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Resumo

Métodos precisos e robustos para prever séries temporais são muito importantes em
diversas áreas. Uma vez que os dados históricos são utilizados para o planejamento
estratégico de operações futuras, como compra ou venda de determinados produtos para
controle de estoque e demanda.

Neste contexto, várias competições para métodos de previsão de séries temporais
univariadas foram realizadas, sendo a Competição M3 a maior. Ao vencer a Competição
M3, o método Theta intrigou pesquisadores por sua capacidade preditiva e simplicidade.
O método Theta é uma combinação de outros métodos, o qual propõe decompor a série
temporal (desazonalizada) em outras duas séries temporais chamadas de "linhas thetas".
A primeira linha theta remove completamente a curvatura dos dados, sendo assim um
estimador para a tendência a longo prazo. A segunda linha theta dobra a curvatura da
série sendo assim um estimador para a componente de curto prazo.

Várias questões relacionadas ao método Theta foram levantadas, algumas pelos
próprios autores, como parâmetros ideais para as linhas thetas, pesos para combinar as
linhas thetas, construção de intervalos de predição, número ideal de linhas thetas, entre
outras.

Nesta tese algumas dessas questões são solucionadas. Pesos ótimos para a combinação
de linhas thetas são derivados, esses resultados são utilizados para a construção de
modelos estatísticos que generalizam/aproximam o método Theta padrão. A metodologia
estatística é empregada para estimação dos parâmetros e construção de intervalos de
predição. Os pesos ótimos também são utilizados para propor métodos que consideram
duas ou mais linhas thetas. Parte da metodologia proposta é implementada em um
pacote para a linguagem de programação R.

Em um estudo empírico com mais de 3000 séries temporais do conjunto de dados
da competição M3, os métodos/modelos propostos mostraram-se acurados. A nossa
principal abordagem, o modelo DOTM ("Dynamic Optimised Theta Model") superou
todos os concorrentes, sendo possivelmente o método com o melhor desempenho nesse
conjunto de dados já disponibilizado na literatura.



Abstract

Accurate and robust forecasting methods for univariate time series are critical as the
historical data can be used in the strategic planning of such future operations as buying
and selling to ensure product inventory and meet market demands.

In this context, several competitions for time series forecasting have been organized,
with the M3-Competition as the largest. As the winner of M3-Competition, the Theta
method has attracted attention from researchers for its predictive performance and
simplicity. The Theta method is a combination of other methods, which proposes the
decomposition of the deseasonalized time series into two other time series called "theta
lines". The first completely removes the curvatures of the data, thus accurately estimating
the long-term trend. The second doubles the curvatures to better approximate short-term
behavior.

Several issues have been raised about the Theta method, even by its originators.
They include the number of theta lines, their parameters, weights to combine them, and
construction of prediction intervals, among others.

This doctorate thesis resolves part of these issues. We derive optimal weights for
combine the theta lines, this result is used to derive statistical models which generalizes
/approximate the standard Theta method. The statistical methodology is considering for
parameter estimation and for compute the prediction intervals. The optimal weights are
also used to propose new methods that hold two or more theta lines. Part of proposed
methodology is implemented in a package for R-programming language.

In an empirical investigation using the M3-Competition data set with more than 3000
time series, the proposed methods/models demonstrated significant accuracy. The study’s
primary approach, the Dynamic Optimised Theta Model, outperformed all benchmarks
methods, constituting, in all likelihood, the highest-performing method for this data set
available in the literature.
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1 Introduction

This study focuses on time series forecasting models, especially, those for univariate
time series. The application of these models extends through several areas of economy,
commerce, energy, and health for which historical data regarding transactions, prices,
demand, customers/patients, and other factors can provide predictive value in logistics
planning.

In search of the optimal forecasting method, several competitions have been organized.
Among the most significant are the Makridakis Competitions organized by the Inter-
national Institute of Forecasters, which began in 1982 with the M-Competition, which
comprised 24 competitors and 1001 time series. In 1993, the M2-Competition included 19
competitors and 29 time series. The largest competition to date, the M-3 Competition,
took place in 2000 with 24 competitors and 3,003 time series, involving macro- and
micro-economy, industry, finance and demographics. The time series were distributed
with frequencies of yearly, quarterly, monthly and other (including daily and weekly)
observations. The results were published in the International Journal of Forecasting
(Makridakis and Hibon, 2000). The principal findings of the three competitions are
similar, the most significant are the following:

• Sophisticated methods do not ensure greater accuracy than simple ones;

• The accuracy measure may influence the ranking of performance of various methods;

• On average The combination of methods outperforms the specific methods being
combined;

• The ranking of various methods vary according the length of forecasting horizon;

The Theta method of Assimakopoulos & Nikolopoulos (2000) won the M3-Competition,
which is a deterministic combination approach of other methods. However, the methods
to be combined are not applied directly to the time series, they are applied in derived
lines called theta lines, denoted in this monograph as {Zt(θ)}. Which maintains the same
behavior of the original time series, but with hight or low variance according to the theta
parameter, θ. The standard version of the Theta method is based on two theta lines
with ad-hoc values for the theta parameters, θ = 0 and θ = 2, and (50%-50%) weights
for combination, which are extrapolated through simple linear regression and simple
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exponential smoothing, respectively. All details about the Theta method will be present
in Chapter 3.

This thesis expands the theory of time series forecasting, particularly as it concerns
the Theta method. A systematic review of more than 100 related studies published over
the last two decades is presented, with a questionnaire used to identify each study’s
primary objective and classify its methodology. The findings were used to analyze the
evolution of related literature and determine the present state of research.

The principal advances in the Theta method expand the number of theta lines,
compute optimal weights for combining them, derive stochastic approaches, and use
statistical theory to estimate parameters and establish prediction intervals. The new
models perform quite well using the M3-Competition data, with some outperforming
the standard Theta method according to two well-established metrics and a statistical
test. The code implementation of the proposed models via the forecTheta package for
R-programming language has been made freely available.

1.1 Chapters descriptions

The remainder of this study is organized as follows. The research is reported in four
papers, with a chapter devoted to each. The first (Chapter 2), systematically reviews
time series forecasting literature over the past two decades, considering more than 100
studies and addressing several questions for each. Chapter 3 presents the paper "Models
for optimising the theta method and their relationship to state space models," which
has been accepted for publication in the International Journal of of Forecasting. In
that study, optimal weights for combining two theta lines were established and used to
derive four stochastic approaches for the Theta method. The most elaborate model is
the Dynamic Optimized Theta (DOTM), which performs well using M3-Competition
data. Chapter 4 provides conditions to combine two or more theta lines with optimal
weights, which are determined for three or any even number of theta lines and used to
expand the standard Theta method to three or four theta lines. The study’s results show
that increasing the number of theta lines enhances forecasting accuracy.

During the study, the forecTheta package for R-programming language was imple-
mented. The package contains functions for cross-validate and implementations for the
Standard Theta method of A&N and the stochastic approaches described in Chapter
3. Chapter 5 describe the implementation and the functions of this package. Finally,
Chapter 6 presents the final comments and conclusion.



2 Systematic review for time series fore-
casting

This chapter corresponds to a manuscript to be submitted to a scientific journal,
which presents a systematic review for time series forecasting involving more than one
hundred of papers. The people involved in this work are: Bao Yiqi (Federal University of
São Carlos, Brazil), Francisco Louzada (University of São Paulo, Brazil) and Dipak Dey
(University of Connecticut, USA).

Abstract

Over the last few decades, time series forecasting (TSF) has gained considerable attention
from researchers with a rapid increase in related literature. This study examines the
evolution of these papers during the past two decades. Using the ScienceDirect and
Scopus databases, more than 100 studies were selected, and several question about each
were answered, which enriched our understanding of the state of the art in TSF.
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2.1 Introduction

Time series analysis has significant application into such key areas as the economy,
engineering, commerce, and health. The study of time series modeling, in turn, involves
such fields of knowledge as mathematics, statistics, and computer science, with a focus
on forecasting. Forecast-related literature has been growing rapidly over the last few
decades (De Gooijer & Hyndman, 2006) as consequence of such factors as forecasting
competitions (Makridakis et al., 1993; Makridakis & Hibon, 2000; Athanasopoulos et al.,
2011), progress of automatic algorithms (Hyndman et al., 2002a; Poler & Mula, 2011),
and specialized computers softwares (Kusters et al., 2006; Hyndman & Khandakar, 2008).

Even a series of studies focused on the same research topic generally has different
objectives. Systematic review, content analysis or still scientometric analysis facilitate our
understanding of a specific research area’s primary objectives, model classification, and
comparison techniques. Moreover, this type of study enables us to analyze the evolution
of the related literature, principal studies. and their authors’ academic affiliations.

This study has conducted a systematic review of the articles published over the past
two decades covering all studies related to time series forecasting (TSF) included in the
ScienceDirect and Scopus databases. The studies are classified under several categories
such as publication year, journal title, year, first author, and primary objective. This
study improves a better understanding about the historical evolution and the current
state of this research area.

This chapter is organized as follows. Section 2.2 describes the methodology to select
and classify study articles, while Section 2.3 discusses the results of their categorization.
Final comments and recommendations for further research are presented in Section 2.4.

2.2 Content analysis methodology

The methodology used to select and classify the articles covered by this review is
based on published papers of content analysis for other areas. Interested readers may
refer to Li & Cavusgil (1995) and Hachicha & Ghorbel (2012) for more details.

All study is performed taking into account the online papers available on ScienceDirect
and Scopus databases. The articles were found via computerized search related key words
that follow the selection criteria:

• The search was limited to articles within topic area: forecast and forecasting. The
survey horizon covers a period of two decades: from January of 1995 to January of
2015.
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Potentially related articles
(124)

Articles selected in this 
survey
(109)

Exclusion of articles based 
on selection criterions

(15)

Classification and statistics 
Based on four categories

(1) Year of 
publication

(2) Title of 
journal

(3) Last name of 
the first co-author

(4) Conceptual scheme 
based on 8 questions

Figure 1 – Procedure of the content analysis review.

• The content analysis restricts the study eligibility to journal full articles in English.
Other publication forms such as unpublished working papers, master and doctoral
dissertations, books, conference in proceedings, white papers, and others were
ineligible for inclusion.

The articles were selected and classified according to the procedure depicted in Figure
6. From 124 studies, 109 were selected with 15 failing to meet the selection criteria.
Each was classified according to year of publications, title of journal, last name of the
first co-author and other eight questions listed in Table 1. These questions were selected
in order to identify the main proposes and how these proposes were presented in the
articles. Some articles propose modifications on well established models, in these cases,
we consider the result as a new model/methodoly. The study does not distinguish the
terms "model" and "method" in regard to stochastic or deterministic processes.

This study considers eight types of primary objectives: those in which the study
proposes a new method for TSF, compares traditional methods, discusses methods or
techniques related TSF conceptually, proposes new features for model selection, reviews
related literature, proposes a new feature for performance measurement, models a type
of data set, and addresses other TSF-related issues not previously considered.

The articles are also classified according to seasonality modeling as prior decomposition
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1. What is the main objective of the article?

a) Propose a new model/methodology
b) Comparison in methods
c) Conceptual discussion
d) Feature selection
e) Literature review
f) Performance measure
g) Application
h) Other issues

2. How is the seasonality modeled in the pro-
posed/worked models?

a) Prior decomposition
b) Included in the model
c) Both
d) Not considered/Not apply

3. What is the type of the main classification
method?

a) ARIMA
b) Exponential Smoothing
c) Neural networks
d) State Space Models
e) Non parametric approach
f) Combination
g) Other
h) Not apply

4. How are the considered methods?

a) Stochastic
b) Deterministic
c) Both
d) Not apply

5. What datasets are used?

a) M1-Competition

b) M2-Competition

c) M3-Competition

d) Simulated

e) Other

f) Not apply

6. Which metrics are considered?

a) sMAPE/sMdAP

b) MAPE/MdAPE

c) MASE/MdASE

d) MSE/MdSE

e) MAE/MdAE

f) RMSE/RMdSE

g) Other

h) Not apply

7. Was performed exhaustive simulation study?

a) Yes

b) No

8. Which benchmarks methods are considered
for comparison?

a) ARIMA

b) Exponential Smoothing

c) Neural Network

d) Combination

e) Naive/Seasonal Naive

f) Other

g) Not apply/None

Table 1 – List of questions and possible responses to the proposed content analysis
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(e.g., classical decomposition) or included in the model (e.g., Holt-Winters) and type
of the main method. We consider six family models as alternative, one example of
combination type is the Theta Model of Assimakopoulos & Nikolopoulos (2000), the
winner of the M3-Competition (Makridakis & Hibon, 2000). Question number (4) refers
to stochastic or deterministic modeling of proposed or implemented methods. While the
punctual forecasts are sometimes the same in both cases, the use of stochastic approaches
has benefits, such as the possibility to use the information criteria for model selection
and easy construction of prediction intervals.

The three M-Competitions have invaluable importance for TSF research and literature,
see Makridakis et al. (1993); Makridakis & Hibon (2000) for details. The time series sets
used in the competitions are freely available on Internet, researchers can use them to
validate their methods and compare their performance. Question 5 identifies each data
set, or part thereof, used in the studies, while Question 6 focuses on the metrics used to
compare models. The customary metric used to this end is the MAPE defined as the
mean of Absolute Percentage Errors (APE) given by

APE(yt, ŷt) = 100 |yt − ŷt|
yt

,

where yt is true value one point of time series and ŷ is the forecast for y. Absolute percent
errors (APE), however, are not a symmetric function, which means that MAPE does
not attend the mathematical restriction to be a true metric. Accordingly, the symmetric
mean absolute percentage error (sMAPE) which is defined as the mean of symmetric
absolute percentage errors (sAPE), is sometimes used in lieu of MAPE and is given by

sAPE(yt, ŷt) = 100 |yt − ŷt|(yt + ŷt)/2
.

It is worth noting that sMAPE was the official metric of the M3-Competition.
Although sAPE is a symmetric function and its correspondent mean is a true mathematical
metric, sAPE does not treat positive and negative errors equally. Suppose, for example,
that yt = 100 so ŷt = 90 has bigger penalization than ŷt = 110, while the variation in
both cases is the same. Noting these problems, Hyndman & Koehler (2006) proposed
the Mean Absolute Scaled Error metric (MASE) given by

MASE = n− 1
h

n+h∑
t=n+1

|yt − ŷt|∑n
i=2 |yi − yi−1|

,

where y1, . . . , yn and yn+1, . . . , yn+h are the in- and out-sample parts of the time series,
while ŷn+1, . . . , ŷn+h are forecasting points.
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Other alternatives are the mean square error (MSE), mean absolute error (MAE), and
root mean square error (RMSE), which are not scale independent and thus unsuitable
for comparisons with more than one time series. Variations using the median statistic of
the same errors substitute "Md" for "M," e.g., the symmetric median absolute percentage
error (sMdAPE).

Question 7 asks whether the researchers performed exhaustive simulation analyses, a
traditional question in systematic reviews in diverse areas with limited available data.
Time series analyses enables researcher to test their methods via empirical studies. By
way of example, the M- and M3-Competition data sets have more than one and three
thousand time series for this purpose, respectively.

Whenever researchers discover a new method, the customary practice is to compare it
with well established methods serving an analogous purpose. Thus Question 8 identifies
standard benchmark methods. Some alternatives coincide with those in Question 3. The
naive model yields forecasting values equal to the last observed value, while its seasonal
variation produces values equal to the last observed value of the same season. Questions
1, 3, 5, 6, and 8 allow more than one alternative answer per study.

2.3 Results and discussion

This section presents the results of the reviewed studies and discusses their classifica-
tion. The results for each question are provided in the Appendix.

The number of published studies on time series forecasting is growing annually as
evidenced by Figure 2, which shows a clear growth from 3 published studies in 1995 to 14
in 2014, the last full year. The 109 articles selected for this study are distributed among 39
journals. The International Journal of Forecasting (IJF) published 45 (41.3%), by Expert
Systems with Applications and the International Journal of Production Economics, with
7 each, and the European Journal of Operational Research, with 5. The primary objective
of the largest portion (36.7%) of the studies was proposing new forecasting methods or
methodologies, while comparison in traditional methods and application are the focus of
23.85% and 24.77%, respectively. Table 2 shows the number of the articles per journal
and the number of answers for each response to Question 1 in Table 1. Note that IJF is
the only journal with at least one study for each objective.

Some researchers have authored several published studies. Table 3 lists researchers
with at least two published studies and at least one as first author. As can be seen,
most are from the United Kingdom (6), United States (5), Australia (2), and France
(2). Professors Robin J. Hyndman of Monash University and Robert Fields of Lancaster



CHAPTER 2. SYSTEMATIC REVIEW 9

Year

N
um

be
r 

of
 a

rt
ic

le
s

1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015

2
4

6
8

10
12

14
Articles by year
General trend

Figure 2 – Number of articles per year.

Table 2 – Number of papers per journal and main objective of published papers.

What is the main objective of the article? Number of
(a) (b) (c) (d) (e) (f) (g) (h) articles

Inter. Journal of Forecasting 12 13 9 3 8 1 7 5 45
Expert Systems with Applic. 6 0 0 1 0 0 2 0 7
Inter. J. of Produc. Economics 2 3 2 0 0 0 2 0 7
European J. of Oper. Research 1 2 0 0 1 0 2 0 5
Computers & Oper. Research 2 1 0 0 0 0 0 0 3
Neurocomputing 1 0 1 1 0 0 0 0 3
Comput. Stat. & Data Analysis 2 0 0 0 0 0 0 0 2
Economic Modelling 0 0 0 1 1 0 0 0 2
Elec. Power Systems Research 2 0 0 0 0 0 0 0 2
Inter. J. of Elec. Power & E. S. 1 0 0 0 0 0 1 0 2
Journal of Econometrics 0 0 1 1 0 0 0 0 2
Journal of Oper. Management 1 0 1 0 0 0 0 0 2
Omega 0 0 2 0 0 0 0 0 2
Other journals 10 7 0 1 1 0 13 0 25

Total 40 26 16 8 11 1 27 5 109
Percentage % 36.70 23.85 14.68 7.34 10.09 0.92 24.77 4.59 100

University authored the largest number of published studies, 10 and 6, respectively,
representing 9.17% and 5.5% of the articles in this study, and both have been first authors
of three.

The responses to the questions in Table 1 used in content analysis to classify the
study articles are summarized in Table 4. To enhance our understanding of the evolution
of TSF-related research, the articles were divided into two decade-long periods. The
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Table 3 – Authors with more than 3 papers and at least 1 as first co-author.

Author Affiliation, Country Number of papers Number of
as first author papers

Hyndman, R.J. Monash University, Australia 3 10
Fildes, R. Lancaster University, United Kingdom 3 6
Athanasopoulos, G. Monash University, Australia 3 4
Gardner Jr., E.S. University of Houston,United States 3 3
Kourentzes, N. Lancaster University, United Kingdom 2 4
Hendry, D.F. University of Oxford, United Kingdom 2 3
Zhang, G.P. Georgia State University, United States 2 3
Andrawis, R.R. Cairo University, Egypt 2 2
Armstrong, J.S. University of Pennsylvania, United States 2 2
Sanders, N.R. Wright State University, United States 2 2
Tashman, L.J. University of Vermont, United States 2 2
Thomassey, S. University Lille Nord of France, France 2 2
Nikolopoulos, K. University of Manchester, United Kingdom 1 4
Hibon, M. INSEAD Business School, France 1 4
Petropoulos, F. Cardiff University, United Kingdom 1 3
Goodwin, P. University of Bath, United Kingdom 1 3

answers for each study can be found in Tables 5, 6, and 7 in the Appendix.
Note that (a), (b) and (g) to question (1) are the most common study objectives on

the articles, appearing in an increasing number of published articles. The three objectives
are related to proposing, modifying, or selecting specific models for specific time series.
For example, several studies focused on producing economic energy models have been
published in the last decade. Response (a) registered the highest increase in published
articles from the first to the second period. We found very few articles related to feature
selection, once the traditional statistical theory for model selection based in information
criteria as AIC (Akaike, 1974), AICc and BIC (Schwarz et al., 1978) is very used in this
issue. Only Hyndman & Koehler (2006), which proposed use of the mean absolute scaled
error (MASE) metric, was classified as a performance measure. Responses to Question 2
indicate that, among studies addressing seasonal trends, models with built-in seasonal
variables, are used most frequently.

Responses to Question 3 give very interesting results, the use of models from Expo-
nential Smoothing and Neural Networks/Intelligence Artificial families are growing, while
the use of non parametric approaches and the traditional ARIMA models are decreasing.
In part, this can be explained by the power of actual computers and the evolution of
the exponential smoothing methods for stochastic models making it possible the use of
automatic selection techniques (Hyndman et al., 2002a). Among the articles selected for
this study, neural networks models are most commonly used (26.61%) as the principal
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classification method. The Question 4 shows that stochastic models are preferable by
researches and the percentage increased in the last decade, however it is worth men-
tioning that this is not one important issue for some practitioners of forecasting, since
some models produce the same forecasting points for both stochastic or deterministic
approaches, as occurs for exponential smoothing and ARIMA models for example.

Despite of importance of the M-Competitions for TSF, responses to Questions 5
indicate that no more than 25% of the study articles considered the data sets used in
them. Often studies used time series classified as "Other", which generally represent just
one specific kind of time series and not a set with several series from different areas.
Moreover, just 8.26% of the studies used simulated data sets, the same number of articles
that performs exhaustive simulation study (Question 7). Several metrics are considered
in the articles and the distribution seems to be change over the last two decades by
inclusion of a very specific metric for forecasting methods, the MASE. These results are
shown in Question 6.

On Question 8 we can see the mostly frequent benchmarks methods in the articles, the
ARIMA and Exponential Smoothing families are the most used. The automatic selection
of ARIMA model proposed in (Box et al., 2015, hereafter BJ-ARIMA) is, probably, the
most used. However, particularly cases as auto-regressive models (AR) and moving
average models (MA) are widely used as well. There is also the ETS (abbreviation of
Error, Trend and Seasonal) algorithm for automatic selection of Exponential Smoothing
(ES) model proposed by Hyndman et al. (2002b), which is not still so used as much
as the particular ES cases, simple exponential smoothing (Brown, 1956) and Holt’s
exponential smoothing (Holt Charles, 1957). Neural Network family is growing up
fast, which coincides with the growing up of the number of papers dedicated to Neural
Network model presented on Question 3 results. The other methods are still well used,
this category includes several specific data set models and non parametric approaches.

2.4 Final comments

We presented in this paper a methodologically structured content analysis of time
series forecasting literature over the last two decades. A total of 109 articles available in
two well known databases, ScienceDirect and Scopus, were analyzed and classified for
this study.

The study’s analysis confirms that publication of TSF-related studies have increased
rapidly over the study period, most notably, over the past decade. While published
TSF-related studies are disproportionately concentrated in several developed nations,
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Table 4 – Summary of reviewed articles according to the content analysis (1995–2015)

Period 1995–2005 2006 – 2015 Total
Number of Papers 33 76 109

(1) What is the main objective of the article?
(a) Propose a new method/model/methodology 21.21% 42.11% 35.78%
(b) Comparison in traditional methods 21.21% 22.37% 22.02%
(c) Conceptual discussion 21.21% 9.21% 12.84%
(d) Feature selection 6.06% 6.58% 6.42%
(e) Literature review 12.12% 9.21% 10.09%
(f) Performance measure 0.00% 1.32% 0.92%
(g) Application 21.21% 25.00% 23.85%
(h) Other issues 3.03% 5.26% 4.59%

(2) How is the seasonality modeled in the prop./worked models?
(a) Prior decomposition/dummy/sin-cos 9.09% 10.53% 10.09%
(b) Included in the model 42.42% 32.89% 35.78%
(c) Both 9.09% 14.47% 12.84%
(d) Not considered/Not apply/Not informed 39.39% 42.11% 41.28%

(3) What is the type of the main classification method?
(a) ARIMA 21.21% 9.21% 12.84%
(b) Exponential Smoothing 9.09% 17.11% 14.68%
(c) Neural networks / IA 18.18% 30.26% 26.61%
(d) State Space Models 0.00% 7.89% 5.50%
(e) Non parametric approach 9.09% 3.95% 5.50%
(f) Combination 21.21% 17.11% 18.35%
(g) Other 0.00% 22.37% 15.60%
(h) Not apply 27.27% 23.68% 24.77%

(4) How are the considered methods?
(a) Stochastic 45.45% 55.26% 52.29%
(b) Deterministic 18.18% 15.79% 16.51%
(c) Both 21.21% 22.37% 22.02%
(d) Not apply/Not informed 15.15% 6.58% 9.17%

(5) What datasets are used?
(a) M1-Competition 21.21% 6.58% 11.01%
(b) M2-Competition 3.03% 0.00% 0.92%
(c) M3-Competition 12.12% 13.16% 12.84%
(d) Simulated 9.09% 7.89% 8.26%
(e) Other 66.67% 80.26% 76.15%
(f) Not apply 12.12% 10.53% 11.01%

(6) Which metrics are considered?
(a) sMAPE / sMdAP 12.12% 18.42% 16.51%
(b) MAPE/MdAPE 51.52% 38.16% 42.20%
(c) MASE/MdASE 0.00% 18.42% 12.84%
(d) MSE/MdSE 18.18% 14.47% 15.60%
(e) MAE/MdAE 15.15% 25.00% 22.02%
(f) RMSE/RMdSE 24.24% 27.63% 26.61%
(g) Other 15.15% 13.16% 13.76%
(h) Not apply 15.15% 10.53% 11.93%

(7) Was performed exhaustive simulation study?
(a) Yes 9.09% 7.89% 8.26%
(b) No 90.91% 92.11% 91.74%

(8) Which benchmarks methods are considered for comparison?
(a) ARIMA 36.36% 38.16% 37.61%
(b) Exponential Smoothing 39.39% 36.84% 37.61%
(c) Neural Network 21.21% 30.26% 27.52%
(d) Combination 27.27% 21.05% 22.94%
(e) Naive / Seasonal Naive 12.12% 13.16% 12.84%
(f) Other 18.18% 22.37% 21.10%
(g) Not apply/none 24.24% 30.26% 28.44%
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research is being conducted across the globe. The study articles were published in
39 scientific journals, most of which focus on a particular aspect of application. The
significant role played by the International Journal of Forecasting is underscored by
the fact that 43% of the study articles were published in its pages. The most common
objective of the studies was to introduce a new forecasting method, often focused on a
specific type of time series and most frequently classified as neural networks. Few studies
conduct exhaustive simulation, while most use empirical data with one or more time series.
ARIMA and Exponential Smoothing models are almost mandatory benchmarks methods
for comparing performance, yet only one of the 109 studies focused on performance
measurement as its primary objective, a research gap that merits attention. Non expert
users should consider the automatic algorithms BJ-ARIMA and ETS as a first attempt
to time series forecasting.

The study’s content analysis was exhaustive and, above all, productive, but limitations
remain. Studies selected were limited to those published in English as complete journal
articles and included in two prominent databases. While this generated a representative
sample that served this study well, further research could included additional databases
and criteria to expand the subject pool.

Appendix
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Table 5 – Indexing of reviewed articles (2014-2015)

Reviewed article Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
Ahmad et al. (2014) e d c c e b,e,f b a,b,c
Aubry & Renou-Maissant (2014) b c h c e b,f b a,b,f
Bergs et al. (2014) g b b a e b,c,e b g
da Silva Fonseca Junior et al. (2014) a,g d g d e f b g
Goodwin et al. (2014) e,c d g a f h b g
Hendry & Mizon (2014) c d g a e g b g
Kock & TerÃ¤svirta (2014) b a c a e f b a,c
Kourentzes et al. (2014a) a b c a e c b b,d,f
Kourentzes et al. (2014b) a b b a c,e a,c,g b b,c
Lin et al. (2014) a d c c e b,d b a,b,c,d
Nedellec et al. (2014) a d g a e f b f
Petropoulos et al. (2014) b,g c h c c,d a,c a b,d,e
Weron (2014) e b h a e b,c,f b g
Taieb & Hyndman (2014) h b f a e f b g
Zietz & Traian (2014) b c a,d,g a e f b a,c,e
Adhikari (2015) a b c,f a e b,d,e,f b a
Aye et al. (2015) b c h a e f b a
Boylan et al. (2015) c a h c a,d,e b,d a b
Carpinone et al. (2015) a d g a e h b g
Guizzardi & Stacchini (2015) g a d a e b,d,e b e,f
Hu et al. (2015) d,g b h a e b,c b f
Peng et al. (2015) a d c a e b,e,f b a
Silva & Hassani (2015) g,b d e a e f b a,b,c
Spithourakis et al. (2015) h a h c e b b g
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Table 6 – Indexing of reviewed articles (2007-2013)

Reviewed article Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
Madden & Tan (2007) b b a,b c c b b a,b,c
Nikolopoulos et al. (2007) b d c,g c e e b c
Sanchez-Ubeda & Berzosa (2007) a b g b d,e b a g
Zhang (2007) a d c a d,e e,f a a,c
Gould et al. (2008) a b b,d a e d b b,f
Huang & Tzeng (2008) a,g d g b e b b g
Sanchez (2008) a,g d f b e d b d
Southgate (2008) g b b,g b e d b b,f
Athanasopoulos et al. (2009) g b b a e b b g
Chen & Ou (2009) a,g d c a e e b a
Wang et al. (2009) d b h a e g b a,b,c
Lemke & Gabrys (2010) c b c a e a b a,b,c,d
Pedregal & Trapero (2010) a,g b d a e b b a
Thomassey (2010) a,g b c b d f a b,f
Tratar (2010) c b b b e d,e b b
Yang et al. (2010) a,g d c b e b b g
Yelland (2010) a,g d g a e b,e,f b b,f
El-Shagi (2011) b,g a h a e f b a
Adeodato et al. (2011) a b c a e a,b b g
Andrawis et al. (2011a) a a c a e a b b,c,d,f
Andrawis et al. (2011b) a a f b c,e a,c b d
Athanasopoulos et al. (2011) b c a,b,d,f,g c e b,c b a,b,d,e,f
Athanasopoulos & Hyndman (2011) b,c c a,b,c,e,f,g c e b,c b a,b,d,e,f
Crone et al. (2011) b c c a c,e a,c,g b a,b,c,d,e,f
Fildes & Kourentzes (2011) g,b d a,b,c,f a e e b a,b,c,d,e
Hyndman et al. (2011) a d f a d,e e,f a
Kolassa (2011) a b f a a,c a,e,g b d
Luna & Ballini (2011) a b c a e a,e b c
Poler & Mula (2011) d c f c c,e a b a,b,c,d,e,f
Theodosiou (2011) a b f a a,e a,c,e,f,g b a,b,d
Haque et al. (2012) a,b d c a e b b c
Khashei & Bijari (2012) a d f c e d„e b a
Moon et al. (2012) b a h a e e,f,g b b,f
Trapero et al. (2012) c d h a e b b a,b,c,e
Vilar et al. (2012) a b e a e b b a
Wang et al. (2012) a d g a e b b c,f
Castle et al. (2013) d d h a e g b g
Gorr & Schneider (2013) b c h c c a b a,b,c,d,e,f
Iturbide et al. (2013) b d g b a,c d b g
Matija et al. (2013) a b c a e g b a
Stepnicka et al. (2013) a b c b e a,c b a,c
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Table 7 – Indexing of reviewed articles (1995-2006)

Reviewed article Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
Dharmaratne (1995) g b a a e b b a
Pollack-Johnson (1995) c d h d f h b g
Sanders & Ritzman (1995) a a f b e b b d
Tashman & Kruk (1996) d b b a b b,g b g
Vokurka et al. (1996) a d f b a b b b,e
Webby & O’Connor (1996) e d h d f h b g
Arinze et al. (1997) a b c d e d b b,c,d
Badri et al. (1997) g b f a e b b g
Gardner & Anderson (1997) b b e b a,e b,e,f b b,f
Novales & de Fruto (1997) b b a a e f b a
Shah (1997) d b h c a g b g
Stergiou et al. (1997) b b h a e b b a,b,e
Bianchi et al. (1998) g b a a e f b a,b
Fildes et al. (1998) c a h c a,e b,g b a,b,e
Chan et al. (1999) g d f a e f b b,d
Makridakis & Hibon (2000) b c h c c a b a,b,c,d,e,f
Melard & Pasteels (2000) c b a a c h b g
de Menezes et al. (2000) e d f d e d,g b a,d
Tashman (2000a) e d h d f h b g
Gardner Jr. et al. (2001) b b b,e c a,e b,e,f b b,d
Zhang et al. (2001) b d c a d,e b,d a a
Zhang & Dong (2001) a d c a e b b c
Hyndman et al. (2002a) a b b a a,c,d a,b a a,b,c,d,f
Taylor (2002) g d a a e d,e b f
Bernanke & Boivin (2003) g d a a e f b a
Chu & Zhang (2003) b c a,c a e b,e,f b a,c
Hendry & Clements (2003) e d h a f h b g
Miller & Williams (2003) c,h a h c a,d,e b,d a b
Sanders & Manrodt (2003) c d e b e b b f
Dekker et al. (2004) c b f c e a,d,e b b,d,f
Hibon & Evgeniou (2005) c c f c c a b d
Liao & Fildes (2005) a d c b e b,g b a,b,c
Thomassey et al. (2005) a,g b c b e b,f b c
Abdel-Aal (2006) g d c b e b b c
Allen & Morzuch (2006) e d a,g c f h b g
Armstrong & Fildes (2006) h d h d f h b g
Armstrong (2006) e d h d f h b g
Bermudez et al. (2006) a b b b a b,e,f b b
De Gooijer & Hyndman (2006) d c a,b,d,f,g c f a,b,c,d,e,f,g b g
Doganis et al. (2006) g d c a e b b a,b,c,d
Fildes (2006) e d h d f h b g
Gardner Jr. (2006) e d b c f h b g
Hyndman & Koehler (2006) f c h c c,e c b g
Kusters et al. (2006) h d h d f h b g
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Abstract

Accurate and robust forecasting methods for univariate time series are very important
when the objective is to produce estimates for a large number of time series. In this
context, the Theta method caught researchers’ attention due to its performance in the
M3-Competition. The Theta method, as implemented in the monthly subset of the M3-
Competition, decomposes the seasonally adjusted data into two "theta lines". The first
theta line removes the curvature of the data to estimate the long-term trend component.
The second theta line doubles the local curvatures of the series to approximate the
short-term behavior. We provide generalizations of the Theta method. The proposed
Dynamic Optimised Theta Model is a state space model that optimally selects the best
short-term theta line and dynamically revises the long-term theta line. The superior
performance of this model is demonstrated through an empirical application. We relate
special cases of this model to state space models for simple exponential smoothing with
a drift.
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3.1 Introduction

The development of accurate, robust and reliable forecasting methods for univariate
time series is very important when a large number of time series are involved in the
modelling and forecasting process. In many industrial settings it is very common to
work with a large line of products; thus, efficient sales and operational planning (S&OP)
heavily depend on accurate forecasting methods.

Despite the advantages of automatic model selection algorithms (Hyndman et al.,
2002b; Hyndman & Khandakar, 2008; Poler & Mula, 2011), there is still the need for
accurate extrapolation methods. Forecasting competitions have played an important
role toward advances of forecasting a large number of times series with the objective of
identifying high-performing methods. The Theta method caught researchers attention
due to its simplicity and surprising performance (Makridakis & Hibon, 2000; Koning
et al., 2005) and is one of the benchmarks at more recent forecasting competitions
(Athanasopoulos et al., 2011).

The Theta method Assimakopoulos & Nikolopoulos (2000)(hereafter A&N) is applied
on non-seasonal or deseasonalised time series, usually done through the multiplicative
classical decomposition. The method decomposes the original time series into two new
lines through the so-called theta coefficients, denoted by θ1 and θ2; θ1, θ2 ∈ R, which
are applied to the second difference of the data. When θ < 1, the second differences
are reduced resulting in a better approximation of the long-term behavior of the series
(Assimakopoulos, 1995). If θ is equal to 0, the new line is a straight line. When θ > 1 the
local curvatures are increased, magnifying the short-term movements of the time series
(A&N). The new lines produced are called theta lines, denoted here by Z(θ1) and Z(θ2).
These lines have the same mean value and slope with the original data. However, the
local curvatures are filtered out or enhanced, depending on the value of the θ coefficient.

In other words, the decomposition process has the advantage of exploiting more
information in the data that usually cannot be completely captured and modelled
through the extrapolation of the original time series. The theta lines can be regarded as
new time series and are extrapolated separately with an appropriate forecasting method.
Once the extrapolation of each theta line has been completed, recomposition takes place
through a combination scheme to calculate the point forecasts of the original time series.
Combining has long been considered as a useful practice in the forecasting literature (for
example: Makridakis & Winkler, 1983; Clemen, 1989; Petropoulos et al., 2014) and, so,
its application in the Theta method is expected to result in more accurate and robust
forecasts.
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The Theta method is quite versatile in terms of choosing the number of theta lines,
theta coefficients, extrapolation methods and combining these to obtain robust forecasts.
However, A&N proposed a simplified version of using only two theta lines with prefixed
θ coefficients extrapolated by a linear regression (LR) model on time for theta line with
θ1 = 0 and simple exponential smoothing (SES) for the theta line with θ2 = 2. The
final forecasts are produced by combining the forecasts of the two theta lines with equal
weights. In the M3-Competion, this simplified version of the Theta method was applied
only to the monthly time series (Nikolopoulos et al., 2011).

The performance of the Theta method has been confirmed by other empirical studies
(for example: Nikolopoulos et al., 2012; Petropoulos & Nikolopoulos, 2013). Moreover,
Hyndman & Billah (2003), hereafter H&B, showed that the simple exponential smoothing
with a drift model (SES-d) is a statistical model for the simplified version of the Theta
Method. More recently, Thomakos & Nikolopoulos (2014) provided additional theoretical
insights, while Thomakos & Nikolopoulos (2015) derive new theoretical formulations for
the application of the method on multivariate time series, and investigate the conditions
for which the bivariate Theta method is expected to forecast better than the univariate
one. Despite these advances, we believe that the Theta method deserves more attention
from the forecasting community, given its simplicity and superior forecasting performance.

One key aspect of the Theta method is that, by definition, this method is dynamic.
One can choose different theta lines and combine the produced forecasts with equal
or unequal weights. However, A&N limit this important property by fixing the theta
coefficients to have predefined values. Thus, the Theta method, as implemented in the
M3-Competition, is limited in the sense that it focuses only on specific information of
the data. On the contrary, if the selection of the appropriate theta lines had been carried
out through optimisation, the method could focus on the information that is actually
important.

The contribution of this work is threefold. First, we extend the A&N method by
optimally selecting the theta line that best describes the short-term movements of the
series, maintaining the long-term component. The combination of the forecasts derived
from the two theta lines is performed using appropriate weights, which ensures the
recomposition of the original time series. Second, we provide theoretical and practical
links of the newly proposed model with the original Theta method and the SES-d model.
Third, we, also, do a further extension of the model that allows the regression line (the
long term component) to be revised at every time period. An empirical evaluation,
using the M3-Competition database is undertaken in order to gain insights into the
performance of the proposed models. The results reveal improvements in the forecasting
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accuracy when using the model with both extensions. This model outperforms several
benchmarks as well as the A&N simplified version of the Theta method. Fourth, we very
closely reproduce the results for the Theta method, as applied to the monthly data in
the M3-Competition.

The paper is organised as follows. Section 3.2 reviews the original Theta method of
A&N and its relationship with SES-d model. Section 3.3 presents different models for
Optimising the Theta method. Section 3.4 presents the forecasting performance of the
proposed models, compared to a list of widely used benchmarks. The evaluation includes
more than 3,000 time series. Section 3.5 presents our final comments and directions for
future research.

3.2 Theta method and SES-d

3.2.1 The original Theta method

Originally A&N proposed the theta line as the solution of the equation

∇2Zt(θ) = θ ∇2Yt, t = 3, . . . , n, (3.1)

where Y1, . . . , Yn is the original time series (non-seasonal or deseasonalised) and ∇ is the
difference operator (i.e., ∇Xt = Xt−Xt−1). The initial values of Z1 and Z2 are obtained
by minimizing ∑n

t=1[Yt − Zt(θ)]2. However an analytical solution to compute the Z(θ)
was obtained by H&B, which is given by

Zt(θ) = θYt + (1− θ)(An +Bnt), t = 1, . . . , n, (3.2)

where An and Bn are the minimum square coefficients of a simple linear regression over
Y1, . . . , Yn against 1,...,n which are given by

An = 1
n

n∑
t=1

Yt −
n+ 1

2 Bn; Bn = 6
n2 − 1

(
2
n

n∑
t=1

t Yt −
1 + n

n

n∑
t=1

Yt

)
. (3.3)

From this point of view, the theta lines can be interpreted as a function of the linear
regression model applied directly to the data. However, note that An and Bn are just
functions of original data and not parameters of the Theta method.

Finally, the forecasts produced by the Theta method for h steps ahead of n is an
ad-hoc combination (50%-50%) of the extrapolations of Z(0) and Z(2) by the linear
regression model and simple exponential smoothing model respectively. We will refer to
the above set up as the Standard Theta method (STheta).
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The steps to build the STheta method of A&N are as follows:

1. Deseasonalisation: The time series is tested for statistically significant seasonal
behaviour. A time series is seasonal if

|rm| > q1−a/2

√
1 + 2∑m−1

i=1 r2
i

n
,

where rk denotes the lag k autocorrelation function, m is the number of the periods
within a seasonal cycle (for example, 12 for monthly data), n is the sample size,
q is the quantile function of the standard normal distribution and (1 − a)% is
the confidence level. A&N opted for a 90% confidence level. If the time series
is identified as seasonal, then it is deseasonalised via the classical decomposition
method, assuming a multiplicative relationship of the seasonal component.1

2. Decomposition: The seasonally adjusted time series is decomposed into two theta
lines, the linear regression line Z(0) and the theta line Z(2).

3. Extrapolation: Z(0) is extrapolated as a normal linear regression line, while Z(2)
is extrapolated using SES.

4. Combination: The final forecast is the combination of the forecasts of the two theta
lines using equal weights.

5. Reseasonalisation: If the series was identified as seasonal in step 1, then the final
forecasts are multiplied with the respective seasonal indices.

This approach, based on two theta lines with ad-hoc values for the θ coefficients and
equal weight for the recomposition of the final forecasts, resulted in the best performance
for the largest up-to-date forecasting competition, the M3-Competition (Makridakis &
Hibon, 2000).

3.2.2 SES with drift

Hyndman & Billah (2003) demonstrated that there is a relationship between the
STheta method and the Simple Exponential Smoothing with drift model (SES-d) given
by

Yt = `∗∗t−1 + b+ εt, (3.4)

`∗∗t = `∗∗t−1 + b+ αεt, (3.5)
1 Arguably, this seasonality test does not work well in the cases that a series has one or multiple unit

roots where the rate of decay in the autocorrelation function is slow.
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for t = 1, . . . , n, where {εt} is white noise and (α, b, `∗∗0 ) are the smoothing, growth
(drift) and initial level parameters respectively.

For a non-seasonal time series the forecasts produced by STheta and SES-d coincide
if

b = 0.5Bn and `∗∗0 = (`∗0 +An)/2 (3.6)

where `∗0 is the initial level parameter of SES model applied on Z(2). The second equation
in (3.6) is more general than in the H&B derivation, since they used a simple initialisation
for the SES model, i.e., `∗0 = Z1(2) = 2Y1 −An −Bn (or equivalently `∗∗1 = Y1).

To deal with seasonal time series the same prior seasonal test, prior seasonal adjustment
and posterior reseasonalisation steps of STheta can be considered.

3.2.3 Other generalisations of Theta method

Very few generalisations of the univariate STheta have been proposed in the literature.
For example, Nikolopoulos & Assimakopoulos (2005) and Petropoulos & Nikolopoulos
(2013) argue for the use of more theta lines, θ ∈ {−1, 0, 1, 2, 3}, as to extract even
more information from the data. Empirical evidences suggest that the consideration of
more/different theta lines can result in improvements compared to the original Theta
method. However, a formal procedure on selecting appropriate theta lines is yet to be
proposed.

Moreover, Constantinidou et al. (2012) and Petropoulos & Nikolopoulos (2013)
suggested the use of unequal weights in the recomposition procedure of the final forecasts.
This is an intuitively appealing approach, as asymmetric weights, which are directly
linked with the forecast horizon, are likely to offer a better approximation of the short
and long-term components. However, by definition the decomposition of the original
series in Zt(0) and Zt(2) suggests the use of equal weights, if the aim is to reconstruct
the original signal:

0.5Zt(0) + 0.5Zt(2) = 0.5(An +Bnt) + 0.5[2Yt − (An +Bnt)]

= Yt.

In other words, the use of weights that are derived directly from the decomposition
procedure (the corresponding θ coefficients) may provide a more valid model.
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3.3 Models for Optimising the Theta Method

Assume that the time series Y1, . . . , Yn is either non-seasonal or has been seasonally
adjusted through the multiplicative classical decomposition approach. Let Xt be the
linear combination of two theta lines,

Xt = ωZt(θ1) + (1− ω)Zt(θ2) (3.7)

where ω ∈ [0, 1] is the weight parameter. Assuming that θ1 < 1 and θ2 ≥ 1, the weight ω
can be derived as,

ω := ω(θ1, θ2) = θ2 − 1
θ2 − θ1

(3.8)

From (3.7) and (3.8) it is straightforward to see that Xt = Yt, t = 1, . . . , n, i.e., the
weights are properly calculated in such way that (3.7) reproduces the original series. In
Theorem 1 of Appendix 1, we prove that the solution is unique and that the error of
not choosing the optimal weights (ω and 1− ω) is proportional to the error of a linear
regression model. As a consequence, the STheta method is simply given by setting
θ1 = 0 and θ2 = 2, while from equation (3.8) we get ω = 0.5. Therefore, equations (3.7)
and (3.8) allow us to construct a generalisation of the Theta model that maintains the
re-composition propriety of the original time series for any theta lines Zt(θ1) and Zt(θ2).

In order to maintain the modelling of the long-term component and retain a fair
comparison with the STheta method, in this work we fix θ1 = 0 and focus on the
optimisation of the short-term component, θ2 = θ with θ ≥ 1. Thus θ is the only
parameter so far to be estimated. The theta decomposition is now given by

Yt =
(

1− 1
θ

)
(An +Bnt) + 1

θ
Zt(θ), t = 1, . . . , n.

The h-step-ahead forecasts calculated at origin n are given by

Ŷn+h|n =
(

1− 1
θ

)
[An +Bn(n+ h)] + 1

θ
Z̃n+1|n(θ), (3.9)

where Z̃n+1|n(θ) = α
∑n−1
i=0 (1− α)iZn−i(θ) + (1− α)n`∗0 is the extrapolation of Zt(θ) by

SES model with `∗0 ∈ R as initial level parameter and α ∈ (0, 1) as smoothing parameter.
Note for θ = 2 the equation (3.9) correspond to Step 4 of STheta algorithm. After some
algebra we can write

Z̃n+1|n(θ) = θ `n + (1− θ)
{
An [1− (1− α)n] +Bn

[
n+

(
1− 1

α

)
[1− (1− α)n]

]}
(3.10)

where `t = αYt + (1− α)`t−1 for t = 1, . . . , n and `0 = `∗0/θ.
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In the light of equations (3.9) and (3.10), we suggest four stochastic approaches.
These approaches differ due to the parameter θ, which may be fixed at 2 or optimized,
and the coefficients An and Bn, which can be either fixed or dynamic functions. To
formulate the state space models, it is helpful to adopt µt as the one-step-ahead forecast
at origin t− 1 and εt as the respective additive error, i.e., εt = Yt − µt where µt = Ŷt|t−1.
We assume {εt} to be a Gaussian white noise process with mean 0 and variance σ2.

3.3.1 Optimised Theta Model and Standard Theta Model

Let An and Bn be fixed coefficients for all t = 1, . . . , n. So the equations (3.9) and
(3.10) configure the state space model given by

Yt = µt + εt, (3.11)

µt = `t−1 +
(

1− 1
θ

){
(1− α)t−1An +

[
1− (1− α)t

α

]
Bn

}
, (3.12)

`t = αYt + (1− α)`t−1, (3.13)

with parameters `0 ∈ R, α ∈ (0, 1) and θ ∈ [1,∞). The parameter θ is to be estimated
along with α and `0. We call this the Optimised Theta Model (OTM).

The forecast h-steps-ahead at origin n are given by

Ŷn+h|n = E[Yn+h|Y1, . . . , Yn]

= `n +
(

1− 1
θ

){
(1− α)nAn +

[
(h− 1) + 1− (1− α)n+1

α

]
Bn

}
,

which is equivalent to equation (3.9). The conditional variance V ar[Yn+h|Y1, . . . , Yn] =
[1 + (h− 1)α2]σ2 can be easily computed from the state space model. So the (1− a)%
prediction interval for Yn+h is given by

Ŷn+h|n ± q1−a/2

√
[1 + (h− 1)α2]σ2.

For θ = 2, OTM reproduces the forecasts of the STheta method; hereafter we will
refer to this particular case as the Standard Theta Model (STM). In Theorem 2 of
Appendix 1, we show that OTM is mathematically equivalent to the SES-d model. As
a corollary of Theorem 2, STM is mathematically equivalent to SES-d with b = 1

2Bn.
Therefore, for θ = 2, the corollary also re-confirms the H&B result on the relationship
between STheta and the SES-d model.
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3.3.2 Dynamic Optimised Theta Model and Dynamic Standard Theta Model

So far we have set An and Bn as fixed coefficients for all t. We will now consider
these coefficients as dynamic functions, i.e., for updating the state t to t+ 1 we will only
consider the prior information Y1, . . . , Yt when computing At and Bt. Hence, we replace
An and Bn in equation (3.9) and (3.10) by At and Bt. Then, after replacing the new
(3.10) in the new (3.9) and rewriting the result at time t with h = 1, we have

Ŷt+1|t = `t +
(

1− 1
θ

){
(1− α)tAt +

[
1− (1− α)t+1

α

]
Bt

}
. (3.14)

Then assuming additive one-step-ahead errors and rewriting the equations (3.3) and
(3.14) we obtain

Yt = µt + εt (3.15)

µt = `t−1 +
(

1− 1
θ

)[
(1− α)t−1At−1 +

(
1− (1− α)t

α

)
Bt−1

]
(3.16)

`t = αYt + (1− α)`t−1 (3.17)

At = Ȳt −
t+ 1

2 Bt (3.18)

Bt = 1
t+ 1

[
(t− 2)Bt−1 + 6

t
(Yt − Ȳt−1)

]
(3.19)

Ȳt = 1
t
[(t− 1)Ȳt−1 + Yt] (3.20)

for t = 1, . . . , n. Equations (5.1) to (5.1) configure a state space model with parameters
`0 ∈ R, α ∈ (0, 1) and θ ∈ [1,∞). The initialisation of the states is performed assuming
A0 = B0 = B1 = Ȳ0 = 0. From here on we will refer to this model as the Dynamic
Optimised Theta Model (DOTM).

An important property of the DOTM is that when θ = 1, which implies that Zt(1) = Yt,
the forecasting vector given by equation (3.9) will be equal to Ŷt+h|t = Z̃t+h|t(1). So,
when θ = 1 the DOTM falls to the SES method. When θ > 1, then DOTM, as SES-d,
acts as a extension of SES, by adding a long-term component. Also, for θ = 2 we have a
stochastic approach of STheta, hereafter called Dynamic Standard Theta Model (DSTM).

The out-of-sample one-step-ahead forecasts produced by DOTM at origin n are given
by

Ŷn+1|n = E[Yn+1|Y1, . . . , Yn]

= `n +
(

1− 1
θ

){
(1− α)nAn +

[
1− (1− α)n+1

α

]
Bn

}
; (3.21)
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for a horizon h ≥ 2 the forecasts Ŷn+2|n,. . . , Ŷn+h|n are computed recursively through the
equations (5.1) to (3.21) by replacing the non-observed values Yn+1,. . . ,Yn+h−1 by their
expected values Ŷn+1|n, . . . , Ŷn+h−1|n. The conditional variance V ar[Yn+h|Y1, . . . , Yn] is
hard to be analytically written. However the variance and the prediction intervals for
Yn+h can be estimated using the bootstrapping technique, where a (usually large sized)
sample of possible values of Yn+h is simulated out of the estimated model.

Note that, in contrast to STheta, STM and OTM, the forecasts produced by DSTM
and DOTM are not necessary linear. This is also a fundamental difference between
DSTM/DOTM and SES-d. While in the SES-d the long-term trend (b) is constant, this
is not the case for DSTM/DOTM, neither for the in-sample fit nor the out-of-sample
predictions.

3.3.3 Parameter estimation

The estimation of the parameters is achieved by minimising the sum of squared errors
(SSE),

( ̂̀0, α̂, θ̂) = arg min
`0,α,θ

n∑
t=1

ε2
t = arg min

`0,α,θ

n∑
t=1

(Yt − µt)2.

Of course, the SSE does not necessarily need to start at t = 1. We suggest to start at
t = 3 for DSTM/DOTM, since At and Bt are linear regression coefficients and need at
least two points to be well defined.

The SSE estimator is equivalent to maximum likelihood estimator. This result follows
from the supposition of Gaussian distributed errors, since after replacing σ2 by its
estimator σ̂2 = SSE/n the log-likelihood is given by

l(`0, α, θ) = −n2 log σ̂2 − n

2 (1 + log 2π).

In this section we proposed the STM, OTM, DSTM, and DOTM, four very simple
and easy to implement models. The latter three models expand the robust Theta method
of A&N, and all four build on the state space approach (Hyndman et al., 2002b). These
models use just two theta lines, while OTM and DOTM optimize the amplification of
the local curvature. The forecasts derived from these theta lines are optimally combined
as to retain the re-composition of the original signal. In the next section we will evaluate
the performance of the proposed models on the M3-Competition data set.
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3.4 Empirical evaluation

3.4.1 Design

In order to gain insights into the performance of the proposed models, STM, OTM,
DSTM and DOTM, we present their accuracy compared to each other and to the STHETA
and SES-d approaches. A full list of the methods and models considered is presented
in Table 8, along with the starting values for optimising the various parameters. Note
that in order to mimic what might be used in practice, the starting values are based
on the model being used and do not mathematically correspond for the mathematically
equivalent models/method.

We consider two variants of the SES-d model. The first considers a fixed value for b
(equal to Bn/2). Assuming perfect optimisers, we should expect this version to produce
the same forecasts as STheta and STM. The second version optimises the value of b
and is mathematically equivalent to OTM. Perfect optimisers should, also, produce the
same forecasts for these two models, that is, such choices as the starting values for the
parameters should not matter. However, we know that even for the same model different
starting values may affect the optimal value of a parameter. The parameter estimation is
based on minimising the sum of squared errors (SSE), using the Nelder-Mead algorithm
as implemented in the optim() function of the R statistical software.

Table 8 – The different Theta methods and models considered in the empirical evaluation.

Method/Model Section/Equations Starting values for parameter opt.
STheta 3.2.1 `∗

0 = A10, α = 0.5
SES-d (b = Bn/2) 3.2.2, (3.4)-(3.5) where b = Bn/2 `∗∗

0 = A10, α = 0.5
SES-d (b optimised) 3.2.2, (3.4)-(3.5) `∗∗

0 = A10, α = 0.5, b = B10
STM 3.3.1, (5.1)-(5.1) where θ = 2 `0 = y1/2, α = 0.5
OTM 3.3.1, (5.1)-(5.1) `0 = y1/2, α = 0.5, θ = 2
DSTM 3.3.2, (5.1)-(5.1) where θ = 2 `0 = y1/2, α = 0.5
DOTM 3.3.2, (5.1)-(5.1) `0 = y1/2, α = 0.5, θ = 2

Moreover, we consider five benchmarks that have been widely used in the forecasting
literature. A full list and details of the benchmark methods considered is presented in
Table 19. Amongst them, automatic algorithms implemented in the forecast package by
Hyndman & Khandakar (2008) are included.

The various Theta methods and models listed in Table 8 are applied on the seasonally
adjusted data with the final forecasts being reseasonalised, following the procedure
described in section 3.2 (steps 1 and 5). The five benchmark methods (Naive, SES,
Damped, ETS and ARIMA) are applied on both the original data and on the seasonally
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Table 9 – The benchmark methods used in the current study.

Method Reference Description
Naive ARIMA(0,1,0)
SES Brown (1956) ETS(A,N,N)
Damped Gardner & McKenzie (1985) ETS(A,Ad,N)
ETS Hyndman & Khandakar (2008) ETS automatic algorithm based on AICc
ARIMA Hyndman & Khandakar (2008) Automatic ARIMA based on AICc

adjusted data, where the same deseasonalisation/reseasonalisation procedure has been
followed. In all cases, the seasonally adjusted data and the seasonal indices to be used
for the reseasonalisation are calculated by considering only the in-sample data points
(training set) and setting the confidence level at 90%. Adjusting the data for seasonality
prior to forecasting has also been the practice in other forecasting studies, such as the
M3-Competition (Makridakis & Hibon, 2000). However, to the best of our knowledge a
higher confidence level (95%) has been used for identifying series as seasonal.

The evaluation is performed considering real data coming from the M3-Competition
(Makridakis & Hibon, 2000), completed with 3,003 time series of multiple frequencies.
Table 18 presents the distribution of the series across the different frequencies. The
forecast horizon used in this study matched that of the original M3-Competition. The
empirical evaluation was implemented using the open-source statistical software provided
by R Core Team (2015) (version 3.2.1) and the packages forecast 6.1 and Mcomp 0.10-34.
The computer used for this task was equipped with a processor Intel i5-4200U, 8GB of
RAM which was operating on Windows 10.

Table 10 – M3-Competition dataset.

Frequency Forecasting Horizon (h) Number of time series
Yearly 6 645

Quarterly 8 756
Monthly 18 1,428
Other 8 174
Total 3,003

To measure the out-of-sample performance of the different methods we used two
widely used metrics of accuracy, the symmetric Mean Absolute Percentage Error (sMAPE)
and the Mean Absolute Scared Error (MASE). In order to make comparisons with the
original results of the M3-Competition, the sMAPE is selected even though it penalizes
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positive forecast errors more heavily than negative ones with the discrepancy increasing
at an increasing rate (see Figure 1 at Goodwin & Lawton (1999)). Large positive errors
are severely penalized by the sMAPE. The sMAPE metric is defined as

sMAPE = 200
h

h∑
i=1

|Yn+i − Ŷn+i|n|
|Yn+i|+ |Ŷn+i|n|

.

The MASE metric, proposed by Hyndman & Koehler (2006), is the mean of the
absolute errors divided by the mean of the absolute of the first seasonal difference in the
time series, i.e.,

MASE = n−m
h

∑h
i=1 |Yn+i − Ŷn+i|n|∑n
t=m+1 |Yt − Yt−m|

,

where m is the number of periods in a year (1 for yearly, 4 for quarterly, 12 for monthly
and 1 for other data).

3.4.2 Results

The results regarding the forecasting performance of the various methods are presented
in Table 11. The best result in each frequency (column) is marked in bold. We highlight
with gray shading the results for the four models proposed in this study.

Focusing on the non-shaded panels, the STheta method was, as expected, the method
with the best performance across all benchmarks, according to the sMAPE measure.
Any numerical differences with the published results in the M3-Competition (Makridakis
& Hibon, 2000) are attributed to the use of different pre-fixed theta coefficients and
extrapolation methods for each frequency of the data (see Nikolopoulos et al. (2011) for
more details). The small differences in the monthly data are the result of the use of
different software and estimation procedures for the smoothing parameters and the initial
level when extrapolating the Z(2).

This is a close reproduction of the Theta method as it was applied on the monthly
data in the M3-Competition. The sMAPE of STheta for the monthly time series in this
study is 13.83% versus the published 13.85% in Makridakis & Hibon (2000). Moreover,
by rounding the critical value of t-statistic for identifying a series as seasonal at two
decimal points (1.64) we managed to obtain the exact same populations of seasonal
quarterly and monthly series (555 and 780 respectively) as reported in (Nikolopoulos &
Assimakopoulos, 2005). So, this paper also contributes in the replicability/reproducibility
agenda (Boylan et al., 2015).

This is also the first study to demonstrate the practical equivalence of STheta method
with SES-d model, when the value of b is fixed to Bn/2. The very minor numerical
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Table 11 – Empirical results for all methods using the sMAPE and the MASE.

sMAPE metric (%)
Data Methods Yearly Quarterly Monthly Other All Time (min)

Original
data

Naive 17.88 11.32 18.18 6.30 16.58 0.31
SES 17.78 10.83 16.14 6.30 15.07 0.22
Damped 17.07 10.96 16.25 4.30 15.02 1.05
ETS 16.89 9.69 14.07 4.34 13.28 38.36
ARIMA 17.62 9.99 15.30 4.54 14.27 23.48

Seasonally
adjusted
data

Naive 17.88 10.02 16.76 6.30 15.38 0.62
SES 17.78 9.77 14.17 6.30 13.53 0.55
Damped 17.07 9.79 13.96 4.30 13.24 1.52
ETS 16.89 9.80 14.04 4.34 13.28 32.87
ARIMA 17.62 9.74 15.68 4.54 14.49 21.40
STheta 16.74 9.23 13.83 4.93 13.05 7.37
SES-d(b = Bn/2) 16.72 9.23 13.87 4.93 13.08 10.15
SES-d(b opt.) 17.19 9.40 15.06 5.00 13.98 12.60
STM 16.73 9.24 13.85 4.93 13.06 8.34
OTM 16.60 9.14 14.11 4.85 13.21 10.05
DSTM 16.69 9.24 13.82 4.92 13.04 10.86
DOTM 15.94 9.28 13.74 4.58 12.90 13.59

MASE metric
Data Methods Yearly Quarterly Monthly Other All Time (min)

Original
data

Naive 3.17 1.46 1.17 3.09 1.50 0.31
SES 3.17 1.41 1.09 3.10 1.43 0.22
Damped 2.92 1.37 1.10 1.81 1.36 1.05
ETS 2.83 1.18 0.86 1.79 1.15 38.36
ARIMA 2.99 1.17 0.88 1.87 1.19 23.48

Seasonally
adjusted
data

Naive 3.17 1.25 1.04 3.09 1.37 0.62
SES 3.17 1.24 0.93 3.10 1.29 0.55
Damped 2.92 1.17 0.88 1.81 1.17 1.52
ETS 2.83 1.18 0.87 1.79 1.16 32.87
ARIMA 2.99 1.15 0.89 1.87 1.19 21.40
STheta 2.77 1.12 0.86 2.28 1.16 7.37
SES-d(b = Bn/2) 2.77 1.12 0.86 2.27 1.16 10.15
SES-d(b opt.) 2.69 1.11 0.86 2.07 1.14 12.60
STM 2.77 1.12 0.86 2.27 1.16 8.34
OTM 2.71 1.10 0.86 2.23 1.14 10.05
DSTM 2.76 1.12 0.86 2.27 1.16 10.86
DOTM 2.59 1.12 0.85 1.94 1.12 13.59



Preprint submitted to International Journal of Forecasting 31

differences are attributed to the non-perfect optimisers resulting in the selection of
different optimal values for the initial level, `∗ and `∗∗, and the smoothing parameter, α.

Focusing on the sMAPE measure for the benchmark methods (non-shaded panel),
the superior performance of the STheta method and SES-d (b = Bn/2) model is followed
by that of Damped (on the seasonally adjusted data) and ETS. Examining the results
across the various frequencies, STheta and SES-d (b = Bn/2) perform especially well for
monthly and yearly data, while under-performing compared to Damped and ETS for the
other data.

Considering the MASE metric, STheta and SES-d (b = Bn/2) perform once again
very similarly. However, the best performer across the benchmark methods (non-shaded
panel) is the SES-d (b optimised) model, which performed rather poorly according to the
sMAPE. This discrepancy between the two measures is the result of the properties of the
sMAPE and the heavy penalty it gives to large positive errors. To demonstrate this, we
also report in the Appendix 2 the median value of the symmetric Absolute Percentage
Errors (sMdAPE) across horizons and time series. We observe that, apart from SES-d (b
optimised), the relative ranking of other methods is also improved (namely ETS, ARIMA
and Damped applied on the seasonally adjusted data). So, we conclude that the results
reported by the sMAPE are heavily influenced by the presence of positive symmetric
percentage errors that are outliers.

The STM generates, as expected, equivalent results to the STheta method and the
SES-d (b = Bn/2) model. Similarly, the performance of OTM is similar to that of SES-d
(b optimised) for the MASE metric apart from the other data. At the same time, the
OTM is less susceptible than SES-d (b optimized) to resulting in outlying positive errors,
thus better performing according to the sMAPE measure. This is apparent from the
median and the trimmed values (at 10% level each end) of sMAPE reported in Appendix
2 and table 12 respectively.

There is a number of reasons for the divergent results between OTM and SES-d (b
optimised). First, the parameter space of b in SES-d does not exactly correspond to the
θ parameter space in OTM. Second, the starting values in the optimiser (See Table 8)
are natural ones for each model and do not correspond mathematically (See Proposition
1 in Appendix 1). These different starting values will contribute to the differences in the
comparison metrics that are caused by suboptimal solutions and also to the differences
in computational times (See Table 4). Third, the same increments for the parameters in
the optimiser do not correspond mathematically in the two models.

Focusing on the two dynamic models (DSTM and DOTM), the DOTM produces the
most accurate forecasts, clearly outperforming all other methods and models in this study.
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Table 12 – Empirical results for SES-d (b optimised) and OTM for the trimmed sMAPE.

Methods Yearly Quarterly Monthly Other
SES-d (b optimised) 13.62 7.04 11.79 3.30
OTM 13.53 6.83 11.56 3.43

This is true for all three errors measures considered (sMAPE, sMdAPE and MASE).
The DOTM significantly outperforms all other Theta variants for the yearly and other
frequencies. This is a very interesting result, as the series classified as other was the single
data category where STheta was not performing as well compared to other benchmarks,
such as the ETS. The only data frequency that the DOTM does not improve on STheta
is the quarterly time series. However, the performances of the two are very similar.

We also considered the Multiple Comparisons with the Best test (MCB) for all
frequencies in order to statistically compare DSTM, OTM and DOTM with STheta and
SES-d (b optimised). In this test a rank interval is constructed for each method (see
Koning et al. (2005) for more details) using the the Mean Absolute Error (which will
give equivalent ranks with the MASE). When the rank intervals considering pairs of
methods do not overlap, the null hypothesis of the same performance is rejected in favour
to the alternative hypothesis of significantly different performance. The average ranks
and the rank intervals of each method are presented in Figure 6, which also presents a
comparison of the average rank for each method with the best average rank, adopting a
significance level of 10%.

In line with our insights when examining the summarised results of sMAPE and
MASE measures, the DOTM provides the best performance compared to the other four
approached, being ranked significantly higher. The models SES-d (b optimised) and
OTM are slightly better (not significantly different) than STheta and DSTM.

3.4.3 Discussion

Previous studies showed that the Theta method is particularly efficient in trended
data (Thomakos & Nikolopoulos, 2014). In order to obtain a better understanding of
where the improvements derive, we split the data into non-trended and trended series.
Subsequently, we calculate the percentage decrease in the value of the MASE when
comparing DSTM and DOTM for each type of data. The categorisation of a series as
trended or not is directly based on the model form chosen by the ETS algorithm applied
on the original data. Table 13 presents the percentage drops in the value of MASE
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Figure 3 – MCB intervals for selected forecasting methods.

(increase in accuracy) of DOTM over DSTM. We observe that performance improvements
are mainly driven from the trended series. In such cases, DOTM outperforms DSTM by
10.21% and 19.85% for yearly and other data respectively. Also, improvements larger
than the average are recorded for the monthly and quarterly trended series. Similar
insights were gained when contrasting the performance of the two methods using the
sMAPE measure.

Table 13 – Percentage improvements for DOTM over DSTM in terms of MASE (numbers
in brackets refer to sample sizes).

Frequency All (n) Trended (n) Non-trended (n)
Yearly 6.42% (645) 10.21% (380) -0.64% (265)

Quarterly 0.22% (756) 1.83% (442) -1.81% (314)
Monthly 1.38% (1,428) 3.63% (698) -0.77% (730)
Other 14.44% (174) 19.85% (113) 3.58% (61)

However, the question that remains is: why the DOTM perform better compared to
the DSTM? The optimisation of the θ value for the second theta line is directly linked
with the amplification of the local curvatures of the series A&N. The quite arbitrary
selection of θ = 2 suggests that the long-term deterministic trend is equally important
with the short-term behaviour of the series, which might not be the case for all time series.
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So, DOTM optimally selects the degree of amplification of the short-term behaviour of
the series. An analysis of the optimally selected θ values shows that when θ ≤ 2 (58%
of the series) the average performance improvement is 0.12% (percentage difference of
DOTM and DSTM performance in terms of MASE). However, the improvement increases
to 8.09% and 10.04% for the series where θ > 2 (42%) and θ > 3 (31%) respectively.
Similar insights are obtained for the sMAPE metric. So, we observe that DOTM works
particularly well when there is a need to consider higher theta values that effectively
capture and model the short-term behaviour of the series.

Of course, one could argue that the OTM also considers optimal values of the
θ parameter. However, OTM falls short compared to the DOTM with regards to the
stochasticity aspect of the linear regression part of the model and its effect to the selection
of an optimal θ value. To test this, we calculate the absolute percentage differences of the
optimal θ values for OTM and DOTM and divide the series into two equally sized groups
corresponding to small and large differences. The performance improvement of DOTM
over OTM, as measured via the MASE, increases from 0.87% for small to 4.16% for large
differences in the optimised θ values. As a result, the dynamic updating of At and Bt has
a positive impact to the optimisation of θ values, especially when a significantly different
value is selected.

In terms of the computational times achieved, DOTM and DSTM are, as expected,
more computational intensive than the original Theta model. Arguably, the ×1.5
additional computational cost of DSTM over STheta does not qualify for the marginal
gains in forecasting performance. However, the robust performance of DOTM clearly pays
off. In any case, the calculation times of both models are significantly lower to that of the
two automatic model selection algorithms (ets() and auto.arima()) implemented
in the forecast package (Hyndman & Khandakar, 2008).

3.5 Concluding remarks

In this paper we proposed a generalisation of the Theta method, namely Dynamic
Optimised Theta model. The DOTM optimally selects the theta line to be used for the
extrapolation of the short-term component of the series. It, also, revises the At and Bt
in the long-term component at every time period t. Additionally, the proposed model
is provided under a state space approach, which allows the use of already consolidated
statistical tools for parameter estimation. The new proposed model was contrasted both
theoretically and empirically with the original Theta method and other variants such as
the SES-d model.
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In terms of empirical forecasting performance, DOTM demonstrated improvements
over the Theta method in all frequencies and for all error measures considered. At the
same time, DOTM was the top performing extrapolation approach across all benchmarks.
Moreover, DOTM produced the best average ranking, which is statistically different to
that of the original Theta method. Apart from the very promising empirical results
for the DOTM, this study replicates the Theta method for monthly time series in the
M3-Competition. Moreover, we proved the mathematical equivalence of special cases of
the DOTM and compared their empirical forecasts to examine how much the optimizer
might affect the forecasts.

We believe that this study has significant managerial implications. We show that
the new optimised version of the Theta method improves the forecasting performance
of the original approach. Keeping in mind that the original Theta model was already
a very good and robust estimator for fast-moving demand time series, the new DOTM
achieves even higher levels of forecasting accuracy, which can be directly translated into
profits. So, the DOTM is able to provide better statistical estimates, which can then be
combined with judgmental overrides (Franses & Legerstee, 2011) to produce the final
(operational) forecasts.

DOTM could be further extended by considering the appropriate selection of extrap-
olation methods for the theta lines, rather than considering pre-fixed estimators, such as
linear regression line for Z(0) and SES for Z(θ). Another path for future research should
include the application of the proposed DOTM on a data set dominated by stationary
data (Thomakos & Nikolopoulos, 2014). Additionally, the current seasonality test should
be revisited as to be able to distinguish between additive and multiplicative seasonality
and to work well in the cases that the series has one or multiple unit roots. Another
interesting study would have a goal of understanding the differences between DOTM and
the state space model for exponential smoothing with stochastic trend (ETS(A,A,N)).
Since DOTM outperforms the damped trend model ETS(A,Ad,N), it would be expected
to outperform the ETS(A,A,N) model. Discovering the reasons could be enlightening.

Appendix 1

Theorem 1. Let θ1 < 1 and θ2 ≥ 1. We will prove that

(a) the linear system given by Xt = Yt for all t = 1, . . . , n, where Xt is given by the
equation (3.7), has the single solution

ω = (θ2 − 1)/(θ2 − θ1);
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(b) the error of choosing a non-optimal weight ωδ = ω + δ is proportional to the error
for a simple linear regression model.

Proof (a) First, note that equation (3.2) can be rewritten as

Zt(θ) = θ(Yt −An −Bnt) +An +Bnt.

So the linear system given by

Xt = Yt, for all t ∈ {1, . . . , n}

implies

0 = Xt − Yt
= ω[θ1(Yt −An −Bnt) +An +Bnt] + (1− ω)[θ2(Yt −An −Bnt) +An +Bnt] − Yt

= ωθ1(Yt −An −Bnt) + (1− ω)θ2(Yt −An −Bnt) − (Yt −An −Bnt)

= [ωθ1 + (1− ω)θ2 − 1] (Yt −An −Bnt), for all t ∈ {1, . . . , n}.

Note that, Yt −An −Bnt is the residual of the linear regression model and cannot
be zero for all t ∈ {1, . . . , n}. Hence, the upper equations are true if, and only if,
ωθ1 + (1 − ω)θ2 − 1 = 0, which implies in ω = (θ2 − 1)/(θ2 − θ1), as we want to
show.

�

Proof (b) The combination of theta lines associated with the weights (ωδ, 1 − ωδ) is
given by Xt(ωδ) = ωδZt(θ1)+(1−ωδ)Zt(θ2). Note that, using (a) we have Xt(ω0) =
Xt(ω) = Yt for all t = 1, . . . , n.

Let εt(δ) = Yt−Xt(ωδ) be the associated error of choosing ωδ rather than ω0. Then

εt(δ) = Yt −Xt(ωδ)

= Yt − (ω + δ)Zt(θ1)− (1− ω − δ)Zt(θ2)

= Yt −Xt(ω) + δ [Zt(θ2)− Zt(θ1)]

= δ(θ2 − θ1)et,

where et = Yt − (An +Bn t) is the residual of the linear regression at time t.

�



Preprint submitted to International Journal of Forecasting 37

Theorem 2. The SES-d(`∗∗0 , α, b) model, where `∗∗0 ∈ R, α ∈ (0, 1) and b ∈ R, is
equivalent to OTM(`0, α, θ), where `0 ∈ R and θ ≥ 1, if

`∗∗0 = `0 +
(

1− 1
θ

)
An and b =

(
1− 1

θ

)
Bn.

Proof Let Jt−1 =
(
1− 1

θ

){
(1− α)t−1An +

[
1−(1−α)t

α

]
Bn
}
. The OTM can be rewriten

as

Yt = `t−1 + Jt−1 + εt

`t = αYt + (1− α)`t−1

Jt = (1− α)Jt−1 +
(

1− 1
θ

)
Bn

where J0 =
(
1− 1

θ

)
(An +Bn). Then just taking `∗∗t = `t + Jt−

(
1− 1

θ

)
Bn we can

rewrite the last equations as

Yt = `∗∗t−1 +
(

1− 1
θ

)
Bn + εt;

`∗∗t = `∗∗t−1 +
(

1− 1
θ

)
Bn + αεt,

which is the SES-d model with `∗∗0 = `0 +
(
1− 1

θ

)
An and b =

(
1− 1

θ

)
Bn, as we

want to show.

�
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Appendix 2

Table 14 – Empirical results for all methods using the sMdAPE.

sMdAPE metric (%)
Data Methods Yearly Quarterly Monthly Other All Time (min)

Original
data

Naive 10.92 5.50 8.84 4.04 8.09 0.31
SES 11.07 5.63 8.28 4.01 7.77 0.22
Damped 9.23 5.27 7.83 1.86 7.10 1.05
ETS 9.21 4.50 6.65 1.91 6.12 38.36
ARIMA 9.59 4.45 6.86 1.92 6.23 23.48

Seasonally
adjusted
data

Naive 10.92 5.01 8.13 4.04 7.48 0.62
SES 11.07 5.13 7.31 4.01 7.04 0.55
Damped 9.23 4.48 6.80 1.86 6.23 1.52
ETS 9.21 4.54 6.67 1.91 6.14 32.87
ARIMA 9.59 4.35 6.94 1.92 6.24 21.40
STheta 9.62 4.41 6.77 2.53 6.30 7.37
SES-d(b = Bn/2) 9.60 4.40 6.81 2.53 6.30 10.15
SES-d(b optimised) 9.39 4.32 6.82 2.14 6.21 12.60
STM 9.60 4.39 6.79 2.53 6.30 8.34
OTM 9.28 4.26 6.78 2.40 6.23 10.05
DSTM 9.63 4.36 6.80 2.55 6.31 10.86
DOTM 8.63 4.45 6.73 2.14 6.11 13.59
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Abstract

Methods to produce forecasting for a large number of time series is a current issue. The
Theta method attracted attention of researchers due its excellent performance in the M3-
Competition, the largest up-to-date competition of time series forecasting. Its standard
version is based in the combination of two lines, called theta lines, however theta methods
with more theta lines was already explored. While the weights for combine three or more
theta lines remains as a open question. In this paper we present sufficient conditions
for combine two or more theta lines. Optimal weights are derived for three or any even
number of theta lines. We also propose an estimation process for the theta parameters.
Empirical investigations through the M3 data set show improvements regarding the
accuracy of the standard Theta method.
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4.1 Introduction

Forecasting time series is a current issue and the literature on this subject has grown
considerably over the last decades. Interested readers can refer to De Gooijer & Hyndman
(2006), which provides a comprehensive review of time series forecasting. In order to
identify the best methodologies to produce forecasting for a large number of series, several
methods and softwares were considered in the so called M3-Competition (Makridakis &
Hibon, 2000), the largest up-to-date competition of time series forecasting, with more
the 3,000 time series to be predicted, and where the Theta method by Assimakopoulos &
Nikolopoulos (2000), hereafter A&N, outperformed all other competitors.

The Theta method is a decomposition approach based on identification of long and
short term behaviour of time series, simplifying the series structure and combining different
models. Decomposition/Combination approaches were also considered by Newbold &
Granger (1974); Bunn (1988); Arinze et al. (1997); Chan et al. (1999); Hyndman et al.
(2011); Martins & Werner (2012); Petropoulos et al. (2014). The construction of the
Theta method is based on the decomposition of the original time series in two other
separated time series, called theta lines. The theta lines maintain the same behavior of
original time series, but it is indexed by a parameter θ, which can control the variability
of the time series. For a fixed parameter θ ≥ 0, the theta line can be computed as

Zt(θ) = θYt + (1− θ)(An +Bnt), t = 1, . . . , n, (4.1)

where An and Bn are the minimum square coefficients of a simple linear regression over
Y1, . . . , Yn against 1, . . . , n, which are given by

An = 1
n

n∑
t=1

Yt −
n+ 1

2 Bn; Bn = 6
n2 − 1

 2
n

n∑
t=1

t Yt −
1 + n

n

n∑
j=1

Yt

 .
The equation (4.1) can be rewritten as Zt(θ) = An +Bnt+ θεt, where εt = Yt−An−Bnt
is the linear regression error. From this point of view, it’s clear that for θ = 1 the theta
line is the original time series, while for other values of θ, it maintains the same behaviour
of the original time series, but with lower variance if 0 ≤ θ < 1 or higher variance if
θ > 1.

For non-seasonal (or deseasonalized) time series, the Theta method uses two theta lines
with fixed parameters θ = 0 and θ = 2. The first theta line, Z(0), is extrapolated by the
simple linear regression and the second theta line is extrapolated by the simple exponential
smoothing methods (SES). Then the final forecasts points is ad-hoc combination (50%-
50%) of extrapolated points coming from both methods. Of course, other configurations
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of parameters, weights and extrapolation can be used. We will refer to the above
configuration as Standard Theta (STheta) method, since it was presented by A&N. For
seasonal time series, the authors used the prior classical multiplicative decomposition in
order to make the time series deseasonalized, where seasonal time series are identified
through a statistical test Z with 90% of significance applied in the m−th autocorrelation
function, where m is the number of the periods within a seasonal cycle (for example, 12
for monthly data). For the test, the variance of m−th autocorrelation is taken as known
and it is given by

V ar(rm) = 1 + 2∑m−1
i=1 r2

i

n
, (4.2)

where rk is k−th autocorrelation function. The equation (4.2) is an approximation
properly discussed in Box et al. (1994). A&N used the seasonal steps just for quarterly
(m=4) and monthly (m=12) time series data.

Fiorucci et al. (2016) demonstrate the use of Zt(0) and Zt(2) suggests equal weights
because of the recomposition of time series, i.e., 0.5Zt(0) + 0.5Zt(2) = Yt. So this ad-hoc
setup ensures that all process is a decomposition approach. They also derived optimal
weights ω1 = (θ2 − 1)/(θ2 − θ1) and ω2 = 1− ω1 for combine any two theta lines Zt(θ1)
and Zt(θ2) with 0 < θ1 < 1 and θ2 ≥ 1 in order maintain the recomposition of the
time series through ω1Zt(θ1) + ω2Zt(θ2) = Yt. This result was used to produce several
stochastic approaches for the theta method with two theta lines.

In this work we expand the classical formulation of Theta method by combining
three and four or any even number of theta lines with any values of theta coefficients.
Optimal weights are analytically derived in order to ensure the recomposition of the
original time series from the combination of the theta lines. Moreover, we propose to use
the fixed origin evaluation for selecting the best values of theta parameters in a finite
space. Investigation over the M3-competition database reveal improvements with regards
to the forecasting accuracy of the new Theta methods, outperforming several benchmarks
as well as the STheta method.

The paper is organised as follows. In the Section 4.2, we derive sufficient conditions
for optimal combination of any number of theta lines, the optimal weights for three,
four or any even number of time series are derived in the sequence. This work focus in
three new Theta methods. The estimation process for new proposed Theta methods is
described. Section 4.3 presents the forecasting performance of the proposed methods for
the 3003 time series of M3-Competition database, the results are compared to a list of
benchmarks methods. Our final comments and directions for future research are present
in Section 4.4.
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4.2 Extending the method for two or more theta lines

In this section we present a methodology that enables a consistent form for combining
two or more theta lines with adequate weights to reconstruct the original time series. This
generalisation does not take in consideration seasonal time series, since we are not going
to change the seasonal test, deseasonalization and reseasonalization steps. So hereafter in
this section we will assume that Y1, . . . , Yn is a non-seasonal/deseasonalized time series.

In order to construct a method with k ∈ {2, 3, . . . } theta lines, let θ = (θ1, . . . , θk) be
a sorted vector with k theta coefficients to construct their respective theta lines, where
θi ≥ 0 for i = 1, . . . , k. So the combination of the theta lines is given by

Xt = ω1Zt(θ1) + ω2Zt(θ2) + · · ·+ ωkZt(θk), t = 1, . . . , n,

where ω1, . . . , ωk are non negative weights that satisfy ∑k
i=1 ωi = 1. To ensure that this

combination reconstruct the original time series, i.e., Xt = Yt, for all t = 1, . . . , n, we
need to obtain adequate weights. In this direction note that the last equation implies
that

0 = Yt −Xt,

= Yt −
k∑
i=1

ωi [θiYt + (1− θi)(An +Bnt)] ,

= Yt

(
1−

k∑
i=1

ωiθi

)
− (An +Bnt)

(
k∑
i=1

ωi −
k∑
i=1

ωiθi

)
,

=
(

1−
k∑
i=1

ωiθi

)
[Yt − (An +Bnt)] , for all t ∈ {1, . . . , n}.

However, the term Yt − (An +Bnt) is the linear regression residue at the time t and it
can not be zero for all t ∈ {1, . . . , n}, so the other term must be zero, which implies in∑k
i=1 ωiθi = 1.
So, fixing the weights, the problem resumes into solve the linear system of equations{ ∑k

i=1 ωi = 1;∑k
i=1 θi ωi = 1,

(4.3)

restrict to ωi ≥ 0 for i = 1, . . . , k. Although there is no additional limitation for working
with a large number of theta lines, in this work we will limit k ≤ 4. In the next subsections
we will choose weights for two, three and four theta lines that are solution of (4.3).
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4.2.1 Two theta lines

When k = 2 the system of equations (4.3) has the same number of equation and
variables, so the solution is unique and it can be directly derived as

ω∗1 = θ2 − 1
θ2 − θ1

; (4.4)

ω∗2 = 1− θ1
θ2 − θ1

, (4.5)

for θ1 < 1 ≤ θ2 to ensure ω∗1 > 0 and ω∗2 > 0. This result corroborates the Theorem 1.(a)
of Fiorucci et al. (2016). Note that, if θ1 = 0 and θ2 = 2, ω∗1 = ω∗2 = 0.5, which reduces
the process to the standard algorithm of A&N. Table 15 presents the weights for some
values of θ2 while θ1 is fixed at zero.

Table 15 – The weights (ω∗1, ω∗2) for the method with two theta lines fixing θ1 = 0.

θ2 = 1 θ2 = 1.5 θ2 = 2 θ2 = 3 θ2 = 4
(.00, 1.00) (.33, .67) (.50, .50) (.67, .33) (.75, .25)

Note that, the equations (4.4) and (4.5) can also be written as

ω∗1 = |1− θ2|
|1− θ1|+ |1− θ2|

; ω∗2 = |1− θ1|
|1− θ1|+ |1− θ2|

.

So the weights are inversely proportional to the difference of the number one and the
respective theta parameter. This propriety ensures that theta lines with high degree
of variability, which implies in a non-predictable behavior, have smaller weights in the
forecasting.

In the next two subsections we will solve the linear system (4.3) for three and four
theta lines, but in these cases the number of equations are smaller than the number of
weights, so the systems have infinite number of solutions. In order to penalize theta
lines with high values of theta parameters, we will choose solutions that maintain similar
behavior to the solution with two theta lines.

4.2.2 Three theta lines

For three theta lines (k = 3) we will maintain ω3 always as function of ω1 and ω2,
since it is completely determined by the first line of linear system (4.3), i.e.,

ω3 = 1− ω1 − ω2.
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Note that it implies in the restriction ω1 +ω2 ≤ 1 to ensure that ω3 ≥ 0. Therefore, from
the second line of (4.3), the problem is summarized into solving the equation

θ3 − θ1
θ3 − 1 ω1 + θ3 − θ2

θ3 − 1 ω2 = 1 (4.6)

restricted by ω1 + ω2 ≤ 1 with ω1 ≥ 0 and ω2 ≥ 0. In addition, we will assume that the
values of the θ’s that we are interested in come from 0 ≤ θ1 < 1, θ2 ≥ 0 and θ3 ≥ 1.

Then rewriting the equation (4.6) as

ω2 = −θ3 − θ1
θ3 − θ2

ω1 + θ3 − 1
θ3 − θ2

(4.7)

implies in ω2 ≥ 0, if ω1 ≤ (θ3 − 1)/(θ3 − θ1). Moreover, it is not difficult to see that
the line (4.7) is always bellow the line ω1 + ω2 = 1 for θ2 ≤ 1. In this case, all pairs
(ω1, ω2) of the line (4.7) are solution of the linear system of equations. However, this
does not happen for θ2 > 1, where the line (4.7) intersects the line ω1 + ω2 = 1 at the
point

(
θ2−1
θ2−θ1

, 1−θ1
θ2−θ1

)
, so the solution occurs in the line (4.7) only for ω1 ≥ θ2−1

θ2−θ1
. Figure

4 presents the solution line in both cases.
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Figure 4 – Representation of the solution line (non-dashed line) for the three theta lines
method in the cases θ2 ≤ 1 and θ2 > 1, where the middle point is highlighted
with a star point.

In order to non-favor any weight we will consider the middle solution point in both
cases as solution for weights of the three theta lines method, which are highlighted with
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a star point in the Figure (4). So the weights are given by

ω∗1 = 1
2

(
θ3 − 1
θ3 − θ1

)
+ 1

2

(
θ2 − 1
θ2 − θ1

)
I(1,+∞)(θ2)

ω∗2 = 1
2

(
θ3 − 1
θ3 − θ2

)
I[0,1](θ2) + 1

2

( 1− θ1
θ2 − θ1

)
I(1,+∞)(θ2)

ω∗3 = 1− ω∗1 − ω∗2

for 0 ≤ θ1 < 1, θ2 ≥ 0 and θ3 ≥ 1. Note that the weights are inversely proportional to the
difference between the number one and the respective theta parameters. Moreover, note
that the weight of the second theta line is limited to be smaller or equal to 0.5. Table 16
presents the optimal weights (ω∗1, ω∗2, ω∗3) for some values of θ2 and θ3 when θ1 = 0.

Table 16 – The weights (ω∗1, ω∗2, ω∗3) for the method with three theta lines fixing θ1 = 0.

θ3 = 1.5 θ3 = 2 θ3 = 3 θ3 = 4
θ2 = .1 (.17, .18, .65) (.25, .26, .49) (.33, .34, .32) (.38, .38, .24)
θ2 = .5 (.17, .25, .58) (.25, .33, .42) (.33, .40, .27) (.38, .43, .20)
θ2 = 1 (.17, .50, .33) (.25, .50, .25) (.33, .50, .17) (.38, .50, .12)
θ2 = 2 (.42, .25, .33) (.50, .25, .25) (.58, .25, .17) (.62, .25, .12)
θ2 = 5 (.57, .10, .33) (.65, .10, .25) (.73, .10, .17) (.78, .10, .12)

In the literature, the biggest number of theta lines already used was three by Petropou-
los & Nikolopoulos (2013), where they used a process of calibration for setting the weights
values. In the next subsection we will propose a methodology to compute optimal weights
for any even number of theta lines.

4.2.3 Four or any even number of theta lines

Let k be an even number and suppose that half of the θ’s values are less than 1 and
half are greater than 1, i.e., #( {θ ∈ θ : θ < 1} ) = #( {θ ∈ θ : θ > 1} ), where #(.)
denotes the cardinality of a set. So consider the weights for k theta lines given by

ω∗i = C |1− θi|−1, (4.8)

for i = 1, . . . , k, where C = (∑k
j=1 |1− θj |−1)−1 ensures ∑k

i=1 ω
∗
i = 1. However, to ensure

that they are in fact a solution for the linear system (4.3) we need to check the second
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equation. Indeed, this is true, as it is shown bellow
k∑
i=1

θiω
∗
i = C

k∑
i=1

θi
|1− θi|

= C

(
k∑
i=1

1
|1− θi|

−
k∑
i=1

1− θi
|1− θi|

)

= C

( 1
C

+ k

2 −
k

2

)
= 1.

So the weights given in (4.8) fix the problem of optimal weights for any even number
of theta lines. Note that, by construction, these weights are inversely proportional to
the difference of the number one and the respective theta parameter. Moreover, (4.8)
generalizes the weights given by (4.4) and (4.5) for k = 2 as well.

Assuming four theta lines (k = 4), the only limitation to use the optimal weights is
related to the theta value, i.e., θ1 < 1, θ2 < 1, θ3 > 1 and θ4 > 1, which does not seem to
be a major problem. In Table 17 we fix θ1 = 0 and present the weights (ω∗1, ω∗2, ω∗3, ω∗4)
for some values of θ2, θ3 and θ4.

Table 17 – The weights (ω∗1, ω∗2, ω∗3, ω∗4) for the method with four theta lines fixing θ1 = 0.

θ1 = 0 and θ2 = 0.3
θ4 = 1.2 θ4 = 1.5 θ4 = 2 θ4 = 3

θ3 = 1.2 (.08, .11, .40, .40) (.11, .15, .53, .21) (.12, .17, .59, .12) (.13, .18, .63, .06)
θ3 = 1.5 (.11, .15, .31, .31) (.16, .22, .31, .31) (.18, .26, .37, .18) (.20, .29, .41, .10)
θ3 = 2 (.12, .17, .12, .59) (.18, .26, .18, .37) (.23, .32, .23, .23) (.25, .36, .25, .13)
θ3 = 3 (.13, .18, .06, .63) (.20, .29, .10, .41) (.25, .36, .13, .25) (.29, .42, .15, .15)

θ1 = 0 and θ2 = 0.7
θ4 = 1.2 θ4 = 1.5 θ4 = 2 θ4 = 3

θ3 = 1.2 (.07, .23, .35, .35) (.09, .29, .44, .18) (.10, .32, .48, .10) (.10, .34, .51, .05)
θ3 = 1.5 (.09, .29, .18, .44) (.12, .40, .24, .24) (.14, .45, .27, .14) (.15, .49, .29, .07)
θ3 = 2 (.10, .32, .10, .48) (.14, .45, .14, .27) (.16, .53, .16, .16) (.17, .57, .17, .09)
θ3 = 3 (.10, .34, .05, .51) (.15, .49, .07, .29) (.17, .57, .09, .17) (.19, .62, .09, .09)

4.2.4 Definitions of methods and estimation of theta parameters

We will consider in this paper three distinct extrapolation methods for the theta
lines: the simple linear regression model, the simple exponential smoothing model and
the exponential smoothing damped model. In order to simplify the notation of the Theta
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method regarding the construction of its lines and the extrapolation methods, we consider
the following notation,

E1, ..., Ek(θ1, θ2, ..., θk),

where Ei refers to the extrapolation method applied to the i-th Theta-coefficient (θi).
We abbreviate the extrapolation methods by L: Linear regression model, D: Damped
exponential smoothing model and S: Simple exponential smoothing model. Following
such notation, for example, the LDS(0, 1, 2) refers to a three theta lines method, Zt(0),
Zt(1) and Zt(2), where the first theta line is extrapolated by L method, the second theta
lines is extrapolated by D model and the third theta lines is extrapolated by S model.
According to this notation, the standard Theta method is defined by LS(0, 2).

Note that, there are several combinations of possible methods for extrapolating the
theta lines. However the approach LS(0, 2) is known as one of the best forecasting methods
(Makridakis & Hibon, 2000), so we will follow the approach of A&N in order to maintain
always L for the first theta line and S for the last one. So we will consider the method D
just for the middle theta lines, focusing in the methods LS(θ1, θ2), LDS(θ1, θ2, θ3) and
LDDS(θ1, θ2, θ3, θ4), where the theta values will be selected from any combination of:

• for two Theta lines methods (LS(θ1, θ2)): θ1 = 0 and θ2 ∈ {1, 1.5, 2, 3, 4};

• for three Theta lines methods (LDS(θ1, θ2, θ3)): θ1 = 0, θ2 ∈ {0.5, 1, 1.5, 2, 3, 4}
and θ3 ∈ {1.5, 2, 3, 4};

• for four Theta lines methods (LDDS(θ1, θ2, θ3, θ4)): θ1 = 0, θ2 ∈ {0.3, 0.7}, θ3 ∈
{1.5, 2, 3, 4} and θ4 ∈ {1.5, 2, 3, 4}.

These parametric spaces were chosen in order to cover an adequate interval of the
possibly theta values and for not making the estimation process too computationally
expensive. For large values of theta parameters, the corresponding theta lines will have a
high degree of variability, and, thus, a non-predictable behaviour. Moreover, the theta
line does not present great variation for a small neighbourhood of theta, hence in practice,
the parametric space can be considered discrete. Note that it follows from the prior
definitions that LDDS and LDSD are the same models.

For selecting the theta values we propose to use the best result of in-sample evaluation
of symmetric Mean Absolute Percentage Error metric (sMAPE) over all time series (or
a subset of them), where the in-sample errors (predictions) are computed following the
cross-validation process usually called Fixed Origin Evaluation (Tashman, 2000a). For
better define the method, let Y1, . . . ,YN be N univariate time series and suppose that we
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want to chose one model M among the models M1, . . . ,MP to produce forecasting points
over h1, . . . , hN horizons, respectively. So each time series is separated into two parts,
where the first part is the training sample and second part is the validation sample (See
Figure 5), let the length of second part of each time series be denoted by H1, . . . ,HN ,
respectively. Then the In-sample sMAPE metric for one model M over all time series is
given by

In-sMAPE(M) = 1
NP

N∑
i=1

Hi∑
j=1

< Yi,ni−j , Ŷ
M
i,ni−j >,

where NP = ∑N
i=1Hi is the number of predictions, < Yi,j , Ŷ

M
i,j > = |Yi,j − ŶM

i,j |/(|Yi,j |+
|ŶM
i,j |) is the symmetric Absolute Percentage Error and ŶM

i,j is the prediction for the
j-th point of i-th time series produced by the model M . The model that gives lowest
sMAPE result is chosen as the best. In our case, the models M1, . . . ,MP refers to each
combination of theta values.

Of course, as the A&N method, our methods are still ad-hoc decisions about the
number of theta lines and the extrapolation methods, however the use of optimal weights
with one optimization process for the theta parameters can improve significantly the
traditional algorithm performance, as we will show in the next section.
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Figure 5 – Example of fixed origin evaluation. The model is fitted in the training sample
part and predictions (blue line) are computed for validation sample part. In
gray are present the errors of prediction.
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4.3 Application to M3 database

In order to obtain empirical evidences to infer about the forecasting power for the
proposed models, we shall consider the M3-Competition database. This data set contains
3003 univariate time series from different areas, such as; finance, industrial, demographic
and others. Following Makridakis & Hibon (2000), we adopted the segmentation according
to the frequency, as it is shown in the Table 18. As can be seen in Table 18, the monthly
time series has the biggest number of time series (N) and it is required the biggest horizon
of forecasting (h), which impacts in the biggest number of total forecasting required
(NF = h×N).

Table 18 – M3-Competition data set.

Frequency Forec. horizon (h) Number of time series (N) Number of Forec. (NF )
Yearly 6 645 3870

Quarterly 8 756 6048
Monthly 18 1428 25704
Other 8 174 1392
Total 3003 37014

A frequent discussion regarding method competitions is related to the accuracy
criterion used to measure the forecasting error of the time series (Chatfield, 1988; Qi &
Zhang, 2001; Hyndman & Koehler, 2006). A common metric used for this purpose is
the symmetric Mean Average Percentage Error (sMAPE), which was used as primary
criterion in the M3-Competition. For this reason we will also use it in this paper, in
order to facilitates the comparison of the present results with former ones. The sMAPE
(or Out-sample sMAPE) metric is given by

sMAPE = 1
NF

N∑
i=1

hi∑
j=1

< Yi,ni+j , Ŷi,ni+j >,

where Yi,ni+j is the out-of-sample data, Ŷi,ni+j is the forecasting, hi is the horizon of
forecasting for i−th time series and NF = ∑N

i=1 hi is total number of required forecasting
for all N time-series.

The study was implemented using the open-source statistical software provided by
R Core Team (2015) and the packages forecast, forecTheta and Mcomp. The computer
used for this task was equipped with a processor Intel I5-4200U, 8GB of RAM which
was operating on Windows 8.1. To compare the performance of the proposed methods,
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we choose the standard Theta method (STheta) of A&N implemented in the package
forecTheta, which corresponds to the LS(0, 2) and other widely used benchmark methods,
for which further details are given in Table 19. Amongst them, we choose methods of
the exponential smoothing family (ETS) and ARIMA family, as well as the automatic
algorithms implemented in the forecast package (Hyndman & Khandakar, 2008). We
adopted the same prior seasonal test and seasonal decomposition of A&N (discussed in
section 5.1) for all methods, except for automatic ETS and automatic ARIMA, which
already have seasonal components in the structure. Following Hyndman & Billah (2003)
we limited the smoothing parameter to lie between 0.1 and 0.99 for all exponential
smoothing methods used in this paper.

Table 19 – The benchmark methods used in the current study.

Method Reference Description
ARIMA Hyndman & Khandakar (2008) Automatic ARIMA based on AICc
Damped Gardner & McKenzie (1985) ETS(A,Ad,N)
ETS Hyndman & Khandakar (2008) ETS automatic based on AICc
Naive ARIMA(0,1,0)
SES Brown (1956) ETS(A,N,N)
STheta Assimakopoulos & Nikolopoulos (2000) Standard Theta method

For selecting the theta values we used the Fixed Origin Evaluation as described
in the Section 4.2.4. Here the length of validation sample is defined as the horizon of
forecasting, i.e., we adopt Hi = hi, for i = 1, . . . , 3003. The theta parameters are chosen
according to In-sMAPE metric for each kind of frequency. The In-sMAPE results for all
combination of theta parameters are given in the Tables 22 – 24 of the Appendix Section
and the selected theta values following the best results for LS(θ1, θ2), LDS(θ1, θ2, θ3) and
LDDS(θ1, θ2, θ3, θ4) methods are given in the Table 20.

The out-sample sMAPE results for our proposed method and the benchmarks methods
are summarized in Table 21. The last 3 lines refer to the methods LS, LSD and LDDS
using the respective theta values of the Table 20. The best results in each set are marked
in bold and the cases where the new theta methods obtained superior results than all
benchmarks methods are highlighted with gray cells.

The results of the Table 21 reveal the new theta methods are always better than
the benchmarks method when all time series are considered, where the method with 4
theta lines is the best. Examining the results with regards to the various frequencies, the
methods with 3 and 4 theta lines are always better than the method with two theta lines.
The LDS is the best for "yearly" and "quarterly" frequencies and the LDDS method is
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Table 20 – Selected theta values using the in-sample sMAPE metric for M3 data set.

Methods Yearly Quarterly Monthly Other Time (min.)
LS(θ1, θ2) θ1 = 0.0 θ1 = 0.0 θ1 = 0.0 θ1 = 0.0 2.36

θ2 = 3.0 θ2 = 3.0 θ2 = 1.5 θ2 = 4.0
θ1 = 0.0 θ1 = 0.0 θ1 = 0.0 θ1 = 0.0

LDS(θ1, θ2, θ3) θ2 = 1.0 θ2 = 0.5 θ2 = 0.5 θ2 = 1.0 33.51
θ3 = 2.0 θ3 = 3.0 θ3 = 1.5 θ3 = 4.0
θ1 = 0.0 θ1 = 0.0 θ1 = 0.0 θ1 = 0.0

LDDS(θ1, θ2, θ3, θ4) θ2 = 0.7 θ2 = 0.3 θ2 = 0.3 θ2 = 0.7 76.56
θ3 = 1.5 θ3 = 1.5 θ3 = 4.0 θ3 = 3.0
θ4 = 1.5 θ4 = 1.5 θ4 = 1.5 θ4 = 4.0

the best for "monthly" and "other" frequencies. For the yearly frequency the method
LS is worse than the standard theta and for the time series with frequency "other" the
best method is Damped, followed by the LDDS. The replication of the Theta method
implemented in this research was, as expected, the method that obtained overall the
best performance across the benchmarks. Any numerical differences with the published
results in the M3-Competition (Makridakis & Hibon, 2000) are due to the use of different
pre-fixed theta coefficients and extrapolation methods for each frequency of the data
(Nikolopoulos et al., 2011).

Table 21 – Empirical results for out-sample sMAPE metric for all methods.

Methods Yearly Quarterly Monthly Other All Time (min)
ARIMA 17.62 9.99 15.30 4.54 14.27 23.48
Damped 17.07 9.79 13.96 4.30 13.24 1.52
ETS 16.89 9.69 14.07 4.34 13.28 38.36
Naive 17.88 10.02 16.76 6.30 15.38 0.62
SES 17.78 9.77 14.17 6.30 13.53 0.55
STheta 16.76 9.25 13.83 4.93 13.05 0.78
LS(θ1, θ2) 16.82 9.23 13.76 4.77 13.00 2.84
LDS(θ1, θ2, θ3) 16.31 9.09 13.77 4.40 12.92 34.90
LDDS(θ1, θ2, θ3, θ4) 16.37 9.15 13.70 4.33 12.89 78.95

Koning et al. (2005) suggested to use the Multiple Comparisons with the Best test
(MCB) for compare several forecasting methods. For compute the test we consider in this
paper all time series and four methods (STheta, LS, LDS and LDDS), where for each
time series is constructed a ranking according to sMAPE results by each method. Then
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a 95% confidence raking interval is constructed for each method, when a ranking interval
of a pair of methods is not overleaping, the null hypothesis of equivalent performance is
rejected. The result of MCB test is present in the Figure 6, where we can see the rank
interval of each method with the average in the center.

Figure 6 shows the STheta, LS and LDS methods produced very close rankings. The
method LDDS obtained the best average raking. Besides, the upper limit of the interval
is bellow than the lower limit of other methods, which points to a statistically rejection of
the null hypothesis. So we can conclude the LDDS performed statistically better than the
other methods. This result is in line with the above descriptive results, which concludes
that LDDS is the best Theta method approach considered in this work.
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Figure 6 – MCB intervals with 95% of confidence.

4.4 Final Comments

In this paper we present a new approach for the Theta method which enables
to combine two, three or four theta lines with adequate weights for recompose the
original time series. Moreover we present sufficient conditions for optimal weights in the
combination of any number of theta lines.

For the estimation of theta parameters we proposed to select the best values from a
finite space using the fixed origin evaluation. The M3-Competition data were used to
compare three approaches of the new theta method with several benchmarks methods.
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We used the same metric of the M3-Competition (sMAPE metric) for this comparison.
Our approaches demonstrated improvements in the forecasting performance of the Theta
method, and they proved to be most accurate and robust across all benchmarks. The
approaches with three and four theta lines provided the best results.

Future research will focus on selecting the adequate number of theta lines, extrapola-
tion methods and theta values for each time series.

Appendix
Table 22 – In-sample sMAPE results for LS(θ1, θ2).

Methods Yearly Quarterly Monthly Other Time (min.)

LS(0,1) 21.70 9.47 13.93 5.49 0.47
LS(0,1.5) 19.95 9.03 13.67 4.60 0.47
LS(0,2) 19.68 8.95 13.79 4.26 0.47
LS(0,3) 19.60 8.94 14.16 4.09 0.47
LS(0,4) 19.74 8.97 14.45 4.04 0.47

Table 23 – In-sample sMAPE results for LDS(θ1, θ2, θ3).

Methods Yearly Quarterly Monthly Other Time (min.)

LDS(0,0.5,1.5) 19.70 8.90 13.65 4.44 1.40
LDS(0,0.5,2) 19.38 8.81 13.66 4.13 1.40
LDS(0,0.5,3) 19.34 8.74 13.79 3.97 1.40
LDS(0,0.5,4) 19.48 8.77 13.90 3.94 1.40
LDS(0,1,1.5) 19.19 8.81 13.80 4.06 1.40
LDS(0,1,2) 19.15 8.80 13.83 3.95 1.40
LDS(0,1,3) 19.19 8.78 13.91 3.90 1.40
LDS(0,1,4) 19.31 8.81 13.97 3.89 1.40
LDS(0,1.5,1.5) 19.21 8.76 13.82 4.05 1.40
LDS(0,1.5,2) 19.20 8.75 13.89 3.95 1.40
LDS(0,1.5,3) 19.28 8.75 14.02 3.91 1.40
LDS(0,1.5,4) 19.42 8.78 14.11 3.90 1.40
LDS(0,2,1.5) 19.24 8.83 13.87 4.05 1.40
LDS(0,2,2) 19.25 8.84 13.97 3.97 1.40
LDS(0,2,3) 19.33 8.84 14.14 3.93 1.40
LDS(0,2,4) 19.48 8.87 14.25 3.93 1.40
LDS(0,3,1.5) 19.29 8.89 13.94 4.06 1.40
LDS(0,3,2) 19.32 8.91 14.08 3.98 1.40
LDS(0,3,3) 19.42 8.92 14.28 3.94 1.40
LDS(0,3,4) 19.58 8.96 14.41 3.94 1.40
LDS(0,4,1.5) 19.32 8.97 13.99 4.04 1.40
LDS(0,4,2) 19.36 8.98 14.15 3.98 1.40
LDS(0,4,3) 19.47 9.00 14.36 3.95 1.40
LDS(0,4,4) 19.64 9.05 14.50 3.95 1.40
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Table 24 – In-sample sMAPE results for LDDS(θ1, θ2, θ3, θ3).

Methods Yearly Quarterly Monthly Other Time (min.)

LDDS(0,0.3,1.5,1.5) 19.17 8.77 13.80 4.04 2.39
LDDS(0,0.3,1.5,2) 19.21 8.79 13.95 3.92 2.39
LDDS(0,0.3,1.5,3) 19.26 8.83 14.09 3.89 2.39
LDDS(0,0.3,1.5,4) 19.32 8.85 14.15 3.88 2.39
LDDS(0,0.3,2,1.5) 19.24 8.82 13.72 4.10 2.39
LDDS(0,0.3,2,2) 19.24 8.83 13.88 3.95 2.39
LDDS(0,0.3,2,3) 19.28 8.87 14.06 3.90 2.39
LDDS(0,0.3,2,4) 19.35 8.89 14.14 3.90 2.39
LDDS(0,0.3,3,1.5) 19.30 8.85 13.69 4.17 2.39
LDDS(0,0.3,3,2) 19.29 8.86 13.85 3.98 2.39
LDDS(0,0.3,3,3) 19.32 8.90 14.06 3.91 2.39
LDDS(0,0.3,3,4) 19.41 8.93 14.16 3.90 2.39
LDDS(0,0.3,4,1.5) 19.32 8.88 13.68 4.17 2.39
LDDS(0,0.3,4,2) 19.31 8.90 13.85 3.98 2.39
LDDS(0,0.3,4,3) 19.35 8.95 14.07 3.92 2.39
LDDS(0,0.3,4,4) 19.44 8.99 14.18 3.91 2.39
LDDS(0,0.7,1.5,1.5) 19.13 8.81 13.90 3.96 2.39
LDDS(0,0.7,1.5,2) 19.21 8.86 14.05 3.90 2.39
LDDS(0,0.7,1.5,3) 19.26 8.90 14.15 3.88 2.39
LDDS(0,0.7,1.5,4) 19.31 8.92 14.19 3.88 2.39
LDDS(0,0.7,2,1.5) 19.15 8.83 13.83 3.98 2.39
LDDS(0,0.7,2,2) 19.20 8.88 13.99 3.90 2.39
LDDS(0,0.7,2,3) 19.25 8.92 14.11 3.88 2.39
LDDS(0,0.7,2,4) 19.31 8.94 14.15 3.88 2.39
LDDS(0,0.7,3,1.5) 19.17 8.84 13.79 3.99 2.39
LDDS(0,0.7,3,2) 19.20 8.89 13.95 3.89 2.39
LDDS(0,0.7,3,3) 19.25 8.94 14.08 3.86 2.39
LDDS(0,0.7,3,4) 19.31 8.96 14.13 3.86 2.39
LDDS(0,0.7,4,1.5) 19.17 8.85 13.78 3.99 2.39
LDDS(0,0.7,4,2) 19.21 8.91 13.94 3.89 2.39
LDDS(0,0.7,4,3) 19.26 8.96 14.08 3.86 2.39
LDDS(0,0.7,4,4) 19.32 8.99 14.13 3.86 2.39



5 forecTheta: The R package for fore-
casting time series by Theta Models

This chapter corresponds to a manuscript, which presents the details of the forec-
Theta package for R programming language. The forecTheta package implements all
models proposed in the Chapter 3 among other useful functions for time series forecasting.

Abstract

The Theta method is known as one of the most accurate methods for forecasting
univariate time series. It has win several benchmark methods in the largest up-to-date
forecasting competition, the M3-Competition. In this paper we present the forecTheta
package for R, which implements the Standard Theta Method of Assimakopoulos &
Nikolopoulos (2000) as well as various stochastic approaches proposed by Fiorucci et al.
(2016). Moreover, the package includes the cross validation tool called Generalised Rolling
Origin Evaluation proposed on Fiorucci et al. (2015).
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5.1 Introduction

Forecasting univariate time series is very importante task in several areas, such as
industry, commerce and economy. There are a large number of methods for this issues,
and interested readers can refer to Box et al. (1994); Chatfield (2000) and Hyndman
et al. (2008). Due to the increased number of models, there is a need for dedicate soft-
wares/libraries with efficient implementation. Focusing on the R-programming language,
we highlight the forecast package (Hyndman & Khandakar, 2008), which implements
several models of exponential smoothing and ARIMA families.

The Theta-method proposed by Assimakopoulos & Nikolopoulos (2000) (hereafter
A&N) is known as one of the most accurate forecasting method, having won several
benchmark methods in the M3-Competition (Makridakis & Hibon, 2000). The Standard
Theta method (STheta) is based on a deterministic combination with weights 50%-50% of
simple linear regression and simple exponential smoothing methods applied on theta-lines
with parameters θ1 = 0 and θ2 = 2. Stochastic approach for STheta was proposed firstly
on Hyndman & Billah (2003), which proofed the connection of STheta with a particular
case of Holt exponential smoothing model, the so called exponential smoothing with drift
model (SES-d). Recently, Fiorucci et al. (2016) provided optimal weights for combine
two theta lines. These optimal weights were used for construct four stochastic models,
the Optimised Theta Model (OTM), the Standard Theta Model (STM), the Dynamic
Standard Theta Model (DSTM) and the Dynamic Optimised Theta Model (DOTM),
where the STM is a stochastic approach for STheta while the OTM is a generalization,
which considers optimal parameter for the second theta-line. The DSTM and DOTM are
derived considering theta-lines as dynamic functions. These models were tested for the
M3-Competition data set, where the first three models performs close of STheta, while
the DOTM outperforms the STheta in almost all cases.

In this paper we present the forecTheta R package, which includes an implementation
for the above models among others useful functions for univariate time series forecasting.
We also include a description of the cross-validation method developed in Fiorucci et al.
(2015) and a R code for reproduce the Fiorucci et al. (2016) results for the DOTM.

The manuscript is organized as follow. The Theta models are described in the Section
5.2 and the Generalised Rolling-Origin Evaluation process is present in the Section 5.3.
The main functions of forecTheta package and the R code are discussed in Section 5.4.
For finishes, our conclusion and final comments are presented in the Section 5.5.
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5.2 Theta Models

The four stochastic variations for STheta method (Fiorucci et al., 2016), differ due to
the parameter of the second theta-line, which can be fixed or optimised, and the linear
regression coefficients, which can be taken as static or dynamic functions. The follow
suppositions are assumed for the models, which are described bellow:

• {εt} is a white noise process following a distribution N(0, σ2);

• µt = E[Yt|y1, . . . , yt−1] denotes the one-step-ahead forecasting for Yt;

• `t is the level state of the simple exponential smoothing model;

• At and Bt denote the simple linear regression coefficients of y1, . . . , yt against the
times 1, . . . , t;

• `0 ∈ R is the initial state parameter, 0 < α < 1 is the smoothing parameter and
θ ≥ 1 is the theta-line parameter.

The OTM is given by

Yt = µt + εt

µt = `t−1 +
(

1− 1
θ

){
(1− α)t−1An +

[
1− (1− α)t

α

]
Bn

}
`t = αYt + (1− α)`t−1.

It coincides with the SES model for θ = 1, for θ > 1 the term (1− 1/θ) ∈ (0, 1) acts
as a weight for the long trend term

{
(1− α)t−1An +

[
1−(1−α)t

α

]
Bn
}
, which goes to Bn/α

for hight values of t. The particular case, θ = 2 fixed, is called Standard Theta Model
(STM), which is one stochastic approach that reproduce the results of STheta method.

The DOTM is given by

Yt = µt + εt

µt = `t−1 +
(

1− 1
θ

)[
(1− α)t−1At−1 +

(
1− (1− α)t

α

)
Bt−1

]
`t = αYt + (1− α)`t−1

At = Ȳt −
t+ 1

2 Bt

Bt = 1
t+ 1

[
(t− 2)Bt−1 + 6

t
(Yt − Ȳt−1)

]
Ȳt = 1

t
[(t− 1)Ȳt−1 + Yt],
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with same parameters and interpretations of the OTM. However, the linear regression
coefficients are taken as dynamic functions, which seems to improve the performance
as shown in the empirical results of Fiorucci et al. (2016)[Section 4]. There is also a
variation of the DOTM with θ = 2 fixed, which is called DSTM, this model reproduce
the results of STheta just for one horizon (h = 1). For more horizons, the coefficients At
and Bt are updated, which makes the results differ. Unlike the STheta, STM and OTM,
the forecasts produced by DSTM and DOTM are not necessary linear.

The maximum likelihood estimators (MLE) for parameters are obtained by numerically
maximization of the log-likelihood function. For the forecTheta package, we adopt the
"Nelder-Mead" algorithm implemented in the optim() function. The log-likelihood
function is given by

l ≈ −n2 log 1
n

n∑
t=1

(Yt − µt)2,

excluding the constant term −n(1 + log 2π)/2. The MLE for σ2 can be directly derived
as σ̂2 = ∑n

t=1(Yt − µt)2 /n.

5.3 Generalised Rolling Origin Evaluation

Some of more used approaches for cross-validation are the Rolling-Origin Evaluation
and the Fixed-Origin Evaluation, studied by Tashman (2000b). Fiorucci et al. (2015)
generalized both evaluation methods by one more flexible and general approach, the so
called Generalised Rolling-Origin Evaluation (GROE).

In order to describe the GROE, let M1, . . . ,MR be univariate time series forecasting
methods and suppose that we are interesting in forecast h points forward of the univariate
time series y1, . . . , yn, i.e., we are interesting in forecasting the values yn+1, . . . , yn+h,
which are unknown. So for chose the best method for this issue we can make in-sample
evaluations of M1, . . . ,MR and select the method that gave smaller in-sample errors.

For a method M the in-sample forecastings are obtained by fixing a origin n1 ∈
{1, . . . , n− 1} and forecasting H points forward of yn1 . Then the origin is updated for
n2 = n1 +m and the H points forward of yn2 are forecasted, so this process is repeated
recursively through the origins n1, n2, . . . , np, with ni+1 = ni+m, where m is the number
of origin movements in each update and p is the number of updates. However to ensure
that all process occurs in-sample some adjustments are needed. The number of forecasting
forward of an origin ni needs to be less or equal to n− ni and the number of updates is
limited by 1 ≤ p ≤ pmax, where pmax = 1 + ‖(n− n1)/m‖ is maximum possible number
of updates. The function ‖x‖ denotes the largest integer number less than x ∈ R.
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The resulting in-sample evaluation function is given by

l(M) =
p∑
i=1

min(H,n−ni)∑
j=1

g(yni+j , Ŷ
(M)
ni+j|ni

), (5.1)

where Ŷ (M)
ni+j|ni

denote the j-th forecasted point forward of yni obtained by the method
M . The g(., .) function denote the type of error, as the Square Error function, defined as
SE(a, b) = (a− b)2, the Absolute Error function, defined as AE(a, b) = |a− b| and the
symmetric Average Percentage Error function, defined as sAPE(a, b) = 2|a−b|/(|a|+ |b|).
The method that provides the lower value of equation (5.1) is chosen as the best one for
make forecasting in this time series.

Note that the necessary parameters to compute the equation (5.1) are n1,m,H and
p. The Fixed Origin Evaluation and the Rolling Origin Evaluation of Tashman (2000b)
are particular cases of this function. Fixing p = pmax and H = n − n1, if m = 1 the
equation (5.1) becomes the Rolling Origin evaluation, and if m = n− n1 the equation
(5.1) becomes the Fixed Origin evaluation.

As an example, Figure 7 shows the GROE process for the Theta-method, where it
is used the time series number 1501 of M3-competition and the GROE parameters are
defined as n1 = n− 30,m = 10, H = 15 and p = pmax = 3. For each origin the blue line
is for the fitted values and the red line is for the forecasted values.

5.4 The forecTheta R package

In this section we present the main functions of the forecTheta package for R (R
Core Team, 2015), which is free available for any user (GPL-2 and GPL-3). The GROE
function for cross-validation, the STheta method and the four models discussed in the
previous sections are implemented in the forecTheta package. In the last subsection, we
provide a simple code for reproduce the results of the DOTM for the M3-Competition
data set presented by Fiorucci et al. (2016)[Section 4].

5.4.1 The time series forecasting functions

The DOTM, DOTM, OTM, OTM and STheta can be accessed using the following
functions:

dotm(y, h=5, level=c(80,90,95), s=NULL, par_ini=c(y[1]/2,0.5,2),

estimation=TRUE, lower=c(-1e+10,0.1,1.0),

upper=c(1e+10,0.99,1e+10), opt.method="Nelder-Mead")
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Figure 7 – Example of GROE function.

dstm(y, h=5, level=c(80,90,95), s=NULL, par_ini=c(y[1]/2,0.5),

estimation=TRUE, lower=c(-1e+10,0.1), upper=c(1e+10,0.99),

opt.method="Nelder-Mead")

otm(y, h=5, level=c(80,90,95), s=NULL, par_ini=c(y[1]/2,0.5,2),

estimation=TRUE, lower=c(-1e+10,0.1,1.0),

upper=c(1e+10, 0.99, 1e+10), opt.method="Nelder-Mead")

stm(y, h=5, level=c(80,90,95), s=NULL, par_ini=c(y[1]/2,0.5),

estimation=TRUE, lower=c(-1e+10,0.1), upper=c(1e+10,0.99),

opt.method="Nelder-Mead")

stheta(y, h=5, s=NULL)

where the arguments are:

• y: The time series.
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• h: The number of required forecasting periods.

• level: The levels for prediction intervals.

• s: If TRUE, the multiplicative seasonal decomposition is used. If NULL and
frequency(y)>=4 the time series is tested for statistically seasonal behaviour,
with 90% of significance. If additive or close zero values been find in the
multiplicative decomposition, the additive decomposition is performed hatter than
multiplicative.

• par_ini: Vector of initialization for `0, α, θ parameters.

• estimation: If TRUE, the optim() function is consider for compute the mini-
mum square estimator of parameters. If FALSE, the models/methods are computed
for par_ini values.

• lower: The lower limit of parametric space.

• upper: The upper limit of parametric space.

• opt.method: The numeric optimization method for optim() function. The
options are: ’Nelder-Mead’, ’L-BFGS-B’, ’SANN’.

After completed, the above functions return an object of thetaModel class, which is a
list containing the following components:

• $method: The name of the model/method.

• $y: The original time series.

• $s: A binary indication for seasonal decomposition.

• $type: Classical seasonal decomposition type.

• $opt.method: The optimization method used in the optim() function.

• $par: The estimated values for `0, α, θ parameters.

• $weights: The estimated weights values.

• $fitted: A time series element with the fitted points.

• $residuals: A time series element with the residual points.
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• $mean: The forecasting values.

• $level: The levels for prediction intervals.

• $lower: Lower limits for prediction intervals.

• $upper: Upper limits for prediction intervals.

• $tests: The p.value of Teraesvirta Neural Network test applied on unseasoned
time series and the p.value of Shapiro-Wilk test applied on unseasoned residuals.

By default (s=NULL), the 90% significance seasonal Z-test is applied for quarterly and
monthly time series. If the time series is identified as seasonal, the classical decomposition
is applied in order to make the time series unseasoned. Then after the model be fitted,
the seasonal trend is recovery for the fitted and forecasted values. The prediction
intervals are computed through 300 bootstraps simulations for each prediction point,
by default, it is returned intervals with 80%, 90% and 95% of confidence. The user
may choose level=NULL for not compute prediction intervals in order to reduce the
computational costs. The follow S3 functions print(), summary(), plot() are
available for objects of thetaModel class, where print() and summary() provide
important informations about the model and plot() produce a figure for the time series,
forecasted points and prediction intervals.

5.4.2 The cross validation functions

The GROE described in Section 5.3 is implemented in the groe() function. This
function is a macro for computing the equation (5.1) for any forecasting method of the
forecTheta and forecast packages.

The syntax of groe function is

groe(y, forecFunction, g="sAPE", n1=length(y)-10, m=5,

H=length(y)-n1, p=1+floor((length(y)-n1)/m), ...),

where y is an object of time series class, forecFunction is some forecasting method
function and g is the error type, where the possibilities for g are "sAPE", "AE" and
"SE". The other arguments are directly correspondent to the parameters of function
(5.1). By default the prediction errors are computed by using two origins, where the first
origin is yn−10 and second is yn−5. For the first origin is forecasted ten points ahead
and for the second origin is computed five forecast points ahead. So the default groe
function, in total, use fifteen prediction errors.
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For computing the GROE function for a forecast method with some argument fixed,
it just needed to pass the value. For example, the command for compute the simple
exponential smoothing model (ses of forecast package) with smoothing parameter α = 0.8
is

groe(y, forecFunction=ses, alpha=0.8).

The forecTheta package also includes the convenient wrapper functions

rolOrig(y, forecFunction, g="sAPE", n1=length(y)-10, ...),
fixOrig(y, forecFunction, g="sAPE", n1=length(y)-10, ...),

for compute the Rolling-Origin Evaluation or Fixed-Origin Evaluation, respectively.

5.4.3 Other functions

The forecTheta provides a function for compute the most commonly used error metrics
in the literature, as the symmetric Mean Absolute Percentage Error (sMAPE), the Mean
Absolute Error (MAE) and the Mean Squared Error (MSE). The function for compute
theses statistics is

errorMetric(obs, forec, type="sAPE", statistic="M"),

where obs is the vector(or matrix) contain the observed values, forec is the vector(or
matrix) contain the forecasted values and type is the error type, where its possibilities
are "sAPE", "APE", "AE" and "SE" for compute the symmetric Absolute Percentage
Error, Absolute Percentage Error, Absolute Error and Squared Error, respectively. To
finish, the statistic argument denotes if the function will return the errors Mean
("M"), the errors Median ("Md") or None ("N"), in the last case the function will return
a vector(or matrix) with the errors. See the Table 25 for details about how each metric
can be obtained.

Fiorucci et al. (2015) explored a deterministic approach for OTM, which considers
the estimation of the parameter θ through limited in-sample evaluations of the GROE
function. The syntax for this OTM version is

otm.arxiv(y, h, s=FALSE, theta=NULL, g="sAPE",

n1=length(y)-h, m=floor(h/2), H=h, p=1+floor((length(y)-n1)/m),

thetaList=seq(from=1,to=5,by=0.5), tLineExtrap=expSmoot,

mc.cores=1, ...)
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Table 25 – Error Metrics.

Metrics errorMetric() arguments
Names Abbreviation type statistic

symmetric Mean Absolute Percentage Error sMAPE "sAPE" "M"
Mean Absolute Percentage Error MAPE "APE" "M"
Mean Absolute Error MAE "AE" "M"
Mean Squared Error MSE "SE" "M"
symmetric Median Absolute Percentage Error sMdAPE "sAPE" "Md"
Median Absolute Percentage Error MdAPE "APE" "Md"
Median Absolute Error MdAE "AE" "Md"
Median Squared Error MdSE "SE" "Md"

where the different arguments of previous forecasting functions are:

• theta: the θ parameter value. If NULL the parameter is estimated using groe
function;

• g,n1,m,H,p: arguments of groe function. It is not necessary if theta!=NULL;

• thetaList: a vector with the discrete parametric space values. Default is the
sequence 1.0, 1.5, . . . , 5. It is not necessary if theta!=NULL;

• tLineExtrap: a forecasting function for extrapolation the theta-line. Default is
the expSmoot function, which is a implementation of simple exponential smoothing
method;

• mc.cores: the number of cores will be used in the estimation process. It is not
supported mc.cores>1 on Windows SO;

• ... : Additional arguments of tLineExtrap function.

5.4.4 Illustrations

In this section we illustrate the package usage with the time series number 1000 of
M3 competition data set. First load the forecTheta package and the time series into R,

library(forecTheta)

library(Mcomp)

data(M3)

y = M3[[1000]]$x



CHAPTER 5. FORECTHETA R PACKAGE 65

As one example, we will fit the DOTM model and take eight forecasting points with the
command

out = dotm(y,8)

To see the results, we may ask for printing out variable or use the S3 function summary
of one object of the thetaModel class as

>summary(out)

Forecast method: Dynamic Optimised Theta Model

Seasonal decomposition type: multiplicative

Optimisation method: Nelder-Mead

Estimative of parameters:

MLE

ell0 3341.37

alpha 0.79

theta 1.82

Forecasting points and prediction intervals

Mean Lo 80 Hi 80 Lo 90 Hi 90 Lo 95 Hi 95

1991 Q1 6710.592 6509.227 6902.238 6460.425 6957.814 6419.506 7007.094

1991 Q2 6819.109 6576.335 7079.332 6494.874 7151.524 6408.623 7207.236

1991 Q3 6814.146 6507.182 7124.878 6406.923 7199.167 6388.297 7229.623

1991 Q4 6831.040 6457.182 7159.939 6397.507 7256.475 6354.657 7330.096

1992 Q1 6815.864 6428.860 7206.900 6363.721 7283.433 6333.188 7377.917

1992 Q2 6926.688 6541.880 7421.081 6417.593 7546.085 6350.149 7635.218

1992 Q3 6921.976 6479.786 7469.600 6416.138 7582.581 6276.207 7676.307

1992 Q4 6939.232 6424.410 7506.455 6314.393 7650.975 6190.972 7696.336

Information Criterions

Estimative

AIC 579.7961

AICc 580.3961

BIC 585.1487

Note firstly it is presented a description of the model and the estimation of the
parameters. Then it is presented a matrix with the forecasting points, the prediction
intervals and the information criterions for model selection.

We also may use the plot() function for out, the result is presented in Figure 8,
where we can see the time series in black and the forecasting part in blue. The prediction
intervals of 80%, 90% and 95% of confidence are presented with different gray tonalities.
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Figure 8 – Example of plot(dotm(y,8)) command.

5.4.5 DOTM behavior for artificial data

In this section we illustrate the DOTM behavior for controlled trended artificial time
series in order to identify the ability and limitations of the model.

The data were simulated according to the bellow equations presented in the items (a)
to (f), the simulation is computed assuming a Gaussian white noise process with mean
zero and variance one for the errors series {εt}. For each configuration was simulated
three series, where the results are presented in Figures 9 and 10.

(a) Linear trend

yt = 100 + 0.5 t+ εt, t = 1, . . . , 60

Training sample : y1, . . . , y50

Validation sample : y51, . . . , y60
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(b) Double linear trend

yt = 100 + 0.5 t+ εt, t = 1, . . . , 30

yt = y30 + 0.25 t+ εt, t = 31, . . . , 60

Training sample : y1, . . . , y50

Validation sample : y51, . . . , y60

(c) Low exponential trend

yt = 100 + 2 exp(1 + t/60) + εt, t = 1, . . . , 60

Training sample : y1, . . . , y50

Validation sample : y51, . . . , y60

(d) High exponential trend

yt = 100 + 2 exp(1 + t/30) + εt, t = 1, . . . , 60

Training sample : y1, . . . , y50

Validation sample : y51, . . . , y60

(e) Cyclical non-seasonal trend

yt = 100 + 3 sin(2πt/12) + εt, t = 1, . . . , 60

Training sample : y1, . . . , y50

Validation sample : y51, . . . , y60

(f) Cyclical seasonal trend

yt = 100 + 3 sin(2πt/12) + εt, t = 1, . . . , 72

Training sample : y1, . . . , y50

Validation sample : y51, . . . , y72

Although the DOTM is a lot more flexible than STheta, some limitations of STheta
was transferred to DOTM through the linear extrapolation used for the first theta line,
which is responsible to model the long-term trend. The model is adequate for linear close
trend time series, as shown in graphicals (a) to (c). The model does not include any term
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for model exponential or non-seasonal cyclical behavior, so that, it is not adequate for
time series as (d) and (e) patterns. However, seasonal cyclical pattern can be absolved
by the prior decomposition as shown for time series (f). In this case, the DOTM is
applied just for the deseasonalised part of the time series, then the DOTM extrapolation
is combined with seasonal term extrapolated by Seasonal-Naive model (Hyndman &
Khandakar, 2008).
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Figure 9 – DOTM behavior for simulated data.
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Figure 10 – DOTM behavior for simulated data.
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5.4.6 Reproducing the DOTM results for M3 data set

The code bellow can be used for reproducing exactly the same results of the DOTM
for M3 data set as presented in Fiorucci et al. (2016). The code is very simple and it can
be run in any modern laptop within few minutes.

#### Reproducing the M3 results by considering DOTM #######

library(forecTheta)

library(Mcomp)

data(M3)

forec = matrix(NA, nrow=3003, ncol=18)

obs = matrix(NA, nrow=3003, ncol=18)

meanDiff <- rep(1, 3003)

for(i in 1:3003){

if(i %% 100 == 0){print(i);}

x=M3[[i]]$x

h=M3[[i]]$h

out = dotm(x,h,level=NULL)

forec[i,1:h] = out$mean

obs[i,1:h] = M3[[i]]$xx

meanDiff[i] = mean(abs(diff(x, lag = frequency(x))))

}

############## sMAPE ###################

sAPE_matrix = errorMetric(obs=obs, forec=forec, type="sAPE",

statistic="N")

#### Yearly ###

mean( sAPE_matrix[1:645, 1:6] )

#### QUARTERLY ###

mean( sAPE_matrix[646:1401, 1:8] )

#### MONTHLY ###

mean( sAPE_matrix[1402:2829, 1:18] )

#### Other ###

mean( sAPE_matrix[2830:3003, 1:8] )

#### ALL ###
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mean( sAPE_matrix, na.rm=TRUE )

#

############# MASE ######################

AE_matrix = errorMetric(obs=obs, forec=forec, type="AE",

statistic="N")

ASE_matrix=AE_matrix/meanDiff

#### Yearly ###

mean( ASE_matrix[1:645, 1:6] )

#### QUARTERLY ###

mean( ASE_matrix[646:1401, 1:8] )

#### MONTHLY ###

mean( ASE_matrix[1402:2829, 1:18] )

#### Other ###

mean( ASE_matrix[2830:3003, 1:8] )

#### ALL ###

mean( ASE_matrix, na.rm=TRUE )

########################################################

5.5 Final comments

This paper presented the forecTheta package, which contains several functions to be
used for time series forecasting, including an implementation for the Dynamic Optimised
Theta Model, which, by the best of our knowledge, has the best performance for M3
Competition data set presented in the related literature. The estimation and forecasting
processes are made automatically in a very fast way. The forecTheta package is free
available on CRAN and it can be used by any user, lending a hand on the inclusion of
Theta models in forecasting scenarios and applied articles in the field of time series.



6 Conclusion

In this doctorate thesis we provide advances on the time series forecasting theory
which were condensed in four scientific papers. The first reviews time series forecasting-
related literature over the last two decades and includes more than 100 published studies.
Its principal findings include the following:

1. The related literature is increasing, with 4.67 times more studies published in the
last full year reviewed (2014) than in the first (1995).

2. The International Journal of Forecasting is a significant contributor to the literature
as evidenced by its having published 43% of the articles reviewed.

3. The main objective of published paper is propose a new method/model, often one
that takes into account a determined real data set.

4. The majority of proposed new models are classified as neural networks.

5. Exponential smoothing and ARIMA are the most prevalent benchmark methods.

The second paper deduce optimal weights for combine two theta-lines, these weights
are used for construct four stochastic models, which differ due of the parameter of the
second theta line (θ) be taken as optimal or fixed in the standard value (θ = 2) and
the linear regression coefficients be taken as static (At = An and Bt = Bn for all t) or
dynamic functions. The principal model proposed is the Dynamic Optimised Theta,
abbreviated to DOTM, which outperforms all benchmarks models including the Standard
Theta method (STheta) for the M3-Competition data set according by two metrics
(sMAPE and MASE). The DOTM also outperforms STheta according to statistical test
Multiple Comparisons with the Best. This paper is a pre-print version submitted to
International Journal of Forecasting, which is accepted for publication.

In the third paper, the theta method is extended for use three or four theta-lines and
other two extrapolation methods, Holt and Damped. Sufficient conditions are derived to
attain optimal weights to combine any number of theta lines, and optimal weights are
proposed for three- and four-theta-line methods, involving a larger number of parameters
than two-theta-line ones. In order to avoid high computational cost for estimate the
parameters, we proposed estimate the theta parameters through in-sample evaluations of
limited pre-defined values, while the parameter of extrapolation methods are estimated
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traditionally by minimum square errors or by maximum likelihood for stochastic models.
As in the second paper, we tested the approaches for the M3-Competition data set, the
empirical results revels that increase the number of theta lines improve the forecast
performance. The LDDS method with four theta lines extrapolated, respectively, by
linear regression, damped exponential smoothing, damped exponential smoothing, and
simple exponential smoothing attained the best results. This paper is under conclusion
and it will be submitted to scientific journal after the second paper be published.

The fourth paper describes implementation of the forecTheta package for R-
programming, which is freely available from the Comprehensive R Archive Network
(CRAN). The current version includes functions for all developed models of second paper
and the standard Theta method. This paper also includes a simple code to replicate
the DOTM results for the M3-Competion data set. It is under conclusion and it will be
submitted to a appropriate scientific journal after the second paper be published.

This thesis expands and enhances the theory and capacity of the Theta method
through optimal weights, optimal parameters for theta lines, stochastic methods for
two-theta-line models, and an expanded number of theta lines. DOTM is featured as
its most cost-efficient model. To the best of our knowledge, it has attained the best
results for M3-Competition data sets, outperforming all stochastic models reported in
the literature.
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