UNIVERSIDADE FEDERAL DE SÃO CARLOS CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA

HIPOELIPTICIDADE GLOBAL DE CAMPOS VETORIAIS NO TORO \mathbb{T}^N

Moisés Aparecido do Nascimento

São Carlos - SP Junho - 2010

UNIVERSIDADE FEDERAL DE SÃO CARLOS CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA

Hipoelipticidade Global de Campos Vetoriais no toro \mathbb{T}^N

Moisés Aparecido do Nascimento

Dissertação apresentada ao PPG-M da UFSCar como parte dos requisitos para a obtenção do título de Mestre em Matemática.

Orientador: Prof. Dr. Luís Antônio Carvalho dos Santos

São Carlos - SP Junho - 2010

Ficha catalográfica elaborada pelo DePT da Biblioteca Comunitária da UFSCar

N244hg

Nascimento, Moisés Aparecido do.

Hipoelipticidade global de campos vetoriais no toro T^N / Moisés Aparecido do Nascimento. -- São Carlos : UFSCar, 2010.

86 f.

Dissertação (Mestrado) -- Universidade Federal de São Carlos, 2010.

Análise. 2. Hipoelipticidade. 3. Distribuições periódicas.
 Sobolev, Espaço de. 5. Sistemas minimais. I. Título.

CDD: 515 (20^a)

Banca Examinadora:

Prof. Dr. Luís Antônio de Carvalho dos Santos DM - UFSCar

> Prof Dr. Gerson Petronilho DM - UFSCar

Prof. Dr. Benito Frazão Pires FFCLRP - USP

Agradecimentos

Primeiramente, agradeço a Deus pela paz espiritual e força, que tem me dado nas horas difíceis. Agradeço meus pais, Mozes Aparecido do Nascimento e Sônia Regina pelos conselhos e carinho dado em todos os momentos difíceis, e também, a minha avó Maria Ernandi pelos excelentes conselhos e carinho que me dá. Dedico este trabalho a minha filha Lívia Maria por estar sempre ao meu lado. Agradeço também, o professor Luís Antônio pelo apoio que tem dado durando esses anos, me motivando cada vez mais a ter gosto pela matemática, me ajudando a superar as dificuldades com seus conselhos, e dando suporte suficiente para compreender aspectos importantes para a conclusão desta dissertação. Agradeço também a CAPES pelo apoio finaceiro.

Resumo

Neste trabalho, veremos que se o operador transposto de um campo vetorial real suave L definido no toro N-dimensional, visto como um operador diferencial linear com coeficientes em $C^{\infty}(\mathbb{T}^N)$, for globalmente hipoelíptico, então existe um campo vetorial com coeficientes constantes L_0 tal que L e L_0 são C^{∞} -conjugados, com tais constantes satisfazendo uma condição chamada de Diofantina (*). Mostraremos também a recíproca deste fato, isto é, se existir um sistema de coordenadas tal que, neste novo sitema L possui coeficientes constantes com tais constantes satisfazendo a condição Diofantina (*) então, seu transposto L^* é globalmente hipoelíptico. Veremos que a condição Diofantina implica que, os fluxos gerados pelo campo, vistos como um sistema dinânico, são minimais.

Palavras-chave: Hipoelípticidade, Distribuições periódicas, Espaços de Sobolev, Condição Diofantina, Sistemas minimais.

Abstract

In this work, we will see that if the transpose operator of a smooth real vector field L defined on the N-dimensional torus, regarded as a linear differential operator with coefficients in $C^{\infty}(\mathbb{T}^N)$, is globally hypoelliptic, then there exists a vector field with constant coefficients L_0 such that L and L_0 are C^{∞} -conjugated, with such constants satisfying a condition called Diofantina (\star) . We will also show the converse of this fact, that is, if there is a coordinate system such that in this new system L has constant coefficients with such constant satisfying the Diophantine condition (\star) then its transpose L^* is globally hypoelliptic. We will see that the Diophantine condition implies that the flow generated by the field, regarded as a Dynamical system is minimal.

Keywords: Hypoellipticity, Periodic distributions, Sobolev spaces, Diophantine condition, Minimal systems.

Sumário

1	Intr	rodução	11
2	\mathbf{Pre}	liminares	13
	2.1	Resultados de Análise Funcional	13
	2.2	A Topologia fraca estrela	16
	2.3	Elementos da Teoria da Medida	17
	2.4	A Topologia fraca estrela no espaço das medidas	23
3	Aná	alise de Fourier	29
	3.1	Coeficientes de Fourier	29
	3.2	Distribuições Periódicas	36
	3.3	Espaços de Sobolev	38
4	Sistemas Dinâmicos e Teoria Ergódica		45
	4.1	Translações no Toro	45
	4.2	Teorema de Recorrência de Poincaré	48
		4.2.1 Versão Probabilística	48
		4.2.2 Versão Topológica	49
	4.3	O Teorema de Krylov-Bogoliubov	54
	4.4	Fluxos sobre Variedades	56
	4.5	Sistemas Conservativos	61
5	Hip	oelipticidade de Campos Vetoriais no toro \mathbb{T}^N	65
	5.1	Resolubilidade	69
	5.2	Condição Diofantina	71
	5.3	Conjugação- C^{∞}	73
	5.4	Análica Espectral	81

10 SUMÁRIO

Capítulo 1

Introdução

Um campo vetorial definido sobre uma variedade compacta, pode ser visto naturalmente como um operador L agindo sobre o espaço das funções suaves. Associado ao operador L, temos o operador transposto L^* agindo sobre o dual deste espaço, isto é, o espaço das distribuições. Nesta dissertação estudaremos condições para a Hipoelipticidade Global dos operadores L e L^* . S. J. Greenfield e N. R. Wallach em [GW], consideraram campos vetoriais hipoelípticos no toro \mathbb{T}^2 , e provaram que, se $L = \lambda_1(u,v)\partial_u + \lambda_2(u,v)\partial_v$ onde, $\lambda_1(u,v), \lambda_2(u,v) \in C^{\infty}(\mathbb{T}^2)$ é tal que seu transposto L^* é hipoelíptico então, existe uma transformação suave $\tau: (u,v) \to (x,y)$ tal que

$$L = F(x, y) \left(\partial_x + \Lambda \partial_y \right), \tag{1.0.1}$$

onde $F \in C^{\infty}(\mathbb{T}^2)$, $F(x,y) \neq 0$, $\forall (x,y) \in \mathbb{T}^2$ e a constante Λ satisfaz a seguinte condição, existem números positivos C_0 e N_0 tais que

$$|k+l\Lambda| \ge \frac{C_0}{\left(|k|+|l|\right)^{N_0}}$$

para quaisquer inteiros $k \in l$.

Jorge Hounie também considerou em [H1] campos vetoriais hipoelípticos definidos no toro \mathbb{T}^2 e, mostrou que, se considerarmos o campo L dado por $L = \lambda_1(u, v)\partial_u + \lambda_2(u, v)\partial_v$ nas mesmas condições anteriores, e supormos que o sistema

$$\frac{du}{dt} = \lambda_1(u, v), \quad \frac{dv}{dt} = \lambda_2(u, v)$$
 (1.0.2)

tem um conjunto minimal em \mathbb{T}^2 , então existe uma transformação suave $\tau:(u,v)\to(x,y)$ tal que (1.0.1) é válida.

As provas destes fatos dependem de um teorema de redução, devido a Sternberg, para o sistema (1.0.2).

Sternberg em [S], mostrou que, quando o sistema (1.0.2) tem uma integral invariante $\omega \in C^{\infty}(\mathbb{T}^2)$, $\omega \neq 0$ em \mathbb{T}^2 invariante com respeito ao fluxo gerado pelo sistema, então podemos reescrever (1.0.2) da seguinte forma:

$$\frac{dx}{dt} = F(x,y), \quad \frac{dy}{dt} = \Lambda F(x,y). \tag{1.0.3}$$

Devido ao fato de não se conhecer até o momento, um teorema de redução para dimensão superior a 2, análogo ao dado por Sternberg quando N=2, os métodos usados em [GW] e [H1] não podem ser aplicados para o toro \mathbb{T}^N quando $N \geq 3$. Neste trabalho, estudaremos um artigo de Chen Wenyi e M. Y. Chi [CC], que trata do caso $N \geq 3$, fornecendo uma demonstração construtiva para este problema. O resultado principal contido em [CC] diz que se L é um campo vetorial suave definido no toro \mathbb{T}^N então o operador transposto L^* é globalmente hipoelíptico se, e somente se, existir um difeomorfismo τ , que conjuga o campo a um campo vetorial com coeficientes constantes satisfazendo a condição Diofantina (\star) . Mostraremos que tal condição Diofantina está ligada com questões oriundas da teoria dos sistemas dinâmicos tais como ergodicidade, recorrência e minimalidade. Veremos que a regularidade do transposto L^* implica na existência de uma medida de probabilidade suave que deixa invariante o fluxo gerado pelo campo vetorial L. Para alcançarmos o objetivo principal que consiste na demonstração do resultado de [CC] organizamos a dissertação da seguinte maneira. No Capítulo 2 estudamos algumas propriedades funcionais do espaço das medidas mostrando que o espaço das medidas de probabilidade definidas sobre um espaço métrico compacto, quando dotado com a topologia fraca estrela, é metrizável e compacto. Definiremos o conceito de medida invariante e forneceremos um resultado de caracterização de tais medidas. No Capítulo 3 faremos um estudo da Análise de Fourier, distribuições periódicas e dos espaços de Sobolev definidos sobre o toro N-dimensional e daremos a definição de hipoelipticidade de um operador diferencial parcial linear de ordem m. Mostraremos ainda que tal operador quando Globalmente Hipoelíptico satisfaz certas desigualdades denominadas estimativas a priori. O Capítulo 4 será dedicado ao estudo de alguns resultados da teoria dos sistemas dinâmicos e das propriedades de ergodicidade de uma transformação mensurável definida sobre um espaço métrico compacto. Provaremos o teorema de Krylov-Bogoliubov que garante que o espaço das medidas invariantes com respeito a uma transformação contínua definida sobre um espaço métrico compacto é nãovazio. No Capítulo 5 provaremos os principais resultados relacionados a hipoelipticidade dos operadores L e L^* e como as estimativas a priori implicam na resolubilidade da equação $Lu = f \text{ em } C^{\infty}(\mathbb{T}^N).$

Capítulo 2

Preliminares

2.1 Resultados de Análise Funcional

A seguir segue a definição de semi-norma sobre um espaço vetorial.

Definição 2.1.1. Seja E um espaço vetorial sobre \mathbb{R} , um funcional sublinear definido em E é uma aplicação $p: E \to \mathbb{R}$ satisfazendo as seguintes condições:

1.
$$p(x+y) \le p(x) + p(y), \forall x, y \in E$$
;

2.
$$p(\lambda x) = \lambda p(x), \forall x \in E, \forall \lambda > 0$$
.

Definição 2.1.2. Sejam E um espaço vetorial sobre o corpo F e $\{p_k\}_{k\geq 1}$ uma família de semi-normas em E. Dizemos que $\{p_k\}_{k\geq 1}$ separa pontos, se $x\in E$ for tal que $p_k(x)=0$, $\forall k\geq 1 \Rightarrow x=0$.

Abaixo segue a versão real de um dos teoremas importantes no que diz respeito a extensões de funcionais lineares em espaços vetoriais normados.

Teorema 2.1.1 (Hahn-Banach). Sejam E um espaço vetorial real e E^* seu dual, $p: E \to \mathbb{R}$ um funcional sublinear. Sejam $G \subset E$ um subespaço vetorial e $g: G \to \mathbb{R}$ um funcional linear tal que $g(x) \leq p(x)$, $\forall x \in G$. Então existe $f \in E^*$ tal que

1.
$$g(x) = f(x), \ \forall x \in G;$$

2.
$$f(x) \le p(x), \ \forall x \in E$$
.

Demonstração: Veja referência [R] p.56.

Seguem algumas consequências do teorema de Hahn-Banach e que serão úteis em resultados posteriores.

Corolário 2.1.1. Seja G um subespaço vetorial de E onde, E é um espaço vetorial normado $e \ g : G \to \mathbb{R}$ uma aplicação linear e contínua de norma $\|g\|_{G^*} = \sup\{|g(x)| : x \in G, \|x\| \le 1\}$. Então, existe $f \in E^*$ tal que $\|f\|_{E^*} = \|g\|_{G^*}$.

Demonstração: Seja $p: E \to \mathbb{R}$ definida por $p(x) = \|g\|_{G^*} \|x\|$. Note que, se $x \neq 0$, $x \in G$ então, $\frac{1}{\|x\|} g(x) = g(\frac{x}{\|x\|}) \leq \|g(\frac{x}{\|x\|})\| \leq \|g\|_{G^*}$, portanto, $g(x) \leq \|g\|_{G^*} \|x\| = p(x)$. Logo, pelo teorema de Hahn-Banach segue que $\exists f \in E^*$ tal que $g(x) = f(x) \ \forall x \in G$ e, $f(x) \leq p(x) = \|g\|_{G^*} \|x\| \Rightarrow \|f\|_{E^*} \leq \|g\|_{G^*}$. A outra designaldade é imediata.

Corolário 2.1.2. Dado $x_0 \in E$ existe $f \in E^*$ tal que

1.
$$||f||_{E^*} = ||x_0||_E$$

2.
$$\langle f, x_0 \rangle = ||x_0||_E^2$$
.

Demonstração: Seja $G = \{\lambda x_0 : \lambda \in \mathbb{R}\} \subset E$ e defina $g : G \to \mathbb{R}$ por $g(tx_0) = t \|x_0\|^2$. Temos,

$$||g||_{G^*} = \sup_{\|x\| \le 1} |g(x)| = \sup_{\|tx_0\| \le 1} |g(tx_0)| = \sup_{\|tx_0\| = 1} |g(tx_0)| = \sup_{t \ne 0} \frac{|t| ||x_0||^2}{||tx_0||} = ||x_0||.$$

Corolário 2.1.3. Seja E um espaço vetorial normado, para todo $x \in E$ temos

$$||x|| = \sup_{f \in E^*} |\langle f, x \rangle|, \ f \in E^* \quad tal \ que \quad ||f||_{E_*} \le 1.$$

Demonstração: Claramente,

$$\sup_{f \in E^*} |f(x)| \le ||x||.$$

Dado $x \in E$ pelo corolário (2.1.2), existe $f \in E^*$ tal que $||f||_{E^*} = ||x||_E$ e $f(x) = ||x||^2$. Agora, defina $f_1 = ||x||^{-1} f$, $x \neq 0$ então, $||f_1||_{E^*} = ||x||^{-1} ||f||_{E^*} = 1$ e

$$f_1(x) = \frac{f(x)}{\|x\|} = \|x\|.$$

Agora, apresentaremos um resultado técnico importante em Análise Funcional, o Teorema da Aplicação Aberta, devido à Banach. Numa de suas consequências, ele dá condições suficientes para que uma aplicação linear entre espaços de Banach contínua e invertível tenha inversa contínua, em outras palavras, para que seja um homeomorfismo linear.

Definição 2.1.3. Sejam X e Y espaços topológicos. Uma aplicação $f: X \to Y$ é dita aberta se a imagem de todo subconjunto aberto de X é também um subconjunto aberto de Y.

Teorema 2.1.2 (Aplicação Aberta). Sejam \mathcal{B}_1 , \mathcal{B}_2 espaços de Banach e $T: \mathcal{B}_1 \to \mathcal{B}_2$ aplicação linear contínua tal que $ImgT = \mathcal{B}_2$, então T é uma aplicação aberta.

Demonstração: Veja a referência [CR].

A seguir daremos a definição de Espaços de Frechét, e em seguida, a versão do teorema do gráfico fechado para espaços de Frechét.

Definição 2.1.4. Seja E um espaço vetorial e $\{p_k\}_{k\geq 1}$ uma família enumerável de seminormas em E. Definimos uma aplicação $d: E \times E \to \mathbb{R}_+$ por,

$$d(x,y) = \sum_{k=1}^{\infty} \frac{1}{2^k} \frac{p_k(x-y)}{1 + p_k(x-y)}.$$
 (2.1.1)

O Lema a seguir afirma que a aplicação d é uma métrica.

Lema 2.1.1. Seja E um espaço vetorial e $\{p_k\}_{k\geq 1}$ uma família enumerável de semi-normas que separa pontos então, a aplicação d definida em (2.1.1) é uma métrica em E invariante por translação. Além disso, o espaço métrico (E,d) é um EVT (Espaço Vetorial Topológico). Logo, $x_n \longrightarrow 0$ em E se, e somente se, $\lim_{n\to\infty} p_k(x_n) = 0$, $\forall k \geq 1$.

Demonstração: Veja a referência [L]

Definição 2.1.5. Uma sequência $(x_n)_{n\in\mathbb{N}}$ é de Cauchy em (E,d) se, e somente se, $\forall k \geq 1$, $\forall \epsilon > 0$, $\exists N_{\epsilon,k}$ tal que $\forall m, n \geq N_{\epsilon,k}$ implica $p_k(x_m - x_n) < \epsilon$.

Definição 2.1.6. Sejam E um espaço vetorial e $\{p_k\}_{k\geq 1}$ uma família enumerável de seminormas que separa pontos então, quando o EVT, (E,d) é completo, dizemos que E é um espaço de Frechét.

O próximo resultado nos dá uma versão do teorema do gráfico fechado para espaços de Frechét.

Teorema 2.1.3. Sejam E um espaço de Frechét e F espaço de Banach, $T: E \to F$ uma aplicação linear, então as seguintes afirmações são equivalentes:

- 1. T é contínua.
- 2. O gráfico $G(T) = \{(x, Tx) : x \in E\}$ é fechado em $E \times F$.

Demonstração: Veja a referência [L]

2.2 A Topologia fraca estrela

Seja E um espaço de Banach e E^* seu dual topológico dotado da norma dual

$$||f|| = \sup_{x \in E} |\langle f, x \rangle|, \ x \in E \text{ tal que } ||x|| \le 1.$$

Seja E^{**} o bidual de E dotado com a norma

$$\|\xi\| = \sup_{f \in E^*} |\langle \xi, f \rangle|, \ f \in E^* \text{ tal que } \|f\| \le 1.$$

Considere a injeção canônica

$$J: E \to E^{**}$$

$$x \mapsto J(x): E^* \longrightarrow \mathbb{R}$$

$$f \mapsto \langle J(x), f \rangle = \langle f, x \rangle$$

- 1. J é linear.
- 2. Jé isometria isto é, $\|Jx\|_{E^{**}}=\|x\|_E.$

Com efeito, pelo corolário (2.1.3)

$$||Jx||_{E^{**}} = \sup_{||f|| \le 1} |\langle Jx, f \rangle| = \sup_{||f|| \le 1} |\langle f, x \rangle| = ||x||.$$

Definição 2.2.1. Dizemos que E é reflexivo quando $J(E) = E^{**}$.

Definição 2.2.2. A topologia fraca estrela denotada por $\sigma(E^*, E)$ é a topologia menos fina definida sobre E^* que torna contínuas todas as aplicações J(x) tal que $x \in E$.

Proposição 2.2.1. A topologia fraca estrela $\sigma(E^*, E)$ é Hausdorff.

Demonstração: Veja a referência [B] □

Teorema 2.2.1 (Banach-Alaoglu). O conjunto $\mathcal{B}_{E^*} = \{f \in E^* : ||f|| \leq 1\}$ é compacto na topologia fraca estrela $\sigma(E^*, E)$.

Demonstração: Veja a referência [B] □

2.3 Elementos da Teoria da Medida

Definição 2.3.1. Seja X um conjunto não-vazio, uma **álgebra** de subconjuntos de X é uma família $A \subset \mathcal{P}(X)$ satisfazendo as seguintes condições:

- i) Se $E \in \mathcal{A}$ então $E^c \in \mathcal{A}$
- ii) Se $E_1, \ldots, E_n \in \mathcal{A}$ então $\bigcup_{i=1}^n E_i \in \mathcal{A}$.

Sejam $E_1, \ldots, E_n \in \mathcal{A}$ desde que $\bigcap_{j=1}^n E_j = \left(\bigcup_{j=1}^n E_j^c\right)^c$ temos que toda álgebra \mathcal{A} é fechada sobre intersecções finitas. Além disso, se \mathcal{A} é uma álgebra, então $\emptyset \in \mathcal{A}$ e $X \in \mathcal{A}$, pois dado qualquer $E \in \mathcal{A}$, $\emptyset = E \cap E^c$ e $X = E \cup E^c$.

Definição 2.3.2. Uma álgebra diz-se uma σ -álgebra de subconjuntos de M se também for fechada para uniões enumeráveis:

i) Se $E_i \in \mathcal{A}$, para todo $j = 1, 2, \dots$ então $\bigcup_{i=1}^{\infty} E_i \in \mathcal{A}$.

Definição 2.3.3. Se \mathcal{A} é uma σ -álgebra então o par (X, \mathcal{A}) é dito espaço mensurável.

Proposição 2.3.1. Seja \mathcal{A} uma álgebra e suponha que ela seja fechada sobre uniões enumeráveis disjuntas então, \mathcal{A} é uma σ -álgebra.

Demonstração: Seja $\{E_j \mid j=1,2,\ldots\} \subset \mathcal{A}$. Defina

$$F_1 = E_1, F_2 = E_2 - E_1, F_3 = E_3 - (E_1 \cup E_2), \dots, F_k = E_k - \left[\bigcup_{j=1}^{k-1} E_j\right].$$

Então $F_k \in \mathcal{A}$ para todo $k=1,2,\ldots,$ são disjuntos e $\bigcup_{j=1}^{\infty} E_j = \bigcup_{j=1}^{\infty} F_j$.

É trivial verificar que a intersecção de qualquer família de σ -álgebras em X é também uma σ -álgebra. Então se $\mathcal{E} \subset \mathcal{P}(X)$ existe a menor σ -álgebra $\mathcal{M}(\mathcal{E})$ contendo \mathcal{E} , de forma única, definida pela intersecção de todas as σ -álgebras que contém \mathcal{E} . Dizemos então que $\mathcal{M}(\mathcal{E})$ é a σ -álgebra gerada por \mathcal{E} .

Lema 2.3.1. Se $\mathcal{E} \subset \mathcal{M}(\mathcal{F})$, então $\mathcal{M}(\mathcal{E}) \subset \mathcal{M}(\mathcal{F})$.

Se X é um espaço métrico, ou mais geralmente um espaço topológico então a σ -algebra gerada pela família dos conjuntos abertos de X é chamada de σ -álgebra de Borel sobre X e será denotada \mathcal{B}_X .

A σ -álgebra de Borel sobre \mathbb{R} será utilizada com fequência a seguir. Ela pode ser gerada por um número variado de subconjuntos:

Proposição 2.3.2. $\mathcal{B}_{\mathcal{R}}$ é gerada por cada um dos seguintes subconjuntos:

- a) os intervalos abertos: $\mathcal{E}_1 = \{(a,b) \mid a < b\}$
- b) os intervalos fechados: $\mathcal{E}_2 = \{[a, b] \mid a < b\}$
- c) os intervalos semi-abertos: $\mathcal{E}_3 = \{(a,b] \mid a < b\}$ ou $\mathcal{E}_4 = \{[a,b) \mid a < b\}$
- d) os raios abertos $\mathcal{E}_5 = \{(a, \infty) \mid a \in \mathbb{R}\}\ ou\ \mathcal{E}_6 = \{(-\infty, a) \mid a \in \mathbb{R}\}\$
- e) os raios fechados $\mathcal{E}_7 = \{[a, \infty) \mid a \in \mathbb{R}\}\ ou \ \mathcal{E}_8 = \{(-\infty, a] \mid a \in \mathbb{R}\}.$

Definição 2.3.4. Uma coleção \mathcal{E} de subconjuntos de X é chamada sub-álgebra se as três condições seguintes ocorrem.

- i) $\emptyset \in \mathcal{E}$
- ii) Se $A, B \in \mathcal{E}$ então $A \cap B \in \mathcal{E}$
- iii) Se $A \in \mathcal{E}$ então $X A = \bigcup_{i=1}^{n} E_i$ com $E_i \in \mathcal{E}$ dois-a-dois disjuntos.

Dizemos também que \mathcal{E} define uma família elementar de conjuntos.

Exemplo 2.3.1: A coleção de todos os subintervalos de [0,1] da forma [0,b] e (a,b], com $0 \le a < b \le 1$ forma uma sub-álgebra. No exemplo acima note que para qualquer $b \in (0,1)$ temos $\emptyset = [0,b) \cap [b,1] \in \mathcal{E}$.

Proposição 2.3.3. Seja \mathcal{E} uma semi-álgebra de conjuntos de X então a coleção \mathcal{A} dos subconjuntos de X que podem ser escritos da forma $E = \bigcup_{j=1}^n E_j$ onde cada $E_j \in \mathcal{E}$ são dois-a-dois disjuntos forma uma álgebra sobre X, denominada álgebra gerada por \mathcal{E} .

Demonstração: Seja $\mathcal{A} = \{E = \bigcup_{j=1}^n E_j \mid E_j \in \mathcal{E} \text{ dois-a-dois disjuntos} \}$. Por simplicidade de notação assumiremos que se $E \in \mathcal{E}$ então E^c é a união disjunta de dois membros de \mathcal{E} ; a prova do caso geral é essencialmente a mesma. Sejam $A, B \in \mathcal{E}$ como $B^c = C_1 \cup C_2$ $(C_1, C_2 \in \mathcal{E}, \text{disjuntos})$ temos que $A \cup B = (A - B) \cup B = (A \cap B^c) \cup B = (A \cap (C_1 \cup C_2)) \cup B = [(A \cap C_1) \cup (A \cap C_2)] \cup B$ sendo esta união disjunta de elementos de \mathcal{E} , logo $A \cup B \in \mathcal{A}$. Por indução segue que se $A_1, \ldots, A_n \in \mathcal{E}$ então $\bigcup_{j=1}^n A_j \in \mathcal{A}$. Segue da hipótese de indução

que $\bigcup_{j=1}^n A_j = \left(\bigcup_{j=1}^{n-1} A_j\right) \cup A_n = \left(\bigcup_{j=1}^m E_j\right) \cup A_n = \bigcup_{j=1}^m A_n \cup E_j$ sendo $E_j \in \mathcal{E}$ dois-a-dois disjuntos. Como $A_n \cup E_j = (A_n - E_j) \cup E_j = (A_n \cap C_j^1) \cup (A_n \cap C_j^2) \cup E_j$. Logo,

$$\bigcup_{j=1}^{n} A_{j} = \bigcup_{j=1}^{m} [(A_{n} - E_{j}) \cup E_{j} = (A_{n} \cap C_{j}^{1}) \cup (A_{n} \cap C_{j}^{2}) \cup E_{j}] \in \mathcal{A}.$$

 \dashv é portanto fechado sobre uniões finitas. Para ver que \mathcal{A} é fechado sobre complementar, suponha que $E_1, \ldots, E_n \in \mathcal{E}$ são dois-a-dois disjuntos e $E_j^c = B_j^1 \cup B_j^2, (B_j^1, B_j^2 \in \mathcal{E}, \text{disjuntos})$. Então

$$\left(\bigcup_{j=1}^{m} E_{j}\right)^{c} = \bigcap_{j=1}^{n} (B_{j}^{1} \cup B_{j}^{2}) = \bigcup \{B_{1}^{k_{1}} \cap \ldots \cap B_{n}^{k_{n}} \mid k_{1}, \ldots, k_{2} = 1, 2\} \in \mathcal{A}.$$

Definição 2.3.5. Uma medida num espaço mensurável (M, \mathcal{B}) é uma função $\mu: \mathcal{B} \to [0, +\infty]$ que satisfaz:

- i) $\mu(\emptyset) = 0$;
- ii) $\mu(\bigcup_{j=1}^{\infty}) = \sum_{j=1}^{\infty} \mu(A_j)$ para quaisquer $A_j \in \mathcal{B}$ disjuntos dois-a-dois.

A tripla (M, \mathcal{B}, μ) é chamada espaço de medida. Quando $\mu(M) = 1$ dizemos que μ é uma medida de probabilidade e (M, \mathcal{B}, μ) é um espaço de probabilidade.

A segunda propriedade na definição de medida é chamada σ -aditividade.

Definição 2.3.6. Dizemos que a função $\mu: \mathcal{B} \to [0, +\infty]$ é finitamente aditiva se:

$$\mu(\bigcup_{j=1}^{N}) = \sum_{j=1}^{N} \mu(A_j)$$

para qualquer família finita $A_1, \ldots, A_N \in \mathcal{B}$ de subconjuntos disjuntos dois-a-dois.

Note que toda medida σ -finita é, automaticamente, finitamente aditiva.

Se (M, \mathcal{B}, μ) é um espaço de medida, um conjunto $E \in \mathcal{B}$ tal que $\mu(E) = 0$ é denominado conjunto nulo. Se $\mu(E) = 0$ e $F \subset E$ é tal que $F \in \mathcal{B}$ então por monotonicidade $\mu(F) = 0$. Em geral dado $E \in \mathcal{B}$ pode não ser verdade que $F \in \mathcal{B}$. Por exemplo considere a medida zero sobre a σ -álgebra $\{\emptyset, M\}$.

Definição 2.3.7. Uma medida cujo domínio contém todos os subconjuntos de um conjunto nulo é chamada completa.

As propriedades básicas de uma medida podem ser resumidas no seguinte teorema.

Teorema 2.3.1. Seja (M, \mathcal{B}, μ) um espaço de medida.

- a) (Monotonicidade) Se $E, F \in \mathcal{B}$ e $E \subset F$ então $\mu(E) \leq \mu(F)$.
- b) (Subaditividade) Se $\{E_j\}_{j=1}^{\infty} \subset \mathcal{B} \ ent\tilde{ao} \ \mu(\bigcup_{j=1}^{\infty} E_j) \leq \sum_{j=1}^{\infty} \mu(E_j).$
- c) (Continuidade por baixo) $Se\ \{E_j\}_{j=1}^{\infty} \subset \mathcal{B}\ e\ E_1 \subset E_2 \subset \ldots,\ ent\tilde{ao}\ \mu(\bigcup_{j=1}^{\infty} E_j) = \lim_{j\to\infty} \mu(E_j).$
- d) (Continuidade por cima) $Se\ \{E_j\}_{j=1}^{\infty} \subset \mathcal{B}\ e\ E_1 \supset E_2 \supset \ldots,\ e\ \mu(E_n) < \infty\ para\ algum$ $n,\ ent\tilde{ao}\ \mu(\cap_{j=1}^{\infty} E_j) = \lim_{j\to\infty} \mu(E_j).$

Demonstração: (a) Se $E \subset F$ então de $F = E \cup (F - E)$ segue que $\mu(F) = \mu(E) + \mu(F - E) \ge \mu(E)$.

(b) Seja $F_1 = E_1$ e $F_k = E_k - \left[\bigcup_{j=1}^{k-1} E_j\right]$ para k > 1. Então os F_k 's são disjuntos e $\bigcup_{j=1}^{\infty} F_j = \bigcup_{j=1}^{\infty} E_j$. Logo, por (a),

$$\mu(\bigcup_{j=1}^{\infty} E_j) = \mu(\bigcup_{j=1}^{\infty} F_j) = \sum_{j=1}^{\infty} \mu(F_j) \le \sum_{j=1}^{\infty} \mu(E_j).$$

(c) Ponha $E_0 = \emptyset$, temos

$$\mu(\bigcup_{j=1}^{\infty} E_j) = \mu(\bigcup_{j=1}^{\infty} (E_j - E_{j-1})) = \sum_{j=1}^{\infty} \mu(E_j - E_{j-1})$$
$$= \lim_{n \to \infty} \sum_{j=1}^{n} \mu(E_j - E_{j-1}) = \lim_{n \to \infty} \mu(E_n).$$

(d) Seja $F_j=E_n-E_j$ para j>n: logo $F_{n+1}\subset F_{n+2}\subset\ldots$ e $\mu(E_n)=\mu(F_j)+\mu(E_j)$ para j>n. Note que

$$\bigcup_{j=n+1}^{\infty} F_j = \bigcup_{j=n+1}^{\infty} (E_n - E_j) = E_n - (\bigcap_{j=n+1}^{\infty} E_j) = E_n - (\bigcap_{j=1}^{\infty} E_j).$$

Decorre de (c) que

$$\mu(E_n) = \mu\left(\bigcap_{j=1}^{\infty} E_j\right) + \lim_{j \to \infty} \mu(F_j) = mu\left(\bigcap_{j=1}^{\infty} E_j\right) + \lim_{j \to \infty} (\mu(E_n) - \mu(E_j)).$$

Como $\mu(E_n) < \infty$, subtraindo em ambos os membros da expressão anterior obtemos o resultado desejado.

Definição 2.3.8. Seja X um conjunto não-vazio, uma função $\mu^* : \mathcal{P} \to [0, \infty]$ é chamada medida exterior se:

- (i) $\mu^*(\emptyset) = 0$,
- (ii) se $E \subset F$ então $\mu^*(E) < \mu^*(F)$,
- (iii) se $\{E_j\}_{j=1}^{\infty} \subset \mathcal{P}(M)$ então $\mu^*(\bigcup_{j=1}^{\infty} E_j) \leq \sum_{j=1}^{\infty} \mu^*(E_j)$.

Proposição 2.3.4. Seja $\mathcal{E} \subset \mathcal{P}(M)$ e $\rho : \mathcal{E} \to [0, \infty]$ tal que $\emptyset \in \mathcal{E}$, $X \in \mathcal{E}$, e $\rho(\emptyset) = 0$. Para cada $A \subset X$, seja

$$\mu^*(A) = \inf \left\{ \sum_{j=1}^{\infty} \rho(E_j) \mid E_j \in \mathcal{E}, \quad e \quad A \subset \bigcup_{j=1}^{\infty} E_j \right\}.$$

Então μ^* é uma medida exterior.

Definição 2.3.9. Se μ^* é uma medida exterior sobre M, um conjunto $A \subset X$ é chamado μ^* -mensurável se

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c), \quad para \ todo \quad E \subset M.$$

Teorema 2.3.2 (Carathéodory). Se μ^* é uma medida exterior sobre M, a coleção \mathcal{M} dos conjuntos μ^* -mensuráveis é uma σ -álgebra, e a restrição de μ^* a \mathcal{M} é uma medida completa.

Demonstração: Veja a referência [R]

Aplicaremos o teorema de Carathéodory ao problema de estender medidas definidas sobre álgebras a σ -álgebras.

Definição 2.3.10. Se $\mathcal{A} \subset \mathcal{P}(X)$ é uma álgebra, uma função $\mu : \mathcal{A} \to [0, \infty]$ é chamada pré-medida se:

- (i) $\mu(\emptyset) = 0$,
- (ii) Se $\{E_j\}_{j=1}^{\infty} \subset \mathcal{A}$ é uma coleção disjunta tal que $\bigcup_{j=1}^{\infty} E_j \in \mathcal{A}$ então $\mu(\bigcup_{j=1}^{\infty} E_j) = \sum_{j=1}^{\infty} \mu(E_j)$.

Se μ é uma pré-medida sobre $\mathcal{A}\subset\mathcal{P}(X)$ então induz uma medida exterior sobre X, a saber

$$\mu^*(E) = \inf \left\{ \sum_{j=1}^{\infty} \mu(E_j) \mid E_j \in \mathcal{A}, \quad E \subset \bigcup_{j=1}^{\infty} E_j \right\}. \tag{2.3.1}$$

Proposição 2.3.5. Se μ é uma pré-medida sobre \mathcal{A} e μ^* definida como em (2.3.1), então

(i)
$$\mu^* | A = \mu$$
,

(ii) cada conjunto $E \in \mathcal{A} \notin \mu^*$ - mensurável.

Demonstração: Veja a referência [R]

Teorema 2.3.3. Seja $\mathcal{A} \subset \mathcal{P}(X)$ uma álgebra, μ uma pré-medida sobre \mathcal{A} , e \mathcal{M} a σ -álgebra gerada por \mathcal{A} . Então existe uma medida $\bar{\mu}$ sobre \mathcal{M} cuja restrição a \mathcal{A} é μ . Mais precisamente, $\bar{\mu} = \mu^* | \mathcal{M}$ onde μ^* é dada por (2.3.1). Se ν é outra medida definida sobre \mathcal{M} satisfazendo as mesmas condiçõs sobre $\bar{\mu}$, então $\nu(E) \leq \bar{\mu}(E)$ para todo $E \in \mathcal{M}$, com a igualdade ocorrendo quando $\bar{\mu}(E) < \infty$. Se μ é σ -finita, então $\bar{\mu}$ é a única extensão de μ a uma medida sobre \mathcal{M} .

Demonstração: Veja a referência [R] □

Definição 2.3.11. Seja μ uma medida de Borel em X e $E \subset X$ boreliano. Dizemos que μ é regular exterior sobre E se

$$\mu(E) = \inf\{\mu(U) \mid E \subset U; Uaberto\}$$
(2.3.2)

e, regular interior se

$$\mu(E) = \sup\{\mu(K) \mid K \subset E; Kcompacto\}$$
 (2.3.3)

e dizemos que μ é regular se (2.3.2) e (2.3.3) ocorrem.

Definição 2.3.12. Uma medida de Radon sobre X, é uma medida de Borel tal que:

- i) $\mu(K) < \infty$, $\forall K \subset X$ compacto.
- ii) Regular exterior sobre $E \subset X, \forall E$ boreliano.
- iii) Regular interior sobre $A \subset X, \forall A \text{ aberto.}$

E, denotaremos o espaço das medidas de Radon sobre X por $\Re(X)$.

Definição 2.3.13. Sejam $U \subset X$ aberto, $f \in C_c(X)$, dizemos que f está subordinada a $U(f \prec U)$ se $0 \leq f \leq 1$ e supp $f \subset U$.

Teorema 2.3.4 (Representação de Riesz). Se I é um funcional linear positivo sobre $C_c(X)$, então existe uma única medida de Radon μ sobre X tal que

$$I(f) = \int_X f(x) \, d\mu; \forall f \in C_c(X).$$

Além disso, μ satisfaz:

- i) $\mu(U) = \sup\{I(f) : f \in C_c(X); f \prec U\}; \forall U \subset X \text{ aberto.}$
- ii) $\mu(K) = \inf\{I(f) : f \in C_c(X); f \ge \chi_K\}; \forall K \subset X \text{ compacto.}$

Demonstração: Veja a referência [F] □

Definição 2.3.14. Seja M um espaço topológico, dizemos que M é localmente compacto Hausdorff, e denotamos LCH, se M for Hausdorff e dado $x \in M$ existir uma vizinhaça compacta V_x tal que $V_x \subset M$.

Definição 2.3.15. Seja $f \in C(M)$, dizemos que f vai à zero no infinito se, dado qualquer $\epsilon > 0$ o conjunto $\{x : |f(x)| \ge \epsilon\}$ é compacto. Denotaremos por $C_0(M)$ o espaço da funções que tendem à zero no infinito.

Teorema 2.3.5. Seja M um espaço LCH. Para cada $\mu \in \mathfrak{R}(M)$ o funcional linear tal que para cada $f \in C_0(M)$, associa o número complexo $I_{\mu}(f) = \int_M f(x) d\mu(x)$ define um isomorfismo isométrico de $\mathfrak{R}(M)$ em $C_0(M)^*$.

Demonstração: Veja a referência [F] □

Corolário 2.3.1. Se M é um espaço de Hausdorff compacto, então

$$\mathfrak{R}(M) \cong C(M)^*$$

Demonstração: Veja a referência [F] □

2.4 A Topologia fraca estrela no espaço das medidas

Nesta secão vamos introduzir uma topologia importante no conjunto $\mathcal{M}(M)$ das probabilidades borelianas do espaço M onde, M é um espaço métrico ou, mais geralmente, um espaço topológico, e tal topologia é chamada topologia fraca*.

Definição 2.4.1. Dada uma medida $\mu \in \mathcal{M}(M)$, um conjunto finito $F = \{\phi_1, \dots, \phi_N\}$ de funções contínuas $\phi_j : M \to \mathbb{R}$, e um número $\epsilon > 0$, definimos

$$V(\mu, F, \epsilon) = \{ \eta \in \mathcal{M}(M) : \left| \int \phi_j d\eta - \int \phi_j d\mu \right| < \epsilon, \forall \phi_j \in F \}.$$

Os conjuntos $V(\mu, F, \epsilon)$, com F e ϵ variáveis constituem uma base de vizinhanças da medida μ na topologia fraca estrela.

Lema 2.4.1. Uma sequência $(\mu_n)_{n\in\mathbb{N}}$ em $\mathcal{M}(M)$ converge para uma medida $\mu\in\mathcal{M}(M)$ na topologia fraca estrela se, e somente se,

$$\int_{M} \phi(x) d\mu_n(x) \to \int_{M} \phi(x) d\mu(x) \tag{2.4.1}$$

para toda função contínua ϕ .

Demonstração: De fato, primeiramente mostremos a parte "somente se", seja ϕ contínua e tome $F = {\phi}$. Por hipótese, $\mu_n \longrightarrow \mu$, temos que dado um $\epsilon > 0$ existe um índice n_0 tal que, para todo $n \ge n_0$ $\mu_n \in V(\mu, F, \epsilon)$. Mas isto significa que,

$$\left| \int_{M} \phi(x) \, d\mu_n(x) - \int_{M} \phi(x) d\mu(x) \right| < \epsilon.$$

 $\forall n \geq n_0$, e isto significa que a sequência $\int_M \phi(x) d\mu_n(x) \to \int_M \phi(x) d\mu(x)$.

A recíproca afirma que se $\int_M \phi(x) d\mu_n(x) \to \int_M \phi(x) d\mu(x)$, para toda função contínua, então dado qualquer F e ϵ existe um índice a partir do qual $\mu_n \in V(\mu, F, \epsilon)$. Para ver isso, escrevemos $F = \{\phi_1, \dots, \phi_n\}$ e, a hipótese garante que para cada $1 \le j \le N$ existe n_j tal que para todo $n \ge n_j$,

$$\left| \int_{M} \phi(x) \, d\mu_n(x) - \int_{M} \phi(x) d\mu(x) \right| < \epsilon.$$

Tomando $n^0 = max\{n_1, \dots, n_N\}$, temos que $\mu_n \in V(\mu, F, \epsilon)$ para $n \ge n^0$.

Antes de mostrarmos as principais propriedades desta topologia, lembremos do seguinte resultado cuja prova pode ser encontrada em [R]. Como é usual, denotamos por C(M) o espaço das funções contínuas $\phi: M \to \mathbb{R}$, munido da norma da convergência uniforme $\|\phi_1 - \phi_2\| = \sup \{|\phi_1(x) - \phi_2(x)| | x \in M\}$.

Proposição 2.4.1. Se M é um espaço métrico então C(M) tem subconjuntos enumeráveis densos.

Demonstração: Veja a referência [R].

Teorema 2.4.1. O espaço $\mathcal{M}(M)$ munido com a topologia fraca estrela é metrizável.

Demonstração: Mostraremos que existe uma distância d que gera a topologia fraca* em $\mathcal{M}(M)$. De fato, segue da proposição (2.4.1) que podemos escolher um subconjunto enumerável $\mathcal{F} = \{\phi_N \mid n \in \mathbb{N}\}$ denso na bola unitária do espaço $C^0(M)$. Defina

$$d(\mu_1, \mu_2) = \sum_{N=1}^{\infty} \frac{1}{2^N} \left| \int \phi_N d\mu_1 - \int \phi_N d\mu_2 \right|, \qquad (2.4.2)$$

para qualquer par de medidas μ_1 e μ_2 . Note que d dada em (2.4.2) está bem definida pois, como as funções ϕ estão na bola unitária de $C^0(M)$ temos que, sup $|\phi| \leq 1$. E além disso, as medidas μ_1 , μ_2 são de probabilidades o que garante a limitação do termo geral da soma por 2^{1-N} . Isto garante que a série em (2.4.2) converge. O único passo não trivial na prova de que d é uma distância é mostrar que se $d(\mu_1, \mu_2) = 0$ então, $\mu_1 = \mu_2$. De fato, a hipótese de que $d(\mu_1, \mu_2) = 0$ significa que $\int \phi_j d\mu_1 = \int \phi_j d\mu_2$, para toda $\phi_j \in \mathcal{F}$. Agora, dada qualquer ϕ na bola unitária de $C^0(M)$ podemos encontrar uma sequência de elementos de \mathcal{F} convergindo uniformemente para ϕ . Como consequência, temos que:

$$\int_{M} \phi \, d\mu_1 = \int_{M} \phi \, d\mu_2. \tag{2.4.3}$$

para toda ϕ na bola unitária de C(M). Como todo elemento de C(M) tem algum múltiplo na bola unitária, isto implica que a igualdade (2.4.3) é verdadeira para toda função contínua ϕ . Isso quer dizer que $\mu_1 = \mu_2$. Para provar que d gera a topologia fraca*, devemos mostrar que toda bola $B(\mu, \delta) = \{ \eta \in \mathcal{M}(M) : d(\mu, \eta) < \delta \}$ contém alguma vizinhança $V(\mu, \mathcal{F}, \epsilon)$ e reciprocamente. Dado $\delta > 0$ fixemos $P \geq 1$ suficientemente grande para que

$$\sum_{N=P}^{\infty} 2^{-N} < \frac{\delta}{2}.$$

e consideremos $F = \{\phi_1, \dots, \phi_P\}$ formado pelos primeiros P elementos do subconjunto enumerável denso. Além disso, consideremos $\epsilon = \frac{\delta}{2}$. Afirmamos que $V(\mu, F, \epsilon) \subset B(\mu, \delta)$. De fato, $\nu \in V(\mu, F, \epsilon)$ implica que $\left| \int \phi_N \, d\mu - \int \phi_N \, d\nu \right| < \epsilon$, para todo $1 \le N \le P$, o que implica

$$\sum_{N=1}^{\infty} 2^{-N} \left| \int \phi_N \, d\mu - \int \phi_N \, d\nu \right| < \sum_{N=1}^{\infty} 2^{-N} \epsilon + \sum_{N=1}^{\infty} 2^{2-N} < \delta.$$

Reciprocamente, dado $F = \{\psi_1, \dots, \psi_P\}$ e $\epsilon > 0$, selecionemos elementos $\phi_{N_1}, \dots, \phi_{N_P}$ distintos de \mathcal{F} tais que $\|\phi_{N_j} - \psi_j\| < \frac{\epsilon}{4}$, para todo $1 \leq j \leq P$. Fixemos $\delta > 0$ suficientemente pequeno para que $2^{N_j}\delta < \frac{\epsilon}{4}$ para todo $1 \leq j \leq P$. Afirmamos que $B(\mu, \delta) \subset V(\mu, \mathcal{F}, \epsilon)$. De fato, $\nu \in B(\mu, \delta)$ implica

$$\sum_{N=1}^{\infty} 2^{-N} \left| \int \phi_N \, d\mu - \int \phi_N \, d\nu \right| < \delta,$$

o que implica $\left|\int \phi_{N_j} d\mu - \int \phi_{N_j} d\nu\right| < 2^{N_j} \delta$, para todo $1 \leq j \leq P$, o que implica

$$\left| \int \psi_j \, d\mu - \int \psi_j \, d\nu \right| < 2^{N_j} \delta + \frac{\epsilon}{2} < \epsilon,$$

para todo $1 \leq N \leq P$, e isto prova nossa afirmação.

Para demonstrarmos o próximo teorema, que nos diz que, o espaço $\mathcal{M}(M)$ munido com a topologia fraca estrela é compacto, faremos uso de um resultado clássico, que diz que as integrais são os únicos operadores lineares positivos no espaço das funções contínuas. Uma demostração deste resultado pode ser encontrada em [R].

Teorema 2.4.2 (Riesz-Markov). Seja $\Phi: C(M) \to \mathbb{R}$ qualquer operador linear positivo. Então existe uma única medida boreliana μ em M tal que

$$\Phi(\varphi) = \int \varphi \, d\mu. \tag{2.4.4}$$

para toda $\varphi \in C(M)$.

Demonstração: Veja a referência [R].

Teorema 2.4.3. O espaço $\mathcal{M}(M)$ munido com a topologia fraca estrela é compacto.

Demonstração: Como já sabemos que o espaço $\mathcal{M}(M)$ é metrizável, para provar que $\mathcal{M}(M)$ é compacto, basta provar que toda sequência $(\mu_k)_{k\in\mathbb{Z}}$ em $\mathcal{M}(M)$ admite alguma subsequência convergente na topologia fraca estrela. De fato, seja $\mathcal{F} = \{\phi_N : N \in \mathbb{N}\}$ um subconjunto enumerável denso na bola unitária de $C^0(M)$. Para cada $N \in \mathbb{N}$, a sequência de números reais $(\int \phi_N d\mu_k)_{k\in\mathbb{N}}$ é limitada por 1. Portanto, para cada $N \in \mathbb{N}$ existe uma sequência $(k_j^N)_{j\in\mathbb{N}}$ tal que, $\int \phi_N d\mu_{k_j^N}$ converge para algum número $\Phi_N \in \mathbb{R}$ quando $j \to \infty$. Além disso, cada sequência $(k_j^{N+1})_{j\in\mathbb{N}}$ pode ser escolhida como subsequência da anterior $(k_j^N)_{j\in\mathbb{N}}$. Definamos $\ell_j = k_j^j$ para cada $j \in \mathbb{N}$. Por construção, a menos de um conjunto finito de termos, $(\ell_j)_{j\in\mathbb{N}}$ é uma subsequência de cada uma das $(k_j^N)_{j\in\mathbb{N}}$. Logo,

$$\int \phi_N \, d\mu_{\ell_j} \to \Phi_N \quad \text{para todo} \quad N \in \mathbb{N}.$$

Daqui se deduz facilmente que

$$\Phi(\varphi) = \lim_{j} \int \varphi \, d\mu_{\ell_{j}},\tag{2.4.5}$$

existe, para toda função $\varphi \in C(M)$. De fato, suponha primeiro que φ está na bola unitária de C(M). Dado qualquer $\epsilon > 0$ podemos encontrar $\phi_N \in \mathcal{F}$ tal que $\|\varphi - \phi_N\| \le \epsilon$. Então,

$$\left| \int \varphi \, d\mu_{\ell_j} - \int \phi_N \, d\mu_{\ell_j} \right| \le \epsilon.$$

para todo $j \in \mathbb{N}$. Como $\int \phi_N d\mu_{\ell_j} \to \Phi_N$, segue que

$$\lim_{j} \sup \int \varphi \, d\mu_{\ell_{j}} - \lim_{j} \inf \int \varphi \, d\mu_{\ell_{j}} \leq 2\epsilon.$$

Como ϵ é arbitrário, concluímos que $\lim_j \int \varphi \, d\mu_{\ell_j}$ existe. Isto prova (2.4.5) quando a função está na bola unitária. O caso geral reduz-se imediatamente a esse, substituindo φ por $\varphi/\|\varphi\|$. Finalmente, vemos que para toda função $\varphi \in C^0(M)$ positiva em todo ponto, $\Phi(\varphi) \geq \min \varphi > 0$. Além disso, $\Phi(1) = 1$ logo, pelo teorema de Riesz-Markov (2.4.2), existe alguma probabilidade boreliana μ em M tal que $\Phi(\varphi) = \int_M \varphi \, d\mu$ para toda função contínua φ . Reescrevendo a igualdade em (2.4.5) temos

$$\int \varphi \, d\mu = \lim_{j} \int \varphi \, d\mu_{\ell_{j}} \quad \text{para toda} \quad \varphi \in C(M). \tag{2.4.6}$$

Logo, graças ao Lema 2.4.1 concluímos que a subsequência $\left(\mu_{\ell_j}\right)_{j\in\mathbb{N}}$ converge para μ na topologia fraca estrela.

Capítulo 3

Análise de Fourier

3.1 Coeficientes de Fourier

O toro N-dimensional é definido pelo seguinte produto cartesiano

$$\mathbb{T}^N = \underbrace{S^1 \times \ldots \times S^1}_{N-vezes} = \mathbb{R}/\mathbb{Z} \times \ldots \times \mathbb{R}/\mathbb{Z}.$$

Um domínio fundamental para $\mathbb{R}^N/\mathbb{Z}^N$ é o cubo unitário

$$C(N) = \{(x_1, \dots, x_N) \in \mathbb{R}^N \mid 0 \le x_i \le 1 \text{ para } i = 1, \dots, N\}.$$

Para que C(N) de fato, represente o toro \mathbb{T}^N devemos identificar as faces opostas de C(N), assim o ponto $(x_1, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_N)$ é identificado com o ponto $(x_1, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_N)$ para cada $i \in \{1, \ldots, N\}$ fixo, uma vez que ambos representam o mesmo elemento no grupo quociente.

A correspondência $C(N) \ni (x_1, \dots, x_N) \mapsto (e^{2\pi i x_1}, \dots, e^{2\pi i x_N})$ estabelece um isomorfismo.

Funções definidas no toro \mathbb{T}^N são funções f definidas em \mathbb{R}^N que satisfazem $f(x+m)=f(x)\,\forall x\in\mathbb{R}^N$ e $m\in\mathbb{Z}^N$. Tais funções são ditas periódicas de período 1 em cada coordenada. Usaremos a medida de Haar no toro \mathbb{T}^N , isto é, a restrição da medida de Lebesgue ao domínio fundamental $[0,1]^N$ e denotaremos tal medida simplesmente por dx, enquanto a medida de Lebesgue de um subconjunto $A\subseteq\mathbb{T}^N$ denotaremos por |A|. A invariância por translação da medida de Lebesgue e a periodicidade das funções definidas em \mathbb{T}^N implicam que para toda função mensurável f definida em \mathbb{T}^N tem-se

$$\int_{\mathbb{T}^N} f(x) \, dx = \int_{[-1/2, 1/2]^N} f(x) \, dx = \int_{[a_1, a_1 + 1] \times [a_N, a_N + 1]} f(x) \, dx,$$

para quaisquer números reais $a_1, \ldots, a_N \in \mathbb{R}$.

Os elementos de \mathbb{Z}^N são denotados por $k=(k_1,\ldots,k_N)$. Dado $k\in\mathbb{Z}^N$ definimos o seu comprimento por $|k|=(k_1^2+\ldots+k_N^2)^{1/2}$. Para cada par de pontos $x,y\in\mathbb{R}^N$ definimos o produto escalar usual $x\cdot y=x_1y_1+\ldots+x_Ny_N$.

Definição 3.1.1. Dizemos que uma função $f: \mathbb{T}^N \to \mathbb{C}$ mensurável Lebesgue pertence ao espaço $L^p(\mathbb{T}^N)$, 0 se

$$\int_{\mathbb{T}^N} |f(x)|^p \, dx < \infty.$$

Além disso,

$$||f||_{L^p(\mathbb{T}^N)}^p = \int_{\mathbb{T}^N} |f(x)|^p dx$$

define uma norma no espaço $L^p(\mathbb{T}^N)$ quando $1 \leq p < \infty$.

Definição 3.1.2. Dizemos que uma função $f: \mathbb{T}^N \to \mathbb{C}$ mensurável Lebesgue pertence ao espaço $L^{\infty}(\mathbb{T}^N)$, se existir $0 < B < \infty$ tal que a medida de Lebesgue do conjunto $\{x \in \mathbb{T}^N : |f(x)| > B\}$ é nula, ou seja,

$$|\{x \in \mathbb{T}^N : |f(x)| > B\}| = 0.$$

 $Al\acute{e}m\ disso,\ definimos\ a\ norma\ \|f\|_{L^{\infty}}=\inf\big\{B\geq 0: \big|\big\{x\in\mathbb{T}^{N}: |f(x)|>B\big\}\big|=0\big\}.$

Definição 3.1.3. Denotamos por $\ell^p(\mathbb{Z}^N)$, $0 \le p < \infty$ o espaço das sequências $a = \{a_m \mid m \in \mathbb{Z}^N\}$ de números complexos tais que

$$\sum_{m \in \mathbb{Z}^N} |a_m|^p < \infty.$$

Definição 3.1.4. Denotamos por $\ell^{\infty}(\mathbb{Z}^N)$ o espaço das sequências $a = \{a_m \mid m \in \mathbb{Z}^N\}$ de números complexos tais que

$$\sup_{m\in\mathbb{Z}^N}|a_m|<\infty.$$

Definição 3.1.5. Denotamos o espaço das função 1-periódicas, m-vezes continuamente diferenciáveis por $C^m(\mathbb{T}^N)$. E definimos o espaço das funções testes no toro \mathbb{T}^N por

$$C^{\infty}(\mathbb{T}^n):=\bigcap_{m\in\mathbb{Z}_+}C^m(\mathbb{T}^N).$$

Para cada $k \in \mathbb{Z}_+$ a aplicação $p_k(\varphi) = \sum_{|\alpha| \leq k} \|\partial^{\alpha} \varphi\|_{L^{\infty}(\mathbb{T}^N)}$ define uma semi-norma de $C^{\infty}(\mathbb{T}^N)$ e o espaço $C^{\infty}(\mathbb{T}^N)$ munido com a topologia induzida por esta família enumerável de semi-normas é um espaço de Frechét.

Vamos definir agora os coeficientes de Fourier de uma função $f \in L^1(\mathbb{T}^N)$.

Definição 3.1.6. Sejam $f \in L^1(\mathbb{T}^N)$ uma função a valores complexos e $\xi \in \mathbb{Z}^N$, definimos o ξ -ésimo coeficiente de Fourier da função f por

$$\widehat{f}(\xi) = \int_{\mathbb{T}^N} f(x)e^{-i2\pi\xi \cdot x} dx \tag{3.1.1}$$

Note que (3.1.1) está bem definida pois, a função $x\mapsto e^{-i2\pi\xi\cdot x}$ é 1-periódica em cada coordenada.

Proposição 3.1.1. Se $f\in L^1(\mathbb{T}^N)$ então, $\left\{\widehat{f}(\xi)\right\}_{\xi\in\mathbb{Z}^N}\in\ell^\infty(\mathbb{Z}^N)$.

Demonstração: De fato,

$$\left\|\widehat{f}\right\|_{\ell^{\infty}} = \sup_{\xi \in \mathbb{Z}^N} |\widehat{f}(\xi)| \le \sup_{\xi \in \mathbb{Z}^N} \int_{\mathbb{T}^N} |e^{-2\pi i x \cdot \xi}| |f(x)| \, dx = \|f\|_{L^1} < \infty.$$

Definição 3.1.7. Seja $f \in L^1(\mathbb{T}^N)$, definimos a série de Fourier da função f como sendo

$$\sum_{\xi \in \mathbb{Z}^N} \widehat{f}(\xi) e^{i2\pi \xi \cdot x}.$$
 (3.1.2)

Não está claro no presente momento em que sentido a série (3.1.2) converge. O estudo da convergência da série (3.1.2) será de principal importância nesta seção. Antes de entrarmos na questão da convergência, daremos algumas propriedades elementares dos coeficientes de Fourier.

Denotemos por \bar{f} o conjugado da função f, por $\tilde{f}(x) = f(-x)$ e por $\tau^y f(x) = f(x-y)$. Deste modo escrevemos abaixo as propriedades fundamentais da transformada de Fourier.

Proposição 3.1.2. Sejam $f, g \in L^1(\mathbb{T}^N)$. Então para todo $k \in \mathbb{Z}^N$, $\lambda \in \mathbb{C}$, $y \in \mathbb{T}^N$ e para todo multíndice $\alpha \in \mathbb{Z}^N$ as seguintes propriedades são verdadeiras:

1.
$$\widehat{f+g}(\xi) = \widehat{f}(\xi) + \widehat{g}(\xi)$$
,

2.
$$\widehat{\lambda f}(\xi) = \lambda \widehat{f}(\xi)$$
,

$$3. \ \widehat{\overline{f}}(\xi) = \overline{\widehat{f}(-\xi)},$$

$$4. \ \widehat{\widetilde{f}}(\xi) = \widehat{f}(-\xi),$$

5.
$$\widehat{\tau^y(f)}(\xi) = \widehat{f}(\xi)e^{-i2\pi\xi\cdot x}$$
,

6.
$$e^{\widehat{i2\pi k(\cdot)}}f(\xi) = \widehat{f}(\xi - k),$$

7.
$$\widehat{f}(0) = \int_{\mathbb{T}^N} f(x) dx$$

8.
$$\sup_{\xi \in \mathbb{Z}^N} |\widehat{f}(\xi)| \le ||f||_{L^1(\mathbb{T}^N)},$$

9.
$$\widehat{f * g}(\xi) = \widehat{f}(\xi)\widehat{g}(\xi)$$
.

10.
$$\widehat{\partial^{\alpha} f}(k) = (2\pi i k)^{\alpha} \widehat{f}(k)$$
.

Demonstração: Ver [G].

Definição 3.1.8. Um polinômio trigonométrico em \mathbb{T}^N é uma função da forma

$$P(x) = \sum_{m \in \mathbb{Z}^n} a_m e^{2\pi i m \cdot x}$$
(3.1.3)

onde $\{a_m \mid m \in \mathbb{Z}^N\}$ é uma sequência finitamente suportada em \mathbb{Z}^N isto é, $a_m = 0$ apenas para um número finito de elementos $m \in \mathbb{Z}^N$. O grau de P é o maior valor de $|q_1| + \ldots + |q_N|$ tal que $a_q \neq 0$, onde $q = (q_1, \ldots, q_N)$. Denotamos por \mathcal{P} o espaço formado pelos polinômios trigonométricos.

Proposição 3.1.3. Os polinômios trigonométricos são densos em $L^p(\mathbb{T}^N)$ para todo $1 \le p < \infty$.

Demonstração: Veja a referência [G] □

Proposição 3.1.4. Se $f, g \in L^1(\mathbb{T}^N)$ satisfazem $\widehat{f}(\xi) = \widehat{g}(\xi)$ para todo $\xi \in \mathbb{Z}^N$ então f = g em quase todo ponto.

Demonstração: Veja a referência [G] □

Proposição 3.1.5 (Fórmula de Inversão). Suponha que $f \in L^1(\mathbb{T}^N)$ e que

$$\sum_{\xi \in \mathbb{Z}^N} |\widehat{f}(\xi)| < \infty. \tag{3.1.4}$$

Então,

$$f(x) = \sum_{\xi \in \mathbb{Z}^N} \widehat{f}(\xi) e^{2\pi i \xi \cdot x}$$
 (3.1.5)

para quase todo $x \in \mathbb{T}^N$. Deste modo, para quase todos os pontos de \mathbb{T}^N , f coincide com uma função contínua.

Demonstração: Veja a referência [G]

Definição 3.1.9. Seja H um espaço de Hilbert separável dotado de um produto interno complexo \langle , \rangle . Dizemos que um subconjunto $E \subset H$ forma um sistema ortonormal completo se

- (i) $\langle f, g \rangle = 0$ para toda $f, g \in E$ tais que $f \neq g$.
- (ii) $\langle f, f \rangle = 1$ para toda $f \in E$.
- (iii) Se $g \in H$ é tal que $\langle f, g \rangle = 0$ para toda $f \in E$ então g = 0.

Proposição 3.1.6. Seja H um espaço de Hilbert separável e seja $\{\varphi_k \mid k \in \mathbb{Z}\}$ um sistema ortonormal de H. Então as seguintes condições são equivalentes:

- (i) $\{\varphi_m \mid m \in \mathbb{Z}\}\$ é um sistema ortonormal completo.
- (ii) Para cada $f \in H$

$$||f||_H^2 = \sum_{m \in \mathbb{Z}} |\langle f, \varphi_m \rangle|^2.$$
 (3.1.6)

(iii) Para cada $f \in H$

$$f = \lim_{N \to \infty} \sum_{|m| \le N} \langle f, \varphi_m \rangle \varphi_m \tag{3.1.7}$$

com o limite ocorrendo na norma de H.

Demonstração: Veja a referência [G]

Consideremos no espaço de Hilbert complexo $L^2(\mathbb{T}^N, dx)$ o produto interno usual

$$\langle f, g \rangle = \int_{\mathbb{T}^N} f(x) \overline{g(x)} \, dx.$$
 (3.1.8)

Para cada $m \in \mathbb{Z}^N$ consideremos a função $\phi_m(y) = e^{2\pi i m \cdot y}$. Segue da teoria de séries de Fourier que a coleção $\{\phi_m(y) \mid m \in \mathbb{Z}^N\}$ define um sistema ortonormal completo de $L^2(\mathbb{T}^N, dx)$. Usaremos a seguinte notação $\langle f, \phi_m \rangle = \widehat{f}(m)$.

Proposição 3.1.7. Para cada $f, g \in L^2(\mathbb{T}^N, dx)$ temos que

(i) (Identidade de Parseval.)

$$||f||_{L^2(\mathbb{T}^N)}^2 = \sum_{m \in \mathbb{Z}^n} |\widehat{f}(m)|^2.$$

(ii)
$$\lim_{n \to \infty} \|f - \sum_{|m| \le n} \widehat{f}(m) e^{2\pi i m \cdot x} \|_{L^2(\mathbb{T}^N)} = 0.$$

(iii) (Identidade de Plancherel.)

$$\int_{\mathbb{T}^N} f(x)\overline{g(x)} \, dx = \sum_{|m| \le N} \widehat{f}(\xi)\widehat{g}(m).$$

(iv) A aplicação $f \mapsto \{\widehat{f}(m)\}_{m \in \mathbb{Z}^N}$ é uma isometria de $L^2(\mathbb{T}^N)$ sobre ℓ^2 .

Teorema 3.1.1 (Paley-Wiener). $h \in C^{\infty}(\mathbb{T}^N)$ se, e somente se, dado qualquer $N \in \mathbb{Z}_+$ existe uma constante positiva C_N tal que

$$|\widehat{h}(m)| \le \frac{C_N}{(1+|m|)^N}, \forall m \in \mathbb{Z}^N.$$
(3.1.9)

Demonstração: Veja a referência [RZ]

Definição 3.1.10. Seja $\{c_m\}_{m\in\mathbb{Z}^n}$ uma sequência de números complexos. Dizemos que é rapidamente decrescente se para cada $N\in\mathbb{N}$ dado, existir C=C(N)>0 tal que,

$$|c_m| \le C|m|^{-N}$$
, for all $m \in \mathbb{Z}^n \setminus \{0\}$.

Teorema 3.1.2. Seja $\{c_m\}_{m\in\mathbb{Z}^n}$ uma sequência rapidamente decrescente. Então,

$$\sum_{m \in \mathbb{Z}^n} c_m e^{2\pi i m \cdot x}$$

converge em $C^{\infty}(\mathbb{T}^N)$ e se $f(x) = \sum_{m \in \mathbb{Z}^n} c_m e^{2\pi i m \cdot x}$ então

$$c_m = \int_{\mathbb{T}^N} f(x)e^{-2\pi ix \cdot m} dx,$$

representa o m-ésimo coeficiente de Fourier de f.

Demonstração: Veja a referência [RZ]

Por outro lado temos o seguinte resultado

Teorema 3.1.3. $Seja \ f \in C^{\infty}(\mathbb{T}^N)$. $Ent\~ao$,

$$\widehat{f}(m) = \int_{\mathbb{T}^N} f(x)e^{-2\pi i m \cdot x} \, dx,$$

forma uma sequência rapidamente decrescente de números complexos e além disso,

$$f(x) = \sum_{m \in \mathbb{Z}^N} \widehat{f}(m) e^{2\pi i m \cdot x} dx$$

converge em $C^{\infty}(\mathbb{T}^N)$.

Demonstração: Note que para todo N>0 existe $C_N>0$ tal que

$$|\widehat{f}(m)| \le \frac{C_N}{(1+|m|^2)^N}$$
 (3.1.10)

para todo $m \in \mathbb{Z}^N$. Graças a estimativa (3.1.10) vemos que a série de Fourier

$$\sum_{m \in \mathbb{Z}^N} \widehat{f}(m) e^{2\pi i m \cdot x}$$

converge uniformemente e absolutamente para uma função contínua Φ . Observe que $\widehat{f}(m) = \widehat{\Phi}(m)$ para cada $m \in \mathbb{Z}^N$ pois, pelo Teorema da convergência uniforme

$$\widehat{\Phi}(m) = \int_{\mathbb{T}^N} e^{-2\pi i x \cdot m} \Phi(x) \, dx$$

$$= \int_{\mathbb{T}^N} e^{-2\pi i x \cdot m} \left(\lim_{k \to \infty} \sum_{|\zeta| \le k} \widehat{f}(\zeta) e^{2\pi i x \cdot \zeta} \right)$$

$$= \lim_{k \to \infty} \sum_{|\zeta| \le k} \widehat{f}(\zeta) \int_{\mathbb{T}^N} e^{2\pi i x \cdot (\zeta - m)} \, dx = \widehat{f}(m).$$

Mostraremos a seguir que $f = \Phi$. De fato, seja $h = f - \Phi$, e seja $t(x) = \sum_{|m| \leq M} a_m e^{2\pi i m \cdot x}$ um polinômio trigonométrico. Como, f e Φ possuem o mesmo coeficiente de Fourier segue que,

$$\int_{\mathbb{T}^N} h(x)t(x) \, dx = 0. \tag{3.1.11}$$

Agora, se $\epsilon > 0$ é dado, então pelo teorema de Stone-Weierstrass existe um polinômio trigonométrico $t \in \mathcal{P}$ tal que $||h - t||_{\infty} < \epsilon$. Então, graças a (3.1.11) obtemos,

$$||h||_{L^2}^2 = \left| \int_{\mathbb{T}^N} h(x) \overline{h(x)} \, dx \right| = \left| \int_{\mathbb{T}^N} h(x) \left(\overline{h(x) - t(x)} \right) \, dx \right|.$$
 (3.1.12)

Por Cauchy-Schwartz temos que

$$\left| \int_{\mathbb{T}^N} h(x) \left(\overline{h(x) - t(x)} \right) dx \right| \leq \|h\|_{L^2} \|h - t\|_{L^2}$$

$$\leq \|h\|_{L^2} \|h - t\|_{L^\infty}^2$$

$$\leq \epsilon^2 \|h\|_{L^2}.$$

Logo,

$$||h||_{L^2}^2 \le \epsilon^2 ||h||_{L^2} \le \frac{\epsilon^4}{2} + \frac{1}{2} ||h||_{L^2}^2.$$

Assim temos que

$$||h||_{L^2} \le \epsilon^2$$

Consequentemente, $||h|| \le \epsilon$. Mas, como ϵ foi escolhido de forma arbitrária e h é contínuo concluímos que h = 0.

3.2 Distribuições Periódicas

Definiremos a seguir o espaço das funções teste sobre um aberto Ω de \mathbb{R}^N .

Definição 3.2.1. Denotamos o espaço das funções $u \in C^{\infty}(\Omega)$ com suporte

$$S(u) \doteq \overline{\{x \in \Omega \mid u(x) \neq 0\}}$$

compacto, por $C_c^{\infty}(\Omega)$, e os elementos deste espaço são chamados de funções teste.

Podemos definir uma topologia no espaço $C_c^\infty(\Omega)$ cuja convergência coincide com a dada a seguir

Definição 3.2.2. Uma sequência (ϕ_j) de funções em $C_c^{\infty}(\Omega)$ converge a zero em $C_c^{\infty}(\Omega)$ se,

- 1. Existe um compacto $K \subset \Omega$ tal que $S(\phi_j) \subset K$, $\forall j \in \mathbb{N}$.
- 2. Para todo inteiro positivo m, as derivadas de ordem m das funções ϕ_j convergem uniformemente a zero quando $j \longrightarrow \infty$.

A seguir daremos a definição de distribuição sobre um aberto Ω .

Definição 3.2.3. Uma distribuição u em Ω é uma forma linear $u: C_c^{\infty}(\Omega) \to \mathbb{C}$ tal que, para cada compacto $K \subset \Omega$, existem constantes C > 0 e k > 0 tais que,

$$|\langle u, \phi \rangle| \le C \sum_{|\alpha| \le k} \sup |\partial^{\alpha} \phi|, \forall \phi \in C_c^{\infty}(\Omega).$$
 (3.2.1)

e denotamos por $\mathcal{D}'(\Omega)$ o conjunto de todas as distribuições em Ω .

Exemplo 3.2.2: Se $x_0 \in \Omega$ então, $\langle u, \phi \rangle = \partial^{\alpha} \phi(x_0)$ define uma distribuição em Ω . Demonstração: De fato, esta afirmação segue da seguinte estimativa, $|\langle u, \phi \rangle| = |\partial^{\alpha} \phi(x_0)| \le$

 $\sup |\partial^{\alpha} \phi(x)|, \, \forall \phi \in C_c^{\infty}(\Omega).$

Observação 3.2.1: Entre as distribuições do exemplo 3.2.2, merece destaque a Delta de Dirac no ponto $x_0: \delta_{x_0}(\phi) \doteq \phi(x_0), \forall \phi \in C_c^{\infty}(\Omega)$.

Definição 3.2.4. Uma Distribuição periódica é um funcional linear e contínuo sobre $C^{\infty}(\mathbb{T}^N)$ ou seja, satisfaz as seguintes condições:

1.
$$\langle u, \phi_1 + \lambda \phi_2 \rangle = \langle u, \phi_1 \rangle + \lambda \langle u, \phi_2 \rangle$$

2. Se $\phi_i \to 0$ em $C^{\infty}(\mathbb{T}^N) \Rightarrow \langle u, \phi_i \rangle \to 0$ em \mathbb{C}

Teorema 3.2.1. Seja u um funcional linear em $C^{\infty}(\mathbb{T}^N)$. As seguintes condições são equivalentes:

- 1. u é contínuo.
- 2. Existe uma constante C > 0, um inteiro positivo m tais que

$$|\langle u, \phi \rangle| \le C \sum_{|\alpha| \le m} \sup |\partial^{\alpha} \phi|, \forall \phi \in C^{\infty}(\mathbb{T}^N).$$
 (3.2.2)

Demonstração: Veja a referência [H]

Como consequência imediata do teorema 3.2.1 temos os seguinte exemplos de distribuições.

Exemplo 3.2.3: Se $f \in L^1(\mathbb{T}^N)$ então, a aplicação $T_f(\phi) = \int_{\mathbb{T}^N} f \phi \, dx$ define uma distribuição.

Exemplo 3.2.4: Se $\mu \in \mathcal{M}(M)$ então, $\langle \mu, \phi \rangle = \int_M \phi \, d\mu$ define uma distribuição de ordem 0.

Seguem as definições de operador globalmente hipoelíptico, e resolúvel.

Definição 3.2.5. Seja

$$P(x,D) = \sum_{|\alpha| \le m} a_{\alpha}(x)D^{\alpha} \tag{3.2.3}$$

sendo $a_{\alpha} \in C^{\infty}(\mathbb{T}^N)$ onde

$$D^{\alpha} = D_1^{\alpha_1} \dots D_N^{\alpha_N} = \left(\frac{1}{i} \frac{\partial}{\partial x_1}\right)^{\alpha_1} \dots \left(\frac{1}{i} \frac{\partial}{\partial x_N}\right)^{\alpha_N},$$

um operador diferencial parcial de ordem m. Dizemos que P é globalmente hipoelíptico no toro \mathbb{T}^N se as condições, $u \in \mathcal{D}'(\mathbb{T}^N)$ e $Pu \in C^{\infty}(\mathbb{T}^N)$ implicarem que $u \in C^{\infty}(\mathbb{T}^N)$, isto é, existe uma função $f \in C^{\infty}(\mathbb{T}^N)$ tal que $T_f = u$ em $\mathcal{D}'(\mathbb{T}^N)$.

Definição 3.2.6. Um operador diferencial parcial linear de ordem m,

$$P(x,D) = \sum_{|\alpha| \le m} a_{\alpha}(x)D^{\alpha}$$

é dito Resolúvel em $\mathcal{D}'(\mathbb{T}^N)$ se, e somente se, dado $f \in C^{\infty}(\mathbb{T}^N)$, $\exists u \in \mathcal{D}'(\mathbb{T}^N)$ tal que

$$Pu = f (3.2.4)$$

 $em\ C^{\infty}(\mathbb{T}^N).$

Definição 3.2.7. Seja $P: C^{\infty}(\mathbb{T}^N) \to C^{\infty}(\mathbb{T}^N)$ um operador linear e contínuo, definimos o operador transposto formal de P, o operador linear contínuo $P': C^{\infty}(\mathbb{T}^N) \to C^{\infty}(\mathbb{T}^N)$ tal que

$$\int_{\mathbb{T}^N} (P\phi)\psi \, dx = \int_{\mathbb{T}^N} \phi(P'\psi) \, dx, \ \forall \phi, \psi \in C^{\infty}(\mathbb{T}^N).$$
 (3.2.5)

Observação 3.2.2: Neste caso, é possível estender o operador P a um operador P^* : $\mathcal{D}'(\mathbb{T}^N) \to \mathcal{D}'(\mathbb{T}^N)$. Com efeito, basta definir P^* da seguinte forma,

$$\langle P^*u, \psi \rangle = \langle u, P'\psi \rangle, \quad \forall u \in \mathcal{D}'(\mathbb{T}^N), \psi \in C^{\infty}(\mathbb{T}^N).$$
 (3.2.6)

Veja a referência [H].

3.3 Espaços de Sobolev

Definição 3.3.1. Seja $s \in \mathbb{R}$. Definimos o espaço de Sobolev $H^s(\mathbb{T}^N)$ como sendo o espaço

$$H^{s}(\mathbb{T}^{N}) = \left\{ u \in \mathcal{D}'(\mathbb{T}^{N}) \mid (1 + |\xi|^{2})^{\frac{s}{2}} \widehat{u}(\xi) \in \ell^{2}(\mathbb{Z}^{N}) \right\}.$$
 (3.3.1)

Proposição 3.3.1. Seja $s \in \mathbb{R}$. O espaço $H^s(\mathbb{T}^N)$ munido com o produto interno

$$\langle u, v \rangle_{H^s(\mathbb{T}^N)} = \sum_{\xi \in \mathbb{Z}^N} \left(1 + |\xi|^2 \right)^s \widehat{u}(\xi) \overline{\widehat{v}(\xi)}.$$
 (3.3.2)

é um espaço de Hilbert. Assim, definimos a norma Sobolev de u por

$$||u||_s = \left(\sum_{\xi \in \mathbb{Z}^N} \left(1 + |\xi|^2\right)^s |\widehat{u}(\xi)|^2\right)^{\frac{1}{2}}.$$
 (3.3.3)

Lema 3.3.1. Seja s um inteiro não-negativo. Então, existem constantes c e c', dependendo apenas de s e N, tais que

$$c \|\varphi\|_{s} \leq \sum_{|\alpha|=0}^{s} \|D^{\alpha}\varphi\| \leq c' \|\varphi\|_{s}. \tag{3.3.4}$$

para todo $\varphi \in \mathcal{P}$ polinômio trigonométrico.

Demonstração: Veja a referência [W]

Lema 3.3.2. Se t < s, então $||u||_t \le ||u||_s$, isto é, $H^s \subset H^t$.

Demonstração: Veja a referência [W]

Lema 3.3.3. \mathcal{P} é um subespaço denso de H^s , para cada s.

Demonstração: Veja a referência [W]

Lema 3.3.4 (Desigualdade de Schwartz). Se $u \in H^{s+t}$ e $v \in H^{s-t}$, então

$$|\langle u, v \rangle_s| \le ||u||_{s+t} ||v||_{s-t}.$$
 (3.3.5)

Demonstração: Veja a referência [W]

Lema 3.3.5. Para cada $s \in \mathbb{Z}$, o operador D^{α} é um operador limitado de $H^{s+|\alpha|}$ em H^s , ou seja,

$$||D^{\alpha}u||_{s} \le ||u||_{s+|\alpha|}. \tag{3.3.6}$$

para todo $u \in H^{s+|\alpha|}$.

Demonstração: Veja a referência [W]

Lema 3.3.6 (Sobolev). Se $t \geq \left[\frac{N}{2}\right]$ onde, $\left[\frac{N}{2}\right]$ denota o maior inteiro menor ou igual a $\frac{N}{2}$, $e \ u \in H^t$, então a série $\sum_{\xi \in \mathbb{Z}^N} \widehat{u}(\xi) e^{ix \cdot \xi}$ converge uniformemente.

Demonstração: Veja a referência [W]

Lema 3.3.7 (Rellich). Seja $\{u_j\}$ uma sequência de elementos de H^t tais que $\|u_j\|_t \leq 1$. Se s < t, então existe uma subsequência de $\{u_j\}$ convergente em H^s .

Demonstração: Por hipótese,

$$\sum_{\xi} (1 + |\xi|^2)^t |\widehat{u}_j(\xi)|^2 \le 1. \tag{3.3.7}$$

Para cada ξ fixo, os elementos da sequência $\left\{ |(1+|\xi|^2)^{\frac{t}{2}}\widehat{u_j}(\xi)| \right\}$ são limitados por 1, e portanto, a sequência $\left\{ |(1+|\xi|^2)^{\frac{t}{2}}\widehat{u_j}(\xi)| \right\}$ tem uma subsequência convergente em \mathbb{C}^N . Pelo processo usual da diagonal, podemos escolher uma subsequência $\left\{ u_{i_j} \right\}$ tal que a sequência $(1+|\xi|^2)^{\frac{t}{2}}\widehat{u_{i_j}}(\xi)$ converge em C^N para cada ξ fixo. Afirmamos que a sequência $\left\{ u_{i_j} \right\}$ é uma

sequência de Cauchy, e portanto convergente, em H^s se s < t. De fato, seja $\epsilon > 0$ dado. Temos que,

$$||u_{i_j} - u_{i_k}||_s^2 = \sum_{|\xi| < N} (1 + |\xi|^2)^{s-t} (1 + |\xi|^2)^t |\widehat{u_{i_j}}(\xi) - \widehat{u_{i_k}}(\xi)|^2 |$$
(3.3.8)

$$+\sum_{|\xi|>N} (1+|\xi|^2)^{s-t} (1+|\xi|^2)^t |\widehat{u_{i_j}}(\xi) - \widehat{u_{i_k}}(\xi)|^2 |$$
 (3.3.9)

A segunda soma em (3.3.8) é limitada por

$$N^{2(s-t)} \sum_{|\xi| \ge N} (1 + |\xi|^2)^t (|\widehat{u_{i_j}}(\xi)|^2 + 2|\widehat{u_{i_j}}(\xi)||\widehat{u_{i_k}}(\xi)| + |\widehat{u_{i_k}}(\xi)|^2). \tag{3.3.10}$$

Segue de (3.3.7) que a expressão em (3.3.10) fica limitada por $4N^{2(s-t)}$. Como s-t<0, $4N^{2(s-t)}<\frac{\epsilon}{2}$ para N suficientemente grande, tome $N=N_0$ grande. A primeira expressão em (3.3.8) é então limitada por

$$\sum_{|\xi| < N_0} (1 + |\xi|^2)^t |\widehat{u_{i_j}}(\xi) - \widehat{u_{i_k}}(\xi)|^2.$$

Como esta soma consiste de um número finito de termos, e a sequência $(1 + |\xi|^2)^{\frac{t}{2}} \widehat{u_{i_j}}(\xi)$ converge para cada ξ fixo, então existe uma constante J > 0 tal que se $i_j, i_k > J$ então,

$$\sum_{|\xi| < N_0} (1 + |\xi|^2)^t |\widehat{u_{i_j}}(\xi) - \widehat{u_{i_k}}(\xi)|^2 < \frac{\epsilon}{2}.$$

Portanto, para $i_j, i_k > J$, concluímos que $\left\| u_{i_j} - u_{i_k} \right\|_s^2 < \epsilon$.

Para demonstrarmos o Teorema 5.1.1 adiante, que trata da resolubilidade do campo L, precisaremos de alguns resultados auxiliares que trataremos agora.

Definição 3.3.2. Sejam $\varphi \in C^{\infty}(\mathbb{T}^N)$, $j = 0, 1, 2, \dots$ $e \ r = \dots, -2, -1, 0, 1, 2, \dots$ definimos a norma sobolev

$$\|\varphi\|_j^2 = \sum_{|\alpha| \le j} \|\partial^{\alpha}\varphi\|_0^2 = \sum_{|\alpha| \le j} \int_{\mathbb{T}^N} |\partial^{\alpha}\varphi(x)|^2 dx.$$

e as semi-normas

$$\|\varphi\|_{j,r} = \|P\varphi\|_j + \|\varphi\|_r.$$

onde, P é um operador liner contínuo definido em $C^{\infty}(\mathbb{T}^N)$, com coeficientes em $C^{\infty}(\mathbb{T}^N)$.

Lema 3.3.8. Se P é Globalmente Hipoelíptico no toro \mathbb{T}^N então $C^{\infty}(\mathbb{T}^N)$, com a topologia induzida pela família de semi-normas $\left\{\|.\|_{j,r}\right\}$, $j=0,1,2,\ldots$, é um espaço métrico completo para qualquer $r=\ldots,-2,-1,0,1,2,\ldots$ fixo.

Demonstração: Seja $r \in \mathbb{Z}$ fixo. A partir da família de semi-normas $\left\{\|.\|_{j,r}\right\}_{j}$, $j = 0, 1, 2, \ldots$, podemos construir uma métrica em $C^{\infty}(\mathbb{T}^{N})$, definindo para cada par de funções $\varphi, \psi \in C^{\infty}(\mathbb{T}^{N})$:

$$d_1(\varphi, \psi) = \sum_{j=0}^{\infty} \frac{1}{2^j} \frac{\|\varphi - \psi\|_{j,r}}{1 + \|\varphi - \psi\|_{j,r}}.$$
(3.3.11)

Logo, $(C^{\infty}(\mathbb{T}^N), d_1)$ é um espaço métrico e provaremos, a seguir, que de fato é completo. Seja φ_n uma sequência de Cauchy em $(C^{\infty}(\mathbb{T}^N), d_1)$ então,

$$d_1(\varphi_n, \varphi_m) = \sum_{j=0}^{\infty} \frac{1}{2^j} \frac{\|\varphi_n - \varphi_m\|_{j,r}}{1 + \|\varphi_n - \varphi_m\|_{j,r}} \longrightarrow 0, \quad \text{quando} \quad m, n \mapsto \infty.$$

Logo, para cada j fixo

$$\|\varphi_n - \varphi_m\|_{i_r} \longrightarrow 0$$
, quando $m, n \mapsto \infty$. (3.3.12)

Como, $\|\varphi_n - \varphi_m\|_{j,r} = \|P\varphi_n - P\varphi_m\|_j + \|\varphi_n - \varphi_m\|_r$, então segue de (3.3.12) que

$$||P\varphi_n - P\varphi_m||_i \longrightarrow 0$$
, quando $m, n \mapsto \infty$. (3.3.13)

е

$$\|\varphi_n - \varphi_m\|_r \longrightarrow 0. \tag{3.3.14}$$

Sendo $H^j(\mathbb{T}^N)$ e $H^r(\mathbb{T}^N)$ espaços de Hilbert, então segue de (3.3.13) e (3.3.14) que existem $\varphi \in H^r(\mathbb{T}^N)$, $\psi_j \in H^j(\mathbb{T}^N)$, tais que $\varphi_n \to \varphi \in H^r(\mathbb{T}^N)$ e $P\varphi_n \to \psi_j \in H^j(\mathbb{T}^N)$. Tomando ℓ tal que $j < \ell$ seja ψ_ℓ tal que $P\varphi_n \to \psi_\ell \in H^\ell(\mathbb{T}^N)$. Usando o fato de que o mergulho $H^\ell(\mathbb{T}^N) \hookrightarrow H^j(\mathbb{T}^N)$ é contínuo, como $P\varphi_n \to \psi_j \in H^j(\mathbb{T}^N)$, temos que $P\varphi_n \to \psi_\ell \in H^j(\mathbb{T}^N)$. Pela unicidade do limite em $H^j(\mathbb{T}^N)$ concluímos que $\psi_j = \psi_\ell$ para todo $j < \ell$. Analogamente, prova-se que $\psi_j = \psi_\ell$ para todo $j > \ell$. Assim, vemos que $\psi_j = \psi_\ell$ para todo par $j, \ell \in \mathbb{Z}_+$. Definindo $\psi = \psi_\ell = \psi_\ell$ temos que $\varphi_n \to \varphi \in \mathcal{D}'(\mathbb{T}^N)$, $P\varphi_n \to \psi \in \mathcal{D}'(\mathbb{T}^N)$. Por outro lado, sendo P contínuo em $\mathcal{D}'(\mathbb{T}^N)$ e $\varphi_n \to \varphi \in \mathcal{D}'(\mathbb{T}^N)$ segue que $P\varphi_n \to P\varphi \in \mathcal{D}'(\mathbb{T}^N)$, usando a unicidade do limite em $\mathcal{D}'(\mathbb{T}^N)$ obtemos

$$P\varphi = \psi. \tag{3.3.15}$$

Uma vez que $\psi \in H^j(\mathbb{T}^N), \forall j \in \mathbb{Z}_+$, vemos que $\psi \in C^{\infty}(\mathbb{T}^N)$. Logo, como o operador P é GH, concluímos que $\varphi \in C^{\infty}(\mathbb{T}^N)$. Segue de (3.3.15), do fato de que $P\varphi_n \to \psi_j = \psi$ e $\varphi_n \to \varphi$ que

$$\begin{aligned} \|\varphi_n - \varphi\|_{j,r} &= \|P\varphi_n - P\varphi\|_j + \|\varphi_n - \varphi\|_r \\ &= \|P\varphi_n - \psi\|_j + \|\varphi_n - \varphi\|_r \longrightarrow 0, \quad \text{se}n \to \infty. \end{aligned}$$

Logo, $(C^{\infty}(\mathbb{T}^N), d_1)$ é completo.

Lema 3.3.9. O Espaço $C^{\infty}(\mathbb{T}^N)$ munido com métrica induzida pela sequência de seminormas $(\|\varphi\|_j)$, $j=0,1,2,\ldots$ é um espaço métrico completo.

Lema 3.3.10. Se P é Globalmente Hipoelíptico no toro \mathbb{T}^N então existem $\ell \in \mathbb{Z}_+$ e C > 0 tais que

$$\|\varphi\|_{0} \le C\left(\|P\varphi\|_{\ell} + \|\varphi\|_{-1}\right), \forall \varphi \in C^{\infty}(\mathbb{T}^{N}). \tag{3.3.16}$$

Demonstração: Seja $r \in \mathbb{Z}$ fixo. Para cada $\ell \in \mathbb{Z}_+$ definimos $k = \max\{m + \ell, r\}$ onde m é a ordem do operador P. Como $\ell \leq m + \ell \leq k$, $r \leq k$, temos os seguintes mergulhos contínuos, $H^k \hookrightarrow H^{m+\ell} \hookrightarrow H^\ell$ e $H^k \hookrightarrow H^r$. Logo,

$$\|\varphi\|_{\ell,r} = \|P\varphi\|_{\ell} + \|\varphi\|_{r} \le C \|\varphi\|_{k}.$$
 (3.3.17)

Assim, segue de (3.3.17) que a aplicação $Id: (C^{\infty}(\mathbb{T}^N), d) \to (C^{\infty}(\mathbb{T}^N), d_1)$ é contínua. Assim, sendo Id bijeção linear e contínua, segue do Teorema da Aplicação Aberta 2.1.2 que $Id^{-1}: (C^{\infty}(\mathbb{T}^N), d_1) \to (C^{\infty}(\mathbb{T}^N), d)$ é contínua. Desta forma, para cada $p \in \mathbb{Z}_+$ existem $\ell \in \mathbb{Z}_+$ e C > 0 tais que

$$\|\varphi\|_{p} \le C\left(\|P\varphi\|_{\ell} + \|\varphi\|_{r}\right), \varphi \in C^{\infty}(\mathbb{T}^{N}). \tag{3.3.18}$$

Logo, tomando p = 0 e r = -1 segue de (3.3.18) que

$$\|\varphi\|_0 \le C\left(\|P\varphi\|_{\ell} + \|\varphi\|_{-1}\right), \varphi \in C^{\infty}(\mathbb{T}^N).$$

Observação 3.3.3: Note que, sendo P Globalmente Hipoelíptico em \mathbb{T}^N temos que $\operatorname{Ker} P \subset C^{\infty}(\mathbb{T}^N)$.

Denotemos por $V = (KerP)^{\perp}$ o espaço ortogonal de KerP em $L^{2}(\mathbb{T}^{N})$.

Lema 3.3.11. Suponhamos que P seja Globalmente Hipoelíptico no toro \mathbb{T}^N . Então existem $\ell \in \mathbb{Z}_+$ e C > 0 tais que

$$\|\varphi\|_0 \le C \|P\varphi\|_{\ell} \tag{3.3.19}$$

para todo $\varphi \in V \cap C^{\infty}(\mathbb{T}^N)$.

Demonstração: Suponhamos por absurdo que (3.3.19) não seja válida. Logo, $\forall \ell \in \mathbb{Z}_+$, $\forall C = j, \exists \varphi_j^\ell \in V \cap C^{\infty}(\mathbb{T}^N)$ tais que $\|\varphi_j^\ell\|_0 > j \|P\varphi_j^\ell\|_\ell$, de onde concluímos que

$$\left\| P\varphi_j^{\ell} \right\|_{\ell} < \frac{\left\| \varphi_j^{\ell} \right\|_0}{j}.$$

Defina $\widetilde{\varphi_j^{\ell}} = \frac{\varphi_j^{\ell}}{\|\varphi_j^{\ell}\|_0}$. Logo, $\left\{\widetilde{\varphi_j^{\ell}}\right\}$ satisfaz

1.
$$\left\|\widetilde{\varphi_j^\ell}\right\|_0 = 1$$

$$2. \left\| P\widetilde{\varphi_j^\ell} \right\|_{\ell} = \left\| P\left(\frac{\varphi_j^\ell}{\left\| \varphi_j^\ell \right\|_0} \right) \right\|_{\ell} = \frac{1}{\left\| \varphi_j^\ell \right\|_0} \left\| P\varphi_j^\ell \right\|_{\ell} < \frac{1}{\left\| \varphi_j^\ell \right\|_0} \frac{\left\| \varphi_j^\ell \right\|_0}{j} = \frac{1}{j}.$$

Assim, sem perda de generalidade podemos supor que os elementos da sequência $\{\varphi_j^\ell\}$ satisfazem (1) e (2). Agora, fazendo $j \longrightarrow \infty$ vemos que $P\varphi_j^\ell \longrightarrow 0$ em $H^\ell(\mathbb{T}^N)$. Como consequência, segue que

$$P\varphi_j^\ell \longrightarrow 0 \tag{3.3.20}$$

em $\mathcal{D}'(\mathbb{T}^N)$ quando $j \longrightarrow 0$. Segue do Lema de Rellich que a imersão $i: H^0(\mathbb{T}^N) \to H^{-1}(\mathbb{T}^N) \subset L^2(\mathbb{T}^N)$ é compacta. Denotemos por B_1 a bola unitária fechada de $H^0(\mathbb{T}^N)$. Logo, segue de (1) e do Lema de Rellich 3.3.7 que $\{\varphi_j^\ell\} \subset B_1$ e $i(\varphi_j^\ell) \in i(B_1) \subset \overline{i(B_1)} \subset L^2(\mathbb{T}^N)$. Assim, existe uma subsequência de $\{\varphi_{jk}^\ell\}$, a qual continuaremos denotando por $\{\varphi_j^\ell\}$, tal que

$$\varphi_i^{\ell} \longrightarrow u_0^{\ell} \in L^2(\mathbb{T}^N), \quad \text{quando} \quad j \to \infty.$$
 (3.3.21)

De onde concluímos que

$$\varphi_j^{\ell} \longrightarrow u_0^{\ell} \in \mathcal{D}'(\mathbb{T}^N), \quad \text{quando} \quad j \to \infty.$$
 (3.3.22)

Sendo P contínuo em $\mathcal{D}'(\mathbb{T}^N)$ temos

$$P\varphi_i^{\ell} \longrightarrow Pu_0^{\ell} \in \mathcal{D}'(\mathbb{T}^N), \quad \text{quando} \quad j \to \infty.$$
 (3.3.23)

Segue de (3.3.20), (2) e da unicidade do limite em $\mathcal{D}'(\mathbb{T}^N)$ que $Pu_0^\ell=0$. Logo, $u_0^\ell\in \mathrm{Ker} P$.

Além disso, afirmamos que $u_0^m \in (KerP)^{\perp}$. De fato, segue de (3.3.21) que

$$\int_{\mathbb{T}^N} u_0^m(x) \overline{\phi(x)} dx = \lim_{j \to \infty} \int_{\mathbb{T}^N} \varphi_j^{\ell}(x) \overline{\phi(x)} dx = 0, \quad \text{para toda função teste} \quad \phi \in KerP$$

mostrando assim que, $u_0^m \in V = (KerP)^{\perp}$ e portanto $u_0^m = 0$.

Por outro lado como P é Globalmente C^{∞} Hipoelíptico, segue do Lema (3.3.10) que $\exists m \in \mathbb{Z}_+, \, \exists C>0$ tal que

$$1 = \left\| \varphi_j^m \right\|_0 \le C \left(\left\| P \varphi_j^m \right\|_m + \left\| \varphi_j^m \right\|_{-1} \right).$$

Fazendo $j \longrightarrow \infty$ na desigualdade acima obtemos

$$1 \le C \|u_0^m\|_{-1} \Rightarrow u_0^m \ne 0$$

gerando assim uma contradição, logo fica provada a desigualdade (3.3.19).

Capítulo 4

Sistemas Dinâmicos e Teoria Ergódica

Definição 4.0.3. Um sistema dinâmico topológico $f: X \to X$ é chamado topologicamente transitivo se existe um ponto $x \in X$ tal que a sua órbita $\mathcal{O}(x) \doteq \{f^n(x) \mid n \in \mathbb{Z}\}$ é densa em X.

Definição 4.0.4. Um sistema dinâmico $f: X \to X$ é chamado minimal se a órbita de cada $x \in X$ é densa em X.

Exemplo 4.0.5: Se α é um número irracional então a rotação R_{α} é minimal.

Proposição 4.0.2. Se a translação L_{g_0} sobre um grupo topológico é topologicamente transitiva então ela é minimal.

Demonstração: Veja a referência [K] □

4.1 Translações no Toro

As translações no Toro generalizam as rotações do círculo unitário e constitui-se num caso especial do grupo das translações. Este exemplo desempenha um papel importante na teoria dos sistemas Hamiltonianos completamente integráveis.

Na notação aditiva seja $\gamma=(\gamma_1,\dots,\gamma_N)\in\mathbb{T}^N$ então definimos a translação $T_\gamma:\mathbb{T}^N\to\mathbb{T}^N$ pondo

$$T_{\gamma}(x_1, \dots, x_N) = (x_1 + \gamma_1, \dots, x_N + \gamma_N) \pmod{1}.$$

Quando todas as coordenadas do vetor γ são números racionais, então T_{γ} é periódica de período 1. Entretanto, a menos que estejamos no círculo, aperiodicidade não implica

minimalidade. Por exemplo, se n=2 e $\gamma=(\alpha,0)$ com α sendo um número irracional então o toro \mathbb{T}^N pode ser escrito como uma união de círculos $x_2=const.$ e cada órbita permanece contida num destes círculos o preenchendo de forma densa.

Proposição 4.1.1. A translação T_{γ} é minimal se, e somente se, os números $\gamma_1, \ldots, \gamma_N, 1$ são racionalmente independentes, ou seja, se $(k_1, \ldots, k_N) \in \mathbb{Z}^N$ é tal que $\sum_{i=1}^N k_i \gamma_i \in \mathbb{Z}$ então $k_1 = \ldots = k_N = 0$.

Antes de demonstrarmos esta proposição estabeleceremos alguns critérios para que ocorra a transitividade topológica.

Lema 4.1.1. Seja $f: X \to X$ uma aplicação contínua de um espaço métrico localmente compacto separável X sobre X. Então a aplicação f é topologicamente transitiva se, e somente se, dados dois abertos não-vazios $U, V \subset X$ existir um número inteiro $\nu = \nu(U, V)$ tal que $f^{\nu}(U) \cap V \neq \emptyset$.

Demonstração: Veja a referência [K] □

Definição 4.1.1. Sejam $f: X \to X$ e $\varphi: X \to \mathbb{R}$. Dizemos que φ é f-invariante, se $\varphi(f(x)) = \varphi(x)$ para todo $x \in X$.

Corolário 4.1.1. Uma aplicação contínua e aberta f de um espaço localmente compacto separável é topologicamente transitiva se, e somente se, não existem dois conjuntos abertos e disjuntos não-vazios que sejam f-invariantes.

Demonstração: Veja a referência [K] □

Corolário 4.1.2. Se $f: X \to X$ é topologicamente transitivo e $\varphi: X \to \mathbb{R}$ é f-invariante então $\varphi \equiv const.$

Demonstração: Veja a referência [K] $\hfill\Box$

Estamos agora em condições de demonstrar a proposição.

Demonstração da Proposição 4.1.1: Provaremos a necessidade por contradição, suponha por absurdo que existam inteiros não todos nulos k_1, \ldots, k_N tais que $\sum_{i=1}^N k_i \gamma_i = \ell \in \mathbb{Z}$. Considere a função não constante $\varphi(x) = \sec 2\pi (\sum_{i=1}^N k_i x_i)$. Afirmamos que φ é T_{γ} -invariante.

De fato,

$$\varphi(T_{\gamma}(x)) = \operatorname{sen} 2\pi \left(\sum_{i=1}^{N} k_{i}(x_{i} + \gamma_{i})\right)$$
$$= \operatorname{sen} \left(\sum_{i=1}^{N} k_{i}x_{i} + 2\pi \ell\right) = \varphi(x).$$

Graças ao Corolário 4.1.2 temos que T_{γ} não é topologicamente transitiva.

Para a prova da suficiência admitamos que $\gamma_1, \ldots, \gamma_N, 1$ sejam racionalmente independentes. Queremos mostrar que T_γ é minimal. Como T_γ é uma translação de grupo segue da Proposição 4.0.2 que basta provar que T_γ é topologicamente transitiva. Supondo que T_γ não seja topologicamente transitiva então segue do Corolário 4.1.1 que existem dois conjuntos abertos disjuntos U, V com a propriedade de serem T_γ -invariantes. Seja $\chi \doteq \chi_U$ a função característica do conjunto U. Como U é T_γ -invariante temos que

$$\chi(T_{\gamma}(x)) = \chi(x).$$

Considere agora a expansão em série de Fourier da função χ

$$\chi(x) = \sum_{k \in \mathbb{Z}^N} \widehat{\chi}(k) e^{2\pi i (\sum_{j=1}^N k_j x_j)} \text{ em } L^2(\mathbb{T}^N).$$

Por outro lado,

$$\chi(T_{\gamma}(x)) = \sum_{k \in \mathbb{Z}^N} \widehat{\chi}(k) e^{2\pi i (\sum_{j=1}^N k_j(x_j + \gamma_j))}$$

$$= \sum_{k \in \mathbb{Z}^N} \widehat{\chi}(k) e^{2\pi i (\sum_{j=1}^N k_j x_j)} e^{2\pi i (\sum_{j=1}^N k_j \gamma_j)} \text{ em } L^2(\mathbb{T}^N).$$

Assim, pela invariância de χ e a unicidade da representação da expansão de Fourier segue que para cada $k \in \mathbb{Z}^N$

$$\widehat{\chi}(k)(1 - e^{2\pi i(\sum_{j=1}^{N} k_j \gamma_j)}) = 0.$$

Deste modo, se $k \neq 0$ e pelo fato de que $\gamma_1, \ldots, \gamma_N, 1$ serem racionalmente independentes, temos que $\widehat{\chi}(k) = 0$. Usando novamente a expansão de Fourier temos

$$\chi(x) = \widehat{\chi}(0) = const,$$

para quase todo $x \in \mathbb{T}^N$. Como χ é a função característica de U temos que $\widehat{\chi}(0) = 0$. Assim, $0 = \int \chi(x) \, dx = |U|$. Mas U sendo aberto não-vazio não pode possuir medida de Lebesgue nula, contradição! Logo, o resultado está provado.

4.2 Teorema de Recorrência de Poincaré

4.2.1 Versão Probabilística

Sejam (X, \mathcal{A}, μ) , (Y, \mathcal{B}, ν) espaços de medida.

Definição 4.2.1. Dizemos que uma transformação $T: X \to Y$ é mensurável se dado $A \in \mathcal{B}$ implica $T^{-1}(A) \in \mathcal{A}$, e que é invertível se é mensurável e existe $S: Y \to X$ mensurável tal que TS(y) = y e ST(x) = x para q.t.p. $x \in X$ e q.t.p. $y \in Y$.

Definição 4.2.2. Dizemos que $T: X \to Y$ preserva a medida se é mensurável e

$$\mu(T^{-1}(A)) = \nu(A)$$

para todo $A \in \mathcal{B}$.

Se $(X, \mathcal{A}, \mu) = (Y, \mathcal{B}, \nu)$ se diz que μ é T-invariante ou invariante sob T ou que T é um automorfismo de (Y, \mathcal{B}, ν) .

A seguir enunciaremos o teorema de recorrência de Poincaré em sua versão probabilística.

Teorema 4.2.1. Seja f um automorfismo no espaço de probabilidade (M, \mathcal{B}, μ) . Então para todo $A \in \mathcal{B}$ o conjunto A_0 dos pontos $x \in A$ tais que $f^n(x) \in A$ para infinitos valores $n \geq 0$ pertence a \mathcal{B} e $\mu(A) = \mu(A_0)$.

Demonstração: Defina para todo $n \ge 0$ o conjunto

$$C_n = \{x \in A \mid f^j(x) \notin A \text{ para todo } j \ge n\}.$$

Então $C_n = A - E_n$ onde $E_n \doteq \bigcup_{j=n}^{\infty} f^{-j}(A)$. É fácil ver que

$$A_0 = A - \bigcup_{n=1}^{\infty} C_n$$

$$= A \cap \left(\bigcap_{n=1}^{\infty} E_n\right). \tag{4.2.1}$$

Note que se $x \in A_0$ então segue de (4.2.1) que existe uma sequência de números naturais $0 < n_1 < n_2 < \dots$ tais que $f^{n_j}(x) \in A$. Portanto o teorema ficará demonstrado se provarmos que $C_n \in \mathcal{B}$ e $\mu(C_n) = 0$ para todo $n \ge 1$. Observamos que:

$$C_n = A - \cup_{j \ge n} f^{-j}(A)$$

prova que $C_n \in \mathcal{B}$ e além disso como

$$C_n = A - E_n \subset E_0 - E_n$$

temos $\mu(C_n) \leq \mu(E_0 - E_n) \leq \mu(E_0) - \mu(E_n)$. A seguir mostraremos que $\mu(E_n) = \mu(E_0)$ para todo $n \geq 0$. De fato, observe que $f^{-1}(E_n) = E_{n+1}$ pois

$$f(E_{n+1}) = f\left(\bigcup_{j=n+1}^{\infty} f^{-j}(A)\right)$$
$$= \bigcup_{j=n+1}^{\infty} f^{-j+1}(A)$$
$$= \bigcup_{j=n}^{\infty} f^{-j}(A)$$
$$= E_n.$$

Assim, usando a invariância da medida temos $\mu(E_n) = \mu(f^{-1}(E_n)) = \mu(E_{n+1})$ para todo $n \ge 0$ e portanto $\mu(E_n) = \mu(E_0)$ provando que $\mu(C_n) = 0$ para todo n.

4.2.2 Versão Topológica

Para enunciar a versão topológica do teorema de recorrência de Poincaré precisamos da definição de ω -limite de um ponto com respeito a uma transformação. Seja M um espaço topológico e $f: M \leftarrow$ uma transformação. Definimos o ω -limite de um ponto $x \in M$ como o conjunto dos pontos $y \in M$ tais que para toda vizinhança U de y a relação $f^n(x) \in U$ é satisfeita para infinitos valores n > 0. Se M é métrico é equivalente a $\liminf_{n \to \infty} d(f^n(x), y) = 0$. Logo, dado r > 0 existem infinitos índices n_j tais que $d(f^{n_j}(x), y) < r$ ou seja, $f^{n_j}(x) \in B_r(y)$.

A seguir enunciaremos a versão topológica do teorema de recorrência de Poincaré:

Teorema 4.2.2. Seja M um espaço métrico separável e f : $X \leftarrow$ uma aplicação mensurável(isto é, tal que a pré-imagem de qualquer boreleano é um boreleano). Seja μ uma medida de probabilidade sobre os boreleanos de M invariante sob f. Então $\mu(\{x \mid x \notin \omega(x)\}) = 0$. Ou seja, quase todo ponto é recorrente com respeito a medida μ .

Demonstração: Seja $\{U_n \mid n \in \mathbb{Z}_+\}$ uma base de abertos para a topologia tal que

$$\lim_{n\to\infty} \operatorname{diam}(U_n) = 0.$$

Seja $\widetilde{U}_n = \{x \in U_n \mid f^j(x) \in U_n \text{ para infinitos valores positivos de j}\}$. Pelo teorema anterior

$$\mu(U_n - \widetilde{U}_n) = 0.$$

Seja

$$\widetilde{X} = \bigcap_{m=0}^{\infty} \cup_{n \ge m} \widetilde{U}_n.$$

Como $\{U_n \mid n \in \mathbb{Z}_+\}$ é uma base de abertos, então

$$\bigcup_{n=0}^{\infty} \bigcup_{n>m} U_n = X$$

para todo $m \ge 0$. Logo,

$$\mu(X - \widetilde{X}) = \mu \left(\bigcup_{m=0}^{\infty} X - \bigcap_{m=0}^{\infty} \bigcup_{n \ge m} \widetilde{U}_n \right)$$

$$= \mu \left(\bigcup_{m=0}^{\infty} (X - \bigcup_{n \ge m} \widetilde{U}_n) \right)$$

$$= \mu \left(\bigcup_{m=0}^{\infty} (\bigcup_{n \ge m} U_n - \bigcup_{n \ge m} \widetilde{U}_n) \right)$$

$$\leq \mu \left(\bigcup_{m=0}^{\infty} \bigcup_{n \ge m} (U_n - \widetilde{U}_n) \right) = 0.$$

Então, só precisamos mostrar que se $x \in \widetilde{X}$ implica $x \in \omega(x)$, ou seja, que $\widetilde{X} \subset \{x \in X \mid x \in \omega(x)\}$, de onde concluímos que $X - \widetilde{X} \supseteq \{x \in X \mid x \neq \omega(x)\}$ e portanto, $\mu(\{x \in X \mid x \neq \omega(x)\}) \le \mu(X - \widetilde{X}) = 0$. Seja r > 0. Escolhemos m tal que diam $(U_n) \le r/3$ para todo $n \ge m$. Como $x \in \widetilde{X}$ segue que $x \in \bigcup_{n \ge m} \widetilde{U}_n$ para todo $m \ge 0$. Então existe $n \ge m$ tal que $x \in \widetilde{U}_n$. Como diam $(U_n) \le r/3$, resulta que $U_n \subset B_r(x)$ o que implica que $f^j(x) \in B_r(x)$ se $f^j(x) \in U_n$. Mas, como $x \in \widetilde{U}_n$, $f^j(x) \in U_n$ para infinitos valores de j. Portanto $x \in \omega(x)$.

As conclusões dos Teoremas (4.2.1) e (4.2.2) não são verdadeiras, em geral, se omitimos a hipótese de que a medida μ é finite.

Exemplo 4.2.6: Seja $f: \mathbb{R} \to \mathbb{R}$ a função f(x) = x + 1 para todo $x \in \mathbb{R}$. É fácil ver que f deixa invariante a medida de Lebesgue em \mathbb{R} . Por outro lado nenhum ponto é recorrente de f.

O seguinte resultado caracteriza quando uma medida é invariante. Antes considere o seguinte Lema.

Lema 4.2.1. Toda função mensurável $f: M \to \overline{\mathbb{R}}$ é o limite pontual de uma sequência de funções simples. Se $f \geq 0$, a sequência pode ser tomada crescente.

Demonstração: Se $f \ge 0$ então para cada número natural n fixo e $1 \le j \le n2^n$, denotemos por I_j^k o conjunto dos pontos $x \in \mathbb{R}$ tais que $\frac{j-1}{2^n} \le f(x) < \frac{j}{2^n}$ e defina a função

$$f_n(x) = \sum_{j=1}^{n2^n} \frac{j-1}{2^n} \chi_{I_j^k} + n \chi_{\{x \mid f(x) \ge n\}}$$

e observe que $f_n \nearrow f$. Note que se f é limitada superiormente, a convergência é uniforme. O caso geral recai no anterior desde que

$$f = f^+ - f^-, e f^+, f^- \ge 0.$$

Proposição 4.2.1. Seja (M, \mathcal{B}, μ) um espaço de medida de probabilidade e $f: M \to M$ uma transformação. Então f preserva a medida μ se, e somente se, para toda função integrável $\phi: M \to \mathbb{R}$ vale:

$$\int_{M} \phi(x) d\mu = \int_{M} \phi(f(x)) d\mu.$$

Demonstração: Assuma que f preserva a medida. Se ϕ é a função característica de um conjunto mensurável A, digamos $\phi = \chi_A$, é imediato verificar que $\mu(f^{-1}(A)) = \int_M \phi(f(x)) \, d\mu$, já que $\chi_{f^{-1}(A)} = \phi \circ f$. Assim, fica provado que $\int_M \phi(x) \, d\mu = \int_M \phi(f(x)) \, d\mu$ quando ϕ é uma função característica. Segue diretamente da linearidade da integral que se ϕ é uma função simples, então a igualdade ainda vale. Finalmente, se ϕ é uma função integrável, segue da definição de integral que

$$\int_{M} \phi(x) d\mu = \lim_{n \to \infty} \int_{M} \phi_n(f(x)) d\mu$$

onde ϕ_n é uma sequência de funções simples crescendo para ϕ . Por outro lado, $\phi_n \circ f$ é uma sequência de funções simples crescendo para $\phi \circ f$. Logo,

$$\int \phi \circ f(x) \, d\mu = \lim_{n \to \infty} \int \phi_n \circ f(x) \, d\mu.$$

Como $\int \phi_n d\mu = \int \phi_n \circ f d\mu$, tomando o limite em ambos os lados, vem que

$$\int \phi \, d\mu = \int \phi \circ f \, d\mu.$$

Reciprocamente, dado um boreliano A, tomando $\phi = \chi_A$ temos que

$$\mu(A) = \mu(f^{-1}(A))$$
 se e somente se, $\int \phi \, d\mu = \int \phi \circ f \, d\mu$.

Proposição 4.2.2. Sejam (X, \mathcal{A}, μ) , (Y, \mathcal{B}, ν) espaços de medida σ -finitos. Seja $T: X \to Y$ uma transformação mensurável. Se existe uma sub-álgebra $\mathcal{B}_0 \subset \mathcal{B}$ que gera \mathcal{B} e tal que $\mu(T^{-1}(A)) = \nu(A)$ para todo $A \in \mathcal{B}_0$, a transformação T preserva medida.

Demonstração: Seja $\nu_0: \mathcal{B} \to \mathbb{R}$ a medida definida por:

$$\nu_0(A) = \mu(T^{-1}(A)).$$

Se demonstrarmos que $\nu_0 = \nu$ a proposição estará provada. Mas $\nu_0/\mathcal{B}_0 = \nu/\mathcal{B}_0$. De modo que ν_0 é uma extensão a \mathcal{B} de ν/\mathcal{B}_0 . Mas como tal extensão é única segue que $\nu_0 = \nu$. \square

Exemplo 4.2.7: [Transformação de Gauss] Considere a transformação $\varphi:[0,1] \longleftrightarrow$ definida como

$$\varphi(x) = \frac{1}{x} - \left[\frac{1}{x}\right]$$

se $x \neq 0$ e $\varphi(0) = 0$, e [x] denota a parte inteira de um número real x. Esta transformação denomina-se transformação de Gauss e tem um papel importante na teoria das frações contínuas. Dado 0 < x < 1 temos

$$x = \frac{1}{n_1 + \frac{1}{n_2 + \frac{1}{n_3 + \frac{1}{n_1 + \varphi^j(x)}}}} \cdot \cdot \frac{1}{n_i + \varphi^j(x)}$$

para todo $j \ge 1$. De fato pode-se provar que

$$x = \lim_{j \to \infty} \frac{1}{n_1 + \frac{1}{n_2 + \frac{1}{n_3 + \frac{1}{n_j}}}} \cdot \cdot \cdot \frac{1}{\frac{1}{n_j}}$$

o que se expressa usualmente escrevendo:

$$x = \frac{1}{n_1 + \frac{1}{n_2 + \frac{1}{n_3 + \frac{1}{\dots}}}} = [0; n_1, n_2, n_3, \dots].$$

Se denotamos I_n o intervalo (1/(n+1), 1/n), a sequência n_1, n_2, n_3, \ldots fica determinada pela propriedade

$$\varphi^{j}(x) \in I_{n_{j+1}}, \quad j = 0, 1, 2, \dots$$

A transformação φ tem a notável propriedade de preservar a probabilidade μ sobre os boreleanos de [0,1] definida por:

$$\mu(A) = \frac{1}{\ln 2} \int_A \frac{1}{1+x} \, dm$$

onde m denota a medida de Lebesgue. Ou seja, $\mu(\varphi^{-1}(A)) = \mu(A)$ para todo boreleano $A \subset [0,1]$. Note também que

$$\frac{c}{2}m(E) \le \mu(E) \le cm(E)$$

para todo mensurável $E \subset [0,1]$. De fato,

$$\mu(E) = \frac{1}{\ln 2} \int_E \frac{1}{1+x} dm \le \frac{1}{\ln 2} \int_E dm \le (\ln 2)^{-1} m(E).$$

Por outro lado, seja E = [a, b]

$$m(E) = \int \chi_E(x) \, dm = \int_a^b \, dm$$

$$= \int_a^b \frac{1}{1+x} \, dm + \int_a^b 1 - \left(\frac{1}{1+x}\right) \, dm$$

$$\leq (\ln 2)\mu(E) + \int_a^b \frac{x}{1+x} \, dm$$

$$\leq (\ln 2)\mu(E) + \frac{1}{2} \int_a^b x \, dm$$

$$= (\ln 2)\mu(E) + \frac{1}{4} (a+b)m(E) \leq (\ln 2)\mu(E) + \frac{1}{2} m(E).$$

Deste modo, segue que

$$\frac{1}{2\ln 2}m(E) \le \mu(E).$$

Definição 4.2.3. Uma coleção S de subconjuntos de X é chamada sub-álgebra se as três condições seguintes ocorrem.

- i) $\emptyset \in \mathcal{S}$
- ii) Se $A, B \in \mathcal{S}$ então $A \cup B \in \mathcal{S}$
- iii) Se $A \in \mathcal{S}$ então $X A = \bigcup_{i=1}^{n} E_i$ com $E_i \in \mathcal{S}$ dois-a-dois disjuntos.

Exemplo 4.2.8: A coleção de todos os subintervalos de [0,1] da forma [0,b] e (a,b], com $0 \le a < b \le 1$ forma uma sub-álgebra.

Graças à Proposição 4.2.2 temos que provar que $\mu(\varphi^{-1}([0,b])) = \mu([0,b])$ e $\mu(\varphi^{-1}((a,b])) = \mu((a,b])$. Provaremos primeiramente que

$$\varphi^{-1}([0,b]) = \bigcup_{n=1}^{\infty} \left[\frac{1}{b+n}, \frac{1}{n} \right]. \tag{4.2.2}$$

De fato, se $x \in \varphi^{-1}([0,b])$ temos $\varphi(x) = \frac{1}{x} - \left[\frac{1}{x}\right] \in [0,b]$ ou seja, $0 \le \frac{1}{x} - n \le b$ sendo $n = \left[\frac{1}{x}\right] \in \mathbb{N}$. Logo, $x \in \left[\frac{1}{b+n}, \frac{1}{n}\right]$ para algum natural n e portanto $x \in \bigcup_{n=1}^{\infty} \left[\frac{1}{b+n}, \frac{1}{n}\right]$. Por outro lato, suponha que $x \in \bigcup_{n=1}^{\infty} \left[\frac{1}{b+n}, \frac{1}{n}\right]$ então existe um natural n_0 tal que $x \in \left[\frac{1}{b+n_0}, \frac{1}{n_0}\right]$.

Neste caso temos $n_0 \le \frac{1}{x} \le n_0 + b$ e como $0 \le b \le 1$ então $n_0 = \left[\frac{1}{x}\right]$ e portanto $\varphi(x) \in [0, b]$ e finalmente a igualdade (4.2.2) está provada.

Sendo a união (4.2.2) disjunta

$$\mu(\varphi^{-1}([0,b])) = \sum_{n=1}^{\infty} \mu\left(\left[\frac{1}{b+n_0}, \frac{1}{n_0}\right]\right) = \sum_{n=1}^{\infty} \frac{1}{\ln 2} \int_{\frac{1}{b+n}}^{\frac{1}{n}} \frac{1}{1+x} dm$$

$$= \frac{1}{\ln 2} \sum_{n=1}^{\infty} \left(\ln \frac{n+1}{b+n+1} - \ln \frac{n}{b+n}\right)$$

$$= \frac{1}{\ln 2} \left[\left(\ln \frac{2}{b+2} - \ln \frac{1}{b+1}\right) + \left(\ln \frac{3}{b+3} - \ln \frac{2}{b+2}\right) + \dots\right]$$

$$= -\frac{1}{\ln 2} \ln \frac{1}{1+b}$$

$$= \frac{1}{\ln 2} \int_{0}^{b} \frac{1}{t+1} dm$$

$$= \mu([0,b]).$$

A prova de $\mu(\varphi^{-1}((a,b])) = \mu((a,b])$ é análoga. Portanto, $\mu(\varphi^{-1}(A)) = \mu(A)$ para todo boreleano A do intervalo [0,1].

4.3 O Teorema de Krylov-Bogoliubov

Teorema 4.3.1. Sejam Σ a σ -álgebra de Borel sobre M e $f: M \to M$ uma aplicação contínua definida em um espaço métrico compacto M. Então, o espaço das medidas de probabilidade invariantes é não-vazio.

Demonstração: Devemos exibir uma medida de probabilidade $\mu \in \mathcal{M}(M)$ tal que $\mu(f^{-1}(E)) = \mu(E)$, $\forall E \in \Sigma$. Defina $f^* : \mathcal{M}(M) \to \mathcal{M}(M)$ por $f^*(\nu)(E) = \nu(f^{-1}(E))$. Para provar que $\mu(f^{-1}(E)) = \mu(E)$ é suficiente mostrarmos que a aplicação f^* possui um ponto fixo isto é, que exista uma medida μ tal que $f^*(\mu) = \mu$. De fato, se $E \in \Sigma$, então $\mu(E) = f^*(\mu)(E) = \mu(f^{-1}(E))$. Primeiramente, notemos que f^* assim definida é uma aplicação contínua relativamente à tologia fraca*. De fato, seja $\mu_n \to \mu$ na topologia fraca* de $\mathcal{M}(M)$, mostremos que $f^*(\mu_n) \to f^*(\mu)$ em $\mathcal{M}(M)$ quando $n \to \infty$. Ou seja, dado $\phi \in C(M)$ arbitrária mostraremos que $\langle f^*(\mu_n), \phi \rangle \to \langle f^*(\mu), \phi \rangle$ ou equivalentemente, $\int_M \phi(x) df^*(\mu_n) \to \int_M \phi(x) df^*(\mu)$. Primeiramente mostraremos que a seguinte identidade ocorre

Lema 4.3.1.

$$\int_{M} \phi(x) \ df^{*}(\nu) = \int_{M} \phi(f(x)) \, d\nu \tag{4.3.1}$$

para cada $\phi \in L^1(M)$.

Demonstração: De fato, mostremos (4.3.1) é válida para funções característica e em seguida, usando aproximações por funções simples concluiremos o resultado. Assim seja E um conjunto mensurável e tome $\phi = \chi_E$ logo,

$$\int_{M} \phi(x) df^{*}(\nu) = \int_{M} \chi_{E}(x) df^{*}(\nu) = \int_{E} df^{*}(\nu) = f^{*}(\nu)(E) \dot{=} \nu(f^{-1}(E))$$
$$= \int_{f^{-1}(E)} d\nu = \int_{M} \chi_{f^{-1}(E)}(x) d\nu = \int_{M} \chi_{E}(f(x)) d\nu.$$

Como o espaço das funções simples é denso no espaço das funções integráveis, podemos aproximar ϕ por uma sequência de funções simples ϕ_n . Por linearidade, a igualdade acima se estende para funções simples ϕ_n . Para finalizar, temos que pelo Teorema da Convergência Dominada,

$$\int \phi(x)df^*(\nu) = \int \lim_{n \to \infty} \phi_n(x)df^*(\nu) = \lim_{n \to \infty} \int \phi_n(x)df^*(\nu) =$$

$$= \lim_{n \to \infty} \int \phi_n(f(x))d\nu = \int \phi(f(x))d\nu,$$

concluindo assim a prova do lema.

Seja $\nu \in \mathcal{M}(M)$ uma medida de probabilidade qualquer em M, defina para cada $n \in \mathbb{N}$ fixo a medida de probabilidade

$$\mu_n = \frac{1}{n} \sum_{j=0}^{n-1} (f^*)^j(\nu)$$
(4.3.2)

Note que, $(\mu_n) \subset \mathcal{M}(M)$ pois, usando (4.3.3) segue que

$$\mu_n(M) = \frac{1}{n} \sum_{i=0}^{n-1} (f^*)^j(\nu)(M) = \frac{1}{n} \sum_{i=0}^{n-1} (\nu)(f^{-j}(M)) = 1.$$

onde, $(f^*)^j(\nu)$ é a imagem de ν pelo iterado $(f^*)^j$. Afirmamos que $(f^*)^j(\nu)(E) = \nu(f^{-j}(E), \forall E \in \Sigma$. De fato, segue da definição de f^* que o resultado é imediato para j=1, agora suponha válido para j isto é, $(f^*)^j(\nu)(E) = \nu(f^{-j}(E))$ e mostremos que vale para j+1. Com efeito,

$$(f^*)^{j+1}(\nu)(E) = f^*\left((f^*)^j(\nu)\right)(E) = (f^*)^j(\nu)\left(f^{-1}(E)\right) = \tag{4.3.3}$$

$$= \nu \left(f^{-j}(f^{-1}(E)) \right) = \nu \left(f^{-(j+1)}(E) \right). \tag{4.3.4}$$

Segue do Teorema de Riesz-Markov 2.4.2 que $\mathcal{M}(M) \cong C(M)^*$. Assim aplicando o Teorema de Banach-Alaoglu 2.2.1 temos que $\mathcal{M}(M)$ é compacto na topologia fraca estrela de $C(M)^*$, logo existem $\mu \in \mathcal{M}(M)$ e (μ_{n_k}) uma subsequência de (μ_n) tal que $\mu_{n_k} \stackrel{*}{\rightharpoonup} \mu$, quando $k \to \infty$ isto é, $\mu = \lim_{k \to \infty} \frac{1}{n_k} \sum_{j=0}^{n_k-1} (f^*)^j(\nu)$ em $\mathcal{M}(M)$.

A seguir mostraremos que μ é ponto fixo da aplicação f^* . De fato, seja E um conjunto Boreleano de M arbitrário. Como $\mu_{n_k} \to \mu$ em $\mathcal{M}(M)$ segue da continuidade de f^* que

$$f^{*}(\mu)(E) = \lim_{k \to \infty} f^{*}\left(\frac{1}{n_{k}} \sum_{j=0}^{n_{k}-1} (f^{*})^{j}(\nu)\right)(E)$$

$$= \lim_{k \to \infty} \frac{1}{n_{k}} \sum_{j=0}^{n_{k}-1} (f^{*})^{j}(\nu)(f^{-1}(E))$$

$$= \lim_{k \to \infty} \frac{1}{n_{k}} \left[\sum_{j=0}^{n_{k}-1} (f^{*})^{j}(\nu) + (f^{*})^{n_{k}}(\nu) - \nu\right](E)$$

$$= \mu(E) + \lim_{k \to \infty} \left[\frac{(f^{*})^{n_{k}}(\nu) - \nu}{n_{k}}\right](E).$$

Assim, a prova da afirmação estará completa se mostrarmos que $\lim_{k \to \infty} \left[\frac{(f^*)^{n_k}(\nu) - \nu}{n_k} \right] (E) = 0$. De fato,

$$\left| \frac{(f^*)^{n_k}(\nu)(E) - \nu(E)}{n_k} \right| = \left| \frac{\nu(f^{-n_k}(M)) - \nu(M)}{n_k} \right| \\ \leq \frac{\alpha}{n_k} \to 0$$

como queríamos demonstrar.

4.4 Fluxos sobre Variedades

Nesta seção estudaremos a ação de um grupo de Lie unidimensional numa variedade diferenciável. Consideremos \mathbb{R} o grupo de Lie aditivo dos números reais e denotemos por M uma variedade diferenciável de dimensão N.

Definição 4.4.1. Seja M um espaço topológico de Hausdorff, munido de uma base enumerável de conjuntos abertos. Uma Estrutura Diferenciável de dimensão N sobre M, é uma coleção de pares $\mathcal{F} = \{(U, \mathbf{x})\}$, onde $U \subset M$ é um aberto não vazio, $\mathbf{x} : U \to \mathbb{R}^N$ é um homeomorfismo sobre o subconjunto aberto $\mathbf{x}(U)$ de \mathbb{R}^N e as seguintes propriedades são satisfeitas:

1.
$$\bigcup_{(U,\mathbf{x})} U = M;$$

- 2. $\mathbf{x}(U \cap U') \stackrel{\mathbf{x}' \circ \mathbf{x}^{-1}}{\longrightarrow} \mathbf{x}'(U \cap U') \notin C^{\infty} \ para \ qualquer \ par \ (U, \mathbf{x}), \ (U', \mathbf{x}') \in \mathcal{F} \ com \ U \cap U' \neq \emptyset;$
- 3. \mathcal{F} é maximal com respeito a (1) e (2), isto é, se $\emptyset \neq V \subset M$ é aberto e $y : V \to y(V)$ é um homeomorfismo sobre um subconjunto aberto de \mathbb{R}^N tal que, para qualquer par $(U, x) \in \mathcal{F}$ com $U \cap U' \neq \emptyset$ a composta $x(U \cap V) \stackrel{y \circ x^{-1}}{\to} y(U \cap V)$ é C^{∞} , então $(V, y) \in \mathcal{F}$.

Definição 4.4.2. Uma Variedade Diferenciável de dimensão N, é um espaço topológico de Hausdorff M, munido de uma base enumerável e com uma estrutura diferenciável de dimensão N.

Observação 4.4.4: Um elemento $(U, \mathbf{x}) \in \mathcal{F}$ será referido como uma carta local ou um sistema de coordenadas local. Se escrevermos $\mathbf{x} = (x_1, \dots, x_N)$ então, para $p \in U$ suas coordenadas locais (com respeito a esta carta local) são dadas por $(x_1(p), \dots, x_N(p))$. De agora em diante, salvo indicação em contrário, fixaremos uma variedade diferenciável M de dimensão N. Dizemos que uma função $f: M \to \mathbb{R}$ é suave se para todo par $(U, \mathbf{x}) \in \mathcal{F}$, a composta $f \circ \mathbf{x}^{-1}$ é C^{∞} em $\mathbf{x}(U)$. Denotaremos por $C^{\infty}(M)$ o conjunto de todas as funções suaves sobre M.

Definição 4.4.3. Um campo vetorial suave real sobre M é uma aplicação \mathbb{R} -linear

$$L: C^{\infty}(M) \to C^{\infty}(M).$$

a qual satisfaz a regra de Leibniz

$$L(fg) = fL(g) + gL(f), \quad f, g \in C^{\infty}(M). \tag{4.4.1}$$

E, denotaremos por $\mathfrak{X}(M)$ o conjunto de todos os campos vetoriais reais sobre M.

Definição 4.4.4. Uma ação θ de \mathbb{R} sobre M é uma aplicação θ : $\mathbb{R} \times M \to M$ de classe C^{∞} que satisfaz as seguintes condições:

- (i) $\theta_0(p) = p$ para todo $p \in M$,
- (ii) $\theta_t \circ \theta_s(p) = \theta_{t+s}(p) = \theta_s \circ \theta_t(p)$ para todo $p \in M$ e $s, t \in \mathbb{R}$.

Exemplo 4.4.9: Seja $M = \mathbb{R}^3$ e $a = (a_1, a_2, a_3)$ um ponto fixado. Para cada $t \in \mathbb{R}$ podemos definir a aplicação $\theta_t : \mathbb{R} \to \mathbb{R}$ por $\theta_t(x_1, x_2, x_3) = (a_1, a_2, a_3) + t(x_1, x_2, x_3)$. É fácil ver que θ define uma ação de \mathbb{R} em \mathbb{R}^3 .

Toda ação $\theta: \mathbb{R} \times M \to M$ define um campo vetorial $X \in \mathfrak{X}(M)$ denominado o gerador infinitesimal de θ .

Proposição 4.4.1. Seja $\theta: \mathbb{R} \times M \to M$ uma ação C^{∞} . Para cada $p \in M$ definimos $X_p: C^{\infty}(p) \to \mathbb{R}$ por

$$X_p f = \lim_{t \to 0} \frac{1}{t} [f(\theta_t(p)) - f(p)]. \tag{4.4.2}$$

Então, $X \in \mathfrak{X}(M)$.

Demonstração: É fácil ver que X_p é linear e satisfaz a regra de Leibniz para todo $p \in M$. A seguir, encontraremos a expressão de X em coordenadas locais. Seja (U, \mathbf{x}) uma vizinhança coordenada em torno do ponto $p \in M$. Segue da continuidade da ação a existência de um aberto $(0, p) \in I_\delta \times V$ em $\mathbb{R} \times M$, onde $I_\delta = \{t \in \mathbb{R} | -\delta < t < \delta\}$ e V uma vizinhança aberta de p em M tal que $\theta(I_\delta \times V) \subset U$. Em particular, $V = \theta_0(V) \subset U$. Denotando por $\widehat{\theta}$ a expressão local da ação θ restrita ao aberto $I_\delta \times V$ e recordando que $(Id, \mathbf{x}) : \mathbb{R} \times \mathbb{U} \to \mathbb{R} \times \mathbb{R}^N$ temos que

$$\widehat{\theta}(t, \mathbf{x}(q)) = \mathbf{x}(\theta(t, q))$$

para todo $q \in V$. Ou seja, $\widehat{\theta}(t, x_1(q), \dots, x_N(q)) = (x_1(\theta(t, q)), \dots, x_N(\theta(t, q)))$. Assim, denotando por $\mathbf{x} = (x_1, \dots, x_N)$ as coordenadas de $q \in V$ e $\mathbf{y} = (y_1, \dots, y_N)$ de $\theta_t(q)$ podemos escrever θ em coordenadas locais como $\mathbf{y} = h(t, \mathbf{x}) = \widehat{\theta}(t, \mathbf{x})$. As funções $h_i \in C^{\infty}$ sobre $I_{\delta} \times \mathbf{x}(V)$ e além disso $\Im(h) \subset \mathbf{x}(U)$. O fato de θ_0 ser a identidade e $\theta_{t+s} = \theta_t \circ \theta_s$ se refletem nas seguintes condições:

$$h_i(0, \mathbf{x}) = x_i$$
 e $h_i(t + s, \mathbf{x}) = h_i(t, h(s, \mathbf{x}))$

para $i=1,\ldots,N$. Seja $f\in C^\infty(p)$ e denotemos por $\widehat{f}(x_1,\ldots,x_N)$ sua expressão local, então

$$X_{p}f = \lim_{t \to 0} \frac{1}{t} [f(\theta_{t}(p)) - f(p)]$$

$$= \lim_{t \to 0} \frac{1}{t} [\widehat{f} \circ \mathbf{x}(\theta_{t}(p)) - \widehat{f} \circ \mathbf{x}(p)]$$

$$= \lim_{t \to 0} \frac{1}{t} [\widehat{f} \circ \widehat{\theta}(t, \mathbf{x}(p)) - \widehat{f} \circ \widehat{\theta}(0, \mathbf{x}(p))]$$

$$= \left(\frac{d}{dt} \widehat{f} \circ \widehat{\theta}(t, \mathbf{x}(p))\right)_{t=0}$$

$$= \sum_{i=1}^{N} \left(\frac{\partial \widehat{f}_{i}}{\partial r_{i}}\right) (\widehat{\theta}(t, \mathbf{x}(p)) \frac{\partial \widehat{\theta}_{i}}{\partial t}(t, \mathbf{x}(p))|_{t=0}$$

$$= \sum_{i=1}^{N} \frac{\partial h_{i}}{\partial t}(0, \mathbf{x}(p)) \left(\frac{\partial \widehat{f}_{i}}{\partial r_{i}}\right)_{\mathbf{x}(p)}$$

ou seja,

$$X_p = \sum_{i=1}^{N} \frac{\partial \widehat{h}_i}{\partial t} (0, \mathbf{x}(p)) \frac{\partial}{\partial x_i} \bigg|_{p}.$$

Definição 4.4.5. Se $\theta: G \times M \to M$ é uma ação de um grupo G numa variedade M, então um campo vetorial $X \in \mathfrak{X}(M)$ é dito invariante sob a ação de G ou G-invariante se X for invariante sob cada difeomorfismo θ_g de M em M, i.e.,

$$d\theta_q(X) = X.$$

Teorema 4.4.1. Se $\theta : \mathbb{R} \times M \to M$ é uma ação C^{∞} de \mathbb{R} em M, então o gerador infinitesimal X é invariante sob esta ação, ou seja, $d\theta_t(X_p) = X_{\theta_t(p)}$ para todo $t \in \mathbb{R}$.

Demonstração: Seja $f \in C^{\infty}(\theta_t(p))$ para algum $(t,p) \in \mathbb{R} \times M$ fixo, provaremos que $d\theta_t(X_p)f = X_{\theta_t(p)}f$. De fato,

$$d\theta_t(X_p)f = X_p(f \circ \theta_t)$$

$$= \lim_{t \to 0} \frac{1}{s} [f(\theta_t(\theta_s(p))) - f(\theta_t(p))]$$

$$= \lim_{t \to 0} \frac{1}{s} [f(\theta_s(\theta_t(p))) - f(\theta_t(p))]$$

$$= X_{\theta_t(p)}f.$$

Corolário 4.4.1. Se $X_p = 0$ então $X_q = 0$ para todo q na órbita de p ou seja, nos pontos de uma órbita o campo vetorial associado se anula identicamente ou nunca é zero.

Demonstração: Por hipótese $q = \theta_t(p)$ para algum $t \in \mathbb{R}$. Logo, $X_q = X_{\theta_t(p)} = d\theta_t(X_p) = d\theta_t(0) = 0$ uma vez que $d\theta_t$ é um isomorfismo de T_pM sobre T_qM .

Teorema 4.4.2. A órbita de p ou é um ponto ou uma imersão de \mathbb{R} em M pela aplicação $t \to \theta_t(p)$

Demonstração: A órbita de p é a imagem de \mathbb{R} sob a aplicação C^{∞} , $t \to \theta_t(p) \doteq F(t)$. Seja $t_0 \in \mathbb{R}$ e $\frac{d}{dt}$ base de $T_{t_0}\mathbb{R}$. Então, F será uma imersão se, e somente se, $dF\left(\frac{d}{dt}\big|_{t_0}\right) \neq 0$ para todo $t_0 \in \mathbb{R}$. De fato, seja $f \in C^{\infty}(F(t_0)) = C^{\infty}(\theta_{t_0}(p))$ e observe que

$$dF\left(\frac{d}{dt}\Big|_{t_{0}}\right)f = \frac{d}{dt}(f \circ F)(t_{0})$$

$$= \lim_{h \to 0} \frac{1}{h}[f \circ F(t_{0} + h) - f \circ F(t_{0})]$$

$$= \lim_{h \to 0} \frac{1}{h}[f(\theta_{h}(\theta_{t_{0}}(p)) - f(\theta_{t_{0}}(p))]$$

$$= X_{\theta_{t_{0}}(p)}f. \tag{4.4.3}$$

Logo, segue do corolário 4.4.1 que se $X_p \neq 0$ então F é uma imersão. Caso contrário, se $X_p = 0$

Definição 4.4.6. Dado um campo vetorial $X \in \mathfrak{X}(M)$ dizemos que uma curva $J \ni t \longmapsto F(t)$, sendo J um intervalo aberto de \mathbb{R} , é uma curva integral de X se

$$\frac{dF}{dt} = X_{F(t)}$$

para cada $t \in J$. Por definição, uma curva integral é conexo.

O cálculo feito em (4.4.3) mostra que cada órbita de uma ação θ é uma curva integral de X, o gerador infinitesimal de θ , ou seja para cada $p \in M$

$$\frac{d}{dt}\theta(t,p) = X_{\theta(t,p)} \tag{4.4.4}$$

para cada $t \in J$.

Neste ponto surgem duas questões a respeito de campos vetoriais e ações de grupo a um parâmetro:

Questão 1: Todo campo vatorial de classe C^{∞} é o gerador infinitesimal de alguma ação de grupo?

Questão 2: Podem duas ações diferentes de \mathbb{R} em M definirem o mesmo campo vetorial X como seu gerador infinitesimal?

Consideremos por exemplo o caso em que $M = \mathbb{R}^2$ e $\theta : \mathbb{R} \times M \to M$ seja definida por $\theta(t,(x,y)) = (x+t,y)$. É fácil ver θ define uma ação de \mathbb{R} em M e que o seu gerador infinitesimal é dado pelo campo $X = \frac{\partial}{\partial x}$. Seja agora $M_0 = \mathbb{R}^2 \setminus \{(0,0)\}$. Para a maioria dos pontos θ_t está definida. Entretanto, θ não define uma ação de \mathbb{R} em M_0 por restrição de θ ao conjunto $\mathbb{R} \times M_0$ uma vez que os pontos do conjunto fechado $F = \{(t,(x,0)) \mid x+t=0\}$ de $\mathbb{R} \times M$ são levados na origem $(0,0) \notin M_0$. Seja $W \subset \mathbb{R} \times M$ o conjunto aberto

$$W = \left(\bigcup_{y \neq 0} \mathbb{R} \times \{(x, y)\}\right) \cup \left(\{t \in \mathbb{R} \mid x(x + t) > 0\} \times \{(x, 0)\}\right).$$

Então $\theta=\theta|W$ aplica W em M_0 e ainda preserva as seguintes propriedades. Seja $p=(x,y)\in M_0$ então:

i)
$$(0,p) \in W \in \theta(0,p) = p$$

ii)
$$\theta_s \circ \theta_t(p) = \theta_{s+t}(p) = \theta_t \circ \theta_s(p)$$

onde todos os termos estão definidos. Neste caso, o gerador infinitesimal continua sendo o campo $X = \frac{\partial}{\partial x}$ e as órbitas $t \longmapsto \theta_t(p)$ dadas pelas retas y = c quando $p = (x, y), y \neq 0$ e quando p = (x, 0) semiretas contidas no eixo x tendo a origem como um dos seus pontos extremos.

Seja M uma variedade diferenciável C^{∞} e $W \subset \mathbb{R} \times M$ um aberto satisfazendo as seguintes condições: Para cada $p \in M$ existem números reais $\alpha(p) < 0 < \beta(p)$ tais que $W \cap (\mathbb{R} \times \{p\}) = \{(t,p) \mid \alpha(p) < t < \beta(p)\}.$

Denotaremos por $I(p) = \{t \in \mathbb{R} \mid \alpha(p) < t < \beta(p)\}$ o por $I_{\delta} = \{t \in \mathbb{R} \mid |t| < \delta\}$. A condição acima implica que

$$W = \bigcup_{p \in M} I(p) \times \{p\}.$$

Note que W é portanto conexo.

Definição 4.4.7. Uma ação de grupo a um parâmetro local ou fluxo sobre uma variedade M é uma aplicação $\theta: W \to M$, C^{∞} que satisfaz as seguintes condições:

- i) $\theta_0(p) = p \text{ para todo } p \in M$.
- ii) Se $(s,p) \in W$, então $\alpha(\theta_s(p)) = \alpha(p) s$, $\beta(\theta_s(p)) = \beta(p) s$, e além disso para cada t tal que $\alpha(p) s < t < \beta(p) s$, $\theta_{t+s}(p)$ está definida e

$$\theta_t \circ \theta_s(p) = \theta_{t+s}(p).$$

Teorema 4.4.3. Seja L um campo C^r numa variedade M então existe um único fluxo C^r , (D, θ) em M tal que:

$$\frac{\partial \theta}{\partial t}(t,x) = L_{\theta(t,x)}.$$

Quando M é compacta este fluxo é global.

Definição 4.4.8. Um subconjunto $\mathcal{M} \subset \mathbb{T}^N$ é dito invariante com respeito ao fluxo se $\theta_t(\mathcal{M}) \subset \mathcal{M}, \forall t$.

Definição 4.4.9. Um subconjunto $\mathcal{M} \subset \mathbb{T}^N$ é dito minimal se for invariante com respeito ao fluxo e não existir subconjunto próprio de \mathcal{M} invariante.

4.5 Sistemas Conservativos

Seja U um aberto de \mathbb{R}^N e $f:U\to U$ um difeomorfismo de classe C^1 . A fórmula de mudança de variáveis afirma que, para qualquer conjunto mensurável $B\subset U$

$$\operatorname{vol}(f(B)) = \int_{B} |\det Df(x)| \, dx. \tag{4.5.1}$$

Lema 4.5.1. Um difeomorfismo $f: M \to M$ de classe C^1 deixa invariante o volume se e somente se o valor absoluto $|\det Df|$ do seu jacobiano é constante igual a 1.

Demonstração: Suponha primeiro que o valor absoluto do jacobiano é igual a 1 em todos os pontos de M. Considere E um conjunto mensurável e seja $B = f^{-1}(E)$. Pela fórmula (5.0.3) temos

$$\operatorname{vol}(E) = \operatorname{vol}(f(B)) = \int_{B} |\det Df(x)| \, dx = \int_{B} dx = \operatorname{vol}(B) = \operatorname{vol}(f^{-1}(E)).$$

Suponha por absurdo que f deixa invariante o volume e que exista $x \in M$ tal que $|\det Df(x)| > 1$. Então, como o jacobiano é contínuo, existiria uma vizinhança U de x e algum número $\sigma > 1$ tais que

$$|\det Df(y)| \ge \sigma$$
, para todo $y \in U$.

Então a fórmula (5.0.3) aplicada tomando B=U forneceria

$$vol(f(U)) = \int_{U} |\det Df(x)| dx \ge \sigma \, vol(U).$$

Denotando por E = f(U), isto implicaria que $\operatorname{vol}(E) > \operatorname{vol}(f^{-1}(E))$ e portanto f não deixaria invariante o volume. Do mesmo modo se mostra que se o valor absoluto do jacobiano é menor que 1 em algum ponto então f não deixa invariante o volume.

Definição 4.5.1. Um fluxo (D, f) em uma variedade M preserva uma medida μ definida sobre os boreleanos de M se para todo T < 0 e todo boreleano $A \subset D_T$ vale:

$$\mu(f^t(A)) = \mu(A)$$

para todo -T < t < T. Neste caso dizemos que μ é f-invariante ou invariante sob f. Quando (D,f) é gerado por um campo L dizemos que μ é L-invariante ou invariante sob L.

Suponhamos que o fluxo f^t corresponde às trajetórias de um campo de vetores $F: U \to U$ de classe C^1 , quer dizer $f^t(x)$ é o valor no tempo t da solução da equação diferencial

$$\frac{dx}{dt} = F(x). (4.5.2)$$

A fórmula de Liouville exprime o jacobiano de f^t em termos do divergente div F do campo de vetores F:

$$\det(Df^{t}(x)) = \exp\left(\int_{0}^{t} \operatorname{div} F(f^{s}(x)) ds\right). \tag{4.5.3}$$

Considere o seguinte Lema:

Lema 4.5.2. Seja $A: I \to M_{n \times n}(\mathbb{R}^n)$ e $\dot{x} = A(t)x$ um sistema linear homogêneo. Seja $\Phi(t)$ uma matriz $n \times n$ cujas colunas são soluções da equação num intervalo I. Então para todo $t \in I$ e $t_0 \in I$ fixo,

$$\det \Phi(t) = \det \Phi(t_0) \exp\{\int_{t_0}^t \operatorname{traço} A(s) \, ds\}.$$

Demonstração: Basta mostrar que a função $\mathcal{J}(t) = \det \Phi(t)$ é solução da equação $\dot{x} = \operatorname{traço} A(t)x$. Escreva $\Phi(t) = (\varphi_1(t), \dots, \varphi_n(t))$; como o determinante de uma matriz $n \times n$ é uma função n-linear de suas columas temos,

$$\mathcal{J}'(t) = \sum_{i=1}^{n} \det(\varphi_1(t), \dots, \varphi_i'(t), \dots, \varphi_n(t))$$
$$= \sum_{i=1}^{n} \det(\varphi_1(t), \dots, A(t)\varphi_i(t), \dots, \varphi_n(t)).$$

É suficiente supor que $\Phi(t)$ é matriz fundamental da equação, i.e., $\det \Phi(t) \neq 0$ para todo $t \in I$ pois caso contrário a proposição já estaria satisfeita. Deste modo para cada $t \in I$ o conjunto $\beta = \{\varphi_1(t), \dots, \varphi_n(t)\}$ é uma base de \mathbb{R}^n . Denotemos por $(\alpha_{ij}(t))$ a matriz de representação do operador linear $x \mapsto A(t)x$ com respeito a base β então

$$A(t)\varphi_i(t) = \sum_{i=1}^n \alpha_{ij}(t)\varphi_i(t).$$

Recorde que o traço de uma matriz não depende da sua representação matricial com respeito à uma base qualquer logo,

traço
$$A(t) = \sum_{i=1}^{n} \alpha_{ii}(t) = \sum_{i=1}^{n} a_{ii}(t).$$

Logo,

$$\mathcal{J}'(t) = \sum_{i=1}^{n} \det(\varphi_1(t), \dots, \sum_{j=1}^{n} \alpha_{ij}(t)\varphi_i(t), \dots, \varphi_n(t))$$

$$= \sum_{i=1}^{n} \alpha_{ii}(t) \det(\varphi_1(t), \dots, \varphi_i(t), \dots, \varphi_n(t))$$

$$= \operatorname{traço} A(t)\mathcal{J}(t).$$

Finalmente,

$$\mathcal{J}(t) = \mathcal{J}(t_0) e^{\int_{t_0}^t \operatorname{traço} A(s) \, ds}$$

Seja $f^t(x) = (\varphi_1(t,x), \dots, \varphi_n(t,x))$ o fluxo associado a equação (4.5.2). Então,

$$\frac{d}{dt}\varphi_j(t,x) = F_j(\varphi(t,x)), \,\forall j = 1, \dots, n.$$
(4.5.4)

Derivando a expressão (4.5.4) com respeito a variável x_{ℓ} obtemos

$$\frac{d}{dt}\frac{\partial}{\partial x_{\ell}}\varphi_{j}(t,x) = \sum_{k=1}^{n} \frac{\partial}{\partial y_{k}}F_{j}(\varphi(t,x))\frac{\partial}{\partial x_{j}}\varphi_{k}(t,x), \quad j = 1,\dots,n, \quad \ell = 1,\dots,n. \quad (4.5.5)$$

Denotando por $D\varphi(t,x)=Df^t(x)$ a matriz jacobiana da transformação $\varphi(t,x)$ com respeito à variável x temos que a expressão (4.5.5) implica que as colunas da matriz $D\varphi(t,x)$ são soluções da equação $\dot{x}=DF(\varphi(t,x))x$ ou seja $\dot{x}=DF(f^t(x))x$. Aplicando o Lema4.5.2 temos que tomando $t_0=0$ e usando as propriedades do fluxo segue que

$$\det DF(f^{t}(x)) = \det DF(f^{t_0}(x)) \exp\{\int_{t_0}^{t} \operatorname{traço} DF(f^{s}(x)) ds\}$$
$$= \exp\{\int_{0}^{t} \operatorname{div} F(f^{s}(x)) ds\}.$$

Combinando os resultados acima obtemos:

Lema 4.5.3. O fluxo f^t associado a um campo de vetores F de classe C^1 deixa invariante o volume se, e somente se, o divergente de F é identicamente nulo.

Capítulo 5

Hipoelipticidade de Campos Vetoriais no toro \mathbb{T}^N

Seja L um campo vetorial definido no toro \mathbb{T}^N então existem funções suaves periódicas em cada uma das variáveis tais que $L = \sum_{j=1}^N a_j(x) \frac{\partial}{\partial x_j}$. Para cada ponto $x^0 = (x_1, \dots, x_N)$ consideremos no toro \mathbb{T}^N o seguinte problema de valor inicial

$$\begin{cases} \frac{dy_1}{dt} = a_1(y), & y_1(0) = x_1 \\ \vdots \\ \frac{dy_N}{dt} = a_N(y), & y_N(0) = x_N. \end{cases}$$

Seja $\phi: \mathbb{R} \times \mathbb{T}^N \to \mathbb{T}^N$ o fluxo associado a resolução do problema de valor inicial acima. Então existem N funções em $C^{\infty}(\mathbb{R} \times \mathbb{T}^N)$, tais que $\phi(t,x) = (h_1(t,x_1,\ldots,x_N),\ldots,h_N(t,x_1,\ldots,x_N))$ de tal modo que as seguintes propriedades são satisfeitas.

- 1. $h_j(0,x) = x_j$ ou equivalentemente $\phi(0,x) = x$;
- 2. $h_j(t+s,x) = h_j(t,h_j(s,x))$ ou equivalentemente $\phi(t+s,x) = \phi(t,\phi(s,x))$;
- 3. Para cada $t \in \mathbb{R}$, $\phi(t,\cdot) \in C(\mathbb{T}^N,\mathbb{T}^N)$ e define uma família de difeomorfismos locais;

4.
$$\frac{dh_j}{dt} = a_j(h(t, x)) \text{ para cada } j = 1, \dots, n.$$

Por outro lado vamos calcular o gerador infinitesimal X_p , gerado pelos fluxos $\phi_t(x) \doteq \phi(t, x)$, e verificar que coincidem com L_p . De fato, seja $p = (x_1, \dots, x_N) \in \mathbb{T}^N$ e f uma função em $C^{\infty}(\mathbb{T}^N)$. Por definição

$$X_p(f) = \lim_{t \to 0} \frac{f(\phi_t(p)) - f(p)}{t} = \lim_{t \to 0} \frac{(f \circ h)(t, x) - (f \circ h)(0, x)}{t} = \frac{\partial}{\partial t} (f \circ h)(0, x).$$

Ou seja,

$$X_p(f) = \sum_{j=1}^N \frac{\partial}{\partial x_j} f(h(t,x)) \frac{d}{dt} h_j(t,x)|_{(0,x)}$$

$$= \sum_{j=1}^N \frac{\partial}{\partial x_j} f(h(0,x)) a_j(h(0,x)) = \sum_{j=1}^N a_j(p) \frac{\partial}{\partial x_j} f(p) = Lf(p) = L_p(f).$$

Proposição 5.0.1. Seja $L \in \mathfrak{X}(M)$ um campo vetorial suave dado por

$$L = \sum_{j=1}^{N} a_j(x) \frac{\partial}{\partial x_j}.$$
 (5.0.1)

Então, o operador transposto L^* é dado por $L^* = -L - divL$.

Demonstração: Sejam $\phi, \psi \in C^{\infty}(\mathbb{T}^N)$ então,

$$\begin{split} \langle L\phi,\psi\rangle &= \int_{\mathbb{T}^N} L\phi(x)\psi(x)dx \\ &= \int_{\mathbb{T}^N} \left(\sum_{j=1}^N a_j(x)\frac{\partial}{\partial x_j}\phi(x)\right)\psi(x)\,dx \\ &= \sum_{j=1}^N \int_{\mathbb{T}^N} a_j(x)\frac{\partial}{\partial x_j}(\phi(x))\psi(x)\,dx \\ &= \sum_{j=1}^N -\left(\int_{\mathbb{T}^N} \phi(x)\left(\frac{\partial}{\partial x_j}a_j(x)\right)\psi(x)\,dx + \int_{\mathbb{T}^N} a_j(x)\phi(x)\frac{\partial}{\partial x_j}\psi(x)\,dx\right) \\ &= -\left\{\int_{\mathbb{T}^N} \sum_{j=1}^N \phi(x)\frac{\partial}{\partial x_j}a_j(x)\psi(x)\,dx + \int_{\mathbb{T}^N} \sum_{j=1}^N a_j(x)\phi(x)\frac{\partial}{\partial x_j}\psi(x)\,dx\right\} \\ &= -\langle\phi,(L+divL)\psi\rangle. \end{split}$$

Lema 5.0.4. Seja $\mathcal{M} \subset \mathbb{T}^N$ um subconjunto fechado e invariante com respeito ao fluxo ϕ_t gerado por um campo vetorial e suave L dado por (5.0.1), então existe uma medida de probabilidade definida sobre os borelianos tal que $\int_{\mathbb{T}^N} L\eta(x) d\mu(x) = 0$ para toda $\eta \in C^{\infty}(\mathbb{T}^N)$ e supp $(\mu) \subset \mathcal{M}$.

Demonstração: Denotemos por $\{\phi_t\}_{t\in\mathbb{R}}$ o fluxo gerado pelo campo real suave L. Graças ao Teorema (4.3.1) existe $\mu \in \mathcal{M}(\mathbb{T}^N)$ tal que $\{\phi_t\}_{t\in\mathbb{R}}$ é μ -invariante isto é, $\mu(\phi_{-t}(E)) = \mu(E)$, $\forall E \in \Sigma$ e para todo $t \in \mathbb{R}$. Pela Proposição (4.2.1) temos que, se $\eta \in C^{\infty}(\mathbb{T}^N)$ então,

$$\int_{\mathbb{T}^N} \eta(\phi_t(x)) \, d\mu(x) = \int_{\mathbb{T}^N} \eta(x) \, d\mu(x). \tag{5.0.2}$$

Mostremos agora que $\langle L^*\mu, \eta \rangle = 0$, $\forall \eta \in C^{\infty}(\mathbb{T}^N)$. De fato, derivando em relação a t a expresssão em (5.0.2) temos:

$$0 = \frac{d}{dt} \int_{\mathbb{T}^N} \eta(x) \, d\mu(x) = \frac{d}{dt} \int_{\mathbb{T}^N} \eta(\phi_t(x)) \, d\mu(x) = \int_{\mathbb{T}^N} \frac{d}{dt} \eta(h_1(t, x) \dots, h_N(t, x)) \, d\mu(x)$$

$$= \int_{\mathbb{T}^N} \sum_{j=1}^N \frac{\partial \eta}{\partial x_j} (\phi_t(x)) \frac{dh_j}{dt} (t, x) \, d\mu(x)$$

$$= \int_{\mathbb{T}^N} \sum_{j=1}^N a_j(\phi_t(x)) \frac{\partial \eta}{\partial x_j} (\phi_t(x)) \, d\mu(x)$$

$$= \int_{\mathbb{T}^N} (L\eta) (\phi_t(x)) \, d\mu(x).$$

Sendo $L\eta$ uma função suave e aplicando novamente a Proposição (4.2.1) obtemos

$$0 = \int_{\mathbb{T}^N} (L\eta)(\phi_t(x)) d\mu(x) = \int_{\mathbb{T}^N} (L\eta)(x) d\mu(x).$$

Corolário 5.0.1. Dado $L \in \mathfrak{X}(\mathbb{T}^N)$ existe uma medida de probabilidade μ tal que $\mu \in KerL^*$

Demonstração: Pelo Lema anterior existe uma medida de probabilidade μ tal que para toda $\eta \in C^{\infty}(\mathbb{T}^N)$ a seguinte identidade ocorre

$$0 = \int_{\mathbb{T}^N} L\eta(x) \, d\mu(x) = \langle \mu, L\eta \rangle = \langle L^*\mu, \eta \rangle$$

provando que $L^*\mu = 0$ em $\mathcal{D}'(\mathbb{T}^N)$.

Teorema 5.0.1. Se L^* é Globalmente Hipoelíptico em \mathbb{T}^N então, a equação

$$L^*\omega = 0 \tag{5.0.3}$$

em $\mathcal{D}'(\mathbb{T}^N)$ tem solução em $C^{\infty}(\mathbb{T}^N)$ satisfazendo as seguintes propriedades.

- (a) $\omega(x) > 0$ para todo $x \in \mathbb{T}^N$;
- (b) Quaisquer duas soluções da equação (5.0.3) diferem por uma constante multiplicativa real.

Demonstração: Segue do Corolário (5.0.1) que existe uma medida de probabilidade μ tal que $L^*\mu = 0$ no sentido das distribuições, uma vez que, o espaço das medidas de Borel está

imerso no espaço das distribuições de ordem zero. Sendo L^* GH e $L^*\mu=0$, isto implica $\mu\in C^\infty(\mathbb{T}^N)$ isto é, existe $\omega\in C^\infty(\mathbb{T}^N)$ tal que

$$\int_{\mathbb{T}^N} \eta(x) \, d\mu = \langle \mu, \eta \rangle = \int_{\mathbb{T}^N} \omega(x) \eta(x) \, dx.$$

Ou seja, $d\mu = \omega dx$ para alguma ω em $C^{\infty}(\mathbb{T}^N)$.

Para a demonstração da Propriedade (a) suponha por absurdo que $\omega(x_0) = 0$ para algum $x_0 \in \mathbb{T}^N$. Defina $\mathcal{M} = \left\{ x \in \mathbb{T}^N \,|\, \omega(x) = 0 \right\}$ então vemos que que $\mathcal{M} \neq \emptyset$, \mathcal{M} é fechado em \mathbb{T}^N , pois $\mathcal{M} = \omega^{-1}(\{0\})$. Mostremos que \mathcal{M} é invariante com respeito ao fluxo i.e., $\phi_t(\mathcal{M}) \subset \mathcal{M}$, $\forall t \in \mathbb{R}$. Para verificarmos isto tomemos $q \in \phi_t(\mathcal{M})$ então $q = \phi_t(p)$ com $\omega(p) = 0$. Sabendo que ϕ_t é um difeomorfismo local escolhemos um $\delta > 0$ suficientemente pequeno para que ϕ_t seja um difeomorfismo da bola $B(p,\delta)$. Considere $\eta \in C^{\infty}(\mathbb{T}^N)$ tal que $S(\eta) \subset B(0,1)$ e $\int_{\mathbb{T}^N} \eta(x) dx = 1$. Defina, $\eta_{\epsilon}(x) = \epsilon^{-N} \eta\left(\frac{x-p}{\epsilon}\right)$, $0 < \epsilon < \epsilon_0$. Com ϵ_0 tomado suficientemente pequeno para que supp $(\eta_{\epsilon}) \subset B(p,\delta)$. Logo, pela invariância da medida temos que

$$\int_{\mathbb{T}^N} \eta_{\epsilon} \left(\phi_t(x) \right) \omega(x) dx = \int_{\mathbb{T}^N} \eta_{\epsilon}(x) \omega(x) dx = \int_{B(p,\delta)} \epsilon^{-N} \eta \left(\frac{x-p}{\epsilon} \right) \omega(x) dx.$$

Por mudança de variáveis obtemos

$$\int_{\mathbb{T}^N} \eta_{\epsilon} \left(\phi_t(x) \right) \omega(x) dx = \int_{B(0,\frac{\delta}{\epsilon})} \eta(y) \omega(p + \epsilon y) \, dy.$$

Assim,

$$\lim_{\epsilon \searrow 0} \int_{\mathbb{T}^N} \eta_{\epsilon} \left(\phi_t(x) \right) \omega(x) \, dx = \omega(p).$$

Por outro lado,

$$\int_{\mathbb{T}^{N}} \eta_{\epsilon} (\phi_{t}(x)) \omega(x) dx = \int_{B(\phi_{-t}(q), \epsilon \epsilon_{0})} \epsilon^{-N} \eta \left(\frac{\phi_{t}(x) - p}{\epsilon} \right) \omega(x) dx$$
$$= \int_{B(0, \epsilon_{0})} \eta(y) \omega(\phi_{-t}(p + \epsilon y)) |D\phi_{-t}(p + \epsilon y)| dy.$$

Assim,

$$\lim_{\epsilon \searrow 0} \int_{\mathbb{T}^N} \eta_{\epsilon} \left(\phi_t(x) \right) \omega(x) dx = \omega(q) |D\phi_{-t}(p)|.$$

Segue da unicidade do limite que $\omega(q)|D\phi_{-t}(p)|=\omega(p)$. Como $|D\phi_{-t}(p)|\neq 0$ e $\omega(p)=0$ vemos que $\omega(q)=0$. Como queríamos demonstrar.

Seja $\mathcal{M}_1 \subseteq \mathcal{M}$ conjunto minimal tal que $\phi_t(\mathcal{M}_1) \subset \mathcal{M}_1$. Aplicando novamente o Lema 5.0.4 temos que existe $\mu_1 \in \mathcal{M}(\mathbb{T}^N)$ tal que $L^*\mu_1 = 0$ e supp $(\mu_1) \subset \mathcal{M}_1$. Sendo L^* GH

temos que existe uma função suave $\omega_1 \in C^{\infty}(\mathbb{T}^N)$ tal que $\mu_1 = T_{\omega_1}$. Deste modo, $L^*\omega_1 = 0$ com supp $(\omega_1) \subset \mathcal{M}_1$ onde, supp $(\omega_1) = \overline{\{x \in \mathbb{T}^N : \omega_1(x) \neq 0\}}$ portanto,

$$\{x \in \mathbb{T}^N : \omega_1(x) \neq 0\} \subset \operatorname{supp}(\omega_1) \subset \mathcal{M}_1.$$

Implicando que $int \mathcal{M}_1 \neq \emptyset$. Logo, pelo teorema de Tumarkin [NS] temos que \mathcal{M}_1 é aberto. Por outro lado, \mathcal{M}_1 é fechado e sendo \mathbb{T}^N conexo, segue que $\mathcal{M}_1 = M = \mathbb{T}^N$ fazendo com que $\omega(x) = 0$, $\forall x \in \mathbb{T}^N$ gerando assim uma contradição, concluindo portanto a prova da Propriedade (a).

Para a prova da Propriedade (b), seja $G \in \mathcal{D}'(\mathbb{T}^N)$ tal que $L^*G = 0$ em $\mathcal{D}'(\mathbb{T}^N)$ então pela hipoelipticidade do operador L^* e do fato de $\omega(x) > 0$ para todo $x \in \mathbb{T}^N$ segue que $g = \frac{G}{\omega} \in C^{\infty}(\mathbb{T}^N)$. É fácil ver que para toda $g \in C^{\infty}(\mathbb{T}^N)$ vale $L^*(g\omega) = \omega L(g)$. Assim, $0 = L^*(G) = L^*(g\omega) = \omega L(g)$ mostrando que L(g)(x) = 0 para todo $x \in \mathbb{T}^N$. Suponhamos, por absurdo, que g não seja equivalente a uma constante, então existiria uma constante real c tal que o conjunto $g^{-1}(c)$ seria um subconjunto invariante próprio de \mathbb{T}^N e invariante para o fluxo ϕ_t . Repetindo o raciocínio anterior o conjunto $g^{-1}(c)$ teria um conjunto minimal \mathcal{M} com todos os seus pontos sendo pontos interiores. Por conexidade teríamos então que $g \equiv const$. Deste modo, isto completa a prova do Teorema 5.0.1.

Corolário 5.0.2. $\dim_{\mathbb{C}} KerL^* = 1$.

5.1 Resolubilidade

Teorema 5.1.1. Suponha que L* seja GH então, L é GH e a equação

$$Lu = f (5.1.1)$$

é resolúvel em $C^{\infty}(\mathbb{T}^N)$ para $f \in C^{\infty}(\mathbb{T}^N)$ se, e somente se,

$$\int_{\mathbb{T}^N} f(x)\omega(x)dx = 0.$$
 (5.1.2)

Demonstração: Primeiro, mostremos que o campo L é Globalmente Hipoelíptico. De fato, seja $u \in \mathcal{D}'(\mathbb{T}^N)$ uma distribuição tal que Lu = h onde, $h \in C^{\infty}(\mathbb{T}^N)$. Defina $\varphi = \omega u \in \mathcal{D}'(\mathbb{T}^N)$, logo aplicando o operador L^* em φ e usando o fato de que $\omega \in KerL^*$ temos

$$L^*\varphi = L^*(\omega u) = -\omega L u = -\omega h \in C^{\infty}.$$

Sendo L^* Hipoelíptico concluímos que $\varphi \in C^{\infty}(\mathbb{T}^N)$. E isto mostra que o campo L é GH.

Mostraremos agora que a resolubilidade implica na condição de compatibilidade. De fato, suponhamos que Lu = f seja resolúvel em $C^{\infty}(\mathbb{T}^N)$, então dada uma função $f \in C^{\infty}(\mathbb{T}^N)$, existe $u \in C^{\infty}(\mathbb{T}^n)$ tal que Lu = f e como consequência

$$\int_{\mathbb{T}^N} f(x)\omega(x)dx = \langle Lu, \omega \rangle = \langle u, L^*\omega \rangle = 0.$$

Consideremos a recíproca, isto é, suponhamos que L^* seja GH e que vale a condição de compatibilidade (5.1.2), mostraremos então que existe $u \in \mathcal{D}'(\mathbb{T}^N)$ tal que Lu = f. Sendo L GH tal distribuição é de fato uma função em $C^{\infty}(\mathbb{T}^N)$.

Considere o subespaço $Y = \{L^*g \mid g \in C^{\infty}(\mathbb{T}^N)\}$ de $H^{\beta}(\mathbb{T}^N)$, munido com a norma sobolev $\|\cdot\|_{\beta}$ para algum $\beta \in \mathbb{R}$ e defina sobre Y o seguinte funcional $\Lambda_f : Y \to \mathbb{R}$ pondo

$$\Lambda_f(L^*g) = \int_{\mathbb{T}^N} f(x)g(x)dx. \tag{5.1.3}$$

Note que o funcional linear Λ_f está bem definido pois, se $g_1, g_2 \in C^{\infty}(\mathbb{T}^N)$ são tais que $L^*g_1 = L^*g_2$ então existe $C \in \mathbb{R}$, tal que $g_1 - g_2 = C\omega$. Assim,

$$\int_{\mathbb{T}^{N}} f(x) (g_{1}(x) - g_{2}(x)) dx = C \int_{\mathbb{T}^{N}} f(x) \omega(x) dx = 0$$

de onde concluímos que Λ_f esta bem definido.

Usaremos o Lema 3.3.11 para mostrar que $\Lambda_f \in (H^{\beta})^*$. De fato, seja $L^*g \in Y$ e considere a seguinte decomposição, $g = g_0 + g_1$ com $g_0 \in C^{\infty}(\mathbb{T}^N) \cap (KerL^*)^{\perp}$ e $g_1 \in KerL^*$. Logo,

$$\Lambda_f(L^*g) = \int_{\mathbb{T}^N} f(x) \left(g_0(x) - g_1(x) \right) \, dx = \int_{\mathbb{T}^N} f(x) g_0(x) \, dx.$$

Aplicando a desigualdade de Cauchy-Schwartz vemos que

$$|\Lambda_f(L^*g)| = \left| \int_{\mathbb{T}^N} f(x) g_0(x) dx \right|$$

 $\leq ||f||_0 ||g_0||_0,$

onde $\|\cdot\|_0$ denota a norma Sobolev para $\beta=0$.

Graças ao Lema 3.3.11 obtemos

$$|\Lambda_f(L^*g)| = \leq ||f||_0 ||g_0||_0$$

$$\leq C||f||_0 ||L^*g_0||_\beta$$

$$= C||f||_0 ||L^*g||_\beta.$$

Segue do Teorema de Hahn-Banach que Λ_f se estende continuamente ao espaço $H^{\beta}(\mathbb{T}^N)$. Assim, existe $u \in (H^{\beta}(\mathbb{T}^N))^* \cong H^{-\beta}(\mathbb{T}^N)$ tal que

$$\Lambda_f(\phi) = \langle u, \phi \rangle$$

para toda $\phi \in H^{\beta}$. Deste modo, para toda $g \in C^{\infty}(\mathbb{T}^N)$ tomando $\phi = L^*g$ na igualdade anterior temos

$$\langle u, L^*g \rangle = \Lambda_f(L^*g) = \int_{\mathbb{T}^N} f(x)g(x) dx.$$

Provando portanto que Lu = f em $\mathcal{D}'(\mathbb{T}^N)$.

5.2 Condição Diofantina

Definição 5.2.1. Uma sequência de números reais $\Lambda_1, \ldots, \Lambda_n$ satisfaz a condição Diofantina (\star) se, e somente se, existirem constantes $N_0 > 0$, $C_0 > 0$ tais que

$$\left| \sum_{j=1}^{n} m_j \Lambda_j \right| \ge \frac{C_0}{(1+|m|)^{N_0}} \tag{*}$$

para cada $m = (m_1, \ldots, m_n) \in \mathbb{Z}^n \setminus \{0\}.$

Teorema 5.2.1. Seja $L = \sum_{j=1}^{n} \Lambda_{j} \frac{\partial}{\partial x_{j}}$ um campo vetorial com coeficientes constantes. Então, as seguintes condições são equivalentes:

- (i) L é globalmente hipoelíptico;
- (ii) $\Lambda_1, \ldots, \Lambda_n$ satisfazem a condição Diofantina (\star) .

Demonstração: Para mostrar que $(ii) \Rightarrow (i)$ seja $u \in \mathcal{D}'(\mathbb{T}^N)$ tal que $Lu = f \in C^{\infty}(\mathbb{T}^N)$, queremos mostrar que $u \in C^{\infty}(\mathbb{T}^N)$. Aplicando a transformada de Fourier em ambos os membros da igualdade

$$\sum_{j=1}^{n} \Lambda_j \frac{\partial u}{\partial x_j} = f$$

obtemos

$$\sum_{j=1}^{n} m_j \Lambda_j \widehat{u}(m) = \widehat{f}(m).$$

Graças a condição (\star) existem constantes $C_0 > 0$ e $N_0 > 0$ tais que

$$|\widehat{u}(m)| \le C_0^{-1} |\widehat{f}(m)| (1+|m|)^{N_0}.$$
 (5.2.1)

Assim, usando o fato de $f \in C^{\infty}(\mathbb{T}^N)$ dado N>0 existe uma constante $C_N>0$ tal que

$$|\widehat{f}(m)| \le \frac{C_N}{(1+|m|)^{N-N_0}}.$$
 (5.2.2)

Logo, substituindo (5.2.2) em (5.2.1) obtemos

$$|\widehat{u}(m)| \le \frac{C_0^{-1}C_N}{(1+|m|)^N},$$

Logo, $u\in C^\infty(\mathbb{T}^N)$ como queríamos demonstrar.

Para mostrar que $(i) \Rightarrow (ii)$ suponha por absurdo que a condição (\star) não ocorra, então existiriam $m(l) = (m_1(l), \dots, m_n(l)) \in \mathbb{Z}^n$ tais que

$$\left| \sum_{j=1}^{n} m_j(l) \Lambda_j \right| \le \frac{1}{(1+|m(l)|)^l}, \quad l = 1, 2, \dots$$
 (5.2.3)

Sem perda de generalizades podemos assumir que $|m(l)| \ge l$. Defina

$$C_m = \begin{cases} 0, & \text{se } m \neq m(l) \text{ ou } m = 0\\ \frac{\sum_{j=1}^n \Lambda_j m_j(l)}{1 + |m(l)|^2}, & \text{se } m = m(l), m \neq 0. \end{cases}$$
 (5.2.4)

Mostraremos que C_m tem decaimento rápido. De fato, aplicando a condição (5.2.3) obtemos

$$|C_{(m(l))}| = \frac{\left|\sum_{j=1}^{n} \Lambda_j m_j(l)\right|}{1 + |m(l)|^2} \le \frac{1}{(1 + |m(l)|)^l}$$

Logo, dado N > 0

$$(1+|m(l)|)^N|C_{(m(l))}| \le \frac{1}{(1+|l|)^{l-N}} \le 1$$

para todo $m(l)>l\geq N$. Seja $M=\max\{(1+|m(l)|)^N|C_{(m(l))}|$ tal que $|m(l)|\leq N\}$. Assim vemos que

$$(1+|m(l)|)^N|C_{m(l)}| \le \max\{M,1\} = C_N.$$

Portanto, concluímos que dado qualquer N>0 existe $C_N>0$ tal que

$$|C_m| \le \frac{C_N}{(1+|m|)^N}$$

para todo $m \in \mathbb{Z}^N$. Logo, definindo $f(x) = \sum_{m \in \mathbb{Z}^n} C_m e^{2\pi i m \cdot x}$ segue que $f \in C^{\infty}(\mathbb{T}^N)$

Por outro lado seja $g\in\mathcal{D}'(\mathbb{T}^N)$ tal que Lg=f. Assim aplicando a transformada de Fourier obtemos para cada $m\in\mathbb{Z}^N$ a seguinte expressão

$$\sum_{j=1}^{N} m_j \Lambda_j \widehat{g}(m) = \widehat{f}(m).$$

Seja

$$\mathfrak{H} \doteq \{l \in \mathbb{N} \mid \sum_{j=1}^{n} m_j(l) \Lambda_j = 0\}.$$

Assim, para m = m(l) tal que $l \notin \mathfrak{H}$ obtemos

$$\widehat{g}(m(l)) = \frac{\widehat{f}(m(l))}{\sum_{j=1}^{n} m_j(l)\Lambda_j} = \frac{1}{1 + |m(l)|^2}.$$

Portanto, como as condições do Teorema 5.0.1 não se verificam temos que $g \notin C^{\infty}(\mathbb{T}^N)$, o que é uma contradição. Logo, os números $\Lambda_1, \ldots, \Lambda_n$ satisfazem a condição Diofantina (\star) .

5.3 Conjugação- C^{∞}

Daremos agora o resultado principal deste trabalho, que nos diz que, se o transposto L^* de um operador L for globalmente hipoelíptico, sempre é possível encontrarmos um sistema de coordenas, de tal forma que, neste novo sistema L tem coeficientes constantes, com tais constantes satisfazendo a condição Diofantina (\star). Como consequência deste fato, veremos que as órbitas de pontos no toro \mathbb{T}^N são densas no toro \mathbb{T}^N , isto é, os sistemas dinâmicos gerados por L são minimais.

Teorema 5.3.1 (Resultado Central). Seja $L \in \mathfrak{X}(\mathbb{T}^N)$ um campo vetorial suave real. Então o operador transposto L^* é Globalmente Hipoelíptico se, e somente se, existem um difeomorfismo global $\tau : \mathbb{T}^N \to \mathbb{T}^N$, $y = \tau(x)$, e números reais $\Lambda_1, \ldots, \Lambda_N$ satisfazendo a condição Diofantina (\star) tais que L se conjuga com o campo

$$L_0 = \sum_{j=1}^{N} \Lambda_j \partial_{y_j}. \tag{5.3.1}$$

Demonstração: Para a prova da necessidade da condição, sejam $a_j \in C^{\infty}(\mathbb{T}^N)$, $j = 1, \ldots, N$ tais que $L = \sum_{j=1}^{N} a_j(x) \partial x_j$ e defina

$$\Lambda_j = \int_{\mathbb{T}^N} a_j(x)\omega(x) dx, \qquad (5.3.2)$$

para $j = 1, \dots, N$.

Notemos que para cada j fixo a função $\Lambda_j - a_j(x)$ satisfaz a condição de compatibilidade (5.1.2). De fato,

$$\int_{\mathbb{T}^N} (\Lambda_j - a_j(x)) \,\omega(x) dx = \Lambda_j \int_{\mathbb{T}^N} \omega(x) \,dx - \int_{\mathbb{T}^N} a_j(x) \omega(x) \,dx = 0.$$

Assim, pelo teorema de resolubilidade 5.1.1, para cada $j \in \{1, ..., N\}$ fixo, existem N-funções $\varphi_j \in C^\infty(\mathbb{T}^N)$ tais que

$$L\varphi_j(x) = \Lambda_j - a_j(x). \tag{5.3.3}$$

Defina $\tau_j(x)=x_j+\varphi_j(x)$ então, é fácil ver que τ_j define uma função quase-periódica no toro \mathbb{T}^N tal que

$$L\tau_j = \Lambda_j, \ 1 \le j \le N. \tag{5.3.4}$$

Defina a aplicação $\tau(x) = (\tau_1(x), \dots, \tau_N(x)) \pmod{1}$. Então graças aos Lemas 5.3.2, 5.3.3 que serão provados adiante, como L^* é globalmente hipoelíptico, τ define um difeomorfismo global. Além disso, se $f \in C^{\infty}(\mathbb{T}^N)$ temos que se $y = \tau(x)$ então

$$Lf(x) = \sum_{j=1}^{N} \Lambda_j \frac{\partial \tilde{f}}{\partial y_j} \doteq L_0 \tilde{f}(y)$$
 (5.3.5)

sendo que $\tilde{f}(y) = f(x)$.

Novamente, graças ao Teorema 5.1.1 segue que, se L^* é globalmente hipoelíptico então, L é globalmente hipoelíptico e portanto, L_0 é globalmente hipoelíptico. Logo aplicando o Teorema 5.2.1 para L_0 , segue que os números reais $\Lambda_1, \ldots, \Lambda_N$ satisfazem a condição Diofantina (\star) .

Reciprocamente, suponhamos que existam um difeomorfismo global $\tau: \mathbb{T}^N \to \mathbb{T}^N$, $y = \tau(x)$, e números reais $\Lambda_1, \ldots, \Lambda_N$ satisfazendo a condição Diofantina (\star) tais que L se conjuga com o campo

$$L_0 = \sum_{j=1}^{N} \Lambda_j \partial_{y_j}. \tag{5.3.6}$$

Logo, pelo Teorema 5.2.1 temos que L_0 é globalmente hipoelíptico, o que implica que L é globalmente hipoelíptico. Queremos mostrar que L^* é Globalmente Hipoelíptico. De fato, recordemos que

$$L^*(J(x)v(x)) = J(x)Lv(x)$$

para toda $v \in \mathcal{D}'(\mathbb{T}^N)$. Agora, seja $u \in \mathcal{D}'(\mathbb{T}^N)$ tal que $L^*u = f \in C^{\infty}(\mathbb{T}^N)$. Se $\widetilde{u} = \frac{u}{J}$ temos pela relação anterior que

$$L^*(u) = L^*(J\widetilde{u}) = J(x)L(\widetilde{u}) \in C^{\infty}(\mathbb{T}^N).$$

Segue da Hipoelipticidade de L que $\widetilde{u} \in C^{\infty}(\mathbb{T}^N)$, de onde concluímos que $u \in C^{\infty}(\mathbb{T}^N)$.

Lema 5.3.1. Se L* é Globalmente Hipoelíptico então,

$$\sum_{j=1}^{N} k_j \Lambda_j \neq 0$$

para todo multi-índice $K = (k_1, \ldots, k_N) \in \mathbb{Z}^N, K \neq 0.$

Demonstração: Suponha que exista $K=(k_1,\ldots,k_N)\in\mathbb{Z}^N,\,K\neq 0$ tal que

$$\sum_{j=1}^{N} k_j \Lambda_j = 0 \tag{5.3.7}$$

Defina, $\varphi(x) = \exp\left\{2\pi i \sum_{j=1}^{N} k_j \tau_j(x)\right\}$, temos que $\varphi(x) \in C^{\infty}(\mathbb{T}^N)$ pois, como $\tau_j(x+1) = x_j + 1 + \varphi_j(x+1) = x_j + 1 + \varphi_j(x) = \tau_j(x) + 1$ segue que,

$$\varphi(x+1) = \exp\left\{2\pi i \sum_{j=1}^{N} k_j \tau_j(x+1)\right\} = \exp\left\{2\pi i \sum_{j=1}^{N} k_j \left(\tau_j(x)+1\right)\right\}$$
$$= \exp\left\{2\pi i \sum_{j=1}^{N} k_j \tau_j(x)\right\} \exp\left\{2\pi i \sum_{j=1}^{N} k_j\right\}$$
$$= \exp\left\{2\pi i \sum_{j=1}^{N} k_j \tau_j(x)\right\} = \varphi(x).$$

Além disso,

$$L\varphi(x) = \sum_{k=1}^{N} a_k(x) \frac{\partial \varphi(x)}{\partial x_k} = 2\pi i \sum_{k=1}^{N} a_k(x) \frac{\partial}{\partial x_k} \left(\sum_{j=1}^{N} k_j \tau_j(x) \right) \varphi(x)$$

$$= 2\pi i \varphi(x) \sum_{k=1}^{N} a_k(x) \sum_{j=1}^{N} k_j \frac{\partial \tau_j(x)}{\partial x_k}$$

$$= 2\pi i \varphi(x) \sum_{j=1}^{N} \sum_{k=1}^{N} a_k(x) k_j \frac{\partial \tau_j(x)}{\partial x_k}$$

$$= 2\pi i \varphi(x) \sum_{j=1}^{N} k_j L \tau_j = 2\pi i \varphi(x) \sum_{j=1}^{N} k_j \Lambda_j = 0.$$

Assim, φ é solução da equação $L\varphi=0$. A seguir mostraremos que $L^*(\varphi\omega)=0$. Com efeito,

$$L^*(\varphi\omega) = \sum_{k=1}^N \frac{\partial}{\partial x_k} (a_k(x)\varphi(x)\omega(x))$$

$$= \sum_{k=1}^N \frac{\partial \varphi(x)}{\partial x_k} a_k(x)\omega(x) + \sum_{k=1}^N \varphi(x) \frac{\partial}{\partial x_k} (a_k(x)\omega(x))$$

$$= \omega(x)L\varphi(x) + \varphi(x)L^*(\omega) = 0.$$

Pelo Corolário 5.0.2 existe uma constante complexa $c \doteq \exp\{2\pi i\beta\} \in \mathcal{S}^1$ tal que $\varphi(x) = c$ para todo $x \in \mathbb{T}^N$. Desta forma,

$$\varphi(x) = \exp\left\{2\pi i \sum_{j=1}^{N} k_j \tau_j(x)\right\} = \exp\left\{2\pi i \beta\right\}$$

ou seja, $\exp\left\{2\pi i \left\{\sum_{j=1}^N k_j \tau_j(x) - \beta\right\}\right\} = 1$. Logo, $\sum_{j=1}^N k_j \tau_j(x) - \beta \in \mathbb{Z}$ mostrando que $Im\left(\sum_{j=1}^N k_j \tau_j(x) - \beta\right) \subset \mathbb{Z}$. Assim, $\sum_{j=1}^N k_j \tau_j(x) = \beta \pmod{1}$. Como \mathbb{T}^N é conexo, segue existe um único número $\ell \in \mathbb{Z}$ tal que $\sum_{j=1}^N k_j \tau_j(x) = \beta + \ell \doteq c$, de onde concluímos que

$$\sum_{j=1}^{N} k_j x_j = c - \sum_{j=1}^{N} k_j \varphi_j(x).$$
 (5.3.8)

Usando a periodicidade das aplicações φ_j em cada coordenada, isto é, para cada $j=1,\ldots,N$ fixo temos que $\varphi_j(x_1,\ldots,x_j+1,\ldots,x_N)=\varphi_j(x_1,\ldots,x_j,\ldots,x_N)$. Logo, segue de (5.3.8) que

$$k_1 x_1 + \ldots + k_j (x_j + 1) + \ldots + k_N x_N = c - \sum_{j=1}^N k_j \varphi_j(x_1, \ldots, x_j + 1, \ldots, x_N)$$
 (5.3.9)

Por outro lado,

$$k_1 x_1 + \ldots + k_j x_j + \ldots + k_N x_N = c - \sum_{j=1}^N k_j \varphi_j(x_1, \ldots, x_j, \ldots, x_N)$$
 (5.3.10)

Subtraindo as equações (5.3.9) e (5.3.10) vemos que $k_j=0$ para todo $j=1,\ldots,N$ o que gera uma contradição. Concluímos assim a prova do Lema.

Lema 5.3.2. Suponha que L* seja Globalmente Hipoelíptico, então

$$J(x) = \omega(x), \forall x \in \mathbb{T}^N. \tag{5.3.11}$$

onde J(x) denota o determinante Jacobiano da função $\tau(x)=(\tau_1(x),\ldots,\tau_N(x))$. Isto é,

$$J(x) = \begin{vmatrix} \partial_1 \tau_1(x) & \partial_2 \tau_1(x) & \cdots & \partial_N \tau_1(x) \\ \partial_1 \tau_2(x) & \partial_2 \tau_2(x) & \cdots & \partial_N \tau_2(x) \\ \vdots & \vdots & \vdots & \vdots \\ \partial_1 \tau_N(x) & \partial_2 \tau_N(x) & \cdots & \partial_N \tau_N(x) \end{vmatrix}$$

onde $\partial_j \tau_k(x) = \frac{\partial \tau_k}{\partial x_j}(x)$.

Demonstração: Se mostrarmos que J(x) é solução da equação $L^*u=0$, teremos pelo Teorema (5.0.1) que $J(x)=c_0\omega(x)$ para alguma constante $c_0\in\mathbb{R}$. Daí, só nos restará mostrar que $c_0=1$. De fato,

$$L^*J(x) = -\sum_{j=1}^N \frac{\partial}{\partial x_j} \left(\lambda_j(x) J(x) \right). \tag{5.3.12}$$

Dado que $J(x)\lambda_j(x) = J_j(x)$, onde $J_j(x)$ é o determinante da matriz que se obtém substituindose a j-ésima coluna da matriz Jacobiana de $\tau(x)$ pelo vetor $(\Lambda_1, \ldots, \Lambda_N)^t$ temos que,

$$L^*J(x) = -\sum_{j=1}^N \frac{\partial}{\partial x_j} \left(\lambda_j(x) J(x) \right) = -\sum_{j=1}^N \frac{\partial}{\partial x_j} J_j(x).$$
 (5.3.13)

Agora, usando o fato de que $J_j(x)$ é uma forma N-linear alternada com respeito as colunas, segue que

$$\frac{\partial}{\partial x_j} J_j(x) = \sum_{k=1, k \neq j}^N J_j^k(x)$$
 (5.3.14)

onde, $J_j^k(x)$ é o determinante que se obtém derivando a k-ésima coluna com relação a x_j , isto é,

$$J_{j}^{k}(x) = \begin{vmatrix} \partial_{1}\tau_{1}(x) & \partial_{2}\tau_{1}(x) & \cdots & \partial_{j}\tau_{1}(x) & \cdots & \partial_{j}\partial_{k}\tau_{1}(x) & \cdots & \partial_{N}\tau_{1}(x) \\ \partial_{1}\tau_{2}(x) & \partial_{2}\tau_{2}(x) & \cdots & \partial_{j}\tau_{2}(x) & \cdots & \partial_{j}\partial_{k}\tau_{2}(x) & \cdots & \partial_{N}\tau_{2}(x) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \partial_{1}\tau_{N}(x) & \partial_{2}\tau_{N}(x) & \cdots & \partial_{j}\tau_{N}(x) & \cdots & \partial_{j}\partial_{k}\tau_{N}(x) & \cdots & \partial_{N}\tau_{N}(x) \end{vmatrix}.$$

Note que, $J_j^k + J_k^j \equiv 0$ pois, como

$$J_k^j(x) = \begin{vmatrix} \partial_1 \tau_1(x) & \partial_2 \tau_1(x) & \cdots & \partial_k \partial_j \tau_1(x) & \cdots & \partial_k \tau_1(x) & \cdots & \partial_N \tau_1(x) \\ \partial_1 \tau_2(x) & \partial_2 \tau_2(x) & \cdots & \partial_k \partial_j \tau_2(x) & \cdots & \partial_k \tau_2(x) & \cdots & \partial_N \tau_2(x) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \partial_1 \tau_N(x) & \partial_2 \tau_N(x) & \cdots & \partial_k \partial_j \tau_N(x) & \cdots & \partial_k \tau_N(x) & \cdots & \partial_N \tau_N(x) \end{vmatrix}$$

trocando a k-ésima coluna de $J_k^j(x)$ pela j-ésima coluna e usando Schwartz, concluimos que $J_j^k = -J_k^j \Rightarrow J_j^k + J_k^j \equiv 0. \text{ Agora, substituindo (5.3.14) em (5.3.13) obtemos,}$

$$L^*J(x) = -\sum_{j=1}^N \sum_{k=1, k \neq j}^N J_j^k(x)$$
 (5.3.15)

$$= -\sum_{1 \le j < k \le N} J_j^k + J_k^j. \tag{5.3.16}$$

Usando agora o fato de que $J_j^k + J_k^j \equiv 0$, segue que $L^*J(x) = 0$. Tudo que nos resta agora, é mostrar que $c_0 = 1$. De fato, substituindo $\partial_k \tau_j(x) = \delta_{kj} + \partial_k \varphi_j(x)$ em J(x), obtemos a seguinte igualdade

$$J(x) = 1 + \sum_{k=1}^{N} A_k \tag{5.3.17}$$

onde cada A_k é a soma de todos os menores principais de ordem k do determinante

$$\begin{vmatrix} \partial_1 \varphi_1(x) & \partial_2 \varphi_1(x) & \cdots & \partial_N \varphi_1(x) \\ \partial_1 \varphi_2(x) & \partial_2 \varphi_2(x) & \cdots & \partial_N \varphi_2(x) \\ \vdots & \vdots & \vdots & \vdots \\ \partial_1 \varphi_N(x) & \partial_2 \varphi_N(x) & \cdots & \partial_N \varphi_N(x) \end{vmatrix}$$

logo, é suficiente mostrar que a integral de cada A_k no toro \mathbb{T}^N é nula. Porém mostraremos que a integral do determinante acima é nula, desde que a prova dos os outros casos são análogas. Para isso, considere $\Phi = (\varphi_1, \dots, \varphi_N)^t$, então a integral do determinante tem a seguinte forma,

$$\int_{\mathbb{T}^N} |\partial_1 \Phi, \partial_2 \Phi, \dots, \partial_N \Phi| \, dx. \tag{5.3.18}$$

sendo Φ periódica, integrando por partes com respeito a variável x_1 , obtemos

$$\int_{\mathbb{T}^N} |\partial_1 \Phi, \partial_2 \Phi, \dots, \partial_N \Phi| \, dx = -\int_{\mathbb{T}^N} |\Phi, \partial_1 \partial_2 \Phi, \dots, \partial_N \Phi| \, dx \\
-\int_{\mathbb{T}^N} |\Phi, \partial_2 \Phi, \partial_1 \partial_3 \Phi, \dots, \partial_N \Phi| \, dx \\
\dots \\
-\int_{\mathbb{T}^N} |\Phi, \partial_2 \Phi, \partial_3 \Phi, \dots, \partial_1 \partial_N \Phi| \, dx \\
= \sum_{i=2}^N I_i.$$

agora, integrando por partes em relação a x_2 concluímos que

$$I_{2} = \int_{\mathbb{T}^{N}} |\partial_{2}\Phi, \partial_{1}\Phi, \partial_{3}\Phi, \dots, \partial_{N}\Phi| dx$$

$$+ \int_{\mathbb{T}^{N}} |\Phi, \partial_{1}\Phi, \partial_{2}\partial_{3}\Phi, \dots, \partial_{1}\partial_{N}\Phi| dx$$

$$+ \dots$$

$$+ \int_{\mathbb{T}^{N}} |\Phi, \partial_{1}\Phi, \partial_{3}\Phi, \dots, \partial_{2}\partial_{N}\Phi| dx$$

$$= - \int_{\mathbb{T}^{N}} \left(|\partial_{1}\Phi, \partial_{2}\Phi, \partial_{3}\Phi, \dots, \partial_{N}\Phi| - \sum_{k=3}^{N} I_{2}^{k} \right) dx.$$

onde,

$$I_2^k = \int_{\mathbb{T}^N} |\Phi, \partial_1 \Phi, \dots, \partial_2 \partial_k \Phi, \dots, \partial_N \Phi| dx.$$

Aplicando o mesmo procedimento para I_i obetemos,

$$I_{j} = -\int_{\mathbb{T}^{N}} \left(|\partial_{1}\Phi, \partial_{2}\Phi, \partial_{3}\Phi, \dots, \partial_{N}\Phi| - \sum_{k=2, k \neq j}^{N} I_{j}^{k} \right) dx, \tag{5.3.19}$$

onde, I_j^k são determinantes de ordem N com Φ na primeira coluna, $\partial_1 \Phi$ na j-ésima coluna, e $\partial_i \partial_k \Phi$ na k-ésima coluna, etc. Como consequência, resulta que

$$I_j^k + I_k^j = 0, \ 2 \le k, j \le N, \ k \ne j.$$

substituindo em ?? segue que,

$$\int_{\mathbb{T}^N} |\partial_1 \Phi, \partial_2 \Phi, \dots, \partial_N \Phi| \, dx = -(N-1) \int_{\mathbb{T}^N} |\partial_1 \Phi, \partial_2 \Phi, \dots, \partial_N \Phi| \, dx. \tag{5.3.20}$$

e isto garante que a integral é nula. Logo,

$$\int_{\mathbb{T}^N} J(x) \, dx = 1.$$

e portanto, $c_0 = 1$.

Observação 5.3.5: O lema 5.3.2 assegura que a aplicação $\tau: \mathbb{T}^N \to \mathbb{T}^N$, $y = \tau(x)$ é um difeomorfismo local. Os lemas a seguir mostram mais que isso ou seja, mostraremos que τ é um difeomorfismo global, isto é, globalmente injetiva e sobrejetiva.

Lema 5.3.3. Se o transposto L^* é Globalmente C^∞ Hipoelíptico , então a aplicação τ : $\mathbb{T}^N \to \mathbb{T}^N$ definida por

$$\tau(x) = (x_1 + \varphi_1(x), \dots, x_N + \varphi_N(x))$$
 (5.3.21)

é sobrejetora.

Demonstração: Considere o seguinte problema de valor inicial,

$$\begin{cases} \frac{dx_1}{dt} &= \lambda_1, & x_1(0) = x_1^0 \\ \frac{dx_2}{dt} &= \lambda_2, & x_2(0) = x_2^0 \\ &\vdots & \vdots \\ \frac{dx_N}{dt} &= \lambda_N, & x_N(0) = x_N^0 \end{cases}$$

Seja $x(t,x_0)$ a solução do PVI acima, com $x_0=(x_1^0,\dots,x_N^0)$. Para $y_0=\tau(x_0)$ defina

$$y(t, y_0) = \tau(x(t, x_0)) = (y_1(t, y_0), \dots, y_N(t, y_0))$$
(5.3.22)

onde $y_j(t,y_0)=\tau_j(x_1(t,x_0),\ldots,x_N(t,x_0)),\,j=1,\ldots,N.$ Derivando y_j em relação a t, segue da regra da cadeia que

$$\frac{dy_j}{dt} = \sum_{k=1}^{N} \frac{\partial}{\partial x_k} \tau_j(x(t, x_0)) \frac{dx_k}{dt} = L\tau_j(x(t, x_0)) = \Lambda_j.$$
 (5.3.23)

De onde concluímos que $y(t, y_0) = \tau(x(t, x_0))$ é solução do PVI

$$\begin{cases} \frac{dy_1}{dt} &= \Lambda_1, & y_1(0, y_0) = y_1^0 \\ \frac{dy_2}{dt} &= \Lambda_2, & y_2(0, y_0) = y_2^0 \\ & \vdots & & \vdots \\ \frac{dy_N}{dt} &= \Lambda_N, & y_N(0, y_0) = y_N^0 \end{cases}$$

Por outro lado, o PVI acima define um grupo a 1-parâmetro de translações $\{y_{\Lambda}^t\}_{t\in\mathbb{R}}$ onde, para cada $t\in\mathbb{R}$

$$y_{\Lambda}^t \doteq y(t, y_0) = y_0 + t\Lambda. \tag{5.3.24}$$

 $y_0 = (y_1^0, \dots, y_N^0), \ \Lambda = (\Lambda_1, \dots, \Lambda_N).$ Segue de 5.3.22 e 5.3.24 que $\tau(x(t, x_0) = y_0 + t\Lambda, y_0 = \tau(x_0), \ \forall t \in \mathbb{R}.$

Dado $y \in \mathbb{T}^N$ queremos mostrar que existe $x \in \mathbb{T}^N$ tal que $\tau(x) = y$. De fato, segue do lema 5.3.2 e da proposição 4.1.1 que a órbita pelo ponto y_0 , dado por $\mathcal{O}(y_0) = \{y_0 + nt\Lambda \mid n \in \mathbb{Z}\}$ é densa no toro \mathbb{T}^N , isto é, $\overline{\mathcal{O}(y_0)} = \mathcal{O}(y_0) = \mathbb{T}^N$. Assim, se $y \in \mathbb{T}^N$ existe $\bar{t} \in \mathbb{R}$ tal que $y = y_0 + \bar{t}\Lambda = \tau(x(\bar{t}, x_0))$. O que conclui a sobrejetividade.

Lema 5.3.4. Se o transposto L^* é Globalmente C^{∞} Hipoelíptico, então a aplicação τ : $\mathbb{T}^N \to \mathbb{T}^N$ é globalmente injetiva.

Demonstração: Considere a seguinte função contagem

$$N(y) = \# \left\{ x \in \mathbb{T}^N \,|\, \tau(x) = y \right\}.$$

Pelo lema 5.3.3, segue que $N(y) \ge 1$, $\forall y \in \mathbb{T}^N$. Sabemos, pelo lema 5.3.2 que $\tau : \mathbb{T}^N \to \mathbb{T}^N$ define um difeomorfismo local e assim, N(y) é constante em alguma vizinhança de y, $\forall y \in \mathbb{T}^N$. Sendo \mathbb{T}^N conexo, segue que N(y) é constante em \mathbb{T}^N , isto é, $N(y) = N_0$. É suficiente mostrarmos agora que $N_0 = 1$. De fato, aplicando o lema 5.3.2 e o teorema 5.0.1 á aplicação τ obtemos,

$$1 = \int_{\mathbb{T}^N} J(x) \, dx = \int_{\mathbb{T}^N} \# \left\{ x \in \tau^{-1}(y) \subset \mathbb{T}^N \right\} \, dy = N_0.$$

De onde concluímos que aplicação τ é globalmente injetiva.

5.4 Análise Espectral

Consideremos agora o espaço de Hilbert complexo $\mathcal{H}=L^2(\mathbb{T}^N,\omega\,dx)$ munido com o produto interno

$$\langle f, g \rangle = \int_{\mathbb{T}^N} f(x) \overline{g(x)} \omega(x) dx.$$
 (5.4.1)

Dado o campo vetorial suave $L=\sum_{j=1}^n a_j(x)\frac{\partial}{\partial x_j}$ definimos o operador $D=(2\pi i)^{-1}L$. É fácil ver que, para todo par $f,g\in C^\infty(\mathbb{T}^N)$

$$\langle Df, g \rangle = \langle f, Dg \rangle. \tag{5.4.2}$$

Temos assim que D define um operador auto-adjunto. Veja que a relação (5.4.2) ainda seria válida tomando-se $f, g \in H^1(\mathbb{T}^N)$.

O próximo Teorema trata das propriedades espectrais do operador D.

Teorema 5.4.1. Se L^* é GH, então o espectro do operador D consiste dos auto-valores da forma

$$\mu_m = \sum_{j=1}^{N} m_j \Lambda_j$$

 $com \ m = (m_1, \dots, m_N) \in \mathbb{Z}^N \ e \ das \ correspondentes \ auto-funções$

$$\varphi_m(x) = \exp(2\pi i \sum_{j=1}^n m_j \tau_j(x)). \tag{5.4.3}$$

Além disso, o auto-espaço associado a cada auto-valor é unidimensional. As auto-funções em (5.4.3) formam um sistema ortonormal completo para \mathcal{H} .

Demonstração: Note que

$$D\varphi_m(x) = (2\pi i)^{-1} \sum_{j=1}^N a_j(x) \frac{\partial \varphi_m(x)}{\partial x_j}$$

$$= (2\pi i)^{-1} \sum_{j=1}^N a_j(x) \left(2\pi i m \cdot \frac{\partial \tau(x)}{\partial x_j} \right) \varphi_m(x)$$

$$= \varphi_m(x) \sum_{j=1}^N a_j(x) \left(\sum_{\ell=1}^n m_\ell \frac{\partial \tau_\ell(x)}{\partial x_j} \right)$$

$$= \varphi_m(x) \sum_{\ell=1}^N m_\ell L \tau_\ell(x)$$

$$= \varphi_m(x) \sum_{\ell=1}^N m_\ell \Lambda_\ell$$

para todo $m \in \mathbb{Z}^N$. A seguir, mostraremos que $\langle \varphi_m, \varphi_k \rangle = \delta_{mk}$ (delta de Kronecker). Vamos estimar a seguinte expressão

$$\langle \varphi_m, \varphi_k \rangle = \int_{\mathbb{T}^N} \varphi_m(x) \overline{\varphi_k(x)} \omega(x) dx$$

Aplicando a mudança de variável $y=\tau(x)$ na integral acima e utilizando o resultado do Lema 5.3.2, obtemos

$$\langle \varphi_m, \varphi_k \rangle = \int_{\mathbb{T}^N} \varphi_m(x) \overline{\varphi_k(x)} \omega(x) \, dx$$
$$= \int_{\mathbb{T}^N} \varphi_m(y) \overline{\varphi_k(y)} \, dy = \delta_{mk}.$$

Para mostrarmos que $\{\phi_m\}$ define um sistema ortonormal completo resta provar que se $f \in \mathcal{H}$ é tal que $\langle f, \phi_m \rangle = 0$ para todo $m \in \mathbb{Z}^N$ então $f \equiv 0$. Isto segue do seguinte fato

$$\langle f, \phi_m \rangle = \int_{\mathbb{T}^N} f(x) \overline{\phi_m(x)} \omega(x) dx$$
$$= \int_{\mathbb{T}^N} f(\tau^{-1}(y)) \overline{\varphi_m(x)} dy$$
$$= \widehat{f \circ \tau^{-1}}(m).$$

Assim por uma proriedade da transformada de Fourier se $\widehat{f} \circ \tau^{-1}(m) = 0$ para todo $m \in \mathbb{Z}^N$ temos então que $f \circ \tau^{-1} \equiv 0$ ou seja $f \equiv 0$ como queríamos demonstrar.

A seguir mostraremos que o difeomorfismo global τ induz uma isometria entre os espaços de Hilbert $L^2(\mathbb{T}^N, dy)$ e $\mathcal{H} = L^2(\mathbb{T}^N, \omega \, dx)$. De fato, consideremos a aplicação τ^{\sharp} definida por $\tau^{\sharp}(f)(x) = f(\tau(x))$. Uma vez provado que as sequências de funções $\{\phi_m \, | \, m \in \mathbb{Z}^N\}$ e $\{\varphi_m \, | \, m \in \mathbb{Z}^N\}$ são bases ortonormais completas respectivamente dos espaços $L^2(\mathbb{T}^N, dy)$ e $\mathcal{H} = L^2(\mathbb{T}^N, \omega \, dx)$, basta então mostrarmos que a aplicação τ^{\sharp} leva base em base. De fato,

$$\tau^{\sharp}(\phi_m)(x) = \phi_m(\tau(x)) = \exp(2\pi i \sum_{j=1}^n m_j \tau_j(x)) = \varphi_m(x).$$

Se $f \in L^2(\mathbb{T}^N, dy)$ vemos que

$$\widehat{f}(\xi) \doteq \langle f, \phi_m \rangle = \int_{\mathbb{T}^N} f(y) e^{2\pi i m \cdot y} \, dy$$

$$= \int_{\mathbb{T}^N} f(\tau(x)) e^{2\pi i m \cdot \tau(x)} \, \omega(x) \, dx$$

$$= \langle \tau^{\sharp}(f), \varphi_m \rangle. \tag{5.4.4}$$

Consideremos então o seguinte Teorema.

Teorema 5.4.2. Se L^* é GH, então $f \in C^{\infty}(\mathbb{T}^N)$ se, e somente, se dado qualquer constante positiva N existe $C_N > 0$ tal que

$$|\langle f, \varphi_m \rangle| \le \frac{C_N}{(1+|m|)^N} \tag{5.4.5}$$

para todo $m \in \mathbb{Z}^N$.

Demonstração: Seja $f \in C^{\infty}(\mathbb{T}^N)$ então aplicando a relação (5.4.4) a função $f \circ \tau^{-1}$ obtemos

$$|\langle f, \varphi_m \rangle| = |\langle \tau^{\sharp}(f \circ \tau^{-1}), \varphi_m \rangle|$$

= $\widehat{f \circ \tau^{-1}}(m)$

Logo, dado N existe $C_N > 0$ tal que

$$|\langle f, \varphi_m \rangle| \le \frac{C_N}{(1+|m|)^N},$$

como queríamos demonstrar.

Referências Bibliográficas

- [B] Brezis, H. TD Analyse Fonctionnelle.
- [CC] Chen, W., Chi, M.Y., Hypoellitic Vector Filds and Almost Periodic Motions on the Torus \mathbb{T}^N . Partial Differential Equations, 25(1 and 2), 337-354(2000).
- [F] Folland, B.G. Real Analysis. Modern techniques and Their Applications, Second Edition.
- [G] Grafakos, L. Classical Fourier Analysis. Springer, 2 edition, 2008.
- [GW] Greenfield, S. J; Wallach, N.R. Globally Hypoelliptic vectors fields, topology 12 (1973), 247-253.
- [H] Hounie, Jorge. *Teoria elementar das distribuições*. Rio de Janeiro: Instituto de Matemática Pura e Aplicada, s.d.. 164 p.
- [H1] Hounie, Jorge. Globally Hypoelliptic vector fields on compact surfaces. Comm P.D.E.,7(4)(1982), 343-370.
- [K] Katok, Anatole; HASSELBLATT, Boris. Introduction to modern theory of dynamical systems. Cambridge University Press. 26-34(2005).
- [L] Lerner, Nicolas. Lecture Notes on Real Analysis. Université Pierre et Marie Curie (Paris 6), 31-45(2008).
- [NS] Nemytskii, V. V; Stepanov, V.V. Qualitative Theory of Ordinary Differential Equations. Princeton Univ. Press, N.J., 1960.
- [CR] Oliveira, César R. *Introdução à Análise Funcional*. Publicações Matemáticas, 2ª edição, 2007 58-62.

- [V] Oliveira, Krerley; Vianna, Marcelo. *Introdução à Teoria Ergódica*. Rio de Janeiro: Instituto de Matemática Pura e Aplicada 28-29.
- [HG] Petronilho, G; Himonas A.A. On Gevrey regularity of globally C^{∞} hypoelliptic operatos. J. Differential Equations 207, 267-284(2004).
- [R] Rudin, Walter. Real and Complex Analysis McGraw-Hill, 3 edition, 1987.
- [RZ] Ruzhansky, M.; Turunen, V. Pseudo Differential Operators and Symmetries Theory and Applications, vol 2.
- [S] Sternberg, S. On differential equations on the torus. Amer. J. Math., 76 (1957), 397-402.
- [W] Warner, Frank Wilson. Foundations of Differentiable Manifolds and Lie groups. New York: Springer-Verlag, 227-240(1983).