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Resumo

Nesta tese, estendemos os modelos flexiveis de sobrevivéncia com fragao de cura, tais como os
modelos de sobrevivéncia com fracdo de cura geométricos, binomial negativa e séries de poténcias,
para permitir correlagoes espaciais incluindo fragilidades espaciais para os dados de censura intervalar.
Modelos de cura paramétricos e semi-paramétricos com as fragilidades espaciais independentes e
dependentes sdao propostos e comparados. Os modelos propostos abrangem varios modelos de cura
bem conhecidos como seus casos particulares. Uma vez que estes modelos de cura sao obtidos
considerando que a ocorréncia de um evento de interesse é causada pela presenca de quaisquer riscos
nao observados, estudamos também os modelos de cura complementares, nesse caso, os modelos sao
obtidos assumindo que a ocorréncia de um evento de interesse é causada quando todos os riscos,
nao observados, sao ativados. Uma nova medida de selecao de modelo, baseada no paradigma da
perda do preditivo, para dados de censura intervalar é proposta. Métodos MCMC sao utilizados
em uma abordagem de inferéncia Bayesiana sendo que os critérios de selecao de modelos Bayesiano
sao utilizados para comparacao de modelos. Além disso, realizamos um diagnostico de influéncia
para detectar as possiveis observagoes influentes ou extremas que podem causar distor¢oes sobre os
resultados da analise. Finalmente, os modelos propostos sao aplicados para analisar um conjunto de

dados real de abstencao tabagica.

Palavras-chave: Inferéncia Bayesiana; Fragao de cura; Diagnodsticos de influéncia; Fragili-

dade espacial; Modelos de sobrevivéncia.






Abstract

In this thesis, we extend some flexible cure rate models, such as the geometric, negative
binomial and power series cure rate models, to allow for spatial correlations by including spatial
frailties for the interval censored data setting. Parametric and semi-parametric cure rate models
with independent and dependent spatial frailties are proposed and compared. The proposed models
encompass several well-known cure rate models as its particular cases. Since these cure rate models
are obtained by considering that the occurrence of an event of interest is caused by the presence
of any non-observed risks, we also study the complementary cure model, which arises when the
cure rate models are obtained by assuming the occurrence of an event of interest is caused when
all of non-observed risks are activated. A new measure of model selection, based on the notion of
predictive loss paradigm, for the interval-censoring data is also proposed. The MCMC method is
used in a Bayesian inference approach and some Bayesian model selection criteria are used for model
comparison. Moreover, we conduct an influence diagnostics to detect possible influential or extreme
observations that can cause distortions on the results of analysis. Finally, the proposed models are

applied to analyze a real dataset from a stop smoking study.

Keywords: Bayesian inference; Cure fraction; Influence diagnostics; Spatial frailty; Survival

models.
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Chapter 1

Introduction

With the development of medical and health sciences, the datasets collected from clinical
studies pose some new challenges to statisticians. New statistical models which can incorporate
these changes should be investigated. The most prevalent change noted in many clinical studies
is that, more patients respond favorably to a treatment or, were not susceptible to the event of
interest in the study, so they are considered cured or have prolonged disease-free survival. This
proportion of patients is called the cure fraction. Incorporating the cure fraction in survival models
leads to cure rate models or long-term survival models. These models have been widely developed
in the biostatistics literature. One of the most famous cure rate models is the mixture cure model
introduced by Berkson & Gage (1952). This model has been extensively discussed by several authors,
including Farewell (1982), Maller & Zhou (1996), Ewell & Ibrahim (1997) and Stangl & Greenhouse
(1998). Later, Yakovlev & Tsodikov (1996) and Chen et al. (1999) proposed the promotion time
cure model or bounded cumulative hazard model in cancer relapse settings, assuming that a latent
biological process of propagation of latent carcinogenic tumor cells is generating the observed failure
(relapse). Recently, Cooner et al. (2007) generalized this framework to a flexible class of cure models
under latent activation schemes, Rodrigues et al. (2009b) extend the promotion time cure model
proposed by Chen et al. (1999) through the generating function of a real sequence introduced by
Feller (1968) and Cancho et al. (2011) proposed a flexible cure rate model, that encompasses as
special cases and the mixture model (Berkson & Gage, 1952), the promotion time cure model (Chen

et al., 1999) and the cure rate proportional odds model proposed by Gu et al. (2011).

The second challenge is the existence of incomplete (censoring) datasets. In many clinical
trials, the patients are examined periodically for disease occurrence or progression. In this situation,
the exact failure time of each patient cannot be observed. Rather, it can only be determined to

lie in an interval obtained from a sequence of examination times. This time to event is known as
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the interval censoring (Peto, 1973). The estimation methods available for right censored data, such
as the Kaplan-Meier estimator, are not adequate for application to interval-censored data, because
they can lead to biased estimation and invalid inferences. The interval censorship information should
be taken into account in modeling (Riicker & Messerer, 1988; Lindsey & Ryan, 1998; Sun & Chen,
2010).

Another challenge is appearing with the development of geographic information systems
(GIS) and computing technology. Datasets increasingly incorporate geographical information about
the subjects under study. Adopting a traditional cure rate model by including random effects for
each region fails to consider the correlations of the regions. Therefore, several researchers have
developed survival models that account for spatial clustering and variation. Banerjee et al. (2003)
investigated spatially correlated frailties in traditional parametric survival models. Later, Banerjee &
Carlin (2004) introduced spatially correlated frailties in the parametric cure model. They developed
a Bayesian approach to the mixture cure model (Berkson & Gage, 1952) with spatial random effects
in the survival function for subjects at risk and spatial frailties using a multivariate conditionally
autoregressive (MCAR) prior. Recently, Pan et al. (2014) proposed a Bayesian approach under a
proportional hazards frailty model to analyze interval-censored survival data with spatial correlation.
Li Dan & Dey (2015) proposed flexible cure rate models in analyzing univariate right-censored data
based on the assumption that the logarithm of survival time follows a generalized extreme value

distribution with spatial and nonlinear covariate effects.

Considering these three challenges, there are two main goals in this work. First more flexible
cure rate models that account for spatial clustering and variation should be devolved and investigated
for the censored datasets. Here, we assume two most natural activations schemes, the first and last
activations schemes. The first activation scheme presents the situation where the presence of any
of latent risk will ultimately lead to the occurrence of the event, while the last activation scheme
presents a situation where the occurrence of the event will happen when all latent risks are activated.
Thus, the proposed cure rate models are much more general and encompass several well-known
cure models as special cases, such as some cure models introduced by Banerjee & Carlin (2004)
and others were suggested as future investigations by the authors. To investigate the correlation
between the hazard function and cure fraction, the covariates and frailties are incorporated into both
of them, assuming the spatial frailties can be independent or dependent. The inference procedures

are developed through a Bayesian perspective.

The second goal is propose a new measure for model selection for the interval-censored data,
which measures the performance of a model by how close its predictions are to the observed data.

Compared with the deviance information criterion (DIC) proposed by Spiegelhalter et al. (2002),



1.1. SMOKING CESSATION DATA 3

the proposed measure is based on the notion of predictive loss paradigm (Gelfand & Ghosh, 1998;
Ibrahim et al., 2001b) and only a very weak assumption about censoring is made for the computation
of the new measure. Both the DIC and the new proposed criterion are used to compare the models.
Furthermore, we also conduct influence diagnostics in order to check the model assumptions and
conduct sensitivity analysis to detect possible influential or extreme observations that can cause
distortions in the results. Here case deletion influence diagnostics are developed for the joint posterior
distribution based on the ¢-divergence (Peng & Dey, 1995; Weiss, 1996). In this work, the proposed
cure rate models are fitted to a real dataset (smoking cessation data) to illustrate their flexibility.

Thus, we present the dataset in follow the section.

1.1 Smoking cessation data

In smoking cessation study, all of the patients (smokers) were randomized into either a
smoking intervention (SI) group, or a usual care (UC) group which received no special anti-smoking
intervention. The smoking intervention treatment program was conducted in Rochester, Minnesota,
located in the center of the maps. The details of the program can be found in Murray et al. (1998).
Here, each patient was observed once a year over the five year follow-up. Our event of interest is
whether they relapse (resume smoking) or not. If a smoker resumed smoking after an initial attempt
to quit, then only an approximate one-year time interval was observed from the previous observation
to the current observation. Thus, the relapse times are interval-censored. In this analysis, we limit
our attention to those patients who are known to have quit smoking at least once during the study
period and who have an identifiable Minnesota Zip code of residence. Thus, the data consist of
223 patients who reside in 51 Zip codes in the southeastern corner of Minnesota, among them 65
patients having relapsed, which implies the empirical cure rate is approximately 71%. The map of
cities which correspond the Zip codes is showed in Figure 4.2 and the covariate information for each

patient considered in the study are

« intervention type SI/UC (1=special intervention [SI], 0=usual care [UC]);
e sex (O=male, 1=female);
o the average number of cigarettes smoked per day (5 to 60);

o duration of smoking habit in years (12 to 46 year);

To estimate the covariate effects on the success rate of smoking cessation as well as that on

the smoking relapse time. Therefore, all recorded covariates are considered in both the cure rate
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and the PH components of the studied cure models. The Figure 1.1 shows the survival functions
estimated considering the intervals by Turnbull algorithm and using the midpoints of intervals by
Kaplan-Meier method (Kaplan & Meier (1958)). We can note that the estimated curves are similar in
some moments, but they are very different in many other moments. Moveover, it is also can observe
that the curves were stabilized before 0.6, which confirmed the existence of a significant fraction of
cured individuals. Recently, Ma & Xiang (2013) also confirmed the existence of a noneligible cure

fraction in the population.

1.0

0.9
\

S(1)
0.8
|

0.7

—— Using the Intervals by Turnbull algoritm
— ---+ Using Midpoint of Intervals

I I I I I I
0 1 2 3 4 5

0.6

Times (years)

Figure 1.1: Estimated survival functions considering the intervals and its midpoints.

The dataset was also analyzed by Carlin & Banerjee (2003), they developed a Bayesian
approach to the mixture cure model, assuming the failure times due to the latent risks (competing
times) have Weibull and gamma distributions, with spatial random effects in the survival function
for at-risk subjects. They showed that the models through assuming competing times having Weibull
distribution have better fitting than gamma. In this work, we will compare our models with their

models thought the Bayeisan DIC.

The remainder of our text is organized as follows. In Chapter 2, we will present some basic
concepts in the survival analysis. The statistic models which are used in our work, some important
definitions of statistic terms such as censoring and likelihood are described in detail. Moreover,
some well known Bayesian comparison criteria and diagnostic measures based on the -divergence
are also showed. In Chapter 3, we propose two flexible cure rate models for spatial correlations by
including spatial frailties for the interval censored data setting. For the proposed cure rate models,
the Bayesian inferences are developed and the simulation studies are also conducted. To illustrate

the flexibility of proposed models, they are fitted to a real data set (smoking cessation study). In
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Figure 1.2: Cities in which are collected the smoking cessation data.

Chapter 4, we propose the Power Series cure rate survival model for spatially correlated interval-
censored data based on the generalized extreme value distribution. This cure rate model is much
more general than the cure models which are proposed in Chapter 3. A new measure based on
survival function is proposed in Chapter 5. Finally, some general remarks and some perspectives for
future work are listed in Chapter 6. The algorithm used in this work and the prior sensitive analysis

studies are presented in Appendix.



CHAPTER 1. INTRODUCTION



Chapter 2

Basic concepts

This section describes some important results and defines the notations which build the basis
for specific points in the later chapters. Moreover, some parametric models which are used in the

work and its respective characteristics and properties are presented.

We consider a single non-negative random variable 7', representing the lifetime or time to
failure of an individual, usually, it is assumed to be continuous. The probability density function
(p.d.f.) is denoted by f. The cumulative distribution function (c.d.f.) of 7" can be determined by its
probability density function and it is denoted by F'. The survival function of 7" is defined by:

S(t)=PIT > 1] =1— F(t) = /t°° F(s)ds,

which is the probability of an individual to survive until time ¢. It is a continuous monotonically

decreasing function with S(0) = 1 and lim; o, S(t) = 0.

Another important is failure rate function (or hazard function), which specifies the instan-
taneous rate of failure or death of an individual at time ¢, given that it survives until time t. The
function is useful to describe the lifetime distribution of the observations under study, and it is

defined by:
L PRSTL<t4 6T >t f(t)
M= g 5 0]

Sometimes, it is useful to deal with the cumulative hazard function

The shape of a hazard function can take different forms: it can be increasing, decreasing, constant,

unimodal or U-shaped. In applications, it is often have qualitative information about the form of
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the the hazard function, which can be of help in selecting a appropriate model.

The relationship of the functions f, F', S, h and H is

f(s)
(

g S)ds — /Ot exp|—In(S(s))]f(s)ds = In(S(¢))

H(t) = /Oth(s)ds _ /Ot
and

S(t) =1 — F(t) = exp(—H(t)).

These relationships are very useful in the survival analysis.

2.1 Some interesting distributions

Some distributions which are used in the work will be presented as follow section.

2.1.1 Weibull distribution

The Weibull distribution was firstly introduced by Weibull (1939) and then was used in
survival analyze by Weibull (1951). This function is an important generalization of the exponential
model with two positive parameters, there are shape parameter and scale parameter. One of the
main characteristics of this distribution is its flexibility in accommodating different forms in failure

rate. Therefore, it is one of most widely used model in practice.

The random variable 7" has Weibull distribution with shape parameter o > 0 and scale
parameter A\, A € R, denoted by T' ~ Weibull(a, \), and its probability density function (p.d.f.) is
given

ftla, N) = at® Lexp(\ — t%e?), (2.1)

and the corresponding survival and hazard function are given by
S(tla, \) = exp(—t@e?) and h(tla, \) = ae ™!, (2.2)

respectively.

The survival and hazard functions are presented in Figure 2.1, which illustrates that the
hazard function of the Weibull distribution h(t) is strictly increasing for a > 1, strictly decreasing
for a < 1 e constant for « = 1. In this case, T follows an Exponential distribution with parameter

A, which reveals a certain flexibility in the behavior of the hazard function.
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Figure 2.1: (a) Survival function and (b) hazard function of Weibull distribution with A = 0 and
different selected values of a.

The kth moment of the distribution is E[T*] = exp (—%) r (E + 1). So the mean and

variance are thus

E[T] = exp <—2>P<;“)
Var[T] = exp <—?> {F <Z + 1) - [F (; + 1>r}

where T'(z) = [;°t* e 'dt is a gamma function.

The gth quantile of the Weibull distribution, obtained by inverting the cumulative distribu-

tion function of 7', is given by
ty = (= log(1 — gq) /M),

and particularly, the median is t1,, = (log(2)/e*)"/*.

2.1.2 Piecewise exponential distribution

The Piecewise exponential distribution was firstly introduced by Feigl & Zelen (1965) and
then it was used to analyze survival data with multiple covariates by Friedman (1982). The risk
rate of the distribution is constant within each considered time interval. The Piecewise exponential
distribution can be used to be an approximated distribution while the true distribution is unknown

and the approximation becomes better when the length of each interval becomes smaller.

Let 0 =ap < a1 < ... < ag = oo be a partition of the time axis, assuming the risk rate is

constant in each of these intervals. Let the vector @ = (ay,...,a9-1) with0 < a; < ... <ag_1 < o
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and define ap = 0 and ag = oo. The random variable 7" has piecewise exponential distribution with
parameter A = (A, ..., A\g) and partition vector a, denoted by T' ~ PExp, (), and the corresponding

probability density function (p.d.f.) is given by
FA) = gAgexp{—A(t —ag-1)}, t € (ag-1,a4), ¢=1,...,Q, (2.3)

where

1, if q=1;

R =
exp {~ S Nilai —ai) ), ifg=2,....Q.

The corresponding survival and hazard function are given respectively by

S(tIA) = exp{—i)\qu(t)}, t>0, (2.4)

q=1
h(tIA) = Ap t€ (ag-1,0a4,q=1,...,0Q, (2.5)
where
0, ift < Ag—1;
Aq<t): t—aq_l ifaq_1§t<aq, q:l’Q

ag — ag—1 if t > a,.

q=1 q
and
Q 1 2 )
Var[T] = Z Kq (aq + A) (1 —exp{—As(ag —ag-1)})| — E[TV,
g=1 q
respectively.
Note that the exponential distribution with a parameter A is the particular case of the piece-
wise exponential distribution when A\, = X for ¢ = 1,..., Q. The survival and hazard functions are

presented in Figure 2.2. We selected a = (0.5,1,2,3) and considered four different parameter vec-
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tors, which lead to the hazard function of piecewise exponential distribution has constant, increasing,

decreasing and U shapes.

@ (b)
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Figure 2.2: (a) Survival function and (b) hazard function of piecewise exponential distribution with
different selected values of A.

2.1.3 Generalized extreme value distribution and Log generalized ex-

treme value distribution

The generalized extreme value (GEV) distribution is a family of continuous probability dis-
tributions under the extreme value theory which combine the Gumbel, Fréchet and Weibull families.
It was introduced by Jenkinson (1955, 1969) and recommended by Natural Environment Research
Council (1975) of Great Britain. The GEV distribution has gained popularity in many disciplines,
but its use in survival modeling is relatively new (Li Dan & Dey, 2015). Its flexible hazard function
is the main reason that it has gained attention in survival analysis. Recently, Roy & Dey (2014)
showed that different shapes for the hazard function can be obtained by varying the shape parameter

in the GEV distribution.

The random variable X has GEV distribution with incorporation of location and scale pa-

rameters are given by

1

exp{— (1+§i”>?}, if ¢ #£0,

F(z|p,0,¢) =
(z|p, 0,%) exp{_exp (_%)}’ te o

where 1 € R, 0 > 0 and ¢ € R are the location, scale and shape parameters respectively, and
z, = max(0,z). In the survival analysis, we assume that logT ~ GEV (u,0,<), where T' denotes

time to event of interest, i.e., let T' ~ logGEV (i, 0,s), the cumulative distribution function (c.d.f.)
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of T"is given by

1

exp{— <1+§l°g§_“);§}, if ¢ #£0,

F(t|u,0,¢) =
(t|p, 0,%) exp{—exp(—k’g%)} if ¢ =0,

and the probability density function (p.d.f.) is given

Ult(l—l—gk’{i_“)_i_lexp{— (1+glog;_”>_i}, t>exp(,u—%) if¢ >0, or
f(tlp,o,6) = t<exp<u—%) if ¢ <0,

%exp (—log%) exp{—exp (—log%)}, 0<t<oo if¢=0.
(2.7)

The corresponding survival function and hazard function are given respectively by

1
1—exp{—(1+ql°g§_“)+<}, if ¢ # 0,

S(t|lp,o,¢) =
() 1—exp{—exp(log%)}, if ¢ =0,

and
1

_1 4 -1
L1 4 glostzp) < [ex { 1+ glostzp c}—1} , if¢#0,
bt o) = | 7L FEEE) T e (1), ’

i (1 + glogi%) {exp {exp (—log%)} — 1]_1 , if¢=0.

The survival and hazard functions are presented in Figure 2.3 and 2.4. We fixed location
parameter ;1 = 0, scale parameter ¢ = 1.0 and o = 1.5, the shape parameter ¢ are selected 1.5, 0.5,
0.0 and —0.5 four different values. We note that the hazard function of logGEV distribution has
increasing, decreasing, bell and U shapes. Inasmuch as in many practical situations, especially in
cancer related studies, the hazard function is not monotone, the logGEV distribution could be more

adequate than the usual parametric distributions, such as Weibull and Gamma distributions.

(a) (b)
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Figure 2.3: (a) Survival function and (b) hazard function of logGEV distribution with © = 0 and
o=1.
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Figure 2.4: (a) Survival function and (b) hazard function of logGEV distribution with p = 0 and
o=15.

2.1.4 Gamma distribution and inverse gamma distribution

The gamma distribution was firstly introduced by Pearson (1895). It includes the exponential
distribution and chi-squared distribution are special cases. The gamma distribution is of limited use
in survival analysis because the gamma models do not have closed form expressions for survival and
hazard functions. Both include the incomplete gamma integral. Consequently, traditional maximum
likelihood estimation is difficult and requires the calculation of such incomplete gamma integrals,

which imposes additional numerical problems in parameter estimation.

The random variable T" has gamma distribution with shape parameter a@ > 0 and rate
parameter (inverse scale parameter) § > 0, denoted by 7" ~ Gamma(a, ), and its probability
density function (p.d.f.) is given

/BOC

f(tla, B) = @t‘l—l exp(—3t), t>0, (2.8)

and the corresponding c.d.f. and hazard function are given respectively by

v(a, ft)
I'(a)

and h(t|la, A) = peie T exp(=ft) (2.9)

P(a) = ~(a, ft)

F(tjor, \) =

where v(s,z) = [5t*"te~'dt is the lower completed function and I'(z) = [;°t* e 'dt is a gamma

function.

The mean and variance of gamma distribution are

and Var[T] = °

E[T] = 5

@
B
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The probability density function and cumulative distribution function of gamma distribution

are presented in Figure 5.3.1.
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Figure 2.5: (a) Probability density function and (b) cumulative distribution function of gamma
distribution with different selected values of a and .

A random variable T takes the inverse gamma distribution with parameter shape a and scale
S if 1/T has the gamma distribution with shape parameter o and scale parameter 1/5. The p.d.f.
of the inverse gamma distribution is given by

/30[
I(a)

ftla, B) = t—*texp(—pt™Y), t >0, (2.10)

and the corresponding c.d.f. and hazard function are given respectively by

 T(e, Bt Bt lexp(—ptTY)
F(tla,\) = T and h(tla, \) = (1 - F(?,(Bof)*l)) (o)’ (2.11)

where T'(s,z) = [2°t*"te~!dt is the upper completed function and I'(z) = [3°t* 'e~'dt is a gamma

function.

The mean and variance of the distribution are

62
(= 1)*( = 2)’

ET) = b a>1 and Var[T] =

> 2.
a—1’ @

The probability density function and cumulative distribution function of inverse gamma

distribution are presented in Figure 2.6.

In Bayesian statistics, the inverse gamma distribution is the conjugate prior of the unknown

variance of a normal distribution. It is usual to set a low value for its parameters such as 1 or 0.01
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Figure 2.6: (a) Probability density function and (b) cumulative distribution function of gamma
distribution with different values of a and S.

or 0.001 in order to let it be an weakly informative prior distribution.

2.1.5 Wishart distribution

A Wishart distribution was introduced by Wishart (1928). It is a generalization to multiple
dimensions of the chi-squared distribution, or, in the case of non-integer degrees of freedom, of the
gamma distribution. This distribution is very important in the estimation of covariance matrices in

multivariate analysis.

Let X;,i=1,...,n be a p-dimensional random vector, which is independently drawn from
a p-variate normal distribution with zero mean and symmetric positive definite covariance matrix
Ay (X; ~ N,(0,Ap)). Then the Wishart distribution is the probability distribution of the p x p
symmetric positive definite random matrix S = >1% X" X;, denoted by S ~ W, (ng, Ag), with scala
matrix Ay and degrees of freedom n > p. The p.d.f. of Wishart distribution is given by

2 1
£(8) = sp e e {5 0(A 1)} (212)

p(p*)p 1—9
0 (3) = I (55

If p =5 =1 then this distribution is a chi-squared distribution with ny degrees of freedom.
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The mean and variance of the distribution are
E[S] = TLOAO and Var[S,-j] = nO()‘(%ij + )\Oii>\0jj),

respectively, where \y;; denotes the element of Ay matrix in (¢, j) position.

In Bayesian statistics, it is the conjugate prior of the precision matrix (inverse covariance-
matrix) of a multivariate normal distribution. The least informative, proper Wishart prior is obtained
by setting ng = p. The prior mean of W,(ng, Ag) is noAg, suggesting that a reasonable choice for

Ay would be nXy, where ¥ is some prior guess for the covariance matrix.

2.2 Interval Censoring

Censoring is one of the main characteristic that distinguishes survival analysis from other
fields of statistics. Basically, a censored observation contains only partial information about the
variable of interest. There are different types of censoring, here we consider an interval censoring
in the study. We now briefly describe the some types of interval-censored data considered in this

section.

"Case 1" interval censoring or current status data.

Let T be the unobservable failure time and suppose that L is an examination time (or
observation time). Then suppose that an observation consists of the random vector (A, L) where
A = 1ip<z). In this case, the only knowledge about the "failure time" T is whether it has occurred

before L or not.

"Case 2" and "Case k" interval censoring.

In the "Case 2" interval censored data, we only know that the unobservable failure time
T has occurred either within some random time interval, or before the left end point of the time
interval, or after the right end point of the time interval. More precisely, suppose that there are two

examination (or observation) times L and R , the data observed is

(L, R, A1, Ao, As) = (L, R, Lir<p)s Lin<r<r), Lirsn),
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Note that A3 = 1 — A; — As. In the particular situation that 7' has occurred either within some
random time interval or after the right end point of the time interval, the data observed can be

denoted as

(L, R, A1, A) = (L, R, Lip<r<r), LiT>R),

it also equivalent

(L7Ra A) = (L7R7 1[R<oo]>

A "Case k" interval censoring arises when there are k examination times per subject, which is a

generalization of "Case 2" interval censoring (see Wellner (1995)).

Particular situation of "Case 2" interval censored data with latent com-

peting risks.

In this case, we assume that the event of the interest (failure) occurs due to the several
latent (non-observed) competing risks. In practice, there are three most popular situations. The
first one is the event of the interest occur if any of latent risk is activated; the second one is the
event of interest occur if all of latent risks are activated, and the last one is the event of the interest
occur if one random latent risk is activated. Here, we suppose the time to event (failure time) 7" has
occurred either within some random time interval or after the right end point of the time interval,

ie., L<T < RorT > R. Thus, the data observed in this case is

(L,R,A) = (L, R, Ljcr<p)) = (L, R, 1[reo))-

2.3 The likelihood functions

We assume that the examination times are independent of the failure time and that their
distribution is independent of the distribution function of the failure time. With these conditions,
the joint densities and the likelihood functions for the given types of interval-censored data will be

presented follow.
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"Case 1" interval censoring

Let T be a failure time with distribution F and L be an observation time with distribution

G. The joint density of a single observation (,0) is given by

FQ)° (1= F(1))g(1),

where ¢(l) is the density of L.
Proof: For a single observation, we have two cases A = 1 and A = 0. We first consider

A=1

P(L<IL,A=1) = P(L<I,T<L)

= / P(L<I,T <L|L =s)dG(s) (conditioning on L)
R
l

_ / P(T < s|L = s)dG(s)
!

= / P(T < s)dG(s) (using independence of T and L)

= /loo F(s)dG(s).

We obtain the corresponding density by differentiating with respect to [. Assuming that G had a
density g. Using the integration by parts we have

/_l _F(9)dG(s) = F(s)G(s)|_o — f _f(£)G(s)ds
= FOGQ) - /l f(s)G(s)ds.

—0o0

Thus,

fla=1) =
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Similarly, considering A = 0 we have

P(L<IL,A=0) = P(L<I,T>1L)
= / P(L <1,T > L|L = s)dG(s) (conditioning on L)
R

l
::/ P(T > s|L = $)dG(s)
!
= / P(T > s)dG(s) (using independence of T" and L)

:(ﬁwu_ww@megy

Using the Integration by parts, we obtain

fLa=0) = 9 1o F(s)da(s) = (1~ FI)o()

Combining the terms for A =1 and A = 0, we get the following density for one observation:

[FDgI' 11 = FD)g())' =" = FO)° (1L - F(1)'g(). O

Note that this density again factors in a part depending on F' and a part depending on ¢g. Since
G and g do not involve any of the parameters in F', they can be neglected. Hence, the likelihood

function L, of a random sample (l,6;), ..., (l,,d,) is given by
Lo = TLF) (1 — R (213)
i=1
Note that the likelihood function L, (F') also can be rewritten in terms of observed sets as
L, = f[lPF(Ri),
where

7

0,1], ifé =1

and Pr(R;) denotes the probability that 7' € R; under distribution F' for ¢ = 1...,n. Now we can

derive the likelihood in a slightly simpler way by observing that

P(A=1|L=1) = P(T<L|IL=1)=P(T<L)=F(),
P(A=0|L=1) = P(T>L|IL=1)=P(T>L)=1-F(l).

Hence, A|L is a Bernoulli random variable with parameter F'(L). It then follows that the density of
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one observation is

exactly as we found before.

2.3.1

"Case 2" interval censoring

CHAPTER 2. BASIC CONCEPTS

P(A = §|L = 1)g(])

Let T be a failure time with distribution F and (L, R) (with L < R) be a pair of observation

times with the joint distribution G. The joint density of a single observation (I, r,d1,ds,d3) is given

by

F)™ [F(r) -

F)™(1 -

F(r))'~*g(l,r)

where g(I,r) is the joint density of (L, R) and 05 = 1 — d; — 0».

Prove: In this case, we have three situations which are T'< L, L <T < Rand T > R with

the probabilities

and

plzp(AlzlyL:l,R:T) =

P(T<LIL=I1,R=r)

= P(T<|L=1,R=r)

(
(

= P(I<l)
(),

|
e

p2:P<A2:1‘L:l,R:T’) =

p3:P<A3:1‘L:l,R:T> =

(using independence of 7" and (L, R))

P(T>R|L=1,R=r)

= P(I'>r|[L=1,R=r)

= P(T'>r)

= 1-F(r),

(using independence of T" and (L, R))
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Hence, A|L, R ~ Multinomial(1, p1, ps, ps) with p; + ps + p3 = 1. It then follows that the density of

a single observation (I, 7,4y, d2,d3) is given

P(A = (01,02,03),L=1,R=7r) = P(A=(01,02,03)|L=1,R=r)g(l,r)
= F(I)""(F(r) = F())*(1 = F(r))®g(l,r),

where 51 + 52 + 53 =1. O

Since G and g do not involve any of the parameters in F', they can be neglected. Hence, the

likelihood function of a random sample (I1, 71,11, 021), - - -, (In, 'n, 010, 92 is given by

L, = ﬁ F(li>§1i(F<Ti) — F(li))‘b"(l _ F(T’i))(l_éli_‘s%),

=1

Note that when we assume that T has occurred after the first examination time L, we just have two
situations which are T' € (L, R] and T' € (L, 00) which is equivalent to verify whether R < oo or

R = oo. Let A = 1jp«7<Rr] = l{r<c], the probabilities of these situations are given by:

m=PA=1L=l,R=r) = P(L<T<R|IL=IL,R=r)
= Pl<T<r|[L=IlR=r)
= P(<T<r) (usingindependence of T and (L, R))
= F(r)=F()

and

pp=PA=0L=IR=r) = PIT'>LIL=1,R=r)
= PIT>IlL=IR=r)
= P(T >1) (using independence of T"and (L, R))

= 1-F().
Hence, the density of one observation is

P(A=0,L=1,R=r) = P(A=J4L=1,R=r)g(l,r)
= (F(r) = F()’ (1= F(1))"g(l,7).
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The likelihood function of a random sample (I1,71,61), ..., (4,7, d,) can be written as

Lo = TI(F(r) = F(1)) (1 — F(1)1=.

i=1

Interval censored data with latent competing risks

Let M denote the number of latent risks and assume that M has a known discrete distribution
with the p.d.f. denoted by P(M = m). Let Y; for j = 1..., M denote the failure times due to the jth
latent risk and we assume that given M = m, Y}’s are i.i.d with a distribution F(-) =1 — S(-). The
time to event of interest (failure time) which is defined by random variable 7" = Y(g-y, for M > 1
and T' = oo if M = 0 with P(T" = oco|M = 0) = 1, where Y- is the Rth statistic order and R*
can indicate resistance factors of the immune system of the individual in many biological processes.
It can be a fixed constant, a function of M or a random variable specified through a conditional
distribution on M. In this work, we deal with two specifications for R*, there are R* = 1 and

R* = M.

The survival functions of the random variable T' considering R* = 1 (ie., T = Y3y =

min{Y;,j =1,..., M}) is given by

Spop(t) = P(T > 1) = 3 S(t)" P[M = m). (2.14)

m=0

Proof:

Spop(t) = P(T >1t)
— Y P(T > M = m)P(M = m)

= P[T> M =0P(M =0)+ " P(T > t|M = m)P(M = m)

m=1

= P(M=0)+ i Pmin{Y;,j=1,....,m} > t|{M = m|P(M =m)

= PM=0)+ > PYi>t,....Y, >yM=m]P(M=m)

m=1

= P(M=0)+ i P[Y1 > t]"P[M = m]

m=1

:pw:m+iﬂWﬂM=W

= > S@E)"P[M =m).

m=0
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The survival functions of the random variable 7' considering R* = M (ie., T = Y =

max{Y;,j=1,...,M}) is given by

Spn(t) = P(T > 1) = 1 + PM fj F(t)" P[M = m]. (2.15)
Proof:
Spop(t) = P(T'>1)
= 3 P> M =m)P( = m)
_ PET > t|M = 0]P(M = 0) + il P(T > t|M = m)P(M = m)
— PM=0)+ Y Plmax{Y.j = 1,....m} > t|M = m]P(M = m)

m=1

= P(M=0)+ i(1—P[maX{Yj,j:1,...,m}§t|M:m])P(M:m)

- P(M:O)+i(1—P[Y1gt,...,YmSylM:m])P(M:m)
i fjpqump[M m]

= P(M=0)+1—P(M= fjpqumP[M m
= P(M:0)+1—§:F(t)mP[M:m]

e}

= 1+P(M=0)- > F@O)"PM=m].

Assuming T" independent on the observed failure times (L, R) with the joint distribution G,

the joint density of a single observation (I,r,d) is given by

(Spop(l) — SPOP(T))55POP(Z)1_69(Z7 r),

where ¢(l,7) is the joint density of (L, R).

Proof: In this case, we have two situations which are L < T < R and T > R with the



24 CHAPTER 2. BASIC CONCEPTS

probabilities

p = Pld=1L=[R=r]
= Y Pl6=1M=m,L=1,R=r]P(M =m)

m=0

— S P[L<T<RM=m,L=1,R=r]P[M=m]
m=0

(using independence of T" and (L, R))
= Y Pl <T<r|M=m]PM=m]

— N PIT <M =mPM =m]— Y P|T < |M = m|P[M = m]
— S P[Ts UM = mlP[M =m]— Y P[T> r|M = m|P[M = m]

= Spop(l) = Spop(r)
and
ps = PIo=0|L=1,R=r]
S P =O0[M =m,L—1,R = r]P(M = m)

m=1

= Y P[T>LIM=m,L=1,R=r]P(M=m)
m=0
(using independence of T" and (L, R))

= Y P[T>IM=m]P(M=m)

m=0

= Spozv(l)-
Hence, the density of one observation is

PIA=J4|L=1,R=r] = P[A=46L=I1,R=rlg(l,r)

(Spop(l) — SPOP(T))(S(Spoz)(l))l_ég(la r).

Since G and g do not involve any of the parameters in Sy,,, they can be neglected. Thus, the

likelihood function of random sample (I1,71,01),. .., (ln, 7, 6,) is given by

H (Sp0p<li> - SpOp(”))éi (Spozv(li))k& : (2' 16)
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2.4 Cure rate model

With the development of medical technology, in many clinical cancer studies, some patients
can return a normal life after a treatment, i.e, there is a percentage of patients will not occur the
event of interest after a long follow-up period of the study. In this situation, the usual survival
models, assumed that all individuals occur the event of interest after a long follow-up period, are not
adequate to fit this kind of data set. Alternatively, the cure rate models (also known as the survival
models with cure fraction), which assume that a significant fraction of individuals will not occur the
event of interest even after a long follow-up period of the study, can be used. In the literature, a
percentage of individuals will not occur the event of interest is known as a cure fraction. There are
many cure rate models have been widely developed. The reference papers are Maller & Zhou (1996),
Ibrahim et al. (2001a), Tsodikov et al. (2003), Cooner et al. (2007), Tournoud & Ecochard (2007),
Lopes et al. (2012), Rodrigues et al. (2009a), Cancho et al. (2009), Cancho et al. (2011), Rodrigues
et al. (2010a) and Rodrigues et al. (2010b). In this section, some principal cure rate models will be

presented as follow.

Mixture cure rate model

Perhaps the most popular type of cure rate model is the mixture cure model introduced by

Boag (1949) and Berkson & Gage (1952). In this distribution, it is assumed that a certain proportion

of the individuals are cured. The survival function for the population of the mixture cure model is
given by

Spop(t) = po + (1 — po)S(t), (2.17)

where pg is the cure fraction (that is, proportion of the cured individuals) and S(t) is the survival
function of the non-cured (or susceptible) individuals. Note that this model also can be introduced
under structure of latent competing risks, assuming M has a Bernoulli distribution with the suc-
cess parameter 1 — pg. The survival function of the non-cured individuals S(t) can taken different
approaches such as parametric, semi-parametric and non-parametric (Maller & Zhou, 1996; Peng,

2003; Lu, 2010).

Although the mixture cure model is widely used in the literature, it has some disadvantages
which were commented by Chen et al. (1999). First, in the presence of covariates, it does not have
the proportional hazard structure; Second, If covariates are included in the cure fraction through
a standard binomial regression model with the improper priors for the coefficient parameters, the
posterior distributions of the parameters will be improper, i.e., the mixture cure model requires

proper priors distributions in the Bayesian inference.
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Promotion time cure model

Later, the promotion time cure model has been proposed by Yakovlev & Tsodikov (1996)
and Chen et al. (1999) as an alternative cure rate model with desirable properties. The cure model
was derived in a context in which relapse occurs in patients with cancer. Let M; denotes the number
of latent risk (in the cancer study, M; denote the number of carcinogenic cells in the beginning of
a treatment) for ith individual, and assume that A/; has Poisson distribution with mean 6. Let Y;
for 7 = 1,..., M; denote the failure time due to the jth latent cause, that is, the time until jth
carcinogenic cell produces a detectable cancer. Suppose that given M, the random variables Y; are
independent and identically distributed (i.i.d.) with c.d.f. F'(-) = 1—S(-) and the presence of any of
latent risk (i.e., M; > 1) will ultimately lead to the occurrence of the event. Thus, the time to event
of interest (time to detect cancer) is defined by random variable 7" = min{Y;,7 = 0,--- , M;} where
P(Yy = 00) = 1. Using the equation (2.14) and M; ~ Poisson(f), the survival function of promotion

time cure model for the population is given by

Slt) = 30 Sty
pop - — m‘
= (S
N mzzo m!
o—005(1)
_ o 0F)

The corresponding p.d.f. and hazard function of T" are given by

Foop(t) = 0f (t)e 7O and pop(t) = O£ (1), (2.18)

respectively, where f(t) = 2 F(t).

A cure fraction of the promotion time cure model is given by

Spop(00) = lim S, (¢) = lim e ™70 = 70, (2.19)

t—o00 t—o00

It is easy to note that this model belongs to the family of Cox proportional hazards models (Cox,
1972). Suppose two individuals, say i and j, have the parameters associated with the cure fractions

given by 0; and 0}, respectively. Thus,

0;) 0. f(t) 6;

Pyt
hyes(116;) — 0,7(2) 6,

pon
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does not depend on the time t.

Complementary promotion time cure model

The promotion time cure model assumed that the presence of any of latent risk will lead to
the occurrence of the event. Now, we assume the other situation that the occurrence of the event
will be occur when all of the latent risk are activated. Using the same definitions for M; and Y; as
above, now the time to event of interest is defined by random variable 7" = max{Y;,j = 1,--- , M,}
for M; > 1 and T = oo if M; = 0 with P(T = oo|M; = 0) = 1. Similarly, using the equation
(2.15) and M; ~ Poisson(0), the survival function complementary promotion time cure model for

the population is given by

Spp(t) = 14+ PM=0]— S F(t)"P[M = m)]
0o m:Oe—Gem
= 1+e =Y F@O)"

m)!
R ()

— 1 o -0 (
+e e mz::oim!

= 14— 00

= e’ —e 0.

The corresponding p.d.f. by and hazard function of T" are given by

B Qf(t)e_es(t)
Fon® = 01050 and Ry(t) = s (220
respectively, where f(t) = 2 F(t).
A cure fraction of the complementary promotion time cure model is given by
Spop(00) = Jlim Spop(t) = tllglo 14e ¥ —e 050 = ¢ (2.21)

Note that it is the same as the cure fraction of the promotion time cure model.
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Geometric cure rate model

Let M; denote the number of latent risk for th individual, and assume that M; has geometric
distribution with 1/(1 4 ), the probability mass function is given by

em

P(Mi:m):m,

m=0,1,2---, (2.22)

where 6 > 0, E(M;) = 0 and Var(M;) = 6(1 +6). Let Y for j = 1,..., M; denote the failure time
due to the jth latent cause, that is, the time until jth carcinogenic cell produces a detectable cancer.
Suppose that given M;, the random variables Y; are independent and identically distributed (i.i.d.)
with c.d.f. F(-) =1 — 5(-) and the presence of any of latent risk (i.e., M; > 1) will ultimately lead
to the occurrence of the event. Thus, the time to event of interest is defined by random variable
T =min{Y;,j=0,---,M;} where P(Y; = 0o) = 1. From (2.14), the survival function of geometric

cure model for the population is given by
Spop(t) = [1 4+ 0F ()] ". (2.23)

Note that this survival function has a proportional odds structure when covariates x; are modeled

via 6;(x;) and the latent survival F(t;) is free of x;, because

1— Sp0p(ti|wi>
Spop(tilmi)

= 0;(x;)F(t;).

Recently, Gu et al. (2011) studied the geometric cure model under the proportional odds structure
and renamed the geometric cure model as the cure rate proportional odds (CRPO) model. Unlike the
model proposed by Chen et al. (1999), the ratio of hazards for the CRPO model for two covariante

values does not remain over time.

The corresponding p.d.f and the hazard function associated to (4.2) are given by

Foon(t) = 0 (ti) [L+OF ()] and  hye(t) = 0f (1) [L+0F(1)] ",

respectively, where f(t) = 2 F(t).

Note that, the survival function in (4.2) can also be written as a mixture cure model

Spop(t) = (1+8)™" + (1 - (1+6)"") { [L+0F @]~ (1+6)! } |

1-(1+6)1
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Thus, the survival functions of uncured (susceptible) individuals can be expressed by

14+ 60F@)] " — 1+ 0)*1’

Sousll) = (159

29

If we assume another situation in which the presence of all latent risks will ultimately lead to

the occurrence of the event, then the time to the event of interest is defined by the random variable

T =max{Y;,j=1,---,M;} for M; > 1 and T = oo if M; = 0 with P(T" = oo|M; = 0) = 1. The

survival function for the population is given by
Spop(t) =1+ (1+0) —[14+65(t)]".
The corresponding p.d.f. and the hazard function are given by
Foon(t) = 055 f(H)(1 +05()) 77,

and
_ bf) L +esty)]
1+ (140) = (1+0S(1) Y

hPOP <t>

respectively. The survival function (4.4) can also be written as a mixture cure model

Spop(t) = (1+6)"" + (1 —(1+ 9)—1) {1 — (14 95(75)3’1 } |

1—(1+40)
Thus, the survival functions of susceptible individuals is given by

1—(1+60S5() !
Sous() = I-(1+0) " °

2.5 Frailty model

2.5.1 Introduction

(2.24)

Ordinary methods in survival analysis assume the populations are homogenous, that is,

assuming the lifetimes of each individual are mutually independent with same distribution, which

imply that all individuals have the same risk of death. Although this assumption is valid for many

studies, it can be inadequate for others. In many situations, the lifetime data are observed as repeated

measurements or collected from several clusters, such times within each cluster cannot be mutually

independents. For example, the behavior of the observed lifetimes between members of the same
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family displays certain similarities that would not be observed among individuals without family tie.
Therefore, in this case, it is reasonable to assume that there is an association between the lifetimes
of the same cluster. This association between the lifetimes characterizes multivariate lifetimes data.

A frailty model is commonly used in this context to consider this association.

A frailty model also can be used for univariate (independent) lifetimes. In this case, each
individual has its own frailty, which has different meaning of the frailty in the multivariate context.
Here, the frailty is a heterogenous measure of the individuals, while in multivariate survival is also a
measure of association. In this chapter, the univariate and multivariate frailty will be presented in

the following sections.

2.5.2 Univariate frailty model

Situations in which each individual has its own frailty component, which could be seen as
the special case in which all groups or families have unitary size, characterize univariate survival
data. The supposition that individual has its own frailty component is not difficult to justify. In the
medicine study, for example, the argument that individuals are inherently different is widely accepted.
Two individuals with exactly the same values of the covariates are not expected to experience any
medical response at exactly the same time. There are no observable biological variations, such as

genetic factors with respect to one disease.

Considering the situation the heterogeneity of individuals affect the observed survival data,
a frailty (or random effect) was introduced in the hazard models. Vaupel et al. (1979) introduced
the concept of frailty to the biostatistical community and applied it to population mortality data.
Lancaster (1979) dealt with times of unemployment and introduced the model to the econometric
literature, where the model is known as the mixed proportional hazards model. The classical and
most frequently applied model assumes a proportional hazards structure that is conditional on the
random effect (frailty). To be more specific, the hazard function of an individual depends on an
unobservable, time-independent random variable Z. In the multiplicative hazards framework, which

has been used in most survival data studies, Z acts multiplicative effect on the baseline hazard

function hg. The frailty model without observed covariates for the individual ¢ (i = 1,...,n) is given
by
where the z,...,z, is a sample of random variables Z;,..., 7, ii.d. with a known distribution

with mean one and unknown variance o?. The variance (if it exists) is interpretable as a measure of

2

heterogeneity across the population in baseline risk. When o~ is small, the values of Z are closely
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located around one. If o2 is large, then values of Z are more dispersed, inducing greater heterogeneity
in the individual hazards Zhg(t). It is natural to introduce observed covariates into model (2.25)
similar to the Cox model by

hi(tlas, =) = zho(t) exp(a] ), (2.26)

where (3 is the regression parameters vector associated to covariates a;. Consequently, a frailty model
is a generalization of the well-known proportional hazards model. The proportional hazards model
is obtained if the frailty distribution degenerates to Z; = 1 for ¢ = 1,...,n. In this case, the frailty
not only explain the heterogeneity of the individuals but also evaluate the effect of covariates that
were not observed at the time of the experiment for some reason, and thus were not included in the

analyzes.

Various probability distributions have been proposed in the literature for the frailty variables.

Next, we will present the gamma distribution which is used in the work.

The gamma distribution has been widely applied by several authors (Vaupel et al. (1979),
Lancaster (1979), Hougaard & Hougaard (2000) Duchateau & Janssen (2007)). From a computational
and analytical point of view, it fits very well as a mixture distribution to failure data. It is easy to
derive the closed-form expressions of unconditional survival, cumulative density, and hazard function,
which is due to the simplicity of the Laplace transform. This is also the reason why this distribution

has been used in most applications published to date.

Let Z;, i = 1...,n be random variables with the gamma distribution presented in Section

5.3.1, i.e., Z; ~ Gamma(a, (), considering the parameters a = 3 = =1, the p.d.f. of Z; is given by

f(z) = <’17>/)nz$1 exp (—Z> 23>0, (2.27)

Note that E[Z;] = 1 and Var[Z;] = n. Thus, n can be viewed as a way to quantify this frailty. If
n =0 (i.e, Var[Z;] = 0) all of the frailty variables Z; = 1, for all i = 1,...,n, that is, the gamma

distribution is degenerate in 1.

Promotion time cure model with fragility

The promotion time cure model presented in Section 2.4 is assumed that conditional on the
number of latent risks M; = m, the random variables Y7,...,Y,, are mutually independent. This
assumption may be unrealistic, because Y7, ...,Y,, are not observed random variables taken on the
same subject. One possible relaxation and remedy of this assumption is to introduce a subject-

specific frailty Z; such that conditional on both M; = m and Z; = z, Yi,...,Y,, are mutually
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independent with distribution function F(-). Moveover, we assume that conditional on Z; = z, M;
has a Poisson distribution with rate z6, thus Z; presents the heterogeneity of the Poisson rates in
the M;’s. Following the same derivation as before, we then obtain the survival function of time to
event, T, is

Spop(t) = Ez, [exp{—0F (t)z}],

where 7, denotes the expectation with respect to Z;. Assuming the Z; has a gamma distribution

with its p.d.f. presented in (2.27), then we have

Spozo(t) = Egz [exp{—0F(t)z}]

O GO (2 vorn) )

(2+ eF(t))l/"
= (L+noF (). (2.28)

Note that this cure rate model is the same as the of model which was proposed by Rodrigues
et al. (2009b). The cure rate model can also called Negative Binomial cure rate model, because it
can be proposed similarly to Chen et al. (1999). Let M; denote the number of latent risk for ith
individual, and now assume that M; has negative binomial (NB) distribution with parameters 6 > 0
and n > —1/6, i.e., E[M;] = 0 and Var[M;] = (1 +n). Let Y; for j = 1,..., M, denote the failure
time due to the jth latent cause. Suppose that given M;, the random variables Y; are i.i.d. with c.d.f.
F(-) = 1—5(-) and the presence of any of latent risk (i.e., M; > 1) will lead to the occurrence of
the event. Thus, the time to event of interest (time to detect cancer) is defined by random variable
T = min{Y;,j = 0,---, M;} where P(Y; = oo) = 1. From (2.14), the survival function for the

population can be written as

Suplt) = 32 (L (LI gy

Ly ST 4 m) (98S()\”
= ey (17z<n)m! )<717+§7£>

= (L+n0(1 = S(t)~"/"
= (L+n0F(t)".

m=0
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The corresponding p.d.f. and hazard function of 7" are given by
Jpop(t) = 0f(t)(1 + 977F(t))—(1/n+1)

and
hpop(t) = 0 (t)(1 4+ OnF (1)),

respectively, where f(t) = %F (t). Its cure fraction is given by

Spozo(oo) = lim SpOp(t) = tliglo(l + 7795(15))_1/" =(1+ 779)_1/77-

t—o00

Note that some special sub-models can be obtained if we set some special values for the parameter
n. For n — 0 we have the promotion time cure model and if n = 1, we obtain the geometric cure

rate model given in Section 2.4.

Complementary promotion time cure model with fragility

Similar to above case, we introduce a frailty Z; to the complementary promotion time cure
model, such that conditional on both M; = m and Z; = 2, Yi,...,Y,, are mutually independent with
distribution function F(). Assuming conditional on Z; = z, M; has a Poisson distribution with rate
260 and Z; has a gamma distribution with its p.d.f. presented in (2.27), the survival function of time

to event, T', is given by

Spop(t) = Ly, [1 +e 0% _ e—GS(t)z]

B ) B (R 0) BT A |
(2 +05)" /0 () ' ( <77 : 05(t>) ) ’
= 1+ (14n0)"Y"— (1 +n0S@t)) " (2.29)
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Similarly, we called this model as complementary negative binomial cure rate model. Assuming the
number of latent risk M; has the negative binomial (NB) distribution with parameters § > 0 and
n>—1/6. Let Y; for j = 1,..., M; denote the failure time due to the jth latent cause. Suppose that
given M;, the random variables Y; are i.i.d. with c.d.f. F(-) =1 — S(-) and the presence of all latent
risks will lead to the occurrence of the event. The time to event of interest is defined by random
variable 7' = max{Yj,j = 1,--- , M;} for M; > 1 and T' = oo if M; = 0 with P(T" = oo|M; =0) = 1.
Using the equation (2.15) and M; ~ N B(#,n), the survival function for the population can be written

as
Yym) (om0 \™ _
Spop(t) = 1+ (1+n0) 71— 3 Fym LU 1+ 6) /7
bon(1) + (1 +n0) Z X0 <1+n9) (1+n0)
_ iy = Dt +m) (mOF(t)\™
= 14+ (1 +n0)"Y"— (1 +ne)~1n
(1+nf) (1 +n0) mzz:o L'(n)m! 1+n6
= 1+ (1+n0)""— (1401 — F(t))" "/
= 14+ 1 +n0)~Y"—(1+n0S@t))~ /.
The corresponding p.d.f and hazard function of T are given by
Foop(t) = 05 (£)(1 + 00 S (1)),
and
(1) = B0+ 0gS(1) e
PP L (L4 0n)~Yn — (14 0nS(t))-Yn’
respectively, where f(t) = %F (t). Its cure fraction is given by

SPOP(OO) = }g& SpOp(t) = tliglo 1+ (1+ 770)_1/" —(1+ 7795@))_1/" =(1+ 770)_1/77-

Note that if we set n — 0 we have the Complementary Promotion time cure model presented in
Section 2.4 and if n = 1, we obtain the Complementary Geometric cure rate model or Complementary

cure rate proportional odds model.

2.5.3 Multivariate frailty models

There are several approaches have been proposed in the literature for analyzing multivariate
survival data (Therneau, 2000). Frailty models are classified in the conditional approach, which
assume that the lifetimes are conditionally independent given the frailty. This approach is commonly

used for modeling the problem of multivariate survival data characterized by the presence of clusters.
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One of most popular model in modeling the association between survival times of individuals within
each cluster is the shared frailty model. In this case, a frailty is shared in each cluster, that is, the
individuals who are in the same cluster have the common frailty. A shared frailty model in survival

analysis is defined as follows.

Suppose there are m clusters and that cluster ¢ has n; observations and associates with the

unobserved frailty Z; for i = 1,...,m. The vector X;;, j =1,...,n; and i = 1,...,m contains the

iJ
covariate information of the event time 7T;; of the jth observation in the ith cluster. Conditional on
the frailty variance Z;, the survival times in cluster ¢ are assumed to be independent and their hazard
functions to be of the form

hij = ziho(t) exp(z,;B), (2.30)

where ho(t) denotes the baseline hazard function, and S is the regression parameters vector (fixed
effect parameters vector) to be estimated. The frailties Z; (i = 1,...,m) are assumed to be indepen-
dently and identically distributed random variables with the known distribution function with mean

one and some unknown variances. Note that the equation (2.30) also can be written as
hij = ho(t) exp(x;;8 + W), (2.31)

where W; = In(z;), is assumed to be independently and identically distributed random variables with
the a distribution function with mean zero and some unknown variance, so that the proportional
hazards model can be obtained if variance has value zero. One of most used model is the normal

distribution with mean zero and unknown variance o2 i.e., W; ~% N (0, 0?).

In this work, we consider frailty (random effect) corresponding to clusters that are spatially
arranged. While it is possible to identify centroid of geographic regions and employ spatial process
modeling for the locations, the effects are more naturally associated with areal units. As such we
work with conditionally autoregressive (CAR) models and multivariate conditionally autoregressive

(MCAR) models for these effects, and these models will be presented as follow.

Conditionally Auto-Regressive (CAR) models: Gaussian case

The CAR models were introduced by Besag (1974), but they have enjoyed a dramatic increase
in usage only in the past decade. This resurgence arises from their convenient employment in the
context of Gibbs sampling and more general Markov Chain Monte Carlo (MCMC) methods for fitting
certain classes of hierarchical spatial models (for more details see Banerjee et al. (2004), in Section

5.4.3).
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Let Y7,....Y,, be m observations with associated with areal units 1,2,...,m, and let W,,«m
be an adjacent matrix of the map with its elements w;; defined by
1, if region ¢ and j are adjacent,
wij =
0, otherwise
and let w;y = 3, w;; denoting the number of regions adjacent to region i. For the Gaussian case, we

suppose

Yily;,j #i ~N (Zbijyj,n?) L i=1,...,m. (2.32)
J

These full conditionals are compatible. For obtaining the joint distribution for the Y;, the Brook’s

Lemma will be used and it is defined as

Lemma 2.1. (Brook’s Lemma) Let yo = (Y10, ---,Ymo) be any fized point in the support of the
joint probability distribution p(yi,...,Ym)-

. p(yllyz, R 7ym) p(y2|y10, Yszy - - 7ym)

p(yla"'aym) - X
p(y10|3/27 e ,ym) p(y20|y10, Ys ... 7ym)

e p(ym|y107'-‘7ym—1,0)

p(ymo|y1o7 . 7ym—1,0)

p(yw, e 7ym0>-

Banerjee et al. (2004) showed that using the Brook’s Lemma, the joint probability distribu-

tion p(yy, ..., Ym) has expression

1 -
Pl ym) < exp{ ~ 3y DI =~ B)y}., (239

where I is identity matrix of size n, B = {b;;} and D is diagonal with D;; = 7. The expression

(2.33) suggests a joint multivariate normal distribution for Y with mean 0 and covariance matrix

(I — B)™'D. So let b;; = ;}”i and 77 = %, we have the relation

2\ 1 2\ 1 2\ —1
bij wij T wji T wji T bji L.
— = —_— = —_— = = —5, foralli,y,
T; Wit \ Wi+ Wit \ Wi+ Wit \ Wit T

which implies a symmetry of the matrix D~1(I — B). Moreover, the supposition (2.32) is now

given by Yi|y;,j #i ~ N (Zj wijyj/wiJr,T?/wH) , i =1,...,m, and the matrix can be written as
D (I — B) = 5 (Dw — W), where Dy is diagonal matrix with (Dy);; = w;y, for i =1,...,m.
Thus, the joint probability distribution given in (2.33) becomes

! y' (Dw — W)y} :

P15 Ym) O<eXp{—272
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which suggests that it could be a n-dimencional multivariate normal distribution with mean 0 and
precision matrix 772(Dy — W) and we denoted this model by C AR(6), where § = 72, Note that
this precision matrix is rank deficient, so it is a non-positive definite matrix and it leads to an
improper distribution function. This singularity, while theoretically awkward, creates little problem
in a Bayesian implementation, since the identifying sum-to-zero constraint > ", Y; = 0 is easily
imposed in a Gibbs sampler simply by recentering the Y; draws around zero after every iteration (see

Carlin & Louis (2000), pg 263).

Multivariate conditionally autoregressive (MCAR) models

Let YT = (Y7,...,Y,,) where each Y; is a p x 1, following Mardia (1988), the zero-centered

multivariate conditionally autoregressive (MCAR) models sets
J

where each B;; is p X p, as is each 3;. As in the univariate case, using the Brook’s lemma, a joint

density for Y of the form
1 -
P(Y{Sii=1....m}) o exp {—QYTI‘_l(I _ B)Y} , (2.35)

where T is block diagonal with blocks ¥; and B is an np x np with (4, 7)th block B;;. Similarly the

univariate case, we take b;; = Z”i and X; = %, then we have the condition b;;%X; = b;;%; for all 7, 7,

which let the matrix I'"1(I — B) be a symmetric. Note that using the Kronecker product notation

®, the T~1(I — B) matrix can be rewrote as
I''I—-B)=DywREZTH)I-BRI)=(Dw—W)QA,

where A = ¥7! and Dy, W and B are the same as defined in univariate case.

Again, the singularity of Dy — W implies that T~1(I — B) is singular. An alternative to
resolve this problem is insert the smoothness parameter a in Dy, — W and standardize W so that

each of its rows sum to 1, thus,

I''(I — B) = (Dw —aW)® A,
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and the joint probability distribution given in (2.33) becomes
1
p(Y{Ssi=1...,m}) o exp {—QYT (Dw — aW) ® Al Y} , (2.36)

which suggests that it could be a multivariate normal distribution with mean 0 and the precision

matrix

(Dy — aW) ® A, (2.37)

and we denoted this model by MCAR(a,A). The parameter a € (0,1) has a spatial smoothness
interpretation. Value of a closer to 1 imply greater weight on the adjacency matrix W, while a close

to 0 implies that the adjacency structure has few role to play in the precision matrix.

Later, Gelfand & Vounatsou (2003) and Carlin & Banerjee (2003) extend the MCAR(a, A)
to allow the introduction of a spatial auto-regression coefficient for each component of Y;, and they

denoted the extend MCAR model by MCAR(ay,...,a,, A).

First, they rearrange the rows of the np x 1 vector Y to block by components, rather than by
units, that is, let Y = (Y11, Y1, ..., Y1, Yio, ooy Yonay oo+, Yip, o« o, Yonp) T, thus the precision matrix
A given in (2.37) can be rewritten as A @ (Dy — aW).

For the parameter vector @ = (aq,...,a,), the corresponding positive definite matrix are
denoted by (Dw — a;W) for i = 1,...,p and its corresponding the Cholesky factorization are
denoted by R R;, where R; is n X n. dimensional matrix. Following the Carlin & Banerjee (2003),

the precision matrix can be written as

A\uRJR, M:RIR. ... \,RIR,

A® (Dw — aW) = AmR;Rl A”R;RZ o AQPE;RP ~R'(A®I,)R, (2.38)
_/\le;,'_ Ry M2RJRy ... \,R) R, |

where )\;;’s are the elements of the matrix A and R is a block diagonal matrix with blocks Ry, ..., R,.

The A ® (Dw — aW) is positive definite since A is positive definite.

2.6 Model comparison criteria

There are several Bayesian criteria to compare competing models for a given data set and
to select the one that best fits the data. One of the most used in applied works is the deviance

information criterion (DIC), which is based on the posterior mean of deviance. For a model, the
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statistic DIC is defined as
DIC = d + pd.

where d = E[D(¢)], pd = E[D(¢)]—D[E(¢)] and D(¢p) is the deviance function of the model defined
by —2log L(¢). L is the likelihood function of the model. Spiegelhalter et al. (2002) provide evidences
that pd is a suitable measure of model complexity even in hierarchical settings, and thus, DIC is
considered as a sensible generalization of the expected Akaike information criterion to hierarchical
settings. The model, with the smallest value of DIC, is commonly taken as the preferred model to

describe the data set given.

2.7 Bayesian case influence diagnostics

Since regression models are sensitive to underlying model assumptions, generally performing
a sensitivity analysis is strongly advisable. One of the most used ways of evaluating the influence of
an observation in the fitted model is a case-deletion (Cook & Weisberg, 1982), in which the effects
are studied by completely removing cases from the analysis. This reasoning will form the basis of
our Bayesian global influence methodology and, in doing so, it will be possible to determine which
subjects might influence the analysis. Now, the Bayesian case-deletion influence diagnostic measures
for the joint posterior distribution based on the -divergence (Peng & Dey, 1995; Weiss, 1996) will

be introduced as follows.

Let Dy (P, P_;) denote the 1)-divergence between P and P_;, in which P denotes the
posterior distribution of 9 for full data, and P_;) denotes the posterior distribution of 1 without the

/¢< ﬂiD))ﬂmgyw. (2.39)

where 9 is a convex function with (1) = 0. Several choices concerning the i are given by Dey

& Birmiwal (1994). For example, 9(z) = —log(z) defines the Kullback-Leibler (K-L) divergence,

1th case. Specifically,

Y(z) = (2 —1)log(z) gives J-distance (or the symmetric version of K-L divergence), ¢(z) = 0.5z — 1|

defines the variational distance (or L; norm) and ¢(z) = (2 — 1)? defines the x2-square divergence.

Let 90 ... 9@ be a size Q sample of 7(9|D), D, (P, P(_;) can be calculated numerically

by
— 1 CPO;
Dy(P,P_p)==> | ——"1], 2.40
%ZJ( ( )) Q; (L(yil,ﬂ(q))> ( )
—1
is the numerical approximation of the conditional predictive

—_— Q
where CPO; = {clg >

D S
q=1 L(yi|19(q>)

ordinate statistic of i-th observation (Ibrahim et al., 2001a).
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Note that Dy (P, P;) can be interpreted as the 1)-divergence of the effect of deleting the
i-th case from the full data on the joint posterior distribution of 1. As pointed by Peng & Dey (1995),
Weiss (1996) and Cancho et al. (2010), it may be difficult for a practitioner to judge the cutoff point
of the divergence measure so as to determine whether a small subset of observations is influential
or not. In this context, we will use the proposal given by Peng & Dey (1995) and Weiss (1996) by
considering a biased coin, which has success probability p. Then the ¢-divergence between the biased
and an unbiased coin is

Dolfor f1) = [ @ (;8) fi(@)de, (241)

where fo(x) = p*(1 —p)'~* and fi(z) = 0.5, x = 0,1. Now if Dy(fo, f1) = dy(p), then it can be easy

to check that d, satisfies the following equation

dy(p) = vip) ¥ w2(2(1 ) (2.42)

It is not difficult to see for the divergence measures considered that d, increases as p moves away
from 0.5. In addition, d,(p) is symmetric about p = 0.5 and d,, achieves its minimum at p = 0.5.
In this point, d(0.5) = 0, and fo = f1. Therefore, if we consider p > 0.90 (or p < 0.10) as a strong
bias in a coin, then dk.1,(0.90) = 0.51, d;(0.90) = 0.88, df,(0.90) = 0.4 and d,2(0.90) = 0.64. This
equation implies that ith case is considered influential when dr, > 0.4 or d,» > 0.64. Thus, if we
use the Kullback-Leibler divergence, we can consider an influential observation when dgkj, > 0.51.

Similarly, using the J-distance, an observation which djy > 0.88 can be considered influential.



Chapter 3

Spatial frailty in Cure rate models

In survival analysis, it is common obtain the data set which are collected from different
regions, that is the data are clustered by different regions. One of the most used approaches is
consider cluster-specific random effects (or frailty) in the modeling. The frailties account for excess
heterogeneity in the data, as well as capture similarity across observations within the same cluster.
In this section, we will introduce frailties to each spatial cluster in the cure rate models presented in

Section 2.5.2 for the interval-censored data.

3.1 Geometric cure rate models with spatial frailties

Supposing that there are I regions and n; individuals in ith region. Let Tj; denotes the
random variable for time to the event of the jth individual in the ¢th region, where j = 1,...,n;
and ¢ =1,...,I. We suppose that the (7, j)th individual is potentially exposed to M;; latent risk, in
which M;; denote the initial number of competing causes concerning the occurrence of an event, and
assuming M;; has a geometric distribution with parameter 1/(1+ 6;;), the probability mass function

is given by
oy
(6;; + 1)m+t’

where Hij > 0, E(MZ]) = Qij and Vm’(Mij) = (92](1 + 9”)

Let Y,;; denote the lifetime of jth individual in ith region due to the cth (¢ = 1,..., M;;)
latent risk. Given M;; > 0, Yy, Ya;j, ... are assumed to be independent and identically distributed
with a common distribution function F'(-) =1 — S(-) that does not depend upon M;;. If we assume
that the presence of any latent risk will ultimately lead to the occurrence of the event, the time to

the event of interest Tj; could be defined as Tj; = min{Yy,j,- -+, Yaz,i;} for M;; > 1. If M;; = 0, then

41
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the individual is not at risk of final event and is considered cured. In this case, we define 7;; = oo

with P(T}; = oo|M;; = 0) = 1. Thus, the survival function for the population is given by

Spop(tis) = [L+ 05 F(t;;)] . (3.2)

The probability density function (p.d.f) and the hazard function associated to (3.2) are given
by
Fron(tis) = 053 f (t33) [+ 05 F ()] and hyop(tig) = 035 f (tig) [L + 655 F (t5)]

respectively, where f(t;;) = 52 F(t;;).
ij

Note that, the survival function in (3.2) can also be written as a mixture cure model

Spop(tij) — (1 + oij)il + (1 o (1 +9ij)71) { [1 +Qljlf(il]()1]; 9”)(114’ 01‘]’)7 } ,

Thus, the survival functions of uncured (susceptible) individuals can be expressed by

[1405F ()] — (14 6;)7"
1—(146;)t '

Ssus (tl]) =

If we assume another situation in which the presence of all latent risks will ultimately lead to
the occurrence of the event, then the time to the event of interest is defined by the random variable
,I;j = max{Ycij,c = 17 s aMij} for Mij Z 1 and ,T%j = oo if Mij = 0 with P(,I’” = OO|MZ] = 0) =1.

The survival function for the population is given by
Spop(tig) = 1+ (14 0;5) 7" = [1 405 (t:)] (3.3)
The corresponding p.d.f. and the hazard function are given by
Foon(tig) = 03 f (ti) (1 + 035 (ti5)) 2,

and
PRI (L4 0) 7 — (14 055 (tiy) ™Y

respectively. The survival function (4.4) can also be written as a mixture cure model
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Thus, the survival functions of susceptible individuals is given by

1-— (1 + HijS(tij))_l
1

Sl = T )

The first situation, also known as the first activation scheme because, in this case, we assume
the event of interest occurs when the first possible cause is activated. On the other hand, the second
situation is known as the last activation scheme, because the event of interest only takes place after
all the latent causes have been activated (see, Cooner et al., 2007). Thus, we denoted the survival
functions (3.2) and (3.3) by S& (t;;) and Sk, (t;;), respectively. There is another kind of situation

in which the event of interest occurs: when some of the possible causes are activated and, given

the number of latent causes M;;, the number of activated causes is a random variable with discrete

IRl
uniform distribution in {1,---, M;;}. This situation is known as random activation scheme. In this

case, the survival function for the population is given by

S o(ti) = (14 0) 7" + (1= (1+055)7") S(tsy), (3.4)

where the superscript R denotes random activation scheme.

Note that whichever the activation scheme, the density and hazard functions of the cure
models are improper functions, since the survival functions are not proper. Its cure fraction is
the same for these activation schemes and, thus, it can be obtained by pg;; = limy,, 00 Spop(tij) =
(1+ 6;;)~*. However, under different activation schemes, the models differ by its surviving, density
and hazard functions. Moreover, under the conditions of the models (3.2), (3.3) and (3.4) for any
distribution function F(-), we have S (t;;) < SE (t;;) < SL (t;;) for all t;; > 0.

pop pop pop

As is well known, the cure fraction plays a key role in the survival models with cure frac-
tion. So we consider the parametrization of the model in cure fraction in expressions. Since
poi; = (1+ 927-)71, we have 0;; = p&-} — 1. Moreover, we propose that the cured fraction of an

individual (7, j)th be associated with covariates a;;. Thus linking py;; to covariates a;; by

exp(&ij)

— j:l,...,ni, Z’:l’,,,,[,
1+ exp(&;;)

Poij =

where §;; is a linear function of covariates, §;; = x; b where b is a p;-dimensional vector which
represents the effects of covariates on the cured fraction. Thus, the models in (3.2), (3.3) and (3.4)

parameterized in the pg;; can be written as

Spop(tig) = [1+ (v — 1)F(tij)]_17 (3.5)



44 CHAPTER 3. SPATIAL FRAILTY IN CURE RATE MODELS

Spop(tis) = 1+ poij — {1 + (Poij — 1)5(75@‘)}_1 (3.6)

and

Sﬁ)p( i) = Poij + (1 = poij)S(tij), (3.7)
The model in (3.7) is the same considered by Banerjee & Carlin (2004).

The non-negative random variables Y;;;’s can take several distributions, we assume Y;;;’s take
proportional hazard (PH) model with the baseline hazard function ho(t|c), the conditional hazard

function and corresponding survival function are given by
h(t|gp) = ho(t]ax) exp(Ai;) or S(t|¢p) = So(t[ar) ™), (3.8)

where ¢ = (a, \ij), A\ij = 2}, is the linear predictor of the covariates, where z;; is covariates of
an individual (i,j) and B is a po-dimensional vector representing the effects of covariates on the
survival model component. Sy(t|e) is the baseline survival function corresponding to hy(t|ax) and a
is the parameter vector of the baseline functions. Note that different distributions will be obtained
if we take different baseline functions. In this paper, we consider two different distributions for
the baseline functions. Firstly, we assume the baseline hazard function ho(t|a) = at®™!, thus Ye;’s
follow a Weibull distribution with its p.d.f. f(t|@) = at* texp(\ij — t%*7), where a > 0 is a
shape parameter and e} is a scale parameter. In this case, we called the functions (3.2) and (3.3)

by Weibull geometric cure rate (WGCR) model and Complementary Weibull geometric cure rate
(CWGCR) model, respectively.

Secondly, we assume that the baseline functions have the piecewise exponential distribution.
Let the vector @ = (ag, a1, ...,a9—1) with 0 =ag < a; < ... < ag-1 < oo be a finite partition of time
axis and «, be the hazard rate of gth interval of intervals (0,a4], ..., (ag-1,00], for ¢ =1,...,Q, so

the baseline survival function has expression

So(tla) = exp{ Zaq } t >0, (3.9)

where

0, it t <aq_1;
Aft)=4q t—a,, ifa,1<t<a, q=1...,Q.

ag — aq—1 if t > aq.

Note that if a; = « for all : = 1, ..., (), we have an exponential distribution with a parameter « as
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the particular case. Moreover, if we partition the time axis 0 = ay < a; < ... < ag-1 < 00, so that

they denote the ordered distinct time points of all observed interval end points, then we have t, = a,

for ¢ =0,...,Q. Now, the survival function can be written as
1, ¢=0
So(tele) =1 exp{—>9_, aplar —ap-1)}, ¢=1,...,Q —1 (3.10)
0, ¢=0Q,

where o, (a, —a,—1) >0, ¢=1,...,Q. Here, we called the function (3.2) by PH Geometric cure rate
(PHGCR) model and (3.3) by Complementary PH Geometric cure rate (CPHGCR) model.

Now, we will introduce the frailties U; and V; to better explain the effect of survival time of

susceptible individuals and on the cured probability through linear predictor expression

Aij = Zzl-jﬁ—i‘Uz':
&i = a;;jb+Vi, for y=1...,n5,0=1,...,1.

Here, the frailties U; and V; must be spatially correlated across the regions. In this work we propose
two approaches, the first we employ separate independent conditionally auto-regressive (CAR) prior
distribution on (U, V'). The other one we assuming the spatial priors on (U, V') are dependent, and
they have multivariate conditionally auto-regressive MCAR prior distribution, where the CAR and
MCAR distributions were presented in Section 2.5.3 in detail.

3.1.1 Bayesian Inference

Let Dops = {(Aij, xij, 2ij,0i5);7 = 1,...,n;,0 = 1,... M} denote the observed data, where
A;; = (tijr, tijr] is the interval during which individual j in cluster i occurs the event of interest,
x;; and z;; are the p;—dimencional and p,—dimencional vectors of covariates, and d;; is following
interval censoring indicador: d;; = I(t;;r < 00). For the spacial case in which the survival time is
right-(left-) censored, R;; = +oo(L;; = 0), whereas for exact observations, t;;;, = t;jr. Following
Finkelstein(1986), the likelihood function for the general interval-censored cure rate model is given
by

I
LD, U,V) HH pop (LiiL 1) SPOP(UR|‘P)) ' Spop(tijrle)' %

i=1j=1

I n; B 3ij
o< [TTI Sven(tijele) (1 - W) : (3.11)

i=1j=1 SpOp(tijL‘QO
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where ¢ = (b, B, ), « is the shape parameter of the Weibull distribution for the first model with
unitary size and it is the risk parameter vector for the second model with size ). For a Bayesian

analysis, we assume the following prior densities for parameters b', 8" and o

o bj ~ N(up,02),j=0,...,(pl — 1), with u, and o3, known ;
e Bj~ N(ug,03), j=1,...,p2, with 5 and o known;

o a; ~ N(lq, 02)1(0700), with p, and o, known, ¢ = 1 for first model and ¢ =1, ... Q) for second

model,;

where N(y,02)I(4p) denotes the truncated normal distribution which is the probability distribution
of a normally distributed random variable whose value lies within the interval —oco < a < b < o0.
To express vague priors, we consider y, = g = p1,, = fio = 0 with large values of o7, U?j and o2. In
several areas, special in medicine, it is preferable to use the prior information when they are available.
Moreover, it is worth mentioning that using a truncated normal distribution as prior facilitates the
insertion of information in certain regions of the parameter space, since the hyperparameters no

longer represent the mean and variance but still control the region of higher probability mass.

Independent assumption

For the independent assumption, we employ separate independent CAR priors on the random

frailties U = (Uy,...,Ur)" and V = (V4,...,Vp) T, that is,

« Up,...,Ur ~CAR(0));

e Vi,...,V; ~ CAR(0,);

where #; and 6, are positive unknown hyper-parameters, and we assume they have Inverse-Gamma
prior with the known shape parameter ay > 0 and scale parameter by > 0. the joint posterior

distribution for the parameters is given
(¢, 01,02/ Dobs) o< L(p|Dops, U, V) (U|01)7(V'|02)7 (e, 01, 02),

where (¢, 01,62) = 7(b)w(B)m(a)m(01)7(02) and L(p|D) is the likelihood function given in (3.11).
Note that, this joint posterior density is analytically intractable. So, we based our inference on the
Markov chain Monte Carlo (MCMC) simulation methods. We can observed that the full conditional
distributions for parameters b, 3, a, U and V have not closed forms, thus we will use the Metropolis-

Hastings algorithm to generate posterior samples for these parameter. To avoid range restrictions on
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the parameters «;’s, we define (; = log(a;) for ¢ = 1,2,...,Q, to transform all parameters space to
real space (necessary to work with Gaussian proposal densities). Let ¥ = (b, 8, ¢, 01, 6,), according

for the Jacobian of this transformation, the joint prior density 7(#) has expression

Q
m(¥) = w(p, 01, 605) X exp (Z Q) , (3.12)

i=1

where ¢ = (b, 8,¢™!), ¢! denote inverse function of ¢, i.e., {7 = {C{l =exp((;), i=1..., Q} :

On the other hand, the full conditional distributions for parameters 6;’s are given

(050 ,, Dobs) o< m(1;|0;)7(0;)

1
X (ei)_k/z exp <_20¢;(DW - W)¢z> Qi_ao_l eXp(_bOQi_l)

k) T _ .
o 9[(“°+5) 1exp{— <¢Z (DWZ W)e: +bo> 9;1}, i=1,2

where ©¥; = U, v, = V and k is the rank of the matrix Dy — W. Thus, the full conditional
distributions of the parameter #; is an Inverse-Gamma distribution with parameters ag + g e by +
% (Y. (Dw — W)ap;). In this case, the Gibbs sampler algorithm (see Gamerman & Lopes, 2006) is

used to generate a posteriori sample.

Thus, the joint posterior density of 7(1#|Dyys) is proportional to

1 i L2 @ exp(26) UT(Dw — W)U
LD, U V) exp{—2 [ S gy 3 SR U (Dw W)
i=0 i=1 i=1 &
VT (Dw — W)V bo b\ &
+ % } — (ag + 1) (log(6y) + log(2)) — (91 + 92> +) Gy
=1

Dependent assumption

Now we assume that the spatial priors on the parameters (U, V') are dependent on each
other. Let 9» = (U, V)T, we first employ of the parameter 1 has a MCAR distribution with a

common smoothness parameter a, i.e.,

¥ ~ MCAR(a, A).
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Further, we assume the parameter 1 has a extended MCAR distribution which assuming the different

smoothness parameters for the parameters U and V', say a; and as, that is,

’l,b ~ MCAR(C“, as, A)

The prior distributions for a and A are given by

e a; ~ Uniform(0,1) or a; ~ Beta(18,2), for i,

o A ~ Wishart(ng, Ag), with ng and Ay known,

where i=1 for ¢ ~ MCAR(a,A) and i=1,2 for ¥» ~ MCAR(ay,as, A)). The prior distributions for
the parameter a; is used by Banerjee & Carlin (2004), in which a; ~ Uniform(0, 1) is a non-informative
prior, and a; ~ Beta(18,2) is an informative prior with E|a;] = 0.9 and Var[a;] = 0.004285; On the
other hand, the prior distribution for the parameter A is used not only by Carlin & Banerjee (2003)
but also by Gelfand & Vounatsou (2003) and Banerjee & Carlin (2004). They suggested that ng
can take value as the dimension of matrix A. However, Gelfand & Vounatsou (2003) and Banerjee
& Carlin (2004) considered Ay equals I and 0.011 in their papers, respectively, where I denote a
identity matrix. Both authors also commented that they had no prior knowledge regarding the nature
or extent of dependence for the parameter A. Note that A~! describe the relative variability and
covariance relationship between the different diseases given the neighboring site. Thus, if Ag = 0.011,
we assumed high relative variability between neighborhoods and we assumed low relative variability
between neighborhoods if Ag = I. Thus, it is necessary to conduct a prior study for the parameter

Ay to verify the influence of Ay in the estimation, in order to have a value for appropriate Ag.

To avoid range restrictions on the parameters a;, considering the transformations p;, =

log(a;/(1 —a;)) € R, then, the joint posterior density is given by

1 p1 D2 Q exp(2¢;
77(19|D0bs) X L((P|Dob&¢)exp{_2 [ 17_221%2“‘05225@24’21(2()
=0 =1

=1 «

TZO—4

+ Y [A® (Dw —aW)] +log |A @ aW| +

Q
+ +2Q}w<p),

1
log |A] — itr(AglA)

where ¢ = (b,3,¢™!) and 7(p;) = 1 if a; ~ Uniform(0,1) and 7(p;) = 3(118 5 (1?2%(7;53))18 if a; ~
Beta(18,2), where B(18,2) = 1T = L.

This joint posterior density is analytically intractable. So, we based our inference on the

Markov chain Monte Carlo (MCMC) simulation methods. We can observed that the full conditional
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distributions for parameters b, 8, ¢, and p have not closed forms, thus we will use the Metropolis-
Hastings algorithm to generate a posteriori samples for these parameter. However, the Gibbs sampler
algorithm is used to generate a posteriori sample for the parameter A, because its the full conditional

distribution has a closed form. The full conditional distribution m(A |9 _a), Dops)) is proportional to

m(Y|A, a)T(A)
! !
<x\A@lhv—awqw%m%}Q¢TanV—awq¢>mwwmﬂmm(—fmAﬁAn
!
x A2 exp (—Str(Agt+ B)A) ) (3.13)

where

tr(RyU(RyU)T) tr(RyU(R,V)T)
tr(RyV (RU)T) tr(RaV(RyV)T)

Thus, the full conditional distribution for A can be taken the Wishart distribution with scala matrix

(Ag' + B)~! and degrees of freedom I + ny.

3.1.2 Simulation study

In this section we present simulation studies for WGCR model, CWGCR model, PHGCR
model and CPHGCR model with the dependent assumption in order to examine the theirs perfor-
mances. The interval-censored survival times (¢;;, g, 0;;) with the cure fraction under the first and
last activations are generated in a manner similar to that employed by Yau & Ng (2001) with some

modifications.

First, we generate latent Geometric variable M;;, which denote the initial number of com-
peting causes related to the event, with parameter py;; = [1 + exp(—(bo + b1)x;; + vi)]_l for the jth
individual in the ith region, j = 1,...,n;, ¢ = 1,..., I, where covariate z;; follows Bernoulli(0.5)

distribution. Interval-censored data (¢;;1,t;r, 0;j) are then generated as follows:

(i) If M;; = 0, then let ¢;; = ¢;;;, from the exponential distribution with hazard rate 10 and let

censoring indicator 6;; = 0.
(ii) If Mij > 0, then

« we generate M;; latent Weibull variables with parameter a and \;; = (Bx;; + w;), if Yo;;’s

has the Weibull distribution;

 or we generate M;; latent Exponential variables with hazard rate a\;; = o(Bz;; + w;)), if

Y.i;'s take the PH model.
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Let t;; takes lowest generated variable in case of generating the variables of model under first
activation and t;; takes largest generated variable in case of generating the variables of model
under last activation. The censoring variable ¢;; is generated from U(0, cc), cc > 0 is fixed to

control the percentage of censored data. Let 0;; = 1 if ¢;; < ¢;; and §;; = 0 otherwise.
(lll) For 51']' = 0, let 0 < tz’jL < tin = OQ.

(iv) For 6;; = 1, we create len;; from distribution U(0.2,0.7) and [;; from U(0,0.01). Then, from
(0,155], (Lij, Lij + lengj), ..., (li; + Klengj, 00], k = 1,2,...,, (tirs,) is chosen as that satisfying

tijr < tij < tijR-

In the simulation study, we consider I = 5 regions (Zip) with the corresponding adjacent matrix is
00100

0 0

0

0 0 1 0}, the random effects u; and v; are generated from Normal distribution with mean
1
0

—_

0 0 0

1 00
0 and precision matrix AQ(Dw — aW), where W is standardized adjacent matrix so that each

o o = O

of its rows sum to one, Dy = Diag(1,1,2,1,1) is a diagonal matrix and we fixed a = 0.9 and
A = Diag(4,4), i.e. we fixed Ay =4, Ay =4 and A3 = Ay; = 0. We consider 100 individuals in the
simulation studies. The corresponding Zip codes for each individual was distributed using sample
with replace, thus the number of individuals in each region n;, © = 1...,5 are varied, that is, these
five regions could present different numbers of individuals with 337, n; = 100. Thus, we have sample
size n = 100 and we fixed the parameters by = —1.50, b = —0.50, f = —0.15, a = 0.30 for WGCR
and CWFCR models and o = 1.0 for PHGCR and CPHGCR models. In simulations, we consider
around 40 per cent of the censored data for each generated sample and 500 repeated samples are

simulated for each model. The priors for the parameters by, b1, S1 and « used in the studies, are

bo ~ N(0,3%), by ~ N(0,3%), 51 ~ N(0,3%), and o ~ N(0,10%) I g 00).

For each generated data set we simulate one chain of size 10000 for each parameter, disre-
garding the first 1000 iterations to eliminate the effect of the initial values and to avoid correlation
problems and thinning to every third iteration, thus obtaining a effective sample of size 3000 upon
which the posterior is based on. To evaluate the performance of the parameter estimates, the average
bias (Bias), standard deviation (SD) of the estimate, average standard deviation (SDs mean) and
mean square error (MSE) are calculated for the fitted models, the summaries are presented in Table
3.17 and 3.18. We can note that the bias and MSE of parameter A, are lager than others in all
fitting models. The estimator of A5 presents a negative biases for WGCR and PHGCR models and

it presents a positive biases for the complementary cure rate models, however its biases and MSEs
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are always near zero. Moreover, the simulation results for the cure rate models considering the prior

1 very close to those obtained considering the prior 2.

Table 3.1: Simulation results for WGCR and CWGCR models with depended spatial fragilities

WGCR Model
Parameter True value Estimate mean SD of the estimate Bias MSE  SDs mean
Prior 1: ¥ ~ MCAR(a, A), a ~ Beta(18,2), A9 ~ Wishart(2, Diag(0.9,1))
bo -1.50 -1.4812 0.0708 0.0188 0.0054 0.2685
by -0.50 -0.5209 0.1280 -0.0209 0.0168 0.2485
I3 -0.15 -0.1360 0.0466 0.0140 0.0024 0.1915
Qo 0.30 0.1930 0.0521 -0.1070 0.0142 0.0677
A1q 4.00 4.0062 0.1597 0.0062 0.0255 2.4728
Aoo 4.00 4.0120 0.1918 0.0120 0.0369 2.6151
Ao 0.00 -0.4541 0.1343 -0.4541 0.2242 1.9196
a 0.90 0.9001 0.0016 0.0001  0.0000 0.0653
Prior 2: ¢ ~ MCAR(a, A), a1,as ~ Beta(18,2), Ay ~ Wishart(2, Diag(0.9,1))
bo -1.50 -1.4902 0.0701 0.0098 0.0050 0.2583
by -0.50 -0.5376 0.1330 -0.0376 0.0191 0.2227
153 -0.15 -0.1295 0.0493 0.0205 0.0028 0.1870
Qo 0.30 0.1863 0.0443 -0.1137 0.0149 0.0536
A1q 4.00 4.1638 0.1676 0.1638 0.0549 2.5070
Aoo 4.00 4.2657 0.1819 0.2657 0.1036 2.6919
Ao 0.00 -0.5809 0.1472 -0.5809 0.3591 1.9647
ai 0.90 0.8999 0.0015 -0.0002 0.0000 0.0655
as 0.90 0.9002 0.0015 0.0002  0.0000 0.0654
CWGCR Model
Parameter True value Estimate mean SD of the estimate  Bias MSE  SDs mean
Prior 1: ¢ ~ MCAR(a, A), a ~ Beta(18,2), Ay ~ Wishart(2, Diag(0.85, 1))
bo -1.50 -1.4814 0.0552 0.0186 0.0034 0.2697
by -0.50 -0.4285 0.1003 0.0715 0.0152 0.2726
8 -0.15 -0.1352 0.0918 0.0148 0.0086 0.1438
Q@ 0.30 0.4089 0.0519 0.1089 0.0145 0.0620
A 4.00 4.1665 0.3941 0.1665 0.1827 2.3424
Aoo 4.00 3.9432 0.1946 -0.0568 0.0410 2.6040
Ao 0.00 0.2061 0.2249 0.2061  0.0929 1.8821
a 0.90 0.8999 0.0016 -0.0001 0.0000 0.0658
Prior 2: ¢ ~ MCAR(a, A), a1, az ~ Beta(18,2), Ag ~ Wishart(2, Diag(0.85,1))
bo -1.50 -1.4852 0.0585 0.0148 0.0036 0.2697
by -0.50 -0.4329 0.1063 0.0671 0.0158 0.2728
51 -0.15 -0.1340 0.0905 0.0161 0.0084 0.1441
Q@ 0.30 0.4095 0.0530 0.1095 0.0148 0.0619
A 4.00 4.2048 0.4139 0.2048 0.2130 2.3612
Aoo 4.00 3.9361 0.1967 -0.0639 0.0427 2.5979
Ao 0.00 0.2176 0.2215 0.2176  0.0963 1.8797
ai 0.90 0.9003 0.0016 0.0003  0.0000 0.0653
as 0.90 0.9001 0.0015 0.0001  0.0000 0.0652
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Table 3.2: Simulation results for PHGCR model and CPHGCR model with depended spatial fragili-
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PHGCR Model

Parameter True value Estimate mean SD of the estimate Bias MSE SDs mean
Prior 1: ¥ ~ MCAR(a, A), a ~ Beta(18,2), A9 ~ Wishart(2, Diag(0.9,1))
bo -1.50 -1.6441 0.0515 -0.1441 0.0234 0.2710
by -0.50 -0.5215 0.1179 -0.0215 0.0143 0.2482
8 -0.15 -0.1538 0.0479 -0.0038 0.0023 0.1877
« 1.00 1.1920 0.0382 0.1920 0.0370 0.1396
A1 4.00 4.2224 0.1479 0.2224 0.0713 2.5349
Ao 4.00 3.9272 0.1801 -0.0728 0.0377 2.5894
Ao 0.00 -0.4142 0.1420 -0.4142 0.1917 1.9325
a 0.90 0.8999 0.0015 -0.0001  0.0000 0.0655
Prior 2: ¢ ~ MCAR(a1,az, A), a1, as ~ Beta(18,2), Ay ~ Wishart(2, Diag(0.9,1))
bo -1.50 -1.6418 0.0464 -0.1418 0.0222 0.2710
by -0.50 -0.5146 0.1231 -0.0146 0.0153 0.2491
8 -0.15 -0.1552 0.0502 -0.0052 0.0025 0.1875
« 1.00 0.8980 0.0612 -0.1020 0.1900 0.0100
A1 4.00 4.2411 0.1471 0.2411 0.0797 2.5337
Ao 4.00 3.9259 0.1915 -0.0741 0.0421 2.5853
Ao 0.00 -0.4153 0.1437 -0.4153 0.1931 1.9307
ay 0.90 0.9001 0.0016 0.0001  0.0000 0.0655
as 0.90 0.9000 0.0016 0.0000 0.0000 0.0653
CPHCRM
Parameter True value Estimate mean SD of the estimate Bias MSE SDs mean
Prior 1: ¥ ~ MCAR(a, A), a ~ Beta(18,2), Ay ~ Wishart(2, Diag(0.75,1))
bo -1.50 -1.6533 0.0852 -0.1533 0.0308 0.2635
by -0.50 -0.5056 0.0998 -0.0056 0.0100 0.2652
I5] -0.15 -0.1298 0.0933 0.0202 0.0091 0.1323
«o 1.00 0.9090 0.0408 -0.0910 0.1770 0.0850
Aqp 4.00 4.2564 0.2096 0.2564 0.1096 2.3576
Ao 4.00 3.7852 0.3098 -0.2148 0.1420 2.5456
Ao 0.00 0.3803 0.1762 0.3803 0.1756 1.7807
a 0.90 0.9001 0.0016 0.0001  0.0000 0.0653
Prior 2: ¥ ~ MCAR(ay, az, A), a1, as ~ Beta(18,2), Ag ~ Wishart(2, Diag(0.75,1))
bo -1.50 -1.6518 0.0867 -0.1518 0.0306 0.2657
by -0.50 -0.5190 0.1084 -0.0190 0.0121 0.2656
I5] -0.15 -0.1373 0.1006 0.0127 0.0103 0.1325
«o 1.00 0.9200 0.0407 -0.0800 0.1800 0.0600
Aqp 4.00 4.0064 0.2029 0.0064 0.0411 2.2193
Ao 4.00 3.7107 0.3010 -0.2893 0.1741 2.4853
Ao 0.00 0.3619 0.1646 0.3619 0.1580 1.7052
ay 0.90 0.9002 0.0015 0.0002 0.0000 0.0654
as 0.90 0.8996 0.0017 -0.0004 0.0000 0.0655
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Influence of outlying observations

One of our main goals in this study is to show the need for robust models to deal with the
presence of outliers in the data. Considering the same the parameter values and setup as above

and two cases for perturbation, thus eight data sets of size 100 were generated from the WGCR,

CWGCR, PHGCR and CPHGCR models with depended spatial fragilities.

We selected cases 18 and 80 for perturbation. To create influential observation in the data
set, we choose one or two of these selected cases and perturbed the response variable as follows
trr = ter + 105, and tpr = tir + 105y, for k = 1 and 18, where Sy, is the standard deviations
of the t;;1’s. Note that using this kind of perturbation, the interval of observed interval time of
perturbation candidate observation is not charged. Here, we considere four setups in the study.
Setup A: original dataset, without outliers; Setup B: data with outlier 18; Setup C: data with outlier
80; and Setup D: data with outliers 18 and 80. The MCMC computations were made similar to
those in the last section and further to monitor the convergence of the Gibbs samples we used the

Geweke’s convergence diagnostic proposed por Geweke (1992).

Tables 3.3, 3.4, 3.5 and 3.6 reports posterior mean, standard deviation (SD), bias and mean
square error (MSE) of the parameters of WGCR, CWGCR, PHGCR and CPHGCR models, respec-
tively. For WGCR model, Table 3.3 shows that the estimative of parameter Ai; creasing in the
perturbation cases when prior 1 is used. On the other way, considering prior 2 for the parameters,
the estimative of all parameters of cases B, C and D are very closed the case A, which means the
parameters are not sensitive to perturbations. It also can be observed on the Table 3.4. For PHGCR
model, Table 3.5 shows that parameter Ay is litter sensitive to perturbations. The estimative of Ay
decreasing in the perturbation cases when considering prior 1 or prior 2 for the parameters and it
is more sensitive using prior 1 then prior 2. For CPHGCR model, considering prior 1 Ay is litter
sensitive in cases C and D and Ay, is sensitive in case B; considering prior 2 Ay, is litter sensitive in

cases B and C and A;s is sensitive in cases B and D. This results can be observed on Table 3.6.

For each simulated data set the four divergence measures (dgr, d;, dr,, dy2) of the perturbed
cases and DIC values for the proposed cure rate models were calculated and reported in Table 3.7.
We can see that all measures providing larger -divergence measures when compared to the non-
perturbed setup (setup A) and the difference between the measures of perturbed case and non-
perturbed case is more clearly for PH Geometric cure rate models than Weibull Geometric cure
rate models. Furthermore, we can observed that the values of the measures from the cure models
wheatear considering the prior 1 or prior 2 for the parameters are similarly. To show better the

results, we ploted the i-divergence measure from the fitted models. The Figures 3.1 to 3.32 show
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the divergence measures before the perturbation (setup A), the model indicate the absence outline

observations, and after perturbation observations (setups B, C and D).

For WGCR model with prior 1, we note that the observation 18 cannot be easy detected by
all four divergence measure, and observation 80 just be detected by J—distance and x? divergence.
It also can be observed for the WGCR model with prior 2, moreover, in this case, observation 80
just be detected by x? divergence. For CWGCR model with prior 1, we note that the observation 18
cannot be easy detected when both observations were perturbed (setup D). The both perturbation
observations were detected by x? divergence, other three measure only detected observations 80. For
CWGCR model with prior 2, we note that the both perturbation observations did not be detected
by KL divergence and L; norm distance when both observations were perturbed. The J—distance
was detected only the observation 80, however the both perturbation observations were detected by
x? divergence. All perturbation observations selected can be detected by all four divergence measure
for PHGCR and CPHGCR models with prior 1 or 2. We also note that the x? divergence is a little
bit sensitive for CPHGCR model with both priors, indeed a non-perturbed observation was detected
in setup A in Figure 3.31 and 3.32.
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Table 3.3: Simulation results of the perturbed cases for WGCR model

Prior 1 Prior 2

Setup  Perturbed
case Parameters Mean SD Bias MSE Parameters Mean SD Bias MSE

bo -1.482 0.278  0.018 0.000 bo -1.341  0.277  0.159 0.025

by -0.859 0.259 -0.359 0.129 b1 -0.554 0.248 -0.054 0.003

B -0.036 0.193 0.114 0.013 B -0.105 0.197 0.045 0.002

o 0.228 0.068 -0.072 0.005 o 0.112 0.072 -0.188 0.035

A None A1y 4.172 2533 0.172  0.030 Ay 4.052 2486 0.052 0.003
Ao 4.152 2,693 0.152 0.023 Ao 4.012 2.636 0.012 0.000

Ao -0.502 1.945 -0.502 0.252 Aqo -0.540 1.905 -0.540 0.291

a 0.902 0.064 0.002 0.000 ai 0.899 0.068 -0.001 0.000

az 0.899 0.067 -0.001 0.000

bo -1.526  0.263 -0.026 0.001 bo -1.572  0.275 -0.072 0.005

by -0.439 0.253 0.061 0.004 b1 -0.622 0.260 -0.122 0.015

B -0.155 0.189 -0.005 0.000 B -0.099 0.190 0.051  0.003

o 0.231 0.061 -0.069 0.005 o 0.332 0.07v3 0.032 0.001

B {18} Ay 4.067 2433 0.057 0.003 Aqs 4.056 2494 0.056 0.003
Ao 3.947  2.630 -0.053 0.003 Aoy 3.913 2,561 -0.087 0.008

Ao -0.497 1904 -0.497 0.247 Aqo -0.406 1.991 -0.406 0.164

a 0.900 0.065 0.000 0.000 ax 0.899 0.065 -0.001 0.000

a2 0.900 0.065 0.000 0.000

bo -1.510  0.275 -0.010 0.000 bo -1.524 0.263 -0.024 0.001

by -0.586 0.257 -0.086 0.007 b1 -0.679 0.264 -0.179 0.032

B -0.139 0.194 0.011  0.000 B -0.083 0.193 0.067 0.005

o 0.255 0.082 -0.045 0.002 o 0.235 0.078 -0.065 0.004

C {80} Ay 3.832 2406 -0.168 0.028 Ay 4.018 238 0.018 0.000
Aoy 3.535 2423 -0.465 0.216 Aoy 3.919 2.649 -0.081 0.007

Ao -0.115 1.835 -0.115 0.013 Aqo -0.302  1.969 -0.302 0.091

a 0.900 0.063 0.000 0.000 ai 0.899 0.064 -0.001 0.000

a2 0.900 0.068 0.000 0.000

bo -1.460 0.259  0.040 0.002 bo -1.599 0.266 -0.099 0.010

by -0.348 0.248 0.152  0.023 b1 -0.316 0.246 0.184 0.034

B -0.203 0.189 -0.053 0.003 B -0.208 0.191 -0.058 0.003

o 0.187 0.059 -0.113 0.013 o 0.253 0.061 -0.047 0.002

D {18,80} A1y 4.205 2,569 0.205 0.042 A1y 4.259 2541 0.259 0.067
Ao 4.086 2.634 0.086 0.007 Ao 4.002 2,549 0.002 0.000

Ao -0.515 1971 -0.515 0.265 Ao -0.588 1.946 -0.588 0.346

a 0.900 0.064 0.000 0.000 az 0.901 0.065 0.001 0.000

as 0.898 0.068 -0.002 0.000
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Table 3.4: Simulation results of the perturbed cases for CWGCR model

Prior 1 Prior 2

Setup  Perturbed
case Parameters Mean SD Bias MSE Parameters Mean SD Bias MSE

bo -1.475 0.269 0.025 0.001 bo -1.499 0.272  0.001  0.000

by -0.498 0.255  0.002  0.000 b1 -0.446 0.260 0.054 0.003

B -0.066 0.136  0.084 0.007 B -0.005 0.139 0.145 0.021

o 0.323 0.052 0.023 0.001 o 0.384 0.060 0.084 0.007

A None A1y 3.880 2.207 -0.120 0.014 Ay 3.906 2.214 -0.095 0.009
Ao 4.080 2.738 0.080 0.006 Ao 4.040 2.636 0.040 0.002

Ao 0.308 1.884 0.308 0.095 Aqo 0.243 1.908 0.243 0.059

a 0.902 0.065 0.002 0.000 ai 0.903 0.064 0.003 0.000

as 0.901 0.064 0.001 0.000

bo -1.548 0.254 -0.048 0.002 bo -1.445 0.282 0.055 0.003

b1 -0.276  0.265 0.224  0.050 b1 -0.400 0.283 0.100 0.010

I} -0.019 0.141 0.131 0.017 B -0.141 0.143 0.009 0.000

o 0.389 0.056  0.089 0.008 o 0.306 0.050 0.006 0.000

B {18} A1y 4.611 2517 0.611 0.373 Aqs 4.125 2333 0.125 0.016
Ago 4.127 2.613 0.127 0.016 Aoy 3.623 2456 -0.377 0.142

Ao 0.451 1919 0.451 0.204 Aqo 0.354 1.840 0.354 0.125

a 0.899 0.065 -0.001 0.000 ax 0.900 0.066 0.000 0.000

a2 0.901 0.063 0.001 0.000

bo -1.523  0.265 -0.023 0.001 bo -1.529 0.279 -0.029 0.001

by -0.523 0.270 -0.023 0.001 b1 -0.468 0.272 0.032 0.001

B -0.059 0.135 0.091 0.008 B -0.127 0.138 0.023 0.001

o 0.375 0.056 0.075 0.006 o 0.388 0.060 0.088 0.008

C {80} Ay 4515 2.545 0.515 0.265 Ay 3.727 2112 -0.273 0.075
Aoy 4.139 2709 0.139 0.019 Aoy 3.765 2471 -0.235 0.055

Ao 0.416 1980 0.416 0.173 Aqo 0.158 1.837 0.158 0.025

a 0.901 0.064 0.001 0.000 ai 0.900 0.065 0.000 0.000

as 0.902 0.063 0.002 0.000

bo -1.514 0.268 -0.014 0.000 bo -1.582 0.2v1 -0.082 0.007

by -0.458 0.268 0.042 0.002 b1 -0.485 0.268 0.015 0.000

B8 -0.032 0.151 0.118 0.014 B -0.111  0.141 0.039 0.002

o 0.357 0.049 0.057 0.003 o 0.329 0.048 0.029 0.001

D {18,80} A1y 4.750 2.618 0.750 0.563 A1y 3.964 2.240 -0.036 0.001
Ao 4.063 2.627 0.063 0.003 Ao 4.127 2,698 0.127 0.016

Ao 0.306 1.930 0.306 0.094 Ao 0.417 1.889 0.417 0.174

a 0.900 0.065 0.000 0.000 ai 0.900 0.066 0.000 0.000

az 0.902 0.063 0.002 0.000
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Table 3.5: Simulation results of the perturbed cases for PHGCR model
Prior 1 Prior 2
Setup  Perturbed
case Parameters Mean SD Bias MSE Parameters Mean SD Bias MSE
bo -1.456 0.270 0.044 0.002 bo -1.670 0.267 -0.170 0.029
by -0.431 0.249 0.069 0.005 by -0.611 0.241 -0.111 0.012
I6] -0.176  0.182 -0.026  0.001 Ié; -0.156  0.177 -0.006 0.000
! 1.192 0.137 0.192 0.037 e’ 0.898 0.190 -0.102 0.010
A None A11 4.275 2.500 0.275 0.075 A11 3.840 2.348 -0.160 0.026
Aoo 3.927 2568 -0.073 0.005 Aoo 4.058 2.688 0.058 0.003
Ao -0.363 1.951 -0.363 0.132 Ao -0.637 1.917 -0.637 0.405
a 0.898 0.070 -0.002 0.000 ax 0.901 0.064 0.001 0.000
as 0.902 0.064 0.002 0.000
bo -1.348 0.278 0.152  0.023 bo -1.387 0.250 0.113 0.013
by -0.436 0.233 0.064 0.004 b1 -0.337 0.251 0.163 0.026
153 -0.207 0.184 -0.057 0.003 153 -0.193 0.191 -0.043 0.002
@ 0.912 0.095 -0.088 0.008 o) 0.797 0.205 -0.203 0.041
B {18} A 3.137 2.021 -0.863 0.745 A 3.240 2.181 -0.760 0.577
Ao 4.050 2.661 0.050 0.003 Ao 4.302 2.828 0.302 0.091
Ago -0.300 1.776 -0.300 0.090 Ago -0.161 1.867 -0.161 0.026
a 0.903 0.065 0.003 0.000 ay 0.899 0.066 -0.001 0.000
as 0.899 0.065 -0.001 0.000
bo -1.494 0.253 0.006 0.000 bo -1.336  0.273  0.164 0.027
by -0.643 0.248 -0.143 0.020 by -0.193  0.247 0.307 0.094
I6] -0.183 0.186 -0.033 0.001 J6; -0.148 0.193 0.002 0.000
« 1.112 0.112 0.112 0.012 «Q 0.866 0.198 -0.134 0.018
C {80} Ay 3.101  2.049 -0.899 0.809 Aqq 3.419 2174 -0.581 0.337
Ao 4.221  2.637 0.221 0.049 Ao 3.600 2.468 -0.400 0.160
Aqo -0.532 1.831 -0.532 0.283 Aqo -0.263 1.756 -0.263 0.069
a 0.900 0.065 0.000 0.000 ax 0.899 0.067 -0.001 0.000
as 0.900 0.065 0.000 0.000
bo -1.498 0.276 0.002 0.000 bo -1.5626  0.277 -0.026 0.001
by -0.551 0.249 -0.051 0.003 b1 -0.343 0.243 0.157  0.025
I5; -0.136  0.188  0.014  0.000 I5] -0.302 0.185 -0.152 0.023
! 1.029 0.099 0.029 0.001 e’ 0.761 0.216 -0.239 0.057
D {18,80} A 2.821 1.858 -1.179 1.389 A 3.190 2.045 -0.810 0.656
Aoo 4.276  2.734 0.276 0.076 Aoo 4.160 2.698 0.160 0.026
Ao -0.428 1.791 -0.428 0.183 Ao -0.661 1.799 -0.661 0.437
a 0.905 0.067 0.005 0.000 ax 0.900 0.064 0.000 0.000
as 0.898 0.067 -0.002 0.000
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Table 3.6: Simulation results of the perturbed cases for CPHGCR model

Prior 1 Prior 2

Setup  Perturbed
case Parameters Mean SD Bias MSE Parameters Mean SD Bias MSE

bo -1.679 0.268 -0.179 0.032 bo -1.840 0.290 -0.340 0.116

by -0.492 0.271  0.008 0.000 b1 -0.600 0.263 -0.100 0.010

B -0.226 0.132 -0.076 0.006 B -0.177 0.119 -0.027 0.001

o 0.909 0.177 -0.091 0.008 o 0.920 0.180 -0.080 0.006

A None Ay 4.258 2370 0.258 0.067 Ay 4.351 2449 0.351 0.123
Ao 3.880 2.560 -0.120 0.014 Ao 2.980 2.239 -1.020 1.040

Ao 0.002 1.774 0.002 0.000 Aqo -0.054 1.594 -0.054 0.003

a 0.902 0.066 0.002 0.000 ai 0.901 0.066 0.001 0.000

az 0.902 0.065 0.002 0.000

bo -1.678 0.267 -0.178 0.032 bo -1.646 0.263 -0.146 0.021

b1 -0.599 0.252 -0.099 0.010 b1 -0.369 0.266 0.131 0.017

I} -0.384 0.124 -0.234 0.055 B -0.230 0.138 -0.080 0.006

o 0.918 0.179 -0.082 0.007 o 0.789 0.194 -0.211 0.045

B {18} A1y 4.124 2242 0.124 0.015 Aqs 3.180 1937 -0.820 0.672
Ao 3.743 2440 -0.257 0.066 Aoy 3.798 2552 -0.202 0.041

Ao 0.259 1.742 0.259 0.067 Aqo 0.420 1.745 0.420 0.176

a 0.901 0.064 0.001 0.000 ax 0.899 0.068 -0.001 0.000

a2 0.900 0.066 0.000 0.000

bo -1.634 0.262 -0.134 0.018 bo -1.716  0.271 -0.216 0.047

by -0.521 0.260 -0.021 0.000 b1 -0.401 0.263 0.099 0.010

B -0.231 0.123 -0.081 0.007 B -0.040 0.132 0.110 0.012

o 0.903 0.180 -0.097 0.009 o 0.850 0.184 -0.150 0.023

C {80} Ay 3.972  2.205 -0.028 0.001 Ay 3.464 1970 -0.536 0.287
Aoy 3.928 2.642 -0.072 0.005 Aoy 3.779 2,531 -0.221 0.049

Ao 0.130 1.793 0.130 0.017 Aqo -0.040 1.623 -0.040 0.002

a 0.901 0.066 0.001 0.000 ai 0.900 0.066 0.000 0.000

as 0.902 0.063 0.002 0.000

bo -1.643 0.275 -0.143 0.021 bo -1.515 0.254 -0.015 0.000

by -0.444 0.270 0.056 0.003 b1 -0.305 0.246 0.195 0.038

B8 -0.041 0.134 0.109 0.012 B -0.161 0.137 -0.011 0.000

o 0.770 0.216 -0.230 0.053 o 0.806 0.192 -0.194 0.037

D {18,80} A1y 2.547 1.553 -1.453 2.111 A1y 3.708 2101 -0.292 0.085
Ao 3.958  2.529 -0.042 0.002 Ao 4.303 2.689 0.303 0.092

Ao -0.038 1.707 -0.038 0.001 Ao 0.350 1.774 0.350 0.122

a 0.901 0.065 0.001 0.000 ai 0.899 0.067 -0.001 0.000

as 0.901 0.064 0.001 0.000
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Table 3.7: Divergence measures of the perturbed cases and DIC values for the simulated data sets.

Model ‘ Prior ‘ Setup Case number dgy, dy dry dX2 ‘ DIC
A 18 0.006 0.011 0.042 0.012 142,754
80 0.030 0.060 0.097  0.067
1 B 18 0.080 0.171 0.159 0.238 | 164.476
C 80 0.246 0.602 0.277  2.128 | 153.082
D 18 0.069 0.143 0.147 0.181 185.709
WOCR 80 0.282 0.677 0.304 1.742
A 18 0.007 0.014 0.046 0.014 140.186
80 0.033 0.067 0.102 0.075
9 B 18 0.036 0.075 0.106 0.084 | 164.446
C 80 0.294 0.940 0.288 14.544 | 149.760
D 18 0.062 0.131 0.138 0.176 184.934
80 0.120 0.269 0.190 0.498
A 18 0.038 0.079 0.108  0.096 401.704
80 0.001 0.003 0.019 0.003
1 B 18 0.369 0.890 0.347 2.987 | 431.013
C 80 0.605 1.381 0.440 4.905 | 436.193
D 18 0.243 0.555 0.283  1.227 447.962
CWOCR 80 0.723 1.729 0.481 8.789
A 18 0.066 0.137 0.145 0.161 404.392
80 0.045 0.092 0.119 0.103
9 B 18 0.677 1.720 0.486  8.654 | 408.839
C 80 0.288 0.672 0.305 1.844 | 416.505
D 18 0.131 0.291 0.206 0.501 495 875
80 0.256 0.624 0.288  2.408
A 18 0.016 0.032 0.071  0.034 998 007
80 0.036 0.073 0.106  0.081
1 B 18 1.644 4.288 0.693 168.408 | 263.195
C 80 1.265 4.761 0.649 584.824 | 241.465
D 18 1.750 4.472 0.718 84.141 240.257
PHACR 80 0.479 1.248 0.402 8.804
A 18 0.002 0.004 0.026  0.004 911.243
80 0.013 0.027 0.065  0.029
9 B 18 1.455 3.501 0.662 35.776 | 278.356
C 80 1.438 3.271 0.660 22.489 | 284.756
D 18 0.462 1.097 0.390 3.959 990.520
80 0.460 1.162 0.390 5.777
A 18 0.018 0.037 0.076  0.040 387.037
80 0.025 0.0560 0.086  0.057
1 B 18 2.727 5.539 0.788 73.127 | 427.090
C 80 3.659 7.131 0.845 110.592 | 452.871
D 18 2.087 4.366 0.726 34.092 483157
CPHGCR 80 4.358 9.412 0.900 648.576
A 18 0.011 0.023 0.059  0.023 193919
80 0.025 0.052 0.090 0.057
9 B 18 3.790 7.791 0.870 199.173 | 446.544
C 80 3.347 6.929 0.829 164.743 | 470.571
D 18 3.880 8.238 0.870 365.590 477 539
80 3.829 8.759 0.883 595.102
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WGCR model

Figure 3.1: Index plots of Kullback-Leibler divergence measure from the fitted of the WGCR model con-

sidering prior 1.

Figure 3.2: Index plots of Kullback-Leibler divergence measure from the fitted WGCR model considering

prior 2.
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Figure 3.3: Index plots of J-distance from the fitted WGCR model considering prior 1.
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Figure 3.4: Index plots of J-distance from the fitted WGCR model considering prior 2.
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Figure 3.5: Index plots of L; norm distance from the fitted WGCR model considering prior 1.
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Figure 3.7: Index plots of x2-square divergence from the fitted WGCR model considering prior 1.
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Figure 3.8: Index plots of x?-square divergence from the fitted WGCR model considering prior 2.
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CWGCR model

Figure 3.9: Index plots of Kullback-Leibler divergence measure from the fitted CWGCR model considering

prior 1.

Figure 3.10: Index plots of Kullback-Leibler divergence measure from the fitted CWGCR model considering

prior 2.
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Figure 3.11:

Figure 3.12: Index plots of J-distance from the fitted CWGCR model considering prior 2.
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Figure 3.13: Index plots of L; norm distance from the fitted CWGCR model considering prior 1.
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Figure 3.14: Index plots of L; norm distance from the fitted CWGCR model considering prior 2.
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Figure 3.16: Index plots of x2-square divergence from the fitted CWGCR model considering prior 2.
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Figure 3.17: Index
prior 1.

Figure 3.18: Index plots of Kullback-Leibler divergence measure from the fitted PHGCR model considering

prior 2.
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Figure 3.19: Index plots of J-distance from the fitted PHGCR model considering prior 1.
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Figure 3.20: Index plots of J-distance from the fitted PHGCR model considering prior 2.
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Figure 3.21: Index plots of L; norm distance from the fitted PHGCR model considering prior 1.
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Figure 3.22: Index plots of L; norm distance from the fitted PHGCR model considering prior 2.
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Figure 3.23: Index plots of x2-square divergence from the fitted PHGCR model considering prior 1.
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Figure 3.24: Index plots of x2-square divergence from the fitted PHGCR model considering prior 2.
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Figure 3.29: Index plots of L; norm distance from the fitted CPHGCR model considering prior 1.
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Figure 3.30: Index plots of L; norm distance from the fitted CPHGCR model considering prior 2.
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Figure 3.31: Index plots of y2-square divergence from the fitted CPHGCR model considering prior
1.
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3.1.3 Application

We illustrate the proposed method for the interval-censored smoking cessation data presented
in Section 1.1. Firstly, we fitted WGCR and CWGCR models considering the different spatial
frailties in the models to the data set. The a priori distributions for the parameters b, 8, and « are

bj ~ N(0,100), 5 =0,...,4, B; ~ N(0,100), j = 1,...,4, and a ~ N(0,100)/(.00)-

Because of the high computational cost, we implement the MCMC algorithms in the C
programming language and the results were analyzed in the R language (R Development Core Team
(2010)) through the "coda" package (Plummer et al., 2005). All of our MCMC algoritms ran a
total of 60,000 iterations discarding the first 20,000 realizations as burn-in and thinning to every
fiftth iteration. Posterior results are then based on 8,000 realizations of the Markov chain. Our
Meteropolis acceptance rate for these parameters ranged from 25% to 50%. The convergence was
checked using the Geweke diagnostic which did not indicate lack of convergence. The models are

compared using DIC criterion.

Table 3.8 provides the DIC scores for a variety of effects of the fitted cure models. The DIC
scores of the model 1 and 5 stand out as the best models in spite of the fact that the DIC values are
close to each other. We also can note that the WGCR model are more adequate than the CWGCR

model considering different priors to the parameters.

Table 3.8: Bayesian criteria for the fitted models.

WGCR model Criteria

Model Priors DIC  pd
1 U ~ CAR(0,), V ~ CAR(6s), 01,05 ~ InvGamma(0.01, 0.01) 1164 115
2 1 ~ MCAR(a, A), a ~ Uniform(0, 1), A ~ Wishart(2, Diag(0.1,0.1)) 4169 11.6
3 ¢ ~ MCAR(a1, a2, A), a1, az ~ Uniform(0,1), A ~ Wishart(2, Diag(0.1,0.1)) 417.5 12.1
4 1 ~ MCAR(a, A), a ~ Beta(18,2), A ~ Wishart(2, Diag(0.1,0.1)) 4172 12.7
5 P ~ MCAR(al,ag7 A), ay, a9 ~ Beta(18,2), A ~ Wishart(2, Diag(0.1,0.1)) 416.7 11.7
CWGCR model Criteria

Model Priors DIC  pd
6 U ~ CAR(0,), V ~ CAR(6s), 01,05 ~ InvGamma(0.01, 0.01) 1193 11.9
7 ¥ ~ MCAR(a, A), a ~ Uniform(0, 1), A ~ Wishart(2, Diag(0.1,0.1)) 419.2 12.3
8 1 ~ MCAR(a1, a2, A), aj,as ~ Uniform(0,1), A ~ Wishart(2, Diag(0.1,0.1)) 419.5 12.7
9 ¥ ~ MCAR(a, A), a ~ Beta(18,2), A ~ Wishart(2, Diag(0.1,0.1)) 4179 13.6
10 P~ MCAR(al7 as, A), a1, as ~ Beta(18,2), A ~ Wishart(2, Diag(0.1,0.1)) 418.6 13.9

For the comparison with the models proposed by Carlin & Banerjee (2003), we consider
the same prior distributions for the parameters b and B as considered by these authors. Table 3.9
reports the DIC scores for a variety of effects the Weibull Geometric cure rate model. We observe
that the DIC scores in Table 3.9 are smaller than the values in Table 3.8. However, the DIC scores for
WGCR models are very close each other, which indicates that these models are equivalent. Moveover,

similarly to the previous case, the DIC values of WGCR models are smaller than CWGCR models.
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Comparing the obtained DIC scores in Table 3.8 and 3.9 with the DIC scores presented in the study
carried out by Carlin & Banerjee (2003), in which they proposed the mixture cure model with the
spatial fragility, we can conclude that all our models are more adequate since all our DIC scores are

smaller. Here, we select the model 15 as our working model.

Table 3.9: Bayesian criteria for the fitted models.

WGCR model Criteria

Model Priors DIC pd
11 U ~ CAR(6;), V ~ CAR(62), 61,02 ~ InvGamma(0.01,0.01) 4144 8.2
12 1 ~ MCAR(a, A), a ~ Uniform(0, 1), A ~ Wishart(2, Diag(0.1,0.1)) 414.8 10.9
13 1 ~ MCAR(ay, a2, A), a1, as ~ Uniform(0,1), A ~ Wishart(2, Diag(0.1,0.1)) 1  414.7 10.8
14 ¥ ~ MCAR(a, A), a ~ Beta(18,2), A ~ Wishart(2, Diag(0.1,0.1)) 4143 10.9
15 P~ MCAR(al, as, A), ay,as ~ Beta(18,2), A ~ Wishart(2, Diag(0.1,0.1)) 414.5 10.9
CWGCR model Criteria

Model Priors DIC pd
16 U ~ CAR(6y), V ~ CAR(62), 61,02 ~ InvGamma(0.01,0.01) 418.1 94
17 1 ~ MCAR(a, A), a ~ Uniform(0, 1), A ~ Wishart(2, Diag(0.1,0.1)) 4173 11.7
18 ¥ ~ MCAR(a1, a2, A), a1, az ~ Uniform(0,1), A ~ Wishart(2, Diag(0.1,0.1)) 416.8 11.5
19 9 ~ MCAR(a, A), a ~ Beta(18,2), A ~ Wishart(2, Diag(0.1,0.1)) 416.9 11.6
20 P~ MCAR(al, az, A), ay,az ~ Beta(18,2), A ~ Wishart(2, Diag(0.1,0.1)) 416.8 11.6

Table 3.10: Posterior summaries of the parameter of the model 15 for the smoking cessation data.

Survival Model Cure rate
Parameter Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%
Intercept bp 1.3736 0.5789 0.2600  2.5442
Sex (male=0) B1 -0.1562 0.4551 -1.0626 0.6992 b; -0.5096 0.3718 -1.2711 0.2052
SI/UC (UC=0) B2 0.8427 0.5191 -0.1659 1.8703 by 0.8601 0.4310 0.0671  1.7192

Cigarettes per day (83 -0.1148 0.0378 -0.1809 -0.0322 b3 -0.0728 0.0290 -0.1345 -0.0201
Duration as smoker (3, -0.0246 0.0343 -0.1003 0.0345 b4 0.0197 0.0230 -0.0264 0.0651

o 2.4097 0.3073 1.8113  3.0065
a1 (ay) 0.8968 0.0676 0.7261  0.9874
as(ay) 0.8994 0.0670 0.7370  0.9881
Ay 2.6769  0.6377 1.5543  4.0673
Aso 2.5743  0.6413 14924  3.9718
Ao -0.0104 0.4625 -0.9321  0.8919
Y1 0.4113 0.1075 0.2531  0.6754
Yoo 0.4298 0.1236  0.2561  0.7298
Yio/(X11X00) "2 0.0035 0.1828 -0.3655  0.3559

where A;; is the element of precision matrix A in position (i, j), and ¥;; is the element of matrix £ = A~! in
position (4, ), this X1 is the spatial variance component of U and Yoo is the spatial variance component of V',
S12/(Z11 222)1/2 denote their correlation.

The posterior summary of the parameters of the model 15 are presented in the Table 3.10.
We note that only the parameters by, by, b3 and (35 are significant. In the cure rate, the negative value
of b3 means that the individuals with higher levels of cigarette consumption have lower probability
to quit smoking, while the positive value of by implies the individuals with special intervention have

higher probability to quit smoking than those with usual care.
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In the survival model, it is shows that the special intervention and the number of cigarettes
smoked per day have negative effects on the hazard rate of the relapse time, that is, individuals with
special intervention do not present lower hazard rates for the relapse time when compared to those
who attend to usual care, while the individuals with a higher level of cigarette consumption do not

present high hazard rates.

The estimated standard deviation 2%2 of random spatial effects in the survival model is
0.4113, and the estimated standard deviation 2%2 of the random spatial effects in the cure rate is
0.4268, which indicates that there is a considerable heterogeneity among the clusters. Moreover, it

is observed that there are no correlations between the spatial effects U and V.
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Figure 3.33: Maps of posterior means for frailties U (left panel) and V' (right panel) in model 15.
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Figure 3.34: Maps of posterior standard derivations for frailties U (left panel) and V' (right panel)
in model 15.

The Figure 3.33 shows the posterior means of the frailties U and V' in the model 15. For the
frailties U of which the high value presents the high relapse rate, we note that the city of Owatonna
and some cities of South have higher values, that is, the individuals in these regions have higher

relapse rates than others. On the other hand, the city of Rochester (in the central regions of the
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map) suggests slightly better than avenge cessation behavior, which can also be observed by the

frailties V. Note that the high value of V' presents the high cure probability.

The Figure 3.34 maps the posterior standard deviations of the frailties U and V' correspond-
ing to the posterior means mapped in Figure 3.33. We note the posterior standard deviations of the
frailties U and V' have approximated values. In both maps show that the cities round the central

region have lower values and the some periphery cites have higher values.

In order to detect possible influential observations in the posterior distribution of the pa-
rameters of model 15, the estimates of ¢-divergence measures, which were obtained by the posteriori
sample of the parameters of the model, are presented in Figure 3.35. It shows that there are some
individuals which can be influential observations were detected by divergence measures. Here, we will
analyze the individuals 72, 138, 151, and 199 were detected by the .J-distance and the y2-divergence.
Table 3.11 presents information on them, so that we note that these four individuals had special inter-
ventions, not consuming high amounts of cigarettes per day (27 cigarettes per day on average), while
the individuals 72, 138, and 151 had relapse, but the individual 199 did not. To reveal the impact of
these possible influential observations on the parameter estimates and inferences, we removed such
observations, refitting the models. We also calculated the relative variations (RV) for the posterior
mean of the parameters. The RV is defined by RV = (Jq_; — 04) /04, for all d, where I denotes a
set of influential observations, d is the index of the parameters, @d,— ; denotes the posterior mean of

Va1, after the set of observations I was removed. In this case, we have I = {72,138,151,199}.
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Figure 3.35: Estimates of ¢-divergence measures for Model 15

The posterior summaries of the parameters for the adjusted model 15 and RV for the posterior
means of the parameters are presented in Table 3.12. We can note that only the values of RV for

the posterior means of the parameters A5 and ;5 are more than one, but they still have posterior
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Table 3.11: Possible influential observations are detected by four divergence measures

Obs. Sex Duration Intervention Num. cigarettes Relapse Time interval  Zip

72 0 20 1 25 1 (3.159, 3.929) 55987
138 1 25 1 20 1 (2.998, 3.992) 55021
151 0 39 1 10 1 (0.923, 3.962) 55057
199 0 22 0 20 1 (3.885, 5.013) 55904

means near zero, and others parameters have the posterior means near the obtained values for the

completed data set. In this case, there are not inferential changes after removing the observations.

Table 3.12: Posterior summaries of the parameter of the model 15 and relative variations adjusted
for the smoking cessation data without detected individuals 72, 138, 151 and 199.

Survival Model Cure Rate

Parameter Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%
Intercept bo 1.3697 0.5981 0.2041 2.5265
(-0.0028)
Sex (male=0) b1 -0.2101 0.4326  -1.0848 0.6344 b1 -0.5657 0.3425 -1.2511 0.0902
(-0.3455) (0.1101)
SI/UC (UC=0) B2 1.0138 0.5071 0.0486 2.0473 bo 0.9023 0.4002 0.1406 1.7522
(0.2031) (0.0491)
Cigarettes per day B3 -0.1048 0.0377 -0.1800 -0.0304 b3 -0.0611 0.0257 -0.1221 -0.0183
(-0.0873) (-0.1602)
Duration as smoker 34 -0.0308 0.0361  -0.1073 0.0375 by 0.0184 0.0230  -0.0280 0.0629
(0.2518) (-0.0656)
[ 2.6474 0.3515 1.9792 3.3582
( 0.0987)
a1 (au) 0.9006 0.0665 0.7388 0.9880
(0.0043)
az (av) 0.9002 0.0650 0.7374 0.9864
(0.0009)
A11 2.6749 0.6497 1.5769 4.0686
(-0.0008)
Aoo 2.5717 0.6364 1.5178 3.9480
(-0.0010)
A2 0.0113 0.4709  -0.9257 0.9130
(-2.0812)
Y11 0.4122 0.1086 0.2515 0.6701
(0.0023) 0.4307 0.1208 0.2575 0.7207
Sos (0.0021)
Y12 -0.0054 0.1839 -0.3637 0.3568
(-2.5601)

Now, we fitted the PHGCR and CPHGCR models, considering the different spatial frailties
in the models to the data set. Since the piecewise exponential distribution has better approximation
to any unknown function when the length of each interval becomes smaller, we partition the time axis
so that they denoted the ordered distinct time points of all observed interval end points. Therefore,
we have 178 parameters need to be estimated. In several areas, especial in medicine, the available
prior information is also importance to be considered in the analysis. Therefore, we specify priori
distributions for the parameters b, # and o = (aq,...,aq78) to ensure weakly prior information
following the analysis results obtained by Carlin & Banerjee (2003), that is let b; ~ N(0,1%), j =
0,...,4, B; ~N(0,1%), j =1,...,4,and o ~ N(0,2*)[(gn), 1 = 1,...,178.
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Table 3.13 provides the DIC scores for a variety of effects PHGCR and CPHGCR models.
The DIC scores of the fitted models are closely, this indicated these models are almost equivalent.
In that follows we present results for Model 9 having low DIC scores, but emphasize that virtually

any of the models in Table 3.13 could be used with equal confidence.

Table 3.13: Bayesian criteria for the PHGCR and CPHGCR models.

PHGCR model Criteria
Model Priors DIC pd
1 U ~ CAR(61), V ~ CAR(62), 61,02 ~ InvGamma(0.01,0.01) 395.8 9.55
2 9 ~ MCAR(a, A), a ~ Uniform(0,1), A ~ Wishart(2, Diag(0.1,0.1)) 396.2 10.63
3 Y ~ MCAR(aq, a2, A), ar,az ~ Uniform(0,1), A ~ Wishart(2, Diag(0.1,0.1)) 395.8 12.12
4 9 ~ MCAR(a, A), a ~ Beta(18,2), A ~ Wishart(2, Diag(0.1,0.1)) 394.8 11.57
5 P~ MCAR(al, az, A), ay,az ~ Beta(18,2), A ~ Wishart(2, Diag(0.1,0.1)) 397.8 11.65
CPHGCR model Criteria
Model Priors DIC pd
6 U ~ CAR(6;), V ~ CAR(62), 61,02 ~ InvGamma(0.01,0.01) 395.9 10.29
7 ¥ ~ MCAR(a, A), a ~ Uniform(0, 1), A ~ Wishart(2, Diag(0.1,0.1)) 395.3  12.22
8 P~ MCAR(al, az, A), ai,ag ~ Uniform((), 1), A ~ Wishart(2, Diag(0.1,0.1)) 395.3 12.16
9 ¢ ~ MCAR(a, A), a ~ Beta(18,2), A ~ Wishart(2, Diag(0.1,0.1)) 394.5 11.70
10 P~ MCAR(al, as, A), a1, as ~ Beta(18,2), A ~ Wishart(2, Diag(0.1,0.1)) 394.8 11.71

To compare the proposed cure rate models, we observed the scores of criterion for fitted
models presented in Table 3.9 and 3.13. We note that none of the models in Table 3.9 is better
than the models presented in Table 3.13. Comparing the obtained DIC scores with the DIC values
presented in the paper of Pan et al. (2014), where they proposed Bayesian semi-parametric model
with the spatial fragility, it is shown that both PHGCR and CPHGCR models have DIC values

smaller. Here, we select Model 9 which has the smallest DIC as our working model.

Table 3.14: Posterior summaries of the parameter of Model 9 for the smoking cessation data.

Survival Model Cure rate
Parameter Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%
Intercept bg 0.0072 0.8279 -1.6658 1.5794
Sex (male=0) Br 01748 0.2694 -0.3421 0.7128 b; -0.3696 0.4800 -1.2913 0.5993
SI/UC (UC=0) B2 -0.1392 0.3107 -0.7249 0.4876 by 0.8275 0.5500 -0.2217 1.9833

Cigarettes per day (83 -0.0168 0.0234 -0.0602 0.0267 b3 -0.0499 0.0470 -0.1241 0.0606
Duration as smoker (3, -0.0292 0.0259 -0.0787 0.0178 b4 0.0306 0.0600 -0.1055 0.1202

a 0.8981 0.0668 0.7349  0.9879
A 2.6680 0.6501 1.5594  4.0684
Mgy 2.5805 0.6427 1.4840 4.0155
Arz -0.0085  0.4670 -0.9244 0.9317
Y1 0.4130 0.1084 0.2511  0.6668
I 0.4289 0.1192  0.2537 0.7187
S12/(E11822) Y2 0.0028 0.1820 -0.3645 0.3524

where A;; is the element of precision matrix A in position (i, j), and ¥;; is the element of matrix ¥ = A~! in
position (4, 7), this X1 is the spatial variance component of U and Yoo is the spatial variance component of V',
212/(211222)1/2 denote their correlation.
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Table 3.27 presents posterior means, standard deviations and 95% highest posterior density
(HPD) intervals of the parameter of Model 9. We can note that all covariates are not significant
when we consider the (95%) credibility interval, but the covariate of the "intervention type SI/UC" in
the cure rate and in the survival model will become significant since we consider the lower credibility
interval. In cure rate, the sign of the parameters by and b3 are the same as the results above, which
means that the individuals with a higher level of cigarette consumption have lower probability of
quit smoking and the individuals had especial with special intervention have higher probability of
quit smoking than those with usual care. In the survival function, the negative value of S5 implies
that individuals with special intervention have lower hazard rate of the relapse time than those with

usual care.

The estimates of the spatial variance component of U in the survival model (3;) is 0.4130,
the spatial variance component of V' in the cure rate (Xg2) is 0.4289, which indicate that there is
considerable heterogeneity among the clusters. Moreover, it is observed that there are not correlations

between the spatial effects U and V.
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Figure 3.36: Posterior means and credibility intervals of a;’s

The posterior means and 95% HPD intervals of «;’s are presented in the Figure 3.73, it
is showed that there are some values of «’s, which are indicated, have different values of others.
According this Figure, we can partition the time axis so that we consider just risk parameters (o,
(i, (i34, (i35, g4, Olgs, Oigd, (g5, (igg, (lgg, (lgg ), thus just 11 parameters need to be estimated, it will

lower computational time cost.

The Figure 3.37 maps the posterior means of frailties U and V' in the CPHGCR model. For
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Figure 3.37: Maps of posterior means for frailties U (left panel) and V' (right panel).

Figure 3.38: Maps of posterior standard derivations for frailties U (left panel) and V' (right panel).

the frailties U, the result is closer which obtained in model 15, but the frailties V' show that almost
all of regions have closed cure probabilities. The corresponding posterior standard deviations are

presented in the Figure 3.38 have results similar in model 15 as well.

Considering the samples of posterior distribution of the parameters of the Model 9, the
1-divergence measures are computed to detect possible influential observations in the posterior dis-
tribution of the parameters of the Model 9 and presented in the Figure 3.75. It shows that there are
some possible influential observations were detected by divergence measures, but they are different
from the observations which were detected previously. Here, we will just analyze individuals 14 and
86 which were detected by both J-distance and y2-divergence measure. In the Table 3.15, we can
note that both individuals had special interventions but occurred relapse. In order to reveal the
impact of this possible influent observation on the parameter estimates and inference, we removed
this observation and readjust the model. Note that, in the piecewise exponential model, the time
axis are partitioned by the ordered distinct time points of all observed interval end points, thus we

have different and less risk parameter o’s after removed the observations.
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Figure 3.39: Estimates of i/-divergence measures for Model 9

Table 3.15: Possible influential observations are detected the divergence measures

Obs. Sex Duration Intervention Num. cigarettes Relapse Time interval  Zip
14 0 32 1 60 1 (1.035, 4.211) 55904
86 1 24 1 40 1 (3.885, 5.073) 55987

The posterior summaries of the parameters for the readjust Model 9 and RV for the posterior
mean of the parameters are presented in the Table 3.16. We can note that just the posterior means
of the parameters by and (4 have relative variations more higher, but both have values keep on closed
zero. All parameters had not sign change except by. The posterior means and 95% credibility intervals
of a;’s are presented in the Figure 3.40, it is showed that the values of a’s is similar as the estimates
in Figure 3.73. In this case, we do not have inferential changes after removing the observations. So
this model is not sensitive with influent observations. The values of DIC for fitted models is 385.0749

that is lower than Model 9 for the data without removing the detected observations.

3.1.4 Conclusions

In this work, we have described an approach to extend proportional odds cure models to allow
for spatial correlations by including spatial fragility for the interval-censored data setting. We use the
MCMC methods in Bayesian inference approach for our models and some used Bayesian comparison
criterions were used. The results of the application show that WGCR model with fragilities has better
fittings, but the PHGCR and CPHGCR models stand out better. Comparing the proposed models
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85

Table 3.16: Posterior summaries of the parameter of Model 9 and RV adjusted for the smoking
cessation data without detected individuals 14 and 86.

Survival Model Cure Rate
Parameter Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%
Intercept bo -0.0358 0.8369 -1.6263 1.5895
(-5.9465)
Sex (male=0) B1 0.1934 0.2708 -0.3352 0.7389 by -0.3168 0.4536 -1.1974 0.5985
(0.1064) (-0.1428)
SI/UC (UC=0) B2 -0.2241 0.3002 -0.7793  0.4069 b2 0.6060 0.4968 -0.3488 1.5578
(0.6097) (-0.2677)
Cigarettes per day B3 -0.0334 0.0193  -0.0709 0.0024 b3 -0.0862 0.0298 -0.1425 -0.0232
(0.9819) (0.7276)
Duration as smoker (34 -0.0109 0.0206  -0.0479 0.0332 by 0.0708 0.0350 0.0000 0.1313
(-0.6254) (1.3100)
a 0.9038 0.0619 0.7568 0.9864
(0.0063)
A1 2.6738 0.6573 1.5785 4.1271
(0.0021)
Ao 2.5637 0.6365 1.4845 3.9550
(-0.0065)
Aq2 -0.0063 0.4685 -0.9134 0.9258
(-0.2618)
Y11 0.4126 0.1085 0.2483 0.6684
(-0.0011)
Yoo 0.4320 0.1221 0.2569 0.7200
(0.0073)
Y12 0.0029 0.1830 -0.3552  0.3599
(0.0349)
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Figure 3.40: Posterior means and credibility intervals of ;’s for the data set without individuals 14

and 86.

with models introduced Carlin & Banerjee (2003) and Pan et al. (2014), it is showed that the PHGCR

and CPHGCR models are more adequate. Moreover, The proposed model is not sensible with influent

observation, which can be observed by the influence diagnostic analysis in the application. The

interpretation of the covariates is easy due to the parametrization in the cure proportion. Moveover,

the MCAR prior can be used even if fragilities have low or not correlations.
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3.2 Negative-Binomial cure rate models with spatial frail-

ties

Suppose there are I regions and n; individuals in the ith region. We denote by T;; the random
variable for the observed time to event of the jth individual in the ith region, where 7 = 1,...,n; and
i =1,...,1. Suppose that the (7, j)th individual is potentially exposed to latent risk M;;, where M;;
denotes the initial number of competing causes related to the occurrence of an event and assuming
M;; has a negative binomial (NB) distribution with parameters 6;; and n (Piegorsch, 1990), with the

probability mass function

1+ nb;;) /" =0,1,2---. 3.14
M () g = (.14

where 6;; > 0, n > —1/6;;, so that E(M;;) = 6;; and Var(M,;) = 0;; (1 +nb;;). Here, n is a
dispersion parameter (Saha & Paul, 2005), and values of n > 0 (n < 0) correspond to over (under)
dispersion relative to the Poisson distribution. Particularly, when n — 0, the NB approaches the
Poisson distribution and the geometric distribution with parameter 1/(1+6;;) can be obtained when
n=1.

Let Y for c =1, ..., M;; denote the failure time of the jth individual in the 7th region due to
the cth latent risk. Suppose that given M;;, the random variables Y,;; are mutually independent with
distribution function F(-) = 1—S(-). If we assume that the presence of any latent risk will ultimately
lead to the occurrence of the event, the time to event of interest can be defined by the random variable
Ti; = min{Yj,c=1,--- , M;;} for M;; > 1 and T;; = oo if M;; = 0, with P(T}; = oo|M;; = 0) = 1.

Thus, the survival function for the population is given by:
Spop(tig) = [1+ nbi F (t:)) /" (3.15)

Let 1 take some different values. We have the mixture model (Berkson & Gage, 1952): S,0,(ti5) = (1—
0,;)+0;;S(ti;), if n = —1; promotion time cure model(Chen et al., 1999): S,op(ti;) = exp {—0;;F(ti;)},
if 7 — 0 and cure rate proportional odds model (Gu et al., 2011): Spo,(ti;) = [1+ 05 F(t;;)] ", if
n=1.
The probability density function (p.d.f) and hazard function associated with (3.15) are given
by
Fro(tig) = 05 f (1) [1+ 0 F(2:)] """ and hpop(ty) = Oif(ty) [+ noyF ()]

respectively, where f(t;;) = 52 F(t;;).
ij
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Note that the survival function in (3.15) can also be written as a mixture cure model

(14005 F ()] " — (1 + nf;;) =47
1— (1 + n@ij)—l/ﬁ .

Spop(tij) = (14 n6i;) /" + (1 -1+ 7]91'3)71/”) {

Thus, the survival function of uncured (susceptible) individuals has the expression

[+ 005 F(ti)] " — (14 18,;) /7
1— (1 + 7701']')71/7] '

Ssus (t’Lj> =

Now, we assume another situation where the presence of all latent risks will ultimately lead
to the occurrence of the event. Thus, the time to event of interest is defined by the random variable

T,

ij

= maX{Y;Z‘j7C = 17 s aMij} for Mij Z 1 and ,T%j = oo if Mij = 0 with P(E] = OO|MZ] = 0) =1.

The survival function for the population is then given by

Spop(tis) =1+ (14 n0;;) """ — (14005 (t;;)) . (3.16)

Similarly, let n take some different values. Then, the mixture model, complementary cure
rate proportional odds model and complementary promotion time cure model can be obtained with

the following survival functions respectively

Spop(tiz) = (1—=0) +0:5S(ti;), if n=—1;
Spop(ti) = 1+exp{—0i} —exp{—0;;S(t;)}, if n=1;
Spop<tij) = 1 + (1 + 9@‘)71 — [1 + eijS(tij)]_l s lf n — 0.

The corresponding p.d.f. and hazard function are given respectively by
Foop(tiz) = 03 f(£i5) (1 40055 (£:))~ /™Y,

and
hpo(t1:) = 0, f (ti;) (1 4+ 103 S (t;;))~A/m+D)
pop\Lij 1+ (1 +n0;)~ Y1 — (14005 (ty;)) Y

The survival function (3.16) also can be written as a mixture cure model

1—-(1+ UQijS(tz‘j))_l/"}

Spop(tis) = (1 +n0i;) """ + (1 -1+ 7792'1)71/”) { 1 — (1 +n;)~/n
ij
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Thus, the survival functions of susceptible individuals is given by

O (g 1T (1+ 003 S(t;;)) "/
uslly) = =97 (1 +nfy;) =1/

The first situation is also known as the first activation scheme, because in this case we assume
that the event of interest occurs when the first possible cause is activated. On the other hand, the
second situation is known as last activation scheme, because the event of interest only takes place
after all the latent causes have occurred. Thus, we denote the survival functions (3.15) and (3.16)
by Sk, (ti;) and SL, (t;;), respectively. There is another kind of situation where the event of interest
occurs when some of the possible causes are activated, and given the number of latent causes M;;, the
number of activated causes is a random variable with a discrete uniform distribution on {1,---, M}.

This situation is known as the random activation scheme. In this case, the survival function for the

population has the expression
Spop(tij) = (1 + 77917')71/’7 +(1—-(1+ nﬁij)*l/”)S(tU), (3.17)

and is denoted by Sfop(tij). Note that whichever the activation scheme, the density and hazard func-
tions of the cure models are improper functions, since the survival functions are not proper. The cure
fraction is the same for these activation schemes, and can be obtained by: pg;; = limy,; o0 Spop(tij) =
(1+ 779ij)_1/ . However, under the different activation schemes, the models differ by their survival,
density and hazard functions. Moreover, under conditions of models (3.15), (3.16) and (3.17) for any

(ti;) < Sk

distribution function F(-), we have S (t;;) < SE op

op op (ti;) for all t;; > 0.

As is well known, the cure fraction plays a key role in survival models with cure fraction.
So we consider the parameterization of the model in the expressions of the cure fraction. Since
poij = (1 + n@ij)_l/", we have 0;; = (py;] — 1)/1. Moreover, we propose that the cure probability of

an individual (4, j) is associated with covariates ;; and it can be modeled by a logistic regression

exp(&ij)

where §;; is a linear form of covariates, &;; = :cz-ij and b is a p;-dimensional vector representing the

effects of covariates on the cured probability.
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Using poi; as a parameter, the improper survival functions can be written as

_ —1/n
Sk (tij) = [1 + (Poi) — 1)F<tz‘j)} )
- —1/n
Spp(ti) = 1+pog — |1+ (o) = DS ()] ",
Spop(tis) = poij + (1= poij)S(tis).
Note that S]ﬁp(tlj) is a mixture rate model with the cure fraction py;;.

Assuming Y,;;’s take proportional hazard (PH) model with the baseline hazard function
ho(t|cx), the conditional hazard function h(t|@) = ho(t|ar) exp(Nij), where ¢ = (¢, \ij), \ij = 2i;
is the linear predictor of the covariates, where z;; is covariates of an individual (¢, j) and 8 is a
po-dimensional vector representing the effects of covariates on the survival model component and
a is the parameter vector of the baseline functions. Considering the baseline functions the same
as the geometric cure rate models presented in section 3.1. Therefore, firstly, the baseline hazard
function is ho(t|a) = at®!, thus Yy;;’s follow a Weibull distribution with the shape parameter o > 0
and scale parameter );;. We called the functions (3.15) and (3.16) by Weibull negative binomial
cure rate (WNBCR) model and complementary Weibull negative binomial cure rate (CWNBCR)
model, respectively. Secondly, the baseline function has the piecewise exponential distribution with
the vector of parameters ae = (v, ..., ag). In this case, we called the functions (3.15) and (3.16) by

proportional hazard negative binomial cure rate (PHNBCR) model and complementary proportional

hazard negative binomial cure rate (CPHNBCR) model, respectively.

Similarly, we introduce the frailties U; and V; to better explain the effect of survival time
of susceptible individuals and on the cure probability through a linear predictor expression \;; =

zjiB+ U, and & = x;b+ Vi, for j=1...,n;i=1,...,1.

Here, the frailties U; and V; are spatially correlated across the regions. In this work, we
propose two approaches. In the first we employ a separate independent conditionally autoregressive
(CAR) prior distribution on (U, V). Second, we assuming the spatial priors on (U, V') are dependent,
and they have multivariate conditionally auto-regressive MCAR prior distribution, where the CAR

and MCAR distributions were presented in Section 2.5.3 in detail.

3.2.1 Bayesian Inference

Let Doys = {(Aij, ij, 2i5,6i5);5 = 1,...,n;,i = 1,... M} denote the observed data, where
A;j = (tijr,tijr] is the interval during which individual j in cluster ¢ occur the event of interest,

x;; and z;; are the p;—dimencional and p,—dimencional vectors of covariates, and d;; is following
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interval censoring indicador: d;; = I(t;;r < 00). For the spacial case in which the survival time is
right-(left-) censored, R;; = +o00(L;; = 0), whereas for exact observations, t;;;, = t;jr. Given the
frailties U and V, the likelihood function for the general interval-censored cure rate model following
Finkelstein(1986), is given by

I n;

L{p|Dus, U, V} 1_[1 1_[1 (Spop(ti5L1) — Spop(tiirl®)) " Spop(tijrle) ™7, (3.18)
i=1j=

where ¢ = (b, B, ¢, ), a is the shape parameter of the Weibull distribution for the first model with
unitary size and it is the risk parameter vector for the second model with size ). For a Bayesian
analysis, we assume the prior densities for parameters are b; ~ N(up,07) for j = 0,...,(p1 — 1);
B ~ N (g, aé) for j =1,...,p2; & ~ N(pta, 02)I0,00), i = 1 for Weibull distribution and i = 1,...Q
for piecewise exponential distribution; 7 ~ N (j,, ag)I(Om), where fuy, f18, fa, [y 5 O, Og, Oq. Oy are
known hyperparameters. To express vague priors, we consider p, = pug = fio = pt, = 0 with large
values of o, 03, 07 and 0. Here, N(u,0%)I (4 denotes the truncated normal distribution which is
the probability distribution of a normally distributed random variable whose values lies within the
interval —oo < a < b < co. In several areas, specially in medicine, it is preferable to use the prior
information when they are available, moreover it is worth mentioning that using a truncated normal
distribution as prior facilitates the insertion of information in certain regions of the parameter space,

since the hyperparameters no longer represent the mean and variance but still control the region of

higher probability mass.

Independent assumption

For the independent assumption, we employ separate independent CAR prior on the random

frailties U = (Uy,...,U;)" and V = (V4,...,V;) T, that is,
Ul,...,U[NCAR(el) and %,,%NCAR(GQ),

where 6; and 0y are positive unknown hyper-parameters, and we assume they have Inverse-Gamma
prior with the known shape parameter ag > 0 and scale parameter by > 0. In this paper, we assume

ag = by = 0.01 to consider vague priors for the parameters #; and 6,.

Assuming the independence of the parameters b, B, a, n, #; and 6y and combining the

likelihood function (3.18), the joint posterior distribution for the parameters is given

7(907 o1, 92|Dobs) X L(<P|Dobs, U, V)W(U7 V|91, 92)7T(90a 01, 92)7
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where (¢, 01,6,) = w(b)m(B)m(a)m(n)m(61)m(02).

This joint posterior density is analytically intractable. So, we based our inference on the
Markov chain Monte Carlo (MCMC) simulation methods. We can observe that the full conditional
distributions for parameters b, 8, « and 7 have not closed forms, thus we will use the Metropolis-
Hastings algorithm to generate a posteriori samples for these parameter. To avoid range restrictions
on the parameters «;’s and 7, we define (; = log(a;) for i = 1,2,...,Q and k = log(n) to transform
all parameters space to real space (necessary to work with Gaussian proposal densities). Let 9 =
(b,8,¢, K, 01,0,), according for the Jacobian of this transformation, the joint posterior density of

(19| Dgps) is proportional to

1 7p171 _ P2 @ ex 2¢; exp(2k UT(Dw — W)U
L(cp|DobS,U,V)exp{—2 [Jbzzngr%zZBinrz I;<2C)+ 1;(2 ) U “(;1 )
=0 =1 i=1 o n
VT (Dw — W)V bo b <
Al v22 ) } — (ag + 1) (log(61) + log(62)) — <90+92> +Z§i+m},
1 =1

where ¢ = (b, 3,¢7 L k7Y, ¢l = {C[l =exp(() =a;, i=1... ,Q} denotes inverse function of ¢,

and k! = exp(k) = n denotes inverse function of 7.

On the other hand, the full conditional distributions for parameters 6;’s are given by

m(6:[9-0,, Dobs) o< m(i|0;)m(6;)
(0742 exp (— g 0] (D — W) 0, exp(—bot )

—(an+k)— T(Dyw — .
o 01 ( 0+2) 1exp{_ (wz ( W2 W),()bl +b0> gi—l}’ Z: 1’2’

where 191 = U, ¥ = V and k is the rank of the matrix Dy, — W. Thus, the full conditional
distributions of the parameter #; is an Inverse-Gamma distribution with parameters ag + % e by +
5 (Y(Dw — W)1p;). In this case, the Gibbs sampler algorithm (see Gamerman & Lopes, 2006) is

used to generate a posteriori sample.

Dependent assumption

Now we assume that the spatial priors on the parameters (U, V') are dependent on each
other. Let v = (UT, V)T, we first employ the parameter 1p has a MCAR distribution with a

common smoothness parameter a, i.e.,

¥ ~ MCAR(a, A).
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Further, we employ the parameter @ has an extend MCAR distribution with assuming the different

smoothness parameters for the parameters U and V', say a; and as, that is,

’l,b ~ MCAR(C“, as, A)

The prior distributions for a and A are given by

e a; ~ Uniform(0,1) or a; ~ Beta(18,2), for i,

o A ~ Wishart(ng, Ag), with ng and Ay known,

where i=1 for ¢ ~ MCAR(a,A) and i=1,2 for ¥» ~ MCAR(ay,asz, A)). The prior distributions for
the parameter a; is used by Banerjee & Carlin (2004), in which a; ~ Uniform(0, 1) is a non-informative
prior, and a; ~ Beta(18,2) is an informative prior with E|a;] = 0.9 and Var[a;] = 0.004285; On the
other hand, the prior distribution for the parameter A is used not only by Carlin & Banerjee (2003)
but also by Gelfand & Vounatsou (2003) and Banerjee & Carlin (2004). They suggested that ng
can take value as the dimension of matrix A. However, Gelfand & Vounatsou (2003) and Banerjee
& Carlin (2004) considered Ay equals I and 0.011 in their papers, respectively, where I denote a
identity matrix. Both authors also commented that they had no prior knowledge regarding the nature
or extent of dependence for the parameter A. Note that A~! describe the relative variability and
covariance relationship between the different diseases given the neighboring site. Thus, if Ag = 0.011,
we assumed high relative variability between neighborhood and we assumed low relative variability
between neighborhood if Ay = I. Thus, it is necessary to conduct a prior study for the parameter

Ay to verify the influence of Ay in the estimation, in order to have a value for appropriate Ag.

To avoid range restrictions on the parameters a;, we consider the transformations p; =

log(a;/(1 —a;)) € R, then, the joint posterior density is given by

1 p1 P2 9 exp(2¢; exp(2k
7(9| Daps) L(cp\Dobs,¢>exp{—2[;2Zb?+%‘2253 Py SR P
=0 i=1 i=1 @ K

n0—4

+ ¢ [A® (Dw —aW)]y +log |A @ aW| +

Q
+ Z:Ci + fﬁ} m(p),

1
log |A| — §tr(AalA)

where ¢ = (b,8,¢7",w71) and 7w(pi) = 1if a; ~ Uniform(0,1) and 7(p:) = B(118 2) (12}))((1:(7;53))18 if
a; ~ Beta(18,2), where B(18,2) = 1 = L.

This joint posterior density is analytically intractable. Thus, we again based our inference on

the Markov Chain Monte Carlo (MCMC) simulation methods. We observe that the full conditional
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distributions for parameters b, 8, ¢ and p do not have closed forms, thus we will use the Metropolis-
Hastings algorithm to generate a posteriori samples for these parameter. However, the Gibbs sampler
algorithm is used to generate a posteriori sample for the parameter A, because the full conditional

distribution has a closed form. The full conditional distribution m(A |9 _a), Dobs)) is proportional to

m(Y|A, a)r(A)
1 1
x |A @ Dy — aW|"? exp (—QM(DW _ aW)¢> A0/ o (—Qtr(AglA))

1
o A2 oy, <—2tr((A51 + B)A)) , (3.19)

where 5 |rBURD)T) tr(RU(RV))
tT’(RgV(RlU)T) tT(RzV(RzV)T)
Thus, it follows that the full conditional distribution for A has the Wishart distribution with scale

matrix (Ag' + B)~! and degrees of freedom I + ng.

3.2.2 Simulation study

In this section we present some simulation studies for the proposed models with the de-
pendent assumption in order to examine the theirs performances. The interval-censored survival
times (¢;;1,tijr, 0;j) with the cure fraction under the first and last activations are generated in a
manner similar to that employed by Yau & Ng (2001) with some modifications. First, we gener-
ate latent NB variable M;;, which denote the initial number of competing causes related to the
event, with parameter py;; = [1 4 exp(—bo + byz;; + Ui)]_l for the jth individual in the ith region,
jg=1,...,n; i =1,...,1, where covariate z;; follows Bernoulli(0.5) distribution. Interval-censored

data (t;;1,tijr, 0ij) are then generated as follows:

(i) If M;; = 0, then let t;; = t;;;, from the exponential distribution with hazard rate 10 and let

censoring indicator J;; = 0.
(11) If Mij > 0, then

« we generate M,;; latent Weibull variables with parameter o and \;; = (Bx;; + w;), if Y;'s

have the Weibull distribution;
« or we generate M;; latent Exponential variables with hazard rate a\;; = a(fBx;; + w;)), if

Y.i;’s take the PH model.

Let t;; takes lowest generated variable in case of generating the variables of model under first

activation and ¢;; takes largest generated variable in case of generating the variables of model
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under last activation. The censoring variable ¢;; is generated from U(0, cc), cc > 0 is fixed to

control the percentage of censored data. Let 0;; = 1 if ¢;; < ¢;; and 6;; = 0 otherwise.

(lli) For 5ij =0, let 0 < tijL < tin = 0Q.

(iv) For §;; = 1, we create len;; from distribution U(0.2,0.7) and [;; from U(0,0.01). Then, from
(0, lij]; (lij7 lij + lenij], ce (lz] + klemj, OO], k = 1, 2, C ey (tijL,tin] is chosen as that satisfying

tijr, < tij < tijr.

In the simulation study, we consider / = 5 regions (Zip) with the corresponding adjacent matrix

001 0O
00 0 0 1
is {1 0o o 1 of, the random effects u; and v; are generated from Normal distribution with mean
00 1 0 0
01 0 0 O

0 and precision matrix A @(Dw — aW), where W is standardized adjacent matrix so that each
of its rows sum to one, Dy = Diag(1,1,2,1,1) is a diagonal matrix and we fixed a = 0.9 and
A = Diag(4,4), i.e. we fixed Aj; =4, Ayp =4 and A1z = Ay; = 0. We set N = 100 and the number
of Zip was distributed for each individual using sample with replace, thus the number of individuals
in each region n;, 1« = 1...,5 are varied, that is this five regions could have different number of

individuals.

We fixed parameters by = —1.50, by = —0.50 and 8 = —0.15. For Weibull cure rate models,
we fixed forma parameter a« = 0.30 and for the PH cure rate models, we fixed risk parameter
a = 1.00. We consider around 40% censored data for each generated sample and 500 repeated
samples are simulated for each model. In the simulations, the vague priors for the parameters are
used. For each generated data set we simulate one chain of size 10000 for each parameter, disregarding
the first 1000 iterations to eliminate the effect of the initial values and to avoid correlation problems
and thinning to every third iteration, thus obtaining a effective sample of size 3000 upon which the
posterior is based on. To evaluate the performance of the parameter estimates, the average bias
(Bias), standard deviation (SD) of the estimate, average standard deviation (SDs mean) and mean
square error (MSE) are calculated for WNBCR, CWNBCR, PHNBCR and CPHNBCR models, the
summaries are presented in Table 3.17 and 3.18. We note that the bias and MSE of parameter
A1 are lager than others in all fitting models. The estimator of A5 present a negative biases for
the WNBCR, PHNBCR and CPHNBCR models and it present a positive biases for the CWNBCR
model, however its biases and MSEs are always near zero. Moreover, for both models, the simulation

results for the models considering the prior 1 are very close to those obtained using the prior 2.
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Table 3.17: Simulation results for WNBCR and CWNBCR models with depended spatial fragilities

WNBCR model

Parameter True value Estimate mean SD of the estimate Bias MSE  SDs mean
Prior 1: ¥ ~ MCAR(a, A), a ~ Beta(18,2), A9 ~ Wishart(2, Diag(0.9,1))
bo -1.5 -1.5688 0.0654 -0.0688  0.0090 0.2770
by -0.5 -0.5362 0.1096 -0.0362 0.0133 0.2637
8 -0.2 -0.1306 0.0606 0.0194 0.0040 0.1852
« 0.3 0.2105 0.0465 -0.0895 0.0102 0.0667
A1 4.0 4.1621 0.1860 0.1621 0.0608 2.5225
Ao 4.0 3.8009 0.1730 -0.1991 0.0695 2.5500
Ao 0.0 -0.3843 0.1649 -0.3843 0.1748 1.9049
a 0.9 0.8998 0.0017 -0.0002 0.0000 0.0656
n 0.4 0.5048 0.0362 0.1048 0.0123 0.2571
Prior 2: ¢ ~ MCAR(a, A), a1, a2 ~ Beta(18,2), Ay ~ Wishart(2, Diag(0.9,1))
bo -1.5 -1.5725 0.0653 -0.0725 0.0095 0.2767
by -0.5 -0.5367 0.1024 -0.0367 0.0118 0.2645
154 -0.2 -0.1291 0.0567 0.0209 0.0036 0.1850
«o 0.3 0.2122 0.0475 -0.0878 0.0100 0.0671
Ap 4.0 4.1815 0.1850 0.1815 0.0671 2.5383
Ao 4.0 3.8016 0.1744 -0.1984 0.0697 2.5529
Ao 0.0 -0.3764 0.1593 -0.3764 0.1670 1.8995
ay 0.9 0.9000 0.0015 0.0000 0.0000 0.0655
as 0.9 0.8999 0.0015 -0.0001 0.0000 0.0656
n 0.4 0.5037 0.0335 0.1037 0.0119 0.2569
CWNBCR model
Parameter True value Estimate mean SD of the estimate Bias MSE SDs mean
Prior 1: ¥ ~ MCAR(a, A), a ~ Beta(18,2), Ay ~ Wishart(2, Diag(0.75,1))
bo -1.5 -1.5271 0.0598 -0.0271 0.0043 0.2750
by -0.5 -0.4567 0.0883 0.0433  0.0097 0.2818
154 -0.2 -0.1242 0.0913 0.0258 0.0090 0.1478
« 0.3 0.3941 0.0534 0.0941 0.0117 0.0593
Aqr 4.0 3.9625 0.2996 -0.0375 0.0910 2.2131
Ao 4.0 3.8841 0.1857 -0.1159 0.0479 2.6307
Ao 0.0 0.1555 0.1799 0.1555 0.0565 1.7815
a 0.9 0.9000 0.0015 0.0000 0.0000 0.0655
n 0.4 0.3177 0.0347 -0.0823 0.0080 0.2096
Prior 2: ¢ ~ MCAR(a, A), a1, a2 ~ Beta(18,2), Ag ~ Wishart(2, Diag(0.75,1))
bo -1.5 -1.5269 0.0607 -0.0269 0.0044 0.2741
by -0.5 -0.4565 0.0874 0.0435 0.0095 0.2809
8 -0.2 -0.1235 0.0938 0.0265 0.0095 0.1484
« 0.3 0.3939 0.0500 0.0939 0.0113 0.0597
A 4.0 3.9828 0.2942 -0.0172 0.0867 2.2170
Ao 4.0 4.0973 0.2033 0.0973  0.0507 2.7874
Ao 0.0 0.1524 0.1836 0.1524 0.0569 1.8314
ay 0.9 0.9000 0.0015 0.0000  0.0000 0.0654
as 0.9 0.9000 0.0015 0.0000 0.0000 0.0652
n 0.4 0.3213 0.0347 -0.0787 0.0074 0.2114
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PHNBCR model

Parameter True value Estimate mean SD of the estimate Bias MSE  SDs mean
Prior 1: ¢ ~ MCAR(a, A), a ~ Beta(18,2), Ay ~ Wishart(2, Diag(0.85,1.00))
bo -1.50 -1.5807 0.0593 -0.0807 0.0100 0.2720
by -0.50 -0.5219 0.0951 -0.0219 0.0095 0.2695
8 -0.15 -0.1705 0.0642 -0.0205 0.0045 0.1801
« 1.00 0.9571 0.0338 -0.0429 0.0030 0.1881
A 4.00 4.1890 0.1848 0.1890 0.0698 2.4506
Ao 4.00 3.7513 0.1797 -0.2487 0.0941 2.5440
Ao 0.00 -0.4464 0.1262 -0.4464 0.2152 1.8658
a 0.90 0.8999 0.0016 -0.0001 0.0000 0.0653
n 0.40 0.3023 0.0553 -0.0977 0.0126 0.1930
Prior 2: ¢ ~ MCAR(a, A), a1, a2 ~ Beta(18,2), Ay ~ Wishart(2, Diag(0.85,1.00))
bo -1.50 -1.5796 0.0574 -0.0796 0.0096 0.2731
by -0.50 -0.5049 0.0984 -0.0049 0.0097 0.2688
154 -0.15 -0.1810 0.0624 -0.0310 0.0048 0.1789
«o 0.30 0.9573 0.0340 -0.0427 0.0030 0.1879
Ap 4.00 3.9937 0.1613 -0.0063 0.0260 2.3200
Ao 4.00 3.7484 0.1787 -0.2516  0.0952 2.5440
Ao 0.00 -0.4434 0.1199 -0.4434 0.2109 1.8120
ay 0.90 0.8999 0.0015 -0.0001 0.0000 0.0655
as 0.90 0.8999 0.0016 -0.0001 0.0000 0.0653
n 0.40 0.2999 0.0573 -0.1001 0.0133 0.1921
CPHNBCR model
Parameter True value Estimate mean SD of the estimate Bias MSE SDs mean
Prior 1: ¥ ~ MCAR(a, A), a ~ Beta(18,2), Ay ~ Wishart(2, Diag(0.85,1.00))
bo -1.50 -1.6574 0.0910 -0.1574 0.0330 0.2736
by -0.50 -0.4931 0.0977 0.0069 0.0096 0.2757
154 -0.15 -0.1880 0.1041 -0.0380 0.0123 0.1386
« 0.30 0.8189 0.0567 -0.1811 0.0360 0.1800
Aqr 4.00 4.9581 0.4269 0.9581 1.0999 2.8623
Ao 4.00 3.4462 0.3012 -0.5538 0.3972 2.3753
Ao 0.00 -0.2046 0.2298 -0.2046 0.0946 1.9200
a 0.90 0.8999 0.0017 -0.0001 0.0000 0.0657
n 0.40 0.4420 0.0985 0.0420 0.0115 0.2305
Prior 2: ¢ ~ MCAR(a, A), a1, as ~ Beta(18,2), Ay ~ Wishart(2, Diag(0.85,1.00))
bo -1.50 -1.6572 0.0942 -0.1572 0.0336 0.2725
by -0.50 -0.5047 0.1013 -0.0047 0.0103 0.2756
8 -0.15 -0.1890 0.0998 -0.0390 0.0115 0.1391
« 0.30 0.8346 0.0510 -0.1655 0.0300 0.1840
A 4.00 4.0689 0.3224 0.0689 0.1084 2.3206
Ao 4.00 3.6089 0.3077 -0.3911 0.2474 2.5019
Ao 0.00 -0.1823 0.1932 -0.1823 0.0705 1.7578
ay 0.90 0.9000 0.0018 0.0000  0.0000 0.0655
as 0.90 0.8998 0.0017 -0.0002 0.0000 0.0654
n 0.40 0.4373 0.0921 0.0373  0.0099 0.2304
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Influence of outlying observations

One of our main goals in this study is to show the need for robust models to deal with the
presence of outliers in the data. Considering the same the parameter values and setup as above
and two cases for perturbation, thus eight data sets of size 100 were generated from the WNBCR,
CWNBCR, PHNBCR and CPHNBCR models with depended spatial fragilities.

We selected cases 18 and 80 for perturbation. To create influential observation in the data
set, we choose one or two of these selected cases and perturbed the response variable as follows
trr = ter + 105, and tpr = tir + 105y, for k = 1 and 18, where Sy, is the standard deviations
of the t;;1’s. Note that using this kind of perturbation, the interval of observed interval time of
perturbation candidate observation is not charged. Here, we considere four setups in the study.
Setup A: original dataset, without outliers; Setup B: data with outlier 18; Setup C: data with outlier
80; and Setup D: data with outliers 18 and 80. The MCMC computations were made similar to
those in the last section and further to monitor the convergence of the Gibbs samples we used the

Geweke’s convergence diagnostic proposed por Geweke (1992).

Tables 3.19, 3.20, 3.21 and 3.22 reports posterior mean, standard deviation (SD), bias and
mean square error (MSE) of the parameters of WNBCR, CWNBCR, PHNBCR and CPHNBCR
models, respectively. For WNBCR model, Table 3.19 shows that the absolute values of bias of
estimates creasing little bit in the perturbation cases when prior 1 is used for the parameters. On
the other way, considering prior 2 for the parameters, the estimates of all parameters of cases B, C
and D are very closed the case A, which means the parameters are not sensitive to perturbations.
It also can be observed on the Table 3.20. For PHNBCR model, Table 3.21 shows that parameter
Ay is little sensitive to perturbations. The estimates of A;; decreasing in the perturbation cases
when considering prior 1 or prior 2 for the parameters and we obtained similarly simulation results

considering both priors.

For CPHNBCR model, considering prior 1, the parameter 7 is little sensitive in perturbation
cases and Aq; is sensitive in case B; considering prior 2, the parameters 7 and Aqs is litter sensitive

in perturbation cases, which can be observed on Table 3.22.

For each simulated data set the four divergence measures (dgy, dy, dy,, d,2) of the perturbed
cases and DIC values for four cure rate models were calculated and reported in Table 3.23. We can
see that all measures providing larger 1-divergence measures when compared to the non-perturbed
setup (setup A) and the difference between the measures of perturbed case and non-perturbed case
is more clearly for CWNBCR, PHNBCR and CPHNBCR models than WNBCR model. we can note
that, the obtained measures values from WNBCR model for data with outlier 18 (setup B) are close
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to the setup A. Furthermore, we observed that the obtained measures values from the CWNBCR,
PHNBCR and CPHNBCR models wheatear considering the prior 1 or prior 2 are similarly. However,
the measures values from the WNBCR model for setup C considering the prior 2 for the parameters
are much larger than values obtained using the prior 1. To show better the results, we plot the
J-distance divergence measure from the WNBCR model considering the prior 1 and 2 and J-distance
divergence measure from the CWNBCR, PHNBCR and CPHNBCR models considering only prior
1.

The Figures 3.41 to 3.72 show the divergence measures before the perturbation (setup A)
and after perturbation observations (setups B, C and D). The Figures 3.41 to 3.48 show that outline
observation 18 can not be detected by four divergence measures, the outline observation 80 just
can be detected by four divergence measures when parameters have prior 2, and the x?—squre
divergence more sensible than other three measures for the WNBCR model considering prior 2
for the parameters. Moreover, estimates of all parameters of perturbed case are very closed the
non-perturbed case, we can conclude that the WNBCR model is not sensitive with this kind of
perturbation. The Figures 3.49 to 3.56 show that all perturbation observations selected can be
detected by four divergence measures for the CWNBCR model considering prior 1 for the parameters.
When the parameters have prior 2, only the KL and y?-square divergences can detect the perturbation
observations, L; norm and J—distance cannot detected the perturbation observations when the both
observations were perturbed (Setup D). The Figures 3.55(a), 3.56(a), and 3.56(c) also show that
the y2-square divergence is more sensible than other measures. The Figures 3.57 to 3.64 show that
all perturbation observations selected can be detected by all divergence measures for the PHNBCR
model considering prior 1 for the parameters. However, the perturbation observation 18 cannot be
detected by y%-square divergence when the parameters have prior 2, and the Figures 3.65 to 3.72
show that all perturbation observations selected can be detected by all divergence measures for the

CPHNBCR model considering prior 1 or 2 for the parameters.
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Table 3.19: Simulation results of the perturbed cases for WNBCR model

WNBCR model

Prior 1 Prior 2

Setup  Perturbed
case Parameters Mean SD Bias MSE Parameters Mean SD Bias MSE

bo -1.566  0.280  -0.066 0.004 bo -1.557 0.276  -0.057  0.003

b1 -0.443 0.271  0.057 0.003 b1 -0.530 0.254 -0.030 0.001

B -0.196 0.187  -0.046 0.002 B -0.138 0.182  0.012  <0.001

o 0.206 0.065 -0.094 0.009 o 0.203 0.0v3 -0.097  0.009

A None Ay 4.435 2.547  0.435 0.189 Ay 4.319 2.600 0.319 0.102
Ao 3.815  2.662 -0.185 0.034 Ao 3.875  2.586 -0.125 0.016

Aqg -0.352  1.919 -0.352 0.124 Aqg -0.395 1.980 -0.395 0.156

a 0.900 0.063 <0.001 <0.001 ay 0.902 0.063 0.002 <0.001

i 0.469 0.246  0.069 0.005 as 0.902 0.064 0.002 <0.001

i 0.513 0.252 0.113 0.013

bo -1.609 0.278  -0.109 0.012 bo -1.560 0.283  -0.060 0.004

b1 -0.591 0.267 -0.091 0.008 b1 -0.565 0.258  -0.065 0.004

B -0.097 0.184  0.053 0.003 B -0.114 0.189  0.036 0.001

o 0.240 0.068 -0.060 0.004 o 0.264 0.070 -0.036 0.001

B (18} Ay 3.874 2393 -0.126 0.016 Ay 4.280 2.536  0.280 0.079
Ao 3.499 2460 -0.501 0.251 Ao 3.817 2541 -0.183 0.033

Aqg -0.132  1.866 -0.132 0.017 A1 -0.439 1879 -0.439 0.192

a 0.900 0.065 <0.001 <0.001 ay 0.902 0.064 0.002 <0.001

0.537 0.257  0.137 0.019 as 0.902 0.064 0.002 <0.001

i 0.512 0.242 0.112 0.013

bo -1.643 0.267 -0.143 0.020 bo -1.491 0.275  0.009  <0.001

b1 -0.358 0.268  0.142 0.020 b1 -0.479 0.262 0.021  <0.001

B -0.258 0.179  -0.108 0.012 B -0.171 0.187 -0.021  <0.001

o 0.245 0.061 -0.055 0.003 o 0.163 0.059 -0.137  0.019

C (80} A1y 4182 2477  0.182 0.033 Ay 4.517 2.6564 0.517 0.267
Ao 3.749 2,614 -0.251 0.063 Ao 3.876  2.526 -0.124 0.015

Mg -0.309 1.908 -0.309 0.096 Aqo -0.623 2.004 -0.623 0.389

a 0.901 0.065 0.001 <0.001 ai 0.903 0.064 0.003 <0.001

i 0.481 0.261 0.081 0.007 as 0.901 0.066 0.001 <0.001

i 0.449 0.241  0.049 0.002

bo -1.611 0.267 -0.111 0.012 bo -1.562 0.286  -0.062 0.004

b1 -0.746  0.261  -0.246 0.061 b1 -0.641 0.259 -0.141 0.020

B -0.019 0.186  0.131 0.017 B -0.082 0.185  0.068 0.005

o 0.196 0.066 -0.104 0.011 o 0.210 0.065 -0.090 0.008

D (18,80} Ay 4.465 2.659  0.465 0.216 Ay 4.243 2.506  0.243 0.059
’ Ao 3.981 2,617 -0.019 <0.001 Ao 3.782  2.610 -0.218 0.047

Aqo -0.527 1955  -0.527  0.277 Ao -0.411 1.900 -0.411 0.169

a 0.903 0.061 0.003 <0.001 ai 0.900 0.065 <0.001 <0.001

i 0.559 0.264 0.159 0.025 az 0.899 0.064 -0.001 <0.001

i 0.509 0.253  0.109 0.012
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Table 3.20: Simulation results of the perturbed cases for CWNBCR model

CWNBCR model

Prior 1 Prior 2

Setup  Perturbed
case Parameters Mean SD Bias MSE Parameters Mean SD Bias MSE

bo -1.533 0.269 -0.033  0.001 bo -1.464 0.275  0.036 0.001

b1 -0.425 0.281 0.075  0.006 by -0.459 0.295 0.041 0.002

B -0.129 0.149 0.021 <0.001 B -0.102  0.163  0.048 0.002

o 0.403 0.063 0.103  0.011 o 0.370  0.059  0.070 0.005

A None Ay 3.877 2134 -0.123 0.015 Aqq 4.067 2275  0.057 0.003
Ago 4.074 2.712 0.074  0.005 Ao 3.992 2,691 -0.008 <0.001
Aqg 0.260 1.801 0.260  0.068 Ao 0.009 1.827 0.009 <0.001

a 0.901 0.065 0.001 <0.001 ax 0.901 0.062 0.001 <0.001

i 0.319 0.209 -0.081  0.007 as 0.900 0.063 <0.001 <0.001

i 0.312 0.208 -0.088 0.008

bo -1.622  0.271 -0.122  0.015 bo -1.536  0.270  -0.036 0.001

b1 -0.469 0.284 0.031 0.001 by -0.385 0.272  0.115 0.013

B -0.122 0.145 0.028  0.001 B 0.070 0.147  0.220 0.048

o 0.402 0.053 0.102  0.010 o 0.356  0.050  0.056 0.003

B (18} Ay 4.343 2422 0343  0.117 Aqq 3.988 2212 -0.012 <0.001
Ago 4.041  2.740 0.041 0.002 Aso 3.989 2629 -0.011 <0.001

Aqg 0.223 1.809 0.223  0.050 Aqo 0.309 1.854 0.309 0.095
a 0.899 0.067 -0.001 <0.001 ay 0.901 0.063 0.001 <0.001

i 0.342 0.210 -0.058  0.003 as 0.902 0.065 0.002 <0.001

Ui 0.300 0.216 -0.100 0.010

bo -1.503 0.270 -0.003 <0.001 bo -1.439 0.273  0.061 0.004

b1 -0.387 0.298 0.113  0.013 b1 -0.361  0.269  0.139 0.019

B -0.065 0.148 0.085  0.007 B 0.061 0.151 0.201 0.040

o 0.426 0.065 0.126  0.016 o 0.413 0.066 0.113 0.013

C (80} Ay 4324 2387 0.324  0.105 Ay 3.944 2270 -0.056 0.003
Ao 3.839 2,587 -0.161  0.026 Ao 3.835 2.634 -0.165 0.027

Aqo 0.043 1.852 0.043  0.002 Ao -0.239  1.809 -0.239 0.057

a 0.899 0.068 -0.001 <0.001 ay 0.901 0.063 0.001 <0.001

n 0.296 0.201 -0.104 0.011 az 0.901 0.066 0.001 <0.001

n 0.334 0.212 -0.066 0.004

bo -1.526 0.276 -0.026  0.001 bo -1.599 0.266  -0.099 0.010

b1 -0.479 0.279 0.021 <0.001 b1 -0.405 0.275  0.095 0.009

8 -0.124 0.140 0.026  0.001 B 0.115 0.142  0.265 0.070

o 0.354 0.049 0.054  0.003 o 0.362 0.051 0.062 0.004

D (18,80} Ay 3.918 2203 -0.082  0.007 A1 4.395 2444  0.395 0.156
’ Ao 3.755 2,525 -0.245  0.060 Ao 3.826 2582 -0.174 0.030

Aqo 0.419 1.782 0.419 0.175 Aqo 0.033 1.810 0.033 0.001

a 0.899 0.065 -0.001 <0.001 ax 0.901 0.065 0.001 <0.001

i 0.307 0.203 -0.093  0.009 az 0.902 0.064 0.002 <0.001

i 0.288 0.200 -0.112 0.013
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Table 3.21: Simulation results of the perturbed cases for PHNBCR model
PHNBCR model
Prior 1 Prior 2
Setup  Perturbed
case Parameters Mean SD Bias MSE  Parameters Mean SD Bias MSE
bo -1.595 0.259 -0.095 0.009 bo -1.568 0.271 -0.068 0.005
b1 -0.420 0.266 0.080  0.006 b1 -0.358 0.271 0.142  0.020
I6] -0.243 0.177 -0.093  0.009 I5; -0.351 0.181 -0.201  0.041
o 0.871 0.195 -0.129 0.017 Q 0.913 0.200 -0.087 0.008
A None Aqq 3.813 2.342 -0.187 0.035 Aq 3.707 2.155 -0.293 0.086
Aoo 3.882 2534 -0.118 0.014 Moo 3.855  2.551 -0.145 0.021
Aia -0.532 1.899 -0.532 0.283 Aia -0.718 1.781 -0.718 0.516
a 0.901 0.065 0.001 <0.001 ar 0.902 0.064 0.002 <0.001
n 0.230 0.167 -0.170  0.029 as 0.902 0.064 0.002 <0.001
n 0.274 0.187 -0.126 0.016
bo -1.407 0.268 0.093 0.009 bo -1.396 0.265 0.104 0.011
b1 -0.430 0.261 0.070  0.005 b1 -0.363 0.262 0.137  0.019
8 -0.273 0.176 -0.123  0.015 I5; -0.298 0.183 -0.148  0.022
«@ 0.836 0.199 -0.164  0.027 Q 0.824 0.201 -0.176  0.031
B (18} Aqq 3.713 2.306 -0.287 0.082 Aqq 3.629 2.230 -0.371 0.138
Aoo 3.882 2.461 -0.118 0.014 Aoo 4.066 2.705 0.066 0.004
Aqa -0.415 1.824 -0.415 0.173 Ao -0.184 1.844 -0.184 0.034
a 0.900 0.067 0.000 <0.001 a1 0.898 0.067 -0.002 <0.001
n 0.401 0.219 0.001 <0.001 as 0.901 0.065 0.001 <0.001
7 0.483 0.253 0.083  0.007
bo -1.503 0.270 -0.003 <0.001 bo -1.399 0.274 0.101 0.010
by -0.407 0.267 0.093 0.009 by -0.407 0.259 0.093 0.009
153 -0.296 0.182 -0.146 0.021 15} -0.161 0.181 -0.011 <0.001
o 0.902 0.198 -0.098 0.010 ol 0.792 0.202 -0.208  0.043
C (80} Aqq 3.202 2.053 -0.798  0.637 A1 3.033 1939 -0.967 0.935
Ago 3.953 2.562 -0.047 0.002 Moo 4.072 2.666 0.072 0.005
Aqo -0.403 1.799 -0.403 0.163 Ao -0.243 1.750 -0.243 0.059
a 0.902 0.063 0.002 <0.001 ar 0.901 0.067 0.001 <0.001
n 0.405 0.216 0.005 <0.001 as 0.903 0.063 0.003 <0.001
n 0.382 0.225 -0.018 <0.001
bo -1.488 0.262 0.012 <0.001 bo -1.509 0.271 -0.009 <0.001
by -0.488 0.252 0.012 <0.001 by -0.622 0.249 -0.122 0.015
8 -0.279 0.177 -0.129  0.017 I6; -0.279 0.176 -0.129  0.017
o 0.822 0.200 -0.178  0.032 Q 0.815 0.203 -0.185 0.034
D (18,80} A1q 3.183 1941 -0.817 0.667 A1 3.239 1987 -0.761  0.579
Aoo 3.814 2.565 -0.186 0.035 Moo 3.989 2.678 -0.011 <0.001
Aqo -0.459 1.749 -0.459 0.210 Ao -0.802 1.778 -0.802 0.644
a 0.902 0.064 0.002 <0.001 ar 0.900 0.068 0.000 <0.001
N 0.551 0.230 0.151 0.023 as 0.902 0.064 0.002 <0.001
n 0.425 0.222 0.025 0.001
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Table 3.22: Simulation results of the perturbed cases for CPHNBCR model

CPHNBCR model

Prior 1 Prior 2

Setup  Perturbed
case Parameters Mean SD Bias MSE Parameters Mean SD Bias MSE

bo -1.633 0.272  -0.133 0.018 bo -1.553 0.265 -0.053 0.003

b1 -0.383 0.269  0.117 0.014 b1 -0.438 0.280  0.062 0.004
B -0.071 0.141  0.079 0.006 B -0.143 0.152  0.007  <0.001

o 0.773 0.199 -0.227  0.052 o 0.858 0.199 -0.142 0.020

A None Ay 4.439  2.695 0.439 0.192 Ay 3.208 1926 -0.792 0.627
Ao 3.397 2349  -0.603 0.363 Ao 3.800 2486 -0.200 0.040

Aqg -0.250 1.909 -0.250 0.063 Aqg -0.033 1.776 -0.033 0.001
a 0.902 0.066 0.002 <0.001 ai 0.898 0.065 -0.002 <0.001
i 0.319 0.208 -0.081 0.007 as 0.900 0.065 <0.001 <0.001

i 0.340 0.217  -0.060 0.004

bo -1.576  0.280 -0.076 0.006 bo -1.666  0.262  -0.166 0.028
b1 -0.491 0.286  0.009  <0.001 b1 -0.483 0.287  0.017  <0.001

B -0.415 0.139  -0.265 0.070 B -0.094 0.143  0.056 0.003

o 0.685 0.202 -0.315 0.099 o 0.879 0.196 -0.121 0.015

B (18} Ay 4.721  2.799  0.721 0.519 A1y 3.447 2.050 -0.553 0.306
Ao 3.371 2313 -0.629 0.396 Ao 3.595 2419 -0.405 0.164

Aqg 0.186 1.946 0.186 0.035 A1 -0.390  1.756  -0.390 0.152
a 0.902 0.063 0.002 <0.001 ai 0.898 0.066 -0.002 <0.001
i 0.347 0.223 -0.053 0.003 as 0.901 0.065 0.001 <0.001

i 0.256 0.181 -0.144 0.021

bo -1.533 0.268 -0.033 0.001 bo -1.688 0.269 -0.188 0.035

b1 -0.628 0.270  -0.128 0.017 b1 -0.444 0.264  0.056 0.003

B -0.349 0.153 -0.199 0.040 B -0.187 0.142 -0.037  0.001

o 0.749 0.198 -0.251 0.063 o 0.855 0.201 -0.145 0.021

C (80} A1 4.086 2.502  0.086 0.007 Ay 4.000 2.335 <0.001 <0.001
Ao 3.707 2378 -0.293 0.086 Ao 3.443 2407 -0.557  0.311

Mg -0.100 1.906  -0.100 0.010 Aqo -0.416 1.803 -0.416 0.173

a 0.901 0.066 0.001 <0.001 ai 0.899 0.066 -0.001 <0.001

i 0.294 0.198 -0.106 0.011 as 0.900 0.065 <0.001 <0.001

i 0.298 0.200 -0.102 0.010

bo -1.542  0.266  -0.042 0.002 bo -1.656  0.258  -0.156 0.024

b1 -0.303 0.283  0.197 0.039 b1 -0.609 0.2v8  -0.109 0.012

B -0.246  0.149  -0.096 0.009 B -0.434 0.151 -0.284 0.080

o 0.638 0.205 -0.362 0.131 o 0.877 0.189 -0.123 0.015

D (18,80} Ay 4.109 2.602 0.109 0.012 Ay 3.498 2.031 -0.502 0.252
’ Ao 3.872  2.504 -0.128 0.016 Ao 3.645 2486 -0.355 0.126

Aqo 0.002 1.947 0.002  <0.001 Aqo -0.127 1.727  -0.127  0.016

a 0.900 0.066 <0.001 <0.001 ai 0.898 0.067 -0.002 <0.001

n 0.171 0.144 -0.229 0.053 az 0.902 0.064 0.002 <0.001

Ui 0.253 0.180 -0.147  0.022
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Table 3.23: Divergence measures of the perturbed cases and DIC values for the simulated data sets.

Model ‘ Prior ‘ Setup Case number dir, dy drq dXZ ‘ DIC
18 0.019 0.039 0.077  0.042
A 80 0.059 0.125 0.138  0.160 155.900
1 B 18 0.049 0.103 0.124 0.124 | 162.537
C 80 0.040 0.083 0.112  0.097 | 168.190
D 18 0.118 0.256  0.192 0.417 174.948
WNBCR 80 0.097 0.210 0.174  0.306
A 18 0.011 0.023 0.060 0.025 144.903
80 0.009 0.019 0.053  0.021
9 B 18 0.044 0.090 0.118 0.102 | 160.820
C 80 0.442 1.690 0.364 69.616 | 179.784
D 18 0.090 0.196 0.164 0.313 170.610
80 0.089 0.194 0.165 0.300
A 18 0.017 0.035 0.075  0.036 397 683
80 0.037 0.075 0.110  0.082
1 B 18 0.416 0.963 0.369  3.040 | 460.719
C 80 0.585 1.429 0.440 7.355 | 408.683
D 18 0.426 1.061  0.376  4.596 498 5192
CWNBCR 80 0.417 0.930 0.371  2.187
A 18 0.038 0.078 0.109  0.089 366.214
80 0.038 0.078 0.107  0.091
9 B 18 0.616 1.457 0.451  6.008 | 396.018
C 80 0.400 0.914 0.365 2.364 | 399.191
D 18 0.221 0.495 0.266  1.002 410.241
80 0.231 0.528 0.274 1.163
A 18 0.002 0.004 0.025  0.004 262.038
80 <0.001 <0.001 0.003 <0.001
1 B 18 1.249 3.728 0.624 229.515 | 274.767
C 80 0.466 1.140 0.391  5.040 | 272.823
D 18 1.281 3.433 0.629 63.147 306.894
PHNBCR 80 1.500 4.096 0.695 105.593
A 18 0.048 0.099 0.125 0.114 974 876
80 0.029 0.058 0.096  0.062
9 B 18 1.208 3.045 0.610 37.911 | 286.468
C 80 1.095 2.787 0.594 25.740 | 294.388
D 18 1.151 2.638 0.596 15.903 981.866
80 0.407 0.941 0.364 2.671
A 18 0.337 0.754 0.333 1.759 497 835
80 0.025 0.050 0.089  0.053
1 B 18 2.407 5.164  0.765 60.061 | 445.979
C 80 2.619 5.240 0.781 38.913 | 437.124
D 18 3.202 7.434  0.845 331.339 499 476
CPHNBCR 80 2.138 4.935 0.733 114.932
A 18 0.047 0.097 0.123 0.111 412.991
80 0.041 0.084 0.114  0.097
5 B 18 1.412 2.873 0.620 10.929 | 417.466
C 80 1.412 2.978  0.621 14.312 | 424.754
D 18 2.165 5.646  0.749 327.954 459 891
80 1.117 2.791 0.592 28.511
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WNBCR model
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Figure 3.41: Index plots of Kullback-Leibler divergence measure from the fitted WNBCR model
considering prior 1.
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Figure 3.42: Index plots of Kullback-Leibler divergence measure from the fitted WNBCR model
considering prior 2.
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Figure 3.43:

Figure 3.44: Index plots of J-distance from the fitted WNBCR model considering prior 2.
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Figure 3.45: Index plots of L; norm distance from the fitted WNBCR model considering prior 1.
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Figure 3.46: Index plots of L; norm distance from the fitted WNBCR model considering prior 2.
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Figure 3.47: Index plots of x2-square divergence from the fitted WNBCR model considering prior 1.
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Figure 3.48: Index plots of x2-square divergence from the fitted WNBCR model considering prior 2.
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Figure 3.49: Index plots of Kullback-Leibler divergence measure from the fitted CWNBCR model

considering prior 1.
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Figure 3.50: Index plots of Kullback-Leibler divergence measure from the fitted CWNBCR model

considering prior 2.
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Figure 3.53: Index plots of L; norm distance from the fitted CWNBCR model considering prior 1.
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Figure 3.54: Index plots of L; norm distance from the fitted CWNBCR model considering prior 2.
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Figure 3.61: Index plots of L; norm distance from the fitted PHNBCR model considering prior 1.
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Figure 3.62: Index plots of L; norm distance from the fitted PHNBCR model considering prior 2.
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Figure 3.65: Index plots of Kullback-Leibler divergence measure from the fitted CPHNBCR model

considering prior 1.
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Figure 3.66: Index plots of Kullback-Leibler divergence measure from the fitted PHNBCR model

considering prior 2.
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Figure 3.69: Index plots of L; norm distance from the fitted CPHNBCR model considering prior 1.
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Figure 3.70: Index plots of L; norm distance from the fitted CPHNBCR model considering prior 2.
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Figure 3.72: Index plots of x2-square divergence from the fitted CPHNBCR model considering prior
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3.2.3 Application

We now apply the proposed method to the interval-censored smoking cessation data pre-

sented in Section 1.1.

Because of the high computational cost, we implement the MCMC algorithms in C language
and the results are analyzed in R language (R Development Core Team (2010)) through the "coda'
package (Plummer et al. (2005)). All of our MCMC algoritms ran a total of 60,000 iterations
discarding the first 20,000 realizations as burn-in and thinning to every fifth iteration. Posterior
results are then based on 8,000 realizations of the Markov chain. Our Meteropolis acceptance rate
for these parameters ranged from 25% to 50%. The convergence was checked using the Geweke
diagnostic which did not indicate lack of convergence. The models are compared using DIC and the
new proposed measure. Moreover, the case deletion influence diagnostics are also computed to detect

possible influential observations.

Firstly, we fit the proposed models considering the different spatial frailties in the models
to the data set. Prior distributions for the parameters b, 8 and 7 are b; ~ N(0,100), j =0,....4,
B; ~ N(0,100),j =1,...,4,and n ~ N(0,100)I (g ) and a prior distribution for the shape parameter
of WNBCR and CWNBCR models is a ~ N(0,100)/(). As know, the piecewise exponential
distribution has better approximation to any unknown function when the length of each interval
becomes smaller. Therefore, we partition the time axis so that they denoted the ordered distinct time
points of all observed interval end points. Thus, we have 178 risk parameters need to estimate. Prior
distributions for the risk parameters are o; ~ N(0,100)/(9«), ¢ = 1,...,178. For the sub-models
of the PHNBCR and CPHNBCR, we used the informative prior distributions for the parameters b
and B, where the priors are based on the posterior distributions of these parameters of PHNBCR
and CPHNBCR models, i.e., b; ~ N(0,1), j =0,...,4, and 5; ~ N(0,0.6), j =1,...,4.

For the assumption that the random frailties are independent, the prior distribution for
parameter 6; is given by 6; ~ InvGamma(0.01,0.01) for ¢ = 1,2. On the other hand, assuming
the dependence of the random frailties, a prior distribution for parameter a; can be taken a; ~
Uniform(0, 1) or a; ~ Beta(18,2) and let A ~ Wishart(2, Ay), ¢ = 1 if the random frailties take the
traditional MCAR distribution (MCAR(a, A)) and ¢ = 1,2 if the random frailties take the extended
MCAR distribution (MCAR(ay,az, A)). Since Gelfand & Vounatsou (2003) and Banerjee & Carlin
(2004) considered different values for Ay, we fixe Ag equals to Isya, 0.11545, 0.0115,5 and 0.00115xo
for the WNB model. We note that the estimative of parameters 8, b, o, n and a are not influenced
by Ag. However, the Table 3.24 shows that Ag restrict the posterior estimate of A, i.e., if we assume

the small values for the diagonal elements of Ag, the posterior estimative of the elements of A have
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small values and the posterior estimative of the elements of covariance matrix 3 have large values.
We observed that the estimative of 311, 39y and 15 have reasonable values when Ay = 0.115,5, thus,

we consider A ~ Wishart(2, Diag(0.1,0.1)) in the application, where Diag(0.1,0.1) = 0.1154.

Table 3.24: Posterior estimate of the elements of matrix A and X

Ao Apy Ago Ao 2 299 212

0.0011555 0.0342  0.0275 -0.0026 29.4836 36.5596 2.7352
0.011549 0.2774 02772 -0.0046 3.6062  3.6079 0.0604
0.11559 2.6616  2.5635 -0.0163 0.3757 0.3901 0.0024
1159 25.9818 254708 0.0407 0.0385 0.0393 -0.0001

where A;; is the element of precision matrix A in position (¢, j), and X;; is the element of matrix ¥ = AT
in position (4, 5), this X1; is the spatial variance component of U and X5 is the spatial variance
component of V, 212/(211222)1/2 denote their correlation.

The values of the Bayesian model selection criterion for fitted cure rate models are presented
in Table 5.4. According to the DIC, the PHNBCR and CPHNBCR models are better than WNBCR
and CWNBCR models for all prior distributions considered for the parameters. Although the DIC
value of CPHNBCR model is lower than that of PHNBCR model, the DIC values of both models
are very close, thus, we conclude that the both model are equivalent. Inasmuch as the proposed
cure models are very flexile and encompasses several well-known cure model as its special cases, its
sub-models also have been fitted, considering the dependent random frailties with priors (iv) given

in Table 5.4 for the parameters.

The criterion values for fitted cure rate models are presented in Table 5.5. We observe that
the WNBCR and CPHNBCR models have the smallest DIC and Pd values among all cure models
with Weibull distribution and piecewise exponential distribution. Moreover, comparing the obtained
DIC values with the values presented in the paper of Carlin & Banerjee (2003), where they proposed
the mixture cure model with the spatial frailty, we conclude that all fitted models are more adequate

since all their DIC values are smaller. Here, we select the CPHNB model as our working model.

The posterior summary of the parameters except «;’s is presented in the Table 3.27. The
posterior means and 95% credible intervals of «;’s are presented in the Figure 3.73, it is showed that
there are some values of o’s, which are indicated, have different values than others. Thus, we can
repartition the time axis so that we consider just risk parameters (o, as, asg, ass, e, g5, Osa, Oss,
Qgg, (log, (lgg), thus only 11 parameters need to be estimated, which will lower computational time

cost.

We note that expect the intercept, all covariates are not significant when we consider the

(95%) credible interval, but the covariate of "the intervention type SI/UC", "number of cigarettes
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Table 3.25: DIC values for the fitted proposed cure rate models considering different priors for the param-
eters.

Criteria
Model Priors DIC Pd
WNB (i) : U ~ CAR(61), V ~ CAR(02), 01,02 ~ InvGamma(0.01,0.01) 408 4.4
(ii) : 9p ~ MCAR(a, A), a ~ Uniform(0, 1), A ~ Wishart(2, Diag(0.1,0.1)) 408 8.2
(iii) : ¥» ~ MCAR(aq, a2, A), a1, az ~ Uniform(0,1), A ~ Wishart(2, Diag(0.1,0.1)) 401 1.1
(iv) : ¢ ~ MCAR(a, A), a ~ Beta(18,2), A ~ Wishart(2, Diag(0.1,0.1)) 401 1.7
(v) : ¢ ~ MCAR(aq, a2, A), a1, az ~ Beta(18,2), A ~ Wishart(2, Diag(0.1,0.1)) 408 8.6
CWNB (i) :U ~ CAR(6,), V ~ CAR(02), 61,65 ~ InvGamma(0.01,0.01) 420 17.2
(ii) : ¢p ~ MCAR(a, A), a ~ Uniform(0, 1), A ~ Wishart(2, Diag(0.1,0.1)) 418 126
(iii) : ¥ ~ MCAR(aq, a2, A), a1, az ~ Uniform(0, 1), A ~ Wishart(2, Diag(0.1,0.1)) 418 12.4
(iv) : ¢ ~ MCAR(a, A), a ~ Beta(18,2), A ~ Wishart(2, Diag(0.1,0.1)) 417 136
(v) : ¢ ~ MCAR(a1, az, A), a1, az ~ Beta(18,2), A ~ Wishart(2, Diag(0.1,0.1)) 417 13.7
PHNB  (iv) : ¥ ~ MCAR(a, A), a ~ Beta(18,2), A ~ Wishart(2, Diag(0.1,0.1)) 387 5.7
CPHNB  (iv) : ¥ ~ MCAR(a, A), a ~ Beta(18,2), A ~ Wishart(2, Diag(0.1,0.1)) 382 5.3

Table 3.26: DIC values for the fitted cure rate models considering prior (iv) for the parameters.

Criteria
Model "DIC  Pd
Weibull negative binomial cure rate model 401 1.7
Weibull geometric cure rate model 417 127
Weibull promotion time cure model 417 104
Complementary Weibull negative binomial cure rate model 417 13.6
Complementary Weibull geometric cure rate model 418 13.6
Complementary Weibull promotion time cure model 419 124
PH negative binomial cure rate model 387 5.7
PH geometric cure rate model 395 11.6
PH promotion time cure model 404 12.9
Complementary PH negative binomial cure rate model 382 5.3
Complementary PH geometric cure rate model 394 11.7

Complementary PH promotion time cure model 404 13.6
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Table 3.27: Posterior summaries of the parameter of the CPHNB model for the smoking cessation

data.
CPHNB model
Survival Model Cure Rate
Parameter Mean SD 2.5% 97.5% Mean SD 25%  97.5%
Intercept bg -1.7523 1.7780 -5.9692 0.8523
Sex (male=0) f1 0.1661 0.3411 -0.5797 0.7904 by -0.0368 0.7668 -1.3124 1.7907
SI/UC (UC=0) B2 -0.6882 0.4260 -1.6565 0.0501 b, 1.3076 1.0626 -0.3685 3.9041
Cigarettes per day 3 0.0049 0.0157 -0.0269 0.0368 b3 -0.0313 0.0492 -0.1168 0.0646
Duration as smoker (4 -0.0404 0.0222 -0.0800 0.0086 by 0.0518 0.0820 -0.1158 0.2083
n 0.8998  0.0660 0.7347  0.9861
a 13.8192 5.9519 4.2498 26.3673
A 2.6928 0.6559 1.5703  4.1202
Aoo 2.5671  0.6478 1.4625 3.9913
Ao 0.0205 0.4664 -0.8912 0.9630
Y1 0.4098 0.1107 0.2485  0.6690
Yoo 0.4324 0.1265 0.2555 0.7310
Y12/ (S11502) /2 -0.0076  0.1819 -0.3732  0.3508

where A;; is the element of precision matrix A in position (i, j), and ¥;; is the element of matrix £ = A~! in
position (i, j), this X1 is the spatial variance component of U and Xag is the spatial variance component of V',
Y12/(211222) /2 denote their correlation.
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Figure 3.73: Posterior means and credible intervals of «;’s
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smoked per day", and "duration of smoking habit" could be significant since we consider the lower
credible interval. In cure rate the positive value of by implies that individuals with special intervention
have higher probability of quitting smoking than those with usual care and the negative value of bg
means that the individuals with a higher level of cigarette consumption have lower probability of
quitting. But the duration of smoking habit does not have a positive effect on quitting. In the
survival function, this shows that individuals with special intervention have lower hazard rate of
relapse time than those with usual care. On the other hand, the number of cigarettes smoked per
day and the duration of smoking habit have no positive effects on the hazard rate of the relapse, that
is, individuals with a higher level of cigarette consumption per day and longer habit do not have a

higher hazard rate.

The standard deviation, 21{2 of random spatial effects in the survival model is 0.6401, and the
standard deviation, Z%éz of random spatial effects in cure rate is 0.6575 which indicates considerable
heterogeneity among the clusters. Moreover, there is no linear correlation between the spatial effects

U and V.

Figure 3.74 maps the posterior means and standard deviations of frailties U and V' in the
CPHNBCR model. For the frailties U for which the high value represents a high relapse rate, we
note that the northwest regions and some cities of the south region have higher values, that is, the
individuals in these regions have higher relapse rates than those in other areas. By contrast, the
center region (Rochester city) and some northeast cities suggest slightly better than avenge cessation
behavior. The frailties V' show that the eastern region has lower cure probability and the other
regions, which have close probabilities. Note that the posterior standard deviations of frailties U
and V have approximate values. Both maps show that the cities round the central region have lower

values and the city of Waseca has the highest value.

In order to detect possible influential observations in the posterior distribution of the pa-
rameters of CPHNB model, the estimates of 1-divergence measures, which were obtained from the
posterior sample of the parameters of the model, are presented in Figure 3.75. It shows that there
are some possible influential observations which were detected by divergence measures. Here, we
only analyze the individual 138, who was detected as an influential observation by all four divergence
measures. This individual is a women living in Faribault. She received the anti-smoking intervention
and her observed interval is (2.998,3.992). Her average cigarette consumption is 20 per day and

smoking duration is 25 years.

In order to reveal the impact of this possible influential observation on the parameter
estimates and inference, we removed observation 138 and readjusted the model and calculated

the relative variations (RV) for the posterior mean of the parameters. The RV are defined by
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Figure 3.74: Maps of posterior means for frailties U (upper-left panel) and V' (upper-right panel)
and posterior standard derivations for frailties U (lower-left panel) and V' (lower-right panel).



126 CHAPTER 3. SPATIAL FRAILTY IN CURE RATE MODELS

(qV]
H Lo
8 — 138 138
q- —
T © 8
> o S o A
5 S 8 186
o © i 200
X o
o
© 138 o 138
. G.) O
o © QO O
o c A
C < () -
g o S
5 = 9
| N S O
5 © T
o —
>~ 186
o o :
O T T T T T T T T T T
0 50 150 0 50 150
Index Index

Figure 3.75: Estimates of y-divergence measures for CPHNBCR model

RV = (&d’_{lgg} — @d)/ﬁd, for all d, where d is the index of the parameters, ?§d7_{138} denotes the
posterior mean of ¥4 _ {135}, after removel of the set of observations {138}. Note that, in the piecewise
exponential model, the time axis is partitioned by the ordered distinct time points of all observed
interval end points, so we have different and fewer risk parameter o’s after removed observation 138.
In this case we have 176 risk parameters to be estimated. The posterior summaries of the parameters
for the refitted CPHNB model and RV for the posterior mean of the parameters are presented in
Table 3.28. We note that only the parameters b; and o5 have larger RV values, but still close to
the obtained estimates without removing the detected individual. In this case, all parameters of
the CPHNB model are not sensitive under deletion of the outlying observations and we do not have
inferential changes after removing the observations. The DIC values and p, for fitted models are
378 and 6.2, respectively. They are lower than CPHNBCR model for the data without removing the

detected observation.



3.2. NEGATIVE-BINOMIAL CURE RATE MODELS WITH SPATIAL FRAILTIES 127

Table 3.28: Posterior summaries of the parameter of CPHNBCR model and RV adjusted for the smoking cessation
data without detected individual 138.

Survival Model Cure Rate
Parameter Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%
Intercept bo -1.2963 1.424 -4.2843 1.1732
(-0.2602)
Sex (male:O) 51 0.2191 0.3350 -0.5109 0.8301 b1 0.0353 0.6972 -1.0915 1.7375
(-0.3191) (-1.9592)
SI/UC (UC=0) B2 -0.5183 0.3807  -1.3837 0.1839 bo 1.0211 0.8139  -0.4098 3.049
(-0.2469) (-0.2191)
Cigarettes per day B3 0.0020 0.0172  -0.0329 0.0355 bs -0.0448 0.0391 -0.1152  0.0491
(-0.5918) (0.4313)
Duration as smoker (4 -0.0437 0.0189  -0.0777 0.0024 by 0.0633 0.0569 -0.066 0.1611
(0.0817) (0.2220)
n 13.9922 5.6025 4.4720 26.2489
(0.0125)
a 0.9008 0.0654 0.7408 0.9863
(0.0011)
A11 2.6605 0.6542 1.5514 4.1072
(-0.0120)
Aoo 2.5590 0.6345 1.4802 3.9449
(-0.0032)
A12 -0.0170 0.4725 -0.9683 0.8960
(-1.8293)
Y11 0.4149 0.1092 0.2501 0.6753
(0.0126)
Yoo 0.4334 0.1228 0.2589 0.7200
(0.0022)
Y12 0.0067 0.1848 -0.3526 0.3742

(-1.8816)
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3.2.4 Conclusions

In this work, we described an approach to extend the cure rate model (Cancho et al., 2011)
and its complementary model to allow for spatial correlations by including spatial frailty for the
interval-censored data setting. The proposed cure rate models with frailty are very flexible because
they encompass several known cure rate models as its particular cases. We use the MCMC methods
in Bayesian inference approach to fit our models and some Bayesian model comparison criteria were
used. The results from the application show that WNBCR model with frailties has better fit than
CWNBCR model with frailties, but the proportional hazard cure models with frailties (PHNBCR and
CPHNBCR models) stand out better. Comparing the proposed models with models introduced by
Carlin & Banerjee (2003) and Pan et al. (2014), it is shown that the proportional hazard cure models
with frailties are more adequate. Moreover, the proposed models are not sensitive with influential
observations, which can be observed through the influence diagnostic in the simulation study as well
as in the application. The interpretation of the covariates is easy due to the parametrization of the
models considered in the cure rate. Moveover, the MCAR prior can be used even if frailties effects

are low or they are not correlated.



Chapter 4

The Power Series Cure Rate Model for
Spatially Correlated Interval-Censored

Data based on Generalized Extreme

Value Distribution

4.1 Introduction

In this section, we propose a new cure rate survival model for spatially correlated interval-
censored data based on generalized extreme value distribution. This cure rate model is much more
general than the cure models proposed in Sections 3.1 and 3.2. Here, we assume the number of
competing causes related to the occurrence of an event is modeled by an exponential composed by
discrete power series (PS) distribution (Noack, 1950). Therefore, the cure rate model with the PS
distribution is very flexible. Because it can be seen as a general model encompassing several well
known cure models such as, bernoulli (the mixture cure model), geometric, logarithmic, and Poisson
(the promotion time cure model), among others ones, which can be tested for the best fitting on
a straightforwardly way. The MCMC method is used in Bayesian inference approach and some
Bayesian model selection criteria are used for model comparison. Moreover, we conduct an influence
diagnostic in order to detect possible influential or extreme observations that can cause distortions
on the results of the analysis. Finally, the proposed models are applied to analysis of a real data set

on a smoking cessation study.
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4.2 Power Series cure rate Model

Suppose that there are I regions and n; individuals in ith region. We denote by T;; the
random variable for the observed time to event of jth individual in ith region, where j = 1,...,n;
and i =1,...,I. Suppose that the (¢, j)th individual is potentially exposed to M;; latent risk, where
M;; denotes the initial number of competing causes related to the occurrence of an event and assuming
M;; has a class of random variables with discrete distributions proposed by Noack (1950), with the

probability mass function

P(Mij:m):%, m=0,1,2---. (4.1)
where a,, > 0, A(0;;) = X _gambj} and 0;; € (0,s) is chosen such that A(6;;) is finite and and
its first, second and third derivatives are defined. The parameter 6;; is called the power parameter
of the distribution and A(6;;) is the series function. Some important and well-known distributions
belong to this class. For example, if A(6;;) = (1+ 6;;)* and a,, = (:1) with 6,; > 0 and k is positive
integer, then (4.1) defines the binomial distribution. If A(6;;) = exp(6;;) and a,, = =, 6;; > 0 then
(4.1) defines a Poisson distribution. If A(6;;) = (1—6,;)~" and a,, = (m+k 1) k>0and0 < 6; <1,
then (4.1) defines the negative binomial distribution. If A(6;;) = —log(1 — 6;;)/6;; and a,, = Tﬂ’
with 0 < 6;; < 1, then logarithmic distribution is obtained from (4.1).

Let Y,;; for c =1,..., M;; denote the failure times of jth individual in ith region due to the
cth latent risk. We Suppose that, given M;;, the random variables Y,;;’s are mutually independent
with distribution function F'(-) = 1 — S(-). If we assume the presence of any of latent risk will
lead to the occurrence of the event, the time to event of interest can be defined by random variable
Ti; = min{Yj,c=1,---, M;;} for M;; > 1 and T;; = oo if M;; = 0 with P(T}; = oo|M,;; = 0) = 1.
Note that any survival distribution can be considered to represent our uncertainty about the values
of random variables Y.;;,¢ = 1,.... The assumption of independence and identical distribution to
Yiij, Yaij, . . . is surely a strong one, favoring simplicity and analytical tractability at the expense of a
more general formulation, as remarked by Yakovlev and Tsodikov (1996). Despite this shortcoming,

these models have proven to be useful in many real-world applications.

Under this setup, the survival function for the population is given by

& W0 A(0,5(t))
F P(T;; m 8y AWy GG)) ) 4.2
Spopltig) = P(Lig > 1) = Z S(t) A(Qz‘j) Al0y) tij > 0 (4.2)

This situation is also known as first activation scheme, because in this case we assume that the event

of interest occurs when the first possible cause is activated. Here, we called the model in (4.2) as
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power series (PS) cure rate model under first activation. The cure fraction can be obtained from

(4.2) is given by
. A(0) o
Poij = 1. Spop (tis) = AB:y) — ABy) 7
ij v

The corresponding density and hazard functions to (4.2) are given by

Joop(tis) = W@jﬂtij)

and
A'(0::5(t::))
Bopop(tii 2#91' tii 4.
P P( J) A(QZ]S(t”)) Jf( J)7 ( 3)
respectively. Where A'(0;;5(t;;)) = dA(0;;5(t;;))/dt and f(t;;) = —dS(t;;)/dt denotes the (proper)
density function of the time to event Y,;; in (4.2). Note that the f,.,(¢;;) is not proper probability

density function, since Sy, (t;;) is not proper survival function. The hazard function in (4.3) satisfies

the proportional hazards property if, and only if, A(6;;) = exp(6;;).

On the other hand, if we assume the presence of all latent risks will ultimately lead to
the occurrence of the event. Thus, the time to event of interest is defined by random variable
The survival function for the population is given by

A(0)  A(0;F (L))

L.y = P(T.; ) =1 — . ) 4.4
Spop(tw) ( ij > tw) + A(Qij> A(‘gij) ) tw >0 ( )

This situation is known as last activation scheme, because the event of interest only takes place
after all the latent causes have been occurred. We called the model in (4.4) as power series cure
rate model under last activation. The cure fraction can be obtained from (4.4) is given by pg;; =

limy o0 Spop(tij) = ﬁé?}_) > 0, which has the same expression as the cure fraction obtained from (4.2).

The corresponding density and hazard functions to (4.4) are given by

Joop(ti) = W@jﬂtm)

and
By (57) = A0 F (ti))0i f (ti5)
ror(ia) = H0) - A(Gy,) — A6y F(ty)

where A'(0;;F(t;;)) = dA(0;;F (t;;))/dt and f(t;;) = —dS(t;;)/dt denotes the (proper) density func-
tion of the time to event Y,;; in (4.4).

There are another situation where the event of interest occurs when the some of the possible

causes are activated, and given the number of latent causes M;;, the number of activated causes is a
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random variable with the discrete uniform distribution on {1,---, M;;}. This situation is known as

random activation scheme. The survival function for the population is given by

Sﬁ)p(tij) - P(T'U > t”) — A(O) —|— (1 - 1?(2?3)) S(tz])) tij > O (45)

The corresponding density and hazard functions to (4.5) are given by

Jrop(tij) = (1 - j(g?j)) f(tiy)

and

hoop(ti7) = (A(0;5) — A0)) f(ti;) .
PPt A(0) + (A(6i) — A(0))S(t)
Note that under conditions of the models (4.2), (4.4) and (4.5) for any distribution function
F(-), the relationship among the first, last and random activation schemes is ngp(tij) < Sfo o(tij) <

SL (t”) for all tij > 0.

pop

4.3 Special cases of the PS cure rate model under first /last

activation

In this section, we present several important cure model can be obtained directly from our

general formulations given in (4.2) and (4.4).

4.3.1 Mixture cure model

Let A(6;;) = (1 + 6;;), from the general formulation (4.2) or (4.4), we obtain the classical
mixture model (Boag (1949); Berkson & Gage (1952)),
1 Gij

SO tl —
pon(1:s) 1+Hij+1+9ij

S(ti;).

In this case, M;; follows a Bernoulli distribution with parameter 6,;/1+ 6;; and the cure rate is given
by poij = (1 + 6;;)~'. The corresponding density function has expression

(91‘]‘
f(tij)-

ltiy) = 0
fpp( ]) 1_{_0”
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4.3.2 Promotion time cure model and complementary promotion time

cure model

If A(6;;) = exp(;;), from (4.2), then we obtain the promotion time cure model proposed by
Chen et al. (1999),
Spop(tij) = exp{—0;F(t;;)}.

Here, M;; follows the Poisson distribution with parameter 6;;. The cure fraction given by pg;; =

exp{6;;}. The corresponding density function is given by

foop(tij) = O f (ti;) exp{—0:; F'(ti;) }-

Moreover, from the formulation (4.4), we obtain the complementary promotion time cure model.

The corresponding survival function is given by
Spop(tij) =1+ eXp{—Gij} — eXp {_QZ]S(tU)} s
and the corresponding density function is given by

foop(tiz) = 0ij f (ti;) exp{—0;;5(ti;) }-

4.3.3 Geometric cure rate model and complementary geometric cure

rate model

If A(;;) = (1 —6;;)~", then M;; follows the geometric distribution. From the formulation
(4.2) and (4.4), we obtain the geometric and complementary geometric cure models. The correspond-
ing survival functions are given by

Spop(tij) - m7

and
S (tu)_1+(1_9..)_1_—9ij
pop\~v)) — 1) 1 o GZJF(t”)’

respectively. The cure fraction given by pg;; = 1 —0;;. The corresponding density functions are given
by
-2
Foop(tis) = 055 (1 — 05) f (ti5) [1 — 05;S(tij)]
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and

Foop(tiz) = 035(1 = 055) f (i) [1 — 055 F (1)),

respectively.

4.3.4 Logarithmic cure rate model and complementary logarithmic cure

rate model

Let A(6;;) = —log(1 — 6;;)/6,;, then M;; follows the logarithmic distribution, then from the

formulation (4.2) the corresponding survival function is given by

B 10g<1 — QZ]S(tzJ))
Spop( ij) - S<tij> lgg(l — eij)a

and the corresponding density function is given by

B f(t) log(1 — 0;;5(ti;)) 0ij
onlts) = - S(ty) log(1 — 0,) S(ti;) T10,50))

From the formulation (4.4), the survival function of complementary logarithmic cure model has

expression
0:; _ log(1 — 6 F(t;;))

t.)=1—
Spop( z]) log(l _ 91]) F(tz]) log(l - 97,])7

and the corresponding density function is given by

Foonltii) = — f(ti) log(1 — 0i;F(ti;)) 0y
e F(tij>10g(1 - ez‘j) F(tz‘j) 1 - eijF(tij) .

The cure fraction of both models is given by pg;; = —6;;/log(1l — 6,;). Other survival models with

cure fraction can be obtained in a similar way.

As is well known, the cure fraction plays a key role in the survival models with a cure
fraction. Thus, it is important to study the effect of covariates on the cure fraction. Since the cure
fraction is in the 0;;’s function, the effect of covariates can be obtained by associate covariates with
the parameter ¢;;. In this paper, we propose that for the models whose M;; follows Bernoulli or
Poisson distribution, the parameter §;; of an individual (3, j) is associated with covariates x;; and it

is modeled by
0ij = exp{&;;},

and for the models whose M;; follows geometric or logarithmic distribution, the parameter 0;; of an
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individual (i, j) is associated with covariates x;; and it is modeled by a logistic regression

P )
Y T+ exp(&y)’
where §;; is a linear form of covariates, &;; = :I)Z-ij and b is a p;-dimensional vector representing the

effects of covariates on 60;; which associated the cured probability po;;.

The non-negative random variables Y,;;’s can take several distributions. In this work, we
assume they follow proportional hazard (PH) model with the baseline hazard function hy(t|-), the

conditional hazard function and corresponding survival function are given by
h(t]-) = ho(t]-) exp(Ay;) or S(t]) = Sy(t]-)** (4.6)

where \j; = 2,8, zi; and B is a ps-dimensional vector representing the effects of covariates on the
survival model component, Sy(t|-) is the baseline survival function corresponding to ho(t|-). Here,
we specify the baseline function using a logGEV (u, 0, <) distribution given in Section 2.1.3 instead of
the commonly used Weibull or Gamma distribution, where u € R, ¢ > 0 and ¢ € R are the location,
scale and shape parameters respectively. The main reason for choosing this distribution is that the
hazard function of the logGEV distribution can take severely different shapes, so it is extremely

flexible in modeling survival data.

Now, we will introduce the frailties U; and V; to better explain the effect of survival time
of susceptible individuals and on the parameter 6;; which related cured probability through linear

predictor expression

Nij = z;B+ Ui,

&j = m;]b—i—‘/;, forjzl...,ni,izl,...,l.

Here, the frailties U; and V; are spatially correlated across the regions. In this work, we assume
the spatial priors on (U, V') are dependent, and they have multivariate conditionally auto-regressive
extend MCAR prior distribution which was studied by Gelfand and Vounatsou (2003) and Carlin
and Benerjee (2003). The details to extend the MCAR distribution can be found in Section 2.5.3.

4.4 Bayesian Inference

Let Dops = {(Aij, xij, 2ij,055);7 = 1,...,n;,0 = 1,... M} denote the observed data, where

A;j = (tijr,tijr] is the interval during which individual j in cluster ¢ occur the event of interest,
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x;; and z;; are the p;—dimencional and p,—dimencional vectors of covariates, and ¢;; is following
interval censoring indicator: ¢;; = I(¢;jr < 00). For the spacial case in which the survival time is
right-(left-) censored, R;; = +oo(L;; = 0), whereas for exact observations, ¢;;;, = t;jr. Following
Finkelstein(1986), the likelihood function for the general interval-censored cure rate model is given

by

I n;
L{@|Dys, U, V} H H (Sp0p<tijL|90) - SpOp(tin“P»dij SpOp(tile‘P)li%

i=1j=1

L Spop tigrlep,) |
I Sunltnle) (1= 20} (@7)
where ¢ = (b, B, 11, 0,¢). For a Bayesian analysis, we assume the prior densities for parameters are
bj ~ N(0,07) for j = 0,...,(p1 —1); Bj ~ N(0,03) for j = 1,...,po; pu ~ N(O,ai), s ~ N(0,02)
and 0% ~ IG(ay,b,), where IG(a,b) is an inverse-gamma distribution with mean 0/(a — 1) and
variance b?/{(a — 1)*(a — 2)} and oy, 04, 0,, 0, a, and b, are known hyperparameters. In several
areas, especial in medicine, the available prior information is also importance to be considered in the
analysis. Therefore, we specify the hyperparameters to ensure vague prior information following the
analysis results obtained by Carlin & Banerjee (2003), that is let o7 = 1, 03 = 1, 0, = 10?, 02 = 107,
a, = 2 and b, = 1. For the parameters of MCAR distribution a;, as and A, the informative prior
distributions are considered following (Carlin & Banerjee, 2003), that is let a; ~ Beta(18,2), for

i=1,2, and A ~ Wishart(ng, Ag), with ng = 2 and Ay = 0.1I5 where I is a unit matrix of size 2.

To avoid range restrictions on the parameters a; and o2, considering the transformations

v =log(c?) € R and p; = log(a;/(1 — a;)) € R, then, the joint posterior density is given by

exp(v)

2
05

1 ) P1 ) ) p2 ) Iu2 §2
T(9|Deops) < L(p|Dgps) exp {—2 lab_ %bi + o5 zzlﬁi + 2 + = +
1= 1= 14 S

n0—4

1
+ Y [A® (Dw —aW)] ¢ +log|A ® aW| + log |A| — 5tr(AglA)

exp(17p;)
" } T+ cxpl(p) ™

L= exp (%U) =o0.

where ¢ = (b, 8, p1,5,v™!) with v~

This joint posterior density is analytically intractable. So, we based our inference on the
Markov chain Monte Carlo (MCMC) simulation methods. We can observed that the full condi-
tional distributions for parameters b, 8, p, <, 0% and p have not closed forms, thus we will use the
Metropolis-Hastings algorithm to generate a posteriori samples for these parameter. However, the

Gibbs sampler algorithm is used to generate a posteriori sample for the parameter A, because its the

full conditional distribution has a closed form. The full conditional distribution 7(A[¥_ay, Dgbs)) is
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proportional to

m(P|A, a)n(A)
1 1
X |A ® Dy — GW’W exp <—2¢T(DW - GW)’#) |A|(n°_4)/2 exp <—2t7’(A51A)>

1
5 [A[IF/2 oy, <—2tr((Agl + B)A)) , (4.8)

where

p_ |TEUERD)T) ir(RU(RV)T)
| tr(RV(RU)T) tr(RoV(R2V)T)

Thus, the full conditional distribution for A can be taken the Wishart distribution with scala matrix

(Ag' + B)~! and degrees of freedom I + ny.

4.5 Application

We now apply the proposed method to the interval-censored smoking cessation data pre-
sented in Section 1.1. Because of the high computational cost, we implement the MCMC in algo-
rithms C language and the results were analyzed in R language (R Development Core Team (2010))
through the "coda' package (Plummer et al. (2005)). All of our MCMC algoritms ran a total of
100,000 iterations discarding the first 40,000 realizations as burn-in and thinning to every fifth iter-
ation. Posterior results are then based on 7,500 realizations of the Markov chain. Our Meteropolis
acceptance rate for these parameters ranged from 25% to 50%. The convergence was checked using
the Geweke diagnostic which did not indicate lack of convergence. The models are compared using

DIC criterion.

We fitted some particular case of PS cure rate model which described in Section 4.3. The
values of Bayesian criteria for fitted models are presented in Table 4.1, according to the DIC and pd
value the complementary promotion time cure model stand outs as the best models and all of the
cure rate models under last activations are better than the models under first activations. Comparing
the obtained DIC values with the values presented in the paper of Carlin & Banerjee (2003), where
they proposed the mixture cure model with the spatial frailty, assuming Y,;; has Weibull or gamma
distributions. we can conclude that all models in Table 4.1 are more adequate since all our DIC

values are smaller.

Here we select four cure models, which have lower DIC values, as our working models.
There are cure models under the random and last activation. Since the selected cure models are

obtained considering their initial number of competing causes related to the occurrence of event
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Table 4.1: DIC values for the fitted cure rate models

Activation Distribution of M;; Model DIC pd
Random Bernoulli Mixture cure model 388.5 5.03
Poisson Promotion time cure model 393.1 9.69
First Geometric Geometric cure rate model 392.9 8.38
Logarithmic Logarithmic cure rate model 393.8 7.20
Poisson Complementary promotion time cure model 383.5 4.06
Last Geometric Complementary geometric cure rate model  386.8 4.62
Logarithmic Complementary logarithmic cure rate model 390.8 5.95

M;; has Bernoulli, Poisson, geometric, logarithmic distributions, to simply the notation we call the
mixture model, Complementary promotion time cure model, Complementary geometric cure model,
and Complementary logarithmic cure model by the Bernoulli, Poisson, geometric and Logarithmic,
respectively. The posterior summaries of the parameter for the selected models are presented in the
Table 4.2. We note that the signs of the regression coefficients bintercepts Dsexs Dtreatments Dconsumptions
bauration, Bsex and Pireatment are the same for all selected models. However, the sign of coefficients
Beonsumption aNd Squration are negative for mixture model and positive for other three models. The
mean of the parameters u, 02, <, a1, as, A1, Ay and A have close values for all models. Note
that the S parameters are related to the cure fraction, thus the interpolation of cure rate can be
obtained. The data shows that women smokers have lower probability of quitting than men smokers,
individuals with special intervention have higher probability of quitting smoking than those with
usual care and the individuals with a higher level of cigarette consumption have lower probability of
quitting than others. On the other hand, we also note that women smokers have high hazard rate
of relapse time than the men and individuals with special intervention have lower hazard rate than
those with usual care. Here, the cigarette consumption has little effect on hazard rate of relapse time
and the duration of smoking habit has little effect on not only on hazard rate of relapse time but

also on probability of quitting.

In order to detect possible influential observations in the posterior distribution of the param-
eters of the fitted models, the estimates of K-L divergence and L; distance (two particular cases of
y-divergence measures), which were obtained from the posteriori sample of the models’parameters,
are presented in Figure 4.1. We note that the individual 14 was detected by both divergence measures
for the complementary promotion time cure model and no influential individual was detected in the
other three models. The detected individual is a male patient who had a 32-year smoking habit,

consumed 60 cigarettes per day, lived in Rochester city and relapsed during the treatment.



Table 4.2: Posterior summaries of the parameter of the selected models for the smoking cessation data.

Bernoulli Poisson Geometric Logarithmic
Parameter Mean SD  2.50% 97.50% | Mean ~ SD  2.50% 97.50% | Mean ~ SD  2.50% 97.50% | Mean ~ SD  2.50% 97.50%
Dintercept 0.395 0.839 -1.195 2141 | 0.259 0.744 -1.246 1.693 | 0.232 0.808 -1.393 1.838 | 0.507 0.849 -1.182 2.156
Dsex 0.238 0.791 -1.264 1.880 | 0.082 0.512 -0.998 1.079 | 0.072 0.591 -1.154 1.220 | 0.192 0.750 -1.337 1.711
Direatmens ~ -0.242  0.875 -1.885  1.558 |-0.500 0.536 -1.620 0.497 |-0.484 0.612 -1.730 0.732 |-0.328 0.787 -1.789  1.348
Deonsumption ~ 0-047  0.045 -0.039  0.134 | 0.030 0.032 -0.042 0.080 | 0.036 0.038 -0.044 0.103 | 0.052 0.043 -0.037 0.133
Bduration -0.001  0.051 -0.088 0.104 |-0.024 0.046 -0.095 0.078 |-0.016 0.051 -0.096 0.098 |-0.004 0.052 -0.084 0.113
Bsex 0.361 0.375 -0.371 1.138 | 0.371 0.308 -0.198 1.041 | 0.389 0.301 -0.175 1.025 | 0.433 0.281 -0.084 1.018
Bureatment  -0.237 0429 -0.973  0.746 | -0.267 0.338 -0.889  0.466 |-0.209 0.315 -0.773 0.473 |-0.165 0.296 -0.701  0.462
Beonsumption  -0.004  0.021 -0.052  0.033 | 0.002 0.019 -0.039 0.035 | 0.005 0.018 -0.037 0.033 | 0.009 0.016 -0.029 0.035
Bawation  -0.014  0.027 -0.054 0.051 | 0.005 0.021 -0.029 0.055 | 0.009 0.020 -0.024 0.056 | 0.007 0.019 -0.023 0.052
I 0.751 0.199 0463 1.288 | 0.676 0.185 0.382 1.118 | 0.657 0.176 0.377 1.078 | 0.653 0.175 0.384  1.071
o’ 0.841 0363 0429 1.835 | 0.786 0.307 0.410 1.589 | 0.741 0.288 0.397 1475 | 0.711 0.266 0.390  1.410
S 1.379  0.668 0.348 2981 | 1.580 0.852 0.375 3.704 | 1.456 0.776 0.278 3.337 | 1.318 0.689 0.268  2.960
ay 0.901 0.065 0.744 0987 | 0.900 0.064 0.744 0.987 | 0.900 0.064 0.743 0.986 | 0.899 0.067 0.739  0.987
as 0.900 0.066 0.742  0.987 | 0.900 0.065 0.740 0.987 | 0.901 0.064 0.746 0.987 | 0.900 0.065 0.738  0.987
A 2.683 0.643 1560 4.057 | 2.699 0.657 1.581 4.149 | 2.700 0.642 1.584 4.124 | 2.668 0.651 1.555 4.102
Az 2.556 0.638 1.473  3.970 | 2.567 0.638 1.500 3.974 | 2.556 0.623 1.505 3.912 | 2575 0.642 1.495  3.964
Ao 0.022 0470 -0.747 1.085 | 0.038 0.475 -0.744 1.103 | 0.043 0.471 -0.737 1.081 | 0.037 0.470 -0.735  1.089
S 0410 0.113 0.263  0.689 | 0.409 0.113 0.259  0.695 | 0.407 0.109 0.258 0.683 | 0.413 0.114 0.262  0.698
Yoo 0433 0123 0.256 0.732 | 0432 0.125 0256 0.713 | 0432 0.121 0260 0.724 | 0431 0.131 0257 0.717
N 0.006 0.182 -0.369 0.346 |-0.001 0.182 -0.365 0.334 |-0.003 0.181 -0.371 0.337 | 0.000 0.182 -0.376 0.344

where A;; is the element of precision matrix A in position (4, j), and ¥;; is the element of matrix ¥ = A~! in position (7, ), this 31, is the spatial
variance component of U and Yy, is the spatial variance component of V', 315/ (211222)1/ 2 denote their correlation.
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Figure 4.1: Index plots of K-L and L; divergence measures from the fitted cure models.

To reveal the impact of these possible influential observations on the parameter estimates
and inference, we removed these observations and refitted the model. We also calculated the relative
variations (RV) for the posterior mean of the parameters, defined by RV = (led’,{lz;} —D4) /94 x 100,
for all d, where d is the index of the parameters, ﬁd,f{72,151} denotes the posterior mean of ¥ 143,
after the set of observations {14} has been removed. The posterior summaries of the parameters for
the refitted model and RV for the posterior mean of the parameters are presented in Table 4.3. We

E .
note that RV of the the parameters beonsumption, Ddurations Sconsumptions Bduration and \/ﬁ have higher

values. However, these parameters are not sensitive since their posterior means are still near zero.
The estimated standard deviation E}{Q of random spatial effects in the survival model is 0.640, and
the estimated standard deviation 2;42 of random spatial effects in cure rate is 0.658 which indicate
there is considerable heterogeneity among the clusters. Moreover, there are no correlations between

the spatial effects U and V.

Figure 4.2 maps the posterior means and standard deviations of frailties U and V in the
complementary promotion time cure model. For the frailties U for which the high value indicates
a high relapse rate, we can note that the north regions and some cities of the south region have

higher values, that is, the individuals in these regions have higher relapse rates than the others.
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Table 4.3: Posterior summaries of the parameter of the complementary promotion time cure model
without detected individual 14.

Mean RV  SD  2.50% 97.50%

Dintercept 0.136  -47 0.747 -1.346 1.616
Deox 0.082 -1 0.458 -0.836 0.982
bireatment  -0.397 =21 0.466 -1.370  0.476
beonsumption 0.044 45 0.032 -0.041  0.089
Dduration -0.038 61 0.042 -0.100 0.068
Beex 0435 17 0.304 -0.133 1.078
Bueatment  -0.261 -2 0.321 -0.840 0.417
Beonsumption -0.006  -381  0.021 -0.047  0.030
Bauration 0.012 156 0.023 -0.027 0.061

I 0.699 3 0233 0396 1.244
o? 0.797 1 0419 0409 1.705
S 1.454 -8 0809 0.317 3.444
ay 0.900 0 0.065 0.740 0.987
a 0.899 0 0.066 0.736  0.987
Ay 2.698 0 0.637 1.611 4.058
Ao 2.573 0 0630 1516 3.971
Ao 0.038 0 0466 -0.742 1.042
Y11 0.407 0 0109 0.262 0.672
Yoo 0.429 0 0.121 0.257 0.707
\/% -0.001 136 0.179 -0.360 0.344

In contrast, the center region (Rochester city) and some northeast cities show slightly better than
avenge cessation behavior, which also can be observed by the frailties V' | for which the high value
indicates lower cure probability. In general, all center regions have close cure probabilities. The
posterior standard deviations of frailties U and V also have close values. Both maps show that the
cities round the center regions have lower values and Waseca has the highest value. The DIC value
for the fitted models is 382.24, which is lower than in the model for the data without removing the

detected observation.

Figure 4.3 presented the survival functions under the Complementary Promotion time cure
model stratified by treatments and sex for patients who residence in Rochester city with duration
of smoking habit equal to 20, 25 and 33 years, and cigarette consumption equal to 25, 31 and 35
cigarettes per day, which correspond to the first, second and third quantiles of duration of smoking
habit and cigarette consumption. The surviving probability decreases more rapidly for patients
received the usual care than special intervention; the surviving probability of the female patients is
lower than male patients under the same condition, but we note that the surviving probability of the
female patients have special care is close the male patients only received usual care; the surviving
probability of the female patients, who have high level of duration of smoking habit and cigarette

consumption (Duration = 33 and Cigarette = 35), just a bit lower than the patients who have low
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Figure 4.2: Maps of posterior means for frailties U (upper-left panel) and V (upper-right panel) and
posterior standard derivations for frailties U (lower-left panel) and V (lower-right panel).

and median levels of duration of smoking habit and cigarette consumption; the surviving probability

of the male patients does not influence by duration of smoking habit and cigarette consumption.
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Figure 4.3: Surviving function under the complementary promotion time cure model stratified by
treatments and sex for patients who residence in Rochester city with three levels of duration of
smoking habit and cigarette consumption.

Figure 4.3 presents the survival functions under the complementary promotion time cure

model stratified by treatments and sex for patients residing in Rochester with durations of smoking
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habit equal to 20, 25 and 33 years, and daily cigarette consumption equal to 25, 31 and 35, which
correspond to the first, second and third quantiles of duration of smoking habit and cigarette con-
sumption. The survival probability decreases more rapidly for patients that received the usual care
than those receiving special intervention. Also, the survival probability of the female patients is
lower than males under the same condition, but we note that the survival probability of the female
patients submitted to special care is close to the male patients who only received usual care; the sur-
vival probability of the female patients who had long smoking habit and high cigarette consumption
(Duration = 33 and Cigarettes = 35) is just a bit lower than the patients who had low and medium
levels of duration and cigarette consumption; and the survival probability of male patients was not

influenced by duration of smoking habit and cigarette consumption.
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Figure 4.4: Surviving function under the complementary promotion time cure model stratified by
cigarette consumption and sex for patients who residence in Rochester city with duration of smoking
habit equal 12, 30 and 46 years.

4.6 Conclusions

In this work, we propose a PS cure rate model for spatially correlated interval-censored
data based on the generalized extreme value distribution. The proposed model is very flexible and
generalizes the Bernoulli, geometric, Poisson, and logarithm models. Furthermore, it can be tested
for best fit in a straightforward way. We use MCMC methods with Bayesian inference for our models
and the Bayesian comparison criterion for model comparison. The results of the application show
that the proposed model has better fit than the WNBCR and CWNBCR models. Our model also
performs better than the PHNBCR and CPHNBCR models, and also has the advantage of fewer
parameters. Moreover, we also conducted a Bayesian case deletion influence diagnosis to examine
outlying and influential observations in the application, observing that the proposed model is not

sensitive to influential observations.
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Chapter 5

D-Measure: A Bayesian model selection

criterion for survival data

5.1 Introduction

Model assessment and comparison is of extreme importance in statistical analysis. Focus-
ing on Bayesian model assessment and comparison, various methods have been proposed in recent
decades, particularly relying on Bayes factors, boosted by significant advances in computer technol-
ogy. However, it is well known that proper prior distributions are needed for using these methods.
Later, Spiegelhalter et al. (2002) proposed the deviance information criterion (DIC), which is one of
most used Bayesian criteria for the model comparison. Several recent papers use DIC for comparing
models, including the survival models which consider random effects or frailties (Banerjee & Carlin,
2004; Carvalho Lopes & Bolfarine, 2012; Pan et al., 2014; Li Dan & Dey, 2015),Carvalho Lopes &
Bolfarine (2012), Pan et al. (2014), Li Dan & Dey (2015), just to name a few). It is well known that,
in order to ensure the consistency of parameters, it is needed first integrated out the random effects
or frailties, and then compute the criterion (Ando, 2007). However, a numerical integration always
gives unstable results, i.e, different values of a criterion may be obtained by considering different

numerical iteration methods.

Another alternative is to use criteria which are constructed from the posterior predictive
distribution. Let y = (y1,...,¥yn) denotes the observed data from an experiment, with the joint
sampling density of the y;’s denoted by p(y|€2), where €2 is a vector of indexing parameters. Let
z = (21,...,2,) denotes the future values of an imagined replicated experiment, i.e, z is a future
response vector with the same sampling density of y|Q2. A good model should make predictions close to

what has been observed for an identical experiment. With this idea, Ibrahim & Laud (1994) proposed
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L measure as the expected squared Euclidean distance between y and z, L = E[(z —y)'(z — y)],
where the expectation is taken with respect to the posterior predictive distribution of z|y, p(z|y) =
I p(z|)p(Q)y)dg. Afterwards, Ibrahim et al. (2001b) extended this measure to a general Bayesian
criterion for modelling assessment. Recently, Gu et al. (2011) proposed the M-measure for a right
censoring data, by using counting process of number of deaths over time to be compared with the

number of observed deaths over time, in order to define the measure of model adequacy.

In this work we propose a new model assessment and comparison criteria based on the well
known survival function, which plays a key role in the survival analysis. Such criterion is a distance
based Bayesian model selection criterion for survival data, hereafter the D-measure. The D-measure
is constructed from the posterior predictive distribution of the data, it can be viewed as a Bayesian
goodness-of-fit statistic, which measures the performance of a model by a combination of how close
its predictions are from the observed data. It can be used for all kind of survival data sets, such
as uncensored data, right censored data and interval censored data. Moreover, it is an alternative

criterion which can be used to compare cure rate models in presence of random effects or frailties.

5.2 D-measure

Let ti,...,t, be random samples from the density function f(¢|€2), where € is a vector of
indexing parameters and assuming that €2 has a prior distribution 7(€2). In the context of survival
analysis, ¢ represents the lifetime or time to failure of an individual, usually, it is assumed to be
continuous. In this thesis, we denote the observed data by D and we allow the ¢;’s to be fully
observed, right censored, or interval censored. In the right censored case, t; may be a failure time
or a censored time. In the interval censored case, we only observe the interval (L;, R;] in which ¢;

occurred. Now, let ¢y,,...,t,, be random samples from the posterior predictive distribution
7t D) = [ J(t@)m(QID)dS2, (5.1)

where f(t;,|€2) is the sampling density for ith subject conditional upon €2 being known and 7(£2|D)

is the posterior distribution of €2. The D-measure for model m, is defined as

D= Erp | [ 150 - 5,0 It =E[[T1 %0 - S0 a1 D], 62

where 7 > 0, Sy(t) and S,(t) denote the (smoothing) non-parametric survival function from observed
data D and from the posterior predicted samples, respectively. || || denotes the norm, thus, different

norms can be used in the formulation, such as the absolute value, the square and the maximum
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value. Smaller values of D-measure indicate better fit to the observed data as well as more precise

predictive fit for the model.

The proposed D-measure can be computed with a two-step procedure. First, we sample the
posterior samples {;}¢_, from the posterior density 7(€2| D) for the model m. Second, we simulate
the samples from the predictive distribution. Note that, given the posterior samples {Q(j)}jG:l from
(2 D), tip;) can be sampled from f(t;,|Q = Q(;)) fori =1,...,nand j = 1,...,G, that is, we
obtained the samples {t,-p(j)}le from the posterior predictive distribution of the ith subject, via
7(tip| D). The procedures to compute the proposed measure for each kind of data (uncensored data,

right censoring data and interval censoring data) are presented as follow.

5.2.1 Uncensored data

For uncensored data, the proposed measure given in (5.2) is obtained fixing 7 = oo, Sy(t)
and S’p(t) are the empiric survival function from observed data D and from the posterior predicted
samples, respectively. Given the posterior samples €2(;y, the sampling of #,(;) can be easily done. One
of the most used methods is using the inverse cumulative distribution function (quantile function).

The numerical approximation of D-measure given in (5.2)is given by

1 & . .
D, =~ Pl Z Z | So(ag) — Spilag) | Ay,
j=1g¢=1
where 0 = ag < a; < ... < ag = oo are all distinct points and Ay, = az41 — ay.

5.2.2 Right censored data

For a right censored data, let D; = (y;, §;, ;) denotes the observed data for the ith individual,
where x; is a covariate vector, y; = min(7;, C;) is the observed failure time, ¢; = I[T; < C;] is the
censoring indicator, in which 7; is the non-informative random failure time and C; is the non-
informative random censoring time. In this case, because the censoring indicator §; is also part of
the observed data, the closeness between the observed Y; = min(7;, C;) and the predicted Yj, is not
appropriated. Thus, the proposed measure for a right censoring data for model m, which we denoted

by D] . is defined as

Dy, = E | ["1 So(t) = $,(t) | dtlD. Fo = Forcn| (5.3)
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where 7 = max;{y;}, So(t) and S, (t) denote the the Kaplan-Meier estimator of the survival function
from observed data D and from the posterior predicted samples, respectively. The distribution of
censoring variable C} is assumed to be known as Fc kM, the Kaplan-Meier estimator of the cumulative

distribution function of C' from D.

Given the posterior samples {€(;}%, from the posterior density 7(€|D) for the model m,
the {yip;, dip;} need to be simulated from the predictive distribution (Y;,,d;,) assuming the distri-
bution of C' to be Egga. The algorithm of generating the samples {Yipj, 0ip; } for j = 1...,G is

presented as follow:

Step (i): Sample each C;,; from the Kaplan-Meier cumulative density function Fogenr

Step (ii): Sample 6;,; ~ Bernulli(F(C;y;)) where F(Cy,;) = P(T;, < Cyp;) is the c.d.f. of traditional

survival model or cure rate model and set y;,; = Cip; if 0;p; = 0;

Step (iii): If ,,; = 1, sample U;; ~ U(0,1) and set y;,; = F. ' (Uy;), where F.(y) = F(T;, < y|d;p =

C

1) = F(y)/F(Ciy;) for 0 <y < Cypy, if F(+) is c.d.f. of cure rate model; else let Fi.(y) = F(y).

Once the posterior predictive samples are obtained, the numerical approximation of D-

measure given in (5.3) are given by

1 G T . .
Dy, ~ a ZZ | Solaq) — Spjlag) | Ag,
j=1q=1
where 0 = ap < a1 < ... < ay, = 7 are distinct points where Sy(a,) and S,;(a,) have jumps and

Ay = ag41 —a, and ar, is defined as the maximum observed failure time of the observed data and

the posterior predictive sample for each j.

5.2.3 Interval censored data

For interval censored data, unlike right censored data, the exact failure time can not be
observed. In the literature, there are two types of interval censored data: Case 1 - interval censored

data (or current status data), and Case 2 - interval censored data.

For the Case 1 of interval censored data, the only knowledge about the exact failure time
is whether it has occurred before observed time or not. Let T;’s denote the unobservable failure
times and assume that the observed time have the form {(L;,d;),i = 1,---,n}, where L; denotes
the observation time for subject ¢ independent of T; and §; = I(T; < L;). Thus, ¢; = 1 indicates that

the event of interest occurred before the observed time L; and §; = 0 indicates the event of interest
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maybe occur after observed time L; (right censored) or never occur the event (cured). For the Case 2
of interval censored data, the time intervals (L;, R;] are observed, where 0 < L; < R; < 00. R; < 00
indicates that the event of interest can occur in any time of the observed time interval (L;, R;] and
R; = oo indicates a right censoring or cure. The interval censoring indicator is defined as §; = I(R; <
00). For the special case in which the survival time is right-(left-) censored, R; = oo(L; = 0), whereas

for exact observations, L; = R;.

Let C denotes the censoring variables, and D; = (I;,,;, ;) and D; = ((l;, ], 9;, @;) denote
the observed data for the ith individual for "case 1" interval censoring data and the "case 2" interval
censoring data, respectively. The D measure for the interval censoring data for model m is defined
as

Dl —E UO | So(t) = S,(t) || dt|D, Fo = Frenre] (5.4)

where 7 = max;{[;} for the Case 1 (interval censoring data) and 7 = max;{l;, 7;;7; < oo} for the
Case 2 (interval censoring data); So(t) and S,(t) are the nonparametric maximum likelihood estimator
(NPMLE) of a survival function for the observed data and the generated sample, respectively. For
Case 1, the NPMLE of a survival function has a close form, which can be obtained by using the max-
min formula for isotonic regression (more detail see Barlow et al. (1972); Hérdle (1989)). For Case 2,
there are some algorithms which were proposed in the literature. The first one is the self-consistency
algorithm that was developed by Turnbull (1976). It can be regarded as an application of the EM
algorithm (Dempster et al., 1977). Lately, Groeneboom (1995) introduced the ICM algorithms,
which was then modified by Jongbloed (1998). At the same period, Wellner & Zhan (1997) proposed
a hybrid algorithm, which is known as the EM-ICM algorithm. It basically combines the self-
consistency algorithm and the ICM algorithm. The distribution of censoring variable is assumed
to be known as F wm+, the Kaplan-Meier estimator of the cumulative distribution function of the
censoring variable from the data D* where D* is obtained by transforming the interval censoring
data D to the right censoring data assuming that the midpoint of intervals are the exact failure
times, i.e., {t; ; t; =0.5l;,0; =1,i=1--- ,n}and {t;; t; =0.5(r; — ;) +1;,0;, =1,i=1--- n} for

Cases 1 and 2, respectively.

First we present the algorithm for generating the samples (l;;,d;p;), 7 = 1...,G, for the

Case 1 of interval censoring data as follows:

Step (i): Sample each C;,; from the Kaplan-Meier cumulative density function Freare:

Step (ii): Sample d;,; ~ Bernulli(F(C;,;)) where F(Cy;) = P(T;, < Cyp;) is the (population) c.d.f.
and set lipj = Cipj if 5ipj = O,

Step (iii): If 0,,; = 1, sample U;; ~ U(0,1) and set t;,; = F.*(Uy;), where F.(y) = F(T;, < y|d;p =

c
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1) = F(y)/F(Ciy;) for 0 <y < Cyyy, if F(+) is c.d.f. of cure rate model; else let Fi.(y) = F(y);

Step (vi): Now, generate [;; from distribution U(0, l(y)), where [,y = max{l;;6; =1,i =1,...,n}.

Then, l;,; is chosen as that satisfying ¢;,; < l;;.

Given the posterior predictive samples, the the numerical approximation of M-measure given

in (5.4) is obtained as

; 1 G T; . .
D, = q Z | 0(%) - Spj(aq) | Ay,
j=1g=1
where 0 = ap < a; < ... < ay, = 7 are the unique ordered elements of {0,l;,lip;, ; di,0sp =

land i,ip =1,..., N}. They are distinct points with the length A, = a, — a,—1, for ¢ =1,...,7,,
and ay; is defined as the maximum finite observed time of the observed data and the posterior

predictive sample for each j.

For the Case 2 of interval censoring data, the algorithm for generating the samples (i, Tipjs dipj )

for j=1...,G, is presented as follows:

Step (i): Sample each C,; from the Kaplan-Meier cumulative density function Fyenge:

Step (ii): Sample d;,; ~ Bernulli(F(C;,;)) where F(Cy;) = P(T;, < Cyy;) is the (population) c.d.f.

and set [;,; = Cyp; and 7, = 00 if ; = 0;

Step (iii): If 0,,; = 1, sample U;; ~ U(0, 1) and set y;,; = F. ' (Uy;), where F.(y) = F(T;, < y|dip =

c

1) = F(y)/F(Cip;) for 0 <y < Cyp,, if F(+) is c.d.f. of cure rate model; else let F.(y) = F(y);

Step (vi): Now, create len,; from distribution U(dmin, dmax) and s;; from U(0,0.511)). Then, from
(0,4;5], (Lij, sij+lengjl, ..., (sij+d xlen;;, 00|, d =1,2,. .., (Lipj, ipj) is chosen as that satisfying
lipj < tipj < Tip;, Where [(1) is the positive minimum observed value, dp,, is the minimum finite
length and dyay is the maximum finite length of observed data. (i.e, i, = min{d;,i =1...,n},
dmax = max{d;,i = 1...,n;d; < oo}, where d; = r; — [; denotes the length of the time interval

for the ith subject of the observed data.)

Given the posterior predictive samples, the numerical approximation of M-measure given in

(5.4) is obtained by

180
I & &
D, = Iel Z | Solag) — Spjlag) | Ag,
j=1g=1
where 0 = ap < a; < ... < ay; = 7 are the unique ordered elements of {0,675, Lipgy Tipj 3 Tin Tip <

oo and ¢,ip = 1,..., N}. They are distinct points with the length A, = a, — a,—1, for ¢ =1,..., 7,
and ay; is defined as the maximum finite observed time of the observed data and the posterior

predictive sample for each j.
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5.3 Simulation

In this section, we consider some simulation studies to compare models using the proposed
D-measure for three most used parametric models in survival analysis: survival models with right
censoring, survival models with with right censoring and cure fraction, and cure rate models with

interval censoring.

5.3.1 Survival model with right censored data

In order to generate survival data with right censoring, we consider the Weibull and Gamma
distributions, which are two of the most used models in survival analysis. Then, the DIC and

proposed D-measure are calculated for comparison. Therefore, we first generate the current data y;

from the Weibull model,
p(yilo, Ay) = ¥ Lexp{\; — ¥ exp(\)}, (5.5)

where \; = By + fixs, @ = 1,--- ,n, n denotes the sample size, « = 2, 5y = 1 and $; = —1, the
covariates x; are i.i.d. Bernulli(0.5) variates and the observations are randomly right censored with
censoring times ¢; = 0.75 x y;. The prior distributions for the parameters are o ~ N(0,10%)/(g ),
By ~ N(0,10%) and B ~ N(0,10%). Here N(u,0?)I(p denotes the truncated normal distribution,
which is the probability distribution of a normally distributed random variable whose value is bounded

in (a,b).

We also generate the data y; from the Gamma model,

ykil y
pulk 00 = g o0 (51) (5.6)

where 0; = 85 + Bz, i = 1,---,n, k = 3.8, f; = —1.8 and 7 = 0.5, and the observations
are randomly right censored with censoring times ¢; = 0.75 x y;. The prior distributions for the

parameters are k* ~ N(0,10%)](g ), 85 ~ N(0,10%) and 8; ~ N(0,10%).

After generating the data sets, both models are used to be fitted by the generated date sets
and the DIC and the D-measure are computed. In order to verify the performance of the D-measure,
we calculated the percentage of samples in which the adjusted model was indicated as the best model
according to the DIC and D-measure. Hereafter we call this percentage as correct rate. The different
censoring levels and sample sizes are considered in the study and 1,000 replicates are conducted in
each configuration. The results of simulations are presented in the Table 5.1. We observe that the

correct rates obtained by proposed the D-measure are higher than DIC in the most parts of cases.
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Although there are some cases that the correct rates of D-measure are lower than DIC, they have
approximately the same values. On the other hand, considering the censoring level of 60% and the
sample size of n = 50, the correct rates of the D-measure are much higher than the DIC ones.

Table 5.1: Percentage of samples in which the adjusted survival model was indicated as the best
model according to the criteria for the right censoring data sets

True Model Censoring level Sample Size Criteria
D-measure
n DIC Abs.  Square  Max
50 76.2% 78.9% T71.3%  70.6%
30% 100 85.8% 88.2% 752% T7.1%
. 200 94.9% 97.6% 84.0% 85.7%
Weibull 50 738% 97.0% 95.0% 83.8%
60% 100 87.9% 98.9% 97.5% 91.0%
200 95.7% 99.9% 99.4% 96.1%
50 64.9% 72.4% 80.6% 94.7%
30% 100 70.8% 78.5% 91.2% 98.8%
200 85.8% 87.0% 97.8% 99.9%
Gamma 50 555% 44.1% 49.1% 70.2%
60% 100 59.5% 52.1% 61.7% 83.4%
200 69.1% 60.9% 76.5% 91.5%

5.3.2 Cure rate model with right censored data

For right censored data in presence of cure rate, we consider the cure rate proportional odds
model (CRPO model) studied by Gu et al. (2011). Note that this model can be characterized by the
latent factors model of Cooner et al. (2007) with a geometric distribution for the number of latent

factors and it may be derived in a context in which relapse occurs in patients with cancer.

Let M; denotes the number of carcinogenic cells in the beginning of a treatment for the
ith individual, and assume that M; has a Geometric distribution with the mean 6. Let Y for
j = 1,..., M; denotes the failure time due to the jth latent cause, that is, the time until jth
carcinogenic cell produces a detectable cancer. Supposing that given M;, the random variables
Y; are assumed to be independent and identically distributed (i.i.d.) with c.d.f. F(-) =1 — S(-)
and the presence of any of latent risk (i.e., M; > 1) will ultimately lead to the occurrence of the
event. Thus, the time to event of interest (time to detect cancer) is defined by the random variable
T =min{Y;,j=0,---, M;}, where P(Yy = 0o) = 1. The survival function for the population is given
by Spop(t) = [1 4 OF(t)] " and its cure fraction can be obtained by py = limy_,e0 Spop(t) = (1 +8) 7.
As it is well known, the cure fraction plays a key role in the survival models with a cure fraction.

Thus, we consider the parametrization of the model in terns of cure fraction. Therefore, the survival
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function of the CRPO model can be written as

Spop(t) = [L+ (g = DF()] .

The non-negative random variables Y}’s can have various different distributions, here we assume that
they are Weibull and Gamma distributed, denoting the cure rate models as CRPO-W and CRPO-G,
respectively. Similarly to the simulation study for the data set with right censoring, we generate the

current data from the CRPO-W model,
-1
Spop(ti) = {1+ (p5" = 1) [1 = exp(—t& exp(\)]} (5.7)

where po; = exp{fo + S1x:}/(1 + exp{fo + S1x;}), i =1,--- ;n,n, a =2 A= -2, = —0.5 and
f1 = —2 and the covariates x; are i.i.d. Bernoulli(0.5) variates. Here, the right censoring observations
are generated from a uniform distribution U(0,c), where ¢ = 30 for the low censoring level (data
with 30% censoring observations) and ¢ = 7 for the high censoring level (data with 60% censoring
observations). The prior distributions for the parameters are assumed to be o ~ N(0,10%)/(g o),

A~ N(0,10?), By ~ N(0,10?) and 3; ~ N(0,10?).

For the comparison purpose, we generate the data sets from the CRPO-G model,

Spop(ti) = {1 + (poi — 1) [le)’y (k 2)] }_1 , (5.8)

where 7 (k, t/0) is the lower incomplete gamma function, po; = exp{fo + f12;}/(1 + exp{Bo + f1x:}),
i=1,-- nn k=2 6=0.>5 0y =—1and $; = 1. Here, the right censoring observations
are generated from a uniform distribution U(0,c), where ¢ = 30 for the low censoring level (data
with 30% censoring observations) and ¢ = 7 for the high censoring level (data with 60% censoring
observations). The prior distributions for the parameters are assumed to be k ~ N(0, 102)1(0700),
6 ~ N(0,10%)I(0.00), Bo ~ N(0,10%) and f; ~ N(0,10?). The Percentage of samples in which the
adjusted cure rate model was indicated as the best model according to the criteria for the right
censoring data sets in presence of a cure fraction are presented in the Table 5.2. We note that the
correct rates obtained for the D-measure are higher than the DIC ones in most of the cases. In
some cases the correct rates of D-measure are lower than the DIC, but they are almost the same
values. The correct rates of the D-measure are much higher than DIC for the data sets which were
generated from the CRPO-W model with 60% censoring observations. Moreover, we observe that

the D-measure outperforms the DIC for small sample sizes.
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Table 5.2: Percentage of samples in which the adjusted cure rate model was indicated as the best
model according to the criteria for the right censoring data sets

True Model Censoring level Sample Size Criteria
D-measure
n DIC abs square  1max
50 56.0% 82.0% 80.2% 54.1%
30% 100 783% 80.3% T78.7% 75.1%
200 89.9% 91.9% 88.5% 81.4%
CRPO-W 50 175% 56.6% 48.3% 31.5%
60% 100 19.0% 66.6% 60.6% 45.2%
200 19.3% 76.8% 75.2% 69.5%
50 35.5% 54.6% 49.7% 60.4%
30% 100 41.5% 56.3% 53.5% 64.7%
200 61.3% 61.3% 60.2% 66.2%
CRPO-G 50 62.6% 66.4% 69.3% 72.7%
60% 100 66.8% 60.0% 61.2% 70.0%
200 71.4% 63.5% 64.3% 71.8%

5.3.3 Cure rate model with interval censored data

In this study, we consider a flexible cure rate model proposed by Cancho et al. (2011), which
encompasses as a special case three of most used cure rate models: the Mixture model (Berkson &

Gage, 1952), the promotion time cure model (Chen et al., 1999) and CRPO model.

Let M; be the latent risk, which denote the initial number of competing causes related to
the occurrence of an event and assume that M; has a Negative Binomial (NB) distribution with

parameters 6 and 1 (Piegorsch, 1990), with the probability mass function

P(M; =m) =

L(n~! +m)< 1o

-1/ —

where 6 > 0, n > —1/0, so that E(M) = 0 and Var(M) = 0(1+nf). Here, n is a dispersion
parameter (Saha & Paul, 2005), values of n > 0 (n < 0) corresponds to over (under) dispersion
relative to the Poisson distribution. Particularly, when n — 0, the NB approaches to the Poisson

distribution and the geometric distribution with parameter 1/(1 + 6) can be obtained when n = 1.

Let Y for j = 1,..., M;, denotes the failure time due to the jth latent cause, and assume
that, given M;, the random variables Y; are i.i.d. with c.d.f. F(-) = 1—S(-) and the presence of any of
latent risk (i.e., M; > 1) will ultimately lead to the occurrence of the event. Thus, the time to event of
interest (time to detect cancer) is defined by the random variable 7' = min{Y}, j = 0,--- , M;}, where
—1/n

P(Yy = oo) = 1. The survival function for the population is given by S,u(t) = [1 + n0F(t)]

The cure fraction has expression py = (1 + 6)~'/". Similarly, considering the parametrization of the
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model in terms of cure fraction, the survival function of this cure rate model can be written as

-1/n

Spop(ti) = [1+ (5" — D F (t5)] (5.10)

Here, we also assume that Y;’s are Weibull and Gamma distributed. Because this cure rate model
can be characterized by the latent factors model of Cooner et al. (2007) with a Negative Binomial
distribution for the number of latent factors, we called it as Negative Binomial cure rate model,
denoting it as NBCR-W and NBCR-G. Similarly to the simulation studies above, we generate the
current data from the NBCR-W model,

Spoplti) = [1+ (5" — 1) [1 — exp(—5 exp(A)])] " (5.11)

where pg; = exp{bo + b1x;}/(1 4+ exp{by + b1z;}) and \; = Bz, fori = 1,--- ,n. We fixed parameters
bp = —1, by = =05, 8 = =2, a = 2 and n = 0.4. The covariates x; are assumed to be i.i.d.
Bernulli(0.5) variates. Recently, in many clinical researches, the collected data set with more than
65% censoring observations appear frequently more. Therefore, we consider 70% censoring level (data
with 70% censoring observations) and they were generated from a uniform distribution U(0,1). The
prior distributions for the parameters are assumed to be by ~ N(—1,0.25%) and b; ~ N(0.5,0.25%),
B~ N(0,5%), a ~ N(0,5%)(0,00) and 1 ~ N(0.4,0.1%)1 (0 ).

The data sets were also generated from the NBCR-G model,

1 N1
oplti) = |1 i — 1) | == ( Z) . 12
Suplt) = 14657 = 1) |57 (k51| (5.12)
where po; = exp{by + biz;}/(1 + exp{by + b1z;}) and 0; = exp{fx;} for i = 1,--- n., In this case,
we fixed by = =3, by =04, 8 =1, a = 3, n = 2, and the 70% censoring observations are generated

from a uniform distribution U(0,1). The prior distributions for the parameters are assumed to be

by ~ N(=3,0.12) and b; ~ N(0.4,0.12), 8 ~ N(0,12), a ~ N(0,12) (s and 5 ~ N(2,0.12)I(g ).

The results of this simulation study are presented in the Table 5.3, where the percentage
of samples in which the adjusted cure rate model was indicated as the best model according to
the criteria for the interval censoring data sets are presented. For the cure rate model with right
censoring data, it shows that the D-measure outperforms the DIC for small sample sizes, though we
only consider the sample size n = 50 and n = 100. We can observe that the correct rate obtained from

the D-measure are higher than the DIC in some cases, but they have approximate values generally.
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Table 5.3: Percentage of samples in which the adjusted cure rate model was indicated as the best
model according to the criteria for the interval censoring data sets

True Model Censoring level Sample Size Criteria
D-measure
n DIC Abs.  Square  Max
50 95.2% 98.4% 99.2% 95.6%
NBOR-W 0% 100 97.6% 91.2% 972%  92.8%
50 80.4% 76.4% 80.4%  92.8%
NBCR-G 0% 100 83.2% 81.2% 81.6% 97.2%

5.4 Application

In this section, we illustrate the applicability of the D-measure in two real data sets. The
first data set is the melanoma data which evaluates the effectiveness of the implementation of a
high dose of interferon alfa-2b in order to prevent the recurrence of cancer. The second data set is
the smoking cessation data which evaluates the effectiveness of a special anti-smoking intervention

scheme.

5.4.1 Melanoma data

Data were collected between 1991 and 1995, but there was monitoring of patients until 1998.
The response variable is the time to death of the patient or the censor time. Further details of
this data set can be found in Ibrahim et al. (2001c), with a total of n = 417 patients, with 56% of
censored observations. The variables considered in this study include ¢: observed time (years, mean
= 3.179, SD = 1.692), x1;: type of treatment (0: observation, n = 204, 1: interferon, n = 213); x;:
age (years, mean = 48.000, SD = 13.121), x3;: presence of positive nodes at lymphadenectomy (0:
no, n = 111, 1: yes, n = 306), i = 1,--- ,417 and x4 patient sex (0: male n = 263, 1 : female
n = 154); z5;: functional capacity (0: active, n = 363, 1: other, n = 54) and w¢; thickness of the

tumor (in mm, mean = 3.941 and 3.204 standard deviation).

We fitted the Weibull Negative Binomial regression model with cure rate under the first,
last and random activation mechanisms ( denoted by WNBecr-FA, WNBcr-LA, and WNBer-RA) and
its particular sub-models: Weibull geometric regression model and the Weibull Poisson regression

model under the first, last activation (denoted by WGer-FA, WGer-LA, WPcr-FA and WPcr-LA),

and considering

log (1 pO; ) = Bo + Prxi1 + Poxio + B3z + Baxia + PBsis + PeXis-
— Doi
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The Bayesian criteria DIC and D-measure were calculated and presented in Table 5.4. We
note that both criteria indicate that the cure rate models under first activation are more adequate
than the models under last activation, and the cure rate model under random activation has the
largest criteria values. Moreover, both criteria show that the Weibull Negative Binomial regression
model with cure rate is equivalent its sub models under the same activation, although DIC of WNBcr-

FA has smallest value.

Table 5.4: Bayesian criteria for the fitted models for the melanoma data.

Criteria
D-measure
Model Abs. Square Max DIC
WNBer-FA  99.6 5.9 34.2 1039
WGer-FA 98.4 5.9 33.7 1047
WPecr-FA 98.9 5.9 33.5 1051
WNBer-LA  103.2 6.3 34.5 1064
WGer-LA 106.2 6.6 35.2 1069
WPer-LA 103.6 6.4 34.6 1063
WNBer-RA  236.5  53.8  68.9 1089

5.4.2 Smoking cessation data

We now apply the propose D-measure to the interval-censored smoking cessation data pre-

sented in Section 1.1. We fitted

We fitted the some flexile cure models considering the different spatial frailties in the models
to the data set, there are Weibull negative binomial cure rate model, complementary Weibull negative
binomial cure rate model, proportional hazard negative binomial cure rate model, complementary
proportional hazard negative binomial cure rate and their sub-models. These cure models with

spatial frailties are presented in Section 3.2.

Prior distributions for the parameters b, 8 and n are b; ~ N(0,100), j = 0,...,4, 3; ~
N(0,100), 7 = 1,...,4, and  ~ N(0,100)/(0) and a prior distribution for the shape parameter
of WNBCR and CWNBCR model is a ~ N(0,100)/(p). As we know, the Piecewise Exponential
distribution has better approximation to any unknown function when the length of each interval
becomes smaller. Therefore, we partition the time axis so that they denoted the ordered distinct time
points of all observed interval end points. Thus, we have 178 risk parameters need to estimate. Prior
distributions for the risk parameters are o; ~ N(0,100)/(9, ), ¢ = 1,...,178. For the sub-models
of the PHNBCR and CPHNBCR, we used the informative prior distributions for the parameters b

and 3, where the priors are based on the posterior distributions of these parameters of PHNBCR
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and CPHNBCR models, i.e., b; ~ N(0,1), 7 =0,...,4, and 5; ~ N(0,0.6), j = 1,...,4. The prior
distributions for spatial parameters are a ~ Beta(18,2) and A ~ Wishart(2, Diag(0.1,0.1)), where
Diag(0.1,0.1) = 0.1T5s.

The Bayesian model selection criteria DIC and D-measure for the fitted cure rate models are
presented in Table 5.5. We observe that the PHNBCR and CPHNBCR models have the two smallest
values of DIC and D-measure among all fitted cure models, considering the norm as absolute or square
value. According to the criteria, we also note that the both cure models are almost equivalent with
their sub-models and the cure models with piecewise exponential distribution are more appropriate

than the cure models with Weibull distribution.

Table 5.5: Bayesian criteria for the fitted models for the smoking cessation data.

Criteria
D measure
Model Abs.  Square Max DIC
Weibull negative binomial cure rate model 160.3  53.7  110.1 402
Weibull geometric cure rate model 156.9  52.3  110.7 417
Weibull promotion time cure model 162.4  55.0 112.5 417
Complementary Weibull negative binomial cure rate model 156.5  52.2  109.7 417
Complementary Weibull geometric cure rate model 163.2  55.8 113.1 418
Complementary Weibull promotion time cure model 1574  52.3  109.6 419
PH negative binomial cure rate model 144.0  45.7  102.8 388
PH geometric cure rate model 150.2 475  103.2 395
PH promotion time cure model 148.3  46.6  102.3 404
Complementary PH Negative-Binomial cure rate model 144.8  46.2 102.5 382
Complementary PH geometric cure rate model 146.4  46.3  102.3 395
Complementary PH promotion time cure model 150.0 48.1  103.6 405

5.5 Conclusion

In this paper, we propose the D-measure, which measures the goodness of a model by
comparing how close its predictions are from the observed data. The propose D-measure can be
viewed as a Bayesian goodness-of-fit statistic which measures the performance of a model by a
combination of how close its predictions are from the observed data based on the survival functions.
It can also be used for all kind of survival data sets and it is an alternative criterion which can be
used to compare cure rate models, even in presence of random effects or frailties. The D-measure
was compared to the DIC via simulation, where we noted that the D-measure outperforms the DIC

in presence of small sample size and high censoring level.



Chapter 6

Concluding Remarks

In this work, we firstly described approaches to extend geometric cure rate model and neg-
ative binomial cure rate model their complementary models to allow for spatial correlations by
including spatial frailty for the interval-censored data set. The negative binomial cure rate models
are more flexible because they encompass the geometric cure rate model and several well known cure
rate models as its particular cases. The MCMC method was used in Bayesian inference approach for
the proposed models and the DIC was used for the model comparison. The results of the applications

show that

o The cure rate models with Weibull distribution (WGCR and WNBCR, models) have better fit
than their complementary models (CWGCR and CWNBCR models) for all prior distributions

considered for the parameters.

e The cure rate models and their complementary models with Piecewise exponential distribution
(PHGCR, PHNBCR, CPHGCR and CPHNBCR) have are more adequate than cure rate models
and their complementary models with Weibull distribution (WGCR, WNBCR, CWGCR and
CWNBCR) for all prior distributions considered for the parameters.

o According to the DIC, the CPHGCR model and PHGCR model are equivalent and it is also
can be observed for CPHNBCR and PHNBCR model.

o The Negative Binomial cure rate models have smaller DIC values than the Geometric cure rate

models.

« Comparing the proposed cure rate models with models introduced Carlin & Banerjee (2003)
and Pan et al. (2014), it is showed that the PHGCR, CPHGCR, PHNBCR and CPHNBCR

models are more adequate.

159
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Moreover, the proposed models are not sensitive with influential observations, which can be observed
through the influence diagnostic in the simulation studies as well as in the application. The inter-
pretation of the covariates is easy due to the parameterization of the models considered in the cure

rate and the MCAR prior can be used even if frailties effects are low or they are not correlated.

Then, we propose power series cure rate model for spatially correlated interval-censored
data based on generalized extreme value distribution. The proposed model is very flexible and
generalizes the Bernoulli, geometric, Poisson, and logarithm models, whose may be tested for the
best fitting in a straightforward way. The MCMC method was also used in Bayesian inference
approach for the proposed models and the DIC was used for the model comparison. The results of
the applications show that the proposed model has better fittings than the WNBCR and CWNBCR
models. Comparing the proposed models with PHNBCR and CPHNBCR models, we conclude that
the proposed models are more adequate, indeed it has much less parameters. From the results of
Bayesian case deletion influence diagnostics, we also observed that the proposed cure rate models

are not sensible with influence observations.

In the penultimate chapter, we propose D-measure which measures the performance of a
model by a combination of how close its predictions are to the observed data based on survival
function. The measure can be used for all kind of survival data in presence of censoring. It can also
be used to compare cure rate models, even in presence of random effects or frailties. The D-measure
was compared to the DIC via simulation, where we noted that the D-measure outperforms the DIC

in presence of small sample size and high censoring level. Finally, it is applied in two real data sets.

For the future works, we present some suggestions as follow:

» Propose the spatial fragilities in the destructive weighted Poisson cure rate models (Rodrigues

et al., 2010b);

» Propose spatial temporal fragilities in cure rate models. Considering both space and time are
discrete, the fragilities can be modeled based on a Markov random field (MRF) structure in

the form of the CAR specifications (Martinez-Beneito et al., 2008);

e Propose a non-parametric estimation for estimating the baseline functions of the proposed

models;

o Introduce the classic approach to estimation for the spatial fragilities cure rate models.
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Appendix

Algorithm

In this work, for the MCMC updates, the Metropolis-Hastings algorithm is used to gen-
erate a posteriori samples for the parameters ¢* = (b,3,k,(,U, V) of the independents priors
assumption and for the parameters ¢* = (b, 8,7, ¢, ¥, p) of the dependents priors assumption. Al-
though the block Metropolis-Hastings algorithm is computationally efficient, it is difficult to obtain a
good approximation of variance covariance proposal which directly affects the convergence of chains.
Therefore, we used one-dimensional random walk Metropolis algorithm where at each iteration we
generate new values from a univariate normal candidate distributions whose variances were calibrated
to obtain good acceptance rates. Let ¢} ) denotes the state of ith parameter of ¢* (¢;) at the end

of iteration ¢, the Metropolis-Hastings algorithm implemented for ¢th parameter of ¢o* are given by:

(1) start with any point ¢} ), and stage indicator ¢ = 0;

(2) generate a point ¢} from the transitional kernel distribution ¢ ((,02, <p;“7(t)) =N (gpi7(t), a), where

o is variance of ¢j ) is same in any stage;
(3) update @} ) to @}y, = & with probability p; = min {1, 7(g{|D) / 7(5} ) |D) };

(4) repeat steps (2) and (3) by increasing the stage indicator until the process reaches a stationary

distribution.

Finally, we repeat this algorithm for all parameters of ¢*.

Prior sensitive Analysis

Considering the dependence of the random frailties, and we assume the random frailties
take the traditional MCAR distribution MCAR(a,A), where a prior distribution for parameter a
taken a ~ Uniform(0,1) or a ~ Beta(18,2) and A ~ Wishart(2, Ay) following Carlin & Banerjee
(2003), Gelfand & Vounatsou (2003) and Banerjee & Carlin (2004). However, Gelfand & Vounatsou
(2003) and Banerjee & Carlin (2004) considered Ay equals I and 0.011 in their papers, respectively,
where I denote a identity matrix. Both authors also commented that they had no prior knowledge
regarding the nature or extent of dependence for the parameter A. Note that A~! describe the
relative variability and covariance relationship between the different diseases given the neighboring
site. Thus, if Ay has small values, we assumed high relative variability between neighborhood and we

assumed low relative variability between neighborhood if Ay have big values. Thus, it is necessary to
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conduct a prior study for the parameter Ay to verify the influence of Ay in the estimation, in order
to have a value for appropriate Ag. Next, we will conduct sensitive analysis for the parameter A of
WNBCR and CWNBCR models, in which we fixe Ay equals to Isya, 0.115y5, 0.01155 and 0.00115y5,
and the prior distributions for others parameters b, 8 and n are b; ~ N(0,100), j = 0,...,4,
B; ~ N(0,100),j =1,...,4,and n ~ N(0,100)I (g ) and a prior distribution for the shape parameter
is o ~ N(0,100)(0,00)-

Posterior summaries of the parameters of the WNBCR and CWNBCR models considering
the prior distribution a ~ Uniform(0,1) and a ~ beta(18,2) for different values for Ay are presented
in Table 1, 2, 3 and 4, respectively. Note that the smaller values are taken by Ay, the higher relative
variability between neighborhood are assumed, which can be observed in Table 1, 2, 3 and 4. We note
that the posterior estimative of elements of the covariance matrix 3 are deceasing with the diagonal
elements of Ay, i.e, when we fixed Ay = 0.0011, the posterior estimative of diagonal elements of
the covariance matrix A~! = 3 have very high value (For WNBCR model, ¥;; = 34.348 and
Y99 = 37.164 ). On the other hand, the posterior estimative of diagonal elements of the covariance
matrix ¥ have very low values when we fixed Ag = I. (For WNBCR model, ¥;; = 0.041 and
Yoo = 0.043.) Since Ay restrict the posterior estimate of A and the 3 interprets the variability and
covariance relationship between the different diseases given the neighboring site, thus the too higher

or too lower values are not adequate.

Tables 1 and 2 show that the posterior estimative of the parameters by, by, (o and f3
decreasing with A increasing, and the parameters by, a and 7 increasing with Ay increasing, however,
the posterior estimative of the parameters B, b , a, a and n have close values when Ag = 0.01 and
Ay = 0.1. Tables 3 and 4 show that the posterior estimative of the parameters by, 5> and o decreasing
with Ay increasing, and the parameters b; and 7 increasing with A increasing. Posterior summaries
of the parameters of the CPHNBCR model considering the prior distribution a ~ beta(18,2) for
different values for Ag is presented in Table 5. We note that the parameter [ decreasing with Ay
increasing, and the parameters by, 51, a and 7 increasing with A( increasing. However, the posterior
estimative of the parameters 8, b , a and 7 have close values for the CWNBCR model, which can be
observed in Figure 1 and Table 5. Moreover, we observe that the posterior estimate of the parameters
B, b, a, a and n have close values when Ay = 0.01 and Ag = 0.1 in all five tables. Therefore, in
this work, we fixed Ag = 0.11, which lead to the posterior estimative of diagonal elements of the

covariance matrix X between zero and one.



Table 1: Posterior summaries of the parameters of the WNBCR model considering the prior distribution a ~ Uniform(0,1) and different values for

—

=
Ao.
Ag = 0.0011 Ag =0.011 Ao =0.11 Ao =1

Parameters Mean ~ SD  2.50% 97.50% | Mean ~ SD  2.50% 97.50% | Mean ~ SD  2.50% 97.50% | Mean ~ SD  2.50% 97.50%
b 3865 2.639 0270  10.829 | 1.820 0.753 0.485  3.474 | 1.493 0.570 0.390 2.635 | 1.393 0.567 0.420 2475
by 4119 4489 -17.219 -0.049 |-0.423 0495 -1.371 0433 |-0.277 0.379 -1.067 0.418 | -0.205 0.355 -0.927  0.497
by 2.835 2279 -0.109 8390 | 0.852 0.641 -0.121 2501 | 0.558 0.475 -0.219 1.687 | 0.125 0.649 -1.234  1.332
b -0.040  0.142  -0.268  0.353 |-0.077 0.037 -0.171 -0.015 |-0.064 0.031 -0.134 -0.006 | -0.046 0.025 -0.101  -0.002
by 0212 0286 -0.932  0.098 | 0.005 0.030 -0.058 0.059 | 0.010 0.026 -0.048 0.061 | -0.006 0.024 -0.052  0.044
By -2.207 2160 -8.517  0.386 |-0.234 0.817 -1.832 1.356 |-0.252 1.089 -2.548 1.826 |-0.597 2.356 -6.310  3.157
Ba 1910 1419 -0511  4.927 | 1.616 1.107 -0.164 4.248 | 1.491 1230 -0.631 4.205 | -0.779 4.462 -12.590 3.974
Bs -0.055 0.123 -0.281  0.138 |-0.172 0.075 -0.313 -0.029 |-0.211 0.090 -0.378 -0.004 | -0.228 0.108 -0.440  0.009
Bi -0.159  0.145 -0.416  0.074 |-0.043 0.073 -0.219 0.062 |-0.041 0.088 -0.292 0.074 |-0.128 0.157 -0.493  0.068
a 2.354  0.666 1435  3.873 | 3.105 0.554 2.019 4.019 | 3.347 0.586 2.047 4.087 | 3.615 0.506 2.308  4.128
a 0.501 0.286  0.028  0.970 | 0.500 0.289 0.025 0.976 | 0.503 0.289 0.025 0.975 | 0.506 0.287 0.026  0.975
" 0.642 0.666 0.013 2480 | 3425 2189 0.380 8463 | 6.825 3.577 0.602 13.737 | 10.564 4.217 1.668 17.976
Ayy 0.032  0.007 0020 0.048 | 0.273 0.065 0.163 0416 | 2.669 0.657 1.562 4.130 |26.822 6.460 15.707 41.258
A 0.030  0.007  0.018  0.045 | 0.283 0.066 0.169 0.429 | 2.581 0.639 1.498 3.971 |25.567 6.365 14.935 39.868
Ay -0.004  0.005 -0.014  0.006 |-0.008 0.046 -0.099 0.084 |-0.012 0.462 -0.916 0.916 |-0.095 4.595 -9.189 8933
S 34.348 8375 21495 53.751 | 4010 1.015 2466 6.363 | 0413 0.110 0.249 0.679 | 0.041 0.011 0.025  0.066
Yo 37.164 10.323 22.721 62.668 | 3.869 0.998 2.378 6.283 | 0.427 0.122 0.254 0.711 | 0.043 0.012 0.026  0.071
ps 0124 0164 -0.199 0456 | 0.030 0.170 -0.300 0.368 | 0.004 0.180 -0.353 0.358 | 0.004 0.179 -0.343  0.359

where A;; is the element of precision matrix A in position (i, ), and %;; is the element of matrix ¥ = A~! in position (i, j), this ¥1; is the spatial variance

component of U and Y99 is the spatial variance component of V', ps; = £19/(X11X92)

1/2

denote their correlation.
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Table 2: Posterior summaries of the parameters of the WNBCR model considering the prior distribution a ~ Beta(18,2) and different values for A,.

Ao = 0.0011 Ao =0.011 Ao =0.11 ANo=1
Parameters Mean SD 2.50% 97.50% | Mean SD  2.50% 97.50% | Mean SD  2.50% 97.50% | Mean SD  2.50% 97.50%
bo 7371  4.279 1.284 19.003 | 1.760 0.798 0.172 3.316 1.425 0.584 0.200 2.516 1.407 0.537 0.463 2.528
by -8.427  6.910 -24.109 1.435 |-0.973 2.179 -9.249 0.390 | -0.298 0.517 -1.607 0.535 | -0.153 0.432 -1.003 0.615
by 4935 3.842 -1.357 15.730 | 1.128 0.980 -0.133 3.976 0.570 0.577 -0.401 2.081 0.107 0.663 -1.589 1.100
b3 0.199 0.201 -0.135 0.560 |-0.073 0.044 -0.185 -0.006 |-0.051 0.034 -0.120 0.024 | -0.042 0.020 -0.084 -0.005
by -0.869 0481 -1.762 -0.054 | -0.008 0.052 -0.151 0.067 |-0.005 0.042 -0.111 0.061 | -0.009 0.027 -0.066 0.042
b1 -3.439 2953 -9.644 1.370 | -0.641 1.876 -6.986 1.449 |-0.199 1.642 -4.481 3.067 0.010 2.469 -5.794 5.593
(o 2118  2.078 -1.194 7.947 1.854 1.184 -0.210 4.331 1.693 1900 -1.733 6.053 | -0.554 5.029 -16.629 4.518
B3 0.109 0.094 -0.070 0.263 | -0.154 0.076 -0.288 0.016 |-0.171 0.122 -0.365 0.133 | -0.217 0.106 -0.424 0.000
o -0.446 0.184 -0.709 -0.111 | -0.068 0.072 -0.213 0.055 |-0.110 0.151 -0.471 0.070 | -0.133 0.157 -0.574 0.090
« 1.796  0.289 1.361 2.517 | 3.031 0.689 1.692 4.068 | 3.318 0.599 2.069 4.075 3.649 0.439 2474 4.103
a 0.899  0.066 0.735 0.987 | 0.899 0.066 0.734 0.987 0.899 0.067 0.735 0.987 0.901 0.065 0.743 0.987
i 0.419 0.183 0.089 0.818 3.480 2.746 0.246 10.002 | 6.967 3.624 0.815 13.816 | 10.734 3.433 3.173 16.820
Ay 0.034 0.007 0.022 0.050 0.272 0.065 0.163 0.417 2.663 0.661 1.534 4.098 | 26.857 6.463 15.902 40.765
Aoy 0.028  0.007 0.017 0.043 0.281 0.066 0.170 0.424 2.624 0.650 1.534 4.038 | 25.591 6.322 14.809 39.455
Ay -0.004 0.005 -0.014 0.006 | -0.008 0.046 -0.101 0.081 |-0.025 0.464 -0.948 0.881 0.043 4.567 -8.885 8.951
Y11 32.373 7.752 20.761 50.093 | 4.019 1.010 2.459 6.339 0.414 0.110 0.250 0.678 0.041 0.011 0.025 0.066
Y99 39.745 11.251 23.754 65.726 | 3.887 1.003 2.394 6.301 0.421 0.119 0.252 0.697 0.043 0.012 0.026 0.072
px 0.127 0.167 -0.199 0.465 0.031 0.169 -0.298 0.373 0.010 0.179 -0.339 0.364 | -0.001 0.178 -0.357 0.353
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Table 3: Posterior summaries of the parameters of the CWNBCR model considering the prior distribution a ~ Uniform(0, 1) and different values for

Ao,
Ao = 0.0011 Ao =0.011 Ao =0.11 ANo=1
Parameters Mean SD  2.50% 97.50% | Mean SD  2.50% 97.50% | Mean SD  2.50% 97.50% | Mean SD  2.50% 97.50%
bo 0.814 1.240 -1.584 3.194 0.407 1.027 -1.599 2.503 0.055 0.937 -1.722 1.926 | -0.009 0.866 -1.674 1.734
by -0.902 0.658 -2.297 0.308 |-0.594 0.505 -1.616 0.341 |-0.430 0.388 -1.203 0.308 | -0.383 0.376 -1.122  0.355
by 1.067 0.584 0.004 2.311 0.936 0.511 -0.008 1.970 0.811 0.435 -0.012 1.700 0.818 0.439 -0.027 1.718
b3 -0.070 0.033 -0.135 -0.004 | -0.053 0.026 -0.104 -0.004 | -0.044 0.022 -0.089 -0.003 | -0.045 0.024 -0.097 -0.004
by 0.047 0.044 -0.046 0.129 0.042 0.033 -0.026 0.105 0.047 0.029 -0.010 0.105 0.049 0.030 -0.008 0.110
b1 -0.083 0.544 -1.151 0.969 0.202 0.403 -0.618 0.952 0.361 0.361 -0.372 1.039 0.377 0.354 -0.350 1.046
Ba 0.371 0.663 -0.852 1.679 0.232 0.473 -0.652 1.186 0.070 0.418 -0.709 0.932 0.030 0.425 -0.731 0.917
B3 -0.050 0.037 -0.120 0.022 | -0.042 0.025 -0.090 0.007 |-0.041 0.023 -0.089 0.002 | -0.038 0.024 -0.08 0.010
o -0.038 0.033 -0.106 0.022 | -0.031 0.024 -0.083 0.013 | -0.021 0.022 -0.069 0.017 | -0.021 0.022 -0.073 0.016
Q 2.630 0.433 1.801 3.506 2.177 0.330 1.530 2.820 1.971 0.290 1.422 2.543 1.894 0.291 1.373 2.494
a 0.499 0.289 0.024 0.975 0.496 0.291 0.023 0.973 0.495 0.291 0.027 0.975 0.506 0.288 0.024 0.976
i 1.858 3.030 0.020 11.411 | 3.129 3.527 0.071 12.797 | 4.506 4.548 0.085 16.466 | 4.906 4.834 0.074 16.699
Ay 0.033 0.007 0.021 0.049 0.273 0.063 0.164 0.413 2.651 0.653 1.552 4.077 | 26.570 6.424 15.731 40.611
Ay 0.032 0.007 0.020 0.047 | 0.275 0.065 0.164 0417 | 2.572 0.641 1.489 3.974 | 25.593 6.394 14.807 39.715
Ay -0.001 0.005 -0.011 0.009 |-0.001 0.046 -0.091 0.089 0.001 0.466 -0.928 0.908 | -0.054 4.579 -8.992  9.009
Y11 32.559 7.460 20.917 49.886 | 3.990 0.992 2.482 6.366 0.416 0.113 0.251 0.682 0.041 0.011 0.025 0.067
Yoo 34.312 8.351 21.746 53.659 | 3.978 1.034 2.447 6.440 0.432 0.128 0.255 0.728 0.043 0.012 0.026 0.073
125 0.033 0.158 -0.279 0.342 0.002 0.170 -0.333 0.336 0.001 0.182 -0.358 0.362 0.002 0.180 -0.355 0.352
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Table 4: Posterior summaries of the parameters of the CWNBCR model considering the prior distribution a ~ Beta(18,2) and different values for

Ao,
Ao = 0.0011 Ao =0.011 Ao =0.11 ANo=1

Parameters Mean SD  2.50% 97.50% | Mean SD  2.50% 97.50% | Mean SD  2.50% 97.50% | Mean SD  2.50% 97.50%
bo 0.430 1.521 -2.685 3.373 0.171 1.023 -1.851 2.072 0.022 0.98 -1.954 1.922 | -0.169 0.950 -2.087 1.628
by -0.738 0.745 -2.265 0.847 |-0.559 0.465 -1.527 0.322 |-0.439 0.386 -1.198 0.315 | -0.369 0.379 -1.142 0.381
by 1.085 0.570 -0.002 2.271 0.952 0.504 0.028 2.059 0.837 0.464 0.003 1.800 0.812 0.420 0.015 1.687
b3 -0.069 0.037 -0.140 0.004 | -0.051 0.025 -0.101 -0.004 | -0.044 0.025 -0.095 -0.002 | -0.042 0.022 -0.088 0.000
by 0.053 0.050 -0.061  0.140 0.047 0.036 -0.026 0.119 0.048 0.030 -0.014 0.102 0.052 0.030 -0.007 0.115
b1 0.047 0.582 -1.099 1.190 0.205 0.402 -0.614 0.965 0.348 0.349 -0.370 0.988 0.384 0.349 -0.327 1.029
Ba 0.214 0.700 -1.105 1.628 0.209 0.520 -0.787 1.236 0.091 0.420 -0.695 0.933 0.032 0.401 -0.719 0.839
B3 -0.040 0.040 -0.116 0.032 | -0.038 0.028 -0.094 0.017 |-0.041 0.024 -0.089 0.008 | -0.041 0.024 -0.089 0.006
o -0.037 0.035 -0.115 0.025 | -0.032 0.027 -0.089 0.016 |-0.022 0.022 -0.070 0.016 | -0.019 0.022 -0.070 0.017
o 2.547 0.452 1.774 3.480 2.178 0.344 1.533 2.865 1.989 0.309 1.406 2.603 1.938 0.279 1.432 2.516
a 0.899 0.066 0.740 0.987 0.898 0.066 0.734 0.987 0.899 0.066 0.742 0.986 0.901 0.064 0.749 0.988
i 3.773  5.670 0.021 20.242 | 3.603 4.095 0.046 15.593 | 4.311 4.490 0.050 16.316 | 5.356 5.596 0.075  20.012
Ay 0.033 0.007 0.021 0.049 0.274 0.064 0.164 0.418 2.652 0.647 1.540 4.091 | 26.805 6.509 15.741 41.149
Ay 0.031 0.007 0.019 0.046 | 0.273 0.064 0.165 0412 | 2593 0.642 1.495 4.016 | 25.375 6.210 14.739 39.012
Ao -0.001 0.005 -0.011 0.009 0.001 0.046 -0.088 0.094 0.007 0.466 -0.935 0.914 | -0.066 4.665 -9.381 9.272
Y11 32484 7.840 20.921 50.224 | 3.986 1.003 2.441 6.358 0.416 0.113 0.253 0.683 0.041 0.011 0.025 0.066
Yoo 34.805 9.271 22.096 55.956 | 4.002 1.037 2.457 6.395 0.428 0.140 0.254 0.726 0.044 0.012 0.026 0.073
125 0.024 0.161 -0.293 0.338 |-0.004 0.171 -0.345 0.330 |-0.002 0.182 -0.357 0.363 0.003 0.183 -0.358 0.361
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Table 5: Posterior summaries of the parameters of the CPHNBCR model considering the prior distribution a ~ Beta(18,2) and different values for

Ao,
Ao = 0.0011 Ao =0.011 Ao =0.11 A=1T

Parameters Mean SD  2.50% 97.50% | Mean  SD  2.50% 97.50% | Mean SD  2.50% 97.50% | Mean SD  2.50% 97.50%
bo -0.411 0.870 -2.032 1.301 | -0.319 0.762 -1.852 1.120 | -1.735 1.800 -6.064 0.889 | -0.713 0.699 -2.174 0.590
by -0.313 0.645 -1.580 1.010 | -0.255 0.497 -1.197 0.754 | -0.038 0.767 -1.313 1.782 | -0.093 0.428 -0.894 0.827
by 0.860 0.556 -0.269 1.938 0.847 0.506 -0.145 1.826 1.318 1.092 -0.366 3.979 0.570 0.456 -0.362 1.428
b3 -0.071 0.054 -0.156 0.046 | -0.044 0.047 -0.115 0.061 | -0.031 0.050 -0.117 0.066 | -0.069 0.037 -0.148 -0.003
by 0.065 0.058 -0.060 0.161 0.040 0.055 -0.079 0.122 0.051 0.082 -0.118 0.210 0.083 0.036 0.013 0.152
b1 0.185 0.306 -0.418 0.783 0.166 0.271 -0.376 0.704 0.172 0.347 -0.602 0.807 0.191 0.241 -0.273 0.676
Ba -0.273 0.342 -0.898 0.465 | -0.278 0.318 -0.866 0.396 | -0.689 0.442 -1.686 0.081 | -0.388 0.253 -0.879 0.125
B3 0.004 0.022 -0.051 0.039 | -0.002 0.020 -0.047 0.032 0.004 0.016 -0.028 0.037 0.009 0.021 -0.033 0.051
B -0.046 0.025 -0.101 0.004 | -0.046 0.020 -0.088 -0.009 | -0.039 0.023 -0.080 0.010 | -0.044 0.015 -0.073 -0.014
a 0.900 0.065 0.748 0.988 0.900 0.067 0.735 0.987 0.900 0.066 0.737 0.986 0.901 0.065 0.742 0.987
n 11.741 7511 0.195 27.162 | 12.529 6.854 1.057 27.957 | 13.991 6.089 4.242 26.668 | 18.442 6.438 6.713 31.891
Ay 0.035 0.007 0.022 0.051 0.287 0.067 0.174 0.436 2.712 0.656 1.579 4.157 | 26.807 6.519 15.669 41.211
Aoy 0.031 0.007 0.019 0.046 0.271 0.065 0.160 0.414 2.563 0.645 1.466 3.987 | 25.721 6.283 14.843 39.269
Ay 0.000 0.005 -0.010 0.011 0.004 0.047 -0.089 0.095 0.015 0.464 -0.911 0.947 0.025 4.686 -9.293 9.174
Y11 30.662 6.929 19.868 47.016 | 3.807 0.937 2.358 5.974 0.406 0.106 0.247 0.663 0.041 0.011 0.025 0.067
Y99 35.261 8.839 21.925 55973 | 4.054 1.090 2.453 6.623 0.433 0.124 0.257 0.728 0.043 0.012 0.026 0.072
px -0.009 0.158 -0.315 0.301 | -0.014 o0.171 -0.347 0.321 | -0.006 0.180 -0.374 0.345 | -0.001 0.182 -0.358 0.359
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Figure 1: Posterior means of «;’s with Ag = 0.001, 0.01, 0.1 and 1.
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