubiety[j].mval is null and means maybe.

A membership value in]0,1[indicates that z was designed according to a fuzzy model and

then discretized. A membership value defined by a function denotes that z was designed ac-

cording to a fuzzy model and then represented by a continuous surface or by a linear feature

with gradual transitions. A null membership value associated to the dubiety indicates that z

was designed according to an exact model and complies with the 3-valued logic (true, maybe,

false). All instances of a vague spatial attribute must belong to the same data type to main-

tain consistency. A discussion on the reuse of data types from existing models is detailed in

Section 4.8.

As shown in Figure 4.1, vague spatial attributes are distinguished. A completely vague

spatial attribute has all instances with non-empty dubiety. Its name is optionally preceded by

the label vague . Conversely, a partially vague spatial attribute has some instances not affected

4.2 Attributes 119

by vagueness, and then with empty dubiety, i.e. these instances are crisp. Its name is optionally

preceded by the label vagueH.

Example 4.2.4. Consider the pest control case study. The completely vague spatial attribute
vague AppliedArea take into account the spatial vagueness affecting areas where pesticides

were applied to. Figure 4.4a exemplifies the vague region A1, which has the region A11 compos-

ing its certitude, and the regions A12, A13 and A14 composing its dubiety, with the membership

values 0.8, 0.5 and 0.3, respectively. The partially vague spatial attribute vagueHCrop describes

crops, such that not every crop is affected by spatial vagueness, as shown in Figure 1.1b. In

Figure 4.4b, the vague region C1 has the regions c11 and C12 composing its certitude, and the

region c13 as its dubiety.

vagueAppliedArea

A1 =  A11, {(A12, 0.8), (A13, 0.5), (A14, 0.3)} 

A1.certitude.geo = A11

A1.dubiety.geo = {A12, A13, A14}

A1.dubiety.mval = {0.8, 0.5, 0.3}

A1 A11

A12

A13

A14

(a)

vagueCrop

C1 = {C11, C12}, {C13}

C1.certitude.geo = {C11, C12}

C1.dubiety.geo = C13

C12 C13

C11

(b)

Figure 4.4: Vague spatial attributes and instances for the pest control case study. (a) An aplied
area. (b) A crop.

The vague spatial attribute is a concept and therefore is independent of implementation.

It supports geometric shapes and the corresponding membership values. In detail, it supports

data types defined by both exact models and implementations for fuzzy models. As a result,

it provides expressiveness to represent vague spatial data. The crisp spatial attribute and the

vague spatial attribute differ. If an attribute is crisp it cannot become vague, and vice-versa. In

addition, shapes of vague spatial objects are assumed to remain unchanged through time. The

logical design of the vague spatial attribute is tackled in Sections 5.2 and 5.3.

120 4 Conceptual Design of Vague Spatial Data Warehouses

4.3 Hierarchies

Hierarchies characterize how instances of attributes are associated and guides data aggre-

gation according to finer or coarser levels of granularity. The hierarchy operator formalized

in Section 4.3.1 associates two attributes. The properties detailed in Section 4.3.2 enable hi-

erarchies to associate several attributes. Finally, hierarchies are categorized in Section 4.3.3

according to their associated attributes.

4.3.1 Hierarchy Operator

To motivate the existence of an operator that hierarchically associates a pair of attributes,

consider the pest control case study. Not only an agricultural land comprises several crops, but

they are also topologically related. Figure 4.5 illustrates an agricultural land and crops. Note

that elements from the certitude and the dubiety of both the agricultural land and the crops

are related through the topological relationships shown in Figure 4.5. Therefore, a hierarchy

operator must relate a pair of attributes according to a cardinality and specify the topological

relationships allowed among their instances, taking into account elements from both certitude

and dubiety.

Definition 4.3.1. The operator � imposes a total order that associates a pair of attributes xi

and xi+1 according to a cardinality and restricts the topological relationships allowed among the

instances of xi and xi+1, i.e.

cardinality

xi � xi+1
R(c,c)

R(c,d)

R(d,c)

R(d,d)

such that:

• cardinality is 1:1 or 1:N;

• R(c,c) is a set of topological relationships allowed among certitude elements of instances

from xi and certitude elements of instances from xi+1;

• R(c,d) is a set of topological relationships allowed among certitude elements of instances

from xi and dubiety elements of instances from xi+1;

4.3 Hierarchies 121

• R(d,c) is a set of topological relationships allowed among dubiety elements of instances

from xi and certitude elements of instances from xi+1;

• R(d,d) is a set of topological relationships allowed among dubiety elements of instances

from xi and dubiety elements of instances from xi+1; and

• R(c,c), R(c,d), R(d,c), and R(d,d) are subsets of the set of topological relationships given by

{meets, contains, inside, equals, overlaps, intersects, covers, covered by and disjoint}.

R(c,c)

agriland100.certitude[0].geo covers C1.certitude[0].geo

agriland100.certitude[0].geo contains C1.certitude[1].geo

agriland100.certitude[0].geo covers C2.certitude[0].geo

agriland100.certitude[0].geo covers C2.certitude[0].geo

R(c,d)

agriland100.certitude[0].geo contains C1.dubiety[0].geo

agriland100.certitude[0].geo contains C2.dubiety [0].geo

agriland100.certitude[0].geo contains C2.dubiety [0].geo

R(d,c)

agriland100.dubiety [0].geo meets C1.certitude[0].geo

agriland100.dubiety [0].geo and C1.certitude[1].geo are disjoint

agriland100.dubiety [0].geo meets C2.certitude[0].geo

agriland100.dubiety [0].geo meets C2.certitude[0].geo

R(d,d)

agriland100.dubiety [0].geo and C1.dubiety[0].geo are disjoint

agriland100.dubiety [0].geo meets C2.dubiety [0].geo

agriland100.dubiety [0].geo and C3.dubiety [0].geo are disjoint

Figure 4.5: The topological relationships among agricultural lands and crops.

Table 4.1 shows the types that the attributes xi and xi+1 can assume in a xi � xi+1 statement.

The existence of the sets of topological relationships R(c,c), R(c,d), R(d,c), and R(d,d) is assured

only if both xi and xi+1 are vague spatial attributes (line 1 in Table 4.1). None of these sets exist

if one of the attributes is conventional or non-geometric (lines 3, 4, 7-16 in Table 4.1) since

122 4 Conceptual Design of Vague Spatial Data Warehouses

there are no geometries involved in such types of attributes. As a result, all these sets are empty

and can be omitted for the sake of simplicity. If xi is crisp and xi+1 is vague, then only R(c,c)

and R(c,d) exist (line 5 in Table 4.1), since xi holds only the certitude. If xi is vague and xi+1 is

crisp, then only R(c,c) and R(d,c) exist (line 2 in Table 4.1) since xi+1 holds only the certitude.

Finally, and if both xi and xi+1 are crisp (line 6 in Table 4.1), then only R(c,c) exists since both

xi and xi+1 hold only the certitude.

Table 4.1: Types that the attributes xi and xi+1 can assume.

xi xi+1

1 Vague Spatial Vague Spatial
2 Vague Spatial Crisp Spatial
3 Vague Spatial Non-geometric Spatial
4 Vague Spatial Conventional
5 Crisp Spatial Vague Spatial
6 Crisp Spatial Crisp Spatial
7 Crisp Spatial Non-geometric Spatial
8 Crisp Spatial Conventional
9 Non-geometric Spatial Vague Spatial

10 Non-geometric Spatial Crisp Spatial
11 Non-geometric Spatial Non-geometric Spatial
12 Non-geometric Spatial Conventional
13 Conventional Vague Spatial
14 Conventional Crisp Spatial
15 Conventional Non-geometric Spatial
16 Conventional Conventional

Example 4.3.1. The spatial vagueness is represented in agricultural lands by the attribute
vague AgriLand and in crops by the attribute vagueHCrop. The types of these attributes are

those of line 1 in Table 4.1. Based on the topological relationships shown in Figure 4.5, the

hierarchy relating agricultural lands and crops is:

1 : N
AgriLand � Crop

R(c,c) = {covers,contains}
R(c,d) = {contains}
R(d,c) = {meets,dis joint}
R(d,d) = {dis joint,meets}

Example 4.3.2. Watersheds are spatially represented by the attribute crispWatershed. A water-

shed encompasses several agricultural lands. The types of these attributes are those of line 5

in Table 4.1. Based on the topological relationships shown in Figure 4.6, the hierarchy relating

watersheds and agricultural lands is:

4.3 Hierarchies 123

1 : N
Watershed � AgriLand

R(c,c) = {contains,covers}
R(c,d) = {contains,covers}

∅
∅

R(c,c)

watershed6 contains agriland100.certitude[0].geo

watershed6 contains agriland32.certitude[0].geo

watershed6 covers agriland17.certitude[0].geo

watershed6 covers agriland61.certitude[0].geo

R(c,d)

watershed6 contains agriland100.dubiety[0].geo

watershed6 covers agriland32.dubiety[0].geo

watershed6 covers agriland17.dubiety[0].geo

watershed6 contains agriland61.dubiety[0].geo

Figure 4.6: The topological relationships among watersheds and agricultural lands.

4.3.2 Properties of Hierarchies

A hierarchy comprises a set of pairwise associations and some properties are held to ensure

them, as follows.

Definition 4.3.2. A hierarchy H is a total order on a set of attributes and is denoted x0� ...� xn,

where xi and xn are attributes and 0≤ i < n. Furthermore:

• if xi � xi+1 and xi+1 � xi then xi = xi+1 means that cardinality is 1:1 and that the granu-

larity of xi and xi+1 refer to the same level of detail; (antisymmetry).

124 4 Conceptual Design of Vague Spatial Data Warehouses

• if

ci j c jk cik
xi � x j x j � xk xi � xk

Ri j(c,c) R jk(c,c) Rik(c,c)
Ri j(c,d) and R jk(c,d) then Rik(c,d)
Ri j(d,c) R jk(d,c) Rik(d,c)
Ri j(d,d) R jk(d,d) Rik(d,d)

where:

– cik is 1:1 if both ci j and c jk are 1:1, otherwise cik is 1:N;

– Rik(c,c) = {dis joint}∧Rik(c,d) = {dis joint}∧Rik(d,c) = {dis joint}∧Rik(d,d) =

{dis joint} is not allowed if both xi and xk are vague spatial attributes;

– Rik(c,c) = {dis joint} ∧Rik(c,d) = {dis joint} is not allowed if xi is a crisp spatial

attribute and xk is a vague spatial attribute;

– Rik(c,c) = {dis joint}∧Rik(d,c) = {dis joint} is not allowed if xi is a vague spatial

attribute and xk is a crisp spatial attribute;

– Rik(c,c) = ∅∧Rik(c,d) = ∅∧Rik(d,c) = ∅∧Rik(d,d) = ∅ if, and only if both xi and

xk are not (vague or crisp) spatial attributes; (transitivity).

• xi � xi+1 or xi+1 � xi (totality).

Although two attributes can be considered in the same level of granularity (antisymmetry),

a hierarchy imposes that one precedes the other (totality). In addition, transitivity is only held

if the geometries of different attributes are not all disjoint. When transitivity is applied to relate

a pair of attributes, the valid topological relationships need to be identified, as it is not possible

to automatically determine them.

Example 4.3.3. Example 4.3.2 has related watersheds to agricultural lands, while Example 4.3.1

related agricultural lands to crops. Then, by transitivity:

1 : N
Watershed � Crop

R(c,c) = {contains,covers}
R(c,d) = {contains,covers}

∅
∅

Example 4.3.4. Based on Examples 4.3.1 to 4.3.3, the hierarchy HWaterSupply relates water-

sheds, agricultural lands, and crops:

4.3 Hierarchies 125

1 : N 1 : N
HWaterSupply =

crispWatershed � vague AgriLand � vagueHCrop
{contains,covers} {covers,contains}
{contains,covers} {contains}

∅ {meets,dis joint}
∅ {dis joint,meets}

Figure 4.7 illustrates instances of the attributes crispWatershed, vague AgriLand, and vagueHCrop

that comply with the hierarchy HWaterSupply.

Figure 4.7: A watershed, an agricultural land and crops.

Not only vague spatial attributes and crisp spatial attributes are related by hierarchies in the

VSCube model. The following example addresses a hierarchy involving other attribute types.

Example 4.3.5. Political boundaries are set by the hierarchy HLocation such that the sets R(c,c),

R(c,d), R(d,c), and R(d,d) are omitted as all of them are empty:

1 : N 1 : N 1 : 1
HLocation =

crispCountry � nongeoStateName � crispCity � numericCityCode

Then, by transitivity:

126 4 Conceptual Design of Vague Spatial Data Warehouses

Table 4.2: Categories of hierarchies of the VSCube conceptual model.

Category of hierarchy Vague spatial Crisp spatial Non-geometric Conventional
attributes attributes spatial attributes attributes

Hybrid hierarchy X X X X
Completely spatial hierarchy X X

Partially vague spatial hierarchy X X X
X X X
X X X
X X
X X

Partially crisp spatial hierarchy X X X
X X
X X

Partially non-geometric spatial hierarchy X X
Vague spatial hierarchy X
Crisp spatial hierarchy X

Non-geometric spatial hierarchy X
Conventional hierarchy X

1 : N
crispCountry � crispCity

R(c,c) = {contains,overlaps}
∅
∅
∅

Note that the set R(c,c) is the only non-empty set, since countries and cities are crisp and

thus do not have dubiety. According to Table 4.1, countries and names of states are associated

according to line 7, names of states and cities are associated according to line 10, a city’s

territory and code are associated according to line 8, and territories from countries and their

cities are associated according to line 6 in Table 4.1.

4.3.3 Categories of Hierarchies

The hierarchies of the VSCube conceptual model are categorized in Table 4.2 according

to the types of attributes they associate. For instance, a hybrid hierarchy holds attributes of all

types, while a completely spatial hierarchy holds only vague spatial attributes and crisp spatial

attributes.

Example 4.3.6. As examples of different categories of hierarchies, HWaterSupply described in

Example 4.3.4 is a completely spatial hierarchy, and HLocation described in Example 4.3.5 is a

partially crisp spatial hierarchy.

4.4 Multidimensional Cube with Vague Spatial Data 127

4.4 Multidimensional Cube with Vague Spatial Data

The following sections contextualize vague spatial data in the multidimensional cube. Sec-

tion 4.4.1 describes dimensions, Section 4.4.2 details measures, Section 4.4.3 addresses the

cube, Section 4.4.4 characterizes the vague spatial fact, and Section 4.4.5 focuses on the lattice

of cuboids.

4.4.1 Dimensions

Dimensions match the axes of a multidimensional data cube and are composed of attributes,

which are often associated through hierarchies.

Definition 4.4.1. A dimension D is a tuple denoted TypeDimD = 〈TypeAttr0x0, . . . ,
TypeAttrv xv〉,

where:

• xi is an attribute and 0≤ i≤ v;

• TypeAttri ∈ {numeric,string,date,nongeo,crisp,vagueH,vague } is the type of the at-

tribute, i.e. numeric, alphanumeric (string), date, non-geometric spatial, crisp spatial,

partially vague spatial or completely vague spatial, respectively;

• TypeDim ∈ {conv,nongeo,crisp,vague} refers to the type of the dimension, as follows:

– a conventional dimension has only conventional attributes;

– a non-geometric spatial dimension has at least one non-geometric spatial attribute

and optional conventional attributes;

– a crisp spatial dimension has at least one crisp spatial attribute and no vague spatial

attributes; and

– a vague spatial dimension has at least one vague spatial attribute.

• if xi univocally identifies one instance of the dimension, then it is considered a key and is

underlined.

Example 4.4.1. The following dimensions provide perspectives of analysis for the pest control

case study:

convDPesticide = 〈numericPesticideId,string PesticideName,string PesticideType〉

128 4 Conceptual Design of Vague Spatial Data Warehouses

convDDate = 〈dateDate,numeric Month,string Quarter,numericYear〉

vagueDCrop = 〈vagueHCrop,string PlantName,
vague AgriLand,string AgriLandOwner,
crispWatershed,stringWatershedName〉

Furthermore, the following instances of the dimension vagueDCrop are illustrated in Figure 4.7:

〈 C1, ‘Sugar cane’, agriland100, watershed6 ‘Piracicaba’〉
〈 C2, ‘Sugar cane’, agriland100, watershed6 ‘Piracicaba’〉
〈 C3, ‘Sugar cane’, agriland100, watershed6 ‘Piracicaba’〉

4.4.2 Measures

Measures are the subject of analysis in a data cube and often denote business scores and

performance. In a vague SDW, measures can assume conventional values or (vague) spatial

values.

Definition 4.4.2. A measure TypeMeam is an attribute whose type is TypeMea∈ {numeric,crisp,

vagueH,vague }.

Example 4.4.2. To comply with the pest control case study, the quantity of pesticides applied

in tons is addressed by the measure numericAppliedTons. Furthermore, the vague regions where

pesticides were applied to are addressed by the vague spatial measure vague AppliedArea Note

that AppliedTons = 0.30 and AppliedArea = A1 as illustrated in Figure 1.2b.

4.4.3 Cube

A cube is a multidimensional view whose axes are the dimensions. The values of an axis

are the values assigned to attributes of the dimension, while the values of measures are pro-

jected on axes. A fact associates values of attributes in dimensions to values of measures. Since

(vague) spatial data can be addressed on dimensions and facts, the cube provides not only a

multidimensional view, but also a geographic view of data. The measure values of a fact are

often summarized using aggregation functions. In the VSCube conceptual model, numeric mea-

sures are aggregated by existing aggregation functions, e.g. SUM, AVG, MIN, MAX, and COUNT.

Furthermore, crisp spatial measures are aggregated by reusing existing spatial aggregation func-

tions, such as Union. Moreover, vague spatial measures are aggregated by aggregation functions

such as V SUnion, V SIntersection and V SDi f f erence, which are introduced in Section 4.6.1.

4.4 Multidimensional Cube with Vague Spatial Data 129

Definition 4.4.3. A cube C is a tuple denoted C = 〈D0, . . . ,Dp,
TypeMea0 m0,g0, . . . ,

TypeMeaq mq,

gq〉, where Di is a dimension, TypeMea jm j is a measure, and g j is an aggregation function applied

to TypeMea jm j, for 0≤ i≤ p and 0≤ j ≤ q.

The cube comprises dimensions and all their attributes, and therefore provides several lev-

els of granularity, according to hierarchies that relate the attributes. The cube represents the

conceptual schema of a vague SDW modeled according to the VSCube model. Attributes of a

given dimension that do not participate in the hierarchy belong to the same level of granularity

of the key of the dimension, such as the attribute stringPlantName in vagueDCrop described in

Example 4.4.1.

A cuboid maintains zero or one attribute of each dimension and then denotes a distinct level

of granularity of the cube. Measures and aggregation functions of a cuboid are those defined in

its cube.

Definition 4.4.4. A cuboid c is a tuple denoted c = 〈C,TypeAttr0 x0, . . . ,
TypeAttrt xt〉, where:

• C is the cube that defines c;

• 0≤ i≤ t;

• xi is an optional attribute of a dimension in C;

• ∀s≤ i, j ≤ t : i 6= j⇒ xi 6= x j (there are no repeated attributes in c); and

• TypeAttri ∈ {numeric,string,date,nongeo,crisp,vagueH,vague }.

A fact assigns values of measures for each value of the attributes in a cuboid.

Definition 4.4.5. A fact f is a set denoted f = {c,a0, . . . ,ap,value0, . . . ,valueq} or f = {value0,

. . . ,valueq} where:

• c is a cuboid;

• xi is an attribute of the cuboid c, for 0≤ i≤ p;

• ai ∈ Dom(xi);

• m j is a measure held by the cube C where the cuboid c is defined, for 0≤ j ≤ q; and

• value j ∈ Dom(m j).

130 4 Conceptual Design of Vague Spatial Data Warehouses

The general case adopts the definition of fact as f = {a0, . . . ,ap,value0, . . . ,valueq}. On the

other hand, the distinguished cuboid call described in Section 4.4.5 does not hold any attributes,

and then values of measures are associated to it by the fact denoted f = {value0, . . . ,valueq}.
Therefore, call holds the aggregated values of the measures over all dimensions.

Example 4.4.3. Let CPesticideApplication be a cube and c0 be a cuboid:

CPesticideApplication = 〈convDPesticide,
conv DDate,

vague DCrop,

convAppliedTons, SUM,vague AppliedArea,V SUnion〉
c0 = 〈CPesticideApplication,

numeric PesticideId,date Date,vagueHCrop〉
The cuboid c0 has the attributes that are necessary to provide an answer for the query PC1 listed

in Table 1.1. The multidimensional and geographic view provided by the cuboid c0, which

holds the keys of all dimensions in CPesticideApplication, is depicted in Figure 4.8. In, c0, each fact

associates values of measures to values of keys of pesticides (121, 122), dates (‘2012-10-01’ to

‘2012-10-04’), and crops (C1, C2, C3). The fact highlighted in Figure 4.8 is {121, ‘2012-10-04’,

C1, 0.30, A1}.

vagueCrop

dateDate

convDPesticide
convDDate

vagueDCrop

C1

C2

C3

is PesticideId = 121

Date = '2012-10-04'

Crop = C1

AppliedTons = 0.30

AppliedArea = A1

numericPesticideId

f

A1

C1

Figure 4.8: The multidimensional and geographic views provided by the cuboid c0, and the fact f .

4.4.4 Vague Spatial Fact

A vague spatial fact has a finer granularity than a fact and enables the analysis of measures

at the grains of certitude and dubiety when a vague spatial attribute is addressed by the cuboid.

A vague spatial fact is defined for each vague spatial attribute in a given cuboid.

Definition 4.4.6. A vague spatial fact vague f is a (|ν .certitude.geo|+ |ν .dubiety.geo|)×M ma-

trix for each fact where:

4.4 Multidimensional Cube with Vague Spatial Data 131

• ν is a vague spatial attribute addressed by the cuboid c of the cube C;

• |ν .certitude.geo| is the cardinality of ν .certitude.geo;

• |ν .dubiety.geo| is the cardinality of ν .dubiety.geo;

• M is the quantity of measures addressed in cube C;

• the cells of the matrix are celli, j, for 0≤ i<M and 0≤ j < |ν .certitude.geo|+|ν .dubiety.geo|;

• each cell celli, j, with 0 ≤ j < |ν .certitude.geo|, is the value of the i-th measure of the

cube C regarding the j-th geometry of ν .certitude.geo;

• each cell celli, j, with |ν .certitude.geo| ≤ j < |ν .certitude.geo|+ |ν .dubiety.geo|, is the

value of the i-th measure of the cube C regarding the (j−|ν .certitude.geo|)-th geometry

of ν .dubiety.geo;

• the use of the corresponding aggregation function on the i-th measure, to aggregate all

celli, j with 0 ≤ j < |ν .certitude.geo| returns the aggregated measure for the certitude of

the instance; and

• the use of the corresponding aggregation function on the i-th measure, to aggregate all

celli, j with |ν .certitude.geo| ≤ j < |ν .certitude.geo|+ |ν .dubiety.geo|, returns the ag-

gregated measure for the dubiety of the instance.

Example 4.4.4. Consider the crop C1 and the applied area A1 as shown in Figure 1.2a-c, where

C1.certitude[0].geo = C11, C1certitude[1].geo = C12 and C1dubiety[0].geo = C13. Consider also

the fact highlighted in Figure 4.8. The vague spatial fact illustrated in Figure 4.9 associates

partial values of the measures numericAppliedTons and vague AppliedArea to the certitude and

the dubiety of vagueHCrop = C1, where PesticideId = 121 and Date = ‘2012-10-04’. In the

matrix, the row cell0, j denotes how many tons of pesticides were applied (numericAppliedTons),

while the row cell1, j denotes the extent of the applied area over the corresponding part of C1

(vague AppliedArea). Therefore, cell0,0 is 0.25 and cell1,0 is the extent of A1 that intersects C11,

as shown in Figure 1.2b. Furthermore, cell0,1 is 0.00 and cell1,1 is empty since A1 does not

intersect C12, as shown in Figure 1.2b. Moreover, cell0,2 is 0.05 and cell1,2 is the extent of A1

that intersects C13, as shown in Figure 1.2c. Applying the aggregation function SUM to cell0,0
and cell0,1 produces AppliedTons = 0.25 for the certitude of C1. Conversely, applying SUM to

cell0,2 produces AppliedTons = 0.05 for the dubiety of C1. In addition, applying vague spatial

union V SUnion to cell1,0 and cell1,1 produces the vague region of the applied area regarding

the certitude of C1. Conversely, applying V SUnion to cell1,2 produces the vague region of the

applied area over the dubiety of C1.

132 4 Conceptual Design of Vague Spatial Data Warehouses

Figure 4.9: The matrix of a vague spatial fact.

Example 4.4.5. The vague spatial fact depicted in Figure 4.9 can aid to answer the query PC2

described in Table 1.1. If parts that certainly belong to the crop C1 are required, then cell0,0=0.25

and cell0,1=0.00 provide the amount of pesticides, while cell1,0 and cell1,1 provide the areas of

application. Conversely, if parts that possibly belong to the crop C1 are required, then cell0,2
supplies the amount of pesticides, while cell1,2 supplies the area of application.

The logical design of the vague spatial fact is described in Section 5.7.

4.4.5 Lattice of Cuboids

Cuboids with distinct granularities are organized in a lattice to enable the aggregation of

the values of measures. The lattice of cuboids provides levels of summarized data, such that

hierarchies play a key role to determine such organization.

Definition 4.4.7. A lattice of cuboids L is a directed acyclic graph that imposes a partial order

on the set of cuboids of a given cube, and is a tuple denoted L = 〈C,c0, . . . ,cz,E〉 where:

• C is the cube that defines the lattice;

• ci is a cuboid of C, and therefore is a node of the lattice (0≤ i≤ z);

• ci = cbottom is the bottom-level node, i.e. a cuboid at the finest granularity that holds the

keys of dimensions;

• ci = call is the top-level node, i.e. a cuboid at the coarser granularity that does not hold

attributes;

4.4 Multidimensional Cube with Vague Spatial Data 133

• E is a set of edges that link the nodes (cuboids);

• ci→ c j means that there is an edge that links ci to c j and that the granularity of ci is finer

than the granularity of c j;

• the reflexive and transitive closure of→ is denoted by→∗;

• ci→∗ ck determines that aggregation functions are applied to values of measures in ci to

obtain summarized values in ck;

• →∗ has a unique bottom level cbottom and a unique top level call;

• all cuboids ci are organized in the graph such that cbottom→∗ ci and ci→∗ call; and

• each hierarchy x0 � . . . � xn is a total order encompassed by L, where 0 ≤ b < n and cb

and cb+1 are distinct cuboids of L, such that

– xb ∈ cb,

– xb+1 ∈ cb+1,

– cb+1→ cb, and

– cb+1→∗ call .

The visual representation for a lattice depicts each cuboid as a node. In addition, the order

relation that enables data aggregation is represented by a directed edge.

Example 4.4.6. Let LPesticideApplication be a lattice of cuboids regarding the cube CPesticideApplication.

A subset of LPesticideApplication is depicted in Figure 4.10, considering only the keys of the di-

mensions in CPesticideApplication. The cuboid with the finest granularity is:

cbottom = 〈CPesticideApplication,
numeric PesticideId,date Date,vagueHCrop〉.

Note that cbottom = c0 as described in Example 4.4.3 and that the cuboid all does not hold

attributes.

Example 4.4.7. Figure 4.11a illustrates another subset of LPesticideApplication. Each edge tra-

verses a hierarchy, aggregates values of measures using aggregation functions and points to

a cuboid with a coarser granularity. The multidimensional view provided by each cuboid is

shown in Figure 4.11b, where the visual effect of data aggregation correspond to merging cells

that represent facts. The geographical view provided by facts of each cuboid is shown in Fig-

ure 4.11c. Areas where pesticides were applied to overlap either crops or agricultural lands.

For the sake of simplicity, only areas of application of the pesticide with PesticideId = 121 are

shown. For each cuboid, facts and the aggregation of measure values are listed in Figure 4.11d,

134 4 Conceptual Design of Vague Spatial Data Warehouses

numeric
PesticideId

date
Date

vagueºCrop

numeric
PesticideId

vagueºCrop

numeric
PesticideId

date
Date

all

date
Date

vagueºCrop

vagueºCrop
dateDate numericPesticideId

Figure 4.10: Lattice of cuboids LPesticideApplication, represented according to the bottom-up notation
of Ciferri et al. (2013).

such that PesticideId = 121. An edge usually implies aggregating applied areas and applied

tons by using V SUnion and SUM, respectively. It is noteworthy that the cuboid at the bottom

can be used to answer the query PC1 shown in Table 1.1. In addition, the cuboid at the top can

be used to answer the queries PC3 and PC4 shown in Table 1.1.

4.5 Vague Spatial Predicates

Range queries had their importance and utility for SDW already discussed in Section 2.1.1.3.

They are also important for vague SDW to select vague spatial objects from the dataset accord-

ing to a topological relationship, as exemplified by the query PC4 shown in Table 1.1. Sec-

tions 4.5.1 and 4.5.2 address range queries defined by the VSCube conceptual model. In addi-

tion to assess a topological relationship against whole objects, VSCube model’s range queries

assess objects’ certitude, dubiety, certitude elements, dubiety elements, and dubiety elements

4.5 Vague Spatial Predicates 135

numeric
PesticideId

date
Date

vagueºCrop

string
PesticideType

date
Date

vagueºCrop

string
PesticideType

numeric
Month

vagueºCrop

string
PesticideType

numeric
Month

vague�AgriLand

C1

C2

C3

C1

C2

C3

A9 A5

A1 A4

A2

A12A7 A10

A3

A6

A11

A8

C1

C2

C3

A9 A5

A1 A4

A2

A12A7 A10

A3

A6

A11

A8

{121, '2012-10-01', C1, A10, 0.1}

{121, '2012-10-02', C1, A7, 0.1}

{121, '2012-10-03', C1, A4, 0.1}

{121, '2012-10-04', C1, A1, 0.3}

{121, '2012-10-01', C2, A11, 0.1}

{121, '2012-10-02', C2, A9, 0.1}

{121, '2012-10-03', C2, A5, 0.2}

{121, '2012-10-04', C2, A2, 0.1}

{121, '2012-10-01', C3, A12, 0.2}

{121, '2012-10-02', C3, A8, 0.2}

{121, '2012-10-03', C3, A6, 0.1}

{121, '2012-10-04', C3, A3, 0.2}

{'Herbicide', '2012-10-01', C1, A10, 0.1}

{'Herbicide', '2012-10-02', C1, A7, 0.1}

{'Herbicide', '2012-10-03', C1, A4, 0.1}

{'Herbicide', '2012-10-04', C1, A1, 0.3}

{'Herbicide', '2012-10-01', C2, A11, 0.1}

{'Herbicide', '2012-10-02', C2, A9, 0.1}

{'Herbicide', '2012-10-03', C2, A5, 0.2}

{'Herbicide', '2012-10-04', C2, A2, 0.1}

{'Herbicide', '2012-10-01', C3, A12, 0.2}

{'Herbicide', '2012-10-02', C3, A8, 0.2}

{'Herbicide', '2012-10-03', C3, A6, 0.1}

{'Herbicide', '2012-10-04', C3, A3, 0.2}

{'Herbicide', '2012-10-01', C1,

 VSUnion(A10, A7, A4, A1),

 (0.1+0.1+0.1+0.3)

}

{'Herbicide', '2012-10-01', C2,

 VSUnion(A11, A9, A5, A2),

 (0.1+0.1+0.2+0.1)

}

{'Herbicide', '2012-10-01', C3,

 VSUnion(A12, A8, A6, A3),

 (0.2+0.2+0.1+0.2)

}

{'Herbicide', '2012-10-01',
 agriland100,

 VSUnion(

 VSUnion(A10, A7, A4, A1),

 VSUnion(A11, A9, A5, A2),

 VSUnion(A12, A8, A6, A3)),

 ((0.1+0.1+0.1+0.3)+

 +(0.1+0.1+0.2+0.1)+

 +(0.2+0.2+0.1+0.2))

}

A9 A5

A1 A4

A2

A12A7 A10

A3

A6

A11

A8

agriland100

A9 A5

A1 A4

A2

A12A7 A10

A3

A6

A11

A8

 (a) (b) (c) (d)

Figure 4.11: A subset of the lattice LPesticideApplication. (a) Cuboids. (b) The multidimensional view.
(c) The geographic view. (d) Data aggregation.

with their membership values.

4.5.1 Spatial Range Queries

To select vague spatial objects or their elements according to a topological relationship,

the VSCube conceptual model provides the following intersection range queries (IRQ) and

containment range queries (CRQ):

• IRQob ject and CRQob ject focus on objects;

• IRQcertitude and CRQcertitude focus on objects’ certitude;

136 4 Conceptual Design of Vague Spatial Data Warehouses

• IRQdubiety and CRQdubiety focus on objects’ dubiety;

• IRQdubiety−mval and CRQdubiety−mval checks whether dubiety elements satisfy a condition

regarding their membership values;

• IRQcertitude elements and CRQcertitude elements retrieve certitude elements that satisfy the

topological relationship;

• IRQdubiety elements and CRQdubiety elements retrieve dubiety elements that satisfy the topo-

logical relationship; and

• IRQdubiety elements−mval and CRQdubiety elements−mval retrieve dubiety elements that satisfy

the topological relationship and a condition regarding their membership values.

These queries return a non-empty set if at least one vague spatial object satisfies the topo-

logical relationship, or return an empty set otherwise.

Definition 4.5.1. Considering that q is a spatial query window and dataset is a set of vague

spatial objects, the range queries issued against whole objects held by the dataset are:

IRQob ject(q,dataset) = {z|z ∈ dataset ∧ z.certitude.geo∩q 6=∅∨ z.dubiety.geo∩q 6=∅}; and

CRQob ject(q,dataset) = {z|
z ∈ dataset ∧ z.certitude.geo∩q = z.certitude.geo∧ z.dubiety.geo∩q = z.dubiety.geo}.

Example 4.5.1. In Figure 4.12, let z be an area where pesticides were applied to. An IRQob ject

retrieves the vague spatial object z as z intersects q Conversely, a CRQob ject returns an empty

set because z is not within q.

■ z.certitude.geo

■ z.dubiety.geo

z  dataset

membership values are shown

q is the spatial query window

Figure 4.12: The vague spatial object z and the spatial query window q.

Definition 4.5.2. Considering that q is a spatial query window and dataset is a set of vague

spatial objects, the range queries issued against the certitude or against the dubiety of vague

spatial objects held by the dataset are, respectively:

IRQcertitude(q,dataset) = {z|z ∈ dataset ∧ z.certitude.geo∩q 6=∅};
IRQdubiety(q,dataset) = {z|z ∈ dataset ∧ z.dubiety.geo∩q 6=∅};

4.5 Vague Spatial Predicates 137

CRQcertitude(q,dataset) = {z|z ∈ dataset ∧ z.certitude.geo∩q = z.certitude.geo}; and

CRQdubiety(q,dataset) = {z|z ∈ dataset ∧ z.dubiety.geo∩q = z.dubiety.geo}.

Besides, the membership value α can be considered to filter objects whose dubiety has all

elements complying with an expression, for Φ ∈ {=, 6=,>,<,≤,≥}:
IRQdubiety−mval(q,dataset,Φ,α) = {z|
z ∈ dataset ∧ z.dubiety.geo∩q 6=∅∧∀ j ≥ 0,z.dubiety[j].mvalΦα}; and

CRQdubiety−mval(q,dataset,Φ,α) = {z|
z ∈ dataset ∧ z.dubiety.geo∩q = z.dubiety.geo∧∀ j ≥ 0,z.dubiety[j].mvalΦα}.

Example 4.5.2. In Figure 4.12, let z be an area where pesticides were applied to. An IRQcertitude

returns the vague spatial object z because q intersects the certitude of z. The result is the same

for an IRQdubiety as q intersects the dubiety of z. On the other hand, suppose an IRQdubiety−mval

is issued with Φ being ‘greater than’ (i.e. >) and α = 0.5. The result for such IRQdubiety−mval is

empty, since there are dubiety elements of z that do not have membership value greater than 0.5.

Moreover, both a CRQcertitude and a CRQdubiety return an empty set, since z, its certitude, and its

dubiety are not within q. Analogously, a CRQdubiety−mval also returns an empty set independent

from the membership value provided for α , since z is not within the q.

Note that IRQcertitude is the vague spatial predicate in the query PC4 listed in Table 1.1.

The condition “certainly intersect” implies that an applied area and the spatial query window

intersect with certitude. To satisfy such condition, it must be ensured that the certitude of the

applied area intersects the certitude of the spatial query window. Since the former is vague and

the latter is crisp, then it is sufficient to assess whether the certitude of the applied area intersects

the spatial query window. Note that other spatial range queries from Definition 4.5.2 could be

used instead of IRQcertitude, by rewriting the query PC4.

Definition 4.5.3. Considering that q is a spatial query window and dataset is a set of vague

spatial objects, the range queries issued against certitude elements or against dubiety elements

of vague spatial objects held by the dataset are, respectively:

IRQcertitude elements(q,dataset) = {o|z ∈ dataset ∧o ∈ z.certitude.geo∧o∩q 6=∅};
IRQdubiety elements(q,dataset) = {o|z ∈ dataset ∧o ∈ z.dubiety.geo∧o∩q 6=∅};
CRQcertitude elements(q,dataset) = {o|z ∈ dataset ∧o ∈ z.certitude.geo∧o∩q = o}; and

CRQdubiety elements(q,dataset) = {o|z ∈ dataset ∧o ∈ z.dubiety.geo∧o∩q = o}.

Besides, the membership value α can be considered to filter dubiety elements, for Φ ∈ {=,

6=, >, <, ≤, ≥} and j ≥ 0:

138 4 Conceptual Design of Vague Spatial Data Warehouses

IRQdubiety elements−mval(q,dataset,Φ,α) = {o|
z ∈ dataset∧o ∈ z.dubiety.geo∧o = z.dubiety[j].geo∧o∩q 6=∅∧ z.dubiety[j].mvalΦα}; and

CRQdubiety elements−mval(q,dataset,Φ,α) = {o|
z ∈ dataset ∧o ∈ z.dubiety.geo∧o = z.dubiety[j].geo∧o∩q = o∧ z.dubiety[j].mvalΦα}.

Example 4.5.3. In Figure 4.12, let z be an area where pesticides were applied to. Suppose an

IRQcertitude elements is issued. Since q intersects the single certitude element of z, this element

is returned, as shown in Figure 4.13a. If an IRQdubiety elements is issued, four dubiety elements

of z are returned, as shown in Figure 4.13b. If an IRQdubiety elements−mval is issued with Φ being

‘greater than’ (i.e. >) and α = 0.5, then the result has two dubiety elements of z, as shown in Fig-

ure 4.13c. Furthermore, a CRQcertitude elements returns an empty set because the single certitude

element of z is not within q. A CRQdubiety elements returns the elements with membership value

0.5 and 0.4, since their geometries are within q. Finally, a CRQdubiety elements−mval(q,z,≥,0.5)
returns the element with membership value 0.5 since its geometry is within q and complies with

the expression.

(a) (b) (c)

Figure 4.13: The results for IRQcertitude elements, IRQdubiety elements and IRQdubiety elements−mval . (a)
IRQcertitude elements. (b) IRQdubiety elements. (c) IRQdubiety elements−mval .

The implementation of spatial range queries is described in Section 5.9.2.

4.5.2 The Vague Spatial Range Query

Both IRQs and CRQs explained in Section 4.5.1 considered vague spatial objects from

the dataset against the crisp spatial query window q. To allow ranking the results of a query

according to relevance, the VSCube conceptual model also enables the use of a vague spatial

query window composed of a pair of bi-dimensional concentric rectangles. As a result, the

spatial vagueness concerns the spatial query window, while the dataset can be composed of

crisp or vague spatial data. The vague spatial range query (VSRQ) identifies all crisp spatial

objects or vague spatial objects such that:

4.5 Vague Spatial Predicates 139

• the inner spatial query window evaluates a CRQ, to be more restrictive and consequently

denote a lower degree of vagueness, producing more relevant results; and

• the outer spatial query window evaluates an IRQ, to be less restrictive and gradually

denote a greater degree of vagueness, producing less relevant results by subtracting the

results already gathered by the inner spatial query window.

Definition 4.5.4. Considering that inner and outer are concentric spatial query windows and

dataset is a set of spatial objects, the vague spatial range query issued against whole objects in

the dataset is:

V SRQob ject(inner,outer,dataset) =

CRQob ject(inner,dataset)∪ (IRQob ject(outer,dataset)−CRQob ject(inner,dataset))

The V SRQcertitude, V SRQdubiety, V SRQdubiety−mval , V SRQcertitude elements, V SRQdubiety elements

and V SRQdubiety elements−mval are defined analogously.

Example 4.5.4. In Figure 4.14a, a V SRQob ject(inner,outer,dataset) is issued against water-

sheds of the pest control case study, considering the spatial query windows inner and outer.

The result set of the V SRQob ject is shown in Figure 4.14b, where cities in black are those within

inner and have a higher priority. Conversely, cities in gray intersect outer and are not within

inner, and thus have a lower priority.

Crisp spatial objects were used as dataset in the example for the sake of simplicity. How-

ever, vague spatial objects could be used instead.

inner

outer

(a) (b)

Figure 4.14: A V SRQob ject against crisp watersheds. (a) Watersheds and spatial query windows.
(b) Result set.

The implementation of the vague spatial range query is addressed in Section 5.9.2.

140 4 Conceptual Design of Vague Spatial Data Warehouses

4.6 Vague Spatial Aggregation Functions

The subjects of analysis in a SDW are mostly numeric measures and crisp spatial measures

as explained in Section 2.1, which are summarized by proper aggregation functions, such as

SUM for a numeric measure and union for a crisp spatial measure. Additionally, a vague SDW

has vague spatial measures detailed in Section 4.4.2 that require vague spatial aggregation func-

tions. Since vague spatial objects consist of certitude and dubiety geometries and dubiety mem-

bership values, the vague spatial aggregation functions perform both geometric and numeric

aggregations. The VSCube Conceptual Model offers three vague spatial aggregation functions:

the vague spatial union is described in Section 4.6.1, the vague spatial intersection is detailed in

Section 4.6.2 and the vague spatial difference is addressed in Section 4.6.3.

4.6.1 Vague Spatial Union

The pairwise union of two input vague spatial objects x and y merges their shapes and

creates a new vague spatial object z. The certitude of z is composed by the union of the certitudes

of both x and y. The dubiety of z comprises the union of the certitudes of both x and y, except

any part that already belong to the certitude of z. This exception considers that the certitude of

z already contains any intersection between the certitude of one input object with the dubiety

of the other input object. If there is intersection between the dubieties of x and y, then such

intersection belongs to the dubiety of z. In addition, the greatest value of membership value is

yielded. Regarding the portions in the dubiety of x or y that do not intersect any part of the other

input object, they also belong to the dubiety of z and maintain their original membership values.

Definition 4.6.1. The vague spatial union of two input vague spatial objects x and y is:

V SUnionXY (x,y) = {z|
z.certitude.geo = (x.certitude.geo∪ y.certitude.geo)∧
z.dubiety.geo = (x.dubiety.geo∪ y.dubiety.geo)− z.certitude.geo)∧
for i, j,k ≥ 0, z.dubiety[k].mval is

max(x.dubiety[i].mval,y.dubiety[j].mval), iff x.dubiety[i].geo∩ y.dubiety[j].geo 6=∅)

x.dubiety[i].mval, iff ∀k ≥ 0 implies z.dubiety[k].geo∩ y.dubiety[j].geo =∅;

y.dubiety[j].mval, iff k ≥ 0 implies z.dubiety[k].geo∩ x.dubiety[i].geo =∅; or

}

The vague spatial union of a collection of vague spatial objects composes a single vague

spatial object z and processes input vague spatial objects recursively using V SUnionXY .

4.6 Vague Spatial Aggregation Functions 141

Definition 4.6.2. The vague spatial union of a collection of vague spatial objects is:

V SUnion(o0, . . . ,on) =V SUnionXY (on,V SUnionXY (on−1, . . .V SUnionXY (o1,o0) . . .)),

where oi is a vague spatial object and 0 < i≤ n.

Example 4.6.1. Let x and y be distinct areas where pesticides were applied to. Both x and y are

depicted in Figure 4.15a and V SUnion(x,y) returns a vague spatial object that is assigned to z

in Figure 4.15b. Different tones of gray highlight the different membership values associated to

the dubiety.

(a) (b)

Figure 4.15: The vague spatial union applied to the vague spatial objects x and y. (a) x and y. (b)
z =V SUnion(x,y).

Note that V SUnion is used in queries PC2, PC3, and PC4 as shown in Table 1.1 to ag-

gregate areas where pesticides were applied. The implementation of V SUnion is detailed in

Section 5.9.3.

4.6.2 Vague Spatial Intersection

The pairwise intersection of two vague spatial objects x and y produces the vague spatial

object z containing the extent shared by both x and y. The intersection of the certitudes of x

and y belongs to the certitude of z. Conversely, the intersection between the dubiety of x or y

with any other part of the other input object belongs to the dubiety of z and holds the lower

membership value involved. Finally, the parts of x that do not intersect any part of y, and the

parts of y that do not intersect any part of x are discarded. The membership value is assumed to

be 1.0 for the certitudes of x and y.

Definition 4.6.3. The vague spatial intersection of two input vague spatial objects x and y is:

V SIntersectionXY (x,y) = {z|
z.certitude.geo = (x.certitude.geo∩ y.certitude.geo)∧
z.dubiety.geo = ((x.certitude.geo∩ y.dubiety.geo)∪

(x.dubiety.geo∩ y.certitude.geo)∪

142 4 Conceptual Design of Vague Spatial Data Warehouses

(x.dubiety.geo∩ y.dubiety.geo))∧
for i, j,k ≥ 0, z.dubiety[k].mval is

y.dubiety[j].mval, iff x.certitude[i].geo∩ y.dubiety[j].geo 6=∅; or

x.dubiety[i].mval, iff x.dubiety[i].geo∩ y.certitude[j].geo 6=∅; or

min(x.dubiety[i].mval,y.dubiety[j].mval), iff x.dubiety[i].geo∩ y.dubiety[j].geo 6=∅
}

The vague spatial intersection of a collection of vague spatial objects composes a single

vague spatial object z and processes input vague spatial objects recursively using V SIntersectionXY .

Definition 4.6.4. The vague spatial intersection of a collection of vague spatial objects is:

V SIntersection(o0, . . . ,on) =V SIntersectionXY (on,V SIntersectionXY (on−1, . . .

V SIntersectionXY (o1,o0) . . .)), where oi is a vague spatial object and 0 < i≤ n.

(a) (b)

Figure 4.16: The vague spatial intersection applied to the vague spatial objects x and y. (a) x and
y. (b) z =V SIntersection(x,y).

Example 4.6.2. Consider that x and y are distinct areas where pesticides were applied to. Both

x and y are depicted in Figure 4.16a and V SIntersection(x,y) returns a vague spatial object that

is assigned to z in Figure 4.16b. Different tones of gray highlight the different membership

values associated to the dubiety.

4.6.3 Vague Spatial Difference

The pairwise difference of two vague spatial objects x and y produces the vague spatial

object z containing the extent in x that does not belong to y. The portions in the certitude of

x that do not intersect any part of y belong to the certitude of z. The portions in the dubiety

of x that do not intersect any part of y belong to the dubiety of z and maintain their original

membership values. Conversely, the portions in the certitude of x that intersect the dubiety of y

belong to the dubiety of z and hold the membership value of 1.0 minus the original membership

4.6 Vague Spatial Aggregation Functions 143

value concerning y. In addition, the portions of the dubieties of x and y that intersect belong to

the dubiety of z only if the membership value in x minus the membership value in y yields a

positive value.

Definition 4.6.5. The vague spatial difference of two input vague spatial objects x and y is:

V SDi f f erenceXY (x,y) = {z|
z.certitude.geo = x.certitude.geo− (x.certitude.geo∩ y.certitude.geo)

−(x.certitude.geo∩ y.dubiety.geo)∧
z.dubiety.geo = (x.dubiety.geo− (x.dubiety.geo∩ y.certitude.geo)

−(x.dubiety.geo∩− y.dubiety.geo))

∪(x.certitude.geo∩ y.dubiety.geo)∧
for i, j,k ≥ 0, z.dubiety[k].mval is

1.0− y.dubiety[j].mval, iff x.certitude[i].geo∩ y.dubiety[j].geo 6=∅; or

x.dubiety[i].mval− y.dubiety[j].mval, otherwise

}, where the operator ∩− retrieves the intersections between x.dubiety.geo and y.dubiety.geo

for i, j ≥ 0 and x.dubiety[i].mval− y.dubiety[j].mval ≤ 0.

The vague spatial difference of a collection of vague spatial objects composes a single vague

spatial object z and processes input vague spatial objects recursively using V SDi f f erenceXY .

Definition 4.6.6. The vague spatial difference of a collection of vague spatial objects is:

V SDi f f erence(o0, . . . ,on) =V SDi f f erenceXY (on,V SDi f f erenceXY (on−1, . . .

V SDi f f erenceXY (o1,o0) . . .)), where oi is a vague spatial object and 0 < i≤ n.

Example 4.6.3. Consider that x and y are distinct areas where pesticides were applied to. Both

x and y are depicted in Figure 4.17a and V SDi f f erence(x,y) returns a vague spatial object that

is assigned to z in Figure 4.17b. Different tones of gray highlight the different membership

values associated to the dubiety.

(a) (b)

Figure 4.17: The vague spatial difference applied to the vague spatial objects x and y. (a) x and y.
(b) z =V SDi f f erence(x,y).

144 4 Conceptual Design of Vague Spatial Data Warehouses

4.7 Vague Spatial Online Analytical Processing

The vague spatial online analytical processing (vague SOLAP) comprises a set of complex

multidimensional queries described in this section, extended with vague spatial aggregation

functions detailed in Section 4.6 and the vague spatial predicates described in Section 4.5.

The roll-up operation progressively fetches data according to attributes of a coarser granu-

larity. It often fetches upper levels of a given hierarchy by requiring attributes of linked cuboids.

It relies upon aggregation, and therefore functions detailed in Section 4.6 can be used to aggre-

gate vague spatial data. Conversely, the drill-down operation progressively fetches data accord-

ing to attributes of a finer granularity. It usually fetches lower levels of a given hierarchy by

requiring attributes of linked cuboids.

Definition 4.7.1. Let L be a lattice of cuboids such that L = 〈C,c0, . . . ,cz,E〉. The roll-up

operation is denoted roll-up(c f iner, ccoarser) and corresponds to firstly issue a query against the

cuboid c f iner, and subsequently issue a query against the cuboid ccoarser, such that there is at

least one way whose edges link c f iner and ccoarser, i.e. c f iner→∗ ccoarser.

Definition 4.7.2. Let L be a lattice of cuboids such that L = 〈C,c0, . . . ,cz,E〉. The drill-down

operation is denoted drill-down(ccoarser, c f iner) and corresponds to firstly issue a query against

the cuboid ccoarser, and subsequently issue a query against the cuboid c f iner, such that there is

at least one way whose edges link c f iner and ccoarser, i.e. c f iner→∗ ccoarser.

Roll-up is the inverse of drill-down. Both can be performed not only against attributes

that are adjacent in a hierarchy. In addition, they are not limited to geometries of the same

dimensionality between the hierarchy levels. Instead, they may change the dimensionality of

geometries along the hierarchy of a spatial dimension, e.g. 2D to 0D and vice-versa. Sometimes

the change occurs more than once and sometimes with attributes that are not geometry.

Example 4.7.1. Consider the following cuboids shown in Figure 4.11a:

cbottom = 〈CPesticideApplication,
numeric PesticideId,date Date,vagueHCrop〉, and

ctma = 〈CPesticideApplication,
string PesticideType,numeric Month,vague AgriLand〉.

Note that cbottom→∗ ctma. Recall that cbottom and ctma can be used to answer the queries PC1

and PC3 shown in Table 1.1, respectively. Then, roll− up(cbottom,ctma) corresponds to firstly

issue the query PC1 against cbottom and thereafter issue the query PC3 against ctma. Conversely,

drill− down(ctma,cbottom) consists of corresponds to firstly issue the query PC3 against ctma

and thereafter issue the query PC1 against cbottom.

The slice-and-dice operation retrieves data that comply with specific criteria. It relies upon

4.7 Vague Spatial Online Analytical Processing 145

selection, and therefore predicates detailed in Section 4.5 can be used to retrieve vague spatial

data.

Definition 4.7.3. Let c be a cuboid such that c = 〈C,TypeAttr0 x0, . . . ,
TypeAttrt xt〉. The slice-and-

dice operation determines a slice to match fixed values of at least one attribute xi of the cuboid c,

and a dice to match ranges for at least one of the remaining attributes x j of the cuboid c (i 6= j).

Example 4.7.2. Consider the following cuboid shown in Figure 4.11:

ctma = 〈CPesticideApplication,
string PesticideType,numeric Month,vague AgriLand〉.

Recall that ctma can be used to answer the query PC4 shown in Table 1.1. The slice on ctma sets

the year as 2012 and the pesticide type as herbicide. The dice on ctma is a range of vague spatial

objects fetched by an IRQcertitude against agricultural lands.

In addition to allow data summarization, detailing, and selection, vague SOLAP also en-

ables the pivot operator that aims at visualization, as follows.

Definition 4.7.4. Let c be a cuboid such that c = 〈C,TypeAttr0 x0, . . . ,
TypeAttrt xt〉. The pivot op-

eration provides interactive visualization of the cuboid c by switching the axis of at least two

attributes.

Example 4.7.3. In Figure 4.8, the cuboid c0 has the following axis: x = PesticideId, y =vagueH

Crop and z = Year. A pivot operation was applied on the cuboid c0, as shown in Figure 4.18,

obtaining the following axis: x = Year, y =vagueH Crop and z = PesticideId.

f

vagueCrop

dateDate

convDPesticide convDDate

vagueDCrop

numericPesticideId

is Date = '2012-10-04'

Crop = C1

PesticideId = 121

AppliedTons = 0.30

AppliedArea = A1

A1

C1

Figure 4.18: A pivoted cuboid.

Queries using the operators described in this section are detailed in Section 5.9.

146 4 Conceptual Design of Vague Spatial Data Warehouses

4.8 Reusing Existing Models and Implementations

Existing models and implementations for vague spatial data surveyed in Section 2.3 are not

aimed at vague SDW, but can be reused in the VSCube conceptual model with a few adaptations

and according to the shapes they use to represent spatial vagueness, as follows. Section 4.8.1 fo-

cuses the representation using arbitrary geometries with: (i) non-disjoint interiors as employed

by QMM, RBB and Egg-Yolk; (ii) disjoint interiors as adopted by VASA; (iii) disjoint interiors

and a precomputed membership values as tackled by the Plateau Algebra. Section 4.8.2 focuses

the Bitmap that uses rectangular grid cells or hexagonal grid cells with disjoint interior, each

cell holding a precomputed membership value. Section 4.8.3 focuses on TIN that uses trian-

gles whose interiors are disjoint interiors and whose vertices hold membership values. Finally,

Section 4.8.4 focuses linear segments holding membership values.

4.8.1 Arbitrary Geometries

Considering that according to QMM, Lmax is the maximal extent of a vague spatial object z

and Lmin is the minimal extent of z, then the following assignments create a vague spatial object

o compatible with the VSCube conceptual model:

o.certitude[0].geo← Lmin, and

o.dubiety[0].geo← Lmax−Lmin, where − is the geometric difference.

QMM encompasses the RBB and Egg-Yolk and, therefore, the same assignments are ap-

plied for these models. The cited subtraction is essential to enable geometric data aggregation

of vague spatial data, which play a key role in the processing of values of a vague spatial mea-

sure. Note that the aforementioned models do not define operators for union, intersection and

difference. The cited subtraction is also essential to enable vague spatial predicates, since those

models also do not provide spatial predicates to retrieve parts of vague spatial objects.

If z is an object modeled according to VASA, then kernel is the kernel of z, and con jecture

is the conjecture of z. Two approaches can be used to create a vague spatial object o compatible

with the VSCube conceptual model, as follows. The first has the following trivial assignments:

o.certitude[0].geo← kernel and

o.dubiety[0].geo← con jecture.

The second pair of assignments identifies i elements in kernel and j elements in conjecture:

o.certitude[i].geo← kernel[i] and

4.8 Reusing Existing Models and Implementations 147

o.dubiety[j].geo← con jecture[j], ∀i, j ≥ 0.

The first pair of assignments allows querying entire objects, only certitudes and only dubi-

eties, while the second pair assignments allows querying whole objects, only certitudes, only

dubieties, elements of the certitude and elements of the dubiety. Both pairs of assignments

enable geometric aggregation of vague spatial data.

The aforementioned models do not support membership values, and then spatial predicates

involving membership values are not enabled. On the other hand, if z is a vague spatial object

designed according to the Plateau Algebra, then it is composed by i pairs of geometry and

membership value. If z[i].geo is the i-th geometry and z[i].mval is the i-th membership value,

then the following assignments apply to create a vague spatial object o compatible with the

VSCube conceptual model to enable both the aggregation of vague spatial data and all vague

spatial predicates, for c,d, i≥ 0:

o.certitude[c].geo← z[i].geo if z[i].mval = 1.0; or

o.dubiety[d].geo← z[i].geo otherwise.

4.8.2 Bitmaps

The same assignments described for the Plateau Algebra described in Section 4.8.1 are

valid if z is a bitmap with i cells z[i] that have a geometry z[i].geo and a corresponding mem-

bership value z[i].mval. The vague spatial predicates defined the VSCube conceptual model

are allowed. The operations of union, intersection and difference adapt the grid of cells of the

resultant bitmap. Therefore, the guidelines described by Verstraete, Tré & Hallez (2006) should

be incorporated in the aggregation of vague spatial data.

4.8.3 Triangulations

Considering that T is a TIN for a fuzzy region, the corresponding vague spatial object o

compatible with the VSCube conceptual model is created as follows. Let T [i] be the i-th trian-

gle of T , such that T [i] is described by ((x1,y1,z1),(x2,y2,z2),(x3,y3,z3)) where x and y are co-

ordinates and z are membership values. Considering that 4((x1,y1,z1),(x2,y2,z2),(x3,y3,z3))

creates the geometry of a 2D triangle with the vertices ((x1,y1),(x2,y2),(x3,y3)), then the fol-

lowing assignments apply for c,d, i≥ 0:

o.certitude[c].geo←4((x1,y1),(x2,y2),(x3,y3)), if z1 = z2 = z3 = 1.0; and

o.dubiety[d].geo←4((x1,y1),(x2,y2),(x3,y3)), otherwise.

148 4 Conceptual Design of Vague Spatial Data Warehouses

Furthermore, the membership value in o.dubiety[d].mval is not precomputed, but is pro-

vided by a function whose codomain is]0,1], as described in Equation 2.1 (Section 2.3.3.4).

To comply with this purpose, (x1,y1), (x2,y2) and (x3,y3) are the coordinates of the vertices of

the triangle T [i] and z1, z2 and z3 are the membership values associated to each vertex in T [i],

respectively. As a result, the function determines the membership value for every point (x,y)

of a triangle, including its vertices, and does not denote an empty value. Rather, the value is

calculated when demanded to process vague spatial predicates and aggregation of vague spatial

data.

For instance, consider the TIN depicted in Figure 4.19a, where two triangles are highlighted

and the spatial query window w is displayed. The black triangle tblack belongs to the certitude

of the vague region, while the gray triangle tgray belongs to the dubiety of the vague region.

Both tblack and tgray have their vertices described by coordinates and membership values in Fig-

ure 4.19b. Note that the triangles share one vertex, i.e. (102, 125, 1.0). Before the assignments,

A, B, C and D are calculated as follows:

A = 125× (0.8−0.01)+119× (0.01−1.0)+112× (1.0−0.8) = 3.34

B = 1.0× (112−83)+0.8× (83−102)+0.01× (102−112) = 13.7

C = 102× (119−112)+112× (112−125)+83× (125−119) =−244

D =−3.34×102−13.7×125+244×0.01 =−2050.74.

The following fractions are also calculated:

−A
C =− 3.34

−244 = 0.013688525

−B
C =− 13.7

−244 = 0.056147541

−D
C =−−2050.74

−244 =−8.404672131

Finally, the following assignments are valid:

o.certitude[c].geo← tblack where (c≥ 0),

o.dubiety[d].geo← tgray where (d ≥ 0), and

o.dubiety[d].mval← 0.013688525x+0.056147541y−8.404672131.

The vague spatial predicates of the VSCube conceptual model are enabled as follows. Al-

though the following discussion concerns the IRQs, the same concepts are applicable to the

CRQs. When evaluating an IRQob ject , if one vertex of a triangle in o.certitude.geo or in

o.dubiety.geo intersects the spatial query window w, then the corresponding vague spatial object

4.8 Reusing Existing Models and Implementations 149

o is an answer. The evaluation of IRQcertitude and IRQdubiety are done analogously considering

the intersection of w against o.certitude.geo and the intersection of w against o.dubiety.geo,

respectively. For instance, consider the TIN of a vague region and the spatial query window w

shown in Figure 4.19a. Both tblack and tgray indicate that the vague region is an answer of the

IRQob ject . Also, tblack indicates that the vague region is a answer of the IRQcertitude and tgray

indicate that the vague region is a answer of the IRQdubiety.

As for IRQcertitude elements, if at least one vertex of a given triangle in the certitude intersects

the spatial query window w then the corresponding triangle is an answer. For example, tblack

satisfies an IRQcertitude elements against the spatial query window w as shown in Figure 4.19a.

Analogously, when evaluating an IRQdubiety elements, if least one vertex of a given triangle in the

dubiety intersects the spatial query window w then the corresponding triangle is an answer For

example, tgray satisfies an IRQdubiety elements, against the spatial query window w as shown in

Figure 4.19a.

As for IRQdubiety elements−mval , if at least one vertex of a given triangle in the dubiety in-

tersects the spatial query window w and all vertices comply with the conditional involving the

membership value, then the corresponding triangle is an answer. For example, tgray does not

satisfy an IRQdubiety elements−mval against the spatial query window w for membership values

greater than 0.6 in Figure 4.19a, as there is a vertex with membership value 0.01. Analogously,

a IRQdubiety−mval would have an empty result set for the same spatial query window w and

membership values greater than 0.6.

(a) (b)

Figure 4.19: A spatial range query against a TIN. (a) A TIN and a spatial query window w. (b)
Triangles tblack and tgray of the TIN.

The membership values of the vertices of triangles must be calculated not only when eval-

uating vague spatial predicates on a TIN, but also to allow aggregation of vague spatial data.

The operations of union, intersection and difference require retriangulation of the input TINs.

Therefore, the guidelines described by Dilo (2006) are incorporated in the aggregation of vague

spatial data. Then, the vague spatial object o can be transformed into a TIN using the reverse

assignments, considering T [i] is the i-th triangle of a TIN T , such that T [i] is described by

((x1,y1,z1),(x2,y2,z2),(x3,y3,z3)), where x and y are coordinates and z are membership values.

150 4 Conceptual Design of Vague Spatial Data Warehouses

The following reverse assignments to transform a vague spatial object into a TIN apply:

T [i]← ((xc1,yc1,1.0),(xc2,yc2,1.0),(xc3,yc3,1.0)), where (xc1,yc1), (xc2,yc2) and (xc3,yc3)

are vertices of the triangle in o.certitude[c].geo; and

T [i]← ((xd1,yd1,z1),(xd2,yd2,z2),(xd3,yd3,z3)), where (xd1,yd1), (xd2,yd2) and (xd3,yd3)

are vertices of the triangle in o.dubiety[d].geo and z1, z2 and z3 are their membership values,

respectively.

4.8.4 Lines with Gradual Transitions

Lines with gradual transitions are reused as they implement fuzzy lines. Considering that

l is a line with gradual transition, the corresponding vague spatial object o compatible with the

VSCube conceptual model is created as follows. Let l[i] be the i-th segment of l, such that l[i]

is described by ((x1,y1,z1),(x2,y2,z2)) where x and y are coordinates and z are membership

values. The following assignments apply considering that Line((x1,y1),(x2,y2)) creates the

geometry of a rectilinear line with the endpoints (x1,y1),(x2,y2):

o.certitude[c].geo← Line((x1,y1),(x2,y2)), if z1 = z2 = 1.0; and

o.dubiety[d].geo← Line((x1,y1),(x2,y2)), otherwise.

Furthermore, the membership value in o.dubiety[d].mval, is not precomputed, but is given

by the linear interpolation on ((x1,y1,z1),(x2,y2,z2)).

The vague spatial predicates of the VSCube conceptual model are enabled like those de-

scribed in Section 4.8.3. The operations of union, intersection and difference may require split-

ting of lines used as input. Therefore, the guidelines described by Dilo (2006) are incorporated

in the aggregation of vague spatial data. In order to execute such methods, the vague spatial ob-

ject o can be transformed into a line with gradual transition using the reverse assignments, con-

sidering l[i] is the i-th segment of a line l, such that l[i] is described by ((x1,y1,z1),(x2,y2,z2)),

where x and y are coordinates and z are membership values. The following reverse assignments

to transform a vague spatial object into a line with gradual transition apply:

l[i]← ((xc1,yc1,1.0),(xc2,yc2,1.0)), where (xc1,yc1) and (xc2,yc2) are endpoints of the seg-

ment in o.certitude[c].geo; and

l[i]← ((xd1,yd1,z1),(xd2,yd2,z2)), where (xd1,yd1), (xd2,yd2) and (xd3,yd3) are endpoints

of the segment in o.dubiety[d].geo and z1 and z2 are their membership values, respectively.

4.9 The Vague Spatial MultiDim Conceptual Model 151

4.9 The Vague Spatial MultiDim Conceptual Model

The VSCube conceptual model has enabled the conceptual modeling of vague SDWs and

has provided flexible and multidimensional ways for representing, querying, and aggregating

vague spatial data. However, the VSCube conceptual model does not offer graphic represen-

tations of the concepts, which could be utilized by database designers to elaborate diagrams.

Therefore, the Vague Spatial MultiDim Conceptual Model, or simply VSMultiDim, is proposed

to overcome the cited shortcoming.

Before introducing the VSMultiDim conceptual model, the requirements and goals of such

a model are outlined and the adopted methods are briefly explained. The first requirement is

to address multidimensional modeling. The goal is to reuse the legacy already developed for

DW/OLAP, SDW/SOLAP, and vague SDW/vague SOLAP. The second requirement is to enable

the elaboration of diagrams and symbols to represent concepts. The goal is to facilitate the

communication between designers and users when they create conceptual schemata for vague

SDWs. The third requirement is to support vague spatial data types defined by exact models

and fuzzy spatial data types defined by fuzzy models. The goal is to enable modeling a wide

variety of real-world phenomena.

In order to achieve these goals and fulfill these requirements, the MultiDim conceptual

model outlined in Section 3.1.1 has been extended to reuse formal definitions of the VSCube

conceptual model. As a result, the VSMultiDim model addresses multidimensional modeling,

inherits and extends MultiDim’s graphical notations, and applies VSCube’s concepts. The con-

ceptual schema of a vague SDW designed according to the VSMultiDim model is a diagram

that encompasses a set of facts and a set of levels that represent dimensions. Then, a schema

with a single fact in the VSMultiDim model is analogous to a cube modeled according to the

VSCube model.

The following sections detail the VSMultiDim model. In order to illustrate the applicability

of the VSMultiDim model, examples are provided to describe two different situations according

to the case studies. The examples regarding the pest control case study assume that a data

cube has already been proposed as conceptual schema using the VSCube conceptual model.

Conversely, the examples regarding the HLB case study assume that the conceptual schema

is modeled with the VSMultiDim conceptual model to elaborate a diagram that represents the

data cube. Section 4.9.1 describes fundamentals of the VSMultiDim model. Section 4.9.2

addresses levels, attributes and members, Section 4.9.3 tackles dimensions and hierarchies, and

Section 4.9.4 focuses on fact and measures.

152 4 Conceptual Design of Vague Spatial Data Warehouses

4.9.1 Fundamentals

The VSMultiDim model introduces pictograms for the visual representation of vague spa-

tial data types and fuzzy spatial data types, as described in Section 4.9.1.1. The VSMultiDim

model reuses certitude and dubiety, as detailed in Section 4.9.1.2. The VSMultiDim model also

introduces pictograms to denote vague topological constraints, as described in Section 4.9.1.3.

4.9.1.1 Data Types

The VSMultiDim model’s pictograms that denote data types are listed in Figure 4.20. They

represent vague or fuzzy simple types Point, Line, and Region, as well as vague or fuzzy col-

lection types Point Set, Line Set, and Region Set. Pictograms for crisp spatial data types were

inherited from the MultiDim model and are also listed, for the sake of comparison.

Crisp

Vague

Fuzzy

Point Line Region Point Set Line Set Region Set

Figure 4.20: Pictograms denoting data types supported by the VSMultiDim conceptual model.

The pictograms differentiate vague spatial data types from fuzzy spatial data types. Recall

that the former are based in a 3-valued logic to express membership as being either true, maybe,

or false (Section 2.3.1.1), while the latter are based in fuzzy logic to quantify the membership

degree in [0,1] (Section 2.3.2.1). Pictograms for vague spatial data types have black dashed

contour and white fill. Pictograms for fuzzy spatial data types have a gradient where the solid

color black represents the membership degree 1, darker tones of gray denote higher membership

values, and brighter tones of gray denote lower membership values.

The selection of a pictogram to represent either a vague or a fuzzy spatial data type is done

by analogy with the vague spatial attribute of the VSCube model, as follows. Suppose that a

vague spatial attribute is defined. If the vague spatial attribute’s instances have dubiety elements

whose membership values either are in]0,1[or are determined by a function whose codomain

is]0,1], then a gradient pictogram for a fuzzy spatial data type must be selected. If the vague

spatial attribute’s instances have dubiety elements whose membership values are null and means

maybe, then a dashed pictogram for a vague spatial data type must be selected.

The pictograms also unambiguously distinguish data types concerning the shape and the

cardinality. On the one hand, vague and fuzzy spatial data types are complex and manipulate

4.9 The Vague Spatial MultiDim Conceptual Model 153

sets (collections) of shapes to ensure the correctness of their operators. On the other hand,

conceptual design of SDWs requires simple data types to be specified in a conceptual schema,

to exempt the user from understanding complex data types. As a result, the pictograms that

denote data types address both the simple types and the collection types.

The selection of a pictogram to represent either a simple or a collection type is also done by

analogy with the vague spatial attribute of the VSCube model, as follows. Suppose that a vague

spatial attribute is defined. If the vague spatial attribute’s instances have at most one dubiety

element, then a simple type must be selected. If the vague spatial attribute’s instances have

more than one dubiety element, then a collection type must be selected.

A dashed point depicts a simple vague point either with known location and undetermined

membership degree or with an unknown location inside an area. A dashed line represents a

simple vague line with broad boundaries and/or interior. A dashed polygon denotes a simple

vague region composed of a pair of regions. Examples of simple vague points are shown in

Figure 2.8a,b,e, examples of simple vague lines are shown in Figure 2.8f-o, and examples of

simple vague regions are shown in Figure 2.8q-s,u. Multiple dashed points depict a vague

point set as exemplified in Figure 2.8c-d. Multiple dashed lines represent a vague line set as

exemplified in Figure 2.8p. Multiple dashed regions denote a vague region set as exemplified in

Figure 2.8t,v.

Furthermore, a gradient point depicts a simple fuzzy point, which is either a pair of coor-

dinates with membership value or a buffer whose points have membership values assigned. A

gradient line represents a simple fuzzy line that is a linear object whose membership values vary

gradually. A gradient region denotes a surface whose points have membership values assigned.

Examples of simple fuzzy points are shown in Figure 2.10a,b,d, an example of simple fuzzy line

is shown in Figure 2.10e, and examples of simple vague regions are shown in Figure 2.10h-i.

Multiple gradient points depict a fuzzy point set as exemplified in Figure 2.10c. Multiple gra-

dient lines represent a fuzzy line set as exemplified in Figure 2.10f-g. Multiple gradient regions

denote a fuzzy region set as exemplified in Figure 2.10j-l.

It is noteworthy that both VSCube and VSMultiDim models support vague spatial data

types defined by exact models. However, the VSMultiDim model supports fuzzy spatial data

types defined by fuzzy models, while the VSCube model supports implementations for fuzzy

spatial data types (Section 2.3.3). As a result, the VSMultiDim model delegates the implemen-

tation choice to be made in the logical design of the vague SDW.

154 4 Conceptual Design of Vague Spatial Data Warehouses

4.9.1.2 Certitude and Dubiety

Let o be an object assuming a vague spatial data type (Section 2.3.1.1) and õ be an object

assuming a fuzzy spatial data type (Section 2.3.2.1). Then, Certitude(o) and Certitude(õ) are

subsets whose memberships to o and õ, respectively, are certain. These subsets are called

certitude of o and certitude of õ, respectively. The certitude of o consists of the geometric shapes

whose membership to o is true. The certitude of õ is the fuzzy set {c ∈ Rn | µõ(c) = 1.0}. The

certitude of a crisp spatial object is the object itself.

Furthermore, Dubiety(o) and Dubiety(õ) are subsets for which there is dubiety about their

memberships to o and õ, respectively. These subsets are called dubiety of o and dubiety of

õ, respectively. The dubiety of o consists of the geometric shapes whose membership to o is

maybe. The dubiety of õ is the fuzzy set {d ∈ Rn | 0 < µõ(d) < 1.0}. The dubiety of a crisp

spatial object is empty.

4.9.1.3 Vague Topological Constraints

Recall that a topological relationship indicates how the locations of two spatial objects are

related. These relationships are typically used for expressing topological constraints. Reusing

topological relationships from existing exact models (Section 2.3.1.3) or fuzzy models (Sec-

tion 2.3.2.3) to express topological constraints in a vague SDW could substantially increase the

complexity of conceptual modeling. It would require to consider relationships that are fully

satisfied and yield true or possibility 1, as well as and relationships that are partially satisfied

and yield maybe or possibility in]0,1[.

Therefore, only relationships that are fully satisfied are considered in the VSMultiDim

model. In addition, the sets of topological relationships R(c,c), R(c,d), R(d,c), and R(d,d) are reused

from the VSCube model, as described in Section 4.3.1. Then, a vague topological constraint

TX ,Y between the sets of objects X and Y lists all topological relationships allowed between

elements of xi and elements of y j, where xi ∈ X and y j ∈ Y :

TX ,Y = {R(c,c),R(c,d),R(d,c),R(d,d)} (4.1)

Figure 4.21 lists the pictograms that have been created to denote topological relationships.

Note that contour and fill colors are standardized, such that black refers to certitude and gray

refers to dubiety. In a diagram, it is infeasible to represent a topological constraint graphically

with all the allowed relationships. Rather, one representative from each set R(c,c), R(c,d), R(d,c),

and R(d,d) is chosen to be graphically represented by a pictogram. The representative is the

4.9 The Vague Spatial MultiDim Conceptual Model 155

more usual topological relationship, for the sake of simplicity.

R(c,c)

R(c,d)

R(d,c)

R(d,d)

Meets /Inside Equals Overlaps Covered Disjoint
Contains Covers/Intersects/

Figure 4.21: Pictograms denoting topological relationships of the VSMultiDim conceptual model.

4.9.2 Attributes, Levels and Members

In the VSCube model, a dimension comprises several attributes of distinct granularities, as

described in Section 4.4.1. In the MultiDim model, a level is equivalent to an entity type of the

ER model, as discussed in Section 3.1.1. As for the VSMultiDim model, a level represents a

set of real-world concepts that have similar attributes. Additionally, a level is a subset of the

attributes of a given dimension modeled according to the VSCube conceptual model, such that

the subset belong to the same entity type. A level also has a type, which can be one of the types

already defined for dimensions in Section 4.4.1:

• a conventional level has only conventional attributes and its members are called conven-

tional members;

• a non-geometric spatial level has at least one non-geometric spatial attribute and optional

conventional attributes, and its members are called non-geometric spatial members;

• a crisp spatial level has at least one crisp spatial attribute and no vague spatial attributes,

and its members are called crisp spatial members; and

• a vague spatial level has at least one vague spatial attribute and its members are called

vague spatial members.

Conventional levels and non-geometric spatial levels do not require a spatial representation

and are treated as they already are in the MultiDim model. Also, crisp spatial levels are like

spatial levels already defined by the MultiDim model. On the other hand, both the vague spatial

156 4 Conceptual Design of Vague Spatial Data Warehouses

level and the vague spatial attribute require one pictogram to determine the data type, as shown

in Figure 4.20. The pictogram is placed to the right of the name of a level or to the right of the

name of an attribute.

Example 4.9.1. Regarding the pest control case study, Figure 4.22a illustrates the dimension
vagueDCrop modeled according to the VSCube in Example 4.4.1. Levels have been obtained by

identifying subsets of attributes that belong to the same entity type. Crop is a vague spatial level

that has a surrogate key on CropId, the conventional attribute PlantName, and an omitted vague

spatial attribute that denotes a crop as a simple vague region. Agricultural Land is a vague spatial

level that has a surrogate key on AgriLandId, the conventional attribute AgriLandOwner, and an

omitted vague spatial attribute that denotes an agricultural lands as a simple vague region. Wa-

tershed is a crisp spatial level that has a surrogate key on WatershedId, the conventional attribute

WatershedName, and an omitted crisp spatial attribute that denotes a watershed as a simple crisp

region.

Crop

CropId

PlantName

Watershed

WatershedId

WatershedName

vagueDCrop = � vagueº Crop, stringPlantName,

 vague�AgriLand, string�AgriLandOwner,

 crispWatershed, stringWatershedName �

Agricultural
Land

AgriLandId

AgriLandOwner

(a)

Infected
Group

GroupId
/QtyTrees

Infected
Region

RegionId
/MinArea

(b)

Figure 4.22: Vague spatial levels: (a) Obtained from a dimension of the pest control case study. (b)
Modeled to comply with the HLB case study.

Example 4.9.2. Regarding the HLB case study, the vague spatial level Infected Group shown

in Figure 4.22b has a surrogate key on GroupId, the derived attribute QtyTrees, and an omitted

vague spatial attribute that denotes an infected group as a fuzzy point set. The quantity of

trees in a group is supplied by QtyTrees. A member of this level describes a set of locations

such that each location has an associated possibility of infection in]0,1]. Members of the level

Infected Group are obtained using distance calculations, as discussed in Section 1.2. Therefore,

a value for QtyTrees can only be calculated after the corresponding fuzzy point set is created.

For instance, a vague spatial member of the level Infected Group has GroupId=11, the red point

set shown in Figure 1.3c, and QtyTrees=7. Another member of Infected Group has GroupId=12,

the orange point set shown in Figure 1.3c, and QtyTrees=7.

4.9 The Vague Spatial MultiDim Conceptual Model 157

Example 4.9.3. Regarding the HLB case study, the vague spatial level InfectedRegion shown

in Figure 4.22b has a surrogate key on RegionId, the derived attribute MinArea, and an omitted

vague spatial attribute that denotes an infected region as a simple fuzzy region. A member of

this level describes a continuous extent where the possibility of infection by HLB varies in]0,1].

The area in square meters where the possibility of infection by HLB is 1 is supplied by MinArea.

Members of the level InfectedRegion are obtained from clustering, as discussed in Section 1.2.

Therefore, values for MinArea can only be calculated after the corresponding fuzzy region is

created. For instance, a vague spatial member of the level InfectedRegion has RegionId=1, the

fuzzy region shown in Figure 1.3d, and MinArea=628.

In the following, Section 4.9.3 addresses hierarchies, which relate levels of distinct granu-

larities. The logical design of the vague spatial attribute is tackled in Sections 5.2 and 5.3. The

logical design of the vague spatial level is addressed in Section 5.4.

4.9.3 Dimensions and Hierarchies

Initially, consider both the VSCube and the MultiDim models for the sake of comparison.

In the VSCube model, a hierarchy is a total order on a set of attributes as described in Sec-

tion 4.3. Each pair of attributes with distinct granularities is associated through a cardinality

and holds a vague topological constraint involving their certitude and dubiety elements. In the

MultiDim model, a hierarchy relates several levels as discussed in Section 3.1.1. Each pair

of crisp spatial levels with distinct granularity is associated through a cardinality and holds a

topological constraint among their members.

As for the VSMultiDim model, a dimension encompasses at least one level and often has

hierarchies. A hierarchy is defined by a set of associations between two levels, where one is

the parent level that has a coarser granularity, and the other is the child level and has a finer

granularity. The association has a cardinality and determines a topological constraint.

The cardinality of the parent-child association is either one-to-one, one-to-many, or many

to many. A topological constraint relates members from the associated levels. In the diagram,

four pictograms are placed between two vague spatial levels Lparent and Lchild parallel to the

connection used for the association. Figure 4.21 lists the pictograms that can be used. The

pictogram for R(c,c) is the one closest to the top-left level, while R(d,d) is the one closest to the

right-bottom level. When a given set is empty, e.g. due to an empty dubiety in a crisp spatial

level, the symbol ∅ replaces the pictogram. Also, if one of the levels is conventional, neither

pictograms nor the symbol ∅ are drawn.

158 4 Conceptual Design of Vague Spatial Data Warehouses

Example 4.9.4. Figure 4.23 illustrates the hierarchy HWaterSupply from Example 4.3.4 as de-

fined using the VSCube conceptual model. The corresponding graphical representation of such

hierarchy has been created with the VSMultiDim model and shown in Figure 4.23. Water-

shed is a crisp spatial level while Agricultural Land is a vague spatial level. Although R(c,c) =

{contains,covers}, a single pictogram for covers has been used in the graphical representation

because the latter is more frequent. The pictogram for contains was analogously chosen for

R(c,d). On the other hand, the sets R(d,c) and R(d,d) are empty because watersheds are crisp

and do not have dubiety. Thus, the symbol ∅ was employed instead of a pictogram. The rela-

tionships among watersheds and agricultural lands have already been illustrated in Figure 4.6.

Pictograms for the relationships among agricultural lands and crops were also analogously se-

lected. Such relationships have already been illustrated in Figure 4.5.

^ ^

W
at

er
 S

u
p

p
ly

HWaterSupply = crispWatershed 9 vague�AgriLand 9 vagueºCrop

R(c,c) = {contains, covers}

R(c,d) = {contains, covers}

R(d,c) = ^

R(d,d) = ^

R(c,c) = {covers, contains}

R(c,d) = {contains}

R(d,c) = {meets, disjoint}

R(d,d) = {disjoint, meets}

1:N 1:N

Crop

CropId

PlantName

Watershed

WatershedId

WatershedName

Agricultural
Land

AgriLandId

AgriLandOwner

Figure 4.23: A hierarchy of the pest control case study represented according to both the VSCube
model and the VSMultiDim model.

Concerning the HLB case study, note that queries HLB5 and HLB7 listed in Table 1.2

require infected regions, but clustering such regions on the fly is infeasible due to the high com-

putation cost. In addition, those queries can alternatively refer to infected groups. Clearly, the

spatial vagueness that is intrinsic of groups and regions must be represented in the conceptual

schema of the SDW.

Example 4.9.5. Consider the HLB case study. Figure 4.24 illustrates the hierarchy Spread

composed of the vague spatial levels Infected Group and Infected Region. The hierarchy Spread is

encompassed by the dimension Infection, which provides a perspective of analysis that considers

the intrinsic spatial vagueness of both infected groups and infected regions. Then, the spread of

the disease can be analyzed by group containing a set of locations with associated possibilities

of infection, or by region affecting a wider extent and encompassing several groups. An infected

group is associated to at most one infected region, while an infected region comprises one or

4.9 The Vague Spatial MultiDim Conceptual Model 159

more infected groups. According to the pictograms shown, a certitude element of a group is

usually inside of a certitude element of a region and disjoint from a dubiety element of a region.

Also, a dubiety element of a group is usually disjoint from a certitude element of a region and

inside of a dubiety element of a region. These topological relationships hold for the two groups,

red and orange, associated to a region in Figure 1.3d.

Sp
re
ad

Infected
Group

GroupId
/QtyTrees

Infected
Region

RegionId
/MinArea

Figure 4.24: A hierarchy of the HLB case study represented according to the VSMultiDim model.

Example 4.9.6. Consider the HLB case study. Figure 4.25 shows the hierarchies Citriculture,

Personnel, and Calendar. They belong to respective homonym dimensions. The hierarchy Cit-

riculture is described by the crisp spatial levels Tree, Plot, Farm, and City. A member of Tree

denotes a tree, is spatially represented as a simple crisp point, and has an identifier in TreeId,

a planting date in PlantingDate, and an initially unknown eradication date in EradicationDate. A

member of Plot denotes a plot, is spatially represented as a simple crisp region that contains

one or more trees, has an identifier in PlotId and the name of the planted trees in PlantName.

A member of Farm denotes a farm, is spatially represented as a crisp region that covers one or

more plots, has an identifier in FarmId and its owner’s name in Owner. A member of City denotes

a city, is spatially represented by a crisp region set that covers one or more farms, is identified

by its name CityName and has its elevation represented by a continuous field in Elevation. The

hierarchy Personnel is described by the conventional levels Inspector and Team. A member of In-

spector denotes an inspector whose identification and name are in InspectorId and InspectorName,

respectively. A member of Team denotes a team composed of one or more inspectors and its

name is given by TeamName. The hierarchy Calendar is described by the conventional levels

Month, Quarter, and Year. A member of Month denotes a month identified by its number MonthNo

and whose name is given by MonthName. A member of Quarter denotes a quarter comprising

three months that is identified by its number QuarterNo. A member of Year denotes an year

composed of four quarters that is identified by its number YearNo.

Consider the hierarchies described in Examples 4.9.5 and 4.9.6 regarding the HLB case

study. Note that an infected group has a set of trees’ locations plus the possibility of infection,

as shown in Figure 1.3c. Also, an infected group’s extent overlaps one or more plots, as shown in

160 4 Conceptual Design of Vague Spatial Data Warehouses

Tree

TreeId
PlantingDate
EradicationDate

Citriculture

Plot

PlotId
PlantName

Farm

FarmId
Owner

City

CityName
Elevation f()

Month

MonthNo
MonthName

Quarter

QuarterNo

Inspector

InspectorId
InspectorName

Personnel Calendar

Team

TeamName

Year

YearNo

Figure 4.25: Hierarchies of the HLB case study represented according to the VSMultiDim model.

Figure 1.3d. Indeed, an infection affects trees and spreads over plots. However, the topological

relationships that relate HLB infections to citricultural trees and plots are not sufficient to justify

a single hierarchy, because the concepts are distinct. Therefore, the dimensions Infection and

Citriculture are separated, as detailed in those examples. Analogously, the hierarchies Spread and

Citriculture are also distinct, as shown in Figures 4.24 and 4.25. The relationship between an

infection and a tree is provided by a fact.

The logical design of hierarchies in vague SDWs is addressed in Section 5.5. In the follow-

ing, Section 4.9.4 tackles the fact and measures. The latter are aggregated along different levels

of a hierarchy.

4.9.4 Fact and Measures

A fact relates levels and often has measures. A fact member is an instance of a fact. A

spatial measure is a spatial attribute in a fact whose values provide spatial representations for

the relationship among members of the related levels. The value of a spatial measure is the

result an observation, e.g. a topological relationship satisfied by the related members.

A conventional measure is usually numeric and can be aggregated using SUM, for instance.

A crisp spatial measure is a crisp spatial attribute whose values can be aggregated using geo-

4.9 The Vague Spatial MultiDim Conceptual Model 161

metric union, for instance. A vague spatial measure is a vague spatial attribute whose values

can be aggregated using existing operations outlined in Sections 2.3.1.2 and Section 2.3.2.2 or

the aggregation functions introduced by the VSCube conceptual model in Section 4.6.

To create a fact using a cube modeled according to the VSCube, each pair (measure, func-

tion) is extracted from the cube and the name of the cube is assigned to the name of the fact.

The type of a spatial measure is specified by a pictogram placed on the right of the measure’s

name. The pictogram is one of those shown in Figure 4.20. The aggregation function used to

summarize values of a measure can also be specified on the right of the pictogram’s name.

Example 4.9.7. Figure 4.26 describes the cube CPesticideApplication from Example 4.4.3 as mod-

eled according to the VSCube model. The corresponding fact Pesticide Application modeled

according to the VSMultiDim model is obtained by extracting the pairs (AppliedTons,SUM)

and (AppliedArea,V SUnion) from CPesticideApplication. The fact Pesticide Application relates the

levels Pesticide, Date, and Crop. The conventional measure AppliedTons is numeric and aggre-

gated using SUM, while AppliedArea is a vague spatial measure denoting simple fuzzy regions

that can be aggregated using V SUnion. Each fact member indicates the quantity in tons and the

location where pesticide application occurred by pesticide by date by crop, as required by the

query PC1 listed in Table 1.1.

Pesticide

PesticideId

PesticideName

Type

TypeName

Month

MonthNo

MonthName

Quarter

QuarterNo

Year

YearNo

Date

DateId

DateC
al

en
d

ar

C
la

ss
if

ic
at

io
n

AppliedTons: SUM

AppliedArea : VSUnion

Pesticide Application

^ ^

W
at

er
 S

u
p

p
ly

Crop

CropId

PlantName

Watershed

WatershedId

WatershedName

Agricultural
Land

AgriLandId

AgriLandOwner

CPesticideApplication = �convDPesticide,
convDDate,

vagueDCrop,
numericAppliedTons, SUM, vague�AppliedArea, VSUnion�

Figure 4.26: A conceptual schema of vague SDW for the pest control case study.

Example 4.9.8. Figure 4.27 illustrates the conceptual schema of vague SDW created using the

VSMultiDim model for the HLB case study. The fact HLB Control relates the crisp spatial level

162 4 Conceptual Design of Vague Spatial Data Warehouses

Tree, the vague spatial level Infected Group, and the conventional levels Month and Inspector. The

numeric measure SymptomSeverity denotes a value in [0,9] and is aggregated using AVG. The

vague spatial measure InfectedTree represents the finest grain of an infection location, which co-

incides with a tree’s location, and quantifies the possibility of infection in [0,1]. Therefore, its

spatial representation is given by a simple fuzzy point. The vague spatial measure InfectedTree is

aggregated using V SUnion. The measure NeedsEradication? is not aggregated and allows an an-

notation whether eradication is needed. Each fact member indicates the symptom severity and

location and possibility of infection by tree by infected group by month by inspector, as required

by the query HLB1 listed in Table 1.2. An example of fact member is SymptomSeverity=8, the

red point shown in Figure 1.3c representing InfectedTree with possibility 1, and NeedsEradica-

tion=True. Another example of fact member is SymptomSeverity=1, the topmost bright red point

shown in Figure 1.3c representing InfectedTree with possibility 0.3, and NeedsEradication=False.

SymptomSeverity: AVG
InfectedTree : VSUnion
NeedsEradication?

HLB Control

Tree

TreeId
PlantingDate
EradicationDate

Citriculture

Plot

PlotId
PlantName

Farm

FarmId
Owner

City

CityName
Elevation f()

Month

MonthNo
MonthName

Quarter

QuarterNo

Sp
re

ad

Infected
Group

GroupId
/QtyTrees

Infected
Region

RegionId
/MinArea

Inspector

InspectorId
InspectorName

Personnel

Calendar

Team

TeamName

Year

YearNo

Figure 4.27: A conceptual schema of vague SDW for the HLB case study.

Before proceeding with the VSMultiDim model description, some aspects related to mod-

eling are discussed. To illustrate the discussed topics, the vague SDW modeled for the HLB

case study and shown in Figure 4.27 is used as example.

A member of Infected Group has a fuzzy point set composed of several simple fuzzy points

4.9 The Vague Spatial MultiDim Conceptual Model 163

from all related infected trees described by fact members. Therefore, every member of Infected

Group is related to one or several fact members. This relationship allows associating the HLB

infection to citricultural trees and plots. Such relationship was not feasible considering exclu-

sively the hierarchies, as discussed in Section 4.9.3.

Furthermore, the measure InfectedTree describes the possibility of infection at a given loca-

tion. Thus, each fact member has a simple fuzzy point that is a fuzzy set whose membership

function is given in Equation 2.3.2.1 (Section 2.3.2.1). The membership value quantifies the

degree to which an element of the set belongs to the fuzzy set. Since the fuzzy set is a singleton,

the sum of the membership values is 1 when the unique element has the membership value 1.

Otherwise, the sum is greater than 0 and lesser than 1. A simple fuzzy point representing an

infection is a poorly-defined object, as discussed in Section 2.3.

An alternative to represent the possibility of infection would be to add the measure Infection

Possibility with numeric values in]0,1] into the fact HLB Control. Then, each fact member would

reference a member of the level Tree and inherit the tree’s location. The query HLB2 listed in

Table 1.2 would require to apply MAX on Infection Possibility and geometric union on points repre-

senting trees. However, it is meaningless to obtain the numeric value of the maximum infection

possibility by month by plot without a location. Unlike the numeric measure Infection Possibility,

the proposed vague spatial measure InfectedTree represents the finest grain of an infection with

both the numeric possibility and the location where the infection occurs.

Another alternative would be to assume randomness and stipulate chances of (non) occur-

rence of an infection by creating the uncertain measure Infection Probability, as described in Sec-

tion 2.2.1.2. Using the uncertain domain {Yes, No}, a discrete probability distribution function

could provide a pair of probabilities to associate each fact member with a chance of occurrence

of infection. Considering Example 4.9.8, those fact members would have Infection Probability=

{Yes/1.0, No/0.0} and Infection Probability={Yes/0.3, No/0.7}. The feasible scenarios for that

pair of fact members would be (Yes, Yes), (Yes, No), (No, Yes), and (No, No). Also, each fact

member would reference a member of the level Tree and inherit the tree’s location.

Nevertheless, the interpretation of the uncertain measure Infection Probability differs from

the interpretation of the vague spatial measure InfectedTree, as follows. The vague spatial mea-

sure indicates that the point (represented by a pair of coordinates) is an infected tree with a

given possibility. Conversely, the uncertain measure indicates that, for a given fact member, the

probability that it represents an infection is x while the probability that it does not represent an

infection is 1− x. With the uncertain measure each fact member holds a pair of probabilities

whose sum is 1, in contrast with a single membership value in]0,1] required by the proposed

164 4 Conceptual Design of Vague Spatial Data Warehouses

vague spatial measure. Furthermore, the uncertain measure neglects the location of the infec-

tion, which is intrinsic of a vague spatial measure The query HLB2 listed in Table 1.2 would

require to apply MAX on the probability associated with the element ‘Yes’ of the uncertain mea-

sure, in addition to a spatial union of trees’ locations.

After discussing some modeling aspects, the description of the VSMultiDim conceptual

model is resumed. The VSMultiDim conceptual model does not provide it any graphical rep-

resentation for the vague spatial fact, which has been introduced by the VSCube model in Sec-

tion 4.4.4. Nevertheless, it is implicit that partial values of measures in a fact can be assigned

to elements of vague spatial members from vague spatial levels related by the fact.

A spatial fact is a fact relating two or more spatial levels. For each pair of related spatial

levels, one of the following situations occur:

• both are crisp spatial levels and topological constraints apply;

• there is one crisp spatial level and one vague spatial level and vague topological con-

straints apply; or

• both are vague spatial levels and vague topological constraints apply.

The constraints of a spatial fact are not depicted as pictograms in the fact in order to avoid

excessive pictograms for visualization. For example, a pair of crisp spatial levels requires one

pictogram, while a pair of vague spatial levels require four pictograms. Then, the number of

required pictograms can increase significantly if there are several crisp or vague spatial levels

related to the fact and impair readability and comprehension of the schema.

Example 4.9.9. In the schema shown in Figure 4.27, the spatial fact in HLB Control associates

the crisp spatial level Tree and the vague spatial level Infected Group. The vague topological

constraint between these levels is {R(c,c), R(c,d), ∅, ∅}, since members of Tree are crisp and

have an empty dubiety. Also R(c,c) = {intersects} and R(c,d) = {intersects}, as a tree location

intersects an infected group’s set of locations.

The logical design for facts and vague spatial measures in vague SDWs is addressed in

Section 5.6, while the logical design for the vague spatial fact is addressed in Section 5.7.

4.10 Summary

In this chapter, the VSCube conceptual model has been introduced to enable representing

and querying vague spatial data in multidimensional databases. It produces a data cube as the

4.10 Summary 165

conceptual schema to enable flexible and multidimensional ways for representing, querying

and aggregating vague spatial data. It also comprises attribute types, hierarchies and their cate-

gories, dimensions, measures, fact, vague spatial fact, cube and lattice of cuboids, and supports

conventional data, non-geometric spatial data, crisp spatial data and, mainly, vague spatial data.

Vague spatial data types defined by exact models and based on geometric features with an asso-

ciated membership in {true, maybe, false} are supported. Implementations of fuzzy spatial data

types and based on geometric features with an associated (precomputed) membership in]0,1]

are also supported.

Furthermore, the VSCube conceptual model also defines vague spatial aggregation func-

tions (vague spatial union, vague spatial intersection, and vague spatial difference) and vague

spatial predicates (intersection range queries, containment range queries and vague spatial range

queries). Moreover, the vague SOLAP and the multidimensional operations of slice-and-dice,

drill-down, roll-up and pivot have been described. In order to corroborate the applicability of

the VSCube conceptual model, examples have been elaborated based on the pest control case

study. The VSCube conceptual model allows the analysis of business scores related to vague

spatial data, and therefore improves the decision-making process. With the VSCube conceptual

model, spatial vagueness has been introduced in SDWs and culminate in the vague SDW.

This chapter has also detailed the VSMultiDim conceptual model for vague SDWs that,

differently from the VSCube conceptual model, offers graphic notations of the concepts and

enables the elaboration of diagrams. The VSMultiDim mainly tackles the representation of

spatial vagueness in attributes, levels, members, dimensions, hierarchies, fact, measures and

schema of the vague SDW. It introduces pictograms to differentiate data types and to represent

vague topological constraints. Vague spatial data types defined by exact models are supported.

Fuzzy spatial data types defined by fuzzy models and based on fuzzy sets whose membership

functions assign membership values in [0,1] are also supported. All pictograms enable an easy

hand-drawing and implementation in tools for computer-aided software engineering. Examples

have been elaborated based on the pest control case study and on the HLB case study to corrob-

orate the applicability of the VSMultiDim conceptual model. With the MultiDim conceptual

model, the communication between users and designers are benefited by the enabled creation

of diagrams for the vague SDW conceptual schema.

Conceptual modeling of vague SDWs, however, does not enable the elaboration of a vague

SDW schema underlying a particular DBMS, which is intrinsic of the logical design of vague

SDWs addressed in Chapter 5.

166 4 Conceptual Design of Vague Spatial Data Warehouses

Chapter 5
LOGICAL DESIGN OF VAGUE SPATIAL DATA

WAREHOUSES

The logical design of a database commonly maps the conceptual database schema into a

logical database schema underlying a particular database management system (DBMS). The

goals of the logical design are mainly to preserve the database integrity, to facilitate writing

queries, to reduce the cost for querying the database, and to analyze the costs for storing the

database and for maintaining database’s constraints. The logical design of data warehouses and

spatial data warehouses has been mainly tackled by storing data in relational databases, extend-

ing SQL and providing specific access methods to efficiently implement the multidimensional

data model and the corresponding operations.

This chapter details mapping rules that transform a conceptual schema of vague spatial data

warehouse, modeled according to the VSCube and the VSMultiDim models, into a relational

logical schema. Furthermore, it explains the constraints of the vague spatial data warehouse and

provides their implementations. Moreover, it enables querying the relational logical schema of

the vague spatial data warehouse and performing vague spatial online analytical processing.

An overview of the relational representation of vague spatial data warehouses is outlined in

Section 5.1. Section 5.2 details and discusses alternative implementations for the vague spatial

attribute. Section 5.3 selects one implementation for the vague spatial attribute and describes its

design. Section 5.4 addresses the vague spatial level and the vague spatial member. Section 5.5

focuses on hierarchies. Section 5.6 stands for the fact and vague spatial measures. Section 5.7

addresses the vague spatial fact, which allows the assignment of measure values to certitude

elements and dubiety elements of vague spatial members. Section 5.8 tackles vague topolog-

ical constraints. Section 5.9 focuses on query processing and vague spatial online analytical

processing and describes how SQL has been extended to query vague spatial data warehouses.

168 5 Logical Design of Vague Spatial Data Warehouses

Finally, Section 5.10 summarizes the chapter.

5.1 Relational Representation of Vague Spatial Data Ware-
houses

A vague spatial data warehouse (vague SDW) has at least one vague spatial attribute in a

dimension or as a measure in a fact. A relational vague SDW assumes that there is at least one

table holding a vague spatial attribute. The starting point of the logical design for the vague

SDW as a relational database consists of defining how a vague spatial attribute is designed in

a table. The VSCube conceptual model has defined a vague spatial attribute as a composite

attribute whose data fields are certitude and dubiety. Certitude is a multivalued data field of

geometries, while dubiety is composed by both a multivalued data field of geometries and a

multivalued data field of membership values.

However, the original relational model has well-known shortcomings, e.g. supporting only

atomic, monovalued and conventional attribute types. Therefore, current relational DBMSs

preserves foundations of the relational model and additionally offer a variety of extensions that

can be used to improve the logical design of databases demanded by more complex system re-

quirements. Spatial extensions, object-relational features and support for multivalued attributes

are seen as the most promising resources of current DBMSs that can be investigated for the

provision of the logical design for vague SDWs based on the relational model.

Spatial extensions provides spatial data types, spatial operators, spatial functions and spatial

indices. Spatial data types enable storing a collection of geometries in a single row, which can

be particularly useful for storing certitude elements and dubiety elements of a vague spatial

object. Spatial operators and spatial functions can be reused to develop aggregation functions

for vague spatial data and vague spatial predicates as well as to check topological constraints.

Spatial indices can be built to speed up the resolution of vague spatial predicates. Spatial data

types, spatial operators and spatial functions comply with the OGC standard. This compliance

should be maintained in the logical design of the vague SDW to ensure the validity of data and

compatibility with higher-level application programming interfaces.

Furthermore, object-relational features allow preserving foundations of the relational model

while data is organized using an object model. The extensibility feature can be explored for

extending SQL and implementing user-defined functions (UDFs). Aggregation functions for

vague spatial data, vague spatial predicates, and also constraints of the vague SDW can be

implemented as UDFs. Moreover, the support for multivalued attributes is particularly useful

5.1 Relational Representation of Vague Spatial Data Warehouses 169

to tackle membership values of elements from a vague spatial object. Since a collection of

geometries can be stored in a single row, multiple membership values should also be stored in

a single row, for example. Note that a correspondence between a geometry and a membership

value is mandatory.

Obviously, more than one implementation for the vague spatial attribute might be possi-

ble. However, only some of them may be feasible. Comparisons between different approaches

should be done to identify advantages and shortcomings of each one. In addition, differently

from conceptual modeling that is independent of implementation details, the logical design de-

pends on the underlying DBMS. As a result, the flexibility of representing both exact models

and fuzzy models may not be achieved in the logical design, differently from the VSCube and

the VSMultiDim conceptual models. The limitations must be reported to prevent designers

from creating logical schemata that do not comply with the requirements of the application.

Once vague spatial attributes can be defined in tables, the representation of dimensions,

hierarchies and facts is essential for obtaining a logical schema for the vague SDW. Dimensions

may have one or more hierarchies associating levels, thus requiring several tables to be repre-

sented. Facts may have vague spatial measures that comply with the implementation of vague

spatial attributes. Furthermore, values of measures can be associated to elements of vague spa-

tial members and then demand a particular design of the fact table. As a result, the logical

schema of a vague SDW designed as a relational database consists of all the tables accordingly

created.

The vague SDW requires the definition of constraints with different purposes. Some con-

straints are related to the implementation of the vague spatial attribute itself. Other constraints

restrict the allowed topological relationships among vague spatial objects of different granular-

ities, for example. Constraints must be specified and implemented in the logical design of the

vague SDW.

Once a vague SDW has a logical schema implemented in a DBMS, it can be queried to

benefit decision-making. The vague spatial online analytical processing (vague SOLAP) com-

prises queries that require extending the SQL with operations implemented as UDFs. These

operations have a variety of purposes, such as accessing elements of vague spatial objects, re-

solving vague spatial predicates, and processing vague spatial aggregation functions. Moreover,

slice-and-dice, roll-up and drill-down reuse these operations to carry on different analyses of

the data cube implemented as a relational database.

This chapter addresses the relational representation of vague SDWs. On the one hand,

the implementations have been specified using PostgreSQL and its spatial extension PostGIS.

170 5 Logical Design of Vague Spatial Data Warehouses

On the other hand, efforts have been taken to follow SQL and OGC standards to allow the

reproduction of the implementations in other DBMSs by performing minor adaptations.

5.2 Implementations for the Vague Spatial Attribute

The definition of a vague spatial attribute into an arbitrary table T may require one or more

columns and even additional tables to enable the representation of each vague spatial object as

one or more rows. In the context of a vague SDW, the table T is a fact table, a dimension table

or a level table, as discussed in Section 2.1.2. Independently from the table where the vague

spatial attribute is defined, its logical design should:

• comply with the OGC standard and allow the registration of geometry columns in OGC’s

metadata;

• fit multivalued certitude and dubiety as well as monovalued certitude and dubiety;

• minimize the number of joins between tables when processing queries;

• enable the use of existing indices implemented by the DBMS;

• minimize the number of calls to DBMS’ internal functions when processing queries;

• sort elements of the vague spatial object in ascending or descending order of membership

values; and

• store the geometric union of the elements of the vague spatial object.

The compliance with the OGC standard and the registration of geometry columns in OGC’s

metadata are essential to ensure the compatibility with end-user applications, as described in

Section 2.1.2. The adequacy to multivalued certitude and dubiety as well as monovalued cer-

titude and dubiety ensures the compatibility with the vague spatial data types. The other re-

quirements aims at improving the performance to process queries. The benefits of using indices

have been summarized in Section 2.1.3. The number of calls to internal functions of the DBMS

should be minimum to avoid additional overheads. The retrieval of elements with a low or high

membership value can be faster if these elements are by default at the beginning or at the end

of a list, for example. The geometric union of the elements of a vague spatial object is a ge-

ometry whose number of vertices tends to be smaller than the total number of vertices required

by the collection of elements. Since the number of vertices of a geometry can impair the per-

formance to process queries, as indicated in Section 2.1.3.2, the precomputation and storage of

5.2 Implementations for the Vague Spatial Attribute 171

the geometric union aims at speeding up the resolution of spatial predicates, such as IRQob ject ,

CRQob ject , and V SRQob ject that fetch objects instead of their elements.

In the following sections, different approaches for the logical design of the vague spatial at-

tribute are described. Nevertheless, these approaches achieve the aforementioned requirements

only partially. Thus, the main advantages and disadvantages of each approach are duly dis-

cussed. Section 5.2.1 describes the use of separate tables for certitude and dubiety, while the

approach detailed in Section 5.2.2 employs a single table to store the certitude and the dubiety.

Differently from Sections 5.2.1 and 5.2.2, which adopt monovalued and atomic attributes to

comply with the relational model, Section 5.2.3 designs the vague spatial attribute according to

an object-relational approach and the definition of an UDT. In Section 5.2.4, the vague spatial

attribute is denoted as a pair of columns of type array. Section 5.2.5 describes the use of one

column for geometries and one column for the array of membership values, i.e. it details the

vague spatial attribute as described in Section 5.3. Differently from Sections 5.2.1 to 5.2.5,

Section 5.2.6 specifically addresses the logical design of vague spatial attributes whose both

the certitude and the dubiety are monovalued. Finally, in contrast with Sections 5.2.1 to 5.2.6,

Section 5.2.7 tackles the use of geometries with 2D plus measure and geometries with 3D.

5.2.1 Separate Tables for Certitude and Dubiety

The logical design of the vague spatial attribute described in this section corresponds to a

logical design that has been published (SIQUEIRA et al., 2012a). An E-R representation of the

vague spatial attribute has been illustrated in Figure 4.3. As for the logical design, the E-R

to relational mapping performed with adaptations on the vague spatial attribute is shown in

Figure 5.1. In addition to the columns produced by the E-R to relational mapping, the table T

also holds the column MergedElementsGeo that stores the geometric union of the certitude and

the dubiety of each object. The column MergedElementsGeo can be indexed by an spatial index

and also registered in the OGC’s metadata. There is a physical separation of the certitude and

the dubiety of the objects, since the certitude is stored in the table Certitude while the dubiety is

stored in the table Dubiety.

The table Certitude stores the elements that belong to the certitude of the objects. As a

result, each object has at most one row in the table T and possibly several rows in the table

Certitude. The column TFK specifies the object that owns an element of the certitude, since a

foreign key defined on TFK references the table T. In addition, each element of the certitude

has an identifier to distinguish it from other elements of the certitude provided by the column

CertitudeElementId. The composite primary key of the table Certitude comprises the columns

172 5 Logical Design of Vague Spatial Data Warehouses

TFK and CertitudeElementId. The geometric feature associated to an element of the certitude

is denoted by the column CertitudeElementGeo, which can be indexed by a spatial index and

also registered in the OGC’s metadata. There is not a column to specify the membership values

associated to elements of the certitude, since these are assumed to have membership value equal

to 1.0.

Furthermore, the table Dubiety stores the elements that belong to the dubiety of the objects.

The table Dubiety is designed analogously to the table Certitude. The identifier for elements

of the dubiety is provided by the column DubietyElementId, a foreign key on the column TFK

references the corresponding object defined in the table T, and the primary key encompasses the

columns TFK and DubietyElementId. Also, the column DubietyElementGeo holds the geometric

feature associated to the element of the dubiety, can be indexed by a spatial index, and can

be registered in the OGC’s metadata. Additionally, the column DubietyElementMval denotes the

membership value associated to the element of the dubiety. If the membership value is a degree

of membership, then its value is in]0,1[. Otherwise, if it means maybe, a default value is

assigned, e.g. −1. For example, Figure 5.2 highlights a vague region and its storage in separate

tables created for certitude and dubiety.

Figure 5.1: Separate Tables for Certitude and Dubiety.

The logical design for the vague spatial attribute detailed in Figure 5.2.1 and exemplified

in Figure 5.2 has the following positive aspects. The column MergedElementsGeo is particularly

beneficial for the computation of vague spatial predicates such as IRQob ject and CRQob ject ,

since it prevents joining the tables Certitude or Dubiety to the table T. In addition, note that

the elements of the certitude and the dubiety are stored individually in the tables Certitude and

Dubiety, respectively. Therefore, it is not necessary to use internal functions of the DBMS to

differentiate certitude elements from dubiety elements when retrieving individual elements.

On the other hand, the shortcomings are the following. The existence of three tables im-

5.2 Implementations for the Vague Spatial Attribute 173

Figure 5.2: A vague region and its storage in separate Tables for Certitude and Dubiety.

poses the computation of joins to process vague spatial predicates that fetch the certitude or the

dubiety, as well as to process vague spatial aggregation functions. Besides, the separation of the

elements in distinct tables is unnecessary for a vague spatial attribute whose both the certitude

and the dubiety are monovalued, as each object maintains one row in the table T, one row in the

table Certitude and one row in the table Dubiety. Figure 5.3 not only illustrates the described sit-

uation but also indicates how the column DubietyElementMval becomes useless when the default

value -1 is used to denote maybe and therefore every row assumes DubietyElementMval=-1.

Clearly, the separation of certitude and dubiety into two different tables can deteriorate the

query processing performance due to the computation of joins. This shortcoming motivates an

174 5 Logical Design of Vague Spatial Data Warehouses

alternative logical design for the vague spatial attribute, which is explained in Section 5.2.2.

Figure 5.3: A vague region and its storage in separate Tables for Certitude and Dubiety considering
a vague spatial attribute whose both the certitude and the dubiety are monovalued.

5.2.2 A Single Table for Certitude and Dubiety

In order to avoid processing joins between tables as discussed in Section 5.2.1, an alterna-

tive logical design for the vague spatial attribute considers a single table to store the certitude

and the dubiety, as shown in Figure 5.4. The table T holds the column MergedElementsGeo to

store the geometric union of the certitude and the dubiety. The table Element maintains ele-

ments of both the certitude and the dubiety of the objects. The column ElementGeo addresses

the geometries of the elements, while the column ElementMval denotes the membership value

associated to an element. If the element belongs to the certitude, then ElementMval=1.0. Other-

wise, the element belongs to the dubiety and ElementMval is either in]0, 1[to denote a degree

of membership, or is a default value that means maybe, e.g. -1. Each one of the columns

MergedElementsGeo and ElementGeo can be registered in OGC’s metadata and have a spatial

5.2 Implementations for the Vague Spatial Attribute 175

index built.

Figure 5.5 exemplifies the storage of one vague region in these tables. The vague spa-

tial attribute exemplified has both the certitude and the dubiety multivalued. Conversely, it is

straightforward to note that at most one row in the table T and two rows in the table Element are

required if the vague spatial attribute has both the certitude and the dubiety monovalued.

Figure 5.4: The vague spatial attribute represented by a single table.

Figure 5.5: An example of vague region according to the vague spatial attribute represented by a
single table.

The logical design that considers one single table to store the elements of the certitude

176 5 Logical Design of Vague Spatial Data Warehouses

and of the dubiety has the following advantages over the use of separate tables described in

Section 5.2.1. First, it demands the creation of one additional table instead of two, i.e. Element

rather than Certitude and Dubiety. Second, it requires one column for the geometries of elements

instead of two, i.e. ElementGeo. Third, to process vague spatial predicates, it imposes at most

one additional join between tables instead of two, i.e. between the tables T and Element. Fourth,

to process vague spatial aggregation functions, it does not require any additional join between

tables rather than two, since only the table Element can be accessed. Like separate tables, the

approach of the single table prevents the use of internal DBMS functions to extract the elements

of the object, as they are individually stored in the table Element.

In the table T, a spatial index created on the column MergedElementsGeo indexes the geo-

metric union of the certitude and the dubiety of an object. Conversely, in the table Element, a

spatial index created on the column ElementGeo indexes all the geometries of elements belong-

ing to the objects. For example, considering the dataset shown in Figure 5.5, the spatial index

created on the column ElementsGeo has one entry for the geometry where TPK=1, while the

spatial index created on the column ElementGeo has one entry for each geometry where TFK=1,

i.e. a total of four entries.

There is one issue concerning the spatial index created on the column ElementGeo, as fol-

lows. If the elements of an object are very close one to each other, the MBRs of the elements

might overlap one each other, as shown in Figure 5.6. Recall that MBRs that overlap can im-

pair the performance of the spatial index to process queries, as discussed in Section 2.1.3.2. In

addition, the spatial index is potentially voluminous as it has one entry for each element.

Figure 5.6: A vague region, its MBR and the MBRs of its elements.

One join between the tables T and Element may be required to process some queries against

the logical design illustrated in Figure 5.4. This fact motivates the design of a unique table

T as shown in Figure 5.7, where a composite primary key encompasses the columns TPK and

ElementID. However, the following issues raise. First, the use of a composite primary key induce

5.2 Implementations for the Vague Spatial Attribute 177

other tables that reference T to have a composite foreign key. As a result, joins between T and

any table that reference it might have the performance impaired. Second, if the table T denotes

a level and is referenced by a fact table, the grain of the fact that should be by vague spatial

level becomes by element of the vague spatial level. The last grain is expected for the vague

spatial fact, whose concept was previously detailed in Section 4.4.4 and whose logical design is

discussed in Section 5.7. Therefore, the minimization of the joins imposed by the logical design

depicted in Figure 5.4 should not be achieved by using the logical design shown in Figure 5.7.

Figure 5.7: A single table with a composite primary key.

Finally, although the logical design shown in Figure 5.4 has advantages over the separate

tables described in Section 5.2.1, the following shortcomings still remain. The column Ele-

mentID is completely artificial and has no meaning for users, as these will not query the vague

SDW to retrieve the identifiers of the objects. Besides, one additional join between the tables T

and Element may be required to process vague spatial predicates. The additional join should be

eliminated to benefit the performance to process queries. As a result, a solution that completely

embeds the vague spatial attribute in the table T is required. Thus, it becomes infeasible to adopt

strictly monovalued and atomic columns to comply with a purely relational approach.

5.2.3 User Defined Types

Sections 5.2.1 to 5.2.2 have focused the logical design according to the relational model.

In this section, the logical design of the vague spatial attribute is discussed according to an

object-relational approach.

In this sense, the classes VSElementType and VSAttributeType play key roles. The class VSE-

lementType represents elements of the certitude and of the dubiety, whose characteristics are

a geometry denoted by the monovalued attribute ElementGeo and an associated membership

value indicated by the monovalued attribute ElementMval. The domain of ElementMval is]0,1] if

it denotes a membership degree, otherwise it is {−1,1} where −1 and 1 mean maybe and true,

respectively. The class VSAttributeType defines the vague spatial attribute and holds a multival-

ued attribute of the class VSElementType. Figure 5.8 shows the classes VSElement and VSAttribute

178 5 Logical Design of Vague Spatial Data Warehouses

and its attributes. They are implemented as UDTs in the DBMS. The multivalued attribute in

VSAttributeType is implemented as an array in the DBMS.

Figure 5.8 also illustrates the table T holding the columns TPK, MergedElementsGeo and

VSAttribute. The primary key is defined on TPK. Certitude elements and dubiety elements are

addressed by VSAttribute whose type is the UDT VSAttributeType, while MergedElementsGeo con-

tains the geometric union of all elements of the object. For example, Figure 5.9 highlights a

vague region and illustrates it as an array of pairs in the column VSAttribute of the table T. The

array is of the UDT VSAttributeType and each entry of the array is a pair of the UDT VSElement-

Type.

Figure 5.8: The classes VSElementType and VSAttributeType and the table T.

Figure 5.9: A vague region and its representation as an array.

Embedding the vague spatial attribute in one table avoids joins between tables to process

vague spatial aggregation functions and vague spatial predicates, since they can access exclu-

sively the column VSAttribute in the table T to manipulate objects. Besides, identifiers are not

necessary to distinguish elements belonging to the same object. A vague spatial attribute whose

both certitude and dubiety are monovalued also complies with this logical design, such that

the array in the column VSAttribute has at most two entries. These are the main advantages of

5.2 Implementations for the Vague Spatial Attribute 179

the approach described in this section over the approaches previously tackled in Sections 5.2.1

and 5.2.2.

On the other hand, the following drawbacks make the object-relational approach described

in this section infeasible. First, columns of a non-geometry type cannot be registered in OGC’s

metadata and there are shortcomings associated to lack of registration (Section 2.1.2.2) As a

result, it is impossible to register the column VSAttribute of the UDT VSAttributeType because

numeric membership values are addressed by the attribute ElementMval of the UDT VSElement-

Type. Second, it is not possible to create an index on a column whose type is an UDT. Therefore,

both the geometries and membership values of the elements cannot be indexed, since the col-

umn VSAttribute is of the UDT VSAttributeType. The impossibility of indexing may impair the

performance to process queries. Although PostgreSQL/PostGIS offers the alternative of creat-

ing a new operator class for the index (e.g. GiST) to store and sort instances of an UDT, such as

those of the composite type VSAttributeType, such implementation is platform-dependent. Third,

consecutive calls to constructors ROW and ARRAY are essential to extract both the geometries

and the membership values of elements. Although these constructors are intrinsically a SQL

standard, they add an overhead to query processing as they are like function calls. The afore-

mentioned drawbacks are tackled in Sections 5.2.4 and 5.2.5.

5.2.4 A Pair of Arrays

In PostgreSQL/PostGIS, the vague spatial attribute can also be designed as a pair of columns

of type array as shown in Figure 5.10: one array of geometries called ElementsGeo and one ar-

ray of membership values called ElementsMval. A constraint must ensure that these arrays have

essentially the same length for each row of the table T. The names of the columns ElementsGeo

and ElementsMval have the prefix Elements in the plural to emphasize that they are multivalued.

The table T also holds the column MergedElementsGeo to store the geometric union of the cer-

titude and the dubiety of each object. The value of each entry of an array in ElementsMval is

either in]0,1] if it denotes a membership degree, or in {−1,1} where −1 and 1 mean maybe

and true, respectively.

Regarding indexing, a GiST can be built on the column MergedElementsGeo while a GIN

can be built on the column ElementsMval. Nevertheless, a GiST cannot be built on columns of

type geometry array and, therefore, the column ElementsGeo cannot be indexed. An alternative

solution is to build one GiST to index all i-th entries of the arrays provided by the column

ElementsGeo. As a result, the elements of an object are not indexed by the same GiST and each

GiST indexes at most one element of each object. For example, Figure 5.11 highlights two

180 5 Logical Design of Vague Spatial Data Warehouses

Figure 5.10: The vague spatial attribute represented by a pair of arrays.

TPK MergedElementsGeo ElementsGeo ElementsMval ...

1 { , , , } { 0.30, 0.50, 0.80, 1.00 } ...

2 { , , } { 0.25, 0.70, 1.00 } ...

...

T

R1 1.00

0.80

0.50

0.30

R2
1.00

0.70

0.25

GiST1
GiST2 GiST3

GiST4

Figure 5.11: A vague region and its representation as a pair of arrays.

disjoint vague regions and illustrates their storage in the table T as a pair of arrays. In addition,

it indicates with dotted arrows which elements of the objects are indexed by each GiST, such

that for each ElementsGeo[i] there is an associated GiSTi. Conversely, the column ElementsMval

can have a single index built.

A GiST whose MBRs refer to different objects might be less impaired by overlapping than

a GiST whose MBRs belong to the same object. For example, the elements of the disjoint

regions indexed as shown in Figure 5.11 have MBRs that do not overlap each other. Therefore,

overlapping does not hamper the indices GiST1 to GiST4. On the other hand, indices that refer

to elements of the same object are intrinsically impaired by MBRs that overlap, as discussed in

5.2 Implementations for the Vague Spatial Attribute 181

Section 5.2.2.

The implementation of vague spatial predicates and vague spatial aggregation functions

should avoid querying all GiST individually and consecutively, otherwise the performance

might be impaired. Besides, scanning simultaneously the array of geometries and the array

of membership values to resolve queries might cause an overhead and affect the performance.

Regarding insertion in the table T, a tuple whose object has n elements demands one insertion

in each one of the n GiSTs and one insertion in the GIN. Therefore, the insertion in the table T

may have the performance hampered.

In order to assure that all geometries are indexed, the number of GiSTs that must be built is

equal to the length of the longest array maintained in the column ElementsGeo. Since the array

length depends on the number of elements a given object has, it is more likely that arrays have

different lengths in distinct rows of the table T. For example, in Figure 5.11, GiST4 has only one

entry corresponding to the fourth polygon of the first row in T. Therefore, a policy should be

developed to avoid the construction of a GiST when the number of geometries to be indexed is

very low, as a sequential scan can be more advantageous than an index scan.

Compared to the approaches detailed in Sections 5.2.1 to 5.2.2, the pair of arrays has the

advantage of avoiding joins between tables to process queries since the columns are in the table

T. The pair of arrays also fit vague spatial attributes whose both the certitude and the dubiety

are monovalued, since the arrays stored in the columns ElementsGeo and ElementsMval hold

at most two entries. The feasibility of building indices is an advantage of the pair of arrays

over the UDT addressed in Section 5.2.3. Another advantage over the UDT is that calls to

the constructor ROW are not required. However, like the UDT, the column VSElementGeo is of

type geometry array and therefore cannot be registered in OGC’s metadata stored in the DBMS.

Furthermore, the calls to the ARRAY constructor are essential to extract both the geometries

and the membership values of elements from the columns VSElementGeo and VSElementMval.

These calls add an overhead to query processing. The aforementioned drawbacks motivated the

logical design proposed in Section 5.2.5.

5.2.5 One Multiple Geometry And One Array of Membership Values

In this section, the vague spatial attribute is designed using two columns. The first column

has a type that allows multiple geometries, while the second column is an array of membership

values. Each element of the object is described both by the n-th geometry in the first column

and by the n-th membership value in the second column. For each object, the cardinality of

geometries in the first column is equal to the length of the array in the second column. Thus,

182 5 Logical Design of Vague Spatial Data Warehouses

a vague spatial attribute whose both the certitude and the dubiety are monovalued represents

objects with at most two geometries and an array of at most two entries. The complementary

column MergedElementsGeo stores the geometric union of the certitude and the dubiety of each

object.

Figure 5.12 depicts the table T containing the columns TPK where the primary key is de-

fined, MergedElementsGeo, ElementsGeo and ElementsMval. The names of the columns Elements-

Geo and ElementsMval have the prefix Elements in the plural to emphasize that they support

multiple values. The column ElementsGeo has the superclass Geometry as type, but in fact is

casted to one of its subclasses that support multiple geometries, i.e. MultiPoint, MultiLinestring,

MultiPolygon or GeometryCollection. The columns MergedElementsGeo and ElementsGeo can be

both registered in the OGC’s metadata and indexed. The column ElementsMval represents the

array of membership values and can also be indexed. The value of each entry of an array in

ElementsMval is either in]0,1] if it denotes a membership degree, or in {-1,1} where -1 and 1

mean maybe and true, respectively.

Figure 5.12: The vague spatial attribute designed as a column for multiple geometries and a column
for the array of membership values.

Figure 5.13 depicts one vague region and its storage in the table T as well as highlights

separate geometries fetched from the row where TPK=1, using OGC’s function GeometryN. The

function GeometryN returns the n-th geometry in ElementsGeo. The corresponding n-th member-

ship value in ElementsMval is also highlighted. Note that MergedElementsGeo stores one polygon

while ElementsGeo holds a multipolygon.

The spatial index built on the column MergedElementsGeo is identical to the one built on the

column ElementsGeo, because in every row of T the MBR of the multiple geometry is equal to

the MBR of the merged geometry. Consider a vague spatial predicate that fetches objects, as

IRQob j and CRQob j. On the one hand, there is redundancy due to the storage of these identical

indices and their filter steps to process a predicate using a spatial index would also be identical.

On the other hand, the merged geometry is less complex than the multiple geometry because

the geometric union removes useless vertices. Therefore, if the predicate requires a refinement

step, fetching the merged geometry tends to be less costly than fetching the multiple geometry.

5.2 Implementations for the Vague Spatial Attribute 183

Figure 5.13: A vague region stored as a multiple geometry and an array of membership values.

Therefore, the designer of the vague SDW can opt to keep the column MergedElementsGeo if

the merged geometry is significantly less complex than the multiple geometry in ElementsGeo,

aiming to benefit the performance to process predicates as IRQob ject and CRQob ject .

The spatial index built on the column ElementsGeo approximates the multiple geometry of

each object with one MBR, but the elements of certitude and dubiety of the member do not have

individual approximations built. On the one hand, this fact prevents overlapping among several

MBRs. On the other hand, elements of the certitude and dubiety cannot be queried with an index

scan. As a result, processing vague spatial aggregation functions and vague spatial predicates

may demand consecutive calls to the function GeometryN. To prevent a low performance, the im-

plementations of vague spatial aggregation functions and vague spatial predicates should avoid

fetching the n-th geometry by means of a sequential scan. For example, an IRQdubiety elements

requires the elements of the dubiety to be retrieved. Thus, its implementation should avoid con-

secutive n calls to the function GeometryN to test each element of an object against the spatial

query window.

The vague spatial attribute designed as one column for multiple geometries and one column

for the array of membership values eliminate the undesirable joins between tables introduced

by the logical design proposed in Sections 5.2.1 and 5.2.2. It also allows the geometries to

be both registered in OGC’s metadata and indexed, in contrast with the approaches detailed in

Sections 5.2.3 and 5.2.4. Nevertheless, an overhead is expected due to the execution of the func-

184 5 Logical Design of Vague Spatial Data Warehouses

tion GeometryN and the constructor ARRAY to access the elements of the object. Section 5.2.6

describes an alternative to design the vague spatial attribute whose both the certitude and the

dubiety are monovalued, while Section 5.2.7 details an unfeasible attempt to use 2D geometries

with measure and 3D geometries aiming to replace the array of membership values.

5.2.6 Monovalued Certitude and Monovalued Dubiety

In order to represent vague spatial attributes whose both the certitude and the dubiety are

monovalued, the alternative logical design shown in Figure 5.14 is proposed. The table T has the

primary key defined on the column TPK, the column MergedElementsGeo stores the geometric

union of the certitude and the dubiety, the column CertitudeGeo denotes the monovalued cer-

titude, the column DubietyGeo represents the monovalued dubiety and the column DubietyMval

indicates the membership value of the dubiety, since the membership value of the certitude is

assumed to be 1.0.

The columns CertitudeGeo and DubietyGeo have the superclass Geometry as type, which is

in fact casted to one of its subclasses that support a single geometry, i.e. Point, Linestring or

Polygon. The columns MergedElementsGeo, CertitudeGeo and DubietyGeo can be registered in

OGC’s metadata and indexed. The column DubietyMval should not exist if the dubiety of the

vague spatial attribute means maybe. For example, Figure 5.15 highlights a vague region and

illustrates its storage in the table T. The column DubietyMval is not in the table T because the

vague spatial attribute’s dubiety means maybe.

The alternative logical design of the vague spatial attribute proposed in this section to ad-

dress monovalued certitude and monovalued dubiety eliminate the undesirable joins between

tables introduced by the logical design proposed in Sections 5.2.1 and 5.2.2. It allows the ge-

ometries to be both registered in OGC’s metadata and indexed, in contrast with the approaches

detailed in Sections 5.2.3 and 5.2.4. Furthermore, it eliminates additional overheads due to the

execution of DBMS internal functions to access the elements of the object, which are intrinsic

of the logical designs described in Sections 5.2.3 to 5.2.5. In the following, Section 5.2.7 details

an unfeasible attempt to use 2D geometries with measure and 3D geometries aiming to embed

geometries and membership values together.

5.2.7 2D Geometry With Measure or 3D Geometry

In this section, an attempt to use 2D geometries with measure and 3D geometries is de-

scribed aiming to replace the array of membership values used by the logical design addressed

5.2 Implementations for the Vague Spatial Attribute 185

Figure 5.14: The logical design for the vague spatial attribute with monovalued certitude and
monovalued dubiety.

Figure 5.15: The storage of a vague region whose both certitude and dubiety are monovalued.

in Section 5.2.5. Although OGC provides and DBMSs implements the 2D geometry type with

measure (X, Y, M) and the 3D geometry type (X, Y, Z), these data types are not adequate to rep-

resent vague spatial objects. The following examples illustrate the reasons for such inadequacy.

The vague point set shown in 5.16a can be represented both as a 2D multipoint with measure

or as a 3D multipoint, since the membership value can be the measure or the ordinate Z of each

element, respectively.

On the other hand, a vague line cannot be represented by a 2D linestring with measure

because the value of a measure is assigned to a point by default. As a result, it is not possible

to assign a membership value to segments of a 2D linestring with measure. Also, by definition,

the vertices of a vague line do not have membership values. Figure 5.16b shows a 2D linestring

with measure whose vertices do not have membership values to comply with the definition of

vague line. Also, the linestring’s segments do not have membership values because these are not

allowed. The same problem occurs with a 3D linestring, since the Z ordinate is also assigned to

a point (vertex) by default.

Analogously, a 2D multipolygon with measure requires the redundant storage of the mem-

bership value for every vertex of each element belonging to a vague region. In Figure 5.16c, all

vertices of the hexagon have the same membership value 1.0, while all vertices of the trapezoid

have the same membership value 0.6. The same problem occurs with the 3D multipolygon.

186 5 Logical Design of Vague Spatial Data Warehouses

Vague spatial aggregation functions and vague spatial predicates may require a frequent

use of DBMS internal functions to separately extract the 2D geometry and the membership

value both from a 2D geometry with measure and from a 3D geometry. The execution of

these functions can impair the performance. In addition, OGC standards state that each (X,Y)

coordinate carries an M ordinate value that is part of a linear reference system (as already

discussed in Section 2.1.2.2). However, a linear reference system refers to the storage and

maintenance of events that occur along a network, which is not the case for the vague spatial

attribute.

(a) (b) (c)

Figure 5.16: Shortcomings of both the 2D geometry type with measure and the 3D geometry type:
(a) A vague point set. (b) A vague line. (c) Two elements of a vague region.

5.2.8 Discussion

In Sections 5.2.1 to 5.2.7, different approaches for the logical design of the vague spatial

attribute have been described and duly discussed. Table 5.1 lists each approach, the goals the

approaches should have achieved and which goals are achieved by each approach. Since the

approach detailed in Section 5.2.7 has already been considered not feasible, it is not listed in

Table 5.1. In addition, two criteria have also been established. Firstly, joins between tables

have been considered more harmful to performance than calls to internal DBMS functions.

Secondly, the compliance with OGC has been considered essential to allow compatibility with

other applications.

As a result, the logical design of the vague spatial attribute as a multiple geometry and one

array of membership values described in Section 5.2.5 has been chosen. Although it depends

on calling internal functions of the DBMS as GeometryN and the constructor ARRAY to retrieve

elements of a vague spatial object, it is able to represent vague spatial attributes with monoval-

ued or multivalued certitude and dubiety. Alternatively, the approach detailed in Section 5.2.6

can be strictly employed when the vague spatial attribute has both the certitude and the dubiety

5.3 Vague Spatial Attribute 187

Table 5.1: The approaches described in Sections 5.2.1 to 5.2.6 and the goals they achieve.

Logical design OGC Mono/Multi- Minimization Indexing Minimization of Sorting of Union of
compliance valued elements of joins function calls elements elements

Separate tables X X X X X X
(Section 5.2.1)

A single table X X X X X X
(Section 5.2.2)

User-defined types X X X X
(Section 5.2.3)

A pair of arrays X X X X
(Section 5.2.4)

Multiple geometry X X X X X X
and array (Section 5.2.5)

Monovalued components X X X X X X
(Section 5.2.6)

monovalued.

5.3 Vague Spatial Attribute

The logical design of a vague spatial attribute into a table of the vague SDW complies with

Section 5.2.5 and is guided by Rule 1VS, as follows.

Definition 5.3.1. Rule 1VS. A vague spatial attribute is defined into a table and comprises:

• one geometry column to represent multiple geometries of certitude elements and dubiety

elements. The column assumes one of the following OGC types, depending on the type

used in the conceptual schema designed according to the VSMultiDim model:

– Point to represent either a simple vague point or a simple fuzzy point;

– LineString to represent either a simple vague line or a simple fuzzy line;

– Polygon to represent either a simple vague region or a simple fuzzy region;

– MultiPoint to denote either a vague point set or a fuzzy point set;

– MultiLineString to denote either a vague line set or a fuzzy line set; or

– MultiPolygon to denote either a vague region set or a fuzzy region set;

• one column of type array of real numbers, such as float array, to denote membership values

of elements

• an optional geometry column to store the union of the geometries of all elements; and

188 5 Logical Design of Vague Spatial Data Warehouses

• constraints on these three columns that are satisfied by all rows of the table.

This implementation of the vague spatial attribute focuses on arbitrary geometries and pre-

computed membership values. It mainly supports vague spatial objects modeled according to

exact models surveyed in Section 2.3.1 and spatial plateau objects surveyed in Section 2.3.3.1.

Therefore, a wide set of vague spatial data types is supported. The type of the column that stores

the union of geometries is selected by identifying which type of geometry is expected after such

union.

Loading a table holding a vague spatial attribute requires to carefully associate the i-th

element of a vague spatial object to the i-th entry in the array of membership values. An example

is detailed in Section 5.4. A vague spatial attribute can be defined in a vague spatial level table

as described in Section 5.4, or assume the role of a vague spatial measure and be defined in a

fact table as described in Section 5.6. The following constraints are satisfied by all rows of the

table and involve the three columns that represent a vague spatial attribute:

• membership values are not null.

• membership values are in the range]0,1] for denoting degree of membership, or they are

in {−1,1} for denoting maybe and true, respectively;

• membership values are sorted (in ascending or descending order);

• the number of geometries of elements is equal to the length of the array of membership

values;

• the interiors of geometries of elements are disjoint;

• the merged geometry is identical to the union of the geometries of elements; and

• the geometry column representing elements, the array column of membership values, and

the column for the merged geometry are all of them not null, or they are all of them null.

The aforementioned constraints extend the constraints already specified for the vague spa-

tial attribute of the VSCube model. A routine to check these constraints is essential. The routine

has been implemented as an UDF using the procedural language PL/pgSQL from PostgreSQL.

The execution of the function is managed by a trigger associated to the table where the vague

spatial attribute is. While the function is independent of application and is created only once, the

number of triggers is equal to the number of vague spatial attributes, to ensure the integrity. The

5.3 Vague Spatial Attribute 189

function described in Listing 5.1 executes before the DBMS commits the insertion or update

for each row inserted or updated in a table containing a vague spatial attribute.

It considers that the vague spatial attribute has been designed according to Rule 1VS. It

receives 4 arguments in the array TG ARGV, which are omitted from the function’s signature but

that are explicit in the trigger. TG ARGV[0] is the name of the geometry column of the elements,

TG ARGV[1] is the name of the column with the array of membership values, TG ARGV[2] is the

name of the geometry column containing merged geometries of elements, and TG ARGV[3] is a

flag for indicating if the vague spatial attribute has been designed with membership values in

]0,1].

The record NEW denotes the row being inserted or updated. Thus, it holds values of the

columns whose names match those provided as arguments. Whenever a constraint is violated,

an exception is raised, the execution is interrupted, the operation is canceled and an error mes-

sage is issued. Internal comments in the source code benefit the comprehension of the function.

In detail, the function VS Constraints VSAttribute described in Listing 5.1 checks the constraints

of a vague spatial attribute in eight steps, as follows.

First, it retrieves the values of arguments and assign them to local variables representing

the multiple geometry containing geometries of elements, the array of membership values, and

the merged geometry of elements. The query issued with the EXECUTE command basically

replaces $1 by NEW, fetches the values of each field in NEW and copies to the corresponding

local variables.

Second, VS Constraints VSAttribute ensures that the geometry of elements, the array of mem-

bership values and the merged geometry are all of them either not or null. Clearly, if all of them

are null, there is no reason to continue verifying the constraints, and the execution of the func-

tion is terminated with success. However, if some of them are null, the execution is interrupted.

Third, it verifies whether the membership values are in]0,1] or in {−1,1} before call-

ing a function that checks if the membership values in the array are valid. The function

VS Constraints FuzzyMval described in Appendix A is called if membership values are in]0,1],

while the function VS Constraints ExactMval described in Appendix A is called if membership

values are in {−1,1}. To sum up, these functions return the length of the array of membership

value passed as argument if all membership values are valid. Otherwise, they return -1. The

result of the execution of one of these functions is assigned to a local variable, which is tested

to decide whether to interrupt the execution due to an invalid membership value, or to continue.

Listing 5.1: A routine to check the constraints of a vague spatial attribute.

190 5 Logical Design of Vague Spatial Data Warehouses

CREATE OR REPLACE FUNCTION VS Cons t ra in ts VSAt t r i bu te () RETURNS TRIGGER AS $$
DECLARE

leng th b i g i n t ;
ElementsGeo geometry ;
ElementsMval f l o a t ar ray ;
MergedElementsGeo geometry ;
isFuzzy t e x t ;

BEGIN
−−1. r e t r i e v e s values o f arguments and assigns to l o c a l v a r i a b l e s
EXECUTE ’SELECT ($1) . ’ | | TG ARGV[0] | | ’ , ($1) . ’ | | TG ARGV[1] | | ’ , ($1) . ’ | | TG ARGV[2]
USING NEW INTO ElementsGeo , ElementsMval , MergedElementsGeo ;

−−2. avoids n u l l geometr ies or n u l l a r ray o f membership values
IF (ElementsGeo IS NULL) AND (ElementsMval IS NULL) AND (MergedElementsGeo IS NULL) THEN

RETURN NEW;
ELSE

IF (ElementsGeo IS NULL) OR (ElementsMval IS NULL) OR (MergedElementsGeo IS NULL) THEN
RAISE EXCEPTION ’ Nu l l geometr ies or ar ray o f membership values . ’ ;

END IF ;
END IF ;

−−3. checks whether membership values are v a l i d
leng th := 0 ;
isFuzzy=TG ARGV [3] ;
IF (isFuzzy = ’1 ’) THEN

leng th := VS Constraints FuzzyMval (ElementsMval) ;
ELSE

leng th := VS Constra ints ExactMval (ElementsMval) ;
END IF ;
IF (leng th =−1) THEN

RAISE EXCEPTION ’ I n v a l i d membership values . ’ ;
END IF ;

−−4. v e r i f i e s whether the ar ray o f membership values i s sor ted
IF NOT (CheckOrderedArray (ElementsMval)) THEN

RAISE EXCEPTION ’ Membership values must be sor ted i n ascending order . ’ ;
END IF ;

−−5. v e r i f i e s i f an element has both a geometry and a membership value
IF (leng th <> ST NumGeometries (ElementsGeo)) THEN

RAISE EXCEPTION ’ Every geometry must have a corresponding membership value . ’ ;
END IF ;

−−6. v e r i f i e s i f the merged geometry i s equal to the union o f m u l t i p l e geometr ies
IF NOT ST Equals (ST UnaryUnion (ElementsGeo) , MergedElementsGeo) THEN

RAISE EXCEPTION ’ The union o f the geometr ies from elements does not correspond to ’
| | ’ the merged geometry provided . ’ ;

END IF ;

−−7. de tec ts i f i n t e r i o r s o f elements i n t e r s e c t
IF I n t e r i o r I n t e r s e c t i o n (ElementsGeo) THEN

RAISE EXCEPTION ’ The i n t e r i o r s o f d i f f e r e n t elements must be d i s j o i n t . ’ ;
END IF ;

−−8. proceeds wi th i n s e r t i o n i f c o n s t r a i n t s have been s a t i s f i e d
RETURN NEW;
END;
$$ LANGUAGE ’ p lpgsq l ’ ;

Fourth, a call to the function CheckOrderedArray described in Appendix A verifies whether

the array of membership values is sorted. The function CheckOrderedArray returns true if the

array is sorted in ascending order, or false otherwise. If the array is not sorted, the execution is

interrupted.

Fifth, it ensures that every element has both a geometry and a membership value. A suffi-

cient condition for this is: the array of membership values has a number of entries equal to the

5.4 Vague Spatial Level and Vague Spatial Member 191

quantity of geometries representing each element. The number of entries of the array has been

already provided by the function VS Constraints FuzzyMval, while the quantity of geometries is

calculated using PostGIS’ function ST NumGeometries1. If the number of entries is not equal to

the quantity of geometries, then the execution is interrupted.

Sixth, it verifies if merged elements are equal to the union of all geometries of elements.

The call to PostGIS’ function ST UnaryUnion2 computes the aforementioned union, while the

call to PostGIS’ function ST Equals3 compare the result of the union to the merged geometry. If

they are not equal, the execution is interrupted.

Seventh, it detects whether the interiors of geometries from different elements intersect, by

calling the function InteriorIntersection that is described in Appendix A. The function InteriorInter-

section returns true if it identifies intersection, otherwise it returns false. If there is intersection,

the execution is interrupted. Recall that disjoint interiors are essential for aggregation.

Finally, the insertion proceeds if the aforementioned verifications were successful and com-

ply with the constraints. It is noteworthy that the assessments made by function VS Constraints -

VSAttribute are in ascending order of complexity, i.e. they start by manipulating membership val-

ues and finish by processing geometries. This design has been prioritized to prevent executing

unnecessary costly geometry operations when the array of membership values is not valid.

5.4 Vague Spatial Level and Vague Spatial Member

Levels in the VSMultiDim conceptual model are comparable to entity types of the E-R

conceptual model, as already discussed in Section 4.9. A vague spatial level contains at least

one vague spatial attribute and its logical design is described by Rule 2VS, considering the

vague spatial attribute as detailed in Section 5.3.

Definition 5.4.1. Rule 2VS. A vague spatial level, which is not related to a fact with a one-

to-one relationship, is represented in the relational model by a table called vague spatial level

table containing:

• one column holding a surrogate key as primary key;

• one column for each conventional attribute of the level;

• one geometry column for each crisp spatial attribute of the level;
1http://postgis.net/docs/ST NumGeometries.html
2http://postgis.net/docs/ST UnaryUnion.html
3http://postgis.net/docs/ST Equals.html

192 5 Logical Design of Vague Spatial Data Warehouses

• the columns and constraints defined by the application of Rule 1VS on each vague spatial

attribute of the level.

• vague topological constraints for each pair of vague spatial attributes in the level, which

are satisfied by all vague spatial members.

Each row in a vague spatial level table denotes one vague spatial member.

Integrity constraints related to the vague spatial attribute are detailed in Section 5.3. In ad-

dition, topological constraints on two or more vague spatial attributes are tackled in Section 5.8.

Example 5.4.1. Figure 5.17 illustrates the vague spatial levels Crop and Infected Region and their

corresponding vague spatial level tables created after applying Rule 2VS.

Infected
Region

RegionId
/MinArea

Crop

CropPK : int

Crop_ElementsGeo : MultiPolygon

Crop_ElementsMval : float array

Crop_MergedElementsGeo : Polygon

PlantName : varchar

InfectedRegion

RegionId : int

MinArea : float

InfectedRegion_ElementsGeo : MultiPolygon

InfectedRegion_ElementsMval : float array

InfectedRegion_MergedElementsGeo : MultiPolygon

Rule 2VS

Crop

CropId
PlantName

Rule 2VS

Figure 5.17: Examples of the application of Rule 2VS to obtain the vague spatial level tables Crop
and Infection.

Example 5.4.2. The following SQL commands create the vague spatial level table InfectedRe-

gion as shown in Figure 5.17.

CREATE TABLE InfectedRegion (
RegionId i n t PRIMARY KEY,
InfectedRegion ElementsMval f l o a t array ,
MinArea f l o a t

) ;
SELECT AddGeometryColumn (’ InfectedRegion ’ , ’ InfectedRegion ElementsGeo ’ ,

4326 , ’MULTIPOLYGON’ , 2) ;
SELECT AddGeometryColumn (’ InfectedRegion ’ , ’ InfectedRegion MergedElementsGeo ’ ,

4326 , ’POLYGON’ , 2) ;

5.4 Vague Spatial Level and Vague Spatial Member 193

The creation of an application-dependent trigger per vague spatial attribute is necessary to

benefit from the constraints ensured by the function previously described in Section 5.3 and

Listing 5.1.

Example 5.4.3. Consider the vague spatial level tables Crop and InfectedRegion as shown in

Figure 5.17. Triggers are created for their vague spatial attributes, as follows.

CREATE TRIGGER Crop Const ra in ts
BEFORE INSERT OR UPDATE ON Crop FOR EACH ROW EXECUTE PROCEDURE
VS Cons t ra in ts VSAt t r i bu te (’ Crop ElementsGeo ’ , ’ Crop ElementsMval ’ ,

’ Crop MergedElementsGeo ’ , ’ 0 ’) ;

CREATE TRIGGER In fec tedReg ion Cons t ra in ts
BEFORE INSERT OR UPDATE ON InfectedRegion FOR EACH ROW EXECUTE PROCEDURE
VS Cons t ra in ts VSAt t r i bu te (’ InfectedRegion ElementsGeo ’ ,

’ InfectedRegion ElementsMval ’ ,
’ InfectedRegion MergedElementsGeo ’ , ’ 1 ’) ;

After the names of the columns that define the vague spatial attribute, a flag indicates whether

membership values are in]0,1]. Crops have membership values in {−1,1}, and therefore the

last argument passed to VS Constraints VSAttribute is 0. Conversely, infected regions have mem-

bership values in]0,1] and, therefore, the last argument passed to VS Constraints VSAttribute is

1.

As commented in Section 5.3, loading a vague spatial level table requires to carefully asso-

ciate the i-th element of a vague spatial object to the i-th entry in the array of membership values.

Rather than providing a routine to load vague spatial level tables, Example 5.4.4 addresses this

issue and can be used as a base for developing such routine.

Example 5.4.4. Considering Examples 5.4.2 and 5.4.3, the following INSERT command com-

plies with the definition of the vague spatial level table InfectedRegion and its constraints.

INSERT INTO InfectedRegion (
RegionId ,
InfectedRegion ElementsMval ,
InfectedRegion ElementsGeo ,
InfectedRegion MergedElementsGeo)

VALUES (
1 ,
ARRAY[0 . 5 , 1 . 0] ,
ST Col lec t (

ARRAY[
−−dub ie ty [0]
ST MakePolygon (
−−ex te rna l boundary :
ST GeomFromText (’ LINESTRING(0 0 , 0 10 , 5 10 , 5 5 , 10 5 , 10 0 , 0 0) ’) ,
−−hole :
ARRAY[ST GeomFromText (’ LINESTRING(1 1 , 0 9 , 4 9 , 4 4 , 9 4 , 9 1 , 1 1) ’)]

) ,

194 5 Logical Design of Vague Spatial Data Warehouses

−−c e r t i t u d e [0] :
ST Polygon (ST GeomFromText (’ LINESTRING(1 1 , 0 9 , 4 9 , 4 4 , 9 4 , 9 1 , 1 1) ’) ,

4326)
]

) ,
−−merged geometry :
ST GeomFromText (’POLYGON((0 0 ,0 9 ,0 10 ,5 10 ,5 5 ,10 5 ,10 0 ,0 0)) ’)

) ;

The value provided for RegionId is 1. The value provided for InfectedRegion ElementsMval is

an array of membership values that is sorted in ascending order. Such array specifies that

there is one dubiety element and one certitude element. The value provided for InfectedRe-

gion ElementsGeo is a multiple geometry containing geometries of the elements. PostGIS’ func-

tion ST Collect4 receives an array of geometries as argument and returns a geometry. The first

entry of the array is the geometry of the dubiety element, while the second entry is the geometry

of the certitude element, to ensure the correspondence with the array of membership values. The

geometry of the dubiety element is a polygon with a hole. It is built using the PostGIS’ function

ST MakePolygon5 that receives as arguments a line for the external boundary and an array of

lines that determine holes in the resulting polygon. The geometry of the certitude element is a

polygon. It is built using the PostGIS’s function ST Polygon6 that receives as arguments a line

and a SRID. Finally, the value provided for InfectedRegion MergedElementsGeo is a polygon that

represents the union of the geometries created for elements.

5.5 Hierarchies

A hierarchy is a set of relationships among pairs of levels, as discussed in Section 4.9.

In this sense, the cardinality of the relationship is the key aspect addressed by Rule 3VS, as

follows.

Definition 5.5.1. Rule 3VS. Let Lparent , and Lchild be a pair of related levels in a hierarchy.

• Rule 3.1VS: if the relationship has the cardinality one-to-one (1:1), then all the attributes

of Lparent are included in the table of Lchild .

• Rule 3.2VS: if the relationship has the cardinality one-to-many (1:N), then one column is

added in the table of Lchild with a foreign key referencing the key of the table of Lparent .

• Rule 3.3VS: if the relationship has the cardinality many-to-many (M:N), then a bridge

table is created and contains one column with a foreign key referencing the key of the
4http://postgis.net/docs/ST Collect.html
5http://postgis.net/docs/ST MakePolygon.html
6http://postgis.net/docs/ST Polygon.html

5.6 Fact and Vague Spatial Measure 195

table of Lchild , plus one column with a foreign key referencing the key of the table of

Lparent .

• Lparent and Lchild have vague topological constraints to ensure the hierarchy, if at least one

of them is a vague spatial level.

Section 5.8.2 describes the topological constraints to ensure a consistent hierarchy involving

at least one vague spatial level.

Example 5.5.1. Figure 5.18 exemplifies a relationship with cardinality 1:N associating the

vague spatial levels Infected Region and Infected Group. The logical design is achieved through

the application of Rules 2VS, 3VS, 3.2VS, and 1VS. Rule 2VS firstly create one table for each

level. Rule 3VS identifies there is a relationship between the levels of the hierarchy. Since the

cardinality is 1:N, Rule 3.2VS adds the column RegionFK into the table InfectedGroup with a

foreign key referencing the key RegionId of the table InfectedRegion. Finally, Rule 1VS creates

columns for the vague spatial attributes.

Sp
re

ad

Infected
Group

GroupID
/QtyTrees

Infected
Region

RegionId
/MinArea

InfectedGroup

GroupId : int

QtyTrees : int

InfectedGroup_ElementsGeo : MultiPoint

InfectedGroup_ElementsMval : float array

RegionFK : int

InfectedRegion

RegionId : int

MinArea : float

InfectedRegion_ElementsGeo : MultiPolygon

InfectedRegion_ElementsMval : float array

InfectedRegion_MergedElementsGeo : MultiPolygon

Rule 2VS
Rule 3VS

Rule 3.2VS
Rule 1VS

Figure 5.18: Mapping rules applied to a pair of related vague spatial levels.

5.6 Fact and Vague Spatial Measure

A fact in the VSMultiDim conceptual model is a relationship among levels and holds mea-

sures, as discussed in Section 4.9.4. The logical design for a fact is guided by Rule 4VS, as

follows.

196 5 Logical Design of Vague Spatial Data Warehouses

Definition 5.6.1. Rule 4VS. A fact F is mapped to a fact table containing:

• one column for each conventional measure;

• one geometry column for each crisp spatial measure;

• the columns and constraints defined by the application of Rule 1VS on each vague spatial

measure;

• considering that a level L is related to F , then:

– Rule 4.1VS: if the relationship between L and F has the cardinality one-to-one (1:1),

then all the attributes of L are included in the fact table.

– Rule 4.2VS: if the relationship between L and F has the cardinality one-to-many

(1:N), then one column is added in the fact table with a foreign key referencing the

key of the table of L.

– Rule 4.3VS: if the relationship between L and F has the cardinality many-to-many

(M:N), then a bridge table is created and contains one column with a foreign key

referencing the key of the fact table, plus one column with a foreign key referencing

the key of the table of L.

• vague topological constraints regarding vague spatial measures, which are satisfied by all

fact members;

• vague topological constraints concerning spatial levels referenced by the fact table (due

to a spatial fact), which are satisfied by all fact members; and

• either a composite key that encompasses the columns that reference the level tables

through foreign keys, or a surrogate key.

In addition, each row of a fact table corresponds to a fact member.

A vague spatial measure is a vague spatial attribute and, therefore, has the integrity con-

straints described in Section 5.3. Vague topological constraints regarding pairs of vague spatial

measures are tackled in Section 5.8.4. Vague topological constraints concerning levels refer-

enced by the fact table are addressed in Section 5.8.3.

Example 5.6.1. Figure 5.19 illustrates the logical schema of the vague SDW created for the

HLB case study. It has been obtained by applying the aforementioned mapping rules over the

conceptual schema shown in Figure 4.27. The relationship between the vague spatial level

5.7 Vague Spatial Fact 197

Infected Group and the fact HLB Control has cardinality 1:N. Therefore, Rule 4.2VS adds the

column GroupFK into the fact table HLBControl with a foreign key referencing the key GroupId

of the vague spatial level table InfectedGroup. Rule 1VS creates columns for the vague spatial

attributes, but note that a column for the geometric union was not defined for Infected Tree and

Infected Group. The rationale is that the geometric union would be identical to the multiple

geometry.

City

CityId : int

Name : varchar

CityGeo : MultiPolygon

HLBControl

GroupFK : int

TreeFK : int

MonthFK : int

InspectorFK : int

SymptomSeverity : smallint

NeedsEradication : boolean

InfectedTree_ElementsGeo : Point

InfectedTree_ElementsMval : float array

Farm

FarmId : int

Owner : varchar

FarmGeo : Polygon

CityFK : int

CityElevation

CityId : int

Elevation : TIN

InfectedGroup

GroupId : int

QtyTrees : int

InfectedGroup_ElementsGeo : MultiPoint

InfectedGroup_ElementsMval : float array

RegionFK : int

InfectedRegion

RegionId : int

MinArea : float

InfectedRegion_ElementsGeo : MultiPolygon

InfectedRegion_ElementsMval : float array

InfectedRegion_MergedElementsGeo : MultiPolygon

Inspector

InspectorId : int

Name : varchar

Team : varchar

Month

MonthNo : int

MonthName : varchar

QuarterNo : int

YearNo : int

Plot

PlotId : int

PlantName : varchar

PlotGeo : Polygon

FarmFK : int

Tree

TreeId : int

PlantingDate : date

EradicationDate : date

TreeGeo : Polygon

PlotFK : int

Figure 5.19: The logical schema of the vague SDW regarding the HLB disease.

5.7 Vague Spatial Fact

A vague spatial fact has a finer granularity than a fact and enables the analysis of measures

at the grains of certitude elements and dubiety elements of vague spatial objects, as discussed

in Section 4.4.4. The logical design of the vague spatial fact produces a vague spatial fact table

that references at least one vague spatial level table. Then, values of measures in the vague

198 5 Logical Design of Vague Spatial Data Warehouses

spatial fact table indicate measure values regarding the referenced vague spatial members as

well as partial measure values associated to certitude elements and dubiety elements of the

referenced vague spatial members.

Section 5.7.1 addresses the relational representation of a vague spatial fact as a vague spatial

fact table containing vague spatial fact sets, Section 5.7.2 details design issues concerning

numeric measures and crisp spatial measures, Section 5.7.3 details design issues concerning

vague spatial measures, Section 5.7.4 addresses two methods for loading a vague spatial fact

table, and Section 5.7.5 discusses important aspects of the logical design proposed.

5.7.1 Relational Representation

The logical design of a vague spatial fact requires the creation of a vague spatial fact table

according to Rule 5VS, as follows.

Definition 5.7.1. Rule 5VS. The table VSFact is a vague spatial fact table whose rows assign

partial values of the set of measures {M1, ...,Ms} to members of the set of vague spatial level

tables {L1, ...,Lt}, for s > 0 and t > 0 such that:

• lv
j is a vague spatial member of L j, i.e. a row in L j, for 0 < j ≤ t and 0 < v≤| L j |, where

| L j | is the number of rows in L j;

• The column holding the primary key of L j is L j.PK and a vague spatial attribute A in L j

comprises the columns L j.A ElementsGeo, L j.A ElementsMval and L j.A MergedElementsGeo;

• in lv
j , the primary key value is in lv

j .PK, the elements’ geometries are in lv
j .A ElementsGeo,

the elements’ membership values are in lv
j .A ElementsMval, and the merged elements’

geometries are in lv
j .A MergedElementsGeo;

• the number of geometries in lv
j .A ElementsGeo is | lv

j .A ElementsGeo |, while the number

of entries in the array lv
j .A ElementsMval is | lv

j .A ElementsMval |;

• | lv
j .A ElementsGeo | is equal to | lv

j .A ElementsMval | and both correspond to the number

of elements of lv
j according to A;

• the column L jFK in VSFact has a foreign key referencing the column L j.PK;

• a column L jA ElementNum is created in VSFact for each vague spatial level L j that is

referenced by VSFact and that contains a vague spatial attribute A.

• every row in VSFact assumes one of the following values in the column L jA ElementNum:

5.7 Vague Spatial Fact 199

– 0, if it is a fact member;

– n such that 1 ≤ n ≤| lv
j .A ElementsGeo |, if it associates a partial measure value to

the n-th element described by lv
j .A ElementsGeo and lv

j .A ElementsMval.

• a vague spatial fact table inherits all the constraints of the corresponding fact table, except

for the primary key.

• the primary key of VSFact is a composite primary key that encompasses the primary key

of the corresponding fact table and the column L jA ElementNum.

A fact member in VSFact is a single row with L jA ElementNum = 0 that relates mem-

bers from distinct levels and assigns values for each measure Mi in {M1, ...,Ms} . Further-

more, a vague spatial fact set in VSFact encompasses the fact member and a set of rows with

L jA ElementNum = n that associates values of each measure Mi to the n-th element of the

vague spatial member lv
j described by lv

j .A ElementsGeo and lv
j .A ElementsMval.

The VSCube conceptual model considers, in Section 4.4.4, that a vague spatial fact exists

for every vague spatial attribute in a cuboid. Rule 5VS preserves such characteristic because

it allows the vague spatial fact table to reference more than one vague spatial level table, i.e.

{L1, ...,Lt}, and to store partial measure values for elements of a referenced vague spatial mem-

ber.

Each measure in {M1, ...,Ms} of the vague spatial fact table can be represented by a single

column if it is a numeric measure or a crisp spatial measure, as described in Section 5.7.2.

Conversely, a vague spatial measure requires at most three columns, as detailed in Section 5.7.3.

5.7.2 Numeric Measures and Crisp Spatial Measures

Considering Rule 5VS detailed in Section 5.7.1, let Mi be a numeric measure in {M1, ...,Ms}
represented by the column Mi in VSFact, for 1≤ i≤ s. Let also aggi be an aggregation function

used to summarize the values of Mi. A fact member in VSFact that references a member lv
j has:

• L jFK = lv
j .PK;

• L jA ElementNum = 0; and

• Mi = mi,0.

A vague spatial fact set in VSFact encompasses the aforementioned fact member and a set

of rows where:

200 5 Logical Design of Vague Spatial Data Warehouses

• L jFK = lv
j .PK;

• L jA ElementNum > 0;

• Mi = mi,n; and

• 1≤ n≤| lv
j .A ElementsGeo |.

Furthermore, the aggregation of partial measure values produces values identical to the

values of the fact member, i.e.:

• aggi(mi,1, ...,mi,|lv
j .A ElementsGeo|) = mi,0.

Example 5.7.1. Figure 5.20a shows the vague spatial fact table PesticideApplicationVSFact whose

rows assign partial values of the unitary set of measures {AppliedTons} to members of the uni-

tary set of vague spatial level tables {Crop}. The table PesticideApplicationVSFact has the column

CropElementNum, which has been added according to the definition provided in Section 5.7.1.

Note that CropElementNum is one of the columns that compose the primary key of PesticideAppli-

cationVSFact. The inclusion of CropElementNum in the primary key enables, for example, CropFK

= 1 to appear in several rows, while the pair of values for CropFK and CropElementNum can be

repeated only if at least one value for PesticideFK or DateFK is modified.

Considering the crop C1 and the pesticide application A1 as exemplified in Figure 1.2a-c,

the corresponding vague spatial fact set is shown in Figure 5.20b. Note that crop C1 has three

elements: C11, C12 and C13. Then, at most 1+3=4 rows will compose the vague spatial fact set.

The first row in PesticideApplicationVSFact is the fact member and has CropElementNum=0 and

the total of 0.30 applied ton. The other two rows complete the vague spatial fact set and assign

partial values of AppliedTons to elements of C1. The second row refers to the 0.05 ton applied

over the single element of the dubiety of the crop C1 depicted in Figure 1.2c, i.e. C13. The

third row refers to 0.25 ton applied over one element of the certitude of the crop C1 depicted

in Figure 1.2b, i.e. C11. A row for the other element of the certitude of C1 is unnecessary to

denote 0.00 ton. AppliedTons is aggregated using SUM, and it is clear that the sum of the partial

values regarding AppliedTons in the second and third rows (0.05+0.25) is equal to the total value

of AppliedTons in the first row (0.30).

A similar approach also applies if Mi is a spatial measure represented by one geometry

column Mi in the vague spatial fact table. Each value mi,n assigned to the column Mi is the geo-

metric intersection between mi,0 and the geometry in lv
j .A MergedElementsGeo. Furthermore,

Union(mi,1, ...,mi,|lv
j .A ElementsGeo|) = mi,0.

5.7 Vague Spatial Fact 201

PesticideApplicationVSFact

PesticideFK : int
DateFK : int
CropFK : int

CropElementNum : int
AppliedTons : float

(a)

PesticideFK DateFK CropFK CropElementNum AppliedTons

121 20121004 1 0 0.30

121 20121004 1 1 0.05

121 20121004 1 2 0.25

CropPK CropElementsGeo CropElements Mval ...

1 {-1.0, 1.0, 1.0} ...

PesticideApplicationVSFact

Crop

(b)

Figure 5.20: A vague spatial fact table. (a) The schema. (b) A vague spatial fact set.

5.7.3 Vague Spatial Measures

Considering Rule 5VS detailed in Section 5.7.1, let Mi be a vague spatial measure in

{M1, ...,Ms}, for 1≤ i≤ s, represented by the following columns in VSFact: M ElementsGeoi,

M ElementsMvali and M MergedElementsGeoi, which correspond to geometries of elements,

an array of membership values of elements and the merged geometries of the elements, re-

spectively. Let also agg Elementsi be an aggregation function used to summarize the val-

ues of M ElementsGeoi and M ElementsMvali (e.g. vague spatial union described in Sec-

tion 5.9.3) and agg MergedElementsi be an aggregation function used to summarize the values

of M MergedElementsGeoi (e.g. union).

A fact member in VSFact that references a member lv
j has:

• L jFK = lv
j .PK;

• L jA ElementNum = n;

• M ElementsGeoi = gi,0;

• M ElementsMvali = vi,0; and

• M MergedElementsGeoi = oi,0.

A vague spatial fact set in VSFact encompasses the aforementioned fact member and a set

of rows where:

202 5 Logical Design of Vague Spatial Data Warehouses

• L jFK = lv
j .PK;

• L jA ElementNum > 0;

• M ElementsGeoi = gi,n;

• M ElementsMvali = vi,n;

• M MergedElementsGeoi = oi,n; and

• 1≤ n≤| lv
j .A ElementsGeo |.

Furthermore, the aggregation of partial measure values produces values identical to the

values of the fact member, i.e.:

• agg Elementsi((gi,1,vi,1), ...,(gi,|lv
j .A ElementsGeo|,vi,|lv

j .A ElementsGeo|)) = (gi,0,vi,0); and

• agg MergedElementsi(oi,1, ...,oi,|lv
j .A ElementsGeo|) = oi,0.

The partial values of a vague spatial measure, where L jA ElementNum > 0, are also given

by one multiple geometry, one array of membership values and one merged geometry, as fol-

lows.

• gi,n is a multiple geometry composed of p geometries gathered from the p geometric

intersections that occur between a geometry of an element in lv
j .A ElementsGeo and a

geometry of an element in gi,0;

• vi,n is an array of p membership values, each one of them obtained from vi,0 for each

aforementioned intersection;

• oi,n is a geometry obtained by merging the p geometries of gi,n.

Example 5.7.2. The logical schema of vague SDW created for the pest control case study is de-

picted in Figure 5.21. It was created by applying the mapping rules described in Sections5.3 to

5.5 to transform the conceptual schema illustrated in Figure 4.26. The numeric measure Applied-

Tons has been also included according to Section 5.7.2. The vague spatial fact table PesticideAp-

plicationVSFact created according to Rule 5VS allows the assignment of partial values of the

set of measures {AppliedTons, AppliedArea} to members of the unitary set of vague spatial level

tables {Crop}. Besides, the vague spatial measure AppliedArea has been included as the columns

AppliedArea ElementsGeo, AppliedArea ElementsMval, and AppliedArea MergedElementsGeo. The

column CropElementNum complies with Rule 5VS detailed in Section 5.7.1.

5.7 Vague Spatial Fact 203

Crop

CropPK : int

Crop_ElementsGeo : MultiPolygon

Crop_ElementsMval : float array

Crop_MergedElementsGeo : Polygon

PlantName : varchar

AgriLandFK : int

AgriLand

AgriLandPK : int

AgriLand_ElementsGeo : MultiPolygon

AgriLand_ElementsMval : float array

AgriLand_MergedElementsGeo : Polygon

Owner : varchar

WatershedFK : int

Watershed

WatershedPK : int

WatershedGeo : Polygon

Name : varchar

PesticideApplicationVSFact

PesticideFK : int

DateFK : int

CropFK : int

CropElementNum : int

AppliedTons : float

AppliedArea_ElementsGeo : MultiPolygon

AppliedArea_ElementsMval : float array

AppliedArea_MergedElementsGeo : Polygon

Date

DatePK : int

Date : date

Month : int

Quarter : int

Year : int

Pesticide

PesticidePK : int

Name : string

Type : int

Figure 5.21: A vague spatial fact table with a vague spatial measure for areas where pesticides
were applied to.

Example 5.7.3. The crop C1 and the pesticide application A1 exemplified in Figure 1.2a are

repeated in Figure 5.22a to facilitate the visualization of intersections among the geometries of

their elements. Crop C1 has the certitude elements C11 and C12 and the dubiety element C13. The

applied area A1 is has one certitude element and three dubiety elements. Figure 5.22b illustrates

the geometric intersection among elements of A1 and the element C13, together with the corre-

sponding membership values. Figure 5.22c shows a single geometry obtained by merging the

geometries depicted in Figure 5.22b. Figure 5.22d illustrates the geometric intersection among

elements of A1 and the element C11, together with the corresponding membership values. Fig-

ure 5.22e shows a single geometry that merges the geometries depicted in Figure 5.22d. Note

there is no intersection among elements of A1 and the element C12.

The corresponding vague spatial fact set is shown in the table PesticideApplicationVSFact in

Figure 5.23, considering the vague spatial fact table designed as shown in Figure 5.21 and the

vague spatial level table Crop. The first row of PesticideApplicationVSFact is the fact member

that has CropElementNum=0 and describes the total of 0.30 applied ton, multiple geometries

of elements of A1, the associated array of membership values and a geometry merging the

geometries of elements.

In addition, the remaining rows relate values of measures to elements of the crop C1, as fol-

lows. The second row of PesticideApplicationVSFact indicates that 0.05 ton was applied over the

first element of C1, which is the single element of the dubiety, since CropElementNum=1. The ex-

204 5 Logical Design of Vague Spatial Data Warehouses

1.00

0.80

0.50

0.30

A1

Certitude

C1

Dubiety

C13

C11

C12

(a)

0.50

0.30

(b) (c)

1.00

0.80

0.50

0.30

(d) (e)

Figure 5.22: Intersections among elements of A1 and C1. (a) A1 and C1. (b) Intersection among
elements of A1 and C13. (c) Merging the geometries from (b). (d) Intersection among elements of
A1 and C11. (e) Merging the geometries from (d).

tent of pesticide application is represented by the geometries in AppliedArea ElementsGeo, whose

membership values are {0.3,0.5} stored in AppliedArea ElementsGeo. These geometries and

membership values are the same shown in Figure 5.22b. Also, these geometries are merged and

stored in AppliedArea ElementsGeo. The merged geometry is identical to the geometry shown in

Figure 5.22c.

The third row of PesticideApplicationVSFact indicates that 0.05 ton was applied over the sec-

ond element of C1, which is one of the elements of the certitude, since CropElementNum=1. The

extent of pesticide application is represented by the geometries in AppliedArea ElementsGeo,

whose membership values are {0.3,0.5,0.8,1.0} stored in AppliedArea ElementsMval. These ge-

ometries and membership values are the same shown in Figure 5.22d. Also, these geometries

are merged and stored in AppliedArea MergedElementsGeo. The merged geometry is identical to

the geometry shown in Figure 5.22e.

The application of the corresponding aggregation functions on the columns AppliedTons,

AppliedArea ElementsGeo, AppliedArea ElementsMval, and AppliedArea MergedElementsGeo where

CropElementNum>0 produces the same column values as where CropElementNum=0.

5.7 Vague Spatial Fact 205

CropPK
CropElements

Geo
CropElements

Mval
...

1 {-1.0, 1.0, 1.0} ...

PesticideApplicationVSFact

Crop

Pesticide
FK

DateFK CropFK
Crop

ElementNum
Applied

Tons

AppliedArea_
Elements

Geo

AppliedArea_
Elements

Mval

AppliedArea_
MergedElements

Geo

121 20121004 1 0 0.30
{0.3, 0.5,
0.8, 1.0}

121 20121004 1 1 0.05 {0.3, 0.5}

121 20121004 1 2 0.25
{0.3, 0.5,
0.8, 1.0}

Figure 5.23: A vague spatial fact set involving one numeric measure, one vague spatial measure
and one vague spatial level table.

5.7.4 Loading a Vague Spatial Fact Table

A vague spatial fact table VSFact may be loaded according to two different methods out-

lined as follows. One method considers that the fact member of a vague spatial fact set is known

in advance and is stored in VSFact before the remaining rows of the vague spatial fact set. The

other method considers that the fact member of a vague spatial fact set is not known in advance,

but can be calculated using as input all the other rows of the vague spatial fact set.

The first method assumes that the fact member of a vague spatial fact set is firstly stored

in the table VSFact. Then, the remaining rows of the same vague spatial fact set are inserted

in a single transaction. Before committing the transaction, a routine checks the constraints

defined by Rule 5VS explained in Section 5.7.1 using the primary key. For instance, consider

the vague spatial fact set shown in Figure 5.23. The table PesticideApplicationVSFact would be

loaded by firstly inserting the first row. Thereafter, the second and third rows are inserted in a

single transaction. Finally, assuming that the three rows have the same values for PesticideFK,

DateFK and CropFK, partial values of the measures of the second and third rows are aggregated

and compared to the total values of the measures of the first row. The aggregation uses adequate

functions (i.e. SUM, V SUnion and Union). In addition, values provided for CropElementNum

206 5 Logical Design of Vague Spatial Data Warehouses

must reflect the quantity of geometries in CropElementsGeo where CropFK=CropPK.

The second method assumes that rows associating partial values of measures are inserted in

the table VSFact in a single transaction. Before committing the transaction, the fact member is

calculated by a routine using the aforementioned rows as input. Considering the same primary

key, the adequate aggregation functions are applied over the measure values of the input rows

to obtain total measure values of the fact member. For instance, consider the vague spatial fact

set shown in Figure 5.23. The table PesticideApplicationVSFact would be loaded by inserting the

second and third rows in a single transaction. Before committing the transaction, the row of

the fact member is created using the same values for PesticideFK, DateFK and CropFK. Besides,

the measure values in the row of the fact member are calculated using partial values of the

measures of the second and third rows and applying the adequate aggregation function (i.e.

SUM, V SUnion and Union). In addition, values provided for CropElementNum must reflect the

quantity of geometries in CropElementsGeo where CropFK=CropPK.

The first method checks the constraints based on an existing fact member. Conversely, the

second method creates a fact member that already complies with the constraints. The use of

each method is related to the knowledge, in advance, of the fact member.

5.7.5 Discussion

After explaining and exemplifying the logical design for the vague spatial fact, the five

implications of the design of a vague spatial fact are discussed as follows. The first implica-

tion is the mixing of granularities in the vague spatial fact table. Each row assumes one of

the following granularities: by vague spatial member or by element of vague spatial member.

Queries must clearly specify the grain of the rows to be retrieved, otherwise false aggregation

results can be produced. To refer to rows with the grain by vague spatial member, the condi-

tional ElementNum = 0 must be included in the WHERE clause of the SQL query. Conversely,

in order to refer to rows with the grain by element of vague spatial member, the conditional

ElementNum 6= 0 must be included.

The second implication is the impossibility of using partial measure values, i.e. measure

values where ElementNum 6= 0, for aggregation in a roll-up. Consider lparent and lchild as be-

ing vague spatial members of the vague spatial levels Lparent and Lchild , respectively, and that

Lparent � Lchild . Let lparent roll-up to lchild . Once a measure value in a vague spatial level ta-

ble is associated to a certitude element or a dubiety element of lchild , it is impossible to state

whether the measure value associated to an element of lchild must be assigned to a certitude

element or to a dubiety element of lparent , even though the hierarchy determine the admissible

5.7 Vague Spatial Fact 207

topological relationships for Lparent � Lchild . For example, suppose that a dubiety element of a

crop overlaps both a certitude element and a dubiety element of an agricultural land. Measure

values are assigned to the cited dubiety element of a crop in the vague spatial fact table. How-

ever, a roll-up cannot aggregate measures values assigned to the cited crop’s dubiety element

and correctly associate it to the overlapped certitude element of the agricultural land or to the

overlapped dubiety element of the agricultural land.

The third implication concerns an increase in the storage requirements due to the creation

of the column ElementNum, its inclusion in the primary key, and the storage of several rows

that compose vague spatial fact sets. The column ElementNum is essential to design the vague

spatial fact and require a few additional bytes for each row. It also adds a few bytes on each entry

of the index created for the primary key. Furthermore, the rows of vague spatial fact sets require

several bytes if at least one vague spatial measure exist, due to the storage of two geometries

and one array per row. It is essential to avoid storing rows where measure values are equivalent

to zero or empty. Nevertheless, as a voluminous fact table is an intrinsic characteristic of a DW,

an even more voluminous fact table is expected in a vague SDW due to the complexity of vague

spatial data.

The fourth implication is a foreseen overhead to process queries due to the inclusion of

conditionals to fetch rows according to different granularities. A bitmap index built on the

column ElementNum may be a feasible alternative to reduce such overhead although it might

also increase the storage requirements. One bit-vector for ElementNum = 0 to fetch rows by

vague spatial member and one binned bit-vector for ElementNum > 0 to fetch rows by element

of vague spatial member comply with the conditionals and might improve the performance to

process queries.

The fifth implication concerns an overhead that can be caused by the verification of con-

straints when loading the vague spatial fact table. One method to load the vague spatial fact

table checks most of the constraints after the insertion of rows that belong to a vague spatial

fact set, by comparing aggregated partial values of measures to the values of measures of the

fact member. Conversely, the other method creates a fact member ensuring that most of the

constraints are satisfied. Although these different methods may cause distinct overheads for

loading the vague spatial fact table, the decision on which method to use is not only based on

performance. Indeed, the choice for the first method assumes the fact member is known in ad-

vance, while the choice for the second method considers that the fact member is unknown in

advance and must be computed.

208 5 Logical Design of Vague Spatial Data Warehouses

5.8 Vague Topological Constraints

In the VSCube conceptual model, vague topological constraints have been addressed mainly

in hierarchies relating a pair of vague spatial attributes, or one vague spatial attribute and one

crisp spatial attribute. In the VSMultiDim conceptual model, vague topological constraints

have been specified in hierarchies and recognized in the spatial fact, which relates a vague spa-

tial level to a crisp or vague spatial level through the fact. The sets of topological relationships

R(c,c), R(c,d), R(d,c) and R(d,d) have guided the specification of vague topological constraints in

the conceptual design of vague SDWs.

In the logical design of vague SDWs, vague topological constraints are implemented in the

DBMS to ensure integrity of vague spatial data. The vague topological constraints provided

in the conceptual models are reused, adapted and improved. The following sections focus on

the implementation of vague topological constraints for vague SDWs. Section 5.8.1 details the

pairwise evaluation of sets of topological relationships, Section 5.8.2 details vague topologi-

cal constraints in hierarchies, Section 5.8.3 vague topological constraints in a spatial fact, and

Section 5.8.4 describes intra-level and intra-fact vague topological constraints.

5.8.1 Pairwise Evaluation of Sets of Topological Relationships

The pairwise evaluation of sets of topological relationships processes both the multiple

geometry and the array of membership values as being lists of identical fixed length. The

elements of two different vague spatial objects are compared and the satisfiability of one or

more topological relationship is assessed. As a result, the evaluation of the sets of topological

relationships R(c,c), R(c,d), R(d,c) and R(d,d) becomes feasible.

Let a and b be vague spatial objects whose elements are sorted in ascending order of mem-

bership value. The length of the array of membership values of a is la, while the length of the

array of membership values of a is lb. The minimum offset of a certitude element of a is the

minimum value oa between 1 and la such that a.ElementsMval[oa] = 1. The minimum offset

of a certitude element of b is ob and is analogous.

The pairwise evaluation of the sets of topological relationships R(c,c), R(c,d), R(d,c) and

R(d,d) between a and b consists of the following assessments:

• ∀r ∈ R(c,c) : is r true for a.ElementsGeo[i] and b.ElementsGeo[j], where oa ≤ i≤ la and

ob ≤ j ≤ lb?

• ∀r ∈ R(c,d) : is r true for a.ElementsGeo[i] and b.ElementsGeo[j], where oa ≤ i≤ la and

5.8 Vague Topological Constraints 209

1≤ j < lb?

• ∀r ∈ R(d,c) : is r true for a.ElementsGeo[i] and b.ElementsGeo[j], where 1 ≤ i < la and

ob ≤ j ≤ lb?

• ∀r ∈ R(d,d) : is r true for a.ElementsGeo[i] and b.ElementsGeo[j], where 1 ≤ i < la and

1≤ j < lb?

Clearly, the assessment of each set of topological relationships requires providing bounds

of intervals that constrain the offsets for certitude elements and dubiety elements from both a

and b. The implementation of the pairwise evaluation of sets of topological relationships has

been performed using two UDFs: VS Relate (by analogy with OGC’s Relate (HERRING, 2011)

and PostGIS’ ST Relate7) and VS Constraints Topological, which are explained as follows.

Listing 5.2 describes the function VS Relate that receives as arguments two multiple ge-

ometries, bounds of two intervals, and one array of masks. It returns whether at least one topo-

logical relationship in a mask is true for a pair of geometries extracted from the input multiple

geometries. A mask is a 9×1 representation of the 3×3 matrix that describe a valid topological

relationship, as outlined in Sections 2.1.1.3 and 2.1.2.2. The i-th geometry in a ElementsGeo is

tested against the j-th geometry in b ElementsGeo to assess the topological relationship speci-

fied by the r-th mask in masks, for a lbound ≤ i ≤ a ubound and b lbound ≤ j ≤ b ubound.

If a test yields true, then the counter of hits is incremented and it becomes irrelevant to verify

the (r+1)-th mask, since one topological relationship holds. In the end, if the counter of hits is

equal to the number of geometries evaluated from a ElementsGeo, then the function returns true.

Otherwise, it returns false.

Listing 5.2: A routine to evaluate topological relationships between several pairs of element ge-

ometries.

CREATE OR REPLACE FUNCTION VS Relate (
a ElementsGeo geometry , a lbound i n t , a ubound i n t ,
b ElementsGeo geometry , b lbound i n t , b ubound i n t ,
masks t e x t ar ray)

RETURNS boolean AS $$
DECLARE
h i t s i n t ;
BEGIN
h i t s : = 0 ;
FOR i IN a lbound . . a ubound LOOP

FOR j IN b lbound . . b ubound LOOP
FOR r IN 1 . . a r r a y l e n g t h (masks , 1) LOOP

IF (ST Relate (ST GeometryN (a ElementsGeo , i) ,
ST GeometryN (b ElementsGeo , j) ,
masks [r]))

THEN
h i t s := h i t s +1;
EXIT ;

7http://postgis.net/docs/ST Relate.html

210 5 Logical Design of Vague Spatial Data Warehouses

END IF ;
END LOOP;

END LOOP;
END LOOP;
IF (h i t s = 1 + a ubound − a lbound) THEN

RETURN TRUE;
END IF ;
RETURN FALSE;
END; $$
LANGUAGE ’ p lpgsq l ’ ;

Another routine is essential to call VS Relate and provide the bounds of the intervals, since

there is one pair of intervals for each one of the sets of topological relationships R(c,c), R(c,d),

R(d,c) and R(d,d). Listing 5.3 describes the function VS TopologicalConstraints, which complies

with these purposes. The input arguments of VS TopologicalConstraints are the multiple geome-

tries representing the elements of two vague spatial objects, as well as their arrays of member-

ship values. In addition, each one of the aforementioned sets are denoted by one array of masks

that are also provided as arguments. The function VS TopologicalConstraints executes as follows.

First, it calculates the length of each array of membership values. Second, it calls the func-

tion VS MinOffsetCertitudeElement for each array of membership values. Then, dubiety elements

assume offsets between 1 and 1 minus the offset returned by VS MinOffsetCertitudeElement, while

certitude elements assume offsets between the value returned by VS MinOffsetCertitudeElement

and the array length. The function VS MinOffsetCertitudeElement is detailed in Appendix A.

Third, at most one call is made to the function VS Relate for the set of topological relationships

R(c,c), considering the bounds of certitude elements and bounds of dubiety elements from each

vague spatial object. The function VS Relate is not called if the set of topological relationships

is empty or has a null array of masks. Fourth, fifth, and sixth concern R(c,d), R(d,c), and R(d,d),

respectively. If one execution of VS Relate yields false for a set of topological relationships,

then a message is prompted specifying the corresponding set and the execution is terminated

by returning false. Seventh, if all the sets of topological relationships R(c,c), R(c,d), R(d,c), and

R(d,d) are satisfied, it returns true.

Listing 5.3: A routine to evaluate the sets of topological relationships for a pair of vague spatial

objects.

CREATE OR REPLACE FUNCTION VS Topo log ica lConst ra in ts (
a ElementsGeo geometry , a ElementsMval f l o a t array ,
b ElementsGeo geometry , b ElementsMval f l o a t array ,
rcc t e x t array ,
rcd t e x t array ,
rdc t e x t array ,
rdd t e x t ar ray)

RETURNS boolean AS $$
DECLARE
a leng th i n t ;
b leng th i n t ;
a o f f s e t i n t ;
b o f f s e t i n t ;

5.8 Vague Topological Constraints 211

BEGIN

−−1. c a l c u l a t e s leng ths o f ar rays
a leng th := a r r a y l e n g t h (a ElementsMval , 1) ;
b leng th := a r r a y l e n g t h (b ElementsMval , 1) ;

−−2. ob ta ins the minimum o f f s e t s o f a c e r t i t u d e element
a o f f s e t := VS MinOffsetCert i tudeElement (a ElementsMval) ;
b o f f s e t := VS MinOffsetCert i tudeElement (b ElementsMval) ;

−−3. eva luates R(c , c) i f both ob jec ts have c e r t i t u d e
IF (rcc IS NOT NULL) THEN

IF NOT VS Relate (a ElementsGeo , a o f f s e t , a length ,
b ElementsGeo , b o f f s e t , b length , rcc) THEN

RAISE NOTICE ’ I n v a l i d t o p o l o g i c a l r e l a t i o n s h i p between c e r t i t u d e s : Rcc . ’ ;
RETURN FALSE;

END IF ;
END IF ;

−−4. eva luates R(c , d) i f one ob jec t has c e r t i t u d e and the other has dub ie ty
IF (rcd IS NOT NULL) THEN

IF NOT VS Relate (a ElementsGeo , a o f f s e t , a length ,
b ElementsGeo , 1 , b o f f s e t −1, rcd) THEN

RAISE NOTICE ’ I n v a l i d t o p o l o g i c a l r e l a t i o n s h i p between c e r t i t u d e and
dub ie ty : Rcd . ’ ;

RETURN FALSE;
END IF ;

END IF ;

−−5. eva luates R(d , c) i f one ob jec t has dub ie ty and the other has c e r t i t u d e
IF (rdc IS NOT NULL) THEN

IF NOT VS Relate (a ElementsGeo , 1 , a o f f s e t −1,
b ElementsGeo , b o f f s e t , b length , rdc) THEN

RAISE NOTICE ’ I n v a l i d t o p o l o g i c a l r e l a t i o n s h i p between dub ie ty and
c e r t i t u d e : Rdc . ’ ;

RETURN FALSE;
END IF ;

END IF ;

−−6. eva luates R(d , d) i f both ob jec ts have dub ie ty
IF (rdd IS NOT NULL) THEN

IF NOT VS Relate (a ElementsGeo , 1 , a o f f s e t −1,
b ElementsGeo , 1 , b o f f s e t −1, rdd) THEN

RAISE NOTICE ’ I n v a l i d t o p o l o g i c a l r e l a t i o n s h i p between d u b i e t i e s : Rdd . ’ ;
RETURN FALSE;

END IF ;
END IF ;

−−7. the r e l a t i o n s h i p s have been s a t i s f i e d , then r e t u r n
RETURN TRUE;
END; $$
LANGUAGE ’ p lpgsq l ’ ;

This section addressed the verification of topological constraints among elements of a pair

of vague spatial objects, independently from the tables these objects belong to. In the following

sections, specific cases are tackled regarding the tables these objects belong to.

5.8.2 Hierarchy

This section details the vague topological constraints on a hierarchy that was designed as

explained in Section 5.5 and focuses on the relationship held by a pair of spatial levels, such

that at least one is a vague spatial level. The specific case addressed in this section concerns the

212 5 Logical Design of Vague Spatial Data Warehouses

insertion or the update in the child level. Then, the topological constraint verifies if the member

being inserted or updated is correctly related to a member in the parent level. Furthermore, the

parent and child levels have a relationship with cardinality 1:N.

The UDF VS Constraints Topological Hierarchy described in Listing 5.4 complies with these

purposes. Whenever a row is inserted or updated in the child level table, a trigger calls that

UDF. Then, the sets of topological relationships R(c,c), R(c,d), R(d,c), and R(d,d) are assessed by

comparing the vague spatial object being inserted or updated to the vague spatial object that is

referenced by the row, which belongs to the parent level.

The array TG ARGV is an array of arguments passed by the trigger to a function. When a

trigger calls the function VS Constraints Topological Hierarchy, the following arguments concern

the child level table: the name of the geometry column is TG ARGV[0], the name of the column

with the array of membership values is TG ARGV[1], and the name of the column that references

the parent level is TG ARGV[2]. Also, the following arguments concern the parent level table: the

name of the table is TG ARGV[3], the name of the column with the primary key is TG ARGV[4],

the name of the geometry column is TG ARGV[5], and the name of the column with the array of

membership values is TG ARGV[6]. Besides, the following arguments concern the sets of topo-

logical relationships: R(c,c) is in TG ARGV[7], R(c,d) is in TG ARGV[8], R(d,c) is in TG ARGV[9],

and R(d,d) is in TG ARGV[10].

Listing 5.4: A routine to ensure the satisfaction of vague topological constraints on a hierarchy.

CREATE FUNCTION VS Cons t ra in ts Topo log ica l H ie ra rchy ()
RETURNS TRIGGER AS $$
DECLARE
gChi ld geometry ; mvChild f l o a t ar ray ; gParent geometry ; mvParent f l o a t a r ray ;
fkParent b i g i n t ;
rcc t e x t ar ray ; rcd t e x t ar ray ; rdc t e x t ar ray ; rdd t e x t ar ray ;
tab leParen t t e x t ; pkParentCol t e x t ; gParentCol t e x t ; mvParentCol t e x t ;
t a r g e t record ;

BEGIN
−−1. r e t r i e v e s geometr ies and ar rays o f membership values from the c h i l d l e v e l t ab l e
EXECUTE ’SELECT ($1) . ’ | | TG ARGV[0] | | ’ , ($1) . ’ | | TG ARGV[1] | | ’ , ($1) . ’ | | TG ARGV[2]
USING NEW INTO gChild , mvChild , fkParent ;

−−2. copies the name of the parent t ab l e and the names of i t s columns
tab leParen t := TG ARGV [3] ;
pkParentCol := TG ARGV [4] ;
gParentCol := TG ARGV [5] ;
mvParentCol := TG ARGV [6] ;

−−3. r e t r i e v e s the vague s p a t i a l ob jec t re ferenced i n the parent l e v e l t ab l e
IF (fkParent IS NOT NULL) THEN
EXECUTE ’SELECT ’ | | gParentCol | | ’ , ’ | | mvParentCol | | ’ FROM ’ | | tab leParen t

| | ’ WHERE ’ | | pkParentCol | | ’ = ’ | | f kParent
INTO STRICT gParent , mvParent ;
ELSE
RAISE NOTICE ’ There i s not an assoc iated vague s p a t i a l ob jec t i n the parent l e v e l . ’ ;
RETURN NEW;
END IF ;

−−4. issues a warning i f the f o r e i g n key has been v i o l a t e d and r e t u r n

5.8 Vague Topological Constraints 213

IF (gParent IS NULL) THEN
RAISE NOTICE ’ There i s not a vague s p a t i a l ob jec t i n % where % = %. ’ ,
tab leParent , pkParentCol , f kpa ren t ;
RETURN NEW;
END IF ;

−−5. t ransforms comma−separated masks i n t o ar ray o f masks
rcc := s t r i n g t o a r r a y (TG ARGV [7] , ’ , ’) ;
rcd := s t r i n g t o a r r a y (TG ARGV [8] , ’ , ’) ;
rdc := s t r i n g t o a r r a y (TG ARGV [9] , ’ , ’) ;
rdd := s t r i n g t o a r r a y (TG ARGV[1 0] , ’ , ’) ;

−−6. eva luates the sets o f t o p o l o g i c a l r e l a t i o n s h i p s
EXECUTE ’SELECT VS Topo log ica lConst ra in ts ($1 , $2 , $3 , $4 , $5 , $6 , $7 , $8) as r e s u l t ’
INTO STRICT t a r g e t
USING gParent , mvParent , gChi ld , mvChild , rcc , rcd , rdc , rdd ;

−−7. v e r i f i e s whether a v i o l a t i o n occurred
IF (NOT t a r g e t . r e s u l t) THEN
RAISE EXCEPTION ’ V i o l a t i o n o f vague t o p o l o g i c a l c o n s t r a i n t s . ’ ;
END IF ;

−−8. proceeds wi th the i n s e r t or update
RETURN NEW;
END; $$
LANGUAGE ’ p lpgsq l ’ ;

First, the geometry, the array of membership values and the parent key value are retrieved

from the child level table, according to the names of columns provided by the arguments. Sec-

ond, the names of the parent table and of its columns are copied to local variables. Third, a

query retrieves the referenced vague spatial object in the parent level. Note that the key value

provided for searching the parent level table can be null, which means that there is no corre-

spondence with a vague spatial object in the parent level and, consequently, it is unnecessary to

evaluate topological relationships. In such case, a warning message is issued and the execution

is finished with success. On the other hand, if the value is not null and the query retrieved an

empty result set, then it indicates a violation of foreign key that must be handled by the DBMS.

Then, fourth, a warning message is issued and the control is given back to the DBMS.

However, if a vague spatial object is retrieved from the parent level table, the execution

VS Constraints Topological Hierarchy continues. Fifth, the masks of topological relationships are

copied to local variables. Sixth, consecutive calls to the function VS TopologicalConstraints are

made to test the pair of vague spatial objects against the sets of topological relationships rep-

resented by their masks. Seventh, if a violation occurred, an exception is raised. Eighth, if the

evaluation of the topological constraints was successful, the row can be inserted or updated in

the child level table.

The function VS Constraints Topological Hierarchy allows a vague spatial object to be defined

in a child level without being related to any vague spatial object in the parent level. If this

is not the case for a given application, adaptations should be performed. The creation of one

application-dependent trigger for each pair of vague spatial attributes in a hierarchy is neces-

214 5 Logical Design of Vague Spatial Data Warehouses

sary to benefit from the vague topological constraint on a hierarchy. A trigger is described in

Example 5.8.1.

Example 5.8.1. Consider the vague SDW designed for the pest control case study whose

logical schema is shown in Figure 5.21. A hierarchy which relates vague regions of crops

and vague regions of agricultural lands. Then, the following trigger executes the function

VS Constraints Topological Hierarchy for each row inserted into or updated in the table Crop.

CREATE TRIGGER Topo log ica lCons t ra in ts Agr iLand Crop
BEFORE INSERT OR UPDATE ON Crop FOR EACH ROW EXECUTE PROCEDURE
VS Cons t ra in ts Topo log ica l H ie ra rchy (

’ Crop ElementsGeo ’ , ’ Crop ElementsMval ’ , ’ AgriLandFK ’ ,
’ AgriLand ’ , ’ AgriLandPK ’ , ’ AgriLand ElementsGeo ’ , ’ AgriLand ElementsMval ’ ,
−−R(c , c) comma−separated masks f o r Contains and Covers :
’T∗∗∗∗∗FF∗ ,∗T∗∗∗∗FF∗ ,∗∗∗T∗∗FF∗ ,∗∗∗∗T∗FF∗ ’ ,
−−R(c , d) comma−separated masks f o r Contains :
’T∗∗∗∗∗FF∗ ’ ,
−−R(d , c) comma−separated masks f o r f o r Meets and D i s j o i n t :
’FT∗∗∗∗∗∗∗ ,F∗∗T∗∗∗∗∗ ,F∗∗∗T∗∗∗∗ ,FF∗FF∗∗∗∗ ’ ,
−−R(d , d) comma−separated masks f o r f o r Meets and D i s j o i n t :
’FT∗∗∗∗∗∗∗ ,F∗∗T∗∗∗∗∗ ,F∗∗∗T∗∗∗∗ ,FF∗FF∗∗∗∗ ’

)

The task of the vague SDW designer consists of specifying only the trigger according to the

application, since the function VS Constraints Topological Hierarchy and the functions described

in Section 5.8.1 do not depend on the application. Another important remark is that, for each

pair of vague spatial attributes in distinct levels of a hierarchy, one trigger should be specified.

5.8.3 Spatial Fact

In Section 4.9.4, the concept of spatial fact has been described. This section details the

logical design of vague topological constraint imposed by a spatial fact, which occurs when a

fact table relates at least two vague spatial level tables, or one crisp spatial level table and one

vague spatial level table. Not only a fact table designed according to Rule 4VS is supported,

but also a vague spatial fact table designed according to Rule 5VS.

An UDF has been defined and is called by a trigger whenever a row is inserted in the

fact table. Updates in the fact table are not addressed. The insertion provides key values ref-

erencing the level tables. These are used to retrieve the referenced vague spatial members

for assessing the sets of topological relationships R(c,c), R(c,d), R(d,c) and R(d,d). Function

VS Constraints SpatialFact described in Listing 5.5 complies with these purposes.

The function VS Constraints SpatialFact receives the following arguments passed by a trig-

ger. Concerning one of the referenced level tables, the arguments are: the name of the column

5.8 Vague Topological Constraints 215

in the fact table referencing a level table in TG ARGV[0], the name of the referenced table in

TG ARGV[2], the name of the column with a primary key in TG ARGV[3], the name of the geom-

etry column in TG ARGV[4], and the name of the column with the array of membership value

in TG ARGV[5]. Arguments are analogously provided for the other referenced level table, in

TG ARGV[1], TG ARGV[6], TG ARGV[7], TG ARGV[8], and TG ARGV[9], respectively. Besides, the

following arguments concern the sets of topological relationships: R(c,c) is in TG ARGV[10],

R(c,d) is in TG ARGV[11], R(d,c) is in TG ARGV[12], and R(d,d) is in TG ARGV[13].

First, the UDF retrieves the key values of the referenced tuples, using the names of the

columns that reference level tables. Second, if one or both of these key values is null, it means

that the row being inserted does not relate vague spatial objects. Thus, a warning message is

issued and the control is given back to the DBMS, since it is unnecessary to check topologi-

cal constraints. If both key values are not null, the execution continues. Third, the names of

referenced tables and their columns are copied into local variables. Fourth, these names are

used in a query that fetches one referenced vague spatial object by using the key values previ-

ously obtained. Fifth, the other vague spatial object referenced is fetched analogously. Sixth, if

the geometries are null, it also means that the row being inserted does not relate vague spatial

objects, and the control is given back to the DBMS. Otherwise, the execution continues. Sev-

enth, the masks of topological relationships are copied to local variables. Eighth, the function

VS TopologicalConstraints is called to test the retrieved vague spatial objects against the sets of

topological relationships represented by their masks. Ninth, if the evaluation of the topological

constraints was not successful, then an exception is raised. Otherwise, tenth, the row can be

inserted or updated in the fact table.

Listing 5.5: A routine to ensure the satisfaction of vague topological constraints on a spatial fact.

CREATE FUNCTION VS Cons t ra in t s Spa t ia lFac t () RETURNS TRIGGER AS $$
DECLARE

g1 geometry ; mv1 f l o a t a r ray ;
g2 geometry ; mv2 f l o a t a r ray ;
fk1 b i g i n t ; fk2 b i g i n t ;
rcc t e x t ar ray ; rcd t e x t ar ray ; rdc t e x t ar ray ; rdd t e x t ar ray ;
tab le1 t e x t ; tab le2 t e x t ; pk1Col t e x t ; pk2Col t e x t ;
g1Col t e x t ; mv1Col t e x t ; g2Col t e x t ; mv2Col t e x t ;
t a r g e t record ;

BEGIN
−−1. r e t r i e v e s the key values o f the referenced vague s p a t i a l ob jec ts
EXECUTE ’SELECT ($1) . ’ | | TG ARGV[0] | | ’ , ($1) . ’ | | TG ARGV[1]
USING NEW INTO fk1 , fk2 ;

−−2. issues a warning message i f a t l e a s t one vague s p a t i a l ob jec t i s not re ferenced
IF (fk1 IS NULL) or (fk2 IS NULL) THEN
RAISE NOTICE ’ The inse r t ed row does not re ference l e v e l t ab les . ’ ;
RETURN NEW;
END IF ;

−−3. copies the name of the parent t ab l e and the names of i t s columns
tab le1 := TG ARGV [2] ; tab le2 := TG ARGV [6] ;

216 5 Logical Design of Vague Spatial Data Warehouses

pk1Col := TG ARGV [3] ; pk2Col := TG ARGV [7] ;
g1Col := TG ARGV [4] ; g2Col := TG ARGV [8] ;
mv1Col := TG ARGV [5] ; mv2Col := TG ARGV [9] ;

−−4. r e t r i e v e s one of the referenced vague s p a t i a l ob jec ts
EXECUTE ’SELECT ’ | | g1Col | | ’ , ’ | | mv1Col | | ’ FROM ’ | | tab le1

| | ’ WHERE ’ | | pk1Col | | ’ = ’ | | f k1
INTO STRICT g1 , mv1 ;

−−5. r e t r i e v e s the other referenced vague s p a t i a l ob jec t
EXECUTE ’SELECT ’ | | g2Col | | ’ , ’ | | mv2Col | | ’ FROM ’ | | tab le2

| | ’ WHERE ’ | | pk2Col | | ’ = ’ | | f k2
INTO STRICT g2 , mv2 ;

−−6. issues a warning message i f a t l e a s t one vague s p a t i a l ob jec t i s not re ferenced
IF (g1 IS NULL) OR (g2 IS NULL) THEN

RAISE NOTICE ’ ’ ;
RETURN NEW;
END IF ;

−−7. t ransforms comma−separated masks i n t o ar ray o f masks
rcc := s t r i n g t o a r r a y (TG ARGV[1 0] , ’ , ’) ;
rcd := s t r i n g t o a r r a y (TG ARGV[1 1] , ’ , ’) ;
rdc := s t r i n g t o a r r a y (TG ARGV[1 2] , ’ , ’) ;
rdd := s t r i n g t o a r r a y (TG ARGV[1 3] , ’ , ’) ;

−−8. eva luates the sets o f t o p o l o g i c a l r e l a t i o n s h i p s
EXECUTE ’SELECT VS Topo log ica lConst ra in ts ($1 , $2 , $3 , $4 , $5 , $6 , $7 , $8) as r e s u l t ’
INTO STRICT t a r g e t
USING g1 , mv1, g2 , mv2, rcc , rcd , rdc , rdd ;

−−9. checks whether there was a v i o l a t i o n
IF (NOT t a r g e t . r e s u l t) THEN

RAISE EXCEPTION ’ V i o l a t i o n o f vague t o p o l o g i c a l c o n s t r a i n t s . ’ ;
END IF ;

10. proceeds wi th the i n s e r t i o n
RETURN NEW;
END; $$
LANGUAGE ’ p lpgsq l ’ ;

Example 5.8.2. Consider the vague SDW designed for the HLB case study whose logical

schema is shown in Figure 5.19 and Example 4.9.9 that describes the topological constraint

on the spatial fact involving trees and infected groups. The following trigger executes the func-

tion detailed in Listing 5.5 for each row inserted into the table HLBControl. Note that trees do not

have dubieties. To denote that a tree is composed of a single certitude element whose degree of

membership is 1.0, the argument “ARRAY[1.0]” has been passed, while the masks for testing the

dubiety of trees are null.

CREATE TRIGGER Topo log ica lCons t ra in ts Tree In fec tedGroup
BEFORE INSERT ON HLBControl FOR EACH ROW EXECUTE PROCEDURE
VS Cons t ra in t s Spa t ia lFac t (

’ TreeFK ’ , ’ GroupFK ’ , ’ Tree ’ , ’ TreeId ’ , ’ TreeGeo ’ , ’ARRAY[1 . 0] ’ ,
’ InfectedGroup ’ , ’ GroupId ’ , ’ InfectedGroup ElementsGeo ’ ,
’ InfectedGroup ElementsMval ’ ,
−−R(c , c) comma−separated masks f o r i n t e r s e c t s :
’T∗∗∗∗∗∗∗∗ , ∗T∗∗∗∗∗∗∗ , ∗∗∗T∗∗∗∗∗ , ∗∗∗∗T∗∗∗∗ , ’
−−R(c , d) comma−separated masks f o r i n t e r s e c t s :
’T∗∗∗∗∗∗∗∗ , ∗T∗∗∗∗∗∗∗ , ∗∗∗T∗∗∗∗∗ , ∗∗∗∗T∗∗∗∗ , ’
−−R(d , c) i s n u l l s ince a t ree i s c r i s p :
n u l l ,

5.8 Vague Topological Constraints 217

−−R(d , d) i s n u l l s ince a t ree i s c r i s p :
n u l l

) ;

The task of the vague SDW designer consists of specifying only the trigger according to

the application, since the function VS Constraints SpatialFact and the functions described in Sec-

tion 5.8.1 do not depend on the application. Another important remark is that, for each pair of

vague spatial attributes related by a spatial fact, one trigger should be specified.

5.8.4 Intra Level and Intra Fact

This section details vague topological constraints related to a pair of vague spatial attributes

defined in the same vague spatial level table, i.e. intra level vague topological constraints. It

also addresses vague topological constraints related to a pair of vague spatial measures defined

in the same fact table, i.e. intra fact vague topological constraints. It assumes that vague spatial

attributes and vague spatial measures have been designed as explained in Section 5.3.

Let T be a vague spatial level table or a fact table and contain the vague spatial attributes

A1 and A2 designed according to Rule 1VS. Let also new be the row which is being inserted

or updated in T . The insertion or update must not violate the topological constraint imposed

by the sets of topological relationships R(c,c), R(c,d), R(d,c) and R(d,d), which are held between

A1 and A2. Therefore, a routine must ensure that every row in T satisfies the vague topological

constraints.

The function VS TopologicalConstraintsInTable shown in Listing 5.6 receives 8 arguments in

the array TG ARGV. The arguments are provided by the trigger that calls the function. TG ARGV[0]

is the name of the geometry column of A1, TG ARGV[1] is the name of the column with mem-

bership values of A1, TG ARGV[2] is the name of the geometry column of A2, TG ARGV[3] is

the name of the column with membership values of A2, TG ARGV[4], TG ARGV[5], TG ARGV[6],

and TG ARGV[7] are strings with comma-separated masks representing the sets R(c,c), R(c,d),

R(d,c), and R(d,d), respectively. The function allows the modification in table T if the sets of

topological relationships R(c,c), R(c,d), R(d,c) and R(d,d) are satisfied by the row being modified,

which means that the geometries and arrays of membership values provided for the attributes

A1 and A2 comply with the cited sets of topological relationships. The execution of the function

VS Constraints Topological IntraLevel IntraFact is as follows.

First, it copies the geometries and arrays of membership values into local variables. The

record NEW, which refers to the row being modified, maintains these geometries and arrays into

data fields whose names are those passed as the first to fourth arguments. Second, it transforms

218 5 Logical Design of Vague Spatial Data Warehouses

each comma-separated mask into an array of masks and assigns to a specific local variable.

Third, it calls the function VS TopologicalConstraints using the aforementioned local variables as

arguments. The result is assigned to the local variable target. Fourth, if the result in target yields

that topological constraints were not satisfied, then an exception is thrown and the modification

of the row is canceled. Fifth, it concludes that the topological constraint was satisfied and the

modification is allowed.

Listing 5.6: A routine to ensure the satisfaction of intra level and intra fact vague topological

constraints.

CREATE FUNCTION V S C o n s t r a i n t s T o p o l o g i c a l I n t r a L e v e l I n t r a F a c t ()
RETURNS TRIGGER AS $$
DECLARE

g1 geometry ; mv1 f l o a t ar ray ;
g2 geometry ; mv2 f l o a t ar ray ;
rcc t e x t ar ray ; rcd t e x t ar ray ; rdc t e x t ar ray ; rdd t e x t ar ray ;
t a r g e t record ;

BEGIN

−−1. r e t r i e v e s geometr ies and ar rays o f membership values
EXECUTE ’SELECT ($1) . ’ | | TG ARGV[0] | | ’ , ($1) . ’ | | TG ARGV[1]

| | ’ , ($1) . ’ | | TG ARGV[2] | | ’ , ($1) . ’ | | TG ARGV[3]
USING NEW INTO g1 , mv1, g2 , mv2 ;

−−2. t ransforms comma−separated masks i n t o ar ray o f masks
rcc := s t r i n g t o a r r a y (TG ARGV [4] , ’ , ’) ;
rcd := s t r i n g t o a r r a y (TG ARGV [5] , ’ , ’) ;
rdc := s t r i n g t o a r r a y (TG ARGV [6] , ’ , ’) ;
rdd := s t r i n g t o a r r a y (TG ARGV [7] , ’ , ’) ;

−−3. eva luates the sets o f t o p o l o g i c a l r e l a t i o n s h i p s
EXECUTE ’SELECT VS Topo log ica lConst ra in ts ($1 , $2 , $3 , $4 , $5 , $6 , $7 , $8) as r e s u l t ’
INTO STRICT t a r g e t
USING g1 , mv1, g2 , mv2, rcc , rcd , rdc , rdd ;

−−4. n o t i f i e s whether the t o p o l o g i c a l c o n s t r a i n t was v i o l a t e d
IF (NOT t a r g e t . r e s u l t) THEN

RAISE EXCEPTION ’ V i o l a t i o n o f the vague t o p o l o g i c a l c o n s t r a i n t . ’ ;
END IF ;

−−5. a l lows the i n s e r t or update
RETURN NEW;
END; $$
LANGUAGE ’ p lpgsq l ’ ;

The creation of one application-dependent trigger per pair of vague spatial attributes in a

table is necessary to benefit from the intra level or intra fact vague topological constraint. It

is noteworthy that the task of the vague SDW designer consists of specifying only the trigger

according to the application, since the function VS Constraints Topological IntraLevel IntraFact and

the functions described in Section 5.8.1 do not depend on the application.

5.9 Vague Spatial Online Analytical Processing 219

5.9 Vague Spatial Online Analytical Processing

Considering relational schemata of vague SDWs produced by the logical design, vague

SOLAP provides multidimensional queries extended with vague spatial predicates and vague

spatial data aggregation. Accessors, vague spatial aggregation functions and vague spatial predi-

cates introduced by the VSCube conceptual Model in Chapter 4 are, therefore, reused, extended,

improved and then implemented in the DBMS to allow their use in SQL queries. They constitute

different classes of operations, as listed in Table 5.2. In addition, slice-and-dice, drill-down and

roll-up may require one or more SQL queries using these operations. The following sections

describe the implemented operations listed in Table 5.2 and exemplify their use in SQL queries

issued over vague SDWs. Section 5.9.1 addresses accessors, Section 5.9.2 tackles vague spa-

tial predicates, Section 5.9.3 stands for vague spatial aggregation, and Section 5.9.4 addresses

slice-and-dice, drill-down and roll-up.

Table 5.2: Operations on vague spatial attributes.

Class Operations
Accessors Elements, ElementsExprMval, ElementsGeoExprMval,

CertitudeGeo, DubietyGeo, ElementsOffsetsExprMval
Vague Spatial Predicates IntersectsCertitude, IntersectsDubiety, IntersectsDubietyExprMval,

IntersectingCertitudeElements, IntersectingDubietyElements,
IntersectingElementsExprMval,
WithinInnerUIntersectsOuterAndNotWithinInner

Vague Spatial Aggregation Union, Intersection, Difference
Functions

5.9.1 Accessors

Accessors provide access to certitude elements and dubiety elements of a given vague spa-

tial object. They have been implemented as UDFs using the procedural language PL/pgSQL

from PostgreSQL. Their method signatures are listed in Table 5.3, considering that certitude

elements and dubiety elements have their geometries in ElementsGeo and their membership val-

ues in the array ElementsMval. Examples 5.9.1 to 5.9.3 demonstrate the use of accessors to query

vague SDWs. Each query is briefly commented regarding the utilized accessor.

Example 5.9.1. VS ElementsExprMval.

Consider the HLB case study and the vague SDW logical schema shown in Figure 5.19. The

following SQL query implements the query HLB7 listed in Table 1.2.

SELECT VS ElementsExprMval (InfectedRegion ElementsGeo ,

220 5 Logical Design of Vague Spatial Data Warehouses

Table 5.3: Accessors: methods’ signatures and descriptions.

Method’s signature and description
record VS Elements(geometry ElementsGeo, float array ElementsMval)
Returns a record with all elements of the vague spatial object.

record VS ElementsExprMval(geometry ElementsGeo, float array ElementsMval,
varchar ElementsMvalColumnName, text expression)
Returns a record with elements of the vague spatial object that comply with the expression.

geometry VS ElementsGeoExprMval(geometry ElementsGeo, float array ElementsMval,
text expression)
Returns a multiple geometry containing geometries of elements whose membership values
comply with the expression.

geometry VS CertitudeGeo(geometry ElementsGeo, float array ElementsMval)
Returns a geometry obtained by merging the geometries of all certitude elements of the
vague spatial object.

geometry VS DubietyGeo(geometry ElementsGeo, float array ElementsMval)
Returns a geometry obtained by merging the geometries of all dubiety elements of the
vague spatial object.

setof bigint VS ElementsOffsetsExprMval(float array ElementsMval)
Returns the offsets of membership values that comply with the expression.

InfectedRegion ElementsMval ,
’ InfectedRegion ElementsMval ’ ,
’ InfectedRegion ElementsMval > 0 .80 ’)

AS GeoMval
FROM InfectedRegion R, InfectedGroup G, HLBControl H,

Month M, Tree T , P lo t P, Farm F , C i t y C
WHERE G. RegionFK = R. RegionId AND

H. GroupFK = G. GroupId AND
H. MonthFK = M. MonthNo AND
H. TreeFK = T . TreeId AND
T . PlotFK = P. P l o t I d AND
P. FarmFK = F . FarmId AND
F . CityFK = C. C i t y I d AND
C.Name = ’Sao Carlos ’ AND
(M. MonthNo = 201401 OR
M. MonthNo = 201402 OR
M. MonthNo = 201403)

GROUP BY R. RegionId

Given an infected region that satisfies the conditions of the WHERE clause, every element whose

membership value is greater than 0.80 is fetched and returned in a record. The GROUP BY clause

avoids repeated rows in the result set, since an infected region is referenced by several rows of

the fact table HLBControl. In order retrieve the multiple geometry and the array of membership

values in separate columns rather than a record into a single column, the previous query can be

5.9 Vague Spatial Online Analytical Processing 221

surrounded by:

SELECT (GeoMval) . ElementsGeo , (GeoMval) . ElementsMval
FROM(

−−the prev ious query
) AS HLB7

Example 5.9.2. VS CertitudeGeo and VS DubietyGeo.

Consider the HLB case study and the vague SDW logical schema shown in Figure 5.19. The

following SQL query implements the query HLB6 listed in Table 1.2.

SELECT P. P lo t Id , M. MonthNo , COUNT(∗) AS NoInfectedTrees
FROM Month M, HLBControl H, Tree T , P lo t P, Farm F , C i t y C,

C i t y E l e v a t i o n E
WHERE H. MonthFK = M. MonthNo AND

H. TreeFK = T . TreeId AND
T . PlotFK = P. P l o t I d AND
P. FarmFK = F . FarmId AND
F . CityFK = C. C i t y I d AND
E. C i t y I d = C. C i t y I d AND
C.Name = ‘Sao Carlos ’ AND
(M. QuarterNo = 20141 OR
M. QuarterNo = 20142)

Val (AtGeometry (E . E levat ion ,
VS CertitudeGeo (H. InfectedTree ElementsGeo ,

H. InfectedTree ElementsMval)
)

) BETWEEN 500 AND 600
GROUP BY P. P lo t Id , M. MonthNo

The accessor VS CertitudeGeo retrieves, from the vague spatial measure, only that points where

certainly infected trees are located. AtGeometry and Val are operations described in for manip-

ulating fields (VAISMAN; ZIMÁNYI, 2014b). AtGeometry returns the value of a continuous field

(first argument) at a geometry (second argument). Val returns the value of the elevation field at

a particular geometry, which is a point where a certainly infected tree is located. Supposing that

the query required only points where possibly infected trees are located, replacing the certitude

acessor by VS DubietyGeo would suffice.

Example 5.9.2 highlights a query involving vague spatial data and continuous fields. This

is an intrinsic feature enabled by the logical design of vague SDWs described in this thesis.

It became feasible because the VSMultiDim model inherits and extends the MultiDim model

(VAISMAN; ZIMÁNYI, 2014b) that supports continuous fields.

Example 5.9.3. VS ElementsOffsetsExprMval and vague spatial fact.

Consider the vague SDW regarding pest control whose schema is depicted in Figure 5.21 with a

vague spatial fact table. The following SQL query implements the query PC4 listed in Table 1.1.

SELECT SUM(AppliedTons) AS Loss , CropPK , Year

222 5 Logical Design of Vague Spatial Data Warehouses

FROM Pest ic ideApp l ica t ionVSFact , Crop , Date , Pes t i c i de
WHERE CropFK = CropPK

AND DateFK = DatePK
AND Pest ic ideFK = Pest ic idePK
AND Type = ’ Herbic ide ’
AND CropElementNum <> 0
AND CropElementsNum IN (ElementsOffsetsExprMval (

CropElementsMval , ’ CropElementsMval <>1.0 ’))
GROUP BY CropPK , Year

The vague spatial fact table is required for the aggregation of values of applied tons of pesticides

that refer to dubiety elements of crops. The conditional CropElementNum <> 0 determine that

only measure values assigned to certitude or dubiety elements of crops must be fetched. Be-

sides, certitude elements of crops must not be considered and are ignored due to the expression

provided as argument for the function VS ElementsOffsetsExprMval.

5.9.2 Vague Spatial Predicates

Vague spatial predicates select vague spatial objects or their elements according to a set of

criteria. They have been based on vague spatial predicates of the VSCube conceptual model

(Section 4.5) and implemented as UDFs using the procedural language PL/pgSQL from Post-

greSQL. Table 5.4 lists method’s signatures of vague spatial predicates involving the topological

relationship intersects. Analogous method’s signatures for vague spatial predicates involving

other topological relationships can be obtained, such as for containment range queries. Exam-

ples 5.9.5 to 5.9.7 demonstrate the use of vague spatial predicates issued against vague SDWs.

Each exemplified query is briefly commented regarding the utilized vague spatial predicate.

Example 5.9.4. IRQob ject .

Consider the HLB case study and the vague SDW logical schema shown in Figure 5.19. The fol-

lowing SQL query corresponds to query HLB5 listed in Table 1.2, such that w is the rectangular

spatial query window provided by the user.

SELECT COUNT(∗) , M. YearNo , I .Team
FROM Tree T , HLBControl H, Month M, Inspec to r I ,

InfectedGroup G, InfectedRegion R
WHERE H. TreeFK = T . TreeId AND

H. MonthFK = M. MonthNo AND
H. InspectorFK = I . I nspec to r I d AND
H. GroupFK = G. GroupId AND
G. RegionFK = R. RegionId AND
T . Erad ica t ionDate IS NOT NULL AND
ST In te rsec ts (InfectedRegion MergedElementsGeo , w)

GROUP BY M. YearNo , I .Team

5.9 Vague Spatial Online Analytical Processing 223

Table 5.4: Vague spatial predicates: methods’ signatures and descriptions.

Method’s signature and description
boolean VS IntersectsCertitude(geometry ElementsGeo, float array ElementsMval, geometry w)
Returns TRUE if the certitude of the vague spatial object intersects w. Otherwise, returns FALSE.

boolean VS IntersectsDubiety(geometry ElementsGeo, float array ElementsMval, geometry w)
Returns TRUE if the dubiety of the vague spatial object intersects w. Otherwise, returns FALSE.

boolean VS IntersectsElementsExprMval(geometry ElementsGeo, float array ElementsMval,
geometry w, text expression)
Returns TRUE if elements of the vague spatial object that intersect w also comply with the
expression.

geometry VS IntersectingCertitudeElements(geometry ElementsGeo, float array ElementsMval,
geometry w)

Returns a multiple geometry containing certitude elements’ geometries that intersect w.
If there are not certitude elements intersecting w, then returns an empty geometry.

geometry VS IntersectingDubietyElements(geometry ElementsGeo, float array ElementsMval,
geometry w)

Returns a multiple geometry containing dubiety elements’ geometries that intersect w.
If there are not dubiety elements intersecting w, then returns an empty geometry.

geometry VS IntersectingElementsExprMval(geometry ElementsGeo, float array ElementsMval,
geometry w, text expression)
Returns a multiple geometry containing elements’ geometries that both intersect w and comply
with the expression. If there are not elements satisfying the conditions, returns an empty geometry.

setof record VS WithinInnerUIntersectsOuterAndNotWithinInner(text Query, text Column,
geometry Inner, geometry Outer)
Returns the result set of a query that is created using Query as template and that assesses a vague
spatial range query on Column using the spatial query windows Inner and Outer.

OGC’s function Intersects implemented by PostGIS’ function ST Intersects is reused to demon-

strate that developing an UDF is not necessary for the vague spatial predicate IRQob ject . Also,

instead of testing a multipolygon in InfectedRegion ElementsGeo, the query prioritizes querying

the merged geometry in InfectedRegion MergedElementsGeo that is a polygon.

Example 5.9.5. IRQcertitude and VS IntersectsCertitude.

Consider the HLB case study, the vague SDW logical schema shown in Figure 5.19, and the

query HLB5 listed in Table 1.2 such that w is the rectangular spatial query window provided by

the user. Suppose that only infected regions that certainly intersect w are required. Then, only

infected regions whose certitude intersect w must be considered:

SELECT COUNT(∗) , M. YearNo , I .Team
FROM Tree T , HLBControl H, Month M, Inspec to r I ,

224 5 Logical Design of Vague Spatial Data Warehouses

In fectedGroup G, InfectedRegion R
WHERE H. TreeFK = T . TreeId AND

H. MonthFK = M. MonthNo AND
H. InspectorFK = I . I nspec to r I d AND
H. GroupFK = G. GroupId AND
G. RegionFK = R. RegionId AND
T . Erad ica t ionDate IS NOT NULL AND
VS In te rsec t sCe r t i t ude (InfectedRegion ElementsGeo ,

InfectedRegion ElementsMval , w)
GROUP BY M. YearNo , I .Team

Example 5.9.6. IRQdubiety and VS IntersectsDubiety.

Consider the HLB case study, the vague SDW logical schema shown in Figure 5.19, and the

query HLB5 listed in Table 1.2 such that w is the rectangular spatial query window provided by

the user. Suppose that only infected regions that possibly intersect w are required. Then, only

infected regions whose dubiety intersect w must be considered:

SELECT COUNT(∗) , M. YearNo , I .Team
FROM Tree T , HLBControl H, Month M, Inspec to r I ,

InfectedGroup G, InfectedRegion R
WHERE H. TreeFK = T . TreeId AND

H. MonthFK = M. MonthNo AND
H. InspectorFK = I . I nspec to r I d AND
H. GroupFK = G. GroupId AND
G. RegionFK = R. RegionId AND
T . Erad ica t ionDate IS NOT NULL AND
VS In te rsec tsDub ie ty (InfectedRegion ElementsGeo ,

InfectedRegion ElementsMval , w)
GROUP BY M. YearNo , I .Team

Example 5.9.7. V SRQob ject and WithinInnerUIntersectsOuterAndNotWithinInner.

Consider the HLB case study, the vague SDW logical schema shown in Figure 5.19, and the

query HLB5 listed in Table 1.2. Let inner and outer be concentric rectangular spatial query

windows provided by the user, rather than a single spatial query window. Also, suppose that

infected regions within inner and infected regions that intersect outer are required, such that

results concerning inner are more relevant than results regarding outer. The following SQL

query performs a V SRQob ject .

SELECT ∗ FROM VS With in InnerUIntersectsOuterAndNotWi th in Inner (
’SELECT COUNT(∗) , M. YearNo , I .Team
FROM Tree T , HLBControl H, Month M, Inspec to r I ,

InfectedGroup G, InfectedRegion R
WHERE H. TreeFK = T . TreeId AND

H. MonthFK = M. MonthNo AND
H. InspectorFK = I . I nspec to r I d AND
H. GroupFK = G. GroupId AND
G. RegionFK = R. RegionId AND
T . Erad ica t ionDate IS NOT NULL AND
VSRQobject

5.9 Vague Spatial Online Analytical Processing 225

GROUP BY M. YearNo , I .Team
ORDER BY M. YearNo , I .Team’ ,
’ InfectedRegion MergedElementsGeo ’ ,
inner ,
ou ter

)

In detail, four arguments are provided to call VS WithinInnerUIntersectsOuterAndNotWithinInner

in Example 5.9.7 The query supplied as the first argument is used to create two sub-queries.

These sub-queries assess the column provided as the second argument against the spatial query

windows provided as the third and fourth arguments. The first sub-query adds an additional

column with the constant “More relevant” to the SELECT clause. The string “VSRQobject” in

the WHERE clause is replaced by ST Within(InfectedRegion MergedElementsGeo, inner), which is a

CRQob ject using inner. The second sub-query adds an additional column with the constant “Less

relevant” to the SELECT clause. The string “VSRQobject” in the WHERE clause is replaced by

the conjunction: ST Intersects(InfectedRegion MergedElementsGeo, outer) AND

NOT ST Within(InfectedRegion MergedElementsGeo, inner).

The conjunction determines both an IRQob ject using outer and a CRQob ject using inner.

Note that the differences between the sub-queries are the columns added to the SELECT clause

and the topological relationships they assess in the WHERE clause. Finally, a single query is

written by placing the UNION operator between the sub-queries. The execution of the query

produces a single result set comprising the result sets of both sub-queries.

Example 5.9.8. VS IntersectsElementsExprMval.

Consider the HLB case study, the vague SDW logical schema shown in Figure 5.19, and the

query HLB5 listed in Table 1.2 such that w is the rectangular spatial query window provided

by the user. Suppose that infected regions must be retrieved if, and only if their elements that

intersect w have possibility of infection greater than 75%. As a result, the query ignores vague

regions whose elements intersect w but have lower possibility of infection.

SELECT COUNT(∗) , P . P lo t Id , M. YearNo , I .Team
FROM Plo t P, Tree T , HLBControl H, Month M, Inspec to r I ,

InfectedGroup G, InfectedRegion R
WHERE T . PlotFK = P. P l o t I d AND

H. TreeFK = T . TreeId AND
H. MonthFK = M. MonthNo AND
H. InspectorFK = I . I nspec to r I d AND
H. GroupFK = G. GroupId AND
G. RegionFK = R. RegionId AND
T . Erad ica t ionDate IS NOT NULL AND
VS IntersectsElementsExprMval (InfectedRegion ElementsGeo ,

226 5 Logical Design of Vague Spatial Data Warehouses

InfectedRegion ElementsMval ,
’ InfectedRegion ElementsMval > 0 .75 ’ , w)

GROUP BY P. P lo t Id , M. YearNo , I .Team;

Example 5.9.8 illustrates that the operator VS IntersectsElementsExprMval extends the vague

spatial predicate IRQdubiety−mval . Different from the predicate, the operator is not constrained

to dubiety elements. Also, the operator takes into account only the elements that do satisfy

intersects to provide the result. As already mentioned in Section 4.5, the VSCube model’s

vague spatial predicates can be reused and extended to provide new predicates, such as the one

implemented by the operator VS IntersectsElementsExprMval.

Example 5.9.9. IRQcertitude−elements and VS IntersectingCertitude.

Consider the HLB case study, the vague SDW logical schema shown in Figure 5.19, and the

query HLB7 listed in Table 1.2. Suppose that only parts of an infected region that have pos-

sibility of infection 1 must be retrieved. In addition, these parts must intersect a spatial query

window w, which is a rectangle of interest drawn by the user. Then:

SELECT VS In t e r sec t i ngC e r t i t ude (InfectedRegion ElementsGeo ,
InfectedRegion ElementsMval , w)

FROM InfectedRegion R, InfectedGroup G, HLBControl H,
Month M, Tree T , P lo t P, Farm F , C i t y C

WHERE G. RegionFK = R. RegionId AND
H. GroupFK = G. GroupId AND
H. MonthFK = M. MonthNo AND
H. TreeFK = T . TreeId AND
T . PlotFK = P. P l o t I d AND
P. FarmFK = F . FarmId AND
F . CityFK = C. C i t y I d AND
C.Name = ’Sao Carlos ’ AND
(M. MonthNo = 201401 OR
M. MonthNo = 201402 OR
M. MonthNo = 201403)

GROUP BY R. RegionId

The operator VS IntersectingCertitude retrieves geometries of certitude elements that intersect

w. The GROUP BY clause avoids repeated rows in the result set, since an infected region is

referenced by several rows of the fact table HLBControl.

Example 5.9.10. IRQdubiety−elements and IntersectingDubiety.

In contrast with Example 5.9.9, suppose that only parts of an infected region that have possibil-

ity of infection less than 1 must be retrieved. These parts must intersect a spatial query window

w, which is a rectangle of interest drawn by the user. Then:

SELECT VS In te rsec t ingDub ie ty (InfectedRegion ElementsGeo ,
InfectedRegion ElementsMval , w)

FROM InfectedRegion R, InfectedGroup G, HLBControl H,
Month M, Tree T , P lo t P, Farm F , C i t y C

5.9 Vague Spatial Online Analytical Processing 227

WHERE G. RegionFK = R. RegionId AND
H. GroupFK = G. GroupId AND
H. MonthFK = M. MonthNo AND
H. TreeFK = T . TreeId AND
T . PlotFK = P. P l o t I d AND
P. FarmFK = F . FarmId AND
F . CityFK = C. C i t y I d AND
C.Name = ’Sao Carlos ’ AND
(M. MonthNo = 201401 OR
M. MonthNo = 201402 OR
M. MonthNo = 201403)

GROUP BY R. RegionId

The operator VS IntersectingDubiety retrieves geometries of dubiety elements that intersect w.

The GROUP BY clause avoids repeated rows in the result set, since an infected region is refer-

enced by several rows of the fact table HLBControl.

Example 5.9.11. IntersectingElementsExprMval.

In contrast with Examples 5.9.9 and 5.9.10, suppose that only parts of an infected region that

have possibility of infection higher than 80% must be retrieved. Then:

SELECT VS Intersect ingElementsExprMval (InfectedRegion ElementsGeo ,
InfectedRegion ElementsMval , w)

FROM InfectedRegion R, InfectedGroup G, HLBControl H,
Month M, Tree T , P lo t P, Farm F , C i t y C

WHERE G. RegionFK = R. RegionId AND
H. GroupFK = G. GroupId AND
H. MonthFK = M. MonthNo AND
H. TreeFK = T . TreeId AND
T . PlotFK = P. P l o t I d AND
P. FarmFK = F . FarmId AND
F . CityFK = C. C i t y I d AND
C.Name = ’Sao Carlos ’ AND
(M. MonthNo = 201401 OR
M. MonthNo = 201402 OR
M. MonthNo = 201403)

GROUP BY R. RegionId

The operator VS IntersectingElementsExprMval retrieves geometries of an infected region’s ele-

ments that both intersect w and have membership value greater than 0.80. The GROUP BY clause

avoids repeated rows in the result set, since an infected region is referenced by several rows of

the fact table HLBControl.

Example 5.9.11 illustrates that the operator VS IntersectingElementsExprMval extends the

vague spatial predicate IRQdubiety−elements−mval . Different from the predicate, the operator is

not constrained to dubiety elements.

228 5 Logical Design of Vague Spatial Data Warehouses

5.9.3 Vague Spatial Aggregation Functions

Vague spatial aggregation functions summarize vague spatial data by processing geometries

and membership values of vague spatial objects. These operations have been on vague spatial

aggregation functions of the VSCube conceptual model described in Section 4.6. This section

addresses the vague spatial union.

PostgreSQL demands the creation of an UDT to allow the implementation of an aggrega-

tion function. Therefore, the UDT called VS AttributeType has been defined to refer to records

containing a geometry and an array of membership values:

CREATE TYPE VS At t r ibu teType AS(
geom geometry ,
mval f l o a t ar ray

)

The union of a pair of vague spatial objects has been implemented as an UDF called

VS UnionXY using the procedural language PL/pgSQL from PostgreSQL. The corresponding

method’s signature is shown in Table 5.5. Furthermore, the union of a set of vague spatial

objects has been implemented as an aggregate8, as also demanded by PostgreSQL:

CREATE AGGREGATE VS Union (VS At t r ibu teType) (
sfunc = VS UnionXY ,
stype = VS At t r ibu teType
)

In detail, the aggregate VS Union processes instances of the UDT VS AttributeType by calling

the function VS UnionXY consecutively. In the first call to VS UnionXY, the argument x is null,

while the argument y is a value of type VS AttributeType to be processed. The result of the

first execution of VS UnionXY is kept as a partial value and is provided as the argument x to call

VS UnionXY again, such that the argument y is the subsequent value of type VS AttributeType to be

processed. Partial values are updated after each call to VS UnionXY and a final value is returned

after processing the last call. The corresponding method signature is shown in Table 5.5

Table 5.5: Vague spatial aggregation functions: methods’ signatures and descriptions.

Method’s signature and description
VS AttributeType VS UnionXY(VS AttributeType x, VS AttributeType y)
Returns the vague spatial union of x and y.

VS AttributeType VS Union(VS AttributeType set)
Returns the vague spatial union of a set of objects.

8http://www.postgresql.org/docs/9.3/static/sql-createaggregate.html

5.9 Vague Spatial Online Analytical Processing 229

Although the UDT and the aggregate have been created, a vague spatial attribute remains

implemented as a pair of columns. The following example demonstrates how the vague spatial

union is used to query a vague SDW.

Example 5.9.12. V SUnion and VS Union.

Consider the HLB case study and the vague SDW logical schema shown in Figure 5.19. The

following SQL query implements the query HLB2 listed in Table 1.2.

SELECT T . TreeId , P . P lo t Id , M. QuarterNo ,
VS Union (ROW(H. InfectedTree ElementsGeo ,

H. InfectedTree ElementsMval)
: : VS At t r ibu teType) AS HLBTrees

FROM HLBControl H, Tree T , P lo t P, Month M
WHERE H. TreeFK = T . TreeId AND

T . PlotFK = P. P l o t I d AND
H. MonthFK = M. MonthNo AND
M. YearNo = 2014

GROUP BY T . TreeId , P . P lo t Id , M. QuarterNo

The pair (H.InfectedTree ElementsGeo, H.InfectedTree ElementsMval) is transformed into a record

using the operator ROW. The record is casted to the UDT VS AttributeType and passed as argu-

ment of VS Union. This query requires keeping track of the key value of each tree to distinguish

trees that were planted in the same place. This happens when a tree is eradicated at a given

time due to HLB infection and is thereafter replaced by another tree. Consequently, T.TreeId is

mentioned in the GROUP BY clause. In order to facilitate reading the results, the previous query

can be surrounded by:

SELECT T . TreeId , P . P lo t Id , M. QuarterNo ,
ST AsText ((HLBTrees) . geom) , (HLBTrees) . mval

FROM(
−−the prev ious query

) AS HLB2

5.9.4 Slice-and-Dice, Roll-Up, and Drill-Down

Vague SOLAP provides a class of operations over a vague SDW logical schema. These

operations take as arguments a set of tables and yield as result another table. Therefore, the

operations can be nested for expressing complex queries. This section tackles the following

operations: slice, dice, roll-up, and drill-down. There are not specific UDFs implemented for the

vague SOLAP operations. On the other hand, queries can be written using the UDFs described

in Sections 5.9.1 to 5.9.3.

Slice and dice belong to vague SOLAP if at least one of the following conditions apply: (i)

a crisp spatial attribute is tested against a vague spatial predicate; or (ii) a vague spatial attribute

230 5 Logical Design of Vague Spatial Data Warehouses

is involved. Table 5.6 differentiates slice and dice operations in OLAP, SOLAP, and vague

SOLAP, according to the queried attribute type and the predicate type.

Table 5.6: Classes of slice and dice operations.

Attribute Predicate Class
Conventional Conventional OLAP
Crisp Spatial Crisp Spatial SOLAP
Crisp Spatial Vague Spatial vague SOLAP
Vague Spatial Crisp Spatial vague SOLAP
Vague Spatial Vague Spatial vague SOLAP

Example 5.9.13. Slice and dice.

Consider the HLB case study and the vague SDW logical schema shown in Figure 5.19. The

query HLB7 listed in Table 1.2 and the corresponding SQL query described in Example 5.9.9

perform slice and dice operations. The slice provides the value “São Carlos” to the conventional

attribute Name defined in the conventional level table City. A dice provides a set of values to

the conventional attribute MonthNo defined in the conventional level table Month. Another dice

provides a set of values to the vague spatial attribute implemented as three columns in the vague

spatial level table InfectedRegion. Therefore, the query HLB7 and the corresponding SQL query

perform an OLAP slice, an OLAP dice, and a vague SOLAP dice.

The operations roll-up and drill-down involve a source level and a target level, according to

the traversal of a hierarchy. The target level in a roll-up is a parent level, while the target level in

a drill-down is a child level. Roll-up and drill-down operations in vague SOLAP differ from the

corresponding operations from OLAP and SOLAP, according to the measures being aggregated

and to the target level table. Table 5.7 differentiates roll-up and drill-down operations in OLAP,

SOLAP, and vague SOLAP. To sum up, roll-up and drill-down are vague SOLAP operations if

at least one of the following conditions apply: (i) aggregation is performed on a vague spatial

measure; or (ii) the target level table is a vague spatial level table.

Table 5.7: Classes of roll-up and drill-down operations.

Measure Target level Class
Conventional Conventional OLAP
Conventional Crisp Spatial SOLAP
Conventional Vague Spatial vague SOLAP
Crisp Spatial Conventional SOLAP
Crisp Spatial Crisp Spatial SOLAP
Crisp Spatial Vague Spatial vague SOLAP
Vague Spatial Conventional vague SOLAP
Vague Spatial Crisp Spatial vague SOLAP
Vague Spatial Vague Spatial vague SOLAP

5.10 Summary 231

Example 5.9.14. Roll-up.

Consider the HLB case study and the vague SDW logical schema shown in Figure 5.19. The

query HLB2 listed in Table 1.2 and the corresponding SQL query described in Example 5.9.12

perform a vague SOLAP roll-up operation, since the vague spatial measure InfectedTree is ag-

gregated. Furthermore, the query HLB3 listed in Table 1.2 performs a vague SOLAP roll-up

operation, as it aggregates the numeric measure SymptomSeverity and targets the vague spatial

level table InfectedGroup.

Example 5.9.15. Drill-down.

Consider the HLB case study and the vague SDW logical schema shown in Figure 5.19. Sup-

pose the execution of the following query: “retrieve the average symptom severity by infected

region by month in 2014”. A subsequent execution of the query HLB3 listed in Table 1.2 deter-

mines a vague SOLAP drill-down operation, since the hierarchy relating infected regions and

infected groups is traversed and the target is the vague spatial level table InfectedGroup, which

has a finer granularity than the vague spatial level table InfectedRegion.

5.10 Summary

This chapter has addressed the logical design of vague SDWs according to the relational

model with extensions provided by current DBMSs, such as spatial data types, spatial oper-

ators, spatial functions, UDTs, UDFs and multivalued attributes implemented as arrays. Ta-

ble 5.8 lists the topics that have been addressed regarding the logical design of vague SDWs

and the corresponding guidelines or implementations that have been described. Guidelines and

implementations have been applied on both the pest control and the HLB case studies.

The logical design of the vague spatial attribute comprises one column to store multiple

geometries and one column to store the array of membership values, such that the i-th geometry

refers to the i-th entry in the array and both describe the i-th (certitude or dubiety) element of the

vague spatial object. Optionally, another geometry column can store the geometric union of the

elements. Such approach, described by Rule 1VS, ensures the compliance with OGC standards,

enables vague spatial attributes whose both certitude and dubiety are monovalued or multival-

ued, avoids joins among tables to process vague spatial predicates and vague spatial aggregation

functions, allows indexing of the aforementioned columns and has geometries sorted accord-

ing to membership values. A shortcoming concerns the execution of internal DBMS functions,

e.g. to retrieve the geometry and the membership value of the i-th element in a vague spatial

object. Although such approach has been chosen, several alternative approaches have also been

compared and discussed. A vague spatial attribute requires a set of constraints to allow valid

232 5 Logical Design of Vague Spatial Data Warehouses

Table 5.8: The logical design of vague SDWs and the corresponding guidelines or implementations.

Logical Design Guidelines / Implementations
Vague Spatial Attribute Rule 1VS
Constraints on the Vague Spatial Attribute UDF: VS Constraints VSAttribute
Vague Spatial Level Rule 2VS
Intra-level Vague Topological Constraints UDF: VS Constraints Topological IntraLevel IntraFact
Vague Spatial Hierarchy Rule 3VS
Hierarchy Vague Topological Constraints UDF: VS Constraints Topological Hierarchy
Fact and Vague Spatial Measure Rule 4VS
Intra-fact Vague Topological Constraints UDF: VS Constraints Topological IntraLevel IntraFact
Spatial Fact Vague Topological Constraints UDF: VS Constraints SpatialFact
Vague Spatial Fact Rule 5VS
Accessors UDFs: VS Elements, VS ElementsExprMval, ...
Vague Spatial Predicates UDFs: VS Intersects Certitude, ...
Vague Spatial Aggregation Functions UDT: VS AttributeType; UDF: VS Union
Vague SOLAP SQL queries

geometries and arrays of membership values for elements of vague spatial objects, which have

been implemented as an UDF.

Once the logical design of the vague spatial attribute became feasible, a set of guidelines

has been proposed to map a conceptual schema of vague SDW into a logical schema of vague

SDW under the relational model. Vague spatial levels, hierarchies, and fact and vague spatial

measures have been designed according to Rules 2VS, 3VS, and 4VS, respectively. Sets of

topological relationships are ensured for pairs of vague spatial objects that belong to the same

level or to the same fact, or that are associated through a hierarchy, or that are related by a

spatial fact. All constraints have been implemented as UDFs and triggers, such that UDFs

are independent of application and triggers are created according to the requirements of the

application for which the vague SDW is built. Furthermore, Rule 5VS has been proposed

for the logical design of the vague spatial fact, enabling values of measures to be assigned to

elements of vague spatial members.

The aforementioned guidelines and implementations enable the design of the logical schema

for a vague SDW. The logical schema of a vague SDW is the collection of its tables created

accordingly. The tables of the logical schema are obtained by applying Rules 1VS-5VS. Fur-

thermore, the vague topological constraints are ensured in all the tables of the schema.

Once the logical design of the vague SDW became feasible, vague SOLAP has been tack-

led with the elaboration of several operations implemented as UDFs in the DBMS. Accessors

that provide access to elements of vague spatial objects. Vague spatial predicates select vague

spatial objects according to criteria involving topological relationships and conditionals regard-

5.10 Summary 233

ing membership values. Aggregation functions that aggregate vague spatial data aiming at data

summarization. These UDFs extend SQL and are essential for querying the vague SDW schema

using vague SOLAP operations, such as slice-and-dice, roll-up, and drill-down.

Although efforts have been made in the logical design to provide an implementation to

achieve a reasonable performance on query processing, only an experimental evaluation can

provide enough details about the cost to manipulate vague spatial data in vague SDWs and

motivate the creation of indices to speedup query processing. The evaluation of the performance

to process queries over a vague SDW and the creation of indices for vague SDW are tasks related

to the physical design of vague SDWs, which is addressed in Chapter 6.

234 5 Logical Design of Vague Spatial Data Warehouses

Chapter 6
PHYSICAL DESIGN OF VAGUE SPATIAL DATA

WAREHOUSES

The physical design of a relational database aims at improving the performance at runtime

for query processing. After investigating the workload and mainly the columns used in query

predicates, a technique such as indexing or view materialization is applied. The physical de-

sign of a data warehouse implemented as a relational database additionally considers the huge

volume of data, the predominance of denormalized schemata and a massive computation of

joins between tables, aggregations, conventional predicates and sorting. The physical design

of a spatial data warehouse is even more challenging due to the storage of spatial data, to the

resolution of spatial predicates, and to the computation of spatial data aggregation, since spatial

data are more complex than conventional data

This chapter addresses the physical design of vague spatial data warehouses and introduces

an index for processing queries against vague regions, called Vague Spatial Bitmap index (VSB-

index). An overview of indexing vague spatial data warehouses is outlined in Section 6.1.

Section 6.2 describes an experimental evaluation that assessed the performance of an existing

database management system (DBMS) and of existing indices that were designed for spatial

data warehouses, as well as discusses and compares the results. Section 6.3 details the VSB-

index. Section 6.4 describes an experimental evaluation that assessed the performance of the

VSB-index and discusses the results. Finally, Section 6.5 summarizes the chapter.

6.1 Indexing Vague Spatial Data Warehouses

The physical design of a vague spatial data warehouse (vague SDW) implemented as a rela-

tional database aims at improving the performance to process queries. The workload of a vague

236 6 Physical Design of Vague Spatial Data Warehouses

SDW comprises queries that require processing joins between tables, computing aggregation of

conventional data, crisp spatial data, and vague spatial data, resolving conventional predicates,

spatial predicates, and vague spatial predicates, and sorting the results. Furthermore, these

queries fetch both crisp and vague spatial data characterized by different types and complexity.

The physical design of a vague SDW starts by examining the extent to which existing in-

dices can benefit the performance to process queries of the workload. Bitmap indices avoid

joins between tables, compute aggregation of conventional data and resolve conventional pred-

icates in data warehouses. Spatial indices offered by DBMSs aid to compute the aggregation

of spatial data and to resolve spatial predicates in spatial data warehouses. Spatial indices are

also reused or combined to bitmap indices for developing indices for spatial data warehouses.

Indices for vague regions focuses on the resolution of particular predicates and have not yet

been applied to vague SDWs.

Bottlenecks and limitations of existing indices can be identified by carrying out an exper-

imental evaluation of existing solutions using a workload of a vague SDW. The analysis of

the results can indicate necessary adaptations on their data structures or query processing al-

gorithms to improve the performance of one or more operations. Moreover, such analysis can

provide substantial information for motivating the design of a new index to overcome the draw-

backs faced by existing indices.

The design of an index for vague SDW starts by selecting a subset of the operations required

by queries in the workload. In addition, the diversity of vague spatial data types and their shapes

may impair the development of an index able to address all vague spatial data types. In par-

ticular, if vague spatial objects are implemented using geometries, a multistep resolution of the

spatial predicate can be adopted. Then, the filter step should reduce as most as possible the set

of candidates using approximations of vague spatial objects. Such reduction tends to decrease

the number of geometries stored in secondary memory to be fetched in the refinement step. An

experimental evaluation using a workload of a vague SDW is mandatory for the proposed index

to corroborate its benefits for the performance to process queries.

This chapter describes an experimental evaluation of both a DBMS and existing indices

for spatial data warehouses. It also describes the VSB-index for indexing vague regions in

vague SDW and processing range queries. An experimental evaluation corroborates that the

VSB-index improves the performance to process queries in vague SDW.

6.2 Evaluation of a DBMS and of Indices for Spatial Data Warehouses 237

6.2 Evaluation of a DBMS and of Indices for Spatial Data
Warehouses

The following sections describe an experimental evaluation of a DBMS and existing in-

dices for SDW. The evaluation focuses on the storage requirements of vague SDWs and the

performance to process queries over vague SDWs. The DBMS chosen for the experiments

was PostgreSQL1 with the spatial extension PostGIS (OBE; HSU, 2015), as they offer spatial

data types and operators that can be reused to design logical schemata of vague SDW, as dis-

cussed in Chapter 5. Also, the SB-index and the aR-tree were selected as the existing indices

for SDW, since they efficiently process spatial range queries over SDW, as already discussed in

Section 3.3.

Regarding storage requirements, the influence of the following factors are analyzed:

• the use of vague spatial data types whose complexities vary, such as vague point set and

vague region; and

• the adoption of different logical designs for the vague SDW, as those addressed in Chap-

ter 5.

Concerning the performance to process queries, both the aforementioned factors and the

following factors are investigated:

• the resolution of different vague spatial predicates that might or not require the refinement

step; and

• the resolution of vague spatial predicates with increasing selectivities.

Section 6.2.1 addresses containment range queries issued over a vague SDW containing

vague point sets. Section 6.2.2 tackles intersection range queries executed in a vague SDW

containing vague regions. Section 6.2.3 focuses on vague spatial range queries issued over a

vague SDW containing vague regions.

6.2.1 Containment Range Queries against Vague Point Sets

The following sections describe an evaluation of the DBMS. The vague SDW used in the

experiments stored vague point sets. The queries issued over the SDW encompassed the vague

1http://www.postgresql.org

238 6 Physical Design of Vague Spatial Data Warehouses

spatial predicate CRQob ject , which does not require a refinement step. The effects of increasing

the complexity of vague point sets are also evaluated. Section 6.2.1.1 details the workbench and

platforms, Section 6.2.1.2 describes the workload and Section 6.2.1.3 addresses the results.

6.2.1.1 Workbench and Platforms

The workbench was based on the Star Schema Benchmark (O’NEIL et al., 2009), whose

DW addresses a retail application. The data generator of the Star Schema Benchmark was

executed adjusting the scale factor to 10. The generated data was loaded into the DBMS. Then,

the original DW schema of the cited benchmark was transformed into a vague SDW schema

concerning the HLB study, as shown in Figure 6.1. Modifications that were made to the schema

and details about the data volume are described in the following.

HLBControl

GroupFK : int
PlotFK : int
DateFK : int
InspectorFK : int
QtyOfEradicatedTrees : int

InfectedGroup

GroupPK : int
QtyTrees : int
InfectedGroupGeo : MultiPoint
...

Inspector

InspectorId : int
Name : varchar
Team : varchar
...

Date

DatePK
Date : date
MonthNo : int
QuarterNo : int
YearNo : int
...

Plot

PlotPK : int
PlantName : varchar
PlotGeo : Polygon
...

Figure 6.1: The vague SDW storing infected groups as vague point sets.

The original fact table LineOrder was renamed to HLBControl, its original column Quan-

tity was renamed to QtyOfEradicatedTrees, and it stored approximately 60,000,000 rows. The

original table Date was kept unmodified and stored 2,556 rows. The original table Part was

renamed to Inspector, its original column Brand was renamed to Team and it stored approxi-

mately 800,000 rows. The original table Supplier was renamed to Plot and had the crisp spatial

attribute PlotGeo added and implemented as a Polygon as shown in Figure 6.1. However, crisp

spatial data were not loaded in the table Plot because the workload described in Section 6.2.1.2

focus on querying vague spatial data. The remaining original columns were also renamed ac-

cordingly to comply with the HLB case study.

6.2 Evaluation of a DBMS and of Indices for Spatial Data Warehouses 239

Furthermore, the original table Customer was renamed to InfectedGroup. The vague spatial

attribute InfectedGroup denoted vague point sets whose certitude located certainly infected trees

and dubiety indicated possibly infected trees. Such attribute was implemented as a column of

type MultiPoint and added to the table InfectedGroup. A GiST was created to index the column

InfectedGroupGeo. Differently from the logical design proposed in Section 5.2.5, a column for

the array of membership values was not added to the table InfectedGroup, since the certitude and

the dubiety of the vague point set were not queried separately, as detailed in Section 6.2.1.2.

Furthermore, the vague point sets of the column InfectedGroup were generated as follows.

A dataset containing 302,357 real polygons was gathered from the rural census of the Brazilian

Institute of Geography and Statistics (IBGE)2. Each real polygon was used to create one vague

point set. Firstly, the centroid of the real polygon was obtained. Then, a square was temporarily

built around the centroid. Finally, a set of n points was placed on the edges of the square and

then added to the multipoint. For the sake of simplicity, the first point added to the multipoint

was the single element of the certitude, while the remaining points were considered elements

of the dubiety. Figure 6.2a illustrates a real polygon, its centroid and the temporary square used

to place the points of the vague point, while Figure 6.2b depicts the generated vague point set

considering with four points, i.e. n = 4.

Square

Real polygon’s centroid

Real polygon

(a)

Vague point’s certitude

Real polygon

Vague point’s dubiety

(b)

Figure 6.2: Creating vague point sets: (a) Processing the real polygon. (b) The vague point set.

Three different versions of the table InfectedGroup were created: InfectedGroup4, Infected-

Group12, and InfectedGroup24. The first version had n = 4 in the procedure that created vague

point sets. As a result, its multipoints had 4 points. Analogously, the second and the third

versions had n = 12 and n = 24, respectively.

The hardware platform was a computer with a 3.2 GHz Pentium D processor, 8 GB of main

memory, a 7200 RPM SATA 750 GB hard disk with 32 MB of cache. The software platform

had Linux CentOS 5.2 PostgreSQL 8.2.5 and PostGIS 1.3.3.

2http://www.ibge.gov.br

240 6 Physical Design of Vague Spatial Data Warehouses

6.2.1.2 Workload

The workload of the experimental evaluation was also based on the Star Schema Bench-

mark, as follows. Query Q2.3 of the aforementioned benchmark, which encompasses typi-

cal characteristics of an OLAP query, such as joins among huge tables, conventional pred-

icates, aggregation and sorting, was modified to comply with vague SDW and vague SO-

LAP. One of the original conventional predicates was replaced by a CRQob ject to select vague

point sets. The template query for the workload is detailed in Listing 6.1. The conditional

ST Within(InfectedGroup, w) played the role of the CRQob ject , where w was a rectangular spatial

query window whose shape was not stored in the vague SDW. Figure 6.3 illustrates one spatial

query window q containing two vague point sets.

Listing 6.1: The template query for the SDW with vague point sets.

SELECT Team, Year , SUM(QtyOfEradicatedTrees)
FROM Inspector , Date , InfectedGroup , HLBControl
WHERE InspectorPK = InspectorFK AND

DatePK = DateFK AND
GroupPK = GroupFK AND
Team = ’XV’ AND
ST Within (InfectedGroupGeo , w)

GROUP BY Team, Year
ORDER BY Team, Year ;

Five disjoint spatial query windows were created and assigned to one query. The area of

each spatial query window corresponded to 0.10% of the extent where the vague point sets were

distributed. The five queries were executed once using the table InfectedGroup4, and thereafter

cache and buffers were flushed. Then, the five queries were executed once using the table

InfectedGroup12, and thereafter cache and buffers were flushed. Finally, the five queries were

executed once using the table InfectedGroup24.

w

Figure 6.3: The spatial query window w containing two vague point sets.

6.2.1.3 Results

Figure 6.4a reports the storage requirements demanded by each version of the table In-

fectedGroup described in Section 6.2.1.1. They stored conventional attributes and multipoints

6.2 Evaluation of a DBMS and of Indices for Spatial Data Warehouses 241

encompassing 4, 12 or 24 points. Clearly, more storage space was required as the number of

points of the vague point set increased.

Furthermore, the workload described in Section 6.2.1.2 was executed using the workbench

detailed in Section 6.2.1.1. The average elapsed times were gathered and reported in Figure

6.4b. The increase on the number of points of the vague point set also added an overhead to

the query response time. In general, the average elapsed times were of approximately 1 minute

and, therefore, prohibitive.

It is noteworthy that each version of the table InfectedGroup had one GiST built on the

column InfectedGroupGeo. Every GiST built a MBR for each vague point set, such that the

shape of the MBR was identical to the square used to create the vague point set, as shown in

Figure 6.2a. However, the squares used to create vague point sets containing 4 points differed

from the squares used to create vague point sets encompassing 12 or 24 points. Consequently,

the three GiSTs were distinct as they stored different MBRs. The performance to execute the

workload was influenced by the performance achieved by each GiST to process the CRQob ject

and by the computation of the other components of the query, i.e. conventional predicate, joins,

aggregation and sorting.

0

50

100

150

200

250

300

4 12 24

Ta
b

le
 s

iz
e

 (
M

B
)

Number of Points

DBMS

(a)

0

10

20

30

40

50

60

70

4 12 24

El
ap

se
d

 t
im

e
 (

s)

Number of Points

DBMS

(b)

Figure 6.4: Performance results of the DBMS for the vague SDW containing vague point sets: (a)
Storage requirements. (b) Query processing.

6.2.2 Intersection Range Queries against Vague Regions

The following sections describe an evaluation of the DBMS and existing indices for SDW.

In contrast with Section 6.2.1, which addressed vague point sets and CRQob ject , the follow-

242 6 Physical Design of Vague Spatial Data Warehouses

ing sections tackle vague regions as a more complex type of vague spatial data and IRQob ject

as a more costly vague spatial predicate whose resolution requires a refinement step. Fur-

thermore, the effects of increasing selectivities for IRQob ject are investigated, and the costs to

resolve the vague spatial predicate using each index are also analyzed. Section 6.2.2.1 details

the workbench and platforms used in the experiments, Section 6.2.2.2 describes the workload

and Section 6.2.2.3 reports and discusses the results.

6.2.2.1 Workbench and Platforms

The workbench was based on the vague SDW described in Section 6.2.1.1 as the tables

Inspector, Date, Plot and HLBControl were maintained unaltered and with the same data volume.

On the other hand, two distinct tables were created to store vague regions representing the

infected region. They allowed to analyze whether different logical designs of the vague SDW

can reduce the query response time.

The incomplete schema of vague SDW shown in Figure 6.5a was completed with one of

the tables depicted in Figure 6.5b, i.e. InfectedRegion1 or InfectedRegion2. The table InfectedRe-

gion1 implemented vague regions as multipolygons, similarly to the logical design described

in Section 5.2.5. Conversely, the table InfectedRegion2 implemented vague regions as a pair of

polygons, i.e. one for the certitude and one for the dubiety, analogously to the logical design

addressed in Section 5.2.6. Columns for the arrays of membership values were not created be-

cause the workload described in Section 6.2.2.2 focused only on geometries. GiSTs were built

on the columns InfectedRegionGeo, InfectedRegionCertitudeGeo and InfectedRegionDubietyGeo.

HLBControl

RegionFK : int
PlotFK : int
DateFK : int
InspectorFK : int
QtyOfEradicatedTrees : int

Inspector

InspectorPK : int
Name : varchar
Team : varchar
...

Date

DatePK
Date : date
MonthNo : int
QuarterNo : int
YearNo : int
...

Plot

PlotPK : int
PlantName : varchar
PlotGeo : Polygon
...

InfectedRegion1
or

InfectedRegion2

(a)

InfectedRegion1

RegionPK : int
MinArea : float
InfectedRegionGeo : MultiPolygon
...

InfectedRegion2

RegionPK : int
MinArea : float
InfectedRegionCertitudeGeo : Polygon
InfectedRegionDubietyGeo : Polygon
...

(b)

Figure 6.5: The schema of the vague SDW storing vague regions: (a) Incomplete schema. (b)
Tables to complete the schema.

6.2 Evaluation of a DBMS and of Indices for Spatial Data Warehouses 243

The same vague regions were created to load the tables InfectedRegion1 and InfectedRegion2

by processing 302,357 polygons gathered from the rural census of IBGE. Each real polygon was

processed to create one vague region. Firstly, the certitude was obtained by applying a negative

buffer on the real polygon. Secondly, the convex hull of the real polygon was computed. Finally,

the dubiety was obtained by computing the difference between the cited convex hull and the

certitude. All the created vague regions were regions with broad boundaries, such that the

dubiety surrounded the certitude. Figure 6.6a illustrates a real polygon, its convex hull and a

negative buffer applied to it, while Figure 6.6b depicts the obtained vague region.

Negative buffer

Real polygon

Convex hull

(a)

Certitude

Dubiety

(b)

Figure 6.6: From real polygons to vague regions: (a) Processing the real polygon. (b) The obtained
vague region.

The SB-index and the aR-tree were implemented in C/C++ and their disk page size was

set to 8 KB. Both were built on the column InfectedRegionGeo and, therefore, processed their

refinement steps accessing the multipolygons. The bitmap join indices of the SB-index were

implemented using FastBit (WU et al., 2009) and built on the columns RegionFK, Team, Year and

QtyOfEradicatedTrees to comply with the workload described in Section 6.2.2.2. Analogously,

the entries of the aR-tree referenced one multidimensional array containing values of the mea-

sure QtyOfEradicatedTrees assigned to each pair of values for Team and Year.

The hardware platform was a computer with a 3.2 GHz Pentium D processor, 8 GB of main

memory, a 7200 RPM SATA 320 GB hard disk with 8 MB of cache. The software platform

encompassed Linux CentOS 6, PostgreSQL 9.2, PostGIS 2.0.1 and FastBit 1.3.5.

6.2.2.2 Workload

IRQob ject was chosen as the vague spatial predicate for the workload as it requires a re-

finement step after the filter step to be resolved. The template queries issued over the schema

shown in Figure 6.6a took into account the particularities the tables InfectedRegion1 and Infect-

edRegion2 described in Figure 6.6b, as follows. The template query detailed in Listing 6.2

244 6 Physical Design of Vague Spatial Data Warehouses

fetched vague regions implemented as multipolygons in the table InfectedRegion1. The condi-

tional ST Intersects(InfectedRegionGeo, w) played the role of the IRQob ject , where w was a rect-

angular spatial query window whose shape was not stored in the vague SDW. Analogously, the

template query detailed in Listing 6.3 fetched vague regions implemented as a pair of polygons

in the table InfectedRegion2. The conditional ST Intersects(InfectedRegionDubietyGeo, w) played

the role of the IRQob ject since the outer boundary of the dubiety was equivalent to the outer

boundary of the vague region. This characteristic can be visualized in Figure 6.6b.

Listing 6.2: The template query for the vague SDW with the table Infection1.

SELECT Team, Year , SUM(QtyOfEradicatedTrees)
FROM Inspector , Date , InfectedRegion1 , HLBControl
WHERE InspectorPK = InspectorFK AND

DatePK = DateFK AND
RegionPK = RegionFK AND
Team = ’XV’ AND
ST In te rsec ts (InfectedRegionGeo , w)

GROUP BY Team, Year
ORDER BY Team, Year ;

Listing 6.3: The template query for the vague SDW with the table Infection2.

SELECT Team, Year , SUM(QtyOfEradicatedTrees)
FROM Inspector , Date , InfectedRegion2 , HLBControl
WHERE InspectorPK = InspectorFK AND

DatePK = DateFK AND
RegionPK = RegionFK AND
Team = ’XV’ AND
ST In te rsec ts (InfectedRegionDubietyGeo , w)

GROUP BY Team, Year
ORDER BY Team, Year ;

Figure 6.7 exemplifies one rectangular spatial query window w intersecting several vague

regions of the vague SDW. The generation of spatial query windows was based on the selectivity

of the vague spatial predicate IRQob ject . Ten rectangular spatial query windows were created

for each one of the following selectivities for IRQob ject : 0.001, 0.002, 0.003, 0.004, 0.005,

0.006, 0.007, 0.008, 0.009, 0.01, 0.02, 0.03 and 0.04. Then, a total of 130 disjoint spatial

query windows were obtained. The aforementioned selectivities ensured that 300 up to 12,000

vague regions of the synthetic vague SDW were queried. Greater selectivities were not utilized

since a user of SOLAP tool would hardly select more than 12,000 vague regions to be retrieved

and displayed. The workload comprised 130 queries, each one using a distinct spatial query

window. The execution of queries complied with the ascending order of the selectivity. Cache

and buffers were flushed each ten queries, i.e., before starting the execution of a query with

greater selectivity.

6.2 Evaluation of a DBMS and of Indices for Spatial Data Warehouses 245

Figure 6.7: The spatial query window w intersecting several vague regions of the vague SDW.

6.2.2.3 Results

Concerning the storage requirements, the table InfectedRegion1 occupied 2.27 GB while the

table InfectedRegion2 occupied 1.36 GB. Comparing these results with those discussed in Sec-

tion 6.2.1.3, geometries with a higher complexity such as vague regions demanded more storage

requirements. In addition, vague regions designed as a pair of polygons in table InfectedRegion2

demanded less storage space than if designed as a single multipolygon in table InfectedRegion1.

As for the indices, the SB-index required 3.14 GB while the aR-tree demanded 16.61 GB. The

main storage cost of the indices was not related to the vague regions, since the latter were ap-

proximated by MBRs. Rather, bitmap join indices of the SB-index and multidimensional arrays

of the aR-tree represented more than 99% of their storage requirements.

Figure 6.8a reports the average elapsed times spent by the DBMS, the SB-index and the

aR-tree to process the workload described in Section 6.2.2.2 over the vague SDW detailed in

Section 6.2.2.1. Configuration DBMS1 refers to the DBMS executing the template query de-

scribed in Listing 6.2, while configuration DBMS2 refers to the DBMS processing the template

query shown in Listing 6.3. Clearly, as higher the selectivity was, longer was the time spent to

process queries using the DBMS or the indices. Furthermore, the separation of the vague spatial

attribute of type multipolygon in two attributes of type polygon benefited the performance, since

DBMS2 spent less time than DBMS1 to process queries. Such finding corroborated the adop-

tion of the logical design described in Section 5.2.6 for regions with broad boundaries whose

both the certitude and the dubiety are monovalued.

However, both DBMS1 and DBMS2 spent prohibitive query response times and indicated

246 6 Physical Design of Vague Spatial Data Warehouses

the necessity of using indices to provide a better performance. As for the indices, the aR-tree

greatly overcame the DBMS and the SB-index for selectivities below 0.01, while the SB-index

overcame the DBMS and the aR-tree for selectivities of 0.01 and above. Even though, both

indices spent prohibitive times to process queries with increasing values of selectivity.

The time spent by both indices on each phase of their query processing algorithms was mea-

sured to identify the bottleneck in the performance. The fraction to resolve the spatial predicate

is reported in Figure 6.8b. Clearly, the resolution of the vague spatial predicate IRQob ject against

vague regions was a costly step to process queries over the vague SDW. As for the SB-index,

such cost augmented as the selectivity of the spatial predicate increased. For instance, it was

less than 30% for the selectivity 0.001 and greater than 70% for the selectivity 0.04. Conversely,

the cost to process IRQob ject decreased in the aR-tree for increasing values of selectivity since

the manipulation of the multidimensional arrays imposed an even larger overhead.

 (a) (b)

DBMS1 DBMS2 aR-tree SB-index

Figure 6.8: Results for the DBMS and indices for SDWs: (a) Average elapsed time. (b) Fraction of
the vague spatial predicate.

6.2.3 Vague Spatial Range Queries against Vague Regions

The following sections describe an evaluation of the DBMS and the SB-index regarding

vague regions queried by the vague spatial range query V SRQob ject , which classifies results ac-

cording to their relevance using two spatial query windows. Since the original query processing

algorithm of the SB-index does not support V SRQob ject , an adaption is proposed. The costs to

resolve the vague spatial predicate using the SB-index are also analyzed. Section 6.2.3.1 details

6.2 Evaluation of a DBMS and of Indices for Spatial Data Warehouses 247

the workbench and platforms used in the experiments, Section 6.2.3.2 describes the workload,

Section 6.2.3.3 tackles the adaption of the SB-index, and Section 6.2.3.4 reports the results.

6.2.3.1 Workbench and Platforms

The workbench comprised the vague SDW whose schema is depicted in Figure 6.9. Table

Infection stored exclusively conventional attributes, while the table InfectedRegion1 stored vague

regions implemented as multipolygons and a surrogate key referenced by the table Infection.

Although there was an 1:1 association among the values of InfectionPK and InfectedRegionGeo,

the objective of proposing such schema was to analyze whether an alternative logical design for

the vague SDW could reduce the query response time.

The tables Inspector, Date, Plot and HLBControl were identical to those described in Sec-

tion 6.2.2.1. The data generation was also similar to those described in Section 6.2.2.1. Addi-

tionally, the original table Customer of the Star Schema Benchmark (O’NEIL et al., 2009) was

renamed to Infection. The table InfectedRegion1 was created separately and was loaded with

vague regions according to the same procedure already detailed in Section 6.2.2.1.

The DBMS stored the vague SDW. The SB-index was implemented in C/C++ and its disk

page size was set to 4 KB. It was built on the column InfectedRegionGeo and its bitmap join

indices were built on the coluns RegionFK, Team, Year and QtyOfEradicatedTrees to comply with

the workload described in Section 6.2.3.2. Therefore, it processed the refinement step accessing

the column InfectedRegionGeo of type MultiPolygon. The bitmap join indices of the SB-index

were implemented using FastBit (WU et al., 2009). A slight modification on SB-index’ query

processing algorithm was developed to process V SRQob ject , as described in Section 6.2.3.3.

The hardware platform was a computer with a 3.2 GHz Pentium D processor, 8 GB of main

memory, a 7200 RPM SATA 320 GB hard disk with 8 MB of cache. The software platform

encompassed Linux CentOS 5.2, PostgreSQL 8.2.5, PostGIS 1.3.3, and FastBit 0.9.2b.

6.2.3.2 Workload

The V SRQob ject was chosen as the vague spatial predicate for the workload. The template

query detailed in Listing 6.4 fetches vague regions of the vague SDW whose schema is shown

in Figure 6.9. One sub-query classifies the results as more relevant by selecting vague regions

inside the inner spatial query window i with the conditional ST Within(InfectedRegion, i). The

other sub-query classifies the results as less relevant by selecting vague regions that intersect the

outer spatial query window o but that are not inside the inner spatial query window i with the

248 6 Physical Design of Vague Spatial Data Warehouses

HLBControl

InfectionFK : int
PlotFK : int
DateFK : int
InspectorFK : int
QtyOfEradicatedTrees : int

Inspector

InspectorPK : int
Name : varchar
Team : varchar
...

Date

DatePK
Date : date
MonthNo : int
QuarterNo : int
YearNo : int
...

Plot

PlotPK : int
PlantName : varchar
PlotGeo : Polygon
...

InfectedRegion1

RegionPK : int
MinArea : float
InfectedRegionGeo : MultiPolygon
...

Infection

InfectionPK
RegionFK : int
...

Figure 6.9: The vague SDW storing vague regions in a separate table.

conditional ST Intersects(InfectedRegion, o) AND NOT ST Within(InfectedRegion, i). The operator

UNION combines the result sets of the sub-queries. This source code in SQL can be generated

using the UDF VS RangeQueryObject described in Section 5.9.2 (Example 5.9.7).

The spatial query windows i and o were rectangular and generated such that i covered

0.25% of the extent and o covered 0.5% of the extent. Five disjoint pairs of these spatial query

windows were created. The template query was executed 5 times, i.e. once for each pair of

spatial query windows. Cache and buffers were not flushed between different queries.

Listing 6.4: The template query for the VSRQobject.

SELECT Team, Year , SUM(QtyOfEradicatedTrees) , ’ More re levan t ’
FROM Inspector , Date , I n f e c t i o n , InfectedRegion1 , HLBControl
WHERE InspectorPK = InspectorFK AND

DatePK = DateFK AND
In fec t ionPK = In fec t ionFK AND
RegionPK = RegionFK AND
Team = ’XV’ AND
ST Within (InfectedRegionGeo , i)

GROUP BY Team, Year
ORDER BY Team, Year

UNION

SELECT Team, Year , SUM(QtyOfEradicatedTrees) , ’ Less re levan t ’
FROM Inspector , Date , I n f e c t i o n , InfectedRegion1 , HLBControl
WHERE InspectorPK = InspectorFK AND

DatePK = DateFK AND

6.2 Evaluation of a DBMS and of Indices for Spatial Data Warehouses 249

In fec t ionPK = In fec t ionFK AND
InfectedRegionPK = InfectedRegionFK AND
Team = ’XV’ AND
ST In te rsec ts (InfectedRegionGeo , o) AND
NOT ST Within (InfectedRegionGeo , i)

GROUP BY Team, Year
ORDER BY Team, Year

6.2.3.3 Extending the SB-index

Since the SB-index was not originally proposed to support vague spatial range queries,

a slight modification on the SB-index’ query processing algorithm was performed to allow it

to process V SRQob ject . The principle adopted was to execute each sub-query separately and

merge their result sets. The original algorithm was kept unaltered to execute the first sub-query,

whose filter step checked whether spatial objects were within the inner spatial query window.

On the other hand, the filter step for the second sub-query checked whether the MBRs of the

spatial objects intersected the outer spatial query window. Besides, the refinement step of the

second sub-query was changed to check whether the candidates produced by the filter step both

intersected the outer spatial query window and were not within the inner spatial query window.

Finally, the access to bitmap join indices for the second sub-query was not altered.

For example, considering the template query described in Listing 6.4, the query executed in

the DBMS for the refinement step of the second sub-query is equivalent to the following SQL

query. Note that candidates is a string of comma-separated key values of the corresponding

candidates previously identified in the filter step.

SELECT RegionPK
FROM InfectedRegion1
WHERE RegionPK IN (candidates) AND

ST In te rsec ts (InfectedRegionGeo , o) AND
NOT ST Within (InfectedRegionGeo , i)

ORDER BY RegionPK

6.2.3.4 Results

Figure 6.10 compares the average elapsed times to process the workload described in Sec-

tion 6.2.3.2 over the vague SDW detailed in Section 6.2.3.1 using the SB-index and the DBMS.

The alternative logical design of the vague SDW did not benefit the performance to process

queries using the DBMS. Although the SB-index outperformed the DBMS, both spent pro-

hibitive times to process the queries, i.e. more than 90 seconds. These results corroborated the

necessity of a novel index for vague SDW to process queries encompassing vague spatial range

queries such as V SRQob ject .

250 6 Physical Design of Vague Spatial Data Warehouses

0

20

40

60

80

100

120

140

160

SB-index DBMS

El
ap

se
d

 t
im

e
 (

s)

Number of Points

DBMS

SB-index: Filter Step

SB-index: Refinement Step

SB-index: Bitmap Join Indices

Figure 6.10: Elapsed time to process VSRQobject over the vague SDW containing vague regions.

Furthermore, each step of the query processing algorithm of the SB-index was analyzed to

identify bottlenecks. The SB-index’ filter step was performed twice: one for each spatial query

window. Together, they represented the undermost fraction of 0.10% of the total elapsed time

to process the queries. On the other hand, the refinement step to check which spatial objects

are intersected by the spatial query window o but are not within the spatial query window

i consumed 69.04% of the total elapsed time. Finally, the access to the bitmap join indices

represented a fraction of around 30.86%. These results demonstrated that the refinement step

imposed the greater overhead to process queries with the vague spatial predicate V SRQob ject

using the SB-index.

6.2.4 Discussion

Sections 6.2.1 to 6.2.3 have described experimental evaluations of a DBMS and existing

indices for SDW and discussed the results concerning storage requirements for vague SDWs

and performance to process queries over vague SDWs.

Section 6.2.1 has focused a simpler type of vague spatial data, i.e. the vague point set, and

the theoretically costless vague spatial predicate CRQob ject that does not require a refinement

step. The inclusion of vague spatial data into the SDW impaired both the storage requirements

and the performance to process queries using the DBMS. Furthermore, the increase on the

complexity of vague point sets also increased both the storage requirements and the elapsed

time to process queries.

Section 6.2.2 has addressed vague regions and the vague spatial predicate IRQob ject that

requires a refinement step, aiming to increase the complexity of both the vague spatial data

type and vague spatial predicate. The results revealed that the inclusion of vague regions into

6.3 The Vague Spatial Bitmap Index 251

the SDW increased the storage requirements and that both the DBMS and indices designed for

SDW spent prohibitive times to process queries with IRQob ject . Furthermore, as the selectivity

of IRQob ject increased, longer became the query response time and more costly became the

resolution of such vague spatial predicate.

Finally, 6.2.3 has tackled vague regions and the vague spatial predicate V SRQob ject . The

latter demanded an adaption on the query processing algorithm of the SB-index, since it does

not originally supports the V SRQob ject . Similarly to the previous sections, the results revealed

that both the DBMS and the SB-index spent prohibitive times to process queries over vague

SDWs. Besides, regarding the adapted SB-index, the refinement step was identified as being

the more costly step to process queries with V SRQob ject .

The aforementioned results identified drawbacks that impair the performance to process

queries over vague SDW using the DBMS and existing indices for SDW. They have also mo-

tivated the development of an index for vague SDW to efficiently process vague spatial predi-

cates. In Section 6.3, the Vague Spatial Bitmap Index is proposed to comply with this purpose.

6.3 The Vague Spatial Bitmap Index

To propose the Vague Spatial Bitmap Index (VSB-index), some design choices were made

as follows, mainly based on the results of the experimental evaluation described in Section 6.2,

conducted for the DBMS and indices for SDWs. First, the support for regions with broad

boundaries is tackled because this type of vague region impaired both storage requirements and

the performance to process queries in vague SDW. Second, a multi-step resolution of the vague

spatial predicate is prioritized, since such resolution caused increasing overheads on query re-

sponse time. To comply with this purpose, a progressive approximation called MIP is intro-

duced. Third, spatial range queries were chosen as the vague spatial predicates to be supported

by the VSB-index, initially, to satisfy the requirements of the HLB case study. Fourth, since

queries issued over a vague SDW has also conventional predicates, aggregation and sorting,

these are processed by bitmap join indices that are commonly used in DWs.

For the sake of simplicity, the terms regions with broad boundaries and vague regions are

used interchangeably in the following sections, which detail the VSB-index. Section 6.3.1

introduces the progressive approximation MIP. Section 6.3.2 describes the data structure of the

VSB-index. Section 6.3.3 addresses the building operation of the VSB-index. Sections 6.3.4

and 6.3.5 focus on processing queries with the VSB-index according to different vague spatial

predicates.

252 6 Physical Design of Vague Spatial Data Warehouses

6.3.1 Maximum Area Inscribed Polygon

The Maximum Area Inscribed Polygon (MIP) is a progressive approximation consisting

of a polygon with x vertices. The number of vertices is the suffix, e.g. MIP5 for x = 5. The

MIP was designed to be applied specially on regions with broad boundaries and to improve

the resolution of vague spatial predicates. Figure 6.11a shows a vague region composed of the

dark grey certitude and the light grey dubiety, and a MIP5 built on the certitude with a black

contour. Note that the MIP5 built on the certitude is also a subset of the vague region. Figure

6.11b illustrates the MIP5 on the certitude and a MBR built on the vague region. The latter is

identical to the MBR built on the outer boundary of the dubiety.

(a) (b)

Figure 6.11: A vague region and its approximations: (a) The MIP5 on the certitude. (b) The MBR
on the vague region and the MIP5 on the certitude.

6.3.2 Data Structure

The data structure of the VSB-index encompasses an array and a bitmap join index, as

follows. The array has entries of the type vrbitvector (vague region bit-vector) comprising:

• one key value;

• one mandatory conservative approximation O⊇ of the vague region;

• one optional progressive approximation O⊆ of the vague region;

• one optional conservative approximation C⊇ of the certitude; and

• one optional progressive approximation C⊆ of the certitude.

The conservative approximation O⊇ is mandatory and enables processing queries. The

other approximations are optional and allow flexible data structures and query processing algo-

rithms, as described in Section 6.3.4. The aforementioned notation considers the conservative

approximation ⊇ as a superset and the progressive approximation ⊆ as a subset. Also, the vague

6.3 The Vague Spatial Bitmap Index 253

region O is the vague spatial object, while C is its certitude. The feasible configurations for

the VSB-index are, therefore: O⊇O⊆C⊇C⊆, O⊇O⊆C⊇, O⊇O⊆C⊆, O⊇O⊆, O⊇C⊇C⊆, O⊇C⊇,

O⊇C⊆ and O⊇. When approximations are selected and assigned, they replace the correspond-

ing symbols. For instance, the configuration OMBRCMIP5 holds an MBR on the vague region as

conservative approximation and a MIP5 on the certitude as progressive approximation.

In addition to the array, the VSB-index also comprises a bitmap join index created for the

key values. Therefore, each entry of the array has a corresponding bit-vector in the bitmap join

index. Every bit-vector indicates the rows in the fact table where the key value of an array entry

occurs.

6.3.3 Building Operation

The building operation of the VSB-index implements the array described in Section 6.3.2 as

a sequential file stored in secondary memory. The size in bytes of an entry is s = sizeo f (int)+

sizeo f (O⊇)+sizeo f (O⊆)+sizeo f (C⊇)+sizeo f (C⊆). Then, each disk page with l bytes main-

tains L = l DIV s entries. Some unused bytes are left at the end of each disk page to avoid the

fragmentation of an entry in two disk pages, and thus to prevent two disk accesses to obtain

a single entry. These unused bytes are U = c MOD L bytes, where c is the cardinality of the

indexed column. A header disk page stores metadata, such as the cardinality of the indexed

column. A total of A = 1+ c DIV L+ y disk pages are required to store the array of the VSB-

index implemented as a sequential file. Furthermore, A disk accesses are required to build the

sequential file. If c MOD L = 0 then y = 0, otherwise y = 1.

Example 6.3.1. Table 6.1 lists all configurations of the VSB-index and the corresponding val-

ues of s, L and A considering the MBR as conservative approximation, MIP5 as progressive

approximation, l = 8192 bytes, for both c = 129 and c = 302,357.

Table 6.1: Entry size in bytes (s), number of entries per disk page (L) and number of disk pages to
store the index file (A) considering different cardinalities (c).

Configuration s L A (c = 129) A (c = 302,357)
OMBROMIP5CMBRCMIP5 228 35 5 8,640

OMBROMIP5CMBR 148 55 4 5,499
OMBROMIP5CMIP5 196 41 5 7,376

OMBROMIP5 116 70 3 4,321
OMBRCMBRCMIP5 148 55 4 5,499

OMBRCMBR 68 120 3 2,521
OMBRCMIP5 116 70 3 4,321

OMBR 36 227 2 1,333

254 6 Physical Design of Vague Spatial Data Warehouses

Algorithm 1 details the building operation of the VSB-index. First, considering there is a

connection with the DBMS, a SQL query selects the primary key and the geometry columns

of the vague spatial attribute, sorting the results in ascending order based on the primary key

(line 1). Then, the sequential file of the VSB-index is opened (line 3). A loop iterates through

every row of the result set (lines 4-15). For each row, the key value and the approximations of

the corresponding vague region are copied to one entry of an array in the main memory, whose

type is vrbitvector (lines 5-12). The functions build O⊇ and build O⊇ build the conservative

approximation and the progressive approximation of the vague region (lines 7-8). The functions

build C⊇ and build C⊇ build the conservative approximation and the progressive approximation

of the certitude of the vague region (lines 9-10). Further, when the array becomes full (line 13),

it is written to a disk page of the sequential file (line 14). Some unused bytes are left in the disk

page (line 15). The sequential file is then closed (line 16). Finally, and a bitmap join index is

built using the key values sorted in ascending order as input (lines 17-18). As the entries of the

VSB-index remain sorted by the primary key values, idx[i] refers to the i-th bit-vector of the

bitmap join index.

Functions whose implementation are not detailed in Algorithm 1 depend on the chosen

approximations. An overview of them is provided as follows. The implementation of the

functions build O⊇ and build C⊇, which build conservative approximations, can reuse exist-

ing functions available in the DBMS. To build a MBR, ST Envelope and ST XMin, ST YMin,

ST XMax and ST YMax (OBE; HSU, 2015) can be used. Conversely, the implementation of the

functions build O⊆ and build C⊆, which build progressive approximations, can reuse functions

of libraries for computational geometry, e.g. CGAL, Computational Geometry Algorithms Li-

brary3 and the method CGAL::maximum area inscribed k gon 2 to build the MIP. Obviously,

if the configuration of the VSB-index being built does not hold a given approximation, the cor-

responding function is skipped. For instance, functions build O⊆ and build C⊇ are skipped if

the configuration is O⊇C⊆.

Finally, the implementation of the function buildBitmapJoinIndex can reuse the statement

CREATE BITMAP INDEX and specify a join in the FROM and WHERE clauses (LANE; POTINENI,

2014). Alternatively, an specific software that implements the bitmap index can be reused (WU

et al., 2009; CARNIEL; SIQUEIRA, 2012).

Example 6.3.2. The following call to the procedure buildBitmapJoinIndex builds a VSB-index

for infected regions of the table InfectedRegion depicted in Figure 5.19, considering that 302,357

vague regions are stored. The first argument is the index file name. Regarding the second

3http://www.cgal.org

6.3 The Vague Spatial Bitmap Index 255

Algorithm 1: BuildVSBindex(idx, L, U, queryVSAttribute, queryPK)
Input: idx is the sequential file of the VSB-index.
L is the maximum number of index entries that a disk page can hold.
U is the unused amount of bytes in a disk page.
queryVSAttribute is a SQL query that retrieves columns of the vague spatial attribute.
queryPK is a SQL query that retrieves primary key values.
Data: record, i, array
Result: A VSB-index.

1 record← executeDBMS(queryVSAttribute)
2 i← 0
3 open (idx)
4 while record 6= eof do
5 while i≤ L and record 6= eof do
6 array[i].pk← record.pk
7 array[i].O⊇← buildO⊇(record.o)
8 array[i].O⊆← buildO⊆(record.o)
9 array[i].C⊇← buildC⊇(record.c)

10 array[i].C⊆← buildC⊆(record.c)
11 i← i + 1
12 record.next()

13 i← 0
14 write (array, idx)
15 forward (U, idx)

16 close (idx)
17 record← executeDBMS(queryPK)
18 buildBitmapJoinIndex(record)

argument, Table 6.1 indicates that configuration OMBROMIP5 of the VSB-index has entries that

require 116 bytes of storage space. Then, each disk page with 8192 bytes maintains L = 8192

DIV 116 = 70 entries. Concerning the third argument, U = 302,357 MOD 70 = 72 bytes. The

fourth argument is a SQL query that selects key values, the merged geometries and geometries

of certitude elements from the infections. The fifth argument is a SQL query that selects key

values of infections.

BuildVSBindex (‘ v s b i n d e x i n f e c t i o n . bin ’ ,
70 ,
72 ,
‘SELECT RegionId as pk ,

InfectedRegion MergedElementsGeo AS o ,
VS CertitudeGeo (InfectedRegion ElementsGeo ,

InfectedRegion ElementsMval) AS c
FROM InfectedRegion
ORDER BY RegionId ’ ,
‘SELECT RegionId as pk FROM InfectedRegion ORDER BY RegionId ’

)

256 6 Physical Design of Vague Spatial Data Warehouses

over the vague SDW whose schema is depicted in .

6.3.4 Processing Queries containing Spatial Range Queries

The VSB-index has algorithms to process queries issued to vague SDWs that have spa-

tial range queries as the vague spatial predicate. It resolves IRQob ject , CRQob ject , IRQcertitude,

CRQcertitude, IRQdubiety, and CRQdubiety spatial range queries through a multi-step resolution of

the vague spatial predicate, a key matching and the subsequent access to efficient bitmap join

indices. The multi-step resolution of the vague spatial predicate comprises a filter step and a

refinement step. The filter step is implemented as a sequential scan on the sequential file, which

requires A disk accesses, as shown in Table 6.1, depending on the available conservative and

progressive approximations. The filter step produces a set of key values of the candidates that

satisfy the vague spatial predicate. Such set is used in the refinement step to fetch the corre-

sponding geometries and verify which of them are answers of the vague spatial predicate. The

key values of the answers compose another set. Once every key value matches one vague spatial

object, the set of answers is used to create a conventional predicate that replaces the correspond-

ing vague spatial predicate of the query. Finally, the rewritten query is processed by bitmap join

indices.

Algorithm 2 details how the VSB-index processes a query. First, the sequential file is

opened and read to fetch the number of index entries per disk page and which configuration of

the VSB-index is implemented (lines 1-5). Then, the filter step is performed (line 6). If there are

candidates produced by the filter step, the refinement step is executed accessing the DBMS and

providing the key values of the candidates (lines 7-8). Note that answers previously fetched in

the filter step are not overwritten. If answers were retrieved by the filter or the refinement steps,

then a string is composed with such answers (lines 9-10). The string replaces the original vague

spatial predicate of the query (line 11). The rewritten query is, then, processed by accessing

bitmap join indices (line 12). Finally, the result set of the query is returned (line 13).

Example 6.3.3. The following call to the procedure ProcessSpatialRangeQuery processes the

query described in Example 5.9.4 over the vague SDW whose schema is depicted in Figure 5.19.

Note that vsbindex.bin is the index file, query594 is the SQL query described in Example 5.9.4,

IRQobject indicates the vague spatial predicate, w is the spatial query window, the SELECT state-

ment describes the SQL query to perform the refinement step, and InfectedRegionId is the column

with the primary key to enable key matching.

ProcessSpatialRangeQuery (
‘ vsbindex . bin ’ ,

6.3 The Vague Spatial Bitmap Index 257

Algorithm 2: ProcessSpatialRangeQuery(idx, query, vsPredicate, window, queryRefine-
ment, pkColumn)

Input: idx is the sequential file of the VSB-index
query is the query issued over the vague SDW
vsPredicate is the vague spatial predicate
window is the spatial query window
queryRefinement is the SQL query for the refinement step
pkColumn is the column that has a primary key and is used for keymatching
Data: header, L, vsbIndexConfig, setAnswers, setCandidates, conventionalPredicate,

resultSet
Result: The result set of the query.

1 open (idx)
2 read(idx, header)
3 close(idx)
4 L← getL(header)
5 vsbIndexConfig← getConfig(header)
6 executeFilterStep(vsbIndexConfig, L, vsPredicate, window, setCandidates, setAnswers,

idx)
7 if setCandidates is not empty then
8 setAnswers← setAnswers + executeRefinementStep(queryRefinement,

setCandidates)
9 if setAnswers is not empty then

10 conventionalPredicate← ’AND’ + pkColumn + ’IN (’ + toString(setAnswers) +’)’
11 replaceVSPredicate (query, conventionalPredicate)
12 resultSet← executeBitmapJoinIndex(query)

13 return resultSet

query594 ,
’ IRQobject ’ ,

w,
’SELECT In fec t ionPK FROM I n f e c t i o n WHERE In fec t ionPK IN (%)
AND ST In te rsec ts (InfectedRegion MergedElementsGeo , w) ’ ,
’ In fectedRegionId ’

)

Algorithm 2 does not specify how the filter step is executed (line 6). In fact, the routine

executeFilterStep has a single decision structure (e.g. IF) that, based on the VSB-index config-

uration vsbindexConfig and the type of vague spatial predicate vsPredicate, calls one procedure

that processes the filter step. Only one call is necessary independently from configuration and

vague spatial predicate. These procedures are f1, f2, f3 and f4. The procedures f1 and f2 are

described in Sections 6.3.4.1 and 6.3.4.2, respectively, while the procedures f3 and f4 are de-

scribed in Appendix B. Particularities of querying the dubiety (IRQdubiety and CRQdubiety) are

described in Section 6.3.4.3. There are 48 possible calls to procedures to resolve the filter step

using one of the 8 configurations of the VSB-index. Calls to procedures f1 and f2 comprise 44

258 6 Physical Design of Vague Spatial Data Warehouses

of them, as detailed in Section 6.3.4.4.

After the filter step, the refinement step is performed by the function executeRefinementStep

in Algorithm 2 (line 8) if there are candidates. Basically, executeRefinementStep requires a

connection to the DBMS to issue a query that checks which of the candidates, i.e. vague regions

represented by their key values in setCandidates, are answers of the vague spatial predicate.

After the refinement step, the query is rewritten and submitted for execution using bitmap join

indices with the function executeBitmapJoinIndex, whose implementation can reuse bitmap join

indices of the DBMS (LANE; POTINENI, 2014) or bitmap join indices implemented by specific

software (WU et al., 2009).

6.3.4.1 Filtering with a Conservative Approximation

Algorithm 3 describes the procedure f1, which performs the filter step using strictly one

conservative approximation. In detail, the procedure f1 performs a sequential scan over the

index file (lines 2-7), which retrieves each disk page (line 3) and temporarily stores it in the

main memory (line 4). Function get obtains the conservative approximation of every entry

transferred to main memory (line 6). Such conservative approximation is O⊇ or C⊇, depending

on the parameter passed, and is tested against the spatial query window w (line 6). If the

topological relationship is satisfied, the entry’s primary key value is appended to a set (line 7).

Finally, the index file is closed (line 8). The aforementioned set might be the set of candidates

or the set of answers, depending on the parameter passed.

Algorithm 3: f1(R, window, conservative, set, idx, L)
Input: R is a topological relationship
window is a spatial query window
conservative is a conservative approximation
set is a set of answers or a set of candidates
idx is the sequential file of the VSB-index
L the number of VSB-index’ entries that a disk page can hold.
Data: page, array
Result: A set of answers or candidates of the vague spatial predicate.

1 open (idx)
2 while not eof(idx) do
3 read (idx, page)
4 copy (page, array)
5 for i← 0 to L do
6 if R(get(array[i], conservative), window) then
7 append(set, array[i].pk)

8 close(idx)

6.3 The Vague Spatial Bitmap Index 259

Example 6.3.4. The configuration O⊇ implemented as OMBR processes a CRQob ject by calling

the procedure f1 with:

f1(within, w, O⊇, setAnswers, idxFile, L).

Note that the MBR of the vague region and the set of answers setAnswers are passed as pa-

rameters. Consider that the MBR of the vague region is within the spatial query window w, as

shown in Figure 6.12a. Then, the corresponding key value is added to the set of answers. It is

noteworthy that the configuration O⊇ identifies answers of CRQob ject already in the filter step

and produces a set of answers, but does not produce a set of candidates. As a result, the costly

refinement step is skipped.

Example 6.3.5. The configuration O⊇C⊇ implemented as OMBRCMBR processes a CRQcertitude

by calling the procedure f1 with:

f1 (within, w, C⊇, setAnswers, idxFile, L).

The MBR of the certitude and the set of answers setAnswers are passed as parameters. Consider

that the MBR of the certitude is within the spatial query window w, as shown in Figure 6.12b.

Then, the corresponding key value is added to the set of answers. The configuration O⊇C⊇,

therefore, skips the refinement step to process a CRQcertitude.

(a) (b) (c) (d) (e)

Figure 6.12: A vague region in tones of gray, its approximations with black continuous contour
and spatial range queries with dashed rectangles: (a) A CRQob ject against OMBR. (b) A CRQcertitude
against OMBRCMBR. (c) An IRQob ject against OMBRCMIP5. (d) Another IRQob ject against OMBRCMIP5.
(e) An IRQcertitude against OMBROMIP5CMBRCMIP5.

6.3.4.2 Filtering with a Conservative Approximation and a Progressive Approximation

Algorithm 4 describes the procedure f2, which performs the filter step using both a conser-

vative approximation and a progressive approximation. To identify answers already in the filter

step, the procedure f2 performs a sequential scan that tests the conservative approximation and

subsequently tests the progressive approximation. For each entry (lines 5-10), if the topological

relationship is satisfied for both the conservative and progressive approximations, the entry is

considered as an answer and its primary key value is stored in the set of answers (lines 6-8).

260 6 Physical Design of Vague Spatial Data Warehouses

However, if only the conservative approximation satisfies the topological relationship, the entry

is considered as a candidate and its primary key value is stored in the set of candidates (line 10).

Algorithm 4: f2(R, window, conservative, progressive, setCandidates, setAnswers, idx,
L)

Input: R is a topological relationship
window is a spatial query window
conservative is a conservative approximation
progressive is a progressive approximation
setCandidates is a set of candidates
setAnswers is a set of answers
idx is the sequential file of the VSB-index
L the number of VSB-index’ entries that a disk page can hold.
Data: page, array
Result: The set of answers and the set of candidates of the vague spatial predicate.

1 open (idx)
2 while not eof(idx) do
3 read (idx, page)
4 copy (page, array)
5 for i← 0 to L do
6 if R(get(array[i], conservative), window) then
7 if R(get(array[i], progressive), window) then
8 append(setAnswers, array[i].pk)
9 else

10 append(setCandidates, array[i].pk)

11 close(idx)

Example 6.3.6. The configuration O⊇C⊆ implemented as OMBRCMIP5 processes an IRQob ject

by calling the procedure f2 as:

f2 (intersects, window, O⊇, C⊆, setCandidates, setAnswers, idxFile, L).

The MBR of the vague region and the MIP5 of the certitude are passed as parameters. Consider

that the MBR of the vague region and the MIP5 of the certitude intersect the spatial query

window w, as shown in Figure 6.12c. Then, the corresponding key value is added to the set of

answers. Conversely, consider that the MBR of the vague region intersects the spatial query

window w and the MIP5 of the certitude does not intersect w, as shown in Figure 6.12d. Then,

the corresponding key value is added to the set of candidates. A subsequent refinement step to

check whether the candidates satisfy IRQob ject is mandatory.

In Example 6.3.6, the cost of the refinement step might be decreased since answers of

the vague spatial predicate are already identified in the filter step. Although the progressive

approximation of the certitude can aid to identify answers of IRQob ject , the benefit might not be

6.3 The Vague Spatial Bitmap Index 261

significant if the area of the certitude is relatively small, as shown in Figure 6.12d.

Example 6.3.7. The configuration O⊇O⊆C⊇C⊆ implemented as OMBROMIP5CMBRCMIP pro-

cesses an IRQcertitude by calling the procedure f2 as:

f2 (intersects, window, C⊇, C⊆, setCandidates, setAnswers, idxFile, L).

The MBR and the MIP5 of the certitude are passed as parameters. Consider that both the MBR

and the MIP5 of the certitude intersect the spatial query window w, as shown in Figure 6.12e.

Then, the corresponding key value is added to the set of answers. A subsequent refinement step

is still mandatory.

In Example 6.3.7, the cost of the refinement step might be decreased due to the identification

of answers of the vague spatial predicate already in the filter step.

6.3.4.3 Particularities of Querying the Dubiety

The resolutions of CRQob ject and CRQdubiety are the same due to the following reasons.

It is well-known that a conservative approximation is a superset built on the boundary of an

object. If the object is a vague region, then its “boundary” is equal to the outer boundary of

its dubiety. As a result, a conservative approximation of a region with broad boundaries is

equal to a conservative approximation of its dubiety, as exemplified in Figure 6.13a using the

MBR. If the conservative approximation of an object is within a spatial query window, then it

is feasible to conclude that the object is also within the spatial query window. Consequently, if

a conservative approximation of the dubiety is within a spatial query window, then it is feasible

to conclude that the dubiety is also within the spatial query window. Since every configuration

of the VSB-index holds a conservative approximation of the vague region, which is also a

conservative approximation of the dubiety, CRQob ject and CRQdubiety have the same resolution.

The IRQdubiety is resolved as an IRQob ject in the majority of cases. The only exception

regards to a spatial query window that is within the certitude and does not touch the boundary

of the certitude, as shown in Figure 6.13b. In other words, the spatial query window is within

the hole of the dubiety and does not touch the inner boundary of the dubiety. To avoid the

retrieval of false answers, an additional refinement step must assess every vague region in the

set of answers to check whether the dubiety and the spatial query window are disjoint. Those

vague regions whose dubiety is disjoint from the spatial query window are, therefore, removed

from the set of answers of IRQdubiety.

The cost of such additional refinement step comprises the extraction of the vague regions’

dubiety and the subsequent verification of disjointness. The cost might be low if the spatial

262 6 Physical Design of Vague Spatial Data Warehouses

query window is within the certitude of a single or a few vague regions. Nevertheless, if the

vague regions overlap each other, then the spatial query window might be in the hole of the

dubiety of several vague regions, as shown in Figure 6.13c. As a result, the cost of the additional

refinement step may add a more significant overhead to the query response time.

Certitude Dubiety

MBR w

(a)

Certitude Dubiety

w

(b)

Certitude Dubiety

w

(c)

Figure 6.13: A vague region, its elements and vague spatial predicates regarding the dubiety: (a)
A CRQdubiety. (b) An IRQdubiety. (c) A query window into the holes.

6.3.4.4 Calling the Procedures

The decision about which procedure the VSB-index calls to perform the filter step of the

vague spatial predicate resolution depends on the available approximations and the type of

vague spatial predicate issued. For each configuration of the VSB-index, the calls made to

procedures f1 and f2 in order to resolve IRQob ject , IRQcertitude, and IRQdubiety are:

O⊇O⊆C⊇C⊆ IRQob ject : f2 (intersects, w, O⊇, O⊆, setCandidates, setAnswers, idx, L)

IRQdubiety: f2 (intersects, w, O⊇, O⊆, setCandidates, setAnswers, idx, L)

IRQcertitude: f2 (intersects, w, C⊇, C⊆, setCandidates, setAnswers, idx, L)

O⊇O⊆C⊇ IRQob ject : f2 (intersects, w, O⊇, O⊆, setCandidates, setAnswers, idx, L)

IRQdubiety: f2 (intersects, w, O⊇, O⊆, setCandidates, setAnswers, idx, L)

IRQcertitude: f1(intersects, w, C⊇, setCandidates, idx, L)

O⊇O⊆C⊆ IRQob ject : f2 (intersects, w, O⊇, O⊆, setCandidates, setAnswers, idx, L)

IRQdubiety: f2 (intersects, w, O⊇, O⊆, setCandidates, setAnswers, idx, L)

IRQcertitude: f2 (intersects, w, O⊇, C⊆, setCandidates, setAnswers, idx, L)

O⊇O⊆ IRQob ject : f2 (intersects, w, O⊇, O⊆, setCandidates, setAnswers, idx, L)

IRQdubiety: f2 (intersects, w, O⊇, O⊆, setCandidates, setAnswers, idx, L)

IRQcertitude: f1(intersects, w, O⊇, setCandidates, idx, L)

6.3 The Vague Spatial Bitmap Index 263

O⊇C⊇C⊆ IRQob ject : f2 (intersects, w, O⊇, C⊆, setCandidates, setAnswers, idx, L)

IRQdubiety: f2 (intersects, w, O⊇, C⊆, setCandidates, setAnswers, idx, L)

IRQcertitude: f2 (intersects, w, C⊇, C⊆, setCandidates, setAnswers, idx, L)

O⊇C⊇ IRQob ject : f1(intersects, w, O⊇, setCandidates, idx, L)

IRQdubiety: f1(intersects, w, O⊇, setCandidates, idx, L)

IRQcertitude: f1(intersects, w, C⊇, setCandidates, idx, L)

O⊇C⊆ IRQob ject : f2 (intersects, w, O⊇, C⊆, setCandidates, setAnswers, idx, L)

IRQdubiety: f2 (intersects, w, O⊇, C⊆, setCandidates, setAnswers, idx, L)

IRQcertitude: f2 (intersects, w, O⊇, C⊆, setCandidates, setAnswers, idx, L)

O⊇ IRQob ject : f1(intersects, w, O⊇, setCandidates, idx, L)

IRQdubiety: f1(intersects, w, O⊇, setCandidates, idx, L)

IRQcertitude: f1(intersects, w, O⊇, setCandidates, idx, L)

Furthermore, for each configuration of the VSB-index, the calls made to procedures f1, f2,

f3 and f4 in order to resolve CRQob ject , CRQcertitude, and CRQdubiety are:

O⊇O⊆C⊇C⊆ CRQob ject : f1 (within, w, O⊇, setAnswers, idx, L)

CRQdubiety: f1 (within, w, O⊇, setAnswers, idx, L)

CRQcertitude: f1 (within, w, C⊇, setAnswers, idx, L)

O⊇O⊆C⊇ CRQob ject : f1 (within, w, O⊇, setAnswers, idx, L)

CRQdubiety: f1 (within, w, O⊇, setAnswers, idx, L)

CRQcertitude: f1 (within, w, C⊇, setAnswers, idx, L)

O⊇O⊆C⊆ CRQob ject : f1 (within, w, O⊇, setAnswers, idx, L)

CRQdubiety: f1 (within, w, O⊇, setAnswers, idx, L)

CRQcertitude: f4(R, w, O⊇, C⊆, setAnswers, setCandidates, idx, L)

O⊇O⊆ CRQob ject : f1 (within, w, O⊇, setAnswers, idx, L)

CRQdubiety: f1 (within, w, O⊇, setAnswers, idx, L)

CRQcertitude: f3(R, w, O⊇, setAnswers, setCandidates, idx, L)

O⊇C⊇C⊆ CRQob ject : f1 (within, w, O⊇, setAnswers, idx, L)

CRQdubiety: f1 (within, w, O⊇, setAnswers, idx, L)

CRQcertitude: f4(R, w, O⊇, C⊆, setAnswers, setCandidates, idx, L)

O⊇C⊇ CRQob ject : f1 (within, w, O⊇, setAnswers, idx, L)

CRQdubiety: f1 (within, w, O⊇, setAnswers, idx, L)

CRQcertitude: f1 (within, w, C⊇, setAnswers, idx, L)

264 6 Physical Design of Vague Spatial Data Warehouses

O⊇C⊆ CRQob ject : f1 (within, w, O⊇, setAnswers, idx, L)

CRQdubiety: f1 (within, w, O⊇, setAnswers, idx, L)

CRQcertitude: f4(R, w, O⊇, C⊆, setAnswers, setCandidates, idx, L)

O⊇ CRQob ject : f1 (within, w, O⊇, setAnswers, idx, L)

CRQdubiety: f1 (within, w, O⊇, setAnswers, idx, L)

CRQcertitude: f3(R, w, O⊇, setAnswers, setCandidates, idx, L)

6.3.5 Processing Queries Containing a Vague Spatial Range Query

The vague spatial range query, or simply V SRQ, was introduced by the VSCube conceptual

model in Section 4.5.2. A V SRQ uses a pair of concentric spatial query windows inner and

outer, where the former is the innermost and the latter is the outermost, as well as evaluates the

spatial predicate containment twice and the spatial predicate intersects once. In Section 5.9.2,

the resolution of the V SRQ creates two sub-queries. One tests containment against inner, while

the other tests intersects and not containment against outer. Finally, an union is then applied to

the result sets of the sub-queries.

The VSB-index also resolves queries containing a V SRQ and separates the two sub-queries.

It firstly performs a multi-step resolution of the spatial predicates, then executes a key matching

and finally processes efficient bitmap join indices. Compared to the resolution of spatial range

queries described in Section 6.3.4, the main difference is the filter step. Instead of testing each

entry against a single predicate, both containment and intersects are tested. The refinement step

is only executed for the candidates of the predicate intersects. The key matching rewrites the

pair of sub-queries, which are separately submitted for processing using bitmap join indices.

Finally, the result sets of the sub-queries are merged.

Algorithm 5 details the aforementioned procedure. The sequential file is opened and read

to fetch the number of index entries per disk page and which configuration of the VSB-index

is implemented (lines 1-5). Then, the filter step is performed (line 6). If there are candidates

produced by the filter step, the refinement step is executed accessing the DBMS and providing

the key values of the candidates (lines 7-8). Note that answers previously identified in the filter

step are kept and answers found in the refinement step are appended. If there are answers for

the spatial predicate containment (line 9), a string is composed with such answers (line 10).

The string replaces the original spatial predicate of the sub-query (line 11) and the rewritten

sub-query is processed by accessing bitmap join indices (line 12). If there are answers for the

spatial predicate intersects, the same steps are performed for its sub-query (lines 13-16). Finally,

the result set of the query is the union of the result sets gathered for the sub-queries (line 17).

6.3 The Vague Spatial Bitmap Index 265

Algorithm 5: ProcessVagueSpatialRangeQuery(idx, vsrqType, windowIn, subQueryIn,
windowOut, subQueryOut, refinementOut, pkColumn)

Input: idx is the sequential file of the VSB-index
vsrqType is the type of VSRQ
windowIn is the inner spatial query window
subQueryIn is the sub-query regarding windowIn
windowOut is the outer spatial query window
subQueryOut is the sub-query regarding windowOut
refinementOut is the SQL query for the refinement step involving windowOut
pkColumn is the column that has a primary key and is used for keymatching
Data: header, L, vsbIndexConfig, setAnswersIn, setCandidatesIn, setAnswersOut,

setCandidatesOut, conventionalPredicate, resultSetIn, resultSetOut
Result: The result set of the query.

1 open (idx)
2 read(idx, header)
3 close(idx)
4 L← getL(header)
5 vsbIndexConfig← getConfig(header)
6 executeFilterStepVSRQ(vsbIndexConfig, L, vsrqType, windowIn, setAnswersIn,

windowOut, setCandidatesOut, setAnswersOut, idx)
7 if setCandidatesOut is not empty then
8 setAnswersOut← setAnswersOut + executeRefinementStep(refinementOut,

setCandidatesOut)
9 if setAnswersIn is not empty then

10 conventionalPredicate← ‘AND ’+pkColumn+‘ IN (’ + toString(setAnswersIn)+‘)’
11 replacePredicate(subQueryIn, conventionalPredicate)
12 resultSetIn← executeBitmapJoinIndex(subQueryIn)

13 if setAnswersOut is not empty then
14 conventionalPredicate← ‘AND ’+pkColumn+‘ IN (’ + toString(setAnswersOut)+‘)’
15 replacePredicate (subQueryOut, conventionalPredicate)
16 resultSetOut← executeBitmapJoinIndex(subQueryOut)

17 return resultSetIn union resultSetOut

Algorithm 5 does not specify how the filter step is executed (line 6). In fact, the routine

executeFilterStepVSRQ has a single decision structure (e.g. IF) that, based on the VSB-index

configuration in vsbindexConfig and the type of V SRQ in vsrqType, calls one procedure that pro-

cesses the filter step. The type of vague spatial predicate is one of the following: V SRQob ject ,

V SRQcertitude and V SRQdubiety. Only one call is necessary independently from configuration

and vague spatial predicate. Two of these procedures are fvsrq1 and fvsrq2, detailed in Sec-

tions 6.3.5.1 and 6.3.5.2, respectively. The calls to procedures fvsrq1 and fvsrq2 are detailed in

Section 6.3.5.3. After the filter step, the refinement step is performed and bitmap join indices

are accessed analogously to Section 6.3.4.

266 6 Physical Design of Vague Spatial Data Warehouses

6.3.5.1 Filtering with a Conservative Approximation

The procedure fvsrq1 detailed in Algorithm 6 processes the filter step for configurations of

the VSB-index that do not have a progressive approximation, i.e. O⊇ and O⊇C⊇. In detail, the

procedure fvsrq1 performs a sequential scan over the sequential file (lines 2-15) that retrieves

each disk page (line 3) and temporally stores it in the main memory (line 4). Another loop

tests the approximations of each entry against both the inner spatial query window and the outer

spatial query window, as follows (lines 5-15).

First, if the conservative approximation is within the inner spatial query window, then the

corresponding key value is added to the set of answers regarding the inner spatial query window

(lines 7-8). Also, the loop is skipped to the next iteration (lines 9-10). Considering that the first

test has not yielded true, then a second test verifies whether the conservative approximation is

within the outer spatial query window (line 11). If so, the corresponding key value is added to

the set of answers regarding the outer spatial query window (line 11). If not, a third test checks

whether the progressive approximation intersects the outer spatial query window (line 14). If

they intersect, then the corresponding key value is added to the set of candidates regarding the

outer spatial query window (line 15). Finally, the sequential file is closed (line 16).

Example 6.3.8. Suppose that a V SRQob ject is issued using the spatial query windows i (inner)

and o (outer) as shown in Figure 6.14a against the MBRs associated with the key values 1, 2

and 3 also shown in Figure 6.14a, which refer to a VSB-index OMBR. Then, the following call

to the procedure fvsrq1 described in Algorithm 6 is made:

fvsrq1(i, o, OMBR, setAnswersIn, setAnswersOut, idxFile, L).

The key value 1 is added to the set of answers of the inner spatial query window, setAnswersIn,

since the corresponding MBR is within i (lines 7-10). The key value 2 is added to the set of

answers of the outer spatial query window, setAnswersOut, since the corresponding MBR is

not within i but is within o (lines 7, 11-12). Finally, the key value 3 is added to the set of

candidates of the outer spatial query window, setCandidatesOut, since the corresponding MBR

is not within i, is not within o, but intersects o (lines 7, 11, 13-15). Since setCandidatesOut

has the key value 3, the geometry corresponding to the key value 3 is retrieved and processed,

afterwards, in the refinement step.

In contrast with the procedures described in Section 6.3.4 that evaluate a single spatial

predicate per entry, the procedure fvsrq1 evaluates the predicates containment and intersects

for each entry. A resolution of the predicate containment is mandatory and tests the conserva-

tive approximation against the inner spatial query window. Another resolution of the predicate

6.3 The Vague Spatial Bitmap Index 267

Algorithm 6: fvsrq1(windowIn, windowOut, conservative, setAnswersIn, setAnswer-
sOut, setCandidatesOut, idx, L)

Input: windowIn is the inner spatial query window
windowOut is the outer spatial query window
conservative is a conservative approximation
setAnswersIn is a set of answers regarding windowIn
setAnswersOut is a set of answers regarding windowOut
setCandidatesOut is a set of candidates regarding windowOut
idx is the sequential file of the VSB-index
L the number of VSB-index’ entries that a disk page can hold.
Data: page, array, i
Result: A set of answers or candidates of the vague spatial predicate.

1 open (idx)
2 while not eof(idx) do
3 read (idx, page)
4 copy (page, array)
5 i← 0
6 while i ≤ L do
7 if Within(get(array[i], conservative), windowIn) then
8 append(setAnswersIn, array[i].pk)
9 i← i + 1

10 continue
11 if Within(get(array[i], conservative), windowOut) then
12 append(setAnswersOut, array[i].pk)
13 else
14 if Intersects(get(array[i], conservative), windowOut) then
15 append(setCandidatesOut, array[i].pk)

16 close(idx)

containment occurs only if the previous test yielded false. It tests the conservative approxima-

tion against the outer spatial query window, because containment is one subtype of intersects

and if the test yields true, then the entry is considered an answer. The resolution of the predicate

intersects occurs only if the previous test yielded false and tests the conservative approximation

against the outer spatial query window. On the one hand, checking at least one and at most

three spatial predicates per entry adds an overhead. On the other hand, it can reduce the set of

candidates to be checked in the refinement step and, then, benefit the performance to process

the query.

268 6 Physical Design of Vague Spatial Data Warehouses

6.3.5.2 Filtering with a Conservative Approximation and a Progressive Approximation

The procedure fvsrq2 detailed in Algorithm 7 processes the filter step for configurations of

the VSB-index that have a progressive approximation. In detail, the procedure fvsrq2 performs

a sequential scan over the sequential file (lines 2-18) that retrieves each disk page (line 3) and

temporally stores it in the main memory (line 4). Another loop tests the approximations of each

entry against both the inner spatial query window and the outer spatial query window, as follows

(lines 7-18).

First, if the conservative approximation is within the inner spatial query window, then the

corresponding key value is added to the set of answers regarding the inner spatial query window

(lines 7-8). Also, the loop is skipped to the next iteration (lines 9-10). Considering that the first

test has not yielded true, then a second test verifies whether the conservative approximation is

within the outer spatial query window (line 11). If so, the corresponding key value is added

to the set of answers regarding the outer spatial query window (line 12). Otherwise, the key

value is considered an answer or a candidate regarding the outer spatial query window, depend-

ing on the following conditions. To be an answer, both the conservative and the progressive

approximations intersect the outer spatial query window (lines 14-16). To be a candidate, only

the conservative approximation intersects the outer spatial query window (lines 14-15, 17-18).

Finally, the sequential file is closed (line 19).

i

o

1

2

3

(a)

i

o

1

2

3

(b)

Figure 6.14: Vague spatial range queries. (a) Against MBRs. (b) Against MBRs and MIP5s.

Example 6.3.9. Suppose that a V SRQob ject is issued using the spatial query windows i (inner)

and o (outer) as shown in Figure 6.14b against the MBRs associated with the key values 1, 2

and 3 also shown in Figure 6.14b, which refer to a VSB-index OMBROMIP5CMBRCMIP5. Then,

the following call to the procedure fvsrq2 described in Algorithm 7 is made: fvsrq2(i, o, OMBR,

OMIP5, setAnswersIn, setAnswersOut, idxFile, L). The key value 1 is added to the set of an-

swers of the inner spatial query window, setAnswersIn, since the corresponding MBR is within

i (lines 7-10). The key value 2 is added to the set of answers of the outer spatial query window,

setAnswersOut, since the corresponding MBR is not within i but is within o (lines 7, 11-12).

6.3 The Vague Spatial Bitmap Index 269

Algorithm 7: fvsrq2(windowIn, windowOut, conservative, progressive, setAnswersIn,
setAnswersOut, setCandidatesOut, idx, L)

Input: windowIn is the inner spatial query window
windowOut is the outer spatial query window
conservative is a conservative approximation
progressive is a progressive approximation
setAnswersIn is a set of answers regarding windowIn
setAnswersOut is a set of answers regarding windowOut
setCandidatesOut is a set of candidates regarding windowOut
idx is the sequential file of the VSB-index
L the number of VSB-index’ entries that a disk page can hold.
Data: page, array, i
Result: A set of answers or candidates of the vague spatial predicate.

1 open (idx)
2 while not eof(idx) do
3 read (idx, page)
4 copy (page, array)
5 i← 0
6 while i ≤ L do
7 if Within(get(array[i], conservative), windowIn) then
8 append(setAnswersIn, array[i].pk)
9 i← i + 1

10 continue
11 if Within(get(array[i], conservative), windowOut) then
12 append(setAnswersOut, array[i].pk)
13 else
14 if Intersects(get(array[i], conservative), windowOut) then
15 if Intersects(get(array[i], progressive), windowOut) then
16 append(setAnswersOut, array[i].pk)
17 else
18 append(setCandidatesOut, array[i].pk)

19 close(idx)

Finally, the key value 3 is added to the set of answers of the outer spatial query window, setCan-

didatesOut, since the corresponding MBR is not within i, is not within o, but intersects o (lines

7, 11, 13-16) and its MIP5 also intersects o. Note that a subsequent refinement is unnecessary

because the set of candidates regarding o is empty.

The procedure fvsrq2 also evaluates the predicates containment and intersects for each

entry. On the one hand, checking at least one and at most four spatial predicates per entry

adds an overhead. On the other hand, it can reduce the set of candidates to be checked in

the refinement step and, then, benefit the performance to process the query. The procedure

270 6 Physical Design of Vague Spatial Data Warehouses

fvsrq2 requires processing more vertices than the procedure fvsrq1, since the former accesses

progressive approximations, while the latter accesses conservative approximations. However,

the use of progressive approximations in procedure fvsrq2 allows reducing even more the set of

candidates if compared to the procedure fvsrq1, used in Examples 6.3.8 and 6.3.9.

The calls made to procedures fvsrq1 and fvsrq2, depend on the configuration of the VSB-

index and the type of V SRQ. These calls are listed in Section 6.3.5.3.

6.3.5.3 Calling the Procedures

For each configuration of the VSB-index, the calls made to routines fvsrq1 and fvsrq2 to

resolve V SRQob ject , V SRQcertitude, and V SRQdubiety are the following. The parameters setAn-

swersIn, setAnswersOut, setCandidatesOut, and idx were omitted for the sake of simplicity.

O⊇O⊆C⊇C⊆ V SRQob ject : fvsrq2(wIn, wOut, O⊇, O⊆, ..., L)

V SRQdubiety: fvsrq2(wIn, wOut, O⊇, O⊆, ..., L)

V SRQcertitude: fvsrq2(wIn, wOut, C⊇, C⊆, ..., L)

O⊇O⊆C⊇ V SRQob ject : fvsrq2(wIn, wOut, O⊇, O⊆, ..., L)

V SRQdubiety: fvsrq2(wIn, wOut, O⊇, O⊆, ..., L)

V SRQcertitude: fvsrq1(wIn, wOut, C⊇, ..., L)

O⊇O⊆C⊆ V SRQob ject : fvsrq2(wIn, wOut, O⊇, O⊆, ..., L)

V SRQdubiety: fvsrq2(wIn, wOut, O⊇, O⊆, ..., L)

V SRQcertitude: fvsrq1(wIn, wOut, C⊇, ..., L)

O⊇O⊆ V SRQob ject : fvsrq2(wIn, wOut, O⊇, O⊆, ..., L)

V SRQdubiety: fvsrq2(wIn, wOut, O⊇, O⊆, ..., L)

V SRQcertitude: -

O⊇C⊇C⊆ V SRQob ject : fvsrq1(wIn, wOut, O⊇, ..., L)

V SRQdubiety: fvsrq1(wIn, wOut, O⊇, ..., L)

V SRQcertitude: fvsrq2(wIn, wOut, C⊇, C⊆, ..., L)

O⊇C⊇ V SRQob ject : fvsrq1(wIn, wOut, O⊇, ..., L)

V SRQdubiety: fvsrq1(wIn, wOut, O⊇, ..., L)

V SRQcertitude: fvsrq1(wIn, wOut, C⊇, ..., L)

O⊇C⊆ V SRQob ject : fvsrq1(wIn, wOut, O⊇, ..., L)

V SRQdubiety: fvsrq1(wIn, wOut, O⊇, ..., L)

V SRQcertitude: -

6.4 Evaluation of the VSB-index 271

O⊇ V SRQob ject : fvsrq1(wIn, wOut, O⊇, ..., L)

V SRQdubiety: fvsrq1(wIn, wOut, O⊇, ..., L)

V SRQcertitude: -

6.4 Evaluation of the VSB-index

The prohibitive performance of the DBMS and exiting indices for SDWs identified in Sec-

tion 6.2 motivated the development of the VSB-index that was detailed in Section 6.3. An

experimental evaluation of the VSB-index is essential to corroborate the feasibility of its uti-

lization in vague SDWs. The experiments described in the following sections aims to:

• store and query vague spatial regions with different characteristics;

• process vague spatial predicates that assess the vague spatial region, its certitude, and its

dubiety;

• verify the influence of increasing the selectivity of the vague spatial predicate over the

performance to process queries;

• discuss the benefits of using the MIP as progressive approximation;

• identify the most efficient VSB-index configuration in each case;

• estimate the benefits of the VSB-index over related work, such as the SB-index and the

aR-tree;

• measure the storage requirements of the VSB-index; and

• identify the limitations of the VSB-index.

To comply with the aforementioned goals, the following sections are organized as follows.

Section 6.4.1 describes the setup of the experiments. Two different vague SDWs are utilized.

One vague SDW was called real because vague regions were created based on the real dataset

provided by Embrapa regarding the HLB case study. The other vague SDW was called syn-

thetic because vague regions were created by processing a dataset that was not related to HLB.

Besides, the vague spatial predicates IRQob ject , IRQdubiety, IRQcertitude, CRQob ject , CRQdubiety

and CRQcertitude, and V SRQob ject were assessed. They not only focus on vague spatial regions,

but also fetch their certitude and dubiety.

272 6 Physical Design of Vague Spatial Data Warehouses

Sections 6.4.2 to 6.4.4 tackle the resolution of vague spatial predicates, since it has been

identified as a bottleneck to efficiently process queries in vague SDWs in Section 6.2. Sec-

tions 6.4.2 and 6.4.3 focuses intersection range queries, which might require the refinement

step, using the real vague SDW and the synthetic vague SDW, respectively. Section 6.4.4 ad-

dresses containment range queries, which might not require the refinement step, and uses the

synthetic vague SDW. Section 6.4.5 tackles the vague spatial range query, which is more costly

due to the utilization of two spatial query windows, and uses the synthetic vague SDW. Finally,

Section 6.4.6 addresses the elapsed time to build indices and storage requirements of indices.

6.4.1 Experimental Setup

Section 6.4.1.1 describes the workbench and the hardware and software platforms, while

Section 6.4.1.2 details the workload.

6.4.1.1 Workbench and Platforms

The workbench comprised two vague SDWs stored in the DBMS. Both had the same logical

design depicted in Figure 6.15. The synthetic vague SDW stored vague regions that were created

as already described in Section 6.2.2.1. The term ’synthetic’ refers to processing a dataset that

was not originally associated to the HLB case study, despite the produced vague regions were

intrinsically regions with broad boundaries. The synthetic vague SDW was loaded as described

in Section 6.2.2.1, i.e. with 60,000,000 rows in the table HLBControl and 302,357 rows and

distinct vague regions in the table InfectedRegion1.

The real vague SDW stored vague regions created by processing a real dataset regarding the

HLB disease, which was provided by Embrapa. The term ’real’ refers to real characteristics of

HLB mentioned in Section 1.2 that were applied to the dataset in order to create vague regions.

The original dataset comprised data collected in the field in 13 different months regarding one

citrus plot with approximately 9,000 trees. Each tree was originally represented by a point with

the status of infected or healthy. Every region infected by HLB was modeled as a vague region,

like r1 and r2 illustrated in Figure 6.16. A total of 129 distinct infected regions were created

and stored in the table InfectedRegion1. The table HLBControl also stored 129 rows. The certitude

was the extent where trees were infected and eradicated. Conversely, the dubiety was the broad

boundary where the insect possibly transmitted the bacterium to trees that were not eradicated,

but that became suspicious.

In order to create the certitude, a buffer was applied on the point of each infected tree, e.g.

6.4 Evaluation of the VSB-index 273

HLBControl

RegionFK : int
PlotFK : int
DateFK : int
InspectorFK : int
QtyOfEradicatedTrees : int

Inspector

InspectorPK : int
Name : varchar
Team : varchar
...

Date

DatePK
Date : date
MonthNo : int
QuarterNo : int
YearNo : int
...

Plot

PlotPK : int
PlantName : varchar
PlotGeo : Polygon
...

InfectedRegion1

RegionPK : int
MinArea : float
InfectedRegionGeo : MultiPolygon
...

Figure 6.15: The schema of both the synthetic vague SDW and the real vague SDW.

r1 shown in Figure 6.16. Such buffer did not intersect any other tree (infected or healthy). The

certitude also encompassed the infection of neighbor trees as follows. If two or more buffers

intersected each other and did not cover any healthy tree, then such buffers were merged and

considered as a single certitude element where two or more trees were eradicated, e.g. r2 in

Figure 6.16.

Furthermore, the dubiety of each infected region was designed by firstly fetching all trees

within 25 meters from each infected tree. Secondly, a convex hull containing each infected

tree and its neighbors was built, e.g. r1 shown in Figure 6.16. The convex hulls built for

two or more different infected trees were also merged whether their corresponding certitudes

had already been merged previously, e.g. r2 in shown Figure 6.16. Finally, the certitude was

subtracted from the dubiety to ensure that both had disjoint interiors.

r1

r2

w

Certitude Dubiety

Figure 6.16: Two vague regions and one spatial query window w.

Relevant characteristics of the vague regions stored by the different vague SDWs are high-

lighted because these characteristics influenced the results discussed in Sections 6.4.3 to 6.4.4.

In the synthetic vague SDW, the average ratio between the area of the certitude of a vague re-

274 6 Physical Design of Vague Spatial Data Warehouses

gion and the area of the vague region was 0.7817. In other words, the extent of the certitude

represented, on average, approximately 78.17% of the extent of the vague region. The stan-

dard deviation was 9.69%. In the real SDW, such ratio was much lower, i.e. 1.25%, while the

standard deviation was 1.13%.

In the synthetic vague SDW, each vague region had, on average, 53% of the extent over-

lapped by other vague regions. The standard deviation was 24% of the area. In addition, only

30 of the 302,357 vague regions did not overlap another vague region. On the other hand, in

the real vague SDW, each vague region had, on average, 196.34% of the extent overlapped

by other vague regions. The standard deviation was 162.70% of the area. Also, all vague re-

gions were overlapped by another vague region. These measurements emphasized the intrinsic

characteristic of infestation of neighbor trees in different epochs, as discussed in Section 1.2.

All feasible configurations of the VSB-index were implemented using MBR as conservative

approximation and MIP5 as progressive approximation. Five vertices were chosen by analogy

with 5C (BRINKHOFF; KRIEGEL; SCHNEIDER, 1993). They were implemented in C/C++ and the

disk page size was set to 8 KB. MIP5 was built using the CGAL, Computational Geometry

Algorithms Library4 version 4.0.2 and the method CGAL::maximum area inscribed k gon 2.

The method uses monotone matrix search (AGGARWAL et al., 1987) and has a worst case running

time of O(x× n+ n× logn), where n is the number of vertices provided as input and x is the

number of vertices of the MIP.

The following indices were created in both the synthetic vague SDW and the real vague

SDW. GiSTs were built on the column InfectedRegionGeo. The SB-index and the aR-tree were

implemented in C/C++ and their disk page size was set to 8 KB. Both were built on the column

InfectedRegionGeo and, therefore, processed their refinement steps accessing the multipolygons.

The bitmap join indices of the SB-index were implemented using FastBit (WU et al., 2009)

and built on the columns RegionFK, Team, Year, and QtyOfEradicatedTrees to comply with the

workload described in Section 6.4.1.2. Analogously, the entries of the aR-tree referenced one

multidimensional array containing values of the measure QtyOfEradicatedTrees assigned to each

pair of Team and Year.

The hardware platform was a computer with a 3.2 GHz Pentium D processor, 8 GB of main

memory, a 7200 RPM SATA 320 GB hard disk. The software platform comprised 8 MB of

cache, Linux CentOS 6.4, PostgreSQL 9.2.2 and PostGIS 2.0.1.

4http://www.cgal.org

6.4 Evaluation of the VSB-index 275

Table 6.2: Spatial range queries of the workload.

Predicate R
IRQob ject or IRQdubiety ST Intersects(InfectedRegionGeo, w)
IRQcertitude ST Intersects(ST GeometryN(InfectedRegionGeo, 2), w)
CRQob ject or CRQdubiety ST Within(InfectedRegionGeo, w)
CRQcertitude ST Within(ST GeometryN(InfectedRegionGeo, 2), w)

6.4.1.2 Workload

The spatial range queries IRQob ject , IRQdubiety, IRQcertitude, CRQob ject , CRQdubiety, and

CRQcertitude were chosen for the workload, as they assess different topological relationships

and fetch different parts of a vague region. The template query issued over the schema shown

in Figure 6.16 is described in Listing 6.5, where R is one vague spatial predicate written in SQL

according to Table 6.2.

Listing 6.5: The template query for the vague SDWs.

SELECT Team, Year , SUM(QtyOfEradicatedTrees)
FROM Inspector , Date , I n f ec t i on1 , HLBControl
WHERE InspectorPK = InspectorFK AND

DatePK = DateFK AND
RegionPK = RegionFK AND
Team = ’XV’ AND
R

GROUP BY Team, Year
ORDER BY Team, Year ;

For the vague spatial predicates listed in Table 6.2, w was a rectangular spatial query win-

dow whose shape was not stored in the vague SDWs, as shown in Figure 6.16. IRQob ject and

IRQdubiety were processed using the same SQL source code because any spatial query window

was created in the hole of the dubiety of a vague region (Section 6.3.4). Regarding IRQcertitude

and CRQcertitude, the OGC function ST GeometryN retrieved the second polygon in the multi-

polygon of a vague region, which corresponded to the certitude of every vague region stored in

both the synthetic vague SDW and real vague SDW.

The following procedure to elaborate the queries of the workload was applied for each

vague spatial predicate listed in Table 6.2. The selectivities utilized to query the synthetic

vague SDW were 0.0001, 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01,

0.02, 0.03 and 0.04. They ensured that 30 up to 12,000 vague regions of the synthetic vague

SDW were queried. For each selectivity, 10 disjoint and rectangular spatial query windows

were created. Each spatial query window was assigned to one query. The execution of queries

complied with the ascending order of the selectivity. Cache and buffers were flushed each ten

queries, i.e., before starting the execution of a query with greater selectivity.

276 6 Physical Design of Vague Spatial Data Warehouses

Conversely, the following selectivities were used for the real vague SDW: 0, 0.01, 0.02,

0.03, 0.04, 0.05, 0.10, 0.50 and 1.00. The null selectivity represented the selection of zero

elements of the dataset. Low selectivities under 0.10 denoted the user selecting a constrained

extent of interest. Selectivities between 0.10 and 0.50 concerned the user selecting a wider

extent of interest. The high selectivity of 1.0 retrieves the whole dataset, e.g. when it must be

fully displayed. Moderate and high selectivities were acceptable since the data volume of vague

regions was low. The elaboration and execution of the queries for the real vague SDW followed

the same procedure already described for the synthetic vague SDW.

The vague spatial range query V SRQob ject was also selected for the workload to query the

synthetic vague SDW. The template query is shown in Listing 6.6. The spatial query windows

i (inner) and o (outer) were rectangular and concentric, such that the edges of i measured half

of the length of the edges of o. The selectivities for o were 0.0001, 0.001, 0.002, 0.003, 0.004,

0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.02, 0.03 and 0.04. Ten disjoint pairs of spatial query

windows were created per selectivity of o. The execution of queries complied with the ascend-

ing order of the selectivity. Cache and buffers were flushed each ten queries, i.e., before starting

the execution of a query with greater selectivity.

Listing 6.6: The template query for the VSRQobject.

SELECT Team, Year , SUM(QtyOfEradicatedTrees) , ’ More re levan t ’
FROM Inspector , Date , InfectedRegion1 , HLBControl
WHERE InspectorPK = InspectorFK

DatePK = DateFK AND
RegionPK = RegionFK AND
Team = ’XV’ AND
ST Within (InfectedRegionGeo , i)

GROUP BY Team, Year
ORDER BY Team, Year

UNION

SELECT Team, Year , SUM(QtyOfEradicatedTrees) , ’ Less re levan t ’
FROM Inspector , Date , InfectedRegion1 , HLBControl
WHERE InspectorPK = InspectorFK AND

DatePK = DateFK AND
RegionPK = RegionFK AND
Team = ’XV’ AND
ST In te rsec ts (InfectedRegionGeo , o) AND NOT ST Within (InfectedRegionGeo , i)

GROUP BY Team, Year
ORDER BY Team, Year

6.4.2 Intersection Range Queries over the Real Vague SDW

The following sections report and discuss the performance results achieved by the VSB-

index and the SB-index to process different types of intersection range queries from the work-

load described in Section 6.4.1.2 over the real vague SDW detailed in Section 6.4.1.1. Increas-

ing selectivities of vague spatial predicates were considered. The measurements gathered were

6.4 Evaluation of the VSB-index 277

the average elapsed time and the average number of candidates produced in the filter step, as

these candidates were subsequently processed in the refinement step. The goal was to investi-

gate the relation between the performance and the efficiency of the filter step. Each configura-

tion of the VSB-index and the SB-index were evaluated. The aR-tree was not tested because

the low data volume of the real vague SDW would not allow the investigation of the benefits

of pruning the tree in the filter step. Section 6.4.2.1 focuses on the resolution of IRQob ject and

IRQdubiety, while Section 6.4.2.2 tackles IRQcertitude.

6.4.2.1 IRQobject and IRQdubiety

Figure 6.17a reports the average elapsed time to process IRQob ject and IRQdubiety over the

real vague SDW, while Figure 6.17b details the average number of candidates. High average

numbers of candidates as 65 and 129 were omitted for the configuration OMBR and selectivities

0.50 and 1.00, respectively.

SB-index  OMBR OMBRCMBRCMIP5 OMBROMIP5CMBRCMIP5

 (a) (b)

Figure 6.17: Results for IRQobject and IRQdubiety issued over the real vague SDW: (a) Average
elapsed time. (b) Average number of candidates.

Every configuration spent time to process queries with selectivity 0, due to the execution

of the filter step and afterwards of the refinement step whether there were candidates. Regard-

ing selectivities between 0.01 and 0.50, the average number of candidates processed by each

configuration determined its performance, as follows.

Configurations that do not hold any MIP5, as OMBR, required longer elapsed times inde-

pendently of the selectivity. Their filter steps are not able to identify answers of IRQob ject and

278 6 Physical Design of Vague Spatial Data Warehouses

IRQdubiety due to the absence of a progressive approximation. Then, more candidates were pro-

cessed by the refinement step, increasing its cost and causing low performance. The results

of the configuration OMBR were equivalent to those obtained by the SB-index and like those

gathered for the configuration OMBROMIP5.

Configurations that have a MIP5 built only on the certitude, as OMBRCMBRCMIP5, are able to

identify answers in the filter step by using such progressive approximation. However, not many

answers were identified since the extent of the certitude occupied a very small portion of the

vague region (Section 6.4.1.1). Then, the MIP5 built on the certitude was an even smaller subset

of the vague region, as depicted in Figure 6.12d. As a result, average numbers of candidates for

these configurations were not drastically reduced, the refinement step was costly and their query

response times were long. The results of the configuration O⊇C⊇C⊆ were like those obtained

by the configuration OMBRCMIP5.

Shortest elapsed times were spent by configurations with MIP5 built on the vague region,

as OMBROMIP5CMBRCMIP5. These configurations were not impaired by increasing selectivities.

They had low average numbers of candidates, even for greater selectivities. This trend did

not occur in the other configurations. Due to processing fewer candidates in the refinement

step, configuration OMBROMIP5CMBRCMIP5 imposed a time reduction of at least 33% and at

most 69% over SB-index (equivalent to configuration OMBR) for selectivities 0.10 and 0.04,

respectively. The results of the configuration OMBROMIP5CMBRCMIP5 were like those obtained

by the configurations OMBRCMBR, OMBROMIP5CMBR and OMBROMIP5CMIP5.

Finally, regarding the selectivity 1.00, all configurations holding at least one MIP5 had an

empty set of candidates to process in the refinement step, since all answers were identified

already in the filter step. As a result, these configurations required shorter elapsed times.

6.4.2.2 IRQcertitude

Figure 6.18a reports the average elapsed time to process IRQcertitude over the real vague

SDW, while Figure 6.18b details the average number of candidates. High average numbers of

candidates as 65 and 129 were omitted for the configuration OMBR and selectivities 0.50 and

1.00, respectively.

Every configuration took time to process queries with selectivity 0, executing the filter step

and the refinement step whether there were candidates. Regarding selectivities between 0.01

and 0.50, the average number of candidates processed by each configuration determined its

performance, as follows.

6.4 Evaluation of the VSB-index 279

OMBR OMBRCMIP5 OMBROMIP5CMBRCMIP5

 (a) (b)

Figure 6.18: Results for IRQcertitude issued over the real vague SDW: (a) Average elapsed time.
(b) Average number of candidates.

Configurations that do not hold MIP5 on the certitude, as OMBR, spent longer elapsed times

independently of selectivity. Their filter steps were not able to identify answers of IRQcertitude

due to the absence of a progressive approximation on the certitude. Then, more candidates

were processed by the refinement step, increasing its cost and causing low performance. The

results of the configuration OMBR were like those obtained by the configurations OMBROMIP5,

OMBRCMBR and OMBROMIP5CMBR.

Configurations that hold MIP5 on the certitude but do not hold MBR on the certitude, as

OMBRCMIP5, accessed the MBR built on the vague region in their filter steps. The MBR of the

vague region covered a wider extent than the extent covered by the MIP5 on the certitude as

illustrated in Figure 6.12d, since the certitude occupied a small portion of the vague region as

as explained in Section 6.4.1.1 Therefore, these configurations were not able to reduce the set

of candidates and their costly refinement step determined a low performance. The results of the

configuration OMBRCMIP5 were like those obtained by the configuration OMBROMIP5CMBR.

Configurations that hold both MBR and MIP5 on the certitude, such as OMBROMIP5CMBRCMIP5,

required shorter elapsed time than the other configurations. Their average number of candidates

was low due to the use of MIP5 on the certitude. Therefore, their refinement steps were less

costly and the performance was benefited. The configuration OMBROMIP5CMBRCMIP5 provided

a time reduction of at least 84% and at most 94% over the configuration OMBR, for selectivities

0.05 and 0.02, respectively. Although the configuration OMBR has a data structure equivalent to

280 6 Physical Design of Vague Spatial Data Warehouses

the SB-index’ data structure, the latter does not have an algorithm to process IRQcertitude. The

results of the configuration OMBROMIP5CMBRCMIP5 were like those obtained by the configura-

tion OMBRCMBRCMIP5.

Configurations with a MIP5 on the certitude had an empty set of candidates to process in

the refinement step for selectivity 1.00. As all answers were identified in the filter step, the

elapsed times for these configurations were shorter.

6.4.3 Intersection Range Queries over the Synthetic Vague SDW

On the one hand, it has been recognized that the MIP5 significantly reduced the set of

candidates produced by the filter step and processed in the refinement step and, therefore, im-

proved the performance of intersection range queries over the real vague SDW as discussed in

Section 6.4.2. On the other hand, the following sections reports and discuss the performance

results achieved by the VSB-index, the SB-index and the aR-tree to process different types of

intersection range queries from the workload described in Section 6.4.1.2 over the synthetic

vague SDW detailed in Section 6.4.1.1. Differently from the real vague SDW, the synthetic

vague SDW stores a huge volume of vague regions whose certitudes are relatively large. The av-

erage elapsed time was gathered for each configuration of the VSB-index and for the SB-index

and the aR-tree, considering increasing selectivities. Section 6.4.3.1 focuses on the resolution

of IRQob ject and IRQdubiety, while Section 6.4.3.2 tackles the IRQcertitude.

6.4.3.1 IRQobject and IRQdubiety

Figure 6.19 reports the results concerning IRQob ject and IRQdubiety. Five configurations of

the VSB-index are shown: OMBR, OMBRCMIP5, OMBRCMBR, OMBROMIP5 and OMBROMIP5CMBRCMIP5.

The remaining were omitted to facilitate the visualization of the significant difference among

results.

Configurations that have a MIP5, such as OMBRCMIP5, OMBROMIP5 and OMBROMIP5CMBRCMIP5

did not have their performance impaired by increasing selectivities. Conversely, increasing se-

lectivities severely degenerated the performance of configurations that do not have a MIP5, such

as OMBR and OMBRCMBR.

The configuration OMBROMIP5 outperformed the other configurations because MIP5 allows

identifying answers of the spatial predicate already in the filter step. Conversely, both configu-

rations OMBR and OMBRCMBR do not maintain a progressive approximation and cannot identify

answers in the filter step. As a result, their performances were severely impaired because they

6.4 Evaluation of the VSB-index 281

0.00 0.01 0.02 0.03 0.04

0
10

20
30

40

Selectivity

E
la

ps
ed

 T
im

e
(s

)

Figure 6.19: The performance to process IRQobject and IRQdubiety over the synthetic vague
SDW.

had a costly refinement step.

Furthermore, the configuration OMBROMIP5 overcame the configuration OMBROMIP5CMBRCMIP5.

Note that both configurations have a MIP5 built on the vague region, which is utilized to iden-

tify answers in the filter step. However, the configuration OMBROMIP5 has a smaller index entry

size than configuration OMBROMIP5CMBRCMIP5, and the filter step of the former requires less

disk accesses and than the filter step of the latter, as shown in Table 6.1. As a result, the former

spent less time to process the queries than the latter.

The configuration OMBRCMIP5 also overcame the configuration OMBROMIP5CMBRCMIP5.

Note that configuration OMBRCMIP5 has a MIP5 built on the certitude, while the configura-

tion OMBROMIP5CMBRCMIP5 has a MIP5 built on the vague region. This result demonstrated

that the MIP5 built on the certitude was also beneficial to improve the performance of IRQob ject

and IRQdubiety, which assess the vague region and the dubiety, respectively.

Such achievement was feasible due to an intrinsic characteristic of the synthetic vague

SDW: the certitude occupied a large portion of the vague region, as described in Section 6.4.1.1.

As a result, a progressive approximation created on the certitude was also a large subset of the

extent of the vague region and benefited the performance to process IRQob ject and IRQdubiety.

SB-index’ results were equivalent to those achieved by the configuration OMBR to exe-

282 6 Physical Design of Vague Spatial Data Warehouses

cute IRQob ject and IRQdubiety. All configurations obtained equivalent results for the selectivity

0.0001. Considering selectivities greater than 0.0001, the configuration OMBRCMIP5 provided a

time reduction of at least 71% and at most 97% over the SB-index, for selectivities 0.001 and

0.04, respectively. Besides, the configuration OMBRCMIP5 provided a time reduction of at least

69% and at most 94% over the aR-tree, for selectivities 0.001 and 0.04, respectively.

6.4.3.2 IRQcertitude

Figure 6.20 reports the results concerning IRQcertitude. Five configurations of the VSB-

index are shown, i.e. OMBR, OMBRCMIP5, OMBRCMBR, OMBROMIP5 and OMBROMIP5CMBRCMIP5,

while three were omitted to facilitate the visualization of the significant difference among re-

sults. Although the configuration OMBR has a data structure equivalent to the SB-index’ data

structure, the latter does not have an algorithm to process IRQcertitude. The aR-tree also does not

have an algorithm to process IRQcertitude. Thus, the aR-tree and the SB-index are not reported

in Figure 6.20.

Configurations that have a MIP5 built on the certitude did not have their performance im-

paired by increasing selectivities, such as OMBRCMIP5 and OMBROMIP5CMBRCMIP5. Conversely,

increasing selectivities severely degenerated the performance of configurations that do not have

a MIP5 built on the certitude, such as OMBR, OMBROMIP5 and OMBRCMBR, which had compara-

ble performance results.

Configurations OMBROMIP5CMBRCMIP5 and OMBRCMIP5 outperformed the other configura-

tions because the MIP5 built on the certitude is essential to identify answers of the IRQcertitude

already in the filter step. On the other hand, the MIP5 built on the vague region did not enable

such identification, and therefore the performance of the configuration OMBROMIP5 was im-

paired. Again, the configuration OMBRCMIP5 overcame the configuration OMBROMIP5CMBRCMIP5

because the former performs less disk access than the latter in the filter step, as previously com-

mented. Moreover, the configuration OMBRCMIP5 imposed a time reduction from 36% up to

97% over the configuration OMBR for selectivities 0.0001 and 0.04, respectively.

6.4.4 Containment Range Queries over the Synthetic Vague SDW

On the one hand, it has been recognized that the MIP5 significantly reduced the set of can-

didates produced by the filter step and processed in the refinement step and, therefore, improved

the performance of intersection range queries over the real vague SDW and the synthetic vague

SDW, as discussed in Sections 6.4.2 and 6.4.3, respectively. On the other hand, the following

6.4 Evaluation of the VSB-index 283

0.00 0.01 0.02 0.03 0.04

0
20

40
60

80

Selectivity

E
la

ps
ed

 T
im

e
(s

)

Figure 6.20: The performance to process the IRQcertitude over the synthetic vague SDW.

sections reports and discuss the performance results achieved by the VSB-index, the SB-index

and the aR-tree to process different types of containment range queries from the workload de-

scribed in Section 6.4.1.2 over the synthetic vague SDW detailed in Section 6.4.1.1. Differently

from intersection range queries, containment range queries should not require the refinement

step. The average elapsed time was gathered for each configuration of the VSB-index and for

the SB-index and the aR-tree, considering increasing selectivities. Section 6.4.4.1 focuses on

the resolution of CRQob ject and CRQdubiety, while Section 6.4.4.2 tackles the CRQcertitude.

6.4.4.1 CRQobject and CRQdubiety

This section compares the performance obtained by the aR-tree and the SB-index to the

following configurations of the VSB-index: OMBR, OMBROMBR and OMBROMIP5CMBRCMIP5.

The configuration OMBR was selected because it holds a single MBR as approximation and

can process CRQob ject and CRQdubiety without a refinement step. The configuration OMBROMBR

was selected because it can process CRQob ject , CRQdubiety and CRQcertitude without a refinement

step. The configuration OMBROMIP5CMBRCMIP5 was chosen because it is the only configuration

that can retrieve answers of the vague spatial predicate already in the filter step, for all the vague

spatial predicates of the workload. The results of the remaining configurations of the VSB-index

were omitted to facilitate the visualization of the significant difference among results.

284 6 Physical Design of Vague Spatial Data Warehouses

Figure 6.21 reports the average elapsed time spent by each configuration according to dif-

ferent selectivities. The results achieved by the configuration OMBR of the VSB-index were

equivalent to the results gathered for the SB-index.

0.00 0.01 0.02 0.03 0.04

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Selectivity

E
la

ps
ed

 T
im

e
(s

)

Figure 6.21: Average elapsed time to process CRQobject and CRQdubity over the synthetic vague
SDW.

Regarding the VSB-index, the best results were achieved by configuration OMBR due to the

following reasons. All configurations held MBRs on the vague regions that were accessed to

find answers already in the filter step. Also, the sequential scan performed on their sequential

files required a fixed number of disk accesses, according to Table 6.1. Then, configurations that

performed fewer disk accesses were expected to spend shorter elapsed times. The configuration

OMBR performed fewer disk accesses and consequently also spent shorter elapsed times than

configurations OMBROMIP5 and OMBROMIP5CMBRCMIP5. It is noteworthy that MIP5s were not

accessed to process queries using the configuration OMBROMIP5CMBRCMIP5 but, since they were

stored, they introduced overheads to the query response time.

The aR-tree outperformed both the VSB-index and the SB-index for selectivities lower than

0.02. The traversal of the aR-tree was pruned in the filter step. As a result, the aR-tree performed

less disk accesses than the VSB-index and the SB-index, which had a fixed number of disk

accesses in the filter step. However, for selectivities 0.02, 0.03 and 0.04, the configuration

OMBR of the VSB-index overcame the aR-tree and imposed time reductions of 9%, 44% and

36%, respectively.

To understand the low performance of the aR-tree for greater selectivities, recall that: (i)

6.4 Evaluation of the VSB-index 285

spatial objects that overlap might impair the performance of spatial indices (Section 2.1.3.2);

(ii) the aR-tree is based on the R-tree and, therefore, is also impaired by overlapping (Sec-

tion 2.1.3.2); (iii) vague regions stored by the synthetic vague SDW overlapped each other,

since their shapes corresponded to convex hulls of polygons (Section 6.2.2.2); and (iv) the aR-

tree was built using the MBRs of those vague regions. Clearly, the MBRs of the vague regions

in the synthetic vague SDW also overlapped each other. Then, as spatial query windows be-

came larger, they contained several large MBRs that overlapped each other and also belonged

to different non-leaf nodes. As a result, instead of pruning the tree traversal in the filter step, the

aR-tree was impaired by the ramification of the tree traversal due to existence of overlapping

among the indexed vague regions.

6.4.4.2 CRQcertitude

Since the SB-index and the aR-tree do not provide algorithms to process CRQcertitude, this

section compares the performance obtained only by the following configurations of the VSB-

index: OMBR, OMBRCMBR and OMBROMIP5CMBRCMIP5. The configuration OMBR was chosen

because it achieved the best results of the VSB-index to process CRQob ject and CRQdubiety.

However, to process CRQcertitude, it might have an overhead due to a refinement step that is

mandatory because the configuration does not have an approximation for the certitude. Con-

versely, both the configurations OMBRCMBR and OMBROMIP5CMBRCMIP5 were chosen because

they do not require a refinement step.

Results shown in Figure 6.22 reveal that the refinement step severely impaired the perfor-

mance of the configuration OMBR, as expected. Like Section 6.4.4.1, the best configuration

of the VSB-index was that holding the minimum set of approximations necessary to process

the vague spatial predicate, i.e. OMBRCMBR. The MBR built on the certitude was sufficient to

identify all the answers of the spatial predicate already in the filter step. Although both configu-

rations OMBRCMBR and OMBRCMBR and OMBROMIP5CMBRCMIP5 have this capability, the former

requires less disk accesses than the latter to perform the sequential scan of the filter step, ac-

cording to Table 6.1. As a result, the configuration OMBRCMBR outperformed the configuration

OMBROMIP5CMBRCMIP5.

6.4.5 Vague Spatial Range Queries over the Synthetic Vague SDW

In Sections 6.4.2 and 6.4.3, it has been recognized that the MIP5 significantly reduced the

set of candidates produced by the filter step and processed in the refinement step and, therefore,

improved the performance of intersection range queries over the real vague SDW as discussed

286 6 Physical Design of Vague Spatial Data Warehouses

0.00 0.01 0.02 0.03 0.04

0
1

2
3

4
5

Selectivity

E
la

ps
ed

 T
im

e
(s

)

Figure 6.22: Average elapsed time to process CRQcertitude over the synthetic vague SDW.

in Sections 6.4.2 and 6.4.3. In Section 6.4.4, the existence of a MIP5 in the VSB-index config-

uration has been associated to a performance loss to process containment range queries because

the MBR has been sufficient for the identification of answers already in the filter step. In con-

trast with the previous experiments, the following sections report and discuss the performance

results achieved by the VSB-index, the SB-index and the aR-tree to process a type of vague spa-

tial range query against vague regions, i.e. V SRQob ject , according to the workload described in

Section 6.4.1.2. Since the V SRQob ject evaluates a pair of topological relationships using a pair

of distinct spatial query windows, it might require a refinement step. Section 6.4.5.1 describes

the test configurations used in the experiments while Section 6.4.5.2 reports the results.

6.4.5.1 Test Configurations

The following test configurations were used in the experiments involving the V SRQob ject :

• OMBROMIP5CMBRCMIP5 is a configuration of the VSB-index built on the columns Infec-

tionPK and InfectedRegionGeo of the table InfectedRegion1 shown in Figure 6.15;

• OMBR is a configuration of the VSB-index built on the columns InfectionPK and Infecte-

dRegionGeo of the table InfectedRegion1 shown in Figure 6.15;

• aR-tree1 is the aR-tree built on the columns InfectionPK and InfectedRegionGeo of the

table InfectedRegion1 shown in Figure 6.15, such that ‘1’ refers to vague regions described

by a single geometry column of type MultiPolygon;

6.4 Evaluation of the VSB-index 287

• aR-tree2 is the aR-tree built on the columns InfectionPK and InfectedRegionDubietyGeo

of the table InfectedRegion2 shown in Figure 6.5b, such that ‘2’ refers to vague regions

described by a pair of geometry columns of type Polygon, i.e. InfectedRegionCertitudeGeo

and InfectedRegionDubietyGeo;

• SB-index1 is the SB-index built on the columns InfectionPK and InfectedRegionGeo of the

table InfectedRegion1 shown in Figure 6.15, such that ‘1’ refers to vague regions described

by a single geometry column of type MultiPolygon; and

• SB-index2 is the SB-index built on the columns InfectionPK and InfectedRegionDubiety-

Geo of the table InfectedRegion2 shown in Figure 6.5b, such that ‘2’ refers to vague regions

described by a pair of geometry columns of type Polygon, i.e. InfectedRegionCertitudeGeo

and InfectedRegionDubietyGeo;

OMBROMIP5CMBRCMIP5 is the configuration of the VSB-index that is able to identify an-

swers of the spatial predicate already in the filter step, independently from the spatial predicate.

OMBR is the configuration of the VSB-index with the minimal set of approximations. aR-tree1

and SB-index1 have been already tested in Sections 6.4.3 and 6.4.4. aR-tree2 and SB-index2

are attempts to achieve a better performance by forcing the refinement step to be executed us-

ing polygons of the column InfectedRegionDubietyGeo, instead of multipolygons of the column

InfectedRegionGeo as both the aR-tree1 and SB-index1 do. aR-tree2 and SB-index2 are also

based on a previous result discussed in Section 6.2.2.3, which indicates that the separation of

the certitude and the dubiety in distinct columns was beneficial for the performance.

Since both the SB-index and the aR-tree do not have algorithms to solve the V SRQob ject ,

adaptations were necessary and are detailed as follows. The SB-index has been extended as

described in Section 6.2.3.3. As for the aR-tree, the principle adopted to extend it was to execute

each sub-query separately and process their result sets. For each result ri of the first sub-query

and each result ro of the second sub-query where ri.Team = ro.Team and ri.Year = ro.Year, the

value assigned to ro.sum was ro.sum - ri.sum. If the result of aforementioned subtraction was

0, then the row was simply removed from the result set. Finally, both result sets were merged.

6.4.5.2 Results

Figure 6.23 reports the average elapsed time spent by each configuration described in Sec-

tion 6.4.5.1 according to different selectivities. Clearly, the configurations aR-tree2 and SB-

index2 outperformed the configurations aR-tree1 and SB-index1, respectively. This fact cor-

roborated that the resolution of spatial predicates against polygons was more efficient than

288 6 Physical Design of Vague Spatial Data Warehouses

the resolution of spatial predicates against multipolygons, like a previous result involving the

DBMS (Section 6.2.2.3). However, the existence of a costly refinement step still impaired the

performance of both aR-tree2 and SB-index2 Also, increasing selectivities clearly increased the

average elapsed times of the SB-index and the aR-tree. These indices were overcome by the

configurations OMBR and OMBROMIP5CMBRCMIP5 of the VSB-index.

In particular, the configuration OMBROMIP5CMBRCMIP5 of the VSB-index outperformed all

the other tested configurations. Its MBR built on the vague region was used to identify answers

of the predicate containment already in the filter step. Also, its MIP5 built on the vague region

was used to identify answers of the predicate intersects already in the filter step. Then, these

approximations drastically reduced the set of candidates that were subsequently processed in

the refinement step. As a result, the elapsed time was shorter. Compared to the best result

achieved by the aR-tree, the configuration OMBROMIP5CMBRCMIP5 of the VSB-index imposed a

time reduction that ranged from 64% up to 85% over the configuration aR-tree2, for selectivities

0.001 and 0.03, respectively.

0.00 0.01 0.02 0.03 0.04

0
10

20
30

40

Selectivity

E
la

ps
ed

 T
im

e
(s

)

Figure 6.23: Average elapsed time to process VSRQobject over the synthetic vague SDW.

6.4.6 Building Costs and Storage Requirements

This section focus on the costs to build the indices described in Section 6.4.1.1 and their

storage requirements. In addition, the storage requirements of those indices are detailed. Only

6.4 Evaluation of the VSB-index 289

the synthetic vague SDW is addressed since it was more voluminous.

Figure 6.24 reports the elapsed time to build the sequential file of the VSB-index for the

configurations OMBR, OMBRCMBR, OMBRCMIP5, OMBROMIP5 and OMBROMIP5CMBRCMIP5, since

these configurations are discussed in Sections 6.4.2 to 6.4.4. The following measurements were

also separated: (i) the time spent to extract the certitude of the vague region; (ii) the time spent

to extract the outer boundary of the dubiety; and (iii) the time spent to build the approximations

and write them on disk.

As for the VSB-index, configurations that held only MBRs were built in shorter time, i.e.

OMBR and OMBRCMBR. Also, the overhead to build the MIP5 using the outer boundary of

the dubiety was significantly shorter than the overhead to build the MIP5 on the certitude.

Then, the total time spent to build the configuration OMBROMIP5 was shorter than to build the

configurations OMBRCMIP5 and OMBROMIP5CMBRCMIP5. Recall that the certitude was created

by applying a negative buffer on a real polygon, while the outer boundary of the dubiety was the

convex hull of the same real polygon, as described in Section 6.4.1.1. Then, the certitude had

more vertices than the outer boundary of the dubiety. Consequently, the high number of vertices

of the certitude impaired the performance to create the MIP5 for configurations OMBRCMIP5 and

OMBROMIP5CMBRCMIP5. Although the time spent to build the sequential file of the VSB-index

was long, it significantly benefited the performance to process queries, as detailed in Sections

and 6.4.3 and 6.4.2.

The storage requirements of the sequential file for each configuration of the VSB-index

are detailed in Figure 6.25. As expected, configurations that held more approximations also

required more storage space. Considering that bitmap join indices occupied 3,200 MB, then the

VSB-index’ sequential file added from 0.25% up to 1.7% to storage requirements considering

the configurations OMBR and OMBROMIP5CMBRCMIP5, respectively.

The configuration OMBR of the VSB-index and the SB-index demanded equivalent stor-

age requirements due to their similar data structures. The sequential file of the configuration

OMBROMIP5CMBRCMIP5 of the VSB-index was 5.18 times larger than the sequential file of the

SB-index, the complete VSB-index configuration required a total of 3,268 MB while the SB-

index occupied a total of 3,211 MB. In that case, the VSB-index added only 1.78% to the storage

requirements.

The aR-tree required 17,011 MB of storage space, i.e. 11 MB for the tree and 17,000 MB

for the multidimensional arrays. The configuration OMBROMIP5CMBRCMIP5 of the VSB-index

demanded only 19.21% of the storage requirements of the aR-tree.

290 6 Physical Design of Vague Spatial Data Warehouses

Figure 6.24: Time spent to build different configurations of the VSB-index.

Figure 6.25: Storage requirements for different configurations of the VSB-index.

6.5 Summary

This chapter has focused on the physical design of vague SDWs. First, an experimental

evaluation has identified that both the DBMS and existing indices for SDW had their storage

requirements augmented and performance to process queries impaired by storing and querying

vague point sets and vague regions. The increase on the complexity of vague point sets also

increased both the storage requirements and the elapsed time to process queries with the vague

spatial predicate CRQob ject . Regarding vague regions, as the selectivity of the vague spatial

predicate IRQob ject increased, longer became the query response time and more costly became

the resolution of such predicate, considering the DBMS, the aR-tree, and the SB-index. The

latter also spent prohibitive time to process queries with the vague spatial predicate V SRQob ject

against vague regions, such that the refinement step was identified as being the more costly step

to process such predicate. The results identified drawbacks and motivated the development of

an index for vague SDW.

Second, the Vague Spatial Bitmap Index (VSB-index) has been proposed to efficiently

6.5 Summary 291

process vague spatial predicates of queries submitted to vague SDWs. The VSB-index has

a flexible data structure that enables the use of conservative and progressive approximations

created on the vague region O and on its certitude C. The progressive approximation MIP

has been introduced and used by the VSB-index to reduce the cost of the refinement step in

the vague spatial predicate resolution. It consists of a maximum area inscribed polygon with

x vertices. Furthermore, the algorithms have been described to build the VSB-index and to

process queries. The vague spatial predicates supported are IRQob ject , CRQob ject , IRQcertitude,

CRQcertitude, IRQdubiety, CRQdubiety, and V SRQob ject .

Third, an experimental evaluation has been carried out to assess the VSB-index. Two dis-

tinct vague SDWs were loaded. One of the vague SDW was called real because vague regions

were created based on a real dataset regarding the HLB case study. The other vague SDW was

called synthetic since vague regions were created using a dataset that was not related to HLB.

The vague SDWs had different characteristics, as follows. The synthetic vague SDW stored a

huge volume of vague regions and was more voluminous than the real vague SDW. The vague

regions of the synthetic vague SDW had relatively large certitudes, i.e. the certitude occupied

a large portion of the extent of the vague region, while the the vague regions of the real vague

SDW had relatively very small certitudes. Finally, the synthetic vague SDW had an average

overlap rate among vague regions that was almost four times lesser than the real vague SDW.

Table 6.3 shows features of the vague SDWs used in the experiments and highlights the

best configuration of the VSB-index according to each case investigated in the experimental

evaluation. Independently from the vague SDW queried, the overlapping among vague regions

existed and is an important aspect to be considered in the physical design of a vague SDW. The

ratio between the area of the certitude and the area of the vague region is another relevant aspect

that require attention in the physical design of a vague SDW. The experimental evaluation of the

VSB-index using both the real vague SDW and the synthetic vague SDW enriched the analysis.

Intersection range queries were issued over the real vague SDW. As for IRQob ject and

IRQdubiety, the configuration OMBROMIP5CMBRCMIP5 of the VSB-index imposed a time reduc-

tion that varied from 33% up to 69% over the SB-index. The MIP5 built on the vague region was

essential for the configuration OMBROMIP5CMBRCMIP5 to achieve the best performance among

the configurations of the VSB-index, because it drastically reduced the number of candidates

produced in the filter step. These candidates were subsequently processed in the refinement

step. In addition, the configuration OMBROMIP5CMBRCMIP5 of the VSB-index was not impaired

by increasing selectivities. Analogously, the MIP5 built on the certitude was essential for the

configuration OMBROMIP5CMBRCMIP5 to outperform the remaining configurations of the VSB-

292 6 Physical Design of Vague Spatial Data Warehouses

Table 6.3: Summary of the results obtained with the experimental evaluation of the VSB-index.

Feature Real Vague SDW Synthetic Vague SDW
Quantity of Vague Regions 129 302,357

Overlapping among Vague Regions AVG = 196% AVG = 53%
Area(Certitude)/Area(Vague Region) AVG = 1% AVG = 78%

Vague Spatial Predicate Best VSB-index Best VSB-index
IRQob ject OMBROMIP5CMBRCMIP5 OMBRCMIP5
IRQdubiety OMBROMIP5CMBRCMIP5 OMBRCMIP5
IRQcertitude OMBROMIP5CMBRCMIP5 OMBRCMIP5
CRQob ject - OMBR

CRQdubiety - OMBR

CRQcertitude - OMBRCMBR

V SRQob ject - OMBROMIP5CMBRCMIP5

index to process IRQcertitude. To sum up, in the real vague SDW whose vague regions had a

small certitude, the existence of MIP5 on the element being queried was essential to improve

the performance to execute intersection range queries.

Intersection range queries were also issued over the synthetic vague SDW. As for IRQob ject

and IRQdubiety, the configuration OMBRCMIP5 of the VSB-index imposed a time reduction that

varied from 69% up to 97% over the best result achieved by either the SB-index or the aR-

tree. Since the vague regions of the synthetic vague SDW had relatively large certitudes, the

MIP5 built over the certitude offered by the configuration OMBRCMIP5 could efficiently iden-

tify answers of the vague spatial predicates already in the filter step. As a result, the cost of

the refinement step became lower and the performance was benefited. Also, the configuration

OMBRCMIP5 outperformed the configuration OMBROMIP5CMBRCMIP5, since the former required

less disk accesses than the latter to process the filter step. For the same reason, the configuration

OMBRCMIP5 outperformed the other configurations of the VSB-index to process IRQcertitude. To

sum up, in the synthetic vague SDW whose vague regions had a large certitude, the existence of

MIP5 on the certitude was sufficient to improve the performance to execute intersection range

queries.

Containment range queries, which do not require a refinement step, were issued over the

synthetic vague SDW. As for the CRQob ject and CRQdubiety, the configuration OMBR of the VSB-

index imposed a time reduction that varied from 9% up to 44% over the aR-tree for selectivities

greater than 0.01. Although the aR-tree overcame the VSB-index for selectivities lower than

or equal to 0.01, the overlap among vague regions severely impaired the aR-tree for increasing

selectivities. Also, the results obtained by the configuration OMBR of VSB-index were equiva-

lent to those achieved by the SB-index. As for the CRQcertitude, the configuration OMBRCMBR

6.5 Summary 293

of the VSB-index performed less disk accesses and spent shorter time than the configuration

OMBROMIP5CMBRCMIP5, since the former stored only two approximations and had an index en-

try size smaller than the latter. Both the SB-index and the aR-tree do not provide algorithms to

process CRQcertitude.

Vague spatial range queries, which requires the resolution of both containment and in-

tersects may require a refinement step, were issued over the synthetic vague SDW. Existing

indices for SDW have been extended to support V SRQob ject and their refinement steps were

also adapted to fetch simple geometries rather than complex geometries. The configuration

OMBROMIP5CMBRCMIP5 of the VSB-index imposed a time reduction that ranged from 64% up

to 85% over the best results achieved by an extended version of the aR-tree. The existence of

MIP5 on the vague region greatly benefited the performance of the VSB-index.

The configuration OMBROMIP5CMBRCMIP5 of the VSB-index added 1.78% to the storage re-

quirements of the SB-index. In addition, it represented only 19.21% of the storage requirements

of the aR-tree. The small amount of storage requirements and the benefits provided to the query

processing performance motivate the use of the VSB-index in vague SDWs.

294 6 Physical Design of Vague Spatial Data Warehouses

Chapter 7
CONCLUSION AND FUTURE WORK

Spatial data warehouses (SDWs) and spatial online analytical processing (SOLAP) are core

technologies for decision support. Most approaches for designing SDWs represent spatial data

as spatial objects that are crisp and assume definite extent, boundary, and shape, e.g., the terri-

tory of a city. However, spatial data are susceptible to imperfections such as spatial vagueness,

which impairs distinguishing which components belong completely or partially to a spatial ob-

ject, or definitely do not belong to the spatial object. Also, the spatial object has an extent, but

it cannot or does not have a precisely definable boundary and/or interior. In other words, such

spatial object cannot be rigorously bounded by a sharp line and might have a blurred interior.

Since the design of SDWs typically considers crisp spatial objects and neglect imperfections,

some types of decision support analysis cannot be carried out by SOLAP.

On the other hand, in this thesis, spatial vagueness has been considered to design and query

SDWs. As a result, the vague spatial data warehouse (vague SDW) and the vague spatial online

analytical processing (vague SOLAP) have been introduced. In addition, the following main

contributions have been achieved. First, the Vague Spatial Cube conceptual model (VSCube),

which enables the creation of conceptual schemata for vague SDWs using data cubes and pro-

vides vague spatial aggregation functions and vague spatial predicates to query vague spatial

data as measures or in dimensions. Second, the Vague Spatial MultiDim conceptual model

(VSMultiDim), which provides visual representations for the concepts and allows creating con-

ceptual schemata for vague SDWs using diagrams. Third, guidelines for the logical design of

relational schemata of vague SDWs, for elaborating their constraints, and for extending SQL

to enable querying vague SDWs. Fourth, the Vague Spatial Bitmap Index (VSB-index), which

improves the performance to process queries against vague regions stored in vague SDWs. In

order to illustrate the applicability of the aforementioned contributions, two case studies have

been described and used throughout this thesis to exemplify concepts and to emphasize the

296 7 Conclusion and Future Work

diversity of applications that can be benefited from this work. Both the pest control and the

HLB case studies refer to the agricultural domain, but latter intrinsically utilizes a real dataset

(JORGE; INAMASU, 2014).

The major characteristics of the VSCube conceptual model are the following. Regarding

SDW, it comprises attribute types, hierarchies and their categories, dimensions, measures, fact,

cube and lattice of cuboids, for conventional data, non-geometric spatial data, crisp spatial data

and, mainly, vague spatial data. Furthermore, the vague spatial fact enables the assignment of

measure values in a fact to elements of the vague spatial member in a dimension. Concerning

spatial vagueness, it supports vague spatial data modeled according to both exact models (i.e.

geometric shapes and their membership true or maybe) and implementations for fuzzy models

(i.e. geometric shapes and their corresponding membership values in [0,1]). In the context of

spatial analysis and GIS, it defines vague spatial aggregation functions (vague spatial union,

vague spatial intersection and vague spatial difference) and vague spatial predicates (spatial

range query and vague spatial range query) that specify how to manipulate vague spatial data

in queries. Regarding SOLAP, it defines vague SOLAP and the operations slice-and dice, drill-

down, roll-up, and pivot. The VSCube was described in a publication (SIQUEIRA et al., 2014).

Since the VSCube conceptual model does not offer graphic notations for the concepts, the

VSMultiDim conceptual model has also been proposed to allow the creation of diagrams for

representing the vague SDW conceptual schema. Regarding SDW, it comprises attributes, lev-

els, members, dimensions, hierarchies, fact, measures and schema with support for conventional

data, non-geometric spatial data, continuous fields, crisp spatial data and, mainly, vague spatial

data. Concerning spatial vagueness, it supports vague spatial data modeled according to both

exact models and fuzzy models (i.e. fuzzy spatial objects with a membership function assigning

membership values in [0,1]). In the context of spatial analysis and GIS, it introduces pictograms

to distinguish data types and to indicate topological constraints. The VSMultiDim was summa-

rized in a publication (SIQUEIRA; CIFERRI; ZIMÁNYI, 2014) and reported (SIQUEIRA; ZIMÁNYI;

CIFERRI, 2015).

The logical design of vague SDWs has been addressed as follows. Mapping rules have been

described to transform a conceptual schema of vague SDW into a relational logical schema.

These rules map vague spatial attributes defined in a level, associated through hierarchies, and

denoting measures in a fact. The proposed implementation for the vague spatial attribute reuses

spatial data types and multivalued (array) columns. These features are often implemented by

existing DBMSs. Furthermore, SQL has been extended with operators and vague spatial predi-

cates to enable querying the vague SDW. They have been implemented as user-defined functions

7 Conclusion and Future Work 297

in the DBMS. Moreover, constraints have been specified to ensure the integrity of vague spatial

data. These constraints check whether values of a vague spatial attribute are valid. They also

ensure that valid topological relationships are held for members of same level and members

related through either a hierarchy or a fact. The constraints have been implemented as user-

defined functions and triggers. The contributions concerning the logical design of vague SDWs

were published (SIQUEIRA et al., 2012a) and reported (SIQUEIRA; CIFERRI; ZIMÁNYI, 2014, 2015;

SIQUEIRA; ZIMÁNYI; CIFERRI, 2015).

As for the physical design of vague SDWs, an experimental evaluation has identified the

lack of an index for vague SDWs, since indices for SDW process vague spatial predicates with

unacceptable performance. Then, the VSB-index has been introduced to efficiently process mul-

tidimensional queries whose vague spatial predicates involve vague regions. The VSB-index

resolves a subset of the vague spatial predicates defined by the VSCube conceptual model. The

supported intersection range queries, containment range queries and vague spatial range queries

focus on whole vague regions and on their components (i.e. certitude and dubiety). The VSB-

index has a data structure with both conservative and progressive approximations. They are

used in the multi-step resolution of the vague spatial predicate, which comprises filter step and

refinement step. The progressive approximation MIP, which is a maximum area inscribed poly-

gon, allows the identification of answers of the vague spatial predicate already in the filter step.

Such identification aims at reducing the number of candidates produced in the filter step and

provided to the refinement step. Consequently, it aims at decreasing the cost of the refinement

step.

The VSB-index was assessed through an experimental evaluation using two different vague

SDWs and increasing selectivities for the vague spatial predicates. Results revealed that the

VSB-index improved the performance to resolve vague spatial predicates and imposed a time

reduction that ranged from 9% up to 97% over existing indices for SDWs. Furthermore, the

VSB-index required a small amount of additional storage space if compared to existing indices

for SDWs. The results achieved by the VSB-index in the experimental evaluation corroborated

its utilization in vague SDWs. The contributions concerning the physical design of vague SDWs

were also published (SIQUEIRA et al., 2011, 2013, 2014).

In addition to provide original contributions for the design of vague SDWs, this thesis also

motivates the development of the following future work. Regarding the conceptual design of

vague SDWs, the combination of both the VSCube and the VSMultiDim into a single cohesive

model demands the following steps. The core issue is to define levels and enable hierarchies of

levels (like the VSMultiDim model and Vaisman & Zimányi (2014b)) rather than hierarchies

298 7 Conclusion and Future Work

of attributes (like the VSCube model and Golfarelli, Maio & Rizzi (1998)) to explicitly model

entity types (or classes). Thus, dimensions and cuboids should be expressed in terms of levels

rather than attributes. A challenging issue to be investigated in this context is that a hierar-

chy association with cardinality M:N requires distributing measure values between the related

members (MALINOWSKI; ZIMÁNYI, 2009). This issue has not been tackled for vague spatial data

either in members or measures.

Another future goal is to enhance multidimensional modeling with more types of attributes

in dimensions (and their hierarchies) and as measures in a fact, and then provide novel vague

SOLAP operations. The inclusion of vague spatial objects whose shapes change over a period of

time into the data cube demands an investigation of temporal aspects influencing vague spatial

attributes (HAZARIKA; COHN, 2001). For instance, valid time (the period in which a statement

is true according to the user) and lifespan (the time during which an object exists) could be

investigated (MALINOWSKI; ZIMÁNYI, 2009; ELMASRI; NAVATHE, 2010). The former could be

applied to the vague spatial attribute, while the latter could be applied to the vague spatial

level. In addition, the inclusion of vague non-geometric spatial attributes require fuzzy adverbial

labels to indicate proximity or reference for locations, e.g. “very close to the university campus”

can be explored.

The vague spatial attribute defined by the VSCube model can be extended with valid time

and become a time-varying vague spatial attribute. Hence, in addition to the multivalued

certitude and dubiety, the attribute could hold a composite valid time field defined by initial and

f inal monovalued and atomic fields to denote delimiters of an interval. VSCube model’s acces-

sors, vague spatial predicates, and vague spatial aggregation functions should also be extended

to filter and aggregate based on valid time. The aforementioned transformation influences the

logical design. In addition to the three columns used to represent a vague spatial attribute, two

more columns namely initial and f inal are necessary to represent a time-varying vague spatial

attribute. An extension of the VSB-index could allow the creation of approximations for mul-

tiple (rather than one) vague regions per object. Note that valid time could also be multivalued

to denote a set of intervals, thus increasing the complexity of the design.

Concerning the logical design of vague SDWs, an indication of future work is to perform

an extensive experimental evaluation of alternative implementations of vague spatial attribute.

Such evaluation should involve a variety of (vague and fuzzy) spatial data types, increasing

data volumes, diversified vague spatial predicates with different selectivities, and vague spatial

aggregation. The analysis of the results will provide relevant findings that can aid the designer to

select a representation based on the expected performance to process queries. In the same sense,

7 Conclusion and Future Work 299

the logical design of vague SDWs can be extended to and experimented with non-relational

databases. Besides, the vague spatial fact can be hereafter improved to enable roll-up and drill-

down, i.e. to aggregate values of measures associated to elements of vague spatial members

from levels in a hierarchy. Constraints will be essential to ensure correct aggregation of partial

measure values and can be implemented as routines in the DBMS.

As for the physical design, the VSB-index can be hereafter enhanced, as follows. First, by

enabling the filter step of intersection range queries to identify answers by assessing whether

containment is true against the conservative approximation. Second, by processing vague SO-

LAP operations, e.g. roll-up and drill-down. Third, by resolving other (vague) spatial predi-

cates, e.g. the remaining vague spatial predicates of the VSCube conceptual model, point query,

nearest neighbor queries, and spatial join. Fourth, by indexing other types of vague spatial data,

e.g. vague regions implemented as plateau regions (SCHNEIDER, 2014), vague points, and vague

lines. And fifth, by adapting its data structure and algorithms to efficiently process queries over

vague SDWs hosted in a cloud, analogously to a previous published work that addressed SDWs

with crisp spatial data (MATEUS et al., 2015).

Another indication of future work comprises design and implementation of a vague SO-

LAP tool that reuses the contributions supplied by this thesis, as follows. The tool can reuse the

VSCube conceptual model and omit details of the data cube from the user, as well as present

the graphic notation of the VSMultiDim conceptual model to allow the creation of diagrams.

Furthermore, mapping rules can be implemented to allow the implicit transformation of vague

SDW’s conceptual schema into logical relational schemata, as well as to implicitly create con-

straints. Moreover, the VSB-index can be reused to efficiently process queries. The devel-

opment of the tool can also benefit from reusing and extending legacy of existing tools, i.e.

BJIn OLAP Tool1. (CARNIEL; SIQUEIRA, 2011b, 2011a, 2012), MapQuery (BIANCHI; HATANO;

SIQUEIRA, 2013) and Mobile SpOT (BIANCHI; SIQUEIRA, 2013). A further investigation on

vague spatial data display and visualization, and on map generalization is also required.

Since spatial vagueness is one imperfection of spatial data, the design of SDWs character-

ized by other imperfections also motivates future work. For instance, designing data cubes with

spatial data with probabilistic uncertainty and statistically estimated precision (LI et al., 2007;

TIMKO; DYRESON; PEDERSEN, 2014), which intrinsically avoid fuzzy concepts. In this regard,

address spatial data whose quantitative values, probabilistic precisions and standard deviation

are known, and whose precision for position of vertices is known and consist of ellipses of

errors (DEVILLERS et al., 2010).

1Intellectual property rights registered by National Industrial Property Institute (INPI), Brazil. Type: Registered
Software. Registration number: BR 50 2013 000063-0.

300 7 Conclusion and Future Work

REFERENCES

AGGARWAL, A. et al. Geometric applications of a matrix-searching algorithm.
Algorithmica, Springer-Verlag, v. 2, n. 2, p. 195–208, 1987. ISSN 0178-4617. Available at:
<http://dx.doi.org/10.1007/BF01840359>.

AOKI, P. M. Generalizing search in generalized search trees. In: 14th International Conference
on Data Engineering (ICDE’1998). Orlando, FL, USA: IEEE Computer Society, 1998.
(Proceedings...), p. 380–389. ISSN 1063-6382.

BADARD, T.; DUBÉ, E. Enabling geospatial business intelligence. Open Source Business
Resource, Talent First Network, Ottawa, September 2009. ISSN 1913-6102. Available at:
<http://timreview.ca/article/289>.

BALTZER, O.; RAU-CHAPLIN, A.; ZEH, N. Building a scalable spatial OLAP
system. In: 28th ACM Symposium on Applied Computing (SAC’2013). Coimbra,
Portugal: ACM, 2013. (Proceedings...), p. 13–15. ISBN 978-1-4503-1656-9. Available at:
<http://doi.acm.org/10.1145/2480362.2480366>.

BAYER, R.; MCCREIGHT, E. Organization and maintenance of large ordered indexes. Acta
Informatica, Springer-Verlag, v. 1, n. 3, p. 173–189, 1972. ISSN 0001-5903. Available at:
<http://dx.doi.org/10.1007/BF00288683>.

BECKMANN, N. et al. The R*-tree: An efficient and robust access method for points and
rectangles. SIGMOD Record, ACM, New York, NY, USA, v. 19, n. 2, p. 322–331, May 1990.
ISSN 0163-5808.

BÉDARD, Y. Uncertainties in land information systems databases. In: Eighth International
Svrnposium on Computer-Assisted Cartography. Baltimore, MD, USA: Amerièan Society for
Photogrammetry and Remote Sensing and American Congress on Surveying and Mapping,
1987. (Proceedings...), p. 175–184.

BÉDARD, Y.; MERRETT, T.; HAN, J. Fundamentals of spatial data warehousing for
geographic knowledge discovery. In: MILLER, H. J.; HAN, J. (Ed.). Geographic Data
Mining and Knowledge Discovery. Bristol, PA, USA: Taylor & Francis, 2001. p. 53–73. ISBN
0415233690.

BEJAOUI, L. Qualitative topological relationships for objects with possibly vague shapes:
implications on the specification of topological integrity constraints in transactional spatial
databases and in spatial data warehouses. Thesis (Ph.D.) — Université Blaise Pascal
Clermont-Ferrand II (France); Université Laval, Québec (Canada), May 2009. Available at:
<http://tel.archives-ouvertes.fr/tel-00725614>.

302 References

BEJAOUI, L. et al. Qualified topological relations between spatial objects with possible
vague shape. International Journal of Geographical Information Science, Taylor & Francis,
Inc., Bristol, PA, USA, v. 23, n. 7, p. 877–921, July 2009. ISSN 1365-8816. Available at:
<http://dx.doi.org/10.1080/13658810802022814>.

BEJAOUI, L. et al. OCL for formal modelling of topological constraints involving regions
with broad boundaries. GeoInformatica, Springer US, v. 14, n. 3, p. 353–378, 2010. ISSN
1384-6175. Available at: <http://dx.doi.org/10.1007/s10707-010-0104-5>.

BEZDEK, J. C.; EHRLICH, R.; FULL, W. FCM: The fuzzy c-means clustering algorithm.
Computers & Geosciences, v. 10, n. 2, p. 191 – 203, 1984. ISSN 0098-3004. Available at:
<http://www.sciencedirect.com/science/article/pii/0098300484900207>.

BIANCHI, R. G.; HATANO, G. Y.; SIQUEIRA, T. L. L. On the performance and use of
spatial OLAP tools. In: XXXIX Latin American Computing Conference (CLEI’2013). Caracas
(Naiguatá), Venezuela: IEEE, 2013. (Proceedings...), p. 1–12. ISBN 978-1-4799-2957-3.
Available at: <http://dx.doi.org/10.1109/CLEI.2013.6670652>.

BIANCHI, R. G.; SIQUEIRA, T. L. L. Mobile SpOT: uma ferramenta SOLAP
para dispositivos móveis. In: Anais de Eventos da UFSCar. UFSCar, 2013. V
Congresso de Iniciação em Desenvolvimento Tecnológico e Inovação da UFSCar
(CIDTI’2013). Available at: <http://www.eventweb.com.br/jornada2013-cict/specific-
files/manuscripts/index.php?file=jornada2013-cict/22217 1379107463.pdf>.

BIMONTE, S.; KANG, M.-A. Towards a model for the multidimensional analysis of field
data. In: CATANIA, B.; IVANOVIC, M.; THALHEIM, B. (Ed.). 14th East European
Conference on Advances in Databases and Information Systems (ADBIS’2010). Novi Sad,
Serbia: Springer Berlin Heidelberg, 2010, (Lecture Notes in Computer Science: Advances in
Databases and Information Systems, v. 6295). p. 58–72. ISBN 978-3-642-15575-8. Available
at: <http://dx.doi.org/10.1007/978-3-642-15576-5 7>.

BIMONTE, S.; TCHOUNIKINE, A.; MIQUEL, M. Towards a spatial multidimensional
model. In: 8th ACM International Workshop on Data Warehousing and OLAP (DOLAP’2005).
Bremen, Germany: ACM, 2005. (Proceedings...), p. 39–46. ISBN 1-59593-162-7. Available at:
<http://doi.acm.org/10.1145/1097002.1097009>.

BORGIDA, A.; CASANOVA, M. A.; LAENDER, A. H. Logical database design: from
conceptual to logical schema. In: LIU, L.; ÖSZU, M. T. (Ed.). Encyclopedia of Database
Systems. New York, NY, USA: Springer US, 2009. p. 1645–1649. ISBN 978-0-387-39940-9.

BORGIDA, A.; MYLOPOULOS, J. Conceptual schema design. In: LIU, L.; ÖZSU, M. T.
(Ed.). Encyclopedia of Database Systems. New York, NY, USA: Springer US, 2009. p.
438–442. ISBN 978-0-387-39940-9.

BOULIL, K. et al. Towards the definition of spatial data warehouses integrity constraints
with spatial ocl. In: 13th ACM International Workshop on Data Warehousing and OLAP
(DOLAP’2010). Toronto, Ontario, Canada: ACM, 2010. (Proceedings...), p. 31–36. ISBN
978-1-4503-0383-5. Available at: <http://doi.acm.org/10.1145/1871940.1871948>.

References 303

BOULIL, K.; BIMONTE, S.; PINET, F. Conceptual model for spatial data cubes:
A UML profile and its automatic implementation. Computer Standards & In-
terfaces, v. 38, p. 113 – 132, February 2015. ISSN 0920-5489. Available at:
<http://www.sciencedirect.com/science/article/pii/S0920548914000774>.

BOVÉ, J. M. Huanglongbing or yellow shoot, a disease of gondwanan origin: Will it destroy
citrus worldwide? Phytoparasitica, Springer Netherlands, v. 42, n. 5, p. 579–583, 2014. ISSN
0334-2123. Available at: <http://dx.doi.org/10.1007/s12600-014-0415-4>.

BRINKHOFF, T.; KRIEGEL, H.-P.; SCHNEIDER, R. Comparison of approximations of
complex objects used for approximation-based query processing in spatial database systems.
In: 9th International Conference on Data Engineering (ICDE’1993). Vienna, Austria: IEEE
Computer Society, 1993. (Proceedings...), p. 40–49. ISBN 0-8186-3570-3.

BURDICK, D. et al. OLAP over uncertain and imprecise data. In: 31st International
Conference on Very Large Data Bases (VLDB’2005). Trondheim, Norway: ACM, 2005.
(Proceedings...), p. 970–981. ISBN 1-59593-154-6.

BURDICK, D. et al. OLAP over uncertain and imprecise data. The VLDB Jour-
nal, Springer-Verlag, v. 16, n. 1, p. 123–144, 2007. ISSN 1066-8888. Available at:
<http://dx.doi.org/10.1007/s00778-006-0033-y>.

BURROUGH, P. Natural objects with indeterminate boundaries. In: BURROUGH, P. A.;
FRANK, A. (Ed.). Geographic objects with indeterminate boundaries. 1. ed. London, UK:
Taylor & Francis, 1996, (GISDATA 2, v. 2). Chapter 1, p. 3–28. ISBN 978-0748403868.

BURROUGH, P. A.; FRANK, A. Geographic Objects with Indeterminate Boundaries. 1. ed.
London, UK: Taylor & Francis, 1996. (GISDATA 2, v. 2). ISBN 978-0748403875.

CÂMARA, G. et al. Fields as a generic data type for big spatial data. In: DUCKHAM, M. et
al. (Ed.). 8th International Conference on Geographic Information Science (GIScience’2014).
Springer International Publishing, 2014, (Lecture Notes in Computer Science: Geographic
Information Science, v. 8728). p. 159–172. ISBN 978-3-319-11592-4. Available at:
<http://dx.doi.org/10.1007/978-3-319-11593-1 11>.

CÂMARA, G.; FREITAS, U.; CASANOVA, M. A. Fields and objects algebras for GIS opera-
tions. In: 3rd Brazilian Symposium on GIS. São Paulo, SP, Brazil: [s.n.], 1995. (Proceedings...),
p. 407–424. Available at: <http://www.dpi.inpe.br/gilberto/papers/premio compaq.pdf>.

CARNIEL, A. C.; SIQUEIRA, T. L. L. An OLAP tool based on the bitmap join index. In:
XXXVII Conferencia Latinoamericana en Informatica (CLEI’2011). Quito, Ecuador: Centro
Latinoamericano de Estudios en Informática, 2011. (Anais...), p. 911–926.

CARNIEL, A. C.; SIQUEIRA, T. L. L. The Bitmap Join Index OLAP Tool. In: XXVI Brazilian
Symposium on Database (SBBD’2011). Florianópolis, SC, Brazil: Brazilian Computer Society,
2011. (Proceedings...), p. 13–18. Demos Session.

CARNIEL, A. C.; SIQUEIRA, T. L. L. Querying data warehouses efficiently using the
Bitmap Join Index OLAP Tool. CLEI Electronic Journal, v. 15, n. 2, 2012. Available at:
<http://www.clei.cl/cleiej/paper.php?id=243>.

304 References

CAZZIN, G. et al. Business Intelligence with SpagoBI. Padua, Italy: SpagoBI Competency
Center, 2012.

CHAUDHURI, S.; DAYAL, U. An overview of data warehousing and OLAP technology.
SIGMOD Record, ACM, New York, NY, USA, v. 26, n. 1, p. 65–74, mar 1997. ISSN
0163-5808. Available at: <http://doi.acm.org/10.1145/248603.248616>.

CHEN, P. P. The Entity-Relationship model - toward a unified view of data.
Transactions on Database Systems, ACM, v. 1, n. 1, p. 9–36, 1976. Available at:
<http://doi.acm.org/10.1145/320434.320440>.

CHENG, R.; KALASHNIKOV, D. V.; PRABHAKAR, S. Evaluating probabilistic queries
over imprecise data. In: ACM SIGMOD International Conference on Management of Data
(SIGMOD’2003). San Diego, California: ACM, 2003. (Proceedings...), p. 551–562. ISBN
1-58113-634-X. Available at: <http://doi.acm.org/10.1145/872757.872823>.

CIFERRI, C. D. A. et al. Cube algebra: A generic user-centric model and query language for
OLAP cubes. International Journal of Data Warehousing and Mining, v. 9, n. 2, p. 39–65,
2013. Available at: <http://dx.doi.org/10.4018/jdwm.2013040103>.

CIFERRI, R. R. Análise da Influência do Fator Distribuição Espacial dos Dados no
Desempenho de Métodos de Acesso Multidimensionais. Thesis (Ph.D.) — Universidade
Federal de Pernambuco (Brasil), Fevereiro 2002.

CLEMENTINI, E.; FELICE, P. D. An algebraic model for spatial objects with indeterminate
boundaries. In: BURROUGH, P. A.; FRANK, A. (Ed.). Geographic objects with indeterminate
boundaries. 1. ed. London, UK: Taylor & Francis, 1996, (GISDATA 2, v. 2). Chapter 11, p.
155–169. ISBN 978-0748403868.

CLEMENTINI, E.; SHARMA, J.; EGENHOFER, M. J. Modelling topo-
logical spatial relations: Strategies for query processing. Computers &
Graphics, v. 18, n. 6, p. 815 – 822, 1994. ISSN 0097-8493. Available at:
<http://www.sciencedirect.com/science/article/pii/0097849394900078>.

CODD, E. F. A relational model of data for large shared data banks. Communications of the
ACM, ACM, New York, NY, USA, v. 13, n. 6, p. 377–387, jun 1970. ISSN 0001-0782.

CODD, E. F.; CODD, S. B.; SALLEY, C. T. Providing OLAP to user-analysts: An IT mandate.
E.F. Codd and Associates, 1993.

COHN, A.; GOTTS, N. The ‘Egg-Yolk’ representation of regions with indeterminate
boundaries. In: BURROUGH, P. A.; FRANK, A. (Ed.). Geographic objects with indeterminate
boundaries. 1. ed. London, UK: Taylor & Francis, 1996, (GISDATA 2, v. 2). Chapter 12, p.
171–187. ISBN 978-0748403868.

CUZZOCREA, A.; FIDALGO, R. N. Enhancing coverage and expressive power of spatial
data warehousing modeling: the SDWM approach. In: 14th International Conference on Data
Warehousing and Knowledge Discovery (DaWaK’2012). Vienna, Austria: Springer-Verlag,
2012, (Lecture Notes in Computer Science: Data Warehousing and Knowledge Discovery,
v. 7448). p. 15–29. ISBN 978-3-642-32583-0. Available at: <http://dx.doi.org/10.1007/978-3-
642-32584-7 2>.

References 305

DALVI, N. N.; SUCIU, D. Efficient query evaluation on probabilistic databases. In:
NASCIMENTO, M. A. et al. (Ed.). 30th International Conference on Very Large Data
Bases (VLDB’2004). Toronto, Canada: ACM, 2004. (Proceedings...), p. 864–875. ISBN
0-12-088469-0.

DELGADO, M. et al. F-CUBE Factory: A fuzzy OLAP system for sup-
porting imprecision. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, v. 15, n. supp01, p. 59–81, 2007. Available at:
<http://www.worldscientific.com/doi/abs/10.1142/S0218488507004467>.

DELGADO, M. et al. A fuzzy multidimensional model for supporting imprecision in olap.
In: 2004 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’2004). Budapest,
Hungary: [s.n.], 2004. (Proceedings..., v. 3), p. 1331–1336. ISSN 1098-7584.

DEVILLERS, R. et al. Thirty years of research on spatial data quality: Achievements, failures,
and opportunities. Transactions in GIS, Blackwell Publishing Ltd, v. 14, n. 4, p. 387–400,
2010. ISSN 1467-9671. Available at: <http://dx.doi.org/10.1111/j.1467-9671.2010.01212.x>.

DILO, A. Representation of and reasoning with vagueness in spatial information : a system for
handling vague objects. Thesis (Ph.D.) — Wageningen University (Netherlands), June 2006.
Available at: <http://edepot.wur.nl/121810>.

DILO, A. et al. Storage and manipulation of vague spatial objects using existing gis
functionality. In: BORDOGNA, G.; PSAILA, G. (Ed.). Flexible Databases Supporting
Imprecision and Uncertainty. Springer Berlin Heidelberg, 2006, (Studies in Fuzziness
and Soft Computing, v. 203). p. 293–321. ISBN 978-3-540-33289-3. Available at:
<http://dx.doi.org/10.1007/3-540-33289-8 12>.

DILO, A.; BY, R. D.; STEIN, A. A system of types and operators for handling vague spatial
objects. International Journal of Geographical Information Science, Taylor & Francis, v. 21,
n. 4, p. 397–426, 2007. Available at: <http://dx.doi.org/10.1080/13658810601037096>.

DUBOIS, D.; PRADE, H. The three semantics of fuzzy sets. Fuzzy Sets
and Systems, v. 90, n. 2, p. 141–150, 1997. ISSN 0165-0114. Available at:
<http://www.sciencedirect.com/science/article/pii/S0165011497000808>.

DUBOIS, D.; PRADE, H. The legacy of 50 years of fuzzy sets: A dis-
cussion. Fuzzy Sets and Systems, v. 281, p. 21–31, 2015. ISSN 0165-0114.
Special Issue Celebrating the 50th Anniversary of Fuzzy Sets. Available at:
<http://www.sciencedirect.com/science/article/pii/S0165011415004169>.

DYRESON, C. E. A bibliography on uncertainty management in information systems.
In: MOTRO, A.; SMETS, P. (Ed.). Uncertainty Management in Information Systems.
Springer US, 1997. Chapter 15, p. 413–458. ISBN 978-1-4613-7865-5. Available at:
<http://dx.doi.org/10.1007/978-1-4615-6245-0 15>.

EDELSBRUNNER, H.; KIRKPATRICK, D.; SEIDEL, R. On the shape of a set of points in
the plane. IEEE Transactions on Information Theory, v. 29, n. 4, p. 551–559, July 1983. ISSN
0018-9448.

306 References

EDOH-ALOVE, É.; BIMONTE, S.; BÉDARD, Y. A new design method for managing
spatial vagueness in classical relational spatial OLAP architectures. In: MURGANTE, B.
et al. (Ed.). 14th International Conference on Computational Science and Its Applications
(ICCSA’2014). Guimarães, Portugal: Springer International Publishing, 2014, (Lecture Notes
in Computer Science: Computational Science and Its Applications, v. 8580). p. 774–786. ISBN
978-3-319-09128-0. Available at: <http://dx.doi.org/10.1007/978-3-319-09129-7 56>.

EDOH-ALOVE, É. et al. A hybrid risk-aware design method for spatial datacubes
handling spatial vague data: implementation and validation. International Journal of
Business Intelligence and Data Mining, v. 9, n. 3, p. 210–232, 2014. Available at:
<http://dx.doi.org/10.1504/IJBIDM.2014.068366>.

EGENHOFER, M.; HERRING, J. Categorizing Binary Topological Relationships Between
Regions, Lines, and Points in Geographic Databases. Orono, ME, USA: Department of
Surveying Engineering, University of Maine, 1991. 28 p.

EGENHOFER, M. J.; FRANZOSA, R. D. Point set topological relations. International
Journal of Geographical Information Systems, v. 5, n. 2, p. 161–174, 1991. Available at:
<http://dx.doi.org/10.1080/02693799108927841>.

ELMASRI, R.; NAVATHE, S. B. Fundamentals of Database Systems. 6. ed. Columbus, OH,
USA: Addison Wesley, 2010. Hardcover. ISBN 0136086209.

EMBLEY, D. W. Relational model. In: LIU, L.; ÖZSU, M. T. (Ed.). Encyclopedia of Database
Systems. New York, NY, USA: Springer US, 2009. p. 2372–2376. ISBN 978-0-387-39940-9.

EMBLEY, D. W. Semantic data model. In: LIU, L.; ÖZSU, M. T. (Ed.). Encyclopedia
of Database Systems. New York, NY, USA: Springer US, 2009. p. 2559–2561. ISBN
978-0-387-39940-9.

ERWIG, M.; SCHNEIDER, M. Vague regions. In: SCHOLL, M.; VOISARD, A. (Ed.).
5th International Symposium on Advances in Spatial Databases (SSD’1997). Berlin,
Germany: Springer Berlin Heidelberg, 1997, (Lecture Notes in Computer Science: Advances
in Spatial Databases, v. 1262). p. 298–320. ISBN 978-3-540-63238-2. Available at:
<http://dx.doi.org/10.1007/3-540-63238-7 36>.

FASEL, D. Fuzzy Data Warehousing for Performance Measurement: Concept and
Implementation. 1. ed. [S.l.]: Springer International Publishing, 2014. (Fuzzy Management
Methods). ISBN 978-3-319-04226-8.

FIDALGO, R. N. et al. GeoDWFrame: A framework for guiding the design of geographical
dimensional schemas. In: KAMBAYASHI, Y.; MOHANIA, M.; WOESS, W. (Ed.). 6th
International Conference on Data Warehousing and Knowledge Discovery (DaWaK’2004).
Zaragoza, Spain: Springer Berlin Heidelberg, 2004, (Lecture Notes in Computer Science:
Data Warehousing and Knowledge Discovery, v. 3181). p. 26–37. ISBN 978-3-540-22937-7.
Available at: <http://dx.doi.org/10.1007/978-3-540-30076-2 3>.

FISHER, P. F. Models of uncertainty in spatial data. In: LONGLEY, P. et al. (Ed.).
Geographical Information systems. 2. ed. New York, NY, USA: John Wiley & Sons, 1999. v. 1,
Chapter 13, p. 191–205. ISBN 0471-33132-5.

References 307

GAEDE, V.; GUNTHER, O. Multidimensional access methods. ACM Computing Surveys,
ACM, v. 30, n. 2, p. 170–231, 1998. Available at: <http://dx.doi.org/10.1145/280277.280279>.

GASCUEÑA, C. M.; GUADALUPE, R. A multidimensional methodology with support
for spatio-temporal multigranularity in the conceptual and logical phases. In: TANIAR, D.
(Ed.). Progressive Methods in Data Warehousing and Business Intelligence: Concepts and
Competitive Analytics. Hershey, PA, USA: IGI Global, 2009. Chapter 10, p. 194–230.

GOGOLLA, M. Object constraint language. In: LIU, L.; ÖZSU, M. T. (Ed.). Encyclopedia
of Database Systems. New York, NY, USA: Springer US, 2009. p. 1927–1929. ISBN
978-0-387-39940-9.

GOGOLLA, M. Unified modeling language. In: LIU, L.; ÖZSU, M. T. (Ed.). Encyclopedia
of Database Systems. New York, NY, USA: Springer US, 2009. p. 3232–3239. ISBN
978-0-387-39940-9.

GOLFARELLI, M.; MAIO, D.; RIZZI, S. The dimensional fact model: A con-
ceptual model for data warehouses. International Journal of Cooperative Informa-
tion Systems, v. 07, n. 02n03, p. 215–247, June and September 1998. Available at:
<http://www.worldscientific.com/doi/abs/10.1142/S0218843098000118>.

GOMEZ, L. et al. Spatial aggregation: Data model and implementation. Infor-
mation Systems, v. 34, n. 6, p. 551 – 576, 2009. ISSN 0306-4379. Available at:
<http://www.sciencedirect.com/science/article/pii/S0306437909000131>.

GOODCHILD, M. F. Geographical data modeling. Computers & Geosciences, v. 18,
n. 4, p. 401 – 408, 1992. ISSN 0098-3004. GIS Design Models. Available at:
<http://www.sciencedirect.com/science/article/pii/0098300492900694>.

GOODCHILD, M. F. Attribute accuracy. In: GUPTILL, S. C.; MORRISON, J. L.
(Ed.). Elements of Spatial Data Quality. Pergamon, 1995, (International Carto-
graphic Association). Chapter 4, p. 59 – 79. ISBN 978-0-08-042432-3. Available at:
<http://www.sciencedirect.com/science/article/pii/B9780080424323500112>.

GOODCHILD, M. F. Imprecision and spatial uncertainty. In: Encyclopedia of GIS. [S.l.]:
Springer US, 2008. p. 480–483. ISBN 978-0-387-30858-6.

GOTTWALD, T. R. Current epidemiological understanding of citrus huanglongbing. Annual
Review of Phytopathology, v. 48, n. 1, p. 119–139, 2010. PMID: 20415578. Available at:
<http://dx.doi.org/10.1146/annurev-phyto-073009-114418>.

GOTTWALD, T. R.; GRAÇA, J. V.; BASSANEZI, R. B. Citrus huanglongbing: The pathogen
and its impact. Plant Health Progress, September 2007. ISSN 1535-1025.

GUTTMAN, A. R-trees: A dynamic index structure for spatial searching. SIGMOD Record,
ACM, New York, NY, USA, v. 14, n. 2, p. 47–57, June 1984. ISSN 0163-5808. Available at:
<http://doi.acm.org/10.1145/971697.602266>.

HARINARAYAN, V.; RAJARAMAN, A.; ULLMAN, J. D. Implementing data cubes
efficiently. SIGMOD Record, ACM, New York, NY, USA, v. 25, n. 2, p. 205–216, June 1996.
ISSN 0163-5808. Available at: <http://doi.acm.org/10.1145/235968.233333>.

308 References

HAZARIKA, D.; HAZARIKA, D. Fuzzy regions with holes and their topological relations in
a special fuzzy topological space. Annals of Fuzzy Mathematics and Informatics, v. 3, n. 1, p.
89–101, 2012. ISSN 20939310.

HAZARIKA, S. M.; COHN, A. G. A taxonomy for spatial vagueness: An alternative Egg-Yolk
interpretation. In: Workshop on Spatial Vagueness, Uncertainty and Granularity (SVUG’01).
Ogunquit, ME, USA: [s.n.], 2001. p. 92–107.

HERRING, J. R. (Ed.). OpenGIS R© Implementation Standard for Geographic information
- Simple feature access - Part 1: Common architecture. [S.l.], 2011. Available at:
<http://www.opengeospatial.org/>.

HOEL, E. Data models in commercial GIS systems. In: Encyclopedia of GIS. Springer US,
2008. p. 215–219. ISBN 978-0-387-30858-6. Available at: <http://dx.doi.org/10.1007/978-0-
387-35973-1 247>.

HWANG, S.; THILL, J.-C. Modeling localities with fuzzy sets and gis. In: PETRY, F. E.;
ROBINSON, V. B.; COBB, M. A. (Ed.). Fuzzy Modeling with Spatial Information for
Geographic Problems. New York, NY, USA: Springer Berlin Heidelberg, 2005. p. 71–104.
ISBN 978-3-540-23713-6. Available at: <http://dx.doi.org/10.1007/3-540-26886-3 4>.

INAMASU, R. Y. et al. (Ed.). Agricultura de Precisão: Um Novo Olhar.
1. ed. Embrapa Instrumentação, 2011. ISBN 9788586463310. Available at:
<http://www.macroprograma1.cnptia.embrapa.br/redeap2/publicacoes/publicacoes-da-
rede-ap/capitulos>.

JADIDI, A. et al. Using geospatial business intelligence paradigm to design a multidimensional
conceptual model for efficient coastal erosion risk assessment. Journal of Coastal
Conservation, Springer, v. 17, n. 3, p. 527–543, 2013. ISSN 1400-0350. Available at:
<http://dx.doi.org/10.1007/s11852-013-0252-5>.

JADIDI, A. et al. Spatial representation of coastal risk: A fuzzy approach to deal with
uncertainty. International Journal of Geo-Information (ISPRS), MDPI, v. 3, n. 3, p. 1077–1100,
2014. ISSN 2220-9964. Available at: <http://dx.doi.org/10.3390/ijgi3031077>.

JENKINS, D. A.; HALL, D. G.; GOENAGA, R. Diaphorina citri (hemiptera: Liviidae)
abundance in Puerto Rico declines with elevation. Journal of Economic Entomology, The
Oxford University Press, 2015. ISSN 0022-0493.

JORGE, L. A. C.; INAMASU, R. Y. Detecção de greening dos citrus por imagens
multiespectrais. In: BERNARDI, A. C. C. et al. (Ed.). Agricultura de precisão: resultados de
um novo olhar. [S.l.]: Embrapa, 2014. Chapter 13, p. 180–190.

KACPRZYK, J.; ZADROZNY, S.; TRÉ, G. D. Fuzziness in database management systems:
Half a century of developments and future prospects. Fuzzy Sets and Systems, v. 281, p.
300–307, 2015. ISSN 0165-0114. Special Issue Celebrating the 50th Anniversary of Fuzzy
Sets. Available at: <http://www.sciencedirect.com/science/article/pii/S0165011415003000>.

KALASHNIKOV, D. V. et al. Index for fast retrieval of uncertain spatial point data. In: 14th
ACM International Symposium on Advances in Geographic Information Systems (GIS’2006).
Arlington, VA, USA: ACM, 2006. (Proceedings...), p. 195–202. ISBN 1-59593-529-0.
Available at: <http://doi.acm.org/10.1145/1183471.1183504>.

References 309

KANJILAL, V.; LIU, H.; SCHNEIDER, M. Plateau regions: An implementation concept
for fuzzy regions in spatial databases and GIS. In: HULLERMEIER, E.; KRUSE, R.;
HOFFMANN, F. (Ed.). 13th International Conference on Information Processing and
Management of Uncertainty (IPMU’10). Dortmund, Germany: Springer Berlin Heidelberg,
2010, (Lecture Notes in Computer Science: Computational Intelligence for Knowledge-
Based Systems Design, v. 6178). p. 624–633. ISBN 978-3-642-14048-8. Available at:
<http://dx.doi.org/10.1007/978-3-642-14049-5 64>.

KIMBALL, R.; ROSS, M. The Data Warehouse Toolkit: The Complete Guide to Dimensional
Modeling. 2. ed. New York, NY, USA: Wiley, 2002. ISBN 978-0471200246.

KLENKE, A. Probability Theory: A Comprehensive Course. 2. ed. London, UK: Springer
London, 2014. (Universitext). ISBN 978-1-4471-5361-0.

LANE, P.; POTINENI, P. Data warehousing optimizations and techniques. In: Oracle
Database Data Warehousing Guide 12c Release 1 (12.1). [s.n.], 2014. Chapter 4. Available at:
<https://docs.oracle.com/database/121/DWHSG/schemas.htm#DWHSG019>.

LAURENT, A. Querying fuzzy multidimensional databases: Unary operators and their
properties. International Journal of Uncertainty, Fuzziness & Knowledge-Based Systems, v. 11,
p. 31 – 45, 2003. ISSN 02184885.

LEONARD, R.; KNISEL, W.; STILL, D. GLEAMS: Groundwater loading effects of
agricultural management systems. Transactions of the American Society of Agricultural
Engineers, v. 5, p. 1403–1418, 1987.

LEUNG, Y. On the imprecision of boundaries. Geographical Analysis, Ohio State University
Press, v. 19, n. 2, 1987.

LI, R. et al. Uncertain spatial data handling: Modeling, indexing and query. Com-
puters & Geosciences, v. 33, n. 1, p. 42 – 61, 2007. ISSN 0098-3004. Available at:
<http://www.sciencedirect.com/science/article/pii/S0098300406000926>.

LIU, K.; SHI, W. Quantitative fuzzy topological relations of spatial objects by in-
duced fuzzy topology. International Journal of Applied Earth Observation and
Geoinformation, v. 11, n. 1, p. 38 – 45, 2009. ISSN 0303-2434. Available at:
<http://www.sciencedirect.com/science/article/pii/S0303243408000470>.

MALINOWSKI, E.; ZIMÁNYI, E. Advanced Data Warehouse Design: From Conventional
to Spatial and Temporal Applications. Berlin, Heidelberg: Springer-Verlag, 2009. ISBN
3642093833, 9783642093838.

MATEUS, R. C. et al. How does the spatial data redundancy affect query performance in
geographic data warehouses? Journal of Information and Data Management, v. 1, n. 3, p.
519–534, 2010. Available at: <http://seer.lcc.ufmg.br/index.php/jidm/article/view/61>.

MATEUS, R. C. et al. Spatial data warehouses and spatial OLAP come towards the cloud:
design and performance. Distributed and Parallel Databases, Springer US, p. 1–37, 2015.
ISSN 0926-8782. Available at: <http://dx.doi.org/10.1007/s10619-015-7176-z>.

310 References

MOHAN, P. et al. Should SDBMS support a join index?: A case study from crimestat. In:
16th ACM SIGSPATIAL International Conference on Advances in Geographic Information
Systems (GIS’2008). Irvine, CA, USA: ACM, 2008. (Proceedings...), p. 37:1–37:10. ISBN
978-1-60558-323-5. Available at: <http://doi.acm.org/10.1145/1463434.1463481>.

NEITSCH, S.; ARNOLD, J.; WILLIANS, J. Soil and Water Assessment Tool:
Theoretical Documentation. Temple, TX, USA, August 2011. Available at:
<http://swat.tamu.edu/media/99192/swat2009-theory.pdf>.

OBE, R. O.; HSU, L. S. PostGIS in Action. 2. ed. Shelter Island, NY, USA: Manning
Publications Co., 2015. ISBN 9781617291395.

O’NEIL, P. et al. The star schema benchmark and augmented fact table indexing. In:
NAMBIAR, R.; POESS, M. (Ed.). First TPC Technology Conference (TPCTC 2009). Lyon,
France: Springer Berlin Heidelberg, 2009, (Lecture Notes in Computer Science: Performance
Evaluation and Benchmarking, v. 5895). p. 237–252. ISBN 978-3-642-10423-7. Available at:
<http://dx.doi.org/10.1007/978-3-642-10424-4 17>.

O’NEIL, P. E. Model 204 architecture and performance. In: GAWLICK, D.; HAYNIE, M.;
REUTER, A. (Ed.). 2nd International Workshop on High Performance Transaction Systems.
Pacific Grove, CA, USA: Springer Berlin Heidelberg, 1989, (Lecture Notes in Computer
Science: High Performance Transaction Systems, v. 359). p. 39–59. ISBN 978-3-540-51085-7.

O’NEIL, P. E.; GRAEFE, G. Multi-table joins through bitmapped join indices. SIGMOD
Record, ACM, New York, NY, USA, v. 24, n. 3, p. 8–11, September 1995. ISSN 0163-5808.
Available at: <http://doi.acm.org/10.1145/211990.212001>.

OORT, P. v. Spatial data quality: from description to application. Thesis (Ph.D.) — Wagenin-
gen Universiteit, January 2006. Available at: <http://library.wur.nl/WebQuery/clc/1788022>.

ORACLE Spatial and Graph: Advanced Data Management. [S.l.], September 2014. Available
at: <http://www.oracle.com/technetwork/database/options/spatialandgraph/spatial-and-graph-
wp-12c-1896143.pdf?ssSourceSiteId=ocomen>.

PAPADIAS, D. et al. Efficient OLAP operations in spatial data warehouses. In: JENSEN, C. S.
et al. (Ed.). 7th International Symposium on Advances in Spatial and Temporal Databases
(SSTD’2001). Redondo Beach, CA, USA: Springer Berlin Heidelberg, 2001, (Lecture Notes in
Computer Science: Advances in Spatial and Temporal Databases, v. 2121). p. 443–459. ISBN
978-3-540-42301-0. Available at: <http://dx.doi.org/10.1007/3-540-47724-1 23>.

PARENT, C.; SPACCAPIETRA, S.; ZIMÁNYI, E. Conceptual modeling for traditional and
spatio-temporal applications - the MADS approach. Secaucus, NJ, USA: Springer, 2006. ISBN
978-3-540-30153-0.

PAULY, A.; SCHNEIDER, M. VASA: An algebra for vague spatial data in databases.
Information Systems, v. 35, n. 1, p. 111–138, 2010. ISSN 0306-4379. Available at:
<http://www.sciencedirect.com/science/article/pii/S0306437909000519>.

PEBESMA, E. J.; KARSSENBERG, D.; JONG, K. d. Dynamic visualisation of spatial
and spatio-temporal probability distribution functions. In: CAETANO, M.; M., P. (Ed.).
7th International Symposium on Spatial Accuracy Assessment in Natural Resources and
Environmental Sciences (Accuracy 2006). Lisbon, Portugal: Instituto Geográfico Português,

References 311

2006. (Proceedings...), p. 825–831. ISBN 972-8867271. Available at: <http://www.spatial-
accuracy.org/Reis2006accuracy>.

PEDERSEN, T. B. Multidimensional modeling. In: LIU, L.; ÖZSU, M. T. (Ed.). Encyclopedia
of Database Systems. New York, NY, USA: Springer US, 2009. p. 1777–1784. ISBN
978-0-387-39940-9.

PEREZ, D.; SOMODEVILLA, M.; PINEDA, I. H. Fuzzy spatial data warehouse: A
multidimensional model. In: Eighth Mexican International Conference on Current Trends in
Computer Science (ENC’2007). Michoacan, Mexico: IEEE, 2007. (Proceedings...), p. 3–9.
ISBN 978-0-7695-2899-1.

PEREZ, D.; SOMODEVILLA, M.; PINEDA, I. H. Fuzzy spatial data warehouse: A multidi-
mensional model. In: DEVLIN, G. (Ed.). Advances in Decision Support Systems. InTech, 2010,
(Eighth Mexican International Conference on Current Trends in Computer Science). Chapter 4.
ISBN 978-953-307-069-8. Available at: <http://www.intechopen.com/books/decision-support-
systems-advances-in/fuzzy-spatial-data-warehouse-a-multidimensional-model>.

PETRY, F. E.; LADNER, R.; SOMODEVILLA, M. Indexing implementation for vague
spatial regions with R-trees and grid files. In: MORRIS, A.; KOKHAN, S. (Ed.). Geographic
Uncertainty in Environmental Security. Dordrecht, The Netherlands: Springer Netherlands,
2007. Chapter 11. ISBN 978-1-4020-6438-8.

PINET, F.; SCHNEIDER, M. Precise design of environmental data warehouses. Operational
Research, Springer-Verlag, v. 10, n. 3, p. 349–369, 2010. ISSN 1109-2858. Available at:
<http://dx.doi.org/10.1007/s12351-009-0069-z>.

POSTGRESQL 9.4.1 Documentation. [S.l.], February 2015. Available at:
<http://www.postgresql.org/docs/9.4/interactive/arrays.html>.

POURABBAS, E.; RAFANELLI, M. Characterization of hierarchies and some operators in
olap environment. In: 2nd ACM International Workshop on Data warehousing and OLAP
(DOLAP’1999). Kansas City, MO, USA: ACM, 1999. (Proceedings...), p. 54–59. ISBN
1-58113-220-4. Available at: <http://doi.acm.org/10.1145/319757.319790>.

PUSTIKA, A. et al. Interactions between plant nutrition and symptom expression in
mandarin trees infected with the disease huanglongbing. Australasian Plant Disease
Notes, Springer Netherlands, v. 3, n. 1, p. 112–115, 2008. ISSN 1833-928X. Available at:
<http://dx.doi.org/10.1007/BF03211261>.

RANDELL, D.; CUI, Z.; COHN, A. A spatial logic based on regions and connection. In: 3rd
International Conference on Principles of Knowledge Representation and Reasoning. San
Mateo, CA, USA: Morgan Kaufmann, 1992. p. 165–176.

RAO, F. et al. Spatial hierarchy and OLAP-favored search in spatial data warehouse. In:
6th ACM International Workshop on Data Warehousing and OLAP (DOLAP’2003). New
Orleans, LA, USA: ACM, 2003. (Proceedings...), p. 48–55. ISBN 1-58113-727-3. Available at:
<http://doi.acm.org/10.1145/956060.956070>.

RECIO, J. et al. Automated extraction of tree and plot-based parameters
in citrus orchards from aerial images. Computers and Electronics in Agri-
culture, v. 90, n. 0, p. 24 – 34, 2013. ISSN 0168-1699. Available at:
<http://www.sciencedirect.com/science/article/pii/S0168169912002566>.

312 References

SAPIR, L.; SHMILOVICI, A.; ROKACH, L. A methodology for the design of a fuzzy data
warehouse. In: 4th International IEEE Conference on Intelligent Systems (IS’2008). [S.l.: s.n.],
2008. (Proceedings..., v. 1), p. 2–14–2–21. ISBN 978-1-4244-1740-7.

SCHNEIDER, M. Fuzzy spatial data types for spatial uncertainty management in databases. In:
GALINDO, J. (Ed.). Handbook of Research on Fuzzy Information Processing in Databases.
[S.l.]: IGI Global, 2008. II, Chapter 19, p. 490–515. ISBN 9781599048536.

SCHNEIDER, M. Spatial plateau algebra for implementing fuzzy spatial ob-
jects in databases and GIS: Spatial plateau data types and operations. Applied
Soft Computing, v. 16, p. 148 – 170, 2014. ISSN 1568-4946. Available at:
<http://www.sciencedirect.com/science/article/pii/S1568494613004249>.

SHI, W.; LIU, K. A fuzzy topology for computing the interior, boundary, and exterior of spatial
objects quantitatively in GIS. Computers & Geosciences, v. 33, n. 7, p. 898 – 915, 2007.
Available at: <http://www.sciencedirect.com/science/article/pii/S0098300407000210>.

SHI, Y. et al. Fuzzy control of the spraying medicine control system. In: LI, D. (Ed.). Computer
And Computing Technologies In Agriculture, Volume II. Springer US, 2008, (The International
Federation for Information Processing, v. 259). p. 1087–1094. ISBN 978-0-387-77252-3.
Available at: <http://dx.doi.org/10.1007/978-0-387-77253-0 42>.

SILVA, J. et al. A set of aggregation functions for spatial measures. In: 11th ACM
International Workshop on Data Warehousing and OLAP (DOLAP’2008). Napa Valley,
CA, USA: ACM, 2008. (Proceedings...), p. 25–32. ISBN 978-1-60558-250-4. Available at:
<http://doi.acm.org/10.1145/1458432.1458438>.

SILVA, J. da et al. Modelling and querying geographical data warehouses.
Information Systems, v. 35, n. 5, p. 592 – 614, 2010. ISSN 0306-4379.
Twenty-second Brazilian Symposium on Databases (SBBD 2007). Available at:
<http://www.sciencedirect.com/science/article/pii/S0306437909001033>.

SIQUEIRA, T. L. L. SB-index: Um Índice Espacial baseado em Bitmap
para Data Warehouse Geográfico. Dissertation (M.Sc.) — Univer-
sidade Federal de São Carlos (Brasil), Agosto 2009. Available at:
<http://www.bdtd.ufscar.br/htdocs/tedeSimplificado//tde busca/arquivo.php?codArquivo=2861>.

SIQUEIRA, T. L. L. et al. The impact of spatial data redundancy on SOLAP query
performance. Journal of the Brazilian Computer Society, v. 15, n. 2, p. 19–34, 2009. Available
at: <http://dx.doi.org/10.1590/S0104-65002009000200003>.

SIQUEIRA, T. L. L. et al. Towards vague geographic data warehouses. In: XIAO, N. et al.
(Ed.). 7th International Conference on Geographic Information Science (GIScience’2012).
Columbus, OH, USA: Springer Berlin Heidelberg, 2012, (Lecture Notes in Computer Science:
Geographic Information Science, v. 7478). p. 173–186. ISBN 978-3-642-33023-0. Available
at: <http://dx.doi.org/10.1007/978-3-642-33024-7 13>.

SIQUEIRA, T. L. L. et al. The SB-index and the HSB-index: Efficient indices for spatial data
warehouses. Geoinformatica, Kluwer Academic Publishers, Hingham, MA, USA, v. 16, n. 1,
p. 165–205, jan 2012. ISSN 1384-6175. Available at: <http://dx.doi.org/10.1007/s10707-011-
0128-5>.

References 313

SIQUEIRA, T. L. L. et al. Modeling vague spatial data warehouses using the VSCube
conceptual model. GeoInformatica, Springer US, v. 18, n. 2, p. 313–356, 2014. ISSN
1384-6175. Available at: <http://dx.doi.org/10.1007/s10707-013-0186-y>.

SIQUEIRA, T. L. L. et al. Investigating the effects of spatial data redun-
dancy in query performance over geographical data warehouses. In: CAR-
VALHO, M. T. M. et al. (Ed.). X Brazilian Symposium on Geoinformatics
(GeoInfo’2008). Rio de Janeiro, RJ, Brazil: [s.n.], 2008. p. 1–12. Available at:
<http://www.geoinfo.info/proceedings geoinfo2008.split/proceedings geoinfo2008.11 22.pdf>.

SIQUEIRA, T. L. L. et al. A spatial bitmap-based index for geographical data warehouses. In:
SHIN, S. Y.; OSSOWSKI, S. (Ed.). 2009 ACM Symposium on Applied Computing (SAC’2009).
Honolulu, HI, USA: ACM, 2009. (Proceedings...), p. 1336–1342. ISBN 978-1-60558-166-8.

SIQUEIRA, T. L. L. et al. Benchmarking spatial data warehouses. In: PEDERSEN, T. B.;
MOHANIA, M. K.; TJOA, A. M. (Ed.). 12th International Conference on Data Warehousing
and Knowledge Discovery. Bilbao, Spain: Springer Berlin Heidelberg, 2010, (Lecture Notes
in Computer Science: Data Warehousing and Knowledge Discovery, v. 6263). p. 40–51. ISBN
978-3-642-15104-0.

SIQUEIRA, T. L. L.; CIFERRI, R. R.; ZIMÁNYI, E. Extending the multidim conceptual
model to enable the design of vague spatial data warehouses. In: Dutch-Belgian Database Day.
Antwerp, Belgium: [s.n.], 2014. Available at: <http://adrem.ua.ac.be/dbdbd2014/>.

SIQUEIRA, T. L. L.; CIFERRI, R. R.; ZIMÁNYI, E. Projeto Lógico de Data Warehouse
Espacial Vago. Brası́lia, DF, Brasil, Abril 2015. (Relatório técnico-cientı́fico final - Doutorado-
sanduı́che (SWE): 229675/2013-1. Conselho Nacional de Desenvolvimento Cientı́fico e
Tecnológico (CNPq)).

SIQUEIRA, T. L. L. et al. Querying vague spatial information in geographic data warehouses.
In: GEERTMAN, S.; REINHARDT, W.; TOPPEN, F. (Ed.). 14th AGILE International
Conference on Geographic Information Science. Utrecht, The Netherlands: Springer
Berlin Heidelberg, 2011, (Lecture Notes in Geoinformation and Cartography: Advancing
Geoinformation Science for a Changing World, v. 1). p. 379–397. ISBN 978-3-642-19788-8.
Available at: <http://dx.doi.org/10.1007/978-3-642-19789-5 19>.

SIQUEIRA, T. L. L. et al. Indexing vague regions in spatial data ware-
houses. In: SANTANCHÈ, A.; ANDRADE, P. R. (Ed.). XIV Brazilian Sympo-
sium on Geoinformatics (GeoInfo’2013). Campos do Jordão, SP, Brazil: MC-
T/INPE, 2013. (Proceedings...), p. 158–169. ISSN 2179-4820. Available at:
<http://www.geoinfo.info/proceedings geoinfo2013.split/paper17.pdf>.

SIQUEIRA, T. L. L. et al. Indexing and querying vague spatial data warehouses. Journal
of Information and Data Management, v. 5, n. 2, p. 161–170, 2014. Available at:
<https://seer.lcc.ufmg.br/index.php/jidm/article/view/323>.

SIQUEIRA, T. L. L.; ZIMÁNYI, E.; CIFERRI, R. R. Projeto Lógico de Data Warehouse
Espacial Vago. São Paulo, SP, Brasil, Julho 2015. (Relatório cientı́fico final - Doutorado (DR):
14/14103-9. Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)).

314 References

SOMODEVILLA, M.; PETRY, F. Indexing mechanisms to query FMBRs. In: 2004 Annual
Meeting of the North American Fuzzy Information Processing Society. [S.l.]: IEEE, 2004. v. 1,
p. 198–202. ISBN 0-7803-8376-1.

SOMODEVILLA, M. J.; PETRY, F. Approximation of topological relations on fuzzy regions:
an approach using minimal bounding rectangles. In: 22nd International Conference of the
North American Fuzzy Information Processing Society (NAFIPS’2003). Chicago, IL, USA:
IEEE, 2003. (Proceedings...), p. 371–376. ISBN 0-7803-7918-7.

SONG, I.; CHEN, P. P. Entity relationship model. In: LIU, L.; ÖZSU, M. T. (Ed.).
Encyclopedia of Database Systems. New York, NY, USA: Springer US, 2009. p. 1003–1009.
ISBN 978-0-387-39940-9.

STEFANOVIC, N.; HAN, J.; KOPERSKI, K. Object-based selective materialization for
efficient implementation of spatial data cubes. Transactions on Knowledge and Data
Engineering, IEEE, v. 12, n. 6, p. 938–958, November 2000. ISSN 1041-4347.

STOCKINGER, K.; WU, K. Bitmap indices for data warehouses. In: WREMBEL, R.;
KONCILIA, C. (Ed.). Data Warehouses and OLAP: Concepts, Architectures and Solutions:
Concepts, Architectures and Solutions. Hershey, PA, USA: IGI Global, 2006. Chapter 7, p.
157–178. ISBN 1599043645.

SUCIU, D. Probabilistic databases. In: LIU, L.; ÖZSU, M. T. (Ed.). Encyclopedia of Database
Systems. New York, NY, USA: Springer US, 2009. p. 2150–2155. ISBN 978-0-387-39940-9.

TANG, X.; KAINZ, W.; WANG, H. Topological relations between fuzzy regions in
a fuzzy topological space. International Journal of Applied Earth Observation and
Geoinformation, v. 12, Supplement 2, p. S151 – S165, 2010. ISSN 0303-2434. Supplement
Issue on Spatial Analysis-Modeling, Methodology and applications. Available at:
<http://www.sciencedirect.com/science/article/pii/S0303243410000073>.

TAO, Y. et al. Indexing multi-dimensional uncertain data with arbitrary probability density
functions. In: 31st International Conference on Very Large Data Bases (VLDB’2005).
VLDB Endowment, 2005. (Proceedings...), p. 922–933. ISBN 1-59593-154-6. Available at:
<http://dl.acm.org/citation.cfm?id=1083592.1083699>.

TAO, Y.; XIAO, X.; CHENG, R. Range search on multidimensional uncertain data.
ACM Transactions on Database Systems, v. 32, n. 3, p. 15, 2007. Available at:
<http://doi.acm.org/10.1145/1272743.1272745>.

TEOREY, T. J.; YANG, D.; FRY, J. P. A logical design methodology for relational databases
using the extended Entity-Relationship model. ACM Computing Surveys, ACM, New York,
NY, USA, v. 18, n. 2, p. 197–222, jun 1986. ISSN 0360-0300.

THALHEIM, B. Abstraction. In: LIU, L.; ÖZSU, M. T. (Ed.). Encyclopedia of Database
Systems. New York, NY, USA: Springer US, 2009. p. 6–7. ISBN 978-0-387-39940-9.

TIMKO, I.; DYRESON, C. E.; PEDERSEN, T. B. A probabilistic data model and algebra for
location-based data warehouses and their implementation. GeoInformatica, Springer US, v. 18,
n. 2, p. 357–403, 2014. ISSN 1384-6175. Available at: <http://dx.doi.org/10.1007/s10707-
013-0180-4>.

References 315

VAISMAN, A.; ZIMÁNYI, E. A multidimensional model representing continuous
fields in spatial data warehouses. In: 17th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems (GIS’2009). Seattle, WA, USA:
ACM, 2009. (Proceedings...), p. 168–177. ISBN 978-1-60558-649-6. Available at:
<http://doi.acm.org/10.1145/1653771.1653797>.

VAISMAN, A. A. Bitmap Indexing: From Model 204 To Data Warehouses. Buenos Aires,
Argentina, 1998. (Report number: 98-016 - Universidad de Buenos Aires). Available at:
<ftp://zorzal.dc.uba.ar/pub/tr/1998/98-016.ps>.

VAISMAN, A. A.; ZIMÁNYI, E. Data Warehouse Systems - Design and Implementation.
1. ed. Heidelberg, Germany: Springer-Verlag Berlin Heidelberg, 2014. (Data-Centric
Systems and Applications). ISSN 2197-9723. ISBN 978-3-642-54655-6. Available at:
<http://dx.doi.org/10.1007/978-3-642-54655-6>.

VAISMAN, A. A.; ZIMÁNYI, E. Spatial data warehouses. In: Data Warehouse Systems -
Design and Implementation. Heidelberg, Germany: Springer-Verlag Berlin Heidelberg, 2014,
(Data-Centric Systems and Applications). Chapter 11, p. 427–474. ISBN 978-3-642-54655-6.

VERSTRAETE, J.; HALLEZ, A.; TRÉ, G. D. Fuzzy regions: Theory and applications. In:
MORRIS, A.; KOHKHAN, S. (Ed.). Geographic Uncertainty in Environmental Security. Kyiv,
Ukraine: Springer Netherlands, 2006. Chapter 1, p. 1–18. ISBN 978-1-4020-6438-8.

VERSTRAETE, J. et al. Field based methods for the modeling of fuzzy spatial data. In:
PETRY, F. E.; ROBINSON, V. B.; COBB, M. A. (Ed.). Fuzzy Modeling with Spatial
Information for Geographic Problems. New York, NY, USA: Springer Berlin Heidelberg,
2005. p. 41–69. ISBN 978-3-540-23713-6.

VERSTRAETE, J.; TRÉ, G. D.; HALLEZ, A. Bitmap based structures for the modeling
of fuzzy entities. Control and Cybernetics, Systems Research Institute Polish Academy of
Sciences, v. 35, n. 1, p. 147–164, 2006.

VERSTRAETE, J. et al. Using TIN-based structures for the modelling of fuzzy
GIS objects in a database. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems, v. 15, n. supp01, p. 1–20, 2007. Available at:
<http://www.worldscientific.com/doi/abs/10.1142/S0218488507004431>.

WANG, J. et al. A fast region merging algorithm for watershed segmentation. In: 7th
International Conference on Signal Processing (ICSP ’2004). Beijing, China: IEEE, 2004.
(Proceedings..., v. 1), p. 781–784.

WIDOM, J. Trio: A system for integrated management of data, accuracy, and lineage. In:
Second Biennial Conference on Innovative Data Systems Research. Asilomar, CA, USA: [s.n.],
2005. (CIDR), p. 262–276. Available at: <http://www.cidrdb.org/cidr2005/papers/P22.pdf>.

WOLFSON, O. et al. Updating and querying databases that track mobile units. Distributed and
Parallel Databases, Kluwer Academic Publishers, Hingham, MA, USA, v. 7, n. 3, p. 257–387,
July 1999. ISSN 0926-8782. Available at: <http://dx.doi.org/10.1023/A:1008782710752>.

WORBOYS, M. Imprecision in finite resolution spatial data. Geoinformatica, Kluwer
Academic Publishers, Hingham, MA, USA, v. 2, n. 3, p. 257–279, October 1998. ISSN
1384-6175. Available at: <http://dx.doi.org/10.1023/A:1009769705164>.

316 References

WU, K. et al. FastBit: interactively searching massive data. Journal of Physics: Conference
Series, IOP Publishing Ltd, v. 180:12053, n. 1, 2009. ISSN 1742-6596. Available at:
<http://dx.doi.org/10.1088/1742-6596/180/1/012053>.

WU, K.; OTOO, E. J.; SHOSHANI, A. Optimizing bitmap indices with efficient compression.
Transactions on Database Systems, ACM, New York, NY, USA, v. 31, n. 1, p. 1–38, March
2006. ISSN 0362-5915.

YUEN, S. M. et al. Superseding nearest neighbor search on uncertain spatial databases.
Transactions on Knowledge and Data Engineering, IEEE, v. 22, n. 7, p. 1041–1055, July 2010.
ISSN 1041-4347.

ZADEH, L. Fuzzy sets. Information and Control, v. 8, n. 3, p. 338–353, 1965. ISSN 00199958.
Available at: <http://www.sciencedirect.com/science/article/pii/S001999586590241X>.

ZHAN, F. B. Approximate analysis of binary topological relations between geographic regions
with indeterminate boundaries. Soft Computing, Springer-Verlag, v. 2, n. 2, p. 28–34, 1998.
ISSN 1432-7643. Available at: <http://dx.doi.org/10.1007/s005000050032>.

ZIMÁNYI, E.; PIROTTE, A. Imperfect information in relational databases. In: MOTRO,
A.; SMETS, P. (Ed.). Uncertainty Management in Information Systems. Springer US, 1997.
Chapter 3, p. 35–87. ISBN 978-1-4613-7865-5. Available at: <http://dx.doi.org/10.1007/978-
1-4615-6245-0 3>.

ZINN, D.; BOSCH, J.; GERTZ, M. Modeling and querying vague spatial objects using
shapelets. In: 33rd International Conference on Very Large Data Bases (VLDB’2007). Vienna,
Austria: VLDB Endowment, 2007. (Proceedings...), p. 567–578. ISBN 978-1-59593-649-3.
Available at: <http://dl.acm.org/citation.cfm?id=1325851.1325917>.

GLOSSARY

CERA – coastal erosion risk assessment

CRQ – containment range query

DBMS – database management system

E-R – Entity Relationship

ETL – Extract, Transform and Load

Embrapa – The Brazilian Agricultural Research Corporation

IRQ – intersection range query

MBR – minimum bounding rectangle

MER – maximum enclosed rectangle

MIP – maximum area inscribed polygon

OGC – Open Geospatial Consortium

QMM – Qualitative Min-Max Model

RBB – Region with Broad Boundaries

SB-index – Spatial Bitmap Index

SDW – spatial data warehouse

SOLAP – spatial online analytical processing

SQL – Structured Query Language

SRID – spatial reference system identifier

SRS – spatial reference system

TIN – triangulated irregular network

318 References

UDF – user-defined function

UDT – user-defined type

VASA – Vague Spatial Algebra

VSB-index – Vague Spatial Bitmap Index

VSCube – Vague Spatial Cube

VSMultiDim – Vague Spatial MultiDim

VSRQ – vague spatial range query

aR-tree – aggregate R-tree

Appendix A
USER-DEFINED FUNCTIONS

This appendix describes the following UDFs that are called by UDFs that implement con-

straints:

•VS Constraints FuzzyMval returns the length of the array provided as argument if all the

membership values in the array are in]0,1], or returns -1 otherwise;

•VS Constraints ExactMval returns the length of the array provided as argument if all the

membership values in the array are in {−1,1}, or returns -1 otherwise;

•CheckOrderedArray returns true if the array provided as argument is in ascending order,

or false otherwise;

•InteriorIntersection returns true if at least two geometries intersect in the geometry col-

lection provided as argument; and

•VS MinOffsetCertitudeElement returns the minimum offset of the array provided as argu-

ment where the entry is equal to 1.0, otherwise returns 0.

The UDF VS Constraints FuzzyMval is indicated for vague spatial objects whose member-

ship value is in]0,1]. It is described in Listing A.1. First, it obtains the highest and the lowest

membership values in the array, and counts how many membership values are not null. The

PostgreSQL’s function unnest1 is used and transforms an array into a set of rows. Second, it

uses the obtained highest and lowest membership values to check if they are in]0,1]. If both are

in]0,1], the remaining membership values are also in]0,1] and the execution proceeds. Other-

wise, a notice is yielded and the function returns -1. Third, it compares the length of the array

1http://www.postgresql.org/docs/9.2/static/functions-array.html

320 A User-defined Functions

to the quantity of non-null membership values previously counted. Their equality terminates

the function with success returning the length of the array, while their inequality raises a notice

and terminates the function returning -1.

Listing A.1: Checking membership values in between 0 and 1.

CREATE OR REPLACE FUNCTION VS Constraints FuzzyMval (ElementsMval f l o a t ar ray)
RETURNS BIGINT AS $$
DECLARE
c e i l i n g f l o a t ;
f l o o r f l o a t ;
counter b i g i n t ;
l eng th b i g i n t ;
BEGIN
−−1. gathers the minimum and maximum membership values provided
−− and counts non−n u l l membership values
SELECT max(unnest) , min (unnest) , count (∗) INTO c e i l i n g , f l o o r , counter
FROM unnest (ElementsMval) WHERE unnest IS NOT NULL;

−−2. v e r i f i e s whether membership values are i n] 0 , 1]
IF (c e i l i n g > 1 .0) THEN
RAISE NOTICE ’ I n v a l i d membership value : % i s g rea te r than 1 . 0 . ’ , c e i l i n g ;
RETURN −1;
END IF ;
IF (f l o o r <= 0 .0) THEN
RAISE NOTICE ’ I n v a l i d membership value : % i s lower than or equal to 0 . 0 . ’ , f l o o r ;
RETURN −1;
END IF ;

−−3. v e r i f i e s whether n u l l membership values e x i s t
SELECT a r r a y l e n g t h (ElementsMval , 1) INTO leng th ;
IF (counter <> l eng th) THEN
RAISE NOTICE ’A membership value cannot be n u l l ’ ;
RETURN −1;
END IF ;
RETURN leng th ;
END;
$$ LANGUAGE ’ p lpgsq l ’ ;

The UDF VS Constraints ExactMval is indicated for vague spatial objects whose member-

ship value is 1 to denote true (certitude element) or -1 to denote maybe (dubiety element). It

is described in Listing A.2. First, it counts how many membership values of the array assume

the value -1 or 1, using PostgreSQL’s function unnest. Second, it obtains the length of the

array and compares with the previous count. Their inequality means that one or more member-

ship values are not adequate and, thus, the function terminates returning -1. Conversely, their

equality means that all membership values provided are adequate and the function terminates

successfully returning the length of the array.

Listing A.2: A routine to check if membership values are -1 or 1.

CREATE OR REPLACE FUNCTION VS Constra ints ExactMval (ElementsMval f l o a t a r ray)
RETURNS BIGINT AS $$
DECLARE
c e i l i n g f l o a t ;
f l o o r f l o a t ;
counter b i g i n t ;
l eng th b i g i n t ;
BEGIN

A User-defined Functions 321

−−1. counts rows wi th v a l i d membership values , i . e . −1.0 or 1.0
SELECT count (∗) INTO counter
FROM unnest (ElementsMval)
WHERE unnest IS NOT NULL
AND (unnest=−1.0 OR unnest = 1 . 0) ;

−−2. v e r i f i e s whether membership values are v a l i d
SELECT a r r a y l e n g t h (ElementsMval , 1) INTO leng th ;
IF (counter <> l eng th) THEN
RAISE NOTICE ’ Membership values must be −1.0 (maybe) or 1.0 (t r ue) and cannot be n u l l . ’ ;
RETURN −1;
END IF ;

RETURN leng th ;
END;
$$ LANGUAGE ’ p lpgsq l ’ ;

The UDF CheckOrderedArray is described in Listing A.3. First, a query counts how many

membership values are not sorted. Basically, two queries unnest the array in different relations

with row numbers, such that one has sorted values and the other has the original sequence. Then,

these relations are joined and the subtraction of the membership values must be equal to zero.

The occurrences of values different from zero are counted, and denote how many membership

values are not sorted. Second, if there are unsorted membership values, the function returns

false. Otherwise, it returns true.

Listing A.3: A routine to check if an array of membership value is sorted in ascending order.

CREATE OR REPLACE FUNCTION CheckOrderedArray (a FLOAT ARRAY) RETURNS BOOLEAN AS
$$
DECLARE
nr unordered BIGINT ;
BEGIN
−−counts how many membership values are not sor ted
SELECT count (∗) INTO nr unordered
FROM (SELECT ordered−o r i g i n a l AS s u b t r a c t i o n

FROM (SELECT ordered , row number () OVER (ORDER BY ordered) AS i
FROM (SELECT unnest AS ordered FROM unnest (a)) AS t1) AS t10 ,
(SELECT o r i g i n a l , row number () OVER (ORDER BY k) AS j
FROM (SELECT unnest AS o r i g i n a l , 0 AS k FROM unnest (a)) AS t2) AS t20

WHERE i = j
) AS tab
WHERE sub t rac t i on <>0.0;

−− i f there are unsorted membership values , re tu rns f a l s e
IF nr unordered <> 0 THEN
RETURN FALSE;

END IF ;

RETURN TRUE;
END;
$$ LANGUAGE ’ p lpgsq l ’ ;

The UDF InteriorIntersection is described in Listing A.4. Each pair of geometries in the

geometry collection is tested regarding intersection throughout a pair of iterative loops. If an

intersection is detected, the function terminates returning true. If the loops finish without de-

tecting an intersection, the function returns false.

Listing A.4: A routine to check if the interiors of two geometries intersect.

322 A User-defined Functions

CREATE OR REPLACE FUNCTION I n t e r i o r I n t e r s e c t i o n (multigeom geometry) RETURNS BOOLEAN AS
$$
DECLARE

nr geoms b i g i n t ;
geom geometry ;

BEGIN
nr geoms := ST NumGeometries (multigeom) ;
IF (nr geoms = 1) THEN
RETURN f a l s e ;

END IF ;
FOR i IN 1 . . nr geoms−1 LOOP

geom := ST GeometryN (multigeom , i) ;
FOR j IN 2 . . nr geoms LOOP

IF (ST Relate (geom, ST GeometryN (multigeom , j) , ’T∗∗∗∗∗∗∗∗ ’)) THEN
ra i se no t i ce ’ i = % j = %’ , i , j ;
RETURN t rue ;

END IF ;
END LOOP;

END LOOP;
RETURN f a l s e ;
END;
$$ LANGUAGE ’ p lpgsq l ’ ;

Listing A.5 describes the function VS MinOffsetCertitudeElement that receives an array of

membership values as argument and returns the minimum offset of a certitude element. In other

words, it identifies the lowest offset where an entry has the value 1.0. To achieve this goal, it

is necessary to unnest the array without sorting, introduce row numbers and apply a WHERE

clause that is more scalable than a sequential scan.

Listing A.5: A routine to obtain the minimum offset of a certitude element in an array of member-

ship values.

CREATE OR REPLACE FUNCTION VS MinOffsetCert i tudeElement (mv f l o a t ar ray)
RETURNS INT AS $$
DECLARE

o i n t ;
BEGIN

SELECT min (row number) INTO o FROM (
SELECT unnest , row number () OVER (ORDER BY aux) FROM(

SELECT 0 AS aux , unnest FROM unnest (mv)
) AS unnested mv

) AS o WHERE unnest = 1 . 0 ;
RETURN o ;

END;
$$ LANGUAGE ’ p lpgsq l ’ ;

Appendix B
PROCEDURES OF THE VSB-INDEX

This Appendix complements the content of the Section 6.3.4 and describes the procedures

f3 and f4.

The procedure f3, detailed in Algorithm 8, is called to resolve a CRQcertitude when there

are not a conservative and neither a progressive approximation built for the certitude, i.e. in

configurations O⊇ and O⊇O⊆. It checks whether the conservative approximation of the dubiety

is within the spatial query window and, if so, the entry is considered an answer (lines 6-7). This

decision is valid because the conservative approximation of the dubiety contains the certitude

of the corresponding vague region. On the other hand, if the conservative approximation of

the dubiety merely intersects the spatial query window, then the entry is considered a candidate

(lines 9-10). This decision is also valid, since the spatial query window might intersect the con-

servative approximation of the dubiety and such verification is postponed until the refinement

step.

The procedure f4, detailed in Algorithm 9, is called to resolve a CRQcertitude when there

is not a conservative approximation on the certitude, but there is a progressive approximation

on the certitude, i.e. in configurations O⊇C⊆ and O⊇O⊆C⊆. It produces answers similarly to

routine f3 (lines 6-7). Candidates are only collected if the spatial query window intersects the

conservative approximation of the dubiety and contains the progressive approximation of the

certitude (lines 9-10). This criterion is essential because the conservative approximation of the

dubiety and the spatial query window may intersect, but the progressive approximation of the

certitude might be within the spatial query window while the certitude itself might not be within

the spatial query window.

324 B Procedures of the VSB-index

Algorithm 8: f3(R, window, conservative, setCandidates, setAnswers, idx, L)
Input: R is a topological relationship
window is a spatial query window
conservative is a conservative approximation
setCandidates is a set of candidates
setAnswers is a set of answers
idx is the sequential file of the VSB-index
L the number of VSB-index’ entries that a disk page can hold.
Data: page, array
Result: The set of answers and the set of candidates of the vague spatial predicate.

1 open (idx)
2 while not eof(idx) do
3 read (idx, page)
4 copy (page, array)
5 for i← 0 to L do
6 if R(get(array[i], conservative), window) then
7 append(setAnswers, array[i].pk)
8 else
9 if Intersects(get(array[i], conservative), window) then

10 append(setCandidates, array[i].pk)

11 close(idx)

B Procedures of the VSB-index 325

Algorithm 9: f4(R, window, conservative, progressive, setCandidates, setAnswers, idx,
L)

Input: R is a topological relationship
window is a spatial query window
conservative is a conservative approximation
progressive is a progressive approximation
setCandidates is a set of candidates
setAnswers is a set of answers
idx is the sequential file of the VSB-index
L the number of VSB-index’ entries that a disk page can hold.
Data: page, array
Result: The set of answers and the set of candidates of the vague spatial predicate.

1 open (idx)
2 while not eof(idx) do
3 read (idx, page)
4 copy (page, array)
5 for i← 0 to L do
6 if R(get(array[i], conservative), window) then
7 append(setAnswers, array[i].pk)
8 else
9 if Intersects(get(array[i], conservative), window) and Within(get(array[i],

progressive)) then
10 append(setCandidates, array[i].pk)

11 close(idx)

