UNIVERSIDADE FEDERAL DE SÃO CARLOS

CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA

A Influência da Geometria do Domínio Sobre a Existência de Equilíbrios Estáveis Não-Constantes Para Alguns Sistemas Parabólicos

Gustavo Ferron Madeira

Orientador: Prof. Dr. Arnaldo Simal do Nascimento

São Carlos - SP Abril de 2004

UNIVERSIDADE FEDERAL DE SÃO CARLOS

CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA

A Influência da Geometria do Domínio Sobre a Existência de Equilíbrios Estáveis Não-Constantes Para Alguns Sistemas Parabólicos

Gustavo Ferron Madeira

Orientador: Prof. Dr. Arnaldo Simal do Nascimento

Dissertação apresentada ao Programa de Pós-Graduação em Matemática da UFSCar como parte dos requisitos para obtenção do título de Mestre em Matemática

São Carlos - SP Abril de 2004

Ficha catalográfica elaborada pelo DePT da Biblioteca Comunitária da UFSCar

M181ig

Madeira, Gustavo Ferron.

A influência da geometria do domínio sobre a existência de equilíbrios estáveis não-constantes para alguns sistemas parabólicos / Gustavo Ferron Madeira. -- São Carlos : UFSCar, 2004.

65 p.

Dissertação (Mestrado) -- Universidade Federal de São Carlos, 2004.

1. Equações diferenciais parciais. 2. Sistemas de reaçãodifusão. 3. Instabilidade de equilíbrios. 4. Domínios convexos. 5. Sistema de Ginzburg-Landau. 6. Sistema de Landau-Lifshitz. I. Título.

CDD: 515.353(20^a)

Orientador

Prof. Dr. Arnaldo Simal do Nascimento

 $Dedico\ este\ trabalho\ a\ minha\ av\'o\ Edmea\ Fortes\ Madeira,$ com carinho e admiração, sempre na esperança de que Deus está conosco.

Agradecimentos

A Deus Pai, Filho e Espírito Santo: Criador, Redentor e Santificador. Autor e mantenedor da vida; sempre presente e atuante. Meu profundo louvor e gratidão.

Ao Prof. Dr. Arnaldo Simal do Nascimento pela orientação, disponibilidade, exemplo e por ser um formador.

A meus mais amados, minha família: a meu pai Claudio, minha mãe Terezinha e minha irmã Claudia. Por toda força, presença e acolhida. Amo vocês.

À Angela, minha namorada, por todo incentivo, interesse e confiança com os quais sempre me agraciou.

A todos os meus familiares. Em especial, às tias Vania, Lourdes e Sandra, tio Paulo, vó Amélia e vô Pio.

Aos amigos da Paróquia N. Sra. do Carmo, em especial: Paula, Jaque, Cris, Daiane, Gustavo, Patrícia, Walace, Seu Júlio e D. Rita.

Aos amigos e frequentadores de república, em especial: Bruno, Hercules, Dhâranâ, Marquito, Miky e Th.

Aos amigos do GPP-São Carlos e do GOU.

Aos amigos e colegas do DM, que fazem o ambiente de trabalho ser sempre um ambiente de amplo crescimento. Em particular, à Ana, Ricardo (Valdir) e Hoffman pela amizade mais próxima.

À Célia, por ser sempre amiga e batalhadora pela nossa causa.

A todos os professores do PPGM e em particular: Arnaldo, César R., Ruidival, Salvador e João Sampaio.

Às amigas Jurema, Lola e a todos os amigos do Xiquerinho.

Às amigas do quiosque Aninha e Marisa.

À "galera do Recanto": Marcelo, Bruno, Rodrigo, Dimas, Brunin, Diego, Paraguai, Odilon, Xá, Maneco, P. Hubiratan, Samuel, Marquinho e a todos os amigos e amigas de Cachoeiro.

Às minhas orientadoras de iniciação científica, Prof^a. Dra. Claudia Buttarello Gentile e Prof^a. Dra. Margareth da Silva Alves.

Aos professores e funcionários do DMA/UFV. Em especial ao Olímpio, pelo grande exemplo, Margareth, Paulo Tadeu, Marinês, Valéria Mattos, Simone e ao Seu Jair e Valéria.

A todos os amigos de Viçosa; do alojamento, da RCC, do PUR, da Capela e do Imaculado. Vocês estão sempre no meu coração.

Aos grandes amigos de Campinas: Laercio, Lucy e Júlio.

Aos químicos viçosenses de São Carlos: Elivelton, Eddy Murphy, Mário e Rodrigo, pela importante ajuda logo que aqui cheguei.

Ao CNPq pelo auxílio financeiro.

Resumo

Neste trabalho estudamos o problema da existência de equilíbrios estáveis não-constantes de alguns sistemas parabólicos, sendo eles o sistema de Ginzburg-Landau, o sistema de Landau-Lifshitz e sistemas de reação-difusão com estrutura anti-gradiente. Em todos os casos, evidencia-se que a geometria do domínio tem um papel fundamental para uma resposta ao problema: se o domínio tem fronteira suave e é convexo, então não existem soluções de equilíbrio não-constantes estáveis, ou seja, todo equilíbrio não-constante é instável.

Abstract

In this work we study the problem of existence of non-constant stable equilibria to some parabolic systems. Specifically, the Ginzburg-Landau system, the Landau-Lifshitz system and systems with skew-gradient structure. In all cases, we note that the geometry of the domain has a fundamental role in the problem above: if the domain has a smooth boundary and is convex, then there are no non-constant stable equilibrium solutions, that is, every non-constant equilibrium is unstable.

Sumário

ln	Introdução			
1 Conceitos e Resultados Básicos			e Resultados Básicos	6
	1.1 Espaços de funções			6
	1.2 Preliminares de Geometria		Ć	
			14	
		1.3.1	Fatos básicos de Análise	14
		1.3.2	Um problema elíptico semilinear escalar	17
		1.3.3	Lemas fundamentais	18
2	2 O Sistema de Ginzburg-Landau			2 4
3	3 Sistema tipo Landau-Lifshitz			37
4	Sistemas de Reação-Difusão com Estrutura Anti-gradiente			
\mathbf{A}	A Soluções Instáveis em Quaisquer Domínios			
Re	Referências Bibliográficas			

Introdução

A questão da existência de soluções de equilíbrio, ou equilíbrios, estáveis de equações de reação e difusão começou a ser estudada fortemente na década de setenta. Em particular, as equações de reação e difusão semilineares foram alvos muito visados.

Os estudos pioneiros do problema de existência de equilíbrios estáveis não - constantes de equações parabólicas semilineares foram de Richard G. Casten e Charles J. Holland em 1978, e Hiroshi Matano em 1979. Na realidade, os dois trabalhos estabelecem condições sobre a geometria do domínio de forma que não existam tais soluções.

Casten e Holland abordaram brevemente o caso de sistemas, mas a parte mais substancial de seu artigo [2] é a discussão do problema no caso escalar. Matano estudou, entre outros assuntos, o mesmo problema escalar em [16].

Tanto em [2] quanto em [16] estuda-se a equação parabólica semilinear escalar, com condição de fronteira de Neumann homogênea em um domínio limitado $\Omega \subset \mathbb{R}^n$ com fronteira $\partial \Omega$ suave, dada por

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u + f(u) & \text{em} \quad \Omega \times \mathbb{R}^+, \\ u(0, x) = u_0(x) & \text{em} \quad \Omega, \\ \frac{\partial u}{\partial \nu} = 0 & \text{em} \quad \partial \Omega \times \mathbb{R}^+, \end{cases}$$

$$(0.0.1)$$

sendo ν o vetor normal exterior a $\partial\Omega$ e $f\in C^1(\mathbb{R}).$ As soluções de equilíbrio ou

equilíbrios de (0.0.1) são soluções do problema elíptico associado

$$\begin{cases} \Delta u + f(u) = 0 & \text{em} \quad \Omega, \\ \frac{\partial u}{\partial \nu} = 0 & \text{em} \quad \partial \Omega. \end{cases}$$
 (0.0.2)

Casten e Holland e Matano observaram que ao problema de existência de soluções de equilíbrio estáveis não-constantes era possível dar uma resposta de caráter essencialmente geométrico. Tal resposta é o seguinte resultado:

"Se $\Omega \subset \mathbb{R}^n$ é um domínio convexo com fronteira suave e $u \in C^3(\overline{\Omega})$ é um equilíbrio não-constante de (0.0.1), então u é instável."

Este resultado mostra que a convexidade de um domínio $\Omega \subset \mathbb{R}^n$ com fronteira suave é uma condição suficiente para a não-existência de equilíbrios estáveis não-constantes de (0.0.1).

No entanto, convexidade não é uma condição necessária. Matano mostrou que em domínios anelares - domínios limitados por duas esferas concêntricas - não existe solução de equilíbrio não-constante de (0.0.1) que seja estável. Outra contribuição relevante de Matano foi mostrar em domínios não-convexos tipo "dumbell-shaped" e sob determinadas hipóteses sobre f a existência de solução de equilíbrio estável não-constante de (0.0.1).

Nosso trabalho se concentra no estudo do mesmo problema abordado por Casten e Holland e Matano, a questão da existência de equilíbrios estáveis não-constantes, para o caso de sistemas, sendo eles o sistema de Ginzburg-Landau, uma classe de sistemas do tipo Landau-Lifshitz e sistemas de reação-difusão com estrutura anti-gradiente.

O Capítulo 1 é dedicado a conceitos e resultados básicos. Ele contém a definição de alguns espaços de funções, os espaços L^p $(1 \le p \le \infty)$ e os espaços $W^{k,p}$ $(k \text{ inteiro positivo}, 1 \le p \le \infty)$ de Sobolev, alguns conceitos e resultados gerais de Geometria, principalmente referentes às curvaturas principais de superfícies n-dimensionais e sobre a Segunda Forma Fundamental, além de lemas extraídos e alguns adaptados de [2], [16] e [9].

No Capítulo 2 consideramos o sistema de Ginzburg-Landau, um sistema que surge

por exemplo em teoria de supercondutividade, o qual suplementado com condição de fronteira de Neumann homogênea e desconsiderando-se os efeitos magnéticos é dado por

$$\begin{cases} \frac{\partial U}{\partial t} = \Delta U + (1 - |U|^2)U & \text{em} \quad \Omega \times \mathbb{R}^+ \\ \frac{\partial U}{\partial \nu} = 0 & \text{em} \quad \partial \Omega \times \mathbb{R}^+, \end{cases}$$
(0.0.3)

com

$$U = (u, v),$$
 $|U| = (u^2 + v^2)^{\frac{1}{2}},$

 Ω um domínio limitado em \mathbb{R}^n com fronteira $\partial\Omega$ de classe C^3 e ν o vetor normal unitário exterior a $\partial\Omega$.

Essa equação de evolução apareceu tratada como exemplo em [3] em 1977, no qual foi mostrado que as soluções de (0.0.3) são atraídas para o conjunto $\{(u,v); u^2 + v^2 \le 1\}$. Em 1981, K. J. Brown, P. C. Dunne e R. A. Gardner provaram em [1] que o conjunto ω -limite de qualquer solução de (0.0.3) está contido no conjunto das soluções de equilíbrio de (0.0.3), dadas por

$$\begin{cases}
\Delta V + (1 - |V|^2)V = 0 & \text{em } \Omega, \\
\frac{\partial V}{\partial \nu} = 0 & \text{em } \partial \Omega,
\end{cases}$$
(0.0.4)

ou seja, que as soluções de (0.0.3) se aproximam do conjunto das soluções de (0.0.4).

Em 1994, Shuichi Jimbo e Yoshihisa Morita trataram de (0.0.3) em [9] motivados principalmente pelos resultados em [2] e [16]. Jimbo e Morita conseguiram estender os resultados de Casten e Holland e Matano para o caso do sistema (0.0.3), provando o seguinte:

" Se $\Omega \subset \mathbb{R}^n$ é um domínio convexo com fronteira $\partial \Omega \in C^3$, então qualquer solução não-constante de (0.0.4) é um equilíbrio instável de (0.0.3)."

Na verdade, eles demonstraram o mesmo resultado para uma classe de sistemas parabólicos semilineares com estrutura gradiente e N equações $(N \ge 1)$ que tem

(0.0.3) como caso particular.

No Capítulo 3 estudamos com a mesma perspectiva uma classe de sistemas do tipo Landau-Lifshitz, derivada do problema ferro-magnético, que com condição de fronteira de Neumann homogênea é dada por

$$\begin{cases}
\partial_t u = \Delta u + |\nabla u|^2 - \{W_u - (W_u \cdot u)u\} & \text{em} \quad \Omega \times \mathbb{R}^+, \\
\frac{\partial u}{\partial \nu} = 0 & \text{em} \quad \partial \Omega \times \mathbb{R}^+, \\
u = (u_1, u_2, \dots, u_m) \in S^{m-1},
\end{cases}$$
(0.0.5)

sendo $\Omega \subset \mathbb{R}^n$ um domínio limitado com fronteira $\partial \Omega$ de classe C^3 , $W \in C^3(\mathbb{R}^m)$, $W(u) \geq 0$ para $u \in S^{m-1}$ $(m \geq 2)$ e $W_u := (\partial_{u_1} W, \ \partial_{u_2} W, \dots, \ \partial_{u_m} W)^t$.

Esta classe de sistemas foi estudada por Shuichi Jimbo e Jian Zhai em [10] em 2003.

O principal resultado obtido diante do problema de existência de soluções de equilíbrio estáveis não-constantes de (0.0.5) é o mesmo obtido para a equação de Ginzburg-Landau por Casten e Holland e Matano no caso escalar e Jimbo e Morita no caso de sistemas gradientes:

"Se $\Omega\subset\mathbb{R}^n$ é um domínio convexo com fronteira $\partial\Omega\in C^3$, então qualquer equilíbrio não-constante de (0.0.5) é instável."

No Capítulo 4, estudamos sistemas de reação-difusão com estrutura anti-gradiente, que são sistemas do tipo ativador-inibidor consistindo de dois sistemas gradientes acoplados de modo anti-simétrico, ou seja, são sistemas com m+n componentes da forma

$$\begin{cases}
Su_t = C\Delta u + f(u, v) & \text{em} \quad \Omega \times \mathbb{R}^+, \\
Tv_t = D\Delta v + g(u, v) & \text{em} \quad \Omega \times \mathbb{R}^+, \\
\frac{\partial u}{\partial \nu} = 0 = \frac{\partial v}{\partial \nu} & \text{em} \quad \partial \Omega \times \mathbb{R}^+,
\end{cases}$$
(0.0.6)

sendo $u(x,t)=(u_1,\cdots,u_m)^t$ e $v(x,t)=(v_1,\cdots,v_n)^t,\,\Omega$ um domínio limitado em

 \mathbb{R}^N com fronteira suave, $\frac{\partial}{\partial \nu}$ a derivada normal exterior em $\partial \Omega$, S e C matrizes de ordem m simétricas positivas definidas, T e D matrizes de ordem n simétricas positivas definidas e de modo que os termos não-lineares $f=(f_1,\cdots,f_m)^t:\mathbb{R}^{m+n}\longrightarrow\mathbb{R}^m$ e $g=(g_1,\cdots,g_n)^t:\mathbb{R}^{m+n}\longrightarrow\mathbb{R}^n$ são expressos por

$$f(u,v) = +\nabla_u H(u,v)$$
 e $g(u,v) = -\nabla_v H(u,v)$

para alguma função $H: \mathbb{R}^{m+n} \longrightarrow \mathbb{R}$ de classe C^3 , sendo ∇_u e ∇_v operadores gradiente com relação a u e v, respectivamente, isto é,

$$\nabla_u := \left(\frac{\partial}{\partial u_1}, \cdots, \frac{\partial}{\partial u_m}\right)^t, \qquad \nabla_v := \left(\frac{\partial}{\partial v_1}, \cdots, \frac{\partial}{\partial v_n}\right)^t.$$

Tal classe de sistemas foi estudada por Yanagida em [21] em 2002.

Quando nos deparamos com o problema de existência de soluções de equilíbrio estáveis não-constantes - ou espacialmente não-homogêneas - de (0.0.6) obtemos uma resposta idêntica àquelas obtidas ao considerarmos o mesmo problema para os sistemas (0.0.1), (0.0.3) e (0.0.5):

"Seja $\Omega \subset \mathbb{R}^N$ um domínio convexo com fronteira C^3 . Se (φ, ψ) é um equilíbrio de (0.0.6) espacialmente não-homogêneo, então (φ, ψ) é um equilíbrio instável de (0.0.6) no sentido de Lyapunov para certas S e T."

Ao final do trabalho fazemos um apêndice no qual exibimos soluções de equilíbrio não-constantes de (0.0.3) que são instáveis em quaisquer domínios $\Omega \subset \mathbb{R}^n$, independentemente de suas propriedades geométricas.

Capítulo 1

Conceitos e Resultados Básicos

Neste capítulo consideraremos alguns conceitos e resultados gerais que servirão de alicerce para os resultados contidos nos capítulos seguintes.

1.1 Espaços de funções

Tendo em vista os propósitos deste trabalho, definiremos alguns espaços de funções reais em subconjuntos de \mathbb{R}^n , muito embora seja possível considerá-los em espaços bem mais gerais.

Um domínio $\Omega \subset \mathbb{R}^n$ é um conjunto aberto e conexo. Uma função mensurável em Ω significará uma classe de equivalência de funções mensuráveis em Ω que diferem apenas em um conjunto de medida zero.

Definição 1.1.1 Se $1 \leq p < \infty$, o espaço $L^p(\Omega)$ é espaço das funções u mensuráveis em Ω que são p-integráveis, isto é, que satisfazem

$$||u||_{L^p(\Omega)} \equiv ||u||_p := \left(\int_{\Omega} |u|^p dx\right)^{\frac{1}{p}} < \infty.$$

Se $p = \infty$, o espaço $L^{\infty}(\Omega)$ é o espaço das funções u mensuráveis em Ω que são essencialmente limitadas, ou seja, que satisfazem $|u(x)| \leq k$, q.t.p. em Ω , e o ínfimo do conjunto de tais constantes k, chamado supremo essencial de u e denotado por esssup |u|, é finito.

Assim, $u \in L^{\infty}(\Omega)$ se, e somente se,

$$||u||_{L^{\infty}(\Omega)} \equiv ||u||_{\infty} := esssup |u| < \infty$$

Definimos também o espaço das funções localmente p-integráveis

$$L^p_{loc}(\Omega):=\{u:\Omega\longrightarrow\mathbb{R}\ \mid\ u\in L^p(V) \text{ para cada }V\subset\subset\Omega\},$$

sendo que $V\subset\subset\Omega$ quando V é um aberto contido em Ω e tal que $\overline{V}\subset\Omega$, com \overline{V} compacto.

Também podemos considerar o espaço

$$(L^p(\Omega))^N := L^p(\Omega) \times \cdots \times L^p(\Omega) \quad (N \text{ vezes}),$$

 $1 \le p \le \infty$, munido da norma

$$||u||_{(L^p(\Omega))^N} := \begin{cases} \left(\sum_{k=1}^N ||u_k||_{L^p(\Omega)}^p\right)^{\frac{1}{p}}, & \text{se} \quad 1 \le p < \infty, \\ \\ \sum_{k=1}^N ||u_k||_{\infty}, & \text{se} \quad p = \infty, \end{cases}$$

para
$$u = (u_1, \dots, u_N) \in (L^p(\Omega))^N$$
.

Denotamos por $C_c^{\infty}(\Omega)$ o espaço das funções teste, ou seja, das funções $\phi:\Omega\to\mathbb{R}$ tendo suporte, definido como sendo o conjunto $\overline{\{x\in\Omega\mid\phi(x)\neq0\}}$, compacto. Agora vamos definir os espaços de Sobolev e para isso necessitamos do conceito de derivada no sentido fraco ou derivada generalizada de uma função.

Definição 1.1.2 Suponha $u, v \in L^1_{loc}(\Omega)$ e seja α um multi-índice. Dizemos que v é a α - ésima derivada parcial fraca de u, denotada por $D^{\alpha}u$, se a igualdade

$$\int_{\Omega} u D^{\alpha} \phi \ dx = (-1)^{|\alpha|} \int_{\Omega} v \phi \ dx$$

se verifica para toda função teste $\phi \in C_c^{\infty}(\Omega)$.

Definição 1.1.3 Sejam $1 \leq p \leq \infty$ e k um inteiro positivo. O espaço de Sobolev $W^{k,p}(\Omega)$ é o espaço de todas as funções localmente integráveis $u:\Omega \to \mathbb{R}$ tais que para cada multi-índice α , com $|\alpha| \leq k$, $D^{\alpha}u$ existe no sentido fraco e pertence a $L^p(\Omega)$.

Quando p = 2, escrevemos

$$H^p(\Omega) := W^{k,2}(\Omega)$$

Definição 1.1.4 A norma de uma função u em $W^{k,p}(\Omega)$ é definida por

$$||u||_{k,p,\Omega} \equiv ||u||_{W^{k,p}(\Omega)} := \begin{cases} \left(\sum_{|\alpha| \le k} \int_{\Omega} |D^{\alpha}u|^p \ dx\right)^{\frac{1}{p}}, \quad se \quad 1 \le p < \infty, \\ \\ \sum_{|\alpha| \le k} esssup \ |D^{\alpha}u| \ , \quad se \quad p = \infty. \end{cases}$$

Se escrevermos também $||u||_{W^{k,p}(\Omega)} = \sum_{|\alpha| \leq k} ||D^{\alpha}u||_p$, obtemos uma norma equivalente a da Definição (1.1.4).

Os espaços $W^{k,p}(\Omega)$ são espaços de Banach e os espaços $H^k(\Omega)$ são espaços de Hilbert sob o produto escalar

$$(u,v)_{H^k(\Omega)} = \sum_{|\alpha| \le k} \int_{\Omega} D^{\alpha} u D^{\alpha} v \ dx.$$

Consideraremos também o espaço de Hilbert

$$(H^k(\Omega))^N := H^k(\Omega) \times \cdots \times H^k(\Omega) \quad (N \text{ vezes})$$

munido do produto escalar

$$(u,v)_{(H^k(\Omega))^N} = \sum_{j=1}^n (u_j,v_j)_{H^k(\Omega)},$$

sendo $u = (u_1, \dots, u_N), v = (v_1, \dots, v_N), u, v \in (H^k(\Omega))^N$.

9

1.2 Preliminares de Geometria

Veremos nesta seção alguns conceitos e resultados de Geometria Diferencial que podem ser encontrados em [20], [15] e [13].

Definição 1.2.1 Seja $\Omega \subset \mathbb{R}^n$ um conjunto aberto. Dizemos que $\partial\Omega$ é de classe C^k , o que denotamos por $\partial\Omega \in C^k$, quando para cada ponto $x_0 \in \partial\Omega$ pudemos encontrar uma função ρ de classe C^k em uma vizinhança W de x_0 tal que

$$\rho(x_0) = 0, \quad \nabla \rho(x_0) \neq 0 \quad e$$

$$\Omega \cap \mathcal{W} = \{ x \in \mathcal{W} \mid \rho(x) < 0 \}.$$

Definição 1.2.2 Um conjunto $S \subset \mathbb{R}^{n+1}$ é chamado superfície n-dimensional ou superfície diferenciável (de classe C^k) quando é localmente o gráfico de uma função de n variáveis diferenciável (de classe C^k).

Em outras palavras, $S \subset \mathbb{R}^{n+1}$ é uma superfície quando cada ponto p de S pertence a um aberto $V \subset \mathbb{R}^{n+1}$ tal que $V \cap S$ é o gráfico de uma função de classe C^k definida num aberto do espaço \mathbb{R}^n .

Definição 1.2.3 Uma superfície $S \subset \mathbb{R}^{n+1}$ de classe C^k é compacta quando é um subconjunto fechado e limitado de \mathbb{R}^{n+1} .

Definição 1.2.4 Seja $S \subset \mathbb{R}^{n+1}$ uma superfície diferenciável. Dado $p \in S$, o conjunto de todos os vetores velocidade $\alpha'(t_0)$ das curvas $\alpha : I \subset \mathbb{R} \longrightarrow S$ contidas em S, diferenciáveis no ponto t_0 do aberto $I \subset \mathbb{R}$ e tais que $\alpha(t_0) = p$, é chamado **espaço tangente** a S em p, denotado por T_pS .

O nome espaço tangente dado a T_pS tem sua justificativa no próximo teorema, cuja prova pode ser encontrada em [13], Teorema 6, p. 166.

Teorema 1.2.1 Se a superfície $S \subset \mathbb{R}^{n+1}$ é diferenciável, então para cada $p \in S$ o conjunto T_pS é um subespaço n-dimensional de \mathbb{R}^{n+1} .

Definição 1.2.5 Um campo vetorial normal a uma superfície $S \subset \mathbb{R}^{n+1}$ é chamado uma orientação em S. Uma superfície a qual está associada uma orientação é chamada superfície orientada.

Definição 1.2.6 Seja S uma superfície em \mathbb{R}^{n+1} com orientação dada por um campo normal unitário N.

(i) A aplicação de Weingarten $L_p: T_pS \longrightarrow T_pS$ entre os espaços tangentes a S em p é a aplicação dada por

$$L_p(v) = -\frac{\partial}{\partial v} N(p), \qquad v \in T_p S.$$

(ii) Quando |v| = 1, o número

$$k(v) = L_p(v) \cdot v$$

é chamado curvatura normal de S em p na direção v.

(iii) Os autovalores $\kappa_1(p), \ldots, \kappa_n(p)$ da aplicação de Weingarten L_p em $p \in S$ são chamados curvaturas principais de S em p e os autovetores unitários correspondentes são chamados direções principais de S em p.

A aplicação de Weingarten é bem definida (cf. [20], p. 55) e possui algumas propriedades dadas no próximo teorema, cuja demonstração pode ser encontrada em [20], Teorema 1, p. 57 e Teorema 2, p. 58.

Teorema 1.2.2 Seja S uma superfície em \mathbb{R}^{n+1} orientada por um campo normal unitário N. Então,

(i) Dados $p \in S$ e $v \in T_pS$, para qualquer curva parametrizada $\alpha : I \subset \mathbb{R} \longrightarrow S$ com $\alpha(t_0) = p$ e tal que $\dot{\alpha}(t_0) = v$ para algum $t_0 \in I$, vale

$$L_p(v) \cdot v = \ddot{\alpha}(t_0) \cdot N(p).$$

(ii) A aplicação de Weingarten L_p em $p \in S$ é auto-adjunta, isto é,

$$L_n(v) \cdot w = L_n(w) \cdot v, \quad \forall \ v, w \in T_n S.$$

Definição 1.2.7 Seja V um espaço vetorial real com produto interno \cdot e de dimensão finita. Uma função $S:V\longrightarrow \mathbb{R}$ é chamada **forma quadrática** quando existe uma forma bilinear $\beta:V\times V\longrightarrow \mathbb{R}$ (isto é, $\beta(u,v)$ é linear em cada variável) tal que

$$\mathcal{S}(v) = \beta(v, v),$$

para todo $v \in V$.

Note que se $L:V\longrightarrow V$ é um operador auto-adjunto, a função $\mathcal{S}:V\longrightarrow \mathbb{R}$ dada por

$$S(v) = L(v) \cdot v, \quad v \in V,$$

é uma forma quadrática pois a função $\beta: V \times V \longrightarrow \mathbb{R}$ definida por $\beta(u,v) = L(u) \cdot v$, para $u,v \in V$, é uma forma bilinear.

Neste caso especial, chamamos S de forma quadrática associada a L.

Definição 1.2.8 Uma forma quadrática $S: V \longrightarrow \mathbb{R}$ é

- (i) positiva definida, se S(v) > 0 para todo $V \ni v \neq 0$;
- (ii) negativa definida, se S(v) < 0 para todo $V \ni v \neq 0$;
- (iii) definida, se é positiva ou negativa definida.

Definição 1.2.9 A forma quadrática associada à aplicação de Weingarten L_p num ponto p de uma superfície orientada $S \subset \mathbb{R}^{n+1}$ é chamada Segunda Forma Fundamental de S em p e é denotada por S_p . Assim,

$$S_p(v) := L_p(v) \cdot v = \ddot{\alpha}(t_0) \cdot N(p),$$

sendo $\alpha: I \subset \mathbb{R} \longrightarrow S$ qualquer curva parametrizada em S com $\alpha(t_0) = p$ e tal que $\dot{\alpha}(t_0) = v$.

Vamos enunciar o conhecido Teorema do Multiplicador de Lagrange, que nos será útil na demonstração do resultado mais importante desta seção sobre a Segunda Forma Fundamental de uma superfície compacta, orientável e sem bordo, e cuja prova pode ser encontrada em [13], p. 171.

Lembremos que se $f:\Omega\longrightarrow\mathbb{R}$ é uma função diferenciável no aberto $\Omega\subset\mathbb{R}^n,$ um

número $c \in \mathbb{R}$ é chamado valor regular de f quando não existem pontos críticos no nível c, isto é, se f(x) = c então $\nabla f(x) \neq 0$.

Teorema 1.2.3 (Teorema do multiplicador de Lagrange)

Sejam $f:\Omega \longrightarrow \mathbb{R}$ uma função de classe C^k $(k \geq 1)$ no aberto $\Omega \subset \mathbb{R}^n$ e $S=\varphi^{-1}(c)$ uma superfície contida em Ω , imagem inversa do valor regular c por uma função $\varphi:\Omega \longrightarrow \mathbb{R}$ de classe C^k . Um ponto $p\in S$ é ponto crítico de $f|_S$ se, e somente se, existe $\lambda\in\mathbb{R}$ tal que

$$\nabla f(p) = \lambda \nabla \varphi(p).$$

O próximo teorema é o principal resultado desta seção.

Teorema 1.2.4 Seja S uma superfície em \mathbb{R}^{n+1} compacta, orientável e sem bordo. Então existe um ponto no qual a Segunda Forma Fundamental é definida.

A idéia da prova é colocar S em uma esfera suficientemente grande e depois encolhê-la até que ela toque S. O ponto de contato é um ponto que realiza a tese do teorema.

Prova do Teorema (1.2.4). Defina $g: \mathbb{R}^{n+1} \longrightarrow \mathbb{R}$ pondo $g(x_1, \dots, x_{n+1}) = x_1^2 + \dots + x_{n+1}^2$.

Como S é compacta, existe um ponto $p \in S$ onde o máximo de g em S se realiza. Sendo S uma superfície, é localmente gráfico de função de modo que existem uma vizinhança \mathcal{W} de p em \mathbb{R}^{n+1} e uma função $f: \mathcal{W} \longrightarrow \mathbb{R}$ tal que

$$M := S \cap \mathcal{W} = f^{-1}(0),$$

com $\nabla f \neq 0$ em M.

Assim, pelo Teorema do Multiplicador de Lagrange, existe $\lambda \in \mathbb{R}$ tal que

$$\nabla q(p) = \lambda \nabla f(p) = \mu N(p),$$

com $\mu = \pm \lambda |\nabla f(p)|$ e N(p) o vetor normal a S em p.

O sinal de μ depende da orientação de S; suponhamos que $\mu > 0$, isto é, que S está orientada pelo campo normal exterior. Então,

$$\mu = |\mu| = |\mu N(p)| = |\nabla g(p)| = 2|p|,$$

de modo que

$$N(p) = \frac{1}{\mu} \nabla g(p) = \frac{1}{|p|} p.$$

Agora, para $v \in T_pM$, o espaço tangente a M em p, seja $\alpha: I \subset \mathbb{R} \longrightarrow M$ uma curva com $\alpha(t_0) = p$ e tal que $\dot{\alpha}(t_0) = v$.

Como p é o ponto de máximo global de g em S, temos que $g \circ \alpha(t_0) \geq g \circ \alpha(t)$ para todo $t \in I$, de forma que

$$0 \geq \frac{d^{2}}{dt^{2}}\Big|_{t_{0}} (g \circ \alpha) = \frac{d}{dt}\Big|_{t_{0}} \nabla g(\alpha(t)) \cdot \dot{\alpha}(t))$$

$$= \frac{d}{dt}\Big|_{t_{0}} 2\alpha(t) \cdot \frac{d\alpha}{dt}(t) = 2\left[|\dot{\alpha}(t_{0})|^{2} + \alpha(t_{0}) \cdot \ddot{\alpha}(t_{0})\right]$$

$$= 2\left[|\dot{\alpha}(t_{0})|^{2} + p \cdot \ddot{\alpha}(t_{0})\right] = 2\left[|\dot{\alpha}(t_{0})|^{2} + |p| N(p) \cdot \ddot{\alpha}(t_{0})\right]$$

$$= 2\left[|\dot{\alpha}(t_{0})|^{2} + |p| L_{p}(v) \cdot v\right].$$

Logo,

$$S_p(v) = L_p(v) \cdot v \le -\frac{|v|^2}{|p|} < 0, \quad \forall v \ne 0,$$

o que significa que a Segunda forma Fundamental em p é negativa definida. \Box

Observe que se S estivesse orientada pelo campo normal interior concluiríamos que a Segunda Forma Fundamental em p seria positiva definida, o que justifica o enunciado do teorema.

O teorema anterior é válido sob panorama mais geral, ao considerarmos S uma variedade compacta sem bordo e sem a hipótese da orientabilidade.

1.3 Alguns resultados gerais

Esta seção contém resultados básicos de Análise e lemas diretamente relacionados com os resultados principais deste trabalho.

1.3.1 Fatos básicos de Análise

Teorema 1.3.1 (Fórmula da integração por partes) $Sejam \Omega \subset \mathbb{R}^n$ um domínio limitado com $\partial \Omega \in C^1$, $g \in H^1(\Omega)$ e $F = (f_1, \dots, f_n) \in [H^1(\Omega)]^n$. Então

$$\int_{\Omega} g \ div F \ dx = -\int_{\Omega} F \cdot \nabla g \ dx + \int_{\partial \Omega} g \ (F \cdot \nu) \ d\sigma,$$

sendo g e as componentes f_i de F na integral sobre $\partial\Omega$ os traços de g e f_i , para cada i = 1, ..., n.

Em particular, se $F = \nabla f$ para alguma $f \in H^2(\Omega)$, temos

$$\int_{\Omega} g\Delta f \ dx = -\int_{\Omega} \nabla f \cdot \nabla g \ dx + \int_{\partial\Omega} g \ \frac{\partial f}{\partial \nu} \ d\sigma.$$

A demonstração da Fórmula da integração por partes pode ser encontrada, por exemplo, em [17].

Teorema 1.3.2 (Fórmula de Taylor com resto de Lagrange)

Sejam $\Omega \subset \mathbb{R}^n$ um aberto, $a \in \Omega$ e $f : \Omega \longrightarrow \mathbb{R}$ de classe C^k . Suponha que o segmento [a, a + v] está contido em Ω e f é k + 1 vezes diferenciável no segmento aberto (a, a + v). Então, existe $\theta \in (0, 1)$ tal que

$$f(a+v) = f(a) + df(a) \cdot v + \frac{1}{2}d^2f(a) \cdot v^2 + \dots + \frac{1}{k!}d^kf(a) \cdot v^k + r_k(v),$$

com

$$r_k(v) = \frac{1}{(k+1)!} d^{(k+1)} f(a+\theta v) \cdot v^{(k+1)}.$$

A demonstração da Fórmula de Taylor com resto de Lagrange pode ser encontrada em [13], p. 150.

Teorema 1.3.3 Seja $\Omega \subset \mathbb{R}^n$ aberto e convexo.

(i) Se $f:\Omega \longrightarrow \mathbb{R}$ é diferenciável e convexa, então para $x,\ x+v\in\Omega$ quaisquer tem-se

$$f(x+v) \ge f(x) + df(x) \cdot v.$$

(ii) Se $f: \Omega \longrightarrow \mathbb{R}$ é de classe C^2 e convexa, então para cada $x \in \Omega$, $d^2f(x)$ é uma forma quadrática não-negativa, isto é,

$$\sum_{i,j=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x) v_{i} v_{j} \geq 0, \quad \forall v = (v_{1}, \cdots, v_{n}) \in \mathbb{R}^{n}.$$

Prova. (i) Sejam $x \in \Omega$ e $v \in \mathbb{R}^n$ tais que $x + v \in \Omega$. Defina φ pondo $\varphi(t) = f(x + tv)$, $t \in [0, 1]$. Note que φ está bem definida pois, como $x, x + v \in \Omega$ e Ω é convexo, então $(1 - t)x + t(x + v) \in \Omega$, ou seja, $x + tv \in \Omega$, qualquer que seja $t \in [0, 1]$. Ainda, da convexidade de Ω e da diferenciabilidade de f em Ω , segue que φ é diferenciável em [0, 1]. Como f é convexa, temos:

$$\varphi(t) = f(x+tv) = f(x+tv+tx-tx) < (1-t)f(x)+tf(x+v) = (1-t)\varphi(0)+t\varphi(1).$$

Daí.

$$\varphi(t) - \varphi(0) \le t[\varphi(1) - \varphi(0)], \quad \forall \ t \in [0, 1]. \tag{1.3.1}$$

Sendo φ contínua em [0,1] e diferenciável em (0,1), pelo Teorema do Valor Médio existe $\alpha \in (0,1)$ tal que

$$\varphi(1) - \varphi(0) = \varphi'(\alpha) \tag{1.3.2}$$

Assim, segue de (1.3.1) e (1.3.2) que

$$\frac{\varphi(t) - \varphi(0)}{t} \le \varphi'(\alpha), \quad \forall \ t \in (0, 1].$$

Logo, fazendo $t \to 0$, t > 0, obtemos

$$\varphi'_{+}(0) \le \varphi'(\alpha) = \varphi(1) - \varphi(0),$$

ou seja,

$$f(x+v) > f(x) + df(x) \cdot v$$

como queríamos demonstrar.

(ii) Suponha que existe $x \in \Omega$ tal que $d^2f(x)$ não é não-negativa. Então, existe $w \in \mathbb{R}^n$ tal que $d^2f(x) \cdot w^2 < 0$. Tome $\alpha \in (0,1)$ de modo que $x + \alpha w \in \Omega$. Pela Fórmula de Taylor com resto de Lagrange, existe $\theta \in (0,1)$ tal que

$$f(x + \alpha w) = f(x) + df(x) \cdot (\alpha w) + r_1(\alpha w),$$

com

$$r_1(\alpha w) = \frac{1}{2} d^2 f(x + \theta(\alpha w)) \cdot (\alpha w)^2.$$

Daí,

$$\frac{1}{2} d^2 f(x + \theta(\alpha w)) \cdot (\alpha w)^2 = f(x + \alpha w) - f(x) - df(x) \cdot (\alpha w) \stackrel{\text{item } (i)}{\geq} 0,$$

e assim

$$\frac{\alpha^2}{2} d^2 f(x + \theta(\alpha w)) \cdot w^2 \ge 0,$$

donde

$$d^2 f(x + \theta(\alpha w)) \cdot w^2 \ge 0.$$

Fazendo $\alpha \to 0$, como f é de classe C^2 , obtemos

$$d^2 f(x) \cdot w^2 \ge 0,$$

o que é uma contradição com o suposto inicialmente.

Portanto, $d^2 f(x)$ é uma forma quadrática não-negativa para todo $x \in \Omega$, isto é,

$$\sum_{i,j=1}^{m} \frac{\partial^2 f}{\partial x_i \partial x_j}(x) v_i v_j \ge 0, \quad \forall \ v = (v_1, \cdots, v_m) \in \mathbb{R}^m,$$

e a proposição está provada.

Vale observar que as recíprocas dos itens (i) e (ii) da Proposição (1.3.3) também são verdadeiras.

1.3.2 Um problema elíptico semilinear escalar

Consideremos o seguinte problema elíptico não-linear

$$\begin{cases}
\Delta u + f(u) = 0 & \text{em} \quad \Omega, \\
\frac{\partial u}{\partial \nu} = 0 & \text{em} \quad \partial \Omega,
\end{cases}$$
(1.3.3)

sendo $\Omega \subset \mathbb{R}^n$ um domínio limitado com fronteira suave e $f \in C^1$. Uma função $u_0 \in C^2(\Omega) \cap C^1(\overline{\Omega})$ chama-se **super-solução** de (1.3.3) se u_0 satisfaz

$$\begin{cases} \Delta u_0 + f(u_0) \le 0 & \text{em} \quad \Omega, \\ \frac{\partial u_0}{\partial \nu} \ge 0 & \text{em} \quad \partial \Omega. \end{cases}$$

Analogamente, v_0 chama-se **sub-solução** de (1.3.3) se v_0 satisfaz

$$\begin{cases} \Delta v_0 + f(v_0) \ge 0 & \text{em} \quad \Omega, \\ \\ \frac{\partial v_0}{\partial \nu} \le 0 & \text{em} \quad \partial \Omega, \end{cases}$$

O próximo teorema que vamos enunciar é um teorema do tipo comparação de soluções que nos será útil no apêndice ao final deste trabalho.

Teorema 1.3.4 Suponha que u_0 e v_0 são super e sub soluções de (1.3.3), com $u_0 \ge v_0$ em Ω . Então, existe uma solução u de (1.3.3) tal que

$$u_0(x) \ge u(x) \ge v_0(x),$$

para todo $x \in \Omega$.

Para a demonstração do teorema anterior, veja [19], Teorema 10.3, p. 96 e veja também p. 99.

1.3.3 Lemas fundamentais

Lema 1.3.1 Seja $\Omega \subset \mathbb{R}^n$ um domínio limitado com $\partial\Omega$ de classe C^3 e seja $u \in C^3(\overline{\Omega})$. Se Ω é convexo e

$$\frac{\partial u}{\partial \nu} = 0$$
 em $\partial \Omega$,

 $ent\~ao$

$$\frac{\partial}{\partial \nu} |\nabla u|^2 \le 0$$
 em $\partial \Omega$.

Prova. Como

$$\frac{1}{2}\frac{\partial}{\partial \nu}|\nabla u|^2 = \nabla u \cdot \frac{\partial}{\partial \nu}\nabla u, \quad \text{em } \partial\Omega,$$

sendo

$$\frac{\partial}{\partial \nu} \nabla u = \left(\frac{\partial}{\partial \nu} \left(\frac{\partial u}{\partial x_1} \right), \dots, \frac{\partial}{\partial \nu} \left(\frac{\partial u}{\partial x_n} \right) \right),$$

para demonstrarmos o lema é suficiente provarmos que

$$\nabla u(x) \cdot \frac{\partial}{\partial \nu} \nabla u(x) \le 0, \quad \forall x \in \partial \Omega.$$

Seja $x \in \partial \Omega$. Sem perda de generalidade, podemos assumir que x é a origem de um sistema de coordenadas e, graças a regularidade de $\partial \Omega$, supor que $x_n = g(x_1, \dots, x_{n-1})$ é uma função C^3 convexa cujo gráfico descreve a fronteira de Ω em alguma vizinhança da origem. Além disso, podemos também supor que na origem o eixo $-x_n$ está na direção normal exterior a $\partial \Omega$.

Então,
$$\nu(0)=(0,\cdots,0,-1)$$
 e como

$$\frac{\partial u}{\partial x_n}(0) = -\lim_{t \to 0} \frac{u(-t\nu(0)) - u(0)}{-t} = -\frac{\partial u}{\partial \nu}(0) = 0,$$

segue que

$$\nabla u(0) \cdot \frac{\partial}{\partial \nu} \nabla u(0) = \sum_{i=1}^{n} \frac{\partial u}{\partial x_{i}}(0) \frac{\partial}{\partial \nu} \left(\frac{\partial u}{\partial x_{i}}\right)(0)$$

$$= \sum_{i=1}^{n} \frac{\partial u}{\partial x_{i}}(0) \sum_{j=1}^{n} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}(0) \nu_{j}(0)$$

$$= -\sum_{i=1}^{n} \frac{\partial u}{\partial x_{i}}(0) \frac{\partial^{2} u}{\partial x_{i} \partial x_{n}}(0)$$

$$= -\sum_{i=1}^{n-1} \frac{\partial u}{\partial x_{i}}(0) \frac{\partial^{2} u}{\partial x_{i} \partial x_{n}}(0)$$

$$(1.3.4)$$

Agora, sabemos que se $x_n=g(x_1,\cdots,x_{n-1})$ em uma vizinhança \mathcal{V} , então $\nu=\left(g_{x_1}(x_1,\cdots,x_{n-1}),\cdots,g_{x_{n-1}}(x_1,\cdots,x_{n-1}),-1\right)$ em \mathcal{V} .

Daí, $\partial_{\nu}u = 0$ é equivalente a

$$\sum_{i=1}^{n-1} u_{x_i} (x_1, \dots, x_{n-1}, g(x_1, \dots, x_{n-1})) g_{x_i} (x_1, \dots, x_{n-1})$$

$$- u_{x_n} (x_1, \dots, x_{n-1}, g(x_1, \dots, x_{n-1})) = 0.$$
 (1.3.5)

Diferenciando (1.3.5) com relação a x_j na origem, $1 \le j \le n-1$, obtemos

$$\sum_{i=1}^{n-1} u_{x_i}(0)g_{x_ix_j}(0) - u_{x_jx_n}(0) = 0, (1.3.6)$$

pois como g é convexa e Ω é convexo a origem é ponto de mínimo de g, de modo que $g_{x_i}(0) = 0$, i = 1, ..., n - 1. Substituindo a expressão (1.3.6) para $u_{x_j x_n}(0)$ em (1.3.4) segue que

$$\nabla u(0) \cdot \frac{\partial}{\partial \nu} \nabla u(0) = -\sum_{i,j=1}^{n-1} g_{x_i x_j}(0) u_{x_i}(0) u_{x_j}(0). \tag{1.3.7}$$

Pela Teorema (1.3.3)-(ii), o lado direito de (1.3.7) é não-positivo, o que implica que

$$\nabla u(0) \cdot \frac{\partial}{\partial \nu} \nabla u(0) \le 0.$$

Como $x \in \partial \Omega$ foi arbitrário, concluímos que

$$\nabla u(y) \cdot \frac{\partial}{\partial \nu} \nabla u(y) \le 0, \quad \forall y \in \partial \Omega,$$

e o lema está provado. \Box

O resultado anterior também é válido no caso vetorial:

Lema 1.3.2 Seja $\Omega \subset \mathbb{R}^n$ um domínio limitado com $\partial\Omega$ de classe C^3 e seja $u \in C^3(\overline{\Omega}, \mathbb{R}^m)$. Se Ω é convexo e

$$\frac{\partial u}{\partial \nu} = 0 \quad em \quad \partial \Omega,$$

 $ent \tilde{a}o$

$$\frac{\partial}{\partial \nu} |\nabla u|^2 \le 0 \quad em \ \partial \Omega.$$

Prova. Suponha que $\frac{\partial u}{\partial \nu} = 0$ em $\partial \Omega$. Então, $\frac{\partial u_j}{\partial \nu} = 0$ em $\partial \Omega$, para $1 \leq j \leq m$. Pelo Lema (1.3.1),

$$\frac{\partial}{\partial \nu} |\nabla u_j|^2 \le 0$$
 em $\partial \Omega$,

para todo $1 \le j \le m$. Logo,

$$\frac{\partial}{\partial \nu} |\nabla u|^2 = \sum_{j=1}^m \frac{\partial}{\partial \nu} |\nabla u_j|^2 \le 0 \quad \text{em } \partial \Omega.$$

Lema 1.3.3 Seja $P \in \partial \Omega$ e $u \in C^2(\overline{\Omega} \cap W)$, com W uma vizinhança de P. Se nenhuma curvatura principal de $\partial \Omega$ se anula em P e u satisfaz

$$\frac{\partial u}{\partial \nu} = 0 \quad em \quad \partial \Omega \cap \mathcal{W},$$

$$\frac{\partial}{\partial \nu} \left(\frac{\partial u}{\partial x_j} \right) (P) = 0 \quad (1 \le j \le n),$$
(1.3.8)

 $ent ilde{a}o$

$$\nabla u(P) = 0.$$

Prova. Inicialmente, escolhemos um sistema local de coordenadas $x = (x_1, \dots, x_n)$ em \mathcal{W} tal que $\{x_n = 0\} \cap \mathcal{W} = \partial\Omega \cap \mathcal{W}$, isto é, $\Phi(\partial\Omega \cap \mathcal{W}) = \{x_n = 0\} \cap \mathcal{W}$, com $\Phi : \mathcal{W} \longrightarrow \Phi(\mathcal{W})$ um difeomorfismo.

Por uma rotação de coordenadas podemos assumir que o eixo x_n está na direção $\nu(P)$. Por uma rotação adicional, podemos assumir que os eixos x_1, \dots, x_{n-1} estão nas direções principais correspondentes à $\kappa_1, \dots, \kappa_{n-1}$, as curvaturas principais de $\partial\Omega$ em P, respectivamente.

Assim, com relação ao sistema de curvaturas principais em $P\in\partial\Omega\cap\mathcal{W},$ sabemos que

$$\frac{\partial \nu_i}{\partial x_j} = \kappa_i \delta_{ij}, \quad i, j = 1, \dots, n - 1, \tag{1.3.9}$$

sendo δ_{ij} o delta de Kronecker e ν_i a i-ésima componente de ν , $1 \leq i \leq n-1$. Agora, estendamos o campo vetorial $\nu(x)$ fora de $\partial\Omega$ suavemente. Aplicando ∂_{x_j} para $1 \leq j \leq n-1$ à primeira equação de (1.3.8) em x=P, obtemos

$$\frac{\partial \nu}{\partial x_j}(P) \cdot \nabla u(P) + \nu(P) \cdot \nabla \left(\frac{\partial u}{\partial x_j}\right)(P) = 0, \quad 1 \le j \le n - 1.$$
 (1.3.10)

Usando a segunda equação de (1.3.8) em (1.3.10), segue que

$$\frac{\partial \nu}{\partial x_j}(P) \cdot \nabla u(P) = 0, \quad 1 \le j \le n - 1. \tag{1.3.11}$$

Note que como o campo ν é unitário, $\frac{\partial \nu}{\partial x_j}$ pertence ao espaço tangente a $\partial\Omega$ em P para cada $1\leq j\leq n-1$, e como

$$\frac{\partial \nu}{\partial x_j}(P) = \left(\frac{\partial \nu_1}{\partial x_j}(P), \cdots, \frac{\partial \nu_{n-1}}{\partial x_j}(P), 0\right)$$

$$\stackrel{(1.3.9)}{=} (0, \cdots, \kappa_i, 0, \cdots, 0),$$

com κ_j na j-ésima posição, para $1 \le j \le n-1$, segue da hipótese sobre as curvaturas principais não se anularem em P que os n-1 vetores

$$\frac{\partial \nu}{\partial x_1}(P), \ \frac{\partial \nu}{\partial x_2}(P), \ \cdots, \ \frac{\partial \nu}{\partial x_{n-1}}(P)$$
 (1.3.12)

geram o espaço tangente a $\partial\Omega$ em P.

Por outro lado, da primeira equação de (1.3.8) segue que $\nabla u(P)$ é tangente a $\partial\Omega$.

Deste fato e (1.3.11), concluímos que $\nabla u(P)$ é o vetor nulo, ou seja,

$$\nabla u(P) = 0.$$

O lema anterior tem uma versão no caso vetorial. Vamos enunciá-la de acordo com o nosso interesse em utilizá-la no Capítulo 3.

Lema 1.3.4 Seja $\Omega \subset \mathbb{R}^n$ um domínio limitado com fronteira $\partial \Omega$ de classe C^3 e seja $u \in C^2(\overline{\Omega}, \mathbb{R}^m)$. Suponha que existe um conjunto relativamente aberto Γ em $\partial \Omega$ tal que nenhuma curvatura principal de $\partial \Omega$ se anula em Γ e que

$$\frac{\partial u}{\partial \nu} \Big|_{\Gamma} = 0 \qquad e$$

$$\frac{\partial}{\partial \nu} \left(\frac{\partial u}{\partial x_j} \right) \bigg|_{\Gamma} = 0 \qquad (1 \le j \le n).$$

Então,

$$\nabla u = 0$$
 em Γ ,

isto é,

$$\nabla u_k = 0$$
 em Γ , $\forall k = 1, \dots, m$.

Prova. Como Γ é relativamente aberto em $\partial\Omega$, existe \mathcal{W} aberto de \mathbb{R}^n tal que $\Gamma = \partial\Omega \cap \mathcal{W}$.

Seja $P \in \Gamma$. Então, por hipótese, nenhuma curvatura principal de $\partial \Omega$ se anula em P. Além disso,

$$\frac{\partial u}{\partial \nu} \Big|_{\Gamma} = 0 \quad \iff \quad \frac{\partial u_k}{\partial \nu} \Big|_{\Gamma} = 0, \quad \forall \ 1 \le k \le m,$$

$$\left. \frac{\partial}{\partial \nu} \left(\frac{\partial u}{\partial x_j} \right) \right|_{\Gamma} = 0 \quad \iff \quad \frac{\partial}{\partial \nu} \left(\frac{\partial u_k}{\partial x_j} \right) \right|_{\Gamma} = 0, \qquad \forall \ 1 \leq k \leq m, \ 1 \leq j \leq n.$$

Logo, aplicando o Lema
(1.3.3) a u_k para cada $1 \le k \le m$, obtemos

$$\nabla u_k(P) = 0$$
 em Γ , $\forall k = 1, \dots, m$.

Como $P \in \Gamma$ é arbitrário, vemos que

$$\nabla u_k = 0$$
 em Γ , $\forall k = 1, \dots, m$,

ou seja,

$$\nabla u = 0$$
 em Γ .

Lema 1.3.5 Suponha $\partial\Omega$ de classe C^3 e sejam u_1, \dots, u_N funções em $C^2(\overline{\Omega})$ satisfazendo

$$\Delta u_k + \sum_{j=1}^{N} a_{kj}(x)u_j(x) = 0 \quad em \quad \Omega \quad (1 \le k \le N),$$
 (1.3.13)

com $a_{kj} \in C(\Omega)$. Se existe um ponto $P \in \partial \Omega$ e uma vizinhança W de P tal que

$$u_k(x) = 0,$$
 $x \in \partial\Omega \cap \mathcal{W} \quad (1 \le k \le N),$
$$\frac{\partial u_k}{\partial \nu}(x) = 0,$$
 $x \in \partial\Omega \cap \mathcal{W} \quad (1 \le k \le N).$ (1.3.14)

Então,

$$u_k(x) = 0, \quad \forall \ x \in \Omega \quad (1 \le k \le N).$$

O lema anterior deriva do Teorema da Continuação Única de Calderón. Sua demonstração pode ser encontrada em [18], Capítulo 6.

Capítulo 2

O Sistema de Ginzburg-Landau

O sistema de Ginzburg-Landau surge como um modelo matemático que descreve um fenômeno de transição de fase em vários campos como supercondutividade, reações químicas e mecânica de fluidos. Ele é oriundo do sistema fundamental Ginzburg-Landau ao se ignorar o efeito magnético e, suplementado com a condição de fronteira de Neumann homogênea, é dado por

$$\begin{cases} \frac{\partial U}{\partial t} = \Delta U + (1 - |U|^2)U & \text{em} \quad \Omega \times \mathbb{R}^+ \\ \frac{\partial U}{\partial \nu} = 0 & \text{em} \quad \partial \Omega \times \mathbb{R}^+, \end{cases}$$
 (2.0.1)

com

$$U = (u, v)^t$$
, $|U| = (u^2 + v^2)^{\frac{1}{2}}$.

Aqui Ω é um domínio limitado em \mathbb{R}^n com fronteira $\partial\Omega$ de classe C^3 e ν é o vetor normal unitário exterior a $\partial\Omega$.

Em um espaço de fase adequado X, (2.0.1) define um sistema dinâmico. Além disso, (2.0.1) possui uma função de Lyapunov

$$\mathcal{E}(U) = \int_{\Omega} \left\{ \frac{1}{2} |\nabla U|^2 - \frac{1}{2} |U|^2 + \frac{1}{4} |U|^4 \right\} dx,$$

o que permitiu que em [1] fosse provado que qualquer solução de (2.0.1) se aproxima do conjunto das soluções de equilíbrio.

Definição 2.0.1 Uma solução de equilíbrio ou um equilíbrio do problema (2.0.1) é uma solução do problema elíptico associado

$$\begin{cases} \Delta V + (1 - |V|^2)V = 0 & em \quad \Omega, \\ \frac{\partial V}{\partial \nu} = 0 & em \quad \partial \Omega. \end{cases}$$
 (2.0.2)

Neste capítulo, nosso interesse se concentra no problema da existência de soluções de equilíbrio estáveis não-constantes do problema (2.0.1), sendo o conceito de estabilidade no sentido de Lyapunov, segundo a definição seguinte:

Definição 2.0.2 Uma solução V de (2.0.2) é **estável** quando, dada qualquer vizinhança W de V em X, existe uma vizinhança W' de V tal que qualquer solução U(t,.) de (2.0.1) com $U(0,.) \in W'$, satisfaz $U(t,.) \in W$ $(\forall t \geq 0)$. Uma solução instável é uma solução que não é estável.

Definição 2.0.3 Uma solução V de (2.0.2) é assintoticamente estável se é estável e existe uma vizinhança \mathcal{U} de V em X tal que qualquer solução U(t,.) de (2.0.1) com $U(0,.) \in \mathcal{U}$ satisfaz

$$\lim_{t \to +\infty} ||U(t,.) - V||_X = 0.$$

Uma pergunta ulterior que podemos responder inicialmente é a seguinte: "Existe alguma solução de equilíbrio de (2.0.1) assintoticamente estável?" O próximo teorema responde esta pergunta.

Teorema 2.0.5 Não existe solução de equilíbrio de (2.0.1) que seja assintoticamente estável.

Prova. Primeiramente, note que (2.0.1) e (2.0.2) são invariantes por rotações, isto é, são invariantes sob a transformação

$$U \longmapsto \Re(\gamma)U$$

com

$$\Re(\gamma) = \begin{pmatrix} \cos \gamma & -\sin \gamma \\ \sin \gamma & \cos \gamma \end{pmatrix},$$

pois

$$\Re(\gamma)U = \left(\begin{array}{cc} \cos\gamma & -\sin\gamma \\ \sin\gamma & \cos\gamma \end{array}\right) \left(\begin{array}{c} u \\ v \end{array}\right) = \left(\begin{array}{c} u\cos\gamma - v\sin\gamma \\ u\sin\gamma + v\cos\gamma \end{array}\right),$$

$$\frac{\partial}{\partial t}(\Re(\gamma)U) = \begin{pmatrix} \frac{\partial}{\partial t}(u\cos\gamma - v\sin\gamma) \\ \frac{\partial}{\partial t}(u\sin\gamma + v\cos\gamma) \end{pmatrix} = \begin{pmatrix} \cos\gamma & -\sin\gamma \\ \sin\gamma & \cos\gamma \end{pmatrix} \begin{pmatrix} \frac{\partial u}{\partial t} \\ \frac{\partial v}{\partial t} \end{pmatrix}$$

$$= \Re(\gamma)\frac{\partial U}{\partial t},$$

$$\Delta(\Re(\gamma)U) = \begin{pmatrix} \Delta(u\cos\gamma - v\sin\gamma) \\ \Delta(u\sin\gamma + v\cos\gamma) \end{pmatrix} = \begin{pmatrix} \cos\gamma & -\sin\gamma \\ \sin\gamma & \cos\gamma \end{pmatrix} \begin{pmatrix} \Delta u \\ \Delta v \end{pmatrix}$$
$$= \Re(\gamma)\Delta U,$$

е

$$(1 - |\Re(\gamma)U|^2) \Re(\gamma)U =$$

$$= \left(1 - \left[\left(u\cos\gamma - v\sin\gamma\right)^2 + \left(u\sin\gamma + v\cos\gamma\right)^2\right]\right) \begin{pmatrix} u\cos\gamma - v\sin\gamma\\ u\sin\gamma + v\cos\gamma \end{pmatrix}$$

$$= \left(1 - \left[u^2(\cos^2\gamma + \sin^2\gamma) + v^2(\sin^2\gamma + \cos^2\gamma)\right]\right) \begin{pmatrix} \cos\gamma & -\sin\gamma \\ \sin\gamma & \cos\gamma \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}$$

$$= (1 - |U|^2) \Re(\gamma)U.$$

Logo,

$$\begin{split} \frac{\partial}{\partial t}(\Re(\gamma)U) &= & \Delta(\Re(\gamma)U) + (1 - |\Re(\gamma)U|^2)\Re(\gamma)U \\ \\ \iff & \frac{\partial U}{\partial t} = \Delta U + (1 - |U|^2)U, \end{split}$$

ou seja, U é solução de (2.0.1) se, e somente se, $\Re(\gamma)U$ também o é. O mesmo vale para (2.0.2). Isto implica que para cada equilíbrio V de (2.0.1) existe um contínuo de soluções associado

$$\Big\{\Re(\gamma)V\ ;\ \gamma\in[0,2\pi)\Big\}.$$

Desta invariância decorre a afirmação do teorema. De fato, dados V uma solução de (2.0.2) e \mathcal{W} uma vizinhança de V em X, tomando $\gamma > 0$ suficientemente pequeno de forma que $\Re(\gamma)V \in \mathcal{W}$, temos que $\Re(\gamma)V$ é solução de (2.0.2), portanto solução de (2.0.1), tal que

$$\lim_{t\to +\infty} \ \|\Re(\gamma)V-V\|_X = \|\Re(\gamma)V-V\|_X > 0.$$

Portanto, não existe solução de equilíbrio de (2.0.1) que seja assintoticamente estável. \Box

Para atacar nosso problema inicial, a questão da existência de soluções de equilíbrio estáveis não-constantes de (2.0.1), vamos considerar a seguinte classe de sistemas parabólicos semilineares

$$\begin{cases}
\frac{\partial u_k}{\partial t} = \Delta u_k + \frac{\partial F}{\partial u_k} (u_1, \dots, u_N), & \text{em} \quad \Omega \times \mathbb{R}^+ \\
\frac{\partial u_k}{\partial \nu} = 0, & \text{em} \quad \partial \Omega \times \mathbb{R}^+, \quad (k = 1, \dots, N),
\end{cases}$$
(2.0.3)

com $F \in C^3(\mathbb{R}^N, \mathbb{R}) \ (N \ge 1)$.

Note que (2.0.1) é um caso particular de (2.0.3), se consideramos N=2 e

$$F(u_1, u_2) = \frac{1}{2} (u_1^2 + u_2^2) - \frac{1}{4} (u_1^2 + u_2^2)^2.$$

Definição 2.0.4 Uma solução de equilíbrio ou um equilíbrio do problema (2.0.3) é uma solução do problema elíptico associado

$$\begin{cases}
\Delta u_k + \frac{\partial F}{\partial u_k}(u_1, \dots, u_N) = 0 & em \quad \Omega \\
\frac{\partial u_k}{\partial \nu} = 0 & em \quad \partial \Omega \quad (k = 1, \dots, N).
\end{cases} \tag{2.0.4}$$

O principal resultado deste capítulo é o próximo teorema.

Teorema 2.0.6 Suponha que F é uma função de classe C^3 e que $\partial\Omega \in C^3$. Se Ω é convexo, então toda solução não-constante de (2.0.4) é um equilíbrio instável de (2.0.3).

Corolário 2.0.1 Suponha a mesma condição em $\partial\Omega$. Se Ω é convexo, então qualquer solução não-constante de (2.0.2) é um equilíbrio instável de (2.0.1).

O resultado que responde o nosso problema inicial é o Corolário (2.0.1), isto é, se Ω é convexo, **não existe** equilíbrio não-constante estável de (2.0.1).

Prova do Teorema (2.0.6). Seja $U=(u_1,\cdots,u_N)$ uma solução não-constante de (2.0.4). Vamos considerar o problema de autovalores linearizado em torno de U

$$\mathcal{L}\Psi + \mu\Psi = 0$$

com

$$\mathcal{L}: \mathsf{D}(\mathcal{L}) \subset \left(L^2(\Omega)\right)^N \longrightarrow \left(L^2(\Omega)\right)^N$$

dado por

$$\begin{cases} \left[\mathcal{L}\Psi\right]_{k} = \Delta\psi_{k} + \sum_{l=1}^{N} \frac{\partial^{2} F}{\partial u_{k} \partial u_{l}}(U) \ \psi_{l} & (1 \leq k \leq N), \end{cases}$$

$$\mathsf{D}(\mathcal{L}) = \left\{\Psi \in \left(H^{2}(\Omega)\right)^{N} \ \middle| \ \frac{\partial\Psi}{\partial\nu} = 0 \ \text{em} \ \partial\Omega\right\}, \quad \Psi = (\psi_{1}, \cdots, \psi_{N}).$$

Temos que \mathcal{L} é auto-adjunto com resolvente compacto, de forma que o espectro de \mathcal{L} é formado somente por autovalores reais.

Para inferirmos sobre a estabilidade de U, vamos analisar o espectro de \mathcal{L} : como queremos demonstrar que U é instável, é suficiente mostrarmos que o primeiro autovalor μ_1 é negativo (cf. [8], Teorema 5.1.3, p. 102).

Defina

$$\mathcal{K}(\Psi) = \int_{\Omega} \left\{ \sum_{k=1}^{N} |\nabla \psi_k|^2 - \sum_{1 \le k, l \le N} \frac{\partial^2 F}{\partial u_k \partial u_l}(U) \psi_k \psi_l \right\} dx, \quad ||\Psi|| = \left(\sum_{k=1}^{N} ||\psi_k||_{L^2(\Omega)}^2 \right)^{\frac{1}{2}}$$

Como \mathcal{L} é auto-adjunto, sabemos (veja por exemplo [5]) que μ_1 é caracterizado por

$$\mu_1 = \inf_{\substack{\Psi \in (H^1(\Omega))^N \\ \Psi \neq 0}} \left\{ \frac{\mathcal{K}(\Psi)}{||\Psi||^2} \right\}.$$
 (2.0.5)

Seja

$$\Psi_j = \frac{\partial U}{\partial x_j} \in \left(H^1(\Omega)\right)^N.$$

Sendo U não-constante, $\Psi_j \neq 0$ para pelo menos um j. Por (2.0.5),

$$\mu_1 \le \min \left\{ \frac{\mathcal{K}(\Psi_j)}{||\Psi_j||^2} ; \ \Psi_j \ne 0, \ 1 \le j \le n \right\}.$$
(2.0.6)

Note que

$$\sum_{j=1}^{n} \mathcal{K}(\Psi_{j}) = \sum_{j=1}^{n} \int_{\Omega} \left\{ \sum_{k=1}^{N} \left| \nabla \left(\frac{\partial u_{k}}{\partial x_{j}} \right) \right|^{2} - \sum_{k,l=1}^{N} \frac{\partial^{2} F}{\partial u_{k} \partial u_{l}} (U) \frac{\partial u_{k}}{\partial x_{j}} \frac{\partial u_{l}}{\partial x_{j}} \right\} dx$$

$$= \sum_{j=1}^{n} \int_{\partial \Omega} \sum_{k=1}^{N} \frac{\partial u_{k}}{\partial x_{j}} \frac{\partial}{\partial \nu} \left(\frac{\partial u_{k}}{\partial x_{j}} \right) d\sigma - \sum_{j=1}^{n} \int_{\Omega} \sum_{k=1}^{N} \frac{\partial u_{k}}{\partial x_{j}} \frac{\partial}{\partial x_{j}} \left(\Delta u_{k} + \frac{\partial F}{\partial u_{k}} (U) \right) dx$$

$$= \sum_{j=1}^{n} \int_{\partial \Omega} \sum_{k=1}^{N} \frac{\partial u_{k}}{\partial x_{j}} \frac{\partial}{\partial \nu} \left(\frac{\partial u_{k}}{\partial x_{j}} \right) d\sigma$$

$$= \frac{1}{2} \int_{\partial \Omega} \sum_{k=1}^{N} \frac{\partial}{\partial \nu} |\nabla u_{k}|^{2} d\sigma \stackrel{\text{Lema (1.3.1)}}{\leq} 0. \tag{2.0.7}$$

Assim, por (2.0.6) e por (2.0.7) concluímos que $\mu_1 \leq 0$, pois

$$||\Psi_{j}||^{2} \mu_{1} \leq \mathcal{K}(\Psi_{j}), \quad \forall 1 \leq j \leq n$$

$$\implies \sum_{j=1}^{n} ||\Psi_{j}||^{2} \mu_{1} \leq \sum_{j=1}^{n} \mathcal{K}(\Psi_{j}) \stackrel{(2.0.7)}{\leq} 0.$$

$$(2.0.8)$$

Se $\mu_1 < 0$, o teorema está provado. Suponha que $\mu_1 = 0$.

De (2.0.8) obtemos $\mathcal{K}(\Psi_j) \geq 0$ e, com isso,

$$0 \le \sum_{j=1}^{n} \mathcal{K}(\Psi_j) \le 0$$

o que implica $\mathcal{K}(\Psi_j) = 0$ para j = 1, ..., n. Logo, os Ψ_j 's não-nulos realizam (2.0.5) e pelo Teorema (2.0.7) do Apêndice ao final deste capítulo, são autofunções correspondendo ao primeiro autovalor $\mu_1 = 0$ de \mathcal{L} e satisfazem a condição de fronteira de Neumann.

Como os Ψ_j 's identicamente nulos satisfazem a condição de fronteira de Neumann homogênea trivialmente, segue que

$$\frac{\partial \Psi_j}{\partial \nu} = \frac{\partial}{\partial \nu} \left(\frac{\partial U}{\partial x_j} \right) = 0 \quad \text{em } \partial \Omega \quad (1 \le j \le n). \tag{2.0.9}$$

Agora, como Ω é um domínio limitado com fronteira C^3 em \mathbb{R}^n , $\partial\Omega$ é uma superfície (n-1)-dimensional compacta orientável e sem bordo. Então, pelo Teorema (1.2.4) existe um ponto $P \in \partial\Omega$ tal que a Segunda Forma Fundamental \mathcal{S}_P é definida em P.

Por continuidade, existe uma vizinhança \mathcal{V} de P em \mathbb{R}^n tal que \mathcal{S}_P é uma forma definida em $\partial\Omega\cap\mathcal{V}$, de modo que seus autovalores, as curvaturas principais, tem o mesmo sinal de \mathcal{S}_P em $\partial\Omega\cap\mathcal{V}$. Assim, qualquer curvatura principal é não nula em $\partial\Omega\cap\mathcal{V}$.

Em virtude das condições de fronteira de Neumann de U e por (2.0.9), podemos aplicar o Lema (1.3.3) para obtermos

$$\nabla u_k = 0 \text{ em } \partial\Omega \cap \mathcal{V}. \tag{2.0.10}$$

Combinando as informações obtidas, temos que para cada $j=1,\ldots,n,\,V=\Psi_j$ satisfaz o seguinte problema

$$\begin{cases} \mathcal{L}V = 0 & \text{em} \quad \Omega, \\ \\ V = 0, \ \frac{\partial V}{\partial \nu} = 0, & \text{em} \quad \partial \Omega \cap \mathcal{V}, \end{cases}$$

isto é, $\frac{\partial u_k}{\partial x_j}$ satisfaz

$$\begin{cases}
\Delta \left(\frac{\partial u_k}{\partial x_j} \right) + \sum_{l=1}^{N} \frac{\partial^2 F}{\partial u_k \partial u_l} (U) \frac{\partial u_l}{\partial x_j} = 0 & \text{em} \quad \Omega, \\
\frac{\partial u_k}{\partial x_j} = 0 & \text{em} \quad \partial \Omega \cap \mathcal{V}, \\
\frac{\partial}{\partial \nu} \left(\frac{\partial u_k}{\partial x_j} \right) = 0 & \text{em} \quad \partial \Omega \cap \mathcal{V}, \quad (1 \le k \le N),
\end{cases} \tag{2.0.11}$$

para cada $1 \leq j \leq n.$ Aplicando o Lema (1.3.5) a (2.0.11), obtemos

$$\frac{\partial u_k}{\partial x_j}(x) = 0, \quad \forall x \in \Omega, \quad (1 \le j \le n, \ 1 \le k \le N).$$

Como Ω é aberto e conexo, concluímos que u_1, \dots, u_N são constantes em Ω , o que é uma contradição com o suposto inicialmente.

Portanto, $\mu_1 < 0$ e o teorema está provado.

Apêndice

Na demonstração do Teorema (2.0.6) consideramos $U = (u_1, \dots, u_N)$ uma solução não-constante de (2.0.4) e o problema de autovalores linearizado em torno de U

$$\mathcal{L}\Psi + \mu\Psi = 0$$

com

$$\mathcal{L}: \mathsf{D}(\mathcal{L}) \subset \left(L^2(\Omega)\right)^N \longrightarrow \left(L^2(\Omega)\right)^N$$

dado por

$$\begin{cases}
\left[\mathcal{L}\Psi\right]_{k} = \Delta\psi_{k} + \sum_{l=1}^{N} \frac{\partial^{2}F}{\partial u_{k}\partial u_{l}}(U) \psi_{l} & (1 \leq k \leq N), \\
D(\mathcal{L}) = \left\{\Psi \in \left(H^{2}(\Omega)\right)^{N} \middle| \frac{\partial\Psi}{\partial\nu} = 0 \text{ em } \partial\Omega\right\}, \quad \Psi = (\psi_{1}, \cdots, \psi_{N}).
\end{cases}$$

Pondo

$$\mathcal{K}(\Psi) = \int_{\Omega} \left\{ \sum_{k=1}^{N} |\nabla \psi_k|^2 - \sum_{1 \le k,l \le N} \frac{\partial^2 F}{\partial u_k \partial u_l}(U) \ \psi_k \psi_l \right\} dx, \quad ||\Psi|| = \left(\sum_{k=1}^{N} ||\psi_k||_2^2 \right)^{\frac{1}{2}},$$

temos que esse problema de autovalores está intimamente ligado a um problema variacional. Isto é o conteúdo do teorema que demonstraremos neste apêndice.

Teorema 2.0.7 Se $\Theta = (\theta_1, \dots, \theta_N)$ é uma função na qual

$$\mu = \inf_{\substack{\Psi \in (H^1(\Omega))^N \\ \Psi \neq 0}} \left\{ \frac{\mathcal{K}(\Psi)}{||\Psi||^2} \right\}$$
 (2.0.13)

é atingido, então Θ é uma autofunção de \mathcal{L} associada ao autovalor μ e satisfaz a condição de fronteira de Neumann homogênea.

Prova. Defina a forma bilinear

$$\Lambda: (H^1(\Omega))^N \times (H^1(\Omega))^N \longrightarrow \mathbb{R}$$

dada por

$$\Lambda(\Phi, \Psi) = \int_{\Omega} \left\{ \sum_{k=1}^{N} \nabla \phi_k \cdot \nabla \psi_k - \sum_{k,l=1}^{N} \frac{\partial^2 F}{\partial u_k \partial u_l}(U) \ \phi_k \psi_l \right\} dx.$$

Sejam Θ uma função que realiza (2.0.13), $\mu = \frac{\mathcal{K}(\Theta)}{||\Theta||^2}$ e $0 \not\equiv \Phi \in (H^1(\Omega))^N$.

Se $c \in \mathbb{R}$ é uma constante arbitrária tal que $||\Theta + c\Phi|| \neq 0$, temos

$$\mathcal{K}(\Theta + c\Phi) \ge \mu ||\Theta + c\Phi||^2.$$

Por outro lado,

$$\mathcal{K}(\Theta + c\Phi) = \int_{\Omega} \left\{ \sum_{k=1}^{N} |\nabla(\theta_k + c\phi_k)|^2 - \sum_{k,l=1}^{N} \frac{\partial^2 F}{\partial u_k \partial u_l} (U)(\theta_k + c\phi_k)(\theta_l + c\phi_l) \right\} dx$$

$$= \int_{\Omega} \left\{ \sum_{k=1}^{N} |\nabla \theta_k|^2 - \sum_{k,l=1}^{N} \frac{\partial^2 F}{\partial u_k \partial u_l} (U) \theta_k \theta_l \right\} dx$$

$$+ 2c \int_{\Omega} \left\{ \sum_{k=1}^{N} |\nabla \theta_k|^2 - \sum_{k,l=1}^{N} \frac{\partial^2 F}{\partial u_k \partial u_l} (U) \theta_k \phi_l \right\} dx$$

$$+ c^2 \int_{\Omega} \left\{ \sum_{k=1}^{N} |\nabla \phi_k|^2 - \sum_{k,l=1} \frac{\partial^2 F}{\partial u_k \partial u_l} (U) \phi_k \phi_l \right\} dx$$

$$= \mathcal{K}(\Theta) + c^2 \mathcal{K}(\Phi) + 2c\Lambda(\Theta, \Phi).$$

Assim,

$$\mu ||\Theta + c\Phi||^2 \le \mathcal{K}(\Theta + c\Phi) = \mathcal{K}(\Theta) + c^2 \mathcal{K}(\Phi) + 2c\Lambda(\Theta, \Phi)$$

e como $\mathcal{K}(\Theta) = \mu ||\Theta||^2$, obtemos

$$\mu \Big[||\Theta||^2 + 2c\langle \Theta, \Phi \rangle_{(L^2(\Omega))^N} + c^2 ||\Phi||^2 \Big] \le \mu ||\Theta||^2 + c^2 \mathcal{K}(\Phi) + 2c\Lambda(\Theta, \Phi)$$

e daí

$$2c\mu\langle\Theta,\Phi\rangle_{(L^2(\Omega))^N} + c^2\mu||\Phi||^2 \le c^2\mathcal{K}(\Phi) + 2c\Lambda(\Theta,\Phi),$$

ou seja,

$$c^{2}\left[\mathcal{K}(\Phi) - \mu||\Phi||^{2}\right] + 2c\left[\Lambda(\Theta, \Phi) - \mu\langle\Theta, \Phi\rangle_{(L^{2}(\Omega))^{N}}\right] \ge 0.$$
 (2.0.14)

Se $\mathcal{K}(\Phi) - \mu ||\Phi||^2 = 0$, da arbitrariedade de c segue que

$$\Lambda(\Theta, \Phi) = \mu \langle \Theta, \Phi \rangle_{(L^2(\Omega))^N}.$$

Agora, se $\mathcal{K}(\Phi) - \mu ||\Phi||^2 \neq 0$ (e assim $\mathcal{K}(\Phi) - \mu ||\Phi||^2 > 0$ por (2.0.13)), o lado esquerdo (2.0.14) é um polinômio na variável c cujas raízes são

$$c = 0$$
 e $c = -2 \left(\frac{\Lambda(\Theta, \Psi) - \mu \langle \Theta, \Phi \rangle_{(L^2(\Omega))^N}}{\mathcal{K}(\Phi) - \mu ||\Phi||^2} \right).$

Como este polinômio é não-negativo e $\mathcal{K}(\Phi) - \mu ||\Phi||^2 > 0$, c = 0 é a única raiz o que implica

$$\Lambda(\Theta, \Phi) = \mu \langle \Theta, \Phi \rangle_{(L^2(\Omega))^N},$$

que é equivalente a

$$\int_{\Omega} \left\{ \sum_{k=1}^{N} \nabla \theta_k \cdot \nabla \phi_k - \sum_{k,l=1}^{N} \frac{\partial^2 F}{\partial u_k \partial u_l}(U) \; \theta_k \phi_l \right\} dx = \mu \int_{\Omega} \sum_{k=1}^{N} \theta_k \phi_k \; dx.$$

Integrando por partes, obtemos

$$\int_{\Omega} \sum_{k=1}^{N} -\Delta \theta_k \phi_k dx + \int_{\partial \Omega} \sum_{k=1}^{N} \frac{\partial \theta_k}{\partial \nu} \phi_k d\sigma - \int_{\Omega} \sum_{k,l=1}^{N} \frac{\partial^2 F}{\partial u_k \partial u_l} (U) \theta_k \phi_l dx = \mu \int_{\Omega} \sum_{k=1}^{N} \theta_k \phi_k dx,$$

que equivale a

$$\int_{\Omega} \sum_{k=1}^{N} -\left\{\Delta \theta_{k} + \sum_{l=1}^{N} \frac{\partial^{2} F}{\partial u_{k} \partial u_{l}}(U)\theta_{l}\right\} \phi_{k} dx + \int_{\partial \Omega} \sum_{k=1}^{N} \frac{\partial \theta_{k}}{\partial \nu} \phi_{k} d\sigma = \mu \int_{\Omega} \sum_{k=1}^{N} \theta_{k} \phi_{k} dx,$$

ou

$$\int_{\Omega} -\sum_{k=1}^{N} [\mathcal{L}\Theta]_k \phi_k dx + \int_{\partial \Omega} \sum_{k=1}^{N} \frac{\partial \theta_k}{\partial \nu} \phi_k d\sigma = \mu \int_{\Omega} \sum_{k=1}^{N} \theta_k \phi_k dx.$$
 (2.0.15)

Tomando $\Phi^i = (0, \dots, 0, \phi_i, 0, \dots, 0) \in (H^1(\Omega))^N$, $1 \le i \le N$, sendo ϕ_i a *i*-ésima componente de Φ^i e tal que $\phi_i \in C_c^{\infty}(\overline{\Omega})$, obtemos por (2.0.15)

$$\int_{\Omega} [\mathcal{L}\Theta]_i \ \phi_i dx = \int_{\Omega} (-\mu \theta_i) \phi_i dx, \quad \forall \phi_i \in C_c^{\infty}(\overline{\Omega}), \text{ para cada } i = 1, \dots, N.$$

Logo,

$$[\mathcal{L}\Theta]_i = -\mu\theta_i$$
 q.t.p. em Ω , para cada $i = 1, \dots, N$, (2.0.16)

donde segue que

$$\mathcal{L}\Theta + \mu\Theta = 0$$
 q.t.p. em Ω .

Da regularidade dos coeficientes de \mathcal{L} temos que Θ é regular e, assim,

$$\mathcal{L}\Theta + \mu\Theta = 0$$
 em Ω .

Ainda, tendo em vista (2.0.16), (2.0.15) se reduz a

$$\int_{\partial\Omega} \sum_{k=1}^{N} \frac{\partial \theta_k}{\partial \nu} \phi_k d\sigma = 0 \tag{2.0.17}$$

e escolhendo agora $\Phi^r = (0, \dots, 0, \varphi_r, 0, \dots, 0) \in (H^1(\Omega))^N, \ 1 \leq r \leq N$, sendo φ_r a r-ésima componente de Φ^r e tal que $\varphi_r \in C^{\infty}(\overline{\Omega})$, obtemos por (2.0.17)

$$\int_{\partial \Omega} \frac{\partial \theta_r}{\partial \nu} \varphi_r d\sigma = 0, \quad \forall \varphi_r \in C^{\infty}(\overline{\Omega}), \text{ para cada } r = 1, \dots, N,$$

o que produz

$$\frac{\partial \theta_r}{\partial \nu} = 0$$
 q.t.p. em $\partial \Omega$, $\forall r = 1, ..., N$.

Portanto,

$$\frac{\partial \Theta}{\partial \nu} = 0$$
 q.t.p. em $\partial \Omega$

e, pela regularidade de Θ , obtemos

$$\frac{\partial \Theta}{\partial \nu} = 0$$
 em Ω .

Agora, se $||\Theta + c\Phi|| = 0$ com $c \neq 0$, então $\Theta + c\Phi = 0$, ou seja, $\Phi = -\frac{1}{c}\Theta$. Daí, sendo Θ solução de (2.0.12) segue que Φ também o é e, como

$$\frac{\mathcal{K}(\Phi)}{||\Phi||^2} = \frac{\mathcal{K}\left(-\frac{1}{c}\Theta\right)}{\left|\left|-\frac{1}{c}\Theta\right|\right|^2} = \frac{\mathcal{K}(\Theta)}{||\Theta||^2} = \mu,$$

(2.0.13) também é atingido em Φ , o teorema está provado. \square

Capítulo 3

Sistema tipo Landau-Lifshitz

O sistema de Landau-Lifshitz foi derivado do problema ferro-magnético por Landau e Lifshitz em 1935. A teoria ferro-magnética afirma que abaixo de uma temperatura crítica, um corpo ferro-magnético suficientemente largo se quebra em pequenas regiões uniformemente magnetizadas, separadas por estreitas camadas de transições.

O sistema que vamos considerar, suplementado com a condição de fronteira de Neumann homogênea, é dado por:

$$\begin{cases}
\partial_t u = \Delta u + |\nabla u|^2 - \{W_u - (W_u \cdot u)u\} & \text{em} \quad \Omega \times \mathbb{R}^+, \\
\frac{\partial u}{\partial \nu} = 0 & \text{em} \quad \partial \Omega \times \mathbb{R}^+, \\
u = (u_1, u_2, \dots, u_m) \in S^{m-1},
\end{cases}$$
(3.0.1)

sendo $\Omega\subset\mathbb{R}^n$ um domínio limitado com fronteira $\partial\Omega$ de classe $C^3,\,W\in C^3(\mathbb{R}^m),$ $W(u)\geq 0$ para $u\in S^{m-1}$ $(m\geq 2)$ e

$$W_u := (\partial_{u_1} W, \ \partial_{u_2} W, \dots, \ \partial_{u_m} W)^t.$$

O sistema (3.0.1) se reduz ao sistema de Landau-Lifshitz para corpos homogêneos num certo sentido e quando consideramos $u \in S^2$.

(3.0.1) tem o seguinte funcional energia:

$$E(u) = \int_{\Omega} \left(\frac{1}{2} |\nabla u|^2 + W(u)\right) dx. \tag{3.0.2}$$

Definição 3.0.5 Uma solução de equilíbrio ou um equilíbrio de (3.0.1) é uma solução do sistema elíptico associado

$$\begin{cases}
\Delta u + |\nabla u|^2 - \{W_u - (W_u \cdot u)u\} = 0 & em \quad \Omega, \\
\frac{\partial u}{\partial \nu} = 0 & em \quad \partial \Omega, \\
u = (u_1, u_2, \dots, u_m) \in S^{m-1}.
\end{cases}$$
(3.0.3)

O principal resultado deste capítulo afirma que qualquer solução de equilíbrio não-constante de (3.0.1) é instável quando Ω é convexo. Este é o conteúdo do seguinte

Teorema 3.0.8 Se Ω é convexo, então qualquer solução suave não-constante de (3.0.3) é um equilíbrio instável de (3.0.1).

Prova. Suponha que $u: \Omega \longrightarrow S^{m-1} \subset \mathbb{R}^m$ é uma solução suave não-constante de (3.0.3). Vamos provar que existe uma função teste tal que a segunda variação do funcional energia (3.0.2) em u toma um valor mínimo. Isto é, u é instável. Para qualquer $\varphi \in C^{\infty}(\overline{\Omega}, \mathbb{R}^m)$, defina

$$v_{\varepsilon}(x) = \frac{u(x) + \varepsilon \varphi(x)}{|u(x) + \varepsilon \varphi(x)|}.$$

Assim, $v_{\varepsilon} = (v_{\varepsilon}^1, \dots, v_{\varepsilon}^m)$ com

$$v_{\varepsilon}^{i} = \frac{u_{i} + \varepsilon \varphi_{i}}{|u(x) + \varepsilon \varphi(x)|}, \quad i = 1, \dots, m.$$

Calculando $\frac{d}{d\varepsilon}v_{\varepsilon}^{i}$ para cada $1 \leq i \leq m$, obtemos

$$\frac{d}{d\varepsilon}v_{\varepsilon}^{i} = \frac{\varphi_{i}|u + \varepsilon\varphi| - (u_{i} + \varepsilon\varphi_{i})|u + \varepsilon\varphi|^{-1} \left(\sum_{j=1}^{m} (u_{j} + \varepsilon\varphi_{j})\varphi_{j}\right)}{|u + \varepsilon\varphi|^{2}}.$$

Avaliando em $\varepsilon = 0$ e usando o fato de $u \in S^{m-1}$, ou seja, |u(x)| = 1 qualquer que seja $x \in \Omega$, segue que

$$\frac{d}{d\varepsilon} v_{\varepsilon}^{i} \Big|_{\varepsilon=0} = \varphi_{i} - u_{i} \sum_{j=1}^{m} u_{j} \varphi_{j}$$
$$= \varphi_{i} - u_{i} (\varphi \cdot u),$$

para cada $i=1,\cdots,m$. Daí,

$$\frac{d}{d\varepsilon}v_{\varepsilon}\Big|_{\varepsilon=0} = \left(\frac{d}{d\varepsilon}v_{\varepsilon}^{1}\Big|_{\varepsilon=0}, \dots, \frac{d}{d\varepsilon}v_{\varepsilon}^{m}\Big|_{\varepsilon=0}\right)$$

$$= \left(\varphi_{1} - u_{1} \left(\varphi \cdot u\right), \dots, \varphi_{m} - u_{m} \left(\varphi \cdot u\right)\right)$$

$$= \varphi - u \left(\varphi \cdot u\right).$$

Procedendo analogamente, temos

$$\left. \frac{d^2}{d\varepsilon^2} v_{\varepsilon} \right|_{\varepsilon=0} = -|\varphi|^2 u - 2(\varphi \cdot u)\varphi + 3(\varphi \cdot u)^2 u.$$

Também por cálculos diretos, obtemos a segunda variação $\mathcal{K}(\varphi)$ do funcional energia (3.0.2), que é definida por

$$\mathcal{K}(\varphi) = \frac{d^2}{d\varepsilon^2} E(v_{\varepsilon}) \bigg|_{\varepsilon=0}.$$

Aplicando $\frac{d^2}{d\varepsilon^2}$ a (3.0.2), obtemos

$$\frac{d^{2}}{d\varepsilon^{2}}E(v_{\varepsilon}) = \int_{\Omega} \left\{ \sum_{i=1}^{m} \left| \frac{d}{d\varepsilon} \nabla v_{\varepsilon}^{i} \right|^{2} + \sum_{i=1}^{m} \nabla v_{\varepsilon}^{i} \cdot \nabla \left(\frac{d^{2}}{d\varepsilon^{2}} v_{\varepsilon}^{i} \right) \right. \\
\left. + \sum_{k,l=1}^{m} \frac{\partial^{2}W}{\partial u_{l} \partial u_{k}} (v_{\varepsilon}) \left(\frac{d}{d\varepsilon} v_{\varepsilon}^{l} \right) \left(\frac{d}{d\varepsilon} v_{\varepsilon}^{k} \right) + \sum_{k=1}^{m} \frac{\partial W}{\partial u_{k}} (v_{\varepsilon}) \frac{d^{2}}{d\varepsilon^{2}} v_{\varepsilon}^{k} \right\} dx.$$
(3.0.4)

Nesta demonstração vamos usar as particulares funções teste:

$$\varphi \in C^3(\overline{\Omega}, \mathbb{R}^m), \quad \text{com} \quad \varphi \cdot u = 0.$$
 (3.0.5)

Para qualquer φ neste conjunto, a segunda variação do funcional energia (3.0.2) tem uma versão mais simplificada, dada por

$$\frac{d^2}{d\varepsilon^2} E(v_{\varepsilon}) \bigg|_{\varepsilon=0} = \int_{\Omega} \left(|\nabla \varphi|^2 - |\varphi|^2 |\nabla u|^2 + \varphi \cdot W_{uu}(u)\varphi - |\varphi|^2 W_u(u) \cdot u \right) dx.$$

De fato, vamos avaliar (3.0.4) em $\varepsilon = 0$. Lembrando que $u \in S^{m-1}$, o que significa que $\sum_{k=1}^{m} u_k^2 = 1$, segue que $u \cdot \frac{\partial u}{\partial x_j} = 0$ para cada $j = 1, \dots, n$. Então,

$$\frac{d^{2}}{d\varepsilon^{2}}E(v_{\varepsilon})\Big|_{\varepsilon=0} = \int_{\Omega} \left\{ \sum_{i=1}^{m} \left| \left(\frac{d}{d\varepsilon} \nabla v_{\varepsilon}^{i} \right) \right|_{\varepsilon=0} \right|^{2} + \sum_{i=1}^{m} \left(\nabla v_{\varepsilon}^{i} \big|_{\varepsilon=0} \right) \cdot \nabla \left(\frac{d^{2}}{d\varepsilon^{2}} v_{\varepsilon}^{i} \big|_{\varepsilon=0} \right) + \sum_{k,l=1}^{m} \frac{\partial^{2}W}{\partial u_{l} \partial u_{k}} (v_{\varepsilon} \big|_{\varepsilon=0}) \left(\frac{d}{d\varepsilon} v_{\varepsilon}^{l} \big|_{\varepsilon=0} \right)^{l} \left(\frac{d}{d\varepsilon} v_{\varepsilon}^{k} \big|_{\varepsilon=0} \right)^{k} + \sum_{k=1}^{m} \frac{\partial W}{\partial u_{k}} (v_{\varepsilon} \big|_{\varepsilon=0}) \left(\frac{d^{2}}{d\varepsilon^{2}} v_{\varepsilon}^{k} \right) \Big|_{\varepsilon=0} dx ;$$

mas

•
$$\sum_{i=1}^{m} \left| \left(\frac{d}{d\varepsilon} \nabla v_{\varepsilon}^{i} \right) \right|_{\varepsilon=0}^{2} = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} \left[\frac{d}{d\varepsilon} \left(\frac{\partial v_{\varepsilon}^{i}}{\partial x_{j}} \right) \right|_{\varepsilon=0}^{2} \right)^{2} \right)$$

$$\stackrel{(\dagger)}{=} \sum_{i=1}^{m} \sum_{j=1}^{n} \left(\frac{\partial \varphi_{i}}{\partial x_{j}} \right)^{2} = |\nabla \varphi|^{2},$$

$$\bullet \sum_{i=1}^{m} \left(\nabla v_{\varepsilon}^{i} \big|_{\varepsilon=0} \right) \cdot \nabla \left(\frac{d^{2}}{d\varepsilon^{2}} v_{\varepsilon}^{i} \big|_{\varepsilon=0} \right) \stackrel{\text{(\ddagger)}}{=} \sum_{i=1}^{m} \sum_{j=1}^{n} \frac{\partial u_{i}}{\partial x_{j}} \left(-|\varphi|^{2} \frac{\partial u_{i}}{\partial x_{j}} \right) \\
= \sum_{i=1}^{m} \sum_{j=1}^{n} -|\varphi|^{2} \left(\frac{\partial u_{i}}{\partial x_{j}} \right)^{2} = -|\varphi|^{2} |\nabla u|^{2},$$

$$\bullet \sum_{k,l=1}^{m} \frac{\partial^{2} W}{\partial u_{l} \partial u_{k}} (v_{\varepsilon}\big|_{\varepsilon=0}) \left(\frac{d}{d\varepsilon} v_{\varepsilon}^{l} \Big|_{\varepsilon=0} \right)^{l} \left(\frac{d}{d\varepsilon} v_{\varepsilon}^{k} \Big|_{\varepsilon=0} \right)^{k} \stackrel{(\star)}{=} \sum_{k,l=1}^{m} \frac{\partial^{2} W}{\partial u_{l} \partial u_{k}} (u) \varphi^{l} \varphi^{k}$$

$$= \varphi \cdot W_{uu}(u) \varphi$$

$$\bullet \sum_{k=1}^{m} \frac{\partial W}{\partial u_{k}} (v_{\varepsilon}|_{\varepsilon=0}) \left(\frac{d^{2}}{d\varepsilon^{2}} v_{\varepsilon}^{k} \right) \Big|_{\varepsilon=0} \stackrel{(\star\star)}{=} \sum_{k=1}^{m} \frac{\partial W}{\partial u_{k}} (u) \left(-|\varphi|^{2} u_{k} \right) \\
= -|\varphi|^{2} \sum_{k=1}^{m} \frac{\partial W}{\partial u_{k}} (u) u_{k} \\
= -|\varphi|^{2} W_{u}(u) \cdot u.$$

Em (†), (‡), (*) e (**) computamos diretamente $v_{\varepsilon}^{i}|_{\varepsilon=0}$, $\frac{d}{d\varepsilon} \left(\frac{\partial v_{\varepsilon}^{i}}{\partial x_{j}}\right)\Big|_{\varepsilon=0}$, $\frac{d^{2}}{d\varepsilon^{2}}v_{\varepsilon}^{i}\Big|_{\varepsilon=0}$, usamos que $\varphi \cdot u = 0$ e, além destes fatos, lançamos mão em (†) da relação

$$\sum_{k=1}^{m} \varphi_k \frac{\partial u_k}{\partial x_j} = -\sum_{k=1}^{m} u_k \frac{\partial \varphi_k}{\partial x_j},$$

obtida ao aplicarmos $\frac{\partial}{\partial x_i}$ em $\varphi \cdot u = 0$.

Logo,

$$\mathcal{K}(\varphi) = \frac{d^2}{d\varepsilon^2} E(v_{\varepsilon}) \bigg|_{\varepsilon=0} = \int_{\Omega} \left(|\nabla \varphi|^2 - |\varphi|^2 |\nabla u|^2 + \varphi \cdot W_{uu}(u)\varphi - |\varphi|^2 W_u(u) \cdot u \right) dx.$$

Queremos encontrar uma função teste Ψ satisfazendo $\mathcal{K}(\Psi) < 0$.

Para isto, vamos considerar o problema de autovalores para o operador linearizado (auto-adjunto) em torno de \boldsymbol{u}

$$\mathcal{L}\Psi = \Delta\Psi + 2(\nabla u \cdot \nabla \Psi)u + |\nabla u|^2 \Psi - \sum_{l=1}^m \Psi_l W_{uu_l}(u)$$
$$+ \sum_{l,j=1}^m (\Psi_l u_j W_{u_l u_j}(u)) u + (W_u(u) \cdot \Psi)u + (W_u(u) \cdot u)\Psi,$$

com $\Psi = (\Psi_1, \dots, \Psi_m)$. Isto é,

$$\begin{cases}
\mathcal{L}\Psi + \mu\Psi = 0 & \text{em} \quad \Omega, \\
\frac{\partial\Psi}{\partial\nu}\Big|_{\partial\Omega} = 0, \quad \Psi \cdot u = 0, \quad \Psi \in (H^2(\Omega))^m.
\end{cases} (3.0.6)$$

Sabemos (veja por exemplo [5]) que o método alternativo de caracterizar o primeiro autovalor μ_1 de (3.0.6) é o seguinte problema de minimização:

$$\mu_1 = \inf \left\{ \frac{\mathcal{K}(\Psi)}{||\Psi||^2_{(L^2(\Omega))^m}} \mid \Psi \in (H^2(\Omega))^m, \ \Psi \cdot u = 0, \ \Psi \not\equiv 0 \right\}.$$
(3.0.7)

Como, por hipótese, u é não-constante, existe j tal que

$$\partial_{x_i} u \not\equiv 0 \quad \text{em } \Omega.$$
 (3.0.8)

Note que $u \cdot \partial_{x_j} u = 0$ (pois $u \in S^{m-1}$), podemos tomar então

$$\Psi^j = \partial_{x_i} u$$

como função teste em (3.0.7). Daí, obtemos

$$\mu_1 \le \frac{\mathcal{K}(\Psi^j)}{\|\Psi\|_{(L^2(\Omega))^m}^2}$$
 (3.0.9)

para qualquer $\Psi^j \not\equiv 0$.

Do fato que $u \cdot \partial_{x_j} u = 0$, seguem as seguintes relações

(i)
$$\partial_{x_j} u \cdot \partial_{x_j} (|\nabla u|^2 u) = |\nabla u|^2 |\partial_{x_j} u|^2;$$

(ii)
$$\partial_{x_j} u \cdot \partial_{x_j} \{ (W_u \cdot u)u \} = (W_u \cdot u) |\partial_{x_j} u|^2;$$

(iii)
$$\sum_{l=1}^{m} W_{u_k u_l} \partial_{x_j} u_l = \partial_{x_j} W_{u_k}.$$

Com efeito,

(i)
$$\partial_{x_{j}}u \cdot \partial_{x_{j}}(|\nabla u|^{2}u) = \sum_{r=1}^{m} \partial_{x_{j}}u_{r} \ \partial_{x_{j}}\left(\sum_{s=1}^{m} \sum_{l=1}^{n} (\partial_{x_{l}}u_{s})^{2}u_{r}\right)$$

$$= \sum_{r=1}^{m} \partial_{x_{j}}u_{r} \sum_{s=1}^{m} \sum_{l=1}^{n} \left[2 \ \partial_{x_{l}}u_{s} \ u_{r} + (\partial_{x_{l}}u_{s})^{2} \ \partial_{x_{j}}u_{r}\right]$$

$$= \sum_{r=1}^{m} \sum_{s=1}^{m} \sum_{l=1}^{n} \left[2 \ \partial_{x_{j}}u_{r} \partial_{x_{l}}u_{s} \ u_{r} + (\partial_{x_{j}}u_{r})^{2}(\partial_{x_{l}}u_{s})^{2}\right]$$

$$= 2 \sum_{s=1}^{m} \sum_{l=1}^{n} \partial_{x_{l}}u_{s} \sum_{r=1}^{m} \partial_{x_{j}}u_{r} \ u_{r} + \sum_{s=1}^{m} \sum_{l=1}^{n} (\partial_{x_{l}}u_{s})^{2} \sum_{r=1}^{m} (\partial_{x_{j}}u_{r})^{2}$$

$$= \sum_{r=1}^{m} |\nabla u_{s}|^{2} (\partial_{x_{j}}u_{r})^{2} = |\nabla u|^{2} |\partial_{x_{j}}u|^{2},$$

(ii)
$$\partial_{x_j} u \cdot \partial_{x_j} \{ (W_u \cdot u)u \} = \sum_{r=1}^m \partial_{x_j} u_r \ \partial_{x_j} [(W_u \cdot u)u_r]$$

$$= \sum_{r=1}^m \partial_{x_j} u_r \left\{ \partial_{x_j} (W_u \cdot u)u_r + (W_u \cdot u)\partial_{x_j} \right\}$$

$$= \partial_{x_j} (W_u \cdot u) \sum_{r=1}^m \partial_{x_j} u_r \ u_r + (W_u \cdot u) \sum_{r=1}^m (\partial_{x_j} u_r)^2$$

$$= (W_u \cdot u)(|\partial_{x_j} u|^2 = (W_u \cdot u)|\Psi^j|^2,$$

(iii)
$$\partial_{x_j} W_{u_k} = \partial_{x_j} \partial_{u_k} W = \sum_{l=1}^m W_{u_k u_l} \partial_{x_j} u_l$$

Usaremos as relações anteriores no seguinte cálculo direto:

$$\sum_{j=1}^{n} \mathcal{K}(\Psi^{j}) = \sum_{j=1}^{n} \int_{\Omega} \left(|\nabla \Psi^{j}|^{2} - |\nabla u|^{2} |\Psi^{j}|^{2} + \sum_{k,l=1}^{m} W_{u_{k}u_{l}} \Psi_{k}^{j} \Psi_{l}^{j} - (W_{u} \cdot u) |\Psi^{j}|^{2} \right) dx = \sum_{j=1}^{n} \int_{\partial \Omega} \Psi^{j} \cdot \partial_{\nu} \Psi^{j} d\sigma - \sum_{j=1}^{n} \int_{\Omega} \left\{ \Psi^{j} \cdot \Delta \Psi^{j} + |\nabla u|^{2} |\Psi^{j}|^{2} - \sum_{k,l=1}^{m} W_{u_{k}u_{l}} \Psi_{k}^{j} \Psi_{l}^{j} + (W_{u} \cdot u) |\Psi^{j}|^{2} \right\} dx = \sum_{j=1}^{n} \int_{\partial \Omega} \frac{1}{2} \partial_{\nu} |\partial_{x_{j}} u|^{2} d\sigma - \sum_{j=1}^{n} \sum_{k=1}^{m} \int_{\Omega} \left\{ \partial_{x_{j}} u_{k} \partial_{x_{j}} \left(\Delta u_{k} + |\nabla u|^{2} u_{k} - W_{u_{k}} + (W_{u} \cdot u) u_{k} \right) \right\} dx = \int_{\partial \Omega} \frac{1}{2} \partial_{\nu} |\partial_{x_{j}} u|^{2} d\sigma. \tag{3.0.10}$$

Aplicando o Lema (1.3.2) em (3.0.10), obtemos $\sum_{j=1}^{n} \mathcal{K}(\Psi^{j}) \leq 0$ donde, juntamente com (3.0.8) e (3.0.9), concluímos que $\mu_{1} \leq 0$, pois

$$||\Psi^j||^2 \mu_1 \leq \mathcal{K}(\Psi^j), \quad \forall \ 1 \leq j \leq n,$$

$$\implies \sum_{j=1}^n ||\Psi^j||^2 \mu_1 \le \sum_{j=1}^n \mathcal{K}(\Psi^j) \le 0.$$

Se $\mu_1 < 0$ o teorema está provado. Suponhamos $\mu_1 = 0$.

Então, $\Psi^j=\partial_{x_j}u$, com $\Psi^j\not\equiv 0$, é um minimizante em (3.0.7), já que $\Psi^j\cdot u=0$ e $\mu_1=0$ implica $\mathcal{K}(\Psi^j)=0$. Ainda, $\Psi^j\not\equiv 0$ é uma solução da equação (3.0.6) com $\mu=0$, isto é, satisfaz

$$\begin{cases}
\mathcal{L}\Psi^{j} = 0 & \text{em} \quad \Omega, \\
\partial_{\nu}\Psi^{j} = 0 & \text{em} \quad \partial\Omega.
\end{cases}$$
(3.0.11)

Observe que (3.0.11) também é satisfeita por $\Psi^j \equiv 0$. De (3.0.3) e (3.0.11), temos que

$$\partial_{\nu}u = 0, \quad \partial_{\nu}|\nabla u|^2 = 0 \quad \text{em } \partial\Omega.$$

Defina

 $\Gamma = \{x \in \partial\Omega \mid \text{nenhuma curvatura principal de } \partial\Omega \text{ se anula em } x\}.$

Afirmação: Γ é não-vazio e relativamente aberto em $\partial\Omega$.

De fato, como Ω é um domínio limitado com fronteira C^3 em \mathbb{R}^n , $\partial\Omega$ é uma superfície (n-1)-dimensional compacta orientável e sem bordo. Então, pelo Teorema (1.2.4) existe um ponto $P \in \partial\Omega$ tal que a Segunda Forma Fundamental \mathcal{S}_P é definida em P, ou seja, as curvaturas principais de $\partial\Omega$ são não-nulas em P donde vemos que Γ é não vazio.

Por continuidade, existe uma vizinhança \mathcal{V} de P em \mathbb{R}^n tal que \mathcal{S}_P é uma forma definida em $\partial\Omega\cap\mathcal{V}$, de modo que seus autovalores, as curvaturas principais, tem o mesmo sinal de \mathcal{S}_P em $\partial\Omega\cap\mathcal{V}$. Assim, qualquer curvatura principal de $\partial\Omega$ é não nula em $\partial\Omega\cap\mathcal{V}$, isto é, $\partial\Omega\cap\mathcal{V}\subset\Gamma$ e é um aberto de $\partial\Omega$, provando que Γ é relativamente aberto em $\partial\Omega$.

Aplicando o Lema (1.3.4) a u, obtemos

$$\nabla u = 0$$
 em $\Gamma \subset \partial \Omega$.

Usando o Teorema da Continuação Única de Calderón (cf. [18], Capítulo 6) a $\partial_{x_j} u$, com $1 \leq j \leq n$ repetidamente, obtemos

$$|\nabla u| \equiv 0 \quad \text{em } \Omega.$$

Logo, u é constante, contradizendo o suposto inicialmente. Portanto, $\mu_1 < 0$ e o teorema está provado. \Box

Capítulo 4

Sistemas de Reação-Difusão com Estrutura Anti-gradiente

Um sistema de reação-difusão com estrutura anti-gradiente é um tipo de sistema ativador-inibidor que consiste de dois sistemas gradientes acoplados de modo anti-simétrico. Exemplos de tais sistemas são o sistema difusivo de FitzHugh-Nagumo e o sistema de Gierer-Meinhardt.

Considere os sistemas de reação-difusão com m+n componentes da forma

$$\begin{cases}
Su_t = C\Delta u + f(u, v) & \text{em} \quad \Omega \times \mathbb{R}^+, \\
Tv_t = D\Delta v + g(u, v) & \text{em} \quad \Omega \times \mathbb{R}^+, \\
\frac{\partial u}{\partial \nu} = 0 = \frac{\partial v}{\partial \nu} & \text{em} \quad \partial \Omega \times \mathbb{R}^+,
\end{cases}$$
(4.0.1)

sendo $u(x,t)=(u_1,\cdots,u_m)^t$ e $v(x,t)=(v_1,\cdots,v_n)^t$, Ω um domínio limitado em \mathbb{R}^N com fronteira suave, $\frac{\partial}{\partial \nu}$ a derivada normal exterior em $\partial\Omega$, S e C matrizes de ordem m simétricas positivas definidas, T e D matrizes de ordem n simétricas positivas definidas.

Assumimos que os termos não-lineares $f=(f_1,\cdots,f_m)^t:\mathbb{R}^{m+n}\longrightarrow\mathbb{R}^m$ e $g=(g_1,\cdots,g_n)^t:\mathbb{R}^{m+n}\longrightarrow\mathbb{R}^n$ são expressos por

$$f(u,v) = +\nabla_u H(u,v)$$
 e $g(u,v) = -\nabla_v H(u,v)$

para alguma função $H: \mathbb{R}^{m+n} \longrightarrow \mathbb{R}$ de classe C^3 , sendo ∇_u e ∇_v operadores gradiente com relação a u e v, respectivamente, isto é,

$$\nabla_u := \left(\frac{\partial}{\partial u_1}, \cdots, \frac{\partial}{\partial u_m}\right)^t, \qquad \nabla_v := \left(\frac{\partial}{\partial v_1}, \cdots, \frac{\partial}{\partial v_n}\right)^t.$$

Neste caso, dizemos que o sistema (4.0.1) tem estrutura anti-gradiente.

Definição 4.0.6 Uma solução de equilíbrio ou um equilíbrio

 $(u,v)=(\varphi(x),\psi(x))$ de (4.0.1) é uma solução do sistema elíptico associado

$$\begin{cases}
C\Delta\varphi + f(\varphi, \psi) = 0 & em \quad \Omega, \\
D\Delta\psi + g(\varphi, \psi) = 0 & em \quad \Omega, \\
\frac{\partial\varphi}{\partial\nu} = 0 = \frac{\partial\psi}{\partial\nu} & em \quad \partial\Omega.
\end{cases}$$
(4.0.2)

Quando v é substituída por $\psi(x)$ e fixada na primeira equação de (4.0.1), temos o sistema para u

$$\begin{cases}
Su_t = C\Delta u + f(u, \psi) & \text{em} \quad \Omega \times \mathbb{R}^+, \\
\frac{\partial u}{\partial \nu} = 0 & \text{em} \quad \partial\Omega \times \mathbb{R}^+.
\end{cases}$$
(4.0.3)

Analogamente, quando u é substituída por $\varphi(x)$ e fixada na segunda equação de (4.0.1), temos o sistema para v

$$\begin{cases}
Tv_t = D\Delta v + g(\varphi, v) & \text{em} \quad \Omega \times \mathbb{R}^+, \\
\frac{\partial v}{\partial \nu} = 0 & \text{em} \quad \partial \Omega \times \mathbb{R}^+.
\end{cases}$$
(4.0.4)

O operador linearizado em torno de φ associado a (4.0.3) definido em $[H^1(\Omega)]^m$ é

$$\mathcal{A} := C\Delta + f_u, \tag{4.0.5}$$

sendo $f_u = f_u(\varphi, \psi)$ a matriz simétrica $m \times m$ dada por

$$f_u := \nabla_u \ f = \left(\frac{\partial f_i}{\partial u_i}\right) = \left(+ \ \frac{\partial^2 H}{\partial u_i \partial u_j}\right), \qquad 1 \le i, j \le m.$$

Da mesma forma, o operador linearizado em torno de ψ associado a (4.0.4) definido em $[H^1(\Omega)]^n$ é

$$\mathcal{B} := D\Delta + g_v \tag{4.0.6}$$

sendo $g_v = g_v(\varphi, \psi)$ a matriz simétrica $n \times n$ dada por

$$g_v := \nabla_v \ g = \left(\frac{\partial g_i}{\partial v_j}\right) = \left(-\frac{\partial^2 H}{\partial v_i \partial v_j}\right), \qquad 1 \le i, j \le n.$$

O problema de autovalores linearizado em torno de φ associado a (4.0.3) é

$$\begin{cases}
Au = \lambda Su & \text{em} & \Omega, \\
\frac{\partial u}{\partial \nu} = 0 & \text{em} & \partial \Omega,
\end{cases}$$
(4.0.7)

e o problema de autovalores linearizado em torno de ψ associado a (4.0.4) é

$$\begin{cases}
\mathcal{B}v = \lambda Tv & \text{em } \Omega, \\
\frac{\partial v}{\partial \nu} = 0 & \text{em } \partial\Omega.
\end{cases}$$
(4.0.8)

Algumas propriedades dos problemas (4.0.7) e (4.0.8) são dadas no próximo teorema e suas demonstrações podem ser encontradas em [21].

Introduzimos as seguintes notações

$$\langle C\nabla u, \nabla u \rangle := \sum_{i,j=1}^{m} c_{ij} \nabla u_i \cdot \nabla u_j$$

е

$$\langle D\nabla v, \nabla v \rangle := \sum_{i,j=1}^{n} d_{ij} \nabla v_i \cdot \nabla v_j,$$

 $com C = (c_{ij}) e D = (d_{ij}).$

Teorema 4.0.9 (i) Os autovalores de (4.0.7) são reais. Além disso, existe um autovalor maximal λ^u com multiplicidade finita que é caracterizado por

$$\lambda^{u} = \sup_{u \in [H^{1}(\Omega)]^{m}} \frac{\int_{\Omega} \left\{ -\langle C\nabla u, \nabla u \rangle + f_{u} \ u \cdot u \right\} \ dx}{\int_{\Omega} Su \cdot u \ dx},$$

e o supremo é atingido por uma autofunção de (4.0.7) associada a λ^u .

(ii) Os autovalores de (4.0.8) são reais. Além disso, existe um autovalor maximal λ^v com multiplicidade finita que é caracterizado por

$$\lambda^{v} = \sup_{v \in [H^{1}(\Omega)]^{n}} \frac{\int_{\Omega} \left\{ -\langle D\nabla v, \nabla v \rangle + g_{v} \ v \cdot v \right\} \ dx}{\int_{\Omega} Tv \cdot v \ dx},$$

e o supremo é atingido por uma autofunção de (4.0.8) associada a λ^v .

Note que λ^u depende de S mas seu sinal não e, similarmente, λ^v depende de T mas seu sinal não, pois S e T são matrizes simétricas positivas definidas, o que garante que $\int_{\Omega} Su \cdot u \ dx > 0$ e $\int_{\Omega} Tv \cdot v \ dx > 0$.

- Definição 4.0.7 (i) Dizemos que uma solução de equilíbrio $u = \varphi$ de (4.0.3) é linearmente estável se $\lambda^u < 0$ e linearmente instável se $\lambda^u > 0$.
 - (ii) Dizemos que uma solução de equilíbrio $v=\psi$ de (4.0.4) é linearmente estável se $\lambda^v<0$ e linearmente instável se $\lambda^v>0$.

Seja (φ, ψ) uma solução de (4.0.2). Sabemos que a estabilidade de $(u, v) = (\varphi, \psi)$ como solução de equilíbrio de (4.0.1) pode ser determinada pela análise do problema de autovalores

$$\begin{cases}
C\Delta u + f_u \ u + f_v \ v = \lambda Su \\
D\Delta v + g_u \ u + g_v \ v = \lambda Tv
\end{cases}$$
(4.0.9)

em Ω sob condições de fronteira de Neumann homogênea, com f_u , f_v , g_u , g_v , calculadas em (φ, ψ) .

Vamos reescrever (4.0.9) na forma

$$\begin{cases} \mathcal{A}u + f_v \ v = \lambda Su \\ \mathcal{B}v + g_u \ u = \lambda Tv \end{cases}$$
 (4.0.10)

sendo \mathcal{A} e \mathcal{B} definidos por (4.0.5) e (4.0.6) e $f_v = f_v(\varphi, \psi)$ e $g_u = g_u(\varphi, \psi)$. Note que o autovalor λ pode ser complexo e a autofunção (φ, ψ) pode ter valores complexos, devido ao fato de problema (4.0.10) não ser auto-adjunto.

Definição 4.0.8 Dizemos que $(u, v) = (\varphi, \psi)$ é linearmente estável como solução de equilíbrio de (4.0.1) se para algum $\delta > 0$, os autovalores de (4.0.10) satisfazem $Re(\lambda) < -\delta$, isto é, têm partes reais estritamente menores que $-\delta$, para algum $\delta > 0$.

A solução de equilíbrio $(u, v) = (\varphi, \psi)$ é linearmente instável se existe algum autovalor de (4.0.10) com parte real positiva.

Um fato conhecido é que soluções de equilíbrio linearmente estáveis (resp. instáveis) são estáveis (resp. instáveis) no sentido de Lyapunov (veja por exemplo [11]).

Observação 4.0.1 Yanagida demonstrou em [21] que se (φ, ψ) é uma solução de (4.0.2) e $u = \varphi$ é uma solução de (4.0.3) linearmente instável (ou seja, se $\lambda^u > 0$), então para cada S fixada, se $||T^{-1}||$ é suficientemente pequeno, $(u, v) = (\varphi, \psi)$ é uma solução de equilíbrio linearmente instável de (4.0.1). O mesmo vale mutatis mutandis para $v = \psi$.

No Capítulo 2 (cf. também [9] e [14]), vimos que sistemas de reação-difusão com estrutura gradiente em domínios convexos tem a propriedade que qualquer solução de equilíbrio espacialmente não-homogênea, isto é, não constante é linearmente instável. A mesma propriedade se verifica para sistemas de reação-difusão com estrutura anti-gradiente em domínios convexos, o que é a parte principal deste capítulo e passamos a ver agora.

Teorema 4.0.10 Seja $\Omega \subset \mathbb{R}^N$ um domínio convexo com fronteira C^3 . Se (φ, ψ) é uma solução de (4.0.2) espacialmente não-homogênea, então $\lambda^u > 0$ ou $\lambda^v > 0$.

Prova. Para $u \in [H^1(\Omega)]^m$ e $v \in [H^1(\Omega)]^n$, defina

$$J^{u}(u) = \int_{\Omega} \left\{ -\langle C\nabla u, \nabla u \rangle + f_{u} \ u \cdot u \right\} dx$$

e

$$J^{v}(v) = \int_{\Omega} \left\{ -\langle D\nabla v, \nabla v \rangle + g_{v} \ v \cdot v \right\} dx.$$

Temos que

$$J^{u}(\varphi_{x_{j}}) = \int_{\Omega} \left\{ -\langle C\nabla\varphi_{x_{j}}, \nabla\varphi_{x_{j}}\rangle + f_{u} \varphi_{x_{j}} \cdot \varphi_{x_{j}} \right\} dx$$

$$= -\int_{\partial\Omega} C\varphi_{x_{j}} \cdot \frac{\partial}{\partial\nu} \varphi_{x_{j}} d\sigma + \int_{\Omega} \left(C\Delta\varphi_{x_{j}} + f_{u}\varphi_{x_{j}} \right) \cdot \varphi_{x_{j}} dx.$$

$$(4.0.11)$$

е

$$J^{v}(\psi_{x_{j}}) = \int_{\Omega} \left\{ -\langle D\nabla\psi_{x_{j}}, \nabla\psi_{x_{j}}\rangle + g_{v}|\psi_{x_{j}}|^{2} \right\} dx$$

$$= -\int_{\partial\Omega} D\psi_{x_{j}} \cdot \frac{\partial}{\partial\nu} \psi_{x_{j}} d\sigma + \int_{\Omega} \left(D\Delta\psi_{x_{j}} + g_{v}\psi_{x_{j}} \right) \cdot \psi_{x_{j}} dx.$$

$$(4.0.12)$$

De fato,

$$\int_{\Omega} -\langle C\nabla \varphi_{x_{j}}, \nabla \varphi_{x_{j}} \rangle dx = \int_{\Omega} -\left(\sum_{i,k=1}^{m} c_{ik} \nabla \varphi_{x_{j}}^{i} \cdot \nabla \varphi_{x_{j}}^{k}\right) dx$$

$$= \sum_{i,k=1}^{m} c_{ik} \left\{ \int_{\Omega} \Delta \varphi_{x_{j}}^{i} \varphi_{x_{j}}^{k} dx - \int_{\partial \Omega} \frac{\partial}{\partial \nu} \varphi_{x_{j}}^{i} \varphi_{x_{j}}^{k} d\sigma \right\}$$

$$= \int_{\Omega} \sum_{i,k=1}^{m} c_{ik} \Delta \varphi_{x_{j}}^{i} \varphi_{x_{j}}^{k} dx - \int_{\partial \Omega} \sum_{i,k=1}^{m} c_{ik} \frac{\partial}{\partial \nu} \varphi_{x_{j}}^{i} \varphi_{x_{j}}^{k} d\sigma.$$

Como

$$\int_{\Omega} \sum_{i,k=1}^{m} c_{ik} \Delta \varphi_{x_{j}}^{i} \varphi_{x_{j}}^{k} dx = \int_{\Omega} \sum_{k=1}^{m} \sum_{i=1}^{m} c_{ik} \Delta \varphi_{x_{j}}^{i} \varphi_{x_{j}}^{k} dx$$

$$\stackrel{\text{C \'e sim\'etrica}}{=} \int_{\Omega} \sum_{k=1}^{m} \left(\sum_{i=1}^{m} c_{ki} \Delta \varphi_{x_{j}}^{i} \right) \varphi_{x_{j}}^{k} dx$$

$$= \int_{\Omega} C \Delta \varphi_{x_{j}} \cdot \varphi_{x_{j}} dx$$

е

$$\sum_{i,k=1}^{m} c_{ik} \frac{\partial}{\partial \nu} \varphi_{x_j}^{i} \varphi_{x_j}^{k} d\sigma = C \varphi_{x_j} \cdot \frac{\partial}{\partial \nu} \varphi_{x_j},$$

então

$$\int_{\Omega} -\langle C\nabla \varphi_{x_j}, \nabla \varphi_{x_j} \rangle \ dx = \int_{\Omega} C\Delta \varphi_{x_j} \cdot \varphi_{x_j} \ dx - \int_{\partial \Omega} C\varphi_{x_j} \cdot \frac{\partial}{\partial \nu} \varphi_{x_j} \ d\sigma,$$

donde

$$J^{u}(\varphi_{x_{j}}) = \int_{\Omega} C\Delta\varphi_{x_{j}} \cdot \varphi_{x_{j}} - \int_{\partial\Omega} C\varphi_{x_{j}} \cdot \frac{\partial}{\partial\nu}\varphi_{x_{j}} \, d\sigma + \int_{\Omega} f_{u} \, \varphi_{x_{j}} \cdot \varphi_{x_{j}} \, dx$$
$$= -\int_{\partial\Omega} C\varphi_{x_{j}} \cdot \frac{\partial}{\partial\nu}\varphi_{x_{j}} \, d\sigma + \int_{\Omega} \left(C\Delta\varphi_{x_{j}} + f_{u}\varphi_{x_{j}} \right) \cdot \varphi_{x_{j}} \, dx,$$

o que prova (4.0.11). De forma inteiramente análoga prova-se (4.0.12).

Agora, (4.0.2) é equivalente a

$$\begin{cases}
\sum_{k=1}^{m} c_{ik} \Delta \varphi^k + f_i(\varphi, \psi) = 0 & \text{em} \quad \Omega \quad (1 \le i \le m), \\
\sum_{k=1}^{n} d_{lr} \Delta \psi^r + g_l(\varphi, \psi) = 0 & \text{em} \quad \Omega \quad (1 \le l \le n).
\end{cases}$$
(4.0.13)

Aplicando $\frac{\partial}{\partial x_i}$ na primeira equação de (4.0.13), pela Regra da Cadeia obtemos

$$0 = \sum_{k=1}^{m} c_{ik} \Delta \varphi^{k} + \sum_{k=1}^{m} \frac{\partial f_{i}}{\partial u_{k}} (\varphi, \psi) \frac{\partial \varphi_{k}}{\partial x_{j}} + \sum_{s=1}^{n} \frac{\partial f_{i}}{\partial v_{s}} (\varphi, \psi) \frac{\partial \psi_{s}}{\partial x_{j}}$$
$$= C \Delta \varphi_{x_{j}} + \nabla_{u} f(\varphi, \psi) \cdot \varphi_{x_{j}} + \nabla_{v} f(\varphi, \psi) \cdot \psi_{x_{j}}$$
$$= C \Delta \varphi_{x_{j}} + f_{u}(\varphi, \psi) \varphi_{x_{j}} + f_{v}(\varphi, \psi) \psi_{x_{j}},$$

e, analogamente, aplicando $\frac{\partial}{\partial x_j}$ na segunda equação de (4.0.13), segue que

$$D\Delta\psi_{x_j} + g_u(\varphi, \psi)\varphi_{x_j} + g_v(\varphi, \psi)\psi_{x_j} = 0,$$

ou seja,

$$\begin{cases}
C\Delta\varphi_{x_j} + f_u\varphi_{x_j} + f_v\psi_{x_j} = 0 & \text{em} \quad \Omega, \\
D\Delta\psi_{x_j} + g_u\varphi_{x_j} + g_v\psi_{x_j} = 0 & \text{em} \quad \Omega.
\end{cases}$$
(4.0.14)

Daí,

$$(C\Delta\varphi_{x_j} + f_u\varphi_{x_j}) \cdot \varphi_{x_j} + (D\Delta\psi_{x_j} + g_v\psi_{x_j}) \cdot \psi_{x_j} = -f_v\psi_{x_j} \cdot \varphi_{x_j} - g_u\varphi_{x_j} \cdot \psi_{x_j} = 0$$

em $\partial\Omega$, já que $f_v=-g_u^t$. Logo,

$$J^{u}(\varphi_{x_{j}}) + J^{v}(\psi_{x_{j}}) = \int_{\Omega} \left\{ \left(C\Delta\varphi_{x_{j}} + f_{u}\varphi_{x_{j}} \right) \cdot \varphi_{x_{j}} + \left(D\Delta\psi_{x_{j}} + g_{v}\psi_{x_{j}} \right) \cdot \psi_{x_{j}} \right\} dx$$
$$- \int_{\partial\Omega} \left\{ C\varphi_{x_{j}} \cdot \frac{\partial}{\partial\nu}\varphi_{x_{j}} + D\psi_{x_{j}} \cdot \frac{\partial}{\partial\nu}\psi_{x_{j}} \right\} d\sigma.$$
$$= -\int_{\partial\Omega} \left\{ C\varphi_{x_{j}} \cdot \frac{\partial}{\partial\nu}\varphi_{x_{j}} + D\psi_{x_{j}} \cdot \frac{\partial}{\partial\nu}\psi_{x_{j}} \right\} d\sigma.$$

Somando em j,

$$\sum_{j=1}^{N} \left\{ J^{u}(\varphi_{x_{j}}) + J^{v}(\psi_{x_{j}}) \right\} = -\int_{\partial \Omega} \sum_{j=1}^{N} \left\{ C\varphi_{x_{j}} \cdot \frac{\partial}{\partial \nu} \varphi_{x_{j}} + D\psi_{x_{j}} \cdot \frac{\partial}{\partial \nu} \psi_{x_{j}} \right\} d\sigma.$$

Mas, como

$$-\sum_{j=1}^{N} \int_{\partial\Omega} C\varphi_{x_{j}} \cdot \frac{\partial}{\partial\nu} \varphi_{x_{j}} \, d\sigma = -\int_{\partial\Omega} \sum_{j=1}^{N} \sum_{r=1}^{m} \left(\sum_{s=1}^{m} c_{rs} \varphi_{x_{j}}^{s} \right) \frac{\partial}{\partial\nu} \varphi_{x_{j}}^{s} \, d\sigma$$

$$= -\frac{1}{2} \int_{\partial\Omega} 2 \sum_{r,s=1}^{m} c_{rs} \sum_{j=1}^{N} \frac{\partial}{\partial\nu} \varphi_{x_{j}}^{r} \, \varphi_{x_{j}}^{s} \, d\sigma$$

$$= -\frac{1}{2} \int_{\partial\Omega} \sum_{r,s=1}^{m} c_{rs} \sum_{j=1}^{N} \frac{\partial}{\partial\nu} \left(\varphi_{x_{j}}^{r} \varphi_{x_{j}}^{s} \right) \, d\sigma$$

$$= -\frac{1}{2} \int_{\partial\Omega} \frac{\partial}{\partial\nu} \left(\sum_{r,s=1}^{m} c_{rs} \nabla \varphi^{r} \cdot \nabla \varphi^{s} \right) \, d\sigma$$

$$= -\frac{1}{2} \int_{\partial\Omega} \frac{\partial}{\partial\nu} \langle C \nabla \varphi, \nabla \varphi \rangle \, d\sigma$$

e de modo semelhante

$$-\sum_{i=1}^{N} \int_{\partial\Omega} D\psi_{x_{i}} \cdot \frac{\partial}{\partial\nu} \psi_{x_{i}} d\sigma = -\frac{1}{2} \int_{\partial\Omega} \frac{\partial}{\partial\nu} \langle D\nabla\psi, \nabla\psi \rangle d\sigma,$$

vemos que

$$\sum_{j=1}^{N} \left\{ J^{u}(\varphi_{x_{j}}) + J^{v}(\psi_{x_{j}}) \right\} = -\frac{1}{2} \int_{\partial \Omega} \frac{\partial}{\partial \nu} \left\{ \langle C \nabla \varphi, \nabla \varphi \rangle + \langle D \nabla \psi, \nabla \psi \rangle \right\} d\sigma. \quad (4.0.15)$$

Da convexidade de Ω e da condição de fronteira Neumann homogênea, segue que (cf. [21])

$$\frac{\partial}{\partial \nu} \langle C \nabla \varphi, \nabla \varphi \rangle \le 0 \qquad \text{e} \qquad \frac{\partial}{\partial \nu} \langle D \nabla \psi, \nabla \psi \rangle \le 0 \qquad \text{em} \quad \partial \Omega. \tag{4.0.16}$$

Suponha que $\lambda^u \leq 0$ e $\lambda^v \leq 0$. Então, para $\varphi_{x_j} \not\equiv 0$ e $\psi_{x_j} \not\equiv 0$, pelo Teorema (4.0.9)(i),(ii) temos

$$\frac{J^{u}(\varphi_{x_{j}})}{\int_{\Omega} S\varphi_{x_{j}} \cdot \varphi_{x_{j}} dx} = \frac{\int_{\Omega} \left\{ -\langle C\nabla\varphi_{x_{j}}, \nabla\varphi_{x_{j}}\rangle + f_{u} \varphi_{x_{j}} \cdot \varphi_{x_{j}} \right\} dx}{\int_{\Omega} S\varphi_{x_{j}} \cdot \varphi_{x_{j}} dx} \leq \lambda^{u} \leq 0$$

 ϵ

$$\frac{J^{v}(\psi_{x_{j}})}{\int_{\Omega} T\psi_{x_{j}} \cdot \psi_{x_{j}} \ dx} = \frac{\int_{\Omega} \left\{ -\langle D\nabla \psi_{x_{j}}, \nabla \psi_{x_{j}} \rangle + g_{v} \ \psi_{x_{j}} \cdot \psi_{x_{j}} \right\} \ dx}{\int_{\Omega} T\psi_{x_{j}} \cdot \psi_{x_{j}} \ dx} \le \lambda^{v} \le 0,$$

o que implica que

$$J^u(\varphi_{x_j}) \le 0$$
 e $J^v(\psi_{x_j}) \le 0$

pois S e T são matrizes simétricas positivas definidas, o que garante

$$\int_{\Omega} S\varphi_{x_j} \cdot \varphi_{x_j} \ dx > 0 \ e \int_{\Omega} T\psi_{x_j} \cdot \psi_{x_j} \ dx > 0.$$

Logo,

$$J^{u}(\varphi_{x_{j}}) \leq 0$$
 e $J^{v}(\psi_{x_{j}}) \leq 0$, $\forall j = 1, \dots, N$. (4.0.17)

Mas (4.0.16) implica que o lado direito de (4.0.15) é não-negativo e lançando mão de (4.0.17) vemos que

$$J^{u}(\varphi_{x_{j}})=0$$
 e $J^{v}(\psi_{x_{j}})=0$, $\forall j=1,\cdots,N$.

Assuma que $\varphi_{x_j} \not\equiv 0$ para algum j.

Como
$$\frac{J^u(\varphi_{x_j})}{\int_{\Omega} S\varphi_{x_j} \cdot \varphi_{x_j} dx} = 0$$
, então φ_{x_j} maximiza o problema

$$\sup_{u \in [H^1(\Omega)]^m} \left\{ \frac{\int_{\Omega} \left\{ -\langle C\nabla u, \nabla u \rangle + f_u \ u \cdot u \right\} dx}{\int_{\Omega} Su \cdot u \ dx} \right\} = 0$$

e assim, pelo Teorema (4.0.9)(i), $u = \varphi_{x_j}$ é uma autofunção de (4.0.7) associada ao autovalor $\lambda^u = 0$, de modo que φ_{x_j} satisfaz $\frac{\partial \varphi_{x_j}}{\partial \nu} = 0$ em $\partial \Omega$.

Agora, como Ω é um domínio limitado com fronteira C^3 em \mathbb{R}^N , $\partial\Omega$ é uma superfície (N-1)-dimensional compacta orientável e sem bordo. Então, pelo Teorema (1.2.4) existe um ponto $P \in \partial\Omega$ tal que a Segunda Forma Fundamental \mathcal{S}_P é definida em P.

Por continuidade, existe uma vizinhança \mathcal{V} de P em \mathbb{R}^N tal que \mathcal{S}_P é uma forma definida em $\partial\Omega\cap\mathcal{V}$, de modo que seus autovalores, as curvaturas principais, tem o mesmo sinal de \mathcal{S}_P em $\partial\Omega\cap\mathcal{V}$. Assim, qualquer curvatura principal é não nula

em $\partial\Omega\cap\mathcal{V}$.

Temos

$$\varphi_{x_j} = 0 \quad \text{em } \partial\Omega \cap \mathcal{V},$$

$$\frac{\partial}{\partial \nu} \varphi_{x_j} = 0 \quad \text{em } \partial\Omega \cap \mathcal{V},$$

e pelo Lema (1.3.2) vemos que

$$\nabla \varphi^k = 0$$
 em $\partial \Omega \cap \mathcal{V}$, $1 \le k \le m$.

Combinando estes fatos juntamente a (4.0.7) com $\lambda = 0$, segue que

$$\begin{cases}
C\Delta\varphi_{x_j} + f_u\varphi_{x_j} = 0 & \text{em} \quad \Omega, \\
\varphi_{x_j} = 0 & \text{em} \quad \partial\Omega \cap \mathcal{V}, \\
\frac{\partial\varphi_{x_j}}{\partial\nu} = 0 & \text{em} \quad \partial\Omega \cap \mathcal{V}.
\end{cases}$$

Assim, pelo Teorema da Continuação Única de Calderón (cf. [18], Capítulo 6), obtemos $\varphi_{x_j} \equiv 0$ em Ω , uma contradição.

Assim, provamos que se $\lambda^u \leq 0$ e $\lambda^v \leq 0$, então $\varphi_{x_j} \equiv 0$ para cada $j=1,\cdots,N,$ ou seja, φ é constante.

Procedendo da mesma forma, podemos concluir que ψ tem que ser constante se supusermos $\lambda^u \leq 0$ e $\lambda^v \leq 0$.

Portanto, se (φ, ψ) é espacialmente não-homogênea então $\lambda^u > 0$ ou $\lambda^v > 0$ e o teorema está provado.

Corolário 4.0.2 Seja $\Omega \subset \mathbb{R}^N$ um domínio convexo com fronteira C^3 . Se (φ, ψ) é uma solução de (4.0.2) espacialmente não-homogênea, então (φ, ψ) é um equilíbrio instável de (4.0.1) no sentido de Lyapunov para certas S e T.

Prova. Suponha que (φ, ψ) é uma solução de (4.0.2) espacialmente não-homogênea. Então, pelo Teorema (4.0.10) temos $\lambda^u > 0$ ou $\lambda^v > 0$ e, pela Observação (4.0.1), segue que (φ, ψ) é uma solução de equilíbrio linearmente instável de (4.0.1) para

Canítula 1.	Sistamas da	Reação-Difusão	com Estrutura	Anti gradianta
Capitulo 4:	Sistemas de	Reação-Dilusão	com Estrutura	Anti-gradiente

certas S e T satisfazendo $||S^{-1}||$ e $||T^{-1}||$ suficientemente pequenos. Portanto, (φ, ψ) é um equilíbrio instável de (4.0.1) no sentido de Lyapunov para tais S, T, e o corolário está provado. \Box

57

Apêndice A

Soluções Instáveis em Quaisquer Domínios

Sabemos que as funções dadas por

$$U = \begin{pmatrix} \cos \gamma \\ \sin \gamma \end{pmatrix} w(x), \quad 0 \le \gamma < 2\pi, \tag{1.0.1}$$

com w(x) solução da equação de reação e difusão escalar

$$\begin{cases} \Delta w + (1 - w^2)w = 0 & \text{em} \quad \Omega, \\ \frac{\partial w}{\partial \nu} = 0 & \text{em} \quad \partial \Omega, \end{cases}$$
 (1.0.2)

são soluções de (2.0.2).

De fato,

$$\Delta U + \left(1 - |U|^2\right)U$$

$$= \Delta \left(\frac{\cos \gamma \ w(x)}{\sin \gamma \ w(x)} \right) + \left(1 - \left| \left(\frac{\cos \gamma \ w(x)}{\sin \gamma \ w(x)} \right) \right|^2 \right) \left(\frac{\cos \gamma \ w(x)}{\sin \gamma \ w(x)} \right)$$

$$= \begin{pmatrix} \cos \gamma \ \Delta w(x) \\ \sin \gamma \ \Delta w(x) \end{pmatrix} + (1 - w^2(x)) \begin{pmatrix} \cos \gamma \ w(x) \\ \sin \gamma \ w(x) \end{pmatrix}$$

$$= \begin{pmatrix} \cos \gamma \ \Delta w(x) + \cos \gamma \ w(x) - w^3(x) \cos \gamma \\ \sin \gamma \ \Delta w(x) + \sin \gamma \ w(x) - w^3(x) \sin \gamma \end{pmatrix}$$

$$= \left(\begin{array}{c} \cos\gamma\,\left(\Delta w(x) + [1-w^2(x)]w(x)\right) \\ \sin\gamma\,\left(\Delta w(x) + [1-w^2(x)]w(x)\right) \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \end{array}\right),$$

qualquer que seja $x \in \Omega$ e

$$\frac{\partial}{\partial \nu} \left(\begin{array}{c} \cos \gamma \ w(x) \\ \sin \gamma \ w(x) \end{array} \right) = \left(\begin{array}{c} \cos \gamma \ \frac{\partial}{\partial \nu} w(x) \\ \\ \sin \gamma \ \frac{\partial}{\partial \nu} w(x) \end{array} \right) = \left(\begin{array}{c} 0 \\ 0 \end{array} \right),$$

para todo $x \in \partial \Omega$.

Matano foi o primeiro a demonstrar em espaços de dimensões elevadas a existência de soluções estáveis não-constantes de

$$\begin{cases} \frac{\partial w}{\partial t} = \Delta w + (1 - w^2)w & \text{em} \quad \Omega \times \mathbb{R}^+, \\ \frac{\partial w}{\partial \nu} = 0 & \text{em} \quad \partial \Omega \times \mathbb{R}^+, \end{cases}$$
(1.0.3)

em domínios não-convexos, por exemplo, em domínios do tipo "dumbbell-shaped" ou "osso de cachorro" (cf. [16]).

No entanto, quando se trata de sistemas, isto pode não ocorrer. Vamos demonstrar que as soluções do sistema (2.0.2) dadas por (1.0.1) e (1.0.2) são instáveis em qualquer domínio $\Omega \subset \mathbb{R}^n$ com fronteira suave, isto é, as soluções dadas por (1.0.1) e (1.0.2) são instáveis independentemente da geometria de Ω .

Teorema A.0.11 Seja $\Omega \subset \mathbb{R}^n$ um domínio com fronteira suave. Então, qualquer solução não-constante de (2.0.2) dada por (1.0.1) e (1.0.2) é um equilibrio instável de (2.0.1).

Prova. Seja

$$U = \begin{pmatrix} \cos \gamma \\ \sin \gamma \end{pmatrix} w(x), \quad 0 \le \gamma < 2\pi, \tag{1.0.4}$$

uma solução não-constante dada por (1.0.1) e (1.0.2).

O operador linearizado em torno de U é dado por

$$\begin{cases}
\mathsf{L}P = \Delta P + (1 - w^2(x))P - 2w^2(x) \begin{pmatrix} \cos^2 \gamma & \cos \gamma \sin \gamma \\ \cos \gamma \sin \gamma & \sin^2 \gamma \end{pmatrix} P, \\
P = (p, q)^t \in \mathcal{D}(\mathsf{L}) = \left\{ P \in [H^2(\Omega)]^2 \mid \frac{\partial}{\partial \nu} P = 0 \text{ em } \partial \Omega \right\}.
\end{cases} (1.0.5)$$

Através da transformação

$$\widetilde{P} \longmapsto P := \Re(\gamma)\widetilde{P} = \begin{pmatrix} \cos \gamma & -\sin \gamma \\ \sin \gamma & \cos \gamma \end{pmatrix} \widetilde{P},$$

o problema de autovalores

$$LP + \lambda P = 0$$

é equivalente ao problema de autovalores dado por

$$\widetilde{\mathsf{L}}\widetilde{P}+\lambda\widetilde{P}=0,$$

com

$$\begin{cases} \widetilde{\mathsf{L}}\widetilde{P} = \Delta\widetilde{P} + (1 - w^2(x))\widetilde{P} - 2w^2(x) \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \widetilde{P}, \\ \mathcal{D}(\mathsf{L}) = \mathcal{D}(\widetilde{\mathsf{L}}) \end{cases}$$

De fato, por (1.0.5),

$$\mathsf{L}(\Re(\gamma)\widetilde{P}) = \Delta(\Re(\gamma)\widetilde{P}) \,+\, (1-w^2(x))\Re(\gamma)\widetilde{P}$$

$$-2w^{2}(x)\begin{pmatrix}\cos^{2}\gamma & \cos\gamma\sin\gamma\\ \cos\gamma\sin\gamma & \sin^{2}\gamma\end{pmatrix}\Re(\gamma)\widetilde{P},$$

donde

$$\mathsf{L}(\Re(\gamma)\widetilde{P}) = \Re(\gamma)\Delta(\widetilde{P}) + (1-w^2(x))\Re(\gamma)\widetilde{P} - 2w^2(x) \begin{pmatrix} \cos\gamma & 0 \\ \sin\gamma & 0 \end{pmatrix} \widetilde{P},$$

e assim

$$[\Re(\gamma)]^{-1} \ \mathsf{L}(\Re(\gamma)\widetilde{P}) = \Delta(\widetilde{P}) + (1-w^2(x))\widetilde{P} - 2w^2(x) \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right) \widetilde{P}.$$

Daí, definindo $\widetilde{\mathsf{L}}\widetilde{P} = [\Re(\gamma)]^{-1} \; \mathsf{L}(\Re(\gamma)\widetilde{P})$, obtemos

$$\begin{cases} \widetilde{\mathsf{L}}\widetilde{P} = \Delta\widetilde{P} + (1 - w^2(x))\widetilde{P} - 2w^2(x) \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \widetilde{P}, \\ \mathcal{D}(\mathsf{L}) = \mathcal{D}(\widetilde{\mathsf{L}}). \end{cases}$$

 $\widetilde{\mathsf{L}}\widetilde{P}$ ainda pode ser escrito na forma

$$\widetilde{\mathsf{L}}\widetilde{P} = \begin{pmatrix} L_1\widetilde{p} \\ L_2\widetilde{q} \end{pmatrix} = \begin{pmatrix} \Delta\widetilde{p} + (1 - 3w^2(x))\widetilde{p} \\ \Delta\widetilde{q} + (1 - w^2(x))\widetilde{q} \end{pmatrix}$$
(1.0.6)

Agora, como w(x) não-constante satisfaz (1.0.2), $\widetilde{P} = (0, w(x))^t$ é um autovetor correspondente ao autovalor zero de \widetilde{L} e, com isso, w(x) é um autovetor correspondente ao autovalor zero de L_2 . Mas sabemos que o menor autovalor de L_2 é simples e tem uma autofunção correspondente positiva (cf. argumentos em [7],

Teorema 8.38, p. 214).

Assim, se zero não é o menor autovalor de L_2 , então existe um autovalor $\lambda < 0$ de L_2 e, desta forma, existe $\overline{q} \not\equiv 0$ tal que $L_2\overline{q} + \lambda \overline{q} = 0$. Isto implica que $(0, \overline{q})^t$ é um autovetor associado a $\lambda < 0$, de modo que λ é um autovalor de L negativo o que implica que U é instável (cf. [8], Teorema 5.1.3, p. 102) e o teorema fica provado.

Logo, se zero é o menor autovalor de L_2 então w é positiva.

Afirmação: A única solução positiva de (1.0.2) é $w \equiv 1$.

Com efeito, vemos em [3] que qualquer solução de (1.0.3) com dado inicial L^{∞} permanece assintoticamente em

$$\mathcal{B}_0 = \left\{ (u, v) \in [L^{\infty}(\Omega)]^2 \mid u^2(x) + v^2(x) \le 1, \quad \forall x \in \Omega \right\},$$

ou seja, qualquer solução z de (1.0.2) satisfaz $|z(x)| \leq 1$, para todo $x \in \Omega$. Seja \widetilde{w} solução de (1.0.2) com $0 < \widetilde{w}(x) \leq 1$. Considere $z \equiv \varepsilon$, com $0 < \varepsilon < \min_{x \in \Omega} \widetilde{w}(x)$. Temos:

$$\begin{cases} \Delta \widetilde{w} + (1 - \widetilde{w}^2)\widetilde{w} = 0 & \text{em} \quad \Omega, \\ \Delta \varepsilon + (1 - \varepsilon^2)\varepsilon \ge 0 & \text{em} \quad \Omega \\ \partial_{\nu}\widetilde{w} = 0 & \text{em} \quad \partial \Omega, \\ \partial_{\nu}\varepsilon = 0 & \text{em} \quad \partial \Omega. \end{cases}$$

Assim, comparando \widetilde{w} e ε , pelo Teorema (1.3.4) segue que

$$\widetilde{w} < \varepsilon$$
 em Ω .

Daí, se $\widetilde{w} \not\equiv 1$, existe $x_0 \in \Omega$ tal que $\widetilde{w}(x_0) < 1$ e, deste modo,

$$\min_{x \in \Omega} \widetilde{w}(x) \le \widetilde{w}(x_0) \le \varepsilon < \min_{x \in \Omega} \widetilde{w}(x),$$

o que é um absurdo. Logo, $\widetilde{w}\equiv 1$, isto é, a única solução positiva de (1.0.2) é $\widetilde{w}\equiv 1$ e a afirmação está provada.

Apêndice: Soluções Instáveis em Quaisquer Domínios 63

Combinando os fatos acima vemos que $w \equiv 1$, o que contradiz a hipótese	e de U
ser não-constante.	
Portanto, qualquer solução não-constante de $(2.0.2)$ dada por $(1.0.1)$ e $(1.0.1)$.0.2) é
uma solução de equilíbrio instável de (2.0.1) e o teorema está provado.	

Referências Bibliográficas

- [1] Brown, K.J., Dunne, P.C., Gardner, R.A. A Semilinear Parabolic System arising in the Theory of Superconductivity. J. Diff. Eqns, v. 40, p. 232-252, 1981.
- [2] Casten, R.G., Hollad, C.J. Instability Results for Reaction Diffusion Equations with Neumann Boundary Conditions. J. Diff. Eqns, v. 27, p. 266-273, 1978.
- [3] Chueh, K.N., Conley, C.C, Smoller, J.A. Positively Invariant Regions for Systems of Nonlinear Diffusion Equations. Indiana Univ. Math Journal, v. 26, p. 373-392, 1977.
- [4] Dautray, R., Lions, J-L. Mathematical Analysis and Numerical Methods for Science and Tecnology. v .2, Berlin: Springer-Verlag, 1988.
- [5] Dautray, R., Lions, J-L. Mathematical Analysis and Numerical Methods for Science and Tecnology. v .3, Berlin: Springer-Verlag, 1990.
- [6] Evans, L.C. Partial Differential Equations. Graduate Texts in Mathematics, v. 19: AMS, 1998.
- [7] Gilbarg, D., Trudinger, N.S. Elliptic Partial Differential Equations of Second Order. 2 ed. Berlin: Springer-Verlag, 1983.
- [8] Henry, D. Geometric Theory of Semilinear Parabolic Equations. Berlin: Springer-Verlag, 1981.

- [9] Jimbo, S., Morita, Y. Stability of Nonconstant Steady-State Solutions to a Ginzburg-Landau Equation in Higher Space Dimensions. Nonlinear Anal., v. 22, p. 753-779, 1994.
- [10] Jimbo, S., Zhai, J. Instability in a Geometric Parabolic Equation on Convex Domain. J. Diff. Eqns., v. 188, p. 447-460, 2003.
- [11] Kielhöfer, H. Stability and Semilinear Evolution Equations in Hilbert Spaces.
 Arch. Rational Mech. Anal., v. 57, p. 150-165, 1974.
- [12] Lima, E.L. **Álgebra Linear**. 4 ed. Rio de Janeiro: Coleção Matemática Universitária, 2000.
- [13] Lima, E.L. **Curso de Análise**. v. 2, 5 ed. Rio de Janeiro: Projeto Euclides, 1999.
- [14] Lopes, O. Radial and Nonradial Minimizers for Some Radially Symmetric Functionals. Elect. J. Diff. Eqns, n. 3, p. 1-14, 1996.
- [15] Carmo, M.P. Elementos de Geometria Diferencial. Rio de Janeiro: Ao Livro Técnico e Universidade de Brasília, 1971.
- [16] Matano, H. Asymptotic Behavior and Stability of Solutions of Semilinear Diffusion Equations. Public. RIMS Kyoto Univ., v. 15, p. 401-454, 1979.
- [17] Mikhailov, V.P. Partial Differential Equations. Moscow: Mir Publishers, 1978.
- [18] Mizohata, S. The Theory of Partial Differential Equations. Holland: Cambridge University Press, 1973.
- [19] Smoller, J. Shock Waves and Reaction-Diffusion Equations. New York: Springer-Verlag, 1983.
- [20] Thorpe, J.A. Elementary Topics in Differential Geometry. New York: Springer-Verlag, 1979.
- [21] Yanagida, E. Mini-Maximizers for Reaction-Diffusion Systems with Skew-Gradient Structure. J. Diff. Eqns., v. 179, p. 311-335, 2002.