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“Feliz aquele que transfere o que sabe e aprende o que ensina”.

“O saber se aprende com os mestres. A sabedoria, só com o cor-

riqueiro da vida”.

Cora Coralina



Resumo

Nesta tese, estendemos os modelos flexíveis de sobrevivência com fração de cura, tais como os

modelos de sobrevivência com fração de cura geométricos, binomial negativa e séries de potências,

para permitir correlações espaciais incluindo fragilidades espaciais para os dados de censura intervalar.

Modelos de cura paramétricos e semi-paramétricos com as fragilidades espaciais independentes e

dependentes são propostos e comparados. Os modelos propostos abrangem vários modelos de cura

bem conhecidos como seus casos particulares. Uma vez que estes modelos de cura são obtidos

considerando que a ocorrência de um evento de interesse é causada pela presença de quaisquer riscos

não observados, estudamos também os modelos de cura complementares, nesse caso, os modelos são

obtidos assumindo que a ocorrência de um evento de interesse é causada quando todos os riscos,

não observados, são ativados. Uma nova medida de seleção de modelo, baseada no paradigma da

perda do preditivo, para dados de censura intervalar é proposta. Métodos MCMC são utilizados

em uma abordagem de inferência Bayesiana sendo que os critérios de seleção de modelos Bayesiano

são utilizados para comparação de modelos. Além disso, realizamos um diagnóstico de influência

para detectar as possíveis observações influentes ou extremas que podem causar distorções sobre os

resultados da análise. Finalmente, os modelos propostos são aplicados para analisar um conjunto de

dados real de abstenção tabágica.

Palavras-chave: Inferência Bayesiana; Fração de cura; Diagnósticos de influência; Fragili-

dade espacial; Modelos de sobrevivência.
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Abstract

In this thesis, we extend some flexible cure rate models, such as the geometric, negative

binomial and power series cure rate models, to allow for spatial correlations by including spatial

frailties for the interval censored data setting. Parametric and semi-parametric cure rate models

with independent and dependent spatial frailties are proposed and compared. The proposed models

encompass several well-known cure rate models as its particular cases. Since these cure rate models

are obtained by considering that the occurrence of an event of interest is caused by the presence

of any non-observed risks, we also study the complementary cure model, which arises when the

cure rate models are obtained by assuming the occurrence of an event of interest is caused when

all of non-observed risks are activated. A new measure of model selection, based on the notion of

predictive loss paradigm, for the interval-censoring data is also proposed. The MCMC method is

used in a Bayesian inference approach and some Bayesian model selection criteria are used for model

comparison. Moreover, we conduct an influence diagnostics to detect possible influential or extreme

observations that can cause distortions on the results of analysis. Finally, the proposed models are

applied to analyze a real dataset from a stop smoking study.

Keywords: Bayesian inference; Cure fraction; Influence diagnostics; Spatial frailty; Survival

models.
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Chapter 1

Introduction

With the development of medical and health sciences, the datasets collected from clinical

studies pose some new challenges to statisticians. New statistical models which can incorporate

these changes should be investigated. The most prevalent change noted in many clinical studies

is that, more patients respond favorably to a treatment or, were not susceptible to the event of

interest in the study, so they are considered cured or have prolonged disease-free survival. This

proportion of patients is called the cure fraction. Incorporating the cure fraction in survival models

leads to cure rate models or long-term survival models. These models have been widely developed

in the biostatistics literature. One of the most famous cure rate models is the mixture cure model

introduced by Berkson & Gage (1952). This model has been extensively discussed by several authors,

including Farewell (1982), Maller & Zhou (1996), Ewell & Ibrahim (1997) and Stangl & Greenhouse

(1998). Later, Yakovlev & Tsodikov (1996) and Chen et al. (1999) proposed the promotion time

cure model or bounded cumulative hazard model in cancer relapse settings, assuming that a latent

biological process of propagation of latent carcinogenic tumor cells is generating the observed failure

(relapse). Recently, Cooner et al. (2007) generalized this framework to a flexible class of cure models

under latent activation schemes, Rodrigues et al. (2009b) extend the promotion time cure model

proposed by Chen et al. (1999) through the generating function of a real sequence introduced by

Feller (1968) and Cancho et al. (2011) proposed a flexible cure rate model, that encompasses as

special cases and the mixture model (Berkson & Gage, 1952), the promotion time cure model (Chen

et al., 1999) and the cure rate proportional odds model proposed by Gu et al. (2011).

The second challenge is the existence of incomplete (censoring) datasets. In many clinical

trials, the patients are examined periodically for disease occurrence or progression. In this situation,

the exact failure time of each patient cannot be observed. Rather, it can only be determined to

lie in an interval obtained from a sequence of examination times. This time to event is known as

1
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the interval censoring (Peto, 1973). The estimation methods available for right censored data, such

as the Kaplan-Meier estimator, are not adequate for application to interval-censored data, because

they can lead to biased estimation and invalid inferences. The interval censorship information should

be taken into account in modeling (Rücker & Messerer, 1988; Lindsey & Ryan, 1998; Sun & Chen,

2010).

Another challenge is appearing with the development of geographic information systems

(GIS) and computing technology. Datasets increasingly incorporate geographical information about

the subjects under study. Adopting a traditional cure rate model by including random effects for

each region fails to consider the correlations of the regions. Therefore, several researchers have

developed survival models that account for spatial clustering and variation. Banerjee et al. (2003)

investigated spatially correlated frailties in traditional parametric survival models. Later, Banerjee &

Carlin (2004) introduced spatially correlated frailties in the parametric cure model. They developed

a Bayesian approach to the mixture cure model (Berkson & Gage, 1952) with spatial random effects

in the survival function for subjects at risk and spatial frailties using a multivariate conditionally

autoregressive (MCAR) prior. Recently, Pan et al. (2014) proposed a Bayesian approach under a

proportional hazards frailty model to analyze interval-censored survival data with spatial correlation.

Li Dan & Dey (2015) proposed flexible cure rate models in analyzing univariate right-censored data

based on the assumption that the logarithm of survival time follows a generalized extreme value

distribution with spatial and nonlinear covariate effects.

Considering these three challenges, there are two main goals in this work. First more flexible

cure rate models that account for spatial clustering and variation should be devolved and investigated

for the censored datasets. Here, we assume two most natural activations schemes, the first and last

activations schemes. The first activation scheme presents the situation where the presence of any

of latent risk will ultimately lead to the occurrence of the event, while the last activation scheme

presents a situation where the occurrence of the event will happen when all latent risks are activated.

Thus, the proposed cure rate models are much more general and encompass several well-known

cure models as special cases, such as some cure models introduced by Banerjee & Carlin (2004)

and others were suggested as future investigations by the authors. To investigate the correlation

between the hazard function and cure fraction, the covariates and frailties are incorporated into both

of them, assuming the spatial frailties can be independent or dependent. The inference procedures

are developed through a Bayesian perspective.

The second goal is propose a new measure for model selection for the interval-censored data,

which measures the performance of a model by how close its predictions are to the observed data.

Compared with the deviance information criterion (DIC) proposed by Spiegelhalter et al. (2002),
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the proposed measure is based on the notion of predictive loss paradigm (Gelfand & Ghosh, 1998;

Ibrahim et al., 2001b) and only a very weak assumption about censoring is made for the computation

of the new measure. Both the DIC and the new proposed criterion are used to compare the models.

Furthermore, we also conduct influence diagnostics in order to check the model assumptions and

conduct sensitivity analysis to detect possible influential or extreme observations that can cause

distortions in the results. Here case deletion influence diagnostics are developed for the joint posterior

distribution based on the ψ-divergence (Peng & Dey, 1995; Weiss, 1996). In this work, the proposed

cure rate models are fitted to a real dataset (smoking cessation data) to illustrate their flexibility.

Thus, we present the dataset in follow the section.

1.1 Smoking cessation data

In smoking cessation study, all of the patients (smokers) were randomized into either a

smoking intervention (SI) group, or a usual care (UC) group which received no special anti-smoking

intervention. The smoking intervention treatment program was conducted in Rochester, Minnesota,

located in the center of the maps. The details of the program can be found in Murray et al. (1998).

Here, each patient was observed once a year over the five year follow-up. Our event of interest is

whether they relapse (resume smoking) or not. If a smoker resumed smoking after an initial attempt

to quit, then only an approximate one-year time interval was observed from the previous observation

to the current observation. Thus, the relapse times are interval-censored. In this analysis, we limit

our attention to those patients who are known to have quit smoking at least once during the study

period and who have an identifiable Minnesota Zip code of residence. Thus, the data consist of

223 patients who reside in 51 Zip codes in the southeastern corner of Minnesota, among them 65

patients having relapsed, which implies the empirical cure rate is approximately 71%. The map of

cities which correspond the Zip codes is showed in Figure 4.2 and the covariate information for each

patient considered in the study are

• intervention type SI/UC (1=special intervention [SI], 0=usual care [UC]);

• sex (0=male, 1=female);

• the average number of cigarettes smoked per day (5 to 60);

• duration of smoking habit in years (12 to 46 year);

To estimate the covariate effects on the success rate of smoking cessation as well as that on

the smoking relapse time. Therefore, all recorded covariates are considered in both the cure rate
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and the PH components of the studied cure models. The Figure 1.1 shows the survival functions

estimated considering the intervals by Turnbull algorithm and using the midpoints of intervals by

Kaplan-Meier method (Kaplan & Meier (1958)). We can note that the estimated curves are similar in

some moments, but they are very different in many other moments. Moveover, it is also can observe

that the curves were stabilized before 0.6, which confirmed the existence of a significant fraction of

cured individuals. Recently, Ma & Xiang (2013) also confirmed the existence of a noneligible cure

fraction in the population.
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Figure 1.1: Estimated survival functions considering the intervals and its midpoints.

The dataset was also analyzed by Carlin & Banerjee (2003), they developed a Bayesian

approach to the mixture cure model, assuming the failure times due to the latent risks (competing

times) have Weibull and gamma distributions, with spatial random effects in the survival function

for at-risk subjects. They showed that the models through assuming competing times having Weibull

distribution have better fitting than gamma. In this work, we will compare our models with their

models thought the Bayeisan DIC.

The remainder of our text is organized as follows. In Chapter 2, we will present some basic

concepts in the survival analysis. The statistic models which are used in our work, some important

definitions of statistic terms such as censoring and likelihood are described in detail. Moreover,

some well known Bayesian comparison criteria and diagnostic measures based on the ψ-divergence

are also showed. In Chapter 3, we propose two flexible cure rate models for spatial correlations by

including spatial frailties for the interval censored data setting. For the proposed cure rate models,

the Bayesian inferences are developed and the simulation studies are also conducted. To illustrate

the flexibility of proposed models, they are fitted to a real data set (smoking cessation study). In
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Figure 1.2: Cities in which are collected the smoking cessation data.

Chapter 4, we propose the Power Series cure rate survival model for spatially correlated interval-

censored data based on the generalized extreme value distribution. This cure rate model is much

more general than the cure models which are proposed in Chapter 3. A new measure based on

survival function is proposed in Chapter 5. Finally, some general remarks and some perspectives for

future work are listed in Chapter 6. The algorithm used in this work and the prior sensitive analysis

studies are presented in Appendix.
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Chapter 2

Basic concepts

This section describes some important results and defines the notations which build the basis

for specific points in the later chapters. Moreover, some parametric models which are used in the

work and its respective characteristics and properties are presented.

We consider a single non-negative random variable T , representing the lifetime or time to

failure of an individual, usually, it is assumed to be continuous. The probability density function

(p.d.f.) is denoted by f . The cumulative distribution function (c.d.f.) of T can be determined by its

probability density function and it is denoted by F . The survival function of T is defined by:

S(t) = P [T ≥ t] = 1− F (t) =
∫ ∞
t

f(s)ds,

which is the probability of an individual to survive until time t. It is a continuous monotonically

decreasing function with S(0) = 1 and limt→∞ S(t) = 0.

Another important is failure rate function (or hazard function), which specifies the instan-

taneous rate of failure or death of an individual at time t, given that it survives until time t. The

function is useful to describe the lifetime distribution of the observations under study, and it is

defined by:

h(t) = lim
δt→0

P [t ≤ T ≤ t+ δt|T ≥ t]
δt

= f(t)
S(t) .

Sometimes, it is useful to deal with the cumulative hazard function

H(t) =
∫ t

0
h(s)ds.

The shape of a hazard function can take different forms: it can be increasing, decreasing, constant,

unimodal or U-shaped. In applications, it is often have qualitative information about the form of

7
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the the hazard function, which can be of help in selecting a appropriate model.

The relationship of the functions f , F , S, h and H is

H(t) =
∫ t

0
h(s)ds =

∫ t

0

f(s)
S(s)ds =

∫ t

0
exp[− ln(S(s))]f(s)ds = ln(S(t))

and

S(t) = 1− F (t) = exp(−H(t)).

These relationships are very useful in the survival analysis.

2.1 Some interesting distributions

Some distributions which are used in the work will be presented as follow section.

2.1.1 Weibull distribution

The Weibull distribution was firstly introduced by Weibull (1939) and then was used in

survival analyze by Weibull (1951). This function is an important generalization of the exponential

model with two positive parameters, there are shape parameter and scale parameter. One of the

main characteristics of this distribution is its flexibility in accommodating different forms in failure

rate. Therefore, it is one of most widely used model in practice.

The random variable T has Weibull distribution with shape parameter α > 0 and scale

parameter λ, λ ∈ R, denoted by T ∼ Weibull(α, λ), and its probability density function (p.d.f.) is

given

f(t|α, λ) = αtα−1 exp(λ− tαeλ), (2.1)

and the corresponding survival and hazard function are given by

S(t|α, λ) = exp(−tαeλ) and h(t|α, λ) = αeλtα−1, (2.2)

respectively.

The survival and hazard functions are presented in Figure 2.1, which illustrates that the

hazard function of the Weibull distribution h(t) is strictly increasing for α > 1, strictly decreasing

for α < 1 e constant for α = 1. In this case, T follows an Exponential distribution with parameter

λ, which reveals a certain flexibility in the behavior of the hazard function.
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Figure 2.1: (a) Survival function and (b) hazard function of Weibull distribution with λ = 0 and
different selected values of α.

The kth moment of the distribution is E[T k] = exp
(
−λk

α

)
Γ
(
k
α

+ 1
)
. So the mean and

variance are thus

E[T ] = exp
(
−λ
α

)
Γ
( 1
α

+ 1
)

V ar[T ] = exp
(
−2λ
α

){
Γ
( 2
α

+ 1
)
−
[
Γ
( 1
α

+ 1
)]2}

where Γ(z) =
∫∞

0 tz−1e−tdt is a gamma function.

The qth quantile of the Weibull distribution, obtained by inverting the cumulative distribu-

tion function of T , is given by

tq = (− log(1− q)/eλ)1/α,

and particularly, the median is t1/2 = (log(2)/eλ)1/α.

2.1.2 Piecewise exponential distribution

The Piecewise exponential distribution was firstly introduced by Feigl & Zelen (1965) and

then it was used to analyze survival data with multiple covariates by Friedman (1982). The risk

rate of the distribution is constant within each considered time interval. The Piecewise exponential

distribution can be used to be an approximated distribution while the true distribution is unknown

and the approximation becomes better when the length of each interval becomes smaller.

Let 0 = a0 < a1 < . . . < aQ = ∞ be a partition of the time axis, assuming the risk rate is

constant in each of these intervals. Let the vector a = (a1, . . . , aQ−1) with 0 < a1 < . . . < aQ−1 <∞



10 CHAPTER 2. BASIC CONCEPTS

and define a0 = 0 and aQ =∞. The random variable T has piecewise exponential distribution with

parameter λ = (λ1, . . . , λQ) and partition vector a, denoted by T ∼ PExpa(λ), and the corresponding

probability density function (p.d.f.) is given by

f(t|λ) = κqλq exp{−λq(t− aq−1)}, t ∈ (aq−1, aq], q = 1, . . . , Q, (2.3)

where

κl =

 1, if q = 1;

exp
{
−∑q−1

i=1 λi(ai − ai−1)
}
, if q = 2, . . . , Q.

The corresponding survival and hazard function are given respectively by

S(t|λ) = exp
−

Q∑
q=1

λq∆q(t)
 , t > 0, (2.4)

h(t|λ) = λq, t ∈ (aq−1, aq], q = 1, . . . , Q, (2.5)

where

∆q(t) =


0, if t < aq−1;

t− aq−1 if aq−1 ≤ t < aq, q = 1 . . . , Q.

aq − aq−1 if t ≥ aq.

The kth moment of the distribution is

E[T k] =
Q∑
q=1

κq

(
aq + 1

λq

)k
(1− exp{−λq(aq − aq−1)}) .

Thus, the mean and variance are

E[T ] =
Q∑
q=1

κq

(
aq + 1

λq

)
(1− exp{−λq(aq − aq−1)}) ,

and

V ar[T ] =
 Q∑
q=1

κq

(
aq + 1

λq

)2

(1− exp{−λq(aq − aq−1)})
− E[T ]2,

respectively.

Note that the exponential distribution with a parameter λ is the particular case of the piece-

wise exponential distribution when λq = λ for q = 1, . . . , Q. The survival and hazard functions are

presented in Figure 2.2. We selected a = (0.5, 1, 2, 3) and considered four different parameter vec-
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tors, which lead to the hazard function of piecewise exponential distribution has constant, increasing,

decreasing and U shapes.
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Figure 2.2: (a) Survival function and (b) hazard function of piecewise exponential distribution with
different selected values of λ.

2.1.3 Generalized extreme value distribution and Log generalized ex-

treme value distribution

The generalized extreme value (GEV) distribution is a family of continuous probability dis-

tributions under the extreme value theory which combine the Gumbel, Fréchet and Weibull families.

It was introduced by Jenkinson (1955, 1969) and recommended by Natural Environment Research

Council (1975) of Great Britain. The GEV distribution has gained popularity in many disciplines,

but its use in survival modeling is relatively new (Li Dan & Dey, 2015). Its flexible hazard function

is the main reason that it has gained attention in survival analysis. Recently, Roy & Dey (2014)

showed that different shapes for the hazard function can be obtained by varying the shape parameter

in the GEV distribution.

The random variable X has GEV distribution with incorporation of location and scale pa-

rameters are given by

F (x|µ, σ, ς) =


exp

{
−
(
1 + ς x−µ

σ

)− 1
ς

+

}
, if ς 6= 0,

exp
{
− exp

(
−x−µ

σ

)}
, if ς = 0,

where µ ∈ R, σ > 0 and ς ∈ R are the location, scale and shape parameters respectively, and

x+ = max(0, x). In the survival analysis, we assume that log T ∼ GEV (µ, σ, ς), where T denotes

time to event of interest, i.e., let T ∼ logGEV (µ, σ, ς), the cumulative distribution function (c.d.f.)
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of T is given by

F (t|µ, σ, ς) =


exp

{
−
(
1 + ς log t−µ

σ

)− 1
ς

+

}
, if ς 6= 0,

exp
{
− exp

(
− log t−µ

σ

)}
, if ς = 0,

(2.6)

and the probability density function (p.d.f.) is given

f(t|µ, σ, ς) =



1
σt

(
1 + ς log t−µ

σ

)− 1
ς
−1

exp
{
−
(
1 + ς log t−µ

σ

)− 1
ς

}
, t > exp

(
µ− σ

ς

)
if ς > 0, or

t < exp
(
µ− σ

ς

)
if ς < 0,

1
σt

exp
(
− log t−µ

σ

)
exp

{
− exp

(
− log t−µ

σ

)}
, 0 < t <∞ if ς = 0.

(2.7)

The corresponding survival function and hazard function are given respectively by

S(t|µ, σ, ς) =


1− exp

{
−
(
1 + ς log t−µ

σ

)− 1
ς

+

}
, if ς 6= 0,

1− exp
{
− exp

(
log t−µ
σ

)}
, if ς = 0,

and

h(t|µ, σ, ς) =


1
σt

(
1 + ς log t−µ

σ

)− 1
ς
−1

+

[
exp

{(
1 + ς log t−µ

σ

)− 1
ς

+

}
− 1

]−1
, if ς 6= 0,

1
σt

(
1 + ς log t−µ

σ

) [
exp

{
exp

(
− log t−µ

σ

)}
− 1

]−1
, if ς = 0.

The survival and hazard functions are presented in Figure 2.3 and 2.4. We fixed location

parameter µ = 0, scale parameter σ = 1.0 and σ = 1.5, the shape parameter ς are selected 1.5, 0.5,

0.0 and −0.5 four different values. We note that the hazard function of logGEV distribution has

increasing, decreasing, bell and U shapes. Inasmuch as in many practical situations, especially in

cancer related studies, the hazard function is not monotone, the logGEV distribution could be more

adequate than the usual parametric distributions, such as Weibull and Gamma distributions.
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Figure 2.3: (a) Survival function and (b) hazard function of logGEV distribution with µ = 0 and
σ = 1.
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Figure 2.4: (a) Survival function and (b) hazard function of logGEV distribution with µ = 0 and
σ = 1.5.

2.1.4 Gamma distribution and inverse gamma distribution

The gamma distribution was firstly introduced by Pearson (1895). It includes the exponential

distribution and chi-squared distribution are special cases. The gamma distribution is of limited use

in survival analysis because the gamma models do not have closed form expressions for survival and

hazard functions. Both include the incomplete gamma integral. Consequently, traditional maximum

likelihood estimation is difficult and requires the calculation of such incomplete gamma integrals,

which imposes additional numerical problems in parameter estimation.

The random variable T has gamma distribution with shape parameter α > 0 and rate

parameter (inverse scale parameter) β > 0, denoted by T ∼ Gamma(α, β), and its probability

density function (p.d.f.) is given

f(t|α, β) = βα

Γ(α)t
α−1 exp(−βt), t > 0, (2.8)

and the corresponding c.d.f. and hazard function are given respectively by

F (t|α, λ) = γ(α, βt)
Γ(α) and h(t|α, λ) = βαtα−1 exp(−βt)

Γ(α)− γ(α, βt) , (2.9)

where γ(s, x) =
∫ x

0 t
s−1e−tdt is the lower completed function and Γ(x) =

∫∞
0 tx−1e−tdt is a gamma

function.

The mean and variance of gamma distribution are

E[T ] = α

β
and V ar[T ] = α

β2 ,



14 CHAPTER 2. BASIC CONCEPTS

The probability density function and cumulative distribution function of gamma distribution

are presented in Figure 5.3.1.
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Figure 2.5: (a) Probability density function and (b) cumulative distribution function of gamma
distribution with different selected values of α and β.

A random variable T takes the inverse gamma distribution with parameter shape α and scale

β if 1/T has the gamma distribution with shape parameter α and scale parameter 1/β. The p.d.f.

of the inverse gamma distribution is given by

f(t|α, β) = βα

Γ(α)t
−α−1 exp(−βt−1), t > 0, (2.10)

and the corresponding c.d.f. and hazard function are given respectively by

F (t|α, λ) = Γ(α, βt−1)
Γ(α) and h(t|α, λ) = βαt−α−1 exp(−βt−1)(

1− Γ(α,βt−1)
Γ(α)

)
Γ(α)

, (2.11)

where Γ(s, x) =
∫∞
x ts−1e−tdt is the upper completed function and Γ(x) =

∫∞
0 tx−1e−tdt is a gamma

function.

The mean and variance of the distribution are

E[T ] = β

α− 1 , α > 1 and V ar[T ] = β2

(α− 1)2(α− 2) , α > 2.

The probability density function and cumulative distribution function of inverse gamma

distribution are presented in Figure 2.6.

In Bayesian statistics, the inverse gamma distribution is the conjugate prior of the unknown

variance of a normal distribution. It is usual to set a low value for its parameters such as 1 or 0.01
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Figure 2.6: (a) Probability density function and (b) cumulative distribution function of gamma
distribution with different values of α and β.

or 0.001 in order to let it be an weakly informative prior distribution.

2.1.5 Wishart distribution

A Wishart distribution was introduced by Wishart (1928). It is a generalization to multiple

dimensions of the chi-squared distribution, or, in the case of non-integer degrees of freedom, of the

gamma distribution. This distribution is very important in the estimation of covariance matrices in

multivariate analysis.

Let Xi, i = 1, . . . , n be a p-dimensional random vector, which is independently drawn from

a p-variate normal distribution with zero mean and symmetric positive definite covariance matrix

Λ0 (Xi ∼ Np(0,Λ0)). Then the Wishart distribution is the probability distribution of the p × p

symmetric positive definite random matrix S = ∑n0
i=1X

>
i Xi, denoted by S ∼ Wp(n0,Λ0), with scala

matrix Λ0 and degrees of freedom n ≥ p. The p.d.f. of Wishart distribution is given by

f(S) = |S|
n0−p−1

2

2
n0p

2 |Λ0|
n0
2 Γp(n0

2 )
exp

{
−1

2tr(Λ
−1
0 S)

}
, (2.12)

where tr( ) is the trace function and Γp is the multivariate gamma function defined as

Γp
(
n0

2

)
= π

p(p−1)
4

p∏
j=1

Γ
(
n

2 + 1− j
2

)
.

If p = S = 1 then this distribution is a chi-squared distribution with n0 degrees of freedom.
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The mean and variance of the distribution are

E[S] = n0Λ0 and V ar[Sij] = n0(λ2
0ij + λ0iiλ0jj),

respectively, where λ0ij denotes the element of Λ0 matrix in (i, j) position.

In Bayesian statistics, it is the conjugate prior of the precision matrix (inverse covariance-

matrix) of a multivariate normal distribution. The least informative, proper Wishart prior is obtained

by setting n0 = p. The prior mean of Wp(n0,Λ0) is n0Λ0, suggesting that a reasonable choice for

Λ−1
0 would be nΣ0, where Σ0 is some prior guess for the covariance matrix.

2.2 Interval Censoring

Censoring is one of the main characteristic that distinguishes survival analysis from other

fields of statistics. Basically, a censored observation contains only partial information about the

variable of interest. There are different types of censoring, here we consider an interval censoring

in the study. We now briefly describe the some types of interval-censored data considered in this

section.

"Case 1" interval censoring or current status data.

Let T be the unobservable failure time and suppose that L is an examination time (or

observation time). Then suppose that an observation consists of the random vector (∆, L) where

∆ = 1[T≤L]. In this case, the only knowledge about the "failure time" T is whether it has occurred

before L or not.

"Case 2" and "Case k" interval censoring.

In the "Case 2" interval censored data, we only know that the unobservable failure time

T has occurred either within some random time interval, or before the left end point of the time

interval, or after the right end point of the time interval. More precisely, suppose that there are two

examination (or observation) times L and R , the data observed is

(L,R,∆1,∆2,∆3) = (L,R, 1[T≤L], 1[L<T≤R], 1[T>R]),
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Note that ∆3 = 1 − ∆1 − ∆2. In the particular situation that T has occurred either within some

random time interval or after the right end point of the time interval, the data observed can be

denoted as

(L,R,∆1,∆2) = (L,R, 1[L<T≤R], 1[T>R]),

it also equivalent

(L,R,∆) = (L,R, 1[R<∞]).

A "Case k" interval censoring arises when there are k examination times per subject, which is a

generalization of "Case 2" interval censoring (see Wellner (1995)).

Particular situation of "Case 2" interval censored data with latent com-

peting risks.

In this case, we assume that the event of the interest (failure) occurs due to the several

latent (non-observed) competing risks. In practice, there are three most popular situations. The

first one is the event of the interest occur if any of latent risk is activated; the second one is the

event of interest occur if all of latent risks are activated, and the last one is the event of the interest

occur if one random latent risk is activated. Here, we suppose the time to event (failure time) T has

occurred either within some random time interval or after the right end point of the time interval,

i.e., L < T ≤ R or T > R. Thus, the data observed in this case is

(L,R,∆) = (L,R, 1[L<T≤R]) = (L,R, 1[R<∞]).

2.3 The likelihood functions

We assume that the examination times are independent of the failure time and that their

distribution is independent of the distribution function of the failure time. With these conditions,

the joint densities and the likelihood functions for the given types of interval-censored data will be

presented follow.
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"Case 1" interval censoring

Let T be a failure time with distribution F and L be an observation time with distribution

G. The joint density of a single observation (l, δ) is given by

F (l)δ(1− F (l))1−δg(l),

where g(l) is the density of L.

Proof : For a single observation, we have two cases ∆ = 1 and ∆ = 0. We first consider

∆ = 1

P (L ≤ l,∆ = 1) = P (L ≤ l, T ≤ L)

=
∫
R
P (L ≤ l, T ≤ L|L = s)dG(s) (conditioning on L)

=
∫ l

−∞
P (T ≤ s|L = s)dG(s)

=
∫ l

−∞
P (T ≤ s)dG(s) (using independence of T and L)

=
∫ l

−∞
F (s)dG(s).

We obtain the corresponding density by differentiating with respect to l. Assuming that G had a

density g. Using the integration by parts we have

∫ l

−∞
F (s)dG(s) = F (s)G(s)|l−∞ −

∫ l

−∞
f(s)G(s)ds

= F (l)G(l)−
∫ l

−∞
f(s)G(s)ds.

Thus,

f(l,∆ = 1) = ∂

∂l

∫ l

−∞
F (s)dG(s)

= ∂

∂l

(
F (l)G(l)−

∫ l

−∞
f(s)G(s)ds

)
= F (l)g(l)
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Similarly, considering ∆ = 0 we have

P (L ≤ l,∆ = 0) = P (L ≤ l, T > L)

=
∫
R
P (L ≤ l, T > L|L = s)dG(s) (conditioning on L)

=
∫ l

−∞
P (T > s|L = s)dG(s)

=
∫ l

−∞
P (T > s)dG(s) (using independence of T and L)

=
∫ l

−∞
(1− F (s))dG(s).

Using the Integration by parts, we obtain

f(l,∆ = 0) = ∂

∂l

∫ l

−∞
1− F (s)dG(s) = (1− F (l))g(l).

Combining the terms for ∆ = 1 and ∆ = 0, we get the following density for one observation:

[F (l)g(l)]δ[(1− F (l))g(l)]1−δ = F (l)δ(1− F (l))1−δg(l). �

Note that this density again factors in a part depending on F and a part depending on g. Since

G and g do not involve any of the parameters in F , they can be neglected. Hence, the likelihood

function Ln of a random sample (l1, δ1), . . . , (ln, δn) is given by

Ln =
n∏
i=1

F (li)δi(1− F (li))1−δi . (2.13)

Note that the likelihood function Ln(F ) also can be rewritten in terms of observed sets as

Ln =
n∏
i=1

PF (Ri),

where

Ri =

 (0, li], if δi = 1

(li,∞), if δi = 0

and PF (Ri) denotes the probability that T ∈ Ri under distribution F for i = 1 . . . , n. Now we can

derive the likelihood in a slightly simpler way by observing that

P (∆ = 1|L = l) = P (T ≤ L|L = l) = P (T ≤ L) = F (l),

P (∆ = 0|L = l) = P (T > L|L = l) = P (T > L) = 1− F (l).

Hence, ∆|L is a Bernoulli random variable with parameter F (L). It then follows that the density of
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one observation is

P (∆ = δ, L = l) = P (∆ = δ|L = l)g(l)

= F (l)δ(1− F (l))1−δg(l),

exactly as we found before.

2.3.1 "Case 2" interval censoring

Let T be a failure time with distribution F and (L,R) (with L < R) be a pair of observation

times with the joint distribution G. The joint density of a single observation (l, r, δ1, δ2, δ3) is given

by

F (l)δ1 [F (r)− F (l)]δ2(1− F (r))1−δ3g(l, r),

where g(l, r) is the joint density of (L,R) and δ3 = 1− δ1 − δ2.

Prove: In this case, we have three situations which are T ≤ L, L < T ≤ R and T > R with

the probabilities

p1 = P (∆1 = 1|L = l, R = r) = P (T ≤ L|L = l, R = r)

= P (T ≤ l|L = l, R = r)

= P (T ≤ l) (using independence of T and (L,R))

= F (l),

p2 = P (∆2 = 1|L = l, R = r) = P (L < T ≤ R|L = l, R = r)

= P (l < T ≤ r|L = l, R = r)

= P (l < T ≤ r) (using independence of T and (L,R))

= F (r)− F (l)

and

p3 = P (∆3 = 1|L = l, R = r) = P (T > R|L = l, R = r)

= P (T > r|L = l, R = r)

= P (T > r) (using independence of T and (L,R))

= 1− F (r),
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Hence, ∆|L,R ∼Multinomial(1, p1, p2, p3) with p1 + p2 + p3 = 1. It then follows that the density of

a single observation (l, r, δ1, δ2, δ3) is given

P (∆ = (δ1, δ2, δ3), L = l, R = r) = P (∆ = (δ1, δ2, δ3)|L = l, R = r)g(l, r)

= F (l)δ1(F (r)− F (l))δ2(1− F (r))δ3g(l, r),

where δ1 + δ2 + δ3 = 1. �

Since G and g do not involve any of the parameters in F , they can be neglected. Hence, the

likelihood function of a random sample (l1, r1, δ11, δ21), . . . , (ln, rn, δ1n, δ2n) is given by

Ln =
n∏
i=1

F (li)δ1i(F (ri)− F (li))δ2i(1− F (ri))(1−δ1i−δ2i).

Note that when we assume that T has occurred after the first examination time L, we just have two

situations which are T ∈ (L,R] and T ∈ (L,∞) which is equivalent to verify whether R < ∞ or

R =∞. Let ∆ = 1[L<T≤R] = 1[R<∞], the probabilities of these situations are given by:

p1 = P (∆ = 1|L = l, R = r) = P (L < T ≤ R|L = l, R = r)

= P (l < T ≤ r|L = l, R = r)

= P (l < T ≤ r) (using independence of T and (L,R))

= F (r)− F (l)

and

p2 = P (∆ = 0|L = l, R = r) = P (T > L|L = l, R = r)

= P (T > l|L = l, R = r)

= P (T > l) (using independence of T and (L,R))

= 1− F (l).

Hence, the density of one observation is

P (∆ = δ, L = l, R = r) = P (∆ = δ|L = l, R = r)g(l, r)

= (F (r)− F (l))δ(1− F (l))1−δg(l, r).
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The likelihood function of a random sample (l1, r1, δ1), . . . , (ln, rn, δn) can be written as

Ln =
n∏
i=1

(F (ri)− F (li))δi(1− F (li))(1−δi).

Interval censored data with latent competing risks

LetM denote the number of latent risks and assume thatM has a known discrete distribution

with the p.d.f. denoted by P (M = m). Let Yj for j = 1 . . . ,M denote the failure times due to the jth

latent risk and we assume that given M = m, Yj’s are i.i.d with a distribution F (·) = 1− S(·). The

time to event of interest (failure time) which is defined by random variable T = Y(R∗), for M ≥ 1

and T = ∞ if M = 0 with P (T = ∞|M = 0) = 1, where Y(R∗) is the Rth statistic order and R∗

can indicate resistance factors of the immune system of the individual in many biological processes.

It can be a fixed constant, a function of M or a random variable specified through a conditional

distribution on M . In this work, we deal with two specifications for R∗, there are R∗ = 1 and

R∗ = M .

The survival functions of the random variable T considering R∗ = 1 (i.e., T = Y(1) =

min{Yj, j = 1, . . . ,M}) is given by

Spop(t) = P (T > t) =
∞∑
m=0

S(t)mP [M = m]. (2.14)

Proof :

Spop(t) = P (T > t)

=
∞∑
m=0

P (T > t|M = m)P (M = m)

= P [T > t|M = 0]P (M = 0) +
∞∑
m=1

P (T > t|M = m)P (M = m)

= P (M = 0) +
∞∑
m=1

P [min{Yj, j = 1, . . . ,m} > t|M = m]P (M = m)

= P (M = 0) +
∞∑
m=1

P [Y1 > t, . . . , Ym > y|M = m]P (M = m)

= P (M = 0) +
∞∑
m=1

P [Y1 > t]mP [M = m]

= P (M = 0) +
∞∑
m=1

S(t)mP [M = m]

=
∞∑
m=0

S(t)mP [M = m].
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The survival functions of the random variable T considering R∗ = M (i.e., T = Y(M) =

max{Yj, j = 1, . . . ,M}) is given by

Spop(t) = P (T > t) = 1 + P [M = 0]−
∞∑
m=0

F (t)mP [M = m]. (2.15)

Proof :

Spop(t) = P (T > t)

=
∞∑
m=0

P (T > t|M = m)P (M = m)

= P [T > t|M = 0]P (M = 0) +
∞∑
m=1

P (T > t|M = m)P (M = m)

= P (M = 0) +
∞∑
m=1

P [max{Yj, j = 1, . . . ,m} > t|M = m]P (M = m)

= P (M = 0) +
∞∑
m=1

(1− P [max{Yj, j = 1, . . . ,m} ≤ t|M = m])P (M = m)

= P (M = 0) +
∞∑
m=1

(1− P [Y1 ≤ t, . . . , Ym ≤ y|M = m])P (M = m)

= P (M = 0) +
∞∑
m=1

P (M = m)−
∞∑
m=1

P [Y1 ≤ t]mP [M = m]

= P (M = 0) + 1− P (M = 0)−
∞∑
m=1

P [Y1 ≤ t]mP [M = m]

= P (M = 0) + 1−
∞∑
m=0

F (t)mP [M = m]

= 1 + P (M = 0)−
∞∑
m=0

F (t)mP [M = m].

Assuming T independent on the observed failure times (L,R) with the joint distribution G,

the joint density of a single observation (l, r, δ) is given by

(Spop(l)− Spop(r))δSpop(l)1−δg(l, r),

where g(l, r) is the joint density of (L,R).

Proof : In this case, we have two situations which are L < T ≤ R and T > R with the
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probabilities

p1 = P [δ = 1|L = l, R = r]

=
∞∑
m=0

P [δ = 1|M = m,L = l, R = r]P (M = m)

=
∞∑
m=0

P [L < T ≤ R|M = m,L = l, R = r]P [M = m]

(using independence of T and (L,R))

=
∞∑
m=0

P [l < T ≤ r|M = m]P [M = m]

=
∞∑
m=0

P [T ≤ r|M = m]P [M = m]−
∞∑
m=0

P [T ≤ l|M = m]P [M = m]

=
∞∑
m=0

P [T > l|M = m]P [M = m]−
∞∑
m=0

P [T > r|M = m]P [M = m]

= Spop(l)− Spop(r)

and

p2 = P [δ = 0|L = l, R = r]

=
∞∑
m=1

P [δ = 0|M = m,L = l, R = r]P (M = m)

=
∞∑
m=0

P [T > L|M = m,L = l, R = r]P (M = m)

(using independence of T and (L,R))

=
∞∑
m=0

P [T > l|M = m]P (M = m)

= Spop(l).

Hence, the density of one observation is

P [∆ = δ|L = l, R = r] = P [∆ = δ|L = l, R = r]g(l, r)

= (Spop(l)− Spop(r))δ(Spop(l))1−δg(l, r).

Since G and g do not involve any of the parameters in Spop, they can be neglected. Thus, the

likelihood function of random sample (l1, r1, δ1), . . . , (ln, rn, δn) is given by

n∏
i=1

(Spop(li)− Spop(ri))δi(Spop(li))1−δi . (2.16)
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2.4 Cure rate model

With the development of medical technology, in many clinical cancer studies, some patients

can return a normal life after a treatment, i.e, there is a percentage of patients will not occur the

event of interest after a long follow-up period of the study. In this situation, the usual survival

models, assumed that all individuals occur the event of interest after a long follow-up period, are not

adequate to fit this kind of data set. Alternatively, the cure rate models (also known as the survival

models with cure fraction), which assume that a significant fraction of individuals will not occur the

event of interest even after a long follow-up period of the study, can be used. In the literature, a

percentage of individuals will not occur the event of interest is known as a cure fraction. There are

many cure rate models have been widely developed. The reference papers are Maller & Zhou (1996),

Ibrahim et al. (2001a), Tsodikov et al. (2003), Cooner et al. (2007), Tournoud & Ecochard (2007),

Lopes et al. (2012), Rodrigues et al. (2009a), Cancho et al. (2009), Cancho et al. (2011), Rodrigues

et al. (2010a) and Rodrigues et al. (2010b). In this section, some principal cure rate models will be

presented as follow.

Mixture cure rate model

Perhaps the most popular type of cure rate model is the mixture cure model introduced by

Boag (1949) and Berkson & Gage (1952). In this distribution, it is assumed that a certain proportion

of the individuals are cured. The survival function for the population of the mixture cure model is

given by

Spop(t) = p0 + (1− p0)S(t), (2.17)

where p0 is the cure fraction (that is, proportion of the cured individuals) and S(t) is the survival

function of the non-cured (or susceptible) individuals. Note that this model also can be introduced

under structure of latent competing risks, assuming M has a Bernoulli distribution with the suc-

cess parameter 1 − p0. The survival function of the non-cured individuals S(t) can taken different

approaches such as parametric, semi-parametric and non-parametric (Maller & Zhou, 1996; Peng,

2003; Lu, 2010).

Although the mixture cure model is widely used in the literature, it has some disadvantages

which were commented by Chen et al. (1999). First, in the presence of covariates, it does not have

the proportional hazard structure; Second, If covariates are included in the cure fraction through

a standard binomial regression model with the improper priors for the coefficient parameters, the

posterior distributions of the parameters will be improper, i.e., the mixture cure model requires

proper priors distributions in the Bayesian inference.
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Promotion time cure model

Later, the promotion time cure model has been proposed by Yakovlev & Tsodikov (1996)

and Chen et al. (1999) as an alternative cure rate model with desirable properties. The cure model

was derived in a context in which relapse occurs in patients with cancer. Let Mi denotes the number

of latent risk (in the cancer study, Mi denote the number of carcinogenic cells in the beginning of

a treatment) for ith individual, and assume that Mi has Poisson distribution with mean θ. Let Yj
for j = 1, . . . ,Mi denote the failure time due to the jth latent cause, that is, the time until jth

carcinogenic cell produces a detectable cancer. Suppose that given Mi, the random variables Yj are

independent and identically distributed (i.i.d.) with c.d.f. F (·) = 1−S(·) and the presence of any of

latent risk (i.e., Mi ≥ 1) will ultimately lead to the occurrence of the event. Thus, the time to event

of interest (time to detect cancer) is defined by random variable T = min{Yj, j = 0, · · · ,Mi} where

P (Y0 =∞) = 1. Using the equation (2.14) and Mi ∼ Poisson(θ), the survival function of promotion

time cure model for the population is given by

Spop(t) =
∞∑
m=0

S(t)m e
−θθm

m!

= e−θ
∞∑
m=0

(θS(t))m
m!

= e−θeθS(t)

= e−θF (t).

The corresponding p.d.f. and hazard function of T are given by

fpop(t) = θf(t)e−θF (t) and hpop(t) = θf(t), (2.18)

respectively, where f(t) = ∂
∂t
F (t).

A cure fraction of the promotion time cure model is given by

Spop(∞) = lim
t→∞

Spop(t) = lim
t→∞

e−θF (t) = e−θ. (2.19)

It is easy to note that this model belongs to the family of Cox proportional hazards models (Cox,

1972). Suppose two individuals, say i and j, have the parameters associated with the cure fractions

given by θi and θj, respectively. Thus,

hpop(t|θi)
hpop(t|θj)

= θif(t)
θjf(t) = θi

θj
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does not depend on the time t.

Complementary promotion time cure model

The promotion time cure model assumed that the presence of any of latent risk will lead to

the occurrence of the event. Now, we assume the other situation that the occurrence of the event

will be occur when all of the latent risk are activated. Using the same definitions for Mi and Yj as

above, now the time to event of interest is defined by random variable T = max{Yj, j = 1, · · · ,Mi}

for Mi ≥ 1 and T = ∞ if Mi = 0 with P (T = ∞|Mi = 0) = 1. Similarly, using the equation

(2.15) and Mi ∼ Poisson(θ), the survival function complementary promotion time cure model for

the population is given by

Spop(t) = 1 + P [M = 0]−
∞∑
m=0

F (t)mP [M = m]

= 1 + e−θ −
∞∑
m=0

F (t)m e
−θθm

m!

= 1 + e−θ − e−θ
∞∑
m=0

(θF (t))m
m!

= 1 + e−θ − e−θeθF (t)

= 1 + e−θ − e−θS(t).

The corresponding p.d.f. by and hazard function of T are given by

fpop(t) = θf(t)e−θS(t) and hpop(t) = θf(t)e−θS(t)

1 + e−θ − e−θS(t) , (2.20)

respectively, where f(t) = ∂
∂t
F (t).

A cure fraction of the complementary promotion time cure model is given by

Spop(∞) = lim
t→∞

Spop(t) = lim
t→∞

1 + e−θ − e−θS(t) = e−θ. (2.21)

Note that it is the same as the cure fraction of the promotion time cure model.
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Geometric cure rate model

LetMi denote the number of latent risk for ith individual, and assume thatMi has geometric

distribution with 1/(1 + θ), the probability mass function is given by

P (Mi = m) = θm

(θ + 1)m+1 , m = 0, 1, 2 · · · , (2.22)

where θ > 0, E(Mi) = θ and V ar(Mi) = θ(1 + θ). Let Yj for j = 1, . . . ,Mi denote the failure time

due to the jth latent cause, that is, the time until jth carcinogenic cell produces a detectable cancer.

Suppose that given Mi, the random variables Yj are independent and identically distributed (i.i.d.)

with c.d.f. F (·) = 1 − S(·) and the presence of any of latent risk (i.e., Mi ≥ 1) will ultimately lead

to the occurrence of the event. Thus, the time to event of interest is defined by random variable

T = min{Yj, j = 0, · · · ,Mi} where P (Y0 = ∞) = 1. From (2.14), the survival function of geometric

cure model for the population is given by

Spop(t) = [1 + θF (t)]−1 . (2.23)

Note that this survival function has a proportional odds structure when covariates xi are modeled

via θi(xi) and the latent survival F (ti) is free of xi, because

1− Spop(ti|xi)
Spop(ti|xi)

= θi(xi)F (ti).

Recently, Gu et al. (2011) studied the geometric cure model under the proportional odds structure

and renamed the geometric cure model as the cure rate proportional odds (CRPO) model. Unlike the

model proposed by Chen et al. (1999), the ratio of hazards for the CRPO model for two covariante

values does not remain over time.

The corresponding p.d.f and the hazard function associated to (4.2) are given by

fpop(t) = θf(tij) [1 + θF (t)]−2 and hpop(t) = θf(t) [1 + θF (t)]−1 ,

respectively, where f(t) = ∂
∂t
F (t).

Note that, the survival function in (4.2) can also be written as a mixture cure model

Spop(t) = (1 + θ)−1 +
(
1− (1 + θ)−1){ [1 + θF (t)]−1 − (1 + θ)−1

1− (1 + θ)−1

}
,
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Thus, the survival functions of uncured (susceptible) individuals can be expressed by

Ssus(t) = [1 + θF (t)]−1 − (1 + θ)−1

1− (1 + θ)−1 .

If we assume another situation in which the presence of all latent risks will ultimately lead to

the occurrence of the event, then the time to the event of interest is defined by the random variable

T = max{Yj, j = 1, · · · ,Mi} for Mi ≥ 1 and T = ∞ if Mi = 0 with P (T = ∞|Mi = 0) = 1. The

survival function for the population is given by

Spop(t) = 1 + (1 + θ)−1 − [1 + θS(t)]−1 . (2.24)

The corresponding p.d.f. and the hazard function are given by

fpop(t) = θijf(t)(1 + θS(t))−2,

and

hpop(t) = θf(t) [1 + θS(tij)]−2

1 + (1 + θ)−1 − (1 + θS(t))−1 ,

respectively. The survival function (4.4) can also be written as a mixture cure model

Spop(t) = (1 + θ)−1 +
(
1− (1 + θ)−1

){1− (1 + θS(t))−1

1− (1 + θ)−1

}
,

Thus, the survival functions of susceptible individuals is given by

Ssus(t) = 1− (1 + θS(t))−1

1− (1 + θ)−1 .

2.5 Frailty model

2.5.1 Introduction

Ordinary methods in survival analysis assume the populations are homogenous, that is,

assuming the lifetimes of each individual are mutually independent with same distribution, which

imply that all individuals have the same risk of death. Although this assumption is valid for many

studies, it can be inadequate for others. In many situations, the lifetime data are observed as repeated

measurements or collected from several clusters, such times within each cluster cannot be mutually

independents. For example, the behavior of the observed lifetimes between members of the same
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family displays certain similarities that would not be observed among individuals without family tie.

Therefore, in this case, it is reasonable to assume that there is an association between the lifetimes

of the same cluster. This association between the lifetimes characterizes multivariate lifetimes data.

A frailty model is commonly used in this context to consider this association.

A frailty model also can be used for univariate (independent) lifetimes. In this case, each

individual has its own frailty, which has different meaning of the frailty in the multivariate context.

Here, the frailty is a heterogenous measure of the individuals, while in multivariate survival is also a

measure of association. In this chapter, the univariate and multivariate frailty will be presented in

the following sections.

2.5.2 Univariate frailty model

Situations in which each individual has its own frailty component, which could be seen as

the special case in which all groups or families have unitary size, characterize univariate survival

data. The supposition that individual has its own frailty component is not difficult to justify. In the

medicine study, for example, the argument that individuals are inherently different is widely accepted.

Two individuals with exactly the same values of the covariates are not expected to experience any

medical response at exactly the same time. There are no observable biological variations, such as

genetic factors with respect to one disease.

Considering the situation the heterogeneity of individuals affect the observed survival data,

a frailty (or random effect) was introduced in the hazard models. Vaupel et al. (1979) introduced

the concept of frailty to the biostatistical community and applied it to population mortality data.

Lancaster (1979) dealt with times of unemployment and introduced the model to the econometric

literature, where the model is known as the mixed proportional hazards model. The classical and

most frequently applied model assumes a proportional hazards structure that is conditional on the

random effect (frailty). To be more specific, the hazard function of an individual depends on an

unobservable, time-independent random variable Z. In the multiplicative hazards framework, which

has been used in most survival data studies, Z acts multiplicative effect on the baseline hazard

function h0. The frailty model without observed covariates for the individual i (i = 1, . . . , n) is given

by

h(t|zi) = zih0(t), (2.25)

where the z1, . . . , zn is a sample of random variables Z1, . . . , Zn i.i.d. with a known distribution

with mean one and unknown variance σ2. The variance (if it exists) is interpretable as a measure of

heterogeneity across the population in baseline risk. When σ2 is small, the values of Z are closely
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located around one. If σ2 is large, then values of Z are more dispersed, inducing greater heterogeneity

in the individual hazards Zh0(t). It is natural to introduce observed covariates into model (2.25)

similar to the Cox model by

hi(t|xi, zi) = zih0(t) exp(x>i β), (2.26)

where β is the regression parameters vector associated to covariates xi. Consequently, a frailty model

is a generalization of the well-known proportional hazards model. The proportional hazards model

is obtained if the frailty distribution degenerates to Zi = 1 for i = 1, . . . , n. In this case, the frailty

not only explain the heterogeneity of the individuals but also evaluate the effect of covariates that

were not observed at the time of the experiment for some reason, and thus were not included in the

analyzes.

Various probability distributions have been proposed in the literature for the frailty variables.

Next, we will present the gamma distribution which is used in the work.

The gamma distribution has been widely applied by several authors (Vaupel et al. (1979),

Lancaster (1979), Hougaard & Hougaard (2000) Duchateau & Janssen (2007)). From a computational

and analytical point of view, it fits very well as a mixture distribution to failure data. It is easy to

derive the closed-form expressions of unconditional survival, cumulative density, and hazard function,

which is due to the simplicity of the Laplace transform. This is also the reason why this distribution

has been used in most applications published to date.

Let Zi, i = 1 . . . , n be random variables with the gamma distribution presented in Section

5.3.1, i.e., Zi ∼ Gamma(α, β), considering the parameters α = β = η−1, the p.d.f. of Zi is given by

f(z) =

(
1
η

)1/η

Γ
(

1
η

) z 1
η
−1 exp

(
−z
η

)
, z ≥ 0, (2.27)

Note that E[Zi] = 1 and V ar[Zi] = η. Thus, η can be viewed as a way to quantify this frailty. If

η = 0 (i.e, V ar[Zi] = 0) all of the frailty variables Zi = 1, for all i = 1, . . . , n, that is, the gamma

distribution is degenerate in 1.

Promotion time cure model with fragility

The promotion time cure model presented in Section 2.4 is assumed that conditional on the

number of latent risks Mi = m, the random variables Y1, . . . , Ym are mutually independent. This

assumption may be unrealistic, because Y1, . . . , Ym are not observed random variables taken on the

same subject. One possible relaxation and remedy of this assumption is to introduce a subject-

specific frailty Zi such that conditional on both Mi = m and Zi = z, Y1, . . . , Ym are mutually
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independent with distribution function F (·). Moveover, we assume that conditional on Zi = z, Mi

has a Poisson distribution with rate zθ, thus Zi presents the heterogeneity of the Poisson rates in

the Mi’s. Following the same derivation as before, we then obtain the survival function of time to

event, T , is

Spop(t) = EZi [exp{−θF (t)z}] ,

where EZi denotes the expectation with respect to Zi. Assuming the Zi has a gamma distribution

with its p.d.f. presented in (2.27), then we have

Spop(t) = EZi [exp{−θF (t)z}]

=
∫ ∞

0
exp{−θF (t)z}

(
1
η

)1/η

Γ
(

1
η

) z 1
η
−1 exp

(
−z
η

)
dz

=

(
1
η

)1/η

Γ
(
.1
η

) ∫ ∞
0

z
1
η
−1 exp

(
−
(

1
η

+ θF (t)
)
z

)
dz

=

(
1
η

)1/η

(
1
η

+ θF (t)
)1/η

∫ ∞
0

(
1
η

+ θF (t)
)1/η

Γ
(

1
η

) z
1
η
−1 exp

(
−
(

1
η

+ θF (t)
)
z

)
dz

= (1 + ηθF (t))−1/η. (2.28)

Note that this cure rate model is the same as the of model which was proposed by Rodrigues

et al. (2009b). The cure rate model can also called Negative Binomial cure rate model, because it

can be proposed similarly to Chen et al. (1999). Let Mi denote the number of latent risk for ith

individual, and now assume that Mi has negative binomial (NB) distribution with parameters θ > 0

and η > −1/θ, i.e., E[Mi] = θ and V ar[Mi] = θ(1 + η). Let Yj for j = 1, . . . ,Mi denote the failure

time due to the jth latent cause. Suppose that givenMi, the random variables Yj are i.i.d. with c.d.f.

F (·) = 1 − S(·) and the presence of any of latent risk (i.e., Mi ≥ 1) will lead to the occurrence of

the event. Thus, the time to event of interest (time to detect cancer) is defined by random variable

T = min{Yj, j = 0, · · · ,Mi} where P (Y0 = ∞) = 1. From (2.14), the survival function for the

population can be written as

Spop(t) =
∞∑
m=0

S(t)mΓ(η−1 +m)
Γ(η)m!

(
ηθ

1 + ηθ

)m
(1 + ηθ)−1/η

= (1 + ηθ)−1/η
∞∑
m=0

Γ(η−1 +m)
Γ(η)m!

(
ηθS(t)
1 + ηθ

)m
= (1 + ηθ(1− S(t)))−1/η

= (1 + ηθF (t))−1/η .
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The corresponding p.d.f. and hazard function of T are given by

fpop(t) = θf(t)(1 + θηF (t))−(1/η+1)

and

hpop(t) = θf(t)(1 + θηF (t))−1,

respectively, where f(t) = ∂
∂t
F (t). Its cure fraction is given by

Spop(∞) = lim
t→∞

Spop(t) = lim
t→∞

(1 + ηθS(t))−1/η = (1 + ηθ)−1/η.

Note that some special sub-models can be obtained if we set some special values for the parameter

η. For η → 0 we have the promotion time cure model and if η = 1, we obtain the geometric cure

rate model given in Section 2.4.

Complementary promotion time cure model with fragility

Similar to above case, we introduce a frailty Zi to the complementary promotion time cure

model, such that conditional on both Mi = m and Zi = z, Y1, . . . , Ym are mutually independent with

distribution function F (·). Assuming conditional on Zi = z, Mi has a Poisson distribution with rate

zθ and Zi has a gamma distribution with its p.d.f. presented in (2.27), the survival function of time

to event, T , is given by

Spop(t) = EZi
[
1 + e−θz − e−θS(t)z

]

=
∫ ∞

0

(
1 + e−θz − e−θS(t)z

) ( 1
η

)1/η

Γ
(

1
η

) z 1
η
−1 exp

(
−z
η

)
dz

= 1 +
∫ ∞

0

(
1
η

)1/η

Γ
(

1
η

) z 1
η
−1 exp

(
−(θ + η−1)z

)
dz

−
∫ ∞

0

(
1
η

)1/η

Γ
(

1
η

) z 1
η
−1 exp

(
−
(
η−1 + θS(t)

)
z
)
dz

= 1 +

(
1
η

)1/η

(
1
η

+ θ
)1/η

∫ ∞
0

(
1
η

+ θ
)1/η

Γ
(

1
η

) z
1
η
−1 exp

(
−
(

1
η

+ θ

)
z

)
dz

−

(
1
η

)1/η

(
1
η

+ θS(t)
)1/η

∫ ∞
0

(
1
η

+ θS(t)
)1/η

Γ
(

1
η

) z
1
η
−1 exp

(
−
(

1
η

+ θS(t)
)
z

)
dz

= 1 + (1 + ηθ)−1/η − (1 + ηθS(t))−1/η. (2.29)
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Similarly, we called this model as complementary negative binomial cure rate model. Assuming the

number of latent risk Mi has the negative binomial (NB) distribution with parameters θ > 0 and

η > −1/θ. Let Yj for j = 1, . . . ,Mi denote the failure time due to the jth latent cause. Suppose that

given Mi, the random variables Yj are i.i.d. with c.d.f. F (·) = 1− S(·) and the presence of all latent

risks will lead to the occurrence of the event. The time to event of interest is defined by random

variable T = max{Yj, j = 1, · · · ,Mi} for Mi ≥ 1 and T =∞ if Mi = 0 with P (T =∞|Mi = 0) = 1.

Using the equation (2.15) andMi ∼ NB(θ, η), the survival function for the population can be written

as

Spop(t) = 1 + (1 + ηθ)−1/η −
∞∑
m=0

F (t)mΓ(η−1 +m)
Γ(η)m!

(
ηθ

1 + ηθ

)m
(1 + ηθ)−1/η

= 1 + (1 + ηθ)−1/η − (1 + ηθ)−1/η
∞∑
m=0

Γ(η−1 +m)
Γ(η)m!

(
ηθF (t)
1 + ηθ

)m
= 1 + (1 + ηθ)−1/η − (1 + ηθ(1− F (t)))−1/η

= 1 + (1 + ηθ)−1/η − (1 + ηθS(t))−1/η.

The corresponding p.d.f and hazard function of T are given by

fpop(t) = θf(t)(1 + θηS(t))−(1/η+1),

and

hpop(t) = θf(t)(1 + θηS(t))−(1/η+1)

1 + (1 + θη)−1/η − (1 + θηS(t))−1/η ,

respectively, where f(t) = ∂
∂t
F (t). Its cure fraction is given by

Spop(∞) = lim
t→∞

Spop(t) = lim
t→∞

1 + (1 + ηθ)−1/η − (1 + ηθS(t))−1/η = (1 + ηθ)−1/η.

Note that if we set η → 0 we have the Complementary Promotion time cure model presented in

Section 2.4 and if η = 1, we obtain the Complementary Geometric cure rate model or Complementary

cure rate proportional odds model.

2.5.3 Multivariate frailty models

There are several approaches have been proposed in the literature for analyzing multivariate

survival data (Therneau, 2000). Frailty models are classified in the conditional approach, which

assume that the lifetimes are conditionally independent given the frailty. This approach is commonly

used for modeling the problem of multivariate survival data characterized by the presence of clusters.
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One of most popular model in modeling the association between survival times of individuals within

each cluster is the shared frailty model. In this case, a frailty is shared in each cluster, that is, the

individuals who are in the same cluster have the common frailty. A shared frailty model in survival

analysis is defined as follows.

Suppose there are m clusters and that cluster i has ni observations and associates with the

unobserved frailty Zi for i = 1, . . . ,m. The vector Xij, j = 1, . . . , ni and i = 1, . . . ,m contains the

covariate information of the event time Tij of the jth observation in the ith cluster. Conditional on

the frailty variance Zi, the survival times in cluster i are assumed to be independent and their hazard

functions to be of the form

hij = zih0(t) exp(x>ijβ), (2.30)

where h0(t) denotes the baseline hazard function, and β is the regression parameters vector (fixed

effect parameters vector) to be estimated. The frailties Zi (i = 1, . . . ,m) are assumed to be indepen-

dently and identically distributed random variables with the known distribution function with mean

one and some unknown variances. Note that the equation (2.30) also can be written as

hij = h0(t) exp(x>ijβ +Wi), (2.31)

where Wi = ln(zi), is assumed to be independently and identically distributed random variables with

the a distribution function with mean zero and some unknown variance, so that the proportional

hazards model can be obtained if variance has value zero. One of most used model is the normal

distribution with mean zero and unknown variance σ2,i.e., Wi ∼iid N(0, σ2).

In this work, we consider frailty (random effect) corresponding to clusters that are spatially

arranged. While it is possible to identify centroid of geographic regions and employ spatial process

modeling for the locations, the effects are more naturally associated with areal units. As such we

work with conditionally autoregressive (CAR) models and multivariate conditionally autoregressive

(MCAR) models for these effects, and these models will be presented as follow.

Conditionally Auto-Regressive (CAR) models: Gaussian case

The CARmodels were introduced by Besag (1974), but they have enjoyed a dramatic increase

in usage only in the past decade. This resurgence arises from their convenient employment in the

context of Gibbs sampling and more general Markov Chain Monte Carlo (MCMC) methods for fitting

certain classes of hierarchical spatial models (for more details see Banerjee et al. (2004), in Section

5.4.3 ).
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Let Y1, . . . , Ym be m observations with associated with areal units 1, 2, . . . ,m, and let Wm×m

be an adjacent matrix of the map with its elements wij defined by

wij =

 1, if region i and j are adjacent,

0, otherwise

and let wi+ = ∑
j wij denoting the number of regions adjacent to region i. For the Gaussian case, we

suppose

Yi|yj, j 6= i ∼ N

∑
j

bijyj, τ
2
i

 , i = 1, . . . ,m. (2.32)

These full conditionals are compatible. For obtaining the joint distribution for the Yi, the Brook’s

Lemma will be used and it is defined as

Lemma 2.1. (Brook’s Lemma) Let y0 = (y10, . . . , ym0) be any fixed point in the support of the

joint probability distribution p(y1, . . . , ym).

p(y1, . . . , ym) = p(y1|y2, . . . , ym)
p(y10|y2, . . . , ym)

p(y2|y10, y3, . . . , ym)
p(y20|y10, y3 . . . , ym) ×

· · · × p(ym|y10, . . . , ym−1,0)
p(ym0|y10, . . . , ym−1,0)p(y10, . . . , ym0).

Banerjee et al. (2004) showed that using the Brook’s Lemma, the joint probability distribu-

tion p(y1, . . . , ym) has expression

p(y1, . . . , ym) ∝ exp
{
−1

2y
>D−1(I −B)y

}
, (2.33)

where I is identity matrix of size n, B = {bij} and D is diagonal with Dii = τ 2
i . The expression

(2.33) suggests a joint multivariate normal distribution for Y with mean 0 and covariance matrix

(I −B)−1D. So let bij = wij
wi+

and τ 2
i = τ2

wi+
, we have the relation

bij
τ 2
j

= wij
wi+

(
τ 2

wj+

)−1

= wji
wi+

(
τ 2

wj+

)−1

= wji
wj+

(
τ 2

wi+

)−1

= bji
τ 2
i

, for all i, j,

which implies a symmetry of the matrix D−1(I − B). Moreover, the supposition (2.32) is now

given by Yi|yj, j 6= i ∼ N
(∑

j wijyj/wi+, τ
2/wi+

)
, i = 1, . . . ,m, and the matrix can be written as

D−1(I −B) = 1
τ2 (DW −W ) , where DW is diagonal matrix with (DW )ii = wi+, for i = 1, . . . ,m.

Thus, the joint probability distribution given in (2.33) becomes

p(y1, . . . , ym) ∝ exp
{
− 1

2τ 2y
>(DW −W )y

}
,
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which suggests that it could be a n-dimencional multivariate normal distribution with mean 0 and

precision matrix τ−2(DW −W ) and we denoted this model by CAR(θ), where θ = τ 2. Note that

this precision matrix is rank deficient, so it is a non-positive definite matrix and it leads to an

improper distribution function. This singularity, while theoretically awkward, creates little problem

in a Bayesian implementation, since the identifying sum-to-zero constraint ∑m
i=1 Yi = 0 is easily

imposed in a Gibbs sampler simply by recentering the Yi draws around zero after every iteration (see

Carlin & Louis (2000), pg 263).

Multivariate conditionally autoregressive (MCAR) models

Let Y > = (Y1, . . . ,Ym) where each Yi is a p× 1, following Mardia (1988), the zero-centered

multivariate conditionally autoregressive (MCAR) models sets

Yi|Yj 6=i,Σi ∼ N

∑
j

BijYj,Σi

 , i = 1, . . . ,m, (2.34)

where each Bij is p × p, as is each Σi. As in the univariate case, using the Brook’s lemma, a joint

density for Y of the form

p(Y |{Σi, i = 1 . . . ,m}) ∝ exp
{
−1

2Y
>Γ−1(I − B̃)Y

}
, (2.35)

where Γ is block diagonal with blocks Σi and B̃ is an np× np with (i, j)th block Bij. Similarly the

univariate case, we take bij = wij
wi+

and Σi = Σ
wi+

, then we have the condition bijΣj = bjiΣi for all i, j,

which let the matrix Γ−1(I − B̃) be a symmetric. Note that using the Kronecker product notation

⊗, the Γ−1(I − B̃) matrix can be rewrote as

Γ−1(I − B̃) = (DW ⊗Σ−1)(I −B ⊗ I) = (DW −W )⊗Λ,

where Λ = Σ−1 and DW , W and B are the same as defined in univariate case.

Again, the singularity of DW −W implies that Γ−1(I − B̃) is singular. An alternative to

resolve this problem is insert the smoothness parameter a in DW −W and standardize W so that

each of its rows sum to 1, thus,

Γ−1(I − B̃) = (DW − aW )⊗Λ,
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and the joint probability distribution given in (2.33) becomes

p(Y |{Σi, i = 1 . . . ,m}) ∝ exp
{
−1

2Y
> [(DW − aW )⊗Λ]Y

}
, (2.36)

which suggests that it could be a multivariate normal distribution with mean 0 and the precision

matrix

(DW − aW )⊗Λ, (2.37)

and we denoted this model by MCAR(a,Λ). The parameter a ∈ (0, 1) has a spatial smoothness

interpretation. Value of a closer to 1 imply greater weight on the adjacency matrixW , while a close

to 0 implies that the adjacency structure has few role to play in the precision matrix.

Later, Gelfand & Vounatsou (2003) and Carlin & Banerjee (2003) extend the MCAR(a,Λ)

to allow the introduction of a spatial auto-regression coefficient for each component of Yi, and they

denoted the extend MCAR model by MCAR(a1, . . . , ap,Λ).

First, they rearrange the rows of the np×1 vector Y to block by components, rather than by

units, that is, let Y = (Y11, Y21, . . . , Ym1, Y12, . . . , Ym2, . . . , Y1p, . . . , Ymp)>, thus the precision matrix

Λ given in (2.37) can be rewritten as Λ⊗ (DW − aW ).

For the parameter vector a = (a1, . . . , ap), the corresponding positive definite matrix are

denoted by (DW − aiW ) for i = 1, . . . , p and its corresponding the Cholesky factorization are

denoted by R>i Ri, where Ri is n× n. dimensional matrix. Following the Carlin & Banerjee (2003),

the precision matrix can be written as

Λ⊗ (DW − aW ) =



λ11R
>
1R1 λ12R

>
1R2 . . . λ1pR

>
1Rp

λ21R
>
2R1 λ22R

>
2R2 . . . λ2pR

>
2Rp

... ... . . .
...

λp1R
>
pR1 λp2R

>
pR2 . . . λppR

>
pRp


= R>(Λ⊗ Im)R, (2.38)

where λij’s are the elements of the matrix Λ andR is a block diagonal matrix with blocks R1, . . . , Rp.

The Λ⊗ (DW − aW ) is positive definite since Λ is positive definite.

2.6 Model comparison criteria

There are several Bayesian criteria to compare competing models for a given data set and

to select the one that best fits the data. One of the most used in applied works is the deviance

information criterion (DIC), which is based on the posterior mean of deviance. For a model, the
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statistic DIC is defined as

DIC = d̄+ pd.

where d̄ = E[D(ϕ)], pd = E[D(ϕ)]−D[E(ϕ)] andD(ϕ) is the deviance function of the model defined

by−2 logL(ϕ). L is the likelihood function of the model. Spiegelhalter et al. (2002) provide evidences

that pd is a suitable measure of model complexity even in hierarchical settings, and thus, DIC is

considered as a sensible generalization of the expected Akaike information criterion to hierarchical

settings. The model, with the smallest value of DIC, is commonly taken as the preferred model to

describe the data set given.

2.7 Bayesian case influence diagnostics

Since regression models are sensitive to underlying model assumptions, generally performing

a sensitivity analysis is strongly advisable. One of the most used ways of evaluating the influence of

an observation in the fitted model is a case-deletion (Cook & Weisberg, 1982), in which the effects

are studied by completely removing cases from the analysis. This reasoning will form the basis of

our Bayesian global influence methodology and, in doing so, it will be possible to determine which

subjects might influence the analysis. Now, the Bayesian case-deletion influence diagnostic measures

for the joint posterior distribution based on the ψ-divergence (Peng & Dey, 1995; Weiss, 1996) will

be introduced as follows.

Let Dψ(P, P(−i)) denote the ψ-divergence between P and P(−i), in which P denotes the

posterior distribution of ϑ for full data, and P(−i) denotes the posterior distribution of ϑ without the

ith case. Specifically,

Dψ(P, P(−i)) =
∫
ψ

(
π(ϑ|D(−i))
π(ϑ|D)

)
π(ϑ|D) dϑ. (2.39)

where ψ is a convex function with ψ(1) = 0. Several choices concerning the ψ are given by Dey

& Birmiwal (1994). For example, ψ(z) = − log(z) defines the Kullback-Leibler (K-L) divergence,

ψ(z) = (z−1) log(z) gives J-distance (or the symmetric version of K-L divergence), ψ(z) = 0.5|z−1|

defines the variational distance (or L1 norm) and ψ(z) = (z − 1)2 defines the χ2-square divergence.

Let ϑ(1), . . . ,ϑ(Q) be a size Q sample of π(ϑ|D), Dψ(P, P(−i)) can be calculated numerically

by

D̂ψ(P, P(−i)) = 1
Q

Q∑
q=1

ψ

 ĈPOi

L(yi|ϑ(q))

 , (2.40)

where ĈPOi =
{

1
Q

Q∑
q=1

1
L(yi|ϑ(q))

}−1

is the numerical approximation of the conditional predictive

ordinate statistic of i-th observation (Ibrahim et al., 2001a).
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Note that Dψ(P, P(−i)) can be interpreted as the ψ-divergence of the effect of deleting the

i-th case from the full data on the joint posterior distribution of ϑ. As pointed by Peng & Dey (1995),

Weiss (1996) and Cancho et al. (2010), it may be difficult for a practitioner to judge the cutoff point

of the divergence measure so as to determine whether a small subset of observations is influential

or not. In this context, we will use the proposal given by Peng & Dey (1995) and Weiss (1996) by

considering a biased coin, which has success probability p. Then the ψ-divergence between the biased

and an unbiased coin is

Dψ(f0, f1) =
∫
ψ

(
f0(x)
f1(x)

)
f1(x)dx, (2.41)

where f0(x) = px(1− p)1−x and f1(x) = 0.5, x = 0, 1. Now if Dψ(f0, f1) = dψ(p), then it can be easy

to check that dψ satisfies the following equation

dψ(p) = ψ(2p) + ψ(2(1− p))
2 (2.42)

It is not difficult to see for the divergence measures considered that dψ increases as p moves away

from 0.5. In addition, dψ(p) is symmetric about p = 0.5 and dψ, achieves its minimum at p = 0.5.

In this point, dψ(0.5) = 0, and f0 = f1. Therefore, if we consider p > 0.90 (or p ≤ 0.10) as a strong

bias in a coin, then dK-L(0.90) = 0.51, dJ(0.90) = 0.88, dL1(0.90) = 0.4 and dχ2(0.90) = 0.64. This

equation implies that ith case is considered influential when dL1 > 0.4 or dχ2 > 0.64. Thus, if we

use the Kullback-Leibler divergence, we can consider an influential observation when dK-L > 0.51.

Similarly, using the J-distance, an observation which dJ > 0.88 can be considered influential.



Chapter 3

Spatial frailty in Cure rate models

In survival analysis, it is common obtain the data set which are collected from different

regions, that is the data are clustered by different regions. One of the most used approaches is

consider cluster-specific random effects (or frailty) in the modeling. The frailties account for excess

heterogeneity in the data, as well as capture similarity across observations within the same cluster.

In this section, we will introduce frailties to each spatial cluster in the cure rate models presented in

Section 2.5.2 for the interval-censored data.

3.1 Geometric cure rate models with spatial frailties

Supposing that there are I regions and ni individuals in ith region. Let Tij denotes the

random variable for time to the event of the jth individual in the ith region, where j = 1, . . . , ni
and i = 1, . . . , I. We suppose that the (i, j)th individual is potentially exposed to Mij latent risk, in

which Mij denote the initial number of competing causes concerning the occurrence of an event, and

assuming Mij has a geometric distribution with parameter 1/(1 + θij), the probability mass function

is given by

P (Mij = m) =
θmij

(θij + 1)m+1 , m = 0, 1, 2 · · · , (3.1)

where θij > 0, E(Mij) = θij and V ar(Mij) = θij(1 + θij).

Let Ycij denote the lifetime of jth individual in ith region due to the cth (c = 1, . . . ,Mij)

latent risk. Given Mij > 0, Y1ij, Y2ij, . . . are assumed to be independent and identically distributed

with a common distribution function F (·) = 1− S(·) that does not depend upon Mij. If we assume

that the presence of any latent risk will ultimately lead to the occurrence of the event, the time to

the event of interest Tij could be defined as Tij = min{Y1ij, · · · , YMijij} for Mij ≥ 1. If Mij = 0, then

41
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the individual is not at risk of final event and is considered cured. In this case, we define Tij = ∞

with P (Tij =∞|Mij = 0) = 1. Thus, the survival function for the population is given by

Spop(tij) = [1 + θijF (tij)]−1 . (3.2)

The probability density function (p.d.f) and the hazard function associated to (3.2) are given

by

fpop(tij) = θijf(tij) [1 + θijF (tij)]−2 and hpop(tij) = θijf(tij) [1 + θijF (tij)]−1 ,

respectively, where f(tij) = ∂
∂tij

F (tij).

Note that, the survival function in (3.2) can also be written as a mixture cure model

Spop(tij) = (1 + θij)−1 +
(
1− (1 + θij)−1){ [1 + θijF (tij)]−1 − (1 + θij)−1

1− (1 + θij)−1

}
,

Thus, the survival functions of uncured (susceptible) individuals can be expressed by

Ssus(tij) = [1 + θijF (tij)]−1 − (1 + θij)−1

1− (1 + θij)−1 .

If we assume another situation in which the presence of all latent risks will ultimately lead to

the occurrence of the event, then the time to the event of interest is defined by the random variable

Tij = max{Ycij, c = 1, · · · ,Mij} for Mij ≥ 1 and Tij =∞ if Mij = 0 with P (Tij =∞|Mij = 0) = 1.

The survival function for the population is given by

Spop(tij) = 1 + (1 + θij)−1 − [1 + θijS(tij)]−1 . (3.3)

The corresponding p.d.f. and the hazard function are given by

fpop(tij) = θijf(tij)(1 + θijS(tij))−2,

and

hpop(tij) = θf(tij) [1 + θijS(tij)]−2

1 + (1 + θij)−1 − (1 + θijS(tij))−1 ,

respectively. The survival function (4.4) can also be written as a mixture cure model

Spop(tij) = (1 + θij)−1 +
(
1− (1 + θij)−1

){1− (1 + θijS(tij))−1

1− (1 + θij)−1

}
,
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Thus, the survival functions of susceptible individuals is given by

Ssus(tij) = 1− (1 + θijS(tij))−1

1− (1 + θij)−1 .

The first situation, also known as the first activation scheme because, in this case, we assume

the event of interest occurs when the first possible cause is activated. On the other hand, the second

situation is known as the last activation scheme, because the event of interest only takes place after

all the latent causes have been activated (see, Cooner et al., 2007). Thus, we denoted the survival

functions (3.2) and (3.3) by SFpop(tij) and SLpop(tij), respectively. There is another kind of situation

in which the event of interest occurs: when some of the possible causes are activated and, given

the number of latent causes Mij, the number of activated causes is a random variable with discrete

uniform distribution in {1, · · · ,Mij}. This situation is known as random activation scheme. In this

case, the survival function for the population is given by

SRpop(tij) = (1 + θij)−1 +
(
1− (1 + θij)−1

)
S(tij), (3.4)

where the superscript R denotes random activation scheme.

Note that whichever the activation scheme, the density and hazard functions of the cure

models are improper functions, since the survival functions are not proper. Its cure fraction is

the same for these activation schemes and, thus, it can be obtained by p0ij = limtij→∞ Spop(tij) =

(1 + θij)−1. However, under different activation schemes, the models differ by its surviving, density

and hazard functions. Moreover, under the conditions of the models (3.2), (3.3) and (3.4) for any

distribution function F (·), we have SFpop(tij) ≤ SRpop(tij) ≤ SLpop(tij) for all tij > 0.

As is well known, the cure fraction plays a key role in the survival models with cure frac-

tion. So we consider the parametrization of the model in cure fraction in expressions. Since

p0ij = (1 + θij)−1, we have θij = p−1
0ij − 1. Moreover, we propose that the cured fraction of an

individual (i, j)th be associated with covariates xij. Thus linking p0ij to covariates xij by

p0ij = exp(ξij)
1 + exp(ξij)

, j = 1, . . . , ni, i = 1, . . . , I,

where ξij is a linear function of covariates, ξij = x>ijb where b is a p1-dimensional vector which

represents the effects of covariates on the cured fraction. Thus, the models in (3.2), (3.3) and (3.4)

parameterized in the p0ij can be written as

SFpop(tij) =
[
1 + (p−1

0ij − 1)F (tij)
]−1

, (3.5)
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SLpop(tij) = 1 + p0ij −
[
1 + (p−1

0ij − 1)S(tij)
]−1

(3.6)

and

SRpop(tij) = p0ij + (1− p0ij)S(tij), (3.7)

The model in (3.7) is the same considered by Banerjee & Carlin (2004).

The non-negative random variables Ycij’s can take several distributions, we assume Ycij’s take

proportional hazard (PH) model with the baseline hazard function h0(t|α), the conditional hazard

function and corresponding survival function are given by

h(t|φ) = h0(t|α) exp(λij) or S(t|φ) = S0(t|α)exp(λij), (3.8)

where φ = (α, λij), λij = z′ijβ is the linear predictor of the covariates, where zij is covariates of

an individual (i, j) and β is a p2-dimensional vector representing the effects of covariates on the

survival model component. S0(t|α) is the baseline survival function corresponding to h0(t|α) and α

is the parameter vector of the baseline functions. Note that different distributions will be obtained

if we take different baseline functions. In this paper, we consider two different distributions for

the baseline functions. Firstly, we assume the baseline hazard function h0(t|α) = αtα−1, thus Ycij’s

follow a Weibull distribution with its p.d.f. f(t|φ) = αtα−1 exp(λij − tαeλij), where α > 0 is a

shape parameter and eλij is a scale parameter. In this case, we called the functions (3.2) and (3.3)

by Weibull geometric cure rate (WGCR) model and Complementary Weibull geometric cure rate

(CWGCR) model, respectively.

Secondly, we assume that the baseline functions have the piecewise exponential distribution.

Let the vector a = (a0, a1, . . . , aQ−1) with 0 = a0 < a1 < . . . < aQ−1 <∞ be a finite partition of time

axis and αq be the hazard rate of qth interval of intervals (0, a1], . . . , (aQ−1,∞], for q = 1, . . . , Q, so

the baseline survival function has expression

S0(t|α) = exp
−

Q∑
q=1

αq∆q(t)
 , t > 0, (3.9)

where

∆q(t) =


0, if t < aq−1;

t− aq−1 if aq−1 ≤ t < aq, q = 1 . . . ,Q.

aq − aq−1 if t ≥ aq.

Note that if αi = α for all i = 1, . . . , Q, we have an exponential distribution with a parameter α as
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the particular case. Moreover, if we partition the time axis 0 = a0 < a1 < . . . < aQ−1 < ∞, so that

they denote the ordered distinct time points of all observed interval end points, then we have tq = aq

for q = 0, . . . , Q. Now, the survival function can be written as

S0(tq|α) =


1, q = 0

exp {−∑q
k=1 αk(ak − ak−1)} , q = 1, . . . , Q− 1

0, q = Q,

(3.10)

where αq(aq − aq−1) ≥ 0, q = 1, . . . , Q. Here, we called the function (3.2) by PH Geometric cure rate

(PHGCR) model and (3.3) by Complementary PH Geometric cure rate (CPHGCR) model.

Now, we will introduce the frailties Ui and Vi to better explain the effect of survival time of

susceptible individuals and on the cured probability through linear predictor expression

λij = z′ijβ + Ui,

ξij = x′ijb+ Vi, for j = 1 . . . , ni, i = 1, . . . , I.

Here, the frailties Ui and Vi must be spatially correlated across the regions. In this work we propose

two approaches, the first we employ separate independent conditionally auto-regressive (CAR) prior

distribution on (U ,V ). The other one we assuming the spatial priors on (U ,V ) are dependent, and

they have multivariate conditionally auto-regressive MCAR prior distribution, where the CAR and

MCAR distributions were presented in Section 2.5.3 in detail.

3.1.1 Bayesian Inference

Let Dobs = {(Aij,xij, zij, δij); j = 1, . . . , ni, i = 1, . . .M} denote the observed data, where

Aij = (tijL, tijR] is the interval during which individual j in cluster i occurs the event of interest,

xij and zij are the p1−dimencional and p2−dimencional vectors of covariates, and δij is following

interval censoring indicador: δij = I(tijR < ∞). For the spacial case in which the survival time is

right-(left-) censored, Rij = +∞(Lij = 0), whereas for exact observations, tijL = tijR. Following

Finkelstein(1986), the likelihood function for the general interval-censored cure rate model is given

by

L(ϕ|D,U ,V ) ∝
I∏
i=1

ni∏
j=1

(Spop(tijL|ϕ)− Spop(tijR|ϕ))δij Spop(tijL|ϕ)1−δij

∝
I∏
i=1

ni∏
j=1

Spop(tijL|ϕ)
(

1− Spop(tijR|ϕ, )
Spop(tijL|ϕ)

)δij
, (3.11)
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where ϕ = (b,β,α), α is the shape parameter of the Weibull distribution for the first model with

unitary size and it is the risk parameter vector for the second model with size Q. For a Bayesian

analysis, we assume the following prior densities for parameters b>, β> and α

• bj ∼ N(µb, σ2
b ), j = 0, . . . , (p1− 1), with µb and σb known ;

• βj ∼ N(µβ, σ2
β), j = 1, . . . , p2, with µβ and σβ known;

• αi ∼ N(µα, σ2
α)I(0,∞), with µα and σα known, i = 1 for first model and i = 1, . . . Q for second

model;

where N(µ, σ2)I(a,b) denotes the truncated normal distribution which is the probability distribution

of a normally distributed random variable whose value lies within the interval −∞ ≤ a < b ≤ ∞.

To express vague priors, we consider µb = µβ = µη = µα = 0 with large values of σ2
b , σ2

β and σ2
α. In

several areas, special in medicine, it is preferable to use the prior information when they are available.

Moreover, it is worth mentioning that using a truncated normal distribution as prior facilitates the

insertion of information in certain regions of the parameter space, since the hyperparameters no

longer represent the mean and variance but still control the region of higher probability mass.

Independent assumption

For the independent assumption, we employ separate independent CAR priors on the random

frailties U = (U1, . . . , UI)> and V = (V1, . . . , VI)>, that is,

• U1, . . . , UI ∼ CAR(θ1);

• V1, . . . , VI ∼ CAR(θ2);

where θ1 and θ2 are positive unknown hyper-parameters, and we assume they have Inverse-Gamma

prior with the known shape parameter a0 > 0 and scale parameter b0 > 0. the joint posterior

distribution for the parameters is given

π(ϕ, θ1, θ2|Dobs) ∝ L(ϕ|Dobs,U ,V )π(U |θ1)π(V |θ2)π(ϕ, θ1, θ2),

where π(ϕ, θ1, θ2) = π(b)π(β)π(α)π(θ1)π(θ2) and L(ϕ|D) is the likelihood function given in (3.11).

Note that, this joint posterior density is analytically intractable. So, we based our inference on the

Markov chain Monte Carlo (MCMC) simulation methods. We can observed that the full conditional

distributions for parameters b,β,α,U and V have not closed forms, thus we will use the Metropolis-

Hastings algorithm to generate posterior samples for these parameter. To avoid range restrictions on
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the parameters αi’s, we define ζi = log(αi) for i = 1, 2, . . . , Q, to transform all parameters space to

real space (necessary to work with Gaussian proposal densities). Let ϑ = (b,β, ζ, θ1, θ2), according

for the Jacobian of this transformation, the joint prior density π(ϑ) has expression

π(ϑ) = π(ϕ, θ1, θ2)× exp
 Q∑
i=1

ζi

 , (3.12)

where ϕ = (b,β, ζ−1), ζ−1 denote inverse function of ζ, i.e., ζ−1 =
{
ζ−1
i = exp(ζi), i = 1 . . . , Q

}
.

On the other hand, the full conditional distributions for parameters θi’s are given

π(θi|ϑ−θi ,Dobs) ∝ π(ψi|θi)π(θi)

∝ (θi)−k/2 exp
(
− 1

2θi
ψ>i (DW −W )ψi

)
θ−a0−1
i exp(−b0θ

−1
i )

∝ θ
−(a0+ k

2 )−1
i exp

{
−
(
ψ>i (DW −W )ψi

2 + b0

)
θ−1
i

}
, i = 1, 2

where ψ1 = U , ψ2 = V and k is the rank of the matrix DW −W . Thus, the full conditional

distributions of the parameter θi is an Inverse-Gamma distribution with parameters a0 + k
2 e b0 +

1
2 (ψ′i(DW −W )ψi). In this case, the Gibbs sampler algorithm (see Gamerman & Lopes, 2006) is

used to generate a posteriori sample.

Thus, the joint posterior density of π(ϑ|Dobs) is proportional to

L(ϕ|Dobs,U ,V ) exp
{
−1

2

[
σ−2
b

p1−1∑
i=0

b2
i + σ−2

β

p2∑
i=1

β2
i +

Q∑
i=1

exp(2ζi)
σ2
α

+ U>(DW −W )U
θ1

+ V >(DW −W )V
θ2

]
− (a0 + 1) (log(θ1) + log(θ2))−

(
b0

θ1
+ b0

θ2

)
+

Q∑
i=1

ζi

}
.

Dependent assumption

Now we assume that the spatial priors on the parameters (U ,V ) are dependent on each

other. Let ψ = (U>,V >)>, we first employ of the parameter ψ has a MCAR distribution with a

common smoothness parameter a, i.e.,

ψ ∼MCAR(a,Λ).
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Further, we assume the parameter ψ has a extended MCAR distribution which assuming the different

smoothness parameters for the parameters U and V , say a1 and a2, that is,

ψ ∼MCAR(a1, a2,Λ).

The prior distributions for a and Λ are given by

• ai ∼ Uniform(0, 1) or ai ∼ Beta(18, 2), for i,

• Λ ∼Wishart(n0,Λ0), with n0 and Λ0 known,

where i=1 for ψ ∼ MCAR(a,Λ) and i=1,2 for ψ ∼ MCAR(a1, a2,Λ)). The prior distributions for

the parameter ai is used by Banerjee & Carlin (2004), in which ai ∼ Uniform(0, 1) is a non-informative

prior, and ai ∼ Beta(18, 2) is an informative prior with E[ai] = 0.9 and V ar[ai] = 0.004285; On the

other hand, the prior distribution for the parameter Λ is used not only by Carlin & Banerjee (2003)

but also by Gelfand & Vounatsou (2003) and Banerjee & Carlin (2004). They suggested that n0

can take value as the dimension of matrix Λ. However, Gelfand & Vounatsou (2003) and Banerjee

& Carlin (2004) considered Λ0 equals I and 0.01I in their papers, respectively, where I denote a

identity matrix. Both authors also commented that they had no prior knowledge regarding the nature

or extent of dependence for the parameter Λ. Note that Λ−1 describe the relative variability and

covariance relationship between the different diseases given the neighboring site. Thus, if Λ0 = 0.01I,

we assumed high relative variability between neighborhoods and we assumed low relative variability

between neighborhoods if Λ0 = I. Thus, it is necessary to conduct a prior study for the parameter

Λ0 to verify the influence of Λ0 in the estimation, in order to have a value for appropriate Λ0.

To avoid range restrictions on the parameters ai, considering the transformations ρi =

log(ai/(1− ai)) ∈ R, then, the joint posterior density is given by

π(ϑ|Dobs) ∝ L(ϕ|Dobs,ψ) exp
−1

2

σ−2
b

p1∑
i=0

b2
i + σ−2

β

p2∑
i=1

β2
i +

Q∑
i=1

exp(2ζi)
σ2
α


+ ψ> [Λ⊗ (DW − aW )]ψ + log |Λ⊗ aW |+ n0 − 4

2 log |Λ| − 1
2tr(Λ

−1
0 Λ)

+ +
Q∑
i=1

ζi

 π(ρ),

where ϕ = (b,β, ζ−1) and π(ρi) = 1 if ai ∼ Uniform(0, 1) and π(ρi) = 1
B(18,2)

exp(17ρi)
(1+exp(ρi))18 if ai ∼

Beta(18, 2), where B(18, 2) = 17!
18! = 1

18 .

This joint posterior density is analytically intractable. So, we based our inference on the

Markov chain Monte Carlo (MCMC) simulation methods. We can observed that the full conditional
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distributions for parameters b,β, ζ,ψ and ρ have not closed forms, thus we will use the Metropolis-

Hastings algorithm to generate a posteriori samples for these parameter. However, the Gibbs sampler

algorithm is used to generate a posteriori sample for the parameter Λ, because its the full conditional

distribution has a closed form. The full conditional distribution π(Λ|ϑ(−Λ),Dobs)) is proportional to

π(ψ|Λ,a)π(Λ)

∝ |Λ⊗DW − aW |1/2 exp
(
−1

2ψ
>(DW − aW )ψ

)
|Λ|(n0−4)/2 exp

(
−1

2tr(Λ
−1
0 Λ)

)
∝ |Λ|(I+n0−4)/2 exp

(
−1

2tr((Λ
−1
0 +B)Λ)

)
, (3.13)

where

B =

tr(R1U(R1U )>) tr(R1U(R2V )>)

tr(R2V (R1U)>) tr(R2V (R2V )>)


Thus, the full conditional distribution for Λ can be taken the Wishart distribution with scala matrix

(Λ−1
0 +B)−1 and degrees of freedom I + n0.

3.1.2 Simulation study

In this section we present simulation studies for WGCR model, CWGCR model, PHGCR

model and CPHGCR model with the dependent assumption in order to examine the theirs perfor-

mances. The interval-censored survival times (tijL, tijR, δij) with the cure fraction under the first and

last activations are generated in a manner similar to that employed by Yau & Ng (2001) with some

modifications.

First, we generate latent Geometric variable Mij, which denote the initial number of com-

peting causes related to the event, with parameter p0ij = [1 + exp(−(b0 + b1)xij + vi)]−1 for the jth

individual in the ith region, j = 1, . . . , ni, i = 1, . . . , I, where covariate xij follows Bernoulli(0.5)

distribution. Interval-censored data (tijL, tijR, δij) are then generated as follows:

(i) If Mij = 0, then let tij = tijL from the exponential distribution with hazard rate 10 and let

censoring indicator δij = 0.

(ii) If Mij > 0, then

• we generate Mij latent Weibull variables with parameter α and λij = (βxij + ui), if Ycij’s

has the Weibull distribution;

• or we generate Mij latent Exponential variables with hazard rate αλij = α(βxij + ui)), if

Ycij’s take the PH model.
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Let tij takes lowest generated variable in case of generating the variables of model under first

activation and tij takes largest generated variable in case of generating the variables of model

under last activation. The censoring variable cij is generated from U(0, cc), cc > 0 is fixed to

control the percentage of censored data. Let δij = 1 if tij ≤ cij and δij = 0 otherwise.

(iii) For δij = 0, let 0 < tijL < tijR =∞.

(iv) For δij = 1, we create lenij from distribution U(0.2, 0.7) and lij from U(0, 0.01). Then, from

(0, lij], (lij, lij + lenij], . . . , (lij + klenij,∞], k = 1, 2, . . . ,, (tijL,tijR ] is chosen as that satisfying

tijL < tij ≤ tijR.

In the simulation study, we consider I = 5 regions (Zip) with the corresponding adjacent matrix is

0 0 1 0 0

0 0 0 0 1

1 0 0 1 0

0 0 1 0 0

0 1 0 0 0


, the random effects ui and vi are generated from Normal distribution with mean

0 and precision matrix Λ⊗(DW − aW ), where W is standardized adjacent matrix so that each

of its rows sum to one, DW = Diag(1, 1, 2, 1, 1) is a diagonal matrix and we fixed a = 0.9 and

Λ = Diag(4, 4), i.e. we fixed Λ11 = 4, Λ22 = 4 and Λ12 = Λ21 = 0. We consider 100 individuals in the

simulation studies. The corresponding Zip codes for each individual was distributed using sample

with replace, thus the number of individuals in each region ni, i = 1 . . . , 5 are varied, that is, these

five regions could present different numbers of individuals with ∑5
i=1 ni = 100. Thus, we have sample

size n = 100 and we fixed the parameters b0 = −1.50, b1 = −0.50, β = −0.15, α = 0.30 for WGCR

and CWFCR models and α = 1.0 for PHGCR and CPHGCR models. In simulations, we consider

around 40 per cent of the censored data for each generated sample and 500 repeated samples are

simulated for each model. The priors for the parameters b0, b1, β1 and α used in the studies, are

b0 ∼ N(0, 32), b1 ∼ N(0, 32), β1 ∼ N(0, 32), and α ∼ N(0, 102)I(0,∞).

For each generated data set we simulate one chain of size 10000 for each parameter, disre-

garding the first 1000 iterations to eliminate the effect of the initial values and to avoid correlation

problems and thinning to every third iteration, thus obtaining a effective sample of size 3000 upon

which the posterior is based on. To evaluate the performance of the parameter estimates, the average

bias (Bias), standard deviation (SD) of the estimate, average standard deviation (SDs mean) and

mean square error (MSE) are calculated for the fitted models, the summaries are presented in Table

3.17 and 3.18. We can note that the bias and MSE of parameter Λ12 are lager than others in all

fitting models. The estimator of Λ12 presents a negative biases for WGCR and PHGCR models and

it presents a positive biases for the complementary cure rate models, however its biases and MSEs
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are always near zero. Moreover, the simulation results for the cure rate models considering the prior

1 very close to those obtained considering the prior 2.

Table 3.1: Simulation results for WGCR and CWGCR models with depended spatial fragilities

WGCR Model

Parameter True value Estimate mean SD of the estimate Bias MSE SDs mean
Prior 1: ψ ∼ MCAR(a,Λ), a ∼ Beta(18, 2), Λ0 ∼Wishart(2,Diag(0.9, 1))

b0 -1.50 -1.4812 0.0708 0.0188 0.0054 0.2685
b1 -0.50 -0.5209 0.1280 -0.0209 0.0168 0.2485
β -0.15 -0.1360 0.0466 0.0140 0.0024 0.1915
α 0.30 0.1930 0.0521 -0.1070 0.0142 0.0677

Λ11 4.00 4.0062 0.1597 0.0062 0.0255 2.4728
Λ22 4.00 4.0120 0.1918 0.0120 0.0369 2.6151
Λ12 0.00 -0.4541 0.1343 -0.4541 0.2242 1.9196
a 0.90 0.9001 0.0016 0.0001 0.0000 0.0653

Prior 2: ψ ∼ MCAR(a,Λ), a1, a2 ∼ Beta(18, 2), Λ0 ∼Wishart(2,Diag(0.9, 1))
b0 -1.50 -1.4902 0.0701 0.0098 0.0050 0.2583
b1 -0.50 -0.5376 0.1330 -0.0376 0.0191 0.2227
β -0.15 -0.1295 0.0493 0.0205 0.0028 0.1870
α 0.30 0.1863 0.0443 -0.1137 0.0149 0.0536

Λ11 4.00 4.1638 0.1676 0.1638 0.0549 2.5070
Λ22 4.00 4.2657 0.1819 0.2657 0.1036 2.6919
Λ12 0.00 -0.5809 0.1472 -0.5809 0.3591 1.9647
a1 0.90 0.8999 0.0015 -0.0002 0.0000 0.0655
a2 0.90 0.9002 0.0015 0.0002 0.0000 0.0654

CWGCR Model

Parameter True value Estimate mean SD of the estimate Bias MSE SDs mean
Prior 1: ψ ∼ MCAR(a,Λ), a ∼ Beta(18, 2), Λ0 ∼Wishart(2,Diag(0.85, 1))

b0 -1.50 -1.4814 0.0552 0.0186 0.0034 0.2697
b1 -0.50 -0.4285 0.1003 0.0715 0.0152 0.2726
β -0.15 -0.1352 0.0918 0.0148 0.0086 0.1438
α 0.30 0.4089 0.0519 0.1089 0.0145 0.0620

Λ11 4.00 4.1665 0.3941 0.1665 0.1827 2.3424
Λ22 4.00 3.9432 0.1946 -0.0568 0.0410 2.6040
Λ12 0.00 0.2061 0.2249 0.2061 0.0929 1.8821
a 0.90 0.8999 0.0016 -0.0001 0.0000 0.0658

Prior 2: ψ ∼ MCAR(a,Λ), a1, a2 ∼ Beta(18, 2), Λ0 ∼Wishart(2,Diag(0.85, 1))
b0 -1.50 -1.4852 0.0585 0.0148 0.0036 0.2697
b1 -0.50 -0.4329 0.1063 0.0671 0.0158 0.2728
β1 -0.15 -0.1340 0.0905 0.0161 0.0084 0.1441
α 0.30 0.4095 0.0530 0.1095 0.0148 0.0619

Λ11 4.00 4.2048 0.4139 0.2048 0.2130 2.3612
Λ22 4.00 3.9361 0.1967 -0.0639 0.0427 2.5979
Λ12 0.00 0.2176 0.2215 0.2176 0.0963 1.8797
a1 0.90 0.9003 0.0016 0.0003 0.0000 0.0653
a2 0.90 0.9001 0.0015 0.0001 0.0000 0.0652
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Table 3.2: Simulation results for PHGCR model and CPHGCR model with depended spatial fragili-
ties

PHGCR Model

Parameter True value Estimate mean SD of the estimate Bias MSE SDs mean
Prior 1: ψ ∼ MCAR(a,Λ), a ∼ Beta(18, 2), Λ0 ∼Wishart(2,Diag(0.9, 1))

b0 -1.50 -1.6441 0.0515 -0.1441 0.0234 0.2710
b1 -0.50 -0.5215 0.1179 -0.0215 0.0143 0.2482
β -0.15 -0.1538 0.0479 -0.0038 0.0023 0.1877
α 1.00 1.1920 0.0382 0.1920 0.0370 0.1396

Λ11 4.00 4.2224 0.1479 0.2224 0.0713 2.5349
Λ22 4.00 3.9272 0.1801 -0.0728 0.0377 2.5894
Λ12 0.00 -0.4142 0.1420 -0.4142 0.1917 1.9325
a 0.90 0.8999 0.0015 -0.0001 0.0000 0.0655

Prior 2: ψ ∼ MCAR(a1, a2,Λ), a1, a2 ∼ Beta(18, 2), Λ0 ∼Wishart(2,Diag(0.9, 1))
b0 -1.50 -1.6418 0.0464 -0.1418 0.0222 0.2710
b1 -0.50 -0.5146 0.1231 -0.0146 0.0153 0.2491
β -0.15 -0.1552 0.0502 -0.0052 0.0025 0.1875
α 1.00 0.8980 0.0612 -0.1020 0.1900 0.0100

Λ11 4.00 4.2411 0.1471 0.2411 0.0797 2.5337
Λ22 4.00 3.9259 0.1915 -0.0741 0.0421 2.5853
Λ12 0.00 -0.4153 0.1437 -0.4153 0.1931 1.9307
a1 0.90 0.9001 0.0016 0.0001 0.0000 0.0655
a2 0.90 0.9000 0.0016 0.0000 0.0000 0.0653

CPHCRM

Parameter True value Estimate mean SD of the estimate Bias MSE SDs mean
Prior 1: ψ ∼ MCAR(a,Λ), a ∼ Beta(18, 2), Λ0 ∼Wishart(2,Diag(0.75, 1))

b0 -1.50 -1.6533 0.0852 -0.1533 0.0308 0.2635
b1 -0.50 -0.5056 0.0998 -0.0056 0.0100 0.2652
β -0.15 -0.1298 0.0933 0.0202 0.0091 0.1323
α 1.00 0.9090 0.0408 -0.0910 0.1770 0.0850

Λ11 4.00 4.2564 0.2096 0.2564 0.1096 2.3576
Λ22 4.00 3.7852 0.3098 -0.2148 0.1420 2.5456
Λ12 0.00 0.3803 0.1762 0.3803 0.1756 1.7807
a 0.90 0.9001 0.0016 0.0001 0.0000 0.0653

Prior 2: ψ ∼ MCAR(a1, a2,Λ), a1, a2 ∼ Beta(18, 2), Λ0 ∼Wishart(2,Diag(0.75, 1))
b0 -1.50 -1.6518 0.0867 -0.1518 0.0306 0.2657
b1 -0.50 -0.5190 0.1084 -0.0190 0.0121 0.2656
β -0.15 -0.1373 0.1006 0.0127 0.0103 0.1325
α 1.00 0.9200 0.0407 -0.0800 0.1800 0.0600

Λ11 4.00 4.0064 0.2029 0.0064 0.0411 2.2193
Λ22 4.00 3.7107 0.3010 -0.2893 0.1741 2.4853
Λ12 0.00 0.3619 0.1646 0.3619 0.1580 1.7052
a1 0.90 0.9002 0.0015 0.0002 0.0000 0.0654
a2 0.90 0.8996 0.0017 -0.0004 0.0000 0.0655
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Influence of outlying observations

One of our main goals in this study is to show the need for robust models to deal with the

presence of outliers in the data. Considering the same the parameter values and setup as above

and two cases for perturbation, thus eight data sets of size 100 were generated from the WGCR,

CWGCR, PHGCR and CPHGCR models with depended spatial fragilities.

We selected cases 18 and 80 for perturbation. To create influential observation in the data

set, we choose one or two of these selected cases and perturbed the response variable as follows

t̃kL = tkL + 10SL and t̃kR = tkR + 10SL, for k = 1 and 18, where SL is the standard deviations

of the tijL’s. Note that using this kind of perturbation, the interval of observed interval time of

perturbation candidate observation is not charged. Here, we considere four setups in the study.

Setup A: original dataset, without outliers; Setup B: data with outlier 18; Setup C: data with outlier

80; and Setup D: data with outliers 18 and 80. The MCMC computations were made similar to

those in the last section and further to monitor the convergence of the Gibbs samples we used the

Geweke’s convergence diagnostic proposed por Geweke (1992).

Tables 3.3, 3.4, 3.5 and 3.6 reports posterior mean, standard deviation (SD), bias and mean

square error (MSE) of the parameters of WGCR, CWGCR, PHGCR and CPHGCR models, respec-

tively. For WGCR model, Table 3.3 shows that the estimative of parameter Λ11 creasing in the

perturbation cases when prior 1 is used. On the other way, considering prior 2 for the parameters,

the estimative of all parameters of cases B, C and D are very closed the case A, which means the

parameters are not sensitive to perturbations. It also can be observed on the Table 3.4. For PHGCR

model, Table 3.5 shows that parameter Λ11 is litter sensitive to perturbations. The estimative of Λ11

decreasing in the perturbation cases when considering prior 1 or prior 2 for the parameters and it

is more sensitive using prior 1 then prior 2. For CPHGCR model, considering prior 1 Λ11 is litter

sensitive in cases C and D and Λ12 is sensitive in case B; considering prior 2 Λ11 is litter sensitive in

cases B and C and Λ12 is sensitive in cases B and D. This results can be observed on Table 3.6.

For each simulated data set the four divergence measures (dKL, dJ , dL1 , dχ2) of the perturbed

cases and DIC values for the proposed cure rate models were calculated and reported in Table 3.7.

We can see that all measures providing larger ψ-divergence measures when compared to the non-

perturbed setup (setup A) and the difference between the measures of perturbed case and non-

perturbed case is more clearly for PH Geometric cure rate models than Weibull Geometric cure

rate models. Furthermore, we can observed that the values of the measures from the cure models

wheatear considering the prior 1 or prior 2 for the parameters are similarly. To show better the

results, we ploted the ψ-divergence measure from the fitted models. The Figures 3.1 to 3.32 show
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the divergence measures before the perturbation (setup A), the model indicate the absence outline

observations, and after perturbation observations (setups B, C and D).

For WGCR model with prior 1, we note that the observation 18 cannot be easy detected by

all four divergence measure, and observation 80 just be detected by J−distance and χ2 divergence.

It also can be observed for the WGCR model with prior 2, moreover, in this case, observation 80

just be detected by χ2 divergence. For CWGCR model with prior 1, we note that the observation 18

cannot be easy detected when both observations were perturbed (setup D). The both perturbation

observations were detected by χ2 divergence, other three measure only detected observations 80. For

CWGCR model with prior 2, we note that the both perturbation observations did not be detected

by KL divergence and L1 norm distance when both observations were perturbed. The J−distance

was detected only the observation 80, however the both perturbation observations were detected by

χ2 divergence. All perturbation observations selected can be detected by all four divergence measure

for PHGCR and CPHGCR models with prior 1 or 2. We also note that the χ2 divergence is a little

bit sensitive for CPHGCR model with both priors, indeed a non-perturbed observation was detected

in setup A in Figure 3.31 and 3.32.
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Table 3.3: Simulation results of the perturbed cases for WGCR model

Prior 1 Prior 2
Setup Perturbed

case Parameters Mean SD Bias MSE Parameters Mean SD Bias MSE

A None

b0 -1.482 0.278 0.018 0.000 b0 -1.341 0.277 0.159 0.025
b1 -0.859 0.259 -0.359 0.129 b1 -0.554 0.248 -0.054 0.003
β -0.036 0.193 0.114 0.013 β -0.105 0.197 0.045 0.002
α 0.228 0.068 -0.072 0.005 α 0.112 0.072 -0.188 0.035

Λ11 4.172 2.533 0.172 0.030 Λ11 4.052 2.486 0.052 0.003
Λ22 4.152 2.693 0.152 0.023 Λ22 4.012 2.636 0.012 0.000
Λ12 -0.502 1.945 -0.502 0.252 Λ12 -0.540 1.905 -0.540 0.291
a 0.902 0.064 0.002 0.000 a1 0.899 0.068 -0.001 0.000

a2 0.899 0.067 -0.001 0.000

B {18}

b0 -1.526 0.263 -0.026 0.001 b0 -1.572 0.275 -0.072 0.005
b1 -0.439 0.253 0.061 0.004 b1 -0.622 0.260 -0.122 0.015
β -0.155 0.189 -0.005 0.000 β -0.099 0.190 0.051 0.003
α 0.231 0.061 -0.069 0.005 α 0.332 0.073 0.032 0.001

Λ11 4.057 2.433 0.057 0.003 Λ11 4.056 2.494 0.056 0.003
Λ22 3.947 2.630 -0.053 0.003 Λ22 3.913 2.561 -0.087 0.008
Λ12 -0.497 1.904 -0.497 0.247 Λ12 -0.406 1.991 -0.406 0.164
a 0.900 0.065 0.000 0.000 a1 0.899 0.065 -0.001 0.000

a2 0.900 0.065 0.000 0.000

C {80}

b0 -1.510 0.275 -0.010 0.000 b0 -1.524 0.263 -0.024 0.001
b1 -0.586 0.257 -0.086 0.007 b1 -0.679 0.264 -0.179 0.032
β -0.139 0.194 0.011 0.000 β -0.083 0.193 0.067 0.005
α 0.255 0.082 -0.045 0.002 α 0.235 0.078 -0.065 0.004

Λ11 3.832 2.406 -0.168 0.028 Λ11 4.018 2.386 0.018 0.000
Λ22 3.535 2.423 -0.465 0.216 Λ22 3.919 2.649 -0.081 0.007
Λ12 -0.115 1.835 -0.115 0.013 Λ12 -0.302 1.969 -0.302 0.091
a 0.900 0.063 0.000 0.000 a1 0.899 0.064 -0.001 0.000

a2 0.900 0.068 0.000 0.000

D {18,80}

b0 -1.460 0.259 0.040 0.002 b0 -1.599 0.266 -0.099 0.010
b1 -0.348 0.248 0.152 0.023 b1 -0.316 0.246 0.184 0.034
β -0.203 0.189 -0.053 0.003 β -0.208 0.191 -0.058 0.003
α 0.187 0.059 -0.113 0.013 α 0.253 0.061 -0.047 0.002

Λ11 4.205 2.569 0.205 0.042 Λ11 4.259 2.541 0.259 0.067
Λ22 4.086 2.634 0.086 0.007 Λ22 4.002 2.549 0.002 0.000
Λ12 -0.515 1.971 -0.515 0.265 Λ12 -0.588 1.946 -0.588 0.346
a 0.900 0.064 0.000 0.000 a2 0.901 0.065 0.001 0.000

a2 0.898 0.068 -0.002 0.000
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Table 3.4: Simulation results of the perturbed cases for CWGCR model

Prior 1 Prior 2
Setup Perturbed

case Parameters Mean SD Bias MSE Parameters Mean SD Bias MSE

A None

b0 -1.475 0.269 0.025 0.001 b0 -1.499 0.272 0.001 0.000
b1 -0.498 0.255 0.002 0.000 b1 -0.446 0.260 0.054 0.003
β -0.066 0.136 0.084 0.007 β -0.005 0.139 0.145 0.021
α 0.323 0.052 0.023 0.001 α 0.384 0.060 0.084 0.007

Λ11 3.880 2.207 -0.120 0.014 Λ11 3.905 2.214 -0.095 0.009
Λ22 4.080 2.738 0.080 0.006 Λ22 4.040 2.636 0.040 0.002
Λ12 0.308 1.884 0.308 0.095 Λ12 0.243 1.908 0.243 0.059
a 0.902 0.065 0.002 0.000 a1 0.903 0.064 0.003 0.000

a2 0.901 0.064 0.001 0.000

B {18}

b0 -1.548 0.254 -0.048 0.002 b0 -1.445 0.282 0.055 0.003
b1 -0.276 0.265 0.224 0.050 b1 -0.400 0.283 0.100 0.010
β -0.019 0.141 0.131 0.017 β -0.141 0.143 0.009 0.000
α 0.389 0.056 0.089 0.008 α 0.306 0.050 0.006 0.000

Λ11 4.611 2.517 0.611 0.373 Λ11 4.125 2.333 0.125 0.016
Λ22 4.127 2.613 0.127 0.016 Λ22 3.623 2.456 -0.377 0.142
Λ12 0.451 1.919 0.451 0.204 Λ12 0.354 1.840 0.354 0.125
a 0.899 0.065 -0.001 0.000 a1 0.900 0.066 0.000 0.000

a2 0.901 0.063 0.001 0.000

C {80}

b0 -1.523 0.265 -0.023 0.001 b0 -1.529 0.279 -0.029 0.001
b1 -0.523 0.270 -0.023 0.001 b1 -0.468 0.272 0.032 0.001
β -0.059 0.135 0.091 0.008 β -0.127 0.138 0.023 0.001
α 0.375 0.056 0.075 0.006 α 0.388 0.060 0.088 0.008

Λ11 4.515 2.545 0.515 0.265 Λ11 3.727 2.112 -0.273 0.075
Λ22 4.139 2.709 0.139 0.019 Λ22 3.765 2.471 -0.235 0.055
Λ12 0.416 1.980 0.416 0.173 Λ12 0.158 1.837 0.158 0.025
a 0.901 0.064 0.001 0.000 a1 0.900 0.065 0.000 0.000

a2 0.902 0.063 0.002 0.000

D {18,80}

b0 -1.514 0.268 -0.014 0.000 b0 -1.582 0.271 -0.082 0.007
b1 -0.458 0.268 0.042 0.002 b1 -0.485 0.268 0.015 0.000
β -0.032 0.151 0.118 0.014 β -0.111 0.141 0.039 0.002
α 0.357 0.049 0.057 0.003 α 0.329 0.048 0.029 0.001

Λ11 4.750 2.618 0.750 0.563 Λ11 3.964 2.240 -0.036 0.001
Λ22 4.053 2.627 0.053 0.003 Λ22 4.127 2.698 0.127 0.016
Λ12 0.306 1.930 0.306 0.094 Λ12 0.417 1.889 0.417 0.174
a 0.900 0.065 0.000 0.000 a1 0.900 0.066 0.000 0.000

a2 0.902 0.063 0.002 0.000
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Table 3.5: Simulation results of the perturbed cases for PHGCR model

Prior 1 Prior 2
Setup Perturbed

case Parameters Mean SD Bias MSE Parameters Mean SD Bias MSE

A None

b0 -1.456 0.270 0.044 0.002 b0 -1.670 0.267 -0.170 0.029
b1 -0.431 0.249 0.069 0.005 b1 -0.611 0.241 -0.111 0.012
β -0.176 0.182 -0.026 0.001 β -0.156 0.177 -0.006 0.000
α 1.192 0.137 0.192 0.037 α 0.898 0.190 -0.102 0.010

Λ11 4.275 2.500 0.275 0.075 Λ11 3.840 2.348 -0.160 0.026
Λ22 3.927 2.568 -0.073 0.005 Λ22 4.058 2.688 0.058 0.003
Λ12 -0.363 1.951 -0.363 0.132 Λ12 -0.637 1.917 -0.637 0.405
a 0.898 0.070 -0.002 0.000 a1 0.901 0.064 0.001 0.000

a2 0.902 0.064 0.002 0.000

B {18}

b0 -1.348 0.278 0.152 0.023 b0 -1.387 0.250 0.113 0.013
b1 -0.436 0.233 0.064 0.004 b1 -0.337 0.251 0.163 0.026
β -0.207 0.184 -0.057 0.003 β -0.193 0.191 -0.043 0.002
α 0.912 0.095 -0.088 0.008 α 0.797 0.205 -0.203 0.041

Λ11 3.137 2.021 -0.863 0.745 Λ11 3.240 2.181 -0.760 0.577
Λ22 4.050 2.661 0.050 0.003 Λ22 4.302 2.828 0.302 0.091
Λ12 -0.300 1.776 -0.300 0.090 Λ12 -0.161 1.867 -0.161 0.026
a 0.903 0.065 0.003 0.000 a1 0.899 0.066 -0.001 0.000

a2 0.899 0.065 -0.001 0.000

C {80}

b0 -1.494 0.253 0.006 0.000 b0 -1.336 0.273 0.164 0.027
b1 -0.643 0.248 -0.143 0.020 b1 -0.193 0.247 0.307 0.094
β -0.183 0.186 -0.033 0.001 β -0.148 0.193 0.002 0.000
α 1.112 0.112 0.112 0.012 α 0.866 0.198 -0.134 0.018

Λ11 3.101 2.049 -0.899 0.809 Λ11 3.419 2.174 -0.581 0.337
Λ22 4.221 2.637 0.221 0.049 Λ22 3.600 2.468 -0.400 0.160
Λ12 -0.532 1.831 -0.532 0.283 Λ12 -0.263 1.756 -0.263 0.069
a 0.900 0.065 0.000 0.000 a1 0.899 0.067 -0.001 0.000

a2 0.900 0.065 0.000 0.000

D {18,80}

b0 -1.498 0.276 0.002 0.000 b0 -1.526 0.277 -0.026 0.001
b1 -0.551 0.249 -0.051 0.003 b1 -0.343 0.243 0.157 0.025
β -0.136 0.188 0.014 0.000 β -0.302 0.185 -0.152 0.023
α 1.029 0.099 0.029 0.001 α 0.761 0.216 -0.239 0.057

Λ11 2.821 1.858 -1.179 1.389 Λ11 3.190 2.045 -0.810 0.656
Λ22 4.276 2.734 0.276 0.076 Λ22 4.160 2.698 0.160 0.026
Λ12 -0.428 1.791 -0.428 0.183 Λ12 -0.661 1.799 -0.661 0.437
a 0.905 0.067 0.005 0.000 a1 0.900 0.064 0.000 0.000

a2 0.898 0.067 -0.002 0.000
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Table 3.6: Simulation results of the perturbed cases for CPHGCR model

Prior 1 Prior 2
Setup Perturbed

case Parameters Mean SD Bias MSE Parameters Mean SD Bias MSE

A None

b0 -1.679 0.268 -0.179 0.032 b0 -1.840 0.290 -0.340 0.116
b1 -0.492 0.271 0.008 0.000 b1 -0.600 0.263 -0.100 0.010
β -0.226 0.132 -0.076 0.006 β -0.177 0.119 -0.027 0.001
α 0.909 0.177 -0.091 0.008 α 0.920 0.180 -0.080 0.006

Λ11 4.258 2.370 0.258 0.067 Λ11 4.351 2.449 0.351 0.123
Λ22 3.880 2.560 -0.120 0.014 Λ22 2.980 2.239 -1.020 1.040
Λ12 0.002 1.774 0.002 0.000 Λ12 -0.054 1.594 -0.054 0.003
a 0.902 0.066 0.002 0.000 a1 0.901 0.066 0.001 0.000

a2 0.902 0.065 0.002 0.000

B {18}

b0 -1.678 0.267 -0.178 0.032 b0 -1.646 0.263 -0.146 0.021
b1 -0.599 0.252 -0.099 0.010 b1 -0.369 0.266 0.131 0.017
β -0.384 0.124 -0.234 0.055 β -0.230 0.138 -0.080 0.006
α 0.918 0.179 -0.082 0.007 α 0.789 0.194 -0.211 0.045

Λ11 4.124 2.242 0.124 0.015 Λ11 3.180 1.937 -0.820 0.672
Λ22 3.743 2.440 -0.257 0.066 Λ22 3.798 2.552 -0.202 0.041
Λ12 0.259 1.742 0.259 0.067 Λ12 0.420 1.745 0.420 0.176
a 0.901 0.064 0.001 0.000 a1 0.899 0.068 -0.001 0.000

a2 0.900 0.066 0.000 0.000

C {80}

b0 -1.634 0.262 -0.134 0.018 b0 -1.716 0.271 -0.216 0.047
b1 -0.521 0.260 -0.021 0.000 b1 -0.401 0.263 0.099 0.010
β -0.231 0.123 -0.081 0.007 β -0.040 0.132 0.110 0.012
α 0.903 0.180 -0.097 0.009 α 0.850 0.184 -0.150 0.023

Λ11 3.972 2.205 -0.028 0.001 Λ11 3.464 1.970 -0.536 0.287
Λ22 3.928 2.642 -0.072 0.005 Λ22 3.779 2.531 -0.221 0.049
Λ12 0.130 1.793 0.130 0.017 Λ12 -0.040 1.623 -0.040 0.002
a 0.901 0.066 0.001 0.000 a1 0.900 0.066 0.000 0.000

a2 0.902 0.063 0.002 0.000

D {18,80}

b0 -1.643 0.275 -0.143 0.021 b0 -1.515 0.254 -0.015 0.000
b1 -0.444 0.270 0.056 0.003 b1 -0.305 0.246 0.195 0.038
β -0.041 0.134 0.109 0.012 β -0.161 0.137 -0.011 0.000
α 0.770 0.216 -0.230 0.053 α 0.806 0.192 -0.194 0.037

Λ11 2.547 1.553 -1.453 2.111 Λ11 3.708 2.101 -0.292 0.085
Λ22 3.958 2.529 -0.042 0.002 Λ22 4.303 2.689 0.303 0.092
Λ12 -0.038 1.707 -0.038 0.001 Λ12 0.350 1.774 0.350 0.122
a 0.901 0.065 0.001 0.000 a1 0.899 0.067 -0.001 0.000

a2 0.901 0.064 0.001 0.000



3.1. GEOMETRIC CURE RATE MODELS WITH SPATIAL FRAILTIES 59

Table 3.7: Divergence measures of the perturbed cases and DIC values for the simulated data sets.

Model Prior Setup Case number dKL dJ dL1 dχ2 DIC

WGCR

1

A 18 0.006 0.011 0.042 0.012 142.754
80 0.030 0.060 0.097 0.067

B 18 0.080 0.171 0.159 0.238 164.476
C 80 0.246 0.602 0.277 2.128 153.082

D 18 0.069 0.143 0.147 0.181 185.709
80 0.282 0.677 0.304 1.742

2

A 18 0.007 0.014 0.046 0.014 140.186
80 0.033 0.067 0.102 0.075

B 18 0.036 0.075 0.106 0.084 164.446
C 80 0.294 0.940 0.288 14.544 149.760

D 18 0.062 0.131 0.138 0.176 184.934
80 0.120 0.269 0.190 0.498

CWGCR

1

A 18 0.038 0.079 0.108 0.096 401.704
80 0.001 0.003 0.019 0.003

B 18 0.369 0.890 0.347 2.987 431.013
C 80 0.605 1.381 0.440 4.905 436.193

D 18 0.243 0.555 0.283 1.227 447.962
80 0.723 1.729 0.481 8.789

2

A 18 0.066 0.137 0.145 0.161 404.322
80 0.045 0.092 0.119 0.103

B 18 0.677 1.720 0.486 8.654 408.839
C 80 0.288 0.672 0.305 1.844 416.505

D 18 0.131 0.291 0.206 0.501 425.875
80 0.256 0.624 0.288 2.408

PHGCR

1

A 18 0.016 0.032 0.071 0.034 228.007
80 0.036 0.073 0.106 0.081

B 18 1.644 4.288 0.693 168.408 263.195
C 80 1.265 4.761 0.649 584.824 241.465

D 18 1.750 4.472 0.718 84.141 240.257
80 0.479 1.248 0.402 8.804

2

A 18 0.002 0.004 0.026 0.004 211.243
80 0.013 0.027 0.065 0.029

B 18 1.455 3.501 0.662 35.776 278.356
C 80 1.438 3.271 0.660 22.489 284.756

D 18 0.462 1.097 0.390 3.959 290.520
80 0.460 1.162 0.390 5.777

CPHGCR

1

A 18 0.018 0.037 0.076 0.040 387.037
80 0.025 0.050 0.086 0.057

B 18 2.727 5.539 0.788 73.127 427.090
C 80 3.659 7.131 0.845 110.592 452.871

D 18 2.087 4.366 0.726 34.092 483.157
80 4.358 9.412 0.900 648.576

2

A 18 0.011 0.023 0.059 0.023 423.219
80 0.025 0.052 0.090 0.057

B 18 3.790 7.791 0.870 199.173 446.544
C 80 3.347 6.929 0.829 164.743 470.571

D 18 3.880 8.238 0.870 365.590 477.539
80 3.829 8.759 0.883 595.102



60 CHAPTER 3. SPATIAL FRAILTY IN CURE RATE MODELS

WGCR model

(a) Setup A

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

Index

K
−

L 
di

ve
rg

en
ce

(b) Setup B

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

Index

K
−

L 
di

ve
rg

en
ce

18

(c) Setup C

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

Index

K
−

L 
di

ve
rg

en
ce 80

(d) Setup D

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

Index

K
−

L 
di

ve
rg

en
ce

80

Figure 3.1: Index plots of Kullback-Leibler divergence measure from the fitted of the WGCR model con-
sidering prior 1.
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Figure 3.2: Index plots of Kullback-Leibler divergence measure from the fitted WGCR model considering
prior 2.
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Figure 3.3: Index plots of J-distance from the fitted WGCR model considering prior 1.
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Figure 3.4: Index plots of J-distance from the fitted WGCR model considering prior 2.
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Figure 3.5: Index plots of L1 norm distance from the fitted WGCR model considering prior 1.
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Figure 3.6: Index plots of L1 norm distance from the fitted WGCR model considering prior 2.
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Figure 3.7: Index plots of χ2-square divergence from the fitted WGCR model considering prior 1.

(a) Setup A

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Index

χ2 −
di

ve
rg

en
ce

(b) Setup B

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Index

χ2 −
di

ve
rg

en
ce

(c) Setup C

0 20 40 60 80 100

0
5

10
15

Index

χ2 −
di

ve
rg

en
ce

80

(d) Setup D

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Index

χ2 −
di

ve
rg

en
ce

18

80

Figure 3.8: Index plots of χ2-square divergence from the fitted WGCR model considering prior 2.
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CWGCR model
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Figure 3.9: Index plots of Kullback-Leibler divergence measure from the fitted CWGCR model considering
prior 1.
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Figure 3.10: Index plots of Kullback-Leibler divergence measure from the fitted CWGCR model considering
prior 2.
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Figure 3.11: Index plots of J-distance from the fitted CWGCR model considering prior 1.
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Figure 3.12: Index plots of J-distance from the fitted CWGCR model considering prior 2.
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Figure 3.13: Index plots of L1 norm distance from the fitted CWGCR model considering prior 1.
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Figure 3.14: Index plots of L1 norm distance from the fitted CWGCR model considering prior 2.
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Figure 3.15: Index plots of χ2-square divergence from the fitted CWGCR model considering prior 1.
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Figure 3.16: Index plots of χ2-square divergence from the fitted CWGCR model considering prior 2.
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PHGCR model
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Figure 3.17: Index plots of Kullback-Leibler divergence measure from the fitted PHGCR model considering
prior 1.
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Figure 3.18: Index plots of Kullback-Leibler divergence measure from the fitted PHGCR model considering
prior 2.
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Figure 3.19: Index plots of J-distance from the fitted PHGCR model considering prior 1.
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Figure 3.20: Index plots of J-distance from the fitted PHGCR model considering prior 2.
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Figure 3.21: Index plots of L1 norm distance from the fitted PHGCR model considering prior 1.

(a) Setup A

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

Index

L 1
−

di
st

an
ce

(b) Setup B

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

Index

L 1
−

di
st

an
ce

18

(c) Setup C

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

Index

L 1
−

di
st

an
ce

80

(d) Setup D

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

Index

L 1
−

di
st

an
ce

18 80

Figure 3.22: Index plots of L1 norm distance from the fitted PHGCR model considering prior 2.
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Figure 3.23: Index plots of χ2-square divergence from the fitted PHGCR model considering prior 1.

(a) Setup A

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

Index

χ2 −
di

ve
rg

en
ce

22

(b) Setup B

0 20 40 60 80 100

0
10

20
30

40

Index

χ2 −
di

ve
rg

en
ce

18

(c) Setup C

0 20 40 60 80 100

0
5

10
15

20
25

Index

χ2 −
di

ve
rg

en
ce

80

(d) Setup D

0 20 40 60 80 100

0
1

2
3

4
5

6

Index

χ2 −
di

ve
rg

en
ce 18

80

Figure 3.24: Index plots of χ2-square divergence from the fitted PHGCR model considering prior 2.
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CPHGCR model
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Figure 3.25: Index plots of Kullback-Leibler divergence measure from the fitted CPHGCR model
considering prior 1.
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Figure 3.26: Index plots of Kullback-Leibler divergence measure from the fitted CPHGCR model
considering prior 2.
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Figure 3.27: Index plots of J-distance from the fitted CPHGCR model considering prior 1.
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Figure 3.28: Index plots of J-distance from the fitted CPHGCR mode considering prior 2.
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Figure 3.29: Index plots of L1 norm distance from the fitted CPHGCR model considering prior 1.
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Figure 3.30: Index plots of L1 norm distance from the fitted CPHGCR model considering prior 2.
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Figure 3.31: Index plots of χ2-square divergence from the fitted CPHGCR model considering prior
1.
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Figure 3.32: Index plots of χ2-square divergence from the fitted CPHGCR model considering prior
2.
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3.1.3 Application

We illustrate the proposed method for the interval-censored smoking cessation data presented

in Section 1.1. Firstly, we fitted WGCR and CWGCR models considering the different spatial

frailties in the models to the data set. The a priori distributions for the parameters b, β, and α are

bj ∼ N(0, 100), j = 0, . . . , 4, βj ∼ N(0, 100), j = 1, . . . , 4, and α ∼ N(0, 100)I(0,∞).

Because of the high computational cost, we implement the MCMC algorithms in the C

programming language and the results were analyzed in the R language (R Development Core Team

(2010)) through the "coda" package (Plummer et al., 2005). All of our MCMC algoritms ran a

total of 60,000 iterations discarding the first 20,000 realizations as burn-in and thinning to every

fifth iteration. Posterior results are then based on 8,000 realizations of the Markov chain. Our

Meteropolis acceptance rate for these parameters ranged from 25% to 50%. The convergence was

checked using the Geweke diagnostic which did not indicate lack of convergence. The models are

compared using DIC criterion.

Table 3.8 provides the DIC scores for a variety of effects of the fitted cure models. The DIC

scores of the model 1 and 5 stand out as the best models in spite of the fact that the DIC values are

close to each other. We also can note that the WGCR model are more adequate than the CWGCR

model considering different priors to the parameters.

Table 3.8: Bayesian criteria for the fitted models.

WGCR model Criteria
Model Priors DIC pd
1 U ∼ CAR(θ1), V ∼ CAR(θ2), θ1, θ2 ∼ InvGamma(0.01, 0.01) 416.4 11.5
2 ψ ∼ MCAR(a,Λ), a ∼ Uniform(0, 1), Λ ∼Wishart(2,Diag(0.1, 0.1)) 416.9 11.6
3 ψ ∼ MCAR(a1, a2,Λ), a1, a2 ∼ Uniform(0, 1), Λ ∼Wishart(2,Diag(0.1, 0.1)) 417.5 12.1
4 ψ ∼ MCAR(a,Λ), a ∼ Beta(18, 2), Λ ∼Wishart(2,Diag(0.1, 0.1)) 417.2 12.7
5 ψ ∼ MCAR(a1, a2,Λ), a1, a2 ∼ Beta(18, 2), Λ ∼Wishart(2,Diag(0.1, 0.1)) 416.7 11.7
CWGCR model Criteria
Model Priors DIC pd
6 U ∼ CAR(θ1), V ∼ CAR(θ2), θ1, θ2 ∼ InvGamma(0.01, 0.01) 419.3 11.9
7 ψ ∼ MCAR(a,Λ), a ∼ Uniform(0, 1), Λ ∼Wishart(2,Diag(0.1, 0.1)) 419.2 12.3
8 ψ ∼ MCAR(a1, a2,Λ), a1, a2 ∼ Uniform(0, 1), Λ ∼Wishart(2,Diag(0.1, 0.1)) 419.5 12.7
9 ψ ∼ MCAR(a,Λ), a ∼ Beta(18, 2), Λ ∼Wishart(2,Diag(0.1, 0.1)) 417.9 13.6
10 ψ ∼ MCAR(a1, a2,Λ), a1, a2 ∼ Beta(18, 2), Λ ∼Wishart(2,Diag(0.1, 0.1)) 418.6 13.9

For the comparison with the models proposed by Carlin & Banerjee (2003), we consider

the same prior distributions for the parameters b and β as considered by these authors. Table 3.9

reports the DIC scores for a variety of effects the Weibull Geometric cure rate model. We observe

that the DIC scores in Table 3.9 are smaller than the values in Table 3.8. However, the DIC scores for

WGCR models are very close each other, which indicates that these models are equivalent. Moveover,

similarly to the previous case, the DIC values of WGCR models are smaller than CWGCR models.
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Comparing the obtained DIC scores in Table 3.8 and 3.9 with the DIC scores presented in the study

carried out by Carlin & Banerjee (2003), in which they proposed the mixture cure model with the

spatial fragility, we can conclude that all our models are more adequate since all our DIC scores are

smaller. Here, we select the model 15 as our working model.

Table 3.9: Bayesian criteria for the fitted models.

WGCR model Criteria
Model Priors DIC pd
11 U ∼ CAR(θ1), V ∼ CAR(θ2), θ1, θ2 ∼ InvGamma(0.01, 0.01) 414.4 8.2
12 ψ ∼ MCAR(a,Λ), a ∼ Uniform(0, 1), Λ ∼Wishart(2,Diag(0.1, 0.1)) 414.8 10.9
13 ψ ∼ MCAR(a1, a2,Λ), a1, a2 ∼ Uniform(0, 1), Λ ∼Wishart(2,Diag(0.1, 0.1)) 1 414.7 10.8
14 ψ ∼ MCAR(a,Λ), a ∼ Beta(18, 2), Λ ∼Wishart(2,Diag(0.1, 0.1)) 414.3 10.9
15 ψ ∼ MCAR(a1, a2,Λ), a1, a2 ∼ Beta(18, 2), Λ ∼Wishart(2,Diag(0.1, 0.1)) 414.5 10.9
CWGCR model Criteria
Model Priors DIC pd
16 U ∼ CAR(θ1), V ∼ CAR(θ2), θ1, θ2 ∼ InvGamma(0.01, 0.01) 418.1 9.4
17 ψ ∼ MCAR(a,Λ), a ∼ Uniform(0, 1), Λ ∼Wishart(2,Diag(0.1, 0.1)) 417.3 11.7
18 ψ ∼ MCAR(a1, a2,Λ), a1, a2 ∼ Uniform(0, 1), Λ ∼Wishart(2,Diag(0.1, 0.1)) 416.8 11.5
19 ψ ∼ MCAR(a,Λ), a ∼ Beta(18, 2), Λ ∼Wishart(2,Diag(0.1, 0.1)) 416.9 11.6
20 ψ ∼ MCAR(a1, a2,Λ), a1, a2 ∼ Beta(18, 2), Λ ∼Wishart(2,Diag(0.1, 0.1)) 416.8 11.6

Table 3.10: Posterior summaries of the parameter of the model 15 for the smoking cessation data.

Survival Model Cure rate
Parameter Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%
Intercept b0 1.3736 0.5789 0.2600 2.5442
Sex (male=0) β1 -0.1562 0.4551 -1.0626 0.6992 b1 -0.5096 0.3718 -1.2711 0.2052
SI/UC (UC=0) β2 0.8427 0.5191 -0.1659 1.8703 b2 0.8601 0.4310 0.0671 1.7192
Cigarettes per day β3 -0.1148 0.0378 -0.1809 -0.0322 b3 -0.0728 0.0290 -0.1345 -0.0201
Duration as smoker β4 -0.0246 0.0343 -0.1003 0.0345 b4 0.0197 0.0230 -0.0264 0.0651
α 2.4097 0.3073 1.8113 3.0065
a1(au) 0.8968 0.0676 0.7261 0.9874
a2(av) 0.8994 0.0670 0.7370 0.9881

Λ11 2.6769 0.6377 1.5543 4.0673
Λ22 2.5743 0.6413 1.4924 3.9718
Λ12 -0.0104 0.4625 -0.9321 0.8919

Σ11 0.4113 0.1075 0.2531 0.6754
Σ22 0.4298 0.1236 0.2561 0.7298
Σ12/(Σ11Σ22)1/2 0.0035 0.1828 -0.3655 0.3559

where Λij is the element of precision matrix Λ in position (i, j), and Σij is the element of matrix Σ = Λ−1 in
position (i, j), this Σ11 is the spatial variance component of U and Σ22 is the spatial variance component of V ,
Σ12/(Σ11Σ22)1/2 denote their correlation.

The posterior summary of the parameters of the model 15 are presented in the Table 3.10.

We note that only the parameters b0, b2, b3 and β3 are significant. In the cure rate, the negative value

of b3 means that the individuals with higher levels of cigarette consumption have lower probability

to quit smoking, while the positive value of b2 implies the individuals with special intervention have

higher probability to quit smoking than those with usual care.
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In the survival model, it is shows that the special intervention and the number of cigarettes

smoked per day have negative effects on the hazard rate of the relapse time, that is, individuals with

special intervention do not present lower hazard rates for the relapse time when compared to those

who attend to usual care, while the individuals with a higher level of cigarette consumption do not

present high hazard rates.

The estimated standard deviation Σ1/2
11 of random spatial effects in the survival model is

0.4113, and the estimated standard deviation Σ1/2
22 of the random spatial effects in the cure rate is

0.4268, which indicates that there is a considerable heterogeneity among the clusters. Moreover, it

is observed that there are no correlations between the spatial effects U and V .
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0.015023 - 0.024555
0.024556 - 0.122618

Figure 3.33: Maps of posterior means for frailties U (left panel) and V (right panel) in model 15.
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0.231745 - 0.269880
0.269881 - 0.450185

SDV
0.145151 - 0.192491
0.192492 - 0.217343
0.217344 - 0.235797
0.235798 - 0.270928
0.270929 - 0.461127

Figure 3.34: Maps of posterior standard derivations for frailties U (left panel) and V (right panel)
in model 15.

The Figure 3.33 shows the posterior means of the frailties U and V in the model 15. For the

frailties U of which the high value presents the high relapse rate, we note that the city of Owatonna

and some cities of South have higher values, that is, the individuals in these regions have higher

relapse rates than others. On the other hand, the city of Rochester (in the central regions of the
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map) suggests slightly better than avenge cessation behavior, which can also be observed by the

frailties V . Note that the high value of V presents the high cure probability.

The Figure 3.34 maps the posterior standard deviations of the frailties U and V correspond-

ing to the posterior means mapped in Figure 3.33. We note the posterior standard deviations of the

frailties U and V have approximated values. In both maps show that the cities round the central

region have lower values and the some periphery cites have higher values.

In order to detect possible influential observations in the posterior distribution of the pa-

rameters of model 15, the estimates of ψ-divergence measures, which were obtained by the posteriori

sample of the parameters of the model, are presented in Figure 3.35. It shows that there are some

individuals which can be influential observations were detected by divergence measures. Here, we will

analyze the individuals 72, 138, 151, and 199 were detected by the J-distance and the χ2-divergence.

Table 3.11 presents information on them, so that we note that these four individuals had special inter-

ventions, not consuming high amounts of cigarettes per day (27 cigarettes per day on average), while

the individuals 72, 138, and 151 had relapse, but the individual 199 did not. To reveal the impact of

these possible influential observations on the parameter estimates and inferences, we removed such

observations, refitting the models. We also calculated the relative variations (RV) for the posterior

mean of the parameters. The RV is defined by RV = (ϑ̂d,−I − ϑ̂d)/ϑ̂d, for all d, where I denotes a

set of influential observations, d is the index of the parameters, ϑ̂d,−I denotes the posterior mean of

ϑd,−I , after the set of observations I was removed. In this case, we have I = {72, 138, 151, 199}.
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Figure 3.35: Estimates of ψ-divergence measures for Model 15

The posterior summaries of the parameters for the adjusted model 15 and RV for the posterior

means of the parameters are presented in Table 3.12. We can note that only the values of RV for

the posterior means of the parameters Λ12 and Σ12 are more than one, but they still have posterior
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Table 3.11: Possible influential observations are detected by four divergence measures

Obs. Sex Duration Intervention Num. cigarettes Relapse Time interval Zip
72 0 20 1 25 1 (3.159, 3.929) 55987
138 1 25 1 20 1 (2.998, 3.992) 55021
151 0 39 1 10 1 (0.923, 3.962) 55057
199 0 22 0 20 1 (3.885, 5.013) 55904

means near zero, and others parameters have the posterior means near the obtained values for the

completed data set. In this case, there are not inferential changes after removing the observations.

Table 3.12: Posterior summaries of the parameter of the model 15 and relative variations adjusted
for the smoking cessation data without detected individuals 72, 138, 151 and 199.

Survival Model Cure Rate
Parameter Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%
Intercept b0 1.3697 0.5981 0.2041 2.5265

(-0.0028)
Sex (male=0) β1 -0.2101 0.4326 -1.0848 0.6344 b1 -0.5657 0.3425 -1.2511 0.0902

(-0.3455) (0.1101)
SI/UC (UC=0) β2 1.0138 0.5071 0.0486 2.0473 b2 0.9023 0.4002 0.1406 1.7522

(0.2031) (0.0491)
Cigarettes per day β3 -0.1048 0.0377 -0.1800 -0.0304 b3 -0.0611 0.0257 -0.1221 -0.0183

(-0.0873) (-0.1602)
Duration as smoker β4 -0.0308 0.0361 -0.1073 0.0375 b4 0.0184 0.0230 -0.0280 0.0629

(0.2518) (-0.0656)

α 2.6474 0.3515 1.9792 3.3582
( 0.0987)

a1 (au) 0.9006 0.0665 0.7388 0.9880
(0.0043)

a2 (av) 0.9002 0.0650 0.7374 0.9864
(0.0009)

Λ11 2.6749 0.6497 1.5769 4.0686
(-0.0008)

Λ22 2.5717 0.6364 1.5178 3.9480
(-0.0010)

Λ12 0.0113 0.4709 -0.9257 0.9130
(-2.0812)

Σ11 0.4122 0.1086 0.2515 0.6701
(0.0023) 0.4307 0.1208 0.2575 0.7207

Σ22 (0.0021)

Σ12 -0.0054 0.1839 -0.3637 0.3568
(-2.5601)

Now, we fitted the PHGCR and CPHGCR models, considering the different spatial frailties

in the models to the data set. Since the piecewise exponential distribution has better approximation

to any unknown function when the length of each interval becomes smaller, we partition the time axis

so that they denoted the ordered distinct time points of all observed interval end points. Therefore,

we have 178 parameters need to be estimated. In several areas, especial in medicine, the available

prior information is also importance to be considered in the analysis. Therefore, we specify priori

distributions for the parameters b, β and α = (α1, . . . , α178) to ensure weakly prior information

following the analysis results obtained by Carlin & Banerjee (2003), that is let bj ∼ N(0, 12), j =

0, . . . , 4, βj ∼ N(0, 12), j = 1, . . . , 4, and αi ∼ N(0, 22)I(0,∞), i = 1, . . . , 178.
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Table 3.13 provides the DIC scores for a variety of effects PHGCR and CPHGCR models.

The DIC scores of the fitted models are closely, this indicated these models are almost equivalent.

In that follows we present results for Model 9 having low DIC scores, but emphasize that virtually

any of the models in Table 3.13 could be used with equal confidence.

Table 3.13: Bayesian criteria for the PHGCR and CPHGCR models.

PHGCR model Criteria
Model Priors DIC pd
1 U ∼ CAR(θ1), V ∼ CAR(θ2), θ1, θ2 ∼ InvGamma(0.01, 0.01) 395.8 9.55
2 ψ ∼ MCAR(a,Λ), a ∼ Uniform(0, 1), Λ ∼Wishart(2,Diag(0.1, 0.1)) 396.2 10.63
3 ψ ∼ MCAR(a1, a2,Λ), a1, a2 ∼ Uniform(0, 1), Λ ∼Wishart(2,Diag(0.1, 0.1)) 395.8 12.12
4 ψ ∼ MCAR(a,Λ), a ∼ Beta(18, 2), Λ ∼Wishart(2,Diag(0.1, 0.1)) 394.8 11.57
5 ψ ∼ MCAR(a1, a2,Λ), a1, a2 ∼ Beta(18, 2), Λ ∼Wishart(2,Diag(0.1, 0.1)) 397.8 11.65
CPHGCR model Criteria
Model Priors DIC pd
6 U ∼ CAR(θ1), V ∼ CAR(θ2), θ1, θ2 ∼ InvGamma(0.01, 0.01) 395.9 10.29
7 ψ ∼ MCAR(a,Λ), a ∼ Uniform(0, 1), Λ ∼Wishart(2,Diag(0.1, 0.1)) 395.3 12.22
8 ψ ∼ MCAR(a1, a2,Λ), a1, a2 ∼ Uniform(0, 1), Λ ∼Wishart(2,Diag(0.1, 0.1)) 395.3 12.16
9 ψ ∼ MCAR(a,Λ), a ∼ Beta(18, 2), Λ ∼Wishart(2,Diag(0.1, 0.1)) 394.5 11.70
10 ψ ∼ MCAR(a1, a2,Λ), a1, a2 ∼ Beta(18, 2), Λ ∼Wishart(2,Diag(0.1, 0.1)) 394.8 11.71

To compare the proposed cure rate models, we observed the scores of criterion for fitted

models presented in Table 3.9 and 3.13. We note that none of the models in Table 3.9 is better

than the models presented in Table 3.13. Comparing the obtained DIC scores with the DIC values

presented in the paper of Pan et al. (2014), where they proposed Bayesian semi-parametric model

with the spatial fragility, it is shown that both PHGCR and CPHGCR models have DIC values

smaller. Here, we select Model 9 which has the smallest DIC as our working model.

Table 3.14: Posterior summaries of the parameter of Model 9 for the smoking cessation data.

Survival Model Cure rate
Parameter Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%
Intercept b0 0.0072 0.8279 -1.6658 1.5794
Sex (male=0) β1 0.1748 0.2694 -0.3421 0.7128 b1 -0.3696 0.4800 -1.2913 0.5993
SI/UC (UC=0) β2 -0.1392 0.3107 -0.7249 0.4876 b2 0.8275 0.5500 -0.2217 1.9833
Cigarettes per day β3 -0.0168 0.0234 -0.0602 0.0267 b3 -0.0499 0.0470 -0.1241 0.0606
Duration as smoker β4 -0.0292 0.0259 -0.0787 0.0178 b4 0.0306 0.0600 -0.1055 0.1202

a 0.8981 0.0668 0.7349 0.9879

Λ11 2.6680 0.6501 1.5594 4.0684
Λ22 2.5805 0.6427 1.4840 4.0155
Λ12 -0.0085 0.4670 -0.9244 0.9317

Σ11 0.4130 0.1084 0.2511 0.6668
Σ22 0.4289 0.1192 0.2537 0.7187
Σ12/(Σ11Σ22)1/2 0.0028 0.1820 -0.3645 0.3524

where Λij is the element of precision matrix Λ in position (i, j), and Σij is the element of matrix Σ = Λ−1 in
position (i, j), this Σ11 is the spatial variance component of U and Σ22 is the spatial variance component of V ,
Σ12/(Σ11Σ22)1/2 denote their correlation.
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Table 3.27 presents posterior means, standard deviations and 95% highest posterior density

(HPD) intervals of the parameter of Model 9. We can note that all covariates are not significant

when we consider the (95%) credibility interval, but the covariate of the "intervention type SI/UC" in

the cure rate and in the survival model will become significant since we consider the lower credibility

interval. In cure rate, the sign of the parameters b2 and b3 are the same as the results above, which

means that the individuals with a higher level of cigarette consumption have lower probability of

quit smoking and the individuals had especial with special intervention have higher probability of

quit smoking than those with usual care. In the survival function, the negative value of β2 implies

that individuals with special intervention have lower hazard rate of the relapse time than those with

usual care.

The estimates of the spatial variance component of U in the survival model (Σ11) is 0.4130,

the spatial variance component of V in the cure rate (Σ22) is 0.4289, which indicate that there is

considerable heterogeneity among the clusters. Moreover, it is observed that there are not correlations

between the spatial effects U and V .
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Figure 3.36: Posterior means and credibility intervals of αi’s

The posterior means and 95% HPD intervals of αi’s are presented in the Figure 3.73, it

is showed that there are some values of α’s, which are indicated, have different values of others.

According this Figure, we can partition the time axis so that we consider just risk parameters (α1,

α2, α34, α35, α64, α65, α84, α85, α88, α98, α99), thus just 11 parameters need to be estimated, it will

lower computational time cost.

The Figure 3.37 maps the posterior means of frailties U and V in the CPHGCR model. For
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U
-0.121077 - -0.055899
-0.055898 - 0.009279
0.009280 - 0.074456
0.074457 - 0.139634
0.139635 - 0.204811

V
-0.066356 - -0.034793
-0.034792 - -0.003229
-0.003228 - 0.028334
0.028335 - 0.059897
0.059898 - 0.091460

Figure 3.37: Maps of posterior means for frailties U (left panel) and V (right panel).

SDU
0.139255 - 0.205468
0.205469 - 0.271680
0.271681 - 0.337893
0.337894 - 0.404105
0.404106 - 0.470318

SDV
0.146895 - 0.212236
0.212237 - 0.277577
0.277578 - 0.342918
0.342919 - 0.408259
0.408260 - 0.473600

Figure 3.38: Maps of posterior standard derivations for frailties U (left panel) and V (right panel).

the frailties U , the result is closer which obtained in model 15, but the frailties V show that almost

all of regions have closed cure probabilities. The corresponding posterior standard deviations are

presented in the Figure 3.38 have results similar in model 15 as well.

Considering the samples of posterior distribution of the parameters of the Model 9, the

ψ-divergence measures are computed to detect possible influential observations in the posterior dis-

tribution of the parameters of the Model 9 and presented in the Figure 3.75. It shows that there are

some possible influential observations were detected by divergence measures, but they are different

from the observations which were detected previously. Here, we will just analyze individuals 14 and

86 which were detected by both J-distance and χ2-divergence measure. In the Table 3.15, we can

note that both individuals had special interventions but occurred relapse. In order to reveal the

impact of this possible influent observation on the parameter estimates and inference, we removed

this observation and readjust the model. Note that, in the piecewise exponential model, the time

axis are partitioned by the ordered distinct time points of all observed interval end points, thus we

have different and less risk parameter α’s after removed the observations.
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Figure 3.39: Estimates of ψ-divergence measures for Model 9

Table 3.15: Possible influential observations are detected the divergence measures

Obs. Sex Duration Intervention Num. cigarettes Relapse Time interval Zip
14 0 32 1 60 1 (1.035, 4.211) 55904
86 1 24 1 40 1 (3.885, 5.073) 55987

The posterior summaries of the parameters for the readjust Model 9 and RV for the posterior

mean of the parameters are presented in the Table 3.16. We can note that just the posterior means

of the parameters b0 and β4 have relative variations more higher, but both have values keep on closed

zero. All parameters had not sign change except b0. The posterior means and 95% credibility intervals

of αi’s are presented in the Figure 3.40, it is showed that the values of α’s is similar as the estimates

in Figure 3.73. In this case, we do not have inferential changes after removing the observations. So

this model is not sensitive with influent observations. The values of DIC for fitted models is 385.0749

that is lower than Model 9 for the data without removing the detected observations.

3.1.4 Conclusions

In this work, we have described an approach to extend proportional odds cure models to allow

for spatial correlations by including spatial fragility for the interval-censored data setting. We use the

MCMC methods in Bayesian inference approach for our models and some used Bayesian comparison

criterions were used. The results of the application show that WGCR model with fragilities has better

fittings, but the PHGCR and CPHGCR models stand out better. Comparing the proposed models
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Table 3.16: Posterior summaries of the parameter of Model 9 and RV adjusted for the smoking
cessation data without detected individuals 14 and 86.

Survival Model Cure Rate
Parameter Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%
Intercept b0 -0.0358 0.8369 -1.6263 1.5895

(-5.9465)
Sex (male=0) β1 0.1934 0.2708 -0.3352 0.7389 b1 -0.3168 0.4536 -1.1974 0.5985

(0.1064) (-0.1428)
SI/UC (UC=0) β2 -0.2241 0.3002 -0.7793 0.4069 b2 0.6060 0.4968 -0.3488 1.5578

(0.6097) (-0.2677)
Cigarettes per day β3 -0.0334 0.0193 -0.0709 0.0024 b3 -0.0862 0.0298 -0.1425 -0.0232

(0.9819) (0.7276)
Duration as smoker β4 -0.0109 0.0206 -0.0479 0.0332 b4 0.0708 0.0350 0.0000 0.1313

(-0.6254) (1.3100)

a 0.9038 0.0619 0.7568 0.9864
(0.0063)

Λ11 2.6738 0.6573 1.5785 4.1271
(0.0021)

Λ22 2.5637 0.6365 1.4845 3.9550
(-0.0065)

Λ12 -0.0063 0.4685 -0.9134 0.9258
(-0.2618)

Σ11 0.4126 0.1085 0.2483 0.6684
(-0.0011)

Σ22 0.4320 0.1221 0.2569 0.7200
(0.0073)

Σ12 0.0029 0.1830 -0.3552 0.3599
(0.0349)
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Figure 3.40: Posterior means and credibility intervals of αi’s for the data set without individuals 14
and 86.

with models introduced Carlin & Banerjee (2003) and Pan et al. (2014), it is showed that the PHGCR

and CPHGCR models are more adequate. Moreover, The proposed model is not sensible with influent

observation, which can be observed by the influence diagnostic analysis in the application. The

interpretation of the covariates is easy due to the parametrization in the cure proportion. Moveover,

the MCAR prior can be used even if fragilities have low or not correlations.
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3.2 Negative-Binomial cure rate models with spatial frail-

ties

Suppose there are I regions and ni individuals in the ith region. We denote by Tij the random

variable for the observed time to event of the jth individual in the ith region, where j = 1, . . . , ni and

i = 1, . . . , I. Suppose that the (i, j)th individual is potentially exposed to latent risk Mij, where Mij

denotes the initial number of competing causes related to the occurrence of an event and assuming

Mij has a negative binomial (NB) distribution with parameters θij and η (Piegorsch, 1990), with the

probability mass function

P (Mij = m) = Γ(η−1 +m)
Γ(η−1)m!

(
ηθij

1 + ηθij

)m
(1 + ηθij)−1/η, m = 0, 1, 2 · · · . (3.14)

where θij > 0, η > −1/θij, so that E(Mij) = θij and V ar(Mij) = θij (1 + ηθij). Here, η is a

dispersion parameter (Saha & Paul, 2005), and values of η > 0 (η < 0) correspond to over (under)

dispersion relative to the Poisson distribution. Particularly, when η → 0, the NB approaches the

Poisson distribution and the geometric distribution with parameter 1/(1+θij) can be obtained when

η = 1.

Let Ycij for c = 1, . . . ,Mij denote the failure time of the jth individual in the ith region due to

the cth latent risk. Suppose that givenMij, the random variables Ycij are mutually independent with

distribution function F (·) = 1−S(·). If we assume that the presence of any latent risk will ultimately

lead to the occurrence of the event, the time to event of interest can be defined by the random variable

Tij = min{Ycij, c = 1, · · · ,Mij} for Mij ≥ 1 and Tij =∞ if Mij = 0, with P (Tij =∞|Mij = 0) = 1.

Thus, the survival function for the population is given by:

Spop(tij) = [1 + ηθijF (tij)]−1/η . (3.15)

Let η take some different values. We have the mixture model (Berkson & Gage, 1952): Spop(tij) = (1−

θij)+θijS(tij), if η = −1; promotion time cure model(Chen et al., 1999): Spop(tij) = exp {−θijF (tij)},

if η → 0 and cure rate proportional odds model (Gu et al., 2011): Spop(tij) = [1 + θijF (tij)]−1, if

η = 1.

The probability density function (p.d.f) and hazard function associated with (3.15) are given

by

fpop(tij) = θijf(tij) [1 + ηθijF (tij)]−(1+1/η) and hpop(tij) = θijf(tij) [1 + ηθijF(tij)]−1

respectively, where f(tij) = ∂
∂tij

F (tij).
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Note that the survival function in (3.15) can also be written as a mixture cure model

Spop(tij) = (1 + ηθij)−1/η +
(
1− (1 + ηθij)−1/η

) [1 + ηθijF (tij)]−1/η − (1 + ηθij)−1/η

1− (1 + ηθij)−1/η

 .

Thus, the survival function of uncured (susceptible) individuals has the expression

Ssus(tij) = [1 + ηθijF (tij)]−1/η − (1 + ηθij)−1/η

1− (1 + ηθij)−1/η .

Now, we assume another situation where the presence of all latent risks will ultimately lead

to the occurrence of the event. Thus, the time to event of interest is defined by the random variable

Tij = max{Ycij, c = 1, · · · ,Mij} for Mij ≥ 1 and Tij =∞ if Mij = 0 with P (Tij =∞|Mij = 0) = 1.

The survival function for the population is then given by

Spop(tij) = 1 + (1 + ηθij)−1/η − (1 + ηθijS(tij))−1/η. (3.16)

Similarly, let η take some different values. Then, the mixture model, complementary cure

rate proportional odds model and complementary promotion time cure model can be obtained with

the following survival functions respectively

Spop(tij) = (1− θij) + θijS(tij), if η = −1;

Spop(tij) = 1 + exp{−θij} − exp {−θijS(tij)} , if η = 1;

Spop(tij) = 1 + (1 + θij)−1 − [1 + θijS(tij)]−1 , if η → 0.

The corresponding p.d.f. and hazard function are given respectively by

fpop(tij) = θijf(tij)(1 + ηθijS(tij))−(1/η+1),

and

hpop(tij) = θijf(tij)(1 + ηθijS(tij))−(1/η+1)

1 + (1 + ηθij)−1/η − (1 + ηθijS(tij))−1/η .

The survival function (3.16) also can be written as a mixture cure model

Spop(tij) = (1 + ηθij)−1/η +
(
1− (1 + ηθij)−1/η

){1− (1 + ηθijS(tij))−1/η

1− (1 + ηθij)−1/η

}
.
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Thus, the survival functions of susceptible individuals is given by

Ssus(tij) = 1− (1 + ηθijS(tij))−1/η

1− (1 + ηθij)−1/η .

The first situation is also known as the first activation scheme, because in this case we assume

that the event of interest occurs when the first possible cause is activated. On the other hand, the

second situation is known as last activation scheme, because the event of interest only takes place

after all the latent causes have occurred. Thus, we denote the survival functions (3.15) and (3.16)

by SFpop(tij) and SLpop(tij), respectively. There is another kind of situation where the event of interest

occurs when some of the possible causes are activated, and given the number of latent causesMij, the

number of activated causes is a random variable with a discrete uniform distribution on {1, · · · ,M}.

This situation is known as the random activation scheme. In this case, the survival function for the

population has the expression

Spop(tij) = (1 + ηθij)−1/η + (1− (1 + ηθij)−1/η)S(tij), (3.17)

and is denoted by SRpop(tij). Note that whichever the activation scheme, the density and hazard func-

tions of the cure models are improper functions, since the survival functions are not proper. The cure

fraction is the same for these activation schemes, and can be obtained by: p0ij = limtij→∞ Spop(tij) =

(1 + ηθij)−1/η. However, under the different activation schemes, the models differ by their survival,

density and hazard functions. Moreover, under conditions of models (3.15), (3.16) and (3.17) for any

distribution function F (·), we have SFpop(tij) ≤ SRpop(tij) ≤ SLpop(tij) for all tij > 0.

As is well known, the cure fraction plays a key role in survival models with cure fraction.

So we consider the parameterization of the model in the expressions of the cure fraction. Since

p0ij = (1 + ηθij)−1/η, we have θij = (p−η0ij − 1)/η. Moreover, we propose that the cure probability of

an individual (i, j) is associated with covariates xij and it can be modeled by a logistic regression

p0ij = exp(ξij)
1 + exp(ξij)

,

where ξij is a linear form of covariates, ξij = x>ijb and b is a p1-dimensional vector representing the

effects of covariates on the cured probability.
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Using p0ij as a parameter, the improper survival functions can be written as

SFpop(tij) =
[
1 + (p−η0ij − 1)F (tij)

]−1/η
,

SLpop(tij) = 1 + p0ij −
[
1 + (p−η0ij − 1)S(tij)

]−1/η
,

SRpop(tij) = p0ij + (1− p0ij)S(tij).

Note that SRpop(tij) is a mixture rate model with the cure fraction p0ij.

Assuming Ycij’s take proportional hazard (PH) model with the baseline hazard function

h0(t|α), the conditional hazard function h(t|φ) = h0(t|α) exp(λij), where φ = (α, λij), λij = z′ijβ

is the linear predictor of the covariates, where zij is covariates of an individual (i, j) and β is a

p2-dimensional vector representing the effects of covariates on the survival model component and

α is the parameter vector of the baseline functions. Considering the baseline functions the same

as the geometric cure rate models presented in section 3.1. Therefore, firstly, the baseline hazard

function is h0(t|α) = αtα−1, thus Ycij’s follow a Weibull distribution with the shape parameter α > 0

and scale parameter λij. We called the functions (3.15) and (3.16) by Weibull negative binomial

cure rate (WNBCR) model and complementary Weibull negative binomial cure rate (CWNBCR)

model, respectively. Secondly, the baseline function has the piecewise exponential distribution with

the vector of parameters α = (α1, . . . , αQ). In this case, we called the functions (3.15) and (3.16) by

proportional hazard negative binomial cure rate (PHNBCR) model and complementary proportional

hazard negative binomial cure rate (CPHNBCR) model, respectively.

Similarly, we introduce the frailties Ui and Vi to better explain the effect of survival time

of susceptible individuals and on the cure probability through a linear predictor expression λij =

z′ijβ + Ui, and ξij = x′ijb+ Vi, for j = 1 . . . , ni, i = 1, . . . , I.

Here, the frailties Ui and Vi are spatially correlated across the regions. In this work, we

propose two approaches. In the first we employ a separate independent conditionally autoregressive

(CAR) prior distribution on (U ,V ). Second, we assuming the spatial priors on (U ,V ) are dependent,

and they have multivariate conditionally auto-regressive MCAR prior distribution, where the CAR

and MCAR distributions were presented in Section 2.5.3 in detail.

3.2.1 Bayesian Inference

Let Dobs = {(Aij,xij, zij, δij); j = 1, . . . , ni, i = 1, . . .M} denote the observed data, where

Aij = (tijL, tijR] is the interval during which individual j in cluster i occur the event of interest,

xij and zij are the p1−dimencional and p2−dimencional vectors of covariates, and δij is following
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interval censoring indicador: δij = I(tijR < ∞). For the spacial case in which the survival time is

right-(left-) censored, Rij = +∞(Lij = 0), whereas for exact observations, tijL = tijR. Given the

frailties U and V , the likelihood function for the general interval-censored cure rate model following

Finkelstein(1986), is given by

L{ϕ|Dobs,U ,V } ∝
I∏
i=1

ni∏
j=1

(Spop(tijL|ϕ)− Spop(tijR|ϕ))δij Spop(tijL|ϕ)1−δij , (3.18)

where ϕ = (b,β,α, η), α is the shape parameter of the Weibull distribution for the first model with

unitary size and it is the risk parameter vector for the second model with size Q. For a Bayesian

analysis, we assume the prior densities for parameters are bj ∼ N(µb, σ2
b ) for j = 0, . . . , (p1 − 1);

βj ∼ N(µβ, σ2
β) for j = 1, . . . , p2; αi ∼ N(µα, σ2

α)I(0,∞), i = 1 for Weibull distribution and i = 1, . . . Q

for piecewise exponential distribution; η ∼ N(µη, σ2
η)I(0,∞), where µb, µβ, µα, µη , σb, σβ, σα. ση are

known hyperparameters. To express vague priors, we consider µb = µβ = µα = µη = 0 with large

values of σ2
b , σ2

β, σ2
η and σ2

α. Here, N(µ, σ2)I(a,b) denotes the truncated normal distribution which is

the probability distribution of a normally distributed random variable whose values lies within the

interval −∞ ≤ a < b ≤ ∞. In several areas, specially in medicine, it is preferable to use the prior

information when they are available, moreover it is worth mentioning that using a truncated normal

distribution as prior facilitates the insertion of information in certain regions of the parameter space,

since the hyperparameters no longer represent the mean and variance but still control the region of

higher probability mass.

Independent assumption

For the independent assumption, we employ separate independent CAR prior on the random

frailties U = (U1, . . . , UI)> and V = (V1, . . . , VI)>, that is,

U1, . . . , UI ∼ CAR(θ1) and V1, . . . , VI ∼ CAR(θ2),

where θ1 and θ2 are positive unknown hyper-parameters, and we assume they have Inverse-Gamma

prior with the known shape parameter a0 > 0 and scale parameter b0 > 0. In this paper, we assume

a0 = b0 = 0.01 to consider vague priors for the parameters θ1 and θ2.

Assuming the independence of the parameters b, β, α, η, θ1 and θ2 and combining the

likelihood function (3.18), the joint posterior distribution for the parameters is given

π(ϕ, θ1, θ2|Dobs) ∝ L(ϕ|Dobs,U ,V )π(U ,V |θ1, θ2)π(ϕ, θ1, θ2),
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where π(ϕ, θ1, θ2) = π(b)π(β)π(α)π(η)π(θ1)π(θ2).

This joint posterior density is analytically intractable. So, we based our inference on the
Markov chain Monte Carlo (MCMC) simulation methods. We can observe that the full conditional
distributions for parameters b,β,α and η have not closed forms, thus we will use the Metropolis-
Hastings algorithm to generate a posteriori samples for these parameter. To avoid range restrictions
on the parameters αi’s and η, we define ζi = log(αi) for i = 1, 2, . . . , Q and κ = log(η) to transform
all parameters space to real space (necessary to work with Gaussian proposal densities). Let ϑ =
(b,β, ζ, κ, θ1, θ2), according for the Jacobian of this transformation, the joint posterior density of
π(ϑ|Dobs) is proportional to

L(ϕ|Dobs,U ,V ) exp
{
−1

2

[
σ−2
b

p1−1∑
i=0

b2
i + σ−2

β

p2∑
i=1

β2
i +

Q∑
i=1

exp(2ζi)
σ2
α

+ exp(2κ)
σ2
η

+ U>(DW −W )U
θ1

+ V >(DW −W )V
θ2

]
− (a0 + 1) (log(θ1) + log(θ2))−

(
b0

θ1
+ b0

θ2

)
+

Q∑
i=1

ζi + κ

}
,

where ϕ = (b,β, ζ−1, κ−1), ζ−1 =
{
ζ−1
i = exp(ζi) = αi, i = 1 . . . , Q

}
denotes inverse function of ζ,

and κ−1 = exp(κ) = η denotes inverse function of η.

On the other hand, the full conditional distributions for parameters θi’s are given by

π(θi|ϑ−θi ,Dobs) ∝ π(ψi|θi)π(θi)

∝ (θi)−k/2 exp
(
− 1

2θi
ψ>i (DW −W )ψi

)
θ−a0−1
i exp(−b0θ

−1
i )

∝ θ
−(a0+ k

2 )−1
i exp

{
−
(
ψ>i (DW −W )ψi

2 + b0

)
θ−1
i

}
, i = 1, 2,

where ψ1 = U , ψ2 = V and k is the rank of the matrix DW −W . Thus, the full conditional

distributions of the parameter θi is an Inverse-Gamma distribution with parameters a0 + k
2 e b0 +

1
2 (ψ′i(DW −W )ψi). In this case, the Gibbs sampler algorithm (see Gamerman & Lopes, 2006) is

used to generate a posteriori sample.

Dependent assumption

Now we assume that the spatial priors on the parameters (U ,V ) are dependent on each

other. Let ψ = (U>,V >)>, we first employ the parameter ψ has a MCAR distribution with a

common smoothness parameter a, i.e.,

ψ ∼MCAR(a,Λ).
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Further, we employ the parameter ψ has an extend MCAR distribution with assuming the different

smoothness parameters for the parameters U and V , say a1 and a2, that is,

ψ ∼MCAR(a1, a2,Λ).

The prior distributions for a and Λ are given by

• ai ∼ Uniform(0, 1) or ai ∼ Beta(18, 2), for i,

• Λ ∼Wishart(n0,Λ0), with n0 and Λ0 known,

where i=1 for ψ ∼ MCAR(a,Λ) and i=1,2 for ψ ∼ MCAR(a1, a2,Λ)). The prior distributions for

the parameter ai is used by Banerjee & Carlin (2004), in which ai ∼ Uniform(0, 1) is a non-informative

prior, and ai ∼ Beta(18, 2) is an informative prior with E[ai] = 0.9 and V ar[ai] = 0.004285; On the

other hand, the prior distribution for the parameter Λ is used not only by Carlin & Banerjee (2003)

but also by Gelfand & Vounatsou (2003) and Banerjee & Carlin (2004). They suggested that n0

can take value as the dimension of matrix Λ. However, Gelfand & Vounatsou (2003) and Banerjee

& Carlin (2004) considered Λ0 equals I and 0.01I in their papers, respectively, where I denote a

identity matrix. Both authors also commented that they had no prior knowledge regarding the nature

or extent of dependence for the parameter Λ. Note that Λ−1 describe the relative variability and

covariance relationship between the different diseases given the neighboring site. Thus, if Λ0 = 0.01I,

we assumed high relative variability between neighborhood and we assumed low relative variability

between neighborhood if Λ0 = I. Thus, it is necessary to conduct a prior study for the parameter

Λ0 to verify the influence of Λ0 in the estimation, in order to have a value for appropriate Λ0.

To avoid range restrictions on the parameters ai, we consider the transformations ρi =

log(ai/(1− ai)) ∈ R, then, the joint posterior density is given by

π(ϑ|Dobs) ∝ L(ϕ|Dobs,ψ) exp
−1

2

σ−2
b

p1∑
i=0

b2
i + σ−2

β

p2∑
i=1

β2
i +

Q∑
i=1

exp(2ζi)
σ2
α

+ exp(2κ)
σ2
η


+ ψ> [Λ⊗ (DW − aW )]ψ + log |Λ⊗ aW |+ n0 − 4

2 log |Λ| − 1
2tr(Λ

−1
0 Λ)

+
Q∑
i=1

ζi + κ

 π(ρ),

where ϕ = (b,β, ζ−1, κ−1) and π(ρi) = 1 if ai ∼ Uniform(0, 1) and π(ρi) = 1
B(18,2)

exp(17ρi)
(1+exp(ρi))18 if

ai ∼ Beta(18, 2), where B(18, 2) = 17!
18! = 1

18 .

This joint posterior density is analytically intractable. Thus, we again based our inference on

the Markov Chain Monte Carlo (MCMC) simulation methods. We observe that the full conditional
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distributions for parameters b,β, ζ and ρ do not have closed forms, thus we will use the Metropolis-

Hastings algorithm to generate a posteriori samples for these parameter. However, the Gibbs sampler

algorithm is used to generate a posteriori sample for the parameter Λ, because the full conditional

distribution has a closed form. The full conditional distribution π(Λ|ϑ(−Λ),Dobs)) is proportional to

π(ψ|Λ,a)π(Λ)

∝ |Λ⊗DW − aW |1/2 exp
(
−1

2ψ
>(DW − aW )ψ

)
|Λ|(n0−4)/2 exp

(
−1

2tr(Λ
−1
0 Λ)

)
∝ |Λ|(I+n0−4)/2 exp

(
−1

2tr((Λ
−1
0 +B)Λ)

)
, (3.19)

where
B =

tr(R1U(R1U )>) tr(R1U(R2V )>)

tr(R2V (R1U)>) tr(R2V (R2V )>)


Thus, it follows that the full conditional distribution for Λ has the Wishart distribution with scale

matrix (Λ−1
0 +B)−1 and degrees of freedom I + n0.

3.2.2 Simulation study

In this section we present some simulation studies for the proposed models with the de-

pendent assumption in order to examine the theirs performances. The interval-censored survival

times (tijL, tijR, δij) with the cure fraction under the first and last activations are generated in a

manner similar to that employed by Yau & Ng (2001) with some modifications. First, we gener-

ate latent NB variable Mij, which denote the initial number of competing causes related to the

event, with parameter p0ij = [1 + exp(−b0 + b1xij + vi)]−1 for the jth individual in the ith region,

j = 1, . . . , ni, i = 1, . . . , I, where covariate xij follows Bernoulli(0.5) distribution. Interval-censored

data (tijL, tijR, δij) are then generated as follows:

(i) If Mij = 0, then let tij = tijL from the exponential distribution with hazard rate 10 and let

censoring indicator δij = 0.

(ii) If Mij > 0, then

• we generate Mij latent Weibull variables with parameter α and λij = (βxij + ui), if Ycij’s

have the Weibull distribution;

• or we generate Mij latent Exponential variables with hazard rate αλij = α(βxij + ui)), if

Ycij’s take the PH model.

Let tij takes lowest generated variable in case of generating the variables of model under first

activation and tij takes largest generated variable in case of generating the variables of model
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under last activation. The censoring variable cij is generated from U(0, cc), cc > 0 is fixed to

control the percentage of censored data. Let δij = 1 if tij ≤ cij and δij = 0 otherwise.

(iii) For δij = 0, let 0 < tijL < tijR =∞.

(iv) For δij = 1, we create lenij from distribution U(0.2, 0.7) and lij from U(0, 0.01). Then, from

(0, lij], (lij, lij + lenij], . . . , (lij + klenij,∞], k = 1, 2, . . . ,, (tijL,tijR ] is chosen as that satisfying

tijL < tij ≤ tijR.

In the simulation study, we consider I = 5 regions (Zip) with the corresponding adjacent matrix

is



0 0 1 0 0

0 0 0 0 1

1 0 0 1 0

0 0 1 0 0

0 1 0 0 0


, the random effects ui and vi are generated from Normal distribution with mean

0 and precision matrix Λ⊗(DW − aW ), where W is standardized adjacent matrix so that each

of its rows sum to one, DW = Diag(1, 1, 2, 1, 1) is a diagonal matrix and we fixed a = 0.9 and

Λ = Diag(4, 4), i.e. we fixed Λ11 = 4, Λ22 = 4 and Λ12 = Λ21 = 0. We set N = 100 and the number

of Zip was distributed for each individual using sample with replace, thus the number of individuals

in each region ni, i = 1 . . . , 5 are varied, that is this five regions could have different number of

individuals.

We fixed parameters b0 = −1.50, b1 = −0.50 and β = −0.15. For Weibull cure rate models,

we fixed forma parameter α = 0.30 and for the PH cure rate models, we fixed risk parameter

α = 1.00. We consider around 40% censored data for each generated sample and 500 repeated

samples are simulated for each model. In the simulations, the vague priors for the parameters are

used. For each generated data set we simulate one chain of size 10000 for each parameter, disregarding

the first 1000 iterations to eliminate the effect of the initial values and to avoid correlation problems

and thinning to every third iteration, thus obtaining a effective sample of size 3000 upon which the

posterior is based on. To evaluate the performance of the parameter estimates, the average bias

(Bias), standard deviation (SD) of the estimate, average standard deviation (SDs mean) and mean

square error (MSE) are calculated for WNBCR, CWNBCR, PHNBCR and CPHNBCR models, the

summaries are presented in Table 3.17 and 3.18. We note that the bias and MSE of parameter

Λ12 are lager than others in all fitting models. The estimator of Λ12 present a negative biases for

the WNBCR, PHNBCR and CPHNBCR models and it present a positive biases for the CWNBCR

model, however its biases and MSEs are always near zero. Moreover, for both models, the simulation

results for the models considering the prior 1 are very close to those obtained using the prior 2.
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Table 3.17: Simulation results for WNBCR and CWNBCR models with depended spatial fragilities

WNBCR model

Parameter True value Estimate mean SD of the estimate Bias MSE SDs mean
Prior 1: ψ ∼ MCAR(a,Λ), a ∼ Beta(18, 2), Λ0 ∼Wishart(2,Diag(0.9, 1))

b0 -1.5 -1.5688 0.0654 -0.0688 0.0090 0.2770
b1 -0.5 -0.5362 0.1096 -0.0362 0.0133 0.2637
β -0.2 -0.1306 0.0606 0.0194 0.0040 0.1852
α 0.3 0.2105 0.0465 -0.0895 0.0102 0.0667

Λ11 4.0 4.1621 0.1860 0.1621 0.0608 2.5225
Λ22 4.0 3.8009 0.1730 -0.1991 0.0695 2.5500
Λ12 0.0 -0.3843 0.1649 -0.3843 0.1748 1.9049
a 0.9 0.8998 0.0017 -0.0002 0.0000 0.0656
η 0.4 0.5048 0.0362 0.1048 0.0123 0.2571

Prior 2: ψ ∼ MCAR(a,Λ), a1, a2 ∼ Beta(18, 2), Λ0 ∼Wishart(2,Diag(0.9, 1))
b0 -1.5 -1.5725 0.0653 -0.0725 0.0095 0.2767
b1 -0.5 -0.5367 0.1024 -0.0367 0.0118 0.2645
β -0.2 -0.1291 0.0567 0.0209 0.0036 0.1850
α 0.3 0.2122 0.0475 -0.0878 0.0100 0.0671

Λ11 4.0 4.1815 0.1850 0.1815 0.0671 2.5383
Λ22 4.0 3.8016 0.1744 -0.1984 0.0697 2.5529
Λ12 0.0 -0.3764 0.1593 -0.3764 0.1670 1.8995
a1 0.9 0.9000 0.0015 0.0000 0.0000 0.0655
a2 0.9 0.8999 0.0015 -0.0001 0.0000 0.0656
η 0.4 0.5037 0.0335 0.1037 0.0119 0.2569

CWNBCR model

Parameter True value Estimate mean SD of the estimate Bias MSE SDs mean
Prior 1: ψ ∼ MCAR(a,Λ), a ∼ Beta(18, 2), Λ0 ∼Wishart(2,Diag(0.75, 1))

b0 -1.5 -1.5271 0.0598 -0.0271 0.0043 0.2750
b1 -0.5 -0.4567 0.0883 0.0433 0.0097 0.2818
β -0.2 -0.1242 0.0913 0.0258 0.0090 0.1478
α 0.3 0.3941 0.0534 0.0941 0.0117 0.0593

Λ11 4.0 3.9625 0.2996 -0.0375 0.0910 2.2131
Λ22 4.0 3.8841 0.1857 -0.1159 0.0479 2.6307
Λ12 0.0 0.1555 0.1799 0.1555 0.0565 1.7815
a 0.9 0.9000 0.0015 0.0000 0.0000 0.0655
η 0.4 0.3177 0.0347 -0.0823 0.0080 0.2096

Prior 2: ψ ∼ MCAR(a,Λ), a1, a2 ∼ Beta(18, 2), Λ0 ∼Wishart(2,Diag(0.75, 1))
b0 -1.5 -1.5269 0.0607 -0.0269 0.0044 0.2741
b1 -0.5 -0.4565 0.0874 0.0435 0.0095 0.2809
β -0.2 -0.1235 0.0938 0.0265 0.0095 0.1484
α 0.3 0.3939 0.0500 0.0939 0.0113 0.0597

Λ11 4.0 3.9828 0.2942 -0.0172 0.0867 2.2170
Λ22 4.0 4.0973 0.2033 0.0973 0.0507 2.7874
Λ12 0.0 0.1524 0.1836 0.1524 0.0569 1.8314
a1 0.9 0.9000 0.0015 0.0000 0.0000 0.0654
a2 0.9 0.9000 0.0015 0.0000 0.0000 0.0652
η 0.4 0.3213 0.0347 -0.0787 0.0074 0.2114
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Table 3.18: Simulation results for PHNBCR and CPHNBCR models with depended spatial fragilities

PHNBCR model

Parameter True value Estimate mean SD of the estimate Bias MSE SDs mean
Prior 1: ψ ∼ MCAR(a,Λ), a ∼ Beta(18, 2), Λ0 ∼Wishart(2,Diag(0.85, 1.00))

b0 -1.50 -1.5807 0.0593 -0.0807 0.0100 0.2720
b1 -0.50 -0.5219 0.0951 -0.0219 0.0095 0.2695
β -0.15 -0.1705 0.0642 -0.0205 0.0045 0.1801
α 1.00 0.9571 0.0338 -0.0429 0.0030 0.1881

Λ11 4.00 4.1890 0.1848 0.1890 0.0698 2.4506
Λ22 4.00 3.7513 0.1797 -0.2487 0.0941 2.5440
Λ12 0.00 -0.4464 0.1262 -0.4464 0.2152 1.8658
a 0.90 0.8999 0.0016 -0.0001 0.0000 0.0653
η 0.40 0.3023 0.0553 -0.0977 0.0126 0.1930

Prior 2: ψ ∼ MCAR(a,Λ), a1, a2 ∼ Beta(18, 2), Λ0 ∼Wishart(2,Diag(0.85, 1.00))
b0 -1.50 -1.5796 0.0574 -0.0796 0.0096 0.2731
b1 -0.50 -0.5049 0.0984 -0.0049 0.0097 0.2688
β -0.15 -0.1810 0.0624 -0.0310 0.0048 0.1789
α 0.30 0.9573 0.0340 -0.0427 0.0030 0.1879

Λ11 4.00 3.9937 0.1613 -0.0063 0.0260 2.3200
Λ22 4.00 3.7484 0.1787 -0.2516 0.0952 2.5440
Λ12 0.00 -0.4434 0.1199 -0.4434 0.2109 1.8120
a1 0.90 0.8999 0.0015 -0.0001 0.0000 0.0655
a2 0.90 0.8999 0.0016 -0.0001 0.0000 0.0653
η 0.40 0.2999 0.0573 -0.1001 0.0133 0.1921

CPHNBCR model

Parameter True value Estimate mean SD of the estimate Bias MSE SDs mean
Prior 1: ψ ∼ MCAR(a,Λ), a ∼ Beta(18, 2), Λ0 ∼Wishart(2,Diag(0.85, 1.00))

b0 -1.50 -1.6574 0.0910 -0.1574 0.0330 0.2736
b1 -0.50 -0.4931 0.0977 0.0069 0.0096 0.2757
β -0.15 -0.1880 0.1041 -0.0380 0.0123 0.1386
α 0.30 0.8189 0.0567 -0.1811 0.0360 0.1800

Λ11 4.00 4.9581 0.4269 0.9581 1.0999 2.8623
Λ22 4.00 3.4462 0.3012 -0.5538 0.3972 2.3753
Λ12 0.00 -0.2046 0.2298 -0.2046 0.0946 1.9200
a 0.90 0.8999 0.0017 -0.0001 0.0000 0.0657
η 0.40 0.4420 0.0985 0.0420 0.0115 0.2305

Prior 2: ψ ∼ MCAR(a,Λ), a1, a2 ∼ Beta(18, 2), Λ0 ∼Wishart(2,Diag(0.85, 1.00))
b0 -1.50 -1.6572 0.0942 -0.1572 0.0336 0.2725
b1 -0.50 -0.5047 0.1013 -0.0047 0.0103 0.2756
β -0.15 -0.1890 0.0998 -0.0390 0.0115 0.1391
α 0.30 0.8346 0.0510 -0.1655 0.0300 0.1840

Λ11 4.00 4.0689 0.3224 0.0689 0.1084 2.3206
Λ22 4.00 3.6089 0.3077 -0.3911 0.2474 2.5019
Λ12 0.00 -0.1823 0.1932 -0.1823 0.0705 1.7578
a1 0.90 0.9000 0.0018 0.0000 0.0000 0.0655
a2 0.90 0.8998 0.0017 -0.0002 0.0000 0.0654
η 0.40 0.4373 0.0921 0.0373 0.0099 0.2304
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Influence of outlying observations

One of our main goals in this study is to show the need for robust models to deal with the

presence of outliers in the data. Considering the same the parameter values and setup as above

and two cases for perturbation, thus eight data sets of size 100 were generated from the WNBCR,

CWNBCR, PHNBCR and CPHNBCR models with depended spatial fragilities.

We selected cases 18 and 80 for perturbation. To create influential observation in the data

set, we choose one or two of these selected cases and perturbed the response variable as follows

t̃kL = tkL + 10SL and t̃kR = tkR + 10SL, for k = 1 and 18, where SL is the standard deviations

of the tijL’s. Note that using this kind of perturbation, the interval of observed interval time of

perturbation candidate observation is not charged. Here, we considere four setups in the study.

Setup A: original dataset, without outliers; Setup B: data with outlier 18; Setup C: data with outlier

80; and Setup D: data with outliers 18 and 80. The MCMC computations were made similar to

those in the last section and further to monitor the convergence of the Gibbs samples we used the

Geweke’s convergence diagnostic proposed por Geweke (1992).

Tables 3.19, 3.20, 3.21 and 3.22 reports posterior mean, standard deviation (SD), bias and

mean square error (MSE) of the parameters of WNBCR, CWNBCR, PHNBCR and CPHNBCR

models, respectively. For WNBCR model, Table 3.19 shows that the absolute values of bias of

estimates creasing little bit in the perturbation cases when prior 1 is used for the parameters. On

the other way, considering prior 2 for the parameters, the estimates of all parameters of cases B, C

and D are very closed the case A, which means the parameters are not sensitive to perturbations.

It also can be observed on the Table 3.20. For PHNBCR model, Table 3.21 shows that parameter

Λ11 is little sensitive to perturbations. The estimates of Λ11 decreasing in the perturbation cases

when considering prior 1 or prior 2 for the parameters and we obtained similarly simulation results

considering both priors.

For CPHNBCR model, considering prior 1, the parameter η is little sensitive in perturbation

cases and Λ11 is sensitive in case B; considering prior 2, the parameters η and Λ12 is litter sensitive

in perturbation cases, which can be observed on Table 3.22.

For each simulated data set the four divergence measures (dKL, dJ , dL1 , dχ2) of the perturbed

cases and DIC values for four cure rate models were calculated and reported in Table 3.23. We can

see that all measures providing larger ψ-divergence measures when compared to the non-perturbed

setup (setup A) and the difference between the measures of perturbed case and non-perturbed case

is more clearly for CWNBCR, PHNBCR and CPHNBCR models than WNBCR model. we can note

that, the obtained measures values from WNBCR model for data with outlier 18 (setup B) are close
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to the setup A. Furthermore, we observed that the obtained measures values from the CWNBCR,

PHNBCR and CPHNBCR models wheatear considering the prior 1 or prior 2 are similarly. However,

the measures values from the WNBCR model for setup C considering the prior 2 for the parameters

are much larger than values obtained using the prior 1. To show better the results, we plot the

J-distance divergence measure from the WNBCR model considering the prior 1 and 2 and J-distance

divergence measure from the CWNBCR, PHNBCR and CPHNBCR models considering only prior

1.

The Figures 3.41 to 3.72 show the divergence measures before the perturbation (setup A)

and after perturbation observations (setups B, C and D). The Figures 3.41 to 3.48 show that outline

observation 18 can not be detected by four divergence measures, the outline observation 80 just

can be detected by four divergence measures when parameters have prior 2, and the χ2−squre

divergence more sensible than other three measures for the WNBCR model considering prior 2

for the parameters. Moreover, estimates of all parameters of perturbed case are very closed the

non-perturbed case, we can conclude that the WNBCR model is not sensitive with this kind of

perturbation. The Figures 3.49 to 3.56 show that all perturbation observations selected can be

detected by four divergence measures for the CWNBCR model considering prior 1 for the parameters.

When the parameters have prior 2, only the KL and χ2-square divergences can detect the perturbation

observations, L1 norm and J−distance cannot detected the perturbation observations when the both

observations were perturbed (Setup D). The Figures 3.55(a), 3.56(a), and 3.56(c) also show that

the χ2-square divergence is more sensible than other measures. The Figures 3.57 to 3.64 show that

all perturbation observations selected can be detected by all divergence measures for the PHNBCR

model considering prior 1 for the parameters. However, the perturbation observation 18 cannot be

detected by χ2-square divergence when the parameters have prior 2, and the Figures 3.65 to 3.72

show that all perturbation observations selected can be detected by all divergence measures for the

CPHNBCR model considering prior 1 or 2 for the parameters.



3.2. NEGATIVE-BINOMIAL CURE RATE MODELS WITH SPATIAL FRAILTIES 99

Table 3.19: Simulation results of the perturbed cases for WNBCR model

WNBCR model

Prior 1 Prior 2
Setup Perturbed

case Parameters Mean SD Bias MSE Parameters Mean SD Bias MSE

A None

b0 -1.566 0.280 -0.066 0.004 b0 -1.557 0.276 -0.057 0.003
b1 -0.443 0.271 0.057 0.003 b1 -0.530 0.254 -0.030 0.001
β -0.196 0.187 -0.046 0.002 β -0.138 0.182 0.012 <0.001
α 0.206 0.065 -0.094 0.009 α 0.203 0.073 -0.097 0.009

Λ11 4.435 2.547 0.435 0.189 Λ11 4.319 2.600 0.319 0.102
Λ22 3.815 2.662 -0.185 0.034 Λ22 3.875 2.586 -0.125 0.016
Λ12 -0.352 1.919 -0.352 0.124 Λ12 -0.395 1.980 -0.395 0.156
a 0.900 0.063 <0.001 <0.001 a1 0.902 0.063 0.002 <0.001
η 0.469 0.246 0.069 0.005 a2 0.902 0.064 0.002 <0.001

η 0.513 0.252 0.113 0.013

B {18}

b0 -1.609 0.278 -0.109 0.012 b0 -1.560 0.283 -0.060 0.004
b1 -0.591 0.267 -0.091 0.008 b1 -0.565 0.258 -0.065 0.004
β -0.097 0.184 0.053 0.003 β -0.114 0.189 0.036 0.001
α 0.240 0.068 -0.060 0.004 α 0.264 0.070 -0.036 0.001

Λ11 3.874 2.393 -0.126 0.016 Λ11 4.280 2.536 0.280 0.079
Λ22 3.499 2.460 -0.501 0.251 Λ22 3.817 2.541 -0.183 0.033
Λ12 -0.132 1.866 -0.132 0.017 Λ12 -0.439 1.879 -0.439 0.192
a 0.900 0.065 <0.001 <0.001 a1 0.902 0.064 0.002 <0.001

0.537 0.257 0.137 0.019 a2 0.902 0.064 0.002 <0.001
η 0.512 0.242 0.112 0.013

C {80}

b0 -1.643 0.267 -0.143 0.020 b0 -1.491 0.275 0.009 <0.001
b1 -0.358 0.268 0.142 0.020 b1 -0.479 0.262 0.021 <0.001
β -0.258 0.179 -0.108 0.012 β -0.171 0.187 -0.021 <0.001
α 0.245 0.061 -0.055 0.003 α 0.163 0.059 -0.137 0.019

Λ11 4.182 2.477 0.182 0.033 Λ11 4.517 2.654 0.517 0.267
Λ22 3.749 2.614 -0.251 0.063 Λ22 3.876 2.526 -0.124 0.015
Λ12 -0.309 1.908 -0.309 0.096 Λ12 -0.623 2.004 -0.623 0.389
a 0.901 0.065 0.001 <0.001 a1 0.903 0.064 0.003 <0.001
η 0.481 0.261 0.081 0.007 a2 0.901 0.066 0.001 <0.001

η 0.449 0.241 0.049 0.002

D {18,80}

b0 -1.611 0.267 -0.111 0.012 b0 -1.562 0.286 -0.062 0.004
b1 -0.746 0.261 -0.246 0.061 b1 -0.641 0.259 -0.141 0.020
β -0.019 0.186 0.131 0.017 β -0.082 0.185 0.068 0.005
α 0.196 0.066 -0.104 0.011 α 0.210 0.065 -0.090 0.008

Λ11 4.465 2.659 0.465 0.216 Λ11 4.243 2.506 0.243 0.059
Λ22 3.981 2.617 -0.019 <0.001 Λ22 3.782 2.610 -0.218 0.047
Λ12 -0.527 1.955 -0.527 0.277 Λ12 -0.411 1.900 -0.411 0.169
a 0.903 0.061 0.003 <0.001 a1 0.900 0.065 <0.001 <0.001
η 0.559 0.264 0.159 0.025 a2 0.899 0.064 -0.001 <0.001

η 0.509 0.253 0.109 0.012
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Table 3.20: Simulation results of the perturbed cases for CWNBCR model

CWNBCR model

Prior 1 Prior 2
Setup Perturbed

case Parameters Mean SD Bias MSE Parameters Mean SD Bias MSE

A None

b0 -1.533 0.269 -0.033 0.001 b0 -1.464 0.275 0.036 0.001
b1 -0.425 0.281 0.075 0.006 b1 -0.459 0.295 0.041 0.002
β -0.129 0.149 0.021 <0.001 β -0.102 0.163 0.048 0.002
α 0.403 0.063 0.103 0.011 α 0.370 0.059 0.070 0.005

Λ11 3.877 2.134 -0.123 0.015 Λ11 4.057 2.275 0.057 0.003
Λ22 4.074 2.712 0.074 0.005 Λ22 3.992 2.691 -0.008 <0.001
Λ12 0.260 1.801 0.260 0.068 Λ12 0.009 1.827 0.009 <0.001
a 0.901 0.065 0.001 <0.001 a1 0.901 0.062 0.001 <0.001
η 0.319 0.209 -0.081 0.007 a2 0.900 0.063 <0.001 <0.001

η 0.312 0.208 -0.088 0.008

B {18}

b0 -1.622 0.271 -0.122 0.015 b0 -1.536 0.270 -0.036 0.001
b1 -0.469 0.284 0.031 0.001 b1 -0.385 0.272 0.115 0.013
β -0.122 0.145 0.028 0.001 β 0.070 0.147 0.220 0.048
α 0.402 0.053 0.102 0.010 α 0.356 0.050 0.056 0.003

Λ11 4.343 2.422 0.343 0.117 Λ11 3.988 2.212 -0.012 <0.001
Λ22 4.041 2.740 0.041 0.002 Λ22 3.989 2.629 -0.011 <0.001
Λ12 0.223 1.809 0.223 0.050 Λ12 0.309 1.854 0.309 0.095
a 0.899 0.067 -0.001 <0.001 a1 0.901 0.063 0.001 <0.001
η 0.342 0.210 -0.058 0.003 a2 0.902 0.065 0.002 <0.001

η 0.300 0.216 -0.100 0.010

C {80}

b0 -1.503 0.270 -0.003 <0.001 b0 -1.439 0.273 0.061 0.004
b1 -0.387 0.298 0.113 0.013 b1 -0.361 0.269 0.139 0.019
β -0.065 0.148 0.085 0.007 β 0.051 0.151 0.201 0.040
α 0.426 0.065 0.126 0.016 α 0.413 0.066 0.113 0.013

Λ11 4.324 2.387 0.324 0.105 Λ11 3.944 2.270 -0.056 0.003
Λ22 3.839 2.587 -0.161 0.026 Λ22 3.835 2.634 -0.165 0.027
Λ12 0.043 1.852 0.043 0.002 Λ12 -0.239 1.809 -0.239 0.057
a 0.899 0.068 -0.001 <0.001 a1 0.901 0.063 0.001 <0.001
η 0.296 0.201 -0.104 0.011 a2 0.901 0.066 0.001 <0.001

η 0.334 0.212 -0.066 0.004

D {18,80}

b0 -1.526 0.276 -0.026 0.001 b0 -1.599 0.266 -0.099 0.010
b1 -0.479 0.279 0.021 <0.001 b1 -0.405 0.275 0.095 0.009
β -0.124 0.140 0.026 0.001 β 0.115 0.142 0.265 0.070
α 0.354 0.049 0.054 0.003 α 0.362 0.051 0.062 0.004

Λ11 3.918 2.203 -0.082 0.007 Λ11 4.395 2.444 0.395 0.156
Λ22 3.755 2.525 -0.245 0.060 Λ22 3.826 2.582 -0.174 0.030
Λ12 0.419 1.782 0.419 0.175 Λ12 0.033 1.810 0.033 0.001
a 0.899 0.065 -0.001 <0.001 a1 0.901 0.065 0.001 <0.001
η 0.307 0.203 -0.093 0.009 a2 0.902 0.064 0.002 <0.001

η 0.288 0.200 -0.112 0.013
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Table 3.21: Simulation results of the perturbed cases for PHNBCR model

PHNBCR model

Prior 1 Prior 2
Setup Perturbed

case Parameters Mean SD Bias MSE Parameters Mean SD Bias MSE

A None

b0 -1.595 0.259 -0.095 0.009 b0 -1.568 0.271 -0.068 0.005
b1 -0.420 0.266 0.080 0.006 b1 -0.358 0.271 0.142 0.020
β -0.243 0.177 -0.093 0.009 β -0.351 0.181 -0.201 0.041
α 0.871 0.195 -0.129 0.017 α 0.913 0.200 -0.087 0.008

Λ11 3.813 2.342 -0.187 0.035 Λ11 3.707 2.155 -0.293 0.086
Λ22 3.882 2.534 -0.118 0.014 Λ22 3.855 2.551 -0.145 0.021
Λ12 -0.532 1.899 -0.532 0.283 Λ12 -0.718 1.781 -0.718 0.516
a 0.901 0.065 0.001 <0.001 a1 0.902 0.064 0.002 <0.001
η 0.230 0.167 -0.170 0.029 a2 0.902 0.064 0.002 <0.001

η 0.274 0.187 -0.126 0.016

B {18}

b0 -1.407 0.268 0.093 0.009 b0 -1.396 0.265 0.104 0.011
b1 -0.430 0.261 0.070 0.005 b1 -0.363 0.262 0.137 0.019
β -0.273 0.176 -0.123 0.015 β -0.298 0.183 -0.148 0.022
α 0.836 0.199 -0.164 0.027 α 0.824 0.201 -0.176 0.031

Λ11 3.713 2.306 -0.287 0.082 Λ11 3.629 2.230 -0.371 0.138
Λ22 3.882 2.461 -0.118 0.014 Λ22 4.066 2.705 0.066 0.004
Λ12 -0.415 1.824 -0.415 0.173 Λ12 -0.184 1.844 -0.184 0.034
a 0.900 0.067 0.000 <0.001 a1 0.898 0.067 -0.002 <0.001
η 0.401 0.219 0.001 <0.001 a2 0.901 0.065 0.001 <0.001

η 0.483 0.253 0.083 0.007

C {80}

b0 -1.503 0.270 -0.003 <0.001 b0 -1.399 0.274 0.101 0.010
b1 -0.407 0.267 0.093 0.009 b1 -0.407 0.259 0.093 0.009
β -0.296 0.182 -0.146 0.021 β -0.161 0.181 -0.011 <0.001
α 0.902 0.198 -0.098 0.010 α 0.792 0.202 -0.208 0.043

Λ11 3.202 2.053 -0.798 0.637 Λ11 3.033 1.939 -0.967 0.935
Λ22 3.953 2.562 -0.047 0.002 Λ22 4.072 2.666 0.072 0.005
Λ12 -0.403 1.799 -0.403 0.163 Λ12 -0.243 1.750 -0.243 0.059
a 0.902 0.063 0.002 <0.001 a1 0.901 0.067 0.001 <0.001
η 0.405 0.216 0.005 <0.001 a2 0.903 0.063 0.003 <0.001

η 0.382 0.225 -0.018 <0.001

D {18,80}

b0 -1.488 0.262 0.012 <0.001 b0 -1.509 0.271 -0.009 <0.001
b1 -0.488 0.252 0.012 <0.001 b1 -0.622 0.249 -0.122 0.015
β -0.279 0.177 -0.129 0.017 β -0.279 0.176 -0.129 0.017
α 0.822 0.200 -0.178 0.032 α 0.815 0.203 -0.185 0.034

Λ11 3.183 1.941 -0.817 0.667 Λ11 3.239 1.987 -0.761 0.579
Λ22 3.814 2.565 -0.186 0.035 Λ22 3.989 2.678 -0.011 <0.001
Λ12 -0.459 1.749 -0.459 0.210 Λ12 -0.802 1.778 -0.802 0.644
a 0.902 0.064 0.002 <0.001 a1 0.900 0.068 0.000 <0.001
η 0.551 0.230 0.151 0.023 a2 0.902 0.064 0.002 <0.001

η 0.425 0.222 0.025 0.001



102 CHAPTER 3. SPATIAL FRAILTY IN CURE RATE MODELS

Table 3.22: Simulation results of the perturbed cases for CPHNBCR model

CPHNBCR model

Prior 1 Prior 2
Setup Perturbed

case Parameters Mean SD Bias MSE Parameters Mean SD Bias MSE

A None

b0 -1.633 0.272 -0.133 0.018 b0 -1.553 0.265 -0.053 0.003
b1 -0.383 0.269 0.117 0.014 b1 -0.438 0.280 0.062 0.004
β -0.071 0.141 0.079 0.006 β -0.143 0.152 0.007 <0.001
α 0.773 0.199 -0.227 0.052 α 0.858 0.199 -0.142 0.020

Λ11 4.439 2.695 0.439 0.192 Λ11 3.208 1.926 -0.792 0.627
Λ22 3.397 2.349 -0.603 0.363 Λ22 3.800 2.486 -0.200 0.040
Λ12 -0.250 1.909 -0.250 0.063 Λ12 -0.033 1.776 -0.033 0.001
a 0.902 0.066 0.002 <0.001 a1 0.898 0.065 -0.002 <0.001
η 0.319 0.208 -0.081 0.007 a2 0.900 0.065 <0.001 <0.001

η 0.340 0.217 -0.060 0.004

B {18}

b0 -1.576 0.280 -0.076 0.006 b0 -1.666 0.262 -0.166 0.028
b1 -0.491 0.286 0.009 <0.001 b1 -0.483 0.287 0.017 <0.001
β -0.415 0.139 -0.265 0.070 β -0.094 0.143 0.056 0.003
α 0.685 0.202 -0.315 0.099 α 0.879 0.196 -0.121 0.015

Λ11 4.721 2.799 0.721 0.519 Λ11 3.447 2.050 -0.553 0.306
Λ22 3.371 2.313 -0.629 0.396 Λ22 3.595 2.419 -0.405 0.164
Λ12 0.186 1.946 0.186 0.035 Λ12 -0.390 1.756 -0.390 0.152
a 0.902 0.063 0.002 <0.001 a1 0.898 0.066 -0.002 <0.001
η 0.347 0.223 -0.053 0.003 a2 0.901 0.065 0.001 <0.001

η 0.256 0.181 -0.144 0.021

C {80}

b0 -1.533 0.268 -0.033 0.001 b0 -1.688 0.269 -0.188 0.035
b1 -0.628 0.270 -0.128 0.017 b1 -0.444 0.264 0.056 0.003
β -0.349 0.153 -0.199 0.040 β -0.187 0.142 -0.037 0.001
α 0.749 0.198 -0.251 0.063 α 0.855 0.201 -0.145 0.021

Λ11 4.086 2.502 0.086 0.007 Λ11 4.000 2.335 <0.001 <0.001
Λ22 3.707 2.378 -0.293 0.086 Λ22 3.443 2.407 -0.557 0.311
Λ12 -0.100 1.906 -0.100 0.010 Λ12 -0.416 1.803 -0.416 0.173
a 0.901 0.066 0.001 <0.001 a1 0.899 0.066 -0.001 <0.001
η 0.294 0.198 -0.106 0.011 a2 0.900 0.065 <0.001 <0.001

η 0.298 0.200 -0.102 0.010

D {18,80}

b0 -1.542 0.266 -0.042 0.002 b0 -1.656 0.258 -0.156 0.024
b1 -0.303 0.283 0.197 0.039 b1 -0.609 0.278 -0.109 0.012
β -0.246 0.149 -0.096 0.009 β -0.434 0.151 -0.284 0.080
α 0.638 0.205 -0.362 0.131 α 0.877 0.189 -0.123 0.015

Λ11 4.109 2.602 0.109 0.012 Λ11 3.498 2.031 -0.502 0.252
Λ22 3.872 2.504 -0.128 0.016 Λ22 3.645 2.486 -0.355 0.126
Λ12 0.002 1.947 0.002 <0.001 Λ12 -0.127 1.727 -0.127 0.016
a 0.900 0.066 <0.001 <0.001 a1 0.898 0.067 -0.002 <0.001
η 0.171 0.144 -0.229 0.053 a2 0.902 0.064 0.002 <0.001

η 0.253 0.180 -0.147 0.022
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Table 3.23: Divergence measures of the perturbed cases and DIC values for the simulated data sets.

Model Prior Setup Case number dKL dJ dL1 dχ2 DIC

WNBCR

1

A 18 0.019 0.039 0.077 0.042 155.90080 0.059 0.125 0.138 0.160
B 18 0.049 0.103 0.124 0.124 162.537
C 80 0.040 0.083 0.112 0.097 168.190

D 18 0.118 0.256 0.192 0.417 174.948
80 0.097 0.210 0.174 0.306

2

A 18 0.011 0.023 0.060 0.025 144.903
80 0.009 0.019 0.053 0.021

B 18 0.044 0.090 0.118 0.102 160.820
C 80 0.442 1.690 0.364 69.616 179.784

D 18 0.090 0.196 0.164 0.313 170.610
80 0.089 0.194 0.165 0.300

CWNBCR

1

A 18 0.017 0.035 0.075 0.036 397.683
80 0.037 0.075 0.110 0.082

B 18 0.416 0.963 0.369 3.040 460.719
C 80 0.585 1.429 0.440 7.355 408.683

D 18 0.426 1.051 0.376 4.596 428.512
80 0.417 0.930 0.371 2.187

2

A 18 0.038 0.078 0.109 0.089 366.214
80 0.038 0.078 0.107 0.091

B 18 0.616 1.457 0.451 6.008 396.018
C 80 0.400 0.914 0.365 2.364 399.191

D 18 0.221 0.495 0.266 1.002 410.241
80 0.231 0.528 0.274 1.163

PHNBCR

1

A 18 0.002 0.004 0.025 0.004 262.038
80 <0.001 <0.001 0.003 <0.001

B 18 1.249 3.728 0.624 229.515 274.767
C 80 0.466 1.140 0.391 5.040 272.823

D 18 1.281 3.433 0.629 63.147 306.894
80 1.500 4.096 0.695 105.593

2

A 18 0.048 0.099 0.125 0.114 274.876
80 0.029 0.058 0.096 0.062

B 18 1.208 3.045 0.610 37.911 286.468
C 80 1.095 2.787 0.594 25.740 294.388

D 18 1.151 2.638 0.596 15.903 281.866
80 0.407 0.941 0.364 2.671

CPHNBCR

1

A 18 0.337 0.754 0.333 1.759 427.835
80 0.025 0.050 0.089 0.053

B 18 2.407 5.164 0.765 60.061 445.979
C 80 2.619 5.240 0.781 38.913 437.124

D 18 3.202 7.434 0.845 331.339 492.476
80 2.138 4.935 0.733 114.932

2

A 18 0.047 0.097 0.123 0.111 412.991
80 0.041 0.084 0.114 0.097

B 18 1.412 2.873 0.620 10.929 417.466
C 80 1.412 2.978 0.621 14.312 424.754

D 18 2.165 5.646 0.749 327.954 459.821
80 1.117 2.791 0.592 28.511
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WNBCR model
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Figure 3.41: Index plots of Kullback-Leibler divergence measure from the fitted WNBCR model
considering prior 1.
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Figure 3.42: Index plots of Kullback-Leibler divergence measure from the fitted WNBCR model
considering prior 2.
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Figure 3.43: Index plots of J-distance from the fitted WNBCR model considering prior 1.
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Figure 3.44: Index plots of J-distance from the fitted WNBCR model considering prior 2.
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Figure 3.45: Index plots of L1 norm distance from the fitted WNBCR model considering prior 1.
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Figure 3.46: Index plots of L1 norm distance from the fitted WNBCR model considering prior 2.
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Figure 3.47: Index plots of χ2-square divergence from the fitted WNBCR model considering prior 1.
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Figure 3.48: Index plots of χ2-square divergence from the fitted WNBCR model considering prior 2.
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CWNBCR model
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Figure 3.49: Index plots of Kullback-Leibler divergence measure from the fitted CWNBCR model
considering prior 1.

(a) Setup A

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

Index

K
−

L 
di

ve
rg

en
ce

(b) Setup B

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Index

K
−

L 
di

ve
rg

en
ce

18

(c) Setup C

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

Index

K
−

L 
di

ve
rg

en
ce

80

(d) Setup D

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

Index

K
−

L 
di

ve
rg

en
ce

18 80

Figure 3.50: Index plots of Kullback-Leibler divergence measure from the fitted CWNBCR model
considering prior 2.
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Figure 3.51: Index plots of J-distance from the fitted CWNBCR model considering prior 1.
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Figure 3.52: Index plots of J-distance from the fitted CWNBCR model considering prior 2.
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Figure 3.53: Index plots of L1 norm distance from the fitted CWNBCR model considering prior 1.
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Figure 3.54: Index plots of L1 norm distance from the fitted CWNBCR model considering prior 2.
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Figure 3.55: Index plots of χ2-square divergence from the fitted CWNBCR model considering prior
1.
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Figure 3.56: Index plots of χ2-square divergence from the fitted CWNBCR model considering prior
2.
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PHNBCR model
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Figure 3.57: Index plots of Kullback-Leibler divergence measure from the fitted PHNBCR model
considering prior 1.
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Figure 3.58: Index plots of Kullback-Leibler divergence measure from the fitted PHNBCR model
considering prior 2.
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Figure 3.59: Index plots of J-distance from the fitted PHNBCR model considering prior 1.
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Figure 3.60: Index plots of J-distance from the fitted PHNBCR model considering prior 2.
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Figure 3.61: Index plots of L1 norm distance from the fitted PHNBCR model considering prior 1.
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Figure 3.62: Index plots of L1 norm distance from the fitted PHNBCR model considering prior 2.
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Figure 3.63: Index plots of χ2-square divergence from the fitted PHNBCR model considering prior
1.
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Figure 3.64: Index plots of χ2-square divergence from the fitted PHNBCR model considering prior
2.
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CPHNBCR model
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Figure 3.65: Index plots of Kullback-Leibler divergence measure from the fitted CPHNBCR model
considering prior 1.
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Figure 3.66: Index plots of Kullback-Leibler divergence measure from the fitted PHNBCR model
considering prior 2.



3.2. NEGATIVE-BINOMIAL CURE RATE MODELS WITH SPATIAL FRAILTIES 117

(a) Setup A

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

Index

J−
di

st
an

ce

(b) Setup B

0 20 40 60 80 100

0
1

2
3

4
5

Index

J−
di

st
an

ce

18

(c) Setup C

0 20 40 60 80 100

0
1

2
3

4
5

Index

J−
di

st
an

ce

80

(d) Setup D

0 20 40 60 80 100

0
2

4
6

8

Index

J−
di

st
an

ce

18

80

Figure 3.67: Index plots of J-distance from the fitted CPHNBCR model considering prior 1.
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Figure 3.68: Index plots of J-distance from the fitted CPHNBCR model considering prior 2.
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Figure 3.69: Index plots of L1 norm distance from the fitted CPHNBCR model considering prior 1.
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Figure 3.70: Index plots of L1 norm distance from the fitted CPHNBCR model considering prior 2.
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Figure 3.71: Index plots of χ2-square divergence from the fitted CPHNBCR model considering prior
1.
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Figure 3.72: Index plots of χ2-square divergence from the fitted CPHNBCR model considering prior
2.
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3.2.3 Application

We now apply the proposed method to the interval-censored smoking cessation data pre-

sented in Section 1.1.

Because of the high computational cost, we implement the MCMC algorithms in C language

and the results are analyzed in R language (R Development Core Team (2010)) through the "coda"

package (Plummer et al. (2005)). All of our MCMC algoritms ran a total of 60,000 iterations

discarding the first 20,000 realizations as burn-in and thinning to every fifth iteration. Posterior

results are then based on 8,000 realizations of the Markov chain. Our Meteropolis acceptance rate

for these parameters ranged from 25% to 50%. The convergence was checked using the Geweke

diagnostic which did not indicate lack of convergence. The models are compared using DIC and the

new proposed measure. Moreover, the case deletion influence diagnostics are also computed to detect

possible influential observations.

Firstly, we fit the proposed models considering the different spatial frailties in the models

to the data set. Prior distributions for the parameters b, β and η are bj ∼ N(0, 100), j = 0, . . . , 4,

βj ∼ N(0, 100), j = 1, . . . , 4, and η ∼ N(0, 100)I(0,∞) and a prior distribution for the shape parameter

of WNBCR and CWNBCR models is α ∼ N(0, 100)I(0,∞). As know, the piecewise exponential

distribution has better approximation to any unknown function when the length of each interval

becomes smaller. Therefore, we partition the time axis so that they denoted the ordered distinct time

points of all observed interval end points. Thus, we have 178 risk parameters need to estimate. Prior

distributions for the risk parameters are αi ∼ N(0, 100)I(0,∞), i = 1, . . . , 178. For the sub-models

of the PHNBCR and CPHNBCR, we used the informative prior distributions for the parameters b

and β, where the priors are based on the posterior distributions of these parameters of PHNBCR

and CPHNBCR models, i.e., bj ∼ N(0, 1), j = 0, . . . , 4, and βj ∼ N(0, 0.6), j = 1, . . . , 4.

For the assumption that the random frailties are independent, the prior distribution for

parameter θi is given by θi ∼ InvGamma(0.01, 0.01) for i = 1, 2. On the other hand, assuming

the dependence of the random frailties, a prior distribution for parameter ai can be taken ai ∼

Uniform(0, 1) or ai ∼ Beta(18, 2) and let Λ ∼Wishart(2,Λ0), i = 1 if the random frailties take the

traditional MCAR distribution (MCAR(a,Λ)) and i = 1, 2 if the random frailties take the extended

MCAR distribution (MCAR(a1, a2,Λ)). Since Gelfand & Vounatsou (2003) and Banerjee & Carlin

(2004) considered different values for Λ0, we fixe Λ0 equals to I2×2, 0.1I2×2, 0.01I2×2 and 0.001I2×2

for the WNB model. We note that the estimative of parameters β, b, α, η and a are not influenced

by Λ0. However, the Table 3.24 shows that Λ0 restrict the posterior estimate of Λ, i.e., if we assume

the small values for the diagonal elements of Λ0, the posterior estimative of the elements of Λ have
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small values and the posterior estimative of the elements of covariance matrix Σ have large values.

We observed that the estimative of Σ11, Σ22 and Σ12 have reasonable values when Λ0 = 0.1I2×2, thus,

we consider Λ ∼Wishart(2,Diag(0.1, 0.1)) in the application, where Diag(0.1, 0.1) = 0.1I2×2.

Table 3.24: Posterior estimate of the elements of matrix Λ and Σ

Λ0 Λ11 Λ22 Λ12 Σ11 Σ22 Σ12
0.001I2×2 0.0342 0.0275 -0.0026 29.4836 36.5596 2.7352
0.01I2×2 0.2774 0.2772 -0.0046 3.6062 3.6079 0.0604
0.1I2×2 2.6616 2.5635 -0.0163 0.3757 0.3901 0.0024
1I2×2 25.9818 25.4708 0.0407 0.0385 0.0393 -0.0001

where Λij is the element of precision matrix Λ in position (i, j), and Σij is the element of matrix Σ = Λ−1

in position (i, j), this Σ11 is the spatial variance component of U and Σ22 is the spatial variance
component of V , Σ12/(Σ11Σ22)1/2 denote their correlation.

The values of the Bayesian model selection criterion for fitted cure rate models are presented

in Table 5.4. According to the DIC, the PHNBCR and CPHNBCR models are better than WNBCR

and CWNBCR models for all prior distributions considered for the parameters. Although the DIC

value of CPHNBCR model is lower than that of PHNBCR model, the DIC values of both models

are very close, thus, we conclude that the both model are equivalent. Inasmuch as the proposed

cure models are very flexile and encompasses several well-known cure model as its special cases, its

sub-models also have been fitted, considering the dependent random frailties with priors (iv) given

in Table 5.4 for the parameters.

The criterion values for fitted cure rate models are presented in Table 5.5. We observe that

the WNBCR and CPHNBCR models have the smallest DIC and Pd values among all cure models

with Weibull distribution and piecewise exponential distribution. Moreover, comparing the obtained

DIC values with the values presented in the paper of Carlin & Banerjee (2003), where they proposed

the mixture cure model with the spatial frailty, we conclude that all fitted models are more adequate

since all their DIC values are smaller. Here, we select the CPHNB model as our working model.

The posterior summary of the parameters except αi’s is presented in the Table 3.27. The

posterior means and 95% credible intervals of αi’s are presented in the Figure 3.73, it is showed that

there are some values of α’s, which are indicated, have different values than others. Thus, we can

repartition the time axis so that we consider just risk parameters (α1, α2, α34, α35, α64, α65, α84, α85,

α88, α98, α99), thus only 11 parameters need to be estimated, which will lower computational time

cost.

We note that expect the intercept, all covariates are not significant when we consider the

(95%) credible interval, but the covariate of "the intervention type SI/UC", "number of cigarettes
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Table 3.25: DIC values for the fitted proposed cure rate models considering different priors for the param-
eters.

Criteria
Model Priors DIC Pd
WNB (i) : U ∼ CAR(θ1), V ∼ CAR(θ2), θ1, θ2 ∼ InvGamma(0.01, 0.01) 408 4.4

(ii) : ψ ∼ MCAR(a,Λ), a ∼ Uniform(0, 1), Λ ∼Wishart(2,Diag(0.1, 0.1)) 408 8.2
(iii) : ψ ∼ MCAR(a1, a2,Λ), a1, a2 ∼ Uniform(0, 1), Λ ∼Wishart(2,Diag(0.1, 0.1)) 401 1.1
(iv) : ψ ∼ MCAR(a,Λ), a ∼ Beta(18, 2), Λ ∼Wishart(2,Diag(0.1, 0.1)) 401 1.7
(v) : ψ ∼ MCAR(a1, a2,Λ), a1, a2 ∼ Beta(18, 2), Λ ∼Wishart(2,Diag(0.1, 0.1)) 408 8.6

CWNB (i) : U ∼ CAR(θ1), V ∼ CAR(θ2), θ1, θ2 ∼ InvGamma(0.01, 0.01) 420 17.2
(ii) : ψ ∼ MCAR(a,Λ), a ∼ Uniform(0, 1), Λ ∼Wishart(2,Diag(0.1, 0.1)) 418 12.6
(iii) : ψ ∼ MCAR(a1, a2,Λ), a1, a2 ∼ Uniform(0, 1), Λ ∼Wishart(2,Diag(0.1, 0.1)) 418 12.4
(iv) : ψ ∼ MCAR(a,Λ), a ∼ Beta(18, 2), Λ ∼Wishart(2,Diag(0.1, 0.1)) 417 13.6
(v) : ψ ∼ MCAR(a1, a2,Λ), a1, a2 ∼ Beta(18, 2), Λ ∼Wishart(2,Diag(0.1, 0.1)) 417 13.7

PHNB (iv) : ψ ∼ MCAR(a,Λ), a ∼ Beta(18, 2), Λ ∼Wishart(2,Diag(0.1, 0.1)) 387 5.7
CPHNB (iv) : ψ ∼ MCAR(a,Λ), a ∼ Beta(18, 2), Λ ∼Wishart(2,Diag(0.1, 0.1)) 382 5.3

Table 3.26: DIC values for the fitted cure rate models considering prior (iv) for the parameters.

Criteria
Model DIC Pd

Weibull negative binomial cure rate model 401 1.7
Weibull geometric cure rate model 417 12.7
Weibull promotion time cure model 417 10.4
Complementary Weibull negative binomial cure rate model 417 13.6
Complementary Weibull geometric cure rate model 418 13.6
Complementary Weibull promotion time cure model 419 12.4
PH negative binomial cure rate model 387 5.7
PH geometric cure rate model 395 11.6
PH promotion time cure model 404 12.9
Complementary PH negative binomial cure rate model 382 5.3
Complementary PH geometric cure rate model 394 11.7
Complementary PH promotion time cure model 404 13.6
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Table 3.27: Posterior summaries of the parameter of the CPHNB model for the smoking cessation
data.

CPHNB model

Survival Model Cure Rate
Parameter Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%
Intercept b0 -1.7523 1.7780 -5.9692 0.8523
Sex (male=0) β1 0.1661 0.3411 -0.5797 0.7904 b1 -0.0368 0.7668 -1.3124 1.7907
SI/UC (UC=0) β2 -0.6882 0.4260 -1.6565 0.0501 b2 1.3076 1.0626 -0.3685 3.9041
Cigarettes per day β3 0.0049 0.0157 -0.0269 0.0368 b3 -0.0313 0.0492 -0.1168 0.0646
Duration as smoker β4 -0.0404 0.0222 -0.0800 0.0086 b4 0.0518 0.0820 -0.1158 0.2083
η 0.8998 0.0660 0.7347 0.9861
a 13.8192 5.9519 4.2498 26.3673

Λ11 2.6928 0.6559 1.5703 4.1202
Λ22 2.5671 0.6478 1.4625 3.9913
Λ12 0.0205 0.4664 -0.8912 0.9630

Σ11 0.4098 0.1107 0.2485 0.6690
Σ22 0.4324 0.1265 0.2555 0.7310
Σ12/(Σ11Σ22)1/2 -0.0076 0.1819 -0.3732 0.3508

where Λij is the element of precision matrix Λ in position (i, j), and Σij is the element of matrix Σ = Λ−1 in
position (i, j), this Σ11 is the spatial variance component of U and Σ22 is the spatial variance component of V ,
Σ12/(Σ11Σ22)1/2 denote their correlation.
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Figure 3.73: Posterior means and credible intervals of αi’s
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smoked per day", and "duration of smoking habit" could be significant since we consider the lower

credible interval. In cure rate the positive value of b2 implies that individuals with special intervention

have higher probability of quitting smoking than those with usual care and the negative value of b3

means that the individuals with a higher level of cigarette consumption have lower probability of

quitting. But the duration of smoking habit does not have a positive effect on quitting. In the

survival function, this shows that individuals with special intervention have lower hazard rate of

relapse time than those with usual care. On the other hand, the number of cigarettes smoked per

day and the duration of smoking habit have no positive effects on the hazard rate of the relapse, that

is, individuals with a higher level of cigarette consumption per day and longer habit do not have a

higher hazard rate.

The standard deviation, Σ1/2
11 of random spatial effects in the survival model is 0.6401, and the

standard deviation, Σ1/2
22 of random spatial effects in cure rate is 0.6575 which indicates considerable

heterogeneity among the clusters. Moreover, there is no linear correlation between the spatial effects

U and V .

Figure 3.74 maps the posterior means and standard deviations of frailties U and V in the

CPHNBCR model. For the frailties U for which the high value represents a high relapse rate, we

note that the northwest regions and some cities of the south region have higher values, that is, the

individuals in these regions have higher relapse rates than those in other areas. By contrast, the

center region (Rochester city) and some northeast cities suggest slightly better than avenge cessation

behavior. The frailties V show that the eastern region has lower cure probability and the other

regions, which have close probabilities. Note that the posterior standard deviations of frailties U

and V have approximate values. Both maps show that the cities round the central region have lower

values and the city of Waseca has the highest value.

In order to detect possible influential observations in the posterior distribution of the pa-

rameters of CPHNB model, the estimates of ψ-divergence measures, which were obtained from the

posterior sample of the parameters of the model, are presented in Figure 3.75. It shows that there

are some possible influential observations which were detected by divergence measures. Here, we

only analyze the individual 138, who was detected as an influential observation by all four divergence

measures. This individual is a women living in Faribault. She received the anti-smoking intervention

and her observed interval is (2.998, 3.992). Her average cigarette consumption is 20 per day and

smoking duration is 25 years.

In order to reveal the impact of this possible influential observation on the parameter

estimates and inference, we removed observation 138 and readjusted the model and calculated

the relative variations (RV) for the posterior mean of the parameters. The RV are defined by
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U
-0.200872 - -0.110758
-0.103711 - -0.038288
-0.025407 - 0.044156
0.055639 - 0.149600
0.209043 - 0.350387

V
-0.106548 - -0.061108
-0.055047 - -0.023046
-0.009486 - 0.009414
0.013708 - 0.031917
0.037276 - 0.059255

SDU
0.180145 - 0.227073
0.232673 - 0.259655
0.264332 - 0.288141
0.300054 - 0.346927
0.367398 - 0.509699

SDV
0.189105 - 0.249507
0.255321 - 0.280724
0.287924 - 0.317748
0.330097 - 0.380143
0.388483 - 0.538815

Figure 3.74: Maps of posterior means for frailties U (upper-left panel) and V (upper-right panel)
and posterior standard derivations for frailties U (lower-left panel) and V (lower-right panel).
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Figure 3.75: Estimates of ψ-divergence measures for CPHNBCR model

RV = (ϑ̂d,−{138} − ϑ̂d)/ϑ̂d, for all d, where d is the index of the parameters, ϑ̂d,−{138} denotes the

posterior mean of ϑd,−{138}, after removel of the set of observations {138}. Note that, in the piecewise

exponential model, the time axis is partitioned by the ordered distinct time points of all observed

interval end points, so we have different and fewer risk parameter α’s after removed observation 138.

In this case we have 176 risk parameters to be estimated. The posterior summaries of the parameters

for the refitted CPHNB model and RV for the posterior mean of the parameters are presented in

Table 3.28. We note that only the parameters b1 and σ12 have larger RV values, but still close to

the obtained estimates without removing the detected individual. In this case, all parameters of

the CPHNB model are not sensitive under deletion of the outlying observations and we do not have

inferential changes after removing the observations. The DIC values and pd for fitted models are

378 and 6.2, respectively. They are lower than CPHNBCR model for the data without removing the

detected observation.
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Table 3.28: Posterior summaries of the parameter of CPHNBCR model and RV adjusted for the smoking cessation
data without detected individual 138.

Survival Model Cure Rate
Parameter Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%
Intercept b0 -1.2963 1.424 -4.2843 1.1732

(-0.2602)
Sex (male=0) β1 0.2191 0.3350 -0.5109 0.8301 b1 0.0353 0.6972 -1.0915 1.7375

(-0.3191) (-1.9592)
SI/UC (UC=0) β2 -0.5183 0.3807 -1.3837 0.1839 b2 1.0211 0.8139 -0.4098 3.049

(-0.2469) (-0.2191)
Cigarettes per day β3 0.0020 0.0172 -0.0329 0.0355 b3 -0.0448 0.0391 -0.1152 0.0491

(-0.5918) (0.4313)
Duration as smoker β4 -0.0437 0.0189 -0.0777 0.0024 b4 0.0633 0.0569 -0.066 0.1611

(0.0817) (0.2220)
η 13.9922 5.6025 4.4720 26.2489

(0.0125)

a 0.9008 0.0654 0.7408 0.9863
(0.0011)

Λ11 2.6605 0.6542 1.5514 4.1072
(-0.0120)

Λ22 2.5590 0.6345 1.4802 3.9449
(-0.0032)

Λ12 -0.0170 0.4725 -0.9683 0.8960
(-1.8293)

Σ11 0.4149 0.1092 0.2501 0.6753
(0.0126)

Σ22 0.4334 0.1228 0.2589 0.7200
(0.0022)

Σ12 0.0067 0.1848 -0.3526 0.3742
(-1.8816)



128 CHAPTER 3. SPATIAL FRAILTY IN CURE RATE MODELS

3.2.4 Conclusions

In this work, we described an approach to extend the cure rate model (Cancho et al., 2011)

and its complementary model to allow for spatial correlations by including spatial frailty for the

interval-censored data setting. The proposed cure rate models with frailty are very flexible because

they encompass several known cure rate models as its particular cases. We use the MCMC methods

in Bayesian inference approach to fit our models and some Bayesian model comparison criteria were

used. The results from the application show that WNBCR model with frailties has better fit than

CWNBCR model with frailties, but the proportional hazard cure models with frailties (PHNBCR and

CPHNBCR models) stand out better. Comparing the proposed models with models introduced by

Carlin & Banerjee (2003) and Pan et al. (2014), it is shown that the proportional hazard cure models

with frailties are more adequate. Moreover, the proposed models are not sensitive with influential

observations, which can be observed through the influence diagnostic in the simulation study as well

as in the application. The interpretation of the covariates is easy due to the parametrization of the

models considered in the cure rate. Moveover, the MCAR prior can be used even if frailties effects

are low or they are not correlated.



Chapter 4

The Power Series Cure Rate Model for

Spatially Correlated Interval-Censored

Data based on Generalized Extreme

Value Distribution

4.1 Introduction

In this section, we propose a new cure rate survival model for spatially correlated interval-

censored data based on generalized extreme value distribution. This cure rate model is much more

general than the cure models proposed in Sections 3.1 and 3.2. Here, we assume the number of

competing causes related to the occurrence of an event is modeled by an exponential composed by

discrete power series (PS) distribution (Noack, 1950). Therefore, the cure rate model with the PS

distribution is very flexible. Because it can be seen as a general model encompassing several well

known cure models such as, bernoulli (the mixture cure model), geometric, logarithmic, and Poisson

(the promotion time cure model), among others ones, which can be tested for the best fitting on

a straightforwardly way. The MCMC method is used in Bayesian inference approach and some

Bayesian model selection criteria are used for model comparison. Moreover, we conduct an influence

diagnostic in order to detect possible influential or extreme observations that can cause distortions

on the results of the analysis. Finally, the proposed models are applied to analysis of a real data set

on a smoking cessation study.

129
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4.2 Power Series cure rate Model

Suppose that there are I regions and ni individuals in ith region. We denote by Tij the

random variable for the observed time to event of jth individual in ith region, where j = 1, . . . , ni
and i = 1, . . . , I. Suppose that the (i, j)th individual is potentially exposed to Mij latent risk, where

Mij denotes the initial number of competing causes related to the occurrence of an event and assuming

Mij has a class of random variables with discrete distributions proposed by Noack (1950), with the

probability mass function

P (Mij = m) =
amθ

m
ij

A(θij)
, m = 0, 1, 2 · · · . (4.1)

where am > 0, A(θij) = ∑∞
m=0 amθ

m
ij and θij ∈ (0, s) is chosen such that A(θij) is finite and and

its first, second and third derivatives are defined. The parameter θij is called the power parameter

of the distribution and A(θij) is the series function. Some important and well-known distributions

belong to this class. For example, if A(θij) = (1 + θij)k and am =
(
k
m

)
with θij > 0 and k is positive

integer, then (4.1) defines the binomial distribution. If A(θij) = exp(θij) and am = 1
m
, θij > 0 then

(4.1) defines a Poisson distribution. If A(θij) = (1−θij)−k and am =
(
m+k−1
m

)
, k > 0 and 0 < θij < 1,

then (4.1) defines the negative binomial distribution. If A(θij) = − log(1 − θij)/θij and am = 1
m+1 ,

with 0 < θij < 1, then logarithmic distribution is obtained from (4.1).

Let Ycij for c = 1, . . . ,Mij denote the failure times of jth individual in ith region due to the

cth latent risk. We Suppose that, given Mij, the random variables Ycij’s are mutually independent

with distribution function F (·) = 1 − S(·). If we assume the presence of any of latent risk will

lead to the occurrence of the event, the time to event of interest can be defined by random variable

Tij = min{Ycij, c = 1, · · · ,Mij} for Mij ≥ 1 and Tij = ∞ if Mij = 0 with P (Tij = ∞|Mij = 0) = 1.

Note that any survival distribution can be considered to represent our uncertainty about the values

of random variables Ycij, c = 1, . . . . The assumption of independence and identical distribution to

Y1ij, Y2ij, . . . is surely a strong one, favoring simplicity and analytical tractability at the expense of a

more general formulation, as remarked by Yakovlev and Tsodikov (1996). Despite this shortcoming,

these models have proven to be useful in many real-world applications.

Under this setup, the survival function for the population is given by

SFpop(tij) = P (Tij > tij) =
∞∑
m=0

S(tij)m
amθ

m
ij

A(θij)
= A (θijS(tij))

A(θij)
, tij > 0. (4.2)

This situation is also known as first activation scheme, because in this case we assume that the event

of interest occurs when the first possible cause is activated. Here, we called the model in (4.2) as
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power series (PS) cure rate model under first activation. The cure fraction can be obtained from

(4.2) is given by

p0ij = lim
t→∞

Spop(tij) = A(0)
A(θij)

= a0

A(θij)
> 0.

The corresponding density and hazard functions to (4.2) are given by

fpop(tij) = A′(θijS(tij))
A(θij)

θijf(tij)

and

hpop(tij) = A′(θijS(tij))
A(θijS(tij))

θijf(tij), (4.3)

respectively. Where A′(θijS(tij)) = dA(θijS(tij))/dt and f(tij) = −dS(tij)/dt denotes the (proper)

density function of the time to event Ycij in (4.2). Note that the fpop(tij) is not proper probability

density function, since Spop(tij) is not proper survival function. The hazard function in (4.3) satisfies

the proportional hazards property if, and only if, A(θij) = exp(θij).

On the other hand, if we assume the presence of all latent risks will ultimately lead to

the occurrence of the event. Thus, the time to event of interest is defined by random variable

Tij = max{Ycij, c = 1, · · · ,Mij} for Mij ≥ 1 and Tij =∞ if Mij = 0 with P (Tij =∞|Mij = 0) = 1.

The survival function for the population is given by

SLpop(tij) = P (Tij > tij) = 1 + A(0)
A(θij)

− A (θijF (tij))
A(θij)

, tij > 0. (4.4)

This situation is known as last activation scheme, because the event of interest only takes place

after all the latent causes have been occurred. We called the model in (4.4) as power series cure

rate model under last activation. The cure fraction can be obtained from (4.4) is given by p0ij =

limt→∞ Spop(tij) = A(0)
A(θij) > 0, which has the same expression as the cure fraction obtained from (4.2).

The corresponding density and hazard functions to (4.4) are given by

fpop(tij) = A′(θijF (tij))
A(θij)

θijf(tij)

and

hpop(tij) = A′(θijF (tij))θijf(tij)
A(0) + A(θij)− A(θijF (tij))

,

where A′(θijF (tij)) = dA(θijF (tij))/dt and f(tij) = −dS(tij)/dt denotes the (proper) density func-

tion of the time to event Ycij in (4.4).

There are another situation where the event of interest occurs when the some of the possible

causes are activated, and given the number of latent causes Mij, the number of activated causes is a
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random variable with the discrete uniform distribution on {1, · · · ,Mij}. This situation is known as

random activation scheme. The survival function for the population is given by

SRpop(tij) = P (Tij > tij) = A(0)
A(θij)

+
(

1− A(0)
A(θij)

)
S(tij), tij > 0. (4.5)

The corresponding density and hazard functions to (4.5) are given by

fpop(tij) =
(

1− A(0)
A(θij)

)
f(tij)

and

hpop(tij) = (A(θij)− A(0))f(tij)
A(0) + (A(θij)− A(0))S(tij)

.

Note that under conditions of the models (4.2), (4.4) and (4.5) for any distribution function

F (·), the relationship among the first, last and random activation schemes is SFpop(tij) ≤ SRpop(tij) ≤

SLpop(tij) for all tij > 0.

4.3 Special cases of the PS cure rate model under first/last

activation

In this section, we present several important cure model can be obtained directly from our

general formulations given in (4.2) and (4.4).

4.3.1 Mixture cure model

Let A(θij) = (1 + θij), from the general formulation (4.2) or (4.4), we obtain the classical

mixture model (Boag (1949); Berkson & Gage (1952)),

Spop(tij) = 1
1 + θij

+ θij
1 + θij

S(tij).

In this case, Mij follows a Bernoulli distribution with parameter θij/1 + θij and the cure rate is given

by p0ij = (1 + θij)−1. The corresponding density function has expression

fpop(tij) = θij
1 + θij

f(tij).
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4.3.2 Promotion time cure model and complementary promotion time

cure model

If A(θij) = exp(θij), from (4.2), then we obtain the promotion time cure model proposed by

Chen et al. (1999),

Spop(tij) = exp{−θijF (tij)}.

Here, Mij follows the Poisson distribution with parameter θij. The cure fraction given by p0ij =

exp{θij}. The corresponding density function is given by

fpop(tij) = θijf(tij) exp{−θijF (tij)}.

Moreover, from the formulation (4.4), we obtain the complementary promotion time cure model.

The corresponding survival function is given by

Spop(tij) = 1 + exp{−θij} − exp {−θijS(tij)} ,

and the corresponding density function is given by

fpop(tij) = θijf(tij) exp{−θijS(tij)}.

4.3.3 Geometric cure rate model and complementary geometric cure

rate model

If A(θij) = (1 − θij)−1, then Mij follows the geometric distribution. From the formulation

(4.2) and (4.4), we obtain the geometric and complementary geometric cure models. The correspond-

ing survival functions are given by

Spop(tij) = 1− θij
1− θijS(tij)

,

and

Spop(tij) = 1 + (1− θij)−
1− θij

1− θijF (tij)
,

respectively. The cure fraction given by p0ij = 1−θij. The corresponding density functions are given

by

fpop(tij) = θij(1− θij)f(tij) [1− θijS(tij)]−2
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and

fpop(tij) = θij(1− θij)f(tij) [1− θijF (tij)]−2 ,

respectively.

4.3.4 Logarithmic cure rate model and complementary logarithmic cure

rate model

Let A(θij) = − log(1− θij)/θij, then Mij follows the logarithmic distribution, then from the

formulation (4.2) the corresponding survival function is given by

Spop(tij) = log(1− θijS(tij))
S(tij) log(1− θij)

,

and the corresponding density function is given by

fpop(tij) = − f(tij)
S(tij) log(1− θij)

[
log(1− θijS(tij))

S(tij)
+ θij

1− θijS(tij)

]
.

From the formulation (4.4), the survival function of complementary logarithmic cure model has

expression

Spop(tij) = 1− θij
log(1− θij)

− log(1− θijF (tij))
F (tij) log(1− θij)

,

and the corresponding density function is given by

fpop(tij) = − f(tij)
F (tij) log(1− θij)

[
log(1− θijF (tij))

F (tij)
+ θij

1− θijF (tij)

]
.

The cure fraction of both models is given by p0ij = −θij/ log(1 − θij). Other survival models with

cure fraction can be obtained in a similar way.

As is well known, the cure fraction plays a key role in the survival models with a cure

fraction. Thus, it is important to study the effect of covariates on the cure fraction. Since the cure

fraction is in the θij’s function, the effect of covariates can be obtained by associate covariates with

the parameter θij. In this paper, we propose that for the models whose Mij follows Bernoulli or

Poisson distribution, the parameter θij of an individual (i, j) is associated with covariates xij and it

is modeled by

θij = exp{ξij},

and for the models whose Mij follows geometric or logarithmic distribution, the parameter θij of an
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individual (i, j) is associated with covariates xij and it is modeled by a logistic regression

θij = exp(ξij)
1 + exp(ξij)

,

where ξij is a linear form of covariates, ξij = x>ijb and b is a p1-dimensional vector representing the

effects of covariates on θij which associated the cured probability p0ij.

The non-negative random variables Ycij’s can take several distributions. In this work, we

assume they follow proportional hazard (PH) model with the baseline hazard function h0(t|·), the

conditional hazard function and corresponding survival function are given by

h(t|·) = h0(t|·) exp(λij) or S(t|·) = S0(t|·)exp(λij) (4.6)

where λij = z′ijβ, zij and β is a p2-dimensional vector representing the effects of covariates on the

survival model component, S0(t|·) is the baseline survival function corresponding to h0(t|·). Here,

we specify the baseline function using a logGEV(µ, σ, ς) distribution given in Section 2.1.3 instead of

the commonly used Weibull or Gamma distribution, where µ ∈ R, σ > 0 and ς ∈ R are the location,

scale and shape parameters respectively. The main reason for choosing this distribution is that the

hazard function of the logGEV distribution can take severely different shapes, so it is extremely

flexible in modeling survival data.

Now, we will introduce the frailties Ui and Vi to better explain the effect of survival time

of susceptible individuals and on the parameter θij which related cured probability through linear

predictor expression

λij = z′ijβ + Ui,

ξij = x′ijb+ Vi, for j = 1 . . . , ni, i = 1, . . . , I.

Here, the frailties Ui and Vi are spatially correlated across the regions. In this work, we assume

the spatial priors on (U ,V ) are dependent, and they have multivariate conditionally auto-regressive

extend MCAR prior distribution which was studied by Gelfand and Vounatsou (2003) and Carlin

and Benerjee (2003). The details to extend the MCAR distribution can be found in Section 2.5.3.

4.4 Bayesian Inference

Let Dobs = {(Aij,xij, zij, δij); j = 1, . . . , ni, i = 1, . . .M} denote the observed data, where

Aij = (tijL, tijR] is the interval during which individual j in cluster i occur the event of interest,
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xij and zij are the p1−dimencional and p2−dimencional vectors of covariates, and δij is following

interval censoring indicator: δij = I(tijR < ∞). For the spacial case in which the survival time is

right-(left-) censored, Rij = +∞(Lij = 0), whereas for exact observations, tijL = tijR. Following

Finkelstein(1986), the likelihood function for the general interval-censored cure rate model is given

by

L{ϕ|Dobs,U ,V } ∝
I∏
i=1

ni∏
j=1

(Spop(tijL|ϕ)− Spop(tijR|ϕ))δij Spop(tijL|ϕ)1−δij

∝
I∏
i=1

ni∏
j=1

Spop(tijL|ϕ)
(

1− Spop(tijR|ϕ, )
Spop(tijL|ϕ)

)δij
, (4.7)

where ϕ = (b,β, µ, σ, ς). For a Bayesian analysis, we assume the prior densities for parameters are

bj ∼ N(0, σ2
b ) for j = 0, . . . , (p1 − 1); βj ∼ N(0, σ2

β) for j = 1, . . . , p2; µ ∼ N(0, σ2
µ), ς ∼ N(0, σ2

ς )

and σ2 ∼ IG(aσ, bσ), where IG(a, b) is an inverse-gamma distribution with mean b/(a − 1) and

variance b2/{(a − 1)2(a − 2)} and σb, σβ, σµ, σς , aσ and bσ are known hyperparameters. In several

areas, especial in medicine, the available prior information is also importance to be considered in the

analysis. Therefore, we specify the hyperparameters to ensure vague prior information following the

analysis results obtained by Carlin & Banerjee (2003), that is let σ2
b = 1, σ2

β = 1, σ2
µ = 102, σ2

ς = 102,

aσ = 2 and bσ = 1. For the parameters of MCAR distribution a1, a2 and Λ, the informative prior

distributions are considered following (Carlin & Banerjee, 2003), that is let ai ∼ Beta(18, 2), for

i = 1, 2, and Λ ∼Wishart(n0,Λ0), with n0 = 2 and Λ0 = 0.1I2 where I2 is a unit matrix of size 2.

To avoid range restrictions on the parameters ai and σ2, considering the transformations

υ = log(σ2) ∈ R and ρi = log(ai/(1− ai)) ∈ R, then, the joint posterior density is given by

π(ϑ|Dobs) ∝ L(ϕ|Dobs) exp
{
−1

2

[
σ−2
b

p1∑
i=0

b2
i + σ−2

β

p2∑
i=1

β2
i + µ2

σ2
µ

+ ς2

σ2
ς

+ exp(υ)
σ2
σ

]

+ ψ> [Λ⊗ (DW − aW )]ψ + log |Λ⊗ aW |+ n0 − 4
2 log |Λ| − 1

2tr(Λ
−1
0 Λ)

+ υ

 exp(17ρi)
(1 + exp(ρi))18 ,

where ϕ = (b,β, µ, ς, υ−1) with υ−1 = exp
(

1
2υ
)

= σ.

This joint posterior density is analytically intractable. So, we based our inference on the

Markov chain Monte Carlo (MCMC) simulation methods. We can observed that the full condi-

tional distributions for parameters b, β, µ, ς, σ2 and ρ have not closed forms, thus we will use the

Metropolis-Hastings algorithm to generate a posteriori samples for these parameter. However, the

Gibbs sampler algorithm is used to generate a posteriori sample for the parameter Λ, because its the

full conditional distribution has a closed form. The full conditional distribution π(Λ|ϑ(−Λ),Dobs)) is
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proportional to

π(ψ|Λ,a)π(Λ)

∝ |Λ⊗DW − aW |1/2 exp
(
−1

2ψ
>(DW − aW )ψ

)
|Λ|(n0−4)/2 exp

(
−1

2tr(Λ
−1
0 Λ)

)
∝ |Λ|(I+n0−4)/2 exp

(
−1

2tr((Λ
−1
0 +B)Λ)

)
, (4.8)

where

B =

tr(R1U(R1U )>) tr(R1U(R2V )>)

tr(R2V (R1U)>) tr(R2V (R2V )>)


Thus, the full conditional distribution for Λ can be taken the Wishart distribution with scala matrix

(Λ−1
0 +B)−1 and degrees of freedom I + n0.

4.5 Application

We now apply the proposed method to the interval-censored smoking cessation data pre-

sented in Section 1.1. Because of the high computational cost, we implement the MCMC in algo-

rithms C language and the results were analyzed in R language (R Development Core Team (2010))

through the "coda" package (Plummer et al. (2005)). All of our MCMC algoritms ran a total of

100,000 iterations discarding the first 40,000 realizations as burn-in and thinning to every fifth iter-

ation. Posterior results are then based on 7,500 realizations of the Markov chain. Our Meteropolis

acceptance rate for these parameters ranged from 25% to 50%. The convergence was checked using

the Geweke diagnostic which did not indicate lack of convergence. The models are compared using

DIC criterion.

We fitted some particular case of PS cure rate model which described in Section 4.3. The

values of Bayesian criteria for fitted models are presented in Table 4.1, according to the DIC and pd

value the complementary promotion time cure model stand outs as the best models and all of the

cure rate models under last activations are better than the models under first activations. Comparing

the obtained DIC values with the values presented in the paper of Carlin & Banerjee (2003), where

they proposed the mixture cure model with the spatial frailty, assuming Ycij has Weibull or gamma

distributions. we can conclude that all models in Table 4.1 are more adequate since all our DIC

values are smaller.

Here we select four cure models, which have lower DIC values, as our working models.

There are cure models under the random and last activation. Since the selected cure models are

obtained considering their initial number of competing causes related to the occurrence of event
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Table 4.1: DIC values for the fitted cure rate models

Activation Distribution of Mij Model DIC pd
Random Bernoulli Mixture cure model 388.5 5.03

First
Poisson Promotion time cure model 393.1 9.69
Geometric Geometric cure rate model 392.9 8.38
Logarithmic Logarithmic cure rate model 393.8 7.20

Last
Poisson Complementary promotion time cure model 383.5 4.06
Geometric Complementary geometric cure rate model 386.8 4.62
Logarithmic Complementary logarithmic cure rate model 390.8 5.95

Mij has Bernoulli, Poisson, geometric, logarithmic distributions, to simply the notation we call the

mixture model, Complementary promotion time cure model, Complementary geometric cure model,

and Complementary logarithmic cure model by the Bernoulli, Poisson, geometric and Logarithmic,

respectively. The posterior summaries of the parameter for the selected models are presented in the

Table 4.2. We note that the signs of the regression coefficients bintercept, bsex, btreatment, bconsumption,

bduration, βsex and βtreatment are the same for all selected models. However, the sign of coefficients

βconsumption and βduration are negative for mixture model and positive for other three models. The

mean of the parameters µ, σ2, ς, a1, a2, Λ11, Λ22 and Λ12 have close values for all models. Note

that the β parameters are related to the cure fraction, thus the interpolation of cure rate can be

obtained. The data shows that women smokers have lower probability of quitting than men smokers,

individuals with special intervention have higher probability of quitting smoking than those with

usual care and the individuals with a higher level of cigarette consumption have lower probability of

quitting than others. On the other hand, we also note that women smokers have high hazard rate

of relapse time than the men and individuals with special intervention have lower hazard rate than

those with usual care. Here, the cigarette consumption has little effect on hazard rate of relapse time

and the duration of smoking habit has little effect on not only on hazard rate of relapse time but

also on probability of quitting.

In order to detect possible influential observations in the posterior distribution of the param-

eters of the fitted models, the estimates of K-L divergence and L1 distance (two particular cases of

ψ-divergence measures), which were obtained from the posteriori sample of the models’parameters,

are presented in Figure 4.1. We note that the individual 14 was detected by both divergence measures

for the complementary promotion time cure model and no influential individual was detected in the

other three models. The detected individual is a male patient who had a 32-year smoking habit,

consumed 60 cigarettes per day, lived in Rochester city and relapsed during the treatment.
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Table 4.2: Posterior summaries of the parameter of the selected models for the smoking cessation data.

Bernoulli Poisson Geometric Logarithmic
Parameter Mean SD 2.50% 97.50% Mean SD 2.50% 97.50% Mean SD 2.50% 97.50% Mean SD 2.50% 97.50%
bintercept 0.395 0.839 -1.195 2.141 0.259 0.744 -1.246 1.693 0.232 0.808 -1.393 1.838 0.507 0.849 -1.182 2.156
bsex 0.238 0.791 -1.264 1.880 0.082 0.512 -0.998 1.079 0.072 0.591 -1.154 1.220 0.192 0.750 -1.337 1.711
btreatment -0.242 0.875 -1.885 1.558 -0.500 0.536 -1.620 0.497 -0.484 0.612 -1.730 0.732 -0.328 0.787 -1.789 1.348
bconsumption 0.047 0.045 -0.039 0.134 0.030 0.032 -0.042 0.080 0.036 0.038 -0.044 0.103 0.052 0.043 -0.037 0.133
bduration -0.001 0.051 -0.088 0.104 -0.024 0.046 -0.095 0.078 -0.016 0.051 -0.096 0.098 -0.004 0.052 -0.084 0.113
βsex 0.361 0.375 -0.371 1.138 0.371 0.308 -0.198 1.041 0.389 0.301 -0.175 1.025 0.433 0.281 -0.084 1.018
βtreatment -0.237 0.429 -0.973 0.746 -0.267 0.338 -0.889 0.466 -0.209 0.315 -0.773 0.473 -0.165 0.296 -0.701 0.462
βconsumption -0.004 0.021 -0.052 0.033 0.002 0.019 -0.039 0.035 0.005 0.018 -0.037 0.033 0.009 0.016 -0.029 0.035
βduration -0.014 0.027 -0.054 0.051 0.005 0.021 -0.029 0.055 0.009 0.020 -0.024 0.056 0.007 0.019 -0.023 0.052
µ 0.751 0.199 0.463 1.288 0.676 0.185 0.382 1.118 0.657 0.176 0.377 1.078 0.653 0.175 0.384 1.071
σ2 0.841 0.363 0.429 1.835 0.786 0.307 0.410 1.589 0.741 0.288 0.397 1.475 0.711 0.266 0.390 1.410
ς 1.379 0.668 0.348 2.981 1.580 0.852 0.375 3.704 1.456 0.776 0.278 3.337 1.318 0.689 0.268 2.960
a1 0.901 0.065 0.744 0.987 0.900 0.064 0.744 0.987 0.900 0.064 0.743 0.986 0.899 0.067 0.739 0.987
a2 0.900 0.066 0.742 0.987 0.900 0.065 0.740 0.987 0.901 0.064 0.746 0.987 0.900 0.065 0.738 0.987
Λ11 2.683 0.643 1.560 4.057 2.699 0.657 1.581 4.149 2.700 0.642 1.584 4.124 2.668 0.651 1.555 4.102
Λ22 2.556 0.638 1.473 3.970 2.567 0.638 1.500 3.974 2.556 0.623 1.505 3.912 2.575 0.642 1.495 3.964
Λ12 0.022 0.470 -0.747 1.085 0.038 0.475 -0.744 1.103 0.043 0.471 -0.737 1.081 0.037 0.470 -0.735 1.089
Σ11 0.410 0.113 0.263 0.689 0.409 0.113 0.259 0.695 0.407 0.109 0.258 0.683 0.413 0.114 0.262 0.698
Σ22 0.433 0.123 0.256 0.732 0.432 0.125 0.256 0.713 0.432 0.121 0.260 0.724 0.431 0.131 0.257 0.717

Σ12√
Σ11Σ22

0.006 0.182 -0.369 0.346 -0.001 0.182 -0.365 0.334 -0.003 0.181 -0.371 0.337 0.000 0.182 -0.376 0.344

where Λij is the element of precision matrix Λ in position (i, j), and Σij is the element of matrix Σ = Λ−1 in position (i, j), this Σ11 is the spatial
variance component of U and Σ22 is the spatial variance component of V , Σ12/(Σ11Σ22)1/2 denote their correlation.



140CHAPTER 4. THE POWER SERIES CURE RATE MODEL FOR SPATIALLY CORRELATED INTERVAL-CENSORED DATA BASED ON GENERALIZED EXTREME VALUE DISTRIBUTION

Kullback-Leibler divergence

Bernoulli

0 50 100 150 200

0.
00

0.
05

0.
10

0.
15

0.
20

Index

K
−

L 
di

ve
rg

en
ce

Poisson

0 50 100 150 200

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Index

K
−

L 
di

ve
rg

en
ce

14

Geometric

0 50 100 150 200

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Index

K
−

L 
di

ve
rg

en
ce

Logarithmic

0 50 100 150 200

0.
00

0.
05

0.
10

0.
15

0.
20

Index

K
−

L 
di

ve
rg

en
ce

L1 norm divergence

Bernoulli

0 50 100 150 200

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Index

L 1
−

di
st

an
ce

Poisson

0 50 100 150 200

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

Index

L 1
−

di
st

an
ce

14

Geometric

0 50 100 150 200

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Index

L 1
−

di
st

an
ce

Logarithmic

0 50 100 150 200

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Index

L 1
−

di
st

an
ce

Figure 4.1: Index plots of K-L and L1 divergence measures from the fitted cure models.

To reveal the impact of these possible influential observations on the parameter estimates

and inference, we removed these observations and refitted the model. We also calculated the relative

variations (RV) for the posterior mean of the parameters, defined by RV = (ϑ̂d,−{14}− ϑ̂d)/ϑ̂d× 100,

for all d, where d is the index of the parameters, ϑ̂d,−{72,151} denotes the posterior mean of ϑd,−{14},

after the set of observations {14} has been removed. The posterior summaries of the parameters for

the refitted model and RV for the posterior mean of the parameters are presented in Table 4.3. We

note that RV of the the parameters bconsumption, bduration, βconsumption, βduration and Σ12√
Σ11Σ22

have higher

values. However, these parameters are not sensitive since their posterior means are still near zero.

The estimated standard deviation Σ1/2
11 of random spatial effects in the survival model is 0.640, and

the estimated standard deviation Σ1/2
22 of random spatial effects in cure rate is 0.658 which indicate

there is considerable heterogeneity among the clusters. Moreover, there are no correlations between

the spatial effects U and V .

Figure 4.2 maps the posterior means and standard deviations of frailties U and V in the

complementary promotion time cure model. For the frailties U for which the high value indicates

a high relapse rate, we can note that the north regions and some cities of the south region have

higher values, that is, the individuals in these regions have higher relapse rates than the others.
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Table 4.3: Posterior summaries of the parameter of the complementary promotion time cure model
without detected individual 14.

Mean RV SD 2.50% 97.50%
bintercept 0.136 -47 0.747 -1.346 1.616
bsex 0.082 -1 0.458 -0.836 0.982
btreatment -0.397 -21 0.466 -1.370 0.476
bconsumption 0.044 45 0.032 -0.041 0.089
bduration -0.038 61 0.042 -0.100 0.068
βsex 0.435 17 0.304 -0.133 1.078
βtreatment -0.261 -2 0.321 -0.840 0.417
βconsumption -0.006 -381 0.021 -0.047 0.030
βduration 0.012 156 0.023 -0.027 0.061
µ 0.699 3 0.233 0.396 1.244
σ2 0.797 1 0.419 0.409 1.705
ς 1.454 -8 0.809 0.317 3.444
a1 0.900 0 0.065 0.740 0.987
a2 0.899 0 0.066 0.736 0.987
Λ11 2.698 0 0.637 1.611 4.058
Λ22 2.573 0 0.630 1.516 3.971
Λ12 0.038 0 0.466 -0.742 1.042
Σ11 0.407 0 0.109 0.262 0.672
Σ22 0.429 0 0.121 0.257 0.707

Σ12√
Σ11Σ22

-0.001 136 0.179 -0.360 0.344

In contrast, the center region (Rochester city) and some northeast cities show slightly better than

avenge cessation behavior, which also can be observed by the frailties V , for which the high value

indicates lower cure probability. In general, all center regions have close cure probabilities. The

posterior standard deviations of frailties U and V also have close values. Both maps show that the

cities round the center regions have lower values and Waseca has the highest value. The DIC value

for the fitted models is 382.24, which is lower than in the model for the data without removing the

detected observation.

Figure 4.3 presented the survival functions under the Complementary Promotion time cure

model stratified by treatments and sex for patients who residence in Rochester city with duration

of smoking habit equal to 20, 25 and 33 years, and cigarette consumption equal to 25, 31 and 35

cigarettes per day, which correspond to the first, second and third quantiles of duration of smoking

habit and cigarette consumption. The surviving probability decreases more rapidly for patients

received the usual care than special intervention; the surviving probability of the female patients is

lower than male patients under the same condition, but we note that the surviving probability of the

female patients have special care is close the male patients only received usual care; the surviving

probability of the female patients, who have high level of duration of smoking habit and cigarette

consumption (Duration = 33 and Cigarette = 35), just a bit lower than the patients who have low
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U
-0.094668 - -0.046319
-0.046318 - 0.002029
0.002030 - 0.050378
0.050379 - 0.098727
0.098728 - 0.147075

V
-0.076040 - -0.043286
-0.043285 - -0.010533
-0.010532 - 0.022220
0.022221 - 0.054973
0.054974 - 0.087726

SDU
0.140474 - 0.199530
0.199531 - 0.258587
0.258588 - 0.317643
0.317644 - 0.376699
0.376700 - 0.435756

SDV
0.143848 - 0.206601
0.206602 - 0.269353
0.269354 - 0.332106
0.332107 - 0.394858
0.394859 - 0.457610

Figure 4.2: Maps of posterior means for frailties U (upper-left panel) and V (upper-right panel) and
posterior standard derivations for frailties U (lower-left panel) and V (lower-right panel).

and median levels of duration of smoking habit and cigarette consumption; the surviving probability

of the male patients does not influence by duration of smoking habit and cigarette consumption.
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Figure 4.3: Surviving function under the complementary promotion time cure model stratified by
treatments and sex for patients who residence in Rochester city with three levels of duration of
smoking habit and cigarette consumption.

Figure 4.3 presents the survival functions under the complementary promotion time cure

model stratified by treatments and sex for patients residing in Rochester with durations of smoking
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habit equal to 20, 25 and 33 years, and daily cigarette consumption equal to 25, 31 and 35, which

correspond to the first, second and third quantiles of duration of smoking habit and cigarette con-

sumption. The survival probability decreases more rapidly for patients that received the usual care

than those receiving special intervention. Also, the survival probability of the female patients is

lower than males under the same condition, but we note that the survival probability of the female

patients submitted to special care is close to the male patients who only received usual care; the sur-

vival probability of the female patients who had long smoking habit and high cigarette consumption

(Duration = 33 and Cigarettes = 35) is just a bit lower than the patients who had low and medium

levels of duration and cigarette consumption; and the survival probability of male patients was not

influenced by duration of smoking habit and cigarette consumption.
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Figure 4.4: Surviving function under the complementary promotion time cure model stratified by
cigarette consumption and sex for patients who residence in Rochester city with duration of smoking
habit equal 12, 30 and 46 years.

4.6 Conclusions

In this work, we propose a PS cure rate model for spatially correlated interval-censored

data based on the generalized extreme value distribution. The proposed model is very flexible and

generalizes the Bernoulli, geometric, Poisson, and logarithm models. Furthermore, it can be tested

for best fit in a straightforward way. We use MCMC methods with Bayesian inference for our models

and the Bayesian comparison criterion for model comparison. The results of the application show

that the proposed model has better fit than the WNBCR and CWNBCR models. Our model also

performs better than the PHNBCR and CPHNBCR models, and also has the advantage of fewer

parameters. Moreover, we also conducted a Bayesian case deletion influence diagnosis to examine

outlying and influential observations in the application, observing that the proposed model is not

sensitive to influential observations.
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Chapter 5

D-Measure: A Bayesian model selection

criterion for survival data

5.1 Introduction

Model assessment and comparison is of extreme importance in statistical analysis. Focus-

ing on Bayesian model assessment and comparison, various methods have been proposed in recent

decades, particularly relying on Bayes factors, boosted by significant advances in computer technol-

ogy. However, it is well known that proper prior distributions are needed for using these methods.

Later, Spiegelhalter et al. (2002) proposed the deviance information criterion (DIC), which is one of

most used Bayesian criteria for the model comparison. Several recent papers use DIC for comparing

models, including the survival models which consider random effects or frailties (Banerjee & Carlin,

2004; Carvalho Lopes & Bolfarine, 2012; Pan et al., 2014; Li Dan & Dey, 2015),Carvalho Lopes &

Bolfarine (2012), Pan et al. (2014), Li Dan & Dey (2015), just to name a few). It is well known that,

in order to ensure the consistency of parameters, it is needed first integrated out the random effects

or frailties, and then compute the criterion (Ando, 2007). However, a numerical integration always

gives unstable results, i.e, different values of a criterion may be obtained by considering different

numerical iteration methods.

Another alternative is to use criteria which are constructed from the posterior predictive

distribution. Let y = (y1, . . . , yn) denotes the observed data from an experiment, with the joint

sampling density of the yi’s denoted by p(y|Ω), where Ω is a vector of indexing parameters. Let

z = (z1, . . . , zn) denotes the future values of an imagined replicated experiment, i.e, z is a future

response vector with the same sampling density of y|Ω. A good model should make predictions close to

what has been observed for an identical experiment. With this idea, Ibrahim & Laud (1994) proposed

145
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L measure as the expected squared Euclidean distance between y and z, L = E [(z − y)′(z − y)] ,

where the expectation is taken with respect to the posterior predictive distribution of z|y, p(z|y) =∫
p(z|Ω)p(Ω|y)dΩ. Afterwards, Ibrahim et al. (2001b) extended this measure to a general Bayesian

criterion for modelling assessment. Recently, Gu et al. (2011) proposed the M-measure for a right

censoring data, by using counting process of number of deaths over time to be compared with the

number of observed deaths over time, in order to define the measure of model adequacy.

In this work we propose a new model assessment and comparison criteria based on the well

known survival function, which plays a key role in the survival analysis. Such criterion is a distance

based Bayesian model selection criterion for survival data, hereafter the D-measure. The D-measure

is constructed from the posterior predictive distribution of the data, it can be viewed as a Bayesian

goodness-of-fit statistic, which measures the performance of a model by a combination of how close

its predictions are from the observed data. It can be used for all kind of survival data sets, such

as uncensored data, right censored data and interval censored data. Moreover, it is an alternative

criterion which can be used to compare cure rate models in presence of random effects or frailties.

5.2 D-measure

Let t1, . . . , tn be random samples from the density function f(t|Ω), where Ω is a vector of

indexing parameters and assuming that Ω has a prior distribution π(Ω). In the context of survival

analysis, t represents the lifetime or time to failure of an individual, usually, it is assumed to be

continuous. In this thesis, we denote the observed data by D and we allow the ti’s to be fully

observed, right censored, or interval censored. In the right censored case, ti may be a failure time

or a censored time. In the interval censored case, we only observe the interval (Li, Ri] in which ti

occurred. Now, let t1p, . . . , tnp be random samples from the posterior predictive distribution

π(tip|D) =
∫
f(tip|Ω)π(Ω|D)dΩ, (5.1)

where f(tip|Ω) is the sampling density for ith subject conditional upon Ω being known and π(Ω|D)

is the posterior distribution of Ω. The D-measure for model m, is defined as

Dm = ETip|D

[∫ τ

0
‖ Ŝ0(t)− Ŝp(t) ‖ dt

]
= E

[∫ τ

0
‖ Ŝ0(t)− Ŝp(t) ‖ dt | D

]
, (5.2)

where τ > 0, Ŝ0(t) and Ŝp(t) denote the (smoothing) non-parametric survival function from observed

data D and from the posterior predicted samples, respectively. ‖ ‖ denotes the norm, thus, different

norms can be used in the formulation, such as the absolute value, the square and the maximum



5.2. D-MEASURE 147

value. Smaller values of D-measure indicate better fit to the observed data as well as more precise

predictive fit for the model.

The proposed D-measure can be computed with a two-step procedure. First, we sample the

posterior samples {Ωk}Gk=1 from the posterior density π(Ω|D) for the model m. Second, we simulate

the samples from the predictive distribution. Note that, given the posterior samples {Ω(j)}Gj=1 from

π(Ω|D), tip(j) can be sampled from f(tip|Ω = Ω(j)) for i = 1, . . . , n and j = 1, . . . , G, that is, we

obtained the samples {tip(j)}Gj=1 from the posterior predictive distribution of the ith subject, via

π(tip|D). The procedures to compute the proposed measure for each kind of data (uncensored data,

right censoring data and interval censoring data) are presented as follow.

5.2.1 Uncensored data

For uncensored data, the proposed measure given in (5.2) is obtained fixing τ = ∞, Ŝ0(t)

and Ŝp(t) are the empiric survival function from observed data D and from the posterior predicted

samples, respectively. Given the posterior samples Ω(j), the sampling of tip(j) can be easily done. One

of the most used methods is using the inverse cumulative distribution function (quantile function).

The numerical approximation of D-measure given in (5.2)is given by

Dm ≈
1
G

G∑
j=1

Q∑
q=1
| Ŝ0(aq)− Ŝpj(aq) | ∆q,

where 0 = a0 < a1 < . . . < aQ =∞ are all distinct points and ∆q = aq+1 − aq.

5.2.2 Right censored data

For a right censored data, letDi = (yi, δi,xi) denotes the observed data for the ith individual,

where xi is a covariate vector, yi = min(Ti, Ci) is the observed failure time, δi = I[Ti ≤ Ci] is the

censoring indicator, in which Ti is the non-informative random failure time and Ci is the non-

informative random censoring time. In this case, because the censoring indicator δi is also part of

the observed data, the closeness between the observed Yi = min(Ti, Ci) and the predicted Yip is not

appropriated. Thus, the proposed measure for a right censoring data for model m, which we denoted

by Dr
m, is defined as

Dr
m = E

[∫ τ

0
‖ Ŝ0(t)− Ŝp(t) ‖ dt|D, FC = F̂CKM

]
, (5.3)
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where τ = maxi{yi}, Ŝ0(t) and Ŝp(t) denote the the Kaplan-Meier estimator of the survival function

from observed data D and from the posterior predicted samples, respectively. The distribution of

censoring variable Ci is assumed to be known as F̂CKM , the Kaplan-Meier estimator of the cumulative

distribution function of C from D.

Given the posterior samples {Ω(j)}Gj=1 from the posterior density π(Ω|D) for the model m,

the {yipj, δipj} need to be simulated from the predictive distribution (Yip, δip) assuming the distri-

bution of C to be F̂CKM . The algorithm of generating the samples {yipj, δipj} for j = 1 . . . , G is

presented as follow:

Step (i): Sample each Cipj from the Kaplan-Meier cumulative density function F̂CKM ;

Step (ii): Sample δipj ∼ Bernulli(F (Cipj)) where F (Cipj) = P (Tip ≤ Cipj) is the c.d.f. of traditional

survival model or cure rate model and set yipj = Cipj if δipj = 0;

Step (iii): If δipj = 1, sample Uij ∼ U(0, 1) and set yipj = F−1
c (Uij), where Fc(y) = F (Tip ≤ y|δip =

1) = F (y)/F (Cipj) for 0 < y < Cipj, if F (·) is c.d.f. of cure rate model; else let Fc(y) = F (y).

Once the posterior predictive samples are obtained, the numerical approximation of D-

measure given in (5.3) are given by

Dr
m ≈

1
G

G∑
j=1

Υj∑
q=1
| Ŝ0(aq)− Ŝpj(aq) | ∆q,

where 0 = a0 < a1 < . . . < aΥj = τ are distinct points where S0(aq) and Spj(aq) have jumps and

∆q = aq+1 − aq and aΥj is defined as the maximum observed failure time of the observed data and

the posterior predictive sample for each j.

5.2.3 Interval censored data

For interval censored data, unlike right censored data, the exact failure time can not be

observed. In the literature, there are two types of interval censored data: Case 1 - interval censored

data (or current status data), and Case 2 - interval censored data.

For the Case 1 of interval censored data, the only knowledge about the exact failure time

is whether it has occurred before observed time or not. Let Ti’s denote the unobservable failure

times and assume that the observed time have the form {(Li, δi), i = 1, · · · , n}, where Li denotes

the observation time for subject i independent of Ti and δi = I(Ti ≤ Li). Thus, δi = 1 indicates that

the event of interest occurred before the observed time Li and δi = 0 indicates the event of interest
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maybe occur after observed time Li (right censored) or never occur the event (cured). For the Case 2

of interval censored data, the time intervals (Li, Ri] are observed, where 0 ≤ Li < Ri ≤ ∞. Ri <∞

indicates that the event of interest can occur in any time of the observed time interval (Li, Ri] and

Ri =∞ indicates a right censoring or cure. The interval censoring indicator is defined as δi = I(Ri <

∞). For the special case in which the survival time is right-(left-) censored, Ri =∞(Li = 0), whereas

for exact observations, Li = Ri.

Let C denotes the censoring variables, and Di = (li, , δi,xi) and Di = ((li, ri], δi,xi) denote

the observed data for the ith individual for "case 1" interval censoring data and the "case 2" interval

censoring data, respectively. The D measure for the interval censoring data for model m is defined

as

DI
m = E

[∫ τ

0
‖ Ŝ0(t)− Ŝp(t) ‖ dt|D, FC = F̂KM∗

]
, (5.4)

where τ = maxi{li} for the Case 1 (interval censoring data) and τ = maxi{li, ri; ri < ∞} for the

Case 2 (interval censoring data); Ŝ0(t) and Ŝp(t) are the nonparametric maximum likelihood estimator

(NPMLE) of a survival function for the observed data and the generated sample, respectively. For

Case 1, the NPMLE of a survival function has a close form, which can be obtained by using the max-

min formula for isotonic regression (more detail see Barlow et al. (1972); Härdle (1989)). For Case 2,

there are some algorithms which were proposed in the literature. The first one is the self-consistency

algorithm that was developed by Turnbull (1976). It can be regarded as an application of the EM

algorithm (Dempster et al., 1977). Lately, Groeneboom (1995) introduced the ICM algorithms,

which was then modified by Jongbloed (1998). At the same period, Wellner & Zhan (1997) proposed

a hybrid algorithm, which is known as the EM-ICM algorithm. It basically combines the self-

consistency algorithm and the ICM algorithm. The distribution of censoring variable is assumed

to be known as F̂KM∗ , the Kaplan-Meier estimator of the cumulative distribution function of the

censoring variable from the data D∗, where D∗ is obtained by transforming the interval censoring

data D to the right censoring data assuming that the midpoint of intervals are the exact failure

times, i.e., {ti ; ti = 0.5li, δi = 1, i = 1 · · · , n} and {ti ; ti = 0.5(ri − li) + li, δi = 1, i = 1 · · · , n} for

Cases 1 and 2, respectively.

First we present the algorithm for generating the samples (lipj, δipj), j = 1 . . . , G, for the

Case 1 of interval censoring data as follows:

Step (i): Sample each Cipj from the Kaplan-Meier cumulative density function F̂KM∗ ;

Step (ii): Sample δipj ∼ Bernulli(F (Cipj)) where F (Cipj) = P (Tip ≤ Cipj) is the (population) c.d.f.

and set lipj = Cipj if δipj = 0;

Step (iii): If δipj = 1, sample Uij ∼ U(0, 1) and set tipj = F−1
c (Uij), where Fc(y) = F (Tip ≤ y|δip =
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1) = F (y)/F (Cipj) for 0 < y < Cipj, if F (·) is c.d.f. of cure rate model; else let Fc(y) = F (y);

Step (vi): Now, generate lij from distribution U(0, l(m)), where l(m) = max{li; δi = 1, i = 1, . . . , n}.

Then, lipj is chosen as that satisfying tipj ≤ lij.

Given the posterior predictive samples, the the numerical approximation of M-measure given

in (5.4) is obtained as

DI
m ≈

1
G

G∑
j=1

Υj∑
q=1
| Ŝ0(aq)− Ŝpj(aq) | ∆q,

where 0 = a0 < a1 < . . . < aΥj = τ are the unique ordered elements of {0, li, lipj, ; δi, δip =

1 and i, ip = 1, . . . , N}. They are distinct points with the length ∆q = aq − aq−1, for q = 1, . . . ,Υq,

and aΥj is defined as the maximum finite observed time of the observed data and the posterior

predictive sample for each j.

For the Case 2 of interval censoring data, the algorithm for generating the samples (lipj, ripj, δipj),

for j = 1 . . . , G, is presented as follows:

Step (i): Sample each Cipj from the Kaplan-Meier cumulative density function F̂KM∗ ;

Step (ii): Sample δipj ∼ Bernulli(F (Cipj)) where F (Cipj) = P (Tip ≤ Cipj) is the (population) c.d.f.

and set lipj = Cipj and ripj =∞ if δipj = 0;

Step (iii): If δipj = 1, sample Uij ∼ U(0, 1) and set yipj = F−1
c (Uij), where Fc(y) = F (Tip ≤ y|δip =

1) = F (y)/F (Cipj) for 0 < y < Cipj, if F (·) is c.d.f. of cure rate model; else let Fc(y) = F (y);

Step (vi): Now, create lenij from distribution U(dmin, dmax) and sij from U(0, 0.5 l(1)). Then, from

(0, lij], (lij, sij + lenij], . . . , (sij +d× lenij,∞], d = 1, 2, . . . , (lipj, ripj) is chosen as that satisfying

lipj < tipj ≤ ripj, where l(1) is the positive minimum observed value, dmin is the minimum finite

length and dmax is the maximum finite length of observed data. (i.e, dmin = min{di, i = 1 . . . , n},

dmax = max{di, i = 1 . . . , n; di <∞}, where di = ri − li denotes the length of the time interval

for the ith subject of the observed data.)

Given the posterior predictive samples, the numerical approximation of M-measure given in

(5.4) is obtained by

DI
m ≈

1
G

G∑
j=1

Υj∑
q=1
| Ŝ0(aq)− Ŝpj(aq) | ∆q,

where 0 = a0 < a1 < . . . < aΥj = τ are the unique ordered elements of {0, li, ri, lipj, ripj ; ri, rip <

∞ and i, ip = 1, . . . , N}. They are distinct points with the length ∆q = aq − aq−1, for q = 1, . . . ,Υq,

and aΥj is defined as the maximum finite observed time of the observed data and the posterior

predictive sample for each j.
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5.3 Simulation

In this section, we consider some simulation studies to compare models using the proposed

D-measure for three most used parametric models in survival analysis: survival models with right

censoring, survival models with with right censoring and cure fraction, and cure rate models with

interval censoring.

5.3.1 Survival model with right censored data

In order to generate survival data with right censoring, we consider the Weibull and Gamma

distributions, which are two of the most used models in survival analysis. Then, the DIC and

proposed D-measure are calculated for comparison. Therefore, we first generate the current data yi
from the Weibull model,

p(yi|α, λi) = αyi−1 exp{λi − yαi exp(λi)}, (5.5)

where λi = β0 + β1xi, i = 1, · · · , n, n denotes the sample size, α = 2, β0 = 1 and β1 = −1, the

covariates xi are i.i.d. Bernulli(0.5) variates and the observations are randomly right censored with

censoring times ti = 0.75 × yi. The prior distributions for the parameters are α ∼ N(0, 102)I(0,∞),

β0 ∼ N(0, 102) and β1 ∼ N(0, 102). Here N(µ, σ2)I(a,b) denotes the truncated normal distribution,

which is the probability distribution of a normally distributed random variable whose value is bounded

in (a, b).

We also generate the data yi from the Gamma model,

p(yi|k, θi) = yk−1
i

Γ(k)θki
exp

(
yi
θi

)
, (5.6)

where θi = β∗0 + β∗1xi, i = 1, · · · , n, k = 3.8, β∗0 = −1.8 and β∗1 = 0.5, and the observations

are randomly right censored with censoring times ti = 0.75 × yi. The prior distributions for the

parameters are k∗ ∼ N(0, 102)I(0,∞), β∗0 ∼ N(0, 102) and β∗1 ∼ N(0, 102).

After generating the data sets, both models are used to be fitted by the generated date sets

and the DIC and the D-measure are computed. In order to verify the performance of the D-measure,

we calculated the percentage of samples in which the adjusted model was indicated as the best model

according to the DIC and D-measure. Hereafter we call this percentage as correct rate. The different

censoring levels and sample sizes are considered in the study and 1,000 replicates are conducted in

each configuration. The results of simulations are presented in the Table 5.1. We observe that the

correct rates obtained by proposed the D-measure are higher than DIC in the most parts of cases.
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Although there are some cases that the correct rates of D-measure are lower than DIC, they have

approximately the same values. On the other hand, considering the censoring level of 60% and the

sample size of n = 50, the correct rates of the D-measure are much higher than the DIC ones.

Table 5.1: Percentage of samples in which the adjusted survival model was indicated as the best
model according to the criteria for the right censoring data sets

True Model Censoring level Sample Size Criteria
D-measure

n DIC Abs. Square Max

Weibull

30%
50 76.2% 78.9% 71.3% 70.6%
100 85.8% 88.2% 75.2% 77.1%
200 94.9% 97.6% 84.0% 85.7%

60%
50 73.8% 97.0% 95.0% 83.8%
100 87.9% 98.9% 97.5% 91.0%
200 95.7% 99.9% 99.4% 96.1%

Gamma

30%
50 64.9% 72.4% 80.6% 94.7%
100 70.8% 78.5% 91.2% 98.8%
200 85.8% 87.0% 97.8% 99.9%

60%
50 55.5% 44.7% 49.1% 70.2%
100 59.5% 52.1% 61.7% 83.4%
200 69.1% 60.9% 76.5% 91.5%

5.3.2 Cure rate model with right censored data

For right censored data in presence of cure rate, we consider the cure rate proportional odds

model (CRPO model) studied by Gu et al. (2011). Note that this model can be characterized by the

latent factors model of Cooner et al. (2007) with a geometric distribution for the number of latent

factors and it may be derived in a context in which relapse occurs in patients with cancer.

Let Mi denotes the number of carcinogenic cells in the beginning of a treatment for the

ith individual, and assume that Mi has a Geometric distribution with the mean θ. Let Yj for

j = 1, . . . ,Mi denotes the failure time due to the jth latent cause, that is, the time until jth

carcinogenic cell produces a detectable cancer. Supposing that given Mi, the random variables

Yj are assumed to be independent and identically distributed (i.i.d.) with c.d.f. F (·) = 1 − S(·)

and the presence of any of latent risk (i.e., Mi ≥ 1) will ultimately lead to the occurrence of the

event. Thus, the time to event of interest (time to detect cancer) is defined by the random variable

T = min{Yj, j = 0, · · · ,Mi}, where P (Y0 =∞) = 1. The survival function for the population is given

by Spop(t) = [1 + θF (t)]−1 and its cure fraction can be obtained by p0 = limt→∞ Spop(t) = (1 + θ)−1.

As it is well known, the cure fraction plays a key role in the survival models with a cure fraction.

Thus, we consider the parametrization of the model in terns of cure fraction. Therefore, the survival
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function of the CRPO model can be written as

Spop(t) =
[
1 + (p−1

0 − 1)F (t)
]−1

.

The non-negative random variables Yj’s can have various different distributions, here we assume that

they are Weibull and Gamma distributed, denoting the cure rate models as CRPO-W and CRPO-G,

respectively. Similarly to the simulation study for the data set with right censoring, we generate the

current data from the CRPO-W model,

Spop(ti) =
{

1 + (p−1
0i − 1) [1− exp(−tαi exp(λ))]

}−1
, (5.7)

where p0i = exp{β0 + β1xi}/(1 + exp{β0 + β1xi}), i = 1, · · · , n, n, α = 2, λ = −2, β0 = −0.5 and

β1 = −2 and the covariates xi are i.i.d. Bernoulli(0.5) variates. Here, the right censoring observations

are generated from a uniform distribution U(0, c), where c = 30 for the low censoring level (data

with 30% censoring observations) and c = 7 for the high censoring level (data with 60% censoring

observations). The prior distributions for the parameters are assumed to be α ∼ N(0, 102)I(0,∞),

λ ∼ N(0, 102), β0 ∼ N(0, 102) and β1 ∼ N(0, 102).

For the comparison purpose, we generate the data sets from the CRPO-G model,

Spop(ti) =
{

1 + (p−1
0i − 1)

[
1

Γ(k)γ
(
k,
ti
θ

)]}−1

, (5.8)

where γ (k, t/θ) is the lower incomplete gamma function, p0i = exp{β0 + β1xi}/(1 + exp{β0 + β1xi}),

i = 1, · · · , n, n, k = 2, θ = 0.5, β0 = −1 and β1 = 1. Here, the right censoring observations

are generated from a uniform distribution U(0, c), where c = 30 for the low censoring level (data

with 30% censoring observations) and c = 7 for the high censoring level (data with 60% censoring

observations). The prior distributions for the parameters are assumed to be k ∼ N(0, 102)I(0,∞),

θ ∼ N(0, 102)I(0,∞), β0 ∼ N(0, 102) and β1 ∼ N(0, 102). The Percentage of samples in which the

adjusted cure rate model was indicated as the best model according to the criteria for the right

censoring data sets in presence of a cure fraction are presented in the Table 5.2. We note that the

correct rates obtained for the D-measure are higher than the DIC ones in most of the cases. In

some cases the correct rates of D-measure are lower than the DIC, but they are almost the same

values. The correct rates of the D-measure are much higher than DIC for the data sets which were

generated from the CRPO-W model with 60% censoring observations. Moreover, we observe that

the D-measure outperforms the DIC for small sample sizes.
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Table 5.2: Percentage of samples in which the adjusted cure rate model was indicated as the best
model according to the criteria for the right censoring data sets

True Model Censoring level Sample Size Criteria
D-measure

n DIC abs square max

CRPO-W

30%
50 56.0% 82.0% 80.2% 54.1%
100 78.3% 80.3% 78.7% 75.1%
200 89.9% 91.9% 88.5% 81.4%

60%
50 17.5% 56.6% 48.3% 31.5%
100 19.0% 66.6% 60.6% 45.2%
200 19.3% 76.8% 75.2% 69.5%

CRPO-G

30%
50 35.5% 54.6% 49.7% 60.4%
100 41.5% 56.3% 53.5% 64.7%
200 61.3% 61.3% 60.2% 66.2%

60%
50 62.6% 66.4% 69.3% 72.7%
100 66.8% 60.0% 61.2% 70.0%
200 71.4% 63.5% 64.3% 71.8%

5.3.3 Cure rate model with interval censored data

In this study, we consider a flexible cure rate model proposed by Cancho et al. (2011), which

encompasses as a special case three of most used cure rate models: the Mixture model (Berkson &

Gage, 1952), the promotion time cure model (Chen et al., 1999) and CRPO model.

Let Mi be the latent risk, which denote the initial number of competing causes related to

the occurrence of an event and assume that Mi has a Negative Binomial (NB) distribution with

parameters θ and η (Piegorsch, 1990), with the probability mass function

P (Mi = m) = Γ(η−1 +m)
Γ(η−1)m!

(
ηθ

1 + ηθ

)m
(1 + ηθ)−1/η, m = 0, 1, 2 · · · . (5.9)

where θ > 0, η > −1/θ, so that E(M) = θ and V ar(M) = θ (1 + ηθ). Here, η is a dispersion

parameter (Saha & Paul, 2005), values of η > 0 (η < 0) corresponds to over (under) dispersion

relative to the Poisson distribution. Particularly, when η → 0, the NB approaches to the Poisson

distribution and the geometric distribution with parameter 1/(1 + θ) can be obtained when η = 1.

Let Yj for j = 1, . . . ,Mi, denotes the failure time due to the jth latent cause, and assume

that, givenMi, the random variables Yj are i.i.d. with c.d.f. F (·) = 1−S(·) and the presence of any of

latent risk (i.e.,Mi ≥ 1) will ultimately lead to the occurrence of the event. Thus, the time to event of

interest (time to detect cancer) is defined by the random variable T = min{Yj, j = 0, · · · ,Mi}, where

P (Y0 = ∞) = 1. The survival function for the population is given by Spop(t) = [1 + ηθF (t)]−1/η .

The cure fraction has expression p0 = (1 + θ)−1/η. Similarly, considering the parametrization of the
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model in terms of cure fraction, the survival function of this cure rate model can be written as

Spop(ti) =
[
1 + (p−η0i − 1)F (tij)

]−1/η
. (5.10)

Here, we also assume that Yj’s are Weibull and Gamma distributed. Because this cure rate model

can be characterized by the latent factors model of Cooner et al. (2007) with a Negative Binomial

distribution for the number of latent factors, we called it as Negative Binomial cure rate model,

denoting it as NBCR-W and NBCR-G. Similarly to the simulation studies above, we generate the

current data from the NBCR-W model,

Spop(ti) =
[
1 + (p−η0i − 1) [1− exp(−tαi exp(λi))])

]−1/η
. (5.11)

where p0i = exp{b0 + b1xi}/(1 + exp{b0 + b1xi}) and λi = βxi fori = 1, · · · , n. We fixed parameters

b0 = −1, b1 = −0.5, β = −2, α = 2 and η = 0.4. The covariates xi are assumed to be i.i.d.

Bernulli(0.5) variates. Recently, in many clinical researches, the collected data set with more than

65% censoring observations appear frequently more. Therefore, we consider 70% censoring level (data

with 70% censoring observations) and they were generated from a uniform distribution U(0, 1). The

prior distributions for the parameters are assumed to be b0 ∼ N(−1, 0.252) and b1 ∼ N(0.5, 0.252),

β ∼ N(0, 52), α ∼ N(0, 52)I(0,∞) and η ∼ N(0.4, 0.12)I(0,∞).

The data sets were also generated from the NBCR-G model,

Spop(ti) =
[
1 + (p−η0i − 1)

[
1

Γ(k)γ
(
k,
ti
θi

)]]−1/η

. (5.12)

where p0i = exp{b0 + b1xi}/(1 + exp{b0 + b1xi}) and θi = exp{βxi} for i = 1, · · · , n., In this case,

we fixed b0 = −3, b1 = 0.4, β = 1, α = 3, η = 2, and the 70% censoring observations are generated

from a uniform distribution U(0, 1). The prior distributions for the parameters are assumed to be

b0 ∼ N(−3, 0.12) and b1 ∼ N(0.4, 0.12), β ∼ N(0, 12), α ∼ N(0, 12)I(0,∞) and η ∼ N(2, 0.12)I(0,∞).

The results of this simulation study are presented in the Table 5.3, where the percentage

of samples in which the adjusted cure rate model was indicated as the best model according to

the criteria for the interval censoring data sets are presented. For the cure rate model with right

censoring data, it shows that the D-measure outperforms the DIC for small sample sizes, though we

only consider the sample size n = 50 and n = 100. We can observe that the correct rate obtained from

the D-measure are higher than the DIC in some cases, but they have approximate values generally.
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Table 5.3: Percentage of samples in which the adjusted cure rate model was indicated as the best
model according to the criteria for the interval censoring data sets

True Model Censoring level Sample Size Criteria
D-measure

n DIC Abs. Square Max

NBCR-W 70% 50 95.2% 98.4% 99.2% 95.6%
100 97.6% 91.2% 97.2% 92.8%

NBCR-G 70% 50 80.4% 76.4% 80.4% 92.8%
100 83.2% 81.2% 81.6% 97.2%

5.4 Application

In this section, we illustrate the applicability of the D-measure in two real data sets. The

first data set is the melanoma data which evaluates the effectiveness of the implementation of a

high dose of interferon alfa-2b in order to prevent the recurrence of cancer. The second data set is

the smoking cessation data which evaluates the effectiveness of a special anti-smoking intervention

scheme.

5.4.1 Melanoma data

Data were collected between 1991 and 1995, but there was monitoring of patients until 1998.

The response variable is the time to death of the patient or the censor time. Further details of

this data set can be found in Ibrahim et al. (2001c), with a total of n = 417 patients, with 56% of

censored observations. The variables considered in this study include t: observed time (years, mean

= 3.179, SD = 1.692), x1i: type of treatment (0: observation, n = 204, 1: interferon, n = 213); x2i:

age (years, mean = 48.000, SD = 13.121), x3i: presence of positive nodes at lymphadenectomy (0:

no, n = 111, 1: yes, n = 306), i = 1, · · · , 417 and x4i: patient sex (0: male n = 263, 1 : female

n = 154); x5i: functional capacity (0: active, n = 363, 1: other, n = 54) and x6i thickness of the

tumor (in mm, mean = 3.941 and 3.204 standard deviation).

We fitted the Weibull Negative Binomial regression model with cure rate under the first,

last and random activation mechanisms ( denoted by WNBcr-FA, WNBcr-LA, and WNBcr-RA) and

its particular sub-models: Weibull geometric regression model and the Weibull Poisson regression

model under the first, last activation (denoted by WGcr-FA, WGcr-LA, WPcr-FA and WPcr-LA),

and considering

log
(

p0i

1− p0i

)
= β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + β5xi5 + β6xi6.
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The Bayesian criteria DIC and D-measure were calculated and presented in Table 5.4. We

note that both criteria indicate that the cure rate models under first activation are more adequate

than the models under last activation, and the cure rate model under random activation has the

largest criteria values. Moreover, both criteria show that the Weibull Negative Binomial regression

model with cure rate is equivalent its sub models under the same activation, although DIC of WNBcr-

FA has smallest value.

Table 5.4: Bayesian criteria for the fitted models for the melanoma data.

Criteria
D-measure

Model Abs. Square Max DIC
WNBcr-FA 99.6 5.9 34.2 1039
WGcr-FA 98.4 5.9 33.7 1047
WPcr-FA 98.9 5.9 33.5 1051
WNBcr-LA 103.2 6.3 34.5 1064
WGcr-LA 106.2 6.6 35.2 1069
WPcr-LA 103.6 6.4 34.6 1063
WNBcr-RA 236.5 53.8 68.9 1089

5.4.2 Smoking cessation data

We now apply the propose D-measure to the interval-censored smoking cessation data pre-

sented in Section 1.1. We fitted

We fitted the some flexile cure models considering the different spatial frailties in the models

to the data set, there are Weibull negative binomial cure rate model, complementary Weibull negative

binomial cure rate model, proportional hazard negative binomial cure rate model, complementary

proportional hazard negative binomial cure rate and their sub-models. These cure models with

spatial frailties are presented in Section 3.2.

Prior distributions for the parameters b, β and η are bj ∼ N(0, 100), j = 0, . . . , 4, βj ∼

N(0, 100), j = 1, . . . , 4, and η ∼ N(0, 100)I(0,∞) and a prior distribution for the shape parameter

of WNBCR and CWNBCR model is α ∼ N(0, 100)I(0,∞). As we know, the Piecewise Exponential

distribution has better approximation to any unknown function when the length of each interval

becomes smaller. Therefore, we partition the time axis so that they denoted the ordered distinct time

points of all observed interval end points. Thus, we have 178 risk parameters need to estimate. Prior

distributions for the risk parameters are αi ∼ N(0, 100)I(0,∞), i = 1, . . . , 178. For the sub-models

of the PHNBCR and CPHNBCR, we used the informative prior distributions for the parameters b

and β, where the priors are based on the posterior distributions of these parameters of PHNBCR
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and CPHNBCR models, i.e., bj ∼ N(0, 1), j = 0, . . . , 4, and βj ∼ N(0, 0.6), j = 1, . . . , 4. The prior

distributions for spatial parameters are a ∼ Beta(18, 2) and Λ ∼ Wishart(2,Diag(0.1, 0.1)), where

Diag(0.1, 0.1) = 0.1I2×2.

The Bayesian model selection criteria DIC and D-measure for the fitted cure rate models are

presented in Table 5.5. We observe that the PHNBCR and CPHNBCR models have the two smallest

values of DIC and D-measure among all fitted cure models, considering the norm as absolute or square

value. According to the criteria, we also note that the both cure models are almost equivalent with

their sub-models and the cure models with piecewise exponential distribution are more appropriate

than the cure models with Weibull distribution.

Table 5.5: Bayesian criteria for the fitted models for the smoking cessation data.

Criteria
D measure

Model Abs. Square Max DIC
Weibull negative binomial cure rate model 160.3 53.7 110.1 402
Weibull geometric cure rate model 156.9 52.3 110.7 417
Weibull promotion time cure model 162.4 55.0 112.5 417
Complementary Weibull negative binomial cure rate model 156.5 52.2 109.7 417
Complementary Weibull geometric cure rate model 163.2 55.8 113.1 418
Complementary Weibull promotion time cure model 157.4 52.3 109.6 419
PH negative binomial cure rate model 144.0 45.7 102.8 388
PH geometric cure rate model 150.2 47.5 103.2 395
PH promotion time cure model 148.3 46.6 102.3 404
Complementary PH Negative-Binomial cure rate model 144.8 46.2 102.5 382
Complementary PH geometric cure rate model 146.4 46.3 102.3 395
Complementary PH promotion time cure model 150.0 48.1 103.6 405

5.5 Conclusion

In this paper, we propose the D-measure, which measures the goodness of a model by

comparing how close its predictions are from the observed data. The propose D-measure can be

viewed as a Bayesian goodness-of-fit statistic which measures the performance of a model by a

combination of how close its predictions are from the observed data based on the survival functions.

It can also be used for all kind of survival data sets and it is an alternative criterion which can be

used to compare cure rate models, even in presence of random effects or frailties. The D-measure

was compared to the DIC via simulation, where we noted that the D-measure outperforms the DIC

in presence of small sample size and high censoring level.



Chapter 6

Concluding Remarks

In this work, we firstly described approaches to extend geometric cure rate model and neg-

ative binomial cure rate model their complementary models to allow for spatial correlations by

including spatial frailty for the interval-censored data set. The negative binomial cure rate models

are more flexible because they encompass the geometric cure rate model and several well known cure

rate models as its particular cases. The MCMC method was used in Bayesian inference approach for

the proposed models and the DIC was used for the model comparison. The results of the applications

show that

• The cure rate models with Weibull distribution (WGCR and WNBCR models) have better fit

than their complementary models (CWGCR and CWNBCR models) for all prior distributions

considered for the parameters.

• The cure rate models and their complementary models with Piecewise exponential distribution

(PHGCR, PHNBCR, CPHGCR and CPHNBCR) have are more adequate than cure rate models

and their complementary models with Weibull distribution (WGCR, WNBCR, CWGCR and

CWNBCR) for all prior distributions considered for the parameters.

• According to the DIC, the CPHGCR model and PHGCR model are equivalent and it is also

can be observed for CPHNBCR and PHNBCR model.

• The Negative Binomial cure rate models have smaller DIC values than the Geometric cure rate

models.

• Comparing the proposed cure rate models with models introduced Carlin & Banerjee (2003)

and Pan et al. (2014), it is showed that the PHGCR, CPHGCR, PHNBCR and CPHNBCR

models are more adequate.

159



160 CHAPTER 6. CONCLUDING REMARKS

Moreover, the proposed models are not sensitive with influential observations, which can be observed

through the influence diagnostic in the simulation studies as well as in the application. The inter-

pretation of the covariates is easy due to the parameterization of the models considered in the cure

rate and the MCAR prior can be used even if frailties effects are low or they are not correlated.

Then, we propose power series cure rate model for spatially correlated interval-censored

data based on generalized extreme value distribution. The proposed model is very flexible and

generalizes the Bernoulli, geometric, Poisson, and logarithm models, whose may be tested for the

best fitting in a straightforward way. The MCMC method was also used in Bayesian inference

approach for the proposed models and the DIC was used for the model comparison. The results of

the applications show that the proposed model has better fittings than the WNBCR and CWNBCR

models. Comparing the proposed models with PHNBCR and CPHNBCR models, we conclude that

the proposed models are more adequate, indeed it has much less parameters. From the results of

Bayesian case deletion influence diagnostics, we also observed that the proposed cure rate models

are not sensible with influence observations.

In the penultimate chapter, we propose D-measure which measures the performance of a

model by a combination of how close its predictions are to the observed data based on survival

function. The measure can be used for all kind of survival data in presence of censoring. It can also

be used to compare cure rate models, even in presence of random effects or frailties. The D-measure

was compared to the DIC via simulation, where we noted that the D-measure outperforms the DIC

in presence of small sample size and high censoring level. Finally, it is applied in two real data sets.

For the future works, we present some suggestions as follow:

• Propose the spatial fragilities in the destructive weighted Poisson cure rate models (Rodrigues

et al., 2010b);

• Propose spatial temporal fragilities in cure rate models. Considering both space and time are

discrete, the fragilities can be modeled based on a Markov random field (MRF) structure in

the form of the CAR specifications (Martínez-Beneito et al., 2008);

• Propose a non-parametric estimation for estimating the baseline functions of the proposed

models;

• Introduce the classic approach to estimation for the spatial fragilities cure rate models.
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Appendix

Algorithm

In this work, for the MCMC updates, the Metropolis-Hastings algorithm is used to gen-

erate a posteriori samples for the parameters ϕ∗ = (b,β, κ, ζ,U ,V ) of the independents priors

assumption and for the parameters ϕ∗ = (b,β, η, ζ,ψ,ρ) of the dependents priors assumption. Al-

though the block Metropolis-Hastings algorithm is computationally efficient, it is difficult to obtain a

good approximation of variance covariance proposal which directly affects the convergence of chains.

Therefore, we used one-dimensional random walk Metropolis algorithm where at each iteration we

generate new values from a univariate normal candidate distributions whose variances were calibrated

to obtain good acceptance rates. Let ϕ∗i,(t) denotes the state of ith parameter of ϕ∗ (ϕ∗i,) at the end

of iteration t, the Metropolis-Hastings algorithm implemented for ith parameter of ϕ∗ are given by:

(1) start with any point ϕ∗i,(0) and stage indicator t = 0;

(2) generate a point ϕ′i from the transitional kernel distribution q
(
ϕ′i, ϕ

∗
i,(t)

)
= N

(
ϕi,(t), σ

)
, where

σ is variance of ϕ∗i,(t) is same in any stage;

(3) update ϕ∗i,(t) to ϕ∗i,(t+1) = ϕ′i with probability pj = min
{

1, π(ϕ′i|D) / π(ϕ∗i,(t)|D)
}
;

(4) repeat steps (2) and (3) by increasing the stage indicator until the process reaches a stationary

distribution.

Finally, we repeat this algorithm for all parameters of ϕ∗.

Prior sensitive Analysis

Considering the dependence of the random frailties, and we assume the random frailties

take the traditional MCAR distribution MCAR(a,Λ), where a prior distribution for parameter a

taken a ∼ Uniform(0, 1) or a ∼ Beta(18, 2) and Λ ∼ Wishart(2,Λ0) following Carlin & Banerjee

(2003), Gelfand & Vounatsou (2003) and Banerjee & Carlin (2004). However, Gelfand & Vounatsou

(2003) and Banerjee & Carlin (2004) considered Λ0 equals I and 0.01I in their papers, respectively,

where I denote a identity matrix. Both authors also commented that they had no prior knowledge

regarding the nature or extent of dependence for the parameter Λ. Note that Λ−1 describe the

relative variability and covariance relationship between the different diseases given the neighboring

site. Thus, if Λ0 has small values, we assumed high relative variability between neighborhood and we

assumed low relative variability between neighborhood if Λ0 have big values. Thus, it is necessary to
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conduct a prior study for the parameter Λ0 to verify the influence of Λ0 in the estimation, in order

to have a value for appropriate Λ0. Next, we will conduct sensitive analysis for the parameter Λ of

WNBCR and CWNBCR models, in which we fixe Λ0 equals to I2×2, 0.1I2×2, 0.01I2×2 and 0.001I2×2,

and the prior distributions for others parameters b, β and η are bj ∼ N(0, 100), j = 0, . . . , 4,

βj ∼ N(0, 100), j = 1, . . . , 4, and η ∼ N(0, 100)I(0,∞) and a prior distribution for the shape parameter

is α ∼ N(0, 100)I(0,∞).

Posterior summaries of the parameters of the WNBCR and CWNBCR models considering

the prior distribution a ∼ Uniform(0, 1) and a ∼ beta(18, 2) for different values for Λ0 are presented

in Table 1, 2, 3 and 4, respectively. Note that the smaller values are taken by Λ0, the higher relative

variability between neighborhood are assumed, which can be observed in Table 1, 2, 3 and 4. We note

that the posterior estimative of elements of the covariance matrix Σ are deceasing with the diagonal

elements of Λ0, i.e, when we fixed Λ0 = 0.001I, the posterior estimative of diagonal elements of

the covariance matrix Λ−1 = Σ have very high value (For WNBCR model, Σ11 = 34.348 and

Σ22 = 37.164 ). On the other hand, the posterior estimative of diagonal elements of the covariance

matrix Σ have very low values when we fixed Λ0 = I. (For WNBCR model, Σ11 = 0.041 and

Σ22 = 0.043.) Since Λ0 restrict the posterior estimate of Λ and the Σ interprets the variability and

covariance relationship between the different diseases given the neighboring site, thus the too higher

or too lower values are not adequate.

Tables 1 and 2 show that the posterior estimative of the parameters b0, b2, β2 and β3

decreasing with Λ0 increasing, and the parameters b1, α and η increasing with Λ0 increasing, however,

the posterior estimative of the parameters β, b , α, a and η have close values when Λ0 = 0.01 and

Λ0 = 0.1. Tables 3 and 4 show that the posterior estimative of the parameters b0, β2 and α decreasing

with Λ0 increasing, and the parameters b1 and η increasing with Λ0 increasing. Posterior summaries

of the parameters of the CPHNBCR model considering the prior distribution a ∼ beta(18, 2) for

different values for Λ0 is presented in Table 5. We note that the parameter β2 decreasing with Λ0

increasing, and the parameters b1, β1, α and η increasing with Λ0 increasing. However, the posterior

estimative of the parameters β, b , α and η have close values for the CWNBCR model, which can be

observed in Figure 1 and Table 5. Moreover, we observe that the posterior estimate of the parameters

β, b , α, a and η have close values when Λ0 = 0.01 and Λ0 = 0.1 in all five tables. Therefore, in

this work, we fixed Λ0 = 0.1I, which lead to the posterior estimative of diagonal elements of the

covariance matrix Σ between zero and one.
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Table 1: Posterior summaries of the parameters of the WNBCR model considering the prior distribution a ∼ Uniform(0, 1) and different values for
Λ0.

Λ0 = 0.001I Λ0 = 0.01I Λ0 = 0.1I Λ0 = I

Parameters Mean SD 2.50% 97.50% Mean SD 2.50% 97.50% Mean SD 2.50% 97.50% Mean SD 2.50% 97.50%
b0 3.865 2.639 0.270 10.829 1.820 0.753 0.485 3.474 1.493 0.570 0.390 2.635 1.393 0.567 0.420 2.475
b1 -4.119 4.489 -17.219 -0.049 -0.423 0.495 -1.371 0.433 -0.277 0.379 -1.067 0.418 -0.205 0.355 -0.927 0.497
b2 2.835 2.279 -0.109 8.390 0.852 0.641 -0.121 2.501 0.558 0.475 -0.219 1.687 0.125 0.649 -1.234 1.332
b3 -0.040 0.142 -0.268 0.353 -0.077 0.037 -0.171 -0.015 -0.064 0.031 -0.134 -0.006 -0.046 0.025 -0.101 -0.002
b4 -0.212 0.286 -0.932 0.098 0.005 0.030 -0.058 0.059 0.010 0.026 -0.048 0.061 -0.006 0.024 -0.052 0.044
β1 -2.207 2.160 -8.517 0.386 -0.234 0.817 -1.832 1.356 -0.252 1.089 -2.548 1.826 -0.597 2.356 -6.310 3.157
β2 1.910 1.419 -0.511 4.927 1.616 1.107 -0.164 4.248 1.491 1.230 -0.631 4.205 -0.779 4.462 -12.590 3.974
β3 -0.055 0.123 -0.281 0.138 -0.172 0.075 -0.313 -0.029 -0.211 0.090 -0.378 -0.004 -0.228 0.108 -0.440 0.009
β4 -0.159 0.145 -0.416 0.074 -0.043 0.073 -0.219 0.062 -0.041 0.088 -0.292 0.074 -0.128 0.157 -0.493 0.068
α 2.354 0.666 1.435 3.873 3.105 0.554 2.019 4.019 3.347 0.586 2.047 4.087 3.615 0.506 2.308 4.128
a 0.501 0.286 0.028 0.970 0.500 0.289 0.025 0.976 0.503 0.289 0.025 0.975 0.506 0.287 0.026 0.975
η 0.642 0.666 0.013 2.480 3.425 2.189 0.380 8.463 6.825 3.577 0.602 13.737 10.564 4.217 1.668 17.976
Λ11 0.032 0.007 0.020 0.048 0.273 0.065 0.163 0.416 2.669 0.657 1.562 4.130 26.822 6.460 15.707 41.258
Λ22 0.030 0.007 0.018 0.045 0.283 0.066 0.169 0.429 2.581 0.639 1.498 3.971 25.567 6.365 14.935 39.868
Λ12 -0.004 0.005 -0.014 0.006 -0.008 0.046 -0.099 0.084 -0.012 0.462 -0.916 0.916 -0.095 4.595 -9.189 8.933
Σ11 34.348 8.375 21.495 53.751 4.010 1.015 2.466 6.363 0.413 0.110 0.249 0.679 0.041 0.011 0.025 0.066
Σ22 37.164 10.323 22.721 62.668 3.869 0.998 2.378 6.283 0.427 0.122 0.254 0.711 0.043 0.012 0.026 0.071
ρΣ 0.124 0.164 -0.199 0.456 0.030 0.170 -0.300 0.368 0.004 0.180 -0.353 0.358 0.004 0.179 -0.343 0.359

where Λij is the element of precision matrix Λ in position (i, j), and Σij is the element of matrix Σ = Λ−1 in position (i, j), this Σ11 is the spatial variance
component of U and Σ22 is the spatial variance component of V , ρΣ = Σ12/(Σ11Σ22)1/2 denote their correlation.
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Table 2: Posterior summaries of the parameters of the WNBCR model considering the prior distribution a ∼ Beta(18, 2) and different values for Λ0.

Λ0 = 0.001I Λ0 = 0.01I Λ0 = 0.1I Λ0 = I

Parameters Mean SD 2.50% 97.50% Mean SD 2.50% 97.50% Mean SD 2.50% 97.50% Mean SD 2.50% 97.50%
b0 7.371 4.279 1.284 19.003 1.760 0.798 0.172 3.316 1.425 0.584 0.200 2.516 1.407 0.537 0.463 2.528
b1 -8.427 6.910 -24.109 1.435 -0.973 2.179 -9.249 0.390 -0.298 0.517 -1.607 0.535 -0.153 0.432 -1.003 0.615
b2 4.935 3.842 -1.357 15.730 1.128 0.980 -0.133 3.976 0.570 0.577 -0.401 2.081 0.107 0.663 -1.589 1.100
b3 0.199 0.201 -0.135 0.560 -0.073 0.044 -0.185 -0.006 -0.051 0.034 -0.120 0.024 -0.042 0.020 -0.084 -0.005
b4 -0.869 0.481 -1.762 -0.054 -0.008 0.052 -0.151 0.067 -0.005 0.042 -0.111 0.061 -0.009 0.027 -0.066 0.042
β1 -3.439 2.953 -9.644 1.370 -0.641 1.876 -6.986 1.449 -0.199 1.642 -4.481 3.067 0.010 2.469 -5.794 5.593
β2 2.118 2.078 -1.194 7.947 1.854 1.184 -0.210 4.331 1.693 1.900 -1.733 6.053 -0.554 5.029 -16.629 4.518
β3 0.109 0.094 -0.070 0.263 -0.154 0.076 -0.288 0.016 -0.171 0.122 -0.365 0.133 -0.217 0.106 -0.424 0.000
β4 -0.446 0.184 -0.709 -0.111 -0.068 0.072 -0.213 0.055 -0.110 0.151 -0.471 0.070 -0.133 0.157 -0.574 0.090
α 1.796 0.289 1.361 2.517 3.031 0.689 1.692 4.068 3.318 0.599 2.069 4.075 3.649 0.439 2.474 4.103
a 0.899 0.066 0.735 0.987 0.899 0.066 0.734 0.987 0.899 0.067 0.735 0.987 0.901 0.065 0.743 0.987
η 0.419 0.183 0.089 0.818 3.480 2.746 0.246 10.002 6.967 3.624 0.815 13.816 10.734 3.433 3.173 16.820
Λ11 0.034 0.007 0.022 0.050 0.272 0.065 0.163 0.417 2.663 0.661 1.534 4.098 26.857 6.463 15.902 40.765
Λ22 0.028 0.007 0.017 0.043 0.281 0.066 0.170 0.424 2.624 0.650 1.534 4.038 25.591 6.322 14.809 39.455
Λ12 -0.004 0.005 -0.014 0.006 -0.008 0.046 -0.101 0.081 -0.025 0.464 -0.948 0.881 0.043 4.567 -8.885 8.951
Σ11 32.373 7.752 20.761 50.093 4.019 1.010 2.459 6.339 0.414 0.110 0.250 0.678 0.041 0.011 0.025 0.066
Σ22 39.745 11.251 23.754 65.726 3.887 1.003 2.394 6.301 0.421 0.119 0.252 0.697 0.043 0.012 0.026 0.072
ρΣ 0.127 0.167 -0.199 0.465 0.031 0.169 -0.298 0.373 0.010 0.179 -0.339 0.364 -0.001 0.178 -0.357 0.353
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Table 3: Posterior summaries of the parameters of the CWNBCR model considering the prior distribution a ∼ Uniform(0, 1) and different values for
Λ0.

Λ0 = 0.001I Λ0 = 0.01I Λ0 = 0.1I Λ0 = I

Parameters Mean SD 2.50% 97.50% Mean SD 2.50% 97.50% Mean SD 2.50% 97.50% Mean SD 2.50% 97.50%
b0 0.814 1.240 -1.584 3.194 0.407 1.027 -1.599 2.503 0.055 0.937 -1.722 1.926 -0.009 0.866 -1.674 1.734
b1 -0.902 0.658 -2.297 0.308 -0.594 0.505 -1.616 0.341 -0.430 0.388 -1.203 0.308 -0.383 0.376 -1.122 0.355
b2 1.067 0.584 0.004 2.311 0.936 0.511 -0.008 1.970 0.811 0.435 -0.012 1.700 0.818 0.439 -0.027 1.718
b3 -0.070 0.033 -0.135 -0.004 -0.053 0.026 -0.104 -0.004 -0.044 0.022 -0.089 -0.003 -0.045 0.024 -0.097 -0.004
b4 0.047 0.044 -0.046 0.129 0.042 0.033 -0.026 0.105 0.047 0.029 -0.010 0.105 0.049 0.030 -0.008 0.110
β1 -0.083 0.544 -1.151 0.969 0.202 0.403 -0.618 0.952 0.361 0.361 -0.372 1.039 0.377 0.354 -0.350 1.046
β2 0.371 0.663 -0.852 1.679 0.232 0.473 -0.652 1.186 0.070 0.418 -0.709 0.932 0.030 0.425 -0.731 0.917
β3 -0.050 0.037 -0.120 0.022 -0.042 0.025 -0.090 0.007 -0.041 0.023 -0.089 0.002 -0.038 0.024 -0.086 0.010
β4 -0.038 0.033 -0.106 0.022 -0.031 0.024 -0.083 0.013 -0.021 0.022 -0.069 0.017 -0.021 0.022 -0.073 0.016
α 2.630 0.433 1.801 3.506 2.177 0.330 1.530 2.820 1.971 0.290 1.422 2.543 1.894 0.291 1.373 2.494
a 0.499 0.289 0.024 0.975 0.496 0.291 0.023 0.973 0.495 0.291 0.027 0.975 0.506 0.288 0.024 0.976
η 1.858 3.030 0.020 11.411 3.129 3.527 0.071 12.797 4.506 4.548 0.085 16.466 4.906 4.834 0.074 16.699
Λ11 0.033 0.007 0.021 0.049 0.273 0.063 0.164 0.413 2.651 0.653 1.552 4.077 26.570 6.424 15.731 40.611
Λ22 0.032 0.007 0.020 0.047 0.275 0.065 0.164 0.417 2.572 0.641 1.489 3.974 25.593 6.394 14.807 39.715
Λ12 -0.001 0.005 -0.011 0.009 -0.001 0.046 -0.091 0.089 0.001 0.466 -0.928 0.908 -0.054 4.579 -8.992 9.009
Σ11 32.559 7.460 20.917 49.886 3.990 0.992 2.482 6.366 0.416 0.113 0.251 0.682 0.041 0.011 0.025 0.067
Σ22 34.312 8.351 21.746 53.659 3.978 1.034 2.447 6.440 0.432 0.128 0.255 0.728 0.043 0.012 0.026 0.073
ρΣ 0.033 0.158 -0.279 0.342 0.002 0.170 -0.333 0.336 0.001 0.182 -0.358 0.362 0.002 0.180 -0.355 0.352
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Table 4: Posterior summaries of the parameters of the CWNBCR model considering the prior distribution a ∼ Beta(18, 2) and different values for
Λ0.

Λ0 = 0.001I Λ0 = 0.01I Λ0 = 0.1I Λ0 = I

Parameters Mean SD 2.50% 97.50% Mean SD 2.50% 97.50% Mean SD 2.50% 97.50% Mean SD 2.50% 97.50%
b0 0.430 1.521 -2.685 3.373 0.171 1.023 -1.851 2.072 0.022 0.986 -1.954 1.922 -0.169 0.950 -2.087 1.628
b1 -0.738 0.745 -2.265 0.847 -0.559 0.465 -1.527 0.322 -0.439 0.386 -1.198 0.315 -0.369 0.379 -1.142 0.381
b2 1.085 0.570 -0.002 2.271 0.952 0.504 0.028 2.059 0.837 0.464 0.003 1.800 0.812 0.420 0.015 1.687
b3 -0.069 0.037 -0.140 0.004 -0.051 0.025 -0.101 -0.004 -0.044 0.025 -0.095 -0.002 -0.042 0.022 -0.088 0.000
b4 0.053 0.050 -0.061 0.140 0.047 0.036 -0.026 0.119 0.048 0.030 -0.014 0.102 0.052 0.030 -0.007 0.115
β1 0.047 0.582 -1.099 1.190 0.205 0.402 -0.614 0.965 0.348 0.349 -0.370 0.988 0.384 0.349 -0.327 1.029
β2 0.214 0.700 -1.105 1.628 0.209 0.520 -0.787 1.236 0.091 0.420 -0.695 0.933 0.032 0.401 -0.719 0.839
β3 -0.040 0.040 -0.116 0.032 -0.038 0.028 -0.094 0.017 -0.041 0.024 -0.089 0.008 -0.041 0.024 -0.089 0.006
β4 -0.037 0.035 -0.115 0.025 -0.032 0.027 -0.089 0.016 -0.022 0.022 -0.070 0.016 -0.019 0.022 -0.070 0.017
α 2.547 0.452 1.774 3.480 2.178 0.344 1.533 2.865 1.989 0.309 1.406 2.603 1.938 0.279 1.432 2.516
a 0.899 0.066 0.740 0.987 0.898 0.066 0.734 0.987 0.899 0.066 0.742 0.986 0.901 0.064 0.749 0.988
η 3.773 5.670 0.021 20.242 3.603 4.095 0.046 15.593 4.311 4.490 0.050 16.316 5.356 5.596 0.075 20.012
Λ11 0.033 0.007 0.021 0.049 0.274 0.064 0.164 0.418 2.652 0.647 1.540 4.091 26.805 6.509 15.741 41.149
Λ22 0.031 0.007 0.019 0.046 0.273 0.064 0.165 0.412 2.593 0.642 1.495 4.016 25.375 6.210 14.739 39.012
Λ12 -0.001 0.005 -0.011 0.009 0.001 0.046 -0.088 0.094 0.007 0.466 -0.935 0.914 -0.066 4.665 -9.381 9.272
Σ11 32.484 7.840 20.921 50.224 3.986 1.003 2.441 6.358 0.416 0.113 0.253 0.683 0.041 0.011 0.025 0.066
Σ22 34.895 9.271 22.096 55.956 4.002 1.037 2.457 6.395 0.428 0.140 0.254 0.726 0.044 0.012 0.026 0.073
ρΣ 0.024 0.161 -0.293 0.338 -0.004 0.171 -0.345 0.330 -0.002 0.182 -0.357 0.363 0.003 0.183 -0.358 0.361
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Table 5: Posterior summaries of the parameters of the CPHNBCR model considering the prior distribution a ∼ Beta(18, 2) and different values for
Λ0.

Λ0 = 0.001I Λ0 = 0.01I Λ0 = 0.1I Λ0 = I

Parameters Mean SD 2.50% 97.50% Mean SD 2.50% 97.50% Mean SD 2.50% 97.50% Mean SD 2.50% 97.50%
b0 -0.411 0.870 -2.032 1.301 -0.319 0.762 -1.852 1.120 -1.735 1.800 -6.064 0.889 -0.713 0.699 -2.174 0.590
b1 -0.313 0.645 -1.580 1.010 -0.255 0.497 -1.197 0.754 -0.038 0.767 -1.313 1.782 -0.093 0.428 -0.894 0.827
b2 0.860 0.556 -0.269 1.938 0.847 0.506 -0.145 1.826 1.318 1.092 -0.366 3.979 0.570 0.456 -0.362 1.428
b3 -0.071 0.054 -0.156 0.046 -0.044 0.047 -0.115 0.061 -0.031 0.050 -0.117 0.066 -0.069 0.037 -0.148 -0.003
b4 0.065 0.058 -0.060 0.161 0.040 0.055 -0.079 0.122 0.051 0.082 -0.118 0.210 0.083 0.036 0.013 0.152
β1 0.185 0.306 -0.418 0.783 0.166 0.271 -0.376 0.704 0.172 0.347 -0.602 0.807 0.191 0.241 -0.273 0.676
β2 -0.273 0.342 -0.898 0.465 -0.278 0.318 -0.866 0.396 -0.689 0.442 -1.686 0.081 -0.388 0.253 -0.879 0.125
β3 0.004 0.022 -0.051 0.039 -0.002 0.020 -0.047 0.032 0.004 0.016 -0.028 0.037 0.009 0.021 -0.033 0.051
β4 -0.046 0.025 -0.101 0.004 -0.046 0.020 -0.088 -0.009 -0.039 0.023 -0.080 0.010 -0.044 0.015 -0.073 -0.014
a 0.900 0.065 0.748 0.988 0.900 0.067 0.735 0.987 0.900 0.066 0.737 0.986 0.901 0.065 0.742 0.987
η 11.741 7.511 0.195 27.162 12.529 6.854 1.057 27.957 13.991 6.089 4.242 26.668 18.442 6.438 6.713 31.891
Λ11 0.035 0.007 0.022 0.051 0.287 0.067 0.174 0.436 2.712 0.656 1.579 4.157 26.807 6.519 15.669 41.211
Λ22 0.031 0.007 0.019 0.046 0.271 0.065 0.160 0.414 2.563 0.645 1.466 3.987 25.721 6.283 14.843 39.269
Λ12 0.000 0.005 -0.010 0.011 0.004 0.047 -0.089 0.095 0.015 0.464 -0.911 0.947 0.025 4.686 -9.293 9.174
Σ11 30.662 6.929 19.868 47.016 3.807 0.937 2.358 5.974 0.406 0.106 0.247 0.663 0.041 0.011 0.025 0.067
Σ22 35.261 8.839 21.925 55.973 4.054 1.090 2.453 6.623 0.433 0.124 0.257 0.728 0.043 0.012 0.026 0.072
ρΣ -0.009 0.158 -0.315 0.301 -0.014 0.171 -0.347 0.321 -0.006 0.180 -0.374 0.345 -0.001 0.182 -0.358 0.359
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Figure 1: Posterior means of αi’s with Λ0 = 0.001, 0.01, 0.1 and 1.


