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RESUMO 

MORITA, L. H. M.. Modelagem de degradação para análise de confiabilidade com 
estrutura dependente do tempo baseada na distribuição gaussiana inversa. 2017. 131 p. 
Tese (Estatística - Programa Interinstitucional de Pós-Graduação em Estatística) - 
Departamento de Estatística - DEs-UFSCar e Instituto de Ciências Matemáticas e de 
Computação - ICMC-USP, São Carlos - SP. 

As técnicas convencionais de análise de confiabilidade são voltadas para a ocorrência de falhas 
ao longo do tempo. Contudo, em determinadas situações nas quais a ocorrência de falhas é 
pequena ou quase nula, a estimação das quantidades que descrevem os tempos de falha fica 
comprometida. Neste contexto foram desenvolvidos os modelos de degradação, que possuem 
como dado experimental não a falha, mas sim alguma característica mensurável a ela atrelada. 
A análise de degradação pode fornecer informações sobre a distribuição de vida dos 
componentes sem realmente observar falhas. Assim, nesta tese nós propusemos diferentes 
metodologias para dados de degradação baseados na distribuição gaussiana inversa. 
Inicialmente, nós introduzimos o modelo de taxa de deterioração gaussiana inversa para dados 
de degradação e um estudo de suas propriedades assintóticas com dados simulados. Em 
seguida, nós apresentamos um modelo de processo gaussiano inverso com fragilidade 
considerando que a fragilidade é uma boa ferramenta para explorar a influência de covariáveis 
não observadas, e um estudo comparativo com o processo gaussiano inverso usual baseado em 
dados simulados foi realizado. Também mostramos um modelo de mistura de processos 
gaussianos inversos em testes de burn-in, onde o principal interesse é determinar o tempo de 
burn-in e o ponto de corte ótimo para separar os itens bons dos itens ruins em uma linha de 
produção, e foi realizado um estudo de má especificação com os processos de Wiener e 
gamma. Por fim, nós consideramos um modelo mais flexível com um conjunto de pontos de 
corte, em que as probabilidades de má classificação são estimadas através do método exato 
com distribuição gaussiana inversa bivariada ou em um método aproximado baseado na teoria 
de cópulas. A aplicação da metodologia foi realizada com três conjuntos de dados reais de 
degradação de componentes de LASER, rodas de locomotivas e trincas em metais. 

Palavras-chave: Análise de degradação, Distribuição gaussiana inversa, Processo gaussiano 
inverso, Fragilidade, Testes de burn-in. 





ABSTRACT 
 
 

MORITA, L. H. M.. Degradation modeling for reliability analysis with time-dependent 
structure based on the inverse gaussian distribution. 2017. 131 p. Thesis (Statistics - 
Programa Interinstitucional de Pós-Graduação em Estatística) - Departamento de Estatística - 
DEs-UFSCar and Instituto de Ciências Matemáticas e de Computação - ICMC-USP, São 
Carlos - SP. 
 
 
Conventional reliability analysis techniques are focused on the occurrence of failures over 
time. However, in certain situations where the occurrence of failures is tiny or almost null, the 
estimation of the quantities that describe the failure process is compromised. In this context the 
degradation models were developed, which have as experimental data not the failure, but some 
quality characteristic attached to it. Degradation analysis can provide information about the 
components lifetime distribution without actually observing failures. In this thesis we proposed 
different methodologies for degradation data based on the inverse Gaussian distribution. 
Initially, we introduced the inverse Gaussian deterioration rate model for degradation data and 
a study of its asymptotic properties with simulated data. We then proposed an inverse Gaussian 
process model with frailty as a feasible tool to explore the influence of unobserved covariates, 
and a comparative study with the traditional inverse Gaussian process based on simulated data 
was made. We also presented a mixture inverse Gaussian process model in burn-in tests, 
whose main interest is to determine the burn-in time and the optimal cutoff point that screen 
out the weak units from the normal ones in a production row, and a misspecification study was 
carried out with the Wiener and gamma processes. Finally, we considered a more flexible 
model with a set of cutoff points, wherein the misclassification probabilities are obtained by 
the exact method with the bivariate inverse Gaussian distribution or an approximate method 
based on copula theory. The application of the methodology was based on three real datasets in 
the literature: the degradation of LASER components, locomotive wheels and cracks in metals. 
 
 
Keywords: Degradation analysis, Inverse gaussian distribution, Inverse gaussian process, 
Frailty, Burn-in tests. 
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CHAPTER

1
INTRODUCTION

1.1 Introduction and bibliographical review

Highly reliable products present a few or no failures, then it is difficult or impossible
to access reliability with traditional life tests that record only time-to-failure. However, when
failure can be related directly to a quality characteristic (QC) over time, we then have the
possibility of measuring degradation over time and use it to estimate the product’s reliability. It is
possible to access the latent failure process characteristics and make inferences about the implied
lifetime distribution. Some degradation studies consist in measuring physical degradation as
a function of time (e.g., tire wear); in other applications it cannot be observed directly, but
some measurements of product performance degradation (e.g., power output) may be available.
Moreover, degradation analysis can have one or more variables in the underlying degradation
process. Other applications of reliability prediction based on degradation modeling include
reliability prediction of helicopter transmission systems, optimal degradation process control,
reliability evaluation of distribution systems with aging equipment, reliability estimation of
degraded structural components subject to corrosion, real-time conditional reliability prediction
from online tool performance data (WANG; COIT, 2007) and degradation of nuclear power plant
components (YUAN, 2007).

In reliability engineering there are two main classes of models, namely, the threshold
models and the shock models; the striking difference between them is the way the failure
is characterized. In the threshold models, a component reveals performance loss when its
degradation level first reaches a certain threshold; this phenomenon is referred to as soft failure
and the unit is usually switched off. In the shock models, a component is subject to external
shocks, being able to survive or to fail; the eventual failures are referred to as hard failures or
traumatic failures and the shocks usually occur according to a Poisson process whose intensity
depends on degradation and environmental factors (LEHMANN, 2010). Within the class of
threshold models, we can cite the general path model and the stochastic process models. The
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general path model proposed by Meeker, Escobar and Lu (1998) fits the degradation observations
by a regression model with random coefficients, while the stochastic process models consider the
degradation over time as a stochastic process {D(t); t > 0} to account for inherent randomness.
Gorjian et al. (2010) presented a review of degradation models, with advantages and limitations.

In the literature of the general path model, we can cite Oliveira and Colosimo (2004)
that used the classical approach in automobile tyre wear data, with analytical, numerical and
approximate estimation methods to obtain the time-to-failure distribution and presented some
comparisons; Peng and Tseng (2009) proposed a general linear degradation path in which
the unit-to-unit variation of all test units can be considered simultaneously with the time-
dependent structure in degradation paths. They derived an explicit expression of the product’s
lifetime distribution and its corresponding meantime to failure and analyzed the effects of model
misspecification on these parameters. Freitas et al. (2010) presented a comprehensive study
of various approaches for degradation data concerning the classical and Bayesian ones. Chen
and Zheng (2005) proposed an alternative method which consists in making inference directly
on the lifetime distribution itself. Zuo, Jiang and Yam (1999) introduced three approaches
for reliability modeling of continuous state devices based on the random process model, the
general path model and the multiple linear regression model, respectively. They also proposed a
mixture model which can be used to model both catastrophic failures and degradation failures.
Meeker, Escobar and Lu (1998) reviewed the literature concerning accelerated degradation
analysis and extended the approach of Lu and Meeker (1993) to allow for acceleration. Crk
(2000) developed a methodology based on a multiple multivariate regression model for the
component performance degradation function whose parameters may be random, correlated and
stress dependent. Chinnam (1999) used neural networks for modeling degradation signals and
Eghbali and Elsayed (2001) developed a concept of degradation rate in which the degradation
hazard function is written in terms of time and degradation measure.

The random deterioration rate model is a specific stochastic model usually applied to
model corrosion and wear phenomena; see Fenyvesi, Lu and Jack (2004), EPRI (2006) and
Huyse and Roodselaar (2010). The motivation in the random variable model is to capture the
randomness in the individual differences across population. This model incorporates only sample
uncertainty of the degradation and no temporal variability is involved. The measurement error
models appear to work around this issue. Pandey and Lu (2013) developed a methodology for
the estimation of the growth rate parameters in noisy degradation measurement data, whose
random sizing error occurs due to inspection tools. They assigned the exponential and gamma
distributions to the deterioration rate, and normal distribution to the measurement errors.

The degradation models based on stochastic processes are very intuitive since degradation
is a continuous process of wear over time. Based on the assumption of additive accumulation of
degradation, two classes of degradation models have been well studied, namely, the Wiener and
the gamma processes. Several papers in the literature assume the degradation paths to follow the
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Wiener process, for example, Doksum (1991) used a Wiener process with accelerating factors
to analyze degradation data, Wang (2010) presented a Wiener process with random effects for
degradation data. In the Wiener process the sample paths are not necessarily monotone, which
might not be meaningful in many applications.

As an alternative, the gamma process is often adopted when monotonicity is required.
The gamma process is the limit of a compound Poisson process with the jump size conforming to
a certain distribution (LAWLESS; CROWDER, 2004). This interpretation underpins the gamma
process as an appropriate degradation model because many reliability engineers believe that
degradation is often caused by a series of external shocks, each with random and tiny damage
(ESARY; MARSHALL, 1973). The gamma process has therefore been discussed by several
authors, for example, Noortwijk (2009) made a comparative study between gamma process and
random variable models in which the first one provided advantages for taking into account the
time-dependent structure inherent in degradation data. Park and Padgett (2005) presented new
degradation models incorporating accelerating variables in stochastic processes including gamma
process and Wang (2008) proposed an estimation method grounded on the semiparametric
pseudo-likelihood for modeling degradation data through gamma process with random effects
model.

Another degradation model with monotone paths is the inverse Gaussian process intro-
duced by Wasan (1968) with some recent papers in the literature, for example, Wang and Xu
(2010) proposed an inverse Gaussian process with random effects and covariates to account
for heterogeneity. Ye and Chen (2014) regarded the inverse Gaussian process as the limit of a
compound Poisson process whose arrival rate goes to infinity while the jump size goes to zero in
a certain way; they included a random drift in the mean function of the inverse Gaussian process,
leading to individual degradation paths with different slopes. Peng (2015) proposed a degradation
model based on an inverse normalgamma mixture of an inverse Gaussian process. Qin, Zhang
and Zhou (2013) introduced an inverse Gaussian process-based model with Bayesian approach
to characterize the growth of metal loss corrosion defects on energy pipelines, wherein the
measurement errors in the paths are considered. Liu et al. (2014) developed a reliability model
for systems with s-dependent degradation processes using copulas, wherein the degradation
processes are s-dependent among each other and the marginal degradation process is modeled
by an inverse Gaussian process with time scale transformation and random drift to account for
possible heterogeneity.

The frailty model is a specific approach to include randomness which allows us to
incorporate the variability of the observed times coming from two distinct fonts. The first is the
natural variability, which is explained by the hazard function, and the second is the common
variability of the individuals from the same group or the broach variability of the several events
of the same individual, which is explained by the frailty variable. Vaupel, Manton and Stallard
(1979) coined the phrase “frailty” in connection with a particular version of such a stochastic
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model, in which the individual i was assumed to have death intensity zih0(t) at age t where the
random variable zi (the “frailty”) is assumed to follow gamma distribution. The assumptions that
the frailty term is time independent and acts multiplicatively on an underling intensity h0(t) are
in principle arbitrary, but have been taken as the basis for much subsequent work on random
heterogeneity in survival analysis. The frailty models are likely to be particularly useful for
modeling multivariate survival times, whether “serial” or “parallel” (OAKES, 1989). Hougaard
(1986) pointed out the double role of the frailty distribution with finite mean in describing both
nonproportionality and interclass correlation. Unkel and Farrington (2012) provided a useful
representation of bivariate current status data to facilitate the choice of a frailty model. In the
context of degradation analysis, we can cite interesting papers, for example, Lin, Pulido and
Asplund (2014) reported an accelerated failure time (AFT) model with frailty for the analysis of
locomotive wheel’s degradation under piecewise constant hazard rate and gamma frailty; and Lin
and Asplund (2014) presented a similar approach under Weibull baseline hazard rate. In these
works, the lifetime information are based on the pseudo lifetimes, which are obtained when we
assume some standard form for the degradation rate such as, for example, linear, exponential or
power law.

Burn-in test is a technique applied to increase the quality of components and systems
by testing the units before fielding them in the market. The traditional burn-in tests consist
in putting the units to operate under certain conditions wherein failures are expected to occur.
These tests are inefficient for highly reliable products among which even the weak units take a
long time to fail. The condition-based burn-in tests arise to work around this issue, where a QC
related to failure is chosen and the units with deterioration levels below a specified cutoff value
are considered normal units and released to field service, whereas the ones with deterioration
levels exceeding this cutoff point are considered weak ones and discarded. In the last decades,
the manufacturing industry has been dedicating much effort in designing burn-in policies that
eliminate latent failures before fielding them in the market. Such failures that generally occur
in a small proportion among the manufactured products are caused by manufacturing defects
and lead to high warranty and replacement costs. Many burn-in policies have been extensively
studied in the degradation literature; see for example Jensen (1982), Kuo (1984) and Leemis and
Beneke (1990).

The use of mixture distributions is an important feature in burn-in policies because the
components lifetime distribution is commonly bimodal from a mixture of two distributions, in
which the weak units tend to fail earlier than the normal ones and the degradation values may
present bimodal behavior as well. This heterogeneity is often caused either by the manufacturing
process with variation of material flaws or by the fact that the components come from different
suppliers. Burn-in policies are liable to misclassification errors, which are of much importance
in burn-in studies. Tseng, Tang and Ku (2003) designed an economic model based on misclas-
sification errors, and set up an optimal burn-in policy based on termination time and a set of
cutoff points, whose degradation paths are modeled by a mixture of two Wiener processes. Tseng
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and Peng (2004) studied an efficient burn-in procedure based on an integrated Wiener process
for the cumulative degradation and Wu and Xie (2007) suggested the use of receiver operating
characteristic (ROC) for the removal of the weak group from the production row; Tsai, Tseng
and Balakrishnan (2011) proposed a mixed gamma process for modeling degradation paths and
presented an optimal burn-in policy for classifying LASER components based on a cost model.
Zhang, Ye and Xie (2015) presented a mixed inverse Gaussian process for degradation data,
wherein the optimal burn-in policy to screen out the components are based on burn-time and a
single cutoff point in the decision rule. Xiang, Coit and Feng (2013) developed a burn-in policy
for preventive replacement of devices consisting of n subpopulations from various stochastic
processes with different degradation rates. They used mixtures of Wiener and gamma processes
models and presented some comparisons.

1.2 Objectives of the thesis

The purpose of this study is to show the different methodologies for modeling degradation
data. Some specific objectives are specified below:

4 To introduce an inverse Gaussian distribution in the random deterioration rate model
with measurement errors in order to take into account the variability among different
components,

4 To introduce a frailty term in the degradation modeling in order to take into account
the unobserved heterogeneity or the dependence between the measurements of the same
experimental unit, even as the presence of unobserved variables in practice,

4 To present a decision rule for classifying a unit as normal or weak, based on burn-in time
and a set of cutoff points.

1.3 Organization of the chapters

This thesis is organized as follows.

In the second chapter we introduce the concept of degradation data and the main continu-
ous processes for degradation data known in the literature, the frailty model and the selection
models criteria with a brief description.

In the third chapter we propose a random deterioration rate model based on the inverse
Gaussian distribution to account for both sampling and temporal variability associated with a
deterioration process.

In the fourth chapter we propose an inverse Gaussian process frailty model in order to
capture the variability among different units and within the same unit.
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In the fifth chapter we introduce the concepts of mixture inverse Gaussian process,
burn-in test and burn-in policy, where the main objective is to screen out the weak units from
the normal ones in a production row. An economic model is set for determining the optimal
termination time and the other parameters of a burn-in test.

In the sixth chapter we present a general and more flexible burn-in policy under the
mixture inverse Gaussian process, in which the decision rule to separate the weak units from the
normal ones is based on burn-in time and a set of cutoff points.

Finally, in the seventh chapter we present the conclusion of this thesis and the ideas for
future research, followed by the bibliographic references.
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CHAPTER

2
BACKGROUND

2.1 Introduction
In this chapter, we present some features of degradation data and degradation processes

in reliability analysis, followed by a brief description of frailty models and model selection
criteria.

2.2 Degradation data
In a degradation test, we can observe n experimental units during a fixed period of

time. Commonly, we collect the measurements in equidistant time intervals. For each unit i, we
have the observed degradation measurements at the inspection times 0 = ti0 < ti1 < .. . < tini ,
with observations Di(ti j), j = 0,1, . . . ,ni. The vector of measurements for each unit i is called
degradation path and represented by Di ≡ [Di(ti1),Di(ti2), . . . ,Di(tini)]. Table 1 shows the general
representation of degradation data.

Table 1 – General representation of degradation data.

unit Inspection times degradation measures
1 t10 = 0, t11, . . . , t1n1 D1 ≡ [D1(t10) = 0,D1(t11), . . . ,D1(t1n1)]
2 t20 = 0, t21, . . . , t2n2 D2 ≡ [D2(t20) = 0,D2(t21), . . . ,D2(t2n2)]
. . . . . . . . .
n tn0 = 0, tn1, . . . , tnnn Dn ≡ [Dn(tn0) = 0,Dn(tn1), . . . ,Dn(tnnn)]

In several problems the inspections 0 = ti0 < ti1 < .. . < tini are in time scale, but other
problems exhibit the degradation in function of a variable other than the time.

The examples 2.2.1, 2.2.2 and 2.2.3 exhibit some datasets in the literature. The motivation
for these examples is that the degradation paths present increasing behavior, which is a striking
feature of the degradation models based on IG distribution.
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Example 2.2.1 (LASER data). Some devices for light amplification by stimulated emission,
called LASER (Light Amplification by Stimulated Emission of Radiation), present degradation
over time, which results in a reduction in the emitted light. This luminosity can be maintained
substantially constant with an increase in operating current. When this current reaches a very
high value, it is considered that the unit has failed. Meeker and Escobar (1998) presented a
study with degradation data of 15 LASER units from GaAs type (compound with Gallium and
Arsenic elements), with observations made up to 4,000 hours of operation, with 16 equidistant
time intervals. The degradation measure for each unit is the percent increase in current over
time related to the nominal current, and a unit is considered to have failed when its degradation
measure reaches 10%. Table 38 in Appendix B displays these data and Figure 1 (a) shows the
corresponding degradation paths, indicating the critical value related to failure. An interesting
feature of this dataset is the presence of soft failures because some components exceed the
boundary but remain until the end of the experiment. Soft failures cause a performance loss but
do not prevent the devices from continuing to run.

Example 2.2.2 (locomotive wheels data). Wheel failures account for much of the railroad
vehicle accidents, which lead to high costs for private companies and government. The railway
maintenance services are responsible for mechanical repairs of the locomotives and hold some
detailed information about preventive or corrective interventions. This dataset is part of a study
led by a Brazilian railroad company presented by Freitas et al. (2009) and containing the diameter
(in mm) of 14 locomotive wheels obtained from 13 inspections done up to 600,000 km travelled
in equidistant intervals. The degradation measure for each wheel is the wear (in mm) on the wheel
diameter over the travelled distance, more specifically, the difference between the actual wheel
diameter and the diameter of a new wheel (966 mm) over km travelled. A wheel is considered
not be working when its degradation measure reaches 77 mm, that is, when the wheel diameter is
far 77 mm from a new wheel. Table 39 in Appendix B displays these data and Figure 1 (b) shows
the corresponding degradation paths, indicating the boundary related to failure. The wheels that
reach the critical value remain until the subsequent inspection, when they are replaced due to
preventive measures.

Example 2.2.3 (fatigue crack size data). The fatigue crack size data presented by Hudak et al.

(1978) was collected to obtain the fatigue cracks as a function of the number of cycles of applied
stress for 21 test specimens. The data are explored by Lu and Meeker (1993) as a motivational
example in the context of nonlinear mixed effects models for degradation data. There are 21
sample paths, one for each of the 21 test units, the test stops after 0.12 million cycles and a
threshold value of 1.6 inches is set to define soft failures. Table 40 in Appendix B displays these
data and Figure 1 (c) shows the corresponding degradation paths, indicating the critical value
related to failure. Likewise the locomotive wheels example, a specimen does not continue in the
study whether it is noticed that its crack length has already exceeded the boundary.
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Figure 1 – (a) Degradation paths for example 2.2.1, (b) Degradation paths for example 2.2.2, (c) Degradation paths
for example 2.2.3.

2.3 The degradation model

In this work, the degradation path of a specific QC of a product is denoted by D(t), and
it is a continuous-time stochastic process {D(t), t ≥ 0}, that is, D(t) is a random quantity for all
t ≥ 0.

Usually, degradation has increasing behavior over time, then the product’s lifetime T is
suitably defined as the first passage time when D(t) exceeds a threshold ρ , which must be fixed
in general

T = in f {t ≥ 0|D(t)≥ ρ} . (2.1)

The formula (2.1) is referred to as the first passage time distribution, which plays
an important role in predicting the remaining useful life as well as in determining optimal
maintenance strategies (NOORTWIJK, 2009).

The aleatory uncertainties of a degradation process can be characterized using various
types of probabilistic models. In the context of stochastic processes, we can cite the random
deterioration rate model, the Wiener process, the gamma process and the inverse Gaussian
process. The following section presents a description of these stochastic processes with special
attention to the inverse Gaussian process and the inverse Gaussian distribution.
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2.4 Stochastic processes for degradation data

2.4.1 The random deterioration rate model

The most simple stochastic process is defined as a time-dependent function for which
the average rate of deterioration per unit time is a random quantity (NOORTWIJK, 2009). The
random deterioration rate model (or random rate model) describes the deterioration growth
in a group of components using a linear function and a random parameter. Many other more
complicated nonlinear models can be transformed into a linear random deterioration rate model
using a time-transformation. Here we consider a simple random deterioration rate model as

D(t) = Rt ≥ 0, with R > 0, (2.2)

where R is randomly distributed and reflects the uncertain nature of deterioration in a population
of similar components.

The random rate model presents advantages when the experiment is based on a few
inspections with no measurement errors due to its easy interpretation. However, when the number
of inspections is large, the individual deterioration rate surely varies with time and the inferences
for the parameters are inappropriate.

2.4.2 The Wiener process with drift

The Wiener process, also known as Brownian motion, is one of the most important
stochastic processes known in the literature. Originally introduced by Brown (1828) in the
study of microscopic particles movement suspended in liquid, it has its mathematical proper-
ties explored lately by Wiener (1923). The Wiener process is a continuous stochastic process
{D(t), t > 0}, whose degradation path is given by

D(t) = D(0)+ vt +σB(t), (2.3)

where D(0) is the starting point, v is the drift parameter, σ is the diffusion parameter and
B(t)∼ N(0, t) is referred to as standard Brownian motion.

It has the following properties

- Each increment Y = ∆D(t) in the time interval ∆t > 0 is normally distributed:

Y ∼ N
(
v∆t,σ2

∆t
)

;

- The increments are independent and stationary.

From Chhikara and Folks (1989), the first passage time (2.1) of a Wiener process with
positive drift (v > 0) is inverse Gaussian distributed:

T ∼ IG
(

ρ−D(0)
v

,
(ρ−D(0))2

σ2

)
.
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In this thesis, we consider the special case when D(0) = 0, which means that the degra-
dation paths have increasing behavior starting at the origin of the coordinate system.

2.4.3 The gamma process

The gamma process is a continuous stochastic process {D(t); t ≥ 0} with shape function
ϕψψψ(t) and scale parameter υ (NOORTWIJK, 2009) given by

D(t)∼ Gamma
[
ϕψψψ(t),υ

]
, (2.4)

where ϕψψψ(.) is a monotone increasing function of time t indexed by the parameter vector ψψψ ,
with ϕψψψ(0) = 0.

It holds the following properties:

- D(0) = 0;

- Each increment Y = ∆D(t) in the time interval ∆t > 0 is gamma distributed:

Y ∼ Gamma
(
∆ϕψψψ(t),υ

)
,

where ∆ϕψψψ(t) is the increment of ϕψψψ(.) in the time interval ∆t;

- The increments are independent.

The increments are always positive with probability density function (PDF) given by

f (y) =
y∆ϕψψψ (t)−1

Γ[∆ϕψψψ(t)]υ∆ϕψψψ (t)
exp
(
− y

υ

)
.

Therefore, the mean and variance of the degradation increments are given by

E(y) = ∆ϕψψψ(t)υ and VAR(y) = ∆ϕψψψ(t)υ2.

2.4.4 The inverse Gaussian process

First we present a brief review of the inverse Gaussian distribution.

2.4.4.1 The inverse Gaussian distribution

The inverse Gaussian (IG) distribution has its PDF given by

fIG(y|µ,λ ) =

√
λ

2πy3 × exp
[
−λ (y−µ)2

2µ2y

]
, (2.5)

where y > 0, µ > 0 is the mean and λ > 0 is the shape parameter.
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Then we can write Y ∼ IG(µ,λ ) to indicate that the random variable Y is inverse
Gaussian distributed with mean µ and shape parameter λ .

The cumulative distribution function (CDF) of the IG distribution is given by

FIG(y|µ,λ ) = Φ

[√
λ

y

(
y
µ
−1
)]

+ exp
(

2λ

µ

)
Φ

[
−

√
λ

y

(
y
µ
+1
)]

, (2.6)

where Φ(.) is the standard normal CDF.

More references on theoretical results concerning the IG distribution can be found in
Seshadri (2012).

Figure 2 presents several scenarios for PDF and CDF of IG distribution.
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Figure 2 – (a) PDF of IG distribution under different scenarios, (b) CDF of IG distribution under different scenarios.

2.4.4.2 The inverse Gaussian process

An inverse Gaussian process (IGP) {D(t); t ≥ 0} with mean function gθθθ (t) and shape
parameter η is a continuous-time stochastic process given by

D(t)∼ IG
(
gθθθ (t),ηg2

θθθ
(t)
)
, (2.7)

where gθθθ (.) is a monotone increasing function of time t indexed by the parameter vector θθθ , with
gθθθ (0) = 0 and η > 0.

It possesses the following properties:

- D(0) = 0;

- The distribution of each increment Y = ∆D(t) in the time interval ∆t is given by

Y ∼ IG
(
∆gθθθ (t),η(∆gθθθ (t))

2) ,∀∆t ≥ 0,

where ∆gθθθ (t) of gθθθ (t) in the time interval ∆t.

- The increments are independent.
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The function gθθθ (t) has a meaningful interpretation being the mean function of IGP and
η is inversely proportional to the variance of IGP:

E(D(t)) = gθθθ (t) and VAR(D(t)) =
gθθθ (t)

η
.

2.4.4.2.1 Distribution of the degradation increments

The CDF of the degradation increment Y in the time interval ∆t is the probability of Y to
be lower than y, and come directly from CDF of IG distribution:

FIGP(y|∆gθθθ (t),η) = FIG(y|µ = ∆gθθθ (t),λ = η(∆gθθθ (t))
2)

= Φ

[√
η

y
(y−∆gθθθ (t))

]
+ exp(2η∆gθθθ (t))Φ

[
−
√

η

y
(y+∆gθθθ (t))

]
,

(2.8)

where FIG(.) is as given in (2.6).

From (2.8) we can build up an algorithm to generate degradation paths from IGP model,
which can be modified to a simpler form when dealing with softwares like R (R Core Team,
2016) and Ox (DOORNIK, 2009) which possess specific packages for generating random values
from IG distribution.

Algorithm 1 : Generating degradation paths from IGP
1 Fix values for n, gθθθ (.) and η ;
2 For each unit i, (1≤ i≤ n):

- Set ti0 = 0 and fix values for ni and ti1, . . . , tini;

- For each index j, (1≤ j ≤ ni):

- Compute ∆ti j = ti, j− ti, j−1 and ∆gθθθ (ti j) = gθθθ (ti, j)−gθθθ (ti, j−1);

- Generate a random number ui j from U(0,1);

- Solve the nonlinear equation for yi j: FIGP(yi j|∆gθθθ (ti j),η) = ui j;

- Compute the cumulative degradation values
di1 = yi1,di2 = yi1 + yi2 . . . ,dini = yi1 + . . .+ yini .

Therefore, the reliability function of the degradation increment Y is interpreted as the
probability of Y to be higher than y and is given by

RIGP(y) = 1−FIGP(y|∆gθθθ (t),η). (2.9)

This function has an inverse relationship with the component reliability because the
components with high degradation increments are prone to be less reliable and present early
failures.
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The PDF is given by

fIGP(y|∆gθθθ (t),η) = fIG(y|µ = ∆gθθθ (t),λ = η(∆gθθθ (t))
2)

=

√
η

2πy3 ∆gθθθ (t)exp
[
−η(y−∆gθθθ (t))2

2y

]
,

where fIG is as given in (2.5).

Another important function in reliability analysis is the intensity function

hIGP(y|∆gθθθ (t),η) =
fIGP(y|∆gθθθ (t),η)

RIGP(y|∆gθθθ (t),η)
. (2.10)

Additionally, the cumulative intensity function is given by the integral HIGP(y|∆gθθθ (t),η)=
y∫

0
hIGP(u|∆gθθθ (t),η)du, or equivalently

HIGP(y|∆gθθθ (t),η) =− log(RIGP(y|∆gθθθ (t),η)). (2.11)

These functions will be explored in the chapter 4 in the context of frailty models.

2.4.4.2.2 Lifetime distribution

Considering (2.1), the lifetime CDF is obtained directly from using the fact that the
cumulative degradation D(t) is the degradation increment in the time interval [0, t] and gθθθ (t) is
the increment of the mean function of IGP in this time interval

FTIGP(t) = 1−FIGP(y = ρ|gθθθ (t),η),where FIGP(.) is as given in (2.8)

= Φ

[
−
√

η

ρ
(ρ−gθθθ (t))

]
− exp(2ηgθθθ (t))Φ

[
−
√

η

ρ
(ρ +gθθθ (t))

]
. (2.12)

An interesting property from (2.12) turns up when ηgθθθ (t) is large, which happens
for large t values, then D(t) is approximately normal with mean gθθθ (t) and variance gθθθ (t)

η

(CHHIKARA; FOLKS, 1989). From Tang and Chang (1995), the CDF of T has Birnbaum-
Saunders distribution, which is a failure time model largely used in fatigue data problems
(DESMOND, 1985). Furthermore, the quantiles tp from the lifetime distribution are obtained
through the equation FTIGP(t) = p in (2.12).
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Therefore, the lifetime PDF is given by

fTIGP(t) =
∂FTIGP(t)

∂ t

= φ

[
−
√

η

ρ
(ρ−gθθθ (t))

]
∂gθθθ (t)

∂ t

√
η

ρ

−exp(2ηgθθθ (t))Φ
[
−
√

η

ρ
(ρ +gθθθ (t))

]
2η∂gθθθ (t)

∂ t

+exp(2ηgθθθ (t))φ
[
−
√

η

ρ
(ρ +gθθθ (t))

]
∂gθθθ (t)

∂ t

√
η

ρ
, (2.13)

where φ(.) is the standard normal PDF.

Note that (2.13) has closed form, unlike gamma process model, in which case the lifetime
PDF needs to be obtained through numerical methods; see Pandey and Noortwijk (2004).

Peng (2015) obtained the meantime to failure (MTTF) from (2.13), for special case when
gθθθ (t) = θ t, as

MTTF =
1
θ

√
ρ

η
φ(
√

ηρ)+

(
1

θη
+

ρ

θ

)
Φ(
√

ηρ)− 1
2θη

. (2.14)

2.4.4.2.3 Inference for unknown parameters in IGP model

The likelihood function for n units being observed at the inspection times ti j, j = 0, . . . ,ni

is given by

L(gθθθ (t),η) =
n

∏
i=1

ni

∏
j=1

√
η

2πy3
i j

∆gθθθ (ti j)exp
[
−

η(yi j−∆gθθθ (ti j))
2

2yi j

]
,

where ∆gθθθ (ti j) = gθθθ (ti j)−gθθθ (ti, j−1) is the observed increment of the mean function in the time
interval [t j−1, t j].

The corresponding log-likelihood function for n units up for a constant is given by

l(gθθθ (t),η) =
m
2

log(η)+
n

∑
i=1

ni

∑
j=1

log(∆gθθθ (ti j))−
η

2

n

∑
i=1

ni

∑
j=1

yi j

+η

n

∑
i=1

ni

∑
j=1

∆gθθθ (ti j)−
η

2

n

∑
i=1

ni

∑
j=1

(
∆gθθθ (ti j)

)2

yi j
, (2.15)

where m =
n
∑

i=1
ni.

The maximum likelihood estimates (MLEs) of the parameters can be obtained by the
maximization of (2.15). The interval estimates for the parameters can be based on the asymptotic
normal distribution of the MLEs.

Figure 3 shows some simulated degradation paths from the random rate model, Wiener,
gamma and IG processes models. Each chart consists of eight degradation paths, in which the
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time scale is set from 0 up to 4 with 16 equidistant intervals. The shape function for the gamma
process was specified as ϕψψψ(t) = ψt, ψ > 0 and the mean function for the IGP was specified as
gθθθ (t) = θ t, θ > 0. All the parameter values are exhibited in the charts.
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Figure 3 – Simulated degradation paths (a) random rate model (2.2), (b) Wiener process model (2.3), (c) gamma
process model (2.4), (d) IGP model (2.7).

From Figure 3 we can observe that the random rate model enables different degradation
slopes but does not account for temporal variability. The Wiener, gamma and IG processes show
no clear difference between the degradation slopes but account for temporal variability within
the paths. Moreover, the degradation paths from Wiener process can increase or decrease over
time, while the paths from gamma and IG processes always grow over time.

2.5 Frailty models
In reliability analysis, incorporating the unobserved heterogeneity among experimental

units is called frailty. In this thesis, the frailty term will act in the reliability of the equipments as
an unobserved covariate, helping in this way to estimate the population reliability function.

Clayton (1978) introduced a frailty term in the Cox model (COX, 1972) in a multiplicative
way, that is, the random variable representing the frailty, z, acts multiplicatively in the baseline
hazard function h0(t) then

h(t|z) = zh0(t). (2.16)

In the multiplicative frailty model (2.16), z is a positive unobservable random variable
called frailty that increases the individual hazard if z > 1 or decreases if z < 1. Intuitively,
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the greater the individual frailty, the greater the probability of failure (VAUPEL; MANTON;
STALLARD, 1979).

The individual hazard function h(t|z) is interpreted as the conditional hazard function
given z. Thus, the reliability function conditional to the frailty z is given by

R(t|z) = exp

− t∫
0

h(s|z)ds

= exp

−z
t∫

0

h0(s)ds

= exp [−zH0(t)] , (2.17)

where H0(t) is the cumulative baseline hazard function in time t.

The unconditional reliability function R(t) is obtained by integrating (2.17) out the frailty
component by means of the frailty PDF fααα(z), indexed by the parameter vector ααα

R(t) =
∞∫

0

R(t|z) fααα(z)dz =
∞∫

0

exp [−zH0(t)] fααα(z)dz, (2.18)

which can be obtained by Laplace transform (ABRAMOWITZ; STEGUN, 1972), stated below

Definition 2.5.1. Given a function f (x), the Laplace transform of f (x) with real argument s is
defined as

L [ f (x)](s) =
∞∫

0

exp(−sx) f (x)dx.

Therefore, the unconditional reliability function (2.18) can be rewritten as a Laplace
transform:

R(t) = L [ fααα(z)](H0(t)). (2.19)

The Laplace transform plays an important role in the context of frailty models as it
facilitates the achievement of unconditional reliability functions (WIENKE, 2010). In this thesis,
the Laplace transforms are obtained through Wolfram Mathematica software (RESEARCH,
2016).

A remarkable feature in frailty models is related to its identifiability. According to Elbers
and Ridder (1982), it is necessary that the distribution of the frailty term has finite expectation
and the variance of the frailty term is interpreted as a measure of population heterogeneity.
Because the frailty z is a positive random variable, we can consider different distributions such
as gamma, lognormal, IG, among others positive-valued distributions. General characteristics of
the distributions for the frailty term were studied by Hougaard (1995).

2.6 Model selection criteria
In order to make some comparisons between different models in the chapters along the

thesis, we introduce some known criteria in the literature with a brief description.
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The Akaike information criterion (AIC) (SAKAMOTO; ISHIGURO; KITAGAWA, 1986)
and the Bayesian information criterion (BIC)(SCHWARZ, 1978) are measures of relative quality
of a statistical model for a given dataset. The calculus of AIC and BIC are given by

AIC =−2log(L)+2p,

where L is the maximized value of likelihood function and p is the number of parameters in the
model.

BIC =−2log(L)+ p log(n),

where n is the sample size of the study.

Given a set of candidate models for the data, the preferred model is the one with the
minimum AIC and BIC values. These criteria not only reward goodness of fit, but also include a
penalty (they become bigger when we include more parameters in the model).



37

CHAPTER

3
THE RANDOM DETERIORATION RATE

MODEL BASED ON INVERSE GAUSSIAN
DISTRIBUTION

3.1 Introduction
In this chapter, we present the random deterioration rate model with measurement errors

in order to incorporate the variability among different components. The random rate analysis is
based on repeated measurements of flaw sizes created by a degradation process over time in a
components population. Some features of the random rate model based on IG distribution are
investigated. We conduct a simulation study to evaluate the behavior of the parameter estimators
and illustrate the potentiality of the proposed model with two real-world datasets.

3.2 The random deterioration rate model with
measurement errors

In engineering problems, usually data can neither be collected nor recorded precisely
due to various uncertainties such as human errors, machine errors or incomplete information
(XIAO et al., 2012). Thereby, a source of variability may be added due to measurement errors.
The random deterioration rate model is explored according to the proposal from Pandey and
Lu (2013), in which a measurement error is added to the deterministic model (2.2) in order to
explain the source of variability between the measurements from the same individual path. This
model is an extension of (2.2), in which the degradation path of the i-th unit at time t is given by

Di(t) = rit + ε, (3.1)

where ri is the random deterioration rate and ε is the measurement error.
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The model (3.1) has the same formulation as the general path model (MEEKER; ES-
COBAR; LU, 1998), in which the main characteristic is the randomness between units. Lu and
Meeker (1993) presented an approach to analyze noisy degradation data based on the nonlinear
mixed effects regression model considering normal distribution with zero mean and positive
variance for the measurement errors. In this work, ε belongs to normal distribution with real
mean and positive variance: ε ∼ N(µε ,σ

2
ε ).

From (3.1) we can build up an algorithm to generate degradation paths from random
deterioration rate model given as

Algorithm 2 : Generating degradation paths from random deterioration rate model.
1 Fix values for n, µε and σ2

ε ;
2 For each unit i, (1≤ i≤ n):

- Set ti0 = 0 and fix values for ni and ti1, . . . , tini;

- Generate a random number ri from the random rate distribution (e.g. IG or gamma);

- For each index j, (1≤ j ≤ ni), generate a random value εi j from N(µε ,σ
2
ε );

- Compute the degradation values: di1 = riti1 + εi1,di2 = riti2 + εi1 . . . ,dini = ritini + εini .

3.2.1 Inference for unknown parameters in random deterioration rate
model

Let di = di1,di2, . . . ,dini be the vector of degradation measurements for the i-th unit, and
the data consist of i = 1,2, . . . ,n units, then (3.1) can be rewritten:

Di j = Di(ti j) = riti j + εi j, (3.2)

where εi j ∼ N(µε ,σ
2
ε ).

The analysis is based on hierarchical modeling used in Bayesian literature (KASS;
STEFFEY, 1989) consisting of two stages. In the first stage, the deterioration rate ri is regarded
as a latent parameter whose distribution is modeled in the second stage with a hyperparameter
vector βββ . These stages are reported below

4 Stage 1: The vector di is conditioned on given ri and βββ , which is seen as a latent parameter
for unit i, with distribution f (di|ri,βββ ),

4 Stage 2: Conditionally on βββ , ri constitutes an independent and identically distributed
(i.i.d.) sample from f (ri|βββ ), and ri and βββ are referred to as “random” and “fixed” effects,
respectively.
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Therefore, from conditional independence, the joint density of the data from all units,
d = d1, . . . ,dn is a product of specified densities:

f (d|βββ ) =
n

∏
i=1

f (di|βββ ),

where the unit specific density is a marginal distribution as follows

f (di|βββ ) =
∫

Ri

f (di|βββ ) f (ri|βββ )dri.

The hierarchical approach is coherent for analyzing noisy data and is not limited to linear
degradation law.

Considering (3.2) and ri fixed, the degradation measure Di j ∼ N(µε + riti j,σ
2
ε ). Thus the

PDF of a measured degradation is given as

f (di j|ri) =
1√

2πσε

exp

[
−
(
di j−µε − riti j

)2

2σ2
ε

]
.

From the concept of the hierarchical modeling, the degradation measures di, are normally
distributed with the deterioration rate ri as a parameter, while ri itself has the PDF fβββ (ri).

Using the theorem of total probability, the marginal likelihood function for measurements
of an i-th unit can be written as

Li(µε ,σ
2
ε ,βββ ) =

∞∫
0

ni

∏
j=1

1√
2πσε

exp
[
−
(di j−µε − riti j)

2

2σ2
ε

]
fβββ (ri)dri

=

∞∫
0

(
1√

2πσε

)ni

exp

[
− 1

2σ2
ε

ni

∑
j=1

(di j−µε − riti j)
2

]
fβββ (ri)dri

= L1i×L2i, (3.3)

where the first term in L1i does not depend on βββ and the second term L2i depends on βββ through
the integral over ri.

The likelihood function for a sample of n independent units is the product of the terms
L1, . . . ,Ln:

L(µε ,σ
2
ε ,βββ ) =

n

∏
i=1

L1i×L2i.

Therefore, the corresponding log-likelihood is

l(µε ,σ
2
ε ,βββ ) =

n

∑
i=1

log(L1i)+
n

∑
i=1

log(L2i). (3.4)
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3.2.2 Lifetime distribution

Considering (2.1), the lifetime CDF is given by

FT (t) = P [D(t)≥ ρ] = P [rt ≥ ρ] = 1−FR

(
ρ

t

)
, (3.5)

where FR(.) is the deterioration rate CDF.

The quantiles tp are obtained through the equation FT (t) = p.

Therefore, the lifetime PDF is obtained

fT (t) =
∂FT (t)

∂ t
. (3.6)

Considering the nature of degradation data, one may assume a positive-valued distribution
for the deterioration rate r. In this work we assume IG distribution for r.

3.2.3 IG distribution for the random deterioration rate

We shall assume that ri’s are an i.i.d. sample from IG distribution, then we have

Di(ti j) = ri jt + εi j, where ri ∼ IG(µ,λ ),µ > 0 and λ > 0, (3.7)

and the PDF for IG distribution is as given in (2.5).

Figure 4 displays some degradation paths from IG random rate model (3.7) as a result of
Algorithm 2. Each chart consists of 10 units being evaluated from 0 up to 4 time units with 8
equidistant intervals. The parameter values are exhibited in the charts. We can observe that a
decrease in λ leads to an increase in the variability between the paths, while an increase in σ2

ε

leads to an increase in the variability within the paths. Even though the paths possess increasing
behavior, the model formulation allows ups and downs due to measurement errors.

3.2.3.1 Inference

The second term in (3.3) can be rewritten as

L2i =

∞∫
0

exp

[
− 1

2σ2
ε

ni

∑
j=1

(di j−µε − riti j)
2

]√
λ

2πr3
i

exp
[
−λ (ri−µ)2

2µ2ri

]
dri, (3.8)

which is intractable analytically due to the fact that the integral does not have closed expression.

The Gaussian quadrature method arises to solve this problem. This method aims to
approximate an integral of a continuous function with respect to a quantity x on X as a weighted
sum of this function evaluated at a set of nodes (also called quadrature points):

∫
X

f (x)dx≈
Q

∑
q=1

w j f (x j),
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Figure 4 – Degradation paths from IG random rate model under different scenarios.

where the coefficients w1, . . . ,wQ are the weights and x1, . . . ,xN ∈ X are the nodes.

Some papers concerning Gaussian quadrature in regression modeling with random
effects include Pinheiro and Bates (1995), Lesaffre and Spiessens (2001), Carrasco, Ferrari and
Arellano-Valle (2014) and Crowther et al. (2016).

The Monte Carlo integration technique is another alternative to solve integrals though
one may rewrite (3.8) so that the integral becomes over another distribution with known parame-
ters. Therefore, one can use the Probability Integral Transform (NELSON et al., 2006) or the
reformulation likelihood method (LIU; YU, 2008).

The Gaussian quadrature is faster than the Monte Carlo method in obtaining numeric inte-
grals. In this work we obtained the approximation of the integral in (3.8) by the one-dimensional
globally adaptive integrator 15-points Gauss-Kronrod with extrapolation over infinite intervals,
which is an extension of Gaussian quadrature.

Once we have obtained the numerical result for the mentioned integral, the MLEs can be
obtained by direct maximization of (3.4) with respect to the parameters. Intervals estimates and
hypothesis tests are obtained asymptotically.

3.2.3.2 Lifetime distribution

Considering IG distribution for the random rate, the lifetime CDF (3.5) becomes

FT (t) = Φ

[
−

√
λ t
ρ

(
ρ

tµ
−1
)]
− exp

(
2λ

µ

)
×Φ

[
−

√
λ t
ρ

(
ρ

tµ
+1
)]

. (3.9)
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The quantiles of (3.9) have no analytical form, so they are obtained numerically.

Therefore the lifetime PDF in (3.5) becomes

fT (t) = exp
[
−λ (−µt +ρ)2

2µ2tρ

]√
λ

2πρt
.

Hence, the MTTF is given by

MTTF =
ρ(µ +λ )

µλ
.

Peng and Tseng (2009) gave special attention to MTTF estimation, which may be greatly
influenced by model misspecification in degradation analysis.

3.3 Simulation study
A simulation study was carried out based on the generation of 1,000 artificial datasets

from IG random rate model (3.7) with five different sample sizes (n): 10, 20, 30, 50 and 100.
The components are evaluated from 0 up to 4 time units with 10 equidistant intervals. The scale
parameters are kept fixed: µ = 2 and µε = 0, while the shape parameters assume different values:
λ = 10 or 50, and σ2

ε = 0.05 or 0.5. These parameter values provide degradation paths with
similar characteristics to the LASER data (example 2.2.1), in which the variation of λ and σ2

ε

characterizes a source of variation among and within the paths, respectively.

The MLEs of the model parameters, the coverage probabilities at level 95% (95% CPs)
and the mean square errors of the MLEs (MSEs) under different λ and σ2

ε values are discussed.

Table 2 shows the MLEs, 95% CPs and MSEs under σ2
ε = 0.05 and σ2

ε = 0.5, in which
we conclude that in general the MLEs are close to the corresponding true values.

Figure 5 shows the 95% CPs and Figure 6 shows the MSEs. In order to analyze the 95%
CPs, we report two scenarios:

4 When σ2
ε = 0.05 and n increases, the 95% CPs for µ and λ are closer to 95% and the 95%

CPs for µε and σ2
ε are closer to 90% which is acceptable,

4 When σ2
ε = 0.5 and n increases, all 95% CPs are closer to the nominal value (95%).

Additionally, the MSEs are lower as n increases for different σ2
ε values.

Regarding the 95% CP values close to 90% for σ2
ε = 0.05 we can observe that the lower

the σ2
ε , the smaller the variability within the paths. Meanwhile, the larger the sample size, the

higher the variability among the paths. Thereby, the MLEs of µε and σ2
ε carry a tiny bias even

for large sample sizes.



3.3. Simulation study 43

Table 2 – MLEs, 95% CPs and MSEs under different σ2
ε values.

σ2
ε = 0.05 σ2

ε = 0.5

n Parameter MLE 95% CP MSE MLE 95% CP MSE
10 µ(2) 1.9988 0.9130 0.0153 1.9997 0.9230 0.0184

λ (50) 73.830 0.9620 2946.0 78.7930 0.9550 5627.0
µε(0) 0.0001 0.9370 0.0024 0.0008 0.9380 0.0234

σ2
ε 0.0495 0.9300 0.0001 0.4951 0.9300 0.0055

20 µ(2) 2.0022 0.9300 0.0080 1.9992 0.9230 0.0101
λ (50) 59.8800 0.9670 630.86 61.4230 0.9700 802.81
µε(0) 0.0006 0.9520 0.0012 0.0002 0.9500 0.0113

σ2
ε 0.0499 0.9530 0.00002 0.4981 0.9400 0.0028

30 µ(2) 1.9992 0.9450 0.0052 2.0013 0.9380 0.0067
λ (50) 56.0010 0.9650 269.31 55.8910 0.9700 292.90
µε(0) 0.00004 0.9570 0.0007 −0.0012 0.9480 0.0078

σ2
ε 0.0500 0.9490 0.00002 0.4995 0.9490 0.0019

50 µ(2) 1.9997 0.9530 0.0030 2.0008 0.9600 0.0036
λ (50) 53.2550 0.9560 124.8400 53.3090 0.9670 148.6100
µε(0) −0.0031 0.9300 0.0007 −0.0012 0.9590 0.0046

σ2
ε 0.0506 0.9130 0.00003 0.4993 0.9440 0.0012

100 µ(2) 1.9989 0.9470 0.0016 1.9989 0.9590 0.0019
λ (50) 52.0270 0.9600 57.7280 51.7530 0.9520 69.1820
µε(0) −0.0023 0.9160 0.0003 0.0013 0.9490 0.0023

σ2
ε 0.0509 0.8920 0.00002 0.5008 0.9500 0.0005
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Figure 5 – 95% CPs under different σ2
ε values: (a) 95% CPs for µ , (b) 95% CPs for λ , (c) 95% CPs for µε , (d) 95%

CPs for σ2
ε .
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Figure 6 – MSEs under different σ2
ε values: (a) MSEs for µ , (b) MSEs for λ , (c) MSEs for µε , (d) MSEs for σ2

ε .

Table 3 shows the MLEs, 95% CPs and MSEs under λ = 20 and λ = 50. Figure 7 shows
the 95% CPs and Figure 8 shows the MSEs of the MLEs. We conclude that the MLEs are close
to the corresponding true values for different λ values. Moreover, as n increases, the 95% CPs
are closer to the nominal value and the MSEs are lower.
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Table 3 – MLEs, 95% CPs and MSEs under different λ values.

λ = 20 λ = 50

n Parameter MLE 95% CP MSE MLE 95% CP MSE
10 µ(2) 2.0016 0.9240 0.0396 1.9997 0.9230 0.0184

λ 29.8610 0.9610 567.21 78.7930 0.9550 5627.0
µε(0) 0.0011 0.9400 0.0236 0.0008 0.9380 0.0234

σ2
ε (0.5) 0.4951 0.9290 0.0055 0.4951 0.9300 0.0055

20 µ(2) 1.9977 0.9160 0.0222 1.9992 0.9230 0.0101
λ 24.3220 0.9690 114.42 61.4230 0.9700 802.81

µε(0) 0.0003 0.9510 0.0113 0.0002 0.9500 0.0113
σ2

ε (0.5) 0.4981 0.9400 0.0028 0.4981 0.9400 0.0028

30 µ(2) 2.0021 0.9400 0.0145 2.0013 0.9380 0.0067
λ 22.2440 0.9660 44.076 55.8910 0.9700 292.90

µε(0) −0.0011 0.9480 0.0078 −0.0012 0.9480 0.0078
σ2

ε (0.5) 0.4995 0.9510 0.0017 0.4995 0.9490 0.0019

50 µ(2) 2.0008 0.9500 0.0081 2.0008 0.9600 0.0036
λ 21.2260 0.9650 21.5060 53.3090 0.9670 148.6100

µε(0) −0.0011 0.9570 0.0046 −0.0012 0.9590 0.0046
σ2

ε (0.5) 0.4993 0.9440 0.0012 0.4993 0.9440 0.0012

100 µ(2) 1.9981 0.9640 0.0041 1.9989 0.9590 0.0019
λ 20.6555 0.9530 10.4000 51.7530 0.9520 69.1820

µε(0) 0.0013 0.9470 0.0023 0.0013 0.9490 0.0023
σ2

ε (0.5) 0.5008 0.9510 0.0005 0.5008 0.9500 0.0005
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Figure 7 – 95% CPs under different λ values: (a) 95% CPs for µ , (b) 95% CPs for λ , (c) 95% CPs for µε , (d) 95%
CPs for σ2

ε .
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Figure 8 – MSEs under different λ values: (a) MSEs for µ , (b) MSEs for λ , (c) MSEs for µε , (d) MSEs for σ2
ε .

3.4 Application
For the sake of analysis, we bring forward the random deterioration rate with gamma

distribution (PANDEY; LU, 2013), referred to as Gamma random rate model along the section.

Di(ti j) = riti j + εi j, where ri ∼ Gamma(ϕ,υ),ϕ > 0 and υ > 0, (3.10)

whose PDF is f (ri) =
υϕ

Γ(ϕ)r
ϕ−1
i exp

(
− ri

υ

)
.

In the application with the LASER and locomotive wheels data, the parameter estimation
was achieved by the Quasi-Newton optimization method through BFGS algorithm. The values
used to initialize this algorithm in IG random rate model were obtained by the following steps:

1. Let µ(0), λ (0), µ
(0)
ε and σ

2(0)
ε be the starting values of µ , λ , µε and σ2

ε , respectively;

2. For each degradation path, fit the model (3.7) by the least square method, obtaining the
observed degradation rates r̂1, r̂2, . . . , r̂n of r1,r2, . . . ,rn, respectively;

3. Suppose that r̂1, r̂2, . . . , r̂n ∼ IG(µ,λ ) then µ(0) and λ (0) are taken as the MLEs of µ and
λ , respectively;

4. Obtain the residuals êi j = Di(ti j)− r̂iti j (i = 1, . . . ,n and j = 1, . . . ,ni), then µ
(0)
ε and σ

2(0)
ε

are taken as the sample mean and the sample variance of the residuals, respectively.

The starting values for gamma random rate model are obtained similarly.
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3.4.1 The LASER data (example 2.2.1)

It is worth mentioning that these LASER data were firstly analyzed by Meeker and
Escobar (1998) under the approximate degradation analysis. They first fitted straight lines
through the origin for each degradation path, then obtained the pseudo times to failure. Therefore,
they proceeded with likelihood analysis under Weibull distribution for the failure times and made
inferences about the time to failure distribution.

Table 4 shows the MLEs, the standard errors of the MLEs (SEs) and the 95% confidence
intervals (95% CIs) of the parameters under IG random rate model (3.7) and Gamma random
rate model (3.10) based on the LASER data, from which we conclude that the MLEs of µε and
σ2

ε are identical in both models as well as the corresponding SEs and 95% CIs. Furthermore, the
measurement errors are slightly offset to the right, assuming more positive values than negative
values. For illustrative purposes, each unit time stands for 1,000 hours of operation, then the
MLE of µ and λ in model (3.7) as well as the MLE of υ in model (3.10) must be divided by
1,000 for practical interpretation.

Table 4 – MLEs, SEs and 95% CIs of the model parameters based on the LASER data.

Model Parameter MLE SE 95% CI
IG random rate model µ 2.0418 0.1094 [1.8275;2.2562]

(3.7) λ 47.976 17.5780 [13.524;82.4290]
µε 0.0131 0.0279 [−0.0416;0.0677]
σ2

ε 0.0424 0.0040 [0.0346;0.0502]

Gamma random rate model ϕ 23.0620 8.3833 [6.6309;39.4930]
(3.10) υ 0.0885 0.0325 [0.0248;0.15228]

µε 0.0130 0.0279 [−0.0416;0.0677]
σ2

ε 0.0424 0.0040 [0.0346;0.0502]

Table 5 exhibits the model selection criteria AIC and BIC (for more detail one may refer
to section 2.6), in which we conclude that the IG random rate model best fitted this dataset given
that the BIC and AIC values are the smallest.

Table 5 – AIC and BIC based on the LASER data.

Model AIC BIC
IG random rate model 3.7 19.1214 21.9536

Gamma random rate model 3.10 19.9464 22.7786

In addition, we resort to P-P plot and Anderson-Darling (AD) test of the observed
degradation rates to assess the goodness-of-fit of IG and gamma random rate models. The
observed degradation rates are computed through a simple linear regression model without
intercept fitted to each degradation path. The test is explored according to the proposal of
Villaseñor and Gonzalez-Estrada (2015), which consists in transforming IG variables into
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gamma variables and using the AD test for the gamma distribution. According to the authors,
this method presents satisfactory performance even for small sample sizes. Figure 9 shows the
IG and gamma P-P plots along with the AD test for the observed degradation rates, from which
we conclude that both IG and Gamma random rate models are suitable for describing the LASER
degradation data (the p-values are greater than 0.05 in both cases).
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Figure 9 – IG P-P plot and gamma P-P plot of the observed degradation rates based on the LASER data.

Finally, Table 6 shows the lifetime percentiles and MTTF for the LASER components.
From Table 6 we observe that the estimated lifetime percentiles and MTTF are similar to each
other and approximately 80% of the LASER components are supposed to have failed up to
6,000 hours of operation. These results are similar to the analysis from Meeker and Escobar
(1998), in which the 80-th percentile of the pseudo lifetimes under Weibull distribution is equal to
5932.2250 hours, whereas the MTTF is equal to 5127.8600 hours. Indeed, they pointed out that
the results by the approximate method are satisfactory when the degradation paths are relatively
simple.

Figure 10 displays the charts of the estimated CDF and PDF under IG and Gamma
random rate models, from which we conclude that the PDF and CDF curves are similar to each
other.

Table 6 – MLEs and 95% CIs of the lifetime quantiles and MTTF based on the LASER data.

IG random rate model (3.7) Gamma random rate model (3.7)

Quantity MLE 95% CI MLE 95% CI
t0.1 3.8468 [3.3088;4.3849] 3.8429 [3.3373;4.3486]
t0.5 5.0014 [4.4815;5.5213] 4.9691 [4.4399;5.4984]
t0.8 5.9424 [5.2234;6.6614] 5.9589 [5.1742;6.7435]

MTTF 5.1060 [4.5698;5.6422] 5.1195 [4.5519;5.6871]
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Figure 10 – Lifetime distribution based on LASER data: (a) Lifetime PDF, (b) Lifetime CDF.

3.4.2 The locomotive wheels data (example 2.2.2)

Table 7 shows the MLEs, SEs and 95% CIs of the parameters under IG random rate model
(3.7) and Gamma random rate model (3.10) based on the locomotive wheels data, from which
we conclude that the MLEs of µε and σ2

ε are identical in both models and the corresponding
SEs and 95% CIs are similar to each other. It is worth mentioning that the measurement errors
distribution is shifted to the right of zero, which means that the errors tend to assume more
positive values than negative ones. For easy viewing, the distance scale is expressed in 1,000 km
traveled, then the MLE of µ and λ in (3.7), as well as the MLE of υ in (3.10) must be divided
by 1,000 in practical situations.

Table 7 – MLEs, SEs and 95% CIs of model parameters based on the locomotive wheels data.

Model Parameter MLE SE 95% CI
IG random rate model (3.7) µ 0.0994 0.0174 [0.0653;0.1334]

λ 0.2324 0.0879 [0.0600;0.4048]
µε 1.0331 0.1445 [0.7499;1.3164]
σ2

ε 0.7151 0.0846 [0.5493;0.8808]

Gamma random rate model (3.10) ϕ 2.7985 1.0016 [0.83534;4.7617]
υ 0.0355 0.0139 [0.0082;0.0628]
µε 1.0331 0.1445 [0.7505;1.3171]
σ2

ε 0.7151 0.0846 [0.5493;0.8808]

Table 8 exhibits the model selection criteria AIC and BIC, in which we conclude that the
IG random rate model best fitted this dataset.

Table 8 – AIC and BIC based on the locomotive wheels data.

Model AIC BIC
IG random rate model (3.7) 517.940 520.497

Gamma random rate model (3.10) 519.727 522.283
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Additionally, Figure 11 shows the IG and gamma P-P plots along with the AD test of
the observed degradation rates, from which we conclude that both IG and Gamma random rate
models are suitable for describing the locomotive wheels data (the p-values are greater than 0.05
in both cases).
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Figure 11 – IG P-P plot and gamma P-P plot of the observed degradation rates based on the locomotive wheels data.

Finally, Table 9 shows the lifetime percentiles and MTTF for the locomotive wheels and
Figure 10 displays the charts of the estimated CDF and PDF under IG and Gamma random rate
models. From Table 6 we observe that the estimated lifetime percentiles and MTTF are similar
to each other and approximately 80% of the wheels need to be switched off up to 1,560,000 km
travelled. From Figure 12 we observe that PDF and CDF curves are similar to each other.

Table 9 – MLEs and 95% CIs of the lifetime quantiles and MTTF based on the locomotive wheels data.

IG random rate model (3.7) Gamma random rate model (3.7)

Quantity MLE 95% CI MLE 95% CI
t0.1 430.19 [279.91;580.48] 423.45 [240.15;606.74]
t0.5 876.86 [591.09;1162.6] 936.55 [645.08;1228.0]
t0.8 1563.8 [848.92;2278.7] 1559.80 [1005.0;2114.6]

MTTF 1205.78 [602.44;1809.1] 1106.24 [744.27;1468.2]
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Figure 12 – Lifetime distribution based on the locomotive wheels data: (a) Lifetime PDF, (b) Lifetime CDF.

3.5 Concluding remarks
We have proposed a random deterioration rate model with measurement errors, in

which the individual random rates belong to IG distribution. The IG random rate model takes
into account the variability in the degradation data coming from distinct fonts: the unit-varying
uncertainty among different units, the temporal variability and the variability due to measurement
errors. Due to intractable integrals in the likelihood function and its derivatives, we proposed to
approximate it by a quadrature method and then determine the MLEs of the model parameters.
The methodology was implemented by the QUADPACK routine (PIESSENS et al., 2012) along
with the Quasi-Newton optimization method through BFGS algorithm available in Ox software
(DOORNIK, 2009). The methods presented convergence in the simulation study and in the
application with the real datasets. The simulation study showed that in general the MLEs tend to
be unbiased and consistent even when the data are disturbed by the variability of the measurement
errors, which means that the asymptotic intervals are propitious to use in practical situations. The
application with the LASER data and the locomotive wheels data showed that the IG and Gamma
random rate models provided similar results, however the first one best fitted both datasets.
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CHAPTER

4
INVERSE GAUSSIAN PROCESS WITH

FRAILTY TERM IN RELIABILITY ANALYSIS

4.1 Introduction
This chapter aims to include a frailty term in the stochastic process that expresses the

variability between individuals and the variability in the measurements of the same individual.
Also, it can take into account important variables that can neither be observed nor measured.
We introduce the IGP with frailty term, referred to as IGP frailty model along the sections. Ye
and Chen (2014) considered an IGP model with random drift varying between units, similar
to Crowder and Lawless (2007) and Peng and Tseng (2009) that incorporated random effects
in Wiener process. We consider an alternative to the IGP with random effects, in which the
random effect called frailty is incorporated in the intensity function of the IGP model. We
conduct a simulation study to evaluate the behavior of the parameter estimators and illustrate the
potentiality of the proposed model with two real-world datasets.

4.2 The IGP frailty model based on degradation
increments

The construction of a frailty IGP grounded on the multiplicative frailty model (2.16)
may possess some peculiarities. Firstly, the intensity function describes the intensity over the
degradation increments, which is different from the hazard rate in lifetime analysis. Secondly,
the frailty must have an inversely proportional relationship with intensity, that is, the higher the
frailty value, the greater the probability of large degradation increments related to failure. Then
for each unit i, the degradation increment Y in the time interval ∆t has its intensity function
defined as,

hi(y|∆gθθθ (t),η ,zi) =
1
zi
×hIGP(y|∆gθθθ (t),η), (4.1)
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where hIGP(y|∆gθθθ (t),η) is referred to as the baseline intensity function with expression as given
in (2.10), ∆gθθθ (t) and η are as given in section 2.4.4.2.

The equation (4.1) can be easily understood as follows

4 The lower the zi, the greater the intensity function for small degradation increments, which
means that the less fragile components will probably take a long time to reach the threshold
related to failure,

4 Inversely, the higher the zi, the lower the intensity function for small degradation incre-
ments, which means that the most fragile components are likely to reach the threshold
early.

From (2.11) and (2.17), the conditional reliability function for IGP frailty model (4.1) is
given by

Ri(y|∆gθθθ (t),η ,zi) = [RIGP(y|∆gθθθ (t),η)]
1
zi ,

where RIGP(.) is as given in (2.9).

Therefore, the conditional CDF for IGP frailty model (4.1) is given by

Fi(y|∆gθθθ (t),η ,zi) = 1−Ri(y|∆gθθθ (t),η ,zi). (4.2)

From (4.2), we can build up the following algorithm to generate degradation paths from
IGP frailty model

Algorithm 3 : Generating degradation paths from IGP frailty model.
1 Fix values for n, gθθθ (.) and η ,
2 For each unit i, (1≤ i≤ n),

- Set ti0 = 0 and fix values for ni and ti1, . . . , tini;

- Generate a random number zi from the frailty distribution (e.g. gamma, lognormal or IG);

- For each index j, (1≤ j ≤ ni):

- Compute ∆ti j = ti, j− ti, j−1 and ∆gθθθ (ti j) = gθθθ (ti, j)−gθθθ (ti, j−1);

- Generate a random number ui j from U(0,1);

- Solve the nonlinear equation for yi j: Fi(yi j|∆gθθθ (ti j),η ,zi) = ui j;

- Compute the cumulative degradation values
di1 = yi1,di2 = yi1 + yi2 . . . ,dini = yi1 + . . .+ yini .

Figure 13 shows three degradation paths for three different zi values, as a result of
Algorithm 3. The chart consists of 3 units being evaluated from 0 up to 4 time units with 10
equidistant intervals. The mean function for IGP was specified as gθθθ (t) = θ t, θ > 0 and the
parameter values are exhibited in the chart. For the sake of analysis, the zi values are fixed instead
of random, and we note that large degradation values are related to high frailty values.
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Figure 13 – Degradation paths for different frailty values.

4.2.1 Unconditional reliability function, CDF and PDF of the
degradation increments

The unconditional reliability function for the increment Y in time interval ∆t is similar to
(2.18) with some modification, that is, the lifetime values give way to the degradation increments
and the contribution of the frailty term in the exponent is 1

zi
rather than zi

R(y|∆gθθθ (t),η ,ααα) =

∞∫
0

Ri(y|∆gθθθ (t),η ,zi) fααα(zi)dzi =

∞∫
0

exp
[
− 1

zi
HIGP(y|∆gθθθ (t),η)

]
fααα(zi)dzi.

(4.3)

Note that (4.3) depends on ααα , which means that marginalization incorporates the frailty
information in the reliability function through the parameter vector ααα .

From (4.3) and the relation HIGP(y|∆gθθθ (t),η) =− log[RIGP(y|∆gθθθ (t),η)] described in
(2.11) we can observe the following cases:

4 Case 1: For too large y values RIGP(y|∆gθθθ (t),η)≈ 0 then HIGP(y|∆gθθθ (t),η)≈ ∞,

4 Case 2: For too small y values RIGP(y|∆gθθθ (t),η)≈ 1 then HIGP(y|∆gθθθ (t),η)≈ 0.

Based on these situations, we rewrite (4.3):

R(y|∆gθθθ (t),η ,ααα)=


0, if RIGP(y|∆gθθθ (t),η) = 0,
∞∫
0

exp
[
− 1

zi
HIGP(y|∆gθθθ (t),η)

]
fααα(zi)dzi, if 0 < RIGP(y|∆gθθθ (t),η)< 1,

1, if RIGP(y|∆gθθθ (t),η) = 1.
(4.4)

The formula (4.4) based on three situations intends to avoid indeterminate values oc-
curring in simulated studies. Additionally, the integral in (4.4) can be solved analytically or
numerically, depending on frailty distribution.
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Therefore, the unconditional CDF is given by

F(y|∆gθθθ (t),η ,ααα) =


0, if FIGP(y|∆gθθθ (t),η) = 0,
R(y|∆gθθθ (t),η ,ααα), if 0 < FIGP(y|∆gθθθ (t),η)< 1,
1, if FIGP(y|∆gθθθ (t),η) = 1.

(4.5)

From (4.5) we conclude that IGP frailty model has monotone behavior as well, because
FIGP(y|∆gθθθ (t),η) is positive merely for positive y values, otherwise it is null. Additionally, an
alternative algorithm is derived to generate degradation paths from IGP frailty model and it is
necessary to set up the PDF for frailty fααα(z) and solve the integral in (4.4) previously (unless
this integral has no analytical form).

Algorithm 4 : Generating degradation paths from IGP frailty model - alternative method.
1 Fix values for n, gθθθ (.), η and α;
2 For each unit i, (1≤ i≤ n);

- Set ti0 = 0 and fix values for ni and ti1, . . . , tini;

- For each index j, (1≤ j ≤ ni):

- Compute ∆ti j = ti, j− ti, j−1 and ∆gθθθ (ti j) = gθθθ (ti, j)−gθθθ (ti, j−1);

- Generate a random number ui j from U(0,1);

- Solve the nonlinear equation for yi j: F(yi j|∆gθθθ (ti j),η ,ααα) = ui j;

- Compute the cumulative degradation values
di1 = yi1,di2 = yi1 + yi2 . . . ,dini = yi1 + . . .+ yini .

Figure 14 shows the simulated degradation paths from IGP model and IGP frailty model
as a result of algorithms 1 and 4, respectively, where gamma distribution with unitary mean and
α variance is assigned for the frailty term. Each chart consists of 20 units being evaluated from
0 up to 4 time units with 16 equidistant intervals. Likewise in Figure 13, gθθθ (t) = θ t, θ > 0 and
the parameter values are θ = 2 and η = 15. We conclude that when α variance increases, the
degradation paths become more disperse.

The unconditional PDF is the derivative of (4.5) with respect to y:

f (y|∆gθθθ (t),η ,ααα) =

{
0, if fIGP(y|∆gθθθ (t),η) = 0,
∂F(y|∆gθθθ (t),η ,ααα)

∂y , if fIGP(y|∆gθθθ (t),η)> 0.
(4.6)

4.2.2 Lifetime distribution

Considering (2.1), the lifetime CDF for IGP frailty model is obtained directly from the
unconditional CDF in (4.5), considering that the cumulative degradation D(t) is equal to the
degradation increment in the time interval from 0 up to t: ∆t ≡ [0, t], then we have

FT (t) = P [D(t)≥ ρ] = 1−F(y = ρ|gθθθ (t),η ,ααα). (4.7)
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Figure 14 – Degradation paths from IGP and IGP frailty model under different α values.

The lifetime PDF is obtained from the derivative of (4.7) with respect to t:

fT (t) =
∂FT (t)

∂ t
. (4.8)

4.2.3 Inference for unknown parameters in IGP frailty model

Considering zi frailty variable i.i.d with PDF fααα(zi), the likelihood function for n units is
given by

L(gθθθ (t),η ,z) =
n

∏
i=1

ni

∏
j=1

hi(yi j|∆gθθθ (ti j),η ,zi)Ri(yi j|∆gθθθ (ti j),η ,zi) fααα(zi). (4.9)

Therefore, the unconditional likelihood is obtained by integrating out the variable zi

L(gθθθ (t),η ,ααα) =

∞∫
0

L(gθθθ (t),η ,z) fααα(zi)dzi. (4.10)

For the sake of clarity, we first obtain the contribution of each unit i in the likelihood
function, with ni observed degradation data at the inspection times ti j( j = 1, . . . ,ni)

Li =

∞∫
0

ni

∏
j=1

hi(yi j|∆gθθθ (ti j),η ,zi)Ri(yi j|∆gθθθ (ti j),η ,zi) fααα(zi)dzi

=
ni

∏
j=1

hIGP(yi j|∆gθθθ (ti j),η)×
∞∫

0

(
1
zi

)ni

exp

[
−

ni

∑
j=1

HIGP(yi j|∆gθθθ (ti j),η)
1
zi

]
fααα(zi)dzi

= L1i×L2i, (4.11)
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where L1i does not depend on frailty distribution and the second term L2i depends on the assigned
frailty distribution.

Then, the likelihood function in (4.10) for n units is rewritten as

L(gθθθ (t),η ,ααα) =
n

∏
i=1

L1i×L2i.

Therefore, the corresponding log-likelihood is given by

l(gθθθ (t),η ,ααα) =
n

∑
i=1

log(L1i)+
n

∑
i=1

log(L2i). (4.12)

The MLEs of the parameters can be obtained by maximization of (4.12) and the confi-
dence intervals are constructed from asymptotic properties of the MLEs.

4.2.4 Inference for individual frailties

The individual frailties can be obtained through the Bayesian inference approach (GEL-
MAN et al., 2014), where the frailty PDF for each unit i given the observed data is given by

f (zi|Y) ∝ L(gθθθ (t),η ,z), (4.13)

where L(gθθθ (t),η ,z) is as given in (4.9) and the terms that do not depend on zi are taken out from
the formula.

There are many choices for the frailty distribution such as, for example, gamma distribu-
tion (CLAYTON, 1978), positive stable distribution (HOUGAARD, 1986), compound Poisson
distribution (AALEN, 1992) and lognormal distribution (MCGILCHRIST; AISBETT, 1991).

4.2.5 Gamma distribution for frailty

In this section we assume that zi’s are an i.i.d sample from gamma distribution, which
is one of the most popular distributions for modeling the frailty term (NIELSEN et al., 1992).
In order to keep the identifiability of our model (ELBERS; RIDDER, 1982) we shall assume a
gamma distribution with unitary mean and α variance for zi, then we have

hi(y|∆gθθθ (t),η ,zi) =
1
zi
×hIGP(y|∆gθθθ (t),η), where zi ∼ Gamma

(
1
α
,α

)
, (4.14)

and fααα(zi) =
z

1
α −1
i α

− 1
α exp(− zi

α )
Γ( 1

α )
.

The model (4.14) is referred to as IGP-Gamma frailty model along the chapter.

The unconditional reliability function of the degradation increments in IGP-Gamma
frailty model is based on following proposition
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Proposition 4.2.1.

R(y|∆gθθθ (t),η ,ααα) =


0, if RIGP(y|∆gθθθ (t),η) = 0,
2α
− 1

α (αHIGP(y|∆gθθθ (t),η))
1

2α A
Γ( 1

α )
, if 0 < RIGP(y|∆gθθθ (t),η)< 1,

1, if RIGP(y|∆gθθθ (t),η) = 1,

(4.15)

where A = Besselk
[

1
α
,

2
√

HIGP(y|∆gθθθ (t),η)√
α

]
and Besselk[n,z] is the modified Bessel function of

the second kind Kn(z).

Proof. The proof is exhibited in Appendix A.

The CDF is easily obtained from (4.5). Therefore, the PDF of the degradation increments
in IGP-Gamma frailty model is based on following proposition

Proposition 4.2.2.

f (y|∆gθθθ (t),η ,ααα) =


0, if fIGP(y|∆gθθθ (t),η) = 0,
hIGP(y|∆gθθθ (t),η)(HIGP(y|∆gθθθ (t),η))

1
2α

α
1

2α
+ 1

2 Γ( 1
α )

[
(A1+A2)√

HIGP(y|∆gθθθ (t),η)
− A√

αH

]
,

if fIGP(y|∆gθθθ (t),η)> 0,

(4.16)

where A1 = Besselk
[
−1+ 1

α
,2
√

HIGP(y|∆gθθθ (t),η)√
α

]
and A2 = Besselk

[
1+ 1

α
,2
√

HIGP(y|∆gθθθ (t),η)√
α

]
.

Proof. The proof is shown in Appendix A.

Figure 15 shows the charts of the unconditional CDF and PDF for IGP model (2.7) and
IGP-Gamma frailty model (4.14), considering gθθθ (t) = 2t, ∆t = 5, η = 5 and different α values,
from which we observe that the curves are similar to each other, and the lower α , the closer the
curves.

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a)

y

F
(y

)

IGP model
IGP−Gamma frailty model (α = 0.05)
IGP−Gamma frailty model (α = 0.5)
IGP−Gamma frailty model (α = 1)

0 5 10 15 20 25 30

0.
00

0.
10

0.
20

0.
30

(b)

y

f(
y)

IGP model
IGP−Gamma frailty model (α = 0.05)
IGP−Gamma frailty model (α = 0.5)
IGP−Gamma frailty model (α = 1)

Figure 15 – CDF and PDF of the degradation increments in IGP and IGP-Gamma frailty models: (a) CDF, (b) PDF.

The lifetime PDF of the degradation increments in IGP-Gamma frailty model is based
on following proposition
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Proposition 4.2.3.

fT (t) = fTIGP

HIGP(y = ρ|gθθθ (t),η)[
√

αHIGP(y = ρ|gθθθ (t),η)(A1 +A2)−A]

α
1

2α
+1

Γ
( 1

α

)
RIGP(y = ρ|gθθθ (t),η)

, (4.17)

where fTIGP(.) is as given in (2.13), A1 and A2 are as given in proposition 4.2.2 and A is as given
in proposition 4.2.1.

Proof. The proof is presented in Appendix A.

The inference for unknown parameters in IGP-Gamma frailty model is based on following
proposition

Proposition 4.2.4. The second term in (4.11) is given by

L2i =

2α
− 1

α

(
α

ni
∑
j=1

HIGP(yi j|∆gθθθ (ti j),η)

) 1
2α
− ni

2

A1i

Γ
( 1

α

) , (4.18)

where A1i = Besselk

 1
α
−ni,2

√
ni
∑

j=1
HIGP(yi j|∆gθθθ (ti j),η)

α

.

Proof. The proof is exhibited in Appendix A.

Considering the proposition 4.2.4 the likelihood function for n units is rewritten as

L(gθθθ (t),η ,ααα)=
n

∏
i=1

[
ni

∏
j=1

hIGP(yi j|∆gθθθ (ti j),η)

] 2α
− 1

α

(
α

ni
∑
j=1

HIGP(yi j|∆gθθθ (ti j),η)

) 1
2α
− ni

2

A1i

Γ
( 1

α

) .

Therefore, the corresponding log-likelihood function is given by

l(gθθθ (t),η ,ααα) =
n

∑
i=1

ni

∑
j=1

log
[
hIGP(yi j|∆gθθθ (ti j),η)

]
+n log(2)− n

α
log(α)

+
n

∑
i=1

(
1

2α
− ni

2

)
log

[
α

ni

∑
j=1

HIGP(yi j|∆gθθθ (ti j),η)

]

+
n

∑
i=1

log(A1i)−n log
[

Γ

(
1
α

)]
.

The inference for individual frailties in IGP-Gamma frailty model is based on following
proposition
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Proposition 4.2.5. The frailty for each unit i given the observed data belongs to Generalized IG
distribution

zi|Y∼ GIG

(
2
α
,2

ni

∑
j=1

HIGP(yi j|∆gθθθ (ti j),η),
1
α
−ni

)
, (4.19)

whose mean and variance are given by

E(zi|Y) = A2i

√√√√α

ni

∑
j=1

HIGP(yi j|∆gθθθ (ti j),η) and

VAR(zi|Y) = (A3i−A2
2i)α

ni

∑
j=1

HIGP(yi j|∆gθθθ (ti j),η),

where A2i =

Besselk

 1
α
−ni+1,2

√√√√ ni
∑

j=1
HIGP(yi j |∆g

θθθ
(ti j),η)

α



Besselk

 1
α
−ni,2

√√√√ ni
∑

j=1
HIGP(yi j |∆g

θθθ
(ti j),η)

α


and A3i =

Besselk

 1
α
−ni+2,2

√√√√ ni
∑

j=1
HIGP(yi j |∆g

θθθ
(ti j),η)

α



Besselk

 1
α
−ni,2

√√√√ ni
∑

j=1
HIGP(yi j |∆g

θθθ
(ti j),η)

α


.

Proof. The proof is shown in Appendix A.

4.2.6 IG distribution for frailty

We assume that zi’s are an i.i.d sample from IG distribution with unitary mean and α

variance, then we have

hi(y|∆gθθθ (t),η ,zi) =
1
zi
×hIGP(y|∆gθθθ (t),η), where zi ∼ IG

(
1,

1
α

)
, (4.20)

and fααα(zi) =
(

1
2παz3

i

) 1
2 × exp

[
− (zi−1)2

2αzi

]
.

The model (4.20) is referred to as IGP-IG frailty model along the chapter.

The unconditional reliability function of the degradation increments in IGP-IG frailty
model is based on following proposition

Proposition 4.2.6.

R(y|∆gθθθ (t),η ,ααα) =


0, if RIGP(y|∆gθθθ (t),η) = 0,
e−

1
α (
√

1+2αHIGP(y|∆g
θθθ
(t),η)−1)√

1+2αHIGP(y|∆gθθθ (t),η)
, if 0 < RIGP(y|∆gθθθ (t),η)< 1,

1, if RIGP(y|∆gθθθ (t),η) = 1.

(4.21)

Proof. The proof is displayed in Appendix A.

Therefore, the corresponding CDF is obtained from the relation (4.5).

The unconditional PDF of the degradation increments in IGP-IG frailty model is based
on following proposition
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Proposition 4.2.7.

f (y|∆gθθθ (t),η ,ααα) =


0, if fIGP(y|∆gθθθ (t),η) = 0,
e−

1
α (
√

1+2αHIGP(y|∆g
θθθ
(t),η)−1)hIGP(y|∆gθθθ (t),η)

1+2αHIGP(y|∆gθθθ (t),η)

(
1+ α√

1+2αHIGP(y|∆gθθθ (t),η)

)
,

if fIGP(y|∆gθθθ (t),η)> 0.
(4.22)

Proof. The equation (4.22) is obtained from (4.6) and the relation
∂HIGP(y|∆gθθθ (t),η)

∂y = hIGP(y|∆gθθθ (t),η).

Figure 16 shows the charts for the unconditional CDF and PDF for IGP model and
IGP-IG frailty model, considering gθθθ (t) = 2t, ∆t = 5, η = 5 and different α values. Similarly to
Figure 15, the curves of IGP model and IGP-IG frailty model are close to each other for small α

values.
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Figure 16 – (a) CDF of IGP and IGP-IG frailty models, (b) PDF of IGP and IGP-IG frailty models.

The lifetime PDF in IGP-IG frailty model is based on following proposition

Proposition 4.2.8.

fT (t) =
ftIGP(t)e

− 1
α
(
√

1+2αHIGP(y=ρ|gθθθ (t),η)−1)

RIGP(y = ρ|gθθθ (t),η)[1+2αHIGP(y = ρ|gθθθ (t),η)]
× (4.23)[

1+
α√

1+2αHIGP(y = ρ|gθθθ (t),η)

]
,

where fTIGP(t) is as given in (2.13).

Proof. The equation (4.24) is obtained from the relation ∂HIGP(y|∆gθθθ (t),η)
∂ t =− fTIGP(t)

RIGP(y|∆gθθθ (t),η) .

The inference for unknown parameters in IGP-IG frailty model is based on following
proposition
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Proposition 4.2.9. The second term in (4.11) is given by

L2i =

√
2

πα
exp
(

1
α

) 1

1+2α
ni
∑
j=1

HIGP(yi j|∆gθθθ (ti j),η)


1
4+

ni
2

B1i, (4.24)

where B1i = Besselk
[1

2 +ni,B
]

and B =

√
1+2α

ni
∑

j=1
HIGP(yi j|∆gθθθ (ti j),η)

α
.

Proof. The proof is presented in Appendix A.

Considering the proposition (4.2.9), the likelihood function for n units is

L(gθθθ (t),η ,ααα) =
n

∏
i=1

[
ni

∏
j=1

hIGP(yi j|∆gθθθ (ti j),η)

]√
2

πα
exp
(

1
α

)

×

 1

1+2α
ni
∑
j=1

HIGP(yi j|∆gθθθ (ti j),η)


1
4+

ni
2

B1i.

Therefore, the corresponding log-likelihood function is

l(gθθθ (t),η ,ααα) =
n

∑
i=1

ni

∑
j=1

log
[
hIGP(yi j|∆gθθθ (ti j),η)

]
+

n
α

−
n

∑
i=1

(
1
4
+

ni

2

)
log

(
1+2α

ni

∑
j=1

HIGP(yi j|∆gθθθ (ti j),η)

)

+
n
2

log(2)− n
2

log(π)+
n

∑
i=1

log(B1i)−
n
2

log(α).

The inference for individual frailties in IGP-IG frailty model is based on following
proposition

Proposition 4.2.10. The frailty for each unit i given the observed data belongs to Generalized
IG distribution

zi|Y∼ GIG

(
1
α
,2

ni

∑
j=1

HIGP(yi j|∆gθθθ (ti j),η)+
1
α
,−3

2
−ni +1

)
, (4.25)

whose mean and variance are given by E(zi|Y) = B2i

√
1+2α

ni
∑
j=1

HIGP(yi j|∆gθθθ (ti j),η) and

VAR(zi|Y) = (B3i−B2
2i)

(
1+2α

ni
∑
j=1

HIGP(yi j|∆gθθθ (ti j),η)

)
,

where B2i =
Besselk[− 3

2−ni+2,B]
Besselk[− 3

2−ni+1,B]
and B3i =

Besselk[− 3
2−ni+3,B]

Besselk[− 3
2−ni+1,B]

.

Proof. The proof is shown in Appendix A.



64 Chapter 4. Inverse Gaussian process with frailty term in reliability analysis

4.3 Simulation study
A simulation study was carried out based on the generation of 5,000 artificial datasets

from IGP frailty model (4.1) with five different sample sizes (n): 20, 50, 100, 200 and 500. The
values assigned to the parameters are motivated by the LASER data (example 2.2.1), in which
the degradation paths possess linear behavior. The components are evaluated from 0 up to 4 time
units with 10 equidistant intervals. The parameter values are specified as gθθθ (t) = θ t with θ = 2,
η = 15 and two scenarios for α:

4 α = 0.05 characterizes small unobserved heterogeneity,
4 α = 0.5 characterizes moderate unobserved heterogeneity.

Then, we made inferences for the model parameters in IGP model (2.7) and IGP frailty
model (4.1). In other words, we generated data with frailty and made inferences ignoring or not
ignoring frailty. The MLEs of the model parameters, the 95% CPs and the MSEs of the MLEs
under different models, different frailty distributions and different α values are discussed.

4.3.1 Gamma distribution for frailty

Tables 10 and 11 show the MLEs, 95% CPs and MSEs under α = 0.05 and α = 0.5,
respectively. We observe that in IGP frailty model (4.1), the MLEs are closer to the corresponding
true values as n increases. For IGP model (2.7), the MLEs of θ remain close to its true value as
n increases, but the MLEs of η are further from its true value as n increases.

Figures 17 and 18 show the 95% CPs considering α = 0.05 and α = 0.5, respectively,
and Figures 19 and 20 show MSEs of the MLEs considering α = 0.05 and α = 0.5, respectively.
We conclude that as n grows, the MSEs are lower even when frailty is ignored. However the 95%
CPs are further from the nominal value (95%) as n grows and frailty is ignored. Furthermore, the
MLEs of η in IGP model (2.7) are further from its true value as α increases because η is the
shape parameter that captures the variability inherent in the data.
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Table 10 – MLEs, 95% CPs and MSEs under gamma frailty and α = 0.05.

IGP model (2.7) IGP-Gamma frailty model (4.14)

n true values MLE 95% CP MSE MLE 95% CP MSE
20 θ = 2 1.9962 0.8918 0.0025 2.0022 0.9474 0.0025

η = 15 14.650 0.9060 3.1973 15.275 0.9530 3.3901
α = 0.05 − − − 0.0588 0.9996 0.0017

50 θ = 2 1.9953 0.8884 0.0010 2.0006 0.9428 0.0010
η = 15 14.582 0.8792 1.4056 15.1220 0.9506 1.3255

α = 0.05 − − − 0.0511 0.9640 0.0008

100 θ = 2 1.9952 0.8888 0.0005 2.0003 0.9478 0.0005
η = 15 14.532 0.8636 0.8016 15.049 0.9530 0.6222

α = 0.05 − − − 0.0490 0.9374 0.0005

200 θ = 2 1.9948 0.8742 0.0003 1.9999 0.9478 0.0003
η = 15 14.495 0.7822 0.5590 15.0100 0.9520 0.3234

α = 0.05 − − − 0.0490 0.9362 0.0002

500 θ = 2 1.9948 0.8482 0.0001 2.0000 0.9498 0.0001
η = 15 14.493 0.6128 0.3806 15.0160 0.9502 0.1300

α = 0.05 − − − 0.0497 0.9420 0.0001

Table 11 – MLEs, 95% CPs and MSEs under gamma frailty and α = 0.5.

IGP model (2.7) IGP-Gamma frailty model (4.14)

n true values MLE 95% CP MSE MLE 95% CP MSE
20 θ = 2 1.9449 0.5708 0.0120 1.9931 0.9282 0.0097

η = 15 11.7230 0.3476 15.8270 15.5660 0.9494 7.5449
α = 0.5 − − − 0.4622 0.8688 0.0295

50 θ = 2 1.9452 0.4774 0.0067 1.9956 0.9394 0.0040
η = 15 11.3570 0.0974 15.1910 15.2830 0.9522 2.8256
α = 0.5 − − − 0.4793 0.9142 0.0117

100 θ = 2 1.9423 0.3302 0.0052 1.9935 0.9392 0.0020
η = 15 11.2990 0.0124 14.6430 15.2630 0.9512 1.4586
α = 0.5 − − − 0.4843 0.9268 0.0060

200 θ = 2 1.9444 0.1888 0.0040 1.9960 0.9454 0.0010
η = 15 11.1980 0.0000 14.9140 15.1600 0.9534 0.7024
α = 0.5 − − − 0.4869 0.9372 0.0030

500 θ = 2 1.9443 0.0310 0.0035 1.9961 0.9430 0.0004
η = 15 11.1590 0.0000 14.9370 15.1330 0.9488 0.2870
α = 0.5 − − − 0.4891 0.9306 0.0013
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Figure 17 – 95% CPs under gamma frailty and α = 0.05: (a) 95% CPs for θ , (b) 95% CPs for η , (c) 95% CPs for
α .
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Figure 18 – 95% CPs under gamma frailty and α = 0.5: (a) 95% CPs for θ , (b) 95% CPs for η , (c) 95% CPs for α .
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Figure 19 – MSEs under gamma frailty and α = 0.05: (a) MSEs for θ , (b) MSEs for η , (c) MSEs for α .
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Figure 20 – MSEs under gamma frailty and α = 0.5: (a) MSEs for θ , (b) MSEs for η , (c) MSEs for α .
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4.3.2 IG distribution for frailty

Tables 12 and 13 show MLEs, 95% CPs and MSEs under α = 0.05 and α = 0.5,
respectively. Likewise the results under gamma frailty, the MLEs in IGP model with frailty are
closer to the corresponding true values as n grows. For IGP model, the MLEs of η are further
from its true value as n and α increase and the MLEs of θ remain close to its true value under
different scenarios.

Figures 21 and 22 show the 95% CPs considering α = 0.05 and α = 0.5, respectively, and
Figures 23 and 24 show the MSEs of the MLEs considering α = 0.05 and α = 0.5, respectively.
Likewise the results under gamma frailty, the MSEs decrease as n increases. Nevertheless, the
95% CPs are further from the nominal value as n increases whether the presence of frailty is
ignored.

Regarding the low 95% CP values for θ and η in IGP model (2.7) under gamma and
IG frailty distributions, we observe that for large sample sizes, the SEs of the MLEs are tiny
then the 95% CIs are tight, which means that even a small bias leads to a 95% CI that does not
embrace the corresponding true values.

Table 12 – MLEs, 95% CPs and MSEs under IG frailty and α = 0.05.

IGP model (2.7) IGP-IG frailty model (4.20)

n true values MLE 95% CP MSE MLE 95% CP MSE
20 θ = 2 1.9982 0.8990 0.0024 2.0041 0.9494 0.0025

η = 15 14.6330 0.8966 3.2672 15.2440 0.9518 3.4128
α = 0.05 − − − 0.0622 1.0000 0.0024

50 θ = 2 1.9955 0.8926 0.0010 2.0007 0.9458 0.0010
η = 15 14.5800 0.8768 1.4284 15.1010 0.9502 1.3303

α = 0.05 − − − 0.0520 0.9702 0.0010

100 θ = 2 1.9951 0.8824 0.0005 2.0002 0.9458 0.0005
η = 15 14.5370 0.8546 0.8378 15.0450 0.9436 0.6579

α = 0.05 − − − 0.0502 0.9404 0.0005

200 θ = 2 1.9954 0.8742 0.0003 2.0004 0.9444 0.0003
η = 15 14.502 0.7814 0.5500 15.0030 0.9512 0.3174

α = 0.05 − − − 0.0494 0.9418 0.0003

500 θ = 2 1.9949 0.8470 0.0001 2.0000 0.9468 0.0001
η = 15 14.5050 0.6208 0.3710 15.0120 0.9490 0.1304

α = 0.05 − − − 0.0498 0.9474 0.0001
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Table 13 – MLEs, 95% CPs and MSEs under IG frailty and α = 0.5.

IGP model (2.7) IGP-IG frailty model (4.20)

n true values MLE 95% CP MSE MLE 95% CP MSE
20 θ = 2 1.9517 0.5930 0.0100 1.9906 0.9170 0.0092

η = 15 12.6520 0.4958 11.6590 15.5960 0.9454 7.3162
α = 0.5 − − − 0.4631 0.8576 0.0537

50 θ = 2 1.9512 0.4974 0.0055 1.9910 0.9332 0.0038
η = 15 12.3140 0.2652 9.6202 15.3730 0.9506 2.8987
α = 0.5 − − − 0.4683 0.8926 0.0205

100 θ = 2 1.9517 0.3960 0.0039 1.9921 0.9360 0.0019
η = 15 12.1790 0.0888 9.1002 15.2710 0.9532 1.3951
α = 0.5 − − − 0.4728 0.9064 0.0107

200 θ = 2 1.9514 0.2312 0.0031 1.9919 0.9424 0.0010
η = 15 12.1280 0.0062 8.8019 15.2270 0.9536 0.7025
α = 0.5 − − − 0.4714 0.9056 0.0056

500 θ = 2 1.9511 0.0450 0.0027 1.9917 0.9236 0.0005
η = 15 12.1060 0.0000 8.6116 15.2210 0.9318 0.3302
α = 0.5 − − − 0.4729 0.9008 0.0026

● ●
●

●

●

100 200 300 400 500

0.
6

0.
7

0.
8

0.
9

1.
0

(a)

n

95
%

C
P

● ● ● ● ●

IGP model
IGP frailty model

●

●

●

●

●

100 200 300 400 500

0.
6

0.
7

0.
8

0.
9

1.
0

(b)

n

95
%

C
P

● ● ●
● ●

IGP model
IGP frailty model

●

●

● ● ●

100 200 300 400 500

0.
6

0.
7

0.
8

0.
9

1.
0

(c)

n

95
%

C
P

Figure 21 – 95% CPs under IG fraity and α = 0.05: (a) 95% CPs for θ , (b) 95% CPs for η , (c) 95% CPs for α .
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Figure 22 – 95% CPs under IG frailty and α = 0.5: (a) 95% CPs for θ , (b) 95% CPs for η , (c) 95% CPs for α .
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Figure 23 – MSEs under IG frailty and α = 0.05: (a) MSEs for θ , (b) MSEs for η , (c) MSEs for α .



4.4. Application 71

●

●

●

●
●

100 200 300 400 500

0.
00

0
0.

00
4

0.
00

8

(a)

n

M
S

E

●

●

●

●

●

IGP model
IGP frailty model

●

●

●
● ●

100 200 300 400 500

0
2

4
6

8
10

12

(b)

n

M
S

E

●

●

●

●
●

IGP model
IGP frailty model

●

●

●

●

●

100 200 300 400 500

0.
00

0.
02

0.
04

0.
06

(c)

n

M
S

E

Figure 24 – MSEs under IG fraity and α = 0.5: (a) MSEs for θ , (b) MSEs for η , (c) MSEs for α .

4.4 Application

In the application with the LASER and crack size data, we consider the following form
for the mean function in IGP model: gθθθ (t) = θ t, θ > 0. The parameter estimation was achieved
by the Quasi-Newton optimization method through BFGS algorithm. The values used to initialize
this algorithm were obtained as follows

4 For IGP model, the starting values for θ and η are taken from Peng (2015), wherein the
authors achieved the MLEs analytically,

4 For IGP frailty model, the starting values for θ and η are identical to the MLEs in IGP
model, and the starting value for α is equal to 1.

4.4.1 The LASER data (example 2.2.1)

Table 14 shows the MLEs, SEs and 95% CIs of the parameters under IGP model, IGP-
Gamma frailty model and IGP-IG frailty model based on the LASER data. Due to the fact
that α must assume only positive values, we constructed the 95% CIs of α under a one-to-one
parameter transformation (KALBFLEISCH, 1985). We first obtained the confidence intervals for
log(α) and then transformed them back into confidence intervals for α . For illustrative purposes,
the time unit is expressed in 1,000 hours of operation, which means that the MLEs of θ must be
divided by 1,000 to be correctly interpreted.
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Table 14 – MLEs, SEs and 95% CIs of the model parameters based on the LASER data.

Model Parameter MLE SE 95% CI
IGP model (2.7) θ 2.0372 0.0509 [1.9375;2.1368]

η 13.1300 1.3662 [10.4530;15.8080]

IGP-Gamma θ 2.0510 0.1004 [1.8542;2.2478]
frailty model (4.14) η 15.148 2.3398 [10.5620;19.7340]

α 0.2104 0.0974 [0.0849;0.5214]

IGP-IG θ 2.0563 0.1076 [1.8455;2.2671]
frailty model (4.20) η 15.1030 2.4479 [10.305;19.9010]

α 0.2478 0.1265 [0.0911;0.6742]

From Table 14, we observe that the MLEs of the slope θ are similar in all models,
whereas the MLEs of the shape parameter η are higher in both IGP frailty models than in IGP
model because the variance α captures some of the variability inherent in the data. Furthermore,
we noticed that the SEs of θ and η in both IGP frailty models are higher than in IGP model,
which means that the SEs are considerably underestimated whether we ignore the unobserved
heterogeneity. Indeed Chamberlain (1985) and Gail, Wieand and Piantadosi (1984) pointed out
that the influence of the observed covariates is underestimated when the presence of omitted
covariates is ignored.

To evaluate the goodness of fit for IGP model and IGP frailty model, Figure 25 displays
the P-P plot and Q-Q plot along with the AD adherence test (MARSAGLIA; MARSAGLIA,
2004) of the observed degradation increments, in which we conclude that IGP-based models
are suitable for these data because the dots in the charts are close to the diagonal line and the
p-value in AD test is greater than 0.05.
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Figure 25 – Goodness of fit test based on the LASER data: (a) IG P-P plot for degradation increments and AD test,
(b) IG Q-Q plot of the degradation increments.

In order to have a comparative approach between the models, Table 15 exhibits the model
selection criteria AIC and BIC (for more details one may refer to section 2.6), from which we
conclude that the IGP-IG frailty model best fitted this dataset given that the BIC and AIC values
are the smallest.
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Table 15 – AIC and BIC based on the LASER data.

Model AIC BIC
IGP model (2.7) −146.07 −144.65

IGP-Gamma frailty model (4.14) −174.57 −172.45
IGP-IG frailty model (4.20) −175.81 −173.69

Additionally, the MLEs of the expected individual frailties (Ê(zi|Y)) are placed together
with cumulative degradation values in Table 16, where the two most fragile components and the
two less fragile components are highlighted in gray with their matching frailty estimates. We
note that the highest means are directly related to the highest cumulative degradation values and
vice versa. For illustrative purpose, Figure 26 shows the degradation paths from the LASER data
along with the information from Table 16.

Table 16 – Cumulative degradation and MLEs of the expected individual frailties based on the LASER data.

Ê(zi|Y)

Cumulative IGP-Gamma IGP-IG
unit Degradation frailty model (4.14) frailty model (4.20)

1 10.94 1.6902 1.7355
2 9.28 1.2311 1.2184
3 6.88 0.6805 0.6651
4 6.14 0.5589 0.5556
5 7.59 0.8659 0.8420
6 11.01 1.6993 1.7460
7 7.17 0.8343 0.8114
8 6.24 0.4995 0.5036
9 7.88 0.8950 0.8705

10 12.21 1.9484 2.0426
11 7.42 0.7611 0.7404
12 7.88 0.9892 0.9655
13 8.09 1.0230 0.9999
14 6.88 0.6973 0.6808
15 6.62 0.6339 0.6225

Finally, Table 17 shows the MLEs of the lifetime quantiles and their corresponding 95%
CIs for threshold ρ = 10% according to example 2.2.1, from which we notice that the quantile
MLEs in IGP frailty model are lower than in IGP model, and their 95% CIs in IGP frailty model
are wider than in IGP model.

Figure 27 displays the charts of the lifetime CDF and PDF for the LASER components,
from which we observe that the lifetime distributions for IGP model and IGP frailty model are
unimodal and symmetrical and the IGP frailty model concentrates more probability mass around
the median than the IGP model without frailty term.
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Figure 26 – Degradation paths from the LASER data and expected individual frailty MLEs under different models:
(a) IGP-Gamma frailty model, (b) IGP-IG frailty model.

Table 17 – MLEs and 95% CIs of the lifetime quantiles based on the LASER data.

Model quantile MLE 95% CI
IGP model (2.7) t0.01 3.9341 [3.6806;4.1877]

t0.05 4.2250 [3.9788;4.4712]
t0.1 4.3801 [4.1367;4.6234]
t0.5 4.9274 [4.6881;5.1667]
t0.8 5.2870 [5.0450;5.5289]

IGP-Gamma t0.01 3.8242 [3.2975;4.3509]
frailty model (4.14) t0.05 4.1876 [3.6924;4.6827]

t0.1 4.3671 [3.8834;4.8508]
t0.5 4.9365 [4.4766;5.3963]
t0.8 5.2733 [4.8218;5.7248]

IGP-IG t0.01 3.7917 [3.1956;4.3879]
frailty model (4.20) t0.05 4.1748 [3.6377;4.7118]

t0.1 4.3587 [3.8420;4.8755]
t0.5 4.9266 [4.4461;5.4071]
t0.8 5.2595 [4.7879;5.7311]



4.4. Application 75

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a)

t (1,000 hours)

f(
t)

IGP model
IGP−Gamma frailty model
IGP−IG frailty model

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b)

t (1,000 hours)

F
(t

)

IGP model
IGP−Gamma frailty model
IGP−IG frailty model

Figure 27 – Lifetime distribution based on the LASER data: (a) Lifetime PDF, (b) Lifetime CDF.

4.4.2 The crack size data (example 2.2.2)

In the application with crack size data, the following transformation was done: D∗(t) =

log
(

D(t)
0.9

)
proposed by Lu and Meeker (1993) as a special case of Paris Law widely used to

describe the growth of fatigue cracks in materials. This transformation satisfies D(0) = 0 in
IGP model (2.7) and leaves the degradation paths close to linear behavior. Figure 28 shows the
transformed degradation paths from the crack size data with the corresponding threshold ρ under
the transformed data.
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Figure 28 – Transformed degradation paths from the crack size data.

Table 18 shows the MLEs, SEs and 95% CIs of the parameters under different IGP
models. Similarly to the application with LASER data, the 95% CIs of α are obtained under the
exponential parameter transformation. For easy viewing, the unit scale of cycles is depicted in
1,000 cycles, then the MLEs of θ need to be divided by 1,000 in practice.

From Table 18, we observe that the MLE of α is lower in IGP-Gamma frailty model
than in IGP-IG frailty model likewise its SE.

Figure 29 exhibits the P-P plot and Q-Q plot along with the AD adherence test of
the observed degradation increments, from which we conclude that the IGP-based models are
suitable for these data (p-value > 0.05).
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Table 18 – MLEs, SEs and 95% CIs of the model parameters based on the crack size data.

Model Parameter MLE SE 95% CI
IGP model (2.7) θ 0.0047 0.0001 [0.0044;0.0049]

η 125.69 13.2510 [99.7160;151.6600]

IGP-Gamma θ 0.0049 0.0003 [0.0044;0.0055]
frailty model (4.14) η 145.5500 24.8930 [96.7630;194.3400]

α 0.4160 0.1454 [0.2097;0.8252]

IGP-IG θ 0.0050 0.0004 [0.0042;0.0058]
frailty model (4.20) η 138.7500 30.3990 [79.1680;198.3300]

α 0.7227 0.3702 [0.2648;1.9721]
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Figure 29 – Goodness of fit test based on the crack size data: (a) IG P-P plot of the degradation increments and AD
test, (b) IG Q-Q plot of the degradation increments.

Additionally, Table 19 shows the model selection criteria AIC and BIC, from which we
conclude that the IGP-Gamma frailty model best fitted this dataset given that the BIC and AIC
values are the smallest.

Table 19 – AIC and BIC based on the crack size data.

Model AIC BIC
IGP model (2.7) −1,270.4 −1,268.4

IGP-Gamma frailty model (4.14) −1,316.7 −1,313.5
IGP-IG frailty model (4.20) −1,314.1 −1,310.9

In order to analyze the individual frailties, Table 20 exhibits the MLEs of the expected
individual frailties (Ê(zi|Y)) together with the corresponding cumulative degradation values. The
two most fragile components and the two less fragile components are featured in gray. In general
the highest means are directly related to the highest cumulative degradation values. Figure 30
displays the degradation paths from the crack size data with the four components highlighted
in Table 20. It is worth mentioning that the frailty model takes into account the cumulative
damage related to observation time, for example, the unit 1 does not have the highest degradation
value but it was the first unit to reach the threshold value and did not remain until the end of the
experiment.
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Table 20 – Cumulative degradation and MLEs of the expected individual frailties based on the crack size data.

Ê(zi|Y)

Cumulative IGP-Gamma IGP-IG
unit degradation frailty model (4.14) frailty model (4.20)

1 0.6001 1.7099 1.7426
2 0.5754 1.3346 1.2963
3 0.6763 1.5462 1.5333
4 0.6535 1.4607 1.4354
5 0.6419 1.4150 1.3838
6 0.6242 1.3460 1.3066
7 0.6122 1.2825 1.2367
8 0.5878 1.1921 1.1387
9 0.6477 1.2540 1.2044

10 0.6182 1.1344 1.0772
11 0.6061 1.0876 1.0283
12 0.6001 1.1138 1.0554
13 0.5241 0.8345 0.7728
14 0.4769 0.5585 0.5145
15 0.5041 0.6800 0.6257
16 0.4418 0.4864 0.4501
17 0.4274 0.4726 0.4379
18 0.4055 0.3813 0.3594
19 0.3754 0.2637 0.2623
20 0.3600 0.2159 0.2240
21 0.3444 0.1822 0.1974
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Figure 30 – (a) Degradation paths from the crack size data and expected individual frailty MLEs under different
models: (a) IGP-Gamma frailty model, (b) IGP-IG frailty model.
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Finally, Table 21 presents the MLEs of the lifetime quantiles with their corresponding
95% CIs considering the critical value ρ = 1.6 inches (see 2.2.3), or equivalently ρ∗ = 0.5754
for transformed data and Figure 31 displays the charts of the lifetime CDF and PDF for the
components.

Table 21 – MLEs and 95% CIs of the lifetime quantiles based on the crack size data.

Model Quantile MLE 95% CI
IGP model (2.7) t0.01 90.1820 [83.2820;97.0810]

t0.05 99.9390 [93.3300;106.5500]
t0.1 105.1500 [98.6510;111.6400]
t0.5 123.5300 [117.1900;129.8700]
t0.8 135.6100 [129.1500;142.0700]

IGP-Gamma t0.01 79.5580 [63.2580;95.8580]
frailty model (4.14) t0.05 93.1770 [78.2890;108.0700]

t0.1 99.7460 [85.3810;114.1100]
t0.5 119.7200 [106.4000;133.0300]
t0.8 130.8500 [117.8500;143.8500]

IGP-IG t0.01 73.9050 [48.5510;99.2590]
frailty model (4.20) t0.05 90.6790 [69.9360;111.4200]

t0.1 98.2260 [79.0710;117.3800]
t0.5 119.0800 [102.4700;135.7000]
t0.8 129.8900 [113.6100;146.1600]
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Figure 31 – Lifetime distribution based on the crack size data. (a) Lifetime PDF, (b) Lifetime CDF.

From Table 21 and Figure 31, we can observe that the PDF and CDF for IGP-Gamma
frailty model and IGP-IG frailty model are similar to each other and differ from IGP model.
Moreover, the presence of the frailty term slightly offsets the PDF to the left, which means that
the time to failure is supposed to be lower in IGP frailty model than in IGP model.
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4.5 Concluding remarks
We have proposed a frailty-based approach to estimation in the IGP model for degradation

data. The motivation here is that the frailty model may be more appropriate to account for
heterogeneity and of easy interpretation. In this study, we considered gamma and IG distribution
for frailty. The methodology was implemented through the Quasi-Newton method and the BFGS
algorithm in Ox software (DOORNIK, 2009) to obtain the MLEs of the model parameters. The
algorithm reached convergence in the simulation study and in the application with real datasets.
The simulation study showed that the asymptotic properties of the MLEs are compromised when
we ignore the presence of frailty: the MSEs are small with large sample sizes but the CPs are not
close to the nominal value, which is to say that the asymptotic intervals are not propitious to use.
In the application with the LASER data and the crack size data, the IGP-IG and IGP-Gamma
frailty models provided results similar to each other; the first one best fitted the LASER data and
the second one best fitted the crack size data.
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CHAPTER

5
MIXTURE INVERSE GAUSSIAN PROCESS IN

DEGRADATION ANALYSIS AND BURN-IN
POLICY

5.1 Introduction

In this chapter, we propose a decision rule for classifying a unit as normal or weak, and
give an economic model for determining the optimal termination time and the other parameters
of a burn-in test. We use a mixture IGP to fit the degradation paths. We describe the optimal
burn-in procedure based on the proposed cost model. We analyze a real LASER dataset in the
reliability literature and carry out an extensive Monte Carlo simulation study to illustrate the
proposed methodology.

5.2 Mixture inverse Gaussian degradation process model

Commonly, electronic devices belong to heterogeneous population, consisting of two
groups, the weak group and the normal one, wherein the weak group has a shorter mean lifetime
than the normal one (ZHANG; YE; XIE, 2015). Mixture distributions have been commonly used
to capture this sort heterogeneity, wherein the degradation paths are modeled through a mixture
degradation process model.

Let gθθθ 111(t) and gθθθ 222(t) be the mean functions of the weak and normal groups of products,
respectively. Then, the degradation path D(t) in the mixture IGP is given by

D(t)∼

{
IG(gθθθ 111(t),η1g2

θθθ 111
(t)), for weak group,

IG(gθθθ 222(t),η2g2
θθθ 222
(t)), for normal group,

(5.1)

where gθθθ 111(t) and gθθθ 222(t) are indexed by the parameter vectors θθθ 111 and θθθ 222, respectively, gθθθ 111(t)>
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gθθθ 222(t)> 0, ∀t ≥ 0, η1 > 0 and η2 > 0, then the mean function is greater in the weak group than
in the normal group of products and the volatility parameters are different.

From (5.1), the degradation increment Y = D(t +∆t)−D(t) in the time interval ∆t ≡
[t, t +∆t], has the following PDF:

fY (y) = p
√

η1

2πy3 ∆gθθθ 111(t)e
−

η1(y−∆g
θθθ111

(t))2

2y +(1− p)
√

η2

2πy3 ∆gθθθ 222(t)e
−

η2(y−∆g
θθθ222

(t))2

2y , (5.2)

where ∆gθθθ 111(t) = gθθθ 111(t +∆t)−gθθθ 111(t) is the time-function increment during the time interval ∆t

under weak units and ∆gθθθ 222(t) = gθθθ 222(t +∆t)−gθθθ 222(t) is the time-function increment during the
time interval ∆t under normal units.

From (5.1), we can derive two particular cases:

4 Case 1: When the degradation paths from both groups have the same volatility parameter,
i.e., η1 = η2 = η , then we have

D(t)∼

{
IG(gθθθ 111(t),ηg2

θθθ 111
(t)), for weak group,

IG(gθθθ 222(t),ηg2
θθθ 222
(t)), for normal group;

(5.3)

4 Case 2: When the degradation paths from both groups have the same mean function, i.e.,
gθθθ 111(t) = gθθθ 222(t) = gθθθ (t), then we have

D(t)∼

{
IG(gθθθ (t),η1g2

θθθ
(t)), for weak group,

IG(gθθθ (t),η2g2
θθθ
(t)), for normal group.

(5.4)

5.2.1 Lifetime distribution

The lifetime distribution information will be useful in developing a warranty policy for
the units. The construction of the lifetime distribution is based on CDF lifetime in IGP model
(2.12) in the following.

Let D(t)∼ IG(gθθθ rrr(t),ηg2
θθθ rrr
(t)), with r = 1 for the weak group and r = 2 for the normal

group, one can obtain the lifetime CDF for the r−th group as

FTr(t) = 1−FIGP(y = ρ|gθθθ rrr(t),ηr)

= Φ

[
−
√

ηr

ρ
(ρ−gθθθ rrr(t))

]
− exp(2ηrgθθθ rrr(t))Φ

[
−
√

ηr

ρ
(ρ +gθθθ rrr(t))

]
. (5.5)

Therefore, the lifetime PDF and the MTTF for the r−th group is readily obtained from
(5.5).

5.2.2 Inference for unknown parameters

Consider a sample of n units with degradation collecting points ti0 = 0, ti1, . . . , tini and
degradation values D(ti1), . . . ,D(tini). For each unit i and 1 ≤ j ≤ ni, define Yi j = D(ti j)−
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D(ti, j−1) to be the degradation increment in the time interval [ti, j−1, ti j]. From (5.2), the likelihood
function is then given by

L(gθθθ 111(t),gθθθ 222(t),η1,η2, p) =
n

∏
i=1

p
ni

∏
j=1

√
η1

2πy3
i j

∆gθθθ 111(ti j)exp

[
−

η1(yi j−∆gθθθ 111(ti j))
2

2yi j

]

+(1− p)
ni

∏
j=1

√
η2

2πy3
i j

∆gθθθ 111(ti j)exp

[
−

η2(yi j−∆gθθθ 222(ti j))
2

2yi j

] ,

(5.6)

where ∆gθθθ 111(ti j) = gθθθ 111(ti j)−gθθθ 111(ti, j−1) is the time-function increment during the time interval
[ti, j−1, ti j] under weak units and ∆gθθθ 222(ti j) = gθθθ 222(ti j)−gθθθ 222(ti, j−1) is the time-function increment
during the time interval [ti, j−1, ti j] under normal units.

Therefore, the log-likelihood function is given by

l(gθθθ 111(t),gθθθ 222(t),η1,η2, p) =
n

∑
i=1

log

p
ni

∏
j=1

√
η1

2πy3
i j

∆gθθθ 111(ti j)exp

[
−

η1(yi j−∆gθθθ 111(ti j))
2

2yi j

]

+(1− p)
ni

∏
j=1

√
η2

2πy3
i j

∆gθθθ 222(ti j)exp

[
−

η2(yi j−∆gθθθ 222(ti j))
2

2yi j

] .

(5.7)

The functions gθθθ 111(.) and gθθθ 222(.) have to be specified. The MLEs can be obtained by
direct maximization of (5.7) with respect to the parameters. Intervals estimates and hypothesis
tests can then be developed based on asymptotic properties of the MLEs.

5.3 Burn-in test and optimal burn-in time
A burn-in test is the process by which products are pre-tested prior to being placed in

service. In general, this process forces certain failures to occur under supervised conditions so
that the understanding of the product’s load capacity can be established. For highly reliable
products, we observe very few or no failures; then, we must propose a method to screen out the
weak units from the normal ones based on degradation characteristics of such units. Our interest
is determining the optimal burn-in time that classifies the components efficiently.

This procedure is essentially a hypothesis testing with the following assumptions

4 H0 (or null hypothesis): “the unit belongs to the normal group”,

4 Ha (or alternative hypothesis): “the unit belongs to the weak group”.

The decision rule to screen out the weak units from the normal ones states when the null
hypothesis must be rejected, as described below:
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R: For fixed tb, a unit is regarded as normal if and only if

D(tb)≤ ξ (tb), (5.8)

where ξ (tb) denotes the unknown cutoff point at burn-in time tb, which has to be determined.

The decision rule in (5.8) is liable to misclassification errors, and so we now introduce
the misclassification probabilities associated with this decision rule.

Considering the general model (5.1), the probability of type I error (misclassifying a
normal unit as weak), for each tb, is given by

α(tb) = P(D(tb)> ξ (tb)|H0) = 1−FIG(gθθθ 222(tb),η2g2
θθθ 222
(tb)), (5.9)

where FIG(.) is as defined in (2.6).

Similarly, the probability of type II error (misclassifying a weak unit as normal), for each
tb, is given by

β (tb) = P(D(tb)< ξ (tb)|Ha) = FIG(gθθθ 111(tb),η1g2
θθθ 111
(tb)). (5.10)

5.3.1 Optimal burn-in time and cutoff point

A concern in burn-in policy is to find a decision rule that maximizes the economic
benefits (JENSEN, 1982). Based on this principle, we design an economic cost model, consisting
of the following components:

- Cα : the cost of type I error,
- Cβ : the cost of type II error,
- Cop: the cost of operating the burn-in procedure (from 0 up to tb) for each unit,
- Cmea: the cost of collecting data for each unit,
- n: the total number of units subject to the burn-in test,
- p: the proportion of weak units.

Cα includes manufacturing costs and Cβ includes warranty costs, while Cop includes
labor costs and Cmea includes costs of setting up the measuring equipment.

The misclassification cost is the average of the costs Cα and Cβ , weighted by their
respective probabilities. Then, for each tb, the misclassification cost is given by

MC (ξ (tb)) =Cαn(1− p)α(tb)+Cβ npβ (tb). (5.11)

The optimal cutoff point is the one that results in the minimal misclassification cost. In
the following, we present the optimal cutoff point values for the different mixture IGPs presented
earlier in section 5.2.
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Theorem 5.3.1. For fixed tb, the optimal cutoff point under model (5.1) is obtained through the
equation

−
(
ξ (tb)−gθθθ 111(tb)

)2
η1

2η1
+

(
ξ (tb)−gθθθ 222(tb)

)2
η2

2η2
= log(C), (5.12)

which has two real roots given by

ξ̂1(tb) =
gθθθ 111(tb)η1−gθθθ 222(tb)η2− log(C)+ 1

2

√
∆

η1−η2
,

ξ̂2(tb) =
gθθθ 111(tb)η1−gθθθ 222(tb)η2− log(C)− 1

2

√
∆

η1−η2
,

where C =
Cα (1−p)

√
η2gθθθ222

(tb)
Cβ p
√

η1gθθθ111
(tb)

and ∆ =−4(η1−η2)(g2
θθθ 111
(tb)η1−g2

θθθ 222
(tb)η2 +4(−gθθθ 111(tb)η1

+gθθθ 222(tb)η2 + log(C))2.

Proof. The proof is presented in Appendix A.

There are two real roots for equation (5.12), and we have to check the value of the second
derivative of the misclassification cost with respect to ξ (tb), to determine the minimizer. The
second derivative of (5.11) with respect to ξ (tb) is given by

∂ 2MC (ξ (tb))
∂ 2ξ (tb)

=
n
(

Cβ e−b1gθθθ 111(tb)p
√

η1
ξ (tb)

a1−Cαe−b2gθθθ 222(tb)(−1+ p)
√

η2
ξ (tb)

a2

)
2ξ 3(tb)

√
2π

, (5.13)

where a1 =−3ξ (tb)−ξ 2(tb)η1 +g2
θθθ 111
(tb)η1, a2 = 3ξ (tb)+ξ 2(tb)η2−g2

θθθ 222
(tb)η2,

b1 =

(
ξ (tb)−gθθθ111

(tb)
)2

η1

2ξ (tb)
and b2 =

(
ξ (tb)−gθθθ222

(tb)
)2

η2

2ξ (tb)
.

We must take the solution which results in function (5.13) being positive, yielding a
global minimal value for the misclassification cost in (5.11).

Corollary 5.3.2. For fixed tb, the optimal cutoff point under model (5.3) is given by

ξ̂ (tb) =

(
gθθθ 111(tb)−gθθθ 222(tb)

)(
gθθθ 111(tb)+gθθθ 222(tb)

)
η

(2
(
gθθθ 111(tb)−gθθθ 222(tb)

)
η−2log

[Cα (1−p)gθθθ222
(tb)

Cβ pgθθθ111
(tb)

] . (5.14)

Proof. The proof is exhibited in Appendix A.

Corollary 5.3.3. For fixed tb, the optimal cutoff point under model (5.4) is obtained through the
equation

−(ξ (tb)−gθθθ (tb))
2

η1

2η1
+

(ξ (tb)−gθθθ (tb))
2

η2

2η2
= log

[
Cα(1− p)

√
η2

Cβ p
√

η1

]
, (5.15)
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which has two real roots:

ξ̂1(tb) =
gθθθ (tb)η1−gθθθ (tb)η2− log

[
Cα (1−p)

√
η2

Cβ p
√

η1

]
+
√

∆

η1−η2
,

ξ̂2(tb) =
gθθθ (tb)η1−gθθθ (tb)η2− log

[
Cα (1−p)

√
η2

Cβ p
√

η1

]
−
√

∆

η1−η2
,

where ∆ =−4g2
θθθ
(tb)(η1−η2)

2 +
(

2gθθθ (tb)(η1−η2)−2log
[

Cα (1−p)
√

η2
Cβ p
√

η1

])2
.

Proof. The proof is shown in Appendix A.

In addition to the misclassification cost, we also need to pay attention to the burn-in test
cost that includes the costs of conducting the degradation test and measuring the data.

For each unit i, let t = 0, t1, . . . , tni be the check points of a burn-in test, then the total num-
ber of data collecting points at tb is b+1 for 1≤ b≤ ni. Then the total cost of misclassification,
for each tb, is given by

TC (ξ (tb)) = MC (ξ (tb))+Cop×n× tb +Cmea×n× (b+1), (5.16)

where MC (ξ (tb)) is as given in (5.11). Then, the optimal burn-in time tb can be obtained by
minimizing (5.16).

5.4 Application - The LASER data revisited (example
2.2.1)

In the application with LASER data, we first analyze Figure 32, which displays the deg-
radation paths separated into two groups: three units having the highest cumulative degradation
belong to the weak group, while twelve units having the lowest cumulative degradation belong
to the normal group, and we conclude that the mixture IG degradation process can be expressed
by two mean functions gθθθ 111(t) = θ1t and gθθθ 222(t) = θ2t, for the weak group and the normal one,
respectively, with θ1 > θ2 > 0.

Additionally, we bring forward the mixture Wiener and gamma process models in a brief
description. The aim here is to compare the proposed mixture IGP model with these well known
models in the literature. For the sake of simplicity, the mixture Wiener and gamma processes are
depicted under the case 1 (5.3).

Definition 5.4.1. The mixture Wiener process (TSENG; TANG, 2001) for the degradation up to
time t, D(t), considering two subpopulations, is an extension of Wiener process (2.3) and given
by

D(t)∼

{
v1t +σB(t), for weak group,
v2t +σB(t), for normal group,

(5.17)
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Figure 32 – Degradation paths from the LASER data separated into groups.

where v1 and v2 denote the drift parameters for weak and normal units, respectively, σ is the
diffusion coefficient, and B(t) is the standard Brownian motion.

Definition 5.4.2. The mixture gamma process (TSAI; TSENG; BALAKRISHNAN, 2011) for
the degradation up to time t, D(t), considering two subpopulations, is an extension of gamma
process (2.4) and given by

D(t)∼

{
Gamma

(
ϕψψψ111(t),υ

)
for weak group,

Gamma
(
ϕψψψ222(t),υ

)
, for normal group,

(5.18)

where ϕψψψ111(t)> ϕψψψ222(t),∀t are the shape functions that take the forms ϕψψψ111(t) =ψ1t and ϕψψψ222(t) =

ψ2t with ψ1 > ψ2 and υ > 0 is the scale parameter.

Figure 33 shows the P-P plots along with the AD test (MARSAGLIA; MARSAGLIA,
2004) of the observed degradation increments under IG distribution, Normal distribution and
gamma distribution, from which we notice that IG and gamma process models are more suitable
for describing the LASER data than Wiener process (p-value < 0.05 for the normal group).

Table 22 shows the MLEs of the parameters and the corresponding log-likelihood and
AIC values for the models in (5.1), (5.3), (5.4), (5.17) and (5.18). The MLEs for the models
(5.1), (5.3) and (5.4) were obtained by the Quasi-Newton optimization method through BFGS
algorithm, whereas the MLEs for the models (5.17) and (5.18) were taken from Tsai, Tseng and
Balakrishnan (2011). Besides that, the starting values for the parameters in BFGS algorithm
were identical to the MLEs from IGP model (2.7) taken from Table 14. It is worth mentioning
that we did not face trouble in estimating the parameters of the Mixture IGP model due to the
fact that the weak and normal groups are noticeable apart one from another.

For easy viewing, the time unit in all tables is expressed in 1,000 hours of operation, then
the MLEs of θ1 and θ2 in models (5.1) and (5.3), θ in model (5.4), v1 and v2 in model (5.17),
ψ1 and ψ2 in model (5.18) must be divided by 1,000 to be correctly interpreted. Similarly, the
MLE of σ in model (5.17) must be divided by

√
1,000.
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Figure 33 – P-P plots of the degradation increments under different distributions based on the LASER data.

From Table 22 we note that the model in (5.3) has the smallest AIC value, which
corresponds to the mixture IGP with different mean functions and the same volatility parameter
for both groups. Considering the model (5.3) as the best working model, we now investigate the
optimal burn-in policy.

To construct the burn-in procedure described earlier in section 5.3, we set the cost
parameters Cα = 65, Cβ = 90, Cop = 0.0009 and Cmea = 0.0005, as done in Tsai, Tseng and
Balakrishnan (2011). Table 23 shows the estimated misclassification probabilities (5.9) and
(5.10), the optimal cutoff point (5.14) and the total cost (5.16).

From Table 23, we observe that the smallest total cost is 54.7750 achieved at tb = 3,000
h and the matching cutoff point is 6.7759. Therefore, the optimal burn-in policy consists in
observing the components up to 3,000 hours of operation, and all the units with D(3,000) >
6.7759 must be rejected and not delivered to market. For easy viewing, the corresponding cells
are featured in gray.
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Table 22 – MLEs of the model parameters, logL and AIC values based on the LASER data.

Model Parameters MLEs logL AIC
mixture IGP (5.1) θ1 2.7160 102.13 −194.26

θ2 1.7912
η1 19.2410
η2 16.0320
p 0.2660

mixture IGP case 1 (5.3) θ1 2.6902 101.79 −195.59
θ2 1.8004
η 18.234
p 0.2661

mixture IGP case 2 (5.4) θ 2.0413 76.583 −145.17
η1 31.8490
η2 11.7470
p 0.1610

mixture Wiener process (5.17) v1 2.8087 73.6541 −139.31
v2 1.8252
σ 0.3454
p 0.2156

mixture gamma process (5.18) ψ1 51.8910 97.1152 −186.23
ψ2 34.4520
υ 0.0521
p 0.2646

Table 23 – MLEs of the misclassification probabilities, optimal cutoff point and total cost under mixture IGP model
(5.3), based on the LASER data.

tb 0.25 0.5 0.75 1 1.25 1.5 1.75 2

ξ̂ (tb) 0.60412 1.1639 1.7247 2.2858 2.8470 3.4082 3.9694 4.5307
α̂(tb) 0.1519 0.1204 0.0929 0.0718 0.0557 0.0435 0.0341 0.0268
β̂ (tb) 0.4054 0.2673 0.1911 0.1414 0.1067 0.0815 0.0629 0.0488

T̂C(tb) 257.7500 188.9700 145.2900 115.7100 95.1340 80.7090 70.6470 63.7670

tb 2.25 2.5 2.75 3 3.25 3.5 3.75 4

ξ̂ (tb) 5.0920 5.6533 6.2146 6.7759 7.3372 7.8985 8.4598 9.0211
α̂(tb) 0.0211 0.0167 0.0132 0.0105 0.0083 0.0066 0.0053 0.0042
β̂ (tb) 0.0381 0.0299 0.0235 0.0186 0.0147 0.0116 0.0092 0.0074

T̂C(tb) 59.2490 56.5100 55.1230 54.7750 55.2270 56.3020 57.8620 59.8010
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For the sake of analysis, one can refer to Table 38 in Appendix B then we observe that
the LASER units 1, 2, 6 and 10 are classified as weak ones because D(3,000) > 6.7759 and
the other LASER units are classified as normal ones. Therefore, we conclude that the optimal
burn-in policy has screened out all the soft failures (units 1, 6 and 10). Additionally, this policy
aims to predict failures in advance because the unit 2 is not a soft failure but it is supposed to
belong to the weak group due to its high degradation values.

Finally, Table 24 shows the lifetime information for the weak and normal groups and
Figure 34 displays the charts of the estimated lifetime CDF and PDF. From Table 24 we observe
that the estimated lifetime percentiles and the MTTF in the weak group are apart from the ones
in the normal group and almost all the weak components (95%) are expected fail up to 4,1794
hours of operation. The same conclusions can be drawn from Figure 34 given that the PDF and
CDF curves are different from each other. The lifetime information for weak and normal units
let us check the differences between both groups and enables the industry to formulate a product
guarantee policy for the delivered units.

Table 24 – MLEs and 95% CIs of the lifetime quantiles and MTTF based on the LASER data.

weak group normal group

Quantity MLE 95% CI MLE 95% CI
t0.05 3.2756 [3.2335;3.3178] 4.8945 [4.8825;4.9066]
t0.5 3.7274 [3.5463;3.9085] 5.5696 [5.5250;5.6142]
t0.8 3.9586 [3.8243;4.0930] 5.9151 [5.8835;5.9467]
t0.95 4.1794 [4.1272;4.2316] 6.2449 [6.2329;6.2569]

MTTF 3.7275 [3.2625;4.1924] 5.5696 [5.3142;5.8251]
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Figure 34 – Lifetime distribution for weak and normal groups based on the LASER data: (a) Lifetime PDF, (b)
Lifetime CDF.
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5.5 Simulation study

A simulation study was carried out. A total of N = 1,000 datasets with sample size
n = 200 were generated. We generated the datasets through the mixture IGP model in (5.3).
The true values of the parameters were set as the MLEs in Table 22. We made inference on
parameters by considering the IGP model in (5.3), Wiener process model (5.17) and gamma
process model (5.18). In other words, we generated data under the mixture IGP and estimated
the parameters under the mixture Wiener and gamma processes, so that we can determine the
effect of misspecifying a mixture IGP as a mixture Wiener or gamma processes.

Table 25 shows the MLEs of the parameters, from which we deduce that the MLEs based
on the simulated data are close to the true parameter values in Table 22.

Table 25 – MLEs of the parameters based on the simulated data.

Model Parameters MLEs
mixture IGP case 1 (5.3) θ1 2.7019

θ2 1.7999
η 18.238
p 0.2665

mixture Wiener process (5.17) v1 2.7035
v2 1.8004
σ 0.0106
p 0.2656

mixture gamma process (5.18) ϕ1 52.7130
ϕ2 35.1570
υ 0.0512
p 0.2670

Let α̂
(k)
IG (tb), β̂

(k)
IG (tb), ξ̂

(k)
IG (tb), T̂C

(k)
IG (tb) denote the estimated misclassification probabil-

ities, the cutoff point and the total cost of the k-th trial under model (5.3), respectively. The
misclassification probabilities, the optimal cutoff point and the total cost under this model are
then estimated empirically as

α IG(tb) =
1
N

N

∑
k=1

α̂
(k)
IG (tb),β IG(tb) =

1
N

N

∑
k=1

β̂
(k)
IG (tb),ξ IG(tb) =

1
N

N

∑
k=1

ξ̂
(k)
IG (tb)

and TCIG(tb) =
1
N

N

∑
k=1

T̂C
(k)
IG (tb).

Analogously, we estimated the misclassification probabilities, the optimal cutoff point
and the total cost under model (5.17), and denoted them by

αW (tb),βW (tb),ξW (tb) and TCW (tb),
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and the misclassification probabilities, the optimal cutoff point and the total cost under model
(5.18) are given by

αG(tb),β G(tb),ξ G(tb) and TCG(tb).

Tables 26, 27 and 28 show the estimated misclassification probabilities, optimal cutoff
point and total cost under the models (5.3), (5.17) and (5.18), respectively.

Table 26 – Estimated misclassification probabilities, optimal cutoff point and total cost under mixture IGP model
(5.3), based on the simulated data.

tb 0.25 0.5 0.75 1 1.25 1.5 1.75 2
ξ IG(tb) 0.6062 1.1667 1.7288 2.2912 2.8537 3.4163 3.9790 4.5416
α IG(tb) 0.1518 0.1192 0.0914 0.0702 0.0543 0.0421 0.0329 0.0257
β IG(tb) 0.4034 0.2645 0.1881 0.1385 0.1041 0.0792 0.0608 0.0471

TCIG(tb) 3384.9 2470.8 1892.4 1502.8 1233.5 1045.9 916.13 828.30

tb 2.25 2.5 2.75 3 3.25 3.5 3.75 4
ξ IG(tb) 5.1043 5.6670 6.2297 6.7924 7.3551 7.9178 8.4805 9.0432
α IG(tb) 0.0202 0.0159 0.0126 0.0099 0.0079 0.0063 0.0050 0.0040
β IG(tb) 0.0366 0.0286 0.0224 0.0176 0.0139 0.0110 0.0087 0.0069

TCIG(tb) 771.50 737.96 722.03 719.55 727.43 743.30 765.40 792.34

Table 27 – Estimated misclassification probabilities, optimal cutoff point and total cost under mixture Wiener
process model (5.17), based on the simulated data.

tb 0.25 0.5 0.75 1 1.25 1.5 1.75 2
ξW (tb) 0.6492 1.2122 1.7751 2.3381 2.9011 3.4641 4.0271 4.5900
αW (tb) 0.1184 0.0944 0.0718 0.0544 0.0413 0.0315 0.0241 0.0185
βW (tb) 0.4372 0.2784 0.1925 0.1380 0.1011 0.0751 0.0563 0.0425

TCW (tb) 3233.2 2302.5 1728.1 1351.0 1097.3 926.14 812.15 738.91

tb 2.25 2.5 2.75 3 3.25 3.5 3.75 4
ξW (tb) 5.1530 5.7160 6.2790 7.4049 7.9679 8.5309 9.0939 10.713
αW (tb) 0.0143 0.0110 0.0085 0.0066 0.0051 0.0040 0.0031 0.0024
βW (tb) 0.0323 0.247 0.0190 0.0146 0.0113 0.0087 0.0068 0.0053

TCW (tb) 695.21 673.22 667.35 673.55 688.84 711.02 738.46 769.90

From Table 26, we observe that the optimal burn-in time based on the IGP model is
3,000 hours of operation and the matching optimal cutoff point is 6.7924, with cells highlighted
in gray. These results are similar to Table 23.

From Tables 27 and 28, we observe that the optimal burn-in time is 2,750 hours for
both Wiener and gamma process models and the cutoff point values are 6.2790 and 6.2077,
respectively. For easy interpretation, the corresponding cells are featured in gray.

Thereby, to measure the effect of model misspecification, we analyze the relative bias
(RB) of type I and II misclassification errors. For each burn-in time tb, the RB of model
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Table 28 – Estimated misclassification probabilities, optimal cutoff point and total cost under mixture gamma
process model (5.18), based on the simulated data.

tb 0.25 0.5 0.75 1 1.25 1.5 1.75 2
ξ G(tb) 0.6244 1.1813 1.7393 2.2977 2.8562 3.4147 3.9733 4.5318
αG(tb) 0.1300 0.1027 0.0782 0.0595 0.0454 0.0348 0.0268 0.0207
β G(tb) 0.4264 0.2739 0.1911 0.1382 0.1020 0.0763 0.0577 0.0439

TCG(tb) 3295.2 2363.4.15 1784.3 1401.1 1141.1 963.76 844.21 766.02

tb 2.25 2.5 2.75 3 3.25 3.5 3.75 4
ξ G(tb) 5.0904 5.6491 6.2077 6.7663 7.3249 7.8836 8.4422 9.0008
αG(tb) 0.0160 0.0124 0.0097 0.0076 0.0059 0.0046 0.0036 0.0029
β G(tb) 0.0336 0.0259 0.0200 0.0155 0.0120 0.0094 0.0073 0.0057

TCG(tb) 718.00 692.28 683.24 686.74 699.77 720.06 745.90 776.02

misspecification of a mixture IG degradation model to be mistakenly treated as mixture Wiener
process is given by

RBαW (tb) =
αW (tb)−α IG(tb)

α IG(tb)
and RBβW (tb) =

βW (tb)−β IG(tb)

β IG(tb)
.

Similarly, the RB of model misspecification of a mixture IG degradation model to be
mistakenly treated as mixture gamma process is given by

RBαG(tb) =
αG(tb)−α IG(tb)

α IG(tb)
and RBβG

(tb) =
β G(tb)−β IG(tb)

β IG(tb)
.

Tables 29 and 30 exhibit the RB values for Wiener and gamma process models RBαW (tb)

and RBαG(tb), respectively.

Table 29 – Relative bias of type I and II errors for mixture Wiener process model (5.17), based on the simulated
data.

tb 0.25 0.5 0.75 1 1.25 1.5 1.75 2
RBαW (tb) −0.2200 −0.2084 −0.2143 −0.2252 −0.2381 −0.2518 −0.2657 −0.2798
RBβW (tb) 0.0838 0.0524 0.0231 −0.0037 −0.0286 −0.0521 −0.0745 −0.0959

tb 2.25 2.5 2.75 3 3.25 3.5 3.75 4
RBαW (tb) −0.2938 −0.3076 −0.3212 −0.3346 −0.3477 −0.3606 −0.3732 −0.3855
RBβW (tb) −0.1165 −0.1363 −0.1555 −0.1740 −0.1919 −0.2094 −0.2263 −0.2427

From Table 29, we note that the probability of type I error is underestimated for all
burn-in times, while the probability of type II error is overestimated only for the first three
burn-in times and underestimated for all other burn-in times. Moreover, the maximum values for
RBαW and RBβW are −38.55% and −24,27%, respectively, for burn-in time of 4,000 hours of
operation. These results are featured in gray.
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Table 30 – Relative bias of type I and II errors for mixture gamma process model (5.18), based on the simulated
data.

tb 0.25 0.5 0.75 1 1.25 1.5 1.75 2
RBαG(tb) −0.1441 −0.1380 −0.1437 −0.1526 −0.1628 −0.1737 −0.1847 −0.1959
RBβG(tb) 0.0571 0.0356 0.0156 −0.0026 −0.0198 −0.0361 −0.0517 −0.0668

tb 2.25 2.5 2.75 3 3.25 3.5 3.75 4
RBαG(tb) −0.2070 −0.2180 −0.2290 −0.2399 −0.2506 −0.2611 −0.2720 −0.2820
RBβG(tb) −0.0814 −0.0957 −0.1095 −0.1231 −0.1363 −0.1492 −0.1619 −0.1743

Similarly, from Table 30, we note that the probability of type I error is underestimated
for all burn-in times, while the probability of type II error is overestimated only for the first three
burn-in times and underestimated for all the remaining burn-in times. Moreover, the maximum
values for RBαG and RBβG

are−28.20% and−17,43%, respectively, which correspond to burn-in
time of 4,000 hours of operation (featured in gray).

These results show that the model misspecification influences the misclassification
probabilities considerably, which do impact the optimal burn-in cost significantly.
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5.6 Concluding remarks
In the case of highly reliable products wherein we have very few or no failures, it is quite

difficult to determine the optimal burn-in time before such products being fielded to costumers. In
this case, the optimal burn-in time can be obtained using degradation values. In this chapter, we
have proposed a mixture IGP model for the analysis of degradation data and we have presented
a decision rule to separate the weak units from the normal ones. We have then determined the
optimal burn-in time and cutoff point based on a cost model. The methodology was implemented
through the Quasi-Newton method and the BFGS algorithm in Ox software (DOORNIK, 2009)
for obtaining the MLEs of the model parameters, which achieved convergence in the application
with LASER data and in the simulation study. In the application with the LASER data, the
proposed mixture IGP is shown to fit better than mixture Wiener and gamma processes. In the
simulated study, we have shown that model misspecification influences the misclassification
probabilities estimates considerably and consequently impacts the optimal burn-in costs.
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CHAPTER

6
OPTIMAL BURN-IN POLICY BASED ON A

SET OF CUTOFF POINTS

6.1 Introduction

In the chapter 5 it was considered an optimal burn-in policy that includes the optimal
burn-in time and a single cutoff point that screen out the weak units from the normal ones in a
production row. In this chapter, the optimal burn-in policy consists of the optimal burn-in time
and a set of cutoff points rather than a single one. The main motivation is that this methodology
exhibits several scenarios for the burn-in time and the cutoff points, in which we are able to
choose the burn-in time and the number of cutoff points that lead to the minimum cost.

The mixture IGP model is used to capture the heterogeneity in the degradation paths
according to the chapter 5 and under the case 1 (5.3). We state a decision rule for classifying
an item as normal or weak based on burn-in time and a set of cutoff points. Then, an economic
cost model is used to determine the optimal burn-in time and the optimal cutoff points, whose
estimation is based on analytical method or an approximate method involving copula theory.
Finally, an example on LASERs is analyzed to illustrate the proposed procedure.

6.1.1 Inference for unknown parameters

In this approach, the likelihood function is similar to equation (5.6) with some modi-
fication: for each unit i, its contribution in the likelihood function consists of all degradation
values up to time tb or the number ni of degradation values (if ni < tb). Therefore the likelihood
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function for n units being observed up to time tb is given by

L(gθθθ 111(t),gθθθ 222(t),η , p) =
n

∏
i=1

p
b∗

∏
j=1

√
η

2πy3
i j

∆gθθθ 111(ti j)exp

[
−

η(yi j−∆gθθθ 111(ti j))
2

2yi j

]

+(1− p)
b∗

∏
j=1

√
η

2πy3
i j

∆gθθθ 111(ti j)exp

[
−

η(yi j−∆gθθθ 222(ti j))
2

2yi j

] ,

where b∗ = min{b,ni}, ∆gθθθ 111(ti j) and ∆gθθθ 222(ti j) are as given in section 5.2.2.

In practical situations, this modification in the likelihood is reasonable, since the MLEs
are conditioned to the stopping time. Additionally, the term b∗ is useful in experiments where
the units have different numbers of degradation values due to soft failures such as, for example,
in the locomotive wheels data (example 2.2.2) and the fatigue crack size data (example 2.2.3).
Consequently, the log-likelihood function is given by

l(gθθθ 111(t),gθθθ 222(t),η , p) =
n

∑
i=1

log

p
b∗

∏
j=1

√
η

2πy3
i j

∆gθθθ 111(ti j)exp

[
−

η(yi j−∆gθθθ 111(ti j))
2

2yi j

]

+(1− p)
b∗

∏
j=1

√
η

2πy3
i j

∆gθθθ 222(ti j)exp

[
−

η(yi j−∆gθθθ 222(ti j))
2

2yi j

] .

(6.1)

The MLEs can be obtained by direct maximization of (6.1) with respect to the parameters.
Interval estimates can then be computed by resorting to the asymptotic properties of the MLEs.

6.1.2 Lifetime distribution

The construction of the lifetime distribution for the weak and normal groups is as given
in section 5.2.1 considering the special case (5.3).

6.2 Optimal burn-in policy based on a set of cutoff points
The decision rule is based on the burn-in time tb and a set of s cutoff points ξ1, . . . ,ξs,

with 1≤ s≤ b as stated below:
R: For fixed tb and s, a unit is regarded as normal if and only if

D(tb−s+ j)≤ ξ j,∀ j = 1, . . . ,s with 1≤ s≤ b, (6.2)

which means that we are making use of various cutoff points rather than a single cutoff point as
shown in the decision rule (5.8) from chapter 5.

The misclassification probabilities associated with the decision rule (6.2) rely on null
and alternative hypotheses stated earlier in section 5.3.
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Considering model (5.3), the probability of type I error (misclassifying a normal unit as
weak), for each tb and s, is given below

α(ξ1, . . . ,ξs|tb,s) = P(D(tb−s+ j)> ξ j, for some j = 1, . . . ,s|H0)

= 1−P(D(tb−s+1)≤ ξ1, . . . ,D(tb)≤ ξs|H0) . (6.3)

Similarly, the probability of type II error (misclassifying a weak unit as normal), for each tb and
s, is given by

β (ξ1, . . . ,ξs|tb,s) = P(D(tb−s+ j)≤ ξ j,∀ j = 1, . . . ,s|Ha)

= P(D(tb−s+1)≤ ξ1, . . . ,D(tb)≤ ξs|Ha) . (6.4)

The misclassification probabilities can be determined either by analytical methods or by approxi-
mate methods, depending on the number of cutoff points s.

6.2.1 Analytical methods for determining misclassification
probabilities

For s = 1, we have one cutoff point, in which case the probabilities in (6.3) and (6.4) are
reduced to (5.9) and (5.10), respectively.

For s = 2, we have two cutoff points, in which case the misclassification probabilities
are obtained analytically through the CDF of bivariate IG distribution. In this context, we use the
Theorem 6.2.1 below due to Al-Hussaini and ABD-El-Hakim (1981).

Theorem 6.2.1. Let X1 and X2 be two random variables with IG distribution: X1 ∼ IG(µX1,λX1)

and X2 ∼ IG(µX2,λX2). Then, the joint CDF FX1,X2(x1,x2) is given by

FX1,X2(x1,x2) = [Φ(a1)+ exp(2λX1 µX1)Φ(−b1)][Φ(a2)+ exp(2λX2 µX2)Φ(−b2)]

+16

√
λX1λX2

µX1 µX2

ρ exp
(

4
(

λX1

µX1

+
λX2

µX2

))
Φ(−
√

2b1)Φ(−
√

2b2),

where a j =

√
λX j (x j−µXj )

µX j
√x j

, b j =

√
4λXj
µX j

+a2
j and ρX1,X2 = Corr(X1,X2).

Proof. One may refer to Al-Hussaini and ABD-El-Hakim (1981).

The formula for ρX1,X2 = Corr(X1,X2) can be obtained from Wasan (1969), who shows
that the covariance formula between any two variables coming from an IGP is given by

COV(X(s),X(t)) = VAR(X(s)),

where 0 < s < t.



100 Chapter 6. Optimal burn-in policy based on a set of cutoff points

6.2.2 Approximate methods using copulas for misclassification
probabilities

When s > 2, the misclassification probabilities may be obtained approximately, by the
use of multivariate copulas with dimension equal to s described below.

A copula is a multivariate distribution whose marginals are all uniform over (0,1). For a
s-dimensional random vector U on the unit cube, a copula C is given by

C(u1, . . . ,us) = P(U1 ≤ u1, . . . ,Us ≤ us).

Let F be a s-dimensional distribution function with marginals F1, . . . ,Fs. From Sklar
(1959), there exists a s-dimensional copula C such that for all x in the domain of F , we have

F(x1, . . . ,xs) =C{F1(x1), . . . ,Fs(xs)} .

In our work we have used elliptical copulas, which enable a flexible unstructured cor-
relation matrix. A detailed discussion about elliptical distributions can be found in Fang, Kotz
and Ng (1990). Let F be the multivariate CDF of an elliptical distribution. Let Fi be the CDF of
the i-th marginal and F−1

i be its inverse function (quantile function), for i = 1, . . . ,s. Then, the
elliptical copula determined by F is

C(u1, . . . ,us) = F
(
F−1

1 (u1), . . . ,F−1
s (us)

)
. (6.5)

By differentiating (6.5), we get the density of an elliptical copula to be

c(u1, . . . ,us) =
f
(
F−1

1 (u1), . . . ,F−1
s (us)

)
s

∏
i=1

fi
(
F−1

i (ui)
) ,

where f is the joint PDF of the elliptical distribution, and f1, . . . , fs are the marginal density
functions.

We resort to copula package (YAN, 2007) in R software (R Core Team, 2016). Actual
elliptical copula classes implemented in copula package are Normal and t-copulas specified by
multivariate normal and t distributions, respectively. Both these copulas have a dispersion matrix,
inherited from the elliptical distribution, and t-copula has one extra parameter, namely, the
degrees of freedom. Since copulas are invariant to monotonic transformations of the marginals,
the correlation matrix determines the dependence structure. Commonly used correlation matrix
structures are autorregressive of order 1, exchangeable, Toeplitz and unstructured. This method
then computes the cumulative multivariate probabilities, and subsequently provides approximate
misclassification probabilities from (6.3) and (6.4) for fixed tb and s.

6.2.3 Optimal burn-in time and cutoff points

The misclassification cost is the average of the costs Cα and Cβ , weighted by their
respective probabilities. Then, for each tb and s, the misclassification cost is a function of the
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cutoff points ξ1, . . . ,ξs in the form

MC (ξ1, . . . ,ξs|tb,s) =Cαn(1− p)α(ξ1, . . . ,ξs|tb,s)+Cβ npβ (ξ1, . . . ,ξs|tb,s), (6.6)

where α(ξ1, . . . ,ξs|tb,s) and β (ξ1, . . . ,ξs|tb,s) are as given in (6.3) and (6.4), respectively.

Therefore, the total misclassification cost is the sum of the misclassification cost in (6.6)
and additional costs for an entire sample and is of the form

TC (ξ1, . . . ,ξs|tb,s) = MC (ξ1, . . . ,ξs|tb,s)+Cop×n× tb +Cmea×n× (b+1). (6.7)

The optimal cutoff points are the ones that result in minimal misclassification cost in
(6.6) for tb and s, that is,

ξ̂1, . . . , ξ̂s = arg min
ξ1,...,ξs

MC (ξ1, . . . ,ξs|tb,s) ,

When s = 1, the optimal cutoff point is obtained analytically through equation (5.14);
and when s > 1 the optimal cutoff points need to be determined numerically by iterative methods.

The optimal tb and s are values that result in minimal total misclassification cost in (6.7):

t̂b, ŝ = argmin
tb,s

TC (ξ1, . . . ,ξs|tb,s) .

In practical applications, the functions gθθθ 111(.) and gθθθ 222(.), the volatility parameter η and
the proportion p are all unknown. For this reason, one may obtain the MLEs of the parameters
described earlier in section 6.1.1 and make use of these values in (6.3), (6.4), (6.6) and (6.7).

6.3 Application

6.3.1 The LASER data (example 2.2.1)

For the application with LASER data, one may refer to chapter 5. Table 22 shows the
MLEs of the parameters from mixture IGP under case 1: when the degradation paths from two
groups have different mean functions and the same volatility parameter, referred to as model
(5.3), from which we note that the weak group exhibit higher estimated angular coefficient than
the normal group (θ̂1 > θ̂2) and the estimated proportion of weak units in the sample is 26,61%.

For illustrative purposes, the time unit in all tables is expressed in 1,000 hours, then the
angular coefficients θ1 and θ2 must be divided by 1,000 in practice.

6.3.2 Generated dataset

In practical situations, we have a large batch of units to be analyzed. To apply the
proposed methodology, a dataset of size n = 200 with the same characteristics of the LASER
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dataset was generated using the MLEs given in Table 22. The goal is to classify the units as
normal or weak based on a burn-in test of 4,000 hours of operation.

Table 41 in Appendix B displays the generated data indicating the weak and normal
units and Figure 35 shows the simulated degradation paths indicating the critical value related to
failure.

From Table 41, we observe that there are 58 (29%) weak units and 142 (71%) normal
units. Due to the randomness in generating the data, the proportion of weak units in the artificial
dataset is not exactly the same as the estimated proportion of weak units in the original LASER
dataset. From Figure 35 we observe that the degradation paths hold linear pattern and are very
similar to the original ones in LASER data.
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Figure 35 – Simulated degradation paths of 200 LASERs.

Table 31 shows the MLEs for different tb values from minimum 500 h and the true
parameter values appear in parentheses. In general, the MLEs become closer to the corresponding
true values as the burn-in time increases.

Table 31 – MLEs of the parameters in (5.3) according to burn-in times tb, based on simulated data.

tb θ1(2.6902) θ2(1.8004) η(18.2340) p(0.2661)
0.50 2.7317 1.7946 18.4390 0.2795
0.75 2.6346 1.7769 18.4340 0.3045
1.00 2.6991 1.7947 18.8340 0.2912
1.25 2.7041 1.7877 18.3590 0.2704
1.50 2.7106 1.7818 18.9600 0.2668
1.75 2.7057 1.7811 18.7440 0.2731
2.00 2.6893 1.7885 18.4040 0.2835
2.25 2.6787 1.7850 18.3140 0.2954
2.50 2.6826 1.7935 18.6010 0.2877
2.75 2.6909 1.7950 18.4630 0.2893
3.00 2.6858 1.7923 18.5290 0.2889
3.25 2.6777 1.7899 18.6690 0.2896
3.50 2.6770 1.7882 18.7420 0.2901
3.75 2.6753 1.7920 18.6990 0.2899
4.00 2.6779 1.7924 18.6780 0.2900
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To construct the burn-in procedure described earlier in section 6.2.3, we set the same
cost parameters as given in section 5.4 and the results are split into two situations: 1≤ s≤ 2 and
s > 2.

4 When 1≤ s≤ 2
Table 32 shows the estimated total costs and the probabilities of misclassification under
different tb values from minimum 500 h and s values from 1 up to 2. The optimal burn-in
time and number of cutoff points are 2,750 h and s= 2, respectively, leading to the minimal
total cost of 599.4861. The optimal cutoff points are 6.0180 and 6.5004, i.e, the optimal
burn-in policy consists in observing the components up to 2,750 hours of operation, and
all the units with D(2,500) > 6.0180 or D(2,750) > 6.5004 must be rejected and not
delivered to market. For easy viewing, the cells corresponding to these results are featured
in gray.

For the sake of analysis, one can refer to Table 38 in Appendix B. For example, the weak
components 5 and 61 are rejected by the optimal burn-in policy

– For unit 5, D(2,500) = 6.62 > 6.0180,

– For unit 61, D(2,500) = 6.96 > 6.0180.

However, the weak components 1 and 100 are not rejected by this policy

– For unit 1, D(2,500) = 5.69 < 6.0180 and D(2,750) = 6.33 < 6.5004),

– For unit 100, D(2,500) = 5.79 < 6.0180 and D(2,750) = 6.39 < 6.5004).

Under this policy, three weak components are not rejected and delivered to market, leading
to the observed probability of type II error of 5.17% which is higher than the estimated
one (0.81%). Concerning the normal components, all of them are accepted and delivered
to market.

4 When s > 2
The Normal and t-student from 1 to 5 degrees of freedom copulas were used to obtain the
misclassification probabilities for the number of cutoff points higher than 2 (s > 2).

The criterion assumed to choose the best copula consists in finding out the copula whose
estimated misclassification probabilities for s = 2 was the closest to the corresponding
values obtained by the analytical method. Thereby, we noted the t-copula with 1 degree of
freedom (t1) and the results are shown below.

Table 33 shows the estimated total costs considering copula theory, from which we
notice that the optimal burn-in time and number of cutoff points are 3,000 h and s = 12,
respectively, leading to the minimal total cost of 686.6687 featured in gray.

Tables 34 and 35 show the estimated probability of type I and II errors, respectively, from
which we conclude that the misclassification probabilities tend to decrease as burn-in
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Table 32 – Estimated total cost and probabilities of type I and II errors for different values of tb and s.

TC(ξ̂1, . . . , ξ̂s|tb,s) α(ξ̂1, . . . , ξ̂s|tb,s) β (ξ̂1, . . . , ξ̂s|tb,s) ξ̂1, . . . , ξ̂s

tb s = 1 s = 2 s = 1 s = 2 s = 1 s = 2 s = 1 s = 2
0.50 2388.8818 2389.9284 0.1208 0.1203 0.2320 0.2332 1.1586 (1.1607;1.1608)
0.75 2085.3670 2139.5356 0.1104 0.1109 0.1736 0.1827 1.6694 (1.6731;1.6732)
1.00 1481.0536 1552.3542 0.0731 0.0818 0.1197 0.1179 2.2677 (2.2519;2.2520)
1.25 1183.8672 1205.4909 0.0521 0.0683 0.0954 0.0683 2.8416 (2.4899;2.8627)
1.50 929.1636 864.4140 0.0360 0.0414 0.0657 0.0415 3.4036 (3.0558;3.4728)
1.75 835.7277 737.7367 0.0289 0.0297 0.0501 0.0287 3.9567 (3.6281;4.0638)
2.00 823.5396 710.2523 0.0263 0.0250 0.0427 0.0228 4.5041 (4.1950;4.6410)
2.25 784.4533 664.5760 0.0220 0.0188 0.0332 0.0162 5.0405 (4.7578;5.2121)
2.50 744.2518 632.0652 0.0168 0.0130 0.0265 0.0118 5.6194 (5.3566;5.8207)
2.75 723.4917 599.4861 0.0131 0.0066 0.0203 0.0081 6.1910 (6.0180;6.5004)
3.00 720.1626 616.3793 0.0104 0.0048 0.0160 0.0059 6.7403 (6.5888;7.0725)
3.25 728.8519 641.7614 0.0083 0.0036 0.0127 0.0043 7.2827 (7.1517;7.6362)
3.50 741.7310 670.8933 0.0064 0.0026 0.0098 0.0030 7.8364 (7.7268;8.2125)
3.75 768.5201 707.4199 0.0053 0.0020 0.0082 0.0024 8.3992 (8.3094;8.7969)
4.00 793.8918 744.0632 0.0042 0.0015 0.0064 0.0017 8.9635 (8.8952;9.3840)

time increases. The cells corresponding to the optimal burn-in time and cutoff points are
featured in gray.

Table 33 – Estimated total cost for different values of tb and s under t1 copula.

tb s = 3 s = 4 s = 5 s = 6 s = 7 s = 8 s = 9
0.75 1991.6201 − − − − − −
1.00 1416.1506 1390.1332 − − − − −
1.25 1179.9117 1126.1684 1105.0808 − − − −
1.50 906.6678 882.4789 871.5606 894.8505 − − −
1.75 859.5467 801.9121 841.4275 794.1043 806.0926 − −
2.00 925.6880 808.7921 832.7379 777.5438 907.7153 816.8192 −
2.25 790.1508 880.6685 861.1221 755.9416 753.5009 766.0018 755.8983
2.50 793.5968 831.0500 726.8199 726.2244 721.3627 785.5936 714.4065
2.75 774.8139 718.6646 775.0801 706.3131 719.2641 741.3324 694.3394
3.00 759.3138 717.5317 711.4677 722.9218 707.5732 704.6590 703.5339
3.25 731.6504 795.1480 792.6829 724.6223 738.7455 719.2114 726.5759
3.50 765.5756 780.0877 808.4916 739.9365 835.5413 786.9763 759.8619
3.75 774.9722 800.7395 821.6631 834.2503 882.3471 855.0226 808.4283
4.00 789.5514 811.7325 790.2724 843.6182 849.9019 870.4556 788.7533

tb s = 10 s = 11 s = 12 s = 13 s = 14 s = 15 s = 16
2.50 716.8341 − − − − − −
2.75 712.3644 700.3879 − − − − −
3.00 705.5082 774.3641 686.6687 − − − −
3.25 707.9439 740.3831 720.9134 727.9581 − − −
3.50 731.3081 732.3586 782.0207 732.2095 746.2420 − −
3.75 838.4097 828.8112 796.8803 755.4353 755.4589 752.7242 −
4.00 787.3475 878.9960 803.7143 830.5440 795.4435 785.3977 777.7445

The optimal cutoff points related to the minimal total cost are shown in Table 36, therefore
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Table 34 – Estimated probability of type I error for different values of tb and s under t1 copula.

tb s = 3 s = 4 s = 5 s = 6 s = 7 s = 8 s = 9
0.75 0.1152 − − − − − −
1.00 0.0704 0.0688 − − − − −
1.25 0.0458 0.0508 0.0513 − − − −
1.50 0.0316 0.0328 0.0302 0.0358 − − −
1.75 0.0281 0.0273 0.0296 0.0244 0.0263 − −
2.00 0.0318 0.0231 0.0271 0.0231 0.0302 0.0370 −
2.25 0.0202 0.0268 0.0211 0.0193 0.0206 0.0242 0.0192
2.50 0.0179 0.0224 0.0153 0.0169 0.0169 0.0172 0.0169
2.75 0.0131 0.0111 0.0154 0.0126 0.0122 0.0143 0.0104
3.00 0.0123 0.0114 0.0101 0.0101 0.0099 0.0089 0.0094
3.25 0.0083 0.0118 0.0122 0.0082 0.0088 0.0082 0.0076
3.50 0.0079 0.0105 0.0080 0.0051 0.0084 0.0086 0.0068
3.75 0.0056 0.0065 0.0061 0.0095 0.0076 0.0059 0.0061
4.00 0.0041 0.0059 0.0048 0.0064 0.0072 0.0050 0.0043

tb s = 10 s = 11 s = 12 s = 13 s = 14 s = 15 s = 16
2.50 0.0156 − − − − − −
2.75 0.0128 0.0130 − − − − −
3.00 0.0102 0.0104 0.0087 − − − −
3.25 0.0070 0.0082 0.0074 0.0047 − − −
3.50 0.0063 0.0058 0.0096 0.0059 0.0077 − −
3.75 0.0102 0.0061 0.0062 0.0045 0.0052 0.0048 −
4.00 0.0046 0.0051 0.0057 0.0035 0.0044 0.0039 0.0034

the optimal burn-in policy consists in observing the components up to 3,000 hours, and all
the units must satisfy D(250)≤ ξ̂1,. . . ,D(3,000)≤ ξ̂12 to be delivered to market.

From exploratory analysis of Table 38 in Appendix B, the weak units 51 and 92 are
rejected by the optimal burn-in policy:

– For unit 51, D(2,250) = 5.80 > ξ̂9 = 5.6336,
– For unit 92, D(2,000) = 5.56 > ξ̂8 = 5.3350.

However, the weak unit 1 is not rejected by the optimal burn-in policy. Under this policy,
only one weak components is delivered to market, leading to the observed probability of
type II error of 1.72% which is close to the estimated one (1.27%). In regard of the normal
components, all of them are delivered to market. We also note that the probability of type
II error under this policy is lower than in the policy with two cutoff points.

Finally, we can access the components lifetime distribution based on the estimates from
Table 31 and a fixed threshold ρ = 10% (see example 2.2.1). Table 37 exhibits the lifetime
information for the weak and normal groups under burn-in times 2,750 h (obtained through
analytical method) and 3,000 h (obtained through approximate method). From Table 37 we
observe that the estimated lifetime percentiles and MTTF in the weak group are apart from the
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Table 35 – Estimated probability of type II error for different values of tb and s under t1 copula.

tb s = 3 s = 4 s = 5 s = 6 s = 7 s = 8 s = 9
0.75 0.1494 − − − − − −
1.00 0.1127 0.1108 − − − − −
1.25 0.1088 0.0868 0.0818 − − − −
1.50 0.0714 0.0633 0.0660 0.0594 − − −
1.75 0.0584 0.0471 0.0513 0.0511 0.0497 − −
2.00 0.0539 0.0464 0.0448 0.0395 0.0538 0.0228 −
2.25 0.0371 0.0448 0.4999 0.0327 0.0301 0.0267 0.0330
2.50 0.0347 0.0352 0.0269 0.0233 0.0222 0.0340 0.0212
2.75 0.0307 0.0243 0.0271 0.0183 0.0215 0.0222 0.0196
3.00 0.0211 0.0154 0.0154 0.0178 0.0154 0.0157 0.0146
3.25 0.0154 0.0203 0.0194 0.0132 0.0145 0.0112 0.0138
3.50 0.0135 0.0122 0.0200 0.0122 0.0249 0.0158 0.0143
3.75 0.0108 0.0126 0.0185 0.0155 0.0263 0.0250 0.0143
4.00 0.0060 0.0085 0.0616 0.0138 0.0124 0.0194 0.0055

tb s = 10 s = 11 s = 12 s = 13 s = 14 s = 15 s = 16
2.50 0.0240 − − − − − −
2.75 0.0192 0.0161 − − − − −
3.00 0.0139 0.0275 0.0127 − − − −
3.25 0.0111 0.0150 0.0129 0.0192 − − −
3.50 0.0080 0.0096 0.0124 0.0090 0.0090 − −
3.75 0.0141 0.0191 0.0130 0.0073 0.0061 0.0063 −
4.00 0.0050 0.0220 0.0069 0.0150 0.0063 0.0057 0.0048

Table 36 – Optimal cutoff points for tb = 3,000 h and s = 12 under t1 copula.

ξ̂1 ξ̂2 ξ̂3 ξ̂4 ξ̂5 ξ̂6

1.2083 1.7824 2.7676 3.3106 3.8165 4.9439

ξ̂7 ξ̂8 ξ̂9 ξ̂10 ξ̂11 ξ̂12

5.1440 5.3350 5.6336 6.1722 6.5208 6.8040

ones in the normal group and almost all the weak units are supposed to have failed up to 4,175 h.
The results are similar for different burn-in times. Figure 36 displays the charts for estimated
CDF and PDF for burn-in time 3,000 h, from which we conclude that the PDF and CDF curves
are different from each other. We can note that the lifetime information for the simulated data
are similar to the ones from the original LASER data (see Table 24 and Figure 34).
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Table 37 – MLEs and 95% CIs of the lifetime quantiles and MTTF under different tb values, considering simulated
data.

weak group normal group

tb Quantity MLE 95% CI MLE 95% CI
2.75 t0.05 3.2774 [3.2638;3.2910] 4.9133 [4.9092;4.9174]

t0.5 3.7263 [3.6679;3.7847] 5.5862 [5.5711;5.6014]
t0.8 3.9560 [3.9127;3.9994] 5.9306 [5.9199;5.9414]
t0.95 4.1753 [4.1585;4.1922] 6.2594 [6.2553;6.2635]

MTTF 3.7263 [3.5774;3.8753] 5.5863 [5.4995;5.6731]

3.00 t0.05 3.2844 [3.2715;3.2973] 4.9218 [4.9179;4.9257]
t0.5 3.7333 [3.6779;3.7888] 5.5945 [5.5801;5.6089]
t0.8 3.9631 [3.9220;4.0042] 5.9388 [5.9286;5.9491]
t0.95 4.1824 [4.1665;4.1984] 6.2675 [6.2636;6.2714]

MTTF 3.7334 [3.5917;3.8750] 5.5946 [5.5119;5.6773]
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Lifetime CDF.
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6.4 Concluding remarks
In this chapter, motivated by a LASER data, we have proposed a mixture IGP model

to analyze the degradation of highly reliable products. It is quite difficult to determine the
optimal burn-in time within a rather short period of life testing, but this problem can be solved
successfully if there exists a QC whose degradation over time can be related to the product’s
reliability. Firstly, we developed a burn-in methodology whose main objective is to find out
the optimal burn-in policy to screen out the weak units from the normal ones in a production
row. We have considered a set of cutoff points and two methods for the computation of the
misclassification probabilities; more specifically, an analytical method for the case when we have
at most 2 cutoff points and an approximate method based on copulas for the case when we have
more than 2 cutoff points. Besides we build up an economic cost model in which the optimal
burn-in policy is directly related to the minimum cost. Finally, we illustrated the methodology
through a simulated LASER dataset with size 200 and the same characteristics as the LASER
data from the reliability literature. The Quasi-Newton method through BFGS algorithm in R
software (R Core Team, 2016) was used to obtain the MLEs of the model parameters, and also
to determine the optimal cutoff points when s > 1. For s > 2, we resorted to copula package
along with the BFGS algorithm to obtain the optimal cutoff points. These methods reached
convergence in the situations mentioned. The optimal burn-in time and cutoff points were found
for both cases analytical (s≤ 2) and approximate (s > 2). The approximate method based on
copulas presented better results for this dataset.
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CHAPTER

7
DISCUSSION, CONCLUSIONS AND FUTURE

RESEARCH

Degradation analysis is a useful technique for accessing reliability information from
highly reliable components, which take a long time to fail even when they are placed to operate
under accelerated conditions. In this thesis we have proposed different methodologies for
degradation data based on IG distribution. The random deteriorate rate model based on IG
distribution aims to explain the heterogeneity commonly observed in degradation problems and
the incorporation of a frailty parameter in IG process model brings additional information that
may be useful in practice. Besides these two approaches, the mixture IG process captures the
variability in the degradation paths when they come from a mixture of deterioration processes.

The IG random deterioration rate model with measurement errors presented interesting
asymptotic properties with respect to its maximum likelihood estimators and the application
with real datasets presented similar results to the random deterioration rate model with gamma
distribution addressed in the literature. The IGP frailty model was regarded as an extension of the
traditional IG process and presented meritorious results in the simulated study. In the application
with real datasets, the IGP-Gamma and IGP-IG frailty models presented similar results and we
could estimate the individual frailties even as the component’s lifetime distribution through the
proposed methodology. Both IG random rate and IGP frailty models aim to capture the temporal
variability inherent in the degradation data, even as the variability among the paths and within
the same path.

The mixture IG process presented satisfactory results in burn-in tests and the simulation
study showed that the model misspecification affects the misclassification probabilities, and
consequently, the computation of the costs and the achievement of an optimal burn-in policy.
The optimal burn-in policy based on a set of cutoff points is a more flexible method which
improves the way the weak components are separated from the normal ones in a production
row. In the application with the LASER data, we obtained the optimal burn-in policy consisting
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of the optimal stopping time and cutoff points even as the other parameters of the burn-in test.
Furthermore, we could assess the component’s lifetime distribution, which is a very interesting
information particularly in developing warranty strategies regarding the units labeled as normal
and sent to market.

The entire inferential procedure in this thesis was based on maximum likelihood estima-
tion combined with other methods such as, for example, Laplace transform for solving analytical
integrals, Gaussian quadrature for estimating the non analytical integrals and copula theory for
obtaining multivariate IG probabilities.

The present study leaves some open topics to be addressed in the future. Regarding the
assumptions resorted to the degradation process, we can drop the statement that the degradation
paths start from the origin, then the paths may have an unknown starting point which can be fixed
or random. Moreover, we can deal with problems where the degradation paths exhibit decreasing
behavior and functional forms other than linear.

In the subject of IG process with frailty, we may purpose to introduce the accelerated
IG process with frailty for modeling degradation data, in which some accelerating covariates
will be included in the intensity function of the IG process. Besides that, we may consider the
generalized gamma as a flexible class of frailty distributions in which gamma, IG and lognormal
distributions are particular cases.

In the field of burn-in policies, we may look upon the proposal of Xiang, Coit and
Feng (2013), in which the components are split into n subpopulations from various stochastic
processes. Additionally, we may develop a simulation study to verify the feasibility of copula
theory for the estimation of the misclassification probabilities when the decision rule consists of
more than two cutoff points.

Furthermore, it will be of interest to explore the EM algorithm (Expectation-Maximization
algorithm), which is widely used for maximum likelihood estimation in random effects and
frailty models. In many problems, calculating the conditional expectation required in the E-step
of this algorithm may be unfeasible, then the E-step can be fulfilled through the stochastic EM
algorithm (NIELSEN, 2000).

Finally, the Bayesian inference is an alternative approach for estimating the quantities of
interest. The Bayesian methods are widely used in several areas notably in the last decades due
to the recent advances in computational Markov chain Monte Carlo (MCMC) methods.
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APPENDIX

A
PROOFS OF THE THEOREMS,

PROPOSITIONS AND COROLLARIES

A.1 Proof of proposition 4.2.1

Let wi =
1
zi

then wi ∼ Inverse Gamma
( 1

α
, 1

α

)
with PDF: f (wi) =

exp
(
− 1

wiα

)
w

1
α +1
i α

1
α Γ[ 1

α ]
.

Applying this transformation, the unconditional reliability function charges the same
functional form as (2.19), then (4.4) becomes

R(y|∆gθθθ (t),η ,ααα) =


0, if RIGP(y|∆gθθθ (t),η) = 0,
L [ f (wi)](HIGP(y|∆gθθθ (t),η)), if 0 < RIGP(y|∆gθθθ (t),η)< 1,
1, if RIGP(y|∆gθθθ (t),η) = 1.

whose solution of the Laplace transform leads to (4.15).

A.2 Proof of proposition 4.2.2
Considering R(y|∆gθθθ (t),η ,ααα) in (4.21) and the relation (4.5), we have

f (y|∆gθθθ (t),η ,ααα) =


0, if fIGP(y|∆gθθθ (t),η) = 0,

−2α
− 1

2α

Γ( 1
α )

[
∂ (HIGP(y|∆gθθθ (t),η))

1
2α

∂y A+(HIGP(y|∆gθθθ (t),η))
1

2α ∂A
∂y

]
,

if fIGP(y|∆gθθθ (t),η)> 0,

where A is as given in proposition 4.2.1.

Using the derivative of the modified Bessel function of the second kind with respect to
the argument (BRYCHKOV, 2008):
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∂BesselK[x,w]
∂w

=−1
2
(BesselK[x−1,w]+BesselK[x+1,w]) ,∀x ∈ R and w 6= 0,

and taking into account that,

∂HIGP(y|∆gθθθ (t),η)

∂y
= hIGP(y|∆gθθθ (t),η),

one may obtain (4.16).

A.3 Proof of proposition 4.2.3
From (4.8),

fT (t) =
2α
− 1

2α

Γ
( 1

α

) [∂HIGP(y|∆gθθθ (t),η)

∂ t
+

∂A
∂ t

]
.

Taking into account that

∂HIGP(y|∆gθθθ (t),η)

∂ t
=−∂ logRIGP(y|∆gθθθ (t),η)

∂ t
=− 1

RIGP(y|∆gθθθ (t),η)
fTIGP(t),

and the derivative of the Bessel function in the previous proof, one may obtain (4.17).

A.4 Proof of proposition 4.2.4
Analogous to the proof of 4.2.1, let wi =

1
zi

, then the second term in (4.11) can be
rewritten as

L2i = wni
i ×L [ f (wi)]

(
ni

∑
j=1

HIGP(yi j|∆gθθθ (ti j),η))

)
,

whose solution is (4.18).

A.5 Proof of proposition 4.2.5
Considering zi ∼ Gamma

( 1
α
,α
)
, the formula (4.13) becomes

f (zi|Y) ∝ z
1
α
−ni−1

i exp

[
−

ni

∑
j=1

HIGP(yi j|∆gθθθ (ti j),η)
1
zi

]
exp
(
− zi

α

)

∝ z
1
α
−ni−1

i exp

−1
2


2

ni
∑
j=1

HIGP(yi j|∆gθθθ (ti j),η)

zi
+

2zi

α


 ,

which corresponds to the PDF of the Generalized IG distribution in (4.19). The mean and
variance are obtained from this distribution.
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A.6 Proof of proposition 4.2.6
The unconditional reliability function (4.4) has not exactly the same form as (2.19), but

it is possible to express it through a different Laplace transform:

R(y|∆gθθθ (t),η ,ααα) =


0, if RIGP(y|∆gθθθ (t),η) = 0,
(2πα)−

1
2 exp

( 1
α

)
L [g(zi)](

1
2α

), if 0 < RIGP(y|∆gθθθ (t),η)< 1,
1, if RIGP(y|∆gθθθ (t),η) = 1.

(A.1)
where g(zi) = z

− 3
2

i exp
[
−1

z

(
HIGP(y|∆gθθθ (t),η)+ 1

2α

)]
. The solution leads to (4.21).

A.7 Proof of proposition 4.2.9
The second term in (4.11) can be rewritten as

L2i = (α2π)−
1
2 exp

(
1
α

)
×L [g(zi)]

(
1

2α

)
,

where g(zi) = z
−ni− 3

2
i exp

[
−1

z

(
ni
∑

i=1
HIGP(yi j|∆gθθθ (ti j),η)+ 1

2α

)]
.

The solution through Laplace transform leads to (4.24).

A.8 Proof of proposition 4.2.10
Considering zi ∼ IG

(
1, 1

α

)
, the formula (4.13) becomes

f (zi|Y) ∝

(
1
zi

)ni

exp

[
−

ni

∑
j=1

HIGP(yi j|∆gθθθ (ti j),η)
1
zi

](
1
z3

i

) 1
2

exp
[
− zi

2α
− 1

2ziα

]

∝ z
− 3

2−ni
i exp

−1
2


2

ni
∑
j=1

HIGP(yi j|∆gθθθ (ti j),η)+ 1
α

zi
+

zi

α


 ,

which corresponds to the PDF of the Generalized IG distribution in (4.25). The mean and
variance are obtained from this distribution.

A.9 Proof of theorem 5.3.1
Taking the first derivative of (5.11) with respect to ξ (tb), we get

∂MC (ξ (tb))
∂ξ (tb)

=

n

Cβ e−
(ξ (tb)−g

θθθ111
(tb))

2
η1

2ξ (tb) gθθθ 111(tb)p
√

η1
ξ (tb)

+Cαe−
(ξ (tb)−g

θθθ222
(tb))

2
η2

2ξ (tb) gθθθ 222(tb)(−1+ p)
√

η2
ξ (tb)


ξ (tb)

√
2π

.

(A.2)
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Equating (A.2) to zero, i.e.,

∂MC (ξ (tb))
∂ξ (tb)

= 0,

we obtain (5.12). The two roots are obtained through Bhaskara formula.

A.9.1 Proof of corollary 5.3.2

Assuming η1 = η2 = η in (5.12), we have a linear equation with respect to ξ (tb).

A.9.2 Proof of corollary 5.3.3

Assuming gθθθ 111(tb) = gθθθ 222(tb) = gθθθ (tb) in (5.12), we obtain (5.15) and the optimal cutoff
point is found analogously to theorem 5.3.1.
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Table
38

–
L

A
SE

R
data

(exam
ple

2.2.1)

inspection
tim

es
(in

1,000
hours)

unit
0

0.25
0.50

0.75
1.00

1.25
1.50

1.75
2

2.25
2.50

2.75
3

3.25
3.50

3.75
4

1
0

0.47
0.93

2.11
2.72

3.51
4.34

4.91
5.48

5.99
6.72

7.13
8.00

8.92
9.49

9.87
10.94

2
0

0.71
1.22

1.90
2.30

2.87
3.75

4.42
4.99

5.51
6.07

6.64
7.16

7.78
8.42

8.91
9.28

3
0

0.71
1.17

1.73
1.99

2.53
2.97

3.30
3.94

4.16
4.45

4.89
5.27

5.69
6.02

6.45
6.88

4
0

0.36
0.62

1.36
1.95

2.30
2.95

3.39
3.79

4.11
4.50

4.72
4.98

5.28
5.61

5.95
6.14

5
0

0.27
0.61

1.11
1.77

2.06
2.58

2.99
3.38

4.05
4.63

5.24
5.62

6.04
6.32

7.10
7.59

6
0

0.36
1.39

1.95
2.86

3.46
3.81

4.53
5.35

5.92
6.71

7.70
8.61

9.15
9.95

10.49
11.01

7
0

0.36
0.92

1.21
1.46

1.93
2.39

2.68
2.94

3.42
4.09

4.58
4.84

5.11
5.57

6.11
7.17

8
0

0.46
1.07

1.42
1.77

2.11
2.40

2.78
3.02

3.29
3.75

4.16
4.76

5.16
5.46

5.81
6.24

9
0

0.51
0.93

1.57
1.96

2.59
3.29

3.61
4.11

4.60
4.91

5.34
5.84

6.40
6.84

7.20
7.88

10
0

0.41
1.49

2.38
3.00

3.84
4.50

5.25
6.26

7.05
7.80

8.32
8.93

9.55
10.45

11.28
12.21

11
0

0.44
1.00

1.57
1.96

2.51
2.84

3.47
4.01

4.51
4.80

5.20
5.66

6.20
6.54

6.96
7.42

12
0

0.39
0.80

1.35
1.74

2.98
3.59

4.03
4.44

4.79
5.22

5.48
5.96

6.23
6.99

7.37
7.88

13
0

0.30
0.74

1.52
1.85

2.39
2.95

3.51
3.92

5.03
5.47

5.84
6.50

6.94
7.39

7.85
8.09

14
0

0.44
0.70

1.05
1.35

1.80
2.55

2.83
3.39

3.72
4.09

4.83
5.41

5.76
6.14

6.51
6.88

15
0

0.51
0.83

1.29
1.52

1.91
2.27

2.78
3.42

3.78
4.11

4.38
4.63

5.38
5.84

6.16
6.62
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Table 40 – Crack size data (example 2.2.3)

Number of cycles (in 1,000 cycles)

unit 0 10 20 30 40 50 60 70 80 90 100 110 120
1 0.90 0.95 1.00 1.05 1.12 1.19 1.27 1.35 1.48 1.64
2 0.90 0.94 0.98 1.03 1.08 1.14 1.21 1.28 1.37 1.47 1.60
3 0.90 0.94 0.98 1.03 1.08 1.13 1.19 1.26 1.35 1.46 1.58 1.77
4 0.90 0.94 0.98 1.03 1.07 1.12 1.19 1.25 1.34 1.43 1.55 1.73
5 0.90 0.94 0.98 1.03 1.07 1.12 1.19 1.24 1.34 1.43 1.55 1.71
6 0.90 0.94 0.98 1.03 1.07 1.12 1.18 1.23 1.33 1.41 1.51 1.68
7 0.90 0.94 0.98 1.02 1.07 1.11 1.17 1.23 1.32 1.41 1.52 1.66
8 0.90 0.93 0.97 1.00 1.06 1.11 1.17 1.23 1.30 1.39 1.49 1.62
9 0.90 0.92 0.97 1.01 1.05 1.09 1.15 1.21 1.28 1.36 1.44 1.55 1.72
10 0.90 0.92 0.96 1.00 1.04 1.08 1.13 1.19 1.26 1.34 1.42 1.52 1.67
11 0.90 0.93 0.96 1.00 1.04 1.08 1.13 1.18 1.24 1.31 1.39 1.49 1.65
12 0.90 0.93 0.97 1.00 1.03 1.07 1.10 1.16 1.22 1.29 1.37 1.48 1.64
13 0.90 0.92 0.97 0.99 1.03 1.06 1.10 1.14 1.20 1.26 1.31 1.40 1.52
14 0.90 0.93 0.96 1.00 1.03 1.07 1.12 1.16 1.20 1.26 1.30 1.37 1.45
15 0.90 0.92 0.96 0.99 1.03 1.06 1.10 1.16 1.21 1.27 1.33 1.40 1.49
16 0.90 0.92 0.95 0.97 1.00 1.03 1.07 1.11 1.16 1.22 1.26 1.33 1.40
17 0.90 0.93 0.96 0.97 1.00 1.05 1.08 1.11 1.16 1.20 1.24 1.32 1.38
18 0.90 0.92 0.94 0.97 1.01 1.04 1.07 1.09 1.14 1.19 1.23 1.28 1.35
19 0.90 0.92 0.94 0.97 0.99 1.02 1.05 1.08 1.12 1.16 1.20 1.25 1.31
20 0.90 0.92 0.94 0.97 0.99 1.02 1.05 1.08 1.12 1.16 1.19 1.24 1.29
21 0.90 0.92 0.94 0.97 0.99 1.02 1.04 1.07 1.11 1.14 1.18 1.22 1.27
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