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SUMMARY 

 

In this thesis the elastic and electric response of perovskites are studied. Perovskites are 

widely used in technical applications, being fundamental in electronic and in the 

relatively new field of nanoelectronics. They also pose a very interesting challenge from 

the theoretical point of view due to a number of unresolved questions. Two problems 

are treated using different theoretical approaches. The first problem is focused on the 

anomalous elastic behavior of the CaTiO3  around 200 K.  Molecular dynamics simulation 

is used to simulate the elastic response of a mono-domain and a poly-domain 

configuration of CaTiO3 using the Vashishta-Rahman interatomic potential.  The 

anomalous behavior is reproduced but no structural change was detected. Using 

nonlinear time series analysis it is shown that such anomalies are dynamic and are 

generated by domain walls motion. The second problem treated is more general and 

concerns the nonlinear dielectric response. Two models of domain wall motion are 

proposed with which it is possible to reproduce the effects of electric field strength and 

frequency and transient effects. In the first model, the domain wall is considered as a 

stretched membrane. Dispersion relationships and dependence of permittivity with 

electric field are derived. With this model it is possible to reproduce the hysteretic 

behavior of the permittivity versus electric field. This model correctly explains the effect 

of grain size on the dielectric response. The second model considers that the domain 

wall behaves as a rigid body moving under the action of a potential field in a dissipative 

medium. Assuming that the dielectric permittivity follows the dependence    

          the exact expression for the effective potential is obtained. Simulations of 

polarization current correctly predict a power law. The model is extended to poled 

samples allowing the study of nonlinear dielectric permittivity under subswitching 

electric fields. These simple models for domain wall motion could be very useful to 

obtain information of microscopic parameters from dielectric measurements. They 

could also be very helpful to separate conductive currents from polarization 

mechanisms, especially in ferroelectric thin films.  
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RESUMO 

 

Nesta tese é estudada a resposta elástica e elétrica das perovskitas. As perovskitas são 

amplamente utilizadas em aplicações técnicas, sendo fundamental na eletrônica e no 

campo relativamente novo da nanoeletrônica. Elas representam um desafio muito 

interessante do ponto de vista teórico, devido a uma série de questões ainda não 

resolvidas. Dois problemas são tratados com diferentes abordagens teóricas. O primeiro 

problema é focado no comportamento elástico anômalo do CaTiO3 em torno de 200 K. A 

dinâmica molecular é usada para simular a resposta elástica de uma configuração  de 

monodomínio  e polidomínio de CaTiO3 usando o potencial interatômico Vashishta -

Rahman. O comportamento anômalo é reproduzido, mas nenhuma mudança estrutural 

foi detectada. Utilizando a análise não-linear de séries temporais é mostrado que tais 

anomalias são dinâmicas e são geradas pelo movimento  das paredes de domínio. O 

segundo problema tratado é  mais geral e refere-se à resposta dielétrica não-linear. Dois 

modelos para o movimento de paredes de domínio são propostos com o qual é possível 

reproduzir os efeitos da intensidade do campo elétrico e frequência, e comportamento 

transientes. No primeiro modelo, a parede de domínio é considerada como uma 

membrana esticada. As relações de dispersão e dependência da permissividade com 

campo elétrico são derivadas. Com este modelo é possível reproduzir o comportamento 

histerético do permissividade em função do campo elétrico. O modelo explica 

corretamente o efeito do tamanho de grão na resposta dielétrica. O segundo modelo 

considera que a parede do domínio comporta-se como um corpo rígido que se move sob 

a ação de um campo de forças de potencial num meio com dissipação. Supondo que a 

constante dielétrica segue a dependência              é obtida  a expressão exacta 

do potencial efectivo. Simulações de corrente de polarização preve corretamente uma lei 

de potência. O modelo é estendido para amostras polarizadas permitindo o estudo da 

permissividade dielétrica não-linear para campos elétricos de subswitching. Estes 

modelos simples para o movimento da parede de domínio podem ser muito úteis para 

obter informação dos parâmetros microscópicos a partir de medições dielétricas. 

Também poderiam ser muito úteis para separar correntes condutoras de mecanismos 

de polarização, especialmente em filmes finos ferroelétricos.  
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Chapter 1. Introduction 

 

Different approaches can be used to investigate a given phenomenon. The 

most common one is the experiment, a technique that has been used by humans for a 

long time. Through experiments the observer can get a representation of the process of 

interest, since an experiment is per definition carried out under controlled and 

reproducible circumstances. Based on experiments hypotheses can be concluded, and 

laws and theories can be formulated. The second approach to investigate a phenomenon 

is simulation. A simulation is the imitation of a real system. In other words reality is 

modeled in a representative system.  

Simulations are applied when conducting experiments is not possible, 

unethical or tedious and time consuming. But in the cases when reality is correctly 

reproduced by simulation still experiments are needed to validate and confirm results 

gathered from simulations.  

Computer simulations have become a very frequently used tool, not only 

in science, but in many different fields, such as risk management, stock-market 

prediction, the development of cars and planes, drug discovery and many more.  

Rational design of material is possible thanks to present capability to 

model and simulate. Rather than improving existing or developing novel materials by 

trial and error, the properties of novel materials can be fine-tuned for a particular 

application by taking advantage of understanding how microscopic structure affect the 

macroscopic response.  

This thesis focuses on the properties of perovskites materials. Specifically, 

the electric and elastic behaviors of these materials are investigated. Theoretical and 

computational tool are employed, providing insight into the microscopic structure and 

their response to external perturbations at a level of detail that it is not possible to 

achieve experimentally. The combination of microscopic modeling and computer 

simulations allow a better understanding of how determined structures give rise to 

certain physics properties, enabling the design of new materials with the desired 

properties. 
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Figure 1.1 Perovskite structure ABO3, green spheres represent the A2+ cations, blue spheres represent the 

B4+ cations, and red spheres represent oxygen anions forming an octahedra.  

 

The perovskite oxides (formula ABO3) are a class of material of 

fundamental scientific interest as well as a varied of technological applications [1-3]. 

They display a variety of interesting properties such as piezoelectricity, pyroelectricity, 

ferroelectricity and ferroelasticity, among others.      

The name of perovskite is used to designate the material that share a 

similar structure of CaTiO3. The CaTiO3 was the first perovskite mineral discovered, 

reason for which is known as the father of the perovskites family. Perovskites can adopt 

various crystal structures of different symmetry, been the simplest cubic symmetry.  It 

consists of   cations on the corners of a cubic unit cell, oxygen anions on the faces, and   

cations in the centers, as shown in Figure 1.1. Usually, the cation displacements away 

from oxygen cage center and the oxygen octahedral rotation occur, given rise lower 

symmetry structures. The breaking of cubic symmetry is crucial to the occurrence of 

spontaneous polarization.  

Ferroelectric oxides are a subgroup of perovskites oxides that posses a 

permanent electric dipole. At low temperature spontaneous polarization appears which 

can be reversed by an applied electric field. The relation between polarization and 

electric field is nonlinear and hysteretic. When the temperature is raised above the Curie 

temperature a phase transition (ferroelectric to paraelectric phase) occurs with a 

sudden disappearance of the spontaneous polarization. 

An important characteristic of ferroelectric it is the existence of domain 

structure. A domain is a region where unit cells share the same or similar polarization 

direction. Bulk ferroelectrics contain several domains. A ferroelectric domain pattern 

can be caused or influenced by strain, defects, depolarization field and thermal history. 
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Even in an ideal crystal, the existence of a domain structure is expected due to the 

minimization of energy. Usually, neighboring domains could be either antiparallel to 

each other, or bisects the 90° angle between two domain walls pointing head to tail.  The 

formation of domain walls involved several energetic contributions: the elastic energy of 

the material, temperature, boundaries, electrostatics interaction, and defects [2].  

Motion of domain walls can be pinned by defects. At a certain 

temperatures threshold (‘activation temperature’) domain walls have sufficient energy 

to overcome potential barrier created by defects.   The resulting motion of domain walls 

can be abrupt, i.e., it can form avalanches. From macroscopic point of view, anomalies 

and instability in physical properties can appear around the temperature of ‘activation’.  

 Domain wall motion has an important contribution to dielectric response 

and to the nonlinear dielectric properties of ferroelectrics. The understanding and 

control of the response of nonlinear dielectrics can open new possibilities for technical 

applications.   

The title of this thesis could seem broad or ambitious and, in effect, it is. 

So, it is important to elucidate the problems and objectives treated here. The content 

covered consists in two problems. The first concerns with the anomalous elastic 

behavior observed in the CaTiO3 around 200 K. Classical molecular dynamics 

simulations are carried out to reproduce the anomalous behavior. The objective is to 

characterize the anomaly from the dynamical point of view and to show that this 

phenomenon is not generated by structural changes. Due complex nature of this 

problem, nonlinear time series analysis is used to reconstruct and characterize the 

dynamic of the system. This approach by itself constitutes, in certain way, a contribution 

of this work.  The theory of nonlinear time series analysis was developed between the 

1980 and the 1990’s and it is a powerful theoretical tool to treat complex problem. 

Unfortunately, in solid state physics it has remained almost ignore up to present days. 

The methodology used in this problem could be applied in many branches of solid state 

physics.    

The second problem is more general, and it concern with the nonlinear 

dielectric response of ferroelectrics. The objective is to model and simulate the effect of 

external electric field (strength and frequency) in the dielectric response. The models 

developed here are not atomistic; they can be classified as collective motion models and 

are based in domain structure and the displacement of domain walls. The two models 



4 
 

 
 

presented are original contributions to the theory of nonlinear dielectric response and 

they could be very interesting from both theoretical and practical point of view.   

The thesis has the following structure. The principal features of 

perovskites (structure, electric and mechanic response) are shortly reviewed in Chapter 

2.  In Chapter 3 the basic concepts of molecular dynamics are outline.  Basic concepts of 

nonlinear time series theory are explained Chapter 4. The anomalous behavior of CaTiO3 

is studied in Chapter 5.  Finally, nonlinear dielectric response of perovskites is studied in 

Chapter 6 using collective models for domain wall movement.  
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Chapter 2. Perovskites: ferroelectric and ferroelastic properties 

 

In this chapter, ferroelectric and ferroelastic properties are discussed, 

which are commonly observed in perovskites. Phenomenological theory and symmetry 

detail are covered in many excellent books [4-7]. For this reason, this chapter is limited 

to a descriptive presentation of the essential concepts of ferroelectricity and 

ferroelasticity. Other theoretical approaches are discussed in the Chapters 5 and 6.   

 

2.1 Ferroelectricity 

 

Ferroelectrics can be defined as polar materials that posses at least two 

equilibrium orientation of the spontaneous polarization and in which the spontaneous 

polarization may be switched between those orientation by an electric field. Most 

ferroelectrics undergo a structural phase transition from high temperature paraelectric 

(nonferroelectric) phase into a low temperature ferroelectric phase. The temperature of 

the phase transition  c is called the Curie point. Above the Curie point the dielectric 

permittivity falls off with temperature according to the Curie-Weiss law 

   0  
 

   0
                                                            (2.1) 

where   is the Curie constant,  0 ( 0    ) is the Curie-Weiss temperature. The transition 

into a ferroelectric phase usually is accompanied by anomalies in the dielectric, elastic, 

thermal and other properties of the material [2] and with changes in the dimensions of 

the crystal unit cell. Symmetry of unitary cell in ferroelectric phase is lower than the 

symmetry of the paraelectric phase. 

Most of the ferroelectric materials that are of practical interest have 

perovskite structure. Perovskites have the general formula ABO3 where the valence of A 

cations is from +1 to +3 and of B cations from +3 to +6. The structure, as is shown in 

Figure 2.1, consist of BO6 octahedra surrounded by A cations. The lead titanate PbTiO3 is 

a perovskite which passes from a paraelectric cubic to a ferroelectric tetragonal phase at 

490 °C. The spontaneous polarization in PbTiO3 is oriented along the cT-axis of the 

tetragonal unit cell, and is due to the shifts of O and Ti ions relative to Pb, Figure 2.1. 
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Figure 2.1 Perovskite structure of PbTiO3 which has a cubic structure in the paraelectric phase and 

tetragonal structure in the ferroelectric phase [2]. 

 

The spontaneous polarization in a ferroelectric crystal (or a grain in the 

case of a ferroelectric film or ceramic) is usually not uniform aligned on whole crystal. 

The regions of the crystal with uniformly oriented spontaneous polarization are called 

ferroelectric domains. The interface that separate two domains is call the domain wall. 

The walls which separate domains with oppositely oriented polarization are called 180° 

(Figure 2.2a) walls and those which separate regions with mutually perpendicular 

polarization are called 90° walls (Figure  2.2b).  

As the ferroelectric material is cooled through paraelectric-ferroelectric 

phase transition, domains occur to minimize the electrostatic energy of depolarizing 

fields and the elastic energy associated with mechanical constrains [4]. The depolarizing 

field is formed whenever there is a nonhomogeneous distribution of the spontaneous 

polarization, for example, due to the fall-out of polarization near the surface of the 

ferroelectric or due to a change in the direction of polarization at grain boundaries. The 

electrostatic energy  associated with the depolarizing field may be minimized if the 

ferroelectric splits into domains with oppositely oriented polarization or if the 

depolarizing charge is compensated by electrical conduction through the crystal or by 

charges from the surrounding (the atmosphere or from the electric circuit  to which is 

connected).  
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Figure 2.2 Schematic representation of domain structure: a) 180° domains, b) 90° domains. 

 

Depending on the electric and elastic boundaries conditions in a same 

ferroelectric can be formed by a domain structure of both 90° and 180° walls.  90° and 

180° walls are not the unique type of domain walls. In the Pb(Zr, Ti)O3, for example, 

posses 180°, 71° and 109° domain walls. The types of domain walls that can appear in a 

ferroelectric depend on the symmetry of both the paraelectric and ferroelectric phases 

of the crystal [2, 4].  

 

2.1.1 Poling of ferroelectrics 

 

Ferroelectric grains in ceramics and polycrystalline films are always split 

into many domains. The spontaneous polarization through the material is random or 

distribute in some way that the net polarization is zero. Polycrystalline ferroelectrics 

may be brought into a polar state by applying a strong electric field, which can be 

combined with elevate temperature.  This process, named poling, cannot orient the 

grains, but can orient domains within individual grains in the direction of the field.  A 

single crystal that does not contain domains is said to be in a single-domain or mono-

domain state.  Ferroelectric single crystal usually contain many domains, mono-domain 

state can be achieved by poling. 

The polarization after the removal of the field (at zero field) is called 

remanent polarization  r. Maximum remanent polarization that may be achieved in a 

polycrystalline material depends on domain states. The actual remanent polarization is 

always lower, because many domains cannot be reoriented due to internal stresses and 

electric fields in grains, and because some domain switch back after the poling field is 

removed. 



8 
 

 
 

 

Figure 2.3 Ferroelectric hysteresis loop. 

 

2.1.2 Hysteresis and switching 

 

A distinctive characteristic of ferroelectrics is the occurrence of hysteresis 

loop (see Figure 2.3) for high alternant electric fields. Hysteresis is a consequence of 

domain reorientation (switching) in ferroelectrics. Initially the polarization of the 

material is zero (Figure 2.3).  At small electric field the polarization increases linearly 

with the field amplitude. As the field is increased the polarization of domains with an 

unfavorable direction of orientation will start to switch in the direction of the field. The 

polarization response in the region of strong electric field is nonlinear. Once all the 

domains are aligned the ferroelectric again behaves linear. If the field strength decreases 

the polarization also decreases, but at zero field the polarization is nonzero. To reach a 

zero polarization state the field must be reversed. The field necessary to bring the 

polarization to zero is called the coercive field  c and the value of polarization at zero 

field remanent polarization  r.  Further increase of the field in the negative direction will 

cause a new alignment of dipoles and saturation. The saturation polarization  sat is taken 

as the intercept of the polarization axis with the extrapolated segment of linear response 

at high electric field. Notice that in polycrystalline ferroelectrics the saturation 

polarization is lower than the spontaneous polarization. 

The problem of polarization switching is complex and there does not seem 

to be a universal mechanism which would be valid for polarization reversal in all 

ferroelectrics [2]. The polarization reversal takes place by growth of existing antiparallel 

domains, by domain wall motion, and by nucleation and growth of new domains. 
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2.1.3 Domain wall contribution to ferroelectric properties 

 

There are five mechanisms of polarization which can contribute to the 

dielectric response: 

1. Electronic polarization this mechanism exist in all dielectrics.  It occurs due the 

displacement of negative charged electron shell against the positive charged core. 

The electronic polarizability (      ) is approximately proportional to the volume 

of the electron shell and in general is independent of the temperature. 

2. Ionic polarization is observed in ionic crystals and is the result of the 

displacement of positive and negative ions under an applied electric field. 

3. Orientation polarization describes the alignment of permanent dipoles. An 

electric field generates a preferred direction for the dipoles, while the thermal 

movement of the atoms perturbs the alignment. 

4. Space charge polarization could exist in dielectric materials which show spatial 

inhomogeneities of charge carrier density. Space charge polarization effect 

occurs in ceramics with electrically conducting grains and insulating grain 

boundaries (so-called Maxwell-Wagner polarization). 

5. Domain wall polarization is decisive in ferroelectric materials and contributes to 

the overall dielectric response. The motion of domain wall that separates regions 

of different oriented polarization takes place by the fact that favored oriented 

domains with respect to the applied field tends to grow. 

The total polarization of dielectric material results from all the 

contributions discussed above. The contribution from the lattice (electronic and ionic 

polarizations) is called intrinsic contribution, in contrast to the extrinsic contributions 

(orientation, space charge and domain wall polarizations). 

Ferroelectric domain walls may move under weak and moderate 

(subswitching) fields, either by vibration or bending around an equilibrium position or 

by small jumps into new equilibrium state. The displacement of domain walls at 

subswitching electric fields has a great influence on the dielectric and mechanical 

properties of ferroelectric materials. Small displacements of all types of domain will 

affect the polarization of the material. Movement of domain walls at weak to moderate 

fields is one of the most important extrinsic contributions to the dielectric properties of 

ferroelectrics. 
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Figure 2.4 Dielectric permittivity as function of the electric field strength. 

 

Displacement of domain walls also contributes to the dielectric and 

mechanical losses of ferroelectric materials. The grain size, dopants, crystallographic 

orientation and crystal structure, external stresses, electric fields, preparation 

conditions may through various processes affect domain wall displacement. 

   

2.1.4 Effect of external electric field 

 

Dielectric permittivity versus electric field (or capacitance versus voltage) 

loops are commonly used in the characterization of ferroelectrics.  A typical behavior of 

the  ( ) (or CV) curve is shown in Figure 2.4. The measurement is usually performed 

applying simultaneously a constant electric field (called bias field) and an alternate 

small amplitude electric field.  

Initially, the permittivity tends to rise as the electrical field increases. The 

curve      reaches a maximum for a value of electric near to the value of coercive field of 

the hysteresis loop. At high bias field, the permittivity decreases. This diminution of the 

permittivity is due to (i) the decrease of the number of domain as they become aligned 

with the field and (ii) the diminution of the domain wall movement at elevate bias field. 

It is possible that small oscillations of domain wall occur even at very large electric field, 

contributing to the dielectric field but reduced in contrast with respect to low bias field. 

This problem is studied in the Chapter 6.  

 

 

 



11 
 

 
 

 

Figure 2.5 Dielectric constant of BaTiO3 ceramics and thin films for samples with different grain size [2]. 

 

2.1.5 Size effects 

 

It is well known that microstructure of polycrystalline ferroelectrics affect 

the dielectric response.  An important example is the grain-size dependence   of 

dielectric permittivity in barium titanate ceramics [8-10] and thin films [9] (Figure 2.5). 

Even after more than 40 year of research the origins of the high permittivity in fine-

grained barium titanate ceramics are still not completely understood. This problem is 

treated qualitatively in Chapter 6 where is explained the decrease of permittivity with 

the decrease of domain (grain) size.   

 

2.1. 6 Domain wall pinning 

 

Real ferroelectrics always contain electrical and elastic defects and 

imperfections that can interfere in a number of ways with domain walls movement and 

polarization within individual domains. In many cases defects inhibit domain wall 

movement. It is said that domain walls become pinned or clamped by the defects and 

imperfections. Some common domain wall pinning defects include oxygen vacancies and 

electrons trapped in the domain wall area [2].  
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Figure 2.6 Ferroelastic hysteresis loop. 

 

2.2 Ferroelasticity 

 

When stresses are applied to a ferroelastic material the curve strain-stress 

describes a hysteresis loop (Figure 2.6), analogous as is observed in ferroelectrics and 

ferromagnetic materials [11]. Many ferroelectrics and ferromagnetic material are 

ferroelastic. The hysteresis is the result of the mechanical switching between at least 

two orientation states of a crystal by external stress. Most ferroelastic materials show 

ferroelastic-paraelastic phase transition.  

The experimental observation of ferroelastic hysteresis with any 

acceptable degree of accuracy results difficult. The essential property that characterizes 

ferroelasticity is the occurrence of spontaneous strain, i.e., a deformation of the crystal 

which has to have at least two orientations between which switching may occur. The 

spontaneous strain is usually accompanied by an anomaly of the elastic modulus, which 

is often taken as a signal of a ferroelastic phase transition.  

There are materials with large elastic anomaly and/or spontaneous strain 

but hysteresis is not observed. In these cases the material is classified as coelastic [11]. 

Some coelastic when are doped with atoms that acts as nucleation centers for twin 

boundaries becomes ferroelastics.  

Similar to ferroelectrics, in ferroelastics the domain structure can adopt 

different patterns. The atomic structure inside the wall is not the same as in the bulk. 

Interesting properties can emerge in the walls that do not exist anywhere else in the 

structure [11]. The research in this area is termed domain boundary engineering. Two 

different approaches dominate this field. In the first approach the chemical composition 

of the wall is modified by local doping. This is possible because the chemical potential of 
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the wall is different from the bulk. Dopants or defects are attracted to (or repelled  by) 

the wall. The second approach directly tackles the structural configuration of the wall 

structure. For example in ionic perovskites (SrTiO3, CaTiO3) the octahedron tilts slightly 

in the ferroelastic phase, the octahedron generally does not show a ferroelectric 

displacement of its central position. When the small octahedron rotation is prevented, a 

ferroelectric displacement is possible (such as in BaTiO3). Octahedral rotations can be 

suppressed by surface strains or inside twin boundaries. This effect has been observed 

experimentally in CaTiO3, where the Ti suffers a displacement from the midpoint of the 

octahedral.     

For small forces and low frequencies wall movements appear ballistic. 

Damping is generated by the emission of phonons and the interaction with defects. 

Ballistic propagation of domain walls is often superimposed abrupt movements or 

avalanches. Avalanches in ferroelastic materials have been observed experimentally [12, 

13], the energy distribution of jerky movement follows a power law 

 ( )                                                                  (2.2) 

It must point out that other material show similar behavior with power-

law dependences also for the size distribution [11, 14, 15]. The occurrence of avalanches 

has also been confirmed by large-scale molecular dynamics computer simulations 

[16].The occurrence of abrupt movement of domain walls is consequence of pinning.  
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Chapter 3. Basic concepts of molecular dynamics  

 

In this chapter are introduced the basic concepts of classical molecular 

dynamics. Potentials and several thermodynamic ensembles are explained as vital 

concepts in order to understand the way the molecular dynamics simulations are 

performed.  

 

3.1 Molecular dynamics simulations 

 

Why to use molecular dynamics simulation? In spite of the recent 

advances on microscopic imaging the study of atomic structure of perovskites presents 

big technical challenges. Current process takes places in times scales of picoseconds.  In 

other side, molecular dynamics simulations allow the possibility to reproduces physical 

condition such as ultrahigh pressures and electric fields that cannot be easily studied by 

conventional experiments.  

The first thing that might be important to mention is that we do classical 

molecular dynamics. That means quantum effects are not considered, or only in a mean-

field manner. Everything that underlies the laws of quantum physics, i.e., the motion of 

electrons, is neglected. Classical molecular dynamics simulation is the method that 

dynamically investigates a group of atoms with their positions and velocities evolving 

with time and can be related to macroscopic properties such as temperature and 

pressure. In other words, molecular dynamics simulation is the method that 

computationally helps to build a bridge between the microscopic structure, that we can 

barely measure, and macroscopic properties with which we can usually describe the 

tangible world. Following is the simplified description of how the molecular dynamics 

simulation works. 

Molecular dynamics simulation is essentially the solution of Newton’s 

second law or the equation of motion, which for a simple system of atoms, where a 

specific atom to be studied is denoted as atom k, can be expressed as 

 

     m 
d  r  

dt 
                                                             (3.1) 

        ( r  )                                                          (3.2) 
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where    denotes the force exerted on the atom k by all atoms in the system except for 

itself, m  and r   are the mass and position of that atom respectively. Knowing the 

position of the atom the force is calculated as the gradient of the intermolecular 

potential   (r ) .  

In molecular dynamics simulations the integration is done numerically, for 

which there are several methods available [17]. At each time step relevant phase 

variables such as averaged temperatures and pressures can be calculated from updated 

coordinates and velocities of atoms by statistical physics. For example, in order to obtain 

the average temperature   from a three-dimensional system with the number atoms of 

N, the following relation can be utilized: 

1

 
 m v 

  
 N

 

N
  1                                                        (3.3) 

where m  and v  are the mass and velocity respectively for an atom  , and    is the 

Boltzmann constant. The pressure can be calculated from the virial expression 

w   r 
N
  1                                                           (3.4) 

where    is resulting force acting in the particle placed in r . Averaging the virial function 

[17] 

 w  lim   
1

 
  m r 

N
  1  r  dt 

0                                    (3.5) 

Integrating by parts and assuming the conservation of angular momentum 

of the system we obtain that 

 w   lim   
1

 
  m  r   

 N
  1 dt 

0    N                     (3.6) 

The function w can be divided in two components, one due to internal forces f  resulting 

from the interaction between the particles, and the component resulting from the action 

of external forces: 

 w e t   w int    N   .                                      (3.7) 

In a parallelepiped the component  w e t due to hydrostatic pressure is  

 w e t      . 

Thus, 

  r 
N
  1  f         N                                                 (3.8) 

from which we have that   
1

  
  r 

N
  1  f   

N   

 
 .         
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 It might be of interest to compare the collected data with data from 

experiment. In an experiment the measured value of an observable or property   is the 

average     over time and space of   that is produced by different molecular 

configurations. In order to get the right value,   has to be weighted by the probability   

of a configuration to occur integrated over momenta (   ) and positions (  ), 

      (   ) (   )                                                (3.9) 

In molecular dynamics it can be very difficult to sample all possible states 

within a single, finite simulation. However, if the configurations that are relevant for the 

average are properly sampled,     can be calculated from this finite set of configurations. 

The ergodic hypothesis assumes that the relevant configurations are sampled during a 

molecular dynamics simulation that is long enough. Averages are then calculated with 

      lim   
1

 
  (t)dt 
0                                        (3.10) 

with   being simulation time and t being time.  

Calculating properties is what makes comparison to experimental data 

possible, and thus allows validation of the results of a molecular dynamics simulation. 

 

3.2 Interatomic potential 

 

The interaction between the particles is determined by the potential. The 

potential of one particle  (r )    depends of the position r  of individual particle. It is 

used to model the interaction of the particle with external fields. Two body potential 

 (r  ) are those in which the interaction depends solely on the distance between the 

particles r    r  r  , for example Coulomb interaction. Only to mention, there are more 

complex potentials such as the three body potential. We will restrict to one and two 

body potentials. 

As two body potential we use the Vashishta-Rahman, which have been 

successfully applied to diverse systems [18-24]. This potential is given by the function 

 (r  )  
1

  

    

r  
e  

1

  

    
      

 

 r  
 e  

   (     )
   

r  
    

   

r  
                 (3.11) 

The first term is the Coulomb interaction between the ions of charge   e 

and   e (e is the absolute value of the electron charge). These charges are defined as the 

volume integral of electronic density in the volume of the ion. There are certain 
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arbitrarily in the definition of the ion volume, then    is a parameter to fix and it could 

be fractional. The second term corresponds to the interaction charge-induced dipole, the 

parameter   is the electronic polarizability. Due to the low values of   this term can be 

neglected in certain cases. The stereometric repulsion (third term) is a classical 

analogous of the Pauli principle of exclusion, it states that two ions cannot indefinitely 

approach. This term added to obtain a repulsion effect. The last term is the van der 

Waals interaction and it is originated by the interaction dipole-dipole due the 

fluctuations of the atomic charge distribution.      

The interaction charge-charge and charge-induced dipole are of long 

range. These kinds of interactions imply the use of expensive algorithms such as the 

Ewald sum technique or multipole expansion.  Considering the electronic screening 

effect, we can assume that this interactions decay exponentially, so that the final form of 

our potential is 

 (r  )  
    e

 

  r  
e

 r  

  
(    

      
 )e 

8 r  
 e

 r  

  
   (     )

   

r  
    

   

r  
              (3.12) 

where   and   are screening length. The parameters   and   are reported in the 

literature. The others parameters are chosen so that the model reproduce the 

experimental values of the crystal structure, cohesive energy, bulk modulus and elastic 

constant c11. 

To attain better computational efficiency the interaction is truncated at a 

typical cutoff distance rc. The discontinuity at rc affects the energy conservation and the 

atomic motion, with atoms separated by a distance close to rc. The potential function can 

be modified to eliminate the discontinuity both in itself and in its first derivative by 

replacing it with 

  (r)   
 (r)   (rc)  (r  rc)

d (rc)

dr
   r  rc

0                                                         r  rc

 .                       (3.13) 

3.3 Ensembles 

 

Ensemble is a term from statistical mechanics; it means a statistical 

representative set of configurations. An ensemble can be defined as a whole collection of 

a very large number of systems in different possible microscopic states that the real 

system might be in, but all with common observed macroscopic attributes. For example, 
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each system of the canonical ensemble must have the same temperature   , volume   

and number of particles N as the real system it represents. 

Ensembles can be denoted and represented by different macroscopic 

properties, such as number of particles N, temperature  , pressure  , volume  , total 

energy   and chemical potential   [17], etc. Each molecular dynamics simulation is 

performed under designated constraints of environment. In other words, the ensembles 

are specified in order to get the desired results. Thermodynamic ensembles can be 

defined according to different physical requirements [17, 25-28].  

Canonical ensemble or N   ensemble corresponds to a system with fixed 

volume  , number of particles N  and temperature  , equilibrated with a heat bath with 

the same temperature. This ensemble will be used in situations where closed systems 

require no fluctuation of volume and also remain in a constant temperature.  

Isothermal-isobaric ensemble or N   ensemble represents a closed 

system with constant pressure   and temperature  . It is important for systems in a 

constant pressure situation. This ensemble is of great importance in equilibrating 

crystal-melt system at a constant low pressure and a constant melting point.  

Microcanonical ensemble or N   ensemble corresponds to a closed 

system with fixed volume   and total energy  . This ensemble is also significant because 

in molecular dynamics simulations, the stabilized volume and energy can greatly help to 

maintain a much stable equilibrium state in order to obtain more accurate data of 

thermodynamic properties.  

Isoenthalpic-isobaric ensemble or N   ensemble represents a closed 

system with fixed pressure   and enthalpy  . This ensemble can help to obtain the 

melting temperature at crystal-melt systems at a constant pressure. 

Grand canonical ensemble or     ensemble represents an open system, 

where the number of particles can change, with constant volume  , temperature   and 

chemical potential  . This ensemble is not employed in our simulation because the 

whole process of our simulation is in a closed system. 

 

3.4 Initial and boundary conditions 

 

The simplest choice of initial position of atoms is to start with atoms at the 

sites of a regular lattice. The particle initial velocities are chosen at random direction, 
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usually following the Maxwell-Boltzmann distribution. Initial velocities are scaled so 

that the temperature is adjusted to a desire value.  For certain numbers of time steps the 

velocity must be readjust to warrant that the total linear moment be null and the center 

of mass of the system stand at rest. The practice shows that the equilibrium is reached 

quite rapid, and there is no memory of the initial configuration, so that more careful 

attempts constructing a typical state are not very benefit. 

The boundary conditions are chosen considering the characteristics of the 

system to be simulated. Finite and infinite systems are very different. In bulk system it is 

usual to use periodic boundaries condition to avoid the effect of surfaces. The idea of 

periodic boundaries is to surround the simulation box by virtual box which are made by 

replicating the main simulation box. There are to consequences of this periodicity. The 

first is that an atom that leaves the simulation box through a bounding face immediately 

reenters the box through the opposite face. The second is that the atom lying within a 

distance    of a boundary interact with atoms in an adjacent copy of the system, or, what 

is the same, with atoms near the opposite boundary (Figure 3.1) (this is called minimum 

image convection).  

 It is important to observe that even with periodic boundaries finite-size 

effects are present. How big the system has to be depends on the kind of system and the 

properties of interest. The only way to resolve this question is by a detailed numerical 

study. For free surfaces and subtracts it is necessary other kind of boundaries.    

 

 

Figure 3.1 Scheme of periodic boundary conduction in two dimensions. Particles that leave the simulation 

box will be replaced by their images entering the box from the opposite side. 
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3.5 Radial distribution function 

 

The radial distribution function or pair correlation function  (r) in a 

system of particles describes how the density of particles varies as a function of distance 

from a reference particle. When more than one chemical species are present the so-

called partial radial distribution functions    (r) may be computed as: 

   (r)  
 

N 
    (r  r  )                                      (3.14) 

where  (r) is Dirac delta function, r   is the distance from a particle of the specie   to 

one of the specie  . The function   (r) is given by 

  (r)    c c    (r)                                          (3.15) 

where c  N N  represents the concentration of atomic specie  . The radial 

distribution function is very important to characterize the structure and to detect 

structural changes.  

The coordination number is the number of particles of the specie   inside 

a sphere of radius r with centre in a particle of the specie  : 

n  (r)          (r)r
 drr

0                        (3.16) 

where    N    is density of the specie   in the sample. 

The definition of  (r) implies that     (r)r dr is the mean number of 

atoms in a shell of radius r and thickness dr surrounding the atom. The radial 

distribution function is related to the experimentally measurable structure factor  ( ) 

by Fourier transformation [17]: 

 ( )  1    ( (r)  1)e i  r  
  dr                                  (3.17) 

The structure factor  ( )    e i (r  r )
    N is a mathematical description 

of how a material scatters incident radiation. The structure factor is a particularly useful 

tool in the interpretation of interference patterns obtained in X-ray, electron and 

neutron diffraction experiments. 
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Chapter 4. Nonlinear time series analysis 

 

Nonlinear time series analysis constitutes an important tool to study 

complex phenomena. The term nonlinear is used to distinguish these group techniques 

from classical linear time series analysis which are based in Fourier and correlation 

functions calculation, and which are not suitable in nonlinear dynamical systems. It must 

be mentioned that it is an active area of research; here we have limited to introduce 

some basic tools that we use later. It is presumed that the reader know the elementary 

concepts of chaotic dynamics. To whom is interested we recommend the book of Baker 

and Gollub [29] and the review of Eckmann and Ruelle [30].      

 

4.1 Time series: reconstructing phase space  

 

Chaotic time series are observed routinely in physics experiments. The 

analysis of chaotic time series has as objective to extract information of physical 

importance. This process can be divided in three steps: 

1) separating the signal of physical interest from noise; 

2) constructing an appropriate  phase space  in which the full structure of the 

strange attractor associated with the chaotic observation is unfolded; 

3) evaluating invariant properties of the dynamics.        

We will consider a single scalar observable measure at a fixed point. Let 

s(t0  n )  s(n) be the measured quantity, where  t0 is the initial time and   is the 

sampling time. The quantity s(n) could be a voltage, the velocity of a fluid in a fixed  

point, or could be the temperature, etc. 

The first task is to reconstruct the phase space of the system that generate 

the series s(n).   ut before it must be e plained what means ‘reconstruct the phase 

space’. We will consider as example a fluid that is described by Navier-Stokes partial 

differential equations. This system has infinite degrees of freedom that cannot be 

reestablished from s(n). But from a geometric point of view, and as this system is 

dissipative, the spatial pattern of the fluid can be described by an object of lower 

dimension than the original phase space. Then the idea is to model the evolution of the 

attractor itself and not the evolution in the full infinite phase space. In a nonlinear 

dissipative dynamical system different orbits converge to an attractor [31], the idea is to 
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reconstruct this low dimensional object (which does not depend of a particular initial 

condition) and to capture its main properties. 

After transient has died out, the measurements s(n) provide the necessary 

information to reconstruct the finite dimensional space in which the system is evolving. 

In dynamical systems theory the concept of noise is associated with high dimensional 

dynamics, then reconstructin  low dimensional ob ect we are separatin  ‘noise’. It must 

be mentioned that traditional techniques to diminish noise, such as signal filtering, could 

be dangerous and in some cases ‘ ill’ useful information. 

We will turn to the methods for reconstructing the phase space from the 

information on scalar measurements s(n)  s(t0  n ). The principal idea is that the state 

of a system given by a set of variables, for example the position and the velocities of the 

particles of a system can be written as function of previous values of one of the variable 

of the system. 

The dynamic of a system of dimension d defined by the generalized 

coordinates     1,   ,  ,  d   can be reconstructed using the lagged variables 

s(n   )  s(t0  (n   ) ), where   is an integer to be determined and the quantity s(n) 

could be any of the generalized coordinates  i or a smooth function of the coordinates  i. 

Then, using time lags variables we can create the desired d-dimensional vector: 

y   s(n), s(n   ),  , s(n  (d  1) )                             (4.1) 

The idea to use time-delays coordinates to reconstruct was introduced almost 

simultaneous by Packard et al. and Ruelle around 1980 [31]. 

Well, we now know how reconstruct the phase space from the scalar s(n), 

but, immediately arise the question: how must we choose the time delay   and the 

dimension d to construct the vector y? The answer to this question is a theorem [31], 

which states that it does not matter what time lag one chooses while the dimension d be 

chosen is larger than 2d , where d  is the dimension of the attractor. The procedure of 

choosing sufficient large d is formally known as embedding, and any dimension that 

works is called an embedding dimension d . Once one has achieved a large enough 

d  d , then any      will also provide an embedding. 
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4.2 Choosing time delays 

 

According to the embedding theorem any time lag will be acceptable, but 

this is not very useful to extract the physics from the time series. If we choose   too 

small, then the coordinates s(n    ) and s(n  (  1) ) will be so close to each other, 

then such coordinates are not independent. Similarly, if   is too large, then   s(n    ) and 

s(n  (  1) )  are completely independent of each other in a statistical sense and the 

orbits are projected onto two totally unrelated directions. 

As a first approach, we can consider s(n) as random numbers that follow 

certain unknown distribution. Then, the time lag can be taken as time for which the 

linear autocorrelation function first vanishes: 

  (t)  
1

N
  s(m t) s   s(m) s  N

m 1

1

N
  s(m) s   N

m 1

                                               (4.2) 

s  
1

N
 s(m)N

m 1                                                                 (4.3) 

This independence is only in the linear fashion [31]. 

In information theory the average mutual information is in certain way a 

generalization of linear autocorrelation.  Let   (ai) be the probability to find the system    

   in the state ai, similarly   (b ) is the probability of occurrence of b  in  , and 

   (ai, b ) is the joint probability of occurrence ai and b . The average mutual 

information is defined as 

I  ( )      (ai, b )lo   
   (ai,b )

  (ai)  (b )
 ai,b                        (4.4) 

Note that when the measurements of    and   are completely independents,  

   (ai, b )=  (ai)  (b ) and I  ( )  0. 

In terms of the time series s(n), the average mutual information between 

observations at n and n   , is the average amount of information about s(n   ) we have 

when we make an observation of s(n): 

I( )    (s(n), s(n   ))lo   
 (s(n),s(n  ))

 (s(n)) (s(n  ))
 n                      (4.5) 

As a prescription, we choose the time lag   where the first minimum of I( ) occurs. If the 

average mutual information has no minimum, without much grounds beyond intuition, 

we take   such that I( ) I(0)  
1

 
   , or  simple it set   1 or  .   
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4.3 Choosing the embedding dimension 

 

If the attractor is properly unfolded by choosing a large enough d , then 

any property associated with the attractor  which depends on distance between points 

in phase space  should become independent of the value of the embedding dimension 

once the necessary  d  has been reached. After that, increasing d  should not affect the 

value of these properties, and, in principle, the appropriate necessary embedding 

dimension dN can be established by computing such a properties for increasing values of 

d  until variation with d  ceases.  

Other important method to determine dN is the false nearest neighbors.  

The idea is that the necessary embedding dimension is that for which false neighbors 

are eliminate. False neighbors are those that arose by virtue of having projected the 

attractor into too low dimensional space. 

In a dimension d each vector y   s(n),  , s(n  (d  1) )   has a nearest 

neighbor yNN. The Euclidian distance in dimension  d between y and yNN is  

 d
   s(n)  sNN(n)      s(n  (d  1) )  sNN(n  (d  1) )      (4.6) 

In dimension d  1, the distance is given by 

 d 1
   d

   s(n  d )  sNN(n  d )                   (4.7) 

If  d 1 is large, we can presume it is because the near neighborliness is due to the 

projection from  some  higher-dimensional  attractor  down to dimension d. By going 

from dimension d to dimension d  1, we have  unprojected these two points away from 

each other. Some threshold size    is required to decide when neighbors are false. Then 

if  

 s(n d ) sNN(n d ) 

 d
                                                    (4.8) 

the nearest neighbors are false. In practice, for values of     in the range 10      0 

the number of false neighbors identified by this criterion is constant.  

The fact that points are nearest neighbors does not mean they are close on 

a distance scale set by the approximate size    of the attractor. If the nearest neighbor to   

y is not close, so  d    , then the distance  d 1 will be about 2 d. This means that 

distant, but nearest neighbors will be stretched to the extremities of the attractor when 

they are unfolded each other, if they are false nearest neighbors. 

As a second criterion of falseness of nearest neighbors we have  
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                                                                       (4.9) 

As a measure of    one may use the quadratic mean value of the observation 

  
  

1

N
  s( )  s   N

  1                                     (4.10) 

When nearest neighbors falling either in one of these two criteria they are declared 

false. If the signal is corrupted by noise or other high dimensional signal, and the level of 

contamination is low, the residual percentage of false neighbors gives an indication of 

the noise level. 

 

4.4 Invariant of the dynamics: dimension 

 

Attractor dimension are the most intensely studied invariant quantity for 

dynamical systems. Such interest is motivated by the fact that chaotic attractor have 

fractional dimension [30, 31], in contrast with regular systems which have integer 

dimension.  Currently the calculus of dimension is used to demonstrate the existence of 

chaos. 

The concept of dimension ( ) can be defined through the relation 

                                                                   (4.11) 

where   is the (hyper) volume and    is a characteristic length parameter. For an objects 

in the plane, we can calculate its area decomposing it into n  small squares of side length  

 , the area will be  n   in the limit   0. For a body in real space its volume will be  n   

as   0, and so on. Then, a general definition of dimension could be 

  lim  0
lo  

lo  
                                                   (4.12)  

In general we have a set of point of the attractor. Then dividing the space 

in cubes of side length   and counting the boxes that at least contain one point we can 

calculate the dimension. Repeating this procedure for several orders of magnitude of    

we can calculate the tendency of    . It is obvious that the largest value of      calculable 

is the embedding dimension. If the embedding dimension is not large enough to unfold 

the attractor it is e pected that the attractor’s pro ection fills the space, resulting in an 

estimated dimension equal to the embedding dimension. As the embedding dimension 

increases through the minimum required for complete unfolding the attractor, the 

calculate dimension ‘saturate’, it turned independent of the embeddin  dimension. 
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Still more general than the above definition is the concept of generalized 

dimension. The generalize dimension is defined as 

   limr 0
1

  1

lo  pi
 N

i 1

lo r
                                               (4.13) 

where the d-dimensional phase space has been partitioned into boxes of size rd; pi is the 

probability that the trajectory   visits box i and N is the number of non-empty boxes. The 

generalized dimension provides a whole spectrum of invariant quantities for 

      . For   0, the sum reduces to the number of non-empty boxes. The  0 is 

called the topological or fractal dimension. For   1, the  1 is called the information 

dimension. The    is called correlation dimension.   

The numerator of the correlation dimension 

   limr 0
 lo  pi

 

lo r
                                                    (4.14) 

is a measuring of the probability  of finding  a pair  of random points  within  a given 

partition element.  A simple and computational efficient means of estimating  pi
  is 

counting how many pairs of points have a separation distance less than some value  r 

[32, 33]: 

  (r)  
 

N(N 1)
  (r    ( )   (i) ) i                                       (4.15) 

The correlation dimension is the slope of the curve  lo   (r) versus lo r. 

In standard practice several curves lo   (r) versus lo r are plotted for increasing 

values of embedding dimension. For embedding dimensions smaller than the minimum 

required for complete unfolding of the attractor, the slope of the plot will equal the 

embedding dimension. As the embedding dimension increases, the slope of   lo   (r) 

versus lo r plot should saturate at a value e ual to the attractor’s dimension.  

Theoretically, the dimension    is the slope of the lo   (r) versus lo r 

plot in the r  0 limit, but this region of the plot is dominated by noise. Therefore it is 

necessary to identify a scaling region at intermediate length scales, where a constant 

slope allows reliable estimation of the dimension.  

   

4.5 The Lorenz chaotic model 

 

The Lorenz equations [31] are derived from a finite mode truncation of the 

partial differential equation describing the thermal convection in the lower atmosphere: 
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    (y   )                                                        (4.16) 

y      r  y                                               (4.17) 

    y  b                                                          (4.18) 

Many authors have adopted the Lorenz equations as a model of low dimensional chaotic 

behavior. 

 As the parameter  , representing the ratio forcing to damping, is 

increasing the system undergoes a sequence of transitions from regular to more 

complex. Figure 4.1 shows a typical chaotic time series. As illustration of the method of 

dynamic reconstruction we used time series of this system. First, it was calculated the 

average mutual information (Figure 4.2) and the percentage of false nearest neighbors 

(Figure 4.3). Following the above discussion, we take as   time lag the value for which the 

mutual information has its first minimum,     . And from the graphic of false nearest 

neighbors it is seen that the required embedding dimension is 3, in agreement with our 

model. 

Figure 4.4 shows the reconstructed attractor. In Figure 4.5 is the attractor 

obtained from the numerical integration of equations (4.16)-(4.18).  In spite the 

reconstructed attractor appears with the borders folded, these result is fascinating. In 

Figure 4.6 is shown the correlation function    versus r in logarithm scales. From this 

we find that the fractal dimension is approximately           .  

 

 

Figure 4.1 Chaotic time series y(t) of Lorenz model. 
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Figure 4.2 Average mutual information for Lorenz data. 

 

 

Figure 4.3 Percentage of false nearest neighbors as function of embedding dimension for Lorenz model.  

 

 

Figure 4.4 Reconstructed Lorenz attractor using time-delay coordinates. 
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Figure 4.5 Lorenz attractor. 

 

 

Figure 4.6 Correlation function   (r) for Lorenz data (  (r) r  ). 
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Chapter 5. Anomalous behavior of CaTiO3 around 200 K 

 

This chapter is devoted to the study of low temperature elastic behavior of 

the CaTiO3. The elastic behavior is studied experimentally by pulse-echo ultrasonic 

techniques in the range the temperature from 300 to 20 K. Using molecular dynamic 

simulations we make a comparative study of the elastic response of a mono-domain  and 

a poly-domain  configurations. This comparatives study allows analyzing the effect 

domain wall motion and defects in the response of this system. The dynamics of the 

mono and poly-domain are studied through nonlinear time series analysis.  

 

5.1 Experimental results 

 

A polycrystalline sample of CaTiO3 was obtained by standard ceramic 

method.  The ultrasound attenuation and velocity were simultaneously measured by the 

conventional pulse-echo method [34, 35]. This method allows small variations in the 

phase velocity to be measured with great accuracy by determining the ultrasound wave 

traveling time in a round trip. 

A polycrystalline ceramic sample can be considered as an isotropic elastic 

medium. In this appro imation, Youn ’s modulus  , shear modulus  , bulk modulus   

and  oisson’s ratio   are given by [36]: 
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                                                                     (5.4) 

where  l and  t are the longitudinal and transverse sound velocities. 

Longitudinal and transverse ultrasound velocity and attenuation versus 

temperature are shown in Figure 5.1. In the velocity versus temperature curves, an 

anomaly around 200 K can be identified. In the same range of temperatures there is an 

attenuation peak, indicating the presence of poorly characterized strains. 
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Figure 5.1 Sound velocity (solid line) and attenuation coefficient (dashed line) versus temperature. Items 

(a) and (b) are for heating process, (c) and (d) for cooling.  

 

 

Figure 5.2 Elastic moduli versus temperature (experimental measurements): a) Young modulus, b) shear 

modulus, c) bulk modulus and d) Poisson ratio. Cooling curves: dashed; heating curve: solid.  

 

The temperature dependence of the Youn ’s modulus, shear modulus, bul  

modulus and  oisson’s ratio measured at 10     are shown in  i ure 5.2. There is a 

hardenin  in Youn ’s modulus and bul  modulus at appro imately  00 K. 

 orrespondin ly,  oisson’s ratio rises to a maximum around 200 K with decreasing 

temperature, followed by a fall at lower temperatures. 
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Although this ultrasonic technique is very sensitive in revealing subtle 

structural phase transitions, the presence of ultrasonic attenuation peaks sometimes 

occurs due to dynamical reasons that do not involve phase transitions. Similar 

anomalies were reported in SrTiO3 by Scott and Ledbetter [37], which were explained as 

purely dynamical phenomena. The anomalous ultrasonic behavior in both longitudinal 

and transversal modes could be attributed to the occurrence of ferroelastic domains and 

domain walls motion. Complementary information about domain walls motion could be 

obtained at lower measuring frequencies using the method of dynamic mechanical 

analysis [38-41]. 

 

5.2 Simulation of a mono–domain configuration  

 

Molecular dynamics simulations of CaTiO3 were performed with a two-

body central force based on the Vashishta-Rahman interatomic potential: 

 i (r)  
 i  

r
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r

  
 i 

r
 i  

 i 

 r e
 

r

  
 i 

r                                          (5.5) 

where the first term represents the Coulomb interaction between two ions of effective 

charges  i and    (in units of electron charge e) at the interatomic distance r   ri  r  . 

The second term represents the steric effects, in which  i  and  i  are the strength and 

exponent of steric repulsion, respectively. The third term represents the charge-induced 

dipole interaction, due to the electronic polarizabilities of atoms, where  i  is the 

strength of the charge-dipole attraction, and the last term is the induced dipole-dipole 

potential, where  i  is its strength. Parameters   and   are the screening length for 

Coulomb and charge-dipole terms, respectively. The interaction potential is truncated at 

the cutoff radius rc.  

Parameters in the potential were determined by fitting the model to some 

selected physical properties: cohesive energy, bulk modulus, elastic constants and lattice 

parameters for the orthorhombic structure. Thus the following were set:   a  0.9 9 , 

  i  1.9 9 ,     0.9 9 ,    .    ,    .      and cutoff radius rc  8.0   . Other 

parameters are summarized in Table I.    
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Table I. Parameter set for two-body Vashishta-Rahman potential.  

Parameter Ca-Ca Ca-Ti Ca-O Ti-Ti Ti-O O-O 

 i  11 9 9 11 9 7 

 i (e    
 
) 8283.57981 216.64756 2365.84091 25.22251 374.99707 684.09897 

 i (e
    

 
) 2.0687 1.0343 2.1627 0 1.1284 2.2568 

 i (e    
 
) 0 0 242.6390 0 0 0 

 

All the molecular dynamics simulations were performed with LAMMPS 

[42] using the N   and N   ensembles, with a time step  t    fs. A perfect mono-

crystal configuration comprising 8  8   0  unit cells (N   1 00 particles) was built in 

a simulation box with periodic boundary conditions in all directions, Figure 5.3. 

Coordinates of atoms in the orthorhombic-Pbnm unit cell were taken from data reported 

in Ref. [43]. The system was thermalized in the N   ensemble, leaving it to evolve for 

 0,000 t at 300K. The calculations were performed in 3 computers of 6 cores Phenom II 

X6 1100T (3.2 GHz and 16 Gb). For each temperature the running time was around of 

half hour. At 300 K, the density was    .0      cm , very close to the reported 

experimental value    .0      cm  [43]. 

From the equilibrium configuration, the system was cooled from 300K to 

20K, thermalizing after each 10 K step for  000 t . At each temperature, the system was 

deformed uniformly, each  00 t for 10 000 t, up to 1.001 times the initial equilibrium 

volume in the N   ensemble. Later, the same process was repeated to obtain a 

deformation of 0.998 times the initial equilibrium volume. The deformations were small 

enough to keep the system in the linear response regime. 

 

 

Figure 5.3 Mono-domain  of CaTiO3 at 300K.  
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Figure 5.4 Molecular dynamics simulation of bulk modulus for a mono-domain of CaTiO3.  

 

The simulated bulk modulus was determined from the standard definition 

[44]: 

    0
dp

d 
                                                            (5.6) 

The bulk modulus decreases with increasing temperature almost linearly (see Figure 

5.4). Very small departures from linear dependence are observed at 90 and 210 K. 

Simulations were repeated for different initial configurations and always were observed 

the same two peaks.  This observation was reproduced in systems with the same 

number of particles but with different simulation box geometries. The magnitude of the 

bulk modulus is higher than that observed experimentally. This can be explained by the 

fact that simulations were performed on an ideal crystal without interstices and other 

defects.  

 

5.3 Simulation of a poly–domain configuration 

 

The crystal structures are often corrupted by defects such as grain 

boundaries, twins and dislocations. However, simulations are limited to the box 

geometry. Then, surface effects as well as the effects of grain boundaries are eliminated 

by the periodic boundary conditions. In spite of these limitations, it is possible to 

simulate a poly-domain structure with the typical defects such as twins and dislocations.  
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Figure 5.5 Poly-domain structure of  CaTiO3 at 300K.   

 

A new simulation box was employed consisting of 8  8   0 ideal CaTiO3 

cubic cells (N  1 800 particles), with a lattice parameter a   .89     . The 

temperature was fixed at 3600 K in the N   ensemble for  0,000  t, during which the 

system completely melted. After this, the system was cooled from 3600 to 300 K at a 

rate of 0.5K/ps. 

At 300 K the mean density was    .       cm , lower than that of the 

mono-domain structure. The polycrystalline structure and defects like interstices could 

be detected by simple inspection, as are shown in Figure 5.5. The crystal domains are 

well defined with wall width of the order of the unit cell parameters. As for the mono-

domain, the system was cooled from 300 to 20 K, thermalizing at each 10 K for  000 t. 

At each temperature, the system was deformed uniformly, each  00 t for 

10,000 t,  up to 1.001 times the initial equilibrium volume in the N   ensemble. Later, 

the same process was repeated to obtain a deformation of 0.998 times the initial 

equilibrium volume. 

All the deformations were performed in the linear response region. For the 

poly-domain configuration the fluctuations are considerably larger than in the mono-

domain (compare Figures 5.4 and 5.6a), so the simulations were repeated 40 times 

under different initial conditions and results were averaged to smooth the curve, Figure 

5.6b. The bulk modulus is 60 % lower than in the mono-domain, while the volume 

increases only in 10 %. Such smooth in the bulk modulus is due, partially, to the 

occurrence of interstices.  
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Figure 5.6 Molecular dynamics simulation of bulk modulus for the poly-domain configuration: a) single 

curve and b) average of 40 curves for different initial conditions. 

 

Around 210 K it can be observed an increment in bulk modulus. Although 

the increment bulk modulus is modest, is meritorious that this occurs in the same 

temperature range as in experiment. The greater values on experiment can be explained 

by effect of other factors as grain texture, obviously not considered in the simulation. 

The    (r) were calculated at various temperatures, in order to look for 

possible structural modifications. No change in symmetry was detected in the analysis of 

partial and total pair correlation functions in the range from 20 to 300 K. Additionally, 

the total pair correlation function was calculated at 210K for a region inside a domain 

and a region comprising twin walls, Figure 5.7 . No significant structural changes 

between bulk and interfaces could be found. The pair correlation function calculated 

inside the crystallite coincided with that calculated for the mono-domain [24]. 

The perovskite phase transition involves small atomic displacements. 

Transitions from orthorhombic to tetragonal, and then to cubic occur through tilting of 

the TiO6 octahedra [45], thus no significant displacement occurs.   Structural changes 

can be also observed through bond angle distributions. Ti-Ti-O bond angle distribution 

was calculated from the average positions of atoms in the mono-domain and poly-

domain, as shown in Figure 5.8. The bond angle distribution remains practically 

unchanged from 20 to 300 K, reinforcing the idea that no phase transition occurs at this 

range of temperature. 
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Figure 5.7 Pair correlation function at 210 K calculated inside a domain (solid line) and across domain 

walls (dashed line).  

 

Figure 5.8 Ti-Ti-O angle distribution for a mono-domain (dashed line) and a poly-domain (solid line) at 

210 K. 

 

If phase transitions are absent, then no abrupt change in the average 

macroscopic variables or their derivatives with respect to temperature will take place. 

Nevertheless, a change in the dynamics must affect to a certain extent the evolution of 

macroscopic variables over time. The time average total energy (  ) was calculated 

during 10,000  t for the mono-domain and poly-domain in the interval from 20 to 300 K 

in the N   ensemble, Figure 5.9. In this interval of temperatures,    increases linearly 

with the increasing temperature, in agreement with the classical nature of the 

simulations. The continuous and linear rise of    with temperature is another sign that no 

phase transition occurs. 
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Figure 5.9 Average total energy versus temperature for a monodo-main (circles) and a poly-domain 

(squares) of CaTiO3. 

 

A possible explanation of the anomalies observed could be related with 

the occurrence of avalanches in domain walls. Accumulated stress in domain wall 

relaxes in form of avalanches that are transmitting through neighbors domains. 

Experimentally the occurrence of avalanches in domain wall have been observed 

through calorimetric (heat flux) and acoustic emission [14]. Avalanches are self critically 

organized phenomena and the frequency of occurrence is given by a power law [46].  

The occurrence of avalanches must be reflected as fluctuations in 

macroscopic variables. As macroscopic observable we choose the pressure   in the 

N   ensemble. Pressure was measured 810 000 times each 2 fs and the occurrence 

probability density function f( ) was constructed, been f( )d  the probability to have 

fluctuation with intensity between   and   d  . Figure 5.10 shows f( )  for the mono-

domain and poly-domain at several temperatures in double logarithmic scales. 

Fluctuations are stronger in the poly-domain, which also can be direct observed in bulk 

modulus. For highs values of   the curves can be approximated by straight lines, e.g., the 

density of probability follows a power law f( )     with   8.  0.1.  By appropriate 

shifting the curves can be brought to cover each other (Figure 5.10). 
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Figure 5.10 Distribution function of fluctuation peaks for mono-domain and poly-domain  configurations 

in log-log scales.   a) Bigger fluctuations follow a power law, b) using appropriate coordinate 

scaling all curves overlap.    

 

Figure 5.11 a) Temporal evolution of pressure under alternates volumetric deformation. b) Fluctuations 

are projected in horizontal axis after removing smooth component.  

 

Although this result is very interesting it does not allow a definitive 

conclusion to be reached about the existence or otherwise of avalanches, because the 

same behavior is observed in the mono-domain and poly-domain. Fluctuations where 

analyzed also under a constant deformation, Figure 5.11. Again power law was found for 

f( ) with the same exponent   for both systems.  
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Figure 5.12 Power spectrum of fluctuations of energy for a mono-domain (dashed line) and a poly-

domain (solid line). Each curve is normalized with respect to its highest peak.  

 

5.4 Time series analysis 

 

The power spectra ( ) of the energy fluctuations  (t)     were calculated 

for different temperatures, as shown in Figure 5.12. There are clear differences between 

the power spectrum pattern of the temporal series generated at 210 K and the spectra 

obtained for 20 K and 800 K. With the increase in the temperature the fluctuations 

increase. At low temperatures there is only one main peak in the power spectrum of the 

poly-domain. At 210 K, there are three main peaks. At the higher temperature, only one 

main peak appears again. For the mono-domain, there is an increase in the complexity of 

the power spectrum at 210 K. This behavior is more marked in the poly-domain. 
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The power spectrum of energy time series gives an idea about the 

dynamical differences between both systems. Due to the nonlinear nature of the 

interaction the Fourier transform of time series is not enough to characterize the 

dynamics of this system. In principle, the dynamic of the system can be characterized in 

phase space. Using coordinates and velocities of particles is possible to calculate 

parameters like Liapunov exponents and Kolmogorov-Sinai entropy; which allow 

detecting the changes in the dynamics [47, 48]. But for our system such approach 

implies serious difficulties due the large number of particles. Then, dynamic 

reconstruction and characterization from time series approach is more preferable.                                                                                                    

Phase space is reconstructed using time delay coordinates [30, 31, 49]. Let 

 si  be the time series, in our case it is the hydrostatic pressure measurements each 

 t    ps. Delay coordinates are defined as the set of values  si, si  ,  , si (d 1)  , being   

and d integers.   is the time lag and d is the dimension of the space. d must be sufficient 

large to correctly describe the reconstructed dynamics.  

Time lag is chosen by means of the average mutual information [31], 

I( )    (si, si  )lo  
N
i 1  

 (si,si  )

 (si) (si  )
   

As thumb rule,   is taken as the first minimum of I( ) [31]. Figure 5.13 shows the mutual 

information calculated from the times series for mono-domain and poly-domain 

configurations. It is surprising the behavior of poly-domain system which corresponds 

with the dynamic of discrete system, i.e., a map. The minimum value fluctuates between 

6 and 10 in the temperature range from 20 to 300 K. All the subsequent calculations 

were performed for time delays of 6 and 10, resulting in all the case in the same results. 

The embedding dimension is determined by the method of false neighbors. 

Figure 5.14 shows the behavior of false nearest neighbors calculated from time series of 

20000 points. In the case of poly-domain it is zero for d     at 210 K, while for the 

mono-domain false nearest neighbors never is zero. Such behavior indicates that in the 

poly-domain exists a well defined low dimension dynamics in addition to stochastic high 

dimensional proper of the system. This can be interpreted as result of domain wall 

motion. Domain wall motion is a kind of collective motion in which a group of atom 

moves as a whole then their dynamics can be described by few degrees of freedom.      
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Figure 5.13 Mutual information determined from time series of 105 000 points. 

 

 

Figure 5.14  eterminin  the embeddin  dimension by false nei hbors’ method,  0 000 point were used 

with time lag     . 

    

In principle it is possible to characterize low dimensional dynamics 

knowing the time delay and embedding dimension. A straight way is through correlation 

dimension dc, a fractal dimension. It is estimated by the algorithm of Grassberger-

Procaccia [32, 33]. The method is based in the determination of correlation integral  

 (r), which for r  0 behalves as  (r) r d  .  
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Figure 5.15 Correlation integral versus distance in logarithm scales at 20 K,     10, 12, 14,..,100. a) 

mono-domain and b) poly-domain. 

 

 Figure 5.15 display   versus   in a log-log plot. For the mono-domain 

there are two scaling regions, e.g. there are two windows in which the curve are straight 

lines.  As    increases the exponent    increases and it must reach a plateau at    equal 

to the lower integer bigger or equal to     [31], but when noise is sufficient strong this 

occurs for higher values of     and the correlation dimension is in general overestimated 

[31]. 

Around 210 K the curves       have only one scaling region. The    versus 

   plot has very short plateau for the poly-domain at       (see Figure 5.16) from 

which it is approximately estimated          . Then around this temperature a new 

mode is activated, probably associated with domain wall motion. 
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Figure 5.16   versus dE  for the mono-domain (solid line) and poly-domain (circles). 

 

There are two important conclusions derived from the study of the 

dynamics of these systems. In one hand, the differences between mono-domain and 

poly-domain persist in all range of temperatures, which was also confirmed by other 

properties such as the bulk modulus, the distribution of fluctuations and the total 

average energy. In another hand, in the poly-domain around 210 K it can be detected the 

emergence of a low dimensional dynamics.   

 

5.5 Summing up 

 

Using echo-pulse measurement techniques it was possible to detect an 

anomaly in the elastic constants of CaTiO3 around 200 K. Molecular dynamics 

simulations showed that no phase transition occurred in the low temperature range, as 

confirmed by the pair correlation function and the angle distribution function. The bulk 

modulus is lower in the poly-domain configuration than in the mono-domain 

configuration. An anomalous increase in the bulk modulus around 210 K is observed in 

the poly-domain system, in good agreement with experiments. The structural and 

dynamical analysis point out to dynamical phenomena rather than a structural change 

as the cause of the anomaly. The power spectrum of the energy temporal series shows a 

change of pattern that indicated an increase in the complexity of the dynamics around 

210 K. Fluctuations are stronger in the poly-domain configuration and they follow a 

power law in both configurations. The reconstruction of the dynamics of these systems 

by a time delay method shows marked differences in mutual information, embedding 

dimension and correlation dimension around this temperature. 
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Chapter 6. Extrinsic dielectric contribution: collective model 

 

Molecular dynamics simulation of dielectric response is a promising 

powerful tool and still evolving field.  However, electric interactions are long range 

interaction and current samples ranges from few nanometers to micrometers. Thus, 

realistic simulation must include large systems and computational expensive algorithms 

to appropriately handle long range interactions. Considering the domain structure of 

ferroelectrics is possible to develop simple collective models. These models can be 

treated analytically, and they result very convenient to simulate nonlinear dielectric 

response. Of course, with this approach we loss the wonderful detailed information 

supply by molecular dynamics, but in compensation we get simple analytical 

expressions that can be fitted to experimental data to obtain information of the 

microscopic structure.  In this final chapter are discussed two models of collective 

motion for domain walls motion. 

 

6.1 Domain wall as stretched membrane 

 

Dielectric properties of ferroelectrics are strongly dependent of the 

domain structure and domain walls mobility. Dielectric permittivity as a function of 

frequency and temperature are probably the most extensively investigated properties in 

ferroelectrics, both theoretically and experimentally. In contrast, the dielectric response 

as function of a dc electric field (bias) has been less studied due to, for one side to 

sometimes technical difficulties to apply high electric fields in the samples, and on the 

other side, to the lack of a model to describe the dielectric response for a wide range of 

electric fields strength [50-54]. The study of the nonlinear dielectric characteristics of 

ferroelectrics under electric field can provide useful information on the basic physics of 

ferroelectric domain reorientation and tunability. In this section, a membrane model is 

proposed in order to describe the domain wall dynamics supposing a general nonlinear 

dependence of the membrane tension with respect to the stretching generated by an 

applied external dc electric field.  
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Figure 6.1 a) Membrane under hydrostatic pressure and b) under uniaxial force.  

 

6.1.1  The model 

 

In ferroelectrics the domain wall width is in the order of a few unit cell 

sizes. As an interface, with thickness and volume much smaller than that of the domains, 

domain wall can be imagined as a membrane that can be displaced by the action of an 

external field, as a consequence of domain reorientation. Such reorientation creates 

tension in the membrane that modifies its mechanical properties. Membranes 

oscillations are commonly described by nonlinear partial differential equation which, in 

general, could be very complicate to solve [55-57]. 

When a hydrostatic pressure is applied in one side of a plane membrane 

with fixed edges it deforms as a shell due to the force acts normal to the surface (Figure 

6.1a). In contrast, when the force in the membrane is uniaxial it remains almost flat, i.e., 

it suffers a piston like displacement. This is the case of an external electric field    

applied to a ferroelectric, in which the electrode areas are much larger than those of the 

domain walls, so that the exerted force can be considered uniaxial (Figure 6.1b). Based 

on this assumption it will be assumed that a domain wall behaves as a square membrane 

under a uniaxial force, generated by an electric field   . To determine the domain wall 

dynamic response a probing field        , with    sufficient weak, superimposed to the 

dc bias field will be also taken into account. 
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Figure 6.2 Domain wall displacement at a distance   from equilibrium position by the action of external 

electric field  .  

 

For sake of simplicity, it will be considered a grain formed by an even 

number of 90o domains under an uniform electric field             . Taking a 

rectangular system of coordinate with    plane parallel to the membrane plane, the 

transverse deformation   of the membrane (Figure 6. 2) can be decomposed in two 

components 

                                                                        (6.1) 

where     is the deformation caused by    and       is due to the alternating component 

       . As    is assumed weak then        can be considered small.  The small 

transverse oscillations are described by the boundary value problem [58]: 

    

   
    

    

    
    

      
   

  
 

     

 
                                         (6.2) 

                          ,            ,            ,                                 (6.3)  

where   is the length of the non-deformed membrane,   a damping coefficient,    the 

effective mass per unit of area of the wall,            with       the membrane 

tension which is a positive monotonically increasing function of   , and    is the 

polarization component of    along the    axis. It is assume that the applied field   is in 

the   direction. 

The inclusion of the last term in equation (6.2) can be explained as follows. 

Consider a cylinder with height    (  is the thickness of the domains when no external 

field is acting), and top and bottom surfaces    parallel to the domain walls (Figure 6.2). 

The dipole moment enclosed by the cylinder is          . The electrostatic energy 

due to the interaction with the electric field         is                   . Hence, the 

force per unit area that acts in the membrane is 
  

  

   

  
            .    
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The steady-state solution of this linear boundary problem can be found by 

the method of separation of variables and it is given by [58, 59]: 

          
       

   
 

       
               

                    
  

 
      

    
        

 
     

        

 
   

          (6.4) 

   
   

  

 
 
 
                  

   
 

 
                                (6.5)                                                

As the parameter             is a function of the bias field    then                   

            . The total polarization is:  

     
     

 
 

                  
 
 

 
 

   
                                         (6.6) 

From equation (6.6) we can find the real and imaginary permittivity as: 

      
            ,                    

         

       
                       (6.7) 

       
             ,                   

          

       
                      (6.8) 

where    is the vacuum dielectric permittivity,          and           are given by 

         
 

 
            

    

 
 ,              

 

 
            

    

 
     (6.9) 

The terms    
  and    

   are the contribution of other polarization 

mechanism to the real and imaginary permittivity, respectively. We will consider    
  

approximately constant for not so high electric fields (experimentally attainable). From 

the solution given by equation (6.4) and the expressions (6.6)- (6.9) we have: 

            
  

     
 

      
 

   
    

                   
     

 
      

  
                             (6.10)  

             
   

     
 

      
 

  

                   
     

 
      

  
                           (6.11) 

According to this result there is an infinite set of resonance frequencies. 

However, experimentally most of the time only one over damped (relaxation like) 

characteristic frequency is observed, it depends on the damping coefficient. For small 

values of the damping coefficient         secondary resonances weakly appear, as is 

shown in Figure 6.3a; while for       they can be neglected, and a 
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Figure 6.3 Frequency dependence of real (solid line) and imaginary (dash line) dielectric permittivity for 

different damping coefficient  :  a)       and b)      . 

 

relaxation like response is obtained (Figure 6.3b). Typical experimental value for the 

damping coefficient, determined for several materials, is           [60]. 

For low frequencies regime (     ) equations (6.10) and (6.11) can be 

approximated by 

            
  

   

   
     

                                            (6.12)   

             
   

      

   
     

                                            (6.13)  

with 

  
     

 

    
                                                      (6.14) 

    
 

                               
  
                                (6.15) 

and 

    
 

                                
  
                              (6.16) 

 

Normalizing equation (6.12) it stands as:  

       
  

    
 

   

   
         

                                            (6.17) 

where 

                  )                                       (6.18)                

The numerical series    and    converge very fast and their approximate values are 

         and         .  
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The experimental curve        can be fitted by an appropriate empirical 

relationship. The most important phenomenological approach to this problem is the 

Landau-Ginzburg-Devonshire (LGD) theory [53, 61, 62]. The main difficulty of this 

formulation is that it does not provide an explicit expression for       . Based in the LGD 

theory, Johnson [61] obtained an approximated relation that fits the dependence of 

permittivity with electric field on the paraelectric phase [53, 61]. The Johnson 

approximation works well for moderate electric fields and it does not reproduce 

hysteretic behavior of ferroelectrics. 

For ferroelectrics in paraelectric phase, using the LGD theory, it is possible 

to demonstrate the dependence              where   and   are functions of 

temperature. A similar empirical law was introduced by Rupprecht et al. [63] to describe 

the nonlinear dielectric behavior of SrTiO3. This expression can be generalized to 

describe the nonlinear behavior of ferroelectrics and hysteretic effect [64] through the 

effective field      : 

       
  

    
 

 

       
                                                                    (6.19) 

                                                                           (6.20) 

where   and   that depend on the structure and are also function of temperature, 

parameter   is a generalization of Lorentz factor [53] depending on the geometry of the 

domains and characteristic length scales (texture, shape and grain size, among others). 

 Comparing equation (6.17) and (6.19)-(6.20) results: 

   
      

   

    
               

                                    (6.21) 

Inserting equation (6.21) in (6.5) we have 

   
      

  

     
                                

                       (6.22) 

If       and the characteristic frequency        are known then the other parameters 

could be determined from the curve         and for low frequencies the dispersion 

relationships could be evaluated directly from equations (6.12) and (6.13).  
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Figure 6.4 Ferroelectric hysteresis loop. 

 

6.1.2  Hysteretic consideration 

 

It is well known that under the action of an electric field, higher than the 

coercive field   , the polarization in normal ferroelectrics can be reoriented. The 

reorientation of the macroscopic polarization in ferroelectrics is a hysteretic process. In 

order to generalize our model to correctly describe the          response in normal 

ferroelectrics, the hysteretic electric field dependence of the macroscopic polarization 

can be included in the model through a contribution to the effective field in the 

equations (6.19) and (6.20). The hysteretic behavior of the polarization can be modeled 

by the mathematical relation [50, 51]: 

                                                             (6.23) 

        
         

         
  

  

                                              (6.24) 

where    is the coercive field,       the saturation polarization and    remanent 

polarization (Figure 6.4).  

Inserting equation (6.23) in (6.21) we obtain 

   
      

   

    
                                               (6.25) 

inserting equation (6.25) in (6.17) results 

       
  

    
 

 

                               
                                    (6.26) 
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Figure 6.5 Dielectric permittivity versus electric field strength due to hysteretic effect. Dispersion is 

notable for high frequencies       .   

 

 

Figure 6.6 Imaginary part of dielectric permittivity versus bias electric field involving polarization 

switching.  

 

The inclusion of the ferroelectric hysteresis in the model allows 

reproducing the hysteretic response of         and         curves as they are typically 

observed in experimental data, Figures 6.5 and 6.6. For frequencies around       

dispersion can be observed in the curves       , similar as it is observed experimentally 

[65]. Conversely, imaginary part of permittivity grows with the increment of the 

frequency as it is shown in Figure 6.6.  

As the coercive field becomes smaller the peaks in the        curve 

become closer together, overlapping as    is negligible (Figure 6.7). Using the condition 

of extreme and supposing that     in the equation (6.26) the   parameter can be 

determined. For the right hand branch of a curve         we find that 

       
   

                  
                                                      (6.27) 
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Figure 6.7 As     diminishes both curves tend to overlap. 

 

where    is the value of    for which         reach its maximum value (the peak in the 

       curve). Notice from equation (6.26) that the maximum of            occurs for 

     .  

 

6.1.3 Reconstruction of hysteresis loop from the CV curve 

 

Common bulk ferroelectrics behave as insulators. In thin film several 

conduction mechanisms appear and they smear the polarization loop.   In conductive 

sample the hysteresis loop shows a typical banana shape, this is due that depolarization 

current is accompany by the conductive currents. Integrating the relation      
 

  

  

  
 

with respect to the field, we can find     . But the curve obtained by the integration of 

the experimental curve       is different from the experimental curve obtained by direct 

measurement [2]. This occurs because both curves are obtained for different 

experimental conditions. The curve       is measured using a constant field    and a 

weak alternating field   , while the hysteresis loop      is measured using a strong 

alternating electric field. 

According to our model the curve       contains the information of the 

hysteresis loop. From the fitting of       using equation (6.26) we can extract the 

parameters    and  .  Now we will deduce an expression to calculate the saturation 

polarization. The hysteresis model given by equation (6.23) can be generalized including 

a linear term, i.e.: 

                                                                  (6.28) 
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Figure 6.8 Hysteresis loop with a linear contribution.  

 

The term         can be interpreted as an approximation to the 

contribution of intrinsic polarization mechanism (ionic, electronic, etc). This hysteresis 

loop model (Figure 6.8) is a generalization of the previous given by equation (6.23). In 

the cases that               , where      is the maximum attainable electric field, 

equation (6.28) reduces to (6.23). 

 Now we will consider an electric field                 , where     is 

constant or vary very slowly and    is weak. Then expanding around    in power series  

                                          
          

  
          

Dropping power of         higher than 1 and expanding in Fourier series 

              
          

  
    

Thus, the electric displacement in frequency domain can be written as 

                                  
          

  
                    (6.29) 

Notice that        . Comparing (6.29) with the state equation 

                                                                  (6.30)       

We obtain 

          

  
                 

From which, integrating, we get that 

                      
  

  
                                      (6.31) 
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Figure 6.9 Real dielectric permittivity vs. bias electric field strength for PZr0.8Ti0.2O3 (circles) and inverse 

quadratic model (solid line). Fitting was performed for the right hand-side branch of the curve. All the 

measurements were performed at a frequency of         (probing field).  

 

The model was tested using experimental data obtained from the 

PZr0.8Ti0.2O3 (PZT 20/80) and PZr0.53Ti0.43O3 (PZT 53/47) thin films prepared by a 

chemical procedure and deposited on Pt/Ti/SiO2/Si substrates. Measurements were 

performed at room temperature and probing field with a frequency of 100 kHz (which is 

far below the characteristic frequency        for these films). 

Figure 6.9 shows the curve        obtained for PZT 20/80 thin film. The 

experimental data (represented by circles) was fitted by the equation (6.26) using the 

Levenberg-Marquardt algorithm. All the parameters where taken as unknown.  The 

fitting was made using the curve branch corresponding to the right hand-side peak. As it 

can be seen in Figure (6.9) an excellent concordance is achieved between experimental 

data and model. From the numerical fitting it was obtained:   
              , 

         ,                    ,                  ,                  and 

               . 

From equations (6.26) and (6.31) is obtained for the PZT20/80 thin film 

                 . Figure 6.10 shows (solid line) the experimental hysteresis loop 

and the reconstructed hysteresis loop (dash line). From experimental curves we got 

             and                , confirming the fact that       as it is predicted 

by the model. 
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Figure 6.10 PbZr0.8Ti0.2O3 hysteresis loop (solid line) and the reconstructed loop from       curves 

(circles). 

 

Figure 6.11 Real permittivity versus electric field strength for PbZr0.53Ti0.43O3. 

 

Following the same procedure, the curve obtained for the PZT 53/47 thin 

film was fitted with the expression (6.26) using the data from the left hand side branch 

(Figure 6.11). Also in this case, an excellent agreement between experimental data and 

fitting is observed. From the numerical fitting resulted:    
            ,       , 

                 ,                 ,               and              . 

In Figure 6.12 are presented the experimental and reconstructed   

hysteresis loops for the PZT 53/47 thin film. It can be observed that the experimental 

polarization saturation is much higher than that obtained from the        curve. This 

difference is due to the nonlinear conductive contribution which is present in the 

experimental loop. 
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Figure 6.12 PbZr0.53Ti0.43O3 hysteresis loop (solid line) and the reconstructed loop from        curves 

(circles). The divergence is attributed to the conduction current. 

 

 

Figure 6.13 Imaginary permittivity versus bias electric field strength for PbZr0.53Ti0.43O3. 

 

The frequency     is estimated from the curve    (    (Figure 6.13) using 

the parameters found by the fitting of   vs.    curve. From equation (6.25) and making 

     we got 

  
   

        

                          
                                          (6.32) 

Substituting equation (6.25) and (6.32) in (6.13) and making        we have: 

       
   

 

                                  
                                           (6.33) 

                                                                 (6.34) 



58 
 

 
 

For the real permittivity we have             and          . Fitting 

of imaginary permittivity to equations (6.33) and (6.34) we get                  

(         ), which is in the order of the reported value for this material [60, 65].  

In this section, we generalized the hysteresis loop model introduced in the 

previous section. We will show that this does not affect the result given by equation 

(6.26). Effectively, inserting equation (6.28) in (6.21) and the result in (6.17) we arise to: 

       
  

    
 

 

                                 
  

where               
  and                .  Thus the equation (6.26) retains the 

same form and the parameters    and   are not affected. Obviously, the saturation 

polarization calculated from (6.31) is also the same.  

 

6.1.4  Domain size effect 

 

According to equation (6.5)    
  is inversely proportional to the domain 

wall size (parameter  ). Taking certain value    as a reference we can introduce the 

dimensionless parameter       , so that  

    
           

                                                       (6.35) 

Considering that domain size is dependent of grain size [8, 66-68] and 

assuming that there is linear relation between grain and domain wall size, using 

equations (6.26) and (6.35) it is possible to simulate the effect of domain size on 

dielectric response. Figure 6.14 shows the dependence of permittivity and its derivative 

with respect to the electric field for several values of the parameter  . The parameters 

used in the simulation correspond to a PZT 20/80 thin film. The model predicts a 

diminution of dielectric permittivity and tunability with the decrease of domain size in 

agreement with experimental observations (see Figure 6.15).    

We have limited our discussion to the analysis of grain size effect on the 

characteristic frequency     
 , and dielectric permittivity. In certain materials it is 

observed that    is proportional to the square root of grain size [8, 66]. In term of the 

dimensionless parameter   the domain width can be e pressed as      .  As       and 

according to the expression (6.17) and (6.35) this implies that      .   
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Figure 6.14 a) Simulation of permittivity versus electric field and b) its derivative with respect to the 

electric field for different membrane si e ( ).  

 

 

Figure 6.15 a) Permittivity versus electric field and b) its derivative with respect to the electric field of 

BaTiO3 ceramic with various grain sizes [10]. 

 

There are other factors that can affect the dielectric response as the grain 

size is diminished, such as for example dead layers, which contribution increase as grain 

size decrease. Padurariu et al. [10] explain the same effects considering that both the 

local electric inhomogeneity and the contribution of low permittivity grain boundaries 

increase when grain size decreases. It is evident the complexity of this problem due to 

simultaneous change of several parameters as the grain size is diminished. A way to 

elucidate the exact role of these mechanisms on the dielectric response and tunability 

could be achieved by the direct measurement of domains and domain walls sizes, and 

their dielectric characteristic frequencies. 
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6.2. Kittel’s model 

Domain walls motion was modeled by Kittel [69] and other authors [70-

73] as a rigid body moving in a dissipative medium in a harmonic potential. Dispersion 

relationships for real and complex permittivity are obtained from the solution of this 

equation. Due to the linear nature of this equation, it does not reproduce neither the 

nonlinear effects of electric field nor transient effects.  Here we discussed a model that is 

a generalization of the original Kittel’s equation incorporating a nonlinear potential. 

Assuming that the permittivity follows the dependence              it is obtained 

the exact expression for effective potential. Numerical simulation of polarization current 

shows that it follows a power law. Such results could be very valuable in the study of 

domain wall kinetic and ultrafast polarization processes. The model is extended to the 

case of pole sample allowing the study of nonlinear permittivity behavior for alternating 

electric field lower than the coercive field.  

6.2.1 The model 

 

We will start by considering a ferroelectric grain formed by a periodic 

array of domains polarized 90° each respect the others (Figure 6.2).  Under the action of 

the electric field                    the domain walls motion equation may be 

written as: 

                                              
   

   
  

  

  
             

  

  
                                      (6.36) 

where   is the wall displacement from the equilibrium position,   is the area of the wall, 

  the effective wall mass per unit of area,   a damping coefficient,      represent the 

effective potential, and    is the component of the polarization in the direction of     . 

The damping is occasioned by the coupling with lattice vibration, local imperfections, 

acoustic radiation and other causes. The polarization component in the field direction is 

given by 

     
  

 
                                                          (6.37) 

For an amplitude of alternating field   sufficient small the system perform 

harmonic oscillation around the equilibrium position   : 
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                                                                (6.38) 

Accordingly to (6.38) the permittivity can be written as 

      
            ,                   

 

    

   

 
              

    

 
                   (6.39)                       

where    
   can be taken as a constant, it represents the lattice contribution to dielectric 

response. The equilibrium position is determined by the equation 

   
  

  
                                                        (6.40) 

Certain properties of the function      can be inferred from the response 

of the system: it must be symmetric function so that the response is the same when the 

electric field is inverted, the motion must be reversible in the absent of defects (pinning) 

then        has a unique equilibrium point in the origin, and finally the motion is limited 

to     . From these properties we arrive to the conclusion that       is a symmetric 

infinity potential well with an absolute minimum at the origin.  

Expanding equation (6.36) in powers of        up to third degree, and 

dropping high order terms it becomes in 

   

   
   

  

  
                        

          
                           (6.41)                             

where        
 

  

       

   
,       

  

   

       

   
,       

  

   

       

   
 and    

     

 
,   is a 

formal parameter that indicate the nonlinear term of small absolute value. We will use 

the small parameter method [74, 75] to obtain the approximate solution of (6.41). The 

proposed solution has the form 

                                                                (6.42)  

Inserting (6.42) in (6.41) and equating coefficients of same powers of   we get 

  
      

                                                          (6.43)   

  
      

          
                                                       (6.44)   

  
      

                  
                                    (6.45) 
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Solving (6.43) we find 

      
         

             
      

    

             
                         (6.46) 

Substituting (6.46) in (6.44) and solving it we get a solution of the kind  

                           , which do not contain the principal frequency. Only 

in second order approximation reappears the terms containing principal frequency, then 

we will take (6.46) as the approximate solution. Making           , inserting in  

(6.37) and using  (6.39)  we obtain 

            
  

   
 

    

     

                                                     (6.47)                

This result coincided with that derived from the Kittel’s linear model  69] 

except that  =      . For low frequencies (      ) the dispersion relationship (6.47) 

can be written as 

            
  

   
 

                                                     (6.48)    

 

6.2.2 Effective potential 

 

We will assume that the dependence         is giving by the relation [63, 

64]: 

       
  

    
 

 

     
                                                              (6.49) 

where      is the maximum value of         . Comparing (6.48) and (6.49) we have 

       
   

 

        
      

                                          (6.50) 

As                  and using (6.40) it gives 

   

   
 

   
  

       
     

  

  
 
 

                                        (6.51) 

This equation is completed using the fact that       has a minimum at the 

origin, i.e., 
  

  
     . Solving (6.51) by standard methods we find 
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                                  (6.52) 

Imposing the condition           it follows that 

      

       
 
  

 
 

 

 
        

       

    
                            (6.53) 

Making      in (6.50) and using (6.53) we get that 

  
        

       
                                                   (6.54) 

Inserting (6.52) into (6.36) and using (6.53) and (6.54) it is obtained  

   

   
  

  

  
 

      

 
    

  

 
  

      

 
 

 

 
                                    (6.55) 

Making           in (6.55) and (6.37) they can be written as: 

   

   
  

  

  
 

      

 
    

 

 
   

      

 
 

 

 
                                              (6.56) 

                                                                    (6.57) 

The parameters   and   can be found from the curve       [30], while      is determine 

from the curve   (  . The damping coefficient also can be found experimentally from the 

curves   (   and       . 

 

6.2.3 Time–domain  relaxation 

 

By means of equations (6.56) and (6.57) it is possible to simulate the 

transient currents for arbitrary input signal lower than coercive field. The Figure 6.16 

shows simulations of polarization for different external fields, the parameters used in 

the simulation where obtained from PZT 20/80 [64]. Such simulations agree with the 

observed behavior in ultrafast polarization process for low input signal in thin films. As 

it is shown in Figure 6.17, the numerical simulations correctly predict a power law for       



64 
 

 
 

 

 

Figure 6.16 Polarization transient at different external fields:      ,                ,         

and                           .  

 

Figure 6.17 Polarization current in double logarithm scale:             , the other parameters are the 

same as in Figure 6.16. 

 

the polarization current j            (polarization current is defined as J        

then J     ). Power law in dielectric relaxation is a well establish experimental fact 

[76, 77]. It is a universal phenomenon that appears for different polarization mechanism 

[76-81] with the only common feature that it occurs on many body interacting systems.     
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Figure 6.18 Schematic representation of domain structure in a ferroelectric.  

 

6.2.4 Nonlinear dielectric response 

 

Equation (6.55) describes the dynamic of domain wall displacement for a 

single laminated grain and moderate electric field strength so that the system 

configuration remains unaltered. Then it could be useful for few nanometers devices 

with a laminar domain structure.  A common bulk ferroelectric sample have domain 

structure similar to a mosaic in which each region is a system of laminate domains with 

certain orientation, similar as is shown in Figure 6.18. In a non pole sample the domains 

are oriented at random. For sufficient strong fields the landscape is altered   and the 

orientations of the regions change. The reorientation of domain is an irreversible 

process and it cannot be treated with the present formulation.  

The structural heterogeneity can be introduced on the model by means of 

the local field 

                                                          (6.58) 

where   is a geometric factor.  

There are certain cases for which the functional dependence      is 

known. For an alternating field of low frequencies        and amplitude higher that 

coercive field the polarization describes a hysteresis loop that can be modeled 

mathematically as: 

                                                              (6.23) 
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Figure 6.19 Simulated and experimental data of nonlinear response of thin film PZT 20/80 for 

subswitching fields. 

 

        
         

         
  

  

                                              (6.24) 

where    is the coercive field,       the saturation polarization and    remanent 

polarization. Using (6.23) and (6.24) in (6.56) we have 

   

   
  

  

  
 

      

 
    

 

 
   

      

 
 

 

 
                                       (6.59) 

                                                                            (6.60) 

Note that we have replaced    with     . This is due that in the polarized 

sample still remains certain disorder, then each laminar region has its own polarization 

component   . As average we take            Equation (6.59) and (6.60) allow  

simulating transient effects for electric fields lower than coercive field.  

Other important application could be in the simulation of nonlinear 

behavior of permittivity under alternating electric field also lower than coercive field.  

This could be very attractive because such response represents domain wall 

contribution without the effect of defects (pinning). Figure 6.19 shows a simulation of 

dielectric permittivity for different amplitude of the alternating electric field. The 

parameters used in the simulation were taken from the fitting of the curve        for PZT 

20/80 thin film [64]. It must be emphasized that the parameters have not been adjusted 

to fit the experimental data. 
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6.2.5 Derivation of the      for low frequencies 

 

For        the derivatives in (6.59) can be neglected and   

     
  

 
   

 

 
                                                    (6.63) 

Using (6.63) on                  we have that  

              
 

 
                                                    (6.64) 

 Substituting (6.64) in (6.48) and using (6.53) and (6.54) we arrive to  

       
  

    
 

 

                             
 

This result agrees with a previous one obtained from stretched membrane model. 

 

6.3  Summing up and further works   

 

In this last chapter we have discussed two collective model for domain 

walls motion, from which it is possible to calculate the extrinsic contribution to 

dielectric response. From the theoretical point of view they constitute an important 

contribution to the existing theories of nonlinear response which has remained at 

phenomenological level in the last fifty years. Due to the simplicity of both models it is 

possible to obtain analytical expression that correctly describe nonlinear response and 

predict the influence of different factors in the tunability. 

 he nonlinear Kittel’s model has the advanta e, with respect to stretched 

membrane model, that it is possible to study transient current and nonlinear response 

for alternating subswitching fields. The study of such model still is not complete and the 

model must be improved. One the remaining open problem is the irreversibility due to   

the interaction of domain walls with defects. In future works this problem could be 

treated using two different approaches: one could be to use perturbations    of the 

potential to represent point defects or, the second approach, could be to use a 

generalized dissipative force as a statistical representation of the loss due to the 

interaction with defects [82].   
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Conclusions and outlook 

 

In this thesis two problems related to the elastic and dielectric response of 

materials with perovskite structure were studied. The first problem concerns with the 

elastic anomalies observed in CaTiO3 around 200 K. This problem was studied using 

molecular dynamic simulation and nonlinear time series analysis, with which it was 

possible to reproduce the anomalous elastic behavior and led us to the following 

conclusions: 

i. Although in the simulations were observed changes in the elastic behavior, bulk 

modulus, no structural change or abrupt change in the energy or volume of the 

system were detected. Therefore, the observed anomalies are not a structural 

phase transition. 

ii. At 210 K, in both in the mono-domain and poly-domain configurations, a change 

in the dynamics with an increase of fluctuations is detected, suggesting the 

occurrence thermal activate process.   

iii. Only in the poly-domain configuration there is a considerable change in the 

elastic behavior and strong fluctuation. These facts point out to domain wall as 

responsible for the observed phenomenon. Such anomalies can be explained as 

the occurrence of avalanches or jerk movement in domain wall due to the 

accumulation of stress. 

It is recommendable, in future works, to use the same potential for a 

massive system (million or more particles) and without periodic boundaries to study in 

more detail the occurrence avalanches and the microscopic cause that generate the jerk 

movement of domain walls. Also, we recommend to probe experimentally the 

occurrence of a thermal activate process at 210 K in CaTiO3, to which we suggest the use 

of monocrystalline and polycrystalline samples.    

The second problem treated concerns with nonlinear hysteretic dielectric 

response. Two models were proposed to study the contribution of ferroelectric domain 

wall motion to the dielectric response. From the analytical and numerical study of these 

models we conclude: 

i. The model of the stretched membrane correctly reproduces the real and 

imaginary dispersion curves. From the model it is possible to derive an analytic 

expression that correctly fit the       and         curves, reproducing the 
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hysteretic behavior (or butterfly effect). From the fitting of        curve it is 

possible to reconstruct the hysteresis loop. This model explains qualitatively the 

effect of domain size in the dielectric response. 

ii.  he nonlinear Kittel’s model allows the simulation of the ultrafast polarization 

and depolarization processes, predicting a power law dependence with time in 

agreement with experiments. Using this model it is possible to simulate 

nonlinear dielectric response on alternating subswitching electric fields.  The 

dispersion relationships can also be derived analytically. The expression obtain 

for       curve coincide exactly with the expression derived from the stretched 

membrane model.  

iii.  The result derived from this two different theoretical approach are compatible 

and can be used to fit experimental data, for example       and         curves, to 

extract information about the microscopic structure.   

iv. Both models can be used to reconstruct hysteresis loop from the measurement of 

     . This could be very helpful in the study of nonlinear and hysteretic 

conduction because the method allows the separation of conduction current 

from polarization and depolarization currents. 

It is important to point out that the nonlinear Kittel’s model does not 

reproduce the irreversible behavior at subswitching fields. The next step should be to 

introduce the action of defects. 
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