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Resumo

Nesta tese, estendemos os modelos flexiveis de sobrevivéncia com fragao de cura, tais como os
modelos de sobrevivéncia com fracdo de cura geométricos, binomial negativa e séries de poténcias,
para permitir correlagoes espaciais incluindo fragilidades espaciais para os dados de censura intervalar.
Modelos de cura paramétricos e semi-paramétricos com as fragilidades espaciais independentes e
dependentes sdao propostos e comparados. Os modelos propostos abrangem varios modelos de cura
bem conhecidos como seus casos particulares. Uma vez que estes modelos de cura sao obtidos
considerando que a ocorréncia de um evento de interesse é causada pela presenca de quaisquer riscos
nao observados, estudamos também os modelos de cura complementares, nesse caso, os modelos sao
obtidos assumindo que a ocorréncia de um evento de interesse é causada quando todos os riscos,
nao observados, sao ativados. Uma nova medida de selecao de modelo, baseada no paradigma da
perda do preditivo, para dados de censura intervalar é proposta. Métodos MCMC sao utilizados
em uma abordagem de inferéncia Bayesiana sendo que os critérios de selecao de modelos Bayesiano
sao utilizados para comparacao de modelos. Além disso, realizamos um diagnostico de influéncia
para detectar as possiveis observagoes influentes ou extremas que podem causar distor¢oes sobre os
resultados da analise. Finalmente, os modelos propostos sao aplicados para analisar um conjunto de

dados real de abstencao tabagica.

Palavras-chave: Inferéncia Bayesiana; Fragao de cura; Diagnodsticos de influéncia; Fragili-

dade espacial; Modelos de sobrevivéncia.






Abstract

In this thesis, we extend some flexible cure rate models, such as the geometric, negative
binomial and power series cure rate models, to allow for spatial correlations by including spatial
frailties for the interval censored data setting. Parametric and semi-parametric cure rate models
with independent and dependent spatial frailties are proposed and compared. The proposed models
encompass several well-known cure rate models as its particular cases. Since these cure rate models
are obtained by considering that the occurrence of an event of interest is caused by the presence
of any non-observed risks, we also study the complementary cure model, which arises when the
cure rate models are obtained by assuming the occurrence of an event of interest is caused when
all of non-observed risks are activated. A new measure of model selection, based on the notion of
predictive loss paradigm, for the interval-censoring data is also proposed. The MCMC method is
used in a Bayesian inference approach and some Bayesian model selection criteria are used for model
comparison. Moreover, we conduct an influence diagnostics to detect possible influential or extreme
observations that can cause distortions on the results of analysis. Finally, the proposed models are

applied to analyze a real dataset from a stop smoking study.

Keywords: Bayesian inference; Cure fraction; Influence diagnostics; Spatial frailty; Survival

models.
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Chapter 1

Introduction

With the development of medical and health sciences, the datasets collected from clinical
studies pose some new challenges to statisticians. New statistical models which can incorporate
these changes should be investigated. The most prevalent change noted in many clinical studies
is that, more patients respond favorably to a treatment or, were not susceptible to the event of
interest in the study, so they are considered cured or have prolonged disease-free survival. This
proportion of patients is called the cure fraction. Incorporating the cure fraction in survival models
leads to cure rate models or long-term survival models. These models have been widely developed
in the biostatistics literature. One of the most famous cure rate models is the mixture cure model
introduced by Berkson & Gage (1952). This model has been extensively discussed by several authors,
including Farewell (1982), Maller & Zhou (1996), Ewell & Ibrahim (1997) and Stangl & Greenhouse
(1998). Later, Yakovlev & Tsodikov (1996) and Chen et al. (1999) proposed the promotion time
cure model or bounded cumulative hazard model in cancer relapse settings, assuming that a latent
biological process of propagation of latent carcinogenic tumor cells is generating the observed failure
(relapse). Recently, Cooner et al. (2007) generalized this framework to a flexible class of cure models
under latent activation schemes, Rodrigues et al. (2009b) extend the promotion time cure model
proposed by Chen et al. (1999) through the generating function of a real sequence introduced by
Feller (1968) and Cancho et al. (2011) proposed a flexible cure rate model, that encompasses as
special cases and the mixture model (Berkson & Gage, 1952), the promotion time cure model (Chen

et al., 1999) and the cure rate proportional odds model proposed by Gu et al. (2011).

The second challenge is the existence of incomplete (censoring) datasets. In many clinical
trials, the patients are examined periodically for disease occurrence or progression. In this situation,
the exact failure time of each patient cannot be observed. Rather, it can only be determined to

lie in an interval obtained from a sequence of examination times. This time to event is known as
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the interval censoring (Peto, 1973). The estimation methods available for right censored data, such
as the Kaplan-Meier estimator, are not adequate for application to interval-censored data, because
they can lead to biased estimation and invalid inferences. The interval censorship information should
be taken into account in modeling (Riicker & Messerer, 1988; Lindsey & Ryan, 1998; Sun & Chen,
2010).

Another challenge is appearing with the development of geographic information systems
(GIS) and computing technology. Datasets increasingly incorporate geographical information about
the subjects under study. Adopting a traditional cure rate model by including random effects for
each region fails to consider the correlations of the regions. Therefore, several researchers have
developed survival models that account for spatial clustering and variation. Banerjee et al. (2003)
investigated spatially correlated frailties in traditional parametric survival models. Later, Banerjee &
Carlin (2004) introduced spatially correlated frailties in the parametric cure model. They developed
a Bayesian approach to the mixture cure model (Berkson & Gage, 1952) with spatial random effects
in the survival function for subjects at risk and spatial frailties using a multivariate conditionally
autoregressive (MCAR) prior. Recently, Pan et al. (2014) proposed a Bayesian approach under a
proportional hazards frailty model to analyze interval-censored survival data with spatial correlation.
Li Dan & Dey (2015) proposed flexible cure rate models in analyzing univariate right-censored data
based on the assumption that the logarithm of survival time follows a generalized extreme value

distribution with spatial and nonlinear covariate effects.

Considering these three challenges, there are two main goals in this work. First more flexible
cure rate models that account for spatial clustering and variation should be devolved and investigated
for the censored datasets. Here, we assume two most natural activations schemes, the first and last
activations schemes. The first activation scheme presents the situation where the presence of any
of latent risk will ultimately lead to the occurrence of the event, while the last activation scheme
presents a situation where the occurrence of the event will happen when all latent risks are activated.
Thus, the proposed cure rate models are much more general and encompass several well-known
cure models as special cases, such as some cure models introduced by Banerjee & Carlin (2004)
and others were suggested as future investigations by the authors. To investigate the correlation
between the hazard function and cure fraction, the covariates and frailties are incorporated into both
of them, assuming the spatial frailties can be independent or dependent. The inference procedures

are developed through a Bayesian perspective.

The second goal is propose a new measure for model selection for the interval-censored data,
which measures the performance of a model by how close its predictions are to the observed data.

Compared with the deviance information criterion (DIC) proposed by Spiegelhalter et al. (2002),
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the proposed measure is based on the notion of predictive loss paradigm (Gelfand & Ghosh, 1998;
Ibrahim et al., 2001b) and only a very weak assumption about censoring is made for the computation
of the new measure. Both the DIC and the new proposed criterion are used to compare the models.
Furthermore, we also conduct influence diagnostics in order to check the model assumptions and
conduct sensitivity analysis to detect possible influential or extreme observations that can cause
distortions in the results. Here case deletion influence diagnostics are developed for the joint posterior
distribution based on the ¢-divergence (Peng & Dey, 1995; Weiss, 1996). In this work, the proposed
cure rate models are fitted to a real dataset (smoking cessation data) to illustrate their flexibility.

Thus, we present the dataset in follow the section.

1.1 Smoking cessation data

In smoking cessation study, all of the patients (smokers) were randomized into either a
smoking intervention (SI) group, or a usual care (UC) group which received no special anti-smoking
intervention. The smoking intervention treatment program was conducted in Rochester, Minnesota,
located in the center of the maps. The details of the program can be found in Murray et al. (1998).
Here, each patient was observed once a year over the five year follow-up. Our event of interest is
whether they relapse (resume smoking) or not. If a smoker resumed smoking after an initial attempt
to quit, then only an approximate one-year time interval was observed from the previous observation
to the current observation. Thus, the relapse times are interval-censored. In this analysis, we limit
our attention to those patients who are known to have quit smoking at least once during the study
period and who have an identifiable Minnesota Zip code of residence. Thus, the data consist of
223 patients who reside in 51 Zip codes in the southeastern corner of Minnesota, among them 65
patients having relapsed, which implies the empirical cure rate is approximately 71%. The map of
cities which correspond the Zip codes is showed in Figure 4.2 and the covariate information for each

patient considered in the study are

« intervention type SI/UC (1=special intervention [SI], 0=usual care [UC]);
e sex (O=male, 1=female);
o the average number of cigarettes smoked per day (5 to 60);

o duration of smoking habit in years (12 to 46 year);

To estimate the covariate effects on the success rate of smoking cessation as well as that on

the smoking relapse time. Therefore, all recorded covariates are considered in both the cure rate
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and the PH components of the studied cure models. The Figure 1.1 shows the survival functions
estimated considering the intervals by Turnbull algorithm and using the midpoints of intervals by
Kaplan-Meier method (Kaplan & Meier (1958)). We can note that the estimated curves are similar in
some moments, but they are very different in many other moments. Moveover, it is also can observe
that the curves were stabilized before 0.6, which confirmed the existence of a significant fraction of
cured individuals. Recently, Ma & Xiang (2013) also confirmed the existence of a noneligible cure

fraction in the population.

1.0

0.9
\

S(1)
0.8
|

0.7

—— Using the Intervals by Turnbull algoritm
— ---+ Using Midpoint of Intervals

I I I I I I
0 1 2 3 4 5

0.6

Times (years)

Figure 1.1: Estimated survival functions considering the intervals and its midpoints.

The dataset was also analyzed by Carlin & Banerjee (2003), they developed a Bayesian
approach to the mixture cure model, assuming the failure times due to the latent risks (competing
times) have Weibull and gamma distributions, with spatial random effects in the survival function
for at-risk subjects. They showed that the models through assuming competing times having Weibull
distribution have better fitting than gamma. In this work, we will compare our models with their

models thought the Bayeisan DIC.

The remainder of our text is organized as follows. In Chapter 2, we will present some basic
concepts in the survival analysis. The statistic models which are used in our work, some important
definitions of statistic terms such as censoring and likelihood are described in detail. Moreover,
some well known Bayesian comparison criteria and diagnostic measures based on the -divergence
are also showed. In Chapter 3, we propose two flexible cure rate models for spatial correlations by
including spatial frailties for the interval censored data setting. For the proposed cure rate models,
the Bayesian inferences are developed and the simulation studies are also conducted. To illustrate

the flexibility of proposed models, they are fitted to a real data set (smoking cessation study). In
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Figure 1.2: Cities in which are collected the smoking cessation data.

Chapter 4, we propose the Power Series cure rate survival model for spatially correlated interval-
censored data based on the generalized extreme value distribution. This cure rate model is much
more general than the cure models which are proposed in Chapter 3. A new measure based on
survival function is proposed in Chapter 5. Finally, some general remarks and some perspectives for
future work are listed in Chapter 6. The algorithm used in this work and the prior sensitive analysis

studies are presented in Appendix.



CHAPTER 1. INTRODUCTION



Chapter 2

Basic concepts

This section describes some important results and defines the notations which build the basis
for specific points in the later chapters. Moreover, some parametric models which are used in the

work and its respective characteristics and properties are presented.

We consider a single non-negative random variable 7', representing the lifetime or time to
failure of an individual, usually, it is assumed to be continuous. The probability density function
(p.d.f.) is denoted by f. The cumulative distribution function (c.d.f.) of 7" can be determined by its
probability density function and it is denoted by F'. The survival function of 7" is defined by:

S(t)=PIT > 1] =1— F(t) = /t°° F(s)ds,

which is the probability of an individual to survive until time ¢. It is a continuous monotonically

decreasing function with S(0) = 1 and lim; o, S(t) = 0.

Another important is failure rate function (or hazard function), which specifies the instan-
taneous rate of failure or death of an individual at time ¢, given that it survives until time t. The
function is useful to describe the lifetime distribution of the observations under study, and it is

defined by:
L PRSTL<t4 6T >t f(t)
M= g 5 0]

Sometimes, it is useful to deal with the cumulative hazard function

The shape of a hazard function can take different forms: it can be increasing, decreasing, constant,

unimodal or U-shaped. In applications, it is often have qualitative information about the form of
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the the hazard function, which can be of help in selecting a appropriate model.

The relationship of the functions f, F', S, h and H is

f(s)
(

g S)ds — /Ot exp|—In(S(s))]f(s)ds = In(S(¢))

H(t) = /Oth(s)ds _ /Ot
and

S(t) =1 — F(t) = exp(—H(t)).

These relationships are very useful in the survival analysis.

2.1 Some interesting distributions

Some distributions which are used in the work will be presented as follow section.

2.1.1 Weibull distribution

The Weibull distribution was firstly introduced by Weibull (1939) and then was used in
survival analyze by Weibull (1951). This function is an important generalization of the exponential
model with two positive parameters, there are shape parameter and scale parameter. One of the
main characteristics of this distribution is its flexibility in accommodating different forms in failure

rate. Therefore, it is one of most widely used model in practice.

The random variable 7" has Weibull distribution with shape parameter o > 0 and scale
parameter A\, A € R, denoted by T' ~ Weibull(a, \), and its probability density function (p.d.f.) is
given

ftla, N) = at® Lexp(\ — t%e?), (2.1)

and the corresponding survival and hazard function are given by
S(tla, \) = exp(—t@e?) and h(tla, \) = ae ™!, (2.2)

respectively.

The survival and hazard functions are presented in Figure 2.1, which illustrates that the
hazard function of the Weibull distribution h(t) is strictly increasing for a > 1, strictly decreasing
for a < 1 e constant for « = 1. In this case, T follows an Exponential distribution with parameter

A, which reveals a certain flexibility in the behavior of the hazard function.
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Figure 2.1: (a) Survival function and (b) hazard function of Weibull distribution with A = 0 and
different selected values of a.

The kth moment of the distribution is E[T*] = exp (—%) r (E + 1). So the mean and

variance are thus

E[T] = exp <—2>P<;“)
Var[T] = exp <—?> {F <Z + 1) - [F (; + 1>r}

where T'(z) = [;°t* e 'dt is a gamma function.

The gth quantile of the Weibull distribution, obtained by inverting the cumulative distribu-

tion function of 7', is given by
ty = (= log(1 — gq) /M),

and particularly, the median is t1,, = (log(2)/e*)"/*.

2.1.2 Piecewise exponential distribution

The Piecewise exponential distribution was firstly introduced by Feigl & Zelen (1965) and
then it was used to analyze survival data with multiple covariates by Friedman (1982). The risk
rate of the distribution is constant within each considered time interval. The Piecewise exponential
distribution can be used to be an approximated distribution while the true distribution is unknown

and the approximation becomes better when the length of each interval becomes smaller.

Let 0 =ap < a1 < ... < ag = oo be a partition of the time axis, assuming the risk rate is

constant in each of these intervals. Let the vector @ = (ay,...,a9-1) with0 < a; < ... <ag_1 < o



10 CHAPTER 2. BASIC CONCEPTS

and define ap = 0 and ag = oo. The random variable 7" has piecewise exponential distribution with
parameter A = (A, ..., A\g) and partition vector a, denoted by T' ~ PExp, (), and the corresponding

probability density function (p.d.f.) is given by
FA) = gAgexp{—A(t —ag-1)}, t € (ag-1,a4), ¢=1,...,Q, (2.3)

where

1, if q=1;

R =
exp {~ S Nilai —ai) ), ifg=2,....Q.

The corresponding survival and hazard function are given respectively by

S(tIA) = exp{—i)\qu(t)}, t>0, (2.4)

q=1
h(tIA) = Ap t€ (ag-1,0a4,q=1,...,0Q, (2.5)
where
0, ift < Ag—1;
Aq<t): t—aq_l ifaq_1§t<aq, q:l’Q

ag — ag—1 if t > a,.

q=1 q
and
Q 1 2 )
Var[T] = Z Kq (aq + A) (1 —exp{—As(ag —ag-1)})| — E[TV,
g=1 q
respectively.
Note that the exponential distribution with a parameter A is the particular case of the piece-
wise exponential distribution when A\, = X for ¢ = 1,..., Q. The survival and hazard functions are

presented in Figure 2.2. We selected a = (0.5,1,2,3) and considered four different parameter vec-
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tors, which lead to the hazard function of piecewise exponential distribution has constant, increasing,

decreasing and U shapes.

@ (b)
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Figure 2.2: (a) Survival function and (b) hazard function of piecewise exponential distribution with
different selected values of A.

2.1.3 Generalized extreme value distribution and Log generalized ex-

treme value distribution

The generalized extreme value (GEV) distribution is a family of continuous probability dis-
tributions under the extreme value theory which combine the Gumbel, Fréchet and Weibull families.
It was introduced by Jenkinson (1955, 1969) and recommended by Natural Environment Research
Council (1975) of Great Britain. The GEV distribution has gained popularity in many disciplines,
but its use in survival modeling is relatively new (Li Dan & Dey, 2015). Its flexible hazard function
is the main reason that it has gained attention in survival analysis. Recently, Roy & Dey (2014)
showed that different shapes for the hazard function can be obtained by varying the shape parameter

in the GEV distribution.

The random variable X has GEV distribution with incorporation of location and scale pa-

rameters are given by

1

exp{— (1+§i”>?}, if ¢ #£0,

F(z|p,0,¢) =
(z|p, 0,%) exp{_exp (_%)}’ te o

where 1 € R, 0 > 0 and ¢ € R are the location, scale and shape parameters respectively, and
z, = max(0,z). In the survival analysis, we assume that logT ~ GEV (u,0,<), where T' denotes

time to event of interest, i.e., let T' ~ logGEV (i, 0,s), the cumulative distribution function (c.d.f.)
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of T"is given by

1

exp{— <1+§l°g§_“);§}, if ¢ #£0,

F(t|u,0,¢) =
(t|p, 0,%) exp{—exp(—k’g%)} if ¢ =0,

and the probability density function (p.d.f.) is given

Ult(l—l—gk’{i_“)_i_lexp{— (1+glog;_”>_i}, t>exp(,u—%) if¢ >0, or
f(tlp,o,6) = t<exp<u—%) if ¢ <0,

%exp (—log%) exp{—exp (—log%)}, 0<t<oo if¢=0.
(2.7)

The corresponding survival function and hazard function are given respectively by

1
1—exp{—(1+ql°g§_“)+<}, if ¢ # 0,

S(t|lp,o,¢) =
() 1—exp{—exp(log%)}, if ¢ =0,

and
1

_1 4 -1
L1 4 glostzp) < [ex { 1+ glostzp c}—1} , if¢#0,
bt o) = | 7L FEEE) T e (1), ’

i (1 + glogi%) {exp {exp (—log%)} — 1]_1 , if¢=0.

The survival and hazard functions are presented in Figure 2.3 and 2.4. We fixed location
parameter ;1 = 0, scale parameter ¢ = 1.0 and o = 1.5, the shape parameter ¢ are selected 1.5, 0.5,
0.0 and —0.5 four different values. We note that the hazard function of logGEV distribution has
increasing, decreasing, bell and U shapes. Inasmuch as in many practical situations, especially in
cancer related studies, the hazard function is not monotone, the logGEV distribution could be more

adequate than the usual parametric distributions, such as Weibull and Gamma distributions.

(a) (b)
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Figure 2.3: (a) Survival function and (b) hazard function of logGEV distribution with © = 0 and
o=1.



2.1. SOME INTERESTING DISTRIBUTIONS 13

(@) (b)

1.0

0.8

0.4

0.2

0.0
|

Figure 2.4: (a) Survival function and (b) hazard function of logGEV distribution with p = 0 and
o=15.

2.1.4 Gamma distribution and inverse gamma distribution

The gamma distribution was firstly introduced by Pearson (1895). It includes the exponential
distribution and chi-squared distribution are special cases. The gamma distribution is of limited use
in survival analysis because the gamma models do not have closed form expressions for survival and
hazard functions. Both include the incomplete gamma integral. Consequently, traditional maximum
likelihood estimation is difficult and requires the calculation of such incomplete gamma integrals,

which imposes additional numerical problems in parameter estimation.

The random variable T" has gamma distribution with shape parameter a@ > 0 and rate
parameter (inverse scale parameter) § > 0, denoted by 7" ~ Gamma(a, ), and its probability
density function (p.d.f.) is given

/BOC

f(tla, B) = @t‘l—l exp(—3t), t>0, (2.8)

and the corresponding c.d.f. and hazard function are given respectively by

v(a, ft)
I'(a)

and h(t|la, A) = peie T exp(=ft) (2.9)

P(a) = ~(a, ft)

F(tjor, \) =

where v(s,z) = [5t*"te~'dt is the lower completed function and I'(z) = [;°t* e 'dt is a gamma

function.

The mean and variance of gamma distribution are

and Var[T] = °

E[T] = 5

@
B
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The probability density function and cumulative distribution function of gamma distribution

are presented in Figure 5.3.1.
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Figure 2.5: (a) Probability density function and (b) cumulative distribution function of gamma
distribution with different selected values of a and .

A random variable T takes the inverse gamma distribution with parameter shape a and scale
S if 1/T has the gamma distribution with shape parameter o and scale parameter 1/5. The p.d.f.
of the inverse gamma distribution is given by

/30[
I(a)

ftla, B) = t—*texp(—pt™Y), t >0, (2.10)

and the corresponding c.d.f. and hazard function are given respectively by

 T(e, Bt Bt lexp(—ptTY)
F(tla,\) = T and h(tla, \) = (1 - F(?,(Bof)*l)) (o)’ (2.11)

where T'(s,z) = [2°t*"te~!dt is the upper completed function and I'(z) = [3°t* 'e~'dt is a gamma

function.

The mean and variance of the distribution are

62
(= 1)*( = 2)’

ET) = b a>1 and Var[T] =

> 2.
a—1’ @

The probability density function and cumulative distribution function of inverse gamma

distribution are presented in Figure 2.6.

In Bayesian statistics, the inverse gamma distribution is the conjugate prior of the unknown

variance of a normal distribution. It is usual to set a low value for its parameters such as 1 or 0.01
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Figure 2.6: (a) Probability density function and (b) cumulative distribution function of gamma
distribution with different values of a and S.

or 0.001 in order to let it be an weakly informative prior distribution.

2.1.5 Wishart distribution

A Wishart distribution was introduced by Wishart (1928). It is a generalization to multiple
dimensions of the chi-squared distribution, or, in the case of non-integer degrees of freedom, of the
gamma distribution. This distribution is very important in the estimation of covariance matrices in

multivariate analysis.

Let X;,i=1,...,n be a p-dimensional random vector, which is independently drawn from
a p-variate normal distribution with zero mean and symmetric positive definite covariance matrix
Ay (X; ~ N,(0,Ap)). Then the Wishart distribution is the probability distribution of the p x p
symmetric positive definite random matrix S = >1% X" X;, denoted by S ~ W, (ng, Ag), with scala
matrix Ay and degrees of freedom n > p. The p.d.f. of Wishart distribution is given by

2 1
£(8) = sp e e {5 0(A 1)} (212)

p(p*)p 1—9
0 (3) = I (55

If p =5 =1 then this distribution is a chi-squared distribution with ny degrees of freedom.
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The mean and variance of the distribution are
E[S] = TLOAO and Var[S,-j] = nO()‘(%ij + )\Oii>\0jj),

respectively, where \y;; denotes the element of Ay matrix in (¢, j) position.

In Bayesian statistics, it is the conjugate prior of the precision matrix (inverse covariance-
matrix) of a multivariate normal distribution. The least informative, proper Wishart prior is obtained
by setting ng = p. The prior mean of W,(ng, Ag) is noAg, suggesting that a reasonable choice for

Ay would be nXy, where ¥ is some prior guess for the covariance matrix.

2.2 Interval Censoring

Censoring is one of the main characteristic that distinguishes survival analysis from other
fields of statistics. Basically, a censored observation contains only partial information about the
variable of interest. There are different types of censoring, here we consider an interval censoring
in the study. We now briefly describe the some types of interval-censored data considered in this

section.

"Case 1" interval censoring or current status data.

Let T be the unobservable failure time and suppose that L is an examination time (or
observation time). Then suppose that an observation consists of the random vector (A, L) where
A = 1ip<z). In this case, the only knowledge about the "failure time" T is whether it has occurred

before L or not.

"Case 2" and "Case k" interval censoring.

In the "Case 2" interval censored data, we only know that the unobservable failure time
T has occurred either within some random time interval, or before the left end point of the time
interval, or after the right end point of the time interval. More precisely, suppose that there are two

examination (or observation) times L and R , the data observed is

(L, R, A1, Ao, As) = (L, R, Lir<p)s Lin<r<r), Lirsn),
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Note that A3 = 1 — A; — As. In the particular situation that 7' has occurred either within some
random time interval or after the right end point of the time interval, the data observed can be

denoted as

(L, R, A1, A) = (L, R, Lip<r<r), LiT>R),

it also equivalent

(L7Ra A) = (L7R7 1[R<oo]>

A "Case k" interval censoring arises when there are k examination times per subject, which is a

generalization of "Case 2" interval censoring (see Wellner (1995)).

Particular situation of "Case 2" interval censored data with latent com-

peting risks.

In this case, we assume that the event of the interest (failure) occurs due to the several
latent (non-observed) competing risks. In practice, there are three most popular situations. The
first one is the event of the interest occur if any of latent risk is activated; the second one is the
event of interest occur if all of latent risks are activated, and the last one is the event of the interest
occur if one random latent risk is activated. Here, we suppose the time to event (failure time) 7" has
occurred either within some random time interval or after the right end point of the time interval,

ie., L<T < RorT > R. Thus, the data observed in this case is

(L,R,A) = (L, R, Ljcr<p)) = (L, R, 1[reo))-

2.3 The likelihood functions

We assume that the examination times are independent of the failure time and that their
distribution is independent of the distribution function of the failure time. With these conditions,
the joint densities and the likelihood functions for the given types of interval-censored data will be

presented follow.
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"Case 1" interval censoring

Let T be a failure time with distribution F and L be an observation time with distribution

G. The joint density of a single observation (,0) is given by

FQ)° (1= F(1))g(1),

where ¢(l) is the density of L.
Proof: For a single observation, we have two cases A = 1 and A = 0. We first consider

A=1

P(L<IL,A=1) = P(L<I,T<L)

= / P(L<I,T <L|L =s)dG(s) (conditioning on L)
R
l

_ / P(T < s|L = s)dG(s)
!

= / P(T < s)dG(s) (using independence of T and L)

= /loo F(s)dG(s).

We obtain the corresponding density by differentiating with respect to [. Assuming that G had a
density g. Using the integration by parts we have

/_l _F(9)dG(s) = F(s)G(s)|_o — f _f(£)G(s)ds
= FOGQ) - /l f(s)G(s)ds.

—0o0

Thus,

fla=1) =
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Similarly, considering A = 0 we have

P(L<IL,A=0) = P(L<I,T>1L)
= / P(L <1,T > L|L = s)dG(s) (conditioning on L)
R

l
::/ P(T > s|L = $)dG(s)
!
= / P(T > s)dG(s) (using independence of T" and L)

:(ﬁwu_ww@megy

Using the Integration by parts, we obtain

fLa=0) = 9 1o F(s)da(s) = (1~ FI)o()

Combining the terms for A =1 and A = 0, we get the following density for one observation:

[FDgI' 11 = FD)g())' =" = FO)° (1L - F(1)'g(). O

Note that this density again factors in a part depending on F' and a part depending on ¢g. Since
G and g do not involve any of the parameters in F', they can be neglected. Hence, the likelihood

function L, of a random sample (l,6;), ..., (l,,d,) is given by
Lo = TLF) (1 — R (213)
i=1
Note that the likelihood function L, (F') also can be rewritten in terms of observed sets as
L, = f[lPF(Ri),
where

7

0,1], ifé =1

and Pr(R;) denotes the probability that 7' € R; under distribution F' for ¢ = 1...,n. Now we can

derive the likelihood in a slightly simpler way by observing that

P(A=1|L=1) = P(T<L|IL=1)=P(T<L)=F(),
P(A=0|L=1) = P(T>L|IL=1)=P(T>L)=1-F(l).

Hence, A|L is a Bernoulli random variable with parameter F'(L). It then follows that the density of
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one observation is

exactly as we found before.

2.3.1

"Case 2" interval censoring

CHAPTER 2. BASIC CONCEPTS

P(A = §|L = 1)g(])

Let T be a failure time with distribution F and (L, R) (with L < R) be a pair of observation

times with the joint distribution G. The joint density of a single observation (I, r,d1,ds,d3) is given

by

F)™ [F(r) -

F)™(1 -

F(r))'~*g(l,r)

where g(I,r) is the joint density of (L, R) and 05 = 1 — d; — 0».

Prove: In this case, we have three situations which are T'< L, L <T < Rand T > R with

the probabilities

and

plzp(AlzlyL:l,R:T) =

P(T<LIL=I1,R=r)

= P(T<|L=1,R=r)

(
(

= P(I<l)
(),

|
e

p2:P<A2:1‘L:l,R:T’) =

p3:P<A3:1‘L:l,R:T> =

(using independence of 7" and (L, R))

P(T>R|L=1,R=r)

= P(I'>r|[L=1,R=r)

= P(T'>r)

= 1-F(r),

(using independence of T" and (L, R))
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Hence, A|L, R ~ Multinomial(1, p1, ps, ps) with p; + ps + p3 = 1. It then follows that the density of

a single observation (I, 7,4y, d2,d3) is given

P(A = (01,02,03),L=1,R=7r) = P(A=(01,02,03)|L=1,R=r)g(l,r)
= F(I)""(F(r) = F())*(1 = F(r))®g(l,r),

where 51 + 52 + 53 =1. O

Since G and g do not involve any of the parameters in F', they can be neglected. Hence, the

likelihood function of a random sample (I1, 71,11, 021), - - -, (In, 'n, 010, 92 is given by

L, = ﬁ F(li>§1i(F<Ti) — F(li))‘b"(l _ F(T’i))(l_éli_‘s%),

=1

Note that when we assume that T has occurred after the first examination time L, we just have two
situations which are T' € (L, R] and T' € (L, 00) which is equivalent to verify whether R < oo or

R = oo. Let A = 1jp«7<Rr] = l{r<c], the probabilities of these situations are given by:

m=PA=1L=l,R=r) = P(L<T<R|IL=IL,R=r)
= Pl<T<r|[L=IlR=r)
= P(<T<r) (usingindependence of T and (L, R))
= F(r)=F()

and

pp=PA=0L=IR=r) = PIT'>LIL=1,R=r)
= PIT>IlL=IR=r)
= P(T >1) (using independence of T"and (L, R))

= 1-F().
Hence, the density of one observation is

P(A=0,L=1,R=r) = P(A=J4L=1,R=r)g(l,r)
= (F(r) = F()’ (1= F(1))"g(l,7).
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The likelihood function of a random sample (I1,71,61), ..., (4,7, d,) can be written as

Lo = TI(F(r) = F(1)) (1 — F(1)1=.

i=1

Interval censored data with latent competing risks

Let M denote the number of latent risks and assume that M has a known discrete distribution
with the p.d.f. denoted by P(M = m). Let Y; for j = 1..., M denote the failure times due to the jth
latent risk and we assume that given M = m, Y}’s are i.i.d with a distribution F(-) =1 — S(-). The
time to event of interest (failure time) which is defined by random variable 7" = Y(g-y, for M > 1
and T' = oo if M = 0 with P(T" = oco|M = 0) = 1, where Y- is the Rth statistic order and R*
can indicate resistance factors of the immune system of the individual in many biological processes.
It can be a fixed constant, a function of M or a random variable specified through a conditional
distribution on M. In this work, we deal with two specifications for R*, there are R* = 1 and

R* = M.

The survival functions of the random variable T' considering R* = 1 (ie., T = Y3y =

min{Y;,j =1,..., M}) is given by

Spop(t) = P(T > 1) = 3 S(t)" P[M = m). (2.14)

m=0

Proof:

Spop(t) = P(T >1t)
— Y P(T > M = m)P(M = m)

= P[T> M =0P(M =0)+ " P(T > t|M = m)P(M = m)

m=1

= P(M=0)+ i Pmin{Y;,j=1,....,m} > t|{M = m|P(M =m)

= PM=0)+ > PYi>t,....Y, >yM=m]P(M=m)

m=1

= P(M=0)+ i P[Y1 > t]"P[M = m]

m=1

:pw:m+iﬂWﬂM=W

= > S@E)"P[M =m).

m=0
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The survival functions of the random variable 7' considering R* = M (ie., T = Y =

max{Y;,j=1,...,M}) is given by

Spn(t) = P(T > 1) = 1 + PM fj F(t)" P[M = m]. (2.15)
Proof:
Spop(t) = P(T'>1)
= 3 P> M =m)P( = m)
_ PET > t|M = 0]P(M = 0) + il P(T > t|M = m)P(M = m)
— PM=0)+ Y Plmax{Y.j = 1,....m} > t|M = m]P(M = m)

m=1

= P(M=0)+ i(1—P[maX{Yj,j:1,...,m}§t|M:m])P(M:m)

- P(M:O)+i(1—P[Y1gt,...,YmSylM:m])P(M:m)
i fjpqump[M m]

= P(M=0)+1—P(M= fjpqumP[M m
= P(M:0)+1—§:F(t)mP[M:m]

e}

= 1+P(M=0)- > F@O)"PM=m].

Assuming T" independent on the observed failure times (L, R) with the joint distribution G,

the joint density of a single observation (I,r,d) is given by

(Spop(l) — SPOP(T))55POP(Z)1_69(Z7 r),

where ¢(l,7) is the joint density of (L, R).

Proof: In this case, we have two situations which are L < T < R and T > R with the
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probabilities

p = Pld=1L=[R=r]
= Y Pl6=1M=m,L=1,R=r]P(M =m)

m=0

— S P[L<T<RM=m,L=1,R=r]P[M=m]
m=0

(using independence of T" and (L, R))
= Y Pl <T<r|M=m]PM=m]

— N PIT <M =mPM =m]— Y P|T < |M = m|P[M = m]
— S P[Ts UM = mlP[M =m]— Y P[T> r|M = m|P[M = m]

= Spop(l) = Spop(r)
and
ps = PIo=0|L=1,R=r]
S P =O0[M =m,L—1,R = r]P(M = m)

m=1

= Y P[T>LIM=m,L=1,R=r]P(M=m)
m=0
(using independence of T" and (L, R))

= Y P[T>IM=m]P(M=m)

m=0

= Spozv(l)-
Hence, the density of one observation is

PIA=J4|L=1,R=r] = P[A=46L=I1,R=rlg(l,r)

(Spop(l) — SPOP(T))(S(Spoz)(l))l_ég(la r).

Since G and g do not involve any of the parameters in Sy,,, they can be neglected. Thus, the

likelihood function of random sample (I1,71,01),. .., (ln, 7, 6,) is given by

H (Sp0p<li> - SpOp(”))éi (Spozv(li))k& : (2' 16)
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2.4 Cure rate model

With the development of medical technology, in many clinical cancer studies, some patients
can return a normal life after a treatment, i.e, there is a percentage of patients will not occur the
event of interest after a long follow-up period of the study. In this situation, the usual survival
models, assumed that all individuals occur the event of interest after a long follow-up period, are not
adequate to fit this kind of data set. Alternatively, the cure rate models (also known as the survival
models with cure fraction), which assume that a significant fraction of individuals will not occur the
event of interest even after a long follow-up period of the study, can be used. In the literature, a
percentage of individuals will not occur the event of interest is known as a cure fraction. There are
many cure rate models have been widely developed. The reference papers are Maller & Zhou (1996),
Ibrahim et al. (2001a), Tsodikov et al. (2003), Cooner et al. (2007), Tournoud & Ecochard (2007),
Lopes et al. (2012), Rodrigues et al. (2009a), Cancho et al. (2009), Cancho et al. (2011), Rodrigues
et al. (2010a) and Rodrigues et al. (2010b). In this section, some principal cure rate models will be

presented as follow.

Mixture cure rate model

Perhaps the most popular type of cure rate model is the mixture cure model introduced by

Boag (1949) and Berkson & Gage (1952). In this distribution, it is assumed that a certain proportion

of the individuals are cured. The survival function for the population of the mixture cure model is
given by

Spop(t) = po + (1 — po)S(t), (2.17)

where pg is the cure fraction (that is, proportion of the cured individuals) and S(t) is the survival
function of the non-cured (or susceptible) individuals. Note that this model also can be introduced
under structure of latent competing risks, assuming M has a Bernoulli distribution with the suc-
cess parameter 1 — pg. The survival function of the non-cured individuals S(t) can taken different
approaches such as parametric, semi-parametric and non-parametric (Maller & Zhou, 1996; Peng,

2003; Lu, 2010).

Although the mixture cure model is widely used in the literature, it has some disadvantages
which were commented by Chen et al. (1999). First, in the presence of covariates, it does not have
the proportional hazard structure; Second, If covariates are included in the cure fraction through
a standard binomial regression model with the improper priors for the coefficient parameters, the
posterior distributions of the parameters will be improper, i.e., the mixture cure model requires

proper priors distributions in the Bayesian inference.
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Promotion time cure model

Later, the promotion time cure model has been proposed by Yakovlev & Tsodikov (1996)
and Chen et al. (1999) as an alternative cure rate model with desirable properties. The cure model
was derived in a context in which relapse occurs in patients with cancer. Let M; denotes the number
of latent risk (in the cancer study, M; denote the number of carcinogenic cells in the beginning of
a treatment) for ith individual, and assume that A/; has Poisson distribution with mean 6. Let Y;
for 7 = 1,..., M; denote the failure time due to the jth latent cause, that is, the time until jth
carcinogenic cell produces a detectable cancer. Suppose that given M, the random variables Y; are
independent and identically distributed (i.i.d.) with c.d.f. F'(-) = 1—S(-) and the presence of any of
latent risk (i.e., M; > 1) will ultimately lead to the occurrence of the event. Thus, the time to event
of interest (time to detect cancer) is defined by random variable 7" = min{Y;,7 = 0,--- , M;} where
P(Yy = 00) = 1. Using the equation (2.14) and M; ~ Poisson(f), the survival function of promotion

time cure model for the population is given by

Slt) = 30 Sty
pop - — m‘
= (S
N mzzo m!
o—005(1)
_ o 0F)

The corresponding p.d.f. and hazard function of T" are given by

Foop(t) = 0f (t)e 7O and pop(t) = O£ (1), (2.18)

respectively, where f(t) = 2 F(t).

A cure fraction of the promotion time cure model is given by

Spop(00) = lim S, (¢) = lim e ™70 = 70, (2.19)

t—o00 t—o00

It is easy to note that this model belongs to the family of Cox proportional hazards models (Cox,
1972). Suppose two individuals, say i and j, have the parameters associated with the cure fractions

given by 0; and 0}, respectively. Thus,

0;) 0. f(t) 6;

Pyt
hyes(116;) — 0,7(2) 6,

pon
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does not depend on the time t.

Complementary promotion time cure model

The promotion time cure model assumed that the presence of any of latent risk will lead to
the occurrence of the event. Now, we assume the other situation that the occurrence of the event
will be occur when all of the latent risk are activated. Using the same definitions for M; and Y; as
above, now the time to event of interest is defined by random variable 7" = max{Y;,j = 1,--- , M,}
for M; > 1 and T = oo if M; = 0 with P(T = oo|M; = 0) = 1. Similarly, using the equation
(2.15) and M; ~ Poisson(0), the survival function complementary promotion time cure model for

the population is given by

Spp(t) = 14+ PM=0]— S F(t)"P[M = m)]
0o m:Oe—Gem
= 1+e =Y F@O)"

m)!
R ()

— 1 o -0 (
+e e mz::oim!

= 14— 00

= e’ —e 0.

The corresponding p.d.f. by and hazard function of T" are given by

B Qf(t)e_es(t)
Fon® = 01050 and Ry(t) = s (220
respectively, where f(t) = 2 F(t).
A cure fraction of the complementary promotion time cure model is given by
Spop(00) = Jlim Spop(t) = tllglo 14e ¥ —e 050 = ¢ (2.21)

Note that it is the same as the cure fraction of the promotion time cure model.
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Geometric cure rate model

Let M; denote the number of latent risk for th individual, and assume that M; has geometric
distribution with 1/(1 4 ), the probability mass function is given by

em

P(Mi:m):m,

m=0,1,2---, (2.22)

where 6 > 0, E(M;) = 0 and Var(M;) = 6(1 +6). Let Y for j = 1,..., M; denote the failure time
due to the jth latent cause, that is, the time until jth carcinogenic cell produces a detectable cancer.
Suppose that given M;, the random variables Y; are independent and identically distributed (i.i.d.)
with c.d.f. F(-) =1 — 5(-) and the presence of any of latent risk (i.e., M; > 1) will ultimately lead
to the occurrence of the event. Thus, the time to event of interest is defined by random variable
T =min{Y;,j=0,---,M;} where P(Y; = 0o) = 1. From (2.14), the survival function of geometric

cure model for the population is given by
Spop(t) = [1 4+ 0F ()] ". (2.23)

Note that this survival function has a proportional odds structure when covariates x; are modeled

via 6;(x;) and the latent survival F(t;) is free of x;, because

1— Sp0p(ti|wi>
Spop(tilmi)

= 0;(x;)F(t;).

Recently, Gu et al. (2011) studied the geometric cure model under the proportional odds structure
and renamed the geometric cure model as the cure rate proportional odds (CRPO) model. Unlike the
model proposed by Chen et al. (1999), the ratio of hazards for the CRPO model for two covariante

values does not remain over time.

The corresponding p.d.f and the hazard function associated to (4.2) are given by

Foon(t) = 0 (ti) [L+OF ()] and  hye(t) = 0f (1) [L+0F(1)] ",

respectively, where f(t) = 2 F(t).

Note that, the survival function in (4.2) can also be written as a mixture cure model

Spop(t) = (1+8)™" + (1 - (1+6)"") { [L+0F @]~ (1+6)! } |

1-(1+6)1
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Thus, the survival functions of uncured (susceptible) individuals can be expressed by

14+ 60F@)] " — 1+ 0)*1’

Sousll) = (159

29

If we assume another situation in which the presence of all latent risks will ultimately lead to

the occurrence of the event, then the time to the event of interest is defined by the random variable

T =max{Y;,j=1,---,M;} for M; > 1 and T = oo if M; = 0 with P(T" = oo|M; = 0) = 1. The

survival function for the population is given by
Spop(t) =1+ (1+0) —[14+65(t)]".
The corresponding p.d.f. and the hazard function are given by
Foon(t) = 055 f(H)(1 +05()) 77,

and
_ bf) L +esty)]
1+ (140) = (1+0S(1) Y

hPOP <t>

respectively. The survival function (4.4) can also be written as a mixture cure model

Spop(t) = (1+6)"" + (1 —(1+ 9)—1) {1 — (14 95(75)3’1 } |

1—(1+40)
Thus, the survival functions of susceptible individuals is given by

1—(1+60S5() !
Sous() = I-(1+0) " °

2.5 Frailty model

2.5.1 Introduction

(2.24)

Ordinary methods in survival analysis assume the populations are homogenous, that is,

assuming the lifetimes of each individual are mutually independent with same distribution, which

imply that all individuals have the same risk of death. Although this assumption is valid for many

studies, it can be inadequate for others. In many situations, the lifetime data are observed as repeated

measurements or collected from several clusters, such times within each cluster cannot be mutually

independents. For example, the behavior of the observed lifetimes between members of the same
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family displays certain similarities that would not be observed among individuals without family tie.
Therefore, in this case, it is reasonable to assume that there is an association between the lifetimes
of the same cluster. This association between the lifetimes characterizes multivariate lifetimes data.

A frailty model is commonly used in this context to consider this association.

A frailty model also can be used for univariate (independent) lifetimes. In this case, each
individual has its own frailty, which has different meaning of the frailty in the multivariate context.
Here, the frailty is a heterogenous measure of the individuals, while in multivariate survival is also a
measure of association. In this chapter, the univariate and multivariate frailty will be presented in

the following sections.

2.5.2 Univariate frailty model

Situations in which each individual has its own frailty component, which could be seen as
the special case in which all groups or families have unitary size, characterize univariate survival
data. The supposition that individual has its own frailty component is not difficult to justify. In the
medicine study, for example, the argument that individuals are inherently different is widely accepted.
Two individuals with exactly the same values of the covariates are not expected to experience any
medical response at exactly the same time. There are no observable biological variations, such as

genetic factors with respect to one disease.

Considering the situation the heterogeneity of individuals affect the observed survival data,
a frailty (or random effect) was introduced in the hazard models. Vaupel et al. (1979) introduced
the concept of frailty to the biostatistical community and applied it to population mortality data.
Lancaster (1979) dealt with times of unemployment and introduced the model to the econometric
literature, where the model is known as the mixed proportional hazards model. The classical and
most frequently applied model assumes a proportional hazards structure that is conditional on the
random effect (frailty). To be more specific, the hazard function of an individual depends on an
unobservable, time-independent random variable Z. In the multiplicative hazards framework, which

has been used in most survival data studies, Z acts multiplicative effect on the baseline hazard

function hg. The frailty model without observed covariates for the individual ¢ (i = 1,...,n) is given
by
where the z,...,z, is a sample of random variables Z;,..., 7, ii.d. with a known distribution

with mean one and unknown variance o?. The variance (if it exists) is interpretable as a measure of

2

heterogeneity across the population in baseline risk. When o~ is small, the values of Z are closely
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located around one. If o2 is large, then values of Z are more dispersed, inducing greater heterogeneity
in the individual hazards Zhg(t). It is natural to introduce observed covariates into model (2.25)
similar to the Cox model by

hi(tlas, =) = zho(t) exp(a] ), (2.26)

where (3 is the regression parameters vector associated to covariates a;. Consequently, a frailty model
is a generalization of the well-known proportional hazards model. The proportional hazards model
is obtained if the frailty distribution degenerates to Z; = 1 for ¢ = 1,...,n. In this case, the frailty
not only explain the heterogeneity of the individuals but also evaluate the effect of covariates that
were not observed at the time of the experiment for some reason, and thus were not included in the

analyzes.

Various probability distributions have been proposed in the literature for the frailty variables.

Next, we will present the gamma distribution which is used in the work.

The gamma distribution has been widely applied by several authors (Vaupel et al. (1979),
Lancaster (1979), Hougaard & Hougaard (2000) Duchateau & Janssen (2007)). From a computational
and analytical point of view, it fits very well as a mixture distribution to failure data. It is easy to
derive the closed-form expressions of unconditional survival, cumulative density, and hazard function,
which is due to the simplicity of the Laplace transform. This is also the reason why this distribution

has been used in most applications published to date.

Let Z;, i = 1...,n be random variables with the gamma distribution presented in Section

5.3.1, i.e., Z; ~ Gamma(a, (), considering the parameters a = 3 = =1, the p.d.f. of Z; is given by

f(z) = <’17>/)nz$1 exp (—Z> 23>0, (2.27)

Note that E[Z;] = 1 and Var[Z;] = n. Thus, n can be viewed as a way to quantify this frailty. If
n =0 (i.e, Var[Z;] = 0) all of the frailty variables Z; = 1, for all i = 1,...,n, that is, the gamma

distribution is degenerate in 1.

Promotion time cure model with fragility

The promotion time cure model presented in Section 2.4 is assumed that conditional on the
number of latent risks M; = m, the random variables Y7,...,Y,, are mutually independent. This
assumption may be unrealistic, because Y7, ...,Y,, are not observed random variables taken on the
same subject. One possible relaxation and remedy of this assumption is to introduce a subject-

specific frailty Z; such that conditional on both M; = m and Z; = z, Yi,...,Y,, are mutually
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independent with distribution function F(-). Moveover, we assume that conditional on Z; = z, M;
has a Poisson distribution with rate z6, thus Z; presents the heterogeneity of the Poisson rates in
the M;’s. Following the same derivation as before, we then obtain the survival function of time to
event, T, is

Spop(t) = Ez, [exp{—0F (t)z}],

where 7, denotes the expectation with respect to Z;. Assuming the Z; has a gamma distribution

with its p.d.f. presented in (2.27), then we have

Spozo(t) = Egz [exp{—0F(t)z}]

O GO (2 vorn) )

(2+ eF(t))l/"
= (L+noF (). (2.28)

Note that this cure rate model is the same as the of model which was proposed by Rodrigues
et al. (2009b). The cure rate model can also called Negative Binomial cure rate model, because it
can be proposed similarly to Chen et al. (1999). Let M; denote the number of latent risk for ith
individual, and now assume that M; has negative binomial (NB) distribution with parameters 6 > 0
and n > —1/6, i.e., E[M;] = 0 and Var[M;] = (1 +n). Let Y; for j = 1,..., M, denote the failure
time due to the jth latent cause. Suppose that given M;, the random variables Y; are i.i.d. with c.d.f.
F(-) = 1—5(-) and the presence of any of latent risk (i.e., M; > 1) will lead to the occurrence of
the event. Thus, the time to event of interest (time to detect cancer) is defined by random variable
T = min{Y;,j = 0,---, M;} where P(Y; = oo) = 1. From (2.14), the survival function for the

population can be written as

Suplt) = 32 (L (LI gy

Ly ST 4 m) (98S()\”
= ey (17z<n)m! )<717+§7£>

= (L+n0(1 = S(t)~"/"
= (L+n0F(t)".

m=0
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The corresponding p.d.f. and hazard function of 7" are given by
Jpop(t) = 0f(t)(1 + 977F(t))—(1/n+1)

and
hpop(t) = 0 (t)(1 4+ OnF (1)),

respectively, where f(t) = %F (t). Its cure fraction is given by

Spozo(oo) = lim SpOp(t) = tliglo(l + 7795(15))_1/" =(1+ 779)_1/77-

t—o00

Note that some special sub-models can be obtained if we set some special values for the parameter
n. For n — 0 we have the promotion time cure model and if n = 1, we obtain the geometric cure

rate model given in Section 2.4.

Complementary promotion time cure model with fragility

Similar to above case, we introduce a frailty Z; to the complementary promotion time cure
model, such that conditional on both M; = m and Z; = 2, Yi,...,Y,, are mutually independent with
distribution function F(). Assuming conditional on Z; = z, M; has a Poisson distribution with rate
260 and Z; has a gamma distribution with its p.d.f. presented in (2.27), the survival function of time

to event, T', is given by

Spop(t) = Ly, [1 +e 0% _ e—GS(t)z]

B ) B (R 0) BT A |
(2 +05)" /0 () ' ( <77 : 05(t>) ) ’
= 1+ (14n0)"Y"— (1 +n0S@t)) " (2.29)
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Similarly, we called this model as complementary negative binomial cure rate model. Assuming the
number of latent risk M; has the negative binomial (NB) distribution with parameters § > 0 and
n>—1/6. Let Y; for j = 1,..., M; denote the failure time due to the jth latent cause. Suppose that
given M;, the random variables Y; are i.i.d. with c.d.f. F(-) =1 — S(-) and the presence of all latent
risks will lead to the occurrence of the event. The time to event of interest is defined by random
variable 7' = max{Yj,j = 1,--- , M;} for M; > 1 and T' = oo if M; = 0 with P(T" = oo|M; =0) = 1.
Using the equation (2.15) and M; ~ N B(#,n), the survival function for the population can be written

as
Yym) (om0 \™ _
Spop(t) = 1+ (1+n0) 71— 3 Fym LU 1+ 6) /7
bon(1) + (1 +n0) Z X0 <1+n9) (1+n0)
_ iy = Dt +m) (mOF(t)\™
= 14+ (1 +n0)"Y"— (1 +ne)~1n
(1+nf) (1 +n0) mzz:o L'(n)m! 1+n6
= 1+ (1+n0)""— (1401 — F(t))" "/
= 14+ 1 +n0)~Y"—(1+n0S@t))~ /.
The corresponding p.d.f and hazard function of T are given by
Foop(t) = 05 (£)(1 + 00 S (1)),
and
(1) = B0+ 0gS(1) e
PP L (L4 0n)~Yn — (14 0nS(t))-Yn’
respectively, where f(t) = %F (t). Its cure fraction is given by

SPOP(OO) = }g& SpOp(t) = tliglo 1+ (1+ 770)_1/" —(1+ 7795@))_1/" =(1+ 770)_1/77-

Note that if we set n — 0 we have the Complementary Promotion time cure model presented in
Section 2.4 and if n = 1, we obtain the Complementary Geometric cure rate model or Complementary

cure rate proportional odds model.

2.5.3 Multivariate frailty models

There are several approaches have been proposed in the literature for analyzing multivariate
survival data (Therneau, 2000). Frailty models are classified in the conditional approach, which
assume that the lifetimes are conditionally independent given the frailty. This approach is commonly

used for modeling the problem of multivariate survival data characterized by the presence of clusters.
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One of most popular model in modeling the association between survival times of individuals within
each cluster is the shared frailty model. In this case, a frailty is shared in each cluster, that is, the
individuals who are in the same cluster have the common frailty. A shared frailty model in survival

analysis is defined as follows.

Suppose there are m clusters and that cluster ¢ has n; observations and associates with the

unobserved frailty Z; for i = 1,...,m. The vector X;;, j =1,...,n; and i = 1,...,m contains the

iJ
covariate information of the event time 7T;; of the jth observation in the ith cluster. Conditional on
the frailty variance Z;, the survival times in cluster ¢ are assumed to be independent and their hazard
functions to be of the form

hij = ziho(t) exp(z,;B), (2.30)

where ho(t) denotes the baseline hazard function, and S is the regression parameters vector (fixed
effect parameters vector) to be estimated. The frailties Z; (i = 1,...,m) are assumed to be indepen-
dently and identically distributed random variables with the known distribution function with mean

one and some unknown variances. Note that the equation (2.30) also can be written as
hij = ho(t) exp(x;;8 + W), (2.31)

where W; = In(z;), is assumed to be independently and identically distributed random variables with
the a distribution function with mean zero and some unknown variance, so that the proportional
hazards model can be obtained if variance has value zero. One of most used model is the normal

distribution with mean zero and unknown variance o2 i.e., W; ~% N (0, 0?).

In this work, we consider frailty (random effect) corresponding to clusters that are spatially
arranged. While it is possible to identify centroid of geographic regions and employ spatial process
modeling for the locations, the effects are more naturally associated with areal units. As such we
work with conditionally autoregressive (CAR) models and multivariate conditionally autoregressive

(MCAR) models for these effects, and these models will be presented as follow.

Conditionally Auto-Regressive (CAR) models: Gaussian case

The CAR models were introduced by Besag (1974), but they have enjoyed a dramatic increase
in usage only in the past decade. This resurgence arises from their convenient employment in the
context of Gibbs sampling and more general Markov Chain Monte Carlo (MCMC) methods for fitting
certain classes of hierarchical spatial models (for more details see Banerjee et al. (2004), in Section

5.4.3).
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Let Y7,....Y,, be m observations with associated with areal units 1,2,...,m, and let W,,«m
be an adjacent matrix of the map with its elements w;; defined by
1, if region ¢ and j are adjacent,
wij =
0, otherwise
and let w;y = 3, w;; denoting the number of regions adjacent to region i. For the Gaussian case, we

suppose

Yily;,j #i ~N (Zbijyj,n?) L i=1,...,m. (2.32)
J

These full conditionals are compatible. For obtaining the joint distribution for the Y;, the Brook’s

Lemma will be used and it is defined as

Lemma 2.1. (Brook’s Lemma) Let yo = (Y10, ---,Ymo) be any fized point in the support of the
joint probability distribution p(yi,...,Ym)-

. p(yllyz, R 7ym) p(y2|y10, Yszy - - 7ym)

p(yla"'aym) - X
p(y10|3/27 e ,ym) p(y20|y10, Ys ... 7ym)

e p(ym|y107'-‘7ym—1,0)

p(ymo|y1o7 . 7ym—1,0)

p(yw, e 7ym0>-

Banerjee et al. (2004) showed that using the Brook’s Lemma, the joint probability distribu-

tion p(yy, ..., Ym) has expression

1 -
Pl ym) < exp{ ~ 3y DI =~ B)y}., (239

where I is identity matrix of size n, B = {b;;} and D is diagonal with D;; = 7. The expression

(2.33) suggests a joint multivariate normal distribution for Y with mean 0 and covariance matrix

(I — B)™'D. So let b;; = ;}”i and 77 = %, we have the relation

2\ 1 2\ 1 2\ —1
bij wij T wji T wji T bji L.
— = —_— = —_— = = —5, foralli,y,
T; Wit \ Wi+ Wit \ Wi+ Wit \ Wit T

which implies a symmetry of the matrix D~1(I — B). Moreover, the supposition (2.32) is now

given by Yi|y;,j #i ~ N (Zj wijyj/wiJr,T?/wH) , i =1,...,m, and the matrix can be written as
D (I — B) = 5 (Dw — W), where Dy is diagonal matrix with (Dy);; = w;y, for i =1,...,m.
Thus, the joint probability distribution given in (2.33) becomes

! y' (Dw — W)y} :

P15 Ym) O<eXp{—272
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which suggests that it could be a n-dimencional multivariate normal distribution with mean 0 and
precision matrix 772(Dy — W) and we denoted this model by C AR(6), where § = 72, Note that
this precision matrix is rank deficient, so it is a non-positive definite matrix and it leads to an
improper distribution function. This singularity, while theoretically awkward, creates little problem
in a Bayesian implementation, since the identifying sum-to-zero constraint > ", Y; = 0 is easily
imposed in a Gibbs sampler simply by recentering the Y; draws around zero after every iteration (see

Carlin & Louis (2000), pg 263).

Multivariate conditionally autoregressive (MCAR) models

Let YT = (Y7,...,Y,,) where each Y; is a p x 1, following Mardia (1988), the zero-centered

multivariate conditionally autoregressive (MCAR) models sets
J

where each B;; is p X p, as is each 3;. As in the univariate case, using the Brook’s lemma, a joint

density for Y of the form
1 -
P(Y{Sii=1....m}) o exp {—QYTI‘_l(I _ B)Y} , (2.35)

where T is block diagonal with blocks ¥; and B is an np x np with (4, 7)th block B;;. Similarly the

univariate case, we take b;; = Z”i and X; = %, then we have the condition b;;%X; = b;;%; for all 7, 7,

which let the matrix I'"1(I — B) be a symmetric. Note that using the Kronecker product notation

®, the T~1(I — B) matrix can be rewrote as
I''I—-B)=DywREZTH)I-BRI)=(Dw—W)QA,

where A = ¥7! and Dy, W and B are the same as defined in univariate case.

Again, the singularity of Dy — W implies that T~1(I — B) is singular. An alternative to
resolve this problem is insert the smoothness parameter a in Dy, — W and standardize W so that

each of its rows sum to 1, thus,

I''(I — B) = (Dw —aW)® A,
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and the joint probability distribution given in (2.33) becomes
1
p(Y{Ssi=1...,m}) o exp {—QYT (Dw — aW) ® Al Y} , (2.36)

which suggests that it could be a multivariate normal distribution with mean 0 and the precision

matrix

(Dy — aW) ® A, (2.37)

and we denoted this model by MCAR(a,A). The parameter a € (0,1) has a spatial smoothness
interpretation. Value of a closer to 1 imply greater weight on the adjacency matrix W, while a close

to 0 implies that the adjacency structure has few role to play in the precision matrix.

Later, Gelfand & Vounatsou (2003) and Carlin & Banerjee (2003) extend the MCAR(a, A)
to allow the introduction of a spatial auto-regression coefficient for each component of Y;, and they

denoted the extend MCAR model by MCAR(ay,...,a,, A).

First, they rearrange the rows of the np x 1 vector Y to block by components, rather than by
units, that is, let Y = (Y11, Y1, ..., Y1, Yio, ooy Yonay oo+, Yip, o« o, Yonp) T, thus the precision matrix
A given in (2.37) can be rewritten as A @ (Dy — aW).

For the parameter vector @ = (aq,...,a,), the corresponding positive definite matrix are
denoted by (Dw — a;W) for i = 1,...,p and its corresponding the Cholesky factorization are
denoted by R R;, where R; is n X n. dimensional matrix. Following the Carlin & Banerjee (2003),

the precision matrix can be written as

A\uRJR, M:RIR. ... \,RIR,

A® (Dw — aW) = AmR;Rl A”R;RZ o AQPE;RP ~R'(A®I,)R, (2.38)
_/\le;,'_ Ry M2RJRy ... \,R) R, |

where )\;;’s are the elements of the matrix A and R is a block diagonal matrix with blocks Ry, ..., R,.

The A ® (Dw — aW) is positive definite since A is positive definite.

2.6 Model comparison criteria

There are several Bayesian criteria to compare competing models for a given data set and
to select the one that best fits the data. One of the most used in applied works is the deviance

information criterion (DIC), which is based on the posterior mean of deviance. For a model, the
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statistic DIC is defined as
DIC = d + pd.

where d = E[D(¢)], pd = E[D(¢)]—D[E(¢)] and D(¢p) is the deviance function of the model defined
by —2log L(¢). L is the likelihood function of the model. Spiegelhalter et al. (2002) provide evidences
that pd is a suitable measure of model complexity even in hierarchical settings, and thus, DIC is
considered as a sensible generalization of the expected Akaike information criterion to hierarchical
settings. The model, with the smallest value of DIC, is commonly taken as the preferred model to

describe the data set given.

2.7 Bayesian case influence diagnostics

Since regression models are sensitive to underlying model assumptions, generally performing
a sensitivity analysis is strongly advisable. One of the most used ways of evaluating the influence of
an observation in the fitted model is a case-deletion (Cook & Weisberg, 1982), in which the effects
are studied by completely removing cases from the analysis. This reasoning will form the basis of
our Bayesian global influence methodology and, in doing so, it will be possible to determine which
subjects might influence the analysis. Now, the Bayesian case-deletion influence diagnostic measures
for the joint posterior distribution based on the -divergence (Peng & Dey, 1995; Weiss, 1996) will

be introduced as follows.

Let Dy (P, P_;) denote the 1)-divergence between P and P_;, in which P denotes the
posterior distribution of 9 for full data, and P_;) denotes the posterior distribution of 1 without the

/¢< ﬂiD))ﬂmgyw. (2.39)

where 9 is a convex function with (1) = 0. Several choices concerning the i are given by Dey

& Birmiwal (1994). For example, 9(z) = —log(z) defines the Kullback-Leibler (K-L) divergence,

1th case. Specifically,

Y(z) = (2 —1)log(z) gives J-distance (or the symmetric version of K-L divergence), ¢(z) = 0.5z — 1|

defines the variational distance (or L; norm) and ¢(z) = (2 — 1)? defines the x2-square divergence.

Let 90 ... 9@ be a size Q sample of 7(9|D), D, (P, P(_;) can be calculated numerically

by
— 1 CPO;
Dy(P,P_p)==> | ——"1], 2.40
%ZJ( ( )) Q; (L(yil,ﬂ(q))> ( )
—1
is the numerical approximation of the conditional predictive

—_— Q
where CPO; = {clg >

D S
q=1 L(yi|19(q>)

ordinate statistic of i-th observation (Ibrahim et al., 2001a).
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Note that Dy (P, P;) can be interpreted as the 1)-divergence of the effect of deleting the
i-th case from the full data on the joint posterior distribution of 1. As pointed by Peng & Dey (1995),
Weiss (1996) and Cancho et al. (2010), it may be difficult for a practitioner to judge the cutoff point
of the divergence measure so as to determine whether a small subset of observations is influential
or not. In this context, we will use the proposal given by Peng & Dey (1995) and Weiss (1996) by
considering a biased coin, which has success probability p. Then the ¢-divergence between the biased
and an unbiased coin is

Dolfor f1) = [ @ (;8) fi(@)de, (241)

where fo(x) = p*(1 —p)'~* and fi(z) = 0.5, x = 0,1. Now if Dy(fo, f1) = dy(p), then it can be easy

to check that d, satisfies the following equation

dy(p) = vip) ¥ w2(2(1 ) (2.42)

It is not difficult to see for the divergence measures considered that d, increases as p moves away
from 0.5. In addition, d,(p) is symmetric about p = 0.5 and d,, achieves its minimum at p = 0.5.
In this point, d(0.5) = 0, and fo = f1. Therefore, if we consider p > 0.90 (or p < 0.10) as a strong
bias in a coin, then dk.1,(0.90) = 0.51, d;(0.90) = 0.88, df,(0.90) = 0.4 and d,2(0.90) = 0.64. This
equation implies that ith case is considered influential when dr, > 0.4 or d,» > 0.64. Thus, if we
use the Kullback-Leibler divergence, we can consider an influential observation when dgkj, > 0.51.

Similarly, using the J-distance, an observation which djy > 0.88 can be considered influential.



Chapter 3

Spatial frailty in Cure rate models

In survival analysis, it is common obtain the data set which are collected from different
regions, that is the data are clustered by different regions. One of the most used approaches is
consider cluster-specific random effects (or frailty) in the modeling. The frailties account for excess
heterogeneity in the data, as well as capture similarity across observations within the same cluster.
In this section, we will introduce frailties to each spatial cluster in the cure rate models presented in

Section 2.5.2 for the interval-censored data.

3.1 Geometric cure rate models with spatial frailties

Supposing that there are I regions and n; individuals in ith region. Let Tj; denotes the
random variable for time to the event of the jth individual in the ¢th region, where j = 1,...,n;
and ¢ =1,...,I. We suppose that the (7, j)th individual is potentially exposed to M;; latent risk, in
which M;; denote the initial number of competing causes concerning the occurrence of an event, and
assuming M;; has a geometric distribution with parameter 1/(1+ 6;;), the probability mass function

is given by
oy
(6;; + 1)m+t’

where Hij > 0, E(MZ]) = Qij and Vm’(Mij) = (92](1 + 9”)

Let Y,;; denote the lifetime of jth individual in ith region due to the cth (¢ = 1,..., M;;)
latent risk. Given M;; > 0, Yy, Ya;j, ... are assumed to be independent and identically distributed
with a common distribution function F'(-) =1 — S(-) that does not depend upon M;;. If we assume
that the presence of any latent risk will ultimately lead to the occurrence of the event, the time to

the event of interest Tj; could be defined as Tj; = min{Yy,j,- -+, Yaz,i;} for M;; > 1. If M;; = 0, then

41
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the individual is not at risk of final event and is considered cured. In this case, we define 7;; = oo

with P(T}; = oo|M;; = 0) = 1. Thus, the survival function for the population is given by

Spop(tis) = [L+ 05 F(t;;)] . (3.2)

The probability density function (p.d.f) and the hazard function associated to (3.2) are given
by
Fron(tis) = 053 f (t33) [+ 05 F ()] and hyop(tig) = 035 f (tig) [L + 655 F (t5)]

respectively, where f(t;;) = 52 F(t;;).
ij

Note that, the survival function in (3.2) can also be written as a mixture cure model

Spop(tij) — (1 + oij)il + (1 o (1 +9ij)71) { [1 +Qljlf(il]()1]; 9”)(114’ 01‘]’)7 } ,

Thus, the survival functions of uncured (susceptible) individuals can be expressed by

[1405F ()] — (14 6;)7"
1—(146;)t '

Ssus (tl]) =

If we assume another situation in which the presence of all latent risks will ultimately lead to
the occurrence of the event, then the time to the event of interest is defined by the random variable
,I;j = max{Ycij,c = 17 s aMij} for Mij Z 1 and ,T%j = oo if Mij = 0 with P(,I’” = OO|MZ] = 0) =1.

The survival function for the population is given by
Spop(tig) = 1+ (14 0;5) 7" = [1 405 (t:)] (3.3)
The corresponding p.d.f. and the hazard function are given by
Foon(tig) = 03 f (ti) (1 + 035 (ti5)) 2,

and
PRI (L4 0) 7 — (14 055 (tiy) ™Y

respectively. The survival function (4.4) can also be written as a mixture cure model
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Thus, the survival functions of susceptible individuals is given by

1-— (1 + HijS(tij))_l
1

Sl = T )

The first situation, also known as the first activation scheme because, in this case, we assume
the event of interest occurs when the first possible cause is activated. On the other hand, the second
situation is known as the last activation scheme, because the event of interest only takes place after
all the latent causes have been activated (see, Cooner et al., 2007). Thus, we denoted the survival
functions (3.2) and (3.3) by S& (t;;) and Sk, (t;;), respectively. There is another kind of situation

in which the event of interest occurs: when some of the possible causes are activated and, given

the number of latent causes M;;, the number of activated causes is a random variable with discrete

IRl
uniform distribution in {1,---, M;;}. This situation is known as random activation scheme. In this

case, the survival function for the population is given by

S o(ti) = (14 0) 7" + (1= (1+055)7") S(tsy), (3.4)

where the superscript R denotes random activation scheme.

Note that whichever the activation scheme, the density and hazard functions of the cure
models are improper functions, since the survival functions are not proper. Its cure fraction is
the same for these activation schemes and, thus, it can be obtained by pg;; = limy,, 00 Spop(tij) =
(1+ 6;;)~*. However, under different activation schemes, the models differ by its surviving, density
and hazard functions. Moreover, under the conditions of the models (3.2), (3.3) and (3.4) for any
distribution function F(-), we have S (t;;) < SE (t;;) < SL (t;;) for all t;; > 0.

pop pop pop

As is well known, the cure fraction plays a key role in the survival models with cure frac-
tion. So we consider the parametrization of the model in cure fraction in expressions. Since
poi; = (1+ 927-)71, we have 0;; = p&-} — 1. Moreover, we propose that the cured fraction of an

individual (7, j)th be associated with covariates a;;. Thus linking py;; to covariates a;; by

exp(&ij)

— j:l,...,ni, Z’:l’,,,,[,
1+ exp(&;;)

Poij =

where §;; is a linear function of covariates, §;; = x; b where b is a p;-dimensional vector which
represents the effects of covariates on the cured fraction. Thus, the models in (3.2), (3.3) and (3.4)

parameterized in the pg;; can be written as

Spop(tig) = [1+ (v — 1)F(tij)]_17 (3.5)
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Spop(tis) = 1+ poij — {1 + (Poij — 1)5(75@‘)}_1 (3.6)

and

Sﬁ)p( i) = Poij + (1 = poij)S(tij), (3.7)
The model in (3.7) is the same considered by Banerjee & Carlin (2004).

The non-negative random variables Y;;;’s can take several distributions, we assume Y;;;’s take
proportional hazard (PH) model with the baseline hazard function ho(t|c), the conditional hazard

function and corresponding survival function are given by
h(t|gp) = ho(t]ax) exp(Ai;) or S(t|¢p) = So(t[ar) ™), (3.8)

where ¢ = (a, \ij), A\ij = 2}, is the linear predictor of the covariates, where z;; is covariates of
an individual (i,j) and B is a po-dimensional vector representing the effects of covariates on the
survival model component. Sy(t|e) is the baseline survival function corresponding to hy(t|ax) and a
is the parameter vector of the baseline functions. Note that different distributions will be obtained
if we take different baseline functions. In this paper, we consider two different distributions for
the baseline functions. Firstly, we assume the baseline hazard function ho(t|a) = at®™!, thus Ye;’s
follow a Weibull distribution with its p.d.f. f(t|@) = at* texp(\ij — t%*7), where a > 0 is a
shape parameter and e} is a scale parameter. In this case, we called the functions (3.2) and (3.3)

by Weibull geometric cure rate (WGCR) model and Complementary Weibull geometric cure rate
(CWGCR) model, respectively.

Secondly, we assume that the baseline functions have the piecewise exponential distribution.
Let the vector @ = (ag, a1, ...,a9—1) with 0 =ag < a; < ... < ag-1 < oo be a finite partition of time
axis and «, be the hazard rate of gth interval of intervals (0,a4], ..., (ag-1,00], for ¢ =1,...,Q, so

the baseline survival function has expression

So(tla) = exp{ Zaq } t >0, (3.9)

where

0, it t <aq_1;
Aft)=4q t—a,, ifa,1<t<a, q=1...,Q.

ag — aq—1 if t > aq.

Note that if a; = « for all : = 1, ..., (), we have an exponential distribution with a parameter « as
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the particular case. Moreover, if we partition the time axis 0 = ay < a; < ... < ag-1 < 00, so that

they denote the ordered distinct time points of all observed interval end points, then we have t, = a,

for ¢ =0,...,Q. Now, the survival function can be written as
1, ¢=0
So(tele) =1 exp{—>9_, aplar —ap-1)}, ¢=1,...,Q —1 (3.10)
0, ¢=0Q,

where o, (a, —a,—1) >0, ¢=1,...,Q. Here, we called the function (3.2) by PH Geometric cure rate
(PHGCR) model and (3.3) by Complementary PH Geometric cure rate (CPHGCR) model.

Now, we will introduce the frailties U; and V; to better explain the effect of survival time of

susceptible individuals and on the cured probability through linear predictor expression

Aij = Zzl-jﬁ—i‘Uz':
&i = a;;jb+Vi, for y=1...,n5,0=1,...,1.

Here, the frailties U; and V; must be spatially correlated across the regions. In this work we propose
two approaches, the first we employ separate independent conditionally auto-regressive (CAR) prior
distribution on (U, V'). The other one we assuming the spatial priors on (U, V') are dependent, and
they have multivariate conditionally auto-regressive MCAR prior distribution, where the CAR and
MCAR distributions were presented in Section 2.5.3 in detail.

3.1.1 Bayesian Inference

Let Dops = {(Aij, xij, 2ij,0i5);7 = 1,...,n;,0 = 1,... M} denote the observed data, where
A;; = (tijr, tijr] is the interval during which individual j in cluster i occurs the event of interest,
x;; and z;; are the p;—dimencional and p,—dimencional vectors of covariates, and d;; is following
interval censoring indicador: d;; = I(t;;r < 00). For the spacial case in which the survival time is
right-(left-) censored, R;; = +oo(L;; = 0), whereas for exact observations, t;;;, = t;jr. Following
Finkelstein(1986), the likelihood function for the general interval-censored cure rate model is given
by

I
LD, U,V) HH pop (LiiL 1) SPOP(UR|‘P)) ' Spop(tijrle)' %

i=1j=1

I n; B 3ij
o< [TTI Sven(tijele) (1 - W) : (3.11)

i=1j=1 SpOp(tijL‘QO
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where ¢ = (b, B, ), « is the shape parameter of the Weibull distribution for the first model with
unitary size and it is the risk parameter vector for the second model with size ). For a Bayesian

analysis, we assume the following prior densities for parameters b', 8" and o

o bj ~ N(up,02),j=0,...,(pl — 1), with u, and o3, known ;
e Bj~ N(ug,03), j=1,...,p2, with 5 and o known;

o a; ~ N(lq, 02)1(0700), with p, and o, known, ¢ = 1 for first model and ¢ =1, ... Q) for second

model,;

where N(y,02)I(4p) denotes the truncated normal distribution which is the probability distribution
of a normally distributed random variable whose value lies within the interval —oco < a < b < o0.
To express vague priors, we consider y, = g = p1,, = fio = 0 with large values of o7, U?j and o2. In
several areas, special in medicine, it is preferable to use the prior information when they are available.
Moreover, it is worth mentioning that using a truncated normal distribution as prior facilitates the
insertion of information in certain regions of the parameter space, since the hyperparameters no

longer represent the mean and variance but still control the region of higher probability mass.

Independent assumption

For the independent assumption, we employ separate independent CAR priors on the random

frailties U = (Uy,...,Ur)" and V = (V4,...,Vp) T, that is,

« Up,...,Ur ~CAR(0));

e Vi,...,V; ~ CAR(0,);

where #; and 6, are positive unknown hyper-parameters, and we assume they have Inverse-Gamma
prior with the known shape parameter ay > 0 and scale parameter by > 0. the joint posterior

distribution for the parameters is given
(¢, 01,02/ Dobs) o< L(p|Dops, U, V) (U|01)7(V'|02)7 (e, 01, 02),

where (¢, 01,62) = 7(b)w(B)m(a)m(01)7(02) and L(p|D) is the likelihood function given in (3.11).
Note that, this joint posterior density is analytically intractable. So, we based our inference on the
Markov chain Monte Carlo (MCMC) simulation methods. We can observed that the full conditional
distributions for parameters b, 3, a, U and V have not closed forms, thus we will use the Metropolis-

Hastings algorithm to generate posterior samples for these parameter. To avoid range restrictions on
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the parameters «;’s, we define (; = log(a;) for ¢ = 1,2,...,Q, to transform all parameters space to
real space (necessary to work with Gaussian proposal densities). Let ¥ = (b, 8, ¢, 01, 6,), according

for the Jacobian of this transformation, the joint prior density 7(#) has expression

Q
m(¥) = w(p, 01, 605) X exp (Z Q) , (3.12)

i=1

where ¢ = (b, 8,¢™!), ¢! denote inverse function of ¢, i.e., {7 = {C{l =exp((;), i=1..., Q} :

On the other hand, the full conditional distributions for parameters 6;’s are given

(050 ,, Dobs) o< m(1;|0;)7(0;)

1
X (ei)_k/z exp <_20¢;(DW - W)¢z> Qi_ao_l eXp(_bOQi_l)

k) T _ .
o 9[(“°+5) 1exp{— <¢Z (DWZ W)e: +bo> 9;1}, i=1,2

where ©¥; = U, v, = V and k is the rank of the matrix Dy — W. Thus, the full conditional
distributions of the parameter #; is an Inverse-Gamma distribution with parameters ag + g e by +
% (Y. (Dw — W)ap;). In this case, the Gibbs sampler algorithm (see Gamerman & Lopes, 2006) is

used to generate a posteriori sample.

Thus, the joint posterior density of 7(1#|Dyys) is proportional to

1 i L2 @ exp(26) UT(Dw — W)U
LD, U V) exp{—2 [ S gy 3 SR U (Dw W)
i=0 i=1 i=1 &
VT (Dw — W)V bo b\ &
+ % } — (ag + 1) (log(6y) + log(2)) — (91 + 92> +) Gy
=1

Dependent assumption

Now we assume that the spatial priors on the parameters (U, V') are dependent on each
other. Let 9» = (U, V)T, we first employ of the parameter 1 has a MCAR distribution with a

common smoothness parameter a, i.e.,

¥ ~ MCAR(a, A).
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Further, we assume the parameter 1 has a extended MCAR distribution which assuming the different

smoothness parameters for the parameters U and V', say a; and as, that is,

’l,b ~ MCAR(C“, as, A)

The prior distributions for a and A are given by

e a; ~ Uniform(0,1) or a; ~ Beta(18,2), for i,

o A ~ Wishart(ng, Ag), with ng and Ay known,

where i=1 for ¢ ~ MCAR(a,A) and i=1,2 for ¥» ~ MCAR(ay,as, A)). The prior distributions for
the parameter a; is used by Banerjee & Carlin (2004), in which a; ~ Uniform(0, 1) is a non-informative
prior, and a; ~ Beta(18,2) is an informative prior with E|a;] = 0.9 and Var[a;] = 0.004285; On the
other hand, the prior distribution for the parameter A is used not only by Carlin & Banerjee (2003)
but also by Gelfand & Vounatsou (2003) and Banerjee & Carlin (2004). They suggested that ng
can take value as the dimension of matrix A. However, Gelfand & Vounatsou (2003) and Banerjee
& Carlin (2004) considered Ay equals I and 0.011 in their papers, respectively, where I denote a
identity matrix. Both authors also commented that they had no prior knowledge regarding the nature
or extent of dependence for the parameter A. Note that A~! describe the relative variability and
covariance relationship between the different diseases given the neighboring site. Thus, if Ag = 0.011,
we assumed high relative variability between neighborhoods and we assumed low relative variability
between neighborhoods if Ag = I. Thus, it is necessary to conduct a prior study for the parameter

Ay to verify the influence of Ay in the estimation, in order to have a value for appropriate Ag.

To avoid range restrictions on the parameters a;, considering the transformations p;, =

log(a;/(1 —a;)) € R, then, the joint posterior density is given by

1 p1 D2 Q exp(2¢;
77(19|D0bs) X L((P|Dob&¢)exp{_2 [ 17_221%2“‘05225@24’21(2()
=0 =1

=1 «

TZO—4

+ Y [A® (Dw —aW)] +log |A @ aW| +

Q
+ +2Q}w<p),

1
log |A] — itr(AglA)

where ¢ = (b,3,¢™!) and 7(p;) = 1 if a; ~ Uniform(0,1) and 7(p;) = 3(118 5 (1?2%(7;53))18 if a; ~
Beta(18,2), where B(18,2) = 1T = L.

This joint posterior density is analytically intractable. So, we based our inference on the

Markov chain Monte Carlo (MCMC) simulation methods. We can observed that the full conditional
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distributions for parameters b, 8, ¢, and p have not closed forms, thus we will use the Metropolis-
Hastings algorithm to generate a posteriori samples for these parameter. However, the Gibbs sampler
algorithm is used to generate a posteriori sample for the parameter A, because its the full conditional

distribution has a closed form. The full conditional distribution m(A |9 _a), Dops)) is proportional to

m(Y|A, a)T(A)
! !
<x\A@lhv—awqw%m%}Q¢TanV—awq¢>mwwmﬂmm(—fmAﬁAn
!
x A2 exp (—Str(Agt+ B)A) ) (3.13)

where

tr(RyU(RyU)T) tr(RyU(R,V)T)
tr(RyV (RU)T) tr(RaV(RyV)T)

Thus, the full conditional distribution for A can be taken the Wishart distribution with scala matrix

(Ag' + B)~! and degrees of freedom I + ny.

3.1.2 Simulation study

In this section we present simulation studies for WGCR model, CWGCR model, PHGCR
model and CPHGCR model with the dependent assumption in order to examine the theirs perfor-
mances. The interval-censored survival times (¢;;, g, 0;;) with the cure fraction under the first and
last activations are generated in a manner similar to that employed by Yau & Ng (2001) with some

modifications.

First, we generate latent Geometric variable M;;, which denote the initial number of com-
peting causes related to the event, with parameter py;; = [1 + exp(—(bo + b1)x;; + vi)]_l for the jth
individual in the ith region, j = 1,...,n;, ¢ = 1,..., I, where covariate z;; follows Bernoulli(0.5)

distribution. Interval-censored data (¢;;1,t;r, 0;j) are then generated as follows:

(i) If M;; = 0, then let ¢;; = ¢;;;, from the exponential distribution with hazard rate 10 and let

censoring indicator 6;; = 0.
(ii) If Mij > 0, then

« we generate M;; latent Weibull variables with parameter a and \;; = (Bx;; + w;), if Yo;;’s

has the Weibull distribution;

 or we generate M;; latent Exponential variables with hazard rate a\;; = o(Bz;; + w;)), if

Y.i;'s take the PH model.
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Let t;; takes lowest generated variable in case of generating the variables of model under first
activation and t;; takes largest generated variable in case of generating the variables of model
under last activation. The censoring variable ¢;; is generated from U(0, cc), cc > 0 is fixed to

control the percentage of censored data. Let 0;; = 1 if ¢;; < ¢;; and §;; = 0 otherwise.
(lll) For 51']' = 0, let 0 < tz’jL < tin = OQ.

(iv) For 6;; = 1, we create len;; from distribution U(0.2,0.7) and [;; from U(0,0.01). Then, from
(0,155], (Lij, Lij + lengj), ..., (li; + Klengj, 00], k = 1,2,...,, (tirs,) is chosen as that satisfying

tijr < tij < tijR-

In the simulation study, we consider I = 5 regions (Zip) with the corresponding adjacent matrix is
00100

0 0

0

0 0 1 0}, the random effects u; and v; are generated from Normal distribution with mean
1
0

—_

0 0 0

1 00
0 and precision matrix AQ(Dw — aW), where W is standardized adjacent matrix so that each

o o = O

of its rows sum to one, Dy = Diag(1,1,2,1,1) is a diagonal matrix and we fixed a = 0.9 and
A = Diag(4,4), i.e. we fixed Ay =4, Ay =4 and A3 = Ay; = 0. We consider 100 individuals in the
simulation studies. The corresponding Zip codes for each individual was distributed using sample
with replace, thus the number of individuals in each region n;, © = 1...,5 are varied, that is, these
five regions could present different numbers of individuals with 337, n; = 100. Thus, we have sample
size n = 100 and we fixed the parameters by = —1.50, b = —0.50, f = —0.15, a = 0.30 for WGCR
and CWFCR models and o = 1.0 for PHGCR and CPHGCR models. In simulations, we consider
around 40 per cent of the censored data for each generated sample and 500 repeated samples are

simulated for each model. The priors for the parameters by, b1, S1 and « used in the studies, are

bo ~ N(0,3%), by ~ N(0,3%), 51 ~ N(0,3%), and o ~ N(0,10%) I g 00).

For each generated data set we simulate one chain of size 10000 for each parameter, disre-
garding the first 1000 iterations to eliminate the effect of the initial values and to avoid correlation
problems and thinning to every third iteration, thus obtaining a effective sample of size 3000 upon
which the posterior is based on. To evaluate the performance of the parameter estimates, the average
bias (Bias), standard deviation (SD) of the estimate, average standard deviation (SDs mean) and
mean square error (MSE) are calculated for the fitted models, the summaries are presented in Table
3.17 and 3.18. We can note that the bias and MSE of parameter A, are lager than others in all
fitting models. The estimator of A5 presents a negative biases for WGCR and PHGCR models and

it presents a positive biases for the complementary cure rate models, however its biases and MSEs
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are always near zero. Moreover, the simulation results for the cure rate models considering the prior

1 very close to those obtained considering the prior 2.

Table 3.1: Simulation results for WGCR and CWGCR models with depended spatial fragilities

WGCR Model
Parameter True value Estimate mean SD of the estimate Bias MSE  SDs mean
Prior 1: ¥ ~ MCAR(a, A), a ~ Beta(18,2), A9 ~ Wishart(2, Diag(0.9,1))
bo -1.50 -1.4812 0.0708 0.0188 0.0054 0.2685
by -0.50 -0.5209 0.1280 -0.0209 0.0168 0.2485
I3 -0.15 -0.1360 0.0466 0.0140 0.0024 0.1915
Qo 0.30 0.1930 0.0521 -0.1070 0.0142 0.0677
A1q 4.00 4.0062 0.1597 0.0062 0.0255 2.4728
Aoo 4.00 4.0120 0.1918 0.0120 0.0369 2.6151
Ao 0.00 -0.4541 0.1343 -0.4541 0.2242 1.9196
a 0.90 0.9001 0.0016 0.0001  0.0000 0.0653
Prior 2: ¢ ~ MCAR(a, A), a1,as ~ Beta(18,2), Ay ~ Wishart(2, Diag(0.9,1))
bo -1.50 -1.4902 0.0701 0.0098 0.0050 0.2583
by -0.50 -0.5376 0.1330 -0.0376 0.0191 0.2227
153 -0.15 -0.1295 0.0493 0.0205 0.0028 0.1870
Qo 0.30 0.1863 0.0443 -0.1137 0.0149 0.0536
A1q 4.00 4.1638 0.1676 0.1638 0.0549 2.5070
Aoo 4.00 4.2657 0.1819 0.2657 0.1036 2.6919
Ao 0.00 -0.5809 0.1472 -0.5809 0.3591 1.9647
ai 0.90 0.8999 0.0015 -0.0002 0.0000 0.0655
as 0.90 0.9002 0.0015 0.0002  0.0000 0.0654
CWGCR Model
Parameter True value Estimate mean SD of the estimate  Bias MSE  SDs mean
Prior 1: ¢ ~ MCAR(a, A), a ~ Beta(18,2), Ay ~ Wishart(2, Diag(0.85, 1))
bo -1.50 -1.4814 0.0552 0.0186 0.0034 0.2697
by -0.50 -0.4285 0.1003 0.0715 0.0152 0.2726
8 -0.15 -0.1352 0.0918 0.0148 0.0086 0.1438
Q@ 0.30 0.4089 0.0519 0.1089 0.0145 0.0620
A 4.00 4.1665 0.3941 0.1665 0.1827 2.3424
Aoo 4.00 3.9432 0.1946 -0.0568 0.0410 2.6040
Ao 0.00 0.2061 0.2249 0.2061  0.0929 1.8821
a 0.90 0.8999 0.0016 -0.0001 0.0000 0.0658
Prior 2: ¢ ~ MCAR(a, A), a1, az ~ Beta(18,2), Ag ~ Wishart(2, Diag(0.85,1))
bo -1.50 -1.4852 0.0585 0.0148 0.0036 0.2697
by -0.50 -0.4329 0.1063 0.0671 0.0158 0.2728
51 -0.15 -0.1340 0.0905 0.0161 0.0084 0.1441
Q@ 0.30 0.4095 0.0530 0.1095 0.0148 0.0619
A 4.00 4.2048 0.4139 0.2048 0.2130 2.3612
Aoo 4.00 3.9361 0.1967 -0.0639 0.0427 2.5979
Ao 0.00 0.2176 0.2215 0.2176  0.0963 1.8797
ai 0.90 0.9003 0.0016 0.0003  0.0000 0.0653
as 0.90 0.9001 0.0015 0.0001  0.0000 0.0652
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Table 3.2: Simulation results for PHGCR model and CPHGCR model with depended spatial fragili-
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PHGCR Model

Parameter True value Estimate mean SD of the estimate Bias MSE SDs mean
Prior 1: ¥ ~ MCAR(a, A), a ~ Beta(18,2), A9 ~ Wishart(2, Diag(0.9,1))
bo -1.50 -1.6441 0.0515 -0.1441 0.0234 0.2710
by -0.50 -0.5215 0.1179 -0.0215 0.0143 0.2482
8 -0.15 -0.1538 0.0479 -0.0038 0.0023 0.1877
« 1.00 1.1920 0.0382 0.1920 0.0370 0.1396
A1 4.00 4.2224 0.1479 0.2224 0.0713 2.5349
Ao 4.00 3.9272 0.1801 -0.0728 0.0377 2.5894
Ao 0.00 -0.4142 0.1420 -0.4142 0.1917 1.9325
a 0.90 0.8999 0.0015 -0.0001  0.0000 0.0655
Prior 2: ¢ ~ MCAR(a1,az, A), a1, as ~ Beta(18,2), Ay ~ Wishart(2, Diag(0.9,1))
bo -1.50 -1.6418 0.0464 -0.1418 0.0222 0.2710
by -0.50 -0.5146 0.1231 -0.0146 0.0153 0.2491
8 -0.15 -0.1552 0.0502 -0.0052 0.0025 0.1875
« 1.00 0.8980 0.0612 -0.1020 0.1900 0.0100
A1 4.00 4.2411 0.1471 0.2411 0.0797 2.5337
Ao 4.00 3.9259 0.1915 -0.0741 0.0421 2.5853
Ao 0.00 -0.4153 0.1437 -0.4153 0.1931 1.9307
ay 0.90 0.9001 0.0016 0.0001  0.0000 0.0655
as 0.90 0.9000 0.0016 0.0000 0.0000 0.0653
CPHCRM
Parameter True value Estimate mean SD of the estimate Bias MSE SDs mean
Prior 1: ¥ ~ MCAR(a, A), a ~ Beta(18,2), Ay ~ Wishart(2, Diag(0.75,1))
bo -1.50 -1.6533 0.0852 -0.1533 0.0308 0.2635
by -0.50 -0.5056 0.0998 -0.0056 0.0100 0.2652
I5] -0.15 -0.1298 0.0933 0.0202 0.0091 0.1323
«o 1.00 0.9090 0.0408 -0.0910 0.1770 0.0850
Aqp 4.00 4.2564 0.2096 0.2564 0.1096 2.3576
Ao 4.00 3.7852 0.3098 -0.2148 0.1420 2.5456
Ao 0.00 0.3803 0.1762 0.3803 0.1756 1.7807
a 0.90 0.9001 0.0016 0.0001  0.0000 0.0653
Prior 2: ¥ ~ MCAR(ay, az, A), a1, as ~ Beta(18,2), Ag ~ Wishart(2, Diag(0.75,1))
bo -1.50 -1.6518 0.0867 -0.1518 0.0306 0.2657
by -0.50 -0.5190 0.1084 -0.0190 0.0121 0.2656
I5] -0.15 -0.1373 0.1006 0.0127 0.0103 0.1325
«o 1.00 0.9200 0.0407 -0.0800 0.1800 0.0600
Aqp 4.00 4.0064 0.2029 0.0064 0.0411 2.2193
Ao 4.00 3.7107 0.3010 -0.2893 0.1741 2.4853
Ao 0.00 0.3619 0.1646 0.3619 0.1580 1.7052
ay 0.90 0.9002 0.0015 0.0002 0.0000 0.0654
as 0.90 0.8996 0.0017 -0.0004 0.0000 0.0655
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Influence of outlying observations

One of our main goals in this study is to show the need for robust models to deal with the
presence of outliers in the data. Considering the same the parameter values and setup as above

and two cases for perturbation, thus eight data sets of size 100 were generated from the WGCR,

CWGCR, PHGCR and CPHGCR models with depended spatial fragilities.

We selected cases 18 and 80 for perturbation. To create influential observation in the data
set, we choose one or two of these selected cases and perturbed the response variable as follows
trr = ter + 105, and tpr = tir + 105y, for k = 1 and 18, where Sy, is the standard deviations
of the t;;1’s. Note that using this kind of perturbation, the interval of observed interval time of
perturbation candidate observation is not charged. Here, we considere four setups in the study.
Setup A: original dataset, without outliers; Setup B: data with outlier 18; Setup C: data with outlier
80; and Setup D: data with outliers 18 and 80. The MCMC computations were made similar to
those in the last section and further to monitor the convergence of the Gibbs samples we used the

Geweke’s convergence diagnostic proposed por Geweke (1992).

Tables 3.3, 3.4, 3.5 and 3.6 reports posterior mean, standard deviation (SD), bias and mean
square error (MSE) of the parameters of WGCR, CWGCR, PHGCR and CPHGCR models, respec-
tively. For WGCR model, Table 3.3 shows that the estimative of parameter Ai; creasing in the
perturbation cases when prior 1 is used. On the other way, considering prior 2 for the parameters,
the estimative of all parameters of cases B, C and D are very closed the case A, which means the
parameters are not sensitive to perturbations. It also can be observed on the Table 3.4. For PHGCR
model, Table 3.5 shows that parameter Ay is litter sensitive to perturbations. The estimative of Ay
decreasing in the perturbation cases when considering prior 1 or prior 2 for the parameters and it
is more sensitive using prior 1 then prior 2. For CPHGCR model, considering prior 1 Ay is litter
sensitive in cases C and D and Ay, is sensitive in case B; considering prior 2 Ay, is litter sensitive in

cases B and C and A;s is sensitive in cases B and D. This results can be observed on Table 3.6.

For each simulated data set the four divergence measures (dgr, d;, dr,, dy2) of the perturbed
cases and DIC values for the proposed cure rate models were calculated and reported in Table 3.7.
We can see that all measures providing larger -divergence measures when compared to the non-
perturbed setup (setup A) and the difference between the measures of perturbed case and non-
perturbed case is more clearly for PH Geometric cure rate models than Weibull Geometric cure
rate models. Furthermore, we can observed that the values of the measures from the cure models
wheatear considering the prior 1 or prior 2 for the parameters are similarly. To show better the

results, we ploted the i-divergence measure from the fitted models. The Figures 3.1 to 3.32 show
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the divergence measures before the perturbation (setup A), the model indicate the absence outline

observations, and after perturbation observations (setups B, C and D).

For WGCR model with prior 1, we note that the observation 18 cannot be easy detected by
all four divergence measure, and observation 80 just be detected by J—distance and x? divergence.
It also can be observed for the WGCR model with prior 2, moreover, in this case, observation 80
just be detected by x? divergence. For CWGCR model with prior 1, we note that the observation 18
cannot be easy detected when both observations were perturbed (setup D). The both perturbation
observations were detected by x? divergence, other three measure only detected observations 80. For
CWGCR model with prior 2, we note that the both perturbation observations did not be detected
by KL divergence and L; norm distance when both observations were perturbed. The J—distance
was detected only the observation 80, however the both perturbation observations were detected by
x? divergence. All perturbation observations selected can be detected by all four divergence measure
for PHGCR and CPHGCR models with prior 1 or 2. We also note that the x? divergence is a little
bit sensitive for CPHGCR model with both priors, indeed a non-perturbed observation was detected
in setup A in Figure 3.31 and 3.32.
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Table 3.3: Simulation results of the perturbed cases for WGCR model

Prior 1 Prior 2

Setup  Perturbed
case Parameters Mean SD Bias MSE Parameters Mean SD Bias MSE

bo -1.482 0.278  0.018 0.000 bo -1.341  0.277  0.159 0.025

by -0.859 0.259 -0.359 0.129 b1 -0.554 0.248 -0.054 0.003

B -0.036 0.193 0.114 0.013 B -0.105 0.197 0.045 0.002

o 0.228 0.068 -0.072 0.005 o 0.112 0.072 -0.188 0.035

A None A1y 4.172 2533 0.172  0.030 Ay 4.052 2486 0.052 0.003
Ao 4.152 2,693 0.152 0.023 Ao 4.012 2.636 0.012 0.000

Ao -0.502 1.945 -0.502 0.252 Aqo -0.540 1.905 -0.540 0.291

a 0.902 0.064 0.002 0.000 ai 0.899 0.068 -0.001 0.000

az 0.899 0.067 -0.001 0.000

bo -1.526  0.263 -0.026 0.001 bo -1.572  0.275 -0.072 0.005

by -0.439 0.253 0.061 0.004 b1 -0.622 0.260 -0.122 0.015

B -0.155 0.189 -0.005 0.000 B -0.099 0.190 0.051  0.003

o 0.231 0.061 -0.069 0.005 o 0.332 0.07v3 0.032 0.001

B {18} Ay 4.067 2433 0.057 0.003 Aqs 4.056 2494 0.056 0.003
Ao 3.947  2.630 -0.053 0.003 Aoy 3.913 2,561 -0.087 0.008

Ao -0.497 1904 -0.497 0.247 Aqo -0.406 1.991 -0.406 0.164

a 0.900 0.065 0.000 0.000 ax 0.899 0.065 -0.001 0.000

a2 0.900 0.065 0.000 0.000

bo -1.510  0.275 -0.010 0.000 bo -1.524 0.263 -0.024 0.001

by -0.586 0.257 -0.086 0.007 b1 -0.679 0.264 -0.179 0.032

B -0.139 0.194 0.011  0.000 B -0.083 0.193 0.067 0.005

o 0.255 0.082 -0.045 0.002 o 0.235 0.078 -0.065 0.004

C {80} Ay 3.832 2406 -0.168 0.028 Ay 4.018 238 0.018 0.000
Aoy 3.535 2423 -0.465 0.216 Aoy 3.919 2.649 -0.081 0.007

Ao -0.115 1.835 -0.115 0.013 Aqo -0.302  1.969 -0.302 0.091

a 0.900 0.063 0.000 0.000 ai 0.899 0.064 -0.001 0.000

a2 0.900 0.068 0.000 0.000

bo -1.460 0.259  0.040 0.002 bo -1.599 0.266 -0.099 0.010

by -0.348 0.248 0.152  0.023 b1 -0.316 0.246 0.184 0.034

B -0.203 0.189 -0.053 0.003 B -0.208 0.191 -0.058 0.003

o 0.187 0.059 -0.113 0.013 o 0.253 0.061 -0.047 0.002

D {18,80} A1y 4.205 2,569 0.205 0.042 A1y 4.259 2541 0.259 0.067
Ao 4.086 2.634 0.086 0.007 Ao 4.002 2,549 0.002 0.000

Ao -0.515 1971 -0.515 0.265 Ao -0.588 1.946 -0.588 0.346

a 0.900 0.064 0.000 0.000 az 0.901 0.065 0.001 0.000

as 0.898 0.068 -0.002 0.000
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Table 3.4: Simulation results of the perturbed cases for CWGCR model

Prior 1 Prior 2

Setup  Perturbed
case Parameters Mean SD Bias MSE Parameters Mean SD Bias MSE

bo -1.475 0.269 0.025 0.001 bo -1.499 0.272  0.001  0.000

by -0.498 0.255  0.002  0.000 b1 -0.446 0.260 0.054 0.003

B -0.066 0.136  0.084 0.007 B -0.005 0.139 0.145 0.021

o 0.323 0.052 0.023 0.001 o 0.384 0.060 0.084 0.007

A None A1y 3.880 2.207 -0.120 0.014 Ay 3.906 2.214 -0.095 0.009
Ao 4.080 2.738 0.080 0.006 Ao 4.040 2.636 0.040 0.002

Ao 0.308 1.884 0.308 0.095 Aqo 0.243 1.908 0.243 0.059

a 0.902 0.065 0.002 0.000 ai 0.903 0.064 0.003 0.000

as 0.901 0.064 0.001 0.000

bo -1.548 0.254 -0.048 0.002 bo -1.445 0.282 0.055 0.003

b1 -0.276  0.265 0.224  0.050 b1 -0.400 0.283 0.100 0.010

I} -0.019 0.141 0.131 0.017 B -0.141 0.143 0.009 0.000

o 0.389 0.056  0.089 0.008 o 0.306 0.050 0.006 0.000

B {18} A1y 4.611 2517 0.611 0.373 Aqs 4.125 2333 0.125 0.016
Ago 4.127 2.613 0.127 0.016 Aoy 3.623 2456 -0.377 0.142

Ao 0.451 1919 0.451 0.204 Aqo 0.354 1.840 0.354 0.125

a 0.899 0.065 -0.001 0.000 ax 0.900 0.066 0.000 0.000

a2 0.901 0.063 0.001 0.000

bo -1.523  0.265 -0.023 0.001 bo -1.529 0.279 -0.029 0.001

by -0.523 0.270 -0.023 0.001 b1 -0.468 0.272 0.032 0.001

B -0.059 0.135 0.091 0.008 B -0.127 0.138 0.023 0.001

o 0.375 0.056 0.075 0.006 o 0.388 0.060 0.088 0.008

C {80} Ay 4515 2.545 0.515 0.265 Ay 3.727 2112 -0.273 0.075
Aoy 4.139 2709 0.139 0.019 Aoy 3.765 2471 -0.235 0.055

Ao 0.416 1980 0.416 0.173 Aqo 0.158 1.837 0.158 0.025

a 0.901 0.064 0.001 0.000 ai 0.900 0.065 0.000 0.000

as 0.902 0.063 0.002 0.000

bo -1.514 0.268 -0.014 0.000 bo -1.582 0.2v1 -0.082 0.007

by -0.458 0.268 0.042 0.002 b1 -0.485 0.268 0.015 0.000

B8 -0.032 0.151 0.118 0.014 B -0.111  0.141 0.039 0.002

o 0.357 0.049 0.057 0.003 o 0.329 0.048 0.029 0.001

D {18,80} A1y 4.750 2.618 0.750 0.563 A1y 3.964 2.240 -0.036 0.001
Ao 4.063 2.627 0.063 0.003 Ao 4.127 2,698 0.127 0.016

Ao 0.306 1.930 0.306 0.094 Ao 0.417 1.889 0.417 0.174

a 0.900 0.065 0.000 0.000 ai 0.900 0.066 0.000 0.000

az 0.902 0.063 0.002 0.000
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Table 3.5: Simulation results of the perturbed cases for PHGCR model
Prior 1 Prior 2
Setup  Perturbed
case Parameters Mean SD Bias MSE Parameters Mean SD Bias MSE
bo -1.456 0.270 0.044 0.002 bo -1.670 0.267 -0.170 0.029
by -0.431 0.249 0.069 0.005 by -0.611 0.241 -0.111 0.012
I6] -0.176  0.182 -0.026  0.001 Ié; -0.156  0.177 -0.006 0.000
! 1.192 0.137 0.192 0.037 e’ 0.898 0.190 -0.102 0.010
A None A11 4.275 2.500 0.275 0.075 A11 3.840 2.348 -0.160 0.026
Aoo 3.927 2568 -0.073 0.005 Aoo 4.058 2.688 0.058 0.003
Ao -0.363 1.951 -0.363 0.132 Ao -0.637 1.917 -0.637 0.405
a 0.898 0.070 -0.002 0.000 ax 0.901 0.064 0.001 0.000
as 0.902 0.064 0.002 0.000
bo -1.348 0.278 0.152  0.023 bo -1.387 0.250 0.113 0.013
by -0.436 0.233 0.064 0.004 b1 -0.337 0.251 0.163 0.026
153 -0.207 0.184 -0.057 0.003 153 -0.193 0.191 -0.043 0.002
@ 0.912 0.095 -0.088 0.008 o) 0.797 0.205 -0.203 0.041
B {18} A 3.137 2.021 -0.863 0.745 A 3.240 2.181 -0.760 0.577
Ao 4.050 2.661 0.050 0.003 Ao 4.302 2.828 0.302 0.091
Ago -0.300 1.776 -0.300 0.090 Ago -0.161 1.867 -0.161 0.026
a 0.903 0.065 0.003 0.000 ay 0.899 0.066 -0.001 0.000
as 0.899 0.065 -0.001 0.000
bo -1.494 0.253 0.006 0.000 bo -1.336  0.273  0.164 0.027
by -0.643 0.248 -0.143 0.020 by -0.193  0.247 0.307 0.094
I6] -0.183 0.186 -0.033 0.001 J6; -0.148 0.193 0.002 0.000
« 1.112 0.112 0.112 0.012 «Q 0.866 0.198 -0.134 0.018
C {80} Ay 3.101  2.049 -0.899 0.809 Aqq 3.419 2174 -0.581 0.337
Ao 4.221  2.637 0.221 0.049 Ao 3.600 2.468 -0.400 0.160
Aqo -0.532 1.831 -0.532 0.283 Aqo -0.263 1.756 -0.263 0.069
a 0.900 0.065 0.000 0.000 ax 0.899 0.067 -0.001 0.000
as 0.900 0.065 0.000 0.000
bo -1.498 0.276 0.002 0.000 bo -1.5626  0.277 -0.026 0.001
by -0.551 0.249 -0.051 0.003 b1 -0.343 0.243 0.157  0.025
I5; -0.136  0.188  0.014  0.000 I5] -0.302 0.185 -0.152 0.023
! 1.029 0.099 0.029 0.001 e’ 0.761 0.216 -0.239 0.057
D {18,80} A 2.821 1.858 -1.179 1.389 A 3.190 2.045 -0.810 0.656
Aoo 4.276  2.734 0.276 0.076 Aoo 4.160 2.698 0.160 0.026
Ao -0.428 1.791 -0.428 0.183 Ao -0.661 1.799 -0.661 0.437
a 0.905 0.067 0.005 0.000 ax 0.900 0.064 0.000 0.000
as 0.898 0.067 -0.002 0.000
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Table 3.6: Simulation results of the perturbed cases for CPHGCR model

Prior 1 Prior 2

Setup  Perturbed
case Parameters Mean SD Bias MSE Parameters Mean SD Bias MSE

bo -1.679 0.268 -0.179 0.032 bo -1.840 0.290 -0.340 0.116

by -0.492 0.271  0.008 0.000 b1 -0.600 0.263 -0.100 0.010

B -0.226 0.132 -0.076 0.006 B -0.177 0.119 -0.027 0.001

o 0.909 0.177 -0.091 0.008 o 0.920 0.180 -0.080 0.006

A None Ay 4.258 2370 0.258 0.067 Ay 4.351 2449 0.351 0.123
Ao 3.880 2.560 -0.120 0.014 Ao 2.980 2.239 -1.020 1.040

Ao 0.002 1.774 0.002 0.000 Aqo -0.054 1.594 -0.054 0.003

a 0.902 0.066 0.002 0.000 ai 0.901 0.066 0.001 0.000

az 0.902 0.065 0.002 0.000

bo -1.678 0.267 -0.178 0.032 bo -1.646 0.263 -0.146 0.021

b1 -0.599 0.252 -0.099 0.010 b1 -0.369 0.266 0.131 0.017

I} -0.384 0.124 -0.234 0.055 B -0.230 0.138 -0.080 0.006

o 0.918 0.179 -0.082 0.007 o 0.789 0.194 -0.211 0.045

B {18} A1y 4.124 2242 0.124 0.015 Aqs 3.180 1937 -0.820 0.672
Ao 3.743 2440 -0.257 0.066 Aoy 3.798 2552 -0.202 0.041

Ao 0.259 1.742 0.259 0.067 Aqo 0.420 1.745 0.420 0.176

a 0.901 0.064 0.001 0.000 ax 0.899 0.068 -0.001 0.000

a2 0.900 0.066 0.000 0.000

bo -1.634 0.262 -0.134 0.018 bo -1.716  0.271 -0.216 0.047

by -0.521 0.260 -0.021 0.000 b1 -0.401 0.263 0.099 0.010

B -0.231 0.123 -0.081 0.007 B -0.040 0.132 0.110 0.012

o 0.903 0.180 -0.097 0.009 o 0.850 0.184 -0.150 0.023

C {80} Ay 3.972  2.205 -0.028 0.001 Ay 3.464 1970 -0.536 0.287
Aoy 3.928 2.642 -0.072 0.005 Aoy 3.779 2,531 -0.221 0.049

Ao 0.130 1.793 0.130 0.017 Aqo -0.040 1.623 -0.040 0.002

a 0.901 0.066 0.001 0.000 ai 0.900 0.066 0.000 0.000

as 0.902 0.063 0.002 0.000

bo -1.643 0.275 -0.143 0.021 bo -1.515 0.254 -0.015 0.000

by -0.444 0.270 0.056 0.003 b1 -0.305 0.246 0.195 0.038

B8 -0.041 0.134 0.109 0.012 B -0.161 0.137 -0.011 0.000

o 0.770 0.216 -0.230 0.053 o 0.806 0.192 -0.194 0.037

D {18,80} A1y 2.547 1.553 -1.453 2.111 A1y 3.708 2101 -0.292 0.085
Ao 3.958  2.529 -0.042 0.002 Ao 4.303 2.689 0.303 0.092

Ao -0.038 1.707 -0.038 0.001 Ao 0.350 1.774 0.350 0.122

a 0.901 0.065 0.001 0.000 ai 0.899 0.067 -0.001 0.000

as 0.901 0.064 0.001 0.000
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Table 3.7: Divergence measures of the perturbed cases and DIC values for the simulated data sets.

Model ‘ Prior ‘ Setup Case number dgy, dy dry dX2 ‘ DIC
A 18 0.006 0.011 0.042 0.012 142,754
80 0.030 0.060 0.097  0.067
1 B 18 0.080 0.171 0.159 0.238 | 164.476
C 80 0.246 0.602 0.277  2.128 | 153.082
D 18 0.069 0.143 0.147 0.181 185.709
WOCR 80 0.282 0.677 0.304 1.742
A 18 0.007 0.014 0.046 0.014 140.186
80 0.033 0.067 0.102 0.075
9 B 18 0.036 0.075 0.106 0.084 | 164.446
C 80 0.294 0.940 0.288 14.544 | 149.760
D 18 0.062 0.131 0.138 0.176 184.934
80 0.120 0.269 0.190 0.498
A 18 0.038 0.079 0.108  0.096 401.704
80 0.001 0.003 0.019 0.003
1 B 18 0.369 0.890 0.347 2.987 | 431.013
C 80 0.605 1.381 0.440 4.905 | 436.193
D 18 0.243 0.555 0.283  1.227 447.962
CWOCR 80 0.723 1.729 0.481 8.789
A 18 0.066 0.137 0.145 0.161 404.392
80 0.045 0.092 0.119 0.103
9 B 18 0.677 1.720 0.486  8.654 | 408.839
C 80 0.288 0.672 0.305 1.844 | 416.505
D 18 0.131 0.291 0.206 0.501 495 875
80 0.256 0.624 0.288  2.408
A 18 0.016 0.032 0.071  0.034 998 007
80 0.036 0.073 0.106  0.081
1 B 18 1.644 4.288 0.693 168.408 | 263.195
C 80 1.265 4.761 0.649 584.824 | 241.465
D 18 1.750 4.472 0.718 84.141 240.257
PHACR 80 0.479 1.248 0.402 8.804
A 18 0.002 0.004 0.026  0.004 911.243
80 0.013 0.027 0.065  0.029
9 B 18 1.455 3.501 0.662 35.776 | 278.356
C 80 1.438 3.271 0.660 22.489 | 284.756
D 18 0.462 1.097 0.390 3.959 990.520
80 0.460 1.162 0.390 5.777
A 18 0.018 0.037 0.076  0.040 387.037
80 0.025 0.0560 0.086  0.057
1 B 18 2.727 5.539 0.788 73.127 | 427.090
C 80 3.659 7.131 0.845 110.592 | 452.871
D 18 2.087 4.366 0.726 34.092 483157
CPHGCR 80 4.358 9.412 0.900 648.576
A 18 0.011 0.023 0.059  0.023 193919
80 0.025 0.052 0.090 0.057
9 B 18 3.790 7.791 0.870 199.173 | 446.544
C 80 3.347 6.929 0.829 164.743 | 470.571
D 18 3.880 8.238 0.870 365.590 477 539
80 3.829 8.759 0.883 595.102
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WGCR model

Figure 3.1: Index plots of Kullback-Leibler divergence measure from the fitted of the WGCR model con-

sidering prior 1.

Figure 3.2: Index plots of Kullback-Leibler divergence measure from the fitted WGCR model considering

prior 2.
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Figure 3.3: Index plots of J-distance from the fitted WGCR model considering prior 1.
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Figure 3.4: Index plots of J-distance from the fitted WGCR model considering prior 2.
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Figure 3.5: Index plots of L; norm distance from the fitted WGCR model considering prior 1.
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