UNIVERSIDADE FEDERAL DE SÃO CARLOS CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA DEPARTAMENTO DE QUÍMICA *PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA*

Estudo Fitoquímico de Plantas das Famílias Rutaceae e Meliaceae Visando o Isolamento de Substâncias Protótipos para o Desenvolvimento de Novos Fármacos Antichagásicos e Antileishmanioses

Alessandra Regina Pepe Ambrozin*

Tese apresentada ao Programa de Pós-Graduação em Química como parte dos requisitos para a obtenção do título de DOUTOR EM QUÍMICA, na área de concentração QUÍMICA ORGÂNICA.

orientador: Prof. Dr. Paulo Cezar Vieira

*bolsista FAPESP

SÃO CARLOS – SP 2004

Ficha catalográfica elaborada pelo DePT da Biblioteca Comunitária/UFSCar

16		
	A479ef	Ambrozin, Alessandra Regina Pepe. Estudo fitoquímico de plantas das famílias Rutaceae e Meliaceae visando o isolamento de substâncias protótipos para o desenvolvimento de novos fármacos antichagásicos e antileishmanioses / Alessandra Regina Pepe Ambrozin São Carlos : UFSCar, 2004. 241 p.
		Tese (Doutorado) Universidade Federal de São Carlos, 2004.
		1. Produtos naturais. 2. Leishmaniose. 3. Chagas, Doença de. 4. Rutacea. 5. Meliacea. I. Título.
		CDD: 547.3 (20 ^a)

Dedico integralmente esse trabalho ao grande amor de minha vida, minha mãe Rosa Maria (*in memorium*), que sempre me incentivou em minha formação pessoal e profissional.

> "Quando eu me for, deixarei contigo o meu coração e as boas lembranças do passado de tudo o que aconteceu, de todas as nossas conversas, sobre alegrias e tristezas, sobre amores e desilusões, de todas as brincadeiras, dos risos e das lágrimas, enfim de tudo..."

Agradecimentos

Ao prof. Dr. Paulo Cezar Vieira, pela orientação e amizade durante esses anos.

Aos professores do Laboratório de Produtos Naturais da UFSCar, Dra. M. Fátima das G. Fernandes da Silva, Dr. João Batista Fernandes e Dr. Edson Rodrigues Filho, pela colaboração.

Aos alunos Eli Pimenta, Márcio Silva, Marcelo Castilho e aos professores Dr. Otávio H. Thiermann e Dr. Glaucius Oliva do IFSC-USP, pela realização dos ensaios enzimáticos.

Ao prof. Dr. Sérgio de Albuquerque da FCFRP-USP, pela realização dos testes tripanocidas.

Ao prof. Dr. Javier A. Ellena do IFSC-USP, pela análise de difração de raios-X.

À Luciana e ao Paulo, pela obtenção dos espectros de RMN.

À Doraí e Elaine, pela aquisição dos espectros de massas.

À FAPESP, pela bolsa concedida para a realização deste trabalho.

À todos meus amigos do Laboratório de Produtos Naturais da UFSCar, pela convivência sempre alegre.

Agradeço aos meus pais, Rosa e José, à minha avó Lydia, aos meus irmãos, Andréia, Artur e Alexandre, aos meus cunhados, Kaleizu, Milena e Carolina, e à maior preciosidade da família, Ana Luiza, pelo constante incentivo.

Resumo

ESTUDO FITOQUÍMICO DE PLANTAS DAS FAMÍLIAS RUTACEAE E 0 ISOLAMENTO DE SUBSTÂNCIAS MELIACEAE VISANDO PROTÓTIPOS PARA O DESENVOLVIMENTO DE NOVOS FÁRMACOS ANTICHAGÁSICOS E ANTILEISHMANIOSES - Esse trabalho envolveu o fitoquímico de Almeidea coerulea, A. rubra, Conchocarpus estudo heterophyllus, Galipea carinata (Rutaceae) e Trichilia ramalhoi (Meliaceae), biomonitorado através de três modelos biológicos: enzimas GAPDH de T. cruzi e APRT de L. tarentolae; e ensaios in vitro nas formas tripomastigotas de T. *cruzi*. Os testes biológicos de extratos e frações mostraram que as plantas selecionadas são promissoras na procura de compostos antiparasitários. O estudo químico das frações (ou extratos) ativas permitiu o isolamento de 30 substâncias, sendo 6 inéditas: sesquiterpeno eudesmano, piranoflavonas, alcalóide tetraidrofuroquinolínico, alcalóide indolopiridoquinazolínico, derivado do ácido antranílico e 1,5-difenil-1-pentanona; e 24 já descritas na literatura: βsitosterol e estigmasterol, sitostenona, benzoato de β-sitosterila, lupeol, lupenona, flavona, 7-metoxiflavona, 5-hidroxiflavona, dictamina, kokusagina, esquimianina, δ -fagarina, isokokusagina, isoesquimianina, isodutaduprina, haplotusina, alcalóide 2-fenil-1-metil-4-quinolona, arborinina, escoparona, escopoletina, marmesina, paprazina, N-trans-feruloitiramina e ácido siríngico. Dentre essas substâncias, os alcalóides furoquinolônicos isokokusagina e isoesquimianina mostraram ser inibidores potentes da enzima APRT; a cumarina marmesina ocasionou uma inibição considerável da atividade da enzima GAPDH; e os alcalóides haplotusina e 2-fenil-1-metil-4-quinolona, e o triterpeno lupeol apresentaram atividades tripanocidas significativas. Os resultados biológicos indicaram a necessidade de um estudo sistemático posterior das classes dos compostos ativos, para a determinação da relação estrutura-atividade e, desta forma, de substâncias mais ativas, que possam ser utilizadas como protótipos no desenvolvimento de novos quimioprofiláticos e/ou quimioterápicos para a doença de Chagas e leishmanioses.

Abstract

PHYTOCHEMICAL INVESTIGATION OF PLANTS FROM RUTACEAE AND MELIACEAE FAMILIES AIMING FOR THE ISOLATION OF TARGET SUBSTANCES TO THE DEVELOPING OF NEW ANTICHAGASIC AND ANTILEISHMANIASIS DRUGS - This work involved the bioassay-guided study of Almeidea coerulea, A. rubra, Conchocarpus heterophyllus, Galipea carinata (Rutaceae), and Trichilia ramalhoi (Meliaceae). The bioassays were carried out with T. cruzi GAPDH and L. tarentolae APRT enzymes, and trypomastigote forms of T. cruzi as model assays. The results obtained with extracts and fractions showed that selected plants are promising source for the search of antiprotozoal compounds. Chemical investigation of active fractions (or extracts) allowed the isolation of 30 substances. Among them, 6 are described for the first time[.] eudesmane sesquiterpene, pyranoflavones, an а tetrahydrofuroquinoline alkaloid, an indolopyridoquinazoline alkaloid, an anthranilic acid derivative, and 1,5-diphenyl-1-pentanone; and 24 substances have already been described in the literature: β -sitosterol and stigmasterol, sitostenone, β -sitosteryl benzoate, lupeol, lupenone, flavone, 7-methoxyflavone, 5hydroxyflavone, dictamine, kokusagine, skimmianine, δ -fagarine, isokokusagine, isoskimmianine, isodutaduprine, haplotusine, 1-methyl-2-phenyl-4-quinolone, arborinine. N-transscoparone, scopoletin, marmesine, paprazine, feruloyltyramine, and siringic acid. Among these substances, furoquinolone alkaloids isokokusagine and isoskimmianine were actives on the inhibition of APRT enzyme; marmesine was active on GAPDH enzyme; and haplotusine and the 1-methyl-2-phenyl-4-quinolone alkaloid showed significant trypanocidal activities. The biological results showed that a systematic investigation of active chemical classes is needed for determination of structure-activity relationship and obtaining more active substances, that could be used as targets for the development of new antichagasic and antileishmaniasis drugs.

vi

Sumário

Resumo	iv
Abstract	vi
Lista de Símbolos e Abreviações	Х
Lista de Figuras	xi
Lista de Tabelas	xviii
1. Introdução	1
1.1. Doenças tropicais	1
1.1.1. Doença de Chagas	2
1.1.1.1. Agente etiológico: T. cruzi	3
1.1.1.2. Transmissor: Triatoma infestans	3
1.1.1.3. Formas de transmissão e fases da doença	4
1.1.1.4. Tratamento	5
1.1.1.5. Enzima gGAPDH de <i>T. cruzi</i>	7
1.1.2. Leishmanioses.	9
1.1.2.1. Agente etiológico: Leishmania	9
1.1.2.2. Transmissor: <i>Lutzomyia</i>	10
1.1.2.3. Transmissão e manifestações clínicas da doença	11
1.1.2.4. Tratamento	12
1.1.2.5. Enzima APRT de Leishmania	14
1.1.3. Controle com produtos naturais	16
1.2. Seleção das espécies vegetais.	17
1.3. Família Rutaceae.	20
1.4. Família Meliaceae	24
2. Objetivos	25
3. Resultados e discussões	26
3.1. Substâncias isoladas	26
3.2. Identificação dos esteróides	35
3.2.1. Identificação do β-sitosterol e do estigmasterol	35
3.2.2. Identificação da sitostenona	37
3.2.3. Identificação do benzoato de β-sitosterila	38
3.3. Identificação dos triterpenos	46
3.3.1. Identificação do lupeol	46
3.3.2. Identificação da lupenona	48
3.4. Identificação do sesquiterpeno	50
3.5. Identificação das flavonas	63
3.5.1. Identificação da flavona	63
3.5.2. Identificação da 7-metoxiflavona	66
3.5.3. Identificação da 5-hidroxiflavona	69
3.5.4. Identificação das piranoflavonas	72

3.6. Identificação dos alcalóides	84
3.6.1. Identificação da dictamina	86
3.6.2. Identificação da kokusagina	88
3.6.3. Identificação da esquimianina	91
3.6.4. Identificação da δ -fagarina	93
3.6.5. Identificação da isokokusagina	96
3.6.6. Identificação da isoesquimianina	99
3.6.7. Identificação da isodutaduprina	101
3.6.8. Identificação do alcalóide tetraidrofuroquinolínico	104
3.6.9. Identificação da haplotusina	113
3.6.10. Identificação do alcalóide 2-fenil-1-metil-4-quinolona	119
3.6.11. Identificação da arborinina.	128
3.6.12. Identificação do alcalóide indolopiridoquinazolínico	130
3.7. Identificação das cumarinas.	140
3.7.1. Identificação da escoparona	140
3.7.2. Identificação da escopoletina	142
3.7.3. Identificação da marmesina	144
3.8. Identificação das amidas	150
3.8.1. Identificação da paprazina	150
3.8.2. Identificação da <i>N-trans</i> -feruloiltiramina	157
3.9. Identificação de outras classes de metabólitos	166
3.9.1. Identificação do derivado do ácido antranílico	166
3.9.2. Identificação da 1,5-difenil-1-pentanona	175
3.9.3. Identificação do ácido siríngico	183
3.10. Atividades biológicas dos extratos vegetais	185
3.10.1. Atividade inibitória da enzima gGAPDH	185
3 10 2 Atividade inibitória da enzima APRT	186
3 10 3 Atividade tripanocida	188
3 11 Atividades hiológicas das frações	189
3 11 1 Atividade inibitória da enzima <i>a</i> GAPDH	190
3 11 2 Atividade inibitória da enzima APRT	191
3 11 3 Atividade tripanocida	103
3 12 Atividades biológicas das substâncias isoladas	195
3 12 1 Atividade inibitória da enzima aGAPDH	195
3 12 2 Atividade inibitória da enzima APRT	196
3 12 3 Atividade tripanocida	100
A Procedimento experimental	201
4. 1 Materiais e métodos	201 201
4.2 Equipamentos	201 202
4.2. Equipamentos	202 202
4.3. Coleia e luchumeação dos extratos vegetais	203
4.5. Obtenção das frações	204 205
4.J. OUICHYAU UAS HAYUES	20J

4.6. Isolamento dos constituintes de <i>Almeidea coerulea</i>	208
4.6.1. Estudo químico da fração AGMD	208
4.6.2. Estudo químico da fração AGMA	209
4.7. Isolamento dos constituintes de <i>Almeidea rubra</i>	216
4.7.1. Estudo químico da fração ALFMA	216
4.8. Isolamento dos constituintes de <i>Conchocarpus heterophyllus</i>	220
4.8.1. Estudo químico da fração AHFHD	220
4.8.2. Estudo químico da fração AHFHA	223
4.8.3. Estudo químico da fração AHCMA	224
4.9. Isolamento dos constituintes de <i>Trichilia ramalhoi</i>	225
4.9.1. Estudo químico do extrato TRGH	225
4.10. Metodologia dos ensaios biológicos	226
4.10.1. Ensaio com a enzima gGAPDH de <i>T. cruzi</i>	226
4.10.2. Ensaio com a enzima APRT de <i>L. tarentolae</i>	228
4.10.3. Ensaio com as formas tripomastigotas de <i>T. cruzi</i>	229
5. Conclusões	231
6. Referências bibliográficas	233

Lista de Símbolos e Abreviações

<u>Símbolos</u>

 $\phi = diâmetro$

h = altura

 δ = deslocamento químico em partes por milhão

J =constante de acoplamento

m/z = relação massa/carga

<u>Abreviações</u>

APRT = enzima adenina fosforribosiltransferase

CCDA = cromatografia em camada delgada analítica

CCDP = cromatografia em camada delgada preparativa

COSY = correlated spectroscopy

CG-EM = cromatografia gasosa acoplada à espectrometria de massas

DEPT = distortionless enhancement by polarization transfer

DMSO = dimetilsulfóxido

ES = *electrospray*

gGAPDH = enzima glicossomal gliceraldeído-3-fosfato desidrogenase

HMBC = *heteronuclear multiple quantum correlation*

HSQC = heteronuclear single quantum correlation

 $IC_{50} = 50 \%$ inhibitory concentration

IE = impacto eletrônico

NOE = nuclear overhauser effect

NOESY = nuclear overhauser effect spectroscopy

RMN = ressonância magnética nuclear

RMN 1 H = ressonância magnética nuclear de hidrogênio

RMN 13 C = ressonância magnética nuclear de carbono 13

UV = ultravioleta

Lista de Figuras

FIGURA 1.1 Formas tripomastigotas do <i>T. cruzi</i> (FIOCRUZ, 2004)	3
FIGURA 1.2. Triatomíneo Triatoma infestans (BIOMANIA 2004)	4
FIGURA 1.3 Estruturas químicas do nifurtimox e do benzonidazol	5
FIGURA 1.4 Metabolismo da glicólise e do glicerol em glicossomos	8
FIGURA 1.5. Classificação taxonômica de <i>Leishmanias</i> encontradas em	U
mamíferos (CHAN-BACAB e PENA-RODRIGUEZ, 2001)	9
FIGURA 1.6. Formas promastigotas de L. chagasi e amastigotas de L.	-
amazonensis (Pesquisa FAPESP, 2003)	10
FIGURA 1.7. Mosquito-palha (Pesquisa FAPESP, 2003)	11
FIGURA 1.8. Estruturas químicas da anfotericina B, da paramomicina e	
da miltefosina	14
FIGURA 1.9. Via de recuperação de purino-nucleotídeos em Leishmania	
(SILVA, 2001)	15
FIGURA 1.10. Reação catalisada pela APRT	16
FIGURA 1.11. Produtos naturais antimaláricos	17
FIGURA 1.12. Produtos naturais antichagásicos	19
FIGURA 1.13. Produtos naturais anti-Leishmania	20
FIGURA 1.14. Substâncias isoladas de A. coerulea e A. rubra (CORTEZ,	
2002; MAFEZOLI, 2001; SANTOS et al., 1998)	22
FIGURA 3.1. Espectro de RMN ¹ H da mistura de β -sitosterol e	
estigmasterol (1) (CDCl ₃ , 200 MHz)	36
FIGURA 3.2. Espectros de massas (IE = 70 e.V.) do β -sitosterol e	
estigmasterol (1).	36
FIGURA 3.3. Espectro de RMN ¹ H da sitostenona (2) (CDCl ₃ , 200	
MHz)	38
FIGURA 3.4. Espectro de massas (ES^+) da sitostenona (2)	38
FIGURA 3.5. Espectro de RMN ¹ H do benzoato de β -sitosterila (3)	
(CDCl ₃ , 200 MHz)	40
FIGURA 3.6. Espectro de RMN ¹³ C do benzoato de β -sitosterila (3)	
(CDCl ₃ , 100 MHz)	40
FIGURA 3.7. Ampliação do espectro de RMN ¹³ C benzoato de β-	
sitosterila (3) (CDCl ₃ , 100 MHz)	41
FIGURA 3.8. Mapa de contorno de HSOC do benzoato de β-sitosterila (3)	
(CDCl ₃ , 400 MHz)	42
FIGURA 3.9. Ampliação do mapa de contorno de HSOC do benzoato de	
β -sitosterila (3) (CDCl ₂ 400 MHz)	42
FIGURA 3.10 Mana de contorno de HMBC do benzoato de B-sitosterila	_
(3) $(CDCl_2 400 \text{ MHz})$	44
FIGURA 3.11, Ampliação do mapa de contorno de HMBC do benzoato	
de β-sitosterila (3) (CDCl ₂ 400 MHz)	44
	•••

FIGURA 3.12. Espectro de RMN ¹ H do lupeol (4) (CDCl ₃ , 200 MHz)	47
FIGURA 3.13. Espectro de massas ($IE = 70 \text{ e.V.}$) do lupeol (4)	47
FIGURA 3.14. Espectro de RMN ¹ H da lupenona (5) (CDCl ₃ , 200 MHz)	49
FIGURA 3.15. Espectro de massas ($IE = 70 \text{ e.V.}$) da lupenona (5)	49
FIGURA 3.16. Espectro de RMN ¹ H do sesquiterpeno 6 (CDCl ₃ , 400	
MHz)	51
FIGURA 3.17. Ampliação do espectro de RMN ¹ H do sesquiterpeno 6	
(CDCl ₃ , 400 MHz)	51
FIGURA 3.18. Espectro de RMN ¹³ C do sesquiterpeno 6 (CDCl ₃ , 50	
MHz)	52
FIGURA 3.19. Ampliação do espectro de RMN ¹³ C do sesquiterpeno 6	
(CDCl ₃ , 50 MHz)	52
FIGURA 3.20. Espectro de DEPT 135° do sesquiterpeno 6 (CDCl ₃ , 100	
MHz)	53
FIGURA 3.21. Espectro de massas ($IE = 70 \text{ e.V.}$) do sesquiterpeno 6	54
FIGURA 3.22. Mapa de contorno de HSOC do sesquiterpeno 6 (CDCl ₃ .	-
400 MHz)	55
FIGURA 3.23 Ampliação do mapa de contorno de HSOC do	
sesquiterpeno 6 (CDCl ₂ 400 MHz)	56
FIGURA 3 24 Espectro de COSY 1 H- 1 H do sesquiterpeno 6 (CDC) ₂ 400	00
MHz)	57
FIGURA 3.25 Ampliação do espectro de COSY ¹ H- ¹ H do sesquiterpeno	0,
6 (CDCl ₂ 400 MHz)	57
FIGURA 3.26 Mana de contorno de HMBC do sesquiterpeno 6 (CDCl ₂)	01
400 MHz)	59
FIGURA 3.27 Ampliação do mana de contorno de HMBC do	0)
sesquiterpeno 6 (CDCl ₂ 400 MHz)	60
FIGURA 3.28 Espectro de NOESY do sesquiterpeno 6 (CDCl ₂ 400	00
MHz)	61
FIGURA 3.29 Diferentes perspectivas da estrutura tridimensional mais	01
provável do sesquiterpeno eudesmano 6	61
FIGURA 3.30 Espectro de RMN 1 H da flavona (7) (CDCl ₂ 200 MHz)	64
FIGURA 3 31 Espectro de RMN 13 C da flavona (7) (CDCl ₂ , 50 MHz)	64
FIGURA 3.32 Espectro de massas ($IF = 70 \text{ eV}$) da flavona (7)	65
FIGURA 3.33 Espectro de RMN ¹ H da 7-metoxiflavona (8) (CDCl ₂ 200	05
MH ₇)	67
FIGURA 3.34 Espectro de RMN ¹³ C da 7-metoxiflavona (8) (CDCl ₂ , 50	07
MH ₇)	67
FIGURA 3.35 Espectro de massas (IE = 70 e V) da 7_metoviflavona (8)	60
FIGURA 3.36 Espectro de RMN ¹ H da 5 ₋ hidroviflavona (0) (CDC1, 400)	09
MH_{7}	70
FIGURA 3 37 Espectro de RMN ¹³ C de 5 hidroviflevone (0) (CDCL 100	10
MH_7 (CDCI3, 100	71
1 v11 12 <i>J</i>	/ 1

FIGURA 3.38. Espectro de massas (IE = 70 e.V.) da 5-hidroxiflavona (9). FIGURA 3.39. Espectro de RMN ¹ H das piranoflavonas 10 (CDCl ₂ 400	72
MHz)	74
FIGURA 3.40. Ampliação do espectro de RMN ¹ H das piranoflavonas 10	71
$(CDCI_3, 400 \text{ MHZ})$	/4
FIGURA 3.41. Espectro de COSY H- H das piranonavonas 10 (CDCI ₃ , 400 MH_{7})	75
FIGURA 3.42 Ampliação do espectro de $COSV$ ¹ H- ¹ H das	15
piranoflavonas 10 (CDCl ₂ 400 MHz)	75
FIGURA 3.43. Mapa de contorno de HSOC das piranoflavonas 10	10
(CDCl ₃ , 400 MHz)	76
FIGURA 3.44. Ampliação do mapa de contorno de HSQC das	
piranoflavonas 10 (CDCl ₃ , 400 MHz).	77
FIGURA 3.45. Espectro de RMN ¹³ C das piranoflavonas 10 (CDCl ₃ , 100	
MHz)	77
FIGURA 3.46. Ampliação do espectro de RMN ¹³ C das piranoflavonas 10	
(CDCl ₃ , 100 MHz)	78
FIGURA 3.47. Espectro de DEPT 135° das piranoflavonas 10 (CDCl ₃ ,	
100 MHz)	78
FIGURA 3.48. Mapa de contorno de HMBC das piranoflavonas 10	00
$(CDCl_3, 400 \text{ MHz})$	80
FIGURA 3.49. Ampliação do mapa de contorno de HMBC das	80
FIGURA 3 50 Espectro de massas (ES+) das piranoflavonas 10	00 82
FIGURA 3.50. Espectió de massas (ES+) das piranonavonas 10	62
de ácido antranílico e acetato (WATERMAN 1999)	85
FIGURA 3.52 Espectro de RMN ¹ H da dictamina (11) (CDCl ₂ 200	00
MHz)	87
FIGURA 3.53. Espectro de massas ($IE = 70 \text{ e.V.}$) da dictamina (11)	87
FIGURA 3.54. Espectro de RMN ¹ H da kokusagina (12) (CDCl ₃ , 400	
MHz)	89
FIGURA 3.55. Espectro de RMN ¹³ C da kokusagina (12) (CDCl ₃ , 100	
MHz)	90
FIGURA 3.56. Espectro de massas ($IE = 70 \text{ e.V.}$) da kokusagina (12)	90
FIGURA 3.57. Espectro de RMN ¹ H da esquimianina (13) (CDCl ₃ , 200	
MHz)	92
FIGURA 3.58. Espectro de massas (IE = 70 e.V.) da esquimianina (13)	93
FIGURA 3.59. Espectro de RMN ¹ H da δ -fagarina (14) (CDCl ₃ , 200	0.4
MHz)	94
FIGURA 3.60. Espectro de massas (IE = 70 e.V.) da δ -fagarina (14)	95
FIGURA 3.61. Espectro de RMN ^{$^{+}H da 1sokokusagina (15) (CDCl3, 200 ML)$}	07
MHZ)	97

FIGURA 3.62. Espectro de RMN ¹³ C da isokokusagina (15) (CDCl ₃ , 100 MH ₇)	07
FIGURA 3.63. Espectro de massas (IE = 70 e.V.) da isokokusagina (15)	97 98
MHz)	100
FIGURA 3.65. Espectro de RMN ¹³ C da isoesquimianina (16) (CDCl ₃ , 50 MHz)	100
FIGURA 3.66. Espectro de RMN ¹ H da isodutaduprina (17) (CDCl ₃ , 200 MHz)	103
FIGURA 3.67. Espectro de NOE da isodutaduprina (17) (CDCl ₃ , 400 MHz)	103
FIGURA 3.68. Espectro de RMN ¹ H do alcalóide tetraidrofuroquinolínico 18 (CDCl ₃ , 400 MHz)	105
FIGURA 3.69. Espectro de COSY ${}^{1}H{}^{-1}H$ do alcalóide tetraidrofuroquinolínico 18 (CDCl ₂ 400 MHz)	107
FIGURA 3.70. Espectro de RMN 13 C do alcalóide tetraidrofuroquinolínico 18 (CDCL 100 MHz)	107
FIGURA 3.71. Mapa de contorno de HSQC do alcalóide	100
FIGURA 3.72. Mapa de contorno de HMBC do alcalóide	108
FIGURA 3.73. Espectro de massas (IE = 70 e.V.) do alcalóide	109
tetraidrofuroquinolínico 18 FIGURA 3.74. Espectro de RMN ¹ H da haplotusina (19) (MeOD, 200	111
MHz) FIGURA 3.75. Espectro de RMN ¹³ C da haplotusina (19) (MeOD, 50	114
MHz) FIGURA 3.76. Mapa de contorno de HSOC da haplotusina (19) (CDCl ₃ ,	115
400 MHz) FIGURA 3.77 Mana de contorno de HMBC da hanlotusina (19) (CDCl ₂	116
400 MHz)	117
FIGURA 3.79. Espectro de RMN ¹ H do alcalóide 2-fenil-1-metil-4-	10
FIGURA 3.80. Ampliação do espectro de RMN ¹ H do alcalóide 2-fenil-1-	121
metil-4-quinolona (20) (CDCl ₃ , 400 MHz) FIGURA 3.81. Mapa de contorno de HSQC do alcalóide 2-fenil-1-metil-	121
4-quinolona (20) (CDCl ₃ , 400 MHz) FIGURA 3.82. Ampliação do mapa de contorno de HSQC do alcalóide 2-	122
fenil-1-metil-4-quinolona (20) (CDCl ₃ , 400 MHz) FIGURA 3.83 Espectro de RMN ¹³ C do alcalóide 2-fenil-1-metil-4-	122
quinolona (20) (CDCl ₃ , 50 MHz)	123

FIGURA 3.84. Ampliação do espectro de RMN ¹³ C do alcalóide 2-fenil-1-	
metil-4-quinolona (20) (CDCl ₃ , 50 MHz)	124
FIGURA 3.85. Mapa de contorno de HMBC do alcalóide 2-fenil-1-metil-	
4-quinolona (20) (CDCl ₃ , 400 MHz)	125
FIGURA 3.86. Ampliação do mapa de contorno de HMBC do alcalóide 2-	
fenil-1-metil-4-quinolona (20) (CDCl ₃ , 400 MHz)	126
FIGURA 3.87. Espectro de massas (ES+) do alcalóide 2-fenil-1-metil-4-	
quinolona (20)	126
FIGURA 3.88. Espectro de RMN ¹ H da arborinina (21) (CDCl ₃ , 200	
MHz)	129
FIGURA 3.89. Espectro de massas (ES+) da arborinina (21)	129
FIGURA 3.90. Espectro de RMN ¹ H do alcalóide	
indolopiridoquinazolínico 22 (CDCl ₃ , 400 MHz)	132
FIGURA 3.91. Ampliação do espectro de RMN ¹ H do alcalóide	
indolopiridoquinazolínico 22 (CDCl ₃ , 400 MHz)	132
FIGURA 3.92. Espectro de COSY ¹ H- ¹ H do alcalóide	
indolopiridoquinazolínico 22 (CDCl ₃ , 400 MHz)	133
FIGURA 3.93. Mapa de contorno de HSOC do alcalóide	
indolopiridoquinazolínico 22 (CDCl ₃ , 400 MHz)	134
FIGURA 3.94. Mapa de contorno de HMBC do alcalóide	-
indolopiridoquinazolínico 22 (CDCl ₂ 400 MHz)	137
FIGURA 3.95. Ampliação do mapa de contorno de HMBC do alcalóide	10,
indolopiridoquinazolínico 22 (CDCl ₂ 400 MHz)	137
FIGURA 3.96 Espectro de RMN ¹ H da escoparona (23) (CDCl ₂ 200	107
MHz)	141
FIGURA 3 97 Espectro de massas ($IE = 70 \text{ eV}$) da escoparona (23)	141
FIGURA 3.98 Espectro de RMN ¹ H da escopoletina (24) (CDCl ₂ 200	
MHz)	143
FIGURA 3 99 Espectro de massas ($IE = 70 \text{ eV}$) da escopoletina (24)	143
FIGURA 3 100 Espectro de RMN ¹ H da marmesina (25) (CDCl ₂ 400	1 10
MHz)	144
FIGURA 3 101 Espectro de COSY ¹ H- ¹ H da marmesina (25) (CDCl ₂)	
400 MHz)	145
FIGURA 3 102 Mana de contorno de HSOC da marmesina (25) (CDCl ₂	1 10
400 MHz)	146
FIGURA 3 103 Mana de contorno de HMBC da marmesina (25) (CDCl ₂	1.0
400 MHz)	147
FIGURA 3 104 Ampliação do mapa de contorno de HMBC da	117
marmesina (25) (CDCl ₂ 400 MHz)	147
FIGURA 3.105. Espectro de massas (IE = 70 e V) da marmesina (25)	149
FIGURA 3 106 Espectro de RMN ¹ H da paprazina (26) (DMSO 400	117
MHz)	151

FIGURA 3.107. Ampliação do espectro de RMN ¹ H da paprazina (26) (DMSO 400 MHz)	151
FIGURA 3.108. Espectro de COSY ¹ H- ¹ H da paprazina (26) (DMSO, 400	1.71
MHz) FIGURA 3 100 Espectro de RMN ¹³ C de paprozina (26) (DMSO 50	152
MHz)	153
FIGURA 3.110. Mapa de contorno de HSQC da paprazina (26) (DMSO,	150
FIGURA 3.111. Ampliação do mapa de contorno de HSQC da paprazina	153
(26) (DMSO, 400 MHz)	154
400 MHz)	154
FIGURA 3.113. Ampliação do mapa de contorno de HMBC da paprazina	
(26) (DMSO, 400 MHz) FIGURA 3 114 Espectro de massas (ES+) da paprazina (26)	155
FIGURA 3.115. Espectro de RMN ¹ H da <i>N-trans</i> -feruloiltiramina (27)	100
(DMSO, 400 MHz) FIGURA 3.116 Ampliação do espectro de RMN ⁻¹ H da <i>N</i> -trans-	159
feruloiltiramina (27) (DMSO, 400 MHz)	159
FIGURA 3.117. Espectro de COSY $^{1}H^{-1}H$ da <i>N-trans</i> -feruloiltiramina (27) (DMSO 400 MHz)	160
FIGURA 3.118. Espectro de RMN ¹³ C da <i>N-trans</i> -feruloiltiramina (27)	100
(DMSO, 50 MHz).	161
FIGURA 3.119. Mapa de contorno de HSQC da <i>N-trans</i> -feruloiltiramina (27) (DMSO, 400 MHz)	161
FIGURA 3.120. Ampliação do mapa de contorno de HSQC da <i>N-trans</i> -	101
feruloiltiramina (27) (DMSO, 400 MHz) FIGURA 3 121 Mana de contorno de HMBC da <i>N-trans</i> -feruloiltiramina	162
(27) (DMSO, 400 MHz)	164
FIGURA 3.122. Ampliação do mapa de contorno de HMBC da <i>N-trans</i> - feruloiltiramina (27) (DMSO 400 MHz)	165
FIGURA 3.123. Espectro de massas (ES+) da <i>N-trans</i> -feruloiltiramina	105
(27)	165
28	167
FIGURA 3.125. Proposta biogenética para a formação do derivado do	1.00
acido antranífico 28 FIGURA 3.126. Espectro de RMN ¹ H do derivado do ácido antranífico 28	168
(CDCl ₃ , 400 MHz)	169
FIGURA 3.127. Espectro de COSY 'H-'H do derivado do ácido antranílico 28 (CDCl ₂ 400 MHz)	170
	110

FIGURA 3.128. Espectro de RMN ¹³ C do derivado do ácido antranílico 28	
$(CDCl_3, 50 \text{ MHz})$	171
FIGURA 3.129. Mapa de contorno de HSQU do derivado do acido	171
ELCLIDA 2 120 Mana da cantorna da LIMDO da derivada da faida	1/1
entranílico 29 (CDC1 400 MHz)	172
EICLIDA 2 121 Amplicação do mano do contorno do HMPC do derivado	1/3
de égide entrepílice 29 (CDC1 400 MHz)	174
EICLIDA 2 122 Espectre de massas (IE = 70 e V) de derivade de écide	1/4
FIGURA 5.152. Espectito de massas ($IE = 70 \text{ e.v.}$) do derivado do acido entrenílico 29	174
EICLIDA 2 122 Espectro de DMN ¹ H de 1.5 difemil 1 pontenone (20)	1/4
$(CDC1 \ 400 \text{ MHz})$	176
FIGURA 2 124 Ampliação do espectro de PMNI ¹ H do 1.5 difemil 1	170
(20) (CDC). (20) (CDC). (20) MHz	176
FIGURA 3 135 Espectro de COSV ¹ H ¹ H de 1.5 difenil 1 pentanone (20)	170
(CDCl. 400 MHz)	177
FIGURA 3 136 Espectro de RMN 13 C da 1 5-difenil-1-pentanona (29)	1//
(CDCl. 50 MHz)	178
FIGURA 3 137 Mana de contorno de HSOC da 1 5-difenil-1-pentanona	170
(29) (CDCl ₂ 400 MHz)	179
FIGURA 3 138 Ampliação do mana de contorno de HSOC da 1 5-difenil-	1/)
1-pentanona (29) (CDCl ₂ 400 MHz)	179
FIGURA 3 139 Mana de contorno de HMBC da 1 5-difenil-1-pentanona	177
(29) (CDCl ₂ 400 MHz)	181
FIGURA 3.140 Espectro de massas ($IE = 70 \text{ eV}$) da 1.5-difenil-1-	101
pentanona (29)	181
FIGURA 3 141 Substâncias isoladas de <i>Flindersia laevicarna</i> (GRAY)	101
1983)	182
FIGURA 3.142. Espectro de RMN ¹ H do ácido siríngico (30) (DMSO	
200 MHz)	184
FIGURA 3.143. Espectro de RMN ¹³ C do ácido siríngico (30) (DMSO, 50	
MHz)	184
,	

Lista de Tabelas

TABELA 1.1. Aspectos das principais doenças tropicais (GELB e HOL, 2002)	1
TABELA 3.1 Correlações ${}^{1}\text{H}_{-}{}^{13}C({}^{1}\text{D})$ para o benzoato de β_{-} sitosterila	41
TABELA 3.2. Dados espectroscópicos de RMN ¹ H e ¹³ C do benzoato de β -	71
sitosterila	45
TABELA 3.3. Correlações a ${}^{I}J$ para o sesquiterpeno 6	55
TABELA 3.4. Dados espectroscópicos de RMN ¹ H e ¹³ C do sesquiterpeno	
eudesmano	62
TABELA 3.5. Dados espectroscópicos de RMN ¹ H e ¹³ C da flavona	65
TABELA 3.6. Dados espectroscópicos de RMN ¹ H e ¹³ C da 7-	
metoxiflavona	68
TABELA 3.7. Dados espectroscópicos de RMN ¹ H e ¹³ C da 5-	
hidroxiflavona	71
TABELA 3.8. Determinação de <i>R</i> das piranoflavonas	82
TABELA 3.9. Dados espectroscópicos de RMN ¹ H e ¹³ C das	
piranoflavonas	83
TABELA 3.10. Dados espectroscópicos de RMN ¹ H da dictamina	88
TABELA 3.11. Dados espectroscópicos de RMN ¹ H e ¹³ C da kokusagina	91
TABELA 3.12. Dados espectroscópicos de RMN ¹ H da esquimianina	93
TABELA 3.13. Dados espectroscópicos de RMN ¹ H da δ -fagarina	95
TABELA 3.14. Dados espectroscópicos de RMN ¹ H e ¹³ C da	
isokokusagina	98
TABELA 3.15. Dados espectroscópicos de RMN ¹ H e ¹³ C da	
isoesquimianina	101
TABELA 3.16. Dados espectroscópicos de RMN ¹ H da isodutaduprina	104
TABELA 3.17. Dados espectroscópicos de RMN ¹ H e ¹³ C do alcalóide	
tetraidrofuroquinolínico	112
TABELA 3.18. Dados espectroscópicos de RMN ¹ H e ¹³ C da haplotusina	119
TABELA 3.19. Dados espectroscópicos de RMN ¹ H e ¹³ C do alcalóide 2-	
fenil-1-metil-4-quinolona	127
TABELA 3.20. Dados espectroscópicos de RMN ¹ H da arborinina	130
TABELA 3.21. Correlações a ${}^{I}J$ para o alcalóide indopiridoquinazolínico	
22	133
TABELA 3.22. Dados espectroscópicos de RMN ¹ H do alcalóide	
indolopiridoquinazolínico	138
TABELA 3.23. Dados espectroscópicos de RMN ¹³ C do alcalóide	
indolopiridoquinazolínico	139
TABELA 3.24. Dados espectroscópicos de RMN ¹ H da escoparona	141
TABELA 3.25. Dados espectroscópicos de RMN ¹ H da escopoletina	143
TABELA 3.26. Dados espectroscópicos de RMN ¹ H e ¹³ C da marmesina	149
TABELA 3.27. Dados espectroscópicos de RMN ¹ H e ¹³ C da paprazina	157

TABELA 3.28. Dados espectroscópicos de RMN ¹ H e ¹³ C da N-trans-	
feruloiltiramina	166
TABELA 3.29. Dados espectroscópicos de RMN ¹ H e ¹³ C do derivado do	
ácido antranílico	175
TABELA 3.30. Dados espectroscópicos de RMN ¹ H e ¹³ C da 1,5-difenil-1-	
pentanona	182
TABELA 3.31. Efeito dos extratos vegetais sobre a atividade da enzima	
gGAPDH	186
TABELA 3.32. Efeito dos extratos vegetais sobre a atividade da enzima	
APRT	187
TABELA 3.33. Atividade tripanocida dos extratos vegetais	189
TABELA 3.34. Efeito das frações sobre a atividade da enzima gGAPDH	190
TABELA 3.35. Efeito das frações sobre a atividade da enzima APRT	192
TABELA 3.36. Atividade tripanocida das frações	193
TABELA 3.37. Efeito das substâncias isoladas sobre a atividade da enzima	
<i>g</i> GAPDH	196
TABELA 3.38. Efeito das substâncias isoladas sobre a atividade da enzima	
APRT	197
TABELA 3.39. Atividade tripanocida das substâncias isoladas	198
TABELA 4.1. Informações relativas às coletas das plantas	204
TABELA 4.2. Massas dos extratos vegetais preparados	205
TABELA 4.3. Frações obtidas por CLV	206
TABELA 4.4. Frações obtidas por partição líquido-líquido	207

1. Introdução

1.1. Doenças tropicais

As doenças tropicais tais como malária, leishmaniose e doença de Chagas afetam 3 bilhões de pessoas em todo o mundo (TABELA 1.1.). A grande maioria dessas pessoas reside em países em desenvolvimento, sobrevivendo com US\$ 2,00 ou menos por dia (GELB e HOL, 2002).

doença	parasita causador	inseto vetor	região afetada	número de casos estimados	número de mortes estimadas
					por ano
malária	Plasmodium	mosquito	trópicos	300	> 1 milhão
	<i>falciparum</i> e	Anopheles		milhões	
	P. vivax			/ano	
doença do	Trypanosoma	mosca tsé-tsé	África	300.000	66.000
sono	brucei	(<i>Glossina</i> spp)			
leishmaniose	Leishmania	flebotomíneos	trópicos e	1 5-2	57 000
(cutânea.	SDD.		subtrópicos	milhões	
mucocutânea	SPP.		Swellepiees		
e visceral)					
doença de	T. cruzi	triatomíneos	América	16-18	50.000
Chagas			Latina	milhões	

TABELA 1.1. Aspectos das principais doenças tropicais (GELB e HOL, 2002).

As estatísticas relativas a essas doenças são alarmantes. A malária mata duas pessoas, geralmente crianças, por minuto. A doença de Chagas afeta milhões de indivíduos na América Latina, ocasionando a morte de 20-30 % dos infectados. Já, a leishmaniose visceral, a forma mais grave da doença, é endêmica em dois estados da Índia (GELB e HOL, 2002).

Essas doenças constituem um grave problema de saúde pública, devido às severas manifestações que ocasionam, à ampla distribuição geográfica, e por não

possuírem tratamento eficaz seguro. Além disso, apesar dos avanços no entendimento dos eventos imunes que ocorrem em resposta a essas doenças, não se espera em um curto período de tempo, o desenvolvimento de vacinas (DENISE et al., 1999).

A sociedade científica tem se empenhado bastante para encontrar métodos mais seguros e eficientes para o controle dessas enfermidades. Atualmente, o sequenciamento dos genomas dos agentes etiológicos dessas doenças traz esperança para o desenvolvimento de uma nova forma de controle. O genoma funcional é essencial para a identificação de proteínas alvo para o genoma estrutural e para o desenvolvimento de fármacos.

A pesquisa de novos fármacos é extremamente necessária e pode ser realizada por diferentes abordagens. Estima-se que 20-30 novos fármacos serão necessários para o controle prolongado das doenças tropicais (GELB e HOL, 2002).

Desta forma, devido à necessidade eminente de novos fármacos, neste trabalho se propôs procurar em plantas compostos protótipos para o desenvolvimento de novos fármacos antichagásicos e antileishmanioses, utilizando-se para isso três modelos biológicos: ensaios *in vitro* nas formas tripomastigotas do *T. cruzi*, ensaios bioquímicos sobre a enzima *g*GAPDH (gliceradeído-3-fosfato desidrogenase) de *T. cruzi*, e ensaios sobre a enzima APRT (adenina fosforribosiltransferase) de *L. tarentolae*.

1.1.1. Doença de Chagas

A doença de Chagas é uma infecção generalizada, de natureza endêmica, causada por um protozoário, o *Trypanosoma cruzi*, e transmitida originalmente ao homem através de triatomíneos (VERONESI, 1991).

1.1.1.1. Agente etiológico: T. cruzi

O parasita *T. cruzi* (FIGURA 1.1) é um protozoário da classe Mastigophora, ordem Kinetoplastida, família Trypanosomatidae. Durante seu ciclo de vida, apresenta-se sob as formas flageladas (epimastigota e tripomastigota) e aflagelada (amastigota). No homem e nos demais vertebrados (tatus, macacos, gambás, etc), o tripomastigoto tem por *habitat* o meio circulante, e o amastigoto, os tecidos. No triatomíneo, além das formas amastigotas e tripomastigotas, observa-se a forma de transição epimastigota (VERONESI, 1991). Considera-se que os epimastigotos são formas que se dividem nos invertebrados, que os amastigotos se dividem nos vertebrados, enquanto que, os tripomastigotos são as formas infectantes, que não se multiplicam.

FIGURA 1.1. Formas tripomastigotas do T. cruzi (FIOCRUZ, 2004).

1.1.1.2. Transmissor: Triatoma infestans (VERONESI, 1991)

Os triatomíneos são insetos da ordem Hemiptera, família Reduviiidae, subfamília Triatominae, vulgarmente conhecidos como "barbeiros" ou "chupanças". Já foram descritas cerca de 110 espécies de triatomíneos, sendo que em cada região prevalece uma espécie. Na América do Sul, as de maior importância epidemiológica são *Triatoma infestans*, *Rhodnius prolixus* e

Panstrongylus megistus, sendo que o primeiro é o principal transmissor no Brasil.

Eles são relativamente grandes, geralmente, pretos ou acinzentados, com manchas vermelhas, amarelas ou alaranjadas ao redor de seu abdome (FIGURA 1.2), e podem ser silvestres, peridomiciliares ou domiciliares.

Os triatomíneos são insetos de hematofagismo obrigatório, pois necessitam de sangue para o desenvolvimento de seu ciclo evolutivo, e de hábitos noturnos, sendo aversos à luz.

FIGURA 1.2. Triatomíneo Triatoma infestans (BIOMANIA, 2004).

1.1.1.3. Formas de transmissão e fases da doença

Até a metade da década de 90, a principal forma de transmissão da doença de Chagas era através da picada do triatomíneo. Entretanto, através de várias medidas profiláticas de combate ao inseto, a transfusão de sangue passou a ser a principal causa do surgimento de novos casos dessa enfermidade (RAMIREZ et al., 1995). Outras formas menos comuns são a transmissão congênita, pelo leite materno, por acidentes em laboratórios, por transplantes de órgãos e por via digestiva (através da contaminação de alimentos ou utensílios domésticos com fezes de triatomíneos infectados). (VERONESI, 1991).

Uma vez infectado, o indivíduo pode passar por duas fases da doença: aguda e crônica. A fase aguda é definida como o estágio da doença no qual o parasita *T. cruzi* é facilmente detectado pelo exame direto do sangue periférico (LUQUETTI, 1997). Ela caracteriza-se pelo aparecimento de manifestações de intensidades variáveis, após um período de incubação de 8 a 10 dias. Além da infecção local, ocorrem sintomas gerais, como febre, mal estar e cefaléia. Alguns órgãos, como coração, fígado e baço, apresentam aumento de volume. Com a regressão das manifestações da fase aguda (geralmente em 2 meses), o paciente entra em um estado de cura aparente, podendo permanecer assintomático durante longo período. Após 10 ou 20 anos, podem aparecer os sintomas característicos da fase crônica, principalmente de problemas relacionados ao coração e ao sistema digestivo (VERONESI, 1991).

1.1.1.4. Tratamento

O tratamento da doença de Chagas é feito de forma sintomática (para atenuação dos sintomas) e através de terapêutica específica (contra o parasita).

Desde o final da década de 60 e início dos anos 70, dois fármacos têm sido usados para o tratamento específico dessa doença: o nifurtimox e benzonidazol (FIGURA 1.3).

FIGURA 1.3. Estruturas químicas do nifurtimox e do benzonidazol.

O nifurtimox (Lampit®) é um derivado 5-nitrofurfurilideno, que desde os anos 80 não é mais comercializado no Brasil. O modo de ação desse fármaco envolve a formação do radical nitroânion por nitroredutases, que, na presença de oxigênio, levam a intermediários reativos. Como o *T. cruzi* é deficiente em mecanismos de detoxificação de radicais livres, ele fica suscetível a tais intermediários (DO CAMPO e MORENO, 1986).

O benzonidazol (Rochagan®) é um derivado 2-nitroimidazólico, cujo modo de ação pode envolver a ligação covalente (ou outras interações) dos intermediários nitroreduzidos com os componentes do parasita (POLAK e RICHLE, 1978) ou ao DNA, lipídeos e proteínas (DE TORANZO et al., 1988).

A eficiência desses fármacos depende do estágio da doença, do período de tratamento, da dosagem, da idade e da região geográfica em que residem os pacientes (COURA e DE CASTRO, 2002). Em geral, o período de tratamento é de 30 a 60 dias, com 2 ou 3 doses diárias do medicamento, e requer internação do paciente.

Esses medicamentos parecem ser eficientes apenas nas fases aguda ou crônica recente da doença (menos que 10 anos de contaminação), com taxa de cura sorológica e parasitológica de até 60 %, sendo contra-indicados na fase crônica (LUQUETTI, 1997). Quando utilizados na fase crônica, a definição de cura é bastante difícil, pois se observa geralmente parasitemia negativa e a persistência de resultados positivos de sorologia.

Além disso, possuem graves efeitos colaterais. O nifurtimox afeta principalmente o sistema digestivo, podendo causar náuseas, vômito, cólicas intestinais e diarréia, e o benzonidazol causa manifestações cutâneas (LUQUETTI, 1997).

Os fatos anteriores evidenciam a necessidade do desenvolvimento de novos agentes quimioterápicos específicos para a doença de Chagas. A Organização Mundial da Saúde (OMS) postula que o fármaco ideal para o tratamento dessa doença deva preencher os seguintes requisitos: cura parasitológica dos casos agudos e crônicos; baixo custo; não apresentar efeitos colaterais ou teratogênicos; não deve haver necessidade de hospitalização para o

tratamento; não induzir resistência no protozoário (COURA e DE CASTRO, 2002).

1.1.1.5. Enzima gGAPDH de T. cruzi

O desenvolvimento de quimioterápicos antiparasitários pode ser feito de diversas formas: a partir do *screening* de bibliotecas de compostos naturais ou sintéticos, que possuam similaridade estrutural com uma substância ativa; através de ensaios com fármacos utilizados para outras doenças; ou, pela determinação de um "alvo" específico, que faça parte de uma etapa essencial no metabolismo do parasita (COURA e DE CASTRO, 2002).

Avanços recentes no estudo da bioquímica do *T. cruzi* permitiram a identificação de novos "alvos", que incluem: a biossíntese dos esteróides; e enzimas, tais como, tripanotiona redutase, cisteína protease, hipoxantinaguanina fosforibosiltransferase, DNA topoisomerases, diidrofolato redutase, farnesilpirofosfato sintase e gliceraldeído-3-fosfato desidrogenase (DO CAMPO, 2001; RODRIGUEZ, 2001).

A enzima gliceraldeído-3-fosfato desidrogenase (GAPDH) faz parte da via glicolítica do protozoário (FIGURA 1.4), realizando a fosforilação oxidativa do gliceraldeído-3-fosfato (G3P) a 1,3-difosfoglicerato, em presença do cofator nicotinamida adenina dinucleotídeo (NAD⁺) e de fosfato inorgânico.

Essa enzima é considerada um "alvo" promissor na busca de novos compostos antichagásicos, pois as formas tripomastigotas do *T. cruzi* são exclusivamente dependentes da via glicolítica para obtenção de energia, já que nessas formas não existem citocromos e a mitocôndria é muito reduzida, suprimindo a cadeia respiratória (CLARKSON e BROHN, 1976). Considera-se que inibidores que diminuam significativamente o "fluxo" glicolítico irão matar o parasita. Em simulações computacionais e estudos experimentais da glicólise nas formas tripomastigotas de *T. brucei* observou-se a diminuição do fluxo

glicolítico com a inibição de determinada(s) enzima(s) glicolítica(s), dentre elas a GAPDH (BAKKER et al., 2000).

Além deste fato, as estruturas tridimensionais da GAPDH humana e da glicossomal do *T. cruzi* apresentaram diferenças em resíduos dos seus "sítios" ativos (Asp²⁰¹ para *T. cruzi* e Leu¹⁹⁴ para GAPDH humana). Isto significa que elas serão distintamente seletivas aos potenciais inibidores (SOUZA et al., 1998).

* os compostos permeáveis à membrana são mostrados com setas.

** HK = hexoquinase; PGI = fosfoglucose isomerase; PFK = 6-fosfofrutoquinase; ALDO = frutose bifosfato aldolase; GDH = glicerol 3-fosfato desidrogenase; GK = glicerol quinase; TIM = triose fosfato isomerase; GAPDH, gliceraldeído 3- fosfato desidrogenase; PGK = 3-fosfoglicerato quinase.

1.1.2. Leishmanioses

A leishmaniose é uma enfermidade infecciosa generalizada, crônica, causada por protozoários do gênero *Leishmania* e transmitida ao homem por insetos flebótomos (NEVES, 1991).

1.1.2.1. Agente etiológico: Leishmania

Os membros do gênero *Leishmania* pertencem à ordem Kinetoplastida, família Trypanosomatidae e são classificados em diferentes "complexos", como descreve a FIGURA 1.5 (CHAN-BACAB e PENA-RODRIGUEZ, 2001).

FIGURA 1.5. Classificação taxonômica de *Leishmanias* encontradas em mamíferos (CHAN-BACAB e PENA-RODRIGUEZ, 2001).

Durante seu ciclo biológico, os parasitas do gênero *Leishmania* existem em duas formas: promastigota e amastigota (FIGURA 1.6). A forma promastigota é flagelada e extracelular e infecta seres humanos e outros vertebrados, vivendo também no trato digestivo do inseto vetor. A forma amastigota é destituída de movimento e localiza-se nos macrófagos dos hospedeiros. Ambas formas possuem a propriedade de se dividir (CHAN-BACAB e PENA-RODRIGUEZ, 2001; VERONESI, 1991).

FIGURA 1.6. Formas promastigotas de *L. chagasi* e amastigotas de *L. amazonensis* (Pesquisa FAPESP, 2003).

1.1.2.2. Transmissor: Lutzomyia

A leishmaniose é adquirida devido à ação hematófaga de insetos fêmeas pertencentes à família Psychodidae, conhecidos pelo nome genérico de flebótomos. No "Novo Mundo", eles estão representados pelo gênero *Lutzomyia*, e são vulgarmente conhecidos por "birigui" ou "mosquito-palha"; e no "Velho Mundo" por insetos do gênero *Phlebotomus* (CHAN-BACAB e PENA-RODRIGUEZ, 2001; NEVES, 1991).

FIGURA 1.7. Mosquito-palha (Pesquisa FAPESP, 2003).

1.1.2.3. Transmissão e manifestações clínicas da doença

A principal forma de transmissão da leishmaniose é através da picada do inseto flebótomo, mas existem outros meios que, apesar de serem raros e sem importância epidemiológica, podem ocorrer, dentre eles: transmissão congênita, transfusão de sangue e acidentes em laboratório (NEVES, 1991).

Uma vez infectado com o parasita *Leishmania* spp o indivíduo pode apresentar uma das manifestações clínicas da doença. Essas manifestações são usadas pela Organização Mundial de Saúde (OMS) para classificar as leishmanioses em quatro formas distintas: visceral, mucocutânea, cutânea difusa ou disseminada e cutânea.

A leishmaniose visceral é a forma mais grave da doença, sendo fatal na maioria dos casos. As demais leishmanioses geralmente não são fatais, mas causam a desfiguração dos indivíduos, além de, se não tratadas, poderem evoluir para a forma mais grave da doença (GARNIER e CROFT, 2002).

A cada forma clínica da doença está associada uma espécie do parasita: *Leishmania*s do complexo *donovani* causam a leishmaniose visceral; do complexo *tropica* induzem a lesão cutânea no "Velho Mundo"; e do complexo *mexicana* ocasionam as leishmanioses cutânea e cutânea difusa em países da América Latina (FIGURA 1.5) (CHAN-BACAB e PENA-RODRIGUEZ, 2001). No Brasil, a leishmaniose cutânea é causada por *L. amazonensis*; a forma mucocutânea por *L. braziliensis*; e a visceral por *L. chagasi*.

1.1.2.4. Tratamento

Há 50 anos a quimioterapia das leishmanioses baseia-se na utilização de antimoniais, principalmente do estilbogliconato de sódio (Pentosam®) e do antimoniato de meglumina (Glucantime®).

Esses antimoniais agem através da interferência nos processos bioenergéticos das formas amastigotas. Eles ligam-se e inibem diferentes proteínas do parasita, particularmente enzimas envolvidas na glicólise e na oxidação de ácidos graxos, resultando na redução da geração de ATP e GTP (BERMAN, 1988).

As formulações destes fármacos contêm várias estruturas moleculares "não caracterizadas". O Pentosam® contém muitos complexos de antimônio com derivados de carboidratos, formados a partir do ácido glucônico. Já o Glucantime® é constituído por derivados da *N*-metilglucamina (CHAN-BACAB e PENA-RODRIGUEZ, 2001).

Diversos problemas estão associados à utilização destes medicamentos na quimioterapia antileishmanioses. Eles causam efeitos colaterais graves, que incluem problemas gastrointestinais, cardiotoxicidade e insuficiência renal e hepática, além de serem caros e requererem administração parenteral em tratamentos prolongados (CHAN-BACAB e PENA-RODRIGUEZ, 2001). Entretanto, pelo menos um dos incovenientes associado ao uso dos antimoniais poderá ser solucionado por pesquisadores brasileiros: a administração parenteral poderá em curto período de tempo ser substituída por formulações orais contendo os antimoniais associados com ciclodextrina (Pesquisa FAPESP, 2004).

Uma das alternativas na quimioterapia da leishmaniose é a utilização do antibiótico antifúngico anfotetericina B (FIGURA 1.8), que age ligando-se ao ergosterol na membrana do parasita, aumentando a permeabilidade de pequenas

moléculas. Existem várias formulações desta substância, que foram desenvolvidas com o objetivo de aumentar a sua biodisponibilidade e reduzir a sua toxicidade (Ambisome®, Ambicel® e Anfocil®). Entretanto, alterações das funções renais ainda são observadas em 80 % dos indivíduos tratados (CHAN-BACAB e PENA-RODRIGUEZ, 2001).

Outro antibiótico utilizado é a aminosidina (FIGURA 1.8) também conhecida como paromomicina ou monomicina, mas também requer administração parenteral, tem alto custo e origina vários efeitos colaterais.

Mais recentemente, o alquilfosfolipídeo miltefosina (FIGURA 1.8), que foi originalmente desenvolvido como um agente anticâncer (UNGER et al., 1989), passou pela fase III dos testes clínicos e foi registrado em março de 2002 para o tratamento de leishmaniose visceral na Índia (GELB e HOL, 2002).

O modo de ação desse fármaco ainda é desconhecido, mas sugere-se que ele interfira na remodelagem éter-lipídio do parasita (KAMINSKY, 2002).

A possibilidade de administração oral é a grande vantagem da utilização desse medicamento na terapêutica das leishmanioses, além de ter sido 95 % eficaz no tratamento de pacientes com leishmaniose visceral na Índia. Entretanto, este fármaco, quando utilizado na dose recomendada, ocasiona alguns efeitos colaterais graves (incluindo distúrbios gastrointestinais e teratogenicidade) em 60 % dos pacientes (KAMINSKY, 2002).

Apesar de ter havido nos últimos anos um grande avanço no controle das leishmanioses, ainda é necessária a pesquisa de novos compostos que apresentem efeitos colaterais menos graves e sejam mais eficientes.

FIGURA 1.8. Estruturas químicas da anfotericina B, da paramomicina e da miltefosina.

1.1.2.5. Enzima APRT de Leishmania

Uma abordagem atual no descobrimento de novos fármacos antiparasitários inicia-se pela identificação de um "alvo" molecular do patógeno, que seja essencial às suas funções vitais. Portanto, a inibição desse "alvo" poderia ser prejudicial à sobrevivência do parasita (CRAIG III e EAKIN, 1997).

As enzimas envolvidas na *via de recuperação* de purino-nucleotídeos em *Leishmanina*, conhecidas genericamente como PRTases (fosforribosiltransferases) (FIGURA 1.9), são "alvos" metabólicos promissores para o desenvolvimento de novos compostos anti-*Leishmania*, pois através delas o parasita utiliza bases purínicas pré-formadas pelo hospedeiro mamífero, e sintetiza os nucleotídeos, que são essenciais para a formação de RNA (ácido ribonucléico) e DNA (ácido desoxirribonucléico).

FIGURA 1.9. *Via de recuperação* de purino-nucleotídeos em *Leishmania*. (SILVA, 2001).

Estudos metabólicos de muitos parasitas mostram que eles não possuem enzimas necessárias à síntese *de novo* de purino-nucleotídeos e, então, eles são "forçados" a recuperar de seus hospedeiros as purinas necessárias para o metabolismo celular (CRAIG III e EAKIN, 1997).

Uma das PRTases é a adenina-fosforribosil-transferase (APRT), que catalisa a reação nucleofílica entre a base purínica adenina e o 5-fosforribosil-1pirofosfato (PRPP), formando a adenosina 5'-monofosfato (AMP) (FIGURA 1.10).

^{*} AAH = adenina dearminase; ADP = difosfato de adenosina; ADSL = adenilsuccinato liase; ADSS = adenilsuccinato sintetase; AMD = adenosina monofosfato deaminase; AMP = monofosfato de adenosina; APRT = adenina fosforribosiltransferase; ATP = trifosfato de adenosina; GDP = difosfato de guanosina; GMP = monofosfato de guanosina; GMR = guanosina monofosfato redutase; GMS = guanosina monofosfato sintetase; GTP = trifosfato de guanosina; HGPRT = hipoxantina-guanina fosforribosiltransferase; IMDh = inosina monofasto desidrogenase; IMP = monofosfato de inosina; PPi = pirofosfato; PRPP = 5-fosforribosil-1-pirofosfato; XMP = monofostato de xantosina; XPRT = xantina fosforribosiltransferase.

FIGURA 1.10. Reação catalisada pela APRT.

A enzima APRT foi escolhida neste trabalho para a seleção de compostos protótipos no desenvolvimento de fármacos antileishmanioses. Entretanto, sabese que a inibição de uma dada PRTase pode não ocasionar a morte do parasita, pois a *via de recuperação* (FIGURA 1.9) é formada por "caminhos independentes", que podem ser utilizados pelo parasita como alternativa para a obtenção de nucleotídeos. Este fato foi observado em um estudo de inativação genética da HGPRT (hipoxantina-guanina fosforribosiltransferase), no qual observou-se a sobrevivência *in vitro* de alguns parasitas (CRAIG III e EAKIN, 1997).

1.1.3. Controle com produtos naturais

Os fatos descritos anteriormente relativos principalmente à importância epidemiológica e à falta de tratamento eficaz seguro contra a doença de Chagas e as leishmanioses evidenciam a necessidade da procura de novos compostos para tais doenças.

A utilização de plantas para a pesquisa de novos compostos antiparasitários é um campo bastante promissor. Exemplos dos compostos antimaláricos quinina (FIGURA 1.11), isolada de *Cinchona succiruba* (Rubiaceae), e artemisinina (FIGURA 1.11), obtida de *Artemisia annua* (Asteraceae), ilustram a importância das plantas para o desenvolvimento de novos fármacos. Outra evidência para este fato é deduzida dos números
relacionados aos fármacos mais vendidos na década de 90, dos quais 50 % eram produtos naturais ou derivados (MAHIDOL et al., 1998).

FIGURA 1.11. Produtos naturais antimaláricos.

Nos últimos anos, houve o aumento das pesquisas de fármacos para a doença de Chagas e leishmanioses a partir de plantas (PHILLIPSON e WRIGHT, 1991a,b) e vários metabólitos com ação tripanocida (COURA e DE CASTRO, 2002; SEPÚLVEDA-BOZA e CASSELS, 1995) e leishmanicida (AKENDENGUE et al., 1999; CHAN-BACAB e PENA-RODRIGUEZ, 2001; IWU et al., 1994) foram identificados. Dentre os compostos tripanocidas mais ativos estão as naftoquinonas, especialmente o lapachol (FIGURA 1.12) e seus derivados; e entre os compostos leishmanicidas os alcalóides, especialmente os 2-*R*-quinolínicos (FIGURA 1.13) (FOURNET et al., 1989, 1993a,b, 1994a,b,c e 1996).

1.2. Seleção das espécies vegetais

As atividades antiparasitárias de extratos e compostos isolados de plantas das famílias Rutaceae e Meliaceae foram uma das razões para a escolha das espécies *Almeidea coerulea* A. St.-Hil., *A. rubra* A. St.-Hil., *Conchocarpus*

heterophyllus (A. St.-Hil.) Kallunki & Pirani, *Galipea carinata* Pirani (Rutaceae), e *Trichilia ramalhoi* Rizzini (Meliaceae) para este trabalho.

MAFEZOLI et al. (2000) e VIEIRA et al. (2001) determinaram a atividade tripanocida de várias espécies de Rutaceae e Meliaceae, destacando-se *Pilocarpus spicatus, Conchocarpus obovatus, Monnieira trifolia* e *Ravenia infelix.* Também se observou a inibição da enzima gGAPDH de *T. cruzi* principalmente por extratos de plantas da família Meliaceae (VIEIRA et al., 2001).

Da espécie *Zanthoxylum naranjillo* (Rutaceae) foi isolada a lignana (-)metilpluviatolídeo (FIGURA 1.12), que foi bastante ativa contra as formas tripomastigotas do *T. cruzi* (BASTOS et al., 1999).

A cumarina chalepina (FIGURA 1.12), isolada de *Pilocarpus spicatus* (MAFEZOLI, 2001; PAVÃO et al., 2002), uma série de cumarinas (VIEIRA et al., 2001), a flavona 3',4',5',5,7-pentametoxiflavona (FIGURA 1.12), isolada de *Neoraputia magnifica* (TOMAZELA et al., 2000), e outros flavonóides polimetoxilados (MORAES et al., 2003) inibiram significativamente a atividade da enzima gGAPDH, demonstrando que são substâncias que podem ser utilizadas como protótipos no desenvolvimento de novos fármacos antichagásicos.

FIGURA 1.12. Produtos naturais antichagásicos.

Um dos grandes avanços recentes na quimioterapia das leishmanioses se deve à descoberta da potente atividade leishmanicida dos alcalóides 2-*R*-quinolínicos isolados da planta boliviana *Galipea longiflora* (Rutaceae). Dentre os vários alcalóides testados, as chimaninas B e D (FIGURA 1.13) foram as mais ativas sobre as formas promastigotas de *Leishmania* (FOURNET et al., 1994a). Outros alcalóides com potente atividade leishmanicida são as dictiolomidas A e B (FIGURA 1.13), isoladas de *Dictyoloma peruviana* (Rutaceae) (LAVAUD et al., 1995), a 6-metoxidictiolomida (FIGURA 1.13) identificada em *D. vandellianum* (SARTOR, 2001) e um alcalóide 2-quinolônico obtido de *Conchocarpus gaudichaudianus* (Rutaceae) (CORTEZ, 2002).

Uma outra razão para a escolha das espécies deste trabalho é a grande variedade de estruturas químicas produzidas por plantas das famílias Rutaceae e Meliaceae. A ordem Rutales, as quais elas pertencem (DAHLGREEN, 1980), é uma das fontes mais ricas e diversas de metabólitos secundários em Angiospermas (WATERMAN, 1993).

FIGURA 1.13. Produtos naturais anti-Leishmania.

1.3. Família Rutaceae

As espécies *Almeidea coerulea*, *A. rubra*, *Conchocarpus heterophyllus*, *Galipea carinata* são classificadas na família Rutaceae, subfamília Rutoideae, tribo Cusparieae (DA SILVA et al., 1988). A família Rutaceae constitui o maior grupo da ordem Rutales (DAHLGREEN, 1980), possuindo 150 gêneros, com 1500 espécies de tamanhos variados, amplamente distribuídas nas regiões tropicais e temperadas do globo terrestre, sendo mais abundantes na América tropical, sul da África, Ásia e Austrália. No Brasil, são descritas cerca de 160 espécies (ALBUQUERQUE, 1976).

Essa família apresenta uma diversidade muito grande de metabólitos secundários destacando-se: os alcalóides, especialmente os derivados do ácido antranílico (MESTER, 1983; WATERMAN, 1975), cumarinas, lignanas, flavonóides, terpenóides e limonóides.

A. coerulea e A. rubra

As espécies *A. coerulea* e *A. rubra* foram anteriormente estudadas (CORTEZ, 2002; MAFEZOLI, 2001; SANTOS et al., 1998), permitindo o isolamento de esteróides, triterpenos, sesquiterpenos e de vários alcalóides derivados do ácido antranílico (FIGURA 1.14). De outra espécie desse gênero foram obtidas flavonas C-glicosiladas e diversos alcalóides característicos da família Rutaceae (JAY et al., 1979; MOULIS et al., 1983; WIRASUTISNA et al., 1986).

FIGURA 1.14. Substâncias isoladas de *A. coerulea* e *A. rubra* (CORTEZ, 2002; MAFEZOLI, 2001; SANTOS et al., 1998).

Continuação da FIGURA 1.14. Substâncias isoladas de *A. coerulea* e *A. rubra* (CORTEZ, 2002; MAFEZOLI, 2001; SANTOS et al., 1998).

C. heterophyllus

O gênero *Conchocarpus* é constituído por 45 espécies, muitas das quais eram anteriormente classificadas em *Angostura* (KALLUNKI e PIRANI, 1998), como é o caso da espécie *C. heterophyllus*, escolhida para este trabalho, que era denominada *Angostura heterophyla*.

Nenhum trabalho fitoquímico desta espécie esta relatado na literatura. Entretanto, de outras espécies do gênero foram isolados alcalóides acridônicos, 2- e 4-quinolônicos e indoloquinazolínicos, além de amidas, flavonas e diversas cumarinas (CORTEZ, 2002; MAFEZOLI, 2001; VELOSO, 1995; VIEIRA et al., 1992).

<u>G. carinata</u>

O gênero *Galipea* é composto de aproximadamente 20 espécies, encontradas principalmente na América do Sul (FOURNET et al., 1989). Vários estudos fitoquímicos desse gênero estão descritos na literatura (BAKHTIAR et al., 1990 e 1994; FOURNET et al., 1989; HOUGHTON et al., 1999; JACQUEMOND-COLLET et al., 1999; LÓPEZ et al., 1997 e 1998; RAKOTOSON et al., 1998; VIEIRA e KUBO, 1990; WIRASUTISNA et al., 1987), entretanto, a espécie *G. carinata* não foi anteriormente investigada.

1.4. Família Meliaceae

A espécie *Trichilia ramalhoi* pertence à família Meliaceae, que é formada por árvores de grande porte, fornecedoras de madeira com alto valor comercial (PENNINGTON e STYLES, 1975), e caracterizada pela presença dos limonóides (DA SILVA et al., 1984).

O gênero *Trichilia* apresenta aproximadamente 70 espécies, que ocorrem na América tropical e África. É um dos gêneros que possui o maior número de espécies na família, que apresenta mais características morfológicas de Meliaceae, além de ter o maior número e tipos de limonóides dentro da subfamília Melioideae, onde está classificado (PENNINGTON e STYLES, 1975; SALLES, 1995).

Nenhum estudo sobre a espécie *Trichilia ramalhoi* estava descrito na literatura. Desta forma, a espécie foi estudada pela primeira vez.

24

2. Objetivos

O principal objetivo deste trabalho foi estudar fitoquimicamente as espécies *Almeidea coerulea*, *A. rubra*, *Conchocarpus heterophyllus*, *Galipea carinata* (Rutaceae) e *Trichilia ramalhoi* (Meliaceae) visando obter substâncias químicas que pudessem ser utilizadas como protótipos no desenvolvimento de quimioprofiláticos ou quimioterápicos para a doença de Chagas e para as leishmanioses.

A busca de tais substâncias foi orientada por três testes biológicos: ensaio *in vitro* nas formas tripomastigotas do *Trypanosoma cruzi*; testes bioquímicos frente às enzimas gGAPDH (gliceraldeído-3-fosfato desidrogenase) de *T. cruzi* e APRT (adenina-fosforribosiltransferase) de *Leishmania tarentolae*.

Esse trabalho envolveria: 1) preparação dos extratos vegetais; 2) testes dos extratos nos três modelos biológicos; 3) obtenção das frações vegetais; 4) ensaios biológicos das frações; 5) isolamento das substâncias através de métodos cromatográficos; 6) identificação das estruturas químicas por diversos métodos espectroscópicos, principalmente RMN; 7) avaliação das atividades das substâncias; 8) modificações estruturais de substância(s) muito(s) ativa(s) e novos testes biológicos, para se compreender a relação estrutura-atividade.

3. Resultados e discussões

3.1. Substâncias isoladas

O estudo químico dos extratos e frações ativos de *Almeidea coerulea*, *A. rubra*, *Conchocarpus heterophyllus* e *Trichilia ramalhoi* permitiu o isolamento de diversas classes de substâncias, num total de 30 metabólitos, dos quais 6 estão sendo citados pela primeira vez na literatura. Neste trabalho fitoquímico foram investigados os extratos e frações que apresentaram atividade em um (ou mais) dos modelos biológicos selecionados.

Para facilitar a descrição estrutural dos metabólitos isolados, eles foram organizados nesta seção por classe química. Entretanto, na seção *Procedimento Experimental*, a organização dos mesmos é feita segundo a espécie da qual foram isolados.

Esteróides

β-sitosterol e estigmasterol (C₂₉H₅₀O e C₂₉H₄₈O) 29,5 mg mistura obtida dos galhos de *T. ramalhoi* isolamento: p. 225-226 identificação: p. 35-36 atividades biológicas: p. 198-200

sitostenona (C₂₉H₄₈O) 3,0 mg isolada dos galhos de *A. coerulea* isolamento: p. 208-209 identificação: p. 37-38 atividades biológicas: p. 198-200

benzoato de \beta-sitosterila (C₃₆H₅₄O₂) 11,6 mg isolado das folhas de *C. heterophyllus* isolamento: p. 221 identificação: p. 38-45 atividades biológicas: p. 198-200

Triterpenos

lupeol (C₃₀H₅₀O) 95,2 mg isolado dos galhos de *T. ramalhoi* isolamento: p. 225-226 identificação: p. 46-47 atividades biológicas: p. 198-200

lupenona (C₃₀H₄₈O) 45,9 mg isolada dos galhos de *T. ramalhoi* isolamento: p. 225-226 identificação: p. 48-49 atividades biológicas: não foi testada

Sesquiterpeno

sesquiterpeno eudesmano ($C_{17}H_{28}O_3$), inédito 3,7 mg isolado dos galhos de *A. coerulea* isolamento: p. 210-211 identificação: p. 50-62 atividades biológicas: p. 198-200

Flavonóides

flavona $(C_{15}H_{10}O_2)$ 1,2653 g isolada das folhas de *C. heterophyllus* isolamento: p. 223 identificação: p. 63-65 atividades biológicas: p. 195-200

7-metoxiflavona $(C_{16}H_{12}O_3)$ 22,7 mg isolada das folhas de *C. heterophyllus* isolamento: p. 223 identificação: p. 66-69 atividades biológicas: p. 195-200

5-hidroxiflavona $(C_{15}H_{10}O_3)$ 5,2 mg isolada das folhas de *C. heterophyllus* isolamento: p. 223 identificação: p. 69-72 atividades biológicas: p. 195-197

piranoflavonas inéditas 2,8 mg isolada das folhas de *C. heterophyllus* isolamento: p. 222 identificação: p. 72-83 atividades biológicas: p. 198-200

Alcalóides

dictamina (C₁₂H₉NO₂) 8,9 mg isolada dos galhos de *A. coerulea* isolamento: p. 212-213 identificação: p. 86-87 atividades biológicas: p. 195-200

kokusagina (C₁₃H₉NO₄) 2,5 mg isolada das folhas de *A. rubra* isolamento: p. 217-218 identificação: p. 88-91 atividades biológicas: p. 195-200

esquimianina ($C_{14}H_{13}NO_4$) 1,6 mg isolada das folhas de *A. rubra* isolamento: p. 217-218 identificação: p. 91-93 atividades biológicas: p. 195-200

 δ -fagarina (C₁₃H₁₁NO₃) 5,0 mg isolada dos galhos de *A. coerulea* isolamento: p. 212-214 identificação: p. 93-95 atividades biológicas: p. 195-200

isokokusagina (C₁₃H₉NO₄) 32,1 mg isolada das folhas de *A. rubra* isolamento: p. 216-217 identificação: p. 96-98 atividades biológicas: p. 195-197

isoesquimianina (C₁₄H₁₃NO₄) 28,8 mg isolada das folhas de *A. rubra* isolamento: p. 216-217 identificação: p. 99-101 atividades biológicas: p. 195-197

alcalóide 2-fenil-1-metil-4-quinolona (C₁₆H₁₃NO) 22,1 mg isolado do caule de *C. heterophyllus* isolamento: p. 224-225 identificação: p. 119-127 atividades biológicas: p. 195-200

arborinina (C₁₆H₁₅NO₄) 43,2 mg isolada das folhas de *A. rubra* isolamento: p. 216-217 identificação: p. 128-130 atividades biológicas: p. 195-200

alcalóide indolopiridoquinazolínico (C₂₃H₂₁N₃O₃), inédito 0,4 mg isolado dos galhos de *A. coerulea* isolamento: p. 211-212 identificação: p. 130-139 atividades biológicas: não foi testado

Cumarinas

escoparona (C₁₁H₁₀O₄) 3,2 mg isolada dos galhos de *A. coerulea* isolamento: p. 214-215 identificação: p. 140-141 atividades biológicas: p. 195-200

escopoletina (C₁₀H₈O₄) 4,6 mg isolada dos galhos de *A. coerulea* isolamento: p. 214-216 identificação: p. 142-143 atividades biológicas: p. 195-200

marmesina ($C_{14}H_{14}O_4$) 5,2 mg isolada dos galhos de *A. coerulea* isolamento: p. 214-216 identificação: p. 144-149 atividades biológicas: p. 195-200

<u>Amidas</u>

paprazina (C₁₇H₁₇NO₃) 17,1 mg isolada dos galhos de *A. coerulea* isolamento: p. 212-213 identificação: p. 150-157 atividades biológicas: p. 195-200

<i>N-trans</i> -feruloiltiramina
$(C_{18}H_{19}NO_4)$
106,2 mg
isolada dos galhos de A. coerulea
isolamento: p. 212-213
identificação: p. 157-166
atividades biológicas: p. 195-200

Outras classes de metabólitos

derivado do ácido antranílico ($C_{13}H_{13}NO_3$), inédito 14,7 mg isolado das folhas de *A. rubra* isolamento: p. 217-218 identificação: p. 166-175 atividades biológicas: p. 195-200

(29)

1,5-difenil-1-pentanona ($C_{17}H_{18}O$), inédita 3,0 mg isolado dos galhos de *A. coerulea* isolamento: p. 208-209 identificação: p. 175-182 atividades biológicas: p. 195-200

ácido siríngico (C₉H₁₀O₅) 20,1 mg isolado dos galhos de *A. coerulea* isolamento: p. 212-213 identificação: p. 183-184 atividades biológicas: p. 195-200

3.2. Identificação dos esteróides

3.2.1. Identificação do β-sitosterol e do estigmasterol

A mistura dos fitoesteróides β -sitosterol e estigmasterol (1), de ampla ocorrência nos vegetais, foi obtida do extrato hexânico dos galhos de *Trichilia ramalhoi* (TRGH) (p. 225-226) e caracterizada por RMN ¹H e EM.

O espectro de RMN ¹H de 1 (FIGURA 3.1) apresentou um acúmulo de sinais relativos a hidrogênios metílicos, metilênicos e metínicos, na região de 0,60 - 2,30 δ , o que indicou a presença de esteróides na mistura 1. O dubleto largo em 5,35 δ (H-6; J = 5,0 Hz) e o multipleto centrado em 3,53 δ (H-3) caracterizaram o β -sitosterol na mistura. Já a presença do estigmasterol foi deduzida pelos sinais em 5,02 (dd, J = 14,8 e 8,8 Hz) e 5,14 δ (dd, J = 14,8 e 8,8 Hz), relativos aos hidrogênios vinílicos da cadeia lateral.

A identificação dos constituintes da mistura 1 foi confirmada por CG-EM. Os picos do íon molecular em m/z 414 e 412 daltons nos espectros de massas (FIGURA 3.2) são compatíveis com as fórmulas moleculares do β -sitosterol (C₂₉H₅₀O) e do estigmasterol (C₂₉H₄₈O).

FIGURA 3.1. Espectro de RMN ¹H da mistura de β -sitosterol e estigmasterol (1) (CDCl₃, 200 MHz).

FIGURA 3.2. Espectros de massas (IE = 70 e.V.) do β -sitosterol e estigmasterol.

3.2.2. Identificação da sitostenona

O esteróide sitostenona (**2**) foi identificado, através de RMN ¹H e EM, na fração diclorometânica do extrato metanólico dos galhos de *Almeidea coerulea* (AGMD) (p. 208-209).

O espectro de RMN ¹H (FIGURA 3.3) de **2** apresentou-se bastante similar ao da mistura de esteróides **1** (p. 36). O núcleo esteroidal foi definido por um conjunto de sinais na região mais protegida do espectro, em 2,4 - 0,7 δ ; um singleto em 5,72 δ foi atribuído à H-4 no esqueleto do tipo do β -sitosterol. Entretanto, não foi observado o multipleto em 3,53 δ , relativo a H-3, sugerindo que esta posição não seria hidrogenada e, portanto, estaria substituída por uma carbonila, caracterizando a sitostenona (**2**).

O pico $[M+H]^+$ em m/z 413 daltons no espectro de massas (FIGURA 3.4), compatível com a fórmula molecular C₂₉H₄₈O, confirmou a identificação do esteróide **2**. Já os picos $[M+H]^+$ em m/z 399 e 411 daltons indicaram a coocorrência da campestenona e da estigmastenona com a sitostenona (**2**).

FIGURA 3.3. Espectro de RMN ¹H da sitostenona (2) (CDCl₃, 200 MHz).

FIGURA 3.4. Espectro de massas (ES^+) da sitostenona (2).

3.2.3. Identificação do benzoato de β-sitosterila

O benzoato de β -sitosterila (**3**) foi obtido da fração diclorometânica do extrato hexânico das folhas de *Conchocarpus heterophyllus* (AHFHD) (p. 221) e foi caracterizado por RMN em uma e duas dimensões.

No espectro de RMN ¹H de **3** (FIGURA 3.5) foram observados os sinais em 5,42 δ (*d*l, J = 4,2 Hz) e na região de 0,69 - 2,17 δ , semelhantes aos do β sitosterol. Entretanto, a desblindagem de H-3 (de 3,53 para 4,83 δ) e a presença de um conjunto de sinais na região de hidrogênios aromáticos, típicos de anel aromático monosubstituído, sugeriram a esterificação da posição 3 por um grupo benzoato.

O espectro de RMN ¹³C de **3** (FIGURAS 3.6 e 3.7) apresentou 36 carbonos, sendo que a região mais blindada do espectro, relativa a carbonos alifáticos, era bastante congestionada. Alguns deslocamentos químicos de ¹³C foram atribuídos por comparação com os dados do β -sitosterol (MAFEZOLI, 2001) e do triterpeno lupânico dibenzoilado (**A**) (RODRÍGUEZ-GAMBOA et al., 2001). Os carbonos em 165,99, 132,70, 130,78, 129,51 e 128,24 δ confirmaram a presença do grupo benzoato na molécula. Já os carbonos em 74,55, 139,63 e 122,76 δ caracterizaram C-3, C-5 e C-6 no núcleo esteroidal.

A esterificação de C-3 do β -sitosterol por um ácido graxo é bastante comum, o que desblinda H-3 em 1,3 ppm e C-3 em 3,0 ppm. Entretanto a esterificação por um grupo benzoato parece ser bastante rara em esteróides, sendo relativamente comum em triterpenos.

(A)

39

FIGURA 3.5. Espectro de RMN ¹H do benzoato de β -sitosterila (**3**) (CDCl₃, 200 MHz).

FIGURA 3.6. Espectro de RMN 13 C do benzoato de β -sitosterila (**3**) (CDCl₃, 100 MHz).

FIGURA 3.7. Ampliação do espectro de RMN ¹³C do benzoato de β -sitosterila (3) (CDCl₃, 100 MHz).

O mapa de contorno de HSQC (FIGURAS 3.8 e 3.9) permitiu que fossem determinadas algumas correlações ${}^{1}\text{H}{-}{}^{13}\text{C}$ (${}^{1}J$) para a substância **3** (TABELA 3.1). Entretanto, grande parte das correlações relativas ao esqueleto esteroidal não pode ser determinada por ocorrerem muito próximas no mapa.

$\delta_{ m H}$	$\delta_{ m C}$
8,05	129,51
7,55	132,70
7,43	128,24
5,42	122,76
4,83	74,55
2,47	38,18
1,08	19,35
0,69	11,84

TABELA 3.1. Correlações ¹H-¹³C (¹J) para o benzoato de β -sitosterila.

FIGURA 3.8. Mapa de contorno de HSQC do benzoato de β -sitosterila (3) (CDCl₃, 400 MHz).

FIGURA 3.9. Ampliação do mapa de contorno de HSQC do benzoato de β -sitosterila (**3**) (CDCl₃, 400 MHz).

No mapa de contorno de HMBC de **3** (FIGURAS 3.10 e 3.11) não se observou correlação do carbono carbonílico do benzoato, em 165,99 δ , com H-3 (4,83 δ). A observação de correlação (³*J*) entre os átomos de hidrogênio e carbono ocorre se eles estiverem numa conformação específica. Portanto, a ausência da correlação não é indicativa de que C-3 não esteja esterificado, principalmente quando se analisam as evidências espectroscópicas anteriormente descritas.

A correlação (³J) entre C-5 (139,63 δ) e os hidrogênios em 1,08 δ , definiram a metila terciária 19. Os hidrogênios desta metila também correlacionaram com o carbono quaternário em 36,63 δ , e com o carbono metínico em 49,99 δ , correspondentes a C-10 e C-9, respectivamente.

A outra metila terciária (em 0,69 δ) correlacionou com dois carbonos metínicos em 56,65 e 55,98 δ , com um carbono quaternário em 42,28 δ , e com um carbono metilênico em 39,68 δ , relativos a C-14, C-17, C-13 e C-12, respectivamente. Vale ressaltar que os carbonos metínicos foram atribuídos por comparação com os dados de RMN ¹³C do β -sitosterol (MAFEZOLI, 2001).

FIGURA 3.10. Mapa de contorno de HMBC do benzoato de β -sitosterila (3) (CDCl₃, 400 MHz).

FIGURA 3.11. Ampliação do mapa de contorno de HMBC do benzoato de β -sitosterila (**3**) (CDCl₃, 400 MHz).

Desta forma, a substância **3** foi identificada como benzoato de β sitosterila, e seus dados de RMN ¹H são comparados na TABELA 3.2 com os do benzoato de α -estigmasterol semi-sintético (BARRERO et al., 1993).

H / C	$\delta_{ m H}$	${\delta_{\mathrm{H}}}*$	${\delta}_{ m C}$	${\delta_{\mathrm{C}}}^{{}^{\#}}$
3	4,83 m	5,30 m	74,55	71,8
5			139,63	140,8
6	5,42 dl (J = 4,4, Hz)	n.d.	122,76	121,7
9			49,99	50,2
10			36,63	36,5
12			39,68	39,7
13			42,28	42,3
14			56,65	56,9
17			55,98	56,0
18	0,69 s	0,70 <i>s</i>	11,84	12,2
19	1,08 <i>s</i>	0,87 s	19,35	19,4
1'			130,78	131,0
2' e 6'	8,05 m	7,50 m	129,51	129,6
3' e 5'	7,43 m	8,07 m	128,24	128,4
4'	7,55 m	7,50 m	132,70	132,8
C=O			165,99	165,8

TABELA 3.2. Dados espectroscópicos de RMN 1 H e 13 C do benzoato de β -sitosterila.

* $\delta_{\rm H}$ do benzoato de α-estigmasterol (CDCl₃, 80 MHz) (BARRERO et al., 1993); [#] $\delta_{\rm C}$ do β-sitosterol (CDCl₃, 100 MHz) (MAFEZOLI, 2001) e do grupo benzoato do triterpeno (A) (CDCl₃, 100 MHz) (RODRÍGUEZ-GAMBOA et al., 2001).

3.3. Identificação dos triterpenos

3.3.1. Identificação do lupeol

O triterpeno lupeol (4) foi isolado do extrato hexânico dos galhos de *Trichilia ramalhoi* (p. 225-226) e caracterizado através de RMN ¹H e EM.

O espectro de RMN ¹H de 4 (FIGURA 3.12) apresentou um grande número de sinais em 0,76 - 1,91 δ , sendo que nessa região foram observados claramente seis singletos de metilas terciárias (em 0,76, 0,79, 0,83, 0,95, 0,97 e 1,03 δ) e um singleto relativo à metila ligada a carbono insaturado (em 1,68 δ). Estes dados espectroscópicos sugeriram a natureza de 4 como um triterpeno, cuja classe foi definida através dos sinais referentes aos hidrogênios olefínicos em 4,57 δ (*dd*, *J* = 2,3 e 1,3 Hz) e 4,69 δ (*d*, *J* = 2,3 Hz), que são característicos dos triterpenos com esqueleto lupânico. Já o sinal de hidrogênio carbinólico em 3,19 δ (*dd*, *J* = 10,8 e 5,0 Hz), definiu a substituição de C-3 por um grupo hidroxila, que foi disposto em β devido a magnitude das constantes de acoplamento do hidrogênio carbinólico H-3. Desta forma, os dados de RMN ¹H sugeriram a identidade da substância 4 como o triterpeno lupeol, cuja confirmação estrutural foi realizada pelo espectro de massas (FIGURA 3.13), através do pico do íon molecular em m/z 426 daltons, compatível com a fórmula molecular C₃₀H₅₀O.

FIGURA 3.12. Espectro de RMN ¹H do lupeol (4) (CDCl₃, 200 MHz).

FIGURA 3.13. Espectro de massas (IE = 70 e.V.) do lupeol (4).

3.3.2. Identificação da lupenona

O triterpeno lupenona (5) foi isolado do extrato hexânico dos galhos de *Trichilia ramalhoi* (p. 225-226) e caracterizado através de RMN ¹H e EM.

O espectro de RMN ¹H de **5** (FIGURA 3.14) apresentou sinais bastante similares aos do lupeol (4): seis metilas terciárias em 0,80, 0,93, 0,95, 1,03, 1,07 e 1,07 δ ; uma metila sobre carbono sp^2 em 1,68 δ ; e, os sinais característicos de triterpenos lupânicos em 4,57 (dd, J = 2,4 e 1,0 Hz) e 4,69 δ (d, J = 2,4 Hz). Entretanto, no espectro de **5** não se observou o sinal relativo ao hidrogênio carbinólico H-3 em 3,19 δ , sugerindo que C-3 era um carbono carbonílico e que, portanto, o triterpeno **5** fosse a lupenona. Isto foi confirmado pelo espectro de massas de **5** (FIGURA 3.15) através do pico do íon molecular em m/z 424 daltons, compatível com a fórmula molecular C₃₀H₄₈O da lupenona.

FIGURA 3.14. Espectro de RMN ¹H da lupenona (**5**) (CDCl₃, 200 MHz).

FIGURA 3.15. Espectro de massas (IE = 70 e.V.) da lupenona (5).

3.4. Identificação do sesquiterpeno

O sesquiterpeno eudesmano 6 foi isolado da fração acetato de etila do extrato metanólico dos galhos de *Almeidea coerulea* (AGMA) (p. 210-211) e identificado por EM e RMN em uma e duas dimensões.

O espectro de RMN ¹H (FIGURAS 3.16 - 3.17) da substância **6** apresentou grande acúmulo de sinais em sua região mais blindada, especificamente entre 2,07 e 0,38 δ . Apenas um sinal, em 5,26 δ , foi observado na região mais desblindada, o qual referia-se a um hidrogênio acetilcarbinólico.

Destacou-se neste espectro de RMN ¹H um sinal bastante blindado em 0,38 δ (1H), indicativo da presença de um anel ciclopropânico na molécula. Além disso, observaram-se claramente dois singletos (3H cada) em 1,15 e 1,07 δ , de metilas terciárias sobre carbono saturado, e um singleto (6H) em 1,24 δ , relativo à metila sobre carbono oxigenado. Já o sinal em 2,07 δ (*s*, 3H) indicou a presença de um substituinte acetato na molécula.

No espectro de RMN ¹³C (FIGURAS 3.18 - 3.19) foram observados 17 carbonos, sendo dois deles (169,91 e 21,69 δ) referentes ao grupo acetato. Desta forma, a análise dos espectros de RMN ¹H e ¹³C sugeriu a natureza do composto **6** como um sesquiterpeno.

50

FIGURA 3.16. Espectro de RMN ¹H do sesquiterpeno 6 (CDCl₃, 400 MHz).

FIGURA 3.17. Ampliação do espectro de RMN 1 H do sesquiterpeno **6** (CDCl₃, 400 MHz).

FIGURA 3.18. Espectro de RMN ¹³C do sesquiterpeno 6 (CDCl₃, 50 MHz).

FIGURA 3.19. Ampliação do espectro de RMN 13 C do sesquiterpeno **6** (CDCl₃, 50 MHz).

FIGURA 3.20. Espectro de DEPT 135° do sesquiterpeno 6 (CDCl₃, 100 MHz).

Através dos espectros de RMN ¹³C (FIGURAS 3.18 - 3.19) e DEPT 135° (FIGURA 3.20) foram definidos na molécula 4 carbonos quaternários (169,91, 72,22, 50,83 e 26,99 δ), 4 CH (71,97, 56,60, 51,90 e 26,38 δ), 4 CH₂ (45,37, 41,43, 33,69 e 20,39 δ) e 5 CH₃ (28,83, 28,33, 21,69, 21,08 e 18,61 δ).

A fórmula molecular do sesquiterpeno **6** foi deduzida a partir dos espectros de RMN (BROCHINI et al., 1999). No espectro de RMN ¹³C foram observados dois carbonos carbinólicos (em 72,22 e 71,97 δ), um ligado ao grupo acetato e o outro, que pelo espectro de RMN ¹H, só poderia estar ligado a uma hidroxila. Isto sugeriu que a molécula possuía três oxigênios e um hidrogênio (OH) a mais do que indicavam os tipos de carbonos (CH₃, CH₂ e CH) no espectro de RMN ¹³C. Desta maneira, foi determinada a fórmula molecular C₁₇H₂₈O₃ para o sesquiterpeno **6**, que indicou um grau de deficiência de hidrogênio igual a 4, evidenciando que ele era tricíclico, já que possuía uma insaturação relativa ao grupo acetato.

O espectro de EM (FIGURA 3.21) de **6** apresentou um pico em m/z 202 daltons, diferente do esperado (280 daltons). Como o espectro foi obtido por impacto eletrônico (a 70 e.V.), a molécula poderia perder facilmente H₂O e CH₃COOH, originando o pico 202. O pico base em m/z 59 daltons indicou a presença de um grupo hidroxiisopropílico na molécula, que é bastante comum em sesquiterpenos (BROCHINI et al., 1999).

FIGURA 3.21. Espectro de massas (IE = 70 e.V.) do sesquiterpeno 6.

Portanto, os dados espectroscópicos analisados sugeriram a natureza do composto **6** como um sesquiterpeno tricíclico (sendo um dos ciclos o ciclopropano) com substituintes acetato e um grupo hidroxiisopropila.

Uma pesquisa sobre os tipos estruturais de sesquiterpenos com essas características indicou que **6** deveria ser da classe dos eudesmanos, que é a única na qual é possível a correlação (${}^{3}J$) de duas metilas terciárias com um mesmo carbono metínico, como será descrito adiante na discussão do mapa de contorno de HMBC (FIGURAS 3.26 – 3.27).

No mapa de contorno de HSQC (FIGURAS 3.22 - 3.23) foram determinadas as correlações C-H a ${}^{1}J$ para o sesquiterpeno **6**, como mostra a TABELA 3.3.

$\delta_{ m H}$	$\delta_{ m C}$
5,26	71,97
2,07	21,69
1,94 e 1,28	41,43
1,91 e 1,71	20,39
1,75 e 0,73	45,37
1,40	51,90
1,25	26,38
1,24	28,83 e 28,33
1,15	18,61
1,07	21,08
0,92	56,60
0,88 e 038	33,69

TABELA 3.3. Correlações a ${}^{I}J$ para o sesquiterpeno 6.

FIGURA 3.22. Mapa de contorno de HSQC do sesquiterpeno 6 (CDCl₃, 400 MHz).

FIGURA 3.23. Ampliação do mapa de contorno de HSQC do sesquiterpeno **6** (CDCl₃, 400 MHz).

No espectro de COSY ¹H-¹H (FIGURAS 3.24 - 3.25) foram observados os acoplamentos geminais entre os hidrogênios em 0,38 e 0,88 δ , 0,73 e 1,75 δ , 1,28 e 1,94 δ , 1,71 e 1,91 δ . Neste espectro verificou-se também o acoplamento entre os hidrogênios em 0,92 e 1,71 δ e, deste último com o hidrogênio em 1,40 δ . Além disso, o hidrogênio em 5,26 δ acoplou com os hidrogênios em 1,28 e 1,40 δ . Desta forma, o sesquiterpeno **6** tem em seu esqueleto a "sequência" ilustrada abaixo.

FIGURA 3.24. Espectro de COSY ¹H-¹H do sesquiterpeno 6 (CDCl₃, 400 MHz).

FIGURA 3.25. Ampliação do espectro de COSY ${}^{1}H{}^{-1}H$ do sesquiterpeno 6 (CDCl₃, 400 MHz).

No mapa de contorno de HMBC (FIGURAS 3.26 - 3.27) do sesquiterpeno **6**, observou-se a correlação das duas metilas terciárias (em 1,15 e 1,07 δ) com um mesmo carbono metínico em 56,60 δ , que foi atribuído a C-5. Essa característica foi essencial para que se definisse a classe do sesquiterpeno **6** como eudesmano.

Para as atribuições dos deslocamentos químicos do sesquiterpeno **6** foram analisadas principalmente as informações obtidas no espectro de COSY $^{1}H^{-1}H$ (FIGURAS 3.24 – 3.25) e no mapa de contorno de HMBC (FIGURAS 3.26 – 3.27).

A metila terciária em 1,07 δ foi definida na posição 14 através das correlações com os carbonos em 41,43 (C-9), 45,37 (C-1), 50,83 (C-10) e 56,60 δ (C-5).

A outra metila terciária sobre carbono saturado (em 1,15 δ) foi atribuída à posição 15 por correlacionar com os carbonos em 26,99 (C-3), 33,69 (C-2) e 56,60 δ (C-5).

As duas metilas mais desprotegidas, em 1,24 δ , apresentaram correlação com os carbonos em 51,90 e 72,22 δ , confirmando, portanto, a presença do grupo hidroxiisopropílico.

H-9 (1,94 δ) correlacionou com o carbono acetilcarbinólico (71,97 δ), indicando que o grupo acetato deveria substituir C-8. As atribuições de C-5 a C-8 foram realizadas através das informações obtidas pelo COSY ¹H-¹H, no qual pode-se vislumbrar a "seqüência" ilustrada anteriormente.

FIGURA 3.26. Mapa de contorno de HMBC do sesquiterpeno 6 (CDCl₃, 400 MHz).

FIGURA 3.27. Ampliação do mapa de contorno de HMBC do sesquiterpeno **6** (CDCl₃, 400 MHz).

As configurações relativas de C-5 e C-10 foram definidas através do conhecimento da biossíntese dos sesquiterpenos eudesmanos, que, a partir do *trans-trans* farnesilpirofosfato, ciclizam em dois anéis de seis membros, com junção *trans* (DEWICK, 1997). Desta forma, a metila 14 estaria em β e H-5 em α (FIGURA 3.28).

Também segundo a biossíntese dos eudesmanos, o grupo hidroxiisopropila (em C-7) deveria ser *equatorial* (ou β). Isto foi confirmado pela magnitude da constante de acoplamento de H-7 com H-6, que por ser grande (J = 12,2 Hz), indicou que este hidrogênio seria *axial* (ou α). Já o grupo acetato (em C-8) foi definido em β , pois H-8 ocorreu como um singleto largo, mostrando que possuía uma constante de acoplamento pequena com os hidrogênios vicinais, indicando, portanto, que seria *equatorial* e, desta forma, α em relação ao plano dos anéis (FIGURA 3.28).

60

O espectro de NOESY (FIGURA 3.28) não permitiu a determinação da configuração do anel ciclopropânico no sesquiterpeno **6**, pois não se observou nenhum acoplamento que permitisse tal determinação, como, por exemplo, o acoplamento entre a metila 14 (1,07 δ) e os hidrogênios 2 (0,88 e 0,38 δ).

FIGURA 3.28. Espectro de NOESY do sesquiterpeno 6 (CDCl₃, 400 MHz).

A simulação computacional no programa *Hyperchem* do sesquiterpeno **6** indicou a conformação ilustrada na FIGURA 3.29 como a mais estável.

FIGURA 3.29. Diferentes perspectivas da estrutura tridimensional mais provável do sesquiterpeno eudesmano **6**.

Assim, a estrutura da substância **6** foi definida como um sesquiterpeno eudesmano que está sendo pela primeira vez citado na literatura e cujos dados de RMN ¹H e ¹³C estão descritos na TABELA 3.4.

H / C	$\delta_{ m H}$	$\delta_{ m C}$
1	0,73 dl (J = 12,1 Hz)	45,37
	1,75 dl (J = 12,1 Hz)	
2	1,25 m	26,38
3	0,88 <i>m</i> e 038 <i>t</i> 1	33,69
4		26,99
5	0,92 dl (J = 12,2 Hz)	56,60
6	1,91 dl ($J = 12,2$ Hz)	20,39
	1,71 dl ($J = 12,2$ Hz)	
7	1,40 dt (J = 12,2 Hz)	51,90
8	5,26 <i>s</i> l	71,97
9	1,94 dl (J = 14,5 Hz)	41,43
	1,28 dl (J = 14,5 Hz)	
10		50,83
11		72,22
12 e 13	1,24 <i>s</i>	28,33
		28,83
14	1,07 s	21,08
15	1,15 <i>s</i>	18,61
-OOC <u>CH</u> 3	2,07 s	21,69
-OO <u>C</u> CH ₃		169,91

TABELA 3.4. Dados espectroscópicos de RMN ¹H e ¹³C do sesquiterpeno eudesmano.

3.5. Identificação das flavonas

3.5.1. Identificação da flavona

A flavona (7) foi obtida da fração acetato de etila do extrato hexânico das folhas de *Conchocarpus heterophyllus* (AHFHA) (p. 223) e caracterizada por RMN ¹H e ¹³C, e EM.

O espectro de RMN ¹H de 7 (FIGURA 3.30) apresentou sinais somente na região de hidrogênios aromáticos (de 6,79 à 8,22 δ). Esse conjunto de sinais, juntamente com o singleto em 6,79 δ , que é característico de H-3 das flavonas, indicaram a natureza de 7. A ausência de sinais na região mais blindada do espectro sugeriu que não houvesse quaisquer substituintes no esqueleto base de uma flavona. Isto foi confirmado ao se verificar o padrão de substituição dos anéis aromáticos (A e B). Para o anel A, o padrão de acoplamento entre os hidrogênios H-5 (8,20 δ , *dd*, *J* = 8,0 e 1,7 Hz), H-6 (7,37 δ , *ddd*, *J* = 8,0, 7,0 e 1,2 Hz), H-7 (7,66 δ , *ddd*, *J* = 8,4, 7,0 e 1,7 Hz) e H-8 (7,52 δ , *dd*, *J* = 8,4 e 1,2 Hz) o caracterizou como um anel *orto*-dissubstituído. Já o anel B deveria ser monossubstituído, pois se verificou dois conjuntos de sinais em 7,82 - 7,91 δ (2H) e em 7,43 - 7,53 δ (3H).

Os dados espectroscópicos de RMN ¹H indicaram a identidade da substância 7 como a flavona. Isto foi confirmado através da análise do espectro de RMN ¹³C de 7 (FIGURA 3.31), no qual foram observados 15 carbonos

insaturados, dentre eles, os carbonos em 106,73 e 177,45 δ (C-3 e C-4) que são característicos do núcleo de uma flavona.

FIGURA 3.30. Espectro de RMN ¹H da flavona (7) (CDCl₃, 200 MHz).

FIGURA 3.31. Espectro de RMN ¹³C da flavona (7) (CDCl₃, 50 MHz).

Os dados espectroscópicos de RMN para a flavona (7) foram atribuídos (TABELA 3.5) através de comparação com valores descritos na literatura (KINGSBURRY e LOOKER, 1975).

H / C	$\delta_{ m H}$	$\delta_{ m C}$	$\delta_{ m C}$ *
2		162,44	163,0
3	6,79 <i>s</i>	106,73	107,3
4		177,45	178,0
5	8,20 dd (J = 8,0 e 1,7 Hz)	124,57	125,4
6	7,37 ddd (J = 8,0, 7,0 e 1,2 Hz)	124,91	124,9
7	7,66 ddd ($J = 8,4,7,0 e 1,7 Hz$)	133,14	133,5
8	7,52 dd (J = 8,4 e 1,2 Hz)	117,51	117,9
9		155,45	156,0
10		123,28	123,7
1'		130,88	131,5
2'e 6'	7,43 - 7,53	125,55	126,0
3' e 5'	7,82 - 7,91	128,38	128,8
4'	7,43 - 7,53	130,98	131,3

TABELA 3.5. Dados espectroscópicos de RMN ¹H e ¹³C da flavona.

* $\delta_{\rm C}$ da flavona (CDCl₃, 25,2 MHz) (KINGSBURRY e LOOKER, 1975).

O espectro de massas de 7 (FIGURA 3.32) apresentou o pico do íon molecular em m/z 222 daltons, compatível com a fórmula molecular C₁₅H₁₀O₂ da flavona, e os picos em m/z 194 e 120, que são resultantes da perda de CO e da reação de retro Diels-Alder (TOMAZELA, 2001).

FIGURA 3.32. Espectro de massas (IE = 70 e.V.) da flavona (7).

3.5.2. Identificação da 7-metoxiflavona

A 7-metoxiflavona (8) foi isolada da fração acetato de etila do extrato hexânico das folhas de *Conchocarpus heterophyllus* (AHFHA) (p. 223) e caracterizada por EM e RMN 1 H e 13 C.

O espectro de RMN ¹H de **8** (FIGURA 3.33) apresentou similaridades com o de **7**, com sinais na região de hidrogênios aromáticos (em 6,76 - 8,15 δ) e o singleto característico de H-3 de flavonas (em 6,76 δ). Entretanto, o padrão de substituição aromática conjuntamente com um singleto em 3,93 δ (3H), relativo a um grupo metoxila, indicou que um dos anéis (A ou B) do núcleo da flavona estaria substituído na substância **8**.

O padrão de substituição do anel B apresentou-se idêntico ao de 7, com dois conjuntos de sinais em 7,85 - 7,95 δ (2H) e 7,46 - 7,57 δ (3H), indicando então que o anel A fosse substituído.

No anel A, a posição da metoxila em C-7 foi atribuída pelo padrão de acoplamento entre os hidrogênios H-5 (8,13 δ , d, J = 7,6 Hz), H-6 (6,97 δ , dd, J = 7,6 e 1,7 Hz) e H-8 (6,96 δ , d, J = 1,7 Hz). O fato de H-5 ocorrer como um dubleto com constante de acoplamento grande *orto* indicou que C-7 era uma posição substituída. Os demais acoplamentos entre os hidrogênios do anel A confirmaram essa indicação.

FIGURA 3.33. Espectro de RMN ¹H da 7-metoxiflavona (8) (CDCl₃, 200 MHz).

FIGURA 3.34. Espectro de RMN ¹³C da 7-metoxiflavona (8) (CDCl₃, 50 MHz).

No espectro de RMN ¹³C de **8** (FIGURA 3.34), além dos carbonos indicativos do esqueleto de uma flavona (C-3 e C-4), destacam-se os carbonos C-6 e C-8 que são blindados, em comparação com os da flavona (7), em aproximadamente 10 ppm devido ao efeito da metoxila em *orto*.

Desta forma, os dados de RMN sugeriram a identidade de **8** como a 7metoxiflavona, o que foi confirmado pela comparação dos dados espectroscópicos de RMN ¹³C (TABELA 3.6) com os descritos na literatura (KINGSBURRY e LOOKER, 1975).

H / C	$\delta_{ m H}$	$\delta_{ m C}$	$\delta_{ m C}$ *
2		164,64	162,6
3	6,76 <i>s</i>	107,34	107,2
4		177,98	177,4
5	8,13 d (J = 7,6 Hz)	127,26	126,7
6	6,97 <i>dd</i> (<i>J</i> = 7,6 e 1,7 Hz)	114,89	114,1
7		163,68	163,7
8	6,96 d (J = 1,7 Hz)	100,61	100,2
9		158,31	157,7
10		117,63	117,6
1'		131,79	131,6
2'e 6'	7,46 - 7,57	126,45	125,8
3' e 5'	7,85 - 7,95	129,22	128,7
4'	7,46 - 7,57	131,79	131,1
O <u>CH</u> ₃	3,93 s	56,07	55,9

TABELA 3.6. Dados espectroscópicos de RMN ¹H e ¹³C da 7-metoxiflavona.

* $\overline{\delta_C}$ da 7-metoxiflavona (CDCl₃, 25,2 MHz) (KINGSBURRY e LOOKER, 1975).

O pico do íon molecular em m/z 252 daltons no espectro de massas de **8** (FIGURA 3.35) confirmou a identidade da 7-metoxiflavona (C₁₆H₁₂O₃). Os picos em m/z 224 e 209 são resultantes da perda de CO e metila e são bastante comuns em flavonóides metoxilados. Já o pico em m/z 150 origina-se da reação de retro Diels-Alder (TOMAZELA, 2001).

FIGURA 3.35. Espectro de massas (IE = 70 e.V.) da 7-metoxiflavona (8).

3.5.3. Identificação da 5-hidroxiflavona

A 5-hidroxiflavona (**9**) foi identificada por EM e RMN ¹H e ¹³C na fração acetato de etila do extrato hexânico das folhas de *Conchocarpus heterophyllus* (AHFHA) (p. 223).

O espectro de RMN ¹H de **9** (FIGURA 3.36) apresentou sinais que caracterizam as flavonas: grande número de sinais na região de 6,76 - 7,94 δ e o singleto característico de H-3, em 6,76 δ . A presença de um sinal em 12,59 δ (1H) indicou a existência de uma hidroxila quelada, que só poderia estar em C-5 numa flavona. Isto foi confirmado pela ausência do sinal relativo a H-5 no

espectro, que sempre é o hidrogênio mais desblindado por estar sob o efeito anisotrópico da carbonila C-4, e também pelo padrão dos acoplamentos entre os hidrogênios H-6 (6,83 δ , *dd*, *J* = 8,4 e 0,8 Hz), H-8 (7,02 δ , *dd*, *J* = 8,4 e 0,8 Hz) e H-7 (7,57 δ , *dd*, *J* = 8,4 Hz).

O espectro de RMN 13 C (FIGURA 3.37) de **9** apresentou 15 carbonos, destacando-se a blindagem dos carbonos C-6, C-8 e C-10, devido ao efeito *orto/para* da hidroxila, e a desblindagem de 6 ppm do carbono carbonílico C-4, por ele estar quelado.

FIGURA 3.36. Espectro de RMN ¹H da 5-hidroxiflavona (9) (CDCl₃, 400 MHz).

FIGURA 3.37. Espectro de RMN 13 C da 5-hidroxiflavona (9) (CDCl₃, 100 MHz).

Desta forma, a substância 9 foi identificada como a 5-hidroxiflavona e seus dados espectroscópicos (TABELA 3.7) foram compatíveis com os descritos na literatura (TERNAI e MARKHAM, 1976).

H / C	$\delta_{ m H}$	$\delta_{ m C}$	$\delta_{ m C}$ *
2		164,62	164,1
3	6,76 <i>s</i>	106,08	105,6
4		183,65	182,9
5		160,79	159,8
6	6,83 dd (J = 8,4 e 0,8 Hz)	107,10	107,2
7	7,57 <i>dd</i> (<i>J</i> =8,4 Hz)	135,44	135,6
8	$7,02 dd (J = 8,4 \mathrm{e} 0,8 \mathrm{Hz})$	111,48	110,8
9		156,47	155,8
10		110,88	110,3
1'		131,22	130,5
2'e 6'	7,46 - 7,57	126,45	126,3
3' e 5'	7,85 - 7,95	129,15	128,9
4'	7,46 - 7,57	132,08	131,9
О <u>Н</u>	12,59 <i>s</i>		

TABELA 3.7. Dados espectroscópicos de RMN ¹H e ¹³C da 5-hidroxiflavona.

* $\delta_{\rm C}$ da 5-hidroxiflavona (DMSO, 25 MHz) (TERNAI e MARKHAM, 1976).

O espectro de massas de **9** (FIGURA 3.38) apresentou o pico do íon molecular em m/z 238 daltons, confirmando a fórmula molecular da 5-hidroxiflavona (C₁₅H₁₀O₃). Os picos em m/z 210 e 136 resultam da perda de CO e da reação de retro Diels-Alder (TOMAZELA, 2001).

FIGURA 3.38. Espectro de massas (IE = 70 e.V.) da 5-hidroxiflavona (9).

3.5.4. Identificação das piranoflavonas

Da fração diclorometânica do extrato hexânico das folhas de *Conchocarpus heterophyllus* (AHFHD) foi obtida a mistura de piranoflavonas **10** (p. 222), cuja identificação foi realizada através de EM e RMN, em uma e duas dimensões.

O espectro de RMN ¹H (FIGURAS 3.39 - 3.40) da mistura **10** apresentou sinais relativos a oito hidrogênios aromáticos em: 8,23 (*dd*, *J* = 7,9 e 1,6 Hz), 7,84 (*dd*, *J* = 7,8 e 1,6 Hz), 7,69 (*ddd*, *J* = 8,4, 7,2 e 1,6 Hz), 7,55 (*d*l, *J* = 8,4 Hz), 7,42 (*m*), 7,40 (*m*), 7,07 (*ddd*, *J* = 7,8 e 0,9 Hz) e 6,98 δ (*d*l, *J* = 8,2 Hz).

Através da análise desses sinais no espectro de COSY ¹H-¹H (FIGURAS 3.41 - 3.42) foi possível estabelecer a existência de dois anéis aromáticos *orto* dissubstituídos, pois se observou o acoplamento do hidrogênio em 8,23 δ , com os hidrogênios em 7,42 (*orto*) e 7,69 δ (*meta*). Este último por sua vez acoplava *orto* com os hidrogênios em 7,55 e 7,42 δ . O outro anel foi definido a partir do acoplamento *orto* entre os hidrogênios em 7,84 e 7,07 δ , e também do acoplamento *meta* do primeiro com o hidrogênio em 7,40 δ , que por sua vez, estava *orto* aos hidrogênios em 7,07 e 6,98 δ .

O espectro de RMN ¹H (FIGURAS 3.39 - 3.40) de **10** também apresentou: dois sinais em 5,69 (1H, *dd*, J = 9,5 e 3,4 Hz) e 5,34 δ (1H, *m*); e, vários sinais na região mais blindada do espectro, destacando-se os multipletos em 1,85 e 1,70 δ , um sinal intenso em 1,25 δ e o tripleto (J = 7,1 Hz) em 0,88 δ . Os dois últimos sinais são característicos de diversos grupos metilênicos e da metila terminal numa cadeia alquílica.

No espectro de COSY ¹H-¹H (FIGURAS 3.41 – 3.42) notou-se o acoplamento entre o hidrogênio carbinólico em 5,69 δ e os metilênicos em 1,85 e 1,70 δ , e destes entre si.

FIGURA 3.39. Espectro de RMN ¹H das piranoflavonas **10** (CDCl₃, 400 MHz).

FIGURA 3.40. Ampliação do espectro de RMN ¹H das piranoflavonas **10** (CDCl₃, 400 MHz).

FIGURA 3.41. Espectro de COSY ¹H-¹H das piranoflavonas **10** (CDCl₃, 400 MHz).

FIGURA 3.42. Ampliação do espectro de COSY ¹H-¹H das piranoflavonas **10** (CDCl₃, 400 MHz).

A análise do mapa de contorno de HSQC (FIGURAS 3.43 - 3.44) e o espectro de RMN ¹³C (FIGURAS 3.45 - 3.46) de **10** permitiram que se determinassem os deslocamentos químicos dos carbonos hidrogenados.

FIGURA 3.43. Mapa de contorno de HSQC das piranoflavonas **10** (CDCl₃, 400 MHz).

FIGURA 3.44. Ampliação do mapa de contorno de HSQC das piranoflavonas **10** (CDCl₃, 400 MHz).

FIGURA 3.45. Espectro de RMN ¹³C das piranoflavonas **10** (CDCl₃, 100 MHz).

FIGURA 3.46. Ampliação do espectro de RMN ¹³C das piranoflavonas **10** (CDCl₃, 100 MHz).

FIGURA 3.47. Espectro de DEPT 135° das piranoflavonas **10** (CDCl₃, 100 MHz).

A análise conjunta dos experimentos de RMN 13 C (FIGURAS 3.45 – 3.46), DEPT 135° (FIGURA 3.47) e HSQC (FIGURAS 3.43 – 3.44) indicou que existiam, excluindo-se os carbonos relativos às cadeias alquílicas em região bastante blindada, 8 CH aromáticos (descritos anteriormente) e 7 carbonos quaternários (174,85, 155,95, 155,69, 154,71, 124,22, 116,20 e 114,45 δ), num total de 15 carbonos, sugerindo, portanto, a estrutura de um flavonóide para **10**.

Os dados de RMN da posição 3 dos flavonóides oferecem importante informação sobre qual o seu tipo estrutural (flavona, flavanona, flavonol, etc) (TOMAZELA, 2001). Na mistura de flavonóides **10** não existia o sinal relativo a H-3, que na flavona (7) (p. 60), por exemplo, ocorria como um singleto em 6,79 δ . Isto indicou que **10** seriam flavonas substituídas em C-3. Adicionalmente, deveriam existir dois anéis aromáticos *orto* dissubstituídos, o que só seria possível numa flavona se a posição C-2' fosse substituída. Essas evidências em conjunto com os sinais "remanescentes" nos espectros de RMN (hidrogênio carbinólico, dois hidrogênios metilênicos e cadeia alquílica) indicaram a ciclização entre os anéis B e C da flavona, com a formação de um anel pirano. Este tipo de ciclização é comum em flavonóides prenilados (ACHMAD et al., 1996; LIN e SHIEH, 1991 e 1992; LIN et al., 1996; LU e LIN, 1994). Rara é a ciclização ser efetuada sem a presença de um prenila, mas com uma cadeia alquílica, como é o caso de **10**.

Os carbonos quaternários das piranoflavonas **10** foram atribuídos através da comparação com os dados de RMN 13 C da 2'-metoxiflavona (KINGSBURRY e LOOKER, 1975) e pela análise do mapa de contorno de HMBC (FIGURAS 3.48 – 3.49).

79

FIGURA 3.48. Mapa de contorno de HMBC das piranoflavonas **10** (CDCl₃, 400 MHz).

FIGURA 3.49. Ampliação do mapa de contorno de HMBC das piranoflavonas **10** (CDCl₃, 400 MHz).

Os carbonos quaternários em 155,95, 155,69 e 154,71 δ , por serem coincidentes na projeção do mapa de contorno de HMBC, foram atribuídos por comparação com a 2'-metoxiflavona, a C-2, C-2' e C-9, respectivamente.

O carbono carbonílico em 174,85 δ foi determinado como C-4 através de sua correlação com H-5 (8,23 δ); C-1' (116,20 δ) pela correlação com os hidrogênios 3' (6,98 δ) e 5' (7,07 δ); e, C-10 (124,22 δ) através da correlação com H-8 (7,55 δ).

A presença do anel pirano nas flavonas **10** foi confirmada através da correlação entre o hidrogênio carbinólico em 5,69 δ (H-11) e C-2 (155,95 δ). Já a correlação deste hidrogênio com um carbono quaternário em 114,45 δ permitiu atribuir C-3.

Faltava ainda determinar o tamanho das cadeias alquílicas (R) ligadas às piranoflavonas. Para tal fim, foi feito espectro de massas (FIGURA 3.50) da amostra **10**. Nesse espectro foram observados vários picos que permitiram definir a existência de uma mistura de piranoflavonas, que se diferenciavam pela extensão e insaturação da cadeia carbônica (R), como descrito na TABELA 3.8.

FIGURA 3.50. Espectro de massas (ES+) das piranoflavonas 10.

pico $[M+H]^+$ em m/z	R
391	(CH ₂) ₉ CH ₃
419	$(CH_2)_{11}CH_3$
489	$(CH_2)_{16}CH_3$
501	$(CH_2)_{15}(CH=CH)CH_3$
503	$(CH_2)_{17}CH_3$

TABELA 3.8. Determinação de *R* das piranoflavonas.

Portanto, algumas das piranoflavonas que constituem a mistura **10** foram identificadas e são inéditas, pois representam um novo tipo de ciclização em flavonas. Os dados espectroscópicos referentes ao "núcleo" das piranoflavonas são descritos na TABELA 3.9.

H / C	$\delta_{ m H}$	$\delta_{ m C}$	$\delta_{ m C}$ *
2		155,95	160,6
3		114,45	112,5
4		174,85	178,7
5	8,23 <i>dd</i> (<i>J</i> = 7,9 e 1,6 Hz)	125,82	125,4
6	7,42 m	125,12	124,6
7	7,69 <i>ddd</i> (<i>J</i> = 8,4, 7,2 e 1,6 Hz)	133,55	133,3
8	7,55 dl ($J = 8,4$ Hz)	118,03	117,8
9		154,71	156,2
10		124,22	120,7
11	5,69 dd (J = 9,5 e 3,4 Hz)	73,78	-
12	1,85 <i>m</i> e 1,70 <i>m</i>	33,99	-
1'		116,20	n.d.
2'		155,69	157,8
3'	6,98 dl (J = 8,2 Hz)	117,88	111,6
4'	7,40 <i>m</i>	133,73	132,2
5'	7,07 ddd ($J = 7,8 e 0,9 Hz$)	121,44	120,5
6'	7,84 <i>dd</i> (<i>J</i> = 7,8 e 1,6 Hz)	123,70	129,1
О <u>С</u> Н ₃		-	55,6

TABELA 3.9. Dados espectroscópicos de RMN ¹H e ¹³C das piranoflavonas.

* $\delta_{\rm C}$ da 2'-metoxiflavona (CDCl₃, 25,2 MHz) (KINGSBURRY e LOOKER, 1975).

3.6. Identificação dos alcalóides

Na família Rutaceae ocorrem cinco tipos diferentes de alcalóides, que são classificados segundo a sua origem biogenética: derivados da fenilalanina/tirosina; derivados do triptofano; alcalóides derivados do ácido antranílico; derivados da histidina; e, alcalóides de origem não definida, tais como os carbazóis (WATERMAN, 1999).

Entretanto, essa família é caracterizada pela presença dos alcalóides derivados do ácido antranílico, que são considerados marcadores quimiotaxonômicos de Rutaceae.

As plantas da família Rutaceae são capazes de produzir uma grande variedade de alcalóides baseados na combinação inicial do ácido antranílico com uma ou mais unidades de acetato (FIGURA 3.51), sendo que a ocorrência de tais alcalóides é restrita (ou predominante) à essa família.

Neste trabalho foram isolados alcalóides derivados do ácido antranílico (furoquinolínicos, furoquinolônicos, tetraidrofuroquinolínico, 2-quinolona, 4quinolona e acridônico) e um alcalóide indolopiridoquinazolínico, de origem mista.

FIGURA 3.51. Alcalóides de Rutaceae formados a partir da combinação de ácido antranílico e acetato (WATERMAN, 1999).

3.6.1. Identificação da dictamina

O alcalóide dictamina (11) foi isolado da fração acetato de etila do extrato metanólico dos galhos de *Almeidea coerulea* (AGMA) (p. 212-213) e identificado através de EM e RMN 1 H.

O espectro de RMN ¹H (FIGURA 3.52) do alcalóide **11** apresentou um singleto em 4,47 δ , relativo a uma metoxila, e dois dubletos (J = 2,8 Hz) em 7,64 e 7,10 δ , de hidrogênios furânicos, que são sinais bastante característicos dos alcalóides furoquinolínicos encontrados em Rutaceae.

Os sinais de quatro hidrogênios aromáticos em 8,28 (dd, J = 8,5 e 1,2 Hz), 8,03 (dl, J = 8,5 Hz), 7,70 (ddd, J = 8,5, 8,5 e 1,2 Hz) e 7,47 δ (ddd, J = 8,5, 8,5 e 1,5 Hz) e a ausência de outros sinais no espectro de RMN ¹H sugeriram a natureza de **11** como um alcalóide furoquinolínico não substituído, a dictamina, que foi anteriormente isolada de várias espécies de Rutaceae (MESTER, 1983), sendo inclusive obtida de *A. coerulea* (CORTEZ, 2002).

A atribuição dos valores de RMN ¹H (TABELA 3.10) foi realizada por comparação com a literatura (MAFEZOLI, 2001) e através das magnitudes das constantes de accoplamento observadas. Nos alcalóides furoquinolínicos H-5 é sempre mais desblindado, devido ao efeito de compressão estérica da metoxila em C-4. Desta forma, partindo-se do sinal relativo a esse hidrogênio (em 8,28 δ) sabe-se que o sinal em 7,70 δ refere-se a H-7, já que eles acoplam com uma constante *meta* pequena (J = 1,2 Hz); e, que o sinal em 7,47 δ refere-se a H-6

por acoplar com uma constante grande *orto* (J = 8,5 Hz) com H-5. Finalmente, H-8 (8,03 δ) foi definido através da constante de acoplamento *orto* (J = 8,5 Hz) com H-7 (7,70 δ).

FIGURA 3.52. Espectro de RMN ¹H da dictamina (11) (CDCl₃, 200 MHz).

O espectro de massas (FIGURA 3.53) confirmou a identificação da dictamina (11) através do pico do íon molecular em m/z 199 daltons, compatível com a fórmula molecular C₁₂H₉NO₂.

FIGURA 3.53. Espectro de massas (IE = 70 e.V.) da dictamina (11).

Н	$\delta_{ m H}$	$\delta_{ m H}$ *
5	8,28 <i>dd</i> (<i>J</i> = 8,5 e 1,2 Hz)	8,29 <i>ddd</i> (<i>J</i> = 8,5, 1,2 e 0,6 Hz)
6	7,47 <i>ddd</i> (<i>J</i> = 8,5, 8,5 e 1,5 Hz)	7,46 <i>ddd</i> (<i>J</i> = 8,4, 6,8 e 1,5 Hz)
7	7,70 <i>ddd</i> (<i>J</i> = 8,5, 8,5 e 1,2 Hz)	7,69 <i>ddd</i> (<i>J</i> = 8,4, 6,8 e 1,5 Hz)
8	8,03 dl (J = 8,5 Hz)	8,01 <i>ddd</i> (<i>J</i> = 8,5, 1,2 e 0,6 Hz)
2'	7,64 d ($J = 2,8$ Hz)	7,64 d ($J = 2,8$ Hz)
3'	7,10 d ($J = 2,8$ Hz)	7,10 d (J = 2,8 Hz)
4-OC <u>H</u> ₃	4,47 <i>s</i>	4,47 <i>s</i>

TABELA 3.10. Dados espectroscópicos de RMN ¹H da dictamina.

* $\delta_{\rm H}$ da dictamina (CDCl₃, 400 MHz) (MAFEZOLI, 2001).

3.6.2. Identificação da kokusagina

O alcalóide kokusagina (12) foi isolado da fração acetato de etila do extrato metanólico das folhas de *Almeidea rubra* (ALFMA) (p. 217-218) e identificado através de EM e RMN ¹H e ¹³C.

O espectro de RMN ¹H (FIGURA 3.54) da substância **12** apresentou, assim como **11**, um singleto em 4,45 δ , característico da metoxila em C-4 dos alcalóides furoquinolínicos, e dois dubletos (J = 2,8 Hz) em 7,58 e 7,05 δ , dos hidrogênios furânicos 2' e 3' desses alcalóides.

Observaram-se ainda dois dubletos (J = 8,9 Hz) em 7,87 e 7,14 δ , sugerindo a presença de apenas dois hidrogênios aromáticos em relação *orto* na molécula.
Por um desses hidrogênios ser bastante desblindado (7,87 δ), este pode ser atribuído a H-5 dos alcalóides furoquinolínicos. Assim, o outro sinal refere-se a H-6 e a substituição no anel aromático, ocorre em C-7 e C-8. A natureza desse substituinte foi definida por um singleto em 6,24 δ (2H), indicativo de um grupo metilenodioxi.

Desta forma, o alcalóide **12** foi identificado como a kokusagina, que havia sido anteriormente isolada de *Almeidea rubra* (SANTOS et al., 1998) e *Almeidea coerulea* (MAFEZOLI, 2001).

FIGURA 3.54. Espectro de RMN ¹H da kokusagina (**12**) (CDCl₃, 400 MHz).

Apesar dos dados espectroscópicos de RMN ¹H serem suficientes para definir a estrutura de **12**, o espectro de RMN ¹³C (FIGURA 3.55) dessa substância foi adquirido para fins de comparação com seu isômero **15**. Nesse espectro foram observados 13 carbonos, sendo 7 quaternários (164,41, 157,67, 147,38, 139,97, 132,48, 115,65 e 102,36 δ), 2 CH aromáticos (116,73 e 108,12

 δ), os carbonos característicos do anel furânico, C-2' (143,19 δ) e C-3' (104,88 δ), C-2'' (102,36 δ) do grupo metilenodioxi, e um carbono em 59,19 δ de metoxila.

FIGURA 3.55. Espectro de RMN ¹³C da kokusagina (12) (CDCl₃, 100 MHz).

O espectro de massas (FIGURA 3.56) de 12 confirmou a estrutura proposta, através do pico do íon molecular em m/z 243 daltons, coerente com a fórmula molecular C₁₃H₉NO₄.

FIGURA 3.56. Espectro de massas (IE = 70 e.V.) da kokusagina (12).

Na TABELA 3.11 são descritos os dados de RMN ¹H e ¹³C do alcalóide kokusagina (**12**).

H / C	$\delta_{ m H}$	$\delta_{ m H}$ *	$\delta_{ m C}$	$\delta_{ m C}$ #
2			164,41	164,3
3			115,65	114,8
4			157,67	157,1
4a			102,36	101,8
5	7,87 d (J = 8,9 Hz)	7,88 d (J = 8,9 Hz)	116,73	118,1
6	7,14 d ($J = 8,9$ Hz)	7,14 d (J = 8,9 Hz)	108,12	111,8
7			139,97	141,9
8			132,48	141,1
8a			147,38	152,0
2'	7,58 d (J = 2,8 Hz)	7,58 d (J = 2,8 Hz)	143,19	142,8
3'	7,05 d (J = 2,8 Hz)	7,05 d (J = 2,8 Hz)	104,88	104,6
2"	6,24 <i>s</i>	6,24 <i>s</i>	102,36	-
4-0 <u>CH</u> ₃	4,45 s	4,43 s	59,19	61,6
О <u>С</u> Н ₃			-	56,7
			-	58,8

TABELA 3.11. Dados espectroscópicos de RMN ¹H e ¹³C da kokusagina.

* $\delta_{\rm H}$ da kokusagina (CDCl₃, 200 MHz) (MAFEZOLI, 2001);[#] $\delta_{\rm C}$ da esquimianina (SANTOS, 1988).

3.6.3. Identificação da esquimianina

O alcalóide esquimianina (13) foi isolado da fração acetato de etila do extrato metanólico das folhas de *Almeidea rubra* (ALFMA) (p. 217-218) e identificado por RMN ¹H e EM.

O espectro de RMN ¹H (FIGURA 3.57) da substância **13** apresentou, assim como os alcalóides **11** e **12**, o singleto em 4,44 δ , relativo a metoxila em C-4 dos alcalóides furoquinolínicos, e os dois dubletos (J = 2,8 Hz) em 7,59 e 7,05 δ , dos hidrogênios furânicos 2' e 3'.

Assim como para o alcalóide **12**, no espectro de RMN ¹H de **13** (FIGURA 3.57) observaram-se apenas dois dubletos (J = 9,4 Hz) em 8,03 e 7,19 δ , que indicaram a presença de dois hidrogênios aromáticos em relação *orto*, os quais foram atribuídos a H-5 e H-6. Estes dados indicaram que C-7 e C-8 deveriam estar substituídos. Por existirem ainda no espectro de RMN ¹H dois singletos em 4,12 e 4,04 δ , relativos a grupos metoxilas, definiu-se a estrutura de **13** como sendo o alcalóide esquimianina, que foi identificado anteriormente em *Almeidea rubra* (SANTOS et al., 1998).

No espectro de massas (FIGURA 3.58) de **13** confirmou-se a estrutura proposta através do pico do íon molecular em m/z 259 daltons, compatível com a fórmula molecular da esquimianina (C₁₄H₁₃NO₄).

FIGURA 3.57. Espectro de RMN ¹H da esquimianina (13) (CDCl₃, 200 MHz).

FIGURA 3.58. Espectro de massas (IE = 70 e.V.) da esquimianina (13).

Os dados de RMN ¹H do alcalóide esquimianina (**13**) são ilustrados na TABELA 3.12.

TABELA 3.12. Dados espectroscópicos de RMN ¹H da esquimianina.

Н	$\delta_{ m H}$	$\delta_{ m H}$ *
5	8,03 d (J = 9,4 Hz)	8,03 d (J = 9,3 Hz)
6	7,19 d (J = 9,4 Hz)	7,24 d ($J = 9,3$ Hz)
2'	7,59 d ($J = 2,8$ Hz)	7,59 d ($J = 2,8$ Hz)
3'	7,05 d ($J = 2,8$ Hz)	7,05 d ($J = 2,8$ Hz)
4-OC <u>H</u> ₃	4,44 <i>s</i>	4,44 s
OCH_3	4,12 <i>s</i>	4,11 <i>s</i>
	4,04 <i>s</i>	4,03 s

* $\delta_{\rm H}$ da esquimianina (CDCl₃, 300 MHz) (CUCA S. et al., 1998).

3.6.4. Identificação da δ -fagarina

O alcalóide δ -fagarina (14) foi isolado da fração acetato de etila do extrato metanólico dos galhos de *Almeidea coerulea* (AGMA) (p. 212-214) e identificado por RMN ¹H e EM.

No espectro de RMN ¹H (FIGURA 3.59) do alcalóide **14** observaram-se o singleto em 4,46 δ , da metoxila em C-4 nos alcalóides furoquinolínicos, e os hidrogênios furânicos 2' e 3', em 7,65 (d, J = 2,8 Hz) e 7,09 δ (d, J = 2,8 Hz).

O sinal mais desblindado (7,85 δ) no espectro, referente a H-5, ocorreu como um duplodubleto (J = 8,4 e 1,2 Hz), sugerindo a presença dos hidrogênios H-6 e H-7. Como o sinal em 7,37 δ apresentou-se como um duplodubleto com constantes de acoplamento grandes *orto* (J = 8,4 e 8,4 Hz), ele foi atribuído a H-6. Desta forma, o outro sinal de hidrogênio aromático, em 7,07 δ (*dd*, J = 8,4 e 1,2 Hz), foi atribuído a H-7.

A substituição em C-8 foi definida como uma metoxila, por no espectro de RMN ¹H (FIGURA 3.59) ser observado um singleto em 4,09 δ (3H).

Assim, o alcalóide 14 foi identificado como a δ -fagarina, que não havia sido isolada do gênero *Almeidea*, mas que é amplamente distribuída na família Rutaceae (MESTER, 1983).

O espectro de massas (FIGURA 3.60) confirmou a identificação de 14 através do pico em m/z 229 daltons, coerente com a fórmula molecular da δ -fagarina (C₁₃H₁₁NO₃).

FIGURA 3.59. Espectro de RMN ¹H da δ -fagarina (14) (CDCl₃, 200 MHz).

FIGURA 3.60. Espectro de massas (IE = 70 e.V.) da δ -fagarina (14).

US dados de RIMIN H do alcaloide 14 são mostrados na TABELA 5.1	Os dados de RMN ¹ H do alcale	óide 14 são mos	ostrados na TA	BELA 3.1.
---	--	-----------------	----------------	-----------

TABELA 3.13. Dados espectroscópicos de RMN ¹H da δ -fagarina.

Н	δu	δu*
5	7.85 dd (I = 8.4 e 1.2 Hz)	7.85 dl (I = 8.5 Hz)
6	7,05 dd (J = 8.4 e 8.4 Hz)	7.34 ddd (I = 8.5 7.8 e 0.9 Hz)
0 7	7,57 dd ($J = 8.4$ e 1.2 Hz)	7,07 dl (I = 7.8 Hz)
<i>7</i> ,	7.65 d (I = 2.8 Hz)	7,65 d (I = 2.8 Hz)
2,3,	7,09 d (I = 2.8 Hz)	7,09 d (J = 2.8 Hz)
4-0CH2	4.46 s	A A A s
OCH ₂	4 09 s	4 07 s

* $\delta_{\rm H}$ da δ -fagarina (CDCl₃, 300 MHz) (CUCA S. et al., 1998).

3.6.5. Identificação da isokokusagina

O alcalóide isokokusagina (15) foi isolado da fração acetato de etila do extrato metanólico das folhas de *Almeidea rubra* (ALFMA) (p. 216-217) e caracterizado por EM e RMN ¹H e ¹³C.

No espectro de RMN ¹H (FIGURA 3.61) da substância **15** foram observados dois dubletos (J = 2,3 Hz) em 7,14 e 7,29 δ , relativos aos hidrogênios em um anel furânico, e um singleto em 4,14 δ (3H), referente a uma metila ligada a um heteroátomo; além de dois sinais de hidrogênios aromáticos em relação *orto* (J = 8,6 Hz), em 8,18 e 6,96 δ , e de um singleto em 6,13 δ (2H), relativo a um grupo metilenodioxi.

Desta forma, o espectro da substância 15 mostrou-se bastante semelhante ao do alcalóide kokusagina (12). Entretanto, o singleto em 4,45 δ , que em conjunto com os hidrogênios furânicos, é característico de um núcleo furoquinolínico, estava mais blindado para 15. Estes dados sugeriram alguma modificação no esqueleto furoquinolínico.

No espectro de RMN ¹³C (FIGURA 3.62) de **15**, em contraste do que para **12**, não foi observado o carbono metoxílico em 59,19 δ , mas um carbono em 34,20 δ , sugerindo a presença de uma *N*-metila ao invés de *O*-metila. Adicionalmente, o espectro de RMN ¹³C apresentou um carbono carbonílico em 195,82 δ , indicando a isomerização do esqueleto furoquinolínico para furoquinolônico.

Assim, a substância **15** foi definida como o alcalóide isokokusagina, que não tinha sido descrita no gênero *Almeidea*.

96

O espectro de massas de **15** (FIGURA 3.63) apresentou o pico do íon molecular em m/z 243 daltons, confirmando a fórmula molecular C₁₃H₉NO₄ da isokokusagina.

FIGURA 3.61. Espectro de RMN ¹H da isokokusagina (**15**) (CDCl₃, 200 MHz).

FIGURA 3.62. Espectro de RMN ¹³C da isokokusagina (**15**) (CDCl₃, 100 MHz).

FIGURA 3.63. Espectro de massas (IE = 70 e.V.) da isokokusagina (15).

Os dados de RMN ¹H e ¹³C do alcalóide isokokusagina (**15**), descritos na TABELA 3.14, foram atribuídos através da análise dos espectros e por comparação com valores da iso- δ -fagarina (WU et al., 1999).

H / C	$\delta_{ m H}$	$\delta_{ m H}$ *	$\delta_{ m C}$	$\delta_{ m C}$ *
2			n.d	157,2
3			n.d.	111,2
4			195,82	183,7
4a			134,67	131,4
5	8,18 d (J = 8,6 Hz)	8,02 dd (J = 7,9 e 1,9 Hz)	122,54	123,9
6	6,96 d (J = 8,6 Hz)	7,28 t (J = 7,9 Hz)	105,55	119,9
7	-	7,35 dd (J = 7,9 e 1,9 Hz)	n.d.	115,7
8			n.d.	131,8
8a			150,45	152,0
2'	7,29 d (J = 2,3 Hz)	7,56 d (J = 2,2 Hz)	137,78	139,7
3'	7,14 d (J = 2,3 Hz)	6,94 d (J = 2,2 Hz)	107,91	108,2
2"	6,13 <i>s</i>	-	101,56	-
<i>N</i> - <u>CH</u> ₃	4,14 <i>s</i>	4,20 <i>s</i>	34,20	37,7
<i>О</i> - <u>СН</u> ₃	-	4,01 <i>s</i>	-	57,3

TABELA 3.14. Dados espectroscópicos de RMN ¹H e ¹³C da isokokusagina.

* $\delta_{\rm H}$ e $\delta_{\rm C}$ da iso- δ -fagarina ((CD₃)₂CO, 400 e 100 MHz) (WU et al., 1999); n.d. = não determinado.

3.6.6. Identificação da isoesquimianina

O alcalóide isoesquimianina (**16**) foi isolado da fração acetato de etila do extrato metanólico das folhas de *Almeidea rubra* (ALFMA) (p. 216-217) e caracterizado por RMN ¹H e ¹³C.

O espectro de RMN ¹H (FIGURA 3.64) de **16** apresentou os dubletos (J = 2,3 Hz) dos hidrogênios furânicos 2' e 3', em 7,28 e 7,05 δ , e um singleto de metila ligada a heteroátomo, em 4,19 δ . Adicionalmente, no espectro de RMN ¹³C (FIGURA 3.65) foram observados um carbono de *N*-CH₃ em 35,83 δ , e um carbono carbonílico em 202,73 δ , que sugeriram a natureza da substância **16** ser idêntica a do alcalóide **15**, ou seja, de um alcalóide furoquinolônico.

Dois dubletos (J = 9,1 Hz) de hidrogênios aromáticos, em 8,34 e 7,05 δ , e dois singletos relativos a duas metoxilas, em 4,01 e 3,88 δ , indicaram a substituição do núcleo furoquinolônico em C-7 e C-8 por grupos metoxilas e, portanto, demonstraram a identidade de **15** como a isoesquimianina, que é isômero do alcalóide **13**, e que não tinha sido isolada de *Almeidea*, mas já era relatada na natureza (BERINZAGHI et al., 1943). Os dados espectroscópicos desta substância estão ilustrados na TABELA 3.15.

FIGURA 3.64. Espectro de RMN ¹H da isoesquimianina (**16**) (CDCl₃, 200 MHz).

FIGURA 3.65. Espectro de RMN 13 C da isoesquimianina (16) (CDCl₃, 50 MHz).

H / C	$\delta_{ m H}$	$\delta_{ m C}$
2		156,23
3		n.d.
4		202,73
4^{a}		133,92
5	8,34 d (J = 9,1 Hz)	123,65
6	7,05 d (J = 9,1 Hz)	108,44
7		n.d.
8		n.d.
8^{a}		n.d.
2'	7,28 d (J = 2,3 Hz)	137,71
3'	7,05 d (J = 2,3 Hz)	107,85
<i>N</i> - <u>CH</u> ₃	4,19 <i>s</i>	35,83
<i>О</i> - <u>СН</u> ₃	4,01 <i>s</i>	61,79
	3,88 s	56,48

TABELA 3.15. Dados espectroscópicos de RMN ¹H e ¹³C da isoesquimianina.

n.d. = não determinado

3.6.7. Identificação da isodutaduprina

O alcalóide isodutaduprina (**17**) foi isolado da fração acetato de etila do extrato metanólico das folhas de *Almeidea rubra* (ALFMA) (p. 216-217) e identificado por RMN ¹H.

No espectro de RMN ¹H (FIGURA 3.66) da substância 17 foram observados os dois dubletos (J = 2,0 Hz) dos hidrogênios furânicos 2' e 3', em

7,30 e 7,04 δ , e o singleto em 3,96 δ , relativo a uma *N*-CH₃, que indicaram a identidade de **17** como uma alcalóide furoquinolônico.

Esse espectro apresentou também dois sinais de hidrogênios aromáticos, em 8,35 e 6,90 δ , e os sinais relativos a um anel 2,2-dimetilcromeno em 6,75 (1H, *d*l, *J* = 10,0 Hz), 5,64 (1H, *d*, *J* = 10,0 Hz) e 1,53 δ (6H, *s*). O sinal mais desblindado, referente à H-5, ocorreu como um dubleto, sugerindo que as posições C-7 e C-8 estariam substituídas. Pelas evidências anteriormente descritas, a substituição deveria ocorrer pelo anel 2,2-dimetilcromeno, e este poderia estar posicionado de duas formas: com o oxigênio em C-7 ou em C-8. A substituição de C-7 pelo oxigênio do anel 2,2-dimetilcromeno foi atribuída como a correta, pois se observou no espectro de NOE (FIGURA 3.67) o incremento do singleto da *N*-CH₃ (3,96 δ) ao se irradiar o sinal de H-1' (6,75 δ). Essa posição do anel 2,2-dimetilcromeno também explica o "alargamento" dos sinais de H-6 e de H-1', que acoplam em *w* estendido.

Desta forma, a substância **17** foi identificada como o alcalóide isodutaduprina, que tinha sido isolada anteriormente de *A. coerulea* (SANTOS et al., 1998) e cujo isômero dutaduprina também havia sido relatado para essa espécie (MAFEZOLI, 2001; SANTOS et al., 1998).

A comparação dos dados espectroscópicos de RMN ¹H da isodutaduprina (17) com os de literatura (SANTOS, 1988), na TABELA 3.16, confirmaram a estrutura proposta.

102

FIGURA 3.66. Espectro de RMN ¹H da isodutaduprina (17) (CDCl₃, 200 MHz).

FIGURA 3.67. Espectro de NOE da isodutaduprina (17) (CDCl₃, 400 MHz).

Н	$\delta_{ m H}$	$\delta_{ m H}$ *
5	8,35 d (J = 8,0 Hz)	8,30 d (J = 9 Hz)
6	$6,90 \ dd \ (J = 8,0 \ e \ 2,0 \ Hz)$	6,87 d ($J = 9$ Hz)
2'	7,30 d (J = 2,0 Hz)	7,23 d (J = 3 Hz)
3'	7,04 d ($J = 2,0$ Hz)	6,96 d (J = 3,0 Hz)
1"	6,75 dl (J = 10,0 Hz)	6,73 d ($J = 10$ Hz)
2"	5,64 d ($J = 10,0$ Hz)	5,60 d ($J = 10$ Hz)
4" e 5"	1,53 <i>s</i>	1,50 s
$N-C\underline{H}_3$	3,96 s	3,85 s

TABELA 3.16. Dados espectroscópicos de RMN ¹H da isodutaduprina.

* $\delta_{\rm H}$ da isodutaduprina (CDCl₃, 80 MHz) (SANTOS, 1988).

3.6.8. Identificação do alcalóide tetraidrofuroquinolínico

O alcalóide tetraidrofuroquinolínico **18** foi isolado da fração acetato de etila do extrato metanólico das folhas de *Almeidea rubra* (ALFMA) (p. 219-220) e caracterizado por EM e RMN em uma e duas dimensões.

O espectro de RMN ¹H da substância **18** (FIGURA 3.68) apresentou os dubletos (J = 2,6 Hz) em 7,58 e 6,97 δ , referentes aos hidrogênios furânicos 2' e 3', e o singleto em 4,30 δ de metoxila, que caracterizam um alcalóide com esqueleto furoquinolínico. Entretanto, a ausência de sinais relativos a outros

hidrogênios aromáticos e a blindagem da metoxila em C-4 (4,30 ao invés de 4,4 δ) sugeriram que o núcleo furoquinolínico seria reduzido no alcalóide **18**.

A natureza de **18** como um alcalóide tetraidrofuroquinolínico foi confirmada através dos multipletos em 2,78 (2H), 2,20 (1H) e 2,01 δ (1H). Adicionalmente, foram observados no espectro de RMN ¹H: dois singletos em 3,14 e 2,03 δ , relativos a uma metoxila e a uma metila de acetato; um sinal (*dd*, J = 8,5 e 2,9 Hz) de hidrogênio acetilcarbinólico em 5,43 δ ; outros dois dubletos (J = 16,1 Hz) em 6,06 e 5,69 δ , de hidrogênios olefínicos em relação *trans*; e dois sinais de metilas terciárias sobre carbono oxigenado, em 1,34 e 1,31 δ .

FIGURA 3.68. Espectro de RMN ¹H do alcalóide tetraidrofuroquinolínico **18** (CDCl₃, 400 MHz).

A diidroperfamina (**B**) (RÓZSA et al., 1986) e a 7-*O*-acetilhaplofilidina (**C**) (SANTOS et al., 1998) são exemplos de alcalóides tetraidrofuroquinolínicos, sendo que este último apresenta dados espectrais bastante semelhantes com o alcalóide **18**, diferenciando-se apenas no substituinte em C-8, que em **C** é um grupo γ , γ -dimetilalil e em **18**, os dados espectrais indicaram ser um substituinte 3-hidroxi-2-isopentenila.

No espectro de COSY ¹H-¹H (FIGURA 3.69) de **18**, observaram-se os acoplamentos entre o hidrogênio acetilcarbinólico (em 5,43 δ) e os hidrogênios em 2,01 e 2,20 δ , destes entre si, e também com os hidrogênios em 2,78 δ . Isto evidenciou que os hidrogênios metilênicos em 2,01 e 2,20 δ eram vicinais ao hidrogênio acetilcarbinólico (H-7) e aos metilênicos em 2,78 δ , referentes a H-5, como é ilustrado abaixo.

FIGURA 3.69. Espectro de COSY ¹H-¹H do alcalóide tetraidrofuroquinolínico **18** (CDCl₃, 400 MHz).

A análise do espectro de RMN 13 C (FIGURA 3.70) e do mapa de contorno de HSQC (FIGURA 3.71) permitiu as atribuições de deslocamentos químicos dos carbonos hidrogenados e a definição de oito carbonos quaternários (170,33, 162,74, 158,24, 150,01, 117,64, 105,20, 79,71 e 70,77 δ) na molécula.

FIGURA 3.70. Espectro de RMN ¹³C do alcalóide tetraidrofuroquinolínico **18** (CDCl₃, 100 MHz).

FIGURA 3.71. Mapa de contorno de HSQC do alcalóide tetraidrofuroquinolínico **18** (CDCl₃, 400 MHz).

Os deslocamentos químicos dos carbonos quaternários foram atribuídos através das correlações observadas no mapa de contorno de HMBC (FIGURA 3.72).

FIGURA 3.72. Mapa de contorno de HMBC do alcalóide tetraidrofuroquinolínico **18** (CDCl₃, 400 MHz).

A correlação de H-2' (7,58 δ) e H-3' (6,97 δ) com os carbonos em 162,74 e 105,20 δ definiu C-2 e C-3, respectivamente.

O carbono 4 foi definido através da correlação dos hidrogênios da metoxila, em 4,30 δ , com o carbono em 158,24 δ .

H-5 (2,78 δ) e H-6 (2,01 δ) correlacionaram com um mesmo carbono em 117,64 δ , que foi atribuído a C-4a. E a correlação de H-5 com outro carbono em 150,01 δ , definiu C-8a.

C-8 foi atribuído através da correlação da metoxila em 3,14 δ , com o carbono em 79,71 δ . Já a correlação de H-2" (5,69 δ) e dos hidrogênios das metilas (1,31 e 1,34 δ) com um mesmo carbono (70,77 δ) definiu C-3".

Vale ressaltar, que as estereoquímicas relativas de C-7 e C-8 não puderam ser determinadas através dos experimentos de RMN realizados. Em um experimento de NOE no qual se irradiou os hidrogênios metoxílicos (em 3,14 δ) e/ou o hidrogênio olefínico 1" (em 6,06 δ) não se observou o incremento do

sinal referente ao hidrogênio acetilcarbinólico (em 5,43 δ), não permitindo, portanto, a determinação da estereoquímica de C-8.

No espectro de massas do alcalóide **18** (FIGURA 3.73) não foi observado o pico do íon molecular em m/z 375 daltons, compatível com a fórmula molecular C₂₀H₂₅NO₆, mas o pico em m/z 326, resultante da perda de um grupo metoxila e de uma molécula de água.

FIGURA 3.73. Espectro de massas (IE = 70 e.V.) do alcalóide tetraidrofuroquinolínico **18**.

Desta forma, a estrutura do alcalóide **18** foi detalhadamente definida e esta sendo, pela primeira vez, citada na literatura. Seus dados espectroscópicos de RMN foram atribuídos através da análise dos espectros e por comparação com os dados da 7-*O*-acetilhaplofilidina (C) (SANTOS et al., 1998) e estão descritos na TABELA 3.17.

H / C	$\delta_{ m H}$	$\delta_{ m H}$ *	$\delta_{ m C}$	$\delta_{ m C}$ *
2			162,74	161,5
3			105,20	116,4
4			158,24	157,6
4a			117,64	104,4
5	2,78 m	n.d.	19,53	17,9
6	2,20 m	n.d.	23,46	20,7
7	2,01 m	n.d.	72,60	71,7
8			79,71	76,9
8a			150,01	149,6
2'	7,58 d (J = 2,6 Hz)	7,55 d (J = 3 Hz)	142,88	141,9
3'	6,97 d (J = 2,6 Hz)	6,95 d (J = 3 Hz)	104,64	104,0
1"	6,06 <i>d</i> (<i>J</i> = 16,1 Hz)	n.d.	126,94	28,5
2"	5,69 <i>d</i> (<i>J</i> = 16,1 Hz)	5,20 m	141,06	118,3
3"			70,77	132,6
4" e 5"	1,34 e 1,31 s	1,66 e 1,60 s	29,65 e 29,50	25,2 e 17,3
4-0 <u>CH</u> ₃	4,30 <i>s</i>	4,28 <i>s</i>	58,50	57,7
8-0 <u>CH</u> 3	3,14 <i>s</i>	3,13 <i>s</i>	51,29	49,8
-OO <u>C</u> CH ₃			170,33	169,2
-OOC <u>CH</u> 3	2,03 s	1,98 s	21,25	20,7

TABELA 3.17. Dados espectroscópicos de RMN ¹H e ¹³C do alcalóide tetraidrofuroquinolínico.

* $\delta_{\rm H}$ e $\delta_{\rm C}$ da 7-*O*-acetilhaplofilidina (CDCl₃, 80 e 20 MHz) (SANTOS et al., 1998); n.d. = não determinado.

3.6.9. Identificação da haplotusina

Da fração acetato de etila do extrato metanólico do caule de *Conchocarpus heterophyllus* (AHCMA) foi obtido o alcalóide haplotusina (**19**) (p. 224-225), cuja identificação foi realizada por EM e RMN, em uma e duas dimensões.

No espectro de RMN ¹H (FIGURA 3.74) de **19** observaram-se quatro sinais relativos a hidrogênios aromáticos, em 8,00 (dl, J = 8,0 Hz), 7,73 (m), 7,68 (m) e 7,34 δ (ddd, J = 8,0, 6,4 e 1,6 Hz). As multiplicidades desses sinais indicaram a presença de um anel aromático *orto* dissubstituído na substância **19**. Adicionalmente, um singleto em 6,08 δ , integrado para um hidrogênio, revelou a identidade dessa substância como um alcalóide 4-*R*-2-quinolônico, que é de ocorrência bastante comum em plantas da família Rutaceae (FIGURA 3.51) (MESTER, 1983; WATERMAN, 1999).

Um alcalóide muito comum desta classe é a 1-metil-4-metoxi-2-quinolona (**D**), que apresenta, assim como **19**, quatro hidrogênios aromáticos num anel *orto* dissubstituído, e um hidrogênio (H-3) em 6,05 δ . Entretanto, eles diferem quanto aos deslocamentos químicos das metilas ligadas a heteroátomos (em **19** elas ocorrem em 4,02 e 4,00 δ e em **D**, em 3,68 e 3,95 δ) (MAFEZOLI, 2001). Estes dados confirmaram a natureza de **19** como um alcalóide do tipo 4-metoxi-2-quinolona, no qual alguma mudança estaria desblindando os sinais das metilas ligadas a heteroátomos. Vale ressaltar, que essas diferenças foram observadas

mesmo no espectro de RMN ¹H obtido em CDCl₃, onde os singletos ocorreram em 4,08 e 3,96 δ .

FIGURA 3.74. Espectro de RMN ¹H da haplotusina (19) (MeOD, 200 MHz).

A partir do espectro de RMN ¹³C de **19** (FIGURA 3.75), deduziu-se a ausência de *N*-CH₃ na molécula, cujo sinal deveria ocorrer ~29 δ . Entretanto foram observados um sinal de metoxila aromática não impedida estericamente, em 57,06 δ , e um outro sinal bastante desblindado em 63,73 δ . Na estrutura da 1-metil-4-metoxi-2-quinolona (**D**) seria plenamente aceitável que a metoxila

com um deslocamento químico de 57,06 δ substituísse C-4. Como não poderia haver na molécula nenhum substituinte no anel aromático, a única posição, na qual a outra metila ligada a heteroátomo (63,73 δ) poderia estar, seria no nitrogênio. Já que esta metila era muito desblindada para ser *N*-CH₃, foi proposto que ela seria *N*-*O*CH₃. Isto foi confirmado pelos demais experimentos de RMN e parece ser uma característica bastante rara.

FIGURA 3.75. Espectro de RMN ¹³C da haplotusina (**19**) (MeOD, 50 MHz).

A análise do mapa de contorno de HSQC (FIGURA 3.76), do espectro de RMN ¹³C (FIGURA 3.75) e dos dados espectroscópicos da substância modelo **D** (MAFEZOLI, 2001) permitiu que fossem atribuídos alguns valores de deslocamentos químicos. Ressaltando-se, entretanto, que eles foram definidos a partir dos espectros em MeOD.

FIGURA 3.76. Mapa de contorno de HSQC da haplotusina (19) (CDCl₃, 400 MHz).

Através da análise do mapa de contorno de HMBC (FIGURA 3.77) foram definidos os carbonos quaternários do alcalóide **19**, exceto C-2, que não foi observado.

FIGURA 3.77. Mapa de contorno de HMBC da haplotusina (19) (CDCl₃, 400 MHz).

C-8a foi definido através da correlação de H-5 (8,00 δ) e H-7 (7,73 δ) com um carbono em 138,15 δ .

As correlações de H-3 (6,08 δ), H-6 (7,34 δ) e H-8 (7,68 δ) com um mesmo carbono (em 116,92 δ) determinaram C-4a.

C-4 foi atribuído através da correlação da metoxila em C-4 (4,01 δ), H-3 (6,08 δ) e H-5 (8,00 δ) com o carbono em 164,63 δ .

O espectro de massas de **19** (FIGURA 3.78), obtido por *electrospray* no modo positivo, mostrou os picos $[M+H]^+$ e $[M+Na]^+$ em *m/z* 206 e 228 daltons, confirmando a estrutura proposta para a haplotusina (C₁₁H₁₁NO₃).

FIGURA 3.78. Espectro de massas (ES+) da haplotusina (19).

Portanto, a análise dos dados espectroscópicos indicou a estrutura de **19** como sendo o alcalóide 1,4-dimetoxi-2-quinolona, isolado anteriormente de *Haplophyllum obtusifolium* (Rutaceae) (RASAKOVA et al., 1984) e vulgarmente denominado de haplotusina. Os dados de RMN desta substância são descritos na TABELA 3.18.

H / C	$\delta_{ m H}$	$\delta_{ m C}$
2		n.d.
3	6,08 <i>s</i>	96,89
4		164,63
4a		116,92
5	8,00 dl (J = 8,0 Hz)	124,54
6	7,34 <i>ddd</i> (J = 8,0, 6,4 e 1,6 Hz)	124,20
7	7,73 m	133,34
8	7,68 m	113,14
8a		138,15
4-0 <u>CH</u> ₃	4,01 <i>s</i>	57,06
<i>N</i> -O <u>CH</u> ₃	4,02 s	63,73

TABELA 3.18. Dados espectroscópicos de RMN ¹H e ¹³C da haplotusina.

3.6.10. Identificação do alcalóide 2-fenil-1-metil-4-quinolona

O alcalóide **20** foi isolado da fração acetato de etila do extrato metanólico do caule de *Conchocarpus heterophyllus* (AHCMA) (p. 224-225) e identificado por EM e RMN em uma e duas dimensões.

O espectro de RMN ¹H (FIGURAS 3.79 - 3.80) do alcalóide **20** apresentou um conjunto de sinais na região de hidrogênios aromáticos e um singleto em 3,74 δ , relativo a hidrogênio ligado a heteroátomo. Como no mapa de contorno de HSQC (FIGURAS 3.81 - 3.82) esse hidrogênio (3,74 δ) correlacionava com um carbono em 38,36 δ , determinou-se a existência de *N*-CH₃ na substância **20**.

O conhecimento da ampla ocorrência de alcalóides derivados do ácido antranílico em Rutaceae (MESTER, 1983; WATERMAN, 1999) e o singleto em 6,67 δ no espectro de RMN ¹H (FIGURAS 3.79 – 3.80) determinaram a identidade de **20** como um alcalóide 2-*R*-4-quinolona. A hipótese que esse alcalóide fosse 4-*R*-2-quinolona foi descartada, pois o H-3 seria mais blindado.

A análise mais detalhada do espectro de RMN ¹H permitiu que se definissem nove hidrogênios aromáticos na molécula e, portanto, a existência de dois anéis aromáticos. As multiplicidades dos sinais em 8,51 (dd, J = 8,1 e 1,4 Hz), 7,81 (ddd, J = 8,5, 7,0 e 1,4 Hz), 7,67 (dl, J = 8,5 Hz) e 7,52 δ (m) indicaram que um dos anéis seria *orto* dissubstituído. Assim, o outro anel só poderia ser monossubstituído, sendo que os sinais relativos aos seus hidrogênios ocorreram em 7,53 (m, 3H) e 7,44 δ (m, 2H).

Desta forma, definiu-se que a substituição em C-2 no alcalóide **20** se daria por um grupo fenil. Isto foi confirmado pelos demais experimentos de RMN e por comparação com os dados de literatura para esse alcalóide, isolado anteriormente de *Raulinoa echinata* (Rutaceae) (BIAVATTI et al., 2002).

FIGURA 3.79. Espectro de RMN ¹H do alcalóide 2-fenil-1-metil-4-quinolona (**20**) (CDCl₃, 400 MHz).

FIGURA 3.80. Ampliação do espectro de RMN ¹H do alcalóide 2-fenil-1-metil-4-quinolona (**20**) (CDCl₃, 400 MHz).

FIGURA 3.81. Mapa de contorno de HSQC do alcalóide 2-fenil-1-metil-4quinolona (**20**) (CDCl₃, 400 MHz).

FIGURA 3.82. Ampliação do mapa de contorno de HSQC do alcalóide 2-fenil-1-metil-4-quinolona (**20**) (CDCl₃, 400 MHz).

A análise conjunta do mapa de contorno de HSQC (FIGURAS 3.81 - 3.82), do espectro de RMN ¹³C (FIGURAS 3.83 - 3.84) e dos dados de literatura (BIAVATTI et al., 2002) permitiu que fossem definidos alguns deslocamentos químicos de ¹H e ¹³C para o alcalóide **20**.

FIGURA 3.83. Espectro de RMN ¹³C do alcalóide 2-fenil-1-metil-4-quinolona (**20**) (CDCl₃, 50 MHz).

FIGURA 3.84. Ampliação do espectro de RMN ¹³C do alcalóide 2-fenil-1-metil-4-quinolona (**20**) (CDCl₃, 50 MHz).

Através da análise do mapa de contorno de HMBC (FIGURAS 3.85 – 3.86) do alcalóide **20** foram definidos os carbonos quaternários da molécula.

Neste mapa, observou-se a correlação entre os hidrogênios *N*-metílicos $(3,74 \ \delta)$ e os carbonos em 156,87 e 141,51 δ . Como os hidrogênios aromáticos H-5 e H-7, em 8,51 e 7,81 δ , também correlacionavam com o último, ele foi atribuído a C-8a e o outro a C-2. H-5 (8,51 δ) apresentou ainda correlação com um carbono carbonílico em 174,51 δ , que foi atribuído a C-4.

As correlações de H-8 (7,67 δ), H-6 (7,52 δ) e H-3 (6,67 δ) com o mesmo carbono, em 126,43 δ , definiu C-4a, que coincidiu com C-5.

H-3 (6,67 δ) também correlacionou com os carbonos em 134,73 e 156,87 δ (C-2). Como o último já estava atribuído a C-2, o primeiro foi definido como C-1'.

FIGURA 3.85. Mapa de contorno de HMBC do alcalóide 2-fenil-1-metil-4quinolona (**20**) (CDCl₃, 400 MHz).

FIGURA 3.86. Ampliação do mapa de contorno de HMBC do alcalóide 2-fenil-1-metil-4-quinolona (**20**) (CDCl₃, 400 MHz).

O espectro de massas de **20** (FIGURA 3.87), obtido por *electrospray* no modo positivo, mostrou o pico $[M+H]^+$ em *m/z* 236 daltons, confirmando a estrutura proposta para este alcalóide (C₁₆H₁₃NO).

FIGURA 3.87. Espectro de massas (ES+) do alcalóide 2-fenil-1-metil-4quinolona (20).

Portanto, a análise dos dados espectroscópicos e a comparação com dados de literatura (BIAVATTI et al., 2002) permitiram definir a estrutura de **20** como o alcalóide 2-fenil-1-metil-4-quinolona, que está sendo pela primeira vez descrito no gênero *Conchocarpus*. Seus dados de RMN estão ilustrados na TABELA 3.19.

H/C	$\delta_{ m H}$	$\delta_{ m H}$ *	$\delta_{ m C}$	$\delta_{ m C}$ *
2			156,87	154,8
3	6,67 <i>s</i>	6,31 <i>s</i>	111,14	112,7
4			174,51	177,6
4a			126,43	126,8
5	8,51 dd (J = 8,1 e 1,4 Hz)	8,51 dd (J = 8,0 e 1,4 Hz)	126,43	126,8
6	7,52 m	7,45 <i>t</i> l	125,34	123,8
		(J = 1,0 Hz)		
7	7,81 ddd (J = 8,5, 7,0 e	7,73 dt (J = 7,8 e 1,6 Hz)	133,68	132,3
	1,4 Hz)			
8	7,67 $dl (J = 8,5 Hz)$	7,57 d ($J = 8,5$ Hz)	116,60	115,9
8a			141,51	141,9
1'			134,73	135,9
2' e 6'	7,44 m	7,42 <i>m</i>	128,63	128,5
3' e 5'	7,53 m	7,52 m	129,06	128,8
4'	7,53 m	7,52 m	130,35	129,6
<i>N</i> - <u>CH</u> ₃	3,74 <i>s</i>	3,62 <i>s</i>	38,36	37,3

TABELA 3.19. Dados espectroscópicos de RMN ¹H e ¹³C do alcalóide 2-fenil-1-metil-4-quinolona.

* $\delta_{\rm H}$ e $\delta_{\rm C}$ da 2-fenil-1metil-4-quinolona (CDCl₃, 400 e 100 MHz) (BIAVATTI et al., 2002).

3.6.11. Identificação da arborinina

Da fração acetato de etila do extrato metanólico das folhas de *Almeidea rubra* (ALFMA) foi isolado o alcalóide arborinina (**21**) (p. 216-217), cuja identificação foi realizada por EM e RMN 1 H.

O espectro de RMN ¹H de **21** (FIGURA 3.88) apresentou sinais em 8,43 (dd, J = 8,0 e 2,0 Hz), 7,72 (ddd, J = 9,0, 8,0 e 2,0 Hz), 7,50 (dl, J = 9,0 Hz) e 7,29 δ (ddd, J = 8,0, 8,0 e 2,0 Hz) relativos a hidrogênios aromáticos, cujas multiplicidades caracterizaram a presença de um anel *orto* dissubstituído na substância **21**. Foram observados também três singletos relativos à metila ligada a heteroátomo, em 4,01, 3,92 e 3,83 δ , um singleto de hidrogênio aromático, em 6,27 δ (1H), e um sinal em 14,75 δ , referente à uma hidroxila quelada.

Estes dados espectroscópicos em conjunto com o conhecimento da ocorrência de alcalóides derivados do ácido antranílico em plantas da família Rutaceae (MESTER, 1983; WATERMAN, 1999) sugeriram a natureza de **21** como um alcalóide acridônico.

O singleto relativo a uma hidroxila quelada evidenciou que C-1 no esqueleto acridônico estava substituído por uma hidroxila; e a presença de um sinal de metoxila impedida estericamente (em 4,01 δ) indicou que as posições C-2 e C-3 deveriam estar substituídas pelas metoxilas. Assim, o singleto de hidrogênio aromático (em 6,27 δ) correspondia a H-4 e o sinal mais blindado (em 3,83 δ) correspondia a *N*-CH₃.

FIGURA 3.88. Espectro de RMN ¹H da arborinina (**21**) (CDCl₃, 200 MHz).

Portanto, os dados espectroscópicos indicaram a natureza de **21** como um alcalóide acridônico substituído em C-1, C-2 e C-3, vulgarmente conhecido como arborinina. Ele é de ampla ocorrência na família Rutaceae, e foi inclusive isolado do gênero *Almeidea* (SANTOS et al., 1998). Seus dados espectroscópicos de RMN ¹H são descritos na TABELA 3.20.

A fórmula molecular ($C_{16}H_{15}NO_4$) do alcalóide arborinina (**21**) foi confirmada através dos picos $[M+H]^+$ e $[M+Na]^+$ em *m/z* 286 e 308 daltons, no espectro de massas (FIGURA 3.89).

FIGURA 3.89. Espectro de massas (ES+) da arborinina (21).

Н	$\delta_{ m H}$	$\delta_{ m H}$ *
4	6,27 s	6,32 <i>s</i>
5	7,50 <i>d</i> l ($J = 9,0$ Hz)	7,54 d ($J = 8,8$ Hz)
6	7,72 ddd ($J = 9,0, 8,0 e 2,0 Hz$)	7,75 ddd ($J = 8,7, 6,8 e 1,6 Hz$)
7	7,29 ddd ($J = 8,0, 8,0 e 2,0 Hz$)	7,33 t ($J = 8,0$ Hz)
8	8,43 dd (J = 8,0 e 2,0 Hz)	8,50 dd (J = 8,0 e 1,6 Hz)
2-OC <u>H</u> ₃	4,01 <i>s</i>	4,04 s
3-OC <u>H</u> ₃	3,92 s	3,95 s
NCH_3	3,83 s	3,88 s
О <u>Н</u>	14,75 <i>s</i>	-

TABELA 3.20. Dados espectroscópicos de RMN ¹H da arborinina.

* $\delta_{\rm H}$ da arborinina (CDCl₃, 400 MHz) (JANUÁRIO, 1995).

3.6.12. Identificação do alcalóide indolopiridoquinazolínico

O alcalóide **22** foi isolado da fração acetato de etila do extrato metanólico dos galhos de *Almeidea coerulea* (AGMA) (p. 211-212) e caracterizado por RMN em uma e duas dimensões.

A substância **22** apresentou em seu espectro de RMN ¹H (FIGURAS 3.90 – 3.91) dois tripletos (J = 6,8 Hz) em 4,52 e 3,18 δ , que, em conjunto com os sinais dos hidrogênios aromáticos, indicaram a natureza de **22** como um alcalóide indolopiridoquinazolínico, que só é descrito na família Rutaceae (MESTER, 1983).

Observaram-se ainda dois dubletos (J = 10,2 Hz) em 8,04 e 5,80 δ , e um singleto (6H) em 1,47 δ , que sugeriram a presença de um anel 2,2-dimetileromeno na substância **22**.

Na região aromática do espectro havia quatro hidrogênios que ocorriam como dubletos e acoplavam dois a dois [7,47 com 7,20 δ (J = 8,7 Hz) e 7,33 com 6,99 δ (J = 8,5 Hz)] e um singleto (1H) em 7,00 δ . As multiplicidades de tais sinais indicaram a presença de uma anel aromático 1,2,4-trissubstituído e de outro 1,2,3,4-tetrassubstituído. O espectro também mostrou um singleto em 3,88 δ , relativo a uma metoxila aromática.

No espectro de COSY ¹H-¹H (FIGURA 3.92) confirmou-se o acoplamento entre H-7 (4,52 δ) e H-8 (3,18 δ), o padrão de substituição dos anéis aromáticos e o acoplamento dos hidrogênios olefínicos (8,04 e 5,80 δ) do anel 2,2-dimetilcromeno.

Desta forma, estabeleceu-se que a substância **22** era um alcalóide indolopiridoquinazolínico, que possuía cinco hidrogênios aromáticos (dispostos como citado acima), um anel 2,2-dimetilcromeno e uma metoxila. Além disso, pelos dados espectroscópicos até então analisados, o anel 2,2-dimetilcromeno e a metoxila teriam que substituir anéis diferentes, sendo que a metoxila só poderia estar no anel 1,2,4-trissubstituído. Para se definir em qual dos anéis os substituintes estariam, verificou-se que não existia no espectro de RMN ¹H (FIGURAS 3.91 – 3.92) um sinal de hidrogênio bastante desblindado, em ~8,0 δ , que é característico de H-4 para os alcalóides indolopiridoquinazolínicos (AYAFOR et al., 1982; IKUTA et al., 1998). Assim, C-4 deveria ser uma posição substituída, excluindo a possibilidade da metoxila estar neste anel, definido, portanto, que ela estaria em C-8 (ou C-9) e que o anel 2,2dimetilcromeno deveria substituir as posições C-3 e C-4.

FIGURA 3.90. Espectro de RMN ¹H do alcalóide indolopiridoquinazolínico **22** (CDCl₃, 400 MHz).

FIGURA 3.91. Ampliação do espectro de RMN ¹H do alcalóide indolopiridoquinazolínico **22** (CDCl₃, 400 MHz).

FIGURA 3.92. Espectro de COSY ¹H-¹H do alcalóide indolopiridoquinazolínico **22** (CDCl₃, 400 MHz).

O mapa de contorno de HSQC (FIGURA 3.93; TABELA 3.21) mostrou as correlações C-H a ${}^{1}J$ para o alcalóide **22** e indicou que o sinal em 9,12 δ (*s*l, 1H) referia-se ao *N*-H da molécula.

$\delta_{\! m H}$	$\delta_{ m C}$
8,04	121
7,47	127
7,33	113
7,20	125
7,00	101
6,99	116
5,80	132
4,52	41
3,88	56
3,18	20
1,47	27

TABELA 3.21. Correlações a ^{I}J para o alcalóide indopiridoquinazolínico **22**.

FIGURA 3.93. Mapa de contorno de HSQC do alcalóide indolopiridoquinazolínico **22** (CDCl₃, 400 MHz).

A análise conjunta do mapa de contorno de HSQC e a comparação com os dados espectroscópicos de RMN da hortiacina (E) (CUCA S. et al., 1998) e da 3-hidroxirutacarpina (F) (LI et al., 2001) permitiram a atribuição de alguns dados de RMN para o alcalóide 22.

Através do mapa de contorno de HMBC (FIGURAS 3.94 – 3.95) foram determinados alguns dos carbonos quaternários do alcalóide **22**.

Nesse mapa, a correlação dos hidrogênios metilênicos 7 (4,52 δ) e 8 (3,18 δ) com um mesmo carbono em 117 δ , definiu C-8a. E a correlação de H-8 com o carbono em 128 δ determinou C-13a.

A metoxila em 3,88 δ correlacionou com um carbono em 155 δ , atribuído a C-10. Este foi confirmado também através da correlação com H-12 (7,33 δ).

A correlação de H-9 (7,00 δ) e/ou H-11 (6,99 δ) com um carbono em 134 δ , determinou C-12a.

O anel 2,2-dimetilcromeno poderia estar posicionado de duas formas:

O mapa de contorno de HMBC (FIGURAS 3.94 – 3.95) e a comparação com a 3-hidroxirutacarpina (**F**) (LI et al., 2001) sugeriram que a segunda forma de ligação fosse a mais provável, pois se observou a correlação de H-1 (7,47 δ) com um carbono em 152 δ , que na molécula modelo **F** ocorria em 155,0 δ e era atribuído a C-3.

C-1a (143 δ) foi determinado através da sua correlação com H-2 (7,20 δ).

Os dados de RMN para o anel 2,2-dimetilcromeno foram atribuídos através da correlação dos hidrogênios metílicos (1,47 δ) com um carbono em 132 δ (C-2'); e, C-3' (76 δ) foi determinado pela correlação com os hidrogênios metílicos (1,47 δ), com H-1' (8,04 δ) e H-2' (5,82 δ). O deslocamento químico de H-1' retificou o posicionamento do anel 2,2-dimetilcromeno já que ele estava bastante desblindado devido à proximidade com a carbonila C-5.

FIGURA 3.94. Mapa de contorno de HMBC do alcalóide indolopiridoquinazolínico **22** (CDCl₃, 400 MHz).

FIGURA 3.95. Ampliação do mapa de contorno de HMBC do alcalóide indolopiridoquinazolínico **22** (CDCl₃, 400 MHz).

Na estrutura proposta para o alcalóide **22** não puderam ser determinados os carbonos quaternários 4, 4a, 5, 9a e 14a. No artigo de LI et al. (2001) cita-se a importância da técnica HMBC ¹H-¹⁵N para a elucidação estrutural desta classe de compostos, já que o número de nitrogênios e a conectividade C-*N* na molécula podem ser deduzidos a partir de tal experimento.

Embora alguns carbonos não tenham sido determinados, a estrutura do alcalóide **22** é inédita e as atribuições dos dados de RMN estão descritas nas TABELAS 3.22 e 3.23.

TABELA 3.22. Dados espectroscópicos de RMN ¹H do alcalóide indolopiridoquinazolínico.

Н	$\delta_{ m H}$	$\delta_{\rm H}$ de E *	$\delta_{\rm H}$ de F $^{\#}$
1	7,47 d (J = 8,7 Hz)	7,63 dl (J = 7,2 Hz)	7,56 d (J = 8,8 Hz)
2	7,20 d (J = 8,7 Hz)	7,75 ddd ($J = 8,4,7,2$ e	7,27 dd ($J = 8,8$ e
		1,5 Hz)	2,7 Hz)
3	-	7,45 ddd ($J = 8,4, 8,0$ e	-
		1,1 Hz)	
4	-	8,30 dd (J = 8,0 e 1,5 Hz)	7,48 d (J = 2,7 Hz)
7	4,52 t (J = 6,8 Hz)	4,56 t (J = 7,0 Hz)	4,41 t ($J = 6,8$ Hz)
8	3,18 t (J = 6,8 Hz)	3,21 t (J = 7,0 Hz)	3,14 t (J = 6,8 Hz)
9	7,00 s	7,01 d (J = 2,4 Hz)	7,59 d (J = 7,4 Hz)
10	-	-	7,05 t (J = 7,4 Hz)
11	6,99 $dl (J = 8,5 Hz)$	7,04 dd (J = 7,3 e 2,4 Hz)	7,22 t (J = 7,4 Hz)
12	7,33 d (J = 8,5 Hz)	7,40 d (J = 7,3 Hz)	7,46 d (J = 7,4 Hz)
1'	8,04 d (J = 10,2 Hz)	-	-
2'	5,80 d (J = 10,2 Hz)	-	-
4' e 5'	1,47 <i>s</i>	-	-
$OC\underline{H}_3$	3,88 s	3,89 s	-
N <u>H</u>	9,12 <i>s</i> l	9,40 sl	11,7 <i>s</i>
<u>ОН</u>		_	10,1 <i>s</i> l

* $\delta_{\rm H}$ de E (300 MHz, CDCl₃) (CUCA S. et al., 1998); [#] $\delta_{\rm H}$ de F (500 MHz, CDCl₃) (LI et al., 2001).

С	$\delta_{ m C}$	$\delta_{\rm C}$ de E *	$\delta_{\rm C}$ de F $^{\#}$
1	127	126,2	128,2
1a	143	126,7	140,5
2	125	134,5	123,9
3	152	125,8	155,0
4	n.d.	127,1	109,7
4a	n.d.	120,6	121,7
5	n.d.	161,7	160,3
7	41	41,2	40,9
8	20	19,5	19,0
8a	117	118,4	116,6
9	101	116,9	119,7
9a	n.d.	125,2	125,0
10	155	154,4	119,6
11	116	100,3	124,3
12	113	113,1	112,3
12a	134	133,8	138,4
13a	128	147,0	127,3
14a	n.d.	145,3	142,6
1'	121	-	-
2'	132	-	-
3'	76	-	-
4' e 5'	27	-	-
О <u>С</u> Н ₃	56	55,7	-

TABELA 3.23. Dados espectroscópicos de RMN ¹³C do alcalóide indolopiridoquinazolínico.

* $\delta_{\rm C}$ de E (75 MHz, CDCl₃) (CUCA S. et al., 1998); [#] $\delta_{\rm C}$ de F (125 MHz, CDCl₃) (LI et al., 2001); n.d. = não determinado.

3.7. Identificação das cumarinas

3.7.1. Identificação da escoparona

A cumarina escoparona (**23**) foi isolada da fração acetato de etila do extrato metanólico dos galhos de *Almeidea coerulea* (AGMA) (p. 214-215) e caracterizada por EM e RMN 1 H.

O espectro de RMN ¹H (FIGURA 3.96) da substância **23** apresentou dois dubletos (J = 9,5 Hz) em 7,63 e 6,29 δ , característicos dos hidrogênios 4 e 3 de um esqueleto cumarínico. A presença de apenas um singleto em 6,86 δ , integrado para dois hidrogênios, sugeriu a existência de dois hidrogênios aromáticos na molécula em relação *para*, que na estrutura de uma cumarina só poderiam ser atribuídos a H-5 e H-8. Desta forma, C-6 e C-7 deveriam ser posições substituídas. Os singletos em 3,96 e 3,93 δ indicaram a substituição destas posições por grupos metoxila.

Portanto, a substância **23** foi identificada como a 6,7-dimetoxicumarina, comumente conhecida como escoparona, que não havia sido isolada do gênero *Almeidea*, mas que é amplamente encontrada na família Rutaceae (GRAY, 1983). Os dados de RMN ¹H da escoparona (**23**) são descritos na TABELA 3.24.

O espectro de massas de **23** (FIGURA 3.97) confirmou a estrutura proposta através do pico do íon molecular em m/z 206 daltons, coerente com a fórmula molecular C₁₁H₁₀O₄ da escoparona.

FIGURA 3.96. Espectro de RMN ¹H da escoparona (23) (CDCl₃, 200 MHz).

FIGURA 3.97. Espectro de massas (IE = 70 e.V.) da escoparona (23).

TABELA 3.24. Dados espectroscópicos de RMN ¹H da escoparona.

Н	$\delta_{ m H}$	$\delta_{ m H}$ *
3	6,29 <i>d</i> (9,5 Hz)	6,30 <i>d</i> (9,5 Hz)
4	7,63 <i>d</i> (9,5 Hz)	7,63 <i>d</i> (9,5 Hz)
5	6,86 s	6,86 <i>s</i>
8	6,86 s	6,85 s
6-OC <u>H</u> 3	3,96 s	3,96 s
7-OC <u>H</u> ₃	3,93 <i>s</i>	3,93 s

* $\delta_{\rm H}$ da escoparona (CDCl₃, 400 MHz) (MAFEZOLI, 2001).

3.7.2. Identificação da escopoletina

A cumarina **24** também foi isolada da fração acetato de etila do extrato metanólico dos galhos de *Almeidea coerulea* (AGMA) (p. 214-216) e identificada por EM e RMN 1 H.

O espectro de RMN ¹H (FIGURA 3.98) da substância **24** mostrou-se bastante similar ao da cumarina **23**. Foram observados os dois dubletos (J = 9,4 Hz) característicos de H-3 e H-4 de uma cumarina, em 6,27 e 7,60 δ . Dois singletos, em 6,92 e 6,85 δ , sugeriram a presença de H-5 e H-8 e a substituição das posições C-6 e C-7. A existência de somente mais um sinal no espectro, especificamente de um singleto relativo a metoxila em 3,96 δ , sugeriu que a outra posição estivesse substituída por um grupo hidroxila.

Desta forma, a cumarina **24** foi identificada como a 7-hidroxi-6metoxicumarina, vulgarmente denominada escopoletina, que já havia sido isolada de *Almeidea rubra* (JANUÁRIO, 1995). Seus dados de RMN ¹H (TABELA 3.25) foram atribuídos por comparação com a literatura (JANUÁRIO, 1995).

O espectro de massas de **24** (FIGURA 3.99) confirmou a estrutura proposta através do pico do íon molecular em m/z 192 daltons, compatível com a fórmula molecular C₁₀H₈O₄ da escopoletina. A análise deste espectro também permitiu a confirmação da identidade de **24** como a escopoletina e não como seu isômero isoescopoletina, já que a intensidade do pico em m/z 177 daltons era de aproximadamente 60 %. A abundância relativa deste pico é um diferencial entre esses isômeros, sendo que para a isoescopoletina esse pico tem intensidade menor (SHAPIRO e DJERASSI, 1965).

FIGURA 3.98. Espectro de RMN ¹H da escopoletina (24) (CDCl₃, 200 MHz).

FIGURA 3.99. Espectro de massas (IE = 70 e.V.) da escopoletina (24).

TABELA 3.25. Dados espectroscópicos de RMN ¹ H da escopo	oletina
---	---------

Н	$\delta_{ m H}$	$\delta_{ m H}$ *
3	6,27 <i>d</i> (9,4 Hz)	6,27 <i>d</i> (9,2 Hz)
4	7,60 <i>d</i> (9,4 Hz)	7,61 <i>d</i> (9,6 Hz)
5	6,92 s	6,92 s
8	6,85 s	6,85 s
6-OC <u>H</u> ₃	3,96 s	3,96 s
O <u>H</u>	-	6,15 <i>s</i>

* $\delta_{\rm H}$ da escopoletina (CDCl₃, 400 MHz) (JANUÁRIO, 1995).

3.7.3. Identificação da marmesina

A cumarina marmesina (**25**) foi isolada da fração acetato de etila do extrato metanólico dos galhos de *Almeidea coerulea* (AGMA) (p. 214-216) e caracterizada por RMN, em uma e duas dimensões, e EM.

O espectro de RMN ¹H (FIGURA 3.100) de **25** apresentou os dois dubletos (J = 9,5 Hz) relativos a H-4 e H-3 de uma cumarina, em 7,60 e 6,22 δ , e, assim como as cumarinas **23** e **24**, dois singletos, de hidrogênios aromáticos, em 7,23 e 6,75 δ , relativos a H-5 e H-8, indicando, portanto, que C-6 e C-7 eram posições substituídas. Observaram-se ainda: um duplodubleto (J = 8,9 Hz) em 4,74 δ , relativo a um hidrogênio carbinólico; dois sinais (*ddd*) de hidrogênios benzílicos, que coalescem em 3,22 δ ; e dois singletos em 1,38 e 1,24 δ , de metilas terciárias ligadas a carbono oxigenado.

FIGURA 3.100. Espectro de RMN ¹H da marmesina (**25**) (CDCl₃, 400 MHz).

Na família Rutaceae é bastante comum a ocorrência de furocumarinas lineares ou angulares (GRAY, 1983). Os singletos relativos a H-5 e H-8 indicaram a natureza de uma cumarina linear para **25**. Já o sistema de acoplamento entre o hidrogênio carbinólico (em 4,74 δ) e os dois hidrogênios benzílicos (em 3,22 δ) no espectro de COSY ¹H-¹H (FIGURA 3.101), sugeriu a redução do anel furânico. Adicionalmente, a existência de duas metilas terciárias ligadas a carbono carbinólico indicou a substituição de C-2' por um grupo hidroxiisopropila. Estas suposições foram confirmadas pelos demais experimentos de RMN.

FIGURA 3.101. Espectro de COSY ¹H-¹H da marmesina (**25**) (CDCl₃, 400 MHz).

A análise do mapa de contorno de HSQC (FIGURA 3.102) da cumarina 25 e a comparação com dados de literatura (MAFEZOLI, 2001) permitiram atribuir os valores de deslocamento químico de todos os carbonos hidrogenados da molécula.

FIGURA 3.102. Mapa de contorno de HSQC da marmesina (**25**) (CDCl₃, 400 MHz).

Através da análise do mapa de contorno de HMBC (FIGURAS 3.103 – 3.104) e da comparação com dados de literatura (MAFEZOLI, 2001) foram atribuídos os carbonos quaternários da cumarina **25**.

FIGURA 3.103. Mapa de contorno de HMBC da marmesina (**25**) (CDCl₃, 400 MHz).

FIGURA 3.104. Ampliação do mapa de contorno de HMBC da marmesina (**25**) (CDCl₃, 400 MHz).

A correlação dos hidrogênios das metilas (em 1,38 e 1,24 δ) e de H-3' (3,22 δ) com um carbono carbinólico em 73 δ permitiu que se definisse C-4'.

A correlação de H-3 (6,22 δ) e H-4 (7,60 δ) com um carbono carbonílico em 162 δ , definiu C-2. H-4 (7,60 δ) também correlacionou com um carbono em 156 δ , que correlacionava com H-5 (7,23 δ) e H-8 (6,75 δ), e que foi definido como C-8a. Já C-4a (113 δ) foi atribuído através da correlação com H-3 (6,22 δ) e H-8 (6,75 δ).

Os carbonos 6 (125 δ) e 7 (164 δ) foram definidos através da correlação dos mesmos com H-5 (7,23 δ), H-8 (6,75 δ) e H-3" (3,22 δ).

Portanto, a cumarina 25 foi identificada como a marmesina, que é pela primeira vez relatada no gênero *Almeidea*, mas comumente encontrada na

família Rutaceae (GRAY, 1983). Os dados de RMN ¹H e ¹³C estão ilustrados na TABELA 3.26.

O espectro de massas de **25** (FIGURA 3.105) confirmou a estrutura proposta através do pico do íon molecular em m/z 246 daltons, compatível com a fórmula molecular C₁₄H₁₄O₄ da marmesina.

FIGURA 3.105. Espectro de massas (IE = 70 e.V.) da marmesina (25).

H/C	$\delta_{ m H}$	$\delta_{ m H}$ *	$\delta_{ m C}$	$\delta_{\rm C}$ *
2			162	161,4
3	6,22 d (J = 9,5 Hz)	6,22 d (J = 9,5 Hz)	112	112,4
4	7,60 d (J = 9,5 Hz)	7,60 d ($J = 9,5$ Hz)	144	143,7
4a			113	112,8
5	7,23 s	7,22 t ($J = 1,2$ Hz)	123	123,4
6			125	125,0
7			164	163,2
8	6,75 <i>s</i>	6,75 <i>s</i>	98	98,0
8a			156	155,7
2'	4,74 <i>dd</i> (<i>J</i> = 8,9 Hz)	4,74 <i>dd</i> (<i>J</i> = 9,5 e 8,5 Hz)	91	91,1
3'	3,22	3,25 <i>ddd</i> (<i>J</i> = 15,8, 8,5 e 1,2 Hz)	28	29,5
		3,19 <i>ddd</i> (<i>J</i> = 15,9, 9,5 e 1,2Hz)		
4'			73	71,7
5'	1,24 <i>s</i>	1,38 <i>s</i>	24	24,3
6'	1,38 s	1,24 <i>s</i>	26	26,1
<u>ОН</u>	1,81 <i>s</i> l	1,79 <i>s</i> l		

TABELA 3.26. Dados espectroscópicos de RMN ¹H e ¹³C da marmesina.

* $\delta_{\rm H}$ e $\delta_{\rm C}$ da marmesina (CDCl₃, 400 e 100 MHz) (MAFEZOLI, 2001).

3.8. Identificação das amidas

3.8.1. Identificação da paprazina

A amida paprazina (**26**) foi isolada da fração acetato de etila do extrato metanólico dos galhos de *Almeidea coerulea* (AGMA) (p. 212-213) e identificada por EM e RMN, em uma e duas dimensões.

O espectro de RMN ¹H (FIGURAS 3.106 – 3.107) da substância **26** apresentou: um sinal em 8,05 δ (1H); dois dubletos (J = 8,3 Hz), integrados para 2H cada um, em 7,38 e 6,79 δ ; outros dois dubletos (J = 8,1 Hz), também relativos a 2H cada, em 7,01 e 6,68 δ ; mais dois dubletos (J = 15,7 Hz) em 7,31 e 6,39 δ ; e, dois tripletos (J = 7,1 Hz) em 3,31 e 2,64 δ .

No espectro de COSY ¹H-¹H (FIGURA 3.108) de **26**, os acoplamentos entre os hidrogênios em 7,38 (2H) e 6,79 δ (2H), e entre 7,01 (2H) e 6,68 δ (2H), sugeriram a presença de dois anéis aromáticos *para*-substituídos, em sistemas *AA'XX'* típicos. O acoplamento entre os hidrogênios 7,30 e 6,39 δ indicou a presença de um sistema carbonílico α , β -insaturado, no qual os hidrogênios da dupla estariam em relação *trans*. O acoplamento entre o sinal em 8,05 δ (*N*-H) e um dos metilenos (em 3,31 δ), determinou que este era vicinal ao nitrogênio.

As informações dos espectros de RMN ¹H e COSY ¹H-¹H indicaram, portanto, a natureza de **26** como uma amida, com dois anéis aromáticos *para*-substituídos, dois metilenos vicinais num sistema isolado, e uma dupla ligação α

à carbonila. Sugeriu-se que grupos hidroxila fossem os substituintes dos anéis, já que não foram observados outros sinais no espectro de RMN ¹H. Todas essas suposições foram confirmadas através da análise dos demais espectros de RMN.

FIGURA 3.106. Espectro de RMN ¹H da paprazina (**26**) (DMSO, 400 MHz).

FIGURA 3.107. Ampliação do espectro de RMN ¹H da paprazina (**26**) (DMSO, 400 MHz).

FIGURA 3.108. Espectro de COSY ¹H-¹H da paprazina (**26**) (DMSO, 400 MHz).

A análise do espectro de RMN 13 C (FIGURA 3.109) e do mapa de contorno de HSQC (FIGURAS 3.110 – 3.111) da substância **26**, em conjunto com dados de literatura (RAHMAN et al., 1992), permitiu que fossem atribuídos os deslocamentos químicos de todos os carbonos hidrogenados e fossem definidos cinco carbonos quaternários na molécula em 165,23, 158,73, 155,57, 129,49 e 125,89 δ .

FIGURA 3.109. Espectro de RMN ¹³C da paprazina (26) (DMSO, 50 MHz).

FIGURA 3.110. Mapa de contorno de HSQC da paprazina (26) (DMSO, 400 MHz).

FIGURA 3.111. Ampliação do mapa de contorno de HSQC da paprazina (**26**) (DMSO, 400 MHz).

O mapa de contorno de HMBC (FIGURAS 3.112 - 3.113) permitiu que se definissem os carbonos quaternários e que a unidade derivada do ácido cinâmico na amida **26** fosse atribuída corretamente.

FIGURA 3.112. Mapa de contorno de HMBC da paprazina (26) (DMSO, 400 MHz).

FIGURA 3.113. Ampliação do mapa de contorno de HMBC da paprazina (**26**) (DMSO, 400 MHz).

A correlação de H-2' e H-6' (7,38 δ) com um carbono em 158,73 δ , definiu C-4'. Esses hidrogênios também correlacionaram com o carbono olefínico em 138,49 δ , que pode, desta maneira, ser corretamente atribuído à C-7'.

A correlação dos hidrogênios 3' e 5' (6,79 δ) e, 8' (6,39 δ) com um carbono em 125,89 δ , definiu C-1'.

O carbono carbonílico 9' foi definido através das correlações de H-7' (7,31 δ) e H-8' (6,39 δ) com o sinal em 165,23 δ .

As correlações dos hidrogênios em 6,68 (H-3 e H-5) e 7,01 δ (H-2 e H-6) com o carbono em 129,49 δ determinaram C-1. Já C-4 (155,57 δ) foi atribuído através da correlação com H-2 e H-6.

O espectro de massas (FIGURA 3.114) confirmou a estrutura proposta para a amida **26** através dos picos $[M+H]^+$ e $[M+Na]^+$ em *m/z* 284 e 306 daltons, compatíveis com a fórmula molecular C₁₇H₁₇NO₃.

FIGURA 3.114. Espectro de massas (ES+) da paprazina (26).

Portanto, a amida **26** foi identificada como a paprazina, que não havia sido isolada anteriormente do gênero *Almeidea* e cujos dados de RMN ¹H e ¹³C são descritos na TABELA 3.27.

H/C	$\delta_{ m H}$	$\delta_{ m H}$ *	$\delta_{ m C}$	$\delta_{ m C}$ *
1			129,49	127,48
2 e 6	7,01 d (J = 8,1 Hz)	6,71 <i>d</i> (<i>J</i> = 8,6 Hz)	129,40	116,24
3 e 5	6,68 <i>d</i> (<i>J</i> = 8,1 Hz)	6,78 <i>d</i> (<i>J</i> = 8,6 Hz)	115,06	130,51
4			155,57	156,92
7	2,64 t (J = 7,1 Hz)	2,78 t (J = 7,6 Hz)	34,41	35,84
8	3,31 t (J = 7,1 Hz)	3,45 t (J = 7,6 Hz)	40,75	42,54
1'			125,89	131,34
2' e 6'	7,38 d (J = 8,3 Hz)	7,38 d (J = 8,6 Hz)	129,10	116,89
3' e 5'	6,79 d (J = 8,3 Hz)	7,05 d (J = 8,6 Hz)	115,68	130,68
4'			158,73	156,92
7'	7,31 d ($J = 15,7$ Hz)	6,36 d (J = 15,7 Hz)	138,49	118,25
8'	6,39 <i>d</i> (<i>J</i> = 15,7 Hz)	7,44 d (J = 15,7 Hz)	118,72	141,81
9'			165,23	169,28
<u>NH</u>	8,05 <i>t</i> l	n.d.		

TABELA 3.27. Dados espectroscópicos de RMN ¹H e ¹³C da paprazina.

* $\delta_{\rm H}$ e $\delta_{\rm C}$ da paprazina (CDCl₃, 400 e 100 MHz) (RAHMAN et al., 1992); n.d. = não determinado

3.8.2. Identificação da N-trans-feruloiltiramina

A amida **27** foi isolada da fração acetato de etila do extrato metanólico dos galhos de *Almeidea coerulea* (AGMA) (p. 212-213) e caracterizada por EM e RMN, em uma e duas dimensões.

O espectro de RMN ¹H (FIGURAS 3.115 – 3.116) da substância **27** foi bastante similar ao da amida **26**. Foram observados sinais em: 8,00 δ (*t*1, J = 5,5Hz), relativo à *N*-H; dois dubletos (J = 15,7 Hz) em 7,30 e 6,42 δ , de hidrogênios olefínicos em relação *trans*; dois outros dubletos (J = 8,5 Hz) em 7,01 e 6,68 δ , integrados para 2H cada um, indicando a presença de um anel aromático *para* substituído, com um sistema de hidrogênios *AA'XX'*; três outros sinais de hidrogênios aromáticos em 7,10 (*s*1, 1H), 6,98 (*dd*, J = 8,1 e 1,8 Hz, 1H) e 6,79 δ (*d*, J = 8,1 Hz, 1H), sugerindo a presença de um anel aromático 1,3,4-trissubstituído; dois tripletos (J = 7,5 Hz) em 3,32 e 2,64 δ , relativos a hidrogênios metilênicos vicinais num sistema isolado; e, um singleto em 3,79 δ (3H), relativo a uma metoxila aromática.

O espectro de COSY ¹H-¹H (FIGURA 3.117) de **27** confirmou a presença de um anel aromático *para*-substituído através do acoplamento dos dois hidrogênios em 7,01 δ com os hidrogênios em 6,68 δ , que por comparação com a amida **26** foram atribuídos a H-2 e H-6 e, H-3 e H-5, respectivamente. Já, o anel 1,3,4-trissubstituído foi definido através dos acoplamentos entre os hidrogênios em 6,98 e 6,79 δ em *orto* (*J* grande), e entre o primeiro e o hidrogênio em 7,10 δ , com uma constante *J* pequena *meta*. Desta forma, foi definido o padrão de substituição do anel da unidade derivada do ácido ferúlico. Neste espectro, também se observou, assim como para a amida **26**, o acoplamento entre os hidrogênios metilênicos em 3,32 δ com o *N*-H (em 8,00 δ), determinando a relação vicinal dos mesmos.

Desta forma, a diferença observada entre os espectros de RMN ¹H de **26** e **27** foi a presença de um grupo metoxila aromático e de um anel 1,3,4-trisubstituído para **27**. Portanto, sugeriu-se a natureza de **27** como uma amida derivada do ácido ferúlico e da tiramina. Estas suposições foram confirmadas pelos demais espectros de RMN.

158

FIGURA 3.115. Espectro de RMN ¹H da *N-trans*-feruloiltiramina (**27**) (DMSO, 400 MHz).

FIGURA 3.116. Ampliação do espectro de RMN ¹H da *N-trans*-feruloiltiramina (**27**) (DMSO, 400 MHz).

FIGURA 3.117. Espectro de COSY ¹H-¹H da *N-trans*-feruloiltiramina (**27**) (DMSO, 400 MHz).

Através da comparação com dados de literatura (SARKER et al., 2000) e da análise do espectro de RMN ¹³C (FIGURA 3.118) e do mapa de contorno de HSQC (FIGURAS 3.119 – 3.120) foram determinados os deslocamentos químicos de todos os carbonos hidrogenados da molécula e seis carbonos quaternários (165,40, 155,66, 148,27, 147,85, 129,56 e 126,46 δ).

FIGURA 3.118. Espectro de RMN ¹³C da *N-trans*-feruloiltiramina (**27**) (DMSO, 50 MHz).

FIGURA 3.119. Mapa de contorno de HSQC da *N-trans*-feruloiltiramina (**27**) (DMSO, 400 MHz).

FIGURA 3.120. Ampliação do mapa de contorno de HSQC da *N-trans*-feruloiltiramina (**27**) (DMSO, 400 MHz).

As atribuições dos deslocamentos químicos dos carbonos quaternários da amida **27** e a correção dos valores atribuídos a 7' e 8' da unidade do ácido ferúlico foram feitos através da análise do mapa de contorno de HMBC (FIGURAS 3.121 - 3.122).

A correlação entre os hidrogênios da metoxila, em 3,79 δ , e de H-5' (6,79 δ) com um carbono, em 147,85 δ , permitiu que se definisse C-3'.

As correlações entre H-2' (7,10 δ) e H-6' (6,98 δ) e um carbono em 148,27 δ , determinaram C-4'.

Através da correlação de C-2' (110,80 δ) e C-6' (121,56 δ) com o hidrogênio em 7,30 δ , pode-se atribuir corretamente este a H-7' e o hidrogênio em 6,42 δ a H-8'.

C-1' (126,46 δ) foi determinado através da correlação com H-5' (6,79 δ) e H-8' (6,42 δ).

O carbono carbonílico C-9' (165,40 δ) foi atribuído através das correlações com os hidrogênios 8 (3,32 δ), 7' (7,30 δ) e 8' (6,42 δ).

C-1 (129,56 δ) e C-4 (155,66 δ) foram definidos através das correlações com os hidrogênios em 7,01 (H-2 e H-6) e 6,68 δ (H-3 e H-5). Entretanto, vale

ressaltar que a atribuição de C-1 foi confirmada através das correlações com os hidrogênios metilênicos 7 (2,64 δ) e 8 (3,32 δ).

FIGURA 3.121. Mapa de contorno de HMBC da *N-trans*-feruloiltiramina (**27**) (DMSO, 400 MHz).

FIGURA 3.122. Ampliação do mapa de contorno de HMBC da *N-trans*-feruloiltiramina (27) (DMSO, 400 MHz).

O espectro de massas (FIGURA 3.123) confirmou a estrutura proposta para a amida **27** através dos picos $[M+H]^+$, $[M+Na]^+$ e $[M+K]^+$ em *m/z* 314, 336 e 352 daltons, compatíveis com a fórmula molecular C₁₈H₁₉NO₄.

FIGURA 3.123. Espectro de massas (ES+) da N-trans-feruloiltiramina (27).

Portanto, através da análise dos dados espectroscópicos a amida 27 foi identificada como a *N-trans*-feruloiltiramina, que não havia sido isolada anteriormente do gênero *Almeidea*. Seus dados de RMN ¹H e ¹³C estão descritos na TABELA 3.28.

H / C	$\delta_{ m H}$	$\delta_{ m H}$ *	$\delta_{ m C}$	$\delta_{ m C}$ *
1			129,56	131,7
2 e 6	7,01 d ($J = 8,5$ Hz)	6,74 d (J = 8,4 Hz)	129,50	116,7
3 e 5	6,68 d (J = 8,5 Hz)	7,06 d ($J = 8,4$ Hz)	115,15	131,1
4			155,66	157,3
7	2,64 t (J = 7,5 Hz)	2,77 t (J = 7,5 Hz)	34,46	36,2
8	3,32 tl (J = 7,5 Hz)	3,48 t (J = 7,5 Hz)	40,72	42,9
1'			126,46	128,7
2'	7,10 <i>s</i> l	7,12 d (J = 1,7 Hz)	110,80	112,1
3'			147,85	149,7
4'			148,27	150,2
5'	6,79 d (J = 8,1 Hz)	6,81 <i>d</i> (<i>J</i> = 8,1 Hz)	115,69	116,9
6'	6,98 dd (J=8,1 e)	7,02 dd ($J = 8,1$ e	121,56	123,6
	1,8 Hz)	1,7 Hz)		
7'	7,30 d (J = 15,7 Hz)	6,42 d (J = 15,5 Hz)	138,95	142,4
8'	6,42 d (J = 15,7 Hz)	7,45 d (J = 15,5 Hz)	119,04	119,2
9'			165,40	169,6
3'-O <u>CH</u> ₃	3,79 s	3,89 s	55,56	56,9
<u>NH</u>	8,00 <i>t</i> l ($J = 5,5$ Hz)	n.d.		

TABELA 3.28. Dados espectroscópicos de RMN ¹H e ¹³C da *N-trans*-feruloiltiramina.

* $\delta_{\rm H}$ e $\delta_{\rm C}$ da *N-trans*-feruloiltiramina (MeOD, 500 e 125 MHz) (SARKER et al., 2000); n.d. = não determinado

3.9. Identificação das outras classes de metabólitos

3.9.1. Identificação do derivado do ácido antranílico

A substância **28** foi isolada da fração acetato de etila do extrato metanólico das folhas de *Almeidea rubra* (ALFMA) (p. 217-218) e identificada através de EM, difração de raios-X e RMN.

A estrutura molecular da substância **28** foi determinada principalmente através de difração de raios-X (FIGURA 3.124). Para isso, realizou-se a cristalização de **28** em MeOH. Nos cristais obtidos formaram-se duas moléculas em cada unidade cristalográfica, sendo que estas possuíam interações inter e intramoleculares.

FIGURA 3.124. Estrutura cristalográfica do derivado do ácido antranílico 28.

Anteriormente, descreveu-se que as principais classes de alcalóides encontradas na família Rutaceae derivam do ácido antranílico através da incorporação de uma ou mais unidades acetato e a posterior ciclização através do ataque nucleofílico do nitrogênio a carbonila (FIGURA 3.51) (WATERMAN, 1999). Entretanto, para a substância **28** uma possível rota biogenética (FIGURA 3.125) envolveria a incorporação de duas unidades acetato e a posterior ciclização através do ataque nucleofílico do oxigênio, levando a formação de uma α -pirona. Este tipo de ciclização para substâncias derivadas do ácido antranílico não foi encontrada na literatura e, portanto, o metabólito **28** está sendo pela primeira vez relatado.

FIGURA 3.125. Proposta biogenética para a formação do derivado do ácido antranílico **28**.

As atribuições dos deslocamentos químicos de ¹H e ¹³C foram feitas através da análise dos espectros de RMN. No espectro de RMN ¹H (FIGURA 3.126) de **28** observaram-se: dois multipletos em 7,33 e 6,70 δ , relativos aos quatro hidrogênios aromáticos; dois dubletos (J = 2,2 Hz) em 6,23 e 5,49 δ , que

foram atribuídos por comparação com a estirilpirona (G) (PIZZOLATTI et al., 2000), como H-5 e H-3, respectivamente; um sinal largo em 5,36 δ , referente ao *N*-H; o singleto da metoxila em 3,85 δ ; e, um singleto largo em 2,87 δ relativo à *N*-metila.

FIGURA 3.126. Espectro de RMN ¹H do derivado do ácido antranílico **28** (CDCl₃, 400 MHz).

O espectro de COSY ¹H-¹H (FIGURA 3.127) mostrou o acoplamento entre os hidrogênios aromáticos, entre os hidrogênios 3 (5,49 δ) e 5 (6,23 δ) da α -pirona, e entre a *N*-metila (2,87 δ) e o *N*-H (5,36 δ).

FIGURA 3.127. Espectro de COSY ¹H-¹H do derivado do ácido antranílico **28** (CDCl₃, 400 MHz).

Através da análise do espectro de RMN ¹³C (FIGURA 3.128), do mapa de contorno de HSQC (FIGURA 3.129) e da comparação com dados de literatura para a α -pirona **G** (PIZZOLATTI et al., 2000) foram determinados alguns deslocamentos químicos dos carbonos hidrogenados e 5 carbonos quaternários (171,65, 164,03, 162,81, 147,55, 115,97 δ) no derivado **28**.

170

FIGURA 3.128. Espectro de RMN ¹³C do derivado do ácido antranílico **28** (CDCl₃, 50 MHz).

FIGURA 3.129. Mapa de contorno de HSQC do derivado do ácido antranílico **28** (CDCl₃, 400 MHz).

Os deslocamentos químicos dos carbonos quaternários do derivado **28** foram atribuídos através do mapa de contorno de HMBC (FIGURAS 3.130 – 3.131).

Neste mapa, C-2' (147,55 δ) foi definido através da sua correlação com a *N*-metila (2,87 δ) e com H-4' e H-6' (7,33 δ).

A correlação de um carbono em 115,97 δ com os hidrogênios 5 (6,23 δ), 3' e 5' (6,70 δ) permitiu a atribuição de C-1'.

C-6 (162,81 δ) foi determinado através da correlação com H-5 (6,23 δ) e H-6' (7,33 δ).

O carbono mais desblindado, em 171,65 δ , foi atribuído a C-4 através da sua correlação com H-3 (5,49 δ), H-5 (6,23 δ) e com os hidrogênios da metoxila (3,85 δ). Essas correlações permitiram a correção do valor de deslocamento

químico descrito por PIZZOLATTI et al. (2000), que atribuíam este carbono a C-2. Adicionalmente, a correlação de H-3 (5,49 δ) com o carbono em 164,03 δ definiu C-2.

O espectro de massas da substância **28** (FIGURA 3.132) confirmou a fórmula molecular $C_{13}H_{13}NO_3$ através do pico do íon molecular em *m/z* 231 daltons.

Portanto, através da análise dos dados espectroscópicos, a substância **28** foi identificada como um derivado do ácido antranílico denominada de 6-(2'-*N*-metil)fenil-4-metoxipirona, que é pela primeira vez descrita na literatura e cujos dados espectroscópicos estão listados na TABELA 3.29.

FIGURA 3.130. Mapa de contorno de HMBC do derivado do ácido antranílico **28** (CDCl₃, 400 MHz).

FIGURA 3.131. Ampliação do mapa de contorno de HMBC do derivado do ácido antranílico **28** (CDCl₃, 400 MHz).

FIGURA 3.132. Espectro de massas (IE = 70 e.V.) do derivado do ácido antranílico 28.

H / C	$\delta_{ m H}$	$\delta_{\rm H}$ de G *	$\delta_{ m C}$	$\delta_{\rm C}$ de G *
2			164,03	171,3
3	5,49 d (J = 2,2 Hz)	5,46 d (J = 2,2 Hz)	87,31	88,1
4			171,65	164,4
5	6,23 d (J = 2,2 Hz)	5,89 d (J = 2,2 Hz)	100,09	100,2
6			162,81	159,6
1'			115,97	-
2'			147,55	-
3' e 5'	6,70 <i>m</i>	-	116,45 ou	-
			111,24	
4' e 6'	7,33 m	-	132,31 ou	-
			129,23	
O <u>CH</u> ₃	3,85 s		55,93	55,8
<u>NCH</u> 3	2,87 s	-	30,42	-
<u>NH</u>	5,36 sl	-		

TABELA 3.29. Dados espectroscópicos de RMN ¹H e ¹³C do derivado do ácido antranílico.

* $\delta_{\rm H}$ e $\delta_{\rm C}$ de G (CDCl₃, 300 e 75 MHz) (PIZZOLATTI et al., 2000).

3.9.2. Identificação da 1,5-difenil-1-pentanona

A substância **29** foi isolada da fração diclorometânica do extrato metanólico dos galhos de *Almeidea coerulea* (AGMD) (p. 208-209) e identificada por EM e RMN, em uma e duas dimensões.

(29)

O espectro de RMN ¹H (FIGURAS 3.133 – 3.134) de **29** apresentou sinais relativos a dez hidrogênios aromáticos em: 7,95 (*m*, 2H), 7,55 (*tt*, J = 8,0 e 1,3 Hz, 1H), 7,46 (*m*, 2H), 7,28 (*m*, 2H) e 7,19 δ (*m*, 3H). Mostrou também: dois tripletos (J = 7,6 Hz) em 2,99 e 2,68 δ , de hidrogênios metilênicos α carbonílicos e benzílicos, respectivamente; e, dois multipletos, relativos a dois hidrogênios cada, em 1,81 e 1,73 δ .

FIGURA 3.133. Espectro de RMN ¹H da 1,5-difenil-1-pentanona (**29**) (CDCl₃, 400 MHz).

FIGURA 3.134. Ampliação do espectro de RMN ¹H da 1,5-difenil-1-pentanona (**29**) (CDCl₃, 400 MHz).

O espectro de COSY ¹H-¹H (FIGURA 3.135) de **29** definiu a presença de uma cadeia com quatro grupos metilênicos (CH₂-CH₂-CH₂-CH₂) através do acoplamento entre os hidrogênios em 2,99 e 1,81 δ , e entre os hidrogênios em 1,73 e 2,68 δ . Entretanto, não foi observado o acoplamento entre os metilênicos em 1,81 e 1,73 δ , provavelmente por estes serem quase equivalentes e ocorrerem muito próximos no espectro. Também se determinou, através deste espectro, a relação *orto* entre os hidrogênios aromáticos em 7,95 e 7,46 δ , 7,46 e 7,55 δ , e 7,28 e 7,19 δ .

FIGURA 3.135. Espectro de COSY ${}^{1}\text{H}{}^{1}\text{H}$ da 1,5-difenil-1-pentanona (29) (CDCl₃, 400 MHz).

A análise dos dados de RMN ¹H indicou a natureza de **29** como uma difenilcetona, ilustrada anteriormente. Essa indicação foi confirmada através dos demais experimentos de RMN.

A partir do espectro de RMN ¹³C (FIGURA 3.136) e do mapa de contorno de HSQC (FIGURAS 3.137 – 3.138), foram definidos os três carbonos quaternários da molécula (200,25, 142,24 e 137,10 δ) e todas as correlações dos carbonos hidrogenados.

FIGURA 3.136. Espectro de RMN ¹³C da 1,5-difenil-1-pentanona (**29**) (CDCl₃, 50 MHz).

FIGURA 3.137. Mapa de contorno de HSQC da 1,5-difenil-1-pentanona (**29**) (CDCl₃, 400 MHz).

FIGURA 3.138. Ampliação do mapa de contorno de HSQC da 1,5-difenil-1pentanona (**29**) (CDCl₃, 400 MHz).

O mapa de contorno de HMBC (FIGURA 3.139) permitiu que fossem atribuídos os carbonos quaternários da substância **29**. Neste mapa, a correlação do carbono carbonílico, em 200,25 δ , com os hidrogênios 2 (2,99 δ), 2' e 6' (7,95 δ) definiu C-1.

O carbono quaternário 1' (137,10 δ) foi definido através de sua correlação com H-3' e H-5' (7,46 δ).

A correlação dos hidrogênios 5 (2,68 δ), 2" e 6" (7,28 δ) com um carbono em 142,24 δ determinou C-1".

FIGURA 3.139. Mapa de contorno de HMBC da 1,5-difenil-1-pentanona (**29**) (CDCl₃, 400 MHz).

O espectro de massas (FIGURA 3.140) da substância **29** apresentou o pico do íon molecular em m/z 238 daltons, compatível com a fórmula molecular C₁₇H₁₈O.

FIGURA 3.140. Espectro de massas (IE = 70 e.V.) da 1,5-difenil-1-pentanona (29).

Portanto, através da análise dos dados espectroscópicos a estrutura da substância **29** foi elucidada e é pela primeira vez citada na literatura.

Essa substância é bastante similar aos 1,5-difenilpentanos que foram isolados de *Flindersia laevicarpa* (Rutaceae) (FIGURA 3.141) e que são citados como possíveis precursores das cromonas (GRAY, 1983).

FIGURA 3.141. Substâncias isoladas de Flindersia laevicarpa (GRAY, 1983).

TABELA 3.30. Dados espectroscópicos de RMN ¹H e ¹³C da 1,5-difenil-1pentanona.

H / C	$\delta_{ m H}$	$\delta_{ m C}$
1		200,25
2	2,99 t (J = 7,6 Hz)	38,41
3	1,81 <i>m</i>	24,02
4	1,73 <i>m</i>	31,10
5	2,68 t (J = 7,6 Hz)	35,81
1'		137,10
2' e 6'	7,95 m	128,03
3' e 5'	7,46 <i>m</i>	128,40
4'	7,55 <i>tt</i> ($J = 8,0 \text{ e } 1,3 \text{ Hz}$)	132,89
1"		142,24
2" e 6"	7,28 m	128,30
3" e 5"	7,19 <i>m</i>	128,55
4"	7,19 <i>m</i>	125,74

3.9.3. Identificação do ácido siríngico

A substância **30** foi isolada da fração acetato de etila do extrato metanólico dos galhos de *Almeidea coerulea* (AGMA) (p. 212-213) e caracterizada por RMN ¹H e ¹³C.

O espectro de RMN ¹H (FIGURA 3.142) de **30** apresentou apenas três singletos em 9,21 (1H), 7,19 (2H) e 3,79 δ (6H), que indicaram a presença de um anel aromático totalmente simétrico, substituído por dois grupos metoxilas e uma hidroxila.

No espectro de RMN ¹³C (FIGURA 3.143) de **30**, a simetria da molécula foi confirmada através dos sinais de dois C-H aromáticos (em 106,88 δ), de dois carbonos metoxílicos (em 55,98 δ) e de dois carbonos quaternários ligados a OCH₃ (em 147,42 δ). Já a substituição do anel por um grupo hidroxila foi confirmada pelo carbono quaternário em 140,19 δ . No espectro de RMN ¹³C foram observados ainda dois carbonos quaternários em 167,20 e 120,39 δ , que indicaram a presença de uma carboxila substituindo o anel.

Portanto, a substância **30** foi identificada como ácido siríngico e é pela primeira vez descrita no gênero *Almeidea*.

183

FIGURA 3.142. Espectro de RMN ¹H do ácido siríngico (**30**) (DMSO, 200 MHz).

FIGURA 3.143. Espectro de RMN ¹³C do ácido siríngico (**30**) (DMSO, 50 MHz).

3.10. Atividades biológicas dos extratos vegetais

Os extratos vegetais foram preparados a partir de folhas, caules e/ou galhos das espécies *Almeidea coerulea*, *A. rubra*, *Conchocarpus heterophyllus*, *Galipea carinata* e *Trichilia ramalhoi*. Foram obtidos extratos hexânicos e metanólicos, perfazendo um total de 22 extratos brutos (p. 204-205), que então foram submetidos aos três ensaios biológicos propostos.

3.10.1. Atividade inibitória da enzima gGAPDH

Os ensaios de inibição da atividade da enzima *g*GAPDH (gliceraldeído-3fosfatodesidrogenase) foram realizados no Laboratório de Cristalografia de Proteínas e Biologia Estrutural do IFSC-USP, segundo a metodologia descrita na seção *Procedimento Experimental* (p. 226-228).

Os extratos vegetais foram avaliados numa concentração de 100 µg/mL. Os resultados obtidos encontram-se na TABELA 3.31 e são expressos em porcentagem de atividade inibitória (% A.I.). Os extratos com valor de A.I. igual ou superior a 50 % foram considerados ativos. Segundo este critério, apenas a espécie *Trichilia ramalhoi* apresentou um potencial inibitório promissor, especialmente seus extratos TRFH, TRFM e TRGM.

espécie	parte vegetal	extrato	código do	% A.I.
			extrato	
A. coerulea	galhos	hexânico	AGH	0
		metanólico	AGM	0
A. rubra	folhas	hexânico	ALFH	0
		metanólico	ALFM	0
	caule	hexânico	ALCH	0
		metanólico	ALCM	0
C. heterophyllus	folhas	hexânico	AHFH	0
1		metanólico	AHFM	8,16
	caule	hexânico	AHCH	0
		metanólico	AHCM	8,16
G. carinata *	folhas	hexânico	GFH	0
		metanólico	GFM	0
	caule	hexânico	GCH	0
		metanólico	GCM	10,9
G. carinata	folhas	hexânico	GCFH	0
		metanólico	GCFM	0
	caule	hexânico	GCCH	0
		metanólico	GCCM	0
T. ramalhoi	folhas	hexânico	TRFH	73,5
		metanólico	TRFM	92,4
	galhos	hexânico	TRGH	9,7
	-	metanólico	TRGM	95,3

TABELA 3.31. Efeito dos extratos vegetais sobre a atividade da enzima gGAPDH.

* espécime coletada em 18/01/1993

3.10.2. Atividade inibitória da enzima APRT

Os ensaios de inibição da atividade da enzima APRT (adenina fosforribosiltransferase) também foram realizados no Laboratório de Cristalografia de Proteínas e Biologia Estrutural do IFSC-USP, segundo a metodologia descrita na seção *Procedimento Experimental* (p. 228-229).

Assim como para a enzima GAPDH, os extratos vegetais foram avaliados numa concentração de 100 μ g/mL e os resultados são expressos em porcentagem de atividade inibitória (% A.I.) (TABELA 3.32), sendo considerados ativos os extratos com valor de A.I. igual ou superior a 50 %.

espécie	parte vegetal	extrato	código do	% A.I.
			extrato	
A. coerulea	galhos	hexânico	AGH	0
		metanólico	AGM	23,2
A. rubra	folhas	hexânico	ALFH	1,1
		metanólico	ALFM	26,9
	caule	hexânico	ALCH	9,2
		metanólico	ALCM	15,5
C. heterophyllus	folhas	hexânico	AHFH	37,0
		metanólico	AHFM	0
	caule	hexânico	AHCH	0
		metanólico	AHCM	0
G. carinata *	folhas	hexânico	GFH	0
		metanólico	GFM	20,8
	caule	hexânico	GCH	33,0
		metanólico	GCM	32,1
G. carinata	folhas	hexânico	GCFH	36,8
		metanólico	GCFM	25,5
	caule	hexânico	GCCH	0
		metanólico	GCCM	0
T. ramalhoi	folhas	hexânico	TRFH	0
		metanólico	TRFM	0
	galhos	hexânico	TRGH	0
		metanólico	TRGM	68,3

TABELA 3.32. Efeito dos extratos vegetais sobre a atividade da enzima APRT.

* espécime coletada em 18/01/1993

Os resultados da TABELA 3.32 mostram que dos 22 extratos testados, apenas o extrato metanólico dos galhos de *Trichilia ramalhoi* (TRGM)

ocasionou uma diminuição significativa na atividade da enzima APRT e que alguns extratos apresentaram inibições na faixa de 20-30%.

Apesar de poucos extratos inibirem significativamente a atividade das enzimas GAPDH e APRT, os resultados foram considerados promissores, já que os ensaios bioquímicos sobre essas enzimas são bastante específicos, limitando a possível ação dos componentes testados, o que não acontece em sistemas biológicos mais complexos, onde os extratos podem atuar das mais diversas formas. Além disso, foi utilizada uma amostragem relativamente pequena (22 extratos).

Entretanto, era de interesse desse trabalho realizar esses ensaios como forma de se encontrar novos compostos protótipos para a doença de Chagas e para as Leishmanioses, pois se acredita que estas enzimas sejam essenciais aos protozoários causadores dessas doenças e que a inibição das mesmas possa causar algum dano a esses parasitas. Adicionalmente, esses ensaios são uma abordagem bastante moderna na procura de novos fármacos, além de serem uma forma de *screening* biológico bastante rápida.

3.10.3. Atividade tripanocida

Os ensaios *in vitro* sobre as formas tripomastigotas do *Trypanosoma cruzi* foram realizados no Departamento de Análises Clínicas, Bromatológicas e Toxicológicas da FCFRP-USP, segundo metodologia descrita na seção *Procedimento Experimental* (p. 229-230).

Os extratos vegetais foram avaliados numa concentração de 4 mg/mL. Os resultados obtidos encontram-se na TABELA 3.33 e são expressos em porcentagem de lise parasitária (% L.P.). Os extratos com valor de L.P. igual ou superior a 50 % foram considerados ativos. Segundo este critério, 16 dos 22 extratos foram ativos, destacando-se AHFH de *C. heterophyllus* e TRGH e TRGM de *T. ramalhoi*. Estes resultados também demonstraram a grande

potencialidade de plantas da família Rutaceae e Meliaceae para a busca de compostos tripanocidas.

espécie	parte vegetal	extrato	código do	% L.P.
			extrato	
A. coerulea	galhos	hexânico	AGH	29,91
		metanólico	AGM	55,11
A. rubra	folhas	hexânico	ALFH	35,43
		metanólico	ALFM	54,33
	caule	hexânico	ALCH	40,94
		metanólico	ALCM	55,90
C. heterophyllus	folhas	hexânico	AHFH	99,22
1		metanólico	AHFM	59,44
	caule	hexânico	AHCH	71,65
		metanólico	AHCM	68,89
G. carinata *	folhas	hexânico	GFH	61,42
		metanólico	GFM	64,56
	caule	hexânico	GCH	51,97
		metanólico	GCM	44,09
G. carinata	folhas	hexânico	GCFH	54,33
		metanólico	GCFM	20,47
	caule	hexânico	GCCH	50,00
		metanólico	GCCM	62,99
T. ramalhoi	folhas	hexânico	TRFH	59,44
		metanólico	TRFM	47,63
	galhos	hexânico	TRGH	84,25
		metanólico	TRGM	81,89

TABELA 3.33. Atividade tripanocida dos extratos vegetais.

* espécime coletada em 18/01/1993

3.11. Atividades biológicas das frações

Alguns dos extratos vegetais foram fracionados (p. 205-208), levando à obtenção de 43 frações.

Adotou-se como metodologia de trabalho testar todas as frações sobre os três modelos biológicos, mesmo que elas fossem oriundas de extratos não ativos sobre um determinado ensaio.

3.11.1. Atividade inibitória da enzima gGAPDH

As frações foram testadas sobre a enzima GAPDH na concentração de 100 µg/mL. Os resultados da TABELA 3.34 mostraram que, assim como para os extratos, apenas as frações de *T. ramalhoi* inibiram significativamente a atividade enzimática, principalmente as mais polares. Desta forma, pode-se concluir que essa espécie, a única Meliaceae testada, poderia ser a mais promissora para se isolar compostos inibidores da enzima GAPDH.

espécie	código do	fração	código da	% A.I.
	extrato		fração	
A. coerulea	AGM	diclorometânica	AGMD	0
		acetato de etila	AGMA	5,7
		metanólica	AGMM	4,0
A. rubra	ALFM	diclorometânica	ALFMD	0
		acetato de etila	ALFMA	19,2
		metanólica	ALFMM	6,3
	ALCM	diclorometânica	ALCMD	0
		acetato de etila	ALCMA	22,6
		metanólica	ALCMM	12,6
C. heterophyllus	AHFH	hexânica	AHFHH	16,3
		diclorometânica	AHFHD	0
		acetato de etila	AHFHA	0
		metanólica	AHFHM	0
	AHFM	hexânica	AHFMH	0
		diclorometânica	AHFMD	0
		acetato de etila	AHFMA	0
		metanólica	AHFMM	11,0
	AHCM	acetato de etila	AHCMA	0
		metanólica	AHCMM	6,3

TABELA 3.34. Efeito das frações sobre a atividade da enzima gGAPDH.

Continuação da TABELA 3.34.

G. carinata *	GFM	diclorometânica	GFMD	12,5
		acetato de etila	GFMA	12,0
		metanólica	GFMM	0
G. carinata	GCFH	hexânica	GCFHH	0
		diclorometânica	GCFHD	0
		acetato de etila	GCFHA	0
		metanólica	GCFHM	0
		diclorometânica	GCCMD	9,7
		acetato de etila	GCCMA	6,2
		metanólica	GCCMM	10,4
T. ramalhoi	TRFH	hexânica	TRFHH	0
		diclorometânica	TRFHD	0
		acetato de etila	TRFHA	0
		metanólica	TRFHM	0
	TRFM	hexânica	TRFMH	76,8
		diclorometânica	TRFMD	47,4
		acetato de etila	TRFMA	59,8
		metanólica	TRFMM	83,1
		butanólica	TRFMB	91,0
	TRGM	hexânica	TRGMH	89,1
		diclorometânica	TRGMD	0
		acetato de etila	TRGMA	72,4
		metanólica	TRGMM	83,5
		butanólica	TRGMB	93,7

* espécime coletada em 18/01/1993

3.11.2. Atividade inibitória da enzima APRT

As frações foram ensaiadas frente à enzima APRT na concentração de 100 μ g/mL. Os resultados da TABELA 3.35 mostraram que das 43 frações testadas 11 ocasionaram a inibição da atividade dessa enzima. Eles também demonstraram a importância de se ensaiar frações oriundas de extratos inativos quando se faz um estudo biomonitorado por esta enzima.

Dentre as frações ativas destacaram-se a fração acetato de etila do extrato metanólico das folhas de *A. rubra* (ALFMA), que apresentou a maior A.I (90,7

%). Outras frações bastante ativas foram AHFHA e AHFMD de *C*. *heterophyllus* e TRFMA de *T. ramalhoi*.

espécie	código do	fração	código da	% A.I.
	extrato		fração	
A. coerulea	AGM	diclorometânica	AGMD	2,7
		acetato de etila	AGMA	6,4
		metanólica	AGMM	21,9
A. rubra	ALFM	diclorometânica	ALFMD	0
		acetato de etila	ALFMA	90,7
		metanólica	ALFMM	20,3
	ALCM	diclorometânica	ALCMD	52,7
		acetato de etila	ALCMA	51,5
		metanólica	ALCMM	9,0
C. heterophyllus	AHFH	hexânica	AHFHH	10,3
		diclorometânica	AHFHD	0
		acetato de etila	AHFHA	80,1
		metanólica	AHFHM	6,2
	AHFM	hexânica	AHFMH	20,7
		diclorometânica	AHFMD	80,9
		acetato de etila	AHFMA	0
		metanólica	AHFMM	0
	AHCM	acetato de etila	AHCMA	0
		metanólica	AHCMM	24,5
G. carinata *	GFM	diclorometânica	GFMD	0
		acetato de etila	GFMA	41,8
		metanólica	GFMM	7,4
G. carinata	GCFH	hexânica	GCFHH	0
		diclorometânica	GCFHD	0
		acetato de etila	GCFHA	0
		metanólica	GCFHM	17,6
		diclorometânica	GCCMD	0
		acetato de etila	GCCMA	8,4
		metanólica	GCCMM	3,5

TABELA 3.35. Efeito das frações sobre a atividade da enzima APRT.

T. ramalhoi	TRFH	hexânica	TRFHH	0
		diclorometânica	TRFHD	19,0
		acetato de etila	TRFHA	0
		metanólica	TRFHM	33,7
	TRFM	hexânica	TRFMH	57,5
		diclorometânica	TRFMD	56,4
		acetato de etila	TRFMA	85,9
		metanólica	TRFMM	72,7
		butanólica	TRFMB	62,8
	TRGM	hexânica	TRGMH	19,0
		diclorometânica	TRGMD	28,5
		acetato de etila	TRGMA	52,3
		metanólica	TRGMM	32,5
		butanólica	TRGMB	47,6

Continuação da TABELA 3.35.

* espécime coletada em 18/01/1993

3.11.3. Atividade tripanocida

As frações foram avaliadas sobre as formas tripomastigotas do *T. cruzi* numa concentração de 2 mg/mL. Os resultados obtidos encontram-se na TABELA 3.36 e demonstram que foram obtidas frações mais ou tão ativas quanto os extratos vegetais (TABELA 3.33), inclusive com cinco delas (AGMD, AHFHA, AHCMA, GCFHH e GCCMD) ocasionando 100 % de lise parasitária. Estes dados também confirmaram o grande potencial das espécies escolhidas para busca de compostos tripanocidas.

espécie	código do	fração	código da	% L.P.
	extrato		fração	
A. coerulea	AGM	diclorometânica	AGMD	100 ± 0
		acetato de etila	AGMA	$68,6 \pm 4,0$
		metanólica	AGMM	$12,9\pm8,2$

TABELA 3.36. Atividade tripanocida das frações.

Continuação da TABELA 3.36.

A. rubra	ALFM	diclorometânica	ALFMD	$41,4 \pm 6,1$
		acetato de etila	ALFMA	$62,9 \pm 12,1$
		metanólica	ALFMM	$40,0 \pm 12,1$
	ALCM	diclorometânica	ALCMD	$65,7 \pm 8,1$
		acetato de etila	ALCMA	$80,0\pm4,0$
		metanólica	ALCMM	$17,1 \pm 4,0$
C. heterophyllus	AHFH	hexânica	AHFHH	$25,7 \pm 14,2$
		diclorometânica	AHFHD	$45,0 \pm 1,0$
		acetato de etila	AHFHA	100 ± 0
		metanólica	AHFHM	$7,1 \pm 0$
	AHFM	hexânica	AHFMH	$97,1 \pm 2,0$
		diclorometânica	AHFMD	$25,6 \pm 11,1$
		acetato de etila	AHFMA	$56,4 \pm 5,0$
		metanólica	AHFMM	$98,6 \pm 2,0$
	AHCM	acetato de etila	AHCMA	100 ± 0
		metanólica	AHCMM	$37,0 \pm 10,2$
G. carinata *	GFM	diclorometânica	GFMD	$82,6 \pm 2,0$
		acetato de etila	GFMA	$96,4 \pm 5,0$
		metanólica	GFMM	$50,0\pm2,0$
G. carinata	GCFH	hexânica	GCFHH	100 ± 0
		diclorometânica	GCFHD	$9,3 \pm 8,4$
		acetato de etila	GCFHA	$11,3 \pm 3,1$
		metanólica	GCFHM	$65, 6 \pm 3, 7$
		diclorometânica	GCCMD	100 ± 0
		acetato de etila	GCCMA	$44,4 \pm 18,7$
		metanólica	GCCMM	$31,1 \pm 7,5$
T. ramalhoi	TRFH	hexânica	TRFHH	$49,7 \pm 18,7$
		diclorometânica	TRFHD	$8,6 \pm 1,9$
		acetato de etila	TRFHA	$28,5 \pm 8,7$
		metanólica	TRFHM	$15,2 \pm 2,5$
	TRFM	hexânica	TRFMH	$12,6 \pm 1,2$
		diclorometânica	TRFMD	$25,8 \pm 2,5$
		acetato de etila	TRFMA	$21,9 \pm 1,9$
		metanólica	TRFMM	$31,1 \pm 0$
		butanólica	TRFMB	$29,8 \pm 10,6$
	TRGM	hexânica	TRGMH	$68,2 \pm 0$
		diclorometânica	TRGMD	$76,2 \pm 3,5$
		acetato de etila	TRGMA	$13,9 \pm 9,4$
		metanólica	TRGMM	$23,2 \pm 11,2$
		butanólica	TRGMB	$12,6 \pm 7,2$

* espécime coletada em 18/01/1993

3.12. Atividades biológicas das substâncias isoladas

As frações (ou extratos) ativos foram selecionados para estudo químico e isolamento do(s) possível(eis) princípio(s) ativo(s) de acordo com a potente atividade em um dos modelos biológicos ou segundo a atividade comum em dois deles.

Assim, as frações AGMD e AGMA de *A. coerulea*, ALFMA e ALCMD de *A. rubra*, AHFHD, AHFHA, AHFMD, AHCMA e os extratos AHCH de *C. heterophyllus* e TRGH de *T. ramalhoi* foram escolhidos para estudo químico.

Vale ressaltar, que as frações mais polares de *T. ramalhoi*, que inibiram significativamente a atividade da enzima GAPDH (TABELA 3.34) também foram trabalhadas, mas não possibilitaram o isolamento de nenhuma substância.

3.12.1. Atividade inibitória da enzima gGAPDH

As substâncias isoladas foram testadas sobre a enzima gGAPDH em concentrações variadas. Os resultados de A.I. obtidos são descritos na TABELA 3.37 e mostram que dentre as substâncias testadas a que ocasionou maior inibição da atividade enzimática foi a cumarina marmesina (**25**), que apresenta grande semelhança estrutural com a chalepina (MAFEZOLI, 2001; PAVÃO et al., 2002), que foi a mais ativa dentre as cumarinas ensaiadas por VIEIRA et al. (2001). Entretanto, as atividades das substâncias estão aquém das expectativas, pois o que se almeja é um inibidor enzimático que atue em concentrações nanomolares.

substância	isolada da fração	C / µmol/L	% A.I.
	(ou extrato)		
flavona (7)	AHFHA, AHFMD	450	9,7
	e AHCMA		
7-metoxiflavona (8)	AHFHA e	397	78,3
	AHCMA	198	17,5
5-hidroxiflavona (9)	AHFHA	210	20,1
dictamina (11)	AGMA	503	9,8
kokusagina (12)	ALFMA	412	12,1
esquimianina (13)	ALFMA E	200	0
	AHCMA		
δ -fagarina (14)	AGMA	200	35,7
isokokusagina (15)	ALFMA	206	47,2
isoesquimianina (16)	ALFMA	193	17,4
isodutaduprina (17)	ALFMA	356	63,4
		178	46,7
alcalóide tetraidrofuroquinolínico 18	ALFMA	284	0
haplotusina (19)	AHCMA	200	23,8
alcalóide 2-fenil-1-metil-4-quinolona	AHCMA	200	0
(20)			
arborinina (21)	ALFMA e	351	0
	ALCMD		
escoparona (23)	AGMA	200	48,5
escopoletina (24)	AGMA e AHFMD	200	0
marmesina (25)	AGMA	200	72,2
paprazina (26)	AGMA	353	8,4
<i>N-trans</i> -feruloiltiramina (27)	AGMA	319	17,6
derivado do ácido antranílico 28	ALFMA	433	4,6
1,5-difenil-1-pentanona (29)	AGMD	420	0
ácido siríngico (30)	AGMA	505	0

TABELA 3.37. Efeito das substâncias isoladas sobre a atividade da enzima gGAPDH.

3.12.2. Atividade inibitória da enzima APRT

As substâncias isoladas foram ensaiadas sobre a enzima APRT em concentrações variadas. Os resultados de A.I. obtidos estão descritos na TABELA 3.38 e mostraram que os metabólitos mais ativos foram os alcalóides furoquinolônicos isokokusagina (15), isoesquimianina (16) e isodutaduprina
(17), que inclusive foram muito mais ativos que seus isômeros kokusagina (12) e esquimianina (13). Outro metabólito que ocasionou a inibição moderada dessa enzima foi a 5-hidroxiflavona (9). Essas substâncias provavelmente são as responsáveis pelas atividades observadas para as frações ALFMA e AHFHA, das quais foram isoladas.

substância	isolada da fração	C / µmol/L	% A.I.
	(ou extrato)		
flavona (7)	AHFHA, AHFMD	45,0	4,3
	e AHCMA		
7-metoxiflavona (8)	AHFHA e	99,0	0
	AHCMA		
5-hidroxiflavona (9)	AHFHA	105	62,6
		42,0	16,6
dictamina (11)	AGMA	251	1,6
kokusagina (12)	ALFMA	412	2,2
esquimianina (13)	ALFMA E	100	7,0
	AHCMA		
δ -fagarina (14)	AGMA	100	0
isokokusagina (15)	ALFMA	41,2	44,6
isoesquimianina (16)	ALFMA	38,6	39,1
isodutaduprina (17)	ALFMA	35,6	21,6
alcalóide tetraidrofuroquinolínico 18	ALFMA	142	10,4
haplotusina (19)	AHCMA	100	0
alcalóide 2-fenil-1-metil-4-quinolona	AHCMA	100	55,9
(20)			
arborinina (21)	ALFMA e	35,1	16,6
	ALCMD		
escoparona (23)	AGMA	100	6,5
escopoletina (24)	AGMA e AHFMD	100	10,6
marmesina (25)	AGMA	100	0
paprazina (26)	AGMA	177	19,8
<i>N-trans</i> -feruloiltiramina (27)	AGMA	158	9,9
derivado do ácido antranílico 28	ALFMA	216	28,8
1,5-difenil-1-pentanona (29)	AGMD	210	0
ácido siríngico (30)	AGMA	2.52	33 9

TABELA 3.38. Efeito das substâncias isoladas sobre a atividade da enzima APRT.

3.12.3. Atividade tripanocida

As substâncias isoladas foram testadas sobre as formas tripomastigotas do *T. cruzi* nas concentrações de 500, 250 e 100 μ g/mL e os valores de IC₅₀ foram calculados a partir dos valores de % de lise parasitária obtidos nessas concentrações. Tais resultados estão descritos na TABELA 3.39.

substância	isolada da fração	C /	% L.P.	IC ₅₀ /
	(ou extrato)	µg/mL		mmol/L
β -sitosterol e estigmasterol (1) *	AHCH e TRGH	100	19,10	-
		250	20,90	
		500	40,00	
sitostenona (2)	AGMD	100	28,56	1,218
		250	42,86	
		500	48,21	
benzoato de β -sitosterila (3)	AHFHD	100	26,33	0,748
		250	27,23	
		500	64,73	
lupeol (5) *	TRGH	100	50,83	0,1948
		250	59,50	
		500	62,39	
sesquiterpeno eudesmano 6	AGMA	100	24,55	0,716
		250	70,53	
		500	100	
flavona (7)	AHFHA,	100	34,5	9,531
	AHFMD e	250	38,6	
	AHCMA	500	48,6	
7-metoxiflavona (8)	AHFHA e	100	23,65	1,084
	AHCMA	250	52,67	
		500	77,68	
piranoflavonas 10	AHFHD	100	26,33	-
		250	44,20	
		500	61,61	
dictamina (11) *	AGMA	100	16,66	17,65
		250	17,59	
		500	28,70	

TABELA 3.39. Atividade tripanocida das substâncias isoladas.

Continuação TABELA 3.39.

kokusagina (12) *		100	16.58	0 5506
Kokusagina (12)	ALIMA	250	40,38 57 13	0,5590
		230 500	58.38	
ocquimioning (13)		100	25 AA	1 155
esquimanna (13)		250	20,44	1,435
	ΑΠΟΜΙΑ	230	50,55 65 17	
		300 100	03,17	1 410
o-tagarina (14)	AGMA	250	20,33	1,412
		230	55,40 75.00	
algolóido totroidrofuro quinclínico		500 100	75,00	0 077
	ALFMA	100	28,12	0,977
18		230	44,20	
haulataring (10)		500 100	38,93	0.12(0
napiotusina (19)	AHCMA	100	29,01	0,1369
		250	49,55	
		500	12,32	0 1 4 4 0
alcaloide 2-fenii-1-metii-4-	AHCMA	100	26,78	0,1449
quinolona (20)		250	33,92	
1 • • (21) •		500	/0,09	1 00 1
arborinina (21) *	ALFMA e	100	24,00	1,231
	ALCMD	250	42,39	
		500	57,99	2 1 (0
escoparona (23) *	AGMA	100	37,87	2,160
		250	48,45	
		500	49,33	. =1.0
escopoletina (24) *	AGMA e	50	47,20	0,719
	AHFMD	400	52,20	
		800	63,10	
		4000	100	
marmesina (25) *	AGMA	100	48,53	0,528
		250	52,94	
		500	90,44	
paprazina (26)	AGMA	100	24,55	2,021
		250	37,94	
		500	45,08	
<i>N-trans</i> -feruloiltiramina (27)	AGMA	100	9,37	1,211
		250	28,12	
		500	69,19	
derivado do ácido antranílico 28	ALFMA	100	27,23	1,271
		250	45,08	
		500	74,10	

Continuação da TABELA 3.39.					
1,5-difenil-1-pentanona (29)	AGMD	100	28,12	1,095	
		250	53,57		
		500	91,52		
ácido siríngico (30)	AGMA	100	30,35	2,076	
		250	33,02		
		500	58,47		
* 1 (A : (1) MAEEZOLI (2001)					

* substâncias testadas por MAFEZOLI (2001).

Os resultados da TABELA 3.39 mostram que os alcalóides 2- e 4quinolônicos (19 e 20) e o triterpeno lupeol (4), isolados das frações ativas AHCMA e TRGH, foram os que apresentaram maior atividade tripanocida dentre os metabólitos ensaiados. Seus IC_{50} são significativos, principalmente quando comparados aos valores de EC₅₀ (0,150-0,300 mmol/L) dos alcalóides 2-R-quinolínicos (FOURNET et al., 1993b; GANTIER et al., 1996), que são os produtos naturais mais promissores na terapêutica específica das leishmanioses.

o sesquiterpeno eudesmano 6, o alcalóide Além destes metabólitos, kokusagina (12), e as cumarinas escopoletina (24) e marmesina (25) também foram moderadamente ativos sobre o T. cruzi. As atividades tripanocida e inibitória da enzima GAPDH da cumarina 25 são bastante valiosas, pois podem indicar o possível modo de ação dessa substância.

Entretanto, as substâncias testadas não mostraram ser potentes agentes tripanocidas, principalmente quando comparadas ao quimioprofilático violeta de genciana, cujo IC₅₀ é de 0,083 mM, e com a lignana (-)-metilpluviatolídeo, que na concentração de 67,5 µM ocasionou 99 % de lise parasitária (BASTOS et al., 1999).

Apesar deste fato, os resultados dos testes tripanocidas com as substâncias foram considerados promissores, já que estimulam o estudo sistemático de algumas classes de substâncias, como as dos alcalóides 2- e 4- quinolônicos e triterpenos lupânicos, a fim de se determinar a relação estrutura-atividade e também para se constatar se os metabólitos mais ativos deste trabalho, na verdade, não são os menos ativos de uma classe de compostos.

4. Procedimento experimental

4.1. Materiais e métodos

Suportes para cromatografia em coluna (CC):

- Sílica gel 60 (70-230 mesh e 230-400 mesh) da Merck
- Florisil da Merck
- Sephadex LH-20 da Amersham Pharmacia Biotech AB

Solventes para cromatografia:

Foram utilizados solventes comerciais destilados no DQ-UFSCar.

Cromatografia em coluna:

Foram utilizadas colunas de tamanhos variados, dependendo das quantidades a serem cromatografadas. Os suportes e os eluentes usados foram os mencionados anteriormente.

Cromatografia em camada delgada comparativa:

Utilizada para a monitoração dos fracionamentos efetuados. Para tanto, usaram-se folhas de alumínio (com sílica gel 60 F_{254} , $\phi = 0,2$ mm) da Merck. Os reveladores empregados foram: radiação UV (254 e 360 nm), reagente de Dragendorff e vanilina em ácido sulfúrico.

Cromatografia em camada delgada preparativa:

Foram utilizadas placas comerciais (20 x 5 cm ou 20 x 20 cm) da Macherey-Nagel GmBH & Co, com 0,25 mm de sílica gel 60 com indicador UV_{254} .

Solventes para obtenção de espectros de RMN:

- deuterados da Merck e Aldrich

4.2. Equipamentos

Espectrômetros de Ressonância Magnética Nuclear:

- Brüker DRX 200 MHz

- Brüker ARX 400 MHz

<u>CG-EM</u>:

 \Rightarrow GC-17A Shimadzu, GCMS-QP5000 Shimadzu

- coluna DB-5 (30 m x 0,25 mm)

- ionização por impacto eletrônico a 70 e.V.

 \Rightarrow condições utilizadas para análise do alcalóide 15 e das flavonas 7, 8 e 9:

- rampa de temperatura: 80 °C (1 min)/ 6 °C/min/ 250 °C (20 min)

- temperatura do injetor: 250 °C

- temperatura do detector: 280 $^{\circ}\mathrm{C}$

- razão de split: 20

 \Rightarrow condições utilizadas para análise da mistura de esteróides 1 e dos triterpenos 4 e 5:

- rampa de temperatura: 150 °C (1 min)/ 6 °C/min/ 280 °C (15 min)

- temperatura do injetor: 250 °C

- temperatura do detector: 280 $^{\circ}\mathrm{C}$

- razão de split: 20

 \Rightarrow condições utilizadas para análise dos alcalóides 11, 12, 13, 14 e 18, das cumarinas 23, 24 e 25, do derivado 28, da cetona 29 e do sesquiterpeno 6:

- rampa de temperatura: 80 °C (1 min)/ 6 °C/min/ 250 °C (20 min)

- temperatura do injetor: 250 °C
- temperatura do detector: 280 °C
- razão de split: 15

<u>ES-MS</u>:

MICROMASS Quattro LC

4.3. Coleta e identificação do material botânico

As espécies vegetais foram coletadas pelo Grupo de Produtos Naturais da UFSCar, juntamente com o prof. Dr. José Rubens Pirani, do Departamento de Botânica da USP-São Paulo, que foi o responsável pela sua identificação. Exemplares de todas elas são mantidos em tal Departamento, com códigos de identificação mostrados na TABELA 4.1.

espécie	data de	local de coleta	coletado por	identificação
	coleta			
Almeidea	06/02/93	Município de	Pirani/	Pirani &
coerulea		Itacaré, BA	Kallunki	Kallunki 2747
A. StHil.				
Almeidea rubra	19/05/00	Morro do H,	Pirani	Pirani et al.
A. StHil.		Piuma, ES		4746
Conchocarpus	28/01/93	Serra São José,	Pirani/	Pirani &
heterophyllus		Fazenda Boa Vista,	Kallunki	Kallunki 2693
(A. StHil.)		Município Feira de		
Kallunki &		Santana, BA		
Pirani				
Galipea	18/01/93	Estrada do Sol,	Kallunki/	Kallunki &
<i>carinata</i> Pirani		Guarapari, ES	Pirani	Pirani 336
(sp nov.)*				
Galipea	18/05/00	Fazenda Bonanza,	Pirani	Pirani et al.
<i>carinata</i> Pirani		Guarapari, ES		4722
(sp nov.)				
Trichilia	15/01/85	Estrada de	Pirani/	Pirani &
<i>ramalhoi</i> Rizzini		Linhares,	Kallunki	Kallunki 2632
		Colatina, ES		

TABELA 4.1. Informações relativas às coletas das plantas.

*originalmente, denominada de Galipea sp

4.4. Preparação dos extratos vegetais

As diversas partes vegetais foram secas em estufa de circulação de ar, a 40 °C, e, pulverizadas em moinho tipo Willey.

A extração do material moído foi realizada por maceração nos solventes hexano e metanol, à temperatura ambiente, durante três dias, em geral, por duas vezes.

A preparação dos extratos é ilustrada a seguir:

Desta forma, foram obtidos os extratos hexânicos e metanólicos de folhas, galhos e caules das diversas plantas, num total de 22 extratos (TABELA 4.2).

espécie	parte	massa	massa do	código do	massa do	código do
	vegetal	vegetal	extrato	extrato	extrato	extrato
		/ kg	hexânico	hexânico	metanólico	metanólico
			/ g		/ g	
Almeidea	galhos	1,1133	0,7963	AGH	266,3	AGM
coerulea						
Almeidea	folhas	0,3135	0,81	ALFH	32,9	ALFM
rubra	caule	0,2302	0,6	ALCH	28,3	ALCM
Conchocarpus	folhas	1,332	11,9	AHFH	175,0	AHFM
heterophyllus	caule	2,1129	8,2	AHCH	38,0	AHCM
Galipea	folhas	0,1597	0,606	GFH	13,1	GFM
carinata*	caule	1,9201	0,76	GCH	23,5	GCM
Galipea	folhas	0,4628	6,6	GCFH	7,8	GCFM
carinata	caule	1,53	3,7	GCCH	15,6	GCCM
Trichilia	folhas	1,020	3,5	TRFH	46,7	TRFM
ramalhoi	galhos	615,7	2,3	TRGH	47,7	TRGM

TABELA 4.2. Massas dos extratos vegetais preparados.

* espécime coletada em 18/01/1993

4.5. Obtenção das frações

Os extratos vegetais foram fracionados utilizando-se diferentes técnicas cromatográficas. Dez deles (AGM, ALFM, ALCM, AHFH, AHFM, AHCM,

GFM, GCFH, GCCM e TRFH) foram submetidos à cromatografia líquida a vácuo (CLV), dois à partição líquido-líquido (TRFM e TRFM), e três (AHCH, GFH e TRGH) à cromatografia líquida em coluna.

A cromatografia líquida a vácuo foi realizada em funil de placa sinterizada, com dimensões variadas, e tendo como suporte sílica 70-230 mesh e eluentes hexano, diclorometano, acetato de etila e metanol. Portanto, cada extrato originou quatro frações (TABELA 4.3).

espécie	código do	massa usada / g	código da	massa / g
	extrato		fração	
Almeidea	AGM	13,2	AGMH	0,0048
coerulea			AGMD	0,4359
			AGMA	2,8045
			AGMM	9,7644
Almeidea rubra	ALFM	15,1	ALFMH	0,0248
			ALFMD	0,7404
			ALFMA	3,3208
			ALFMM	9,8289
	ALCM	7,9	ALCMH	0,0049
			ALCMD	0,1001
			ALCMA	0,2169
			ALCMM	7,3417
Conchocarpus	AHFH	11,0	AHFHH	0,2061
heterophyllus			AHFHD	2,1682
			AHFHA	7,4193
			AHFHM	0,5464
	AHFM	27,4	AHFMH	0,2594
			AHFMD	4,6816
			AHFMA	3,5697
			AHFMM	18,6334
	AHCM	27,4	AHCMH	0,0044
			AHCMD	0,1041
			AHCMA	7,43032
			AHCMM	19,6754

TABELA 4.3. Frações obtidas por CLV.

3				
Galipea	GFM	12,8	GFMH	0,0125
carinata *			GFMD	0,4192
			GFMA	3,2409
			GFMM	9,0257
Galipea	GCFH	5,1	GCFHH	0,1809
carinata			GCFHD	1,7977
			GCFHA	2,297
			GCFHM	0,5357
	GCCM	14,1	GCCMH	0,0296
			GCCMD	0,3717
			GCCMA	4,8794
			GCCMM	9,0027
Trichilia	TRFH	3,5	TRFHH	0,4076
ramalhoi			TRFHD	2,2536
			TRFHA	0,3447
			TRFHM	0,4543

continuação da TABELA 4.3

* espécime coletada em 18/01/1993

As partições líquido-líquido dos extratos TRFM e TRGM de *T. ramalhoi* foram realizadas como esquematizado a seguir. Destas originaram-se 10 frações, descritas na TABELA 4.4.

TABELA 4.4. Frações obtidas por partição líquido-líquido.

espécie	código do	massa usada /	código da	massa / g
	extrato	g	fração	
Trichilia	TRFM	41,0	TRFMH	14,9
ramalhoi			TRFMD	0,4858
			TRFMA	4,1701
			TRFMM	13,2
			TRFMB	7,8
	TRGM	42,0	TRGMH	1,6647
			TRGMD	0,3268
			TRGMA	12,3
			TRGMM	18,0
			TRGMB	9,4

4.6. Isolamento dos constituintes de Almeidea coerulea

4.6.1. Estudo químico da fração AGMD

O estudo da fração diclorometânica do extrato metanólico dos galhos de *A. coerulea* (AGMD), que ocasionou 100 % de lise do *T. cruzi* (p. 193), permitiu o isolamento do esteróide sitostenona (**2**) e da 1,5-difenil-1-pentanona inédita (**29**). Essas substâncias foram isoladas através de cromatografia líquida em coluna, utilizando-se sílica gel 230-400 mesh, e por cromatografia em camada delgada preparativa.

A sitostenona (2) foi identificada por EM e RMN 1 H (p. 37-38) e a substância 29 foi caracterizada por EM e RMN, em uma e duas dimensões (p. 175-182).

4.6.2. Estudo químico da fração AGMA

Estudou-se também a fração acetato etila do extrato metanólico dos galhos de *A. coerulea* (AGMA), que ocasionou 68,6 % de lise parasitária (p. 193). Nesse estudo, foram isolados: os alcalóides furoquinolínicos dictamina (11) e δ -fagarina (14); o alcalóide indolopiridoquinazolínico inédito 22; as cumarinas escoparona (23), escopoletina (24) e marmesina (25); as amidas

paprazina (26) e *N-trans*-feruloitiramina (27); o ácido siríngico (30); e, o sesquiterpeno eudesmano inédito 6.

Isolamento do sesquiterpeno 6

O sesquiterpeno **6** foi isolado através de cromatografia líquida em coluna, utilizando-se sílica gel 230-400 mesh e sephadex LH-20 como fases estacionárias. Ele foi identificado por EM, RMN ¹H e ¹³C, DEPT 135°, e experimentos de correlação homo- e heteronuclear (p. 50-62).

continua p. 212

Isolamento do alcalóide indolopiridoquinazolínico 22

O alcalóide indolopiridoquinazolínico **22** foi isolado através de cromatografia líquida em coluna, utilizando-se sílica gel 230-400 mesh e sephadex LH-20. Ele foi identificado por RMN em experimentos de correlação homo- e heteronuclear (p. 130-139).

Isolamento dos alcalóides 11 e 14, das amidas 26 e 27 e do ácido siríngico (30)

As substâncias **11**, **14**, **26**, **27** e **30** foram isoladas por cromatografia em coluna, utilizando-se sílica gel 230-400 mesh e sephadex LH-20. Os alcalóides **11** e **14** foram identificados por EM e RMN ¹H (p. 86-88 e 93-95), os demais (**26**, **27** e **30**) por EM, RMN ¹H e ¹³C e através de experimentos de correlação homo- e heteronuclear (p. 150-166 e 183-184).

Isolamento das cumarinas 23, 24 e 25

As cumarinas 23, 24 e 25 foram isoladas por cromatografia em coluna, utilizando-se sílica gel 230-400 mesh e sephadex LH-20. As primeiras foram identificadas por EM e RMN ¹H (p. 140-143). Já a cumarina 25 foi caracterizada por EM e RMN, em experimentos de correlação homo- e heteronuclear (p. 144-149).

4.7. Isolamento dos constituintes de Almeidea rubra

4.7.1. Estudo químico da fração ALFMA

O estudo da fração acetato de etila do extrato metanólico das folhas de *A. rubra* (ALFMA), que ocasionou 90,7 % de inibição da enzima APRT e 62,9 % de lise parasitária (p. 192 e 194), permitiu o isolamento: dos alcalóides furoquinolínicos kokusagina (12) e esquimianina (13); de três alcalóides furoquinolônicos [isokokusagina (15), isoesquimianina (16) e isodutaduprina (17)]; do alcalóide acridônico arborinina (21); do alcalóide tetraidrofuroquinolínico inédito 18; e do derivado do ácido antranílico inédito 28.

Isolamento dos alcalóides 15, 16, 17 e 21

Os alcalóides 16, 17 e 21 foram purificados por cromatografia em coluna, utilizando-se sílica gel 230-400 mesh, e por recristalização. Já a substância 15 foi isolada por cromatografia em coluna, com sílica gel 230-400 mesh e

sephadex LH-20. Eles foram identificados por EM e RMN (p. 96-104 e 128-130).

Isolamento dos alcalóides 12 e 13 e do derivado 28

As substâncias **12**, **13** e **28** foram isoladas através de cromatografia líquida em coluna, utilizando-se sílica gel 230-400 mesh ou sephadex LH-20, e por cromatografia em camada delgada preparativa.

O derivado inédito **28** foi caracterizado por EM, difração de raios-X, e RMN, através de experimentos de correlação homo e heteronuclear (p. 166-175). Já os alcalóides **12** e **13** foram identificados por EM e RMN (p. 88-93).

Isolamento do alcalóide 18

O alcalóide **18** foi isolado através de cromatografia líquida em coluna, utilizando-se sílica gel 230-400 mesh ou sephadex LH-20, e por cromatografia em camada delgada preparativa. Ele foi identificado por EM e RMN (p. 104-112).

continua p. 220

4.8. Isolamento dos constituintes de Conchocarpus heterophyllus

4.8.1. Estudo químico da fração AHFHD

A fração diclorometânica do extrato hexânico das folhas de C. *heterophyllus* (AHFHD), que ocasionou 45,0 % de lise parasitária (p. 194), foi

submetida a diversos fracionamentos, permitindo a obtenção do benzoato de β -sitosterila (3) e das piranoflavonas inéditas 10.

Isolamento do benzoato de β -sitosterila (3)

O esteróide **3** foi isolado através de cromatografia líquida em coluna, utilizando-se sílica gel 230-400 mesh e sephadex LH-20. Ele foi identificado por RMN (p. 38-45).

Obtenção das piranoflavonas 10

A mistura de piranoflavonas **10** foi obtida através da utilização de cromatografia líquida em coluna e cromatografia em camada delgada preparativa. Ela foi identificada por EM e através de RMN, em experimentos de correlação homo- e heteronucleares (p. 72-83).

4.8.2. Estudo químico da fração AHFHA

A fração acetato de etila do extrato hexânico das folhas de *C*. *heterophyllus* (AHFHA), quando testada, ocasionou 80,1 % de inibição na atividade da enzima APRT e 100 % de lise do *T. cruzi* (p. 192 e 194). Desta forma, essa fração foi estudada e é constituída principalmente pela flavona (7), 7-metoxiflavona (8) e 5-hidroxiflavona (9).

Essas substâncias foram isoladas através de cromatografía líquida em coluna, utilizando-se florisil, sílica gel 230-400 mesh e sephadex LH-20, e foram caracterizadas por EM e RMN 1 H e 13 C (p. 63-72).

4.8.3. Estudo químico da fração AHCMA

O estudo da fração acetato de etila do extrato metanólico do caule de *C*. *heterophyllus* (AHCMA), 100 % ativa sobre o *T. cruzi* (p. 194), conduziu ao isolamento: da flavona (7) e da 7-metoxiflavona (8), que já tinham sido obtidas da fração AHFHA; do alcalóide esquimianina (13), anteriormente isolado de *A. rubra*; e dois alcalóides: haplotusina (19) e 2-fenil-1-metil-4-quinolona (20).

Os alcalóides **19** e **20** foram isolados através de cromatografia líquida em coluna, utilizando-se como suporte sílica 230-400 mesh. Eles foram identificados por EM e RMN, em experimentos de correlação homo- e heteronuclear (p. 113-127).

4.9. Isolamento dos constituintes de Trichilia ramalhoi

4.9.1. Estudo químico do extrato TRGH

Parte do extrato hexânico dos galhos de *T. ramalhoi* (TRGH), ativo sobre as formas tripomastigotas do *T. cruzi* (84,25 % de lise parasitária, p. 189), foi cromatografado em sílica 230-400 mesh e florisil, permitindo a obtenção dos

esteróides β -sitosterol e estigmasterol (1), e dos triterpenos lupeol (4) e lupenona (5), que foram caracterizados por EM e RMN ¹H (p. 35-36 e 46-49).

4.10. Metodologia dos ensaios biológicos

4.10.1. Ensaio com a enzima gGAPDH de T. cruzi

A enzima glicolítica gliceraldeído-3-fosfato-desidrogenase (gGAPDH) é uma enzima recombinante, obtida em um sistema de expressão de *Escherichia*

coli. A preparação e purificação da mesma são feitas rotineiramente no Laboratório de Cristalografia de Proteínas e Biologia Estrutural do Instituto de Física de São Carlos (IFSC-USP), de acordo com procedimentos estabelecidos por SOUZA et al. (1998).

Essa enzima catalisa a conversão de gliceraldeído-3-fosfato (G3P) em 1,3difosfoglicerato, na presença de fosfato inorgânico e do cofator NAD⁺ (FIGURA 1.4, p. 8). Os ensaios de inibição enzimática estão baseados nesta reação, e nestes são feitas medidas espectrofotométricas de NADH formado, durante 30 s, a 340 nm.

O teste baseia-se no procedimento desenvolvido por BARBOSA e NAKANO (1987) e descrito em VIEIRA et al. (2001). A mistura reacional (1 mL) contém 50 mM de tampão tris-HCl (pH 8,6) com 1mM de β -mercaptoetanol e EDTA, 30 mM de arseniato de sódio, 2,5 mM de NAD⁺, 4-9 µg de GAPDH e 0,3 mM de G3P (que é adicionado por último).

Para a realização dos ensaios, preparam-se soluções (1,0 mg/mL) dos extratos brutos, frações ou substâncias puras em DMSO, que são adicionadas ao meio reacional descrito. A concentração final de DMSO é de 10%, o que não interfere na atividade da enzima. Sempre são realizados ensaios controle na ausência das substâncias a serem testadas, com igual volume de DMSO, que é considerado como "branco". Todas as medidas são feitas em triplicata e a atividade específica (AE) da enzima é calculada através da fórmula a seguir:

$$AE(U/mg) = \frac{b.v_{cubeta}}{6,22.v_{enzima}.C_{enzima}}$$

Onde:

b = coeficiente angular de uma reta obtida através da plotagem dos valores de
Abs *versus* t. *

 $\Delta t =$ tempo de leitura; 0,5 min

 V_{cubeta} = volume da cubeta, em mL

 V_{enzima} = volume de enzima na cubeta, em mL C_{enzima} = concentração da enzima, em mg/mL 6,22 mM⁻¹cm⁻¹ = ε_{NADH}

* para a construção dessa reta, os valores de absorbância são a média dos três valores lidos, ponto a ponto. Isto é realizado para o branco (enzima em presença de DMSO) e para o inibidor.

Após obter os valores de AE do inibidor e do DMSO, a porcentagem de atividade inibitória (% AI), é calculada pela fórmula:

$$\% AI = \left(\frac{AE_{inibidor} - AE_{DMSO}}{AE_{DMSO}}\right) .100$$

As medidas do potencial inibitório dos extratos e frações testados foram realizadas na concentração de 100 μ g/mL, considerando-se como inibição satisfatória valores iguais ou superiores à 50%; e das substâncias em concentrações variadas.

4.10.2. Ensaio com a enzima APRT de L. tarentolae

A enzima adenina fosforribosiltransferase (APRT) foi obtida de *Leishmania tarentolae*. Essa espécie de *Leishmania* foi isolada de lagartos e não é capaz de infectar seres humanos (CROAN et al., 1997; NOYES et al., 1997). Entretanto, estudos envolvendo sequenciamento do gene de APRT de *L. tarentolae* revelaram grande identidade com o gene da proteína homóloga de *L. donovani* (PHILLIPIS et al., 1999). A identidade de 85% nas sequências de aminoácidos dessas duas APRTs permite presumir que as estruturas tridimensionais também sejam similares, e que as informações obtidas com a APRT de *L. tarentolae* poderão ser utilizadas na busca de novos fármacos contra a Leishmaniose humana.

A APRT é expressa em *Escherichia coli* e purificada no Laboratório de Cristalografia de Proteínas e Biologia Estrutural do IFSC-USP.

Ela catalisa a reação nucleofílica entre a adenina e o 5-fosforribosil-1pirofosfato (PRPP), com a formação de adenosina-monofosfato (AMP) (FIGURA 1.10, p. 15). Os ensaios de inibição enzimática estão baseados nesta reação, e nestes são feitas medidas espectrofotométricas de AMP formado, durante 60 s, a 259 nm.

O ensaio baseia-se no procedimento descrito por TUTLE e KRENITSKY (1980), com algumas modificações.

A mistura reacional (0,5 mL) contém 0,01 mM de adenina, 0,5 mM de PRPP, 5 mM de MgCl₂ e 100 mM de tampão tris-HCl (pH 7,4). Para cada teste são usados 475 μ L da mistura reacional e 25 μ L das soluções dos inibidores.

As medidas são feitas em triplicata e os valores de absorbância obtidos são avaliados como anteriormente descrito para a enzima GAPDH. Entretanto, o valor de ε (do AMP) na fórmula para o cálculo da AE é de 1,24 mM⁻¹cm⁻¹.

Assim como para a enzima GAPDH, as medidas de atividade inibitória dos extratos e frações foram realizadas na concentração de 100 μ g/mL, considerando-se como inibição significativa valores iguais ou superiores à 50%; e das substâncias em concentrações variadas.

4.10.3. Ensaio com as formas tripomastigotas de T. cruzi

Os ensaios com as formas tripomastigotas de *T. cruzi* são realizados no Departamento de Análises Clínicas, Bromatológicas e Toxicológicas da FCFRP-USP, segundo procedimento descrito em VIEIRA et al. (2001).

Para os ensaios são utilizadas cepas "Y" de *T. cruzi*, que são mantidas através de passagens seriadas em camundongos, por meio de repiques semanais, no Laboratório de Parasitologia do Departamento de Ciências da Saúde da FCFRP-USP.

Os ensaios biológicos de misturas e substâncias puras são realizados utilizando-se sangue de camundongos albinos *Swiss*, infectados pela cepa "Y" do *T. cruzi*, o qual é obtido por punção cardíaca no pico da parasitemia (sétimo dia). Esse sangue é diluído em sangue de animal sadio, de forma a se obter uma concentração final de $2x10^6$ formas tripomastigotas por mL de sangue. Os ensaios são realizados em microplacas de titulação (96 poços), onde o sangue infectado e as misturas (ou substâncias) a serem avaliadas, são solubilizados (em triplicata), e o material é incubado por 24 h a 4 °C. Após este tempo, a contagem das formas tripomastigotas é realizados: 1) sangue de camundongo infectado, sem a adição de nenhuma substância; 2) sangue infectado contendo a mesma concentração de DMSO utilizada no preparo das soluções; e, 3) sangue infectado contendo violeta genciana (controle positivo), na concentração de 1:4.000.

Os extratos foram ensaiados a 4 mg/mL, frações a 2 mg/mL e substâncias nas concentrações de 500, 250 e 100 μ g/mL, para a obtenção dos valores de IC₅₀.

Os resultados obtidos são expressos em porcentagem de lise parasitária (% L.P.), sendo que são considerados ativos os extratos ou frações que apresentam L.P. \geq 50 %.

5. Conclusões

O estudo fitoquímico de *Almeidea coerulea*, *A. rubra*, *Conchocarpus heterophyllus*, *Galipea carinata* (Rutaceae) e *Trichilia ramalhoi* (Meliaceae), biomonitorado por ensaios bioquímicos nas enzimas gGAPDH de *T. cruzi* e APRT de *L. tarentolae* e ensaios biológicos sobre as formas tripomastigotas do *T. cruzi*, permitiu o isolamento de 30 substâncias, das mais variadas classes químicas, e a avaliação das atividades biológicas sobre os modelos escolhidos de 22 extratos vegetais, 43 frações e das substâncias isoladas.

Em concordância com as expectativas iniciais do trabalho, os resultados biológicos de extratos e frações mostraram que as plantas selecionadas são bastante promissoras na busca de novos compostos antichagásicos e antileishmanioses.

Dos 22 extratos ensaiados, 16 foram ativos sobre o *T. cruzi*, 3 inibiram a atividade da enzima *g*GAPDH e 1 da enzima APRT; já das 43 frações testadas, 18 apresentaram ação tripanocida, 8 inibiram a atividade da enzima *g*GAPDH e 11 da APRT.

O estudo químico das frações ativas levou ao isolamento de 30 substâncias, das quais 6 estão sendo pela primeira vez relatadas na literatura. A identificação de tais metabólitos contribuiu ao conhecimento do perfil químico da família Rutaceae.

Os testes biológicos das substâncias indicaram que: os alcalóides furoquinolônicos isokokusagina, isoesquimianina e isodutaduprina e a 5-hidroxiflavona foram os melhores inibidores da atividade da enzima APRT; a cumarina marmesina foi a mais ativa sobre a enzima *g*GAPDH; e os alcalóides haplotusina e 2-fenil-1metil-4-quinolona e o triterpeno lupeol foram os que apresentaram maior atividade tripanocida.

As atividades biológicas das substâncias estimulam estudos sistemáticos posteriores que avaliem a relação estrutura-atividade de uma determinada classe

química, como a dos alcalóides, a fim de se conseguir uma molécula, que sendo bastante ativa, possa servir de protótipo no desenvolvimento de novos quimioprofiláticos ou quimioterápicos para a doença de Chagas e para as leishmanioses.
6. Referências bibliográficas

- ACHMAD, S. A.; HAKIM, E. H.; JULIAWATY, L. D.; MAKMUR, L.; SUYATNO; AIMI, N. & GHISALBERTI, E. L. "A new prenylated flavone from Artocarpus champeden". J. Nat. Prod., 59(9): 878-879, 1996.
- AKENDENGUE, B.; NGOU-MILAMA, E.; LAURENS, A. & HOCQUEMILLER, R. "Recent advances in the fight against leishmaniasis with natural products". *Parasite*, **6**(1): 3-8, 1999.
- ALBUQUERQUE, B. W. P. "Revisão das Rutaceae do estado do Amazonas". Acta Amazônica, 6(3)supll: 1-67, 1976.
- AYAFOR, J. F.; SONDENGAM, B. L. & NGADJUI, B. T. "Quinoline and indolopyridoquinazoline alkaloids from *Vepris louisii*". *Phytochemistry*, 21(11): 2733-2736, 1982.
- BAKHTIAR, A.; GLEYE, J.; MOULIS, C. & FOURASTE, I. "O-glycosyl-Cglycosylflavones from *Galipea trifoliata*". *Phytochemistry*, **35**(6): 1593-1594, 1994.
- BAKHTIAR, A.; GLEYE, J.; MOULIS, C.; FOURASTE, I. & STANISLAS, E. "C-glycosylflavones from *Galipea trifoliata*". *Phytochemistry*, **29**(4): 1339-1340, 1990.
- BAKKER, B. M.; WESTERHOFF, H. V.; OPPERDOES, F. R. & MICHELS, P.
 A. M. "Metabolic control analysis of glycolysis in trypanosomes as an approach to improve selectivity and effectiveness of drugs". *Mol. Biochem. Parasit.*, **106**(1): 1-10, 2000.
- BARBOSA, V. M. & NAKANO, M. "Muscle D-glyceraldehyde-3-phosphate dehydrogenase from *Anas* sp. 1. Purification and properties of the enzyme". *Comp. Biochem. Phys. B*, **88**(2): 563-568, 1987.
- BARRERO, A. F.; SANCHEZ, J. F.; ALVAREZ-MANZANEDA, E. J.; DORADO M. M. & HAIDOUR, A. "Terpenoids and sterols from the wood of *Abies pinsapo*". *Phytochemistry*, **32**(5): 1261-1265, 1993.
- BASTOS, J. K; DE ALBUQUERQUE, S. & SILVA, M. L. A. "Evaluation of the trypanocidal activity of lignans isolated from the leaves of *Zanthoxylum naranjillo*". *Planta Med.*, **65**(6): 541-544, 1999.
- BERINZAGHI, B.; DEULOFEU, V.; LABRIOLA, R. & MURUZABAL, A. "Alkoxyl interchange by γ-alkokylquinoline derivatives in alcoholic alkali". J. Am. Chem. Soc., 65(7): 1357-1359, 1943.
- BERMAN, J. D. "Chemotherapy for leishmaniasis: biochemical mechanisms, clinical efficacy, and future strategies". *Rev. Infect. Dis.*, **10**(3): 560-586, 1998.

- BIAVATTI, M. W.; VIEIRA, P. C.; FERNANDES DA SILVA, M. F. das G.;
 FERNANDES, J. B.; VICTOR, S. R.; PAGNOCCA, F. C.; DE ALBUQUERQUE, S.; CARACELLI, I. & SCHPECTOR, J. Z.
 "Biological activity of quinoline alkaloids from *Raulinoa echinata* and X-ray structure of flindersiamine". *J. Braz. Chem. Soc.*, 13(1): 66-70, 2002.
- BIOMANIA, *site* http://www.biomania.com.br/protista/chagas.php, acessado em janeiro/2004.
- BRENER, Z. "Therapeutic activity and criterion of cure on mice experimentally infected with *Trypanosoma cruzi*". *Rev. Inst. Med. trop. São Paulo*, **4**(6): 389-396, 1962.
- BROCHINI, C. B.; NUNEZ, C. V.; MOREIRA, I. C.; ROQUE, N. F.; CHAVES, M. H. & MARTINS, D. "Identificação de componentes de óleos voláteis: análise espectroscópica de misturas de sesquiterpenos". *Quim. Nova*, 22(1): 37-40, 1999.
- CLARKSON, A. B. & BROHN, F. H. "Trypanosomiasis: approach to chemotherapy by inhibition of carbohydrate catabolism". *Science*, **194**(4261): 204-206, 1976.
- CHAN-BACAB, M. J. & PENA-RODRIGUEZ, L. M. "Plant natural products with leishmanicidal activity". *Nat. Prod. Rep.*, **18**(6): 674-688, 2001.
- CORTEZ, L. E. R. *Estudo Fitoquímico de* Conchocarpus gaudichaudianus subsp. bahiensis e Almeidea coerulea. A busca de Compostos Biologicamente Ativos. São Carlos, Programa de Pós-Graduação em Química – UFSCar, 2002. Tese de doutorado.
- COURA, J. R. & DE CASTRO, S. L. "A critical review on Chagas disease chemotherapy". *Mem. Inst. Oswaldo Cruz*, **97**(1): 3-24, 2002.
- CRAIG III, S. P. & EAKIN, A. E. "Purine salvage enzymes of parasites as targets for structure-based inhibitor design". *Parasitol. Today*, **13**(6): 238-241, 1997.
- CROAN, D. G.; MORRISON, D. A. & ELLIS, J. T. "Evolution of the genus *Leishmania* revealed by comparison of DNA and RNA polymerase gene sequences". *Mol. Biochem. Parasitol.*, **89**(2): 149-159, 1997.
- CUCA S., L. E.; MARTINEZ V., J. C. & MONACHE, F. D. "Alcaloides presentes en *Hortia colombiana*". *Rev. Colomb. Quim.*, **27**(1): 23-30, 1998.
- DAHLGREEN, R. M. T. "A revised system of classification of the Angiosperms". *Botan. J. Linn. Soc.*, **80**(2): 91-124, 1980.
- DA SILVA, M. F. das G. F.; GOTTLIEB, O. R. & DREYER, D. L. "Evolution of limonoids in the Meliaceae". *Biochem. Syst. Ecol.*, **12**(3): 299-310, 1984.
- DA SILVA, M. F. das G. F.; GOTTLIEB, O. R. & EHRENDORFER, F. "Chemosystematics of the Rutaceae: suggestions for a more natural taxonomy and evolutionary interpretation of the family". *Plant Syst. Evol.*, 16(1-2): 97-134, 1988.

- DE TORANZO, E. G. D.; CASTRO, J. A.; DE CAZZULO, B. M. F. & CAZZULO, J. J. "Interaction of benznidazole reactive metabolites with nuclear and kinetoplastic DNA, proteins and lipids from *Trypanosoma cruzi*". *Experientia*, **44**(10): 880-883, 1988.
- DENISE, H.; MATTHEWS, K.; LINDERGARD, G.; CROFT, S. & BARRETT, M. P. "Trypanosomiasis and leishmaniasis: between the idea and the reality of control". *Parasitol. Today*, **15**(2): 43-45, 1999.
- DEWICK, P. M. *Medicinal Natural Products: A Biosynthetic Approach*. England, John Wiley & Sons, 1997, p. 172-173.
- DO CAMPO, R. "Recent developments in the chemotherapy of Chagas disease". Curr. Pharm. Design, 7(12): 1157-1164, 2001.
- DO CAMPO, R. & MORENO, S. N. J. "Free radical metabolism of antiparasitic agents". *Faseb. J.*, **45**(10): 2471-2476, 1986.
- FIOCRUZ, *site* http://www.fiocruz.br/ccs/estetica/chagas.htm, acessado em janeiro/2004.
- FOURNET, A.; BARRIOS, A. A. & MUNOZ, V. "Leishmanicidal and trypanocidal activities of Bolivian medicinal plants". J. Ethnopharmacol., 41(1-2): 19-37, 1994a.
- FOURNET, A.; BARRIOS, A. A.; MUNOZ, V.; HOCQUEMILLER, R.; ROBLOT, F.; CAVÉ, A.; RICHOMME, P. & BRUNETON, J.
 "Antiprotozoal activity of quinoline alkaloids isolated from *Galipea longiflora*, a Bolivian plant used as a treatment for cutaneous leishmaniasis". *Phytother. Res.*, 8(3): 174-178, 1994b.
- FOURNET, A.; FERREIRA, M. E.; DE ARIAS, A. R.; ORTIZ, S. T.;
 FUENTES, S.; NAKAYAMA, H.; SCHININI, A. & HOCQUEMILLER,
 R. "In vivo efficacy of oral and intralesional administration of 2-substituted quinolines in experimental treatment of New World cutaneous leishmaniasis caused by *Leishmania amazonensis*". Antimicrob. Agents Ch., 40(11): 2447-2451, 1996.
- FOURNET, A.; GANTIER, J. C.; GAUTHERET, A.; LEYSALLES, L.; MUNOS, M. H.; MAYRAGUE, J.; MOSKOWITZ, H.; CAVÉ, A. & HOCQUEMILLER, R. "The activity of 2-substituted quinoline alkaloids in BALB/c mice infected with *Leishmania donovani*". J. Antimicrob. Chemoth., 33(3): 537-544, 1994c.
- FOURNET, A.; HOCQUEMILLER, R.; BARRIOS, A. A.; MUNOZ, V.; CAVÉ, A. & BRUNETON, J. "2-substituted quinolines alkaloids as potential antileishmanial drugs". *Antimicrob. Agents Ch.*, **37**(4): 859-863, 1993a.
- FOURNET, A.; HOCQUEMILLER, R.; ROBLOT, F.; CAVÉ, A.; RICHOMME, P. & BRUNETON, J. "Les chimanines, nouvelles quinoleines substituees en 2, isolees d'une plante bolivienne antiparasitaire: *Galipea longiflora*". J. Nat. Prod., 56(9): 1547-1552, 1993b.

- FOURNET, A.; VAGNEUR, B.; RICHOMME, P. & BRUNETON, J. "Aryl-2 et alkyl-2 quinoléines nouvelles isolées d'une Rutacée bolivienne: *Galipea longiflora*". *Can. J. Chem.*, **67**(12): 2116-2118, 1989.
- GARNIER, T. & CROFT, S. L. "Topical treatment for cutaneous leishmaniasis". *Curr. Opin. Invest. Drugs*, **3**(4): 538-544, 2002.
- GANTIER, J. C.; FOURNET, A.; MUNOS, M. H.; HOCQUEMILLER, R. "The effect of some 2-substituted quinolines isolated from *Galipea longiflora* on *Plasmodium vinckei petteri* infected mice". *Planta Med.*, **62**(3): 285-286, 1996.
- GELB, M. H. & HOL, W. G. J. "Parasitology Drugs to combat tropical protozoan parasites". *Science*, **297**(5580): 343-344, 2002.
- GRAY, A. I. "Structural diversity and distribution of coumarins and chromones in the Rutales". IN: *Chemistry and Chemical Taxonomy of the Rutales*. WATERMAN, P. G. & GRUNDON, M .F. (Eds.). Nova Iorque, Academic Press, 1983, p. 97-146.
- HOUGHTON, P. J.; WOLDERMARIAM, T. Z.; WATANABE, Y. & YATES, M. "Activity against *Mycobacterium tuberculosis* of alkaloid constituents of Angostura bark, *Galipea officinalis*". *Planta Med.*, **65**(3): 250-254, 1999.
- IKUTA, A.; URABE, H. & NAKAMURA, T. "A new indolopyridoquinazolinetype alkaloid from *Phellodendron amurense* callus tissues". J. Nat. Prod., 61(8): 1012-1014, 1998.
- IWU, M. M.; JACKSON, J. E. & SCHUSTER, B. G. "Medicinal plants in the fight against leishmaniasis". *Parasitol. Today*, **10**(2): 65-68, 1994.
- JACQUEMOND-COLLET, I.; HANNEDOUCHE, S.; FABRE, N.; FOURASTE, I. & MOULIS, C. "Two tetrahydroquinoline alkaloids from *Galipea officinalis*". *Phytochemistry*, **51**(8): 1167-1169, 1999.
- JANUÁRIO, A. H. *Estudo Fitoquímico de* Esenbeckia grandiflora *e* Almeidea rubra *(Rutaceae)*. São Carlos, Programa de Pós-Graduação em Química UFSCar, 1995. Tese de doutorado.
- JAY, M.; GLEYE, J.; BOUILLANT, M. L.; STANISLAS, E. & MORETTI, C. "Nouvelles C-arabinosyl flavones extraites de *Almeidea guyanensis* (Rutaceae)". *Phytochemistry*, **18**(1): 184-185, 1979.
- KALLUNKI, J. A. & PIRANI, J. R. "Synopses of *Angostura* Roem. & Schult. and *Conchocarpus* J. C. Mikan (Rutaceae)". *Kew Bulletin*, **53**: 257-334, 1998.
- KAMINSKY, R. "Miltefosine Zentaris", Curr. Opin. in Invest. Drugs, 3(4): 550-554, 2002.
- KINGSBURY, C. A. & LOOKER, J. H. "Carbon-13 spectra of methoxyflavones". J. Org. Chem., 40(8): 1120-1124, 1975.
- LAVAUD, C.; MASSIOT, G.; VASQUEZ, C.; MORETTI, C.; SAUVAIN, M.
 & BALDERRAMA, L. "4-Quinolinone alkaloids from *Dictyoloma peruviana*". *Phytochemistry*, **40**(1): 317-320, 1995.

- LI, X. C.; DUNBAR, D. C.; ELSOHLY, H. N.; WALKER, L. A. & CLARK, A. M. "Indolopyridoquinazoline alkaloid from *Leptothyrsa sprucei*". *Phytochemistry*, **58**(4): 627-629, 2001.
- LIN, C. N.; CHIU, P. H.; FANG, S. C.; SHIEH, B. J. & WU, R. R. "Revised structure of broussoflavonol G and the 2D NMR spectra of some related prenylflavonoids". *Phytochemistry*, **41**(4): 1215-1217, 1996.
- LIN, C. N. & SHIEH, W. L. "Prenylflavonoids and a pyranodihydrobenzoxanthone from *Artocarpus communis*". *Phytochemistry*, **30**(5): 1669-1671, 1991.
- LIN, C. N. & SHIEH, W. L. "Pyranoflavonoids from *Artocarpus communis*". *Phytochemistry*, **31**(8): 2922-2924, 1992.
- LÓPEZ, J. A.; BARILLAS, W.; GOMEZ-LAURITO, J.; MARTIN, G. E.; AL-REHAILY, A. J.; ZEMAITIS, M. A. & SCHIFF Jr, P. L. "Granulosin, a new chromone from *Galipea granulosa*". J. Nat. Prod., **60**(1): 24-26, 1997.
- LÓPEZ, J. A.; BARILLAS, W.; GOMEZ-LAURITO, J.; MARTIN, G. E.; LIN,
 F. T.; AL-REHAILY, A. J.; ZEMAITIS, M. A. & SCHIFF Jr, P. L.
 "Galiposin: a new β-hydroxychalcone from *Galipea granulosa*". *Planta Med.*, 64(1): 76-77, 1998.
- LU, C. M. & LIN, C. N. "Flavonoids and 9-hydroxytridecyl docosanoate from *Artocarpus heterophyllus*". *Phytochemistry*, **35**(3): 781-783, 1994.
- LUQUETTI, A. O. "Etiological treatment for Chagas disease". *Parasitol. Today*, **13**(4): 127-128, 1997.
- MAFEZOLI, J. *Atividade Tripanocida e Antimicrobiana de Plantas da Família Rutaceae*. São Carlos, Programa de Pós-Graduação em Química UFSCar, 2001. Tese de doutorado.
- MAFEZOLI, J.; VIEIRA, P. C.; FERNANDES, J. B.; DA SILVA, M. F. das G. F. & DE ALBUQUERQUE, S. "*In vitro* activity of Rutaceae species against the trypomastigote form of *Trypanosoma cruzi*". *J. Ethnopharmacol.*, **73**(1-2): 335-340, 2000.
- MAHIDOL, C.; RUCHIRAWAT, S.; PRAWAT, H.; PISUTJAROENPONG,
 S.; ENGPRASERT, S.; CHUMSRI, P.; TENGCHAISRI, T.; SIRISINHA,
 S. & PICHA, P. "Biodiversity and natural product drug discovery". *Pure Appl. Chem.*, **70**(11): 2065-2072, 1998.
- MESTER, I. "Structural diversity and distribution of alkaloids in the Rutales".
 IN: *Chemistry and Chemical Taxonomy of the Rutales*. WATERMAN, P.
 G. & GRUNDON, M.F. (Eds.). Nova Iorque, Academic Press, 1983, p. 31-96.

- MORAES, V. R. de S.; TOMAZELA, D. M.; FERRACIN, R. J.; GARCIA, C. F.; SANNOMIYA, M.; SORIANO, M. del P. C.; DA SILVA, M. F. das G. F.; VIEIRA, P. C.; FERNANDES, J. B.; RODRIGUES FILHO, E.; MAGALHÃES, E. G.; MAGALHÃES, A. F.; PIMENTA, E. F.; DE SOUZA, D. H. F. & OLIVA, G. "Enzymatic inhibition studies of selected flavonoids and chemosystematic significance of polymethoxylated flavonoids and quinoline alkaloids in *Neoraputia* (Rutaceae)". *J. Braz. Chem. Soc.*, 14(3): 380-387, 2003.
- MOULIS, C; WIRASUTISNA, K. R.; GLEYE, J.; LOISEAU, P.; STANISLAS, E. & MORETTI, C. "A 2-quinolone alkaloid from *Almeidea guyanensis*". *Phytochemistry*, **22**(9): 2095-2096, 1983.
- NEVES, D. P. *Parasitologia Humana*. Rio de Janeiro, Livraria Atheneu Editora, 8^a ed., 1991, p. 28-72.
- NOYES, H. A.; ARANA, B. A.; CHANCE, M. L. & MAINGON, R. "The Leishmania hertigi (Kinetoplastida; Trypanosomatidae) complex and the lizard Leishmania: their classification and evidence for a neotropical origin of the Leishmania Endotrypanum clade". J. Eukaryot. Microbiol., 44(5): 511-517, 1997.
- PAVÃO, F.; CASTILHO, M. S.; PUPO, M. T.; DIAS, R. L. A.; CORREA, A. G.; FERNANDES, J. B.; DA SILVA, M. F. das G. F.; MAFEZOLI, J.; VIEIRA, P. C. & OLIVA, G. "Structure of *Trypanosoma cruzi* glycosomal glyceraldehyde-3-phosphatedehydrogenase complexed with chalepin, a natural product inhibitor, at 1.95 Å resolution". *FEBS Lett.*, 520(1-3): 13-17, 2002.
- PENNINGTON, T. D. & STYLES, B. T. "A generic monograph of the Meliaceae". *Blumea*, **22**(3): 419, 1975.
- Pesquisa FAPESP, (84): 36-40, 2003.
- Pesquisa FAPESP, (95): 51, 2004.
- PHILLIPS, C. L.; ULLMAN, B.; BRENNAN, R. G. & HILL, C. P. "Crystal structures of adenine phosphoribosyltransferase from *Leishmania donovani*". *Embo. Journal*, **18**(13): 3533-3545, 1999.
- PHILLIPSON, J. D. & WRIGHT, C. W. "Medicinal plants in tropical medicine: medicinal plants against protozoal diseases". *T. Roy. Soc. Trop. Med. H.*, 85(1): 18-21, 1991a.
- PHILLIPSON, J. D. & WRIGHT, C. W. "Antiprotozoal agents from plant sources". *Planta Med.*, **57**suppl.1: S53-S59, 1991b.
- PIZZOLATTI, M. G.; LUCIANO, C. & MONACHE, F. D. "Styryl- and dihydrostyryl-2-pyrones derivatives from *Polygala sabulosa*". *Phytochemistry*, **55**: 819-822, 2000.
- POLAK, A. & RICHLE, R. "Mode of action of 2-nitroimidazole derivative benznidazole". Ann. Trop. Med. Parasit., 72(1): 45-54, 1978.
- RAHMAN, A. U.; BHATTI, M .K.; AKHTAR, F. & CHOUDHARY, M. I. "Alkaloids of *Fumaria indica*". *Phytochemistry*, **31**(8): 2869-2872, 1992.

- RAKOTOSON, J. H.; FABRE, N.; JACQUEMOND-COLLET, I.; HANNEDOUCHE, S.; FOURASTÉ, I. & MOULIS, C. "Alkaloids from *Galipea officinalis*". *Planta Med.*, **64**(8): 762-763, 1998.
- RAMIREZ, L. E.; LAGES SILVA, E.; PIANETTI, G.M; RABELO, R. M. C.; BORDIN, J. O. & MORAES SOUZA, H. "Prevention of transfusionassociated Chagas disease by sterilization of *Trypanosoma cruzi*-infected blood with gentian-violet, ascorbic acid, and light". *Transfusion*, **35**(3): 226-230, 1995.
- RASAKOVA, D. M.; BESSANOVA, I. A. & YUNUSOV, S. Y. "Components of *Haplophyllum obtusifolium*". *Khim. Prir. Soedin.*, **5**: 635-636, 1984.
- RODRIGUEZ, J. B. "Specific molecular targets to control tropical diseases". *Curr. Pharm. Design*, 7(12): 1105-1116, 2001.
- RODRÍGUEZ-GAMBOA, T.; FERNANDES, J. B.; RODRIGUES FILHO, E.; DA SILVA, M. F. das G. F.; VIEIRA, P. C.; BARRIOS Ch., M.; CASTRO-CASTILHO, O.; VICTOR, S. R.; PAGNOCCA, F. C.; BUENO, O. C. & HEBLING, M. J. A. "Triterpene benzoates from the bark of *Picramia teapensis* (Simaroubaceae)". *J. Braz. Chem. Soc.*, 12(3): 386-390, 2001.
- RÓZSA, Zs.; RÁBIK, M.; SZENDREI, K.; KÁLMÁN, A.; ARGAY, Gy.; PELCZER, I.; AYNECHI, M.; MESTER, I. & REISCH, J. "Dihydroperfamine, an alkaloid from *Haplophyllum glabrinum*". *Phytochemistry*, **25**(8): 2005-2007, 1986.
- SALLES, L. R. V. O. Evolução de Limonóides em Meliaceae e Estudo Fitoquímico de Khaya senegalensis (Meliaceae). São Carlos, Programa de Pós-Graduação em Química – UFSCar, 1995. Tese de doutorado, 2-277 p.
- SANTOS, C. S. Estudo dos Constituintes Químicos de Almeidea coerulea. São Carlos, Programa de Pós-Graduação em Química – UFSCar, 1998. Dissertação de mestrado.
- SANTOS, C. S.; JANUÁRIO, A. H.; VIEIRA, P. C.; FERNANDES, J. B.; DA SILVA, M. F. das G. F. & PIRANI, J. R. "Cycloartane triterpenoid and alkaloids from *Almeidea* spp". *J. Braz. Chem. Soc.*, 9(1): 39-42, 1998.
- SARKER, S. D.; BARTHOLOMEW, B. & NASH, R. J. "Alkaloids from *Balanites aegyptiaca*". *Fitoterapia*, **71**(3): 328-330, 2000.
- SARTOR, C. F. P. Estudo Fitoquímico de Dictyoloma vandellianum (Rutaceae): uma Contribuição à Quimiossistemática da Subfamília Dictylomatoideae e à Busca de Compostos Biologicamente Ativos. São Carlos, Programa de Pós-Graduação em Química – UFSCar, 2001. Tese de doutorado, 67-68 p.
- SEPÚLVEDA-BOZA, S. & CASSELS, B. K. "Plant metabolites active against *Trypanosoma cruzi*". *Planta Med.*, **62**(2): 98-105, 1996.
- SHAPIRO, R. H. & DJERASSI, C. "Mass spectrometry in structural and stereochemical problems. LXVI. Mass spectral fragmentation of 6,7dimethoxycoumarin". J. Org. Chem., 30(3): 955, 1965.

SILVA, M. Estudos de Biologia Molecular e Estrutural da Enzima Adenina Fosforribosil Transferase (APRT) de Leishmania tarentolae. São Carlos, Programa de Pós-Graduação em Química – IQSC-USP, 2001. Dissertação de mestrado.

- SOUZA, D. H. F.; GARRATT, R. C.; ARAÚJO, A. P. U.; GUIMARÃES, B. G.; JESUS, W. D. P.; MICHELS, P. A. M.; HANNAERT, V. & OLIVA, G. *"Trypanosoma cruzi* glycosomal glyceraldehyde-3-phosphate dehydrogenase: structure, catalytic mechanism and targeted inhibitor design". *FEBS Lett.*, 424(3): 131-135, 1998.
- TERNAI, B. & MARKHAM, K. R. "Carbon-13 NMR studies of flavonoids. I. Flavones and flavonols". *Tetrahedron*, **32**(5): 565-569, 1976.
- TOMAZELA, D. M. Estudo Fitoquímico de Neoraputia magnifica e Neoraputia paraensis e suas Substâncias Ativas frente a Enzima Gliceradeído-3-Fosfato-Desidrogenase de Trypanosoma cruzi. São Carlos, Programa de Pós-Graduação em Química – UFSCar, 2001. Dissertação de mestrado, 56-58 p.
- TOMAZELA, D. M.; PUPO, M. T.; PASSADOR, E. A. P.; DA SILVA, M. F. das G. F.; VIEIRA, P. C.; FERNANDES, J. B.; RODRIGUES FILHO, E.; OLIVA, G. & PIRANI, J. R. "Pyrano chalcones and a flavone from *Neoraputia magnifica* and their *Trypanosoma cruzi* glycosomal glyceraldehyde-3-phosphate dehydrogenase-inhibitory activities". *Phytochemistry*, 55(6): 643-651, 2000.
- TUTTLE, J. V. & KRENITSKY, T. A. "Purine phosphoribosyltransferases from *Leishmania donovani*". J. Biol. Chem., **255**(3): 909-916, 1980.
- UNGER, C.; DAMENZ, W.; FLEER, E. A.; KIM, D. J.; BREISER, A.; HILGARD, P.; ENGEL, J.; NAGEL, G. & EIBL., H. "Hexadecylphosphocholine, a new ether lipid analogue. Studies on the antineoplastic activity *in vitro* and *in vivo*". *Acta Oncol.*, **28**(2): 213-217, 1989.
- VELOSO, E. S. Fitoquímica Comparada dos Gêneros Angostura, Almeidea e Rauia (Rutaceae). São Carlos, Programa de Pós-Graduação em Química – UFSCar, 1995. Tese de doutorado.
- VERONESI, R. *Doenças Infecciosas e Parasitárias*. Rio de Janeiro, Guanabara Koogan, 8ª ed., 1991, p. 674-705 e 706-717.
- VIEIRA, P. C. & KUBO, I. "Molluscicidal quinoline alkaloids from *Galipea* bracteata". Phytochemistry, **29**(3): 813-815, 1990.
- VIEIRA, P. C.; KUBO, I.; KUJIME, H.; YAMAGIWA, Y. & KAMIKAWA, T. "Molluscicidal acridone alkaloids from *Angostura paniculata*: isolation, structures, and synthesis". J. Nat. Prod., 55(8): 1112-1117, 1992.
- VIEIRA, P. C.; MAFEZOLI, J.; PUPO, M. T.; FERNANDES, J. B.; DA SILVA, M. F. das G. F.; DE ALBUQUERQUE, S.; OLIVA, G. & PAVÃO, F. "Strategies for the isolation and identification of trypanocidal compounds from the Rutales". *Pure Appl. Chem.*, **73**(3): 617-622, 2001.

- WATERMAN, P. G. "Alkaloids of the Rutaceae: their distribution and systematic significance". *Biochem. Syst. Ecol.*, **3**(3): 149-180, 1975.
- WATERMAN, P. G. "Phytochemical diversity in the ordem Rutales". IN: *Phytochemical Potential of Tropical Plants*. DOWNUM, K. R.; ROMEO, J. T. & STAFFORD, H. (Eds.). Nova Iorque, Plenum Press, 1993, p. 203-233.
- WATERMAN, P. G. "The chemical systematic of alkaloids: a review emphasising the contribution of Robert Hegnauer". *Biochem. Syst. Ecol.*, **27**(4): 395-406, 1999.
- WIRASUTISNA, K. R.; GLEYE, J.; MOULIS, C; STANISLAS, E. & MORETTI, C. "Flavone C-glycosides of Almeidea guyanensis". *Phytochemistry*, 25(2): 558-559, 1986.
- WIRASUTISNA, K. R.; GLEYE, J.; MOULIS, C.; STANISLAS, E. & MORETTI, C. "Galipein, a coumarin from *Galipea trifoliata*". *Phytochemistry*, **26**(12): 3372, 1987.
- WU, T. S.; LI, C. Y.; LEU, Y. L. & HU, C. Q. "Limonoids and alkaloids of the root bark of *Dictamnus angustifolius*". *Phytochemistry*, **50**(3): 509-512, 1999.