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Resumo
O biorreator de Vórtices de Taylor (TVB) está se tornando uma nova descoberta, devido
ao seu cisalhamento mais suave e fluxo homogêoneo em comparações com os biorretores de
tanque agitados. Na literatura acadêmica há pouca informação sobre este biorreator quanto
a taxa de dissipação de energia viscosa (VEDR), que é o parêmetro ideal para caracterizar
a morte celular, e seus aspectos geométricos, que afetam o cultivo das células animais,
resultando em baixa eficiência. A presente pesquisa, portanto, objetivou focar na estimativa
da VEDR de fluxo médio e de energia cinética turbulenta (TKE) no TVB usando os
métodos: experimental de 2D de velocimetria das partículas por imagem (PIV) e númerico
de dinâmica de fluídos computacional (CFD) com diferentes modelos de turbulência,
principalmente a simulação numérica direta (DNS). E focar nos aspectos geométricos do
impacto da área de apuramento entre o cilindo interno e externo e na forma da base do
cilindro externo na estrutura de fluxo do TVB.

Os dois métodos experimental e númerico demonstraram que, em aproximadamente
80 % da área lateral entre os cilindros interno e externo onde as células vão passar a
maior parte do tempo, a magnitude de velocidade é de cerca de 50 % da máxima e os
valores de VEDR são 10 vezes menores do que nas paredes. Qualitativamente, o DNS
mostrou boas comparações dos fluxos médios e dos parâmetros turbulentos em relação aos
resultados apresentados pelo PIV para o TVB. No entanto, quantitativamente, apenas as
previsões médias de velocidade estão em boa concordância com os dados do PIV, pois os
parâmetros turbulentos foram sub-estimados. Entre os diferentes modelos de turbulência
utilizados, o modelo simulação de grande escala (LES) - Wall Adapting Local Eddy-
Viscosity apresentou a melhor comparação com os dados do DNS para todos os parâmetros
do fluxo. O modelo de estresse Reynolds e LES - Smagorinsky, por sua vez, apresentaram
as piores comparações. Os modelos de duas equações de RANS, entretanto, apesar de
estimarem bem os componentes de velocidade média em comparação com os dados do
modelo DNS, não captaram bem as estruturas de fluxo dos componentes de turbulência.
Quanto aos aspectos geométricos, as alterações nas características da área de apuramento
entre o cilindo interno e externo e a estrutura curva da base do cilindro externo, que são
de importância prática em tanque agitados, neste estudo, afetaram negativamente o fluxo
no TVB devido ao seu baixo componente de velocidade axial. Por fim, a comparação entre
o TVB e o Spinner Flask, considerado também um biorretor com baixo cissalhamento,
demostrou que para Re/ReT semelhante, os valores máximo e médio do VEDR foram
sempre inferiores, e devido à diferença muito menor entre o os valores máximo e médio, o
TVB apresenta estruturas mais uniformes em comparação com o Spinner Flask.

Palavras-chave: DNS. LES-WALE. RANS. dissipação de energia viscosa. turbulência.





Abstract
Taylor-Vortex reactor (TVB) is fast becoming the next bioreactor to culture animal
cells due to milder shear and homogeneous flow structures through-out the bioreactor in
comparison to the traditional stirred vessels. However, there is little information in the
literature for the TVB on the viscous energy dissipation rate (VEDR), which is considered
the ideal parameter to characterize the cell death, and its geometrical aspects, which
may affect the culture of animal cells resulting in poor efficiency. Consequently, this work
focuses on: the estimation of the VEDR of mean flow and turbulent kinetic energy (TKE)
using an experimental 2D particle image velocimetry (PIV) method and a computational
fluid dynamics (CFD) method using different turbulence models, principally the direct
numerical simulation (DNS) model; and, the impact of the off-bottom clearance area and
the external cylinder’s bottom shape on the flow structures of TVB.

Both numerical and experimental methods confirm that the bulk zone comprising of the
80 % of the gap-width, where the cell cultures will spend most of the time, has a near
constant velocity magnitude of around 50 % of the tip velocity and VEDR values which
are around 10 times lower than at the walls. Qualitatively, the DNS model predicted
well the flow structure of both mean and turbulence parameters in comparison with the
experimental PIV predictions. However, quantitatively only the mean velocity predictions
are in good agreement with the PIV data with certain amount of under-estimation of
the turbulence parameters. Among different turbulence models, the large eddy simulation
(LES) - wall adapting local eddy-viscosity (WALE) model presented best comparison
with the DNS model data for all the flow parameters; while, the Reynolds stress model
and the LES-Smagorinsky models were the poorest. On the other hand, the Reynolds
averaged Navier-Stokes (RANS) based two equation models estimated well the mean
velocity components in comparison with the DNS model data, but could not capture well
the flow structures of the turbulence components.

The geometrical features of curved surface of outer bottom and off-bottom clearance area
which are of practical importance in stirred vessels, impact adversely the flow structures in
the TVB due to poor axial velocity component. In comparison with the spinner vessel, a
stirred tank type bioeactor but with lower shear, for similar Re/ReT ratio, the maximum
and mean VEDR were always found to be of lower magnitude values, and due to much less
difference between the maximum and the mean values, the TVB presents more uniform
structures in comparison to the spinner vessel.

Keywords: DNS. LES-WALE. RANS. viscous energy dissipation rate. turbulence.
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1 Introduction

1.1 Bioreactors and Hydrodynamics
The cultivation of animal cells (including human), a sub-area of biotechnology, in

in vitro is a process of over 100 years old, but the emerging need of vaccines in the 1950s
imparted some momentum to this process leading to the development of various vaccines
such as measles (1963), rabies (1964), mumps (1967) and rubella (1969) (KRETZMER,
2002). In the mid-1970s, a second set of products hit the market - monoclonal antibodies by
forming hybridomas from the fusion of cells, and genetic engineering (KRETZMER, 2002).f
Nowadays, the animal cell product list has increased to a huge number, namely, human
and veterinary vaccines, diagnostics monoclonal antibodies and therapeutics, such as tPA,
erythropoietin and interferons, with many animal cell products being highly costly in the
order of US $ 104 to $ 109 per kilogram (KRETZMER, 2002; ECKER; JONES; LEVINE,
2015). The ever-increasing sales forecasts of the recombinant proteins and monoclonal
antibodies till 2013 presented by Ecker, Jones e Levine (2015) can be seen in Figure 1, of
which currently ≈ 54 % are being produced by animal cells (ECKER; JONES; LEVINE,
2015).

Figura 1 – Annual sales of recombinant proteins and monoclonal antibodies in the 2008-
2013 period. Source: Ecker, Jones e Levine (2015).

To achieve maximum yields, it becomes important to provide the cells with an
in vitro environment as similar as possible to the natural cell environment, leading to
studies regarding the composition of culture media, process controls (pH, temperature,
dissolved oxygen), and especially the bioreactors. Major improvements, mainly, in the
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culture media composition and process control, have resulted in over 100-fold yield increase
in the cultivation of mammalian cells in the bioreactors for similar processes that were
used in the mid-1980s (WURM, 2004). Nonetheless, there are still possibilities of further
improvements in the yield through the optimization of various processes in the cultivation
of animal cells (KRETZMER, 2002; WURM, 2004; JAIN; KUMAR, 2008; COSTA et al.,
2010).

One of the most crucial factors that play a significant role in the design of a
bioreactor using animal cells is that they do not possess a cell wall, unlike bacteria, fungi
and plant cells. Lack of cell wall makes the animal cells extremely sensitive to external
environment such as pH, temperature, nutrients or culture media, regulatory molecules,
oxygenation through bubbling and hydrodynamic forces resulting from aeration through
bubbling and agitation in a bioreactor. These unique characteristics of animal cells makes
it imperative to develop bioreactors designed with agitation and oxygenation systems that
generate hydrodynamic forces milder than those found in bioreactors cultivating microbes
(NIENOW, 2006).

Presently, the two most commonly employed bioreactors in large scale are the
stirred or agitated tank and airlift reactor (CHU; ROBINSON, 2001; KRETZMER, 2002;
JAIN; KUMAR, 2008; NIENOW, 2006). From the 30 L in the 1960s to 8,000 L in 1980s to
20,000 L in the mid-2000s has been the increase in the capacity of a traditional agitated
bioreactor to produce vaccines, monoclonal antibodies and therapeutics (NIENOW, 2006;
KRETZMER, 2002). On the other hand, the airlift bioreactor has been scaled up-to
2,000 L to produce monoclonal antibodies with reports of a 10,000 L airlift bioreactor
which successfully cultured hybridoma cells to produce monoclonal antibodies (JAIN;
KUMAR, 2008). Although, both bioreactor types have the versatility of cultivating both
suspension and anchorage-dependent cells, the stirred tank has been the preferred choice
of the industrialists due to easy scale-up, homogeneous environment and vast industrial
experience of working with this reactor type (CHU; ROBINSON, 2001; NIENOW, 2006).

However, certain cell lines demand a surface for adherent culture systems which lead
to the development of high density cell culture systems, such as hollow fiber, packed bed and
fluidized-bed bioreactors (JAIN; KUMAR, 2008). Although, these compact bioreactors have
the advantage of high volumetric productivity, they suffer from concentration gradients due
to non-homogeneity and difficulty in monitoring and scale-up (OZTURK, 1996). Disposable
bioreactor is another genre that has entered the market in the start of the twenty-first
century largely to reduce hydrodynamic stress and process cost, and have easier process
control, for example, wave bioreactor (SINGH, 1999). Although, wave bioreactors have
been scaled up-to 1,000 L capacity (JAIN; KUMAR, 2008), industrial-scale capacities are
still under question. Another disposable bioreactor is being developed by the Jain e Kumar
(2008) group, named cryogel bioreactor, with a capacity of up-to 1L and functioning similar
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to that of hollow fiber bioreactor.

In addition, in recent years, another reactor type, named Taylor-Vortex Bioreactor
(TVB) has emerged as a choice for culturing cells (O’CONNOR et al., 2002; HAUT
et al., 2003; CURRAN; BLACK, 2004; CURRAN; BLACK, 2005; GONG et al., 2006;
TANZEGLOCK, 2008; SANTIAGO; GIORDANO; SUAZO, 2011; ZHU et al., 2010).
These researchers successfully cultured various animal and insect cell lines, namely Chinese
Hamster Ovaries (CHO), Human Embryonic Kidney, rat bone marrow stroma, and Sf-9
Spodoptera frugiperda, in suspension in a TVB. The oxygen is easily provided through gas-
permeable membranes in these reactor types thus reducing the hydrodynamic stress due
to aeration by bubbling (CURRAN; BLACK, 2005; SANTIAGO; GIORDANO; SUAZO,
2011). Another advantage of the TVB is the possibility of scale-up to an industrial level
bioreactor, thus making it a serious contender for culturing animal cells (CHAUDHURI;
AL-RUBEAI, 2005).

The design, scale-up and operation of bioreactors for animal cell culture require
a comprehensive understanding of the mechanisms of cell damage and death caused by
the fluid-mechanical forces associated with the equipment type (BRIONES; CHALMERS,
1994). Therefore, the parameters characterizing the effect of hydrodynamic forces causing
cellular destruction are of crucial importance in the validation of bioprocess development
studies conducted primarily in the mini-bioreactors and later transferred to the larger-scale
bioreactors. Numerous parameters have been used to characterize cell death or damage in
the various studies, as shown in Table 1, and a consensus has not been reached. Moreover,
there is little information available on how to use flow parameters that correlate well with
cell damage in one particular system to predict cell damage in a different system.

Briones e Chalmers (1994) stated that cell damage should ideally be predicted
by knowing the actual stresses that the cell experiences, determined from intrinsic cell
mechanical properties and the resulting cell deformation. Should the cell deformation
exceed a critical value, the disruption of the cell structure would be expected. They
suggested that the parameter chosen to correlate with cell damage should be 1) general in
nature and not be dependent on the particular geometry and 2) be local, that is, not be
averaged throughout the flow domain.

Briones e Chalmers (1994) rejected the Kolmogorov eddy scale as a basis for
predicting cell damage, because essentially cell size becomes the only correlation parameter
when this parameter is used, and therefore cell mechanical properties are neglected. Kunas
e Papoutsakis (1990) suggested that, although Kolmogorov eddy length can be used as a
predictor of cell damage, it does not provide any details of how cells are damaged by their
interaction with these eddies or even prove that there is a direct cell-eddy interaction.
Echoing this sentiment, Joshi, Elias e Patole (1996) stated that it is very difficult to predict
the relationship between the eddy size and its role in cell damage.
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Tabela 1 – Various parameters used to correlate to cell death in a Stirred tank.

Cells used Range of hydrodyna-
mic Parameters

Important Observati-
ons

Reference

Insect Cells,
SF-21

210- 510 rpm τ = 3
N/m2Cell death rate
proportional to volu-
metric gas flow rate

“Viability of cells de-
creased at shear stres-
ses of 1 N/m2”

Tramper et al.
(1986)

Hybridoma,
CRl-8018

60-900 rpm, Cell de-
ath correlates to Kol-
mogorov eddy size si-
milar to or smaller
than the cell

“In absence of gas
sparging, cells are da-
maged only at speed
above 700 rpm. No da-
mage at speeds less
than 600 rpm”

Kunas e
Papoutsakis
(1990)

Hybridoma,
HDP-1

100-440 rpm, Impeller
tip speed 19-73.3 cm/s

“ Death rate constant,
kd, increased sharply
at impeller tip speeds
above 40 cm/s”

Abu-Reesh e
Kargi (1989)

SF-9 and
Hybridoma,
serum con-
taining, gas
free

< 0.7 impeller tip
speed, < 350 W/m3

Power Inputs

“Damaging threshold
values of impeller
tip speed or specific
Power inputs for some
animal cells”

Chisti (2001)

In the last 15 years, the group of Prof. Jeffrey Chalmers from the Ohio state
university in USA have presented various meticulous studies of probably the ideal parameter
to characterize the potential of hydrodynamic stresses to damage cells (GREGORIADES
et al., 2000; MA; KOELLING; CHALMERS, 2002; MOLLET et al., 2004; MOLLET et
al., 2007; MOLLET et al., 2008; GODOY-SILVA et al., 2009; GODOY-SILVA; MOLLET;
CHALMERS, 2009).

There have been various studies estimating the lethal effects of Viscous energy
dissipation rate (VEDR) on cell cultures using various types of devices, such as microfluidic
channel, contractional flow device and capillary flow device (THOMAS; AL-RUBEAI;
ZHANG, 1994; ALOI; CHERRY, 1996; GREGORIADES et al., 2000; MA; KOELLING;
CHALMERS, 2002; MOLLET et al., 2007). According to Ma, Koelling e Chalmers (2002),
lethal VEDR are at least 1000 times greater than those used in stirred tank bioreactors
operated successfully in sizes ranging from 10 L and 22,000 L capacity. The cell cultures of
Ma, Koelling e Chalmers (2002) were tested in a transient flow contractional device with
residence times similar to a stirred tank having a rotational speed of 500 rpm. However,
these cells were exposed to high levels of VEDR only once, as in the research work of
Thomas, Al-Rubeai e Zhang (1994), Aloi e Cherry (1996), Gregoriades et al. (2000),
Mollet et al. (2007). The cells in a stirred tank are exposed multiple times to high levels
of turbulent VEDR in the vicinity of the impeller due to the circulatory nature of the
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flow. Thus, the value of maximum turbulent VEDR that a cell can withstand would be
substantially lower in a stirred tank than in a single-pass flow device, since the integrated
exposure time is considerably longer. Clearly, both the residence time of a single pass and
the number of exposures to high turbulent VEDR in the vicinity of the impeller must be
considered when estimating cell damage in a stirred-tank reactor, or any other type of
bioreactor.

To overcome the limitation of single pass, the Chalmers group (GODOY-SILVA et
al., 2009) presented a new method in which a microfluidic device is joined in an external
loop to a 2 L stirred tank bioreactor. This way the cells were subjected to high VEDR
levels multiple times, though there is no confirmation that the same cell was subjected to
high VEDR levels of the microfluidic device multiple times. Nonetheless, similar high levels
of maximum VEDR were reported having a lethal effect on the cells as reported by Ma,
Koelling e Chalmers (2002). In addition, Godoy-Silva et al. (2009) also addressed another
problem of the biological response of cells to sub-lethal levels of hydrodynamic stress. They
found that the maximum VEDR for the sub-lethal effects is around 100 times smaller than
the lethal dose. Sub-lethal levels are known to induce apoptosis in cells (ALOI; CHERRY,
1995), reduction in the production of the recombinant protein (GODOY-SILVA; MOLLET;
CHALMERS, 2009) and triggering the glycosylation shift of glicoproteins (GODOY-SILVA
et al., 2009). Therefore, sub-lethal levels have to be taken into serious consideration to
design a bioreactor with high productivity, reliability and operability for the cultivation of
animal cells under strict guidelines implemented by regulatory agencies and required by
the new cell lines.

Another important consideration requiring attention in a bioreactor is the necessity
of sufficient oxygen supply for animal cell survival; though, aeration by means of bubbling
air can result in cell damage due to rising and bursting of bubbles (TRAMPER et al.,
1986). The viability and growth of cells in sparged reactors depend, amongst other factors,
on the bubble size and the bubble frequency, which can be controlled by the gas flow
rate or the superficial gas velocity (JOSHI; ELIAS; PATOLE, 1996). Joshi, Elias e Patole
(1996), in agreement with Wu e Goosen (1995), suggested that the maximum cell damage
occurs mainly in the region of bubble disengagement at the air-liquid interface. Various
methods of oxygenation without the formation of bubbles have also been researched to
avoid cell damage/death due to cell-bubble interactions, such as using gas–permeable
membranes (KUNAS; PAPOUTSAKIS, 1990; SCHNEIDER et al., 1995; SANTIAGO;
GIORDANO; SUAZO, 2011). A gas permeable membrane is essentially a long coiled
gas-permeable tube placed within the bioreactor, with oxygen or air flowing within the
tube, which allows oxygen to diffuse through the permeable wall (membrane) of the tube
and into the culture medium. This approach allows enhanced mixing and homogeneity
through increased agitation which cannot be achieved when oxygenating by bubbling;
though, at much lower kLa, oxygen mass transfer, values in comparison to the bubbling
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systems. For instance, for a similar gas flow rate of 4 L/m and rotational speed pf 700
rpm with similar concentration of oxygen in the air of 21 % in a stirred tank, the oxygen
mass transfer rate for bubbling was 66.1 hr−1 in comparison to the value for 3.3 hr−1 for
the gas-permeable membrane (SINGH, 2011).

Summarizing, it can be said that the choice of bioreactor depends upon the cell type,
and the possibility of scale-up of the chosen reactor type. At the same time, an oxygenation
method should be available with a priority of not creating additional hydrodynamic stress
to the cell cultures in addition to the necessary evil of agitation to sustain homogeneous
mixture in a reactor. Hence, the ease of scale-up, bubble-free oxygenation and proven
capability of culturing various animal cells in suspension have lead to the TVB as the chosen
reactor for this study. As a consequence, a detailed hydrodynamic study of this reactor
type is a basic necessity in order to obtain the parameters which will guide towards the
choice of optimum operating conditions with respect to high productivity and reliability.

1.2 Understanding Hydrodynamics

In order to understand the hydrodynamics completely, a clear picture is required of
all the different scales of fluid flow from the largest, Taylor’s macro-scale which physically
represents the mean size of large eddies, to the smallest, Kolmogorov’s micro-scale, at
which the kinetic energy is dissipated into heat. Taylor’s macro-scale is limited by the
physical boundaries of the flow, whereas, the Kolmogorov’s micro-scale is determined by
viscosity. Only by capturing accurately the smallest scales, an accurate prediction of the
VEDR can be made in addition to the accurate estimation of any other flow parameter,
and this still has not been achieved, either experimentally or numerically, for turbulent
Reynolds numbers around 25,000. Higher the turbulent Reynolds number, the smaller the
Kolmogorov scale becomes, implying that the amount of data that needs to be captured
is humongous in order to reach the size of few µm, remembering that the Kolmogorov
scale and the turbulent VEDR are inversely proportional to each other, η = (ν3

ε
)1/4. For

example, Smith e Greenfield (1992) reported that they observed significant damage to cells
in a stirred tank at a Reynolds number of 25,000 and rotational speed of 700 rpm, which
based on (SINGH, 2011) estimations is equivalent of ≈ 38 m2/s3 maximum turbulent
VEDR or ≈ 13 µm in terms of the Kolmogorov’s micro-scale, assuming that the kinematic
viscosity of culture media is similar to that of water. Analytical estimations of the VEDR
are only valid for the laminar state, turbulent state requires a much more comprehensive
estimation; thus, leaving the choice between the experimental and numerical methodologies
for the estimation of VEDR.
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1.2.1 Experimental method

Since early sixties, experimental methods have been shedding light on the flow
structures and hydrodynamics in different fluid-flow configurations. In the early eighties
and ninties, Smith e Townsend (1982) and Kobayashi et al. (1990) presented detailed
experimental results of the mean and fluctuating velocities for a TVB using Pitot tubes
and hot-wire anemometers. The biggest disadvantages of using these equipments were
their intrusive nature and limited data in the boundary layers or near the walls in the
case of TVB. Although, in recent years computational fluid dynamics (CFD) has become
a more important tool for investigation, the experimental methods are still necessary in
order to validate these numerical results. Mavros (2001) stated that among the various
experimental techniques that are being practiced in recent years for flow visualization and
analyzing hydrodynamics, particle image velocimetry (PIV) and laser Doppler anemometry
(LDA) have become the predominant methods due to their relative easy-to-use techniques
and non-intrusive nature. In the case of TVB, PIV has been the primarily used method
(WERELEY; LUEPTOW, 1998; AKONUR; LUEPTOW, 2003; COUFORT; BOUYER;
LINE, 2005; WANG; OLSEN; VIGIL, 2005; DUSTING; BALABANI, 2009; DENG et al.,
2010), to examine principally the velocity and vortex structures.

Hout e Katz (2011) and Tokgoz et al. (2012) presented turbulence parameters, such
as Reynolds stresses and VEDR, using the PIV method, but their spatial resolution was
limited for turbulent Reynolds number. Due to limited spatial resolution, ranging from five
to nine times the Kolmogorov scale, Hout e Katz (2011) observed severe underestimation
as much as 55 % of the dissipation rate estimated assuming isotropy. Tokgoz et al. (2012)
found that their tomographic PIV underestimated the mean dissipation, when comparing
the PIV estimates with that of torque scaling, by 47 % and 97 % for shear Reynolds
number of 3 800 and higher values, respectively. They worked with the spatial resolutions
between 3 to 71 times that of Kolmogorov scale, thus also showing the importance of
spatial resolution on the estimations of VEDR. In addition, they employed the large eddy
PIV method, first implemented by Sheng, Meng e Fox (2000) and demonstrated more
than three times increase in the mean dissipation rate values.

Delafosse et al. (2011) showed that the spatial resolution plays a strong influence on
the estimation of VEDR when using the PIV technique in a stirred tank. They presented a
study of 12 spatial resolutions ranging between 1 to 12 times the mean Kolmogorov scale,
and confirmed that the spatial resolution equal to that of the Kolmogorov scale is required
to accurately estimate the VEDR. However, they were able to achieve spatial resolution
equivalent of Kolmogorov scale at their lowest rotational speed of 50 rpm equivalent of 13
000 Re number. They also observed that when they halved their spatial resolution, the
estimation of VEDR increased by 220 %, in close agreement with the results of Baldi e
Yianneskis (2004).
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Reaching a certain value of spatial resolution depends directly upon the chosen
interrogation cell size (ICS) and overlap ratio, apart from the camera and lens equipment.
Tokgoz et al. (2012) showed improvement in the estimation of VEDR with each decrease
in the ICS, and increase in the overlap value at a particular ICS. However, there are
various other factors, such as time-step between the double framed image, particle size
and concentration, and higher orders of the first derivative to estimate the gradients of
the velocity vectors, which may also impact the VEDR. These aspects, as per author’s
knowledge, have not been presented before.

Secondary problem with the PIV studies is that the spatial resolutions available
for 3D is bigger compared to the 2D PIV studies. However, 2D PIV suffers from another
limitation apart from the spatial resolution. For a direct estimation of VEDR from its
equation (SHARP; ADRIAN, 2001), twelve gradients are required to be calculated, all
of which can be estimated with a 3D PIV methods at the expense of spatial resolution.
Whereas, in the case of 2D PIV methods only five gradients can be estimated. Due to
this limitation, the rest of the seven gradients are required to be estimated based on the
isotropic turbulence assumptions (SHARP; ADRIAN, 2001).

On the technological front, there has been a steady evolution in the equipments
and the softwares used to interpret the images. The resolution of cameras has increased
from 1 M pixels in late nineties to 16 M pixels in present time. The computer memory and
disk space has also increased in order to capture and store such high resolution images,
and their treatment to capture the smallest scales; for example, a set of 2500 double frame
images of 16 MPixel camera is equivalent of 75 Gbytes and its treatment to resolve upto
25 µm is equivalent of 500 Gbytes. At the same time, the algorithms to estimate the
correlation vectors have also improved and became more efficient and reliable (STANISLAS
et al., 2008).

One of the objectives of this study is to present a direct estimate of VEDR using a
2D PIV method, thereby presenting only five of the 12 gradients of a 3D equation of VEDR.
The methods shown by Sharp e Adrian (2001) estimating the seven other gradients will
also be included in this study. The 2D PIV method is used in order to capture the lowest
possible spatial resolution with a 16 M pixel camera. A study will also be conducted to
better understand the influence of not only the overlap ratio, and ICS but also the particle
size and concentration, time-step and higher order gradients on the VEDR estimation.

1.2.2 Numerical method-CFD

Although, the experimental estimations are painstaking, cumbersome and require
thorough attention, these are necessary in order to validate the numerical results. Still,
the shear practicality and flexibility of numerical methods have shifted the weight towards
computational side to study the hydrodynamics in more detail which may not be feasible
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with 2D PIV estimations. In addition, significant recent advances in the computational
field has enabled the researchers to use the direct numerical simulation (DNS) model to
examine the hydrodynamics at high Reynolds number in a simple geometry, such as TVB.
Understanding the hydrodynamics of a reactor are necessary for its optimization and
characterization. In a TVB, consisting of two concentric cylinders, flow can be generated
by rotating one or both cylinders in co- or counter-current directions. The field of study in
such a reactor is the gap-width, the distance between the inner and outer cylinder, which
is of the order of only few centimeters for laboratory scale reactors. As a result, obtaining a
mesh which is nearer to the smallest Kolmogorov scale in order to capture around 90 % of
the eddies is within reach. Indeed, there has been a surge in the studies of the TVB using
the DNS model in recent years (BILSON; BREMHORST, 2007; DONG, 2007; PIRRO;
QUADRIO, 2008; DOUAIRE, 2010; BRAUCKMANN; ECKHARDT, 2013).

Bilson e Bremhorst (2007) showed a detailed analysis of velocity fluctuations,
turbulent kinetic energy (TKE), Reynolds stress budget and one-dimensional energy
spectra for a radius ratio, η, of 0.617 and an aspect ratio, Γ, of 4.58. The main focus of
the DNS study of Dong (2007) was to demonstrate the effect of the variation in Reynolds
number on the Gortler vortices and herringbone-like streaks that develop near the cylinder
walls, and partly the statistical features of turbulence in TVB. Pirro e Quadrio (2008)
explained the numerical method that they developed extending the work of Quadrio e
Lichini (2002) to use the DNS model in fully turbulent regime at Reynolds number of 10500.
After validating with numerical and experimental results, they discussed mean velocity
and root mean square value of velocity fluctuations profiles. Their major observation was
the identification of two distinct sources of fluctuations, namely: 1) curvature related
large-scale vortices, and 2) small scale fluctuations produced by the wall turbulence cycle.
The objective of using the DNS model by Douaire (2010) was to be able to explain the cell
behavior with respect to the TVB hydrodynamics at different Reynolds number. They used
the DNS model to estimate various volumetric distributions, such as that of dissipation,
and to follow the trajectories of a Lagrangian particle in order to find out the how much
dissipation and force a particle faces in the reactor. More recently, Brauckmann e Eckhardt
(2013) presented detailed torque estimations and how they are influenced by the vortex
heights in TVB for a radius ratio, η, of 0.71 using DNS model at various aspect ratios and
shear Reynolds number up to 3 × 104.

Apart from the DNS model, the Reynolds averaged Navier-Stokes (RANS) based
k-ε model (NASER, 1997; COUFORT; BOUYER; LINE, 2005; PAWAR; THORAT, 2012;
FRIESS; PONCET; VIAZZO, 2013) and Reynolds Stress model (RSM) (COUFORT;
BOUYER; LINE, 2005; PONCET; HADDADI; VIAZZO, 2011; PAWAR; THORAT, 2012;
FRIESS; PONCET; VIAZZO, 2013), and the large eddy simulation (LES) model (CHUNG;
SUNG, 2005; OGUIC; VIAZZO; PONCET, 2013; FRIESS; PONCET; VIAZZO, 2013)
have also been used in numerical investigations of TVB. The RANS based models are well
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known for their under-estimation of turbulence parameters (HARTMANN et al., 2004;
DELAFOSSE et al., 2008). The LES model’s predictions of the turbulence quantities have
been much better in the case of stirred tank (DERKSEN; AKKER, 1999; HARTMANN
et al., 2004; DELAFOSSE et al., 2008) in comparison to the RANS based models. Though
the mesh size used for the RANS model was much more courser in comparison to the
mesh size used for the LES model (HARTMANN et al., 2004; DELAFOSSE et al., 2008),
which could be one of the reasons behind the underestimation shown by the RANS based
models. Study of Singh, Fletcher e J. (2011) in a stirred tank showed that improved mesh
results in much better estimation of turbulence parameters by the RANS based models.

On the other hand, using the dynamic LES model in a TVB, Chung e Sung (2005)
demonstrated a detailed validation of their numerical results, estimation of the anisotropy
of the turbulent structures and probability density functions of the velocity fluctuations
while focusing on the near-wall turbulent structures. Whereas, the aim of Oguic, Viazzo e
Poncet (2013) was basically to validate their LES model based on their groups 2D compact
fourth-order projection decomposition method presented by Abide e Viazzo (2005) and to
present a brief study of anisotropy. Furthering on the research of Oguic, Viazzo e Poncet
(2013), Friess, Poncet e Viazzo (2013) presented the LES-WALE (wall adapting local eddy)
results of radial profiles of the rms velocities and the shear components of the Reynolds
stress tensor along-with the axial and tangential velocity radial flow profiles. They also
compared these LES-WALE results as a reference with a DES model and a RANS based
RSM.

Considering these various studies, the objective of this study is to further the
numerical research by: first, conducting a detailed validation of the DNS model with the
2D PIV estimations and; secondly, conducting a comprehensive comparison of different
turbulence models for anisotropy, TKE and its terms, Reynolds stresses, and VEDR and
its 12 terms in a TVB. In addition, a method on identification of vortex based on the
study of Jeong e Hussain (1995) will be presented. Instead of the dynamic LES model,
chosen by Chung e Sung (2005), the LES Smagorinsky and LES-WALE have been tested
in this study. LES Smagorinsky has been the most commonly used LES model in case of
stirred-tank reactor, though the impact of its CS constant is also well known to have a
significant effect on the turbulence quantities (DELAFOSSE et al., 2008). Based on the
study of Delafosse et al. (2008), a value of 0.2 is chosen for the CS constant in this study.
The LES-WALE model is chosen because of its better numerical stability and zero damping
functions in near-wall treatment Friess, Poncet e Viazzo (2013); Moreover, Weickert et al.
(2010) showed that it fared much better than the LES Smagorinsky model. The dynamic
model is not tested based on the suggestion of Weickert et al. (2010) that the variation
in the LES constant both in time and space could lead to unstable numerical simulation.
Apart from the DNS and LES models, some RANS based models, namely, k-ε, shear stress
transport (SST), scale adaptive simulation (SAS)-SST and RSM, are also tested for the
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TVB in this study. The mesh used for these RANS based models will be the same that will
be used in the case of DNS and LES models in order to have a much direct comparison
between these models.

1.3 Overall project

Although, the stirred tank and the airlift reactor are being used in the industry
currently for culturing animal cells in reactors of 20,000 L capacity, these reactors are
limited to a select few cell lines which can be cultured in a suspension and which are
comparatively less shear-sensitive. For newer, more shear sensitive cell line and those cell
lines requiring microcarriers (a support matrix used in bioreactors on which the adherent
cells are cultured) a different bioreactor is required which has the possibility of providing
oxygen in liquid phase, in order to reduce the hydrodynamic stress, and which can provide
a environment with low shear but homogeneous in nature for culturing of the animal cells.
The TVB fits this bill perfectly, as oxygen can be provided in liquid phase easily and
culturing of various animal cell-lines with and without microcarriers has been effective.
Hence, the main aim of the overall project is to asses the possibility of using the TVB as
a bioreactor for culturing shear-sensitive animal cells at an industrial scale. In order to see
the effectiveness of the TVB as a bioreactor, a couple of its geometrical features will also
be studied using CFD. As the overall project has a vast scope, it has been divided into
different subgroups:

a) A detailed hydrodynamic study of the TVB and its geometrical features: as has
been mentioned till now, a good understanding of hydrodynamics of a reactor are a must
in order to put the animal cell death/injury in picture.

b) Scale-up study of the TVB with animal cell culture: the scale - up study will lay
the base for the TVB to be projected as the future industrial scale reactor for culturing
animal cells.

c) Feasibility of culturing of different animal cell lines and a cell-line using micro-
carriers.

d) A multiphase numerical study of the TVB in order to access the direct impact
of hydrodynamics on microcarriers and animal cells in the same conditions in which they
are being cultivated in the TVB.

e) Finally, a general model to show the impact of hydrodynamics on the different
animal cell lines tested in the TVB.
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1.3.1 Main aim of this thesis

As the overall project is beyond the reach of one thesis due to limited time and
resources in order to understand this complex industrial problem, this thesis has been con-
ducted with an aim to understand and present the hydrodynamics of the TVB with regards
to its feasibility as a bioreactor for cultivating animal cell lines of biotechnological interest.
The hydrodynamics of the TVB will be studied both experimentally and numerically with
an aim to reach the smallest scales that are feasible based on the available financial and
technological resources. It is worth noting that the cost increases exponentially as we reach
towards the smallest scales. Reaching the smallest scale is necessary for better estimation
of the VEDR, which could be the ideal parameter to relate with the animal cell death
(lethal impact) and/or injury (sub-lethal impact). Hence, the objectives of this thesis can
be described as:

a) Experimental study of the TVB with the aim of validating a numerical model
while achieving the smallest feasible spatial resolution to obtain the VEDR estimations
closest to the Kolmogorov micro-scale, and assessing the limitations of this 2D-PIV method.

b) Reaching the smallest scales require extra care, therefore, special attention will
be given towards the basic aspects, such as overlap ratio, ICS, time-step and higher order
gradients, of the PIV in order to ascertain their influence on the estimation of the VEDR
among other parameters such as fluctuating and mean velocity components.

c) The numerical study will be conducted with a CFD program named ANSYS-
Fluent, and validated with the experimental results obtained with the PIV method.

d) Under the numerical methodology, the limitations and advantages of the different
turbulence models will be evaluated, and the chosen turbulence models will be used to
study the hydrodynamics in detail, especially the VEDR.

e) An application of the numerical model will also be presented to study the impact
of changes in the geometrical configuration, namely off-bottom clearance area and outer
cylinders bottom shape of a Taylor reactor on its flow structure and its employment as a
bioreactor.
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2 Experimental Method - PIV

A 2D Particle Image Velocimetry (PIV) system measures instantaneous velocity
flow in a plane. The in-house built computer software program or the one provided by
the providers of the PIV system shows the vectorial velocity profiles in real time. The
principal behind the measurement is the simple relation that velocity = distance /time. In
this system, a sufficient amount of particles of very small size of ≈ 10-20 µm, are dispersed
in the fluid assuming that these particles will follow the fluid movement. These particles
are illuminated by a laser in a chosen plane in synchronization with a camera to capture
a double frame image. The movement of particles between these two frames divided by
the time-step between these two frames generates the velocity flow profile which can be
extracted and treated further to estimate the fluctuating components and the VEDR.

2.1 Description of case set-up

Generally, a TVB, consisting of two concentric cylinders, is characterized on the
basis of the rotation of one or both of the cylinders, resulting in the fluid motion due
to the: 1) rotation of only the inner cylinder; 2) co-current rotation of both cylinders;
and 3) counter-current rotation of both cylinders. Each of these types can be further
characterized on the basis of the radius ratios of both cylinders and aspect ratio of the
equipment. Radius ratio, ηrr, is the ratio of the inner cylinder radius, ri, to the outer
cylinder radius, ro, or ηrr = ri/ro and aspect ratio, Γ, is the ratio of cylinder length, L, to
gap width, b = ro − ri, and Γ = L/b. In addition, Taylor number and Reynolds number
also play a significant role in the classification of reactors in relation to the turbulence and
vortex structures that will be present.

The Table 2 presents the dimensions and geometrical characteristics of TVB used
in the PIV study, as shown in the Figure 2. Water at room temperature was used as the
working fluid. The analytical estimations for these rotational speeds, shown in Table 3,
were made using the (WENDT, 1933)’s correlation for estimating dimensionless torque-G
shown in Equation 2.1, as mentioned by (LATHROP; FINEBERG; SWINNEY, 1992).
These analytical estimations serve as the global estimates for this TVB configuration.

G =

 1.45 η
3/2
rr

(1−ηrr)7/4Re
1.5 for4× 102 < Re < 104

0.23 η
3/2
rr

(1−ηrr)7/4Re
1.7 for104 < Re < 105

(2.1)
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Tabela 2 – Dimensions and geometrical characteristics of the TVB used in the PIV system.

Parameters Value (dimensions)
Inner cylinder radius, ri 100 (mm)
Outer cylinder radius, ro 115 (mm)
Length of the reactor, L 200 (mm)
Gap width or distance between in-
ner and outer cylinder, b

15 (mm)

Off-bottom clearance(OBC) or the
height at which inner cylinder is
placed above the outer cylinder, c

0 (mm)

Radius ratio, η= ri
ro

0.87
Aspect ratio, Γ=h

b
13.3

Angular velocity, ω 3.14 to 11.94 (rad/s)
Rotational speed, N 30 to 114 (rpm)
Reynolds Nº, Re= riω(ro−ri)

ν
4700 to17900

Taylors Nº, Ta= r
1/2
i ω(ro−ri)3/2

ν
1825 to 6935

2.2 PIV set-up

The PIV system consists of a class IV Quantel Big Sky Laser (15 Hz and λ=532
nm), FlowSense EO 16 MPixel camera (4872 × 3248) provided by Dantec Dynamics using
a 60mm objective having a diaphragm aperture of f/2.8 to f/32 and a synchronization
system, shown in Figure 2. The black colored internal cylinder is made of PVC, and the
transparent external cylinder is made of Plexiglas. The camera was placed on the top of
the TVB to the capture the motion of particles in the X-Y plane. The XY plane is chosen
in order to capture the radial flow structures and radial gradients, which are assumed to be
the principal components of the VEDR in a TVB. Capturing these smallest possible scales
with regard to the radial gradients for a better estimation of VEDR is the main reason for
the usage of the 2D PIV measurements in the X-Y plane, instead of the 3D stereographic
or tomographic PIV study which would have provided the out-of-plane motion but at the
expense of the spatial resolution.

The first chosen location was dependent on the height at which the laser equipment
can be located to illuminate the chosen X-Y plane. Once the reactor and the laser equipment
were put into place in order to capture the closest feasible X-Y plane, the camera and
lens were focused in that respective plane. Between the camera and the chosen X-Y plane
lies the fluid above that plane, and the flat and transparent Plexiglas plate placed on the
top of the reactor. As the Plexiglas plate is flat and the motion imparted by the inner
rotating cylinder is purely tangential which spread radially towards the outer cylinder, the
perspective error in order to capture the tangential and the radial velocity components is
assumed to be negligible in this case.
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Figura 2 – PIV system consisting of the TVB, laser, camera, synchronization system and
computer.

The focusing of the camera in the respective plane is the first step of calibration,
which was achieved by using a quarter-circular flat plate of stainless steel with inner and
outer radius one mm smaller than that of the inner and outer cylinders. The top of this
plate was marked with horizontal and vertical lines one mm apart from each other forming
a one mm square grid. The camera was focused on this plate and the images were saved
in the computer program as calibration images. Then the second step for calibrating the
images was conducted by computing a scale factor on the saved calibrated images. This
scale factor was estimated by selecting two points on the saved images of the plate, and
the known distance between the two points was provided. This procedure allowed the
computer program to estimate the scale factor between the pixels and mm values along
with the clarity of the images in that particular plane.

Each further chosen location was 10 mm downwards which lead to a small decrease
in the spatial resolution for each further location. The five chosen horizontal locations are
between ZL= 0.725 ± 0.005 and 0.525 ± 0.005 with each approximately 10 mm apart
from one another. Silver coated glass beads and fluorescent Rhodamine particles of 10 and
20 µm size, respectively, were used as seeding particles. A time-step size of 75, 75, 150,
200 and 300 µs was used for the 114, 90, 70, 50 and 30 rpm, respectively, with the laser
sheet thickness of 1 mm. A total of 2500 image pairs were found to be more than sufficient
for each ω at five different horizontal locations to achieve the statistical convergence of
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Tabela 3 – Analytical estimations for the TVB used in the PIV system.

Parameters Value (dimensions)
114 (rpm) 90 70 50 30

Moment, τ = Gρν2h, where
G = 0.23 η

3/2
rr

1−ηrr

7/4
Re1.7, (WENDT,

1933)

0.022 (Nm) 0.015 0.01 0.006 0.003

Angular Velocity, ω 11.9 (rad/s) 9.4 7.3 5.2 3.1
Tip Speed, riω 1.19 (m/s) 0.94 0.73 0.52 0.31
Wall shear stress at inner wall,
τwi = τ/(2πr2

i h)
1.78 (N/m2) 1.19 0.78 0.46 0.21

Wall shear stress at outer wall,
τwo = τ/(2πr2

oh)
1.35 (N/m2) 0.9 0.59 0.35 0.16

Friction velocity at inner wall,
uτi =

√
τwi/ρ

0.042 (m/s) 0.035 0.028 0.021 0.015

Friction velocity at outer wall,
uτo =

√
τwo/ρ

0.037 (m/s) 0.03 0.024 0.019 0.013

uτi/riω 0.035 0.037 0.038 0.04 0.048
Global power, P=τω 0.27 (Watts) 0.14 0.07 0.03 0.01
Average VEDR, 〈ε〉 = P/(ρπ(r2

o −
r2
i )h)

0.132 (W/kg) 0.07 0.035 0.015 0.004

Average Kolmogorov’s micro-scale,
〈η〉 = (ν3/〈ε〉) 1

4

52.5 (µm) 61.6 73.0 90.5 124.5

Average Taylor’s micro-scale,
〈Λ〉 =

√
15νu2

i /〈ε〉
1.3 (mm) 1.4 1.5 1.7 1.9

VEDR at inner wall, εinnerwall =
u4
τi/ν

3.172 m2s−3 1.415 0.602 0.211 0.046

VEDR at outer wall, εouterwall =
u4
τo/ν

1.814 m2s−3 0.809 0.344 0.121 0.027

the second order fluctuating velocity components, namely u′2r , u
′2
θ and u′ru

′
θ, as shown in

Figure 3.

The acquired data was processed with an image acquisition system provided by
Dantec Dynamics, Dynamicstudio V4.0. The vector analysis was conducted using the
adaptive correlation with overlapping windows ranging from 0 to 75 % and ICS ranging
between 64 to 8 pixels squared for high resolution. The spurious vectors were removed
using range validation, and then these were replaced by moving average validation using
3 or 5 neighboring cells, in most cases 3 neighboring cells were used. In total, less than
2.9, 3.5, 4, 7.7 and 6.7 % percent of spurious vectors were replaced at the ZL = 0.725,
0.675, 0.625, 0.575 and 0.525 ± 0.005, respectively. The spatial resolutions based on these
aspects for the horizontal plan located at ZL = 0.725 ± 0.005 are presented in the Table 4.



2.3. Estimation of VEDR 47

Tabela 4 – Different ICS and overlap windows tested at ZL= 0.725 ± 0.005.

ICS Overlap window Spatial resolution in µm
64 0 546

32

0 273
25 205
50 136
75 68

16

0 136
25 102
50 68
75 34

8 0 68

2.3 Estimation of VEDR

The PIV measurements were taken in a horizontal plan in a location where U or u’
= Uθ or u

′
θ represents mean and fluctuating tangential component and V or v’ = Ur or

u
′
r represents mean and fluctuating radial component of the velocity. In this context, y

represents the radial directions and θ = tan−1(y/x) represents the tangential direction,
respectively, and were extracted as *.txt files from the image files using the Dantec Dynamic
program Dynamicstudio V3.31. These txt files for the experimental results were treated
with Matlab to create the gradients using the 2nd order central differencing approximation
of the first derivative, Equation 2.2, for the central elements. The boundary elements
being only at the inner and outer wall due to the usage of the 2nd order scheme were not
considered for the VEDR estimation.

f
′

i = fi+1 − fi−1

2h + E,E ∼=
1
6h

2(−f 3
i ) (2.2)

The gradients were estimated using the mean and fluctuating velocity components
using the cylindrical coordinates (SUBRAMANIAN, 2015). The VEDR derived from the
gradients of the mean and fluctuating velocity components are here-onwards termed as
the VEDR of the mean flow kinetic energy (MFKE) and TKE, respectively. These two
components of the VEDR are estimated directly from the Equations 2.3 and 2.4, albeit
only five out of 12 gradients are estimated from the PIV measurements in the x-y plane, as
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Figura 3 – Convergence statistics of moment of order one (a) and two (b) on a horizontal
plane located at ZL=0.725 and radially at Rb=0.082.

shown in Equations 2.5 and 2.6, respectively for the mean flow and turbulence components.
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2.4 Basic Aspects of PIV
Every basic choice in the utilization of PIV equipment has a significant impact on

the estimation of the finer quantities, such as VEDR. To estimate accurately the smaller
structures a very fine spatial resolution is required. The interesting aspect is that the actual
spatial resolution is known after the treatment of data, meaning that the concentration of
particles, size of particles and time-step between frames is decided by hit and trail method.
In addition, all these basic aspects are inter-related to each other. This section shows the
importance of these basic aspects in the estimation of the VEDR. All these aspects were
studied with the 114 rpm rotational speed unless otherwise stated.

2.4.1 Concentration of particles

Figure 4 shows the concentration of particles in a horizontal plane in the TVB
without a grid (4a) and with a 32 grid square (4b) at two different rotational rates of
114 rpm and 30 rpm. This figure presents two aspects related to the concentration of
particles: firstly, variation in the concentration with the change in rotational speed; and
secondly, variation in concentration with change in ICS. It can be seen that there are
lesser number of particles in the 30 rpm frame (the one in the front) in comparison to the
114 rpm (the one behind) in both parts a) and b). The reason behind this is the gradual



50 Capítulo 2. Experimental Method - PIV

sedimentation of particles with each decrease in the rotational speed from 114 rpm to
30 rpm. An improvement in the concentration may be required in order to attain a fine
spatial resolution as the rotational speed is decreased.

Figura 4 – Concentration of particles in a horizontal plane in the TVB at two different
rotational rates: 114 (the one behind) and 30 (the one in front) rpm without
grid (a) and with a 32 square grid (b).

The choice of ICS value is directly related to the concentration of particles in
the fluid. As mentioned earlier sedimentation leads to a decrease in the concentration or
reduction in the number of particles in each square grid of 32 pixels with many empty grids
as well. Empty grids generate spurious vectors which have to be replaced with the average
of surrounding cells. This is one of the reasons behind the noise in the data; thus, poor
concentration may lead to erroneous results, especially in the estimation of the smallest
scales. If a smaller grid is chosen, say square grid of 16 pixels, then these empty grids will
only increase requiring further substitution, in other words increasing noise in the data.
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2.4.2 Size of particles

Figure 5 presents the influence of particle size on the tangential mean velocity
components and its squared fluctuating velocity component located at Zh = 0.725 ±
0.005 using a time-step of 75 µs. Clearly the reduced particle size has not only improved
the tangential mean velocity component but also has a significant impact on its squared
fluctuating counterpart. Though there could be a slight difference of location of ± 1 mm
between the two particle size estimations, a probable reason behind slightly different profile
structures. Anyhow, in terms of the mean tangential velocity component, the estimations
of the 10 µm particle size were completely identical for all four of the ICS values; whereas,
for the 20 µm particle size the structures for the four ICS values had some slight differences
and a little bit of noise as well. The noise becomes more pronounced for the 20 µm particle
size in the estimation of the squared fluctuating tangential velocity component in addition
to another problem of doubling of the magnitude with each decrease in the ICS value. The
magnitude increases two times when the ICS value is decreased from 64 to 32 and from 32
to 16 and so on. This increase is not practical, and this lead to this study of understanding
the influence of particle size on the estimation of the flow parameters.

Size of particle is important in order to attain the optimum concentration to attain
a fine spatial resolution. The smallest available true spatial resolution is the one with
overlap zero is 16 square grid leading to a spatial resolution of 136 µm (Table 4). An
important point to note is that the 8 grid structure is actually adapted from the 16 grid
structure; therefore, 16 square grid is considered as the smallest true spatial resolution
available in this study. As per general guidelines, around 5 particles per square grid are
considered an optimum concentration. Fitting five particles of the size of 20 µm in grid size
of 136 µm is practically very difficult and may result in agglomeration of particles which
will hinder further the estimation of smaller scales. Hence, based on this understanding
the particle size was reduced from 20 µm to 10 µm, and a drastic improvement was seen
in the estimations of squared fluctuating tangential velocity component (Figure 5b).

It can be seen that the magnitude variation between the 64, 32 and 16 square grids
is very small with only slight improvements in magnitude and increase in the total number
of data points. Moreover, there was very little noise in the data which in comparison to
the estimations of the 20 µm is practically unnoticeable. The results of the ICS 8 square
grid for the 10 µm particle size were considered unpractical in similarity with the results
of the 32, 16 and 8 square grid for the 20 µm particle size. The 8 square grid has a spatial
resolution of 68 µm, which implies that fitting five particles of 10 µm size in 68 µm will
be a challenging proposition as in the case of the 20 µm particle size. Particles of size
between 2-3 µm are required in order to achieve correct estimations for the 68 µm spatial
resolution. However, due to limited time and financial resources it was not possible to use
extremely costly particles of mean diameter of 2-3 µm.
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Figura 5 – Impact of particle size on the estimations of mean tangential velocity (a) and
squared fluctuating velocity (b) for the horizontal plane located at Zh = 0.725
± 0.005.
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2.4.3 Time-step between frames

First of all, time-step is the difference in the time between a double frame image.
A double frame image is necessary in order to estimate the movement of particles within
that time-step from the first frame to the second. Depending on the fluid flow conditions
and the chosen spatial resolution, the time-step should be small enough to capture the
movement of particle from the first frame to the second. As per general guidelines, the
movement of particle covering 1/4th of the ICS is considered sufficient. However, when the
time-step is very small of the order of 100 µs, it becomes necessary to choose time-step
wisely. In this case, we studied four different time-steps within the range of 50 to 200 µs.

In the Figure 6, the influence of the time-step on the mean tangential velocity and
squared fluctuating velocity component is shown. As in the case of the particle size, there
is practically no influence of the time-step on the mean tangential velocity component.
On the other hand, in the case of squared fluctuating tangential velocity component,
the impact is significant on both the noise and magnitude value. With each decrease in
the time-step from 50 towards 150 µs, the noise is reduced drastically and so does the
magnitude. The results for the 150 and 200 µs are very similar with little noise.

These estimates of four different time-steps conducted with the 20 µm particle
size were compared with the particle size of 10 µm using time-step of 75 µs, to compare
with the better estimates obtained with the 10 µm particles. The estimations of the 10
µm particles were found to be very similar with the one using 150 µs time-step for the
20 µm particles. This suggests that the size of particle also plays a significant role in the
determination of the time-step. The time-step size for the 20 µm particles is double that
for the 10 µm particles to obtain valid results. It should be noted that the slight variation
in the profile structure is most probably due to difference of location of ± 1mm between
the profile structures for the two different particle sizes.

To study further this effect of the particle size on the time-step, Figure 7 presents
the estimations of the dimensionless VEDR of mean flow kinetic energy for the two particles
sizes located at Zh = 0.725 ± 0.005. In the x and y axis of the Figure 7, the shear velocity,
uτ i, and the VEDR, εinnerwall, at the inner wall are the analytical estimations mentioned
in the Table 3.

It can be seen that smaller the time-step is, higher the estimation of the VEDR
becomes in the case of 20 µm particles. The squared fluctuating tangential velocity
estimations for the 50 µs time-step were unpractical, and those estimations for the 150
and 200 µs time-step were of similar magnitude. However, this is not the case for the
estimation of the VEDR where the 150 µ time-step estimations are higher in magnitude in
comparison to those of the 200 µs time-step. On the other hand, the estimations of the 10
µm particles at 75 µs time-step are even better in the boundary layer area and the bulk
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Figura 6 – Impact of time-step on the estimations of mean tangential velocity (a) and
squared fluctuating velocity (b) for the horizontal plane located at Zh = 0.725
± 0.005 using particle size of 20 µm.
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Figura 7 – Influence of the time-step and particle size on the VEDR of mean flow kinetic
energy.

zone of the inner cylinder. This clearly demonstrates the need of the smaller time-step and
particle size for improved predictions of not only the fluctuating velocity components but
also the VEDR; thus, making the 10 µm particle size as the preferred choice for this study
and 75 µs time-step for the 114 rpm rotational speed. Based on this rationale, time-step
for the other rotational speeds was chosen.

2.4.4 Choosing overlap & ICS

The interrogation cell size (ICS) value is the initial grid structure in which the
flow domain is divided to obtain the velocity vectors. Smaller the ICS value is, finer the
grid structure becomes generating the smallest feasible spatial resolution. To estimate
the velocity vectors, the double framed image is interposed on each other to observe the
movement of particle from one frame to another. When interposing the two frames if
no adjacent areas are used, then it is termed as the zero overlap ratio and the spatial
resolution is equivalent to the basic grid structure of the ICS. However, if the adjacent area
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is used, usually between 25, 50 and 75 %, then the number of data points are increased
for each increase in the adjacent area from 25 to 75 % leading to smaller spatial resolution
for each increase in the overlap ratio. Contrary to the ICS value, higher the overlap ratio
smaller the spatial resolution becomes; therefore, we see a spatial resolution of 68 µm at
32, 16 and 8 ICS with an overlap of 75, 50 and 0 respectively, as shown in the Table 4. It
is important to note that the different overlap ratios use the same initial grid structure.

The 64 pixels square grid at zero overlap ratio is the coarsest grid with a spatial
resolution of 546 µm with least number of data points. Although, the spatial resolution
of 546 µm is more than two times finer than the Average Taylor’s micro-scale of 1.3 mm,
such fewer points leads to comparatively poor estimation of even the mean tangential
velocity components near the inner and outer boundaries, as shown in Figure 8. A higher
overlap ratio was not tested for the 64 pixels square grid due to the coarseness of the basic
grid structure, and the objective of studying the smallest scales which would have been
feasible only with smaller ICS values. Additionally, such fewer data points do not allow
studying the boundary layer area in detail.

Figura 8 – Radial profile of mean tangential velocity at different overlap ratios and ICS
values at ZL = 0.725 ± 0.005.

The results for the mean tangential velocity profile becomes independent of the
ICS from 32 pixels squared onwards or 273 µm; in other words, at higher ICS values
the flow structure may not be the actual representation while the lower ICS values will
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not provide any improvement in the estimation for the mean velocity components. If the
estimations of the grid are independent, then the overlap ratio also should not influence
the predictions of the mean tangential velocity component, which can be clearly seen in
the Figure 8. The only advantage of using the overlap ratio for the estimation of the mean
velocity component is to increase the number of data points in the boundary layer area,
where lay the steepest gradients and could be beneficial in the prediction of the gradients
of the mean flow components of the VEDR.

The estimation of the squared fluctuating tangential velocity component (Figure
9) also shows slight improvement in its estimation for the smaller ICS values and for
higher overlap ratios in the boundary layer area. It should be noted that the estimations
for the 8 ICS pixels square grid are considered inaccurate, hence not presented in the
VEDR estimations. This inaccuracy arises due to the practical impossibility of achieving
a good concentration of particles of the size10 µm per square grid of 68 µm. Resulting
poor concentration generates many empty grids which are replaced by the average of
surrounding particles and most of the grids with only one or two particles which in turn
generates poor estimation of the turbulence with a lot of noise in the data. As per general
guidelines, around 5 particles per square grid are considered an optimum concentration to
generate a good velocity vector. Smaller particles of the size of 2-3 µm which could have
been ideal for the 8 ICS square grid were not tested due to their extremely high cost. The
experimentation with 20 µm particle size lead to discovery of this error, as can been seen
in the Figure 5b. The estimations for the particle size 20 µm doubled for each decrease
in the ICS value from 64 to 32 to 16 to 8 due to poor concentration of particles of even
bigger size in similar spatial resolutions. Additionally, the results of the 16 ICS value were
found to be slightly better than those of the 32 ICS value near the walls. The estimations
of the 50 % overlap were very similar to those of the 75 % near the boundary layer, and
with much less noise in the bulk zone.

In terms of the viscous dissipation of mean flow kinetic energy estimated from the
gradients of the mean velocity components (Figure 10), an improvement can be seen in
the estimation for both the overlap ratio and ICS value in the boundary layer area. An
increase in the noise can be seen with increase in the overlap ratio for the 16 ICS with
significant amount of noise for the overlap ratio of the 75 % in the bulk zone. The 16 ICS
Overlap 75 have a spatial resolution of 34 µm, respectively, which is far too small for the
particle size of 10 µm to have good concentration of particles, which consequently leads
to this increased amount of noise in the estimation of the small magnitude values of the
viscous dissipation of mean flow kinetic energy present in the bulk zone. The fluctuating
tangential velocity component at 16 ICS Overlap 75 also presented significant amount of
noise, as shown in Figure 9, which will only become worse for an even finer estimation of
the VEDR; consequently, the 16 ICS Overlap 75 has not been presented for the viscous
dissipation of turbulent kinetic energy estimated from the fluctuating velocity components.
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Figura 9 – Radial profile of squared fluctuating tangential velocity at different overlap
ratios and ICS values at ZL = 0.725 ± 0.005.

Interestingly, the 16 ICS Overlap 50 and 32 ICS Overlap75 have a spatial resolution of 68
µm each, respectively, but the amount of noise is much less as can be seen in Figure 11.
The less noise in the 32 ICS Overlap 75 in comparison to the 16 ICS Overlap 50 indicates
that higher base grid structure helps in maintaining a better concentration of particles per
square grid.

The prediction of viscous dissipation of turbulent kinetic energy (Figure 12) is
higher for each reduction in the ICS value and increment in the overlap ratio. At the
overlap ratio of zero, the magnitude increases by almost an order in the bulk zone for each
decrease in the ICS value. While, for a constant ICS value, each increment in the overlap
ratio predicts gradual increment in the magnitude of the viscous dissipation of turbulent
kinetic energy through-out the reactor. This is the first instance where the increase in
the overlap ratio has such a significant impact on the magnitude of the variable. It seems
logical that with each decrease in the ICS value, smaller scales of turbulence are being
captured.

Tokgoz et al. (2012) also observed similar observations of continual increase in
their VEDR estimation for each decrease in the ICS or IW (interrogation window) as
shown in Figure 13. It can be seen that with decrease by half in the IW values, i.e.
from 160 to 80 to 40 IW, of the Tokgoz et al. (2012), the increase in the estimation of
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Figura 10 – Radial profile of the viscous dissipation of mean flow kinetic energy at different
overlap ratios and ICS values at ZL = 0.725 ± 0.005.

VEDR is quite significant, in similar aspect of the results presented in this study. The
difference is that their magnitude values are much lower due to their much courser spatial
resolution (smallest resolution of 391 µm) for similar Reynolds number, and they used
the instantaneous velocity components for the prediction of their VEDR. Such gradual
increase generates another question if there is still under-prediction in the estimation of
the viscous dissipation of turbulent kinetic energy. To resolve this question, the impact of
the spatial resolution on the viscous dissipation of turbulent kinetic energy is presented in
Figure 14. The data presented in the Figure 14 is shown in the Table 5.

First of all, it is important to understand the information that is being presented in
the Figure 14 and Table 5. This data is presented only for one horizontal location because
εt,max is different at each horizontal location and will generate significant amount of noise
in the data. Ideally for the purpose of statistics, a mean value of the εt,max over the axial
length should be considered for each and every rotational velocities at different ICS and
overlap ratios, but is not possible in this case. Presently, only in the case of 16 ICS overlap
50, there is access to the mean value of the εt,max over the five horizontal locations and is
equal to 0.66 which is very close to the value of 0.77 located at ZL= 0.725 ± 0.005.

This work was derived from the work of Delafosse et al. (2011), where they presented
similar data for the stirred rank reactor and used the variable εmean/N3D2 instead of
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Figura 11 – Radial profile of the viscous dissipation of mean flow kinetic energy at different
overlap ratios and ICS values at ZL = 0.725 ± 0.005.

Tabela 5 – Dimensionless Spatial resolution,δ/〈η〉, for different rotational velocities, ICS
values and overlap ratios located at ZL= 0.725 ± 0.005.

Rotational speed, rpm ICS Overlap window δ/〈η〉 εt,max/εinnerwall

114

64 0 10.4 0.012
32 0 5.2 0.029
16 0 2.6 0.1
16 50 1.3 0.77

90 32 50 2.2 0.15
16 50 1.1 0.71

70 32 50 1.87 0.25
16 50 0.94 0.93

50 32 50 1.5 0.38
16 50 0.75 1.57

εt,max/εinnerwall. εt,max is used in this study because Delafosse et al. (2011) extracted the
mean from the impeller discharge region where the dissipation rate is maximum and far
greater the mean dissipation rate values. N3D2 represent the maximum value that can be
achieved based on the tip of the impeller, and in similar aspect εinnerwall is used which
represent the maximum value that can be attained on the inner boundary in the TVB.
Additionally, it is important to note that the εinnerwall is a global average, so there will be
regions in a Taylor vortex where the local value will be higher than this and other regions
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Figura 12 – Radial profile of the viscous dissipation of turbulent kinetic energy at different
overlap ratios and ICS values at ZL = 0.725 ± 0.005.

where it will be lower.

Delafosse et al. (2011) described the evolution of the dissipation rate of the turbu-
lent kinetic energy with respect to the dimensionless spatial resolution as a power law:
εmean/N

3D2 = a(δ/〈η〉)−b, where a = 0.69 and b = 1.15 for the stirred tank reactor. Based
on this rudimentary study, a similar power law is obtained for this TVB as shown in
Figure 14: εt,max/εinnerwall = a(δ/〈η〉)−b, where a = 0.84 and b = 1.93. In the Table 5, it
can be seen that the dimensionless spatial resolution is around 1.3, 1.1, 0.94 and 0.75 for
the rotational speeds of 114, 90, 70 and 50 rpm, respectively, but the εt,max/εinnerwall is
more than one only in the case of the rotational speed of 50 rpm. Considering the case
that there should be several locations where the local VEDR value will be higher than the
global estimate, it can be confirmed that there is still some under-estimation of the viscous
dissipation of turbulent kinetic energy at higher rotational speeds, especially the 114 rpm.
In terms of the percentage of under-estimation, based on the study of Saarenrinne e Piirto
(2000), who stated that the dissipation rate corresponds to 90 % of the exact value if the
spatial resolution is around 2η, the present study must be under-estimating by less than
10%, considering the global average value of 52.5 µm for the Kolmogorov scale (Table 3).
Further refinement in the size of particles and/or technological enhancements can shed
further clarity on this subject.
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Figura 13 – Figure no 20 of Tokgoz et al. (2012) presenting dissipation rate estimations
for changing interrogation window sizes (IW) for Res=14,000 with exact
counter-rotation of cylinders. 75 % overalap ratio was used for all IWs.

Figura 14 – Influence of the dimensionless spatial resolution of the maximum viscous
dissipation of turbulent kinetic energy estimated at ZL = 0.725 ± 0.005 for
different rotational speeds at different ICS and overlap ratios.

Overall, the 16 ICS square grid presented the best acceptable results among the four
grids that were tested. For this grid structure, the 75 % overlap was found to present a fair
amount of noise in the prediction of much finer quantities, i.e. the fluctuating tangential
velocity component and the two components of the VEDR. Therefore, the 50 % overlap
ratio was accepted as the chosen overlap ratio for the rest of this study. Similarly, 16 square
grid was chosen as the ICS value for the rotational speed of 90, 70 and 50 rpm; whereas,
for the rotational speed of 30 rpm the 32 square grid was found to be the optimum value.
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2.5 Results and discussion

The results, until unless mentioned otherwise, are presented with the particles of
size 10 µm at 16 ICS and 50 % overlap ratio.

2.5.1 Mean velocity flow field

The tangential and radial velocity profiles at five rotational velocities are presented
in Figures 15, 16, 17, 18, 19, respectively. First of all, due to a technical problem the motor
became unstable at values lower than 40 rpm for the rotational speed of 30 rpm at the
horizontal locations of ZL= 0.575 ± 0.005 and ZL= 0.525 ± 0.005. Secondly, 114 rpm was
the highest limit of the motor which is the one and only reason for choosing this value.

Kobayashi et al. (1990) presented these two components of the velocity in three
regions of a Taylor-vortex in their experimental results, and observed similar flow structures.
These three regions best describes the structure of a Taylor vortex pair, the extreme ends
of the vortex pair, center of each vortex, and the center of the vortex pair. At the center
of a vortex pair, termed as outward for describing its profile structure, the flow is moving
from the inner rotating cylinder towards the outer stationary cylinder where it divides into
two opposite vortexes of same size. When the flow reaches the extreme ends of each vortex
pair, the flow starts diverging towards the inner rotating cylinder from the outer cylinder,
hence termed as inward. Finally, each vortex of the pair has a center termed as center.
The rest of profile structures lie between the outward and inward region but with profile
structures similar to that of the center of vortex region, as observed by Kobayashi et al.
(1990). It is very important to note that the results presented here may not necessarily
show these three exact regions but the closest among the available five horizontal locations
for the presented rotational velocities.

In the case of mean tangential velocity, the outward region is marked by the
strongest flow profile and the weakest flow profile represents the inward region. The center
of vortex region is represented by the flow profile with fairly constant flow in the bulk
region, Rb = 0.1 to 0.9, with a magnitude of around 50 % of the tip velocity. The strength
in the outward region is imparted by the rotating inner cylinder, while the weakness in the
inward region is caused by the deceleration of the fluid by the outer wall ((KOBAYASHI et
al., 1990)). In the bulk zone of the center of vortex region, the magnitude of the tangential
velocity increases slightly but gradually moving from the inner cylinder towards the outer
cylinder. Kobayashi et al. (1990) cited that the reason behind this is the phenomenon of
uniformity in the circumferential velocity induced by convection of the secondary flow.
This phenomenon states that the velocity profiles apart from the ones in the outward
and inward region are very similar to the one in the center of vortex region which was
also observed by Kobayashi et al. (1990). Overall, in the boundary regions there is sharp
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Figura 15 – The tangential (a) and radial (b) velocity flow profiles at 114 rpm.
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Figura 16 – The tangential (a) and radial (b) velocity flow profiles at 90 rpm.
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Figura 17 – The tangential (a) and radial (b) velocity flow profiles at 70 rpm.
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Figura 18 – The tangential (a) and radial (b) velocity flow profiles at 50 rpm.
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Figura 19 – The tangential (a) and radial b) velocity flow profiles at 30rpm.
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decrease in the velocity, and in the bulk zone the flow remains in the vicinity of 0.5
magnitudes, i.e. 50 % of the tip velocity.

For the mean radial velocity, the outward and inward flow structures are opposite
of each other represented by the upward and downward parabolic curves, respectively.
While, in the center of the vortex region both of these profiles should cancel each other
out and attain a zero magnitude. The center of the vortex region has been captured
mostly well by all of the representing rotational velocities for both radial and tangential
components of the velocity at the axial locations of ZL = 0.675, 0.675, 0.675, 0.525 and
0.725 ± 0.005 for the rotational speeds of 114, 90, 70, 50 and 30 rpm, respectively. The
best inward region profiles for these two components were obtained at the 30, 50 and 70
rpm, as shown in Figures 19b, 18b and 17b at axial locations of ZL = 0.675, 0.725 and
0.625 ± 0.005, respectively; though, each at different horizontal locations, which clearly
indicates variations in the height and location of the Taylor’s vortexes with the variation
in the rotational speed. On the other hand, the closest profile for the outward region
was captured only at the rotational speed of 114 rpm (Figure 15a) at the axial height
of ZL = 0.625 ± 0.005 with a distinct second at 90 rpm (Figure 16a) also for the axial
location of ZL = 0.625 ± 0.005. This poor prediction of the outward region in comparison
to the inward and center of vortex region lies in the fact that there are two inward and
center of vortex regions for only one outward region for each Taylor-vortex pair. This lower
probability for the outward region is considered the main reason behind the absence of
this region for the rotational speeds of 30, 50 and 70 rpm (Figures 19a, 18a and 17a).

It is of great interest to note that the magnitude of the radial component of the
velocity is only around 10 % of the tangential component (Figures 19b, 18b and 17b), in
agreement with Kobayashi et al. (1990). Secondly, the steepest gradient of the tangential
component velocity lie in the boundary layer area. This could imply that more than 80 % of
the kinetic energy and its dissipation are represented only by the tangential component of
the velocity in the boundary layer area. This aspect will be studied later on to understand
the percentage impact of each of the five gradients on the VEDR. Another interesting
observation is that the 80% of the cylinder width, the bulk zone, is represented by only 50
% of the magnitude of the flow with very little variation as far as the tangential component
is concerned. This could turn out to be a significantly influential in terms of culturing
animal cells because of similar flow conditions with very little gradients in the major part
of the TVB.

2.5.2 Logarithmic velocity profiles

In a Taylor-Vortex reactor, the RANS equation in cylindrical coordinates can
be written as in Equation 2.7. For a steady state and assuming that the axial velocity
component is negligible and the tangential velocity component depends only on the radial
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position, the present case can be simplified to the Equation 2.8. In the center of vortex
region, the radial velocity component, Ur, is negligible, which further simplifies to the
Equation 2.9, and which on expansion gives Equation 2.10. From the Equation 2.10, the
total viscosity, i.e. the sum of molecular and turbulent, can be extracted as shown in
Equation 2.11.
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The profiles of this total viscosity at different rotational speeds is presented in
Figure 20 in the center of vortex region. The limit of this simplified approach can be
observed at the rotational speed of 30 rpm. It can be clearly seen that the data exhibit a
similar trend which can be modeled by the Equation 2.12.

1 + νt

ν
= ((r+ − r+

i )uτi/ν)2

102 (2.12)

From the Equation 2.12, an analytical expression of the velocity can be derived
by injecting the non-dimensional variable, r+ = ruτi/ν, r+

i = riuτi/ν and U+
θ = Uθ/uτi

to obtain Equation 2.13. On integrating the Equation 2.13, a new equation for the mean
velocity profile, Equation 2.14, is obtained with a constant C, where this constant C is
found to be inversely proportional to r+

i , as shown in Figure 21. In the Figure 21, it can be
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Figura 20 – The total viscosity at different rotational speeds in the center of vortex region.

seen that the constant C= 15/r+
i , which gives us the expression of velocity in the Equation

2.15.
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Based on the expression presented in Equation 2.15, the logarithmic profile of the
velocity is presented in Figure 22 in the center of vortex region for the four rotational
speeds. The rotational speed of 30 rpm is not presented because of its poor representation
of the total viscosity in the Figure 20. Clearly it can be seen that in this case, the velocity
structure clearly follows the new expression of log law after the viscous sub-layer. Most of
the studies (BILSON; BREMHORST, 2007; HUISMAN et al., 2013; PONCET; VIAZZO;
OGUIC, 2014) regarding the logarithmic law of the wall have used the classical expression
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Figura 21 – The evaluation of the constant C presented in the Equation 2.14.

of the type u+ = 1/κln(d+) +B. Near the walls in the viscous sub-layer till d+ =10, the
velocity follows a profile of u+ = d+, then there was huge buffer region till d+ =100, as
mentioned by Poncet, Viazzo e Oguic (2014) and which can be observed in the study of
Huisman et al. (2013). The classical expression of log-law was obeyed only after d+=100,
which becomes negligible for the lower range of turbulent Reynolds no.

In the present case, the log-law is obeyed as soon as the viscous sub layer is finished
at d+=10. With each increase in the Reynolds number, the new log-law is obeyed better.
The application of this new law at even higher Reynolds numbers, the range used in the
study of Huisman et al. (2013), can prove the worth of this law.

2.5.3 Reynolds stresses

2.5.3.1 Normal stress

In Figures 23, 24, 25, 26 and 27, the second order mean fluctuating components of
the velocity also known as Reynolds normal stresses, namely u′2r and u′2θ are presented for
the five rotational velocities at five horizontal locations apart from the rotational speed of
30 rpm, for which only three horizontal locations were available. The profile structures of
the Reynolds normal stresses, u′2θ and , u′2r , presented here qualitatively coincide well with
those of the Kobayashi et al. (1990). However, the magnitudes of these stresses, u′2r and
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Figura 22 – The log-law profile of the velocity in the center of vortex region of the inner
cylinder boundary layer.

u
′2
θ , in comparison with the results of Kobayashi et al. (1990) are significantly higher in

the boundary layer and at-least double in the bulk zone.

The closest profile structures for the three regions, outward, inward and center of
vortex region, can be observed only for 114 rpm rotational speed,as mentioned earlier. The
basic difference between the profile structures for these three regions lie in the bulk zone
for the normal tangential stress. In qualitative agreement with Kobayashi et al. (1990), the
flow structure in the outward region is slanted decreasing gradually from the inner cylinder
towards the outer cylinder and contrary in the inward region, i.e. gradually decreasing
from the outer cylinder towards the inner cylinder. In the center of vortex region, the
magnitude remains practically constant through-out the bulk zone. The profile structures
of the center of vortex and inward regions can be seen in all of the rotational speeds
(Figures 23a, 24a, 25a, 26a and 27a). The inner boundary layer of the normal tangential
stress is marked by steep peaks near the wall; whereas, in the outer boundary layer the
peaks are much smaller in comparison. This is the result of the fact that the maximum
for the mean tangential velocity always lies on the inner cylinder with steep decreases in
both boundary layers but with little variations in the bulk zone (Figure 15). Therefore,
boundary layers are marked by steep gradients compared to the ones in the bulk zone.
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Figura 23 – The tangential (a) and radial (b) normal stress profiles at 114 rpm.
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Figura 24 – The tangential (a) and radial (b) normal stress profiles at 90 rpm.
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Figura 25 – The tangential (a) and radial (b) normal stress profiles at 70 rpm.
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Figura 26 – The tangential (a) and radial (b) normal stress profiles at 50 rpm.
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Figura 27 – The tangential (a) and radial b) normal stress profiles at 30rpm.
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The magnitude of normal radial stress, equivalent of the minimum of the normal
tangential stress, is very similar in the bulk zone and the boundary layer area in the three
regions, the difference is minimal. The magnitude difference among the three regions is
also small but highest for the outward and inward regions and near the lowest in the center
of vortex region, in qualitative agreement with Kobayashi et al. (1990). The disparity
with the results of the Kobayashi et al. (1990) lies in the magnitude values for these two
squared fluctuating components. Kobayashi et al. (1990) observed that the maximum of
the normal radial stress is around 60 % of the normal tangential stress with the maximum
value for the normalized normal tangentital stress being 0.002, normalized with U2

tip. While,
in present study the maximum normalized normal tangential stress value is more than five
times higher, also normalized with U2

tip, and the maximum of normal radial stress is less
than 20 % of the normal tangential stress.

Hout e Katz (2011) also presented these normal stress terms but for counter-rotating
Taylor-Couette flow. It should be noted that they normalized the rms values of radial and
tangential fluctuating velocities with the friction velocity instead of the tip velocity as in
this case. Moreover, there range did not cover the boundary layer on the outer cylinder,
and the location within the vortex at which these profiles are presented is not specified. For
the normal tangential stress, they observed a similar structure as in the outward region, a
peak near the inner boundary layer then gradual decrease towards outer cylinder in the
bulk zone.

2.5.3.2 Shear Stress

Figures 28, 29a, 29b, 30a and 30b present the Reynolds shear stress, namely u′ru
′
θ,

for the five rotational velocities at five horizontal locations apart from the rotational speed
of 30 rpm, for which only three horizontal locations were available. Both the magnitude
and the structure of the shear stress, u′ru

′
θ, is similar to the estimations of the Kobayashi

et al. (1990), but of opposite sign. The opposite sign just implies that the location of
extraction of data is different. The higher magnitude of the tangential component has a
significant impact on the structure of the tangential-radial shear stress term. There is a
peak near the inner wall and then a gradual decay towards the outer cylinder, similarly
observed in Kobayashi et al. (1990) in the outward region. In the inward region, the peak
is towards the outer cylinder with a gradual decay towards the inner cylinder, and in the
center of vortex region this shear stress term is of near zero magnitude through-out the
bulk zone.

This shear stress term was also presented by Hout e Katz (2011), and they norma-
lized by using both the tip velocity and friction velocity at the inner cylinder. Looking at
there Figure 13(a) for the shear stress term u′ru

′
θ normalized by tip velocity, a similarity

can be seen in the outward flow profile of the same term at 114 rpm (Figure 28). Among
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Figura 28 – The Reynolds shear stress, u′ru
′
θ, profiles at 114rpm.

the profiles for different rotational speeds, after 114 rpm only 90 rpm has these three
regions distinguished. At all other rotational speeds, only center of vortex and inward
region can be seen among the five horizontal locations. This is clearly a disadvantage
of the experimental method with data available at very few locations in addition to the
uncertainty of exact location of extraction of data.

2.5.4 Viscous energy dissipation rate

2.5.4.1 Composition of the VEDR

In the Figures 31 and 32, the five gradients of the VEDR estimation of the mean
flow and turbulent kinetic energy, respectively, are presented for the horizontal location of
ZL= 0.725 ± 0.005. It can be clearly seen that the viscous dissipation of mean flow kinetic
energy is mainly composed of only the (∂(Uθ/r)

∂r
)2 gradient, while in the case of viscous

dissipation of turbulent kinetic energy the gradient, (∂(uθ ′/r)
∂r

)2, is the major contributor
especially in the boundary layer area, and in the bulk zone its contribution is similar to
the other gradient of the radial direction. Although, there are only five gradients instead
of 12 for the complete estimation of VEDR, it is known that the axial velocity is also not
very strong in the Taylor- Couette flow. The impact of axial flow on the VEDR could be
considered to be similar to that of the radial flow, i.e. in the bulk zone and very little
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Figura 29 – The Reynolds shear stress, u′ru
′
θ, profiles at 90 (a) and 70 (b) rpm.



82 Capítulo 2. Experimental Method - PIV

Figura 30 – The Reynolds shear stress, u′ru
′
θ, profiles at 50 (a) and 30 (b) rpm.
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in the boundary layer. Thereby further enhancing the importance of the gradient of the
tangential (both mean and fluctuating) velocity component in the radial direction in the
estimation of the VEDR. In other words, capturing the propagation of the velocity in the
radial direction is of utmost importance in order to estimate well the mean and turbulence
components of the VEDR, especially in the boundary layer.

Figura 31 – The estimation of VEDR of mean flow kinetic energy and its 5 gradients at
ZL= 0.725 ± 0.005.

The estimation of the VEDR using the isotropic assumptions based on the work
of Sharp e Adrian (2001) would imply that the ((∂u

′
θ
/r)

∂r
)2 gradient is used 3 times, and

for the axi-symmetry assumption this gradient would be used two times. Hence, we could
observe a direct impact on the estimation of VEDR using these assumptions leading to an
estimate which is just a multiple factor of the one with only five gradients through-out
the gap-width. Just because the estimation will be higher does not necessarily means that
it will be the correct estimation. The composition of the VEDR of the mean flow and
turbulent turbulent kinetic energy (Figures 31 and 32) showed that using an assumption
based methodology which worked in the case of stirred tank (DELAFOSSE et al., 2011)
may not be as successful in other geometries. Taylor-Couette is basically a tangential flow
and radial flow is only about 10 % of the tangential flow. Axial flow should also be in
the range of radial flow (KOBAYASHI et al., 1990). Therefore, for better estimation it is
important to know the percentage composition of each of the 12 gradients on the VEDR,
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Figura 32 – The estimation of VEDR of turbulent kinetic energy and its 5 gradients at
ZL= 0.725 ± 0.005.

afterwards a newer and simpler equation can be created for 2D PIV results. Perhaps, this
can be done numerically because experimentally the estimation of all 12 gradients while
capturing the smallest scales is still out of reach as shown by Tokgoz et al. (2012).

There is another similarity between these two components of the VEDR, the
magnitude of the gradient of radial fluctuating velocity component is same for both, radial
and tangential, directions. This aspect of viscous dissipation of turbulent kinetic energy
is more important as it confirms that the turbulence is not fully isotropic, and further
confirmed by the fact that none of the isotropy ratios, Kijkl, are equal to 1, as shown
in Figure 33. The fully isotropic hypothesis implies that the following equations (2.16,
2.17 and 2.18) of the isotropic ratios (Kijkl) are respected (DUCCI; YIANNESKIS, 2005;
DELAFOSSE et al., 2011).
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Figura 33 – Comparison of isotropy assumptions on radial profiles at ZL= 0.725 ± 0.005.

It can be seen in the Figure 33 that none of these ratios exhibit values close to 1,
in-fact most of the ratios exhibit values closer to zero. The cross product gradient, term
Kijji, and the ratio Kjjjj show the maximum departure from isotropy with a mean value
of 0.0047 and 0.0003, respectively. Only one of the isotropy term Kijij has a value of 0.5 in
the bulk zone, the gradient of the tangential fluctuating velocity component in the radial
direction; while, the other isotropy term Kijij displayed departure from isotropy with a
mean value of 0.0007.

As per authors knowledge, this kind of isotropic study has not been conducted
before in the TVB. Though, in the stirred tank Sharp e Adrian (2001), Ducci e Yianneskis
(2005), Delafosse et al. (2011) have presented work on these isotropy ratios, and there
are some similarities with their work. Their cross product term also exhibited maximum
deviation from the isotropy, and their term Kijij also had a value of ≈ 0.5. The difference
is that their Kjjjj ratio was closer to 1 in contradiction to this study. Additionally, Ducci
e Yianneskis (2005) had access to the 9 mean squared gradients through their multi-point
LDA study and Delafosse et al. (2011) conducted 2D-PIV study in three different planes
in order to capture all of the gradients but in different locations and spatial resolutions.
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The spatial resolution also has a significant impact on the Kijkl ratios in complete
agreement with Delafosse et al. (2011), as shown in the Figure 34. These averaged ratios
were conducted on the horizontal plane located at ZL= 0.725 ± 0.005 for the various
ICS and overlap ratio mentioned in Table 4. At spatial resolutions far greater than the
Kolmogorov scale, the averaged value of the Kijkl ratios increases slightly, in similar
observation of Delafosse et al. (2011). As mentioned by Delafosse et al. (2011), the reason
behind this anomaly is that there are lesser number of data points at higher spatial
resolutions which lead to comparatively higher average in comparison to the lower spatial
resolutions.

Figura 34 – Variation in the Kijkl ratios influenced by the dimensionless spatial resolution
for the radial profiles located at ZL= 0.725 ± 0.005.

Another interesting observation is that there are two different values for the Kijkl

ratios at value near to 1 of the x-axis. These two different values for the same dimensionless
spatial resolutions are for the 32 ICS Overlap 75 (higher value) and 16 ICS Overlap 50
(lower value). Although, the spatial resolution obtained is same through different overlap
ratios, the higher base grid structure ICS of 32 is courser than the 16 ICS and therefore
captures comparatively less information. This confirms further the importance of the ICS
value in relation to the overlap ratio. Main aim of the overlap ratio is to increase the
number of data points. True estimation comes from the base grid structure, which presently
is hindered by both cost and technological development; for example, a camera with 32 or
perhaps 64 Mpixels (higher cost), not available at the time the study was conducted, will
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provide access to double or quadruple amount of the information but will require particles
of size 1 µm which are extremely costly.

The advantage of this study is that the whole of gap-width is covered and at different
horizontal locations similar results were obtained (results not shown) in comparison to
a stirred tank where only a small area near the impeller region is studied. On the other
hand, the disadvantage is that only five gradients are available in this study; thus, the
Kijkl ratios are not known for the rest of the gradients. Perhaps, a validated numerical
study with access to all 12 gradients can shed more light on this subject to provide more
clarity on the anisotropy in a TVB.

2.5.4.2 EDR structure

The VEDR of the mean flow and turbulent kinetic energy is presented in Figures
35, 36a, 36b, 37a and 37b at the five different horizontal locations for the five rotational
speeds, except at the rotational speed of 30 rpm where only three horizontal locations
were available. In the x and y axis of these Figures, the friction velocity, uτ , and εinnerwall
are estimated analytically from the dimensionless torque, G, estimations of the Wendt
(1933) empirical correlation (Equation 2.1) cited in Lathrop, Fineberg e Swinney (1992), as
shown in Table 3. It should be pointed out again that the noise in the bulk zone in VEDR
estimations of very small magnitude values is due to poor concentration at higher overlap
ratios. Choosing a zero overlap results in a lesser noise but also decrease substantially the
number of data points available in the boundary layer (Figure 10).

The location of maxima is always very near to the wall, similarly observed by
Tokgoz et al. (2012), Hout e Katz (2011) either to that of inner cylinder or outer cylinder
depending upon the axial location in the Taylor-Vortex. In the outward region, the location
of maxima is near the outer cylinder as shown for the rotational speed of 114 rpm at the
axial location of ZL = 0.625 ± 0.005, and for the inward and center of vortex region the
maxima is located near the inner cylinder, at the axial location of ZL = 0.575 and 0.675
± 0.005, respectively for the rotational speed of 114 rpm. Among the three presented
regions, the viscous wall layer is weakest in the outward region because the magnitude of
the tangential velocity is strongest in this region (Figure 15a); while, the deceleration of
the fluid results in the increase in the viscous wall layer. It can be seen that among the
three regions, VEDR is the most dominant near the inner wall with the overall maxima
located near the inner wall.

McEligot et al. (2008) termed the VEDR of mean flow kinetic energy as direct
dissipation and that of turbulent kinetic energy as turbulent or indirect dissipation. They
presented the numerical results of the DNS model for these components in a channel flow
and zero-pressure-gradient boundary layer. They found that the direct dissipation is the
dominating component of the two near the wall. As the d+ increases, both the direct and
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Figura 35 – The VEDR of the mean flow, εm, and turbulent, εt, kinetic energy at 114 rpm.

turbulent dissipation decreases with the reduction in the direct dissipation being much
more drastic in comparison to the turbulence counterpart. Between d+ = 10 and 20, the
magnitude of the direct and turbulent dissipation becomes equal, and with further increase
in the d+ values the direct dissipation continues decreasing much more rapidly leading to
the turbulence dissipation becoming the dominating component in the bulk zone.

Most of these aspects can be observed in the current estimations of these two
components of the VEDR for the TVB for the five rotational speeds presented here. The
only difference is that the direct dissipation is not dominating as estimated by them near
the wall region, but only comparatively higher. Otherwise, increase in d+ results in decrease
in both of these components of the VEDR with the decrease in the direct dissipation being
more rapid in comparison to the turbulence one. Furthermore, the magnitude of the direct
and turbulent dissipation becomes equal between the region d+=10 and 20, along with
the progressive dominance of the dissipation of turbulent kinetic energy towards the bulk
region, where turbulence component of the VEDR is at-least an order higher. In fact, in
the bulk region, the direct or mean flow kinetic energy dissipation becomes practically
negligible by reaching values less than 1 % of the maximum value in complete agreement
with the results of McEligot et al. (2008).

Turbulence takes over completely in the bulk zone once the viscous wall layer
becomes negligible around d+=30 for a classical zero-pressure gradient case, as mentioned
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Figura 36 – The VEDR profiles of the mean flow, εm, and turbulent, εt, kinetic energy at
90 (a) and 70 (b) rpm.
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Figura 37 – The VEDR profiles of the mean flow, εm, and turbulent, εt, kinetic energy at
50 (a) and 30 (b) rpm.
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by McEligot et al. (2008). They defined the viscous wall layer as the region with significant
effects of viscosity which are not necessarily dominant and include the laminar and buffer
sub-layers. The importance of this region lays in the fact that the largest gradients and
greatest production of turbulence occur in this region besides being the region which
provides major resistance to the momentum, mass and energy transfer (MCELIGOT et al.,
2008). Additionally, it can be seen that the VEDR remains fairly constant in the viscous
sublayer. These aspects of following the classical turbulence further strengthen the validity
of these results.

It should be pointed out again that the noise in the bulk zone in VEDR estimation
is due to the choice of higher overlap. Choosing a zero overlap results in a lesser noise but
also decrease substantially the number of data points available in the boundary layer, and
increases the under-estimation of the turbulence VEDR due to reduction in the spatial
resolution, as can be seen in the Table5. In order to capture the smallest scales, the smallest
feasible spatial resolution is chosen by accepting a certain amount of noise and keeping
the validity of the results.

The profile structure of the VEDR for these five rotational speeds is very similar
to that of the normal tangential stress (Figures 23a, 24a, 25a, 26a and 27a) at the three
specified locations: outward, center and inward. First and foremost, boundary layers on
both walls are marked by gradients with sharp decrease. The differentiation between the
outward, center and inward region is decided by the location of the maxima, as explained
earlier, and the flow structure in the bulk zone. In the bulk zone of the outward region, the
flow manifests a gradual decrease from the inner cylinder towards the outer cylinder, and
vice-versa for the inward region. This aspect further strengths the importance of capturing
well the tangential gradient in the radial direction.

The dimensionless VEDR makes its profile appear to be of similar magnitude at
different rotational velocities, especially in the center of vortex region which has best
prediction among the three presented regions for these five rotational velocities. In this
center of vortex region, the magnitude estimation of the VEDR is comparatively higher
for the 30 rpm followed by 50, 70, 90 and 114 rpms. Similar effect can be seen in the
inward and outward region as well. Moreover, the magnitude of the VEDR of mean flow
and turbulent kinetic energy mostly stayed ≤ 1 for the rotational velocities of 114 and
90 rpms in the three presented regions. This implies that the maximum VEDR for these
two components never goes above the global estimated value, whereas global estimate is
the mean of all regions where there will certainly be maximum values higher than the
global estimate, as demonstrated by the rotational velocities of 50 and 30 rpms. These two
aspects further indicate that there is certainly some under-prediction at higher rotational
velocities.

In order to use the TVB as a bio-reactor, the most important constraint will be to
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keep the VEDR within sub-lethal responses of a cell-line in order to achieve the desired
results. Godoy-Silva, Mollet e Chalmers (2009) discovered that around 60 W/kg = m2s−3

maximum VEDR, the CHO cell line gave the sub lethal physiological responses that
are critical to a bioprocess. CHO cell line is one of the most robust cell lines that exist
in present time, but there are many cell lines which are much more sensitive and their
sub-lethal response could be found at a much lower value.

In this study, as per global estimates of the VEDR, the maximum value of 3.17
was obtained located at the inner wall for the rotational speed of 114 rpm. The maximum
value is only achieved in the viscous sub-layer very near to the wall where the cells may
never reach due to the nature of the viscous layer of providing resistance to any kind of
transfer. Away from the wall, the VEDR decreases rapidly and its magnitude is much
smaller than 1 W/kg. The animal cells are bound to spend the maximum amount of time
within a Taylor-vortex in the bulk zone, between Rb = 0.1 to 0.9, where the gradients
are much smaller and hold similar magnitude, i.e., similar hydrodynamic conditions in
the major part of the reactor. This is a big advantage for a Taylor reactor to be used a
bioreactor for culturing animal cells.

2.5.5 Kolmogorov scale

In the Figure 38, the Kolmogorov scale, η = (ν3/ε)1/4 is presented for the five
rotational speeds at the center of vortex region. The center of vortex region was chosen
because this region was best characterized by all the presented rotational speeds. The
Kolmogorov scale presented here is always smaller than the global Kolmogorov scale
through-out the gap width, except for the rotational speed of 30 rpm, where the PIV
estimated Kolmogorov scale was smaller only in boundary layer area.

The Kolmogorov scale has significant importance for the culturing of animal cells
in bioreactors. Kunas e Papoutsakis (1990) observed increase in the cell damage due
to the fluid hydrodynamic forces when the Kolmogorov eddy size approaches the cell
size. They conducted these experiments in the absence of the bubbles to clarify that the
damage is directly related to fluid hydrodynamic forces only. At the same time, there
is no proof if there is any interaction between the cells and eddies or how the cells are
damaged. Although, there may not be a direct relation with the Kolmogorov scale and
a certain amount of turbulence might be necessary to ensure adequate mixing and mass
transfer within the bioreactor, a significant amount of turbulence is known to damage
the animal cells. Smith e Greenfield (1992) managed to culture the animal cells at a
Reynolds No. of 25,000 in a tank stirred with Rushton turbine at a rotational speed of
600 rpm with estimated maximum and mean VEDR of 21.8 and 0.697 m2s−3 (SINGH,
2011), respectively, corresponding to the minimum and mean Kolmogorov scale of 15 and
35 µm. Considering these aspects and that the animal cell size ranges between 10-15 µm,
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Figura 38 – The Kolmogorov scale for different rotational speeds at the center of vortex
region.

the range of hydrodynamics that can be employed in a bio-reactor can be ascertained to
avoid damage to animal cells in suspension provided an accurate estimation of VEDR is
available because the Kolmogorov scale is inversely proportional to VEDR.

2.6 Conclusions
The main aim of this chapter was to present a direct VEDR estimation for the

Taylor-Couette reactor at five different rotational velocities using only five of the twelve
gradients required for a complete estimation. The composition of the five gradients of
the VEDR of the mean flow and turbulent kinetic energy estimation was also presented.
Apart from the VEDR estimation, mean radial and tangential velocity profiles, and their
fluctuating counterparts are also presented in this study. In addition, a study was conducted
to understand the impact of overlap ratio and ICS on the VEDR estimations, and mean
and fluctuating velocity components.

The overlap study showed that overlap ratio does not ameliorate the estimations
of the mean and fluctuating velocity components because the base grid structure, ICS,
was able to capture these components, still the overlap ratio only increase the data yield
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for a particular ICS value. However, overlap ratios did improve on the VEDR estimations
by capturing the smaller scales but at the expense of increased noise in the estimation
of smaller magnitude values of the bulk zone. If there is a possibility of reaching the
Kolmogorov scale with the ICS grid structure, then a zero overlap ratio could suffice.

Unlike the overlap ratio, ICS plays a significant role in the estimation of even the
mean and fluctuating velocity components apart from the VEDR estimations. ICS value
should be chosen depending upon the requirements of a particular study; for example,
requirements of VEDR implies the usage of the smallest feasible ICS value which is
equivalent of or closest to the Kolmogorov scale. If only mean flow is required than the
ICS value should capture at-least the Taylor’s micro-scale, but at the same time making
sure that there are sufficient number of data points for a good estimation of the flow.

The magnitude of radial velocity component is only around 10 % of that of tangential
component, and is nearly zero in the center of vortex region. In the outward and inward
regions, the maximum is achieved towards the center of the gap-width forming a downward
and upward U-like shapes for the outward and inward regions, respectively. In the case of
tangential velocity component, the boundary regions are marked by sharp decreases and
the bulk zone is characterized by a near constant flow structure in the vicinity of 50 %
of the magnitude, while being strongest and weakest in the outward and inward regions,
respectively. The strong tangential flow implies that it will have a significant contribution
in the kinetic energy and its dissipation, and to capture its diffusion in the radial direction
from the inner cylinder towards outer implies the requirement of very small mesh in this
direction, especially near the walls where lies large gradients.

Similarly a steep decrease can be observed in the boundary layers of the normal
tangential stress with little variation in the bulk zone in regards to the tangential component
of the velocity. The center of the vortex region was best captured by the five presented
rotational velocities, while the outward region was practically not captured by the 70, 50
and 30 rpm. The simple reason behind this could be the higher probability, as there are
two centers of vortexes for each outward flow structure. The limited number of results
that can be achieved due to practical reasons is one of the shortfalls of the experimental
method. This limitation is one of the reasons for the popularity of numerical simulations,
where data can be obtained anywhere within the geometry easily.

The VEDR of mean flow kinetic energy is mainly composed of the (∂(Uθ/r)
∂r

)2

gradient, and the gradient, (∂(u′
θ
/r)

∂r
)2 is the major component of the turbulence VEDR

especially in the boundary layer area. In addition, because of such a huge impact of only
one gradient on the VEDR estimation, the application of isotropic and axi-symmetric
assumptions is not valid in this case and leads to over-estimation. The dissipation of the
mean flow kinetic energy was comparatively stronger in the boundary layer area, while
the dissipation of turbulent kinetic energy was at-least an order higher than its mean
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flow counterpart in the bulk zone. The profile structures of these two components of
VEDR in the three aforementioned regions for the five rotational velocities were observed
to be very similar to the normal tangential stress again citing the significance of the
tangential velocity component in the estimation of and turbulence VEDR. Knowing that
this VEDR estimation is based on only five gradients, and considering that the axial
velocity component has a similar impact as that of the radial velocity component, it
becomes necessary to capture well the propagation of tangential velocity component in
the radial direction, especially in the boundary layer for a better estimation of both
components of VEDR.

These experiments were conducted with a view to validate numerical results,
especially the VEDR estimations which contain the smallest scale. If the smallest scales of
numerical results can be validated, than those results can be used with 100 % confidence
leading to better designs and operating conditions. Therefore, the next chapter focuses on
the validation of the numerical results with more attention towards the boundary layer
area where lie the steep gradients. Another important aspect of the numerical simulations
will be to estimate the VEDR using all the 12 gradients and presenting the compositions
of those 12 gradients in order to better deduce an equation to estimate the VEDR from
2D PIV results.
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3 Numerical Method and its Validation

All of these simulations were performed on a desktop with six-core and twelve-thread
3.5 GHz i7-3970X processor, and 64 GB of memory. All of the simulations were run using
hpi based parallel processing with 4 cores. The CFD software Fluent of ANSYS-Fluent
(2010) version 13.0.0 was used to perform the numerical simulations in the TVB used for
the PIV estimations. The details of the TVB can be seen in the Table ??, as shown in the
Chapter 2.

In this section, firstly the basic numerical aspects used in the TVB model will
be presented, along with a brief description of the turbulence models used in this study.
Then the numerical model will be validated with the experimental results presented in the
Chapter 2 at one of the PIV horizontal location for the rotational speed of 114 rpm. The
analytical estimations for the TVB at 114 rpm can be found in the Table ??, Chapter 2.
Only the DNS model will be used for the validation of the numerical model.

3.1 Turbulence modelling
Turbulence, a time and space varying fluctuations in the flow field, is a phenomenon

of three dimensional structures and unsteady nature made up of various scales, and
characterized by Reynolds number. It is generated when the inertial forces overpower the
viscous forces. Navier-Stokes equations for continuity, momentum and energy are used
to describe both the laminar and turbulent flows. Present simulations are conducted in
isothermal state, so the energy equation is not required here. In addition, it is assumed
that the flow is incompressible, fluid is Newtonian and there are no external forces; thus,
the Navier-Stokes equations for continuity (Equation 3.1) and momentum (Equation 3.2)
become:

∂ui
∂xi

= 0 (3.1)

∂ui
∂t

+ ∂(uiuj)
∂xj

= −1
ρ

∂p

∂xi
+ ∂

∂xj

[
ν
∂ui
∂xj

+ ∂uj
∂xi

)
] (3.2)

In order to solve all the spatial and temporal scales of the turbulence a direct
numerical simulation (DNS) of the Navier-Stokes equations (3.1 and 3.2) has been con-
ducted; though, to resolve all the scales the computational mesh must confirm to the
smallest dissipative scales known as the Kolmogorov scale, given by, η = (ν3

ε
)1/4. If the

computational mesh is not fine enough, a certain amount of information will be lost
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depending upon the coarseness of the mesh. The details of the computational mesh are
discussed in the following section. Although, the DNS can resolve all the scales if the
computational mesh is fine enough, it is known to be the most time and computational
resource consuming model (BARTELS et al., 2002). Considering that the mesh may not
be fine enough to resolve all the scales and in order to reduce the time and computational
resource consumption, the LES turbulence models may be considered as a viable option.

LES model is based on the assumption that basically large eddies result in the
transfer of the momentum, mass, energy and other passive scalars. Therefore, the governing
equations of the LES model are obtained by spatially filtering over small-scales. Eddies
with scale smaller than the filter are eliminated and are modeled with a sub grid scale
(SGS) model. The SGS model describe the interaction between the resolved and unresolved
scales (BAKKER; OSHINOWO, 2004).

The application of a filtered variable (Equation 3.3) for an LES model in the
Navier-Stokes equation leads to new unknown quantities in the momentum Equation 3.4.
The filtered variable is denoted by overbar, in the Equation 3.3, where D is the fluid
domain and G is the filter function which determines the scale of the resolved eddies. In
the Equation 3.4, τij represents the SGS stresses and is the unknown quantity that arose
out of the filtering process. In the Ansys Fluent, the SGS stresses τij are correlated to the
large-scale tensor Sij (Equation 3.5) using eddy viscosity approach as shown in Equation
3.6.

f̄(x) =
∫
D
f(x′)G(x;x′)dx′ (3.3)

∂ūi
∂t

+ ∂(ūiūj)
∂xj

= −1
ρ

∂p̄

∂xi
+ ∂

∂xj

[
ν
∂ūi
∂xj

+ ∂ūj
∂xi

)
]−∂τij

∂xj
(3.4)

Sij = 1
2

∂ūi
∂xj

+ ∂ūj
∂xi

 (3.5)

−
τij − δij

3 τkk

= 2νSGSS̄ij (3.6)

The νSGS is the subgrid scale eddy viscosity representing the smaller scales. There
are various LES models available in the Fluent and each is differentiated from the other
based on its definition of this SGS eddy viscosity. In this study, as mentioned earlier, two
LES models are used, namely the Smagorinsky and wall adapting local eddy-viscosity
(WALE) models. The Smagorinsky LES model describes this SGS eddy viscosity as shown
in Equation 3.7, where LS = min(κd, CS∆) is the mixing length for SGS, where κ is the
von Kárman constant, d is the distance to the closest wall, CS=0.2 is the Smagorinsky
constant and ∆ is the local grid scale and computed as power 1/3 of the volume of the
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computational cell. In the case of the the WALE model, the SGS eddy viscosity is described
in the Equation 3.8, where LS = min(κd, CW∆) with the CW = 0.325 being the Wale
constant.

νSGS,Smag = L2
S|S̄|, |S̄| ≡

√
2S̄ijS̄ij (3.7)

νSGS,WALE = L2
S

(SdijSdij)3/2

(S̄ijS̄ij)5/2 + (SdijSdij)5/4
, (3.8)

Sdij = 1/2(ḡ2
ij + ḡ2

ji)− 1/3δij ḡ2
kk, ḡij = ∂ūi/∂xj

Apart from the DNS and LES models, the four RANS based models, namely k-ε,
SST, SAS-SST and RSM, used in this study are derived from Reynolds-averaging of the
underlying Navier-Stokes equations (3.1 and 3.2) for an Newtonian fluid and incompressible
flow. This process introduces Reynolds stresses, −ρuiuj, in the momentum Equation 3.9
that have to be modelled to form a closed system of equations. In the Equation 3.9,
p′ = p+ 2/3k is the modified pressure and νeff = ν+ νt, where νt is the turbulent viscosity
that arose out of the averaging process and must be modelled. In the case of LES model,
the filtration process introduced the SGS eddy viscosity representing the smaller scales
which needed to be modeled. In the two equation RANS based model, turbulent viscosity
is introduced based on the Boussinesq hypothesis, but the difference is that the turbulent
viscosity represents all of the turbulent scales in contrast to only the small scales for the
LES models. This approach of the RANS based models impact both the reliability of the
modelled equations and the computational cost required to solve them.

∂ui
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ρ

∂p′

∂xi
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∂xj

[
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∂ui
∂xj

+ ∂uj
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)
] (3.9)

In two-equation models, the Boussinesq hypothesis is used to model the unknown
Reynolds stresses by assuming they can be approximated by the product of the mean strain
rate multiplied by an isotropic turbulence viscosity. There are a variety of models that have
been formulated but here we focus on just two of them. Firstly, the k-ε model, based on
transport equations for the turbulent kinetic energy, k (Equation 3.10), and the turbulence
energy dissipation rate, ε (Equation 3.11), is used in which the turbulent viscosity is
described as νt = Cµk

2/ε. In these equations, Gk = νtS
2 represents the generation of

turbulent kinetic energy due to the mean velocity gradients, and the value for the model
constants C1ε, C2ε, Cµ, σk and σε is 1.44, 1.92, 0.09, 1.0 and 1.3, respectively. Whilst this
model has known limitations, particularly its unsatisfactory performance in the near-wall
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region, it is still very widely used and also provides a good starting point to generate an
initial flow field for more complicated models.
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The k-ε model employs wall functions as the equations cannot be integrated to the
wall. In order to address this problem, models in which the turbulence energy dissipation
rate is replaced by the turbulence eddy frequency, ωtef , have been derived. These behave
well near the wall and allow the detailed behavior inside the boundary layer to be calculated.
However, they perform poorly away from walls due to a problem with over-sensitivity to
the free stream conditions. Menter (1994) blended the k-ε and k-ω models and added a
turbulence production limiter in the calculation of the eddy viscosity (Equation 3.12) to
produce the now widely used Shear Stress Transport (SST) model. It provides accurate
predictions of the onset and the amount of flow separation under adverse pressure gradients
(MENTER, 1994).

νt = k

ω

1

max
[

1
a∗
, SF2
α1ω

] (3.12)

∂k

∂t
+ ∂(kui)

∂xi
= ∂

∂xj

[ν + νt
σkSST

 ∂k

∂xj

]
+min(Gk, 0.9kω) (3.13)

∂ω

∂t
+ ∂(ωui)

∂xi
= ∂

∂xj

[ν+ νt
σωSST

 ∂ω

∂xj

]
+min(Gk, 0.9kω)a∞

νt
+ 2(1− F1)

ωσω,2

∂k

∂xj

∂ω

∂xj
(3.14)

In the Equation 3.12, the S is the magnitude of strain rate, k represents the
transport equation for the turbulent kinetic energy (Equation 3.13), ω represents the
transport equation for the turbulence eddy frequency (Equation 3.14), a∗ =1 for high
Reynolds number, α1 is a constant of value 0.31, and F2 is a blending function (Equation
3.16), respectively. In the Equation 3.13, the σkSST = 1/(F1/σk,1 + (1 − F1)σk,2) where
F1 is a blending function (Equation 3.15), σk,1 = 1.176 and σk,2=1.0. In the Equation
3.14, the σωSST = 1/(F1/σω,1 + (1− F1)σω,2) where σω,1 = 2.0 and σω,2=1.168, and a∞ is
defined in the Equation 3.17, where βi,1=0.075, βi,2=0.828, κ=0.41 and β∗∞=0.09.
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A key failing of unsteady two equation models is that they cause excessive damping
of turbulence and thus do not resolve any of the details of the turbulence directly (MENTER,
2009). Menter e Egorov (2010) introduced the SAS-SST to overcome this deficiency. The
SAS-SST model (SAS stands for Scale Adaptive Simulation) uses a turbulence length-scale,
which induces "LES-like"behavior in unsteady regions of the flow field. By adjusting the
turbulence length-scale to the directly resolved turbulent structures, the eddy viscosity is
reduced to the level of the limiting LES model. In this way, the model does not dissipate
directly-resolved turbulent structures as classical RANS would (MENTER; EGOROV,
2010; MENTER et al., 2010). This is obtained by the addition of QSAS (Equation 3.18)
term in the transport equation for the turbulence eddy frequency (Equation 3.14) of the
SST turbulence model, where L is the length scale of the modeled turbulence, Lvk is the
von Karmen length scale, S is the scalar invariant of the strain rate tensor Sij, and the
constants η2, C and σΦ are 3.51, 2 and 2/3, respectively.
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(3.18)

Another drawback of eddy-viscosity RANS based models is the assumption of an
isotropic turbulence viscosity, which limits the development of anisotropy in the Reynolds
stresses. RSM remove this assumption and solve transport equations for each of the
Reynolds stresses. The model is much more computationally intensive than two-equation
models and suffers from poor convergence behaviour (AUBIN; FLETCHER; XUEREB,
2004). Just as there are many variants of the two equations models, there are a large
number of Reynolds stress models that differ in their closure relationships, especially for
the pressure-strain term. Here the linear pressure strain variant of the model, known as
the Launder Reece Rodi - Isotropization of production (LRR-IP) (LAUNDER; REECE;
RODI, 1975), is used.

The momentum equation for the RSM model (Equation 3.19) is similar to the
one based on the Boussinesq hypothesis (Equation 3.9), but for the pressure term, p′′ =
p + 2/3µ∂ui/∂xk and the Reynolds stresses, uiuj, which were replaced by the νt term.
These stresses are modeled as shown in the Equation 3.20, where CS−RANS=0.22, δij, ε
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Pij and Φij are the kronecker delta, VEDR of TKE, production term and pressure strain
correlation, respectively. The production term and VEDR of TKE are represented by the
Equations 3.21 and 3.22, and the pressure strain correlation, where Φij = −(C1RSMρ(uiuk−
2/3δijk)ε/k + C2RSM(Pij − 2/6deltaijPij)) where C1 = 1.8 and C2=0.6. In the Equation
3.22, the C1εRSM = 1.45, C2εRSM =1.9, σεRSM = 1.1
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A key limitation of two-equation models is their insensitivity to streamline curvature
and rotation, which is the main motivation for the use of Reynolds stress models. Recently,
a modification to the two-equation models has been developed by Smirnov e Menter
(2009) based on the work of Spalart e Shur (1997). This has shown considerable benefit in
applications where highly swirling flows have been modelled. Singh, Fletcher e J. (2011)
have shown that the addition of curvature correction to the turbulence models improves its
predictions. In view of this study, curvature correction was applied to all of the two-equation
turbulence models used in this study.

3.2 Numerical methodology

3.2.1 Geometry and Meshing aspects

Workbench was used to construct geometry and the sweep mesh which consists
of the hexahedral nodes. In view of the intended use of the DNS and LES models, and
multiple reference frame (MRF) technique in the modeling aspects, a full geometry was
modeled containing only one body. However, in order to obtain better control over the
radial mesh, the TVB geometry was designed as a semi-circle, as shown in Figure 39, and
was later on duplicated to model the full geometry. MRF technique was used instead of the
more sophisticated but time-consuming sliding grid technique because the fluid movement
in the TVB is only due to the inner-rotating cylinder; thus, avoiding the usage of a inner
and outer geometrical configuration required for the sliding grid interface.
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Figura 39 – Geometry and mesh of the TVB used in the PIV experiments.

Table 6 shows the different parameters that were varied and corresponding node
and mesh sizes. Thee maximum aspect ratio value increased from 15.9 to 32.2 to 53.6 as
the number of nodes were increased only in the radial direction in terms of radial divisions
of 45 in Fine to 90 in Fine2X to 150 in Finer, respectively. Although, the aspect ratio
increased significantly, the orthogonal quality remained the same for each mesh type with
a value of 0.9999, where values close to 1 indicate good quality. Only the 3rd Mesh name
was tested for the DNS model, while all of these were tested for the LES-WALE model.
In this grid-independence study, basically, the refinements in the mesh were done only in
the radial direction because it is understood that the flow is radially transferred from the
inner rotating cylinder to the outer cylinder, while the secondary vortices consisting of the
radial and axial components of the velocity are only 10 % of the tangential component
(KOBAYASHI et al., 1990). Thus, clearly citing the importance of a very fine grid in the
radial direction in order to capture the smallest scales. Mesh in the radial direction was
created in such a way that the nodes are smallest near the inner and outer walls and
biggest in the center of the gap width. Figure 40 shows the impact of the refinements in
the radial direction on the velocity flow field and TKE.

Tabela 6 – Mesh configurations used to model the TVB.

Mesh name No of divisions No of nodes Mesh size

Z X Y millions Z X min. X max. Y
mm µm µm mm

Fine 200 45 320 2.944 1 156 623 1.13
Fine2X 200 90 320 5.889 1 79 307 1.13
Finer 200 150 320 9.712 1 47 184 1.13

In terms of the global estimate of Taylor’s micro-scale, 〈Λ〉 = 1.3 mm (Table 3),
all presented mesh types are sufficiently fine both near the walls and in the bulk zone to
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Figura 40 – Comparison of different grid sizes for the DNS and LES models of dimensionless
mean axial velocity (a), radial velocity (b), tangential velocity (c) and mean
square of fluctuating tangential velocity (d) axially at Rb=0.067. The legend
is same in all figures.

capture the large-eddies defined by the Taylor’s micro-scale. When a much courser grid
(Fine grid with 2.9 million nodes) was used with the LES-WALE model, seven vortex
pair appears instead of six vortex pairs for finer grids; considering that one vortex pair
is represented by two crests and one trough. Among the Fine2X and Finer grid for the
LES-WALE model, the three velocity components, radial, axial and tangential, are equally
well predicted when compared with the DNS model using Finer grid. However, in the case
of squared fluctuating tangential velocity the Fine2X grid comparatively over-predicts,
thereby enhancing the choice of the finer grid LES-WALE model to be used in the rest
of article for validation purposes and a much thorough comparison with the DNS model.
In addition, the Finer grid must be capturing at-least 90 % of the dissipation rate near
the boundary layer, especially considering the fact that nodes near the wall are ≈ 47 µm
which is smaller than the global estimate of Kolmogorov scale, 〈η〉=52.5 µm (Table 3).
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3.2.2 Pre-processing aspects

As mentioned in the previous section, the DNS, two LES models, namely Smago-
rinsky and WALE, and four RANS based models, namely, k-ε, SST, SAS-SST and RSM
were used to estimate the flow and turbulence characteristics in the TVB. The Convergence
criteria of 10−4, which was achieved within a maximum of 40 iterations per time-step, for
root mean square (RMS) scaled residuals was employed for the continuity, momentum and
turbulence quantities. Double precision arithmetic was applied for all of the simulations.
In order to collect the data, an xz-plane was created, and a certain number of variables,
including velocity components and gradients, were chosen to be extracted at the end of
each time-step in the text file format. The high resolution and second order backward
Euler schemes were used to model the advection and transient terms, respectively, for all
the equations.

3.2.3 Solver & Post-processing aspects

It took around 15 revolutions for the DNS and 5 revolutions for the LES models to
achieve the moment stabilization, and 36 hours to complete one revolution for the DNS
model and 24 hours to complete one revolution for the LES models. Once the moment
stabilization was achieved, the data was collected for at-least 20 revolutions. The collected
data was then treated using the Matlab program to process the results. As in the case
of the experimental results, the statistical convergence of the second order fluctuating
velocity components, namely u′2r , u

′2
θ and u′2r u

′2
θ was also tested, and 20 revolutions or 7200

time-steps were found to be more than sufficient for an ensemble average.

3.2.4 Estimation of VEDR

The numerical results, the axial, radial and tangential velocity and direction
components were extracted at each time step in the *.txt format. These txt files were
treated with Matlab to create the gradients using the 2nd order central differencing
approximation of the first derivative, Equation 2.2, for the central elements. The boundary
elements being only at the inner and outer wall due to the usage of the 2nd order scheme
were not considered for the VEDR estimation.

The gradients were estimated using the mean and fluctuating velocity components,
as in the case of the PIV estimations and termed as the VEDR of mean flow and turbulent
kinetic energy, respectively. These two components of VEDR are estimated directly from
the Equations 2.3 and 2.4, respectively, in the case of DNS and LES models. Whereas, in
the case of PIV measurements only five out of 12 gradients are estimated, as mentioned in
Chapter 2, from the x-y plane for the VEDR of mean flow and turbulent kinetic energy,
as shown in Equations 2.5 and 2.6, respectively.
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3.3 Validation of the computational model

The validation of the numerical results was done at only one of the five available
horizontal locations (ZL=0.725 ± 0.005) of the PIV measurements. The comparison with
the PIV data was conducted for the tangential and radial velocity components, the log-law
profiles at the inner and outer boundary layers for the tangential component, squared
fluctuating tangential velocity and the five available gradients of the VEDR of the mean
flow and turbulent kinetic energy for the PIV measurements, as shown in Figures 41,
42,43 and 44. First of all, because the PIV location is not 100 % certain, the numerical
horizontal location was chosen by observing a complete Taylor-Vortex pair and thereby
choosing the most similar profile to that of the PIV measurement. The PIV profile lies
in between the center of vortex and outward flow region of a Taylor-Vortex, but in close
proximity to the center of vortex. The term center of vortex means as it says and the
outward flow region means the region when the flow direction is at its strongest from the
inner cylinder towards the outer cylinder, which is the center of a Taylor-vortex pair not
to be confused with center of vortex. Each Taylor-vortex pair has one Outward flow, which
lies in the center of this Taylor-vortex pair, two center of vortexes, in each vortex of the
pair, and two inward flow regions, at each extremity of the pair. Secondly, considering
that the numerical mesh spacing is of 1 mm in the axial direction, Figures 41a and 41b
present data at two axial location for the numerical DNS model. Thirdly, the classical
log-law is presented here and not the new law to validate the numerical results because
the new law should be employed in the center of vortex region where the radial velocity
component is practically negligible, and the chosen PIV height is nearer to the inward
region instead of the center of vortex region. Finally, in the Figure 44 εinnerwall = u4

τi/ν,
where uτi =

√
τ/(ρ2πr2

i h), is estimated using the DNS moment data.

The tangential velocity component (Figure 41a) is well predicted by the DNS model
especially in the boundary layer; in addition, the difference between the axial heights is
negligible which implies that this coarseness of mesh spacing in the axial direction has little
impact on the tangential velocity component. In the bulk zone, between Rb=0.1 to 0.9,
in agreement with Bilson e Bremhorst (2007), the numerical model does not accompany
the phenomenon of small and steady increase through-out the bulk zone, as in the case
of experimental results (SMITH; TOWNSEND, 1982; KOBAYASHI et al., 1990) and
Figure (41a), but only till Rb=0.4. Kobayashi et al. (1990) stated that this phenomenon is
because of uniformity in the circumferential velocity, in which the velocity profiles apart
from the ones in the outward and inward region are very similar to the one in the center
of vortex region, which in turn is caused by convection of the secondary flow. In-fact,
none of the numerical studies (CHUNG; SUNG, 2005; BILSON; BREMHORST, 2007;
PIRRO; QUADRIO, 2008; PONCET; HADDADI; VIAZZO, 2011; OGUIC; VIAZZO;
PONCET, 2013; FRIESS; PONCET; VIAZZO, 2013) demonstrated the capability of
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Figura 41 – Validation of the numerical DNS model with the PIV results of dimensionless
mean tangential (a) and radial (b) velocity components.
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Figura 42 – Validation of the numerical DNS model with the PIV results of the log-law
profiles for the tangential component at the inner (a) and outer (b) boundary
layers. The κ = 0.4 and B = 5.2 is used in the log profile.
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Figura 43 – Validation of the numerical DNS model with the PIV results of dimensionless
mean squared fluctuating tangential velocity component.

the various numerical models to capture this phenomenon exhibited by experimental
methods. In the case of the radial component, though the magnitude is less than 3 % of
the tangential component and the shape is well predicted by the numerical model, the
maximum difference between the two axial heights is approximately 25 %. In order to
better capture the radial component reduction in the axial mesh size to 0.5 or perhaps
to 0.25 mm is required, implying doubling or quadrupling, respectively, the total number
of nodes, which is impractical presently to implement with the available computational
resources and, in turn, time.

The log-law profiles for the inner (Figure 42a) and outer (Figure 42b) boundary
layers shows different behavior from each other. Both inner and outer velocity profiles are
normalized with appropriate uτ , which is estimated from the global torque estimations
of the numerical model, and for the PIV estimations, as there is no experimental torque
data available, the DNS estimations are used. It should be remembered that uτ is the
average of the whole axial domain and not local, which can cause imperfect matching
(HUISMAN et al., 2013). As mentioned by Huisman et al. (2013), the velocity profile
follows u+=d+ in the viscous sub-layer (1<d+<10), which is evident from the numerical
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Figura 44 – Validation of the numerical DNS model with the PIV results of the VEDR of
mean flow (a) and turbulence (b) kinetic energy.
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and PIV estimations in the inner boundary layer. Viscous wall layer is much thicker in
the inner boundary layer compared to the outer boundary layer, as the deviation from
the u+=d+ profile for the outer boundary layer is quicker in comparison to the inner
boundary layer, in accord with the observations of (BILSON; BREMHORST, 2007).

Proceeding towards the squared tangential velocity component (Figure 43), it can
be observed that qualitatively the numerical model estimate it well. In the boundary layer
of the inner cylinder, the DNS model estimates the maximum by around 60 % of the
PIV; while, towards the boundary layer of the outer cylinder the estimation improves
significantly in comparison to the inner wall. In the bulk zone, the estimation by the
numerical model is much better compared to the boundary layer, but still comparatively
under-predicting. Chung e Sung (2005), Poncet, Haddadi e Viazzo (2011), Oguic, Viazzo e
Poncet (2013) also observed similar results in the validation of their numerical models in
both the boundary layer and bulk zone.

For the VEDR of the mean flow kinetic energy (Figure 44a), it can be seen that
the numerical model predicts the magnitude and the structure well in comparison with
the experimental PIV estimations, especially in the boundary layer where the estimation
is even comparatively higher. The VEDR decreases rapidly and remains practically in the
vicinity of 0.001 through out the bulk zone for the DNS model; in contrast to the PIV
method, where the VEDR decreases gradually from the inner wall towards the outer wall.
It should be remembered that the PIV estimations are based on only five gradients in
comparison to the 12 gradients for the DNS model; additionally, the spatial resolution
of 136 µm remains constant through-out the grid structure for the PIV in comparison to
the DNS model where the grid structure varies with least value being towards the walls
(47 µm) and the highest being towards the center of the gap-width (184 µm). In the bulk
zone, the spatial resolution of the DNS becomes coarser in comparison to the PIV, and
evidently the estimations of the PIV method are slightly higher.

The impact of this varying grid structure can also be seen in the estimation of the
(r∂(Uθ/r)/∂r)2 gradient, which can be seen as the principal component of the five-gradient
viscous VEDR through-out the reactor for the PIV estimations. While, in the case of the
DNS model, this gradient is the principal component in the boundary layer area only and
in the bulk zone its over an order lower; implying that in the bulk zone, the gradients
of the axial direction and velocity component must be of significant importance. These
various aspects when joined together clearly indicates under-estimation of the VEDR of
mean flow kinetic energy by the DNS model and that the mesh requires further refinements
in the radial direction for a more accurate estimation of the VEDR.

The VEDR of turbulent kinetic energy (Figure 44b) also suffers significantly from
the comparatively coarser grid structure in the bulk zone for the DNS model. The maximum
near the wall is well predicted but the discrepancy increases towards the bulk zone, where
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the difference is more than 10 times. Although, the difference between the mesh structures
of the DNS and PIV is just around 30 %, this significant under-estimation in the bulk zone
of the VEDR of turbulent kinetic energy in comparison to the VEDR of mean flow kinetic
energy is due to the fact that the magnitude of the VEDR of turbulent kinetic energy is
practically an order higher in the bulk zone in comparison to the VEDR of mean flow kinetic
energy. In addition, the increase in the VEDR nearer to the kolmogorov scale is much more
drastic in comparison to away from the kolmogorov scale as it follows a power law of the
type: ε/(normalisingfactor) = A(spatialresolution/GlobalKolmogorovscale)−B; where
A and B are coefficients of the power law over the chosen area, as shown by Delafosse et
al. (2011). They found that if the spatial resolution decreases by 50 %, the corresponding
increase in the VEDR of turbulent kinetic energy is over 220 % for spatial resolution values
approaching the global Kolmogorov scale.

In similar sense, the estimation of the VEDR of turbulent kinetic energy for the
PIV measurements must be under-predicting as well, especially in the boundary layer area,
considering the fact that the spatial resolution is of 136 µm in comparison to the global
Kolmogorov scale of 52.5 µm. The global Kolmogorov scale value indicates that its value
must be smaller in the boundary layer area and comparatively higher in the boundary layer
area. This was the idea that was kept in the back of the mind when the varied radial mesh
was created for the DNS model. This mesh structure definitely requires further refinements
not only in the radial direction but also in the axial and tangential directions, which would
mean something above 100 million nodes for this current configuration, impractical in the
present case scenario due to limited computational resources.

In the case of the PIV, using a higher overlap ratio would have given a smaller
spatial resolution, but this smaller spatial resolution is just the manipulation of the base
structure in order to increase the number of data points, therefore does not represent the
true picture of a smaller spatial resolution. Moreover, smaller spatial resolution of the
order of 50 µm would require particles of much smaller size of 1-2 µm, which are extremely
costly, to achieve good concentration of particles in the fluid for the corresponding grid
structure. To avoid these details, the base overlap ratio of 0 % was employed in this study.
Using a 32 Mpixels camera would have reduced the resolution by half but would also
require smaller sized particles. This study presents the smallest spatial resolution for both
the DNS and PIV study for the Reynolds number of 17900. Additionally, as per authors
knowledge, validation of the numerical model based on this VEDR estimation has not
been conducted before-hand for the TVB.
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3.4 Conclusions
The main aim of this chapter was to validate the DNS model estimations with

experimental PIV results within a certain degree of acceptance.A detailed description
of the different turbulence models which are employed in this study is also presented.
Additionally, the grid and time-step dependence aspects of the LES-WALE model are
presented in comparison with the DNS model.

The grid structure was found to require improvements: firstly, in the axial grid as
difference of 25 % in the magnitude between two values of the radial velocity components at
two consecutive axial heights 1mm apart was observed; secondly, in the bulk zone because
mesh size was found to be slightly on the courser side in the bulk zone in comparison to
the Kolmogorov’s micro-scale, and finally in the tangential direction as well due to grid
spacing of only 1.96 cm. These enhancements may not be feasible on present day desktop
computers, however considering the speed of advancements in the computational resources,
a completely grid-independent mesh should be available with reduced time within a decade
thereby reducing the limitations due to mesh attained here.

Although, the ideal scenario of 100 % concordance between the numerical and
experimental study is not seen, the qualitative comparison between the two is completely
acceptable, due to good prediction of the structure and shape of the flow within the TVB.
Quantitatively, the mean velocity predictions of the DNS are in good agreement with
the PIV data; whereas, the fluctuating components of the velocity and the VEDR of
turbulent kinetic energy are underestimated with major under predictions being in the
boundary layer area for the fluctuating components and in the bulk zone for the VEDR of
mean flow and turbulent kinetic energy. Overall, these numerical results can be considered
validated due to the clear evidence of good amount of concordance indicating that results
are not hypothetical, especially the good qualitative comparison, between the numerical
and experimental results.
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4 Turbulence models

In this chapter the results of different turbulence models mentioned in the Chapter
3 are presented as a comparison with the DNS model. These results will be presented for
the mean and fluctuating velocity components and their gradients which in turn generate
the VEDR of mean flow and turbulent kinetic energy. In addition, the methods to estimate
the anisotropy and vortex identification will be presented. Most of these results will be
presented in three principal regions of the Taylor-Vortex: Outward, Center of Vortex and
Inward.

4.1 Vortex identification
Figure 45 presents the Taylor’s vortexes using the λ2-definition method for iden-

tifying the vortex, first presented by Jeong e Hussain (1995), and a detailed presentation
of one Taylor’s vortex pair for the DNS model. The single vortex pair for the DNS model
is located between z= 0.105 and 0.137 m which is equivalent of 34 mm or ≈ 2 times the
size of gap width, and with clear representation of the two inward, one outward and two
center of vortex flow profiles. The outward flow is located around 0.121 m with two inward
flows located at the two extremities of the vortex pair, and the two center of vortexes
being located around the middle of outward and inward flow profiles. The outward region
is marked with strong flow moving from the inner cylinder towards the outer, and the
vice-versa holds for the inward region.

Jeong e Hussain (1995) found that λ2, the median of the three eigenvalues of
S2 + Ω2, correctly represented the geometry and topology of the vortex cores among four
definitions for a large variety of flows. Escudie (2001) used this method to identify vortex
in a tank stirred by Rushton turbine and also found that this approach is better to identify,
characterize and measure the trajectory of a vortex in relation to other methods such
as local pressure minimum and streamlines. Jeong e Hussain (1995) considered that the
local pressure minimum caused by vortical motion can only be detected by S2 + Ω2, and
defined "a vortex core as a connected region with two negative eigenvalues of S2 + Ω2".
Assuming that the eigenvalues are λ1, λ2 and λ3, and that λ1 > λ2 > λ3, then the new
definition implies that within the vortex λ2 < 0. The details of this method can be seen in
the original article of Jeong e Hussain (1995) and also in the PhD thesis of Escudie (2001).

The λ2-definition method has been used to compare the different turbulencs models
with the DNS model through Figures 46, 47 and 48. To keep the number of figures in
check, the secondary vortex pair for other models has not been shown here. Instead, the
λ2-definition method will help in a better comparison of these secondary vortexes in terms



116 Capítulo 4. Turbulence models

Figura 45 – Identification of the Taylor’s vortexes through λ2 (a) and a pair of secondary
Taylor’s vortexes (b) for the DNS model.
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of their size and structure for the presented turbulence models.

For the DNS model, all vortexes but the ones on the bottom and top of cylinders
are of similar size, here size refers to the value of λ2, and structure. The vortexes on the
top and bottom of the cylinders are opposite of each other in terms of the magnitude of
λ2; The one on the bottom is of the smallest magnitude whereas the one on the top has
the highest magnitude among all of the vortexes. There are six pair of vortexes in the
gap width of 15 mm and height of 200 mm, leading to approximately double the size of
gap-width for each vortex pair.

The LES-WALE, k-ε, RSM and SAS-SST turbulence models also present six pair
of vortexes; while, the LES-Smagorinsky and SST turbulence models presents 5 and 7
number of vortexes, respectively. This means that in comparison to the DNS model, the
width of a Taylor vortex pair will be thicker for the LES-Smagorinsky model and thinner
for the SST model. In-fact, for the LES-Smagorinsky model the width of each vortex pair
is equivalent of 40 mm, where all vortex pairs are of practically same size (Figure 46b). In
all other turbulence models, the size and structure of the top and bottom vortex pairs is
different from the rest of the vortex pairs. The RSM turbulence model presents the worst
comparison with the DNS model for the size, structure and magnitude values.

Apart from the top and bottom vortex pairs, the λ2 magnitude value remains
around 400 for the DNS and LES models. In the case of the k-ε, SST and RSM model,
there is huge variation in the magnitude values most probably caused by the excessive
damping of turbulence by the RANS based models (MENTER, 2009). An improvement
can be seen in the SAS-SST model, where the turbulence length-scale is improved by
adjusting it to the directly resolved turbulence structures (MENTER; EGOROV, 2005).

4.2 Mean velocity flow field

4.2.1 Tangential velocity

The tangential component of the mean velocity is presented in the Figures 49, 50
and 51 at or closest to the outward, center of vortex and inward regions of a Taylor-vortex
for the different numerical models. Kobayashi et al. (1990) and Bilson e Bremhorst (2007)
also presented these three components in the above mentioned regions of a Taylor-vortex
in their experimental, using a Pitot tube, and numerical-DNS results, respectively, and
observed similar flow structures. The tangential flow is at its strongest in the outward
region where the rotating inner cylinder imparts momentum to the flow to move from the
inner cylinder towards the stationary outer cylinder. Whereas, in the inward region the
flow is at its weakest due to deceleration of the fluid in the outer wall where the fluid is
transported by convection (KOBAYASHI et al., 1990).
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Figura 46 – Identification of the Taylor’s vortexes through λ2 for the LES-WALE (a), and
LES-Smagorinsky (b) models.
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Figura 47 – Identification of the Taylor’s vortexes through λ2 for the k-ε (a) and RSM (b)
models.
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Figura 48 – Identification of the Taylor’s vortexes through λ2 for the SST (a), and SAS-SST
(b) models.
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Figura 49 – Radial profiles of the tangential velocity component near the outward region
of a Taylor vortex.

Figura 50 – Radial profiles of the tangential velocity component near the inward region of
a Taylor vortex.
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Figura 51 – Radial profiles of the tangential velocity component near the center of vortex
region of a Taylor vortex.

An interesting point to observe is that the tangential component of the velocity
is at-least 70 % of the total flow considering that the maxima for both axial and radial
components is only around 15 % of the mean flow. The PIV experimental results in accord
with Kobayashi et al. (1990) showed that both axial and radial components achieved
a maximum of only around 10 % of the flow. Moreover, the steepest gradients for the
tangential velocity lie in the boundary layer. This could imply that in the boundary layer
more than 70 % of the kinetic energy and its dissipation must be represented by only the
tangential component of the velocity and its gradients. Hence, for a better estimation of
the kinetic energy and its dissipation requires finest grid structure on the radial direction
to capture the propagation of tangential flow in-between the cylinders, especially in the
boundary layers.

Among the different turbulence models, the worst comparison with the DNS model
was for the LES-Smagorinsky model. It over-predicted the magnitude in the outward
region and under-predicted in the inward region. In all the three regions, the LES-WALE
model reproduced extremely well the profile structures and magnitudes estimated by the
DNS model followed by the SAS-SST and SST model with very similar predictions. The
predictions of the k-ε and RSM model were comparatively poor in the outward and inward
region in comparison to the other RANS based models. In the center of vortex region where
all turbulence models predicted similar structures, the RSM model was comparatively
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under-predictive in the bulk zone.

The radial profile of the tangential component showed that within 80 % of the
gap-width between Rb = 0.1 to 0.9, the magnitude of the velocity is constant at around 50
%. This aspect is of great consequence because in the case of animal cell cultures, the cell
lines within the TVB will spend most of the time in the vicinity of these values of similar
and weak magnitude, and only a fraction of its times will be spent near the high gradients
located near the wall. Additionally, the viscous layers in the region of high gradients near
the wall will further propel the cell cultures towards the bulk zone having uniform flow.

4.2.2 Radial velocity

The radial component of the mean velocity is presented in the Figures 52, 53 and
54 at or closest to the outward, center of vortex and inward regions of a Taylor-vortex for
the different numerical models. Kobayashi et al. (1990) observed that the axial and radial
velocity components achieved a maximum of only around 10 % of the mean flow, whereas
in this study and in Bilson e Bremhorst (2007)’s work a maximum of approximately 15
% for these two components is achieved. The radial velocity achieves this maximum in
parabolic shapes in the outward, in the upward direction, and inward regions, in the
downward direction. The upward and downward parabolic shapes of the radial velocity
are due to opposite direction of flow in the outward and inward region, respectively. In
the outward region, the flow is from the inner cylinder towards outer and vice-versa in the
inward region.

As in the case of the tangential velocity, the estimations of the LES-Smagorinsky
models were over-predictive in comparison to the rest of the models in the outward and
inward region. While, the RSM models estimations were under-predictive in these two
regions. The LES-WALE model captured extremely well the flow structure exhibited by
the DNS model followed by the SAS-SST, SST and k-ε models. In the center of vortex
region, the radial velocity is near zero for all the turbulence models.

4.2.3 Axial velocity

In the Figures 55, 56 and 57, the axial component of the mean velocity is presented
at or closest to the outward, center of vortex and inward regions of a Taylor-vortex for the
different numerical models. It should be noted that the structure of the axial velocity is
opposite to that presented in the research work of Kobayashi et al. (1990). The reason
is that the single vortex from which the data is represented in these results is from the
vortex with anti-clockwise rotation, whereas the data was taken from the vortex rotating
in clockwise direction by Kobayashi et al. (1990). The rotation direction of the vortex can
be judged by the shape of the axial velocity in the center of vortex region, as explained by
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Figura 52 – Radial profiles of the radial velocity component near the outward region of a
Taylor vortex.

Figura 53 – Radial profiles of the radial velocity component near the inward region of a
Taylor vortex.
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Figura 54 – Radial profiles of the radial velocity component near the center of vortex
region of a Taylor vortex.

Kobayashi et al. (1990). In the axial velocity flow, the maximas lie near the walls, one of
positive magnitude and another negative, in the center of vortex region, and in the bulk
zone there is a linear distribution slanting from the positive to the negative maxima. If the
positive maxima lies near the inner cylinder, then the rotation is clockwise otherwise its
anti-clockwise. In complete agreement with Kobayashi et al. (1990) and Bilson e Bremhorst
(2007), the axial velocity is nearly zero in both the outward and inward regions.

As the axial velocity is near zero in the outward and inward region, all turbulence
models estimations were similar. The small differences between these models for the small
magnitude values is most probable due to the poor grid structure of 1 mm in the axial
direction. The LES-Smagorinsky model was over-predicting in the center of vortex region,
while the RSM model was under-predicting. Again the LES-WALE model best captured
the DNS estimations followed by the SAS-SST, SST and k-ε model.

4.2.4 Log law profiles of tangential velocity

In order to better understand the boundary layer, the classical log-law profiles for
the inner (Figure 58a) and outer (Figure 58b) boundary layers are presented for the mean
of the whole axial domain of the tangential velocity component. Both inner and outer
velocity profiles are normalized with appropriate uτ , which is estimated from the global
torque estimations of each respective numerical model. As mentioned in Chapter 3, it
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Figura 55 – Radial profiles of the axial velocity component near the outward region of a
Taylor vortex.

Figura 56 – Radial profiles of the axial velocity component near the inward region of a
Taylor vortex.
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Figura 57 – Radial profiles of the axial velocity component near the center of vortex region
of a Taylor vortex.

should be remembered that uτ is the average of the whole axial domain and not local,
which can cause imperfect matching (HUISMAN et al., 2013). As mentioned by Huisman
et al. (2013), the velocity profile follows u+=d+ in the viscous sub-layer (1<d+<10),
which is evident from the numerical estimations in the inner boundary layer. Viscous
wall layer is much thicker in the inner boundary layer compared to the outer boundary
layer, as the deviation from the u+=d+ profile for the outer boundary layer is quicker
in comparison to the inner boundary layer, in accord with the observations of (BILSON;
BREMHORST, 2007).

Among the different turbulence models, the estimations of the LES-WALE model
were exactly the same as those of the DNS model in both the inner and outer boundary
layers. The SAS-SST and SST model estimations were very similar and closely followed
the DNS predictions, especially in the outer boundary layer area. The estimations of the
k-ε, RSM and LES-Smagorinsky models were similar to each other but very different to
those of the DNS model for both the magnitude and structure. The main reason behind
such poor estimations for these three models is the over-estimation of the torque not only
in comparison to the DNS model but also in comparison with the analytical estimations
of the Wendt (1933). This aspect will be discussed in more detail in the power estimation
section.

The classical log-law profile structure for the three regions is presented in the Figure
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Figura 58 – Radial profiles of the log-law profiles of the axial mean of tangential velocity
component for the inner (a) and outer (b) walls for the different turbulence
models.
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59 only for the DNS model to reduce the number of figures. Clearly in all regions and
in both boundary layers, the velocity profile exhibits similar structure to that of u+=d+
at-least in the viscous sub-layer. The thickness of this layer behaves differently in different
regions. The axially averaged profile resembles more closely to the center of vortex region,
which provides further proof to the observation of (KOBAYASHI et al., 1990) that flow
structures in a Taylor’s vortex are mostly, apart from the ones in the outward and inward
region, similar to the center of vortex region profile, which he cited as the phenomenon
of uniformity in the circumferential velocity caused by the convection of the secondary
flow. The outward region structure acquire a near parallel structure to the log-law profile
in the inner boundary layer around d+>20; whereas, the inward region does the same
in the outer boundary layer. This can be explained by the fact that the velocity flow is
strongest in the outward region towards the inner cylinder thus leading to small viscous
sub-layer. Similarly, a small viscous sub-layer is seen in the outer boundary layer for the
inward region where the velocity flow is strongest near the outer cylinder.

4.3 Normal stresses
Figures 60, 61, 62, 63, 64, 65, 66, 67 and 68 present the radial profiles of the

three fluctuating velocity components, tangential, radial and axial, near the outward,
center of vortex and inward region of the Taylor vortex, respectively. These fluctuating
components are presented in various formats in different studies, such as root mean square
(rms) velocity fluctuations (CHUNG; SUNG, 2005; HOUT; KATZ, 2011; TOKGOZ et al.,
2012; FRIESS; PONCET; VIAZZO, 2013), Reynolds stress tensor components (PONCET;
HADDADI; VIAZZO, 2011; VIAZZO et al., 2012; OGUIC; VIAZZO; PONCET, 2013),
and squared velocity fluctuations this study and (KOBAYASHI et al., 1990; BILSON;
BREMHORST, 2007). Please note that though Kobayashi et al. (1990) presented the data
as squared velocity fluctuations, they termed these as turbulence normal stress components.
Furthermore, only Kobayashi et al. (1990) mentioned the regions of the Taylor-vortex at
which the data was presented. In any case, a qualitative comparison with other studies
can still be considered useful.

In the case of fluctuating tangential velocity, the flow structure of the tangential
velocity is at its strongest in the outward region, in agreement with Kobayashi et al.
(1990). In the inward region, the structure is opposite in nature to that in the outward
region, i.e. stronger near the outer wall and decreasing progressively towards the inner
wall through-out the bulk zone, though the magnitudes are relatively weaker. There are
two local maximas of which one is near and the other further away from inner cylinder
boundary, Rb=0.14, and the one towards the outer cylinder boundary is very close to the
wall, in rapport with Kobayashi et al. (1990). Whereas, in the inward region the structure
is opposite but with comparatively lower magnitude with one local maxima closer to
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Figura 59 – Radial profiles of the log-law profiles for the inner (a) and outer (b) walls near
the outward, center of vortex and inward regions of a Taylor vortex for the
DNS model only.
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Figura 60 – Radial profiles of the tangential velocity component near the outward region
of a Taylor vortex.

Figura 61 – Radial profiles of the tangential velocity component near the inward region of
a Taylor vortex.
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Figura 62 – Radial profiles of the tangential velocity component near the center of vortex
region of a Taylor vortex.

Figura 63 – Radial profiles of the radial velocity component near the outward region of a
Taylor vortex.
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Figura 64 – Radial profiles of the radial velocity component near the inward region of a
Taylor vortex.

Figura 65 – Radial profiles of the radial velocity component near the center of vortex
region of a Taylor vortex.
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Figura 66 – Radial profiles of the axial velocity component near the outward region of a
Taylor vortex.

Figura 67 – Radial profiles of the axial velocity component near the inward region of a
Taylor vortex.
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Figura 68 – Radial profiles of the axial velocity component near the center of vortex region
of a Taylor vortex.

the inner cylinder boundary, while two local maximas lie in the boundary layer of outer
cylinder of which one is next to the wall and other at Rb=0.8, also in consistence with
the results of Kobayashi et al. (1990). In the center of vortex region, the maximas lie very
near to the boundary with sharp decrease in the boundary layer area and near constant
magnitude in the bulk zone, and in the boundary layer the disparity in the magnitude of
the maximas near the wall is very little in comparison to the outward and inward regions.

The radial fluctuating component is the weakest of the three, in agreement with
the experimental and numerical results of Kobayashi et al. (1990), Chung e Sung (2005),
Bilson e Bremhorst (2007), Poncet, Haddadi e Viazzo (2011), Friess, Poncet e Viazzo
(2013), with the maxima around one-third and one-seventh of the axial and tangential
components, respectively. In all three regions, outward, center of vortex and inward, both
numerical models predict similar magnitudes and flow structures. In the center of vortex
region, the flow has a curved shape with the maxima lying in the middle of the gap-width,
as in the case of mean radial velocity. Whereas, the inward and outward regions also have
curved but opposite flow structure with two local maximas at Rb≈0.25 and 0.15 at the
inner wall and 0.85 and 0.75 at the outer wall, respectively.

In the case of fluctuating axial velocity, the maxima lie further away from inner
cylinder boundary, Rb=0.16, but closer to the other boundary for outward region, in
rapport with Kobayashi et al. (1990). Whereas, in the inward region the structure is
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opposite but comparatively weaker with the maxima closer to the inner cylinder boundary,
but at Rb=0.8 for outer cylinder, also in consistence with the results of Kobayashi et al.
(1990). In the center of vortex region, both the structure and magnitude are predicted of
similar order by both numerical models. The maximas lie very near to the boundary with
gradual decrease from the boundaries towards the center of the bulk zone. Though the
Chung e Sung (2005) have not mentioned the region of extraction of results, their root
mean square (RMS) axial velocity fluctuations were of similar structure as that of the
center of vortex region with the maxima lying very close to the boundary and the minima,
having a magnitude of 50% of the maxima, lying in the middle of the gap-width.

It is interesting to note that the flow in the outward region is always comparatively
stronger compared to the one obtained in the inward and center of vortex region, and in
case of fluctuating tangential velocity the maxima is two times higher. Kobayashi et al.
(1990) surmised that the most probable reason behind the comparatively weaker flow in
the inward and center of vortex region is due to the viscous forces causing deceleration of
the fluid on the wall. Secondly, the flow structure of the fluctuating axial velocity is very
similar to that of the fluctuating tangential velocity in the bulk region, also observed in
Kobayashi et al. (1990), Chung e Sung (2005), Bilson e Bremhorst (2007), Friess, Poncet e
Viazzo (2013). Kobayashi et al. (1990) said that the reason behind this similarity relates
to the energy redistribution from u

′2
θ through the pressure rate-of-strain correlation and

also due to small production of u′2z .

The LES-WALE models predicts equally well the shape and location of the maximas
estimated by the DNS model in all three regions for the three components of the TKE,
but the magnitude of the flow has some very small disparities both near and away
from the walls. The other LES model was under-predicting these turbulence parameters
significantly but captured the flow structure to a certain extent. In the case of the mean
flow components the LES-Smagorinsky model was over-estimating, and in the case of
the fluctuating velocity components which represents the turbulence are under-predicted.
All the RANS based models were severely under-predicting and the worst being the SST
turbulence model. The SAS-SST model captured the normal axial stress in close similarity
to that of the LES-Smagorinsky model, but not the other two normal stresses where it
was under-predicting even more. The RSM and k-ε were slightly better than the SAS-SST
model for the estimation of the tangential normal stress, but poorer in the estimation
of normal axial stress; while, in the estimations of the normal radial stress there is little
difference among these three models.
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Figura 69 – Radial profiles of the tangential velocity component near the outward region
of a Taylor vortex.

4.4 Reynolds shear stresses

In Figures 69, 70, 71, 72, 73, 74, 75, 76 and 77, the radial profiles of the three
Reynolds shear stresses, u′ru

′
θ, u

′
ru
′
z and u

′
θu
′
z, are presented near the outward, center of

vortex and inward region of the Taylor vortex. Unlike the squared fluctuating components,
these have been unanimously named as the Reynolds shear stresses (KOBAYASHI et
al., 1990; CHUNG; SUNG, 2005; BILSON; BREMHORST, 2007; HOUT; KATZ, 2011;
PONCET; HADDADI; VIAZZO, 2011; FRIESS; PONCET; VIAZZO, 2013). Once more
only Kobayashi et al. (1990) mentioned the regions of the Taylor-vortex at which the data
was presented; nonetheless, a qualitative comparison with other studies is still valid.

The Reynolds shear stress u′θu
′
r is stronger in the bulk zone in all the three regions

in comparison to the boundary layer. In contradiction to the experimental estimations
of the Kobayashi et al. (1990), who predict a profile similar to that of the fluctuating
tangential component in these regions, the bulk zone follows the profile structure of the
fluctuating radial component in these regions. It can be seen that the fluctuating radial
component is nearly zero in the boundary layer and attains a magnitude in the vicinity
of the tangential component in the bulk zone, which is most probably the reason behind
stronger magnitude in the bulk zone in comparison to the boundary layer area.

The magnitude and structure of the Reynolds shear stress u′ru
′
z has a very significant
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Figura 70 – Radial profiles of the tangential velocity component near the inward region of
a Taylor vortex.

Figura 71 – Radial profiles of the tangential velocity component near the center of vortex
region of a Taylor vortex.
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Figura 72 – Radial profiles of the radial velocity component near the outward region of a
Taylor vortex.

Figura 73 – Radial profiles of the radial velocity component near the inward region of a
Taylor vortex.
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Figura 74 – Radial profiles of the radial velocity component near the center of vortex
region of a Taylor vortex.

Figura 75 – Radial profiles of the axial velocity component near the outward region of a
Taylor vortex.
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Figura 76 – Radial profiles of the axial velocity component near the inward region of a
Taylor vortex.

Figura 77 – Radial profiles of the axial velocity component near the center of vortex region
of a Taylor vortex.
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imprint of the fluctuating axial component in all the three regions, but the sign is due
to the radial component. In the outward region, the magnitude is mostly of +ive sign
with the maxima near the inner cylinder wall and gradually reaching the zero magnitude
towards the outer wall; while, in the inward region its opposite with the sign being -ive
and maxima towards the outer wall. In the center of vortex region, there are two maximas
of similar magnitude and -ive sign near each cylinder wall.

The third Reynolds shear stress u′θu
′
z is the weakest of the three shear stresses in

all three regions. Being a mixture of tangential and axial fluctuating velocity components,
this shear stress has two local maximas near each cylindrical wall. In the outward region,
the maxima is stronger near the inner boundary; on the contrary, the maxima is towards
outer boundary are in the inward region. Whereas, in the center of vortex region both
local maximas are of similar magnitude.

The numerical models of the Chung e Sung (2005), Poncet, Haddadi e Viazzo
(2011), Friess, Poncet e Viazzo (2013) for the Reynolds shear stresses u′ru

′
z and u

′
θu
′
z

estimated a profile structure similar to that of the mean axial component of the velocity in
the center of vortex region (Figure 57). Whereas, for the Reynolds shear stress u′ru

′
θ, the

LES models of the Chung e Sung (2005), Friess, Poncet e Viazzo (2013) predicts a sort of
inverted U-shape which is slanting from the inner cylinder toward the outer through-out
the bulk zone. First of all, it should be noted that the exact region of extraction of data
has not been specified, nor has been specified if these results are the mean of the whole
axial height. If the mean of the whole axial height is taken then for the Reynolds shear
stress u′ru

′
z a profile similar to the ones predicted by these researcher is obtained but not in

the case of the Reynolds shear stress u′θu
′
z. Secondly, the present results predict a upward

parabola for the Reynolds shear stress u′ru
′
θ only in the bulk zone with two small peaks in

the boundary layer area in the outward region. If the mean of the whole axial height is
taken, then the prediction becomes a inverted V-shape in the bulk zone with two small
peaks in the boundary layer. Please note that the mean of the whole axial heights are not
shown here.

Overall, the LES-WALE model reproduces very well the estimation of the DNS
model, especially the structure, with slight discrepancies in the magnitude estimations.
The SST model predicted near zero magnitude estimations in all three regions for the
three shear stresses and is the poorest of the RANS based model presented here for these
turbulence parameters. The LES-Smagorinsky model captured the shape of the flow to a
certain extent but the magnitude was well under-predicted. The other three RANS based
models were equally poor in capturing both the shape of the flow and its magnitude but
still better then then SST model.
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Figura 78 – Radial profiles of the turbulent kinetic energy near the outward region of a
Taylor vortex.

4.5 Turbulent kinetic energy

The Figures 78, 79 and 80 present the TKE near the outward, inward and center
of vortex regions of the Taylor vortex. In the case of the RANS based models, the modeled
TKE is presented and not the one estimated from the normal stresses. There is a significant
difference between the modeled TKE and the one obtained after the treatment of the
velocity data set, as can be seen in Figure 81. This substantial difference is due to the fact
that the Reynolds averaging process reduces the turbulence content in the velocity and
therefore requires the modeling of the turbulent kinetic energy. This should be the main
reason behind the under-estimation of the Reynolds normal and shear stresses which are
estimated from the velocity data set for the RANS based models.

The TKE profile bears a very close resemblance with the profiles of the tangential
and axial fluctuating velocity components, especially the tangential component being the
strongest of the three. The radial component being the weakest of the three fluctuating
components has virtually no similarity with the TKE profile. In the boundary layer, the
dominant factor is the tangential component leading to sharp peaks near the walls in all
the three regions. In the bulk zone, though the axial component is slightly stronger than
the tangential component, both these components have similar flow structures; hence the
striking resemblance to both these components is evident.
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Figura 79 – Radial profiles of the turbulent kinetic energy near the inward region of a
Taylor vortex.

Figura 80 – Radial profiles of the turbulent kinetic energy near the center of vortex region
of a Taylor vortex.
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Figura 81 – Comparison of the modeled turbulent kinetic energy with the one estimated
from the velocity data in the center of vortex region of a Taylor vortex.

The LES-Smagorinsky model presented the poorest estimation of the TKE in
comparison with the predictions of the DNS model. It under-predicts significantly the
magnitude in all three regions, and does not capture well the flow structure either in all
three regions. The LES-WALE model, on the other hand, captures extremely well both
the flow structure and the magnitude estimated by the DNS model in all three regions.
All the RANS based models estimations of the flow structure were similar to each other.
They were not able to capture the two local maximas near the inner wall in the outward
region and near the outer wall in the inward region, but were able to predict the structure
much better in the center of vortex region. In terms of the magnitude, the estimations of
the k − ε and the RSM model were similar and comparatively better than the SST and
SAS-SST models.

4.6 Anisotropy

In Figure 82, a small study of anisotropy near the walls and in the three prominent
regions of a Taylor vortex, outward, center of vortex and inward regions, is presented
through Lumley-Newmann and AG graphs of the invariant maps for the Reynolds stress
tensors only for the DNS model. This anisotropy study has been conducted with the DNS
model only because of very poor estimations of the Reynolds normal and shear stresses by
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RANS based models and the LES-Smagorinsky model, and very similar estimations of
the LES-WALE model. Method of Lumley e Newman (1977) is the most popular one to
characterize flow anisotropy in the TVB (CHUNG; SUNG, 2005; PONCET; HADDADI;
VIAZZO, 2011; OGUIC; VIAZZO; PONCET, 2013; PONCET; VIAZZO; OGUIC, 2014)
through the Reynolds stress anisotropy tensor bij , Equation 4.1: where k and δij represent
the average turbulent kinetic energy and the kronecker delta tensor, respectively. The first
invariant of the tensor bij is the trace of the tensor and zero by construction. The second
and third invariants for the tensor bij are defined in Chung e Sung (2005) as: II=1

2bijbji

and III=1
3bijbjkbki. Hence, the anisotropy can be characterized by the invariants II and III

in a triangle elaborated by Lumley e Newman (1977).

bij = u
′
iu
′
j −

2kδij
3 (4.1)

Apart from using the invariants II-III, the invariants of the axi-symmetry (A) and bi-
dimensionality (G) may also be used, where G=1/9+(III-II)/8 andA = −(III/6)/(II/6)3/2 =
±1 in terms of the invariants II-III as explained by Escudie (2001). As stated by Escudie
(2001), these two invariants, G and A, possess much more physical significance to unders-
tand the anisotropy in comparison with the invariants II-III, and these are represented in
a rectangle instead of a triangle. In this case, the state of isotropic turbulence is achieved
when the value of the invariant G is near or equal to its maximum value of 1/9 irrespective
of the value of the invariant A. The invariants A and G allow the quantification of the
disparity of the measuring data with respect to axi-symmetry and bidimensionality, thus
isotropy as well.

The numerical results are in coherence with the realizability diagram of Lumley
as they remain within the region delimited by the two axi-symmetric limits and one
bidimensional limit. Furthermore, Figures 82a and 82b confirm that closer to the cylindrical
walls the turbulence is mainly bi-dimensional or two-component, in complete agreement
with Chung e Sung (2005), Oguic, Viazzo e Poncet (2013) and Poncet, Viazzo e Oguic
(2014). Bidimensional state near boundaries is in complete agreement with the VEDR
estimations where the gradients of the tangential co-ordinate were practically negligible
in the boundary layer area. In addition, as more than 80 % of the VEDR was formed by
only one gradient near the walls, we can observe a large concentration of points towards
the monodimensional state on the bidimensional limit (82b), also observed by Poncet,
Haddadi e Viazzo (2011).

In the bulk zone, Chung e Sung (2005) and Poncet, Haddadi e Viazzo (2011) stated
that the turbulence is almost isotropic, which is further confirmed by the Oguic, Viazzo e
Poncet (2013). However, it can be seen in Figures 82c and 82d that the turbulence tends
towards isotropic state depending upon region of the Taylor-vortex in which it is located. In
the outward and inward region, the turbulence tends towards the axi-symmetry limit and
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Figura 82 – Presentation of anisotropy through Lumley-Newmann and AG graphs axially
near the walls, a) and b), and radially at the outward, center of vortex
and inward regions of Taylor vortex, c) and d) respectively, for the DNS
model. Note: in part a) and b) * represent the data near the inner and outer
boundaries, while in c) and d) o, + and pentagram represent the outward,
center of vortex and inward regions, respectively.

only in the center of vortex region that the turbulence tends towards the isotropic state.
In other words, the turbulence fluctuates between the axi-symmetry limit and isotropic
state in the bulk zone of a Taylor-vortex pair.

4.7 Viscous energy dissipation rate

4.7.1 Composition of VEDR

In Figure 83 the composition of the twelve gradients is shown for the estimation of
VEDR of the mean flow and turbulent kinetic energy for the DNS model. It can be seen
that the major component near and away from the walls for both components of the VEDR
is the gradient of the tangential velocity component in the radial direction: (∂(Uθ/r)

∂r
)2 for
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the VEDR of the mean flow kinetic energy and (∂(uθ ′/r)
∂r

)2 for the VEDR of the turbulent
kinetic energy. In combination with the other two gradients of the radial direction, i.e.
(∂(Ur)

∂r
)2 and (∂(Uz)

∂r
)2 , these account for at-least 90 % of the VEDR of mean flow and

turbulent kinetic energy, respectively, through-out the reactor. These three gradients of
the radial direction practically constitute the VEDR of turbulent kinetic energy with the
rest of the gradients being closer to lower than one-millionth of the εinnerwall. The three
gradients of the axial and tangential direction account for the less than 10−4 and 10−3 of
the εinnerwall for the turbulence and mean flow kinetic energy, respectively, through-out
the reactor. The three cross product gradients accounts for less than 10−5 of the εinnerwall
for both components of the VEDR.

Sharp e Adrian (2001) presented equations based on the statistical isotropy or
axi-symmetry to capture the out-of-plane gradients for the 2D-PIV measurements. In
these equations, an arithmetic mean of the in-plane gradients is taken into consideration
to account for the out-of-plane gradients. Keeping in view the impact of radial gradients
on the VEDR, such methodology will generate over-estimation of the VEDR in the case
of a TVB. Therefore, in-order to achieve a good estimation of at-least the maximum and
average VEDR, the gradients of the radial co-ordinate have to be well captured. The three
well captured radial gradients can provide a good estimation of the VEDR, especially near
the wall where lies the maximum VEDR and which will lead to a better averaged VEDR
as well. However, from the numerical 3d point of view, care still has to be taken when
constructing the grid in the axial and tangential direction in order to keep a good aspect
ratio and orthogonal quality.

However, it should be remembered that the grid structure in the tangential and
axial directions are more than 10 and 5 times coarser near the boundary layer and bulk
zone, respectively, in comparison with the radial direction. In comparison with the five
gradient PIV estimation of the VEDR (Figure 44), it was observed that even the finer
grid structure in the radial direction presented significant amount of under-estimation for
the VEDR of turbulent kinetic energy in the bulk zone. It could mean that such poor
magnitude values of the gradients in the axial and tangential direction could also be due to
the coarser grid structure in these directions. In fact, the composition of the five gradients
of PIV estimation of turbulence VEDR show that the magnitude of the radial velocity
component in the tangential direction is exactly the same as that in the radial direction,
Figure 32. The PIV estimation of the VEDR of mean flow kinetic energy component
presented similar results, Figure 31. In the DNS estimation, the structure for the radial
velocity component in the tangential, radial and axial direction for both mean flow and
turbulent kinetic energy VEDR is similar, but the magnitude is much smaller.
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Figura 83 – The twelve gradients of the VEDR of mean flow (a) and turbulent (b) kinetic
energy for the DNS model.

4.7.2 Structure of VEDR

Figure 84 presents the VEDR of the mean flow and turbulent kinetic energy of
the DNS model in the outward, center of vortex and inward regions. The estimations are
presented in a loglog profile to study the details of the inner cylinder’s boundary layer. In
the x and y axis of this Figures, the friction velocity, uτ , and εinnerwall are estimated from
the DNS data as mentioned earlier. In the case of the RANS based model, only the VEDR
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of turbulent kinetic energy is modeled and that of mean flow kinetic energy is unavailable.
As in the case of TKE, there is a considerable difference between the modeled VEDR of
TKE and the one estimated after the treatment of velocity data set through the equations
of the VEDR, with the treated data under-predicting by more than an order. Please note
that the figure comparing the modeled and treated VEDR of TKE is not presented here.
The modeled data of VEDR of TKE for the RSM model was also unavailable. These are
the main reasons that the three regions are presented with the DNS model only.

The location of maxima is always very near to the wall, similarly observed by
Tokgoz et al. (2012), Hout e Katz (2011) either to that of inner cylinder or outer cylinder
depending upon the axial location in the Taylor-Vortex. In the outward region, the location
of maxima is near the outer cylinder and for the inward and center of vortex region the
maxima is located near the inner cylinder The decrease for both these components is very
steep in the boundary layer, though it should be noted that the magnitude of the mean
flow kinetic energy component is around an order higher than the turbulence component
in this area. Whereas, in the bulk zone, this decrease in the viscous component is steeper
in comparison to the turbulence component.

Figura 84 – The estimation of the VEDR of mean flow and turbulent kinetic energy of
the DNS model in the outward, center of vortex and inward regions .

McEligot et al. (2008) termed the VEDR of mean flow kinetic energy as direct
dissipation and that of turbulent kinetic energy as turbulent or indirect dissipation. They
presented the numerical results of the DNS model for these components in a channel flow
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and zero-pressure-gradient boundary layer. They found that the direct dissipation is the
dominating component of the two near the wall. As the d+ increases, both the direct and
turbulent dissipation decreases with the reduction in the direct dissipation being much
more drastic in comparison to the turbulence counterpart. Between d+ = 10 and 20, the
magnitude of the direct and turbulent dissipation becomes equal, and with further increase
in the d+ values the direct dissipation continues decreasing much more rapidly leading to
the turbulence dissipation becoming the dominating component in the bulk zone.

Most of these aspects can be observed in the current estimations of these two
components of the VEDR for the TVB. The direct dissipation is the dominating near the
wall, and increase in d+ results in decrease in both of these components of the VEDR with
the decrease in the direct dissipation being more rapid in comparison to the turbulence one.
Furthermore, the magnitude of the direct and turbulent dissipation becomes equal between
the region d+=10 and 30, with the dissipation of turbulent kinetic energy becoming the
stronger component towards the bulk region, where turbulence component of the VEDR is
at-least an order higher in the outward and inward regions. In fact, in the bulk region, the
direct or mean flow kinetic energy dissipation becomes practically negligible by reaching
values less than 0.1 % of the maximum value in complete agreement with the results of
McEligot et al. (2008).

Turbulence takes over completely in the bulk zone once the viscous wall layer
becomes negligible around d+=30 for a classical zero-pressure gradient case, as mentioned
by McEligot et al. (2008). They defined the viscous wall layer as the region with significant
effects of viscosity which are not necessarily dominant and include the laminar and buffer
sub-layers. The importance of this region lays in the fact that the largest gradients and
greatest production of turbulence occur in this region besides being the region which
provides major resistance to the momentum, mass and energy transfer (MCELIGOT et al.,
2008). Additionally, it can be seen that the VEDR remains fairly constant in the viscous
sublayer. These aspects of following the classical turbulence further strengthen the validity
of these results.

The only discordance with the predictions of the McEligot et al. (2008) is that
the turbulence component of VEDR is not as strong as it should be. The most probable
reason behind this disparity is that the mesh is comparatively courser in the middle of
the gap-width, 184 µm, in comparison to the nodes on the wall, 47 µm. The Kolmogorov
scale estimations in comparison with the mesh size, presented in Figure 85, confirm the
requirement of further enhancement in the radial mesh to capture 100 % of the eddies.
The Kolmogorov scale was estimated from the mean of all axial heights of the mean VEDR
of turbulent kinetic energy for the PIV and DNS model. The PIV estimations of the
Kolmogorov scale confirm that the radial mesh is around 3 times coarser in the center
of gap-width. This should be the main factor behind such poor estimation of the VEDR
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of turbulent kinetic energy which is the stronger component in the bulk zone where the
radial mesh is poorest.

Figura 85 – The Kolmogorov estimations of the DNS model calculated through the VEDR
of turbulent kinetic energy for the respective model and the mesh size.

The comparison of different turbulence models is shown in Figure 86 for the mean
of all the axial profiles. It should be noted that in order to dimensionlize the y axis, the
εinnerwall = u4

τi/nu is different for each turbulence model because the friction velocity, uτi
of each respective model is considered. In addition, the estimations of the sub-grid scale
model are not included in the LES models.

The estimations of the LES-WALE model were very similar to the DNS model
and with a slightly higher magnitude in the bulk zone. The predictions of the LES-
Smagorisnky model were the poorest among the turbulence models presented in this study.
The estimations of the RANS based models were mostly on the higher side magnitude
both in the bulk zone and boundary layer area. Only the SST model comparatively under-
predicted in the boundary layer area in comparison to the DNS model. The predictions of
the SAS-SST model were an order higher than the DNS model in the bulk zone.

The estimations of the LES-WALE model could be improved with the addition of
the sub-grid scale predictions to reduce the under-prediction of VEDR of TKE in the bulk
zone. However, in the case of the LES-Smagorinsky model, the under-prediction is already
more than an order and the sub-grid scale prediction can not improve those drastically. In
order to understand the reason behind the higher estimation of the RANS based models in
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Figura 86 – The estimation of the VEDR of TKE for the different turbulence model for
axial mean of all the radial profiles.

comparison to the DNS model, it is important to remember that the DNS model actually
calculates the eddies while the RANS based models use a transport equation to estimate
the VEDR of TKE. This makes the predictions of the DNS model much more sensitive
and dependent on the grid structure in comparison to the RANS based models. The better
predictions of the SAS-SST model in the bulk zone are most probably due to the induction
of the "LES-like"behavior in unsteady regions of the flow field away from the wall. Near
the walls, the SAS-SST model behave like an SST model because of the usage of SST wall
functions.

4.7.3 Power Estimation

The power estimation was conducted for the numerical model using the torque,
P=τω, and volume integral of the VEDR methods, P=

∫∫∫
v
ρεdv, as shown in Table 7.

An analytical estimation of torque based power is also presented based on the wendt’s
correlation cited in Lathrop, Fineberg e Swinney (1992). The Numerical estimation of the
DNS model is around 15 % lower in comparison to the analytical estimation based on
the Wendt’s correlation (WENDT, 1933). The numerical estimation of power based on
torque was ≈ 19 % higher in comparison to the power estimated from the volume integral
of VEDR method for the DNS model. Higher torque based power in comparison to the
VEDR method clearly indicates under-estimation of the VEDR by around 20 %. The
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under-estimation is not that poor because the maximum is well predicted by the DNS
model while the lower magnitude values of the bulk zone are not well estimated.

Tabela 7 – Torque and Power estimations in TVB through numerical and analytical
methods.

Method Torque (Nm) Power-Torque
(Watts)

Power-
VEDR
(Watts)

Numerical - DNS 0.0188 0.23 0.184
Numerical - LES-WALE 0.0199 0.24 0.188
Numerical - LES-Smagorinsky 0.042 0.5 0.21
Numerical - k-ε 0.041 0.49 0.597
Numerical - SST 0.025 0.3 0.092
Numerical - SAS-SST 0.0237 0.28 0.084
Numerical - RSM 0.041 0.49 0.503
Analytical - Wendt 0.022 0.27

The predictions of the LES-WALE model are very similar to those of the DNS
model for both the torque and volume integral of the VEDR methods, with the difference
between these models being around 1 %. The LES-Smagorinsky and two RANS based
models, k − ε and RSM, overestimate the torque based power by over 80 % in comparison
with the analytical estimations. The SAS-SST model was more in tune with the analytical
estimations with the difference being less than 6 % on the higher side; while, the SST
model estimations were around 11 % higher than the analytical estimations. However, the
difference between the torque and volume integral of VEDR based power was much more
pronounced in the RANS based models and the LES-Smagorinsky model.

4.8 Conclusions
The main aim of this chapter was to discuss the hydrodynamics of TVB with respect

to the mean velocity gradients and different turbulence parameters; such as, anisotropy,
TKE and its terms, VEDR and its 12 terms, power estimation and identification of a
vortex, and the effectiveness of different turbulence models for these parameters. These
aspects are presented around three different locations of a Taylor vortex: outward, center
of vortex and inward regions.

The anisotropy study conducted by the DNS model revealed that apart from
coherence with the realizability diagram of Lumley-Newman, the prevalent state near inner
and outer wall boundaries is bidimensional but towards the monodimensional state in
complete accordance with literature. In the bulk zone, it was observed that the turbulence
tends towards axi-symmetry in the outward and inward region and towards isotropic
state in the center of vortex region; in other words, the turbulence oscillates between
axi-symmetry and isotropic state in the middle of the gap-width in a Taylor-Vortex.
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The division of VEDR into its mean flow and turbulent kinetic energy counter-
parts shed light on their behavior in the Taylor-Vortex flow. The mean flow component
is higher by an order near the wall, while in the bulk zone the turbulence component is
comparatively stronger. An important aspect of this study is the composition of the 12
gradients for the estimation of the VEDR. These compositions clearly showed that the
three second-order radial gradients alone accounted for at-least 90 % of the VEDR of
mean flow and turbulent kinetic energy through-out the reactor. While, the cross-product
gradients and the gradients of the tangential direction were found to have negligible impact.
The power estimations showed that the under-estimation of the VEDR is around 20 %.

Among the different turbulence models, only the LES-WALE model captured well
the estimations of the DNS model for all the parameters presented here. The two-equation
based models estimations were better than the RSM and the LES-Smagorinsky model for
the mean velocity components. Whereas, for the Reynolds normal and shear stresses, the
predictions of all of the RANS based models and the LES-Smagorinsky model were poor
in comparison to the DNS model due to the Reynolds averaging process for the RANS
models which dampens the turbulence content, and most probably the CS constant for the
LES-Smagorinsky model. The modeled TKE and its dissipation of the RANS model was
improved magnitude wise but could not capture well the structure of these parameters.
Overall, among the RANS based models, the SAS-SST model performed much better
because the usage of von Karmen length-scale adjusts the local scales in the unsteady
region away from walls and reduces the damping of the turbulence content.
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5 An application of CFD

5.1 Problem description
The interest in culturing animal cells has increased significantly in the last 20 years

due to the need of large-scale production of monoclonal antibodies, hormones, vaccines,
recombinant proteins and, more recently, the production of specialized cells for applications
in tissue engineering and cell therapy Agarwal (2013), Heathman et al. (2015), Mason et
al. (2012). Accordingly, a wide variety of cell lines have been cultivated in the reliable,
well known and easy to scale-up stirred tank bioreactor with a design adapted from the
fermenters used for microbial cultures (STANBURY; WHITAKER; HALL, 1995).

However, in order to cultivate the animal cells in stirred tank bioreactor, some
fine adjustments in the geometrical design of the fermenters were required to reduce the
damage of cells due to shear stress, heat and contamination (STANBURY; WHITAKER;
HALL, 1995). In the design one of the most important but controversial item is the bottom
geometry of the tank, which as per these authors should be hemispherical or concave
to ensure better mixing at lower impeller rotational speed. On the contrary, Lydersen,
D’Elia e Nelson (1994a) stated that this requirement is not acceptable since there is
no firm evidence to support this belief in addition to the fact that several stirred tank
bioreactors with flat bottom have worked well in commercial applications and with the
benefit of 50 % lower cost of the tank. Lubiniecki (1990) and Lydersen, D’Elia e Nelson
(1994b) advocate the use of concave bottom, considering the usage of flat bottom to be
inappropriate because of formation of stagnant regions in the bottom corners which can
cause particle accumulation. In the case of animal cell culture, sedimentation problems
can hinder the operation of the bioreactor during the cell adhesion process and during the
actual cultivation by forming aggregates because of the large size of the particles (cells,
cells clusters and microcarriers) (IBRAHIM; NIENOW, 2004).

A study conducted by Chaudacek (1985) showed that the accumulation of high
density solids, such as silica, in flat bottom tanks can be eliminated by using axial impellers
and implementing modifications in the geometry of the tank. Ibrahim e Nienow (2004)
applied this reasoning to low density solids, such as microcarriers, and validated the
geometry modification principle using rounded corners in the bottom of the tank and a
conical indentation in the region under the impeller. Although, stirred tank is the first
bioreactor type for culturing animal cells from laboratory scale to industrial scale, it was
not until the study of Ibrahim e Nienow (2004) that there was a better definition of
technical criteria demonstrating an advantage of modified bottom with respect to the flat
bottom for bioprocesses. Considering the lack of information for bioreactors to culture
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animal cells with different geometrical conditions, carrying out studies in this direction
becomes extremely interesting and necessary since the geometry modifications can greatly
influence the bioprocess efficiency.

As a result of such studies, in laboratory scale bioreactors to culture animal cells,
in general practice, the outer cylinder usually has a curved geometry on the bottom.
The three well-known industrial suppliers of the stirred tank laboratory scale bioreactors,
New Brunsswick, Infors HT and Applikon biotechnology, have curved (dished outwards)
geometry of the outer cylinder. However, the demand of newer and more shear sensitive
cell cultures, especially the ones using microcarriers, require newer bioreactor types that
generate milder hydrodynamic forces in comparison to the stirred tank (JAIN; KUMAR,
2008). The Taylor bioreactor due to lower and uniform distribution of shear is fast becoming
a strong candidate to replace the traditional stirred tank in the cultivation of animal
cells by presenting a lower and more uniform shear (O’CONNOR et al., 2002; HAUT
et al., 2003; CURRAN; BLACK, 2004; CURRAN; BLACK, 2005; GONG et al., 2006;
TANZEGLOCK, 2008; SANTIAGO; GIORDANO; SUAZO, 2011; ZHU et al., 2010).

However, in the case of Taylor bioreactor, there is empirical evidence of accumulation
of particles at the bottom of the bioreactor which hinders the process of cell adhesion
and proliferation. Considering the lack of information for bioreactors using the Taylor
vortex principle to culture animal cells with different geometrical conditions, carrying out
studies in this direction becomes extremely important and necessary since the geometry
modifications can greatly influence the bioprocess efficiency. Consequently, the shape of
the outer cylinder and the height at which the inner cylinder is placed above the outer
cylinder, or off-bottom clearance-obc, are considered as parameters which can lead to
stagnant zones in a Taylor bioreactor. For example, if the inner cylinder is placed too high,
there could be stagnant zones in the bottom of the tank because with only inner rotating
cylinder tangential velocity has the biggest impact on the flow structures, thus implying
that in the off-bottom clearance area there may not be sufficient amount of mixing due to
weak axial flow.

However, as far as the authors are aware, the off-bottom clearance and shapes
of the outer cylinder’s base have not been investigated for Taylor reactor, but are of
significant practical importance especially in the case of using it as a bioreactor for culture
of anchorage dependent cells on microcarriers. Therefore, the main purpose of this chapter
is to elucidate a favorable geometry for the particle suspension in a Taylor bioreactor
at energy dissipation rates that are lower to those considered sub-lethal for the cells
by providing an analysis of the flow structures and identifying the locations where the
stagnation may occur using a computational fluid dynamics (CFD) validated model. Best
practice numerical methods are employed, and due attention is paid to find a proper grid
and time-step independence mesh. The SST turbulence model is employed in this study
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considering its more accurate prediction of the magnitude and location of the maxima
of TKE and VEDR of TKE in a stirred vessel in comparison to the k-ε, SST, RSM
and SAS-SST turbulence models (SINGH; FLETCHER; J., 2011). The DNS and LES
models are not considered in this study due to the considerable requirements of time
and computational resources for these models. The numerical model will be validated by
comparison with the PIV and numerical study presented by Coufort (2004) and Coufort,
Bouyer e Line (2005) on the grounds of similar radius ratio of 0.87 and 0.84 (this study),
consideration of only inner cylinder rotation and similar Reynolds number of 10995 and
12000 (this study).

5.2 Computational model

5.2.1 Description of case set-up

In this study, a different configuration of the TVB was chosen in comparison to the
one studied in the Chapter 2, 3 and 4. The dimensions and the geometrical characteristics
of this TVB can be found in Table 8. This TVB is based on the one used by Santiago,
Giordano e Suazo (2011). The rotational speed of 3.33 rps was chosen in order to have
the Reynolds number closer to the fully turbulent Reynolds number (ReT ) of 13,000
(LATHROP; FINEBERG; SWINNEY, 1992) for the TVB, and in order to validate with
PIV and numerical study presented by Coufort (2004) and Coufort, Bouyer e Line (2005)
which was conducted at a Re number of ≈ 11,000. Being a single phase simulation, only
water at a temperature of 20º was used as the working fluid.

Tabela 8 – Dimensions and geometrical characteristics of the TVB used for studying the
different geometrical structures.

Parameters (dimensions) Value
Inner cylinder radius, ri (mm) 54.4
Outer cylinder radius, ro (mm) 65
Length of the outer cylinder, L (mm) 210
Gap width, b (mm) 10.6
Off-bottom clearance, c (mm) 0, 5, 10, 15
Radius ratio, η 0.84
Aspect ratio, Γ 19.8
Rotational speed, ω (rps) 3.33
Reynolds number, Re 12,077
Taylors number, Ta 5331

Three different bottom shapes of the outer cylinder were tested: flat, dished and
dished inwards, as shown in Figure 87. The geometries flat bottom and dished bottom are
commonly used shapes in laboratory scale reactors; while, dished inwards shape was tested
based on the idea that with this configuration type accumulation of animal cells in the
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middle of the bottom of the reactor could be reduced. In terms of the off-bottom clearances,
c, four different values were tested, 0, 5, 10 and 15 mm, with only the flat bottom geometry
of the outer cylinder. Both the dished outwards and inwards geometries of the outer
cylinder had an off-bottom clearance of 15 mm. In total, six different geometries were
tested: four for flat-bottom at c = 0, 5, 10 and 15 mm, and one each for dished and dished
inwards at 15 mm c.

Figura 87 – Three different shapes of the outer bottom cylinder at 15 mm off-bottom
clearance and 1.968 × 106, 2.24 × 106 and 2.22 × 106 node meshes, respectively,
for each geometry. Green and purple markers signify interface area and periodic
boundaries respectively. Please note that not all interface areas and periodic
boundaries are shown here.

The geometry for each of these six test cases was divided into multiple sections:
three for flat bottom geometries and four for the other two cases. The idea behind this
multiple geometry was to accommodate sliding-mesh technique and implement sweep mesh
on the inner and outer surfaces. Because of the impossibility of implementing the sweep
mesh in the complete off-bottom clearance area, another small section was created in the
off-bottom clearance area. Moreover, in the two geometries with curved surfaces on the
bottom of the outer cylinder, another section was created covering the curved surfaces
again in view of the implementation of the sweep mesh in the gap-width area. The top
of the TVB is considered as symmetry because when working with animal cells the top
is a free surface. Furthermore, due to the symmetrical flow conditions in the TVB and
to reduce the computational effort, only 25 % of the geometry was modeled using cyclic
symmetry.
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5.2.2 Turbulence modeling

In this study, an unsteady-Reynolds averaged Navier-Stokes based SST turbulence
model is used. The equations used for this model can be found in version 13.0 of ANSYS-
Fluent (2010). The SST turbulence model was developed by Menter (1994), and the
curvature correction that is used with the SST turbulence model is a recent development
of Smirnov e Menter (2009). The curvature correction sensitizes the SST turbulence model
to streamline curvature and rotation, thus correcting a key limitation of two-equation
turbulence models. This curvature correction clearly improved the predictions of the SST
turbulence model in a tank stirred with Rushton turbine, as shown by Singh, Fletcher e J.
(2011). In addition, Poncet, Haddadi e Viazzo (2011) stated that in the core region the
turbulence is almost isotropic, thereby confirming the usage of a two-equation turbulence
model which assumes isotropic turbulence.

Although, these simulations were carried out with a geometrical mesh having a
radial mesh value of 80 µm or in other words very close to the Kolmogorov scale, the DNS
or LES models were not tested due to limited availability of computational resources and
time. A DNS or LES model would have required simulating a full-scale geometry instead
of one-fourth geometry being used in this case, thereby increasing the computational effort
by four times. In addition, it is known that DNS and LES models requires collection of
large-amount of simulated time-steps to achieve statistical averaging of data (HARTMANN;
DERKSEN; AKKER, 2004). Considering the number of geometries tested, it became
impractical to use either DNS or LES because of this limitation of time and computational
resources.

5.2.3 Computational mesh and time-step

Simulations for grid and time-step independence study were carried out using the
sliding mesh technique by separating the gap width area into two parts: one stationary
outer part and second rotating inner part. Table 9 shows the different parameters that
were varied and corresponding mesh sizes. The mesh was refined by adjusting the axial (H),
radial (L) and angular (W) directions, so that the impact of the respective refinements can
be observed in the consideration of a grid independent mesh. As one can understand that
the major impact of rotation in the TVB is on the radial direction, the radial refinement
has been the most studied in this grid independent mesh test. Figure 88 shows the impact
of the refinements in the radial, axial and angular directions on the velocity flow field. In
Figure 88, Utip = riω is the tip velocity and Rb = r (radial location)/b(gap-width) is the
dimensionless radial coordinate.

As can be seen in Figure 88a, while looking at the comparison between Fine2L,
Fine2LW and 2Fine, and between Fine3L and Fine3L2W, there is practically no improve-
ment in the velocity flow field when the mesh is refined in the axial and angular directions,
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Tabela 9 – Grid independence study with the flat-bottom TVB at 5 mm off-bottom
clearance.

Mesh name
No of divisions No of nodes

Axial Radial Angular millionsGap-width Rest
Fine 210 24 108 102 0.638

Fine2L 210 48 216 102 1.225
Fine2LW 210 48 216 204 2.400
2Fine 420 48 216 204 4.718
Fine3L 210 72 324 102 1.807

Fine3L2W 210 72 324 204 3.548
Fine4L 210 96 432 102 2.393
Fine5L 210 120 540 102 2.800

even though the number of nodes have increased from 1.2 (Fine2L) to 4.7 (2Fine) millions.
Whereas, an increase in the radial direction brings a significant impact on the maximum
value and flow profile near the boundaries, for an increase of only around 0.6 million, i.e.
from 1.2 (Fine2L) to 1.8 (Fine3L) millions. This is a result of the rotating inner cylinder
generating, mainly, tangential-velocity which is spread through the radial direction in the
gap-width.

In terms of the grid independence, Table 10 presents the average percentage
difference between different mesh types for the mean velocity at different axial and radial
locations. It can be seen that there has been a certain improvement in the results with
each increment in the mesh in the radial direction. Moreover, the radial mean velocity
flow profiles are very similar between Fine4L and Fine5L as shown in Figure 88b. As a
result grid independence can be confirmed, and the mesh type Fine4L has been chosen for
the rest of the study based on the percentage difference and qualitative analysis of the
velocity flow profiles.

It can also be seen in the Figure 88b that there is little improvement in the accuracy
when time-step is reduced from 1o resolution to 0.5o resolution using the same mesh, Fine4L,
and the SST turbulence model. In addition, the average percentage difference between
these two time-steps was less than 0.6 % for the mean velocity at different radial and
axial locations, as shown in the Table 10. Therefore, it can be confirmed that time-step
independence has been achieved with 1o resolution for the SST turbulence model, and all
further simulations were conducted with the time-step of 1o resolution.

5.2.4 Sliding mesh or MRF technique

In the case of stirred tank, sliding mesh has proven itself to be better at estimating
flow field and turbulence parameters (BRUCATO et al., 1998; LUO et al., 1993; YEOH et
al., 2004; YEOH; PAPADAKIS; YIANNESKIS, 2004) in comparison to the MRF technique.
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Figura 88 – Radial flow profiles of the mean velocity for the mesh and time-step indepen-
dence study in the TVB with 5 mm off-bottom clearance and flat bottom at
ZL=0.57.

Tabela 10 – Mean percentage difference of the mean velocity between different meshes.

Location 2L-3L 3L-4L 4L-5L 4L1º-0.5º
Radially at ZL=0.48 2.1 2.4 1.4 0.1
Radially at ZL=0.57 2.7 2.2 0.8 0.1
Axially at Rb=0.009 9.7 5.8 3.8 0.3
Axially at Rb=0.047 1.8 1.5 0.9 0.1
Axially at Rb=0.094 2.1 1.8 1.6 0.6

Based on this aspect and due to personal experience of working with sliding grid (with
stirred tank), the grid and time-step independence study was conducted using the sliding
mesh technique. However, most of the simulations conducted in the TVB have been done
using the MRF technique (COUFORT; BOUYER; LINE, 2005; HWANG; YANG, 2004;
PAWAR; THORAT, 2012; PONCET; HADDADI; VIAZZO, 2011; SOBOLICK et al., 2011;
WANG; VIGIL; FOX, 2005). Therefore, it became imperative to find the effectiveness of
these two techniques in a TVB. Figure 89 shows the mean velocity comparison between
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these two methods using 4L mesh type for MRF and 4L and 5L Mesh types for SM
techniques, respectively. The difference between these meshes is that the radial mesh value
is of around 76, 80 and 63 µm for the 4L MRF, and 4L and 5L SM mesh types, respectively,
near the inner and outer boundary walls.

It can be clearly seen in the Figure 89 that the results of the MRF technique are as
good as the sliding mesh in the case of TVB. This disparity between the stirred tank and
TVB should be the consequence of a simpler TVB geometry where there is only a rotating
wall that is creating the flow, and which does not require a more sophisticated sliding mesh
technique for improved estimations. Moreover, the sliding mesh technique is comparatively
more expensive on the computational front in comparison to the MRF method. The
simulation time to complete one revolution with 1o resolution in time-step was around 35
hours for the Fine4L SM with 2.393 million node mesh, and 16 hours for the Fine4L MRF
with 2.31 million node mesh. It should also be noted that the geometrical configuration
for MRF technique does not require inner and outer geometries, thus geometry creation is
comparatively simpler and easier. Therefore, in order to reduce computational expense,
the rest of the simulations are conducted with the MRF technique using the Fine 4L MRF
mesh type with 1o resolution in time-step.

Figura 89 – Mean velocity comparisons between the sliding mesh and MRF techniques in
the TVB with 5 mm off-bottom clearance and flat bottom at ZL=0.57.
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5.2.5 Computational aspects

The high resolution and second order backward Euler schemes were used to model
the advection terms and transient terms, respectively, for all the equations. The Convergence
criteria of 10−5, which was achieved within a maximum of 5 iterations per time-step, for
RMS scaled residuals was employed for the continuity, momentum and turbulence quantities.
Double precision arithmetic was applied for all of the simulations. Once a pseudo steady
state was achieved, the transient data was collected for only one more revolution since
the acquired data would have been a repeat for each further revolution. It took around 7
revolutions to reach the pseudo steady state for each tested grid. All of these simulations
were performed on a desktop with eight-core 3.2 GHz processor and 32 GB of memory.
Most of the simulations were run using hpi based parallel processing with 4 cores.

5.3 Validation of the computational model

As explained earlier, the numerical results are validated by comparison with the
PIV velocity results of the Coufort (2004) on the grounds of similar radius ratio of 0.87 and
0.84 (this study) and the consideration of only inner cylinder rotation, even though the
aspect ratio is, 13.3 and 19.8 (this study), different. It is important to note that the velocity
flow profile data presented in their study was for 70 rpm and Re= 10995 in comparison
to the 200 rpm and Re=12000 in this study in order to compare similar flow conditions.
Because of having similar geometrical and flow configurations, qualitative and quantitative
comparisons should be considered valid. Figure 90 shows that both qualitatively and
quantitatively the comparison of flow structure for the tangential velocity component is
well depicted by the SST turbulence model in this study. The SST turbulence model not
only predicts well the velocity flow structure and its magnitude in the boundary layer but
also away from the walls in the center of the gap-width. Hwang e Yang (2004) validated
their numerical results with the velocity data set of Wereley e Lueptow (1999).

Further validation is done by estimating torque numerically and empirically using
the correlation of Wendt (1933) to compare the Power number obtained through these two
methods. The Power number, NP , was calculated using the Equation 5.1 used by Coufort
(2004) and Douaire et al. (2010), where P represents power, b represents gap-width, ρ
represents density, V represents volume of the reactor, ω represents the rotational speed
and ri represents inner cylinder radius. In both cases, the Power number is of 1.4× 10−3.
For a Reynolds number of approximately 11000, similar to this study, Coufort (2004) also
observed a Power number of 1.4× 10−3.

NP = Pb

ρV ω3r3
i

(5.1)
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Figura 90 – Comparison of numerical tangential velocity results with the PIV results of
(COUFORT; BOUYER; LINE, 2005).

5.4 Results and discussion

5.4.1 Mean velocity flow field

Figure 91 shows the velocity and its three components for an axial profile located
at Rb=0.009. It clearly shows that the tangential component of the velocity is its main
component. Radial component is completely negligible, while the axial component is less
than 5 % of the total. Hence, here onwards only the velocity is presented which is basically
composed of its tangential component.

Figure 92 presents the Taylor vortex structure through a vector profile, and Figure
93 presents the mean velocity flow profiles dimensionalized by the tip velocity, riω, along
various dimensionless axial (Figure 93a) and radial (Figure 93b) locations marked in the
legend section of the figures. In Figure 93a, the dimensionless mean velocity profiles are
demonstrated at five different axial locations, from ZL = 0.471 to 0.519, covering one
pair of the Taylor-Vortex. The line with square markers represents the outward flow, and
the triangle markers represent the two inward flows at the end of a Taylor-Vortex pair.
A pair of Taylor-Vortex was found to be equivalent of 21 mm of axial distance, thus
implying that the height of one Taylor-Vortex pair is equivalent of one-tenth of the height
of the reactor, in the center of the reactor. It also shows that the height of one vortex
pair is approximately double the size of gap-width. As observed by Coufort (2004) in her
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Figura 91 – Velocity and its three components in an axial profile located at Rb=0.009.

experimental PIV study, the radial velocity profiles, apart from the ones with markers,
correspond to around 50 % of the velocity flow field in the 80 %, i.e. between Rb = 0.1 to
0.9 of the reactor in the gap-width.

Figura 92 – Vector profile of the secondary vortex.
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Figura 93 – Dimensionless mean velocity at various radial (a) and axial positions (b).

The vector profile (Figure 92) shows three important regions of a secondary vortex.
First one can be termed as the outward region due to the direction of flow moving outwards
from the inner cylinder towards the outer cylinder. It lie in the center of a Taylor vortex
pair and is marked by the highest magnitude of the velocity. In this region, the inner
rotating cylinder imparts momentum to the flow as it moves from the inner cylinder
towards the outer; therefore, this region has the highest magnitude of the velocity, as can
be seen in the radial flow profiles of the tangential velocity component (Figure 93b). The
magnitude of the velocity decreases gradually as it moves from the inner towards the outer
cylinder.

The second important region of a Taylor vortex pair is the center of the vortex
region. There are two such regions for each the Taylor-vortex pair, one in the each opposing
vortex. The importance of this region lies in the fact that the velocity profiles apart from
the ones in the outward and inward region are very similar to this one, as can be seen
in the radial (93b) profiles of the tangential velocity component. Kobayashi et al. (1990)
termed this similarity as the uniformity in the circumferential velocity and stated that it
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is caused by convection of the secondary flow.

The third one is termed as the inward region because of the movement of flow is
from the outer cylinder towards the inner cylinder. It is marked by the two extremities of
the Taylor vortex pair and represents the weakest magnitude of the flow in a Taylor-vortex
pair. Both the color map of the secondary vortex and the radial flow profile confirms that
the velocity magnitude is the weakest in the inward region. It is due to the deceleration of
the fluid in the outer wall where the fluid is transported by convection (KOBAYASHI et
al., 1990).

Furthermore, in the axial profile of the mean velocity (Figure 93b), it can be seen
that there are nine peaks in each of the axial mean velocity profile located at different radial
locations from Rb = 0.009 to 1 . Each peak is related to the center of each Taylor-Vortex
pair, or the outward flow, where the magnitude of velocity is the highest, as can be seen
in the vector profile showing the Taylor-Vortex structure (Figure 92). As the width for
each peak increases towards the top and bottom of the reactor, it can be affirmed that the
width of the vortex is the shortest in the center of the reactor.

5.4.2 Outer cylinder’s bottom shapes

Figure 94 presents vector profiles of the mean velocity for the different shapes of
the outer cylinder’s base. It can be seen that the dished outward and inward surfaces
impact significantly the secondary vortex structure of the reactor towards the bottom.
The Taylor-vortex pair which is nearer to the bottom of the reactor for Flat surfaces is
pushed up for the dished surfaces. The location of first pair of Taylor-Vortex for these three
different bottom surfaces is around 0.08, 0.15 and 0.23 ZL for flat, dished outward and
dished inward surfaces types, respectively. For both dished surfaces before the formation of
the Taylor vortex pair, a single vortex is formed and which is much longer for the dished
inwards surface in comparison to the dished outwards, as can be seen in Figures 94a and
94b. The axial profiles of velocity (Figure 95b) further confirms the formation of this single
vortex and that the profiles for these three different shapes join up around ZL= 0.3 from
bottom, in other words, the flow structure attains similar magnitude in the rest of the
axial length.

It can be seen that the dished surfaces impacts significantly the magnitude of the
velocity towards the bottom of the reactor. The velocity is below 20 % of the tip velocity
for Rb < 0.4 for dished surfaces in comparison to Rb < 0.13 for the flat surface, as shown
in the radial velocity flow profile located at 1 mm below the inner cylinder (Figure 95a).
Furthermore, for dished surfaces the velocity magnitude remains below 30 % in 70 % of
the area below the inner cylinder and never attains a velocity magnitude value above 40
%. Thereby, indicating that the dead-zone, where mixing will not be efficient, is larger for
dished surfaces, a pattern which can also be noticed in Figure 94.
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Figura 94 – Mean velocity vectors for different shapes and off-bottom clearance areas.

Such poor magnitude values of the velocity clearly confirm the empirical observations
of accumulation of particles in the bottom of reactor for the dished outwards bottom
structure. This aspect will demand the usage of higher rotational velocities to pick up
particles settled at the bottom of reactor for these shapes. Usage of high rotational speeds
could be detrimental to growth of animal cell cultures which are highly sensitive to the
hydrodynamics of the fluid. The dished outwards shape which was found to be beneficial
in the case of stirred tank reactor is clearly a disruptive factor in the case of Taylor reactor.
In contrast to the stirred tank, the flat bottom offers a significant advantage over the
dished surfaces, especially at lower off-bottom clearance areas.

5.4.3 Off-bottom clearance

In contrast to the dished bottom surfaces, where the impact of the geometry is
adversely effective up-to a certain height in the gap-width area, the off-bottom clearance
area does not interfere in the flow structures of the gap-width area. As soon as the off-
bottom clearance height is finished, similar flow structures with similar magnitudes develop
in the gap-width area instantly, as represented by the Figures 94c and 94d. However,
the off-bottom clearance area has a very big disadvantage of completely zero velocity
magnitude values in the center of the obc region for all geometry types presented here.
Higher the off-bottom clearance height will be, larger the volume will be with weak velocity
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Figura 95 – Dimensionless mean velocity at different radial (a) and axial (b) positions for
different geometry types.

magnitude values which lead towards the dead-zone area located in the middle of the
off-bottom clearance area (94c and 94d.

The flow structure in the gap-width is generated due to the inner rotating cylinder,
and is mainly tangential in nature. The axial flow is of secondary nature only, and is not
strong enough to sustain flow in the off-bottom clearance area. Unless there is a change in
the geometry to help generate flow in the off-bottom clearance area, it will be important
to keep it to a minimum height possible. Considering the high sensitivity of the animal
cell lines and that the animal cell cultures are generally operated in batch operation
mode, one possible change in the geometry could be the influx of axial flow through
recirculation to generate some movement in the off-bottom clearance area. However, the
idea of recirculation of the fluid requires significant amount of experimental and numerical
study, and it is out of scope of this study.
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5.4.4 Viscous energy dissipation rate(VEDR)

In order to use the TVB as a bioreactor, the most important constraint will be to
keep the VEDR within sub lethal responses of a cell line in order to achieve the desired
results. Godoy-Silva et al. (2009) discovered that when the CHO (Chinese Hamster Ovary)
cell line was cultured in suspension in a stirred tank bioreactor around a maximum VEDR
value of 60 W/kg =m2s−3, caused sub lethal physiological responses that can be considered
critical to a bioprocess. CHO cell line is one of the most robust cell lines used by industries
in present time, but there are many cell lines, especially the ones requiring microcarriers,
which are much more sensitive and their sub lethal response should be found at a much
lower value (MOLLET et al., 2004). Figure 96 depicts the response of animal cell cultures
to different hydrodynamic conditions in a bioreactor. This figure was adapted from the
study of Godoy-Silva et al. (2009), so for further information please consult their article.

Figura 96 – VEDR values for different hydrodynamic conditions in bioreactors and regions
of lethal and sub-lethal impacts on cell lines. Adapted from Godoy-Silva et al.
(2009).

Ibrahim e Nienow (2004) suggested a volume average VEDR value of 0.001 W/kg to
be considered as a base line for culturing cells on microcarriers in stirred vessels. However,
Kaiser et al. (2013) and Hewitt et al. (2011) have successfully cultured mesenchymal stem
cells at volume averaged VEDR values of 0.0021 and 0.0034 W/kg in spinner flasks, a kind
of stirred vessel. Santiago, Giordano e Suazo (2011) have successfully cultured CHO-K1
cells on microcarriers in a Taylor reactor at 50 rpm for a Reynolds no 3660 and volume
average VEDR of 0.0037 W/kg. Mollet et al. (2004) advocated a more discriminative
criterion of adopting the local VEDR instead of volume averaged VEDR due to large
difference between these two values in some vessels such as spinner flasks, where the
difference between the maximum and volume average VEDR is more than 100 times
(CROUGHAN; HAMEL; WANG, 1986; HEWITT et al., 2011). This could mean that
the extremely high local values in the impeller regions of stirred vessel should also be
considered as an important factor as the cell damage could be due to these high local values
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in the impeller region instead of the small values of the volume averaged VEDR. Moreover,
when culturing cells on microcarriers the size of microcarriers also play a relevant role
because Croughan, Hamel e Wang (1986) and Hewitt et al. (2011) found that milder
hydrodynamic forces were required for cells cultures on microcarriers in comparison to the
suspension cultures.

In Table 11, the analytical estimations based on the Wendt (1933)’ s empirical
correlation (Equation 2.1) to estimate torque are presented alongside the numerical
estimations of the torque for the SST turbulence model. The numerical estimations of
torque and its derivatives are in complete sync with the analytical estimations. As per
global estimates of the VEDR, the maximum value of 3.9 W/kg was obtained located at
the inner wall for the rotational speed of 200 rpm. Based on the analytical estimations at
150, 100, 50 and 30 rpm, the maximum and mean VEDR value would be of 1.5 and 0.09,
0.45 and 0.033, 0.06 and 0.006, and 0.01 and 0.002 W/kg, respectively, as shown in Table
12. The range 30 to 200 rpm covers the Reynols number (Re) regions from transition to
fully turbulent (ReT ), and allow a comparison with other geometries for similar value of
Re/ReT ratio.

Tabela 11 – Analytical and numerical estimations of the Taylor reactor at 200 rpm.

Parameters Value (Dimensions)
Analytical Numerical

Moment, τ 0.0077(Nm) 0.0077
Wall shear stress at inner wall, τwi = τ/(2πr2

i h) 1.96 (N/m2) 1.96
Friction velocity at inner wall, uτi =

√
τwi/ρ 0.044 (m/s) 0.044

Max VEDR at inner wall, εinnerwall = u4
τi/ν 3.86 (m2s−3) 3.88

Global power, P=τω 0.16 (Watts) 0.16
Average VEDR, 〈ε〉 = P/(ρπ(r2

o − r2
i )h) 0.192 (W/kg) 0.193

Average Kolmogorov’s micro-scale, 〈η〉 = (ν3/〈ε〉) 1
4 47.7 (µm) 47.7

Tabela 12 – Summary of VEDR and Kolmogorov micro-scales for different geometrical
conditions.

Group Geometry Rotational
velocity

Reynold’s No. VEDR
Max/Mean

Kolmogorov
Min/Mean

rpm (-) Re/ReT W/kg µm

This study

TVB 200 12077 0.93 3.88/0.193 23/48
150 9058 0.70 1.51/0.09 29/58
100 6039 0.46 0.45/0.033 39/74
50 3019 0.23 0.06/0.006 65/115
30 1812 0.14 0.01/0.002 95/158

Kaiser et al. (2013)Spinner 105 3014 0.15 0.58/0.004 38/133
50 1435 0.07 0.062/0.0006 66/228

Hewitt et al.
(2011)

Spinner 50 1690 0.08 (-)/0.0034 (-)/131
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In order to compare the data with a different geometry type Re/ReT ratio will
be used as the criteria based on the study of Lathrop, Fineberg e Swinney (1992). Here
ReT is the Reynolds number related to fully turbulent Reynolds number, and its value for
stirred vessels is known to be 2× 104 and in the case of Taylor reactor Lathrop, Fineberg e
Swinney (1992) have shown that ReT = 1.3×104. First of all, the impeller rotational speed
is not used because it becomes irrelevant for different scales and geometry types. Reynolds
number is relevant for the different scales of the same geometry, but when the geometry is
changed the significance of Reynolds number also changes as ReT values are different for
different geometry types: the ReT values for stirred vessels, Taylor-Couette reactor, pipe
flow and flat plate are 2× 104, 1.3× 104, 2.3× 104 and 3.2× 105, respectively (LATHROP;
FINEBERG; SWINNEY, 1992). Therefore, for a better comparison between different
geometry types, the Re/ReT ratio presents the option of comparing similar turbulence
flow conditions.

For similar Re/ReT ratio of ≈ 0.14 in comparison with the spinner vessel of Kaiser
et al. (2013), the max and mean VEDRs are around 50 and 2 times lower. In comparison
with the spinner vessel study of Hewitt et al. (2011), at a slightly higher Re/ReT value of
0.14 the mean VEDR is practically half the value. In addition, the difference between the
maximum and mean value for the spinner vessel is more than 100 times, as mentioned
earlier, in comparison to around 10 times for the Taylor reactor. This clearly indicates
that the flow is less uniform in spinner vessels in comparison to the Taylor reactor.

In a Taylor reactor, it is important to note that the maximum value is only achieved
in the viscous sub-layer very near to the wall where the cells may never reach due to the
nature of the viscous layer of providing resistance to any kind of transfer. Away from
the wall, the VEDR decreases extremely rapidly and its magnitude is much smaller than
the maximum value (COUFORT; BOUYER; LINE, 2005; TOKGOZ et al., 2012; HOUT;
KATZ, 2011). It can be further confirmed by the fact that the volume average VEDR,
〈ε〉, was found to be 0.193 based on numerical simulations (Table 11). The animal cells
are bound to spend the maximum amount of time within a Taylor-vortex in the bulk
zone, between Rb = 0.1 to 0.9, where the gradients are much smaller and have similar
magnitude (COUFORT; BOUYER; LINE, 2005; TOKGOZ et al., 2012; HOUT; KATZ,
2011), i.e., similar hydrodynamic conditions in the major part of the reactor. This is a
significant advantage for a Taylor reactor to be used as a bioreactor for culturing animal
cells in comparison to the spinner vessel where the probability of cells reaching the high
gradient region near the impellers is high and the fluid flow conditions are less uniform.
These aspects clearly demonstrate the possibility of using the Taylor reactor not only for
the suspended cell cultures but also in the case of the microcarrier systems.

The mean Kolmogorov scale, 〈η〉 = (ν3/〈ε〉)1/4 was found to be around 47.7 µm at
200 rpm for both the analytical and numerical estimations (Table 11). As the magnitude
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of the VEDR decreases with the decrease in the rotational speed, the Kolmogorov scale
increases being inversely proportional to the VEDR. Therefore, at 150, 100 and 50 rpm
the mean Kolmogorov scale would be 58, 74 and 115, respectively, based on the analytical
estimations as shown in Table 12. In terms of comparison with the spinner flask bioreactor
of Kaiser et al. (2013), it can be seen that for similar Re/ReT ratio of ≈ 0.14 the minimum
Kolmogorov scale value is 2.5 times bigger, while the mean Kolmogorov scale is also
comparatively on the higher side. In comparison with the study of Hewitt et al. (2011)
who also used the spinner vessel, the mean Kolmogorov scale was found to be much higher
in the present study of Taylor reactor even though the Re/ReT ratio was comparatively
higher.

The Kolmogorov scale has significant importance for the culturing of animal cells
in bioreactors in suspension and on microcarriers. Kunas e Papoutsakis (1990) observed
increase in the cell damage due to the fluid hydrodynamic forces for cell culture in
suspension when the Kolmogorov eddy size approaches the cell size. They conducted these
experiments in the absence of the bubbles to clarify that the damage is directly related
to fluid hydrodynamic forces only. At the same time, there is no proof if there is any
interaction between the cells and eddies or how the cells are damaged. Although, there
may not be a direct relation with the Kolmogorov scale and a certain amount of turbulence
might be necessary to ensure adequate mixing and mass transfer within the bioreactor, a
significant amount of turbulence is known to damage the animal cells. Smith e Greenfield
(1992) managed to culture the animal cells at a Reynolds No. of 25,000 in a tank stirred
with Rushton turbine at a rotational speed of 600 rpm with estimated maximum and
mean VEDR of 21.8 and 0.697 m2s−3 (SINGH, 2011), respectively, corresponding to the
minimum and mean Kolmogorov scale of 15 and 35 µm.

For the animal cell cultures requiring microcarriers even milder hydrodynamics
forces are required in the bioreactor (IBRAHIM; NIENOW, 2004). Croughan, Hamel e
Wang (1986) and Hewitt et al. (2011) observed damage to cells when the Kolmogorov
eddy size was below the 2/3rd of the size of the microcarriers, and at half of the size of the
microcarriers the damage to cells was detrimental. They worked with the microcarriers of
the size of 183 and 175 µm, respectively, and found no damage to cells when the eddy sizes
were above 120 µm. On the other hand, Kaiser et al. (2013) did not detect any cell damage
for microcarriers of the size of 180 µm for a value of minimum Kolmogorov scale of 44 µm.
It should be remembered that the Kolmogorov theory should be looked at critically when
the Reynolds number is less than 104 because of the necessity of highly turbulent flow in
the vessel for it to be applicable (HEWITT et al., 2011; KAISER et al., 2013).

Although, the suspended cell culture systems have been cultured at high Reynolds
number, the microcarrier systems have always been cultured around the just suspension
speed which is normally much lower than then ReT , in order to avoid cell damage. Croughan,
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Hamel e Wang (1986) and Hewitt et al. (2011) have suggested of increasing the kinematic
viscosity around when working with microcarrier culture systems. Increasing the kinematic
viscosity will result an increase in the Kolmogorov scale being directly proportional to
it, but will also reduce the Reynolds number and making the Kolmogorov theory more
questionable (HEWITT et al., 2011). Considering that the microcarrier culture systems
will always be cultivated in the transition region and the questionable application of
Kolmogorov theory in this region, it is more prudent to use the maximum and/or local
values of VEDR in conjunction with the microcarrier size as the criteria to relate to cell
death or damage for the microcarrier culture systems.

5.5 Conclusions

The aim of this study was to understand the impact of the changes in the geometrical
configuration, namely, off-bottom clearance area and different bottom shapes of the outer
cylinder, of a Taylor bioreactor on its flow structure and its practical impact on being
used as a bioreactor. Considering the time, computational cost and the effectiveness of the
different unsteady RANS based turbulence models (SINGH; FLETCHER; J., 2011), the
SST turbulence model was used to observe the flow profiles in these different geometry
types. A grid and time-step independence analysis was also conducted, along with the
implementation of best numerical practices, and the comparison of the sliding mesh and
MRF technique.

Grid independence study showed that the grid size equivalent to that of Kolmogorov
scale is necessary for complete grid independence, which in turn will require a significant
computational effort. Sliding mesh technique, which is necessary in the case of stirred
tank simulations, did not improve on the simulations conducted using the MRF technique
in the Taylor reactor. Sliding mesh is not only computationally more expensive but its
implementation also requires a comparatively more complex geometry. It is understood
that the effectiveness of the MRF technique is due to the simpler Taylor reactor geometry
which only requires the rotation of inner cylindrical wall. Therefore, it is practical to use
MRF technique in simpler geometrical cases such as that of Taylor reactor.

The radial velocity flow profile showed that within 80 % of the gap-width between
Rb= 0.1 to 0.9, the magnitude of the velocity is constant at around 50 % of the tip velocity.
The maximum value of the VEDR was found to be 3.88 W/kg at a rotational speed of 200
rpm. This value is much smaller than the sub-lethal value of 60 W/kg for the CHO cell
lineage, but other cell lines may be much more sensitive compared to the more established
CHO cell line. Additionally, the maximum value of VEDR is only attained on or very near
to the wall in the thick viscous sub-layer where the cells may never reach due to the viscous
sub-layer for providing resistance to momentum, mass and energy transfer. Away from
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the walls in the bulk region comprising of the 80 % of the gap width, the VEDR values
are much smaller and of similar magnitude values. This aspect is of great consequence
because in the case of animal cell cultures, the cell lines within the Taylor bioreactor will
spend most of the time in the vicinity of these values of similar and weak magnitude, and
only a fraction of its times will be spent near the high gradients located near the wall.

The observation of accumulation of animal cells on the bottom of the dished
surfaced reactor which led to this study is confirmed through the flow profiles where it can
be seen that the magnitude of the velocity is below 30 % for 70 % of the reactor. Whereas,
the idea that dished inward surface could have aided in reducing the dead zone are in
the bottom of the reactor is proved wrong, as the velocity magnitude for this surface is
smaller as compared to the dished outward. In comparison to the curved surfaces, the flat
surface for the outer cylinder has the least adverse effect on the gap-width area for similar
off-bottom clearance areas.

The height of off-bottom clearance area also impacts the flow structures adversely,
and if feasible should be avoided or kept to the minimum possible value. Higher the off-
bottom clearance area, larger the volume there is in the dead-zone area due to incapability
of the inner rotating cylinder to impart any sort of momentum to the fluid lying in
the off-bottom clearance area. Unless there is design change to enhance mixing in the
off-bottom clearance area, it can be concluded that to avoid dead zones on the bottom of
the reactor, and to enhance mixing, dished surfaces on the bottom of the reactor should
be avoided along with off-bottom clearance area. Flat bottom surface with zero off-bottom
clearance is ideal in the case of using Taylor bioreactor to work with animal cell cultures
especially when cultivated on the microcarriers to avoid accumulation of microcarriers,
and thus animal cell cultures in the quasi stagnant zone of the off-bottom clearance area.
Perhaps, a future experimental and numerical study on the recirculation to generate some
axial flow in the off-bottom clearance area could improve this geometrical constraint.

In comparison with the spinner vessel for similar Re/ReT ratio, the maximum and
mean VEDRs were always found to be of lower magnitude values. In similar aspect, the
minimum and mean Kolmogorov scales were found to be always on the higher. Additionally,
due to much less difference between the maximum and the mean values, the Taylor reactor
presents more uniform structures in comparison to the spinner vessel. In this sense, the
local and maximum VEDR value is also an important criterion to observe and compare
with the cell death or damage in bioreactors. These attributes clearly confirm that the
Taylor reactor is adequate for culturing of animal cells not only in suspension but also for
the microcarrier culture systems.
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6 Conclusions

The main of this thesis was to understand in detail the hydrodynamics of the TVR
with regards to its feasibility as a bioreactor for cultivating animal cell lines of biotechnolo-
gical interest. Two different methods were used to study the TVR: an experimental 2D-PIV
and numerical CFD. Considering the importance of the VEDR in the characterization of
the cell death, it was sought that the smallest feasible spatial resolution be achieved for
both the experimental and numerical methods, in order to achieve a grid structure closest
to the Kolmogorov micro-scale of turbulence. Special attention was paid to all the basic
aspect of the experimental, PIV and numerical, CFD, methods. In addition, two important
geometrical configurations, namely off-bottom clearance area and outer cylinders bottom
shape, were studied with the numerical method to understand their impact on the flow
structure and the usage of the TVR as a bioreactor.

In order to capture the smallest feasible spatial resolution, limited by technological
advancements and/or cost, for the PIV method, all basic parameters, such a size and
concentration of particles, time-step between the double frame image, ICS window and
overlap ratio, were found to play a significant role and have to be chosen carefully as they
are inter-dependent. Smaller the size of ICS window, smaller the spatial resolution will be,
but will also require smaller size of particles and time-step while maintaining an optimum
concentration. The overlap ratio comes into play when the ICS window is grid-dependent;
otherwise, overlap ratio basically only increases the number of data points. Each increase
in the overlap ratio, decreases the spatial resolution, but again attention will be required in
choosing the size of particles, their concentration and the time-step. Although, the results
may improve for an increase in the overlap ratio by reducing the spatial resolution, the
overlap ratio does not represent true spatial resolution because its results are obtained by
manipulating the basic ICS grid structure at 0 % overlap ratio.

The PIV being a 2D method, only two out of three mean and three out of six
fluctuating velocity components, and, hence, five out of 12 gradients of these mean and
fluctuating velocity components were available. The mean radial velocity component was
found to be only 10 % of the tangential components, and the axial components is also
in the same range. The maxima of this radial component was found in the center of
the gap-width in the outward and inward region in the shape of upward and downward
parabolas, respectively; whereas, the maxima of the tangential component was on the
inner wall due to the inner rotating cylinder. A new analytical expression was derived for
the mean tangential velocity component in the center of vortex region, and it was found
to fit the measurements much better than the classical log law expression. Such strong
tangential flow implies that it will have a strong contribution in the kinetic energy and
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its dissipation, and demonstrated the importance of a very fine radial grid to capture its
propagation from the rotating inner wall towards the stationary outer cylindrical wall.

The normal tangential stress had two local maximas, one near each wall, because of
the steep decreases in the boundary layer area in the tangential velocity component, and
the bulk zone had much smaller and similar magnitude values due to the near constant
magnitude of the mean tangential velocity component in the bulk zone. The normal radial
stress had its maxima located in the center of gap-width but its magnitude was found to
be around 5 times smaller than the tangential normal stress. The radial tangential shear
stress was found to be around 15 times smaller than the maxima of the tangential normal
stress.

The VEDR of mean flow kinetic energy is mainly composed of the (∂(Uθ/r)
∂r

)2 gradient,
and the gradient, (∂(u′

θ
/r)

∂r
)2 is the major component of the turbulence VEDR especially in

the boundary layer area. Such a huge of single gradient on the VEDR estimations render
the application of isotropic and axi-symmetric assumptions to be invalid in this case and
leads to over-estimation. The VEDR was found to be stronger in the boundary layer area
where the viscous forces are dominant, while the dissipation of turbulent kinetic energy
was at-least an order higher than its mean flow counterpart in the bulk zone.

However, the limited number of results that can be achieved due to practical
reasons is one of the shortfalls of the experimental method, and is one of the main reason
behind the popularity of the numerical methods which gives access to the whole geometry.
Another shortcoming is being the 2D method, though there are 3D methods available but
the spatial resolution is significantly coarser. Nonetheless, the experimental methods are
still important because they provide true picture of flow structures which help in validation
of the numerical methods, and demonstrating their limitations.

The validation of the DNS model showed the necessity of improvement in the grid
structure of the numerical mesh, not only in the axial and tangential directions where the
nodes were coarser but also in the radial direction, especially the bulk zone where significant
underestimation of the VEDR of TKE was observed in spite of a radial mesh size of 184 µm
in the center of gap-width. The improved mesh size would result in something of the order
of 100 of millions of nodes, and was not practical in the present case scenario. However, this
will help in generating a better grid structure in the laboratory scale TVR of much smaller
size. Overall, despite the ideal criteria of 100 % concordance was not achieved between
the numerical and experimental methods, the qualitative comparison was very good with
the shape and structure of the flow being well predicted for all the presented parameters.
Quantitatively, the mean velocity components and its gradients were in good agreement
with PIV data, but the fluctuating velocity components and their gradients were under-
estimated due to the comparatively poor grid structure. Considering the clear evidence of
good amount of concordance, especially the good qualitative comparison, between these
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two methods which indicates that results are not hypothetical, these numerical results can
be considered validated.

The 3D numerical simulations gave access to certain parameters which were not
accessible with a 2D PIV method, such as vortex identification, anisotropy, and all 12
gradients of the VEDR. Vortex identification using the λ2-definition method showed the
excessive damping of turbulence by the RANS based model which was found to improve
significantly with the SAS-SST model, also a RANS model but with an improvement in
turbulence length scale which adjusts it to the directly resolved turbulence structures.
Among the different turbulence models, the RSM and LES-Smagorinsky presented the
worst comparison with the DNS model even for the mean velocity components. The two
equation turbulence models, namely, k-ε, SST and SAS-SST, captured well the mean
velocity components but were also poor in the prediction of the Reynolds normal and shear
stress. Although, the modeled TKE and its dissipation for the RANS based model improved
significantly, these models could not capture well the structure of these parameters in
comparison with the DNS model. Only the LES-WALE model’s estimations were in sync
with the DNS model for all of the parameters presented here.

The anisotropy study revealed that near the walls bi-dimensionality is the prevalent
state; while, in the bulk zone the isotropic state is found in the center of vortex region,
and oscillates towards the axisymmetry state towards the outward and inward regions.
The composition of the 12 gradients of the VEDR further confirmed that the (∂(Uθ/r)

∂r
)2

and (∂(u′
θ
/r)

∂r
)2 gradients are the major components of the VEDR of the mean flow and

turbulent kinetiec energy, respectively. Additionally, the three second-order radial gradients
alone accounted for at-least 90 % of the VEDR of mean flow and turbulent kinetic energy
through-out the reactor. A significant advantage is that these numerical results are
available through-out the geometry in complete contrast with the experimental results
which are available only at a particular location for each experiment. The downside is the
time of around 1-4 months to achieve statistically converged solutions, based on present
computational resources and depending upon the chosen turbulence model.

The geometrical features of curved surface of outer bottom and off-bottom clearance
area which are of practical importance in stirred vessels, impact adversely the flow structures
in the Taylor bioreactor due to poor axial velocity component. The magnitude of the
velocity remained below 30 % for 70 % of the reactor for the curved surfaces, while the flat
surfaces offered the least adverse effect on the gap-width area of the TVR. Flat bottom
surface with zero off-bottom clearance were found to be the ideal case scenario because
increase in the off-bottom clearance area presented larger volume of the dead-zone area
due to incapability of the inner rotating cylinder to impart any sort of momentum to the
fluid lying in the off-bottom clearance area. Perhaps, as part of the future work different
feasibility studies can be conducted in order to enhance flow in the off-bottom clearance
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area. One possible option is create an influx of axial flow through recirculation to generate
some movement in the off-bottom clearance area.

The most significant advantage of the TVR to be used as a bioreactor is that in
the bulk zone comprising of the 80 % of the gap-width area, where the cell cultures will
spend most of the time, the velocity magnitude is of around 50 % of the maximum and
VEDR values are around 10 times smaller in comparison to the boundary layer area. This
clearly confirms that the cell cultures will have similar and milder hydrodynamics forces,
and should be considered as encouraging factor to culture animal cells. In comparison
with the spinner vessel for similar Re/ReT ratio, the maximum and mean VEDRs were
always found to be of lower magnitude values, and due to much less difference between the
maximum and the mean values, the Taylor bioreactor presents more uniform structures
in comparison to the spinner vessel. These attributes further confirm that the Taylor
bioreactor is adequate for culturing of animal cells not only in suspension but also for the
microcarrier culture systems.

As these studies were conducted as a single phase study, the next step will be to
conduct a multiphase study with the microcarriers both as a discrete phase and continuous
phase. The multiphase study will not only help in observing the behavior of these particles
in a Taylor-Vortex but also directly and/or indirectly estimating the stresses that these
microcarrier particles might encounter. This multiphase study should also shed some light
on the estimation and verification of just suspension speed, sedimentation and aggregate
formation. On the other hand, the cells will be cultured in the TVR at three different
scales to observe the feasibility of using it an industrial scale. Finally, the VEDR obtained
from the numerical study will be correlated with the animal cell culture experiments to
formulate a general model on the impact of hydrodynamics on animal cell cultures with
and without microcarriers.
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APÊNDICE A – Matlab File

This matlab file was used to create the matrix structure of the velocity vectors
from the *.txt files obtained from the PIV image files. These velocity vectors were then
used to estimate the mean and fluctuating velocity components, and their gradients to
estimate the VEDR. These files are for 2D PIV method, the numerical method is 3D and
is very similar to this 2D PIV methodology. Therefore, only the 2D PIV matlab file is
presented here.

1 %% In This section we read the data

2 clear all;

3 close all;

4 clf

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6 % Program for the treatment of the PIV data %%%

7 % First written by Gabelle JC et Line Alain on Novembre 2011 %%%

8 % Modified by Harminder Singh on July 2013 %%%

9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10 tic % In order to estimate the time that will take to Finish

11 % has to follow by a "toc" in the end

12 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

13 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

14 Tot = 2499;

15 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

16

17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

18 % Start of the programm %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

19 % Initialising the no of figures

20 n_figure = 0 ;

21

22 %Name of the files to be read

23 file = (114rpm.3p0qjdkr.);

24

25 % First reading of the file to define the size of the vectors

26 num=1;

27 % concatenation for the name of the document

28 imag=strcat(file,00000,num2str(num),.txt);

29

30 fid1 = fopen(imag,r);

31

32 [a b x y u v st] = textread(imag,%f%f%f%f%f%f%f,headerlines,6);

33 % headerlines,6 tells matlab not to read first six lines because those
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34 % are just text and not data.

35

36 % First, the matrix of the coordinates is created

37 % X is no of lines and Y represent columns

38 %With reference to PIV, Y represent the radial direction, and X represent

39 %the X-axis

40

41 NY=249;

42 NX=299;

43 X=zeros(NX,NY);

44 Y=zeros(NX,NY);

45

46 for j=1:NX

47 X(j) = x(1+(j-1)*NY);

48 for i=1:NY

49 X(j,i)=x(1+(j-1)*NY);

50 end

51 end

52 for l=1:NX

53 for k=1:NY

54 Y(l,k)=y(k);

55 end

56 end

57

58 status=fclose(fid1);

59

60 % Intialising the vectors

61 U=zeros(NX,NY,Tot);

62 V=zeros(NX,NY,Tot);

63 St=zeros(NX,NY,Tot);

64 % Reading of the velocity vectors

65 for num=1:Tot

66

67 if num<=9;

68 % concatenation for the name of the file

69 imag=strcat(file,00000,num2str(num),.txt);

70 end

71

72 if num>9;

73 imag=strcat(file,0000,num2str(num),.txt);

74 end

75

76 if num>99;

77 imag=strcat(file,000,num2str(num),.txt);

78 end

79

80 if num>999;
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81 imag=strcat(file,00,num2str(num),.txt);

82 end

83

84 fid1 = fopen(imag,r);

85

86 [a b x y u v st] = textread(imag, %f%f%f%f%f%f%f,headerlines,6);

87 % headerlines,6 tells matlab not to read first six lines because those

88 % are just text and not data.

89

90 %Matrix of velocity vector is created

91

92 for j=1:NX

93 for k=1:NY

94 i=(j-1)*NY+k;

95 U(j,k,num)=u(i);

96 V(j,k,num)=v(i);

97 St(j,k,num)=st(i);

98 end

99 end

100

101 status=fclose(fid1);

102

103 end

104

105 save Data_champs Tot NX NY Y X U V St -v7.3

106

107 % Initialising of vectors

108 UmeanCM=zeros(NX,NY);

109 VmeanCM=zeros(NX,NY);

110 uflucCM=zeros(NX,NY,Tot);

111 vflucCM=uflucCM;

112 uflucFM=zeros(NX,NY,Tot);

113 vflucFM=uflucFM;

114 u2CM=uflucFM;

115 v2CM=u2CM;

116 uvCM=u2CM;

117 u2meanCM=zeros(NX,NY);

118 v2meanCM=zeros(NX,NY);

119 uvmeanCM=zeros(NX,NY);

120

121 % Calculating the averaged velocity components by neglecting the modified

122 % vectors, and thus considering only the vectors that were actually

123 % present in the PIV grid and neglecting the vectors which were estimated

124 % as the mean of the neighbours. These vectors are termed as CM in the end

125

126 for j=1:NX

127 for k=1:NY
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128 Ind(j,k)=0;

129 for num=1:Tot

130 if St(j,k,num)==0

131 Ind(j,k)=Ind(j,k)+1;

132 UmeanCM(j,k)=UmeanCM(j,k)+U(j,k,num);

133 VmeanCM(j,k)=VmeanCM(j,k)+V(j,k,num);

134 end

135 end

136 UmeanCM(j,k)=UmeanCM(j,k)/Ind(j,k);

137 VmeanCM(j,k)=VmeanCM(j,k)/Ind(j,k);

138 end

139

140 end

141

142 %Similarly calculating the fluctuating velocity components by neglecting

143 %the modified vectors.

144

145 for j=1:NX

146 for k=1:NY

147 Ind1(j,k)=0;

148 for num=1:Tot

149 if St(j,k,num)==0

150 Ind1(j,k)=Ind1(j,k)+1;

151 uflucCM(j,k,num)=U(j,k,num)-UmeanCM(j,k);

152 vflucCM(j,k,num)=V(j,k,num)-VmeanCM(j,k);

153 u2CM(j,k,num)= uflucCM(j,k,num)* uflucCM(j,k,num);

154 v2CM(j,k,num)= vflucCM(j,k,num)* vflucCM(j,k,num);

155 uvCM(j,k,num)= uflucCM(j,k,num)* vflucCM(j,k,num);

156 u2meanCM(j,k)=u2meanCM(j,k)+u2CM(j,k,num);

157 v2meanCM(j,k)=v2meanCM(j,k)+v2CM(j,k,num);

158 uvmeanCM(j,k)=uvmeanCM(j,k)+uvCM(j,k,num);

159 end

160 end

161 u2meanCM(j,k)=u2meanCM(j,k)/Ind1(j,k);

162 v2meanCM(j,k)=v2meanCM(j,k)/Ind1(j,k);

163 uvmeanCM(j,k)=uvmeanCM(j,k)/Ind1(j,k);

164 end

165 end

166

167 save Data_meanCM Tot NX NY X Y UmeanCM VmeanCM u2meanCM v2meanCM uvmeanCM

168 save Data_flucCM Tot NX NY X Y uflucCM vflucCM u2CM v2CM uvCM -v7.3

169

170 %Calculating the mean of all of the vectors over the total number of time

171 %steps, and termed as FM in the end

172 UmeanFM=mean(U,3);

173 VmeanFM=mean(V,3);

174
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175

176 %Calculating the fluctuating velocity components of all of the vectors

177 %

178 for i = 1:Tot

179 uflucFM(:,:,i)=U(:,:,i)-UmeanFM(:,:);

180 vflucFM(:,:,i)=V(:,:,i)-VmeanFM(:,:);

181 end

182 %

183 u2FM=uflucFM.*uflucFM;

184 v2FM=vflucFM.*vflucFM;

185 uvFM=uflucFM.*vflucFM;

186 u2meanFM=mean(u2FM,3);

187 v2meanFM=mean(v2FM,3);

188 uvmeanFM=mean(uvFM,3);

189

190 save Data_meanFM Tot NX NY X Y UmeanFM VmeanFM u2meanFM v2meanFM uvmeanFM

191 save Data_flucFM Tot NX NY X Y uflucFM vflucFM u2FM v2FM uvFM -v7.3

192

193

194 % tests if the results are acceptable (makes sense) or not

195 n_figure=n_figure+1;

196 figure(n_figure)

197 toto=reshape(UmeanCM,NX*NY,1);hist(toto,50)

198

199 n_figure=n_figure+1;

200 figure(n_figure)

201 toto1=reshape(VmeanCM,NX*NY,1);hist(toto1)

202

203 n_figure=n_figure+1;

204 figure(n_figure)

205 tata=reshape(u2meanCM,NX*NY,1);hist(tata,50)

206

207 n_figure=n_figure+1;

208 figure(n_figure)

209 tata1=reshape(v2meanCM,NX*NY,1);hist(tata1,50)

210

211 n_figure=n_figure+1;

212 figure(n_figure)

213 tata2=reshape(uvmeanCM,NX*NY,1);hist(tata2,50)

214

215

216 % From these figures we choose the data that is between the inner and outer

217 % cylinder walls, neglecting the rest

218

219 Ynew=Y((34:133),(16:241));

220 Xnew=X((34:133),(16:241));

221 Unew=U((34:133),(16:241),:);
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222 Vnew=V((34:133),(16:241),:);

223 Stnew=St((34:133),(16:241),:);

224 Umoynew=UmeanCM((34:133),(16:241));

225 Vmoynew=VmeanCM((34:133),(16:241));

226 uflucnew=uflucCM((34:133),(16:241),:);

227 vflucnew=vflucCM((34:133),(16:241),:);

228 u2new=u2CM((34:133),(16:241),:);

229 v2new=v2CM((34:133),(16:241),:);

230 uvnew=uvCM((34:133),(16:241),:);

231 u2meannew=u2meanCM((34:133),(16:241));

232 v2meannew=v2meanCM((34:133),(16:241));

233 uvmeannew=uvmeanCM((34:133),(16:241));

234 UmoyFMnew=UmeanFM((34:133),(16:241));

235 VmoyFMnew=VmeanFM((34:133),(16:241));

236 uflucFMnew=uflucFM((34:133),(16:241),:);

237 vflucFMnew=vflucFM((34:133),(16:241),:);

238 u2FMnew=u2FM((34:133),(16:241),:);

239 v2FMnew=v2FM((34:133),(16:241),:);

240 uvFMnew=uvFM((34:133),(16:241),:);

241 u2FMmeannew=u2meanFM((34:133),(16:241));

242 v2FMmeannew=v2meanFM((34:133),(16:241));

243 uvFMmeannew=uvmeanFM((34:133),(16:241));

244

245 Ycut=Ynew;

246 Xcut=Xnew;

247 Ucut=Unew;

248 Vcut=Vnew;

249 Stcut=Stnew;

250 UmeancutCM=Umoynew;

251 VmeancutCM=Vmoynew;

252 uflucCutCM=uflucnew;

253 vflucCutCM=vflucnew;

254 u2cutCM=u2new;

255 v2cutCM=v2new;

256 uvcutCM=uvnew;

257 u2meancutCM=u2meannew;

258 v2meancutCM=v2meannew;

259 uvmeancutCM=uvmeannew;

260 UmeancutFM=UmoyFMnew;

261 VmeancutFM=VmoyFMnew;

262 uflucCutFM=uflucFMnew;

263 vflucCutFM=vflucFMnew;

264 u2cutFM=u2FMnew;

265 v2cutFM=v2FMnew;

266 uvcutFM=uvFMnew;

267 u2meancutFM=u2FMmeannew;

268 v2meancutFM=v2FMmeannew;
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269 uvmeancutFM=uvFMmeannew;

270

271

272 NXcut=133-34+1;

273 NYcut=241-16+1;

274

275 Totcut=Tot;

276 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

277 % saving all the data in seperate files in order to keep a small size,

278 % otherwise a single file may become 100s of Gigabytes

279 save Data_champscut Totcut NXcut NYcut Ycut Xcut Ucut Vcut Stcut

280 save Data_meanCCM UmeancutCM VmeancutCM u2meancutCM v2meancutCM uvmeancutCM

281 save Data_fluccutCM uflucCutCM vflucCutCM u2cutCM v2cutCM uvcutCM

282 save Data_meanCFM UmeancutFM VmeancutFM u2meancutFM v2meancutFM uvmeancutFM

283 save Data_fluccutFM uflucCutFM vflucCutFM u2cutFM v2cutFM uvcutFM

284

285 %% In this section, the VEDR of Mean flow kinetic energy is estimated

286

287 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

288 % Program for the treatment of the PIV data %%%

289 % Written by Harminder Singh on July 2013 %%%

290 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

291

292

293 % we have velocity as radial and tangential components, so we have

294 % to generate VEDR in cylindrical co-ordinates as

295 % VEDR=mu*(2(durdrsq+(1/rduthdth+ur/r)2+duzdzsq)+(rd(uth/r)dr+1/rdurdth)2+

296 % (1/rduzdth+duthdz)2+(durdz+duzdr)2

297 % % r is radial direction with changing gradients in meteres

298 Y=Ycut(1,:);

299 X=Xcut(:,1);

300 L=length(Y);

301 C=length(X);

302

303 th=atan((Xcut./1000)./(Ycut./1000));

304 r=Ycut;

305

306 dth=zeros(C,L);

307 %

308 for i=2:C

309 for j=1:L

310 dth(i,j)=(-th(i,j)+th(i-1,j));

311 end

312 end

313

314 dr=(r(1,3)-r(1,1))/1000; % Radial gradient and equivalent of 2*dr

315
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316 Ra=r;

317

318 durdthmf=zeros(C,L);

319 duthdthmf=durdthmf;

320 durdrmf=durdthmf;

321 duthdrmf=durdthmf;

322

323 for j=2:C

324 for i=2:L-1

325

326 durdthmf(j,i)=(VmeancutFM(j,i+1)-VmeancutFM(j,i-1))./(2.*dth(j,i));

327 duthdthmf(j,i)=((UmeancutFM(j,i+1)-UmeancutFM(j,i-1))./(2.*dth(j,i)))

328 ./Ra(j,i)+VmeancutFM(j,i)./Ra(j,i);

329 durdrmf(j,i)=(VmeancutFM(j,i+1)-VmeancutFM(j,i-1))./dr;

330 duthdrmf(j,i)=(((UmeancutFM(j,i+1)./Ra(j,i+1))-(UmeancutFM(j,i-1)

331 ./Ra(j,i-1)))./dr).*Ra(j,i);

332 end

333 end

334

335 save Data_MeanGrad durdthmf duthdthmf durdrmf duthdrmf -v7.3

336

337 durdthduthdrmf=durdthmf.*duthdrmf;

338 durdthsqmf=durdthmf.^2;

339 durdrsqmf=durdrmf.^2;

340 duthdthsqmf=duthdthmf.^2;

341 duthdrsqmf=duthdrmf.^2;

342

343 save Data_MeanGradSq durdthduthdrmf durdthsqmf durdrsqmf duthdthsqmf

344 duthdrsqmf -v7.3

345

346 nu=1e-06;

347 VEDRmf=nu*(2*(duthdthsqmf+durdrsqmf)+meandurdthsqmf+duthdrsqmf+2*durdthduthdrmf);

348

349 save Data_VEDRMF VEDRmf

350 %% Now, the turbulence VEDR is estimated

351

352 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

353 % Program for the treatment of the PIV data %%%

354 % Written by Harminder Singh on July 2013 %%%

355 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

356

357 durdthT=zeros(C,L,Totcut);

358 duthdthT=durdthT;

359 durdrT=durdthT;

360 duthdrT=durdthT;

361

362 for j=2:C
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363 for i=2:L-1

364

365 durdthT(j,i,:)=(vflucCutFM(j,i+1,:)-vflucCutFM(j,i-1,:))./(2.*dth(j,i));

366 duthdthT(j,i,:)=((uflucCutFM(j,i+1,:)-ufluc_CutFM(j,i-1,:))./(2.*dth(j,i)))

367 ./Ra(j,i)+vflucCutFM(j,i,:)./Ra(j,i);

368 durdrT(j,i,:)=(vflucCutFM(j,i+1,:)-vflucCutFM(j,i-1,:))./(dr);

369 duthdrT(j,i,:)=(((uflucCutFM(j,i+1,:)./Ra(j,i+1))-(uflucCutFM(j,i-1,:)

370 ./Ra(j,i-1)))./(dr)).*Ra(j,i);

371 end

372 end

373

374

375 save Data_FlucGrad durdthT duthdthT durdrT duthdrT -v7.3

376

377 durdthduthdrT=durdthT.*duthdrT;

378 durdthsqT=durdthT.^2;

379 durdrsqT=durdrT.^2;

380 duthdthsqT=duthdthT.^2;

381 duthdrsqT=duthdrT.^2;

382

383 save Data_FlucGrad durdthduthdrT durdthsqT durdrsqT duthdthsqT duthdrsqT -v7.3

384

385

386 mdurdthsqT=mean(durdthsqT,3);

387 mduthdthsqT=mean(duthdthsqT,3);

388 mdurdrsqT=mean(durdrsqT,3);

389 mduthdrsqT=mean(duthdrsqT,3);

390 mdurdthduthdrT=mean(durdthduthdrT,3);

391

392 save Data_FlucGradM mdurdthsqT mduthdthsqT mdurdrsqT mduthdrsqT mdurdthduthdrT

393

394

395 nu=1e-06;

396 TEDR=nu*(2*(mduthdthsqT+mdurdrsqT)+mdurdthsqT+mduthdrsqT+2*(mdurdthduthdrT));

397

398 save Data_TEDR TEDR

399

400 %%
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