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Resumo

Classificamos as hipersuperficies f : M"™ — R"*! que possuem uma curvatura principal
de multiplicidade n — 2 que admitem uma deformacao conforme genuina f : M" — R™2.
Uma deformacao conforme f : M™ — R"2 de f é genuina se em nenhum aberto U C M™
a restricao f |y é uma composigao f lv = ho fly de f|y com uma immersao conforme
h:V — R"2 de um aberto V C R"™! que contém f(U).
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Abstract

We classify hypersurfaces f : M™ — R"*! with a principal curvature of multiplicity
n — 2 that admit a genuine conformal deformation f : M™ — R**2. That a conformal
deformation f : M™ — R"2 of f is genuine means that there does not exist any open
subset U C M™ such that f\U is a composition ﬂU = ho f|y of fly with a conformal

immersion h: V — R""2 of an open subset V C R""! containing f(U).
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Introduction

Hypersurfaces f : M™ — R™"! that admit an isometric (respectively, conformal) defor-
mation g : M™ — R""! that is not isometrically congruent (respectively, conformally
congruent) to f on any open subset of M™ are called Sbrana-Cartan Hypersurfaces (re-
spectively, Cartan Hypersurfaces). These two types of hypersurfaces have been classified
in the beginning of the twentieth century: in the isometric case by Sbrana in [I] and
Cartan [2] for n > 3, and in the conformal one by Cartan in [3] for n > 5. The most
interesting classes of Sbrana-Cartan (respectively, Cartan) hypersurfaces are envelopes
of certain two-parameter congruences of affine hyperplanes (respectively, hyperspheres),
which may admit either a one-parameter family of isometric (respectively, conformal) de-
formations, or a single one. Partial results on Cartan hypersurfaces of dimensions four

and three were also obtained by Cartan in [4] and [5], respectively.

The classification of Sbrana-Cartan hypersurfaces was extended to the case of nonflat
ambient space forms by Dajczer-Florit-Tojeiro in [6]. Moreover, among other things, in
that paper the problem of determining whether Sbrana-Cartan hypersurfaces that allow
a single deformation do exist, which was not addressed by Sbrana or Cartan, was given

an affirmative answer.

A nonparametric description of Cartan hypersurfaces of dimension n > 5 of R"*! was
given in [7], where it was shown that any such hypersurface arises by intersecting the light-

cone V"2 in Lorentzian space L."*3 with a flat space-like submanifold of codimension two
of "3,

We also refer to [6] and [7], as well as to [§], for modern accounts of the classifications
of Shrana-Cartan and Cartan hypersurfaces. Our presentation in this thesis is close in
spirit to that in [§].

When studying isometric or conformal deformations of a Euclidean submanifold with
codimension greater than one, one has to take into account that any submanifold of a de-
formable submanifold already possesses the isometric deformations induced by the latter.

Therefore, it is necessary to restrict the study to those deformations that are “genuine”,

13



14 INTRODUCTION

R™*P

R™*a,

Figure 1: f and f not genuinely conformally congruent

that is, those which are not induced by deformations of an “extended” submanifold. It
is also of interest to consider deformations of a submanifold that take place in a possibly

different codimension.

These ideas have been made precise in [9] in the isometric case, and extended to the
conformal realm in [I0] as follows. Let f : M™ — R™*? be a conformal immersion of an
n-dimensional Riemannian manifold M"™ into Euclidean space. A conformal immersion
f oM™ — R™ s said to be a genuine conformal deformation of f if f and f are nowhere
(i.e., on no open subset of M™) compositions, f = F o j and f = Foj, of a conformal
embedding 7 : M™ — N™" into a Riemannian manifold N"*" with r > 0 and conformal
immersions F : N**" — R and F: N**" — R"*4 (see figure .

In this work we are interested in the case where p = 1 and ¢ = 2. In the isometric
realm, from the assumption that f : M™ — R"*! admits a genuine isometric deformation
f: M™ — R"2_ it follows from Theorem 1 in [I1] that rank f < 3. The situation in

which rank f = 2 was solved some years ago in [12].

In the conformal instance, from Theorem 1 of [13] it follows that f : M™ — R™*! must
have a principal curvature \ with multiplicity greater than or equal to n — 3 if it admits
a genuine conformal deformation f : M™ — R™2. We will study the particular case in
which the multiplicity is n — 2. For the case n — 3, it seems better to start by attempting

to solve the analogous problem in the isometric realm, which is also still open.

Hypersurfaces f : M™ — R™"*! having a principal curvature X of multiplicity n — 2 are
envelopes of two-parameter congruences of hyperspheres (see Chapter . These are given
by a focal function i : L? — R"*! and a radius function r € C*°(L), where L? = M"/A"2
is the quotient space of leaves of the umbilical eigendistribution distribution A associated
to A. In terms of the model of Euclidean space R™™! as a hypersurface of the light-

cone V"2 C "3, the congruence of hyperspheres (h,r) can be represented by a surface
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s L? — Qﬁz C L™ in the de Sitter space. With the aid of the conformal Gauss
parametrization, the hypersurface f can be recovered back from the surface s. Our
approach is to determine which surfaces s : L? — Qﬁﬂ C L™ give rise to hypersurfaces
f: M"™ — R™! that admit genuine conformal deformations f : M™ — R"+2,

In the proof, we follow similar steps to those of the isometric case. We show in
Chapter [3| that the fact that a hypersurface f : M™ — R™*! having a principal curvature
A of multiplicity n — 2 admits a genuine conformal deformation f : M™ — R"*2 can be
encoded by a triple (D1, Dy,) satisfying several conditions, where D; € I'(End(A%)),
1 <4 < 2, and v is a one-form on M™. This requires the preliminary algebraic step
of determining the structure of the second fundamental form of the isometric light-cone
representative of a genuine conformal deformation f : M™ — R™2 of f, which is carried
out in Chapter

The next step is to prove that the triple (Dy, D2, 1) can be projected down to a triple
(D1, Dy,%) on the quotient space L?, and to express the conditions on (D, Dy, ) in terms
of simpler ones on (D, Dy, 1) (see Chapter {)). The last step is then to characterize the
surfaces s : L2 — Qﬁﬂ C L"*3 that carry a triple (Dy, Do, 1)) satisfying those conditions.
This is done in Chapter [5] For the statement and proof of our classification of Euclidean
hypersurfaces f : M™ — R™"! that admit genuine conformal deformations M — R
in Chapter [0 all that was needed was to put together the steps accomplished in the
previous chapters.

The main theorem of this thesis is, as far as we know, the first classification result
for a class of submanifolds admitting genuine conformal deformations, apart from the
classical one by Cartan of the Euclidean hypersurfaces f : M™ — R"*! that admit genuine
conformal deformations f : M™ — R™!. In the isometric realm, besides the isometric
version of our result in [12], isometric immersions f : M™ — R™*? of rank two that admit
genuine isometric deformations f : M™ — R"*2 have been classified in [14], [15] and [16].

We hope that, after reading this thesis, the reader will have learned about some of
the tools used in the conformal theory of submanifolds. For that reason we have included
most of the necessary background material in Chapter 1, trying to make the presentation

as self-contained as possible. Without more chit chat, lets start!






Chapter 1
Prerequisites

Studying the topic at hand requires a lot of background knowledge. Including in this
chapter all the material needed to understand the present work would be an impossible
endeavour, due to the space and time that it would require to accomplish that enterprise.
Therefore, we had to draw a starting line about what we assume the reader knows.
In choosing that starting point we took into consideration our wish that the present
work would be understandable to any mathematician in the area of differential geometry.
Hence, we will require the reader to know about smooth manifolds and Riemmanian
geometry. With that setting in mind, we are confident enough that we will be able to

supplement other knowledge needs in order for the reader to understand this thesis.

As discussed in the introduction, we will work with hypersurfaces f : M"™ — R**!
carrying a principal curvature of multiplicity n — 2. Some properties of their shape op-
erators and of the associated eigendistributions will be needed in later chapters. In this
chapter, we will start by deriving those properties for the more general setting of isometric
immersions f : M™ — R"*P that carry a Dupin principal normal vector field.

As the title suggests, we will work with conformal immersions f . M — RF2,
However, in practice, we will replace those conformal maps by their isometric light-cone
representatives F' : M™ — V"3 ¢ R"4. The reason is simple enough, in this way we can
use all the isometric theory behind them. Of course, the price paid in exchange is to work
with Lorentzian ambient spaces. For that motive, we will introduce to the reader the
model of Euclidean space R™ as a hypersurface of the Lorentz light-cone V™+! c L™m+2,
and then use this model to define the isometric light-cone representative of a conformal
immersion f : M™ — R*1,

As the reader will see from a proposition in the section on Principal normals, a hyper-

surface f : M™ — R™"! carrying a principal curvature of multiplicity n — 2 is the envelope

17



18 1.1. PRINCIPAL NORMALS

of a two-parameter congruence of hyperspheres. Another reason to introduce the Eu-
clidean Model ¥ : R™ — Y™+l C L™*+2 is because hyperspheres have a neat description

n

in terms of vectors in the Sitter space Q712 C L"*3, and so a two-parameter congruence

of hyperspheres will have a simple representation as a surface s : L? — Q7%

Finally, we will discuss how to recover the hypersurface f : M™ — R"*! from the
congruence of hyperspheres with the help of the Conformal Gauss Parametrization. This
is analogous to the Gauss Parametrization of hypersurfaces having constant index of
relative nullity, which can be parametrized by their Gauss map and support function.
Hopefully, this will close all the gaps of knowledge the reader will need to understand this
work.

One last word: all the material that was mentioned before can be found in [8], which
was a keystone in my study. Without that book, it would have been impossible for me
to accomplish the present work. Of course, in that book the prerequisites listed before
are explained in more detail and treated with greater generality, but since the work at
hand will be available before the book is published, we decided to include this prerequisite

chapter.

1.1 Principal Normals

Given an isometric immersion f : M™ — N™, a vector 7 in the normal space NyM (x) of

f at x is called a principal normal if the subspace
E,(z)={XeT,M:a(X,Y)=(X,Y)n forallY € T,M} (1.1)

is non-trivial. A section n of NyM is called a principal normal vector field of f with
multiplicity ¢ > 0 if the subspace E,(z) is g-dimensional at each x € M™.

In terms of the shape operators of f, the subspace E,(x) can be expressed as

(@)= () ker(A, = () 1), (1.2)

YENf M (z)

as one can easily deduce: If X € Nyen; () ker (A, — (v,m) I), then for all v € NyM(x)
and Y € T, M we have

<Oé(X, Y)77> = <A’YX7 Y> - <X7 Y> <7]7’Y>'

This leads us to conclude that a(X,Y) = (X,Y)n for any Y € T, M, or, in another
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words, that X € E,(z). For the other inclusion, let X € E, (x), then from the definition

of the subspace E,(z), we have
a(X,Y) = (X, Y)n,
for any Y € T, M. Taking inner product with an arbitrary v € N;M(z) we conclude
(A, X,Y) = (X,Y) (n,7)

and the other inclusion follows.

In the case where f is an oriented hypersurface with a unit normal vector field N,
then a principal normal n € I'(NyM) can be expressed as n = AN. From equation (|1.2)),
we have that X € E, () if and only if AX = A\X, that is, X € E)(x), where

E\(z) ={X eT,M: AX = \X}.

Therefore, n = AN is a principal normal of f at x € M™ if and only if X is a principal
curvature of f at x € M"™. We can think of principal normals as the generalization to

higher codimensions of principal curvatures.

A principal normal vector field n € I'(N;M) is said to be Dupin if 7 is parallel along
FE, in the normal connection. In the specific case where f is a hypersurface, if n = AN
is a Dupin principal normal vector field, then A is a principal curvature with constant

multiplicity and for any T € E,,, we have
0= Vzn=T(\)N.

Therefore, A is constant along £,. The other way around is also valid, if A is a principal
curvature with constant multiplicity and constant along E), then n = AN is a Dupin

principal normal vector field.

A smooth distribution £ on a Riemannian manifold M™ is called umbilical if there

exists a section & of E+, named the mean curvature vector field of E, such that
(VsT, X) = (S,T) (X,0)
for all S, T € T'(E) and X € I'(E1). The distribution E is integrable, since

([S,T], X) = (VsT, X) — (VS, X) = (S, T) (X, ) — (T, S) (X,8) =0,
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for all S, T € T'(E), and so [S,T] € T'(E). Moreover, if o* is a leaf of F and j : 0% — M"
is the inclusion map, then for all S, T' € I'(E) we have

7*VsijT = 7, VsT +a?(S,T).
Taking inner product with X € T'(E1), we get
(S,T)(X,0) = (o (S,T),X),

which means that ¢* is an umbilical submanifold of M™ with mean curvature vector field
J.

An umbilical immersion j is called an extrinsic sphere if its mean curvature vector
field ¢ is parallel in the normal connection. If an umbilical distribution E also satisfies

(Vxd)pr = 0, where 0 is the mean curvature vector field, then
J*Vx0 = —j, As X 47 V50 = —j, As X.

Hence V%4 = 0, and o is an extrinsic sphere. With this in mind, we call an umbilical

distribution E spherical if its mean curvature vector field ¢ satisfies

We finish this section by proving a proposition that can be found in [8]. We will not

just cite the result, because we will need some facts that appear during the proof of item
(ii).

Proposition 1.1 (Proposition 1.22 in [§]). Let f : M™ — QI be an isometric immersion

with a principal normal vector field n of multiplicity q. Then the following assertions hold:
(1) The distribution x — E,(z) is smooth.

(it) The principal normal vector field n is Dupin if and only if E, is a spherical distri-

bution and f maps each leaf of E, into an extrinsic sphere of Q.
(i1i) If ¢ > 2 then n is a Dupin principal normal vector field.

(iv) If n is a Dupin principal normal vector field and ¢ = 0, then the map h : M™ — R™
defined as

1
h=f+—mn
[Inlf?
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is constant along ).

Proof. First, using equation (|1.2)), we will show that
(E,(x))" =span {A, X — (v,n) X : X € T,M &~ € N;M(z)}. (1.3)

Let
Y € Ey(z) = Nyen,m(a) ker (A, — (v, I).

Then, for arbitrary X € T, M and v € N;M(x) we have
YV A, X = (r,m X) = (AY = (,m ¥, X) =0,

AWX - <% 77> X € (ﬂweNfM(a:) ker (A'y - <’Y: 77> I))L = (En<x)>L .

For the other inclusion, let
Y € (span {A, X — (y,)) X : X e T,M &~y € N;M})*,
then, for any v € NyM(z) and X € T, M we have
(ALY = (m) V. X) = (Y, A, X = (3,7 X) = 0.

Hence, A,Y — (v,17)Y =0 for any v € NyM(x) and our affirmation follows.
Lets start by proving item (i). It is enough to prove that the distribution

v (By(x))”

is smooth. From equation (L.3)), just choose pairs (X;,7;) for i = 1,---,k such that
X, € T,M, v, € NyM(z) and {A,, X; — (vi,n) Xi: i =1,--- ,k} is a basis for (E,(z))*.
Then, extend (X;,~;) for i = 1,---  k smoothly in a neighborhood of x € M"™. Maybe in
a smaller neighborhood, {A,, X; — (yi,n) X; : i =1,--- ,k} will be a frame for E,-, which

shows that the distribution is smooth.

Lets now prove item (ii). Suppose that 1 is a Dupin principal vector field, and let
n = A where ¢ € I'(N;yM) is of unit length. Then, for any T € I'(E,)) we have

0=Vzn =T\ + I\V+(.
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Hence,
0=T(\) = (grad \, T,

or, in another words, grad A € T'(E;").

If S, T eI'(E,) and X € X(M), using the Codazzi equation for A, and equation (|1.2))

we get

0=(VxAT,S) = (AVxT,S) = (Ags T, S) — (Vo AX, S) + (A VrX, S)
+ <AV%CX’ S>
= (VxAT,S) = M(VxT,S) — (V7 AX, S) + A (V7 X, S)
= (T, S) (grad A\, X) — T (AcX, S) + (A X, VS) + AT (X, S) — A (X, VrS)
= (T,S) (grad A\, X) + ((Ac = A[)V S, X) .

Therefore,
(Ac = M)V pS = —(T,S) grad A (1.4)

for all 7', S € I'(E,). Similarly, the Codazzi equation for A, where { € I'(NfM) is a
section orthogonal to 7, applied to 7" € I'(E,)), X € X(M), and taking inner product with
S el'(E,), yields

0= (VxAT,S) = (AVXT,S) = (AgscT, S) — (Vo AeX, S) + (AcVr X, S)
Consequently,
for any 7', S € ['(E,)) and X € X(M).
Taking into account our alternate definition of the subspace £, given by equation ,

from equations ([1.4]) and (L.5)) we conclude that V.S € I'(E,)) for any pair of orthogonal
T, S € T(E,). Defining § : T'(E,) x ['(E,) = [(E;) by

BT, 8) = (V2S)py,

we have §(T,S) = 0 for any orthogonal pair T', S. Moreover, since this bilinear form is

C>°(M)-linear, it is, in fact, a tensor. Consider {77, --- ,T}} to be an orthonormal frame
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for £, then
0=3(T+T1;, T, - Tj) = 8(1;, T7) — B(T5,T5).

Hence,
B(T:,Th) = B(13,1))

for any choice of i # j. So, without ambiguity we can define § = B(T;,T;) = (VTiTi)E#.

Then, we have
B(T,S) = aib;B(T,, T))
2
= Z ai@'ﬁ(ﬂyﬂ)
(.85

The above equation means that the distribution F, is umbilical, because for all T, S €
['(E,) and X € I'(E,") we have

<VTS7X> = <B(T7 S)7X> = <T7 S> <X7 6>7

where § = (V1T g for any T' € I'(E)y) of unit length.

From equations (|1.4) and ((1.5)), and using the alternative definition of the subspace

E, given in equation (|1.2), we arrive to
(Ac = M)o = (Ac — )\I)(VTT)E# = (A¢ = MN)(VT) = —grad A, (1.6)
and
<A§6,X> = <A§(VTT)EWL7X> = <AEVTT7X> = )‘<V)L(§7 C>, (1-7)

for T' € I'(E,) of unit length. In particular, the equation (|1.6) will be fundamental on a

later chapter, so the reader should keep it in mind.

We must now prove that £, is a spherical distribution, that is, that the mean curvature

vector field § satisfies

Utilizing the Codazzi equation for A applied to T' € I'(E,), X € X(M), then taking
inner product with ¢, using equation ((1.7)) and that 7 is a Dupin principal vector field we
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obtain

0= (VxAT,0) — (A VT, 8) — (Ayy(T,0) — (Vo AKX, 8) + (A VrX,d)
+ <AV%CX’ 5>
= MVxT,8) = (AVXT,8) = (V1A X, 6) + (AVrX,6) + (Agsc X, 0)
= — (Vp(Ac = ADX,0) — MV X, 0) + A (VxT,8) + ([T, X], Acd)
+ M{Vx V7, ¢)
= —(Vp(Ac — M) X, 8) — MN{([T, X],8) + ([T, X], Ac6) — AV, V()
= —(Vr(Ac = ADX,8) + ((Ac — MI)S, [T, X]),

for any 7' € I'(E,) and X € X(M). Hence, using the above equality, equation (1.6)) and

that A is constant along E, we get

(V16, (Ac = ADX) = T ((Ac — M)8, X) — (5, Vo (Ac — AI)X) (1.8)
=T ((Ac — M6, X) — ((Ac — AI)6, [T, X])
= —T (grad \, X) + (grad \, [T, X7])
=-TX(\)+ [T, X](\)
= 0.

Using the Codazzi equation for A¢, where { is a section orthogonal to 7, applied to
T eI'(E,), X € X(M), taking inner product with the mean curvature vector field 6 and
using equation (|1.7]) we obtain
0= (VxAT,8) — (AVXT,8) — (AT, 0) — (VrAX,0) + (A VX, )
+ <AV%£X, 5>
= (Aeb, [T, X]) = (0, Vo Ae X ) + (Agse X, 0).

Therefore,

(V6 AcX) =T (A6, X) — (5, VA X)
— T4, X) — (Agsed, X) — (Aed, [T, X]),

for any 7' € I'(E,) and X € X(M). Using equation (|1.7)) and the Ricci equation for £ and
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¢, we get

(Vrd, AcX) = T(Aed, X) — (Agsed, X) — (Aed, [T, X]) (1.9)
= AT (Vx&, () = MVxV7E ) = A (Virx € ¢)
= A(RH(T, X)¢,¢)
= AM{[A¢, AT, X)
=0,

for all T'e I'(E,) and X € X(M). Since
(E,(z))" =span {A, X — (y,)) X : X e T,M & v € N;M(x)},

using equations (|1.8]) and ([1.9) we conclude that V1d € I'(E,) for any T" € I'(E,), so E,

is an spherical distribution.

We must prove now that the restriction of f to each leaf o* generated by the dis-
tribution F, is an extrinsic sphere. Let j : 0¥ — M™ be the inclusion map and define
f:foj:ak—ﬂ@’cn. Since,

oI (T, 8) = f. (T, S) + o (1T, j.S) = (T, S) f.0 + (T, S)n,

we get that f is umbilical with mean curvature vector field v = f,6 + 1. Now, because

J«T € I'(E,) and 7 is a Dupin principal, we have
FVr (f64m) = [V fd + [V
= [.V,00 + o (1.T,6) — [ AT+ Vi
= —|l6|*£.T = [In|*£.T,

where we used that V;, 70 € I'(E,). We conclude that INVE (f.0+n) =0 and so f is an

extrinsic sphere.

For the converse of item (ii), let n be a principal normal vector field of multiplicity
q with associated spherical distribution F, such that f maps each leaf o* generated by
the distribution E, to an extrinsic sphere of Q™. We must prove that /V#n = 0, for any

T € I'(E,). Since E, is in particular an umbilical distribution, we have

of(S,T) = f./(S,T) +af (1.5, 1.T) = (S.T) (£.5 +1).
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for any S, T € I'(E,) where ¢ is the mean curvature vector field of the distribution E,.
Therefore, f is umbilical. Since the image of the leaf o is an extrinsic sphere, we must

have / V# (f.6 +n) = 0. Now, because 7 is a principal normal vector field
PN (fd+n) = Vo fd + fVmn = fuVrd — f AT+ Vi,

so from fV4 (f.6 + 1) = 0 we conclude IV m = 0.
We now prove item (iii). The Codazzi equation for A and S, T' € I'(E,)) gives us

0=(VsAT,S) = (AVsT,S) — (AyiT, S) — (Vo AS, S) + (A VrS, S)
+ (AyscS, S)
= S\ (T, S) + M(VsT, S) — A(VsT,S) —T(A) (S, S) — A(VrS, S)
+ A {(VrS,S)
=S\ (T, S) —T(\) (S, S).

Taking a pair of orthogonal unit vectors S, T € I'(E,) we conclude that T'(A\) = 0. The
Codazzi equation for S, T' € I'(E,)) and A, gives us

0= (VsAcT,S) — (AcVsT, S) — (AvicT, ) — (VrAeS, S) + (AVrS, S)
+ <AV%£S, S>
= —(Vs&m) (T, 5) + (Vz&,m) (S.8).

Again, for a pair of orthogonal unit vectors S, T' € I'(E,) we get <V%§, C> = 0 for any
£ € T(NyM) orthogonal to ¢. Hence, we get V3¢ = 0, so

Vin =T\ + AV3( = 0.

Lasty, lets prove item (iv). Since 7 is a Dupin principal, we have T' (n, ) = 2 <V%7}, 77> =
0, for any 7" € I'(E,)). From differentiating the function h : M™ — R™, we get

1
T = f.T — —— f.A,T
Il
= 07
for any T' € I'(E,)). Therefore, the function h is constant along E,,. H

Just as an advance of what will come in the future, we will mention that the last item
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of the Proposition show us that if A : M™ — R™ is an isometric immersion with a
Dupin Principal vector field 7, then each leaf o* of the spherical distribution E, “lies” on
an hypersphere of center h(p) and radius 1/||n(p)|| where p € o*. Precise definitions will

be given in the Hyperspheres Representation section.

1.2 The Euclidean Model in the Light-Cone

As mentioned before, we will characterize the Euclidean space as a hypersurface of the
light-cone in the Lorentz space. Let L™ be the (m + 2)-dimensional Lorentz space with

metric signature (m + 1,1) and denote the light-cone associated to it by
V= {p e L™ : (p,p) = 0 and p # 0}.
Given w € V™*1_ define a hypersurface E™ by
Ep =V n{pel™?: (p,w) =1}.

Therefore, E7' is the intersection of the light cone and a plane having w as a normal.
Fix vy € E, since by definition we have (vg, w) = 1, vy and w are linearly independent
light-like vectors. Hence, they generate a Lorentzian plane.

Let U =W, , ¢ : R™ — V™t € L"™*2 be defined by

- _ =l
U(z) =v9+ Cx 5 W (1.10)

where C' : R™ — {vp,w}t is any linear isometry. We affirm that ¥ is an isometric
embedding with W(R™) = E'. First, observe that

VX =0X—(X,z)w. (1.11)

Since C'(R™) = {vg, w}* and w is a light-like vector, immediately we conclude that ¥ is

an isometric immersion. From,

(U(2), U(z)) = <UO +Cx— ”"";”2@0,1]0 +Cx— ||$||2w>

2
_ =P P

5t (Cx,Cx) 5

=0
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= (sl )
o

and

we have that U(R™) C E”. For the other inclusion, let v € E? then v is a light-like
vector and (v, w) = 1. Define z € L™ by 2z = v — vy + kw, where k = — (v, vy). The
choice of that k& was not randomly done, in fact, it was chosen to make z € {vg, w}*.
Therefore, let x € R™ such that Cx = z. We have

(Cx,Cx)y = (v—1vg + kw,v — vg + kw)
—(v,v) + k — (vo,v) —k+k—k
= —2(v,vq),

so ||z||* = 2k and then
2
Cxr=v—vy+ @w
Hence, v = U(x).

To finish our introduction to the Euclidean model in the light-cone section, let us see

what properties the isometric immersion ¥ has.

Proposition 1.2 (Proposition 9.1 in [§]). Let f: M™ — V™1 C L2 be an isometric
immersion of a Riemannian manifold. Then the position vector field f is a light-like

parallel normal vector field satisfying
<af<X7 Y)? f> = - <X7 Y>

forall X, Y € X(M).

Proof. Since f is a map into the light-cone, we have that the position vector field f is
light-like. Differentiating (f, f) = 0 we obtain that f € I'(N;M). Differentiating once
more (f, X, f) = 0, we obtain

(I (X,Y), f) = —(X,Y)

and so
X = [Vxf=—fAX +Vif=LX+Vx/
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which shows that f is parallel. O

Therefore, applying the above proposition, we get that U is a light-like, parallel, normal
vector field such that Ay = —I. From (¥(z),w) = 1, differentiating once we obtain that
w € I'(NyR™). Differentiating twice, we get (a¥(X,Y),w) = 0. Therefore, the second

fundamental form of ¥ is given by

V(X)) = —(X,Y)w. (1.12)

1.3 Hyperspheres Representation

In this section we will see that hyperspheres in R™ are in one-to-one correspondence with

vectors in the de Sitter space QT L

Let S C R™ be an hypersphere with unit normal vector field N and mean curvature

h (or hyperplane if h = 0) and j : S — R™ the inclusion map. Define S : S — L™*2 by
S(x) = W (j(x))N(x) + h(¥ o j)(x). (1.13)

Then, for X € X(S), using equation ([1.12)) and considering the orthogonality of j,X and

N, differentiating the above equation we obtain

S, X = (¥oj)VxSs
= (Vo j)'VxU,N +h¥,5,X
= UV, x U N + 0,5, X
=V, V,.xN +a”(5.X,N) + h¥,j.X

= —hU, 5, X +hV,7,X = 0.

Hence, the map S is constant, that is, S(S) = {v}.

Now, observe that
(8,8) = (W.N + h(W o j), W.N + h(¥ 0 j)) = (N, N} =1

and
(WojS)=(VojVU,N+h(Voj)) =0,

so v belongs to the de Sitter space and ¥(S) C E™ N {v}+. From the definition of S we
have that S is an hyperplane if and only if (v, w) = 0.
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A remark is in order: the map S takes into account the orientation N given to the
hypersphere. If we change the orientation to — N, the mean curvature h also changes sign.
Hence, S(S,N) = —S(S,—N). Generally we will assign the unit normal pointing inwards
to the sphere.

Let S be the non-degenerate hypersphere with xy as center and radius » > 0. Then,

the unit normal vector pointing inwards at x € S is given by

To— X

Na) =22

with mean curvature vector h = 1/r. From equations (1.10]) and (1.11)) we get

v =

(J(@))N (@) + h(¥ o j)(x) (1.14)

— — 1 2
)_<x0 x,x>w—|——(v0+0x—”x|| w)
r r r 2
2 2
[|o]| wo, 2} llall

i} _
<IO)+ 2r v T 2r

’
U(zg) + FW-

(T
Zo

Y
C

1
r
1
r

We obtain a formula relating v with the center and radius of the hypersphere. In the case
where the hypersphere is degenerate, that is, it is an hyperplane with unit normal vector
N, then

v=CN — (N,z)w=CN — cw, (1.15)

where ¢ = (N, x) is constant as the reader can see by differentiating along a vector on the
plane. Hence, we obtain a formula relating v, the unit normal vector N and the distance
towards the hyperplane at the origin defined by N.

We are now ready to prove that, given any v in the de Sitter space, there exist an
oriented hypersphere S such that S(S) = {v}. Since we have proved the other inclusion,
we will conclude

U(S) =Em™ N {v}.

We will do it by considering three cases.

Suppose first that (v, w) > 0, then define r~! = (v, w) and

(v-3v)
z=r|lv—=-w).
2
From the definition of r and because (v,v) =1, we have z € E" so there exist xy € R™

such that WU(zg) = z. Let the oriented hypersphere S be the one with center in z, and
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radius 7 and unit normal vector pointing inwards. Then, from equation ((1.14)) we have
S(S) =w.
If (v,w) < 0, then work with —v. We will conclude that there exist an oriented

hypersphere S such that S(S) = —v. Then, just change the orientation to obtain v.
If (v,w) = 0, then we are in the case of an hyperplane. Define z = v + cw, where

¢ = — {v,vy) was chosen in order to have z € {vy, w}*. Since z is of unit length, there
exist N of unit length such that C'N = z. Define

P={zxeR™:(N,z) = —(v,u0)}

and we have S(P) = CN — (N, z) w = z + (v, vp) w = v.
From the equations (1.14) and (1.15]) we see that the correspondence assigning hyper-

spheres to vectors in the de Sitter space is one-onto-one.

1.4 Envelopes of Congruences of Hyperspheres

In this section we define what we understand by a congruence of hyperspheres and show
that the hypersurfaces we will be working along are the envelopes of two-parameter con-

gruences of hyperspheres.

Let h : M™ — R™ be a smooth function, where M™ is a Riemannian manifold and

r € C*°(M) a positive function. Then, the assignment
z = S (h(x), r(x))

where z € M™ and S (h(z),r(x)) is the hypersphere centered at h(x) and radius r(z) is
called a congruence of hyperspheres. From the discussion at the start of the section, the
reader must has already guessed that we will use our model of hyperspheres in the de
Sitter space. Therefore, the congruence of hyperspheres S(h(z),r(z)) can be identified
with a map S : M" — Q’f‘f“ ! defined by

where from now and onwards let the de Sitter space be denoted by @Tf ! The congruence

of hyperspheres S (h(z),r(x)) will be called a k-parameter congruence of hyperspheres if
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S has rank k everywhere. Because

X(r)

*X - —
X =)

1 X(r)
U(h — V. h X+ —w,
( (x))+r(x) +—w
we have ker S, = kerr, N ker h,. Similarly, we can define a k-parameter congruence of
hyperplanes. Since we will not use that definition, we leave the job for the avid reader.
An isometric immersion f : M™ — R™ is said to envelop a congruence of hyperspheres
determined by a focal function h : M"™ — R™ and radius r € C*(M) if

f(x) € S(h(x),r(x)) and [TM < Ty (h(z),r(x)), (1.16)
or in equations,

1f(z) = h(@)]* =r*(x) and (£.X, f(z) = h(z)) =0, (1.17)

for all x € M™ and X € T, M. Differentiating the first equation above and using the

second equation, we get
— (hX, f(x) = h(z)) = rX(r),

so, ker h, < kerr, and ker S, = ker h, if f envelops 5.
The hypersurfaces f : M™ — R™"! that will be matter of study has a Dupin principal
of multiplicity n—2. With the following proposition, we can conclude that f is an envelope

of a two-parameter congruence of hyperspheres:

Proposition 1.3 (Proposition 9.4 in [§]). If a hypersurface f : M™ — R™* envelops a k-
parameter congruence of (non-degenerate) hyperspheres S : M™ — QT{Q, 1<k<n-1,
then f has a principal curvature X\ such that ker S,(z) < E\(x) for all x € M™, with
ker Si(z) = Ex(x) for all  in an open dense subset of M™, on which X\ is constant along
E,.

Conversely, any hypersurface f : M™ — R™! that carries a non-null Dupin principal

curvature of multiplicity n — k envelopes a k-parameter congruence of hyperspheres.

Proof. Let us start proving the converse which is the important case to us. Then, let A be
the principal curvature of multiplicity n — k of the hypersurface f. Define h : M™ — R™*!
by
i i
A
and r = A\7! € C®°(M). Since h — f = A7!N, it is straightforward that f envelops the

congruence of hyperspheres determined by the focal map h and radius r.
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We have to prove that this congruence of hyperspheres is in fact a k-parameter con-
gruence of hyperspheres. In order to do so, we will show that FE, = ker h,. By Proposition
[1.1] we have E) < ker h,. If X € ker h,, then

0=f, X -2 2X(A\)N -\ 1f AX.

Hence, AX = AX and X € E,, thus proving that £\ = ker h,.
For the other way around, let h : M™ — R™"! be the focal map and r € C*°(M) the

radius function of the congruence of hyperspheres enveloped by f. Then, the equations

in (1.17) are valid. Therefore,
1

N=>(h=f)

is a unit normal vector field of f. Differentiating the equation above for X € ker S, =

ker h, N kerr, we obtain,

X(r)

—fAX = -
T

1 1
(h= )+~ (X = f.X) = —.X.

We conclude that ker S, < E) with A = r~!. Now, suppose \ is constant along F\ and
let X € E), then
ho X = f.X = A2X(A\)N = A1, AX =0,

so X € ker h, = ker S, which concludes the proof. O

1.5 The Light-Cone Representative

We will be working with conformal immersions f : M™ — R™. However, in practice, we
will replace those conformal immersions with isometric immersions F' : M™ — V™! C

™2 In this section we will see how this is done.

Let M™ be a Riemannian manifold and f : M™ — R™ a conformal immersion with

conformal factor ¢ € C°(M), that is, ¢ is a positive function such that
<f*X> f*Y> = 902 <X7 Y>M )
for any X, Y € X(M). The map F : M™ — V™1 C L™*2 defined by

1
F—E(\Ilof)
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is called the isometric light-cone representative of f. It is an isometric immersion because

(FX,EY) = (X )(To f)+¢ "W £X, Y (e ) (Wo f)+ ¢ "W, LY)

= 90_2 <f*Xa f*Y>
—(X,Y).

Therefore, from a conformal immersion f : M"™ — R™ we get an isometric immersion
F:M"— ymtl c Lmt2,

Transforming isometric immersions into the light-cone to conformal immersions into
Euclidean space also work, but some care is needed. First, fix an Euclidean model
U=V, ,c: R" — V™ © L™F2 guch that E™ C V7! and define the projection
II: V™t — Rw — E™ of the light-cone (with the exception of a line) onto E™ by

Given an isometric immersion F' : M™ — V™1 —Rw we can define a map f : M" — R™*!
by the identity
Vo f=1IloF.

Then, using the properties for F' given in proposition [1.2] we get

(fX, £Y) = (U [ X, U, [Y)
= (ILLF, X, ILLF,Y)

_ [/ BXw) o 1 _ABYw) 1
N <F<:v>,w>2F< >+<F(ar),w>F*X’ <F(az),w)2F< >+<F(x),w>F *Y>
- Y

(F(x), w)

so, f : M™ — R™ is a conformal immersion with conformal factor (F,w) .

After all the previous discussion, we are now ready to state a result.

Proposition 1.4 (Proposition 9.9 in [§]). Let M™ be a Riemannian manifold. Then, the
following holds:

(i) Any conformal immersion f : M™ — R™ with conformal factor ¢ € C>®(M) gives
rise to an isometric immersion Z(f) : M™ — V' given by
1

Z(f) = ;\Dof.
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(i1) Any isometric immersion F : M™ — VTH —Rw give rise to a conformal immersion
C(F): M™ — R™ with conformal factor 1/ (F,w) given by

VoC(F)=1IloF.

(i1i) For any conformal immersion f : M™ — R™ and for any isometric immersion
F.M"— VT“ — Rw one has

C(Z(f))=f and Z(C(F))=F.
Proof. The only thing left to prove is item (iii). For the first one, notice that

MoZ(f) =TI (é\l}of)

—Wof,
so by item (ii) we get C(Z(f)) = f. For the second identity, from item (i) and (ii) we get

Z(C(F)) = (F,w) Y o C(F)
= (F,w)Illo F
—F

which concludes the proof. O]

To finish this section, we will just enunciate a proposition from [§] that gives an equiv-
alent condition about when two conformal immersions f, g : M™ — R™ are conformally

congruent, that is, there exist conformal immersion 7 : R™ — R such that f = 7o0g.

Proposition 1.5 (Proposition 9.18 in [8]). Let f, g : M™ — R™ be conformal immersions.
Then the immersions f and g are conformally congruent if and only if their isometric

light-cone representatives Z(f), Z(g) : M™ — V7T C L™*2 are isometrically congruent.

1.6 Conformal Gauss Parametrization

As mentioned before, we will work with hypersurfaces f : M™ — R n > 6, that have a
principal curvature A of multiplicity n—2. From item (iii) of proposition the principal

normal vector field n = AN will be a Dupin principal normal vector field, hence we can
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apply the converse of proposition to conclude that the hypersurface f is the envelope
of a two-parameter congruence of hyperspheres S(h(x),r(x)), where we will call from now
h: M™ — R""! the focal map and r € C°°(M) the radius function of the hypersphere.

If the reader is acquainted with the Gauss parametrization, he knows that a hyper-
surface with constant relative nullity can be parametrized in terms of the Gauss map and
support function. Conversely, the Gauss map and support function are enough to recover
the hypersurface. We want to show a similar result, this time for hypersurfaces having a
Dupin principal curvature, and use it in later chapters in the context given before.

Let f: M™ — R""! be an oriented hypersurface carrying a nowhere vanishing Dupin
principal curvature A with constant multiplicity n — k. From proposition [I.3] the hyper-
surface f is the envelope of a k-parameter congruence of hyperspheres determined by the
focal map h : M™ — R"*! defined by

h(z) = f(z) + ﬁN(m) (L18)

and the radius function s € C*°(M) given by s(z) = A ~!(x).

Let Lk = M™/E) be the quotient space of leaves of the distribution Ey and 7 : M™ —
L* the corresponding projection. From item (iv) of proposition , and since A is constant
along Ey, we can define g : L¥ — R"*! and r € C*(L) by

gomr=h and rom=\1
Therefore, from equation (1.18)) for z = m(x), we get

f(x) = gon(e) - (rom)(@)N(x) = g(z) - r(@)N(2). (1.19)

Also notice that g is an immersion, because if 0 = ¢, X = ¢, X = h, X, then X €
ker h, < kers,. So, differentiating equation , we get X € E, and X = 0. We will
give L* the metric induced by g.

Differentiating equation and taking inner product with the unit normal vector

field of f given from its orientation, we arrive to

0= (LY. N)
= (hY =YX\ )N+ X"'N,Y,N)
= (g, Y, N) — .Y (r)
= (g.mY, N — g.gradr),
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for all Y € T, M. Thus, if we express NyM(x) = g1, M & N,M(z), then the projection
of N(z) into g.T, M is given by

NT(z) = g,gradr(z). (1.20)

In particular, we have ||gradr|| < 1.

Define by N+ (x) the projection of N (z) into N, M (z). From ||NT(z)|| = ||g.grad r(z)]|

we have

IN*(@)]] = V1 = llgegrad r(2)].

Therefore, we can define a map ¢ : M" — NglL into the unit normal bundle of g by

®(z) = (Z,u), where
1

u =
V1= g.grad r(z)

H2NL(1:).

If ®(x) = ®(2), then = and z belong to the same leaf. From this observation, the
definition of ® and the equality in the second variable of ®(x) = ®(z), we get Nt (x) =
N=+(z). Since NT(z) = NT(z), we have N(x) = N(z) and so, using equation (1.19)), we
conclude that f(x) = f(z). Since the restriction of f to any leaf is an extrinsic sphere

(proposition [1.1)), we have = z and hence, the map ® is injective.

Now, we will prove that ® is an immersion. Let X € F), then from the expression of

NT(x), we have N7 (x),X = 0. Therefore,
B.X = (0, N(2).X) = —A(0, £.X)

and ® has at least rank n — k. Since 7 : M™ — LF is a submersion, we conclude our
affirmation. Together with the fact that ® is injective, we get that ® is a diffeomorphism
onto an open set U of NglL.

Let 6 : U — M™ be the inverse of ®. Then
(Z,u) = P o 0(z,u)

_ oz ! N (6(z, u))

1= lgracr (972) |

1
— |z Nt (0 T,u .
V1= llg.gradr (z) [ " ))>
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Then, from equations ((1.19), ((1.20) we have

fol(z,u)=g(x) —r(x)g.grad r(z) — r(f)\/l — ||gsgrad r(Z)||?u, (1.21)

for all (z,u) € U. This map is called the Conformal Gauss Parametrization of f.

We have proved the converse part of the following theorem:

Theorem 1.6 (Theorem 9.6 in [8]). Let g : V¥ — R™*! be an isometric immersion and let
r € C™(V) be a positive function such that ||gradr|| < 1. Then the map ¢ : NjV — R**!
defined by

o(y,u) = g(y) — r(y)gegradr(y) — r(y)v/1 — [|grad r(y)||>u (1.22)

parametrizes, on the open subset of regular points, a hypersurface that carries a Dupin
principal curvature of multiplicity n — k.

Conversely, if f : M™ — R is an orientable hypersurface with a Dupin principal
curvature of multiplicity n — k then there exist an isometric immersion g : V¥ — R ¢
positive function r € C*°(V) with ||gradr|| < 1 and a diffeomorphism 6 : U — M™ of an
open subset U C NgIV such that f o6 is given by .

Proof. Motivated by the demonstration of the converse of this theorem, define a vector
field N € T(¢*TR™!) by

N(y,u) = g.gradr(y) + /1 — [[grad r|[*u.
It is of unit length, because

(N, N) = [|gugrad ][> + 1 — ||grad 7|
=1.

From the definition of the vector field N, we have

oy, u) = g(y) — r(y)N(y, u).

We want to show that N € Ny(N;V). We will do it in two steps: Let X € T, N,V
vertical vector, that is 7, X = 0 where 7 : Nglv — V., we get

6. X = —rN,X. (1.23)

Hence, (¢.X, N) = 0. On the other hand, any non-vertical vector can be written as (.Y
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where ( : VF — N,V is a section with ((y) = u. Therefore,
6.¢Y = g.Y —Y(r)N —rN, (.Y (1.24)
and from the definition of N we conclude
(9:GY, N) = (.Y, N) =Y (r) = (Y, gradr) = Y(r) = 0,

showing that N is a normal vector field.

From equation ((1.23) we get
0. X =rp, A% X,

that is, all vertical vectors belong to E\, where A = r!. On the other hand, for any
Y € X(V) we have

ro(A—ANCGY =Y (r)N — g.Y =Y (r)g.gradr + Y (r)\/1 — ||grad r||>u — ¢.Y.

If (.Y € E,, then the equation above must be zero. From the hypothesis that ||grad r|| < 1
we get Y (r) = 0, and so ¢.Y = 0. Since g is an immersion, we have Y = 0 and that means
that (.Y is a vertical vector. This shows that, on the open set where ¢, is injective, ¢ is

a hypersurface that has a Dupin principal curvature of multiplicity n — k. O

As said earlier the hypersurfaces we will work with are envelopes of a two-parameter
congruence of hyperspheres. With the information from the focal map and radius function

we can recover back the hypersurface via this theorem.






Chapter 2

Light-cone representatives of

conformal deformations

In this chapter we show how nongenuine conformal deformations f : M™ — R"*? of a
conformal immersion f : M™ — R™"! can be characterized in terms of their isometric light-
cone representatives F : M™ — V"2 ¢ L3 and F : M™ — Vel ¢ Lrte+t2 and study
the structure of the second fundamental form of the isometric light-cone representative of

a genuine conformal deformation.

2.1 Characterizing nongenuine conformal deforma-

tions

Let f: M™ — R and f : M™ — R™" be conformal immersions. The following result of
[13] characterizes, in terms of their isometric light-cone representatives F' : M™ — V"2 C
L3 and F : M™ — Vol © Lotrt2 when f is the composition f = ho f of f with a

conformal immersion h : V' — R™"P of an open subset V' O f(M™) of R,

Proposition 2.1 (Proposition 2 in [I3]). Let f: M™ — R™ and f: M™ — R™P be
conformal immersions. Endow M™ with the metric induced by f. Consider F': M" —
Vrt2 ¢ L3 and F: M™ — Vetl ¢ Lrtet2 ghe light-cone representatives of f and f,
respectively. Given an open set U C M™, there exists a conformal immersion h : 'V —
R™ of an open subset V O f(U) of R**' such that fly = ho fly if and only if there
exists an isometric immersion H : W — V"L of an open subset W D> F(U) of V™2
such that Fly = H o Fly.

Proof. We will first prove the sufficiency part. If H : W — V*P*l is an isometric

41
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immersion of an open subset W O F(U) of V**? such that F|y = H o F|y, define
V = U1 (W) and consider Ho W : V — V*P*l Then h =C(Ho W) : V — R"™ is a

conformal immersion and
flo=C(Fly)=C(HoFly) =C(HoW)o fly =ho fl.

To prove the converse, let h : V — R be a conformal immersion of an open subset
V O f(U) of R™! such that f|y = ho f|y. Let H: U(V) — V*tp+l L4242 be defined
by
Z(h)=HoV.

Then
C(Ho Fly)=C(HoW)o fly=ho fly = flu.

Therefore, from Proposition , we get F | = H o F|y. Now, extend H to an isometric
immersion H: W C V"2 — V"PH by setting H(tV(z)) = tH(V(z)) forany z € V. O

In order to apply Proposition [2.1} one must have sufficient conditions on a pair of
isometric immersions F: M" — V"2 c L3 and F: M" — Vet ¢ Lr4et2 which
imply the existence of an isometric immersion H : W — V***l of an open subset
W D F(M™) of V"*2 such that F' = H o F. This is the content of the following lemma in

the case of interest for us in this work, namely, the case p = 2.

Lemma 2.2. Let F : M"™ — V"2 ¢ L3 gnd F : M™ — V™3 C L™ be isometric
immersions, and suppose that F' is an embedding. Assume that there exist & € T'(NzM)
of unit length and a vector bundle isometry T : NpeM — L = {&}+, which is parallel in
the induced connection on L and satisfies TF = F, such that

(i) rank Af =1,
(iii) FVLe =0 for all Z € ker AL,
(v) ap :To&p+<AF,>f.

Then, there exists an isometric immersion H : W — V"3 of an open subset W C V712
containing F(M™) such that F = H o F.
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Proof. Let Y € (ker Ag)L be an eigenvector of A¢ having 3 as the unique non-zero eigen-

value. Define the subspace

W = span { (F*@Xg) R X € x(M)} .

If X € ker A, then from item (iii) we get
F*Vxé=—FAX + Vi =0.

Taking into account that V& € T'(L) for any Z € X(M), we arrive at the conclusion that
W is a one-dimensional subbundle of R(F,Y) ® L and it is spanned by the vector field
—BEY + Ve,

Let I' be the orthogonal complement of W in R(F,Y) @ L, so it is a 3-rank vector
subbundle. From the expression of W we have T' N E,TM = {0}. Notice that for any
section § of T', we have F*Vyd € F.TM & L, because

(F*Vx6,8) = (6, F*Vx&) = 0.

Since the position vector field F' is parallel in the normal connection and is everywhere

orthogonal to ¢ by condition (i), it is a section of T

Define
T:FTM®NpeM — ETM @ L

by
T=FF'®T.

Observe that T is a vector bundle isometry, because F', F are isometric immersions and
T is an isometry. Set Q = 7-1TI). Since I' N F,TM = {0}, we see that Q is transversal
to FLTM. Also, from our assumption on 7', we conclude that the position vector field F

is a section of ). Because F is an embedding, the map G : 0 — L™ defined by

G(B(x)) = F(z) + A()

parametrizes a tubular neighborhood of F/(M™) if restricted to a neighborhood U of the 0-
section of 2. Give U the Lorentzian metric induced by G. For a vertical vector Z € Tp(,)(2

we have

G.(B()2 = Z,
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while for a non-vertical vector Z € Tg;)§2 we get

G.(B(2)Z = Fuw.Z + F'Vy 1 (F.X +1)
=F (M Z + Va2 X — Afn.2) + oF (7.2, X) +7 VL,

for F,X +n € T(Q).

We claim that the map G : Q — L"* defined by

G(B(x)) = F(z) + T(8(x))

is an isometric immersion on U. This fact follows from
C.(B))Z = T2

for any vertical Z € Tjs(,)(2, while for a non-vertical Z € Tj(,)(?, taking into account that
F*Vxé € E,TM & L for any § € I, that T is parallel in the induced connection of L and

condition (iv), we get
7+ F*Vaz(F.X +Tn)

# T
= F, (mZ + Vi zX — ATWW* > + af(W*Z, X) + (FV#*ZTn)L
P (1 Z 4 Ve g X — Alm 2) + T (o (1.2, X) +7 Vi 4m) -

Therefore, ||G,(8(x))Z|| = ||G.(8(x))Z]|, and our claim follows.

Now define H: G(U) C L™ — L by
H=Glyo(Gly)™"

The map H is an isometric immersion and ' = H o F'.

Define an open set in V"2 by W = G(U) N V"2, Because F(M") Cc G(U) and
F: M" — V2 C L3 it is clear that F(M™) C W. The only thing left to prove is
that H(W) C V**3. To see this, choose local sections 8y, d, of I' such that {F, 1,85} is a
frame for I'. Then {F,&;, 85}, where T (d;) = J;, is a frame for Q. From the definition of G
and because G(U) is a tubular neighborhood of F(M™), we may write G : U x [? — L3
as

G(z,t,51,8) = (1 +t)F(x) + 5101 + 5209
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and G : U x I3 — L"* as
G(x,t,51,59) = (1 +t)F(x) + 5101 + 5209,
where I is an interval containing zero. Since G = H o G, we have
(81,00) = (G.0y,, GOy, ) = (G0, G.O,) = (51,62)

and

(F,5;) = (G.0,,G.0s,) = (G0, G.0s,) = (F, 5;).
Hence, (H(G),H(G)) = (G,G) = (G,G), which implies that H(W) C V"3 as we
wanted. u

We will also need the following slightly more general version of Lemma [2.2]

Lemma 2.3. Let F' : M™ — Y3 C L4 be an isometric immersion. Assume there
exist £ € I'(NzM) of unit length such that

(i1) mnkAgz 1,
(iii) V%€ =0 for all Z € ker AL

Suppose further that the vector subbundle L = {£}*, the connection on L induced by the
normal connection of F, and the L-valued symmetric bilinear form ay, = my, o aﬁ, satisfy
the Gauss, Codazzi and Ricci equations for an isometric immersion of M™ into L"3.
Then, there exist an open set V- C M™ and locally isometric immersions F -V C M™ —
V2 C L and H - W C V2 — V43 with F(V) € W, such that F' = H o F|y.

Proof. Let U C M™ be a simply connected open set. By the Fundamental Theorem of
Submanifolds, there exists an isometric immersion F' : U — L"*3 and a vector bundle
isometry ¢ : L — NpU such that

o =¢poa; and FVL¢:¢(1&VL)L. (2.1)

From the definition of the vector bundle L and item (i), we have that the position vector

field F' is a section of L. Taking that information into account, we get

F*Vxd(F) = —F.Ay 5 X +F Vio(F) = F.X.
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Therefore, the section F — ¢(F) is constant and equal to Py € "3, Since ¢ is a vector
bundle isometry and F is a light-like section, it follows that F — Py € V2. Without loss
of generality we may assume that Py = 0 and so ¢(F) = F.

Define T': NpM — L by T o¢ = I. Since NpU and L have the same dimension
and T': NpU — L, ¢ : L — NgpU are vector bundle isometries with 7o ¢ = I, we have
¢poT =1. Then

gb(FVLT)L _F VJ_(¢ oT) _F gl

and TF = F. Moreover, applying T to both sides of the last equation, we get
("VAT)L =T ("),
which means that T is parallel in the induced connection. From equation (2.1 we get
oF(X,Y) =7, 00" (X,Y) 4+ (AX,Y)E =T ol (X,Y) + (A X, Y) €.

We finish by applying the last lemma to F'|y, where V' C U is an open set where F|y is
an embedding. O]

Remark 2.4. An observation is in order when we apply this lemma later. Vector fields & €
I'(NpM) and ¢ € I'(L) will be called correspondent if ¢(¢) = £. From equation (2.1]) we
have that their shape operators are the same, that is, A = A? and ¢(F V1), =F Ve
Since ¢ is a vector bundle isometry, correspondent orthonormal (respectively, pseudo-

orthonormal) frames will be orthonormal (respectively, pseudo-orthonormal) frames.

2.2 Structure of the second fundamental form

Let f: M™ — R""! be a hypersurface with a principal curvature A of multiplicity n — 2.
Assume that f is neither a Sbrana-Cartan nor a Cartan hypersurface and admits a genuine
conformal deformation f : M™ — R"*2. Our aim in this section is to describe the structure
of the second fundamental form of the isometric light-cone representative F = Z( f) :
M™ — V3 C Lt of f.

We will make use of the following equivalent forms of a basic result on flat bilinear

forms known as the Main Lemma.

Lemma 2.5 (Main Lemma in [§]). Let 5 : V" x V" — WP be a symmetric flat bilinear
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form such that S(5) = WP, If p <5 and p+ q < n, then
dimN(B) > dimV —dimW =n —p —q.

Lemma 2.6 (Main Lemma bis in [8]). Let 5 : V" x V" — WP4 1 <p<5andp+q <n,
be a symmetric flat bilinear form. If dm N (8) < n—p—q—1, then there is an orthogonal

descomposition
WP — Wll’l ® W2pfl,qfl7 1<1<p,

such that the Wj-components 3; of 5 satisfy:
1. B is non-zero and null .
2. By is flat and dim N (Bs) > dim V' — dim W.
The remaining of this section is devoted to prove the following result.

Proposition 2.7. Let f : M™ — R""' n > 6, be an oriented hypersurface having a
principal curvature X € R of constant multiplicity n — 2 with respect to a unit normal
vector field N. Assume that f is neither a Cartan nor a Sbrana-Cartan hypersurface on
any open subset of M™ and that there exists a genuine conformal deformation f M —
R™2 of f. Then the following assertions hold for its isometric light-cone representative
F=1I(f) : M — V3 C L+,

(i) With possibly the exception of a set with empty interior or in the boundary points,

at each point y of a closed subset V C M™, there exist a pseudo-orthonormal basis

C0,C1,60,F of NaM(y), with
((2,6) =0, (G, F) =1
such that the component of of with respect to L = span{(s, F} satisfies
af (X,Y) = —(X,Y) G (2.2)

for all XY € T, M, and ker A N ker A¢, Nker A¢, has dimension n — 2, where A is
the shape operator of f with respect to N.

(ii) For each x € U = M™ —V there exist a space-like vector u € Nz M(x) of unit length
and a flat bilinear form v : T,M x T,M — span{pu}* such that

o (X,Y) = (AX,Y) i+ ~v(X,Y) (2.3)
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for all XY € T,M. Moreover, \ = —<u, F>_1 18 a nmon-zero principal curvature of
f and A = N(v) is the (n — 2)-dimensional eigenspace Ey of ).

Proof. Differentiating F' = ¢~} (¥ o f) we get

FX =X ) (Vo f)+¢ "W, L.X.

Thus, the normal bundle NzM of F splits orthogonally as
NiM = U.N;M & L2

where L2 is a Lorentzian plane bundle having the position vector field F as a section.

Thus, there exist unique sections & and n of I.? such that

(£, =-1, (&m =0 and (n,n) =1

and F' is a multiple of £ + 7.
At any x € M", endow W (x) = Ny M (x) @ NpM (x) with the indefinite metric of type
(2,3) given by
(CNw = CIvym) — <7>NFM(I)‘

Define a symmetric bilinear form by

B=al @a” : T,M x T,M — W(x).
From
(" (X,Y), F) = —(X,Y)

we deduce that M (af) = {0}, and from N(8) < N'(a') we conclude that 8 has a trivial

kernel. Moreover, using the Gauss equations for f and F, we have

(B(X,Y),B(Z,W)) = (B(X,W),B(Z,Y))
= (! (X,Y),al(Z,W)) = (" (X,Y),a" (Z,W))
— (I (X, W), (2,Y)) + (F (X, W), ol (Z,Y))
= (R(X, Z)W,Y) — (R(X, Z)W,Y)
~ 0.

Therefore (§ is flat symmetric bilinear form.
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From Lemma [2.6] for the case (p,q) = (2,3), and since n > 6, it follows that S(3) is

degenerate, that is, the isotropic vector subspace
Q=8B NSHB)"

is non-trivial. Since the metric ((,)) is positive definite on W, = span{N, £} and negative
definite on Wy = span{\IJ*le, \II*NQf, n}, where le,N; is an orthonormal frame of N;M,
the orthogonal projections P, : W — Wy and P, : W — W5 map () isomorphically onto
Pi(Q) and P»(2), respectively.

From the fact that (Lemma 22 in [I7])

dim S(B) + dim S(B)* =5,

it follows that dim {2 = 1 or dim 2 = 2. Our first step is to show that our assumption
that f is a genuine conformal deformation of f implies that the second possibility can not
occur at any point of M™.

Assume first that dim {2 = 2 and that § is null on some open subset U C M"™. Then
Pi|q is an isomorphism onto Wj along U, due to dimensional reasons. Let ¢ € Q be such
that P;(¢) = &. Since

<C7 C> =0= <5(X7 Y)7C> = —<Oé (Xa Y)a C>7
then ¢ is a light-like vector in S(aF)*. Moreover, from
(' (X, V), F) = —(X,Y),

we conclude that F and ( = <C , F>_1§ are linearly independent light-like vectors with

<C27 ﬁ> =L
Let v € Q be such that P;(v) = N. Then, v = N + fi where fi € NzU is a space-like

vector of unit length. Since
0= (B(X,Y),N + i) = (] (X,Y),N) = (oF (X,Y), ),
we conclude that Ay = Ag . Because v, ( € ) we have
0= (v, Q) = () = (1. C) -

Define p = 1 — </],Z~7>§2 and choose a space-like vector (; € {pu, CQ,F}L of unit length.
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Then {u, (1, (o, F } is a pseudo-orthonormal frame with respect to which the second fun-

damental of F is given by
ap(Xv Y) = <ANX7 Y) p+ <AC1X7 Y> G — <X7 Y) Co-
Since f is a null bilinear symmetric form, then

(B(X,Y), B(X,Y)) = 0.

Using this fact and the expression of the second fundamental form of F' we conclude that
A, =0, and therefore

aF(X,Y) = (ANX,Y) i — (X, Y) .
Because A;, = 0, from the Codazzi equation of f and F for Ay = A, we get

(Vxw G)Y = (Vi G) X.

Hence, (Vxp, () = 0.

From the Codazzi equation for A, = 0, we arrive to
<V)L(C1,M> ANY — <V)L(C17 C2> Y = <V3L/C17/L> AnX — <V1J;C17 C2> X.

Picking an orthonormal frame of eigenvectors Xy, - -- , X, of A with eigenvalues A1, --- , A\,

respectively, we conclude for ¢ # j

)\j <V§ZC17M> = <V§ZC1>CZ> .

If <V)LQC1,§2> # 0 for some i = 1,--- n, then we would have a principal curvature of
multiplicity at least n — 1, a contradiction, so <V§Z§1, C2> =0foralli=1,---,n. Since
there are at least two non-zero principal curvatures, we also have <V§i(’1,,u> = 0 for
1=1,--- ,n.

From the information we deduced in the last two paragraphs, we conclude that p,(;,(o
and F are parallel normal sections. Let f: U — R"2 be the composition of f |v with
a totally geodesic inclusion i: R**! — R"*2. Then the second fundamental form of its

isometric light-cone representative F': U — V™3 C L"** is given by

o (X,Y) = (AL X, V)00 N — (X,Y )w.
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Let N be a unit normal vector field to i along f|y. Then, the vector bundle isometry
7: NpU — N;U given by

TV, 0. N = p, TU,.N = (1, 7F=F and 7w = (o

F

is parallel and satisfies Ta" = aflv Tt follows from the Fundamental Theorem of Subman-

ifolds (Theorem 1.10 in [8]) that F|; and F are congruent, and hence f|; is conformally
congruent to f = io f|y by Proposition 9.18 in [§], which contradicts the assumption that

f is a genuine conformal deformation of f.

Now assume that dim {2 = 2 and [ is not null on some open subset U C M™. As in
the previous case, there exists a pseudo-orthonormal frame {y, (1, (s, F} with respect to

which the second fundamental form of F' is given by

By Lemma [2.6| we have dimker A;, > n — 1. Since we are now assuming that § is not

null, we must have dimker A, =n — 1.
From the Codazzi equation for A = A, we get
Since F' is parallel, we obtain

<v§(ﬂ7 Cl> AC1Y - <VJ)Z/'I/7 <2> Y = <V)J;:ua C1> AC1X - <VXJ;:U7 C2> X.

For X, Y € ker A, we conclude that ker A;, < ker ws, where w; are the one-forms defined
by w;(Y) = (Viu, () for i = 1,2, With this new information, for X € ker A;, and Y a

unit eigenvector of A¢, having the unique non-zero eigenvalue, we get

Therefore, wy = 0 and ker A;, < kerwy.

Let F': M™ — V"2 C L""3 be the isometric light-cone representative of f: M™ —

R™! whose second fundamental form is given by

(X)) = (AX, V) U, N — (X, Y)w
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for all X, Y € X(M). Define a vector bundle isometry 7' : NpM — L = {(;}* by setting
T(F)=F, T(V.N)=p and T(w)= (.
Then the second fundamental forms of F' and F' are related by
of =Toal + (A G-

Moreover, using that ws = 0 one can easily check that T is parallel with respect to
the induced connection on L. Since ker A, < kerw;, it follows from Lemma that,
restricted to any open subset U C M" where F is an embedding, F |y is a composition
Fly = H o F|y of F|y with an isometric immersion H : W C V™2 — V"3 with
F(U) Cc W. By Proposition , there exists a conformal immersion h : V — R"*? of an
open subset V O f(U) of R such that f = ho f.

In summary, we have shown that the subspace {2 must be one-dimensional at any point

of M™. The next step is to show that 5 can not be not null at any point of M".

Assume otherwise that (§ is null at € M", and suppose first that P;(€2) = span{¢}.
Then, S(8) = Q projects onto span{¢} under P;. Therefore A = 0, a contradiction with
the fact that f has a principal curvature with multiplicity n — 2.

Suppose now that P;(€) # span{{}. This is equivalent to requiring that the orthogonal
projection II; : W — N;yM maps 2 isomorphically onto NyM, say, N = II;(v) for some
v € . Set pn = Il (v), where Il : W — NzM is the orthogonal projection onto NzM.
Then A= AF for N+ p=v € Q = S(B) C S(8)*, and hence

BX,Y) = (! (X,Y),a" (X, Y)) = ((AX,Y) N, (AX,Y) ).

Therefore, )
—(X,Y) = ("(X,Y),F) = (AX,Y )1, F),

again a contradiction with the assumption on the multiplicity of one of the principal
curvatures of f.

We have thus proved so far that dim {2 = 1 and that 3 is not null at any point of M™.
Let ¥V C M™ be the closed subset where P;(2) = span{{}. We will show that item (i) in
the statement holds at any = € V. Since P;(§2) = span{¢} at z, there exists a light-like
¢ € Q such that ¢ € S(af)*, and from

(af(X,Y),F) = —(X,Y)
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it follows that F' ¢ Q. Defining
G=(¢F)¢

we have a pseudo-orthonormal frame {C,, F'} for a Lorentzian plane L. The projection of

the second fundamental form onto L is given by
ol (X,Y) = —(X,Y) G,

hence )
aF(Xa Y) = <AC0X7 Y> o + <AC1X7 Y) G — <X7 Y> Cas

where {(o, (1, G, F'} is a pseudo-orthonormal basis of NzM(z). Since dimQ = 1, the
bilinear form
B : TxM X TxM — Span{N7 CO? Cl}

defined by ] )
B=aol® <04F7 Co)Co @ <04F, ()G

is flat an non-degenerate, hence dim N'(3) > n — 3. From

~

N () = ker ANker A, Nker A,

it follows that the principal curvature of f with multiplicity n — 2 must be zero, and that

N (B) is contained in the corresponding eigenspace. It remains to prove that dim N (5’) =

n — 2 at z. In other words, it suffices to show that the case dim N () = n — 3 cannot

occur on any open subset.

Let us assume, by contradiction, that dim N () = n—3 on some open subset U C M™.
Before advancing any further, since this part will require some work, let us start by
giving an idea of what we are planning to do. We will prove with the aid of Lemma
that f lv = hog, where g : U — R™"! is a genuine isometric deformation of f|y and
h:V C R"™™ — R"? is a conformal immersion of an open subset V' O ¢(U). But this

implies that f is a Sbrana-Cartan hypersurface, which is ruled out by our hypotheses.

Denote by A the (n—3)-dimensional vector subspace N(5). Since E) properly contains

A, we can pick a non-trivial 7' € Ey N A+. Hence,

{0} # Br(TuM) < span{Co, 1}

Suppose that we have BT(TxM ) = span{(p, (1 }. From the well known rank-nullity theorem

of linear algebra, there exists a non-trivial X € ker BT N A+. From the flatness of B we
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conclude

0= (B(X.T),8(W.2)) = (B(X,W),B(T, 2)),

~

for arbitrary W, Z € X(U). Combined with the fact that dim N (5) =n — 3 we get

A

Bx (T, M) = span{N}.

Again, from the rank-nullity theorem of linear algebra, pick linearly independent Y, Z €
ker B «NA*L. Using the flatness of 5’ and the assumption regarding the dimension of N (B)

we obtain

{0} # By (TuM), B2(T, M) < span{Co, (1}

We conclude that dim E\, > n — 1 since Y, Z and T € FE), a contradiction. Therefore,

Br(T, M) must be a one-dimensional subspace.

Redefining the original pseudo-orthonormal frame {(p, (1, ¢, F } of NzM, we can sup-
pose that

~

6T(T1M) = span{@o}.

From the rank-nullity theorem, we can choose two linearly independent vectors X, Y €

ker B N AL. From the flatness of the symmetric bilinear form B we get

{0} # Bx (T M), By (T, M) < span{N, ¢ }.

A

Therefore, X, Y € ker A, and from the fact that N(5) < ker A, we conclude that
dimker A¢, = n — 1, or equivalently, rank A;; = 1. From this fact, dim £y = n — 2 and

the non-degeneracy of B we have
A4 A, (2.4)

which will be a key element in proving that f is Sbrana-Cartan.

Define the symmetric bilinear form
y=8-(a",00) =0 @ (a,¢1) G : TuM x TuM = span{N, G}.

We will show first that the bilinear form ~ is non-degenerate, that is, that for all W,7Z €
X(M) such that v(W, Z) # 0 we must find R, S € X(M) satisfying

0# (v(W,2),7(R,S)).
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~

For all W € X(M) and R € N () ® R{T} we have
YR,W) =0

so we do not have to worry about this case. For R,S € span{X,Y}, where X and

Y € ker A, are linearly independent, we have

7<R7 S) = (B - <05F7C0>§0) (R’ S) - B(R7 S)

Suppose that v(R, S) = B(R, S) # 0. Because of the non-degeneracy of B, there exist Z,
W € X(M) such that

(B(R,S),B(Z,W)) #0.
Then,

(B~ {a,C)G) (R, ), (B — (o, ¢)G0) (2, W)) = (B(R,S), B(Z,W)) # 0

and, as consequence, we obtain the non-degeneracy of ~.

~

The bilinear form  is also flat. If R € N(5) ® RT and S, Z, W € X(M), then
(V(R,9),7(Z,W)) =0 = (v(R,W),7(Z,5)).

So, suppose R, S, Z, W € span{X, Y} where X and Y € ker A, are linearly independent.

Then, from the flatness of 3 we have

<’7(R’ S)v’y<Zv W)> - <7(R7 W)?V(Z7 S)>

Using the Main Lemma [2.5| we have
dim N (y) > n —2.

Since N (y) = ker ANker A¢,, we conclude that rank A, < 2. If rank A, < 1, then using
the same argument as the one used above, we conclude that o/ is flat, which means,
again from the Main Lemma [2.5] that f has an (n — 1)-dimensional relative nullity,
a contradiction. Therefore, we must have rank A;, = 2. Observe that ker A, is not

contained in ker A, because the existence of the vector 7" denies this fact.

Pick two linearly independent vectors X, Y € ker A, N AL, If A, X, A,Y are
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linearly dependent, then a linear combination of X, ¥ would be in the kernel of A¢,. Since
dimker A;; = n—1, dimker A;, = n—2and A < ker A; Nker A;, we get ker A, < ker A, .
This is a contradiction to the observation done in the last paragraph. Therefore, given
two linearly independent vectors X, Y € ker A, N At we have that A, X, A, Y spans
the image of Ag,.

Suppose Img Ay < ImgA¢ . Let X, Y be unit length orthogonal eigenvectors having
o and 3 as non-zero eigenvalues for the shape operator A,. Then, any vector Z € A*
orthogonal to the plane spanned by X and Y would belong in the subspace ker A. N
ker A¢, N At a contradiction because ker A¢, is not contained in ker A;,. Therefore,
Img A;, N Img A, = {0}.

Now, let us use the Codazzi equations to gain information about the normal connec-

tion. From the Codazzi equation for A¢, = 0 we have

for all Z, W € X(M), or equivalently, by expanding in terms of our pseudo-orthonormal
base {CO? Cla <27 F}a

(V7C2, Co) AW + (V5. C1) AW = (Vg o, o) A Z + (VipCa, C1) Ao Z. - (2.5)
For Z € A and W € ker A;, we have
<V§C2,C1> =0 for Z e A.
For two linearly independent Z, W € ker A, N A+,
(VG ) AW = (Viy G, () Ae Z.
Since {A¢, Z, A, W} is a basis for Img A, we get
(Vz(,G) =0 for Z € ker Ag,.

Now, for Z € ker A, N A+ and W € X(M), we arrive to

(VG Go) AW = (Viy G, (1) Ae, Z.
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Since Img A;, N Img A;, = {0}, we conclude that
(ViyG, () =0 for W € X(M). (2.6)

Applying the information found in the last equation to the original Codazzi equation

, we arrive to
<VZC27CU>AC0W <V C27CO>A(0

for Z, W € X(M). Therefore,
<VJI/{/€2, <0> =0 for W € ker ACO‘ (27)
The reader might suspect that we are trying to prove all the hypothesis of lemma [2.3]

Now, let us work with the Codazzi equation for Ag:
or equivalently,

Vz AW — A, VW — <V CO,C1>A41W+<V CO,C2>W
=VwAqZ — Ao VwZ — <V C07C1>A<1Z+<V C07C2>

As we have done in the first Codazzi equation let Z € A and W € ker A;, N At using

equation we get
— A, VW —(V5(,G) AW = — A Vi Z.
Since Img A, N Img A, = {0}, we obtain that
<V CO,C1> =0 for Z e A.
Now, if Z, W € ker A;, N At are linearly independet, we have
— A, VW = (V5C0, G) AW = —=A, VwZ — (Vg o, (1) Aq Z
Again, since Img A;, N Img A, = {0}, we arrive to

<V§C0,Cl> =0 for Z € ker A,. (2.8)
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That is all the information we need regarding the normal connection.

We claim that that the vector subbundle L = span{(y}*, the connection on L induced
by the normal connection of F', and the L-valued symmetric bilinear form a; = mz o

satisfy the Gauss, Codazzi and Ricci equations for an isometric immersion of M"™ into
Ln+3

First, let us prove the Gauss equation. Using that rank A, = 1 and the isometric

immersion F satisfies that equation, we get

(R(X,Y)Z,W) = <OF(X, W), af (Y, Z)> — <OF(X, 7),af (v, W)>

_ <af(X, W),k (v, Z)> - <a§(x, 2),af (v, W)>.

Therefore, the Gauss equation is trivially satisfied for bilinear symmetric form a; =

T, © O{F.

Let us move on to the Codazzi equations. Since F is parallel in the normal connection,
it is trivial that A satisfies the Codazzi equation for the connection (V*+)r, since Az
already satisfies the Codazzi equation for the connection V+. Now, for the Codazzi

equation for A, for ¢ = 1, 2 we have to show
VxAgY — A, VxY — A(V}L{Q)LY =VyA, X — A, Vy X — A(V¢Ci)LX'
Since we already have
VxAgY — A, VxY — AV)L(CZ,Y =VyA, X — A, Vy X — AV%Z,X,

the validity of the Codazzi equations for A, for i = 1, 2 in the connection (V1) is

equivalent to showing
<v§_{Cza <0> ACOY - <V€}Q, C0> ACOX'

From equations (2.7) and (2.8)) and because rank A;, = 1 the last equation is true, hence

we have finished showing the validity of all the Codazzi equations.

Lastly, lets prove the Ricci equations. Since F is parallel in the normal connection,

we must only prove the Ricci equation involving ¢; and (,. From the Ricci equation for
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the isometric immersion F we have

<[AC17AC2 X Y < X Y C17C2>

= (Vx V51, G) — (Ve V6, G) — (Vixy G G)
= (Vx ({(V§6., QYo + (V3¢ () F), ()
— (V¥ ({(Vx(1, )G + (VG @) F), &) — (VikyiCn G2)
= (Vy(1,G) (Vxo, &) — (VxG, &) (Vyo, &)
—(Vixy6: &) -

From equations (2.7)) and (2.8) and rank A,) = 1 we get
<[AC1’ AC2]X Y <V[X Y]C1 C2>

which is precisely the Ricci equation for ¢; and ¢, for the connection (V+)y.

It follows from Lemma that there exist an open set V' C M"™ and isometric im-
mersions G : V. C M" — V"2 Cc L"™3 H : W C V"2 — V" with G(V) € W, such
that F' = H o G. From the remark , the correspondent normal vector field to F' is G.
The correspondent normal vector field to (5 is a light-like normal vector field that has
a vanishing shape operator. It is also parallel in the normal connection, because from
equation (2.6) we have (Vy(y);, = 0. Hence, it is a constant light-like vector w € V"2,
with (G,w) = 1. Therefore, we have G(M™) C E%*! and from Proposition[l.4 G = ¥og

for some isometric immersion g: M™ — R"+L,

It remains to prove that ¢ is a genuine deformation of f and hence, f is a Sbrana-
Cartan hypersurface. If we denote by & correspondent vector fields to (; then, again from
the Remark 2.4 {¢,w,G} is a pseudo-orthonormal frame of NgM, where ¢ is of unit
length, A = A¢,, Ay = A, =0, Ag = Ap = —1. Hence,

a%(X,Y) = (A, X, Y) € — (X, V) w

If f and g are isometrically congruent, then in particular they are conformally congruent.
From Proposition|1.5, ' and G are isometrically congruent, that is there exist an isometry
T : L3 — L™ such that T o F = G. Therefore, T o af = o and because F = Vo f,
we have

o (X,Y) = (AX,Y) U, N — (X, Y)w
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If we express
TY.N = a:& + asw + a3G
Tw = b€ + bow + 3G
TF =G

then because {V,.N,w, F'} and {£, w, G} are pseudo-orthonormal basis and 7" is an isom-
etry we must have ay = 0, by = 1, a?> = 1, ayb; + ag = 0 and b3 + 2b5 = 0. From the

G

condition T o of" = a%, we get

O,lA — b1[ = Acl
CLgA - bg[ = 0.

Then, a] = :|:1, bl = Fas, b% + 2b3 =0 and

:i:A - blj = ACl
:FblA — b3] =0.

From the last system of equations, by multiplying the first one by b3 and the last one
by —b; we obtain £(b3 + b])A = b3A,. So, using b? + 2b3 = 0, we get A = +A;, or
by = 0. If by = 0, then b; = 0 and we also get A = £ A, which is a contradiction from
equation (2.4). Therefore, g is a genuine isometric deformation and f is a Sbrana-Cartan

hypersurface.

Finally, we will show that the conditions in item (ii) hold at any point x of the open
subset Y = M™—V where P;(Q2) # span{{}. The latter condition is equivalent to requiring
that the orthogonal projection II; : W — N;M maps 2 isomorphically onto N;M, say
N = II;(v) for some v € Q. Set u = Ily(v), where Il : W — NzM is the orthogonal
projection into NzM. Then, A/ = Af where N +pu =v € Q2 and

o (X,Y) = (AX,Y) p+7(X.,Y)
for
v T, M x T,M — {u}*

flat, non-degenerate bilinear form. Hence, from Lemma [2.6) we get N(y) > n — 3. Pick
T € N(v), then
—(T,Y) = (" (T,Y),F) = (AT, Y )(ii, F').
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Therefore, <u, F > is non-zero and A = —<u, F >_1 is a principal curvature of f. From
the hypothesis regarding the multiplicity of the principal curvatures of f and item (iii) of
Proposition [1.1, we conclude that A is a Dupin principal curvature of multiplicity n — 2
and N (v) < E,. This fact and the assumption on the principal curvatures multiplicity
of f leave us with two possibilities: dimN(y) =n — 3 or dim N (y) = n — 2. If we show
that dim N (y) = n — 2, then we will have completed the proof that item (ii) holds on U.

So assume, by contradiction, that dim N () = n — 3 on some open subset, and denote
N (7) by A. Since A is contained properly in E), there exist T € Ey N A+. Then,

T, Y) = (aF(T,Y), F) = MT,Y Y, F) + ((T,Y), F)

and we conclude that

(y(T,Y),F) =0.

Therefore, v (T, M) is orthogonal to F. If we define ¢ = A\F + 1, we have

(€.O=-1 ((uw=0 {TY),=0

and Ac = A — A. Consider an orthonormal frame {y, (1, (2,(} of NzM.

We will prove that f = ho g where g : M™ — R""! is a genuine conformal deformation
of f, that is, f is a Cartan Hypersurface, and h : R**1 — R"*2 is a conformal immersion.

We will use Lemma to conclude those facts. The steps we will follow are similar to

~

those where dim N () =n — 3.

From the facts above, since (y(T,Y),¢) = 0 and T' € At we obtain

0 # vr(T M) < span{(y, G2}

Suppose that we have the equality. From the rank-nullity theorem of linear algebra, there

exist X € keryr N AL, From the flatness of the bilinear form v we get
0=((T,X),~7(Z,W)) = (V(T,W),~(X, Z))
for Z, W € X(M). It follows that

vx (T, M) < span{(}.
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In fact, we have the equality, because if vx (T, M) = {0}, then
—(X,Y) = {a"(X,Y),F) = (AX,Y)(,

and X € FE,, a contradiction since E, would be (n — 1)-dimensional. Now, from the rank-
nullity theorem consider Y, Z € ker yx N At linearly independent. From the flatness of

~ we obtain

Yy (T M), vz (T M) < span{(i, (2},

that is
VY, W), F)=0=(y(Z,W),F) for W e€X(M).

Arguing as before, this means that Y, Z € F), a contradiction regarding the dimension
of this subspace. We deduce that the subspace yp(T,M) < span{(;, (2} must be one-
dimensional. By suitably redefining the orthonormal frame {y, (1, (2, (}, we can assume
that v7 (7, M) = span{(: }.

From the rank-nullity theorem we can pick X, Y € keryr N A linearly independent.

From the flatness of v we have

7X<T$M)7 VY(TIM) < Span{C% C}7

that is X, Y € ker A¢,. Notice that N'(y) < ker A¢, and A¢, T # 0, therefore dim ker A, =
n— 1, or equivalently, rank A;, = 1. Since rank A, = 1 and rank A, = rank (A— ) = 2,

we cannot have

ACQ 7& j:ACv (29)
otherwise v would be degenerate.

Define the symmetric bilinear form

6 =7 <P)/7 <1> Cl - <75 C2> CZ - <’77 C>C : T:):M X TxM — Span{Cla C}

We will show that this bilinear form is non-degenerate and flat. From the fact that
(T, M) = span{(; } we have

B(R,W)=0 for Re A®RT.

So, suppose 3(Z, W) # 0 for Z, W € span{X,Y } where X, Y € ker A, N A' are linearly
independent. Then, 5(Z, W) = ~(Z, W), so from the non-degeneracy of 7 there exist R,
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S € X(M) such that

<5(Z’ W)v 5(R7 S)) = <’7(Zv W)> B(Ra S)) = <7(Z7 W)’ 7(R7 S)> 7é 0.
We conclude that 8 is non-degenerate.

For flatness, we have to prove

If R € A@RT, then fr(T, M) = {0}, so the above equation is trivially satisfied. Therefore,
we can suppose R, S, Z, W € span{X,Y} where X, Y € ker A;, N At are linearly
independent. Then, from the flatness of ~

<B<Z> W)?ﬁ(R7 S)> - <B(Z> S)?B(Ra W)>
= <7(Z7 W)77<R7 S)> - <7(Zv S)?V(Rv W>> =0

and we have the flatness of j.

Using the Main Lemma [2.5| we conclude that dim N (5) > n — 2 and since N (5) <
ker A¢,, we get rank A, < 2. If rank Ae, <1, using the same argument, we conclude that
B—{v,C) G =—(7,¢) (is flat. Also, it is non-degenerate, because the metric is negative
definite, thus from the Main Lemma dim N (A¢) > n — 1. This is impossible, because
A¢ = A— I has rank two. Therefore, rank A¢, = 2. Also N(f) = ker A, Nker A;. Since
dimker A;, = dimker A = n — 2 we have that ker A¢, = ker A¢. Observe that ker A, is

not contained in ker A, because the vector field T denies this fact.

Pick two linearly independent vectors X, Y € ker A, NA*. If A, X, A, Y are linearly
dependent, then a linear combination of X, Y belongs to the ker A;,. This would mean
that ker A;, < ker A.,, a contradiction from what we have said in the last paragraph.
Therefore, given two linearly independent vectors X, Y € ker A;, N At then A, X, A,Y

are linearly independent.

Suppose Img A;, < ImgA;,. Let X, Y € At orthogonal unit eigenvectors of A,
having o and /3 as non-zero eigenvalues, respectively. Let Z € A+ orthogonal to X and
Y. Then, Z € ker A;, Nker A¢,, which is a contradiction. So, we must conclude that
Img A;, NImg A, = {0}.

Now let us use the Codazzi equations to gain information about the normal covariant



64 2.2. STRUCTURE OF THE SECOND FUNDAMENTAL FORM

connection. From the Codazzi equation A, = A we have
or taking into consideration that V¢ = X(A\)F 4 Vxpu, we get

(Vi G AqY + (Vyp, @) AoY — AT X (VALY
= (Vi Q1) Aq X + (Vyp, &) Ao X — ATTY (V) AX.

For Y = R € A and X € ker A, taking into account that A < E) and X is a Dupin

principal curvature, we obtain
0= (Vg G) AxX.
For a suitable choice of X we conclude
(VEn, Gy =0 for ReA. (2.10)
For Y =R e A, X € X(M) and using equation we have
0= (VinG) Ag X,

S1)
<Vﬁ#>§1> =0, for ReA. (2.11)

The Codazzi equation for A¢, gives

Because (V¢ 1) = (VxG,¢) and Ac = A — X, working a bit more on the Codazzi

equation A¢ , we get

VxAqY = A VxY = AM(VxG, 1) Y = (Vi o) AgY
= Vy Ao X — Ao Vy X = M (VyC, 1) X — (Vyi, &) A, X.

For Y = Re€ A and X € ker A, and using equation ([2.11]) we get

_ACleR —A <V§C1, [11> R = _AQVRX - <VJI%C17 C2> AC2X7
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so we conclude
(VxCi,p) =0 for X € ker A (2.12)

and
(VrG,G) =0 for Re€A. (2.13)

Now for X, Y € ker A, and using equation (2.12f), we have
_AQVXY - <V)L(€17 C2> AC2Y = _ACleX - <v}l/g17 C2> AC2X7

SO
(Vx(i, &) =0 for X € ker A, (2.14)

From equations (2.12)), (2.14)) and <V§(C1, u> = <V§(Cl, ¢ > we conclude that (; is parallel
along ker A, .

Define the rank-3 subbundle L by L = {(;}*. We already have conditions (i)-(iii) of
Lemma [2.3| satisfied. The only remaining thing to prove is that (ay, (V1)) satisfies the

Gauss, Codazzi and Ricci equations.

First, let us prove the Gauss equation. Since
of (X,Y) = (AX,Y) p+ (A X, Y) G + (Ao X, Y) G — (AX, V) ¢
satisfies the Gauss equation and rank A;, = 1, then the symmetric, bilinear section
ap(X,Y) = (AX,Y) p+ (A, X, Y) G — (A X, Y) ¢

also satisfies the Gauss equation.

Let us move on to the Codazzi equations. First, let us prove the Codazzi equation for
A, = A. We must show that

AwiwY = Awpu, X,
or equivalently,
<V)L(:u’ C2> ACQY - <V)L(:u’ €> ACY = <v%/,u’ C2> ACQX - <V¢Ma C> ACX~

Because,
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or expressed in term of the orthonormal frame {u, (1, (2, (} of NaM,

<V)L(:u7 €1> AC1Y + <V)L(H7 C2> ACQY - <V)L(,ua C> ACY
= (Vy1, 1) Ao X + (Vyp, &) A, X — (Vyp, () AcX

we must only prove
<V§_{,U,, <1> AC1Y = <vij;ru7 C1> AC1X'

Because dimker A;;, =n — 1 and (; is parallel along ker A.,, the above equation is valid.

The other Codazzi equations are proved in a similar way. For the sake of clarity, we

will prove them. For the Codazzi equation of A, we have to show
VxAoY —AoVxY — Agie,), Y = Vv Ao X — Ao Vv X — Agie,), X
Since we know that of satisfies the Codazzi equations, we have
VxAgY — Ao VXY — Agi,Y = Vy A X — Ao Vy X — Age, X
So, as before, it is enough to demonstrate
(Vx(o, G) AgY = (Vy (o, (1) Ag, X.

Again, since (; is parallel along ker A¢, and dimker A., = n — 1, the above equation is

valid.
To show that A; satisfies the Codazzi equation we must prove
By the same arguments, we only have to show

<VAJ)_(<7 C1> ACly = <V¢C7 Cl> AClX

The same argument as in the last two cases shows the legitimacy of the above equation

This concludes the verification of the Codazzi equations.

Let us move on to the Ricci equations. Let us start with the one involving p and (5.
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Notice that

(RY(X,Y ), Go) = (Vx Vi, G) — (Vi Vi, &) — (Vikys C2)
= (Vx ((Vy, (1) QL+ (Vv @) G — (Vyr,€) ) G2)
— (Vs (Vi @) G+ (Vs @) G — (Vi €) €) , o)
<v[lxy Fs <2>
<VXC1, C2> <VYM C1> +X <VYM7 C2> <V)L(C7 C2> <VXJ;:U’7 §>
—(Vxi, G (VyCi, @) = Y (Vi &) — (Vi ¢) (Vy(, &)
— (Vixyih: C2) -

and

(RL(X,Y ), Ga) = ((Vx)L(Vy) L G2) — (V) (V)i C2) — ((Vixyy)ois C2)
= (V)L ((Vyn, &) & — (Vyp, ) €) ., &)
- < Vxlf (<VX,U7 C2> G2 — <V§<M7C> C) ,C2>
— (Vixyiit: G2)
= X (Vynu, &) — (VxC G) (Vi ¢) = Y (Vi G)
— (V1 C) (V3¢, Go) = (Vixyps G -

Because (RH(X,Y )i, () = ([A,, Ae,] X, Y), we must prove

(V%G &Y (Vin, &) — (Vi &) (VG &) =0,

which is true because dimker A;, =n — 1 and (; is parallel along ker A,.

The second equation to be proved is the Ricci equation for p and (. Notice that

(RHX, V), ¢) = (Vx Vi, ) = (Vy Vi ¢) — (Vi oy €)
= (Vx (Vi ) G+ (Vi G) G — (Vi €) €)1 €)
—(Vy ((Vx1: ) G+ (Vs Go) G = (Vx1,6) €) 5 C)
- <V§<Y NG
= <v)l(<1; > <VY:LL C1> + <VXC2> C> <VYN C2> +X <VYM C>
- <VXM7 C1> <VY<17C> <VXN <2> <VY<27 > Y<VX,U7 C>
<V[XY My C>
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and

(R(X,Y)p,¢) = <(V§()L(V¢)LN7C> - <( ) (VX LN:Q < XY] )LiL, C>
= ((Vx)r ((Vyn, &) & — (Vyn, () (), ¢)
— (V) ((Vxi, ¢2) @ = (Vi () €) . ) = (Vixyis €)
<VXC27<> <VYN7C2>+X<VY/% > <VXN C2> <VY<2, >
=V (Vi Q) = (Vixwp )

As before, it is enough to prove

(V%G O (Ve Q) — (Vip, G) (VG, () =0,

which again is valid because of the fact that dimker A;, = n — 1 and (; is parallel along
ker A¢,.

The last Ricci equation to be proved is the one involving (, and . Observe that

(RH(X,Y)(2,¢) = (Vx Vs, ¢) = (V¥ Vx(2, ¢) — (VixyiC2: ¢)
= (Vx ((VyG,m) p+ (Vyia, &) G — (V. () (), 0)
= (Vs ((VxCo ) 1+ (VX G1) G = (VX () ) . C)
— (Vixyi$2:€)
= (Ve () (Vo 1) + (VG ) (Vi G) + X (Via, ¢)
—(VxG, 1) (Vi O — (VxCa, G1) (Vv G, () = Y (Vx(G, ()
— (Vixyié: €)

and

(RL(X,Y)C2, ¢) = (V) L(V5) e, €) = (V) L(Vx) 62 ¢) — (Vixy)) £, €)
= (VX)) (V3G ) 1t — (V$(2,¢) €) ,¢)
— (V)L ((VxGor ) 11— (VX2 €) €)1 ) = (VixyG2: €)
= (Vx1,C) (VG 1) + X (V2. ¢) — (VG ) (Vi €)
—Y (Vx(2,¢) = (VixyG2: ) -

Because,
<RL(X7 Y)C2’ C> = <[AC2a AC]v X7 Y>
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we must prove that

(V%61,¢) (V6o 1) = (VG (1) (Vi, ¢) = 0.

Again by the same argument, the above equation is true since dimker A;, =n —1 and (;

is parallel along ker A, .

It follows from Lemma [2.3|that there exist an open set U C M™ and locally isometric
immersions G : U C M™ — V"2 C L"™3 and H : W C V"2 — V"3 with G(U) C W,
such that I = H o G|y. Writing ¢ = C(G), we have G = Z(g), and from Lemma
we conclude that there exists a conformal immersion h: V — R"*2 of an open subset
V C R**! containing g(U) such that f = ho g|y.

Now, we will prove that g is a genuine conformal deformation of f. Suppose, on the
contrary, that f and g are conformally congruent. Then, from Proposition their
isometric light-cone representatives F' and G are isometrically congruent, that is, there
exist an isometry 7' : L™ — L"*3 such that G = T o F. Considering the Remark ,
suppose that the frame correspondent to the orthonormal frame {u, (s, (} is {£,n, 0}, in

that order. Therefore, we have
a%(X,Y) = (AXY) £ + (A5, X, Y)n — (A X,Y) 0.

Since the vector field correspondent to F is G and ¢ = A + p, we get 6 = \G + &.
Expressing TW, N, Tw and TF in terms of the orthonormal frame {&,n, 0} of No M

TY.N = a;§ + aon + azb
Tw = by + ban + b3t
TF=—3¢+10

and taking into account that {T'W,N, Tw, TF} is a pseudo-orthonormal frame, we obtain
a1 = —as, —A = by + b3, a1+a2—a3 1, a1b1 + asby — azbs = 0 and bz—i-bQ—b2 =0.
Replacing a3 and b3 in those equations we get ay = +1, +by = a; A and bg = A2 4 2)\b;.
Using those two equations we get by = A(a? — 1)/2, so we have all variables expressed in

terms of a;. Lets use now the condition a® = T o a" where

o (X,Y) = (AX,Y)U,N — (X, Y)w
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We obtain
(CLl — 1)14 = b1]

(IQA — bg[ = ACz
CL3A — bgf = —Ac.

The last equation is equivalent to the first one, so lets use the first two equations. Using

the expression of by in terms of a; we get

Aat — 1)
2

(g —1)A = I.

If a; = 1, then in the second equation taking into account that ay = +1 and +by = a; A,

we get £A; = A¢,. On the contrary, if a; # 1, we get

A _ )\(al —I— 1)I
2
and \ .
Ao = %]'

Replacing in the second equation ay = 4+1,bp = +a; A and the expression of A in terms of

the identity we get

A(— 1
So, in both cases A;, = £A,, a contradiction with equation (2.9) that proves that g must
be a genuine conformal deformation of f. O

Some final comments to round up the chapter are in order. Regarding item (i) of
proposition 2.7, we are discarding sets of empty interior or points that are in the boundary
of the closed set V, however this does not pose any problem. During the demonstration of
this item we show that in those sets f has a (n — 2)-dimensional relative nullity. We can
just compose f with an inversion (conformal map) in order to have a non-null principal
curvature A in those points and be in item (ii).

Second, if we fall into item (i), we will show that f = h o g, with g : M™ — R"*2 and
isometric immersion and A : R"*? — R"*2 a conformal map. Thus, we are in fact in the
isometric case treated in [I2]. With the same notation of item (i) and writing the Codazzi
equation in the direction of (;, for i, 7 = 0,1, # j, T' € A = ker ANker A, Nker A, and
X € A, we have

VA X — AV X — (VG G) A, X + (VG ) X = —A VT + (Vx(i, &) T
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Taking inner product with 7" and since A is a totally geodesic distribution, we conclude
(VxG,G)=0,for X € A+, i=12.
The Codazzi equation for A¢, for T € A and X € At gives us
0 = (V€2 Co) A X + (V. 1) A, X.

We can then affirm that one of two cases happens: p € span{(p, (1} such that A, =0 or
V% = 0 for any X.

If we suppose that the first case is valid, then decompose p = W,p + p1, with p €
['(N;M) and p; € T'(IL?), according to the orthogonal decomposition of NzM as

NpM = W,N;M @ L2,

where L2 is a Lorentzian plane bundle having the position vector field F as a section. Since

p and F are orthogonal, we have p; = <p1, ¢ > F, where {(, F} is a pseudo-orthonormal

frame of 2. Because the \I/*NfM-component of ot is ¢*1\I/*af, from A; =0 we get

0= "AX,Y) = (X, YV, pr),

for all X, Y € X(M). In particular, since p is not trivial, the normal vector field p can
not be trivial either. We conclude that A, = 31, with g = <p<§~, p1>.

If B vanishes, from the Codazzi equation for f we get
(Vxp,0) AgY = (Vyp,0) AX,

where {p,0} is an orthonormal frame of NzM. If the rank of Ay is at least two, then
<V§gp,9> = 0 for any X € T,M, and using Corollary 2.2 in [§] we can reduce the
codimension of f, a contradiction because f is not a Cartan hypersurface. Otherwise, the
relative nullity distribution of f is greater than n—2. This is also a contradiction, because
M™ would be conformally flat and as consequence f would have a principal curvature with

multiplicity at least n — 1 by Theorem 16.5 in [§].

If 8 # 0, then p cannot be parallel in the normal connection, otherwise f(M) would
be contained in an hypersphere and, as a consequence, f would be a Cartan Hypersurface
(just consider g = 7 o f where 7 is the stereographic projection of the sphere S"*! onto
Euclidean space R™™). On the other hand, if p is not parallel, then by Theorem 14 in [11]
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M™ would be conformally flat, a contradiction because the multiplicity of the principal
curvature A of f is n — 2 (Theorem 16.5 in [§]).

In the second case, if V%, = 0, then from A, = 0, we conclude that (, is a constant
light-like normal vector field. Just consider the Euclidean model in the light-cone \ijﬁo,cz,é
and let f = C (F) : M™ — R"2 be the conformal map that is defined using that model.

Since <F , C2> =1, in fact this is an isometric immersion. Now,

J=C(F)=Clirof)=C(Tot)of,

so f and f are conformal.

Lastly, regarding the hypothesis that f : M™ — R""! is not a Sbrana-Cartan nor
a Cartan hypersurface. Whenever we used those assumptions, in fact we proved that
the genuine conformal deformation f : M™ — R™2 was a composition f = h o g, with
g : M™ — R""! a genuine isometric or conformal deformation of f. Passing the definitions
given in the paper [16], we can define an honest conformal deformation of f to be a
genuine conformal deformation that is nowhere a composition. Using this new definition,
we can remove the hypothesis of f : M™ — R™™! not being a Sbrana-Cartan or a Cartan

hypersurface and ask f : M"™ — R™?2 to be a honest conformal deformation of f.



Chapter 3

The triple (Dq, D3, )

In the classification of hypersurfaces f : M™ — R™"! that admit genuine isometric defor-
mations f . M™ — R™2_ accomplished in [12], the first step was to show that, excluding
some trivial cases, the existence of such a deformation is equivalent to f being a hyperbolic
or elliptic hypersurface and to the existence of a pair of tensors Dy, Dy and a one-form
on M" satisfying certain equations. The aim of this chapter is to prove an analogous result
in the conformal realm. As we shall see, the proof becomes significantly more involved
due to the fact that working with isometric light-cone representatives requires adding two
extra dimensions on the normal bundles. However this difficulty will be overcome since
the second fundamental form in those directions behave nicely.

Before stating the main result of this chapter (Proposition below), we need some
definitions.

Let f : M™ — R"*! be a hypersurface that carries a principal curvature of multiplicity

n — 2, let A denote the corresponding eigenbundle and
C :T(A) = I'(End(A%Y))
be the splitting tensor, defined by
CrX = -ViLT,

with T € T'(A), X € T(AL) and VAT = (VxT)", where h is the projection onto AL
The hypersurface f is said to be hyperbolic (respectively, parabolic or elliptic) if there
exists J € I'(End(A')) satisfying the following conditions:

(i) J? = I (respectively, J*> = 0, with J # 0, and J? = —1).

73
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(ii) VAJ =0 for all T € T(A).
(iii) Cr € span{!, J} for all T € T'(A).

A hypersurface f: M™ — R*™! n > 3, is said to be conformally ruled if it carries an
umbilical distribution L of rank n — 1 such that the restriction of f to each leaf of L is

also umbilical.
A hypersurface f: M™ — R"™! is conformally surface-like if f(M) is the image by a

Mobius transformation of R™*! of an open subset of one of the following:
1. a cylinder M? x R"~2 over a surface M? C R?;
2. acylinder CM? x R"~3, where CM? C R* denotes the cone over a surface M? C S3;
3. a rotation hypersurface over a surface M?* C R3.

We will need the following characterization of conformally surface-like hypersurfaces,

which is a consequence of a more general result of [§] (see Corollary 9.27).

Proposition 3.1 (Corollary 9.32 in [8]). A hypersurface f: M™ — R"™! is conformally
surface-like if and only if it has a principal curvature A of multiplicity n—2 whose eigendis-
tribution A = ker(A — XI) has the property that the distribution A+ is umbilical.

In the remaining of this chapter we prove the following result.

Proposition 3.2. Let f : M"™ — R"*! be an oriented hypersurface with a nowhere van-
ishing principal curvature X of constant multiplicity n —2. Assume that f is not a Cartan
hypersurface on any open subset of M™. If f admits a genuine conformal deformation
f : M™ — R"*2 then, on each connected component of an open dense subset, it is either
hyperbolic or elliptic with respect to a tensor J € I'(End(A1)), where A = ker(A—\I), and
there exist a unique (up to signs and permutation) pair (Dy, Dy) of tensors in T'( End(A1))
contained in span{l,J} and a unique one-form v on M™ satisfying the following condi-

tions:
(i) A <kery,
(it) det D; = 1,
(iii) VED; = 0= [D;, Cr| for all T € A,

(iv) (Vx(A—=A)D,)Y — (Vy(A— \)D;)X
= (X AY)Dlgrad + (—1)7(A — M) ((X)D;Y — (Y)D;X),
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(v) (VyD)X — (VxD;)Y, grad\) + Hess\(D; X,Y) — Hess \(X, D;Y')
+ (=1)(X) (DY, grad \) — (—1)79(Y) (D; X, grad \)
=AN{(AX, (A= X)D;Y) — ((A—X)D; X, AY)),

(vi) d(Z,T) =0 for all Z € X(M) and T € A,
(vii) dp(X,Y) = ([(A— M)Dy, (A — \)Ds] X, Y).
(viii) D2 # +D2.

(iz) rank(D?+ D3 — 1) = 2.

Conversely, let f : M™ — R™"™ be a simply connected hypersurface that is not con-
formally surface-like and carries a nowhere vanishing principal curvature of constant
multiplicity n — 2. If f is hyperbolic or elliptic with respect to J € End(AL), where
A = ker(A — M), and there exist a triple (D1, Do, ), with D; € span{l,J}, satisfy-
ing items (i)-(iz), then f admits a genuine conformal deformation f : M™ — R™2.
Moreover, distinct triples (up to sign and permutation) yield non conformally congruent

conformal deformations.

Remark 3.3. From the observation given in the last page of the last chapter, we do not
require the principal curvature A to be nowhere vanishing. However, we include it as part
of the proposition because item (i) of proposition gives us useful information about
the behavior of the genuine deformation when A is null. Also, as mentioned before, in
the direct statement, we can remove the hypothesis about the hypersurface f not being

Sbrana-Cartan or Cartan and add the hypothesis that f is an honest deformation.

Proof. Let F': M™ — V"3 C L™ be the isometric light-cone representative of f. Since
the principal curvature A of f with multiplicity n — 2 is nowhere vanishing, it follows from
Proposition [2.7| that for each © € M™ there exist a space-like y € NzM (z) of unit length
and a flat bilinear form ~y : T,M x T, M — span{u}* such that

o (X,Y) = (AX,Y) 4+ (X, Y)

for all XY € T, M. Moreover, A = —(p, F>71 and A = N(v) is the (n — 2)-dimensional
eigenspace Fy of \.
Denote ¢ = AF 4 p1. Then it is straightforward to see that

(¢;¢)=—1 and (¢, pu)=0.
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Also, notice that F belongs to the Lorentzian plane spanned by ¢ and p, and
Ac =M+ A, =A—-AlL
Consider the Riemannian plane-bundle P = {(, u}*. For each ¢ € P, define
De = (A= M)""Ac = A1 A € T(End(A%))
and let
W = span{ Dy : £ € P}.
Lemma 3.4. The subspace W has dimension two on an open dense subset of M™.

Proof. Since D¢,, D¢, spans the subspace W for any frame {(y, (2} of P, the dimension of
W is at most two. Suppose W is one-dimensional. Then, there exists D, € W that spans
W, hence

o (X,Y) = (AX,Y) i+ (A X, V) G + (A X, Y) G — (A X, V) ¢
= (AX,Y)pu+ (A= M)De, X, Y) G 4 (A= M)De, X, Y) (o — (A X, Y) ¢
— (AX,Y) i+ a(G) (A = ADD,X,Y) G + a(G) (A = DD, X, Y) Ga
—(AX,Y) (¢

= (AXY) p+ (A= M)Dp X, Y) (a(C1)C1 + a(2)C) — (AcX,Y) ¢

where {(1, (2} is an orthonormal frame of the plane-bundle P. Thus, there exists a non-

trivial p € I'(P) such that A; = 0. If W is trivial, then any non-trivial p € I'(P) has this

property.

Decompose p = W.p + p1, with p € T'(N;M) and p1 € I'(L?), according to the

orthogonal decomposition of NzM as
NyM = \IJ*NJ;M@LQ,

where L2 is a Lorentzian plane bundle having the position vector field F as a section. Since
p and F are orthogonal, we have p, = <,01,(~ >F, where {5 , lf’} is a pseudo-orthonormal

frame of 2. Because the W, N;M-component of ol is p'W.af, from A; = 0 we get

0= (A,X,Y) = (X, YV, p),

for all X, Y € X(M). In particular, since p is not trivial, the normal vector field p can
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not be trivial either. We conclude that A, = 31, with § = <p<§~, p1>.

If 8 vanishes, from the Codazzi equation for f we get
(Vxp,0) AgY = (Vyp,0) ApX,

where {p,0} is an orthonormal frame of NzM. If the rank of Ay is at least two, then
<V§p,0> = 0 for any X € T,M, and using Corollary 2.2 in [§] we can reduce the
codimension of f, a contradiction because f is not a Cartan hypersurface. Otherwise, the
relative nullity distribution of f is greater than n—2. This is also a contradiction, because
M™ would be conformally flat and as consequence f would have a principal curvature with
multiplicity at least n — 1 by Theorem 16.5 in [§].

If 8 # 0, then p cannot be parallel in the normal connection, otherwise f (M) would
be contained in an hypersphere and, as a consequence, f would be a Cartan Hypersurface
(just consider g = T o f where 7 is the stereographic projection of the sphere S onto
Euclidean space R™). On the other hand, if p is not parallel, then by Theorem 14 in [11]
M™ would be conformally flat, a contradiction because the multiplicity of the principal
curvature A of f is n — 2 (Theorem 16.5 in [§]). O

In the next lemma, we derive some properties of the tensors D, that will be useful in

the sequel.
Lemma 3.5. The following holds:
(1) [De, Cr]) =0 for all T € T'(A).
(ii) VhDe =0 for all T € T(A) and & € T(NzM) parallel along A.

Proof. First, let us get an expression for the projection onto A+ of the covariant derivatives
of the tensors A and A, for { € IP:

(VEA)X = (VA AT (3.1)
= VAT — AVET
= VAT + ACr X
= (A—-\)CrX
and
(VEA)(X,€) = (VX A)(T,€) (3.2)

= A:CrX,



78 CHAPTER 3. THE TRIPLE (Dy, Dy, )

for all X € I'(A%). In particular, (A — A\I)Cr and A¢C7 are symmetric, because

(VEA)X,Y) = (V7 AX,Y) — (AV7X,Y)
=T(AX,Y) — (AX, V1Y) = T (X, AY) + (X, V,AY)
= (X, (V3A)Y)

and
(VEA)(X,8),Y) = (V2AX,Y) — (AV7X,Y) — <AV%£X, Y>
= T(AeX,Y) — (A X, VrY) — T (X, AY) + (X, V7 AcY)

_ <X, Av%§Y>

Therefore, using the symmetries that we just found and the definition of D¢, we arrive

to the following expression

(A - )\I)DEOT - AgCT

= CpA¢
= CL(A — \)D;
— (A~ \)CrD;

which proves the first item, because, from the multiplicity of A\, the endomorphism A — A\I

is an isomorphism when restricted to A*.

For a section £ € NzM parallel along A, we have

(A — MN)D:Cr = A:Cr
= VA
= Vi(A— \)Dg
= V4AD¢ — AVLD;

where in the second equality we have used the assumption that ¢ is parallel along A, and
in the fourth equality we have used that A is a Dupin principal curvature. From equation

(13.1f), we also have
(A= \)CrDe = (VEA)Dg.
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Subtracting both identities we get

(A= AI)[Dg, Cr) = AVAD; — AV}Dy
— (A~ AI)VAD,

which proves the second item for any section £ € I'(NzM) parallel along the distribution

A. m
Lemma 3.6. There exists an endomorphism J on AL such that J> = eI, with € €
{1,0, -1}, and

span{l} < C(A) < span{l,J} = W.

Proof. Since the hypersurface is not conformally surface-like on any open subset of M",
otherwise f would be a Cartan hypersurface, by Corollary the distribution At is not
umbilical, and hence C'(A) # span{[}.
Let
S ={A€End(At): AB = BA for B € W}

be the commutator of the subspace W. By part (i) of Lemma [3.5, C(A) < S. From
Lemma [3.4] we know that dim W = 2. Using this information we claim that, if I ¢ W,
then S = span{/}, a contradiction since C'(A) < S and C(A) # span{/}. We will prove
the claim by contradiction, so suppose that {A, B} is a basis of W and let T' € S with
T # rl. By the definition of the subspace S, the endomorphism 7" commutes with A and
B. Put A in Jordan canonical form, so we have three cases, depending on whether A
has two different real eigenvalues, one real eigenvalue of multiplicity two or two complex

conjugate eigenvalues:

A O Al r s
A= A #£ Ay, or A = or A = s # 0.
(o ) nrmoas (i 1) oas (7, 0) o

It

then from AT = T A for the first case, we get

)\10, /\1[) . )\1 0 a b N a b )\1 0 . )\1& )\Qb
Mc Md] N0 XN/ \e d)] \e d)\o N)  \de Md/’
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Since \; # A, we conclude that b = ¢ = 0, so

T:aO,
0 d

with a # d from the supposition that T # rI. If

B—(¢/
g h)’

from T'B = BT and using the same argument as before and since B cannot be a multiple

of the identity, we get that f = ¢ =0, so

B:GO,
0 h

with e # h. Without losing generality, suppose A; # 0, otherwise Ay # 0 and we can

rename variables. Let us find constants a and b such that

1 0 A O e 0 ai + be 0
= —l—b = s
1—be

1

S0,

1 - A2 = bh.

Therefore,

)\1—)\2 —b h)\l—e)\z
A A ‘

If hA; —ely = 0, then A and B would be linearly dependent. So, hA; — ey # 0 and we
can solve the equations for the unknowns a and b. This means that the identity belongs

to the subspace W, a contradiction.

Lets now move to the second case, that is, to the case where A has one real eigenvalue

of multiplicity two. From AT =T A, we get

)\a+c)\b+d_)\1 ab_ab Al_)\aa~|—)\b
e M) \No x)\e a)l \e a/\o A \xe c+xd)’

Therefore, c =0 and a = d, so
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with b # 0. From T'B = BT we have

ae+bg af+bh\ fa b\ (e f\ (e [\ [a b\ [ae be+af
ag ah ~\0 @ ghigh Oaiagbg—l—ah'

We conclude that bg = 0 and bh = be. So, g =0, h=-¢, f #0 and

()

In fact, dividing by f we can assume that f = 1. Then, A—B = (A—¢)I # 0, a

contradiction.

For the third case, from AT = T'A we have

ra -+ sc rb 4+ sd s a b |a b ros\ ra—sb sa-+1rb
—sa+rc —sb-+rd S \—s r c d] \c d —s r] \rc—sd sc+rd)

Therefore, c = —b, a = d, b # 0 and

T:<_ab Z).

With the same argument, we can conclude that

B¢ /),
—f e
then fA —sB = (rf — se)I # 0, a contradiction. Since we have proved our claim for the

three cases, we have I € W.

For the three cases of the Jordan decomposition of A,

A O Al r s
A= A # Ay, or A = A= 0,
(O )xg) 17 e, OF (0 /\,> o (—s 7‘,) $7

we got that {I, A} is a basis for W. For those three cases, we will find J such that J? = eI
and that {I,J} is a basis for WW. In the first case, notice that

v {5 ) s



82 CHAPTER 3. THE TRIPLE (Dy, Dy, )

For this case, J? = eI, with J # £1I and J # 0 can only happen with ¢ = 1 and, up to

sign,
1 0
J= .

We can generate this matrix with the following linear combination of I and A:
2 A—)\1+)\2I— 2 A0 Mt A 10y (10
A — Ay M—X =X \o0 Ao M—Xx\o 1) \o —1/°

For the second case, we have that

Since
2
a b  [a* 2ab
0 a/ \O a)’
we can only have J? = 0 with J # 0 when
0 o
J= ,

or J2 =1 when J = £I. The latter case would lead to a contradiction, because we are

looking for a basis of W. In the former case, we will choose b = 1. We can generate
J=A-)\L

For the last case, we have

b
W:{(“ )fora,bE]R}.
-b a
2
a b B a? — b? 2ab
b a) \ —2ab a®—0v?)’

we can only have J? = I with J = &I or, up to sign, J* = —I with

J:Ol’
-1 0

Since
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which can be generated by J = b~! (A — al).
Let al + bJ € W, then for any cI + dJ € W we have

(@l +0J)(cI+dJ) = (cI+dJ)(al +bJ)

so W < S. Working through each case for W, we find that dim .S = 2, so in fact we have
equality. We conclude that

C(A) < S =W =span{l,J}

which ends the demonstration of this lemma. O

Lemma 3.7. For any orthonormal frame {&1,&} of P we have
1 = det D¢, + det Dg,. (3.3)
Proof. Since v is a flat bilinear form and
det A = det A, + det Ag,,

the conclusion follows. O]

Now, consider any orthonormal frame {&;, &} of P and define the one-forms

@(X) = <V)L<§1,52>, @1(X) = <V)L<51,M> and C:)2()() = <V)L<§2,M>'

Since afterwards we will fix a convenient frame for PP, we will reserve the symbols w,
wy and ¢ for that specific orthonormal frame, and use i, wp and ¢ for an arbitrary

orthonormal frame.

From the definition of the section ¢ = AF + p, we have
V(¢ =) = X(NF =2 X - p).
So, we obtain

Vxér = (Vx& ) p+ (Vx&i, &) & — (Vi €) ¢ (3.4)
=01 (X) (1 — ¢) + P(X)&,
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Ve = (V& ) o+ (Ve &1) & — (V& () ¢ (3.5)

= W2 (X) (1 =€) = »(X)é&,

V)L(M = <v)l(ﬂa 51> &1+ <V)L(M752> §o — <V)L(Ma C>C (3.6)
= =01 (X)& — 0 (X)& — ATX(A)C

and

Vil = (VxCGu)yp+ (Vx( &) &+ (Vx( &) & (3.7)
= A X(\)p—01(X)& — @2(X)&,

for all X, Y € X(M).

Lets write down the Codazzi equation of A = A, with respect to the frame {y, &, &2, (}.
Since A already satisfies the Codazzi equation and with the aid of the identity (3.6)), we
get

= 01 (X)AgY — 0a(X)AgY — ANTX (VALY
+ 1 (Y)Ag X 4+ @2(Y)Ae, X + ATY (V) ALKX,

for arbitrary X, Y € X(M). By performing \(A — AI)~! on both sides of the equation

and conveniently rearranging we obtain
(X ANY)grad A = De, (Ar (X)Y = Ain (Y)X) + De, (A2(X)Y — Aao(Y)X),  (3.9)

for X, Y € ['(A1).

Let us move on to the Codazzi equation for A; = A — AI. Using the Codazzi equation
for A and equation (3.7)), we obtain

0= (VxA)Y — (VyA)X — Ag, Y + Agy X (3.10)
= (Vx(A=AD))Y — (Vy(A = AD))X — Ag, Y + Agy X
= —(VxADY + (VyADX — Agi Y + Ay X
= —XA)Y + YN)X + A X(NAY + 0 (X)AY + @a(X)AgY — MY (V) AX
— (V) Ae, X — (V) A, X,
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or equivalently,

(X AY)grad A = A'Y (AN AX + @1 (Y)Ag, X + @9(Y) A, X (3.11)
—ATTX(NAY — 01 (X)AgY — 0o(X)AsY

for arbitrary X, Y € X(M).
Finally, using equations (3.4), (3.5) and that Ac = A — A, the Codazzi equation for
&o1=1, 2,18

(VxAg)Y — (VyAg)X = Ay Y — Ague X (3.12)
= Gi(X)AY = &i(X)AY + (1) (X) A Y
_G(V)AX + @i(Y)AcX (—1)75(Y)Ag X
= N(@(X)Y = &(V)X) + (=1 ($(X)Ae Y — (Y )A511X>

for arbitrary X, Y € X(M) and j = 1, 2 with j # i.
Let us use the newly gathered information to prove an important property about the

kernel of the tensors @;.

Lemma 3.8. For the one-forms & (X) = <V &1, > and @9(X) = <V§(fg,,u>, where

{&1,&} is an arbitrary orthonormal fmme for P, we have
A < ker @y N ker @ws. (3.13)
Proof. For arbitrary T' € A and any X € A, from the Codazzi equation we get
01(T) A, X + wo(T)Ae, X =
Performing (A — AI)~! on both sides of the equation above, we get
1 (T)De, + @02(T) Dy, = 0.

Since the subspace W spanned by the endomorphisms De, ¢ € P, has dimension two
by Lemma , and hence D¢, and Dg, is a basis for W for any frame {{;,&} of P, we
conclude that @;(T") = 0. O

It is now time to compute the Ricci equations for 1 and € for the isometric immersion
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F. Using equations (3.4), (3.5), (B-6) and (3.7) we get:

(RHX, Y ), &) = (Vx Vi, &) — (Vy Vi &) — (Vi &)

= (Vx (—01(V)& — (V)& =AY (V) , &)
— (Vy (=01 (X)) — @2(X)& — AT X (N)C) L &)
— (O ([X, Y& — @a[X, Y& = AT X, YI(NE &)

= —X@i(Y) = @;(V) (Vx&, &) =AY (A) (VG &) + Yai(X)
+@0;(X) (Vy&, &) + A XN (Vy( &) + @i((X,Y])

= —d@i(X,Y) = (=1)'@;(Y)$(X) + (=1)'@;(X)(Y) + A7V (A)@i(X)
— AT X (V@Y.

Because 1 < i # j < 2, we can change —(—1)" by (—1)? we arrive to the following

conclusion:

([Au, Ag )X, Y) = —dai(X,Y) + (— )Jwg( (X)) — (1Y @;(X)(Y) (3.14)
FATY (V@i (X) = AT X (V)@ (Y),

for all X, Y € X(M).

Since ¢ = A\F + (1 and F is parallel in the normal connection, it follows that

On the other hand, [A4,, A¢] = 0, because Ac = A — Al and A, = A. Therefore the Ricci
equation for pu and ¢ brings no new information.

The next equation to deduce is the one for & and &. Using equations , and
(3.7), we obtain

(RH(X,Y)&1,&) = (VxVi&i, &) — (V¥ Vi, &) — (Vixyé &)
= (V) (Vi (= ), &) + Xo(Y)
— 01(X) (Vi =€), &) = YI(X) = o([X, Y])
= dy(X,Y),

so we conclude
<[A§17A§2]X7 Y) = d,lvb(Xa Y)a (315)

for X, Y € X(M).
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The last equation is the one relating & and {. Using equations (3.4) and ({3.5) . we get

(RY(X,Y)&,C) = (VEVEE, ) — (VEVEE, ) — <V[XY]&,¢>
= XG,(Y) + &,(Y)A 1X<A>+<— Y) (V£ C)
— V(X)) — &i(X)AY(A) — (—W( ) (V6,¢) — @i([X, Y])
= dDi(X,Y) + G(YV)AX(A) + (— 1) (V)i (X)
— GXOATY () — (~1P0(X)a (Y),

for ¢ # j. Therefore,
([Ae, AJX,Y) = don(X,Y) +@(Y)AT X (V) + (=1 9(Y)@;(X) (3.16)
— G(XOATTY (V) = (1) (X))@, (Y),

for X, Y € X(M).
We now pick a suitable orthonormal frame {1, &>} of the Riemannian plane bundle P

that has a nice behavior with the normal connection: those sections will be parallel along

A.

Lemma 3.9. There exists a unique (up to sign and permutation) orthonormal frame &1 ,&s
of P such that D; = Dy,, fori = 1,2, satisfy

1
det D1 = 5 = det DQ.

Moreover, D3 # —D? and &;, for i = 1,2, is parallel along A.

Proof. Since W is two-dimensional, we have D; # 4D,. We will show that D3 # —D?
by contradiction, so suppose D3 = —D?. Since W = span{[l, J}, let D; = al + bJ and
Dy = cl + dJ. From our hypothesis we get

(® +ed*)I + 2cd] = —(a* + eb*)I — 2abJ.

If e =1, we end up with a = b= c = d = 0, a contradiction because D; and D, would be
the trivial endomorphisms, which means that W is trivial. If ¢ = 0, then a = ¢ = 0 and
W would be spanned by J, also a contradiction. So we are left with the case where J has

two complex conjugate eigenvalues.
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Denote by D; the complex linear extension of D;. Then,

Dlz 69 and [)2: « 9 .
0 0 0 «

From D3 = —D?, we get a* = —0?, or by suitably changing sign of & if necessary, a = 6.

By Lemma , the sum of their determinants is 1, then 1 = 2|6|?, so we can suppose

. 0 0 . 0 0
VoD, = - d V2D, = B
=g g) ™ o —if

for € S'. Writing 6 = e*¥ we have

\/§D1:<0086 sinﬁ) and \/§D2:<—sinﬁ COSB>.

—sinf cosf —cosf3 —sinf

Then,
cos BV2D; —sin fV2Ds = I and  sin fvV2D; + cos BV2Dy = J.

Hence, the orthonormal frame {&,n} of P defined by

& =cos & —sinBéy and 1 = sin BE + cos BEs

satisfies
V2D =1 and V2D, =J,

or equivalently,
V2Ae = (A=) and V2A, = (A—X)J.

From the above identities, we are hinted to see what we get from the Codazzi equation
for v/24¢ = A¢. Using equation (3.4) with ¢, = ¢ and & = 7 and taking into account

that A is a Codazzi tensor, we obtain

0= (VxV240)Y = (VyV240)X — V2Ag. Y + V2Aq. X

(Vx(A=AD)Y — (Vy(A=AD) X — V2Ag.Y + V2Aq. X

= (VxA)Y = (VxADY — (Vy A)X + (VyADX — V2Ag. Y + V2Ag, X
— XY +Y(NX — V20, (X)AY + V20, (X)AY — V2(X)A,Y

+ V20, (V)AX — V20, (Y)AX +V2(Y) A, X,
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for arbitrary X, Y € X(M). Therefore, rearranging the above equation we get

(X AY)grad A = V20, (X)AY — V20, (X)AY + V2(X)A,)Y
— V20, (Y)AX + V20, (Y)A X — V20 (Y) A, X,

Using A = A — I, we have
(X AY)grad A = V2001 (X)Y + V2(X)A,Y — V2Xi, (V)X — V20 (Y) A, X
or, expressed in another way,
[(Y () + V2001 (V) T +V20(Y) A, ] X = [(X(A) + V2001 (X)) T+ V2(X)A,] Y. (3.17)
Using Lemma for Y =T € A and X € At in the above equation, we get
V2U(T) A, X = (X(\) + V22 (X))T.
Since /24, = (A — AI)J is an isomorphism on A*,
A<kery and X(\)+V2X\i(X) =0, for X € At
Replacing the last identity in equation for X and Y € A+, we obtain
D(Y)AX = O(X)A,Y.

Because v/24, = (A — M)J is an isomorphism on AL, it follows that kert) = X(M).
From the equation (3.15]) we conclude

(RH(X,Y)Em) = ([, A X,Y) = d(X,Y) = 0.

From [A¢, A,] =0, then [(A—AI),(A—AI)J] = 0. This means that A and J commute.
Then, the endomorphism A — AI in A+ would be a multiple of the identity. It cannot be

the null operator, because f has a principal curvature A with multiplicity n—2. Therefore,
A — X = BIin At with 3 # 0. Using the identity (A — A\I)Cp = VLA, we get

BCr = V(B + NI =T(B+ NI

We have a contradiction, because f is not conformally surface-like. Therefore, D3 # —Dj3.
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We will prove the existence and uniqueness of an orthonormal frame {£;, &} C P such
that det D¢, = 1/2. Let us start with the existence. Pick an arbitrary orthonormal frame
{&,n} for P. Since

1 = det D¢ + det D,,

and from Lemma we do not have to do any work if D¢ or D, has determinant 1/2.
So, suppose without loosing generality that det D¢ < 1/2 and det D,, > 1/2. Then, define
an orthonormal frame on P by rotating £ and n by an arbitrary angle 0 < 6 < 7/2, that
is, £&1(0) = cosO & +sinfn and &(0) = —sinf & + cosfn. We have

det Dg = det D£1(0) < det D&l( ) = det Dn,

%
so by continuity we get existence.

We are left with uniqueness. We have to do it with a case by case analysis, depending
on whether the tensor J has two distinct eigenvectors, one eigenvector of multiplicity two

or two complex eigenvectors (J2 =1, J?> =0, or J?> = —1I, respectively).

Suppose first J2 = I and, by the existence part, let {1, &} be the orthonormal frame
on P such that D; and Dy have determinant 1/2. Then,

0 0
D1 = “ and D2 = ¢
0 b 0 d

with ab = e¢d = 1/2. Let us rotate the orthonormal frame {{;,&} and see if the endo-
morphisms they induce also have determinant 1/2. So, define £ = cos6&; + sinf & and

n = —sinf & + cos & and therefore

D, — acosf + csinf 0
‘T 0 bcosO + dsin 6

with det D¢ = abcos? 6 + cdsin? 0 + cossinf(ad + be) = 1/2 + cossinf(ad + bc). We
conclude that ad = —bc. Multiply both sides of this equation by bd, so we end up with
abd® = —b?cd. Since ab = cd = 1/2, we conclude that d*> = —b* or b = 0 = d, a

contradiction because the determinants of D; and Dy are not zero.

For J? = 0, we have
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with a? = ¢ = 1/2. Then,

0 acosf + csinf

(acos@ 4+ csinf bcosf +dsin9>
D¢ =

with det D¢ = a® cos? 0+ ¢?sin® 6 + 2accos fsin @ = 1/2+ 2accosfsinf. If a =0 or ¢ = 0,

then Dy or Dy would have a null determinant, contradicting our assumption.

For the last case J? = —1,

with a? 4+ b* = ¢ + d> = 1/2. Then,

D, — acosf +csinf bcos + dsinf
£ —bcosf —dsinf acosf + csinf

with det D¢ = (a®+b?) cos? 0+ (c?+d?) sin® §+2 cos 0 sin §(ac+bd) = 1/2+2 cos 0 sin f(ac+
bd). If ac = —bd, then

cDy = c(al +bJ) = —b(dl — ¢J) = bJ Ds.

Since both endomorphisms have the same determinant, we get ¢ = +b. If ¢ = b = 0, then
a=+d, D; = al and Dy = dJ. So we have D3 = —d’I = —a*I = —D?, a contradiction.
If c = +b # 0, then a = Fd and D? = —D3, same contradiction.

We are left to prove that & and & are parallel along A. For this, we will use the
uniqueness of the orthonormal frame {&;,&}. Given x € M"™, T € A and an integral
curve v of T starting at x, let &(¢) denote the parallel transport of & (z) along v(t). By
Lemma ﬁ, we have that Vﬁf(ngy() = 0, or equivalently, V D ()X D t)V
Given an orthonormal frame {X,Y} of X(M), we have

v (t)

jdetD&(t) [<D5 0 X)(De. Y, Y) = (D X, Y )(Dg, (Y, X))
= [(D JVE X, X) + <Dg 0% Vi X)[(De, Y, Y)
+ (Dg. X, X>[<D£Z(t oY, Y) + <D Y, VY]
- [<Dgi<>v (X Y) + (D X, Vi >}<DA YX>
— (DX, Y) [P,y Vi) Yy X) + <D VY, V0 X0]
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Using now that {X, Y} is an orthonormal frame and decomposing the vector fields V’;,(t)X

and Vf;,(t)Y in this frame, we get

d
Therefore, the determinant is constant and equal to 1/2 along the parallel transport. Since
& and & are unique (up to signs and permutation) with this property, by continuity we
must have &(t) = &(v(t)) for any ¢. It follows that V4& =0 forany T € A, i =1,2. O

From now on, we fix the privileged orthonormal frame {3, &} of P given by the above
lemma and omit the tilde notation in w;, ws and 1 when using this frame. Also, the
notation D; and D, refers to the privileged frame {;, &}, so that D; = D, for i =1, 2.

We will show that the pair (D;, D) and the one-form 1) satisfy conditions (4)-(viii) in
the statement, and leave item (iz) for later. From Lemma and because &; are parallel
along A, we get

A < ker ¢ N ker wy N ker ws. (3.18)

In particular, condition () is satisfied. From Lemma we have item (ii) and from
Lemma (3.5 we have item (i47).

Now that item (i) has been proved, we will show that the tensors D; carry the infor-
mation of the one-forms w;. Therefore, the tensors D; and the one-form ¢ furnish the
information about the normal covariant derivative. Using Codazzi Equation for
Y =T € T'(A), a unit length section, and X € T'(A1), we get

= )\wZ(X)T + AEZ-VXT + VTAEZ-X - A&VTX.

Taking the inner product with T of both sides of the above equation and using equation

(1.6 of Proposition we obtain

Vide X, T)
Ae, X, V7T)

(A= \)D; X, 6)
D; X, grad \) ,

)+
(X) =
) =«
)+

or equivalently,

1
wi(X) = 3 (D; X, grad Ay, (3.19)
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for X € T(A+).
Let us prove the rest of the items of the statement. From the Codazzi equation (3.12))

we have

(Vx(A—=X)D,)Y — (Vy(A = A)D)X
= Mwi(X)Y = wi(Y)X) + (=1) ((X)AgY — 9(Y)Ag, X)

for X, Y € I'(At). From equation ([3.19)) we get

MMwi(X)Y —w;(Y)X) = (D;Y,grad \) X — (D; X, grad \) Y
= (X AY)Dlgrad \.

Because A¢; = (A — AI)D;, combining the last two equations we conclude that

(Vx(A—=AD,)Y — (Vy(A— MN)D;))X
— (X AY)Digrad A + (=1 (A — M) (¥(X)D;Y — (Y)D; X)

for all X, Y € I['(A'), which is item (iv).

The Ricci equation ((3.14) gives

([Ag;, AX)Y) = dwi (X, Y) =AY (Nwi (X) + AT X (Nwi(Y)
+ (=17 (Y )w;(X) = (1) (X )w; (V),

for all X, Y € X(M). From equation (3.19) we get

Ywi(X) = =Y (\H{(D; X, grad \))
=AY (\) (D; X, grad \) — A1 (Vy D; X, grad \) — A\ 'Hess \(D; X, Y)
= AW (Nwi(X) = AH{(VyD; X, grad \) — A 'Hess A\(D; X, Y),

for all X, Y € ['(A+). Therefore,

dwi(X,Y) =AY (Nwi(X) + AT X (V) wi(Y)
= dw;(X,Y) + Ywi(X) + X (VyD; X, grad \) + A 'Hess \(D; X, Y)
— Xwi(Y) = XN (VxD;Y, grad \) — A" 'Hess \(D;Y, X)
1

=3 (((VyD;))X — (VxD,;)Y,grad \) + Hess \(D; X,Y) — Hess \(X, D;Y)) ,
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for all X, Y € I'(A+). We also have

(—LY (¥ ey (X) = (~1)(X )y (¥)
— (~1B(X)A (DY, grad A) — (~17(Y)A (D, X, grad A) |

for all X, Y € I'(At). Combining these results, we conclude (v):

A(AX, (A= ADDY) — (A — \I)D;X, AY))
= ((VyD;)) X — (VxD,)Y,grad A} + Hess A(D; X,Y) — Hess A\(X, D;Y)
+ (=179 (X) (D;Y, grad A) — (—=1)"9(Y) (D; X, grad ) ,

for all X, Y € I'(A1).
The Ricci equation (3.15) gives

<[AE1’ Afz]X7 Y> = dquj(Xv Y),

for XY € X(M). If Y =T € T'(A), then the left side is zero, and item (vi) is proven.
Also, item (vii) follows from the same equation, because A¢, = (A — M) D;.

We have from Lemma [3.9] that D} # —D?. For D3 # D? let D, = al + bJ and
Dy = cl + dJ. Suppose we have equality. Then

(a® +b*e)] + 2abJ = (¢ + d*e)I + 2cdJ.

In the case where € = 0, ab = cd and a? = 2. It follows that a = +c. If a = ¢ = 0,
then W = span{J}, a contradiction. If not, then b = +d, and again W would be one-
dimensional. If € = 1, then a? + b = ¢® + d? and ab = cd. From the determinant value of
D;, we get a? — b = ¢ — d?. Then a® = 2, and we can get the same contradiction of the
preceding case. The same for e = —1. So, (viii) is proven.

In Lemma 3.6, we have found a candidate .J € I'(End(A*')) that will make our hyper-
surface f: M™ — R"*! hyperbolic, parabolic or elliptic, depending on whether J? = I,
J? = 0 or J*> = —I, respectively. We will now prove the condition that is missing:

VhJ =0.

Lemma 3.10. The tensor J satisfies V.J = 0.

Proof. We will have to treat each case separately. Let us start with the case J? = I.
Without loss of generality, suppose D; = al + bJ with b # 0. We can do this because
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dim W = 2. Take X € T'(A1) of unit length such that D; X = 0X. Then,

0= (VhD)X
= VX — D,V X
= (TO)X — (D, — 0I)VLX.

If VAX £ 0, since (D; —01)X = 0 and V24X is orthogonal to X, we would have
(Dy —0I)* =0,

and because det D; = 1/2,

1 S, 1
0_(%—9> =" =1+ .

Solving this equation leads to #> = 1/2 or § = +1/4/2. Taking into account that
det D; = 1/2, we conclude that D; = :i:\/éill , a contradiction with our initial assump-
tion. Therefore, VAX = 0 and T = 0. We have D; = al + bJ with

0+ 55 0— %

and b= 20
2

a =

s0 0 =VED, = (Ta)l + (Tb)J + bViJ = bVhJ. We conclude that V4J = 0.
Now, let us prove the case J? = 0. Without loss of generality, assume that there exists
an orthonormal frame {X,Y} for I'(At) such that

JX =Y and JY =0.

We can do this because we can pick X € (ker J)* and Y € ker J such that JX = gY
and JY = 0 with 2 non-null function. Then, we redefine J = S~!J and still have
span{l,J} = W and J? = 0.

Suppose D = \/5_1[ +bJ with b # 0. From 0 = V4D, we get

0= (VhD)X
= VE(VZ X +bY) = Dy ((VEX,Y)Y)
— V2 VEX Y)Y 4 (TH)Y +b(VEY, X)X — V2 (VEX,Y)Y.

Therefore, <V%Y, X > = 0, and consequently VAY = 0.
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Now it is an easy task to show that V.J = 0. We have,

(VE)X =VEY — J(VEX, Y)Y
=0

and

(V)Y = —J(V4Y, X)X
=0,

which proves our statement.

Now, let us move on to the last case, J2 = —I. From the fact that dim W = 2, and

because det D; = 1/2, we can suppose

(:0591_+ sin @

V2 V2

with sin@ # 0. Let X,Y € I'(A') be such that

Dy = J (3.20)

JX =-Y and JY =X.

Then,
cos0X —sinfY cosY +sinfX

and DY =
V2 V2
From the condition V%D, = 0, and using the formulas (3.20)), ([3.21)) we get two equations:

DX = (3.21)

0= (V4D)X
= VLD X — D\VEX

= i TcosO)X — (Tsinf)Y —sinOVEY —sin0JVAEX
\/5 T T

and
0= (V]%Dl)y
= VAD,Y — D\VhY

1
= — ((TcosO)Y + (T'sin®) X +sinVELX —sinfJVLY).
\/5 T T
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Multiplying on both sides of the first equation by v/2.J, we get
—(T'cosO)Y — (T'sinf)X — sinQJVEY + sinVEX = 0.

We conclude that T'(cos#) = 0 = T'(sin ), and therefore

sin 6
0= (VLD)) = in}l

]

We have thus found a tensor J € T'(End(A*)) that makes our hypersurface hyperbolic,
parabolic or elliptic, depending on whether J? = I, J? = 0 or J? = —1I, respectively. We
now prove that the second possibility occurs precisely when f is conformally ruled, which

can not happen by the assumption that f is not a Cartan hypersurface.

Lemma 3.11. Let f : M™ — R be an oriented hypersurface with a nowhere vanishing
principal curvature of constant multiplicity n — 2. Assume that f is not a Cartan hyper-
surface on any open subset of M™ and that it admits a genuine conformal deformation
f oM™ — R"™ 2. If f is parabolic with respect to a tensor J € [(End(A1)), then it is
conformally ruled. Moreover, all genuine conformal deformations f : M™ — R™2 of f

are conformally ruled with the same rulings.

Proof. If f is parabolic, then there exists a tensor J € I'(End(A1)) satisfying the following

conditions:
(i) J2=0.
(ii) VAJ =0 for all T € T(A).
(iii) Cr € span{l, J} for all T' € T'(A).

The tensor J given might not be the same found in Lemma [3.6) but since f is not
conformally surface-like on any open subset of M", by the assumption that it is not
a Cartan hypersurface, the subspace generated by I and J must be W, the subspace
generated by our endomorphisms Dg, where { € P. In fact, the tensor J must be a
function multiple of the tensor found in Lemma [3.6]

Pick {X, Y} orthonormal frame of I'(A1) such that JY = 0 and JX = §Y with § # 0.
We will prove that the distribution



98 CHAPTER 3. THE TRIPLE (Dy, Dy, )

is umbilical, that is there exist Z € I'(L'), and therefore Z is a multiple of X, such that
<VUV7X> = <Ua V> <X7 Z>

for U,V € I'(L).
Since Cr € span{l,J} and JY = 0, it follows that (CrY, X) =0 for all T € T'(A).

Hence
(VyT, X)=—(CrY,X)=0 for T € A. (3.22)

Because D; € span{[, J} with det D; = 1/2, we can suppose by changing signs on our

privileged frame if necessary that
V2D; =1+ b;J, (3.23)

so V2D;Y =Y. Since dimW = 2, we can suppose that D; is not a multiple of the
identity, or equivalently b; # 0. From V4D; = 0 we get

0=VAiy — V2D, VLY.

Since V4Y is orthogonal to Y and V2D, is not the identity endomorphism, we conclude
that V&Y = 0, or the equivalent equation

(VrY, X) = 0. (3.24)

This is to be expected, because (T,Y) = 0 and we want to prove that the distribution L

is umbilical.

From (A—X)Cp = V4 A (equation (3.1])), we have that (A — \I)Cr is symmetric and
from Lemma [3.6
span{/} < C(A) < span{!, J},

we conclude that (A — AI)J is symmetric. Therefore,
(A=XDY,)Y) =0 {(A-M)JX,Y)=0"{X, (A= \)JY) =0. (3.25)

It follows that in the orthonormal frame {X, Y} of At we have

A—AIz(ﬁ “) and A:<5+A “) (3.26)
JT L A
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with 1 # 0, because A — A restricted to A+ is an isomorphism. Now, from the form of
D; given in ([3.23]) and the form of A — AI given in (3.26) we get

V2AeY = (A= XV2D,Y = (A= XY = puX
and
V24¢ X = (A= ADV2D;X = (A — M) (X 4+ b8Y) = (8 + bidp) X + pY.

Define 6 = b1dp # 0 and 6 = bydp, so in the orthonormal frame {X,Y} we have

V2A;, = (5 o g) and V24, = (5 +6 “). (3.27)

Let us use the Codazzi equation of A applied to T € T'(A) of unit length and Y €
(A1) and then take the inner product with 7. Doing that and using equation ([3.26]) we
get

0= (Vo AY,T) — (AVLY,T) — (Vy AT, T) + (AVy T, T)
— (Vr (X +AY),T) + A (VeT,Y) — Y(A)
= —pu(VrT, X) = MVrT,Y) + M(VT,Y) = Y()),

so we conclude

pw(VrT, X) ==Y\ (3.28)
This equation tell us that the candidate for mean curvature of L would be

YA
Z =——X.
0

Now, the Codazzi equation for A applied to X, Y € I'(A+) and taking inner product
with Y, together with equation ((3.26)) yields

0= (VxAY,Y) — (AV4Y,Y) — (VyAX,Y) + (AVy X, Y)
— (Vx (X + AY),Y) = (VxY, uX + AY) — (Vy (B + N)X + 1Y), Y)
+(Vy X, X + AY)
= 1 (VxX,Y) 4+ X(A) + 1 (VxX,Y) + (B+ N (VyY, X) = V(1) — A (VyY, X).
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So, we arrive to
=21 (VxX,Y) + X(A) + B(VyY,X) =Y (). (3.29)

Next, we need the information given by the Codazzi equation for A, applied to X,
Y € T(A1). Lets start first with i = 1. Using equations (3.12)) and (3.27)), we obtain

0={(VxV244)Y,Y) — ((VyV245) X, V) — V2)u1(X) — V2 (X){A,Y,Y)
+V20(Y) (A, X, Y)

= (VxpX,Y) = (VxY, uX) — (Vy (B+ )X +pY),Y) + (Vy X, nX) — V2 w1 (X)
+ pp(Y)

=2 (VxX,Y) + (B4 0) (VyY, X) = V(1) = V21 (X) + po(Y).
For ¢ = 2, using equations (3.12)) and ({ - we get

0= {(VxV24,)Y,Y) — {(VyV245)X,Y) — V2 ws(Y) + V20(X) (A, Y, V)
- \/_¢ <A§1X Y>

= (VxV24,Y,Y) — (V245 VxY,Y) — (Vy V24, X,Y) + (V24,Vy X, Y)
— V2w (Y) = pp(Y)

= (VxpX,Y) — (VxY,uX) = (Vy ((B+0)X + pY),Y) + (Vy X, uX)
— V2 (Y) = up(Y),

Hence,

0= 20 (VXX Y) + (B+0) (VyY, X) = V() - V2r (X) 4 uo(Y).  (3.30)

and
0=2u(VxX,Y)+ (B+0)(VyY,X) — Y(i) — V2dwa(X) — pip(Y). (3.31)

Replacing equation (|3 into equations (3.30)) and ( - we obtain

0(VyY,X) — X(\) - V2han(X) + (Y =
and

B (VY. X) — X(\) - V2han(X) — ph(Y) =
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Adding both equations,
(04 0) (VyY, X) —2X(N) — V2 (w1 (X) 4+ wy(X)) = 0.

Now using equation ([3.19), the form of D; given in (3.23) and that (6 + ) = (by + by)dp

we get
V2X (w1 (X) + wa(X))

+
+ A= AHV2D X, grad \) — AH(V2D, X, grad \))

= 2X(\) = X(A) = b6V (A) — X(N) — b5V (N)
= —(by + by)6Y (N)

0+0
=——Y(\),
A
SO
(040) (u(VyY,X)+Y)\) =0. (3.32)
If (6 + 6) # 0, then from equations (3.22)), (3.24), (8.28) and (3.32) we get that L is an
umbilical distribution with mean curvature vector Z = —(Y'\/u)X.
We will show now that 6 # —@, so suppose by contradiction that § = —0. From

equation ([3.27]), we have

\/§A§1 = <ﬁ+6 M) and \/51452 = (6_9 M) .
W 0 W 0

Define an orthonormal frame {£,n} for P by

E=5(6+6) ad y= (6 -6).
Then, from equation ([3.26]) we have
(B w) B (0 0
Ae = (M O> =(A—-X) and A4, = (0 0) . (3.33)

Time put into work this new information in the Codazzi equations for the isometric
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immersion F. For A = A, using equation (3.9) and that D = (A — A\I)"'A; = I we get

From equation (3.33)), we have

AR I N
a3 (),

From the definition of D, and equation (3.33)), we get

D, X = (A= X)T"A,X =0(A- X)X = QY
ol

and
DY = (A—X)"'A4Y =0.

Therefore, from equation (3.34))

Y(OX — XY = X0 (X)Y — A& (V)X — %GQQ(Y)Y

Hence,

7

O (Y)+AXY(A) =0 and @ (X)+AX(N\) - =@u(Y) =0.

1
Now, from the Codazzi equation of A; = A — Al we have

where Z, W € X(M). For the left part of the equation,

(3.34)

(3.35)

(VAW — (Vi A)Z = (V3(A — M)W — (Vi (A — M) Z = (Z A W)grad \.

On the other hand, from equation (3.12)) we get

Ag W — Ags o Z = Xn(Z)W + 0(Z)A,W = Xin (W) Z — (W) A, Z.

Combining both parts we arrive to

(Z AW)grad A = Aoy (Z)W + D(Z) AW — Aoy (W) Z — (W) A, Z.
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For vectors Z =T € A and W = X, using equation (3.33) and Lemma we conclude
that
XNT = (10X — Xiy (X)T,

or equivalently,
X(\) = —A(X) and A <kerd. (3.36)

Replacing now Z = X and W =Y and using equation (3.33) we get
(X AY)grad A = Aoy (X)Y — Ay (V)X — 09(Y) X
From this equation, we arrive to
Y(\) = =00(Y) = A (V) and  — X(\) = Aoy (X). (3.37)
Therefore using equations , and we conclude
A@®span{Y} <kerd Nker@, and A Z(\) +@(Z) =0, for Z € X(M), (3.38)
for Z € X(M).
Now, the second fundamental form of F is given by

oF(XY) = (AX,Y) p+ (A= ADX,Y)E+ (A, X, Y)n— (A= ADX,Y) ¢
= (AX,Y) (p+&— Q) = MX V) (€= Q)+ (AXY)n.

From equations , , and we get
V(e +€=¢) =2 XN (-0 +aX) (- +dX)m=v(X)n, (339

for X € X(M). While using equations (3.4), (3.7) and (3.38]) we get

VIAE =) = XN (E— )+ AVx(E—¢) (3.40)
= X()(E =) = X (1 — )+ M(X)n + X (A — X(NE + Ada(X)n
= MY (X) + @2(X))m,
for X € X(M).

The second fundamental form of the isometric light-cone representative F: M"™ —
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Vn+2 c L3 is given by
' (X,Y) = (AX,Y) U, N — (X, Y) w.
Define a vector-bundle isometry 7: NeM — L = {n}+ by setting
TON=pu+€6—¢ Tw=ME—() and 7F =F.

From equations and the vector bundle isometry is parallel in the induced
connection on L. By Lemma , there exists an isometric immersion H : W C V"2 —
V3 with F(M™) € W, such that F' = H o F. It follows from Proposition [2.1|that there
exists a conformal immersion h : V' — R™*? of an open subset V O f(M") of R"*! such
that f = h o f, contradicting the assumption that f is a genuine conformal deformation
of f. Hence, § # —0 and L is an umbilical distribution.

We will prove now that the restriction of f to each leaf of L is also umbilical. Define
g = foi:o" ! — R"! where o is a leaf generated by the umbilical distribution L. From

equation (|3.25]) we get
(YY) = [ (YY) + ! (YY) = [.Z + AN
and
A(T,S) = f.o/(T,S) +al(T,8) = (T,S) f.Z + (T, S) N,

for T', S € A. So g is umbilical with f,Z + AN as mean curvature. We conclude that f

is conformally ruled.

Let us now prove that f is conformally ruled with the same rulings as f. From equation
(3.25) and (3.27) we have

ozF(S, T)=X(S,T)u, and ozF(Y, Y) =
for S, T' € A. Therefore,
aF(Za W) = /\<Zv W> My

for Z, W € L. It follows that (A¢,Z,W) =0, for Z, W € L. As in the demonstration
of Lemma (3.4} consider & = W,.p; + n;, for ¢ = 1,2, orthogonal decomposition, where
pi € NiM and n; € span{F,(}. Then,

0= (AL Z,W) — (Z.W)(E.m).
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From the above equation p; cannot be trivial, otherwise &; would be trivial. We conclude
that
fl -
Apvz L il
Also from the fact that (£1,&) = 0, <§,~,F> =0and 7 € span{F, 5}, we get that n; is

a multiple of F' and hence p; and ps has unit length and are orthogonal. As before, let

g=foi:o" " = R"?2 where 0""! the leaf generated by the umbilical distribution L

and i : 0"~ ! — M™ is the inclusion. Then,
(2, W) = foal(Z,W) + o/ (Z,W) = (Z, W) f.Z + B {Z, W) p1 + B (2, W) pa,

where Z, W € L. So, g is umbilical with f*Z + B1p1 + Pope as mean curvature vector,

and therefore f is also conformally ruled with the same rulings as f. O

It remains to prove condition (ix).
Lemma 3.12. The tensors Dy and Dy satisfy
rank (D? + D3 — I) = 2.

Proof. We will divide the proof in two cases, depending on whether f is elliptic or hyper-
bolic.

Elliptic Case
This case is almost trivial. Let Dy = al + bJ and Dy = ¢l + dJ. Since det D; = 1/2 we

must have a® + b? = 2 + d* = 1/2, then

Df+D§—I:<a2_b2+62_d2_1 2(ab + cd) )

—2(ab + cd) a?—b 4+ —-d*-1

We cannot have rank (D7 + D3 —I) = 1, because neither column is a multiple of the other.

If the endomorphism D? + D3 — I has rank zero, then from
A+ +F+d =1

and
-+ -d*=1
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we conclude that b = d = 0. This is a contradiction, because we cannot have W =
span{/}.

Hyperbolic Case

Suppose that rank (D? + D3 — ) < 2 and let

6, 0 6, 0
VoD =1 ") and V2Dy=| 7 " |. (3.41)
Then,
02 + 62 — 2
2D? 2D — 21 = ! i ) U ) (3.42)
0 0%+ 605, —2

so without loss of generality (if not interchange 6; with 6; ') suppose 6% + 62 = 2.
Notice that if we define

V26 = 0,6 + 056, and V2 = —0s6 + 0,6,

we have that {£,n} is an orthonormal frame of P with D¢ = I and D,, has rank equal to
one (D, cannot be null otherwise dim W = 1). Therefore, A = A — AI and A, has rank
equal to one. As a consequence, there exist orthogonal eigenvectors X, Y € I'(A+) with
A, X =0and A,Y #0.

Time to input this information into the Codazzi equations for the isometric immersion
F and see what we can find. For A = A, using equation , A¢ = A — Al and that
A, X =0 we get

01 (X)AY — @p(X)A)Y — AT X (V) A,
+ @1 (Y)AeX 4+ @a(Y)A, X + XY (VA
— & — (9

(X)) + AT XN)] (A=Y (X )A Y+ [0 (Y)+AYN)] (A= ADX

Operating both sides of the equation by (A — AI)~! and rearranging appropriately we
obtain

[01(X) + AT X W] Y + Ga(X)D,)Y = [0 (V) + A'Y (V)] X. (3.43)

Now, let us work on the Codazzi equation of A = A — AI. From equation (3.12) we

have

(V2AIW — (Vi A) X = Mo (Z2)W + (Z) AW — Xy (W) Z — (W) A, Z,
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for Z, W € X(M). Since A¢ = A — A, the left part of the above equation is

(VZAIW — (VwAe)Z = (Vz(A = M)W — (Vw(A = A]))Z
=WNZ - Z(\NW
= (Z N W)grad .
Combining both parts we get

(Z AW)grad A = Aoy (Z2)W + 9(Z) AW — Xin(W)Z — H(W) A, Z. (3.44)

For Z =X and W =T € A, using Lemma A, X = 0 and that T'(A\) = 0 we obtain
the equality
—X(NT = Aén (X)T

and so —X (\) = A1 (X). Replacing in equation ([3.43)), we get
02(X)D,Y = [0 (Y) + AV (V)] X. (3.45)
For Z =T and W =Y in equation (3.44) we get
YT = ¢(T)A,Y — i (Y)T,

so A < kertp and —Y (\) = Ay (Y). Therefore, taking into account A,Y # 0, replacing
in equation ((3.45) we obtain @9(X) = 0. Lastly, for Z = X and W =Y,

(X AY)grad A = Aoy (X)Y + (X)A,)Y — Aoy (V)X
or 9(X) = 0. In summary, we have
A @ span{X} < ker ¢ N ker @, (3.46)

and
ANTZ(\) + a1 (2) =0, (3.47)

for Z € X(M). Using equations (3.4)), (3.6]), (3.7) and (3.47]) we observe that

Ve(u+€=0O = "Z\ (- +a(Z)(n—C) +¥(2)n (3.48)
= (2,
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for Z € X(M). Similarly, using equations ({3.4)), (3.7) and (3.47) we get

VEME =€) = ZO)(E — ) + A (2) (1 — €) + MAZ)n + Z(\) + Ay (Z)€ + Aan(Z)n
= (0(2) +@(2) ) m, (3.49)

for Z € X(M).

Let us rearrange the expression of the second fundamental form of F to

o (X,V) = (AX,Y) i+ (A= AD)X,Y)E — (A4, X, V) — (A= M)X,Y)(
= (AX.Y) (n+ &= Q) + (A4, X, Y)n = MX,Y) (€ = ().

Let L = span{n}t and let F be the isometric light-cone representative of f. Define a
vector bundle isometry 7: NpM — L by setting

TON=pu+6—C¢ Tw=ME—() and 7F =F.

From equations and the vector bundle isometry 7 is parallel in the induced
connection on L. We have all the conditions of Lemma where item (iii) follows from
(3.46). Therefore, there exists an isometric immersion H : W C V"2 — V"3 with
F(M™) C W, such that F = H o F. By Lemma there exist a conformal immersion
h:V — R™? of an open subset V O f(M™) of R such that f = ho f, contradicting

the assumption that f is a genuine conformal deformation of f. O]

We have finished demonstrating the direct implication of the proposition [3.2 We will
now prove the converse of Proposition [3.2] As the reader might already suspect, the idea
is to use the tensors D;, for ¢« = 1, 2, and the one form 1) to define a compatible connection
V and a symmetric form & with the same formulas we got in the direct implication. With
the aid of items (i) to (viii), we will show that they satisfy the Gauss, Codazzi and Ricci
equations and this will provide us with an application F : M™ — L™, With a bit more
of work, we will ensure that its image is in the light-cone V"3, We will use item (iz) to

ensure that the conformal immersion

f=C(F): M" — R"?

is a genuine conformal deformation of f.
Choose an orthonormal frame pu, &, & and ¢ of the trivial bundle £ = M"™ x L4

where ( is a time-like vector. Extend the definition of the tensors D; to A by requiring
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A < ker D;. Motivated by equation (3.19)) define a one-form

1
wZ(X) = —X <DZX, grad )\> s

where A is the non-null principal curvature of constant multiplicity n — 2 of the hyper-

surface f : M™ — R™"1. Also drived by equations (3.4)), (3.5)), (3.6) and (3.7]) define a
compatible connection V on E by declaring

Vit = —wi(X)€ — wy(X)€s — ATX (NG,
Vxé =wi(X)(n—¢) + (X)@,
V& = wa(X) (1 — ¢) — p(X)&r,
VxC= -2 XM\ — wi(X)& — wa(X)s,

for X € X(M), and the extending the definition. Since n > 6, we have that X is a Dupin
principal curvature (Proposition [1.1)). Taking into account this fact, the definition of the
connection, the definition of the one-forms w;, together with item (i), we conclude that

i, &1, & and ( are parallel sections along A on the connection V.

Let
a:TMxTM —- FE

be the bilinear form defined by

AX,Y) = (AX, Y)Y u+ (A= M)D X, Y) &+ (A= M) Dy X, Y) &
— (A= XDX,Y)C.

From the symmetry of (A — AI)Cr (see equation (3.1))), and because f is hyperbolic or
elliptic and not conformally surface-like, we obtain that (A — AI)J is also symmetric.
Since D; € span{l,J}, we get that (A — AI)D; is also symmetric. Then, we get the

symmetry of &.

From Proposition 11 and Proposition 12 of Chapter 4 in [I8], in order to prove that
& satisfies the Gauss equation it is enough to show that K(X,Y) = K(X,Y) for all
orthonormal vectors X,Y € T'M, where K is the sectional curvature of M™ (the knowledge
of all sectional curvatures determines the curvature tensor). That equality is clear if X

or Y belongs to A, because

A =ker(A — A )Dy Nker(A — X )Dy Nker(A — AI). (3.50)
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So, for orthonormal X, Y € A+, and using item (ii), we have

which proves our claim. Therefore & satisfies the Gauss equation.

Let us move on to the Codazzi equations. First notice from the definition of & we

must prove that
A, =A A =(A—-XN)Dy, A, =(A—-X)Dy and Ar=A-\.

satisfy the Codazzi equations. In order to prove that A, = A satisfies the Codazzi
equation, we must show that
Ae W =A¢ 7

Vzu Vwp

for all Z, W € X(M). Using the definition of the connection, equation (3.50), and the

fact that A is a Dupin principal curvature, we get

Ay T —Ag 7 = —wi(Z)AgT — wy(Z2)Ae, T — X' Z(\) AT
+wi(T)Ae, Z + wa(T)Aey Z + X 'T(N) A Z
pr— ()7

for all '€ I'(A) and Z € X(M). On the other hand, using the definition of w;, item (ii)
and the property

for i = 1,2, we get

Ay Y —Ag X = —w0i(X)AgY —w(X)AgY — AT X (ALY
+wi(Y)Ag X + wo(Y) A, X + MY (N AX
= A YHA =) (D, X(A\)D1Y + Do X (M) DY — X (\)Y)
+ A A=) (=D Y(A\)D1 X — DY (M) Do X + Y (M) X)
= AN A = X) (—=(D;X A DY)grad A — (Dy X A DyY)grad \)
+ATHA = AD (X AY)grad A
= 07
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for all X, Y € I'(A+). This proves the Codazzi equation for p.

Let us prove the Codazzi equation of A = A — AI. Using the Codazzi equation for
A, taking into account that ( is parallel along A, that A is a Dupin principal and the

definition of the connection V, we obtain

(V2A)T — (V1 A)Z — Ag T+ Ag, 2
= (V2(A=XD)T = (Vo(A= M) Z — Ay T
= —ZWNT +TNZ +X"ZWAT + w1 (2)Ae, T + wa(2) A, T
pu— O’

for all T € T'(A) and Z € X(M). We are left the case when X, Y € I'(At). Using the
Codazzi equation for A, the definition of the connection @, the definition of the one-forms

w; and item (ii) we get

(VxA)Y — (VyA)X — Ag Y + Ag X
= (Vx(A=AD))Y = (Vy(A=M))X — Ag Y + Ag X

—XA)Y +YN)X + AT X(WAY + w1 (X)Ag Y + wo(X)AgY
— A Y (WAX — w0 (YV)Ag X — wo(Y) A, X
=AHA-AD) (XY = Y(N)X — D1 X(\)DY — DX (M) DoY)

+ AT A=A (DY (M) D1 X + DY (M) Dy X)
=A"HA =) (= (X AY)grad \)

+ATHA = M) ((D1X A DyY)grad A + (DX A DY )grad \)
= 0.

This concludes the proof for the Codazzi equation of A..

Now, it is time to prove the Codazzi equation for A,. We must show that
(VZA )W — (VwAe)Z = Ag e W — Ag e Z-

First, let us suppose Z =T, W = S € I'(A). Then, because &; is parallel along A, the

right hand side of the equation is zero. Since A < ker A,, we must show that
A, VT — A, V1S = 0.

From the symmetry of Ag,, Img A;, < A+ and because the distribution A is umbilical,
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for X € T'(A1) we have
(A, VT, X) — (A, V1S, X) = (S, T) (6, Ae, X) — (T, S) (6, A, X) = 0,
where 0 is the mean curvature vector field of A. For R € I'(A), since A¢, R = 0, we have
(A, VT, R) — (A, V1S, R) = 0.
This shows that, at least for S, T' € I'(A), the Codazzi equation for A, is valid.

Now, suppose Z = X € T'(At) and W =T € I'(A). Then, from the definition of the
connection V, the fact that & is parallel along A and the definition Ag,, we get

(VxAg)T = (VrAg )X — Ag T+ Ag, ¢ X
— (A= A)D;VxT — V(A — A)D,X + (A — A)D,;V1X — hay(X)T.

Taking the inner product with S € T'(A), the definition of the one-form w;, and using

equation ([1.6)), we get

=(T,S) ((A—N)D;X,d) — \w;(X) (T, S)
= —(T,5) (D; X, grad \) — \w;(X) (T, S)
= 0.

For the horizontal component, we must prove
(A= X)D;CrX — (Vi(A— X)) D)X = 0.
Now,

VAi(A = N)D; = VLAD; — A\VAD;

- (V%A)Di
= (A= \)CrD;
= (A= AI)D,Cr

where we have used that A is Dupin, equation (3.1]) and item (7ii). Therefore, the hori-

zontal and vertical components are zero, which proves the equation for X € X(M) and
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T eT'(A).

The last case is when X, Y € T'(A+). On one hand, working on one side of the Codazzi

equation we get

Ag Y —Ag o X = wi(X)AY — wi(X)AY + (—1)9(X) A, Y
— wi(Y)AX + wi(Y)AX — (=1)(Y) A, X
= Mi(X)Y = Awi(Y)X + (=1)(A = M) (¢ (X)D;Y = 9(Y) D;X)
= —DiX(N)Y + DiY (N)X + (=1)(A = AI) (¢ (X) DY = 4(Y)D;X)

= (X AY)Dlgrad A + (=1)7(A = XI) (¢(X)D;Y —(Y)D;X).

Vxé&i Vy&i

On the other hand, from item (iv), we already have the left part of the equation:
(VxAg)Y — (VyAg) X = (X A Y)ngrad A+ (—1)j(A —M)(W(X)D;Y —¢(Y)D; X).

Comparing both sides of the equation, we conclude that the Codazzi equation for A, has

been proved.

Now, let us move on to the Ricci equations. Let us start with the Ricci equation for
p and ¢. Since A, = A and A; = (A — A\I) commute, we have ([A,, A¢]Z, W) = 0. On

the other hand, from the definition of the connection V we have

<R(Z, W),U, C> = <@Z@W,U7 C> - <@W@Zﬂa <> - <@[Z,W],Ua C>
= <@Z( —wi(W)& — wo (W) — )\_1W(>\)C)7 C>
— (Vi (= wi(2)& — wa(2)& — AT Z(N)(), ¢) — A HZ, W](N)
= —w (W)wi(Z) — wa(W)we(Z) = A2Z(NW(A) + X1 ZIW(N)
+ w1 (2w (W) 4+ wo( Z)wa (W) + A2W(N)Z(A) — ATWZ ()
—AZ, W\
= ()’

for all Z, W € X(M). Combining both equations, we have shown that the Ricci equation
for 1 and ¢ is valid.

Let us prove the Ricci equation for A, and Ag,. First, let us prove for X, Y € I'(A*).
Using the symmetry of A and (A — AI)D;, on one hand we have

([Ae,, AJX,Y) = (AX, (A = MX[)D;Y) — (A — M) D; X, AY).
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This expression is given by item (v). On the other hand, from the definition of the

connection V and the definition of the one forms w; we get

<R(X7 V)&, 1) = <@X@Y§i,ﬂ> — <¢Y©X§ia 1y — <@[X,Y}§z’,ﬁb> (3.51)
= Xwi(Y) +wi(Y)(Vx (= Q), ) + (=10 (Y)(Vx&, 1)
— Ywi(X) = wi(X)(Vy (=€), ) = (=1 P(X)(Vy&, ) — wi([X, Y])
= Xwi(Y) + w;(V)ATX(A) + (=19 (YV)w;(X)
= Ywi(X) = w(XOAY () = (=1 9(X)w; (V) — wi([X, Y])

Simplifying further the above equation, this time using the definition of the one-forms w;,

we get

(R(X,Y)&, 1) = =X (A H(D;Y, grad ) — A7 (D;Y, grad \) X (\)
— (=1)A'(Y) (D; X, grad \) + Y (A1 {D; X, grad \))
+A2(D; X, grad \) Y(A) + (= 1) A\ "1(X) (D;Y, grad \)
— wi([X,Y])
= A" {VxD;Y,grad \) — A 'Hess A(X, D;Y)
+ A (VyD; X, grad A) + A 'Hess \(Y, D; X) — w;([X, Y])
+ (=1 AT (X) (D;Y, grad A) — (=1 A7 (Y) (D; X, grad A)

Therefore,

(R(X,Y)&, 1) = A7 ((Vy D)X — (VxD;)Y, grad \))
+ A7 (Hess \(Y, D;X) — Hess \(X, D;Y))
+ AT (1P 0(X) (DY, grad A) — (=1)'¢(Y) (D; X, grad ) .

Comparing the expression given in item (v) and the equation above we conclude that the
Ricci equation is valid for & and u for X, Y € T'(A4L).

Now for X € I'(A+) and T' € I'(A), we have, on one hand,
<[A€i7 AM]Xv T)=0
while, on the other hand, from the fourth equality in equation (3.51J),

(R(X,T)&, 1) = —Twi(X) — wi([X,T7).
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From the definition of the one-form w;, V%DiX = DiV:’}X and the fact that Cr and D;
commute, we get

—Twi(X) —wi([X,T]) =T (% (D; X, grad/\>> + % (D;[X,T), grad \)
((VrD; X, grad \) + Hess \(T, D; X) + (D;[ X, T], grad \))

—(D;XT(\) — (Vp,xT,grad \) + (D;V xT, grad \))

>/I>—*>z H>/I>—*

((CrD; X, grad \) — (D;Cr X, grad \)) = 0.

Lastly, for 7" and S € I'(A), on one hand, ([A¢,, A,|T,S) = 0 because ker A¢, = A.
On the other hand, <}A%(T, S)&, 1) = 0 because &; is parallel along A and [T, S] € T'(A).

Now, let us move forward to the Ricci equation between A, and A¢,. We have

<‘R(Zv W)ér, &) = <@Z@W§1>§2> <VWVZ§1,§2> < zwié, &2)
= wi(WHVz (=€), &) + ZY(W) — wi(Z) (Vi (p — (), &)
= Wu(Z) —v([Z,W])
= dy([Z, W]).

If Z or W belongs to I'(A), then item (vi) proves the Ricci equation since ([A¢,, Ag, | Z, W) =

0. If both Z = X and W =Y belong to I'(A1), then item (vii) proves the Ricci equation
of A¢, and Ag,,

Lastly, we will show that the Ricci equation for A; and A, is equivalent to the Ricci
equation for A, and A¢,. On one hand, we have

(R(X,Y)&,¢) =(V VY&7> (VyVx&i, ) = (Vix & ¢)

~

= (Vx (@i(Y)(n = Q) + (-1 (Y)§), )
<Vy(wz X)(p =€)+ (—=1)’¢ (X&) C> wi([X,Y))

= Xw (V) +wi (Y <VX p—10C),¢)+ <Vij7 ¢)
— Yer(X) — wi(X)(Vy( u—c>,<> - <— >f'w<X><%€wC>
—wi([X,Y])

= Xwi(Y) + wi(Y)A~ X()\)Jr( 1)7(Y ), (X)
= Ywi(X) = wi(X)ATY(A) = (1) (X )w; (V)
— wi([X,Y]).
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If we compare this expression with the equation (3.51]) we conclude that
(R(X,Y)&, 1) = (R(X,Y)&. ).
On the other hand,
([Ae;, AJXY) = ([Ag, A = M]X,Y) = ([Ag;, A]X, Y

So, we have finished proving all the Ricci equations.

Using the Fundamental Theorem of Submanifolds (Theorem 1.25 in []]), there exist
an isometric immersion F : M™ — L"** and a vector bundle isometry ® : E — NzM
such that

doa=a and OV = V>,

Moreover, the vector field p = A7 ® (¢ — p) satisfies

AF*V)xp = AX(AHP(C — ) + (F*V)x®(¢ — )
= ATX VB — 1) — FAe X + VER(C — p)
= —X(\)p— FAc, X + ®Vx(C — 1)
= —X(\)p+ AEX + AT X (N)(¢ — p)
= \F.X

for all X € X(M). Therefore,
(F)x(F = p) =0

for all X € X(M), and hence F — p is a constant vector Py € "™, Tt follows that

<F_POaF_PO>:<pap>:>\_2<C_M7C_M>:O7

that is, F' takes values in Py+ V3. Without loss of generality, suppose Py = 0, otherwise
redefine F' by F'—P,. Thus, F gives rise to a conformal immersion f = C(F) : M™ — R"+2
by Proposition [I.4] From now and until we finish the proof, without loss of generality we
identify the vectors in E with those in NzM.

Now it is time to prove the last statement of Proposition [3.2] First, suppose that
distinet triples (Dq, Do, ) and (ﬁl, D, 1/3) give rise to congruent conformal immersions
f and g. Then, by Proposition , their isometric light-cone representatives F and

G are congruent isometric immersions, that is, there exist 7 € O;f (m + 4) such that
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G =T o F. Hence, a% = T o of and from Exercise 1.6 in [§], V2T = TV+. From the
equality regarding second fundamental forms applied to (7,7) € A x A we conclude that
T(1) = ju. Taking into account the last fact, from the equality G = T'o ' we get T'(() = C.

Now, from
(AGe) X, Y) = (a(X,Y),T(&)) = (" (X,Y), &) = (ALX,Y)

and the uniqueness of the sections & such that det D¢ =1/2, we conclude that T'(§;) = &
and D; = D;. From V1T = TV! we conclude that 1 and 1/; must be also equal, a
contradiction.

For the converse, suppose non-congruent conformal immersions f and ¢ have the same
triples. From the uniqueness of the frame & and &y, define T : Nz M — NaM such that
T(p) = j, T(&) = & and T(¢) = ¢. Since we have same triples, we have VAT = TV

and ¢ = T o oFf

. Therefore, the isometric light-cone representatives are congruent, a
contradiction.

The only thing left to prove is that the conformal immersion f = C (F ) is a genuine
deformation of f. For that we must use item (ix). Before doing so, we need to prove a

lemma.

Lemma 3.13. Let F' : M" — V™3 < L™ the isometric immersion that comes from
the triple (Dy, Do, 7). Iff = C(F) is not a genuine deformation of f, then there exist an
orthonormal frame {&1,&Y} of P = {u, (}* such that D¢, = I and rank D, < 1.

Proof. Assume that f is not a genuine conformal deformation of f. Then, by Proposition
, there exist an open set U C M™ and an isometric immersion H : W — V"3 with
W > F(U) open in V"*2, such that F|y = H o F|y. Without loss of generality, we will
suppose U = M™. Because M"™ has been endowed with the metric induced by f, by
Proposition the isometric light-cone representative of f is given by F' = U o f. We
conclude that there exists an isometric immersion T = Ho W : V C Rt — Y3 c Lnt4
such that ' =T o f.

Since T is an isometric immersion into the light-cone, the position vector field 7" is a
section of its normal bundle NyR™. Complete it to a pseudo-orthonormal frame {p, T, ¢ }
of T(NyR™1), where ¢ is a light-like vector field such that <Q~“ ,T > = 1. We can associate

to this frame an orthonormal frame given by

T+¢T-¢
PRV
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From the Gauss equation of the isometric immersion 7', we get that ol is flat. Since
(aT(Z,W),T) = —(Z,W), for all Z, W € X(R™™), then N'(a”) = {0}. Using the Main
Lemma bis 2.6l we conclude that

dim Q = dim (S(a”) N S(a")*) = 1.

Wy = span{p,TT—;C} and Wy = span{TT_zg}

be subspaces of NyR™™! and observe that the projections P; : NyR*™ — W, fori =1, 2

restricted to € are isomorphisms onto their images. Then, by dimensional reasons, Ps|q

Let

is an isomorphism.

Let 8 € Q such that Py(8) = (T — {)/v/2. From the definition, we have that § is a

light-like vector field with Ag = 0. In terms of the orthonormal frame, we have

T+§+T—§
V2 V2

where 6 € [0, 27). Let us rearrange our original orthonormal frame to another orthonormal

B = cosfp+sinf

frame {~,d,7}, where

T T T_¢
7 = cos Op + sin ) ——=, 5:—sin0p—|—0080; and ﬁ:_c‘

¢
V2 V2 V2

The shape operators of the immersion 1" with respect to the elements of this frame have

+¢

some interesting properties. First, since § =~ +74 and Af = 0, then AT = — AT Second,

because
a"(ZW) = (A5 Z W) o+ (AT Z W)y —(ALZ W) 5
= (A5Z,W) 6+ (ATZ W) B,

where Z, W € X(R"™!), using the Main Lemma bis [2.6| we conclude that dim ker AT =
Also, from Proposition [[.2] and the definition of § and B we have

—(Z,W) = (AT Z,W) (5, T) + (AL Z, W> (8,T) (3.52)

_cos 0 sin § —

=75 (A5 Z,W) + — <ATZ W)
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If we replace Z, W by f.X, f.Y for X, Y € X(M), respectively, in the above equation

we get

—(fX LY = Ci’;e (ATLX, LY) + Sm\ef (ATFX, £Y)
Hence,
= COSH(ATf*) sinf — 1(A$f*)T, (3.53)

V2 V2
where we are decomposing 7T’ f(m)R"“ = f.T,M" ®RN(z) and ZT denotes the projection

onto the first component of the above decomposition for Z € TR,

We have a natural decomposition of NzM given by
NpM(z) = T.N;M(z) & NeR™ ™ (f(2)).

So, if n € NyR™"! is a normal section of T, then o f € NzM is a normal section of F.
Therefore, {T.N, (yo f),(00 f), (7o f)} is an orthonormal frame for NzM, and in this

frame we have

oF (X,Y) = T.o (X,Y) + a7 (f. X, f.Y) (3.54)
= (AX,Y) TN + (AF LXLY) (00 f) + (AT LX LY ) (vo /) +(Fo f)).

Since f is an isometric immersion, we get

(AT f£X)" f*A,yo f
(AT£X) =~ . AVO f (3.55)

(A?f*X) - f*A6ofX7

From the above identities, we conclude

AF

yof =

~AF X and rank AL, < (3.56)

The normal space of F also has another orthonormal frame, namely the one we used
to define the isometric immersion F', that is, {, &, &, ¢}. Our aim now is to find an
expression of F' and p in terms of the other orthonormal frame of N M. The first one is

straight, since

2
T= \/7_ (cos 69 + sin by + 7)
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and F' =T o f, we have

F=

V2 (cosb(30 )+ (0 ) + (0 1)). (357)

For the second one, taking into account that f is an isometric immersion, dimA =n — 2
and dimker AT = n, there exist T € A of unit length such that f,7 € ker AT. One one

hand, we have

o (T,T) = (AT, T) pp+ (A — AXI)D:T, T) & + (A — M) DT, T) & — (A — AT, T) ¢
= \lt.

On the other hand, using equations (3.52) and ({3.54)) we get

of (I, T) = XILN + (AT£T, £.T) (vo f) + (5o f))
V2

= XLN = == (o) + (o £)).

Hence, combining the last two identities, we conclude

V2

—TN- Y2
a A(sind — 1)

(Yo f)+(Fof)). (3.58)

Now that we have expressions for 1 and F' given in equations (3.57) and (3.58)), we can
find out where the Riemannian plane P = {u, (}* is located, since this plane is orthogonal

to p and F'. Tt is straightforward to verify that

A cos? 0 A A cos? 0 Asin@\  _
g12T*N+(\/ﬁ(l—sinﬁ)_E> (vof)—'—(\/?(l—sine)_ V2 )(Vof)
Acos b
#2900 )
and i
&= 1 (1o N+ (To ) + (60 ).

is an orthonormal frame for P. From the properties given in equation (3.56)), and the fact

that the shape operator of F' in the direction T.N is given by A, we have

- A . - -
Ag =A+— ((sm& — 1)A50f + cos HAfof)

V2

F _ pF
A, = Ajos
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From equation ([3.56) we have that the rank of Dg, = (A — AI)Ag, is less than or equal to

one. For the other shape operator, from equations (3.53) and (3.55) we obtain

A _ -
fole = A+ 5 ((sine — 1) f.AL + cosb f*Afof>

— f A+ % (sind — 1)(AT£)" + cos6(A7 £.)")

A
= [ A+ E(_\/éf*)

= f (A= X).
Hence A¢;, = A— Al and D¢, = 1. ]

Suppose now that rank D? + D3 — I = 2, and assume by contradiction that f is not
a genuine deformation of f. By Lemma [3.13] there exists an orthonormal frame {&;, &}
of P such that D, = I and rank D¢, < 1. Let 6 € [0, 7/2] be such that

Dy = cos0Dg¢, +sinfDg,

and
Dy = —sin 0Dy, + cos0Dy,,

where D; and Dy are our tensors with determinant 1/2. Then,
D? 4 D3 — I = cos? 0D§1 + sin? 9D§2 + cos 0sin 0 D¢, De, + cos 0 sin 0 De, Dy,

+ sin® 9D§1 + cos® 9D§2 —cos0sinf D¢, De, — cosO0sinDg, D, — 1
_ 2
- D52

and this means that rank D? + D5 — I < 2, a contradiction. This completes the proof of
Proposition [3.2] O






Chapter 4

The Reduction

Let f : M™ — R""! be a hypersurface that is not conformally surface-like and envelops
a two-parameter congruence of hyperspheres s : L2 — S  L"*3. In this chapter, the
problem of finding a pair of tensors (D;, Dy) and a one-form ¢ on M™ satisfying all the
conditions in Proposition [3.2]is reduced to a similar but easier one on the surface L?. Lets
begin with some definitions.

Let m : M — L be a submersion. A vector field X € X(M) is projectable if it is
m-related to a vector field X € X(L). A tensor D on M is projectable if there exist a
tensor D on L such that Do, = 7w, o D. Similarly, a one-form w on M is projectable if
there exist a one-form @ on L such that @ o, = w.

We will need the following results, which give conditions for tensors and one-forms to

be projectable.

Proposition 4.1 (Corollary 11.6 in [8]). Let A be an integrable distribution on a Rie-
mannian manifold M and let L = M/A be the (local) quotient space of leaves of A. A
tensor D € T'(End(A%1)) is projectable if and only if

v’%D = [Da OT]
for all T € T'(A).

Proposition 4.2 (Corollary 12 in [12]). Let A be an integrable distribution on a differ-
entiable manifold M, let L = M/A be the (local) quotient space of leaves of A and let
m: M — L be the quotient map. Then a one-form w on M is projectable if and only if
w(T) =0 and dv(T,X) =0 for any T € A and X € AL.

The reduction lemma is as follows.

123
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Lemma 4.3. Let f : M™ — R" be a hypersurface that is not conformally surface-like
and envelops a two-parameter congruence of hyperspheres s : L* — Q?VJ{Q C L3, Let A
be the eigenbundle of f correspondent to its principal curvature A of multiplicity n — 2.
If f is hyperbolic (respectively, elliptic) with respect to J € T(End(A'1)) and there exists
a triple (Dy, Do, v) with Dy,Dy € T(End(A1)), Dy, Dy € span{l,J}, and 1 a one-form
on M™ satisfying (i)-(iz) in Proposition[3.4, then J, Dy and Dy are the horizontal lifts of
tensors J, Dy, Dy € span{I, J} on L%, with J* = I (respectively, J*> = —I) and 1 is the
horizontal lift of a one-form 1 on L? such that s is hyperbolic (respectively, elliptic) with
respect to J and the triple (D, Dy,1)) satisfies:

(a) det D; = 1/2,

(b) (VxDi)Y — (V4 D)X = (=1 (0 (X)D;Y — (V) D;(X)).
(c) dp(X,Y) =(DyX,D:Y) — (DX, DY),

(d) Di # +D3,

(e) rank(D? + D2 —I) =2,

Conversely, if s : L? — Qﬁﬂ C L™ s hyperbolic (respectively, elliptic) with respect
to a tensor J on L? satisfying J> = I (respectively, J> = —1I), then the hypersurface
f is hyperbolic (respectively, elliptic) with respect to the horizontal lift J of J, and the
horizontal lifts D1 and Dy of tensors Dy, Dy € span{l, J} and the one-form ¢ = 1) o m,
satisfying items (a) to (e) have all the properties (i) to (iz) in Proposition [3.9

Proof. Conditions (i) and (vi) of Proposition [3.2] together with Proposition assure us
that the one-form 1) is projectable with respect to the canonical projection 7 : M — L2
onto the (local) quotient of leaves of the distribution A, that is, there exists a one-form
¢ on L? such that

@E oy = 1.
The tensors Dy and D, are also projectable, because of item (iii) of Proposition
and Proposition , that is, there exist tensors D; and Dy on L? such that

Diom,=m,0D; and Dyom, =m, o0 Ds. (4.1)

From item (iii) we have that the tensors D; commute with the tensors Cr. Since the
tensors D; are generated by the endomorphisms I and J, and taking into account item
(viii), at least one D; is of the form D; = a;I + b;J with b; not null. It follows that Cr
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and J commute, or equivalently, [Cr, J] = 0. The fact that f: M™ — R™*! is hyperbolic
or elliptic gives us that V24.J = 0. Therefore .J is projectable onto .J, with

m.o0J =Jom,.

Since D; € span{I,J} and D;, I and J are projectable onto D;, I and .J, respectively, we
get that D; € span{I, .J}. Because f : M™ — R"*! is hyperbolic or elliptic, we have that
J? = €l, where € = 1, if f is hyperbolic, and € = —1, if f is elliptic. Then,

X =m,.J?°X =er, X = eX.

Hence J? = €I, with € = 1, if f is hyperbolic, and € = —1, if f is elliptic.

The linear operator m,|a1 is an isomorphism, so items (a), (d) and (e) follow without
trouble from (4.1)). Essentially, D; is indistinguishable from D;.

Let S: M™ — ’ff C L™*3 be the two-parameter congruence of hyperspheres en-

veloped by f, so that S = s om. Then, the proof of Proposition [1.3| gives us that

S(x) = W (f(2))N(x) + A(x) ¥ (f (2))- (4.2)

Differentiating the equation (4.2)) with respect to Y € I'(A1) we obtain

S.Y = (Wo f)*VyS (4.3)
= (Vo f)*'Vy (¥, 0 IN+Y(N)To f+ AU, 1Y
= U'VyU.N+YN)To f+ AU, 1Y
=V, f*VyN +a?(£.Y,N)+ YAV o f + A\, f.Y
= U, LAY + Y\ o f+ AU, f,Y
= U, f. (A= X)Y +Y(\)To f.

Replacing Y by D;Y in (4.3]) we get
U, f.(A—A)D,Y = (D;Y,grad \) W o f — S,D,Y. (4.4)

This equation and the one before it will give us two ways of differentiating vector fields
of the form W, f.(A — AI)X, for X € X(M). Comparing both expressions will give us

the results we seek. So, differentiating one more time the equation (4.4) with respect to
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X € T'(A*1) yields

(To f)*VxU,f.(A—N)D;Y = (VxD;Y,grad \) W o f (4.5)
+ Hess \(X, D;Y)U o f + (D;Y,grad \) U, £, X — (U o f)*VxS,D;Y.

Let i : ’{“{2 — LL"*3 be the inclusion. If we denote the vector field S,D;Y and s,D;m.Y
by g : M™ — L™ and h : L? — "3, respectively, then g = ho . If {-,-)" is the metric

on L? induced by s and V' its Levi-Civita connection, we then get

(To f)*VxS.D;Y = X(g) (4.6)
= m.X(h)
= (i 08)*"Vaxs.Dim,Y
= s*@W*XS*DiW*Y — <7T*X, Dﬂr*Y>/ soT
=5,V xDim.Y + o (m. X, DY) — (m. X, l_?ﬂr*Y>/ som,

where X, Y € T'(A') are projectable vector fields. Because we have endowed L? with the

metric induced by s, U and f are isometric immersions, and equation (4.3)) we obtain

(m.X, Dﬂr*Y>/ = (s.mX, s, D;m,Y’) (4.7)
— (X(\Wo f—W.f.(A—ADX, DY (MW o f — W, f.(A— \)D,Y)
— (A= \D)X, (A~ A)D;Y).

Therefore, replacing into equation (4.5)) the equations (4.6)) and (4.7)),

(T o f)'VxU,f(A—N)DY (4.8)
= (VxD;Y,grad \) Vo f 4+ Hess \(X, D;Y )W o f + (D;Y, grad \) V.. f. X
— 5,V DY — o/ (m.X, Dim,Y) + (A= M) X, (A= M)D;Y) (W,N + A(¥ o f)).

Hence,

(Wo f)y*VxU,f(A=A)D;Y — (Vo f)*VyV,f.(A—\)D; X (4.9)
= (VxD;Y,grad \) U o f 4+ Hess \(X, D;Y)¥ o f + (D;Y,grad \) V.. f. X
—8.Vi yDim,Y — o' (m. X, Dim.Y) + (A= A X, (A= X)D;Y) (U.N + A(V o f)).
—(VyD; X, grad \) Vo f — Hess \(Y, D; X)W o f — (D; X, grad \) V.. f..Y
+ 8.V yDim X + o/ (n.Y, Dim, X) — (A= M)Y, (A — M) D; X) (U.N + \(V o f)).
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On the other hand, using the formula for the second fundamental form of ¥ given in
equation ([1.12)), together with equation (4.4)), it follows that

(o f)*VxU,f.(A—N)D;Y (4.10)
= U, f*Vxf A= AN)D;Y + " (f.X, f.(A = XI)D;Y)
= U, £, Vx(A—=A)D;Y + (AX, (A= X)D;Y) U,N — (X, (A= X)D;Y) w
= U, £, (Vx(A=XN)Dy)Y + U, f(A—X)D;VxY + (AX, (A = \)D;Y) U ,N
— (X, (A= X)D)Y)w
= U, f,(Vx (A= X)D;)Y + (D;VxY,grad A

yUof—S.D,VxY
+(AX, (A= M)D,Y) U, N — (X, (A~ M) D;Y)
)
)

v
of— D;m.VxY

= U, f.(Vx(A = AD,)Y + (D;VxY,grad \) ¥

+ (AX, (A= X)D;Y) U N — (X, (A=Al
Hence,

(T o f)*VxU, f(A—X)D;Y — (¥o f)'VyU,f.(A— \)D;X (4.11)
= U, £, (Vx(A=A)D))Y — (Vy(A = X)Dy)X) + (D;[X,Y],grad \) ¥ o f
— 5. D [X, Y] + ((AX, (A = X)D;Y) — (AY, (A — M\)D; X)) ¥, N
— (X, (A= A)D;Y) — (Y, (A= X)D; X)) w

As mentioned before, comparing the expressions just obtained in equations (4.9)) and

[ETT), we get

U AB(X,Y)+0(X,Y)UN + (X, Y)¥o f—A9(X,Y)w (4.12)
= s.((Vey D)X — (Vi xDy)m.Y) + o/ (7Y, Dim, X) — o (m. X, Dim.Y)

where
B(X,)Y)=(Vx(A=X)D,))Y — (Vy(A—=X)D;))X — X A Y(ngrad A),

0(X,Y)=A(X,(A=A)D;Y) — (Y, (A= AI)D; X)),

o(X,Y) = ((VyD;)X — (VxD;)Y,grad \) + Hess \(D; X, Y) — Hess \(X, D;Y)
“AM((A=ADX, (A= X)D;Y) — (A= X)D; X, (A= A)Y)),
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for all X, Y € I'(At) that are projectable.

Notice that, in proving the identity in equation (4.12)), we have only used that D; are
projectable onto D; and the formula of the congruence of hyperspheres given in equation

(4.2)). Let us now use the properties that f and the triple (D, D, ) satisfy.

From equation , we get the symmetry of (A — A )Cp. Because f is hyperbolic or
elliptic and not surface-like we have that there exist T € A, such that C'r = al + bJ with
b not null, hence the operator (A — AI)J is symmetric. Since D; € span{Il,J}, we get
that (A — AI)D; are symmetric. From the last fact, items (iv) and (v) of Proposition

and equation (4.12]) we obtain

(1) W fu( A = M) ($(X) DY —4(Y)D;X) (4.13)
+ (=179 (V) (D; X, grad A) — (—=1)9(X) (D;Y, grad \)) ¥ o f
= s.((V. yDi)m X — (Vo «D)m.Y) + (7Y, Dim, X) — o/ (m. X, Dim.Y).

From equation (4.3]) we get

(—1)7(X)((D;Y,grad A) W o f — S.D;Y) — (=1)/(Y)((D; X, grad \) W o f — S.D; X))
+ (=19 (Y)(D; X, grad A) — (—=1)¢(X) (D;Y, grad A\)) W o f
= 5.((ViyD)m X — (Vo xDi)m.Y) + o/ (m.Y, Dim. X) — o (7. X, Dim.Y),

so, simplifying, we end up with

(=179 (m.Y)s. Djm X — (—1) (7, X)s. DY
= 5.((Vey D)1 X — (Vi xDi)m.Y) + o/ (7Y, Dim, X) — o (7. X, Dim.Y).

Comparing the tangent and normal components we get the identities

( ;_*YDi>7T*X —( ;_*XDi)ﬂ'*Y = (—1)jzﬁ(7r*Y)Dj7T*X — (—1)j1;(7T*X>Dj7T*Y

and

o (mY, Dim, X) = o (1. X, Dim,Y).

The first equation above gives us (b), while the second one means that s is hyperbolic or

elliptic with respect to .J, because D; € span{I,.J}.

The only thing left to prove is condition (c). Using that 1) is projectable onto 9, item
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(vii) of Proposition and equation (4.4]) we obtain

dy(X,Y) = dyp(X,Y) (4.14)
— ([(A= AI)Dy, (A= AD)D3]X, )
=((A=A)D: X, (A= X)D1Y) — (A= XD, X, (A—A)DyY)
= ((DyX,grad \) Vo f — S, DX, (DY, grad \) Vo f — S,D;Y)
— (D1 X,grad \) W o f — S, D1 X, (DY, grad \) Vo f — S, DY)
= (S.DyX,S.D1Y) — (S.D1X,5,DY)
— (DX, DY — (DX, DY
This completes the proof of the direct statement.
Let us now prove the converse. As was mentioned after we showed equation ,

we can use it in the proof of the converse statement. Using it, and taking into account

condition (b) and the fact that s is hyperbolic or elliptic, we have

U B(X,Y)+0(X,Y)U.N + (X, Y)¥o f—A9(X,Y)w (4.15)
= s.((V. yDi)mX — (Vo «D)m.Y) + o (m.Y, Dim, X) — o/ (m. X, D;im,Y)
= (=1)s. ((mY) Dj(m.X) — (. X)Djm.Y')
= (=1 (@(V)8.D;X — (X)S.D;Y).

From equation (4.4]) we have

(=1 ((Y)S.D;X — 9 (X)S.D;Y)

= (—1)7(Y) ((D; X, grad \) W o f — W, f.(A — AI)D;X)
— (=1Y9(X) ((D;Y, grad \) Wo f — . f.(A = A)D;Y).

Therefore, if we arrange equation (4.15) with this new information, we end up with

U, f.B(X,Y) +0(X,Y)U.N+3(X,Y)Wo f—A9(X,Y)w=0

where B and ¢ are proper modifications of B and ¢. Because the above equation is

expressed as an orthogonal decomposition, we conclude that
0= 0(X,Y) = A((X, (A = AD)DY) — (¥, (A = A[)D;X)),

for all projectable vector fields XY € T'(At). Since 6 is a tensor, we conclude that
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(A — A\I)D; is symmetric.

Let J € T'(End(A%1)) (respectively, D; € T'(End(At)) be the horizontal lift of J
(respectively, D;) and 1 the horizontal lift of ). Since D1, Dy € span {I, J} and .| is
an isomorphism, we have that Dy, D, € span{[l, J} and J? = €I, depending on whether
s is hyperbolic or elliptic. Let us prove that D; and 1 satisfy (i) to (ix), and that f is
hyperbolic (respectively, elliptic) with respect to J. Items (i) and (vii) are clear because
1 projects to . From item (a) we get item (ii), item (e) gives item (ix) and from item

(d) we get item (viii).

To prove item (iii), since D; are projectable tensors, we have
ViD; = [D;, O]

for all T € T'(A). On the other hand, because of V4A = V4(A — \I) and equation (3.1)),

we get

VAi(A = \I)D; — M)D;Cr

_ (A
= (V(A= ) — (A= X)Cr)D; + (A — XI)(VLD; — [D;, Cr))
=0.

Hence,
VAa(A = X)D; = (A — X)D;Cr.

In particular, this implies that (A — AI)D;Cr is symmetric. Therefore,

(A= \N)D;Cr = CLDY (A — \I)
= (A= X)CrD;.

Since (A — ) is an isomorphism when restricted to A, we obtain item (iii).

Observe that there exists ¢ = 1, 2 such that D; = a;I + b;J with b; not null, otherwise,
D; and D, would be multiples of the identity endomorphism, and from item (a) we
would end up with D; = +D,, a contradiction with item (d). Since [D;,Cr] = 0,
for all T € T'(A), it follows that V&J = [J,Cr] = 0. Because f is not conformally
surface-like, {I, J} must be linearly independent. If we put J into Jordan canonical form
with the condition J? = £I, and see what kind of matrices commute with J, we get
C(I'(A)) < span{l, J}. Thus f is hyperbolic (respectively, elliptic) with respect to .J.
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Since s is hyperbolic (respectively, elliptic) with respect to J and D; € span{[, J},
then

o (Dim X, m.Y) — o (mX, Dim.Y) = o ((a; ] + b J)m X, m.Y) — o (1. X, (a; ] + b;J)7.Y)
= b; (o/(DﬂT*X, YY) — a’(ﬂ'*X, D,?T*Y)) ,

for all XY € At, where we choose D; such that D; = a;I + b;J with b; not null. Hence,
o (Dim X, m,Y) = (7, X, Dim,Y).

From equation (4.12)), and taking into account that € is null because of the symmetry of
(A= X)D;, we get

J. (Vx(A = XI)D,)Y — (Vy(A — AXI)D;) X — X AY(Dlgrad ) (4.16)
+ (((VyDy)X — (VxD,;)Y,grad \) + Hess \(D; X,Y) — Hess A\(X, D;Y)) W o f
—A{(A=AD)X, (A= XD,Y) — (A= XD, X, (A= X)Y))Wo f

o (Ve D) X — (Vi y D) 1),

Using item (b), equation (#.4)), and the fact that D;, Dy and v project to Dy, Dy and 1,

respectively, we obtain

sy (Vi,yDi) mX — (Vi xD;) m.Y) (4.17)
(—=1)s, (Y(m.Y)Djm X — p(m. X )D;m.Y)
(=1 (Y)S.D; X = (=1Y¥(X)S.D;Y
(=1)79(Y) ((D; X, grad \) W o f — WU, f,(A — \I)D;X)

— (=1)y¥(X) ((D;Y,grad \) Vo f — U, f,(A—A)D;Y).

Combining equations (4.16)) and - we get

0=".f. (Vx(A=X)D))Y — (Vy(A—A)D;) X — X NY (Djgrad \))
(=1, fu( A = N) (0(Y)D;X = $(X)D;Y)
+(=1) ($(X) (D;Y, grad A) — () (D; X, grad \)) W o f
+ (((VyDy)X — (VxD;)Y,grad \) + Hess \(D; X,Y) — Hess \(X, D;Y)) Vo f
“A{((A=ADX, (A= ADD;Y) — (A= X)D; X, (A= M)Y)) Wo f.
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Taking into account the symmetry of the operator (A—AI)D;, and that the above identity
is expressed in an orthogonal basis, we get items (iv) and (v) of Proposition . Going

the other way around in equation (4.14)) gives us (vii). This concludes the proof. O



Chapter 5

The Subset C;

The aim of this chapter is to characterize hyperbolic or elliptic surfaces s : L? — Q’ff C
L"*3 that admit a triple (D;, Dy, ¢) satisfying items (a) to (e) of Lemma [4.3] We follow
closely the proof of Proposition 9 in [12].

Let us start with the case in which s: L? — Q{'1{?> C L™ is an hyperbolic surface
with respect to the tensor J. Let (u,v) be coordinates in a neighborhood W of (0,0)
whose coordinate vector fields {9,,8,} are eigenvectors of J with eigenvalues 1 and —1,

respectively. Since the surface s is hyperbolic,
A/ (0y, 0y) = /' (J0y, 0y) = &/ (Dy, JO,) = —a'(0y, Dy),

and hence
o' (0y,0,) = 0.

The coordinates (u,v) are called real-conjugate coordinates. Write

Va,0, = I''0, + I'?0,, (5.1)

where I'" are the Christoffel symbols in terms of the frame {d,,d,}. As usual, we denote
F = {(0,,0,), and please do not confuse with the isometric light-cone representative of f.

Define the differential operator
Q(0) = Hess 0(9,,,) + FO = 0, — 0, — 20, + F0. (5.2)
For each pair of smooth functions U = U(u) and V' = V(v), define
oV (u,v) = U(u)e?lo FHws)ds and ¢V (u,v) = V(v)e* o T2(s,0)ds, (5.3)

133
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These functions satisfy
eV =2I'eY and ¢ = 2%V (5.4)

with initial conditions ¢V (u,0) = U(u) and ¢" (0,v) = V(v). In particular, U and V can
be recovered from ¢V and ¢". Assume, in addition, that one of the following conditions
holds:

UV >0 or 0<2p” <—(20"+1) or 0<2¢" <—(2¢Y +1). (5.5)

Under one of these conditions, one can define

PV = V(Y + 0 +1] (5.6)

and

Cs={(U,V): holds and @ (pUV) =0}.

Now, let us suppose that s : L? — @’ij is an elliptic surface with respect to a tensor
J. Let (u,v) be coordinates around (0,0) whose coordinate vector fields satisfy J0, = 0,
and J0, = —0,. Extend the definition of J, V and o® to the complex field, that is,

J(X +iY) = JX +iJY,

VX+7;y(Z + ZW) =VxZ —VyW +iVyZ +iVxW

and
(X +iY, Z+iW) =a*(X,Z) —a* (Y, W) +ia’(Y, Z) + ia® (X, W).

If we define 0, = (9, — i0,)/2 and 0; = (0, + 10,)/2, then we have

JO, —iJ0, 0,+1i0, i(0,—i0,)
2 - 2 N 2

JO, = =10,

and

_JO,+iJ0, 0, —id, —i(0,+id,)
a 2 - 2 N 2

Hence, 0, and 0; are eigenvectors of the complexified tensor J with eigenvalues i and —1,

Jag - —2(95

respectively, and from the fact that s is elliptic we have
ia®(0,,0;) = a’(J0,,05) = a*(0,, JO;) = —ia’®(0,, 05),

so, &’(0,,05) = 0. As in the hyperbolic case, the coordinates (u,v) also receive a special
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name: they are called complex-conjugate coordinates.

Let ng be the Christoffel symbols symbols of the connection V with respect to the
basis 0, and 0,. Then,

1
Vo, 0; = Zvaufiav«?u +1i0,),
thus

Vs.05 = — (Vauau —+ Vav&, — iVavau + z’Vau&,)

z

(T110u + T30, + 1350, + 15,0, — iT1,0, — 07,0, + 11150, + i13,0,)

= s = s

_ (Fflz% _Z.P%ZP%) 9.+ (F%ZF%Q H.F%IZP%) 9.

Therefore, we can define a complex-valued Christoffel symbol I' : W C L? — C such that
vazag - Faz + fag

Set ' = (0,,05), where () is the complexified extension of the metric induced by s, and

define the differential operator
Q(9) = Hess 0(0.,0;) + FO = 0., —T0, —T0, + F0,

where 6 : W C L* — C is a smooth function. For each holomorphic function ¢, let

©%(z, Z) be the unique complex valued function by

0 =2T¢" and ¢°(2,0) = ((2).

Assume further that )
¢ # -5 and 4Re () +1<0. (5.7)

In this case, define

p* =/ —(4Re(¢%) +1)
and
Cs = { ¢ holomorphic : equation (5.7) holds and Q(p°) = O} )

We are now ready to state and prove the main result of the chapter.
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Proposition 5.1 (Modification of Proposition 9 in [I0]). Let s : L? — Q}}* c L"**
be an elliptic or hyperbolic surface. Then there exists a triple (Dy, Dy, %) satisfying all
conditions in Lemma if and only if Cs is nonempty. Distinct triples (up to signs and

permutation) give rise to distinct elements of Cs, and conversely.

Proof. We will divide the proof into cases, depending on whether s is hyperbolic or elliptic.

Hyperbolic case

Assume that s is hyperbolic with respect to J, and let (Dy, D, 1)) satisfy all conditions
in Lemma[1.3] Let (u,v) be real-conjugate coordinates whose coordinate vector fields are
eigenvectors of .J. Since Dy, Dy € span{[, J}, they are also eigenvectors of D;, 1 <i < 2.

From condition (a), we can suppose that the endomorphisms D; are represented in this

basis by

From item (e), that is, the assumption that rank D? + D2 — I = 2, and

_ B _ 2 2 2
(VaDi + (Ve —2r = (2 0
0 1/67 +1/65 —2

we infer that 62 + 05 # 2 and 1/6? + 1/602 # 2. Also, from item (d), we get 0; # +0,.
Taking into account that the Lie bracket of coordinate vector fields is zero, the equation

of item (b) can be written as
Vi, Di0y — Vi, D0y = (1) (¢"D;0, — ' D;0y) , i # j,

where 1" = 1)(d,) and ¥ = ¥(d,). Multiplying both sides of the above equation by v/2,

and using the information about how the endomorphisms D; act on {0,,0,}, we get
Vgﬂ;l@v — vgveiau = (—1)’ (15“9;187} — @Evejau) N

Working further on the above equation, we obtain

92’ u _
—%av + 6,110, +T120,) — (0;),0, — 0;(T*0, +I'?9,)

)

= (1P (5010, — 0°000) i £

From the equality of the components of both sides of the preceding equation with respect
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to the coordinate vector fields, we get that item (b) is equivalent to the system of partial

(0:)u n (Qi _ l) 2 — _(_1)3‘@ (5.9)

differential equations

912 91 9]' ’
1 -
(6:)0 + (f% - a) = (=140, (5.10)

with i # j. Defining 7; = 67, and multiplying the first equation by —2/6; and the second

equation by 26;, the preceding system becomes

1 1 B Y

(7)o 4+ 2(7 — I = 2(=1)79"0165, 1<i#j<2. (5.12)

Considering the equation (5.11]) for the cases ¢ = 1 and ¢ = 2 and summing them up we
obtain . | . .
(—+—) +2(—+——2)r2=0. (5.13)
71 T2/ .4 T1 T2
With the same procedure, but using instead equation (5.12]), we get
(11 + 7)oy + 2(11 + 72— 2)I = 0. (5.14)
Defining & = 71 + 73 and 8 = 1/ + 1/79, the preceding equations can be written as
Bu+2(B—-2I2=0 and a,+2(a—2)I" =0. (5.15)

From the definition of 7; we have that o, 8 > 0. Moreover, since 67 # 03, we have that 7,

and 79 are distinct real roots of
7% — (T + )T + T2 = 0,
or, by expressing in terms of o and f3,

™ —ar+ (a/B) = 0.

From the discriminant condition, we get a5 > 4, and 7 and 7 can be recovered from «
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and [ by solving the second degree polynomial, that is,

QQ:a—QJYM%mﬁ—®,1gigz (5.16)

Since 0% + 02 # 2 and 1/6% + 1/603 # 2, we have that a # 2 and 8 # 2. Then, we can

define ) .

From a >0, >0, af —4 > 0,
1

1
a=2+— and [f=2+—,
¢ ¢

and noticing that ¢ and ¢ cannot be both negative, we get

0<2—r2+]'—i1@¢+2 +1)
o O @b o 4 ’

and hence (@, ¢) satisfies (5.5]). Moreover,

Po__ S and — = —

© a—2 ¢ B—2

so, from equation (5.15]), we get

ﬁ:ﬂlmi%zw.

'

We still have not used condition (c) in Lemma [4.3] Let us work first on the left side
of item (c). Since the expression of ¥ on the basis {0,,3,} is given by

b= §rdu + v,
differentiating the one-form ¢ we get

On the other hand,

<\/§D28ua \/§D16U> - <\/§Dlau, \/§D28v> = @ — ﬁ F = 2T F
0 0 0,05
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Therefore, we conclude that item (c) is equivalent to

- T2 —T1

2ty —vy) = 55, T (5.18)
Set
p=vV[12p+o)+1| = \/‘a32+ﬁ32+1 = \/|(o;—a§)(_ﬁ4—2)\' (5.19)

We want to show now that

Q(P):Puv—Flpu—Fva—i—Fp:O.

In order to do so, we will express the functions p, I'' and I'? in terms of 6;, and then replace

into the differential equation. First, by definition we have 7, = 67?. Also by definition,
a=T1 +7=0?+607 and 3 = 1/6? + 1/63. Using equations (5.11)) and (5.12]) we get

01(01) + 02(05),
I =— 1(9§)+ 7 i(;) : (5.20)

03(62). + 05(01)
M= 2 o 21
616, (26267 — 6% — 62 (5.21)

Tu (02>U93 - (91)u93 - (92)u91 + (91)u92
L -y (5:22)
and ) )

1/7) _ (02),0207 — (61),05601 — 05(6), + 91(91)1,‘ (5.23)

0102(6F + 05 — 2)
Using equation ([5.18]), we can express F' in terms of functions that are defined in terms

of the 6;: ~ ~
_ 20105y, — b))

F
02 — 02

(5.24)

Lastly, using equation (5.19)) we have

‘(0§+9§—2)(%+% —9)

Replacing those identities into

Q(p) = puv — Flpu - FQPU + Fp, (5.26)
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and with the help of the Maple program, we obtain that Q(p) = 0. Thus, the set C; is
non-empty.
Now, let us move on to the converse of the statement. Since s : L? — Q’Hz C L3 is

hyperbolic, there exist real conjugate coordinates (u,v). If (U, V') € Cs, then
(pU(u, v) = U(u)eZ Jo THws)ds o109 ¢V(u’ v) = V(’U)e2 Jy T2 (s,v)ds

must satisfy equation (5.4) and, together with the functions U and V', also satisfy equa-
tion (5.5). From the definition of the set Cs, we must have Q(p) = 0, where p =
V120V + ¢V) + 1]. Set

1 1
a=2+— and =2+ —
oV ¢V
which are well defined because U, V, oV and ¢" satisfy one of the equations in ([5.5)), and
therefore, ¢V and ¢" cannot vanish at any point.

Since (Y, ¢") satisfies equation (5.5)), we affirm that we must have a > 0, 8 > 0 and
af —4 > 0. In the first possiblity, namely, if U, V > 0, then ¢¥ > 0 and ¢" > 0, and

using the definition of a and S we conclude the validity of our affirmation. If
0 < 2pY < —(20" + 1),

then we immediately see that a > 0. We also have ¢"" < —1/2, so 8 > 0. Lastly,

2 2 1 1 b
0‘6_4:W+¢_V+¢U¢VZ@U¢V<2¢ +2¢0" +1).

Since, ¥ > 0, ¢V < 0 and 2pY +2¢Y +1 < 0, we conclude that a3 — 4 > 0. Because

the other case is symmetric, we have finished the proof of the affirmation.

With the information o > 0, # > 0 and a8 — 4 > 0, we can define the functions 7; by
equation , that is, 7; are roots of the second degree polynomial 72 — a7 + a/8 = 0,
for i = 1 and ¢ = 2. We then conclude that 7 + 5 = a and 775 = /(.

As before, write 7; = (6;)? and let ¥* and 1)V be given by equations and ,
respectively. Replacing 7; by 67 in those equations, we arrive at the same equations as
in the direct statement, so we can express I'', I'2, ¥* and 1V in terms of the 6; by the
identities (5.20)), (5.21)), (5.22)) and (5.23]). From the fact that 7 + 7 = a and 7175 = a/f,

we get

a=0?+05 and B=1/67+1/03.
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From the definition of p, we have that equation ([5.19)) is valid, and so, replacing o and
B is terms of the 6;, we also obtain equation ([5.25)). Since p cannot vanish at any point,
and from Q(p) = 0, we obtain

Puv — Flpu B F2pv
1%

which can also be expressed in terms of the 6; using equations ([5.25)), (5.20]) and (5.21)).

Replacing those identities in

F=—

(5.27)

" " T2 —T1

6105

F, (5.28)

and using Maple, we get that the above equation is identically zero, so equation is
satisfied. Let D; and D, be defined by equation with respect to the frame {0,,0,}
of coordinate vector fields, and set ¢ = 1*du + ¢*dv. Then condition (a) is clear from
the definition of D;, whereas condition (b) follows from the validity of equations
and . Condition (c) is a consequence of equation . Since a > 0, we have
TL # —Ty, SO D% #* —D%. Because the discriminant is a8 — 4 > 0, 71 and 7, are not equal,
so DI # D2, and item (d) is proved. From the definition of a and 3 we cannot have
a =2or =2 soitem (e) follows. Distinct pairs (¢, ¢) give rise to distinct 4-tuples
(71, 72,4%,9Y), and hence to distinct triples (D, Dy, ). This completes the proof for the
hyperbolic case.

Elliptic case

Nearly all the ideas used in the hyperbolic case will be applied to this case. In fact, we
will arrive at the same equations, as we will soon see. The difference is that we will need

to work with the complex extensions of the tensors in order to have complex eigenvectors.

Suppose s : L? — Q?}L? C L"*3 is an elliptic surface, and that there exists a triple
(D1, Dy, ) satisfying all conditions in Lemma . Since we will use complex conjugate
operation, let us omit the bar notation on the triple just for now. We can assume that
there exist complex-conjugate coordinates (u,v) around (0,0) on L? such that

Oy — 10, Oy + 10,

az - 2 aIld ag — 2

are eigenvectors of the complex linear extension of the tensor J with eigenvectors ¢ and
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—1, respectively. From item (a) of Lemma we can assume that

where a? + b7 = 1. Considering the complex extension of the tensor D;, which we will

denote by the same symbol, we have

Therefore, we can write

0, 0 0, 0
VeD =" _| and V2Dy=|[° _ ], (5.29)
0 01 0 02

with respect to the frame {9, d;}, where 6, : L* — S'. Moreover, from item (d) of Lemma
4.3, we must have 0; # +6,.

We will now prove some properties of the functions #; and of the one-form . Set

Y* =1(0,) and Y* = (0;). If ¢ = Y*du + ¢*dw, then
P =1/209" —iy") and P =1/2(0" +iyY”),

SO
P =47, (5.30)

Similarly, if 6; = 27 + iy?, where 27, y/ : L?* — R, then

(0,). =1/2 (x], —iz) +iy] +yl)) and (0;): = 1/2(x] + iz, — iy + y)).
Also,

(0,): =1/2 (x] + iz + iyl —yl) and (0;). =1/2 (], — ixd —iy) —y)).

Therefore,

(0;): = (0;): and (0;): = (0;).. (5.31)

As mentioned before, we can define a complex valued Christoffel symbol I" by

v(’)zag == Faz -+ fag
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As in the hyperbolic case, define 7° = 6%, 1 < i < 2. Then, from item (b) of Lemma ,
and taking into account how the endomorphisms v/2D; act on the frame {0.,0:}, we get

Vo.0:0: — V.0,0. = (—1) (¢*0,0: — *6,0.)
which is equivalent to
(0;):0: + 0; (T0. + TOz) — (6,):0, — 0; (T0. + T0:) = (—1) (¢°0,0: — *6;0.) .
Therefore, we get a system of partial differential equations

Those equations are equivalent, as the reader can see by performing the conjugate opera-
tion on any of those identities and using equations and . Like in the hyperbolic
case, multiplying both sides of the equation by 26; and taking into account that
0; € S*, we get

(1)z +2 (1 — 1) T = 2(=1)¢760,0,. (5.33)

Now, we will use item (c) of Lemma [4.3] On one hand, since
Ay = (2 — ) du A do,
we obtain
X(0,005) = 2D, — 10,0, +10,) = (D, 9,) = (05 — U2,

Because ¢* = 1/2(¢"* —iy?), then ¢z = 1/4(¢ + iht — il + Y). Therefore, we have
2de(0,,0;) = —4ilm¢pZ. On the other hand,

<\/§D252, \/§D182> _ <\/§D1827 \/§D235> = (9192 — 91@2) F = 7'29—97'1 F.
1Y2

Using item (c) of Lemma (4.3) and multiplying both sides by i, we conclude

.To —T1

AIm Yz =
m¢z ¢ 9162

F. (5.34)

As in the hyperbolic case, define &« = 7 + 7. Then, summing up the cases + = 1 and
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i = 2 in equation ([5.33]), we obtain
as +2(a—2)I'=0. (5.35)

Because 0; € S', also 7; € S'. From condition (d) in Lemma , we have 7; # £7.
Hence, 0 < |a| = |7 + 72| < 2. Thus,

1
gp_oz—?
is well defined and satisfies
LA -
%) a—2
Since A | ’2 A
o+ a— ol —
°v a—2P T la—2p

and |a| < 2, we conclude that 4Rey + 1 < 0. Since a # 0, we have ¢ # —1/2, thus we
obtain the conditions in equation (5.7)). From the equation 22 — (71 + 7o)z + 7172 = 0, we
can recover 7, and 7. Because 11 + 7 = a, 7; € S! and

T + T2 T + T2

TT = = =
T+ nth

)

Q12

we can recover 7; and 7, from the equation

22— ar+

Q12

=0,

that is solving the second degree polynomial, we obtain

7j = % (1 — (1 Y 4l;||°‘|2> . (5.36)

Now set

4_ 2
/T {@Rept1) = YAl (5.37)

oo =2
we must prove that Q(p) = 0, in order to show that Cs is non-empty. In order to do so,

as in the hyperbolic case let us express I', )%, F' and p in terms of the functions 6;. First,
notice that a = 62 + 05 and @ = 1/6? + 1/63. From equation (5.35)), and replacing « in
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terms of 6;, we get

(403 01(61): + 02(62): (5.38)
2(07 + 63 — 2) 02 +02—2 '

If we take the complex conjugate of T', use that §; = #; " and the equations (5.31]) we get

01(01). + 02(02)- o 05(61): + 07(62).

- _ .
1 +1/02—2 0,05 (20202 — 62 — 62)

(5.39)

Using equation ((5.33)) with ¢ = 1 and the I" expression in terms of the 6;, we obtain

0163(601)z — 620(62): — 6:(61): + 5(0:)=

V= 0.0, (02 + 02 — 2)

(5.40)

Taking the complex conjugate of the above equation and using equation ([5.30)) we get

02(01). — 01(05). — 03(61). + 93(92)

vt = 20202 — 62 — 02 (5.41)

Observe that

(¥%): = (¥)z = (¥%): — (V%) = —2ilm (¥°)s.
Therefore, using equation (5.34) we get

. 03 — 02
2((¢¥%): = (¥%)z) = —4ilm (¢%)z = F
010.

Solving for F' we conclude )

03 — 0%
From equation (5.37) and the expression of o and @ in terms of 6; we have

B 4 — (62 +63) /0262 (62 +02)/020% — (5.43)
p= (9%+9§—2)(1/G%+1/9§—2 | ( 62+62—2 (1/62 + 1/93—2)\' '

If we compare the expressions we got for I', T, 9%, 1%, F and p, except for constant
multiple ¢ in the p, they are the same equations as (5.20)), (5.21)), (5.22)), (5.23), (5.24)
and we have found in the hyperbolic case, when we replace (z, 2), (I',T), (¥*,17)
for (u,v), (', T?) and (¢*, "), respectively. Therefore,

Q(p)zng—FpZ—Fpg+Fp:0,
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as one can confirm using Maple. This shows that C, is non-empty.

Let us move on to the converse of the theorem. Consider complex-conjugate coordi-

nates (u,v) for the surface s : L2 — Q{12 If ¢ € C, is an holomorphic function, then the

complex valued function ¢°(z, z) defined by

@z =20 and ¢(2,0) =(

z

satisfies equation (5.7)), and p°¢ = y/—(4Re ¢ + 1) is a function such that Q(p¢) = 0.
Define

1
a=2+—,
723

then from the first condition of equation (5.7)) we have that « is not null. Since

) o @S 4Re ¢ + 1
la=aa =2+ "= (2+—):4+—7
|04 |04 |04

from the second condition of equation (5.7)), we get || < 2.

Set 7; for j = 1,2 by equation (5.36), that is, 7; are solutions of the second degree
polynomial
22— ax+ 3 =0.
Q@

Therefore, o = 71 4+ 2. From the definition of 7;, we have

|af 4— |af?
|7;] 9 + a2 ’

for j = 1,2. Also from the definition of 7; and because |a| < 2, we have 71 # £7.
Write 7; = 62, and define ¢* by equation (5.33). In order to define the one-form v,

remember that i]n the direct statement we had * = 1/2(¢" + i1)"). Therefore, thinking
backwards, define 9" = 2Re)* and ¢* = 2Im?. Define the complex extensions v/2D;
by equation ([5.29). To recover the original \/§Dj just remember that \/§Dj =a;I +b;J
for 0; = a; +1ib;. So, we get a triple (Dy, D2,1). We have to show that this triple satisfies

conditions (a) to (e) of Lemma (4.3)).

Since |7;| = 1, then |6;] = 1, so det v/2D; = 1 and we obtain (a). Because equation
(5.33)) is satisfied, item (b) follows. From the fact that 7y # 7 and how 7; is defined we

get item (d). For item (e), if
Vap. — [
! —bj Q;
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with 0; = a; + ib; and rank (v/2D;)? + (v/2D5)? — 21 < 2, then

2 +a3—-03—2 2a1b; + 2a5b 0 0
(\/§D1)2+(\/§D2)2—2I:<a1 a0 O 20202 >:< )

—26L1b1 — 2&2[)2 CL% — b% + CL% — b% 0 0
Since [0;| = 1 we have

a?—bi+a3—b3=2 and a+b3+a5+b3=2,
and hence, by = 0 = by and a; = £1. Therefore, ) = %05, a contradiction because
T1 # T9, which proves (e).

Let us prove item (c). Since ¢* = 1/(a — 2), and from the definition of p¢, we get
equation (5.37). Therefore, because v = 03 + 03, we get equation (5.43)). Since ¢ and T’
satisfy equation ([5.33)), we have the validity of equations (5.38), (5.39), (5.40) and (5.41).
From the condition Q(p) = 0, we get

- ZZ_F Z_F z
F=_PEm P 0 (5.44)

p

so we can express F' in terms of 6; using equations ((5.43)), (5.38]) and (5.39). Notice that
the p used in the hyperbolic case differs from this p by a multiple of i. We arrive at the

same equations as in proof of the converse statement of the hyperbolic case, with (z, 2),
(T,T), (¢, 1) instead of (u,v), (I'',T2) and (¢%,9"), respectively. Thus, equation (5.34))
is valid, and so is item (c).

Distinct (s give rise to distinct gpcls, and so distinct o’s. Since the 7; are defined by
2 — ax + 2 = 0, we get distinct 7js. So, we get distinct 6;s, and so a distinct triple
(D1, Dy,)). This concludes the proof. O

Before finishing the current chapter, we give an explicit example of an hyperbolic
surface s : L2 — QT", whose associated subset C; is noempty. In the next chapter,
this example and the classification theorem will provide us with an example of a
hypersurface f that admits a genuine conformal deformation in codimension two. This
means that the objects we are studying do exist.

Let us start by orthogonally decomposing
L7t = R™ x ™2

and considering a curve o : [} — S™~! C R™ parametrized by arc length. Denote
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& = ioa, where i : R™ — L™ is the inclusion, and consider the flat parallel vector
subbundle £ C NsI of rank k£ = my + 1 whose fiber at v € I is

L(v) = Ra(v) ®L™. (5.45)

If {&,---,&} is an orthonormal frame of parallel sections of £, with & (v) = @(v), then

we can define a parallel vector bundle isometry ¢ : I; x L* — £ by
k .
30, Y) = (V) = > Y'&(v).
i=1

Let e € L* be such that ¢,(e) = a(v) = & (v) for all v € I}, and denote
Q%a) ={Y e L¥: (Y,e) > 0}.

Consider g : Iy — Qlffll N Q°a) C IL*, another curve parametrized by arc length. Define
82[0X[1—>Q717}1CLW+1 by

s(u,v) = ¢y (B(u)).
Then we have

$:0u = ¢u(8'(u)) and 5.0, = (B(u),e) & (v),

hence s is an immersion with induced metric
ds® = du® + p*(u)dv?,

where p(u) = (B(u), e). Moreover, differentiating, say, the first of the preceding equations
with respect to v gives that

a®(0y, 0y) = 0.

By a suitable change of coordinates & = v(u), we can pass to isothermal coordinates

with respect to which the metric is written as
ds? = 2@ (Aa? + dv?)

for some smooth function A = A(@), and we still have a®*(03,0,) = 0. Thus, the surface
s is an hyperbolic surface and (@, v) are real-conjugate coordinates. For simplicity, we

rewrite u by u.

Let us show that, for the above surface s : Iy x I} — @’fl C L™*! the subset C, is
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non-empty. If we define by
E =(0,,0,) = AW = (04, 0) =0 and G = (0,,0,) = W)
then the Christoffel symbols I't and I'? defined by satisfy
0=FE,=2I"E and 2Xe* =G, =2I°G.

Hence,
I"'=0 and I?=)\.

Given a pair of smooth functions U = U(u) and V = V(v), from the definition of ¢¥ and
¢V for the hyperbolic case from equation (5.3)), we get

oV =U and " = Ve
By suitably modifying U we have

ng = U and gov = 62’\‘/,

so, taking into account the definition of p (equation (j5.6))), we obtain

p=p"" = V2eMU + V) + 1.
From the expression of I'" and I'? and the definition of @) given in equation (5.2)), we have
Q0) = Oup —T0, — T%0, + FO = 0,, — N0,.
Now,

62)\%

T 20 1 V) 1

Po

and so

2NV, (222U + V) + 1) = Voe? 2N U + V) + e2U,)
(2e2MU + V) + 1)3/2 ’

Puv =
which implies that the equation 0 = Q(p) = py» — N p, reduces to

V,(2N — U,e*) =0,
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which is satisfied for V = k, where k is a constant, or for U = ¢ — e~2*. With this we
have shown that C, is nonempty.
We point out that other examples of warped products of curves s : L? — QT'; as above

can be obtained by considering other types of orthogonal decompositions in equation

(.45).
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The Classification

We are now in a position to state and prove the classification of hypersurfaces f : M" —
R™*! that carry a nowhere vanishing principal curvature of multiplicity n — 2 and admit

a genuine conformal deformation f : M™ — R"*+2.

Theorem 6.1. Let f : M™ — R"! be a hypersurface with a nowhere vanishing principal
curvature of multiplicity n — 2. Assume that f is not a Cartan hypersurface on any open
subset of M™, and that it admits a genuine conformal deformation f : M™ — R™*2. Then,
on each connected component of an open dense subset of M™, it envelops a two-parameter
congruence of hyperspheres s : L? — QT{Q C L3 which is either an elliptic or hyperbolic
surface and whose associated set Cs is non-empty.

Conversely, any simply connected hypersurface f that envelops a two parameter con-
gruence of hyperspheres s : L* — Q1? C L"™3 that is either an elliptic or hyperbolic
surface and is such that the set Cy is non-empty admits genuine conformal deformations

in R"2 which are parametrized by Cs.
Remark 6.2. See remark B.3

Proof. Tt follows from Propositions and that, on an open dense subset of M™,
the hypersurface is either elliptic or hyperbolic and there exists a unique (up to sign and
permutation) triple (Dy, D», ¢) satisfying all conditions in Proposition[3.2] By Lemmal[t.3]
the two-paramenter congruence of hyperspheres s : L* — Qf1? C L™ that is enveloped
by f is either an elliptic or hyperbolic surface, respectively, and the triple (D, D, %)
projects to a (unique) triple (Dy, Dy, ) on L? satisfying all conditions in Lemma . We
conclude from Proposition that (Dy, Dy,) gives rise to a unique element of Cs.
Conversely, assume that f : M™ — R"*! is a simply connected hypersurface that

envelops a two-parameter congruence of hyperspheres s : L? — Q’sz C "3, which

151
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is either an elliptic or hyperbolic surface, and is such that the set C, is non-empty. By
Proposition each element of C, gives rise to a unique triple (Dy, Do, 1)) on L? satisfying
all conditions in Lemma[£.3] Then, it follows from Proposition that f is either elliptic
or hyperbolic, respectively, and that (D;, Dy, ) can be lifted to a unique triple (Dy, Dy, )
on M™ satisfying all conditions in Proposition 3.2l By Proposition [3.2] such triple yields
a unique (up to a conformal transformation of R"*2) genuine conformal deformation
fo M — R™2 of f.

Finally, we also have that (congruence classes of) genuine conformal deformations of
f are in one-to-one correspondence with triples (D;, Dy,1)) on L? satisfying all condi-
tions in Lemma (up to signs and permutation), and these are in turn in one-to-one

correspondence with elements of C,. n
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