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Abstract

In this thesis, the electronic and structural properties of nanostructured systems were stud-

ied aiming to get a realistic model for quantum rings, potentially adaptable for quantum dots.

To attain these goals, several studies supported by experimental results were carried out that

allowed the introduction to the building blocks for the theoretical models such as: the envelope

function approach within the k.p approximation in quantum wells, and quantum ring/dot with

perpendicular magnetic field and without spin-orbit interaction. In these models, the effects

of size, strain and localization were subsequently introduced to understand the ring formation

process and their effects in the photoluminescence and magneto-photoluminescence. The ex-

perimental results of atomic force microscopy indicated the importance of structural properties

and the types of asymmetries possibly found in quantum rings after the growth process. The

understanding of these effects and the evidence of the anisotropy in a preferential direction of

the ring helped building more realistic models for the potential profiles. Various systems were

then studied with success. They also included a controllably magnetic field (both in magnitude

and orientation), beside the geometric deformation, making the ring ellipsoidal, and taking into

account the spin-orbit interaction. The most realistic model was used to analyze the Berry phase

generation and the relative weight of the contribution of each term of the Hamiltonian.

Keywords: Quantum Rings. K.P Method. Berry Phase. Asymmetry.



Resumo

Nesta tese de doutorado, as propriedades eletrônicas e estruturais de sistemas nano estru-

turados foram estudadas visando a obtenção de um modelo realístico para anéis quânticos po-

tencialmente adaptáveis a pontos quânticos. Para alcançar este objetivo, foram feitos alguns

estudos, apoiados por resultados experimentais, que permitiram a construção passo a passo do

modelo teórico, como: aproximação da função envelope na representação k.p em poços quânti-

cos e anéis/pontos quânticos com campo magnético perpendicular e sem interação spin-órbita.

Nestes modelos, os efeitos do tamanho, tensão e localização foram introduzidos subsequente-

mente para entender o processo de formação do anel e os resultados apresentados na fotolu-

minescência e na magneto-luminescência. O resultado experimental da microscopia de força

atômica nos levou a analisar a importância das propriedades estruturais e os tipos possíveis de

assimetria encontrados em anéis quânticos devido ao processo de crescimento. O entendimento

desses efeitos e a evidência de anisotropia em uma direção preferencial do anel ajudou na con-

strução de modelos mais realísticos para os perfis de potencial. Deste modo, vários sistemas

foram estudados com sucesso. Eles também possuíam um campo magnético controlável (am-

bas, magnitude e orientação), além da deformação geométrica, que torna o anel elipsoidal, e

a interação spin-órbita. O modelo mais realístico foi usado para analisar a geração da fase de

Berry e o peso da contribuição de cada termo do Hamiltoniano.

Palavras-chave: Anéis Quânticos. Método K.P. Fase de Berry. Assimetria.
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Chapter 1

INTRODUCTION

Recent progress in nanostructure engineering has enabled foreseeing opto-electronic ap-

plications of systems based on quantum dots (QDs), quantum wires (QWrs) and quantum

rings (QRs) such as low-threshold lasers [1], infrared photodetectors [2], solar cells [3], bio-

sensors [4,5], spintronic gates [6], etc. In view of the wide application of QDs, QWrs, and QRs

for the creation of efficient opto-electronic devices, extensive studies have been carried out in

many nanoscale structures for understanding their basic properties and the physics underneath

[7–14]. Among the possible nanostructures, the QRs present attractive features for fundamental

quantum mechanics studies and applications, like terahertz detectors [15].

The nanostructures studied here were obtained by molecular beam epitaxy (MBE) [16], and

in case of QRs, they are formed via the Stranski-Krastanov method [9, 10], where a very thin

cap-layer of the same material from the barrier is deposited over the QDs previously formed

by MBE. After this procedure, material from the QD center is ejected and redistributed around

the QDs, creating a volcano crater-like ring nanostructure. Several studies have discussed the

formation of the QRs in terms of the thermodynamic equilibrium and kinetic transition, but a

satisfactory explanation of these processes is still under scrutiny [17–22]. This unique toroidal

topology displayed by the QRs has also allowed the observation of the Aharonov-Bohm (AB)

effect [23] in transport experiments [24–27].

The AB interference in type-I systems, where both electron and hole move together inside

the QR, has been found in the magneto-photoluminescence from self-assembled InGaAs/GaAs

QR single layer structures [28]. It has also been shown that optical emissions from type-II

ZnTe/ZnSe QDs display large and persistent oscillations in both peak energy and intensity, thus

indicating the formation of coherently rotating states in magnetic fields [28, 29].
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The Stranski-Krastanov growth mode has attracted both theoretical and experimental inter-

est [29,30]. This method has become the main recipe for fabricating ordered arrays of QDs and

QRs. To attain self-organization of nanoscopic structures with the highest possible uniformity

and geometry control, a layer-by-layer growth is indispensable. Unavoidably, a vertical stack

of nanoscopic islands is formed in this process. However, some unexpected geometric shapes

could be observed in layer-by-layer growth, such as defects, making the resulting structure non

circularly symmetric. In the case of QRs, one may find elongated/elliptical structures and QRs

with punctual deformations [31]. These deformations affect directly their electronic structure.

In this thesis, we aim to build a realistic and versatile model to characterize QRs and QDs

systems that allows analyzing several effects, such as those produced by strain, localization,

asymmetry, spin orbit coupling, and controllable external magnetic fields. The existing mod-

els [32–37] are not able to analyze such a spectrum of effects within a single framework, which

limits the study of dimensionality, for example, while our model allows verifying the combina-

tion of these effects simultaneously.

We have firstly introduced the fundamental concepts within chapter 2 and then described

basic effects of the growth process in semiconductor nanostructures, in chapter 3. Here, the

fundamental effects of composition, confinement, strain and localization are discussed in or-

der to understand the complex nanostructure systems introduced later. To reach this goal we

have discussed optical and magneto-optical results based on our electronic structure calculation,

where the relative effects of modulation are associated to structural parameters analyzed by us-

ing multiband calculations. After that, in chapter 4, we have investigated the effects of external

fields and asymmetries in QRs and QD-QR stacked structures, where one InGaAs/GaAs QR

layer is grown on a vertical superlattice of InGaAs/GaAs QDs aligned laterally. This hybrid en-

semble of nanostructures reveals strong optical anisotropy in the polarized photoluminescence

(PL) spectrum and unusually strong oscillations of PL intensities as a function of magnetic field

in both QDs and QRs spectral emission ranges. These oscillations are observed simultaneously

and related to the Aharanov-Bohm interference patterns. Such a behavior of the magneto-PL

can be understood in terms of joint effects associated to strain, spatial and magnetic confine-

ments affecting the valence band states forming the magneto-exciton ground state of the hybrid

structure. And finally, in chapter 5, we have studied another QR system, where an external con-

trollable magnetic field was used together with spin orbit (SO) coupling and asymmetry effects

aiming to elucidate the nature of each contribution to generates Berry phases.
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In order to attain our goals, a combination of experimental results, provided by collabora-

tors, and our theoretical procedures has been gathered to build an accurate framework for the

analysis.

Till now, these efforts resulted in the following published papers:

1. Berry phase and Rashba fields in quantum rings in tilted magnetic field. Physical Review

B 92, 035441 (2015).

2. Carrier transfer in vertically stacked quantum ring-quantum dot chains. Journal of Ap-

plied Physics 117, 154307 (2015).

3. Structural and magnetic confinement of holes in the spin-polarized emission of coupled

quantum ring-quantum dot chains. Physical Review B 90, 125315 (2014).

4. Strain and localization effects in InGaAs(N) quantum wells: Tuning the magnetic re-

sponse. Journal of Applied Physics 116, 233703 (2014).

A one year Sandwich PhD project was developed at Ohio University under the supervision

of Prof. Sergio Eduardo Ulloa.
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Chapter 2

THEORETICAL BACKGROUNDS

As stated previously, this work is a theoretical study of semiconductor nanostructured sys-

tems and tackles problems involving them. As they requested the interplay of various concepts

and models, this chapter is dedicated to the introduction of the general theoretical concepts used

in the work. Thus, the chapter begins with a basic description of the crystal structure and elec-

tronic properties. Then, followed by the concept of effective mass and envelope function, the

k.p method and the Luttinger Hamiltonian are presented. They are the grounds for the conduc-

tion and valence bands simulations. Subsequently, the strain effects are introduced, ending with

the description of the systems of interest: quantum wells (QWs), QDs, and QRs.

2.1 Crystal Structure and Properties

Crystals present special optical and electrical properties different from fluids and other

solids, which make them useful for electro-optical and electronic applications. These prop-

erties, such as their band structure and conductivity, can be controlled during the crystal growth

and doping, and are widely used for manufacturing electronic devices. To describe a crystal

structure, there are three important questions to answer: what kind of lattice is present? what

choice of fundamental translation vectors v1, v2 and v3 (that define the lattice) do we wish to

make? what is the basis?

More than one lattice is always possible for a given structure, and more than one set of

axes is always possible for a given lattice. The basis is identified once these choices have been

made. Everything works out correctly in the end, satisfying the definition of Bravais lattice for
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a crystal translation vector as [1]

T = u1v1 +u2v2 +u3v3 (2.1)

where u1, u2 and u3 are arbitrary integers. A basis of atoms is attached to every lattice point, with

every basis being identical in composition, arrangement, and orientation. A crystal structure is

formed by adding a basis to every lattice point.

In Fig. 2.1, one may see an example of a primitive cell (blue parallelepiped) defined by the

primitive axes v1, v2, v3. A primitive cell is a type of unit cell. A cell will fill all space by the

repetition of suitable crystal translation operations. A primitive cell is a minimum-volume cell.

There are many ways of choosing the primitive axes and primitive cells for a given lattice. The

number of atoms in a primitive cell or primitive basis is always the same for a given crystal

structure.

Figure 2.1: Scheme of a primitive cell, in blue, defined by the primitive axes v1, v2 and v3.

Bravais proved that there are only fourteen different space lattices, divided into seven crystal

systems indicated in Fig. 2.2. We focus on cubic structures because that it is the symmetry of

the InAs, GaAs and their alloys, studied in this thesis.

There is always one lattice point per primitive cell. If the primitive cell is a parallelepiped

with lattice points at each of the eight corners, each lattice point is shared among eight cells,

so that the total number of lattice points in the cell is one, as illustrated in Fig. 2.3, and the

volume of a parallelepiped with axes v1, v2, v3 is Vc = |v1 ·v2 ×v3|. The basis associated with

a primitive cell is called a primitive basis. No basis contains fewer atoms than a primitive basis

contains.
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Figure 2.2: Bravais lattices in three-dimensions. The vector ai and angle αi j are in: (a) simple
cubic, (b) body centered cubic and (c) faced centered cubic with a1 = a2 = a3 and α12 = α23 =
α31 = 90o; (d) simple monoclinic and (e) body centered monoclinic with a1 ̸= a2 ̸= a3, α23 =
α31 = 90o and α12 ̸= 90o; (f) simple orthorhombic, (g) body centered orthorhombic, (h) base
centered orthorhombic and (i) faced centered orthorhombic with a1 ̸= a2 ̸= a3 and α12 = α23 =
α31 = 90o; (j) simple tetragonal and (k) body centered tetragonal with a1 = a2 ̸= a3 and α12 =
α23 = α31 = 90o; (l) triclinic with a1 ̸= a2 ̸= a3 and α12 ̸= α23 ̸= α31; (m) trigonal with a1 =
a2 = a3 and α12 = α23 = α31 < 120o; and (n) hexagonal with a1 = a2 ̸= a3, α12 = 120o and
α23 = α31 = 90o.
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Figure 2.3: Scheme illustrating a unit cell containing just one atom.

In a crystal, it is important to know its crystal planes, defined by the atoms constituting the

lattice. In semiconductor physics, knowing the crystal planes is crucial because depending on

the plane the bulk substrate is cut and the samples are grown, one may obtain different properties

and results of the growth process. In Fig. 2.4, we show possible planes obtained from the bulk

structure cut along different directions. The planes are usually named by the Miller indices [2]

[hkl] that indicate the direction of the normal vector to the in the basis of the corresponding

reciprocal lattice.

Figure 2.4: Miller indices of some important planes in a cubic crystal.

Crystals are usually classified by their conductivity/resistivity. Thus the crystals can be basi-

cally insulating, conductors or semiconductors. In this classification, semiconductors have elec-
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trical resistivity at room temperature with values in the range of 10−2 to 109 ohm-cm, strongly

dependent on temperature. At absolute zero, a pure perfect crystal of most semiconductors will

be an insulator, if we arbitrarily define an insulator as having a resistivity above 1014 ohm-cm.

Devices based on semiconductors include transistors, switches, diodes, photovoltaic cells, de-

tectors, and thermistors. These may be used as single circuit elements or as components of

integrated circuits.

A highly purified semiconductor exhibits intrinsic conductivity, as distinguished from the

impurity conductivity of less pure specimens. In the intrinsic temperature range, the electrical

properties of a semiconductor are not essentially modified by impurities in the crystal. The

conduction band is void at absolute zero and is separated by an energy gap Eg from the filled

valence band. The band gap is the energy difference between the lowest state of the conduction

band and the highest state of the valence band. The lowest point in the conduction band is called

the conduction band edge and the highest point in the valence band is called the valence band

edge.

As the temperature is increased, electrons are thermally excited from the valence band to

the conduction band. Both the electrons in the conduction band and the vacant state or holes

left behind in the valence band contribute to the electrical conductivity [2]. The intrinsic con-

ductivity and intrinsic carrier concentrations are largely controlled by Eg/kBT , the ratio of the

band gap to the temperature T , with kB being the Boltzmann constant [3]. When this ratio is

large, the concentration of intrinsic carriers will be low and also the conductivity.

The value of the band gap may be obtained from the temperature dependence of the conduc-

tivity or of the carrier concentration in the intrinsic range. The carrier concentration is obtained

from measurements of the Hall voltage [4], sometimes complemented by conductivity measure-

ments. Optical measurements determine whether the gap is direct or indirect. Germanium (Ge)

and silicon (Si) are examples whose the band edges are connected by indirect optical transi-

tions (Fig. 2.5(a)), while in indium antimonide (InSb) and gallium arsenide (GaAs) the band

edges are connected by a direct transition (Fig. 2.5(b)). Here, we studied GaAs, indium gallium

arsenide (InGaAs) and (InGaAsN) structures, all direct gap systems.

In the direct absorption process, as illustrated in Fig. 2.5(b), a photon is absorbed by with

the creation of an electron in the conduction band and a hole, in the valence band. On the other

hand, in the indirect absorption process, illustrated in Fig. 2.5(a), the minimum energy gap of

the band structure corresponds to electrons and holes separated by a substantial wavevector kc.
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Figure 2.5: Transition between valence band and conduction band. (a) Indirect transition and
(b) direct transition.

Here a direct photon transition at the energy of the minimum gap cannot satisfy the requirement

of conservation of the wavevector, because photon wavevectors are negligible at the energy

range of interest.

2.2 Effective mass approach and envelope function

The approach used in this thesis to calculate the band structures is based on the idea that

one electron moving in the atomic lattice, under a periodic potential, can be treated through

the effective mass concept, µ∗ [5]. This approach is described within the k.p method, based

on the perturbation theory. In this method various parameters are used such as: band gap,

split-off energy, inter conduction and valence band coupling elements, etc. These parameters

can be determined precisely by optical and magneto-optical experiments, or from first principle

calculations, what makes the method a versatile tool. Another advantage of the k.p method

is the use of a small basis with important applications in simulations of optical, magnetic and

transport properties of semiconductors. According to the electronic states to be characterized,

different approximations can be applied to this formalism. In particular, we shall use two: the

parabolic approximation for the conduction band and the Luttinger model for the valence band.

The k.p method allows the electronic structure calculation close to the Γ point (k = 0) of

the reciprocal lattice (states participating in the optical recombination). Basically, the effective

band structure calculation is divided in three steps: (i) transformation of the crystal Hamiltonian

12



into the k.p representation; (ii) reduction of the problem to an eigenvalues matrix; and (iii)

introduction of approximations.

To execute these steps, we start from the Schrodinger equation

H0Ψk(r) = EkΨk(r), (2.2)

where

H0 =
P2

2m0
+V (r), (2.3)

P =−ih̄∇ is the linear momentum operator and m0 is the mass of a free electron.

According to the Bloch theorem, the carrier movement characterization can be restricted to

the first Brillouin zone [2]. The solutions of the Schrodinger equation (2.2) for one electron in

a crystal is given by "envelope function"

Ψk(r) = eik·ruk(r) (2.4)

where uk(r) is a function with the same spatial periodicity of the crystalline lattice [6].

Writing the operator H0 in terms of the wave vector k, we have

H(k) = e−ik.rH0eik.r, (2.5)

and expanding the exponentials in Taylor series

H(k) = H0 − ik.[r,Ho]−
1
2 ∑

i j
kik j[ri, [r j,H0]]+ ... (2.6)

wherein the commutator [r,H0] = ih̄P/m0 and [r, [r,H0]] =−h̄2δi j/m0, results in

H(k) =
P2

2m0
+V (r)+

h̄2k2

2m0
+

h̄
m0

k.P. (2.7)

Applying (2.7) and (2.4) in Eq. (2.2), we get:

[
P2

2m0
+V (r)+

h̄2k2

2m0
+

h̄
m0

k.P
]

unk = Enkunk, (2.8)

where k is the wave vector, the potential V (r) is the potential in which the electron moves,

Enk is the carrier energy for certain wave vector k, and n indicates possible bands. At the high
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symmetry point Γ, the terms that depend on k in Eq. (2.8) vanish. Thus, it is possible to assume

a solution for this equation in k ≈ 0 given by

unk = ∑
m

Cmkum0. (2.9)

Inserting the solution (2.9) in Eq. (2.8), multiplying by, um0∗, and using orthogonality, we

have

∑
m

[(
En0 −Enk +

h̄2k2

2m0

)
δnm +

h̄k
2m0

.⟨n0|P|m0⟩
]

Cmk = 0. (2.10)

The diagonalization of the Eq. (2.10) results in the dispersion relation Enk and in the expansion

coefficients Cmk for all the values of k and all bands n.

Suppose that the n-th band with En0 energy is not degenerated and assume small values of

k. This allows to use the perturbation theory to get

Cn ∼ 1; Cm =
h̄k

2m0
.

Pnm

En0 −Em0
, (2.11)

that, replaced in Eq. (2.10), gives a second order correction in En0 energy,

Enk = En0 +
h̄2k2

2m0
+

h̄2

m2
0

∑
m ̸=n

|Pnm.k|2

En0 −Em0
. (2.12)

When k is small, the dispersion relation of the degenerated bands is parabolic around Γ point

Enk = En0 +
h̄2

2 ∑
i, j

ki
1

µ i j(∗)
n

k j, (2.13)

in which the i, j indexes refer to x,y,z and µ i j(∗)
n to the effective mass tensor, defined as [6]

1

µ i j(∗)
n

=
1

m0
δi j +

2
m2

0
∑

n̸=m

Pi
nmP j

nm

En0 −Em0
. (2.14)

In Eq. (2.14), the effective mass of the carrier is determined by the coupling effect with

other bands. Among remote bands, in general only one or a set of bands (degenerated) have the

stronger coupling. For a semiconductor of direct gap, the valence band coupling is dominant.

If we neglect the other bands coupling, the sum in Eq. (2.12) has only one term for which the

denominator is the band gap. When the gap is small, the effective mass is small too. This is the

reason for a small effective electron mass in semiconductors of narrow gap.
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The effective mass tensor (Eq. 2.14) takes into account only the kinetic term of the Hamil-

tonian and the periodic potential of the crystalline lattice. However, if we include the SO inter-

action [7]

HSO =
h̄

4m2
0c2 σ ·p× (∇V ), (2.15)

in Eq. (2.3) the lattice periodic parts of the Bloch functions become two-component spinors

|nk⟩ and the Schrodinger equation (2.8) reads

[
p2

2m0
+V (r)+

h̄2k2

2m0
+

h̄
m0

k ·p+
h̄

4m2
0c2 (σ ×∇V ) · (h̄k+p)

]
|nk⟩= Enk|nk⟩, (2.16)

where σ = (σx,σy,σz) is the vector of Pauli spin matrices and c is the speed of light.

With the notation

π = p+
h̄

4m0c2 σ ×∇V, (2.17)

Eq. (2.16) becomes

[
H0 +HSO +

h̄2k2

2m0
+

h̄
m0

k ·π
]
|nk⟩= Enk|nk⟩. (2.18)

Note that in the presence of SO interaction the spin σ is not a good quantum number. We

have only a common index n for the orbital motion and the spin degree of freedom, which

classifies the bands according to the irreducible representations of the double group [6, 8]. The

SO coupling has a very profound effect on the energy band structure. For example, it gives

rise to the splitting of the topmost valence band. Spin degeneracy of electron and hole states

in a semiconductor is the combined effect of inversion symmetry in space and time [2]. Both

symmetry operations change the wave vector k into −k, but time inversion also flips the spin,

so that when we combine both we have a twofold degeneracy of the single-particle energies,

E+k and E−k. When the potential through which the carriers move is inversion-asymmetric, the

spin degeneracy is removed even in the absence of an external magnetic field B. We then obtain

two branches of the energy dispersion, E+k and E−k. In heterostructures, the spin splitting can

be the consequence of a bulk inversion asymmetry (BIA) of the underlying crystal, and of a

structure inversion asymmetry (SIA) of the confinement potential [9, 10]. Since the SIA term

is dominant over the BIA term in confined systems as QWs, QDs, and QRs, we neglected the

BIA contribution, and keep the focus on SIA effects.
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The SIA spin splitting in the conduction band Γ6 is given by the Rashba term [10, 11],

HSIA = αsσ · (∇V ×k), (2.19)

with a material-specific prefactor αs [12, 13], and both ∇ and k polar vector as shown in Ap-

pendix A. Likewise, the vector of Pauli spin matrices is an axial vector. We see in Ref. [7] that

the scalar triple product in Eq. (2.19) is the only term of first order in ∇ and k that is compatible

with the symmetry of the bands.

The Rashba model (Eq. 2.19) for SIA spin splitting of electron systems is well established

in the literature. For hole systems, on the other hand, the situation is more complex because

of the fourfold degeneracy of the topmost valence band Γ8. As our objective is the analysis of

the SO effects in QR conduction band in the presence of magnetic fields, as will be discussed

in chapter 5, we have neglected the SO effects in the valence band. The details about the SIA

calculations for conduction band are presented in the Appendix A. However, in the presence of

a tilted magnetic field, an additional term comes out. The calculations to get the SO additional

term due to tilted magnetic field is presented in Appendix B. This configuration was used in

chapter 5 for QRs systems, whose Hamiltonian is also detailed in Appendix B.

The most basic model to calculate band structure of a semiconductor is the parabolic model.

In this case, we assume the effective mass tensor as isotropic rewriting the Eq. (2.13) as

Ec(k) = Eg +
h̄2k2

2µ∗
e
, (2.20)

for conduction band, and

Ev(k) =− h̄2k2

2µ∗
h
, (2.21)

for valence band, where µ∗
e/h are the conduction (electron) and valence (hole) band effective

masses [7].

For the conduction band, this approximation can proceed and was used for our electronic

structure calculations. However, the valence band effective mass tensor in semiconductor mate-

rials has an anisotropic character and this approximation can not be adopted. For this reason, we

had to use more complex approximations, considering the non parabolicity effects, anisotropy,

and coupling among light holes (LHs) and heavy holes (HHs).

As introduced previously, the electronic structure description is based on the Bloch theorem

and is applicable to volumetric systems (bulk). But, it can be extended to nanoscopic ones, such
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as QWs, QWrs, QDs and QRs, where the crystalline properties still remain. In this case the

envelope function approximation is used [6] and Eq. (2.10), for a potential, V (r), with smooth

variation in the crystal unit cell scale, becomes

∑
m

[(
En0 −Enk +

h̄2k2

2m0
+V (r)

)
δnm +

h̄k
2m0

.⟨n0|P|m0⟩
]

Cmk = 0. (2.22)

Proceeding analogously as for Eqs. (2.20) and (2.21), we have

Hc = Eg +
h̄2k2

2µ∗
e
+V (r). (2.23)

for the conduction band. Changing k (before a number), for the operator −i∇, the effective

Hamiltonian is written as

Hc = Eg −
h̄2∇2

2µ∗
e
+V (r). (2.24)

In the presence of a magnetic field, B, the operator P̂ = −ih̄∇, should be replaced by (P+

eA/c) where e is the electron charge, and A is the vector potential, such that B = ∇ × A.

Besides, we should include the Zeeman contribution for the system, that results in

Hc = Eg +
1

2µ∗
e

(
P+

e
c

A
)2

+V (r)+
1
2

gµBB⃗ · σ⃗ , (2.25)

where g is Lande g-factor and µB the Bohr magneton.

The symmetry of a given problem defines the best way to write the operator P. In case of

cylindrical systems, such as QDs and QRs, the problem is easily solved in cylindrical coordi-

nates, so P = Prφ +Pz, where

Prφ =−ih̄
[

r̂
∂
∂ r

+ φ̂
1
r

∂
∂φ

]
(2.26)

and

Pz =−ih̄∂/∂ z. (2.27)

2.3 K.P Method and Luttinger hamiltonian

For direct gap semiconductors, the carriers (electrons and holes) occupying states close to

the band edges are the most important for electronic and optical studies. In our approximation,
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we take into account the interaction among bands, non parabolicity effects and spin effects,

that are essential to get the electronic properties of semiconductor nanostructures. Among the

analogue matrix methods, the simplest Kane model [14, 15] results in a 8x8 Hamiltonian, that

should always be used when studying materials whose energy gap does not allow neglecting

the interaction of conduction (Γ6), valence (Γ8) and split-off (Γ7) bands. However, there are

others useful approximations when some inter band coupling can be neglected: For uncoupled

conduction and valence band, we use 6x6 Luttinger-Kohn Hamiltonian, while for separated

valence band description, we use a 4x4 Luttinger Hamiltonian. This last model is used when

the energetic separation between valence band and split-off is large enough to uncouple these

bands, as in InGaAs and GaAs.

In this section we introduce the Luttinger model [16], based on k.p method. The objective

is to build a simple and efficient model to calculate the valence band of semiconductors QDs

and QRs. The solution obtained in Eq. (2.10) provides the exact energy bands calculation in

any point of the Brillouin zone, however the region of interest in this work, as already stated,

is around Γ point. Using the method developed by Löwdin [17], that treats the problem via

perturbation theory and exact diagonalization, Luttinger got his Hamiltonian (HL) taking into

account only symmetry aspects for valence band calculation [18].

The Luttinger Hamiltonian matrix depends on the plane direction. Here, we are interesting

on the direction [001]. This direction is the same as one our experimental collaborators grew

their QWs, QDs and QRs samples. The representation of the Hamiltonian for direction [001] is

the 4x4 matrix operator

H i j
L = H i j

K +V (r)δi j (2.28)

where HK is the kinetic energy of holes, given by Luttinger in axial approximation [16]. This

Hamiltonian describes the valence band dispersion Γ8 and includes an applied magnetic field

in z direction. The confinement potential V (r) is added in the diagonal elements of the HH and

LH matrix HK .

The Hamiltonian HK can be represented in a combination of eigenstates of the angular

momentum 3/2, ∣∣∣∣32 , 3
2

⟩
=

1
2
|(X + iY ) ↑⟩ (2.29)∣∣∣∣32 , 1

2

⟩
=

i√
6
|(X + iY ) ↓⟩−2 |Z ↑⟩ (2.30)
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∣∣∣∣32 ,−1
2

⟩
=

1√
6
|(X − iY ) ↑⟩+2 |Z ↓⟩ (2.31)∣∣∣∣32 ,−3

2

⟩
=

i
2
|(X − iY ) ↓⟩ (2.32)

and is written as,

HK =


ahh↑
+ b− c− 0

b+ alh↑
− 0 c−

c+ 0 dlh↓
− b−

0 c+ b+ dhh↓
+

 . (2.33)

In this symbology, the arrows represent the spins up (↑) and down (↓), and the matrix elements

are expressed as

a± = − h̄2

2m0
(γ1 ∓2γ2)k2

z −
h̄2

4m0
(γ1 ± γ2)(k+k−+ k−k+)

+
(2±1)

2
h̄ωe

(
κ +

(5±4)
4

q
)
, (2.34)

d± = a±− (2±1)
2

h̄ωe

(
κ +

(5±4)
4

q
)
, (2.35)

b∓ = h̄2
√

3
4m0

γ3kzk∓, (2.36)

c∓ = h̄2
√

3
4m0

(γ2 + γ3)k2
∓ (2.37)

where the cyclotron frequency ωe is given by ωe =
eB
m0

and the letters q, κ and γα (α = 1,2,3)

are called Luttinger parameters, determined by first-principle calculations, that define HH and

LH effective masses in the ordinary way:

µz
hh = m0/(γ1 −2γ2), (2.38)

µz
lh = m0/(γ1 +2γ2), (2.39)

µxy
hh = m0/(γ1 + γ2) (2.40)

and

µxy
lh = m0/(γ1 − γ2). (2.41)

The parameters q and κ produce the Zeeman contribution, while γα are defined by Kane [19,20]
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from (L′, M, N′), as

γ1 =−2m0

3h̄2 (L
′+2M)−1 (2.42)

γ2 =− m0

3h̄2 (L
′−M) (2.43)

γ3 =− m0

3h̄2 N′ (2.44)

where

L′ = F ′+2G; (2.45)

M = H1 +H2; (2.46)

N′ = F ′−G+H1 −H2, (2.47)

with

G =
h̄2

2m2
0
∑
i j

|⟨x |px|nΓ3 j⟩|2

Ev −En,Γ3

; (2.48)

F ′ =
h̄2

m2
0
∑
i j

|⟨x |px|nΓ1 j⟩|2

Ev −En,Γ1

; (2.49)

H1 =
h̄2

2m2
0
∑
i j

|⟨x |px|nΓ5 j⟩|2

Ev −En,Γ5

; (2.50)

H2 =
h̄2

2m2
0
∑
i j

|⟨x |px|nΓ4 j⟩|2

Ev −En,Γ4

. (2.51)

These terms can be calculated from first principles or the parameters can also be extracted

experimentally through effective mass analysis.

The operators k may be written in polar coordinates from Eqs. (2.26) and (2.27),

k∓ =−ie∓iφ
(

∂
∂ r

∓ i
r

∂
∂φ

± m0ωe

2h̄
r
)
, (2.52)

and

kz =−i
∂
∂ z

. (2.53)

Combining the Hamiltonian HK with potential V (r), we obtain the Luttinger Hamiltonian
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HL of Eq. (2.28),

HL =


ahh↑
+ +V (r) b− c− 0

b+ alh↑
− +V (r) 0 c−

c+ 0 dlh↓
− +V (r) b−

0 c+ b+ dhh↓
+ +V (r)

 . (2.54)

This Hamiltonian is used for valence band calculations with unstrained structures. For strained

ones we need to modify the Hamiltonian HL as shown below.

2.3.1 Strain Effects

It is already known that the strain is the main factor that controls both QD and QR growth.

This strain is produced by the mismatch between lattice parameters of the surfaces. Besides, the

presence of strain affects the electronic properties resulting in energy bands changes. Therefore

we must consider its effects in our calculations.

When stress is applied in a semiconductor, the crystal deformation results in energy shifts [21–

23]. Application of stress in a crystal decreases the crystalline potential symmetry, V (r), mak-

ing impossible the expansion of perturbed system [23] in the old representation. However, we

can introduce a deformed coordinates system,

r′i = ∑
j
(δi j − εi j)r j, (2.55)

implying

p′i = ∑
j
(δi j + εi j)p j, (2.56)

k′i = ∑
j
(δi j + εi j)k j. (2.57)

Here ε denotes the strain tensor. The Bravais lattice of a crystal under strain in the new coordi-

nates system matches to a crystal without strain in the old coordinates system.

Going back to the old notation and doing the modification r′ → r, the deformed crystal

potential, Vε [(1+ ε)r] has the same periodicity of the unperturbed potential V (r). Therefore,
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we can expand Vε(r) in series of ε ,

Vε [(1+ ε)r] =V (r)+∑
i j

Vi j(r)εi j + ..., (2.58)

where

Vi j =
1

2−δi j
lim
ε→0

Vε [(1+ ε)r]−V (r)
εi j

. (2.59)

Restricting ourselves to linear terms of strain, we get, instead Eq. (2.8), an expression given by[
P2

2m0
+V (r)+

h̄2k2

2m0
+

h̄
m0

k.P+∑
i j

(
−

PiP j

m0
+Vi j

)
εi j

− h̄2

m0
kεk− 2h̄

m0
kεP

]
unk = Enkunk. (2.60)

Solving Eq. (2.60) analogously to Eq. (2.8), we have a similar expression to Eqs. (2.20) and

(2.21), yet including the term responsible to the strain shift. The important matrix elements,

proportional to ε are

νi jνν ′
σσ ′

=

⟨
νσ
∣∣∣∣−PiP j

m0
+Vi j

∣∣∣∣ν ′σ ′
⟩
, (2.61)

called deformation potentials [7].

The connection between stress and strain was identified by Robert Hooke [24] and can be

given by the linear relation,

τi j = ci jklεi j (2.62)

where ci jkl is the fourth order elastic stiffness tensor with 81 coefficients, but depending on

the crystal symmetry, the number of coefficients can be reduced. For instance, for crystals

with cubic symmetry, like zinc blende, such as InAs and GaAs, the non vanishing coefficients

are only three: c11, c12 and c44. These coefficients are known as elastic stiffness constants.

The generalization of the Hooke law, for crystals with cubic symmetry, in matrix form, can be
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written as [25] 

τ11

τ22

τ33

τ23

τ31

τ12


=



c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44


×



ε11

ε22

ε33

2ε23

2ε31

2ε12


. (2.63)

For a system with axial symmetry where the symmetry axis is along z (3 in the previous

notation) direction (along crystallographic direction [001] in our case), the strain components

are given by,

ε11 = ε22 = ε∥, ε⊥ = ε33. (2.64)

In the absence of external uniaxial stress (along z), where τ33 = 0, and according to Eq. (2.63),

we can get the relation between different components,

ε⊥ =−2c12

c11
ε∥. (2.65)

The variation of parallel ε∥ and perpendicular ε⊥ strain components are responsible for the

deformation in-plane and along z axis, respectively. Thus, when the component ε∥ is positive,

ε⊥ is negative; so compressing one direction expands the other. The Bir-Pikus Hamiltonian [23]

is

HD
L =


ahh↑
+ +∆Ehh b− c− 0

b+ alh↑
− +∆Elh 0 c−

c+ 0 dlh↓
− +∆Elh b−

0 c+ b+ dhh↓
+ +∆Ehh

+V (r)δi j, (2.66)

with

∆Ehh =−(P+Q) =−1
2
[
β1(2ε∥+ ε⊥)

]
−β2ε∥⊥ (2.67)

for HH subband, and

∆Elh =−(P−Q) =−1
2
[
β1(2ε∥+ ε⊥)

]
+β2ε∥⊥ (2.68)
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for LH subband. Besides β1 = −2av and β2 = b, where av and b are defined by the material

compositions.

2.4 QW and QD/QR Models

Another important factor relative to the subbands position is the anisotropic confinement.

For electronic structure description it is important to know the details about the morphology

of the system. These details are given experimentally through structural characterization tech-

niques such as atomic force microscopy (AFM). The theoretical models used here are based in

structural data obtained by our experimental collaborators that characterized the systems.

The 3D structures studied in this thesis allow the separation of their confinement in a ra-

dial (xy) confinement and a (z) confinement. Thus. in this section, we present the systems,

the models to emulate the potential confinements, and some important properties that depend

on confinement shape and composition. We know that the composition changes the energy

gap, shifting the levels [26, 27], while the confinement modifies completely the energy behav-

ior [28]. The models used in this thesis can be basically applied to QWs, QDs, QRs systems

and combinations of them.

2.4.1 QW Model

The confinement in z direction, used to simulate a QW and z confinement in QD and QR, is

given by a rigid wall, with a potential profile given by

V (z) =

 eFz, 0 < z ≤ L

∞, otherwise.
(2.69)

For F = 0, the wave function for a rigid wall is given by

χ(e/h)
l (z) =

√
2
L

sin
(

lπz
L

+
lπ
2

)
, (2.70)

with l = 1,2, ... and F an external electric field applied along the growth axis. The corresponding

eigenenergies are

E(e/h)
l =

(
l2π2h̄2

2µ∗
(e/h)L

2

)
, (2.71)
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where L is the height/thickness of the QW.

2.4.2 QD and QR model

The calculation of the spectrum in the QD and QR utilizes the full diagonalization of the

Hamiltonian written in the basis that considers a sufficiently large Hilbert space, truncated to

the desired accuracy. We typically consider 11 eigenstates, with angular momentum |m| < 5

for each spin orientation. These are found sufficient for convergence in the entire field and

parameter range considered in this work [29].

The choice of the model used to emulate the in-plane confinement for a 0D structure was of

great importance, since we want an expression as simple as possible to be adaptable for QDs

and QRs. The in-plane confinement potential chosen, V (ρ ,φ), is characterized by [29, 30]

V (ρ,φ) =
a1

ρ2 +a2ρ2 −2
√

a1a2 (2.72)

in cylindrical coordinates, while the vertical confinement is modeled by a rigid wall model as

described in Eq. (2.69). The parameters a1 and a2 are used to define the effective confinement

and structure shape. Eq. (2.72) is used to simulate a QR on the present form while for a QD we

set a1 = 0. Figs. 2.6(a) and 2.6(b) represent QD and QR potential profile, respectively, obtained

by Eq. (2.72).

Figure 2.6: The potential profile for (a) QD and (b) QR.

The QR radius can be calculated as RQR = (a1/a2)
1/4 and, once the ground state energy, E0,

is calculated, the effective width of the QR can be estimated as ∆r =
(

E0
a2

) 1
2 . Fig. 2.7 shows

a scheme indicating the radius and effective width of the QR. As we can see, R depends on a1

and a2 and ∆r depends on a2 and E0 parameters. We can choose a1 and a2 in such a way that
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RQR remains unchanged while ∆r becomes adjustable and vice-versa. For the estimation of ∆r,

E0 is calculated for B = 0 T , while the QD radius is estimate by RQD = h/(2π
√

2a2µ∗).

Figure 2.7: Scheme indicating radius R and effective width ∆(r) of the QR.

The solution for the 3D Schrödinger equation, Φ(ρ,θ ,z), corresponding to the potential

profile in Eq. (2.72) can be found in Ref. [31] and has been used in Ref. [30] to describe the

conduction band electronic structure of QRs under applied magnetic fields. The corresponding

wavefunction, ψ(e/h)
n,m,l (ρ,φ,z), is given by

ψ(e/h)
n,m,l (ρ ,φ,z) = ϕ (e/h)

n,m (ρ ,φ)χ(e/h)
l (z)ue/h, (2.73)

where χ(e/h)
l (z) is the wave function for a rigid wall of the Eq. (2.70) and ue/h = | j,m j⟩ are the

basis functions at the zone center in the Kane model: |1/2,±1/2⟩, |3/2,±3/2⟩ and |3/2,±1/2⟩,

for electron, HH and LH states, respectively. The planar wave function has the form

ϕ (e/h)
n,m (ρ ,φ) =

1
λ(e/h)

(
Γ[n+M(e/h)+1]

2M(e/h)n!(Γ[M(e/h)+1])2

)1/2

×

(
ρ

λ(e/h)

)M(e/h)
e−imφ
√

2π
e
− 1

4

(
ρ

λ(e/h)

)2

×1F1

(
−n,M(e/h)+1,

1
2
(
ρ/λ(e/h)

)2
)
, (2.74)

where 1F1 is the hypergeometric function, n = 0,1,2.. is the radial quantum number, m =

0,±1,±2, ... is the angular momentum. The corresponding eigenenergies for the 3D problem
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are

E(e/h)
n,m,l =

(
n+

1
2
+

M(e/h)

2

)
h̄ω(e/h)−

m
2

h̄ω∗
c(e/h)

−
µ∗
(e/h)

4
ω0(e/h)

2ρ0
2 +

(
l2π2h̄2

2µ∗
(e/h)L

2

)
, (2.75)

with M(e/h)=

√
m2 +

2a1µ∗
(e/h)

h̄2 , ω∗
c(e/h)= eB/µ∗

(e/h), ω0(e/h)=
√

8a2/µ∗
(e/h), ω(e/h)=

√
ω2

c(e/h)+ω2
0(e/h)

and λ(e/h) =
√

h̄
µ∗
(e/h)ω(e/h)

.

The iso-probability surfaces corresponding to lower values of the quantum numbers n, m and

l (quantum number of the confinement on the z direction) of the wave function are displayed in

Fig. 2.8. We shall use the function of the Eq. (2.73) as a basis set for the representation of the

k.p Luttinger Hamiltonian for the valence band states within the multiband envelope function

approximation

Φ(ρ,φ,z) = ∑
n,m,l

Cn,m,lψn,m,l(ρ,φ,z). (2.76)

Figure 2.8: QR electronic orbitals for different values of l and n, with m = 0.

The matrix elements for QR Luttinger Hamiltonian as function of quantum number m are

shown in Appendix D.

The QW and QD/QR were used to study confinement, external fields and asymmetries ef-

fects. Besides, we use our more complex and complete QR shapes to analyze the potential

effects on the geometric phase of the potential profile asymmetries, that are shown in the up-

coming chapters.
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2.5 Geometric phase

Geometric phase acquired over the course of a cycle, when a system is subjected to cyclic

adiabatic processes, which results from the geometrical properties of the parameter space of the

Hamiltonian.

Berry found that an additional phase factor occurs in contrast to the well known dynamical

phase factor. This phenomenon can be described by "global change without local change".

But this was not the first time that someone found such a phase factor. Considerations, for

instance, of the Born-Oppenheimer approximation done by Mead and Truhlar in 1979 [33]

revealed also this additional phase factor but it had been neglected. Berry showed that this

was not correct because the phase is gauge invariant and therefore can not be gauged away.

Ever since, much work has been done on this issue and the so called Berry phase is now well

established, theoretically as well as experimentally [34].

The Berry phase of a given eigenstate ν was defined as [35]

Θν = i
∫ 2π

0
⟨Ψν | ∂

∂ φ̂
| Ψν⟩dφ̂ (2.77)

where φ parametrizes a cyclic adiabatic process. It follows a closed path around the QR.

To understand the concept of Berry phase, we should think about the conditions where this

phase is build up. To do this, we must first introduce the description of an adiabatic processes. A

good example that illustrates it can be given by imagining a perfect pendulum inside a box with

no friction or air resistance, oscillating back and forth in a vertical plane. If the box is grabbed

and shacked in a jerky manner, the bob will swing around in a wild chaotic fashion. But if

moved gently and steadily, the pendulum will continue to swing in a nice, smooth way, in the

same plane (or one parallel to it) with the same amplitude (and, of course, the same frequency).

This gradual change in the external conditions characterizes an adiabatic process.

Using this classical model, we can imagine that this ideal pendulum can be set down to

the point A, at the equator, and set it swinging, in the direction North-South as represented

in Fig. 2.9. For the moment, we will pretend the earth is not rotating. Very gently (that is,

adiabatically), it can be carried up to the North Pole, and then down the to the point B (where

the pendulum does not swing in North-South direction anymore). Then, it can be carried back

to the point A, along the new longitude line. It is clear that the pendulum will no longer be

swinging in the same plane as it was when it was set out. Indeed, the new plane makes an angle
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α with the old one.

Figure 2.9: Itinerary for adiabatic transport of a pendulum on the surface of the earth.

Lets assume that α is equals the solid angle (Ω) subtended by the path around which the

pendulum was carried. This path surrounds a fraction α/2π of the A point, so its area is

Area = (1/2)(α/2π)4πR2 = αR2 (where R is the earth radius), and hence

α =
Area
R2 = Ω (2.78)

This turns out to be independent of the shape of the path, as shown in Fig. 2.10. Incidentally, the

Foucault pendulum is an example of precisely this sort of adiabatic transport around a closed

loop on a sphere.

Figure 2.10: Arbitrary path on the surface of a sphere, subtending a solid angle.

A system which does not return to its original state when transported around a closed loop,

is said to be nonholonomic (The "transport" in question does not need to involve a physical
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motion: What we have in mind is that the external parameters of the system are changed in

some fashion that eventually returns them to their initial values).

Yet one question is still open. Is Berry phase mensurable? We are used to think that

the phase of the wave function is arbitrary and that physical quantities involve just |Ψ|2, thus

the phase factor cancels out. But Θν can be measured, if (for example) we take a beam of

particles (all in the state Ψ) and split it in two, so that one beam passes through an adiabatically

changing potential, while the other does not. When the two beams are recombined, the total

wave function has the form

Ψ =
1
2

Ψ0 +
1
2

Ψ0eiΓ (2.79)

where Ψ0 is the "direct" beam wave function, and Γ is the extra phase (in part dynamic, and in

part geometric) acquired by the beam subjected to the varying B). In this case

|Ψ|2 =
1
4
|Ψ0|2(1+ eiΓ)(1+ e−iΓ)

=
1
2
|Ψ0|2(1+ cosΓ) = |Ψ0|2(1+ cos2 Γ/2). (2.80)

So by looking for points of constructive and destructive interference (where Γ is an even

or odd multiple of π , respectively), one can easily measure Γ. Berry, and other early writers,

worried that the geometric phase might be swamped by a larger dynamic phase, but it has been

proved possible to arrange things so as to separate out the two contributions [36].

In our case, we have studied the Berry phase under a controllable magnetic field angle within

an asymmetric QR. We were able to study the influence of the angle of the applied field and the

asymmetry of the QR shape.
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Chapter 3

SELF-ORGANIZATION EFFECTS:

Localization and Strain

In this chapter, we focus our discussion on the effects of the growth process in semicon-

ductor nanostructures. Although this work aims studying the structural properties of QRs, it

is important to analyze the effects of reduced confinement and the appearance of strain fields

starting from layered structures such a QWs. We use indeed QW profiles to model the vertical

confinement of our nanostructures. Thus, the effect of composition, confinement, strain and

localization will be discussed and this will help us better understand the complex QR system

that are analyzed in sequence.

This chapter is organized as follows: Section 3.1 presents a brief introduction. Section 3.2

discusses strain and localization effects in QWs. In section 3.3, the strain and confinement

effects in QRs are outlined and section 3.4 is devoted to the conclusions.

3.1 Introduction

Nowadays, the advances in growth techniques have resulted in a wide spectrum of nanoscale

structures suitable for various applications. The use of MBE techniques has made possible

the growth of semiconductor structures ranging from simple QW to QD or QR. The thorough

control of structural parameters in this process allows the engineering of the electronic structure

which is sensitive to alloy compositions, confinement profiles, strain, and external fields. The

simultaneous combination of such effects results in the particular behaviors analyzed in this

thesis.
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For instance, it is known that the presence of small amounts of nitrogen (N) in conven-

tional III-V arsenide based alloys causes a drastic decrease in the band gap emission due to

the coupling between the bottom conduction band and the top of the resonant band of local-

ized nitrogen [1, 2], which alters the optical emission in different ways [3–6]. The potential

applications of nitrogenated systems as optoelectronic devices working in the optical range of

1.30− 1.55µm are the motivations for studying them. Additionally, given the growth at low

temperature of nitrogenated layers, the appearance of interface alloy imperfections due to the

changing of the lattice parameters is practically unavoidable inducing local modulation of the

band gap [7, 8]. This also imposes some theoretical challenges since various band parameters

are not currently reported and have to be determined to build the k.p Hamiltonian. Apart from

effects due to the N addition, strain and confinement can also cause drastic changes on the

electronic structure and optical response by the symmetry breakdown. Indeed, in the case of

QRs, the ring geometry itself might be affected by localized defects produced during the growth

processes.

When the growth of these structures is produced in layers, the vertical stacking induces the

self-assembling, starting from the QD seeds towards the QRs, along with their lateral alignment.

It is then imperative to assess the relative contribution of each mode to the optical response,

since their geometries and strain field propagation may affect differently the responses. Thus,

the electronic structure, in particular in the valence band, where anisotropy and deformation

potentials are so crucial, must be accounted for. We will show that these effects can be enhanced

by the application of a magnetic field.

Our interest here is to correlate strain and confinement modulation produced by defects

introduced during the growth processes in nitrogenated QW, that will be modelled as localized

states in QD-like structures, and single QRs [9–13].

3.2 Structural effects of the layers growth in the electronic

structure: InGaAs and InGaAsN

In this section, we discuss some impacts of confinement, strain, and alloy imperfection

based on the experimental optical properties of [001] InGaAsN/GaAs and InGaAs/GaAs QWs.

The model used here was described in section 2.4.1 on the previous chapter. Our calculations

use the Bir-Pikus Hamiltonian formalism [14] to emulate the effects of the strain fields on the
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electronic properties. The biaxial strain produced at the interfaces of the structure is introduced

into the multiband calculation, where the hydrostatic component (δEh) renormalizes the gap

proportionally to the deformation potential ad = av + ac, with av being the valence band con-

tribution and ac the contribution of the conduction band. In turn, the shear strain leads to the

relative shift (δEs) between the top valence subbands for HH, Ehh, and LH, Elh.

Since, to our knowledge, the ternary In0.36Ga0.64As and quaternary In0.36Ga0.64As0.988N0.012

alloys, have no structural parameters values reported in the literature, it was necessary to de-

termine them according to the material concentration for AxB1−xC and AxB1−xC1−yDy. We

interpolated between reported values of band parameters corresponding to the relevant binary

alloys. Thereby, the equations used for the interpolation [15] are

Q(x) = xQAC +(1− x)QBC (3.1)

Q(x,y) = x(1− y)QAC + xyQAD +(1− x)(1− y)QBC +(1− x)yQBD. (3.2)

where Q(x) and Q(x,y) are the parameters to be determined for ternary and quaternary alloys,

respectively, and x and y define the relative content of each specie. The relevant parameters

obtained by the interpolation are listed in Table C.1 in Appendix C. However, for the energy

gap, the nitrogen content causes an anomalous shrinking impossible to emulate by a simple

interpolation.

It is notably that for both GaN and InN, the value of the energy gap exceeds the one for

InGaAs regardless of the In-content. Thus, we used available alternative models to obtain the

gaps of the ternary EInxGa1−xAs
g and quaternary alloys EInxGa1−xAs1−yNy

g [16–18] which accounts

for the coupling between the nitrogen resonant level and the conduction band edge.

EInxGa1−xAs
g = 0.4105+0.6337(1− x)+0.475(1− x)2, (3.3)

EInxGa1−xAs1−yNy
g =

1
2

{
Ec(k)+EN ±

√
[Ec(k)−EN ]2 +4S2y

}
(3.4)

where Ec(k) = EInxGa1−xAs
g ,

EN = 1.65(1− x)+1.44x−0.38x(1− x), (3.5)
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and

S = 2.7(1− x)+2x−3.5x(1− x). (3.6)

It is well known that the split-off and top valence bands, in InGaAs QWs samples, are

separated by more than 300 meV. Therefore, we have neglected the split-off effects and used a

Luttinger Hamiltonian including strain. The contribution of strain to the HH and LH subbands

are given by Eqs. (2.67) and (2.68). In turn, the representation of the Luttinger Hamiltonian for

systems grown along the direction [001] is given by Eq. (2.66).

The strain effects in QWs changes both the conduction as valence bands. Following the

experimental InGaAs and InGaAsN QW samples configuration, we calculated the variation of

the conduction and valence band edges when the strain (ε∥) changes from negative to positives

values. The calculations were done for two QW sizes: 4 and 7 nm, and two compositions:

In0.36Ga0.64As and In0.36Ga0.64As0.988N0.012. The results are presented in Fig. 3.1. It is notable

how the sign of the strain (ε∥) affects the electronic structure, what is observed through the

relative shift of the HH and LH sub-band.
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Figure 3.1: (a) Comparison between the conduction band edges as function of strain for the
profiles corresponding to the samples of InGaAs and InGaAsN quantum well for two different
sizes: 4 and 7nm. (b) Comparison between the valence subbands energies as function of strain
for the profiles corresponding to the samples of InGaAs and InGaAsN quantum well for two
different sizes: 4 and 7nm.
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In Fig. 3.1, we show how a compressive strain (ε∥ < 0) increases the emission energy

for optical recombinations involving either electron-LH or electron-HH. Yet, the electron-HH

transition shift is less significant since the HH and conduction band move in the same direction.

The localization effects can be understood as the presence of small localization cores of

volume Ω. The wave function Ψ0, defined within V0, transforms to Ψ = Ψ0 + ϕ , where ϕ is

defined within the volume Ω, and the Hamiltonian, H0, transforms to H = H0 +∆H, within the

total volume VT = V0 +Ω. By defining, 1
V0

∫
V0

Ψ∗
0H0Ψ0dv = E0, 1

Ω0

∫
Ω0

ϕ∗
0 H0ϕ0dv = ∆E, the

eigenvalue of H can be determined as

E =
1

VT

∫
VT

Ψ∗HΨdv =
1

VT

∫
V0

Ψ∗
0H0Ψ0dv+

1
VT

∫
Ω

ϕ∗
0 H0ϕ0dv (3.7)

E =
V0

VT

1
V0

∫
V0

Ψ∗
0H0Ψ0dv+

Ω
VT

1
Ω

∫
Ω

ϕ∗
0 H0ϕ0dv (3.8)

E =
V0

VT
E0 +

Ω
VT

∆E. (3.9)

This can be approximated to

E = E0 +
Ω
VT

∆E (3.10)

in the case where Ω ≪V0.

For a cylindrical localization core, as represented in Fig. 3.2(a), Ω = π∆2
xy∆z/4. According

to Eq. (2.34), the diagonal energy values of the HH and LH valence band ground states localized

within Ω are given by

∆Ehh(lh) =− h̄2π2

2µz
hh/lh∆2

z
− h̄2(2ρ)2

2µxy
hh/lh∆2

xy
(3.11)

where the µz/xy
hh/lh were already defined in Eqs. (2.38), (2.39), (2.40) and (2.41), ∆xy and ∆z are

the effective dimensions of the localized state at the interface due to disorder. The first term

of the Eq. (3.11) is the solution in the z direction similar to a QW problem solution, while the

second one is the solution of a cylindrical confinement problem based on Bessel functions, with

ρ ≃ 2.4048 being the zero of the Bessel function J0(ρ) = 0.

The corresponding correction to the energy difference between both valence sub-bands,

δEhh −δElh =
Ω
VT
(∆Ehh −∆Elh), is given by

δEhh −δElh =
Ω
VT

[
− h̄2π2

2µz
hh∆2

z
− h̄24ρ2

2µxy
hh∆2

xy
+

h̄2π2

2µz
lh∆2

z
+

h̄24ρ2

2µxy
lh ∆2

xy

]
(3.12)
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δEhh −δElh =
Ω
VT

h̄2

2

[
π2

∆2
z

(
1

µz
lh
− 1

µz
hh

)
+

4ρ2

∆2
xy

(
1

µxy
lh

− 1
µxy

hh

)]
(3.13)

δEhh −δElh =
Ωh̄2

2VT

1
∆2

xy

[
π2
(

∆xy

∆z

)2(4γ2

m0

)
+4ρ2

(
−2γ2

m0

)]
(3.14)

δEhh −δElh =
4γ2Ωh̄2

2VT ∆2
xym0

[
π2
(

∆xy

∆z

)2

−2ρ2

]
(3.15)

using the expression for Ω and VT = πLzR2
e f f

δEhh −δElh = ε0γ2
∆z

Lz

[
π2
(

∆xy

∆z

)2

−2ρ2

]
(3.16)

with ε0 = h̄2

2m0R2
e f f

, the binding energy for the unperturbed wavefunction confined within the

QW and spread laterally within the effective Bohr radius.
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Figure 3.2: Diagram representing the QW layer with a lateral localization core with cylindrical
symmetry. (a) Relative valence subband shift, δEhh −δElh, due to strain effects. (b) The same
shift by considering just the localization effects as a function of the square aspect ratio.
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To associate the strain and localization effects, and show how they are comparable to each

other, we plot the relative subband shift, δEhh−δElh, obtained from Eqs. (2.67) and (2.68) and

shown in Fig. 3.2(b) as a function of strain, and from Eq. (3.16), as a function of the square

aspect ratio,
(

∆xy
∆z

)2
by using ε0 = 17.5meV from Ref. [19]. This comparison is possible when

we consider a local one-monolayer fluctuation of the QW size, which according to Table C.1

(Appendix C) corresponds to ∆z/Lz ∼ 0.15 for Lz = 4nm. The results shown in Figs. 3.2(b)

and 3.2(c) illustrate that both strain modulation and the aspect ratio, in confined valence band

states, tune the relative sub-band position. This has a potential effect on the hybridization of

valence sub-bands due to interband coupling, as described by the Hamiltonian in Eq. (D.1).

This coupling modulates various effective parameters such as effective masses, Lande factors,

and diamagnetic shifts, as well as their dependence on external fields [18, 19].

The experimental results obtained by collaborators for high-resolution x-ray diffraction

(HRXRD) and PL, shown in Figs. 3.3 and 3.4, respectively, confirm our calculations. Such

HRXRD (Fig. 3.3) shows that the introduction of nitrogen induces a reduction in the lattice

parameter along z, leading to a shift of the diffraction angle toward the peak of GaAs, while

the PL peak energy (Fig. 3.4) presents a red shift for N-containing QWs due to the reduction in

energy gap with increasing N-content.
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Figure 3.3: Comparison between sample N-free (black line) and N-containing QW (red line)
x-ray diffraction. The shift of the red broad peak to higher angles is induced by nitrogen incor-
porated into the two QWs [21].

To connect our theoretical results to the optical experiments, we have studied the temper-
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InGaAsN (QWN) sample. [21].

ature dependence of the PL peak energy for both samples in the range 10− 300K. Fig. 3.5

presents the theoretical and experimental results for the temperature dependence of the PL peak

energy for both QWs with and without N. PL peak positions were estimated theoretically in the

presence and absence of strain effects. In general, the decrease in emission energy as a function

of temperature follows the Varshni model [22]

Eg(T ) = Eg(0)−
αT 2

T +β
. (3.17)

The values of the Varshni’s parameters were calculated by linear interpolation using the

values obtained in Ref. [23] and are given in Table 3.1.

Table 3.1: Values of Varshni’s parameters obtained by the interpolation (* α = 0.4 was adjusted
to the experimental curves)

In0.36Ga0.64As In0.36Ga0.64As0.988N0.012
Eg(0) (meV) 1010.6 950.3
α (meV/K) 0.445 0.445 (* 0.4)

β (K) 164.04 169.37

In Fig. 3.5, for both InGaAs and InGaAsN, the dashed lines represent the theoretical re-
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Figure 3.5: Transition energies as function of temperature. Experimental curves (dotted)
and calculated values (curves): with strain effects (solid curves) and without strain (dashed
curves) [21].

sults given by Eq. (3.17) excluding strain effects. By ascribing the gap difference between

experiment and theory to strain effects, we can adjust these curves including the deformation

ε∥, whose values are given in Table 3.2. In the samples of In0.36Ga0.64As QWs, the values of

Varshni’s parameters obtained by the interpolation process yield an adequate adjustment with

the experiment, yet for the nitrogenated alloy, the experiment could only be fitted by reducing

the value of α . However, we will show that beside the strain effects, various features detected

experimentally can be unambiguously ascribed to the confinement modulation.

Table 3.2: Values of ε∥ used in Fig. 3.5

Wells Width ε∥(%)

In0.36Ga0.64As 4nm -2.62
In0.36Ga0.64As 7nm -2.14

In0.36Ga0.64As0.988N0.012 4nm -2.15
In0.36Ga0.64As0.988N0.012 7nm -1.24

Note in Fig. 3.5 the S-shape obtained experimentally for the temperature dependence of the

peak position which was associated to exciton localization given the high density of structural

defects introduced during the low temperature growth of the QWs [9, 24]. We remark that such
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S-shape behavior was observed for both samples. Yet, as expected, the InGaAsN QWs show

more significant S-shape behavior as compared to the InGaAs samples and thus it is mainly

associated to localization of carriers by structural defects.

In Fig. 3.6, we fitted the integrated PL intensity as a function of temperature for all QW

configurations (N-containing and the reference) by the phenomenological expression,

I(T ) =
I0

1+ γ(1)e
−Ea(1)

kBT + γ(2)e
−Ea(2)

kBT

, (3.18)

where Ea(1,2) are the thermal activation energies, γ(1,2) are the ratios between radiative and

non-radiative lifetimes and I0 is the intensity at T = 0K. The fitting parameters are presented

in Table 3.3. To simplify the characteristic of integrated density, we use two non-radiative pro-

cesses. The first process, γ(1), is related to localized excitons, predominant at low temperature,

while the second one, γ(2), is relative to delocalized excitons, predominant at higher tempera-

tures.

Table 3.3: Fitted parameters obtained by Arhenius plot
Parameters I0 (arb.un) γ(1) Ea(1) meV γ(2) Ea(2) meV
QW 4 nm 162 58 15 25000 68
QW 7 nm 141 17 11 7500 60

QWN 4 nm 1900 78 14 6400 50
QWN 7 nm 470 14 11 1500 46

Notice that both samples present similar values of activation energy for localized excitons.

However, differences in the activation energies and radiative lifetimes ratios for the delocalized

excitons reflect a slightly different localization effect for the N-containing sample which persists

at higher temperatures. Based on the higher intensity for the thinner QW in the nitrogenated

sample as compared to the thicker QW observed in Fig. 3.6, and ascribed to confinement ef-

fects, it was necessary to study the wave function behavior. We emulated the wave functions,

Ψe(hh) = Fe(hh)(z)ϕe(hh)(r,θ), within a finite barrier QW, Ve(z) for electrons and Vhh(z), for

holes, according to the corresponding band offsets at the conduction and valence bands and a

tunable effective lateral cylindrical confinement with effective radius R given by the Hamilto-

nian

He(hh) =
p2

2µe(hh)
+Ve(hh)(z)+

h̄2

2m0R4 r2, (3.19)

with p = −h̄∆ + e/cA, and A = B/2(−y,x,0), under magnetic field strength, B. In this ap-
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Figure 3.6: Integrated PL intensity as function of the inverse of temperature for: (a) InGaAsN
samples of 4 and 7 nm and (b) InGaAs samples of 4 and 7 nm [21].

proach, the spin is assumed does not affect the wave function. Then, the overlap integrals

|⟨Fe(z)|Fhh(z)⟩|2 and |⟨ϕe(r,θ)|ϕhh(r,θ)⟩|2, proportional to the intensity presented in Fig. 3.6,

results in Fig. 3.7. Through Fig. 3.7(a), it is clear to see that by only reducing the QW width

it would not produce an increase of the oscillator strength proportional to the overlap of wave

functions. Yet, promoting a lateral effective confinement, either by reducing the value of the

effective radius, R, or by increasing the magnetic field strength, as shown in Fig. 3.7(b), the

probability of the electron-hole recombination can be enhanced.

In experimental results in Ref. [21] it was also observed a non-linear anomalous behavior

for the magnetic shift of the 4 nm InGaAsN QW. It should be highlighted that this effect can be

well ascribed to both strain and confinement modulation. This non-linear behavior of the mag-

netic shift of the valence band ground state calculated from the multiband k.p Hamiltonian was

characterized in Fig. 3.8(a) for positive strain in an InGaAs QW. Yet, even for negative strains,

as reported experimentally, a decreasing aspect ratio in confined hole states at the interfaces

may lead to a drastic non-linear response as shown for a InGaAsN, 4 nm, QW as shown in Fig.
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3.8(b). Note that negative values of µxy
h (B) can be attained at low fields. This will ultimately

lead to increases in the reduced mass µxy = µxy
e /(1− µxy

e /|µxy
h |), flattening the magnetic shift

of the electron-hole pair emission peak, as observed in the experiment in Ref. [21] or even an

inversion of its sign, turning the electron-hole magnetic shift negative. This effect has already

been predicted and measured for confined excitons [18, 19].

Assuming the magnetic energy of a trapped electron as given by an effective Hamiltonian

and presented in Eq. (3.19), the solution for the ground state energy due to the lateral and
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magnetic confinement is given by

Exy
e =

h̄2
√

µxym0R2

[
1+

1
4µxy

(
eBR2

ch̄

)2
] 1

2

. (3.20)
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This equation was used to calculate the effective magnetic shift for the single particle energy

of the 4 nm InGaAsN QW, whose results are plotted in Fig. 3.8(c) for an effective radius of the

lateral confinement R = 1.2 nm, and the electron mass reported in Table C.1. In Fig. 3.8(c), the

symbols represent the experimental results and the net relative electron-hole energy modulation

is also shown. The result attained would correspond to the weak magnetic field regime discussed

in Ref. [6] when

B <
2
√

µxyh̄c
eR2 . (3.21)

Comparing experimental and calculated results, we ascribed the non-linear magnetic shift to

the field tuning of the hole effective mass, µxy(B), due to nonparabolicity and inter-subband

coupling.

We also feature the magneto-optical response and its correlation with the electronic struc-

ture. Here we focus on relevant valence band effects tuned by strain modulation and confine-

ment. The first effect studied was the magnetic field effect in the valence band, whose results

are presented in Fig. 3.9, where the valence band Zeeman Splitting of the ground state at 15

T is shown. In the Fig. 3.9(a), we can observe that the character changes from HH to LH for

in-plane strain around 0.3%. This behavior is also presented in Fig. 3.1 and leads to a drastic

shift in the magnetic splitting. It is also important to highlight the sign inversion of the Zeeman

splitting by varying the values of the compressive strain, where the character of the ground state

is predominantly HH.
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Figure 3.9: Calculated valence band ground state Zeeman splitting at 15 T for: (a)
In0.36Ga0.64As 4nm as a function of the in-plane strain and (b), for In0.36Ga0.64As0.088N0.012
for a fixed ε|| =−1% as a function of the square aspect ratio [21].

In contrast, in Fig. 3.9(b), the aspect ratio,
(

∆xy
∆z

)2
, decrease can even tune a character
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change of the valence band ground state making it more LH-like. The values obtained for the

valence band spin splitting in the vast part of the parameter range, shown in Fig. 3.9 (calculated

at B = 15 T ), are in accordance with the values detected in the experiments for the electron-

hole pair recombination in Ref. [21]. Yet, close to the parameter boundary where a character

change takes place at the ground state, sudden changes of the magnetic response is expected (in

agreement to the Fig. 3.1). According to the values represented in Fig. 3.9, we calculate the

degree of spin polarization (DSP) of the valence band ground state.

Assuming the occupation probability given by

∂n↑
∂ t

= P↑−
n↑
τs

−
n↑
τ
+

n↓
τs

e−
∆E

kBT (3.22)

∂n↓
∂ t

= P↓+
n↑
τs

−
n↓
τ
−

n↓
τs

e−
∆E

kBT (3.23)

in the stationary condution, ∂n↑
∂ t =

∂n↓
∂ t = 0

Figure 3.10: Degree of polarization.

DSP =
n↑−n↓
n↑+n↓

(3.24)

getting the equation

DSP =
∆E↑↓
|∆E↑↓|

 exp
(
−|∆E↑↓|

kBT

)
−1(

1+ τs
τ
)
+ exp

(
−||∆E↑↓|

kBT

)
 . (3.25)

According to Eq. (3.25) we got Fig. 3.11 where ∆E↑↓ is the energy difference between the spin-

up and down states. The ratio τs/τ was set to 0.1 that is reasonable for QWs of this size [25],

where τs is the flipping time of the spin and τ is the optical recombination time. Note in this

case that despite the monotonic variation of the Zeeman splitting described before as a function

of the structural parameters (strain and aspect ratio of the confined state), the DSP for holes in

Fig. 3.11 follows very flat behaviors at T = 2 K below and above the critical parameter region
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(ε∥ ∼ 0.5 in Fig. 3.11(a) or ∆xy/∆z ∼ 0.5 in Fig. 3.11(b)), where the character of the valence

ground state changes. The valence band DSP is, under these conditions, close to −10%, at

B = 15 T. Thus, the experimental observation of a slight dependence of the polarization degree

on the structural parameters in Ref. [21] can, in principle, be ascribed to the spin polarization

of the valence band ground state. Therefore, systems with n-type character should have the

polarization defined by the minority carriers (in this case holes) at the valence band.

3.3 Modulation effects of strain fields on QR and QD systems

This section reports a discussion about the strain fields and confinement effects in QR and

QD structures. For this part of the work we use the effective potential profile described in the

section 2.4.2 to theoretically emulate the ring-shape confinement, simulating the electron and

hole band structures by a multiband k.p calculation.

This work is also motivated by experimental measurements in QRs and QDs grown by our

collaborators, where the composition and strain effects in this kind of nanostructures have been

studied. In Fig. 3.12, we show the in-plane variation of the In-content along the radial QR

coordinate as determined by [26]. We note that this variation changes the effective energy-

gap and places the electron-hole pair closer to the inner QR rim where the In-content shows

maximum values (see Fig. 3.13). By using the In-content estimation along the QR radial direc-

tion, displayed in Fig. 3.12, one may obtain the profile associated to the effective InAs/GaAs
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energy-gap variation for InAs QRs as a function of the position, as shown in Fig. 3.14.
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Figure 3.12: Indium and Gallium content estimations along the QR radial direction using
TEM. The respective magnitudes of In and Ga were defined as relative counts: Cont(Ga) =
Count(Ga)/(count(Ga) + Count(In)) and Cont(In) = Count(In)/(count(Ga) + Count(In)) [26].

In the sequence, we analyze how the shape of the QR potential profile affects the electronic

structure and how this can be tuned by varying structural parameters such as size and strain

field strength. The strain effects can be included into this Hamiltonian model by introducing the

corresponding contribution of deformation potentials as described in the section 2.3.1 [27]. We

shall consider the mean values of the strain tensor components within the QR rim, as obtained

by the X-ray diffraction (Fig. 3.13). In order to contrast the electronic structure, with and

without strain effects, we have performed the calculations for ε∥ = 0 and 1.37%, as shown in

Fig. 3.13. The energy levels obtained as a function of QR radius are displayed in Fig. 3.15,

where the relative effect of the strain field on the subband positions can be noted. Given the

mass anisotropy and the difference of in-plane masses between the subbands, as described by

the diagonal terms of the Hamiltonian Hi,i, the HH and LH levels approach each other as the

radius grows. More drastic effects were obtained for an analogous variation of the effective QR

width, as displayed in Fig. 3.16. However, it is difficult to characterize the actual degree of

hybridization of the valence subbands through these figures, once the energy levels are mixed.

Thus, it is necessary to calculate the character of these levels.

The main character of the valence ground state can be assessed by comparing the weight co-

efficients of the wavefunction expansion in Eq. (2.4.2). These coefficients have been displayed

in Figs. 3.17(a) and 3.17(b), and labeled as |ν ,m,n, l⟩, where ν represents either a HH or LH

level (presented with lowercase letters in figures). The character of a given energy level may be-
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Figure 3.13: In-plane iso-lattice parameter projections, obtained by X-ray diffraction, for QD
and QR samples are shown in panels (a) and (b), respectively. Panels (c) and (d) are represen-
tations of the In concentration for each iso-lattice parameter region from QDs and QRs. Elastic
in-plane strain projections, obtained by considering the deviation from the measured lattice
parameter to the relaxed alloy concentration are shown in panels (e) and (f) [26].

come hybridized due to inter-subband coupling. Furthermore, the character of the ground state

has contributions from wavefunction components with different m. The expansion coefficients,

in this case, show slight variation with radius within the range 8−19 nm. However, contrasting

differences appear by varying the value of the strain tensor component. The strained QR shows

a valence band ground state with a significant HH character and an effective angular momentum

m = 0. Yet, by relaxing the strain, the ground state attains higher values of the LH character

and with an effective angular momentum m = 1. The interchange between hole characters in

the valence band ground state and their modulation with the strain field has also been reported
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Figure 3.14: Adjustment of theoretical and experimental In-content obtained.
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Figure 3.15: Energy levels of hole states as a function of the effective QR radius(R) for fixed

values of the QR height (L = 5 nm), QR width, ∆r =
(

E0
a2

) 1
2
= 2.29 nm, and in-plane strain

value: (a) ε∥ = 0 and (b) ε∥ = 1.37%. The dominant HH or LH characters of the energy states
are indicated [26].

previously for self-assembled QDs [18] and may become an important tool for tuning anoma-

lous magnetic properties in these nanostructures. It can be seen in Fig. 3.17(b), that the ground
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values of QR radius (R = 14.75 nm), QR height (L = 5 nm) and in-plane strain value: (a) ε∥ = 0
and (b) ε∥ = 1.37%. The dominant HH or LH characters of the energy states are indicated [26].

state hybridization has been tuned by changing the QR width, ∆r. In this case, the relaxation

of the strain fields may lead to stronger hybridization and to the subsequent HH to LH crossing

between ground state characters, when the QR width is reduced below 2 nm.

Scans on the samples show that lateral sizes of iso-lattice parameter regions are mainly

symmetric for the QDs while a larger anisotropy is found for QRs along the [110] and [11̄0]

directions. The iso-lattice parameter profile of QR shows an elongation in the [11̄0] direc-

tion [28]. The signature of such size anisotropy, being clearer in the transversal scans than in

the longitudinal scans, may be ascribed to the highly strained condition in which buried QRs

are subjected. The lateral size values for each fixed lattice parameter was directly obtained from

transversal scans of reciprocal space profile width. This procedure leads to sizes consistent with

both microscopy and spectroscopy findings.

Finally, the local in-plane strain projection maps can be also obtained from the definition,

ε∥ = (a∥− arelaxed)/arelaxed , where a∥ is the local in-plane lattice parameter from the maps in

Figs. 3.13(a) and 3.13(b) and arelaxed is the bulk lattice parameter obtained from Vegard’s law

53



6 8 10 12 14
0.0

0.2

0.4

0.6

0.8

1.0

2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

 = 0.0
 = 0.0137

lh,2,0,1

hh,0,0,1

lh,1,0,1

hh,1,0,1

 

 

Ex
pa

ns
io

n 
C

oe
ff

ic
ie

nt
s

C
m

,n
l

Radius (nm)

(a)

(b)

 

 

Effective Width r (nm)

 hh,0,0,1

 hh,0,0,1

lh,2,0,1

lh,2,0,1
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with (dashed-lines) and without (solid-lines) strain field effects [26].

for the given InAs/GaAs concentration of Figs. 3.13(c) and 3.13(d). It can be noted, from the

strain maps shown in Figs. 3.13(e) and 3.13(f), that the most strained region in QRs is closer

to the internal radius whereas, in QDs, the maximum strained region occurs at an intermediate

radius size.

Since the Indium diffusion coefficient is anisotropic, the QDs and QRs are usually elongated

in the [11̄0] direction with respect to [110] (see Fig. 3.13(a) and 3.13(b)). Certainly, this asym-

metry may generate built-in charge distribution which produces piezoelectricity as observed in

“large” InAs/GaAs nanostructures and which may be ascribed to lattice mismatch between the

materials [29–32]. A detailed study about asymmetries in QRs generated by growth process, in

especial for elongation QR, will be presented in the section 4.3 of the next chapter.

The observation of strain field formation within the QRs and the characterization of the In-

content distribution just presented may rise questions on their relative effects on the electronic
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structure and, in particular, on the valence band structure where shape and size of the potential

profile lead to stronger hybridization of the quantum states.

3.4 Conclusions

Our calculations presented in section 3.2 are in agreement with the experimental results ob-

tained by collaborators, and the correlation between them are shown in [21]. The anomalous

behavior of the PL peak energy at low temperature observed for both samples was ascribed to

strain and localization effects, while the observed anomalous behavior of the electron-hole pair

magnetic shift at low magnetic fields was associated to the increase in the exciton reduced mass

due to the negative effective mass of the valence band ground state which results in the obser-

vation of negative magnetic shifts [33,34]. This leads to a peculiar reduction in the diamagnetic

shift detected in the optical recombination of excitons. Yet, as also reported in Ref. [33], unusu-

ally large in-plane masses can also be found, and, as described here, even negative diamagnetic

shifts could be expected. These additional effects can be ascribed to exciton localization in alloy

imperfections.

The unambiguous polarization fluctuations as the magnetic field increases in the InGaAsN

QW can be attributed to the spin dynamics during carrier relaxation at the conduction band [35].

We have observed that the polarization degrees for the N-containing samples are slightly higher

than for N-free samples and the spin-dependent effects are stronger for wider QWs for both

systems. In addition, we have shown that the spin polarization degree is dependent on the

character of valence band ground state.

The correlation between theoretical and experimental results in section 3.3 allowed us to

determine the profile of the effective confinement potential in the QR structure through the

modulation of the QR composition. The verified reduction of the QR dimensions when the

samples are capped, was associated to strain and composition effects. Besides, the presence

of strain fields affects the electronic structure and this may tune the state hybridization of the

valence band ground state, as found in our multiband calculation.
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Chapter 4

EXTERNAL FIELDS AND

ASYMMETRY EFFECTS IN 0D

STRUCTURES

In this chapter, we will focus on external fields and asymmetry effects in 0D nanostructures,

in especial QRs. We start the chapter introducing the QR geometry and the external fields

in section 4.1, then we analyze the effects of a perpendicular magnetic field in the section

4.2. In section 4.3, we present a systematic study of asymmetry effects in QRs and finish the

chapter discussing the bright-to-dark transition found through the simulation of elongated QD-

QR stacked structure in section 4.4.

4.1 Introduction

The QR geometry has long been a useful tool for the observation of interference effects

in electron trajectories. The observation of AB effect on the excitonic response in this geom-

etry along with the appearance of localized defects during the growth processes [1] demand

theoretical studies of their mutual impact on the optical response in magnetic fields.

The study of magnetic fields and asymmetry effects on QR electronic properties is the pro-

posal of this chapter. Some works have portrayed these effects separately in less complex

systems [2]. It is well known that these effects, separately, can considerably change the QR

properties, either by breaking degeneracies, such as the Zeeman splitting, or by symmetry

breakdown caused by deformed QR shapes. One may note that, during the growth process,
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the strain effects, discussed in the previous chapter, are responsible for the generation of geo-

metric asymmetries (deformations). Moreover, the addition of an in-plane external electric field

can also be a way to introduce external asymmetries, as we will see in what follows.

Here, we discuss the effect of a magnetic field applied along the growth direction of the cir-

cularly symmetric QR. After that, we describe how the QR shape affects its electronic structure.

And finally, we use the presence of an in-plane electric field or a spatial asymmetry in the QR

topology as arguments to find the appropriate conditions for the observations of the AB effect

in neutral particles. [3–6].

4.2 Magnetic fields in confined states in 0D traps (QR)

We will start the study of the effects of external fields in 0D structures with a magnetic field

applied along their growth direction. This is mathematically simple, once the model described

in the section 2.4.2, already includes this field explicitly within ω∗
c(e/h) = eB/µ∗

(e/h). The effects

of the magnetic field applied along the z direction in symmetric QDs and QRs are well known

and were already studied by the author of this thesis [7]. In this section, we will just remark

some of these effects.

The conduction band electronic structure in Fig. 4.1 shows how the Zeeman contribution,

introduced by the last term in the Hamiltonian of the Eq. (2.25), affects the levels once the

magnetic field is non zero. In Fig. 4.1, we see the behavior of the levels when the magnetic

field is increased. In this figure, the Zeeman splitting is observed for non-zero magnetic fields

(B ̸= 0) in colors, red and blue, representing the spins up and down, respectively, while the black

lines represent the average value between them.

Looking now at the valence band, we can see in Fig. 4.2 how the energy levels would

look like for HH and LH when they do not interact with each other. Once we consider that

there is no interaction between states, all the levels presented in Fig. 4.2 cross each other and

are pure, what allows us precisely identify the levels through their characters. The states that

contribute to the formation of the ground state are colored to help with their identification.

However, we know that the HH and LH should interact with each other, thus the electronic

structure for the valence band is not exactly like the one presented in Fig. 4.2. So, we turn

on the interaction between the levels, as presented in Fig. 4.3(a). Now, we cannot identify

precisely the levels, once the interactions turn them hybrid. This is seen in Fig. 4.3(b) for the
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ground state coefficients. The high level of hybridization leads to character change, mainly,

close to zero field, where the ground state becomes more LH-like, and for high fields, where it

is more HH-like. In the next section, we keep the QR configuration: radius, height and width
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Figure 4.3: (a) Valence band electronic structure for circularly symmetric QR and its (b) ground
state coefficients.

and include the asymmetry effects modifying the model for the potential profile and observe

what happens to the QR electronic structure.

4.3 Asymmetry effects on conduction and valence electronic

states of QRs

In this section, we study the asymmetry effects on the electronic structure of a QR under

a perpendicular magnetic field. As cited before, some works have already shown the effects

of asymmetries in QRs conduction band [2]. However, these effects in the valence band are

rarely studied. Here, we present a systematic study of asymmetry and magnetic field effects in

QRs, within a k.p formalism. We performed electronic structure calculations of the conduction

and valence band for different kind of deformations observed in QRs samples, as shown in Fig.

4.4. The model used here allows modulate the confinement shape in a fairly easy way. The

angular momentum hybridization is characterized for different field intensity and asymmetries.

The coupling of unperturbed and symmetric states defines the potential appearance of crossings

and new anticrossings in the electronic structure as function of field and structural parameters.

We aim to analyze some possible results of deformation in QRs caused by growth parameters
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Figure 4.4: Examples of deformed QRs from images obtained experimentally by AFM [8].

like temperature, deposition time, and annealing. Theoretically, the deformations are attained

through addition of a term on the potential confinement V (ρ,φ).

The first kind of deformation we studied, DR1, was emulated by the addition of δρcos(φ),

transforming Eq. 2.72 in

V1(ρ ,φ) =
a1

ρ2 +a2ρ2 −2
√

a1a2 +δρcos(φ) (4.1)

where δ determines the magnitude of the deformation. As a result, we have the transformation

of the undeformed QR potential profile from Fig. 4.5(a) to Fig. 4.5(b). Note that comparing

Figure 4.5: Potentials profiles for (a) circularly symmetric QR, and QRs deformed by addition
of the terms (b) δρcos(φ), (c) δρ2exp

[
−(φ−π)2

2η2

]
, and (d) δρ2cos2(φ).

these two figures, DR1 undergoes a deformation due an electric field along x (φ = 0). The

second kind of deformation analyzed, DR2, is a local deformation emulating a pinched QR
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whose potential confinement is given by

V2(ρ,φ) =
a1

ρ2 +a2ρ2 −2
√

a1a2 +δρ2exp
[
−(φ −π)2

2η2

]
(4.2)

and represented in Fig. 4.5(c). And, the third kind of deformation, DR3, is an elongated or

elliptical QR displayed in Fig. 4.5(d) and given by

V3(ρ ,φ) =
a1

ρ2 +a2ρ2 −2
√

a1a2 +δρ2cos2(φ). (4.3)

In these terms, φ is the azimuthal angle and η is the effective angular width of the perturbation

DR2. The three cases will be analyzed in this section, however, the third one will be used

together with other effects and studied in more detail in the next section and in chapter 5.

For DR1 case, the calculation of the matrix elements for the new potential provides the

selection rules for angular momentum, m′ = m±1, as shown in Appendix A. The effect of cou-

pling states with the given angular momentum difference can be observed in Figs. 4.6(b) and

4.6(c). Here, the conduction band electronic structure for a DR1 profile is plotted in black lines

and contrasted with a circularly symmetric QR (Fig. 4.5(a)) in red lines. The effect of the asym-

metry is the appearance of anticrossings following the calculated selection rule. When δ = 10

meV, in Fig. 4.6(b), it is easy to see the anticrossings between m = 0 and m =±1. Yet, another

anticrossing can be observed between m =−1 and m = 1, due to the mixing among these states

and m = 0. Now, m is no longer a good quantum number. This becomes more evident when

we increase the value of δ up to 20 meV in Fig. 4.6(c). The anticrossings also appear in more

energy levels, showing that the hybridization is directly dependent on δ . In addition, one may

note that the perturbation also shifts the ground state energy, as can be observed in Figs. 4.6(b)

and 4.6(c) where a deformed QR (black lines) is contrasted with an undeformed (red lines). Yet,

the ground state predominant character remains the same, independent of the δ value, as seen

in Figs. 4.6(d), 4.6(e) and 4.6(f).

Looking at the valence band, in Fig. 4.7, the main effect of hybridization is clearly observed

in the character graph, Fig. 4.7(b), where we note for low magnetic fields, that the ground state

changes character within the range between 1.5 and 2.5 T.

A comparison between Figs. 4.3(b) and 4.7(b), shows that in this interval the blue (HH up)

and green (HH down) colors in Fig. 4.3(b), give way to orange (LH down) and red (LH up)

ones in Fig. 4.7(b), respectively. This means that this asymmetry may change the valence band
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Figure 4.7: (a) Valence band electronic structure for a deformed QR by δρcos(φ) and its (b)
ground state coefficients.

ground state character depending on the magnetic field value.

The effect of the electric field along x, seen now in the wavefunction of DR1 was found by

plotting the behavior of the wave function |Ψn,m,l|2, Fig. 4.8(a), and the orbital, Fig. 4.8(b) for

the valence band, at B = 20 T. One may note that the wave function is dependent on φ and has

a minimum of intensity for φ = 0, what corresponds to the shape of the orbital in Fig. 4.8(b).
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Figure 4.8: (a) 3D wave function for δρcos(φ) case, and (b) valence band electronic orbital at
B = 20 T.

Contrasting the electronic orbital in this figure with the first orbital in Fig. 2.8, we observe that

the presence of this asymmetry promotes circular symmetry breaking.

The second kind of deformation studied, DR2, leads to a different selection rules of the

potential profile matrix element, m′ = m±0,1,2, .... In this case, all states are mixed with each

other, what can be seen in the conduction band electronic structure shown in Fig. 4.9(a). Here

the ground state does not present crossings with other levels, it is due a mix of ground state and

its neighboring states, leading to character changing as the magnetic field grows, as shown in

Fig. 4.9(b).
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Figure 4.9: (a) Conduction band electronic structure modified by δρ2exp
[
−(φ−π)2

2η2

]
term, and

(b) its corresponding ground state coefficients.

The valence band electronic structure for DR2 case, Fig. 4.10(a), presents a very similar be-

havior compared to Fig. 4.3(a), but in Fig. 4.10(a) it is possible to see new anticrossings caused

by the extra mixing of levels. Furthermore, a comparison between Figs. 4.3(b) and 4.10(b)

shows that the ground state has the same predominant character, but in the regions where the
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Figure 4.10: (a) Valence band electronic structure for a deformed QR by δρ2exp
[
−(φ−π)2

2η2

]
and

its (b) ground state coefficients.

crossings became anticrossings, due to symmetry breakdown, there is no discontinuity of the

coefficients anymore, turning the character transitions smooth. The wave function and elec-

tronic orbital for the valence band DR2 at B = 20 T, are presented in Fig. 4.11. The orbital has

a "pinched" region at φ = 0, and is enough to break the symmetry.

Figure 4.11: (a) 3D wave function for δρ2exp
[
−(φ−π)2

2σ2

]
case, and (b) valence band electronic

orbital at B = 20 T.

Finally, for the last kind of deformation we analyzed, DR3, the selection rule m′ = m±0,2

was obtained for the asymmetry term. Following this selection rule, Fig. 4.12(a) shows the

anticrossings arising from the levels coupling in the conduction band. The most relevant one

appears at B = 0 T and is the result of coupling between states m = −1 and m = +1. Since

m = 0 does not couple to m = −1 or m = +1, we observe discontinuities in the ground state

coefficients plotted in Fig. 4.12(b).

However, it is interesting to note that the valence band ground state for DR3 case should
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Figure 4.12: (a) Conduction band electronic structure modified by δρ2cos2(φ) term, and (b) its
corresponding ground state coefficients.

not present crossings with any other state due to the asymmetry. The intrinsic hybridization

of the valence band and asymmetry effects together promote couplings strong enough to open

anticrossings between the ground state and other states. Another interesting effect, typical of

this kind of deformation, is present in Fig. 4.13(b). The ground state shows predominantly

odd character on the entire interval of magnetic field studied, while in the previous kind of

deformations there were interchanges between odd and even characters. It may be due to the

strong effect of the deformation potential DR3 on a heavy mass particle (hole).
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Figure 4.13: (a) Valence band electronic structure for a deformed QR by δρ2cos2(φ) and its
(b) ground state coefficients.

The wave function and valence band electronic orbital for this kind of deformation were

plotted for different values of B in Fig. 4.14. The wave function amplitude in φ = 0 and

φ = 180◦ decreases as the magnetic field increase, vanishing for B = 20 T, what reflects on the

orbital figure.
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Figure 4.14: Valence band electronic orbitals for the ground state for different magnetic field
values.

The results presented in this section show that the asymmetries found in QRs lead to visible

symmetry breaking and will have an impact on the optical transitions. Shifts in energy values

that affect the optical response and may cause a changing of the valence band ground state

character from HH to LH. These shifts can be observed experimentally by photoluminescence

spectrum.

4.4 Modulation effects of strain fields in elongated QD-QR

stacked

The system studied in this section consists in a hybrid structure where InGaAs/GaAs QRs

are grown over a vertical superlattice of laterally aligned InGaAs/GaAs QDs. Again, this anal-

ysis was motivated by the experimental results obtained by our collaborators trying to find out
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their correlation with strain effects. The samples of coupled QD-QR chains were grown in

an MBE chamber on GaAs [001] substrates [9, 10], and are composed of multiple layers of

In0.4Ga0.6As QDs separated by capping GaAs barriers and the top layer consisting of InGaAs

QRs, are displayed in the AFM images in Fig. 4.15(a) and transmission electron microscope

(TEM) in Fig. 4.15(b).
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Figure 4.15: Panel (a): AFM image of the topmost layer containing QR chains grown on an
In0.4Ga0.6As/GaAs(100) vertical QD superlattice. Panel (b): Left side: Multi-beam bright field
TEM images of the hybrid multilayered sample used in this work. Right side: The FEM model
of the QD/QR stack. For the out-of-plane strain in color code shown on the right, the blue
colors are related to compressive (negative) out-of plane strain while green/yellow/red colors
denote tensile (positive) out-of-plane strain. Panel(c): Calculated valence band deformation
potential profiles for repulsive HH and attractive LH carriers in the QD region. The position
axis represented in panel (c) depicts the coordinate along the radial [xy0] direction is on the
vertical distance of 0.5 nm from the islands base plane, where r = 0 nm corresponds to the
center of the QD [11].

The ring-shaped InGaAs nanostructures are clearly preserving the lateral ordering of the

seeds consisting in InGaAs QDs chains along [011] direction. The TEM in Fig. 4.15(b) indicates

that the QRs have an average diameter of 31.5± 4.5 nm and a height of 3.0 nm, whereas the

QDs have a smaller average diameter and bigger height. The QRs are larger than QDs due to the

strong outer diffusion of materials during the QD-to-QR transformation growth process [10].

The QD and QR dimensions as well as morphologies were matched to the TEM observa-
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tions and inserted into a GaAs matrix [12, 13]. A lateral cut from the finite-element method

(FEM) results is shown in the right side of Fig. 4.15(b) superimposed to a TEM image of the

QD-QR stack on the left side. The color code with green/yellow/red areas represents regions of

the QDs and QRs subjected to tensile (positive) out-of-plane strain, due to pseudomorphic re-

laxation under in-plane compressive strain, while blue regions show areas subjected to compres-

sive (negative) strain due to an in-plane lattice expansion associated to GaAs capping regions

between QD layers. We have analyzed out-of-plane and in-plane strain profiles (considering the

growth direction as [001]) along the QD stack.

The realistic strain profiles inside the QD and QR layers of our hybrid structure were ob-

tained by our collaborators using a commercial software package to simulate nanostructures by

FEM. The modeling is carried out ascribing main crystallographic axes to the FEM geometry

axis. In our case, the [001] direction was ascribed to the z (growth/stack) axis, while in-plane

[100] and [010] directions lie on the x and y coordinates (island base plane), respectively.

Strain profiles along selected directions are extracted from the FEM data and used for va-

lence band deformation potential calculations as displayed in Fig. 4.15(c) for the QD according

to Ref. [14]. Note the difference between the HH and LH energy shifts what would ultimately

lead to difference on the character of the two hole confinement types. Since the HH states will

be predominantly confined nearby the lateral QD boundary while the LH states occupy the in-

ternal QD region then, HH optical recombination will display a type-II character whereas LH

recombination displays a type-I character. We will show, in this section that the light emission

from the ground state excitons with type-II character is forbidden by selection rules, yet they

have important influence in the detected PL emission. Although the strain fields built in the

process of coherent formation of the QDs and QRs leads to a structural link between the stack

layers, the distance between them inhibits the electronic coupling.

Besides the QD size difference of the dominant vertical stacking, our system is laterally

anisotropic. The In0.4Ga0.6As/GaAs QDs are aligned in chain-like structures and so are the

QRs in the top layer. In addition to the alignment along the [011] direction, the QRs, like

the In0.4Ga0.6As QDs, are slightly elongated with an elliptical shape along this direction. The

reason for elongation of the QDs and QRs is the anisotropic diffusion of In adatoms and the

anisotropy of surface free energies and elastic strain distribution.

Here, we will provide a study of this anisotropy along with the effect of the external fields.

This will include the optical analysis of this multilayer structure, considering the QD and QR
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elongation of the potential profile presented in the section 2.4.2 and used to simulate electron

and holes states in the section 3.3.

To analyze the effects of increasing eccentricity in the electronic structure we must consider

the model described in the previous section by Eq. (4.3) and with the potential exhibited in

Fig. 4.5(d). The eccentricity of the lateral confinement is given by e =
√

1−a2/(a2 +δ ) and

is modulated by δ change. For the QD simulation, we set a1 = 0 and a2 = 181.8, while the QR

was simulated with a1 = 147.5 and a2 = 181.8. Fig. 4.16 is an example of two profiles with

different eccentricities for fixed QR parameters a1 and a2.

Figure 4.16: Different eccentricities caused by δ variation.

The eccentricity can also be emulated by QR parameters change. Fig. 4.17(a) presents

the limits of a broad and a narrow QR and two values of the angle φ . The results for the

expansion on the basis Φδ (ρ ,φ,z) = ∑n,m,l Cn,m,lψHH
n,m,l(ρ ,φ,z) for this eccentric confinement,

were already shown in Fig. 4.14. The corresponding energy levels and ground state weight

coefficients Cn,m,l for the two profiles described in Fig. 4.17(a) are plotted in Figs. 4.17(b) and

4.17(c), and 4.17(d) and 4.17(e), respectively.

Note, in Figs. 4.17(b) and 4.17(d), the oscillations of the ground state energy as the magnetic

field increases. As expected, at certain critical fields, Bc, where
√

h̄/eBc = R, the ground state

changes character transiting through branches of increasing values of the angular momentum

m, as discussed in the previous section. The actual character of the ground state, determined by

the weight coefficients of the linear expansion for e ̸= 0 is shown in Figs. 4.17(c) and 4.17(e).

For increased eccentricity, comparing Figs. 4.17(b) and 4.17(d), the ground state energy os-

cillation decreases while the angular momentum character remains oscillatory with the state
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Figure 4.17: (a) Lateral QR profile for the two widths used in the simulations for two values of
the angle φ . (b) Energy levels of an eccentric QR with e = 0.0234 versus magnetic field and
(c), the corresponding conduction band coefficients of the ground state. (d) Energy levels of an
eccentric QR with e = 0.2283 in a magnetic field and (e), the corresponding conduction band
coefficients of the ground state.

hybridization increasing due to stronger inter-level coupling. However, even for highly eccen-

tric confinements, the magnetic field cannot induce sudden change in the conduction band state

character at a certain critical field that would lead to sharp differences in both the energy shift

and the oscillator strength. This peculiarity can only be expected when analyzing the differ-

ences between the HH and LH confinement potential profiles and the tuning of the ground state

character of the valence band with the magnetic field. As simulated from the strain profile, the

valence band has a type-I character for the LH and type-II character for the HH, due to the strain
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field modulation, as shown in Fig. 4.15(c). The details of the transformation of the valence band

due to the combination of strain profiles, spatial, and magnetic confinements, as well as interdot

coupling are given in a number of reported studies [15–17]. The magnetic tuning of the valence

band character (HH or LH) in QDs has been already reported experimentally and confirmed

theoretically [18, 19]. The physical explanation for the origin of the type-I to type-II transition

with magnetic field in the valence band of III-V QDs was given in Ref. [15]. The in-plane

potential profile used to theoretically simulate the effect displayed in Fig. 4.15(c) is shown in

Fig. 4.18(a).
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Figure 4.18: (a) The optical transition matrix elements involving the m = 0 HH and LH states of
a QD with R= 9.48 nm and 6 nm height as a function of the magnetic field in the parabolic band
approximation. The lateral QD profiles for the HH and LH subbands with a HH in the outer
rim and a LH confined inside are shown in the inset. (b) The corresponding upper valence band
and lower conduction band states (measured from above the energy gap) in a QD with HH in
the outer rim and the electrons and LH confined inside as a function of the magnetic field in the
parabolic band approximation. (c) The corresponding energy levels of a similar QD now with
e = 0.104 calculated within the 4×4 Luttinger model. (d) The corresponding conduction band
coefficients of the ground state and the electronic orbitals for each magnetic field region [7].

Before detailing the aspects of the peculiar valence band electronic structure, it is crucial to
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discuss the relative probability for an electron-hole pair recombination involving either a HH

state confined nearby the outer rim of the QD or a LH state in the internal part of the QR. The

optical oscillator strength for the electron-hole pair recombination from the conduction band

ground state with δ = 0 and l = 1 is proportional to

|⟨ψe
n,m,1|σ̂± p̂|ψh

n,m,1⟩|2 = |⟨ϕ e
n,m|ϕ h

n,m⟩|2|⟨ue|σ̂± p̂|uh⟩|2, (4.4)

where σ̂± = 1/
√

2(x̂± iŷ) is the light angular polarization and the overlap integral can be cal-

culated as

⟨ϕ e
n,m|ϕ h

n,m⟩ = 2π

(
Γ[n+M(e)+1]

2M(e)+1n!Γ[M(e)+1]2π

)1/2 λ
M(e)+1
(h)

λ
M(e)+1
(e)

×

(
Γ[n+M(h)+1]

2M(h)+1n!Γ[M(h)+1]2π

)1/2 ∫ ∞

0
e
− ρ ′2

4

(
λ2
(h)

λ2
(e)

+1

)
ρ ′(M(h)+M(e)+1)

× 1F1

−n,M(e)+1,
1
2

(
ρ ′λ(h)

λ(e)

)2
1F1

(
−n,M(h)+1,

1
2

ρ ′2
)

dρ ′. (4.5)

The numerical integration along the radial coordinate in Eq. (4.5) was taken up to 30-40 nm

(according to the electronic state) attaining a good convergence. By taking into account that

|⟨ue|σ̂± p̂|uLH⟩|2 = 1/3|⟨ue|σ̂± p̂|uLH⟩|2, the matrix elements, |⟨ψe
0,0,1|σ̂± p̂|ψh

0,0,1⟩|2, were cal-

culated for the spatial potential profiles with e = 0 and no valence band mixing as displayed in

Fig. 4.18(a). In these configurations, a crossing between electron-HH and electron-LH transi-

tion intensity would be expected at intermediary field B ≃ 6 T, in accordance to experimental

results for the diamagnetic shift of the exciton ground state transition and the integrated PL in-

tensities, shown respectively in Figs. 4.19(a) and 4.19(b). Yet, the type-II electron-HH optically

allowed transition (from the m = 0 conduction band ground state to the m = 0 valence band lev-

els) is not energetically favorable as depicted in Fig. 4.18(b). Thus, the main transition observed

in the QD PL should be type-I since the energetically favorable states for type-II recombination

correspond to m = 1 and m = 2 valence band states, forbidden for transitions from the m = 0

electron ground state. In the case of a type-I to type-II optical transition induced by magnetic

field, it would also be expected to detect a shift in the energy position of the emission energy

of the value of g∗µBB (with g∗-the electron effective Landé factor) due to the sudden change

from LH to HH as the field increases. This is however not observed experimentally in Ref. [11],
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where only a kink of the diamagnetic shift of the QD emission is perceptible.
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Figure 4.19: (a) Diamagnetic shift of the exciton ground state transitions versus magnetic field.
(b) Integrated PL intensities for the hybrid sample, with σ+ and σ− polarizations measured in
Faraday geometry for QDs as a function of magnetic field [11].

The character change between hole states, apparent energetically in the valence band ground

state of the QD, is again illustrated in Fig. 4.18(c), where we tested the result beyond the

parabolic band approximation within a Luttinger model as described in Ref. [7] to assess the

relative effect of the proximity of both valence subbands and the potential selection rule re-

laxation do to level mixing. A small eccentricity, e = 0.104, has also been added within the

range used for the QRs calculations. Despite the appearance of some anticrossings, there are

no important contrasts between Figs. 4.18 (b) and 4.18(c). The reduced overlap of the HH and

LH wavefunctions, displayed in Fig. 4.18(a) weakens the intersubband mixing. The character

coefficients of the main basis components of the valence band ground state are also shown in

Fig. 4.18(d) where it is proven that, beyond 6 T, dark excitons are formed and this has an impact

in the optical transition rates as discussed in Ref. [3]. To complement this characterization, the

wavefunction of the valence band ground state has been drawn for magnetic fields: 5 T, 10 T,

and 20 T.

The variations of the PL intensity with the magnetic field in Ref. [11] can be ascribed to

the energy crossing around 6T, where the character changes between LH and HH and, given

the angular momentum modulation of the HH ground state, a bright-to-dark transition takes

place according to the valence band occupancy [3]. It can also be noted that the strength of this

effect is undoubtedly stronger for one of the spins. The effect of the bright-to-dark crossing

contributes to a decrease of the PL after 6T where the LH and HH levels cross.
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4.5 Conclusions

In summary, we have performed an electronic characterization of isolated QR samples. The

results obtained are relevant for the optical properties, once the electron-hole pairs will be con-

fined in the high In-content regions of the structure emulated in our calculations.

We have studied asymmetry effects in QRs motivated by experimental results of deformed

QRs obtained during the growth process whose main consequence is the circularly symmetry

breakdown. The asymmetric diffusion of atoms leads to some degree of anisotropy along the

[110] and [11̄0] directions and subsequently to elongated QRs. The characterization of the lo-

cal in-plane strain field shows that the most strained region of QDs is located at intermediary

distances from the center, whereas for QRs the strain regions coincide with the highest In-

concentration regions. The presence of strain fields affects the electronic structure and this may

tune the state hybridization of the valence band ground state, as found in our multiband calcula-

tion. Non-zero values of the effective angular momentum may appear for certain combinations

of strain fields and QR sizes. Thus, a fine control of the structural parameters and deformation

during the QR synthesis and capping processes may become a powerful tool for the modulation

of their optical properties and, certainly, their potential magnetic response.

We have also investigated hybrid structures where InGaAs/GaAs QRs are grown over a

vertical superlattice of laterally aligned InGaAs/GaAs QDs. Rather different oscillations of PL

intensity of circular polarized emissions detected experimentally [11] in the spectral range of the

QD radiation for increasing magnetic field were interpreted in terms of joint effects associated

to strain, spatial, and magnetic field confinement on the valence band forming the magneto-

exciton ground state of the hybrid structure.

Two possible effects that could lead to different field dependence were studied: eccentricity

of the confinement and strain induced different profiles for HH and LH carriers (the HH states

will be predominantly confined nearby the lateral QD boundary while the LH states occupy the

internal QD region). We demonstrated that the spin-dependent modulation of the intensity of

the QD emission is weighted by the bright-to-dark crossing when the character of valence band

ground state evolves from type-I LH to a type-II HH. We hope these findings may be further

explored in many different samples.
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Chapter 5

BERRY PHASE IN RASHBA-QR

UNDER TILTED MAGNETIC FIELD

In this chapter, we discuss the role of different orientations of an applied magnetic field as

well as the interplay of a selected structural asymmetry, discussed in the previous chapter, and

SO coupling on the characteristics of eigenstates in a QR system. We will use a nearly analytical

model description of the QR, which allows for a thorough study of elliptical deformations and

their influence on the spin character and Berry phase of different quantum states. To attain

this goal, we organize the chapter as follows: Section 5.1 contains a brief introduction; Section

5.2 discusses tilted magnetic field effects in QR system; Section 5.3 introduces the SO effects;

Section 5.4 presents a study of effects of magnetic field orientation, SO coupling and asymmetry

together to generate Berry phases.

5.1 Introduction

The phase acquired when a system is subjected to a cyclic adiabatic process, as described

by Berry and others [1–3], contains information on the geometrical properties of the parameter

space over which the system is defined. In a spatially extended and multiply connected quantum

system, this phase conveys nonlocal information on the system and possible net fluxes akin to

the AB phase [4]. As such, it is attractive to develop experimental probes to measure this Berry

phase, as well as theoretical models that connect its behavior to microscopic information or ex-

ternal fields. The geometric Berry phase has indeed played a fundamental role in understanding

the behavior of a variety of systems and phenomena [2, 3, 5].
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In mesoscopic systems, the Berry phase of electronic states has been explored by transport

experiments, providing a unique window into microscopic fields and spin textures. They arise

from the interplay of external fields, as well as intrinsic SO effects within the semiconductor

nanostructures [6–10]. More recently, transport experiments have demonstrated that it is possi-

ble to control the geometric phase of electrons by the application of in-plane fields in InGaAs

semiconductor mesoscopic ring [11].

Motivated by these experiments, we present here an analysis of the influence of magnetic

field orientation and intensity on the Berry phase experienced by electrons in a realistic QR.

As we will describe, the modulation of the geometric phase can arise from the symmetry re-

duction in the confinement potential or the competition between the external magnetic field and

the intrinsic field arising from SO coupling effects. As such, this study addresses the link be-

tween spatial symmetry and spin properties, and the possible tuning of the geometrical phase

by varying the intensity and/or orientation of an external magnetic field.

To this end, we use an effective mass description of the conduction band, and incorporate

the effects of confinement asymmetry for electrons in a realistic QR, as well as the resulting

Rashba SO coupling fields arising from confinement and external fields. By studying spin maps

for angle and magnetic field intensities, we gain insights into the competition between different

energy scales and how they impact the Berry phase associated with each electronic state. As

level mixing is enhanced near resonant conditions, one anticipates interesting behavior at the

anticrossing regions produced for example by varying magnetic field dependence in a given

structure. There are pronounced spatial asymmetry effects in the angular momentum and spin

character of different states, as one would expect. These asymmetries, introduced or enhanced

by shape anisotropies and confinement potential in the QR, are found to play an important role

in determining the Berry phase of the different states. We also find that effects of varying

magnetic field tilt and intensity, as well as SO coupling, are reflected in the Berry phase and

associated spin texture. The substantial phase modulation observed in the lower energy level

manifold can be monitored and exploited in transport and optical experiments.

The main results of this work were published in Ref. [12].
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5.2 Tilted Magnetic Field in QRs

The system under investigation in this chapter is the same used in the chapter 4, a QR with

a general elliptical shape, defined by the lateral potential V (ρ,φ) given in Eq. (4.3) and a QW

in z direction V (z) given by Eq. (2.69).

However, here, we will improve the DR3 model in order to turn it able to simulate different

configurations of magnetic fields. In the chapter 4 we have already discussed about the effects

of an applied magnetic field along the growth direction in a QR. Here we will analyze what

happens with the conduction band when we change the field orientation varying the magnetic

field angle θ from 0 to 90◦ continuously, as illustrated in Fig. 5.1. Thus, in the presence of a

Figure 5.1: Scheme of tilted magnetic field applied in a QR.

magnetic field B⃗ = x̂Bx + ẑBz = x̂Bsinθ + ẑBcosθ , the vector potential can be written as

A⃗ =
Bz

2
ρφ̂ −Bxz(ρ̂ sinφ + φ̂ cosφ) . (5.1)

The system is described by Eq. (2.25). This equation can also be separated in another way,

H = HBz +HBx +HZx . The contribution due to the perpendicular component of the magnetic

field (Bz) is given in cylindrical coordinates by

HBz = − h̄2

2µ∗

[
1
ρ

∂
∂ρ

(
ρ

∂
∂ρ

)
+

1
ρ2

∂ 2

∂φ2 +
∂ 2

∂ z2

]
+

ieh̄Bz

2µ∗
∂

∂φ
+

e2B2
z ρ2

8µ∗ +V (⃗r) (5.2)

+
gµB

2
Bzσz .
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The eigenfunctions in the presence of the Bz component, Φlmn(z,ρ ,φ), are used as the basis set

to expand the eigenstates for a general tilted field. A general wavefunction can be written as

Ψ = ∑
l,m,n

(
C↑

lmn |↑⟩+C↓
lmn |↓⟩

)
Φlmn , (5.3)

where the spatial dependence has been omitted for simplicity. The term due to the in-plane

component of the magnetic field is

HBx = − ieh̄zBx

µ∗

(
sinφ

∂
∂ρ

+
cosφ

ρ
∂

∂φ

)
+

e2

2µ∗
(
B2

xz2 −BzBxzρ cosφ
)
. (5.4)

and the respective Zeeman contribution can be written as [13]

HZx =
1
4

gµBBx(σ++σ−) , (5.5)

where σ± = σx ± iσy. More details about this calculations can be found in Appendix B.

In Fig. 5.2, the energy levels are plotted for the conduction band where θ was set equal

to 45◦. In this figure, each angular momentum is identified and the spin states up and down

differentiated by blue and red colors, respectively. Comparing this graph to Fig. 4.1, we observe

that increasing the angle, θ , makes the levels flatter, what can be observed for the ground state,

for instance. While for the perpendicular magnetic field case (θ = 0) crossings appear in the

ground state around 2 and 6.3 T, when the field is tilted (θ = 45◦), these crossings change to

2.9 and 8.8 T, respectively.

Using Fig. 5.2 as reference, we plotted in Fig. 5.3 the energy over magnetic field angle θ

for three values of magnetic field intensities, B. The values of B used, correspond to regions

where the ground state changes character due to the crossings: B = 2,9 T, B = 8,8 T and

B = 14,7 T. One may note that for high fields the character changes more often as θ increases

and this happens every time a crossing appears in the energy figures. It is important to note

that just changing the magnetic field angle is not enough to change the ground state character

to different spin.
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Figure 5.3: Conduction band energy versus magnetic field orientation θ for R = 17.7 nm, L = 7
nm at fixed magnetic field intensity (a) B = 2.9 T, (b) B = 8.8 T and (c) B = 14.7 T. Corre-
sponding ground state expansion coefficients at (d) B = 2.9 T, (e) B = 8.8 T and (f) B = 14.7
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5.3 SO Coupling

In this section, we will discuss the effects of the SO coupling on the QR properties under

tilted field. These effects, when included in the electronic structure calculations, lead to the

interaction between different spin states. The SO coupling in the presence of SIA can be written
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in terms of the field associated with the gradient of the confinement potential, ∇V , as [14]

HSIA =
αs

h̄
σ⃗ ·
(

∇V × (p⃗− eA⃗)
)
, (5.6)

where αs characterizes the strength of the SO coupling in the host semiconductor. This can be

decomposed, in cylindrical coordinates, into three terms, HSIA = HD
SIA +HR +HK , where [14]

HD
SIA = αsσz

{
∂V
∂ρ

[
− i

ρ
∂

∂φ
+

eBz

2h̄
ρ
]
+

i
ρ

∂V
∂φ

∂
∂ρ

+
i

ρ2
∂V
∂φ

}
, (5.7)

HR = −αs
∂V
∂ z

{
σ+

[
e−iφ

(
∂

∂ρ
− i

ρ
∂

∂φ
+

eBz

2h̄
ρ +

1
ρ

)]
− σ−

[
eiφ
(

∂
∂ρ

+
i
ρ

∂
∂φ

− eBz

2h̄
ρ +

1
ρ

)]}
, (5.8)

and HK = 0 because ⟨kz⟩ ≃ 0. HD
SIA is the spin-diagonal contribution due to the confine-

ment, while the Rashba term HR is associated with the perpendicular electric field in the well,

∂V/∂ z = eF . In Appendix A, the calculations to get the Eqs. (5.7) and (5.8), are detailed.

In Fig. 5.4, we show the changes in the ground state level and its character. For the electronic

structure in Fig. 5.4(a), the anticrossings at the ground state, selected and amplified in the square

boxes, mean that the levels are mixed due to the SO coupling. The mixtures are confirmed

through the graph of the coefficients, also observed in Fig. 5.4(b). This effect can be contrasted

with the energies plotted in Fig. 4.1 where the levels are pure.

We can also simultaneously simulate a tilted magnetic field and SO coupling. When the

magnetic field is tilted, an additional term has to be included in the Hamiltonian, HSIA, that

gives the contribution for Bx component. This term is given by

HT F
SIA = αs

ezBx

h̄

(
∂V
∂ z

σx −
∂V
∂x

σz

)
. (5.9)

The complete calculation to get Eq. (5.9) is presented in the Appendix B.

Taking the two magnetic field values 2.9 and 14.7 T used in Fig. 5.3, we plotted again

the electronic structures and coefficients for the same QR and magnetic field configuration, but

with SO coupling. One may note, in Fig. 5.5, the presence of the anticrossings between the
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Figure 5.4: (a) Electronic structure and (b) ground state coefficients of a QR with perpendicular
magnetic field (θ = 0◦) and SO coupling modulated by F = 100 kV/cm2. The insets show
zooms on the selected regions.

ground state and the other levels, not present before, and a high hybridization of the ground

state, mainly for intermediate angle values, around θ = 42◦ in Fig. 5.5(d), for instance. This

indicates a large role of the spin down character in the ground state.

Therefore, the model described up to here is able to simulate QR with asymmetric shapes,

tilted magnetic fields and SO coupling simultaneously. In this way, we can turn on or disable

one or more of these effects to understand the contribution of each phenomenon separately, as

shown in Fig. 5.6, where we present different possibilities. In Fig. 5.6(a), we calculate the

electronic structure for a circularly symmetric QR with a tilted magnetic field applied with an

angle θ = 45◦, in Fig. 5.6(b) we activated the SO coupling by keeping the same configuration

of Fig. 5.6(a). Yet, in Figs. 5.6(c) and 5.6(d), we recalculated the cases on Figs. 5.6(a) and

5.6(b) for an asymmetric (elongated) QR.

86



1075

1080

1085

1090

1095

0 10 20 30 40 50 60 70 80 90
0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70 80 90

B = 14.7 T

 

 

R = 17.7 nm
L = 7 nm

En
er

gy
(m

eV
)

(a)

(c)

(b)

 

 

B = 2.9 T

 |1/2,1/2>
 |1/2,-1/2>

m=3

m=3

m=1

 

 

|C
|2

Angle ( )

m=0
m=2

(d)

m=1 m=0  

 

Angle ( )

Figure 5.5: Conduction band energy versus magnetic field orientation θ for R = 17.7 nm, L = 7
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14.7 T, (b) B = 2.9 T. Corresponding ground state expansion coefficients at (c) B = 14.7 T, (d)
B = 2.9 T.

5.4 Berry phase in asymmetric Rasha QR under tilted mag-

netic field

In this section, we will present the effects of tilted magnetic field, asymmetry, and SO

coupling in the Berry phase. The Berry phase is an interesting quantity that characterizes the

different eigenstates, especially as it incorporates the effects of external fields and SO coupling,

and the influence of geometrical confinement. Different experiments would probe the Berry

phases in different fashion, depending on the measurement design. Transport phase measure-

ments, for example, would result in a mostly additive contribution of various channels involved

in the conductance signal, i.e., those close to the Fermi energy. We illustrate the effect of cu-

mulative phase by considering the total Berry phase for a collection of states, defined over a

certain "occupation" in the QR (defined once such structure is connected to current reservoirs

and a bias window is defined).
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In addition, we characterized the spin content of different eigenstates and analyzed the ex-

pectation value for the different components. In particular, we define the spin projection with

respect to the z-axis, θs, in terms of projections along and perpendicular to the plane,

⟨σ+⟩ = ∑
j

C↑∗
j C↓

j ,

⟨σz⟩ = ∑
j

(
|C↑

j |
2 −|C↓

j |
2
)

(5.10)

(where j = {n, l,m} in all sums), so that

θs = arctan
⟨σz⟩
⟨σ+⟩

+
π
2
(
1− sgn⟨σ+⟩

)
. (5.11)

Figs. 5.7 and 5.8 show the electronic structure and the Berry phases for the lower energy

manifold in both symmetric and asymmetric QRs. In Fig. 5.7, we plot the energy levels and the

corresponding phases as function of the total magnetic field amplitude at a fixed angle, θ = 60◦,
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while Fig. 5.8 shows the results for a fixed intensity of the magnetic field, B = 6.625 T, as a

function of the orientation θ .

1076

1080

1084

1088

1092

1096

0 2 4 6 8 10
-6
-5
-4
-3
-2
-1
0

2 4 6 8 10

0 3 6 9
-0.3
0.0
0.3

 

 

En
er

gy
 (m

eV
)

(a)

 

 

-1

0

(b)

 

 

 

level 1

-2

-1

0

(f)

(e)

(d)

(c)
 

 

2.55T

level 4

level 3

level 2

 

 

-2

-1

0
 

Be
rry

 P
ha

se
 (2

)

 

 

-2
-1
0
1

 

 

 

 

-2
-1
0
1

 

 

level 5

 

 

-2
-1
0
1

(g)

 

 

level 6
 

 

(h)

=2meV

 

 

Be
rry

 P
ha

se
 S

um
 (2

)

Magnetic Field (T)

 2 levels
 4 levels
 6 levels

=0

(p)

(o)

(n)

(m)

(l)

(k)

(j)

(i)

 

 

 

 

Figure 5.7: Electronic structure for QRs in a magnetic field at fixed tilt angle, θ = 60◦, and
Rashba field F = 100 kV/cm, as a function of the total magnetic field strength for: (a) symmetric
(δ = 0) and (i) asymmetric (δ = 2 meV) QR. The Berry phase for different levels for δ = 0 is
shown in panels on the left column, (b) through (g); and for δ = 2 meV on the right column,
(j) through (o). The cumulative Berry phase for different occupation numbers is shown in panel
(h) for the symmetric QR, and panel (p) for the asymmetric QR [12].

The Berry phases of the lowest six levels, calculated using Eq. (2.77), are displayed in

89



the Figs. 5.7 and 5.8, along with the corresponding mean spin orientations. The arrows along

the different Berry phase curves indicate the spin orientation, with θs as defined above: an

upwards/downwards arrow in these curves, θs =±π/2, indicates a spin lying on the x-y plane,

while a horizontal arrow indicates a spin aligned along the ±z-axis.

1080

1084

1088

1092

1096

0 10 20 30 40 50 60 70 80 90
-12
-10
-8
-6
-4
-2
0

10 20 30 40 50 60 70 80 90

 

 

En
er

gy
 (m

eV
) (a) (i)

 

 

-2

-1

0 (b)

 

 

level 1

(j)

 

 

-2

-1

0 (c)
 

 

level 2

(k)

 

 

-2
-1
0
1 (l)(d)

 

 

Be
rry

 P
ha

se
 (2

)

level 3

 

 

-2
-1
0
1 (e)

 

 

(m)

 

 

-3
-2
-1
0
1

 

 

level 5

level 4
(n)

 

 

-3
-2
-1
0
1 (g)

(f)

 

 

level 6

(o)

 

 

=2meV

(h)

 

 

Be
rry

 P
ha

se
 S

um
 (2

)

Angle (degrees)

 2 levels
 4 levels
 6 levels

=0

(p)

 

 

Figure 5.8: Electronic structure for QRs under fixed magnetic and Rashba fields, B = 6.625 T
and F = 100 kV/cm, as a function of the magnetic field tilt angle θ for: (a) symmetric (δ = 0)
and (i) asymmetric (δ = 2 meV) QR. Berry phases for different states in both QRs are shown in
the panels below. The cumulative Berry phase for different occupations is shown in panels (h)
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The results in the left panels of both figures are for a circularly symmetric QR. For small

magnetic fields, the two lowest energy states exhibit spin mostly on the x-y plane, as shown in

Figs. 5.7(b) and 5.7(c). On the other hand, the next four levels (Fig. 5.7(d)-(g)) are aligned along

the ±z-axis due to the spin mixing caused by SO coupling. Note that at high values of magnetic

field the levels become essentially aligned with (Fig. 5.7(b)-(d)) or against (Fig. 5.7(e)-(g)) the

magnetic field, as the Zeeman energy dominates over the SO coupling. The evolution of spin

orientation for each level is strongly influenced by the anticrossings with other levels, as one

would expect. Moreover, anticrossings also affect the Berry phase of states, causing a smooth

variation with large amplitude (≃ 2π) in many cases, such as in Fig. 5.7(b) and 5.7(c) at around

4 T; in Fig. 5.7(c) and 5.7(d) at around 2.5 T, 4 T and 8 T; and at around 7.8 T in 5.7(d) and

5.7(e).

Stronger spin-tilting and occasional total flips appear close to the region of nonzero (or

̸= 2πn, with integer n) Berry phase, as shown in Fig. 5.7(c) at around 2.5 T, and in 5.7(d) and

5.7(e) at around 7.8 T. Thus, the spin hybridization and phase modulation are intrinsically linked

due to SO coupling and magnetic field. Spin orientation and phase values smoothly change as

a function of magnetic field intensity (or magnetic field orientation in Fig. 5.8). Some appar-

ently sudden spin-flips also appear, as the one highlighted in panel 5.7(c), corresponding to a

steep (yet continuous) variation of the spin component, as detailed in the inset. Similar smooth

variations are presented for an eccentric (elliptically deformed) QR on the right panels, Fig.

5.7(j)-(o). The main effect introduced by the confinement asymmetry is to make the spin mod-

ulation and Berry phase vary more gradually with field intensity. This can be understood as

arising from the asymmetry which introduces mixing of different angular momentum compo-

nents and associated anticrossings. Notice in Fig. 5.7(i), that at higher magnetic fields, B>6 T,

various levels mix. This can be seen in the large anticrossings between levels 2 and 3 at around

7 T, levels 4 and 5 at around 6.7 T, and levels 5 and 6 at around 8.5 T. The level mixture makes

the spectrum flatter with field and, correspondingly, produces weaker variations in the Berry

phase as well.

Fig. 5.7(h) displays the gradual cumulative process of adding Berry phases of the first 2,

4, and 6 consecutive levels of panels (b)-(g). A similar addition has been obtained for the

asymmetric QR case, shown in Fig. 5.7(p). This additive process is equivalent to increasing

electron number or number of levels around the Fermi level in a transport experiment. The

cumulative Berry phase, especially for large number (& 3) of levels counted, is essentially null
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(or = 2πn). In fact, although individual levels show strong variation of the Berry phase with

field, the cumulative phase does not: successive levels have compensating Berry phase changes,

so that the cumulative effect is surprisingly near null (except for occasional 2π slips shown in

the figure), especially for the 4 and 6-level traces shown.

The introduction of QR eccentricity changes the situation in a somewhat subtle fashion.

Comparing left (h) and right (p) panels in Fig. 5.7, it is clear that as the eccentricity induces

changes in the electronic spectrum and single-state Berry phases, the cumulative Berry phase

shows gradual modulation, so that nontrivial values are seen over finite-size windows in field:

2 - 3 T and 7 - 9 T for cumulative Berry phase of 2 levels; 0 - 1 T and 6 - 7 T, for 4 levels; and 3

- 4 T and 5 - 6 T, for 6 levels. This would suggest that a moderate degree of asymmetry and/or

disorder, unavoidably present in real systems, may in fact produce a more robust Berry phase

signal in experiments.

Similar contrasts exist between circularly symmetric and asymmetric QRs as function of

magnetic field orientation (at constant strength), as shown in Fig. 5.8. As in Fig. 5.7, each state

shows a gradual Berry phase evolution with magnetic field angle near level anticrossings, and

the diamagnetic shift provided by Bz decreases for larger angles. One can also see a rather

interesting evolution of the spin orientation as the tilt angle increases. On the left panels, for

the circularly symmetric QR, one also notices relatively sharp changes in Berry phase and spin

orientation, as different angular momentum components are mixed by SO coupling. These

jumps or drastic changes disappear or become smoother for the asymmetric QR (right panels),

as the eccentricity mixes more strongly different angular momentum states. Panels (h) and (p)

show the cumulative Berry phase for the two QRs. There is a similar behavior already seen in

Fig. 5.7: a smooth variation with angle for small number of levels, changes to essentially null

phase value (2πn) for larger level number. The sudden phase slips however become smoother,

resulting in nontrivial values for the asymmetric QR over wider range (angular in this case).

We also explore the spatial variation in the spin orientation (‘spin texture’) for each state,

which is related to the vector spin density, whose components are given by

Sx(⃗r) = ∑
j, j′

Φ∗
j′ (⃗r)

(
C↑∗

j′ C↓
j +C↓∗

j′ C↑
j

)
Φ j (⃗r)

Sy(⃗r) = −i∑
j, j′

Φ∗
j′ (⃗r)

(
C↑∗

j′ C↓
j −C↓∗

j′ C↑
j

)
Φ j (⃗r)

Sz(⃗r) = ∑
j, j′

Φ∗
j′ (⃗r)

(
C↑∗

j′ C↑
j −C↓∗

j′ C↓
j

)
Φ j (⃗r) . (5.12)
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These components were used to depict the spin behavior around the QR what was done through

the calculation of the wave function projection in each spin component. The graphs are per-

formed by

x2 =
Sx

max(|⃗r|)
+ x1 (5.13)

y2 =
Sy

max(|⃗r|)
+ y1 (5.14)

z2 =
Sz

max(|⃗r|)
+ z1 (5.15)

and presented in Fig. 5.9.

The slow evolution of Berry phase for each state signals the mixtures introduced by the dif-

ferent perturbations on an otherwise highly-symmetric picture. The Zeeman field, SO coupling,

and structural asymmetries produce simultaneous mixtures of spin, parity, and angular momen-

tum. This effect, contained in the expansion coefficients of the different states, can be visualized

as well through spin density maps. Fig. 5.9, left panels, show the expansion coefficients for the

four lowest energy states of an asymmetric QR, as function of magnetic field, at a fixed angle

θ = 60◦. These panels show solid (dashed) curves for the spin up (down) components with dif-

ferent angular momentum m in the given state. The states are mixtures of angular momentum

(introduced at zero field by the QR asymmetry) and/or spin (due to SO coupling), which evolve

with field to other components (due to the diamagnetic shift of the spectrum), and eventually to

more complex mixtures at higher energies.

The right panels in Fig. 5.9 show spin vector maps for the corresponding state at the field

B = 2.375T, and θ = 60◦. This field value corresponds to the anticrossing between the second

and third levels in Fig. 5.7(i). The vector maps use arrows with size proportional to the spin

density at each point on the plane and blue (or red) colors to indicate a positive (or negative)

sign of the z-spin component at that point. The ground state (level 1) shows a spin map pre-

dominantly on the plane, although with overall positive Sz component, and with high amplitude

near the ends of the long-axis ellipse. The first-excited state, in contrast, shows large negative

Sz components and with a spatial distribution that complements that of the ground state. One

also notices that the ground state spin map shows local vectors that are essentially parallel all

along the QR: this would result in a vanishing Berry phase, as it is indeed seen in Fig. 5.7(j), at

this magnetic field. For the second level, however, where the Berry phase ≃−π in Fig. 5.7(k),

one notices that the spin arrows in Fig. 5.9 are canted with respect to those a quarter of the way
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Figure 5.9: Panels on the left column shown expansion coefficients for the four lowest states of
an asymmetric QR (δ = 2 meV), and fixed Rashba field F = 100 kV/cm, and magnetic field
tilt angle θ = 60◦, as function of magnetic field intensity. Level admixtures clearly evolve with
sudden switches at level anticrossings. The right column shows spin density vector maps along
the QR (z-integrated) for the four lowest states at a field B= 2.375 T. Blue arrows have a positive
projection along z, while for red arrows the projection is negative. Notice nearly parallel vectors
in level 1 result in a null Berry phase; in contrast, canting of vectors in level 2 contribute to a
Berry phase of ≃−π (see Fig. 5.7(k)) [12].

along the QR. It is this non-parallel nature of the spins along the QR structure that characterizes

a non-vanishing Berry phase. Levels 3 and 4 show even more structure, with spin vector ampli-
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tude more localized near the long ends of the ellipse, but with Sz component that changes sign

as one moves along the QR. The relative twisting of the spin vector density along the QR, con-

tributes to the non-vanishing Berry phase seen in Fig. 5.7(l)-(m), although with much smaller

value than for level 2. Other levels with non-vanishing Berry phase show similar canted spin

texture across the QR.

5.5 Conclusions

We have used a nearly analytical description of the states in QRs of finite width. This

model, used before to describe realistic structures in experiments, allows us to extract interesting

insights on the role of SO coupling and its interplay with external magnetic field effects, such

as diamagnetic shifts and Zeeman splitting. We have moreover introduced asymmetry in the

confinement structure to see how this affects the level structure and associated spin texture and

Berry phase of different states. We observed that possible experimental sweeps of magnetic

field tilt or amplitude, produce controllable changes in the state characteristics, which can be

traced in particular through the smooth variation of the Berry phase of each state. It is also clear

that as SO coupling could be made stronger with applied electric fields, the Rashba effect would

also controllably change the overall geometric phase in QRs.

Somewhat surprisingly, we found that the unavoidable defects or asymmetries in QR con-

finement produce smooth changes in the Berry phase, as either the magnetic field or tilt (or

even Rashba field) is changed. This effect makes the otherwise sudden phase slips in sym-

metric QRs become smoother and produce non-vanishing (or nontrivial) geometric phases as

a consequence. This would suggest that moderate level mixing makes for more robust Berry

phases in experiments. One should also comment, that although the multilevel cumulative Berry

phase appears essentially null for high number of levels (or wider energy window), it may be

possible to access individual (or few) state Berry phases in narrow bias ranges or similarly to

other experiments where few states can be sampled.
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Chapter 6

GENERAL CONCLUSIONS

In this thesis, we studied a series of properties related to semiconductor nanostructures based

in InAs and GaAs, InGaAs, and InGaAsN. We followed a sequence of tasks to develope the

building blocks for the simulation of the electronic properties of a variety of quantum systems

ending at the QRs. Beside purely theoretical interests, part of the tasks were carried out in

partnership with experimental groups, simulating and interpreting their results. But, always

keeping the focus on our main objective: study the effects related to QRs systems. Thus, in the

last years, we have developed a model for QRs able to simulate realistic both QR or QD. This

model allowed to characterize several properties and define the dominant effects.

To attain our goals, we started by studying the basic effects of quantum confinement, compo-

sition and strain in semiconductor nanostructures by building the effective band Hamiltonians.

We firstly simulated an anomalous behavior of the PL peak energy at low temperature observed

experimentally for samples of InGaAs and InGaAsN QW systems with QD shape defects. We

ascribed some anomalous effects detected experimentally as due to strain modulation and local-

ization. The results were compared for different QWs sizes. In this analysis, we observed that

spin-dependent effects are stronger for wider QWs for both systems, N-free and N-containing

samples. In addition, we showed that the spin polarization degree is dependent on the character

of valence band ground state as expected for QD kind of confinement.

Moving towards the QRs, we improved our QD models and determined the profile of the

effective confinement potential through the modulation of the QR composition. Then, the ap-

pearance of strain fields in QRs was associated to the reduction of their dimensions when the

samples are capped. It affects the valence band ground state and we were able o understand this

process.
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Next, we studied the effects of external fields and asymmetries in QRs. Three different

deformations effects were analyzed in the conduction and valence band, leading to some degree

of anisotropy along the [110] and [11̄0] directions. This analysis was useful to assess how

powerful our tool was for the simulations of the optical properties.

After the study of general effects of deformation, we used one of the three types of asym-

metries in the analysis of elongated QD-QR stacked systems. This type of deformation was

chosen because represents well the structures obtained by our experimental collaborators being

the most probable form assumed by the QRs during their growth.

Using the elongated QR model, we contrasted our calculation with the PL results and in-

terpreted them in terms of joint effects associated to strain, spatial, and magnetic field confine-

ment on the valence band forming the magneto-exciton ground state of the hybrid structure.

We also demonstrated that the spin-dependent modulation of the intensity of the QD emission

is weighted by the bright-to-dark crossing when the character of valence band ground state

evolves from type-I LH to a type-II HH.

Finally, the most realistic QR model was achieved and used to study the effect of a con-

trollable applied magnetic field, asymmetry/deformation and SO in a conduction band QR. We

were able to determine their relative weight to modulate the Berry phase of different states. We

observed that the asymmetries in QRs change considerably the Berry phase as well as magnetic

fields. Besides, we mapped the spin texture and observed the effects of the asymmetry.

To finish, We can conclude that the model developed in this thesis allows the direct simula-

tion of a QR or a QD system. Further, this model is easily extensible for vertical coupled QRs

and core-shell structure, that are the proposals for continuation of this research.
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Appendix A

SO FIELD AND SELECTION RULES

In this Appendix, we detail the SIA Hamiltonian and the selection rules calculations.

A.1 SIA Hamiltonian

The SIA term for the QR confinement, V (r) = V (ρ ,φ)+V (z), and coupling parameter αs

is given by

HSIA = αsσ · (∇V × k) (A.1)

which we detail below in Cartesian coordinates.

HSIA = αsσ ·
[(

∂V
∂x

î+
∂V
∂y

ĵ+
∂V
∂ z

k̂
)
×
(
kx î+ ky ĵ+ kzk̂

)]
(A.2)

HSIA = αsσ ·
[(

∂V
∂y

kz −
∂V
∂ z

ky

)
î+
(

∂V
∂ z

kx −
∂V
∂x

kz

)
ĵ+
(

∂V
∂x

ky −
∂V
∂y

kx

)
k̂
]

(A.3)

HSIA = αs

[
σx

(
∂V
∂y

kz −
∂V
∂ z

ky

)
+σy

(
∂V
∂ z

kx −
∂V
∂x

kz

)
+σz

(
∂V
∂x

ky −
∂V
∂y

kx

)]
(A.4)

HSIA = αs

[(
σx

∂V
∂y

−σy
∂V
∂x

)
kz +

∂V
∂ z

(σykx −σxky)+σz

(
∂V
∂x

ky −
∂V
∂y

kx

)]
(A.5)
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The contribution of the first terms in the right hand side of Eq. (A.5) to the lower sub-

band vanishes because ⟨kz⟩=0. According to the symmetry of the problems tackled, we may

transform Eq. (A.5) in cylindrical coordinates using the following relations

σ± =
1
2
(σx ± iσy), (A.6)

k± = kx ± iky (A.7)

and the following relation

(
∂
∂x

∓ i
∂
∂y

)
= L∓

(
∂

∂ρ
∓ i

ρ
∂

∂φ

)
, (A.8)

∂
∂x

= cosφ
∂

∂ρ
− 1

ρ
sinφ

∂
∂φ

, (A.9)

and
∂
∂y

= sinφ
∂

∂ρ
+

1
ρ

cosφ
∂

∂φ
, (A.10)

to transform ∂
∂x and ∂

∂y to ∂
∂ρ and ∂

∂φ , where L±=e±iφ .

Firstly, we substitute the Eq. (A.6) in Eq. (A.5), and obtain

HSIA = αs

{
∂V
∂ z

[−i(σ+−σ−)kx − (σ++σ−)ky]+σz

(
∂V
∂x

ky −
∂V
∂y

kx

)}
, (A.11)

rewritten as

HSIA = αs

{
−∂V

∂ z
[iσ+(kx − iky)− iσ−(kx + iky)]+σz

(
∂V
∂x

ky −
∂V
∂y

kx

)}
(A.12)

to make easier to replace the Eq. (A.7), that in Eq. (A.12) results in

HSIA = αs

{
−i

∂V
∂ z

(σ+k−−σ−k+)+σz

[
∂V
∂x

(
k+− k−

2i

)
− ∂V

∂y

(
k++ k−

2

)]}
(A.13)

or better in

HSIA = αs

{
−i

∂V
∂ z

(σ+k−−σ−k+)−
i
2

σz

[(
∂V
∂x

− i
∂V
∂y

)
k+−

(
∂V
∂x

+ i
∂V
∂y

)
k−

]}
. (A.14)
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Thus, we may substitute Eq. (A.8) into Eq. (A.14) and yielding

HSIA = αs

{
−i

∂V
∂ z

(σ+k−−σ−k+)−
i
2

σz

[
L−

(
∂V
∂ρ

− i
ρ

∂V
∂φ

)
k+

− L+

(
∂V
∂ρ

+
i
ρ

∂V
∂φ

)
k−

]}
. (A.15)

The Hamiltonian in Eq. (A.15) can be separated into two contributions: HD
SIA and HR, where

HD
SIA is the contribution due to the radial confinement, and HR is the Rashba term of associated

with the perpendicular confinement effective field, dV/dz. Therefore,

HR =−iαs
∂V
∂ z

(σ+k−−σ−k+) (A.16)

and

HD
SIA = −i

αs

2
σz

[
∂V
∂ρ

(L−k+−L+k−)−
i
ρ

∂V
∂φ

(L−k++L+k−)
]
. (A.17)

Using the Eq. (A.18)

k± =±iL±A± =−ie±iφ
[

∂
∂ρ

± i
ρ

∂
∂φ

∓αρ
]

(A.18)

with α = eBz
2ch̄ and

A± =∓ ∂
∂ρ

− i
ρ

∂
∂φ

+αρ , (A.19)

in Eq. (A.17) we have

HD
SIA = −i

αs

2
σz

{
∂V
∂ρ

[L−(iL+A+)+L+(iL−A−)]

− i
ρ

∂V
∂φ

[L−(iL+A+)−L+(iL−A−)]

}
(A.20)

that can be simplified to

HD
SIA =

αs

2
σz

{
∂V
∂ρ

[A++A−]
i
ρ

∂V
∂φ

[A+−A−]

}
. (A.21)

However, A± are not hermitian. To make this Hamiltonian hermitian, we will replace A± by
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Â±, where Â±=A±∓ 1
ρ and proceed with following the steps

HD
SIA =

αs

2
σz

{
∂V
∂ρ
[
Â++ Â−

]
− i

ρ
∂V
∂φ
[
Â+− Â−

]}
(A.22)

HD
SIA =

αs

2
σz

{
∂V
∂ρ

[
A+− 1

ρ
+A−+

1
ρ

]
− i

ρ
∂V
∂φ

[
A+− 1

ρ
−A−− 1

ρ

]}
(A.23)

HD
SIA =

αs

2
σz

{
∂V
∂ρ

[A++A−]−
i
ρ

∂V
∂φ

[A+−A−]+
2i
ρ2

∂V
∂φ

}
(A.24)

HD
SIA =

αs

2
σz

{
∂V
∂ρ

[
− ∂

∂ρ
− i

ρ
∂

∂φ
+

eBz

2ch̄
ρ +

∂
∂ρ

− i
ρ

∂
∂φ

+
eBz

2ch̄
ρ
]

− i
ρ

∂V
∂φ

[
− ∂

∂ρ
− i

ρ
∂

∂φ
+

eBz

2ch̄
ρ − ∂

∂ρ
+

i
ρ

∂
∂φ

− eBz

2ch̄
ρ
]
+

2i
ρ2

∂V
∂φ

}
(A.25)

HD
SIA =

αs

2
σz

{
∂V
∂ρ

[
−2

i
ρ

∂
∂φ

+2
eBz

2ch̄
ρ
]
− i

ρ
∂V
∂φ

[
−2

∂
∂ρ

]
+

2i
ρ2

∂V
∂φ

}
(A.26)

until get

HD
SIA = αsσz

{
∂V
∂ρ

[
− i

ρ
∂

∂φ
+

eBz

2ch̄
ρ
]
+

i
ρ

∂V
∂φ

∂
∂ρ

+
i

ρ2
∂V
∂φ

}
. (A.27)

Proceeding analogously for Eq. (A.16), replacing Eq. (A.18) in (A.16), we obtain an her-

mitian Hamiltonian for HR, as follows

HR =−iαs
∂V
∂ z

(
σ+(−iL−Â−)−σ−(iL+Â+)

)
(A.28)

HR =−αs
∂V
∂ z

(
σ+(L−Â−)+σ−(L+Â+)

)
(A.29)

HR =−αs
∂V
∂ z

(
σ+L−

(
A−+

1
ρ

)
+σ−L+

(
A+− 1

ρ

))
(A.30)

HR =−αs
∂V
∂ z

(
σ+L−A−+σ−L+A++

1
ρ

σ+L−− 1
ρ

σ−L+

)
(A.31)

102



HR =−αs
∂V
∂ z

(
iσ+k−− iσ−k++

1
ρ

σ+L−− 1
ρ

σ−L+

)
(A.32)

HR =−iαs
∂V
∂ z

(
σ+k−−σ−k+− i

ρ
σ+L−+

i
ρ

σ−L+

)
(A.33)

The Eqs. (A.27) and (A.33) are general expressions for the SIA Hamiltonian. For QRs or

QDs whose potential are given by

V (ρ) =
a1

ρ2 +a2ρ2 −
√

a1a2 +δρ2 cos2 φ (A.34)

and

V (z) = eFz, (A.35)

where
∂V
∂ρ

=−2a1

ρ3 +2a2ρ +2δρ cos2(φ) (A.36)

and
∂V
∂φ

=−2δρ2 sin(φ)cos(φ), (A.37)

the Eqs. (A.27) and (A.27) become

HD
SIA = 2αsσz

[(
− a1

ρ2 +a2ρ2 +δρ2 cos2(φ)
)

eBz

2ch̄
− iδ sin(φ)cos(φ)

− iδρ sin(φ)cos(φ)
∂

∂ρ
− i

ρ2

(
− a1

ρ2 +a2ρ2 +δρ2 cos2(φ)
)

∂
∂φ

]
(A.38)

and

HR = −αs
∂V
∂ z

{
σ+

[
e−iφ

(
∂

∂ρ
− i

ρ
∂

∂φ
+

eBz

2ch̄
ρ +

1
ρ

)]
− σ−

[
eiφ
(

∂
∂ρ

+
i
ρ

∂
∂φ

− eBz

2ch̄
ρ +

1
ρ

)]}
, (A.39)

respectively.

Knowing that Ψm = e−imφ/
√

2π and applying ⟨Ψ∗
m1
|HD

SIA|Ψm2⟩=hD
SIA and ⟨Ψ∗

m1
|HR|Ψm2⟩=hR,

and using the angular momentum selection rules presented in Section A.2, we obtain the ex-

103



pressions

hD
SIA(m1,m2) = 2αsσz

{[(
− a1

ρ2 +a2ρ2 +
δ
2

ρ2
)

eBz

2ch̄
+

(
a1

ρ4 −a2 −
δ
2

)
m2

]
δm2,m1

+

[
1
4

δρ2 eBz

2ch̄
− δ

4
ρ

∂
∂ρ

− δ
4
(m2 +3)

]
δm2,m1+2

+

[
1
4

δρ2 eBz

2ch̄
+

δ
4

ρ
∂

∂ρ
− δ

4
(m2 −3)

]
δm2,m1−2

}
(A.40)

and

hR = −αs
∂V
∂ z

{
σ+

[
∂

∂ρ
− (m2 −1)

ρ
+

eBz

2ch̄
ρ
]

δm2,m1−1

− σ−

[
∂

∂ρ
+

(m2 +1)
ρ

− eBz

2ch̄
ρ
]

δm2,m1+1

}
. (A.41)

The matrices in Eqs. (A.40) and (A.41) can be render Hermitian with the symmetrization

Hherm. =
1
2
(H +H†). (A.42)

For Eq. (A.40), it means that (⟨Ψ∗
m1
|HD

SIA|Ψm2⟩)†=⟨Ψ∗
−m2

|(HD
SIA)

†|Ψ−m1⟩=E
′D
SIA(m2,m1). Thus

h
′D
SIA(m2,m1) = 2αs(−σz)

{[(
− a1

ρ2 +a2ρ2 +
δ
2

ρ2
)

e(−Bz)

2ch̄

+

(
a1

ρ4 −a2 −
δ
2

)
(−m1)

]
δ−m2,−m1

+

[
1
4

δρ2 e(−Bz)

2ch̄
− δ

4
ρ

∂
∂ρ

− δ
4
(−m1 +3)

]
δ−m2,−m1+2

+

[
1
4

δρ2 e(−Bz)

2ch̄
+

δ
4

ρ
∂

∂ρ
− δ

4
(−m1 −3)

]
δ−m2,−m1−2

}
(A.43)

or

h
′D
SIA(m2,m1) = 2αsσz

{[(
− a1

ρ2 +a2ρ2 +
δ
2

ρ2
)

eBz

2ch̄
+

(
a1

ρ4 −a2 −
δ
2

)
m1

]
δm2,m1

+

[
−1

4
δρ2 eBz

2ch̄
− δ

4
ρ

∂
∂ρ

+
δ
4
(m1 −3)

]
δm2,m1−2

+

[
−1

4
δρ2 eBz

2ch̄
+

δ
4

ρ
∂

∂ρ
+

δ
4
(m1 +3)

]
δm2,m1+2

}
. (A.44)

We can separating the right side of Eqs. (A.40) and (A.44) into three parts and labeling them

104



hD
1 , hD

2 , hD
3 , h

′D
1 , h

′D
2 and h

′D
3 , where

hD
1 = 2αsσz

[(
− a1

ρ2 +a2ρ2 +
δ
2

ρ2
)

eBz

2ch̄
+

(
a1

ρ4 −a2 −
δ
2

)
m2

]
δm2,m1, (A.45)

hD
2 = 2αsσz

[
1
4

δρ2 eBz

2ch̄
− δ

4
ρ

∂
∂ρ

− δ
4
(m2 +3)

]
δm2,m1+2, (A.46)

hD
3 = 2αsσz

[
1
4

δρ2 eBz

2ch̄
+

δ
4

ρ
∂

∂ρ
− δ

4
(m2 −3)

]
δm2,m1−2, (A.47)

h
′D
1 = 2αsσz

[(
− a1

ρ2 +a2ρ2 +
δ
2

ρ2
)

eBz

2ch̄
+

(
a1

ρ4 −a2 −
δ
2

)
m1

]
δm2,m1, (A.48)

h
′D
2 = 2αsσz

[
−1

4
δρ2 eBz

2ch̄
− δ

4
ρ

∂
∂ρ

+
δ
4
(m1 −3)

]
δm2,m1−2 (A.49)

and

h
′D
3 = 2αsσz

[
−1

4
δρ2 eBz

2ch̄
+

δ
4

ρ
∂

∂ρ
+

δ
4
(m1 +3)

]
δm2,m1+2. (A.50)

We draw a simple matrix, with m running from −1 to 1, n= 0, where the elements are organized

in the following position: the first 3x3 block correspond to the spin up and the second, to spin

down

Mm1,m2 =
1
2



hD
1 +h

′D
1 0 hD

2 +h
′D
3 0 0 0

0 hD
1 +h

′D
1 0 0 0 0

hD
3 +h

′D
2 0 hD

1 +h
′D
1 0 0 0

0 0 0 −(hD
1 +h

′D
1 ) 0 −(hD

2 +h
′D
3 )

0 0 0 0 −(hD
1 +h

′D
1 ) 0

0 0 0 −(hD
3 +h

′D
2 ) 0 −(hD

1 +h
′D
1 )


(A.51)

While for Eq. (A.41) (⟨Ψ∗
m1
|HR|Ψm2⟩)†=⟨Ψ∗

−m2
|(HR)

†|Ψ−m1⟩=h
′
R(m2,m1)

h
′
R = −αs

∂V
∂ z

{
(−σ−)

[
∂

∂ρ
− (−m1 −1)

ρ
+

e(−Bz)

2ch̄
ρ
]

δ−m2,−m1−1

− (−σ+)

[
∂

∂ρ
+

(−m1 +1)
ρ

− e(−Bz)

2ch̄
ρ
]

δ−m2,−m1+1

}
(A.52)
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or

h
′
R = −αs

∂V
∂ z

{
(−σ−)

[
∂

∂ρ
+

(m1 +1)
ρ

− e(Bz)

2ch̄
ρ
]

δm2,m1+1

+ (σ+)

[
∂

∂ρ
− (m1 −1)

ρ
+

e(Bz)

2ch̄
ρ
]

δm2,m1−1

}
. (A.53)

Calling now

hR1 =−αs
∂V
∂ z

σ+

[
∂

∂ρ
− (m2 −1)

ρ
+

eBz

2ch̄
ρ
]

δm2,m1−1 (A.54)

hR2 = αs
∂V
∂ z

σ−

[
∂

∂ρ
+

(m2 +1)
ρ

− eBz

2ch̄
ρ
]

δm2,m1+1 (A.55)

h
′
R1

= αs
∂V
∂ z

σ−

[
∂

∂ρ
+

(m1 +1)
ρ

− e(Bz)

2ch̄
ρ
]

δm2,m1+1 (A.56)

h
′
R2

=−αs
∂V
∂ z

σ+

[
∂

∂ρ
− (m1 −1)

ρ
+

e(Bz)

2ch̄
ρ
]

δm2,m1−1 (A.57)

In the matrix these elements would appear as

Mm1,m2 =
1
2



0 0 0 0 0 0

0 0 0 hR1 +h
′
R2

0 0

0 0 0 0 hR1 +h
′
R2

0

0 hR2 +h
′
R1

0 0 0 0

0 0 hR2 +h
′
R1

0 0 0

0 0 0 0 0 0


(A.58)
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A.2 Angular Momentum Selection Rules

The section rules for angular momentum are

∫
0

2π
eim1φe−im2φdφ = 2πδm2,m1 (A.59)

∫
0

2π
eim1φ ∂

∂φ
e−im2φdφ =−2πim2δm2,m1 (A.60)

∫
0

2π
eim1φ ∂ 2

∂ 2φ
e−im2φdφ =−2πm2

2δm2,m1 (A.61)

∫
0

2π
eim1φe±iφe−im2φdφ = 2πδm2,m1±1 (A.62)

∫
0

2π
eim1φe±iφ ∂

∂φ
e−im2φdφ =−2πi(m2 ±1)δm2,m1±1 (A.63)

∫
0

2π
eim1φ cosφe±iφe−im2φdφ = πδm2,m1±0,2 (A.64)

∫
0

2π
eim1φ cosφe±iφ ∂

∂φ
e−im2φdφ =−iπm2δm2,m1±0,2 (A.65)

∫
0

2π
eim1φ cos3 φe±iφe−im2φdφ =

3π
4

δm2,m1±0,2 +
π
4

δm2,m1∓2 +
π
4

δm2,m1±4 (A.66)

∫
0

2π
eim1φ cos3 φe±iφ ∂

∂φ
e−im2φdφ =−3π

4
im2δm2,m1±0,2−

π
4

δm2,m1∓2−
π
4

im2δm2,m1±4 (A.67)

∫
0

2π
eim1φ sinφe±iφe−im2φdφ =±πiδm2,m1 ∓πiδm2,m1±2 (A.68)

∫
0

2π
eim1φ sinφe±iφ ∂

∂φ
e−im2φdφ =±πm2δm2,m1 ∓πm2δm2,m1±2 (A.69)

∫
0

2π
eim1φ sin2 φ cosφe±iφe−im2φdφ =

π
4

δm2,m1 +
π
4

δm2,m1±2

− π
4

δm2,m1∓2 −
π
4

δm2,m1±4 (A.70)

∫
0

2π
eim1φ sin2 φ cosφe±iφ ∂

∂φ
e−im2φdφ = −π

4
im2δm2,m1 −

π
4

im2δm2,m1±2

+
π
4

im2δm2,m1∓2 +
π
4

im2δm2,m1±4 (A.71)
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Appendix B

TILTED MAGNETIC FIELD

To build a Hamiltonian considering a tilted magnetic field, B⃗, we will assume that it is

applied in the xz plane with an angle θ with respect to the growth direction (z-direction),

B⃗ = Bsin(θ)î+Bcos(θ)k̂ (B.1)

This tilted magnetic field affects the kinetic part of the Hamiltonian,

H =
1

2µ∗ |p⃗− eA⃗|2, (B.2)

where the potential vector A⃗ is related to the field by

B⃗ = ∇⃗× A⃗. (B.3)

To solve the Hamiltonian of Eq. (B.2), we employ the following Gauge

A⃗ =
Bz

2
(−y,x,0)+Bx(0,−z,0) (B.4)

where Bx = Bsin(θ) and Bz = Bcos(θ) and we get the following result

H =
1

2µ∗

(
ih̄

∂
∂x

+ e
Bz

2
y
)2

+
1

2µ∗

(
ih̄

∂
∂y

− e
Bz

2
x− eBxz

)2

+
pz

2

2µ∗ (B.5)

The above equation, can be rewritten in cylindrical coordinates, using

kx =−ih̄
∂
∂x

+ e
Bz

2
y, (B.6)
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ky =−ih̄
∂
∂y

− e
Bz

2
x− eBxz (B.7)

and

A⃗ =
Bz

2
ρφ̂ −Bxz(sin(φ)ρ̂ + cos(φ)φ̂). (B.8)

The Hamiltonian in cylindrical coordinates will be

H =
1

2µ∗

{
−h̄2∇2 +2ieh̄

[
Bz

∂
∂φ

+ zBx

(
sin(φ)

∂
∂ρ

+
cos(φ)

ρ
∂

∂φ

)]}
+

1
2µ∗

(
e2B2

z ρ2

4
+ e2B2

xz2 + e2BzBxzρ cos(φ)
)
. (B.9)

or

H = − h̄2

2µ∗

[
1
ρ

∂
∂ρ

(
ρ

∂
∂ρ

)
+

1
ρ2

∂ 2

∂φ2 +
∂ 2

∂ z2

]
+

ieh̄Bz

2µ∗
∂

∂φ
+

e2B2
z ρ2

8µ∗ +VQW (z)

− ieh̄zBx

µ∗

(
sin(φ)

∂
∂ρ

+
cos(φ)

ρ
∂

∂φ

)
+

1
2µ∗

(
e2B2

xz2 − e2BzBxzρ cos(φ)
)

(B.10)

The Hamiltonian, H = HBz +HBρz , can then be separated into the contribution due to a perpen-

dicular magnetic field,

HBz =− h̄2

2µ∗

[
1
ρ

∂
∂ρ

(
ρ

∂
∂ρ

)
+

1
ρ2

∂ 2

∂φ2 +
∂ 2

∂ z2

]
+

ieh̄Bz

2µ∗
∂

∂φ
+

e2B2
z ρ2

8µ∗ +VQW (z) (B.11)

and the terms due to the in-plane component

HBρz =− ieh̄zBx

µ∗

(
sin(φ)

∂
∂ρ

+
cos(φ)

ρ
∂

∂φ

)
+

1
2µ∗

(
e2B2

xz2 − e2BzBxzρ cos(φ)
)

(B.12)

B.1 Zeeman Splitting due to Tilted Magnetic Field

The applied magnetic field breaks the spin degeneracy and the induced Zeeman splitting

due to the tilted magnetic field is given by

HZS =
gµB

2
B⃗ · σ⃗ , (B.13)
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or

HZS =
gµB

2
(Bxσx +Byσy +Bzσz) . (B.14)

Using the relations σx = σ++σ− and σy =−i(σ+−σ−)

HZS =
gµB

2
(Bx(σ++σ−)− iBy(σ+−σ−)+Bzσz) (B.15)

B.2 SO Due to Tilted Magnetic Field

The tilted field contribution to the SO Hamiltonian is introduced by just replacing, in Eq.

(A.7) (Appendix I), kx, ky and kz by k′x, k′y and k′z, respectively, where

k′x = kx, (B.16)

k′y = ky −
ezBx

ch̄
(B.17)

and

k′z = kz. (B.18)

Thus, the Eq. (A.5) (Appendix I) becomes

HT F
SIA = αs

[(
σx

∂V
∂y

−σy
∂V
∂x

)
k′z +

∂V
∂ z

(
σykx′ −σxky′

)
+σz

(
∂V
∂x

ky′ −
∂V
∂y

k′x

)]
(B.19)

which in terms of kx, ky and kz is

HT F
SIA = αs

[(
σx

∂V
∂y

−σy
∂V
∂x

)
kz +

∂V
∂ z

[
σykx −σx

(
ky −

ezBx

ch̄

)]
+ σz

[
∂V
∂x

(
ky −

ezBx

ch̄

)
− ∂V

∂y
kx

]]
(B.20)

After some algebra

HT F
SIA = αs

[(
σx

∂V
∂y

−σy
∂V
∂x

)
kz +

∂V
∂ z

(σykx −σxky)

+ σz

(
∂V
∂x

ky −
∂V
∂y

kx

)]
+αs

(
∂V
∂ z

σx
ezBx

ch̄
− ∂V

∂x
σz

ezBx

ch̄

)
(B.21)
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or in a simplified way

HT F
SIA = HSIA +αs

(
∂V
∂ z

σx
ezBx

ch̄
− ∂V

∂x
σz

ezBx

ch̄

)
, (B.22)

where the terms can be labeled as

HD(T F)
SIA =−αs

∂V
∂x

σz
ezBx

ch̄
(B.23)

and

HT F
R = αs

∂V
∂ z

σx
ezBx

ch̄
= αs

∂V
∂ z

(σ++σ−)
ezBx

ch̄
. (B.24)

111



Appendix C

PARAMETERS OF In0.36Ga0.64As AND

In0.36Ga0.64As0.088N0.012 CALCULATED

BY LINEAR INTERPOLATION

Table C.1: Calculated parameters for the samples In0.36Ga0.64As and
In0.36Ga0.64As0.088N0.012 [1]

Parameters GaN GaAs InAs InN In0.36Ga0.64As In0.36Ga0.64As0.988N0.012
Eg(eV ) 3.299 1.519 0.417 1.94 1.0106 0.9503
ac(eV ) -2.2 -7.17 -5.08 -1.85 -6.417 -6.365
av(eV ) -0.69 -1.16 -1.00 -0.70 -1.102 -1.097
b(eV ) -2.20 -2.00 -1.80 -1.20 -1.928 -1.927
d(eV ) -3.4 -4.8 -3.6 -9.3 -4.368 -4.382

c11(GPa) 293 1221 833 187 1081 1071
c12(GPa) 159 566 453 125 525 521
c44(GPa) 155 600 396 86 526 522

a(nm) 0.452 0.565 0.606 0.498 0.580 0.578
m∗ 0.15 0.067 0.026 0.12 0.052 0.053
γ1 2.67 6.98 20.0 3.72 11.67 11.56
γ2 0.75 2.06 8.5 1.26 4.38 4.34
γ3 1.10 2.93 9.2 1.63 5.19 5.14
g - -0.44 -15 - -5.68 -
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Appendix D

MATRIX ELEMENTS FOR QR

LUTTINGER HAMILTONIAN

Luttinger Hamiltonian

H(m) =


H1,1 H1,2 H1,3 0

H2,1 H2,2 0 H2,4

H3,1 0 H3,3 H3,4

0 H4,2 H4,3 H4,4

 . (D.1)

The Hilbert space of solutions can be separated into orthogonal subspaces according to the

wavenumber m, where the matrix elements are given by

H1,1 =
2π h̄2

2m0
(γ1 + γ2)

[
∂ 2

∂ρ2 +
1
ρ

∂
∂ρ

− m2

ρ2

]
+

2π h̄2

2m0
(γ1 −2γ2)

∂ 2

∂ z2 +V (r);

H2,2 =
2π h̄2

2m0
(γ1 − γ2)

[
∂ 2

∂ρ2 +
1
ρ

∂
∂ρ

− (m−1)2

ρ2

]
+

2π h̄2

2m0
(γ1 +2γ2)

∂ 2

∂ z2 +V (r);

H3,3 =
2π h̄2

2m0
(γ1 − γ2)

[
∂ 2

∂ρ2 +
1
ρ

∂
∂ρ

− (m−2)2

ρ2

]
+

2π h̄2

2m0
(γ1 +2γ2)

∂ 2

∂ z2 +V (r);

H4,4 =
2π h̄2

2m0
(γ1 + γ2)

[
∂ 2

∂ρ2 +
1
ρ

∂
∂ρ

− (m−3)2

ρ2

]
+

2π h̄2

2m0
(γ1 −2γ2)

∂ 2

∂ z2 +V (r);
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H1,2 =−2π
h̄2√3γ3

4m0

[
∂ 2

∂ z∂ρ
− m−1

ρ
∂
∂ z

]
;

H1,3 = 2π
h̄2√3
4m0

(γ2 + γ3)×
[
− ∂ 2

∂ 2ρ
+

2m−3
ρ

∂
∂ρ

− 1
ρ2 (m

2 −2m)

]
;

H2,1 =−2π
h̄2√3γ3

4m0

[
∂ 2

∂ z∂ρ
+

m
ρ

∂
∂ z

]
;

H2,4 = 2π
h̄2√3
4m0

(γ2 + γ3)×
[
− ∂ 2

∂ 2ρ
+

(2m−5)
ρ

∂
∂ρ

− 1
ρ2 (m

2 −4m+3)
]

;

H3,1 = 2π
h̄2√3
4m0

(γ2 + γ3)×
[
− ∂ 2

∂ 2ρ
+

1−2m
ρ

∂
∂ρ

− 1
ρ2 (m

2 −2m)

]
;

H3,4 =−2π
h̄2√3γ3

4m0

[
∂ 2

∂ z∂ρ
+

m−3
ρ

∂
∂ z

]
;

H4,2 = 2π
h̄2√3
4m0

(γ2 + γ3)×
[
− ∂ 2

∂ 2ρ
+

3−2m
ρ

∂
∂ρ

− 1
ρ2 (m

2 −4m+3)
]

;

H4,3 =−2π
h̄2√3γ3

4m0

[
∂ 2

∂ z∂ρ
+

m−2
ρ

∂
∂ z

]
. (D.2)
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