
UNIVERSIDADE FEDERAL DE SÃO CARLOS
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Resumo

Esta Tese visa estudar, segundo uma abordagem teórica, as propriedades eletrônicas e

ópticas de sistemas quânticos semicondutores quasi-2D. Usando como base o modelo

k · p obtivemos um conjunto satisfatório de resultados que explicam certos proces-

sos ópticos, descritos a seguir, de sistemas confinados em nanoescala tais como poços

quânticos ou monocamadas de atomos. A necessidade e a implementaçao sistemática

de novos e mais elevados ńıveis de aproximaçao aos modelos de estrutura eletrônica

originais também são temas amplamente descritos.

Uma das primeiras contribuições deste estudo foi a verificação da necessidade de uma

nova abordagem para descrever as interações de portador-fonon em poços quânticos

baseados em GaAs alem da teoria de potencial de deformação. Assim, a interação

de Fröhlich foi considerada em nosso modelo, revelando a existência de acoplamentos

assistidos por fônon entre diferentes estados na banda de valência e de condução, o que

por sua vez resultou em mudanças significativas na estrutura eletrônica. Os resulta-

dos desta abordagem, assim como as simulações e previsões de resultados, permitiram

explicar dois efeitos intrigantes: (i) a potencial observação de magneto-polarons de bu-

racos pesados-leves, (ii) a relevância dos estados 2D como intermediários nos processos

de relaxação, auxiliado por fônons, a partir de uma estrutura 3D para uma 0D.

Outro sistema estudado foi o dissulfeto de molibdênio (MoS2) bidimensional, no qual

o espalhamento de elétrons dependia de perturbações induzidas localmente no ma-

terial. Uma versão do Hamiltoniano de Dirac para part́ıculas com massa foi usado.

Os processos de espalhamento foram descritos em termos do phase shift e das corre-

spondentes seções transversais. Comparando os resultados deste modelo com aqueles

obtidos usando uma relação de dispersão parabólica com uma apropriada massa efe-

tiva foi posśıvel obter informações interessantes com respeito à condutividade de ambas
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formulações eletrônicas. Os regimes assintóticos de cada um dos modelos foi também

estudado, sendo que para baixas energias, onde ambas dispersões coincidem em bandas

parabólicas, o processo de espalhamento é dominado por canais com baixo momento an-

gular e ainda resultam em amplitudes de dispersão quase comparáveis. Por outro lado,

a seção transversal diferencial para o caso de altas energias possui a clara assinatura das

duas relações de dispersão. A compreensão da dinâmica eletrônica nestes sistemas é

promissora para um design racional de estruturas com funcionalidades desejadas, como

exemplificamos apresentando seções transversais diferenciais para diferentes tipos de

centros de espalhamento.



Abstract

This thesis is aiming to study, according to various theoretical approaches, the elec-

tronic and optical properties of quasi-2D semiconductor quantum systems. Using the

k · p model as a basis, we obtained a satisfactory set of results that explain certain

optical processes, described below, of nanoscale confined systems, such as quantum

wells or monolayers of atoms. The need and the systematic implementation of new

and higher levels of approximation from the original electronic structure models also

are themes broadly described here.

One of the first contributions of this study was the verification of the necessity of a

new approach to describe the phonon-carrier interactions in GaAs-based quantum wells,

beyond the deformation potential theory. Thus, the Fröhlich interaction was considered

in our model, revealing the existence of phonon assisted couplings between different

states in the valence and conduction band, which resulted in significant changes in the

electronic structure. The results of this approach, as well as the simulations and new

predictions allowed us to explain two intriguing effects: (i) the potential observation of

magneto-polarons of light-heavy holes, (ii) the relevance of 2D states as intermediaries

in relaxation processes, assisted by phonons, from a 3D structure to a 0D.

Another system studied was the two-dimensional molybdenum disulphide (MoS2), in

which the carrier scattering depends on a perturbation locally induced in the material.

One version of the Dirac Hamiltonian for massive particles was used. The scatter-

ing processes have been described in terms of the phase shift and the corresponding

cross sections. By comparing the results of this model with those obtained using a

parabolic dispersion relation with an appropriate effective mass, it was possible to ob-

tain interesting information regarding the conductivity of both electronic models. The

asymptotic regimes of each of the models were also studied, and for low energies, where
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both dispersions coincide as parabolic bands, the scattering process is dominated by

channels with low angular momentum and still results in almost comparable disper-

sion amplitudes. On the other hand, the differential cross section in the high energy

regime has the clear signature of the two scattering relations. The understanding of

the electronic dynamics in these systems is promising for the design of structures with

desired functionalities, as exemplified by presenting the differential cross sections for

different types of scattering centers.
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Chapter 1

Introduction

The attractiveness of the nanoscaled physical systems comes from the ability to increase

the functionality and performance of the next generation of devices, substituting in this

way the classical microelectronincs. Due to the fact that the dimensions of these nanos-

tructures are comparable to the de Broglie wavelength of the electron, their electrical,

optical and mechanical properties are described by quantum mechanics. Here, we will

take advantage of some quantum phenomena in order to described and tuning the

carriers behavior in two dimensional systems.

Among a variety of materials used for growing nanostructres, special attention has

been directed to the heterostructures formed by semiconductors compounds, even over

metal or dielectrics substrates. This remains as an important topic for technology

and industry, specially due to the switching capability of diodes, photovoltaic cells,

transistors, detectors and thermistors. Typical semiconductors structures are composed

of alloys of the IV group elements and/or III-V and II-VI compounds. A prolific use

have the GaAs and InAs based structures, particularly during the last few decades [1–4],

in part due to the relatively easy fabrication and the capacity to confine electrons and

holes when they are combined with other semiconductors, yielding to the emergence

of nanostructures such as GaAlAs/GaAs or InGaAs/GaAs.

There are several fabrication techniques employed to obtain semiconductor nanostruc-

tures of high quality such as molecular beam epitaxy (MBE), chemical beam epitaxy

(CBE) and metal-organic chemical vapor deposition (MOCVD) [5, 6]. The choice for

the crystal growth as well as its design is related with the number of directions along

17
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which the carriers could be confined [7]. Structures where carriers are confined in the

three spacial directions are called quantum dots [8]. In turn, in quantum wires, the

electrons and holes are confined in two spatial directions [9, 10]. While, in quantum

wells the charge carriers are confined just in one direction whereas their movement is

free along the other two [11,12].

Another way developed to exploit the quantum phenomena from the size quantiza-

tion is inspired in the conventional exfoliation techniques similar to the ones used for

graphene synthesis [13]. By scaling down the transition metal dichalcogenide bulk un-

til a monolayer, carriers are restricted to move into a two dimensional lattice. This

exfoliation is possible due to the weak bonds between the staked layers. As well as the

graphite case, the transition metal dichalcogenides have their layers weakly bound by

van der Walls forces allowing to a repetitive cleavage of the bulk until the single-layer

form.

This thesis presents a sequence of novel results derived from a systematic investigation

of the hybridization states and scattering effects, evidenced on the optical response as

well as in the transport and electronic properties of quasi-bi-dimensional (2D) semi-

conductor systems such as quantum wells and monolayer systems. The study was

developed in collaboration with experimental groups of growth and spectroscopy (GNS-

UFSCar; Micro-electronics Institute of Madrid - Spain and in the Center for Nanotech-

nology and Nanomaterials, Technical University Munich - Germany) that enrich the

research scope and promote the potential unfolding of the theoretical challenges.

Three basic lines of work will be covered here: (i) the theoretical analysis of hybrid

states in the electronic structure of quantum wells modulated by the concentration

of In under magnetic fields and the simulation of the electron and hole-phonon cou-

pling effects; (ii) the analysis of the phonon-assisted spin relaxation from 3D towards

quantum dots through 2D wetting layers; and (iii) the study of electron scattering pro-

cess occurring in a single-layer of molybdenum disulphide (MoS2) modulated by local

perturbations. The proposed problems paved a way based on the k · p method for a

systematic application of theoretical tools for characterizing the electronic structure

of different materials beyond those studied here. Also, all these topics have allowed

us tackling and using theoretical tools which are fundamental for the development of

studies in several areas related to the condensed matter physics and their link with the
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simulation and prediction of experimental results of the collaborations in progress.

Experimental evidences provided by our collaborators pointed to unexpected features

of the optical properties in 2D semiconductor nanostructures obtained through epi-

taxial growth techniques that attracted our attention due to the possibility of energy

spectrum modulation by a carrier-phonon dynamics. Therefore, we devote special at-

tention to the lattice vibration phenomena. The quantum of lattice oscillations, called

phonons, are related to the coupling of electrons, or holes, with the electric polariza-

tion or electronic potential deformation produced by them in a given structure. Those

phonons are elementary excitations that can be classified according to their polarization

and their energy dispersion. We shall focus on the longitudinal-optical (LO) phonons

only, and we show that carrier-phonon interaction can strongly influence the optical,

transport, and energy relaxation properties of most heterostructures.

In all these cases, we assume that the structures are built on combinations of semi-

conductor compounds: GaAs/Alx Ga1−xAs and Gax In1−xAs. In this kind of polar

semiconductor systems, a charge carrier moving slowly in the crystal may cause a dis-

tortion of the lattice. The distortion creates a polarization field which acts back on the

electron or hole and can be reflected, for instance, as an enhancement of its effective

mass [14]. This effect is interpreted as a polarization cloud that accompanies the charge

through the lattice. The carrier together with the polarization cloud is called polaron

and under resonant conditions, when the energy difference between two neighboring

states is about one LO-phonon energy, the polaron effects are enhanced and can be

tuned with magnetic fields [15].

While the electron-phonon coupling effects, i. e. polaron effects, in the conduction

band have been deeply studied [16,17], they have usually been neglected in the valence

band [18]. In this thesis, we characterize the polaron induced hybridization, which

is tunable by means of external magnetic field and geometrical parameters such as

the growth direction. Concomitantly, we contrasted various perturbative techniques

to elucidate the carrier-phonon coupling effects including also the full diagonalization

in the k · p model. The relevance of polaron and phonon emission effects will be

also discussed on the basis of available experimental data proved experimentally. Two

main problems were addressed concerning to the phonon interaction: (i) the possible

existence of quasi-particle states in the valence band arising from the coupling between
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the phonons and the 2D heavy-light hole Landau levels and (ii) the demonstration of

resonant phonon intermediation occurring in the carrier relaxation process from a 3D

system towards quantum dots via a 2D confined states.

Regarding exfoliated systems, special interest has been directed to transition metal

dichalcogenides, TMDs. These materials can be scaled down until 2D monolayers,

where drastic changes in the band structure are found [19]. For example, the band

structure of TMDs in the bulk phase usually has an indirect energy gap, whereas in

the monolayer structure a direct gap appears. The mechanical, optical and electronic

properties of the group of TMDs such as flexibility, semiconductivity, and charge den-

sity waves have been attracting the interest for the development of new materials for

decades, as well as in the field of solar cells and photocatalysis more recently [20–22].

These materials are arranged in an X-M-X structure, where M is a transition metal as

Mo,W, etc, and X = S, Se, Te. While atoms of the same layer are tightly bonded, the

interlayer interactions take place through van der Waals forces which allow detaching

each layer by means of exfoliation techniques as those used for obtaining graphene

sheets [13]. In addition to the glimpsed technological applications, the study of MoS2

reveals itself as an inexhaustible source of interesting and fundamental physical prob-

lems whose solutions enrich the knowledge of new quantum properties of condensed

matter.

In these 2D crystals, the creation of local perturbationsopens a way to modify not only

their electronic structure but also to control the transport response for instance by

external means [23]. Here, in order to describe the effect of this kind of interactions,

we solve the scattering problem using a massive Dirac formulation and describe the

transport as well as its modulation by the differential scattering cross sections. More-

over, we compare these results with the appropriated parabolic relation dispersion at

low energies regime. From these results we clearly identify two signatures, each one

with a distinct anisotropic behavior and energy dependence in the Dirac or Schrödinger

formulation.

This thesis is organized as follows. In chapter 2, a brief description of k · p model is

presented in conjunction with the results obtained from this formalism for InGaAs-

based quantum wells. The results obtained for the phonon-carrier interactions and the

theoretical model used for these calculations is also present in chapter 2. The subse-
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quent chapter is devoted to the discussion of spin resolved photo-generation filtering

through wetting layers. In the following chapter 4, the scattering theory is discussed

in conjunction with the phase shift method used to find the differential cross section

in two dimensions. A comparison between the massive Dirac and Schrödinger relation

dispersion is performed using also the differential cross section theory.
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Chapter 2

Backgrounds for Electronic

Structure and Phonons Effects in

Quantum Wells

Quantum wells are the kind of nanostructures with reduced dimension in which the

carrier motion is quantized through subbands. It is well known than either bands and

subbands can be tuned by external means such as strain, electric or magnetic fields.

With the application of a magnetic field, for instance, an additional quantum confine-

ment arise up and consequently a new quantum number. Another way to manipulate

their response is by changing the internal parameters such as the effective mass that

depends on the system geometry [24]. While several studies have analyzed the effects of

the magnetic field on the conduction band for different quantum wells systems [25–29],

only a few ones have attempted to develop a systematic investigation of the behavior

of valence subbands when phonon interaction is taken into account [30–32].

In figure Figure 2.1 a schematic representation of a quantum well is shown, the growth

direction is taken as z, along which the carriers can only occupy the quantized states m

whereas in (x, y) plane the carriers are free to move. However, when a magnetic field B

is applied along z, the carriers should occupy states with discrete energy values in the

(x, y) plane, called Landau levels and labeled by N in Figure 2.1. When a magnetic field

is applied to an optical experiment, additional information of the electronic structure

can be assessed once B affects mainly the electrons and holes rather than the lattice [33].

23
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Moreover, in 2D systems, the consequences of the charge carrier interaction with the

oscillations of the host lattice are relevant and, as presented in this thesis, it can be

tuned by electronic confinement and growth direction.

Thus, in order to theoretically emulate these properties we should first introduce the

basic theoretical grounds and concepts on which the models were built. One of them

is the Born - Oppenheimer approximation that allows to assume that the nuclear

and electronic motions in the crystal lattice can be treated separately. Hence, the

electronic problem can be solved first within an ideal lattice, and then the interaction

with nuclei oscillations is considered afterward as a perturbation. Thus, the first step

is the characterization of the energy spectrum in a single electron model.

Figure 2.1: Schematic representation of a quantum well. The quantized states due

to spatial confinement and magnetic field are labeled by m and N respectively. Both

m and N goes from 1 until ∞.

2.1 k · p Model

The main idea behind k · p method is to include the effects of the interaction between

the charge carrier and the periodic potential of the crystal lattice in the carrier mass.

This approximation is known as effective mass [34]. The method is a powerful and

flexible approach for the investigation of the band structure near symmetry points of the

Brillouin zone of many semiconductors [35]. Also, it is used to determine analytically
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the eigenvalues and eigenfunctions by obtaining expressions for the dispersion relation.

Another advantage of this method is the relative ease for the incorporation of strain

effects on the band structure and external electric and magnetic fields. Special interest

is directed to the reciprocal lattice center of semiconductors with zinc-blende type

symmetry, which is called Γ-point [36] which is usually well described by the k · p

model. States responsible for the optical recombination process are located close to

this point (k = 0) in a considerable amount of direct band-gap semiconductors [24].

By modelling a charge carrier subjected to the periodic potential of a crystal lattice

as a free particle with a specific mass me, we enormously simplify the band structure

calculation, since me influences measurable properties of a crystal. However, the value

of me depends on some factors, which are essentially isotropic and anisotropic param-

eters. Here we discuss both cases: the parabolic approximation, which describes very

well the conduction band, and the Luttinger model, used to describe the valence band.

At first, the fundamentals of k · p model are presented followed by the derivation of

the effective mass. Briefly, the spin-orbit interactions will be described; then we will

include the effects of the spatial confinement and the parabolic relation dispersion for

the conduction band will be obtained. The effects of applying a magnetic field are

discussed and included into the Hamiltonian matrix for the valence band.

Firstly, we transform a crystal Hamiltonian to the k · p representation starting from

the following Schrödinger Hamiltonian

HΨ =
(
p2

2m0
+ V (r)

)
Ψ = EΨ. (2.1)

Due to the crystal potential periodicity, the Bloch theorem can be used. Then, a

particular state Ψ occupying an energy band n with a wave vector k is represented by

Ψnk = eık·runk(r), (2.2)

using this, the equation (2.1) becomes(
−~2

2m0
+ V

)
unk + ~2k2

2m0
unk + ~

m0
k · punk = Enkunk. (2.3)

We choose a complete orthonormal basis {un′k0} such that

Hun′k0 =
(
−~2

2m0
+ V

)
un′k0 + ~2k2

0
2m0

un′k0 + ~
m0

k0 · pun′k0 (2.4)

= En′k0un′k0 , (2.5)
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and the state unk could be expanded by

un,k =
∑
n′
Cn,n′un′k0 . (2.6)

Inserting expression (2.6) into (2.3) and multiplying by the complex conjugate u∗n′k0 we

have

∑
n′

((
Enk0 − Enk + ~2

2m0
(k2 − k2

0)
)
δnn′ +

~
m
〈un′k0|(k− k0) · p|un,k0〉

)
Cnn′ = 0,

(2.7)

or, isolating Enk

Enk =
(
Enk0 + ~2

2m0
(k2 − k2

0)
)

+
∑
n′
Cnn′

(
~
m
〈un′k0|(k− k0) · p|un,k0〉

)
. (2.8)

We are interested only in electrons or holes near k0 = 0 ≡ Γ (which is the high

symmetry point), therefore we expand in Taylor series the dispersion relation around

zero until second order of k. Since we are looking for the band edges, the first correction

is null, and the energy takes the following form

Enk = En,0 + ~2

2m0
k2 +

∑
n′ 6=n

~2

m2
0

|〈un′,0|k · p|un,0〉|2

En′,0 − En,0
. (2.9)

or

Enk = En,0 + ~2

2
∑
i,j

kikj
mij

(2.10)

where i, j = x, y, z and

1
mij

= δij
m0

+
∑
n′ 6=n

2
m2

0

〈un′,0|pi|un,0〉〈un′,0|pj|un,0〉
En′,0 − En,0

. (2.11)

The inverse of (2.11), mij, is the effective mass tensor. In other words, using the

effective mass concept we are inserting the effects of the lattice crystal within the mass

and allowing us to treat the charge carriers as free particles.

Until now, just the kinetic and potential terms were taken into account in the formu-

lation presented here. However, the insertion of spin-orbit interaction, HSO [37], can

be easily made by including the following term

HSO = − ~
4m2

0c
2σ · p×∇V (r), (2.12)
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where c is the speed of light, ∇V (r), the gradient of the crystalline potential and, σ,

is the vector of Pauli spin matrices.

Thus, after applying the expression (2.2) into (2.12), we have

HSOΨnk = ~
4m2

0c
2σ ×∇V (r) · peık·runk(r) (2.13)

= ~
4m2

0c
2σ ×∇V (r) · eık·r(−~k + ı~∇)unk(r). (2.14)

Including the spin-orbit interactions HSO besides the kinetic and potential terms, the

Hamiltonian has the form

H =H0 +H1 (2.15)

where

H0 =−~
2

2m0
+ V − ~

4m2
0c

2σ · ×∇V (r) (2.16)

H1 =~2k2

2m0
+ ~
m0

k · π (2.17)

and

π = p + ~
4m0c2∇V (r)× σ. (2.18)

By following a procedure analogous to the one adopted for deriving equation (2.7),

the spin-orbit effects are included into the eigenvalue matrix and therefore into the

description of the band structure.

2.2 Electronic Structure of Quantum Wells

To use the k · p model in a practical way, some approximations still should be intro-

duced. We are interested only in studying the electronic and optically active states

and, in general, just a reduced set of bands is strongly coupled at the Γ point, and

therefore the matrix dimension can be reduced.

For the conduction band, we adopted the parabolic approximation with isotropic effec-

tive mass near the center of the Brillouin zone (k = 0),

E(k) = Eg + ~2k2

2me

, (2.19)
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where Eg is the energy gap, me the effective mass and, k, the wave vector from the

Brillouin zone center. The value of me is found experimentally or by first principles

calculations. This assumption is reasonable for semiconductors with large band gap as

GaAs, once the distance between electrons and holes bands is large enough to allow

neglecting their interaction.

The emulation of the valence band is developed also in the region near k = 0. But,

due to the anisotropy of the effective mass besides the strong hybridization between

light and heavy holes subbands, the decoupled bands assumption and the subsequent

parabolic approach is not suitable anymore. This leads to a (4× 4) interaction matrix,

known as Luttinger Hamiltonian [38].

The representation |J,mJ〉 is used to include spin-orbit interactions,
∣∣∣∣32 , 3

2

〉
= − 1√

2

∣∣∣(X + ıY ) ↑
〉

=|HH ↑〉, (2.20)

∣∣∣∣32 , 1
2

〉
= − 1√

2

∣∣∣(X + ıY ) ↓
〉

+ 2√
6
|Z ↑〉 =|LH ↑〉, (2.21)

∣∣∣∣32 , −1
2

〉
= 1√

2

∣∣∣(X − ıY ) ↑
〉

+ 2√
6
|Z ↓〉 =|LH ↓〉, (2.22)

∣∣∣∣32 , −3
2

〉
= 1√

2

∣∣∣(X − ıY ) ↓
〉

=|HH ↓〉, (2.23)

where |HH(LH) ↑〉 is the heavy hole (light hole) state with spin up and |HH(LH) ↓〉

is the heavy hole (light hole) state with spin down. From here, this order will be hold.

As a reminder, we need an effective Hamiltonian that describes the band structure

of nanoscaled systems. We know that some symmetry aspects are still valid on these

scales and whenever we act in the vicinity of k = 0, the k ·p method is valid. With this,

the Hamiltonian describing the heavy and light holes (HH and LH) band structure,

has the following form [39]

H = ~2

2me

[ (
γ1 + 5

2γ2

)
k2 − 2γ2

(
k2
xJ

2
x + k2

yJ
2
y + k2

zJ
2
z

)

− 4γ3

(
{kx, ky} {Jx, Jy}+ {ky, kz} {Jy, Jz}+ {kz, kx} {Jz, Jx}

)]
, (2.24)

where k is the kinetic operator, γi are the Luttinger parameters, and Ji are the angular

momentum matrices for angular momentum j = 3/2.
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In order to include an additional confinement in the system, we add a magnetic field

in the z direction. We choose to use the symmetric gauge A = (−y, x, 0) and the

momentum operator takes the form Π = p + e
c
A, where e is the carrier charge, c the

speed of light, and A the potential vector. Furthermore, we consider the Zeeman effect

of the carriers, since the degeneracy between spin up and down states is broken due to

the applied magnetic field [40]. The Zeeman term is

HZ = −2µB
(
κJ ·B + qJ3 ·B

)
(2.25)

where µB is the Bohr magneton, and κ and q are Luttiger parameters.

By choosing B = (0, 0, B), the carrier experiences a confinement in the xy-plane in

addition to the well confinement in z direction. The introduction of the magnetic field

can be modeled as a quantum-oscillator like-problem by introducing Π± = Πx ± iΠy,

and invoking both annihilation and creation operators, a and a†, as follows

Πx = 1
λc

(
a + a†

)
, (2.26)

Πy = i
1
λc

(
a − a†

)
, (2.27)

where λc =
√

~
eB

, it is possible to decrease or increase the Landau level index, N [41].

After including the magnetic field effects into H, equation (2.24), and add the HZ

term, equation (2.25), the total Hamiltonian HL = H+HZ for the system grown along

[001] direction assumes the following matrix form

HL = − ~2

2m0



|HH ↑〉 |LH ↑〉 |LH ↓〉 |HH ↓〉

P ↑1 R Q 0 |HH ↑〉

R∗ P ↑2 0 −Q |LH ↑〉

Q∗ 0 P ↓2 0 |LH ↓〉

0 −Q∗ R∗ P ↓1 |HH ↓〉


, (2.28)

where

P
↑(↓)
1 = γ1 − 2γ2

2 ∂2
z + γ1 + γ2

2 {Π+,Π−}+ (−) 2
λ2
c

3
2

(
κ+ 9

4q
)
, (2.29)

P
↑(↓)
2 = γ1 + 2γ2

2 ∂2
z + γ1 − γ2

2 {Π+,Π−}+ (−) 2
λ2
c

1
2

(
κ+ 1

4q
)
, (2.30)
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R = ı
√

3γ3Π−∂z, (2.31)

Q =
√

3γ2 + γ3

2 Π2
− +
√

3γ2 − γ3

2 Π2
+. (2.32)

Note that R represents the coupling between light and heavy holes with the same spin

and depends on the z confinement (quantum well confinement), whereas Q couples the

LH and HH states with opposite spin by creation or annihilation of Landau levels.

In order to determine the electronic spectrum of carriers restricted to move in a two

dimensional system like the one shown in Figure 2.1, we solve the next eigenvalue

problem

HLΨ =

−~2

2m0



P ↑1 + V R Q 0

R∗ P ↑2 + V 0 −Q

Q∗ 0 P ↓2 + V 0

0 −Q∗ R∗ P ↓1 + V


∑
n′,m′



C1,n′,m′ φn′,m′(x, y, z) |32 ,
3
2〉

C2,n′,m′ φn′,m′(x, y, z) |32 ,
1
2〉

C3,n′,m′ φn′,m′(x, y, z) |32 ,−
1
2〉

C4,n′,m′ φn′,,m′(x, y, z) |32 ,−
3
2〉



= E
∑
n′,m′



C1,n′,m′ φn′,m′(x, y, z) |32 ,
3
2〉

C2,n′,m′ φn′,m′(x, y, z) |32 ,
1
2〉

C3,n′,m′ φn′,m′(x, y, z) |32 ,−
1
2〉

C4,n′,m′ φn′,m′(x, y, z) |32 ,−
3
2〉



= EΨ, (2.33)

where the term V emulates the quantum well potential. The walls have been considered

as rigid infinite walls, and φ is the envelope function which would be slowly varying [42].

This spatial wave function φ is determined by solving the usual Schrödinger equation

with the kinetic and potential part and has the next form [15]

φN,m(x, y, z) = λ−1/2
c√

2NN !
√
π
e−

1
2(x−x0

λc
)2

HN

(
x− x0

λc

)
eikyy

√
2
L

sin
(
mπ

L
z
)
, (2.34)

where HN is the Hermite polynomial of degree N , x0 = − ~
eB
ky, m = 1, 2... corresponds

to the subband quantization along z direction, and λc =
√

~
eB

is the magnetic length.
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As the magnetic field is been applied perpendicular to the confining walls (z direction),

the problem can be separated into the longitudinal part, leading to the quantized energy

subbands m, and a lateral confinement (in the xy-plane) as an oscillator model. Then,

applying the operators Πx and Πy, defined in equations (2.26) and (2.27) respectively,

into (2.33), we find new selection rules for the functions φ. Thus, the eigenvalues

problem is transformed into

HLΨ =− ~2

2m0



P ↑1 + V R Q 0

R∗ P ↑2 + V 0 −Q

Q∗ 0 P ↓2 + V 0

0 −Q∗ R∗ P ↓1 + V





φN−2,m(x, y, z) |32 ,
3
2〉

φN−1,m(x, y, z) |32 ,
1
2〉

φN,m(x, y, z) |32 ,−
1
2〉

φN+1,m(x, y, z) |32 ,−
3
2〉



=E



φN−2,m(x, y, z) |32 ,
3
2〉

φN−1,m(x, y, z) |32 ,
1
2〉

φN,m(x, y, z) |32 ,−
1
2〉

φN+1,m(x, y, z) |32 ,−
3
2〉


. (2.35)

2.2.1 Quantum Well Conduction and Valence Band Calcula-

tions

Based on the above results, we proceed to diagonalize the eigenvalues matrix in (2.35)

and obtain both conduction and valence band energy levels of a GaAs quantum well

under an applied magnetic field. The explicit matrix Hamiltonian used in this study

is reported in Appendix A. In table 2.1 [43], the values used for these calculations are

displayed.

Given the valence band effective mass anisotropy, we shall also explore the effect of

another growth directions beside the [001]. To this end, the results obtained for sys-

tems grown on (001) planes will be compared to those calculated for the high index

surface (113), that has attracted considerable interest because of its peculiar dopant

incorporation [44,45] and optical response [46].

In order to describe the electronic structure of a system grown on an oriented substrate

different from [001] it is necessary to apply the following coordinate transformation in
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Table 2.1: Band structure parameters taken from ref [43] to apply in the simulations

of electronic structure based on the k · p method.

Parameter value

γ1 6.79

γ2 1.88

γ3 3.05

me 0.07m0

κ 1.72

q -0.18

Eq. (2.24) [39]:

kx = sin(θ)√
2
k1 −

1√
2
k2 + cos(θ)√

2
k3, (2.36)

ky = sin(θ)√
2
k1 + 1√

2
k2 + cos(θ)√

2
k3, (2.37)

kz = − cos(θ)k1 + sin(θ)k3 (2.38)

Jx = sin(θ)√
2
J1 −

1√
2
J2 + cos(θ)√

2
J3, (2.39)

Jy = sin(θ)√
2
J1 + 1√

2
J2 + cos(θ)√

2
J3, (2.40)

Jz = − cos(θ)J1 + sin(θ)J3, (2.41)

where three new axes (1, 2, 3) were introduced, the angle between the axis 3, which

corresponds to the grow direction, and the xy-plane is denoted by θ, see Appendix B.

Thus, for θ varying from 0 to π/2 the growth surface perpendicular to the 3 axis changes

from (110) in succession to (111), (112), (113), until (001). In the case of the (113)

plane, sin(θ) = 3√
11 , cos(θ) =

√
2
11 .

In Figure 2.2, we show the energy spectrum of a carrier in: (a) conduction and (b)

valence band for a quantum well grown along the [001] direction, while in panel (c) we

plot the hole energy of a quantum well grown along the [113] one. At the conduction

band, Figure 2.2 (a), the levels are pure states, without any coupling between them,
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whereas at the valence band a strong hybridization takes place between holes as can

be seen in Figure 2.2 (b) and (c). This coupling at the valence band depends not only

on the spatial confinement or the magnetic field but also on the growth orientation, as

expected [47].
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Figure 2.2: Energy spectrum of the first six Landau levels in (a) conduction band, (b)

valence band of a GaAs quantum well grown in (001) direction and (c) along the (113)

direction. The superscript correspond to the subband m = 1, 2. The predominant

character of the carrier is indicated as HH or LH for heavy or light holes. It is

noticeable the reorganization of hole subbands in (b) and (c) due to the different

growth direction of GaAs quantum well.

2.3 Carrier-Phonon Interaction

The charge carriers in a polar semiconductor structure are subjected to collective ex-

citations such as lattice vibrations. The vibrational modes of the atoms in the crystal

lattice characterize the whole system and their displacements from the equilibrium po-

sition are described by the phonon concept. When an electron or hole interacts with
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these displacements, a polarized cloud surrounds the carrier during its displacement,

and this carrier-phonon interaction is called polaron [48–50].

This quasi-particle can be described in terms of phonon absorption and phonon emis-

sion. In polar crystals, the leading effects is triggered by the interaction with longitudinal-

optical (LO) phonons 1 [51]. Under resonant conditions, when the energy difference

between two neighboring electronic states is about one LO-phonon energy, the polaron

effects are enhanced and this can be tuned with magnetic fields.

The modifications expected in the Landau levels can be listed in the followings ways:

the levels are shifted; the mass renormalization provokes changes in the levels form;

anticrosings emerge between states |Ψ〉 and |Ψ〉+ ~ω, where ~ω is the phonon energy.

In order to know the effect of the electron-phonon and hole-phonon interaction on the

energy levels, three different types of second-order perturbation methods were studied:

• the Rayleigh-Schrödinger perturbation theory [52],

• the Wigner-Brillouin perturbation method [52],

• and full diagonalization for degenerate states.

By including phonons in our electronic structure description, the wave function in-

troduced before in (2.35) must include the number of phonons n, and takes the form

|Ψ〉 = |n〉|φxyz〉|J,mJ〉. The annihilation and creation operations for phonons are ruled

by [16]

bq|n〉 =
√
n|n〉, (2.42)

b†q|n〉 =
√
n+ 1|n+ 1〉, (2.43)

respectively, where q is the phonon wave vector.

To understand the hole-phonon interaction effects in 2D [53] we start by analyzing two

contrasting contributions: the deformation potential theory and the Fröhlich interac-

tion. Let us first briefly discuss the contribution of the carrier-LO-phonons interaction
1There are two allowed frequencies of displacement know as the optical branch, and the acoustical

branch. Considering phonons belonging to the optical branch means considering the movement of

two atoms in the unit cell in opposite directions to each other, while in the acoustic mode they move

together.
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via deformation potentials [33], which is introduced by the Hamiltonian

HDP =
∑

q
(Mq U(q) bq e

iq·r + h.c.), (2.44)

where Mq = (q · εq)
(

~
2ρωLOA

) 1
2 , εq is the polarization, ρ and A are the density and

area respectively, and U(q) is the deformation potential which is a model including

scattering by transverse as well as longitudinal acoustic modes [54]. Still, one can prove

that, up to second order, this interaction does not couple states in the conduction band,

and the valence subbands in 2D can only be affected if the phonon is confined. Thus,

this interaction will be dropped from our analysis.

In order to study the properties of charge carriers interacting with LO-phonons in

systems with reduced dimensions, we used the Fröhlich interaction that accounts for

the carrier coupling with the polarization cloud in the lattice of polar crystals [55]. The

effects can be described by treating the interaction as follows [16]

HI =
∑

q
(Vqbqe

iq·r + h.c.), (2.45)

where Vq is defined, in two dimension, as

Vq = −ı~ωLO
(√

2πα
Aq

) 1
2
(

~
m∗ωLO

) 1
4

, (2.46)

α = e2

~

√
m∗

2~ωLO

( 1
ε∞
− 1
ε0

)
, (2.47)

α is called the Fröhlich coupling constant, ε∞ and ε0 are the electronic and the static

dielectric constants, respectively. The second order correction can be obtained by [56]

Table 2.2: Phonon interaction parameters taken from ref [25].

Parameter Value

~ωLO 36.1eV

α 0.068

∆Eα = −
∑
β

∑
q

|〈ψβ|HI(q)|ψα〉|2

Dβα

, (2.48)
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that can be interpreted as the polaron self-energy correction, where Dαβ is defined as

Dαβ = Eβ − Eα − ~ωLO + ∆α. (2.49)

The common Rayleigh - Schrödinger (RS) model fixes ∆α = 0 and describes well the

ground state out of resonance when either |Eβ−Eα| << ~ωLO or |Eβ−Eα| >> ~ωLO. In

turn, in the Wigner - Brillouin (WB) perturbation theory approaches ∆α = ∆Eα + iδ,

where the inter-dependence of the variables clearly requires a self-consistent solution,

and δ is a vanishing imaginary part.

To evaluate the matrix element 〈ψβ|HI(q)|ψα〉, one can separate (2.45) into phonon

absorption Habs
I and emission Hemi

I terms,

HI =Habs
I +Hemi

I (2.50)

=
∑

q
Vqbqe

iq·r +
∑

q
V ∗q b

†
qe
−iq·r. (2.51)

For absorption processes we have

〈ψβ|Habs
I |ψα〉 =Vq

1
q1/2 〈n

′|bq|n〉 〈J ′,m′J |J,mJ〉〈φ′xyz|eıq·r|φxyz〉, (2.52)

where φxyz is the envelope function and has the following form

〈φ′xyz|eıq·r|φxyz〉 =
∫ ∞
−∞

dx
e−

1
2(x−x0

λc
)2

e
− 1

2

(
x−x′0
λc

)2

λc
√

2N−N ′N !N ′!π
eixqxHN

(
x− x0

λc

)
HN ′

(
x− x′0
λc

)
∗

∗
∫ ∞
−∞

dy eiyky eiyqy e−iyk
′
y∗

∗
∫ L

0
dz sin

(
mπ

L
z
)

sin
(
m′π

L
z

)
eizqz . (2.53)

The analytical solution for all the integrals in 〈φ′xyz|eıq·r|φxyz〉 is given by [57]

〈φ′xyz|eıq·r|φxyz〉 = 2
|N−N′|

2 min
√N !

N ′! ,
√
N ′!
N !

 e−λ2
c
4

[
(ky−k′y)2

+2(ky−k′y)iqx+q2
x

]
∗

∗ L|N−N
′|

min(N,N ′)
λ2
c

2

[(
ky − k′y

)2
+ q2

x

]
∗
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∗
[
λ2
c

2
(
sgn (N −N ′)

(
ky − k′y

)
+ iqx

)]|N−N ′|
δm,m′δky−k′y ,qy , (2.54)

where Lαn are the associated Laguerre polynomials, λc the magnetic length, and sgn

the signal function.

The probability amplitude for the absorption processes is given by
∣∣∣〈ψβ|Habs

I |ψα〉
∣∣∣2 = δn′,n−1 |〈J,m′J |J,mJ〉|2

∑
q
V 2
q

1√
q2
x + q2

y

2|N−N ′|min
(
N !
N ′! ,

N ′!
N !

)
δm,m′

e−
λ2
c
2 (q2

x+q2
y)
[
L
|N−N ′|
min(N,N ′)

λ2
c

2
(
q2
x + q2

y

)]2 [
λ2
c

4
(
q2
x + iq2

y

)]|N−N ′|
. (2.55)

The sum over the phonon wave vector can be converted into integrals as ∑
q →

A
(2π)2

∫
dqxdqy,. In the case of 2D Landau levels, we were able to obtain analytic solu-

tions for these integrals [57]

A

(2π)2

∫
dqxdqy

∣∣∣〈ψβ|Habs
I |ψα〉

∣∣∣2 = min
(
N !
N ′! ,

N ′!
N !

)
δn′,n−1 |〈J,m′J |J,mJ〉|2 ∗

A

(2π)2 V
2
q

∫ ∞
0

∫ 2π

0
q⊥dq⊥dθ

1
q⊥

e−
λ2
c
2 q

2
⊥

[
L
|N−N ′|
min(N,N ′)

λ2
c

2 q
2
⊥

]2 [
λ2
c

2 q
2
⊥

]|N−N ′|
δm,m′ .

(2.56)

The right side of equation (2.56) has an analytical solution, which leads to

∑
q

∣∣∣〈ψβ|Habs
I |ψα〉

∣∣∣2 = δn′,n−1 |〈J,m′J |J,mJ〉|2 (~ωLO)2 α
1
λc

√
~

4m∗ωLO

Γ
(

1
2 + |N −N ′|

)
Γ (1 + |N −N ′|+ min (N,N ′))

min (N,N ′)! min (N,N ′)!Γ (1 + |N −N ′|)

dmin(N,N ′)

dhmin(N,N ′)

F
(

1
2 +|N−N ′|

2 , 3
4 + |N−N ′|

2 ; 1 + |N −N ′| ; 4h
(1+h)2

)
(1 + h)1+|N−N ′|

(
1+h
1−h

) 1
2 +|N−N ′|



h=0

, (2.57)

where Γ(z) is the Euler gamma function and F (a, b; c; z) is the hypergeometric function.

These expressions were used for both the conduction and valence band renormalization

as summarized in the following.
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In Figure 2.3, we show the polaron self-energy correction ∆Eα calculated using (2.48),

for the fourth electronic state as a function of the magnetic field. The Figure 2.3(a) illus-

trates the results obtained with the Wigner-Brillouin approximation and Figure 2.3(b)

shows the Rayleigh-Schrödinger correction. Note that both WB and RS methods

match far from resonance (at ∼ 7T and ∼ 10T). Naturally, in the RS approximation,

Figure 2.3(b), divergences appear close to the resonant conditions Dα,β = 0 (when

Eβ − Eα − ~ωLO = 0).

Figure 2.3: Energy correction calculated using (2.48) for the third conduction band

state using (a) Wigner-Brillouin and (b) Rayleigh-Schrödinger method.

In the WB method ∆α = ∆Eα + iδ, this allows us to extract additional information

about the interaction. The real part of the self-energy shift, Figure 2.3(a), characterizes

the energy correction due to phonon interaction. Besides, the imaginary part of the

energy correction, which it is plotted in Figure 2.4, indicates the finite lifetime energy

broadening of the excited electron Landau levels due to the polaron renormalization.
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Figure 2.4: The imaginary part of the self-energy perturbed arise from the imaginary

part of WB. δ = 0.001 meV.

In resonant conditions, the electronic states capable to absorb one phonon become

hybrid, and their lifetimes determine the total energy loss rate of carriers [32]. This

has real implications in the carrier dynamics that will be explored in the next chapter.

The RS and WB approximations do not give the actual pinning behavior of the electron

energies out of resonance. For that reason we introduce the carrier-phonon interaction

within the k·p model by using a full diagonalization. The fact that the energy states are

fully quantized, supports this approach and we expand the Hamiltonian in (2.35) in the

basis of |ψ〉 = |0〉|φxyz〉|J,mJ〉 and |ψ〉 = |1〉|φxyz〉|J,mJ〉 functions. The corresponding

energy spectrum is obtained by diagonalizing the Hamiltonian including the electron-

phonon interaction terms (2.52). As shown in Figure 2.5 for the conduction band, the

anticrossings are produced at critical magnetic fields. These anticrossings correspond

to the perfect hybridization of |ψ〉 = |0〉|φxyz〉|J,mJ〉 and |ψ〉 = |1〉|φxyz〉|J,mJ〉 states

which becomes a complementary interpretation of the increased life-time broadening

of Landau levels discussed before.

We can see that the interaction with phonons modifies the system configuration but

preserves the asymptotic behavior. The advantage of this approach is the perfect

blending to the matrix format of the k · p and allows direct application to the study

of these effects also in the valence subbands.

The full diagonalization calculation allowed the possibility of observing a peculiar effect

induced by the LO-phonon interaction: the appearance of heavy-light hole coupling



40 Electronic Structure and Phonons Effects in Quantum Wells

Figure 2.5: Conduction band levels corrected by full diagonalization. The upper

branch corresponds to states with one phonon energy above E = Estates + ~ωLO. The

zero energy is at the top of the valence band.

induced by polaron renormalization as seen from Figure 2.6.

Note that, according to equation (2.52), the Fröhlich interaction allows the direct

coupling only between states of the same character. However, because of the strong

intraband mixing, the phonon interaction can couple the heavy and light hole levels.

Other remarkable fact is the difference in the effective masses for the two growth direc-

tions selected in the model, affecting the subbands relative position and subsequently

the position of the hole-phonon resonances.

The effect is more vivid by increasing the quantum well width, as displayed in Figs.

2.7 and 2.8, calculated for twice large well (L = 100Å). We understand that it can

be difficult to elucidate details of the electronic structure within the mesh of valence

band Landau levels. For that reason the energy spectrum is complemented with the

information contained in the expansion coefficients CNm of the respective hole states as

function of the magnetic field strength. They define the character of each given state

and characterize the degree of the hybridization of the valence band energy level.

Some states of the Figure 2.7 and Figure 2.8, labeled in Roman digits, have been
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Figure 2.6: In red, the valence band energy levels for the [001] (left) and [113] (right)

quantum well. The gray dot lines correspond to non phonon interaction case. At

very low magnetic fields, the hole states are almost pure, but become hybrid as the

external magnetic field, B, increases. The lowest energy levels with heavy and light

hole characters are indicated in green (for spin up) and blue ( down spin). The width

used is L = 50Å and the super-index denotes the mth state due to the quantum well

confinement.

chosen to prove the main hypothesis that was risen in this part of the Thesis: the

contributions of phonons to extra heavy and light-hole mixing. In Figs. 2.9 and 2.10,

the weight coefficients of the wave functions are plotted as function of the magnetic

field strength for the states highlighted in Figures 2.7 and 2.8, respectively. Solid

curves represent the components with no phonon contribution while the dashed ones

correspond to those involving one phonon. Note that at the regions of clear energy

anticrossings, the phonon components assume a dominant role indicating that resonant

hole-phonon coupling can take place between states with predominant heavy and light

hole character. These features are also clearly spin-dependent.

Such an effect will imply that under resonant conditions, the carrier life-time and sub-
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Figure 2.7: Energy spectrum obtained by an exact diagonalization of the HL + HI

(given by equations (2.35) and (2.45) respectivelly). The holes are confined in a GaAs

quantum well grown on a (001) plane with L = 100Å. The gray dot lines correspond

to non phonon interaction case. Green lines (blue lines) correspond to states with a

predominant contribution of the ground state of heavy or light holes with spin up (spin

down). Highlighted lines are used to visualize phonons effects.

sequently the hole relaxation can be strongly affected and tuned by the magnetic field.

In the next chapter, a consequence of these effects will be discussed and certain peculiar

behaviors obtained experimentally related to the spin-relaxation will be analyzed.
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Figure 2.9: Contribution of the main basis components CNm to the highlighted states

of Figure 2.7 for a quantum well grown along [001] direction. Dashed curves correspond

to the components involving one phonon.
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Figure 2.10: Contribution of the main basis components CNm to the highlighted

states of Figure 2.8 for a quantum well grown along [113] direction. Dashed curves

correspond to the components involving one phonon.
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Chapter 3

Spin-Resolved Photo-Generation

Filtering Induced by Phonon

Emission

The Stranski-Krastanov growth technique appears as a widespread method used to

synthesize self-assembled quantum dots [58]. This growth mode, takes advantage of

the lattice mismatch between different semiconductor compounds and takes place, in

general, after the epitaxial deposition of a thin film referred as the wetting layer. The

self-assembled quantum dots will subsequently grow on this surface.

The wetting layers allow controlling the strain fields that lead to the quantum dot

formation and have unavoidable effects in their electronic structure and, in turn, affect

the optical properties. One of the most intensely investigated quantum dot systems

are those built on the basis of InGaAs alloys that have gained increasing importance in

recent years due to their application in long-wavelength optoelectronic devices [43,59].

In such systems, the spontaneous formation of InAs dots takes place after the deposition

of a thin InGaAs wetting layer (that can be assumed as a two dimensional confinement

layer) [60].

Considerable attention has been paid to the charge (and spin) dynamics that lead to

the carrier capture in quantum dots and the role played by the wetting layers [61–66].

It is assumed, for instance, that in InGaAs quantum dots in a GaAs matrix, the

carriers can be efficiently trapped in the quantum dots in both ways: (i) directly from

47
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the matrix and (ii) via the wetting layer [67]. In particular, the optical injection of

electron and hole spins into a quantum dot system is a fundamental tool for solid

state quantum information processing. Like in single atoms, in quantum dots, spin

polarization can be created by means of optical pumping with polarized light thanks

to well defined optical selection rules. The selection rules determine the exchange of

angular momentum between incoming photons and a quantum state comprising one or

several electrons and holes. In the most general case, light absorbed by a quantum dot

creates a superposition of spin up and spin down states, thus reducing the maximum

attainable spin polarization. Yet, there are special situations where the selection rules

allow a 100 percent spin polarization using circularly polarized light.

In general, to attain high degree of spin polarization and long term spin coherence, re-

sonant excitation conditions are chosen. Near resonant excitation energy of the relevant

spin states, the angular momentum transfer is maximized as well as the coherence be-

tween photons and spins. The dynamics of the just created spin is governed in this case

by pure spin dephasing mechanisms like anisotropic exchange interaction and hyper-

fine coupling [68]. Non resonant spin injection mechanisms, on the other hand, involve

optical selection rules for the excited states and additional spin relaxation processes.

Thus, the non-resonant pathways for optical spin injection have been traditionally dis-

regarded in favor of the resonant ones, however these avoid intermediary mechanisms or

states that could be exploited for filtering phenomena such as spin-bottleneck [69,70].

In this chapter, we investigate an unexplored nonresonant pathway to inject oriented

spins from high energy extended bulk states into localized InGaAs/GaAs quantum

dot states. The sample studied is represented in the upper diagram of Figure 3.1.

The carrier relaxation path was assessed through the sample photoluminescence that

allows observing the emission lines from practically all the intermediary steps from the

bulk states towards those confined in the quantum dots as shown in the lower panel of

Figure 3.1.

The path exploits a magnetophonon resonance channel acting on hot electrons and

a spin blocking mechanism acting on intermediate states of the relaxation path. To-

gether, they allow a non-equilibrium high spin polarization in the quantum dot. The

effect is reported for both, quantum dot ensembles and single quantum dots and might

open new routes for nonresonant optical injection of spins in solid state. The sam-
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Figure 3.1: Upper panel: sketch of the various layers of the structure under study.

Lower panel: photo-luminescence spectrum of the sample labeling the various contri-

butions provided by the collaborators at the Micro-electronics Institute of Madrid.

ples used in this study were grown and characterized by our colleagues at the Micro-

electronics Institute of Madrid, Spain. Undoped substrates were used and the growth

conditions were optimized for low quantum dot density and emission wavelength around

980 nm.

To investigate the spin dynamics the samples were embedded in a cryogen-free cryostat

and investigated by magneto-photoluminescence (PL) in back-scattering Faraday con-

figuration at low temperature (4-77 K). For single quantum dot investigation a confocal

micro-PL setup was used.

To assess a variety of spin pumping conditions and the different spin relaxation paths,

polarization optics were used to change from linear to circular basis both in the exci-

tation and collection. In the following, light helicity refers to a fixed laboratory frame

attached to the emission light path. Figure 3.2 (a-c) shows the photoluminescence spec-

tra obtained at 0T and 4.2K for the GaAs band edge, ensemble quantum dot ground

state and single quantum dot neutral exciton at their corresponding spectral regions,
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Figure 3.2: (a-c) Photoluminescence spectra obtained with no magnetic field applied

at T=4.2K for the GaAs band edge, ensemble quantum dot ground state and single

quantum dot neutral exciton. Contour plots of the emission as function of the magnetic

field in each spectral region is showed in the lower panels. Panels (d)(f) stand for

experiments done with continuous wave laser excitation of energy EL = 1.797eV, coming

from a temperature stabilized laser diode emitting at 690.0nm with power stability

better than 2 %. Correspondingly, panels (e)(g)(h) stand for experiments done with EL

= 1.579eV. Courtesy of our collaborators at the Micro-electronics Institute of Madrid.

respectively. They are representative of droplet epitaxy InGaAs/GaAs quantum dots

with ensemble and single full width at half maximum (FWHM) of 17meV and 69µeV,

respectively. The GaAs band edge emission show narrow peaks dominated by the exci-

ton bound to neutral acceptor transition, as expected for high quality intrinsic GaAs.

The lower panels in Figure 3.2 show contour plots of the emission obtained sweeping

the magnetic field from -9 to 9T in each spectral region. Figure 3.2 (d)(f) stand for
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experiments done with continuous wave laser excitation of energy EL = 1.797eV com-

ing from a temperature stabilized laser diode emitting at 690.0nm with power stability

better than 2%. Correspondingly, Figure. 3.2 (e)(g)(h) stand for experiments done

with a CW laser diode stabilized at 785.0nm (EL = 1.579eV). Both lasers were linearly

polarized and continuously monitored to normalize the emission intensity by the laser

power. In both situations, well-known diamagnetic and zeeman (orbital and spin) en-

ergy shifts can be identified for each transition which do not depend on the excitation

energy. Yet, both excitation energies, being above the GaAs band edge, result in a very

different evolution of the integrated PL intensity and degree of circular polarization.

For the laser with energy EL = 1.579eV, the σ+ and σ− components of the emitted light

show sharp resonances with 1/B periodicity as shown in Fig. 3.2 (e)(g). The oscillations

can be mapped down to the single quantum dot level resulting in brighter spots in the

parabolic dispersion of the neutral exciton shown in Figure 3.2 (h). Both the optical

excitation and detection were performed by controlling the light polarization (either

linear or circular), thus spin contributions were optically resolved as a function of B.

The period and amplitude of these oscillations can be better analyzed integrating the

σ+ and σ− intensities as a function of B and normalizing to their values at 0T. The

panels in Figure 3.3 show the results obtained for the ensemble quantum dot and GaAs

band edge. Given the selection rules at play in III-V semiconductors, an imbalance

of the σ+ and σ− emission intensity reflects an unequal population of spin-up and

spin-down electrons.

In panels (a) and (b) of Figure 3.3 one may note that the magnetic field resonances

disappear (dashed lines) once the incident laser energy is shifted beyond certain reso-

nance threshold. Another interesting feature that can be noticed is the fact that, for

the GaAs band edge, all the resonances appear regardless the polarization configura-

tion for excitation and collection. However, for the quantum dots this is no longer

the case when a linearly polarized light is used and a clear spin filtering takes place,

Figure 3.3(a).

For excitation with circularly polarized light, it is possible to map the transitions emis-

sion for both σ+ and σ− independently of the collection as showed in Figure 3.3(c-f).

The highest emissions due to clockwise circularly polarized or anticlockwise circularly

polarized light are reached at specific values of magnetic field where resonant condi-
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Figure 3.3: Integrated bulk and quantum dot photoluminescence intensities as a

function of B. The polarization configuration for excitation and collection is denoted

by σα and Lσα where L stands for linearly polarized excitation. The spectra are

normalized to the values at 0T.

tions are satisfied. Besides, one should note that the maxima in Figure 3.3 (c-d) are

shifted with respect to those in Figure 3.3 (e-f).

This puzzling effect will be discussed in what follows and, at the end, we will be able

to emulate various polarization configurations for both light absorption and emission

processes. We shall discuss the effects of phonons in the communication process be-

tween bulk, and the 2D states in the wetting layer which leads to the carrier relaxation

towards the quantum dots.
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3.1 Theoretical Simulation

By analyzing the optical response in this kind of connected systems (due to the growth

conditions bulk/wetting layer/quantum dot appear in sequence) when a magnetic field

is applied, two challenging questions arise: what is the potential interference of 2D

Landau levels in the wetting layer for the relaxation from bulk 3D states towards fully

confined states in quantum dots and is there a potential phonon assistance?

Thus, we build the Figure 3.4 to illustrate the carrier dynamics in the structure, where

the dashed arrows correspond to the optical excitation and emission, whereas the con-

tinuous arrows represent the relaxation processes that ultimately result in the quantum

dot emission. Both the optical excitation and detection were performed by controlling

the light polarization (either linear or circular), thus spin contributions were optically

resolved.

Figure 3.4: Upper panel: sketch of the potential profile of a system Bulk/wetting layer

(WL)/quantum dot (QD). Lower panel: schematic representation of the spin-resolved

dynamics.

A theoretical model based on carrier densities dynamics as shown in Figure 3.4 was
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proposed taking into account both spin conserving and spin-flipping channels. The

relations are described through the equations

dn±exc
dt

= P± − n±exc
τB
− n±exc
τ flipB

−
(

Π± + 1
τnr

)
n±exc −

n±exc
τs

f
(
E±exc − E∓exc

)
+

+ n∓exc
τs

f
(
E∓exc − E±exc

)
, (3.1)

dn±0
dt

= n±exc
τB

+ n∓exc
τ flipB

− n±0
τ0
− n±0

τs
f
(
E±0 − E∓0

)
+ n∓0

τs
f
(
E∓0 − E±0

)
, (3.2)

dn±WL

dt
=
(

Π± + 1
τnr

)
n±exc −

n±WL

τcw
fFD

(
En±i

, µ
)
, (3.3)

dn±i
dt

= n±exc
τce

fFD
(
En±i

, µ
)

+ n±WL

τcw
fFD

(
En±i

, µ
)
− n±i

τe
+ n∓i
τsi
fFD

(
En±i

, µ
)
−

n±i
τsi
fFD

(
En∓i

, µ
)
, (3.4)

dn±WL0
dt

= n±i
τe
− n±WL0

τ0
, (3.5)

where superscripts indicate the spin state, up (+) or down (−), the n±exc and n±0 cha-

racterize the carrier density of the excited and bulk ground states, respectively. The

carrier density through the wetting layer states is labeled as n±WL, for the excited le-

vels, and n±WL0, for the ground levels. Here P± stands for the carrier photo-generation

with a given spin, τ0, is the optical recombination time, τB characterizes the coherent

spin relaxation in the bulk and τ flipB the relaxation with spin-flip. The intralevel spin

relaxation processes in the bulk are characterized by the time τs. Additionally, the

resonant and non-resonant carrier transfer assisted by phonons from the bulk states

to the wetting layer is driven by the terms proportional to Π± and 1/τnr, respectively.

The impurity levels have been introduced as intermediaries in the relaxation process

of confined carriers in the wetting layer with density n±i , where τcw stands for the

coherent spin relaxation from the wetting layer excited levels, while τe is the relaxation

towards the ground state. In this case, the time for intralevel spin relaxation processes

is determined by τsi.

As described in Ref. [69], the spin relaxation at low temperatures (when phonon ab-

sorption is still depressed) is determined by the spin-orbit interaction, boosted by the
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spatial anisotropy produced by confinement profiles intertwined with the momentum

scattering with impurities. The spin occupation of these excited impurity states can be

tuned according to the polarization of the incoming photons. The optical spin pumping

in semiconductor nanostructures [71,72] has proven to be a tool to probe the effects of

localization and spin-orbit interaction mechanisms that tune the spin lifetime. In our

case, the Fermi distribution, fFD
(
En±i

, µ
)

=
(

exp
(
E
n±
i
−µ

kBT

)
+ 1

)−1

, characterizes the

spin occupation in impurity levels ruling the spin-flipping relaxation in these states.

This occupation is manly determined by the initial optical excitation and we assume

that it is not subjected to dynamic changes. As we shall see, this process will trigger

a spin-bottleneck [73,74] under certain excitation conditions. We also assume a linear

energy dependence with the occupation density n±i , namely E±i = αn±i .

In turn, the function

f(x) =

 exp
(
− x
kBT

)
;x ≥ 0

1.
(3.6)

rules the intralevel spin-relaxation in the bulk with lifetime, τs.

By varying the polarization configurations of the excitation photons, a counter-intuitive

effect emerges. The spin coherence appears to be potentiated or depressed if the

illumination is performed with either linear of circular polarization, respectively. One

would assume that by exciting spins with well defined polarization, the coherence would

be enhanced, however this is not the case as shown in Figure 3.3. We will be able to

reproduced these effects in the sections below by introducing the mediation of dark

impurities states in the spin-relaxation as explained below.

3.2 Magneto Absorption

Firstly, we approach theoretically the photo-generation and the magneto-phonon re-

laxation process. The carrier photo-generation, P±, in the presence of a magnetic field

in the bulk, is ruled by the optical interband absorption of photons with energy hω be-

tween 3D Landau levels. It can be considered proportional to the magneto-absorption

coefficient which shows resonant spikes when the photon energy matches the inter-

Landau level energies as seen in Figure 3.5(a) for GaAs. Thus, the photo generation
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has the next form

P± (~ω) ∝ |ep
±
cv|2B
~ω

∑
N

√√
F±(N)2 + δ2 + F±(N)√

F±(N) + δ2
, (3.7)

being |ep±cv| the optical transition matrix element, δ a vanishing life-time energy broa-

dening, and F±(N) = ~ω− (E±c (N)−E±v (N)), where, E±c (N)−E±v (N)), is the energy

difference between Landau levels, N , in the conduction and valence band with a given

spin.

The spikes in Figure 3.5(a) however are drastically reduced at higher energies, an

effect that can be ascribed to the magneto-polaron enhancement of the Landau ener-

gy broadening [15]. To illustrate this, in Figure 3.5(b), two values of δ were used

to show the change in the absorption coefficient as the energy and magnetic field

increases. We can see that the carrier time-life controls the shape of P±, as expected

from Figure 3.5(a). The inset shows the contour plot of the absorption coefficient

versus magnetic field and incident photon energy. Since our interest is the high energy

region, we used the value of δ = 5 meV.

While in the bulk the photo-generation is given by equation (3.7) the phonon induced

relaxation from 3D to the 2D Landau levels is characterized by the next transition rate

Π±res ∝
∑
N

|〈2D|Hp|3D〉|2δ
(
E±exc(N)− E±WL(N)− ~ωLO

)
, (3.8)

being 〈2D|Hp|3D〉 the phonon interaction matrix element, Eexc(N) = E±v (N)+~ω, the

energy of the photo-excited carriers, and, EWL(N), the energy of the confined Landau

levels in the wetting layer.

The electronic structure of the valence band can be obtained by simplifying the Lut-

tinger Hamiltonian as [41,75,76]



sγ1+γ2
2 [2 (N − 2) + 1]

+s3
2

(
κ+ 9

4q
)
− E

s
√

3γ1+γ3
2

√
N (N − 1)

sγ1−γ2
2 [2N + 1]

−s1
2

(
κ+ 1

4q
)
− E


∣∣∣32 ,+3

2

〉
|N − 2〉∣∣∣32 ,−1

2

〉
|N〉

= 0 (3.9)



3.2. Magneto Absorption 57

0

2

4

6

8

10

12
1,55 1,60

Energy (meV)

B = 2.65 T
m = 1

Energy (eV)

(a)

 

 

A
bs

. C
oe

ff.
 (1

05  m
-1
)

Polaron

1520 1540 1560 1580 1600
0

2

4

6

8

 = 0.5meV    = 5meV
B = 0.1T               
B=2.65T              

 

 

 

A
bs

. C
oe

ff.
 (a

rb
. u

ni
ts

) (b)

Figure 3.5: (a) Experimental absorption coefficient in bulk GaAs as a function of

the incident photon energy for B = 2.65 T and circular polarization (Courtesy of

experimental collaborators at the Max Planck Institute, Stutgart). (b) Calculated

photo-generation rate according to equation (3.7) in the same conditions as in panel

(a). The inset shows a 3D plot of the absorption coefficient vs. B and incident photon

energy.
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where γ1, γ2, γ3, κ, q, are the Luttinger parameters, and s = −~eB/m0c.

In turn, the Landau levels in the conduction band can be simulated within the parabolic

approximation as

E±c = Ef
g + ~

eB

mec

(
N + 1

2

)
± 1

2gµBB. (3.11)

All the electronic structure parameters depend on the local composition.

Considering for simplicity τ flipB = τB and τs → ∞, the occupation n±0
τ0

is shown in

Figure 3.6. Here we used the expression for the photo-generation in equation (3.7)

with δ = 5.0 meV and the phonon assisted transition rate in equation (3.8) has been

solved by transforming the Delta function into a Lorentzian with a fixed broadening,

0.03 meV. We are aware that this is a simplification of the actual level broadening that

may show a dependence on B and the Landau level index, N .

Several excitation conditions can be simulated from our calculations of bulk emission,

Figure 3.6, and quantum dot emission, Figure 3.7. In Figure 3.6(a), the results of

either P+ or P− incidences, that lead to the spin selective absorption, have been

compared. The shifted dips in these two cases correspond to the positions of the reso-

nant phonon assisted electron transfer from the bulk (3D Landau levels) towards the

wetting layer which has been considered to be spin-coherent. In turn, for a linearly

polarized incidence that can be set as a combination of the two circularly polarized

excitations, the result corresponds to the curve displayed in Figure 3.6(b) which is

identical for both detections, n+
0 or n−0 .

The corresponding result for the emission from the wetting layer ground state is shown

in Figure 3.7. Contrary to the results in Figure 3.6(a) for n±0 , under circularly polarized

excitation, the spectra in Figure 3.7(a) change according to its sign but do not vary with

respect to the detection of either n+
WL0 or n−WL0. Yet, in the case of linearly polarized

absorption, the dynamics of the spin injected to the wetting layer ground state changes

since there is interference of spin-bottleneck, that now plays a role. We can see that,

under linearly polarized incidence, when both P+ 6= 0 and P− 6= 0 simultaneously, the

wetting layer emission spectrum becomes then dependent on the way it is detected, be

it n+
WL0 or n−WL0, as unveiled in Figure 3.7 (b).

However, the occupation of the ground state Landau levels affects the carrier relaxation.

This would correspond to the assumption of the existence of a quasi-Fermi level, EF ,
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Figure 3.6: Calculated values of n±0 considering τ flipB = τB and τs →∞: (a) simulation

of the circularly polarized excitation (different for either n+
0 or n−0 detection). (b)

simulation of the linearly polarized excitation, identical for both detection n+
0 and n−0 .

in the bulk, so that the relaxation rate 1/τB should be replaced by [1−fFD(n±0 )]/τB in

equations (3.1) and (3.2). In this case, the stationary problem cannot longer be solved

analytically.

To determine EF , we are going to use as energy reference the value for B = 0 in the

conduction band. The relation between the 3D electron density, n3D and the density

of states in the limit T → 0 is n3D =
∫ eN,j
0 ρ(E)dE. In this way, the following implicit

equation for eN,j is obtained [77]

n3D

ΩB =
N∑
i=0

j∑
k=0

[
eN,j − ~ωc

(
N + 1

2

)
− 2k − 1

2 gµBB

] 1
2

(3.12)

with Ω = e
2π2c~2

√
m, N = 0, 1, ..., and j = 0, 1. The corresponding Fermi level va-



60 Spin-Resolved Photo-Generation Filtering Induced by Phonon

1

2

3

4

5

6

 P-

 P+

Q
ua

nt
um

 D
ot

 E
m

is
si

on
 (n

W
L0

)

Magnetic Field (T)

(a)

 

 
1 2 3 4 5 6 7 8 9 10

3
4
5
6
7
8
9
10

 n+
WL0

 n-
WL0

P+=P-

 

 

 

(b)

Figure 3.7: Calculated values of n±WL0 τ
flip
B = τB and τs → ∞: (a) simulation of

the circularly polarized excitation. (b) simulation of the linearly polarized excitation,

different for either n+
WL0 or n−WL0 detection in both polarization configurations.

lues at certain magnetic field B for a given n3D can be expressed as EF (B, n3D) =

⊥{e0,0(B), e0,1(B), ..., eN,j(B), ...}, where ⊥{...} stands for the bottom value of the

given sequence.

As the density of states grows with B (left panel of Figure 3.8), the ground state

relative occupation shrinks enhancing the chances for the carrier relaxation. We can

consider Π± = 0 and change 1/τB by [1 − fFD(n±0 )]/τB in equations (3.1) to assess

the relative effect of this occupation. This is shown in the right panel of Figure 3.8

where the occupations nexc and n0 are plotted for ~ω = 1579 meV. We can see that

the occupation of the ground state Landau level act as envelop curves for the final

relaxation process.

In order to understand the phonon assisted transition effects, we solve the set of equa-
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Figure 3.8: Left: First conduction band Landau levels in bulk GaAs and Fermi energy

as a function of the magnetic field for two values of n3D/ΩB. Right: Occupation of

nexc and n0 considering the modulation of the occupation of the ground state with

magnetic field

tions (3.1)-(3.5) including the transition rate (3.8), where delta functions were assumed

to be given by Lorentzian with broadening independent of Landau level. The table 3.1

shows the parameters considered in this work.

Table 3.1: Fitting parameters used in these simulations

Parameter Symbol value

Recombination time τ0 1

Relaxation time in bulk τB 0.7

Relaxation flip time in bulk τ flipB 0.9

Time for Non resonant process τnr 0.5

Relaxation time in wetting layer τcw 0.3

Relaxation time in inpurity level τe 0.1

Intralevel Relaxation in bulk τs 3

Intralevel Relaxation in impurity level τsi 0.03

Proportionality constant α 1 meV

Chemical potential in Impurity level µ 10−2 meV

Temperature T 4 K

Broadening energy δ 5 meV
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The corresponding results for bulk and quantum dot emission are plotted in Figure

3.9, for linear polarization, and in Figure 3.10, for circular polarization excitations.

From these results the initial questions about the influence of the 2D confinement

Figure 3.9: Comparison between experimental data (points) and theoretical calcula-

tions (line) of the emission from (a) bulk and (b) quantum dot. The phonon channel

was open and resonant effects can be simulated for n−0 and n−WL0 under linear excitation

conditions.

as a communicator between bulk and quantum dot states as well as the assistance of

phonons in this communication can be satisfactory answered due to the agrement of

theoretical simulations with experimental results. The theoretical assumptions were

derived from the consideration of the magneto-resonance triggered by phonons in the

2D landau levels and the occupation present in a wetting layer.
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Figure 3.10: Comparison between experimental data (points) and theoretical calcu-

lations (line) of emission from (a) bulk and (b)-(c) quantum dot. The phonon channel

was open and resonant effects can be simulated for both σ+ and σ−) under σ+ excita-

tion.

3.3 Spin Decoherence

Another relevant question raised was how to evaluate quantitatively and qualitatively

the effectiveness of the spin-flip blocking in the impurity states? since the theoretical

emissions of quantum dot follows the behaviour in the impurities levels. Thus, to

describe the effect of the intermediary donor levels in the spin coherence we can isolate
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the equation (3.4) and analyze it under the stationary condition

0 = n+
WL

τcw
fFD

(
En+

i
, µ
)
− n+

i

τe
+ n−i
τsi
fFD

(
En+

i
, µ
)
− n+

i

τsi
fFD

(
En−i

, µ
)
,

0 = n−WL

τcw
fFD

(
En−i

, µ
)
− n−i

τe
+ n+

i

τsi
fFD

(
En−i

, µ
)
− n−i
τsi
fFD

(
En+

i
, µ
)
, (3.13)

This dynamics is responsible for controlling the spin relaxation and coherence towards

the ground state. As highlighted before, the spin coherence of the relaxation dynamics

can be controlled by the nature of the polarization of the light used for the excitation.

According to the experimental evidence, the spin-flip terms can, in principle be inhib-

ited under the incidence of linearly polarized light, leading to the potentiation of spin

coherent channels. In turn, the spin coherence is suppressed under circularly polarized

light when, in principle, the spins polarization would be expected to be well defined.

We thought that an effective way to do that was to assess the relative difference be-

tween the spin densities calculated with and without the activation of spin-flip channel,

proportional to 1/τsi. Thus, we introduced the quantity that we labeled as Relative De-

coherence

RD± = n±i − n±i (τsi/τe →∞)
n±i (τsi/τe →∞) . (3.14)

In the limit τsi/τe → ∞, the effect of the spin-flip channels is nulled and RD weights

their relative influence in the sense that if RD → 0 it would mean that the spin-flip

channels are not active leading to a totally spin coherent relaxation path.

We can calculate the Relative Decoherence as a function of the in-coming spin polar-

ization from the wetting layer defined as

DP 0 = n+
WL − n−WL

n+
WL + n−WL

, (3.15)

that will be essentially reproduced by the nature of the polarization of the incident

photons. Then, by taking

n−WL = n+
WL

1−DP 0

1 +DP 0 , (3.16)

and fixing n+
WL = n0 we have calculated the Relative Decoherence as shown in Figure

3.11. In the limit of low densities n0, the solution of equation (3.14) provides the

maximum absolute values for the decoherence given by

RD±max = − 2
2 + τsi/τe

DP 0

1 +DP 0 , (3.17)
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and this function has also been plotted in Figure 3.11.
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Figure 3.11: Calculated Relative Decoherence as a function of the incoming spin

polarization (or degree of circular polarization of the incoming photons).

Note that for higher densities, the relative decoherence starts to vanish, thus depressing

the spin-flip channels. Also, within the whole range of densities, RD → 0 for lower

DP 0 and this is the case of linear polarized incidence, when both spins polarizations

are equally exited. As the degree of polarization enhances, the absolute values of the

relative decoherence grows indicating the activation of the spin-flips. This explains

the peculiar spin filtering effect that was highlighted in Figure 3.3 and completes the

picture that characterizes the peculiar experimental observations described previously.
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Chapter 4

Electron Dynamics in 2D

Semiconductors Layers

In this chapter, we are interested in relating the theoretical results of scattering theory

in two dimensions with a quantity easily measured in experiments of electro-optical

transport of quasi two dimensional devices. We propose to use the phase shift method

in order to characterize the conductivity trough a bi-dimensional system locally per-

turbed which is tuned by external light. It is the way we can see how the scattering

theory, besides of being a fundamental part in quantum mechanics, helps us to obtain

information on the microscopic structure of quantum systems and acts as a bridge to

allow us to do an association between objects and the quantum laws in order to form

a mental picture of the interaction scheme.

We will focus on thin two dimensional crystals of transition metal dichalcogenides

(TMDs). These films are especially attractive for optoelectronic devices due to the high

mobility at room temperature, flexibility, and high material quality, convenient features

for the realization of new generation of 2D storage devices, emitters, light detectors and

solar cells [78–82]. The composition of the transition metal dichalcogenides crystals is

MX2, where M designates the transition metal atom and X the chalcogen species (see

Figure 4.1 adapted from [83]). The interlayer bonding takes place through weak van

der Waals forces which allows scaling down each layer by means of several techniques

until the monolayer form. A way to tune the carrier response in this kind of systems

is by applying local stress or local electrostatic potentials (gates) in order to induce

67
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carrier confinement. The use of this TMDs as thin film switches has clear advantages,

moreover, if compared to analogous bulk semiconductor devices which are rigid, heavy

in weight and demanding high cost technology to process, the thin crystals such as

MoS2 and WSe2 have become very attractive alternatives holding the promise to open

possibilities of new optoelectronics architectures [82, 84,85].

Figure 4.1: Transition Metal Dichalcogenide, TMD, has chemical composition MX2

(where M is a transition metal and X = S, Se or Te). Analogous to the graphene

structure, TMD’s monolayers have hexagonal lattice structures, but a direct band gap,

unlike graphene, at K and K’ points of the hexagonal Brillouin zone)

Of particular interest for us is the molybdenum disulfide, MoS2, due to the direct band

gap at the monolayer form as well as photoluminescence and electro-luminescence in

the visible range up to room temperature [86, 87]. Furthermore, the strong valley

polarization and high-in-plane mobility are promising features for the development of

valleytronics and integrated circuit technologies [88, 89] as well as flexible and trans-

parent transistor devices, for low-power and high efficiency biological and chemical

sensing applications [90].

In this TMDs the electronic properties are affected by the substrate used changing,

for instance, the doping level [91, 92]. Here, we are performing the characterization of
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transport process on photo-gated MoS2 thin films with functionalized substrate using

photochromic molecules [84]. Although experimentally challenging, this is no longer

a future perspective but a plausible realization nowadays [93] and can be achieved

by placing the exfoliated crystal on top of photochromic self-assembled azobenzene

molecules, thus being able to control the potential profile and its topography by optical

means [23].

A brief development of two dimensional scattering theory will be presented in this

chapter. After that, we find the solutions for the equation of motion that, later, meet

the scattering solution, in such a way that boundary conditions are always satisfied. By

using these solutions, we emulate the dynamics of electrons within a monolayer being

locally perturbed. The features are characterized in terms of the scattering phase shifts,

which will enable the computation of the differential scattering cross section dependence

with controllable parameters. Another objective of this chapter is attained applying the

scattering theory for both Schrödinger and Dirac equation simultaneously. A discussion

about the conditions when it is possible to use a parabolic or linear dispersion relation

ends this chapter by contrasting asymptotic limits of momenta.

4.1 Scattering Theory in Two Dimensions

A MoS2 monolayer is almost a two dimensional system. The monolayer deposition

over a functionalized substrate will create an electronic cloud deformation which may

induce the emergence of attractive or repulsive scattering centers of MoS2 [23, 94].

Azobenzene molecules (AZO) have the property to switch between trans and cis isomers

in a process called photo-isomerization. Both trans and cis configurations are achieved

through illumination with UV and the process could be reversed by using white light.

Juan Li et al in Ref.93 report photoluminescence measurements performed on MoS2

monolayers placed over photoswitchable azobenzene molecules as substrate. When the

MoS2 nanosheet is in contact with the AZO-trans configuration it is presumable a

n-type doping. The cis configuration lowers the doping, quenching the side band and

enhancing the overall photoluminescence efficiency by a factor of 3.

In the following, the MoS2 topographic structure will be assumed as a two dimensional

system, the perturbation caused by the AZO-cis and AZO-trans isomers will by mod-
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eled as a quantum well as showed in Figure 4.2(a) and a quantum barrier potential as

showed in Figure 4.2(b).

Figure 4.2: An incident plane wave front will strike a target that produces scattered

waves expanding in all directions. The target could be a well (a) or a barrier (b).

Furthermore, we consider a single scattering center in the system, placed at the origin

of coordinates and described by a short range potential. In this way, if V (r) vanishes

at some point, let say L, the eigenfunctions in the region V (r) = 0 are plane wave

states. The time-independent Schrödinger equation is

Hψ =
(
−~2∇2

2me

+ V (r)
)
ψ = Eψ (4.1)

or
[
∇2 + k̃2

]
ψ = 2me

~2 V (r)ψ (4.2)

where

k̃2 = 2meE

~2 . (4.3)

The equation (4.2) is similar to the Helmholtz equation when it has a delta function

source, and its solution is given by the Green function G(r) [95]
[
∇2 + k̃2

]
G(r− r′) = 2me

~2 δ(r− r′). (4.4)

Taking advantage of this, we will express ψ as

ψ(r) = eık̃·r +
∫
d2r′G(r− r′)V (r′)ψ(r′), (4.5)

and it is easy to verify that this satisfies the Schrödinger equation (4.2). Now the

G(r− r′) has to be determined for a two dimensional case. At r− r′ 6= 0 we have a free
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particle equation and their solutions are a linear combination of first Jm and second

kind Ym Bessel functions,

H(1,2)
m = Jm(k̃r)± ıYm(k̃r). (4.6)

This formulation is known as Hankel function of the first and second kind and are

used to express outgoing and incoming waves depending on the sign convention for the

frequency.

From here, we assume that V (r) is cylindrically symmetric and hence depends only on

the magnitude of r and, for short, r− r′ ≡ R. The symmetrical solution, assumed to

have the form G(R) = CH1
0 , can be put into (4.2) and integrating over dθ we get

2π
(

1
R

d

dR

(
R
d

dR

)
+ k̃2

)
CH1

0 (k̃R) = 2π
π

2me

~2
δ(R)
R

(4.7)

(
d

dR
R
d

dR
+Rk̃2

)
CH1

0 (k̃R) = 2me

π~2 δ(R). (4.8)

Then, integrating this equation from 0 to ε and taking the limit ε→ 0

lim
ε→0

∫ ε

0
dR

(
d

dR
R
d

dR
+Rk̃2

)
CH1

0 (k̃R) = lim
ε→0

∫ ε

0
dR

2me

π~2 δ(R) (4.9)

lim
ε→0

(
ε
d

dε
CH1

0 (k̃ε)
)

= 2me

π~2 (4.10)

lim
ε→0

Cε
d

dε

(
J0(k̃ε) + ıY0(k̃ε)

)
= 2me

π~2 (4.11)

lim
ε→0

Cε
d

dε
ı
2
π

(
log

(
k̃ε

2

)
− γ

)
= 2me

π~2 (4.12)

lim
ε→0

Cεı
2
π

(
k̃

k̃ε

)
= 2me

π~2 (4.13)

C = −ıme

~2 (4.14)

and

G(R) = −ıme

~2 H
1
0 (k̃R). (4.15)

The integral in (4.5) extends over the range of V (r) which decays to zero outside some

finite region. In a typical scattering problem, measurements are realized at points far
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away from the scattering center. For large arguments H1
0 (z)→

√
2
πz
eız and (4.5) takes

the form

ψ(k̃, r) = eık̃·r + f(k̃)e
ık̃r

√
r
, (4.16)

with

f(k̃) = −me

~2

√
ı

2πk̃

∫
d2r′e−ık̃·r

′
V (r′)ψ(r′). (4.17)

Both terms on the right of (4.16) have the exponent of outgoing waves. The first

one is a plane wave without any information about the potential, while the second

term represents one leaving the target with a scattering amplitude f(k̃). A schematic

representation of this phenomenon is shown in Figure 4.2.

4.2 Scattering Phase Shift

Here we will describe one method to find the scattering amplitude f(θ) in order to get

the differential scattering cross section. For this, firstly we need to solve the equation

of motion for a particle in the presence of a central potential V (r), and after that the

phase shift method would be applied to calculate the scattering amplitude.

4.2.1 Dirac Case

Following the idea of the scattering problem of massive particles, a construction of

the scattered wave function (4.16) using the mathematical equation that governs the

electronic structure in TMDs is presented here.

The Hamiltonian for transition metal dichalcogenides monolayers is [89]

HD = at(τqxσx + qyσy) + ∆
2 σz − τλ

σz − 1
2 sz, (4.18)

where a is the lattice constant, t is the effective hopping integral, τ = ±1 is the valley

index, σi the Pauli matrices that act in the spinor space corresponding to the two

orbitals of atoms in a hexagonal lattice, ∆ the energy gap, 2λ the spin-orbit splitting

at the valence band, and sz is the Pauli matrix. The spinors are wave functions of two

components referring to the two orbitals in the hexagonal structure.
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The valleys K and K ′ of the Brillouin zone are uncoupled and it is possible to consider

the scattering problem at each valley independently [96]. Thus we are going to focus

on the K valley and consider spin up, i. e. τ = 1 and sz = 1

HD =

∆/2 atq−

atq+ −∆/2 + λ

 , (4.19)

where q± = qx ± ıqy and add a scattering center V as follows

V (r) =


V, for r ≤ L,

0 for r > L.

(4.20)

This system has axial symmetry and, as it is well known, such central potential problem

conserves angular momentum. Therefore we may choose simultaneously eigenfunctions

to the Dirac-like Hamiltonian H = HD + V and the z component of the total angular

momentum operator J = lz + 1
2σz + 1

2sz where lz = −ı ∂
∂φ

is the z component of the

orbital angular momentum. We assume that

Hψ =

∆/2 + V atq−

atq+ −∆/2 + λ+ V


 ψae

ımθ

ψbe
ı(m+1)θ

 (4.21)

where m ∈ integer (for details see appendix C for state ψj=m+1). Thereby, to get the

radial part of ψ we use a cylindrical coordinate system, in which q± = −ıe±ıθ(∂r± ı/r∂θ)

[97] and solve the following set of differential equations(
∆
2 + V

)
ψa − ıat

(
∂r + m+ 1

r

)
γψb = Eψa (4.22)

(
−∆

2 + λ+ V

)
γψb − ıat

(
∂r −

m

r

)
ψa = Eγψb. (4.23)

After some manipulation, we uncouple the ψa and ψb components. For ψa we have(
ρ2 d

2

dρ2 + ρ
d

dρ
+ (ρ2 −m2)

)
ψa = 0 (4.24)

where ρ = qr and

q = 1
at

√√√√(E − V )2 − λ(E − V )− ∆
2

(
∆
2 − λ

)
, (4.25)

is the wave vector inside.
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The solutions for equation (4.24) are the cylindrical Bessel functions of the first kind,

Jm, and second kind Ym [57]. The asymptotic behavior of these two Bessel functions

is given by [57],

Jm(z) =


1
m!

(
z
2

)m
, for z → 0√

2
πz

cos
(
z − 1

2π
(
m+ 1

2

))
, for z →∞

(4.26)

Ym(z) =



2
π

(
ln z

2 + γ
)
, for m = 0 and z → 0

− (m−1)!
π

(
2
z

)m
, for m 6= 0 and z → 0√

2
πz

sin
(
z − 1

2π
(
m+ 1

2

))
, for z →∞

(4.27)

but some requirements should be satisfied. In the potential region, the wave function

must be a normalizable solution, while outside this region, a linear combination of

incoming and outgoing waves is expected.

For this reason, at 0 ≤ r ≤ L, our solution ψim is

ψim = Nm

 Jm(qr)eımθ
−ıatq

−∆/2+λ−(E−V )Jm+1(qr)eı(m+1)θ

 , (4.28)

where Nm is a normalization constant.

On the other hand, at r ≥ L, ψom is a combination of the first, H1
m(q̃r), and second

kind, H2
m(q̃r), of Hankel functions, equation (4.6), and the solution ψo is

ψom =

 N1H
2
m(q̃r) +N2e

2ıδmH1
m(q̃r)

−ıatq̃
−∆/2+λ−E

(
N1H

2
m+1(q̃r) +N2e

2ıδmH1
m+1(q̃r)

)
eıθ

 eımθ (4.29)

with

q̃ = 1
at

√√√√E2 − λE − ∆
2

(
∆
2 − λ

)
, (4.30)

the wave vector outside and N1,2 are normalization constants. The phase shift e2ıδm

depends on the parameters of the potential V (r). Because of this, the phase of the

outgoing wave function is shifted with respect to the incoming wave, determining the

elastic scattering problem.

We are looking for solutions, ψ, satisfying simultaneously the following equations

(HD + V (r))ψ = Eψ, (4.31)
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ψ −→r→∞ =

 1
−ıatq̃

−∆/2+λ−E)

 eıq̃·r + f(q̃, θ)

 1
−ıatq̃

−∆/2+λ−E)e
ıθ

 eıq̃r√
r
, (4.32)

such that an eventual wave decomposition allows us to characterize the asymptotic

behavior of each partial wave. This method is used to compute the scattering amplitude

and cross section, since the influence of the scalar potential is manifested by deflections

of the incident wave when it reaches the potential.

After some manipulation (see appendix C for details), the function outside the potential

region takes the form

ψom =


(
Jm(q̃r) + e2ıδm−1

2 H1
m(q̃r)

)
−ıatq̃

−∆/2+λ−E)

(
Jm+1(q̃r) + e2ıδm−1

2 H1
m+1(q̃r)

)
eıθ

 eım(θ+π
2 ), (4.33)

where the normalization constant Nm and the phase shift δm are determined from the

boundary condition ψim
∣∣∣
L

= ψom
∣∣∣
L
. We found

Nm = eı
π
2m

(
Jm(q̃L)
Jm(qL) −

e2ıδm−1

2
H1
m(q̃L)

Jm(qL)

)
, (4.34)

e2ıδm = H
(2)
m+1(q̃L)Jm(qL)−DH(2)

m (q̃L)Jm+1(qL)
DH

(1)
m (q̃L)Jm+1(qL)−H(1)

m+1(q̃L)Jm(qL)
, (4.35)

with D = −∆/2+λ−E
−∆/2+λ−(E−V )

q
q̃
.

In order to recognize the scattering amplitude generated by the potential, V , we will

use the Jacobi-Anger identity [57],

eıq̃·r =
∞∑

m=−∞
Cmı

mJm(k̃r)eımθ, (4.36)

and the asymptotic form of Hankel functions [57]

H(1,2)
m (z) = Jm(z)± ıYm(z)

∣∣∣∣
z→∞

=
√

2
πz
e±ı(z−

π/2(m+1/2)), (4.37)

ψ =
∞∑

m=−∞
ψom =

∞∑
m=−∞

 Jm(q̃r) + e2ıδm−1
2 H1

m(q̃r)
−ıatq̃

−∆/2+λ−E

(
Jm+1(q̃r) + e2ıδm−1

2 H1
m+1(q̃r)

)
eıθ

 eım(θ+π
2 ) (4.38)

where in r →∞ limit, we have

ψ( −→r→∞) = eıq̃·r

 1
−atq̃

−∆/2+λ−E

+
∞∑

m=−∞

e2ıδm − 1
2

√
2
ıπq̃

eımθ

 1
−atq̃

−∆/2+λ−E e
ıθ

 eq̃r√
r
, (4.39)
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and comparing with the state ψ in the equation (4.16)

ψ = eıq̃·r

 1
−atq̃

−∆/2+λ−E

+ f(q̃, θ)

 1
−atq̃

−∆/2+λ−E e
ıθ

 eıq̃r√
r

(4.40)

where the scattering amplitude f(q̃, θ) of the wave function, which describes the scat-

tering problem, is

f(q̃, θ) =
∞∑

m=−∞

e2ıδm − 1
2

√
2
ıπq̃

eımθ. (4.41)

The quantity f(q̃, θ) measures the scattered part of the outgoing wave. By obtaining the

phase shift, δm, gained after the scattering process, it is possible to find the scattering

amplitude.

Thus, since the phase shift describes completely the collision process in a theoretical

way, we will summarize the procedure to obtain this information: 1) solve the eigen-

problem Hψ = Eψ (equation (4.21)), allowing both free and scattered solutions for

the outside region; 2) calculate the asymptotic limit of the solution and compare it

with the solution of the scattering problem (equation (4.32)); 3) identify the scattering

amplitude f and use the boundary conditions to calculate the phase shifts δm.

Our task now consists in obtaining the scattering amplitude by varying different pa-

rameters such as depth or width of the potential in order to describe the transport

response in these TMDs systems. Additionally, we will investigate in which limit the

parabolic approximation for the Hamiltonian is still valid for obtaining a reasonable

description of the locally perturbed TMDs monolayers. The last point is interesting

since the Schrödinger equation remains as the natural theoretical way to describe the

quantum effects in the semiconductor field.

4.2.2 Parabolic Approximation: Schrödinger Case

For very low wave vectors, one reasonable approximation for the electronic structure

of TMDs should be to assume a parabolic dispersion [98]. Such an assumption could

be obtained from equation (4.30), where we have

E(q̃) = λ

2 ±

√√√√(λ−∆
2

)2

+ (atq̃)2, (4.42)
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assuming ∆ > λ

E(q̃ → 0) ≈


∆
2 + (at)2q̃2

∆−λ ,

−∆
2 + λ− (at)2q̃2

∆−λ ,

(4.43)

or, defining at = ~vf

E ≈
~2q̃2

2me

, (4.44)

where m−1
e = ± 2v2

f

∆−λ is the effective mass for electrons (+) or holes (-).

In the limit of small q̃, the carriers are describe as Schrödinger fermions and the scat-

tering problem will be solve using a parabolic Hamiltonian with a given effective mass.

Essentially, for carriers ruled by dispersion relation (4.2.2), the system remains the

same, with a scattering potential as described before

V (r) =


V, for r ≤ L,

0 for r > L.

(4.45)

we recover the discussion about axial symmetry, and hence polar coordinates (r, θ) are

still more convenient. The equation for a stationary state ψ reads,(
−~2

2me

(
∂2

∂r2 + 1
r

∂

∂r
+ 1
r2

∂2

∂θ2

)
+ V (r)

)
ψ = Eψ, (4.46)

such that the solution can be written as the product of a radial and an angular parts

ψ(r, θ) = R(r)Θ(θ). Putting this into the equation (4.46), dividing by R(r)Θ(θ) and

multiplying by −2me/~2, we obtain the expression

r2
(

1
R

∂2

∂r2 + 1
R

1
r

∂

∂r

)
R− 1

Θ
∂2Θ
∂2θ

= −r2(E − V (r))2me

~2 , (4.47)

The term in brackets in the left only depends on r, whereas the remainder depends

only on θ.

The solution for the angular equation satisfying the imposed boundary condition

Θ(θ) = Θ(θ + 2π) is

Θ(θ) = 1√
2π
eımθ (4.48)

with m = 0,±1,±2 . . ., whereas the solution for radial part, R(r), is determined by(
d2

dr2 + 1
r

d

dr
+ m2

r2

)
R(r) = −(E − V (r))2me

~2 R(r). (4.49)
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As our potential is finite, the carriers could get into both classically forbidden or allowed

regions, then for r < L the wave functions are expected to decay or oscillate with a

wavelength that depends on the momentum of the particle, let say k =
√

(E − V )2me
~2 .

Outside, the traveling wave function oscillates with k̃ =
√
E 2me

~2 . Using L as a length

scale, the next dimensionless radial equation inside the potential is obtained with ρ =

kr, such that (
∂2

∂ρ2 + 1
ρ

∂

∂ρ
+ m2

ρ2

)
R = −R. (4.50)

As seen before, equation (4.50) is the Bessel’s differential equation. The general solution

for this case are the cylindrical Bessel functions of first kind, Jm, and second kind Ym.

As usual, we have two requirements for the wave function. Inside and outside of

the potential region, ψ must be normalizable and needs to coincide at the boundary.

Necessarily, at 0 ≤ r ≤ L the wave function is

ψim =
√

1
2πNie

ımφJm(kr), (4.51)

where Ni is a normalization constant. On the other hand, at r ≥ L the state must be

a combination of Jm(k̃r) and Ym(k̃r) and the wave function for the outside region is,

ψom =
√

1
2πNoe

ımφ
(
Jm(k̃r)± ıYm(k̃r)

)
, (4.52)

where No is a normalization constant. The boundary condition for ψ requires that the

wave function and its first derivative must be continuous at r = L, thus the relation

between Ni and No can be obtained,

No =Ni
Jm(kL)

Jm(k̃L)± ıYm(k̃L)
, with (4.53)

N2
i = 2
|Jm(kL)|2 − Jm−1(kL)Jm+1(kL)

, (4.54)

the allowed energies are found numerically using the transcendental equation for k,

kJ ′m(kL)
Jm(kL) = k̃(J ′m(k̃L)± ıY ′m(k̃L))

J ′m(k̃L)± ıY ′m(k̃L)
. (4.55)

In order to satisfy simultaneously(
−~2

2me

∇2 + V (r)
)
ψ = Eψ, (4.56)



4.2. Scattering Phase Shift 79

ψ −→r→∞ = eık̃·r + f(k̃, θ)e
ık̃r

√
r
, (4.57)

we follow a process similar to the one described in the previous section,

ψom =1
2
[
H(2)
m (k̃r) + e2ıδmH(1)

m (k̃r)
]

cos(mθ) (4.58)

=Jm(k̃r) cos (mθ) + e2ıδm − 1
2 cos(mθ)H(1)

m (k̃r) (4.59)

where the term e2ıδm is expected to arise from the interaction with the potential,

modifying the initial wave phase by an amount δm.

ψ =
∞∑
m=0

Cmı
mψom (4.60)

=eık̃·r +
∞∑
m=0

Cmı
m e

2ıδm − 1
2 cos(mθ)H(1)

m (k̃r), (4.61)

where the Jacobi-Anger identity in equation (4.36) was used, C0 = 1, and all the

other Cm = 2. From the asymptotic form of ψ, it is possible to identify the scattering

amplitude in equation (4.16)

f(k̃, θ) =
∞∑
m=0

Cm

√
2
ıπk̃

e2ıδm − 1
2 cos(mθ), (4.62)

and

ψ =eık̃·r +
∞∑
m=0

Cm

√
2
ıπk̃

e2ıδm − 1
2 cos(mθ)e

ık̃r

√
r
. (4.63)

The appropriate form of each separated solution m comes from boundary conditions

NikJ
′
m(kL) =1

2 k̃
[
H ′(2)
m (k̃L) + e2ıδH ′(1)

m (k̃L)
]
, (4.64)

where the incident and scattered waves are written in the left and right hand of the

above equations, respectively. The phase shift factor can be calculated using these two

expressions:

e2ıδm = H ′(2)
m (k̃L)−BH(2)

m (k̃L)
BH

(1)
m (k̃L)−H ′(1)

m (k̃L)
, (4.65)

where B = kJ ′m(kL)
k̃Jm(kL) .
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Here, it should be noticed that the scattering amplitude in the Schrödinger model

differs from the Dirac model through the phase shifts δm (see equations (4.65) and

(4.35)). This would be reflected in the differential cross section

dσ

dθ
= |f(θ, q̃)|2, (4.66)

which contains information on the angular distribution of the scattering [99].

4.3 Probability Density and Differential Cross Sec-

tion

As mentioned in the beginning of this chapter, we aim to investigate the effects of a

perturbation V (r) on the TMDs surface. With this characterization we can modify

the electronic transport response. In table 4.1, the parameters for different TMDs

monolayers are reported and these values were extracted from [89].

Table 4.1: Band structure parameters of some transition metal dichalcogenide mono-

layers from reference [89].

a [Å] t [eV] ∆ [eV] 2λ [eV]

MoS2 3.193 1.10 1.66 0.15

WS2 3.197 1.37 1.79 0.43

MoSe2 3.313 0.94 1.47 0.18

WSe2 3.310 1.19 1.60 0.46

In order to associate the transport response of a carrier moving in a MoS2 monolayer

with the photoswitchable states, AZO-trans and AZO-cis, we first plot the probability

density of a scattering wave function, given by quation (4.40), in Figure 4.3(a) for well

potential and (b), for barrier one. We note a bright area behind the center in contrast

to the shadow appearing in the same place for the barrier case. In other words, it is
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Figure 4.3: Probability density of a scattered function found in the case of a (a) well

potential, and a (b) barrier potential. Incident flux comes from the left. Potential

centered at origin with range L = 20Å. Scattered particles are expected to accumulate

in the forward direction of an attractive potential, while a smaller probability to find

particles is anticipated in a repulsive interaction case.

more probable to find scattered carriers in forward direction of an attractive potential

than for a repulsive one, a relevant feature for possible technological applications.

Figure 4.4: The same as in Figure 4.3 but using the parabolic mass approximation

for carriers. L = 20Å.

Similarly, the probability density for scatter carriers ruled by a parabolic dispersion

relation, equation (4.63), is plotted in Figure 4.4(a) for well potential and (b) for barrier.
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It is possible to see that both graphics show the same qualitative behavior and, as seen

before, the potential size determines different conditions for electronic transport. This

is evident from Figure 4.5(a) where, through variations on the potential depth, we see

an on-off mechanics in the differential cross section, defined in (4.66). This feature

is achieved for distinct incident plane waves fronts, even when we describe carriers as

Schrödinger fermions, Figure 4.5(b).

Figure 4.5: Differential scattering cross section as a function of the potential range,

V , and the incident wave front energy found using a (a) Dirac-like Hamiltonian, and a

(b) parabolic relation dispersion. L = 20Å.

When a potential V is attractive, one can think of a wave being pulled in by the

potential, whereas for a repulsive potential the waves are expected to be pushed out.
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In both V > 0 or V < 0 cases, the m = 0 channel is the one which most contributes

to the differential cross section.

Figure 4.6: Differential scattering cross section, calculated from equation (4.41) as a

function of the incident energy for four different radius L.

Until here, we examined the differential cross section for a fixed well width, however, if

the local perturbation is expanding (or contracted) the effects will be reflected in the

set of partial wave phase shifts, this is shown in Figure 4.6(a) and (b) for carriers ruled

by a Dirac-like Hamiltonian. In Figure 4.6(c) and (d), the differential cross section is

plotted for the scattering amplitude in equation (4.66) which corresponds to carriers

with a parabolic relation dispersion. We complement our understanding about the

modifications on the radius, L, and the modulation of the differential cross section

with Figure 4.7 where different radius and its effects over transmissions probability for
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Figure 4.7: Differential scattering cross section calculated from equation (4.66) (Re-

sults for Dirac-massive formuation) as a function of the incident energy for four different

widths L= (a) 5Å, (b) 20Å, (c) 50Å, (d)100Å. formulation.

wells and barriers are plotted. Figure 4.8 is analogous to Figure 4.7 but considering

a parabolic relation dispersion. As the radius increases, the differential cross section

from Dirac the case starts to differ more and more from the Schrödinger case.

In Figure 4.9 we plot the difference dσD

dθ
− dσS

dθ
as a function of the detection angle in order

to estimate quantitatively the difference on the scattering amplitude between Dirac

scattering amplitude and a Schrödinger one for different momenta of incident carriers.

As we see in the upper and lower panel of Figure 4.9, the main difference appears in

the forward direction of the scattering center for both positive or negative potentials.

For a barrier case, a Dirac-like and schödinger-like back scattering is comparable, and

the quantity dσD

dθ
− dσS

dθ
is close to zero, this behavior is relevant even within (π/2, 3π/2)

interval. The negative differential cross section is indicating that the probability of
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Figure 4.8: The same as in Figure 4.7, but using the parabolic mass approximation

for carriers, i., e., Schrödinger formulation.

having scattering behind the scattering center is larger if we have Schrödinger-like

carriers.

In the lower panel of Figure 4.9 the positive quantity indicates that the scattering

of Dirac-like carriers is greater than the scattering of Schrödinger-like carriers. This

could be interpreted as carriers hitting TMD’s structures would scattered in more an-

gular directions than those hitting traditional semiconductors systems. Such dissimilar

behavior raises the important discussion about the limits and conditions in which a

Dirac-like picture of TMD’s monolayers is relevant in scattering theory, and allows us

contrasting the results for carriers ruled by a parabolic dispersion relation.
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Figure 4.9: The difference dσD

dθ
− dσS

dθ
is plotted as a function of the detection angle θ

for a well with radius L = 20Å.

4.4 Asymptotic Analysis

Based on the analytical results for the electronic structure of TMD’s films, we proceed

to compare asymptotic behaviors of the scattering problem when carriers are described

using Dirac formulation and Schrödinger formulation. We make use of the phase shift

because this parameter contains the information about the scattering processes and

gives us details about the effect of the potential center. In table 4.2 we summarize

some results and conventions used for wave vectors and phase shift.

4.4.1 Dirac Formulation

First, we study the asymptotic behavior of δm for large wave vectors, and subsequently,

the short wave vectors limit will be investigated as well. A detailed calculation of the

results presented here can be found in the Appendix C.

After mathematical manipulation, we transform the phase shift expression, obtained
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Table 4.2: Notation used for incident and outgoing wave vector as well as the phase

shift for each case studied. Inside for r < L; outside r > L.

Dirac-like fermions Schrödinger fermions

Wave Vector

Inside
q = 1

at

√
(E − V )2 − λ(E − V )− ∆

2

(
∆
2 − λ

)
k =

√
(E − V )2me

~2

Wave Vector

Outside
q̃ = 1

at

√
E2 − λE − ∆

2

(
∆
2 − λ

)
k̃ =

√
E 2me

~2

Phase Shift e2ıδm = H
(2)
m+1(q̃L)Jm(qL)−DH(2)

m (q̃L)Jm+1(qL)
DH

(1)
m (q̃L)Jm+1(qL)−H(1)

m+1(q̃L)Jm(qL)
e2ıδm = H

(2)′
m (k̃L)−BH(2)

m (k̃L)
BH

(1)
m (k̃L)−H(1)′

m (k̃L)

D = λ−∆−E
λ−∆−(E−V )

q
q̃

B = k
k̃

J ′m(kL)
Jm(kL)

using the Dirac-like Hamiltonian, from its exponential form (Table 4.2) into a tangent

function

tan(δm) = Jm+1(q̃L)Jm(qL)−DJm+1(qL)Jm(q̃L)
Ym+1(q̃L)Jm(qL)−DJm+1(qL)Ym(q̃L) (4.67)

where, D = λ−∆−E
λ−∆−(E−V )

q
q̃
.

For high energy in the q̃L → ∞ limit, D ≈ 1, and using (4.26) and (4.27) we can

rewrite the numerator and denominator of the equation (4.67) as follows

Jm+1(q̃L)Jm(qL)−DJm+1(qL)Jm(q̃L) ≈ 2
Lπ

√
1
qq̃

sin(q̃ − q)L (4.68)

Ym+1(q̃L)Jm(qL)−DJm+1(qL)Ym(q̃L) ≈ − 2
Lπ

√
1
qq̃

cos(q̃ − q)L (4.69)

which leads to

tan(δm) ≈ − sin(q̃ − q)L
cos(q̃ − q)L = − tan(q̃ − q)L (4.70)

δm ≈ −(q̃ − q)L. (4.71)

Note that it is independent of m. Intuitively, at very high energy limits or very wide

potentials, q and q̃ are almost the same, therefore the shift with respect to the free
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wave should be zero, however the relation dispersion is hyperbolic, and at high energies

the wave vector is almost linear in energy. From table 4.2

E ≈
q̃→∞

λ−∆
2 + atq̃

1 + 1
2

(
λ−∆

2

)2 1
a2t2q̃2

 ≈ atq̃ (4.72)

Substituting E = atq̃ into q = 1
at

√
(atq̃ − V )2 − λ(atq̃ − V )− ∆

2

(
∆
2 − λ

)
we have the

expression of δm as

δm ≈ −q̃L+ L

at
atq̃

(
1 + 1

2
V 2 − 2V atq̃
a2t2q̃2

)
(4.73)

δm ≈ −
LV

at
(4.74)

lim
q̃→∞

δm = −LV
at
. (4.75)

This result shows an interesting insight since, despite the intuition, incoming electrons

will see the potential even when moving with very high energies. This means that in

a material with an electronic structure ruled by the Dirac Hamiltonian the carriers

mobility is affected by the perturbations created over the surface. We will see below

this is different in the Schrödinger perturbation.

Now, to analyze the limit of short wave vectors, one should consider that Jm(qr), and

consequently D, belong to C since, with E < V , the wave vector inside the barrier

is an imaginary number. In this case, the two solutions for Bessel equation are the

modified Bessel functions of the first, Is, and second, Ks, kind. Is(x) is finite at the

origin, while Ks(x) has a singularity at x = 0. The modified Bessel functions of the

first kind is defined by

Is(x) = ı−sJs(ıx). (4.76)

Then

tan(δm) = Jm+1(q̃L)Im(qL)−DrIm+1(qL)Jm(q̃L)
Ym+1(q̃L)Im(qL)−DrIm+1(qL)Ym(q̃L) , (4.77)

where D = ıDr and Dr ∈ R. Using the corresponding small arguments behavior of Jm,

equation (4.26), and Ym, equation (4.27), we have

lim
q̃→0

tan(δm) =


− πm
m!2

(
q̃L
2

)2m
, for m 6= 0,

1
2
π (ln q̃L

2 +γ) for m = 0.
(4.78)
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The limit in (4.78) shows that the most contributing channel to the scattering process

is m = 0. Hence, just electrons with low angular momentum have to be considered.

4.4.2 Schrödinger Formulation

For parabolic mass carriers with high energies, i. e., high momentum k̃, we have the

following expression

tan δm = J ′m(k̃L)−BJm(k̃L)
Y ′m(k̃L)−BYm(k̃L)

, (4.79)

with B = k
k̃

J ′m(kL)
Jm(kL) .

At limk̃→∞
k
k̃

= 1, and

lim
k̃→∞

J ′m(kL)
Jm(kL) = lim

k̃→∞

Jm−1(kL)− Jm+1(kL)
2Jm(kL)

= −
sin(kL− π

2 (m+ 1
2))

cos(kL− π
2 (m+ 1

2)) (4.80)

∴
k

k̃

J ′m(kL)
Jm(kL) ≈ −

sin(kL− π
2 (m+ 1

2))
cos(kL− π

2 (m+ 1
2)) (4.81)

With this, the complete expressions in the numerator and denominator are

J ′m(k̃L)−BJm(k̃L) =
√

2
πk̃L

(
− sin

(
k̃L− π

2

(
m+ 1

2

))
+

tan
(
kL− π

2

(
m+ 1

2

))
cos

(
k̃L− π

2

(
m+ 1

2

)))
, (4.82)

Y ′m(k̃L)−BYm(k̃L) =
√

2
πk̃L

(
cos

(
k̃L− π

2

(
m+ 1

2

))
+

tan
(
kL− π

2

(
m+ 1

2

))
sin

(
k̃L− π

2

(
m+ 1

2

)))
. (4.83)

Using both expressions into (4.79) we can write explicitly the carrier phase shift for

high energy scattering

lim
k̃→∞

tan(δm) ' tan(k − k̃)L ≈ − tan
(
me

~2
V L

k̃

)
, (4.84)

Which is fairly different from the expression (4.75). We can see that, as the wave vector

or energy increases, the carriers will not be scattered by the perturbation.
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Now, for the low energy regime, we have k =
√

(E−V ) 2me
~2 = ı

√
(V−E) 2me

~2 = ıkr, then

B = ıkr

k̃

J ′m(ıkrL)
Jm(ıkrL) (4.85)

= kr

k̃

I ′m(krL)
Im(krL) . (4.86)

For short wave vectors

lim
k̃→0

B = kr

2k̃
Im−1(krL) + Im+1(krL)

Im(krL)

≈ kr

2k̃
≈

√
Ṽ − k̃2

2k̃

≈ 1
k̃

√
Ṽ

(
1− k̃2

2Ṽ

)

=
√
Ṽ

k̃
− k̃

2Ṽ
, (4.87)

where Ṽ = V 2me
~2 . Using the corresponding small arguments behavior for Jm and Ym,

we have

lim
k̃→0

tan(δm) =


− πm
m!2

(
k̃L
2

)2m
, for m 6= 0,

π
2

1
ln k̃L

2 +γ
for m = 0,

(4.88)

which fully agree with the expressions for Dirac-like carriers in (4.78). The phase shift of

incoming electrons moving with very low momentum goes to zero, and there is no more

scattering processes that could take place at this regime. It is also intuitively expected

that both approaches will coincide whenever the kinetic energy is much smaller than

the Dirac gap.

The differences and similarities between Dirac and Schrödinger formulations found

above become more noticeable in a graphic. In Figure 4.10(a) and Figure 4.10(b),

we plot the phase shift δm gained in a scattering process due to a well and a barrier

potential respectively. The asymptotic limit for long wave vectors correspond to the

expressions (4.75) and (4.84) for Dirac and Schrödinger cases, both are confirmed in

Figure 4.10 (a) and (b). It is also possible to see in Figure 4.10 that the expressions

(4.78) and (4.88) for low wave number are checked. Solid (Dirac-massive model) and
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dashed lines (parabolic-mass Schrödinger model) in Figure 4.10 clearly match in the

short wave vectors regime, Figure 4.10(a) for an attractive potential and Figure 4.10(b)

for a repulsive one.
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Figure 4.10: Phase shift gained during a scattering process due to a: (a) attractive

and (b) repulsive potential. The solid lines correspond to Dirac-massive model, whereas

dashed lines show the parabolic-mass Schrödinger model. The height and width of the

potential are |0.2|eV and 20Å respectively.

We conclude that, at high energies, Dirac-like carriers are subjected to a long range

interaction between the carries and the potential, such that the carriers dynamic will

be always affected by it, and all channels are equally scattered by V . This situation is

not observed in the case of Schrödinger-like carriers with high wave vectors. In that

limit, they do not see the barrier and they will not be scattered.
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Chapter 5

Conclusions and Final

Considerations

The central concepts that motivated and guided the presented study were the quantum

phenomena related to the electronic and optical response of nanoscale 2D systems when

they are submitted to local perturbations. An extensive theoretical effort has been

made to develop simple models that capture the essential physics behind the operation

of the semiconducting nanoelectronic devices and thus allowed us to understand the

underlying quantum effects. The main achievements in this Thesis are summarized

below:

Electronic Structure and Phonons Effects in Quantum Wells

In quantum wells based in polar semiconductor alloys, both electron-phonon and

hole-phonon interactions were considered as perturbations acting on the system.

These terms were added into the Luttinger Hamiltonian matrix and then were

diagonalized in order to find the renormalized energy. In this study, we use

parameters to describe the GaAs-quantum well grown in the (001) plane and

in the non-conventional (113). However, the method could be easily extended

to other polar semiconductor alloys and for generic [11N] growth directions. It

was confirmed from these calculations (chapter 2) that a strong hybridization

assisted by Frölich phonons is achieved not only for conduction band states but

also for valence band ones. Resonant conditions can be accessed by varying the

magnetic field or the length of the well. This tuning turns to be quite important
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for optical applications due to the reorganization of the states in both conduction

and valence band as revealed in recombination processes. We also prove that the

choice of the growth direction is an alternative way to tune the relaxation process

in these semiconductor systems.

Spin-Resolved Photo-Generation Filtering Induced by Phonon Emission

The role of two dimensional states in the carrier resonant relaxation process

collected in quantum dots embedded in a coupled Bulk/wetting layer/quantum

dot system has been unveiled. From a population model for carriers with spin up

and down, we emulated the dynamics of two dimensional layer and quantum dot

populations successfully. This study provides a tool to describe photo-absorption

and magneto-absorption process in order to take advantage of phonon states

present in the wetting layer and allow us to access the resonance conditions

between the bulk and quantum dot states. These resonant transitions yield to

photoluminescence emissions in both structures that can be measured. Other

goal of this study was to understand the situations with an imbalance of spin

up and down population evidenced by the quantum dot emission, a fact already

proved experimentally. A linearly polarized excitation enabled the detection of

both populations in bulk. However in the quantum dot we have a spin filtering

mechanism in place since the resonant emissions for each spin states occurs at

different values of magnetic field, and hence the detection depends on the circular

polarization. When the polarization is circular, the collection in bulk or quantum

dot reaches a maximum for both spin up and down populations at the same values

of B. An important role is played by impurities levels, which act as spin-flip

blocking for transitions into the quantum dot.

Scattering Process and Electron Dynamics in 2D Semiconductors Layers

The characterization of scattering processes at low energies in transition metal

dichalcogenides monolayers locally perturbed was obtained. We use the scatter-

ing theory in two dimensions to determine the differential cross section generated

by two types of perturbation potentials: well and barrier. These potential con-

ditions could be achieved by the deposition of photosensitive molecules as, for

instance, the azobenzene derivatives. Peculiar features were found such as an
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on-off mechanism in the carrier transport for well-barrier perturbation and fur-

thermore, the modulation of scattering has been investigated for deep and large

well/barrier cases as well as the incident electron momentum. We found the

best conditions for allowed and blocked scattering in the forward direction of

the perturbation potential. A comparison between Dirac-like and parabolic-like

carriers in terms of phase shift gained by the interaction with V has also been

performed; at low energy regimes of incident electrons both electronic structures

are comparable, whereas for high energies we can predict that carriers ruled by

Schrödinger equation have more probability to be found in forward direction, in

contrast with those ruled by Dirac-like equation since they are scattered even

when moving with high momenta.

It is well-known that the state hybridization engineering represents a crucial step to-

wards achieving the band structure modulation of any material and consequently in

its successfully application on nanoscale devices. In this thesis, some optical and elec-

tronic phenomena were studied in two dimensional systems based on GaAs and MoS2.

Nonetheless, our analysis is not restricted to these materials, and could be easily ex-

tended over many other heterostructures and/or add more perturbational effects in

order to gain further control in the response of 2D systems.

We were able to emulate theoretically the processes influencing the dynamics of the

carrier transport during the operation of semiconducting devices. In this way, we could

propose modifications in the external parameter that may lead to improvements in the

device performance, since the kind of perturbations studied here are expected to be

controlled in semiconductor nanostructures. All the theoretical models developed in

this study are general enough to be extended for other structures such as quantum

dots or quantum wires.

In particular, the results presented in chapter 2 pave the way for future investigations

aiming to relate them with some experimental facts. An analysis identical to the

one presented in chapter 3 can be developed, but with an Hamiltonian that includes

modifications of lattice parameter due to local perturbations. Concomitantly, all of

these results are currently being condensed in scientific papers. We highlight that the

joining efforts from the experimental and theoretical teams in a fruitful collaboration
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paved the way for achieving a clear and broad understanding of the fundamental physics

in modern semiconducting devices, starting from the background of electronic structure

and quantum transport phenomena towards the laborious tasks of fabrication and

modeling quasi two dimensional structures and devices.
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Appendix A

Matrix Representation of the

Luttinger Hamiltonian

The Luttinguer Hamiltonian that considers the coupling between heavy and light hole

and their respective spin components under an applied magnetic field, B, is shown

next [38].



|HH1 ↑〉 |LH1 ↑〉 |LH1 ↓〉 |HH1 ↓〉 |HH2 ↑〉 |LH2 ↑〉 |LH2 ↓〉 |HH2 ↓〉
a11 a12 a13 a14 a15 a16 a17 a18 |NL − 2〉1

a22 a23 a24 a25 a26 a27 a28 |NL − 1〉1
a33 a34 a35 a36 a37 a38 |NL〉1

a44 a45 a46 a47 a48 |NL + 1〉1
a55 a56 a57 a58 |NL − 2〉2

a66 a67 a68 |NL − 1〉2
a77 a78 |NL〉2

a88 |NL + 1〉2


(A.1)

Where the super index in the first row and the sub index in the last column label the

quantum well subband and the matrix elements different from zero are

a11 =−~
2

2m0

(
eB

~

(
(γ1 + γ2) (2(NL − 2) + 1) + 3

(
κ+ 9

4q
))

+ (γ1 − 2γ2)
(
π

L

)2
)

a22 =−~
2

2m0

(
eB

~

(
(γ1 − γ2) (2(NL − 1) + 1) +

(
κ+ 1

4q
))

+ (γ1 + 2γ2)
(
π

L

)2
)
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a33 =−~
2

2m0

(
eB

~

(
(γ1 − γ2) (2(NL) + 1)−

(
κ+ 1

4q
))

+ (γ1 + 2γ2)
(
π

L

)2
)

a44 =−~
2

2m0

(
eB

~

(
(γ1 + γ2) (2(NL + 1) + 1)− 3

(
κ+ 9

4q
))

+ (γ1 − 2γ2)
(
π

L

)2
)

a55 =−~
2

2m0

(
eB

~

(
(γ1 + γ2) (2(NL − 2) + 1) + 3

(
κ+ 9

4q
))

+ (γ1 − 2γ2)
(2π
L

)2)

a66 =−~
2

2m0

(
eB

~

(
(γ1 − γ2) (2(NL − 1) + 1) +

(
κ+ 1

4q
))

+ (γ1 + 2γ2)
(2π
L

)2)

a77 =−~
2

2m0

(
eB

~

(
(γ1 − γ2) (2(NL) + 1)−

(
κ+ 1

4q
))

+ (γ1 + 2γ2)
(2π
L

)2)

a88 =−~
2

2m0

(
eB

~

(
(γ1 + γ2) (2(NL + 1) + 1)− 3

(
κ+ 9

4q
))

+ (γ1 − 2γ2)
(2π
L

)2)

a13 = e~
m0

B

√
3

2

(
(γ2 + γ3)

√
NL(NL − 1)

)

a24 = e~
m0

B

√
3

2

(
(γ2 + γ3)

√
NL(NL + 1)

)

a57 = e~
m0

B

√
3

2

(
(γ2 + γ3)

√
NL(NL − 1)

)

a68 = e~
m0

B

√
3

2

(
(γ2 + γ3)

√
NL(NL + 1)

)

a16 =−~
2

m0

√
eB

~
ı γ3

√
6(NL − 1) 8

3L

a25 = ~2

m0

√
eB

~
ı γ3

√
6(NL − 1) 8

3L
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a38 = ~2

m0

√
eB

~
ı γ3

√
6(NL + 1) 8

3L

a47 =−~
2

m0

√
eB

~
ı γ3

√
6(NL + 1) 8

3L
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Appendix B

Rotation of Luttinger Hamiltonian

for Zincblende Crystal

In order to specify directions and planes in a crystal we use Miller indices [100]. They

are defined with respect to any choice of unit cell, in general this choosing is with respect

to primitive basis vectors and are determined as the inverse intercepts along the lattice

vectors. If the index value is 0 it means that the plane is parallel to its crystallographic

axis, a negative index is represented by a horizontal bar on the top of the number.

The usual notation is h, k, l. The writing (h, k, l) denotes a crystallographic plane and

[h, k, l] denotes a direction.

The new coordinate system used to rotate the Luttinger Hamiltonian is as follow: the

axis 3 along the growth direction, the 1 and 3 axes in the (110) plane, and the 2 axis in

the [110] direction, see Figure B.1. The angle between axis 3 and the x-y plane of the

original coordinate system is denoted by θ; thus when θ varies from 0 to π
2 , the growth

surface which is perpendicular to the 3 axis changes from (110) to (111), (112), (113),

until (11∞), i.e. (001) as shown on Figure B.2
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Figure B.1: Rotation of coordinate system (x, y, z) where z axis is perpendicular

to (001) plane. a) The 1, 2 and 3 axes of the rotated coordinate system. Axis 2 is

perpendicular to 1-3 plane which is parallel to (110) plane; the crystal is growing along

axis 3; the system is rotated about axis 2 for angle θ. b) Side view of x-z and 1-3

planes. c) Upside down view of x-y and 1-2 planes, coordinate system rotated to π
4

angle

Figure B.2: Growth surfaces in Miller indexes notation: a - (110), b - (111), c - (112),

d - (113), e - (11∞). Growth direction is perpendicular to plane which is colored in

black



Appendix C

Scattering Systems

C.1 Dirac Dynamic

The Hamiltonian for massive Dirac fermions is presented below (In this work, we will

used the MoS2 monolayer parameters found in Ref. 101)

HD = at(τqxσx + qyσy) + ∆
2 σz − τλ

σz − 1
2 sz, (C.1)

where the energy gap ∆ is 1.66meV, the spin-orbit coupling at the valence band, 2λ

is 150meV, a = 3.193Å is the lattice constant and t = 1.10eV is the effective hopping

integral. These parameters describe MoS2 as seen in table 4.1. The valleys are un-

coupled and it is possible to consider the scattering problem at each valley and spin

independently. The equation for ψ is

HDψ =

∆/2 + V atq−

atq+ −∆/2 + λ+ V


ψa
ψb

 = Eψ. (C.2)

We are interested in building a set of eigenfunctions for both H and Jz = lz+ 1
2σz+ 1

2sz,

then we should know the relation between the phases of the components ψa and ψb.

Towards this end, first we will build a generic form of the eigenfunction, from (C.2)

(∆/2 + V )ψa + atq−ψb = Eψa (C.3)

and

(−∆/2 + λ+ V )ψb + atq+ψa = Eψb. (C.4)
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Manipulating (C.3)

ψb = ψa
−∆/2 + (E − V )

atq−
(C.5)

= ψa
−∆/2 + (E − V )

atq
eıθ (C.6)

ψ = ψa

 1
−∆/2+(E−V )

atq
eıθ

 = a

 1

γeıθ

 (C.7)

taking a = Aeımθ we obtain a set of eigenfunctions for both H and Jz:

Jzψ = JzA

 1

γeıθ

 eımθ =
(
Lz + ~

2σz
)
A

 1

γeıθ

 eımθ (C.8)

= A~

 m

γ(m+ 1)eıθ

 eımθ + A

 ~/2

−~/2γeıθ

 eımθ (C.9)

= ~(m+ 1/2)A

 1

γeıθ

 eımθ (C.10)

Jzψ = ~(m+ 1/2)ψ. (C.11)

Now, with the angular part on hand, we will compute the radial part of ψ, that should

satisfy∆/2 + V atq−

atq+ −∆/2 + λ+ V

A
 ψa

ψbγe
ıθ

 eımθ = EA

 ψa

ψbγe
ıθ

 eımθ. (C.12)

Using q± = −ıe±ıθ(∂r ± ı/r∂θ) we write the equation system as(
∆
2 + V

)
ψa − ıat

(
∂r + m+ 1

r

)
γψb = Eψa (C.13)

and (
−∆

2 + λ+ V

)
γψb − ıat

(
∂r −

m

r

)
ψa = Eγψb. (C.14)

We obtain the relation between ψa and ψb from the last equation: γψb = −ıat(∂r−m/r)ψa
−∆/2+λ−(E−V ) .

Putting this into (C.13) we have(
∆
2 − (E − V )

)
ψa + a2t2

−∆/2 + λ− (E − V )

(
d

dr
+ m+ 1

r

)(
d

dr
− m

r

)
ψa = 0 (C.15)
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(
∆
2 − (E − V )

)
ψa + a2t2

−∆/2 + λ− (E − V )

(
d2
r + 1

r
dr −

m2

r2

)
ψa = 0 (C.16)

(
d2
r + 1

r
dr −

m2

r2 +
−∆/2 + λ− (E − V )

a2t2
(∆/2− (E − V ))

)
ψa = 0 (C.17)

(
d2
r + 1

r
dr −

m2

r2 + q2
)
ψa = 0 (C.18)

or (
ρ2 d

2

dρ2 + ρ
d

dρ
+ (ρ2 −m2)

)
ψa = 0 (C.19)

where ρ = qr and q = 1
at

√
(E − V )2 − λ(E − V )− ∆

2

(
∆
2 − λ

)
. The solutions to (C.19)

are the Bessel functions [57].

The relation between ψa and ψb is derived from

γψb = −ıat
−∆/2 + λ− (E − V ) (∂r − m/r)ψa. (C.20)

For example, the second component of ψim is

γψb = −ıat
−∆/2 + λ− (E − V ) (∂r − m/r)NmJm(qr) (C.21)

= −ıat
−∆/2 + λ− (E − V )Nmq

(
J ′m(qr)− m

qr
Jm(qr)

)
(C.22)

= −ıat
−∆/2 + λ− (E − V )NmqJm+1(qr), (C.23)

where J ′m(x) = Jm−1(x) − m
x
Jm(x) was used and the recurrence relation Jm−1(x) +

Jm+1(x) = 2m
x
Jm(x). For 0 ≤ r ≤ L

ψim = Nm

 Jm(qr)eımθ
−ıatq

−∆/2+λ−(E−V )Jm+1(qr)eı(m+1)θ

 . (C.24)

The process for γψb of ψom is analogous,

ψom =

 N1H
2
m(q̃r) +N2e

2ıδmH1
m(q̃r)

−ıatq̃
−∆/2+λ−E

(
N1H

2
m+1(q̃r) +N2e

2ıδmH1
m+1(q̃r)

)
eıθ

 eımθ. (C.25)

For convenience, we manipulate the last expression to write

ψom =

 N1H
2
m(q̃r) +N2e

2ıδmH1
m(q̃r) +N1H

1
m(q̃r)−N1H

1
m(q̃r)

−ıatq̃
−∆/2+λ−E

(
N1H

2
m+1(q̃r) +N2e

2ıδmH1
m+1(q̃r) +N1H

1
m+1(q̃r)−N1H

1
m+1(q̃r)

)
eıθ

 eımθ
(C.26)
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=

 2N1Jm(q̃r) +
(
N2e

2ıδm −N1
)
H1
m(q̃r)

−ıatq̃
−∆/2+λ−E

(
2N1Jm+1(q̃r) +

(
N2e

2ıδm −N1
)
H1
m+1(q̃r)

)
eıθ

 eımθ. (C.27)

taking N1 = ım

2 = eım
π/2

2 we have

ψom =

 eımπ/2
(
Jm(q̃r) + e2ıδm−1

2 H1
m(q̃r)

)
−ıatq̃eımπ/2
−∆/2+λ−E

(
Jm+1(q̃r) + e2ıδm−1

2 H1
m+1(q̃r)

)
eıθ

 eımθ. (C.28)

The normalization constant Nm and the phase shift δm are determined from the bound-

ary condition, where ψim
∣∣∣
L

= ψom
∣∣∣
L

which leads to

Nm


Jm(qL)

−ıatq
−∆/2+λ−(E−V )Jm+1(qL)eıθ

 =

 eımπ/2
(
Jm(q̃L) + e2ıδm−1

2 H1
m(q̃L)

)
eım

π/2−ıatq̃
−∆/2+λ−(E−V )

(
Jm+1(q̃L) + e2ıδm−1

2 H1
m+1(q̃L)

)
eıθ

 .
(C.29)

By adding all m channels and using the asymptotic form Hm we have

ψ( −→r→∞) = eıq̃·r

 1
−atq̃

−∆/2+λ−E

+
∞∑

m=−∞

e2ıδm − 1
2

√
2
ıπq̃

eımθ

 1
−atq̃

−∆/2+λ−E e
ıθ

 eq̃r√
r

(C.30)

or

ψ = eıq̃·r

 1
−atq̃

−∆/2+λ−E

+ f(q̃, θ)

 1
−atq̃

−∆/2+λ−E e
ıθ

 eıq̃r√
r

(C.31)

with

f(q̃, θ) =
∞∑

m=−∞

e2ıδm − 1
2

√
2
ıπq̃

eımθ (C.32)

C.1.1 Schrödinger Dynamics

The function outside the scattering region takes the form

ψom =
√

1
2πNoe

ımθ
[
H(1)
m (k̃r) +H(2)

m (k̃r)
]
. (C.33)

That is a combination of outgoing and incoming waves.
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As a result of scattering, the outgoing wave gets an additional phase 2δm, so

ψom =
√

1
2πNoe

ımθ
[
H(2)
m (k̃r) + e2ıδmH(1)

m (k̃r)
]

(C.34)

=
√

1
2πNoe

ımθ
[
H(2)
m (k̃r) +H(1)

m (k̃r)−H(1)
m (k̃r) + e2ıδmH(1)

m (k̃r)
]

(C.35)

=
√

1
2πNoe

ımθ2
[
Jm(k̃r) + e2ıδm − 1

2 H(1)
m (k̃r)

]
(C.36)

but

ψ =
∞∑
m=0

Cmψ
o
m (C.37)

=
∞∑

m=−∞

√
1

2πNo2
[
Jm(k̃r)eımθ + e2ıδm − 1

2 H(1)
m (k̃r)eımθ

]
. (C.38)

Setting No = ım

2 we have

ψ =
∞∑

m=−∞

√
1

2π

[
ımJm(k̃r)eımθ + ım

e2ıδm − 1
2 H(1)

m (k̃r)eımθ
]
. (C.39)

Furthermore, using the Jacobi-Anger identity, we have

ψ =
√

1
2πe

ık̃·r +
∞∑

m=−∞

√
1

2π ı
m e

2ıδm − 1
2 H(1)

m (k̃r)eımθ (C.40)

=
√

1
2πe

ık̃·r +
∞∑
m=1

√
1

2π ı
−m e

2ıδ−m − 1
2 H

(1)
−m(k̃r)e−ımθ+

∞∑
m=1

√
1

2π ı
m e

2ıδm − 1
2 H(1)

m (k̃r)eımθ +
√

1
2π

e2ıδ0 − 1
2 H

(1)
0 (k̃r) (C.41)

e2ıδ−m =H
(2)
−m(k̃L)′ −B−mH(2)

−m(k̃L)
B−mH

(1)
−m(k̃L)−H(1)

−m(k̃L)′
(C.42)

B−m =k
k̃

J ′−m(kL)
J−m(kL) (C.43)

=k
k̃

J−m−1(kL)− J−m+1(kL)
J−m(kL) (C.44)

=k
k̃

J−(m+1)(kL)− J−(m−1)(kL)
J−m(kL) (C.45)
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=k
k̃

(−1)m+1Jm+1(kL)− (−1)m−1Jm−1(kL)
(−1)mJm(kL) (C.46)

=k
k̃

Jm−1(kL)− Jm+1(kL)
Jm(kL) (C.47)

=Bm (C.48)

e2ıδ−m =(−1)−mH(2)
m (k̃L)′ −Bm(−1)−mH(2)

m (k̃L)
Bm(−1)mH(1)

m (k̃L)− (−1)mH(1)
m (k̃L)′

(C.49)

=H
(2)
m (k̃L)′ −BmH

(2)
m (k̃L)

BmH
(1)
m (k̃L)−H(1)

m (k̃L)′
(C.50)

=e2ıδm . (C.51)

Thus,

ψ =
√

1
2πe

ık̃·r +
∞∑
m=1

√
1

2π ı
−m e

2ıδm − 1
2 eıπmH(1)

m (k̃r)e−ımθ+

∞∑
m=1

√
1

2π ı
m e

2ıδm − 1
2 H(1)

m (k̃r)eımθ +
√

1
2π

e2ıδ0 − 1
2 H

(1)
0 (k̃r) (C.52)

=
√

1
2πe

ık̃·r +
∞∑
m=1

√
1

2π
e2ıδm − 1

2 H(1)
m (k̃r)

(
ı−me−ımθeıπm + ımeımθ

)
+

√
1

2π
e2ıδ0 − 1

2 H
(1)
0 (k̃r) (C.53)

ı−meıπm = ım

ψ =
√

1
2πe

ık̃·r +
∞∑
m=1

√
1

2π ı
m e

2ıδm − 1
2 H(1)

m (k̃r)(eımθ + e−ımθ) +
√

1
2π

e2ıδ0 − 1
2 H

(1)
0 (k̃r)

(C.54)

ψ =
√

1
2πe

ık̃·r +
∞∑
m=0

Cm

√
1

2π ı
m e

2ıδm − 1
2 H(1)

m (k̃r) cos(mθ) (C.55)

ψ =eık̃·r +
∞∑
m=0

Cmı
m

√
2
πk̃

e2ıδm − 1
2 cos(mθ)e−ıπ2 (m+1/2) e

ık̃r

√
r

(C.56)

ψ =eık̃·r +
∞∑
m=0

Cm

√
2
πk̃

e2ıδm − 1
2 cos(mθ)e−ıπ4 e

ık̃r

√
r

(C.57)
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with C0 = 1 and all other Cm = 2. from the asymptotic form of ψ

ψ =eık̃·r + f(θ)e
ık̃r

√
r

(C.58)

is possible to identify the scattering amplitude f(θ),

f(θ) =
∞∑
m=0

Cm

√
2
ıπk̃

e2ıδm − 1
2 cos(mθ). (C.59)

C.2 Asymptotic Analysis

C.2.1 Dirac Formulation

From

e2ıδm = H
(2)
m+1(q̃L)Jm(qL)−DH(2)

m (q̃L)Jm+1(qL)
DH

(1)
m (q̃L)Jm+1(qL)−H(1)

m+1(q̃L)Jm(qL)
, (C.60)

where

q = 1
at

√√√√(E − V )2 − λ(E − V )− ∆
2

(
∆
2 − λ

)
, (C.61)

q̃ = 1
at

√√√√E2 − λE − ∆
2

(
∆
2 − λ

)
, (C.62)

D =
−∆/2 + λ− E

−∆/2 + λ− (E − V )
q

q̃
, (C.63)

we obtain an expression for δm in terms of tan, after that, a detailed calculation is

presented until the final expressions for both limits are derived. For simplicity we

change notation from here, all arguments will disappear and functions using tilde are

indicating dependence on tilde arguments, thus,

e2ıδm = H̃
(2)
m+1Jm −DH̃(2)

m Jm+1

DH̃
(1)
m Jm+1 − H̃(1)

m+1Jm
(C.64)

e2ıδm = (J̃m+1 − ıỸm+1)Jm −DJm+1(J̃m − ıỸm)
DJm+1(J̃m + ıỸm)− (J̃m+1 + ıỸm+1)Jm

(C.65)

= J̃m+1Jm −DJm+1J̃m − ı(Ỹm+1Jm −DJm+1Ỹm)
−J̃m+1Jm +DJm+1J̃m − ı(Ỹm+1Jm −DJm+1Ỹm)

(C.66)
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= − J̃m+1Jm −DJm+1J̃m − ı(Ỹm+1Jm −DJm+1Ỹm)
J̃m+1Jm −DJm+1J̃m − ı(Ỹm+1Jm −DJm+1Ỹm)

(C.67)

= −1(J̃m+1Jm −DJm+1J̃m)2 − (Ỹm+1Jm −DJm+1Ỹm)2

(J̃m+1Jm −DJm+1J̃m)2 + (Ỹm+1Jm −DJm+1Ỹm)2

+ 2ı(J̃m+1Jm −DJm+1J̃m)(Ỹm+1Jm −DJm+1Ỹm)
(J̃m+1Jm −DJm+1J̃m)2 + (Ỹm+1Jm −DJm+1Ỹm)2

(C.68)

tan(2δm) = 2 (J̃m+1Jm −DJm+1J̃m)(Ỹm+1Jm −DJm+1Ỹm)
(Ỹm+1Jm −DJm+1Ỹm)2 − (J̃m+1Jm −DJm+1J̃m)2

(C.69)

tan(δm) = J̃m+1Jm −DJm+1J̃m

Ỹm+1Jm −DJm+1Ỹm
(C.70)

In the q̃ →∞ limit D ≈ 1, and after some mathematical manipulation, we have

J̃m+1Jm ≈
√

2
πL2

√
1
qq̃

cos
(
q̃L− π

2

(
m+ 1

2

)
− π

2

)
cos

(
qL− π

2

(
m+ 1

2

))
(C.71)

=
√

2
πL2

√
1
qq̃

sin
(
q̃L− π

2

(
m+ 1

2

))
cos

(
qL− π

2

(
m+ 1

2

))
(C.72)

Jm+1J̃m ≈
√

2
πL2

√
1
qq̃

cos
(
qL− π

2

(
m+ 1

2

)
− π

2

)
cos

(
q̃L− π

2

(
m+ 1

2

))
(C.73)

=
√

2
πL2

√
1
qq̃

sin
(
qL− π

2

(
m+ 1

2

))
cos

(
q̃L− π

2

(
m+ 1

2

))
(C.74)

the numerator has the form

J̃m+1Jm −DJm+1J̃m =
√

2
πL2

√
1
qq̃

sin(q̃ − q) (C.75)

on the other hand,

Ỹm+1Jm ≈
√

2
πL2

√
1
qq̃

sin
(
q̃L− π

2

(
m+ 1

2

)
− π

2

)
cos

(
qL− π

2

(
m+ 1

2

))
(C.76)

=
√

2
πL2

√
1
qq̃

(−1) cos
(
q̃L− π

2

(
m+ 1

2

))
cos

(
qL− π

2

(
m+ 1

2

))
(C.77)

Jm+1Ỹm ≈
√

2
πL2

√
1
qq̃

cos
(
qL− π

2

(
m+ 1

2

)
− π

2

)
sin

(
q̃L− π

2

(
m+ 1

2

))
(C.78)

=
√

2
πL2

√
1
qq̃

sin
(
qL− π

2

(
m+ 1

2

))
sin

(
q̃L− π

2

(
m+ 1

2

))
(C.79)
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and the denominator has the form,

Ỹm+1Jm −DJm+1Ỹm = −
√

2
πL2

√
1
qq̃

cos(q̃ − q)L. (C.80)

Finally,

tan(δm) ≈ − sin(q̃ − q)L
cos(q̃ − q)L (C.81)

≈ −(q̃ − q)L (C.82)

= −q̃L+ L

at

√
a2t2q̃2 + V 2 − 2V E + λV . (C.83)

But, remembering that

E = λ

2 +

√√√√(λ−∆
2

)2

+ a2t2q̃2 (C.84)

≈
q̃→∞

λ

2 + atq̃

1 + 1
2

(
λ−∆

2

)2 1
a2t2q̃2

 (C.85)

≈ atq̃ (C.86)

the expression for tan(δm) is

tan(δm) = −q̃L+ L

at

√
a2t2q̃2 + V 2 − 2V atq̃ + λV (C.87)

≈ −q̃L+ L

at
atq̃

(
1 + 1

2
V 2 + λV − 2V atq̃

a2t2q̃2

)
(C.88)

≈ −LV
at

(C.89)

lim
q̃→∞

tan(δm) = −LV
at
. (C.90)

In order to study the limit of short wave vectors, we shift the coordinate system energy

such that the zero is at the bottom of the conduction band, and we rewrite the wave

vectors:

q = 1
at

√
a2t2q̃2 + V 2 − 2V E + V (λ−∆) (C.91)
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and

E = λ−∆
2 +

√√√√(λ−∆
2

)2

+ a2t2q̃2 (C.92)

≈ λ−∆
2 − λ−∆

2

1 + a2t2

2
1(

(∆−λ)
2

)2 q̃
2

 (C.93)

= a2t2

λ−∆ q̃2, (C.94)

then,

q

q̃
=

√
a2t2q̃2 + V 2 − 2V E + V (λ−∆)

atq̃
≈

√
V 2 + V (λ−∆)

atq̃
, (C.95)

and

D = λ−∆− E
λ−∆− (E − V )

q

q̃
≈ λ−∆
λ−∆ + V

√
V 2 + V (λ−∆)

atq̃
(C.96)

= ı
λ−∆

λ−∆ + V

√
V (∆− λ)− V 2

atq̃
= ı

Dr

atq̃
, (C.97)

e2ıδm = (J̃m+1 − ıỸm+1)ımIm − ıDrı
m+1Im+1(J̃m − ıỸm)

ıDrım+1Im+1(J̃m + ıỸm)− (J̃m+1 + ıỸm+1)ımIm
(C.98)

= −(J̃m+1Im +DrIm+1J̃m) + ı(Ỹm+1Im +DrIm+1Ỹm)
J̃m+1Im +DrIm+1J̃m + ı(Ỹm+1Im +DrIm+1Ỹm)

(C.99)

tan(δm) = J̃m+1Im +DrIm+1J̃m

Ỹm+1Im +DrIm+1Ỹm
(C.100)

tan(δm) ≈
1
m!

(
q̃L
2

)m
Dr
atq̃
Im+1

−m!
π

(
2
q̃L

)m+1
Im − Dr

atq̃
Im+1

(m−1)!
π

(
2
q̃L

)m (C.101)

= −
1
m!

(
q̃L
2

)m−1
Dr
at
Im+1

L
2

m!
π

(
2
q̃L

)m+1 (
Im + Dr

at
Im+1

L
2m

) (C.102)

tan(δm) ≈ −πm
m!2

(
q̃L

2

)2m
(C.103)
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If m = 0 the function Y0 diverges at small arguments, therefore another analysis should

be performed

tan(δ0) = J̃1I0 +DrI1J̃0

Ỹ1I0 +DrI1Ỹ0
(C.104)

≈
q̃L
2 I0 + Dr

at
I1

L
2

2
q̃L

− 1
π

(
2
q̃L

)
I0 + Dr

at
I1

L
2

2
q̃L

2
π

(
ln q̃L

2 + γ
) (C.105)

tan(δ0) ≈ 1
2
π

(
ln q̃L

2 + γ
) , (C.106)

where γ = 0.5772 is the Euler–Mascheroni constant.

C.2.2 Schrödinger Formulation

At high energies, i. e., high momentum k̃, both k̃ and k are real numbers, and the

functions have real arguments, hence

e2ıδm = J̃ ′m − ıỸ ′m −BJ̃m + ıBỸm

BJ̃m + ıBỸm − J̃ ′m − ıỸ ′m
(C.107)

= J̃ ′m −BJ̃m − ı(Ỹ ′m −BỸm)
−(J̃ ′m −BJ̃m)− ı(Ỹ ′m −BỸm)

(C.108)

= −1(J̃ ′m −BJ̃m)2 − (Ỹ ′m −BỸm)2 − 2ı(J̃ ′m −BJ̃m)(Ỹ ′m −BỸm)
(J̃ ′m −BJ̃m)2 + (Ỹ ′m −BỸm)2)

(C.109)

tan 2δm = 2(J̃ ′m −BJ̃m)(Ỹ ′m −BỸm)
(J̃ ′m −BJ̃m)2 − (Ỹ ′m −BỸm)2

(C.110)

tan δm = J̃ ′m −BJ̃m
Ỹ ′m −BỸm

(C.111)

tan δm =
J̃ ′m − k

k̃

J ′m(kL)
Jm(kL) J̃m

Ỹ ′m − k
k̃

J ′m(kL)
Jm(kL) Ỹm

(C.112)

The limk̃→∞
k
k̃

= 1, and

lim
k̃→∞

J ′m(kL)
Jm(kL) = lim

k̃→∞

Jm−1(kL)− Jm+1(kL)
2Jm(kL) (C.113)

lim
k̃→∞

J ′m(kL)
Jm(kL) =

√
2

πkL
cos(kL− π

2 (m+ 1
2) + π

2 )−
√

2
πkL

cos(kL− π
2 (m+ 1

2)− π
2 )

2
√

2
πkL

cos(kL− π
2 (m+ 1

2))

(C.114)
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= −
sin(kL− π

2 (m+ 1
2)) + sin(kL− π

2 (m+ 1
2))

2 cos(kL− π
2 (m+ 1

2)) (C.115)

= −
sin(kL− π

2 (m+ 1
2))

cos(kL− π
2 (m+ 1

2)) (C.116)

= − tan
(
kL− π

2

(
m+ 1

2

))
(C.117)

∴
k

k̃

J ′m(kL)
Jm(kL) ≈ −

sin(kL− π
2 (m+ 1

2))
cos(kL− π

2 (m+ 1
2)) (C.118)

and

BJ̃m = −
sin(kL− π

2 (m+ 1
2))

cos(kL− π
2 (m+ 1

2))

√
2

πk̃L
cos

(
k̃L− π

2

(
m+ 1

2

))
. (C.119)

With this, the complete expression in the numerator is

J̃ ′m −BJ̃m ≈
√

2
πk̃L

1
2

 cos
(
k̃L− π

2

(
m+ 1

2

)
+ π

2

)
− cos

(
k̃L− π

2

(
m+ 1

2

)
− π

2

)
+

tan
(
kL− π

2

(
m+ 1

2

))
cos

(
k̃L− π

2

(
m+ 1

2

)) (C.120)

=
√

2
πk̃

− sin
(
k̃L− π

2

(
m+ 1

2

))
+

tan
(
kL− π

2

(
m+ 1

2

))
cos

(
k̃L− π

2

(
m+ 1

2

)), (C.121)

using the asymptotic behavior for B and Ỹm, we have

BỸm = −
sin(kL− π

2 (m+ 1
2))

cos(kL− π
2 (m+ 1

2))

√
2

πk̃L
sin

(
k̃L− π

2

(
m+ 1

2

))
(C.122)

and the complete expression for the denominator can be rewrite as

Ỹ ′m −BỸm ≈
√

2
πk̃L

1
2

 sin
(
k̃L− π

2

(
m+ 1

2

)
+ π

2

)
− sin

(
k̃L− π

2

(
m+ 1

2

)
− π

2

)
+

tan
(
kL− π

2

(
m+ 1

2

))
sin

(
k̃L− π

2

(
m+ 1

2

)) (C.123)

=
√

2
πk̃L

 cos
(
k̃L− π

2

(
m+ 1

2

))
+
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tan
(
kL− π

2

(
m+ 1

2

))
sin

(
k̃L− π

2

(
m+ 1

2

)). (C.124)

Using both expressions into (4.79) we can write explicitly the carrier phase shift at

high energy scattering

tan δm =
− sin

(
k̃L− π

2

(
m+ 1

2

))
+ tan

(
kL− π

2

(
m+ 1

2

))
cos

(
k̃L− π

2

(
m+ 1

2

))
cos

(
k̃L− π

2

(
m+ 1

2

))
+ tan

(
kL− π

2

(
m+ 1

2

))
sin

(
k̃L− π

2

(
m+ 1

2

))
(C.125)

and letting β = π
2

(
m+ 1

2

)

tan δm =
− sin(k̃L− β) + sin(kL−β)

cos(kL−β) cos(k̃L− β)
cos(k̃L− β) sin(kL−β)

cos(kL−β) sin(k̃L− β)
(C.126)

tan δm = − sin(k̃L− β) cos(kL− β) + sin(kL− β) cos(k̃L− β)
cos(k̃L− β) cos(kL− β) + sin(k̃L− β) sin(kL− β)

(C.127)

= sin(k − k̃)L
cos(k − k̃)L

(C.128)

tan(δm) ≈ −(k̃ − k)L (C.129)

= −
k̃ −

√
k̃2 − 2m∗

~2 V

L (C.130)

≈ −
(
k̃ − k̃

(
1− 2m∗

~2
V

2k̃2

))
L (C.131)

lim
k̃→∞

tan(δm) = −2m∗
~2

V L

2k̃L
(C.132)

At low energies regime, when E < V , the wave vector inside the barrier is an imaginary

number, k =
√

(E−V ) 2me
~2 = ı

√
(V−E) 2me

~2 = ıkr,

B = ıkrL

k̃

J ′m(ıkrL)
Jm(ıkrL) (C.133)

= ıkrL

k̃

ım−1I ′m(krL)
ımIm(krL) (C.134)

= kr

k̃

I ′m(krL)
Im(krL) (C.135)
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then, B ∈ Reals even at E < V regime and the phase shift has the same form of

equation (4.79), given by

tan(δm) = BJ̃m − J̃ ′m
BỸm − Ỹ ′m

(C.136)

with, for short wave vectors we have

lim
k̃→0

B = kr

2k̃
Im−1(krL) + Im+1(krL)

Im(krL)

→ kr

2k̃

√
2/πkrL2ekrL√
2/πkrLekrL

= kr

2k̃

=

√
V − k̃2

2k̃

≈ 1
k̃

√
V

(
1− k̃2

2V

)

=
√
V

k̃
− k̃

2
√
V

(C.137)

On the numerator, BJ̃m and J̃ ′m takes the form

BJ̃m →
(√

V

k̃
− k̃

2V

)
1
m!

(
k̃L

2

)m

= L
√
V

2m!

(
k̃L

2

)m−1

− 1
L
√
V

1
m!

(
k̃L

2

)m+1

(C.138)

and

J̃ ′m = 1
2
(
J̃m−1 − J̃m+1

)

→ 1
2

 1
(m− 1)!

(
k̃L

2

)m−1

− 1
(m+ 1)!

(
k̃L

2

)m+1

≈ 1
2

1
(m− 1)!

(
k̃L

2

)m−1

. (C.139)

Putting it together, we have

BJ̃m − J̃ ′m ≈
L
√
V

2m!

(
k̃L

2

)m−1

− 1
L
√
V

1
m!

(
k̃L

2

)m+1

− 1
2

1
(m− 1)!

(
k̃L

2

)m−1

(C.140)
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=
(
k̃L

2

)m−1 (
L
√
V

2m! −
m

2m!

)
−
(
k̃L

2

)m+1 1
m!L
√
V
. (C.141)

On the other hand,

BỸm →
(√

V

k̃
− k̃

2V

)
−(m− 1)!

π

( 2
k̃L

)m+1

≈ −(m− 1)!
π

√
V

2 L
( 2
k̃L

)m+1
− (m− 1)!

π

1
L
√
V

( 2
k̃L

)m−1
(C.142)

Ỹ ′m = 1
2(Ỹm−1 − Ỹm + 1)

→ 1
2

(
−(m− 2)!

π

( 2
k̃L

)m−1
− −m!

π

( 2
k̃L

)m+1)

≈ 1
2
m!
π

( 2
k̃L

)m+1
. (C.143)

Therefore

BỸm − Ỹ ′m ≈
( 2
k̃L

)m+1 1
π

(
−(m− 1)!L

√
V

2 − m!
2

)
+
( 2
k̃L

)m−1 (m− 1)!
π

1
L
√
V
,

(C.144)

then,

tan δm →

(
k̃L
2

)m−1 1
2m!

(
L
√
V −m

)
−
(
k̃L
2

)m+1 1
m!L
√
V(

2
k̃L

)m+1 −(m−1)!
2π

(
L
√
V −m

)
+
(

2
k̃L

)m−1 (m−1)!
πL
√
V

(C.145)

=

(
k̃L
2

)m−1 1
2m!

(
L
√
V −m−

(
k̃L
2

)2 2
L
√
V

)
(

2
k̃L

)m+1 −(m−1)!
2π

(
L
√
V −m−

(
k̃L
2

)2 2
L
√
V

) (C.146)

lim
k̃→0

tan(δm) = −πm
m2

(
k̃L

2

)2m

. (C.147)

If m = 0, the function Y0 diverges at small arguments, therefore another analysis should

be performed, which gives

BỸ0 →
(√

V

k̃
− k̃

2
√
V

)
2
π

(
ln k̃L2 + γ

)
(C.148)

Ỹ ′0 = −Ỹ ′1 →
2

πk̃L
(C.149)
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BỸ0 − Ỹ ′0 =
(√

V

k̃
− k̃

2
√
V

)
2
π

(
ln k̃L2 + γ

)
− 2
πk̃L

(C.150)

tan(δ0) =

√
V
k̃
− k̃

2
√
V

+ k̃L
2(√

V
k̃
− k̃

2
√
V

)
2
π

(
ln k̃L

2 + γ
)
− 2

πk̃L

(C.151)

= 1
2
π

(
ln k̃L

2 + γ
)
− 1

k̃L
k̃√
V

(C.152)

lim
k̃→0

tan(δ0) = π

2
1

ln k̃L
2 + γ

(C.153)

For V < 0

tan(δm) ≈ −(k̃ − k)L (C.154)

= −
k̃ −

√
k̃2 − 2m∗

~2 V

L (C.155)

= −
k̃ −

√
k̃2 + 2m∗

~2 |V |

L (C.156)

≈ −
(
k̃ − k̃

(
1 + 2m∗

~2
|V |
2k̃2

))
L (C.157)

lim
k̃→∞

tan(δm) = 2m∗
~2
|V |L
2k̃L

. (C.158)
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