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Abstract

In this thesis, we extend the analysis of multivariate Seemingly Unrelated Regression

(SUR) Tobit models by modeling their nonlinear dependence structures through copulas.

The capability in coupling together the different - and possibly non-normal - marginal dis-

tributions allows the flexible modeling for the SUR Tobit models. In addition, the ability

to capture the tail dependence of the SUR Tobit models where some data are censored

(e.g., in econometric analysis, clinical essays, wide range of political and social phenom-

ena, among others, data are commonly left-censored at zero point, or right-censored at a

point d > 0) is another useful feature of copulas. Our study proposes a modified version of

the (classical) Inference Function for Margins (IFM) method by Joe & Xu (1996), which

we refer to as MIFM method, to obtain the (point) estimates of the marginal and cop-

ula association parameters. More specifically, we use a (frequentist) data augmentation

technique at the second stage of the IFM method (the first stage of the MIFM method

is equivalent to the first stage of the IFM method) to generate the censored observations

and then estimate the copula parameter. This procedure (data augmentation and copula

parameter estimation) is repeated until convergence. Such modification at the second

stage of the usual method is justified in order to obtain continuous marginal distribu-

tions, which ensures the uniqueness of the resulting copula, as stated by Sklar (1959)’s

theorem; and also to provide an unbiased estimate of the copula association parameter

(the IFM method provides a biased estimate of the copula parameter in the presence of

censored observations in the margins). Since the usual asymptotic approach, that is the

computation of the asymptotic covariance matrix of the parameter estimates, is trouble-

some in this case, we also propose the use of resampling procedures (bootstrap methods,

like standard normal and percentile by Efron & Tibshirani (1993), and basic bootstrap

by Davison & Hinkley (1997)) to obtain confidence intervals for the copula-based SUR

Tobit model parameters.



Resumo

Nesta tese de doutorado, consideramos os chamados modelos SUR (da expressão Seem-

ingly Unrelated Regression) Tobit multivariados e estendemos a análise de tais modelos

ao empregar funções de cópula para modelar estruturas com dependência não linear. As

cópulas, dentre outras caracteŕısticas, possuem a importante habilidade (vantagem) de

capturar/modelar a dependência na(s) cauda(s) do modelo SUR Tobit em que alguns

dados são censurados (por exemplo, em análise econométrica, ensaios cĺınicos e em ampla

gama de fenômenos poĺıticos e sociais, dentre outros, os dados são geralmente censurados

à esquerda no ponto zero, ou à direita em um ponto d > 0 qualquer). Neste trabalho,

propomos uma versão modificada do método clássico da Inferência para as Marginais

(IFM, da expressão Inference Function for Margins), originalmente proposto por Joe &

Xu (1996), a qual chamamos de MIFM, para estimação (pontual) dos parâmetros do

modelo SUR Tobit multivariado baseado em cópula. Mais especificamente, empregamos

uma técnica (frequentista) de ampliação de dados no segundo estágio do método IFM (o

primeiro estágio do método MIFM é igual ao primeiro estágio do método IFM) para gerar

as observações censuradas e, então, estimamos o parâmetro de dependência da cópula.

Repetimos tal procedimento (ampliação de dados e estimação do parâmetro da cópula) até

obter convergência. As razões para esta modificação no segundo estágio do método usual,

são as seguintes: primeiro, construir/obter distribuições marginais cont́ınuas, atendendo,

então, ao teorema de unicidade da cópula resultante de Sklar (Sklar, 1959); e segundo,

fornecer uma estimativa não viesada para o parâmetro da cópula (uma vez que o método

IFM produz estimativas viesadas do parâmetro da cópula na presença de observações

censuradas nas marginais). Tendo em vista a dificuldade adicional em calcular/obter a

matriz de covariâncias assintótica das estimativas dos parâmetros, também propomos o

uso de procedimentos de reamostragem (métodos bootstrap, tais como normal padrão

e percentil, propostos por Efron & Tibshirani (1993), e básico, proposto por Davison
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& Hinkley (1997)) para a construção de intervalos de confiança para os parâmetros do

modelo SUR Tobit baseado em cópula.
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Chapter 1

Introduction

The Tobit model refers to a class of regression models whose range of the dependent

variable (or response variable) is somehow constrained. It was first proposed in 1958 by the

1981 Nobel Prize winner in Economic Sciences, James Tobin, to describe the relationship

between a non-negative dependent variable y (the ratio of total durable goods expenditure

to total disposable income, per household) and a vector of independent variables x (the

age of the household head, and the ratio of liquid asset holdings to total disposable income)

(see Tobin, 1958). Tobin called his model the limited dependent variable model. However,

it and its various generalizations are popularly known among economists as Tobit models,

a phrase coined by Goldberger (1964) because of similarities to probit models (the term

Tobit aims to synthesize in one word the concept “Tobin’s probit”). Tobit models are

also known as censored or truncated regression models.

Particularly, the presence of censoring (left-censoring, right-censoring or both) occurs

when data on the dependent variable is limited or lost. Examples are:

1. Left-censoring. Antibody concentration values in Haitian 12-month-old infants

vaccinated against measles are determined through neutralization antibody assays

with the lower detection limit of 0.1 IU (Moulton & Halsey, 1995). Thus, concen-

tration values under or equal to 0.1 are reported as 0.1.

2. Right-censoring. People of all income levels are included in the sample, but for

some reason high-income people have their income coded as R$ 100,000 (Bolfarine,

Santos, Correia, Mart́ınez, Goméz & Bazán, 2013).

3. Both left- and right-censoring. Scores of students on an academic aptitude

test can be any value between 200 and 800, and it is not rare to observe students

1
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answering all questions in the test correctly, thus receiving a score of 800 (even

though it is likely that these students are not “truly” equal in aptitude); or students

answering all of the questions incorrectly, thus receiving a score of 200 (although

they may not all be of equal aptitude).

The Tobit specification is appropriate for the situation in which the sample proportion

of censored observations is roughly equivalent to the remaining tail area of the assumed

parametric distribution. The Cragg (1971) model, which in the classical literature is

known as the two-part model, is an alternative to Tobit when the data rate below or

above the threshold is quite different from the probability of the tail obtained with the

assumed parametric model.

The censoring problem also arises in situations with the presence of multiple dependent

variables. For example, Chen & Zhou (2011) consider the joint problem of censoring and

simultaneity when working with multivariate microeconomic data.

The next section describes two real datasets that show such characteristics (i.e. cen-

soring and multiple correlated dependent variables).

1.1 The data

This section introduces the datasets that will be used to illustrate the approaches proposed

in this thesis.

1.1.1 U.S. salad dressing, tomato and lettuce consumption data

The United States is the second largest tomato and lettuce-producing country after China.

In terms of consumption, tomatoes are the United States’ fourth most popular fresh-

market vegetable after potatoes, lettuce and onions. Over the past few decades, per

capita use of tomatoes has been on the rise (in 2011, 86.3 pounds per person of tomatoes

were available for Americans to eat) as a result of the enduring popularity of salads, salad

bars, and bacon-lettuce-tomato (BLT) and submarine (sub) sandwiches. On the other

hand, the total lettuce consumption, i.e. consumption of all lettuce varieties by Americans

reached a high record of 34.5 pounds per capita in 2004. However, as discussed in Mintel’s

”Bagged Salad and Salad Dressings - U.S., July 2008”, salad dressing sales have declined

since 2005. Among other reasons, it is due to the fact that health-oriented consumers who
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eat large amounts of tomatoes, lettuce and other vegetables are curtailing consumption

of salad dressings perceived as high in fat, calories and sodium.

Our study aims at establishing some factors (age, region/location and income, among

others) that influence the consumption of tomatoes (including raw and cooked tomatoes,

tomato juices, tomato sauces and mixtures having tomatoes as a main ingredient), lettuce

(including all plain, Boston and Romaine lettuce reported separately or as part of a mixed

salad or sandwich) and salad dressing products (including mayonnaise-type salad dressing

reported separately or as part of a sandwich, and pourable salad dressings reported sep-

arately or as part of a mixture such as a salad) by U.S. individuals. This study is based

on part of a dataset extracted from the 1994-1996 Continuing Survey of Food Intakes by

Individuals (CSFII) (USDA, 2000). In the CSFII, two non-consecutive days of dietary

data for individuals of all ages residing in the United States were collected through in-

person interviews using 24-hour recall. Each sample person reported the amount of each

food item consumed. Where two days were reported there is also a third record contain-

ing daily averages. Socioeconomic and demographic data for the sample households and

their members were also collected in the CSFII. The size of the extracted sample here is

n = 400 adults age 20 or older. We only consider one member per household.

Table 1.1 provides the definitions and sample statistics for all considered variables,

where we observe the proportions of consuming individuals in the dataset to range from

85.00% for salad dressings, to 63.25% for tomatoes and 67.25% for lettuce. Among those

consuming, an individual on average consumes 32.84 g of salad dressings, 66.56 g of

tomatoes and 60.52 g of lettuce per day.

In Figure 1.1, the histograms, and in Figures 1.2 and 1.3, the three-dimensional (3D)

and two-dimensional (2D) scatter plots, respectively, show some features of the data and

model we work on: all three dependent variables (salad dressing, tomato and lettuce

consumption) are limited (left-censored or lower-bounded by zero, since there are some

individuals in the extracted sample who did not consume tomatoes, lettuce and/or salad

dressings during the survey period) and there is a considerable positive association among

salad dressing, tomato and lettuce consumption data (the Kendall tau rank correlation

coefficient between salad dressing and tomato, salad dressing and lettuce, and tomato and

lettuce consumption is 0.3522, 0.5572 and 0.3437, respectively). These features, as well as

the presence of covariates (age, region and income), suggest that the relationship among
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Table 1.1: Variable definitions and sample statistics (n = 400).

Variable Definition Mean
Standard
Deviation

Dependent variables: amount consumed
Salad dressing (in 100 g) Quantity of salad dressings consumed 0.2791 0.2371

Among the consuming (n = 340; 85.00%) 0.3284 0.2235
Tomato (in 400 g) Quantity of tomatoes consumed 0.1052 0.1526

Among the consuming (n = 253; 63.25%) 0.1664 0.1633
Lettuce (in 200 g) Quantity of lettuce consumed 0.2035 0.2348

Among the consuming (n = 269; 67.25%) 0.3026 0.2280

Continuous explanatory variable
Income Household income as the proportion of 2.3160 0.8404

poverty threshold

Binary explanatory variables (yes = 1; no = 0)
Age 20-30 Age is 20-30 0.1375
Age 31-40 Age is 31-40 0.1600
Age 41-50 Age is 41-50 0.1900
Age 51-60 Age is 51-60 0.1725
Age > 60 Age > 60 (reference) 0.3400
Northeast Resides in the Northeastern states 0.1850
Midwest Resides in the Midwestern states 0.2450
South Resides in the Southern states (reference) 0.3500
West Resides in the Western states 0.2200
Source: Compiled from the CSFII, USDA, 1994-1996.

the reported salad dressing, tomato and lettuce consumption could be modeled through

a trivariate regression model with limited (left-censored at zero) dependent variables.

1.1.2 Brazilian commercial bank customer churn data

Customer churn, also known as customer attrition or customer defection, has become

a major issue for most banks in terms of representing the loss of clients or customers

as they stop using certain products or services. According to Wang, Liu, Peng, Nie,

Kou & Shi (2010), an important reason for customer churn analysis is that the cost of

acquiring/developing a new customer is much higher than that of retaining an existing

one. Generally, it costs up to five times as much to make a new sale to a new customer as

it does to make an additional sale to an existing customer (Dixon, 1999; Slater & Narver,

2000). Reichheld & Sasser (1990) found that a bank can increase its profits by 85% by

enhancing the customer retention rate by 5%.

Our study aims at establishing a few factors (age and income, among others) that

influence the time (in years) to churn/cancel three credit products (hereafter, Products

A, B and C for reasons of confidentiality) for 927 customers of a Brazilian commercial

bank. These customers started a relationship with this financial institution almost at the

same time (i.e. the same month) and about 10 years before the financial institution was

acquired by a bank holding company. This process is popularly known as merger and
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Figure 1.1: Distributions of the salad dressing (left panel), tomato (middle panel) and
lettuce (right panel) consumption. The vertical line at zero on x axis represents individuals
that did not consume salad dressings, tomatoes or lettuce during the survey period.

Table 1.2: Variable definitions and sample statistics (n = 927).

Variable Definition Mean
Standard
Deviation

Dependent variables: in log of years
Product A Log of time to churn Product A 1.1200 0.9118

Among the uncensored (n = 777; 83.82%) 0.8925 0.8192
Product B Log of time to churn Product B 1.2610 0.8325

Among the uncensored (n = 745; 80.37%) 1.0070 0.7306
Product C Log of time to churn Product C 1.1500 0.8987

Among the uncensored (n = 765; 82.52%) 0.9069 0.7996

Continuous explanatory variable
Age Age in completed years 43.2000 15.0241
Income Monthly income in Brazilian reais (BRL) 1,524.0000 2,385.3710

acquisition (M&A) or takeover (Hildebrandt, 2007). Thus, the range of each dependent

variable (time to churn Product A, time to churn Product B and time to churn Product C)

is bounded by the interval zero year (i.e. customers close their accounts before completing

the first year of the relationship) to ten years (i.e. customers still with the bank at the

acquisition date).

Table 1.2 provides the definitions and sample statistics for all considered variables,

where we observe the proportions of uncensored observations (i.e. customers whose log

of time to churn is less than 2.3 or 10 years) in the dataset to range from 83.82% for

Product A, to 80.37% for Product B and 82.52% for Product C. Among those uncensored,

a customer on average churns Product A in 0.8925 log of years or 2.44 years; Product B

in 1.0070 log of years or 2.74 years; and Product C in 0.9069 log of years or 2.48 years.

In Figure 1.4, the histograms, and in Figures 1.5 and 1.6, the 3D and 2D scatter plots,

respectively, show some features of the data and model we work on: all three dependent

variables (log-transformed) are limited (upper-bounded or right-censored at point d = 2.3
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Figure 1.2: 3D scatter plot of salad dressing versus tomato versus lettuce. The bold ball
sizes are related to the number of pair of data with the same dependent variable values.

or approximately 10 years) and there is a considerable positive association among the

log of times to churn Products A, B and C (the Kendall tau rank correlation coefficient

between the log of times to churn Products A and B, Products A and C, and Products B

and C is 0.6386, 0.5389 and 0.5928, respectively). These features, as well as the presence

of covariates (age and income), suggest that the relationship among the reported log of

times to churn Products A, B and C could be modeled through a trivariate regression

model with limited (right-censored at point d = 2.3) dependent variables.

1.2 Literature review

The multivariate Tobit models, which generalize univariate Tobit ones to systems of equa-

tions, is a class of models able to address the above-mentioned issues in Sections 1.1.1

and 1.1.2. There are several generalizations available in the literature, each designed to

uniquely capture features of each particular application. See, e.g., Lee (1993) for a survey.

Our thesis considers the Seemingly Unrelated Regression (SUR) Tobit model, which is a

SUR-type model, i.e. a set of linear regression equations where all dependent variables

are partially observed or censored. In the SUR models, each equation is a valid linear re-

gression on its own and can be estimated separately, which is the reason why the system

is called seemingly unrelated (Greene, 2003). However, some authors, like Davidson &

MacKinnon (2003), suggest that the term seemingly related would be more appropriate,
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since the error terms are assumed to be correlated across the equations. See, e.g., Zell-

ner (1962), Greene (2003, Chapter 14), Davidson & MacKinnon (2003, Chapter 12) and

Zellner & Ando (2010) for more details on the SUR models; and Amemiya (1984) for a

thorough review of various types of Tobit models.

Several estimation techniques have been proposed to implement the SUR Tobit model.

See, e.g., Wales & Woodland (1983), Brown & Lankford (1992) and Kamakura & Wedel

(2001) for the maximum likelihood (ML) estimation; Huang, Sloan & Adamache (1987)

for the expectation-maximization; Meng & Rubin (1996) for the expectation-conditional

maximization (ECM); and Huang (1999) for the Monte Carlo ECM (MCECM). Moreover,

Huang (2001), Baranchuk & Chib (2008) and Taylor & Phaneuf (2009) implement the

SUR Tobit model through the Bayesian approach using Gibbs samplers, while Chen &

Zhou (2011) estimate the model parameters in the semiparametric context. However, all

these estimation methods are cumbersome (i.e. computationally demanding and difficult

to implement), especially for high dimensions. Trivedi & Zimmer (2005) suggest this as

a reason why the SUR Tobit model is not well applied. These methods also assume nor-

mal marginal error distributions, which may be inappropriate in many real applications.

In addition, modeling the dependence structure of the SUR Tobit model through the

multivariate normal distribution is restricted to the linear relationship among marginal

distributions through the correlation coefficients.

In order to relax the assumptions on the same normally-distributed margins and their

linear dependence structure, we can use copulas to analyze the SUR Tobit model (Wichi-

taksorn, Choy & Gerlach, 2012). According to Sklar’s theorem (Sklar, 1959), copulas are

used to model the nonlinear dependence structure of the margins that can follow any ar-

bitrary distributions. See, e.g., Joe (1997), McNeil, Frey & Embrechts (2005, Chapter 5)

and Nelsen (2006) for further details on copulas. The copulas have been successfully ap-

plied in many financial and economic applications with continuous and discrete margins

(Pitt, Chan & Kohn, 2006; Smith & Khaled, 2012; Panagiotelis, Czado & Joe, 2012). Nev-

ertheless, the case of censored (or semi-continuous) margins has not been widely studied

and applied, as pointed out by Wichitaksorn et al. (2012). Moreover, the tail coeffi-

cients from some copulas can reveal the dependence at the tails where some data are

censored. Trivedi & Zimmer (2005) implement the bivariate SUR Tobit model through

a few copulas (Clayton, Frank, Gaussian and Farlie-Gumbel-Morgenstern) to model the
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U.S. out-of-pocket and non-out-of-pocket medical expenses data, finding that the two-

stage ML/Inference Function for Margins (IFM) estimation results are unstable. This is

not surprising considering the previous findings about the inconsistency of ML estima-

tors of the parameters of the Tobit model with non-normal errors (Cameron & Trivedi,

2005). Yen & Lin (2008) estimate the copula-based censored equation system (a system

of four meat products - beef, pork, poultry and fish - consumed by U.S. individuals) via

the quasi-ML estimation method, yet considering the Frank copula with generalized log-

Burr margins (the generalized log-Burr distribution nests the logistic distribution, which

is kin to the normal distribution) exclusively. Finally, Wichitaksorn et al. (2012) apply

and combine the data augmentation techniques by Geweke (1991), Chib (1992), Chib &

Greenberg (1998), Pitt et al. (2006) and Smith & Khaled (2012) to simulate the unob-

served marginal dependent variables and proceed with the bivariate copula-based SUR

Tobit model implementation through Bayesian Markov Chain Monte Carlo methods as

in other copula models with continuous margins. In their work, the relationship between

the self-reported out-of-pocket and non-out-of-pocket medical expenses of elderly Amer-

icans, as well as the relationship between the wage earnings income of household head

and members living in the rural households in Thailand, are described by bivariate SUR

Tobit models with Student-t margins through four different copulas (Gaussian, Student-t,

Frank and Clayton).

1.3 Objectives

In this thesis, inspired by the (Bayesian) work of Wichitaksorn et al. (2012), we pro-

pose/develop a modified version of the (classical) IFM method by Joe & Xu (1996),

hereafter Modified Inference Function for Margins (MIFM) method, to implement the

SUR Tobit model with arbitrary margins through copulas. The MIFM method con-

sists of the most significant contribution of this thesis. For now, we consider only the

(one-parameter) Clayton copula and its survival (or reflected) copula, as well as symmet-

ric (normal), asymmetric (power-normal) and heavy-tailed (logistic) distributions for the

marginal errors. The copula-based SUR Tobit models with asymmetric (power-normal)

marginal errors is another major contribution of this thesis. These error choices were

directed mainly by the dataset features detected in Sections 1.1.1 and 1.1.2. Regard-

ing the first dataset, its features indicate that the relationship among the reported salad
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dressing, tomato and lettuce consumption, in the presence of covariates (age, region and

income), could be modeled through the trivariate SUR Tobit model with left-censored

(at zero point) normally-, power-normally- or logistically-distributed dependent variables

based on the one-parameter Clayton copula. Note from Figure 1.1 that the assumption

of normality of marginal errors, or equivalently, the assumption of left-censored normal

distribution of the observed dependent variables does not seem to be a reasonable one

to make (all distributions seem to have a right-tail heavier than the normal tail). From

Figure 1.2, we see that there is a high number of 3-tuple zero (n = 60 observations); this

seems to indicate the strongest relationship among the three dependent variables/margins

in their lower regions (i.e. for low or no consumption of salad dressings, tomatoes and

lettuce), where data are most concentrated. Therefore, the use of the Clayton copula with

only one parameter is justified in order to accommodate the possible existence of lower tail

dependence, as well as positive nonlinear dependence of the same magnitude (since the

Kendall tau values for each pair of dependent variables are not so different; see Section

1.1.1). Furthermore, Figures 1.1 and 1.3 have indications that each pair of dependent

variables could be modeled through the bivariate SUR Tobit model with left-censored

(at zero point) normally-, power-normally- or logistically-distributed dependent variables

based on the Clayton copula. On the other hand, the second dataset has indications

that the relationship among the reported log of times to churn Products A, B and C,

in the presence of covariates (age and income), could be modeled through the trivariate

SUR Tobit model with right-censored (at point d = 2.3) normally-, power-normally- or

logistically-distributed dependent variables based on the one-parameter Clayton survival

copula. Note from Figure 1.4 that the assumption of normality of marginal errors, or

equivalently, the assumption of right-censored normal distribution of the observed depen-

dent variables may be doubtful. From Figure 1.5, we observe that there is a high number

of 3-tuple 2.3 (n = 95 observations); which seems to indicate the strongest relationship

among the three dependent variables in their upper regions (i.e. for high times or log

of times to churn Products A, B and C). Thus, the use of the Clayton survival copula

with just a single parameter is justified in order to accommodate the possible existence of

upper tail dependence, as well as positive nonlinear dependence of the same magnitude

(provided that the Kendall tau values for each pair of dependent variables are similar; see

Section 1.1.2). Moreover, Figures 1.4 and 1.6 have indications that each pair of dependent
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variables could be modeled through the bivariate SUR Tobit model with right-censored (at

point d = 2.3) normally-, power-normally- or logistically-distributed dependent variables

based on the Clayton survival copula. In this work, we also decided for the Clayton and

Clayton survival copulas guided by the literature, which states that these copula families

have a remarkable and useful (as will be seen in Sections 2.1.1.1, 2.2.1.1, 3.1.1.1, 3.2.1.1,

4.1.1.1 and 4.2.1.1) invariance property under truncation.

In short, the MIFM method proposed in this thesis uses a (frequentist) data aug-

mentation technique at the second stage of the IFM method (the IFM method provides

biased estimates of the Clayton and Clayton survival copulas’ association parameter, as

will be seen in Sections 2.1.2.2, 2.2.2.2, 3.1.2.2 and 3.2.2.2) to generate the censored obser-

vations/margins and thus obtain a better (unbiased) estimate of the copula dependence

parameter. This modification also aims to satisfy the Sklar’s theorem, which states that

marginal distributions should be continuous to ensure the uniqueness of the resulting cop-

ula. Since the usual asymptotic approximation, that is the computation of the asymptotic

covariance matrix of the parameter estimates, is cumbersome in this case, we consider re-

sampling procedures (a parametric resampling plan) to obtain confidence intervals for

the copula-based SUR Tobit model parameters. More specifically, we use the standard

normal and percentile methods by Efron & Tibshirani (1993), and the basic method by

Davison & Hinkley (1997), to build bootstrap confidence intervals.

1.4 Overview

The thesis has the following organization. In Chapter 2, we present the bivariate copula-

based SUR Tobit models (i.e. the bivariate Clayton copula-based SUR Tobit model and

the bivariate Clayton survival copula-based SUR Tobit right-censored model, both with

normal, power-normal and logistic distribution assumption for the marginal errors), dis-

cuss inference for the models’ parameters, showing the models’ implementations through

the MIFM method and the confidence intervals construction using the bootstrap approach;

present the simulation studies used to evaluate our proposed models and methods; and

provide applications of our procedures to real datasets. In Chapter 3, we extend the bi-

variate ideas, i.e. the bivariate models and methods to the trivariate case. Chapter 3 also

presents the simulation studies conducted and the empirical applications. In Chapter 4,

we present a straightforward generalization of the models and methods proposed in this
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thesis for the m-variate (m ≥ 2) case. Finally, Chapter 5 concludes the thesis with final

remarks and a few indications for further studies.

It is useful to note that this thesis is organized as a series of papers. More advanced

readers may skip ahead to Chapter 4 concerning multivariate models and methods after

reading Chapter 1, and then proceed to Chapters 2 and 3 as they provide the simulation

studies and empirical applications for particular cases of the multivariate approach, i.e.

bivariate and trivariate models and methods, respectively.
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Figure 1.3: 2D scatter plots of salad dressing versus tomato (upper panel), salad dressing
versus lettuce (middle panel) and tomato versus lettuce (lower panel). The bold ball sizes
are related to the number of pair of data with the same dependent variable values.
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Figure 1.5: 3D scatter plot of log(time) to churn Product A versus log(time) to churn
Product B versus log(time) to churn Product C. The bold ball sizes are related to the
number of pair of data with the same dependent variable values.
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Figure 1.6: 2D scatter plots of log(time) to churn Product A versus log(time) to churn
Product B (upper panel), log(time) to churn Product A versus log(time) to churn Product
C (middle panel), and log(time) to churn Product B versus log(time) to churn Product
C (lower panel). The bold ball sizes are related to the number of pair of data with the
same dependent variable values.



Chapter 2

Bivariate Copula-based SUR Tobit
Models

In this chapter, we present the bivariate copula-based SUR Tobit models proposed in

this thesis. We first present the bivariate Clayton copula-based SUR Tobit model, i.e.

the SUR Tobit model with two left-censored (at zero point) dependent variables whose

dependence between them is modeled through the Clayton copula. Then, we present the

bivariate Clayton survival copula-based SUR Tobit right-censored model, which is the

SUR Tobit model with two right-censored (at point dj > 0, j = 1, 2) dependent variables

whose dependence structure between them is modeled by the Clayton survival copula.

In both cases, we assume symmetric, asymmetric and heavy-tailed distributions for the

marginal error terms. Discussions concerning the model implementation through the pro-

posed MIFM method, as well as the confidence intervals construction from the bootstrap

distribution of model parameters, are made for each proposed model. Simulation studies

and applications to real datasets are also provided in this chapter.

2.1 Bivariate Clayton copula-based SUR Tobit model

formulation

The SUR Tobit model with two left-censored (at zero point) dependent variables, or

simply bivariate SUR Tobit model, is expressed as

y∗ij = x
′

ijβj + εij,

yij =

y
∗
ij if y∗ij > 0,

0 otherwise,

15
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for i = 1, ..., n and j = 1, 2, where n is the number of observations, y∗ij is the latent (i.e.

unobserved) dependent variable of margin j, yij is the observed dependent variable of

margin j (which is defined to be equal to the latent dependent variable y∗ij whenever y∗ij

is above zero and zero otherwise), xij is the k × 1 vector of covariates, βj is the k × 1

vector of regression coefficients and εij is the margin j’s error that follows some zero mean

distribution.

Suppose that the marginal errors are no longer normal, but they are assumed to be

distributed according to the power-normal (Gupta & Gupta, 2008) and logistic models,

thus providing asymmetric and heavy-tailed alternatives to Tobin’s model (Tobin, 1958).

These choices of error distribution consist of expressing the density function of yij in the

following forms.

• Normal marginal errors (i.e. εij ∼ N
(
0, σ2

j

)
):

fj
(
yij|xij,βj, σj

)
=


1− Φ

(
x
′
ijβj
σj

)
if yij = 0,

1
σj
φ

(
yij−x

′
ijβj

σj

)
if yij > 0,

(2.1)

(Trivedi & Zimmer, 2005), where φ (.) and Φ (.) are the standard normal probability

density function (p.d.f.) and cumulative distribution function (c.d.f.), respectively.

Note that if εij ∼ N
(
0, σ2

j

)
, then we have marginal standard Tobit models or Type

I Tobit models (Amemiya, 1984). The corresponding distribution function of yij

is denoted by Fj
(
yij|xij,βj, σj

)
and is obtained by replacing φ (.) with Φ (.) and

removing 1 / σj from the second part of (2.1) (i.e. where yij > 0).

• Power-normal marginal errors (i.e. εij ∼ PN (0, σj, αj)):

fj
(
yij|xij,βj, σj, αj

)
=


[
Φ

(
−x

′
ijβj
σj

)]αj
if yij = 0,

αj
σj
φ

(
yij−x

′
ijβj

σj

)[
Φ

(
yij−x

′
ijβj

σj

)]αj−1

if yij > 0,

(2.2)

where αj > 0 is a shape parameter that controls the amount of asymmetry in

the distribution, as well as the distribution kurtosis (for αj > 1, the kurtosis is

greater than that of the normal distribution, and for 0 < αj < 1 the opposite

is observed). Note that (2.1) is recovered when αj = 1. For further details on

the power-normal distributions, see Gupta & Gupta (2008). If we assume εij ∼

PN (0, σj, αj), then we have marginal power-normal Tobit models (Mart́ınez-Floréz,
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Bolfarine & Gómez, 2013). The corresponding distribution function of yij is denoted

by Fj
(
yij|xij,βj, σj, αj

)
and is obtained by replacing φ (.) with Φ (.) and removing

αj / σj from the second part of (2.2) (i.e. where yij > 0).

• Logistic marginal errors (i.e. εij ∼ L (0, sj)):

fj
(
yij|xij,βj, sj

)
=


1−G

(
x
′
ijβj
sj

)
if yij = 0,

1
sj
g

(
yij−x

′
ijβj

sj

)
if yij > 0,

(2.3)

where g (z) = ez /(1 + ez)2 and G (z) = 1/(1 + e−z) are the L (0, 1) p.d.f. and c.d.f.,

respectively. The corresponding distribution function of yij, Fj
(
yij|xij,βj, sj

)
, is

obtained by replacing g (.) with G (.) and removing 1 / sj from the second part of

(2.3) (i.e. where yij > 0).

Usually, the dependence between the error terms εi1 and εi2 is modeled through a bi-

variate distribution, especially the bivariate normal distribution (such specification char-

acterizes the basic bivariate SUR Tobit model; see, e.g., Huang et al. (1987) for more

details on this model). However, as commented before (in Section 1.2), a restriction

in applying a bivariate distribution to the bivariate SUR Tobit model is the linear re-

lationship between marginal distributions through the correlation coefficient. One way

to overcome this restriction is to use a copula function to capture/model the nonlinear

dependence structure in the bivariate SUR Tobit model.

Thus, for the censored outcomes yi1 and yi2, the bivariate copula-based SUR Tobit

distribution is given by

F (yi1, yi2) = C (ui1, ui2|θ) ,

where, e.g., uij = Fj
(
yij|xij,βj, σj

)
if εij ∼ N

(
0, σ2

j

)
, Fj

(
yij|xij,βj, σj, αj

)
if εij ∼

PN (0, σj, αj), and Fj
(
yij|xij,βj, sj

)
if εij ∼ L (0, sj), for j = 1, 2, and θ is the association

parameter (or parameter vector) of the copula, which is assumed to be scalar.

Suppose C is the bidimensional Clayton (1978) copula, also referred to as the Cook &

Johnson (1981) copula, originally studied by Kimeldorf & Sampson (1975). It takes the

form

C (ui1, ui2|θ) =
(
u−θi1 + u−θi2 − 1

)− 1
θ , (2.4)

with θ restricted to the region (0,∞). The dependence between the margins increases with

the value of θ, with θ → 0+ implying independence and θ →∞ implying perfect positive
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dependence. The Clayton copula does not allow for negative dependence. In the survival

analysis framework, there is an equivalence between the Clayton copula and the shared

gamma frailty model (see, e.g., Goethals, Janssen & Duchateau, 2008). Trivedi & Zimmer

(2005) point out that the Clayton copula is widely used to study correlated risks because

it shows strong left tail dependence and relatively weak right tail dependence. Indeed,

when correlation between two events is stronger in the left tail of the joint distribution,

Clayton is usually an appropriate modeling choice.

2.1.1 Inference

In this subsection, we discuss inference (point and interval estimation) for the parameters

of the bivariate Clayton copula-based SUR Tobit model. Particularly, by considering/as-

suming normal, power-normal and logistic distributions for the marginal errors.

2.1.1.1 Estimation through the MIFM method

According to Trivedi & Zimmer (2005), the log-likelihood function for the bivariate Clay-

ton copula-based SUR Tobit model can be written in the following form 1

` (η) =
n∑
i=1

log c (F1 (yi1|xi1,υ1) , F2 (yi2|xi2,υ2) |θ) +
n∑
i=1

2∑
j=1

log fj (yij|xij,υj), (2.5)

where η = (υ1,υ2, θ) is the vector of model parameters, υj is the margin j’s parameter

vector, fj (yij|xij,υj) is the p.d.f. of yij, Fj (yij|xij,υj) is the c.d.f. of yij, and c (ui1, ui2|θ),

with uij = Fj (yij|xij,υj), is the p.d.f. of the Clayton copula, which is calculated from

(2.4) as

c (ui1, ui2|θ) =
∂2C (ui1, ui2|θ)

∂ui1∂ui2
= (θ + 1) (ui1ui2)−θ−1 (u−θi1 + u−θi2 − 1

)− 1
θ
−2
.

For model estimation, the use of copula methods, as well as the log-likelihood function

form given by (2.5), enables the use of the (classical) two-stage ML/IFM method by Joe

& Xu (1996), which estimates the marginal parameters υj at a first step through

υ̂j,IFM = arg max
υj

n∑
i=1

log fj (yij|xij,υj) , (2.6)

for j = 1, 2, and then estimates the association parameter θ given υ̂j,IFM by

θ̂IFM = arg max
θ

n∑
i=1

log c
(
F1 (yi1|xi1, υ̂1,IFM) , F2 (yi2|xi2, υ̂2,IFM) |θ

)
. (2.7)

1This is the same form as in the case of continuous margins.
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Note that each maximization task (step) has a small number of parameters, which reduces

the computational difficulty. However, the IFM method provides a biased estimate for

the parameter θ in the presence of censored observations for both margins (as will be

seen in Section 2.1.2.2). Since we are interested in the bivariate Clayton copula-based

SUR Tobit model where both marginal distributions are censored/semi-continuous, we are

dealing with the case where there is not a one-to-one relationship between the marginal

distributions and the copula, i.e. there is more than one copula to join the marginal

distributions. This constitutes a violation of the Sklar’s theorem (Sklar, 1959). When it

occurs, researchers often face problems in the copula model fitting and validation.

In order to facilitate the implementation of copula models with semi-continuous mar-

gins, the semi-continuous marginal distributions could be augmented to achieve continuity.

More specifically, we can use a (frequentist) data augmentation technique to simulate the

latent (i.e. unobserved) dependent variables in the censored margins, that is, we generate

the unobserved data with all properties, e.g., mean, variance and dependence structure

that match with the observed ones, and obtain the continuous marginal distributions (Wi-

chitaksorn et al., 2012). Thus, in order to obtain an unbiased estimate for the association

parameter θ, we replace yij by the augmented data ya
ij, or equivalently and more simply

(thus, preferred by us), we can replace uij by the augmented uniform data ua
ij at the sec-

ond stage of the IFM method and proceed with the copula parameter estimation as usual

for the continuous margin cases. This process (uniform data augmentation and copula

parameter estimation) is then repeated until convergence occurs (MIFM method). The

(frequentist) data augmentation technique we employ here is partially based on Algorithm

A2 presented in Wichitaksorn et al. (2012). For alternative ways of implementing copula

models with censored observations in the margins, but in a survival analysis framework,

see, e.g., the classical work of Shih & Louis (1995), as well as its Bayesian counterpart

developed by Romeo, Tanaka & Pedroso-de Lima (2006).

In the remaining part of this subsubsection, we discuss the MIFM method when using

the Clayton copula to describe the nonlinear dependence structure of the bivariate SUR

Tobit model with arbitrary margins (e.g., normal, power-normal and logistic distribution

assumption for the marginal error terms). However, the proposed approach can be ex-

tended to other copula functions by applying different sampling algorithms. For the cases

where only one of the dependent variables/margins is censored (i.e. when yi1 > 0 and
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yi2 = 0, or yi1 = 0 and yi2 > 0), the uniform data augmentation is performed through the

truncated conditional distribution of the Clayton copula. If the inverse conditional distri-

bution of the copula used has a closed-form expression, which is the case of the Clayton

copula (see, e.g., Armstrong, 2003), we can generate random numbers from its truncated

version by applying the method by Devroye (1986, p. 38-39). Otherwise, numerical root-

finding procedures are required. By observing the results in Oakes (2005), we see that

the Clayton copula has a remarkable invariance property under truncation, such that the

conditional distribution of ui1 and ui2 in a sub-region of a Clayton copula, with one corner

at (0, 0), can be written by means of a Clayton copula. That formulation enables a simple

simulation scheme (see, e.g., the following online short note: http://web.cecs.pdx.edu/

~cgshirl/Documents/Research/Copula_Methods/Clayton%20Copula.pdf) in the cases

where both dependent variables/margins are censored (i.e. when yi1 = yi2 = 0). For cop-

ulas that do not have the truncation-invariance property, an iterative simulation scheme

could be used.

The implementation of the bivariate Clayton copula-based SUR Tobit model with

arbitrary margins through the proposed MIFM method can be described as follows. In

particular, if the marginal error distributions are normal, then set υj =
(
βj, σj

)
and

Hj (z|xij,υj) = Φ
((
z − x′ijβj

)
/ σj

)
; if marginal error distributions are power-normal,

so υj =
(
βj, σj, αj

)
and Hj (z|xij,υj) =

[
Φ
((
z − x′ijβj

)
/ σj

)]αj
; and if marginal error

distributions are logistic, then υj =
(
βj, sj

)
and Hj (z|xij,υj) = G

((
z − x′ijβj

)
/ sj
)

=[
1 + exp

{
−
(
z − x′ijβj

)
/ sj
}]−1

, for j = 1, 2 and z ∈ R.

Stage 1. Estimate the marginal parameters using (2.6). Set υ̂j,MIFM = υ̂j,IFM, for

j = 1, 2.

Stage 2. Estimate the copula parameter using e.g., (2.7). Set θ̂
(1)
MIFM = θ̂IFM and then

consider the algorithm below.

For ω = 1, 2, ...,

For i = 1, 2, ..., n,

If yi1 = yi2 = 0, then draw (ua
i1, u

a
i2) from C

(
ua
i1, u

a
i2|θ̂

(ω)
MIFM

)
truncated to the region

(0, bi1)× (0, bi2). This can be performed relatively easily using the following steps.
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1. Draw (p, q) from C
(
p, q|θ̂(ω)

MIFM

)
=
(
p−θ̂

(ω)
MIFM + q−θ̂

(ω)
MIFM − 1

)−1/θ̂
(ω)
MIFM

. See, e.g., Arm-

strong (2003) for the Clayton copula data generation.

2. Compute bij = Hj (0|xij, υ̂j,MIFM), for j = 1, 2.

3. Set ua
i1 =

[(
b
−θ̂(ω)MIFM
i1 + b

−θ̂(ω)MIFM
i2 − 1

)
p−θ̂

(ω)
MIFM + 1− b−θ̂

(ω)
MIFM

i2

]−1/θ̂
(ω)
MIFM

.

4. Set ua
i2 =

[(
b
−θ̂(ω)MIFM
i1 + b

−θ̂(ω)MIFM
i2 − 1

)
q−θ̂

(ω)
MIFM + 1− b−θ̂

(ω)
MIFM

i1

]−1/θ̂
(ω)
MIFM

.

If yi1 = 0 and yi2 > 0, then draw ua
i1 from C

(
ua
i1|ui2, θ̂

(ω)
MIFM

)
truncated to the interval

(0, bi1). This can be done according to the following steps.

1. Compute ui2 = H2 (yi2|xi2, υ̂2,MIFM).

2. Compute bi1 = H1 (0|xi1, υ̂1,MIFM).

3. Draw t from Uniform (0, 1).

4. Compute vi1 = t

(b−θ̂(ω)MIFM
i1 + u

−θ̂(ω)MIFM
i2 − 1

)−1/θ̂
(ω)
MIFM−1

u−θ̂(ω)MIFM−1
i2 .

5. Set ua
i1 =

[(
v
−θ̂(ω)MIFM/

(
θ̂
(ω)
MIFM+1

)
i1 − 1

)
u
−θ̂(ω)MIFM
i2 + 1

]−1/θ̂
(ω)
MIFM

.

If yi1 > 0 and yi2 = 0, then draw ua
i2 from C

(
ua
i2|ui1, θ̂

(ω)
MIFM

)
truncated to the interval

(0, bi2). This can be done by following the five steps of the previous case (i.e. yi1 = 0 and

yi2 > 0) by switching subscripts 1 and 2.

If yi1 > 0 and yi2 > 0, then set ua
i1 = ui1 = H1 (yi1|xi1, υ̂1,MIFM) and ua

i2 = ui2 =

H2 (yi2|xi2, υ̂2,MIFM).

Given the generated/augmented marginal uniform data ua
ij, we estimate the association

parameter θ by 2

θ̂
(ω+1)
MIFM = arg max

θ

n∑
i=1

log c (ua
i1, u

a
i2|θ) .

The algorithm stops if a termination criterion is fulfilled, e.g. if |θ̂(ω+1)
MIFM − θ̂

(ω)
MIFM| < ξ,

where ξ is the tolerance parameter (e.g., ξ = 10−3).

2The generated/augmented marginal uniform data uaij should carry (ω) as a superscript, i.e. u
a(ω)
ij ,

but we omit it so as not to clutter the notation.
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2.1.1.2 Interval estimation

Joe & Xu (1996) suggest the use of the jackknife method for the estimation of the stan-

dard errors of the multivariate model parameter estimates when using the IFM approach.

It makes the analytic derivatives no longer required to compute the inverse Godambe

information matrix, which is the asymptotic covariance matrix associated with the vec-

tor of parameter estimates under some regularity conditions. See Joe (1997, p. 301-302)

for the form of this matrix. However, we carried out a pilot simulation study whose

results revealed that the jackknife is not valid to obtain standard errors of parameter es-

timates when using the MIFM approach, i.e. in the context of copula-based models with

censored/semi-continuous margins (the jackknife method produces an overestimate of the

standard error of the association parameter estimate). This implies that confidence inter-

vals for the parameters of the bivariate Clayton copula-based SUR Tobit model cannot

be constructed using this resampling technique. To overcome this problem, we propose

the use of bootstrap methods to build confidence intervals.

Our bootstrap approach can be described as follows. Let ηh, h = 1, ..., k, be any com-

ponent of the parameter vector η of the bivariate Clayton copula-based SUR Tobit model

(see Section 2.1.1.1). By using a parametric resampling plan, we obtain the bootstrap

estimates η̂∗h1, η̂
∗
h2, ..., η̂

∗
hB of ηh through the MIFM method, where B is the number of

bootstrap samples. Hinkley (1988) suggests that the minimum value of B depends on

the parameter being estimated, but that it is often 100 or more. Then, we can derive

confidence intervals from the bootstrap distribution through the following two methods,

for instance.

• Percentile bootstrap (Efron & Tibshirani, 1993, p. 171). The 100 (1− 2α) % per-

centile confidence interval is defined by the 100 (α)th and 100 (1− α)th percentiles

of the bootstrap distribution of η̂∗h:[
η̂
∗(α)
h , η̂

∗(1−α)
h

]
.

For Carpenter & Bithell (2000), simplicity is the attractive feature of this method.

Moreover, no invalid parameter values can be included in the interval.

• Standard normal interval (Efron & Tibshirani, 1993, p. 154). Since most statis-

tics are asymptotically normally distributed, in large samples we can use the stan-

dard error estimate, ŝeh, as well as the normal distribution, to yield a 100 (1− 2α) %
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confidence interval for ηh based on the original estimate (i.e. from the original

data/sample) η̂h: [
η̂h − z(1−α)ŝeh, η̂h − z(α)ŝeh

]
,

where z(α) represents the 100 (α)th percentile point of a standard normal distribu-

tion, and ŝeh is the hth entry on the diagonal of the bootstrap-based covariance

matrix estimate of the parameter vector estimate η̂, which is given by

Σ̂boot =
1

B − 1

B∑
b=1

(
η̂∗b − η̂

∗
)(
η̂∗b − η̂

∗
)′
, (2.8)

where η̂∗b , b = 1, ..., B, is the bootstrap estimate of η and

η̂
∗

=

(
1

B

B∑
b=1

η̂∗1b,
1

B

B∑
b=1

η̂∗2b, . . . ,
1

B

B∑
b=1

η̂∗kb

)
.

2.1.2 Simulation study

A simulation study was performed to investigate the behavior of the MIFM estimates

(focusing on the copula association parameter estimate) and check the coverage proba-

bilities of bootstrap confidence intervals (constructed using the two methods described

in Section 2.1.1.2) for the bivariate Clayton copula-based SUR Tobit model parameters.

Here, we considered some circumstances that might arise in the development of bivariate

copula-based SUR Tobit models, involving the sample size, the censoring percentage (i.e.

the percentage of zero observations) in the dependent variables/margins and their inter-

dependence degree. We also considered/assumed different distributions for the marginal

error terms.

2.1.2.1 General specifications

In the simulation study, we applied the Clayton copula to model the nonlinear dependence

structure of the bivariate SUR Tobit model. We set the true value for the association

parameter θ at 0.67, 2 and 6, corresponding to a Kendall’s tau association measure 3

of 0.25, 0.50 and 0.75, respectively. For the Clayton copula data generation, see, e.g.,

Armstrong (2003).

For i = 1, ..., n, the covariates for margin 1, xi1 = (xi1,0, xi1,1)
′
, were xi1,0 = 1 and xi1,1

was randomly simulated from a standard normal distribution. While the covariates for

3The Kendall’s tau for Clayton copula is given by τ2 = θ / (θ + 2); see, e.g., Joe (1997, p. 78) and
McNeil et al. (2005, p. 222).
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margin 2, xi2 = (xi2,0, xi2,1)
′
, were generated as xi2,0 = 1 and xi2,1 was randomly simulated

from N (1, 22). The model errors εi1 and εi2 were assumed to follow the distributions shown

below:

• Normal: i.e. εi1 ∼ N (0, σ2
1) and εi2 ∼ N (0, σ2

2), where σ1 = 1 and σ2 = 2 are

the standard deviations (scale parameters) for margins 1 and 2, respectively. To

ensure a percentage of censoring (i.e. of zero observations) for both margins of

approximately 5%, 15%, 25%, 35% and 50%, we assumed the following true values

for β1 = (β1,0, β1,1)
′

and β2 = (β2,0, β2,1)
′
:

� β1 = (2.3, 1) and β2 = (4,−0.5);

� β1 = (1.5, 1) and β2 = (2.75,−0.5);

� β1 = (1, 1) and β2 = (2,−0.5);

� β1 = (0.5, 1) and β2 = (1.3,−0.5);

� β1 = (−0.02, 1) and β2 = (0.5,−0.5);

respectively. For j = 1, 2, the latent dependent variable of margin j, y∗ij, was

randomly simulated from N
(
x
′
ijβj, σ

2
j

)
; thus, the observed dependent variable of

margin j, yij, was obtained from max
{

0, y∗ij
}

.

• Power-normal: i.e. εi1 ∼ PN (0, σ1, α1) and εi2 ∼ PN (0, σ2, α2), where σ1 = 1

and σ2 = 2 are the scale parameters for margins 1 and 2, respectively; and α1 =

α2 = 1.75 are the shape parameters for margins 1 and 2. To ensure a percentage

of censoring for both margins of approximately 5%, 15%, 25%, 35% and 50%, we

assumed the following true values for β1 = (β1,0, β1,1)
′

and β2 = (β2,0, β2,1)
′
:

� β1 = (1.7, 1) and β2 = (2.8,−0.5);

� β1 = (0.9, 1) and β2 = (1.6,−0.5);

� β1 = (0.4, 1) and β2 = (0.9,−0.5);

� β1 = (0.05, 1) and β2 = (0.4,−0.5);

� β1 = (−0.5, 1) and β2 = (−0.4,−0.5);

respectively. For j = 1, 2, the latent dependent variable of margin j, y∗ij, was ran-

domly simulated from PN
(
x
′
ijβj, σj, αj

)
; therefore, the observed dependent vari-

able of margin j, yij, was obtained from max
{

0, y∗ij
}

.
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• Logistic: i.e. εi1 ∼ L (0, s1) and εi2 ∼ L (0, s2), where s1 = 1 and s2 = 2 are

the scale parameters for margins 1 and 2, respectively. To ensure a percentage

of censoring for both margins of approximately 5%, 15%, 25%, 35% and 50%, we

assumed the following true values for β1 = (β1,0, β1,1)
′

and β2 = (β2,0, β2,1)
′
:

� β1 = (3.3, 1) and β2 = (5.8, 1);

� β1 = (2.1, 1) and β2 = (3.1, 1);

� β1 = (1.3, 1) and β2 = (1.7, 1);

� β1 = (0.8, 1) and β2 = (0.5, 1);

� β1 = (−0.05, 1) and β2 = (−0.9, 1);

respectively. For j = 1, 2, the latent dependent variable of margin j, y∗ij, was

randomly simulated from L
(
x
′
ijβj, sj

)
; thus, the observed dependent variable of

margin j, yij, was obtained from max
{

0, y∗ij
}

.

For each error distribution assumption (normal, power-normal and logistic), censoring

percentage in the margins (5%, 15%, 25%, 35% and 50% of zero observations) and degree

of dependence between them (low: θ = 0.67, moderate: θ = 2 and high: θ = 6), we

generated 100 datasets of sizes n = 200, 800 and 2000. These choices of sample sizes

were based on some authors’ indication (e.g., Joe, 2014) that large sample sizes are com-

monly required when working with copulas. Then, for each dataset (original sample),

we obtained 500 bootstrap samples through a parametric resampling plan (parametric

bootstrap approach), i.e. we fitted a bivariate Clayton copula-based SUR Tobit model

with the corresponding error distributions to each dataset using the MIFM approach, and

then generated a set of 500 new datasets (the same size as the original dataset/sample)

from the estimated parametric model. The computing language was written in R statisti-

cal programming environment (R Core Team, 2014) and ran on a virtual machine of the

Cloud-USP at ICMC, with Intel Xeon processor E5500 series, 8 core (virtual CPUs), 32

GB RAM.

We assessed the performance of the proposed models and methods through the cov-

erage probabilities of the nominally 90% standard normal and percentile bootstrap con-

fidence intervals, the Bias and the Mean Squared Error (MSE), in which the Bias and

the MSE of each parameter ηh, h = 1, ..., k, are given by Bias = M−1
∑M

r=1 (η̂rh − ηh) and
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MSE = M−1
∑M

r=1 (η̂rh − ηh)
2, respectively, where M = 100 is the number of replications

(original datasets/samples) and η̂rh is the estimated value of ηh at the rth replication.

2.1.2.2 Simulation results

In this subsubsection, we present the main results obtained from the simulation study per-

formed with samples (datasets) of different sizes, percentages of censoring in the margins

and degrees of dependence between them, regarding the bivariate Clayton copula-based

SUR Tobit model parameters estimated using the MIFM approach. Since both the MIFM

and IFM methods provide the same marginal parameter estimates (the first stage of the

proposed method is similar to the first stage of the usual one, as seen in Section 2.1.1.1),

we focus here on the Clayton copula parameter estimate. Some asymptotic results (such

as asymptotic normality) associated with the IFM method appear in Joe & Xu (1996).

We also show the results related to the estimated coverage probabilities of the 90% con-

fidence intervals for θ, obtained by bootstrap methods (standard normal and percentile

intervals).

Figures 2.1, 2.2 and 2.3 show the Bias and MSE of the observed MIFM estimates

of θ for normal, power-normal and logistic marginal errors, respectively. From these

figures, we observe that, regardless of the error distribution assumption, the percentage

of censoring in the margins and their interdependence degree, the Bias and MSE of the

MIFM estimator of θ are relatively low and tend to zero for large n, i.e. the MIFM

estimator is asymptotically unbiased and consistent for the Clayton copula parameter.

Figures 2.4, 2.5 and 2.6 show the estimated coverage probabilities of the bootstrap

confidence intervals for θ for normal, power-normal and logistic marginal errors, respec-

tively. Observe that the estimated coverage probabilities are sufficiently high and close to

the nominal value of 0.90, except for a few cases in which n is small to moderate (n = 200

and 800), the degree of dependence between the margins is high (θ = 6) and the marginal

errors follow non-normal (i.e. power-normal and logistic) distributions (see Figures 2.5(c)

and 2.6(c)).

Finally, Figures 2.7, 2.8 and 2.9 compare, via boxplots, the observed MIFM estimates

of θ with its estimates obtained through the IFM method for normal, power-normal and

logistic marginal errors, respectively, and for n = 2000. It can be seen from Figure 2.7

that there is a certain equivalence between the two estimation methods (with a slight

advantage for the MIFM method over the IFM method, in terms of bias) when the degree
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of dependence between the margins is relatively low, that is θ = 0.67 (Figure 2.7(a)).

However, the IFM method underestimates θ for dependence at a higher level, that is

θ = 2 and θ = 6 (Figures 2.7(b) and 2.7(c), respectively). From Figure 2.8, we observe

that the IFM method overestimates θ for dependence at a lower level, that is θ = 0.67

(Figure 2.8(a)), and underestimates θ for dependence at a higher level, that is θ = 2

and θ = 6 (Figures 2.8(b) and 2.8(c), respectively). In Figure 2.9, we see that there is a

certain equivalence between the two estimation methods (with a slight advantage for the

MIFM method over the IFM method, in terms of bias) when the degree of dependence

between the margins is moderate, that is θ = 2 (Figure 2.9(b)). Nevertheless, the IFM

method overestimates θ for dependence at a lower level, that is θ = 0.67 (Figure 2.9(a)),

and underestimates θ for dependence at a higher level, that is θ = 6 (Figure 2.9(c)). Note

also from Figures 2.7, 2.8 and 2.9 that the difference (distance) between the distributions

of the IFM and MIFM estimates often increases as the percentage of censoring in the

margins increases.

2.1.3 Application

Consider the consumption dataset described in Section 1.1.1. For the sake of illustration of

our proposed bivariate models and methods, we assume that there are only two dependent

variables: salad dressing and lettuce consumption (which show the highest Kendall tau

correlation; see Section 1.1.1).

In this application, the relationship between the reported salad dressing (amount con-

sumed in 100 grams) and lettuce (amount consumed in 200 grams) consumption by 400

U.S. adults is modeled by the bivariate SUR Tobit model with normal, power-normal and

logistic marginal errors through the Clayton copula (see Section 1.3 for the reasons for

this copula model choice). We include age, location (region) and income as the covariates

and use them for both margins in all three candidate models.

Tables 2.1, 2.2 and 2.3 show the MIFM estimates for the parameters of the bivariate

Clayton copula-based SUR Tobit model with normal, power-normal and logistic marginal

errors, respectively, as well as the 90% confidence intervals obtained through the standard

normal and percentile bootstrap methods. These tables also present the log-likelihood val-

ues for the three fitted models. We can then compare the bivariate Clayton copula-based

SUR Tobit models by using some information criterion, e.g. the Akaike Information Crite-
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Figure 2.1: Bias and MSE of the MIFM estimate of the Clayton copula parameter versus
sample size, percentage of censoring in the margins and degree of dependence between
them (normal marginal errors).
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Figure 2.2: Bias and MSE of the MIFM estimate of the Clayton copula parameter versus
sample size, percentage of censoring in the margins and degree of dependence between
them (power-normal marginal errors).
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Figure 2.3: Bias and MSE of the MIFM estimate of the Clayton copula parameter versus
sample size, percentage of censoring in the margins and degree of dependence between
them (logistic marginal errors).
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Figure 2.4: Coverage probabilities (CPs) of the 90% standard normal (panels on the left)
and percentile (panels on the right) confidence intervals for the Clayton copula parameter
versus sample size, percentage of censoring in the margins and degree of dependence
between them (normal marginal errors). The horizontal line at CP = 0.90 and the two
horizontal lines at CP = 0.85 and 0.95 correspond, respectively, to the lower and upper
bounds of the 90% confidence interval of the CP = 0.90. Thus, if a confidence interval has
exact coverage of 0.90, roughly 90% of the observed coverages should be between these
lines.
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Figure 2.5: Coverage probabilities (CPs) of the 90% standard normal (panels on the left)
and percentile (panels on the right) confidence intervals for the Clayton copula parameter
versus sample size, percentage of censoring in the margins and degree of dependence
between them (power-normal marginal errors). The horizontal line at CP = 0.90 and the
two horizontal lines at CP = 0.85 and 0.95 correspond, respectively, to the lower and
upper bounds of the 90% confidence interval of the CP = 0.90. Thus, if a confidence
interval has exact coverage of 0.90, roughly 90% of the observed coverages should be
between these lines.
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Figure 2.6: Coverage probabilities (CPs) of the 90% standard normal (panels on the left)
and percentile (panels on the right) confidence intervals for the Clayton copula parameter
versus sample size, percentage of censoring in the margins and degree of dependence
between them (logistic marginal errors). The horizontal line at CP = 0.90 and the two
horizontal lines at CP = 0.85 and 0.95 correspond, respectively, to the lower and upper
bounds of the 90% confidence interval of the CP = 0.90. Thus, if a confidence interval has
exact coverage of 0.90, roughly 90% of the observed coverages should be between these
lines.
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Figure 2.7: Comparison between the IFM and MIFM estimates of the Clayton copula pa-
rameter, for n = 2000 (normal marginal errors). The averages of the parameter estimates
are shown with a star symbol. The dotted horizontal line represents the true value of the
Clayton copula parameter.
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Figure 2.8: Comparison between the IFM and MIFM estimates of the Clayton copula
parameter, for n = 2000 (power-normal marginal errors). The averages of the parameter
estimates are shown with a star symbol. The dotted horizontal line represents the true
value of the Clayton copula parameter.
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Figure 2.9: Comparison between the IFM and MIFM estimates of the Clayton copula pa-
rameter, for n = 2000 (logistic marginal errors). The averages of the parameter estimates
are shown with a star symbol. The dotted horizontal line represents the true value of the
Clayton copula parameter.
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rion (AIC) (Akaike, 1973, 1974) and the Bayesian Information Criterion (BIC) (Schwarz,

1978), which are defined by −2` (η̂) + 2k and −2` (η̂) + k log (n), respectively. The pre-

ferred model is the one with the smaller value on each criterion. The AIC and BIC

criterion values for the three fitted models are shown in Tables 2.1, 2.2 and 2.3. Observe

that the bivariate Clayton copula-based SUR Tobit model with logistic marginal errors has

the smallest AIC and BIC criterion values and therefore provides the best fit to the salad

dressing and lettuce consumption data. Appendix B provides the R codes for fitting this

favorite model using the MIFM approach, as well as for building standard normal and per-

centile bootstrap confidence intervals for its parameters. From the Kolmogorov-Smirnov

goodness-of-fit tests (see, e.g., Conover, 1971, p. 295-301) of augmented marginal residuals

4, we obtain p-values equal to 0.9020 and 0.9356 for the salad dressings and lettuce models,

respectively. Thus, the logistic distribution assumption for the marginal errors is valid.

The results reported in Table 2.3 reveal that individuals aged 20-40 years consume more

salad dressings than those over 60 years of age. Su & Arab (2006) found a similar effect of

age on salad dressing consumption. According to the 90% percentile interval, individuals

aged 41-50 years consume more lettuce than those over 60 years of age. Regional effects

are also notable, as individuals from the Northeast and Midwest consume more salad

dressings, and individuals from the Midwest and West consume more lettuce than those

residing in the South. The household income has a positive effect on the consumption of

both salad dressings and lettuce. The MIFM estimate of the Clayton copula parameter(
θ̂MIFM = 2.3853, obtained after 7 iterations

)
and its 90% bootstrap-based confidence in-

tervals show us that the relationship between salad dressing and lettuce consumption is

positive (the estimated Kendall’s tau is τ̂2 = θ̂MIFM/
(
θ̂MIFM + 2

)
= 0.5439, which is close

to the value of the nonparametric association measure presented in Section 1.1.1) and

significant at the 10% level (the lower limits of the 90% bootstrap-based confidence inter-

vals for θ are greater than and far above zero), justifying joint estimation of the censored

equations through the Clayton copula to improve statistical efficiency. Furthermore, the

estimated coefficient of tail dependence for Clayton copula, λ̂L = 0.7478, obtained from

2−1/θ̂MIFM (McNeil et al., 2005, p. 209), shows the positive dependence at the lower tail,

i.e. for low or no consumption of salad dressings and lettuce.

4The augmented residuals are the differences between the augmented observed and predicted responses,
i.e. eaij = yaij −x

′

ijβ̂j,MIFM, for i = 1, ..., n and j = 1, 2, where yaij = x
′

ijβ̂j,MIFM + ŝj,MIFMG
−1
(
uaij
)
, with

G−1 (.) being the inverse function of the L (0, 1) c.d.f.; or simply, eaij = ŝj,MIFMG
−1
(
uaij
)
.
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Table 2.1: Estimation results of bivariate Clayton copula-based SUR Tobit model with
normal marginal errors for salad dressing and lettuce consumption in the U.S. in 1994-
1996.

90% Confidence Intervals
Salad dressing Estimate Standard Normal Percentile
Intercept 0.1130 [0.0391; 0.1868] [0.0407; 0.1854]
Age 20-30 0.1106 [0.0396; 0.1817] [0.0412; 0.1830]
Age 31-40 0.1011 [0.0347; 0.1675] [0.0369; 0.1668]
Age 41-50 0.0633 [0.0029; 0.1238] [0.0029; 0.1210]
Age 51-60 -0.0030 [-0.0682; 0.0622] [-0.0646; 0.0678]
Northeast 0.0784 [0.0140; 0.1429] [0.0107; 0.1393]
Midwest 0.0521 [-0.0089; 0.1130] [-0.0078; 0.1113]
West 0.0544 [-0.0080; 0.1167] [-0.0071; 0.1158]
Income 0.0277 [0.0041; 0.0512] [0.0045; 0.0514]
σ1 0.2636 [0.2464; 0.2809] [0.2448; 0.2773]

90% Confidence Intervals
Lettuce Estimate Standard Normal Percentile
Intercept -0.1084 [-0.2048; -0.0121] [-0.1989; -0.0102]
Age 20-30 0.1051 [0.0179; 0.1923] [0.0122; 0.1903]
Age 31-40 0.0786 [-0.0046; 0.1617] [-0.0082; 0.1646]
Age 41-50 0.0908 [0.0188; 0.1628] [0.0134; 0.1590]
Age 51-60 0.0232 [-0.0575; 0.1038] [-0.0605; 0.1040]
Northeast 0.0588 [-0.0160; 0.1336] [-0.0236; 0.1273]
Midwest 0.1065 [0.0391; 0.1739] [0.0324; 0.1690]
West 0.0946 [0.0204; 0.1688] [0.0205; 0.1640]
Income 0.0604 [0.0300; 0.0908] [0.0290; 0.0898]
σ2 0.3101 [0.2853; 0.3349] [0.2824; 0.3315]
θ 2.7704 [2.2748; 3.2660] [2.2736; 3.2302]
Log-likelihood -140.3680
AIC 322.7360
BIC 406.5567
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Table 2.2: Estimation results of bivariate Clayton copula-based SUR Tobit model with
power-normal marginal errors for salad dressing and lettuce consumption in the U.S. in
1994-1996.

90% Confidence Intervals
Salad dressing Estimate Standard Normal Percentile
Intercept 0.1291 [0.0044; 0.2537] [0.0521; 0.2781]
Age 20-30 0.1080 [0.0396; 0.1764] [0.0371; 0.1755]
Age 31-40 0.0908 [0.0264; 0.1552] [0.0293; 0.1528]
Age 41-50 0.0457 [-0.0186; 0.1099] [-0.0217; 0.1082]
Age 51-60 -0.0199 [-0.0840; 0.0442] [-0.0829; 0.0453]
Northeast 0.0675 [0.0036; 0.1315] [-0.0002; 0.1304]
Midwest 0.0287 [-0.0305; 0.0878] [-0.0341; 0.0855]
West 0.0424 [-0.0129; 0.0977] [-0.0148; 0.0957]
Income 0.0249 [0.0006; 0.0492] [0.0013; 0.0502]
σ1 0.2686 [0.2290; 0.3082] [0.2149; 0.2911]
α1 1.0475 [0.6013; 1.4937] [0.5524; 1.3666]

90% Confidence Intervals
Lettuce Estimate Standard Normal Percentile
Intercept -0.0674 [-0.2308; 0.0961] [-0.2057; 0.1082]
Age 20-30 0.1006 [0.0181; 0.1831] [0.0123; 0.1751]
Age 31-40 0.0769 [-0.0055; 0.1593] [-0.0042; 0.1578]
Age 41-50 0.0833 [0.0030; 0.1636] [-0.0009; 0.1641]
Age 51-60 0.0199 [-0.0555; 0.0952] [-0.0557; 0.0963]
Northeast 0.0462 [-0.0341; 0.1266] [-0.0387; 0.1198]
Midwest 0.0961 [0.0238; 0.1684] [0.0253; 0.1605]
West 0.0797 [0.0128; 0.1466] [0.0110; 0.1464]
Income 0.0609 [0.0309; 0.0909] [0.0316; 0.0899]
σ2 0.3021 [0.2482; 0.3559] [0.2365; 0.3396]
α2 0.8939 [0.4311; 1.3566] [0.4460; 1.3239]
θ 2.7864 [2.2828; 3.2899] [2.2925; 3.2591]
Log-likelihood -144.0309
AIC 334.0618
BIC 425.8655
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Table 2.3: Estimation results of bivariate Clayton copula-based SUR Tobit model with
logistic marginal errors for salad dressing and lettuce consumption in the U.S. in 1994-
1996.

90% Confidence Intervals
Salad dressing Estimate Standard Normal Percentile
Intercept 0.1124 [0.0372; 0.1876] [0.0406; 0.1852]
Age 20-30 0.0968 [0.0304; 0.1633] [0.0341; 0.1701]
Age 31-40 0.0977 [0.0370; 0.1583] [0.0379; 0.1599]
Age 41-50 0.0480 [-0.0148; 0.1108] [-0.0119; 0.1119]
Age 51-60 0.0024 [-0.0600; 0.0647] [-0.0630; 0.0651]
Northeast 0.0744 [0.0124; 0.1365] [0.0133; 0.1386]
Midwest 0.0559 [0.0011; 0.1108] [0.0016; 0.1078]
West 0.0570 [-0.0017; 0.1157] [-0.0015; 0.1152]
Income 0.0275 [0.0046; 0.0503] [0.0051; 0.0496]
s1 0.1459 [0.1351; 0.1567] [0.1347; 0.1550]

90% Confidence Intervals
Lettuce Estimate Standard Normal Percentile
Intercept -0.0837 [-0.1745; 0.0072] [-0.1729; 0.0031]
Age 20-30 0.0804 [-0.0021; 0.1629] [-0.0030; 0.1658]
Age 31-40 0.0718 [-0.0033; 0.1469] [-0.0046; 0.1452]
Age 41-50 0.0721 [-0.0064; 0.1506] [0.0002; 0.1518]
Age 51-60 0.0133 [-0.0634; 0.0901] [-0.0700; 0.0915]
Northeast 0.0662 [-0.0111; 0.1436] [-0.0069; 0.1438]
Midwest 0.0936 [0.0255; 0.1617] [0.0270; 0.1601]
West 0.0850 [0.0135; 0.1565] [0.0168; 0.1562]
Income 0.0559 [0.0273; 0.0845] [0.0263; 0.0843]
s2 0.1743 [0.1592; 0.1893] [0.1583; 0.1874]
θ 2.3853 [1.9555; 2.8151] [1.9695; 2.7993]
Log-likelihood -129.9304
AIC 301.8608
BIC 385.6815
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For purposes of comparison, we also fit, via the MCECM algorithm of Huang (1999)

adapted to bivariate logistic distribution, what we call here the basic bivariate SUR

Tobit model with logistic marginal errors, that is the bivariate SUR Tobit model whose

dependence between the error terms εi1 and εi2, i = 1, ..., n, is modeled through the

classical bivariate logistic distribution as defined by Gumbel (1961). The estimation

results, obtained after 3 iterations (i.e. in fewer iterations than required by the MIFM

method, but the adapted MCECM algorithm is much more time consuming), are presented

in Table 2.4. The standard errors in Table 2.4 were derived from the bootstrap-based

covariance matrix estimate given by (2.8) (bootstrap standard errors) 5. It can be seen

from Tables 2.3 and 2.4 that the marginal parameter estimates obtained through the

adapted MCECM and MIFM methods are similar. However, the bivariate Clayton copula-

based SUR Tobit model with logistic marginal errors overcomes the basic bivariate SUR

Tobit model with logistic marginal errors in both AIC and BIC criterion. This indicates

that the gain for introducing the Clayton copula to model the nonlinear dependence

structure of the bivariate SUR Tobit model with logistic marginal errors, was substantial

for this dataset.

2.2 Bivariate Clayton survival copula-based SUR To-

bit right-censored model formulation

The SUR Tobit model with two right-censored dependent variables, or simply bivariate

SUR Tobit right-censored model, is expressed as

y∗ij = x
′

ijβj + εij,

yij =

y
∗
ij if y∗ij < dj,

dj otherwise,

for i = 1, ..., n and j = 1, 2, where n is the number of observations, dj is the censoring

point/threshold of margin j (which is assumed to be known and constant 6, here), y∗ij is

the latent (i.e. unobserved) dependent variable of margin j, yij is the observed dependent

variable of margin j (which is defined to be equal to the latent dependent variable y∗ij

5But now with η denoting the parameter vector of the basic bivariate SUR Tobit model with logistic
marginal errors.

6See, e.g., Omori & Miyawaki (2010) for examples of Tobit models with unknown and covariate
dependent thresholds.
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Table 2.4: Estimation results of basic bivariate SUR Tobit model with logistic marginal
errors for salad dressing and lettuce consumption in the U.S. in 1994-1996.

Salad dressing Estimate Standard Error
Intercept 0.1288 * 0.0390
Age 20-30 0.0965 * 0.0378
Age 31-40 0.0751 * 0.0331
Age 41-50 0.0531 * 0.0313
Age 51-60 -0.0126 0.0323
Northeast 0.0587 * 0.0335
Midwest 0.0610 * 0.0292
West 0.0537 * 0.0293
Income 0.0328 * 0.0123
s1 0.1340 * 0.0056
Lettuce Estimate Standard Error
Intercept -0.0699 0.0485
Age 20-30 0.0876 * 0.0456
Age 31-40 0.0758 * 0.0413
Age 41-50 0.0750 * 0.0403
Age 51-60 -0.0049 0.0408
Northeast 0.0590 0.0409
Midwest 0.1003 * 0.0357
West 0.0740 * 0.0353
Income 0.0628 * 0.0156
s2 0.1621 * 0.0080
Log-likelihood -142.5471
AIC 325.0942
BIC 404.9234

* Denotes significant at the 10% level.

whenever y∗ij is below dj and dj otherwise), xij is the k× 1 vector of covariates, βj is the

k×1 vector of regression coefficients and εij is the margin j’s error that follows some zero

mean distribution.

Suppose that the marginal errors are no longer normal, but they are assumed to be

distributed according to the power-normal (Gupta & Gupta, 2008) and logistic models.

Then, the density function of yij takes the following forms.

• Normal marginal errors (i.e. εij ∼ N
(
0, σ2

j

)
):

fj
(
yij|xij,βj, σj

)
=


1
σj
φ

(
yij−x

′
ijβj

σj

)
if yij < dj,

1− Φ

(
yij−x

′
ijβj

σj

)
if yij = dj,

(2.9)

and the corresponding distribution function of yij is obtained by

Fj
(
yij|xij,βj, σj

)
=


Φ

(
yij−x

′
ijβj

σj

)
if yij < dj,

1 if yij ≥ dj.

(2.10)
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• Power-normal marginal errors (i.e. εij ∼ PN (0, σj, αj)):

fj
(
yij|xij,βj, σj, αj

)
=


αj
σj
φ

(
yij−x

′
ijβj

σj

)[
Φ

(
yij−x

′
ijβj

σj

)]αj−1

if yij < dj,

1−
[
Φ

(
yij−x

′
ijβj

σj

)]αj
if yij = dj,

(2.11)

and the corresponding distribution function of yij is given by

Fj
(
yij|xij,βj, σj, αj

)
=


[
Φ

(
yij−x

′
ijβj

σj

)]αj
if yij < dj,

1 if yij ≥ dj.

(2.12)

• Logistic marginal errors (i.e. εij ∼ L (0, sj)):

fj
(
yij|xij,βj, sj

)
=


1
sj
g

(
yij−x

′
ijβj

sj

)
if yij < dj,

1−G
(
yij−x

′
ijβj

sj

)
if yij = dj,

(2.13)

where g (z) = ez / (1 + ez)2 and G (z) = 1 / (1 + e−z) are the L (0, 1) p.d.f. and

c.d.f., respectively. The corresponding distribution function of yij is obtained by

Fj
(
yij|xij,βj, sj

)
=


G

(
yij−x

′
ijβj

sj

)
if yij < dj,

1 if yij ≥ dj.

(2.14)

Generally, the dependence between the error terms εi1 and εi2 is modeled via a bivariate

distribution, especially the bivariate normal distribution (this specification characterizes

the basic bivariate SUR Tobit right-censored model). Nevertheless, as commented before

(in Section 1.2), one of the restrictions in applying a bivariate distribution to the bivariate

SUR Tobit right-censored model is the linear relationship between marginal distributions

through the correlation coefficient. To overcome this restriction, we can use a copula

function to model the nonlinear dependence structure in the bivariate SUR Tobit right-

censored model.

Therefore, for the censored outcomes yi1 and yi2, the bivariate copula-based SUR Tobit

right-censored distribution is given by

F (yi1, yi2) = C (ui1, ui2|θ) ,

where, e.g., uij is given by (2.10) if εij ∼ N
(
0, σ2

j

)
, (2.12) if εij ∼ PN (0, σj, αj), or (2.14)

if εij ∼ L (0, sj), for j = 1, 2, and θ is the association parameter (or parameter vector) of

the copula, which is assumed to be scalar.
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Suppose C is the bidimensional Clayton survival copula, which is also referred to as

the reflected or rotated by 180 degrees version of the Clayton (1978) copula. It takes the

form of

C (ui1, ui2|θ) = ui1 + ui2 − 1 +
[
(1− ui1)−θ + (1− ui2)−θ − 1

]− 1
θ

(2.15)

(Georges, Lamy, Nicolas, Quibel & Roncalli, 2001), with θ restricted to the region (0,∞).

The dependence between the margins increases with the value of θ, with θ → 0+ implying

independence and θ → ∞ implying perfect positive dependence. Unlike the Clayton

copula, the Clayton survival copula is not Archimedean and is usually an appropriate

modeling choice when the correlation between two events is stronger in the upper tail of

the joint distribution.

2.2.1 Inference

In this subsection, we discuss inference (point and interval estimation) for the parameters

of the bivariate Clayton survival copula-based SUR Tobit right-censored model. Partic-

ularly, by considering/assuming normal, power-normal and logistic distributions for the

marginal error terms in the model.

2.2.1.1 Estimation through the MIFM method

Following Trivedi & Zimmer (2005), the log-likelihood function for the bivariate Clayton

survival copula-based SUR Tobit right-censored model can be written in the following

form

` (η) =
n∑
i=1

log c (F1 (yi1|xi1,υ1) , F2 (yi2|xi2,υ2) |θ) +
n∑
i=1

2∑
j=1

log fj (yij|xij,υj), (2.16)

where η = (υ1,υ2, θ) is the vector of model parameters, υj is the margin j’s parameter

vector, fj (yij|xij,υj) is the p.d.f. of yij, Fj (yij|xij,υj) is the c.d.f. of yij, and c (ui1, ui2|θ),

with uij = Fj (yij|xij,υj), is the p.d.f. of the Clayton survival copula, which is calculated

from (2.15) as

c (ui1, ui2|θ) =
∂2C (ui1, ui2|θ)

∂ui1∂ui2
= (θ + 1) [(1− ui1) (1− ui2)]−θ−1×

×
[
(1− ui1)−θ + (1− ui2)−θ − 1

]− 1
θ
−2

.
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Using copula methods, as well as the log-likelihood function form given by (2.16),

enables the use of the (classical) two-stage ML/IFM method by Joe & Xu (1996), which

estimates the marginal parameters υj at a first step through

υ̂j,IFM = arg max
υj

n∑
i=1

log fj (yij|xij,υj) , (2.17)

for j = 1, 2, and then estimates the association parameter θ given υ̂j,IFM by

θ̂IFM = arg max
θ

n∑
i=1

log c
(
F1 (yi1|xi1, υ̂1,IFM) , F2 (yi2|xi2, υ̂2,IFM) |θ

)
. (2.18)

However, the IFM method provides a biased estimate for the parameter θ in the presence of

censored observations for both margins (as will be seen in Section 2.2.2.2), which occurs

because there is a violation of Sklar’s theorem in this case (see discussion in Section

2.1.1.1). In order to obtain an unbiased estimate for the association parameter θ, we

can augment the semi-continuous/censored marginal distributions to achieve continuity.

More specifically, we can replace yij by the augmented data ya
ij, or equivalently and more

simply (thus, preferred by us), we can replace uij by the augmented uniform data ua
ij at

the second stage of the IFM method and proceed with the copula parameter estimation

as usual for the cases of continuous margins. This process (uniform data augmentation

and copula parameter estimation) is then repeated until convergence is achieved (MIFM

method). The (frequentist) data augmentation technique we employ here is partially

based on Algorithm A2 presented in Wichitaksorn et al. (2012).

In the remaining part of this subsubsection, we discuss the MIFM method when using

the Clayton survival copula to describe the nonlinear dependence structure of the bivari-

ate SUR Tobit right-censored model with arbitrary margins (e.g., normal, power-normal

and logistic distribution assumption for the marginal error terms). Nevertheless, the pro-

posed approach can be extended to other copula functions by applying different sampling

algorithms. For the cases where just a single dependent variable/margin is censored (i.e.

when yi1 < d1 and yi2 = d2, or yi1 = d1 and yi2 < d2), the uniform data augmentation is

performed through the truncated conditional distribution of the Clayton survival copula.

Since the inverse conditional distribution of the Clayton survival copula has a closed-form

expression (see Appendix A), we can generate random numbers from its truncated version

by applying the method by Devroye (1986, p. 38-39). Otherwise, numerical root-finding

procedures would be required. As the Clayton survival copula, as well as the Clayton cop-

ula has a remarkable invariance property under truncation, the conditional distribution of
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ui1 and ui2 in a sub-region of a Clayton survival copula, with one corner at (1, 1), can be

written by means of a Clayton survival copula. This enables a simple simulation scheme

in the cases where both dependent variables/margins are censored (i.e. when yi1 = d1 and

yi2 = d2). For copulas that do not have the truncation-invariance property, an iterative

simulation scheme could be adopted.

The implementation of the bivariate Clayton survival copula-based SUR Tobit right-

censored model with arbitrary margins through the proposed MIFM method can be de-

scribed as follows. In particular, if the marginal error distributions are normal, then set

υj =
(
βj, σj

)
and Hj (z|xij,υj) = Φ

((
z − x′ijβj

)
/ σj

)
; if marginal error distributions

are power-normal, so υj =
(
βj, σj, αj

)
and Hj (z|xij,υj) =

[
Φ
((
z − x′ijβj

)
/ σj

)]αj
;

and if marginal error distributions are logistic, then υj =
(
βj, sj

)
and Hj (z|xij,υj) =

G
((
z − x′ijβj

)
/ sj
)

=
[
1 + exp

{
−
(
z − x′ijβj

)
/ sj
}]−1

, for j = 1, 2 and z ∈ R.

Stage 1. Estimate the marginal parameters using (2.17). Set υ̂j,MIFM = υ̂j,IFM, for

j = 1, 2.

Stage 2. Estimate the copula parameter using e.g., (2.18). Set θ̂
(1)
MIFM = θ̂IFM and

then consider the algorithm below.

For ω = 1, 2, ...,

For i = 1, 2, ..., n,

If yi1 = d1 and yi2 = d2, then draw (ua
i1, u

a
i2) from C

(
ua
i1, u

a
i2|θ̂

(ω)
MIFM

)
truncated to

the region (ai1, 1) × (ai2, 1). This can be performed relatively easily using the following

steps.

1. Draw (p, q) from C
(
p, q|θ̂(ω)

MIFM

)
= p + q − 1+

[
(1− p)−θ̂

(ω)
MIFM + (1− q)−θ̂

(ω)
MIFM −

1

]−1/θ̂
(ω)
MIFM

. See Appendix A for the Clayton survival copula data generation.

2. Compute aij = Hj (dj|xij, υ̂j,MIFM), for j = 1, 2.

3. Set ua
i1 = 1−

{[
(1− ai1)−θ̂

(ω)
MIFM+(1− ai2)−θ̂

(ω)
MIFM−1

]
(1− p)−θ̂

(ω)
MIFM+1−(1− ai2)−θ̂

(ω)
MIFM

}−1/θ̂
(ω)
MIFM

.

4. Set ua
i2 = 1−

{[
(1− ai1)−θ̂

(ω)
MIFM+(1− ai2)−θ̂

(ω)
MIFM−1

]
(1− q)−θ̂

(ω)
MIFM+1−(1− ai1)−θ̂

(ω)
MIFM

}−1/θ̂
(ω)
MIFM

.
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If yi1 = d1 and yi2 < d2, then draw ua
i1 from C

(
ua
i1|ui2, θ̂

(ω)
MIFM

)
truncated to the

interval (ai1, 1). This can be done by following the next steps.

1. Compute ui2 = H2 (yi2|xi2, υ̂2,MIFM).

2. Compute ai1 = H1 (d1|xi1, υ̂1,MIFM).

3. Draw t from Uniform (0, 1).

4. Compute vi1 = t+(1− t)
{

1− (1− ui2)−θ̂
(ω)
MIFM−1

[
(1− ui2)−θ̂

(ω)
MIFM +(1− ai1)−θ̂

(ω)
MIFM−

1

]−1/θ̂
(ω)
MIFM−1}

.

5. Set ua
i1 = 1−

{
1 + (1− ui2)−θ̂

(ω)
MIFM

[
(1− vi1)

−θ̂(ω)MIFM/
(
θ̂
(ω)
MIFM+1

)
− 1

]}−1/θ̂
(ω)
MIFM

.

If yi1 < d1 and yi2 = d2, then draw ua
i2 from C

(
ua
i2|ui1, θ̂

(ω)
MIFM

)
truncated to the

interval (ai2, 1). This can be done through the five steps of the previous case (i.e. when

yi1 = d1 and yi2 < d2) by switching subscripts 1 and 2.

If yi1 < d1 and yi2 < d2, then set ua
i1 = ui1 = H1 (yi1|xi1, υ̂1,MIFM) and ua

i2 = ui2 =

H2 (yi2|xi2, υ̂2,MIFM).

Given the generated/augmented marginal uniform data ua
ij, we estimate the association

parameter θ by 7

θ̂
(ω+1)
MIFM = arg max

θ

n∑
i=1

log c (ua
i1, u

a
i2|θ) .

The algorithm terminates when it satisfies the stopping/convergence criterion: |θ̂(ω+1)
MIFM−

θ̂
(ω)
MIFM| < ξ, where ξ is the tolerance parameter (e.g., ξ = 10−3).

2.2.1.2 Interval estimation

Joe & Xu (1996) combine the IFM method by using the jackknife method for the esti-

mation of the standard errors of the multivariate model parameter estimates. It makes

the analytic derivatives no longer required to compute the inverse Godambe information

matrix, which is the asymptotic covariance matrix associated with the vector of parameter

estimates under certain regularity conditions. See Joe (1997, p. 301-302) for this matrix

form. Nevertheless, we carried out a pilot simulation study with results indicating that

7The generated/augmented marginal uniform data uaij should carry (ω) as a superscript
(
i.e. u

a(ω)
ij

)
,

but we omit it so as not to clutter the notation.
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the jackknife is not valid to obtain standard errors of parameter estimates when using the

MIFM approach (the jackknife method produces an overestimate of the standard error

of the association parameter estimate). This implies that confidence intervals for the pa-

rameters of the bivariate Clayton survival copula-based SUR Tobit right-censored model

cannot be constructed using this resampling technique. To overcome this problem, we

propose a bootstrap approach for deriving confidence intervals. For more details about

our bootstrap approach, we refer to Section 2.1.1.2.

2.2.2 Simulation study

A simulation study was performed to examine the behavior of the MIFM estimates, focus-

ing on the copula association parameter estimate; and check the coverage probabilities of

different confidence intervals (derived using the bootstrap approach mentioned in Section

2.2.1.2 and described in Section 2.1.1.2) for the bivariate Clayton survival copula-based

SUR Tobit right-censored model parameters. Here, we considered some circumstances

that might arise in the development of bivariate copula-based SUR Tobit right-censored

models, involving the sample size, the censoring percentage (i.e. the percentage of d1 and

d2 observations in the margins 1 and 2, respectively) in the dependent variables/margins

and their interdependence degree. We also considered/assumed different distributions for

the marginal error terms.

2.2.2.1 General specifications

In the simulation study, we applied the Clayton survival copula to model the nonlinear

dependence structure of the bivariate SUR Tobit right-censored model. We set the true

value for the association parameter θ at 0.67, 2 and 6, corresponding to a Kendall’s tau

association measure 8 of 0.25, 0.50 and 0.75, respectively. See Appendix A for the Clayton

survival copula data generation.

For i = 1, ..., n, the covariates for margin 1, xi1 = (xi1,0, xi1,1)
′
, were xi1,0 = 1 and

xi1,1 was randomly simulated from N (2, 12). While the covariates for margin 2, xi2 =

(xi2,0, xi2,1)
′
, were generated as xi2,0 = 1 and xi2,1 was randomly simulated from N (1, 22).

The model errors εi1 and εi2 were assumed to follow the following distributions:

• Normal: i.e. εi1 ∼ N (0, σ2
1) and εi2 ∼ N (0, σ2

2), where σ1 = 1 and σ2 = 2 are the

8The Kendall’s tau for the Clayton survival copula is τ2 = θ/(θ + 2), which is the same for the Clayton
copula.
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standard deviations (scale parameters) for margins 1 and 2, respectively. To ensure

a percentage of censoring for both margins of approximately 5%, 15%, 25%, 35% and

50%, we set d1 = d2 = 5 and assume the following true values for β1 = (β1,0, β1,1)
′

and β2 = (β2,0, β2,1)
′
:

� β1 = (0.7, 1) and β2 = (−0.6, 1);

� β1 = (1.5, 1) and β2 = (1.1, 1);

� β1 = (2, 1) and β2 = (2.1, 1);

� β1 = (2.5, 1) and β2 = (3, 1);

� β1 = (3, 1) and β2 = (4, 1);

respectively. For j = 1, 2, the latent dependent variable of margin j, y∗ij, was

randomly simulated from N
(
x
′
ijβj, σ

2
j

)
; thus, the observed dependent variable of

margin j, yij, was obtained from min
{
y∗ij, dj

}
.

• Power-normal: i.e. εi1 ∼ PN (0, σ1, α1) and εi2 ∼ PN (0, σ2, α2), where σ1 = 1

and σ2 = 2 are the scale parameters for margins 1 and 2, respectively; and α1 =

α2 = 0.5 are the shape parameters for margins 1 and 2. To ensure a percentage

of censoring for both margins of approximately 5%, 15%, 25%, 35% and 50%, we

set d1 = d2 = 5 and assume the following true values for β1 = (β1,0, β1,1)
′

and

β2 = (β2,0, β2,1)
′
:

� β1 = (1.1, 1) and β2 = (0.3, 1);

� β1 = (2.1, 1) and β2 = (2.1, 1);

� β1 = (2.6, 1) and β2 = (3.2, 1);

� β1 = (3.1, 1) and β2 = (4.2, 1);

� β1 = (3.7, 1) and β2 = (5.4, 1);

respectively. For j = 1, 2, the latent dependent variable of margin j, y∗ij, was ran-

domly simulated from PN
(
x
′
ijβj, σj, αj

)
; therefore, the observed dependent vari-

able of margin j, yij, was obtained from min
{
y∗ij, dj

}
.

• Logistic: i.e. εi1 ∼ L (0, s1) and εi2 ∼ L (0, s2), where s1 = 1 and s2 = 2 are

the scale parameters for margins 1 and 2, respectively. To ensure a percentage
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of censoring for both margins of approximately 5%, 15%, 25%, 35% and 50%, we

set d1 = d2 = 5 and assume the following true values for β1 = (β1,0, β1,1)
′

and

β2 = (β2,0, β2,1)
′
:

� β1 = (−0.3, 1) and β2 = (−2.5, 1);

� β1 = (0.9, 1) and β2 = (−0.2, 1);

� β1 = (1.7, 1) and β2 = (1.5, 1);

� β1 = (2.3, 1) and β2 = (2.5, 1);

� β1 = (3, 1) and β2 = (4, 1);

respectively. For j = 1, 2, the latent dependent variable of margin j, y∗ij, was

randomly simulated from L
(
x
′
ijβj, sj

)
; thus, the observed dependent variable of

margin j, yij, was obtained from min
{
y∗ij, dj

}
.

For each error distribution assumption (normal, power-normal and logistic), censor-

ing percentage in the margins (5%, 15%, 25%, 35% and 50%) and degree of dependence

between them (low: θ = 0.67, moderate: θ = 2 and high: θ = 6), we generated 100

datasets of sizes n = 200, 800 and 2000. Then, for each dataset (original sample), we

obtained 500 bootstrap samples through a parametric resampling plan (parametric boot-

strap approach), i.e. we fitted a bivariate Clayton survival copula-based SUR Tobit

right-censored model with the corresponding error distributions to each dataset through

the MIFM approach, and then generated a set of 500 new datasets (the same size as the

original dataset/sample) from the estimated parametric model. The computing language

was written in R statistical programming environment (R Core Team, 2014) and ran on

a virtual machine of the Cloud-USP at ICMC, with Intel Xeon processor E5500 series, 8

core (virtual CPUs), 32 GB RAM.

We assessed the performance of the proposed models and methods through the cov-

erage probabilities of the standard normal and percentile bootstrap confidence intervals

(the nominal value is 0.90 or 90%), the Bias and the Mean Squared Error (MSE), in

which the Bias and the MSE of each parameter ηh, h = 1, ..., k, are given by Bias =

M−1
∑M

r=1 (η̂rh − ηh) and MSE = M−1
∑M

r=1 (η̂rh − ηh)
2, respectively, where M = 100 is

the number of replications (original datasets/samples) and η̂rh is the estimated value of ηh

at the rth replication.
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2.2.2.2 Simulation results

In this subsubsection, we present the main results obtained from the simulation study per-

formed with samples (datasets) of different sizes, percentages of censoring in the margins

and degrees of dependence between them, regarding the bivariate Clayton survival copula-

based SUR Tobit right-censored model parameters estimated using the MIFM method.

Since both the MIFM and IFM methods provide the same marginal parameter estimates

(the first stage of the proposed method is similar to the first stage of the usual one, as

seen in Section 2.2.1.1), we focus here on the Clayton survival copula parameter estimate.

Some asymptotic results (such as asymptotic normality) associated with the IFM method

appear in Joe & Xu (1996). We also show the results related to the estimated coverage

probabilities of the 90% confidence intervals for θ, obtained through bootstrap methods

(standard normal and percentile intervals).

Figures 2.10, 2.11 and 2.12 show the Bias and MSE of the observed MIFM estimates

of θ for normal, power-normal and logistic marginal errors, respectively. From these

figures, we observe that, regardless of the error distribution assumption, the percentage

of censoring in the margins and their interdependence degree, the Bias and MSE of the

MIFM estimator of θ are relatively low and tend to zero for large n, i.e. the MIFM

estimator is asymptotically unbiased (despite some random fluctuations of Bias, mainly

for n ≥ 800) and consistent for the Clayton survival copula parameter.

Figures 2.13, 2.14 and 2.15 show the estimated coverage probabilities of the bootstrap

confidence intervals for θ for normal, power-normal and logistic marginal errors, respec-

tively. Observe that the estimated coverage probabilities are sufficiently high and close

to the nominal value of 0.90, except for a few cases in which n is small to moderate

(n = 200 and 800), the degree of dependence between the margins is high (θ = 6) and

the marginal errors follow non-normal (i.e. power-normal and logistic) distributions (see

Figures 2.14(c) and 2.15(c)).

Finally, Figures 2.16, 2.17 and 2.18 compare, via boxplots, the observed MIFM esti-

mates of θ with its estimates obtained through the IFM method for normal, power-normal

and logistic marginal errors, respectively, and for n = 2000. It can be seen from Figure

2.16 that the MIFM method outperforms the IFM method, which overestimates θ for de-

pendence and censoring at any level. From Figure 2.17, we observe that the IFM method

overestimates θ for dependence at a lower level, that is θ = 0.67 (Figure 2.17(a)), and
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underestimates θ for dependence at a higher level, that is θ = 2 and θ = 6 (Figures 2.17(b)

and 2.17(c), respectively). In Figure 2.18, we see that there is a certain equivalence be-

tween the two estimation methods (with a slight advantage for the MIFM method over

the IFM method, in terms of bias) when the degree of dependence between the margins

is moderate, that is θ = 2 (Figure 2.18(b)). However, the IFM method overestimates θ

for dependence at a lower level, that is θ = 0.67 (Figure 2.18(a)), and underestimates θ

for dependence at a higher level, that is θ = 6 (Figure 2.18(c)). Note also from Figures

2.16, 2.17 and 2.18 that the difference (distance) between the distributions of the IFM

and MIFM estimates often increases with the percentage of censoring in the margins.

2.2.3 Application

Consider the customer churn dataset described in Section 1.1.2. For the sake of illustration

of the bivariate models and methods proposed throughout Section 2.2, we assume that

there are only two dependent variables: log(time) to churn Product A and log(time) to

churn Product B (which show the highest Kendall tau correlation; see Section 1.1.2).

In this application, the relationship between the reported log(time) to churn Product

A and log(time) to churn Product B (right-censored at d1 = d2 = 2.3, or approximately

10 years) of 927 customers of a Brazilian commercial bank is modeled by the bivariate

SUR Tobit right-censored model with normal, power-normal and logistic marginal errors

through the Clayton survival copula (see Section 1.3 for the reasons for this copula model

choice). We include age and income as the covariates and use them for both margins in

all three candidate models.

Tables 2.5, 2.6 and 2.7 show the MIFM estimates for the parameters of the bivari-

ate Clayton survival copula-based SUR Tobit right-censored model with normal, power-

normal and logistic marginal errors, respectively, as well as the 90% confidence intervals

obtained through the standard normal and percentile bootstrap methods. Tables 2.5, 2.6

and 2.7 also present the log-likelihood, AIC and BIC criterion values for the three fitted

models. Note that the bivariate Clayton survival copula-based SUR Tobit right-censored

model with normal marginal errors has the smallest AIC and BIC criterion values and

therefore provides the best fit to the customer churn data. The R codes for fitting this

preferred model using the MIFM method, as well as for building standard normal and

percentile bootstrap confidence intervals for its parameters, are available in Appendix B.
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Figure 2.10: Bias and MSE of the MIFM estimate of the Clayton survival copula param-
eter versus sample size, percentage of censoring in the margins and degree of dependence
between them (normal marginal errors).
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Figure 2.11: Bias and MSE of the MIFM estimate of the Clayton survival copula param-
eter versus sample size, percentage of censoring in the margins and degree of dependence
between them (power-normal marginal errors).
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Figure 2.12: Bias and MSE of the MIFM estimate of the Clayton survival copula param-
eter versus sample size, percentage of censoring in the margins and degree of dependence
between them (logistic marginal errors).
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Figure 2.13: Coverage probabilities (CPs) of the 90% standard normal (panels on the
left) and percentile (panels on the right) confidence intervals for the Clayton survival
copula parameter versus sample size, percentage of censoring in the margins and degree
of dependence between them (normal marginal errors). The horizontal line at CP = 0.90
and the two horizontal lines at CP = 0.85 and 0.95 correspond, respectively, to the lower
and upper bounds of the 90% confidence interval of the CP = 0.90. Thus, if a confidence
interval has exact coverage of 0.90, roughly 90% of the observed coverages should be
between these lines.
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Figure 2.14: Coverage probabilities (CPs) of the 90% standard normal (panels on the
left) and percentile (panels on the right) confidence intervals for the Clayton survival
copula parameter versus sample size, percentage of censoring in the margins and degree
of dependence between them (power-normal marginal errors). The horizontal line at CP
= 0.90 and the two horizontal lines at CP = 0.85 and 0.95 correspond, respectively, to
the lower and upper bounds of the 90% confidence interval of the CP = 0.90. Thus, if
a confidence interval has exact coverage of 0.90, roughly 90% of the observed coverages
should be between these lines.
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Figure 2.15: Coverage probabilities (CPs) of the 90% standard normal (panels on the
left) and percentile (panels on the right) confidence intervals for the Clayton survival
copula parameter versus sample size, percentage of censoring in the margins and degree
of dependence between them (logistic marginal errors). The horizontal line at CP = 0.90
and the two horizontal lines at CP = 0.85 and 0.95 correspond, respectively, to the lower
and upper bounds of the 90% confidence interval of the CP = 0.90. Thus, if a confidence
interval has exact coverage of 0.90, roughly 90% of the observed coverages should be
between these lines.
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Figure 2.16: Comparison between the IFM and MIFM estimates of the Clayton survival
copula parameter, for n = 2000 (normal marginal errors). The averages of the parameter
estimates are shown with a star symbol. The dotted horizontal line represents the true
value of the Clayton survival copula parameter.
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Figure 2.17: Comparison between the IFM and MIFM estimates of the Clayton survival
copula parameter, for n = 2000 (power-normal marginal errors). The averages of the
parameter estimates are shown with a star symbol. The dotted horizontal line represents
the true value of the Clayton survival copula parameter.



61

●

●

●

●

●

●

●

5%:IFM 5%:MIFM 15%:IFM 15%:MIFM 25%:IFM 25%:MIFM 35%:IFM 35%:MIFM 50%:IFM 50%:MIFM

0
.6

0
.8

1
.0

1
.2

1
.4

1
.6

1
.8

Percentage of censoring:Method

E
st

im
a

te

(a) θ = 0.67

●

●

●

● ●

●

●

5%:IFM 5%:MIFM 15%:IFM 15%:MIFM 25%:IFM 25%:MIFM 35%:IFM 35%:MIFM 50%:IFM 50%:MIFM

1
.6

1
.8

2
.0

2
.2

2
.4

Percentage of censoring:Method

E
st

im
a

te

(b) θ = 2

● ●

●

●●

●

●

5%:IFM 5%:MIFM 15%:IFM 15%:MIFM 25%:IFM 25%:MIFM 35%:IFM 35%:MIFM 50%:IFM 50%:MIFM

3
4

5
6

7

Percentage of censoring:Method

E
st

im
a

te

(c) θ = 6

Figure 2.18: Comparison between the IFM and MIFM estimates of the Clayton survival
copula parameter, for n = 2000 (logistic marginal errors). The averages of the parameter
estimates are shown with a star symbol. The dotted horizontal line represents the true
value of the Clayton survival copula parameter.
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From the Lilliefors (Kolmogorov-Smirnov) normality tests (see, e.g., Thode, 2002, Section

5.1.1) of augmented marginal residuals 9, we obtain p-values equal to 0.8252 and 0.1369

for Product A and Product B models, respectively. Hence, the normality assumption for

the marginal errors is valid. See, e.g., Holden (2004) and Caudill & Mixon (2009) for other

approaches to testing normality of Tobit model residuals. The results reported in Table

2.5 reveal significant positive effects of age and income on log of time to churn Products

A and B. The MIFM estimate of the Clayton survival copula parameter
(
θ̂MIFM = 2.7809,

obtained after 22 iterations
)

and its 90% bootstrap-based confidence intervals reveal that

the relationship between the log(time) to churn Product A and log(time) to churn Product

B is positive (the estimated Kendall’s tau is τ̂2 = θ̂MIFM/
(
θ̂MIFM + 2

)
= 0.5817, which is

not distant from the value of the nonparametric association measure presented in Section

1.1.2) and significant at the 10% level (the lower limits of the 90% bootstrap-based confi-

dence intervals for θ are greater than and far above zero), justifying joint estimation of the

censored equations through the Clayton survival copula to improve statistical efficiency.

Furthermore, the estimated coefficient of tail dependence for the Clayton survival copula,

λ̂U = 0.7794, obtained from 2−1/θ̂MIFM (the upper tail dependence coefficient for Clayton

survival copula is equal to the lower tail dependence coefficient for Clayton copula), shows

positive dependence at the upper tail, i.e. for high times or log of times to churn Products

A and B.

For comparison purposes, we also fit the basic bivariate SUR Tobit right-censored

model (that is the bivariate SUR Tobit right-censored model whose dependence between

the marginal error terms εi1 and εi2, i = 1, ..., n, is modeled through the bivariate normal

distribution) using the MCECM algorithm of Huang (1999) adapted for right-censored bi-

variate normal data. The estimation results (obtained after 14 iterations) are presented in

Table 2.8. The standard errors were derived from the bootstrap estimate of the covariance

matrix (bootstrap standard errors). Note that all of the parameter estimates are signif-

icant at the 10% level. Moreover, the marginal parameter estimates obtained through

the (adapted) MCECM and MIFM methods are similar (see Tables 2.5 and 2.8). How-

ever, the bivariate Clayton survival copula-based SUR Tobit right-censored model with

normal marginal errors overcomes the basic bivariate SUR Tobit right-censored model in

9The augmented residuals are the differences between the augmented observed and predicted responses,
i.e. eaij = yaij −x

′

ijβ̂j,MIFM, for i = 1, ..., n and j = 1, 2, where yaij = x
′

ijβ̂j,MIFM + σ̂j,MIFMΦ−1
(
uaij
)
, with

Φ−1 (.) being the inverse function of the N (0, 1) c.d.f.; or simply, eaij = σ̂j,MIFMΦ−1
(
uaij
)
.
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Table 2.5: Estimation results of bivariate Clayton survival copula-based SUR Tobit right-
censored model with normal marginal errors for the customer churn data (Products A
and B).

90% Confidence Intervals
Product A Estimate Standard Normal Percentile
Intercept 0.1775 [0.0121; 0.3429] [0.0091; 0.3372]
Age 0.0226 [0.0189; 0.0262] [0.0191; 0.0263]
Income 4× 10−5 [1× 10−5; 6× 10−5] [2× 10−5; 7× 10−5]
σ1 0.9928 [0.9519; 1.0337] [0.9517; 1.0343]

90% Confidence Intervals
Product B Estimate Standard Normal Percentile
Intercept 0.2233 [0.0706; 0.3759] [0.0648; 0.3683]
Age 0.0238 [0.0203; 0.0272] [0.0202; 0.0275]
Income 8× 10−5 [5× 10−5; 1.1× 10−4] [5× 10−5; 1.1× 10−4]
σ2 0.9098 [0.8723; 0.9472] [0.8706; 0.9441]
θ 2.7809 [2.5139; 3.0480] [2.5197; 3.0640]
Log-likelihood -1920.9360
AIC 3859.8700
BIC 3903.3600

Table 2.6: Estimation results of bivariate Clayton survival copula-based SUR Tobit right-
censored model with power-normal marginal errors for the customer churn data (Products
A and B).

90% Confidence Intervals
Product A Estimate Standard Normal Percentile
Intercept 0.5195 [-0.2169; 1.2560] [-0.2362; 1.1766]
Age 0.0229 [0.0190; 0.0267] [0.0188; 0.0264]
Income 4× 10−5 [1× 10−5; 6× 10−5] [2× 10−5; 6× 10−5]
σ1 0.8594 [0.5874; 1.1315] [0.6030; 1.0901]
α1 0.6481 [-0.1033; 1.3995] [0.2615; 1.3443]

90% Confidence Intervals
Product B Estimate Standard Normal Percentile
Intercept 0.2230 [-0.5526; 0.9986] [-0.6708; 0.8783]
Age 0.0237 [0.0200; 0.0273] [0.0202; 0.0273]
Income 8× 10−5 [5× 10−5; 1× 10−4] [5× 10−5; 1× 10−4]
σ2 0.9113 [0.6540; 1.1686] [0.6579; 1.2068]
α2 1.0060 [-0.4712; 2.4831] [0.4085; 2.6101]
θ 2.7395 [2.4364; 3.0425] [2.4582; 3.0555]
Log-likelihood -1923.7740
AIC 3869.5480
BIC 3922.6990
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Table 2.7: Estimation results of bivariate Clayton survival copula-based SUR Tobit right-
censored model with logistic marginal errors for the customer churn data (Products A
and B).

90% Confidence Intervals
Product A Estimate Standard Normal Percentile
Intercept 0.1566 [-0.0148; 0.3280] [-0.0110; 0.3273]
Age 0.0231 [0.0194; 0.0268] [0.0195; 0.0266]
Income 4× 10−5 [1× 10−5; 6× 10−5] [1× 10−5; 7× 10−5]
s1 0.5750 [0.5482; 0.6017] [0.5466; 0.5989]

90% Confidence Intervals
Product B Estimate Standard Normal Percentile
Intercept 0.1592 [-0.0065; 0.3248] [0.0026; 0.3375]
Age 0.0252 [0.0216; 0.0289] [0.0214; 0.0285]
Income 8× 10−5 [5× 10−5; 1.1× 10−4] [6× 10−5; 1.2× 10−4]
s2 0.5363 [0.5092; 0.5633] [0.5070; 0.5633]
θ 2.6925 [2.4193; 2.9656] [2.4261; 2.9793]
Log-likelihood -1940.6240
AIC 3899.2470
BIC 3942.7350

Table 2.8: Estimation results of basic bivariate SUR Tobit right-censored model for the
customer churn data (Products A and B).

Product A Estimate Standard Error
Intercept 0.2241 0.0901
Age 0.0209 0.0018
Income 4× 10−5 1× 10−5

σ1 0.9464 0.0213
Product B Estimate Standard Error
Intercept 0.2514 0.0927
Age 0.0233 0.0020
Income 7× 10−5 1× 10−5

σ2 0.9019 0.0231
ρ † 0.7389 0.0158
Log-likelihood -1948.5050
AIC 3915.0100
BIC 3958.5000
† Denotes the linear correlation coefficient.

both AIC and BIC criterion. This indicates that the gain for introducing the Clayton

survival copula to model the nonlinear dependence structure of the bivariate SUR Tobit

right-censored model was substantial for this dataset.

2.3 Final remarks

In this chapter, we extended the analysis of the SUR Tobit model with two left-censored

or right-censored dependent variables by modeling its nonlinear dependence structure

through copulas and assuming non-normal marginal error distributions. Our decision for

two parametric families of copula (Clayton copula for the bivariate SUR Tobit model,
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and Clayton survival copula for the bivariate SUR Tobit right-censored model), as well

as non-normal (power-normal and logistic) distribution assumption for the marginal error

terms, were mainly motivated by the real data at hand (U.S. consumption data and Brazil-

ian bank customer churn data). Furthermore, some advantages arose from these copula

choices, regarding the development of the MIFM method for obtaining the estimates of the

bivariate models’ parameters. First, the Clayton copula and its survival copula are known

to be preserved under truncation, which enabled simple simulation schemes in the cases

where both dependent variables/margins were censored. Second, the existence of closed-

form expressions for the inverse of the conditional Clayton and Clayton survival copulas’

distributions enabled simple simulation schemes when just a single dependent variable/-

margin was censored, by applying the method by Devroye (1986, p. 38-39). These copulas

also have the ability to capture/model the tail dependence, especially the lower (case of

Clayton copula) or upper (case of Clayton survival copula) tail where some data are

censored.

In the simulation studies, we assessed the performance of our proposed bivariate models

and methods, obtaining satisfactory results (unbiased estimates of the copula parameter,

high and near the nominal value coverage probabilities of the bootstrap-based confidence

intervals) regardless of the error distribution assumption, the censoring percentage in the

margins and their degree of interdependence.

We also constructed bootstrap confidence intervals using the Bias-Corrected and Ac-

celerated (BCa) method by Efron (1987), but its simulation (coverage probabilities) and

real application (lower and upper limits) results were similar to those of the standard

normal and percentile methods. Thus, the BCa method, which adjusts for both bias and

skewness in the bootstrap distribution, is practically useless here.

Finally, we pointed out the applicability of our proposed bivariate models and methods

for real datasets, where we found that the gain for introducing the copulas was substantial

for these datasets.

Although it is relatively rare to analyze the SUR Tobit model with over two dimensions,

our proposed approach can be straightforwardly applied to high-dimensional SUR Tobit

models. This will be the subject of the next chapters.



Chapter 3

Trivariate Copula-based SUR Tobit
Models

In this chapter, we propose a straightforward trivariate extension of our previously pro-

posed bivariate models and methods. We first present the trivariate Clayton copula-based

SUR Tobit model, which is the SUR Tobit model with three left-censored (at zero point)

dependent variables whose dependence among them is modeled through the (tridimen-

sional) Clayton copula. Then, we present the trivariate Clayton survival copula-based

SUR Tobit right-censored model, i.e. the SUR Tobit model with three right-censored (at

point dj > 0, j = 1, 2, 3) dependent variables whose dependence structure among them

is modeled by the (tridimensional) Clayton survival copula. As in the previous chapter,

we assume symmetric (normal), asymmetric (power-normal) and heavy-tailed (logistic)

distributions for the marginal error terms. Discussions concerning the model implemen-

tation using the proposed (extended) MIFM method, as well as the confidence interval

construction from the bootstrap distribution of model parameters, are made for each pro-

posed model. Simulation studies and applications for real datasets are also provided in

this chapter.

3.1 Trivariate Clayton copula-based SUR Tobit model

formulation

The SUR Tobit model with three left-censored (at zero point) dependent variables, or

simply trivariate SUR Tobit model, is expressed as

y∗ij = x
′

ijβj + εij,

66
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yij =

y
∗
ij if y∗ij > 0,

0 otherwise,

for i = 1, ..., n and j = 1, 2, 3, where n is the number of observations, y∗ij is the latent

(i.e. unobserved) dependent variable of margin j, yij is the observed dependent variable

of margin j (which is defined to be equal to the latent dependent variable y∗ij whenever

y∗ij is above zero and zero otherwise), xij is the k× 1 vector of covariates, βj is the k× 1

vector of regression coefficients and εij is the margin j’s error that follows some zero mean

distribution.

As in the previous chapter, we suppose that the marginal errors are no longer normal,

but they are assumed to be distributed according to the power-normal (Gupta & Gupta,

2008) and logistic models, thus providing asymmetric and heavy-tailed alternatives to

Tobins model (Tobin, 1958). These choices of error distribution consist of expressing the

density function of yij in the forms given by (2.1), (2.2) and (2.3), respectively.

The dependence among the error terms εi1, εi2 and εi3 is modeled in the usual way

through a trivariate distribution, especially the trivariate normal distribution (this specifi-

cation characterizes the basic trivariate SUR Tobit model). However, applying a trivariate

distribution to the trivariate SUR Tobit model is limited to the linear relationship among

marginal distributions through the correlation coefficients. Moreover, estimation methods

for high-dimensional SUR Tobit models are often computationally demanding and diffi-

cult to implement (see comments in Section 1.2). To overcome these problems, we can

use copula functions to model the nonlinear dependence structure in the trivariate SUR

Tobit model.

For the censored outcomes yi1, yi2 and yi3, the trivariate copula-based SUR Tobit

distribution is given by

F (yi1, yi2, yi3) = C (ui1, ui2, ui3|θ) ,

where, e.g., uij = Fj
(
yij|xij,βj, σj

)
if εij ∼ N

(
0, σ2

j

)
, Fj

(
yij|xij,βj, σj, αj

)
if εij ∼

PN (0, σj, αj), or Fj
(
yij|xij,βj, sj

)
if εij ∼ L (0, sj), for j = 1, 2, 3 (see Section 2.1), and

θ is the copula association parameter (or parameter vector), which is assumed to be scalar.

Let us suppose that C is the tridimensional Clayton copula, which takes the form

C (ui1, ui2, ui3|θ) =
(
u−θi1 + u−θi2 + u−θi3 − 2

)− 1
θ , (3.1)
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with θ restricted to the region (0,∞). The dependence among the margins increases with

the value of θ, with θ → 0+ implying independence and θ →∞ implying perfect positive

dependence. This Archimedean copula shows lower tail dependence and is characterized

by zero upper tail dependence (De Luca & Rivieccio, 2012; Di Bernardino & Rullière,

2014).

3.1.1 Inference

In this subsection, we discuss inference (point and interval estimation) for the parameters

of the trivariate Clayton copula-based SUR Tobit model. Particularly, by considering/as-

suming normal, power-normal and logistic distributions for the marginal error terms in

the model.

3.1.1.1 Estimation through the (extended) MIFM method

Following Trivedi & Zimmer (2005) and Anastasopoulos, Shankar, Haddock & Mannering

(2012), we can write the log-likelihood function for the trivariate Clayton copula-based

SUR Tobit model in the following form 1

` (η) =
n∑
i=1

log c (F1 (yi1|xi1,υ1) , F2 (yi2|xi2,υ2) , F3 (yi3|xi3,υ3) |θ)+

+
n∑
i=1

3∑
j=1

log fj (yij|xij,υj),
(3.2)

where η = (υ1,υ2,υ3, θ) is the vector of model parameters, υj is the margin j’s pa-

rameter vector, fj (yij|xij,υj) is the p.d.f. of yij, Fj (yij|xij,υj) is the c.d.f. of yij, and

c (ui1, ui2, ui3|θ), with uij = Fj (yij|xij,υj), is the p.d.f. of the Clayton copula, which is

calculated from (3.1) as

c (ui1, ui2, ui3|θ) =
∂3C (ui1, ui2, ui3|θ)

∂ui1∂ui2∂ui3
=

= (θ + 1) (2θ + 1) (ui1ui2ui3)−θ−1 (u−θi1 + u−θi2 + u−θi3 − 2
)− 1

θ
−3
.

For model estimation, the use of copula methods, as well as the log-likelihood function

form given by (3.2), enables the use of the (classical) two-stage ML/IFM method by Joe

& Xu (1996), which estimates the marginal parameters υj at a first step through

υ̂j,IFM = arg max
υj

n∑
i=1

log fj (yij|xij,υj) , (3.3)

1This is the same form as in the case of continuous margins.
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for j = 1, 2, 3, and then estimates the association parameter θ given υ̂j,IFM by

θ̂IFM = arg max
θ

n∑
i=1

log c
(
F1 (yi1|xi1, υ̂1,IFM) , F2 (yi2|xi2, υ̂2,IFM) , F3 (yi3|xi3, υ̂3,IFM) |θ

)
.

(3.4)

Note that each maximization task (step) has a small number of parameters, which reduces

the computational difficulty. However, the IFM method provides a biased estimate for

the parameter θ in the presence of censored observations in the margins (as will be seen in

Section 3.1.2.2). Since we are interested in the trivariate Clayton copula-based SUR Tobit

model where all marginal distributions are censored/semi-continuous, we are dealing with

the case where there is not a one-to-one relationship between the marginal distributions

and the copula, i.e. there is more than one copula to join the marginal distributions. This

constitutes a violation of Sklar’s theorem (Sklar, 1959). When it occurs, researchers often

face problems in the copula model fitting and validation.

In order to facilitate the implementation of copula models with semi-continuous mar-

gins, the semi-continuous marginal distributions could be augmented to achieve continuity.

More specifically, we can use a (frequentist) data augmentation technique to simulate the

latent (unobserved) dependent variables in the censored margins, i.e. we generate the

unobserved data with all properties, e.g., mean, variance and dependence structure that

match the observed ones, and obtain the continuous marginal distributions (Wichitaksorn

et al., 2012). Thus, in order to obtain an unbiased estimate for the association parameter

θ, we replace yij by the augmented data ya
ij, or equivalently and more simply (thus, pre-

ferred by us), we can replace uij by the augmented uniform data ua
ij at the second stage

of the IFM method and proceed with the copula parameter estimation as usual for the

continuous margin cases. This process (uniform data augmentation and copula parameter

estimation) is then repeated until convergence occurs. The (frequentist) data augmenta-

tion technique we use here is partially based on Algorithm A2 presented in Wichitaksorn

et al. (2012).

In the remaining part of this subsubsection, we discuss the proposed estimation method

(an extension of the MIFM method proposed in Section 2.1.1.1 for the trivariate case)

when using the Clayton copula to describe the nonlinear dependence structure of the

trivariate SUR Tobit model with arbitrary margins (e.g., normal, power-normal and lo-

gistic distribution assumption for the marginal error terms). However, the proposed

approach can be extended to other copula functions by applying different sampling al-
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gorithms. For the cases where just a single dependent variable/margin is censored (i.e.

when yi1 = 0 and yi2 > 0 and yi3 > 0, or yi1 > 0 and yi2 = 0 and yi3 > 0, or yi1 > 0 and

yi2 > 0 and yi3 = 0), the uniform data augmentation is performed through the (univari-

ate) truncated conditional distribution of the Clayton copula. For the cases where two of

the dependent variables/margins are censored (i.e. when yi1 = 0 and yi2 = 0 and yi3 > 0,

or yi1 = 0 and yi2 > 0 and yi3 = 0, or yi1 > 0 and yi2 = 0 and yi3 = 0), the uniform data

augmentation is performed through the (bivariate) truncated conditional distribution of

the Clayton copula, e.g., by iterative (i.e. successive) conditioning. If the inverse condi-

tional distribution of the copula used has a closed-form expression, which is the case of

the Clayton copula (see, e.g., Cherubini, Luciano & Vecchiato, 2004, p. 184-185), we can

generate random numbers from its truncated version by applying the method by Devroye

(1986, p. 38-39). Otherwise, numerical root-finding procedures are required. By observ-

ing the results in Sungur (1999, 2002), we see that the (tridimensional) Clayton copula

has the truncation dependence invariance property, such that the conditional distribution

of ui1, ui2 and ui3 in a sub-region of a Clayton copula, with one corner at (0, 0, 0), can

be written by means of a Clayton copula. That formulation enables a simple simula-

tion scheme in the cases where all dependent variables/margins are censored (i.e. when

yi1 = yi2 = yi3 = 0). For copulas that do not have the truncation-invariance property, an

iterative simulation scheme could be adopted.

The implementation of the trivariate Clayton copula-based SUR Tobit model with arbi-

trary margins through the proposed (extended) MIFM method can be described as follows.

In particular, if the marginal error distributions are normal, then set υj =
(
βj, σj

)
and

Hj (z|xij,υj) = Φ
((
z − x′ijβj

)
/ σj

)
; if marginal error distributions are power-normal,

so υj =
(
βj, σj, αj

)
and Hj (z|xij,υj) =

[
Φ
((
z − x′ijβj

)
/ σj

)]αj
; and if marginal error

distributions are logistic, then υj =
(
βj, sj

)
and Hj (z|xij,υj) = G

((
z − x′ijβj

)
/ sj
)

=[
1 + exp

{
−
(
z − x′ijβj

)
/ sj
}]−1

, for j = 1, 2, 3 and z ∈ R.

Stage 1. Estimate the marginal parameters using (3.3). Set υ̂j,MIFM = υ̂j,IFM, for

j = 1, 2, 3.

Stage 2. Estimate the copula parameter using, e.g., (3.4). Set θ̂
(1)
MIFM = θ̂IFM and then

consider the algorithm below.
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For ω = 1, 2, ...,

For i = 1, 2, ..., n,

If yi1 = yi2 = yi3 = 0, then draw (ua
i1, u

a
i2, u

a
i3) from C

(
ua
i1, u

a
i2, u

a
i3|θ̂

(ω)
MIFM

)
truncated

to the region (0, bi1)× (0, bi2)× (0, bi3). This can be performed relatively easily using the

following steps.

1. Draw (p, q, r) from C
(
p, q, r|θ̂(ω)

MIFM

)
=
(
p−θ̂

(ω)
MIFM + q−θ̂

(ω)
MIFM + r−θ̂

(ω)
MIFM − 2

)−1/θ̂
(ω)
MIFM

.

See, e.g., Cherubini et al. (2004, p. 184-185) for the multidimensional Clayton copula

data generation using a conditional approach (conditional sampling).

2. Compute bij = Hj (0|xij, υ̂j,MIFM), for j = 1, 2, 3.

3. Set ua
i1 =

[(
b
−θ̂(ω)MIFM
i1 + b

−θ̂(ω)MIFM
i2 + b

−θ̂(ω)MIFM
i3 − 2

)
p−θ̂

(ω)
MIFM + 2− b−θ̂

(ω)
MIFM

i2 − b−θ̂
(ω)
MIFM

i3

]−1/θ̂
(ω)
MIFM

.

4. Set ua
i2 =

[(
b
−θ̂(ω)MIFM
i1 + b

−θ̂(ω)MIFM
i2 + b

−θ̂(ω)MIFM
i3 − 2

)
q−θ̂

(ω)
MIFM + 2− b−θ̂

(ω)
MIFM

i1 − b−θ̂
(ω)
MIFM

i3

]−1/θ̂
(ω)
MIFM

.

5. Set ua
i3 =

[(
b
−θ̂(ω)MIFM
i1 + b

−θ̂(ω)MIFM
i2 + b

−θ̂(ω)MIFM
i3 − 2

)
r−θ̂

(ω)
MIFM + 2− b−θ̂

(ω)
MIFM

i1 − b−θ̂
(ω)
MIFM

i2

]−1/θ̂
(ω)
MIFM

.

If yi1 = 0 and yi2 > 0 and yi3 > 0, then draw ua
i1 from C

(
ua
i1|ui2, ui3, θ̂

(ω)
MIFM

)
truncated to the interval (0, bi1). This can be done according to the following steps.

1. Compute uij = Hj (yij|xij, υ̂j,MIFM), for j = 2, 3.

2. Compute bi1 = H1 (0|xi1, υ̂1,MIFM).

3. Draw t from Uniform (0, 1).

4. Compute vi1 = t

[(
b
−θ̂(ω)MIFM
i1 +u

−θ̂(ω)MIFM
i2 +u

−θ̂(ω)MIFM
i3 −2

)/(
u
−θ̂(ω)MIFM
i2 +u

−θ̂(ω)MIFM
i3 −1

)]−1/θ̂
(ω)
MIFM−2

.

5. Set ua
i1 =

[
v
−θ̂(ω)MIFM/

(
2θ̂

(ω)
MIFM+1

)
i1

(
u
−θ̂(ω)MIFM
i2 +u

−θ̂(ω)MIFM
i3 −1

)
+2−u−θ̂

(ω)
MIFM

i2 −u−θ̂
(ω)
MIFM

i3

]−1/θ̂
(ω)
MIFM

.

If yi1 > 0 and yi2 = 0 and yi3 > 0, then draw ua
i2 from C

(
ua
i2|ui1, ui3, θ̂

(ω)
MIFM

)
truncated to the interval (0, bi2). This can be done by following the five steps of the

previous case (i.e. yi1 = 0 and yi2 > 0 and yi3 > 0) by switching subscripts 1 and 2.
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If yi1 > 0 and yi2 > 0 and yi3 = 0, then draw ua
i3 from C

(
ua
i3|ui1, ui2, θ̂

(ω)
MIFM

)
trun-

cated to the interval (0, bi3). This can be done through the five steps of the penultimate

case (i.e. yi1 = 0 and yi2 > 0 and yi3 > 0) by switching subscripts 1 and 3.

If yi1 = 0 and yi2 = 0 and yi3 > 0, then draw (ua
i1, u

a
i2) from C

(
ua
i1, u

a
i2|ui3, θ̂

(ω)
MIFM

)
truncated to the region (0, bi1)× (0, bi2). This can be performed relatively easily using the

following steps (iterative conditioning).

1. Draw ua
i2 from C

(
ua
i2|ui3, θ̂

(ω)
MIFM

)
truncated to the interval (0, bi2). This can be done

in the same manner as in the case of just a single censored dependent variable/mar-

gin in Section 2.1.1.1 (note that here C is the bidimensional Clayton copula given

by (2.4)).

2. Draw ua
i1 from C

(
ua
i1|ua

i2, ui3, θ̂
(ω)
MIFM

)
truncated to the interval (0, bi1). This can be

done according to the five steps of the second case (i.e. yi1 = 0 and yi2 > 0 and

yi3 > 0).

If yi1 = 0 and yi2 > 0 and yi3 = 0, then draw (ua
i1, u

a
i3) from C

(
ua
i1, u

a
i3|ui2, θ̂

(ω)
MIFM

)
truncated to the region (0, bi1) × (0, bi3). This can be done by following the steps of the

previous case (i.e. yi1 = 0 and yi2 = 0 and yi3 > 0) by switching subscripts 2 and 3.

If yi1 > 0 and yi2 = 0 and yi3 = 0, then draw (ua
i2, u

a
i3) from C

(
ua
i2, u

a
i3|ui1, θ̂

(ω)
MIFM

)
truncated to the region (0, bi2) × (0, bi3). This can be done by following the steps of the

penultimate case (i.e. yi1 = 0 and yi2 = 0 and yi3 > 0) by switching subscripts 1 and 3.

If yi1 > 0 and yi2 > 0 and yi3 > 0, then set ua
ij = uij = Hj (yij|xij, υ̂j,MIFM), for

j = 1, 2, 3.

Given the generated/augmented marginal uniform data ua
ij, we estimate the association

parameter θ by 2

θ̂
(ω+1)
MIFM = arg max

θ

n∑
i=1

log c (ua
i1, u

a
i2, u

a
i3|θ) .

The algorithm stops if a termination criterion is fulfilled, e.g. if |θ̂(ω+1)
MIFM − θ̂

(ω)
MIFM| < ξ,

where ξ is the tolerance parameter (e.g., ξ = 10−3).

3.1.1.2 Interval estimation

In this subsubsection, we propose the use of bootstrap methods to build confidence in-

tervals for the parameters of the trivariate Clayton copula-based SUR Tobit model. It

2The generated/augmented marginal uniform data uaij should carry (ω) as a superscript, i.e. u
a(ω)
ij ,

but we omit it so as not to clutter the notation.
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makes the analytic derivatives no longer required to compute the asymptotic covariance

matrix associated with the vector of parameter estimates.

Our bootstrap approach can be described as follows. Let ηh, h = 1, ..., k, be any com-

ponent of the parameter vector η of the trivariate Clayton copula-based SUR Tobit model

(see Section 3.1.1.1). By using a parametric resampling plan, we obtain the bootstrap

estimates η̂∗h1, η̂
∗
h2, ..., η̂

∗
hB of ηh through the (extended) MIFM method, where B is the

number of bootstrap samples. Hinkley (1988) suggests that the minimum value of B will

depend on the parameter being estimated, but that it will often be 100 or more. Then,

we can derive confidence intervals from the bootstrap distribution through the following

three methods, for instance.

• Percentile bootstrap (Efron & Tibshirani, 1993, p. 171). The 100 (1− 2α) % per-

centile confidence interval is defined by the 100 (α)th and 100 (1− α)th percentiles

of the bootstrap distribution of η̂∗h:[
η̂
∗(α)
h , η̂

∗(1−α)
h

]
.

For Carpenter & Bithell (2000), simplicity is the attraction of this method. Note

that no estimates of the standard errors are required. Furthermore, no invalid

parameter values can be included in the interval.

• Basic bootstrap (Davison & Hinkley, 1997, p. 194). The basic bootstrap is one

of the simplest schemes to build confidence intervals. We proceed in a similar way

to the percentile bootstrap, using the percentiles of the bootstrap distribution of

η̂∗h, but with the following different formula (note the inversion of the left and right

quantiles!): [
2η̂h − η̂∗(1−α)

h , 2η̂h − η̂∗(α)
h

]
,

where η̂h is the original estimate (i.e. from the original data) of ηh, obtained through

the proposed (extended) MIFM method. Note that if there is a parameter con-

straint, such as ηh > 0, the 100 (1− 2α) % basic confidence interval given above

may include invalid parameter values.

• Standard normal interval (Efron & Tibshirani, 1993, p. 154). Since most statis-

tics are asymptotically normally distributed, in large samples we can use the stan-

dard error estimate, ŝeh, as well as the normal distribution, to yield a 100 (1− 2α) %
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confidence interval for ηh based on the original estimate η̂h:[
η̂h − z(1−α)ŝeh, η̂h − z(α)ŝeh

]
,

where z(α) represents the 100 (α)th percentile point of a standard normal distribu-

tion, and ŝeh is the hth entry on the diagonal of the bootstrap-based covariance

matrix estimate of the parameter vector estimate η̂, which is given by

Σ̂boot =
1

B − 1

B∑
b=1

(
η̂∗b − η̂

∗
)(
η̂∗b − η̂

∗
)′
, (3.5)

where η̂∗b , b = 1, ..., B, is the bootstrap estimate of η and

η̂
∗

=

(
1

B

B∑
b=1

η̂∗1b,
1

B

B∑
b=1

η̂∗2b, . . . ,
1

B

B∑
b=1

η̂∗kb

)
.

3.1.2 Simulation study

In this subsection, we present the main results of the simulation study that we conducted

to examine the behavior of the MIFM estimates (focusing on the copula association pa-

rameter estimate) and check the coverage probabilities of bootstrap confidence intervals

(constructed using the three methods described in Section 3.1.1.2) for the trivariate Clay-

ton copula-based SUR Tobit model parameters. Here, we considered some circumstances

that might arise in the development of trivariate copula-based SUR Tobit models, involv-

ing the sample size, the censoring percentage (i.e. the percentage of zero observations)

in the dependent variables/margins and their interdependence degree. We also consid-

ered/assumed different distributions for the marginal error terms.

3.1.2.1 General specifications

In the simulation study, we applied the Clayton copula to model the nonlinear dependence

structure of the trivariate SUR Tobit model. We set the true value for the association pa-

rameter θ at 0.67, 2 and 6, corresponding to a Kendall’s tau association measure 3 of 0.25,

0.50 and 0.75, respectively. For the multidimensional Clayton copula data generation, see,

e.g., Cherubini et al. (2004, p. 184-185) (conditional sampling).

3The Kendall’s tau for the m-dimensional Clayton copula with parameter θ is given by τm =(
2m−1 − 1

)−1
{
−1 + 2m

∏m−1
p=0 (1 + pθ) / (2 + pθ)

}
(Genest, Nešlehová & Ben Ghorbal, 2011). After

some simple calculations, we find that for m = 3, τ3 = θ / (θ + 2).
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For i = 1, ..., n, the covariates for margin 1, xi1 = (xi1,0, xi1,1)
′
, were xi1,0 = 1 and xi1,1

was randomly simulated from a standard normal distribution. The covariates for margin

2, xi2 = (xi2,0, xi2,1)
′
, were generated as xi2,0 = 1 and xi2,1 was randomly simulated from

N (1, 22). Finally, the covariates for margin 3, xi3 = (xi3,0, xi3,1)
′
, were generated as

xi3,0 = 1 and xi3,1 was randomly simulated from Uniform (0, 5). The model errors εi1, εi2

and εi3 were assumed to follow the following distributions:

• Normal: i.e. εi1 ∼ N (0, σ2
1), εi2 ∼ N (0, σ2

2) and εi3 ∼ N (0, σ2
3), where σ1 = 1,

σ2 = 2 and σ3 = 2 are the standard deviations (scale parameters) for margins 1, 2

and 3, respectively. To ensure a percentage of censoring (i.e. of zero observations)

for all three margins of approximately 5%, 15%, 25%, 35% and 50%, we assumed

the following true values for β1 = (β1,0, β1,1)
′
, β2 = (β2,0, β2,1)

′
and β3 = (β3,0, β3,1)

′
:

� β1 = (2.3, 1), β2 = (4,−0.5) and β3 = (1.5, 1);

� β1 = (1.5, 1), β2 = (2.75,−0.5) and β3 = (0.1, 1);

� β1 = (1, 1), β2 = (2,−0.5) and β3 = (−0.8, 1);

� β1 = (0.5, 1), β2 = (1.3,−0.5) and β3 = (−1.5, 1);

� β1 = (−0.02, 1), β2 = (0.5,−0.5) and β3 = (−2.5, 1);

respectively. For j = 1, 2, 3, the latent dependent variable of margin j, y∗ij, was

randomly simulated from N
(
x
′
ijβj, σ

2
j

)
; thus, the observed dependent variable of

margin j, yij, was obtained from max
{

0, y∗ij
}

.

• Power-normal: i.e. εi1 ∼ PN (0, σ1, α1), εi2 ∼ PN (0, σ2, α2) and εi3 ∼ PN (0, σ3, α3),

where σ1 = 1, σ2 = 2 and σ3 = 2 are the scale parameters for margins 1, 2 and 3, re-

spectively; and α1 = α2 = α3 = 1.75 are the shape parameters for margins 1, 2 and

3. To ensure a percentage of censoring for all three margins of approximately 5%,

15%, 25%, 35% and 50%, we assumed the following true values for β1 = (β1,0, β1,1)
′
,

β2 = (β2,0, β2,1)
′

and β3 = (β3,0, β3,1)
′
:

� β1 = (1.7, 1), β2 = (2.8,−0.5) and β3 = (0.2, 1);

� β1 = (0.9, 1), β2 = (1.6,−0.5) and β3 = (−1.1, 1);

� β1 = (0.4, 1), β2 = (0.9,−0.5) and β3 = (−1.9, 1);

� β1 = (0.05, 1), β2 = (0.4,−0.5) and β3 = (−2.5, 1);
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� β1 = (−0.5, 1), β2 = (−0.4,−0.5) and β3 = (−3.4, 1);

respectively. For j = 1, 2, 3, the latent dependent variable of margin j, y∗ij, was ran-

domly simulated from PN
(
x
′
ijβj, σj, αj

)
; therefore, the observed dependent vari-

able of margin j, yij, was obtained from max
{

0, y∗ij
}

.

• Logistic: i.e. εi1 ∼ L (0, s1), εi2 ∼ L (0, s2) and εi3 ∼ L (0, s3), where s1 = 1, s2 = 2

and s3 = 1.5 are the scale parameters for margins 1, 2 and 3, respectively. To ensure

a percentage of censoring for all three margins of approximately 5%, 15%, 25%, 35%

and 50%, we assumed the following true values for β1 = (β1,0, β1,1)
′
, β2 = (β2,0, β2,1)

′

and β3 = (β3,0, β3,1)
′
:

� β1 = (3.3, 1), β2 = (5.8, 1) and β3 = (3.4, 0.5);

� β1 = (2.1, 1), β2 = (3.1, 1) and β3 = (1.5, 0.5);

� β1 = (1.3, 1), β2 = (1.7, 1) and β3 = (0.5, 0.5);

� β1 = (0.8, 1), β2 = (0.5, 1) and β3 = (−0.3, 0.5);

� β1 = (−0.05, 1), β2 = (−0.9, 1) and β3 = (−1.2, 0.5);

respectively. For j = 1, 2, 3, the latent dependent variable of margin j, y∗ij, was

randomly simulated from L
(
x
′
ijβj, sj

)
; thus, the observed dependent variable of

margin j, yij, was obtained from max
{

0, y∗ij
}

.

For each error distribution assumption (normal, power-normal and logistic), censor-

ing percentage in the margins (5%, 15%, 25%, 35% and 50% of zero observations) and

degree of dependence among them (low: θ = 0.67, moderate: θ = 2 and high: θ = 6),

we generated 100 datasets of sizes n = 200, 800 and 2000. These choices of sample sizes

were based on some authors’ indication (e.g., Joe, 2014) that large sample sizes are com-

monly required when working with copulas. Then, for each dataset (original sample),

we obtained 500 bootstrap samples through a parametric resampling plan (parametric

bootstrap approach), i.e. we fitted a trivariate Clayton copula-based SUR Tobit model

with the corresponding error distributions to each dataset using the (extended) MIFM

approach, and then generated a set of 500 new datasets (the same size as the original

dataset/sample) from the estimated parametric model. The computing language was

written in R statistical programming environment (R Core Team, 2014) and ran on a
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virtual machine of the Cloud-USP at ICMC, with Intel Xeon processor E5500 series, 8

core (virtual CPUs), 32 GB RAM.

We assessed the performance of the proposed models and methods through the cover-

age probabilities of the nominally 90% standard normal, percentile and basic bootstrap

confidence intervals, the Bias and the Mean Squared Error (MSE), in which the Bias and

the MSE of each parameter ηh, h = 1, ..., k, are given by Bias = M−1
∑M

r=1 (η̂rh − ηh) and

MSE = M−1
∑M

r=1 (η̂rh − ηh)
2, respectively, where M = 100 is the number of replications

(original datasets/samples) and η̂rh is the estimated value of ηh at the rth replication.

3.1.2.2 Simulation results

In this subsubsection, we present the main results obtained from the simulation study per-

formed with samples (datasets) of different sizes, percentages of censoring in the margins

and degrees of dependence among them, regarding the trivariate Clayton copula-based

SUR Tobit model parameters estimated using the (extended) MIFM approach. Since both

the (extended) MIFM and IFM methods provide the same marginal parameter estimates

(the first stage of the proposed method is similar to the first stage of the usual one, as seen

in Section 3.1.1.1), we focus here on the Clayton copula parameter estimate. For some

asymptotic results (such as asymptotic normality) associated with the IFM method, see,

e.g., Joe & Xu (1996). We also show the results related to the estimated coverage prob-

abilities of the 90% confidence intervals for θ, obtained by bootstrap methods (standard

normal, percentile and basic intervals).

Figures 3.1, 3.2 and 3.3 show the Bias and MSE of the observed MIFM estimates

of θ for normal, power-normal and logistic marginal errors, respectively. From these

figures, we observe that, regardless of the error distribution assumption, the percentage

of censoring in the margins and their interdependence degree, the Bias and MSE of the

MIFM estimator of θ are relatively low and tend to zero for large n, i.e. the MIFM

estimator is asymptotically unbiased and consistent for the Clayton copula parameter.

Figures 3.4, 3.5 and 3.6 show the estimated coverage probabilities of the bootstrap

confidence intervals for θ for normal, power-normal and logistic marginal errors, respec-

tively. Observe that the estimated coverage probabilities are sufficiently high and close to

the nominal value of 0.90, except for the percentile intervals in general, and for a few cases

in which n is mainly small to moderate (n = 200 and 800) and the degree of dependence

among the margins is high (θ = 6) (see Figures 3.4(c), 3.5(c) and 3.6(c)).



78

Finally, Figures 3.7, 3.8 and 3.9 compare, via boxplots, the observed MIFM estimates

of θ with its estimates obtained through the IFM method for normal, power-normal and

logistic marginal errors, respectively, and for n = 2000. It can be seen from Figure 3.7

that the IFM method overestimates θ for dependence at a lower level, that is θ = 0.67

(Figure 3.7(a)), but underestimates θ for dependence at a higher level, that is θ = 2 and

θ = 6 (Figures 3.7(b) and 3.7(c), respectively). Similar behavior is observed for the plots

in Figure 3.8. In Figure 3.9, we see that there is a certain equivalence between the two

estimation methods (with a slight advantage for the (extended) MIFM method over the

IFM method, in terms of bias) when the degree of dependence among the margins is

moderate, that is θ = 2 (Figure 3.9(b)); however, the IFM method overestimates θ for

dependence at a lower level, which is θ = 0.67 (Figure 3.9(a)), and underestimates θ for

dependence at a higher level, which is θ = 6 (Figure 3.9(c)). Note also from Figures 3.7,

3.8 and 3.9 that the difference (distance) between the distributions of the IFM and MIFM

estimates often increases as the percentage of censoring in the margins increases.

3.1.3 Application

In this subsection, we illustrate the applicability of our proposed trivariate models and

methods for the salad dressing, tomato and lettuce data described in Section 1.1.1.

In this application, the relationship among the reported salad dressing (amount con-

sumed in 100 grams), tomato (amount consumed in 400 grams) and lettuce (amount

consumed in 200 grams) consumption by 400 U.S. adults is modeled by the trivariate

SUR Tobit model with normal, power-normal and logistic marginal errors through the

Clayton copula (see Sections 1.1.1 and 1.3 for the reasons for this choice of model). We

include age, location (region) and income as the covariates and use them for all margins

in all three candidate models.

Tables 3.1, 3.2 and 3.3 show the MIFM estimates for the parameters of the trivariate

Clayton copula-based SUR Tobit model with normal, power-normal and logistic marginal

errors, respectively, as well as the 90% confidence intervals obtained through the standard

normal, percentile and basic bootstrap methods. Tables 3.1, 3.2 and 3.3 also present the

log-likelihood, AIC and BIC criterion values for the three fitted models. Note that the

trivariate Clayton copula-based SUR Tobit model with logistic marginal errors has the

smallest AIC and BIC criterion values and therefore provides the best fit for the salad
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Figure 3.1: Bias and MSE of the MIFM estimate of the Clayton copula parameter versus
sample size, percentage of censoring in the margins and degree of dependence among them
(normal marginal errors).
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Figure 3.2: Bias and MSE of the MIFM estimate of the Clayton copula parameter versus
sample size, percentage of censoring in the margins and degree of dependence among them
(power-normal marginal errors).
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Figure 3.3: Bias and MSE of the MIFM estimate of the Clayton copula parameter versus
sample size, percentage of censoring in the margins and degree of dependence among them
(logistic marginal errors).
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Figure 3.4: Coverage probabilities (CPs) of the 90% standard normal (panels on the left),
percentile (middle panels) and basic (panels on the right) confidence intervals for the
Clayton copula parameter versus sample size, percentage of censoring in the margins and
degree of dependence among them (normal marginal errors). The horizontal line at CP
= 0.90 and the two horizontal lines at CP = 0.85 and 0.95 correspond, respectively, to
the lower and upper bounds of the 90% confidence interval of the CP = 0.90. Thus, if
a confidence interval has exact coverage of 0.90, roughly 90% of the observed coverages
should be between these lines.
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Figure 3.5: Coverage probabilities (CPs) of the 90% standard normal (panels on the left),
percentile (middle panels) and basic (panels on the right) confidence intervals for the
Clayton copula parameter versus sample size, percentage of censoring in the margins and
degree of dependence among them (power-normal marginal errors). The horizontal line
at CP = 0.90 and the two horizontal lines at CP = 0.85 and 0.95 correspond, respectively,
to the lower and upper bounds of the 90% confidence interval of the CP = 0.90. Thus, if
a confidence interval has exact coverage of 0.90, roughly 90% of the observed coverages
should be between these lines.
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Figure 3.6: Coverage probabilities (CPs) of the 90% standard normal (panels on the left),
percentile (middle panels) and basic (panels on the right) confidence intervals for the
Clayton copula parameter versus sample size, percentage of censoring in the margins and
degree of dependence among them (logistic marginal errors). The horizontal line at CP
= 0.90 and the two horizontal lines at CP = 0.85 and 0.95 correspond, respectively, to
the lower and upper bounds of the 90% confidence interval of the CP = 0.90. Thus, if
a confidence interval has exact coverage of 0.90, roughly 90% of the observed coverages
should be between these lines.
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Figure 3.7: Comparison between the IFM and MIFM estimates of the Clayton copula pa-
rameter, for n = 2000 (normal marginal errors). The averages of the parameter estimates
are shown with a star symbol. The dotted horizontal line represents the true value of the
Clayton copula parameter.
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Figure 3.8: Comparison between the IFM and MIFM estimates of the Clayton copula
parameter, for n = 2000 (power-normal marginal errors). The averages of the parameter
estimates are shown with a star symbol. The dotted horizontal line represents the true
value of the Clayton copula parameter.
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Figure 3.9: Comparison between the IFM and MIFM estimates of the Clayton copula pa-
rameter, for n = 2000 (logistic marginal errors). The averages of the parameter estimates
are shown with a star symbol. The dotted horizontal line represents the true value of the
Clayton copula parameter.
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dressing, tomato and lettuce data. From the Kolmogorov-Smirnov goodness-of-fit tests of

augmented marginal residuals 4, we obtain p-values equal to 0.6599, 0.0995 and 0.8483 for

the salad dressing, tomato and lettuce models, respectively. Thus, the logistic distribution

assumption for the marginal errors is valid (at the 5% level). The results reported in Table

3.3 reveal that individuals aged 20-40 years consume more salad dressings, and individuals

aged 20-30 years consume more lettuce than those over 60 years of age. Su & Arab (2006)

found a similar effect of age on salad dressing consumption. Regional effects are also no-

table, as individuals from the Northeast and West (according to the 90% basic bootstrap

confidence interval) consume more salad dressings, individuals from the Northeast con-

sume more tomatoes, and individuals from the Midwest and West consume more lettuce

than individuals residing in the South. The household income has a positive effect on the

consumption of all these food items. The MIFM estimate of the Clayton copula parame-

ter
(
θ̂MIFM = 1.6390, obtained after 21 iterations

)
and its 90% bootstrap-based confidence

intervals show us that the relationship among salad dressing, tomato and lettuce consump-

tion is positive (the estimated Kendall’s tau is τ̂3 = θ̂MIFM/
(
θ̂MIFM + 2

)
= 0.4504) and

significant at the 10% level (the lower limits of the 90% bootstrap-based confidence inter-

vals for θ are greater than and far above zero), justifying joint estimation of the censored

equations through the Clayton copula to improve statistical efficiency. Furthermore, the

estimated trivariate tail dependence coefficients for Clayton copula, λ̂
1|23
L = 0.7808 and

λ̂
12|3
L = 0.5116, obtained from (3 / 2)−1/θ̂MIFM and 3−1/θ̂MIFM (cf. De Luca & Rivieccio, 2012;

Di Bernardino & Rullière, 2014), respectively, show the positive dependence at the lower

tail of the joint distribution, i.e. for low or no consumption of salad dressings, tomatoes

and lettuce.

For purposes of comparison, we also fit, via the MCECM algorithm of Huang (1999)

adapted to trivariate logistic distribution, what we call here the basic trivariate SUR

Tobit model with logistic marginal errors, that is the trivariate SUR Tobit model whose

dependence among the marginal errors εi1, εi2 and εi3, i = 1, ..., n, is modeled through

the classical trivariate logistic distribution as proposed by Malik & Abraham (1973). The

estimation results, obtained after 3 iterations (i.e. in much fewer iterations than required

by the (extended) MIFM method, but the adapted MCECM algorithm is much more

4The augmented residuals are the differences between the augmented observed and predicted responses,
i.e. eaij = yaij − x

′

ijβ̂j,MIFM, for i = 1, ..., n and j = 1, 2, 3, where yaij = x
′

ijβ̂j,MIFM + ŝj,MIFMG
−1
(
uaij
)
,

with G−1 (.) being the inverse function of the L (0, 1) c.d.f.; or simply, eaij = ŝj,MIFMG
−1
(
uaij
)
.
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Table 3.1: Estimation results of trivariate Clayton copula-based SUR Tobit model with
normal marginal errors for salad dressing, tomato and lettuce consumption in the U.S. in
1994-1996.

90% Confidence Intervals
Salad dressing Estimate Standard Normal Percentile Basic
Intercept 0.1130 [0.0336; 0.1924] [0.0422; 0.1969] [0.0291; 0.1837]
Age 20-30 0.1106 [0.0353; 0.1860] [0.0363; 0.1853] [0.0360; 0.1850]
Age 31-40 0.1011 [0.0337; 0.1685] [0.0295; 0.1650] [0.0372; 0.1726]
Age 41-50 0.0633 [-0.0009; 0.1276] [0.0014; 0.1266] [0.00003; 0.12526]
Age 51-60 -0.0030 [-0.0729; 0.0669] [-0.0745; 0.0665] [-0.0725; 0.0685]
Northeast 0.0784 [0.0152; 0.1417] [0.0115; 0.1383] [0.0185; 0.1453]
Midwest 0.0521 [-0.0082; 0.1123] [-0.0063; 0.1137] [-0.0095; 0.1105]
West 0.0544 [-0.0027; 0.1114] [-0.0051; 0.1100] [-0.0013; 0.1138]
Income 0.0277 [0.0022; 0.0531] [0.0035; 0.0504] [0.0049; 0.0518]
σ1 0.2636 [0.2461; 0.2812] [0.2445; 0.2797] [0.2476; 0.2828]

90% Confidence Intervals
Tomato Estimate Standard Normal Percentile Basic
Intercept -0.0554 [-0.1183; 0.0076] [-0.1184; 0.0070] [-0.1177; 0.0077]
Age 20-30 0.0292 [-0.0311; 0.0895] [-0.0305; 0.0903] [-0.0318; 0.0890]
Age 31-40 0.0404 [-0.0171; 0.0980] [-0.0203; 0.0914] [-0.0105; 0.1012]
Age 41-50 0.0369 [-0.0166; 0.0905] [-0.0138; 0.0907] [-0.0168; 0.0877]
Age 51-60 -0.0351 [-0.0910; 0.0208] [-0.0925; 0.0157] [-0.0860; 0.0223]
Northeast 0.1000 [0.0457; 0.1543] [0.0465; 0.1521] [0.0479; 0.1535]
Midwest 0.0129 [-0.0373; 0.0632] [-0.0413; 0.0591] [-0.0332; 0.0671]
West 0.0177 [-0.0302; 0.0655] [-0.0336; 0.0648] [-0.0295; 0.0690]
Income 0.0295 [0.0092; 0.0498] [0.0096; 0.0509] [0.0082; 0.0494]
σ2 0.2088 [0.1913; 0.2263] [0.1887; 0.2241] [0.1934; 0.2288]

90% Confidence Intervals
Lettuce Estimate Standard Normal Percentile Basic
Intercept -0.1084 [-0.2056; -0.0112] [-0.2052; -0.0081] [-0.2088; -0.0117]
Age 20-30 0.1051 [0.0186; 0.1916] [0.0243; 0.1898] [0.0204; 0.1858]
Age 31-40 0.0786 [-0.0065; 0.1636] [-0.0107; 0.1609] [-0.0038; 0.1679]
Age 41-50 0.0908 [0.0126; 0.1690] [0.0075; 0.1666] [0.0149; 0.1741]
Age 51-60 0.0232 [-0.0561; 0.1024] [-0.0574; 0.0989] [-0.0526; 0.1037]
Northeast 0.0588 [-0.0194; 0.1370] [-0.0178; 0.1359] [-0.0183; 0.1354]
Midwest 0.1065 [0.0342; 0.1788] [0.0325; 0.1771] [0.0360; 0.1805]
West 0.0946 [0.0235; 0.1657] [0.0209; 0.1622] [0.0270; 0.1684]
Income 0.0604 [0.0288; 0.0919] [0.0280; 0.0903] [0.0304; 0.0928]
σ3 0.3101 [0.2862; 0.3341] [0.2826; 0.3295] [0.2908; 0.3376]
θ 1.7323 [1.4244; 2.0401] [1.4503; 2.0734] [1.3911; 2.0143]
Log-likelihood -150.8005
AIC 363.6011
BIC 487.3365
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Table 3.2: Estimation results of trivariate Clayton copula-based SUR Tobit model with
power-normal marginal errors for salad dressing, tomato and lettuce consumption in the
U.S. in 1994-1996.

90% Confidence Intervals
Salad dressing Estimate Standard Normal Percentile Basic
Intercept -1.6897 [-1.8411; -1.5384] [-1.8082; -1.5142] [-1.8653; -1.5713]
Age 20-30 0.0839 [0.0091; 0.1588] [0.0250; 0.1734] [-0.0056; 0.1428]
Age 31-40 0.0580 [-0.0122; 0.1282] [0.0079; 0.1470] [-0.0310; 0.1081]
Age 41-50 0.0553 [-0.0079; 0.1185] [0.0093; 0.1278] [-0.0173; 0.1013]
Age 51-60 0.0189 [-0.0498; 0.0877] [-0.0373; 0.1020] [-0.0641; 0.0751]
Northeast 0.0479 [-0.0157; 0.1116] [-0.0060; 0.1235] [-0.0276; 0.1018]
Midwest 0.0347 [-0.0252; 0.0946] [-0.0182; 0.1030] [-0.0336; 0.0876]
West 0.0446 [-0.0128; 0.1020] [-0.0022; 0.1113] [-0.0222; 0.0913]
Income 0.0218 [-0.0014; 0.0450] [-0.0045; 0.0430] [0.0005; 0.0481]
σ1 0.6384 [0.5873; 0.6895] [0.5739; 0.6746] [0.6021; 0.7029]
α1 302.8540 [292.3302; 313.3779] [293.0191; 311.9069] [293.8011; 312.6889]

90% Confidence Intervals
Tomato Estimate Standard Normal Percentile Basic
Intercept -1.4305 [-1.5655; -1.2956] [-1.5527; -1.2840] [-1.5770; -1.3084]
Age 20-30 0.0212 [-0.0223; 0.0646] [-0.0211; 0.0657] [-0.0234; 0.0634]
Age 31-40 0.0332 [-0.0125; 0.0788] [-0.0127; 0.0792] [-0.0128; 0.0791]
Age 41-50 0.0296 [-0.0114; 0.0707] [-0.0103; 0.0721] [-0.0128; 0.0696]
Age 51-60 -0.0240 [-0.0696; 0.0215] [-0.0694; 0.0239] [-0.0720; 0.0213]
Northeast 0.0586 [0.0187; 0.0985] [0.0232; 0.0992] [0.0179; 0.0940]
Midwest 0.0105 [-0.0306; 0.0516] [-0.0270; 0.0509] [-0.0299; 0.0480]
West 0.0161 [-0.0232; 0.0554] [-0.0206; 0.0571] [-0.0248; 0.0529]
Income 0.0258 [0.0086; 0.0430] [0.0073; 0.0426] [0.0091; 0.0444]
σ2 0.4631 [0.4237; 0.5024] [0.4210; 0.4984] [0.4278; 0.5052]
α2 533.6174 [529.4562; 537.7787] [531.3214; 537.8499] [529.3850; 535.9135]

90% Confidence Intervals
Lettuce Estimate Standard Normal Percentile Basic
Intercept -2.2898 [-2.5958; -1.9838] [-2.4363; -1.7990] [-2.7806; -2.1433]
Age 20-30 0.0397 [-0.0628; 0.1422] [-0.0390; 0.1623] [-0.0830; 0.1184]
Age 31-40 0.0384 [-0.0558; 0.1326] [-0.0375; 0.1512] [-0.0743; 0.1144]
Age 41-50 0.0629 [-0.0210; 0.1467] [0.0004; 0.1616] [-0.0359; 0.1254]
Age 51-60 -0.0122 [-0.1053; 0.0809] [-0.0768; 0.1146] [-0.1390; 0.0523]
Northeast 0.0883 [-0.0089; 0.1855] [0.0168; 0.2132] [-0.0367; 0.1597]
Midwest 0.1137 [0.0193; 0.2081] [0.0427; 0.2404] [-0.0129; 0.1848]
West 0.1063 [0.0155; 0.1972] [0.0458; 0.2265] [-0.0138; 0.1668]
Income 0.0561 [0.0204; 0.0917] [0.0091; 0.0795] [0.0326; 0.1031]
σ3 0.7446 [0.6481; 0.8411] [0.5857; 0.7819] [0.7073; 0.9036]
α3 422.7770 [403.3985; 442.1556] [399.3004; 436.4070] [409.1470; 446.2536]
θ 1.5470 [1.2514; 1.8426] [1.1511; 1.7351] [1.3589; 1.9429]
Log-likelihood -152.0613
AIC 372.1227
BIC 507.8325
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Table 3.3: Estimation results of trivariate Clayton copula-based SUR Tobit model with
logistic marginal errors for salad dressing, tomato and lettuce consumption in the U.S. in
1994-1996.

90% Confidence Intervals
Salad dressing Estimate Standard Normal Percentile Basic
Intercept 0.1124 [0.0375; 0.1873] [0.0391; 0.1910] [0.0338; 0.1857]
Age 20-30 0.0968 [0.0294; 0.1642] [0.0297; 0.1592] [0.0344; 0.1639]
Age 31-40 0.0977 [0.0326; 0.1627] [0.0304; 0.1605] [0.0348; 0.1649]
Age 41-50 0.0480 [-0.0147; 0.1107] [-0.0142; 0.1076] [-0.0116; 0.1102]
Age 51-60 0.0024 [-0.0597; 0.0644] [-0.0608; 0.0627] [-0.0579; 0.0655]
Northeast 0.0744 [0.0136; 0.1353] [0.0122; 0.1299] [0.0190; 0.1367]
Midwest 0.0559 [-0.0004; 0.1123] [-0.0024; 0.1122] [-0.0003; 0.1143]
West 0.0570 [-0.0010; 0.1150] [-0.0048; 0.1115] [0.0025; 0.1188]
Income 0.0275 [0.0039; 0.0510] [0.0031; 0.0530] [0.0019; 0.0518]
s1 0.1459 [0.1352; 0.1566] [0.1331; 0.1543] [0.1375; 0.1588]

90% Confidence Intervals
Tomato Estimate Standard Normal Percentile Basic
Intercept -0.0358 [-0.0873; 0.0158] [-0.0910; 0.0137] [-0.0852; 0.0195]
Age 20-30 0.0207 [-0.0287; 0.0700] [-0.0272; 0.0685] [-0.0271; 0.0685]
Age 31-40 0.0348 [-0.0121; 0.0817] [-0.0145; 0.0820] [-0.0123; 0.0841]
Age 41-50 0.0201 [-0.0276; 0.0677] [-0.0294; 0.0679] [-0.0278; 0.0695]
Age 51-60 -0.0251 [-0.0719; 0.0216] [-0.0696; 0.0197] [-0.0700; 0.0194]
Northeast 0.0677 [0.0221; 0.1132] [0.0224; 0.1131] [0.0222; 0.1129]
Midwest 0.0111 [-0.0312; 0.0535] [-0.0323; 0.0551] [-0.0329; 0.0546]
West 0.0191 [-0.0237; 0.0619] [-0.0247; 0.0640] [-0.0258; 0.0629]
Income 0.0249 [0.0077; 0.0421] [0.0090; 0.0426] [0.0073; 0.0409]
s2 0.1069 [0.0969; 0.1168] [0.0953; 0.1156] [0.0981; 0.1185]

90% Confidence Intervals
Lettuce Estimate Standard Normal Percentile Basic
Intercept -0.0837 [-0.1717; 0.0043] [-0.1754; 0.0027] [-0.1700; 0.0081]
Age 20-30 0.0804 [0.0029; 0.1579] [0.0010; 0.1526] [0.0082; 0.1598]
Age 31-40 0.0718 [-0.0078; 0.1514] [-0.0120; 0.1483] [-0.0047; 0.1556]
Age 41-50 0.0721 [-0.0057; 0.1499] [-0.0082; 0.1521] [-0.0079; 0.1523]
Age 51-60 0.0133 [-0.0629; 0.0895] [-0.0615; 0.0878] [-0.0611; 0.0881]
Northeast 0.0662 [-0.0096; 0.1420] [-0.0148; 0.1350] [-0.0026; 0.1472]
Midwest 0.0936 [0.0231; 0.1641] [0.0221; 0.1694] [0.0178; 0.1651]
West 0.0850 [0.0131; 0.1569] [0.0096; 0.1526] [0.0174; 0.1605]
Income 0.0559 [0.0268; 0.0850] [0.0281; 0.0829] [0.0289; 0.0837]
s3 0.1743 [0.1599; 0.1886] [0.1582; 0.1876] [0.1609; 0.1903]
θ 1.6390 [1.3643; 1.9137] [1.3985; 1.9346] [1.3435; 1.8795]
Log-likelihood -129.0396
AIC 320.0792
BIC 443.8146
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time consuming), are presented in Table 3.4. The standard errors were derived from the

bootstrap-based covariance matrix estimate given by (3.5) (bootstrap standard errors) 5.

It can be seen from Tables 3.3 and 3.4 that the marginal parameter estimates obtained

through the adapted MCECM and (extended) MIFM methods are similar. However, the

trivariate Clayton copula-based SUR Tobit model with logistic marginal errors overcomes

the basic trivariate SUR Tobit model with logistic marginal errors in both AIC and BIC

criterion. This indicates that there was a gain by introducing the Clayton copula to

model the nonlinear dependence structure of the trivariate SUR Tobit model with logistic

marginal errors, for this dataset.

3.2 Trivariate Clayton survival copula-based SUR To-

bit right-censored model formulation

The SUR Tobit model with three right-censored dependent variables, or simply trivariate

SUR Tobit right-censored model, is expressed as

y∗ij = x
′

ijβj + εij,

yij =

y
∗
ij if y∗ij < dj,

dj otherwise,

for i = 1, ..., n and j = 1, 2, 3, where n is the number of observations, dj is the censoring

point/threshold of margin j (which is assumed to be known and constant, here), y∗ij is

the latent (i.e. unobserved) dependent variable of margin j, yij is the observed dependent

variable of margin j (which is defined to be equal to the latent dependent variable y∗ij

whenever y∗ij is below dj and dj otherwise), xij is the k× 1 vector of covariates, βj is the

k×1 vector of regression coefficients and εij is the margin j’s error that follows some zero

mean distribution.

As in the previous chapter, we suppose that the marginal errors are no longer normal,

but they are assumed to be distributed according to the power-normal (Gupta & Gupta,

2008) and logistic models. Then, the density function of yij takes the forms given by

(2.9), (2.11) and (2.13), respectively; and the distribution function of yij is obtained by

(2.10), (2.12) and (2.14), respectively.

5But now with η denoting the parameter vector of the basic trivariate SUR Tobit model with logistic
marginal errors.
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Table 3.4: Estimation results of basic trivariate SUR Tobit model with logistic marginal
errors for salad dressing, tomato and lettuce consumption in the U.S. in 1994-1996.

Salad dressing Estimate Standard Error
Intercept 0.1304 * 0.0401
Age 20-30 0.0838 * 0.0370
Age 31-40 0.0812 * 0.0362
Age 41-50 0.0504 0.0329
Age 51-60 -0.0043 0.0337
Northeast 0.0639 * 0.0312
Midwest 0.0572 * 0.0303
West 0.0535 * 0.0316
Income 0.0294 * 0.0130
s1 0.1388 * 0.0058
Tomato Estimate Standard Error
Intercept -0.0269 0.0300
Age 20-30 0.0106 0.0291
Age 31-40 0.0337 0.0276
Age 41-50 0.0222 0.0252
Age 51-60 -0.0223 0.0275
Northeast 0.0589 * 0.0258
Midwest 0.0165 0.0234
West 0.0210 0.0250
Income 0.0226 * 0.0095
s2 0.1030 * 0.0053
Lettuce Estimate Standard Error
Intercept -0.0481 0.0481
Age 20-30 0.0777 * 0.0431
Age 31-40 0.0647 0.0409
Age 41-50 0.0654 * 0.0387
Age 51-60 0.0004 0.0375
Northeast 0.0561 0.0399
Midwest 0.0909 * 0.0368
West 0.0707 * 0.0361
Income 0.0529 * 0.0156
s3 0.1646 * 0.0081
Log-likelihood -136.3096
AIC 332.6192
BIC 452.3632

* Denotes significant at the 10% level.
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The dependence among the error terms εi1, εi2 and εi3 is modeled in the usual way

through a trivariate distribution, especially the trivariate normal distribution (this speci-

fication characterizes the basic trivariate SUR Tobit right-censored model). Nevertheless,

applying a trivariate distribution to the trivariate SUR Tobit right-censored model is lim-

ited to the linear relationship among marginal distributions through the correlation coeffi-

cients. Furthermore, estimation methods for high-dimensional SUR Tobit right-censored

models are often computationally demanding and difficult to implement (see comments

in Section 1.2). To overcome these problems, we can use copula functions to model the

nonlinear dependence structure in the trivariate SUR Tobit right-censored model.

Thus, for the censored outcomes yi1, yi2 and yi3, the trivariate copula-based SUR Tobit

right-censored distribution is given by

F (yi1, yi2, yi3) = C (ui1, ui2, ui3|θ) ,

where, e.g., uij is given by (2.10) if εij ∼ N
(
0, σ2

j

)
, (2.12) if εij ∼ PN (0, σj, αj), or (2.14)

if εij ∼ L (0, sj), for j = 1, 2, 3 (see Section 2.2); and θ is the copula association parameter

(or parameter vector), which is assumed to be scalar.

Let us suppose that C is the tridimensional Clayton survival copula, which, according

to Joe (2014, p. 28), takes the form of

C (ui1, ui2, ui3|θ) = ui1 + ui2 + ui3 − 2 +
[
(1− ui1)−θ + (1− ui2)−θ − 1

]− 1
θ

+

+
[
(1− ui1)−θ + (1− ui3)−θ − 1

]− 1
θ

+

+
[
(1− ui2)−θ + (1− ui3)−θ − 1

]− 1
θ −

−
[
(1− ui1)−θ + (1− ui2)−θ + (1− ui3)−θ − 2

]− 1
θ
,

(3.6)

with θ restricted to the region (0,∞). The dependence among the margins increases with

the value of θ, with θ → 0+ implying independence and θ →∞ implying perfect positive

dependence. This copula shows upper tail dependence and is characterized by zero lower

tail dependence.

3.2.1 Inference

In this subsection, we discuss inference (point and interval estimation) for the parameters

of the trivariate Clayton survival copula-based SUR Tobit right-censored model. Partic-

ularly, by considering/assuming normal, power-normal and logistic distributions for the

marginal error terms.
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3.2.1.1 Estimation through the (extended) MIFM method

Following Trivedi & Zimmer (2005) and Anastasopoulos et al. (2012), we can write the

log-likelihood function for the trivariate Clayton survival copula-based SUR Tobit right-

censored model in the form

` (η) =
n∑
i=1

log c (F1 (yi1|xi1,υ1) , F2 (yi2|xi2,υ2) , F3 (yi3|xi3,υ3) |θ)+

+
n∑
i=1

3∑
j=1

log fj (yij|xij,υj),
(3.7)

where η = (υ1,υ2,υ3, θ) is the vector of model parameters, υj is the margin j’s pa-

rameter vector, fj (yij|xij,υj) is the p.d.f. of yij, Fj (yij|xij,υj) is the c.d.f. of yij, and

c (ui1, ui2, ui3|θ), with uij = Fj (yij|xij,υj), is the p.d.f. of the Clayton survival copula,

which is calculated from (3.6) as

c (ui1, ui2, ui3|θ) =
∂3C (ui1, ui2, ui3|θ)

∂ui1∂ui2∂ui3
=

= (θ + 1) (2θ + 1) [(1− ui1) (1− ui2) (1− ui3)]−θ−1×

×
[
(1− ui1)−θ + (1− ui2)−θ + (1− ui3)−θ − 2

]− 1
θ
−3

.

Using copula methods, as well as the log-likelihood function form given by (3.7),

enables the use of the (classical) two-stage ML/IFM method by Joe & Xu (1996), which

estimates the marginal parameters υj at a first step through

υ̂j,IFM = arg max
υj

n∑
i=1

log fj (yij|xij,υj) , (3.8)

for j = 1, 2, 3, and then estimates the association parameter θ given υ̂j,IFM by

θ̂IFM = arg max
θ

n∑
i=1

log c
(
F1 (yi1|xi1, υ̂1,IFM) , F2 (yi2|xi2, υ̂2,IFM) , F3 (yi3|xi3, υ̂3,IFM) |θ

)
.

(3.9)

However, the IFM method provides a biased estimate for the parameter θ in the presence

of censored observations in the margins (as will be seen in Section 3.2.2.2), which occurs

because there is a violation of Sklar’s theorem in this case (see discussion in Section

3.1.1.1). In order to obtain an unbiased estimate for the association parameter θ, we

can augment the semi-continuous/censored marginal distributions to achieve continuity.

More specifically, we replace yij by the augmented data ya
ij, or equivalently and more

simply (thus, preferred by us), we can replace uij by the augmented uniform data ua
ij at
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the second stage of the IFM method and proceed with the copula parameter estimation

as usual for the cases of continuous margins. This process (uniform data augmentation

and copula parameter estimation) is then repeated until convergence is achieved. The

(frequentist) data augmentation technique we use here is partially based on Algorithm

A2 presented in Wichitaksorn et al. (2012).

In the remaining part of this subsubsection, we discuss the proposed estimation method

(an extension of the MIFM method proposed in Section 2.2.1.1 for the trivariate case)

when using the Clayton survival copula to describe the nonlinear dependence structure

of the trivariate SUR Tobit right-censored model with arbitrary margins (e.g., normal,

power-normal and logistic distribution assumption for the marginal error terms). Nev-

ertheless, the proposed approach can be extended to other copula functions by applying

different sampling algorithms. For the cases where just a single dependent variable/mar-

gin is censored (i.e. when yi1 = d1 and yi2 < d2 and yi3 < d3, or yi1 < d1 and yi2 = d2

and yi3 < d3, or yi1 < d1 and yi2 < d2 and yi3 = d3), the uniform data augmentation

is performed through the (univariate) truncated conditional distribution of the Clayton

survival copula. For the cases where two of the dependent variables/margins are censored

(i.e. when yi1 = d1 and yi2 = d2 and yi3 < d3, or yi1 = d1 and yi2 < d2 and yi3 = d3,

or yi1 < d1 and yi2 = d2 and yi3 = d3), the uniform data augmentation is performed

through the (bivariate) truncated conditional distribution of the Clayton survival copula,

e.g., by iterative (i.e. successive) conditioning. If the inverse conditional distribution of

the copula used has a closed-form expression, which is the case of the Clayton survival

copula (see Appendix A), we can generate random numbers from its truncated version

by applying the method by Devroye (1986, p. 38-39). Otherwise, numerical root-finding

procedures are required. As the (tridimensional) Clayton survival copula, as well as the

(tridimensional) Clayton copula has the truncation dependence invariance property, the

conditional distribution of ui1, ui2 and ui3 in a sub-region of a Clayton survival copula,

with one corner at (1, 1, 1), can be written by means of a Clayton survival copula. That

formulation enables a simple simulation scheme in the cases where all dependent vari-

ables/margins are censored (i.e. when yi1 = d1 and yi2 = d2 and yi3 = d3). For copulas

that do not have the truncation-invariance property, an iterative simulation scheme can

be used.

The implementation of the trivariate Clayton survival copula-based SUR Tobit right-
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censored model with arbitrary margins via the proposed (extended) MIFM method can be

described as follows. In particular, if the marginal error distributions are normal, then set

υj =
(
βj, σj

)
and Hj (z|xij,υj) = Φ

((
z − x′ijβj

)
/ σj

)
; if marginal error distributions

are power-normal, so υj =
(
βj, σj, αj

)
and Hj (z|xij,υj) =

[
Φ
((
z − x′ijβj

)
/ σj

)]αj
;

and if marginal error distributions are logistic, then υj =
(
βj, sj

)
and Hj (z|xij,υj) =

G
((
z − x′ijβj

)
/ sj
)

=
[
1 + exp

{
−
(
z − x′ijβj

)
/ sj
}]−1

, for j = 1, 2, 3 and z ∈ R.

Stage 1. Estimate the marginal parameters using (3.8). Set υ̂j,MIFM = υ̂j,IFM, for

j = 1, 2, 3.

Stage 2. Estimate the copula parameter using, e.g., (3.9). Set θ̂
(1)
MIFM = θ̂IFM and then

consider the algorithm below.

For ω = 1, 2, ...,

For i = 1, 2, ..., n,

If yi1 = d1 and yi2 = d2 and yi3 = d3, then draw (ua
i1, u

a
i2, u

a
i3) from C

(
ua
i1, u

a
i2, u

a
i3|θ̂

(ω)
MIFM

)
truncated to the region (ai1, 1)× (ai2, 1)× (ai3, 1). This can be performed relatively easily

using the following steps.

1. Draw (p, q, r) from C
(
p, q, r|θ̂(ω)

MIFM

)
= p+q+r−2+

[
(1− p)−θ̂

(ω)
MIFM+(1− q)−θ̂

(ω)
MIFM−

1

]−1/θ̂
(ω)
MIFM

+

[
(1− p)−θ̂

(ω)
MIFM+(1− r)−θ̂

(ω)
MIFM−1

]−1/θ̂
(ω)
MIFM

+

[
(1− q)−θ̂

(ω)
MIFM+(1− r)−θ̂

(ω)
MIFM−

1

]−1/θ̂
(ω)
MIFM

−
[

(1− p)−θ̂
(ω)
MIFM + (1− q)−θ̂

(ω)
MIFM + (1− r)−θ̂

(ω)
MIFM − 2

]−1/θ̂
(ω)
MIFM

. See Ap-

pendix A for the multidimensional Clayton survival copula data generation (condi-

tional sampling).

2. Compute aij = Hj (dj|xij, υ̂j,MIFM), for j = 1, 2, 3.

3. Set ua
i1 = 1−

{[
(1− ai1)−θ̂

(ω)
MIFM + (1− ai2)−θ̂

(ω)
MIFM + (1− ai3)−θ̂

(ω)
MIFM − 2

]
(1− p)−θ̂

(ω)
MIFM+

2− (1− ai2)−θ̂
(ω)
MIFM − (1− ai3)−θ̂

(ω)
MIFM

}−1/θ̂
(ω)
MIFM

.

4. Set ua
i2 = 1−

{[
(1− ai1)−θ̂

(ω)
MIFM + (1− ai2)−θ̂

(ω)
MIFM + (1− ai3)−θ̂

(ω)
MIFM − 2

]
(1− q)−θ̂

(ω)
MIFM+

2− (1− ai1)−θ̂
(ω)
MIFM − (1− ai3)−θ̂

(ω)
MIFM

}−1/θ̂
(ω)
MIFM

.
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5. Set ua
i3 = 1−

{[
(1− ai1)−θ̂

(ω)
MIFM + (1− ai2)−θ̂

(ω)
MIFM + (1− ai3)−θ̂

(ω)
MIFM − 2

]
(1− r)−θ̂

(ω)
MIFM+

2− (1− ai1)−θ̂
(ω)
MIFM − (1− ai2)−θ̂

(ω)
MIFM

}−1/θ̂
(ω)
MIFM

.

If yi1 = d1 and yi2 < d2 and yi3 < d3, then draw ua
i1 from C

(
ua
i1|ui2, ui3, θ̂

(ω)
MIFM

)
truncated to the interval (ai1, 1). This can be done according to the following steps.

1. Compute uij = Hj (yij|xij, υ̂j,MIFM), for j = 2, 3.

2. Compute ai1 = H1 (d1|xi1, υ̂1,MIFM).

3. Draw t from Uniform (0, 1).

4. Compute vi1 = t+(1− t)

{
1−

[
(1−ai1)

−θ̂(ω)
MIFM+(1−ui2)

−θ̂(ω)
MIFM+(1−ui3)

−θ̂(ω)
MIFM−2

(1−ui2)
−θ̂(ω)

MIFM+(1−ui3)
−θ̂(ω)

MIFM−1

]−1/θ̂
(ω)
MIFM−2}

.

5. Set ua
i1 = 1−

{
(1− vi1)

−θ̂(ω)MIFM/
(

2θ̂
(ω)
MIFM+1

)[
(1− ui2)−θ̂

(ω)
MIFM + (1− ui3)−θ̂

(ω)
MIFM − 1

]
+

2− (1− ui2)−θ̂
(ω)
MIFM − (1− ui3)−θ̂

(ω)
MIFM

}−1/θ̂
(ω)
MIFM

.

If yi1 < d1 and yi2 = d2 and yi3 < d3, then draw ua
i2 from C

(
ua
i2|ui1, ui3, θ̂

(ω)
MIFM

)
truncated to the interval (ai2, 1). This can be done by following the five steps of the

previous case (i.e. yi1 = d1 and yi2 < d2 and yi3 < d3) by switching subscripts 1 and 2.

If yi1 < d1 and yi2 < d2 and yi3 = d3, then draw ua
i3 from C

(
ua
i3|ui1, ui2, θ̂

(ω)
MIFM

)
trun-

cated to the interval (ai3, 1). This can be done through the five steps of the penultimate

case (i.e. yi1 = d1 and yi2 < d2 and yi3 < d3) by switching subscripts 1 and 3.

If yi1 = d1 and yi2 = d2 and yi3 < d3, then draw (ua
i1, u

a
i2) from C

(
ua
i1, u

a
i2|ui3, θ̂

(ω)
MIFM

)
truncated to the region (ai1, 1) × (ai2, 1). This can be performed relatively easily using

the following steps (iterative conditioning).

1. Draw ua
i2 from C

(
ua
i2|ui3, θ̂

(ω)
MIFM

)
truncated to the interval (ai2, 1). This can be done

in the same manner as in the case of just a single censored dependent variable/-

margin in Section 2.2.1.1 (note that here C is the bidimensional Clayton survival

copula given by (2.15)).

2. Draw ua
i1 from C

(
ua
i1|ua

i2, ui3, θ̂
(ω)
MIFM

)
truncated to the interval (ai1, 1). This can be

done according to the five steps of the second case (i.e. yi1 = d1 and yi2 < d2 and

yi3 < d3).
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If yi1 = d1 and yi2 < d2 and yi3 = d3, then draw (ua
i1, u

a
i3) from C

(
ua
i1, u

a
i3|ui2, θ̂

(ω)
MIFM

)
truncated to the region (ai1, 1)× (ai3, 1). This can be done by following the steps of the

previous case (i.e. yi1 = d1 and yi2 = d2 and yi3 < d3) by switching subscripts 2 and 3.

If yi1 < d1 and yi2 = d2 and yi3 = d3, then draw (ua
i2, u

a
i3) from C

(
ua
i2, u

a
i3|ui1, θ̂

(ω)
MIFM

)
truncated to the region (ai2, 1)× (ai3, 1). This can be done by following the steps of the

penultimate case (i.e. yi1 = d1 and yi2 = d2 and yi3 < d3) by switching subscripts 1 and

3.

If yi1 < d1 and yi2 < d2 and yi3 < d3, then set ua
ij = uij = Hj (yij|xij, υ̂j,MIFM), for

j = 1, 2, 3.

Given the generated/augmented marginal uniform data ua
ij, we estimate the association

parameter θ by 6

θ̂
(ω+1)
MIFM = arg max

θ

n∑
i=1

log c (ua
i1, u

a
i2, u

a
i3|θ) .

The algorithm terminates when it satisfies the stopping/convergence criterion: |θ̂(ω+1)
MIFM−

θ̂
(ω)
MIFM| < ξ, where ξ is the tolerance parameter (e.g., ξ = 10−3).

3.2.1.2 Interval estimation

We propose the use of bootstrap methods (standard normal and percentile by Efron &

Tibshirani (1993), and basic by Davison & Hinkley (1997)) to build confidence intervals for

the parameters of the trivariate Clayton survival copula-based SUR Tobit right-censored

model. It makes the analytic derivatives no longer required to compute the asymptotic

covariance matrix associated with the vector of parameter estimates. For further details

on our bootstrap approach, we refer to Section 3.1.1.2.

3.2.2 Simulation study

A simulation study was performed to investigate the behavior of the MIFM estimates,

focusing on the copula association parameter estimate; and check the coverage proba-

bilities of different confidence intervals (constructed using the three bootstrap methods

mentioned in Section 3.2.1.2 and described in Section 3.1.1.2) for the trivariate Clayton

survival copula-based SUR Tobit right-censored model parameters. Here, we considered

some circumstances that might arise in the development of trivariate copula-based SUR

6The generated/augmented marginal uniform data uaij should carry (ω) as a superscript
(
i.e. u

a(ω)
ij

)
,

but we omit it so as not to clutter the notation.
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Tobit right-censored models, involving the sample size, the censoring percentage (i.e. the

percentage of d1, d2 and d3 observations in margins 1, 2 and 3, respectively) in the depen-

dent variables/margins and their interdependence degree. We also considered/assumed

different distributions for the marginal error terms.

3.2.2.1 General specifications

In the simulation study, we applied the Clayton survival copula to model the nonlinear

dependence structure of the trivariate SUR Tobit right-censored model. We set the true

value for the association parameter θ at 0.67, 2 and 6, corresponding to a Kendall’s

tau association measure 7 of 0.25, 0.50 and 0.75, respectively. See Appendix A for the

multidimensional Clayton survival copula data generation.

For i = 1, ..., n, the covariates for margin 1, xi1 = (xi1,0, xi1,1)
′
, were xi1,0 = 1 and xi1,1

was randomly simulated from N (2, 12). The covariates for margin 2, xi2 = (xi2,0, xi2,1)
′
,

were generated as xi2,0 = 1 and xi2,1 was randomly simulated from N (1, 22). Finally,

the covariates for margin 3, xi3 = (xi3,0, xi3,1)
′
, were generated as xi3,0 = 1 and xi3,1 was

randomly simulated from Uniform (1, 3). The model errors εi1, εi2 and εi3 were assumed

to follow the following distributions:

• Normal: i.e. εi1 ∼ N (0, σ2
1), εi2 ∼ N (0, σ2

2) and εi3 ∼ N (0, σ2
3), where σ1 = 1,

σ2 = 2 and σ3 = 1 are the standard deviations (scale parameters) for margins 1,

2 and 3, respectively. To ensure a percentage of censoring for all three margins of

approximately 5%, 15%, 25%, 35% and 50%, we set d1 = d2 = d3 = 5 and assumed

the following true values for β1 = (β1,0, β1,1)
′
, β2 = (β2,0, β2,1)

′
and β3 = (β3,0, β3,1)

′
:

� β1 = (0.7, 1), β2 = (−0.6, 1) and β3 = (−1.5, 2);

� β1 = (1.5, 1), β2 = (1.1, 1) and β3 = (−0.7, 2);

� β1 = (2, 1), β2 = (2.1, 1) and β3 = (−0.1, 2);

� β1 = (2.5, 1), β2 = (3, 1) and β3 = (0.4, 2);

� β1 = (3, 1), β2 = (4, 1) and β3 = (1, 2);

respectively. For j = 1, 2, 3, the latent dependent variable of margin j, y∗ij, was

randomly simulated from N
(
x
′
ijβj, σ

2
j

)
; thus, the observed dependent variable of

margin j, yij, was obtained from min
{
y∗ij, dj

}
.

7The Kendall’s tau for the tridimensional Clayton survival copula is τ3 = θ / (θ + 2), which is the
same for the tridimensional Clayton copula.
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• Power-normal: i.e. εi1 ∼ PN (0, σ1, α1), εi2 ∼ PN (0, σ2, α2) and εi3 ∼ PN (0, σ3, α3),

where σ1 = 1, σ2 = 2 and σ3 = 1 are the scale parameters for margins 1, 2 and 3,

respectively; and α1 = α2 = α3 = 0.5 are the shape parameters for margins 1, 2 and

3. To ensure a percentage of censoring for all three margins of approximately 5%,

15%, 25%, 35% and 50%, we set d1 = d2 = d3 = 5 and assumed the following true

values for β1 = (β1,0, β1,1)
′
, β2 = (β2,0, β2,1)

′
and β3 = (β3,0, β3,1)

′
:

� β1 = (1.1, 1), β2 = (0.3, 1) and β3 = (−1, 2);

� β1 = (2.1, 1), β2 = (2.1, 1) and β3 = (−0.1, 2);

� β1 = (2.6, 1), β2 = (3.2, 1) and β3 = (0.5, 2);

� β1 = (3.1, 1), β2 = (4.2, 1) and β3 = (1, 2);

� β1 = (3.7, 1), β2 = (5.4, 1) and β3 = (1.7, 2);

respectively. For j = 1, 2, 3, the latent dependent variable of margin j, y∗ij, was ran-

domly simulated from PN
(
x
′
ijβj, σj, αj

)
; therefore, the observed dependent vari-

able of margin j, yij, was obtained from min
{
y∗ij, dj

}
.

• Logistic: i.e. εi1 ∼ L (0, s1), εi2 ∼ L (0, s2) and εi3 ∼ L (0, s3), where s1 = 1, s2 = 2

and s3 = 1 are the scale parameters for margins 1, 2 and 3, respectively. To ensure

a percentage of censoring for all three margins of approximately 5%, 15%, 25%,

35% and 50%, we set d1 = d2 = d3 = 5 and assumed the following true values for

β1 = (β1,0, β1,1)
′
, β2 = (β2,0, β2,1)

′
and β3 = (β3,0, β3,1)

′
:

� β1 = (−0.3, 1), β2 = (−2.5, 1) and β3 = (−2.5, 2);

� β1 = (0.9, 1), β2 = (−0.2, 1) and β3 = (−1.2, 2);

� β1 = (1.7, 1), β2 = (1.5, 1) and β3 = (−0.4, 2);

� β1 = (2.3, 1), β2 = (2.5, 1) and β3 = (0.2, 2);

� β1 = (3, 1), β2 = (4, 1) and β3 = (1, 2);

respectively. For j = 1, 2, 3, the latent dependent variable of margin j, y∗ij, was

randomly simulated from L
(
x
′
ijβj, sj

)
; thus, the observed dependent variable of

margin j, yij, was obtained from min
{
y∗ij, dj

}
.
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For each error distribution assumption (normal, power-normal and logistic), censoring

percentage in the margins (5%, 15%, 25%, 35% and 50%) and degree of dependence among

them (low: θ = 0.67, moderate: θ = 2 and high: θ = 6), we generated 100 datasets of sizes

n = 200, 800 and 2000. Then, for each dataset (original sample), we obtained 500 boot-

strap samples through a parametric resampling plan (parametric bootstrap approach),

i.e. we fitted a trivariate Clayton survival copula-based SUR Tobit right-censored model

with the corresponding error distributions to each dataset using the (extended) MIFM

approach, and then generated a set of 500 new datasets (the same size as the original

dataset/sample) from the estimated parametric model. The computing language was

written in R statistical programming environment (R Core Team, 2014) and ran on a

virtual machine of the Cloud-USP at ICMC, with Intel Xeon processor E5500 series, 8

core (virtual CPUs), 32 GB RAM.

We assessed the performance of the proposed models and methods through the cover-

age probabilities of the nominally 90% standard normal, percentile and basic bootstrap

confidence intervals, the Bias and the Mean Squared Error (MSE), in which the Bias and

the MSE of each parameter ηh, h = 1, ..., k, are given by Bias = M−1
∑M

r=1 (η̂rh − ηh) and

MSE = M−1
∑M

r=1 (η̂rh − ηh)
2, respectively, where M = 100 is the number of replications

(original datasets/samples) and η̂rh is the estimated value of ηh at the rth replication.

3.2.2.2 Simulation results

In this subsubsection, we present the main results obtained from the simulation study

performed with samples (datasets) of different sizes, percentages of censoring in the mar-

gins and degrees of dependence among them, regarding the trivariate Clayton survival

copula-based SUR Tobit right-censored model parameters estimated using the (extended)

MIFM approach. Since both the (extended) MIFM and IFM methods provide the same

marginal parameter estimates (the first stage of the proposed method is similar to the

first stage of the usual one, as seen in Section 3.2.1.1), we focus here on the Clayton

survival copula parameter estimate. For some asymptotic results (such as asymptotic

normality) associated with the IFM method, see, e.g., Joe & Xu (1996). We also show

the results related to the estimated coverage probabilities of the 90% confidence inter-

vals for θ, obtained through bootstrap methods (standard normal, percentile and basic

intervals).

Figures 3.10, 3.11 and 3.12 show the Bias and MSE of the observed MIFM estimates
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of θ for normal, power-normal and logistic marginal errors, respectively. From these

figures, we observe that, regardless of the error distribution assumption, the percentage of

censoring in the margins and their interdependence degree, the Bias and MSE of the MIFM

estimator of θ are relatively low and tend to zero for large n, i.e. the MIFM estimator is

asymptotically unbiased and consistent for the Clayton survival copula parameter.

Figures 3.13, 3.14 and 3.15 show the estimated coverage probabilities of the bootstrap

confidence intervals for θ for normal, power-normal and logistic marginal errors, respec-

tively. Note that the estimated coverage probabilities are sufficiently high and close to the

nominal value of 0.90, except for the percentile intervals in general, and for a few cases

in which n is mainly small to moderate (n = 200 and 800) and the degree of dependence

among the margins is high (θ = 6) (see Figures 3.13(c), 3.14(c) and 3.15(c)).

Finally, Figures 3.16, 3.17 and 3.18 compare, via boxplots, the observed MIFM esti-

mates of θ with its estimates obtained through the IFM method for normal, power-normal

and logistic marginal errors, respectively, and for n = 2000. It can be seen from Figure

3.16 that there is a certain equivalence between the two estimation methods (with a slight

advantage for the (extended) MIFM method over the IFM method, in terms of bias) when

the degree of dependence among the margins is low, which is θ = 0.67 (Figure 3.16(a));

however, the IFM method underestimates θ for dependence at a higher level, which is

θ = 2 and θ = 6 (Figures 3.16(b) and 3.16(c), respectively). From Figure 3.17, we observe

that the IFM method overestimates θ for dependence at a lower level, that is θ = 0.67

(Figure 3.17(a)), and underestimates θ for dependence at a higher level, that is θ = 2

and θ = 6 (Figures 3.17(b) and 3.17(c), respectively). Similar behavior is observed for

the plots in Figure 3.18. Note also from Figures 3.16, 3.17 and 3.18 that the difference

(distance) between the distributions of the IFM and MIFM estimates often increases with

the percentage of censoring in the margins.

3.2.3 Application

In this subsection, we illustrate the applicability of our proposed trivariate models and

methods for the customer churn data described in Section 1.1.2.

In this application, the relationship among the reported log(time) to churn Product

A, log(time) to churn Product B and log(time) to churn Product C (right-censored at

d1 = d2 = d3 = 2.3, or approximately 10 years) of 927 customers of a Brazilian commercial
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Figure 3.10: Bias and MSE of the MIFM estimate of the Clayton survival copula param-
eter versus sample size, percentage of censoring in the margins and degree of dependence
among them (normal marginal errors).
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Figure 3.11: Bias and MSE of the MIFM estimate of the Clayton survival copula param-
eter versus sample size, percentage of censoring in the margins and degree of dependence
among them (power-normal marginal errors).
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Figure 3.12: Bias and MSE of the MIFM estimate of the Clayton survival copula param-
eter versus sample size, percentage of censoring in the margins and degree of dependence
among them (logistic marginal errors).
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Figure 3.13: Coverage probabilities (CPs) of the 90% standard normal (panels on the
left), percentile (middle panels) and basic (panels on the right) confidence intervals for
the Clayton survival copula parameter versus sample size, percentage of censoring in the
margins and degree of dependence among them (normal marginal errors). The horizontal
line at CP = 0.90 and the two horizontal lines at CP = 0.85 and 0.95 correspond, respec-
tively, to the lower and upper bounds of the 90% confidence interval of the CP = 0.90.
Thus, if a confidence interval has exact coverage of 0.90, roughly 90% of the observed
coverages should be between these lines.
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Figure 3.14: Coverage probabilities (CPs) of the 90% standard normal (panels on the
left), percentile (middle panels) and basic (panels on the right) confidence intervals for
the Clayton survival copula parameter versus sample size, percentage of censoring in the
margins and degree of dependence among them (power-normal marginal errors). The
horizontal line at CP = 0.90 and the two horizontal lines at CP = 0.85 and 0.95 corre-
spond, respectively, to the lower and upper bounds of the 90% confidence interval of the
CP = 0.90. Thus, if a confidence interval has exact coverage of 0.90, roughly 90% of the
observed coverages should be between these lines.



109

● ●

●

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

sample size

co
ve

ra
ge

 p
ro

ba
bi

lity

200 800 2000

● 5%

15%

25%

35%

50%

● ●

●

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

sample size

co
ve

ra
ge

 p
ro

ba
bi

lity
200 800 2000

● 5%

15%

25%

35%

50%

●

●

●

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

sample size

co
ve

ra
ge

 p
ro

ba
bi

lity

200 800 2000

● 5%

15%

25%

35%

50%

(a) θ = 0.67

●

●

●

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

sample size

co
ve

ra
ge

 p
ro

ba
bi

lit
y

200 800 2000

● 5%
15%
25%
35%
50%

●

●

●

0.
6

0.
7

0.
8

0.
9

1.
0

sample size

co
ve

ra
ge

 p
ro

ba
bi

lit
y

200 800 2000

● 5%
15%
25%
35%
50%

●

● ●

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

sample size

co
ve

ra
ge

 p
ro

ba
bi

lit
y

200 800 2000

● 5%
15%
25%
35%
50%

(b) θ = 2

●

●

●

0.
6

0.
7

0.
8

0.
9

1.
0

sample size

co
ve

ra
ge

 p
ro

ba
bi

lity

200 800 2000

● 5%

15%

25%

35%

50%

●

●

●

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

sample size

co
ve

ra
ge

 p
ro

ba
bi

lity

200 800 2000

● 5%

15%

25%

35%

50%

●

●

●

0.
6

0.
7

0.
8

0.
9

1.
0

sample size

co
ve

ra
ge

 p
ro

ba
bi

lity

200 800 2000

● 5%

15%

25%

35%

50%

(c) θ = 6

Figure 3.15: Coverage probabilities (CPs) of the 90% standard normal (panels on the
left), percentile (middle panels) and basic (panels on the right) confidence intervals for
the Clayton survival copula parameter versus sample size, percentage of censoring in the
margins and degree of dependence among them (logistic marginal errors). The horizontal
line at CP = 0.90 and the two horizontal lines at CP = 0.85 and 0.95 correspond, respec-
tively, to the lower and upper bounds of the 90% confidence interval of the CP = 0.90.
Thus, if a confidence interval has exact coverage of 0.90, roughly 90% of the observed
coverages should be between these lines.
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Figure 3.16: Comparison between the IFM and MIFM estimates of the Clayton survival
copula parameter, for n = 2000 (normal marginal errors). The averages of the parameter
estimates are shown with a star symbol. The dotted horizontal line represents the true
value of the Clayton survival copula parameter.
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Figure 3.17: Comparison between the IFM and MIFM estimates of the Clayton survival
copula parameter, for n = 2000 (power-normal marginal errors). The averages of the
parameter estimates are shown with a star symbol. The dotted horizontal line represents
the true value of the Clayton survival copula parameter.
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Figure 3.18: Comparison between the IFM and MIFM estimates of the Clayton survival
copula parameter, for n = 2000 (logistic marginal errors). The averages of the parameter
estimates are shown with a star symbol. The dotted horizontal line represents the true
value of the Clayton survival copula parameter.
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bank is modeled by the trivariate SUR Tobit right-censored model with normal, power-

normal and logistic marginal errors through the Clayton survival copula (see Sections

1.1.2 and 1.3 for the reasons for this model choice). We include age and income as the

covariates and use them for all margins in all three candidate models.

Tables 3.5, 3.6 and 3.7 show the MIFM estimates for the parameters of the trivari-

ate Clayton survival copula-based SUR Tobit right-censored model with normal, power-

normal and logistic marginal errors, respectively, as well as the 90% confidence intervals

obtained through the standard normal, percentile and basic bootstrap methods. Tables

3.5, 3.6 and 3.7 also present the log-likelihood, AIC and BIC criterion values for the

three fitted models. Note that the trivariate Clayton survival copula-based SUR Tobit

right-censored model with normal marginal errors has the smallest AIC and BIC crite-

rion values and therefore provides the best fit to the customer churn data. From the

Lilliefors (Kolmogorov-Smirnov) normality tests of augmented marginal residuals 8, we

obtain p-values equal to 0.5991, 0.1831 and 0.9974 for Product A, Product B and Product

C models, respectively. Hence, the normality assumption for the marginal errors is valid.

The results reported in Table 3.5 reveal significant positive effects of age and income on log

of time to churn Products A, B and C. The MIFM estimate of the Clayton survival cop-

ula parameter
(
θ̂MIFM = 2.5514, obtained after 5 iterations

)
and its 90% bootstrap-based

confidence intervals reveal that the relationship among the log(time) to churn Product A,

log(time) to churn Product B and log(time) to churn Product C is positive (the estimated

Kendall’s tau is τ̂3 = θ̂MIFM/
(
θ̂MIFM + 2

)
= 0.5606) and significant at the 10% level (the

lower limits of the 90% bootstrap-based confidence intervals for θ are greater than and

far above zero), justifying joint estimation of the censored equations through the Clayton

survival copula to improve statistical efficiency. Moreover, the estimated trivariate tail

dependence coefficients for Clayton survival copula, λ̂
1|23
U = 0.8531 and λ̂

12|3
U = 0.6501,

obtained from (3 / 2)−1/θ̂MIFM and 3−1/θ̂MIFM , respectively (the trivariate upper tail de-

pendence coefficients for Clayton survival copula are equal to the trivariate lower tail

dependence coefficients for Clayton copula), show the positive dependence at the upper

tail of the joint distribution, i.e. for high times or log of times to churn Products A, B

and C.

8The augmented residuals are the differences between the augmented observed and predicted responses,
i.e. eaij = yaij − x

′

ijβ̂j,MIFM, for i = 1, ..., n and j = 1, 2, 3, where yaij = x
′

ijβ̂j,MIFM + σ̂j,MIFMΦ−1
(
uaij
)
,

with Φ−1 (.) being the inverse function of the N (0, 1) c.d.f.; or simply, eaij = σ̂j,MIFMΦ−1
(
uaij
)
.
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Table 3.5: Estimation results of trivariate Clayton survival copula-based SUR Tobit right-
censored model with normal marginal errors for the customer churn data.

90% Confidence Intervals
Product A Estimate Standard Normal Percentile Basic
Intercept 0.1775 [0.0130; 0.3420] [0.0129; 0.3253] [0.0296; 0.3420]
Age 0.0226 [0.0188; 0.0263] [0.0189; 0.0264] [0.0187; 0.0263]
Income 4× 10−5 [1× 10−5; 6× 10−5] [1× 10−5; 7× 10−5] [1× 10−5; 6× 10−5]
σ1 0.9928 [0.9507; 1.0349] [0.9466; 1.0322] [0.9534; 1.0390]

90% Confidence Intervals
Product B Estimate Standard Normal Percentile Basic
Intercept 0.2233 [0.0862; 0.3604] [0.0820; 0.3531] [0.0934; 0.3645]
Age 0.0238 [0.0206; 0.0270] [0.0206; 0.0272] [0.0204; 0.0270]
Income 8× 10−5 [5× 10−5; 1.1× 10−4] [5× 10−5; 1.1× 10−4] [5× 10−5; 1× 10−4]
σ2 0.9098 [0.8715; 0.9480] [0.8701; 0.9469] [0.8726; 0.9494]

90% Confidence Intervals
Product C Estimate Standard Normal Percentile Basic
Intercept 0.0707 [-0.0874; 0.2288] [-0.0937; 0.2164] [-0.0751; 0.2351]
Age 0.0248 [0.0212; 0.0283] [0.0214; 0.0281] [0.0214; 0.0281]
Income 7× 10−5 [5× 10−5; 1× 10−4] [5× 10−5; 1× 10−4] [4× 10−5; 1× 10−4]
σ3 0.9666 [0.9238; 1.0094] [0.9228; 1.0091] [0.9241; 1.0104]
θ 2.5514 [2.3320; 2.7708] [2.3611; 2.8119] [2.2908; 2.7416]
Log-likelihood -2627.9800
AIC 5281.9600
BIC 5344.7760

Table 3.6: Estimation results of trivariate Clayton survival copula-based SUR Tobit right-
censored model with power-normal marginal errors for the customer churn data.

90% Confidence Intervals
Product A Estimate Standard Normal Percentile Basic
Intercept 0.5195 [-0.2412; 1.2803] [-0.2642; 1.1544] [-0.1153; 1.3033]
Age 0.0229 [0.0190; 0.0267] [0.0190; 0.0266] [0.0191; 0.0268]
Income 4× 10−5 [1× 10−5; 6× 10−5] [1× 10−5; 7× 10−5] [1× 10−5; 6× 10−5]
σ1 0.8594 [0.5830; 1.1358] [0.6175; 1.1165] [0.6024; 1.1013]
α1 0.6481 [-0.1319; 1.4282] [0.2575; 1.4866] [-0.1904; 1.0387]

90% Confidence Intervals
Product B Estimate Standard Normal Percentile Basic
Intercept 0.2230 [-0.5447; 0.9907] [-0.5798; 0.8902] [-0.4442; 1.0258]
Age 0.0237 [0.0203; 0.0270] [0.0204; 0.0270] [0.0203; 0.0269]
Income 8× 10−5 [5× 10−5; 1.1× 10−4] [5× 10−5; 1.1× 10−4] [5× 10−5; 1× 10−4]
σ2 0.9113 [0.6534; 1.1692] [0.6772; 1.1846] [0.6380; 1.1454]
α2 1.0060 [-0.8961; 2.9080] [0.4037; 2.3885] [-0.3766; 1.6082]

90% Confidence Intervals
Product C Estimate Standard Normal Percentile Basic
Intercept -0.3828 [-1.3423; 0.5767] [-1.3539; 0.4218] [-1.1875; 0.5883]
Age 0.0245 [0.0210; 0.0280] [0.0208; 0.0277] [0.0213; 0.0282]
Income 7× 10−5 [4× 10−5; 1× 10−4] [4× 10−5; 1× 10−4] [4× 10−5; 1× 10−4]
σ3 1.1259 [0.8260; 1.4258] [0.8648; 1.4313] [0.8204; 1.3870]
α3 1.6500 [-0.4990; 3.7991] [0.7104; 3.9180] [-0.6180; 2.5896]
θ 2.4520 [2.2312; 2.6729] [2.2560; 2.6937] [2.2104; 2.6481]
Log-likelihood -2636.6990
AIC 5305.3980
BIC 5382.7090
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Table 3.7: Estimation results of trivariate Clayton survival copula-based SUR Tobit right-
censored model with logistic marginal errors for the customer churn data.

90% Confidence Intervals
Product A Estimate Standard Normal Percentile Basic
Intercept 0.1566 [-0.0066; 0.3198] [0.0112; 0.3320] [-0.0188; 0.3020]
Age 0.0231 [0.0195; 0.0268] [0.0193; 0.0267] [0.0196; 0.0270]
Income 4× 10−5 [1× 10−5; 6× 10−5] [1× 10−5; 6× 10−5] [1× 10−5; 6× 10−5]
s1 0.5750 [0.5463; 0.6037] [0.5465; 0.6042] [0.5458; 0.6035]

90% Confidence Intervals
Product B Estimate Standard Normal Percentile Basic
Intercept 0.1592 [0.0125; 0.3058] [0.0164; 0.3018] [0.0165; 0.3019]
Age 0.0252 [0.0219; 0.0285] [0.0221; 0.0284] [0.0220; 0.0283]
Income 8× 10−5 [6× 10−5; 1.1× 10−4] [6× 10−5; 1.1× 10−4] [5× 10−5; 1.1× 10−4]
s2 0.5363 [0.5103; 0.5622] [0.5088; 0.5631] [0.5094; 0.5637]

90% Confidence Intervals
Product C Estimate Standard Normal Percentile Basic
Intercept 0.0830 [-0.0697; 0.2358] [-0.0632; 0.2337] [-0.0677; 0.2292]
Age 0.0242 [0.0208; 0.0276] [0.0205; 0.0275] [0.0209; 0.0279]
Income 8× 10−5 [5× 10−5; 1.1× 10−4] [5× 10−5; 1.1× 10−4] [5× 10−5; 1.1× 10−4]
s3 0.5668 [0.5398; 0.5939] [0.5400; 0.5954] [0.5382; 0.5937]
θ 2.3808 [2.1812; 2.5804] [2.2204; 2.6140] [2.1476; 2.5411]
Log-likelihood -2666.6660
AIC 5359.3320
BIC 5422.1470

For comparison purposes, we also fit the basic trivariate SUR Tobit right-censored

model (which is the trivariate SUR Tobit right-censored model whose dependence among

the marginal error terms εi1, εi2 and εi3, i = 1, ..., n, is modeled through the trivariate

normal distribution) using the MCECM algorithm of Huang (1999) adapted for right-

censored trivariate normal data. The estimation results (obtained after 4 iterations) are

presented in Table 3.8. The standard errors were derived from the bootstrap estimate of

the covariance matrix (bootstrap standard errors). Note that, with the exception of the

intercept term in the Product C model, all of the parameter estimates are significant at the

10% level. Moreover, the marginal parameter estimates obtained through the (adapted)

MCECM and (extended) MIFM methods are similar (see Tables 3.5 and 3.8). However,

the trivariate Clayton survival copula-based SUR Tobit right-censored model with normal

marginal errors overcomes the basic trivariate SUR Tobit right-censored model in both

AIC and BIC criterion. This indicates that the gain for introducing the Clayton survival

copula to model the nonlinear dependence structure of the trivariate SUR Tobit right-

censored model was substantial for this dataset.
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Table 3.8: Estimation results of basic trivariate SUR Tobit right-censored model for the
customer churn data.

Product A Estimate Standard Error
Intercept 0.2232 * 0.0875
Age 0.0210 * 0.0019
Income 4× 10−5 * 1× 10−5

σ1 0.9524 * 0.0216
Product B Estimate Standard Error
Intercept 0.2804 * 0.0804
Age 0.0224 * 0.0018
Income 6× 10−5 * 1× 10−5

σ2 0.8730 * 0.0192
Product C Estimate Standard Error
Intercept 0.0909 0.0925
Age 0.0247 * 0.0021
Income 6× 10−5 * 1× 10−5

σ3 0.9694 * 0.0237
σ12 † 0.6125 * 0.0302
σ13 ‡ 0.5936 * 0.0326
σ23 § 0.6126 * 0.0318
Log-likelihood -2916.1670
AIC 5862.3330
BIC 5934.8120
* Denotes significant at the 10% level.
† Denotes the covariance between Products A and B.
‡ Denotes the covariance between Products A and C.
§ Denotes the covariance between Products B and C.

3.3 Final remarks

In this chapter, we extended the bivariate models and methods proposed in the previous

chapter to the trivariate case in a straightforward way. Again, our decision for two para-

metric families of copula (Clayton copula for the trivariate SUR Tobit model, and Clayton

survival copula for the trivariate SUR Tobit right-censored model), as well as non-normal

(power-normal and logistic) distribution assumption for the marginal error terms, were

mainly motivated by the real data at hand (U.S. salad dressing, tomato and lettuce con-

sumption data, and Brazilian commercial bank customer churn data). Furthermore, some

advantages arose from these copula choices, regarding the development of the (extended)

MIFM method for obtaining the estimates of the trivariate models’ parameters. Indeed,

the tridimensional generalizations of the Clayton and Clayton survival copulas that we

used here are the simplest ones and present the whole trivariate dependence structure

with only one single copula parameter θ. Moreover, these tridimensional copulas implic-

itly assume that the order of margins within the copula function is exchangeable. This

means that, e.g., C (ui1, ui2, ui3|θ) = C (ui3, ui1, ui2|θ), which is not plausible for many ap-
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plications (cf. McNeil et al., 2005, p. 224; Savu & Trede, 2010). A more flexible method is

provided by hierarchical Archimedean copula (HAC), discussed by Joe (1997), Embrechts,

Lindskog & McNeil (2003), Whelan (2004), Savu & Trede (2010) and Okhrin, Okhrin &

Schmid (2013). In contrast to the usual Archimedean copula, the HAC defines the whole

dependence structure in a recursive way, i.e. by aggregating one dimension step by step

starting from a low-dimensional copula.

In the simulation studies, we assessed the performance of our proposed trivariate

models and methods, obtaining satisfactory results (unbiased estimates of the copula

parameter, high and near the nominal value coverage probabilities of the standard normal

and basic bootstrap confidence intervals) regardless of the error distribution assumption,

the censoring percentage in the margins and their degree of interdependence.

Besides the basic bootstrap method, another alternative to the percentile method,

which in general yielded confidence intervals for the copula parameter with low coverage

probabilities, could be the Bias-Corrected and Accelerated (BCa) method by Efron (1987),

which adjusts for both bias and skewness in the bootstrap distribution. However, this

bootstrap method is more computationally expensive (it requires much more computer

memory and time) than the ones considered in this chapter.

Finally, we pointed out the applicability of our proposed trivariate models and methods

for real datasets, where we found that the gain for introducing the copulas to model the

nonlinear dependence structure of the trivariate SUR Tobit models was substantial for

these datasets.

In the next chapter, we will briefly present a generalization of the models and methods

proposed in this thesis for the multivariate case.



Chapter 4

Multivariate Copula-based SUR
Tobit Models

In this chapter, we present a straightforward generalization of the models and methods

proposed in the previous chapters for the multivariate case. We first present the mul-

tivariate Clayton copula-based SUR Tobit model, which is the SUR Tobit model with

m ≥ 2 left-censored (at zero point) dependent variables whose dependence among them is

modeled through the multidimensional Clayton copula. Then, we present the multivari-

ate Clayton survival copula-based SUR Tobit right-censored model, i.e. the SUR Tobit

model with m ≥ 2 right-censored (at point dj > 0, j = 1, 2, . . . ,m) dependent variables

whose dependence structure among them is modeled by the multidimensional Clayton

survival copula. Brief discussions concerning the model implementation through the pro-

posed (generalized) MIFM method, as well as the confidence intervals construction from

the bootstrap distribution of model parameters, are made for each proposed multivariate

model.

4.1 Multivariate Clayton copula-based SUR Tobit model

formulation

The SUR Tobit model with m ≥ 2 left-censored (at zero point) dependent variables, or

simply multivariate SUR Tobit model, can be expressed as

y∗ij = x
′

ijβj + σjεij,

yij =

y
∗
ij if y∗ij > 0,

0 otherwise,

118
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for i = 1, 2, ..., n and j = 1, 2, . . . ,m, where n is the number of observations, y∗ij is the

latent (i.e. unobserved) dependent variable of margin j, yij is the observed dependent

variable of margin j (which is defined to be equal to the latent dependent variable y∗ij

whenever y∗ij is above zero and zero otherwise), xij is the k× 1 vector of covariates, βj is

the k× 1 vector of regression coefficients, σj is the scale parameter of margin j, and εij is

the margin j’s error that follows some standard distribution.

Generally, the dependence among the error terms εi1, εi2, . . . , εim is modeled through a

multivariate distribution, especially the multivariate normal distribution (basic multivari-

ate SUR Tobit model). However, applying a multivariate distribution to the multivari-

ate SUR Tobit model is limited to the linear relationship among marginal distributions

through the correlation coefficients. Moreover, estimation methods for high-dimensional

SUR Tobit models are often computationally demanding and difficult to implement. To

overcome these restrictions, we can use a copula function to model the nonlinear depen-

dence structure in the multivariate SUR Tobit model.

Thus, for the censored outcomes yi1, yi2, . . . , yim, the multivariate copula-based SUR

Tobit distribution is given by

F (yi1, yi2, . . . , yim) = C (ui1, ui2, . . . , uim|θ) ,

where uij is the c.d.f. of yij, i.e. uij = Fj (yij|xij,υj), with υj =
(
βj, σj

)
being the

margin j’s parameter vector, for j = 1, 2 . . . ,m; and θ is the copula parameter (or copula

parameter vector), which is assumed to be scalar.

Suppose that C is the multidimensional Clayton copula, which takes the form

C (ui1, ui2, . . . , uim|θ) =

(
m∑
j=1

u−θij −m+ 1

)− 1
θ

(4.1)

(Cherubini et al., 2004, p. 150), with θ ∈ (0,∞). The dependence among the margins

increases as the value of θ increases, with θ → 0+ implying independence and θ → ∞

implying perfect positive dependence. This multidimensional Archimedean copula shows

lower tail dependence and is characterized by zero upper tail dependence (De Luca &

Rivieccio, 2012; Di Bernardino & Rullière, 2014).

4.1.1 Inference

In this subsection, we briefly discuss inference (point and interval estimation) for the

parameters of the multivariate Clayton copula-based SUR Tobit model.
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4.1.1.1 Estimation through the (generalized) MIFM method

Following Trivedi & Zimmer (2005) and Anastasopoulos et al. (2012), we can write the

log-likelihood function for the multivariate Clayton copula-based SUR Tobit model in the

following form

` (η) =
n∑
i=1

log c (F1 (yi1|xi1,υ1) , F2 (yi2|xi2,υ2) , . . . , Fm (yim|xim,υm) |θ)+

+
n∑
i=1

m∑
j=1

log fj (yij|xij,υj),
(4.2)

where η = (υ1,υ2, . . . ,υm, θ) is the vector of model parameters, fj (yij|xij,υj) is the

p.d.f. of yij, and c (ui1, ui2, . . . , uim|θ), with uij = Fj (yij|xij,υj), is the p.d.f. of the

Clayton copula, which is calculated from (4.1) as

c (ui1, ui2, . . . , uim|θ) =
∂mC (ui1, ui2, . . . , uim|θ)

∂ui1∂ui2 . . . ∂uim
=

= θm
Γ
(

1
θ

+m
)

Γ
(

1
θ

) (
m∏
j=1

u−θ−1
ij

)(
m∑
j=1

u−θij −m+ 1

)− 1
θ
−m (4.3)

(Cherubini et al., 2004, p. 225), where Γ (.) is the gamma function.

For model estimation, the use of copula methods, as well as the log-likelihood function

form given by (4.2), enables the use of the (classical) two-stage ML/IFM method by Joe

& Xu (1996), which estimates the marginal parameters υj at a first step through

υ̂j,IFM = arg max
υj

n∑
i=1

log fj (yij|xij,υj) , (4.4)

for j = 1, 2, . . . ,m, and then estimates the association parameter θ given υ̂j,IFM by

θ̂IFM = arg max
θ

n∑
i=1

log c
(
F1 (yi1|xi1, υ̂1,IFM) , F2 (yi2|xi2, υ̂2,IFM) , . . . , Fm (yim|xim, υ̂m,IFM) |θ

)
.

(4.5)

However, as seen in Sections 2.1.2.2 and 3.1.2.2, the above-described IFM method pro-

vides a biased estimate for the parameter θ, since there is a violation of Sklar’s theorem

(Sklar, 1959) in the cases with the presence of censored observations in the margins (semi-

continuous/censored margins).

Thus, in order to facilitate the implementation of copula models with semi-continuous

margins, the semi-continuous marginal distributions could be augmented to achieve conti-

nuity (and thus satisfy the Sklar’s theorem!). More specifically, we can use a (frequentist)
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data augmentation technique to simulate the latent (i.e. unobserved) dependent vari-

ables in the censored margins (Wichitaksorn et al., 2012). Then, we replace yij by the

augmented data ya
ij, or equivalently and more simply, we replace uij by the augmented

uniform data ua
ij at the second stage of the IFM method and proceed with the copula

parameter estimation as usual for the continuous margin cases. This process (uniform

data augmentation and copula parameter estimation) is then repeated until convergence

occurs.

In the remaining part of this subsubsection, we discuss the proposed estimation method

(a generalization of the MIFM method proposed in Sections 2.1.1.1 and 3.1.1.1) when using

the Clayton copula to model the nonlinear dependence structure of the multivariate SUR

Tobit model. However, the proposed approach can be extended to other copula functions

by applying different sampling algorithms.

Let margin j’s error εij have a standard distribution Hj (.) and consider the upper

bounds given by bij = Hj

(
−x′ijβ̂j,MIFM / σ̂j,MIFM

)
, for j = 1, 2, . . . ,m. The implemen-

tation of the multivariate Clayton copula-based SUR Tobit model through the proposed

(generalized) MIFM method can be briefly described as follows.

Stage 1. Estimate the marginal parameters using (4.4). Set υ̂j,MIFM = υ̂j,IFM, i.e.(
β̂j,MIFM, σ̂j,MIFM

)
=
(
β̂j,IFM, σ̂j,IFM

)
, for j = 1, 2, . . . ,m.

Stage 2. Estimate the copula parameter using, e.g., (4.5). Set θ̂
(1)
MIFM = θ̂IFM and then

consider the algorithm below.

For ω = 1, 2, ...,

For i = 1, 2, ..., n,

If yi1 = yi2 = · · · = yim = 0, then draw (ua
i1, u

a
i2, . . . , u

a
im) from C

(
ua
i1, u

a
i2, . . . , u

a
im|θ̂

(ω)
MIFM

)
truncated to the region (0, bi1)× (0, bi2)× · · · × (0, bim). This can be performed relatively

easily using the truncation dependence invariance property of the (multidimensional)

Clayton copula (Sungur, 2002).

If yi1 = · · · = yi,s−1 = yi,s+1 = · · · = yim = 0 and yis > 0, then draw
(
ua
i1, . . . ,

ua
i,s−1, ua

i,s+1, . . . , ua
im

)
from C

(
ua
i1, . . . , u

a
i,s−1, u

a
i,s+1, . . . , u

a
im|uis, θ̂

(ω)
MIFM

)
truncated to the

region (0, bi1)×· · ·× (0, bi,s−1)× (0, bi,s+1)×· · ·× (0, bim). This can be performed through
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iterative conditioning (conditional sampling) by successive application of the method by

Devroye (1986, p. 38-39).
...

If yis = 0 and yi1 > 0, . . . , yi,s−1 > 0, yi,s+1 > 0, . . . , yim > 0, then draw ua
is from

C
(
ua
is|ui1, . . . , ui,s−1, ui,s+1, . . . , uim, θ̂

(ω)
MIFM

)
truncated to the interval (0, bis). This can be

done by applying the method by Devroye (1986, p. 38-39).

If yi1 > 0, yi2 > 0, . . . , yim > 0, then set ua
ij = uij = Hj

((
yij − x

′
ijβ̂j,MIFM

)
/ σ̂j,MIFM

)
,

for j = 1, 2, . . . ,m.

Given the generated/augmented marginal uniform data ua
ij, we estimate the association

parameter θ by

θ̂
(ω+1)
MIFM = arg max

θ

n∑
i=1

log c (ua
i1, u

a
i2, . . . , u

a
im|θ) .

The algorithm stops if a termination criterion is fulfilled, e.g. if |θ̂(ω+1)
MIFM − θ̂

(ω)
MIFM| < ξ,

where ξ is the tolerance parameter.

4.1.1.2 Interval estimation

We propose the use of bootstrap methods for computing confidence intervals for the

parameters of the multivariate Clayton copula-based SUR Tobit model. It makes the

analytic derivatives no longer required to compute the asymptotic covariance matrix as-

sociated with the vector of parameter estimates.

Our proposed bootstrap approach is described as follows. Let ηh, h = 1, ..., k, be

any component of the parameter vector η of the multivariate Clayton copula-based SUR

Tobit model (see Section 4.1.1.1). By using a parametric resampling plan, we obtain

the bootstrap estimates η̂∗h1, η̂
∗
h2, ..., η̂

∗
hB of ηh through the (generalized) MIFM method.

Hinkley (1988) suggests that the minimum value of the number of bootstrap samples, B,

will depend on the parameter being estimated, but that it will often be 100 or more. Then,

we can derive confidence intervals from the bootstrap distribution through the following

two methods, for instance.

• Basic bootstrap (Davison & Hinkley, 1997, p. 194). The 100 (1− 2α) % basic

confidence interval is defined by[
2η̂h − η̂∗(1−α)

h , 2η̂h − η̂∗(α)
h

]
,
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where η̂
∗(α)
h and η̂

∗(1−α)
h are, respectively, the 100 (α)th and 100 (1− α)th percentiles

of the bootstrap distribution of η̂∗h, and η̂h is the original estimate (i.e. from the

original data) of ηh, obtained through the proposed (generalized) MIFM method.

If there is a parameter constraint (such as ηh > 0), then the 100 (1− 2α) % basic

confidence interval may include invalid parameter values.

• Standard normal interval (Efron & Tibshirani, 1993, p. 154). Since most statis-

tics are asymptotically normally distributed, in large samples we can use the stan-

dard error estimate, ŝeh, as well as the normal distribution, to yield a 100 (1− 2α) %

confidence interval for ηh based on the original estimate η̂h:[
η̂h − z(1−α)ŝeh, η̂h − z(α)ŝeh

]
,

where z(α) represents the 100 (α)th percentile point of a standard normal distribu-

tion, and ŝeh is the hth entry on the diagonal of the bootstrap-based covariance

matrix estimate of the parameter vector estimate η̂, which is given by

Σ̂boot =
1

B − 1

B∑
b=1

(
η̂∗b − η̂

∗
)(
η̂∗b − η̂

∗
)′
,

where η̂∗b , b = 1, ..., B, is the bootstrap estimate of η and

η̂
∗

=

(
1

B

B∑
b=1

η̂∗1b,
1

B

B∑
b=1

η̂∗2b, . . . ,
1

B

B∑
b=1

η̂∗kb

)
.

Among other bootstrap methods that could be applied to build confidence intervals for

the multivariate Clayton copula-based SUR Tobit model parameters, we can cite the Bias-

Corrected and Accelerated (BCa) method by Efron (1987) and the percentile method by

Efron & Tibshirani (1993, p. 171). However, we do not encourage the use of the percentile

method in the high-dimensional setting since it usually yields confidence intervals for the

copula association parameter whose coverage probabilities are lower than the nominal

level (as seen in Section 3.1.2.2). The use of the BCa method should also be avoided due

to its computational cost (it requires much more computer memory and time).
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4.2 Multivariate Clayton survival copula-based SUR

Tobit right-censored model formulation

The SUR Tobit model with m ≥ 2 right-censored dependent variables, or simply multi-

variate SUR Tobit right-censored model, can be expressed as

y∗ij = x
′

ijβj + σjεij,

yij =

y
∗
ij if y∗ij < dj,

dj otherwise,

for i = 1, ..., n and j = 1, 2, . . . ,m, where n is the number of observations, dj is the

censoring point/threshold of margin j (which we assume to be known and constant), y∗ij is

the latent (i.e. unobserved) dependent variable of margin j, yij is the observed dependent

variable of margin j (which is defined to be equal to the latent dependent variable y∗ij

whenever y∗ij is below dj and dj otherwise), xij is the k× 1 vector of covariates, βj is the

k × 1 vector of regression coefficients, σj is the scale parameter of margin j and εij is the

margin j’s error that follows some standard distribution.

Generally, the dependence among the error terms εi1, εi2, . . . , εim is modeled through a

multivariate distribution, especially the multivariate normal distribution (basic multivari-

ate SUR Tobit right-censored model). Nevertheless, applying a multivariate distribution

to the multivariate SUR Tobit right-censored model is limited to the linear relationship

among marginal distributions through the correlation coefficients. Furthermore, estima-

tion methods for high-dimensional SUR Tobit right-censored models are often computa-

tionally demanding and difficult to implement. To overcome these restrictions, we can

apply a copula function to model the nonlinear dependence structure in the multivariate

SUR Tobit right-censored model.

Therefore, for the censored outcomes yi1, yi2, . . . , yim, the multivariate copula-based

SUR Tobit right-censored distribution is given by

F (yi1, yi2, . . . , yim) = C (ui1, ui2, . . . , uim|θ) ,

where uij is the c.d.f. of yij, i.e. uij = Fj (yij|xij,υj), with υj =
(
βj, σj

)
being the

margin j’s parameter vector, for j = 1, 2 . . . ,m, and θ is the copula parameter (or copula

parameter vector), which is assumed to be scalar.
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Suppose that C is the multidimensional Clayton survival copula with a single param-

eter θ > 0. It takes the form of

C (ui1, ui2, . . . , uim|θ) = 1−
m∑
j=1

(1− uij) +
∑

S⊂{1,...,m},|S|≥2

(−1)|S|C|S| (1− uil, l ∈ S|θ)

(4.6)

(Joe, 2014, p. 28), where |S| is the cardinality of S and C|S| denotes the |S|-dimensional

Clayton copula which is given by (4.1). The dependence among the margins increases as

the value of θ increases, with θ → 0+ implying independence and θ →∞ implying perfect

positive dependence. This multidimensional copula shows upper tail dependence and is

characterized by zero lower tail dependence.

4.2.1 Inference

In this subsection, we briefly discuss inference (point and interval estimation) for the

parameters of the multivariate Clayton survival copula-based SUR Tobit right-censored

model.

4.2.1.1 Estimation through the (generalized) MIFM method

Following Trivedi & Zimmer (2005) and Anastasopoulos et al. (2012), we can write the log-

likelihood function for the multivariate Clayton survival copula-based SUR Tobit right-

censored model in the form

` (η) =
n∑
i=1

log c (F1 (yi1|xi1,υ1) , F2 (yi2|xi2,υ2) , . . . , Fm (yim|xim,υm) |θ)+

+
n∑
i=1

m∑
j=1

log fj (yij|xij,υj),
(4.7)

where η = (υ1,υ2, . . . ,υm, θ) is the vector of model parameters, fj (yij|xij,υj) is the

p.d.f. of yij, and c (ui1, ui2, . . . , uim|θ), with uij = Fj (yij|xij,υj), is the p.d.f. of the

Clayton survival copula calculated from (4.6) as

c (ui1, ui2, . . . , uim|θ) =
∂mC (ui1, ui2, . . . , uim|θ)

∂ui1∂ui2 . . . ∂uim
=

= θm
Γ
(

1
θ

+m
)

Γ
(

1
θ

) [
m∏
j=1

(1− uij)−θ−1

][
m∑
j=1

(1− uij)−θ −m+ 1

]− 1
θ
−m

,

which is similar to the p.d.f. of the Clayton copula (given by (4.3)).
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Using copula methods, as well as the log-likelihood function form given by (4.7),

enables the use of the (classical) two-stage ML/IFM method by Joe & Xu (1996), which

estimates the marginal parameters υj at a first step through

υ̂j,IFM = arg max
υj

n∑
i=1

log fj (yij|xij,υj) , (4.8)

for j = 1, 2, . . . ,m, and then estimates the association parameter θ given υ̂j,IFM by

θ̂IFM = arg max
θ

n∑
i=1

log c
(
F1 (yi1|xi1, υ̂1,IFM) , F2 (yi2|xi2, υ̂2,IFM) , . . . , Fm (yim|xim, υ̂m,IFM) |θ

)
.

(4.9)

Nevertheless, as seen in Sections 2.2.2.2 and 3.2.2.2, the IFM method provides a biased

estimate for the parameter θ in the presence of censored observations in the margins. This

occurs because there is a violation of Sklar’s theorem in this case.

In order to obtain an unbiased estimate for the association parameter θ, we can aug-

ment the semi-continuous/censored marginal distributions to achieve continuity (and thus

satisfy the Sklar’s theorem!). More specifically, we replace yij by the augmented data ya
ij,

or equivalently and more simply, we replace uij by the augmented uniform data ua
ij at

the second stage of the IFM method and proceed with the copula parameter estimation

as usual for the continuous margin cases. This process (uniform data augmentation and

copula parameter estimation) is then repeated until convergence is achieved.

In the remaining part of this subsubsection, we discuss the proposed estimation method

(a generalization of the MIFM method proposed in Sections 2.2.1.1 and 3.2.1.1) when

using the Clayton survival copula to model the nonlinear dependence structure of the

multivariate SUR Tobit right-censored model. Nevertheless, the proposed approach can

be extended to other copula functions by applying different sampling algorithms.

Let margin j’s error εij have a standard distribution Hj (.) and consider the lower

bounds given by aij = Hj

((
dj − x

′
ijβ̂j,MIFM

)
/ σ̂j,MIFM

)
, for j = 1, 2, . . . ,m. The im-

plementation of the multivariate Clayton survival copula-based SUR Tobit right-censored

model through the proposed (generalized) MIFM method can be briefly described as fol-

lows.

Stage 1. Estimate the marginal parameters using (4.8). Set υ̂j,MIFM = υ̂j,IFM, i.e.(
β̂j,MIFM, σ̂j,MIFM

)
=
(
β̂j,IFM, σ̂j,IFM

)
, for j = 1, 2, . . . ,m.
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Stage 2. Estimate the copula parameter using, e.g., (4.9). Set θ̂
(1)
MIFM = θ̂IFM and then

consider the algorithm below.

For ω = 1, 2, ...,

For i = 1, 2, ..., n,

If yi1 = d1, yi2 = d2, . . . , yim = dm, then draw (ua
i1, u

a
i2, . . . , u

a
im) from C

(
ua
i1, u

a
i2, . . . , u

a
im

|θ̂(ω)
MIFM

)
truncated to the region (ai1, 1)× (ai2, 1)× · · · × (aim, 1). This can be performed

relatively easily using the truncation dependence invariance property of the (multidimen-

sional) Clayton survival copula.

If yi1 = d1, . . . , yi,s−1 = ds−1, yi,s+1 = ds+1, . . . , yim = dm, and yis < ds, then draw(
ua
i1, . . . , u

a
i,s−1, u

a
i,s+1, . . . , , u

a
im

)
from C

(
ua
i1, . . . , u

a
i,s−1, u

a
i,s+1, . . . , u

a
im|uis, θ̂

(ω)
MIFM

)
truncated

to the region (ai1, 1)× · · · × (ai,s−1, 1)× (ai,s+1, 1)× · · · × (aim, 1). This can be performed

through iterative conditioning (conditional sampling) by successive application of the

method by Devroye (1986, p. 38-39).
...

If yis = ds and yi1 < d1, . . . , yi,s−1 < ds−1, yi,s+1 < ds+1, . . . , yim < dm, then draw ua
is

from C
(
ua
is|ui1, . . . , ui,s−1, ui,s+1, . . . , uim, θ̂

(ω)
MIFM

)
truncated to the interval (ais, 1). This

can be done by applying the method by Devroye (1986, p. 38-39).

If yi1 < d1, yi2 < d2, . . . , yim < dm, then set ua
ij = uij = Hj

((
yij − x

′
ijβ̂j,MIFM

)
/ σ̂j,MIFM

)
,

for j = 1, 2, . . . ,m.

Given the generated/augmented marginal uniform data ua
ij, we estimate the association

parameter θ by

θ̂
(ω+1)
MIFM = arg max

θ

n∑
i=1

log c (ua
i1, u

a
i2, . . . , u

a
im|θ) .

The algorithm terminates when it satisfies the stopping/convergence criterion: |θ̂(ω+1)
MIFM−

θ̂
(ω)
MIFM| < ξ, where ξ is the tolerance parameter.

4.2.1.2 Interval estimation

We can build confidence intervals for the parameters of the multivariate Clayton survival

copula-based SUR Tobit right-censored model using the same bootstrap approach (a para-

metric resampling plan, standard normal and basic bootstrap methods) as described in

Section 4.1.1.2.



128

4.3 Final remarks

In this chapter, we presented a straightforward generalization of the models and methods

proposed in the previous chapters for the multivariate setting.

Regarding model estimation, we only gave some general guidelines to implement the

multivariate copula-based SUR Tobit models (multivariate Clayton copula-based SUR

Tobit model and multivariate Clayton survival copula-based SUR Tobit right-censored

model) through the proposed (generalized) MIFM method.

The multidimensional generalizations of the Clayton and Clayton survival copulas

that we considered here are the simplest ones and they present the whole dependence

structure with only one single copula parameter θ, independent of the dimension of the

model. Consequently, the substructure of the dependence is hidden/invisible. Moreover,

they implicitly assume the exchangeability of the order of the marginal distributions

within the copula functions, which is very restrictive for many applications (cf. McNeil

et al., 2005, p. 224; Savu & Trede, 2010). In view of these limitations, we could employ

more flexible methods, like the hierarchical Archimedean copula (HAC), discussed by

Joe (1997), Embrechts et al. (2003), Whelan (2004), Savu & Trede (2010) and Okhrin

et al. (2013). In contrast to the usual Archimedean copula, the HAC defines the whole

dependence structure in a recursive way, i.e. by aggregating one dimension step by step

starting from a low-dimensional copula.



Chapter 5

Conclusions

In Section 5.1 of this last chapter, we summarize our main results. Moreover, since during

the course of our work we identified open problems and possible extensions of our results,

in Section 5.2 we suggest potential topics for further researches.

5.1 Concluding remarks

The starting point of this thesis was the bivariate SUR Tobit model. We extended the

analysis of the SUR Tobit model with two left-censored or right-censored dependent vari-

ables by modeling its nonlinear dependence structure through copulas and assuming non-

normal marginal error distributions. Our decision for two parametric families of copula

(Clayton copula for the bivariate SUR Tobit model, and Clayton survival copula for the

bivariate SUR Tobit right-censored model), as well as non-normal (power-normal and lo-

gistic) distribution assumption for the marginal error terms, were mainly motivated by

the real data at hand (U.S. consumption data and Brazilian commercial bank customer

churn data). The ability to capture/model the tail dependence, especially the lower (case

of the Clayton copula) or upper (case of the Clayton survival copula) tail where some

data are censored, is one of the attractive features of copulas.

Since some most commonly used classical procedures for bivariate copula-based model

implementation (the IFM method, proposed by Joe & Xu (1996)) and interval estimation

using resampling techniques (delete-one jackknife method - normal approach), are trou-

blesome in the cases where both margins are censored/semi-continuous (the IFM method

results in a biased estimate of the copula association parameter, and the jackknife method

overestimates the standard error of the copula association parameter estimate), our study

used a (frequentist) data augmentation technique to generate the unobserved/censored

129
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values (thus obtaining continuous margins) and proceeded with the bivariate copula-based

SUR Tobit model implementation through the proposed MIFM estimation method (which

is a modified version of the IFM method). The MIFM method, as well as the IFM method,

is more computationally attractive (feasible) than the full maximum likelihood approach,

since each maximization step has a small number of parameters, which reduces the compu-

tational difficulty. Moreover, the two-stage procedure is considerably less time consuming

than its one-stage counterpart. Here, some advantages arose from our copula choices, re-

garding the development of the MIFM method for obtaining the estimates of the bivariate

models’ parameters. First, the Clayton copula and its survival copula are known to be

preserved under truncation (truncation dependence invariance property), which enabled

simple simulation schemes in the cases where both dependent variables/margins were

censored (for copulas that do not have the truncation-invariance property, an iterative

simulation scheme could be used). Second, the existence of closed-form expressions for

the inverse of the conditional Clayton (see, e.g., Armstrong, 2003) and Clayton survival

(see Appendix A) copulas’ distributions enabled simple simulation schemes when just

a single dependent variable/margin was censored, by applying the method by Devroye

(1986, p. 38-39) (if the inverse conditional distribution of the copula used does not have

a closed-form expression, then numerical root-finding procedures are required). We also

proposed the use of bootstrap methods (standard normal and percentile) for obtaining

confidence intervals for the model parameters.

In the simulation studies, we assessed the performance of our proposed bivariate models

and methods, obtaining satisfactory results (unbiased estimates of the copula parameter,

high and near the nominal value coverage probabilities of the bootstrap-based confidence

intervals) regardless of the error distribution assumption, the censoring percentage in the

margins and their degree of interdependence.

We also pointed out the applicability of our proposed bivariate models and methods for

real data sets, where we found that the gain for introducing the copulas was substantial

for these datasets.

Although it is relatively rare to analyze the SUR Tobit with over two dimensions,

unless it is modeled in the longitudinal setting (see, e.g., Baranchuk & Chib (2008) for

an example of the longitudinal Tobit model), our proposed models and methods were

successfully extended/applied to high-dimensional SUR Tobit models.
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5.2 Further researches

The topics addressed in this work open some potential subjects for further researches.

Firstly, we considered only the same normally-, power-normally- or logistically-distributed

marginal errors. However, the flexibility in coupling different marginal distributions is an

important feature of copulas in general. It would allow us to apply not necessarily the

same, as well as many other distributions for the multivariate SUR Tobit models’ marginal

errors, e.g., scale mixtures of normal (SMN) distributions, as proposed in Garay (2014).

The Student-t, Pearson type VII, slash, contaminated normal, among others distribu-

tions, are contained in this class of symmetric distributions. We could also use other

copula families exhibiting left tail dependence, like the Gumbel survival copula, the cop-

ula of equation (4.2.12) of Nelsen’s book (see Nelsen, 2006, p. 116) and the Student-t

copula, in addition to the Clayton copula; as well as other copula families exhibiting

upper tail dependence, like the Gumbel and Student-t copulas, in addition to the Clay-

ton survival copula. Since these copulas do not have neither the truncation-invariance

property nor closed-form expression for the inverse conditional distribution, iterative sim-

ulation schemes and numerical root-finding procedures are required when using the MIFM

approach. These consist in the subjects to our further study.

The copulas used in this work were found to be acceptable by visual inspection of the

data. However, a formal way to evaluate the appropriateness or adequacy of a model is

using goodness-of-fit tests. Thus, the derivation of goodness-of-fit tests for copula models

in the framework of SUR models with limited dependent variables will be the subject

of our future research. Furthermore, the multidimensional generalizations of the copulas

that we considered in this work are the simplest ones, presenting the whole complex

multivariate dependence structure with only one single copula parameter θ, independent

of the dimension of the model. This is certainly not an acceptable assumption in many

practical applications. In order to consider/assume more flexible dependence structures,

we could use the hierarchical Archimedean copulas (HACs), discussed by Joe (1997),

Embrechts et al. (2003), Whelan (2004), Savu & Trede (2010) and Okhrin et al. (2013).

In contrast to the usual Archimedean copulas, the HACs define the whole dependence

structure in a recursive way, i.e. by aggregating one dimension step by step starting from

a low-dimensional copula. Therefore, we leave to further research the issue of extending

the MIFM approach to the multivariate setting for multiparameter copulas.
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We also propose in future work to perform misspecification studies in order to verify

if we can distinguish among the copula-based SUR Tobit models with arbitrary margins

in the light of the data based on some model selection criteria such as AIC and BIC.

Finally, we leave to future studies the derivation of other asymptotic properties (such

as asymptotic normality) for the copula parameter estimate obtained through the MIFM

method in our framework of SUR models with limited (partially observed or left- and/or

right-censored) dependent variables.



Appendix A

The multidimensional or m-dimensional (m ≥ 2) Clayton survival copula with parameter

θ > 0 takes the form

Cm (u1, u2, . . . , um|θ) = 1−
m∑
j=1

(1− uj) +
∑

S⊂{1,...,m},|S|≥2

(−1)|S|CClayton
|S| (1− ul, l ∈ S|θ)

(Joe, 2014, p. 28), where |S| is the cardinality of S and CClayton
|S| denotes the |S|-dimensional

Clayton copula.

The following algorithm generates a random variate (u1, u2, . . . , um) from the Clayton

survival copula.

• Simulate m independent random variables (v1, v2, . . . , vm) from Uniform (0, 1).

• Set u1 = v1.

• Set v2 = C2 (u2|u1, θ), hence

v2 =
∂C2 (u1, u2|θ)

∂u1

= 1−

[
(1− u1)−θ + (1− u2)−θ − 1

(1− u1)−θ

]− 1
θ
−1

.

Finally,

u2 = C−1
2 (v2|u1, θ) = 1−

{
1 + (1− u1)−θ

[
(1− v2)−

θ
θ+1 − 1

]}− 1
θ
.

• Set

v3 = C3 (u3|u1, u2, θ) =
∂2C3 (u1, u2, u3|θ) / ∂u1∂u2

∂2C2 (u1, u2|θ) / ∂u1∂u2

=

= 1−

[
(1− u1)−θ + (1− u2)−θ + (1− u3)−θ − 2

(1− u1)−θ + (1− u2)−θ − 1

]− 1
θ
−2

and solve it in u3.

• . . .
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• Solve in um the equation

vm = 1−

[
(1− u1)−θ + (1− u2)−θ + · · ·+ (1− um)−θ −m+ 1

(1− u1)−θ + (1− u2)−θ + · · ·+ (1− um−1)−θ −m+ 2
+

]− 1
θ
−m+1

,

so we have

um = 1−
{

1 +
[
(1− u1)−θ + (1− u2)−θ + · · ·+ (1− um−1)−θ −m+ 2

]
×

×
[
(1− vm)

θ
θ(1−m)−1 − 1

]}− 1
θ

.



Appendix B

In this appendix, we include the R codes that were used in the bivariate examples through-

out the thesis. To avoid repetition, only the R codes for the best fittings (according to

the AIC and BIC criterion) are presented.

B.1. U.S. salad dressing and lettuce consumption data

1 ######### Functions to fit the bivariate Clayton copula−based SUR Tobit model with logistic marginal errors
2 ######### to the salad dressing and lettuce consumption data using the MIFM method, as well as to build
3 ######### confidence intervals through the standard normal and percentile bootstrap methods
4

5 ##### Load required R packages
6

7 library(”AER”)
8 library(”stats”)
9 library(compiler)

10 enableJIT(3)
11

12 ##### Create/define the following functions in R
13

14 #### Step 1: defining the components of the loglikelihood − tobit margins and copula
15

16 dtobito=function(theta,y,x){
17 l=length(theta)
18 n=length(y)
19 I=rep(1,n)
20 for(i in 1:n){
21 if(y[i]==0) I[i]=0
22 }
23 f=dlogis(y, location=x%∗%theta[−l], scale=theta[l], log=FALSE)
24 F=plogis(0, location=x%∗%theta[−l], scale=theta[l], lower.tail=TRUE, log.p=FALSE)
25 (fˆI)∗(Fˆ(1−I))
26 }
27

28 loglik.tobito=function(theta,y,x){
29 sum(log(dtobito(theta,y,x)))
30 }
31

32 loglik.cop=function(a,u){
33 somalog=0
34 for(i in 1:nrow(u)){
35 somalog=somalog+(log(a+1)−(a+1)∗(log(u[i,1])+log(u[i,2]))−((2∗a+1)/a)∗log(u[i,1]ˆ(−a)+u[i,2]ˆ(−a)−1))
36 }
37 somalog
38 }
39

40 #### Step 2: calculating the probability integral transformed margins
41

42 ptobito=function(theta,y,x){
43 l=length(theta)
44 n=length(y)
45 acum=numeric(n)
46 for(i in 1:n){
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47 if(y[i]==0) acum[i]=plogis(0, location=x[i,]%∗%theta[−l], scale=theta[l], lower.tail=TRUE, log.p=FALSE)
48 else acum[i]=plogis(y[i], location=x[i,]%∗%theta[−l], scale=theta[l], lower.tail=TRUE, log.p=FALSE)
49 }
50 acum
51 }
52

53 probtrans=function(theta,y,x){
54 ptobito(theta,y,x)
55 }
56

57 #### Step 3: composing the loglikelihood function
58

59 myloglik=function(thetas,y,xmat){
60 l1=ncol(xmat[[1]])+1
61 l2=ncol(xmat[[2]])+1
62 theta1=thetas[1:l1]
63 theta2=thetas[(l1+1):(l1+l2)]
64 a=thetas[−(1:(l1+l2))]
65 u=cbind(probtrans(theta1,y[,1],xmat[[1]]), probtrans(theta2,y[,2],xmat[[2]]))
66 loglik=loglik.tobito(theta1,y[,1],xmat[[1]])+loglik.tobito(theta2,y[,2],xmat[[2]])+loglik.cop(a,u)
67 loglik
68 }
69

70 #### Step 4: defining a function to generate response variables from given parameter vector, design matrices and
71 #### copula structure
72

73 qtobito=function(theta,p,x){
74 l=length(theta)
75 n=length(p)
76 acum0=numeric(n)
77 quan=numeric(n)
78 for(i in 1:n){
79 acum0[i]=plogis(0, location=x[i,]%∗%theta[−l], scale=theta[l], lower.tail=TRUE, log.p=FALSE)
80 if(p[i]<=acum0[i]) quan[i]=0
81 else quan[i]=qlogis(p[i], location=x[i,]%∗%theta[−l], scale=theta[l], lower.tail=TRUE, log.p=FALSE)
82 }
83 quan
84 }
85

86 rCCopula=function(n,a){
87 u=runif(n)
88 t=runif(n)
89 v=((tˆ(−a/(a+1))−1)∗(uˆ(−a))+1)ˆ(−1/a)
90 cbind(u,v)
91 }
92

93 genY=function(thetas,xmat){
94 l1=ncol(xmat[[1]])+1
95 l2=ncol(xmat[[2]])+1
96 theta1=thetas[1:l1]
97 theta2=thetas[(l1+1):(l1+l2)]
98 a=thetas[−(1:(l1+l2))]
99 n=nrow(xmat[[1]])

100 u=rCCopula(n,a)
101 y1=qtobito(theta1, u[,1], xmat[[1]])
102 y2=qtobito(theta2, u[,2], xmat[[2]])
103 cbind(y1,y2)
104 }
105

106 mifm=function(theta1,theta2,a,y,ua,xmat) {
107

108 l1=ncol(xmat[[1]])+1
109 l2=ncol(xmat[[2]])+1
110 n=nrow(xmat[[1]])
111 ll1=length(theta1)
112 ll2=length(theta2)
113

114 y4=y
115 erro=TRUE
116

117 while(erro) {
118

119 erro=FALSE
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120

121 for (i in 1:n){
122

123 if(y[i,1]==0 && y[i,2]==0){
124 data1=rCCopula(1,a)
125 p=data1[,1]
126 q=data1[,2]
127 b1=plogis(0, location=xmat[[1]][i,]%∗%theta1[−ll1], scale=theta1[ll1], lower.tail=TRUE, log.p=FALSE)
128 b2=plogis(0, location=xmat[[2]][i,]%∗%theta2[−ll2], scale=theta2[ll2], lower.tail=TRUE, log.p=FALSE)
129 ua[i,1]=((b1ˆ(−a)+b2ˆ(−a)−1)∗(pˆ(−a))+1−(b2ˆ(−a)))ˆ(−1/a)
130 ua[i,2]=((b1ˆ(−a)+b2ˆ(−a)−1)∗(qˆ(−a))+1−(b1ˆ(−a)))ˆ(−1/a)
131 y4[i,1]=xmat[[1]][i,]%∗%theta1[−ll1]+theta1[ll1]∗qlogis(ua[i,1], location=0, scale=1, lower.tail=TRUE, log.p=FALSE)
132 y4[i,2]=xmat[[2]][i,]%∗%theta2[−ll2]+theta2[ll2]∗qlogis(ua[i,2], location=0, scale=1, lower.tail=TRUE, log.p=FALSE)
133 }
134

135 if(y[i,1]==0 && y[i,2]>0){
136 u2=plogis(y[i,2], location=xmat[[2]][i,]%∗%theta2[−ll2], scale=theta2[ll2], lower.tail=TRUE, log.p=FALSE)
137 b1=plogis(0, location=xmat[[1]][i,]%∗%theta1[−ll1], scale=theta1[ll1], lower.tail=TRUE, log.p=FALSE)
138 v1=runif(1)∗((b1ˆ(−a)+u2ˆ(−a)−1)ˆ(−(a+1)/a))∗(u2ˆ(−a−1))
139 ua[i,1]=((v1ˆ(−a/(a+1))−1)∗(u2ˆ(−a))+1)ˆ(−1/a)
140 y4[i,1]=xmat[[1]][i,]%∗%theta1[−ll1]+theta1[ll1]∗qlogis(ua[i,1], location=0, scale=1, lower.tail=TRUE, log.p=FALSE)
141 }
142

143 if(y[i,1]>0 && y[i,2]==0){
144 u1=plogis(y[i,1], location=xmat[[1]][i,]%∗%theta1[−ll1], scale=theta1[ll1], lower.tail=TRUE, log.p=FALSE)
145 b2=plogis(0, location=xmat[[2]][i,]%∗%theta2[−ll2], scale=theta2[ll2], lower.tail=TRUE, log.p=FALSE)
146 v2=runif(1)∗((b2ˆ(−a)+u1ˆ(−a)−1)ˆ(−(a+1)/a))∗(u1ˆ(−a−1))
147 ua[i,2]=((v2ˆ(−a/(a+1))−1)∗(u1ˆ(−a))+1)ˆ(−1/a)
148 y4[i,2]=xmat[[2]][i,]%∗%theta2[−ll2]+theta2[ll2]∗qlogis(ua[i,2], location=0, scale=1, lower.tail=TRUE, log.p=FALSE)
149 }
150

151 }
152

153 udat2=ua
154 y5=y4
155

156 fit.ifm2=try(optim(a0, fn=loglik.cop, u=udat2, method=”L−BFGS−B”, lower=0.0001, upper=Inf, control=list(fnscale=−1,
157 maxit=100000)), TRUE)
158

159 if(inherits(fit.ifm2,”try−error”)){erro=TRUE}
160

161 } #end while(erro)
162

163 aa=fit.ifm2$par
164 saida=list()
165 saida[[1]]=aa; saida[[2]]=udat2; saida[[3]]=y5
166 saida
167

168 }
169

170 ##### Import a local txt file named consumo.txt (salad dressing and lettuce consumption dataset)
171

172 dados=read.table(”C:\\Users\\Aluno\\Desktop\\Dados\\consumo.txt”, header = TRUE)
173

174 n = nrow(dados)
175

176 attach(dados)
177

178 sex=factor(SEX, levels=c(2,1))
179 race=factor(RACEN, levels=c(1,2,3,4))
180 pctpov=PCTPOVN
181 fat2=FAT2N
182 veg5=VEG5N
183 region=factor(REGION, levels=c(3,1,2,4))
184 age=factor(AGEN, levels=c(5,1,2,3,4))
185

186 summary(pctpov); sd(pctpov)
187 summary(fat2); sd(fat2)
188 summary(veg5); sd(veg5)
189 summary(fat2[which(fat2>0)]); sd(fat2[which(fat2>0)])
190 summary(veg5[which(veg5>0)]); sd(veg5[which(veg5>0)])
191

192 length(which(sex==1))/n
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193 length(which(age==1))/n
194 length(which(age==2))/n
195 length(which(age==3))/n
196 length(which(age==4))/n
197 length(which(age==5))/n
198 length(which(region==1))/n
199 length(which(region==2))/n
200 length(which(region==3))/n
201 length(which(region==4))/n
202

203 par(mfrow=c(1,2))
204 hist(fat2, main=””, xlab=”Quantity (100 g)”, freq=FALSE)
205 hist(veg5, main=””, xlab=”Quantity (200 g)”, freq=FALSE)
206

207 tau=cor(cbind(fat2,veg5),method=”kendall”)[1,2]
208 a0=2∗tau/(1−tau)
209

210 k=21
211

212 B=500
213

214 ### Fit the bivariate Clayton copula−based SUR Tobit model with logistic marginal errors to the salad dressing and
215 ### lettuce consumption data
216

217 xmat=list(model.matrix(˜age+region+pctpov), model.matrix(˜age+region+pctpov))
218

219 y=cbind(fat2, veg5)
220

221 # censoring percentage in the margins
222 cont1=0
223 cont2=0
224 for(i in 1:n){
225 if(y[i,1]==0) cont1=cont1+1
226 if(y[i,2]==0) cont2=cont2+1
227 }
228 cens1=cont1/n
229 cens2=cont2/n
230

231 # two−stage parametric ML method − IFM method − by Joe and Xu (1996)
232

233 # stage 1
234 tobito1=tobit(y[,1]˜xmat[[1]][,−1],left=0,right=Inf,dist=”logistic”)
235 est1=summary(tobito1)$coefficients
236 theta1hat=c(est1[1,1], est1[2,1], est1[3,1], est1[4,1], est1[5,1], est1[6,1], est1[7,1], est1[8,1], est1[9,1], exp(est1[10,1]))
237

238 tobito2=tobit(y[,2]˜xmat[[2]][,−1],left=0,right=Inf,dist=”logistic”)
239 est2=summary(tobito2)$coefficients
240 theta2hat=c(est2[1,1], est2[2,1], est2[3,1], est2[4,1], est2[5,1], est2[6,1], est2[7,1], est2[8,1], est2[9,1], exp(est2[10,1]))
241

242 par(mfrow=c(1,2))
243

244 # scatter plot of y1 versus y2
245 plot(y[,1],y[,2])
246

247 # stage 2
248 udat=cbind(probtrans(theta1hat,y[,1],xmat[[1]]), probtrans(theta2hat,y[,2],xmat[[2]]))
249

250 # scatter plot of udat[,1] versus udat[,2]
251 plot(udat[,1],udat[,2], xlab=expression(u[1]), ylab=expression(u[2]))
252

253 fit.ifm=optim(a0, fn=loglik.cop, u=udat, method=”L−BFGS−B”, lower=0.0001, upper=Inf, control=list(fnscale=−1,
254 maxit=100000))
255 thetas.ifm=c(theta1hat, theta2hat, fit.ifm$par)
256

257 thetas.est=thetas.ifm
258

259 # two−stage parametric ML method − IFM method − by Joe and Xu (1996) with augmented data (MIFM method)
260

261 # stage 2
262 ua1=udat
263

264 l1=ncol(xmat[[1]])+1
265 l2=ncol(xmat[[2]])+1
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266

267 theta1=thetas.ifm[1:l1]
268 theta2=thetas.ifm[(l1+1):(l1+l2)]
269

270 phi=numeric()
271 loglike=numeric()
272

273 phi[1]=fit.ifm$par
274

275 parm.margins=c(theta1,theta2)
276

277 loglike[1]=myloglik(c(parm.margins,phi[1]),y,xmat)
278

279 out=mifm(theta1,theta2,phi[1],y,ua1,xmat)
280 phi[2]=out[[1]]
281 ua11=out[[2]]
282 ya=out[[3]]
283

284 loglike[2]=myloglik(c(parm.margins,phi[2]),y,xmat)
285

286 w=1
287

288 eps=0.001
289

290 while (abs(phi[w+1]−phi[w]) >= eps){
291 out2=mifm(theta1,theta2,phi[w+1],y,ua1,xmat)
292 phi[w+2]=out2[[1]]
293 ua11=out2[[2]]
294 ya=out2[[3]]
295 loglike[w+2]=myloglik(c(parm.margins,phi[w+2]),y,xmat)
296 w=w+1
297 }
298

299 niter=length(phi)
300 phi.est.mifm = phi[niter]
301

302 plot(phi, xlab=”Iteration”, ylab=expression(hat(theta)[MIFM]), type=”b”)
303 plot(loglike, xlab=”Iteration”, ylab=”Log−likelihood”, type=”b”)
304

305 thetas.ifm2=c(theta1, theta2, phi.est.mifm)
306

307 thetas.est2=thetas.ifm2
308

309 # histograms of y1 and y2 (augmented data)
310 hist(ya[,1], main=” ”, xlab=”Quantity (100 g)”, freq=FALSE); abline(v=0,lty=2)
311 hist(ya[,2], main=” ”, xlab=”Quantity (200 g)”, freq=FALSE); abline(v=0,lty=2)
312

313 # scatter plot of y1 versus y2 (augmented data)
314 plot(ya[,1],ya[,2], xlab=”Salad dressings (100 g)”, ylab=”Lettuce (200 g)”); abline(h=0, v=0,lty=2)
315

316 # scatter plot of u1 versus u2 (augmented data)
317 plot(ua11[,1],ua11[,2], xlab=expression(u[1]), ylab=expression(u[2]))
318

319 # kolmogorov−smirnov tests of augmented marginal residuals
320 res1=ya[,1]−xmat[[1]]%∗%theta1[−l1]
321 res2=ya[,2]−xmat[[2]]%∗%theta2[−l2]
322

323 hist(res1, main=””, xlab=”Residuals”, freq=FALSE); hist(res2, main=””, xlab=”Residuals”, freq=FALSE)
324

325 ks.test(res1, ”plogis”, mean(res1), theta1hat[10]); ks.test(res2, ”plogis”, mean(res2), theta2hat[10])
326

327 # AIC and BIC criterion values
328 AIC=−2∗loglike[niter]+2∗k
329 BIC=−2∗loglike[niter]+k∗log(n)
330

331 # Parametric bootstrap approach: generate y1 and y2 values using thetas.ifm2 in genY() function
332

333 thetas.boot = matrix(numeric(k),B,k)
334 niter.boot=numeric(B)
335 phi.est.mifm.boot=numeric(B)
336

337 for(b in 1:B){
338
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339 y.boot=genY(thetas.ifm2,xmat)
340

341 # two−stage parametric ML method − IFM method − by Joe and Xu (1996)
342

343 # stage 1
344 tobito1.boot=tobit(y.boot[,1]˜xmat[[1]][,−1],left=0,right=Inf,dist=”logistic”)
345 est1.boot=summary(tobito1.boot)$coefficients
346 theta1hat.boot=c(est1.boot[1,1], est1.boot[2,1], est1.boot[3,1], est1.boot[4,1], est1.boot[5,1], est1.boot[6,1], est1.boot[7,1],
347 est1.boot[8,1], est1.boot[9,1], exp(est1.boot[10,1]))
348

349 tobito2.boot=tobit(y.boot[,2]˜xmat[[2]][,−1],left=0,right=Inf,dist=”logistic”)
350 est2.boot=summary(tobito2.boot)$coefficients
351 theta2hat.boot=c(est2.boot[1,1], est2.boot[2,1], est2.boot[3,1], est2.boot[4,1], est2.boot[5,1], est2.boot[6,1], est2.boot[7,1],
352 est2.boot[8,1], est2.boot[9,1], exp(est2.boot[10,1]))
353

354 # stage 2
355 udat.boot=cbind(probtrans(theta1hat.boot,y.boot[,1],xmat[[1]]), probtrans(theta2hat.boot,y.boot[,2],xmat[[2]]))
356

357 fit.ifm.boot=optim(a0, fn=loglik.cop, u=udat.boot, method=”L−BFGS−B”, lower=0.0001, upper=Inf, control=list(fnscale=−1,
358 maxit=100000))
359 thetas.ifm.boot=c(theta1hat.boot, theta2hat.boot, fit.ifm.boot$par)
360

361 # two−stage parametric ML method − IFM method − by Joe and Xu (1996) with augmented data (MIFM method)
362

363 # stage 2
364

365 ua.boot=udat.boot
366

367 theta1.boot=thetas.ifm.boot[1:l1]
368 theta2.boot=thetas.ifm.boot[(l1+1):(l1+l2)]
369

370 phi.boot=numeric()
371 loglike.boot=numeric()
372

373 phi.boot[1]=fit.ifm.boot$par
374

375 parm.margins.boot=c(theta1.boot,theta2.boot)
376

377 loglike.boot[1]=myloglik(c(parm.margins.boot,phi.boot[1]),y.boot,xmat)
378

379 out.boot=mifm(theta1.boot,theta2.boot,phi.boot[1],y.boot,ua.boot,xmat)
380 phi.boot[2]=out.boot[[1]]
381 ua11.boot=out.boot[[2]]
382

383 loglike.boot[2]=myloglik(c(parm.margins.boot,phi.boot[2]),y.boot,xmat)
384

385 w=1
386

387 while (abs(phi.boot[w+1]−phi.boot[w]) >= eps){
388 out2.boot=mifm(theta1.boot,theta2.boot,phi.boot[w+1],y.boot,ua.boot,xmat)
389 phi.boot[w+2]=out2.boot[[1]]
390 ua11.boot=out2.boot[[2]]
391 loglike.boot[w+2]=myloglik(c(parm.margins.boot,phi.boot[w+2]),y.boot,xmat)
392 w=w+1
393 }
394

395 niter.boot[b]=length(phi.boot)
396 phi.est.mifm.boot[b]=phi.boot[niter.boot[b]]
397 thetas.ifm2.boot=c(theta1.boot, theta2.boot, phi.est.mifm.boot[b])
398 thetas.boot[b,]=thetas.ifm2.boot
399

400 print(b)
401

402 }
403

404 # Bootstrap confidence intervals
405

406 # Standard normal interval
407

408 cov.boot=matrix(numeric(k),k,k)
409 mean.boot=as.matrix(apply(thetas.boot, 2, mean), k, 1, byrow=TRUE)
410

411 for(b in 1:B){
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412 thetas.boot2=as.matrix(thetas.boot[b,], k, 1, byrow=TRUE)
413 cov.boot=cov.boot+((thetas.boot2−mean.boot)%∗%t(thetas.boot2−mean.boot))
414 }
415

416 cov.boot=(1/(B−1))∗cov.boot
417 var.boot=diag(cov.boot); se.boot=sqrt(var.boot)
418 inf4=thetas.ifm2−1.645∗se.boot; sup4=thetas.ifm2+1.645∗se.boot
419

420 # Percentile interval
421

422 inf5=numeric(k); sup5=numeric(k)
423

424 for(j in 1:k){
425 percentis=quantile(thetas.boot[,j], probs=c(0.05,0.95))
426 inf5[j]=percentis[[1]]; sup5[j]=percentis[[2]]
427 }

B.2. Brazilian commercial bank customer churn data

(Products A and B)

1 ######### Functions to fit the bivariate Clayton survival copula−based SUR Tobit right−censored model with
2 ######### normal marginal errors to the customer churn data (Products A and B) using the MIFM method, as well
3 ######### as to build confidence intervals through the standard normal and percentile bootstrap methods
4

5 ##### Load required R packages
6

7 library(”AER”)
8 library(”nortest”)
9 library(compiler)

10 enableJIT(3)
11

12 ##### Create/define the following functions in R
13

14 #### Step 1: defining the components of the loglikelihood − tobit margins and copula
15

16 dtobito=function(theta,y,x,d){
17 l=length(theta)
18 n=length(y)
19 I=rep(1,n)
20 for(i in 1:n){
21 if(y[i]>=d) I[i]=0
22 }
23 f=1/theta[l]∗dnorm((y−(x%∗%theta[−l]))/theta[l], mean=0, sd=1, log=FALSE)
24 S=1−pnorm((d−x%∗%theta[−l])/theta[l], mean=0, sd=1, lower.tail=TRUE, log.p=FALSE)
25 (fˆI)∗(Sˆ(1−I))
26 }
27

28 loglik.tobito=function(theta,y,x,d){
29 sum(log(dtobito(theta,y,x,d)))
30 }
31

32 loglik.cop=function(a,u){
33 somalog=0
34 for(i in 1:nrow(u)){
35 somalog=somalog+(log(a+1)−(a+1)∗log(1−u[i,1])−(a+1)∗log(1−u[i,2])−((2∗a+1)/a)∗log((1−u[i,1])ˆ(−a)+(1−u[i,2])ˆ(−a)−1))
36 }
37 somalog
38 }
39

40 #### Step 2: calculating the probability integral transformed margins
41

42 ptobito=function(theta,y,x,d){
43 l=length(theta)
44 n=length(y)
45 acum=numeric(n)
46 for(i in 1:n){
47 if(y[i]>=d) acum[i]=pnorm((d−(x[i,]%∗%theta[−l]))/theta[l], mean=0, sd=1, lower.tail=TRUE, log.p=FALSE)
48 else acum[i]=pnorm((y[i]−(x[i,]%∗%theta[−l]))/theta[l], mean=0, sd=1, lower.tail=TRUE, log.p=FALSE)
49 }
50 acum
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51 }
52

53 probtrans=function(theta,y,x,d){
54 ptobito(theta,y,x,d)
55 }
56

57 #### Step 3: composing the loglikelihood function
58

59 myloglik=function(thetas,y,xmat,d1,d2){
60 l1=ncol(xmat[[1]])+1
61 l2=ncol(xmat[[2]])+1
62 theta1=thetas[1:l1]
63 theta2=thetas[(l1+1):(l1+l2)]
64 a=thetas[−(1:(l1+l2))]
65 u=cbind(probtrans(theta1,y[,1],xmat[[1]],d1), probtrans(theta2,y[,2],xmat[[2]],d2))
66 loglik=loglik.tobito(theta1,y[,1],xmat[[1]],d1)+loglik.tobito(theta2,y[,2],xmat[[2]],d2)+loglik.cop(a,u)
67 loglik
68 }
69

70 #### Step 4: defining a function to generate response variables from given parameter vector, design matrices and
71 #### copula structure
72

73 qtobito=function(theta,p,x,d){
74 l=length(theta)
75 n=length(p)
76 acum0=numeric(n)
77 quan=numeric(n)
78 for(i in 1:n){
79 acum0[i]=pnorm((d−(x[i,]%∗%theta[−l]))/theta[l], mean=0, sd=1, lower.tail=TRUE, log.p=FALSE)
80 if(p[i]>=acum0[i]) quan[i]=d
81 else quan[i]=qnorm(p[i], mean=x[i,]%∗%theta[−l], sd=theta[l], lower.tail=TRUE, log.p=FALSE)
82 }
83 quan
84 }
85

86 rCrCopula=function(n,a){
87 u=runif(n)
88 t=runif(n)
89 v=1−((1+(((1−u)ˆ(−a))∗((1−t)ˆ(−a/(a+1))−1)))ˆ(−1/a))
90 cbind(u,v)
91 }
92

93 genY=function(thetas,xmat,d1,d2){
94 l1=ncol(xmat[[1]])+1
95 l2=ncol(xmat[[2]])+1
96 theta1=thetas[1:l1]
97 theta2=thetas[(l1+1):(l1+l2)]
98 a=thetas[−(1:(l1+l2))]
99 n=nrow(xmat[[1]])

100 u=rCrCopula(n,a)
101 y1=qtobito(theta1, u[,1], xmat[[1]], d1)
102 y2=qtobito(theta2, u[,2], xmat[[2]], d2)
103 cbind(y1,y2)
104 }
105

106 mifm=function(theta1,theta2,a,y,ua,xmat,d1,d2) {
107

108 l1=ncol(xmat[[1]])+1
109 l2=ncol(xmat[[2]])+1
110 n=nrow(xmat[[1]])
111 ll1=length(theta1)
112 ll2=length(theta2)
113

114 y4=y
115 erro=TRUE
116

117 while(erro) {
118

119 erro=FALSE
120

121 for (i in 1:n){
122

123 if(y[i,1]==d1 && y[i,2]==d2){
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124 data1=rCrCopula(1,a)
125 p=data1[,1]
126 q=data1[,2]
127 a1=pnorm((d1−(xmat[[1]][i,]%∗%theta1[−ll1]))/theta1[ll1], mean=0, sd=1, lower.tail=TRUE, log.p=FALSE)
128 a2=pnorm((d2−(xmat[[2]][i,]%∗%theta2[−ll2]))/theta2[ll2], mean=0, sd=1, lower.tail=TRUE, log.p=FALSE)
129 ua[i,1]=1−(((1−a1)ˆ(−a)+(1−a2)ˆ(−a)−1)∗((1−p)ˆ(−a))+1−((1−a2)ˆ(−a)))ˆ(−1/a)
130 ua[i,2]=1−(((1−a1)ˆ(−a)+(1−a2)ˆ(−a)−1)∗((1−q)ˆ(−a))+1−((1−a1)ˆ(−a)))ˆ(−1/a)
131 y4[i,1]=xmat[[1]][i,]%∗%theta1[−ll1]+theta1[ll1]∗qnorm(ua[i,1], mean=0, sd=1, lower.tail=TRUE, log.p=FALSE)
132 y4[i,2]=xmat[[2]][i,]%∗%theta2[−ll2]+theta2[ll2]∗qnorm(ua[i,2], mean=0, sd=1, lower.tail=TRUE, log.p=FALSE)
133 }
134

135 if(y[i,1]==d1 && y[i,2]<d2){
136 u2=pnorm((y[i,2]−(xmat[[2]][i,]%∗%theta2[−ll2]))/theta2[ll2], mean=0, sd=1, lower.tail=TRUE, log.p=FALSE)
137 a1=pnorm((d1−(xmat[[1]][i,]%∗%theta1[−ll1]))/theta1[ll1], mean=0, sd=1, lower.tail=TRUE, log.p=FALSE)
138 U=runif(1)
139 v1=U+(1−U)∗(1−((1−u2)ˆ(−(a+1)))∗(((1−u2)ˆ(−a)+(1−a1)ˆ(−a)−1)ˆ(−(a+1)/a)))
140 ua[i,1]=1−((1+(((1−u2)ˆ(−a))∗((1−v1)ˆ(−a/(a+1))−1)))ˆ(−1/a))
141 y4[i,1]=xmat[[1]][i,]%∗%theta1[−ll1]+theta1[ll1]∗qnorm(ua[i,1], mean=0, sd=1, lower.tail=TRUE, log.p=FALSE)
142 }
143

144 if(y[i,1]<d1 && y[i,2]==d2){
145 u1=pnorm((y[i,1]−(xmat[[1]][i,]%∗%theta1[−ll1]))/theta1[ll1], mean=0, sd=1, lower.tail=TRUE, log.p=FALSE)
146 a2=pnorm((d2−(xmat[[2]][i,]%∗%theta2[−ll2]))/theta2[ll2], mean=0, sd=1, lower.tail=TRUE, log.p=FALSE)
147 U=runif(1)
148 v2=U+(1−U)∗(1−((1−u1)ˆ(−(a+1)))∗(((1−u1)ˆ(−a)+(1−a2)ˆ(−a)−1)ˆ(−(a+1)/a)))
149 ua[i,2]=1−((1+(((1−u1)ˆ(−a))∗((1−v2)ˆ(−a/(a+1))−1)))ˆ(−1/a))
150 y4[i,2]=xmat[[2]][i,]%∗%theta2[−ll2]+theta2[ll2]∗qnorm(ua[i,2], mean=0, sd=1, lower.tail=TRUE, log.p=FALSE)
151 }
152

153 }
154

155 udat2=ua
156 y5=y4
157

158 fit.ifm2=try(optim(a0, fn=loglik.cop, u=udat2, method=”L−BFGS−B”, lower=0.0001, upper=Inf, control=list(fnscale=−1,
159 maxit=100000)), TRUE)
160

161 if(inherits(fit.ifm2,”try−error”)){erro=TRUE}
162

163 } #end while(erro)
164

165 aa=fit.ifm2$par
166 saida=list()
167 saida[[1]]=aa; saida[[2]]=udat2; saida[[3]]=y5
168 saida
169

170 }
171

172 ##### Import a local txt file named churning.txt (Products A and B)
173

174 dados=read.table(”C:\\Users\\Aluno\\Desktop\\Dados\\churning.txt”, header = TRUE)
175

176 n=nrow(dados)
177

178 attach(dados)
179

180 d1=2.3
181 d2=2.3
182

183 summary(l1a); sd(l1a)
184 summary(l1a[l1a<d1]); sd(l1a[l1a<d1])
185 summary(l2a); sd(l2a)
186 summary(l2a[l2a<d2]); sd(l2a[l2a<d2])
187 summary(idade); sd(idade)
188 summary(renda); sd(renda)
189

190 par(mfrow=c(1,2))
191 hist(l1a, main=””, xlab=”log(time) to churn Product A”, freq=FALSE)
192 hist(l2a, main=””, xlab=”log(time) to churn Product B”, freq=FALSE)
193

194 tau=cor(cbind(l1a,l2a),method=”kendall”)[1,2]
195 a0=2∗tau/(1−tau)
196
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197 k=9
198

199 B=500
200

201 ######## Fit the bivariate Clayton survival copula−based SUR Tobit right−censored model with normal
202 ######## marginal errors to the customer churn data (Products A and B)
203

204 xmat=list(model.matrix(˜idade+renda), model.matrix(˜idade+renda))
205

206 y=cbind(l1a, l2a)
207

208 # censoring percentage in the margins
209 cont1=0
210 cont2=0
211 for(i in 1:n){
212 if(y[i,1]==d1) cont1=cont1+1
213 if(y[i,2]==d2) cont2=cont2+1
214 }
215 cens1=cont1/n
216 cens2=cont2/n
217

218 # two−stage parametric ML method − IFM method − by Joe and Xu (1996)
219

220 # stage 1
221 tobito1=tobit(y[,1]˜xmat[[1]][,−1],left=−Inf,right=d1,dist=”gaussian”)
222 est1=summary(tobito1)$coefficients
223 theta1hat=c(est1[1,1], est1[2,1], est1[3,1], exp(est1[4,1]))
224

225 tobito2=tobit(y[,2]˜xmat[[2]][,−1],left=−Inf,right=d2,dist=”gaussian”)
226 est2=summary(tobito2)$coefficients
227 theta2hat=c(est2[1,1], est2[2,1], est2[3,1], exp(est2[4,1]))
228

229 par(mfrow=c(1,2))
230

231 # scatter plot of y1 versus y2
232 plot(y[,1],y[,2])
233

234 # stage 2
235 udat=cbind(probtrans(theta1hat,y[,1],xmat[[1]],d1), probtrans(theta2hat,y[,2],xmat[[2]],d2))
236

237 # scatter plot of udat[,1] versus udat[,2]
238 plot(udat[,1],udat[,2], xlab=expression(u[1]), ylab=expression(u[2]))
239

240 fit.ifm=optim(a0, fn=loglik.cop, u=udat, method=”L−BFGS−B”, lower=0.0001, upper=Inf, control=list(fnscale=−1,
241 maxit=100000))
242 thetas.ifm=c(theta1hat, theta2hat, fit.ifm$par)
243

244 thetas.est=thetas.ifm
245

246 # two−stage parametric ML method − IFM method − by Joe and Xu (1996) with augmented data (MIFM method)
247

248 # stage 2
249 ua1=udat
250

251 l1=ncol(xmat[[1]])+1
252 l2=ncol(xmat[[2]])+1
253

254 theta1=thetas.ifm[1:l1]
255 theta2=thetas.ifm[(l1+1):(l1+l2)]
256

257 phi=numeric()
258 loglike=numeric()
259

260 phi[1]=fit.ifm$par
261

262 parm.margins=c(theta1,theta2)
263

264 loglike[1]=myloglik(c(parm.margins,phi[1]),y,xmat,d1,d2)
265

266 out=mifm(theta1,theta2,phi[1],y,ua1,xmat,d1,d2)
267 phi[2]=out[[1]]
268 ua11=out[[2]]
269
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270 loglike[2]=myloglik(c(parm.margins,phi[2]),y,xmat,d1,d2)
271

272 eps=0.001
273

274 w=1
275

276 while (abs(phi[w+1]−phi[w]) >= eps){
277 out2=mifm(theta1,theta2,phi[w+1],y,ua1,xmat,d1,d2)
278 phi[w+2]=out2[[1]]
279 ua11=out2[[2]]
280 ya=out2[[3]]
281 loglike[w+2]=myloglik(c(parm.margins,phi[w+2]),y,xmat,d1,d2)
282 w=w+1
283 }
284

285 niter=length(phi)
286 phi.est.mifm=phi[niter]
287

288 plot(phi, xlab=”Iteration”, ylab=expression(hat(theta)[MIFM]), type=”b”)
289 plot(loglike, xlab=”Iteration”, ylab=”Log−likelihood”, type=”b”)
290

291 thetas.ifm2=c(theta1, theta2, phi.est.mifm)
292

293 thetas.est2=thetas.ifm2
294

295 # histograms of y1 and y2 (augmented data)
296 hist(ya[,1], main=” ”, xlab=”log(time) to churn Product A”, freq=FALSE); abline(v=d1,lty=2)
297 hist(ya[,2], main=” ”, xlab=”log(time) to churn Product B”, freq=FALSE); abline(v=d2,lty=2)
298

299 # scatter plot of y1 versus y2 (augmented data)
300 plot(ya[,1],ya[,2], xlab=”log(time) to churn Product A”, ylab=”log(time) to churn Product B”); abline(h=d1, v=d2,lty=2)
301

302 # scatter plot of u1 versus u2 (augmented data)
303 plot(ua11[,1],ua11[,2], xlab=expression(u[1]), ylab=expression(u[2]))
304

305 # lilliefors tests of augmented marginal residuals
306 res1=ya[,1]−xmat[[1]]%∗%theta1[−l1]
307 res2=ya[,2]−xmat[[2]]%∗%theta2[−l2]
308

309 hist(res1, main=””, xlab=”Residuals”, freq=FALSE); hist(res2, main=””, xlab=”Residuals”, freq=FALSE)
310

311 lillie.test(res1); lillie.test(res2)
312

313 # AIC and BIC criterion values
314 AIC=−2∗loglike[niter]+2∗k
315 BIC=−2∗loglike[niter]+k∗log(n)
316

317 # Parametric bootstrap approach: generate y1 and y2 values using thetas.ifm2 in genY() function
318

319 thetas.boot=matrix(numeric(k),B,k)
320 niter.boot=numeric(B)
321 phi.est.mifm.boot=numeric(B)
322

323 for(b in 1:B){
324

325 y.boot=genY(thetas.ifm2,xmat,d1,d2)
326

327 # two−stage parametric ML method − IFM method − by Joe and Xu (1996)
328

329 # stage 1
330 tobito1.boot=tobit(y.boot[,1]˜xmat[[1]][,−1],left=−Inf,right=d1,dist=”gaussian”)
331 est1.boot=summary(tobito1.boot)$coefficients
332 theta1hat.boot=c(est1.boot[1,1], est1.boot[2,1], est1.boot[3,1], exp(est1.boot[4,1]))
333

334 tobito2.boot=tobit(y.boot[,2]˜xmat[[2]][,−1],left=−Inf,right=d2,dist=”gaussian”)
335 est2.boot=summary(tobito2.boot)$coefficients
336 theta2hat.boot=c(est2.boot[1,1], est2.boot[2,1], est2.boot[3,1], exp(est2.boot[4,1]))
337

338 # stage 2
339 udat.boot=cbind(probtrans(theta1hat.boot,y.boot[,1],xmat[[1]],d1), probtrans(theta2hat.boot,y.boot[,2],xmat[[2]],d2))
340

341 fit.ifm.boot=optim(a0, fn=loglik.cop, u=udat.boot, method=”L−BFGS−B”, lower=0.0001, upper=Inf, control=list(fnscale=−1,
342 maxit=100000))
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343 thetas.ifm.boot=c(theta1hat.boot, theta2hat.boot, fit.ifm.boot$par)
344

345 # two−stage parametric ML method − IFM method − by Joe and Xu (1996) with augmented data (MIFM method)
346

347 # stage 2
348 ua.boot=udat.boot
349

350 theta1.boot=thetas.ifm.boot[1:l1]
351 theta2.boot=thetas.ifm.boot[(l1+1):(l1+l2)]
352

353 phi.boot=numeric()
354 loglike.boot=numeric()
355

356 phi.boot[1]=fit.ifm.boot$par
357

358 parm.margins.boot=c(theta1.boot,theta2.boot)
359

360 loglike.boot[1]=myloglik(c(parm.margins.boot,phi.boot[1]),y.boot,xmat,d1,d2)
361

362 out.boot=mifm(theta1.boot,theta2.boot,phi.boot[1],y.boot,ua.boot,xmat,d1,d2)
363 phi.boot[2]=out.boot[[1]]
364 ua11.boot=out.boot[[2]]
365

366 loglike.boot[2]=myloglik(c(parm.margins.boot,phi.boot[2]),y.boot,xmat,d1,d2)
367

368 w=1
369

370 while (abs(phi.boot[w+1]−phi.boot[w]) >= eps){
371 out2.boot=mifm(theta1.boot,theta2.boot,phi.boot[w+1],y.boot,ua.boot,xmat,d1,d2)
372 phi.boot[w+2]=out2.boot[[1]]
373 ua11.boot=out2.boot[[2]]
374 loglike.boot[w+2]=myloglik(c(parm.margins.boot,phi.boot[w+2]),y.boot,xmat,d1,d2)
375 w=w+1
376 }
377

378 niter.boot[b]=length(phi.boot)
379 phi.est.mifm.boot[b]=phi.boot[niter.boot[b]]
380 thetas.ifm2.boot=c(theta1.boot, theta2.boot, phi.est.mifm.boot[b])
381 thetas.boot[b,]=thetas.ifm2.boot
382

383 print(b)
384

385 }
386

387 # Bootstrap confidence intervals
388

389 # Standard normal interval
390

391 cov.boot=matrix(numeric(k),k,k)
392 mean.boot=as.matrix(apply(thetas.boot, 2, mean), k, 1, byrow=TRUE)
393

394 for(b in 1:B){
395 thetas.boot2=as.matrix(thetas.boot[b,], k, 1, byrow=TRUE)
396 cov.boot=cov.boot+((thetas.boot2−mean.boot)%∗%t(thetas.boot2−mean.boot))
397 }
398

399 cov.boot=(1/(B−1))∗cov.boot
400 var.boot=diag(cov.boot); se.boot=sqrt(var.boot)
401 inf4=thetas.ifm2−1.645∗se.boot; sup4=thetas.ifm2+1.645∗se.boot
402

403 # Percentile interval
404

405 inf5=numeric(k); sup5=numeric(k)
406

407 for(j in 1:k){
408 percentis=quantile(thetas.boot[,j], probs=c(0.05,0.95))
409 inf5[j]=percentis[[1]]; sup5[j]=percentis[[2]]
410 }
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